
THE DEVELOPMENT OF A POWER SYSTEM SIMULATOR
USING MULTIPLE MICROPROCESSORS

by

RAYMOND BRIAN ISHMAEL JOHNSON
MA

Thesis submitted for the degree of
Doctor of Philosophy

in the Faculty of Engineering

Department of Electrical Engineering
Imperial College of Science and Technology

University of London

London, December 1984

2

ABSTRACT

Recent advances in micro-electronics have motivated several proposals to
implement power system simulators based on multiple microprocessors
executing in parallel. This thesis details the hardware and software
development of such a simulator for operator training and research.

The Project utilises off-the-shelf equipment and thus hardware develop
ment is limited to devising a suitable interconnection strategy to
realise a parallel processing architecture. The resulting multiple
processor network is controlled by a host minicomputer.

A distributed monitor is developed for interprocessor communication and
synchronisation. Its flexibility is demonstrated by using its primitive
operations to construct other high-level protocols. Time-dependent
errors such as deadlock and lockout are identified and guidelines given
on their avoidance.

A model of interactive computation is developed for the design of the
man/machine interface. Based on role models of the part man plays in
interactive systems, it provides a framework for designing consistent
user interfaces. This is used to implement a versatile control program.

A short/mid-term power system dynamic simulation is formulated vith
detailed models of generating plant and loads. Problem partitioning for
solution on the multiple processors is achieved by assigning the
equations representing individual components to separate processors.

The scope of this thesis includes the solution of the set of non-linear
algebraic and differential equations which describe the system dynamics.
The numerical problems in time integration such as the treatment of
discontinuities, control of round-off and truncation errors, and
numerical stability are fully discussed and various new approaches are
investigated. An integration method which can be numerically tuned to

suit the system of equations is developed and it is shown to be superior
to the trapezoidal rule when very long time-steps are used.

A comprehensive simulation environment has been implemented to set up,
run and control interactive power system simulations. The performance of
the simulator is assessed and examples are given of the types of studies
that may be conducted. The implications of the results are discussed and
proposals are made for the future expansion of the simulator.

- 4 -

Liandikwalo halifutiki

- 5 -

ACKNOWLEDGMENTS

The work presented in this thesis was carried out under the supervision
of Dr. M.J. Short, B.Sc., Ph.D, D.I.C., C.Eng., M.I.E.E., M.I.E.E.E.,
whom the author thanks for his help and advice.

I express my sincere appreciation to Dr. B.J. Cory, D.Sc.(Eng.),
A.C.G.I., C.Eng., F.I.E.E., Sen.M.I.E.E.E., Reader in Electrical
Engineering, for his interest and constant encouragement. The successful
completion of this research owes a great deal to him.

The project was funded by the Science and Engineering Research Council
under Research grant No. GR/B/1626.9* I am grateful to them for
providing me with financial support in the form of a Research
studentship.

The other members of the simulator project, Raphael Lopez and Isaias
Elizarraraz, deserve special mention for their friendship and their
willingness to discuss new ideas. As friendly users, they ensured the
user-friendliness of the interactive program.

My colleagues in the Power Systems Section and friends in and out of
College have contributed in many different ways to the successful
completion of this work. In particular, I thank my brother Ronald and
his family who were very supportive throughout the period of this
research.

TABLE OF CONTENTS

Page

ABSTRACT 2

ACKNOWLEDGEMENTS 5

LIST OF FIGURES 12

LIST OF TABLES - 14

LIST OF SYMBOLS AND ABBREVIATIONS 15

CHAPTER 1 : INTRODUCTION

1.1 GENERAL 18

1.2 PARALLEL PROCESSING HARDWARE AND SOFTWARE 19
1.2.1 Parallel computer architectures 19
1.2.2 Software for parallel processing 23
1.2.3 Interprocess communication and synchronisation 23

1.3 SIMULATION OF POWER SYSTEM DYNAMICS 25
1-3-1 Simulation techniques 25
1.3*2 Partitioning methods 26
1.3*3 Interactive computing 27

1.4 PROJECT OVERVIEW AND SCOPE OF WORK 27
1.4*1 Objectives 27
1.4*2 Project description 28

1.5 THESIS ORGANISATION 29

CHAPTER 2 : HARDWARE STRUCTURE

2.1 INTRODUCTION 31

7

2.2 THE MICROPROCESSOR UNITS 31
2.2.1 The Texas TMS 9900 microprocessor 33
2.2.2 Input/output ports and controllers 34

2.3 HOST MINICOMPUTER AND PERIPHERALS 35
2.3*1 The host minicomputer and development system 35
2.3*2 Peripherals and ancillary devices 36
2.3*3 The programmable electronic switch 36

2.4 THE MULTIPLE PROCESSOR SYSTEM 38
2.4*1 The multiple processor architecture 38
2.4*2 Mechanisms for interprocessor communication 41
2.4*3 Interprocessor communication 42

2.5 AN ARCHITECTURE FOR LARGE SYSTEMS 44

2.6 CONCLUDING REMARKS 46

CHAPTER 3 : SOFTWARE FOR PARALLEL PROCESSING

3*1 INTRODUCTION 47

3*2 PROGRAMMING LANGUAGES 48
3*2.1 Pascal language structure 48
3*2.2 Features of Texas Instruments Microprocessor Pascal 48
3*2.3 Other programming languages 50
3.2.4 Software development process 51

3.3 COMMUNICATION BETWEEN COOPERATING PROCESSORS 53
3*3*1 Structuring concepts in parallel processing 53
3*3*2 Synchronisation and communication mechanisms 54

3*4 DISTRIBUTED MONITORS FOR INTERPROCESSOR COMMUNICATION 54
3.4.1 Structure 54
3*4*2 Implementation 56
3*4*3 Message-passing primitives 59
3.4.4 Higher level communication protocols 62

b

5-5 PROGRAMMING FOR PARALLEL EXECUTION
5*5*1 Factors causing loss in performance
5*5.2 Time-dependent errors

5.6 ANALYSIS OF A PARALLEL ALGORITHM
5.6.1 Problem description
5.6.2 Some performance measures
5.6.5 Analysis of computation patterns
5.6.4 Implications for large systems

5.7 CONCLUSIONS

CHAPTER 4 : INTERACTIVE COMPUTATION

4.1 INTRODUCTION

4.2 MAN/MACHINE AND MACHINE/MACHINE INTERFACES
4.2.1 Models of human behaviour
4.2.2 Interaction patterns
4.2.5 Dialogue types
4.2.4 A model of interactive computation
4.2.5 Input/output and communication

4.5 DESCRIPTION OF THE INTERACTIVE PROGRAM

4.4 DESCRIPTION OF COMMANDS
4.4.1 Command structure
4.4.2 Control and initialisation commands
4.4.5 Utility commands
4.4.4 Interactive commands

4.5 'PROGRAMMING AND RUNNING INTERACTIVE SIMULATIONS
4.5.1 Interfacing simulation programs for interaction
4.5.2 Programming command files
4.5.5 Programming display files
4.5.4 Operation of the interactive control program

4.6

65
65
67

68
69
69
71
74

74

77

78
78
78
81
81
85

84

85
85
85
88

89

90
90
95
95
96

CONCLUSIONS 97

- 9 -

CHAPTER 5 : POWER SYSTEM MODELS AND SIMULATION TECHNIQUES

5.1 INTRODUCTION 98

5.2 THE INTERCONNECTING NETWORK 99
5.2.1 Network models for stability analysis 99
5.2.2 Data preparation 100
5.2.3 Network solution 100

5-3 GENERATION PLANT MODELS 101
5*3«1 The synchronous generator 101
5-3*2 Excitation subsystem 103
5.3*3 Speed governor and turbine models 106

5*4 LOAD REPRESENTATION 106
5*4*1 Static load representation 108
5*4*2 Dynamic load representation 109
5*4*3 Composite bus loads 111

5.5 FORMULATION OF THE COMPOSITE SYSTEM MODEL 112
5*5*1 The composite generation plant model 112
5*5*2 Interfacing dynamic components to the network 112

5.6 NUMERICAL INTEGRATION METHODS 114
5*6.1 Characterisation of integration methods 114
5*6.2 Explicit methods 115
5.6.3 Implicit methods 116
5.6.4 State transition matrix 118

5.7 TUNABLE NUMERICAL INTEGRATION 119
5.7*1 Comparison with classical methods 119
5.7.2 Round-off and truncation errors 120
5.7.3 Stability properties 125
5.7.4 Trajectory errors 126

5.8 CONCLUDING REMARKS 129

CHAPTER 6 : IMPROVED TECHNIQUES FOR DYNAMIC SIMULATION

6.1 INTRODUCTION 132

10

6.2 SIMULATION ALGORITHM 135
6.2.1 Partitioned solutions 135
6.2.2 Solution of the swing equations 135
6.2.5 Simulation of a generator and its controls 138
6.2.4 Convergence criteria 139
6.2.5 Solution algorithm 139

6.3 TREATMENT OF NONLINEARITIES 145
6.3*1 Discontinuities 145
6.3*2 Solution of trigonometric functions 148
6.3*3 Solution of the load equations 148

6.4 APPLICATION OF TUNABLE INTEGRATION 150
6.4*1 Derivation of difference equations 150
6.4*2 Tuning strategies 151
6.4*3 Fixed tuning methods 151
6.4*4 Adaptive tuning methods 152
6.4*5 Evaluation of the method 155

6.5 POWER SYSTEM STABILITY 161

6.6 CONCLUSIONS 163

CHAPTER 7 : INTERACTIVE DYNAMIC SIMULATION

7.1 INTRODUCTION 164

7.2 DESCRIPTION OF THE SIMULATION PROGRAM . 164
7.2.1 Program structure 164
7.2.2 Partitioned algorithm 166
7*2.3 Interprocessor communication 169

7.2.4 Interface to the interactive control program 169

7.3 PERFORMANCE TESTS 170
7*3*1 Test systems 170
7*3*2 Sequential algorithm 170
7.3*3 Parallel algorithm 172

7 . 4 INTERACTIVE FEATURES 174
7.4.1 Simulation set-up and control 174
7.4.2 Network switching and load changes 174
7.4.3 Interaction with generators and motors 175
7.4.4 User interaction 175
7.4.5 Post-processing 177

7 . 5 SIMULATION STUDIES 177
7.5.1 Critical fault clearing time 177
7.5.2 Pole slipping and resynchronisation 178
7.5.3 Non-impedance load representation 178

7 . 6 CONCLUSIONS 178

CHAPTER 8 : CONCLUSIONS

8.1 GENERAL 183

8.2 HARDWARE AND SOFTWARE 183
8.2.1 Hardware 183
8.2.2 Software 184
8.2.3 Interaction 185

8.3 SIMULATION TECHNIQUES 186
8.3.1 Model formulation 186
8.3.2 Solution methods 186
8.3.3 Parallel algorithms 187

8 . 4 ORIGINAL CONTRIBUTIONS 187

8.5 SUGGESTIONS FOR FURTHER WORK 188
8.5.1 Model reduction 188
8.5.2 Simulator expansion 189
8.5.3 Simulator applications 190

APPENDIX A : TIMP IMPLEMENTATION BENCHMARKS
APPENDIX B : TEST SYSTEMS DATA
REFERENCES

191
193
199

12

Fig. 1.1 Anderson and Jensen’s taxonomy. 21
Fig. 1.2 Typical system topologies. 22
Fig. 1.3 Synchronisation techniques and language classes. 24
Fig. 2.1 MPU functional block diagram and memory map. 32
Fig. 2.2 Schematic diagram of electronic switch. 37
Fig. 2.3 Multiple MPU simulator : Hardware configuration. 39
Fig. 2.4 Architectural configurations. 40
Fig. 2.5 MPU-MPU interconnection and timing diagram. 43
Fig. 2.6 Proposed multiple processor architecture. 45
Fig. 3*1 TIMP Pascal system structure. 49
Fig. 3*2 Software development process. 52
Fig. 3*3 Hierachical structure of the distributed monitor. 57
Fig. 3*4 Interprocessor communication data-flow schematic. 58
Fig. 3»5 Port and message buffer data structures. 56
Fig. 3*6 Implementation of the distributed monitor. 60
Fig. 3*7 Implementation and decomposition penalties. 66
Fig. 3*8 Types of deadlock. 68
Fig. 3*9 Typical computation patterns. 70
Fig. 3*10 Effect on computation pattern of communication schemes. 72
Fig. 3*11 Performance curves for single-stage computation. 73
Fig. 3*12 Performance curves for. double-stage computation. 75
Fig. 4*1 Data flows in Man/Machine interaction. 80
Fig. 4.2 Hierarchical model of interactive computation. 82
Fig. 4*3 Structure of the interactive control program. 86
Fig. 4.4 Command tree. 87
Fig. 4*5 Host/Multiple-MPU communication scheme. 91
Fig. 4.6 Example of a command file. 94
Fig. 4*7 Example of a display file. 95
Fig. 5*1 Generation plant model. 102
Fig. 5«2 Generator equivalent circuit and block diagram. 104
Fig. 5*3 Excitation subsystem model. 105
Fig. 5*4 Governor-Turbine model. 107
Fig. 5*5 Static and dynamic load models. 110
Fig. 5*6 Generation plant model matrix. 113
Fig. 5*7 Stability boundaries of conventional integration methods. 117
Fig. 5*8 Variation of tuning parameter with h^. 121
Fig. 5*9 Behaviour of global error. 123

LIST OF FIGURES

Fig. 5*10 Variation of truncation error with tuning parameter. 124
Fig. 5*11 Stability boundaries of tunable integration method. 127
Fig. 5*12 Trajectory error diagrams of conventional methods. 128
Fig. 5*13 Trajectory error diagrams of tunable methods. 130
Fig. 6.1 The WSCC 9-Bus test system. 134
Fig. 6.2 Comparison of solution methods for the swing equations* 137
Fig. 6.3 Variation of iterations with convergence tolerance. 140
Fig. 6.4 Effect of convergence tolerance on time response. 141
Fig. 6.5 The effect of step length on time response : Faulted case. 143
Fig. 6.6 The effect of step length on time response : Outage case. 144
Fig. 6.7 Treatment of discontinuities. 147
Fig. 6.8 Approximate sines and cosines. 149
Fig. 6.9 Fixed global tuning. 153
Fig. 6.10 Variation of iterations with the tuning parameter. 154
Fig. 6.11 Behaviour of tuning parameters of Governor-Turbine states. 156
Fig. 6.12 The effect of step length on time response :

A-stable tuning. 158
Fig. 6.13 The effect of step length on time response :

Full tuning. 159
Fig. 6.14 Comparative plots of tuned methods and trapezoidal rule. 160
Fig. 6.15 Solution accuracy of marginally stable and unstable cases. 162
Fig. 7»1 Power system simulator : software structure. 165
Fig. 7.2 Typical Pascal data structures. 157

Fig. 7.3 Serial and parallel simulation algorithms. ̂53

Fig. 7.4 IEEE 14-bus and 30-bus test systems. 171
Fig. 7.5 Parallel simulation timing diagrams. 173
Fig. 7.6 Typical simulator display pages. 176
Fig. 7.7 Marginally stable cases. 179
Fig. 7.8 Pole-slipping and resynchronisation. 180
Fig. 7.9 The effect of load representation. 181

- 13 -

14

LIST OF TABLES

Table 2.1 Comparison of TMS 9900 with other commercial
microprocessors. 33

Table 3*1 Communication and synchronisation primitives. 55
Table 4.1 Sequence of interactive computation. 79
Table 4*2 Man/machine dialogue types. 81
Table 4*3 Interactive system design parameters. 82
Table 4«4 Overhead due to communication. 93
Table 4«5 List of symbols used in display files. 94

Table 4*6 List of symbols used in command files. 94
Table 5*1 Single-step integration methods. 120
Table 6.1 Simulating difference equations for the swing equations. 136
Table 6.2 Effect of time-step on the number of iterations. 142
Table 6.3 Simulation program timings. 157
Table 6.4 Number of iterations per step of TR and tunable methods. 157
Table 7.1 Sequential algorithm program timings. 170
Table 7.2 Parallel algorithm program timings. 172
Table A.1 Execution speed of Texas Pascal constructs. 191
Table A.2 Execution speed of floating-point arithmetic'. 192
Table B.1 WSCC 9-bus system : network data. 193
Table B.2 WSCC 9-bus system : base case loadflow solution. 193
Table B.3 IEEE 14-bus system : network data. 194
Table B.4 IEEE 14-bus system : base case loadflow solution. 194
Table B.5 IEEE 30-bus system : network data. 195
Table B.6 IEEE 30-bus system : base case loadflow solution. 196

Table B.7 Rotating machine data. 197
Table B.8 Exciter data. 197
Table B.9 Power system stabiliser data. 198
Table B.10 Governor-turbine data. 198

15

LIST OF SYMBOLS AND ABBREVIATIONS

In general, symbols and abbreviations are defined the first time they
appear in the text.

PRINCIPAL SYMBOLS
[A]
d,q
D
_f,g
F, G
h
H
Im,Re
[i]

V 1,
3 = V -1

n
N
pco

pv
p

P' = dP/dV
P
P
o
m
Q
qo>
qv

Ra
S = P+jQ
t = nh
T
m ' rp »
ido* iqom" m*'
^o* qom" ,TI f

q

Linear system matrix
Direct and quadrature axes
Turbine damping coefficient
Vector functions
Numerical integration factors
Integration step length
Generator inertia
Imaginary and real parts of a complex number
Vector of bus currents
d and q components of terminal current
Imaginary operator
Integration step count
Number of microprocessor units
Active load frequency regulation coefficient
Active load voltage regulation coefficient
Bus active power
Acceleration power
Electrical power
Differential of power with respect to voltage
Initial steady-state load active power
Mechanical power
Bus reactive power
Reactive load frequency regulation coefficient
Reactive load voltage regulation coefficient
Stator resistance
Complex power
Time instant
Time constant
D and q-axes open circuit transient time constants
D and q-axes open circuit subtransient time constants
D and q-axes short circuit subtransient time constants

16

[T]
[U]
[V]
Vcrit
V = 1 -w

W Vdq
V V Vir

Xd ’Xq
Xd

Y "Ad
Y"
Xq
x,y

XH ,XL
Yo
M b u s
^ b u s
Ax
5
X

7 = D/2H
</>= 1/2H

^ref
cu = ft

r
Wrt

ref

Transformation matrix
Upper triangular matrix
Vector of bus voltages
Motor load stalling voltage
Complement of tuning parameter
d and q components of voltage
Imaginary and real components of voltage
Tuning parameter
Synchronous reactances
D-axis transient reactance
Q-axis transient reactance
D-axis subtransient reactance
Q-axis subtransient reactance
State variables
High and low limits on variable x
Norton equivalent shunt admittance
Admittance matrix
Impedance matrix
Increment in x
Rotor electrical angle
Eigenvalue or root
Damping/inertia ratio
inverse of inertia
Rotor angular speed, synchronous speed
Rotor angular speed deviation
Damping ratio
Natural frequency

NOTATION

1) The dot notation is used to indicate the differential with respect to
time. Other differentials are indicated by the prime symbol e.g., P'.

2) The value of a variable x at time t is represented using n as a
subscript. Thus

x(t) = x(nh) = xn
x(t+h) s x((n+l)h) s xn+1and

17 -

ABBREVIATIONS

AE Adams-Bashforth (integration method)
AN Adams-Moulton (integration method)
AVR Automatic voltage regulator
BE Backward Euler (integration method)
CPU Central processing unit
CRU Communications register unit
DMA Direct memory access
FPA Floating point arithmetic
GKS Graphical kernel standard
I/O Input and output
MM I Man-machine interface
MPU Microprocessor unit
ms Milliseconds
MW Megawatts
ODE Ordinary differential equation
PC Predictor-corrector
PCB Printed circuit board
PSS Power system stabiliser
p.u. Per-unit values
RAM Random access memory
RK Runge-Kutta (integration method)
ROM Read-only memory
s Seconds
SBC Single-board computer
STM State transition matrix
TIMP Texas Instruments microprocessor Pascal
TR Trapezoidal rule (integration method)
VDT Video display terminal
VDU Video display unit

18

CHAPTER 1

INTRODUCTION

1.1 GENERAL

Computation machinery for power systems analysis and simulation has
progressed from the early AC network analysers, through analogue
computers to digital computers. Larger problem sizes plus the increasing
requirement for real-time simulation and on-line control has prompted
researchers in power systems to investigate the feasibility of using
various combinations of hardware operating in parallel to obtain
high-speed solutions.

This effort started in the 1960s and various hybrid machines were
constructed utilising combinations of network analysers, analogue and
digital computers. One such system was constructed at Imperial College
and used successfully for real-time control studies (Arriola-Valdes and
others [l], Mogridge and others [2]). Michaels [3] has demonstrated the

possibility of obtaining load flow and transient stability solutions
100 times faster than real-time. While these efforts confirmed the power
of the approach, the high cost of the equipment, its intrinsic lack of
flexibility and its physical size has discouraged its general acceptance
by the industry.

The favourable price/performance of digital computer hardware led to
proposals for multicomputer networks for general simulation by Korn [4],
and for power system computation by Happ [5]. The invention of the
microprocessor and its subsequent rapid development and falling cost are
now regarded as a most promising avenue towards achieving high-speed
scientific computation. Thus several researchers in the field of
simulation in general and power systems in particular have proposed
structures of multiple micro-processing units (MPUs) on which

19 -

computations may be carried out in parallel [6-11].

Early proposals (e.g. Ref. [6]) envisaged large numbers of processors
interconnected in a regular pattern being capable of execution speeds of
millions of floating-point operations per second (MFLOPs) with a
substantial cost advantage over supercomputers. It is now recognised
that the irregular nature of most computing tasks and architectural
problems such as resource contention, would result in saturation which
would limit the maximum number of processors that can be used
effectively. Therefore, present research concentrates on achieving a
more modest speed-up for large problems partitioned over relatively few
processors, say 40-50 [8—11]-

1.2 PARALLEL PROCESSING HARDWARE AND SOFTWARE

1.2.1 Parallel computer architectures

The desire for fast computing at minimum cost has been the primary
motivation behind the increasing use of parallel computing systems.
Parallelism has been exploited "in the small" by carrying out task
decomposition at the computer cycle or instruction level and this has
given rise to architectures such as those of vector supercomputers,
pipelined computers and array processors ([12-14])*

Parallel computer systems which exploit parallelism in the small can be
characterised by the taxonomy proposed by Flynn in 1966 [12] where the
possible types of computer architectures are defined in terms of the
parallelism or otherwise of the instruction and data streams. In Flynn's
taxonomy there are thus four possible types of computers, namely:

SISD - single instruction stream, single data stream.
This is the classification of the prevalent von Neumann
architecture where instructions and data reside in a single
memory space.

20

SIND - single instruction stream, multiple data streams.
This architecture has been exploited successfully in vector
and array processors.

MISD - multiple instruction streams, single data stream.
No example of an implementation of this architecture exists.

MIMD - multiple instruction streams, multiple data streams.
This classification includes all computers with two or more
independent execution units.

The advent of microprocessors has opened up the possibility of end users
exploiting parallelism "in the large" by coupling several micro
processing units (MPUs) to execute several tasks in parallel. The MPUs
may perform logically different tasks, the same task using different
sets of data, or co-operate to solve a given problem. In the context of
this work, only systems with functionally equivalent processors are
considered.

While Flynn's taxonomy may be adequate for the immediate categorisation
of mainframe computers, the vast number of recently proposed multiple
processor systems which fall under the MIMD category necessitated a more
detailed taxonomy. Anderson and Jensen [14] proposed such a taxonomy in
which MIMD systems are categorised in terms of the configuration of the
three primary hardware elements, namely; processing elements, message
switching elements and communication paths. A four-level decision tree
is used which reflects the possible choices as to the method of message
transfer, the manner in which those transfers are controlled, the type
of communication path used, and finally the specific system topologies.

Fig. 1.1 gives the Anderson and Jensen taxonomy and some typical system
topologies are depicted in Fig. 1.2. The structures shown in Fig. 1.2
may be used to satisfy the requirements of two different aspects of
computation. The first is distributed processing, where geographically
dispersed processing units are loosely coupled to form local area
networks (Fig. 1.2a and b). The second aspect is that of high speed
parallel computation. In this case the processors are usually tightly

TRANSFER
STRATEGY

TRANSFER
CONTROL
METHOD

TRANSFER
PATH
STRUCTURE

DEDICATED
PATH

l^ t

DIR LCT

(NONE)

JL

SYSTEM
ARCHITECTURE

(DDL)
LOOP

(DDC)
COMPLETE

INTERCONNECTION

INTERCONNECTION
FOR COMMUNICATION

CENTRALIZED
ROUTING

SHARED
PATH

DEDICATED
PATH

SHARED
PATH

r = \
(DSM) (DSB) (ICDS) (ICDL) (ICS)

CENTRAL GLOBAL STAR LOOP BUS
MEMORY BUS WITH WITH

CENTRAL CENTRAL
_________ SWITCH SWITCH

INDIRECT
_i i__

DECENTRALIZED
ROUTING

__ U ____

DEDICATED SHARED
PATH PATH

(IDDR) MODI) (IDS)
REGULAR IRREGULAR BUS
NETWORK NETWORK WINDOW

i
ro
i

Fig. 1.1 Anderson and Jensen's taxonomy

22

LOOP COMPLETE

a) DDL (loop) b) DDC (complete interconnection)

OIRECT INDIRECT

DEDICATED SHARED

/ \
MEMORY BUS

c) DSM (multiprocessor) d) DSB (global bus)

e) DSB (global bus with dual-ported memory)

Fig. 1.2 Typical system topologies.

23 -

coupled via a parallel bus on a common backplane.

Parallel bus systems are commonly available in one of two forms. Ore is
the DSM scheme (Fig. 1.2c) where a large global memory is used to
facilitate inter-processor communication and to store data common to all
MPUs. In another more flexible scheme, each MPU has a dual-ported memory
through which messages may be sent and received from other processors
(see Fig. 1.2d and e). In both schemes exclusive access to the system
bus is granted in turn to each processor on a priority basis when inter
processor communication is required.

1.2.2 Software for parallel processing

The predominant language used in scientific computation is Fortran -which
was originally designed specifically for this purpose. However, its
small number of control structures and restricted set of data types make
it an inefficient language in which to write large reliable programs.

Pascal (see Jensen and Wirth [16]), a language based on the concept of
structured programming, has a wide variety of data structures and a
flexible set of control constructs. Enns et al. [17] recommended its use
as an alternative language for power system computations. In its
concurrent form, Pascal is well suited to the application of parallel
processing (Brinch Hansen [18]). An alternative is ADA (USDOD [19])»
which may be regarded as a superset of PASCAL.

1.2.3 Interprocess communication and synchronisation

In the development of concurrent, multi-tasking operating systems,
several programming constructs have been defined which allow
synchronisation and message passing between different tasks [18-23]- The
advent of parallel systems comprising several processors has resulted in
efforts to exploit this acquired knowledge.

- 24 -

In a recent survey paper [23], Andrews and Schneider traced the
development of the various software tools available up to the present
state-of-the-art. Fig. 1.3 indicates the two main development paths
followed, up to the development of the remote procedure call which is
the technique used in ADA [19]* A H concurrent languages are viewed as
belonging to one of three classes: procedure oriented, message oriented
or operation oriented. Procedure oriented languages (e.g. Brinch
Hansen’s Concurrent Pascal [1 s]) are usually based on the monitor [21]
and they are most suitable for serial processors although they can be
implemented on multiprocessors as well. Message oriented languages, such
as Hoare's CSP [22], are better suited to multiple processor systems
without common memory. Operation oriented languages (e.g. ADA) are the
most versatile since they combine the advantages of the other two
classes.

A multiprocessor system may be programmed as a concurrent system with
several tasks distributed over the various processors of the system. In
true multiprocessors, the operating systems are either centralised or
distributed with common data stored in global memory (Enslow [13]* Jones
and Schwarz [24]). In multiple processor systems without common memory a
distributed operating system is necessary (see Halsall et al. [25]).

PROCEDURE
ORIENTED

Busy-Waiting
I

Critical Regions

/
Monitors

Semaphores

MESSAGE
ORIENTED

Message Passing

Path Expressions \

Remote Procedure Call

OPERATION ORIENTED

Fig. 1.3 Synchronisation techniques and language classes.

25 -

1.3 SIMULATION OF POWER SYSTEM DYNAMICS

1-3-1 Simulation techniques

The computations required in power system analysis and design are such
that the need for economic computing power has never been fully
satisfied. Although the execution speed and memory capacity of computers
have been increasing rapidly in recent years, increases in the size and
complexity of power systems over the same period have resulted in vastly
increased computational requirements.

Efforts to improve the execution speeds of such large problems have been
made by one of three complementary approaches. The first is that of
model reduction or simplification [26-28]. In dynamic stability studies
simplified generator models are used; Hammons and others [26] and Alden
and Nolan [27] have investigated the effect of modelling detail on the
accuracy of simulation studies. Another method of reduction is the
derivation of equivalents for groups of generators that are known to "be
coherent (Ghafurian and Berg [28]).

A second approach involves research into better solution methods and new
numerical algorithms. Examples include the development of stiffly-
stable multi-step integration methods (Gear [29], Fuller et al. [30])
and the application of implicit integration methods to the transient
stability problem (Dommel and Sato [3 1]). Major improvements in the
solution of the network algebraic equations resulted from the use of
sparsity techniques by Tinney and Walker [32] and the development of the
fast decoupled load flow (FDLF) by Stott and Alsac [33]*

The third approach is that of exploiting new computer architectures in
order to achieve speed gains. Orem and Tinney investigated the potential
of array processors in solving large-scale power system problems [34]
and the Electric Power Research Institute in the USA (EPRl) has funded
research into the use of vector computers (Happ [35])- The major part of
this effort was devoted to the derivation of parallel solution

26

algorithms and various matrix forms were developed which improved the
performance of these types of architectures. However, the viability of
these efforts has been recently called into question (Detig [36]).
Proposals to use several independent processors in a multiple processor
configuration now seem to be more promising [9—11].

1.3-2 Partitioning methods

The primary direction of research into parallel processing by power
systems analysts has been towards efficient methods of partitioning
power systems problems for parallel execution. It is well known that
this aspect is heavily dependent on the architecture of the hardware on
which the problem is to be solved. Various methods have been put forward
to handle the large set of algebraic and differential equations
describing power system simulation problems.

Mathematical approaches to partitioning have been proposed which require
the differential equations to be discretised such that they can be
solved together with the network equations [9—11]- The resulting set of
equations can then be ordered into a convenient form and partitioned for
solution on several MPUs. One disadvantage of such techniques is that it
is usually difficult to identify which equations represent the various
components of the physical system. Also, during solution, frequent
exchanges of large amounts of data between the processors are required
although this may be minimised by the use of clustering techniques (Fong
and Pottle [1 1]).

A more straightforward method of decomposition is to partition the
system of equations into sets that represent physically identifiable
components of the power system (Fong and Pottle [11]). This has the
advantage that the equations of individual components can be solved on
separate processors. Also, if generators and motors are regarded as
components of the power system, the differential equations are separated
from the algebraic equations and appropriate solution algorithms may be
used for each part.

1.3-3 Interactive computing

An important concern in the development of a simulator, whether for
training, research or design, is the level of user-interaction to be
incorporated [38,39]- Since simulation activities in general require
multiple runs of programs with different data, the interactive
facilities must be designed such that changes can be made with the
minimum of effort. In the present context, the definition of Undrill and
colleagues [39] is adopted viz.

"An interactive program is one that allows the engineer to
exercise his ability to make decisions in the course of the
run to influence its future progress".

Such decisions may range from simply halting the program to control
actions aiming to stabilise the system being studied.

1.4 PROJECT OVERVIEW AND SCOPE OF WORK

1.4*1 Objectives

A project was initiated in 1979 by Short and Cory at Imperial College to
investigate the applicability of the new 16-bit microprocessors to the
simulation of power- systems dynamics by parallel processing [40]. The
three main objectives of project may be stated as follows:

1. To determine the potential of microprocessors as the basic
elements in a dynamic power system simulator for the fast solution
of power system dynamic and operating problems.

2. To construct a flexible, expandable multi-machine power system
simulator composed of an array of microprocessors.

3. To establish an optimum simulator architecture and software
structure for power system investigations.

1.4-2 Project description

In line with the original project proposals, commercially available
single-board computers and a host minicomputer system were used. This
reduced the development time in that a minimum of special-purpose
hardwa-re had to be built. In anticipation of the future predominance and
widespread use of structured languages, Pascal was chosen as the main
programming language to be used in the research project. This also
ensured portability of the simulation programs.

The work presented in this thesis was carried out as part of the
simulation project which was undertaken by three workers including this
author. The aspects covered by the author's colleagues are indicated in
the following:

Elizarraraz [41] investigated network solution algorithms .for load flow
studies and fault analysis using -dynamic data structures to exploit
sparsity. These algorithms were then used to implement a contingency
analysis package as a means of evaluating the capability of a single
microprocessor unit. Diakoptic and clustering techniques were utilised
to study the speed-up attainable by partitioned solutions of networks on
more than one MPU. Other aspects of his work included the study of
optimal ordering and compensation methods.

Lopez [42] studied comprehensive power plant models for unified
transient and dynamic stability analyses. In order to reduce excessive
solution times, a multi-rate integration method was developed which also
reduced the round-off error in the slow variables. It was shown that, by
the concurrent programming of this method, the idle time incurred in a
multiple processor system may be reduced. The applicability of the
multiple MPU system to operator training was demonstrated by
implementing a simulator for load dispatch which could run up to ten
times faster than real-time .

- 29 -

This thesis describes the hardware architecture that was designed to
link several MPUs to form a network of parallel executing units. A
software environment was developed which enabled interactive simulation
programs to fully exploit the parallel architecture. This facility was
then used to implement a dynamic power system simulator which included
detailed models of generating plant and loads. In an effort to speed up
the execution of the algorithm, a tunable method of numerical
integration was developed which permits the use very long time-steps. By
a careful analysis of the equations introducing non-linearities into the
power system dynamic model, several approximations were developed which
resulted in faster solutions without an undue loss of accuracy.

At the completion of the project in July 1983, the simulator was
demonstrated to invited members of the electric power industry.

1.5 THESIS ORGANISATION

In Chapter 2 the hardware structure of the multiple processor system is
described and the issues involved in the design of such systems from
commercially available equipment are discussed. An architecture for
power system computations is proposed which is suited to the
partitioning methods used in this project as well as those found in the
literature.

The system software utilised in the parallel execution units is
described in Chapter 3* A hybrid of existing communication and
synchronisation techniques is developed for achieving interprocessor
communication in a distributed processor system. Some potential problems
in parallel processing are identified and methods of solving them are
discussed. In the final section of the chapter, the factors which
determine the gain in execution speed in parallel systems are discussed
and some performance measures are defined by which the efficiency of
different partitioning techniques may be evaluated.

30 -

The requirement for an effective man-machine interface motivates the
subject matter of Chapter 4* In most applications a multiple processor
system would be attached to a host computer as a special-purpose
processor; a machine-machine interface is therefore necessary as well.
The design and implementation of an interactive control program which
includes these interfaces is described.

Mathematical models of the various components of an interconnected power
system are presented in Chapter 5. A linear network model is used and an
outline of the computational algorithm for its solution is given. In the
formulation of the models of dynamic components, a modular approach is
adopted which facilitates the partitioning of the power system for
parallel processing. The final sections of the Chapter comprise a review
of numerical integration methods and an analysis of a method whose
coefficients may be tuned to suit a particular system of differential
equations.

In an effort to improve the solution speed of dynamic simulations, some
new techniques are evaluated in Chapter 6. A solution algorithm using
the Trapezoidal rule is developed and its performance with long
time-steps is studied. Approximate techniques are then used to handle
nonlinearities and discontinuities. Finally, the performance of the
tunable method with various tuning strategies is studied and compared
with the Trapezoidal rule.

Chapter 7 describes interactive dynamic simulations of representative
power systems. The manner in which the developed techniques may be
extended to large systems is indicated.

The conclusions drawn from this research are given in Chapter 8.
Finally, some suggestions for future work are made both in terms of new
applications and the upgrading of the simulator.

CHAPTER 2

HARDWARE STRUCTURE

2.1 INTRODUCTION

This chapter describes the design of the hardware structure of the
multiple processor system using off-the-shelf hardware in the form of
single-board computers (SBCs). The SBCs are interconnected through
parallel links such that the structural configuration of the system can
be changed to suit particular simulation problems. The structures
proposed here are meant for the solution of large power system problems
on relatively few processors such that each processor executes a
sequential program that is long relative to the time spent for inter-
processor communication. The multiple processor system is supported by a
host minicomputer which is equipped with an operator's console and
various I/O devices.

2.2 THE MICROPROCESSOR UNITS

Five microprocessor units (MPUs) are available to the project with each
MPU comprising an SBC based on the TMS 9900 microprocessor [43,44] and a
memory expansion board housed in a card-cage. The functional block
diagram of an MPU is shown in Fig. 2.1a.

The address space of the processor of each MPU is fully populated by
60 kbytes of RAM and 4 kbytes of read-only memory (ROM). Fig. 2.1b gives
a typical memory configuration of an MPU. The ROM contains a bootstrap
loader routine for receiving programs being downloaded from the host
minicomputer. In principle, all the programs required may be programmed
in ROM to give a dedicated system.

32

Memory expansion

a) Microprocessing unit functional block diagram

Hex Address Purpose

0000 - 003F Interrupt vectors
0040 - 007F Extended instruction vectors
0080 - 01FE System initialisation code
0200 - 47FE Kun-time executive
4800 - 57FE Pascal interpreter
5800 - 67FE Pascal program p-code
6800 - 6FFE Assembly language routines
7000 - 7FFE System tables
8000 - Program static variables (stack)

- EFFE Program dynamic variables (heap)
F000 - FFFE Loader program and blank EPROM

b) Memory Map of a Microprocessor unit"

Fig. 2.1 MPU functional block diagram and memory map

- 33 -

2.2.1 The Texas THS 9900 microprocessor

The TEXAS 9900 is a 16-bit microprocessor running at 3 MHz with a
maximum addressing range of 64 Kbyte. The average instruction execution
time is 5 us. Floating point arithmetic is done by software with a
typical operation executing in about 1 ms. The absence of floating-point
hardware is a limiting factor in the speed of execution of the numerical
algorithms found in power system computation.

The architecture of the processor is quite different from those of the
commonly available 16-bit processors in several key features which
impact on its performance in a multiple processor system. Table 2.1
summarises the more important of these departures from the norm as found
in other present-day processors.

Table 2.1 Comparison of TMS 9900 with other commercial processors

FEATURE IMS 9900 OTHERS [44]

Architecture n/a pipelined instructions
n/a support for co-processors

Address space 64 kByte 1-16 MByte
General registers in main memory on-chip
Context switching memory-to-memory stack-based
Interrupts fixed vectors fixed and device-supplied vector:

Addressing modes auto-increment auto-increment/decrement
Block move no yes
Bit operations I/O bits only I/O and memory bits
Input/Output bit serial byte or word parallel

Multiprocessor none hardware signals and indivisible
support test-and-set instructions

- 34 -

The features which have most effect on the suitability of the processor
in a multiple processor configuration include:

1. Address space - the 64 kbyte addressing range of the TMS 9900 is a
fundamental limitation when programming in a high level language.
If a multiprocessor is to be implemented, it is then necessary to
use extra circuitry to realise global addressing as in CM* [8].

2. Memory-to-memory architecture - this, being the feature of
locating the processor's general registers in main memory, is
superior to on-chip registers when switching context since only
three registers have to be saved. However, other register
operations are slower due to the need to access main memory.

3* Communication register unit (CRU) - all I/O operations using the
CRU are bit-serial which is much slower than parallel I/O.
Memory-mapped I/O is possible but not implemented on the MPUs.

4* Multiprocessor support - the lack of hardware signals and an
indivisible test-and-set instruction restricts the capability of
the processor as an element in tightly-coupled systems.

In recognition of the need for microprocessors suitable for parallel
operation the most recent processor from the manufacturers (TMS 99000)
has overcome some - of these disadvantages. For example, the memory-to-
memory architecture has been retained but the speed penalty has been
eliminated by the provision of on-chip RAM [44]*

2.2.2 Input/output ports and controllers

Each MPU is equipped with two serial and one parallel I/O ports. All
ports are controlled via the CRU of the TMS 9900 microprocessor and the
following special-purpose peripheral controller chips [43]:-

1. TMS 9901 - Programmable systems interface
This controller serves as a general-purpose interface chip for
handling interrupts and parallel I/O. All externally generated

- 35 -

interrupts are decoded by this chip and it may be programmed to
mask out some or all interrupts. It includes a counter/timer which
was used to implement a clock.

2. TMS 9902 - Asynchronous communications controller
The RS232 serial I/O ports are implemented using this chip. It can
be programmed to perform all the necessary timing, parity gener
ation, serial/parallel and parallel/serial conversion for full
duplex communication. Data transfer may be controlled by polling
or interrupts.

2.3 HOST MINICOMPUTER AND PERIPHERALS

2.3-1 The host minicomputer and development system

The development system used in this project was supplied by TEXAS
INSTRUMENTS [46] and comprises the following equipment :-

i. Microprocessor based minicomputer
ii. Dual floppy disk drives

iii. Video display terminal with attached keyboard (VDT)
iv. Prototyping emulator

The minicomputer was used for software development and the prototyping
emulator for hardware and software debugging. Mass storage is provided
by the floppy disk drives and the VDT serves as the operator's console.

The minicomputer is implemented on PCBs housed within a desk unit. Its
main features are:

TMS9900 microprocessor running at 3 MHz.
1 unmaskable and 7 maskable prioritized interrupt levels.
Real-time clock with a 10 msec, resolution.
1 kByte read-only memory (ROM) programmed with boot loader.
56 kbyte dynamic random access memory (DRAM).
Programmer's panel interface.

The microprocessor instruction set is augmented by external logic which

- 36 -

allows software control of hardware devices. Control of the VDT, disk
drives and the emulator is achieved through controller cards connected
to a direct-memory-access (DMA) bus.

2.3*2 Peripherals and ancillary devices

Support devices include a graphics terminal, a printer and several video
display units (VDUs). The printer and VDUs are programmable from a
remote computer by character codes whereas the graphics terminal is a
stand-alone microcomputer. These devices are connected to the mini
computer through serial RS232 lines. Similarly, standard RS232 lines are
used to connect individual MPUs to the printer and VDU terminals.

2.3*3 The programmable electronic switch

The electronic switch allows the selection of individual MPUs for
monitoring and control. The schematic diagram of the configuration of
the switch is shown in Fig. 2.2. A serial I/O port of the minicomputer
may be connected to one of eight ports under software control. Once a
link has been established with an MPU, programs may be downloaded, data
transferred and interaction carried out. A broadcast mode may be
selected such that output from the host is transmitted to all eight
ports simultaneously.

The switch is implemented on two printed circuit boards namely, the port
controller and the channel multiplexer.

The port controller is located on the backplane of the minicomputer and
is interfaced as a parallel memory-mapped I/O port. It occupies one word
at an unused address in the processor memory space. The first byte is
configured as an output port with the second byte being an input port.
Eight-bit control bytes (bit designations are given in Fig. 2.2) may be
written to the port address to select one of the following control
actions :-

I
V_>J-J
I

a) configuration of electronic switch

0 1 2 4 5 6 7LOAD
TOGGLE

RESET
TOGGLE

All
One

Dont'
care

On
Off

M
I D

P
E N T I

U
T Y

b) control bit designations

Fig. 1 . 1 Schematic diagram of electronic switch.

- 38 -

1 . disable all channels
2. select one of eight channels
3* select all eight channels in transmit mode only
4* send a LOAD signal to the connected port or ports
5* send a RESET signal to the connected port or ports

The port controller is connected to the channel multiplexer via a 20-way
ribbon cable as shown in Fig. 2.2.

The channel multiplexer is located in an eight-slot MPU card-cage from
which it derives its power supply. Control bits from the port controller
are latched on-board and used to determine which of the eight available
channels is selected. In the present configuration, five channels are
used for the MPUs, one for a printer with the remaining two spare.

The connection between the minicomputer serial I/O port and the svitch
comprises a serial RS232 link and those between the switch and the MPUs
are modified RS232 links with two extra wires for the LOAD and 1ESET
signals as shown in Fig. 2.2. These signals are generated on board the
multiplexer and transmitted via the connected channel or channels.

2.4 THE MULTIPLE PROCESSOR SYSTEM

2.4»1 The multiple processor architecture

A general schematic of the hardware configuration of the multiple
processor system is given in Fig. 2.3» Five MPUs coupled via their
parallel ports by ribbon cables form the parallel execution units. Each
MPU has one on-board parallel port and three of the units are each
equipped with a 3-port expansion card. The architectural configurations
are therefore limited to those shown in Fig. 2.4, which are adequate for
the purpose of power system analysis. If the simulator were to be
implemented on a parallel bus system, the actual communication paths
would be restricted to those shown. More complex structures become

39 -

C
*3
©
CO

Line Printer

Electronic

Switch

£

<D00

FS99 0 /4

H O ST M IN ICO M PU TER

Dual F loppy-D isk Drive

Graphics

Terminal

SUBSYSTEM 2

1 TM S9900

I 16-bit 64K

J MPU bytes

RAM

JD
"5
<a

CL

SYSTEM CONTROL CENTRE

Fig. 2.3 Multiple MPU simulator : Hardware configuration

P
a

ra
ll

e
l

lin
k

40 -

a) Distributed pipeline or daisy chain

b) Partially connected network c) Star

d) Redundant hierarchy e) Tree

Fig. 2.4 Architectural configurations

- 41

necessary as the number of MPUs grows, but they could be based on these
generic types. Note that these structures are variations of a completely
interconnected network (DDC of Fig. 1.2b); the fundamental assumption of
[14] that each MPU must communicate with every other is not needed here.

The essential characteristics of the developed system may be summarised
as follows :-

a) each MPU can communicate with only a few of its neighbours
b) no global memory is used
c) the architecture can be reconfigured to suit the problem
d) message transfers may occur simultaneously along different

data paths.

2.4-2 Mechanisms for interprocessor communication

In a multiple processor network with all the processors co-operating to
obtain a solution, they periodically need to exchange data and
synchronise with each other. Decisions as to when such communication
occurs are usually taken during the software development but the method
of transfer of information is to a large extent determined by the
hardware mechanisms available.

In Cm* [8], hardware support for communication is provided via local
switches and mapping processors. The present generation of micro
processors include on-chip hardware support brought out as pin signals
[45]- These signals may then be used to implement interlocks 'which
assure mutually exclusive access to shared system resources.

A universally provided mechanism which may be used to implement
deadlock-free communication is that of prioritised interrupts. By
allowing each processor to interrupt any other processor with which it
wishes to communicate, both inter-processor communication and
synchronisation may be achieved.

42

In some situations it is desirable to synchronise the co-operating
processors at a certain point in the computation, e.g. to ensure all
processors start at the same time. It is then necessary to utilise a
scheme which does not use interrupts. The processors have to wait until
a handshaking protocol is satisfied before proceeding. This technique is
known as busy-waiting or polling since each processor continually checks
a hardware flag until a condition is satisfied.

2-4*3 Interprocessor communication

Parallel communication
The computing elements of the parallel simulator are coupled via
parallel ports capable of outputting one 16-bit word in 20 micro
seconds. Incoming data can be read in 17*33 micro-seconds. Each link in
the network is implemented by a 20-way ribbon cable with signal lines as
in Fig. 2.5a. Since communication is by interrupts, some of the lines
are multi-purpose in that they are used to generate interrupts, send and
receive data, and act as handshaking signals.

Since any two processors directly connected together may interrupt each
other, it is possible to have two schemes of communication. The first
type is that of sender-initiated tranfers where the sending processor
interrupts the receiving processor. Handshaking is carried out when the
receiver responds and synchronous transfer of data may proceed. The
other scheme is receiver-initiated and similarly, synchronous data
transfer occurs after handshaking. The timing diagrams of Fig. 2.5b show
the rate of data transfer to be 30 micro-seconds per 16-bit word.

Serial communication
Interprocessor communication may take place via serial links. Various
data link protocols are available ranging from high speed synchronous
protocols which require a front-end communications processor for
implementation, to low-speed interrupt driven asynchronous protocols
which are handled by the CPU. In the multiple processor system, an
interrupt-driven protocol is used for the communication between the MPUs
and the minicomputer host.

- 43 -

I'.' EoOttu £j
.ENGTH

cnEhl-Hpq
<Eh
<«

20-WAY
RIBBON

CABLE
MPU 2

a) P a r a l l e l p o r t b i t d e s i g n a t i o n s

PS END

m essage
l e n g t h w a i t f o r

ACK

— time — :---------
m essage / / words

20 jjls L. |) 1 I -f L-4— t-4-- '+ -i ? rx.

INTERRUPT
ROUTINE
IPC7

r 1 *

ACEiJL
< 3 JX3

23 ms
7 M3
—+

Rx
I NT

10 ms

4- t t " + ■»— h
9 EXIT

1 ^ 1

m essage
le n g t h w a i t f o r

CK

b) S e n d e r - i n i t i a t e d d a ta t r a n s f e r

------ t i m e -----------

n m n
message words s t a t u s

— / / —

— r- word -I i l-h 9 EXIT

mask
INTERRUPT
ROUTINE
IPC8

I kj U 4—4- ~ '/~ Y 4—4- s t a t u s
word

unmask

4- I I--4-+ 9 rv jm

c) R e c e i v e r - i n i t i a t e d d a t a t r a n s f e r

—j— f— i n s t r u c t i o n boundary

■+Tt" R e c e iv e i n t e r r u p t Ju.Send i n t e r r u p t

JL D i s a b l e i n t e r r u p t s J* E n a b le i n t e r r u p t s

Send d a ta U " R e c e iv e d a ta

Fig 2.5 MPU-MPU interconnection and timing diagram.

- 44

The minicomputer is connected to the simulator via the electronic switch
by serial RS232 links operating at 4800 baud. Two of the signal lines
are used for the external LOAD and RESET functions on the MPU3. The
other signal lines carry data and handshaking signals. Standard RS232
lines are used to link individual MPUs to the printer and VDU terminals.

2.5 ah architecture for large systems

The above described structure of the interconnected MPUs is flexible and
may be used to study a variety of architectural options for power system
simulation. The main disadvantage of the interconnection scheme is the
hardware cost of each communication path. Due to the need for separate
data paths between any two MPUs which need to exchange data, the
cost-modularity of the system is quite poor.

While adequate structures may be set up quite easily for power systems,
the overall structure is not versatile .enough for general purpose
programming. The present trend is therefore towards bus-structured
systems or high-speed serial ring systems. It is thus worthwhile to
consider how a multiple processor may be implemented efficiently from
commercially available equipment.

Fig. 2.6 shows a proposed architecture utilising commercially available
hardware. The multiple processor system comprises standard MPU cards
interconnected via parallel buses. The structure is similar to that of
CM* [8] but with the following differences :-

1. The system can be set up in several hierarchical levels

2. The architecture is regular and only one type of interconnecting
parallel bus is required.

3. There is no system-wide address space and consequently each
processor only communicates with a limited number of MPUs.

- 45

a) conceptual design

b) hardware realisation

local local

c) interprocessor and intercluster communication

Fig. 2.6 Proposed multiple proce aor architecture

46 -

This architecture is naturally suited to the physically-based method of
partitioning power system computations in that generator equations may
be solved on the peripheral MPUs and the network equations in the inner
MPUs. Also, system expansion may be directly related to the structure of
the power system. Extra generators only require extra MPU cards and an
additional generation area may be implemented by adding a network MPU
and the appropriate number of generator MPUs.

2.6 CONCLUDING REMARKS

A versatile simulator has been developed which can be used for the
interactive simulation of power system dynamics as well as other
interconnected dynamical networks. In line with the original project
proposals [40], the hardware comprises commercially available
single-board computers and a host minicomputer system. This reduced the
development time in that a minimum of special-purpose hardware had to be
built. The only item of hardware that was developed in-house is the
software-controlled electronic switch through which the minicomputer is
connected to the multiple MPUs.

The basic concepts in designing multiple processor systems concern
interprocessor communication and synchronisation. These requirements
have been met by the widely available mechanisms of interrupts and
polling. Thus the schemes described here are flexible and can be easily
implemented on presently available equipment.

A characteristic of the parallel processing system developed is that its
structure is 'visible' to the programmer so that applications programs

becanAtailored to exploit its architecture. The physically-based method of
partitioning also encourages the user to regard each MPU as a component
in the power system being analysed. This viewpoint is reflected in the
interactive user interface which is described in Chapter 4*

47 -

CHAPTER 3

SOFTWARE FOR PARALLEL PROCESSING

3.1 INTRODUCTION

The need for large, reliable applications programs which react to
external events has motivated the development of structured methods of
software engineering. Computer programming comprises two main aspects;
systems and applications programming. In developing operating systems,
Ritchie and Thompson [20] and Dijkstra [48] have demonstrated the
effectiveness of the bottom-up approach. In the case of applications
programs, a top-down approach is to be preferred.

Pascal (Jensen and Wirth [16]) is a widely known language which
encourages the use of the top-down technique of program development. In
order to facilitate writing real-time programs, Concurrent Pascal has
been developed by Brinch Hansen [18]. Commercial implementations with
similar features are available from Texas Instruments [47] and SofTech
Microsystems [49]*

This chapter describes the development of the system software of the
multiple microprocessor power system simulator. In anticipation of the
future predominance and widespread use of structured languages, the
major part of the simulation software was written in Pascal for ease of
development, transportability and maintainability. The Pascal implemen
tation which was supplied as part of the proprietary software is
described. Message-passing primitives are developed in order to achieve
reliable intercommunication between processors; their design and
interface to Pascal programs are described. Finally, an analysis of a
model problem of parallel processing is carried out.

3.2 PROGRAMMING LANGUAGES

3.2.1 Pascal language structure

The Pascal language encourages software development by a top-down
methodology. The concurrent implementation used in the project is
hierarchically structured as shown in Fig. 3-1• The structure is similar
to that of Brinch Hansen 18] and is defined in terms of SYSTEM, PROGRAM,
PROCESS, PROCEDURE and FUNCTION. This allows the modularity of standard
Pascal to be maintained in a concurrent environment.

Partitioning for a multiple processor system is achieved by assigning
each concurrent program to a single MPU (Jones and Schwarz [24]). The
main disadvantage of this method is that the run-time executive is
duplicated in each processor. From the memory map of Fig. 2.1b it can be
seen that total memory requirements increase significantly since the
run-time executive occupies up to one quarter (16 kbytes) of the memory
space of each MPU.

3.2.2 Features of Texas Instruments Microprocessor Pascal (TIMP)

The Pascal software supplied by Texas Instruments [47] is implemented
using the UCSD p-System [«] which compiles source programs into a
pseudo-code (p-code) for execution by an interpreter. Standard Pascal as
defined by Jensen and Wirth [16] has some well known deficiencies and as
such most implementations include extra features which serve to increase
the utility of the language. In TIMP, the added features which ease
program development may be summarised as follows :

1) Concurrency - Concurrency based on the latency of processes is
available via semaphores. The semaphores are of the counting type
and are manipulated by procedures such as INITSEMAPHORE, WAIT and
SIGNAL.

2) Interprocess Communication - In a multiprogramming environment it

49

SYSTEM EXAMPLE; LEVEL 0

PROGRAM PROS1;
PROCEDURE PRC1;

PROCESS PROC1;

BEGIN (PROCESS BODY)
END;

BEGIN (PROGRAM BODY)
END;

LEVEL 1

LEVEL 2

PROGRAM PROS2;

PROCESS PROC2;

LEVEL 1

LEVEL 2

PROCESS PROC2A; LEVEL 3

PROCEDURE PRC2A2;
FUNCTION FUN2A1;

BEGIN (PROCESS BODY)
END;

BEGIN (PROCESS BODY)
END;

PROCESS PROC3; ------- LEVEL 2

FUNCTION FUN31;
FUNCTION FUN32;

BEGIN (PROCESS BODY)
END;

BEGIN (PROGRAM BODY)
END;

BEGIN (SYSTEM BODY)
END;

Fig. 3.1 TIMP Pascal system structure.

- 50 -

is necessary to allow communication between processes. In TIMP
this is done by communication channels which are either buffers or
inter-process files. Communication beween processes can also be
achieved by the use of shared variables in which case the user
must ensure mutually exclusive access.

3) Modular Programming - Separate compilation is allowed thereby
facilitating the creation of libraries and the development of
large programs.

4) Memory Management - As well as standard Pascal pointer types and
the procedures for their manipulation, facilities are included to
specify the heap and stack sizes of programs and processes. These
resources can be allocated and reclaimed dynamically during
execution.

5) Hardware Dependence - Access is .provided to the hardware features
of the CPU in order to allow control of input/output and
interrupts. Individual memory locations may be examined and
external assembly language routines could be linked to a program.

In common with all other implementations of Pascal under the UCSD
p-System, TIMP also differs from standard Pascal in that the passing of
procedures and functions as parameters is not allowed.

3*2.3 Other programming languages

The prototyping emulator is provided with a high-level Pascal-based
language (AMPL [47]) in which debugging programs may be written. It can
be used for debugging both the hardware and software of target systems.

An extended BASIC interpreter is included in the software supplied. Its
implementation allows manipulation of the hardware of the host
development computer. In the development of the interactive program
(this is described in Chapter 4), the string handling and floating point
arithmetic (FPA) routines were useful in producing formatted screen
displays.

- 51

An assembler is provided for producing machine-code level routines for
the TMS 9900 processor. In order to maintain transportability to other
systems, the number of assembly language routines has been kept to a
minimum. Only in areas such as communication and timing where speed of
execution is critical has assembly language been used. It was also found
necessary to include a substantial number of machine-code routines in
the interactive control program.

3*2.4 Software development process

A wide range of utilities and software tools are available for program
development, the most important of which include :-

EDITOR - a screen-based text editor.
COMPILER - a Pascal compiler which produces p-code for interpretive

execution.
ASSEMBLER - produces relocatable code for the TMS 9900.
COLLECTOR - this collects all the run-time support required to

execute Pascal programs on a target MPU.
LINKER - links several code segments into an executable module.
DEBUGGER - programs can be debugged at the machine-code level or at

the Pascal statement level. Under AMPL programs can be
debugged in an emulated target environment.

UTILITIES - a wide variety of utilities to create, read and modify
files are available.

The use of these utilities in the development of simulation software is
illustrated in Fig. 3*2. For faster execution, a CODEGEN utility is
provided for generating the processor native code but this proved to be
unreliable. In any case, for power system simulation, most of the time
is spent on floating point operations and thus no worthwhile gains are
achievable. All the simulation programs therefore execute in the
interpretive mode. The efficiency of the implementation is characterised
by a set of benchmarks in Appendix A.

52

Fig 3.2 Software development process

53 -

3-3 COMMUNICATION BETWEEN COOPERATING PROCESSES

Synchronisation and communication functions are usually implemented at a
low level and are thus 'invisible' to the user. The intention here is to
develop a 'visible' multiple processor system whose architecture can be
exploited by the user. This means that the user should be able to
explicitly specify communication between processors. Such a system was
developed by Halsall and others [25] who used a set of communication
primitives based on the rendezvous concept. In a distributed system for
mining applications (CONIC [5l])> use was made of message passing
protocols to control equipment distributed over a coal mine.

3-3-1 Structuring Concepts in Parallel Processing

The earliest concurrent processes were implemented with hardware
interrupts to achieve switching between a main computational task and
its I/O related processes. Further development has resulted in the
present-day time-sharing operating systems which manage the allocation
of computer resources (mainly CPU time) between several users, seemingly
simultaneously. The task of writing such operating systems is much
simplified by using Dijkstra's bottom-up approach [48].

Synchronisation is required when different processes are required to
perform certain tasks in some sequence. If a section of code may not be
executed until some condition becomes true then conditional
synchronisation is required. If a section of code must be executed
without interruption then mutual exclusion is required. While the
concept of synchronisation may be used to resolve all the possible
problems of interference, sequencing or deadlock that may occur, certain
operations are most efficiently effected by passing messages between
processes (Hoare [22]). This is especially true in a multiple processor
system where explicit communication is required anyhow.

- 54 -

3-3-2 Synchronisation and communication mechanisms

In choosing an appropriate set of mechanisms for synchronisation and
communication between several processors, proper consideration must be
given to the hardware architecture. Some mechanisms may be wholly
inappropriate in certain systems. For example, in systems without common
memory, the widely used tool of inspecting and updating a memory
location is expensive to simulate. In an attempt to circumvent the
problem of choosing between the various available methods of achieving
synchronisation, Hoare [22] proposed input and output commands for
communication between sequential processes.

In Hoare's implementation, synchronisation is implicit in that an input
or output command is delayed until the corresponding remote output or
input command is executed. In a general purpose distributed operating
system, this method of synchronisation works well since any processor
that is blocked on an I/O command can switch to some other ready
process. However, synchronous message passing can result in idle
processors if there are no waiting processes or, excessive overhead if
context switching is expensive.

In Table 3.1, some synchronisation mechanisms are listed according to
their implementation levels. The mechanisms at the low, medium and high
levels are usually defined as operating system primitives. At the very
high level, the operations of the mechanisms are user-defined to suit
specific applications (see [18—253)-

3.4 DISTRIBUTED MONITORS FOR INTERPROCESSOR COMMUNICATION

3-4*1 Structure

Interprocessor communication is based on the monitor construct [l8,2l].
Due to the need for explicit cooperation between communicating MPUs, the
implementation may ’ be best described as a distributed monitor. The

Table 3-1 Communication and synchronisation primitives

IMPLEMENTATION
LEVEL

ELEMENT OPERATIONS COMMENTS

Hardware Interrupt
H/W flag

enable/disable
test and set,

reset

priority queuing
mutual exclusion

Low Lock variable lock/unlock busy waiting

Medium Semaphore
Critical region

signal/wait
enter/exit

implicit queuing
mutual exclusion

High Monitor procedure call implicit queuing,
mutual exclusion,
signalling

Conditional
critical region user defined as for monitor

Very high Path expression user defined as for monitor

Rendezvous or
Remote

procedure call

Input/output client/server
transactions

- 56 -

various primitives are implemented using the concept of the virtual
machine ([48]) and the hierarchical structure is illustrated in Fig. 3.3

within the context of a user application program.

Level 1 of the hierarchy is the electrical interconnection as described
in Chapter 2. At level 2 the hardware mechanisms available such as
interrupts and hardware flags are manipulated to achieve synchronous
word-parallel transfers. Buffer management and synchronisation are at
level 3* The user-accessible communication primitives are implemented at
level 4 and the application program is at level 5«

3«4«2 Implementation

The distributed monitor is written in assembly language for maximum
speed and flexibility in handling the hardware and occupies a total of
500 bytes. The actual message transfer mechanism, as explained in
Chapter 2, is synchronous and the software routines on either side of
the communication channel are accurately timed such that synchronism is
maintained for the longest messages that could be sent. Fig. 3.4 shows a
schematic of the data-flow between two MPUs. Communication is initiated
by the procedures PSEND and PGET with IPC7 and IPC8 respectively being
the interrupt service routines. Exclusive access to the local buffers is
provided by the procedures GETMSG and PUTMSG. Typical declarations of
data structures for the message buffers are shown in Fig. 3*5*

Transmit and
Receive
Buffers

User Buffer

port address status count message buffer

array of reals typical only

TYPE vector = ARRAY [l..nmax] OF REAL ;
cbuf = RECORD

addr,status,count : INTEGER ;
buffer : VECTOR

END ;

Fig. 3*5 Port and message buffer data structures

57 -

Fig. 3*3 Hierachical structure of the distributed monitor.

I
vn
i

Fig. 3.4 Interprocessor communication data-flow schematic

- 59 -

From the user's viewpoint, interprocessor communication is achieved
through local monitors which handle the communication channels and the
associated buffers as system resources. The implementation logic of the
monitor as seen by the user is given in Fig. 3*6.

For flexibility, the data structures for the buffers are defined within
the Pascal environment. Although unrestricted access to the buffer is
therefore possible, mutual exclusion is not guaranteed. However, the
buffer status may be safely read (e.g. to check if the execution of a
GETMSG statement will result in blocking).

3-4.3 Message-passing primitives

The various procedures of the monitor are now described and their
interface with the Pascal language application programs outlined. The
communication between two MPUs representing a network and a generator is
used as an example.

1. Initialisation - Before the monitor procedures could be used, the
embedded data structures' (port addresses and message buffers) must be
initialised. This is achieved by the procedure INITIO which enables
interrupts and configures the ports to the user's requirements. A
typical initialisation call is

INITIO (Nport,length,msgbuffs)
which specifies the number of ports to be initialised, their length and
the address of area of memory reserved for the buffers. Buffers that
have already been initialised may be cleared by setting the value of
Nport to zero.

2. Message sending - Messages within buffers in the Pascal environment
may be sent to a remote MPU by invoking the monitor procedure PSEND* As
shown in Fig. 3*6, an interrupt is generated in the remote MPU and after
initial handshaking, the contents of the message buffer are transferred
to the receive buffer of the addressed MPU. A typical call to the

60

MONITOR PIO

CONST a d d r l ,a d d r 2 ,a d d r 3 ,a d d r 4
i n p 1 , in p 2 , in p 3 , in p 4
o u t p ! ,o u t p 2 ,o u t p 3 ,o u t p 4

c b u f_ p tr
c b u f p t r

p o i n t e r s to
I/O b u f f e r s

PROCEDURE INITIO (code,size:IN TEG E R ; p x rcb u f)
BEGIN

IF code>0 THEN BEGIN
FOR I := 1 TO code DO
{ i n i t i a l i s e px as in p u t j ;
| e n a b le i n t e r r u p t s 6 and 7 }

END
ELSE IF code<0 THEN BEGIN

FOR I := 1 TO ABS(code) DO
j i n i t i a l i s e px as output

{ en a b le i n t e r r u p t s 6 and 8
END

END ;
ELSE | c l e a r px

PROCEDURE PSEND (VAR p x r c b u f ; n:INTEGER; VAR u s r : v e c t o r)
BEGIN

| mask a l l i n t e r r u p t s]
{ i n t e r r u p t remote MPU }
t r a n s m it (p x .a d d r ,n) ;
REPEAT | n o th in g] UNTIL ack ;
FOR I := 1 TO 2*n DO tr a n s m it (p x . a d d r , u s r [l]) ;
{ unmask i n t e r r u p t s }

END ;

PROCEDURE GETMSG (VAR p x r c b u f ; n:INTEGER; VAR u s r r v e c t o r ; VAR statrINTEGER)
BEGIN

WHILE p x . s t a t = -1 DO | n o th in g j ;
{ mask a l l i n t e r r u p t s j
FOR I := 1 TO 2*n DO u s r [l] := p x . b u f f e r [l] ;
s t a t := p x . s t a t ;
p x . s t a t := -1 ;
{ unmask i n t e r r u p t s j

END ;

PROCEDURE PGET (VAR p x r c b u f ; n:INTEGER; VAR u s r r v e c t o r ; VAR stat:INTEGER)
BEGIN

j mask a l l i n t e r r u p t s]
j i n t e r r u p t remote MPU }
t r a n s m it (p x .a d d r ,n) ;
REPEAT { n o th in g } UNTIL ack ;
FOR I := 1 TO 2*n DO r e c e i v e (p x . a d d r , u s r [l]) ;
r e c e i v e (p x . a d d r , s t a t) ;
{ unmask i n t e r r u p t s }

END ;

PROCEDURE FUTMSG (VAR p x r c b u f ; n:INTEGER; VAR u s r r v e c t o r)
BEGIN

{ mask a l l i n t e r r u p t s }
FOR I := 1 TO 2*n DO p x . b u f f e r [l] := u s r [l] ;
p x . s t a t := p x . s t a t + 1 ;
j unmask i n t e r r u p t s }

END ;

F i g . 3»6 I m p l e m e n t a t i o n o f t h e d i s t r i b u t e d m o n i t o r

- 61

monitor from the program in a generator MPU is
PSEND (Network, number, currents)

where the port name of the remote MPU has been designated Network. In
addition to the message transfer rate of 30 microseconds per 16-bit word
quoted in Chapter 2, an overhead of 720 microseconds is incurred
whenever this procedure is called. The remote interrupt service routine
executes with an overhead of 100 microseconds plus 30 microseconds per
word.

Secure access to the communication buffer in the receiving MPU is
achieved by the use of GETMSG. This procedure allows exclusive access to
the buffer by the use of a conditional wait. Thus if there is no new
message present in the buffer the calling process is blocked.
Non-blocking access may be achieved by checking the buffer status before
entering the monitor (similar to the input guard concept of Dijkstra
[48]). In the above example of a generator MPU sending currents to a
network MPU the corresponding receipt by the network MPU would be

GETMSG (generatorl, number, currents, status)
where the status variable may be checked to determine if any messages
have been lost. If this procedure is not blocked, a memory-to-memory
transfer takes place at a rate of 17 microseconds per 16-bit word plus
an overhead of 600 microseconds.

3. Message retrieval - Messages within the transmit buffers in a remote
MPU may be retrieved by invoking the monitor procedure PGET. An
interrupt is generated in the remote MPU and, after handshaking, the
contents of the transmit buffer are transferred to the Pascal buffer of
the calling MPU. A typical call to the monitor is

PGET (generatorl, number, currents, status)
The status parameter may be checked to determine whether the message
received is old or new, or whether any messages have been lost.

The transmitting buffers of the remote MPU may be securely updated by
the procedure PUTMSG. This procedure is non-blocking and it may be
necessary to check the status of the buffer before putting in a new
message in order to avoid overwriting a previous message that has not
yet been retrieved. An example of updating the buffer within a generator

- 62

MPU may be expressed as
PUTMSG (network, number, currents)

The execution rates of PGET and PUTMSG are similar to those of PSEND and
GETMSG respectively.

The distributed monitor may be linked to the concurrent environment of
TIMP by associating incoming interrupts with semaphores. Idle time is
then reduced since lower priority processes will be executed wlen
blocking occurs. Mutual exclusion is maintained by virtue of the fact
that the monitor resides outside the Pascal environment. Thus the
monitor primitives appear as indivisible operations to the run-time
executive. This feature was used by Lopez [42] in implementing
concurrent multi-rate integration methods.

3-4»4 Higher level communication protocols

For the purpose of applications programming the procedures of the
distributed monitor described above may be regarded as primitive
operations. In order to facilitate programming, these procedures can be
used to construct higher level protocols which are useful for specific
applications. Examples of such protocols are given below.

1) Broadcast - In cases where the central MPU of a star configuration
needs to transmit the same message to all peripheral MPUs, a suitable
protocol is the Broadcast. Typically, this may be implemented as

PROCEDURE Broadcast (message,length) ;
VAR port : ARRAY [l..n] OF cbuf ;
BEGIN

FOR I := 1 TO n DO PSEND(port[l],length ,message)
END ;

2) Receive-All - This procedure may be required if the central MPU is to
receive updated values from all the peripheral MPUs. The problem is
slightly more complex since the GETMSG procedure is blocking. Thus if

- 63 -

the first GETMSG executed happens to require data from the slowest MPU
then all the others would be kept waiting. It is then necessary to U3C
an input guard (Dijkstra [48], Hoare [21]) before each GETMSG to find
out whether the procedure would block. This is implemented as follows:

PROCEDURE Receive-All (portl,port2,port3) ;
VAR got1,got2,got3 : BOOLEAN ;
BEGIN

got1 := FALSE ; got2 := FALSE ; got3 := FALSE ;
REPEAT

IF (NOT gotl) AND (portl . statOO) THEN
BEGIN

(get message from portl j
got1 := TRUE

END
ELSE IF (NOT got2) AND (port2.statOO) THEN

BEGIN
{ get message from port2]
got2 := TRUE

END
ELSE IF (NOT got?) AND (port3.statOO) THEN

BEGIN
{ get message from port3 }
got3 := TRUE

END
UNTIL gotl AND got2 AND got3

END ;

This is equivalent to the SELECT statement of ADA (USDOD [19]). In
particular situations, such as when the central MPU solves a network and
the peripheral MPUs solve generators, it may be advantageous to do some
processing as soon as a message is received. This minimises the network
idle time since some processing is done in parallel with the slowest MPU
after the receipt of the first message.

3) Send-wait-reply - In transaction processing a client requests a
service and then awaits a reply. This is the mechanism suggested by
Hoare for communicating sequential processes [22] and implemented in ADA
as the rendezvous [l9,23]• This is quite simply implemented as:

CLIENT

PROCEDURE Send-wait-reply ;
BEGIN

PSEND(server,length,request);
[busy-waiting j ;

GETMSG(server,length,reply,st)
END ;

SERVER

PROCEDURE Respond ;
BEGIN

GETMSG(cl ient,length,request,st);
{ process request } ;

PSEND(client,length,reply)
END ;

4) PSIGNAL/PWAIT - The monitor procedures have been designed such that
synchronisation is implicit. For program clarity, notation has been
included for pure signalling operations. Adopting Hoare's definition of
a data structure without values as a signal [22], a PSIGNAL may "be
defined as sending a message of zero length. The corresponding PWA1T
operation is achieved by the procedure GETMSG extracting a message of
zero length from the local buffer.

PROCEDURE PSIGNAL (portx : port_name) ;
VAR aux_buff :cbuf ;
BEGIN

PSEND(portx,0,aux_buff)
END ;

PROCEDURE PWAIT (portx : port_name) ;
VAR aux_buff :vector ;

stat :INTEGER ;
BEGIN

GETMSG(portx,0,aux_buff,stat)
END ;

Since no message is transmitted only the buffer status flag changes.
Consequently, the procedures are very fast; a PSIGNAL is executed in 200
microseconds and a non-blocking PWAIT in 160 microseconds. These compare
with an execution time of 830 microseconds for each call to the standard
SIGNAL and WAIT procedures (see Appendix A).

- 65 -

3-5 PROGRAMMING FOR PARALLEL EXECUTION

3-5-1 Factors causing loss in performance.

The cost of parallel solutions may be measured in terms of time and
space. The cost in space is determined by the method of partitioning
used and the type of hardware architecture. In our case a substantial
amount of memory is required due to the duplication of the run time
executive. In some true multiprocessors (ETH [7]), many processors may
use the same copy of a section of code but this results in a significant
penalty due to contention [23-25]-

The analysis of cost in terms of time requires identification of the
different factors which result in slower solutions. The most important
of these are shown in Fig. 3-7* The loss in performance is due to both
the penalty of decomposing a problem for solution in two or more MPUs,
and the cost of implementation on a particular multiple processor
system. These two penalties may be further divided into two parts whose
effects are first and second order.

Implementation penalty - this can be directly related to specific
characteristics of the hardware architecture and system software of the
multiple processor system. The time each MPU spends waiting to
synchronise with other MPUs is responsible for the greater part of the
implementation penalty and is a first order effect. Depending on the
type of communication mechanism used, two equal processes may slow each
other down due to the need to synchronise.

The time required for communication results in each MPU doing an extra
amount of work but this is typically very small. However, if a large
number of messages have to be sent, the total time spent on
communication may become appreciable. In addition, contention may occur
and cause some MPUs to wait. In general, loss in performance due to
communication can only be regained by the use of faster hardware.

TI
ME

- 66

loss in performanceiiji
ii

implementation
penaltyii

ii
decomposition

penaltyii
i ii i

synchronisation j
time jiiii

communication
time

i it i
unequal j
partitions |iiii

partitioning
overhead

a) Factors causing loss in performance.

NETWORK MPU
DAT̂ A

TRANSFER

DATA^
TRANSFER

GEN. MPU

Idle time Overhead
Synchronisation time Communication time

Unequal partitioning Partitioning overhead

Useful computation

b) Idle time and overhead in one computation step

Fig. 3*7 Implementation and decomposition penalties

- 67 -

Decomposition penalty - the larger part of this penalty is due to
problem decomposition that results in unequally loaded MPUs. This may
limit the overall execution time to that of the slowest MPU.

Partitioning overhead is a second order factor due to decomposition.
There are several sources including, duplication of overheads found in
serial programs such as accessing arrays, calling procedures etc., any
data collection required and extra calculations due to partitioning.
Very little can be done about such overheads since they are either
inherent in the sequential process or are necessary to realise a
parallel solution.

Note that the second order effects result in a computational overhead
whereas the first order effects cause idle time. Also in more complex
systems, it may be possible to identify some third order effects such as
partial lockout and overhead due to detection and recovery from
deadlock.

3-5-2 Time-dependent errors

A consequence of implementing flexible communication primitives is the
possible occurrence of undesirable time-dependent phenomena which are
difficult to detect. Some common errors of this type are identified
below and an indication is given of how they may be avoided.

Deadlock - It is useful to distinguish between the two types of deadlock
that may occur in parallel or concurrent systems as shown in Fig. 3-8.
We refer to deadlock involving two MPUs as the 'deadly embrace'
(Dijkstra [48]) and that involving three or more MPUs as the 'circular
wait’. The deadly embrace is easier to detect and may be avoided between
any two MPUs by following the simple rule that neither MPU may execute
two consecutive GETMSG statements. In the case of the circular wait,
deadlock can only be avoided by careful programming.

68 -

Waiting
for A

for B

a) Deadly embrace
for C

b) Circular wait

Fig. 3*£ Types of deadlock

Message overrun - A second type of error occurs when an MPU sends
messages fast enough to overwrite unconsumed messages. The solution to
this problem is similar to the deadlock avoidance scheme above in that
an MPU may not execute two consecutive PSEND statements.

Lockout - This third form of time-dependent error occurs when an MPU
receives high priority interrupts at a fast enough rate to prevent it
acknowledging an MPU that is interrupting at a lower priority. In the
power system application programs total lockout cannot occur since all
the MPUs must synchronise at the end of each simulation step. However,
partial lockout is possible when large numbers of processors are used.

Crawling - Logically correct.programs may perform badly due to the
misuse of some primitives. The phenomenom of crawling occurs when an MPU
generates several inter-processor interrupts while waiting for some
condition to become true. For example, execution of a statement such as

REPEAT PGET(portx,...,stat) UNTIL stat=0
will result in 1 0 % drop in execution speed of the remote MPU until it
updates its buffer.

3-6 ANALYSIS OF A PARALLEL ALGORITHM

Several analytical techniques exist which may be used to predict the
performance of parallel algorithms on multiple processor systems. In the
absence of a specific hardware system Brasch and others [37], and Fong
and Pottle [ll] simulated the performance of proposed algorithms on
various architectures. The purpose of this analysis is to identify
possible problem areas and their solutions.

- 69 -

3-6.1 Problem description

The problem under consideration is the transient stability analysis of a
power system. A simple physically-based task decomposition is assumed
whereby the algebraic equations representing the network are solved on
one MPU and each generator has its differential equations being solved
on a single MPU. The mathematical models and solution methods will be
treated in later chapters. For the present, we assume a step-by-step
algorithm where the network MPU calculates the voltages at the generator
busbars and the generator MPUs calculate current injections into the
network. Thus during each time-step the network MPU sends voltages to
the generator MPUs and receives their currents injections.

An appropriate configuration of MPUs for the algorithm is a 'star' with
the network in the central MPU as shown in Fig. 2.3c. Timing diagrams of
one step of the algorithm are given in Fig. 3-9& and b. These illustrate
the two possible computation patterns depending on the relative
computation times the MPUs require between receiving data and being
ready to send data. In the subsequent analysis, it is assumed that the
generator programs are identical and execute in the same time.

3-6.2 Some performance measures

A common measure used in evaluating the performance of multiple
processor systems is the speed-up factor which is defined as:

speed-up - TserjLa-̂ /Ta c .̂ua2 (5*1)

where T is the computation time on one MPU and Tac^ua-̂ the time on
N MPUs. For analytical purposes insight may also be gained by
considering the overall efficiency of the computation which is defined
as

efficiency = speed-up/N (3-2)

With reference to Fig. 3-7, the speed-up factor may be calculated from
the following equation

NETWORK GEN. 1 GEN. N NETWORK GEN. 1 GEN. II

P S END GETMSG ///// i d l e //■/,
/ - / / / T I M E /////
/ M

••
11
l
1
11

PS END GETMSG

■ M------

DATA
TRA N SFER

IN T E R R U P T
1
1
1
1
1
1
l

PS EN D

. - . I N T E R R U P T - -
P S EN D

P I 1/'// I D L E ////
W "/vM
'//M /m W M W /,

W ////////M

•

G E T : D A T A
■

a) S i n g l e - s t a g e c o m p u t a t i o n p a t t e r n b) D o u b l e - s t a g e c o m p u t a t i o n p a t t e r n

Fig. 5*9 Typical computation patterns.

71

Tn + (N -1)*Tg

speed-up = --------------- (>3)

max ^net’̂ gerJ
T , = T + T + T + T + 2*T *(N-1)net nsr nrs nov nid c v '

T = T + T + T + T . , + P*Tgen gsr grs gov gid c

The various times for the generator and network MPUs are

T ,T - total computation time in serial algorithmO 11

TgSr>Tnsr " computation time between sending and receiving data

Tgrs,Tnrs " computation time between receiving and sending data

TgOV,Tnoy - partitioning overhead

Tgid>Tnid ~ idle time due to synchronisation

Tq - time required to send or receive data

Analysis of computation patterns

An analytical study was carried out in order to gain insight into the
effect of various factors on the efficiency of the model multiple
processor system. Curves of efficiency and speed-up are plotted to
demonstrate the effect of various parameters.

A synchronous communication scheme is unacceptable since idle time is
almost always incurred. Its effect can be seen in Fig. 3»10 where two
equal processes slow each other down due to the need to synchronise. As
shown if asynchronous communication routines are used then it is
possible to eliminate this idle time.

In the case of a transient stability study using as many MPUs as there
are generators and one MPU for the network, the loading of the network
MPU is critical. If it is slower than a generator MPU the system suffers
a sharp drop in performance as shown in Fig. 3»11a«

a) Synchronous communication scheme

PS END GETMSG

READY
TO SEND

INTERRUPT
DATA

TRANSFER

READY-TO
RECEIVE

PSEND GETMSG

b) Asynchronous communication scheme

Fi-S* 3• 10 Effect on computation pattern of communication schemes.

SP
EE

D-
UP

--
--
->

73

Fig. 3.11 Performance curves for single-stage computation

74

As the number of processors grows, increased overhead may affect the
partitioning and cause idle time; this is the phenomenon! responsible for
saturation when extra processors are added as shown in Fig. 3*11b. In
actual systems, the overhead tends to grow faster than proportionally;
this eventually leads to an absolute reduction in performance.

In the preceding example, it was assumed that Tnsr > ^grs* The opposite
is more likely to be the case and the distribution of idle time is as
shown in Fig. 3* 9b. For a large number of MPUs, the phenomenom of
partial lockout may occur if some generator MPUs are allowed to send
results before the network MPU has finished updating them all. This may
be cured by masking all interrupts in the network MPU while it sends.
The effect of partial lockout on computation efficiency and speed-up is
illustrated in Fig. 3*12.

3*6.4 Implications for large systems

The simple model considered here requires the network equations to be
solved in a single MPU. In large systems between a third and half of the
total computation time is required to solve the network [36,37]* It is
therefore necessary to reduce the network solution time to the same
order as that of a generator or group of generators. This can be done by
the use of parallel solution techniques [9-11,41] on an architecture
such as that proposed in Section 2.5.

The behaviour of such a system would be similar to the model analysed
here. The effect of communications overhead would be reduced due to the
presence of multiple communication paths but partitioning overhead would
increase, especially in the network solution.

3-7 CONCLUSIONS

The software resources available for application programs have "been
described. The modularity of Pascal, its data structuring facilities and

SP
EE

D-
UP

--
--
->

EF

FI
CI

EN
CY

- 75 -

Fig. 3*12 Performance curves for double-stage computation

- 76 -

the extensions included in TIMP have been found to be well suited to the
development of an environment in which parallel processing algorithms
may be implemented.

Synchronisation and communication primitives in concurrent programs and
distributed systems is still an active area of research. As there are no
universal criteria for choosing the most suitable constructs for a given
application, the approach adopted in this work is that of selecting
those which best suit the existing hardware. This concurs with Hoare's
conclusion that no set of primitives can be excluded from consideration
if they can be implemented efficiently and shown to be appropriate to
the task in hand [22]. The generality of the distributed monitor has
been demonstrated in that other constructs may be realised using its
primitive operations.

A computation model has been proposed for analysing the behaviour of the
parallel processing scheme and shown to be useful in predicting the
effect of changes in the partitioning of the computational task. From
the analysis we may conclude that :

a) asynchronous communication primitives are to be preferred to
synchronous schemes.

b) efforts should be made to confine any idle time incurred to the
central MPU.

c) when interprocessor interrupts from several MPUs are resolved by a
priority scheme, it is possible for partial lockout to occur.
Changes in the communication scheme may be required to avoid this.

The implementation of a monitor for interaction is described in Ch. 4

and the application of the communication procedures described here to
power systems simulation will be given in Chapter 7.

77

CHAPTER 4

INTERACTIVE COMPUTATION

4.1 INTRODUCTION

Research so far into multiple microprocessor arrays for power systems
has not addressed the problems of input/output or user interaction.
Brasch et al. [37] envisaged their parallel system being attached to a
host mainframe computer as a special-purpose processor. In such a
configuration using array . processors, Orem and Tinney [34] found that
the cost effectiveness of the combination was much reduced due to the
relatively slow data transfer rates between the host computer and an
array processor. Similar considerations led Detig [36] to conclude that
attached scientific processors are unsuitable for power system
applications.

In the system developed here, a host minicomputer based on the same
processor used in the multiple processor system is used for I/O and user
interaction. This is efficient for dedicated systems, since the problems
of providing high speed interfaces to a general purpose host computer
are avoided.

This Chapter outlines the design and implementation of an interactive
program which was written to enable a user to control the simulator from
the host minicomputer. A description of the interactive program and its
features is given. Finally, the steps required to set up, execute and
control applications programs in the interactive environment are
explained.

4.2 MAN/MACHINE AND MACHINE/MACHINE INTERFACES

4*2.1 Models of human behaviour

In the design of man/machine interfaces (MMI), it is useful to define
conceptual models of the various roles man may play in an interactive
system (Rouse [51,52],Carey [53]). In power system computation two
suitable models are :

(i) operator - for on-line control systems or real-time simulators,
(ii) analyst - appropriate in the context of research or design.

This dichotomy is exemplified by comparing the interactive package
described by Undrill et al. [39] which is based on the requirements of
an analyst, . with the advanced dispatcher training simulator by Podmore
and others [54] where the needs of the operator dominate. However, the
interactive systems described by Stagg [38] indicate that a
comprehensive system should cater for both roles.

A third model that warrants consideration is that of the 'student'. The
training simulator designed by Podmore et al. [54] incorporates an
instructor's console, but experience with a similar training simulator
in Japan [56] has highlighted the need to reduce the workload of
instructors. A recent survey by a CIGRE working group [55] identified a
growing need for educational tools in training operators. It is proposed
here that this need should be satisfied, not only implicitly by training
on a real-time simulator, but also by explicit computer-aided
instruction.

4.2.2 Interaction patterns

In designing general-purpose interactive simulators, it is necessary to
consider the three models of student, operator and analyst. This results
in a multi-mode system although more emphasis may be placed on one
aspect. Irrespective of the role models on which a system is based,
interactive computation comprises the four basic steps listed in

- 79 -

sequence in Table 4*1 with some typical activities. Operator-modelled
systems primarily require on-line interaction whereas the activities of
program preparation, program control and post-processing are usually to
be found in analyst-modelled systems. A student-modelled system would
require a substantial amount of post-processing.

Table 4.1 : Sequence of interactive computation

STEP TYPICAL ACTIVITIES

1. Program preparation
- data preparation
- choice of models
- choice of solution methods

2. Program control
- run, pause, stop
- command files
- on-line interaction

3. On-line interaction
- parameter modifications
- schedule events
- program control

4. Post-processing
- report preparation
- curve plotting
- statistical analysis

In actual systems, this sequential view of computation is complicated by
the addition of concurrency. Thus in real-time systems where several
tasks must be executed simultaneously, it is necessary to take into
account the response time required for each task. In a study of
appropriate task allocation in flight control systems, Rouse [52]
considered in detail the modes of interaction that occur, in an
operational environment (see Fig. 4.1a). He defined a covert mode of
interaction as that in which the intervention of the control computer is
not obvious.

Fig. 4»1b is an equivalent representation of the power system simulator.
The system comprises the dynamic simulator, the host minicomputer and a
human user. The data flow diagram of a single transaction is given in
Fig. 4.1c. Data input by the user is followed by program execution and

80

a) Nodes of man/machine interaction (Rouse [52J)

’b) Interactive control of simulator

C) Single transaction data flow

Fig. 4.1 Data flows in man/machine interaction

81

results output by the computer. The loop is closed when the user
evaluates the results and inputs more data.

4-2.3 Dialogue types

The six basic man/machine dialogue types with which more complex
dialogues may be defined are identified in Table 4-2. A typical session
starts with data being input and ends with results being output. During
the program execution, the user may enter commands which the machine
executes; similarly the machine may print out messages to which the user
reacts. Such transactions are basically monologues since either party
may choose not to reply. True dialogue takes place when’queries must be
answered before execution can continue.

Table 4-2 : Man/machine dialogue types

MAN MACHINE EXAMPLE

input data --- > compute
command --- > execute
query <-- > reply
reply <-- > query
respond <--- report
evaluate <--- output data

send data, modify parameters
halt, event scheduling
display request
program prompt
error message, status report
plot, monitor

4-2-4 A model of interactive computation

The above concepts can be combined into the hierarchical model of
interactive computation given in Fig. 4-2. All interactive programs
include some or all aspects of the model. The innermost level labelled
INFORMATION requires the fastest response whereas COMPUTATION can
proceed at a slower rate. COMMAND-AND-CONTROL is intermediate between
these with response times being determined by the operator or the
controlled system. Table 4-3 lists some correlations between various
system design parameters. As an indication of how these ideas are
utilised, consider the implementation of the dynamic simulator.

82

Fig. 4*2 Model of interactive computation

Table 4*3 : Interactive system design parameters

DESIGN PARAMETER PROGRAM LEVEL
COMPUTATION COMMAND AND CONTROL INFORMATION

Role model analyst operator student
Interactive mode automatic covert overt
System response slow fast instantaeous
Display 'requirements background middleground foreground
Dialogue types input-* compute

evaluate«- output
command-* execute
respond*- message

reply** query
query** reply

Computation steps program preparation
program control

program control
On-line interaction

program control
post-processing

System example batch/time-sharing real-time system query system

- 85 -

The basic computation loop is analyst-modelled. Once the parameters of a
study have been specified, interaction between the host and simulator is
automatic. The study completion time is slow and if the user initiates
other tasks, the display of results may be relegated to the background.

On-line interaction with the simulation is operator-modelled. The mode
of interaction is covert in that commands refer to the power system
under study without obvious intervention by the host. The specification
of display requirements as "middleground" means that the effect of a
command may not elicit an explicit response but may be inferred from
subsequent behaviour (e.g. power changes after application of a fault).

The facilities based on a student model are limited but include the
capability to inspect data files during the simulation. It should also
be possible to program command files without any parameters; the user
may then be prompted during execution for the appropriate values.

4*2.5 Input/output devices and communication

The man/machine interface is via the keyboard and screen of the host
minicomputer. Menu-driven single-key commands are used for input and a
non-scrolling formatted screen is used for output. Input data may be
read from disk files and output data may be sent to a printer or
graphics terminal. Alternative I/O devices which may be used to good
effect include light pens, joysticks, analogue displays and graphics
terminals [51-55>57]. Integrating such devices into an interactive
environment is merely a data processing task which should be much
simplified by software standards such as the ISO draft graphical kernel
system (GKS [57])-

The machine/machine interface between the parallel MPUs and the host
minicomputer is implemented by interrupt-driven communication over
serial lines. The minicomputer may be linked to any or all of the MPUs
through the software controlled switch. Dialogue between the machines is
by messages with identifying headers.

- 84

4-5 DESCRIPTION OF THE INTERACTIVE PROGRAM

The interactive program has been developed as a set of concurrent
modules which are activated either by keyboard input or interrupts from
the input/output ports. Most of the routines have been written in
assembly language in order to achieve a fast response to inputs.
However, a set of driver routines was written in BASIC in order to make
use of various high level procedures. The program comprises the
following modules:

1) DRIVER ROUTINES
The driver routines carry out all the system initialisation when the
system is first loaded. It contains routines to load the object file of
the assembly language modules. All data input and the conversion of real
numbers to their internal representation is handled by this module.

2) COMMAND PROCESSOR
This module polls the keyboard for command inputs or reads commands from
a disk file. The commands are then interpreted and the relevant routine
is activated. Software control of the programmable switch is implemented
in this module.

3) VDT UTILITIES
This module comprises a collection of routines to control the display
terminal. Functions such as highlighting, clearing the screen, cursor
control and the display of graphics characters are included.

4) FILE HANDLER
All file access is achieved through the routines in this module. Use is
made of the operating system for reading from and writing to disk files
and error detection.

- 85 -

5) DISPLAY PROCESSOR
The initialisation, updating and printing of user status displays are
done in this module.

6) COMMUNICATION PACKAGE
The interrupt routines and data structures required for communication
via the input/output ports are to be found in this module.

The main function of the control program may be regarded as that of
directing a set of input data streams to a set of output devices as
specified by the user. This is depicted in Fig. 4*3 where the effect of
various commands on input data may be observed. Foreground tasks have
exclusive access to the screen while other tasks so indicated may
execute concurrently in the background.

4-4 DESCRIPTION OF COMMANDS

4-4.1 Command structure

The interactive control program is menu-driven. Commands are arranged in
a tree structure (see Fig. 4*4) and may be selected by a single key
stroke from a set of special function keys. At. all times the last line
of the screen displays the current commands corresponding to the
function keys. When a command is selected, confirmation is provided by
highlighting its label. The appropriate action is then performed, or
more information is requested either by a prompt or the display of a new
set of commands lower in the hierarchy.

4-4.2 Control and initialisation commands

These commands allow the user to set up and control the operation of the
simulator. Commands are included to reset, halt and select the mode of

- 86

STATUS

CONTROL DATA

BACKGROUND TASK FOREGROUND TASK

Fig. 4.3 Structure of the interactive control program

SETUP MODE
F1 F2 F3 F4 F

SETUP INIT RECX)RD PLOT STORE J STATUS CMDETL SHOW 1

I 1MPU1
*

MPU2
*

MPU3
*

MPU4
*X’

MPU5 STATUS EXIT E>IT

1 NEXTP PREVP MARK RETURN TOP MIDDLE BOTTOM EX
3

*
USER-DEFINED NAMES

SIMULATION MODE
4 F5 F6 F7 F8

] SMJL LOAD SENDAT RESET HALT MONIT MODIFY eve:
d

*
MPU1

*
MPU2 MPU3

*
MPU4

*
MPU5 MONIT m i HR § _

_

>BL

f *' VAR1 VAR 2* *
VAR3

•*
VAR 4

*
VAR 5 VAR 6 MODIFY EX►IT

*
EVT1 EVT2* EVT3* EVT4*

*
EVT5 EVT6* EXIT EVENT

co

F i g . 4 . 4 Command t r e e .

88

operation of the simulator. The commands in this group are as follows :

3ETUP/SIMUL - Toggles between the two lines of the command menu.

F2-INIT - Initialises the serial communication ports and the display
data structures. User-defined display and initialisation information is
read from a disk file and stored in memory. The two serial RS232 ports
are initialised by setting up their interrupt vectors and the
communication buffers are cleared.

F2-L0AD - Downloads object code in a specified program file to the
connected MPU. An unmaskable interrupt is used to invoke the loader
routine in the remote MPU. The program code is then sent via the serial
RS232 port by handshaking.

F3-SENDAT - Sends data in a specified data file to the connected MPU via
the serial communication port. Handshaking is implemented so that the
receiving program can control the transfer.

F4-RESET - Enables a hardware reset which causes the connected MPU to
start execution at the beginning of the program in memory. To improve
security, the reset command is executed only if the function key is
pressed twice in succession. If all MPUs .are selected, this command will
restart all the MPUs simultaneously.

F5-HALT - This command is a toggle which causes the program in the
connected MPU to suspend or resume execution. Since the MPUs of the
simulator are tightly coupled it is usually sufficient to halt only the
connected MPU in order to halt the simulation.

4.4-3 Utility commands

These commands include various useful routines which facilitate the use
of the simulator. The main area of application is file handling.
Facilities are provided that allow the user to set up command files,
store data and produce high resolution graphics.

F3-REC0RD - Records all commands entered by the operator in a named disk

- 89 -

file. The system clock is reset and a background task is started which
stores all keyed entries and the time on file.

F4-PL0T - Directs incoming data to a graphics terminal. The data is
output through a serial port by an interrupt-driven background task.

F5-ST0RE - Stores incoming data as text on a named disk file. The
incoming data is received by an interrupt-driven background task.

F6-STATUS - Displays the status of the system or a selected MPU. The
function keys are reconfigured such that they can be used to specify the
MPU whose status is to be displayed.

F7-CMDFIL - Reads and executes commands stored in a named disk file. A
background task reads the commands and passes them to the- command
interpreter for execution at the scheduled time. The task terminates at
the end of the file or when the command CMDFIL is encountered. Command
files can be created by recording operator actions or by editting.

F8-SH0W - Displays the contents of a specified file on the VDU. This
command invokes a foreground task whilst monitoring of the MPUs
continues in the background. A new menu of commands is displayed and the
user can then display any desired page of the file. The commands
available under this utility are as follows:

F1-NEXTP
F2-PREVP
F3-MARK
F4-RETURN
F5-T0P
F6-MIDDLE
F7-B0TT0M
F8-EXIT

Displays the next page of the file.
Displays the previous page of the file.
Marks the current page.
Returns to a MARKed page.
Displays the first page of the file.
Displays the middle page of the file.
Displays the last page of the file.
Exits from this utility.

4 .4 . 4 Interactive commands

This group of commands enable the user to interact dynamically with the
simulator.

F6-M0NIT Connects the communication port to a specified MPU for

- 90 -

monitoring and interaction. The function keys are relabelled with
user-defined names to indicate the MPUs available for selection. On
selecting an MPU, the appropriate display page is written on the screen.
When a previously monitored MPU is reselected, old data is displayed in
low intensity. New incoming data is written in high intensity.

F7-M0DIFY - To send new values of a variable to the user program in the
connected MPU. The function keys are relabelled with user-defined names
to indicate the modifiable variables. On selecting a variable, the user
is prompted to enter its new value.

F8-EVENT - To send the parameters of an event to the user program in the
connected MPU. The function keys are relabelled with user-defined names
which indicate the events available for selection. On selecting an
event, the user is prompted to enter its parameters.

4-5 PROGRAMMING AND RUNNING INTERACTIVE SIMULATIONS

4 .5-1 Interfacing simulation programs for interaction

Asynchronous communication is implemented between the parallel MPUs and
the host minicomputer by a monitor construct. Including its embedded
data, the monitor occupies a total of 650 bytes of memory. Its
implementation is similar to that of the distributed monitor for
parallel communication and it provides a set of routines which may be
called from a simulation program.

An interrupt-driven, full duplex protocol allows commands to be sent
from the minicomputer while messages are being received from the MPUs. A
schematic of the flow of data during interaction between an MPU and the
minicomputer is shown in Fig. 4-5« Bearing in mind the dialogue types
identified in Table 4.2, the communication scheme was implemented using
the following routines

1. INISIO Initialises the RS252 port, enables interrupts and clears

/

Fig. 4̂ *5 Host/Nultiple-MPU communication scheme

W
 P

the communication buffers.

2. GETVAR - Gets any newly modified variable that has been received from
the host. An example of the use of GETVAR is

GETVAR (newvars, stat) ;
where newvars is an array of variables which can be modified by the
operator.

3. GETEVT - Gets messages scheduling an EVENT that has been specified by
the operator. EVENTS are defined as commands from the operator that
require specific action in PASCAL. Thus an EVENT would cause the
execution of procedures that would not normally be executed. The
following is an example of the use of GETEVT to check for a new EVENT
and take appropriate action.

GETEVT (evtnum,evt,stat) ;
IF stat >= 0 THEN

CASE evtnum OF
1 : ApplyFault (evt[l],evt[2],evt[3j);
2 : OpenBranch (evt[l],evtf2]) ;
5 : ChangeTap (evt[1],evt[2])
OTHERWISE SpuriousEvent (evtnum,evt)

END;

4. SNDMSG/PROMPT - Sends a message to the minicomputer for display. A
call to this procedure requires the display line to be specified. For
example

SNDMSG (length,line,buffer)
would send the message in the buffer for display on the specified line.
Negative line numbers are defined as ALARMS and specify the display from
the bottom of the display page. Furthermore, if the MPU is not connected
when the call is made, the message is kept until the MPU is selected. A
line number specified as zero is defined as a PROMPT. PROMPTS are sent
by polling and a reply is awaited by polling. All other messages are
sent by interrupts and a call to SNDMSG only initiates transmission.

- 93 -

5* I5PC - Interrupt service routines for handling the communication
channel.

The overheads incurred in the various procedure calls and in the
execution of the interrupt routines are summarised in Table 4.4.

FUNCTION
TIME (microseconds)

PROCEDURE INTERRUPT

GETVAR (no new variable) 91 (56) 340
GETEVT 89 + 34/parm. (68) 230+245/parm.
SNDMSG (MPU discon.) 210 + 8.5/byte (116) 60/byte
PROMPT 2083/byte -

Table 4.4 Overhead due to communication

4»5«2 Programming command files

A command file is easily set up by interacting with the simulator as
required while it is in the RECORD mode. The file so created may be
editted in order to run a slightly different case. Table 4.5 below lists
the symbols used in formatting a command file. Comments for
documentation may be added after the end-of-line delimiter. The syntax
of commands is

/time/cmd,var1,var2;*
where the scheduled time is optional and the number of variables.depends
on the command. Fig. 4.6 is an example command file which includes
displayable messages.

4«5»3 Programming display files

In setting up an interactive simulation, it is necessary to -create a
file which contains information for all display pages required in the
simulation. Fig. 4.7 shows a typical file that can be used for this
purpose. Each line of the file is coded to indicate its purpose and the
function of the special characters are as given in Table 4*6.

94 -

Table 4*5 : List of symbols used in command files

SYMBOL MEANING

$ Message to be displayed on Line 22.
T Restart the internal timer.
J Variable separator

/ Scheduled time delimiter
J End of command delimiter
* End of line delimiter
J End of file delimiter
X(Y) Enter SETUP (SIMUL) mode.

$ INITIALISATION OF SIMULATOR *
/00.00.10/X,2,DSC2:SIMUL/DIS;* (Enter SETUP mode; initialise |
$ SIMULATION PROGRAMS NOW LOADING *f

i
Select and load all MFUs
Load program of network MPU

f Send data to network MPU
i Send data to generator MPUs
*

Y; 6; 6; 2,DSC2:GENPROG;*
6; 2; 2,DSC 2:NETPROG;*
$ DATA BEING SENT *
3,:NETDAT;*
6;1;3,:GENDAT1;6;4;3,:GENDAT2;*
$ SIMULATION STARTS NOW
T* {
/00.30.00/6;2;8;1,1,1;* j
$ THREE PHASE FAULT OF 80 msec DURATION APPLIED TO BUS 29 *
/OO.40.00/8;2,4,29,0,0.08;* i Apply fault to BUS 29
/05.00.00/1;* | Go into SETUP mode and end
$ SIMULATION ENDS. CONTROL RETURNED TO USER *
: I End of command file

Reset timer to zero
Select generator models

Fig. 4.6 Example of a command file.

Table 4.6 List of symbols used in display files

SYMBOL MEANING

$ Statement to be displayed
T Space allocation for results
+ Menu for events
& Menu for modifiable variables
/ Event prompt
* End of display page delimiter
» End of line delimiter
: End of file delimiter

- 95 -

SAMPLE DISPLAY SETUP FILE

$ SIMULATOR STATUS;
$ ----------------------- ;
$;
$ BACKGROUND COMMANDS;
t CMDFIL RECORD STORE PLOT 1;
T FILENAME 8;
$;
t GEN #1 NETWORK GEN #2 GEN #3 LOADS ALL 1;
t PROG 9;
t DATA 9;
S;
t DISPLAY FILE : 2;
$;
$ CONNECTED MICRO STATUS;
f HALTED RUNNING INACTIVE 1;
$;
T CURRENT TIME : 2;
+F1-GEN#1 F2-AREA#1 F3-AREA#2 F4-GEN#2 INACTIVE ;
*; j End of SYSTEM "block)

$ STATUS OF GENERATORS IN AREA NO. 1;
$;
$ GENERATOR PARAMETERS;
$GENERATOR ANGLE FREQUENCY ELEC. MW MECH. MW AVR VOLT;
tUNITI 9;
TUNIT2 9;
TUNIT3 9;
TUNIT4 9;
TUNIT5 9;
$; '
T ANGLES 9;
T MESSAGE:- 8;
$;
T SIMULATION TIME : 2;

$ UNIT 1 UNIT 2 UNIT 3 UNIT 4 UNIT 5 ;
T 9;
&F1-DISCON F2-REC0N F3-FASTV F4-AVREF F5-SCH.POW ; j events j
+F1-SCALE ; j modifiers J
/1 ENTER UNIT ID FOR DISCONNECTION;
/1 ENTER UNIT ID FOR RECONNECTION;
/2 UNIT ID (0=FAST CLOSE)/(1=FAST OPEN);
/2 UNIT ID NEW AVR REF ;
/2 UNIT ID NEW SCHEDULED POWER;
/ l THIS EVENT IS NOT DEFINED;
*; j End of GENERATION AREA NO. 1 block)
: | End of file }

Fig. 4.7 Example of a display file.

The overall structure of the display file is such that the first display
page is assumed to be the simulator system page. Subsequent pages
specify the display information for the MPUs.

4.5*4 Operation of the interactive control program

In order to run interactive simulations it is necessary to produce
applications programs which include all the required control and data
stuctures for interaction. A text file defining the status display pages
of all MPU's being used in the simulation is created as specified above.

Loading and executing the interactive control program results in the
user being prompted to select the mode of operation (Normal, Delayed or
Single-step). The system page of the simulator and menu (SETUP) are then
displayed. The user is now in the interactive environment and may use
the function keys to select commands from the menu displayed.

Normally, the first action is to use F2-INIT to initialise the
interactive program and load the display information. If desired the
session can be recorded by using F3-REC0RD and specifying the file name
for storing subsequent commands. Alternatively, if a previously recorded
or editted command file is available, F7-CMDFIL can be used to execute
the command sequence on it.

The MPUs may be loaded with their respective programs and data by use of
the MONIT, LOAD and SENDAT commands. Due to the slow disk access, this
process takes about 10 minutes for typical simulations using four MPUs.
Faster loading may be achieved if a particular program is to be loaded
into more than one MPU by selecting all MPUs and loading them
simultaneously with the same program. The other programs may then be
directed to the relevant MPUs by using the above sequence.

Execution starts when the MPUs have been loaded with their programs and
data. Any MPU may be selected for monitoring by using the MONIT key. The

display is immediately rewritten (in 50 milliseconds) and a link
established with the selected MPU. The user may then interact with that
MPU by scheduling events or changing the values of variables.

4.6 CONCLUSIONS

Role models of the part man may play in interactive systems have been
■used to define the levels at which interaction may occur. In addition to
the requirements of the analyst, consideration has been given to the
need for dynamic control required by an operator. It is proposed that
the increasing need for educating power system operators should be
satisfied by designing systems which can give explicit instructions.

By identifying a set of basic dialogue types, a comprehensive set of
procedures was written which may be used to fulfil the requirements of
interactive applications.

Two major shortcomings of the interactive environment described are :

1) System portability - the interactive .routines are not portable due to
the machine-dependence of the I/O handling. Assembly language had to
be used in several areas but the modular techniques, used would
simplify implementation on other machines. The need for portable
interactive systems may be met by the use of a standard operating
system (e.g. UNIX [20]) and handling I/O as logical devices . (for
example, see Pfaff et al. [57] on the draft ISO standard Graphical
Kernel System (GKS)).

2) Database facilities - the limited capacity and slow access times of
the floppy disk system discourage any attempt to provide database
facilities. A high-capacity, high-speed hard disk would be required
for the implementation of such features.

- 98 -

CHAPTER 5

POWER SYSTEM MODELS AND SIMULATION TECHNIQUES

5.1 INTRODUCTION

Conceptually, a power system comprises electric power sources
(generators) and sinks (loads) and the interconnections between them
(transmission network). Its normal or intended mode of operation is a
steady state in which the power generated matches exactly the load
demand plus the transmission network losses. Features which characterise
the system include,

a) its large size, both in terms of the number of components and the
geographical area it occupies,

b) its sparse interconnection structure,

c) the non-linear behaviour of its components and

d) the wide range of time scales over which its dynamics are
manifested.

Stability studies are concerned with the dynamic processes which
describe the response of the system to disturbances or operational
changes. Although all the components exhibit dynamic behaviour, the
time-scale of interest normally allows considerable simplifications to
be made in formulating a mathematical model.

Stability studies are normally referred to as short-term, mid-term or
long-term as an indication of the time-scales of interest (discussion in
Converti et al. [58], Stott [59])• The studies herein are concerned with
the dynamics that occur in the short/mid-term. The models exclude the
very fast phenomena such as electro-magnetic transients in the network
reactive and capacitive elements, and the very slow changes charac

- 99 -

terising the response of the boilers.

The models used for dynamic stability simulations are presented in this
Chapter. A mathematical model of the composite system is then formulated
as a set of algebraic and differential equations which describe the
time-varying behaviour of its components and their interconnections.
Finally, suitable numerical algorithms for the solution of these
equations on a digital computer are discussed.

5.2 THE INTERCONNECTING NETWORK

5.2.1 Network models for stability analysis

The model of a power system network for a dynamic stability study is
similar to that used for load flow studies but several simplifying
assumptions may be made without significant error (Dommel and Sato
[3l])* The interconnected transmission .system is modelled as a lumped
linear, passive network by making the following assumptions :

1) the network elements may be represented by lumped equivalent
elements with constant parameters,

2) the response of the network variables to changes in the loads and
generators is instantaneous,

3) the three-phase network is symmetrical and balanced.

The relationship between the bus voltages and currents is given by the
matrix equation

[x] - M bus[v] (5.1a)
or

[v] - [z]bus[l] (5.1b)

where [Y]-j3US and are the bus admittance and impedance matrices
respectively. As a result of the assumptions listed above the
matrix is symmetric when phase shifting transformers are not modelled.

100

Should these be required, efficient methods exist to account for their
effect (Dommel and Sato [j5l], Stott [59])*

5.2.2 Data preparation

The base case load flow solution required for the transient stability
simulation is prepared by a pre-processing package (Elizarraraz [41])
which carries out the following operations :

1) Read system data and form the system [y]-̂ us matrix

2) Order the buses to reduce fill-in during factorisation- using the
minimum degree algorithm (Tinney's scheme II [32]).

3) Orientate the network in order to avoid searching for the next
element to be eliminated during factorisation.

4) From the M h u s matrix, form the system matrices required for the
Fast Decoupled Load Flow (FDLF) algorithm of Stott and Alsac [33] and
obtain a load flow solution for the specified operating condition.

5) Form a data file of bus and branch data with the ordering and
orientation obtained from steps 2) and 3)* The results of the load
flow solution (bus voltages and powers) are also stored in this file.

5*2.3 Network solution

The solution to Eqn. 5*1 may be obtained by inverting the [Y]bus matrix
and multiplying by the current vector [i] which is known. Due to the
fact that the [z]^us matrix is generally full, it is not calculated
explicitly; instead Eqn. 5*1 is expressed as

[1] = [L][u][v] (5.2)

where the lower [l] and upper [u] triangular matrices are obtained by
factorising the [Yj-^g matrix. A direct solution of Eqn. 5*2 is easily
obtained by forward and backward substi^tion. Since [y]^us represents an
entirely linear network it is only necessary to carry out the
factorisation at the beginning of a study. Structural changes during the

101

simulation may be efficiently handled by the use of compensation
techniques (Elizarraraz [41], Alsac et al. [60]).

When the factorised [y]-̂us is being used for the network solution,
accuracy is improved by increasing the diagonal dominance of the [y]-̂ u
matrix. This is achieved by representing the loads and generators as
Norton current sources and including their shunt admittances in the
[Y]bus matrix. Suitable values of these admittances may be obtained from

Yo ■ (H a - - d V / < B? + Xd - V (5 -3)

where = (Xj + X£)/2

for the generators (Dommel and Sato [3 1]), and

Y0 = S*/V2 (5-4)

for the loads (Arrillaga [61]) -

5-3 GENERATION PLANT MODELS

Fig. 5*1 shows the constituent parts of the generation plant model. It
comprises a prime mover which produces a mechanical torque to drive a
synchronous generator which in turn produces an electrical torque. These
two components are controlled by two main control loops; the excitation
loop for voltage control and the governor loop for speed control.

5-3-1 The synchronous generator

The generator model is derived by applying Park’s transformation to the
phase variables of a synchronous machine (Adkins and Harley [62],
Anderson and Fouad [63])- This results in a 'two-axis' representation
with the machine variables and reactances having components along two
mutually perpendicular axes stationary with respect to the rotor and
referred to as the 'quadrature' and 'direct' axes.

L

Fig. 5.1 Generation plant model

103 -

The particular formulation of the generator model depends on the choice
of state variables. Riaz [65] presented equivalent models with flux
linkages, currents and a combination of currents and equivalent voltages
as state variables. The model used is expressed in terms of stator
currents and rotor equivalent voltages. This has the advantage that the
machine parameters are in terms of the reactances and time-constants
normally measured in tests.

The common assumption that stator transients may be neglected [61-67] is
adopted but subtransient effects are included. However, it is assumed
that subtransient saliency is negligible. As Dandeno and Kundur have
pointed out [66], this means that no special provision has to be made to
handle transient saliency.

The complete electrical model of the generator is characterised by the
steady-state equivalent circuit diagrams and the block diagram given in
Fig. 5*2. It comprises four rotor circuits; a field and a damper winding
on the direct axis, and two damper circuits on the quadrature axis. This
is equivalent to the Model 2.2 defined by Dandeno and others [64]- A
lower order model may be obtained by neglecting subtransient effects
(Anderson and Fouad [63]) but the desirability of this simplification is
doubtful (Undrill and Laskowski [67]).

The mechanical behaviour of the rotor is represented in terms of its
speed and angle. The damping coeffient, D, is used to account for
turbine damping only, since the machine damper circuits and the
variation of load with frequency are fully modelled (see Ref. [67]).

5»3»2 Excitation subsystem

This subsystem basically consists of an exciter which supplies the field
current, an automatic voltage regulator (AVR) for control of the
generator terminal voltage, and a stabilising circuit. An IEEE Tyje 1
excitation system model is used (see Fig. 5«3)*

a) Generator steady-state
equivalent circuits

q-axis circuits

*L

b) Generator block diagram

i

Fig. 5.2 Generator equivalent circuit and block diagram.

to
t

Power system stabiliser Exciter

i

a) Standard model representation

b) Model with redefined state variables

F i g . 5»3 Excitation subsystem model

105

106

Modern excitation systems have a high initial response which may "be
detrimental to stability (DeMello and Concordia [68]). This has made it
necessary to use supplementary stabilising signals derived from
measurable variables such as power output or rotor speed. These signals
are added as inputs to the excitation system through a power system
stabiliser (PSS). A model of the PSS (IEEE [69]) is given in Fig. 5*3*

The lead-lag circuits present in the standard models have been replaced
by first-order lag circuits (Fig. 5«3b). This is a redefinition of the
state variables which not only simplifies the application of integration
methods (Arrillaga [6l]), but also allows time-constants to be readily
associated with each state (Kokotovic et al. [70]).

5»3«3 Speed governor and turbine models

The rotor speed of the generator may be controlled by the action of the
governor. In large systems where the frequency is unaffected by changes
in one machine, governor action serves to control the power output of
the generator. Power is scheduled by varying the governor set-point as
shown in the model of Fig. 5*4. Although the governing system may not
have a significant effect on first swing stability, its effect on
subsequent behaviour may be appreciable (Concordia [71]) *

Fig. 5*4 includes the block diagram of a steam turbine model with
provision for control of the intercept or bypass valves as suggested by
Anderson (see discussion of Ref. [72]). The model represents a tandem
compound steam turbine with a single reheater.

5.4 LOAD REPRESENTATION

The correct representation of load behaviour, both in . its static
variation with bus voltage and frequency, and its dynamic response to

CjJ

Fig. 5-4 Governor-turbine model

/

'107

108

sudden disturbances, is now regarded as one of the more important
research topics in power systems [74-82]. Conventional stability
programs usually represent loads as constant admittances. This is
convenient since those admittances may be included in the [y] ^ matrix
and the network reduced to generator buses only.

The significant effect different load models may have on the results of
a stability study has instigated research on realistic models which may
be easily included in simulation programs. One method is to use second
order polynomials which represent combinations of constant power,
constant current and constant admittance bus loads (Kent et al. [73])•
An exponential representation is simpler to apply and equally effective
(discussion of [73]) and this method has been recommended by the IEEE
Working Group on the computer analysis of power systems [74]. The
authors of a recent EPRI report [75] used high order polynomials In
deriving load models from tests but this was primarily due to the
statistical method used for analysis.

5»4«1 Static load representation

•An exponential function is used to represent the variation of real and
reactive load powers with bus voltage and frequency. This model is valid
for bulk supply points where it may be assumed that a load at one bus
does not interact with loads at other buses due to the relatively high
impedances between them at the sub-transmission or distribution level.
The models are expressed by the equations

P = P0 VPvwP“ (5.5)

Q - Q0 V<JV (5.6)

where the exponents pv,pu,qv and q» are referred to as the real or
reactive regulation coefficients with respect to voltage or frequency
(Venikov [76]). These coefficients may be estimated from test data or
from published data for various typical load classes ([75,77])*

109 -

Experience has shown that the performance of these models is
unsatisfactory when large voltage excursions occur. This is usually
manifested numerically by the failure of the dynamic load flow to
converge. Concordia [77] and Kimbark (discussion of [73]) recommended
that the model be modified to that of a constant impedance when the bus
voltage drops below a critical value (typically 0.7 pu). The authors of
the an EPRI report [75] identified this technique as simulating the
stalling of motor loads. Venikov [76] also observed that the regulating
coefficients vary with voltage but no typical figures were given.

Care must be exercised when modifying the load model to constant
impedance in order to avoid a discontinuous change in power. This can be
done by calculating the real and reactive powers from

where Pc r i t = PQ Vo r i Pv- 2 (5 . 7)

where Qorit = Qq Vori^V'2 (5-8)

During solution the load current is calculated from Eqns. 5.5-5.6 or
Eqns. 5«7-5*8 depending on the voltage magnitude. Recursive solutions
for Eqns. 5*5-5.8 are derived in Ch. 6.

P = P ..Vpv"2 cnt

Q = Q ..V^-2 ̂ ^cnt

5«4-2 Dynamic load representation

Individual dynamic loads may be modelled in stability studies if they
are large enough to affect the results or when it is their stability
that is being studied. The most widely modelled dynamic load in this
respect is the induction motor. Its model is derived along similar lines
to the generator model. However, its electrical variables are expressed
in a reference frame which is chosen to correspond to the synchronously
rotating frame of the network. Fig. 5*5a gives the equivalent circuit of
an induction motor.

The model is valid for a single-cage induction motor with stator
transients neglected. Two state variables represent the electrical
dynamic behaviour and the mechanical behaviour is represented by the

110

a) Induction motor steady-state equivalent circuit

Busbar

b) General composite load model

Fig. 5.5 Static and dynamic load models.

anvariation of the rotor slip. The mechanical torque is modelled as
exponential function of the rotor speed with the exponent ranging from
0, for paper mills, to 2 for centrifugal pumps.

If motor starting is to be simulated, more detailed modelling of the
rotor (inclusion of subtransient effects) is required to represent
deep-bar effects or double cage machines (Arrillaga [61], Adkins and
Harley [62]).

5.4-3 Composite bus loads

Recent attempts have been made to derive simple models (with one to
three time-constants) which may be used to represent composite loads and
their dynamics as observed in tests. Chen [75] and Shackshaft [78] have
derived such models which include both static and dynamic elements as
well as saturation characteristics. Berg [79] and Handschin [80] have
proposed methods for aggregating the more readily available data of
loads at the distribution level. These methods may be used to derive
transmission bus load models which account for the effect of the
sub-transmission and distribution networks.

Iliceto and others [81] derived equivalent motor loads for industrial
areas by combining parameters of individual motors using statistical
techniques. Sabir and Lee [82] used identification methods to derive
similar parameters for the representation of paper mill and mining
loads. The data available from such studies may be used to implement a
general dynamic/static load model as shown in Fig. 5*5b. The constituent
parts are totally decoupled and hence may be solved separately. The
model is subject to bus voltage and frequency and its solution produces
current injections.

5-5 FORMULATION OF THE COMPOSITE SYSTEM MODEL

5-5-1 The composite generation plant model

The models given in Sections 5-2 - 5-4 above represent the behaviour of
the individual components. The complete characterisation of the
generation plant is easily obtained by connecting the appropriate
outputs to inputs according to the plant block diagram (Fig. 5-1)• The
resulting system equation can be written as

_x = [a]x + _f (_x,_u) (5-9)

y = g(x,_u) (5-10)

with inputs _u, and outputs y;, defined as stator voltages and currents
respectively.

The structure of the linear system matrix [a] (Fig. 5-6) is almost lower
block triangular (LBT) due to the sequential nature of the component
interconnections. The blocks representing the individual components are
lower triangular (LT) with the exception of the exciter which has an
internal feed-back loop. The non-linear parts of the system are
contained in the vector function f(x,u).

The full model of the power generating plant comprises 17 differential
equations plus a few algebraic equations. The differential equations
represent the dynamics of the machine, its controls and the prime-mover,
whereas the algebraic equations represent the interconnections between
the various components. The resulting composite system model is valid
for studies extending up to 10-15 seconds after a major disturbance.

5-5-2 Interfacing dynamic components to the network

The complete system model requires the formulation of the equations
which describe the interface between the components and the network

swing
equations

d-axis

q-axis

excitation
system

PSS

governor

steam
turbine

05

A
Ed

so_
k
's2
sr

-PhP-
I s *

in

X
X X X X

— —

X
X X

—
>< —

ou mpiimc

— - X. —
X X 1!

—
X X 11

X
X

X

X X

-- —

X X X X X X
— — —

—- - - X
X X

X
— -

X
X — ■

X X

IN P U rPS-
.

—

—

X
X X

— -

X X

— - - . . . -- — X X
X 1*

[a]

Fif. 5*6 Generation plant model matrix

• “ - —
i

GJ X
J k
_Ek
Ed
Ed

X

X
X
X

Ep
Rf

'Vr + X
vso
Vs1
vs2
Vsr X
Cy
%>

k E
plp

—
L J

x + f(x,u)

i

i

114

equations. The interface between the network and an induction motor load
is straightforward since the motor model was derived with its electrical
variables in a synchronously rotating reference frame which is chosen to
correspond to the network frame of reference.

In the case of the generator whose reference frame is fixed to its
rotor, a transformation is required to express its variables in the
network reference frame. The generator voltages (Vd ,V) are related to
the real and imaginary components of voltage (V^,Vr) in the network
frame of reference by

►a __
__

l

cos & sinS

_ v -sin 8 cos S

or Vdq = [t]v .l j m where

where is the instantaneous value of
frames. The same transformation matrix [

[T]-1 = [T]T

(5.11a)

(5.11b)

currents to the network currents.

5.6 NUMERICAL INTEGRATION METHODS

Conventional integration methods are generally classed as implicit or
explicit depending on whether or not only past values are required to
compute new values of the state variables. Methods are referred to as
single-step or multi-step depending on the number of past values
required. Of the many integration methods available, only relatively few
have found applications in power system computation.

5*6.1 Characterisation of integration methods

The analysis of integration methods is usually carried out by use of the
scalar test equation

115 -

(5.12a)

with solution x(t+h) = exp(Xh)x(t) (5 .121)
where 1 / \ may be regarded as the time-constant of the variation of x.
When X is negative Eqn. 5*12 represents an exponential decay and the
behaviour is said to be stable. In comparing the performance of
different algorithms, the following properties are defined (e.g. see

a) Local truncation error - the error incurred by a method over one
integration step.

b) Global error - the error accumulated by a method over an arbitrary
number of integration steps.

c) Stability - a method is stable for a given step length if it
produces a stable solution to a stable problem; a method which is
stable for any step length is said to be A-stable.

d) Convergence - a method which can be made arbitrarily accurate by a
sufficient reduction in step length is convergent.

Other properties which affect the efficiency of digital computer
implementations, of integration algorithms include :

a) the number of function evaluations required per step,

b) the number of past values that must be stored, and

c) whether or not a system of algebraic equations must be solved at
each step.

Ultimately, the efficiency of a method depends on the amount of computer
time and (to a lesser extent) storage required to solve a system of ODEs
over a given interval to a prescribed accuracy.

5*6.2 Explicit methods

This class of methods may be divided into two sub-classes namely, the
Runge-Kutta (R-K) methods and the multi-step methods. Examples of the

Gear [29] for more rigorous definitions).

latter are the Adams-Bashforth (A-B) methods. The Euler method is the
simplest method possible and it may be regarded as the first order R-K
method or the single-step A-B method (Gear [29])*

Explicit methods now find restricted application in power systems due to
their inferior stability properties. In addition kth-order R-K methods
require k function evaluations per step whereas k-step A-B methods
require information from k previous steps to be stored. Nevertheless,
the fourth order R-K method is used in some of the older stability
programs (e.g. Dandeno and Kundur [66]) and the simplicity of the Euler
method encourages its use for well-behaved problems when neither
efficiency nor accuracy is at a premium (Elder and Metcalfe [83]).

5*6.3 Implicit methods

These methods require the solution of a set of implicit algebraic
equation at each step. They are normally programmed as the corrector in
a Predictor-Corrector (P-C) algorithm where an explicit method is used
to predict new values and an implicit method is used to correct those
values by iteration. When the iterative process is carried to conver
gence, the algorithm's properties are those of the corrector method.

Humpage and others [84] have evaluated these methods for power systems
problems and found them superior to R-K methods. The improvement was
mainly due to the longer step lengths that were possible. Gear [29]
derived a class of methods with even better stability properties and
therefore efficient for stiff systems. A comparison of the stability
boundaries of Adams-Moulton methods (Humpage [84]) with those of the
Gear methods indicates the improvement (Fig. 5»7).

In general, the oscillations of the fast states in a stiff system die
out after the initial transient. Knowledge of this fact has motivated
the use of variable step P-C methods which adjust the step length as
well the order of the method to satisfy an error criterion (e.g. VISTA
[30]). Hence the expense of small steps is avoided by changing step

- 117 -

a) Stiffly stable Gear methods

b) Adams-Moulton methods

order

Fig. 5*7 Stability boundaries of conventional integration methods.

sizes when an error criterion indicates the absence of fast varying
components in the solution.

The Backward Euler (B-E) method is the simplest implicit method but its
use is limited since the Trapezoidal rule gives superior results for the
same amount of work (EPRI [85])* However it is used in variable-step,
variable-order codes since it is the first order method of both the Gear
and the A-M classes of methods.

The Trapezoidal rule (TR) is a second order implicit method which has
gained wide popularity due to its ability to use time-steps larger than
the smallest time-constants in a set of equations. Although it has been
used quite extensively as the corrector in P-C methods (e.g. second
order Adams-Moulton), recent interest has been in major gains attainable
in power system simulation by using it to convert the ODEs into
algebraic equations which are then combined with the network equations
and solved simultaneously [31,58,85]*

Several workers now believe it to he the best method . for power system
simulation [59,61,85]* Its main advantage is its stability when solving
stiff systems. In common with all implicit methods, it requires a set of
algebraic equations to be solved at each step. However, this is not a
disadvantage if an iterative solution is required for other reasons. Any
algorithm may be used to solve the algebraic equations but in general
the Newton-Raphson method is the best (Seinfeld et al. [86]). When the
system is linear it converges in a single iteration and non-linear
systems converge quadratically. Observing that the equations are usually
not iterated to convergence, De Micheli and Sangiovanni-Vincentelli [87]
investigated the effect of using a fixed number of iterations.

5*6*4 State transition matrix

A general linear system of ordinary differential equations (ODEs) is
represented by the equation

(5 .13)_x = [a]x + [b]u
and its solution at a given time t = (n+1)h is given "by

t
[exp([A](r-t))[B]u|dr (5.14)

where exp([A]h) is known as the state transition matrix (STM). This
solution is exact once the convolution integral has been evaluated for a
specific input function _u. At least one production program has made use
of this form (Converti et al. [58]) but, although they calculated the
STMs of individual components only, the well known difficulties involved
in the calculation of STMs (Moler and Van Loan [88]) have restricted the
appeal of the method.

m+1 = exp([A]h)~ n + j

5-7 A TUNABLE INTEGRATION METHOD

In their research into methods for stiff systems of ODEs, Liniger and
Willoughby of IBM [89] proposed integration methods with free parameters
which could be tuned to suit the eigen-structure of the system of ODEs.
The first order method of this class is

xn+1 = xn + h(('-W)xn+1 + win^ (5.15)

where w is a tuning parameter. By using arguments based on digital
signal processing techniques, Smith [90] derived a similar formula

xn+1 = xn + sh(vxn+1 + (1-v)*n) (5-16)

where v may be regarded as representing the phase-shift and s the gain.
Adopting his recommendation of setting the gain to 1.0 for linear
systems and a redefinition of the phase-shift parameter results in
Eqn. 5-15-

5-7-1 Comparison with classical methods

Smith [90] pointed out that for specific values of the parameter w, the
tunable algorithm (Eqn. 5*15) is identical to classical methods. Some
members of the one-parameter family are compared in Table 5*1

120

Table 5*1 Single-step integration methods

METHOD EULER BACK. EULER TRAPEZOIDAL FAMILY

Value of w 1 0 0.5 0<w< 1
Order 1 st 1 st 2nd -
Stability conditional L-stable A-stable -
Type explicit implicit implicit implicit
Equation xn+r V hin x . =x +hx , . n+1 n n+1 x .=x +h(x ,.+x)/2 n+1 n v n+1 n' 5.15

Smith described the properties of the class of methods in terms of the
mean-value theorem. In principle, at any point in the solution, it is
possible to choose a tuning factor which gives an exact solution of the
next step. Although this argument implies that w should be allowed to
vary between 0 and 1 for accuracy, the inferior stability properties of
the method when w is greater than 0.5 may be a disadvantage.

5<.7-2 Round-off and truncation errors

For a specified time-step h, the exact tuning parameter for the test
equation can be obtained by substituting Eqn. 5«15 into Eqn. 5*12 to
give

w = 1/>h - 1/(exp(>h) -1) (5.17)

The method is then said to be exponentially fitted at \ h . From this it
can be seen that the TR and BE methods (which are special cases of the
method when w is 0.5 or 0) are exponentially fitted at 0 and -oo
respectively. The variation of w with X*1 is given in Fig. 5*8 as well as
approximate curves when Xh is very large or very small.

The tuning method may be made exact for real eigenvalues since the
tuning factor is derived by matching the solution of Eqn. 5*15 to the
actual solution, exp(Xh). Exact matching of complex eigenvalues would
require another free parameter such as the 'gain' parameter defined by
Smith [90].

F
 a

 c
 t

 o
 r

h A (r e a l p a r t) - - >
Fig. 5.8 Variation of tuning parameter with h\

As an indication of the performance of the method, the test equation
5-12, was solved with different tuning factors. In Fig. 5*9> curves of
the accumulated error after 4 seconds are plotted as the time-step, h,
is varied. Curves A-E give the error when fixed values of w between 0
and 1 were used; for curve F the appropriate tuning factor for each
time-step was used. For large time-steps, the curves show the behaviour
of the truncation error and it can be seen that curve F is exact (i.e
zero truncation error) subject to the floating-point precision of the
Texas FS990/4 computer.

The slopes of the right-hand parts of the curves exhibit the fact that
the TR (w=0.5) is a second order method whereas other values of w result
in first order methods. However they exhibit lower errors than the Euler
(w=1.0). When the method is tuned for the time-step in use, the concept
of order loses meaning and this indicates potential' difficulties if
on-line error estimation is attempted (Brandon [91>92]).

For very small time-steps, round-off error becomes dominant. The curves
indicate that the round-off error of the computer floating-point
software is proportional to the number of operations for this example.

A consideration when using any tunable technique is the effect of
approximate tuning factors. Fig. 5*10 shows how the accumulated error
varies with the tuning factor for different time steps. The general
shape is a gradual reduction in error as the optimum tuning factor is
approached either from w=0 or w=1. The minimum obtained for values of w
greater than 0.5 is due to fortunate cancellation (its position changes
with computers of different round-off error). There is considerable
variation in the neighbourhood of the optimum point and a very sharp
minimum is obtained as the error drops zero. The curves indicate that
very accurate estimates of the local time-constants would be required to
achieve the highest accuracy, but moderate gains (about an order of
magnitude) may be realised if w can be estimated to within _+0.025.

Re
la

ti
ve

er

ro
r

at

T
=

4a

Fig. 5.9 Behaviour of global error

Re
la
ti
ve
 t

ru
nc

at
io

n
er
ro
r

Fig. 5.10 Variation of truncation error with tuning parameter.

125

5.7*3 Stability properties

A useful requirement when integrating stiff equations is that of
A-stability [29]* For the tunable method the required condition is

xn+1 (1 + wH\)

xn (1 - (1 -w)h\)

which reduces to w <= 0.5
than

When w is less^half, Eqn. 5*15 describes a one parameter family of
A-stable methods. Liniger and Willoughby [89] also showed that the
method is accurate for these values and defined this property as
intermediacy.

A-stability as defined above concerns the behaviour of roots in the
left-half complex plane only. It guarantees a stable numerical
simulation of an . asymptotically stable system irrespective of the
time-step used (Gear [29])* In defining the class of stiffly-stable
methods, Gear relaxed this requirement by specifying separate regions
for stability and accuracy (see Fig. 5*7). However the first and second
order methods are not only A-stable, but their stability regions also
extend to the right-half plane. For such methods, the ratio (xn+l/xn)
approaches zero as hX -> -oo and the solution is said to be infinitely
damped. Methods which exhibit this property are described as L-stable, a
definition attributed to Axellson (see Watanabe and Himmelblau [93] or
Watts [94]). From Eqn. 5*18, it can be seen that for the TR (w=0.5),
(xn+i/xn) — > (-l)n and hence the oscillatory behaviour of large roots.

The stability boundary of the tunable method may obtained by plotting
the equality condition of Eqn. 5.18 on the complex hX plane. Eqn. 5*18
may be written as

{a—1/(1-2w)}2 + b2 = {1/(1-2w)}2 (5.19)

where X*1 = a+jb

which describes a circle in the complex plane of radius (1 / (1 - 2 w) and
centred at (1/(1-2w) on the real axis. The stability boundaries for

126

various tuning factors (values of w between 0 and 1) are given in
Fig. 5*11* When w<0.5 the methods are L-stable and for w>0.5,
conditionally stable methods result; at w=0.5 we get the TR which is
strictly A-stable.

5.7 .4 Trajectory errors

The selection of integration methods for power systems dynamics has
largely been a process of trial-and-error. The difference in the
applicability of algorithms to a class of problems may be explained in
terms of the position of the dominant eigenvalues in the complex plane.
For example, it is well known that the higher order methods of Gear are
unsuitable for lightly damped, high frequency components. Similarly, the
TR is known to introduce oscillations into the highly damped states of
stiff systems (this has motivated ideas of filtering its output
(Seinfeld et al. [86])).

In order to determine the type of errors that may be introduced in the
trajectory of a solution, Watanabe and Himmelblau [93] proposed a
graphical technique for determining the effect of a method on the
eigenvalues of a system. Application of the technique results in a chart
which shows how the complex plane is transformed by a specific
integration method. Interpretation is aided by plotting the chart in
terms of the damping ratio f and natural frequency corresponding to
an eigenvalue. Thus it can be easily determined whether the calculated
trajectory will be more or less damped, or have a higher or lower
frequency of oscillation.

Figs. 5.12a-d are taken from [93] and show the trajectory error diagrams
for various methods. Fig. 5*12a is for the Euler method and it depicts
the mapping of eigenvalues from the left-half plane unto the right-half
plane (e.g. A and A') thus causing instability. The stability boundary
of the method can be constructed by plotting the original position of
roots which are transformed to the imaginary axis. In Fig. 5*12b, both
the dominant and extraneous roots (e.g. A' and A") produced by the 2nd
order Gear method are indicated.

(A-stable)

Fig. 5*11 Stability boundaries of tunable integration methods

127

1 28

l.C

a) Forward Euler

C

b) Gear (second order)

* ;

c) Backward Euler d) Trapezoidal rule

Fig. 5*12 Trajectory error diagrams of conventional methods

- 1 2 9 -

The trajectory error diagrams of the BE and TR methods (Figs. 5*12c-d)
indicate the types of system for which each is suitable. Thus the BE is
more appropriate when the roots lie on or near the real axis. The TR, on
the other hand, is more suited to oscillatory systems. Purely imaginary
roots remain so but with a decrease in frequency; this explains the
phase shift observed when this method is used (Anderson and Dembart
[95])• Also, large roots that lie near the real axis are simulated with
greatly increased frequency (e.g. root A becomes A').

Figs. 5«13a and b, were plotted for the tunable method with w=0.45 and
w=0.25* The overall performance is intermediate between the BE and TE._
The curves indicate the improvement that is obtainable over specific
regions of the complex plane.

Fig. 5»13c was plotted under the assumption that the real parts of the
eigenvalues are known and the tuning factors calculated .accordingly. The
much improved fidelity of the representation of the roots is evident.
The overall shape of the diagram indicates that the real roots will be
accurately simulated whereas imaginary roots (simulated by the TR) will
suffer a reduction in frequency. The overall accuracy of a simulation
would depend on how accurately the real roots can be estimated and the
degree of oscillatory behaviour.

5.8 CONCLUDING REMARKS

A detailed model of a power system has been presented. A 17th order
generating plant model is used and the realistic modelling of static and
dynamic bus loads has been emphasised. With a linearised transmission
network, the resulting composite system model may be expected, to be
valid for studies extending up to 10-15 seconds after a major
disturbance.

A problem always encountered whenever highly detailed models are used s
the availability of valid data. However, Undrill and Laskowski [63] have
pointed out that it is usually better to use typical values than reduced

2 .5

2.0

1.5

^r
1 .0

0 . 5

0
1

I

Fig* 5-1'5 Tra jec tory e rr o r difl^rnno o f tunabl« methods

131

models since reduced models may not exhibit certain phenomena even
qualitatively. Sensitivity studies of detailed models may then be used
to indicate how crucial estimated parameters are to overall performance.

The requirement for accurate simulation of power systems dynamics over
an extended time period results in a model that is relatively stiff. The
Runge-Kutta algorithm, while accurate, is unsuitable for stiff systems
and it has been largely superseded by low order, implicit integration
algorithms. Improved numerical integration techniques seem to be among
the most promising paths towards high-speed simulations and some
investigations using the tunable method are presented in Chapter 6.

132 -

CHAPTER 6

IMPROVED TECHNIQUES FOR DYNAMIC SIMULATION

6.1 INTRODUCTION

At present, most techniques used for dynamic simulation are based on the
work of Dommel and Sato [31] who used the Trapezoidal Rule (TR) to
discretise the ordinary differential equations (ODEs) of a power system
model. The algebraic equations were then either combined with the
network equations for simultaneous solution or kept separate and solved
in an alternating manner with the network. The effectiveness of the
method has been also confirmed by others (Stott [59]> EPRI [85]). Gross
and Bergen [96] achieved excellent results by extending the technique to
utilise the Gear class of methods. Good accuracy was obtained with the
low order methods of the class for full machine models including
subtransients.

One distinguishing feature of recent research has been the careful
consideration paid to the structure of the power system model. Thus
network solution algorithms have been improved by exploiting the almost
linear nature of the model and its sparsity [31,32]. For the system
dynamics, implicit integration methods have been used to cope with the
wide range of time constants [31,59]*

The main aim of the techniques in this Chapter is that of being able to
increase integration step lengths without incurring large errors. Vhere
possible, suitable approximations are used to speed up the computation
without undue loss of accuracy. The ultimate objective is to derive
methods which can be used with time-steps that are adequate to represent
the dynamics of interest. Ideally, it should be possible to use a single
program to produce accurate time plots of both fast and slow variables
simply by specifying appropriate time-steps.

153 -

6.2 SIMULATION ALGORITHM

The algorithm developed here was tested on the WSCC standard 9-bus test
system [85] shown in Fig. 6.1. The network data and machine parameters
used are given in Appendix B. Performance evaluation was carried out for
two types of disturbances namely,

a) Outage case - the opening of line 7-5

b) Faulted case - a 3-phase fault on bus 7, cleared by opening line
7-5 after 80 milliseconds.

6.2.1 Partitioned solutions

The simulation of a composite power system model requires the simul
taneous solution of a large set of ordinary differential equations and
algebraic equations. This may be achieved by using an implicit
integration algorithm to discretise the differential equations and
solving the resultant algebraic equations simultaneously with the
network equations with a technique such as the Newton-Raphson.

It is usually more convenient to solve the two types of equations by
different methods and this has given rise to partitioned techniques
where the network and machine equations are solved separately in an
alternating manner. In the general non-linear case, three types of
iterations may be required,

a) use of a P-C integration method requires one or more corrector
iterations,

b) solution of the network algebraic equations may be carried out by
an iterative method such as the Newton-Raphson and,

c) the partitioning of the system gives rise to interface errors
which may only be eliminated by iteration.

3 . ° / 7 \
7) v i y

18 kV

163
(6.7)

163 j> -163

(6- 7y> (9.2)

230 kV

©
1.025

76.4 -75.9
(-0.8)

86.6
(-8.4)

©
1.026
/3.7°

r

o

8

Load A

co
oSI

Ov
o

H O . 7)

100.0

(35.0)

-24.1

Load C

(-24.3)

®
1.016

I S L Z 1

CO

±(7)0 .996
/-4.0°

o»
CN
CM

230 kV
o

16.5 kV

CMI
VV^A- o —«

230 kV

24.2

13.8 kV

Q<o ^
. CM

<0.1.040/ o . o °

(3.0)

60.8

H8.0)

-850 j> 85.0
(150)^)

(- 1 0 . 9) @

85.0

v i) (- io.9)

3

©
1.032
/ 2.0°

1.025
/ 4~7°

*
MJ
I

,(7)1.013
. /-3.7°

T
Load B

(7) 1-026
W ,-2.2°

(Reprinted from reference [63])

F i g . 6.1 W S C C 9-Bus test s y s t e m

135 -

Computational schemes which implement these iterations explicitly are
inefficient; it is more efficient to combine them such that at each
time-step, the iterations of the machine differential equations are
interleaved with those of the network algebraic equations. Interface
errors are then automatically eliminated (Stott [59])*

6 . 2 . 2 S o lu tio n o f the swing equation

Gross and Bergen [96] demonstrated the advantage of exploiting the
structure of the dynamic stability problem by treating the mechanical
and electrical parts of the generators separately. The rotor swing
equations are such that an open-loop solution may be obtained. With
accelerating power P& as input the rotor speed and angle are given by

w = -7co + <fip 7 = D/2H; <t>= 1/2H (6.1a)

S = « (6.1b)

with being the rotor speed deviation and 7 representing turbine
damping. The solution of Eqns. 6.1 is given by

/.t+h
co (t+h) = exp (-7h)eo (t) + |^exp[-(t+h-T)7] P (T) dT (6.2a)

A a
/•t+h

S (t+h) = S(t) + co (t)K + - exp[-(t+h-T)7]}Pa(T)/7 dT (6.2b)

where K = [1 - exp(-7h)]//7

In the algorithm of [96], the convolution integrals in Eqns. 6.2 are
estimated by numerical quadrature. In that case d(t+h) is calculated
explicitly since at the upper limit of the integral in Eqn. 6.2b the
multiplicand of P (t+h) is zero. An alternative method is to assume that
the variation of P_ over the interval is linearCL

Pa(T) = Pa(t) + h a(t+h)-Pa(t)](T-t)/h t<T<t+h (6.3)

and to evaluate the integral analytically. The resulting expressions are
equivalent to the matrix exponent equations derived by Converti and
others [58].

Table 6.1 summarises the various expressions for the rotor angle and
speed. Method 1 is that of Gross and Bergen and Method 2 differs from
Method 3 in that the calculation of the rotor angle is made explicit by
setting Pa(t+h) to P (h). In the case of the rotor speed, implicit
expressions are used since P (t+h) is known before o> is computed in the
solution sequence. In programming these equations the exponential
expressions only need to be calculated at the start of the simulation or
when the time-step is changed.

The three methods were compared by simulating the faulted case of the
9-bus system. From Fig. 6.2 it can be seen that Methods 1 and 2 give
virtually identical results. However, the latter requires slightly fewer
iterations over the study period. When the angle is included in the
iterative process (Method 3)> better accuracy is obtained but at the
expense of extra iterations.

Table 6.1 Simulating difference equations for the swing equations

Method Difference equations

1 5(t+h) = S(t) + w(t)K + <t>hP (t)K/2
Q,

w (t+h) = w(t)exp(-7h) + </>h[P (t)exp(-Th) + P (t+h)]/2a a

2 5(t+h) = $(t) + w(t)K + hA P (t)/y
c. 9.

w(t+h) = ̂ (t)exp(-7h) + A.P (t) + A0P (t+h)
I Q. c. S.

3 5(t+h) = s(t) +w(t)K + (0h/2-A.)p (t)/y + (<̂ >h/2-A2)P (t+h)/yl a a
to(t+h) = w(t)exp(-7h) + A.P (t) + A P (t+h)

I Q. , (i. Q.

where = 4 > [k - h exp(-7h)]/h7,

and K = [1 - exp(-7h)]/ 7

A2 = </>[h - K]/h7

G
EN

2

R
EL

.
R

O
TO

R

A
N

G
LE

(d

eg
s.

)
G

EN

2
A

B
S.

R

O
TO

R

A
N

G
LE

(d

eg
s.

)

S O L U T I O N O F S W I N G E Q U A T I O N
Faulted cose (h = 80 ms)

S O L U T I O N O F S W I N G E Q U A T I O N
Faulted case (h = 80 ms)

Fig. 6.2 Comparison of solution methods for the swing equations.

138 -

6.2.3 Simulation of a generator and its controls

The ODEs representing all dynamic elements in the system need to be
converted to difference equations by a discretisation method. The
general form of an ODE representing a variable y with time-constant T is

y = -y/T + Kx/T (6.4)

where the input x may also be a state variable. Discretising Eqn. 6.4 by
the TR with a step-length h, gives the difference equation

y(t+h) = y(t) + j-y(t+h)-y(t)+K[x(t+h)+x(t)]}h/2T (6.5a)

which is arranged into the following form suitable for simulation

y(t+h) = F(t) + Gx(t+h) (6.5b)

where F(t) = [(2T-h)*y(t) + h*K*x(t)]/(2T+h) and G = h*K/(2T+h)

Similar difference equations may be written for all ODEs. The sequen
tial nature of the control elements means that when the equations are
suitably arranged, they can be solved exactly with the equivalent of one
Gauss-Seidal iteration. Thus given the rotor speed deviation, the state
variables of the governor-turbine system and the PSS may be obtained in
a straightforward manner.

The exciter feedback loop may be handled explicitly by expressing its
output in terms of its input signals but this gives rise to dynamic
limits which must be calculated and checked at each step [31]• Alter
natively an iterative method may be used to solve the matrix block. Such
a technique was used but without a separate iterative process since the
solution converges in the two or three Gauss-Seidal iterations required
by the other equations.

The generator transient and sub-transient voltages on both axes are all
coupled via the stator currents. Faster convergence of the iterative
algorithm may be achieved by assuming that the stator resistance is
negligible. This is equivalent to using the machine short-circuit time
constants ([62,63])>

139 -

(6.6a)

(6.6b)

On average, use of this approximation results in one less iteration per
integration step.

6 . 2 . 4 Convergence criteria

In principle, the iterative algorithm requires all state variables to be
checked for convergence. In power system simulation it is common
practice to check only a few key variables instead of a full vector norm
[55,85]* The criterion used here requires only a check on the d,q-axis
currents and the excitation voltage. The variation in the number of
iterations with tolerance is shown in Fig. 6.3 when time-steps of 40 and
80 ms. are used.

Inspection of the time plots in Fig. 6.4 reveals virtually identical
results for tolerances up to 0.100. The errors become unacceptable when
a tolerance of 1.000 was used with a time-step of 80 ms.

Note that the convergence test does not involve the angle as required by
other authors [85] since its calculation is explicit. Even when the
calculation of the angle is included in the iterations (Method 3, Table
6.1), a very low tolerance (about 0.001 radian) is required to change
the number of iterations significantly.

6.2.5 Solution algorithm

The solution algorithm is similar to that of Gross and Bergen [96] but a
partitioned solution is used instead of a simultaneous one. The angle is
calculated explicitly with Method 2 of Table 6.1. At the start of each
step, the mid-point rule is used as predictor except after switching
operations when the Euler formula is used instead.

G
EN

2

R
EL

.
R

O
TO

R

AN
G

LE

(d
eg

s.
)

A
ve

ra
ge

N

o.

of

Ite
ra

tio
ns

H O

E F F E C T O F C O N V E R G E N C E T O L E R A N C E

Fig. 6.3 Variation of iterations with convergence tolerance.

C O N V E R G E N C E O F T R A P E Z O I D A L R U L E
Foulted case

Fig. 6.4a Effect of convergence tolerance on time response.

GE
N
2
RE
L.
 R
OT
OR
 A
NG
LE
 (
de
gs
.)

GE
N
2
AB
S.
 R
OT
OR
 A
NG
LE
 (
de
gs
:)

141

C O N V E R G E N C E O F T R A P E Z O I D A L R U L E

Fig. 6.4b Effect of convergence tolerance on time response

142

The complete solution algorithm for the power system simulation may be
summarised a3 follows

1. Read in data, apply specified disturbance and calculate machine
initial conditions from base-case load flow

2. calculate new machine angles using Method 2 of Table 6.1
3. predict rotor voltages and exciter output
4- estimate current injections and solve network equations
5. calculate static load demand and integrate dynamic loads
6. integrate machine equations to give new voltages
7. calculate rotor speed deviation using Method 2 of Table 6.1
8. solve governor-turbine and excitation system equations
9. check stator currents and field voltage for convergence
10. if iterations have not converged, go to step 4.
11. advance time-step and go to step 2.

The performance of the algorithm was investigated by simulating the two
types of disturbances mentioned above. The outage case results in almost
linear oscillations whereas the faulted case exhibits large non-linear
deviations. This is reflected in the average number of iterations per
step given in Table 6.2.

Table 6.2 Effect of time-step on the number of iterations.

No. of iterations
faulted case outage case

Time-step max . min. avg. max . min. avg.
0.010 3 1 1.960 3 1 1 .818
0.020 4 2 2.035 3 1 1 .930
0.040 4 2 2.090 3 1 2.010
0.080 5 2 2.620 4 2 2.120
0.120 6 2 3-500 4 2 2.576

Figs. 6.5-6.6 give the time response of the relative rotor angles and
electric powers of generator No.2 for both cases. As the time-step is
increased the plots exhibit the slight change in frequency of osci
llation which is characteristic of the Trapezoidal rule.

G
EN

2

R
EL

.
R

O
TO

R

AN
G

LE

(d
eg

s.
)

G
EN

2

A
B

S.

RO
TO

R

A
N

G
LE

(d

eg
s.

)

143

A C C U R A C Y O F T R A P E Z O I D A L R U L E
Faulted case

A C C U R A C Y O F T R A P E Z O I D A L R U L E
Faulted case

Fig. 6.5 The effect of step length on time response : Faulted case

G
EN

2

RE
L.

R

O
TO

R

AN
G

LE

G
EN

2

A
B

S.

R
O

TO
R

A

N
G

LE

(d
eg

s.
)

144 -

A C C U R A C Y O F T R A P E Z O I D A L R U L E
Outage cose

Fig. 6.6 The effect of step length on time response : Outage case.

145 -

6.3 TREATMENT OF NONLINEARITIES

The major part of the composite power system model is represented by
linear equations. However, some non-linearities are introduced by the
presence of nonlinear elements and the interconnection equations. The
small number of such equations makes it worthwhile to identify where
they occur and to treat them individually. The non-linearities may be
classed as either hard (discontinuities) or soft (multiplicative and
trancendental functions) and each type requires special techniques.

6.3-1 Discontinuities

The control elements of a power plant contain discontinuous functions
such as position and rate limiters. These present problems when any
integration algorithm is used. For example, with a P-C method, the
algorithm must be restarted at the occurrence of any discontinuity. If
the method allows a variable step then the step would be reduced until
the discontinuity is traversed with an acceptable error.

The standard manner of dealing with limiters is to set the state to the
limited value and its derivative to zero when a limit is reached. Carver
[97] and Ellison [98] treated such non-linearities accurately by using
interpolation to search for the point where the discontinuity occurred
and then integrating up to that point. However the search is expensive
due to its iterative nature and the high order formulae used.

The function averaging method of Howe [99] is used here instead. The
technique requires the estimation of the integral obtained when the
point at which the discontinuity occurs is known. Howe developed the
technique for a second order Runge-Kutta algorithm by using an averaged
value of the limited state which results in a reduced penalty when a
long step is taken across a switching point. For use with the iterative
TR algorithm the method may be developed by representing a limiter by
the function

146 -

f(x) = [(xh+xl) + |x-xL| - |x-xh|]/2 (6.7)

where x^ and x^ represent the high and low limits. If the output of the
limiter f(x) serves as input to another state y represented by

y = -y/T + f(x)/T (6.8)

Following the steps to solve Eqn. 6.8 with the trapezoidal rule
/»t+h

yn+i = y +°n

yn+i = *< + -y/T + f(x)/T dt

on t, the first part of the integral
numerical quadrature using the TR. Integration of the limit function
then proceeds by changing the variable of integration from t to x;

/•t+Vi
yn+1 = yn - (yn+1 + hyn)/2T + I f(x)/T at

(2T+h)yn+1 = (2T-h)yn + 2 f(x)/± dx

Assuming a linear variation of x over a time-step i.e., x constant,

x = (xn+1 - xn)/h = Axn/h

gives

(2T+h)yn+i = (2T-h)yn + 2h/ixn dx (6.9)

Evaluating the integral and rearranging gives the recursive equation

yn+1 = a% + b*(Fn*|-Fn)/lxi + b*(xH+xL> (6‘1°)

where a = (2T-h)/(2T+h) , b = h/(2T+h)

Fn = h x n- x L) * | x n- x L l - (xn - x H) * | x n- x Hl] / 2

Fn+1 = [(xn+1- x L) * | x n+1- x L l - (xn+1- x H) * | x n+1- x Hl] / 2

Note that Eqn. 6.10 reduces to the TR when no limit is hit. The factors
Fn and Fn+ ̂ are calculated at the end of each step and during the next
iteration respectively. Use of Eqn. 6.10 automatically accounts for the
effect of the discontinuity. It is however necessary to use an
alternative expression for Eqn. 6.10 when Axn is zero or very small
(e.g. the Mid-point rule). The improvement in accuracy over the standard
method is evident from the curves of Fig. 6.7.

GE
N
2
REL

.
RO
TO
R
AN
GL
E
(de

gs.
)

GE
N
2
ABS

.
RO
TO
R
AN
GL
E
(de

gs.
)

147

T R E A T M E N T O F D I S C O N T I N U I T I E S

Fig. 6.7 Treatment of discontinuities

148 -

If the limiter is of the wind-up type (IEEE [69]) no further action is
necessary after the iteration has converged. When a print-out of the
limited value of x is required an auxiliary variable must be provided.
With non-wind-up limiters, the state xn+ ̂ must be limited by application
of Eqn. 6.7*

6 .3 * 2 S o lu tio n o f tr ig o n o m e tr ic fu n c tio n s

The transformation between the reference frames of the generators and
the network requires the evaluation of the_sines and cosines of the
rotor angles at each step. On average, both functions require a total of
26 milliseconds to execute on the TMS9900 processor. This time may be
reduced by introducing a pair of ODEs which have S as independent
variable. The TR may then be used to derive the difference equations

Provided AS is small at each step, accurate sines and cosines will be
obtained. Even in marginally stable cases, the rotors are unlikely to
swing through more than 45 degrees during any time-step. This is
equivalent to a step length of l/8th of the period of the ODEs which
gives good accuracy. Fig. 6.8 shows the effect of this approximation
when a long integration step of 80 ms. is used.

Eqns. 6.11 may be programmed to require 1 division and 12 additions and
multiplications which, from Appendix A, executes in about 14
milliseconds.

6.3*3 Solution of the load equations

The exponential representation of bus loads is expensive to compute
since its evaluation involves PASCAL expressions of the form

where

y.|(S+A8) = Ay, (5) - By2(8) ~ sin(g+A8)

y2(8+A5) = By., (g) + Ay2(S) ~ cos(£+A8)

A = (4-A52)/(4+A82) and B = 448/U+A52)

(6.11a)

(6.11b)

G
EN

2

R
EL

.
R

O
TO

R

A
N

G
LE

(d

eg
s.

)
G

EN

2
A

B
S.

R

O
TO

R

A
N

G
LE

(d

eg
s.

)

149

A P P R O X I M A T E S I N E S A N D C O S I N E S
Foulted cose (h = 8 0 ms)

A P P R O X I M A T E S I N E S A N D C O S I N E S
Faulted cose (h = 80 ms)

Fig. 6.8 Approximate sines and cosines

150 -

P := EXP(k*LN(V))

which may require up to 50 milliseconds to compute (see Appendix A).
Considering the voltage dependency of loads as k,

P = P0Vk , P' = k(P/V) where P' = (dP/dV) (6.12)

A common approximation is to assume linearity (Berg [79]) and use

Pn+1 - P J 1 + K V i - Vn) / Vn l

which is equivalent to Euler integration with respect to V. By using the
Trapezoidal rule instead we get the recurrence relation

[2 - k(vn+1 - Vn) A n]
pn+1 - --- Pn (6 - H)

[2 - k<Vn+1 - V / V O

which is exact for k=2 and accurate for k between 0 and 3* Eqn. 6.14
requires about 8 milliseconds to execute. A similar expression is used
for the load dependence on frequency. A further assumption that the
local bus frequency is approximately dS/dt allows us to use

[2 - k(«n+1 - Sn)/Sn]
Pn+i - ----------------------- Pn (6.15)

C2 - k<S„+1 - Sn>/Vl1

where & is the load bus angle. These expressions are valid for small
changes in voltage and frequency- Thus at the start of the simulation or
after switching operations, the Pascal expression above is used.

6-4 APPLICATION OF TUNABLE INTEGRATION

6-4-1 Derivation of difference equations

The difference equations for simulation using the tunable method may be
developed in a manner similar to that of Sect. 6.2.3* Discretising
Eqn. 6.4 with the tunable integrator and carrying out straightforward
manipulations results in the tunable difference equation

■ y(t+h) = F(t) + Gx(t+h) (6.16)

where F(t) = [[(T-hw)y(t) + Khwx(t)]/(T+hv),

G = Khv/(T+hv) and v = 1-w

As for the TR algorithm, the integrating factor F(t) is calculated at
the end of each step for use in the next. Recalculation of G is only
necessary when the tuning factor or time-step is changed.

6-4.2 Tuning strategies

The options available for choosing the tuning parameters in solving a
system of ODEs may be classed as either fixed or adaptive. A further
categorisation can be made by specifying whether different parameters
are to be associated with each equation or not. Three such categories
may be defined as

a) Global - a single parameter for all equations,
b) Block - one parameter for each component block
c) Diagonal - one parameter for each individual equation

The various combinations of classes and categories gives a total of six
tuning strategies. The fixed tuning methods require a choice of tuning
parameters to be used throughout the simulation whereas in the adaptive
methods, the parameters are calculated during the solution. The decision
as to the number of param'eters rests on considerations of efficiency.

6.4»3 Fixed tuning methods

The use of a fixed global tuning parameter is equivalent to choosing a
member of the tunable family of methods. Liniger [lOO] showed that the
tuning factor which gives the minimum average discrepancy in
approximating all eigenvalues over the whole of the left-half plane is
0.122. This implies that the optimum integration algorithm using
Eqn. 6.1 is obtained by tuning at ̂ h=-8.19* In common with classical
methods, this choice does not take into account the specific time-step
chosen for integration.

Since the roots of any particular system generally occupy specific
regions of the complex plane, a prime motivation in using the method is
its possible adaptation to suit the eigen-structure of the system.
Liniger and Willoughby [89] suggested that the largest eigenvalues of
the system should be estimated and the method tuned to their average
value. A consequence of this idea is that stiff systems would always be
simulated with a small tuning factor and therefore a large stable region
on the right-half plane.

The above fixed-global tuning techniques were tested on the 9-bus system
by varying the tuning factor over the range 0 to 1. Fig. 6.9 shows the
resulting swing curve of generator No. 2 with a time-step of 80 ms. The
performance of the algorithm does not change significantly for values of
w<0.6. At values approaching 1.0, the effect of any roots outside the
stable region is manifested by large errors and a large increase in the
number of iterations required per step. No solution could be obtained
for values of w greater than 0.8 (see Fig. 6.10).

A fixed global parameter cannot account for the different rates of
change of the various states. This may be achieved by using the block or
diagonal techniques whose parameters can be chosen by an analysis of the
system eigenvalues. However, the computational expense is compounded
with the difficulty of associating eigenvalues with individual states
and non-linearities which cause the eigenvalues to change with time. A
possible alternative is the use of the time-constants of the model to
choose a tuning factor for each state variable. This can only be
justified for system models in which the states are loosely coupled.

6.4»4 Adaptive tuning methods

Fully adaptive techniques require a calculation of the tuning factors
for each state at the end of an integration step. Brandon [91,92] has
developed a numerical tuning technique by assuming that each state
behaves exponentially at any point in its solution trajectory. A
gradient technique was then used to estimate its local time-constant but
this required a calculation of the Jacobian at each step.

153

G L O B A L T U N I N G
Faulted case

G L O B A L T U N I N G
Faulted case

Fig. 6.9 Fixed global tuning

154

FIXED GLOBAL TUNING

TUNING PARAMETER w

Fig. 6.10 Variation of iterations with the tuning parameter.

A simpler method which avoids the calculation of the Jacobian may be
developed by assuming that each state varies locally as a first order
differential equation with a local time-constant T and a constant input
u

x = -x/T + u (6. 17)

Differentiating with respect to time gives

x = -x/T (6.18)

The local time-constant may then be estimated numerically as

(6.19)

where the 2nd differential is estimated by numerical differentiation.
The tuning factors are then calculated from Eqn. 5*11 for use in the
next step. After discontinuities or when the value of xR is zero, the
tuning factor is set to 0.5* These calculations may be programmed as a
single procedure which is called at the end of each step. This is easily
incorporated into Step 11 of the algorithm given in Sect. 6.2.

In order to ensure that the method is A-stable other workers [89-92]
have limited the maximum value of w to 0.5* As shown in Sect. 5*7.1, an
exact solution is possible at each step if the tuning parameters are
allowed to vary between 0 and 1. These two alternatives result in
A-stable tunable methods and fully tunable methods respectively.

The behaviour of the tuning parameters of some states of the governor
and turbine is shown in Fig. 6.11. The oscillatory trajectory of the
speed relay gives rise to both positive and negative time-constants (the
idea of a negative time-constant is used here to indicate exponential
growth). Turning points give rise to sharp peaks as the detected
time-constant changes from +oo to -oo. The tuning factor of the reheater
state is close to 0.5 which is indicative of its long time-constant.

6.4*5 Evaluation of the method

The tunable methods were tested by simulating the faulted case with

G
O

V
E

R
N

O
R

-T
U

R
B

IN
E

ST

A
TE

S
(p

.u
.)

FULLY TUNABLE INTEGRATION
Faulted cose (ti=tO ms)

FULLY TUNABLE INTEGRATION
Fouited cose (h»4Q ms)

TIME (seconds) TIME (seconds)

FULLY TUNABLE INTEGRATION
Faulted case (h = 1 o ms)

a - sta b le TUNABLE in te g r a tio n
Faulted cose (h»40 ms)

TIME (seconds)

Fitf. 6.11 Behaviour of tuning parameters of Governor-Turbine states

157 -

various time-steps and the resulting swing curves are presented in
Fig3. 6.12-6.13* The fully tuned method performed markedly better than
the A-stable method as the step-length is increased.

Table 6.3 gives program execution times for a simulation period of 4
seconds with a time-step of 10 milliseconds on a CDC 855 mainframe
computer. The time required for the tuning procedure represents the
overhead of the adaptively tuned method compared to the TR. This amounts
to just over 50$ of the time required to solve the generator equations.
Reductions may be realised by not tuning all states; for instance the
slowly varying states need not be tuned.

Table 6.3* Simulation program timings

I/O and other overheads 03 o ms
Network solution 650 ms
Generator solution 984 ms
Tuning procedure 546 ms

The average number of iterations required per step by the TR and the
tuned methods at different time-steps are compared in Table 6.4* The
algorithms converged in about the same number of iterations although
with long steps, the A-stable method required slightly fewer than the TR
and the fully tuned slightly more.

Table 6.4 Effect of time-step on the number of iterations.

Time-step Average No. of Iterations
(ms) Trap, rule A-stable tunable Fully tunable
10 1.960 1.960 1.960
20 2.035 2.035 2.045
40 2.090 2.100 2.120
80 2.620 2.580 2.820
120 3*500 3*382 3*735

Fig. 6.14 compares the performance of the tuned methods with the TR at
the longest steps used. Both tunable methods performed better than the
TR with the fully tuned being most accurate. The methods are just as
robust as the TR and no cases of failure were found.

G
EN

2

RE
L.

R

O
TO

R

A
N

G
LE

(d

eg
s.

)
G

EN

2
A

0S
-

R
O

TO
R

A
N

G
LE

(d

eg
s.

)

158

A - S T A B L E T U N A B L E IN T E G R A T I O N
Faulted case

A - S T A B L E T U N A B L E I N T E G R A T I O N
Faulted cose

Fig. 6.12 The effect of step length on time response : A-stable tuning

G
EN

2

R
EL

.
R

O
TO

R

A
N

G
LE

(d

eg
s.

)
G

EN

2
A

B
S.

R

O
TO

R

A
N

G
LE

(d

eg
s.

)

F U L L Y T U N A B L E I N T E G R A T I O N
Faulted case

F U L L Y T U N A B L E I N T E G R A T I O N
Faulted case

Fig. 6.13 The effect of step length on time response : Full tuning

G
EN

2

R
EL

.
R

O
TO

R

A
N

G
LE

(d

eg
s.

)
G

EN

2
A

B
S.

R

O
TO

R

A
N

G
LE

(d

eg
s.

)

T R A P E Z O I D A L Vs T U N A B L E I N T E G R A T I O N
Faulted case (h=120 ms)

T R A P E Z O I D A L V s T U N A B L E I N T E G R A T I O N
Faulted case (h =120 m s)

Fig. 6.14 Comparative plots of- tuned methods and trapezoidal rule

161

6.5 POWER SYSTEM STABILITY

By definition, power system dynamic stability analyses are carried out
to determine whether or not a power system is stable under given
perturbations. If we assume that this may be regarded as determining
whether the system's eigenvalues have positive real parts, then it is
essential that the integration method does not cause eigenvalues to move
from the left- to the right-half plane or vice-versa. The first case has
been studied extensively because of the attendant numerical instability,
but little attention has been paid to the second which may cause an
unstable system to appear stable. For this reason (among others), the
authors of an EPRI report [85] recommended the use of the TR which is
the only linear multistep method that satisfies both requirements. The
large stable region on the right-half plane of the BE was regarded as a
strong argument against its use for stability studies.

The equations describing the dynamic behaviour of a power system are
non-linear and include discontinuities. Any definition of stability in
terms of eigenvalues is therefore problematic; e.g. it is unclear
whether a system in which a machine slips a pole but subsequently
resynchronises is mathematically stable or not. Hence practical
definitions in terms of the occurrence of undesirable events such as
motor-stalling or pole-slipping are used. It may therefore be argued
that determination of the stability of power systems by simulation must
rest on the accurate calculation of state trajectories rather than the
detection of roots with positive real parts.

The validity of the above argument is illustrated in Fig. 6.15 which
shows marginally stable and unstable cases of the 9-bus system with
clearing times of 85 and 86 milliseconds respectively. Simulations using
the TR and the fully tuned method were performed with one step up to the
clearing of the fault and 120 milliseconds thereafter. The TR fails in
the stable case whereas the accuracy of the tuned method is maintained.
Both methods detect the instability in the second case with the tuned
method being more accurate; this may be important when resynchronisation
after pole-slipping is being studied.

G
EN

2

R
EL

.
R

O
TO

R

AN
G

LE

(d
eg

s.
)

162

M A R G I N A L L Y S T A B L E C A S E
Faulted case (h ~ 1 2 0 m s)

M A R G I N A L L Y U N S T A B L E C A S E
Faulted cose (h=120 ms)

Fig. 6.15 Solution accuracy of marginally stable and unstable cases

6.6 CONCLUSIONS

Numerical methods have been presented which can be used to give rapid
simulations of the dynamics of a power system. The methods given for the
solution of the swing equations and handling discontinuities are
recommended since accuracy is improved at little computational cost.

The use of independent variables other than time has been shown to be a
valid manner of treating soft non-linearities. As the simulation
progresses and the oscillations die out, the errors introduced by the
approximation will be reduced.

Various tunable implicit integration methods have been evaluated by
comparison with the Trapezoidal rule. While the fixed tuning methods are
easy to implement, they are not recommended since they resulted in no
significant improvements. The adaptively tuned techniques performed
better and some worthwhile gains were obtained with long time-steps.

As could be predicted from the theory developed in Ch. 5, the fully
tunable method was found to be superior to the A-stable technique. We
may therefore conclude that restricting the maximum value of the tuning
parameters to 0.5 in the interest of stability is neither necessary nor
desirable. The fully tuned method is recommended for inclusion in
existing programs as an option for use with long steps.

CHAPTER 7

INTERACTIVE DYNAMIC SIMULATION

7.1 INTRODUCTION

The modelling and simulation techniques described in Chs. 5 and 6 are
now used to develop a dynamic power system simulator on the parallel
processing system of Chs. 2 and 3* The principles of man/machine
interfacing discussed in Ch. 4 are applied to develop a flexible
interactive system.

The steps to convert a sequential simulation program into a parallel one
are outlined and the resulting algorithm is evaluated. The interactive
features incorporated into the program are then described. Finally, some
illustrative studies are carried out to demonstrate the versatility of
the simulator.

7.2 DESCRIPTION OF THE SIMULATION PROGRAM

The dynamic simulation program was developed on the CDC 855 computer and
ported to the multiple-processor system. Only minor modifications to the
input and output procedures were required to enable the program to run
on a single TMS 9900 MPU. The program source code was then partitioned
into modules destined for the various MPUs. Finally, the routines for
user interaction and interprocessor communication were added.

7*2.1 Program Structure

Fig. 7.1. shows the structure of the complete simulation software. Full

NETWORK MPU

Fig. 7*1 Power system simulator : software structure.

details of the system are given in the user manual [lOl]. The
communication and interaction software are as described in Chs. 3 and 4.
The application program in each MPU is a Pascal implementation of the
dynamic simulation algorithm of Ch. 6.

The features of the Pascal language are fully exploited in the
development of the programs. For example, the generator controls are
programmed as separately compiled modules in order to facilitate the
creation of libraries. Space efficient data structures (Fig. 7.2a) are
defined for the generators using of the Pascal facility of variant
records. On data input, memory space is allocated as required by the
generator model. This allows between 15 and 25 generators to be
simulated on a single MPU depending on modelling complexity.

1 * 2 . 2 Partitioned algorithm

In line with the methodology described in Ch. 2, separate modules are
defined for the network and rotating machines. The 'star' configuration
discussed in Ch. 3 was used. Separate MPUs are assigned to represent the
network and rotating machines but the static loads are solved in the
network MPU. In order to facilitate the simulation of large systems,
more than one machine may be solved on a single processor.

The treatment of dynamic loads maintains the idea of a physical
partitioning. In the case of static loads it more important to avoid the
transfer of large amounts of data during each step when a non-impedance
load representation is used on every bus. This becomes most crucial if
an iterative network solution is required. However, when the loads are
modelled as composite static/dynamic loads, it is more convenient to
solve both parts in the same MPU.

Fig. 7*3 compares the execution sequences of the serial and parallel
algorithms for a general system with synchronous generators and
induction motors. The parallel algorithm differs from the sequential one
in that a minimum of two network solutions are required at each step but

167

GenRec = RECORD
J Generator parameters }

CASE Gov: BOOLEAN OF
FALSE : (CASE Exc: BOOLEAN OF

FALSE : () ;
TRUE : ({ Exciter parameters j ;

CASE Pss: BOOLEAN OF
FALSE : () ;
TRUE : (| Stabiliser parameters j))

TRUE : (| Governor-turbine parameters] ;
CASE Exc OF
FALSE : () ;
TRUE : (| Exciter parameters) ;

CASE Pss OF
FALSE : () ;
TRUE : ({ Stabiliser parameters)))

END ;

GenPtr = tGenRec ;

PLANTS = ARRAY [l..Max] OF GenPtr ;

a) Generating plant data structures

Complex = RECORD Re,Im : REAL ENT ;

Message = RECORD
Switched,Converged,Restarted,Stopped : BOOLEAN ;
SystemFrequency,SlackAngle : REAL ;
Currents for Voltages) : ARRAY [l..Max] OF Complex

END ;

b) Message data structure

Qpointer = tQrecord ;
Qrecord = RECORD

Time, Eventnum : INTEGER ;
Parameters : ARRAY [1..NJ OF Values ;
NextEvt : Qpointer

END ;

c) Event queue data structure

Fig. 7.2 Typical Pascal data structures

168 -

PROCEDURE Solve ;

BEGIN
REPEAT
CalculateAngles ;
REPEAT
CalculateCurrentlnjections
CalculateLoadlnjections
CalculateNetworkVoltages
IF Outage OR Fault THEN

ApplyCompensation ;

SolveMotor ;
SolveGenerator ;
SolveControls

UNTIL Converged ;
AdvanceStep ;

UNTIL Stopped
END ;

a) Serial simulation algorithm.

PROCEDURE Generators ; PROCEDURE Network ; PROCEDURE Motors ;

BEGIN BEGIN BEGIN
REPEAT REPEAT REPEAT
CalculateAngles ; Loadlnjections ; Solve Motor ;
Sendlnjections ; --- > GetCurrents ; <--- Sendlnjections ;
AdvanceStep ; NetworkVoltages; AdvanceStep ;
ReceiveVoltages ; <--- SendVoltages ; ---> ReceiveVoltages ;
REPEAT REPEAT REPEAT
SolveGenerator ; Loadlnjections ; SolveMotor ;
Sendlnjections ; --- > GetCurrents ; <--- Sendlnjections;
SolveControls ; NetworkVoltages; CalculateLoad ;
ReceiveVoltages <--- SendVoltages ---> ReceiveVoltages

UNTIL Converged UNTIL Converged UNTIL Converged
UNTIL Stopped UNTIL Stopped UNTIL Stopped

END ; END ; END ;

b) Parallel simulation algorithm.

Fig. 7»3 Serial and parallel simulation algorithms.

- 169 -

this is normally needed for convergence (see Table 6.2). Maximum
parallelism is obtained by advancing the time-step after the solution
for the rotor angles rather than after convergence of the iterations*

7-2.3 Interprocessor communication

The partitioning technique results in minimal data transfer between
processors during the solution. At each step the network and rotating
machines exchange terminal voltages and injection currents. Various
flags must also be passed between the processors to co-ordinate the
solution. A third requirement is data collection for the calculation of
global values such as system frequency. In general these data exchanges
are required at each time-step and can therefore be grouped into a
single message such as that shown in Fig. 7.2b. During each step, the
network broadcasts this message to all machines and receives a
corresponding message from the machines with the high-level protocols
given in CH. 3*

7-2.4 Interface to the interactive control program

Interactive control of the simulator is achieved by the use of the
monitor which implements the dialogue types defined in Ch. 4. ¥hen
actions must be carried out in a strict sequence (e.g. setting-up the
simulation), use is made of the PROMPT primitive to request parameters
from the user. Results and messages from the MPUs are sent using SNDMSG.
These I/O operations are designed to be compatible with the display
pages on the host minicomputer.

Procedures are defined for actions that may be carried out
interactively. Where a control action only requires changes to a single
variable, that variable is declared as modifiable. All other actions are
defined as EVENTS and provision is made to pass their parameters to
appropriate procedures (see Sect. 4.5*1)• At each step during the
simulation, the procedures GETVAR and GETEVT are used to check for any
operator actions.

170 -

7-3 PERFORMANCE TESTS

7«3»1 Test systems

The simulator performance was evaluated by simulating the dynamics of
the WSCC 9-bus network of Fig. 6.1, and the IEEE 14-bus and 30-bus
systems (see Fig. 7*4). Data for the test networks and generating plant
are given in Appendix B. Base-case load flow solutions for the systems
were obtained off-line to a tight tolerance of 0.001 p.u. real and
reactive power mismatch at each bus. The synchronous compensators of the
14 and 30-bus systems were modelled as generators without prime movers.

7«3»2 S eq u en tia l a lg o rith m

Table 7.1 gives program timings of various routines when the test
systems are solved on one MPU. From the timings of the 9-bus system, it
can be seen that the CDC 855 mainframe computer (Table 6.3) is about 400
times faster than the TMS 9900 microprocessor when I/O is not
considered. The accuracy of solution was compared with that of the
mainframe and the effect of round-off error was found to be small.

Table 7.1 Sequential algorithm program timings

Routine
Test system

9-bus 14-bus 30-bus
ms/step ms/step ms/step

Network 510 900 1850
Loads 220 720 1330

Angles 180 270 350
Generator 130 215 260
Controls 450 545 620

Advance step 600 720 830
Input/output 1130 1215 1260

171

a) IEEE 14-bus test system (from Ref. 108)

b) IEEE 30-bus test system (from Ref. 108)

Fig. 7*4 IEEE 14-bus and 30-bus test systems.

7-3*3 Parallel algorithm

Fig. 7-5 shows timing diagrams of the program for the 9-bus system being
solved on 2 MPUs when the computation pattern achieves a steady state. A
straightforward partitioning of the serial algorithm would result in the
execution pattern of Fig. 7.5a. It is evident that the idle time is
unnecessarily large due to the time the network MPU spends waiting for
data from the generators. Fig. 7.5b shows the improvement obtained when
the order of solution is changed to correspond to the parallel algorithm
of Sect. 7.2.2.

Table 7.2 Parallel algorithm timings

No. of MPUs

1 2 3 4
ms ms eff. (%) ms eff• (%) ms

9-bus 2860 1670 86 1670 57 1670 43
(with I/O) 4800 3260 74 2420 66 1670 72

1 4-bus 4990 3440 73 3360 50 3360 37
(with I/O) - 4100 - 3360 - 3360 -

30-bus 8420 6700 63 6700 42 6700 31
(with I/O) - 6700 - 6700 - 6700 -

The times for a single step of the parallel algorithm in Table 7.2
indicate that the loss in performance is due primarily to the unequal
partitioning resulting from the constraints of the physically-based
method. Thus without the printing of results, the execution time of the
9-bus system is that required to solve the network and loads. This is
reflected in the low efficiency figures for the parallel solutions. When
the generator results are being output incremental improvements are
obtained with up to 4 MPUs.

The task of partitioning into roughly equal parts would become less of a
problem when large systems are solved on a large number of MPUs since
the solution of one component would require a relatively short time.

2460 ns
(estimate)-

GENERATOR NETWORK GENERATOR NETWORK

Angles 180 ms Loads 220 ms

’/M M /'.' f/ / / / / ; / 7'/
! • /

I
Calculate

network voltages
510 ms

Generator: 130 ms % Loads 220 ms
Solve
controls
450 ms

n/ / ’///>/ •' ’ >,
O// ///,. //,
/ / / / ; / / / /j ///TJJTrrrnjTTT'

■///;,■ m ////
'/////)//////

Calculate
network voltages

510 ms

Advance
step
600 ms

V) ? ;} r rH'7?.
/ / / / f ///■// /

/ / / f/ /// ////////////

Angles 180 ms Loads 220 ms

Advance
step
600 ms

i

Calculate
network voltages

510 ms

V

Loads 220 msGenerators 130 ms

Solve
controls
450 ms

I
Calculate

network voltages

510 ms
w /m r m /m v

b) Modified algorithm

a) Simple algorithm

Pig. 7-5 Parallel simulation timing diagrams.

174 -

However, with typical network solution times being about 30% of the
total computation (Detig [36]), if the generating plant are to be solved
on more than two MPUs then the network solution must be partitioned.

7-4 INTERACTIVE FEATURES

7*4.1 Simulation set-up and control

A simulation session starts with the loading of all the MPUs with their
appropriate programs and data. The user is then prompted to select the
generation plant model by including or excluding stabiliser, exciter and
governor-turbine circuits.

Any member of the one-parameter family of tunable methods (see Ch. 6)
may be selected by an appropriate choice of the tuning parameter. Some
control over the execution of the algorithm is possible by a choice of
the integration time-step, the convergence tolerance and the rate at
which output data is to be printed.

7 «4«2 Network sw itch in g and load changes

Network changes are effected by the use of compensation techniques to
modify the network solution to account for the changes. Any network
change which can be represented by a modification matrix can be easily
implemented e.g. multiple outages, transformer tap-changing or node
addition and removal (see Alsac et al. [60]). The technique has been
extended to handle unbalanced faults (see Elizararraz [41])-

Network branches may be disconnected and previously disconnected
branches may be reconnected. Changes in branch admittances are used to
simulate the switching of parallel lines. The switching of a line into a
system in the steady-state may be simulated by initialising the
simulation with that line removed.

175 -

Two methods are used to simulate static load changes. When all loads are
represented by impedances, the compensation method is applied to the
network solution. With non-impedance loads, changes are accounted for by
modifying the load injection currents.

7»4»3 Interaction with generators and motors

Set-points in the generator controls are made adjustable by declaring
them as modifiable variables. This also applies to other values that are
normally constant but used during every time step. An additional feature
is the capability of ramping a variable up or down at a specified rate.
This was used to implement turbine fast-valving.

The tripping of a generator is 'simulated by modifying the injection
current it sends to the network to the value required to compensate for
the admittance included in the [y]^us matrix. The load rejection
performance of the machine may be studied by continuing the solution of
its equations. Resynchronisation of the machine can be achieved by
advancing its load angle to correspond to that of its terminal busbar.
Motor disconnection and reconnection are similar to the same operations
on a generator except that when a motor is reconnected it is not
necessary to advance its rotor angle.

7 .4 . 4 User interation

Output from the parallel execution units is displayed on the console of
the host minicomputer. A separate page was allocated for each MPU and
typical examples are shown in Fig. 7*6. The text in bold type is
generated by the monitored MPU and displayed at a high intensity. Low
intensity text is stored within the host as specified on the display
file. The examples show the application of a fault on the network and
the modification of a generator set-point with appropriate messages from
the MPUs.

POWER SYSTEM DYNAMIC SIMULATOR

STATUS OF NETWORK AREA

BUSBAR VOLTAGES
BUS VMAG. ANGLE BUS VMAG. ANGLE BUS VMAG. ANGLE
1 0.76 11.10 2 0.71 4.73 3 0.66 -13-25
4 0.70 -7-77 5 0.70 -5-14 6 0.75 -21.44
7 0.75 -17.05 8 0.85 -20.88 9 0.74 -18.79
10 0.74 -19-56 11 0.74 -20.62 12 0.74 -27-12
13 0.73 21.96 14 0.72 -21.24

SIMULATION TIME : 0.080 seconds

MESSAGE 3-PHASE FAULT ON LINE 2 5
MESSAGE Line 2 5 disconnected. Fault cleared

TIME TYPE NEARBUS FARBUS DURATION
0.0 4 2 5 0.08

F1-MODELS F2-FAULT F3-0UTAGE F4-SHED F5-L0ADS F6-CHANGE F7-M0DIFY F8-EVENT

POWER SYSTEM DYNAMIC SIMULATOR

STATUS OF GENERATORS IN 14-BUS SYSTEM

GENERATOR PARAMETERS
UNIT ANGLE FREQ. ELEC. MW MECH. MW AVR VOLT PSS TERMV REL.
1 17.29 60.68 10.42 0 2.04 0 1.04 -38.32
2 24-11 60.81 22.53 0 1.70 0 0.95 31.51
3 32.11 60.18 5-25 39-55 2.11 0.05 0.96 23-50
4 22.70 60.59 24.28 0 2.28 0 0.98 32.92
5 55-62 60.23 173-33 231.96 1.34 0.05 0.96 0
PLOTVARS :- 2.04 1.70 2 .11 2.28 1.34
MESSAGE :- Unit 3 AYR Ref. changed from 1.05 to 1.10

SIMULATION TIME : 1.20 seconds

UNIT1 UNIT2 UNIT3 UNIT4 UNIT5
Generator bus : 8 3 2 6 1

TIME UNIT No. NEW REFERENCE
1.2 3 1.1

F1-DISCON F2-REC0N F3-FASTVF4-AVREFF5-SCH.P0W F6-CHANGE F7-M0DIFYF8-EVENT

Fig. 7.6 Typical simulator display pages

177 -

The interactive facilities described may be used at will by typing in
the appropriate commands at the console of the host minicomputer. A
feature of the implementation is that it is not necessary to halt the
simulation before making any changes. In order to facilitate the
execution of complicated command sequences, a first-in-first-out queue
(see Fig. 7*2c) was implemented in each application program. This
enables a timed sequence of events to be stored in each MPU. At each
time-step, the list is checked for any events which are scheduled for
execution. The list may be set up, modified or purged on-line.

As described in Ch. 4, simulation sessions may be repeated by recording
all commands typed in and running the simulation from the resulting
file.

7-4*5 Post-processing

Due to the limitations of the hardware, few post-processing facilities
are included in the simulation software. Two features that were regarded
as essential are the storage of output data and an on-line graph
plotting capability. Use of the STORE command directs incoming data to a
disk file whereas PLOT sends data to the graphics display terminal. Any
further post-processing must be carried out off-line.

7.5 SIMULATION STUDIES

The versatility of the simulator is now demonstrated by means of some
studies that can be conducted. The examples chosen serve to indicate its
usefulness as a tool for interactive power system analysis.

7•5-1 Critical fault clearing time

The critical clearing time of any fault may be determined by running
simulations with different clearing times. .This exercise is facilitated

178 -

by allowing the user to specify both the post-fault integration step and
the number of steps to be taken during the fault. Fig. 7.7 depicts
marginally stable cases of the various systems studied.

7»5«2 Pole slipping and re-synchronisation

A remotely connected generator which loses synchronism with the rest of
the network would resynchronise after slipping a few poles if the
driving torque is suitably reduced by governor action. This mode of
operation may be employed if the output of the generator is required to
maintain system integrity (Adkins and Harley [62]) and the resulting
power pulsations are not detrimental to the rest of the system (Venikov
[76]).

Fig. 7*8 shows curves from a simulation of the pole-slipping and
resynchronisation process. The machine slips two pole-pairs and then
resysnchronises under the action of fast-valving.

7.5.3 Load representation

The effect of non-impedance static load representation on the dynamic
behaviour of a power system was investigated with the simulator. The
marginally stable case of the 9-bus system was simulated with various
load representations. As the representation approaches a constant load
demand, the peak angular swing of the faulted generator is reduced.
Comparative swing curves are shown in Fig. 7.9*

7.6 CONCLUSIONS

As is well known, the derivation of a parallel algorithm which also
results in an efficient partitioning of the computational task is
heavily dependent on the architecture of the hardware on which the

179 -•

TIME (seconds)

Fig. 7*7 Marginally stAble cases

EL
EC

TR
IC

 P
OW

ER
S

(M
W)

RO

TO
R

SP
EE

DS

(H

z)

RO
TO

R
AN

GL
ES

Cd

«g
»

180

TINE (seconds)

TINE (seconds)

TINE (seconds)

Fig. 7.8 Pole-slipping and resynchronisation

PO
U

ER
S

(
MU

)
RE

L.
RO

TO
R

RN
G

U
E

(
d

e g
 »

181

TIME (seconds)

pv=2.0

TIME (seconds)

Fig. 7.9 The effect of load representation.

182

problem is to be solved. The algorithm derived here is general purpose
in that it may be used on any multiple processor system. The task
decompositon is such that the time for interprocessor communication is
insignificant compared to the serial computation between data exchanges.
In implementing the algorithm, there is scope to reorder the solution
sequence to reduce idle time.

The technique may be easily extended to large networks in which case the
solution time will be dominated by the network solution. Since the
method of solving the network is largely independent of that used for
the rotating machines, parallelism may be exploited in the network
solution itself.

In designing the simulator proper consideration has been given to the
problems of implementing interative user interfaces* Simulation and
modelling techniques have been chosen not only on the basis of their
efficiency but also on their suitability for on-line interaction. The
system is highly interactive and one of its features is that changes may
be made without halting the simulation.

183 -

CHAPTER 8

CONCLUSIONS

8.1 GENERAL

Research into parallel processing techniques continues apace in the
computing community. This effort promises highly parallel hardware
architectures and the software tools to exploit parallelism. In the
meanwhile the techniques investigated in this work can be used with
commercially available equipment to achieve worthwhile gains in
execution speed for power system simulation problems.

In this final chapter some conclusions are drawn from the experience of
designing and implementing a multiple processor simulator. The
performance to be expected from presently available equipment is
indicated and some suggestions are put forward for the direction of
future research.

8.2 HARDWARE AND SOFTWARE

8.2.1 Hardware

The simulator uses the TMS 9900 microprocessor which was announced in
1976. At the time of writing, more powerful processors with 32-bit data
paths and address spaces in the megabyte range are common. Architectural
enhancements include pipe-lining, on-chip cache memory and hardware
support for multi-processing (see Gupta and Toong [102]). Other trends
which simplify the implementation of multiple processor systems include
the off-loading of specific I/O functions to special-purpose chi.ps and
the embedding of common communication protocols in hardware.

184 -

The speed of floating-point arithmetic which was found to determine the
execution time of the simulation has been improved by two orders of
magnitude by the use of hardware units in the form of co-processors
(execution times of the Intel 8087 [106] are given in Appendix A). Thus
simulation of the 9-bus system which is 40 times slower than real time
may be done faster than real time with new equipment. Problems with
round-off error are now unlikely since up to 80 bits may be used to
represent a real number.

The architecture of the simulator may be quite expensive when several
processors are used since each processor requires a parallel port for
every other processor with which it needs to communicate. A more
cost-effective solution would make use of a parallel bus system. The bus
bandwidth would not have to be very high due to the low communication
rate of the method of decomposition. The short message length also
eliminates the need for a large common memory since each processor only
requires a small message buffer.

8.2.2 Software

Transportability of the present simulator software is assured since the
bulk of it is in PASCAL. Although some routines were written in assembly
language, the equivalent routines would not require a large programming
effort. The exception to this is the software required for interaction.
That part of the simulator would have to be rewritten to exploit the
particular hardware features of any new equipment. The ease with which
this could be done depends, to a large extent, on the type of operating
system provided by the equipment supplier.

Although a high degree of standardisation has been achieved in
programming languages, the need for transportable operating systems has
been recognised only recently. An example of the few available systems
is Unix [20]. The possibility thus exists of not only transporting the
algorithmic part of a program but also its data processing part. In
particular, Unix, which is written in the high-level language C, is an
interactive multi-tasking operating system under which concurrent

185

processes may be created and executed. This considerably simplifies the
development of interactive interfaces.

A major difficulty encountered in the simulator project was the lack of
software tools for developing and debugging parallel programs. Typically
correcting an error that requires a recompilation of the network and
generator programs takes about an hour. Most of this time is due to the
very slow access time of the floppy disks. A hard disk would speed up
this process significantly.

The AMPL system was useful for debugging programs on a target system but
its design does not allow the debugging of a multiple processor system.
A debugger which can be switched between several processors much like
the interactive control program is essential to develop parallel
processing algorithms.

8.2*3 Interaction

The implementation of interaction was much simplified by the use of the
dialogue types identified in Ch. 4* The use of role models of the user's
part in an interactive environment eases the task of providing a
consistent set of commands. The model of interactive computation derived
from these user models provides a general purpose framework for
structuring interactive systems. This viewpoint of interaction occupies
a higher level o'f abstraction than the graphical kernel system [54]
which is primarily concerned with device handling.

The design of the simulator has been geared towards the needs of
research and real-time simulation. The provision of command files and
event queues simplifies the use of the simulator as a research tool;
users may regard the system as a programmable device. Although the
detailed models used cannot be simulated in real time, the interactive
facilities could be used with simplified models running in real-time.

186

8.3 SIMULATION TECHNIQUES

8.3-1 Model formulation

The partitioned method of formulating the power system model used in
this work is based on the physical relationships between the various
components of the system. This approach was extended by Talukdar [103]
in the METAP simulator and recently formalised by Saeks and Decarlo
[104] as the component connection model (CCM). The identity of each
component is maintained and a composite system model is formed by means
of a connection matrix.

The advantages of this approach include ease of formulation and
programming. Libraries of components may be created and adding a new
component requires only a modification of the connection matrix. It is
also well suited to interactive simulation since changes can be made to
parameters with very little overhead.

8 .3 -2 S o lu t io n m ethods

Several new approaches to the solution of the ODEs describing a
generating plant have been investigated and found to result in improved
performance. The importance of the order of solution of the equations
has been explained in terms of the sequential connection of control
elements. This allows their solution to be obtained in one Gauss-Seidal
iteration.

The method used for treating soft non-linearities is an elementary
application of the method of continuations whereby algebraic equations
are converted to a differential equations and solved by numerical
integration. The effectiveness of the technique is due to an implicit
linearisation at each step. Howe’s method for handling discontinuities
improves the handling of limiters by making a first order approximation
of the point within a time step at which switching occurs.

187

Gear recently identified the need for low-order, low-accuracy, single-
step methods which can be used for real-time simulation [107]• The
tunable method may meet this need by virtue of its ability to use very
long steps. The method can be easily added to existing programs which
make use of the Trapezoidal rule. Its use is strongly recommended
although further work in the form of an error analysis is required.

8.3«3 Parallel algorithms

The partitioning method used in deriving a parallel algorithm may be
regarded as a block partitioning of the composite system matrix. Total
solution times are therefore quite long relative to communication time
and other overheads. This contrasts with the scheduling algorithm
proposed by Brasch et al. [ll] which requires a problem to be decomposed
into a set of elementary arithmetic operations.

Although the coarseness of the component-wise decomposition may result
in idle time, the large number of components in typical power systems
would reduce the effect of unequal partitioning. As shown in Ch. 7, it
is also po.ssible to rearrange the order of solution in order to reduce
idle time. This allows some flexibility in designing parallel algorithms
of the type analysed in Ch.

8.4 ORIGINAL CONTRIBUTIONS

The following are considered by the author to be original contributions
to the field of interactive power system computation :

design and implementation of a multiple processor simulator.
The simulator comprises a network of interconnected MPUs whose
structure can be configured to suit a power system problem. An
architecture is proposed which can utilise parallel bus systems.

distributed monitors for interprocessor communication (Ch. 3).
Since parallelism is exploited at a macroscopic level, it is

188

possible to utilise the monitor concept for interprocessor
synch -ronisation. Recently proposed message-passing primitives
are then added to provide communication.

formulation of a model of interactive computation (Ch. 4).
A consideration of the roles man may play in an interactive system
and the possible modes of interaction led to a model of
computation which can be used for designing man/machine
interfaces. Six basic dialogue types are identified from which
more complex types can be built.

- analysis and implementation of a tunable integration method.
The analysis carried out (Sect. 5*7) indicated that better
accuracy would be obtained if the requirement for A-stability is
relaxed. The method is equivalent to the Trapezoidal rule when
short steps are used but it is superior with very long steps.

treatment of non-linear functions by continuations (Sect. 6.3)*
Continuous non-linear functions are converted to ODEs and solved
by numerical integration. The method is effective for non-linear
functions which may be expensive to compute.

treatment of discontinuities by Howe's method (Sect.
By assuming a linear variation of a state variable subject to
limits, simple expressions are derived which implicitly estimate
the point at which switching occurs. This results in a noticeable
improvement in solution accuracy.

8.5 SUGGESTIONS FOR FURTHER WORK

8.5-1 Model reduction

The simulator execution speed may be improved by the use of model
reduction techniques. Most such techniques emanating from control theory
carry out complex transformations on the states of a linear system
model. The requirement for interaction restricts the choice of technique
to those that maintain the physical identity of each component. The CCM
methodology coupled with the method of singular perturbations (Wasychnuk
and Decarlo [105]) seems a promising path to reduced models which retain

189 -

structural identity. Significantly, it seems possible to extend both
methods to non-linear systems.

The method of singular perturbations has undergone significant
refinement under Kokotovic and co-workers [70] and may be used not only
for model reduction but also for time-scale decomposition. This can be
used to implement multirate integration algorithms. The asymptotic
theory on which the method is based can also be used to estimate the
length of time during which highly damped fast states are active. This
information can be then used to implement a simulation algorithm with
on-line model reduction.

8.5-2 Simulator expansion

A versatile simulator has been developed which can be used for the
interactive simulation of power system dynamics as well as other
interconnected dynamical networks. While the project has been successful
in attaining its original aims, it has also highlighted areas in which
further development work needs to be done. The basic design concepts for
a simulator have been shown to be flexible enough to be implemented on
presently available equipment. This section indicates the areas which
need to be considered before acquiring new hardware and software for an
upgraded system.

Cost - The cheapest method of development would be to design and build
special hardware for the application, but this would require an
excessive length of time. The most cost-effective approach is to
purchase off-the-shelf systems which may then be configured to suit.

Performance - Due to the rapid rate at which the performance of modern
equipment is improving, it is necessary to aim for an adequate standard
of performance such that the system is not obsolete by the time the
project is completed. In this respect the only criterion to be
considered is that of speed. Other aspects, such as ease of use and
variety of features available, are mainly dependent on software and can

190 -

therefore evolve with further development.

Development and maintenance - Despite the cost penalty, it would be
necessary to purchase a host development system for the initial
development work as well as upgrading and modification of the simulator.
This is essential in a research environment and it is to be expected
that this capability would be desirable in a commercial system as well.
It is possible to use cross-support equipment but a native system would
be more appropriate. As shown by this project, a host computer can be
made into a useful and integral part of the simulator.

Miscellaneous equipment - A wide variety of input/output equipment may
be added either as peripherals to the development system or as global
resources to be shared by the multiple MPUs. Depending on the
application, mass storage (e.g. hard disks), display (e.g. colour
graphics) and input devices (e.g. bit-pad) may be required.

8-5-3 Simulator applications

In its present state the simulator can serve as a useful tool for the
evaluation of control algorithms. 'In the case where the control is to be
applied to a single machine, the generator program can be modified to
include the controller; e.g. by replacing the power system stabiliser
model. A more complex controller may be implemented on a separate MPU
which executes in parallel with the simulator; this only requires the
addition of a suitable communication procedure to the generator program.

System-wide control strategies such as automatic generation control or
load frequency control may be studied by monitoring all processors. The
host computer can be used for this purpose but the existing mini
computer is ill-equipped for this task. A more powerful host computer
with a hard disc and graphics support is required. It would then be
possible to implement a database and more powerful post-processing
facilities.

191

Table A.1 Execution speed of Texas Pascal constructs.

Pascal Execution speed
construct (microseconds)

FOR loop 310

REPEAT loop 40

WHILE loop 90

CASE statement 530

IF statement 370

Assign constant 160

Assign variable ' 170

Assign element of ARRAY 380

PROCEDURE calls

no parameter 450

value parameter 500

VAR parameter 500

FUNCTION call

one parameter 730

NEW statement 22000

DISPOSE statement 22000

SIGNAL statement 830

WAIT statement 830

Notes : 1 - All constants, variables and parameters are of type
integer.

2 - The NEW and DISPOSE statements operated on a record
comprising an integer and a pointer.

3 - The SIGNAL and WAIT procedures operated on the pre
defined type SEMAPHORE.

Table A.2 Execution speed of floating-point arithmetic

Instruction
Execution speed
(microseconds)

INTEL 8086/8087 TEXAS TMS 9900

5 MHz. 3 Mhz.

Add/subtract 14/18 1130/1150

Multiply 18 1150

Divide 39 1850

Square root 36
*

24000

Tangent 110 25000

Arctangent ■ - 12000

Sine/cosine - 1 3000

Exponent - 30000*

Logarithm - 25000*

Raise to power 130 -

These values vary over a range of one half to
three times depending on input data.

APPENDIX B

TEST SYSTEMS DATA

Table B.1 WSCC 9-bus system : network data

LINE
DESIGNATION R X B/2

TRANSFORMER
TAP SETTING

1-4 0.0000 0.0576 0.0000 1 .000
2-7 0.0000 0.0625 0.0000 1 .000
3-9 0.0000 0.0586 0.0000 1 .000
4-6 0.0170 0.0920 0.0790
4-5 0.0100 0.0850 0.0880
5-7 0.0520 0.1610 0.1530
6-9 0.0390 0.1700 0.1790
7-8 0.0085 0.0720 0.0745
8-9 0.0119 0.1008 0.1045

Table B.2 WSCC 9-bus system : base case loadflow solution

BUS
No.

VOLTAGE GENERATION LOAD
MAG. ANGLE MW MVAr MW MVAr

1 1.040 0.000 71.650 27.100 0.000 0.000
2 1.012 0.165 163-000 6.700 0.000 0.000
3 1 .022 0.083 85.000 -10.820 0.000 0.000
4 1.025 -0.039 0.000 0.000 0.000 0.000
5 0.993 -0.069 0.000 0.000 125.000 50.000
•6 1.011 -0.065 0.000 0.000 90.000 30.000
7 1 .024 0.066 0.000 0.000 0.000 0.000
8 1 .016 0.012 0.000 0.000 100.000 35.000
9 1.032 0.035 0.000 0.000 0.000 0.000

Note - All impedance values are on a 1OOMVA base

Table B.) IEEE 14-bus system : network data

LINE
DESIGNATION R X B/2

TRANSFORMER
TAP SETTING

1 -2 0.01938 0.05917 0.0264
1-5 0.05403 0.22304 0.0246
2-3 0.04699 0.19797 0.0219
2-4 0.05811 0.17632 0.0187
2-5 0.05695 0.17388 0.0170
3-4 0.06701 0.17103 0.0173
4-5 0.01335 0.04211 0.0064
4-7 0.00000 0.20912 0.0000 0.978
4-9 0.00000 0.55618 0.0000 0.969
5-6 0.00000 0.25202 0.0000 0.932
6-11 0.09498 0.19890 0.0000
6-12 0.12291 0.25581 0.0000
6-13 0.06615 0.13027 0.0000
7-8 0.00000 0.17615 0.0000
7-9 0.00000 0.11001 0.0000
9-10 0.03181 0.08450 0.0000
9-14 0.12711 0.27038 0.0000
10-11 0.08205 0.19207 0.0000
12-13 0.22092 0.19988 0.0000
13-14 0.17093 0.34802 0.0000

Shunt capacitor on bus 9 0.1900

Table B.4 IEEE 14-bus system : base case loadflow solution

BUS
No.

VOLTAGE GENERATION LOAD
MAG. ANGLE MW MVAr MW MVAr

1 1.060 0.000 232. 460 -26.410 0.000 0.000
2 1.045 -4.945 40. 000 20.640 21.700 12.700
3 1.010 -12.589 0 . 000 13.910 94.200 19.000
4 1.034 -10.495 0 . 000 0.000 47.800 -3.900
5 1.041 -9.017 0 . 000 0.000 7.600 1.600
6 1.030 -15.049 0 . 000 44.350 11.200 7.500
7 1.041 -13.899 0 . 000 0.000 0.000 0.000
8 1.090 -13*900 0 . 000 30.470 0.000 0.000
9 1.027 -15.663 0 .000 0.000 29.500 16.600
10 1 .020 -15.865 0 . 000 0.000 9-000 5.800
11 1.021 -15.604 0 . 000 0.000 3.500 1 .800
12 1 .015 -15.956 0 . 000 0.000 6.100 1.600
13 1.011 -16.037 0 .000 0.000 13.500 5.800
14 1 .001 -16.895 0 . 000 0.000 14.900 5.000

Table B.5 IEEE 30-bus system : network data

LINE
DESIGNATION R X B/2

TRANSFORMER
TAP SETTING

1-2 0.0192 0.0575 0.0264
1-3 0.0452 0.1852 0.0204
2-4 0.0570 0.1737 0.0184
3-4 0.0132 0.0379 0.0042
2-5 0.0472 0.1983 0.0209
2-6 0.0581 0.1763 0.0187
4-6 0.0119 0.0414 0.0045
5-7 0.0460 0.1160 0.0102
6-7 0.0267 0.0820 0.0085
6-8 0.0120 0.0420 0.0045
6-9 0.0000 0.2080 0.0000 0.9780
6-10 0.0000 0.5560 0.0000 0.9690
9-11 0.0000 0.2080 0.0000
9-10 0.0000 0.1100 0.0000
4-12 0.0000 0.2560 0.0000 0.9320
12-13 0.0000 0.1400 0.0000
12-14 0.1231 0.2559 0.0000
12-15 0.0662 0.1304 0.0000
12-16 0.0945 0.1987 0.0000
14-15 0.2210 0.1997 0.0000
16-17 0.0824 0.1923 0.0000
15-18 0.1070 0.2185 0.0000
18-19 0.0639 0.1292 0.0000
19-20 0.0340 0.0680 0.0000
10-20 0.0936 0.2090 0.0000
10-17 0.0324 0.0845 0.0000
10-21 0.0348 0.0749 0.0000
10-22 0.0727 0.1499 0.0000
21-22 0.0116 0.0236 0.0000
15-23 0.1000 0.2020 0.0000
22-24 0.1150 0.1790 0.0000
23-24 0.1320 0.2700 0.0000
24-25 0.1885 0.3292 0.0000
25-26 0.2544 0.3800 0.0000
25-27 0.1093 0.2087 0.0000
27-28 0.0000 0.3960 0.0000 0.968
27-29 0.2198 0.4153 0.0000
27-30 0.3202 0.6027 0.0000
29-30 0.2399 0.4533 0.0000
8-28 0.0636 0.2000 0.0214
6-28 0.0169 0.0599 0.0065

Shunt capacitors - bus 10
bus 24

0.1900
0.4300

196 -

Table B.6 IEEE 30-bus system : base case loadflow solution

BUS
No.

VOLTAGE GENERATION LOAD
MAG. ANGLE MW MVAr MW MVAr

1 1 .060 0.000 261.070 -26.890 0.00 00.00
2 1.045 -5.507 40.000 44.630 21 .70 12.70
3 1.033 -8.121 0.000 0.000 2.40 01.20
4 1.027 -9-795 0.000 0.000 7.60 01.60
5 1 .010 -14*315 0.000 32.140 94.20 19.00
6 1.017 -11.430 0.000 0.000 0.00 0.00
7 1.007 -13.139 0.000 0.000 22.80 10.90
8 1.010 -12.057 0.000 16.940 30.00 30.00
9 1.022 -14.924 0.000 0.000 0.00 0.00
10 1 .007 -16.750 0.000 0.000 5.80 2.00
11 1.082 -14.924 0.000 31.060 0.00 0.00
12 1.012 -16.128 0.000 0.000 11.20 7.50
13 1.071 -16.128 0.000 45.060 0.00 0.00
14 0.997 -17.071 0.000 0.000 6.20 1 .60
15 0.993 -17.139 0.000 0.000 8.20 2.50
16 1.002 -16.694 0.000 0.000 3.50 1.80
17 1.000 -16.959 0.000 0.000 9.00 5.80
18 0.985 -17.758 0.000 0.000 3.20 0.90
19 0.984 -17.916 0.000 0.000 9.50 3.40
20 0.989 -17.688 0.000 0.000 2.20 0.70
21 0.993 -17.227 0.000 0.000 17.50 11.20
22 0.993 -17.211 0.000 0.000 0.00 0.00
23 0.982 -17.487 0.000 0.000 3.20 1 .60
24 0.976 -17.573 0.000 0.000 8.70 6.70
25 0.966 -16.965 0.000 0.000 0.00 0.00
26 0.947 -17.431 0.000 0.000 3.50 2.30
27 0.969 -16.304 0.000 0.000 0.00 0.00
28 1.013 -12.029 0.000 0.000 0.00 0.00
29 0.948 -17.680 0.000 0.000 2.40 0.90
30 0.935 -18.671 0.000 0.000 10.60 1 .90

197 -

Table B.7 Rotating machine data

V/SCC 9-bus system units IEEE 30-bus system units

1 2 3 1 2 5,11,13 8

Ra 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Xd 0.8958 1 .3125 0.1416 0.3576 1.4000 2.1660 7.0760
Xq 0.8645 1.2578 0.0969 0.3424 1 .3067 1.4400 3.4200
X'd 0.1198 0.1813 0.0608 0.0475 0.2467 0.4880 1.2160<•- 1

q 0.1980 0.2300 0.0750 0.0831 0.4800 1.4400 2.3180
X"d 0.0890 0.1070 0.0450 0.0364 0.1733 0.3110 0.8040
X"q 0.0890 0.1070 0.0450 0.0364 0.1733 0.3110 0.8040
T ' do 6.0000 8.9600 5.8900 4.2000 6.1000 6.0000 8.0000
T' qo 0.5350 0.4000 0.6000 0.5650 0.3000 0.1500 0.1500
T"do 0.0330 0.0250 0.0330 0.0320 0.0380 0.0500 0.0525mT qo 0.0780 0.0500 0.0700 0.0620 0.0990 0.0150 0.0151
H 8.0000 23.6400 3.0100 13*6800 4.6400 1.0500 0.3000
D 1.0000 1.0000 1.0000 1.8000 1.0000 0.1000 0.0100

Table B.8 Exciter data

WSCC
units

Ka Ta Ke Te Kf Tf Vrmax Vrmin Se

1,2,3 25.00 0.20 -0.0601 0.6758 0.1080 0.350 1 .0 -1 .0 0.226

IEEE
units

1 25.00 0.20 -0.0582 0.6544 0.1050 0.350 1 .0 -1 .0 0.250
2 20.00 0.02 1.0000 0.9420 0.0300 1.000 1 .0 -1 .0 0.000

5,11,13 20.00 0.05 -0.1700 1.0000 0.0700 1 .000 1 .0 -1 .0 0.500
8 80.00 0.05 -0.1700 0.9500 0.0400 1.000 1.0 -1.0 0.500

Notes : 1 - All data is from Ref. 63«
2 - Impedance and inertia values are on a 100 MVA base.
3 - The IEEE 30-bus system data is used for the 14-bus

system except for the synchronous condenser on bus 8.

198 -

The data in Tables B.9 and B.10 were used for all generating unit

Table B.9 Power system stabiliser data

Ko To As Ts Vsmax Vsmin

1 .00 10.0 25.00 0.0227 0.050 -0.050

Table B.10 Governor-turbine data

a) Speed governor data

Tsr Tsm R Xup Xdown Xvmax Xvmin-

0.100 0.200 0.050 0.100 -0.1000 1 .000 0.000

b) Steam turbine data

Tch Trh Tco Khp Kip Kip

0.250 7.000 0.400 0.500 0.400 0.500

199 -

REFERENCES

[1] E. Arriola-Valdes, L. L- Freris, C. G. Giles and M. J. Short,
"Real-time hybrid power system simulator for on-line control
studies", IEE Conference Publication No. 140, "On-line operation
and optimisation of transmission and distribution systems",
London 1976

[2] L. Mogridge, J. Tsiganis and B. J. Cory, "Load and generation
plant modelling for a hybrid power system simulator", PSCC Conf.
pp. 998-1006, 1978

[3] L. H. Michaels, "The ac/hybrid power system simulator and its
role in system security", IEEE Trans. PAS-91, pp. 128-136,
Jan/Feb 1972

[4] G. A. Korn, " Back to parallel computation", Simulation, Vol. 19,
pp. 37-45, 1972

[5] H. H. Happ, "Multi-computer configurations and diakoptics :
stability analysis of large power systems", IEEE PICA Conf.
Proc., pp. 101-104, 1973

[6] R. Kober "The multiprocessor system SMS 201", 15th IEEE COMPCON,
Washington, pp. 225-230, Sept. 1977

[7] H. J. Halin, R. Buhrer, W. Haig, H. Benz, B. Bron, H. Brundiers,
A- Isacson and M.Tadian, "The ETH multiprocessor project:parallel
simulation of continuous systems" Simulation, pp. 109-123, 1980

[8] R. J. Swan, A. Bechtolsheim, K. Lai and J- K. Ousterhout, "The
implementation of the Cm* multi-processor", Proc. of the National
Computer Conf., Vol.46, pp.154-164, 1977

[9] V. L. Hatcher, F. M. Brasch and J. E. Van Ness, "A feasibility
study for the solution of transient stability problems by
multiprocessor structures", IEEE Trans. PAS-96, No. 6,
pp. 1789-1797, Nov/Dec 1977

[1 0] F. M. Brasch, J. E. Van Ness and S. C. Kang, "The use of a
multiprocessor network for the transient stability problem", IEEE
PICA Conf. Proc., pp.357-544, 1979

200

[11] J. Fong and C. Pottle, "Parallel processing of power system
analysis problems via simple parallel microcomputer structures",
IEEE Trans. PAS-97, No. 5, pp. 1834-1841, Sept/Oct 1978

[12] M- J. Flynn, "Very high-speed computing systems", IEEE Proc.,
Vol. 54, No. 12, pp. 1901-1909, Dec. 1966

[13] P.H. Enslow, "Multiprocessor Organization - A survey", Computing
Surveys, Vol. 9, No. 1, pp. 103-129, March,1977

[14] G. A. Anderson and E. D. Jensen, "Computer Interconnection
Structures" Computing Surveys, Vol. 7, No. 4, pp.199-212,
Dec. 1975

[15] G. A. Korn, "Multiprocessor designs surpass supermini
alternatives for continuous system simulation" Computer Design,
pp. 95-101, May 1981

[16] K. Jensen and N. Wirth, "Pascal user manual and report",
Springer-Verlag 1974

[1 7] M- K. Enns, F. L. Alvarado and K. C. Liu, "Power system
programming in Pascal", IEEE PICA Conference, pp. 238-244, 1979

[183 P- Brinch Hansen, "The programming language concurrent Pascal"
IEEE Trans, on Software Engng., Vol. SE-1, pp. 313-321, June 1975

[19] "Reference manual for the ADA programming language", U.S. Dept,
of Defence, July 1980

[20] D.M. Ritchie and K. Thompson, "The UNIX time-sharing system"
Comms. ACM, Vol. 17, No. 7, pp. 365-375, July 1974

[21] C. A. R. Hoare, "MONITORS : An operating system structuring
concept", Comms. ACM, Vol. 17, No. 10, pp. 549-557, Oct. 1974

[22] C. A. R. Hoare, "Communicating sequential processes", Comms. ACM,
Vol. 21, No. 8, pp. 666-677, Aug. 1978

[2 3] G. A. Andrews and F. B. Schneider, "Concepts and notations for
concurrent programming", Computing Surveys, Vol. 15, No. 1,
pp. 3-43, March 1983

[2 4] A. K. Jones and P. Schwarz, "Experience using multiprocessor
systems - A status report" Computing Surveys, Vol. 12, No. 2,
pp. 121-165, June 1980

201

[25] F. Halsall, R.L. Grimsdale, G. C. Shoja and J.E. Lambert,
"Development environment for the design and test of applications
software for a distributed multiprocessor computer system", IEE
Proc., Vol. 130, Pt.E. No. 1, pp. 25-31, Jan. 1983

[26] T. J. Hammons and D. J. Winning, "Comparisons of synchronous
machine models in the study of the transient behaviour of
electrical power systems" IEE Proc., Vol. 118, No. 10,
pp. 1442-1458, Oct. 1971

[27] R- T. H. Alden and P. J. Nolan, "Evaluating alternative models
for power system dynamic stability studies", IEEE Trans. PAS-95,
p p . 433-440, 1976

[28] A- Ghafurian and G. J. Berg, "Coherency-based multimachine
stability study" IEE Proc., Vol. 129, Pt. C, No. 4, pp. 153-160,
July 1982

[29] C. W. Gear, "NUMERICAL INITIAL VALUE PROBLEMS IN ORDINARY
DIFFERENTIAL EQUATIONS", Prentice-Hall, 1971

[30] H. L. Fuller, P. M. Hirsch and M. B. Lambie, "Variable
integration step transient analysis : VISTA", IEEE PICA Conf. ,
pp. 277-284, 1973

[3 1] H. W. Bommel and N. Sato, "Fast transient stability solutions",
IEEE Trans. PAS-91, pp. 1643-1650, July/Aug 1972

[32] V.F. Tinney and J. W. Walker, "Direct solutions of sparse network
equations by optimally ordered triangular factorization", Proc.
of the IEEE, Vol. 55, No. 11, pp. 1801-1809, Nov. 1967

[33] B- Stott and 0. Alsac, "Fast decoupled load flow", IEEE Trans.
PAS-93, pp. 859-869, May/Jun. 1974

[34] F- M. Orem and ¥. F. Tinney, "Evaluation of an array processor
for power system applications", PICA Conf., pp. 345-350, 1979

[35] H. H. Happ, C. Pottle and K- A. Wirgau, "An evaluation of present
and future computer technology for large scale power system
simulation" IFAC, India, pp. 1-8, 1979

[36] D. M. Detig, "Effects of special purpose hardware in scientific
computation with emphasis on power system applications", IEEE
Trans. PAS-101, No. 2, pp. 265-270, Feb. 1982

202

[37] F. M. Bra3ch, J. E. Van Ness and S. C. Kang, "Simulation of a
multiprocessor network for power system problems", IEEE Trans.
PAS-101, No. 2, pp. 295-301, Feb. 1982

[38] G. W. Stage, " Interactive computing for real-time and general
purpose computer systems” 5th. PSCC, Vol. 2, Paper No. 4-2/3, 21
pages, Cambridge, 1974

[39] M. Undrill, T- E. Kostyniak and R. J. Mills, "Interactive
computation in power system analysis" Proc. of the IEEE, Vol. 62,
No. 7, pp. 1009-1018, July 1974

[40] M- J. Short and B. J. Cory, "Applications of microprocessor
arrays in power system simulation and analysis", Research Project
Proposal, Elec. Engng. Dept., Imperial College of Science and
Technology, March 1979

[4 1] I- Elizarraraz-Alcaraz, "Parallel processing with multiple
microprocessors for power system analysis", Ph. D. Thesis, Elec.
Engng. Dept., Imperial 'College of Science and Technology,
University of London, Aug. 1983

[4 2] R. Lopez-Lopez, "Dynamic simulation of power systems on multiple
microprocessors", Ph. D. Thesis, Elec. Engng. Dept., Imperial
College of Science and Technology, University of London, Nov.
1983

[43] a) 9900 Family System Design and Data Book,
b) TMS 990/101M Microcomputer User's Guide,
Texas Instruments, March 1979

[4 4] "MICROSYSTEMS : Designers Handbook", Microprocessor Series, 2nd.
Ed., Texas Instruments, 1981

[4 5] A. A. Osborne and G. Kane, "16-bit microprocessor handbook",
Osborne/McGraw-Hill, California, 1981

[46] "FS 990 Computer System : SYSTEM GUIDE", Vols. 1-4, Texas
Instruments, March 1979

[47] "The Microprocessor Pascal System User's Manual", Texas
Instruments Inc., 1979

[48] E. ¥. Dijkstra, "The structure of "THE”-multiprogramming system"
Comm, of the ACM. Vol. 26, No. 1, pp. 49-52, Jan.1983

- 203 -

[49] "UCSD p-system, Users' Manual", Version IV, SofTech 1981

[50] J. Kramer, J. Magee, M- Sloman and A- Lister, "CONIC: An
integrated approach to distributed computer control systems"
Research report, Imperial College,DOC 82/6, pp.1-25, April 1982

[51] ¥ . B. Rouse, "Design of Man-Computer interface for on-line
interactive systems" Proc. IEEE, Vol. 63, No. 6, pp. 847-857,
June 1975

[5 2] W. B. Rouse, "Human-Computer interaction in the control of
dynamic systems" Computing Surveys, Vol. 13, No. 1, pp. 71-99,
March 1981

[53] G. W. Carey, User differences in interface design" IEEE
Computer, pp. 14-20, Nov. 1982

[54] R* Podmore, J.C.Giri, M. P. Gorenberg, J.P. Britton and
N. M. Peterson, "An advanced dispatcher training simulator" IEEE
Trans.,Vol. PAS-101, No. 1, pp. 17-25, Jan.1982

[55] CIGRE Task force on Real Time Simulators, "The use of real time
simulators in operator training and power system control"
Electra, No.84, pp.85-103, Oct.1982

[5 6] H. S h io t a , Y . Tamenga, T. T s u j i and K. Dan, "Development of
training simulator for power system operators" IEEE Trans.
PAS-102, No. 10, pp. 3439-5445, Oct. 1983

[57] G. P f a f f , H. Kuhlmann and H. Hanusa "Constructing user interfaces
based on logical input devices" IEEE Computer, pp.62-68, 1982

[58] V. Converti, D. P. Gelopulos, M. Housley and G. Steinbrenner,
"Long-term stability solution of interconnected power systems" ,
IEEE Trans. PAS-95, No.1, pp. 96-104, Jan/Feb 1976

[59] B. Stott, " Power system dynamic response calculations", IEEE
Proceedings, Vol. 67, No. 2, pp. 219-241, Feb 1979

[60] 0. Alsac, B. Stott and ¥. F. Tinney, "Sparsity-oriented
compensation methods for modified network solutions", IEEE Trans.
PAS-102, pp. 1050-1060, May 1983

[6 1] J . A r r i l l a g a , C. P . A rn o ld and B . J . H a rke r, "COMPUTER MODELLING
OF ELECTRICAL POWER SYSTEMS", John Wiley Ltd., England 1983-

204

[62] B. Adkins and R. G. Harley, "THE GENERAL THEORY OF ALTERNATING
CURRENT MACHINES: APPLICATIONS TO PRACTICAL PROBLEMS", Chapman
and Hall Ltd., London, England 1979*

[63] P- M. Anderson and A. A. Fouad, "POWER SYSTEM CONTROL AND
STABILITY", Iowa State University Press, 1977

[64] P. L. Dandeno, R. L. Hauth and R. P. Shulz, "Effects of
synchronous machine modeling in large scale system studies," IEEE
Trans. PAS-92, pp. 574-582, Mar/Apr 1973*

[6 5] P- L. Riaz, "Hybrid-parameter models of synchronous machines",
IEEE Trans. PAS-93, pp. 849-859, May/June 1974

[66] P. L. Dandeno and P. Kundur, "A non-iterative transient stability
program including the effects of variable load-voltages
characteristics", IEEE Trans. PAS-92, No. 5, pp* 1478-1484,
Sept/Oct. 1973

[67] J- M. Undrill and T. F. Laskowski, "Model selection and data
assembly for power system simulations" IEEE Trans. PAS-101,
No. 9, p p * 3333-3341, Sept. 1982

[68] F. P. deMello and C. Concordia, "Concepts of synchronous machine
stability as affected by excitation control", IEEE Trans. PAS-88,
No. 4, pp* 316-329, April 1969

[69] IEEE Committee Report, "Excitation system models for power system
stability studies", IEEE Trans. PAS-100, No. 2, pp. 494-509, Feb.
1981.

[70] P. V. Kokotovic, J. J. Allemong, J. R. Winkelman and J. H. Chow,
"Singular perturbation and iterative separation of time scales",
Automatica, Vol. 16, pp. 22-33, 1980

[7 1] C- Concordia, "Concepts of synchronous machine stability as
affected by excitation control", IEEE Trans. PAS-88, No. 4,
pp. 316-329, April 1969

[72] IEEE Committee Report, "Dynamic models for steam and hydro
turbines in power system studies", IEEE Trans. PAS-92,
pp. 1904-1915, Nov/Dec. 1973

- 205

[73] M. H. Kent, W. R. Schmus, F. A. McCrackin and L. H. Wheeler,
"Dynamic modeling of loads in stability studies", IEEE Trans.
PAS-88, No. 5, pp- 756-765, May 1969

[74] IEEE Computer Analysis of Power Systems Working Group, "System
load dynamics-simulation effects and determination of load
constants," IEEE Trans. PAS-92, pp. 600-609, Mar/Apr 1975*

[75] W. S. Chen, "Determining load characteristics for transient
performance", EPRI Report EL-849 (3 vols.), University of
Arlington, May 1979

[76] V. A. Venikov, "TRANSIENT PROCESSES IN ELECTRICAL POWER SYSTEMS",
English Translation, Mir Publishers, Moscow, 1980

[77] C- Concordia and S. Ihara, "Load representation in power system
stability studies", IEEE Trans. PAS-101, No. 4, pp. 969-977,
April 1982

[78] G. Shackshaft, 0. C. Symons and J. G. Hadwick, "General-purpose
model of power-system loads", IEE Proceedings, Vol. 124, No. 8,
pp. 715-723, Aug. 1977

[79] G. J. Berg, "Power system load representation", IEE Procs.,
Vol. 120, No. 3, pp. 344-348, March 1973

[80] E- Handschin, "Theory and practice of load modelling for power
system dynamics", CIGRE/IFAC Symp., paper No. 413-03, 6 pages,
Florence, 1983

[81] F. Illiceto and A- Capasso, "Dynamic equivalents of motor loads
in system stability studies", IEEE Trans. PAS-93, No. 5,
pp. 1650-1659, Sept./Oct. 1974

[82] S. A. Y. Sabir and D. C. Lee, "Dynamic load models derived from
data acquired during system transients", IEEE PES Winter Meeting,
Feb. 1982

[83] L. Elder and M. J. Metcalfe, "An efficient method for real-time
simulation of large power system disturbances", IEEE Trans.
PAS-101, No. 2, pp. 334-339, Feb. 1982

[84] W. D. Humpage, K. P. Wong and Y. W. Lee, "Numerical integration
algorithms in power-system dynamic analysis", IEE Proceedings,
Vol. 121, pp. 467-473, June 1974

206

[85] B. Dembart, A. M. Erisman, E. G. Cate, M. A- Epton and H. Dommel,
"Power system dynamic analysis", Phase I, Final Report, EPRI
EL-484, July 1977

[86] J. H. Seinfeld, L. Lapidus and M. Hwang, "Review of numerical
integration techniques for stiff ordinary differential
equations", Ind. Eng. Chem. Fundam., Vol. 9, pp. 266-275, 1970

[87] G. Be Micheli and A. Sangiovanni-Vincentelli, "Characterisation
of integration algorithms for the timing analysis of MOS VLSI
circuits", Circuit theory and Appl., Vol. 10, pp. 299-309, 1982

[88] C. Moler and C. Van Loan, "Nineteen dubious ways of calculating
the exponential of a matrix", SIAM Review, Vol. 20, No. 4,
pp. 801-856, Oct. 1978

[89] W. Liniger and R. A. Willoughby, "Efficient integration methods
for stiff systems of ordinary differential equations", SIAM J.
Numer. Anal., Vol. 7, No.1, pp. 47-66, Mar. 1970

[90] J. M. Smith, "MATHEMATICAL MODELING AND DIGITAL SIMULATION FOR
ENGINEERS AND SCIENTISTS", John Wiley and Sons, New York, 1980

[91] D. M. Brandon, "A new single-step implicit integration algorithm
with A-stability and improved accuracy", Simulation, pp. 17-29,
July 1974

[9 2] P . D. Babcock, L. F . Stu tzm an and D. M. Brandon, "Improvements in
a single-step integration algorithm", Simulation, pp. 1-10, July
1979

[93] K. Watanabe and D. M. Himmelblau, "Analysis of trajectory errors
in integrating ordinary differential equations", J. Franklin
Inst., Vol. 514, No.5, pp. 285-321, Nov. 1982

[94] H. A. Watts, " Survey of numerical methods for ordinary
differential equations", Electric Power Problems: The
mathematical challenge, A. M. Erisman et al., Eds., pp. 127-158,
SIAM March 1980

[95] P- M. Anderson and B. Dembart, "Computational aspects of
transient stability analysis", SIAM Int. Conf., Electric Power
Problems: The mathematical challenge, A. M. Erisman et al., Eds.,
pp. 159-189, SIAM March 1980

207

[96] G. Gross and A. R. Bergen, "A class of new multistep integration
algorithms for the computation of power system dynamical
response", IEEE Trans. PAS-96, No. 1, pp. 293-306, Jan./Feb. 1977

[97] M. B. Carver, "Efficient integration over discontinuities in
ordinary differential equations", Numerical Methods for
Differential Equations and Simulation : A. W. Bennet and
R. Vichnevetsky (Eds.) IMACS, North-Holland Publishing Co. 1978

[98] D. Ellison, "Efficient automatic integration of ordinary-
differential equations with discontinuities", Maths, and Comp, in
Simulation, Vol. XXII, pp. 12-20 1981

[99] R- M. Howe, "A new method for handling discontinuous nonlinear
functions in digital simulation of dynamic systems", Proc. Comp.
Simulation Conf., Calif., pp. 72-79, July 1978

[100] W- Liniger, "Global accuracy and A-stability of one- and two-step
integration formulae for stiff ordinary differential equations",
Conf. Numerical solution of differential equations, Berlin,
pp. 188-193, 1969

[101] R. B. I. Johnson, R. Lopez and I. Elizarraraz, "Interactive power
system simulator. User's manual and report", Dept, of Electrical
Engineering, Imperial College of Science and Technology, London,
July 1983

[102] A. Gupta and H. D. Toong, "An architectural comparison of 32-bit
microprocessors", IEEE Micro, pp. 9-22, Feb. 1983

[103] S. N. Talukdar, "METAP - A modular expandable program for
simulating power system transients", IEEE Trans. PAS-95, No. 6,
pp. 1882-1889, Nov./Dec. 1976

[104] R. Saeks and R. A. Decarlo, "INTERCONNECTED DYNAMICAL SYSTEMS",
Marcel Dekker, New York, 1980

[105] 0. Vasynczuk and R. A. Decarlo, "The component connection model
and structure preserving model order reduction", Automatica,
Vol. 17, No. 4, pp. 619-626, 1981

[106] Microsystem 80, iAPX86 and iAPX88 product description, Intel,
July 1980

208

[107] C- W. Gear, "Numerical solution of ordinary differential
equations: is there anything left to do ?", SIAM Review, Vol. 23,
pp. 10-24, Jan. 1981

[108] L. L. Freris and A. M. Sasson, "Investigation of the load-flow
problem", IEE Proceedings, Vol. 115, No. 10, pp. 1459-1470, Oct.

• 1968

