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ABSTRACT

The output from mathematical models is usually dependent 
upon parameters in the model whose true values are not 
known. Uncertainty is therefore inherent in the output. 
This thesis is concerned with the development of 
statistical approaches to the problem of assessing and 
describing this uncertainty, by detailed consideration of 
the problems of analysis of two ecological models, one of 
the control of rats on agricultural premises, and the other 
of the dynamics of rabies in fox populations.

A review of the existing literature is provided, which 
brings together results from many different disciplines and 
summarises their properties, concluding with a discussion 
of problems that still remain.

Sensitivity analysis of the fox rabies model is then 
considered, and an informal graphical approach to the 
problem, based on a multivariate statistical technique 
called Biplotting, is described. The method provides an 
easily interpreted and informative summary of the 
uncertainty inherent in the output of the fox rabies model.

More objective sensitivity analysis of the rabies model is 
considered next. An objective numerical measure of 
sensitivity is defined, which has both a simple, and 
sometimes a practical interpretation, but which also



conveys useful general information about the degree of 
uncertainty in the model's predictions.

* A formal decision process, arising from the farm rat 
control model is then discussed, and an illustration is 
given of the use of the sensitivity measure in this 
decision making process. The sensitivity measure is shown 
to provide not only an informal description of uncertainty, 
but also one which can be employed formally when making 
decisions based on the output of models.

*

Finally, methods are proposed by which the sources of 
uncertainty in the rabies and farm rat models can be 
identified and measured, using the concept of informational 
correlation measures, 

t

*

%
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CHAPTER ONE

INTRODUCTION: UNCERTAINTY IN MATHEMATICAL MODELLING

1.1. The role of mathematical modelling.

Many statisticians are trained to think that the scientists 
and technologists with whom they work use two types of 
investigative technique - the observational study, such as 
a census or survey, and the designed and controlled 
experiment. These techniques are used to collect data with 
which hypotheses may be tested, and from which theories may 
gradually be developed. The theories, in turn, suggest new 
lines of investigation. In fact, though observational and 
experimental techniques are still pre-eminent, the last two 
decades or so have seen the rapid development of a third 
investigative technique, which now occupies a firm position 
in scientific and technological circles, even in the 
so-called "soft" sciences, and which is increasingly seen 
and accepted not just as an adjunct to more traditional 
research methods, but as a valid and useful technique in 
its own right. In short, when faced with a problem they 
wish to investigate, many scientists and technologists in 
the 1980s may neither observe nor experiment - they may, 
instead, build a mathematical model.

Though the roots of modelling as an investigative procedure
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are hundreds of years old, the modelling approach has 
become commonplace only in recent years. Kiviat (1967) 
defines a model as "a representation of some existing or

#• proposed system". In general, such a representation could 
take any form, but in scientific and technological 
applications, a model is usually a set of mathematical 
equations. Such sets of equations are constructed to 
represent the way a particular system is thought to 
operate. The equations describe relationships between 
particular components of the system, and it is hoped that 
the behaviour predicted by the equations will or may be 
exhibited by the real system. Mathematical models are 
frequently constructed by technologists on the basis of 
personal beliefs about the structure of the system being 
investigated, and about which components are important, and 
how they might be inter-related. It is not uncommon to find 
that models of this kind are constructed with little 
reference to real data, perhaps because it is particularly 
difficult or expensive to collect data, or perhaps because 
the system that is being modelled does not exist - that is, 
it may be a new physical system, such as a dam or resevoir, 
whose construction is being contemplated. In general terms, 
it is possible to say that mathematical modelling is a 
technique used in situations where it is difficult, 
expensive, or impossible to study the system by more 
traditional methods.

Because such difficulties are often encountered, it is not 
surprising that mathematical models have come to be widely

¥
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used. They have been used to represent such things as local 
and national economies, manufacturing processes, inventory 
and queueing systems, military conflicts, and animal 
populations, to name but a few. Reviews and bibliographies 
have been provided, for example, by Orcult (1960), Naylor
(1969), Malcolm (1970), Greenblatt (1972), and Schultz et. 
al. (1976), dealing with applications of modelling in 
economics, industry, management sciences, social sciences, 
and ecology, respectively. The acceptance and use of 
modelling as an investigative technique reflects the view 
that models "have a powerful role to play in developing 
management strategies, and in the formulation of policy" 
(Conway, 1977).

1.2. Uncertainty in mathematical modelling.

The goal of all scientists and technologists who use 
mathematical models is to predict the behaviour of the 
system that their model represents. This is obvious when 
the output from a model is a specific numerical value, but 
is nonetheless true when a model is used to make rather 
general, often qualitative, statements about the way in 
which a system might behave. Sometimes such predictions are 
used only as aids to understanding how a system might 
function, but in other circumstances the predictions are 
intended for use in management and policy making - in other 
words, it is intended that some sort of action or decision 
should be based upon the predictions of the model.

14
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In this sense, mathematical models are used for the same 
purposes as observational and experimental studies: to gain 
information and insight into the operation of a system. As 
is the case with both observational and experimental 
studies, however, there is a degree of uncertainty inherent 
in the process of mathematical modelling. In formulating 
the set of equations that make up a model, it is necessary 
to choose specific parameters and functional forms for the 
representation. The parameters may represent such things as 
rate constants or thresholds, whilst the functional forms 
describe relationships between certain components of the 
system. It is usually the case that the modeller is 
uncertain about the values that should be assigned to the 
parameters in the model, and uncertain about the adequacy 
of the selected functional forms. These things may have 
"true" values in the real system, but because the truth is 
not known, parameter values and functional forms are, in 
the terminology of Schlaifer (1967), "uncertain 
quantities".

Uncertainty in observational and experimental studies is 
conventionally taken to arise primarily from sampling 
variation, and it is now commonplace for the uncertainty 
inherent in the results of such investigations to be 
described and assessed using conventional techniques of 
statistical analysis. It is just as important, if modelling 
is to fulfil its potential as an aid to management, that 
the uncertainty inherent in the process of building and
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using a mathematical model should be adequately assessed 
and described. Failure to describe this inherent 
uncertainty places the utility of a model's predictions in 
jeopardy, and may tend to discredit not only a particular 
study, but the use of mathematical models in general.

The uncertainty inherent in the output from mathematical 
models frequently causes controversy. A recent example of 
this arose from the Serpell Report on future transport 
policy options for the British Rail Network. In evaluating 
the properties of possible future rail systems the 
consultants retained by the Serpell Committee used a 
mathematical model. However, there is uncertainty about the 
values of some parameters in this model, and a failure to 
describe this uncertainty has led to criticism of some of 
the policy options discussed (New Scientist, 1983). Critics 
have argued, for example, that more accurate values of 
these parameters might have led to recommendation of 
different policy options. The use of mathematical models in 
transport planning has, in fact, often been criticised. 
Predictions from such models are not infrequently 
substantially different from the actual results achieved 
when policies are implemented (see discussion to Tanner,
1978). Small changes in the functional forms used in such 
models may also result in quite different forecasts (Brooks 
et.al., 1978).

A further example is provided by the modelling studies that 
have been conducted to investigate the carbon dioxide



"greenhouse effect" - the extent to which increasing carbon 
dioxide concentration in the atmosphere might raise global 
temperatures. One important parameter in such models

* measures atmospheric humidity, and it has been reported of 
the models that "a small change in the humidity parameter, 
still within the range of plausible values, increases the 
temperature effect fivefold". It has been concluded that 
"there is so much uncertainty surrounding the modelling 
that it is impossible to say whether a doubling of 
atmospheric carbon dioxide would increase global mean 
temperatures by 0.5°, 10.0°, or anything in between" (New 
Scientist, 1981; see also Kandel, 1981).

The important point about these controversies in the 
present context is not which of the many possible forecasts

t is nearest to the truth, but that the controversy might
well be diminished if predictions from mathematical models 
were always accompanied by suitable descriptions of the 
uncertainty inherent in them.

1.3. Assessing and describing uncertainty in mathematical 
modelling.

The uncertainty inherent in model output may be of such a 
magnitude as to render any single unqualified prediction 
almost meaningless. This may even be true for parameters 
whose values are apparently precisely known - O'Neill 
(1973) has shown, using a model of a form widely employed 
in ecological studies, that uncertainties in parameter
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values of only 10% can imply uncertainties in output of 
almost 100%. This may happen because of the way in which a 
parameter enters into the model - for example as an 
exponent or multiplier.

The assessment and description of uncertainty is the 
province of statistics. However, though countless 
statistical methods have been described for use in 
observational and experimental studies, comparatively few 
statistical techniques have been considered for their 
suitability in assessing and describing uncertainty in 
mathematical modelling. This is not to say that the 
existence of uncertainty, and its importance, have not been 
realised. From the earliest days of mathematical modelling 
there has been an awareness of the problem, and a number of 
techniques have been proposed by which the reliability of 
model predictions can be examined. These techniques are 
most commonly known as methods of "sensitivity analysis", 
"error analysis", or "uncertainty analysis". Curiously, 
though, such methods are not always regarded explicitly as 
being concerned with the assessment and description of 
uncertainty. Many papers on sensitivity analysis do not 
contain the word "uncertainty" at all. This may well be 
because control theorists, who developed many of the now 
traditional methods of sensitivity analysis, were not 
really concerned with uncertainties about parameter values, 
but rather with small variations in values of parameters in 
their electrical systems, induced for example by 
temperature variations. Nevertheless, a survey of the



methods of sensitivity analysis indicates clearly that 
uncertainty is the problem that motivates their 
development.

1.4. Definitions and conventional views of sensitivity 
analysis.

A number of definitions of sensitivity analysis have been 
presented in the literature:

"sensitivity analysis might be defined as changing results 
by varying input assumptions" (Durway, 1979)

"sensitivity analyses measure the rate of change of output 
of the model with respect to the inputs" (Blanning, 1974)

"a sensitivity analysis consists of computing the expected 
value and a rank ordering of contributions to the variance 
(of the output)" (Atherton et. al., 1974)

"sensitivity is the rate of change in one factor with 
respect to another factor". (McCuen, 1973)

"sensitivity analysis addresses the problem of how 
sensitive the solution (of the model) is to variations of 
or uncertainties in the parameters of the equation set" 
(Cukier et.al., 1978)

"sensitivity analysis is the determination of the relative
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effect of small changes in various parameters - usually 
with the idea of devoting more resources to the refinement 
of critical parameters" (Miller, 1974a).

"the purpose of a sensitivity analysis is to determine the 
amount of variation in one or more model outputs caused by 
variation of a model input parameter" (Shaeffer, 1980).

"the relevant question is whether all values of a parameter 
within the range of plausibility produce the same overall 
model behaviour" (Forrester, 1975).

Definitions of sensitivity analysis typically refer to 
"variation" or "change" in model output. The potential for 
this variation lies in the fact that for a deterministic 
mathematical model, the output is completely determined by 
the numerical values assigned to parameters in the model. 
It is worth remarking that the concept of sensitivity 
analysis is frequently redundant when stochastic 
mathematical models are utilised, since the main feature of 
such models is that, by definition, representations of 
uncertainty are explicitly contained in the equations that 
constitute the model. In this thesis, therefore, attention 
is restricted to deterministic mathematical models - that 
is, models which contain no explicit representation of 
uncertainty. Such models are widely used in most fields of 
science and technology. However, when deterministic models 
are built, the true values for model parameters are rarely 
known, either because it is not possible to determine them



exactly, or because the value is, in the real system, not 
fixed, but subject to random variation. The implications 
are clear: since the parameters are uncertain quantities,
any other quantity, such as model output, which depends on 
them, is also an uncertain quantity. Specifically, the 
value attained by a model output can be thought of as 
related directly to the value assigned to a parameter, and 
to have attendant uncertainties in view of the uncertainty 
about the true value of the parameter. If a model is to be 
of practical value, the nature of these uncertainties must 
be described, particularly to those decision makers whose 
job it is to utilise the predictions from models in policy 
formation.

Sensitivity analysis is therefore defined here as

"any technique that aids assessment and description of the 
uncertainty inherent in the outputs of a mathematical 
model"

1.5. Origins and classification of some methods of 
sensitivity analysis.

How are such assessments usually made in the literature? 
Waide and Webster (1976) place the origins of sensitivity 
analysis in the 1950s, roughly the time when mathematical 
modelling began to become firmly established. However, 
reference to Cruz (1973), for example, shows that many 
ideas brought into the realm of mathematical modelling were



originally described by engineers interested in control 
theory and the properties of electrical circuits. The 
concept of sensitivity analysis also arose, apparently 
independently, in the work of management scientists in the 
late 1950s (see e.g. Moffei, 1959; Levy, 1958, 1959; 
Solomon, 1959).

♦
For convenience, existing methods of sensitivity analysis 
can be classified into four main categories: those based on 
the use of derivatives, those based on analytical or 
numerical error propagation, those based on the fitting of 
response surfaces or "metamodels", and finally a number of

♦ other techniques that have in common the property that they
do not fall into one of the other three categories.

* 1.6. The differential sensitivity measure.

The derivative or differential sensitivity measure 
to originates in the work of electrical engineers and control

theorists (Cruz,1973), and is conveniently summarised and 
discussed by Tomovic (1963) and Tomovic and Vukobratovic
(1970).

^ Denote a general mathematical model as the mapping:

m:(S,X,T)-- >(Y) (1.1)
A

where S is a vector of "state variables", X a vector of 
parameters, T a measure of time, and Y a vector of output

22



♦
variables. The inclusion of T, though not strictly 
necessary, is helpful because many mathematical models are 
contructed to represent dynamic systems.♦

The differential sensitivity measure of an output y.. with 
respect to a parameter 

^ derivative:

dŷ /dXj

*
It is apparent from (1.1) 
function of S, X, and 
distinguish between three 
measure:

(i) the "static 
independent of T

* (ii) the "dynamic 
function of T

to (iii) the "parametric" sensitivity measure, which
explicitly indicates that dy^/dx^ is a function of X.

1.7. Modifications of the differential sensitivity 
measure.

%
Both McCuen (1973) and Miller (1974b) have proposed slight 
modifications to the standard differential sensitivity

*

sensitivity measure, where dy^/dx^ is

sensitivity measure, where dy^/dx^ is a

Xj is defined to be the partial

( 1 . 2 )

that (1.2) may, in general, be a 
T. This leads Tomovic (1963) to 
types of differential sensitivity

23



"relativemeasure. McCuen (1973) suggested that a
sensitivity coefficient would be preferable, avoiding the 
fact that the standard definition is dependent upon the 
scales of both output variate and model parameter. He 
proposed the measure:

R = (dyi/dXj)*(Xj/yi) (1.3)

Miller (1974b), for similar reasons, defined the 
coefficient:

R’ = (dD(.)/dx.) *x' .D 3
(1.4)

where x' . is the baseline or best-estimate of the value of 
3

the parameter x ,̂ and D(.) is some function, selected by 
the modeller, of all the output variates.

1.8. Response surface methods.

Implicit in the definition of the differential sensitivity 
measure is the idea that the relationship between model 
output and parameter value is linear. In fact, the 
assumption usually made in control theory is that the 
relationship is locally linear, this assumption often being 
justified when the range of possible parameter values is 
small. A number of authors have indicated that this 
assumption may easily be violated in modelling applications 
in the "soft sciences" (e.g. McCuen, 1973: Dwyer and 
Kremer, 1983), and have argued that this restricts the



applicability of the differential sensitivity measure. To 
attempt to overcome this problem some modellers have fitted 
response surface models to the observed relationship 
between output and parameter values, and have used these 
response surfaces in order to study the sensitivity of the 
model.

Plinston (1972) provides an example of this approach, using 
a second order polynomial to relate output values to 
parameter values. To measure the sensitivity of the output 
with respect to a particular parameter, Plinston uses the 
"second derivative (of the function) with respect to each 
parameter". This measure has the obvious advantage that it 
is a constant value (since the response surface is of 
degree two). Plinston also suggests that useful information 
may be derived by plotting the response surface in the 
space of pairs of model parameters, and discusses how the 
shape of the resultant contours reflect the influence of 
each parameter. Blanning (1974) coined the term "metamodel" 
to describe response surfaces used in this way. He notes 
that the form of the fitted function will usually be 
selected empirically, following inspection of model output 
derived for a number of possible parameter values, and 
proposes that sensitivity be measured by calculating 
partial derivatives of the function with respect to each 
parameter. Kleijnen (1975), responding directly to 
Blanning's paper, suggests that polynomial regression 
models will be adequate for most applications of this hind, 
and goes on to suggest that the "sensitivity" of the model



to each parameter may be studied by performing a 
conventional statistical significance test on the 
coefficients attached to the parameters. This procedure is 
unlikely to be valid, as noted below, but is also advocated 
by Kohberger et.al. (1978). Iman et.al. (1981a,b) also 
advocate the use of simple regression metamodels, and 
Richels (1978) gives a typical case study of this kind of 
approach, applied to mathematical model of energy supply 
systems. A detailed discussion of the methodology, applied 
to a hydrological model, is provided by Arfi (1980).

Argentesi and Olivi (1978) have investigated the use of 
inverse polynomials as metamodels, concluding that they may 
be preferable, giving better fit to the observed 
output-parameter relationship in many cases. These authors 
still measure sensitivity using partial derivatives of the 
fitted metamodel. Valtonen (1977) suggests that the use of 
metamodels may provide a measure of the sensitivity of a 
model output to all parameters simultaneously - a kind of 
"global" sensitivity coefficient. Using a metamodel that is 
linear in all model parameters, he defines his 
"multiparameter sensitivity" measure as "the square root of 
the sum of the regression coefficients".

Kohberger et. al. (1978) and Sorooshian et. al. (1980) 
define rather more complex measures of sensitivity, each 
computed from fitted polynomial metamodels. Kohberger et. 
al. advocate the use of quadratic metamodels, denoted:

26



*
O = K + B'X + X'AX (1.5)

where B is the vector of coefficients of first-order terms, 
and A the matrix of coefficients of second order terms. X 
denotes the vector of model parameters, and 0 some function 
of model output. Kohberger et. al. propose that the 
sensitivity of the output with respect to a particular 
parameter may be measured, not only using the conventional 
partial derivative, but also by examining the eigenvalues 
of the matrix A. Parameters having a large influence on the 
model output will be associated with large eigenvalues, and 
hence a ranking of parameter "influence" will be possible.

1.9. Analytical propagation of uncertainty.

Derivative and response surface methods both deal with the 
effects of parameter uncertainty by measuring some aspect 
of the relationship between parameter values and output 
values. Output uncertainty may also be measured more 
conventionally - that is, by means of probabilities. If the 
uncertainty about a parameter's true value is described by 
assigning a probability density function fXj(.) to the 
parameter, then, in principle at least, it is possible to 
derive the density function of the model output, and use it 
to describe the uncertainty inherent in the model. Thus, if 
the model output y^= g(x^), and this function has an 
inverse so that x.=h(y.) is defined, then fy.(.), theJ X X

probability density function of y^, is given by:
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to

to

4

fyi(*) = I dh(yi)/dyi | * fXj(h(yi)) (1.6)

This result can be extended to the case of several 
parameters, and indeed several output variables. The 
necessary results are proved in many textbooks of 
statistical theory e.g. Mood et. al. (1974).

In practice, however, it is rarely possible to handle this 
expression analytically, since the function h(y^) will be 
quite complicated for all but the simplest mathematical 
models. The use of a computer algebra system (see e.g. 
Huson, 1983) may help. Alternatively, approximate formulae 
may be used to derive the mean and variance of the output 
distribution. Thus, for example, if the standard deviation 
of a parameter x̂  is sx^, then in the above notation, the 
standard deviation of the output y^ may be approximated by:

sy^ |dg(x_. )/dXj | *sx_. (1.7)

More complicated formulae are available for the case of 
several model parameters, including the case where 
parameters are believed to be correlated. A convenient 
summary of the necessary formulae is given by Clifford 
(1973).

This approach to assessing the uncertainty inherent in 
model output has been adopted by a number of authors, in 
cases where the mathematical model is relatively simple in 
form. Examples may be found in the work of Wright (1972),
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McCuen (1973), Burns (1975), Argentesi and Olivi (1976), 
Reckhow and Chapra (1979), Bailey and Duppenthaler (1980), 
and Shaeffer (1980).

1.10. Monte Carlo propagation of uncertainty.

In cases where analytical propagation of uncertainty is not 
possible, and where approximations are thought to be 
inappropriate, perhaps the simplest way of assessing the 
uncertainty inherent in model output is by use of Monte 
Carlo techniques. The uncertainty about parameter values is 
described by means of probability density functions, and 
the output from the model calculated for various selections 
of parameter values, taken from the assigned distributions. 
The uncertainty in the output is then described by means of 
some function of the observed output values - the mean and 
variance being most commonly used for this purpose, though 
Reckhow and co-workers have also used box-plots and 
probabilities derived from the Chebyshev theorem (Reckhow, 
1980: Reckhow and Simpson, 1980) . Examples of this approach 
to uncertainty analysis may be found in the work of Burns
(1975), O'Neill (1973), O'Neill et. al. (1981), Gardner et. 
al. (1981), and Dwyer and Kremer (1983). Kremer (1983) has 
discussed some alternative ways of describing the 
uncertainty about parameter values.

The selection of an appropriate probability density 
function to describe parameter uncertainty has been 
discussed by Tiwari and Hobbie (1976), who conclude that,



in cases of effective ignorance about the appropriate form, 
the use of a triangular distribution, defined on a range, 
is to be preferred. However, in the literature, the choice 
of uniform or Normal distributions is almost universal.

Parameter values are usually selected at random from the 
* specified distributions, but in a series of papers McKay

and co-workers have suggested that a more reliable method, 
Latin Hypercube Sampling, is available (McKay et. al., 
1976, 1979: Iman et. al., 1981a,b: Iman and Conover, 1980). 
This requires that the parameter density function be 
partitioned into a number of disjoint regions, each 

^ containing the same probability mass, and that a value be
selected from each of these regions during sampling. Iman 
and Conover (1980) have proved that, under certain 
conditions, such a sampling scheme gives more precise 
estimates of the output mean and variance than simple 
random sampling. However, the validity of the proof has 
been questioned (see discussion to Iman and Conover, 1980).

1.11. Various sensitivity coefficients.

In addition to the above techniques, which were all 
 ̂ designed for general use in mathematical modelling, a

number of ad-hoc methods of sensitivity analysis have been 
described in the context of specific applications. These 

4 methods are usually based on some simple function of model
output and parameter values, used as a sensitivity 
coefficient. For example, Abouel-Nour (1967) and Jones
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(1967) use the ratio:

( 1 . 8 )

value is perturbed to, say, 1.1 times its nominal value, 
and yQ is the baseline output value. Abouel-Nour (1967) and 
Ali (1968) use the coefficient:

Needless to say, different conclusions can be drawn from 
the same model according to which sensitivity measure is 
used. Both Wong (1980) and Ford and Gardiner (1979) have 
emphasised this fact, illustrating in detail the apparently 
contradictory results that can be obtained by studying a 
given mathematical model when different sensitivity 
measures are used.

Brown et.al. (1978), working with a mathematical model that 
yields five output variates, defined as a measure of 
sensitivity the maximum percentage perturbation that could 
be applied to a parameter, such that the average 
perturbation of all five output variates remained below

(y -y )/yJ p J o J o (1.9)

10%.

Ibbitt (1972) proposed a sensitivity measure for 
mathematical models that are "fitted" to a real data set, 
using some optimisation routine. Ibbitt introduced "errors"



*
(drawn from a specified probability distribution) into the 
data set, and then re-fitted the model to the new data. As 
a measure of the sensitivity of a particular parameter, he 
used the standard deviation of the values of that parameter 
estimated at each re-fitting.

McKay et. al. (1976;1979) and Gardner et. al. (1981) used%
rank correlation coefficients, and Pearson correlation 
coefficients to measure sensitivity, or, more specifically, 
the extent to which each parameter in the model is related

* to the output.

1.12. Fourier sensitivity analysis.

Cukier et. al. (1973; 1978) and Schaibly and Shuler (1973) 
have proposed a method of sensitivity analysis that 
simplifies to some extent the measurement of sensitivity in 
a model that has a number of parameters. The method is 
essentially as follows: each parameter is varied throughout 
a range in repeated simulations with the model. The values 
selected for parameters are made periodic by utilising a 

^ transform of the form:

x. = x'.(l + h.(s inw. z) ) (1.10)
3 3 3 3

where w^ and h^ are specified by the modeller for each 
^ parameter, and where z is varied between 0.0 and 2Vr. The

input parameters are thus periodic, and so, usually, will 
be the output from the model. This permits the model output
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#
to be represented by a fitted Fourier series, and Cukier 
et. al. (1973) show that certain coefficients in the 
Fourier representation are related to the differential 
sensitivity measures dy^/dx^. Thus, a large Fourier 
coefficient corresponds to a large differential sensitivity 
measure. The authors suggest that the main advantage of 
this approach is that sensitivity measures can be computed*
more quickly than is the case if each differential 
sensitivity measure is derived. There does not appear to 
have been any application of this technique in the

* literature, other than those given by Cukier and 
co-workers.

1.13. Discussion

The methods described above are the most frequently 
encountered techniques by which modellers attempt to convey 
something of the uncertainty inherent in model output. They 
can be summarised, for the purposes of discussion, as 
follows:

(i) differential sensitivity measures: these require no 
explicit description of the uncertainty inherent in model 
parameter values. The "sensitivity measure" is defined to 
be the partial derivative of the model output with respect 
to a particular parameter. These derivatives may be 
computed directly from the model, either analytically, or, 
more often, by numerical differentiation, or they may be 
derived from fitted response surfaces. Some modifications
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to the basic definition exist, which alleviate the scale 
dependence of the original measure. The computational 
burden of derivation may be reduced by use of the Fourier 
technique.

(ii) response surfaces: these require a more explicit 
description of the uncertainty about parameter values. 
Model output is determined for various possible parameter 
values, and a simple model fitted to the observed 
output/parameter data. This "metamodel" is then analysed 
further to provide descriptions of output uncertainty.

(iii) error propagation: these techniques require that the 
uncertainty about parameter values is explicitly described 
by means of probability distributions. The associated 
distribution of model output is then derived either 
analytically, in exact form or using approximations, or by 
direct Monte Carlo simulation. Some function of the model 
output distribution, typically conventional measures such 
as the variance, are then used to describe the output 
uncertainty.

(iv) other methods: these do not usually involve an 
explicit description of parameter uncertainty; typically 
one or two alternative or "perturbed" parameter values are 
used in the sensitivity study, and model output determined 
for these alternatives. Some simple function of "perturbed" 
and "baseline" output is used to describe uncertainty.
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All four categories of technique appear in the literature 
with roughly equal frequency, and no one method appears to 
be universally favoured for any particular type of model. 
There is only a small literature comparing alternative 
approaches: the papers by Burns (1975) and Gardner et. al.
(1981) are examples where the differential sensitivity 
measure is compared with error propagation.

In order to evaluate the merits of these approaches to the 
assessment and description of model uncertainty, it is 
necessary to establish some criteria by which their 
properties can be judged. The following criteria are 
proposed here:

(i) the method used should provide a measure of at least 
one important aspect of output uncertainty, and should be 
unlikely to mislead. Exactly how uncertainty is measured is 
a matter for judgement in each particular application, and 
the objectives of the modelling exercise must be kept 
firmly in mind - in some applications it may be sufficient 
to use a variance or standard deviation, and in others it 
may be important to use a measure that can be related to 
some practical criterion

(ii) the measure of uncertainty must be easy to interpret 
and to use in discussing and developing the model - in 
particular, it must be easily understood by non-technical 
users, who are frequently involved with practical 
applications of mathematical models
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(iii) the method should, either directly or by means of 
simple additional computations, allow the main sources of 
output uncertainty to be identified. In some modelling 
applications it may be possible to avoid the need for this, 
but in many the reduction of uncertainty is essential to 
the objectives of the model, and in such cases mere 
description of uncertainty is not adequate - the modeller 
must have measures which will help in refining and 
reformulating the model

(iv) the uncertainty description should not be disconnected 
from the practical objectives of the modelling exercise - 
ideally the measure should not only provide a general 
description of uncertainty, but it should be susceptible of 
utilisation when the model is applied to a specific problem

(v) whilst no method can be expected to be universally 
applicable or appropriate, it is desirable that the chosen 
method should be applicable to an acceptably wide range of 
models, especially models having several parameters and 
several output variates

(vi) the method should not present too great a 
computational burden - it should be easy to compute either 
manually, or using widely and readily available 
mathematical algorithms.

Considering firstly derivative sensitivity measures, it can
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be seen that they do not require an explicit consideration 
of the uncertainty about parameter values. It is not 
necessary to vary a parameter throughout its entire 
plausible range in order to derive the differential 
sensitivity measure, and, indeed, unless the relationship 
between output and parameter is linear over this plausible 
range, an estimate of its slope at a single point, such as 
the baseline parameter value, may be very misleading. If 
the relationship is linear, then the differential 
sensitivity measure is the rate of change of output per 
unit change in parameter value. This may be an adequate 
description of the nature of output uncertainty in some 
cases, but without concomitant information about the range 
over which the parameter is distributed, it is not very 
helpful. Also, comparisons of sensitivity measures for 
different parameters and between different models are 
hampered by the fact that the differential sensitivity 
measure is scale dependent, and the values it takes may 
vary over several orders of magnitude, unless one of the 
"relative" differential sensitivity measures is used.

Furthermore, the differential sensitivity measure cannot be 
used to indicate the importance of each parameter in 
determining the total output uncertainty. For example, if 
the differential sensitivity measure for a parameter x̂  is
2.0 units, and that for x^ is 3.0 units, it may appear that 
uncertainty caused by the second parameter is more 
important. However, this is clearly not the case if the 
uncertainty about x^ is extremely small, whilst parameter



x^ is known only to an order of magnitude. This underlines 
the fact that it will usually be necessary to be explicit 
about the extent of the parameter uncertainty when trying 
to assess the importance of a parameter's effect in model 
output. Put more simply, no matter what the potential 
influence of a parameter is, in view of its mathematical 
relationship with model output, it is of no interest at all 
from a sensitivity point of view if its value is known 
precisely. Yet even if this were the case, the differential 
sensitivity measure would still be defined, and could be 
computed - it might even be very large. Furthermore, the 
differential sensitivity measure cannot be used in any 
obvious way in further application of the model, for 
example in formal decision making. It can also be 
computationally burdensome to derive differential 
sensitivity measures, especially if numerical 
differentiation must be used. It therefore seems reasonable 
to propose that the differential sensitivity measure is of 
value only when the uncertainty about each parameter is 
such that the relationship with output is linear over the 
plausible range, and such that there is roughly the same 
degree of uncertainty about each parameter.

The use of response surfaces is an improvement in two 
respects. Firstly, in order to generate the data used to 
fit the response surface, it is necessary to be more 
explicit about the uncertainty in each parameter value, or 
at least about its plausible range. If a parameter value is 
known for certain, for example, it will not appear to be
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related to the output in the fitted response surface. 
Secondly, assumptions about the relationship between model 
output and parameter value are explicitly described and 
evaluated when the response surface is fitted, and any 
inadequacies in the assumption should become apparent at 
that stage. There are therefore two main aspects of the 
response surface approach to be considered. The first is 
the extent to which the fitted model represents the actual 
relationship between output and parameters, and the second 
is how the response surface is then used to describe output 
uncertainty. Obviously the fitted response surface is, at 
best, an approximation to the actual relationship between 
output and parameters. The true relationship (or at least 
the modeller's view of this) is, after all, given by the 
mathematical model to which the response surface is being 
applied. It is for this reason that conventional 
statistical significance tests of the coefficients in a 
response surface, as proposed by Kleijnen (1975) and 
Kohberger et. al. (1978), are most unlikely to be 
appropriate. If a parameter is not believed to be related 
to output, it should not have been included in the original 
model, and, conversely, the inclusion of a parameter in the 
mathematical model implies a belief that it is of some 
importance. A test of "significance" of such a paramter 
would therefore seem illogical.

If differential sensitivity measures are computed from the 
response surface most of the disadvantages noted above will 
apply, except that the assumptions about the nature of the
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*
relationship will at least be easily evaluated, by 
measuring the goodness-of-fit of the response surface. 
Whether or not some indication of the importance of each 
parameter is given also depends on how the response surface 
is used - the methods of Kohberger et. al. (1978), cited 
above, offer some prospect of such information.

To summarise, the use of response surface methods may be 
adequate when the fit of the response surface is good, and 
when suitable use is made of the response surface to»
provide descriptions of output uncertainty. In other 
circumstances the approach may be misleading. Generally, 
the fitting of response surfaces is less computationally 
demanding than numerical evaluation of differential 
sensitivity measures.

Error propagation techniques are a further improvement on 
both differential sensitivity techniques, and response 
surfaces. In the case of error propagation it is necessary 
to explicitly describe the uncertainty about parameter 
values, and, furthermore, no assumption need be made about 
the form of the relationship between output and parameter, 
except in so far as this is already implicit in the 
mathematical model that is being studied. The exception to 
this rule is when approximate error propagation formulae 
are utilised, since the use of these implies the assumption

t that nonlinear terms in the output-parameter relationship
are negligible. The value of error propagation techniques 
therefore depends on the way in which the derived output

♦
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distribution is used to convey information about the 
uncertainty inherent in the model's predictions. On the 
debit side, no explicit measure of parameter influence is 
available from error propagation techniques, and there is 
no obvious way of employing this kind of method in 
practical application of the model to a specific management 
problem. However, error propagation is considered to be 
less demanding computationally than either numerical 
evaluation of differential sensitivity measures, or the 
fitting of response surfaces. It should be noted that 
analytical error propagation is only possible for very 
simple mathematical models, and this fact, together with 
the assumptions implicit in the use of approximate 
formulae, suggests that Monte Carlo error propagation is 
generally to be preferred.

Finally, ad-hoc approaches to sensitivity need to be 
considered. Perhaps the principal defect of such approaches 
is that they employ descriptions of parameter uncertainty 
that are unlikely to be adequate. For example, it is common 
to find that the model output may be re-evaluated only 
once, with a parameter set to, say, 1.1 times its baseline 
value. The sensitivity measures derived from such an 
approach, some of which are described above, may or may not 
be adequate as descriptions of uncertainty, depending upon 
the particular application. Clearly the ones described 
above were thought to be adequate in the contexts in which 
they were used. Without an adequate description of the 
nature of parameter uncertainty, ad-hoc approaches may
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mislead; perhaps their main advantage is their simplicity, 
both computationally, and in interpretation. As with other 
techniques, it may not be possible to formulate any measure 
of the extent to which each parameter influences output 
uncertainty, except perhaps when correlation coefficients 
are used, as cited above.

♦
More generally, all the above methods have some
disadvantages in the case of models having several 
parameters and several output variables. In such cases it

* is usually necessary either to compute a sensitivity 
measure seperately for each output/parameter combination, 
or to formulate some compound function of all the output 
variables, and relate this to model parameters. Neither 
approach is conducive to simple description of output
uncertainty.

Furthermore, none of the approaches described above
provides information that can be used at later stages in
the application of the model. The computational effort 
involved in their derivation must therefore be set solely 
against their value in informal sensitivity studies.

1.14 Summary.

The above introduction indicates some of the defects of 
presently available methods of sensitivity analysis, and 
accordingly suggests possibilities for the development of 
new techniques. The following conclusions are drawn from
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the introduction; they provide the basis for the methods 
proposed in the remaining Chapters.

(i) the practical value of a mathematical model may be 
jeopardised unless a presentation of its predictions 
includes an appropriate description of the uncertainty 
induced by uncertainty about parameter values

(ii) a variety of techniques are available by which
uncertainty may be assessed and by means of which
uncertainty may be described to a decision-maker. The best 
such approaches rely on explicit description of parameter 
uncertainty by means of probability distributions, and the 
generation of a sample from the model output distribution 
by means of Monte Carlo simulation

(iii) uncertainty must be described by appropriate 
utilisation of the output distribution thus generated. To 
supplement methodology presently available in the 
literature, techniques with the following characteristics 
are required:

(a) a technique that provides easily interpretable 
information about the uncertainty inherent in model output, 
for models having several parameters and/or output variates

^ (b) a technique that provides a simple description of
uncertainty, easily computable from the model output
distribution, which is of both general informative value, 

4

*

43



and also has practical interpretations, in at least some 
circumstances

(c) a technique that not only provides general descriptions 
of uncertainty, but which may also be utilised by a 
decision-maker when the model is employed for the purposes 
of practical policy formulation

(d) a technique by which the decision maker can determine 
which parameters in the model most influence the 
uncertainty in model output, and which makes as few 
assumptions as possible about the nature of the model, and 
the relationship between parameter values and output.

*
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CHAPTER TWO

A GRAPHICAL AID TO MULTIVARIATE SENSITIVITY ANALYSIS

2.1. Introduction.

In order to clarify and to illustrate some of the proposals 
of Chapter One, consideration is given in this Chapter to 
one aspect of the uncertainty analysis of a particular 
ecological mathematical model - a model of the dynamics of 
rabies in red fox populations.

2.2 Rabies in red foxes.

Rabies is a virus disease of the central nervous system to 
which most, if not all, mammals are susceptible. The 
disease is usually fatal. Interest in rabies in Europe has 
increased as the current epidemic of the disease on the 
continent has spread - originating in Poland in the 1940s, 
it is now only tens of kilometres from the English Channel 
coastline in France. The main vector of the disease in 
Europe is the red fox. Many other mammals contract the 
disease, however, and it therefore presents three main 
threats: to human life, to farm animals and other 
livestock, and to wildlife. From a purely practical point 
of view, interest centres on the control of rabies, and an
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essential step in planning control measures is to 
understand something of the way in which the disease is 
propagated and maintained in natural populations.

2.3. A mathematical model.

Clearly the scope for experimental work on the propagation 
of rabies in fox populations is limited. Studying the 
problem is therefore mainly restricted to observation of 
historical patterns, and to mathematical modelling of the 
process.

Anderson et.al. (1981) have developed a deterministic 
compartmental model of fox rabies - the fox population 
being represented by three classes of animal. In this model 
the first category, susceptible animals, have a population 
density D, the second category, animals that are infected 
by rabies but not capable of passing on the infection, have 
population density E, and the third category, animals that 
are infectious, have density F. The total population 
density N = D + E + F.

The model is constructed by considering the rates of change 
of these three population densities over time. Firstly, it 
is assumed by Anderson et. al. that the death rate of foxes 
is density dependent - specifically, that the per capita 
death rate b is linearly related to N such that the total 
death rate is given by the expression:
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(b + yN) N (2 .1)

Here the parameter y may be said to measure the "severity" 
of the density dependent increase in mortality.

Though evidence on the point is conflicting (see sources 
cited by Anderson et. al.), the model is further developed 
on the assumption that the per capita birth rate of foxes, 
c, is independent of total population density. The 
intrinsic per capita rate of increase is equal to c-b, and 
is represented by the symbol r.

The rate at which susceptible foxes acquire rabies is then 
assumed to be proportional to the density of susceptible 
animals and of infectious animals, according to the 
expression:

rate = BDF (2.2)

where B is a coefficient referred to by Anderson et. al. as 
a "transmission coefficient". Next it is assumed .that 
animals pass from the infected to the infectious class at a 
constant per capita rate s - this parameter accordingly 
being the reciprocal of the "latency period" of rabies in 
foxes. The final assumption necessary to define the model 
is that rabid foxes die at constant per capita rate a. 
Given these assumptions, the losses and gains of each
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"compartment" in the model can be written as:

changes to "susceptibles" =
+ net rate of increase
- rate of transition to "infected state"

changes to "infected" =
+ rate of transition to "infected state"
- natural death rate
- rate of transition to "infectious state"

changes to "infectious" =
+ rate of transition to "infectious state"
- natural death rate plus rabies death rate

or, as expressed mathematically by Anderson et. al., in the 
form of three coupled differential equations:

dD/dt = rD - yDN - BDF (2.3)
dE/dt = BDF ■- (s+b+yN) E (2.4)
dF/dt = sE - (a+b+yN) F (2.5)

2.4. Use of the model.

These equations may be solved numerically to show how the 
densities D, E, and F change over time - a graphical 
illustration of the changes is exemplified in Figure 2.1. 
To do this it is necessary to supply initial densities of



each category of animal, and numerical values for the six 
parameters in the model, r, y, B, s, b, and a.

What kind of information might be required from such a 
model, by a decision maker who is responsible for planning 
and organisation of rabies control? Some possibilities are:

(i) an indication of the extent to which rabies might 
become established in a fox population, if the population 
is not subject to control - this might be suitably measured 
for example, by the number of infected foxes present in the 
population after, say, a one year period following 
introduction of rabies

(ii) an indication of the potential persistence of rabies 
in such a population - measured perhaps by the number of 
infectious foxes in the population - those foxes that are 
capable of passing on the disease - at the same point in 
time

(iii) an indication of the maximum impact that rabies might 
have in such a population - measured perhaps by the maximum 
number of infected foxes in the population over a simulated 
20 year period, and by the minimum size to which the fox 
population falls over the same hypothetical 20 year period.
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2.5. Uncertainty analysis.

To derive single values of these model outputs, given 
single values of the parameters r, y, B, s, b, and a, is 
not difficult. The parameter values are substituted into 
the equations above, and these are integrated over the 
necessary values of t in order to generate the output. 
However, to give a single set of answers to a decision 
maker is inadequate. The "true" values of r, y, B, s, b, 
and a, are not known. Anderson et. al. (1981) suggest 
"baseline" or best-estimate values (Table 2.1.), but
examination of the sources of these estimates (cited by 
Anderson et. al.) indicates that they cannot be considered 
precise. Since there is uncertainty about these parameter 
values, there is uncertainty inherent in values output by 
the model, and the decision maker must have easily 
assimilated and useful descriptions of this uncertainty.

2.6. First steps in the description of output 
uncertainty.

An appropriate first step in the sensitivity analysis of a 
mathematical model is to provide a general, informal 
description of the uncertainty inherent in the output. Such 
an assessment can be thought of as an example of the 
exploratory analysis becoming more widespread in 
statistics. The purpose of such a procedure is to convey, 
in a simple and summarised form, information about the



model that can easily be interpreted by the decision maker. 
Such a method is now proposed.

2.7. Sensitivity data.

Consider a model with p parameters x^ (i=l...p) and v 
output variates y^ (j=l...v). Where uncertainty exists 
about the true values of the parameters it is appropriately 
described by a joint probability distribution. Sensitivity 
data may then be generated by sampling parameter values 
from this joint distribution, and using these values in 
successive runs of the model to generate a set of possible 
values for the output variates. If n such sets of 
parameters are sampled, and the model is run with each set, 
the resulting data may naturally be represented as a matrix 
of order n x (p+v).

Often the magnitudes of the various parameters and outputs 
will be quite different, and such differences of scale are 
a notorious source of difficulty in interpreting 
multivariate data. It is therefore appropriate to rescale 
the data in some way.

In the case of output from a mathematical model, the 
following scheme is proposed here. For each column in the 
n x (p+v) matrix, there exists a "baseline" or "best 
estimate" value. Rescaling to express each element as a 
ratio of its baseline, and adjusting the mean of each



column to equal 1.0, produces a natural compatibility of 
scale for the matrix.

2.8. Preliminary sensitivity analysis.

A decision maker, in order to make a preliminary assessment 
of the uncertainty inherent in the model, is likely to 
require:

(i) a description of the variance-covariance structure of 
the model output; to assess the magnitude of the 
uncertainty in the outputs, and how they are related to 
each other

(ii) a summary that highlights any unusual or particularly 
deviant outputs produced by the model; such extreme results 
may reflect possible behaviour of the real system, or they 
may indicate a defect in the construction of the model

(iii) a method that permits easy diagnosis of any such 
extreme outputs, in terms of the parameters that most 
influence them, and the variates that respond most 
strongly.

2.9. The value of a graphical approach.

Graphical methods have in recent years become increasingly 
popular as aids to multivariate analysis. Since the data



generated as proposed above has the conventional 
multivariate matrix structure, and since the purpose of the 
preliminary assessment is to convey information in a 
summarised and easily interpreted form, it is reasonable to 
consider graphical approaches to the problem of describing 
uncertainty in model output.

Gabriel (1971) described a multivariate statistical 
technique that he called the Biplot, which, with the 
modifications described below, proves to be suitable device 
for evaluating multivariate sensitivity data.

2.10. The Biplot.

The Biplot is a graphical display of multivariate data 
based, where necessary, on a rank two approximation of the 
original data. The plot is formed from two sets of 
co-ordinates, one of which represents the rows of the 
matrix, and the other the columns. There are several types 
of Biplot, but the one most suitable for the present 
application, referred to by Gabriel (1971) as the GH’ 
Biplot, assumes that the rows of the matrix are a random 
sample from a larger population.

The rows of the matrix are plotted so that increasing 
deviation of a row from the mean is shown as increasing 
distance from the origin of the Biplot. The distances on 
the Biplot in fact approximate the Mahalanobis distance



between rows of the sensitivity data matrix. The columns of 
the matrix are represented as projections that have lengths 
proportional to the variance of the column they represent. 
The correlation between columns is approximated by the 
cosine of the angle between the column projections. The 
position on the plot of a point representing a row of the 
matrix is determined by the extent to which each column 
contributes to the row's displacement. Gabriel (1971) has 
proved and described these properties in detail.

By modifying the GH' Biplot, as described below, and by 
using the re-scaling described above, each row of the 
sensitivity data matrix can be displayed in such a way that 
rows that are particularly displaced from the baseline - 
indicating a potentially deviant model response, appear 
distant from the Biplot origin. The position of a point 
representing a row, in relation to the projections that 
represent model parameters and outputs, allows the nature 
of such a response to be diagnosed. Simultaneously, the 
Biplot gives a clear picture of the variation in model 
output, and of the correlations within and between the 
parameters, and the output variates.

2.11. Biplot algorithm.

Let V be the variance-covariance matrix derived from the 
mean-centred scaled data matrix created by n runs of the 
model. Denote the first two latent roots and vectors of nV
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by 1̂  , i , and ĉ  , Cj , respectively. The co-ordinates 
of the Biplot are given by:

G = ( (1.0A/T1)Drc1 ; (1.0/7T2)Drc2 ) (2.6)

H =  ( )(1.0/yS) (2.7)

where Dr is the mean-centred sensitivity data matrix in 
which each value in the parameter columns has been replaced 
by its baseline value. Because each column is mean centred, 
this is equivalent to setting all elements of the first p 
columns to zero. This modification to the first p columns 
of the data matrix is non-standard, and is proposed here so 
that the resulting Biplot highlights only discrepant output 
values and not unusual parameter values. With each 
parameter value reset in the data matrix to its baseline 
value, the algorithm of (2.6) and (2.7) produces 
inter-point distances that reflect only differences between 
output on each run of the model.

Matrices G and H are, respectively, n x 2 and (p+v) x 2 
matrices; each row of these matrices is treated as an x-y 
co-ordinate pair to produce a graphical display. The (p+v) 
co-ordinate pairs from matrix H are drawn as lines from the 
Biplot origin to the point indicated by the co-ordinates.

Occasionally a re-scaling of the sensitivity data matrix, 
by multiplying throughout by a scalar, may be required in
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order to produce compatible scales in G and H', and so 
avoid a graph on which the variate vectors are too small to 
permit easy interpretation of the plot. An appropriate 
value of such a scalar is best selected by trial and error, 
after observing plots derived with different values. This 
scalar multiplication does not affect the above properties 
of the Biplot (though it would affect other properties not 
employed here - see Gabriel (1971) for details).

2.12. An application of the Biplot technique.

The Biplot technique is illustrated here by application to 
the mathematical model described above. The model contains 
six parameters, and, in this illustration, is used to 
predict four output variates, as described above. The 
baseline values of the six paramaters, from Anderson et.al. 
(1981), are given in Table 2.1. These parameters, and hence 
the outputs from the model, are uncertain quantities, and 
the purpose of the Biplot is to provide a concise 
illustration of the output uncertainty.

In order to generate a sample from the output distribution, 
the uncertainty about each of the parameters in the model 
was described by assigning to each parameter a uniform 
distribution, centred on the baseline value (Table 2.1) and 
having a range equal to 60% of the baseline. Thirty runs of 
the model were made, each with a selection of parameter 
values made randomly from these probability distributions,
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and values of the four outputs calculated in each run. The 
output values derived in this way are given in Table 2.2.

Together with the values of the parameters used in each 
run, the data in Table 2.2 were used to derive the 
sensitivity data matrix, by re-scaling as described above, 
and the co-ordinates of the Biplot of the re-scaled data 
were derived as in (2.6) and (2.7). These co-ordinates are 
given in Table 2.3, and the Biplot produced from them is 
displayed in Figure 2.2.

2.13. Interpretation of the Biplot for the fox rabies 
model.

The lines on the Biplot represent the columns of the 
sensitivity data matrix. The line labelled PI, for 
instance, represents the first parameter in the model - the 
per capita natural rate of increase (which is a function of 
the per capita birth and death rates).

The lengths of these lines are proportional to the variance 
of the corresponding column. Thus, the Biplot conveys 
immediately the information that outputs labelled VI, V2, 
and V3 have roughly equal variance, whilst V4 varies much 
less. In view of the re-scaling proposed above, where each 
output value is expressed as a ratio of its baseline, this 

4 can be interpreted to mean that there is greater
uncertainty about the outputs VI, V2 and V3, than about V4.
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The variance of parameters is of less interest in the 
diagram, since it will usually, as in this example, be 
specified by the modeller in order to produce the Biplot.

The orientation of these vectors is related to the 
correlation structure of the data - the cosine of the angle 
between any two lines being an approximation to the 
correlation coefficient between corresponding columns.

The Biplot in Figure 2.2 therefore shows that the outputs 
VI, V2, and V3 are highly correlated with each other (small 
angles between the vectors), and rather highly negatively 
correlated with V4 (angles of between 145° and 175° between 
the V4 vector and the other three vectors).

Having shown that outputs VI, V2, and V3 vary the most, and 
that they are highly correlated with each other, and 
negatively correlated with V4, it is then possible to 
determine from the Biplot something about the causes of 
this uncertainty. The output vectors VI, V2 and V3 are at 
angles ranging between 20° and 50° to the vector 
representing the parameter PI, suggesting relatively high 
correlations with this parameter. It is therefore 
reasonable to infer, if only provisionally, that 
uncertainty about this parameter is quite important, in 
that it may be primarily responsible for the resultant 
uncertainty in the model outputs. Parameter P2 is at an 
angle of about 80° to the vectors VI and V3, suggesting
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that it has only low correlation with the model output, 
despite the more acute angle of about 50° to vector V2. 
Other parameters appear to have only moderate or low 
correlations with VI, V2 and V3, probably negative 
correlations in the case of P5, which points in roughly the 
opposite direction.

All these inferences about the uncertainty inherent in the 
model can be made quickly and easily once the principles of 
the Biplot are familiar to the modeller. The accuracy of 
the inferences can be confirmed by reference to Tables 2.4 
and 2.5, where the actual variances and correlations of the 
model outputs and parameters are presented.

The numbered points 1 to 30 in Figure 2.2 represent the 30 
simulation runs of the model, each with a random selection 
of parameter values. Most of the runs produced output 
clustered around the baseline (the Biplot origin). The 
output most markedly displaced from this baseline was that 
produced in the 9th run of the model: this point lies in 
the lower left hand corner of the figure.

The position of any point on the Biplot is determined by 
those columns in the sensitivity data matrix that 
contribute most strongly to its deviation from the baseline 
output. Point 9 on Figure 2.2 is displaced from the origin 
broadly in the direction of VI and V3, and in the opposite 
direction from V4. This indicates that this particular run
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of the model produced high values for outputs VI and V3, 
and a rather low value for V4: overall this run was the 
most displaced from the baseline output.

Following from the inference made above, that parameter PI 
appears to be most highly correlated with VI and V3, it is 
reasonable to infer that run 9 of the model probably had a 
high value for parameter PI. Similar conclusions would 
apply to run 6 of the model, which is also displaced to 
some extent.

Summarising these inferences in terms of the model, the 
following conclusions may be reached by inspection of the 
Biplot:

(i) the greatest variation or uncertainty in the model 
output occurs for the number of infected and infectious 
foxes at the end of a simulated 12 month period, and for 
the maximum number of infected foxes in the population over 
a simulated 20 year period.

(ii) these outputs are highly correlated

(iii) this variation is principally attributable to 
uncertainty about the value of r in the differential 
equation model - the value of the per capita rate of 
natural increase.
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2.14. Summary.

The Biplot, modified as described above, is a simple 
technique that allows a concise and easily interpretable 
summary of the uncertainty in model output. The decision 
maker can be given a single graphical summary of output 
variation, correlations between parameters and outputs, and 
of any unusual or potentially deviant model responses. The 
decision maker is, in the case of the red fox rabies model, 
shown that uncertainty about three of the four outputs in 
which he is interested is much the same, that he can feel 
more confident about the value of the fourth model output, 
that inability to precisely specify the intrinsic rate of 
increase of fox populations is the main cause of the output 
uncertainty, and, additionally, he is alerted to the 
possibility that the number of infected foxes in the 
population might be rather different from the values that 
tend to be produced by the model in repeated simulations.

4
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Figure 2.1. An example of a time track of fox population sizes 
generated by the red fox rabies model.
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Figure 2.2. Biplot of sensitivity data from the red fox rabies 
model.



Table 2.1
Baseline values of the six parameters and four output 
variates from the red fox rabies model.

quantity baseline value
r 0.50
y 0.25
B 79.69
s 13.00
b 0.50
a 73.00

number of infected 
foxes after 12 months 23

number of infectious 
foxes after 12 months 4

maximum number of infected
foxes over 20 yr. period 31

minimum fox population 
size over 20 yr. period 1138

4 i
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Table 2.2
30 values of four measures computed from the red fox
rabies model , generated in successive runs of the model,
each with a different set of parameter values 
from specified probability distributions.

, selected

number of number of maximum minimum
infected infectious number of fox
foxes after foxes after infected population
12 months 12 months foxes over 

20 yr period
size over 
20 yr period

45.56 4.51 54.28 1000
27.72 3.61 33.25 1074
31.68 5.57 32.70 1000
16.87 3.91 17.14 1149
23.47 5.01 23.48 1068
71.74 12.12 86.52 965
19.85 3.19 20.55 1151
11.07 3.43 12.80 1104
98.40 10.35 112.97 939
19.76 2.15 23.39 1146
48.38 7.76 52.05 981
21.93 3.25 25.64 1151
23.33 4.41 23.56 1119
28.87 3.67 31.36 1062
38.50 7.53 44.62 990
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Table 2.2 (continued)

number of number of maximum minimum
infected infectious number of fox
foxes after foxes after infected population
12 months 12 months foxes over size over

20 yr period 20 yr period

37.04 8.11 45.19 1092
21.73 4.31 21.87 1124
23.05 3.48 30.00 1126
61.51 11.07 63.87 1038
30.77 6.74 32.13 1055
50.49 7.86 68.47 984
27.29 5.34 33.09 1088
48.74 10.84 ' 50.22 1064
29.51 4.96 32.68 1108
50.11 14.16 51.60 954
23.14 3.61 23.39 1054
31.85 7.57 31.94 1019
37.94 4.39 45.18 1005
36.12 6.95 39.62 1015
34.13 5.16 42.98 1067
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Table 2.3
Co-ordinates of the Biplot for the red fox rabies model.

matrix G of the Biplot matrix H of the Biplot
-0.24 -0.88 0.37 0.22 -0.39 0.29
0.54 -0.12 -0.91 0.31 -0.24 0.48
0.25 0.16 0.37 0.11 -0.02 -0.06
0.97 0.58 -1.31 0.85 0.04 0.19
0.61 0.48 0.78 0.22 0.09 0.00

-2.05 -0.86 0.05 0.54 0.01 -0.05
0.93 0.30 0.07 -0.50 -1.11 -0.21
1.20 0.73 -0.08 0.14 -0.97 0.27

-2.81 -2.45 0.10 -0.21 -0.98 -0.26
1.00 0.04 0.06 0.03

-0.61 -0.30
0.81 0.14
0.69 0.37
0.53 -0.09

-0.27 0.08
-0.30 0.21
0.75 0.43
0.70 0.05

-1.40 -0.27
0.16 0.41

-0.90 -0.71
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Table 2.4
Variance-covariance matrix for the parameters and 
output variates in the red fox rabies model.

PI 8.10
P2 8.75 12 .22
P3 0,.75 0.86 2,.31
P4 0,.73 1.08 -0,.41 2,.52
P5 -1..13 -0 .77 -0,.17 0,.15 1,.71
P6 0..54 0.69 2,.19 -0,.13 -0..20 2,.16
VI 11,.58 6.17 1..80 -2,.76 -2,.98 0,.64
V2 11..33 6.71 -2..21 1,.64 -2,.26 -2,.77
V3 9..78 4.93 1..43 -3,.42 -2..56 0..36
V4 -0..31 0.08 0..04 0..23 0..07 0,.15

VI 38.94
V2 29. 24 35.78
V3 34. 55 24.47 31. 57
V4 -2. 15 -1.87 -1. 90 0.20

%
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Table 2.5
Correlation matrix for the parameters and output 
variates in the red fox rabies model.

PI 1.00
P2 0.88 1.00
P3 0.17 0.16 1.00
P4 0.16 0.19 -0.17 1.00
P5 -0.30 -0.17 -0.09 0.07 1.00
P6 0.13 0.13 0.98 —0.06 —0.11...
VI 0.65 0.28 0.19 -0.28 -0.37.. .
V2 0.67 0.32 -0.24 0.17 -0.29...
V3 0.61 0.25 0.17 -0.38 -0.35...
V4 -0.25 0.05 0.05 0.33 0.13.. .

PI P2 P3 P4 P5

P6 • • 1.00
VI • « 0.07 1.00
V2 -0.32 0.78 1.00
V3 • • 0.04 0.99 0.73 1.00
V4 • • 0.23 --0.77 -■0.70 -0.76 1.00

P6 VI V2 V3 V4
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CHAPTER THREE

DEFINITION AND PROPERTIES OF A COEFFICIENT OF 
SENSITIVITY FOR MATHEMATICAL MODELS

3.1. Introduction.

Preliminary sensitivity analysis of the fox rabies model, 
by means of the Biplot, conveys to the decision maker a 
great deal of information in concise form. The model has 
six parameters, and produces four output variates, yet the 
main features of the output uncertainty can be determined 
from a single graph. However, this is achieved by relying 
to an extent on subjective interpretation, approximation, 
and certain assumptions. These are discussed more fully in 
Chapter Six. For the purposes of the present Chapter it is 
sufficient to note that, in order to supplement the 
information gained from the Biplot, the decision maker will 
frequently need more objective numerical descriptions of 
the uncertainty inherent in the model.

As concluded in Chapter One, such descriptions are best 
computed from the generated sample of model output. In the 
literature conventional statistical measures such as 
ranges, standard deviations, and variances are often used 
for this purpose, but these measures do not describe 
uncertainty as such. Since the decision maker is interested 
in a description of uncertainty, an alternative,
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probabilistic measure would seem to be preferable. Such a 
measure is proposed in this Chapter.

3.2. A specific measure of uncertainty.

How does a decision maker think about uncertainty in the 
fox rabies model? No single answer can be given to this 
question, but a decision maker who is responsible for 
planning and organising a scheme for the control of a 
rabies outbreak might react as follows.

A successful control scheme must be able to cope with the 
expected level of rabies in a fox population, and should be 
sufficiently flexible to cope with the range of levels 
thought likely. The decision maker may therefore organise a 
control scheme that will comfortably contain a range of 
levels of the disease. Given that the scheme is designed to 
cope with such a range, it is reasonable to suppose that, 
in reflecting upon the uncertainty inherent in the model 
output, the decision maker, rather than thinking about 
variances or standard deviations, will think about how 
likely it is that the level of rabies in a fox population 
will be outside the range which his control plans are 
designed to encompass. This line of argument suggests that 
a suitable measure of the uncertainty inherent in model 
output might well be based on the estimated probability 
that an actual result will fall outside a certain 
pre-determined range, this range being selected by the 
decision maker according some practical criteria. Such a
measure may be defined as follows.
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3.3. Generating data for sensitivity analysis.

Consider a mathematical model having p parameters

vector (x'jL ?i=l...p) he the vector of baseline or best

the corresponding vector of output variates. Data for 
sensitivity analysis may be generated by assigning a joint 
probability distribution to the p model parameters, and 
using this distribution to generate, say, n sets of 
parameter vectors (xi ;i=l...p)r (r=l...n). Each of the n 
parameter vectors may then be used in turn in the 
mathematical model to generate a corresponding vector of 
outputs. Denote the rth parameter vector and its 
corresponding output vector (x)^ and (y)r , respectively.

3.4. Definition of a coefficient of sensitivity.

Consider in turn each of the vectors (y)r (r=l...n), 
generated as specified above. For each vector assign a 
score

(i=l...p) and v output variates yj (j=l...v). Let the

v
sr (3.1)

where

<ij = 0 if | yj - y' j I ^ kY ' j
(3.2)

dj = 1 if I - y'j I >ky'j
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then the coefficient

Sk = (srwr)/ X j w r) (3.3)

where w^ is a weighting coefficient (see below), is defined 
to be the 100k% sensitivity coefficient of the v outputs 
for the model.

3.5. Properties of the proposed coefficient.

The above coefficient is defined as the proportion of model 
outputs that lie outside a range centred on the baseline 
output value. This conceptually simple measure of model 
sensitivity has several appealing properties:

(i) the coefficient is bounded by the values 0 and 1. This 
standardisation makes interpretation much easier and avoids 
the confusion that can arise with coefficients that are 
unbounded and may differ by several orders of magnitude.

(ii) the coefficient is defined for models having any 
number of parameters, and any number of output variates, 
and may also be calculated separately for each output 
produced by the model.

(iii) because the coefficient is independent of scale in 
the sense of (i) above, it is easy to compare the 
sensitivities of different models.
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(iv) the derivation of the coefficient makes no assumptions 
about the form of the induced relationship between 
parameters and model outputs.

(v) the coefficient is simple to compute once sensitivity 
data are generated - the computation may be done manually

(vi) the coefficient has an obvious and immediate 
probabilistic interpretation, being based on the proportion 
of model outputs that lie outside a certain range.

3.6. The weighting coefficient.

The quantity wr in (3.3) above is a weighting coefficient 
for the vector (y) . In some cases it may be appropriate
to weight each output vector equally, in which case 
w =1 V  r, and (3.3) reduces to

However, it may sometimes be more appropriate to weight 
each vector of outputs according to the chance that such a 
vector may be realised i.e. to use as a weight wr , a 
quantity proportional to the corresponding likelihood of 
the vector (x)r .

3.7. An example.

The calculation of the sensitivity coefficient described 
above may be illustrated using the data output by the red

n
(3.4)

r-:L
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fox rabies model, and presented in Table 2.2. The first 
step is to choose which value of k to use in computing the 
coefficient. Here it is supposed, purely for the purposes 
of illustration, that a decision maker has designed a 
rabies control plan that will control an outbreak of the 
scale that might otherwise give rise to a situation in 
which the number of infected foxes after a 12 month period 
would be 23 (the "baseline" output from the fox rabies 
model), and that the plan would be adequate to cope with 
this level plus or minus 20%. The decision maker would then 
have a natural interest, when assessing his uncertainty, in 
the 20% sensitivity coefficient, as defined above.

The calculation of a 20% sensitivity coefficient for this 
model proceeds as follows. The first step is to define, for 
each output variate, a region centred on the baseline 
output and bounded by values of 0.8 and 1.2 times the 
baseline value. The baseline values and appropriate regions 
for each of the four output variates are given in Tables
2.1 and 3.1. Then, for each output vector in turn, the 
score ŝ. is computed, as described above. Thus, for the 
first output vector, the value for the number of infected 
animals in the population after a simulated 12 month 
period, and the value of the maximum number of infected 
animals in the population after a simulated 20 year period, 
both lie outside the corresponding 20% range. The score for 
this vector is therefore 2/4. The scores for other vectors 
are calculated similarly, and the resultant scores 
converted into the sensitivity coefficient defined above. 
Since independent uniform distributions were assigned to
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the parameters used to generate the output vectors, each 
vector has been weighted equally. The resulting 20% 
sensitivity coefficients, for each output variate 
separately and for the model as a whole, are given in Table
3.2. From this table it can be seen that the conclusions 
drawn from the Biplot in Chapter Two are substantiated - 
the first three variates output by the model, which in the 
Biplot were shown to have the greatest variance, have the 
highest sensitivity coefficients, whereas the minimum fox 
population size, shown by the Biplot to have low variance, 
has the lowest sensitivity coefficient. The decision-maker 
can therefore be confident about the model's predictions 
concerning the minimum fox population size, but much less 
confident about single predicted values of the other three 
variates, since these are shown to have considerable 
uncertainty attached to them.

3.8. Summary.

Note that the use of a 20% range above was purely for the 
purposes of illustration, and that this should not be taken 
to imply that such a range would be an appropriate one to 
utilise in designing rabies control plans. In practice, 
control plans would be designed to take into account many 
factors in addition to those about which the rabies model 
provides information. Nevertheless, the principle proposed 
above would still apply. The fact is that, in practice, 
management policies are frequently designed to cope with a 
range of possible situations, and, given this, it is 
natural when describing uncertainty to think about the
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probability that a result will be obtained that is outside 
this range.

The values of the sensitivity coefficient defined above all 
lie, by definition, between 0 and 1, with higher values 
indicating that a greater proportion of the generated 
output lies outside the range defined. Confining the values 
in this way improves the utility of the coefficient, since 
it becomes easy to compare the sensitivity of different 
outputs within a model, or between different models (see 
e.g. McCuen, 1973). A 20% sensitivity coefficient of, say,
0.5, immediately conveys something of the uncertainty 
inherent in the output - it says that 50% of the output 
values generated by the model lie outside the range bounded 
by 0.8-1.2 times the baseline. The higher the value of the 
coefficient the greater is the dispersion of model output 
values, and the greater the uncertainty in the output. 
Thus, for example, in the rabies model above the least 
sensitive output is the minimum size of the simulated 
population - no values of this latter output lie outside 
the 20% range.

A further advantage of the definition proposed above is 
that the choice of k permits the "severity" of sensitivity 
analysis to be selected by the modeller. A severe test of a 
model, for example, might be made by calculating the 1% 
sensitivity coefficient. This would indicate the proportion 
of model outputs that lie outside the corresponding 
baseline + 1%. A low value for such a coefficient would 
strongly suggest that such a model is very robust to the
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uncertainty that exists about its parameter values. The 
requirement for the modeller to choose k forces a 
definition to be made, at least implicitly, of the level of 
uncertainty in output that is considered to be important.

In the case of the red fox rabies model, the decision maker 
derives from the above coefficient a simple easily 
interpreted practical description of uncertainty - if his 
plans are designed to cope with ranges of problems within 
plus or minus 20% of the baseline model output, he can see 
at a glance that there is an estimated probability of about
0.5 that the true situation may lie outside these limits.
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Regions centred around baseline values of model output 
and bounded by values + 20% of the baseline.

output region

no. foxes infected
after 12 months 18.4 - 27.6

no. foxes infectious
after 12 months 3.2 - 4.8

max. no. of infected
foxes in 20 yr period 24.8 - 37.2

min. population size
over 20 yr. period 910 - 1366

Table 3.1.
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Table 3.2
20% sensitivity coefficients for the fox rabies
model of Anderson et.al. (1981), for the four
output variates described in the text.

20% sensitivity coefficient

no. foxes infected 
after 12 months 0.70

no. foxes infectious 
after 12 months 0.63

max. number of infected 
foxes in 20 yr period 0.70

min. population size 
over 20 yr period 0.00

whole model (all four 
output variates) 0.51
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CHAPTER FOUR

SENSITIVITY ANALYSIS OF MATHEMATICAL MODELS IN 
A DECISION-THEORETIC FRAMEWORK

4.1. Introduction.

The methodology proposed in the preceeding two Chapters has 
been concerned with providing the decision-maker with 
information about the uncertainty inherent in the output 
from a mathematical model. A decision maker, however, not 
only needs to understand such uncertainty, but often needs 
to take it into account when using the results from a 
model. It would clearly be advantageous if the methods used 
to provide descriptions of uncertainty could also 
contribute to the process of working with uncertainty, but 
most methods of sensitivity analysis do not lend themselves 
to this. In this Chapter it is demonstrated that the 
sensitivity measure proposed in Chapter Three not only has 
value in general description of uncertainty, but may in 
some instances be directly employed in a formal 
decision-making process arising from the use of a 
mathematical model.

Consider a region of model output defined by the vectors 
(y'j + ky'j 7 j=l...v),(y'j - ky'j ? j=l...v). The 
proportion of model outputs that lie outside this region is 
the 100k% sensitivity coefficient for the model. Suppose
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that this region defines a "state-of-nature" which, if it 
were known to be true, would lead a decision-maker to take 
action A. If the true state of nature lies outside this 
region, then suppose the decision-maker would take action
B. The decision problem occurs because the true state of 
nature is not known. However,the 100k% sensitivity 
coefficient may be interpreted probabilistically, since it 
is the proportion of model outputs lying outside the region 
defined by the vectors. Similarly, the value 1-S^ may be 
taken to approximate the probability, as indicated by the 
model, that the first state of nature, implying action A, 
is true. Thus , in addition to its other advantages, may 
be directly employed, in conjunction with a set of possible 
actions, and their utilities under different possible 
states of nature, in a conventional decision-theoretic 
framework (see e.g. Lindgren, 1971). The use of the 
coefficient in this way will be illustrated in this 
Chapter, by consideration of another ecological 
mathematical model - a model designed to aid the evaluation 
of methods of controlling rats on agricultural premises.

4.2. The rat control problem.

Rats are major agricultural pests in most parts of the 
world. Though the economic value of the damage they cause 
has not objectively been quantified, it is undoubtedly 
substantial, and much effort is expended in developing new 
methods of rat control. In the U.K., rat control is carried 
out using acute or anticoagulant rodenticides. These are
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usually successful in the short term, but problems such as 
the ocurrence of genetic resistance to anticoagulants 
(Greaves and Ayres, 1967) motivate the search for new 
control techniques ;for example, chemosterHants. New rat 
control methods are investigated by field trials of 
candidate compounds on the farm. The results of such trials 
are reliable, but the process is costly and time consuming, 
and limited resources mean that only a small number of 
compounds can be tested in this way. Most are examined in 
the laboratory, and are only subjected to field trials if 
their characteristics, as revealed in the laboratory, are 
thought to merit this.

The use of a mathematical model allows potential control 
compounds to be evaluated theoretically, as well as in the 
laboratory, and improves the screening process by 
indicating whether or not the characteristics of a 
compound, as determined from the laboratory, are such as to 
make it a potential competitor with conventional 
rodenticides. Such a mathematical model has been developed 
(M.A.F.F., 1980, 1981) .

4.3. The farm rat control model.

The model is a modification of the well known logistic 
model of population growth. Though developed many years 
ago, this form is still used in modern pest control 
modelling, and is considered to be particularly appropriate 
for farm rat populations (Emlen et. al., 1948; Davis,
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1950).

The basic form of the logistic model may be written: 

dN/dt = N(a-b-yN) (4.1)

where a is the per capita birth rate, b the reciprocal of 
the life expectancy, and N the size (or density) of the 
population. The parameter y measures the severity of 
density dependent control of rates of increase, and is 
derived in practice from the observed carrying capacity of 
the environment.

Farm rat control methods operate by decreasing the life 
expectancy of a proportion of the animals (those that 
consume a rodenticide bait), and/or reducing the birth rate 
for a period of time (in the case of chemosterilants).

The basic logistic model may be modified as follows to 
incorporate representations of these processes:

dN/dt = caN - (pB+(l-p)b+yN)N (4.2)

where p is the proportion of animals in the population that 
consume a rodenticide bait, B the reciprocal of the life 
expectancy of animals that have consumed a rodenticide 
bait, and c measures the reduction in average birth rate 
induced by chemosterilisation. These parameters can be 
determined in the laboratory for any particular candidate
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control compound.

It is important to stress that this model was under 
continuous development by scientists in the Tolworth and 
Worplesdon Laboratories of the Agricultural Science Service 
during the course of the work reported here, and that, 
accordingly, different versions of it were used at 
different stages during the course of the present work. For 
some purposes further modifications were made, for example 
to incorporate time lags. However, the above form
illustrates the essential features of the model.

4.4. A further example of the use of the sensitivity 
coefficient.

The farm rat control model is used to evaluate potential 
control methods by simulating population growth under 
controlled conditions, and measuring the success of the 
simulated control treatment by comparing the resultant 
population sizes with those generated by the model when 
c = 1.0, p = 0.0, (representing no population control). The 
result derived can be compared with that given by a 
conventional anticoagulant rodenticide treatment (c = 1.0, 
p =  0.95, B = 30.0). A typical result derived from the 
model, comparing this conventional rodenticide with a 
combined chemosterilant/rodenticide (p = 0.65, c = 0.40, 
B = 30.0), shows that the conventional rodenticide resulted 
in a total population reduction of 535 animals until 
recovery of the population to its pre-treatment level,
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whilst the combined chemosterilant/rodenticide yields a 
population reduction of 542. An illustration of the output 
of the model is given in Figure 4.1.

4.5. Describing uncertainty in the model.

This result is strictly dependent on the values of the 
parameters used in the model: the values of a, b, and y. 
These can only be estimated from field data, and the true 
values are not known precisely; they are, in any case, 
subject to stochastic variation. The values of c, p, and B 
can be determined accurately in the laboratory, and are 
treated here as known. Because there is uncertainty about 
the true values of the model parameters, there is 
uncertainty inherent in the result of the simulation, and 
this must be assessed and described in some appropriate way 
if the results of the model are to be used to practical 
advantage.

Table 4.1. contains a range of values output by the model, 
generated by Monte Carlo error propagation, comparing the 
standard anticoagulant rodenticide with the experimental 
combined chemosterilant/rodenticide. This data was derived 
in repeated runs of the model, each with a randomly 
selected set of values for a,b, and y. The values for these 
parameters were selected from uniform distributions, each 
centred on the baseline value, and having a range equal to 
60% of the baseline value. The baseline values were 
estimated from unpublished data held at the Tolworth
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Laboratory of the Agricultural Science Service.

The 20% sensitivity measure (as defined in Chapter Three) 
for the chemosterilant/rodenticide output produced by the 
model is 8/30 = 0.27. This says simply that 27% of the runs 
of the model produced results that deviated from the 
baseline (= 542) by more than 20%.

As noted in Chapter Three, it may be possible in some 
applications to select a value of k that has some practical 
meaning. This is so in the present case. Not only does the 
20% sensitivity measure convey general information in the 
sense described above, but the model output range 
associated with this definition (434-650) corresponds 
closely with the range of success achieved by the standard 
rodenticide (436-674). Thus the 20% sensitivity measure of
0.27 can be interpreted at a more practical level - as 
being approximately equal to the proportion of simulation 
results in which the chemosterilant/rodenticide produced 
results outside the range generated by the conventional 
rodenticide treatment.

4.6. The sensitivity measure and decision making.

It is also possible to carry the information contained in 
the sensitivity measure forward into a formal decision 
making context.

Consider the following decision problem: an organisation
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has produced a candidate combined chemosterilant and 
rodenticide compound, which laboratory tests indicate has 
the characteristics described above. The organisation has 
used the mathematical model to evaluate the potential of 
the compound, and has produced the results of Table 4.1. 
The 20% sensitivity measure is relatively small, suggesting 
that the candidate compound has a reasonable chance of 
performing acceptably. However, a specific decision must be 
taken about its future. The following three possible 
actions might be considered in practice:

(i) develop the compound immediately for the pest control 
market

(ii) reject the candidate compound

(iii) subject the compound to field trials, and then either 
develop or reject, according to the performance realised in 
the trials (results of field trials being regarded as very 
reliable).

For convenience, the possible "true states" of the 
candidate chemosterilant/rodenticide may be restricted to 
three:

(i) candidate compound is less effective than rodenticide

(ii) candidate compound is as effective as rodenticide
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(iii) candidate compound is more effective than 
rodenticide.

The financial implications of the various possible actions 
might be as follows:

(i) cost of developing candidate compound for the market 
£50000.

(ii) cost of field trials of candidate compound £10000.

(iii) income expected from compound more effective than 
rodenticide £300000

(iv) income expected from compound as effective as 
rodenticide £250000. (this would not be expected to sell as 
well as a compound more effective than a conventional 
rodenticide)

(v) income expected from compound less effective than 
rodenticide £0.

These figures are approximations only and are simplified to 
some extent; nevertheless their relative magnitudes are 
realistic. The decision problem may thus be summarised as 
in Table 4.2.

Table 4.2 has three of the components of a standard 
decision problem: a set of actions, a set of possible true
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states of nature, and a value associated with each 
action/state combination. An advantage of the sensitivity 
measure defined above is that the definition utilises 
information about the probabilities of the various states, 
as derived from the mathematical model. State 2 in Table
4.2 - that the candidate compound is as effective as a 
rodenticide - has a probability that may be directly 
approximated by subtracting the 20% sensitivity measure 
from 1.0 - yielding 0.73. This is the proportion of 
simulation runs that produced a result comparable with the 
performance of the simulated rodenticide. The proportion of 
outputs that lie outside this range is, by definition, the 
20% sensitivity measure, and this approximates the 
probability of the other two states. The simulation results 
in Table 4.1 show that 5/30 runs produced results lower 
than the lower bound of the 20% sensitivity range, and 3/30 
produced results higher than the upper bound. The 
probabilities of the other two states are therefore 
estimated to be 5/30 = 0.17, and 3/30 = 0.10, respectively.

Given these probability estimates, the decision problem can 
be solved in the conventional way. The Bayes action for 
this problem is action 1 in Table 2: develop the candidate 
compound for the market. This action has expected gain 
£162500, compared with an expected gain of £161000 for 
action 3, which is next best.
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4.7. Extent, of model support for a decision.

Since the purpose of a sensitivity analysis is to describe 
uncertainty, and since uncertainty is inherent in the 
decision process itself, it is appropriate to continue the 
sensitivity analysis to the decision making stage of the 
modelling process. A method for doing this is now proposed.

The probabilities of each state in Table 4.2 are derived 
from the mathematical model, and are themselves uncertain 
quantities. This is because the model itself may be an 
inadequate representation of the farm rat population, 
because the results generated are only a sample, because 
the sample itself is based on a model of the uncertainty 
about parameter values, and because the range of the 20% 
sensitivity measure does not correspond precisely with that 
of the conventional rodenticide. Each one of these sources 
of uncertainty is acceptable in itself. Nevertheless it is 
appropriate to describe their possible joint implications 
for the decision process.

Isaacs (1963) and Fishburn et.al.(1968) suggested that an 
appropriate measure of the sensitivity of a decision 
process to errors in probability estimation, was the 
minimum Euclidean distance between the baseline probability 
set, and a set which would change the Bayes action. Thus 
for the above process, the baseline probabilities are 
(0.17,0.73,0.10) - giving action 1 as the Bayes action, 
whereas the set (0.21,0.69,0.10) would give action 3 in
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Table 4.2 as the Bayes action.

The Euclidean distance between these sets is 0.057. Though 
this seems small, it is not really clear how to regard the 
value in the context of the decision. There is no 
"reference" distance to relate it to. For example, it would 
not be easy to compare this distance with a similar measure 
for a different decision process - something that might be 
necessary if a resources were to be allocated to either one 
project or another. A measure that is easily interpreted 
and which facilitates such comparisons is more useful.

Such a measure may be derived by relating the minimum 
distance to the maximum possible distance for the given 
process. For most conventional distance metrics this 
maximum will be given by replacing the smallest probability 
in the baseline set by 1.0, and the others by 0.0. Thus a 
maximum distance from (0.17,0.73,0.10) is (0.0,0.0,1.0). 
The ratio of the minimum distance to the greatest possible 
distance may be subtracted from 1.0 to give a coefficient, 
with values between 0 and 1, that measures the sensitivity 
of the decision process. Values of this coefficient near
1.0 indicate a decision that is sensitive to errors in the 
probabilities - a small change in these probabilities may 
change the Bayes action, and this would suggest that the 
model upon which the decision is to be based would need to
be refined as much as is possible in order to support the
decision. Values near 0 suggest a decision that is
insensitive , and which might be taken on the basis of the
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model as it stands. The value of this coefficient for the
above decision process is 0.952, suggesting that this 
decision is very sensitive to errors in probability 
estimates, and indicating that the model and the parameter 
estimates must be refined as much as possible before taking 
a decision based on the results of the model.

4.8. Summary.

In the case of the farm rat control model, specific 
decisions may have to made about the future of certain 
compounds that are being evaluated. The main interest of 
the decision maker is in predicted performance that lies 
outside the range normally achieved by a well defined 
standard control treatment. The sensitivity measure 
proposed in Chapter Three thus has a natural application in 
the farm rat model. It provides a practical description of 
uncertainty that forms a natural component of the decision 
process that arises from the model.
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Figure 4.1. An example of a time track of rat population sizes, 
generated by the farm rat control model, and illustrating the 
effect of a simulated combined rodenticide/chemosterilant 
treatment implemented at month 3. The rapid decline in numbers 
is followed by a slow recovery, inhibited by the effects of 
the chemosterilant.
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Table 4.1
Measures of the reduction in farm rat population size (over a 
period until recovery of the population to its pre-control size) 
predicted by the farm rat model, for a standard rodenticide 
and an experimental combined chemosterilant/rodenticide.
These values were derived in repeated runs of the model, each 
with a randomly selected set of parameter values; the first 
result in each case was derived with parameters set at 
baseline values.

simulated rodenticide simulated combined
treatment chemosterilant

rodenticide treatment

535 554 542 704
461 569 555 520
462 436 594 640
641 604 438 527
552 580 405 545
526 463 405 522
470 484 613 520
605 646 547 471
521 515 637 663
579 557 446 613
504 674 632 685
509 542 504 494
654 479 547 473
599 477 497 410
486 529 430 417
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Table 4.2
Components of a decision problem involving a 
potential pest control compound.

possible states

possible (1)compound less (2)
compound as (3)compound more

actions effective than effective as effective than
rodenticide rodenticide rodenticide

(1) develop 
compound

-£50000development
costs

-£50000development
costs

-£50000development
costs

for pest
control
market

+£250000
expected
income

+£300000
expected
income

(2) reject 
compound

£0 -£250000
expected
income

-£300000
expected
income

(3) subject -£10000field trial 
to field trials costs

-£10000field trial 
costs

-£10000field trial 
costs

then develop or 
reject according

-£50000
development
costs

-£50000
development
costs

to results +£250000expected
income

+£300000expected
income



CHAPTER FIVE

AN INFORMATIONAL MEASURE OF THE INFLUENCE OF 
PARAMETER UNCERTAINTY ON THE OUTPUT FROM 

MATHEMATICAL MODELS

5.1. Introduction.

In addition to the need to adequately describe the 
uncertainty in model output, it is usually necessary at 
some stage in the development of a mathematical model to 
assess the extent to which each parameter can be said to be 
contributing to the uncertainty. This is often done with a 
view to deciding which parameter estimates in a model might 
best be refined in further experimentation or measurement.

Ideally, any method for assessing the importance of a 
particular parameter should possess the following 
characteristics:

(i) it should require no assumption to be made about the 
form of the relationship between parameter and model output

(ii) it should be easy to compute

(iii) it should make use of the information already 
available from earlier stages of the sensitivity study.
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Such a measure will be described in this Chapter.

5.2. Probability distribution of model output.

In Chapter Four it was emphasised that the sensitivity 
coefficient proposed in Chapter Three is a simple function 
of the probability distribution of model output. The value 
of the coefficient in both informal and formal decision 
making was illustrated. It was also shown that the decision 
made from the model output could be changed by small 
alterations in the output distribution.

The output probability distribution is therefore central to 
general description of uncertainty, to formal decision 
making using a mathematical model, and to sensitivity 
studies of the decision process itself. For these reasons, 
it is desirable that a method of measuring parameter 
influence should also make use of the model output 
distribution.

5.3. A further sample of output from the farm 
rat model.

The farm rat model was used above to provide estimates of 
the probabilities of each of three possible "states" of a 
candidate combined chemosterilant/rodenticide compound. 
These were as follows:
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(i) candidate compound less effective than standard 
rodenticide (estimated probability = 0.17)
(ii) candidate compound as effective as standard 
rodenticide (estimated probability = 0.73)
(iii) candidate compound more effective than rodenticide 
(estimated probability = 0.10)

At the time that the work described in this Chapter was 
carried out, a new version of the farm rat control model 
was in use at the Tolworth Laboratory of the Agricultural 
Science Service, and accordingly a further sample of output 
from the new version of the model, again measuring the 
performance of the candidate chemosterilant/rodenticide 
compound, together with the associated values of four 
parameters from the mathematical model, was generated. The 
four model parameters considered in this illustration are:

(i) the birth rate of farm rats
(ii) the death rate of farm rats
(iii) the death rate of rats that have consumed a 
rodenticide bait
(iv) the duration of the effect of the candidate 
chemosterilant (measured in months)

Note that, at this stage in the development of the model, 
the parameter B is being treated as an uncertain quantity, 
and a new uncertain quantity, the duration of the effect of
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the chemosterilant, has been introduced into the model. 
Uncertainty about each of these parameters was described by 
uniform distributions, each centred on the baseline value 
and having a range equal to 60% of the baseline value. A 
sample of 100 runs of the model, each with a random 
selection of parameter values, was used to generate the 
data in Table 5.1.

The probabilities of each of the above three possible 
states are estimated from this particular sample to be
0.19, 0.73, and 0.08, respectively. Note that these 
estimates are slightly different from those in Chapter 
Four, but that with these probability estimates, the 20% 
sensitivity coefficient is still estimated to be 0.27, and 
that the Bayes action in Table 4.2. would be action 1. (It 
should be noted that, as stated above, the farm rat model 
was under continuous development during the course of this 
work, and the differences in these probabilities is partly 
attributable to the fact that the model used for 
illustration of the work in this Chapter is a later, more 
developed version of that used in Chapter Four).

5.4. An informational correlation measure.

A measure of correlation which makes direct use of 
probabilities is available in the statistical literature, 
though it has been rarely used and is little known. It is 
proposed here as a suitable method of measuring the
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influence of a parameter on model output uncertainty. The 
coefficient is referred to as the "information gain", or 
sometimes more simply as the "informational correlation 
measure", and a simple description of its derivation and 
properties is given by Linfoot (1959). For convenience in 
the computation of the informational correlation measure, 
it is helpful, though not essential, to discretise the 
output and parameter distributions. This is a natural step 
to take in view of the discretisation already employed in 
the decision process in Chapter Four; in fact the same 
categorisation as employed in the decision process is an 
appropriate one to use in measuring parameter influence.

Denoting the probabilities of each of the above three 
states of the chemosterilant/rodenticide as p^, i = 1...3, 
and partitioning the observed distribution of a particular 
model parameter also into three regions, each of equal 
width, with probabilities q^, j = 1...3, the informational 
correlation between the output and that parameter is 
defined to be:

I (5.1)

where

I (5.2)

and the r^j are the observed joint probabilities of each of
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the nine possible parameter/output groupings.

5.5. Properties of the informational correlation 
measure.

The informational correlation measure has a number of 
properties which make it particularly suitable for use in 
sensitivity analysis of mathematical models:

(i) it requires no assumption to be made about the form of 
the relationship between parameter value and output value
(ii) it is a function of the probabilities that are used to 
define the sensitivity coefficient above, and also used in 
decision-making
(iii) it is easy to compute, particularly when the 
computation follows earlier derivation of the probabilities 
for the methods described earlier in this thesis.

The informational correlation measure has been described in 
a number of slightly different forms in the statistical 
literature, the most accessible being the paper by Linfoot 
(1959). Despite its appealing properties, and its 
simplicity, it has, like many concepts from the field of 
information theory, not been widely employed in applied 
statistics. Linfoot (1959) discusses the information 
theoretic derivation of the measure, and its relationship 
with the conventional Pearson correlation coefficient.
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The informational correlation measure I lies between 0 and
1, and is equal to zero only when r ^  = p^q^ f°r aH  i#j* 
The greater the "information gain", the greater the 
influence a particular parameter has on the model output 
distribution. The measure I' is, in fact, interpretable as 
the gain in information (in the formal sense of 
"information") that accrues from the knowledge that the 
joint distribution of output and parameter is described by 
the probabilities r ^  rather than by the products p^qj.

5.6. An example.

As an example of the calculation of an informational 
correlation measure, consider the model output in Table
5.1, and its relationship with the first of the model 
parameters - the birth rate of farm rats.

Partition the output distribution into the categories used 
in formulating the decision problem in Chapter Four:

(i) category one: output less than 434 (p = 0.19)
(ii) category two: output between 434 and 650 (p = 0.73)
(iii) category three: output greater than 650 (p = 0.08)

and partition the observed parameter distribution into 
three regions, each of equal width:

(i) category one: parameter less than 0.874 (q = 0.32)
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(ii) category two: parameter between 0.874 and 0.996
(q = 0.32)
(iii) category three: parameter greater than 0.996
(q = 0.36)

The observed joint probabilities, derived from the data in 
Table 5.1., of each of the nine possible output/parameter 
category combinations are given in Table 5.2. The values of 
p^q^ can be computed directly and substituted into (5.1) 
above. The informational correlation measure is calculated 
to be 0.422.

The informational correlation measures for each of the four 
parameters in the model are given in Table 5.3., together 
with the conventional Pearson correlation coefficients, 
computed directly from the data in Table 5.1.

5.7. Interval estimates of the informational correlation 
measure.

For some purposes it may be valuable to model users to have 
interval estimates of the informational correlation 
coefficients, in order to aid assessment of the importance 
of each parameter's contribution to output uncertainty. No 
sampling theory is available for the informational 
correlation coefficient, however, and therefore, in order 
to derive interval estimates, the method of jack-knifing 
was applied to the data from Table 5.1.
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A detailed description of the methodology of jack-knifing 
is beyond the scope of this thesis. A simple presentation 
of the methodology is given by Bissell and Ferguson (1975). 
The main purposes of the technique are (a) to enable 
interval estimates of quantities to be derived and (b) to 
reduce any bias that may exist in estimated statistics. 
Briefly, the method requires that the data from which the 
informational correlation coefficients were calculated (
i.e. the data in Table 5.1) be split into a number of 
sub-groups, each which is, in turn, removed. A 
"psuedo-value" of the informational correlation coefficient 
is then calculated from the data remaining when a sub-group 
has been removed, then that sub-group is replaced, a second 
removed, and the process repeated. The "pseudo-values" thus 
derived are combined with the estimates made from the whole 
data set, to produce a "jack-knifed" estimate, together 
with its standard error.

The "jack-knifing" approach appears to work satisfactorily 
with estimates of informational correlation coefficients, 
and can be recommended for use when interval estimates of 
these coefficients are required. The jack-knifed estimates 
of the informational correlation coefficients, and their 
standard errors, are given in Table 5.3.
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5.8. Interpretation of the informational
correlation measure.

The higher the value of the informational correlation 
measure, the greater the influence the associated parameter 
has on the output distribution. Thus it can be seen from 
Table 5.3. that the fourth parameter in the model - the 
duration of the chemosterilant effect - has the greatest 
influence on the distribution of model output. Any attempt 
to reduce the uncertainty inherent in the output would 
therefore best be concentrated on attempts to measure the 
duration of the effect of the candidate 
chemosterilant/rodenticide with more precision.

Parameters 1, 3, and 2 have lesser influence, respectively, 
as the informational correlation measures decrease for 
these three sources of uncertainty. The Pearson correlation 
coefficients also suggest that parameter 4 has the greatest 
influence on model output, and that parameter 1 is next 
most important. The ranking of parameters 2 and 3, however, 
differs. It should be remembered that the Pearson 
correlation measure is only of potential value when the 
relationship between parameter and output is linear, or at 
least monotonic. The informational correlation measure may 
validly be applied whatever the form of this relationship.
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5.9. Summary

A natural extension of the use of probabilities in 
measuring sensitivity and in formal decision making is to 
use them directly to measure the influence that parameters 
have on model output uncertainty. The informational 
correlation measure does exactly this, and requires no 
restrictive assumptions to be made about the form of the 
parameter-output relationship. Employing this measure of 
parameter influence in the case of the farm rat control 
model allows the decision maker to make use of much of the 
information already computed in the earlier stages of the 
sensitivity analysis, and provides a reliable guide to 
further refinement of the model.
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Table 5.1
Sensitivity data from the farm rat control model •

success duration of
of chemosterilant
treatment birth rate death rate 'B ' effect

510 0.940 0.140 30.000 4.990
376 0.957 0.156 30.312 1.469
521 0.840 0.143 25.701 4.014
647 0.788 0.142 35.466 6.470
570 0.781 0.129 33.433 5.393
576 0.873 0.145 30.727 6.459
505 1.000 0.111 24.815 6.298
451 1.025 0.159 24.367 3.724
715 0.767 0.155 31.825 8.282
525 0.911 0.120 28.903 5.250
445 0.982 0.111 32.398 3.740
713 0.758 0.168 32.416 7.775
621 0.758 0.141 28.571 5.937
673 0.779 0.111 25.908 8.434
350 1.093 0.138 35.700 1.458
492 1.113 0.160 27.249 6.155
544 0.868 0.122 33.152 5.264
494 0.767 0.127 27.488 2.234
465 0.878 0.147 34.781 3.135
516 0.821 0.157 34.117 2.936
610 1.054 0.134 35.054 8.646
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Table 5.1, (continued)

success
of
treatment birth rate death rate 'B'

duration
chemoste]
effect

452 0.794 0.114 31.789 1.929
569 0.875 0.122 27.275 6.726
365 0.975 0.144 33.794 1.314
604 0.861 0.113 27.214 7.979
535 0.774 0.118 28.748 3.824
473 0.874 0.162 24.072 3.193
659 0.917 0.168 31.679 8.195
550 1.018 0.113 35.037 7.511
734 0.755 0.141 25.803 8.595
641 0.837 0.144 28.499 7.043
527 0.847 0.147 25.159 4.055
473 0.897 0.159 26.174 2.381
370 1.080 0.128 32.458 1.936
430 1.076 0.144 26.385 2.656
313 1.031 0.150 24.362 1.051
509 1.046 0.140 27.057 6.019
350 1.074 0.159 32.169 1.481
630 0.890 0.161 25.387 7.864
547 1.062 0.147 28.893 7.227
452 1.011 0.138 33.512 3.950
578 1.066 0.160 33.989 8.185
397 1.088 0.129 28.954 2.327
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Table 5.1. (continued)

success duration of
of chemosterilant
treatment birth rate death rate 'B' effect

506 0.838 0.138 29.803 2.879
600 0.867 0.146 26.158 6 • 656
581 1.036 0.166 33.980 7.529
499 0.993 0.123 27.380 5.113
414 1.089 0.111 28.902 3.841
477 0.975 0.128 26.602 4.444
604 0.860 0.139 33.774 7.254
674 0.870 0.134 31.090 8.665
512 1.002 0.112 31.578 5.829
705 0.768 0.155 30.347 7.667
568 0.965 0.166 30.051 6.291
584 1.079 0.140 32.637 8.350
481 0.831 0.131 35.003 3.452
558 1.074 0.156 29.668 7.015
544 1.023 0.143 33.853 6.952
551 0.858 0.168 29.966 4.707
512 0.957 0.130 24.052 5.339
440 0.805 0.147 25.963 1.672
621 0.971 0.124 31.381 8.767
417 0.990 0.138 34.125 2.791
468 0.764 0.132 34.659 1.801
459 1.105 0.158 25.531 4.801
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Table 5.1. (continued)

success duration of
of chemosterilant
treatment birth rate death rate 'B' effect

564 1.097 0.162 29.764 8.135
310 1.110 0.130 31.409 1.262
433 1.043 0.148 31.365 2.494
410 1.099 0.142 29.210 2.457
510 0.891 0.149 29.114 4.343
567 1.028 0.133 30.820 8.041
587 0.874 0.131 25.627 6.452
661 0.970 0.165 31.721 8.719
627 0.783 0.156 24.379 5.675
594 0.902 0.121 30.539 7.783
492 0.939 0.135 34.689 4.072
498 0.920 0.154 26.349 3.002
295 1.108 0.112 29.278 1.049
495 1.108 0.131 29.298 5.693
493 1.034 0.163 31.241 5.296
562 0.781 0.124 32.392 5.130
495 1.039 0.158 34.974 5.112
597 0.814 0.162 24.115 5.506
492 0.969 0.163 27.592 3.738
475 0.902 0.133 26.450 3.032
452 0.920 0.123 25.677 3.884
575 0.813 0.135 27.139 5.567
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Table 5.1. (continued)

success
of
treatment birth rate death rate •B'

duration
chemoste]
effect

473 1.129 0.131 27.437 5.986
640 0.996 0.147 31.369 8.970
540 0.967 0.123 26.145 7.040
453 1.082 0.122 35.563 4.720
374 0.862 0.126 30.646 1.066
468 1.089 0.168 33.469 4.486
404 0.878 0.113 27.953 1.821
405 1.001 0.130 27.532 3.080
527 0.880 0.163 32.857 3.518
433 0.964 0.125 34.859 3.479
421 1.098 0.166 28.711 3.835
641 0.886 0.150 34.092 7.506
572 0.834 0.129 30.993 6.237
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Table 5.2
Joint probability distributions of output and 
parameters from the farm rat model.

Output: measure of chemosterilant success
less than 434 434 - 650 more than i

parameter 1
<0.874 0.01 0.25 0.06
0.874-0.996 0.05 0.25 0.02
>0.996 0.13 0.23 0.00
parameter 2
<0.129 0.06 0.21 0.01

0.129-0.149 0.08 0.29 0.02
>0.149 0.05 0.23 0.05
parameter 3
<28.09 0.04 0.28 0.02
28.09-32.02 0.08 0.22 0.05
>32.02 0.07 0.23 0.01
parameter 4
<23 0.08 0.19 0.01
23-26 0.03 0.22 0.01

>27 0.08 0.32 0.06
parameter 5
<3.73 0.16 0.14 0.00
3.73-6.36 0.02 0.35 0.00

>6.36 0.01 0.24 0.08
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Table 5.3.
Informational correlation measures, and Pearson 
correlation coefficients for the the model output 
and parameter values listed in Table 5.1.

informational correlation Pearson
measure correlation

coefficient
whole data set jacknifed 

( + s.e.)

0.422 0.390(+0.078) -0.513
0.207 0.117(+0.116) 0.187
0.217 0.130(+0.115) 0.000
0.643 0.642(+0.052) 0.878
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CHAPTER SIX

DISCUSSION

6.1. The rabies and rat control models: a discussion.

The objective of the work reported in this thesis was to 
develop methods of uncertainty analysis, and though this 
has been done by considering two particular mathematical 
models, the development of the models themselves was 
outside the scope of this work. Nevertheless, some comments 
on them are included here.

Both models are intended as aids to the development of 
wildlife management policies. The rabies model can be made 
to produce predictions about various aspects of the 
dynamics of a fox population in which rabies is present. 
Such information is a vital part of the process of 
formulating plans for rabies control. The farm rat model is 
even more closely tied to practical pest management - it 
may be used directly to predict the success of particular 
control method.

In constructing both models, some reference to empirical 
data is made. However, these data are far from precise. The 
sources cited by Anderson et.al. (1981) provide the data on
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which the rabies model is based, whilst the data used in 
the development of the farm rat control model is 
unpublished. The structure of both models is therefore 
strongly based on subjective belief and on the selection of 
convenient and simple functional forms, for which there is 
only limited empirical support. Nevertheless, this 
apparently tentative structure need not be without value, 
and for practical purposes it is preferable to judge a 
model as adequate or otherwise on the basis of the utility 
of its predictions, rather than the solidity of its 
foundations.

Both models adopt the logistic form as a basis. That is, in 
the absence of rabies or rat control, population growth 
follows the form:

dN/dt = N(a-b-yN) (6.1)

where a and b are per capita birth and death rates, 
respectively. The parameter y has slightly different 
interpretations in the two models. In the rabies model it 
is taken to reflect density dependent mortality, whereas in 
the farm rat control model it is used to measure the 
compound effects of density dependent mortality and changes 
in birth rate. The mathematical operation is, however, 
identical; the term yN acts to reduce the rate of increase 
of the population.

116



Anderson et.al. (1981) give no specific justification for 
the use of the logistic form. In the case of the farm rat 
control model, some support for this formulation is 
provided by the studies of Emlen et.al. (1948), and Davis 
(1950), who conclude that, in the field, rat population 
growth appears to follow a form that is adequately 
described by the logistic.

In both models, the logistic equation is developed to 
include representations of the specific processes involved 
in rabies propagation on the one hand, and in farm rat 
control on the other. The result of this is the appearance 
of extra parameters in both models. The rabies model then 
has six parameters: r, b, y, s, B, and a, whilst the farm 
rat control model has parameters a, b, and y, or, in the 
later version used in Chapter Five , a, b, y, B, and the 
duration of the chemosterilant effect. (Note that the 
symbols a, B, and y do not represent the same things in the 
two models). All these parameters are represented as 
temporally constant in both models - that is, they are 
fixed values, not subject to seasonal or cyclical 
fluctuations. This is not unreasonable in the case of the 
farm rat model, since rats on farms are known to breed more 
or less continuously throughout the year, and there are no 
known seasonal variations in mortality (see e.g. Bishop and 
Hartley, 1976). In the case of foxes, births are certainly 
seasonal, and so, probably, is mortality, but the 
complications that this induces may be avoided to some
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extent by producing predictions at intervals of, say, 1 
year or more. If the fine structure of a fox population is 
predicted using the rabies model, perhaps by generating 
population sizes at monthly intervals, then inaccuracies 
due to the absence of seasonal effects will be present in 
the predictions.

Also absent from both models is any representation of age 
structure, This is important only if the phenomena being 
studied (i.e. rabies and farm rat control), differentially 
affect different age classes, and, equally, if such effects 
can be exploited in management policies. Evidence of 
age-specific effects is inconclusive in both cases. Again, 
neither model explicitly incorporates a representation of 
the time lag that may be inherent in the density dependent 
responses of the population (though the version of the farm 
rat control model used in Chapter Five has such a feature 
built into the computer program used to solve the model). 
The importance of this omission again depends on the nature 
of the predictions that are being produced by the models - 
predictions of fine structure, over time scales that are 
short in comparison with the time lags, will be biassed by 
the omission, whereas longer term predictions will be less 
affected.

Possible improvements to the model may also be found at the 
more detailed level. For example, in the rabies model the 
rate at which susceptible animals become infected is
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represented as being directly proportional to the product 
of the densities of the two classes concerned - the 
expression BDF codes this assumption. It may perhaps be 
more reasonable to suppose that this rabies transmission 
rate in fact reaches an asymptote at a given population 
density, and stays constant thereafter.

In the farm rat control model, it is assumed that animals 
either consume a quantity of rodenticide sufficient to 
increase their death rate from b to B, or do not, the 
proportions in the two categories being (1—p) and p 
respectively. It may be more reasonable to suppose that 
even a small intake of rodenticide will be enough to 
increase b for the animals concerned, and that a continuum 
of enhanced death rates is more realistic than a 
representation of just two possibilities.

In addition to the fact that the parameters in the model 
are uncertain quantities, it can therefore also be seen 
that there is a degree of uncertainty about the adequacy of 
the models as a whole. However, as was noted above, the 
objective of the work reported here was to develop methods 
for uncertainty analysis of the models as they stood, and 
not to develop the models themselves. The question of model 
adequacy is more fundamental than uncertainty analysis, 
though it should not be arbitrarily assumed that 
uncertainties about the model itself are necessarily more 
important than uncertainties about parameter values. The
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question of model adequacy is, however, susceptible of 
pragmatic treatment: if a model produces a prediction
which, even with its attendant uncertainty, proves to be of 
practical value, then the model is adequate for that 
purpose, regardless of its structure.

6.2. Theme of the proposed methods.

All the techniques proposed in this thesis have a common 
theme. Firstly, they all involve explicit description of 
parameter uncertainty by means of probability 
distributions. Next, a sample from the model output 
distribution is generated by repeated use of the 
mathematical model, with different sets of parameter 
values, randomly selected from the specified probability 
distribution. Then, some appropriate function of the output 
distribution is utilised to assess or describe the 
uncertainty in a simple way, based on as few assumptions as 
possible. The methods proposed have been designed so that, 
following explicit description of parameter uncertainty, 
and generation of a sample of model output, the decision 
maker can use this sample (i) in informal graphical 
sensitivity studies, (ii) to derive more objective 
coefficients, (iii) to aid decision making, and (iv) to 
measure parameter influence. The fact that all these things 
can be done using the methods proposed here is of great 
convenience and is an advantage of the methodology 
described above. It is shown that suitable use of the
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output distribution can result in informative graphical 
descriptions of uncertainty for models having many 
parameters and output variables, and in a simple numerical 
measure of output uncertainty. It is further demonstrated 
that this measure utilises information that can be later 
employed in formal decision making, and in developing 
measures of the extent to which each parameter influences 
output uncertainty. It is suggested here that this general 
philosophy represents the most suitable approach to the 
study of uncertainty in mathematical modelling.

These methods constitute an addition to existing approaches 
to sensitivity analysis, and no claim is made that they are 
uniformly superior. They go some way towards alleviating 
the problems highlighted at the end of Chapter One, and 
have properties that make them appealing in some practical 
circumstances. However, no single method of sensitivity 
analysis can be guaranteed to be suitable for all types of 
mathematical model, since the methods adopted must be 
closely allied to the practical needs of the modelling 
problem.

6.3. The Biplot; a discussion.

The Biplot is a simple graphical display of the sample 
generated from the model output distribution. It was shown 
in Chapter Two that such a display conveys a large amount 
of information about the uncertainty inherent in the output
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from a model, particularly in the case of a model having 
several outputs and parameters. The method makes no 
explicit assumptions about the nature of the output 
distribution, and should accordingly be applicable in 
principle to any model for which such a distribution can be 
derived. One implicit assumption, however, concerns the 
linearity of the relationship between parameter values and 
model output. This assumption is implicit since the Biplot 
uses approximations to the coefficients of correlation 
between vectors in the plot. Thus the use of the Biplot to 
make inferences about the relationships between outputs and 
parameters is valid only if these relationships are roughly 
linear. This assumption has been checked for the rabies 
model - the scatter diagrams shown in Figure 6.1. suggest 
that the inferences drawn in Chapter Two are likely to be 
reliable. These diagrams show the relationship between the 
value of the parameter r in the model, and the four output 
variates. In applying the Biplot technique to sensitivity 
studies, it will usually be advisable to plot such 
scattergrams as a check on the validity of the inferences.

As with all methods of sensitivity analysis, however, the 
Biplot has its limitations. It is, for example, impractical 
to use the Biplot in cases where the number of parameters 
and outputs is very large, since in such cases the plot 
would become too congested to be easily interpreted. The 
number of outputs and parameters that can be accomodated 
depends on the properties of the output distribution, since
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these determine the appearance of the Biplot, but it is 
unlikely to be more than about 20. The sensitivity analysis 
of models having a large number of parameters is, in fact, 
a major problem, and one which this thesis has not directly 
addressed. In practice it is usual to work with subsets of 
the model in such cases, and to analyse each separately. 
Whilst this may not be ideal, in a practical application 
there may be little alternative. Steinhorst et. al. (1978) 
and Hosni and Doering (1979) discuss the sensitivity 
analysis of very large models in more detail. Additionally, 
the Biplot is, like most multivariate statistical 
techniques, only an approximation to the multivariate 
structure of model output, but, as Gabriel (1971) has 
indicated, experience suggests that the approximation will 
usually be good enough for reliable conclusions to be 
drawn. This is the case for the red fox rabies model in 
Chapter Two, and also for the farm rat control model, a 
Biplot of which is described by Huson (1982). The 
goodness-of-fit of the Biplot in Chapter Two, for example, 
measured by the ratio of the sum of first two latent roots 
of the matrix nV, to the trace of nV, is about 80% (the 
first two latent roots of the matrix nV are 100.60 and 
30.96, respectively, and the trace 165.50).

Whether or not the Biplot is easy to interpret, 
particularly by non-technical model users, is a matter for 
subjective judgement. It is never easy to find simple 
summaries of what is essentially a complex multivariate
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structure, but experience of using a particular technique 
generally brings with it a certain facility. The Biplot has 
been used in practice within the Tolworth and Worplesdon 
Laboratories of the Agricultural Science Service, where it 
has proved to be useful to model users, both technical and 
non-technical.

6.4. The sensitivity measure; a discussion.

The sensitivity measure defined in Chapter Three was 
designed to be easily computed, easily understood, to 
involve few assumptions, and to be capable of practical 
interpretation in at least some circumstances. It offers 
advantages over simple statistical measures such as the 
variance or range, since it describes something of the way 
in which actual output values are distributed, rather than 
simply their bounds or their dispersion. There is, 
moreover, the possibility that it may, as in the case of 
the farm rat model, have an interpretation that can be 
phrased in terms of the problem that the model is meant to 
elucidate.

As always, it is unlikely to be appropriate for all 
situations. In fact, it lends itself particularly to 
problems in which interest centres on system performance 
that lies outside some standard range. In such 
circumstances, the sensitivity measure may, as illustrated 
above, be chosen to have a practical interpretation, as

124



well as conveying some general information about the 
output. The probabilistic basis of the measure means that 
it lies between 0 and 1, and this often facilitates 
interpretation and comparisons both within and between 
models. The probabilistic aspect may also, as in the farm 
rat model, lend itself to further exploitation.

It may be seen as a disadvantage that the modeller is 
required to choose a value of k in order to define a 
sensitivity coefficient of the type proposed in Chapter 
Three; it is certainly something of a disadvantage that the 
measure in itself provides no indication of the extent to 
which each parameter contributes to the output uncertainty. 
Nevertheless, it is an alternative that should prove to be 
useful in further application.

6.5. Decision-making; a discussion.

An important criterion in the design of the sensitivity 
coefficient proposed in Chapter Three was that it should 
utilise information that could be carried forward to later 
stages in the process of using a mathematical model. As was 
shown in Chapter Four, the sensitivity measure itself may 
directly provide one of the probabilities in a decision 
process. This continuity of information from informal to 
formal use is of some value, and is not found in any other 
sensitivity measure. Again, this feature may not be of use 
in all kinds of model; it depends firstly on whether or not
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a formal decision is to be made on the basis of the model
and secondly on whether the associated probabilities are 
related to those used in the definition of the sensitivity 
measure. This emphasises the fact that no sensitivity 
measure is universally appropriate, nor should it be 
expected to be. Nevertheless, the methodology described in 
Chapter Four may find application in real modelling 
problems, of a type that are not atypical of those commonly 
encountered. The approach is likely to be particularly 
appropriate for models in which a new situation is to be 
compared with a well defined existing standard.

Decisions based on mathematical models are inevitably 
hazardous, though not necessarily more so than decisions 
based on other investigative techniques. It is accordingly 
always appropriate to examine the extent to which the model 
"supports" a decision - that is, the extent to which the 
decision may safely be taken, given the uncertainty 
inherent in the model. Such sensitivity studies of decision 
processes are normal practice, but are almost always 
informal, and usually involve simple experimentation with 
alternative values of decision components. The coefficient 
suggested in Chapter Four assists in such assessments 
particularly in cases where several different decision 
processes are being evaluated, with a view to deciding 
which data base to refine. The calculation of the 
coefficient suggested in Chapter Four, for each decision 
process, allows a convenient comparison of the sensitivity
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of each decision to be made.

Decision processes themselves are, of course, not 
universally accepted as appropriate. The difficulties of 
defining appropriate sets of actions, possible "states of 
nature", and of evaluating both probabilities and losses, 
are often said to be prohibitive. There is no reason why 
these difficulties should be any greater when a decision is 
based on a mathematical model. In fact, considering the 
complexities that t are in any case involved in the 
construction of a formal mathematical representation of a 
real system, the extra work involved in formally 
structuring a resultant decision should not be too 
demanding.

6.6. Measuring parameter influence; a discussion.

The process of developing a mathematical model is 
iterative. Early versions of the model are studied, and in 
the light of the results both model structure and parameter 
estimates may be refined. Clearly if this is to be done 
efficiently a reliable guide to the relative importance of 
each parameter must be available. This cannot usually be 
obtained solely by considering the mathematical structure 
of the model - as noted in Chapter One, it is also 
necessary to consider and to realistically represent the 
actual uncertainty that exists about each parameter value. 
No matter what the mathematical relationship is between

127



parameter value and output, only a parameter about which 
there is uncertainty can be considered important in the 
context of sensitivity studies. The informational 
correlation measure proposed in Chapter Five has some 
valuable characteristics as a measure of parameter 
influence. The main advantage is that it requires no 
assumption to be made about the form of the mathematical 
relationship between parameter and output. The influence of 
a parameter is measured solely by examination of the joint 
probability distribution of parameter and output, in 
comparison with the probabilities that would be expected if 
parameter and output were independent. This technique, like 
all others proposed in this thesis, is based directly on 
the model output distribution.

Information theory in general may well prove to be a 
fruitful area from which to harvest ideas that may be used 
in mathematical modelling, and the proposal in Chapter Five 
is one such example. Hanna (1971) has discussed some 
information-theoretic concepts that might be capable of 
exploitation by modellers. Ideas are not hard to come by, 
and some of these would certainly bear further 
investigation. For example, many authors have noted that 
some overall or "global" measure of the value of a 
mathematical model might be useful, particularly when a 
situation is encountered in which it is necessary to make a 
comparison of several models, perhaps of quite different 
systems, with a view to deciding which models to attempt to
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develop further, and which to abandon. The concept of 
information gain might help. If, prior to constructing a 
model, the technologist is able to describe his knowledge 
about a particular output quantity by saying that it may 
take any of n discrete values, with probabilities 
p^, i = l...n, then after construction of the model the 
output is observed to occupy these n classes with 
probabilities q^, i = l...n, the "information gain" from 
the model may be measured as:

This is simply a measure of the extent to which knowledge 
about the model output can be said to have changed 
following construction of the model. The computation of 
such a measure for a series of different models may, in 
some circumstances at least, aid a comparison of their 
merits.

6.7. Subjective probability distributions for 
parameters.

All the methods developed in this thesis are based on 
exploitation of the observed model output distribution, 
which is generated by describing parameter uncertainty 
using probability distributions. The probability 
distributions used here, and in most examples in the 
literature, are essentially subjective. They are based much

(6 .2 )
L
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more on belief about possible values that a parameter might 
take than on firm empirical evidence. This is of less 
importance in the present context, in the sense that the 
distributions used above serve only to facilitate 
illustration of the proposed methodology. In Statistics 
there has been for many years a debate about whether the 
use of such distributions is valid, or even useful. It is 
not possible here to make any worthwhile contribution to 
that debate, and it must suffice to say that subjective 
probability distributions for parameters have been used 
here in the belief that they are both valid and useful. In 
view of the fact that many mathematical models are based on 
the modeller's essentially subjective beliefs about what 
constitutes an appropriate mathematical representation - 
views which are often only partly supported by empirical 
evidence - it does not seem unreasonable to propose that 
the modeller should extend his activities to the point of 
subjectively modelling his beliefs about parameter values.

6.8. Uncertainty about functional form.

In Chapter One, it was noted that uncertainty usually 
exists about both the true values of the parameters in a 
model, and also about the true nature of the mathematical 
relationships that are represented in the model. To make a 
start in the application of modelling to a particular 
practical problem, it is necessary to assign specific 
values to parameters, and to select specific forms of
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relationship. Almost all the literature on sensitivity 
analysis deals with the problems of uncertain parameter 
values. This thesis is no exception; no specific techniques 
have been proposed for the problem of uncertainty about 
functional form. Some modellers feel that functional form 
uncertainties are more important than parameter 
uncertainties. This may frequently be true, and it is 
undoubtedly true for some models, but there is no concrete 
evidence on which to base such an assertion. O'Neill 
(1973), for example, has described a model in which 
parameter uncertainties were more critical than the precise 
form of the model. The problem of uncertainty about 
functional form, as many authors have noted, is inherently 
less tractable than that of parameter uncertainty. It is 
rarely impossible to say something about the plausible 
range of a scalar parameter, but frequently difficult to 
say something useful about the infinite variety of 
functional forms that might actually relate system 
components. The current state of the literature on this 
subject is essentially as follows. If attention is 
restricted to a particular family of functional forms, say 
second order polynomials, and it is possible to index this 
family by one or more parameters, then the problem reduces 
to that of parameter uncertainty. If a number of distinct 
types of function are thought plausible, then in practice 
this is handled by the formulation of specific alternative 
models. Kleijnen (1975) suggested that dependence of output 
on functional form might be studied by utilising different
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plausible functions in the Monte Carlo generation of model 
output, and representing these alternatives by means of 
dummy variables in a response surface used to analyse the 
model. Burns (1973, 1975) made a similar suggestion.

This is certainly a problem that merits more detailed 
attention, perhaps in the first instance by specific case 
studies to see how often functional form is more critical 
than parameter uncertainty, and next to establish some 
general procedures for assessing the effects of uncertainty 
about functional forms. Two speculations may be worthwhile. 
Firstly, in advanced calculus the notion of the rate of 
change of a functional form (as opposed to the rate of 
change of a scalar) is defined. It may, then, be possible 
to utilise this concept to define measures of functional 
form sensitivity that are analagous to the differential 
sensitivity measure. Secondly, the concept of "relative 
curvature", from analytical geometry, may provide 
assistance. Measures of the "curvature" of functions of 
many variables are defined in some situations, and if each 
plausible function in a mathematical model could be indexed 
by some scalar measure of its curvature, then the problem 
even of distinct families of possible functions might be 
reducible to a study of parametric uncertainty - in which 
the "parameter" is the measured curvature of the function.

However, it is important to stress that both concepts 
involve relatively advanced mathematics, and might produce
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though valid,results which, though valid, are not sufficiently 
accessible to users of mathematical models. If modelling is 
to be of genuine practical value, it is most important that 
its processes should be usable by as many people as 
possible. From a purely practical viewpoint, a technically 
inaccessible result is of little more value than a 
non-existent result.

6.9. The need for education.

Finally, it should be emphasised that the development of 
methods by which uncertainty may be assessed and described 
- which has been the objective of the present work - is 
only part of the task. There are still many models and 
modelling applications described in the literature of many 
disciplines, in which it it would appear that no attempt at 
all has been made to address the inherent uncertainty of 
the technique. Every opportunity should be taken to develop 
in modellers an awareness of the importance of uncertainty 
assessment.
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Figure 6.1. Scatter diagrams of the relationship between 
the value of r in the rabies model and (a) number of 
infected foxes after 12 months (b) number of infectious 
foxes after 12 months (c) maximum number of infected foxes 
over 20 yr. period and (d) minimum fox population size
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SUMMARY OF MAIN FINDINGS

The principal contributions of this thesis are:

(i) a critical review of existing techniques of sensitivity 
analysis, drawing on the literature of many different 
disciplines

(ii) the proposal of a modified form of the Biplot for 
providing a concise graphical summary of the uncertainty 
inherent in model output, together with an indication of 
particularly discrepant model responses

(iii) the definition of a measure of sensitivity that has a 
simple and generally applicable interpretation, and which 
may also have a more practical meaning in some modelling 
applications

(iv) the demonstration that this sensitivity coefficient 
may be employed in a formal decision-theoretic framework, 
in addition to its general use

(v) a proposal for a simple measure of the sensitivity of a 
decision process based on a mathematical model, which may 
be interpreted as indicating the strength of model support 
for a decision
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(vi) the proposal of the informational correlation measure 
as an appropriate method of measuring the influence that a 
model parameter has on the uncertainty inherent in the 
model output

(vii) a demonstration of the use of these techniques on two 
typical mathematical models

(viii) the general proposal that the most appropriate 
approach to sensitivity analysis will usually be to 
describe parameter uncertainty by means of probability 
distributions, to generate a sample from the model by Monte 
Carlo simulation, and to utilise the output distribution in 
various ways to provide the necessary descriptions and 
measures of uncertainty? it has been demonstrated that a 
single such output sample can be used in informal and 
formal description of uncertainty, can be used in formal 
decision-making, and also to measure parameter influence.

(ix) the suggestion of some lines of investigation for 
future research in both information theoretic methods, and 
sensitivity analysis of functional form.
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APPENDIX: COMPUTER PROGRAMS

This appendix contains listings of five computer programs 
used in the development of the methods described in the 
text of the thesis. Listings are provided of the basic 
forms of the coded mathematical models, together with 
two methodological programs - one to derive co-ordinates 
for a Biplot, and the other to derive values of I', from 
which informational correlation coefficients may be 
calculated.

(i) PROGRAM RABIES1: this is a coding, in FORTRAN, of 
the red fox rabies model due to Anderson et. al.
(1981). The code sets parameter values to the baseline 
values suggested by Anderson et. al., and then 
integrates the model equations numerically to produce, 
as output, a time track of the population density of 
each of the three classes of animal defined in the 
model. Numerical integration is carried out using the 
external subroutine D02EAF, available in the N.A.G. 
subroutine library (N.A.G., 1984).

GAMMA, BETA, XS, XE, W(3,21), Y(3)
/VPARS/ GAMMA, BETA
FCN

C
c
c
c
c

PROGRAM RABIES1 *
*
DOUBLE 
COMMON
EXTERNAL
*
*
*
*

PRECISION

Y(l) 
Y( 2)

0.95
0.04
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c
c
c

c
c
c
c
c
c
c

30
100

c
c

c
c

c
c

Y(3) = 0.01 *
*
*
GAMMA = 0.50D 0 
BETA = 79.69D 0
XS = 1.0D 0 *
*
*
*
*
WRITE(1,30) Y(1), Y(2) , Y(3)
*
★
DO 100 I = 1,50XE = XS + 0.08333333D 0

CALL D02EAF(XS,XE,3,Y,0.00ID 0,FCN,W,21,0)
XS = XE
WRITE(1,30) Y(1), Y(2), Y(3)
FORMAT(3F10.4)

CONTINUE CALL EXIT 
END
SUBROUTINE FCN(X,Y,F)
*
*
DOUBLE PRECISION DOUBLE PRECISION
COMMON *
*
R = 0.50D 0
SIGMA = 13.00D 0 
B = 0.50D 0
ALPHA = 73.00D 0 *
*
T = Y(1)+Y(2)+Y(3)
F (1) = (R*Y(1))-(GAMMA*Y(1)*T)-(BETA*Y(1)*Y(3))
F(2) = (BETA*Y(1)*Y(3))-((SIGMA+B+(GAMMA*T))*Y(2)) 
F(3) = (SIGMA*Y(2))-((ALPHA+B+(GAMMA*T))*Y(3)) 
RETURN 
END

X,Y(3),F(3),T R,GAMMA,BETA,SIGMA,B,ALPHA 
/VPARS/ GAMMA, BETA
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(ii) PROGRAM BIPLOT: this code, written in a statistical 
programming language called GENSTAT, derives co-ordinates 
for a Biplot of the sensitivity data from the red fox 
rabies model.

"REFE" BIPLOT 
"UNIT" $30 
"VARI" V(l...10)
"INPU" 2
"READ/FORM=P,PRINT=E" V(1...10)
"INPU" 1
"RUN"
"CALC" V (1)=V(1)/0.500 
"CALC" V( 2)=V(2)/0.250 
"CALC" V(3)=V(3)/79.690 
"CALC" V(4)=V(4)/13.00 
"CALC" V(5)=V(5)/0.500 
"CALC" V(6)=V(6)/73.00 "CALC" V (7)=V(7)/23.448 
"CALC" V(8)=V(8)/4.093 
"CALC" V(9)=V(9)/30.804 
"CALC" V(10)=V(10)/l138.404 
"RUN"
"SCAL" SC"FOR" A=V(1...10)
"CALC" SC=MEAN(A)
"CALC" SC=1-SC 
"CALC" A=A+SC 
"REPE""RUN"
"CALC" V(l...10)=V(1. . ,10)*1.5 
"RUN"
"SET" VARS=V(1...10)
"DSSP" DISP$VARS 
"SSP" DISP 
"SYMMAT" COR$10 
"CALC" COR=CORMAT(DISP)
"RUN"
"PRINT/LABR=1,LABC=1" DISP$10.2
"PRINT" COR$10.2
"RUN"
"SYMMAT" SIM$10 
"EQUA" SIM=DISP$56,11X 
"SCAL" X
"CALC" X=NVAL(V (1))
"RUN"
"MATRIX" LVECS$10,2 
"DIAG" LROOTS$ 2 
"SCAL" TRCE
"LRV" SIM;LVECS,LROOTS,TRCE 
"RUN"
"SCAL" ROOT1,ROOT2
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"CALC" R00T1=ELEM(LROOTS;1)
"CALC" R00T2=ELEM(LROOTS;2)"CALC" ROOT1,ROOT2=SQRT(ROOT1,ROOT2) 
"VARI" LVEC1,LVEC2 $11 
"MATR" COPY2$2,10 
"CALC" COPY2=TRANS(LVECS)
"EQUA" LVEC1,LVEC2=COPY2 
"RUN"
"CAPT" "" THE DATA MATRIX ""
"PRINT/FORM=P" V(l...10)$10.2
"CAPT" "" LATENT ROOTS AND VECTORS ""
"PRINT" LROOTS$6.2
"PRINT" LVECS$10.2
"PRINT" TRCE $6.2
"RUN"
"DEVA" LVECS,COPY2,SIM,DISP,LROOTS 
"RUN"
"SCAL" HOLD 
"FOR" ID=V(1...6)
"CALC" HOLD=MEAN(ID)
"CALC" ID=HOLD 
"REPE"
"FOR" I=V(1...10)
"CALC" HOLD=MEAN(I)
"CALC" I=I-HOLD 
"REPE"
"MATR" COPY1$10,X 
"EQUA" C0PY1=V(1...10)
"DEVA" V(1...10)"RUN"
"MATR" DATA$X,10 
"CALC" DATA=TRANS(COPY1)
"VARI" PI, P2$X"CALC" P1=PDT(DATA;LVEC1)
"CALC" P2=PDT(DATA;LVEC2)
"CALC" P1=(1/R00T1)*P1*SQRT(X)
"CALC" P2=(1/ROOT2)*P2*SQRT(X)
"DEVA" DATA 
"RUN"
"CALC" LVEC1=LVEC1*R00T1*(1/SQRT(X))
"CALC" LVEC2=LVEC2*ROOT2*(l/SQRT(X))
"CAPT" "" MATRIX G OF THE BIPLOT ""
"PRINT/P" PI,P2$10.2
"CAPT" "" MATRIX H OF THE BIPLOT ""
"PRINT/P" LVEC1,LVEC2$10.2
"RUN"
"CLOSE"
"STOP"
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(iii) PROGRAM RATM1: this is a coding, in FORTRAN, of the 
basic form of the farm rat model used in Chapter Four. The 
code produces, by numerical integration, a time track of 
farm rat population sizes over a 24 month simulated period. 
Numerical integration is done by the external subroutine 
D02EAF (N.A.G., 1984).

C
C

C
C

C
C

10
C
C

20
3040

C
C

C
C

PROGRAM RATMl *
*
DOUBLE PRECISION X,XEND,Y(1),TOL,W(l,19),PSIZE(240) 
INTEGER N,IFAIL,IW,I
EXTERNAL FCN
COMMON* /CDB/ PSIZE
*
X = 1.0D 0
XEND = 1.0D 0
Y(l) = 450.0D 0
IFAIL = 0
N = 1
TOL = 0.001D 0
IW* — 19
*
DO 10 I = 1,240

XEND = XEND + 0.1D 0
CALL D02EAF(X,XEND,N,Y,TOL,FCN,W,IW,IFAIL) 
PSIZE(I) = Y(1)
X = XEND

CONTINUE*
*
WRITE(1,30)
DO 20 I = 1,231,10

WRITE(1,40) I,PSIZE(I)
CONTINUE
FORMAT(16HRAT MODEL OUTPUT,//)
FORMAT(110,F10.0)
CALL EXIT 
END
SUBROUTINE FCN(X,Y,F)
*
*
DOUBLE PRECISION X,Y(1),F(1),PSIZE(240)
DOUBLE PRECISION C,A,B,GAMMA,PHI,BETA,KCAP,PHIPR
COMMON /CDB/ PSIZE
*
*
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o 
o

A
B
KCAP
BETA
PHI
PHIPR
C
GAMMA

0.94D 0 
0.14D 0

500.OOD 0 30.00D 0 
0.00D 0 
0.00D 0 
l.OOD 0
(A-B)/KCAP*

*
IF (X .GT. 4.0D 0 .AND. X .LE. 4.5) PHI =0.70D 0 
IF (X .GT. 4.0D 0 .AND. X .LE. 7.0D 0) PHIPR = 0.70D 0 
F(1) = C*(1.OD 0-PHIPR)*A*Y(1)
F(1) = F(l)-(((PHI*BETA)+((1.0D 0-PHI)*B) +(GAMMA*Y(1)))*Y(1))
RETURN
END
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(iv) PROGRAM RATM2: a coding, in FORTRAN, of the version of 
the farm rat control model used in Chapter Five. This differs 
from the previous version in that a time-lag of density 
dependent responses' is explicitly included in the program 
code. The external subroutine D02EAF (N.A.G., 1984) 
performs numerical integration of the model equation.

C
C

C
C

C
C

10C
C

20
30
40

CC

C

PROGRAM RATM2 *
*
DOUBLE PRECISION X,XEND,Y(1),TOL,W(l,19),PSIZE(240) 
INTEGER N,IFAIL,IW,IEXTERNAL FCN
COMMON /CDB/ PSIZE*
*
X = 1.0D 0XEND = 1.0D 0
Y( 1) = 450.0D 0I FAIL = 0
N = 1
TOL = 0.001D 0
IW = 19*
*
DO 10 I = 1,240

XEND = XEND + 0.1D 0
CALL DO2EAF(X ,XEND,N,Y,TOL,FCN,W,IW,IFAIL) 
PSIZE(I) = Y(1)
X = XEND

CONTINUE
*
*
WRITE(1,30)
DO 20 I = 1,231,10

WRITE(1,40) I,PSIZE(I)
CONTINUE
FORMAT(16HRAT MODEL OUTPUT,//)
FORMAT(110,FI0.0)CALL EXIT 
END
SUBROUTINE FCN(X,Y,F)★
*
DOUBLE PRECISION 
DOUBLE PRECISION INTEGER
COMMON
*

X,Y(1),F(1),PSIZE(240),LS
C,A,B,GAMMA,PHI,BETA,KCAP,PHIPRI
/CDB/ PSIZE
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c *
A
B
KCAP
BETA
PHI
PHIPR
C
GAMMA

0.94D 0 
0.14D 0

500.OOD 0 
30.00D 0 
0.00D 0 
0.00D 0 
l.OOD 0
(A-B)/KCAP

c
c

*
*
I = AINT((X*10.0D 0)-9.OD 0)
I = 1-25
IF (X .GT. 4.0D 0) LS = PSIZE(l)
IF (X .GT. 4.0D 0 .AND. X .LE. 4.5) PHI =0.70D 0
IF (X .GT. 4.0D 0 .AND. X .LE. 7.0D 0) PHIPR = 0.70D 0
IF (X .GT. 4.0D 0) F (1) = C*(1.0D O-PHIPR)*A*LS
IF (X .LE. 4.0D 0) F (1) = C*(l.OD O-PHIPR)*A*Y(1)
F(1) = F(l)-(((PHI*BETA)+((l.OD O-PHI)*B)+(GAMMA*Y(1)))*Y(1))
RETURN
END
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(v) PROGRAM INFC: a coding, in FORTRAN, of an algorithm to 
derive values of I' from the data listed in Table 5.1.. 
This program is doing no more than simple arithmetic on 
the sensitivity data.

PROGRAM INFC 
C

REAL ICV7,ICV8,ICV9,ICV10,ICV11,WV 
C

REAL V6(100),V7(100),V8(100),V9(100),V10(100)
REAL Vll(lOO)

C
REAL B1(4),B7(4),B8(4),B9(4),B10(4),B11(4)

C
REAL PD6(3),PD7(3),PD8(3),PD9(3),PD10(3)
REAL PD11(3)

C
REAL JPDV7(3,3),JPDV8(3,3),JPDV9(3,3)
REAL JPDV10(3,3),JPDV11(3,3)

C
DATA Bl/300.0,434.0,650.0,900.0/
DATA B7/0.700,0.874,0.996,1.200/
DATA B8/0.100,0.129,0.149,0.200/
DATA B9/24.00,28.09,32.02,36.00/
DATA B10/19.0,23.0,26.0,30.0/
DATA B11/1.00,3.73,6.36,10.00/

C
DO 10 I = 1,100
READ (6,*) V6(I),V7(I),
),V9(I),V10(I),V11(I)

10 CONTINUE
C
CC
C
CC

DO 130 I = 1,3 
PD6(I) =0.0 
DO 120 J = 1,100
IF (V6(J) .GE. B1(I) .AND. V6(J) .LT. Bld+1)) PD6 (I) =PD6 (I) +1.0 120 CONTINUE
PD6(I) = PD6(I)/100.0 

130 CONTINUE 
C

DO 150 I = 1,3 PD7(I) =0.0 
DO 140 J = 1,100
IF (V7(J) .GE. B7(I) .AND. V7(J) .LT. B7(I+1)) PD7(I)=PD7(I)+1.0 

140 CONTINUEPD7(I) = PD7(I)/100.0
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150 CONTINUE 
C

DO 170 I = 1,3 
PD8(I) = 0.0 
DO 160 J = 1,100
IF (V8(J) .GE. B8(I) .AND. V8(J) .LT. B8(l+1)) PD8(I)=PD8(I)+1.0 

160 CONTINUEPD8(I) = PD8(I)/100.0 
170 CONTINUE C

DO 190 I = 1,3 
PD9(I) =0.0 
DO 180 J = 1,100
IF (V9(J) .GE. B9(I) .AND. V9(J) .LT. B9(I+1)) PD9(I)=PD9(I)+1.0 

180 CONTINUE
PD9(I) = PD9(I)/100.0 

190 CONTINUE 
C

DO 210 I = 1,3 PD10(I) = 0.0 
DO 200 J = 1,100
IF(V10(J).GE.BIO(I).AND.V10(J).LT.B10(l+l))PD10(I)=PD10(I)+1.0 

200 CONTINUE
PD10(I) = PD10(I)/100.0 

210 CONTINUE
DO 999 I = 1,3 
PDll(l) = 0.0 
DO 998 J = 1,100
IF (Vll(J).GE.Bll(l).AND.Vll(J).LT.B11(I+1))PD11(I)=PD11(I)+1

998 CONTINUE
PDll(l) = PDlKD/100.0

999 CONTINUE C
DO 240 I = 1,3 
DO 230 K = 1,3 
JPDV7(I,K) =0.0 
DO 220 J = 1,100
IF (V6(J) .GE. B1(I) .AND. V6(J) .LT.

1(1+1) .AND. V7(J) .GE. B7(K) .AND. V7(J)
LT. B7(K+l)) JPDV7(I,K) = JPDV7(I,K)+1.0 

220 CONTINUE
JPDV7(I,K) = JPDV7(I,K)/100.0 

230 CONTINUE 
240 CONTINUE C

DO 270 I = 1,3 
DO 260 K = 1,3 
JPDV8(I,K) =0.0 DO 250 J = 1,100
IF (V6(J) .GE. B1(I) .AND. V6(J) .LT.

1(1+1) .AND. V8(J) .GE. B8(K) .AND. V8(J)
LT. B8(K+1)) JPDV8(I,K) = JPDV8(I,K)+1.0 

250 CONTINUE
JPDV8(I,K) = JPDV8(I,K)/100.0 

260 CONTINUE 
270 CONTINUE
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c DO 300 I = 1,3 
DO 290 K = 1,3 
JPDV9(I,K) = 0.0 
DO 280 J = 1,100
IF (V6(J) .GE. B1(I) .AND. V6(J) .LT.

1(1+1) .AND. V9(J) .GE. B9(K) .AND. V9(J)
LT. B9(K+l)) JPDV9(I,K) = JPDV9(I,K)+1.0 

280 CONTINUE
JPDV9(I,K) = JPDV9(I,K)/100.0 290 CONTINUE 

300 CONTINUE 
C

DO 330 I * 1,3 
DO 320 K = 1,3 
JPDV10(I,K) = 0.0 
DO 310 J = 1,100
IF (V6(J) .GE. B1(I) .AND. V6(J) .LT.

1(1+1) .AND.VIO(J) .GE. B10(K) .AND.VIO(J)
LT. BIO(K+l)) JPDV10(I,K) = JPDV10(l,K)+l.0 

310 CONTINUE
JPDV10(I,K) = JPDV10(I,K)/lOO.0 

320 CONTINUE 
330 CONTINUE 
C

DO 360 I = 1,3 
DO 350 K = 1,3 JPDV11(I,K) =0.0 
DO 340 J = 1,100
IF (V6(J) .GE. B1(I) .AND. V6(J) .LT.

1(1+1) .AND. Vll(J) .GE. Bll(K) .AND. Vll(J)
LT. B11(K+l)) JPDV11(I,K) = JPDV11(I,K)+1.0 

340 CONTINUE
JPDV11(I,K) = JPDV11(I,K)/100.0 

350 CONTINUE 
360 CONTINUE 
C

WRITE(1,401)
401 FORMAT(35HPROBABILITY DISTRIBUTIONS VI TO Vll,///) 

DO 500 I = 1,3
WRITE(1,400) PD6(I),
(I),PD8(I),PD9(I),PD10(I),PD11(I)

500 CONTINUE 
400 FORMAT(6F7.2)
C

WRITE(1,402)
402 FORMAT(2OHJOINT P.D. V6 AND VI,///)

DO 510 I = 1,3
WRITE(1,777) JPDV7(1,1),JPDV7(I,2),JPDV7(I,3)510 CONTINUE 

C
c
777 FORMAT(3F10.4)

WRITE(1,403)403 FORMAT(2OHJOINT P.D. V6 AND V8,///)
DO 520 I = 1,3
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WRITE(1,777) JPDV8(1,1),JPDV8(l,2),JPDV8(l,3)
520 CONTINUE 
C

WRITE(1,404)
404 FORMAT(2OHJOINT P.D. V6 AND V9,///)

DO 530 I = 1,3
WRITE(1,777) JPDV9(I,1),JPDV9(I,2),JPDV9(I,3)

530 CONTINUE 
C WRITE(1,405)
405 FORMAT(21HJOINT P.D. V6 AND V10,///)

DO 550 I = 1,3
WRITE(1,777) JPDV10(1,1),JPDV10(l,2),JPDV10(I,3)

550 CONTINUE C
WRITE(1,406)

406 FORMAT(21HJOINT P.D. V6 AND VI1,///)
DO 570 I = 1,3
WRITE(1,777) JPDV11(1,1),JPDV11(1,2),JPDV11(1,3)

570 CONTINUE C
ICV7 = 0.0 
DO 610 I = 1,3 
DO 600 J = 1,3 
WV = 0.0IF (JPDV7(I,J) .LE. 0.0) GOTO 599 
WV = JPDV7(I,J) * ALOG(JPDV7(I,J ))599 IF (PD6(I) .LE. 0.0 .OR. PD7(l) .LE. 0.0) GOTO 1001 
WV = WV - ((PD6(I)*PD7(J))*ALOG(PD6(I)*PD7(J)))

1001 ICV7 = ICV7+WV
600 CONTINUE 
610 CONTINUE 
C

ICV8 =0.0 
DO 630 I = 1,3 
DO 620 J = 1,3 
WV = 0.00
IF (JPDV8(I,J) .LE. 0.0) GOTO 619 
WV = JPDV8 (I, J) * ALOG (JPDV8 (I, J) •)

619 IF (PD6(I) .LE. 0.0 .OR. PD8(l) .LE. 0.0) GOTO 1002 
WV = WV - ((PD6(I)*PD8(J))*ALOG(PD6(I)*PD8(J)))

1002 ICV8 = ICV8+WV
620 CONTINUE 
630 CONTINUE C

ICV9 =0.0 
DO 650 I = 1,3 
DO 640 J = 1,3 
WV = 0.00IF (JPDV9(I,J) .LE. 0.0) GOTO 639 
WV = JPDV9(I,J) * ALOG(JPDV9(I,J))

639 IF (PD6(I) .LE. 0.0 .OR. PD9(I) .LE. 0.0) GOTO 1003 
WV = WV - ((PD6(I)*PD9(J))*ALOG(PD6(I)*PD9(J)))

1003 ICV9 = ICV9+WV
640 CONTINUE 
650 CONTINUE
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c

659
1005
660
670
C

299
1006
680
690
691
409

410
420
430
440
450

•ICV10 = 0.0 
DO 670 I = 1,3 
DO 660 J = 1,3 WV = 0.00
IF (JPDV10(I,J) .LE. 0.0) GOTO 659 WV = JPDV10(I,J) * ALOG(JPDV10(I,J))
IF (PD6(I) .LE. 0.0 .OR. PD10(l) .LE. 0.0) GOTO 1005 
WV = WV - ((PD6(I)*PD10(J))*ALOG(PD6(I)*PD10(J))) 
ICV10 = ICV10+WV 
CONTINUE 
CONTINUE 
•
Ievil = 0.0 
DO 690 I = 1,3 
DO 680 J = 1,3 
WV = 0.0
IF (JPDV11(I,J) .LE. 0.0) GOTO 299 
WV = JPDV11(I,J) * ALOG(JPDV11(I,J))
IF (PD6(I) .LE. 0.0 .OR. PDll(l) .LE. 0.0) GOTO 1006 
WV = WV - ((PD6(I)*PD11(J))*ALOG(PD6(I)*PD11(J)))
ICV11 = ICV11+WV 
CONTINUE 
CONTINUE 
WRITE(1,409)
FORMAT(18HVALUES OF I PRIME ,///)
WRITE(1,410) ICV7
WRITE(1,420) ICV8WRITE(1,430) ICV9
WRITE(1,440) ICV10
WRITE(1,450) ICV11
FORMAT(10HVARIATE 7 ,FI0.5)
FORMAT(1OHVARIATE 8 ,FI0.5)
FORMAT(10HVARIATE 9 ,FI0.5)
FORMAT(10HVARIATE 10,F10.5)
FORMAT(10HVARIATE 11,FI0.5)STOP
END
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ABSTRACT

Huson, L.W., 1982. A graphical aid to multivariate sensitivity analysis. Ecol. Modelling, 16: 
91-98.
This paper describes a graphical display designed to aid the evaluation of multivariate 

sensitivity data produced by a systems model. The display is a modification of the GH' Biplot 
technique. The variance and correlation structure of the model parameters and output 
variates is represented on the display, and a modification of the standard GH' Biplot is 
described which allows a simultaneous display of the results produced by each run of the 
model. Any run of the model that produces output particularly displaced from baseline 
output is easily detected on the display, and the nature of such a potentially sensitive reponse, 
in terms of the output variates and model parameters that contribute most strongly to it, can 
easily be diagnosed. The method is illustrated using multivariate sensitivity data from a pest 
control simulation model.

INTRODUCTION

The widespread use of systems modelling as a research technique in 
ecology and environmental biology has in recent years necessitated investiga
tions of the extent to which predictions from models can be regarded as 
reliable, and of the methodology by which reliability can be assessed and 
described (e.g., Shaeffer, 1980; O’Neill et al., 1980).
The term ‘sensitivity analysis’ is now widely used to describe one of the 

possible approaches to this problem. Although the term is used narrowly by 
some authors to refer to a specific technique (e.g., Gardner et al., 1981), 
sensitivity analysis is best regarded as a general term for a number of 
techniques that are used to describe the variations in model output that 
occur in response to perturbations of the model parameters. Perturbation of 
model parameters is intended to reflect the uncertainty that inevitably exists 
about the true values of the parameters used. This uncertainty is propagated
0304-3800/82/0000-0000/$02.75 © 1982 Elsevier Scientific Publishing Company
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as uncertainty about model output, and must accordingly be assessed and 
described adequately, to permit an appropriate interpretation of existing 
model output, and to direct model reformulation by pinpointing the most 
sensitive parts of the model structure.
A number of methods of sensitivity analysis have been proposed in the 

literature. Tomovic (1963) suggested the use of sensitivity coefficients, which 
he defined as partial derivatives of the model functions, to describe the 
extent of model output variation. This method has recently been criticised on 
the grounds of both its practicality and mathematical properties (McKay et 
al., 1976; Steinhorst et al., 1978; Gardner et al., 1981). Plinston (1972), 
Miller (1974) and Argentesi and Olivi (1978) all describe extensions of this 
principle, using derivatives of some function of model output. For some 
types of model, a more direct approach is possible, by studying analytically 
or numerically the propagation of parameter error (Wright, 1972; O’Neill et 
al., 1980; Shaeffer, 1980; Gardner et al., 1981; Majkowski et al., 1981).
McKay et al. (1976) depart from the partial derivative type of sensitivity 

coefficient and propose instead the use of partial rank correlation coeffi
cients to measure sensitivity. Steinhorst et al. (1978) have used ratios of 
mean squares, derived from an analysis of variance, for the same purpose. 
Plinston (1972) illustrates the advantages of graphical presentation of sensi
tivity data by plotting, in the space of pairs of model parameters, contours of 
a function that measures the change in model output induced by parameter 
perturbation.
All of these techniques fulfil a common purpose of describing the uncer

tainty inherent in model output. In practice, all will often give similar results 
for a given model, but all have some defects. Since it is desirable to try more 
than one approach to sensitivity analysis when interpreting a systems model, 
their individual defects are less important than their combined ability to aid 
the modeller to interpret and refine a model.
These techniques are, however, best suited for studying the variation of a 

single model output, or a function of multiple output, caused by perturba
tion of a single parameter. None is designed for a genuinely multivariate 
treatment of data generated by perturbing several parameters simultaneously 
and observing the variation in several output variates. A method of display
ing multivariate sensitivity data is described in this paper.
THE SENSITIVITY DATA MATRIX

The type of data with which the present paper is concerned can be 
illustrated by consideration of a systems model with p parameters and v 
output variates. The purpose of the sensitivity analysis is to evaluate and 
describe the variation in the v output variates that is induced by perturbing
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the p parameters by amounts that can be regarded as being in keeping with 
reality. If the perturbations that are applied to the parameters are sampled 
randomly from specified probability distributions, then any sample of 
parameter values so obtained can be regarded as a random sample from the 
implied population of possible parameter values (Dent and Blackie, 1979). If 
n such sets of parameters are sampled, and the model is run with each set, 
the data generated can naturally be considered as a matrix of order nX(p + 
«)•For each column in this matrix, there exists a baseline or best estimate 
value. For the first p columns, these values are the unperturbed parameter 
values, and for the last v columns they are the values output when the model 
is run using unperturbed parameter values. Rescaling the mean of each 
column to the baseline value and expressing each value as a ratio of the 
baseline value, produces a natural compatibility of scale for the matrix. Such 
a matrix may be referred to as a sensitivity data matrix.
A suitable method of multivariate sensitivity analysis should ideally 

permit:
(i) a simultaneous assessment of the variance-covariance structure of the 
columns of the sensitivity data matrix;
(ii) easy detection of any run of the model that results in a particularly 
deviant model response;
(iii) a diagnosis to be made of the nature of such a response, in terms of the 
parameters that most influence it, and the variates that respond most 
strongly.
Gabriel (1971) described a multivariate statistical technique called the 

Biplot, which, with appropriate modifications, proves to be a very suitable 
device for evaluating multivariate sensitivity data.
THE BIPLOT
The Biplot is a graphical display of multivariate data, based, where 

necessary, on a rank two approximation of the original data matrix. The plot 
is formed from two sets of co-ordinates, one of which represents the rows of 
the original data matrix, and the other the columns. There are several types 
of Biplot, but the one most suitable for the present application, referred to 
by Gabriel (1971) as the GH' Biplot, assumes that the rows of the matrix are 
a random sample from a larger population. The rows of the matrix are 
plotted so that increasing deviation of a row from the mean is shown as 
increasing distance from the origin of the Biplot. The distances on the Biplot 
in fact approximate the Mahalanobis distances between rows of the sensitiv
ity data matrix. The columns of the matrix are represented as projections 
which have lengths proportional to the variance of the column they repre
sent. The correlation between columns is approximated by the cosine of the
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angle between the column projections. The orientation of a point represent
ing a row of the matrix is determined by the extent to which each column 
contributes to the row’s displacement. Gabriel (1971) has proved and de
scribed these properties in detail; Everitt (1978) gives a simplified descrip
tion of the GH' Biplot.
By slightly modifying the GH' Biplot, as described below, each row of the 

sensitivity data matrix can be displayed in such a way that rows which are 
particularly displaced from the baseline— indicating a potentially sensitive 
response of the model— appear distant from the origin of the Biplot. The 
orientation of a point representing such a row, in relation to the projections 
that represent model parameters and output variates allows the nature of 
such a potentially sensitive response to be diagnosed. Simultaneously, the 
Biplot gives a clear picture of the variation in model output, and of the 
correlations within and between the parameters, and the output variates.
ALGORITHM

Let S be the variance-covariance matrix derived from the mean-centred 
sensitivity data matrix created by n runs of the model. Denote the first two 
latent roots and vectors of nS as /,, /2, and c,, c2, respectively. The 
co-ordinates of the Biplot are then given by
G = [(l//,)DrC|; (l/V/2) DrcJ/n 
H = [/ici; vteJi/V"
where Dr is the mean-centred sensitivity data matrix, in which each value in 
the parameter columns has been replaced by its baseline value. Because each 
column is mean-centred, this is equivalent to setting all elements of the first 
p columns to zero. The use of Dr is a modification of the standard GH' 
Biplot, in which the mean-centred data matrix is used without any changes 
in parameter columns. The modification ensures that displacements on the 
Biplot reflect only distances of observed model output from baseline output. 
Extreme values of parameters do not themselves influence the distances 
approximated on the Biplot.
Matrices G and H are, respectively, nX 2 and (p + v) X 2 matrices; each 

row of these matrices is treated as an x-y co-ordinate pair to produce a 
graphical display. The (p + v) co-ordinate pairs from matrix H are drawn as 
lines from the Biplot origin to the point indicated by the co-ordinates.
Occasionally a rescaling of the sensitivity data matrix, by multiplying 

throughout by a scalar, may be required in order to produce compatible 
scales in G and H' and so avoid a graph on which the variate vectors are too 
small to permit easy interpretation of the plot. An appropriate value of such
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a scalar is best selected by trial and error, after observing plots derived with 
different values. This scalar multiplication does not affect the above proper
ties of the Biplot.
AN APPLICATION

The version of the Biplot described above has been tested with several 
different systems models, and its use is illustrated here with a model that 
simulates the growth and control of rats on agricultural premises.
The detailed structure of this model is not relevant in the present context; 

briefly, the model simulates the growth of a population of rats in farm 
buildings, by selecting birth, death, immigration and emigration rates 
according to certain rules. Methods of controlling the size of the population 
are simulated by reducing the population size to simulate a rodenticide 
treatment, reducing birth rate to simulate a chemosterilant treatment, and 
reducing immigration rate to simulate the effect of permanently baiting a rat 
population.
The sensitivity analysis was concerned with three output variates (denoted 

V5, V6, and V7), that measure the relative success of three types of rat 
control technique: chemosterilant control (V5), control by permanent bait
ing (V6), and control by a combination of chemosterilant and rodenticide 
(V7). Four parameters in the model (denoted PI, P2, P3, and P4) were 
varied: the maximum birth rate (PI), the turnover rate of the population at 
stable size (P2), the rate of immigration (P3), and the stable population size 
(P4). The baseline values of these parameters, estimated from field data, 
were, respectively, 1.30, 0.30, 0.20, and 250. Perturbations for the parameters 
were selected randomly from independent Normal distributions, with zero 
means and standard deviations equal to 40% of the baseline parameter value.
Thirty such sets of parameter values were selected, and model output 

determined for each selection. A Biplot of the resulting sensitivity data 
matrix, rescaled by multiplication by 1.5 to increase the absolute length of 
the column vectors, is given in Fig. 1.
The lines on the Biplot represent the columns of the sensitivity data 

matrix, the line labelled PI, for example, representing the maximum birth 
rate in the model population. The lengths of the lines are proportional to the 
observed variance of the corresponding column. Thus, parameter P3 has the 
greatest variance, and output variate V7 the smallest.
The lines representing model output are labelled V5, V6 and VI. Of these, 

variates V5 and V6 have roughly the same variance, and V7 shows less 
variation. The indication is, therefore, that the model output is primarily 
varying on variates V5 and V6.
The orientation of the vectors provides relevant information— the cosine
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Fig. 1. A Biplot of sensitivity data generated by perturbing parameters in a model simulating 
the growth and control of rats on farms. Lines labelled PI, P 2, P 3 andP4 represent, 
respectively, parameters measuring the maximum birth rate in the model population, the 
turnover rate of the model population at stable size, the rate of immigration, and the stable 
population size. Lines labelled V5, V6, and V7 represent quantities output by the model: 
measures of success of chemosterilant control, permanent baiting control, and combined 
rodenticide and chemosterilant control, respectively. Numbered points represent different 
runs of the simulation model, each with a different selection of parameter values.

of the angle between any two lines being an approximation to the correlation 
coefficient between the corresponding columns. Thus variates V5 and V6 are 
highly correlated with each other, since the angle between the vectors is 
about 5 degrees and the cosine about 1. Both variates V5 and V6 are also 
quite highly correlated with V7.
Having established that V5 and V6 are the model outputs that vary most 

in response to parameter perturbation, the next step is to examine the 
apparent correlations between parameter vectors and these two output 
variates, to see which parameters appear to be related most strongly to the 
output variates.
The Biplot shows clearly that parameter P2 is most highly correlated with 

output variates V5 and V6. The greater angles between vectors PI, P3 and 
P4, and variates V5 and V6 indicate progressively lower correlations. The



vector representing P3, for example, is at an angle of about 90° to both V5 
and V6, indicating a very low correlation.
The general conclusion is, therefore, that the model output is most 

sensitive to parameter P2, and that this parameter induces variation prim
arily in output variates V5 and V6.
The numbered points 1-30 in Fig. 1 represent the 30 runs of the model, 

each with a random selection of parameter values. The points lie in a 
reasonably straight line in the same direction as vectors V5 and V6. The 
orientation of any point on the Biplot is determined by those columns in the 
sensitivity data matrix that contribute most strongly to its deviation from the 
mean output. Thus, point 16 on Fig. 1, lying outermost in the direction of V5 
and V6, has the highest overall values of these two variates, while point 5, 
lying in the opposite direction, has the lowest overall values.
For the model used in the present illustration, there is no real indication 

of a sensitive response. The output in Fig. 1 forms a smooth continuum from 
high output values of V5 and V6, to low output values, with no response 
deviating markedly from this general trend. Any response likely to be judged 
sensitive would be expected to be markedly displaced from the other points 
on the Biplot.
To summarise, the results show that the population turnover rate (parame

ter P2) is the parameter to which the model is most sensitive, and that this 
parameter induces variation mainly in chemosterilant success (K5) and 
permanent baiting success (V6).

CONCLUSION
If systems models are to achieve their full potential as aids to environmen

tal management, it is important that their predictions should be properly 
understood and placed in perspective. Sensitivity analysis has an important 
role to play in this process, by clarifying the nature and extent of the 
dependence of output on parameter values. All methods of sensitivity 
analysis are designed to assist the systems modeller to describe adequately 
the extent to which model output varies in response to changes in model 
parameters. The method described in this paper fulfils the same function, 
but extends the sensitivity analysis techniques available to the systems 
modeller in that it is specifically designed to aid the assessment of multi
variate sensitivity data. When used in conjunction with existing univariate 
techniques, the method offers the prospect of a clear description of model 
sensitivity.
Sensitivity analysis techniques, including the one presented here, serve 

only to describe the extent to which model output varies in response to 
parameter perturbations, and are only one approach to the problem of 
evaluating a system model (Naylor and Finger, 1967; Shaeffer, 1980).



Regardless of the extent of the output variation which is apparent, a 
sensitivity analysis itself cannot indicate whether or not a model is useful. In 
order to reach such a conclusion the apparent variation must be considered 
with regard to the purpose for which the model was constructed (see e.g. 
Naylor and Finger, 1967; Van Horn, 1971).
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ABSTRACT

Huson, L.W., 1984. Definition and properties of a coefficient of sensitivity for mathematical 
models. Ecol. Modelling, 21: 149-159.
This paper contains a definition of a measure of the uncertainty inherent in the output of a 

mathematical model. The definition is essentially a formalisation of the kind of uncertainty 
measures that have been previously used in various modelling applications in many disci
plines. The characteristics of the measure are described, and an example is given of its use 
with a particular mathematical model.

INTRODUCTION

As the use of mathematical models becomes more widespread in all fields 
of science and technology, the need to use the predictions from models in an 
efficient and rational way becomes more pressing. Such predictions are 
strictly conditional upon the specific structure of the model, and also upon 
the values assigned to certain parameters within the model. Generally, there 
is uncertainty about the true values. of such parameters, and therefore 
uncertainty is inherent in the predictions of the model. Clearly, if mathe
matical models are to achieve their full potential as aids to management, this 
uncertainty must be properly assessed and described. This has been recog
nised since the early days of practical mathematical modelling (see e.g. 
Moffei, 1959), and consequently a variety of techniques for assessing and 
describing this uncertainty have been proposed in the literature of many 
disciplines. Such techniques are variously referred to as methods of “sensitiv
ity analysis”, “error analysis”, or “uncertainty analysis”. They vary consid
erably in complexity and applicability. No single method is suitable for all 
models, and many techniques have been developed in the context of specific 
applications.
030 4-3800/84/$03 .00  © 1984 Elsevier Science Publishers B.V.
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The most extensively investigated methods are those deriving from the 
control theory and electrical engineering literature (Brayton and Spence,
1980). Here, sensitivity is defined in terms of differential coefficients (see e.g. 
Tomovic, 1963; Tomovic and Vukobratovic, 1970; Cruz, 1973). Such sensi
tivity measures have been advocated for use in ecological applications (e.g. 
McCuen, 1973; Hudetz, 1975), but have also been criticised on the grounds 
that the implicit assumption of linearity (e.g. Dwyer and Kremer, 1983), and 
the computational burden required to obtain solutions for large models (e.g. 
Steinhorst et al., 1978), restrict their applicability. Computational techniques 
and analytic methods abound in the literature; for a recent example see 
Kercher (1983).
Propagation of error, either analytically or by means of Monte Carlo 

simulation, is a popular technique. This requires that the uncertainty about 
parameter values be described by means of probability distributions. Meth
ods from basic statistical theory, or approximations to such methods, may 
then be used to derive distributional properties, such as means and vari
ances, of the model output. Examples of this approach may be found in the 
work of Wright (1972),'McCuen (1973), Burns (1975), Argentesi and Olivi 
(1976), Reckhow and Chapra (1979), Shaeffer (1980), Bailey and Dup- 
penthaler (1980), and many others. A convenient summary of the necessary 
formulae is given by Clifford (1973). However, analytical methods can only 
be applied to relatively simple mathematical models, and the alternative—  
direct error propagation by Monte Carlo simulation— is often pursued. 
Examples may be found in the work of Burns (1975), O’Neill et al. (1980), 
Gardner et al. (1981), and Dwyer and Kremer (1983). Kremer (1983) has 
drawn attention to the theoretical implications of exactly how uncertainty is 
modelled in this approach, and McKay and co-workers have extensively 
discussed techniques of selecting parameter values from the specified proba
bility distributions in the case of sensitivity analysis (McKay et al., 1976, 
1979; Iman and Conover, 1980).
Because of the complexity of many mathematical models a number of 

authors have suggested that sensitivity analyses may conveniently be carried 
out on response surfaces fitted to the empirically determined relationship 
between parameter values and model output. Blanning (1974) coined the 
term “metamodel” to describe such response surfaces. Examples of this 
approach are described by Plinston (1972), Richels (1978), Argentesi and 
Olivi (1978) and Kohberger et al. (1978). The value of this technique is 
dependent upon the goodness-of-fit of the response surface.
In addition to the above techniques, many other methods of sensitivity or 

uncertainty analysis have been described, in the literature of many disci
plines. These include a variety of simple sensitivity coefficients (e.g. Abouel- 
Nour, 1967; Jones, 1967; Ali, 1968; Mann, 1971; Brown et al., 1978;
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Summers and McKellar, 1981), some simple uncertainty measures (e.g. 
Moffei, 1959; Reckhow, 1980; Reckhow and Simpson, 1980), Fourier trans
form techniques (e.g. Cukier et al., 1978), and graphical methods (Plinston, 
1972; Huson, 1982).
The purpose of this paper is to give a formal definition of a simple 

measure of the uncertainty in a model output. The method has not been 
described in this form before, but is essentially a formalisation of the kind of 
approach that has been used in the past in specific applications (e.g. Moffei, 
1959; Reckhow, 1980; Wong, 1980). It may prove to be a useful addition to 
the many techniques of sensitivity analysis that already exist in the literature.
GENERATING DATA

Consider a mathematical model havingp parameters xi (i = \...p) and v 
output variates y-(j =1. ..u). Let the vector (x,; i — \...p) be the vector of 
baseline or best estimate parameter values, and the vector (y/, j  = l...v) be 
the corresponding vector of output variates. Data for sensitivity analysis are 
commonly generated by assigning a joint probability distribution to the p 
model parameters, and using this distribution to generate, say, n sets of 
parameter vectors (jc,; i = l...p)r (r=l...n). Each of the n parameter 
vectors may then be used in turn in the mathematical model to generate a 
corresponding vector of outputs. Denote the rth parameter vector and its 
corresponding output vector by (jt,)r and (yj)r, respectively.
DEFINITION OF A MEASURE OF SENSITIVITY

Consider in turn each of the vectors (yy)r (r=l...n), generated as 
specified above. For each vector assign a score

V

S r = Y , d j / v (1)
y - i

where
dj =0 ifl^-•?,!<“?, 
d j =  1 if I y j - y j ^ a y ,

then the coefficient
n n

Sa=H SrWr/ £  Wr (3)
r = \  r = 1

where wr is a weighting coefficient, is defined to be the 100 a% sensitivity 
coefficient of the v outputs for the model.
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PROPERTIES OF THE PROPOSED COEFFICIENT

The above coefficient is defined as the proportion of model outputs that 
lie outside a boundary centred on the baseline output value. This conceptu
ally simple measure of model sensitivity has several appealing properties:
(i) The coefficient is bounded by the values 0 and 1. This standardisation 

makes interpretation much easier and avoids the confusion that can arise 
with coefficients that are unbounded and may differ by several orders of 
magnitude.
(ii) The coefficient is defined for models having any number of parame

ters, and any number of output variates, and may also be calculated 
separately for each output produced by the model.
(iii) Because the coefficient is independent of scale in the sense of (i) 

above, it is easy to compare the sensitivities of different models.
(iv) The derivation of the coefficient makes no assumptions about the 

form of the induced relationship between parameters and model outputs.
(v) The coefficient is simple to compute once sensitivity data are gener

ated— the computation may be done manually.
(vi) The coefficient has an obvious and immediate probabilistic interpre

tation, being based on the proportion of model outputs that lie outside a 
certain range.
THE WEIGHTING COEFFICIENT

The quantity wr in (3) above is a weighting coefficient for the vector (y7)r. 
In some cases it may be appropriate to weight each output vector equally, in 
which case w = 1, V r, and (3) reduces to
Sa = E  sr/n (4)

r = 1

However, it will often be more appropriate to weight each vector of outputs 
according to the chance that such a vector may be realised, i.e. to use as a 
weight w, a quantity proportional to the corresponding likelihood of the 
vector (xf )r.
AN EXAMPLE

The calculation of the sensitivity coefficient described above may be 
illustrated using the model proposed by Anderson et al. (1981). The model 
consists of a set of three differential equations containing six parameters. 
These parameters are (i) the per capita birth rate of the red fox (r), (ii) a 
parameter measuring the severity of density dependent mortality control
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(gamma), (iii) a parameter measuring the rate of transition of foxes from the 
susceptible to the infected state (beta), (iv) the reciprocal of the average 
latency period of rabies in the red fox (sigma), (v) the per capita death rate 
of the red fox (b), and (vi) the reciprocal of the death rate of rabid foxes 
(alpha). This model has been solved numerically to yield four output 
variates: (i) the number of infected foxes in the population after a simulated 
12 month period, (ii) the number of infectious foxes in the population after a 
simulated 12 month period, (iii) the maximum number of infected foxes in 
the population over a simulated 20 year period, and (iv) the minimum size of 
the population over a simulated 20 year period. All simulations were carried 
out for an initial population size of 1200 animals, with 15 rabid foxes in the 
population. For more details of the model, the description by Anderson et 
al. (1981) should be consulted.
The baseline values of the six parameters described above are given in 

Table I, together with the output values they generate when used in the 
model. There is, of course, some uncertainty about the true values of these 
parameters, and the effects of this on the uncertainty in model output should 
be described in some appropriate way. For the present purposes of illustra
tion only, the uncertainty about these parameter values has been represented 
by uniform distributions, each centred on the baseline parameter value, and 
having a range equal to 30% of the baseline value. The results of repeated

TABLE I
Baseline values of the six parameters and four output variates from the red fox rabies model
Quantity Baseline value
r 0.50
gamma 0.25
beta 79.69
sigma 13.00
b 0.50
alpha
Number of infected 
foxes after 12

73.00

months
Number of infectious 
foxes after 12

23

months
Maximum number of 
infected foxes

4

over 20 yr. period 
Minimum fox population

31
size over 20 yr. period 1138
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TABLE II
Sensitivity data from the fox rabies model
Number of 
infected 
foxes after 
12 months

Number of 
infectious 
foxes after 
12 months

Maximum 
number of 
infected 
foxes over 
20 yr. 
period

Minimum 
fox population 
size over 20 yr. 
period

45.56 4.51 54.28 999
27.72 3.61 33.25 1074
31.68 5.57 32.90 999
16.87 3.91 17.14 1149
23.47 5.01 23.48 1068
71.74 12.12 86.52 965
19.85 3.19 20.55 1151
11.07 3.43 12.80 1104
98.40 10.35 112.97 939
19.76 2.15 23.39 1146
48.38 7.76 52.05 981
21.93 3.25 25.64 1151
23.33 4.41 23.56 1119
28.87 3.67 31.36 1062
38.50 7.53 44.62 990
37.04 8.11 45.19 1092
21.73 4.31 21.87 1124
23.05 3.48 30.00 1126
61.51 11.07 63.87 1038
30.77 6.74 32.13 1055
50.49 7.86 68.47 984
27.29 5.34 33.09 1088
48.74 10.84 50.22 1064
29.51 4.96 32.68 1108
50.11 14.16 51.60 954
23.14 3.61 23.39 1054
31.85 7.57 31.94 1019
37.94 4.39 45.18 1005
36.12 6.95 39.62 1015
34.13 5.16 42.98 1067

runs of the model with parameter values selected from these distributions are 
given in Table II.
The calculation of a 20% sensitivity coefficient for this model proceeds as 

follows. The first step is to define, for each output variate, a region centred 
on the baseline output and bounded by values of 0.8 and 1.2 times the 
baseline value. The appropriate regions for each of the four output variates 
are given in Table III. Then, for each output vector in turn, the score is
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TABLE III
Regions centred around baseline values of model output and bounded by values ±  20% of the 
baseline
Output Region
No. foxes infected
after 12 months 18.4-27.6
No. foxes infectious
after 12 months 3.2-4.8
Max. no. of infected
foxes in 20 yr.
period 24.8-37.2
Min. population size
over 20-year period 910-1366

computed, as described above. Thus, for the first output vector, the value for 
the number of infected animals in the population after a simulated 12 month 
period, and the value of the maximum number of infected animals in the 
population after a simulated 20-year period, both lie outside the correspond
ing 20% range. The score for this vector is therefore 2/4. The scores for 
other vectors are calculated similarly, and the resultant scores converted into 
the sensitivity coefficient defined above. Since independent uniform distribu
tions were assigned to the parameters used to generate the output vectors, 
each vector has been weighted equally. The resulting 20% sensitivity coeffi
cients, for each output variate separately and for the model as a whole, are 
given in Table IV.

TABLE IV
20% sensitivity coefficients for the fox rabies model of Anderson et. al. (1981), for the four 
output variates described in the text

20% sensitivity coefficient
No. foxes infected
after 12 months 0.70
No. foxes infectious
after 12 months 0.63
Max. number of infected
foxes in 20 yr. period 0.70
Min. population size
over 20 yr. period 0.00
Whole model (all four output variates) 0.51
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USES OF THE COEFFICIENT

The values of the sensitivity coefficient defined above all lie, by definition, 
between 0 and 1, with higher values indicating that a greater proportion of 
the generated output lies outside the range defined. Confining the coefficient 
values in this way improves the utility of the coefficient, since it becomes 
easy to compare the sensitivity of different outputs within a model, or 
between different models (see e.g. McCuen, 1973). A 20% sensitivity coeffi
cient of, say, 0.5, immediately conveys something of the uncertainty inherent 
in the output— it says that 50% of the output values generated by the model 
lie outside the range bounded by 0.8-1.2 times the baseline. The higher the 
value of the coefficient the greater is the dispersion of model output values, 
and the greater the uncertainty in the output. Thus, for example, in the 
rabies model above, the least sensitive output is the minimum size of the 
simulated population— no values of this latter output lie outside the 20% 
range.
A further advantage of the definition proposed above is that the choice of 

a permits the “severity” of sensitivity analysis to be selected by the modeller. 
A severe test of a model, for example, might be made by calculating the 1% 
sensitivity coefficient. This would indicate the proportion of model outputs 
that lie outside the corresponding baseline ±1%. A low value for such a 
coefficient would strongly suggest that such a model is very robust to the 
uncertainty that exists about its parameter values. The requirement for the 
modeller to choose a forces a definition to be made, at least implicitly, of the 
level of uncertainty in output that is considered to be important.
USE OF THE COEFFICIENT IN FORMAL DECISION MAKING

The sensitivity coefficient proposed above may therefore be used in 
informal assessment of the level of uncertainty inherent in the output from a 
mathematical model. However, the use of the coefficient also extends to 
more formal decision making. Consider a region of model output defined by 
the vectors (yj + ocyy j = l...v), (yj — ayy j=\...v). The proportion of 
model outputs that lie outside this region is the 100 a% sensitivity coefficient 
for the model. Suppose that this region defines a “state-of-nature” which, if 
it were known to be true, would lead a decision-maker to take action A. If 
the true state of nature lies outside this region, then suppose the decision
maker would take action B. The decision problem occurs because the true 
state of nature is not known. However, the 100 a% sensitivity coefficient 
may be interpreted probabilistically, since it is the proportion of model 
outputs lying outside the region defined by the vectors. Similarly, the value 
1 — Sa may be taken to approximate the probability, as indicated by the
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model, that the first state of nature, implying action A, is true. Thus Sa, in 
addition to its other advantages, may be directly employed, in conjunction 
with a set of possible actions and their utilities under different possible states 
of nature, in a conventional decision-theoretic framework (see e.g. Lindgren, 
1971). The use of the coefficient in this way will be illustrated elsewhere.
CONCLUSION

In many modelling applications in the literature, simple uncertainty 
measures have been used. The definition given here has not been explicitly 
used in the past, though many essentially similar concepts have been applied. 
The measure defined above has a number of useful characteristics, including 
simplicity, ease of computation, and probabilistic interpretation, and may 
prove to be a useful addition to the many techniques already described both 
in the ecological literature and elsewhere.
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