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Abstract

It has been shown by Olshanetsky and Perelomov that the
Toda Molecule (TM) equations associated with any simple Lie
group G describe special geodesic motions on the Riemannian non
compact symmetric space which is the quotient of the normal real 

Nform of G, G , by its maximal compact subgroup. We explain this
in more detail and show that the "fundamental Poisson bracket
relation" involving the Lax operator A and leading to the
Yang-Baxter equation and integrability properties is a direct

Nconsequence of the fact that the Iwasawa decomposition for G
endows the symmetric space with a hidden group theoretic
structure. We extend this geometric picture to the quantum level
by implementing a quantum reduction procedure where the
solutions to the Schroedinger equation for the Toda Molecule
systems are seen as projections from the free wave functions on

Nthe symmetric spaces G /K. The algebraic structure of the 
classical model holds true at the quantum level and leads to the 
"fundamental commutation relation" and the quantum Yang-Baxter 
equation. We then show the quantum integrability of the TM 
systems by constructing the quantum conserved quantities in 
involution. Our analysis of the classical and quantum geodesic 
motions applies uniformly to all the non-compact Riemannian 
globally symmetric spaces.
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1. Introduction

In recent years there has been an increasing interest in
the non-linear aspects of gauge theories. The reason is that
several features of these theories, such as the classical
soliton solutions, have been indicated that they possess
symmetries much richer and deeper than those ones that can be
directly inferred from the lagrangian. The study of these
non-linear phenomena is of crucial importance for a better
understanding of the structure of gauge theories and it can help
clarifying the role of solitons in the quantum theory. It is
believed that solitions, like the magnetic monopoles, correspond
to particles in the spectrum of the quantized theory. These
ideas are based in the early work of Skyrme and some other

(2)results in two dimensional field theory . Electromagnetic
(3)duality conjectures have already been proposed to explain

how this would work in four dimensional field theory and their
validity seem to be most favoured in the N=4 supersymmetric

.. . (4)gauge theories
The techniques used in their studies have attracted the

attention not only of theoretical physicists but of
mathematicians too. The reason is that several topics in
physics and mathematics that have developed in a quite
independent way have now been shown to be intrinsically related.
Much attention has been given to the study of integrable
systems ’ because it is believed that integrability is in
some way connected to the existence of solitons solutions in a

( 7 )given theory. We say a system is integrable if it possess a
number of conserved quantities in involution, i.e. with 
vanishing Poisson bracket, that is equal to the number of
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degrees of freedom. When that happens it is possible to find a 
canonical transformation to a new set of canonical variables 
(the action-angle variables) where the conserved quantities are 
the momenta and the Hamiltonian can be written in terms of them 
only, with coordinates eliminated. The Hamilton equations can 
then be easily integrated. The relation between integrability 
and solitions is not well established yet and effort has been 
made to understand the structures and symmetries underlying the 
integrability properties that are common to most integrable 
systems. Field theory models in four dimensions are in general 
very complex and it is sensible to carry out these studies with 
simpler models in one and two dimensions since they present 
features very similar to those of gauge theories.

In this thesis we consider the Toda molecule models in one 
dimension. The story of these models go back to the 50's when 
Fermi, Pasta and Ulam  ̂ ' did a computer experiment to study 
the ergodic behaviour of a system of several particles in a line 
interacting with their nearest neighbours via non-harmonic 
springs. If the system were ergodic the trajectories on the 
phase space would eventually fill it entirely. But instead they 
noticed that after a finite time the initial configuration was 
repeated indicating the existence of conserved quantities that 
constrained the phase space. Later the Japonese physicist 
Toda Jnoticed that the system could be solved analytically if 
the spring tension were proportional to the exponential of the 
distance between the particles. When written in some suitable 
coordinates the potential energy for such a system takes the form 
exp(Kak (j>̂ ), where K ^ is the Cartan matrix for the Lie

algebra of SU(r+l) (r being the number of particles). The



9

occurrence of this matrix is not accidental an it was later 
realized that the algebra of SU(r+l) does play a role in these 
models. Such facts motivated the generalization of this model 
to the cases where K is the Cartan matrix of any simple Lie 
group. These models are now called Toda Molecule (TM)l^^ The 
equations of motion for the Toda Molecule systems are given by:

2

= - exp( l Kab<!>b ) a,b = 1,2 ...r (1.1)
dt b

where the non-singular matrix K is the Cartan matrix for a 
simple Lie group G (of rank r).

The solutions to these models have already been 
constructed v ' ' and they have also been shown to be
completely integrable v ’ . Eq. (1.1) (with t replaced by i
times radius) is known to govern the radial dependence of 
certain spherically symmetric monopole solutions in -the
Bogomolny-Prasad-Sommerf ield limit (1^,19)^ S0]̂ -t0ns
solutions have been found to the Toda Molecule equations and one 
reason is that the ground state correspond to divergent values 
of <J).

If we replace the matrix K in (1.1) by the extended Cartan
matrix for an affine Kac-Moody algebra we obtain the
so called Toda Lattice TL models. These are also completely

(14)integrable systems . The Cartan matrix for these algebras
is singular and therefore it has a null vector. This means we 
can find certain linear combination of fields which satisfies 
the free equation of motion (with vanishing potential). This 
combination can consistently be set zero and so the Toda Lattice
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equations have a unique constant solution defining a ground
state. Perhaps this is the most striking difference between the
TM and TL models. The Toda Lattice models possess solitons

( 2 2 )solutions and the Sine-Gordon and Bollough-Dodd models are
examples of TL models.

In this thesis we explore an interesting feature of the
( 1 2 )Toda Molecule models which some authors believe may

underly all integrable systems. The solutions of these models,
( 1 2 )as it was first observed by Olshanetsky and Perelomov , can

be viewed as projection of certain geodesic motions on a
Nsymmetric space G /K explained below. We develop this geometric 

picture further to study the integrability properties of the TM 
models. We also extend this picture to the quantum level by 
showing how to construct solutions to the Schroedinger equation 
for the TM models from free wave functions on the symmetric 
space G /K

Our analysis of the classical and quantum geodesic motion
works in a similar way for all non-compact Riemannian globally
symmetric spaces } and we think other integrable models can
be obtained by using a reduction procedure similar to that one

Nused for the spaces G /K.
The symmetric spaces we consider are coset spaces F/K where

F is a real non-compact simple Lie group furnished with a
2Cartan involution a ( a  =1 ,  a f  1). K is the subgroup of F 

invariant under a and it is a maximal compact subgroup v ' (see 
section 2). These spaces are non-compact, Riemannian and 
globally symmetric. They have very special properties due to 
the Iwasawa decomposition of F as we now explain. The Lie
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algebra f of F is decomposed in even and odd subspaces under a

f = k + £ , a(k) = k , cy(£) = - £ (1.2)

with k being the Lie algebra of K. Let a denote a maximal 
abelian subspace of £. According to Helgason v ' the algebra 
of f is decomposed as

f = n + a + k (1.3)

where n is a maximal nilpotent subalgebra of f and it is a
direct sum of the subspaces f^= {Xef : [H,X] = \(H)X for Hea}
forpositive roots X’s. (n = \ f.). Accordingly the elements

\>o ~X
of the group F decompose as (Iwasawa decomposition)

g = n a k (1.4)

where a e exp a, n is an element of the connected subgroup of F 
corresponding to n and k e K. It then follows that the 
quantities na can be used to parametrize the cosets of F which 
constitute the points of the symmetric space F/K. These 
quantities na form a group B which is solvable and whose Lie 
algebra will be relevant for the integrability. The spaces F/K 
are then endowed with a hidden group theoretic structure given 
by the group B.

The symmetric spaces relevant for the Toda molecule models
Nare the coset spaces G /K and they are examples of the symmetric

Nspaces F/K we just described. G is the "normal" form (real and 
non-compact) of the complex Lie group G whose Cartan
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matrix appear in (1.1). Its generators are the Cartan
Nsubalgebra generators HN (i=l,2...rank G ) and the step 

operators E a (see section 5). The relevant Cartan involution 
here is

a(H ) = - Hi , <r(Ea) = -E_a (1.5)

Therefore the generators of the maximal compact subgroup K, in
this case, are E -E (a any root) and the maximal abeliana — a

Nsubspace a of £ is the Cartan subalgebra of G whose generators
are the H^'s. Th nilpotent subgroup n is obtained by
exponentiating a real linear combination of the positive root
step operators E a (a>o). Here, the group B is the Borel 

Nsubgroup of G which by definition is the maximal solvable 
Nsubgroup of G .

The geodesic motion on the Riemannian non-compact symmetric 
spaces F/K is described in section 2. By defining

g-l_dg _ A + iB (1.6)
dt

where A and B are odd and even respectively under a, we show 
that the Lagrangian for such motion is:

Tr(A 2)/2 (1.7)

and that the corresponding equation of motion

+ i [B, A ] = 0 
dt

(1 .8)



13

takes the form of a Lax pair equation v '.
The Lagrangian (1.7) and, more importantly, the 

corresponding Hamiltonian are automatically positive. This is a 
reflection of the Riemannian nature of the symmetric space. If 
we choose K = 1 in (1.4) which means that we are parametrizing 
the point of the symmetric space by an element of 1 then (1.6) 
can be expanded in terms of the generators of B with 
coefficients which are functions of the coordinates and 
momenta.

In section 3 we explain how to evaluate the Poisson bracket 
algebra of these coefficients by using a refined version of 
Noether's Theorem (proved in appendix I). Since the 
coefficients turn out to be Noether charges for right 
transformations

b -► b" = b b ' b, b' e B (1.9)

their Poisson bracket algebra is the Lie algebra of B (even 
though these quantities are only partially conserved by virtue 
of (1.8)).

The Lagrangian (1.7) is invariant under left 
transformations

g -► gM = g' g g, g' e F (1.10)

and using Noether's Theorem we show that the conserved charges
associated with this symmetry are the coefficients of 

• _ tX = xx /2 when it is expanded in terms of the generators of F.
fl2 25 26")x is the 'principal variable"  ̂ ' introduced in (2.6).
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We also show that the Poisson bracket algebra of these charges 
is the Lie algebra of F.

The results of section 3 are used in section 4 to construct
(5)what Faddeev J calls the Fundamental Poisson Relations (FPR).

By using the expression for the variation of the right charges
under right transformations we construct, in a quite simple way,
the FPR for the Lax operators A and B. The FPR for the left 

• — lcharges X = x x /2 is also constructed using the same method.
In section 5 we show that for the particular case of the 

symmetric spaces GN/K the Fundamental Poisson Relation for A and 
B takes the form

{A + iB ® A + iB} = - [P,  (A + iB) o 1 + 1 ®  (A + iB) ]

(1 .11)

where P is the quantity previously constructed by Turok and
( 1 4 )Olive . We also explain that because of a similarity in

structure between P and A + iB the equation (1.11) can be
f 27 28)written in the form of a classical Yang-Baxter equation v ’ }

We then explain, in section 6, how to restrict in a
Nconsistent way the geodesic motion on the symmetric spaces G /K 

to obtain the Toda Molecule equations (1.1). Essentially this 
is done by choosing some particular values for the conserved 
left charges corresponding to the positive root step operators

E^ (a>o) which is consistent with the algebra of these charges. 
The solutions to the TM equations are those geodesics which 
satisfy these initial conditions. We also show how to reduce 
the Lax and FPR equations (1.8) and (1.11) to their known forms
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appropriate to (1.1). We believe that a similar reduction 
procedure can be applied to the symmetric spaces F/K to obtain 
other integrable systems.

We then turn our attention to the quantum free motion of a 
particle on non-compact Riemannian symmetric spaces. The 
Hamiltonian for such motion, as it is explained in section 7, is 
the Laplace-Beltrami operator, which is the generalization to 
curved space of the ordinary Laplacian for scalar functions on 
flat space.

Our motivation for this study is that the geometric picture
of Olshanetsky and Perelomov is also valid at the quantum level.
By using a reduction procedure we show, in section 11, that
the solutions of the Schroedinger equation for the Toda Molecule
systems can be obtained from the free wave functions on the

Nsymmetric spaces G /K.
As we explain in section 7, there is no ambiguity in the 

construction of quantum operators for classical quantities which 
are linear in the momenta. In addition if these quantities 
satisfy some algebra under the Poisson bracket then their 
corresponding quantum operators satisfy the same algebra under 
the quantum commutator. Since the Noether charges corresponding 
to the left and right transformations are linear in the momenta 
t then follows that the agebraic structure underlying the 
classical geodesic motion on the symmetric spaces F/K holds true 
at the quantum level. We then explore these symmetries to study 
the quantum integrability properties of the Toda Molecule 
systems.

In section 8 we construct the Laplace-Beltrami operator for 
the non-compact symmetric spaces F/K. In section 9 we define
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the quantum right and left transformations and construct the 
quantum operators for the corresponding Noether charges. We 
then show that the Fundamental Poisson Relations (FPR) remain 
true in the quantum theory when we replace the Poisson bracket 
by the quantum commutator as a consequence of the fact that the 
classical and quantum algebras of the Noether charges are the 
same. These relations are then called the Fundamental 
Commutation Relations (FCR). We also construct the quantum 
analog of the Lax pair equation by introducing modified Lax 
operators which contain terms which are quadratic in the 
generators of the Lie algebra of the solvable subgroup B.

NIn section 10 we specialize to the symmetric spaces G /K.
and show that the quantum version of the relation (1.11) lead us
to the quantum Yang-Baxter equation. We then explain, in
section 11, the quantum reduction procedure. We show that the
solutions of the quantum Toda Molecule systems can be obtained

Nby projecting the free wave functions on G /K onto 
eigenfunctions of the quantum operators for the left charges 
corresponding to the positive root step operators.

In section 12 we construct the quantum conserved quantities 
in involution and show that the Toda Molecule systems are 
integrable at the quantum level.
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2 . Geodesic Motion

Much of our work applies to the geodesic motion of a 
particle moving on any Riemannian non-compact symmetric space 
and we shall therefore postpone specialization to the 
special type described in the introduction to section 5 . It 
is this type which leads to the Toda equations (1.1) when 
appropriate constraints are made. Let F denote any non 
compact simple Lie group furnished with a Cartan involution

( 7 T )
0 . That a is an involution means that it is an
automorphism of F satisfying

2
cr = 1 ( 2 . 1 )

The generators of the Lie algebra f of F can be split into 
two subspaces even or odd under a (by 2.1):

l  = & + R . °(r ) = ”R > °(k) = k (2 .2 )

It follows that as cr is also an automorphism of f

[ k . k ]  C  k , [ k . g j  C R , [ r .r ] C k  . (2.3)

If T and S are elements of f we have a a invariant Killing 
form which we write as

Tr(TS) = Tr( a {T) a(S) )

The Cartan property is that (in our notation)
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Tr(Tu(S)) is negative definite. (2.4)

So, by (2 .2)
is positive definite if T,S z g

Tr(TS) <|is negative definite if T,S z k (2.5)
is zero if T z g and S z k .s. ~

k generates a subgroup K C  F which is a maximal compact 
subgroup. We think of the remaining generators g as "non 
compact" generators. K is also the subgroup of F invariant
with respect to cr. For any element g z F we define a
"principal vari able,,(12 ’ 25 ’ 26) (see appendix V):

x ( g) = ga(g) -1 so a(x) = x-1 ( 2 . 6 )

As x (gk) = x (g) if k z K, we see that x is actually defined 
on the cosets F/K which constitute the points of the 
symmetric space F/K. In fact, there is a unique 
correspondence between the cosets and the point x and we are 
going to regard x as one way of labelling a point of the 
symmetric space. The geodesic equation of motion for a 
particle on the symmetric space is

d , -1 .̂
5 t  lx x) = 0 (2.7)

We shall show that the Lagrangian leading to this can be 
written

<£ = Tr(x-1x)2/8 . (2 -8 )

In order to do this it is useful to define
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g ^ g = A + i B  , A e g . B e k ,  (2.9)

so that

A = (g 1g-tf(g 1g))/2 ,iB = (g 1g+ a( g 1g ))/2 (2.10)

Then it is easy to check that

x = 2a(g)Aa(g) 1 . (2.11)

Hence by (2.8) we can write the Lagrangian in the alternative 
form

<£ = Tr (A2 ) / 2 ( 2 . 1 2 )

According to (2.5) and (2.9) the Lagrangian is therefore 
positive, a reflection of the Riemannian nature of the space. 
The Hamiltonian will likewise be positive thus assuring a 
desirable physical feature. Differentiating (2.11)

(x-1x) = 2 a(g)(A + i[B,A])a(g)dt
-1 (2.13)

This shows that the geodesic equation of motion (2.7) is
(24 )equivalent to a "Lax pair" equation

A + i[B,A] = 0. (2.14)

As A e jd (equation 2.9) this equation has precisely as many 
components as the particle has degrees of freedom, namely



dim jg = dim (F/K) and is therefore the natural way of writing
the equation of motion in preference to (2.7) the components 
of which contain redundancies as they number dim £.

So far we have not assigned a unique element g to each
coset and if we change our choice :

- 20 -

g -► g' = g k

we find that A and B change accordingly;

A > A' = k_1Ak

B -► B' = k'^Bk + k-1k . (2.15)

Thus B transforms as a K gauge potential and the Lax equation 
(2.14) states that A is covariantly constant. Notice that 
the Lagrangian (2.8) and (2.12) is K gauge invariant.

Let us vary g infinitesimally by a right translation

6 g = g R (2.16)

where for the time being R e f  and is small. Then

6(g_1g) = R - [R,g_1g] , (2.17)

and the response of the Lagrangian (2.12) is

= Tr (A6( g-1g )) = Tr(RA- iR [B,A ])

Tr(RA) - TrR(A + i[B,A ]) . (2.18)
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If we consider R as an Euler Lagrange variation we conclude 
that of is indeed the correct Lagrangian as it yields the 
correct equation of motion (2.14).

Now vary g infinitesimally by a left variation

6 g = L g (2.19)

where for the time being L e £ and is small. We find from
(2.6) that

6x = Lx - xa(L) , (2.20)

6(x *x) = [o(L),x *x] + x *Lx - cr(L) . (2.21)

As

cj( x  * x ) xx -1
(2 . 2 2 )

we find that the response of the Lagrangian in the form (2 .8) 
i s

b £  = Tr(xx_1L )/2 = -Tr(x'1xo(L))/2 . C2.23)

Thus if L is an Euler-Lagrange variation we find the Euler- 
Lagrange equation of motion in the form (2.7).

We remark that many of the equations derived so far, for
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example the Lax equation (2.14) hold for any coset space F/K 
without assuming the symmetric space or other properties.
We now come to the crucial point where the special nature of
the symmetric space described matters.

(23 )It is explained in Helgason how, given a non compact
simple group F equipped with a Cartan involution o, it is 
possible to construct a maximal abelian subalgebra a of 
g and a maximal nilpotent subalgebra n such that according to 
a result of Iwasawa there exists a unique decomposition of 
any element of F into three factors

g = nak , (2.24)

where n and a are obtained by exponentiating n and a 
respectively with real coefficients and k e K. If a is the 
involution (1.5) mentioned in the introduction a and n are as 
spec i f i ed in (4.3).

Thus given the Iwasawa decomposition (2.24) there exists 
a "natural" choice of representative from each coset 
corresponding to each point of the symmetric space, simply 
k = 1. There is no analogue of this for the compact 
symmetric spaces more commonly studied in physics.

In this "gauge" k = 1, g = na. Since n + a forms a 
subalgebra of £ this means that the representative points g 
all belong to the group IB C  F obtained by exponentiating 
b = n + a. Thus the symmetric space F/K is endowed with a 
hidden group theoretical structure whose influence on the 
dynamics of our particles is studied in the next sections.

Given this gauge our Euler Lagrange variations (2.16) 
should respect it. Thus in (2.16) we should restrict R e b.
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As dim b = dim g this still yields the same Euler Lagrange 
equat i on (2.14).
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3. Exact and Broken Symmetries of the Lagrangian

We now show that the Lagrangian (2.8) or (2.12) 
exhibits at least three kinds of symmetry, and evaluate the 
corresponding Noether charges. For certain of these 
symmetries the Poisson bracket algebra of the associated 
Noether charges is isomorphic to that of the original 
infinitesimal variations, despite the fact that in one case 
the symmetries are not exact but broken. Later we show how 
these resultant algebras lead to the integrabi1ity properties 
and in particular the Yang-Baxter equations, both for the 
geodesic motion problem and the Toda molecule equations
( 1 . 1 )

The analysis depends on a refined version of Noether’s 
Theorem stated in detail and proven in appendix I. We 
consider the response of a Lagrangian £ (q tq) to infinitesimal 
variations of the coordinates q.,(i = 1...N).

6q t = e(t)F.(q,q)

and 6 <£ - ( eX) + eQ + eD (3.1)

(with X, Q and D depending on q and q only and not q)

Q, the Noether charge is read off as the coefficient of 
t in (3.1) and it satisfies the partial conservation 
equat i on

Q = D



2 5

We distinguish two interesting special cases which we 
denote cases a and (3.

Case a is the circumstance that D vanishes in (3.1) so 
that Q is conserved. Q can then be regarded as the canonical 
generator generating the original transformation with 
constant s (as this is now canonical).

The second circumstance, case p, is that the variations 
F are velocity independent. Then it can be shown that

! Mfor three variations 6, 6 and 6 of this type which satisfy

[6, 6' ] q. = 6" q. ( e" = e e 1 ) (3.2)

then

(Q. Q ' = -Q" • (3.3)

Thus, the Poisson bracket algebra of the Noether charges 
coincides (up to a sign) with the algebra of the original 
infinitesimal variations, even though the charges may be only 
partially conserved.

A more complete statement of these results and their 
proofs appears in appendix I.

The three types of variation we shall consider in turn 
are respectively global right translations of g (case P) , 
global left translations of g (case a and p) and time 
translations (case a).

The most important symmetry in what follows is the most
unexpected one, that due to right translations of g The
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right action on g does not have an unambiguous action on the 
cosets which are the points of this symmetric space.
That is if g ^ gr, r £ F, gr and g k r do not usually lie in 
the same coset F/K. However for this special sort of 
symmetric space we are considering we can use the Iwasawa 
decomposition (2.24) as explained in the preceding section to 
choose a "gauge" k = 1. This leaves g an element of the 
group (B whose points are thus in precise correspondence with 
the points of the symmetric space. Right action on g by 
another element of IB leaves g in IB as IB is a group thus 
transporting one point of this symmetric space, g, to 
another, gb.

We shall now consider an infinitesimal global version of
this

6r  g = e( t) gRQ , R q e b , R q = 0 (3.4)
o

By equation (2.18) the response of the Lagrangian is, as R = 
eR^ , 6o£ = i Tr(RQA) - i e Tr (Rq [b ,a ]) as the variation
(3.4) is velocity independent the conditions of case (3 are 
satisfied. Comparing with (3.1) we can read off the Noether 
charge as the coefficient of i (notice that X=0):

Q{Rj = Tr(RqA) (3.5)

As [6R R . ] g = g [R ' ] = [r  ,r  1 ]L o o J
6 g
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when e = 1 we have from (3.2), (3.3) and (3.5)

{ Tr(AR ) , Tr(AR') },_ = - Tr(A[R ,R']) . (3.6)O O rlj O O

This specifies the Poisson brackets of the components of A 
and is essentially the so-called "fundamental Poisson 
relation" which will lead to the classical Yang-Baxter 
equations as explained in the section 5. We emphasize
that equation (3.6) holds even though these quantities are 
not conserved. The situation resembles that in particle 
physics where current algebra relations can be derived even 
though the currents are not conserved.

Now consider infinitesimal global left translations of 
g, initially preserving the gauge k = 1 so that

6L g = e(t)LQg , L q £ b , L q = 0 . (3.7)

By equation (2.23) the response of the Lagrangian is

= (1/2)6 Tr(xx*1L ) = -(1/2)6 Tr(x_1xa(L )) (3.8)o o

Thus if t vanishes the Lagrangian is invariant. Conditions 
(a) and ( (3) of our Noether's theorem are both satisfied. 
Comparing with eq. (3.1) we see that X and D both vanish so 
that we can read off from (3.8) the coefficient of £ as the 
conserved charge
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X(L ) = Tr(xx_1L )/2 = - Tr(x_1xa(L ))/2 o o o (3.9)

Since when e = 1

o o

we derive from (3.2) and (3.3) that

fxtv  ■ x (l ; ^ p b = x ([l c l; ]) (3.10)

where in the first instance L and L 1 are both elements of bo o ~
Obviously [§L , 6R ] g = O 

o o
when L and R are both elements of b. Hence by (3.2) and o o  ~  J

(3.3)

Now let us consider the effect of enlarging the class of left 
and right transformations from IB to F by including elements 
of K. As we commented before x and the Lagrangian are 
invariant under right translations g gk even if k depends 
on time, as long as it is an element of K. Hence there is no 
Noether charge associated with infinitesimal global variations 
of this kind and indeed the expression (3.5) vanishes by 
virtue of (2.5) and (2.9).

On the other hand if we consider global left 
transformations g -► g' = Z g = n' a' k* and then "gauge" k 1 
to unity we see from (3.8) that we have a Noether symmetry 
whenever e = 0 and L q is any generator of f, not just b.

{X(Lq) , Tr(ARo)}pB = 0 (3.11)



Thus in equation (3.10) the range of allowed Lq and L 1 can 
be extended from b to f . Nevertheless left and right 
transformations of g only commute when both are constrained 
to B. Hence in equation (3.11) the range of cannot be 
extended from b to f.

Finally let us consider time translations of 6g = eg

_ 1 .16g = g ( e g  g) = ( e g g  ) g

thus applying equation (2.23) with L = e g g * we find 

6^ =  Tr (x. x 1 SL ( e g g ))/2

Since
. “1_ n « "1 j » “1 /• “’ 1 » \ — 1

X X  =  2 gAg and gg =g(g g)g

•  •
6 ^  = t Tr(A(A+ iB)) + e Tr(A(A+ iB) )

= (eTrA2/2) + e TrA2/2dt

using (2.5) and (2.9). Comparing with eq. (3.1) we see that 
D vanishes. Thus condition a of Noether's Theorem is 
satisfied so that the generator of the time translations, 
namely the Hamiltonian, H, is conserved and given by the 
coefficient of fe as

H = TrA2/2 (3.12)

when canonical variables are used. This is indeed

- 29 -

positive by equations (2.5) and (2.9) as mentioned earlier.
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Obviously it is conserved by equations (2.7) and (2.11). 
So are the quantities

Hn = Tr(An )/n (3.13)
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4. The Fundamental Poisson Relation

We now explore the symmetries of the geodesic motion on
( 5  \F/K, discussed in the last section, to construct what Faddeev 

calls the Fundamental Poisson Relation (FPR). This relation 
enables us to construct the conserved quantities and to show 
their involution, and therefore it plays a central role in the 
integrability of our model.

Let Tg (s=l,2... dim B) denote the generators of the 
solvable subgroup B. According to (2.18) the variation of the 
Lagrangian (2.12) under a right translation

6gb = e(t)bTg Tg e b, Tg=0 (4.1)

is given by (as R=eT )s

= £Tr(TgA) + c Tr(Ts [A,iB]> (4.2)

Then, according to theorem A of Appendix I, we can read off the 
charge Q(Tg ) as the coefficient of e

Q(Tg) = Tr(TgA) (4.3)

and the quantity D as the coefficient of e (note that X = 0).

D(TS) = Tr(Tg [A,iB ]) (4.4)

According to the same theorem, the variation of Q(T^) under the 
transformation (4.1) is:
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6 Q(Tr )= e{Q(T ), Q(T )} + es r r s pb
5D(Ts) 5Q(Tp )
5 T|u

(4.5)
d p u

where rf (r=l,2 ...dim
■d as 
- 3 ^

are the parameters of B and are
used as coordinates on F/K. pr is the canonical momentum

(p, ). In order to evaluate this further we make use of
dri

the fact that

-1b 5 b
5ri

= M (ti)T r r v u s (4.6)

where the function Mr (n) and its properties are considered in 
appendix III. Then by (2.10) and (4.6), the Lax operators in 
the "gauge K=l" can be written as:

A=Tir Mrs (n)Pg and iB=Ti1' M s k r s (4.7)

where P = — (T -a(T )) and k = A (T +a(T )). Note thats 2 ^ ^ s £ s s
{P ,s=l...dim B} forms a basis for the odd subspace g of f 
(see (2.2)). Calculating the canonical momenta by using (2.12) 
and (4.7) we get that Q(T ), given by (4.3), is:O

Q(TS ) = M"lr (4.8)

where M r is the inverse of M s
In addition we get that

A = Grs Q(T ) P r y s and IB = Grs Q(Tr )ksand (4.9)
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where

Grs = Tr(PrPs) = Tr(TrPs) (4.10)

T*11 7*and G G = 6  . Note that G is the Killing form of fus s rs & ~
restricted to the odd subspace jd, and according to (2.5) it is 
positive definite.

Using eq. (IV.13) of appendix IV one can easily check
that:

5D(Ts)
5nu

Gsv GtW Q(TW)

where (see appendix IV)

(4.11)

Ivrt Gvu (G fs . + v rs ut G , fs ) ts ur' (4.12)

and so it is symmetric Iv . = iY . And fu are the structurert tr rs
constants of the subgroup B. ([T ,T 1 = fu T ).& *  V L r ’ s J rs u'
According to (IV.12) 1 ^  satisfies

-  [°(T ), T ] + I [a(T ),T ]2 2  ̂ r (4.13)

Then from (4.5), (4.8) and (4.11)

6S Q(Tr ) = e{Q(Tr ), Q(TS )}pB - £ G^I^. ^  Q(TU ) (4-14)
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This relation contains all the information we need to construct 
the Fundamental Poisson Relation, since it gives the Poisson 
bracket for the charges Q(Tr ) which, according to (4.9), form 
the Lax operator A.

Multiplying both sides of (4.14) by the tensor product of
I*Z swtwo odd generators of the subspace £, namely G G ?z x ?w » we 

get, using (4.9):

Under the right translation (4.1) the Lax operator
- 1 - 1

A = (b b - a(b b))/2 transforms as (with e constant)

2
1 £

e [kg , A] - £ [Ps , iB] (4.15)

Therefore using (4.13), (4.15) and (4.9)

{A ® A }pB = GrS(Pr • [ks .A] - [ks ,A] • Pr)

GrS(Pr ® [Ps .iB] + [Ps , IB] « Pr ) (4.16)

But, using eq. (IV. 13)
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= .1 ( G ^ ( f w - I w ) + GtS (fP - Ir )) P ®  P. v v «̂ii ' v su su ' ' r t
1 _rs,„t _ t 

su isu

and by (4.12) we see this vanishes. 
Then the operator

S = Grs P ® P® -r s (4.17)

commutes with any generator k , in the sense thats

[S, 1 ® kg + kg ® l] = 0 (4.18)

and the last term of (4.16) vanishes. 
Define the operators:

P = _ i GrS(Tr <s <j(Ts ) - a (Tr ) 9  Ts )
2

(4.19)

and

R = <jl P =  _ CrP= i GPS(Tr <8 Ts - 0(Tr ) 9 a(Ts» (4.20)

where the subindices L and R mean that the automorphism a is 
acting respectively on the left and right entries of the tensor 
product.

And so:

= Grs kr «  Ps and = -Grs Pr «  ks (4.21)
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Therefore (4.16) can be written as:

{A ® A}p = - A ® 1] - [JLlE., 1 ® A]
2 2

= - i [iP, A ® 1 + 1 * A] - i [*?, A <2 1 -  1 ® A]
2 2

(4.22)

and a relation like this is what Faddeev calls a Fundamental 
Poisson relation. As we mentioned before we can use it to 
construct conserved quantities in involution. Indeed, from
(4.22) and (4.21) we have:

(A, TrAN /N }pB = - Gr s ([ks ,A]Tr(PrAN_1) - PrTr ( [kg , AN ]) }

= [A, iBN ] (4.23)

where we have defined

1Bn = TrR {(l « AN_1)(f-iB.)} (4.24)
2

and where the subindex R means we are taking the trace of the 
right entry of the tensor product.

NFrom (4.23) it follows that the quantities TrA are in 
involution, i.e.



{TrAN , TrAM }pB = 0
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(4.25)

2and since, according to (3.12), TrA is the hamiltonian, it also
follows that they are constants of motion.

1 NIn fact any of the quantities HN = — TrA can be used as a
N

new hamiltonian with the corresponding Lax pair being A and 
iB^. Of course B 2 = B.

Analogously we can calculate the Poisson bracket between
the entries of the Lax operators A and iB. Multiplying (4.14) 

rz swby G G k ®  P we get, using (4.9) z w

{iB « A}pb = i GSW (6siB) * Pw + GrzGtuQ(Tu ) kz »  (I^t Py )

1 - 1. - 1.Since iB = — (b b + a(b b)), we see that under the right 
2

translation (4.1) iB transforms as:

6giB = - s[Ps , A] - e[ks , iB] (4.26)

and therefore using (4.13), 4.26), (4.21) and 4.17)

{iB ®  A}pB = - [f +|R. , 1 ® iB + iB ® l] -
2

- [S, A ®  1 ] + [<Sl, 1 ® a J (4.27)

where
«• - GrS kp ®  ks (4.28)
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And interchanging the left and right entries of (4.27)

{A ® iB }pB = - 1 ® iB + iB ® 1] +
2

+ [S, 1 <® a ] - [«*, A ® l] (4.29)

A similar, but much simpler, analysis can be done for the left 
translations discussed in the last section. If we denote the 
generators of F by (i=l,2...dim F), the variation of the 
Lagrangian (2.8) under the left translation

= e(t)Lig L. £ f, L. = 0, g £ F (4.30)

is, according to (2.23) (as L = e(t)L^)

p i  . -1 = — Tr (xx L - )
2

(4.31)

Then according to theorem A of Appendix I this is a symmetry of 
the Lagrangian, and the conserved charge can be read off as the 
coefficient of e, i.e.

1 . -1X(L.) = - Tr(xx L ) (4.32)
1 2

Note that we are using X to denote the Noether’s charge to agree
with the notation of the last section, and there should be no
confusion with the X which appear in appendix I. So, again,
according to theorem A the variation of X(L.) under the1
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translation (4.30) is:

SjXCLj ) = £ {X(Lj>, X(Lt) }pB (4.33)

. -1xx is an element of the Lie algebra of F, and expanding it in 
terms of the basis L^, we get, from (4.32), that

X = i i x ~  = giJ X(L.)L. (4.34)
2 J

where

Tr(L.L.) i 3 J

is the Killing form of f and g1  ̂ its inverse.
From (2.21) and (2.22) we get that the variation of X, 

given by (4.34), under the left translation (4.30), with e 
constant, is (as L = eL^)

6tX = e[Li> X] (4.35)

iK "i 1Therefore multiplying (4.33) by g gJ Lk ®  L-̂  and then by 
gik gjl ® , we get, using (4 .34) and (4 .35)

(x ® X}PB = - [ < n ,  l  ®  x ]

= [ i ,  x  ® l ] (4.36)

where
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is a Casimir like operator, since it commutes with any generator 
of the Lie algebra of f :

[C, 1 ® h ± + h ± ®  1 ] = 0 (4.38)

From (4.36) we get

{ T r A  X ( p B = 0 ( 4 . 3 9 )

Nand therefore, the quantities Tr X are in involution, i.e. 

r N M i{Tr T  , TrX }pB = 0 (4.40)

In fact, according to (2.11), they are the same quantitites
as TrA , and (4.40) reproduces the result already obtained in
(4.25). However, the reason why these quantities are in
involution is more clear here because, since the charges X(L^)
satisfy the algebra of F under the Poisson bracket, we see that

Nthe quantities TrX are like the Casimir operators of the 
algebra of F.

2Since TrX is the hamiltonian, eq. (4.39) is saying that X 
is a constant of motion, and this is just a consequence of the 
fact that the left translations are a symmetry of the 
Lagrangian.

<n = glJ a  L (4.37)



5.

-  4 1  -

The fundamental Poisson relation and the Yang-Baxter
equat i ons

So far we have worked with any simple non-compact Lie
group F equipped with a Cartan involution. Now we shall

Nspecialise F to G , the normal real form of the complex 
simple Lie group whose Cartan matrix occurs in the Toda
mo 1ecule equat i on (1.1). N& is the real Lie algebra
generated by the usual Cartan subalgebra generators and
the step operators E . ^ a

. H ] = 0 i = 1 . . . r

[Hi , E. 1 = t a 1 E±aJ ±a > (5.1)

tEa
2, E ] = 2a.H/a

, E Q] = N QE , Q ap a+p a, p >  0

together with other equations not needed explicitly. Notice 
that all structure constants are real confirming that this is 
indeed a real Lie algebra. The Gartan involution is

a(H.) = - H a(E ) = - E a -a (5.2)

NThen the various subspaces and subalgebras of g, have the 
following bases
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k = {E - E } o > 0~ 1 a — cc

E = (E a+ E_ a > Hi } a > 0 , i=l,2 ...r
(5.3)

a = { } i=l...r

n = I E } a > 0 ~ 1 a J

If we normalize our Killing form by Tr(H.H.) = 6.. it
i 3 iJ

follows that

2Tr (H.E ) = 0 and Tr(E E Q) = 26 J a  v l or v a -j3' ap' (5.4)

It is easy now to check the Cartan property (2.4). We
suspect that the work of this section can be generalized to any
choice of a but we have not checked this completely. In fact,
in the last section, we have shown how to obtain the
"fundamental Poisson relation" involving the Lax operator A for
any choice of a. But our analysis there did not lead us to the
Yang-Baxter equation, which we now show how to obtain for the

Nparticular case of the normal real form G .
In section 3 we saw that the components of x x/2 and g g 

(in the k = 1 gauge) constituted Noether charges with definite 
algebraic properties. Our first aim is to develop a new 
notation which expresses this clearly.

In the gauge k = 1, g is obtained by exponentiating the EL 
and E a's (a > 0) (eqs. 2.24, 5.3) and so we can expand

1 1

- l .
g g A + IB = I DiHi + l (a /2)D E 

i a>0

for some coefficients to be determined. As A is the odd
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part of g g under o (2.10) we have by (5.2)

0 n 2A = V D.H. + l (a /2)D (E +E )/2 . 1 1  a a - a1 a>0

By (5.4)

D. = Tr(A H .) = - Tr(Aa(H. )) 
i i  l

D = 2 Tr(AE ) = -2 Tr(Aa(E )) a a - a

Let us define

_  1

D(T) = - Tr (Aa(T) ) , T e a(b) .

Then by the Noether charge algebra (3.6) and the fact 
is an automorphism of the Lie algebra

{D(T) , DCT' ) l pB = D( [T .T* ]) , T ,T '  e o(b) .

Thus we have found

g g = A + i B  = D =  I H D(H ) + 2 £(a2/2)E D(E )
i a>0

This combination will be called D, for short. Notice 
factor 2 in the second term of (5-7).

Similarly we find that

(5.5) 

that a

(5.6)

(5.7) 

the



_ 1xx /2
_ l

a(x x )/2
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= l H.X(H. ) + l ( a  / 2)(E X(E )+E X(E )) (5.8)i 1 1 <x>0 a - a  - a  a

when the coefficients X(L) satisfy equations (3.9) and (3.10) 
We see that the Hamiltonian H (3.12) can be expressed 

in two alternative ways

2 2 2H = [£ D(H.) + l a  D(E ) ]/2 (5.9)
i a>0

2 2= [ l  X(H. ) + l i a  /2)X(E )X(E ) ]/2
i a>0

Following a notation introduced in statistical 
r 2 8 51physics^ * equation (5.6) can be written in another way.

{d ® d (pb= -  [ P . D ® 1  + 1 ® d ] (5.10)

Faddeev calls a relation like this a "fundamental Poisson 
relation"^^. Apart from a factor -2 (a 2 to compensate 
for a different definition of Lagrangian and a minus for 
convenience), P is the operator constructed by Olive and 
Turok(14).

TP = X(o2/2)(E ® E _  - E ® E  ) = C  ' <C_ (5.11)
a>0

Equation (5.10) is proven in appendix II following the
(14 )methods of Olive and Turok and using properties of root

systems of Lie algebras. In that work it is also useful to



define an operator
4 5

£  = I H. ® H. + X(oc / 2) (E ® E + E ®  E ) (5.12)
i 1 1 a>0 a - a  -a a

= £  + £ + £O +

2

It is possible to rewrite (5.10) as

[ D ® d 1 = - [IP + <t , D ®1 + 1® D ]  (5.13)1Jj

as the (C contribution vanishes identically. We now show that 
this equation has the same structure as the Yang Baxter 
equation. This is because

2F  + £  = C 0 + 2 £ =  I H.® H. + 2 £(oc / 2) E ®  E (5.14)i 1 1 a>0 a - a

and the structure of this expression is very similar to that 
of D in equation (5.7). We can develop this resemblance by 
introducing a triple notation with three spaces. The first 
and third spaces are occupied by the left and right Lie 
algebra generators in (5.10) and (5.13). The middle entry 
is the space of dynamical variables in which the bracket 
operation is the Poisson bracket. With the suffices 
referring to these three spaces we define

D 12 = D<8>1 = 2 l i  a /2)E <»D(E ) ® 1  + T H.®D(H.)®1
a>0 i 1

D 32 = 1 ®  D = 2 X( a /2)1®D(E ) ® E  + \ 1®D(H.)®H.a>0 - a  a . i i
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D n  =1P+<C = 2 S(a /2)E ® 1 ® E  + I1,3 "' a -a " i la>0 l

Then equation (5.13) can be written

{d 12 » D 32}pB = - [D13 , D 12 + D 32] 
or

iD 12 » ° 32JpB + ^°13 * Dl2-I + tD 13 ’ D 32]“ 0  . (5*15)

The quantum version of this is the Yang-Baxter 
(27 28)equation ’ which is the infinitesimal version of the

triangle equation. We have learnt how to obtain this from
something rather geometrical namely the geodesic motion of a
particle on a non-compact Riemannian symmetric space.

Finally we see how to extract from (5.10) the Poisson
brackets of the individual components of A and B by using the
involution a. Let us define a and a as a actingLi t\

respectively on the left and right entries of {D ® D}. By9
considering (1 - cr̂ - cr̂ ) acting on equation (5.10) we
find

{A ® A} = - [JP_l EL_> A ® l ]  - [JPjJR_, 1 ® A ] (5.16)
2 2

= -(1/2) [ (P , A ® 1 + 1®A] -(1/2) [VR , A ® 1 - 1®A]

2

where

TR = o IP =L -  CLR P  = I(a / 2 ) (E ®  E - E ® E J  (5 .17 ) a*) a a - a  - a



47
similarly we find

{A ® B}pB= - [ P ~ |R , 1 « B + B ® l] (5.18)

{IB ® iB}pB= - [ A ® 1] - , 1 * A] (5.19)
2 2

Using (5.2), (5.3) and (5.4) one can check that the operators \P
and lR , defined in the last section (see (4.19) and (4.20)),

Ncorrespond, in the case of the symmetric space G /̂ ., to those
operators given by (5.11) and (5.17). Therefore the relations
(4.22) and (5.16) are indeed the same. The operators S and C l ,

defined respectively by (4.17) and (4.28), are given, in the 
Ncase of G /K , by:

S = I H. ® H. + i I —  (E + E ) 9  (E + E ) (5.20)
i 1 1 2 a>0 2 “

and

^  = I l  —  (E -E 
2 a>0 2 a

) ®  (E -E or v a (5.21)

Comparing with (5.12) we see that S - is a Casimir like 
operator

S - = <C (5.22)

and therefore it commutes with any generator of the Lie algebra 
Nof G . In particular, if T is a generator of the Borelo

subgroup B , we have
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[ S-<5*, 1 ® T S + T S ® 1 ] = 0 (5.23)

Acting with a on the left entry, and since

aL S = - S = crR and = &  = aR <5k (5.24)

we get

[S + «L, 1 ® Tg + a(Ts) ® l] = 0 (5.25)

Adding up (5.23) and (5.25) and using (4.18) we get
c

[S, 1 a Ps ] - [a, Ps ® 1] = o (5.26)

Nand therefore the relation (4.29), in the case of G /K, is 
indeed the same as (5.18).
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6. Reduction to the Toda Molecule System

The final step is to find the precise constraints on the 
geodesic trajectories necessary to produce the Toda molecule 
equation (1.1) with the correspondingly constrained 
quantities A and B satisfying the usual Lax pair and 
fundamental Poisson relations of that system. The 
constraints have to he self consistent and one possibility is 
to constrain

X(Ea) = D(E_a) = 0  a any positive non (6.1 )
simple root

These equations are self consistent since the quantities put 
to zero in (6.1) form a closed subalgebra under the Poisson 
brackets by equations (3.10), (3.11), (6.5) and (6.6). The 
quantities XtE^) are conserved and so by putting them equal 
to zero when a is a positive but non-simple root we are 
choosing initial conditions on the trajectory. It remains 
to see how these conditions imply the vanishing of the D(E ) 
in (6.1)and how this leads to the Toda equations (1.1). To 
do this we introduce explicit (horospheric) coordinates 
($ ,p ) for the symmetric space;£L Ot

g = na , a = exp( 24> H /2)a a n = exp( l p E ) 
a>0

_ 1n n
a>0

E V a a V a l
P> 0

pa ( P)

( 6 . 2 )



50

It is understood that the greek indices refer to 
positive roots whereas the Latin indices refer to the r 
simple roots. Thus

2H a = 2a.H/a where a is a simple root.

The variables <J> will be the same as those appearing in3.
(1.1). Up to now we have managed to keep our notation 
relatively simple by not introducing specific coordinates. 
More concrete proofs of our previous Poisson bracket 
relations can be obtained using these coordinates (6.2) but 
we leave this as an exercise for the reader.

In terms of the new variables (6.2)

- 1 . - 1 . - 1 -  1 .g g = A + iB = a a + a n na

= U / 2 ) l i aH a +  I  e x p ( - K a b $b / 2 ) V aE a ( 6 . 3 )
cL C£>0

using the commutators (5-1) and introducing

K ab = 2 “*b/b 2

When a as well as b is a simple root this forms the Cartan 
matrix occurring in (1 .1).
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Also we see

— 1 -j. — 1 r — 2 _  1 2 _  1 4. +  — 1- +x x = (n ) [a n na + 2a a + n (n ) Jn (6»4)

It is difficult to evaluate this further but it is easy
to see that if y is one of the highest positive roots whose

_ lstep operator occurs in n n in the sense that E^+a does
not occur for any positive root a, then the coefficient of 

.1 >E in x x is simply V exp ( —K , 4> ) (as it is the same as the y Y Yb b- 2 - 1 . 2  +
coefficient of E in a n n a since the n ’s do not affect

T . 1.
this term). As x x is conserved, so is this coefficient.
Hence, if V vanishes initially, it does so for all time.

Y _ i . - i .So therefore do the coefficients of E^ in n n and g g since
they are, respectively by (5.7), (6.2) and (6.3), V^and 
V^exp (-K^^/2). In particular D(E_^) vanishes. This 
argument can now be repeated for any of the remaining highest
roots until only steps operators for simple roots a remain in
-1. -1 -1n n and g g. The coefficient of E in x x is then

V &exp (" K ^ ^ )  and constant. By equation (5.8) we have

2a X(E )= V exp(-K ,<!>,) , asimplea a ao □

But by equations (6.3) and (5.7) the coefficient of E& in
- 1 . .g g is

2
a D(E_a) = = (6*5)

= a2X(Ea )exp(Kab<Db /2)
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by the preceding result. In this way we have integrated the 
p equations of motion by choosing special initial conditions 
leaving as the only degrees of freedom the <|> variables. By
(6.5) we now have

• 2A + iB =(1/2)1 ♦ H + l E a X(E )exp(K * /2) (6,6)a a a a au da a

where now both sums extend over simple roots only. The 
resultant A and B form the Lax pair for the Toda molecule 
equa t i on

d 2
— 7 = ' 3 X(V  exp(Ka b Vd t

Thus the constants a2 X (E ) constitute coupling constants.
3.

To obtain precisely (1.1) we assign these constants the value 
unity. Then (6 .6) yields the usual Lax pair for equations
(1.1) (apart from a minus sign in B when compared to ref. 
(14)owing to a different sign in 2.14). These substitutions 
for the integrals of motion X(E_a) can be made directly into 
the equations of motion or the Hamiltonians (but not the 
Lagrangian). All the Poisson bracket relations remain valid 
with these substitutions.

We now show how the fundamental Poisson relations
(5.10), (5.16) and (5.19) reduce to the ones obtained by 
Olive and Turok^*^ .

In Appendix II it is shown that for any positive root p
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[ P  , ( E p+ E _ p ) ® l  + l ® ( E p+ E _ p ) ]  = ( p 2 / 2 ) ( H „ ® ( E | j + E _ p ) -  

2 2 2

- ( E S+ E _ S ) « H S ) + C 1 / 2 ) E ( a V / M N  (E ® E  + E_ ®E_  ) .
— 1 ---^ H a, y>0 Y ' r

2 a+y= P

When A is reduced by (6*5) only step operators for simple 
roots occur. When 0 is simple it cannot be expressed as a 
sum of two positive roots a and y and hence the last term in 
the equation vanishes. The remaining term is odd under 
either <?L or by (5.2). Hence so is the left hand side. 
Thus by (5.17)

[ P  , ( E g+ E _ g ) ® 1 + 1 ®  ( E p+ E _ p ) ]=[1R  , ( E p+ E _ p) ® 1 -  l ® ( E p+ E _ g ) ]

2 2 2 2

This leads to the fact that after the reduction the two terms 
on the right hand side of (5 .16) become equal yielding

( A ?  A) = - [ IP , A 0 1  + 1® A]

which is a result of Olive and Turok. Similarly

1 B ? B  ) = 0
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7. Some Comments about Quantum Mechanics on Curved Spaces

The quantization of physical systems on curved spaces as well as 
of non-linear systems, has been the subject of a great deal of 
research in theoretical physics in the last decades, and a 
complete understanding of these matters is still lacking. In 
this section we do not want to consider, in detail, the 
difficulties facing this subject, but instead we want to discuss 
some basic facts one should take into account when quantizing 
the motion of a free particle on a non-compact Riemannian 
manifold . In fact, these will prove to be sufficient for our 
purposes in the next section when we study the quantum geodesic 
motion on the non-compact symmetric spaces F/K.
Much of our discussion is based on ref. (29).

We will use the canonical quantization procedure and since 
we believe that one system of coordinates is as good as any 
other, we will require our rules of quantization, as well as our 
quantum mechanical equations, to be covariant under general 
coordinate transformations. Together with the requirement of 
hermiticity, this will help us in solving some of the 
ambiguities in the ordering of the quantum operators in the 
hamiltonian and will lead us to the Laplace-Beltrami operator.

In our analysis we will be considering wave functions for 
spinless particles only, and therefore the first thing we have 
to do is to define an inner product for scalar functions which 
is invariant under general coordinate transformation, since we 
want the expectation values of physical quantities to be so.

Then, since the volume element

dV = g^ dnx, g = det g. .
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where is the metric of the space, is invariant, we define
the invariant inner product as:

< 4>> = Jdv  4, $ (7.1)

where the integration is carried out over the entire range of 
the coordinates values.

Under this inner product, the operator - ift — . is not
5x

r*hermitian, sincev J

r *  t * -i -ft , *Jdv <|/ (-ihd. (j)) = JdvC-ifid. 40 <j> + —  jdv (d.lng)4> <j>.
1 1 2 1

However, it can be made hermitian by adding to it the term 
* ̂

—i—  a.(lng). Therefore the quantum operators for the canonical 
4 x

variables and p^ in the coordinate representation are given 
by:

A A = - ifi 5i(lng)) (7.2)

(*) When performing the integration by parts we are supposing
that the boundary conditions satisfied by the wave functions are
such that the surface term vanishes. If the wave functions are

*normalizable, i.e. JdV 4> 4> is finite, then it follows, since 
the space is non compact, that g?2 4>*4; has to vanish at infinity. 
This is sufficient to make the surface term to vanish. The same 
difficulties arise in ordinary quantum mechanics and similar 
assumptions are made there.
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Since it can be easily checked that they indeed satisfy the 
canonical commutation relations:

X j ]  = o, = ift 6 (7.3)

Notice that d^(lng)/2 is the contracted Christoffel symbol

H  . . (This can be checked by using e.q. (IV.8) of appendix IV 
and eq. (8.8))

Now let’s see how the operators and p^ transform under a 
general coordinate transformation. In classical mechanics, for 
every transformation of coordinates of the form:

r t*i - X ± - x.(x) (7.4)

there exist a corresponding transformation of the conjugate 
momenta of the form:

dx
7, P Jdx

(7.5)

In quantum mechanics the product of two hermitian opertors is 
only hermitian if they commute. If they do not commute we have 
to take the symmetric product to get an hermitian operator. 
Then, we see there is no ambiguity in defining the 
transformation (7.4) in the quantum theory, because it depends 
only upon the coordinates, which commute with each other, and 
therefore x^ is hermitian. The transformation (7.5) can also 
be defined in the quantum theory in an unambiguous way because, 
since it is linear in the momenta, all ways of symmetrizing the
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non-commuting parts of it are equivalent. One can easily see 
that this is indeed true for any quantity of the form f(x)p, by 
expanding f in powers series of the x’s and then inserting p 
between the x's in any symmetrical fashion in each term of the 
series like:

1 n1 v /An-m a Am , Am a An-mN---- 2, (x p x + x p x  )2n m=l

One sees that by commuting p with the x’s symmetrically to the 
right and to the left one gets two terms of order fi which cancel 
each other due to the fact that the commutator of p with k  is a 
c-number. Thus, all methods of symmetrization are equivalent 
to:

- (f(x)p + pf(x)) (7.6)
2

Therefore the quantum analogue of the transformations (7.4) and
(7.5) are:

A

* xi xt (x)

A A '

P i
1

2

dx'

dx ’

(7.7a)

dx
dx

j

'i
A dx*

dx
(7.7b)

Using (7.2) and the fact that di(lng)/2 we get
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a ' _ 5Pi = - ifi —
5x

ih r dxJ pk  ̂ 5
I  “ 2 L7 7 i  kJdx ax

ax'

ax

)i

And the second term is exactly the transformation for the 
contracted Christoffel symbol, and therefore the canonical 
momenta transform in a covariant way under coordinate 
transformations:

A  ̂f* pi = -  if i

ax

_ t  i  r ' i )  =  -  i t  
- i  2 J 1

ax

a

ax

— (I n g ')) 
i

(7.8)

The next step in our analysis is the construction of the 
quantum operator for the free hamiltonian on a curved space. 
Classically this hamiltonian is just:

H = —  g ^ P . P i  ( 7 . 9 )
2 m  J

and since, according to (7.5), the classical canonical momentum 
transforms like a covariant vector, we see that H is invariant 
under general coordinate transformations.

The problem we face in constructing a quantum operator for 
H is that, since it is quadratic in the momenta, there are 
several inequivalent ways of symmetrizing it. The simplest 
one:

Hi Pig
1 _
2m

(7.10)
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is not covariant under general coordinate transformations, and 
the reason is that, according to (7.7b), the quantity p̂<i* (with 
<\> a scalar) does not transform like a vector.

Therefore, the requirement of covariance imposes 
restrictions on the possible ways of symmetrizing H and, as we 
will see, it will lead us to the correct quantum operator for H 
in a quite unambiguous way.

From (7.2) we see that

ft /s „ 5P. g n  ~ -i* — (7.11)l

Therefore the quantity g^ p^g transforms like a covariant
vector. Its hermitian conjugate is (since g. . is real):

—  + I -— (lng)) „ i 2 „ i

i* (—  + ljt) ■ (7.12)

Then, if is a contravariant sector, g- *̂ p g^ V* is its 
covariant divergence, which is a scalar. So, since 
gij g”!*1 (jj is a contravariant vector, we conclude that the
operator

(7.13)

is hermitian and covariant under general coordinate
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transformations. Since

( a .  + H . )  v 1 = ( a .  + g ~ ^  a . g ^ )  v 1 = g ^ a . C g ^ v 1 )i ji i i i

we can write it as 

2A ftH = - _ _  A (7.14)
2 m

where

A = g"^8.g^ij’a. (7.15)
^ 3

is the Laplace-Beltrami operator, which is the generalization of 
the Laplacian for scalar functions on curved space.

Therefore the SchrOdinger equation for the free motion for 
a particle on a curved space is:

2
A ft 5 d>H 4; = - _  Acp = ih __ (7.16)

2m dt

One could add to the hamiltonian (7.14) a term proportional to 
the curvature scalar

2

H = (A + XR) (7.17)
C 2m

with X a dimensionless constant, since this operator is also
hermitian and covariant, and in addition has the advantage of
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being conformal invariant for some values of X , (For more
details see problem 4 of Chapter V of ref. (30)). Other terms
can also be added to (7.14) without destroying its hermiticity

2 iiand covariance like R , R..R ° etc (R.. being the Ricci tensor
J J

defined in appendix IV) but for these terms the constant X would 
not be dimensionless and we would be introducing a scale in the
theory.

The Hamiltonian (7.14) is positive definite if the metric 
of the space is so. Consider

<<J> 1(-A)l 4>> = - Jdv4>*Ac|; = -/dnx <\>* 5̂  (g^g^ 5̂  <\>)

and integrating by parts

<<\> K-A) 1 <\>> -  !dv ( cp)̂ g1*J <J>)

So

<<M(-A)i d>> > o if g. . is positive definite
J

(7.18)
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8. The Quantum geodesic Motion on Riemannian non-compact 

symmetric spaces

We now discuss the quantum geodesic motion on the Riemannian 
non-compact symmetric spaces F/K described in section 2.

The hamiltonian for such motion, according to the 
discussion of the last section, is the Laplace-Beltrami 
operator. Since we will be exploring the hidden group theoretic 
structure of these spaces endowed by the solvable subgroup 
B=na, our main aim in this section is to write the 
Laplace-Beltrami operator on F/K in terms of the parameters of 
that subgroup.

The metric for these spaces can be, read off from the 
Lagrangian (2.8) as:

grs(C)
1 - 1 _ Tr(x
4

5x -1 dx
a ?  "acs

( 8 . 1 )

- 1where x = ga(g) (g e F) is the principal variable defined in
(2.6) (see appendix V) and C, (r=l,2. . .dimF/K) is some set of 
coordinates on the symmetric space F/K. (The factor 1/4 is for

i*convenience). Although the coordinates C can be written in
terms of the parameters of the group F, the converse is not true
since all the elements of F belonging to a given coset

rcorrespond to the same values of C • However according to 
(2.24) and the discussion thereafter, there is a one to one 
correspondence between elements of B and points on F/K due to 
the Iwasawa decomposition of F. Therefore the parameters of the 
solvable subgroup B can be used as coordinates on F/K.

If we denote the parameters of B by r\T  (r=l,2..dim B), 
it is easy to check that, without fixing the gauge K = 1 we get
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(we are going to use the same indices for C and n since dim B= 
dim F/K):

x 5x 5r|S , ,  N r - 1 d b  / - u - 1  & b  , ,  Na ( b ) [ b  ----- - -  a ( b  — - )  J a ( b )
^ 1

dCP 9CP 5ri 5r|

— r MSU( n) a(b) [Tu-a(Tu) ] o(b)
5 C

-1 ( 8 . 2 )

where we have used (4.6) (see appendix III also) and Tu are the 
generators of B.

Thus the metric (8.1) can be written as:

; (C) = —  —  M t(n)M w(n)G.!rs ~,.r .^s u v ' two c, o Q
(8.3)

where is defined in (4.10). Performing a change of
coordinates, from C to ri, we see we can write g in terms of ’ rs
the parameters of B as:

, . a c u a e vgrs(,l)=— r T ^  suv(C)5 T| 0 T)

= M U( n)M V(ti)G = (m g mt) r v ' s v ' uv 'rs (8.4)

We notice that the quantities Mrs(r|) are like tetrad on vierbein
that relate the metric Grg on the odd subspace £ of f under a

(which is the tangent plane to F/K at the unit) to the metric
grg on the symmetric space F/K.

According to (2.5), G is positive definite and fromr s
(8.4) we see that g is also positive definite. Therefore,27 S
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according to (7.18), we conclude that the hamiltonian (7.17) in 
the case of the symmetric spaces F/K is positive definite.

Using (7.15) and (8.4) we calculate the Laplace-Beltrami 
operator for F/K:

A = (detM)”1 JLrM"^r Gut M~ls detM — g 
3ti 5 r|

= Grs VrVg + Gut (detM)""1 (detM M~^ r)Vt (8.5)
5ri U

where Vr is the right shift operator (see appendix III)

-1 -1 s ab V b = T , V = M 53 ___, T e b (8.6)r r ’ r r ^ s ’ r ~ v '5 ti

But

_ 1 _ l _ 1- _1, _ 1-(detM) 5 (detM M x) = M  x a ln(det M) - M ( a M °)M  ̂rv u u r  y u r s  t

= M ~ l r  m L t ( a  M,s- a, M S ) u s r t  t r '

= fssu (8.7)

where we have used eq. (III.4) of appendix III (fu are theI* s
structure constants of the subgroup B) and the fact that for 
any non singular matrix M we have (see sec. 7, chap.4 of 
ref. (31))

- 1Tr(M ar M) = arln(detM) ( 8 . 8 )
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gNotice that for a semisimple group (8.7) would vanish since f
o il

is the trace of the generator in the adjoint representation. 
However, the group B is solvable and therefore not semisimple. 

Therefore from (8.5) and (8.7)

A = Grs V V + GrSfU V (8.9)r s ur s v '

The operators defined in (8.6) are not hermitian, since, 
using (8.7):

/ dv *
c|> V = - /dv (Vr4>) -  c j w ( 8 . 10 )

where, according to the last section, dv is the invariant
volume element dv = (detg )v® dnryr«rs

We have shown in the last section that the Laplace Beltrami 
operator is hermitian, and in order to see this more clearly in
(8.9) we define the operators:

which according to (8.10) are antihermitian.
Note that these operators satisfy the same commutation 

relations as Vr (see appendix III):

[ v
I
r V ] = fU V s J rs u

»
u (8 .1 2)

Since the term we have to add to get the last equality, namely
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f f , vanishes according to the Jacobi identity for the r s vu
structure constants. Then the Laplace-Beltrami operator for 
F/K, given by (8.9), becomes

u v

A i r s ^ u
urf

v
vs (8.13)

which is clearly hermitian, since the structure constants fu ofrs
the subgroup B are real, 

rsSince G is positive definite (see (2.5)) the second term 
r s u vof (8.13), namely G f f, rC!> is a non negative constant. Andur v o

r s * *for the same reason the operator - G V V is positive definite,r s
since:

.rs
< <P| ( -G Vr Vs ) | ( t1> =

, * r»o * 1- Jdv 4, G V V̂cj,

f ^  T*Jdv (Vr<W G (Vs4>) > 0 (8.14)

Therefore, the hamiltonian for the geodesic motion on F/K:

A. *H = - _ A = fi ,«rs 1 o,rs„u -v- _ (G V V - ± G f fv ) 2 r s ^ ur vs (8.15)

is bounded below by a non negative constant

< *| h |4«> > G r S C . f v S > 0 (8.16)

This constant is invariant under general coordinate 
transformations since it is related to the covariant divergence
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of the vector defined by eq. (IV.3) of appendix IV. 
the relations (IV.18), (IV.13) and (IV.11) we have:

D nr = GrsfU P , r ur s’ Ps  - -  ( V ^ Ts » -  TS ‘  fe

and therefore, using (4.10):

Tr(Drnr)2 GrSf U urf
v
vs

which is clearly a scalar.

Using

(8.17)

(8.18)
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9. The quantum left and right charges and the Fundamental 
Commutation Relations

In section 3 we have considered the exact and broken 
symmetries of the Lagrangian for the classical motion on the 
Riemannian non compact symmetric spaces F/K. In that analysis 
we have made use of the Noether's theorem (proved in appendix I) 
to calculate the charges (conserved or not) corresponding to 
those symmetries and also their algebra under the Poisson 
bracket.

At the quantum level a similar analysis is more difficult 
because we do not know the quantum analog of Noether's theorem. 
In fact the difficulties already appear in the definition of the 
quantum transformations since in general, due to ordering 
problems of quantum operators, they can not be defined in an 
unambiguous way.

However, the transformations we are interested in, namely 
the global left and right translations of elements of F, belong 
to a class for which it is relatively easy to construct a 
quantum version. They are velocity independent transformations 
and all the relevant quantities involved, including the 
Noether's charges, are at most linear in the momenta. As we 
have shown in section 7 (see discussion leading to eq. (7.6)) 
there is no ambiguity in constructing quantum operators for 
classical quantities which depend linearly upon the momenta.
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In theorem A of appendix I we see that if the 

transformation is velocity independent so is X, since the 
variation of the Lagrangian in this case can not depend upon the 
accelerations. Then, according to corollary A, we can put X to 
zero by a suitable choice of G, and so, the Noether's charges 
have the form:

Q = I  F X( q ) P i  ( 9 . 1 )i

In addition, if the Lagrangian is quadratic in the velocities,
the quantity D. = --- depends linearly in the velocities. In

1

the case of right translations by elements of B, we can
eliminate the velocities from and write it as a linear
function of the momenta (see eqs. (4.8) and (4.11)). For the
left translations by elements of F, D vanishes. Therefore, any
velocity independent transformation which has such property
(i.e. that --- is at most a linear function of the momenta with

dq1
velocities eliminated), can be defined in an unambiguous way in 
the quantum theory. The variations of the coordinates and 
momenta, following theorem A of appendix I, are given by:

[ q1 , Q]ift QM e Fi(q) (9.2)

(9.3)

where Q and D_̂ are respectively the quantum operators for Q
3Dgiven by (9.1) and D. = — and they are constructed following
Sq
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the arguments leading to (7.6). In particular

2 i
(9.4)

Clearly the variations (9.2) and (9.3) are hermitian operators.
We now discuss the algebra of these quantum transformations 

and of their corresponding quantum charges. According to 
theorem B and corollary B of appendix I, if we have three 
velocity independent variations 6, 6' and 6" of the type 
described in theorem A, satisfying: (ee1 = e")

then the corresponding variation of the momenta satisfy the same 
relation:

When we replace the classical variations by their corresponding 
quantum versions (9.2) and (9.3), the relation (9.5) obviously 
remains true, since the variations of the coordinates depend 
upon the coordinates only.

In order to see that the relation (9.6) also remains true

[6, 6' k 1 = S V (9.5)

[6, 6 ’ ] p ± = 6Mp i (9.6)

and the Poisson bracket of the Noether's charges satisfy

{Q, Q ' } p B = - Q" ( 9 . 7 )

in the quantum theory we notice that, for the type of 
transformations we are considering, the variation of the momenta
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is a linear function of the momenta and has the form:

6pi = fiJ'(q)p^ (9.8)

where f^(q) can be calculated from the classical version of 
(9.3). Therefore it follows from (9.6) that the functions f, 
f'and f" have to satisfy:

"i k dfi k 5fif.J(q) = F __i - F’ __L
1 * k - k5q dq

+ f l k f k J (9.9)

Since (9.3) was constructed by using the arguments leading to
(7.6), the quantum version of (9.8) is: (which is the same as 
(9.3))

(f. (9.10)

Using (9.9) one can easily check that

[«,
A + s.f. J ).11  J

(9.11)

where we have used the fact that the commutator of the momentum 
with a function of the coordinates commutes with any 
other function of the coordinates. So, this shows that (9.6) is 
also true at the quantum level.

Using similar arguments we can show that the commutator of 
the quantum Noether's charges satisfy the same relations as
(9.7). From (9.1) and (9.7) we have:
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F'^Cq) = FJ(q) {F 1 (q) , Pj }pB - F '3 (q) {F1 (q) ,Pj }pB (9.12)

Using (9.4) we can calculate the commutator between the quantum
charges. However when doing that attention should be paid to

i ' ithe fact that the commutator of p.F with F p. can be 
decomposed in two different, but equivalent, ways. The result 
we get is:

AJ ,AI A i PA i

- i s  (P Tf ’ 1 p 1 -  f ' J  [ F 1  n 1 )L > P-; Jqm L > Pi -IQM̂
A t  ,• _ A-

j JQM j JQM (9.13)

But, since —  [fj’, Pt ]QM E (fj* , p^pg, we see from (9.12) and iti ^
(9.4) that the r.h.s. of (9.13) is the quantum operator for Q". 
Then:

» Q ]qy[ -  -  i* Q (9.14)

Therefore for those velocity independent transformations which
satisfy the conditions of theorem A and for which --- is at most

aq1
linear in the momenta (with velocities eliminated) the results 
obtained in appendix I at the classical level remain true at the 
quantum level. Since the left and right translations discussed 
in section 3 are examples of these transformations, the results 
of that section hold true for the quantum geodesic motion on the 
symmetric spaces F/K. We now discuss this in more detail.

According to the arguments leading to eq. (7.6) the quantum 
operator for the right charges, given by (4.8), are:

[Q
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3 s(3 = — ri parameters of B)s  ̂ s
OT)

Q(Tr ) = - {M"l s (8s+ i a s ln(detg)) + ( &s + i a s ln (detg) )M_ Ŝ }

where we have used the coordinate representation for the momenta 
given by (7.2). From (8.4) we have

-13 In(detg) = 2(detM) 30detM (9.15)b O

and using (8.7)

Q(Tr) = - ift(M"̂ S3s + I f®r) = - ifi V̂, (9.16)

»where the operators Vr are defined in (8.11) and from (8.10) we
/Vsee that Q(T^) is indeed hermitian. According to (9.14) these 

operator satisfy the same algebra as the classical charges and 
so:

[Q(Tr), Q(Ts )]qm = - ift Q([Tr> Ts ]) Tr. Ts e b (9.17)

This relation can also be obtained from (8.12). Since the 
rparameters n of the subgroup B are being used as coordinates 

on F/K, they become quantum operators in the quantum theory, 
and therefore from (8.6) and (8.11), we notice that;

Q(Tr) b = - ifi b Tr + b Q(Tp) (9.18)
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where the group element b e  B is now considered as a quantum 
operator, and obviously has to lie in some representation of the 
abstract group B. There is no ordering problems in defining it, 
since it depends upon the coordinates only which commute with 
each other.

Therefore:

This relation will play an important role in our dicusssion, 
because it is responsible for the main differences between the 
classical and quantum geodesic motion on F/K. At the classical 
level the functions of the canonical variables commute with 
group elements and therefore the algebra of Noether’s charges 
under the Poisson bracket does not "get mixed" with the Lie 
algebra of the group generators. At the quantum level, however, 
the same is not true since quantum operators do not commute with 
group elements. This, in fact, is the origin of the 
difficulties we face when constructing quantum conserved 
quantities in involution for the Toda Molecule models (see 
section 12).

In analogy with eq. (4.9) we define the quantum Lax 
operators by:

[Q(Tr), b]QM = - ifi b Tr (9.19)

A r e  AA = GrS Q(Tr)Ps ifi Grs (9.20)

a rs a. iB = Grs Q(Tr)ks i* G rS Vr k s (9.21)
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From eq. (8.15) we see that the Lax operator A is related to the 
quantum hamiltonian by:

H A 2A + * GrS (9.22)

1 2At the classical level the hamiltonian and _ TrA coincide (see
2

(3.12)), but at the quantum level we see they differ by a real
constant. According to (8.18), this constant is a scalar and so 

A 2TrA is also an acceptable hamiltonian since it transforms 
covariantly under general coordinate transformation and it is 
hermitian. In addition it is a positive definite operator and 
unlike H, it can have zero energy ground state since from 
(8.16):

< <1> I TrA U> > 0 (9.23)

The Fundamental Poisson Relations derived in section 4, namely 
eqs. (4.22), (4.27) and (4.29), remain true when we replace the 
classical Lax operators by their corresponding quantum version 
and the Poisson bracket by the quantum commutator since the 
algebras of the classical and quantum right charges are the same 
and since the l.h.s. of those equations involve Lie brackets 
only.
Therefore we have:

[X 7  S ] QM = -
P+R A ® 1 ] - ifi [P -R 1 ®  & ]

2
(9.24)
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= - ifi [P+R 1 ® iB + iB ® 1 ] - ifi [$, A ® 1 ] +

+ ift[<&, 1 ® A] (9.25)

r A _  A n r IP A  A -« r A t[A 9  iB ]qM= -ift[--,1 ® iB +iB ® l] + rfi[§,l ® A] -
2

- ifi[®,£ x 1 ] (9.26)

and relations like these are called in the literature
(5)Fundamental Commutation Relations .

The quantum operators for the left charges, given by
(4.32), are also constructed using the arguments leading to eq.
(7.6) since, like the right charges,' they are linear in

. -lmomenta. However, since x x can not be easily written in 
terms of the canonical variables, writing these operators in a 
way as explicit as we did for the right charges would be 
complicated. But, if we restrict the generators in (4.32) to
the Lie algebra of B we can write the corresponding operators in 
an explicit form.

_ lUsing eq. (2.11) in the "gauge K=l" and since a(x) = x we 
get from (4.32):

X(Tr) = Tr (A b Trb) = Ars(n) Q(Ts) (9.27)

when A s(n) is the adjoint representation of B and Q(T ) are the 
right charges defined in (4.3). Since this expression is linear 
in the momenta all methods of symmetrization give the same 
result (see sec. 7). Then, by symmetrizing Q(T ) first we obtain 
the operator (9.16) and then by symmetrizing the rest we get:
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X f i  A o  * ' A ox(Tr) = - ( A r ( n) Vs + Vs ApS( ri))

Using eq. (III. 13) of appendix III we see that this is just the 
operator given by (III.8) which generates left translation on 
the group B:

X(Tr) = - ifi SpSVg = iftV̂  (9.28)

Using eqs. (8.10) and (III.13) one can easily check that these 
operators are indeed hermitian. According to (III.12) they 
commute with the right charges:

[X(Tr), Q(Ts )]qm = 0 Tr> Ts e b (9.29)

which is the quantum analogy of eq. (3.11).
The quantum operators for the remaining left charges, i.e. 

those corresponding to the generators of K, can be constructed 
in a similar way although we do not do it explicitly here. 
Together with the operators (9.38) and according to the 
arguments leading to (9.14) they satisfy the same commutation 
relations as the classical charges.

So we have

[X(Lt), X(Lj )]qm = ifi X ^ ,  Lj ]) L1> Lj e f (9.30)

As a consequence of that the relation (4.36) remains true when 
we replace the Poisson bracket by the quantum commutator and the
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classical operator X, given by (4.34), by its quantum version:

X = g1JX(Li)LJ. (9.31)

Thus we have

[X f  x]QM = -ifi [<D, 1 ® X]

= ifi [<C, X ® 1 ] (9.32)

This relation will play an important role when we construct the 
quantum conserved quantities in involution in section 12 
because, unlike eq. (9.24), its r.h.s. contains quantum 
operators either on the left or right entry only and therefore 
we do not have ordering problems when calculating the commutator

Aof powers of X. In fact it is easy to check, using (9.32), 
that:

[TrXn, X]QM = 0 (9.33)

and therefore

[TrXn, TrXm ]QM = 0 (9.34)

A nThe operators TrX are manifestly hermitian for n = 2 only, 
and therefore they can not be taken as the quantum operators for 
the conserved quantities. (See discussion in section 12).

Classically we know that, as a consequence of the relation
(2.11), the quantities TrXn and TrAn are proportional. At the
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quantum level this relation is not true anymore and the reason 
is that eq (2.11) suffers some quantum corrections. We now 
discuss that. Using eqs. (2.11) and (4.9) we can write (4.34) 
as

1 -l . -lX = - _ a(x x) = bAb

Replacing the classical quantities by their corresponding 
quantum operators and symmetrizing the non-commuting parts we' 
obtain an hermitian operator for X, which is the same operator 
as (9.31) since, according to the discussion in section 7, all 
methods of symmetrizing a quantity linear in momenta are 
equivalent. Then:

Using eqs. (9.19) and (9.20) we then obtain the quantum analog 
of the relation (2.11):

2

T»CG Q(Tr) bPsb-1 (9.35)

X = - u w r  ; df  d + Dk> d  y(T ))n 1 o O i (9.36)

(9.37)

where we have defined the operator

A (9.38)
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Obviously the definition of A only makes sense in a given
representation of the Lie algebra of B, since it contains
terms quadratic in the generators. Operators with such terms

(32)have already been used by Mansfield in order to obtain
quantum zero curvature conditions for Toda systems. The origin 
of these terms, however, is not well understood yet, and we 
believe it could be clarified by a better understanding of the 
"gauge transformations" of the Lax operators at the quantum 
level. The interesting fact about A is that the matrix and 
differential operator representations of the Lie algebra of B 
are in some sense "mixed" and, according to (8.12), we have:

+  Tr- 7s + TsH = frs <vu + V

where the bracket |[, ]| means we are taking the quantum 
commutator and the Lie bracket at the same time.

We can use relation (9.37) to find the relation between the 
quantities TrXn and TrSn, and for n = 2 this is quite simple to 
do. From eq. (9.19) we have

[Q(Tr), bPsb ]QM = - ift b[Tr> Pgft"1 (9.39)

and therefore form (9.36) and (9.20)

TrX2 = TrA2 + - 2 GrSGUVTr([T , P ][T , P ])v l  r > s j l  u > v j y4

= TrA + * GrS fU fV  ̂ ur vs (9.40)

where we have used eqs. (IV.11), (IV.12) and (IV.32) of appendix
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IV to get the last equality

Therefore we see from (9.22) that

a 1 a 2H = — TrX 
2

(9.41)

and from (9.33)

(9.42)

so the left charges are conserved. Since, according to (9.30), 
the left charges generate the algebra of F under the quantum 
commutator we see from (9.31) and (9.41) that the hamiltonian,

t
and consequently the Laplace-Beltrami operator, is the quadratic 
Casimir operator for F, and (9.42) is just a consequence of 
that.

We now consider the quantum time evolution of the Lax 
operator A. From eqs. (8.6), (8.11) and (8.15) we have

A  _  1.AAb Hb
2

2

H - ifi (A + iB) (9.43)

where we have defined the operators

iB = iB - —  Grs (T , k ) o r s J

(9.44)
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and

~  A <1*1 r*oH = H + —  GrbT T (9.45)
2 r s

and the operator A is defined by (9.38)
Notice that the term quadratic in the generators in (9.45)

a 2has the same form as TrA , with V replaced by T , and 
therefore apart from a constant it has the same form as the 
hamiltonian. Using (9.37) and (9.43) we can write (9.42) as:

—  [H, A] = [iB, A] (9.46)
i*

and this is the quantum analog of the Lax pair equation 
r* ̂( 2 . 1 4 ) ^

2

(*) We are grateful to N. Ganoulis for helpful discussions on the quantum Lax pair equation.
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10. The Fundamental Commutation Relations and the quantum

NYang-Baxter equation for the symmetric spaces G /K.

In section 5 we have shown how to obtain the Yang-Baxter
Nequation for the symmetric spaces G /K from the Fundamental 

Poisson Relation (5.10). We now show that those equations 
remain true at the quantum level as a consequence of the fact 
that the algebras of the classical and quantum right charges are 
the same as we have shown in the last section.

In analogy with eq. (5.5) we define

D(T) = - Tr(Aa(T)) = - Q( a(T)) , T e a(b) (10.1)

Nwhere a is the Cartan involution of G defined in (5.2) and
AQ(<j(T)) is the quantum operator for the right charges, given by

N(9.16), for the case of the symmetric spaces G /K.
Thus it follows from (9.17) that

[D(T), D(T')]qm = ift D( [T, T ’ ]) , T, T' e J(b) (10.2)

Define, in analogy with (5.7)

A A AD = A+iB l  H i D ( H i ) +
ri (X ̂  A2 l —  E D(E 

a>o 2 a (10.3)

A A Awhere A and iB are respectively the odd and even parts of D 
under a. We see that the relation (5.10) remains true when we 
replace the classical D by its quantum operator (10.3) and the 
Poisson bracket by the quantum commutator, since its r.h.s. 
involves Lie brackets only and since the classical and quantum
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algebras satisfied by the components of D are the same. 
So

1 + 1 ® D] (10.4)

For the same reasons the Yang-Baxter equation (5.15) also holds 
true at the quantum level

[D 1 2 > D 3 2 ]qM + [°13, D i2] + [0 l 3, D 3 2] = 0 (10.5)

A Awhere D12 and D32 have the same form as their classical analog 
with D(T) replace by D(T) and D 13 = ih D 13.

By acting with the automorphism a on the left and right 
entries of (10.4) in a suitable way (see sec. 5) we obtain the 
Fundamental Commutation relations for the Lax pair operators:

[£ • S]OM = - ift [L±«, %  . 1] - ift 1 a A]P - R
]QM

[ i f  B ]QM = - i* [SLZji, 1 ® B + B ® 1 ]P - R A  A

]QM

[iB ® i b ]qm -  -  ift i  ® 1 ]  - i *  1 ® t ]

( 10 . 6 )

(10.7)

( 1 0 . 8 )
2 2
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11. The quantum reduction to the Toda Molecule system

We have seen in section 6 that the solutions of the Toda
Molecule equations correspond to some geodesics on the symmetric 

Nspaces G /K. We now show that at the quantum level this
geometrical picture is also true. By using a reduction 

(26)procedure we prove that solutions to the Schroedinger
equation for the Toda molecule system can be obtained from free

Nwave functions on G /K by projecting them on eigenfunctions of
the quantum operators for the left charges corresponding to the
positive root step operators. This reduction is possible

Nbecause the Laplace-Beltrami operator for G /K, and so the
hamiltonian, when written in terms of the horospheric
coordinates (<}> , p„) introduced in (6.2), decomposes in radial
and angular parts, each of them containing derivatives w.r.t.
either <j> or only. We believe this reduction procedure works
in a similar way for all non-compact symmetric spaces F/K
described in section 2, but we have not checked it. We will use

Nthe Chevalley basis for G and so, according to (5.3), the
2generators of the Borel subgroup B are H. = 2a. H/a

cL

N(a=l,2...r) (a simple root and r = rank G ) , and Ea (a>o).
Then, using the definition (5.2) of the Cartan involution a of 
NG and the normalization of the Killing form given by (5.4) we

Nsee that G defined in (4.10), in the case of G /K, has the
X o

form:

Gab = 4a*b/a b = (2/a )Kab ’ Gaa = 0 * Gap = 6a^ a C11*1)

where K ^ is the Cartan matrix which apppears in (1.1). Using
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(6.2) we see that Mr defined in (4.6) has the form:

Ma b “ \  6ab ’ Ma“ = = 0 - = “«P<P> exP('K p a V 2)
(11.2)

where n 1_5H_ = m P(P)Ep , Kaa = 2 a.a/a2
dp

(11.3)

NTherefore, the metric (8.4) for the symmetric spaces G /K 
written in horospheric coordinates (<fr_, p ) has a blocka Ol
diagonal form:

gab " \  Gab = Kab/2a' ’ gaa “ 0 ’ g*p = (mJn,T)ap <n *4>
where we have introduced

J «p<*> = e x P f - K a a V  6 0 p / a 2 (11.5)

From the commutation relation (5.1) we have

fu = I K = 2  , fU = 0au t aa aua>o
( 11. 6)

( 2  1 rsince v ' 2 6.a/a =1, where a is a simple root and 6 = _ l a,
2 a>o

Using (10.1), (9.16) and (11.2) we obtain the quantum operators 
for the right charges:

D(H ) = a ih V = a - i* 2 (i_  - 1) = 2 p.
a*a 2

(11.7)
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calculated from (7.2) using (11.4) and (11.5)
where p„ is the canonical momentum conjugate to <b and it can becl cl

D(E_a)= - iftV̂  = -i* exp( Kaa <Da/2)Va (H.8)

where Va are the generators of right transformations on the 
nilpotent subgroup in (see(11.3))

V a
_ 1

m P 9

3 p

-1n V n = E a a (11.9)

Therefore, using (11.1), (11.7) and (11.8) we see that the 
hamiltonian (8.15) decomposes in two parts:

H = - —  (A^a ) + A ^ )  
2

( 11. 10)

where A^a  ̂ is called the radial part (5 = ——-)
a 5 4>a

A C 3 * )    f  7k 7k » 1  _p U  ^  \A - g (5a db + - fu a V ( 1 1 . 1 1 )

and A^n  ̂ is the angular part

2

A(n) = I a exp(K_ 4>q )V/vV 
a>o aa a a a ( 11. 12)

When we performed the classical reduction in section 6, we
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identified the solutions of the Toda Molecule equations with
Nthose geodesics on G /K where the left charges X(Ea) (a>o) 

assumed the values (6.1). In the quantum reduction we have to 
look for eigenvalues of the quantum operators X(Ea) whose 
eigenvalues are the same as (6.1), i.e.

0 1 - 1 3 )

where

X a
j Xa if a is a simple root a

0 if a is a positive non simple root (11.14)

Notice that, in general, the operators X(E ) can not have
a

simultaneous eigenvalues because they do not commute. Indeed, 
from (9.30) and (5.1) we have:

[X(Ea), X(Ep)]QM = ift N apX(Ea+p) , a, p>o (11.15)

However, we see that the r.h.s. of (11.15) does not contain 
operators corresponding to simple roots and therefore it is

Apossible for the operators X(Ea) to have simultaneous 
eigenfunctions with eigenvalues satisfying (11.14). Since these 
operators are hermitian and since they commute with the 
hamiltonian (see (9.42)) their eigenvalues are real and constant 
in time.

Using (9.28) and (11.2) we have:

X(Ea) = - Ifi a a P( p ) V p = -  1ft VaL (11.16)
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where is defined in (11.9) and a^(p) is the adjoint 
representation of the nilpotent subgroup n:

n Ean = aaP(p) E p (11.17)

From eq. (III.9) of appendix III we see V ^ are the generators 
of left translation on the subgroup n.

Since n is the exponentiation of the positive root step
fioperators we see from (11.17) that aaP is an upper triangular 

(*)matrix, i .e. '

8 = | 1  i f  o=p
a  '•o if p-a is not a positive root (11.18)

b band consequently aQ = 6Q if a and b are simple roots.a  a

Therefore from (11.16) and (11.18) we conclude that if 0.A.
Ais an eigenfunction of X(E ) with eigenvalues (11.14) then it is 

also an eigenfunction of with the same eigenvalues, since:

-iftV 0. = -ift a-1 PV.L0, = X 0, (11.19)
a  \  a p X  a  K v J

8 - 1 RSince the inverse of a„ also satisfies (11.18) (a (n) =a a
8 - 1aa (n ). The operators X(Ea), according to (11.16), do not

/  \ ̂ J From eq. (III.3) of appendix III and (11.18) we see that
maP is also a upper triangular matrix with l's on the diagonal.
Therefore detm = deta = 1 and using (11.4),(11.5) and (11.6)
we conclude that detg ~ exp(-2y 6 ) and so it is independent ofa
the angle variables p̂ .
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depend upon the radial variables <}>_ and therefore these

CL

eigenfunctions 0  ̂are functions of the angular variables pa 
only.

From (8.7), (11.2) and (11.6) we have

l (detm)m fta) = 0 (11.20)a>o d p a p

and therefore using this and (11.9) one can show that

JdN<|<*V0<t> = - JdN(Va(iO% (11.21)

where dN is the integration measure for the angle variables

dN = (detg „)^dnp a(3 (11. 22)

Using (11.6) and eq. (III.13) of appendix III we get from 
(11.21) that

JdNcJ,*VaL <t> = -  J d N ^ d O " *,L * (11.23)

Therefore if there are two eigenfunctions 0. and ©.f of theA. A.
A foperator X(Ea) corresponding to the eigenvalues X and X 

respectively, we have

(Xa - xa){ dN 0X ex- = o (11.24)

and so, they are orthogonal if the eigenvalues X and X

are distinct.
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The radial part of the Laplace-Beltrami operator, given by

(11.11), contains a term which is linear in derivatives w.r.t.
<b , and since the quantum hamiltonian for the Toda Moleculea

system does not contain such a term it is useful, in the 
reduction procedure, to define the operator

2 ,
H = -*L_ j r  A(a)J ^ o 0

h
2

(11.25)

where

J = det Ja {3 (11.26)

and where we have used the fact that

1 ~ab ~u _pV _ c _ l  v—  G f f, = 6 , 6 = — > aau bv * L
(11.27)2 a>o

We now show how to obtain solutions for the quantum Toda systems
Nfrom the free wave functions on the symmetric space G /K.

Theorem "If <!>(<!>, p,t) is a solution of the Schroedinger equation
Nfor the free motion on the symmetric spaces G /K:
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(11.28)

d t

Awith H given by (11.10), then the reduced wave function

<pRC 4.,t) = J^/dN e*(p) , dN = (det g )^dnp
(11.29)

with 0^(p) obeying (11.13) and (11.14), satisfy

A * & <l>p ( $, t)
(Hq + vx( 4>))4*r( d», t) = ih

where V^( <}>) is the Toda potential

2 2

Vx(*) = I | l a e*P<Ka b Va 2

Aand HQis given by (11.25)".- 

Proof

(11.30)

(11.31)

The r.h.s. of (11.29) depends explicitly upon time through 
<|>(4>, p,t) only, and therefore using (11.28), (11.10) and (11.4) 
we have

i. *
ift — H = J ^ /dN (i* M )  0* = 

dt dt K

= -5_{J^/dn p(detm)( A^aH)ot + I c£2exp(K <j> )J”^/dN(v V <J>) 0*} o X t oca a J a a X
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Using (11.25) the first term becomes:

/dnp(detm)
2 ( a ( a >4,)e* = h o «̂r ( t )

Using (11.14), (11.19) and (11.21) the second term becomes:

2 K  <t> l
= * L  l a e aa a J - r j  dN(V V <10 0,* 2 a>o a  a  K

and so the theorem is proven.

2

Ia 2
o K  d)X e ab b a 4>£ ( <l> > t )

AAs we mentioned above the eigenvalues X of X(E ) are reala cl
2and constant in time and, according to (11.31), we see that Xa

play the role of non negative coupling constants for the Toda 
Molecule systems.

The reduction of quantum operators is performed by the same
/\method used for the hamiltonian. Let 0 be a quantum operator 

and consider its action on an arbitrary wave function <|>(<|>,p):

6 <K d>, p) = 4.f (<}>, p) (11.32)

Using (11.29) we calculate the reduced wave function c|̂( <t>) and 
<l>̂(<t>) corresponding to <|> and <|>' respectively. We define the

A  Areduced form of 0, if it exists, by the operator 0^ that maps cĵ 
into

V R(*) = V * )  = J"ndN(O<|<)0* (11.33)

We do not discuss here the conditions under which this operator 
exists and if it is unique or not. However we show below how to
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construct the reduced form of the operators relevant for our 
discussion.

A  A  * A "Notice that if there are three operators 0, 0 and 0 
satisfying

[8 A  » t A '

0  ^QM “ 0

and they all possess a reduced form, then

r A A t  A "

f ° R »  ° r 1q M = ° R

The reason why this is so, it is because the reduced form of the 
product of two operators is the product of their reduced forms. 
Therefore the reduction procedure preserves the algebra of the 
quantum operators.

According to (11.7) the quantum operator for the canonical 
momentum associate to (j) is:

p = - ifi (a - I) (11.34)
2

Its reduced form, according to (11.33), is:

pR cb = - ih J^/dN (detm) [ (5 - i)<l>]0* a R a 2  a.

= - i* (11.35)

Since 9, is independent of if and since (see(11.5) and (11.6))a. a
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[&a* jP] = ~2pjP

Notice that pR is herraitian under the measure dV = (detg )^dr 
s. ab

and therefore is the correct momentum operator for the Toda
Molecule systems. The reduced form of the operators X(Ea) = 
-ihv^ are just the eigenvalues (11.14) since using (11.23)

x <e « V r  - J * / dN ( - ifi VL ĉ )0* a A.
X <!>„ if a is simple^ Xv
0 if a is not simple

(11.36)
Similarly, using (11.19), we see that the reduced form of the 
operators -ifiV are also the eigenvalues (11.14). So

-ift Va(R> = X(Ea)R (11.37)

Obviously the reduced form of the operators for the radial 
variables <t> are the <j> ' s themselves. Therefore we have showna a
that any quantum operator constructed out of 4> , p , V and V ^a a cl ct
have a reduced form. In particular, the reduced form of the 
quantum Lax pair operators, given by (10.3), is

R a r  + l E R \  I gab Pa Hb + l a\  eXp(Kab*b/2)E  ̂a , b a a
(11.38)

where we have used (11.7), (11.8), (11.35) and (11.37)
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If we set a X = 1 we obtain the usual expression for thea

Lax Pair operators. The quantum hamiltonian for the Toda 
Molecule systems then becomes, according to (11.25), (11,30) and 
(11.31)

2

A 1 V «.ab*RAR r 1 N , u _- I S PaPb + l — _ exp(KoK^) + —  62 a,b a 2a 2 'ab Yb 5.
2

(11.39)

Using the same arguments of section t one can check that the 
reduced Lax operators satisfy

[AR
A  ,

/ AR -*QM<9 = -i* [IP, R 1 + 1 4 r ]

and

a  ,
BR ->qm 0
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12. The quantum conserved quantities and integrability

We now construct the quantum conserved quantities in involution 
for the geodesic motion on the non-compact symmetric spaces F/K 
and show that the Toda Molecule systems are integrable at the 
quantum level. In sectin 4 we have showm that the classical 
conserved quantities could be constructed using the Fundamental 
Poisson Relations (FPR) either for the Lax operator A, 
eq. (4.22), or for the left charges X eq. (4.36).

At the quantum level the use of the Fundamental Commutation 
Relations (FCR) to construct conserved quantities is 
cumbersome because the usual multiplication law on the tensor 
product space, namely (A ® B) (C ® D) = AC ® BD, is not valid 
when the left and right entries contain non commuting quantum 
operators. For this reason the FCR for the quantum Lax operator
AA, eq. (9.24), does not provide us with a simple way of 
constructing quantum conserved quantities .

AHowever, the FCR for the quantum left charges X, eq.
(9.32), possess a very useful and nice property. Its r.h.s. 
contains quantum operators either on the left or right entry 
only and therefore when we calculate the commutator of powers of
AX we do not have the sort of problems we described above.
Indeed, using that relation one can easily check that the 

Anoperators TrX are in involution (see (9.34)).
AAlthough the quantum operators occurring in X , namely

A  AX(L^) (see (9.31)), are hermitian, X itself is not guaranteed to 
be so. The generators of the non compact real form F of G are

A nnot, in general, hermitian. Therefore the operators TrX are 
not hermitian (except for n ss 2 since the Killing form of F is
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real) and so, can not be taken as the quantum conserved 
quantities.

However, the trace of the symmetric product of n generators
of the Lie algebra of F is a real number whenever the classical

n (*) nquantity TrX is real . The reason is that TrX is a
polynomial of degree n in the left charges X(L^) which are real
functions of the classical canonical variables. These charges
are functionally independent and since they obviously commute
the coefficient of each independent term has the form
ilJl *2 J2 (s)g g ....g Tr (T. T....T, ) (see (4.34)), where

J 1 J 2 J n

( s ' )Trv ;means the trace of the symmetric product. Thus these 
coefficients are real if TrXn is so.

Therefore, we conclude that the quantum operators

A (s)
Xn = in

ilJ l . V n X(L ) 1 1
. X(L. 

1

(s))Tr (L
n J l

L.
3 2 )n

( 1 2 . 1 )

are hermitian whenever TrXn is real.

 ̂ ^We know that classically TrAn = TrXn and in general TrAn is
Nreal. In fact for the normal real form G of G the Lax

operator A is hermitian, since the generators of the odd 
Nsubspace £ of g , namely and (Ea+E_a) are hermitian 

(H*=H^, E* = E ). According to Helgason (Chapter X, sec.
2) for all involutive automorphism of the non-compact (compact) 
classical Lie algebras the generators of the odd subspace p of 
f are hermitian (anti-hermitian) in the defining representation. 
We believe this is true in general.
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Using (9.32) one can check that

= 0

therefore

(12 . 2 )

[ V  ^ Q M  = 0 <12-3>

ASo, the quantities I are in involution and are conserved since
A12 is the Hamiltonian (see (9.41)). We notice the operators
(12.1) correspond in fact to the invariant Casimir operators for

Af since the left charges X(L^) generate the algebra of F under 
the quantum commutator.

A.Having the conserved quantities I written in terms of the 
left charges is not very useful for our purposes because we do 
not know how to write these operators in terms of the canonical 
variables of the Toda Molecule systems by using the reduction 
procedure explained in the last section. However, one may 
convince oneself that by using the relations (9.31), (9.36) and 
(9.39) one can eliminate the left charges from (12.1) and write

^  Athe operators I in terms of the quantum Lax operator A only, 
which can be reduced. Therefore when that is done the reduced

Aform of I become the quantum conserved quantities for the Toda 
Molecule systems, and since the commutation relation (12.3) is 
preserved under reduction we see that these systems are 
integrable at the quantum level.

AWe have not found a proper way of writing I explicity in
Aterms of the Lax operator A. We think this requires a better 

understanding of the richer algebraic structure underlying these 
systems at the quantum level.
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13. Conclusions

We have developed further the geometric picture of Olshanetsky
and Perelomov J where the solutions of the Toda Molecule
models are seen as some special geodesics on the symmetric 

Nspaces G /K and have shown how to extend this picture to the 
quantum level. This has proven to be of great importance in 
clarifying the algebraic structure underlying the classical and 
quantum integrability of these models.

The non-compact Riemannian symmetric spaces F/K we 
considered have a hidden group theoretic structure due to the 
Iwasawa decomposition of F (g = n a k) which enables us to 
parametrize the points of the symmetric space by the elements 
na of the solvable subgroup IB. These facts are responsible 
for the existence of a broken symmetry which is the right 
transformations by elements of IB. The non conserved charges 
associated with this symmetry are the components of the Lax 
pair operators A and B, and their Poisson bracket algebra is 
the Lie algebra of B. This algebraic structure holds true 
at the quantum level simply because these charges are linear in 
momenta. Then it follows that the classical and quantum 
algebras of these charges lead to the "Fundamental Poisson

(5 \Relation" and "Fundamental Commutation Relation" J

N /respectively and, in the case of the symmetric spaces G K,
these can be written in the form of the Yang-Baxter

.. (27, 28)equation
Classically the operators A and B satisfy the Lax pair 

equation which describes the geodesic motion on the symmetric 
space. One of the main differences between the classical and 
quantum theories appears when we try to construct the quantum
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analog of that equation. In order to do that we have to add to 
the quantum Lax pair operators and to the quantum Hamiltonian 
terms which are quadratic in the generators of the Lie algebra 
of B. The interesting fact about these terms is that they 
have the same structure as the quantity to which they are added 
with the quantum right charge associated to a given generator 
of B being replaced by the generator itself. We think an 
elucidation of the role of such terms is crucial to understand 
the richer algebraic structure which underlies these models 
at the quantum level. In addition we believe this will provide 
us with a clearer method of constructing the quantum conserved 
quantities in involution. The method we presented in section 
12, although enables us to show the quantum integrability of 
the Toda Molecule Models, does not teach us much about the 
structures responsible for that integrability and about other 
properties that could be useful in the study of integrable 
systems.

Our analysis of the classical and quantum geodesic
motions applies uniformly to all non-compact Riemannian
symmetric spaces and some results we obtained for the spaces 
NG /K could perhaps be generalized. We believe that a classical
and quantum reduction procedures similar to those ones used for 
NG /K could be applied to obtain other integrable models from
the geodesic motion on the symmetric spaces F/K. This would be
important to check the conjecture by Olshanetsky and 

(1 2 )Perelomov v ' that this geometric picture of geodesic motions 
on symmetric spaces underly all integrable systems. The method 
we used to construct the Fundamental Poisson Relations have 
considerably elucidated their origin and perhaps it could be
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used to check if the Yang Baxter equation also exists in the 
case of the spaces F/K.

The two dimensional field theory version of the Toda
Molecule models are also believed to be integrable and it
would be interesting to check if the solutions of these models

Ncorrespond to some type of motion on the symmetric spaces G /K.
In appendix IV we make some comments about how these ideas
could perhaps be implemented.

It would be very interesting to apply the ideas of this
thesis to the Toda Lattice systems. They are associated with
the Kac-Moody algebras instead of ordinary Lie algebras and
their root systems are infinite dimensional and this accounts
for the appearance of a spectral parameter in the Toda Lattice
models. For that reason these models have an infinite family
of Lax pairs labelled by this parameter. The integrability
properties and the fundamental Poisson Relation of the TL

(14)models are very similar to those of the TM models and
perhaps this could be understood in terms of the Iwasawa 
decomposition for the Kac-Moody group. However, as far as we 
know, the mathematical theory for these groups does not exist 
yet.
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Appendix I : Noether's Theorem

This is a standard theorem yet we have not succeeded in 
finding in the literature a statement and proof sufficiently 
explicit for the use made in the text. Here we present the 
version we use followed by an outline proof. We consider a 
nonsingular dynamical system with a finite number of 
coordinates q^.. q^.

Theorem A

Consider the variation

6 qi = e(t) F ̂ (q , q, t) i = i .. N

(with 6qi = ^  (6qJ  as is usual in Lagrangian theory) and 
suppose that without using any equations of motion the 
corresponding response of the Langrangian is found to be

6 £  = ( eX) + k Q + CD (1.1)d t

where X, Q and D may depend on q , q and t (but not 
accelerations). Then

(i) ^  = D by virtue of the equation of motion
N

Q = I Pi F - X i = 1 1
( i i )



(iii) Q can be expressed in terms of canonical variables
q. and p. (with velocities eliminated) and ^ 1

(qj. £Q 1 p b  = 6

tPi • = 6 Pi _ e

where 6 p. is calculated directly from the variations of the
coordinates and velocities using the equations of motion if 
necessary, and e is taken to be constant.

Corollary A

There is an arbitrariness in the definition of Q, X and 
D. If we replace

where G=G(q,t), the original definition and all the 
subsequent properties still hold good. If we can choose G so 
that D becomes velocity independent then the variation (with 
£=0) is seen to be canonical with Q the infinitesimal 
generator. It still has an ambiguity which is an additive 
function of time. If D can be chosen to be zero Q is 
conserved and certainly generates the infinitesimal 
transformation. Its ambiguity is just an additive constant.

l

X->X-G, Q+Q+G, D+D+G ( 1 . 2 )
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Theorem B

If there are three variations, 6, 6* and 6", of the type 
considered in Theorem A, satisfying (with e and e' constants, 
and e" = e e' ):

[S', 6]q̂  = 5"qi (I.3a)
and

[S', 6 ] ^  = S"4i (1.3b)

and if the coefficients of the accelerations in (e6'D - e'6D') 
vanish, then

( i ) (Q* , Q I p b  =  -  Q "

( i i ) 6 ] p t  =  6 " p i

Corollary B
For velocity independent variations, the condition (I.3b) 

is a consequence of (I.3a). And for canonical and velocity 
independent variations, the quantity (e6'D - e'6D') is 
acceleration independent.

Proof of Theorem A
(i) follows immediately from Hamilton's action principle. 

Alternatively if we evaluate 6 directly by calculation we get

S«£ =  lA.  S q .  +  1A.  6 q . =  f L (  e p . F .  )  +  (lA.  -  p .  ) F .  
a q .  1 a q .  1 d t  1 1  a q .  1 1

Comparing with (1.1) result (ii) follows by equating 
coefficients of e and (i) by equating coefficients of s.

We now obtain an important relation by comparing the
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5FJ ■■It occurs only once, linearly, in the terms q^

occurrence of the acceleration in the two expressions for 6o£

5<k
5Xand e --- q. respectively. Since no equations of motion are

used these terms are equal for all accelerations. Hence

AY
4 -  =  I p j
aq-L j

(1.4)

Now‘we examine the structure of Q. By (ii)

dF 5F .
dQ = l dp F + l (p — l  -  —  ) dq + l (p — A  - )dq. +

i i,j J 9qi aqt i,j J aqt 5qj.

5F
+ l  (P ,  — 1 -  —  ) d t

i  a t  a t

and by (1.4) we see that the coefficient of dq vanishes thereby
aQconfirming the first assertion in (iii). Further --- = F.
a p i

yielding the second part of (iii), while

aF .
—  = I P ,  --- i  -  —  = -  {P i , Q}

3
PB (1.5)

Finally we calculate 6p. where p.= ^ ^ ). Using (1.1) and
1 1 aq,

taking e constant we get
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a . * £  aF. b £  5F
6p = c Ar(x+D) - e ------- T -  - e -----A

5 q i &q. 9 q i bq^. dq^^

Using (1.4), (1.5) and the fact that for any function
f ( q , q , t )

Sf = d (af } af x af 8qj
b q ± dt dqt b q ± dq. b q ±

we obtain

dD 5F*6p, = e {pi ,Q}pr+ e —  + el - A  (p - ££. ) (1.7)
aq i 8q J dq.

This yields the last part of (iii) on using Lagrange's
"fchequations of motion. If the variation of j coordinate is 

velocity independent it is unnecessary to use the corresponding 
equation of motion.

Proof of Corollary A
The corollary A is self evident once it is recognized G 

must be velocity independent in order to keep D acceleration 
independent.

Proof of Theorem B
From (1.3) we see that the variations of any function

f(q>q>t) satisfy [6',6 ] f = 6"f. Since the canonical momentum, 
b o ip. = ___ , can be written as a function of q, q and t
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the part (ii) is proven.
Analogously the variations of the Lagrangian satisfy (using 

• • *(1.1) with e = e = 0  and e" = e s'):

6"o£ = [ 6 ’ , 6]of= e 6'X - e'6X' + e 6'D - e'SD' 
= e"X" + e"D" (1.8)

Using (1.6) and the fact that for any function f(q,q,t)

5f = d_ r b f } + _5f dqj 
dq^ dt 5q^ 9q̂  9q^

we get

6 f  = + $ 1  (6q. -
dt Sq. 1 dt

and therefore from (1.3) (since 6'6q^ = e6'F̂ )

^ i  d (6'q.)\ ^i,*** d ( 6q . ) N ^—  (6'q. - —  4J;) - — — (6q. - —  ̂ ') = 0 (1.9)
8qj

dt 3q. dt

Using this relation and (1.4) we conclude that:

e 6 ’ X - e’6X ’ = fL( e 6'X - e'6X') (1.10)
dt

I TtFrom (I.3a) we see that the functions F^, F^ and F ,̂ which 
define the variations of the coordinates (see theorem A), have
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to satisfy:

( 1 . 11)

But since the variation 6" satisfy the conditions of theorem A, 
FV is acceleration independent, and the coefficients of the 
accelerations on the r.h.s. of (1.11) must vanish

3F . 5F 3F! dF . i J

and therefore the quantity (e6'X - s' S X ' ) is acceleration 
independent.
Since no equations of motion are used, the coefficients of the 
accelerations on both sides of (1.8) have to be equal.Therefore, 
using (1.10), we get from (1.8) that, if (e6'D - e’6D') is 
acceleration independent

__i __J
5q . &q. J k

So, usi«ng (1.4)

5q . dq 3q . 9q J k k

5X" _ 5 (e6’X - e'6X ’)
dq. 5q.l l
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and so, eMX" ‘and (e6'X - e'6X ’) differ by a function of q and t. 
But according to corollary A this is exactly the arbitrariness 
of X". Therefore we can set

e"X" = e61X - e'6X' (1.12)

According to theorem A, Q" = Ep.F. -X", and so from (I.11),
i

(1.12) and (1.4)

Q" = Z ( F ! -  F . i ^ _ )
i 1 &qt 1 5qi

but again from theorem A, —  = F., and so the theorem*is proven.
aP t

Proof of corollary B
For velocity independent variations the relation (1.9) is 
automatically satisfied, and therefore it is clear that (I. 3b) 
is a direct consequence of (I. 3a).

The coefficient of the acceleration q^ in (e6'D - e'6D') is

5D
dq . 5q. 

3 i 6q . 5q. 
3 i

and so, it vanishes for velocity independent variations as well 
as for canonical variations since for these, according to 
corollary A, D can be made velocity independent.

We then see that, for velocity independent variations,the 
results of theorem B can be obtained by imposing (I.3a) only.



Appendix II

In this appendix we prove relation (5.10) following the 
methods of reference

Using the commutation relations (5.1) it is easy to 
check that the operatorP defined by (5.11) satisfies:

[ P  , 1® H + H ® 1 ] = 0a a (II.1)

In order to evaluate the commutator o t f  with step 
operators we make use of the Casimir like operator defined by
(5.12). It has the property of commuting with any generator T 
of the algebra,

[ <C , 1®T + T ®  1 ] = 0 (II.2)

Using (5.1) we have,
of GN)

for any positive root p, that(r=rank

[<t

Where ( C o

1®E + E ®l] = I(H ® (3 E + P.E.»H.)
P P 1 1 P 1 P 1

2= (P /2)(Hp® E p +

v 2
l H.<g> H. and HQ= 2P.H/ p
“ i i  p

(II.3)

Since <£> -  + (C+ + (£_ we get from (II.2) and
(11 .3) that:



[<C+ + <C_, 1 ® Ep + Ep «l] =-(P /2)(H„®Eg + E ® H p) (II.4)
But we also have

2

[c 1 ® EP E p ® l] = I(a /2)(E ®  [E_ E ] +
a>0 p

+ [ B a . B p ] ® B _ 0 ) (II.5)

and

2[C , 10E + E ®l] = I(a / 2 J (E ®[E E ] +
p p a>0 p

+ l-E_ a.E p ] ®  E a) (II.6)

Since (II.4) contains terms proportional to the product 
of Cartan subalgebra generators with positive step operators 
only, we conclude that the sum of terms proportional to 

®E_ , (y ,y *> 0) in (II.5) must vanish since we do not have 
such contribution in (II.6). Similarly the sum of terms 
proportional to E_^<$ E , ( y» Y '> 0 ) in (II.6) must also vanish 
since we do not have such contribution in (II.5). In addition 
we conclude that the sum of terms proportional to the product 
of positive step operators in (II.5) and (II.6) must vanish, 
i. e . ,

I (« /2HE ®[E E ] + [E E ]®E ) = 0
0 <oc < (3 u p  u p

(II.7)

Therefore we get that



[<t + -(C_, l ® E p + Ep®l] = (p /2)(He®Eg - EgSHg) +P P P P

+ 2 I (a /2 )E ® [E .e J  (II.8) 
0<a<P “ P

Now, suppose a, p and y are positive roots and p = y+a, then:

[E ,Efl] = a E L -a' pJ y

and

Tr([E_a ,Ep]E_Y) = 2a/y = Tr([E_y , E_a ]Ey) =(2/p )Nay

2 2and so a =(y /p )Nay (II.9)

where we have used (5.4), and the commutator [E_ ,E_ ] was— y “ a
evaluated by applying the automorphism (5.2) to the last 
equat ion in (5.1).

Since TP = <£ - we have:

[IP , l ® E p + Ep» l ]  =(P / 2 J (Hg® Ep - E p® H ?) +

2 2 2+ > ( a y / p ) N  E ® E wn ' ay a ya ,y>0 1 '
(II .10)

p=a+y
From (5.7), (II.1) and (11.10) we get

2 2
[ IP , 1 ® D  + D ® l ]  = 2 I (8 12) D(E )(H„®E -8>0 -P P P

v  v
2 2

- I l « y D( [E_a,E_ ])Ea® E  (II.11)P>0 a,y>0 P= a+ y



Using (5.6) and (5.7) we conclude (5.10) is true.
The commutator between and step operators corresponding 

to negative roots can be easily obtained from (II.10) by making 
use of the involutive automorphism a. From (5.2) and the fact 
that
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■Vl P  = * IP

we get from (II.10) that

2[ IP , l®E_p + E_p®l] = (p /2)(Hp0 E_p - E_p0 H p) +

2 2 2
l (a y / p )N E ®E  

a , y > 0  (3= a+y
+ ( 1 1 . 1 2 )
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Some useful relations in Lie group theory

Let G be a Lie group with generators T (a = 1, 2 ... dim G).
c luThe adjoint representation, A D(g), of an element g e G isa

defined by:

s Ta g = Aab(g) Tb (III-l)

In the text we make use of the quantity M b(g) defined by:a

g" 3ag = Mab (g)Tb (III.2)

where 5 = ---, and tj are the parameters of G.a ~ a
0  T|

y.We now show that M is related to the adjoint
EL

representation of G by:

Mab(ri) = ! Q  dx Aab(Tii) (III.3)

Suppose we can write g as g(T) = exp T, with T = riaT . Then, ifa
x is an arbitrary continuous parameter, we have:

5_g(xT) = T g(xT)
5 T

5 g( tT) - 1and so ;) g (xT) = T

Appendix III
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aTaking the derivative of both sides w.r.t. r\ and conjugating by

_ l _ 1 _ lg( “tT) (since dg = - g (5g)g )

g 1(TT)aa{(aTg(xT))g (TT)Jg(TT) = g 1(-cT)Tag(xT) = Aab(Tn)Tb

= aT{g 1(tT)aag(iT)}

Then, integrating over t, we prove (III.3) since the generators 
T are linearly independent.

a

Using eq. (III.2) one can easily check that M satisfies:a

ab C  - aaMb° = fde Mad “b* (III.4)

where f ^ are the structure constants of the Lie algebra of G 

U V  Tbl = fab Tc>-
-1 a -1 b fMultiplying (III.4) by M  ̂ M Q M we get

-1 d -1 c 
M a adM b -id -1 c - M b 6dM a

_ 1f ", M , a b d (III.5)

— lb bwhere M is the inverse of Ma a
From (III.2) we see that the differential operators defined

by:

V R = M 1 b 5 a a b (III.6)

are generators of right translations:

-1 Rg V g = T a a 7aRS “ s Tag and (III.7)
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„ L . b. N „ R V = A (r|) V, a a v " b

are generators of left translations

(III.8)

VaL 8 " Tag

RUsing (III.7) we see the operators V satisfya

(III.9)

[V R V,R 1 = fC, V R *• a ’ vb -* xab vc

and using (III.9)

(III.10)

[ \ L> ’bL ] - -fab VCL (III.11)

Since the left and right translations commute we get 
(III.7) and (III.9) that

from

tVaR- VbL ] * 0 (III.12)

In addition we get from (III.l) and (III.7) that the 
RV on the adjoint representatioin is:cL

action of

„ R . b, x _ . d _b Vc Aa Aa fdc (III.13)
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Some geometrical aspects of the Riemannian non-compact 
symmetric space

Appendix IV

According to (8.4) the metric for the Riemannian non compact 
symmetric spaces F/K, written in terms of the parameters r\T of 
the solvable subgroup B = na, is given by:

grs(T,)"“r
u(r,)Mc.t(Ti)Gut= (M G TM  )rs r,s=l, 2. .. dim F/K 

(IV.1)

gwhere M was introduced in (4.6) and G in (4.10). r rs
Under a general coordinate transformation on F/K, (which 

according to the discussion in section 8 is equivalent to a 
reparametrization of the subgroup B) we see from (4.16) that

gMr transforms like a covariant vector (in the lower index)

M s
r

5 ti

Mu
s

Therefore, if we define (5r

nr 9 br ° (b Mrs Ps

( I V . 2)

(IV.3)

with

Ps = ± (T -a(T ))
2 s

T e b s ~ (IV.4)
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we see that n is an element of the odd subspace g under a of 
the Lie algebra of F and at the same time a covariant vector. 
Due to these properties will play an important role in 
relating the algebraic and geometric aspects of F/K.

Its contravariant form is

nr  = g r s ns  = g u s  i T 1/  p s  ( i v . 5 )

The metric (IV.l), in terms of n , can be written as:

grs = Tr ( n r ns ) (IV.6)

and therefore

T r ( n r  ns ) = 6r s ( I V . 7)

i.e., the covariant and contravariant forms of n are orthogonal 
w.r.t. the Killing form of F.

( 3 i )The Christoffel symbol (or affine connection) defined
by:

TlU _ 1 US f ~ ~ 5. vr = — g ( 0 g + 5 g - 5 g  )rv 2 r&sv v&sr s&rvy (IV.8)

can be easily calculated from (IV.l) using eq. (III.4), to give

Tu = i M 1.u(5 M t + 9 M t) + i  WU rv  ̂ t r v  v r  2 rv (IV.9)

where
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W u
rv sw

u M ° M w (IV.10)

and

Iu = Gut (G f* + G rv rw tv vw f *  ) tr' (IV.11)

where f are the structure constants of the subgroup ® = na.
Note that Iu is symmetric, Iu = Iu .rv J ’ rv vr

In fact, Iu satisfies: rv

i [ a(T ) ,T ] - I [T , a(T ) ] = Iu P , T e b (IV.12)2 L V r'’ v J 2 L r v/J rv u ’ s ~ v '

To prove this, we see that the l.h.s. is odd under a and 
therefore is a linear combination of the P , which is a basis 
for the odd subspace jd. Since

G = Tr(P P ) = Tr(P T ) = i {Tr(T T ) - Tr( cr(T )T )} rs r. s r s 2 r s  r s

we see that the first term of the r.h.s. of the above 
expression does not contribute to (IV.11). Since it is the 
Killing form of b. Therefore multiplying both sides of (IV.12) 
by T^, and taking the trace we see that lJJv in (IV. 12) is the 
same as the one given by (IV.11)

In addition we have from (IV.12)

[P , k ] = i (fu - lu ) p L r ’ s J 2 v rs rs ' (IV.13)
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where ks = “ T̂s + a(Ts))

Using eq (III.4) of appendix III one can check that n , given by 
(IV.3), satisfies:

a n  - a n  = f u  ns r r s rs u (IV.14)

where

Furs (IV.15)

Therefore, from (IV.9) and (IV.14) we see that the covariant 
derivative of n is:

Dsnr " asnr - rsr nu

1
2

(Furs Wurs )nu (IV.16)

Defining

- 1 - 1 ' u 
K -  b a b + a(b a b) = M u k s s s s u (IV.17)

and using (IV.13) we see (IV.16) can be written as:

Dsnr “ tnr’ Ks ] = 0 (IV.18)

so, the covariant derivative of n can be written as a Lier
bracket. This equation, as we show below, is related to the Lax
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pair equation and is responsible for the vanishing of the 
covariant derivative of the curvature tensor, which is the

C 2 3 )property that characterizes the symmetric spaces '.
Using eq. (III.4) we have, (since the covariant curl is 

just the ordinary curl).

D K r s - D  K s r — 5 K r s - b  k = s r
„ UF K sr u

and since

(IV.19)

[Pr - Ps ] + [kr . kS] = frs ku (IV.20)

we get

D k - D k + [ iI , I I ] + [ k , k ] = 0 r s  s r  L r * s J L r ’ s J (IV.21)

For any covariant vector V^ we have (31)

D D V  - D D V = v s r s v r - Ru V rsv u (IV.22)

where Ru is the Riemann-Christoffel curvature tensor: rsv

»u nUR  =  b r  rsv v rs - s ru + rt ru  ̂ - rt ru^s rv rs vt rv st (IV.23)

Using (IV.18) and (IV.21) we can show that

d d n - d d n = [ n [ n , n l ]v s r  s v r  L r L s v JJ (IV.24)

and so, from (IV.22), we obtain the curvature tensor for the 
symmetric spaces F/K:
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[n , [n , n 11L r » L S > V J J (IV.25)

This result, in fact, is true for all symmetric spaces which are 
coset spaces (see ref. (23)). However, for the symmetric spaces 
we are considering n assumes the simple form (IV.3) due to the 
fact that the Iwasawa decomposition endows these spaces with a 
hidden group theoretic structure, i.e., the solvable subgroup 
1 = na. It is also true that for those spaces the curvature 
tensor has vanishing covariant derivative, and in our case this 
can be explicit shown by using (IV.18).

As a consequence of that equation the covariant derivative 
•of the commutator of two n's is also a commutator

Since the covariant derivative of the metric vanishes, the 
operations of covariant differentiation and rising and lowering 
indices commute. It then follows that the Ricci tensor:

D, [n , n ] = [ [n  , n ], k+1t L s v J L L s V J t J

and similarly

Dt [nr> [ns , nv ] ]  = [ [ n r , [ng , n j ] ,  <t ]

Therefore from (IV.25) we get

(IV.26)

R ( I V . 27)rs rus

and the curvature scalar
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rs (IV.28)

have both vanishing covariant derivative. And since the 
covariant derivative of a scalar is just the ordinary derivative 
it follows that these symmetric spaces have constant curvature 
scalars. Let us then evaluate the curvature scalar for the 
Riemannian non-compact symmetric spaces F/K. From (IV.7) and 
(IV.25):

ru = - Tr([ n [ n , n ] ]  nu ) rsv v L r L s* v J J y

ut T r ( [ n r , [ ns , n v ] ]  nt ) (IV.29)g

and from (IV.28), (IV.l) and (IV.3):

R rv st g g T r ( [ n r , [n8 , nv ] ]  nt )

Grv Gst Tr([Pr , [Ps> Pv ]]Pt) (IV.30)

Since Pr = (Tp - cy(Tr))/2 and kr = (Tr + a(Tr)/2, we have

k — Tsv u sv (IV.31a)

and

[k , k , ] = I fL s v* J 2 k + T sv u sv (IV.31b)

where
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Tsv = - tTs- a<Tv>] + —  [«(TS>. TJ  (IV.32)4 4

But, from the Jacobi identity and from (IV.31b)

[[Pr> ks ]* kv ] - h pr> kJ ’ ks ] = [Pr [ks’ kv h

= I  f u [P , k ] + [P , T 12 sv L r * u J L r svJ
(IV.33)

Therefore from (IV.31a) and (IV.33):

[Pr , [ P s , Pv ]]  = f " v [Pr , k u ] -  [ [ P r , k 8 ], k v ] + [ [ P r . k j ,  k g ]

(IV.34)

and so, from (IV.30), (IV.34) and (IV.13)

R = - Grv{I fu (fs - Is ) - I (fu - Iu )(fs - Is ) +sv ru ru rs rs7' uv uv

I (fu - Iu )(fs - Is ) } v rv rvM  us us; J

qTV j 1 1 j s 1 j u ✓ S  ̂s \ "̂ ~I ̂ t s ilT IsvIru T Irsuv~ 7 rv^us’ us^ ” 7 rsuv^4 2 4 4
1 tU Ts

Using (IV.11) we get

u _ u rrv u _ Q rut -v
Xru " fur> G Xrv - 2 G ftv

Grv IU Is rs uv
rrv „u Ts 
G frs Xuv

Put -v -r b ttr tvu ,rv ^st u- G G Guw -̂rs ^vt
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Therefore:

R = Grs fu v + 1 rv u s + 1 rv st u w
ur vs  ̂ rs vu  ̂ uw rs v_t

(IV.35)

Using (5.1), (5.2), (5.3) we observe that for the symmetric 
spaces G /K: _ .

^  fur • GpVfr s fv u =  l ^a>o

2 2rv ^st _ o v 2. v a B 2
—  2 N <*p

Grv Gst G ju fw 2 j luw rs vt L La>o a, p>o ( a+ (3)

where 6 = — \ a
2 a>o

Using the fact that, for any positive root y

 ̂ 1 „ 2 2  2 2 21- 2 6 . y / y  + ±  l a p /(y ) N
2 a, (3>o 

a + p = y
a (3 = 0

Nwe obtain the result that the curvature scalar for G /K is

R
g n /K

6 6 + 1 -  a>o 2

1  I2 a>o
(66 -1- a) . a (IV.36)
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We now want to show the relation between the Lax pair equation
and eq. (IV.18). In order to do this we introduce a parameter
t, which by definition is invariant under general coordinate
transformation and therefore it is a scalar. We then consider

rthe coordinates r\ of the symmetric space as functions of t, and 
consequently t parametrize curves on this space.

Define the operators A and B by:

Adt = n drir r

iBdt = k dnr r

(IV.37)

The r.h.s. of these equations are clearly scalars, and since dt 
is a scalar, it follows that the operators A and B are also 
scalars. In fact if t is time we see from (IV.3) and (IV.17) 
that A and B defined by (IV.37) coincide with the Lax operators 
defined in (2.10) (up to a K gauge transformation (2.15)).

The covariant derivative of a covariant vector Vr along the 
curve rir(t) is defined by: (see chap. 4, sec. 9 of ref. (31)).

DV dVr _ r
Dt dt

,u d T) y _ d t) p yrs ,. u ,. s rdt dt
(IV.38)

and it is a vector:

DV' * s DV__r _ dri s
dt T T r Dt

(IV.39)
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Then, we have (since A is a scalar)

~ . j * dll . r ,2 rDA _ dA _ __r dn + n d_n
Dt dt dt dt r , 2dt

d riS d r]1* D n . / d r)1* r d r)U d tjv = — !--- 1_ s r + (---— + T — — — —
dt dt 2 dt dtdt

and therefore from eq. (IV.18):

^  - i[A,B] 
dt

d t)
dt

+ r
2 u v

, U , Vdn d n 
dt dt

)n (IV.40)

The r.h.s. of this relation is just the geodesic equation, and 
the path taken by a particle on the symmetric space that 
satisfies it will be such that the time elapsed is in extremum.

A similar analysis can be done if we introduce several 
parameters, namely, x^ (|i=l, 2. . .d) which can be seen as 
space-time coordinates. Again, by definition, these parameters 
will be scalars w.r.t. general coordinate transformations on 
the symmetric space. In analogy with the one parameter case we 
define the operators A and iB by:H-

A dx ̂ = n drir H r

. _ . u. , rlB dx = kc d T)r 1

(IV.41)

These operations are vectors w.r.t. to space-time coordinate 
transformations and scalars w.r.t. to coordinate transformations 
on the symmetric space.
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The curves on the symmetric space will be parametrized by 

the d parameters x*1, and according to (IV.38) the covariant 
derivative along a curve where all parameters but one are kept 
fixed is given by:

D V P r
DV
Dx

3V
dx

r v
\x - rs

_drf
3x

V  =P v 3x
- D V
\X S T

(IV.42)

However, these covariant derivatives do not commute. Using 
(IV.22)

t V  °v]Vr 6T)t R U
a x 11 r s t

Vu (IV.43)

Analogously to the one parameter case we have (since

d r =  a n W  

ax'1

D A ° A v  = a.a .= Inf. d ^ +  ( 2 l ^ ) np v _ \l ’p” v a v _ n s"r ' |i. v st . |i . v J rDx 3x d x  d x  d x  d x  d x

and from (IV.18)

d A  - i [A , B ] = ( |i V L V \x

3 T) _ _ S * t
+ r  , 1 1 .  l l _ ) Haxvax|i st axv ax1' r (IV.44)

If we contract the space-time indices we get:

 ̂r s t
P a . r .  « P i  _  / d  ^  j .  dr\_ d n3^A -  i [A , E> ] = (

\x L p, J -  + r  .2 St
d t d t d t

(IV.45)
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 ̂ Ltwhere du = dx dx is the proper time. Again, the r.h.s. of 
(IV.44) is a geodesic equation and the path, taken by a particle 
on the symmetric space that satisfies it, will be such that the 
proper time elapsed is in extremum.

One can check that the Lagrangian for such motion is

= Tr (A Am’)/2r Tr(x d^x) /8 (IV.46)

where x is the principal variable defined in (2.6) and the last 
equality is obtained by similar calculations leading to (2.11). 
But whatever equation of motion we choose for the particle on 
the symmetric space, the operators A^ and have to satisfy 
some constraints that are purely geometrical. Since the r.h.s. 
of (IV.44) is symmetrical in (i and v we have

5 A 
\x v - 5 A v + i [A , B 1 - i [A , B ] = L \i’ v J L v*  \iJ 0 (IV.47)

In addition eq. (IV.21) introduces another constraint, which by 
using the covariant derivative of B^

iDB . r
iD B = ---£ = id B =

v  ̂ DxV v
D k + (-.L .J- ■ 

dx ̂ dxV S r dxVdx^
+ r

~ s * t dr) dn .---  — — ) Kv' rdx^ dx

can be written as:

id B - id B + [a , A ] + [iB , iB ] = 0 (IV.48)

-1Defining = A^+ iB^ = b d^b we get, by adding (IV.47)
and (IV.48)
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a D + [a(D ), cr(D )] = 0V|i L v v' ’ v p.; J (IV.49)

since a(A ) =  -  A  and a (B ) =  B  ,

But since D -1b d b, it satisfies

(IV.50)

Therefore, from (IV.49) and (IV.50) we see that the curl of B
vanishes

a b - a b = o
\l v v p. (IV.51)

Since the solutions of the one dimensional Toda Molecule systems

interesting to check if the solutions of the two dimensional 
version of these systems correspond to some type of motion on 
the same symmetric spaces. However, if there is such a 
motion, it is certainly not governed by the Lagrangian (IV.46). 
One can check that the reduction conditions necessary to obtain 
the two dimensional Toda molecule equations from (IV.45) are 
not compatible with the constraints (IV.47), (IV.48) and 
(IV.51). Perhaps this could be overcome by introducing the 
"gauge potentials" in a way different from (IV.41).

Nare geodesics on the symmetric spaces G /K it would be
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Appendix V. Matrix realization of symmetric spaces.

Let X = G/K be a symmetric space and o be the involutive
2automorphism of G (a = 1, a  f  1) under which K is invariant 

(o(K) = K).
Consider the subspace S of G defined by:

-lS = { g £ G: a (g) = g } (V.l)

Obviously the unit element of G belongs to S since 
- 1a( I) = I = I .

The group G acts as a transformation group on S by:

- 1s -► g s a(g) s e S, g e G (V.2)

G acts transitively on the component of S connected to the 
identity (which means is homogenous) since for any s and 
s e S , the element s*̂  s ^ of G maps s to s'. The existence of 
the element s^ for the component non-connected to the identity 
is not guaranteed because we do not have the exponential map.

The isotropy group of the unit element I is the subgroup K 
and since G acts transitively on , the isotropy group of any 
element of is isomorphic to K.

Any homogenous space is locally isomorphic to its 
transformation group modulo its isotropy group, but if the 
action of the transformation group is transitive this
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isomorphism is global.

Therefore Sj is globally isomorphic to the symmetric space 
X = G/K.

And since the identity element can be mapped to any element
- 1of Sj by the action of G, I -* g a {g ), we get a matrix 

realization for X, where any element x of G/K can be written 
as:

- 1x = g a {g ) g e G, x e X = G/K (V.3)

We should notice that is obtained by the exponential map from
the subspace of the algebra of G which is odd under the 
involutive automorphism a.
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