
A FLUID-FILM BEARING SUPPORTED
ELASTIC ROTOR - AN EXPERIMENTAL 
AND THEORETICAL INVESTIGATION

by

GORDON WILLIAM BEESLEY

A Thesis Submitted for the Degree of

DOCTOR OF PHILOSOPHY

of the University of London 
and also for the

DIPLOMA OF IMPERIAL COLLEGE

February 1984

Lubrication Laboratory 
Department of Mechanical Engineering 

Imperial College of Science and Technology
London SW7 2BX



2

ABSTRACT

»

The dynamic behaviour (both synchronous and
non-synchronous) of a flexible rotor supported by an
oil-film bearing has been investigated theoretically and
experimentally.

The analysis was carried out using a numerical method 
based on the Transfer Matrix Progression Technique. With 
this approach the bearing fluid-film was represented by a 
set of eight linear dynamic coefficients obtained from a 
finite difference solution of the Reynolds equation. The 
stability of the rotor-bearing system was assessed by 
combining the Transfer Matrix Method with the Leonhard Locus 
Technique. Damped first critical speeds were obtained from 
observation of the systems response to unbalance excitation. 
The need to calculate the eigen-values of the system was, 
thus, avoided, and, hence, a considerable amount of computer 
time was saved.

A test apparatus was developed with a rotor comprising 
of a heavy flywheel mounted on a light shaft. The rotor was 
supported at one end by a tight fitting precision rolling 
contact bearing mounted in a gimbal. The other end of the 
rotor was supported by the test bearing, a cylindrical 
journal bearing with axial feed ports, mounted on a variable 
stiffness undamped pedestal. Changes in bearing clearance 
and support flexibility on the critical speed of the rotor 
were investigated.
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A reduction in bearing clearance increased the first 
critical speed of the rotor, and the introduction of support 
flexibility lowered the critical speed. For the case of a 
rigid pedestal agreement between theory and experiment to 
within 3% was obtained.

The effects of journal bearing clearance, oil-supply 
feed pressure, oil feed groove extent and bearing pedestal 
flexibility on the stablity threshold were also examined.

Enhanced stability was achieved for a reduction in 
clearance, increased oil feed pressure, small groove extent 
and low pedestal flexibility.

When the theoretical and experimental instability 
thresholds were compared, discrepancies in the range of 6% 
to 31^ were realised. Reasons for these differences were 
investigated and discussed.
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ROTOR-BEARING SYSTEMS
1.3 LITERATURE REVIEW
1 . 4 OUTLINE OF THESIS



1.1 STATEMENT OF THE PROBLEM

Today there is an increasing demand for turbomachinery 
to run at higher operational speeds. In addition, to limit 
the mass of rotating machinery, and, hence, to some extent 
the cost, designers are producing rotors which are both 
lighter and more flexible. As a result the desired running 
speeds can be above the critical speed of the rotors. A 
typical example of this is a turbo-generator running beyond 
its third or fourth critical speed.

These conditions call for a thorough understanding of 
the dynamic problems likely to be encountered when operating 
turbomachinery at high speed. Problems encountered in 
operational machinery may be costly to overcome. Thus, a 
detailed knowledge of parameters affecting a rotor-bearing 
system is essential at an early stage in the design.

Generally, the upper limit of safe operation for rotors 
supported in oil-film bearings is determined by the onset of 
self-excited or free vibrations. There are important 
bearing design features and operating conditions which can 
markedly affect the dynamic behaviour of a rotor-bearing 
system. Bearing pedestal flexibility, bearing oil feed 
pressure, the position and extent of oil feed grooves and 
the bearing radial clearance are among those parameters 
which affect the dynamic behaviour of rotor-bearing systems 
in both a synchronous and non-synchronous manner. Little is



known about the influence of variations in each parameter, 
and how they interact with each other.

1.1.1 Terms of Reference
(1) The objective of this investigation is to determine 

experimentally and theoretically the influence of 
certain bearing variables on the synchronous and 
non-synchronous behaviour of a flexible rotor 
constrained by an oil-film bearing on an undamped 
elastic support. The behaviour of the rotor can be 
characterised by the critical speed, the mode shape, the 
steady state response and the threshold of instability. 
Experimentally determined values of these parameters 
will be compared with theoretical predictions.

(2) A numerical approach to the theoretical work is chosen 
because of the complexity of the problem.

The bearings are treated in detail using linear theory 
to represent the oil-film forces. Perturbation of
thejournal from its equilibrium position is used to derive 
the stiffness and damping coefficients of the fluid-film. 
These coefficients are obtained using a finite difference 
solution for the bearing.

The dynamic behaviour of the combined rotor-bearing 
system is studied using the Transfer Matrix Method. In this 
technique a continuous rotor is discretely represented by a
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series of stations, which compromise of lumped masses 
connected by massless elastic beam elements. In this manner 
it is possible to model a complex rotor-bearing system by 
employing a sufficient number of stations.

1.2 TYPES OF VIBRATION ASSOCIATED WITH ROTOR-BEARING SYSTEMS

Brief descriptions are now given of the main types of 
vibration encountered in rotor-bearing systems, and 
frequently referred to in the relevant literature.

(1) Synchronous Whirl
If an unbalance exists in the system it will cause the 

rotor to deflect. The deflected rotor will whirl about its 
rotation axis at the rotational speed. Hence, this type of 
motion is referred to as synchronous whirl. The whirling of 
the deflected rotor is not strictly a vibration since it 
does not result in cyclic flexure of the shaft. It appears 

^ as vibration, however, when viewed from fixed axes, with aid
of radial proximity probes for example.

(2) Critical Speeds
% A critical speed occurs when the system experiences a 

reasonance. In an undamped system the amplitude of the 
resonance would become infinite. All practical systems, 
however, possess some form of damping. When rotors are 
mounted in fluid-film bearings, damping occurs in the 
fluid-film and this limits the resonance level.
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The critical speeds are related to the natural 
frequencies of a rotor mounted on simple supports. Critical 
speeds are usually lower than the corresponding natural 
frequencies because of bearing flexibility. If a rotor runs 
above its first critical speed it is referred to as 
flexible, otherwise it is referred to as rigid.

(3) Multiples of Synchronous Frequency
For a horizontal rotating shaft with asymmetric 

stiffness, the sag along its length will vary as the bending 
stiffness in a vertical plane changes. Due to the action of 
gravity energy is fed into the rotor producing a cyclic 
force primarily at twice the rotation frequency (2f). 
Although the forcing is in the vertical direction, the 
bearings couple the vibrations into the horizontal plane. 
When this twice running frequency tunes into a system 
resonance, a peak amplitude occurs.

In the experimental work, when the rotor ran at half the 
critical speed, the 2f component excited the critical speed 
resonance. Plate 1.1(a) shows the orbit of the shaft centre 
obtained using proximity probes. The shape of the orbit is 
due to the presence of the running frequency f, together 
with the 2f component. Plate 1.2 (b) shows the waveform of 
the components, with a once per revolution signal below it
for reference .
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Plate 1.1(a) 2f Orbit at N=1367RPM (5mil/Div) c=3mil, a =90°, 
Pf=2psi

Plate 1.1(b) l/2f Waveform and 1/Rev Phase Counter Up Trace - 
5mil/Div, Time Base - 10msec/Div



(4) Sub-harmonic Vibrations
Sub-harmonic vibrations occur at a fraction of the 

running speed, usually at 1/2, 1/3, etc. These are forced 
vibrations arising from the non-linear stiffness 
characteristics of the oil-film. The amplitude associated 
with such motion is usually small and does not have any 
significant effect on the vibration of the system. It can 
be reduced by improving the balancing of the rotor.

(5) Non-synchronous Vibrations
The four categories of vibration described above 

referred to stable motion. Non-synchronous vibrations are 
termed as unstable motion. This phenomenon can occur at a 
particular speed of rotation, when the rotor precesses about 
a point in the bearing (initially the equilibrium or 
steady-state position) at a frequency not synchronous with 
the speed of rotation. This phenomenon is called oil-whirl, 
oil-whip or resonant-whip when encountered in rotors mounted 
on oil-film bearings, and is a concern of this work. Other 
types of non-synchronous vibration are possible. For 
example, unstable motion can occur due to internal friction 
or damping in shrink fits or parts rubbing together, and 
steam excitation.

Non-synchronous vibration does not require the external 
force of an unbalance as in synchronous vibration. Instead, 
the rotation energy of the rotor is fed back into the system 
via the oil-film, thus, sustaining the unstable- motion.
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Hence, it is referred to as a "self-excited" vibration. 
Usually, an increase in speed results in an increase in

* vibration, with the possibility of damage occurring to the
bearings and rotor.

Oil-whirl can occur in rigid and flexible rotors.
Generally, whirl commences with a frequency just below half 
the running speed. An increase in the shaft speed results 
in a corresponding increase in the whirl frequency and 
amplitude. Plate 1.2(a) shows a typical whirl orbit of the 
shaft centre obtained from the test rotor-bearing system. 
The overlap of the orbits is due to the slow rotation of the

* whirl orbit during the exposure. Plate 1.1(b) shows the
waveform of the 1/2f component together with a once per
revolution signal for reference.

*
Oil-whip generally occurs at shaft speeds in excess of 

twice the first system critical speed. Rotors with heavily 
loaded bearings can have instability frequency ratios

* considerably below half the shaft speed. Internal damping 
tends to destabilise the system. Its effect is to increase 
the ratio between instability frequency and running speed. 
The theoretical limit of the instability ratio is unity.

For oil-whip the frequency of the instability is 
approximately equal to the first critical speed, and remains 
constant as the shaft speed is increased. Hence, this type 
of motion is also referred to as resonant-whip, as the rotor
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Plate 1.2(a) 1/2f Orbit at N=4905RPM (5mil/Div) c=3mil, a=90°,
Pf=2psi

Plate 1.2(b) 2f Waveform and 1/Rev Phase Counter Up Trace -
5mil/Div, Time Base - 10msec/Div
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is in a state of resonance corresponding to the first system 
critical speed. Even for the whip which occurs at two or 
three times the first critical speed, the instability 
frequency is still equivalent to the systems first critical 
speed.

(6) Rotor Response
The steady-state response of a rotor refers to its 

steady-state amplitudes at any point along the rotor-bearing 
system. Analytically, it is treated as time independent or 
linear motion, and the amplitude values are referred to as 
instantaneous.

The transient response refers to motion that the 
rotor-bearing system will follow in time, if perturbed 
sufficiently from its equilibrium position. Analytically, 
it is treated as time dependent or non-linear motion.

1.3 LITERATURE REVIEW

The first recorded article on the subject of rotor 
dynamics was presented by Rankine (1) in 1869. Rankine 
examined the case of a frictionless uniform shaft disturbed 
from its equilibrium position. Because he neglected the 
Coriolis force he erroneously concluded that: motion below 
the critical speed is stable, is neutral or in an 
"indifferent equilibrium" at the critical speed, and 
unstable above the critical speed.
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During the next fifty years Rankines analysis led 
engineers to believe that operation above the first critical

* was impossible. In 1895 De Laval demonstrated
experimentally that operation with a steam turbine above its 
first critical speed was possible. Investigators of the 
day, however, remained confused about the operation of 
machinery at high speed.

Dunkerley (2) in 1894 contributed significantly to the 
understanding of rotor dynamics from his experimental and 
theoretical investigations. He considered a rotor as a 
flexible elastic beam and the bearings as simple supports.

ft By neglecting unbalance and damping, a whirling rotor could
be considered as an equivalent beam on simple supports. The 
problem was then reduced to finding the natural lateral 
frequencies of the beam. With these assumptions the natural 
lateral frequencies corresponded to the rotor critical 
speeds. Dunkerley postulated that if the rotor contained an 
unbalance it would excite these natural frequencies. This

* would result in large amplitude vibration if the running 
speed corresponded to any of these frequencies.

ft It was not until 1919 that Jeffcott (3) produced his
celebrated analysis on rotor-dynamics, in which he examined 
the effects of unbalance on the whirl amplitudes and the 
forces transmitted to the bearings. Jeffcott neglected the 
effects of the bearings on the system, but included internal 
shaft damping.
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Jeffcott?s model consisted of a uniform massless elastic 
rotor with an unbalanced concentrated mass at mid-span.

* Gyroscopic effects were ignored and the rotor supports were 
assumed to be pinned. Jeffcott considered the shaft 
deflecting in a plane and then the same deflection 
precessing at the angular velocity of the rotor.

Jeffcott reached the conclusion that the whirl 
amplitudes would increase up to the critical speed, and 
subsequently decrease in amplitude above the critical. 
Thus, unlike Rankines model Jeffcotts model allowed for safe 
operation above the critical speed.

•
In the 1920fs rotor design had reached a stage where 

rotors were operating in regions well above their first 
critical speed. In some cases severe vibrations were
experienced and failures resulted. Investigators of the
time were at a loss to explain the cause of these 
vibrations. At first balancing was suspected, but

♦ refinement in balancing did not alleviate the problem.

Newkirk (4) conducted a through investigation of these
% severe vibrations and failures. He initially restricted his

experimental investigations and observations to rotor 
systems in which the vibrations were attributed to rotor 
internal friction. He published his findings in his 
pioneering paper of 1924. In 1925 Newkirk and Taylor (5) 
subsequently examined the case of severe vibrations arising



from rotors supported on oil-film bearings. They called 
this behaviour oil-whip. Listed below are his main 
conclusions concerning instability arising from internal 
friction and oil-film bearings:

(1) The threshold speed and instability amplitude were 
independent of balancing.

(2) The threshold speed always occurred above the first 
critical speed and the precession frequency was lower 
than the running frequency.

(3) In many cases the rate of precession was equivalent to 
the first critical speed.

(4) The precession frequency was constant and independent of 
shaft speed.

(5) If rotor speed were increased beyond the threshold, the 
instability amplitude would increase and could lead to 
failure of the rotor or bearings.

The critical speed analysis of Jeffcott could not be 
used to explain the above observations. At this stage in 
the understanding of rotor dynamics the available theory 
could only explain synchronous whirling arising for example 
from rotor unbalance.

Newkirk correctly attributed the instability to the 
action of the oil-film. However, the method by which the 
oil-film promoted instability was obscure at the time. 
Newkirk could not explain why whip did not commence until a



speed greater than twice the first critical was reached. He 
was also perplexed by the influence of support flexibility 
on stability. He had observed that instability due to 
internal friction could be eliminated with the introduction 
of a flexible support, even in the absence of support 
damping. However, a flexible support allowed violent 
oil-whip to occur, and support damping was necessary to 
suppress it.

At the time that Newkirk was conducting his observations 
on instability, Stodola (6) was examining the influence of 
oil-film bearings on rotor critical speeds and instability. 
He introduced the concept of oil-film springs and dampers in 
order to derive expressions for the oil-film forces. These 
forces were linearised with respect to the displacement and 
velocity of the journal from the equilibrium position. 
Reynold’s equation was solved using the Sommerfeld solution, 
and the four stiffness coefficients were derived. He was 
unable to derive the velocity dependent damping coefficients 
and, therefore, ignored them. Stodola arrived at the 
conclusion that a journal bearing would be stable for 
eccentricities greater than 0.70. This was in agreement 
with the experimental work of Hummel (7).

In 1933 Robertson (8) analysed Newkirks experimental 
findings on oil-whip. He took as a model a 360° infinitely 
long journal bearing, and applied film forces derived by 
Harrison (9) in 1913* Robertson came to the remarkable and



42

incorrect conclusion that instability would occur for all 
speeds. This arose because the steady-state bearing forces

♦ derived by Harrison had a 90° attitude angle between applied 
load and journal displacement, hence, the system possessed 
no radial stiffness.

Also in 1933 Smith (10) extended Jeffcotts model to 
include unequal stiffness and damping of the rotor supports. 
He theoretically confirmed Newkirks observation that unequal 
support flexibility can improve stability. In addition 
Smith predicted the existance of backwards whirl occurring 
between two critical speeds, corresponding to different

* stiffnesses in two orthogonal planes.

A year later Newkirk and Grobel (11) conducted 
experiments on the control of instability using bearings 
with an arrangement of axial grooves in the upper half. 
They also discussed how oil-whip could develop in a flexible 
rotor. In the paper of 1925 Newkirk and Taylor (5) had 
proposed a mechanism to explain oil-whirl. They had 
postulated that for a shaft speed w , the mean velocity of 
the oil drawn into the converging region would be

* approximately uj/2. Thus, if a disturbance occurred in which 
the line of centres of the journal and bearing rotated at 
w/2, then the wedge into which the oil is pumped would move 
away from the oil at the same mean velocity. This would 
result in a loss of hydrodynamic pressure and load carrying 
capacity. Instability may then occur with energy supplied
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from rotation feeding the whirling motion. As the shaft 
speed increased, the mean velocity ®/2 would also increase 
with a corresponding increase in the whirl frequency.

Although this mechanism satisfactorily explained 
oil-whirl, it did not explain oil-whip in which increasing 
the shaft speed beyond the stability threshold had little 
effect on the instability frequency corresponding to the 
rotors crtical speed o)-| . Newkirk initially proposed that as 
shaft speed was increased an increase in side leakage also 
occurred, which maintained the mean oil velocity constant at 
oi /2. This explanation was somewhat artificial as it 
required just the right amount of side leakage and oil flow 
around the bearing to maintain a constant mean velocity of 
the oil equal to the rotors first critical speed o)-|.

In the later paper Newkirk and Grobel (11), however, 
proposed a more sophisticated theory to explain oil-whip. 
They explained that a periodic disturbance of the oil wedge 
at a frequency of ai/2 would be in resonance with w 1 if 
a) = 2ay|. As w-1 was a predominant natural frequency of the 
system, increasing the shaft speed would still excite the 
rotor-bearing system at ui *|. The rotational energy of the 
rotor would be fed back to the whip motion of the rotor via 
the bearings.

Thus, oil-whip was a rotor dominated phenomenon in which 
the rotors elasticity controlled the on-set of instability



and the whip frequency. In contrast oil-whirl was usually 
dominated by the elasticity of the oil-film which controlled 
threshold and frequency of whirl.

Hagg (12) in 1946 showed that the whirl frequency should 
be less than half the rotational frequency. He considered 
only small displacements and modelled his system with 
masses, springs and dampers. Hagg studied the cases of 
rigid and flexible rotors in fixed bearings and partial 
bearings under constant loads. Later Hagg and Warner (13) 
examined oil-whip in flexible rotors with partial arc 
bearings both theoretically and experimentally. They showed 
that rotor flexibility diminished the region of stable 
operation.

The work of Robertson (8) was extended by Poritsky (14) 
in 1953, who included a radial stiffness term in the 
oil-film representation. He also excluded from the oil-film 
forces the contributions arising from the negative 
pressures. Poritsky argued that the oil wouldnot be able to 
sustain negative pressures, and would cavitate and foam 
releasing dissolved air and oil vapour. Considering only 
small displacements he concluded that a rotor is stable 
below twice the critical speed. Poritsky also studied the 
effect of support flexibility and showed that it would 
reduce system critical speed and hence reduce the threshold 
of instability.



Earlier in 1949 Cameron and Wood (15) investigated a 
boundary condition at the cavitation region postulated by 
Swift and Steber, which today is widely used. They argued 
that for the correct boundary conditions at cavitation both 
oil-film pressure and oil-film pressure gradient must be 
zero. They obtained pressure distributions satisfying these 
conditions, and determined the axial leakage of oil due to 
the finite length of bearings.

In 1955 Pinkus (16) conducted an extensive and 
interesting experimental investigation of oil-film whip in 
flexible rotors supported by various bearing arrangements. 
He carried out his tests using two rotors. One of these had 
a central mass and the total rotor mass was 1871b (85Kg). 
It had a first critical at approximately 4000 RPM. The 
second rotor was lighter and had a mass of 671b (30.45Kg), 
and had a first critical at 6100RPM. Listed below are 
Pinkus1s major conclusions:

(1) Rotor whip occurred at speeds approximately equal to 
twice the first natural critical frequency of the shaft.

(2) The frequency of instability beyond the threshold is 
constant and equal to the first natural critical 
frequency of the shaft.

(3) With the heavy rotor whip motion stopped at speeds 
almost equal to three times the first critical.

(4) With the light rotor whip motion could not be stopped.
(5) Rotor unbalance had an insignificant effect on 

stability.
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(6) High loads, high viscosities and a loose bearing housing 
promoted stability.

* (7) Bearing asymmetry was beneficial for stability.
(8) The order of bearing stability, starting with the least 

stable: plain circular, three groove, elliptical or
two-lobe, pressure, tilting pad and three-lobe.

Tondi (17) also confirmed Pinkus’s findings that a loose 
bearing improves stability. He concluded that "bearings 
with a flexible-element loose bushing are of all the 
bearings tested undisputably the most resistant to the 
initiation of self-excited vibrations".

♦

Hori (18) provided a combined theoretical and 
experimental investigation of oil-whip in 1959. Hori 
neglected negative pressures and assumed an infinitely long 
bearing. His analysis was divided into two categories, that 
is, small and large amplitudes of the journal. A small 
amplitude vibration is one in which the amplitude of the

% journal movement is small when compared with the journals 
eccentricity. Large amplitudes are those for which the
shaft bends by a considerable amount.

*
For small amplitudes the motion of the two journals were 

considered as identical, and alignment of the shaft and 
bearings was assumed. Instability was discussed for lightly 
and heavily loaded bearings as shaft speed was increased 
from zero. Hori stated that a light rotor could become
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unstable at speeds below the first critical. However, the 
amplitude would not build up until the shaft speed exceeded

* twice the critical speed. He also observed mild whirl 
before the onset of whip for lightly loaded bearings. Hori 
concluded that large amplitude vibrations could exist only 
above twice the critical speed. For both light and heavy 
bearing loads he predicted that stable operation would be 
obtained for static eccentricities greater than 0.82. The 
effects of viscosity on stability were also discussed.

Pinkus (16) also observed mild whirl before the severe 
vibration associated with whip commenced. Newkirk and Lewis 
(19) and Newkirk (20) reported from their observations that 
whirl occasionally occurred simultaneously with whip, but 
only above twice the critical speed. They found it to be 
moderately severe, but unlike whip did not build up in 
amplitude and tended to be erratic.

Newkirk (20) differentiated between the effects of stiff
* and flexible rotors from observations based on his 

experimental work. With a stiff rotor he argued that the 
flexibility of the oil-film would dominate the system, and

4 that for a lightly loaded rotor half frequency whirl could
occur. In contrast using a flexible rotor with stiffness 
less than that of the oil-film would result in a rotor 
dominated system with the possibility of whip occurring.



48

A series of papers written in 1959 by Bishop (21), 
Bishop and Gladwell (22) and Gladwell and Bishop (23), (24) 
deal with the rotation of flexible shafts. These papers 
provide a basis for the investigation of rotor-beairng 
systems. They are mainly concerned with rigid or ideal 
bearings, but include some discussion on flexible supports. 
The authors developed expressions for the receptance of 
uniform and non-uniform beams, and by matching beam and 
rotor receptance were able to conduct stability analysis.

During the late 1950fs several authors published work on
the subject of bearing coefficients. Sternlicht (25)
derived the coefficients numerically, whereas Hagg and
Sankey (26) conducted experimental measurements for
different types of oil-film bearings.

Holmes (27) was the first to derive all eight
coefficients analytically in 1960. He used the short
bearing theory of Ocvirk to solve Reynolds equation and

♦ included cavitation of the oil-film. The bearing
coefficients were derived by linearising the oil-film forces 
with respect to small amplitude motion of the journal about

* its equilibrium position. Holmes then examined the
stability of a rigid rotor mounted on identical bearings 
using the Routh-Hurwitz criteria. He found that for 
eccentricities e>0.75 the system is always stable, and the 
system is stable for all values of e if the non-dimensional
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stability parameter

F/mca32>0.17 (1.1)

Morrison (28) examined theoretically the role of the 
oil-film coefficients on the response and stability of the 
Jeffcott rotor in 1962. He determined the coefficients for 
a short bearing in terms of the geometry of the static load 
locus, and used them for dynamic response and critical speed 
analysis. He pointed out that the velocity coefficients 
give rise to forces of the same order as those due to the 
displacement coefficients and, hence, were of equal 
importance in determining the critical speeds. Morrison 
used the Leonhard locus to ascertain the stability of the 
system. This locus can be used to indicate when the real 
part of the roots of the characteristic equation of motion 
becomes positive and, thus, when instability will occur.

In the same year as Morrison, Lund and Sternlicht (29) 
also conducted a theoretical investigation of the Jeffcott 
rotor mounted on oil-film bearings of L/D=1/2 and 1. They 
found that the action of the oil-film reduces the critical 
speed of the rotor by a substantial amount. They derived a 
non-dimensional force transmitted to the bearing pedestals 
and concluded that for maximum attenuation it was desirable 
to operate at low eccentricity. Low eccentricity, however, 
could adversely affect the stability of the system. They 
lumped the cross-coupled coefficients with the main
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coefficients, but the manner in which this is done is rather 
vague and their results are not general.

In 1965 Morton (30) contributed a paper on the dynamics 
of large turborotors mounted in journal bearings on flexible 
supports. The rotor-bearing model is represented by a 
system of second order differential equations of the form:

[M][q] + [C][q] + [K][q] = [F(t)] (1.2)

where the column vector [q] represents the generalised 
co-ordinates of the rotor motion in the x and y directions. 
The coefficients of the matrices in equation (1.2) are 
obtained from the first three "pinned-pinned" modes. 
Solution of [q] is achieved by assuming harmonic motion and 
inverting the resulting dynamic stiffness matrix.

Morton extended his second order differential equation 
system to consider a non-isotropic rotor in non-isotropic 
bearings subject to unbalance and gravity forcing. He
discussed the receptance approach to an isotropic rotor 
in non-isotropic bearings. Morton verified his assumption 
that three rotor modes are sufficient and provided 
receptance curves for the oil-film and pedestal combination.

Also in 1965 Gunter (31) made a comprehensive study of 
the field of synchronous and non-synchronous whirling. He
took as his model the Jeffcott rotor mounted on flexible
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pedestals. He examined the effects of oil-film bearings on 
the synchronous behaviour of the rotor, but the majority of 
the work is concerned with rigid bearings on flexible 
supports. He included internal damping in his model and 
examined the system stability for damped symmetric and 
asymmetric support stiffness. He concluded that there was 
an optimum value of foundation damping to promote stability; 
excessive damping caused a reduction in stability. 
Symmetric support stiffness alone promoted instability 
unless damping was included, whereas, asymmetric support 
stiffness improved stability even in the absence of support
damping. Gunter used his predictions to explain the

* experimental observations of Newkirk (4) and Newkirk and
Taylor (5).

% Again in the same year Lund (32) carried out a
theoretical analysis on the instability of a flexible rotor 
constrained by gas bearings mounted on flexible damped 
supports. His model used plain cylindrical bearings and he

♦ derived frequency dependent spring and damping coefficients. 
He concluded that flexible undamped supports lowered the 
threshold. However, with support damping included, a

♦ significant increase in stability threshold was achieved.

In 1967 Lund and Saibel (33) considered a non-linear 
representation of fluid-film forces, the resulting 
non-linear differential equations were solved using an 
averaging method. They presented non-dimensional stability
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plots for cylindrical and concial whirl, and presented 
graphs for obtaining the parameters of limit cycles. Their 
non-linear analysis confirmed experimental observations that 
at high eccentricity values the whirl orbit limit cycles 
were crescent shaped and not elliptical. They also stated 
that the results of their non-dimensional analysis could be 
applied to flexible as well as rigid rotors.

In the same year, Lund and Orcutt (3*0 conducted an 
experimental and theoretical investigation of three 
configurations of a flexible rotor mounted in oil-film 
bearings. They used a recurrence method of analysis based 
on the technique of Phrol (35) to represent the elastic and 
inertia properties of the rotor-bearing system. The method 
incorporated the eight linearised stiffness and damping 
coefficients. Instead of using an approximated lumped mass 
method the authors used an exact distributed mass technique 
which included gyroscopic effects. Elliptical orbits were 
calculated at selected points along the rotor and compared 
with the corresponding measured values. In general, good 
agreement was obtained.

Lund and Orcutt examined the first three critical speeds 
of the rotor. The first two are associated with rigid body 
modes, that is, circular and conical synchronous whirl. The 
third critical speed corresponded to the first bending mode 
of the rotor. They concluded that for the first three 
critical speeds the omission of damping could lead to



enormous errors. This conclusion was only true for the 
rigid body modes where bearing damping was effective in 
controlling the peak amplitudes and the position of the 
critical speed. The third critical speed was found to be 
uneffected by damping.

In 1968 Morton (36) discussed massive rotor-bearing 
systems with asymmetric coupling due to the bearings. He 
examined the undamped critical speeds and non-synchronous 
vibration, and related experimental results to the
theoretical model formulated in his previous paper (30). 
Morton determined the undamped resonant frequencies by 
matching the real part of the oil-film impedance with the 
rotor impedance .

Using a similar method he predicted the stability 
threshold by plotting the locus of the real part of the 
bearing impedance for the ratio of ft /u) (where ft= whirl 
frequency and oj = shaft speed) at which the imaginary part 
of the bearing impedance becomes zero. He also plotted the 
undamped rotor impedence, and showed that the threshold 
occurred when the real part of the bearing impedance was 
equal and opposite to the rotor impedance. The overall 
system was then in a state of neutral stability.

Holmes and Parkins (37) investigated the unbalance 
response of a small turborotor in 1969. The rotor, which 
was assumed to be rigid was supported by journal bearings on
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elastic supports. The system equations were used to study 
the dynamics of the rotor-bearing configuration. Assuming 
harmonic motion the authors reduced the system equations to 
the form:

[K][q] = [F] (1.3)

where [q] defines the horizontal and vertical co-ordinates 
of the system. Inversion of the dynamic stiffness matrix 
[K] enables equation (1.3) to be solved for [q].

Holmes and Parkins obtained the undamped natural 
frequencies of the system by impedance matching, and found 
them to be close in value with the theoretical critical 
speeds. Fairly good agreement was obtained between the 
experimental and theoretical critical speeds. They found 
that the oil-film damping resulted in a considerable 
reduction in the amplitudes of both symmetrical and 
asymmetrical modes of vibration. Theoretical values of 
amplitude were found to agree to within 50% with measured 
values.

Kikuchi (38) conducted an interesting theoretical and 
experimental investigation of unbalance response, which was 
published in 1970. He examined the steady-state response of 
three rotor-bearing configurations. Two of the rotors were 
supported by two journal bearings and each employed three 
shrink fitted discs. The third was supported by three 
journal bearings and utilised five shrink fitted discs.
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Kikuchi (38) included in his analysis the moments 
arising from the static inclination of the journal within

* its bush. The bearing moments and forces within the 
oil-film were linearised with respect to the equilibrium 
position of the journal. Using short bearing theory, he 
derived expressions for the bearing forces in terms of eight 
linear and eight rotational coefficients, obtained using 
Taylorfs expansion. The Transfer Matrix Method was used to 
analyse the response of the rotor-bearing system.

Kikuchi (38) obtained good agreement between predicted 
and measured steady-state amplitudes. For one case only 6%

* error was reported. When rotational coefficients were 
ignored, errors for the case of small bearing clearance 
increased to 70%. He concluded that the method of analysis 
produced good agreement with observations, particularly when 
the moments of the oil-film were included in the bearing 
representation.

* In 1972 Kirk and Gunter (39) conducted a theoretical 
investigation of support flexibility and damping on the 
synchronous response of the Jeffcott rotor. They included

4 the bearings in their analysis, and examined the conditions
under which the support would act as a dynamic absorber at 
the critical speed. Plots of rotor and support amplitudes, 
phase angles and forces transmitted were produced.
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These researchers concluded that if damping were 
neglected, support flexibility caused two critical speeds to
occur. One critical was higher and the other was lower than 
the original critical on rigid supports. The critical speed 
response might be eliminated by having a low mass ratio 
(support mass/rotor mass) and flexible supports with optimum 
damping. Support mass ratio should be kept low to achieve 
minimum amplitude. Excessive support damping with low mass 
ratio could result in excessive forces transmitted.

Kirk and Gunter (39) examined the transient behaviour of 
the rotor. They concluded that the optimum damping based on 
the minimisation of steady-state response produced 
satisfactory response, that is, a rapid reduction of the 
initial transient motion and reduced forces transmitted.

Dostal, Roberts and Holmes (40) published an interesting
paper in 1974, on the control of stability using an external
damper on the shaft. The rotor consisted of a long flexible 

4 shaft mounted in two journal bearings. The Transfer Matrix 
technique was used to analyse the rotor-bearing system, 
which included internal and external damping. The bearings 

♦ were represented by the eight dynamic coefficients.

Predictions of stability threshold were obtained using 
the Leonhard Locus method. They also used two other 
techniques to assess the system stability, so that a 
comparison could be made with the Leonhard Locus, method.

9
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One method involved matching the impedance of the rotor with 
that of the bearing and was similar to the method of Morton 
(36).

In the other technique the model representation of the 
system was subjected to a sinusoidal force, in which the 
frequency of the force was assumed to be close to the 
natural frequency of the system. If the system was assumed 
to be close to the borderline of instability, then it would 
have a small value of positive or negative damping and would 
temporarily act like a single degree of freedom system. By 
plotting the response to the forcing frequency in polar form 
(Kennedy and Pancu Plot) it was possible to determine the 
threshold of instability by observing the slope of the plot. 
If the slope was positive then the effective damping was 
negative, and if the slope was negative then the effective 
damping was positive. The threshold occurred where the 
slope changed from positive to negative.

Dostal (40) et al concluded that a small amount of 
external damping increased the stability threshold, and this 
effect became pronounced at high eccentricity. Thus, an 
external damper was a useful method of controlling 
stability, particularly when access to the shaft is 
possible. Instability onset speeds of two to three times 
the first critical speed were obtained by varying the 
operating conditions of the bearings. Good agreement 
between theory and experiment was obtained for the case of
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no external damper. Dostal et al found that the inclusion 
of internal damping in the theory was necessary to improve 
agreement when the external damper was used.

In the same year Lund (41) carried out an analysis of 
the stability and the damped critical speeds of a flexible 
rotor supported on fluid-film bearings. The analytical 
results were compared with those obtained from an industrial 
multistage compressor.

Lunds method of analysis was based on the techniques of 
Myklestad (42) and Phrol (35). But instead of using 
distributed mass to represent the rotor-bearing system as he 
had done in his previous paper (34), he adopted the simpler 
lumped mass method. With the later technique, which is an 
approximation when compared to the exact representation of 
distributed mass, sufficient number of stations must be 
taken to ensure adequate representation of the highest mode 
in the speed range of interest. The required number of 
stations is usually achieved by taking four or five stations 
times the highest mode of interest (i.e. four to five 
stations per node).

Also included in the analysis were internal hysteretic 
damping and aerodynamic forces. The bearings were 
represented by the eight linearised dynamic coefficients. 
Lund discussed the damped natural frequencies of the system 
and their usefulness in predicting critical speeds. He also
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pointed out that the method is useful for investigating the 
effects of the bearing and shaft parameters on the stability 
of the system.

Stability and damped critical speeds were also examined 
by Bansal and Kirk (43) in 1975. They used the Transfer 
Matrix technique (Myklestad-Phrol). They examined
intershaft journal bearing instability in a dual rotor 
system, and looked at radial misalignment and its effect on 
stability. They produced a chart showing forwards and 
backwards whirl frequencies obtained from the eigen-values 
of the system, and demonstrated that gyroscopic effects 
caused this mode splitting. Bansal and Kirk showed that 
dynamic misalignment increased the instability onset speed, 
as does an increase in shaft stiffness.

Hahn (44) using linearised theory and the short bearing 
approximation generated design maps for flexible rotors. 
These maps indicated regions where operation should be 
avoided, and could be used to determine the effects of 
changing shaft speed, lubricant viscosity and bearing 
clearance. He concluded that:

(1) Increased flexibility lowered the stability threshold.
(2) Changing bearing clearance would not, in general, affect 

the location of critical speed resonance.
(3) Decrease in clearance decreased the damping at

resonance.
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Pollmann and Schwerdtfeger (45) wrote a paper which was 
published in 1976. In it they described experiments 
conducted on a test model which simulated a two pole 60Hz 
generator with an output of approximately 600MW. They 
introduced non-dimensional parameters L*, D*, n *, \p* and 
me** These represented rotor length, rotor diameter, oil 
viscosity, relative bearing clearance and eigen frequency 
ratio, respectively. The diameter and length of the rotor 
were reduced in the ratio of D*=5, and L*=3, respectively. 
By selecting n* and ip*, it was possible to ensure that the 
operating characteristics (Sommerfeld Number and rotor 
flexibility = 6/c, where 6 = static deflection and 
c = bearing radial clearance) were kept similar.

Pollmann examined the response and stability of four 
bearings. These were: a cylindrical bearing with two 30° 
axial feed grooves, a two-wedge bearing with two 30° axial 
feed grooves, a two-wedge bearing with a groove in the upper 
wedge, and a tilting pad bearing with five equal segments.

For the tilting pad bearing the resonance peaks for the 
first and second modes of vibration were found to be 60 and 
112 times the unbalance radius, respectively. The two-wedge 
bearing with groove in the upper half had resonance peaks 
considerably smaller than the tilting pad bearing, and was 
approximately the same as the two-wedge bearing with axial 
grooves. The cylindrical bearing became unstable before the 
second mode, but had a resonance peak for the first mode 
similar to the two-wedge bearings.
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Pollmann (45) ascertained system damping from the decay 
of shock induced vibration. After a shock the rotor 
vibrates in its lowest eigen frequency, and the attenuation 
(decay) constant can be determined from the amplitude 
plotted against time in logarithmic scale. This enables the

A

stability of the system to be assessed.

The cylindrical bearing became unstable at approximately 
u)/u)c-| =2.0, where w = rotation speed and wC‘| = critical speed 
without bearing influence. The two-wedge bearing with axial 
grooves became unstable at a)/u)c-| =5.0, and the two-wedge 
bearing with upper half groove and the tilting pad bearing 
were stable over the entire region (0.0<a)/wci46.0). For the 
two-wedge bearing with axial grooves, Pollmann observed that 
an increase in oil pressure increased the instability onset 
speed. Low frequency vibrations were also influenced by oil 
pressure.

An interesting experimental and theoretical 
investigation of rotor-bearing stability by Kikuchi and 
Kobayashi (46) was published in 1977. This work was an 
extension of Kikuchi’s investigation of rotor-bearing 
response to unbalance (38). The authors again investigated 
three basic rotor-bearing systems. Two of the rotors 
comprised three discs on a shaft supported by two oil-film 
bearings. The third rotor comprised five discs on a shaft 
mounted on three bearing supports. The rotor with the three 
discs could be changed from a symmetric rotor to an
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unsymmetric rotor with overhung shaft. The effects of 
different L/D and c/R ratios were also examined.

They again included the eight rotational coefficients 
(38) as well as the eight linear coefficients, obtained 
using short bearing theory. The rotational coefficients 
were included to take into account the moments acting on the 
journal due to its inclination within the bearing bush. The 
stability of the system was assessed using the Transfer 
Matrix Method in conjunction with the Leonhard Locus Plot.

Kikuchi and Kobayashi concluded that for most shaft 
systems, the oil-film property of the bearing given by short 
bearing theory gives good agreement with measured values of 
instability onset speeds. In some shaft systems gyroscopic 
moments could have a pronounced effect on stability. Even 
for a high eccentricity of e=0.8, a large disc gyroscopic 
moment could greatly reduce system stability. Bearing 
oil-film moment tended to increase the stability threshold, 
but the effect in most shaft systems was insignificant.

Akkok and Ettles (47) performed an interesting 
investigation of the effects of bearing load and oil supply 
feed pressure on the stability of a rigid test rotor with a 
grooved journal bearing. This work was presented in 1978. 
Comparison with linear theory was made using the dynamic 
coefficients and the Routh-Hurwitz criteria to assess the 
system stability. They investigated the effects of



sub-ambient as well as ambient cavitation boundary 
conditions, and the effects of increased feed pressure on 
the instability speed in their theoretical analysis.

From a comparison of measured instability onset speeds 
with calculated values, Akkok and Ettles found that the 
Reynolds boundary condition implying cavitation at ambient 
pressure appeared to apply, regardless of the bearing load. 
Reduction in bearing load had no significant effect on 
measured instability speeds. This was confirmed using 
Reynolds boundary condition. Reduction in feed pressure 
enhanced stability. Slight unbalance had little effect on 
the stability threshold, but could effect the way in which 
whirl appeared.

In contrast to the above work Cole (48) had found from 
his work on film extent in a rigid rotor with a glass bush, 
that increased oil pressure supply helped to stabilise the 
bearing but no attempt was made to pursue the matter any
further. He also observed that the position of the oil
groove had an effect on stability. If the groove was
positioned in the inlet region of the oil-film, then
enhanced stability was obtained, whereas, if the groove was
positioned in the outlet region decreased stability was
observed. Cole did not examine the effect of increased oil 
supply pressure in conjunction with groove position.
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Akkok and Ettles (47) observation that increased oil 
pressure destabilised their rigid rotor had been noted by- 
other researchers. Pinkus (16) and Pope (49) reported 
similar findings from their work with flexible rotors. 
Pollmann (45) and Newkirk and Lewis (19) reported similar 
conclusions to those of Cole (48), from their investigations 
with flexible rotors. Apart from Pollmann1s reported 
findings for a two-lobe bearing, no detailed experimental 
work and correlation with theoretical analysis has been 
conducted on the oil supply pressure and its effects on the 
stability of a flexible rotor.

In 1979 Akkok and Ettles (50) examined theoretically the 
effects of groove size and bore shape on the stability of a 
rigid rotor. As in their previous paper (47), linear theory 
was used to predict stability thresholds. The dynamic 
coefficients representing the various groove sizes and bore 
shapes were obtained from a finite difference solution of 
Reynolds equation. The Routh-Hurwitz criteria was used to 
assess system stability.

Akkok and Ettles concluded that increased groove angle a 
had a strong destabilising effect, as does an increase in 
the aspect ratio L/D. A stabilising effect is obtained by 
increasing the bearing preload A , and all bearing types 
exhibited higher thresholds at large values of eccentricity 
e. For fixed values of a , A and L/D, the bore shapes in 
increasing order of stability were found to be: circular, 
two-lobe, offset halves and three lobe.
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Akkok (51) confirmed experimentally the findings of his 
earlier paper (50), of the effect on stability of groove 
angle and bearing preload. He also confirmed the increasing 
order of stability for circular, two-lobe and offset halves 
bore shapes.

Very little work has been published concerning the 
effect of feed groove extent on stability. Experimental and 
theoretical work conducted in (50) and (51), described the 
effects of feed groove extent on the stability of rigid 
rotors. Hagg and Warner (13) carried out an investigation 
of the effects on stability of the extent of the partial arc 
circular bearings supporting a flexible rotor. Tests were 
conducted for a full circular bearing and 160° partial 
bearing, both with an L/D aspect ratio of 1.25. However, 
they compared their results with calculated stability curves 
for a 120° partial bearing with L/D=1. Gyroscopic effects 
were also ignored, and these are known to have a pronounced 
affect on stability for some rotor-bearing systems (46).

In 1978 Tonnesen and Lund (52) conducted experiments on 
system stability for two rotors, weighing 88lb (40Kg) and 
412.51b (l87.5Kg) respectively. The rotors were supported 
in cylindrical bearings with two axial grooves. The 
diameters of the journals were 2.46in (62.7mni), the L/D 
ratio was 0.3 and the radial clearance was 0.0022in 
(0.055mm). The lighter rotor was basically a uniform shaft 
with a bearing span of 34.6in (880mm) and diameter of 3»15in
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(80mm). The second rotor contained six heavy discs, shrink 
fitted to the shaft. It had the same bearing span and shaft 
diameter as the lighter rotor. The heavier rotor contained 
an overhung disc, and experiments were conducted with and 
without this disc in place. The bearing supports of the 
heavier rotor could be changed to flexible supports, and 
contained a facility so that they could be operated as 
squeeze film damper - bearings. By means of pressure 
tappings, Lund and Tonnesen were able to measure static and 
dynamic pressures at two locations in the bottom half of the 
bearing, 15° either side of the vertical and in the 
mid-plane. They stated that the pressure readings obtained, 
were more sensitive to the different frequencies excited 
than the capacitance probes used to monitor shaft vibration.

Lund and Tonnesen used the linear method of analysis 
given in (41) to predict the behaviour of the rotor-bearing 
system. The eight dynamic coefficients for the axial groove 
bearing were obtained by numerical solution of Reynolds 
equation. The coefficients were derived as functions of the 
Sommerfeld Number, and, hence, vary with speed and viscosity 
as the oil becomes hotter. They obtained instability 
thresholds by examining the sign of the logarithmic 
decrement. This indicated the system damping in terms of 
decay (stable) or growth (unstable) of the response to
self-excitation.
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They concluded that the flexible support with damping 
allowed the rotor to be operated up to its maximum speed of 
20,000 RPM without instability occurring. Predictions of 
damped natural frequencies and instability onset speeds were 
in good agreement with experimental findings. They found 
that unbalance could excite the damped natural frequencies 
of the sytem. Unbalance could also initiate self-excited 
whirl with the result that the threshold was lowered. This 
contradicted the observations of (4), (5), (16), (47) and 
Tondl (53).

Lund and Tonnesen (52) remarked on the problem of 
modelling the system and obtaining accurate values of the 
spring and damping coefficients which correspond to the 
operating conditions of the bearings. They found that as 
the shaft speed was increased, an increase in the 
discrepancy between the measured position of the journal and 
its calculated position occurred.

Although they examined the effect of a flexible support 
on the damped natural frequencies and the stability of their 
rotor-bearing systems; they did not conduct a systematic 
investigation of pedestal flexibility since their support 
had a fixed stiffness.

In the last 28 years a considerable amount of effort has 
been devoted to examining the effect of fluid film bearings 
on critical speeds and instability thresholds e.g. (16),
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(18), (19), (29), (41 ), (43), (44), (45), (46) and (53).
However, less attention has been given to the effect of 
support or pedestal flexibility on the critical speeds and 
the system stability. Generally, the work undertaken has 
been either experimental in nature e.g. (4), (5), (16) and
(17), or theoretical e.g. (10), (14), (31), (32) and (39). 
Papers (4), (10) and (31) were concerned with flexible
rotors mounted on ideal or rigid bearings on flexible 
pedestals, and therefore neglected the bearings. Tondl (53) 
conducted experimental and theoretical work, but he 
restricted his experiments to a rotor mounted in rolling 
element bearings on flexible pedestals. Holmes and 
Parkins (37) included pedestal and bearing flexibility, but 
limited their investigations to a rigid rotor.

Lanes, Flack and Lewis (54) conducted an investigation 
into the stability and response of a flexible rotor mounted 
in three types of journal bearings, the results of which 
were published in 1981. The rotor contained three discs
mounted on a shaft of length 21in (533.4mm) and with a
maximum diameter of 1in (25.4mm) and a minimum diameter of
0.75in (19.1mm). The combined mass of the shaft and discs 
was 29.81b (13»55Kg). The rotor-bearing system had first
and second critical speeds (bending modes) at 2550 RPM and 
9800 RPM, respectively. The three bearings tested were
axial groove, three-lobe and pressure-dam, with different 
L/D and c/R ratios. The bearings were interchangeable, and 
were mounted in pedestals on top of oil-filled and
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temperature-controlled reservoirs. By rotating the bearings 
within their pedestals, Lanes et al were able to examine the 
effect of groove position on response and stability.

They observed that all the bearings exhibited 
instability due to whip, the frequency of which corresponded 
to the first critical speed. The threshold speed of the 
pressure-dam bearing was slightly higher than the axial 
groove bearing. The three-lobe bearing had the highest 
instability threshold, and allowed the rotor to operate 
above its second critical speed. They found that groove 
position had an important effect on the response and 
stability of the axial groove and three-lobe bearings. A 
groove angle position of 75° (with respect to the load 
direction) resulted in minimum response and maximum 
threshold speed for both bearing types. They remarked that 
experimental stability threshold values were significantly 
higher than predicted (16% to 37%) for all bearing types and 
discussed possible reasons.

1.4 OUTLINE OF THESIS

In Chapter 2, the solution of the Reynolds equation for 
fluid-film bearings using a finite difference procedure is 
presented. The eight linear dynamic coefficients
representing the stiffness and damping properties of the 
fluid-film are obtained from perturbation of the journal 
from its equilibrium position.
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Chapter 3 describes the Tranfer Matrix technique by 
which the dynamics of the rotor-bearing system are studied. 
The properties of the fluid-film bearings are included in 
the Transfer Matrix analysis.

Chapter 4 is concerned with a description of the design 
and commissioning of the experimental apparatus. Details of 
instrumentation used and the adopted experimental procedure 
are given.

In Chapter 5, comparisons between measured and predicted 
critical speeds for rigid and flexible pedestals are 
presented. Results for the response of the rotor-bearing 
system are also given. The results are discussed and 
reasons are given for some of the discrepancies.

Chapter 6 is concerned with an investigation of the 
rotor-bearing system stability for rigid and flexible 
pedestals. The method of obtaining the system stability 
using the Leonhard Locus Plot is described. Results are 
presented for the effects on the threshold of stability of 
hysteresis, bearing feed pressure, feed groove extent, and 
position of feed groove with respect to the inlet and outlet 
film regions. The results are discussed and comparison is 
made with predicted values. Reasons for departure from 
predicted values and some investigations are presented.

Finally, in Chapter 7 overall conclusions are presented 
and suggestions for further investigations are made.



71

CHAPTER 2

* DYNAMICALLY LOADED JOURNAL BEARINGS
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2.2 REYNOLDS EQUATION
2.2.1 Reynolds Equation in Non-Dimensional Form
2.2.2 Boundary Conditions at Feed Grooves
2.2.3 Cavitation Boundary Conditions
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2.3*2 Non-Dimensional Form of the Oil-Film Forces
2.4 THE DYNAMIC CHARACTERISTICS OF AN OIL-FILM
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2.4.2 Non-Dimensional Form of the Dynamic Coefficients
2.5 COMPUTATIONAL METHOD OF DERIVING COEFFICIENTS
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2.1 INTRODUCTION

This chapter describes the form of the Reynolds equation 
which is solved to obtain the eight linearised dynamic 
coefficients, which are subsequently used to represent the 
dynamic properties of oil-film for rotor-bearing system 
(Chapter 3).

Brief details are given of how Reynolds equation is 
solved using a finite difference procedure, the boundary 
conditions applied and the method of obtaining the dynamic 
coefficients from theoretical incremental perturbation of

2.2 REYNOLDS EQUATION

2.2.1 Reynolds Equation in Non-Dimensional Form
The full form of the Reynolds equation for a dynamically 

loaded journal bearing, shown in Figure 2.1 is fully derived 
in the textbooks of Cameron (55) and Pinkus and 
Sternlicht (56), and is given for an isoviscous lubricant as

effective uniform viscosity at the operating condition):

the journal. •

(it is assumed that the viscosity can be treated as an

dt dx dt9x
( 2 . 1 )
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«

Figure 2.1 Dynamically Loaded Journal Bearing



It is convenient to use the non-dimensional form of the
equation in order to maintain the generality of the
solution. Introducing the following non-dimensional
variables:

6 = - (2.2)R

z* = J L  (2.3)L/2

h* = k (2.4)
c

where film thickness, h, is given by:

h = c + e cos 0 (2.5)

c is the radial clearance

e = e (2.6)
c

e = 1 de (2.7)0) dt

i = 1 d<J) (2.8)
0) dt

P* = P (2.9)
6u)n ( R / c )2

into equation (2.1) gives the following non-dimensional form 
of the Reynolds equation

_9_
ae

332p«
8z*2

e (O.5-4>)sin0 + e cos0 (2. 10)



2.2,2 Boundary Conditions at Feed Grooves
The boundary conditions for a bearing with axial grooves 

are (dropping the * from equation (2.10)):

P(®in>z) = P(®out»z) = 0 (2.11)

P(e,1) = P(e,-1) = 0 (2.12)

For the case where the feed pressure is increased 
significantly above zero gauge pressure (ambient pressure), 
a non-dimensional feed pressure ratio, y , is defined such 
that (see Appendix A for derivation):

Pf = 0.5 y F (2.13)

where Pf is the non-dimensional feed pressure and F is the 
non-dimensional bearing load.

Hence equation (2.11) may be written as:

P(0in,Z) = P (9 out > Z) = Pf (2.14)

2.2.3 Cavitation Boundary Conditions
Cavitation was allowed for by setting all negative 

pressures to zero as they were generated. This condition is 
known as the Reynolds boundary condition and is defined 
mathematically as:

9 P—  0 when P _ 0 (2.15)
9C



at the cavitation boundary of the oil-film, where C is a 
co-ordinate in the 0-z surface, normal to the cavitation 
boundary.

When the pressure distribution, which is a function of 
the bearing bore geometry, aspect ratio, eccentricity and 
feed pressure, is obtained, the steady-state and dynamic 
characteristics of the oil-film can be computed.

2.2,4 Finite Difference Solution of Reynolds Equation
The Reynolds equation (2.10) was solved using a 

two-dimensional finite difference procedure (see 
Appendix B) .

The mesh size used in the computations was 72 divisions 
circumferentially and 10 divisions axially for half the 
bearing.

The Gauss-Seidel iteration method was applied to the 
finite difference equation and the following convergence 
limit was imposed which had to be satisfied before the 
termination of the iterative procedure:

10 "6 ( 2 . 16 )
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2.3 THE STEADY-STATE CHARACTERISTICS OF AN OIL-FILM

2.3*1 Dimensional Form of the Oil-Film Forces
The principal steady-state characteristics are the 

bearing load capacity and attitude angle for a given 
eccentricity.

With the chosen bearing geometry with axial grooves, the
eccentricity and attitude angle are preset and a solution of
the Reynolds equation (2.10) for steady-state conditions 

• •(ie: e = <|> = 0) gives the pressure distribution generated in 
the wedge.

♦

The oil film forces F£ and along and perpendicular to 
the line of centres respectively (see Figure 2.1) are 
obtained by integration as follows:

Fe
/ L/2

J -L/2 „
/ 2tt
/ o

f L/2 I 27T
F<\> ' ,J -L/2 j1 0

Pcos6(Rd0)dz (2.17)

Psin6(Rd0)dz (2.18)

2.3*2 Non-Dimensional Form of the Oil-Film Forces
By the use of the non-dimensional variables defined in 

equations (2.2) to (2.9), the following non-dimensional 
oil-film forces may be written:

Fe*

V

Fe/LR
6wn(R/c)2

Fe/LR

P*cos6d0dz* (2.19)

6 d ) T i ( R / c ) 2
P*sin0d0dz* (2.20)
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and the attitude angle in centrally loaded bearings (as 
shown in Figure 2.1) is:

«

<f> = tan"1  ̂ J (2.21 )
 ̂e

Having obtained an accurate attitude angle, (J>̂, it is 
possible to compute a new <{>̂+1 from a similar procedure. 
This iterative process may converge slowly. Hence, a 
relaxation factor greater than 1.0 can be employed to

* increase the convergence rate.

In the computer programme for the bearings, Appendix C, 
a relaxation factor of 0.5 was used. Although
under-relaxation of the attitude angle resulted in slower 
convergence, it was found to be more appropriate for a wider 
range of eccentricity (e), feed pressure ratio (y) and
groove angle (a).

An over-relaxation factor of 1.8 was used in the
* convergence of the pressure distribution around the bearing 

(Section 2.2.4), and it was found to apply for all the 
values of e , y and a that were considered.

A sufficient condition for convergence of the attitude 
angle was set as | <f>k+1 - (f)k |^0.0010. This process locates 
the shaft at the correct equilibrium position (steady-state 
running position) where all the forces in the horizontal
direction are zero. Then, for this position, the load
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capacity can be expressed in terms of the Sommerfield number 
as:

♦

S  -  lb / £ \ 2 -  6 IT (F «2 + F,*2)°-5 (2.22)
Nn V R / 9

where P5 = projected bearing load = W/LD

The forces in the polar co-ordinate system are related 
to the forces in the cartesian co-ordinated system as 
follows:

Fx COS(J) -sin(j>

Fy sin<f> COS<{>
F* .

(2.23)

2.4 DYNAMIC CHARACTERISTICS OF AN OIL-FILM

2.4.1 Dynamic Coefficient Representation of an Oil-Film 
* The hydrodynamic oil-film forces, obtained from

equations (2.19) and (2.20), computed from the Reynolds 
equation (2 .10) is a non-linear function of the
eccentricity, the attitude angle, and the corresponding 
velocity components.

If the journal is in motion at the co-ordinates (x,y) 
around the equilibrium position, then the dynamic part of 
the oil-film can be linearised for small amplitude motion. 
This can be achieved by the first order Taylor expansion of
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#

*

the film force about the equilibrium (steady-state)
position. The dynamic part of the film force can be 
expressed as:

Afx = - kxx x - kXy y -  c xx  x - c X y y (2.24)

Afy — — k y x  X — kyy Y ~ CyX X — Cyy y (2.25)

where the oil-film stiffness coefficients are defined as:

•xx

Lxy

•yx

ŷy

9£
9 x

9f:

9f\
9x

3£i
3y

X

and the damping coefficients are defined as

■xx

’xy

'yx

'yy =

9£x
9x

l£x
9y

_9fy
9x

^fy
3y

(2.26a)

(2.26b)

(2.26c)

(2.26d)

(2.27a)

(2.27b)

(2.27c)

(2.27d)

where fx and fy are the components of the fluid-film force.
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The first index of the coefficients indicates the 
direction of the fluid film force and the second index 
indicates the direction of the perturbation.

In general, due to the anisotropy of the oil-film, the 
direction of the perturbation is not colinear with that of 
the disturbing force. Therefore, the cross-coupling terms 
are introduced.

2.4.2 Non-dimensional Form of the dynamic coefficients
In rotor bearing dynamic analysis, it is common practice 

to non-dimensionalise the oil-film force with the steady 
load (static reaction of the weight of the rotor on the 
journal).

achieved by introducing the following 
variables:

(2.28a) 

(2.28b) 

(2.28c) 

(2.28d)

This is 
non-dimensional

x
c

y
c

X
CO)

y* = —y_
C 0L>

AFx = Af'
W (2.29a)
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AFy = Af\
W

(2.29b)

F V  = HW
(2.30a)

Fy1 JL
W (2.30b)

and the non-dimensional coefficients are expressed as:

K

K

K

xx =

xy =

yx =

kyy =

'XX =

'xy =

'yx =

kxx c _ _ 3FX' (2. 31a)W 8 x*

kxy c 9FX * (2. 31b)
W 9y*

kyx c _ 3Fy' (2. 31 o)
W 9x*

kyy c 3Fy' (2. 31d)
W 8y*

cxx 03 C 3FX' (2. 32a)
w

cxy 0) c , , 8FX» (2. 32b)
w dy

cyx 03 C 3Fy' (2. 32c)
w 3x*

cyy 03 C ma 3Fy' (2.32d)
w 8y*

(2.24) and (2.25) can now be expressed in the
form:

»  m *■

AFX Kxx Kxy X* cxx cxy X*

1
> Tl *< 1 __
_

1 << X << 1 __
_ y* cyx o «< y*

(2.33)
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2.5 COMPUTATIONAL METHOD OF DERIVING COEFFICIENTS

The linearised dynamic coefficients of the oil film are 
obtained from the perturbation solution of the Reynolds 
equation (2.10). Small perturbations in displacement and 
velocity about the equilibrium journal position give the 
incremental fluid-film forces which are used to calculate 
the coefficients defined in equations (2.31) and (2.32).

2.5.1 Stiffness Coefficients
For the computation of the stiffness coefficients, the

journal centre is displaced form its equilibrium locus
position, J0, to a disturbed position, J-j , in the
y-direction, as shown in Figure 2.2, where the journal is in

• •equilibrium, i.e. x* = y* = 0. Then, the fluid-film force 
at the disturbed position for the eccentricity ratio of a is 
the same as that for the journal at J2 on the equilibrium 
locus, where og J2 represents an eccentricity ratio equal to 
e.

The direction of the force is inclined from the vertical 
load direction by an angle ^ . Then, the additional oil-film 
forces are:

AFxf = F'cos\J;-1 (2.34a)

AFy' F1 simp (2.34b)
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Figure 2.2 Oil-Film Forces at the Displaced Journal Posit ion
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»

*

The corresponding stiffness coefficients are:

Kxv . - 11*1 . - AF* . x* - x* . y* . 0 (2.35a)
3y* y*

Kyy = - 3Fy' = - AFy' x* = x* = y* = 0 (2.35b)
3 y* y*

Similiarly, by a small displacement in the x-direction 
and calculation of the additional film force components 
gives the other two stiffness coefficients Kxx and KyX .

2.5.2 Damping Coefficients
For the computation of the damping coefficients, the

journal is given small velocities in the x-direction and the 
y-direction in turn, from the equilibrium position, ie
x* = y* = 0.

The velocity components along the line of centres and 
normal to it are calculated from the following 
transformation:

•£ cos$ sincj) X#
4> sin<j> cos<J> y*£ £

(2.36)

The Reynolds equation (2.10) is solved with these 
velocity components and the resulting additional film force 
components are used to calculate the damping coefficients 
given in equations (2.32).
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In the computation of the linearised dynamic 
coefficients by direct perturbations of the journal position 
and velocity, the magnitude of perturbations were found to 
be immaterial provided these were small.

In the present research, the non-dimensional 
displacement and velocity perturbations were set at 0.001.
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CHAPTER 3

TRANSFER MATRIX REPRESENTATION 
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3.2.2 Co-ordinate System Representation
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3.4.2 Standard Transfer Matrix Element
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3.4.5 Solution for Forced Response
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3.1 INTRODUCTION

The principle of the Transfer Matrix Method (TMM) is 
derived from the numerical method originally developed by 
Holzer for solving torsional problems and later developed by 
Myklestad (42) and Prohl (35). Myklestad applied the 
technique to obtaining the modes of vibration of aeroplane 
wings and Prohl applied it to finding the natural 
frequencies of beams and shafts. The more familiar form of 
the TMM was introduced by Thomson (57) for the study of the 
vibration of beams. The method is now fully documentated in 
the excellent book by Pestel and Leckie (58).

In 1970 the method was extensively developed by 
Ruhl (59) for rotor-bearing systems. Ruhl presented a 
thorough study of the TMM and also the finite element 
technique, and compared the accuracy of the two methods for 
calculating the stability and response of uniform elastic 
massive rotors and elastic rotors with descrete mass at 
mid-span.

Lund (41) and Lund and Orcutt (34) also used the TMM. 
In (34) a distributed mass technique was used to study the 
response to unbalance of a flexible rotor and comparison of 
results with experiment was made. A lumped mass method was 
used in (41) to compare the theory with experiment for the 
analysis of critical speed and stability of a flexible
rotor.
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Bansal and Kirk (43) in 1975 derived the damped critical 
speeds and stability of rotor-bearing systems using the TMM. 
They compared the results of (41) for a uniform rotor 
mounted on fluid-film bearings with an L/D of 1/4, and 
obtained agreement of predicted instability to within 0.5%. 
They also examined the effects of misalignment on stability 
of multi-spool turbo engines.

Dostal (60) and Dostal et al (40) used the method in the 
study of the control of the unbalance response and stability 
of a long flexible shaft, by the use of an external damper 
mounted on the shaft.

Kikuchi (38) used the TMM for the analysis of the 
unbalance response of rotor-bearing systems containing 
several discs and bearings and compared results with those 
obtained from different types of experimental rotors. 
Kikuchi and Kobayashi (46) extended their previous work 
(38), to examine the stability of rotors with several discs 
and bearings.

More recently Ruddy (61) used the TMM and compared it 
« with the finite element method, to examine the accuracy of

both techniques for computing the three lowest natural 
frequencies of a simply supported beam.

The general approach to this method is to divide a 
system consisting of a shaft supported on bearings and
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carrying flywheels, impellers etc; into a number of elements 
with simple elastic and dynamic properties which can be 
expressed in matrix form. Thus, the variables (referred to 
as state variables and expressed in the form of generalised 
deflections and forces) fully describing a state at one end 
of the element are expressed as a linear combination of the 
state variables at the other end. The matrix so obtained is 
called the Transfer Matrix (TM).

Since the size of the TM depends on the number of
variables in the state vector and not on the number of
elements, the TMM is ideally suited for systems with a
predominantly chain character.

To assemble the elements of the system it is only 
necessary to multiply all the element matrices together. 
This generates the overall TM of the system, which expresses 
the generalised forces and deflections at one end of the 
system as a linear combination of the generalised forces and 
deflections at the other end.

By applying boundary conditions to these equations the 
% frequency determinant can be formulated. In the case of

synchronous vibration (a) = ft ) the frequency determinant is 
zero at every natural frequency of the system. For 
non-synchronous vibration (m * ft) the locus of the frequency 
determinant in the complex plane (Leonhard Locus) enables 
the stability of the system to be assessed.



91

3.2 MATHEMATICAL MODEL OF ROTOR-BEARING SYSTEM

3.2.1 Lumped Parameter Approximation
A rotor-bearing system is basically one with distributed 

parameters, but for the purposes of computation it is 
convenient to replace it with an approximately equivalent 
system having a finite number of degrees of freedom.

Thus, a continuous rotor can be modelled as a system 
with n-degrees of freedom by dividing the rotor into 
n-lumped rigid masses located at n-stations and connected by 
massless elastic beam or shaft elements of uniform
stiffness.

A more complex and accurate form of mass distribution 
can be used, but this is seldom done because of the greater 
complexity involved.

3.2.2 Co-ordinate System Representation
In Figure 3*1 is shown an analytical model representing 

a uniform rotor supported on oil-film bearings which in turn 
are supported on flexible pedestals. A more detailed 

# representation of the bearing and pedestal model is shown in
Figure 3 . 8 and is explained in more detail in Section 3.3.^, 
where the TM representation of the bearing-pedestal is 
developed.



#
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Figure 3.1 Lumped Mass Model Representing Rotor with Journal Bearings 
and Flexible Supports
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The co-ordinate system selected to define the rotor 
motion in space and time is an (x-y) Cartesian co-ordinate 
system, where the x-axis coincides with the direction of the 
gravitational forces, and is the same as the system adopted 
for the bearing (Chapter2). The (x-y) origin is fixed at 
the statically deflected equilibrium position of the 
initially straight shaft, at each station along the shaft.

The (x-y) origin of the TM bearing element at any 
rotational speed coincides with the steady-state equilibrium 
position of the journal (e , ) within the bearing bush. 
Figure 3*2 depicts the complete co-ordinate system used.

3.2.3 State Variables
As the vibration of a rotating shaft supported in 

asymetrical bearings is a combination of lateral vibration 
in the horizontal and vertical planes, the state vector may 
be defined by the following eight time-dependent variables: 
deflections (x, y) , slope (0, ), bending moment (My, Mx) 
and shear force (Vx, Vy), and are expressed in column matrix 
form.

The sign convention adopted is shown in Figure 3*3 and 
is the same as that used by Pestel and Leckie (58), with the 
exception that the coordinate axis directions have been 
changed. Displacement and force are represented by straight 
arrows, and slope and moment are represented by curved
arrows.
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Figure 3.2 Journal and Shaft Equilibrium Positions
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n-1 n n+1

Figure 3.3 Idealised Beam with Lumped Masses Indicating 
Sign Convention
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Because of the damping present in the system (only 
damping in the bearing and support will be considered), all 
the state variables are complex quantities.

If steady-state harmonic motion of the shaft is assumed,
s t a t e  

x  =

v a r i a b l e s  c a n  b e  r e p r e s e n t e d  b y :  

Re ( x e i ^ t ) ( 3 . 1a )

e = R e ( 0 e i f i t ) ( 3 . 1b )

My = R e t M y e i f l t ) ( 3 - 1c )

v x  = R e ( V x e i f i t ) ( 3 . 1d )

y  = R e ( y e i f i t ) (3.2a)

<f> = R e (4> e i G t ) (3.2b)

Mx  = R e C M x e i f l t ) (3.2c)

ii>>
>

R e C V y e i f l t ) (3-2d)

where x, 0 , My, Vx, y, <f> , Mx and Vy are complex quantities 
and may be expressed in the form:

x XR + IX! (3.3a)
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y = Yr + iyI (3.3b)

etc

and equations (3.1) and (3*2) can be written as:

x = (xR2 + xj2)1/2 cos (fit + \px) (3.4a)

y = (yR2 + yj2)1/2 cos (fit + ipy) (3.4a)

etc

where:

ij;x = tan”1 (xj/xR) (3.5a)

\py = tan“1 (yi/yR) (3.5b)

etc

3.3 DERIVATION OF THE ELEMENT TRANSFER MATRICES

3.3.1 Assumptions
The general representation of the rotor bearing system

3.3.1 Assumptions

shown in Figure 3*1, consists of three basic elements:
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(i) massless elastic beam element with permanent 
distortion;

* (ii) mass element with mass unbalance, rotary polar and 
transverse moment of inertia;

(iii) oil-film bearing supported on an elastic pedestal.

To facilitate the derivation of the TM of the above (i) 
to (iii) elements, several assumptions will be made:

(i) linear elasticity;
(ii) torsional stiffness is assumed to be infinite;
(iii) no axial stress (two-dimensional problem);
(iv) El is constant for each beam element;
(v) all rotating parts are axially symmetrical;
(vi) shear force is constant for each element and has a 

discontinuity at each end.

3.3.2 Transfer Matrix of Massless Elastic Beam Element
The elastic properties of an initially straight beam can 

be represented by a uniform massless elastic beam element, 
and since the beam is assumed to be massless, static 
properties suffice to describe the element.

By applying simple beam theory as found in reference 
(62) and the notation shown in Figure 3.^, state variables 
at station n can be expressed in terms of the state 
variables at the adjacent station n-1. A full derivation 
can be found in reference (58).
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Figure 3.4 Massless Elastic Beam Element
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For the x-z plane:
2

- x ^ n = - x R n_ i + 0 ^ n - 1 l n + M ^ v n _ i +  y Rx , n - i I n 3 ( 3 - 6a)
' 2 ( E I ) n 6 ( E l ) n

eLn = eRn-1 + mRv  n 1 1 n + VRx , n - 1 I n 2 ( 3 . 6 b )
( E I ) n 2 ( E I ) n

MLy , n  = MRy , n - 1 + v R x , n - 1 I n ( 3 . 6 c )

VL x , n  = + v R x , n - 1 ( 3 . 6 d )

and s i m i l i a r l y  f o r  t h e  y - z  p l a n e :

2
y L n = y Rn - 1  + <t,Rn - 1 l n+MRx , n - 1  l n + VRy , n - 1 I n 3 ( 3 . 7 a )

2 ( E I ) n 6 ( E l ) n

4>L n = $ Rn“ 1 + MRx , n - 1  l n + v R y , n - 1 I n 2 ( 3 . 7 b )
( E I ) n 2 ( E I ) n

ML x , n = MRx , n - 1 + v R y , n - 1 I n ( 3 - 7 0 )

- v L y , n  = -  VRy , n - 1 ( 3 . 7 d )

Equations (3*6) and (3*7) can now be written in matrix 
form, Figure 3.5. This TM is refered to as a field transfer 
matrix, [Tp]n, as it relates the state variables, Z, at the 
left of station n to those at the right of station n-1. The 
TM of Figure 3*5 can be expressed in the form:

{Z}Ln [TF] n tZ}Rn-1 (3.8)
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Figure 3.5 Transfer Matrix for Massless Elastic Beam Element
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*

If the shaft is permanently warped or bent in the 
unloaded condition, the displacement and slope equations 
(3.6a), (3 .6b), (3 .7a) and (3.7b) must be corrected by an
amount equal to the bend:

Ax = -<$xn + 'Sxn.'i + <$6n-1 ■*n ( 3 . 9 a )

Ay = 6yn " 6yn-1 “ S^n-1 ( 3 . 9 a )

A0 = S0n -  <50n_-| ( 3 . 10a)

A<J> = 6<{)n - ( 3 - 10b)

The extra terms, equations (3*9) and (3.10) can be 
accommodated in the standard (8x8) matrix by extending the 
state variable columns of both sides by 1, Figure 3*5, and 
by introducing an extra row (for symmetry) and column in the 
TM, thus making the matrix (9x9). The extra right hand 
column generated in the TM is called the "forcing column" 
and equations (3.9) and (3.10) are inserted here.

It is important to include the extra terms of warping in 
the TM of the beam elements Figure 3*5, as the extra forces 
and moments can greatly modify the response of a rotor. 
Such forces and moments could arise from a bent shaft which 
carries a massive disc, or if the bending results in 
misalignment of the journal bearings. Additional gyroscopic 
moments can also be introduced from a disc which is skewed
relative to the shaft.
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The extra forces and moments of warping and or skewing 
are obtained by multiplying the TMfs of mass point 

* (Figure 3*7, Section 3*3*3), bearing point (Figure 3*9,
Section 3*3*^) and elastic beam element (Figure 3*5)

nottogether. Thus, these forces do have to be derived
A

separately.

3*3*3 Transfer Matrix of Rigid Mass with Rotary, Polar- 
Transverse Moments of Inertia

Mass and inertia properties of a shaft element can be 
analytically represented by an element of mass m, polar 
inertia Ip and transverse inertia I-p. To eliminate any 
consideration of beam properties the mass element is taken 
to be a thin rigid disc, Figure 3*6.

The rotor unbalance is defined by a mass unbalance mu 
and its position by polar co-ordinates (r,p), Figure 3*6. 
To represent the components of the unbalance force U, a set 
of orthogonal axes (X-Y) rotating with the shaft with an 
angular velocity to are introduced. At any instant of time 
the instantaneous position of the rotating axes with respect 
to the fixed axes (x-y) is given by tot.

The components of the unbalance force are given by:

UX = | U | cosp = mura)2cosp (3- 11a.)

Uy = | U | sinp = murm2sinp (3- 11b)
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+0,0,0

mx Ux
(x-z) PLANE

+<$> ,i,<j>

my Uy
(y-z) PLANE

Figure 3.6 Mass Element
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Transforming the unbalance forces from rotating to fixed 
co-ordinates gives:

»
Ux = cos w t - Uy sin m t (3.12a)

Uy = Ux sin a) t + Uy cos w t 

and expressed in complex form

(3.12b)

Ux = (Ux + i Uy)eiwt (3.13a)

Uy = -i(Ux + i Uy)eiwt (3.13b)

where only the real part of the right hand side of equation
(3.13) applies. Using equation (3-11) enables
(3.13) to be written as:

equation

Ux = mura)2(cosp + isinp) (3-14a)

Uy = muru)2(sinp - icosp) (3.14b)

Applying Newton1 s 2nd law of motion of a rigid body to 
the forces in the free-body diagram of Figure 3.6, and 
considering equilibrium of forces it is possible to write:

mx = VRx>n - V^x>n + Ux (3.15a)

my = VRy>n - VLy>n + Uy (3.15b)my (3.15b)
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Substituting for x and y from the differentiation of
equations (3.1a) and (3-2a) gives:

VRx , n  = v L x > n  -  mn 2 x  - Ux (3-16a)

VRy , n  = v L y , n  -  m££y -  Uy ( 3 - 1 6 b )

As shown in (3*0 for very small orbits the effect of
gyroscopic moment coupling may be represented as the moments 
induced by rotations of the mass in the separate x-z and y-z 
planes.

Thus, a moment summation including the gyroscopic forces 
in the latter way provides:

IT0 = MRy,n - MLy,n + Ip“+ (3.17a)

ITi’ = MRx,n - MLx,n - Ip“R (3-17b)

•Substituting for 0 , •<J> , 0 and 4> from the differentiation of
equations (3.1b) andi 3*2b) yields:

MRy,n = MLy,n - _ ifilpW (3.18a)

MRx,n = MLx,n - + ifilpio (3.18b)

and since the massi element is assumed to be infinitely
short
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geometric compatability must apply:

xRn = xLn . yRn (3.19a)

6Rn 6L cf) R _ cf)L„n > n - n (3.19b)

Equations (3.16), (3-18) and (3.19) yield the TM of the 
mass element, Figure 3.7, and is referred to as a point 
matrix as it relates the state variables to the left and 
right of the same station n. Thus, Figure 3.7 can be 
expressed in matrix notation as:

For the mass elements of a round shaft Ip and I-p are 
given by:

From Figure 3.7 it can be seen that the TM of a mass 
element is also extended (compare with Figure 3.5) to 
include a "forcing column" in which the unbalance forces Ux 
and Uy are inserted. Also, the sign Ux in equation (3.1^a) 
has been made negative in order that both Ux and Uy are 
positive in the TM element Figure 3*7.

{Z}Rn = [Tp ]n {Z}Ln ( 3 - 2 0 )

1/8 m dn2 (3.21a)

IT = m(1/l6 dn2 + 1/i2ln2) (3.21b)
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Figure 3.7 Transfer Matrix for Mass Element
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3.3.4 Transfer Matrix of Bearing and Pedestal Support
The element used to represent a journal bearing mounted 

on a flexible pedestal is shown in Figure 3.8, where it is 
assumed that the dynamic properties of the bearing can be
represented by four linear spring coefficients kxx, kxy> kyx
and kyy, plus four linear damping coefficients cxx, cxy > cyx
and Cyy (as derived in Chapter 2, equations (2,26) and
(2.27)) .

It is also possible to include in the analysis an 
analogous set of rotational spring and damping coefficients 
representing the moment forces acting on the journal bearing 
due to its inclination.

Thus, the dynamic oil-film force and moments in the 
(x-y) plane can be expressed as follows:

A f x = -  k x x  x -  k X y y -  c x x  x -  c X y y

A f y  -  — k y X x — k y y  y — C y X x “ ^ y y  y

Aty = - kgg 9 - kg^ (j) - Ogg 6 - O g ̂ $

Atx = - e - kw  + - °<j,e § ’ °** *

(3.22a)

(3.22b)

(3.23a)

(3.23b)

On substituting for x, x, y, y, etc from equations (3.1)
and (3*2) and expressing the bearing coefficient in complex 
impedance form, equations (3.22) and (3.23) become:
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= Zxx x + z x y  y (3.24a)

Afy — ZyX x + Zyy y (3.24b)

+CDCDCD
toII>>-P<3 ze<|) ♦ (3.25a)

+CDCD

toIIX-p< ZW  * (3.25b)

where the first subscript in the impedance refers to the
direction of the force and the second denotes the direction
of the movement.

From reference to Figure 3.8, the discontinuity of the
bearing forces and moments introduced by the restoring
forces expressed in equations (3.24) and (3.25)
respectively, can be derived from a consideration of the
equilibrium of the bearing element:

VRx,n = VLX)[1 + Zxx x + Zxy y (3.26a)

vRy,n = vLy>n + Z y X X + z y y  y (3.26b)

MRy,n = MLy>n +CDCDCD
CO+

ze$ * (3.27a)

MRx,n = MLx,n +CD 
' CDISp+

Z<H * (3.27b)

and since the bearing element is considered to be infinitely



short, geometric compatability must apply (equation (3.19)).

Combining equations (3.26), (3*27) and (3.19) gives the 
TM of the bearing element Figure 3*9, where the oil-film 
impedances of equations (3.24) and (3.25) are given by:

■xx ? ( ^xx + i — Cxx 0) (3.28a)

W /
n \

*xy - — 1 Kxy + i — cxyc ' ti) (3.28b)

■yx W /
n \ Kyx + i — CyXCl) (3.28c)

*yy = * (c \ Kyy + 1 — cyyC \ ID
(3.28d)

_ WL2 / . a
‘00 " --- V 00 “ 60C ' Cl)

(3.29a)

’0<j)
WL2

%  + 1 l ce«f> ) (3.29b)

'<pe
WL2 K<te + 1 ^ c(f>0 ) (3.29c)

WL2 K (1) (3.29d)

where Kxx, Cxx, ..., Kqq , Cq q, ..., are the non-dimensional 
linear and rotational bearing coefficients respectively.

The TM of the bearing element is also represented by a
point matrix and thus, can again be represented by 
equation (3.20):
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R L™ «■ 1 “1 ■*

-X 1 0 0 0 0 0 0 0 ! 0 
1

-X
■0 0 1 0 0 0 0 0 0 1 0 ■0

0 CDCD
tsi 1 0 0 ze<i> 0 0 ! 0 My

vx - Z x x 0 0 1 z x y 0 0 0 1 0 
1 
1

Vx

"1— •

y 0 0 0 0 1 0 0 0 ! 0 y

? 0 0 0 0 0 1 0 0
1
1 0 
1 $

Mx 0 CD

tsi 0 0 0 1 0 ! 0  
1

Mx

1 <1 z y x 0 0 0 _zyy 0 0 1 ! 0 <1

1 0 0 0 0 0 0 0 0
»l

1 1 1 1
1 _

n n n

Figure 3 . 9 Transfer Matrix for Bearing Element
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( Z } Rn = t T p ] n { Z } ^ n

An advantage of expressing the bearing forces and 
moments in impedance form is that more complicated models of 
the bearing may easily be included in the TM of the bearing.

Thus, if the bearing oil film has an impedance Ẑ , and 
is supported on a flexible pedestal with impedance ZP, the 
total impedance of the oil film and pedestal can be obtained 
by adding together the receptances (inverse of impedance) of 
the oil film R** and pedestal RP, and inverting to obtain the 
overall impedance of the oil film and pedestal.

That is:

Rfxx zf
RPxx -

XX ZP
(3.30)

XX
and therefore the total receptance is given by:

Rxx xx RPXX

Rxx

Z ^ x x Z ^ x x

Z ^ x x  + Z px x

Z f x x Z ^ x x

(3.3D

(3.32)

and the total impedance is:

Zxx 1
Rxx

Z^xx ZPXX 
Z^xx + ZPXx

(3.33a)
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and similarly for the y-direction:

(3.33b)

where the impedance of the pedestal is given by:

Z^xx = _mp,x^ + kp,x + ifop}x (3.34a)

z P yy = ” mp , y fi2 + k p , y  + i n 3 p , y (3.34b)

3.4 ASSEMBLY OF TRANSFER MATRICES

3.4.1 Elimination of Intermediate State Variables
In general the state variables to the left and right of 

an element are related by the T.M. of that element in such a 
way that:

compatability, no external forces or moments acting and with 
the sign of convention adopted, it is possible to write:

[T]n {Z}L n (3-35)

(Z}R+1 = [T]n+1 {Z}L+1 (3-36)

for 1 ^ n ^ N.

With the additional condition of geometric

n+1 (3.37)
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*

Thus, substitution of equation (3*37) into equation (3.35) 
yields:

{Z}Ln+1 [T]n {Z}n (3.38)

and insertion of equation (3-38) into equation (3*36) gives

{Z}R+1 = [T]n+1 [T]n {Z}L (3-39)

Thus, repeated substitution N-times permits the 
development of an overall expression relating the state 
variables at the left and right boundaries of the model: 
i. e.

/ Z1R

where

[T]fl [T]n_i .... [T ] -| (Z}L (3.40)

[ Tx 3 = [T]N [T]N_1 .... [T ] -| (3.41)

is referred to as the overall system transfer matrix [Tx3•

or [Tx 3 (3.42)

and {Z}^n [TT] {Z}L (3.43)
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«

3.4.2 Standard Transfer Matrix Element
To simplify the data required for the evaluation of the 

T.M. elements at each station, multiplying all three T.M. 
elements together, Figures 3.7, 3*9 and 3.5 respectively, in 
the order indicated below, generates a standard T.M. 
element, [Ts], Figure 3.10, incorporating the properties of 
mass element, bearing element and massless elastic beam 
element in oneT.M. element.

[TSJ = [T]mass [T]bearing [T]beam (3*44)

3.4.3 Boundary Conditions
In general four of the eight state variables at each end 

of the rotor system will be zero. For example in the 
different supports given below, the following boundary 
conditions will apply:

Pinned-pinned
rotor

free-free
rotor

Clamped-clamped 
rotor

X1 = xN yi = YN 0 (3.,46a)
My,x = My,N = Mx, 1 = Mx,N = 0 (3.,46b)

My. 1 = My,N = Mx, 1 = m x ,N = 0 (3.,47a)
VXf1 = vx,N = VY,1 = VY,N = 0 (3.,47b)

X1 = xN = y 1 = YN = 0 (3.,48a)
®1 = eN = = *N = 0 (3.,48b)

and of course a combination of pinned, free or clamped for a 
particular rotor (the experimental rotor is modelled as
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where:

^ 0 = -iTJ22 +  Zee

T e<t> = - i  f Z I p  o> +

T = - * T « *  +

CD - i £Hp uj +  Ẑ g

TXX - mfi ̂  — *̂xx

Txy = +  ZXy

Tyy = IIl£2̂ “  Zyy

Tyx = +  ZyX

U x - -muru)2( cosp+isinp )

uy = mura)2( sinp-i cosp)

Ax = -6xn+6xn_ 1+ ̂ %-lln

Ay = 5yn-6yn-1- 64b-11n

A9 = 6en-(Sen-1

Acj> 6<f> 6<f> n n-1

( 3 . 4 5 )
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free-pinned). A rotor support can be considered pinned if 
rolling element bearings of short L/D are used, and clamped 
if the L/D is long. Whereas, a rotor supported on a journal 
bearing (flexible support) can be considered as free.

3.4.4 Solution for Free Vibration
For the case of free vibration the extra forcing column 

in the T.M. can be ignored, thus reducing the T.M. to (8x8). 
As stated in Section 3-4.3, in general, four of the eight 
state variables at each end of the rotor will be zero. 
Solving the T.M. for the model of the experimental rotor 
will serve to illustrate how the method is applied. For the 
model used, the lefthand support is taken as free and the 
righthand support is taken as pinned.

Using equation (3*43) relating the overal T.M. in terms 
of the state variable vectors at the left and right hand 
boundaries, and applying the boundary conditions of 
equation (3.47) for the state variable and

equation (3.46) for the state variable {Z}|j gives:

_  - R
0 1 11

C\J

-p

0 fc31 t32
0 fc5 1

CMLO
-P

o----------1

t--p
______i

CMt-•P

N

fc15 fcl6 -X
t35 fc36 I

fc55 fc56 7
t75 fc76 7

(3-49)
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where t -j -j , t-^, •••• etc are the complex elements of
the overall T.M. element. It can be seen that due to the 
boundary conditions at the left hand support, it is not 
necessary to calculate all the columns at each station of 
the T.M. element. In this particular case columns 3, 4, 7 
and 8 can be omitted, this technique is referred to as the 
abridged method of matrix multiplication (58).

Expressing equation (3.49) in the form gives:

{zb}R = [TTB] {zb}L (3.50)

Equation (3.49) or (3.50) is equivalent to a set of 
homogeneous equations and for a nontrivial solution it is 
necessary that the determinant of the raatix [T^b ] (where 
[Tt b] is the overall T.M. for the boundary conditions that 
apply) is zero.

ie Det | TTB | = 0 (3.51)

As I Ttb | is a function of rotor whirl frequency, f! , all 
frequencies for which equation (3*51) is satisfied are 
natural frequencies, ft n, of the rotor-bearing system.

Natural mode shapes of vibration are obtained by 
assigning an arbitrary value to one of the state variables 
of {Zb Î  and solving for the remaining variables from

equations (3.50).
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For example, letting y=1 in equation (3.49) yields:

* “
-t15 *>*12 t'te -X
-t35 = 131 t 32. fc36 "e
-t75 tyi ty2 ty6 $

(3.52)

Inversion of the (3x3) matrix will give the solution vector 
for the state variables at the left hand boundary station, 
i. e.

L -1
-X t'l'[ t'lZ t 6̂ -ti5
■0 = t3i t32 t36 -t35
$ t71 fc72 fc76 -t75

1

(3.53)

Calculating the intermediate state vectors is then achieved 
by matrix multiplication.

eg at station

eg at station 2 {Z}^
2

eg at station n {Z}n̂

[T]1{Z}L (3.54a)
1 1

[T]2[T-|]{Z}L (3.54b)
1

[T]n[T]n_1...[T]2[T]1{Z}L (3.54c )

or in general
n

{Z}R =1  ̂[T]k{Z}L 

k=1

(3 - 5 4 d)



123

3.4.5 Solution for Forced Response
A dynamic response due to harmonic forcing, which may 

have constant amplitude or be a function of rotational 
speed, and response due to static forces can be cal-culated 
by the T.M.M.

The forcing function is included in the T.M. by 
insertion into the ni-neth column (the "forcing column") of 
the extended (8x8) T.M. Thus, a discontinuity of the shear 
force due to an arbitrary external force F gives:

VRx,n = + Fx (3.55a)

vRy,n +c>>>It Fy (3.55b)

can be represented by a (9x9) matrix, ie:

R L
M 1 1 *

- X 1 i |

■0 1 ! j

«y 1 ' !

Vx 1 j j Fx
i i

y~
i i
i 1 ii i

? ! 1 j

Mx ! 1 1

i 1 |-Fy
I *

1
1 1 I 1 
1 1 1 | |

n

-x
"e
My
Vx

(3.56)
y

7
Mx
-Vy

1

n-1
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The method for obtaining the response is analogous to 
that obtaining the overall T.M. for the free vibration case 
(Section equation (3-^9)- Thus:

R L

(3.57)

N 1

1
0 t '\'\ 1*12 *>*[5 -X
0 1 fc32 t35 fc36 J fc39 ¥
0 = 1t5 i t52 t56lt5g Y
0 t7i t72 t75 t75 j t7g___ f ¥
1 0 0 0 0 J 1 1

1 _

where the same boundary conditions apply as for the case of 
free vibration. Complex elements t - j g ,  t 3 g ,  t 5 g  and t y g  are 
the extra elements arising from the forcing column.

Equation (3*57) is equivalent to a set of 
non-homogeneous equations which are directly solvable. 
Thus, by transposing elements t ^ g ,  . . . .  , t y g  and inverting 
the remaining matrix (as was done in Section 3.4.4.) gives 
the state vectors at the left hand boundary:

L -1 — *
-X 111 112 116 -t19
¥ = t31 t32 t35 t36 "*39
y t5i t52 t55 t56 -t59
¥ t7i t72 t75 t76 -t79

1

(3.58)
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For any value of the forcing function F, equation (3.58) 
can be solved and the response of the rotor at any station k 
along the shaft can be obtained by applying equation (3.54d)

The elliptical whirl orbits can be calculated from the 
amplitudes along the real and immaginary (x-y) axes as shown 
in reference (3*0. The equations of the elliptical motion 
are given in Appendix D.

The computer programmes based on the T.M.M. are given in 
Appendix E.

n

k= 1
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4.5 COMMISSIONING OF EXPERIMENTAL APPARATUS
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4.6.1 Instability Measurement
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4.1 INTRODUCTION

As the validity of all theories depends on how closely 
they match physical measurements from a qualitative as well 
as quantitative point of view, so in this project 
experimental work was envisaged from the start.

Thus, an experimental rig was designed and commissioned 
to investigate the effects of important bearing parameters 
and the flexibility of the bearing pedestal on the critical 
speed and instability of a damped elastic rotor-bearing 
system.

The test apparatus and instrumentation were designed to 
study the above requirements. This chapter describes the 
design, testing and operation of the experimental equipment 
used in the critical speed and stability experiments.

4.2 MECHANICAL DESIGN REQUIREMENTS

With the general trend for rotors becoming lighter, more 
flexible and running above their first critical speed, it 
was decided to design a rotor of this type to do this.

An obvious configuration was to mount the rotor on two 
identical test bearings but this would lead to difficulty in 
obtaining exact similarity between the bearings,
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particularly since it was intended to investigate a wide
range of bearing parameters and flexibility of pedestal 
support. The basic system chosen is, therefore, similar to 
the small rigid rotor-bearing system used by Akkok and 
Ettles (47) in which one bearing is a tight clearance
rolling contact bearing acting as a hinge and the other 
bearing is the one under test. The mass of the rotor was 
concentrated towards the test bearing by means of a heavy 
disc or flywheel mounted on the shaft, and, thus introduced 
gyroscopic effects.

In rotor-bearing investigations it is desirable to have 
control of several important independent parameters which 
ideally should be easily set and varied. This was an
important consideration to be borne in mind during the rig
design. The main parameters of interest are listed below, 
but not in any particular order of importance.

4.2.1 Bearing Parameters
(a) clearance
(b) load
(c) bore shape
(d) feed groove extent
(e) supply feed pressure
(f) pedestal flexibility
(g) viscosity of lubricant
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4.2.2 Shaft Parameters
(a) flexibility
(b) flywheel position
(c) rotational speed
(d) alignment between bearing supports

4.3 DESIGN OF EXPERIMENTAL APPARATUS

Figure 4.1 shows a detailed assembly of the test rotor 
and Table 4.1 lists the numbered parts referred to in 
Figure 4.1. Plate 4.1 shows the layout of the experimental 
rig without instrumentation. The main parts of the rig can 
be conveniently labelled and described as follows:

4.3.1 Shaft
The main test shaft was 0.984in (25mm) diameter, 27»5in 

(698.5mm) in length between supports, weighed 8.071b 
(3.67kg) and was made of steel EN24. This shaft was split 
into three parts and had a link section 3in (76.2mm) long 
and located 9.8in (248.9mm) away from the journal bearing 
support. The link section was assembled with the main shaft 
parts to form the test shaft. Several of the link sections 
were made with different diameters, thus, allowing the 
flexibility of the main test shaft to be widely varied by 
interchanging link sections. During the machining of the 
shaft special attention was paid to its straightness and to 
the concentricity of shaft, flywheel and journal. The
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♦

Plate 4.1 Test Rotor and Drive Assembly

Plate 4.2 Flywheel and Guardring
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degree of straightness of the shaft achieved on assembly was 
within 0.0005in (0.013mm).

4.3.2 Flywheel
The flywheel had a diameter of 6.672in (171.8mm) and

length of 3*0in(74.9mm) and a mass of 28.591b (12.99kg),
producing a total rotor mass of 36.661b (16.66kg). Each
side of the flywheel possessed a boss into which was 
inserted a tapered ring locking device (Ringfeder). This 
allowed the flywheel to be stationed at any point along the 
shaft and subsequently locked in that position Plate 4.2. 
This method of attachment was preferred to the more usual 
method of shrink fits because the problems associated with 
this form of fixing, Kimball and Lovell (63), of impellers, 
flywheels etc, onto a shaft. In the experimental work the 
distance between the centres of the flywheel and journal 
support was fixed at 5.0in (127mm). This gave a static
deflection of 0.0032in (0.081mm) at the flywheel and 
0.0050in (0.127mm) at the shaft centre, with a static load 
or reaction at the test bearing of 28.68lbf (127.57N) and a 
measured first critical speed of 2890RPM.

Each face of the flywheel had a concentric series of 36 
balancing holes each 10 degrees apart, drilled to a depth of 
0.50in (12.7mm) and tapped to 2BA, on a 5.2in (132mm) 
diameter. This was to facilitate in the balancing of the 
rotor, Plate 4.2. The assembled rotor was balanced in an 
Avery-Shenk balancing machine at 1200RPM. The balancing
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achieved was 0.009oz (0.25g) at plane I (left face of
flywheel adjacent to the journal bearing) and 0.018oz 
(0.50g) at plane II. It was found to be unnecessary to 
carryout in-situ balancing of the rotor as it was not 
intended to run the rotor at or near its critical speed, and 
sufficiently smooth running was obtained below and above the 
critical speed. Typically, peak to peak synchronous
amplitudes at the shaft centre of less than 0.0005in 
(0.013mm) were measured when the running speed was in the 
region where instability occured.

To limit the amplitude of the rotor to safe levels a 
guard-ring was employed for the flywheel, Plate 4.2. This 
consisted of 6 curved pads or shoes attached by adjusting 
bolts to a heavy guard-ring, the pad surfaces were lined 
with a low friction material Glacier DX. The pads were 
adjusted to restrict the level of vibration of the flywheel 
and, hence, the shaft to a preset amount.

The guard-ring was attached to a base which could be 
moved axially and clamped in any position in the same manner 
as described for the test bearing and gimbal pedestals, 
Sections 4.3*4 and 4.3*5 respectively.

4.3*3 Test Bearing
The journal and bore of the cylindrical test bearing 

were tapered with an included angle of 4 degrees, to allow 
the radial clearance to be varied over a range of 0.0010in
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(0.254mm) by moving the bearing relative to the journal. 
The journal was made from EN24 steel and contained a 
chromel-alumel thermocouple at its centreplane, about 1mm 
below the surface. The wires from the thermocouple were fed 
through a light hollow "quill shaft" made of stainless steel 
and attached at the outboard end of the journal, to a slip 
ring assembly. The assembly was driven by the "quill shaft" 
via a flexible aluminium coupling (Panamec). The journal 
had a nominal diameter of 2.5in (63.5mm) and was an 
interference fit with the test shaft.

The bush was made from hard bronze and had a 2.5in 
(63.5mm) nominal diameter with a length of 1.25in (31.75mm), 
and hence a length to diameter ratio of 0.5, Figure 4.2. 
The bush contained two axial feed ports or grooves, arranged 
at 90 degrees to the load vector. 
For the initial experiments, the groove angle, a , was 
30 degrees giving a groove width of 0.65in (16.51mm). The 
axial length of the groove was 1in (25.4mm) and its maximum 
depth was 0.156in (3.97mm), with holes 0.25in (6.35mm) in 
diameter for feeding oil into the grooves, Figure 4.2.

Bearing temperatures were measured by 12 chromel-alumel 
therocouples arranged around the mid-plane of the bush, 
about 1mm below the bush surface Figure 4.3.

To ensure identical tapers on the journal and bush, the 
bush was lapped to fit a dummy journal which was of the same 
taper as that of the test journal.
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DIMENSIONS IN INCHES SCALE - FULL SIZE MATERIAL - BRONZE

Figure 4.2 View of Bearing Bush Showing Oil Feed Ports

4 °
IN
CL
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Figure 4.3 Spacing of Thermocouples Around the Bearing Bush
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Brass oil-flingers were positioned each side of the 
journal so that scavenged oil could be returned under 
gravity to the main supply tank. A free axial gap on each 
side of the bearing was allowed to ensure that the discharge 
oil pressure did not exceed ambient pressure.

The bush was an interference fit within a steel bearing 
housing. To facilitate in the removal of the bush from the 
housing there were three tapped holes at the back of the 
housing through which bolts could be inserted to push the 
bush out. The bearing housing was rigidly clamped by a 
support pedestal.

4.3.4 Test Bearing Pedestal
As stated in Section 4.2.1, two of the design 

requirements for the bearing were the ability to change the 
running clearance and support flexibility. Pedestal 
flexibility was achieved using a cantilever design in which 
a hollow circular steel beam (0.70in O.D. and 0.54in I.D.) 
attached to the rear of the bearing housing could be clamped 
in any position by axial movement of the pedestal, using a 
dummy mass to simulate the bearing housing for the flexible 
support positions. A photograph of the test bearing housing 
and pedestal is shown in Plate 4.3. Thus, the flexibility 
of the bearing pedestal could be varied over a wide range, 
with the bearing rigidly supported when the pedestal was 
bolted directly under the bearing housing as shown in 
Plate 4.3.
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Plate 4.3 Test Bearing Housing and Pedestal

Plate 4.4 Gimbal Pedestal
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During the design and machining special care was taken 
to obtain concentricity of bush, bearing housing and 
cantilever support beam. To maintain axial alignment of the 
bearing with that of the shaft for rigid and flexible 
support conditions, a guide block or "tongue" was attached 
to the underside of the pedestal using dowels.

A pedestal base plate was constructed in which a channel 
or guide strip was made from sections of steel bolted to a 
plate using dowels, Plate 4.3. Hence, by keeping the 
"tongue" located in its channel as the pedestal was moved to 
obtain different flexibilities, ensured that axial alignment 
was maintained. With the aid of T-slots also attached to 
the pedestal plate it was possible to bolt the pedestal to 
its plate at any position within its range of movement, 
Plate 4.3.

Radial clearance could be infinitely varied from zero to 
0.010in (0.254mm) by axial movement of the pedestal base 
plate. This was done using guides located with dowels on 
each side of the pedestal base plate, Plate 4.3* The guides 
were bolted to a large main base plate measuring (60x18x1)in 
or (1524x457•2x25.4)mm and weighing 3061b (139kg). The 
guides ensured that the pedestal plate was constrained to 
move in an axial direction only relative to the 
shaft-bearing axis, thus, maintaining alignment of the 
bearing and shaft. The pedestal plate could be bolted to 
the main base plate in any position within its range of
movement.
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Movement of the pedestal plate was achieved by rotation 
of the threaded bolt attached to the pedestal plate and 
slipring assembly support, which in turn was fixed to the 
main base plate, Plate 4.3*

Clearance was measured by moving the pedestal plate 
forwards until zero clearance was obtained in the journal 
(this was tested for by attempting to rotate the main test 
shaft, which in the zero clearance position was locked) and 
then zeroing a clock gauge. The pedestal plate was then 
moved back a known distance (measured on the clock gauge) so 
that, knowing the taper angle, the running clearance could 
be found, nominally to within three significant figures.

4.3*5 Gimbal Pedestal
As described in Section 4.2 it was decided to have one 

test bearing and a rolling contact bearing for the other 
support, because of the desire to investigate a wide range 
of bearing parameters. In the work of (47), a self-aligning 
double row spherical track ball bearing secured by means of 
a collet to the shaft was employed. Unfortunately, 
vibrational problems were found to be associated with this 
method of fixing. Thus, it was decided to mount the rolling 
element bearing employed in this project in a gimbal 
support. This would allow the bearing to pivot about two 
orthogonal planes, acting as a hinged support.
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A drive collar was attached to the end of the test shaft 
opposite to the test bearing, by a Ringfeder locking device 
(as employed for the flywheel), Figure 4.1. The drive

b ycollar was supported within the gimbal mounting two SKF
A

precision deep groove ball bearings, type 16008 P6,
separated by a spacer and two Belleville springs, IEC 6008. 
It was arranged so that the mid-plane of the two bearings 
coincided with the gimbal centre line.

A bearing ring was attached to the two bearings by means
rof clampings located on the outside of each bearing. The
A

bearing ring contained two diametrically positioned Barden 
bearings SFR6, which allowed the bearing ring to pivot about 
a horizontal axis by means of two grub screws, which were 
screwed through an outer-ring into the Barden bearings, 
Plate 4.4.

The outer-ring also contained two Barden bearings, which 
allowed it to pivot about a vertical axis by means of a 
further two grub screws, which were screwed through the 
mounting plate into the Barden bearings. The mounting plate 
was bolted to a rear mounting or pedestal, Figure 4.1 and 
Plate 4.4.

The driven shaft (test shaft) was connected to the 
driving shaft via a Panamec flexible coupling BSZ 5, with 
the gimbal and pedestal so positioned that the centreplane 
of the coupling coincided with the gimbal plane of action.
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As listed in Section 4.2.2, alignment of the shaft with 
the test bearing was a parameter it was thought desirable to 
have control of. This was achieved by having clearance 
holes in the mounting plate. By slackening the bolts 
securing the mounting plate to the pedestal it was possible 
to move the test shaft horizontally or vertically. This was 
achieved by adjustment of screws located against blocks on 
the mounting plate, Plate 4.4. Movement of the shaft was 
measured by two clock gauges.

As with the test bearing pedestal the gimbal pedestal 
also had a guide block or "tongue" located on its underside 
with dowels. By constraining the guide block to move in its 
guide channel, axial alignment of the gimbal pedestal was 
ensured for any position of clamping. Also, with this 
method shorter test shafts could be employed as the gimbal 
pedestal would remain aligned as it was moved towards the 
test bearing. The driving shaft in this case would have to 
be extended to ensure that the mid-plane of the flexible 
coupling between driven and driving shaft still coincided 
with the centreline of the gimbal.

The drive shaft contained a roll pin which located in a 
channel of the drive collar. This was installed as a safety 
precaution against breakage of the flexible coupling, 
leaving the test shaft coasting to a stop. If this were to 
happen the roll pin would drive the test rotor and it would 
still be possible to stop the rotor using the disc brake.
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4,3*6 Loading Mechanism
To alter the bearing load a mechanism was designed which

* could apply a maximum load of 31lbf (138N) in any direction 
in a vertical plane. A front and rear view of the loading 
device is shown in Plate 4.5. It consisted of a beam 
connected to two arms which in turn were attached to a 
support boss which could rotate within the main support 
bracket. The support boss could be locked in any position 
by means of a clamp disc.

A Novatech load cell was attached to the beam by means 
of a self-aligning housing, the lower end of the cell was

• connected to a link arm via another self-aligning housing. 
The link arm was connected to a load arm by means of two 
loading rods. The load arm contained a bearing in its 
housing which was a sliding fit on the main test shaft, 
Plate 4.5.

Terry compression springs D 12280, were inserted over 
each rod and fastened with washers and nuts in such a manner 
that they located against the underside of the loading arm. 
Thus, load could be applied to the shaft by compressing the 
springs equally, the resultant load registered by the load 
cell.

Changing the direction of the applied load was achieved 
by slackening the bolts on the clamping disc and rotating 
the loading mechanism to the desired angle and retightening
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Plate 4.5 Front and Rear Views of Loading Mechanism

►

Plate 4.6 Disc Brake Assembly
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the bolts. The main support bracket and loading mechanism 
could be moved axially and bolted in any postion relative to 
the shaft in the same manner as for the test bearing and 
gimbal pedestals. Two of the loading devices were 
constructed.

4.3.7 Oil Supply System
A separate framework was used for the oil supply unit. 

Oil was supplied from a tank to the test bearing by means of 
a Varley double helical gear pump. A Fairley filter 
containing a 1 micron filter element was used to protect the 
test bearing. A water cooled heat exchanger was 
incorporated in the by-pass circuit to control the oil 
temperature in the tank. The oil supply pressure to the 
bearing was set at the desired value by adjustment of the 
by-pass valve and a needle valve in the supply line. Oil 
supply pressure to the bearing was measured using a 
calibrated Budenburg diaphram gauge.

Flexible pipes were used in the connections between the 
oil supply framework and immediately prior to the test 
bearing housing, so that the supply pipe did not affect the 
housing motion for the flexible pedestal experiments and to 
prevent the transmission of vibration coming from the gear 
pump. Drained oil from the bearing was collected under 
gravity by two flexible pipes and returned to the tank.
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The lubricant used in all the test was Shell SAE 30, its 
viscosity was measured using a Ferranti-Shirley viscometer 
with a rotating cone contacting a plate. A calibration 
graph of viscosity against temperature is shown in 
Figure 4.4.

4.3.8 Drive Unit
A Mawdsley 5.5 HP (4.1KW) DC motor incorporating a 

thyristor controller was used to vary the speed of the 
rotor. This provided a speed control from zero to 3000 RPM. 
The higher speed range necessary for the test rotor was 
obtained using two crown pulleys and a flat belt. The large 
pulley was attached to the shaft of the electric motor and 
the smaller driven pulley was attached to a lay-shaft 
supported by two self-aligning plummer-blocks, Plate 4.1. 
This arrangement gave a theoretical top speed of 10,000 RPM.

To prevent vibration from the drive unit reaching the 
test rotor through the drive conections, the test rotor was 
coupled to the drive via a Panamec flexible coupling 
(Section 4.3.5) and a Hardy Spicer cardan shaft with a 
double universal joint, Plate 4.1. A pneumatically operated 
Twiflex disc brake was incorporated between the gimbal 
pedestal and the cardan shaft, Plate 4.6. The cardan shaft 
was bolted to a flange on the disc brake assembly and also 
to another flange attached to the driven pulley lay-shaft, 
Plate 4.1. The disc brake assembly was installed as a 
safety precaution, allowing the rotor to be slowed down
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through resonances and stopped rapidly in the event of an 
emergency. The braking torque could be varied by adjustment 
of the air supply pressure.

4.3.9 Support Frame
The main base plate together with the test rotor were 

bolted to a framework made from mild steel box section 
tubing. The support frame consisted of an upper frame from 
which was suspended a 1 ton concrete block supported by two 
steel straps which were bolted to the upper frame. The 
purpose of the concrete block was to provide a stable
platform to which the support pedestals and vibration 
measuring transducers could be attached.

The upper frame was supported by a lower frame with the 
aid of eight bolts, two on each side of the frame. When
experiments were being conducted the upper frame with the
test rotor on its base plate and the suspended concrete 
block were uncoupled from vibration originating from the
drive unit and the foundations by inflation of four 
Firestone pneumatic tyres or airmounts, one located at each 
corner of the frame, between the upper and lower frames 
Plate 4.7. The cardan shaft with its universal joints and 
splined shaft allowed for the movement between the drive
shaft and the test shaft when the airmounts were inflated.
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Plate 4.7 Airraounts and Support Framework

k

Plate 4.8 Instrumentation



4.4 INSTRUMENTATION

The horizontal and vertical movement of the shaft at the 
same location was measured by two orthogonally fixed 
non-contacting capacitive transducers (Wayne Kerr MD1), 
mounted on a bracket which could be moved along the shaft, 
thus, allowing the vibration to be monitored at any point, 
Plate 4.1.

The probes were connected by co-axial cables to a two 
channel Wayne-Kerr frequency modulated amplifier, Plate 4.8, 
which gave a voltage analogue of the transducer signals. 
Each probe was calibrated as a unit, together with its 
co-axial cable and amplifier, Figures 4.5 and 4.6. The 
sensitivity of the probes were nominally 1 volt per 0.050in 
(1.27mm) or 20mV/0.001in (20mV/0.00254mm).

Motion of the test shaft at a distance of 2.0in (52mm) 
from the mid-plane of the journal was measured by two 
non-contacting eddy current probes (Dymac M61 ) , fixed at 
right angles in brackets which were bolted to the bearing 
housing, Plate 4.3*

The probes were connected by cables to two Dymac eddy 
probe drivers (type M606) energised by a 24 volts DC power 
supply, Plate 4.8. The probes and drivers operated by 
providing a DC voltage proportional to the distance between 
probe tip and the surface of the shaft being monitored. All
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VERTICAL PROBE (x-DIR) 
18.4mV/0.OOlin.
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DISTANCE (mils)

Figure 4.5 Calibration for Vertical MD1 Transducer Probe
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HORIZONTAL PROBE (y-DIR) 
22.5mV/0.001 in.

Figure 4.6 Calibration for Horizontal MD1 Transducer Probe
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Dymac units were factory calibrated and drivers and eddy 
probes were interchangeable with less than 5̂  performance 
change without recalibration. Hence, it was not necessary 
to calibrate these units in-situ. The usable range of the 
probe, at 200mV/0.001 in (200mV/0.0254mm) sensitivity, is 
typically 0 to 0.085in (2.16mm).

The accuracy of both the capacitive probes and the eddy 
current probes were ± 0.0005in (±0.01 3mm).

The whirl orbits were observed by connecting either the 
eddy current probes or the capacitive probes to a dual beam 
Telequipment oscilloscope set for the x-y mode, Plate 4.8.

Frequencies and amplitudes were measured by connecting 
anyone of the probes to a single channel Spectral Dynamics 
micro FFT (Fast Fourier Transform) analyser Plate 4.8, which 
at any set speed of shaft rotation would display the 
frequency spectrum. It was possible to set sensitivity 
controls on the analyser depending on which type of probe 
was in use, so that amplitudes were obtained in thous or 
millimeters at half peak or peak to peak values.

The shaft speed was measured by an inductive probe 
placed close to a 60 teeth disc located on the driving shaft 
between the disc brake assembly and the gimbal pedestal, 
Plate 4.4. The probe was connected to a Marconi digital 
frequency meter which displayed the speed in RPM with an 
accuracy of ±5 RPM, Plate 4.8.
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The chromel-alumel thermocouples located round the 
bearing bush were connected to a calibrated 10 channel 
Comark electronic thermometer. This instrument had an 
accuracy of ±0.5°C.

The load cells attached to the loading mechanisms were 
connected to a Novatech digital electronic load indicator 
(power supply plus amplifier) calibrated in pounds force 
(lbf) with an accuracy of ±0.21bf.

4.5 COMMISSIONING OF EXPERIMENTAL APPARATUS

4.5.1 Shaft and Bearing Alignment Setting

Considerable care was taken in the design and 
manufacture of the experimental apparatus to assure close 
alignment between the test bearing and the shaft axis.

It was decided to set the alignment of the test rotor 
(shaft and bearing) without the flywheel mounted on the 
shaft, as the shaft would then be approximately straight 
apart from a small static deflection due to the weight of 
the shaft (0.001in or 0.025mm at the centre) and lack of 
straightness due to machining (0.0005in or 0.013nim).

The bearing and gimbal pedestals were bolted in their 
respective locations with the bearing at zero clearance, 
using clock gauges (graduated in 0.0001in divisions) to
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ensure that the pedestals did not move as the clamping bolts 
were tightened. This was done to ensure that the guide 
blocks remained located against the sides of their 
respective guide channels, Sections 4.3.4 and 4.3.5.

The bolts securing the mounting plate to the gimbal 
pedestal were then loosened and the shaft moved sideways. 
At the same time the shaft was rotated by hand until it 
locked in position (that is, the shaft could not be 
rotated), at which point the horizontal movement was noted 
using a clock gauge. The shaft was then moved in the 
opposite direction until the shaft again locked and the 
reading taken. The shaft was then set at the mean of the 
two readings and the same procedure was repeated for the 
vertical direction and again for the horizontal. This 
ensured that the shaft and bearing were approximately 
aligned.

The bearing clearance was then set at a nominal value 
using the method described in Section 4.3.4, again using 
clock gauges to ensure that the bearing housing did not move 
as the clamping bolts were tightened. A clearance circle 
was then established by physically moving the journal around 
the bush, sufficient to cause contact between the journal 
and bush with no shaft rotation. At each of the 
corresponding journal positions, a photo-record obtained 
from the probes bolted to the bearing housing, in the x-y 
trace of the oscilloscope enabled one point of the clearance
circle to be determined.
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The shaft end at the gimbal support was then moved by 
small amounts horizontally and vertically (the movement 
noted on the two clock gauges) until the best clearance 
circle was obtained. The bearing clearance was then set at 
several values in-turn to check that the clearance circle 
remained unaltered.

4.5.2 Flywheel Alignment Setting
With the flywheel fixed in position on the test shaft, 

trial runs were then conducted. Large amplitude vibration 
of the test rotor was observed at low speed (the speed did 
not exceed 1000 RPM for safety reasons). It was deduced 

• that the vibration was due to a bend in the test shaft, and
the test rotor was subsequently removed from the rig and 
mounted between centres on a lathe for examination. The 
bend at the centre of the shaft was found to be 0.003in 
(0.076mm) and it was at first thought that this had occured 
during balancing or assembly of the rig. However, when the 
bolts of the Ringfeders clamping the flywheel to the shaft 
(Section 4.3.2) were loosened the bend resumed its orginal 
value of 0.0005in (0.013mm).

The bolts of the Ringfeder had originally being 
tightened to the recommended torque of 10ft-lbf (13*5N-m), 
and by repeating the procedure it was found that above a 
nominal torque value the shaft was again bent, with the 
flywheel tending to skew.
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As the Ringfeder exerts very large locking pressures on 
the shaft and boss it was thought that tightening the bolts 
until the shaft was just about to bend would be sufficient 
to clamp the flywheel. It is important that the bolts 
should be tightened diametrically, working round the 
clamping ring and at the same time repeating the procedure 
for the Ringfeder in the adjacent boss. Paint was then 
applied to the bolts to help prevent their becoming loose.

With the flywheel mounted on the shaft, both faces and 
the OD were skimmed in a lathe to reduce the skew of the 
flywheel to a minimum. The test rotor was again balanced in 
an Avery-Shenk balancing machine to the levels given in 
Section 4.3.2. Upon reassembly of the rotor within the rig, 
the level of vibration was found to have been reduced to an 
acceptable level, see Section 4.3*2.

4.5.3 Setting Loading Mechanism

Because ot the position of the flywheel it was not 
possible to position the loading device any closer than 8in 
(203mm) from the bearing centre. Thus, to obtain a given 
load at the bearing it was necessary to apply more load to 
the loading device than if it had been positioned closer to 
the bearing. This resulted in the shaft bending by a 
considerable amount and introduced new forces to the system. 
It was found that with the bearing deloaded the stability of 
the rotor was increased, and this was attributed to the 
forces originating from the loading mechanism.
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The loading device had been designed so that it would 
allow the shaft to whirl without impeding its movement, by 
incorporating freedom of movement in design. Unfortunately, 
this introduced random vibration which tended to obscure the 
whirl orbits observed on the oscilloscope. Due to the above 
mentioned effects on the dynamics of the rotor the use of 
the loading devices were dispensed with.

4.6 EXPERIMENTAL PROCEDURE

4.6.1 Instability Measurement
To study instability phenomena experimentally, the shaft 

speed was increased gradually until instability occurred, 
that is, the threshold was reached. This was observed on 
the oscilloscope or FFT in the real-time mode, in the form 
of a non-synchronous vibration of the shaft. The speed was 
then reduced by 2% to 3% and the rotor was then allowed to 
run at the reduced speed so that thermal equilibrium of the 
supply oil, bearing and its housing was obtained. This 
usually required about 10 to 15 minutes of running time. 
Bearing temperatures were then recorded and the oil pressure 
noted. The oil cooler was used to help stabilise the 
temperature of the oil in the supply tank.

The running speed was then incresed in small increments 
until non-synchronous vibration set-in. The rotational 
speed at which this occurred was taken as the instability
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onset speed (stability threshold). At this threshold speed, 
the shaft vibration was recorded using the storage 
facilities of the FFT, the speed was then reduced until the 
non-synchronous vibration ceased. This avoided subjecting 
the rotor to excessive vibration for any length of time. 
The amplitude and frequency of the instability plus the 
shaft speed were then recorded from the stored frequency 
spectrum of the FFT.

To correlate the theoretical predictions of threshold 
speed with the experimentally measured results, the journal 
running position (equilibrium position) was found from 
hydrodynamic theory using the measured values of journal 
speed, bearing clearance and oil viscosity in the Sommerfeld 
number of equation (2.22). An effective viscosity of the
lubricating oil was used in equation (2.22). This was
calculated from the mean temperature obtained in the
hydr©dynamically loaded region of the bearing, and the
effective viscosity obtained from Figure 4.4. The 
corresponding dynamic coefficients, equations (2.31) and 
(2.32) were then obtained by interpolation from the 
eccentricity corresponding to the calculated Sommerfeld 
number.

4.6.2 Critical Speed Measurement
Critical speeds of the test rotor were obtained by 

accelerating the rotor through its resonance, and at the 
same time using the peak hold facility of the FFT to store
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the peak amplitude spectrum of the acceleration run. The 
critical speed was then obtained by locating the peak 
amplitude and the corresponding synchronous frequency 
(critical speed) from the spectrum.

Normally, all amplitudes and frequencies (synchronous 
and non-synchronous) were measured at steady rotational 
speeds of the shaft using the real time capability of the
TTR’T

It was not possible to calculate the running position of 
the journal at the critical speed, as the rotor was 
accelerated through its critical speed to avoid damaging 
vibrations building up. Hence, in the correlation of the 
predicted critical speeds with those obtained from 
experimental measurement, an estimated running position of 
the journal was used. This was obtained by running the 
rotor at a steady speed at which the vibration level was 
acceptable (that is, as near the critical as possible), and 
then calculating the running position of the journal as 
described in Section 4.6.1. It will be shown in Chapter 5 
that for the small range of eccentricity over which the 
rotor operated, the critical speed could be taken as 
constant for a given bearing clearance and pedestal 
flexibility. Hence, measurement of the bearing temperatures 
at a critical speed was unnecessary.



CHAPTER 5

CRITICAL SPEEDS OF A ROTOR SUPPORTED BY AN 
OIL-FILM BEARING ON A RIGID 

AND FLEXIBLE PEDESTAL

INTRODUCTION
TEMPERATURE PROFILES AROUND THE BEARING 
DAMPED CRITICAL SPEED ON A RIGID PEDESTAL 
RESPONSE TO UNBALANCE
DAMPED CRITICAL SPEED ON A FLEXIBLE PEDESTAL



5.1 INTRODUCTION

This chapter deals with the measurement of the first 
damped critical speed of the experimental test rotor. This 
was mounted in a circular journal bearing of L/D=1/2, and 
contained two axial feed ports, Section 4.3.3. The bearing 
was supported by both rigid and flexible pedestals (see 
Section 4.3.4). The critical speeds were clearly defined by 
peak amplitude measurement (see Section 4.6.2) and phase 
angle measurement was not regarded as essential.

Correlation with theory was made using the Transfer 
Matrix Method detailed in Chapter 3, the four stiffness and 
damping coefficients given in Chapter 2 were used to 
represent the dynamic properties of the test bearing. 
Damped critical speeds of the rotor were predicted from the 
steady-state peak response to synchronous unbalance (Section 
3.4.5).

The computer programmes for the bearing coefficients and 
rotor bearing system dynamics are detailed in Appendices C 
and E respectively. A check on the accuracy of the 
programmes is made by comparison with published data.

For the bearing coefficients the data given by Lund and 
Thomsen (64) was used in the programmes of Appendix C. 
Figures 5.1 and 5.2 are plots of the non-dimensional 
stiffness (K) and damping (C) coefficients against
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CIRCULAR BEARING WITH TWO AXIAL GROOVES 
L/D=l/2, a=20°, y=Q
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Figure 5.1 Stiffness Coefficients of Lund and Present Work
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Figure 5.2 Damping Coefficients of Lund and Present Work
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eccentricity (e) given in (64) with those of the present 
work, for a bearing length to diameter ratio (L/D) of 1/2, 
angular feed groove width (a) of 20 degrees and 
non-dimensional feed pressure ratio (Y) of 0. It can be 
seen from the graphs good agreement is afforded. Figures
5.3 and 5.4 are plots of the coefficients used for the test 
bearing analysis, with L/D=1/2, a=30° and y=0.

Testing the computer programmes of Appendix E for the 
rotor dynamics is detailed in the stability measurement of 
Chapter 6.

Figure 5.5 is a graph of Sommerfeld Number, 
Equation 2.22, against eccentricity for a =30°, 60°, 90°. 
Figure 5.6 is a plot of the attitude angle (({O versus 
eccentricity showing the so called "equilibrium 
semi-circles".

As detailed in Sections 4.6.1 and 4.6.2, the mean 
temperature of the lubricant in the bearing was used to 
estimate an effective viscosity from Figure 4.4. This value 
was then inserted into Equation 2.22, along with the other 
bearing parameters to find the Sommerfeld Number and the 
corresponding eccentricity was interpolated from Figure 5.5.
This value of e was then used to interpolate the
corresponding stiffness and damping coefficients of
Figures 5.3 and 5.4 respectively, and, hence, to find the
dynamic coefficients for the operating conditions of the
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CIRCULAR BEARING WITH TWO AXIAL GROOVES 
L/D=l/2, a = 30° , y=0
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Figure 5.3 Stiffness Coefficients for Test Bearing
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Figure 5.4 Damping Coefficients for Test Bearing
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Figure 5.5 Bearing Load Curves for Three Groove Angles
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L/D = 1/2, y = 0
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a = 60°
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Figure 5.6 Bearing Equilibrium 'Semi-Circles' for 
Three Groove Angles
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test bearing. The dynamic coefficients were also computed 
for a values of 60° and 90° withy=0.

An important variable is the flexibility parameter of 
the bearing-rotor system and is defined as S/c, where 6 is 
the maximum static deflection of the rotor and c is the 
bearing radial clearance. This quantity indicates the 
change in flexibility-of the rotor as 6 varies, for fixed c. 
In the experimental work 6 was fixed at 0.005in (0.127mm) 
and for comparison with theory c was set at 0.003in 
(0.076mm) in the calculations, giving a 6/c value of 1.7.

5.2 TEMPERATURE PROFILES AROUND THE BEARING

Figures 5.7, 5.8 and 5.9 show the measured temperature 
distribution at the mid-plane of the bearing bush, for a 
values of 30°, 60° and 90° respectively. These were 
recorded by thermocouples located radially, approximately 
1mm from the bore, Section 4.3.3. The bearing clearance was 
set at 0.003in (0.076mm), giving a c/R value of 0.0024. At 
each shaft speed the oil feed pressure (Pf) was set at 2psi 
(13.8KPa), and the oil supply and bearing housing were 
allowed to reach thermal equilibrium. Assistance in 
stabilising the oil temperature was provided by the oil 
cooler, Section 4.3*7.
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P^=2psi, c=0.003in

Figure 5.7 Temperature Profile Around Bush as Function of
Shaft Speed (RPM) for a = 30°
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P^=2psi, c=0.003in

Figure 5.8 Temperature Profile Around Bush as Function of
Shaft Speed (RPM) for a = 60°
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P^=2psi, c=0.003in

% TEMP. 70°C

Figure 5.9 Temperature Profile Around Bush as Function of
Shaft Speed (RPM) for a = 90°
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The projected bearing load is defined as (W/LD) where W 
is the gravitational or steady load on the bearing. This 
was set at 9.2psi (63.4KPa) for the test bearing and gave a 
Y value of 0.2 for Pf=2psi. In the theoretical computation 
of response and critical speed, Y was set at 0 as it was 
determined that a theoretical Y value of 0.2 had no 
noticeable effect on the results.

As was expected a temperature rise in the loaded region 
of the bush was measured in the direction of rotation, with 
no noticeable rise in the unloaded region. It is observed 
from Figures 5.7, 5.8 and 5.9 that an increase in speed 
causes a steady increase in temperature. This was found to 
occur even though the oil supply temperature was stabilised, 
and it was observed that changing the oil supply pressure, 
and hence the flow, had no apparent effect. It would appear 
that the grooves had little influence in disrupting the 
circumferential re-circulation of the oil in the bearing 
film. The operating temperature level, is therefore, 
governed by an overall heat exchange mechanism for the 
bearing assembly.

Operating the rotor at between 6000RPM and 7000RPM then 
decreasing the speed rapidly to a lower level resulted in an 
immediate drop in the measured temperatures, approaching the 
temperature of the oil supply. Hence, the thermocouples 
appear to measure temperatures close to those of the actual 
oil-film. The mean value of the thermocouple readings in
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the inlet to outlet film region was used to estimate the 
effective viscosity.

5.3 DAMPED CRITICAL SPEED ON A RIGID PEDESTAL

Analysis and experiment were carried out to determine 
the effect of certain bearing parameters upon the first 
damped critical speed of the test rotor with the residual 
unbalance present after balancing, Section 4.3*2. 
Computations were carried out using a mathematical model of 
the test rotor-bearing system. This model is illustrated in 
Appendix G, and the physical properties of the test bearing 
and rotor are listed in Appendix F.

Figure 5.10 shows the calculated effect of the 
eccentricity upon the critical speed of the rotor in the x 
and y directions. The occurrence of two critical speeds is 
due to the asymmetric stiffness of the bearing. The input 
data for the computer programme is shown in the figure. For 
reference, the presence of zero as well as non-zero 
gyroscopic effects are shown. It is immediately obvious 
that gyroscopic effects have a strong influence on the 
critical speeds. This effect is more apparent at high 
eccentricity. In general, gyroscopic effects tend to raise 
the critical speed because of their stiffening effect upon
the shaft.
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It can be seen from Figure 5.10 that for the range of 
eccentricity ratio e=0.4 to 0.6, the change in critical 

* speed is ver y  . s m a l l  . This is fortuitous as it was not
feasible to calculate the running eccentricity from the 
Sommerfeld Equation at the critical speed due to large 
amplitude vibrations occurring at the critical speed, which 
require a finite time to build up. Thus, the value of e was 
estimated at a safe running speed near to the critical 
speed,and at which the level of amplitude was considered to 
be acceptable.

Hahn (4M) predicted from theoretical work that changing 
t the bearing clearance will not, in general, affect the

location of the critical speed resonance. To examine this, 
the radial clearance (c) of the test bearing was varied from 
0.003in (0.076mm) to 0.007in (0.178mm) in steps of 0.001in 
(0.025mm) and the first damped critical speed was measured 
at each value. Figure 5.11 shows the variation of critical

espeed in the x and y directions for both the exprimentally
A

measured and the computed values. The calculated values of 
critical speed were obtained assuming a fixed value of 
eccentricity. Table 1(a) gives the percentage difference 
between theoretical and experimental values as compared with 
the theoretical values for the x-direction, and Table 5.1(b) 
gives the same percentage difference in the y-direction.
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P^ = 2psi, a = 30°

*

X ____EXPT. CRITICAL x-DIR. ____________THEOR.
O --- EXPT. CRITICAL y-DIR.

Figure 5.11 Variation of Critical Speed with Clearance
for a Rigid Pedestal
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RADIAL 
CLEARANCE 

c (0.001in)

EXPT. N -| 
x-DIR 
(KRPM)

THEOR. N1 

x-DIR 
(KRPM)

% DIFFERENCE 
(THEOR.-EXPT.)/ 

THEOR.

3 2.865 2.950 2.9
4 2.805 2.900 3.3
5 2.685 2.900 7.4
6 2.655 2.900 co 4=r

7 2.625 2.900 9.5

TABLE 5.1(a) Effect of Bearing Clearance on Critical Speed 
t in the x-Direction

RADIAL 
CLEARANCE 
c (O.OOlin)

EXPT. N-| 
y-DIR 
(KRPM)

THEOR. N-j 
y-DIR 
(KRPM)

% DIFFERENCE 
(THEOR.-EXPT.)/ 

THEOR.

3 2.940 3. 100 5.2
4 2.910 2.950 1.3
5 2.790 2.950 5.4
6 2.780 2.950 5.8
7 2.775 2.950 5.9

TABLE 5.1(b) Effect of Bearing Clearance on Critical Speed
in the y-Direction
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Figure 5.11 and Tables 5.1(a) and 5.1(b) indicate that 
as the bearing clearance is increased the measured values of 
critical speed of the rotor in the x and y directions are 
reduced. The reduction is more pronounced for the clearance 
range of 0.003in to 0.005in. Subsequent increase in the 
clearance produced a less obvious drop. Theoretically, a 
decrease in critical speed for the x and y directions was 
also obtained as the clearance was increased from 0.003in to 
0.004in, thereafter, the criticals remained constant. The 
agreement between theory and experiment is good, especially 
at smaller clearances, Tables 5.1(a) and 5.1(b).

The constant value of computed critical speed, 
Figure 5.11, is probably due to the assumption of constant 
eccentricity. It is more likely that as the clearance was 
changed experimentally, small changes in the eccentricity 
occured. Hence, it is thought that the most probable 
explanation for the reduction in critical speed with 
increase in bearing clearance is a change in the bearing 
oil-film stiffness or damping due to the variation in 
eccentricity.

Generally, fluid-film damping tends to increase the 
critical speed. De Choudhury et al (65) and Ruddy and 
Summers-Smith (66) produced undamped critical speed maps by 
plotting the critical speeds of the first three lateral 
modes of vibration against bearing support stiffness. In 
(65) the change in support stiffness in the horizontal and
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vertical directions, with speed are also plotted on the same 
maps. The point of intersection of these curves defines the 
undamped critical speeds in the horizontal and vertical 
directions for the different modes of vibration.

De Choudhury determined the damped critical speed from 
the rotors response to unbalance and found that fluid-film 
damping has the effect of raising the undamped critical 
speed. To verify this the oil-film damping coefficients 
were set to zero in the computer programmes to ascertain the 
effect on the critical speed. For c=0.003in it was found 
that the first critical was reduced to 2.7KRPM.

Thus, damping appears to be an unlikely cause of the 
drop in critical speed, as it raises the critical rather 
than lowering it. Although, an increase in damping would be 
expected as the clearance was increased, no significant 
decrease in the measured amplitudes at steady speeds were 
found that would indicate this.

The effectiveness of the damping would depend upon where 
the nodes of vibration were located with respect to the 
bearings. That is, if the nodes were located at the bearing 
there would be no relative movement between journal and bush 
and damping would not be expected to have an effect. If the 
nodes were located away from the bearings, relative movement 
between journal and bush would occur. This relative
movement would produce a velocity dependent force. The
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larger the displacement, the larger the velocity, and, thus, 
the larger the force. In this case the fluid-film damping 
would raise the undamped critical speed and control 
vibration amplitudes.

It was found for the test rotor that the computed mode 
shape had a node located at the journal bearing for the 
first lateral bending-mode of vibration and, hence, damping 
was not an important factor in controlling critical speed or 
amplitude levels. It, therefore, appears that the reduction 
in critical speed resulted from a small reduction in the 
oil-film stiffness as the clearance was increased.

5.4 RESPONSE TO UNBALANCE

Using the measured value of residual unbalance the 
computed values of the peak to peak amplitude Ax, occurring 
at the critical speed at the shaft centre are shown in 
Figure 5.12. The curves predict the change in amplitude 
with eccentricity for three values of the groove angle, that 
is, a=30°, 60° and 90°. It can be observed that an increase 
in groove angle results in an increase in amplitude levels, 
and that in order to limit amplitudes it is desirable to 
restrict bearing operation to eccentricities not greater 
than approximately 0.6. ■ Minimum amplitude for all three ci 
values occurs over the interval of e=0.30 to 0.35.
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Figure 5.12 Amplitude at Shaft Centre Versus Eccentricity
at Critical Speed
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Measured levels of amplitude over the entire speed range 
were found to be much larger than the computed values using 
the calculated running position of the bearing. For 
example, the measured value of Ax at the shaft centre for 
c=0.003in (0.076mm), a=30° and N=3500RPM was 0.004lin 
(0.104mm) and the computed value was 0.0012in (0.030mm). 
Similarly, the values of Ay were of the same order of 
magnitude as Ax . It was, thus, apparent that other forces 
were present, apart from residual unbalance.

Careful examination of the rotor revealed that the 
flywheel was skewed relative to the shaft by a small amount. 
This was measured using a clock-gauge and was found to be of 
the order of 0.0005in (0.013mm) and corresponded to a skew 
angle of 0.00015 radians.

When the skew angle was inserted in the "forcing 
column", Section 3*3.2, of the computer programme the 
additional gyroscopic moments arising from the skew of the 
flywheel gave better agreement with the measured values. 
Figure 5.13 is a Bode diagram (amplitude against speed) for 
measured and computed values of the amplitude, Ax, for 
c=0.003in and a=30°. Theoretically predicted values are 
still considerably lower when compared with experimental 
values.

There are several possible causes why experimental 
values are larger than the computed ones. They are listed
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SH A FT  S P E E D  N x l0 3 (R P M )

Figure 5.13 Resonance Curve at Shaft Centre
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and discussed below:

(i) error in the value of eccentricity;
(ii) flywheel skew;
(iii) shaft warp;
(iv) misalignment of the journal;

(i) From Figure 5.12 for *0 = 30°, it can be seen that as 
the eccentricity increases beyond the range of e =0.30 
to0.35, there is an increase in amplitude. As the shaft 
speed was increased, frequent checking of the eccentricity 
was therefore necessary. Bearing temperatures were recorded 
below and above the critical, and it was observed that the 
change in mean temperature had no significant effect on the 
calculated value of eccentricity.

(ii) Although the flywheel skew was measured with the 
rotor stationary, it is possible that while the shaft was 
rotating the flywheel could skew relative to the shaft, 
resulting in additional excitation forces.

(iii) The initial warp or bend of the test shaft was 
measured, Section 4.3.1, and found to be very small 
(0.0005in). But running the rotor could have caused the 
initial bend to change its magnitude and direction. Bishop 
and Mahalingam (67) have observed such behaviour and 
suggested that residual strain was responsible. They 
reached the conclusion that as a shaft passes through a



188

critical it undergoes distortions of varying magnitude and 
direction, and a small residual strain is retained when the 
shaft is brought to rest. This residual strain is large 
enough to effectively alter the magnitude and direction of 
the initial bend. Both (ii) and (iii) are proportional 
to m2.

(iv) Misalignment of the journal would be present in the 
test rotor due to static deflection of the journal within 
the bush. This would introduce moments in the oil-film, 
thus, setting up addtional forces within the bearing. 
Kikuchi (38) states that to obtain good agreement between 
theoretical and measured response, the rotational spring and 
damping coefficients due to the inclination of the journal 
within the bearing cannot be neglected when a flexible shaft 
is used.

The computed response for a values of 60° and 90° are 
also shown in Figure 5.13. It can be seen that an increase 
in groove angle results in an increase in the steady state 
peak response of the Bode diagram, but has little effect at 
other speeds.

It was stated that an increase in bearing clearance was 
found to have no noticeable effect upon amplitude response 
at fixed speeds below and above the critical. To check if 
large clearances reduced the peak response predicted by 
Barrett et al (68) and Hahn (44), the rotor was accelerated
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through its critical and the peak amplitude response 
recorded as described in Section 4.6.2. Unfortunately, it 
was found that as the clearance was increased the 
acceleration of the rotor through its critical was also 
increased, presumably because less friction was developed in 
the bearing with a corresponding reduction in power 
consumption. Attempts were made to adjust the acceleration 
of the rotor to the same value for each clearance setting, 
but this proved to be unsuccessful. Thus, no meaningful 
conclusions could be drawn from the results, as it was 
important to ensure constant acceleration for each clearance 
in order to compare peak amplitude values. Computed values 
of peak response at the critical were found to decrease as 
the clearance was increased. Increasing the clearance by 
133% from c=0.003in to 0.007in resulted in a decrease in 
amplitude of 53$ from Ax=0.0283in to 0.0133in.

For the same reason it was not possible to verify the 
findings shown in Figure 5.13, that is, an increase in peak 
response with increase in groove angle. This probably was 
due to a reduction in power consumption in the bearing as 
the fluid-film extent decreased with increase in groove 
angle, and a consequent increase in the rotor acceleration.

Figures 5.14, 5.15 and 5.16 are plots at the critical 
speed, of the computed instantaneous values of peak to peak 
amplitude Ax, Ay, bending moment Mx, My and shear force Vx, 
Vy, along the shaft for c=0.003in and a=30°, taking into
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c=0.003in, m^e^=0.00131b-in, m2e2=° •00291b-in, a=30°

VERT. Ax
HORIZ. A

y

Figure 5.14 Mode Shape at Critical Speed
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DISTANCE ALONG SHAFT (in)

Figure 5.15 Bending Moment at Critical Speed
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c=0.003in, m1e1=0.00131b-in, m2e2=o.oo291b-in, a=30°

Figure 5.16 Shear Force at Critical Speed
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consideration the skew effect. Figures 5.15 and 5.16 can be 
useful in the design stage as they can be used to predict 
stresses likely to be encountered in the shaft.

Inspection of Figure 5.14 shows a first lateral bending 
mode of vibration occurring at the damped critical speed, 
with nodes located at each support. As the right hand 
support is effectively pinned a node would be expected to 
occur at this point.

In general, the effect of oil-film bearings on the mode 
shape will depend upon their stiffness as compared with that 
of the rotor. The less stiff bearings are (relative to the 
shaft) , the more likely it is that the nodes will be 
displaced away from the bearings, and the vibration modes of 
the rotor-bearing system will be determined by rotor 
flexibility. Also, reduced bearing stiffness will lower the 
natural frequencies when compared to the case of rigid 
supports, with low support stiffness producing free modes of 
vibration. Conversely, as bearing stiffness is increased 
relative to the rotor, the bearing will tend to dominate the 
behaviour of the system producing at high bearing stiffness 
pinned modes.
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5.5 DAMPED CRITICAL SPEED ON A FLEXIBLE PEDESTAL

Figure 5.17 illustrates the computed change in damped 
critical speed against eccentricity for the case of the test 
rotor mounted in a journal bearing on an undamped flexible 
pedestal of specified stiffness. Mg and Mg represent 
bearing and rotor mass respectively, kp>x and kp?y are 
stiffnesses of the pedestal in the x and y directions 
respectively, and kg represents the stiffness of the rotor. 
The methods of calculating the rotor and pedestal 
stiffnesses and non-dimensionalising the pedestal mass and 
stiffness are given in Appendix H.

For the simple Jeffcott rotor mounted in elastic 
bearings, supported by flexible pedestals, neglecting 
bearing and support damping and gyroscopic effects, 
Gunter (31) found that the attitude angle, <f> , has a 
pronounced effect on the critical speed, particularly at 
high values of (J>. Figure 5.17 can be interpreted in terms of 
<J>. It is seen that high and particularly low values of <j>
have an effect on the critical in the vertical plane. Kirk
and Gunter (39) applied an analytical solution to more
general equations than those developed in (31) for the
Jeffcott model. They found that in the absence of bearing 
and pedestal damping and gyroscopic terms, two critical 
speeds were generated, one above and one below the original 
critical speed of the rotor on rigid supports.
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Figure 5.18 compares the computed and measured effect of 
vertical pedestal flexibility ratio, kp>x/kR, where kp is 
constant, on the critical speed of the test rotor. The 
rigid pedestal critical speeds are included for reference. 
The agreement between theory and experiment is reasonable 
over the range in which measurements were taken, with 
experimental values on the conservative side.

It can be observed that decreasing pedestal stiffness 
reduces rotor critical speed over a particular range, with 
the critical speed remaining constant above and below this 
range. It was considered unsafe to attempt to verify 
experimentally whether further reduction in pedestal 
stiffness below kp>x/kft=22 had any significant effect on 
critical speed, because large bearing housing vibration was 
experienced as the rotor was accelerated through its 
critical speed.

The reduction in critical speed in the y-direction is 
less than in the x-direction because the stiffness in the 
y-direction is greater than in the x-direction. Hence, for 
a given increase in pedestal flexibility ratio, kp>x/kR, and 
corresponding decrease in the stiffness ratio kp^/kp^y, the 
decrease in stiffness in the y-direction is less than in the
x-direction.
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6.1 INTRODUCTION

This chapter deals with both the experimental and the 
theoretical investigations of stability of the test 
rotor-bearing system. The fluid-film bearing is analysed by 
considering small perturbations of the journal away from its 
steady state (equilibrium) position. By this means the 
oil-film forces can be expressed in terms of linearised 
displacement and velocity coefficients, that is, stiffness 
and damping coefficients respectively (see Chapter 2). Lund 
(69) states that linear theory can be used to represent 
bearing reaction forces with satisfactory accuracy for 
amplitudes as large as 40^ of the clearance. This should 
cover the operating range in most practical applications.

Linear treatment of the equations of motion representing 
rotor-bearing systems is only feasible for a limited number 
of degrees of freedom. For more complex systems the 
equations of motion tend to be intractable, and solving for 
stability thresholds using standard techniques such as the 
Routh-Hurwitz criteria can be a tedious time consuming 
exercise.

Both McCallion (70) and Thomson (71) deal with several 
well known methods for predicting stability characteristics 
from a knowledge of the linear system equations. However, 
these techniques involve locating the eigen-values from the 
matrix or characteristic equation of the system. This can
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entail certain computational difficulties in achieving 
numerical stability and speed of convergence.

A frequently used method for solving the system matrix 
in stability analysis is the Q-R algorithm (see
Wilkinson (72)). It is quite general in application, 
converges quickly and is numerically very stable.
Computational run time is proportional to:

8N3

where N is the order of the system equations to be reduced.

Another technique, somewhat less popular as it entails 
solving for the eigen-values from the characteristic 
polynomial equation in its explicit form, is that of Muller 
detailed by Bishop et al (73). This involves searching for 
the eigen-values and extracting them in ascending order of 
modulus. In the present circumstances this is fortuitous as 
the stability of the rotor-bearing system is assessed by the 
eigen-value with smallest modulus.

As both the above methods are iterative in nature, their 
application to stability analysis of complex rotor-bearing
systems can lead to excessive use of computer time and
result in costly analysis, cf Lund (41), Ruhl and
Booker (74).
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6.2 STABILITY ANALYSIS USING THE TRANSFER MATRIX TECHNIQUE

In the present work a combination of numerical and 
graphical methods are used to assess the stability of the 
test rotor-bearing system for various operating conditions. 
The Transfer Matrix Method of Chapter 3 is used to generate 
the frequency determinant of the system, equation (3.51):

D | TTB | = 0

This determinant is a function of the imaginary exponent ift 
of equations (3*1) and (3.2), for synchronous vibration of 
shaft. The motion of the shaft can be generalised to 
include non-synchronous vibration by replacing ifl with the 
complex variable exponent X, where

X = o + ift 6.1

and a represents an exponential growth or decay, that is, a 
damping factor of the system. A positive value of o 
corresponds to an unstable system, and a negative value to a 
stable system.

The state variables given in equations (3*1) and (3*2) 
can be expressed in a simplified form by using state vector 
notation, that is:

Xt[z] [za] e 6.2
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where [z^] is an amplitude vector. Equation (3.50) which 
represents the overall transfer system matrix, relating 
state variables at either ends of the rotor is still valid 
for the more general type of motion. But now [Tt bI is a 
function of the complex variable X , instead of the real 
variable ft. For a non-trivial solution, the determinant of 
[Tt b] must be zero.

Thus :

D | X | = [Tt bI 6.3

D | X | = 0 6.4

Equation (6.4) can be regarded as the frequency equation of 
the system, and d | X I as the frequency determinant.

If the motion of the shaft is proportional to e^, then 
X must be an eigen-valvue of equation (6.4). Thus, for a 
given set of operating conditions, the system will be stable 
if all the values of X which satisfy equation (6.4) are such 
that their real parts are negative. If only one eigen-value 
has a positive real part, this is a sufficient indication 
that the system is unstable. The eigen-values, in general, 
will occur in complex conjugate pairs.

As equation (6.4) is a function of the complex variable 
X, it is clear that a numerical search for the eigen-values
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using one of the techniques mentioned in Section 6.1 is 
likely to be time consuming.

6.3 LEONHARD LOCUS PLOT

Considering the complex A-plane and complex D-plane and 
plotting the locus of the determinant, each point or 
eigen-value in the A-plane will be mapped to a corresponding 
point in the D-plane.

If a is set to zero, than a point in the A-plane 
travelling along the imaginary axis from ft = 0 to ft=°°, will 
map to a curved locus in the D-plane called the Leonhard 
Locus (75). This locus enables the stability of the system 
to be ascertained. For a stable system all the eigen-values 
will occur to the left hand side of the origin in the 
X-plane, and in the D-plane the Leonhard locus will encircle 
the origin, moving clockwise or anticlockwise as ft increases 
from zero. At the threshold of stability the locus will 
pass exactly through the origin of the D-plane. Several 
researchers have applied this technique successfully to 
complex rotor-bearing systems, eg: Morrison (28), (40), (46) 
and (60 ).

A typical Leonhard plot of the test rotor-bearing system 
stability is shown in Figure 6.1, for c=0.003in, a =30°, y =0 
and 6/c=1.7. Three loci are shown representing the system
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a)*=l .371 c=0.003in u> =359/Rs&
03*=1.401 a = 30°

Figure 6.1 Leonhard Locus Plot
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when it is stable, at the stability threshold and running in 
the unstable region.

Marked on the loci are values of non-dimensional 
frequency Q *(=fi/wg) for three values of non-dimensional 
shaft speed oj * (=a)/a>g) . It can be seen that in the stable 
region for w *=1.371, the locus rotates successively through 
each quadrant, encircling the origin. At w*=1.430, it is 
observed that the locus does not encompass the origin and 
the sytem is unstable. For an intermediate value of 
C0*T=1«4O1, the Leonhard locus indicates that the speed is 
very close to the threshold of stability, with an 
instability frequency of ft*T=0*859 and a ratio of 
f i .614.

To check the accuracy of the Transfer Matrix Method in 
conjunction with the Leonard Locus Plot, a comparison is 
made with published data. Lund (76) computed the stability 
threshold of a symmetric rotor mounted in two Ocvirk short 
bearings of L/D=0, with a disc positioned midway between the 
bearings. The stiffness and damping coefficients of the 
bearing are given in (76). Lund assessed the stability of 
the system from an eigen-value analysis, neglecting 
gyroscopic effects.

To compare the present method of analysis with that of 
Lund, it is necessary to non-dimensionalise the transfer 
matrices representing the bearing element, massless elastic
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beam element and point mass element (neglecting gyroscopic 
terms) as detailed in (59). For the simple symmetric 
bearing-rotor system modelled by Lund, non-dimensionalising 
the transfer matrices is a relatively easy exercise.

Figure 6.2 is a plot of non-dimensional threshold speed 
o)*t against eccentricity e for five values of flexibility 
parameter 6/c. Generally, the agreement between Lund’s 
results and the present work is very good. It is observed 
that decreasing the flexibility parameter raises the 
threshold of stability, with 6/c = 0 representing the case of 
a stiff rotor. Above e=0.79 the rotor becomes infinitely 
stable for all values of 6/c.

6.4 CHARACTERISTIC PATTERNS OF WHIRL AND WHIP

This section describes the general patterns of oil-whip 
(resonant whip) and oil-whirl as exhibited in the series of 
experiments performed in this investigation. The phenomena 
of whipping and whirling that were qualitatively common to 
all cases regardless of bearing parameters or operating 
conditions will be classified as inherent characteristics of 
whip and whirl.

In the test runs, during which the shaft speed was 
gradually increased, the commencement of self-excited 
vibration was usually characterised by small vibrations
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Figure 6.2 Stability Threshold for Several Shaft Flexibilities
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whose frequency was approximately half( the running speed. 
This occured over a speed range of several hundred R.P.M 
before large amplitude vibration set-in, that is, the 
threshold of stability. In some cases small vibrations were 
observed on the frequency spectrum corresponding to the 
critical speed of the rotor.

For small clearances it was found that as the speed was 
increased, the frequency corresponding to the critical speed 
of the rotor became the predominant frequency of the system 
and the rotor could be said to be in a state of whip. The 
transition usually occurred at speeds just above  twice the 
value of the first critical. As the speed was increased 
further the vibration persisted with only a small change in 
frequency. The whip frequency was found to approach an 
asymptotic value.

For larger clearances, the predominant frequency at a 
particular shaft speed, was found to be slightly less than 
half the running speed, and below the frequency 
corresponding to the critical speed. As the shaft speed was 
increased beyond the threshold a corresponding increase in 
the non-synchronous frequency was observed. This indicated 
that the rotor was subjected to whirl. For safety reasons 
the shaft speed was increased further by only a few hundred 
R.P.M. to verify that whirl was the predominant phenomenon. 
It was expected that with further increase in shaft speed 
the whirl frequency would eventually reach the critical
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frequency, and the rotor would then be in a state of whip. 
This would result in the characteristics described earlier 
in this section.

When a whirl or whip frequency predominated in the 
system, an increase in amplitude was observed. In most 
cases the change in magnitude was extremely pronounced, 
particularly at large clearances. With increase in speed, 
whip amplitude tended to rise initially and then level off. 
Whereas, when whirl occurred the amplitude was found to 
increase steadily with speed. Tondl (53) has observed 
similar effects. With the onset of large amplitude 
vibration associated with non-synchronous motion, the 
running frequency was usually reduced.

Earlier in this section, it was noted that initally 
small amplitude non-synchronous vibration were observed 
before the actual onset of whirl and whip at the stability 
threshold. This was observed on the oscilliscope screen as 
a transient motion in which the rotor would alternatively be 
stable and unstable, and the mainly synchronous orbit would 
grow and decay by small amounts in a cyclic manner.

With further increase in shaft speed, a small cusp 
would, in certain cases, form within the orbit. The cusp 
would grow rapidly into a large non-synchronous orbit at the 
threshold. With the shaft speed held steady, the orbit 
would rotate slowly round on the oscilliscope screen,
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growing and decaying by small amounts. The rotation of the 
orbit was probably due to the ratio of synchronous and 
non-synchronous motions being less than one-half.

Sub-harmonic frequencies equal to 1/2 and 1/3 of the 
running speed were also observed in the frequency spectrum. 
The associated amplitude was very small. Tondl (53) 
observed this phenomenon and attributed it to non-linear 
stiffness effects of the oil-film, excited by synchronous 
vibration of the rotor. It is possible to eliminate these 
effects by improving the balancing of the rotor.

6.5 SOME FACTORS AFFECTING STABILITY

This section deals with experimental and theoretical 
investigations of certain variables and their affect on the 
stability of the test rotor-bearing system. These variables 
and the order in which they are discussed are:

(1) bearing oil supply feed pressure
(2) position of oil feed groove
(3) oil feed groove angle extent
(4) journal bearing pedestal flexibility

For each variable, changes in the bearing clearance are also
investigated.
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6,5*1 Oil Supply Feed Pressure
As described in Section 4.3*3 oil was supplied to the 

test bearing through two axial feed ports, positioned at 90° 
with respect to the vertical plane. Figures 6.3, 6.4 and
6.5 depict the measured variation in non-dimensional 
stability threshold speed ra>p/a)g) versus non-dimensional 
feed pressure ratio y(Pf/Pb). Pf is the oil supply pressure 
and Pb is the specific bearing load W/LD. The experiments 
were conducted with a groove angle of 30° and for three 
values of bearing radial clearance c, that is, 0.003in, 
0.004in and 0.005in respectively.

Figure 6.3 also shows the computed variation of u)*t with 
Y for c=0.003in, for the test rotor-bearing system. Also 
shown for reference is the computed stability threshold 
point mass rigid rotor mounted in two identical journal 
bearings of L/D=1/2 and a=30°. The stability of this rotor 
was obtained using the Routh-Hurwitz criteria, Den Hartog 
(77).

Rigid rotor predictions of w a r e  considerably higher 
than those of the flexible rotor with gyroscopic effects 
included. The agreement between the trends of the computed 
results for the flexible rotor and measured values is good, 
but the experimental values are higher by as much as 31$ 
when compared with theory. Several possible explanations 
will be discussed later in this section.
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Figure 6.3 Stability Threshold Versus Feed Pressure Ratio
for c=0.003in
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Increasing the feed pressure has a stabilising effect, 
which becomes more pronounced as the clearance is increased, 
(see Figures 6.3, 6.4 and 6.5). It is also observed that at 
a particular value of y , additional increase in feed 
pressure has no effect on stability. The stabilising effect 
of feed pressure occurs at lower values as the clearance is 
increased. It was not practical to increase y beyond about 
2.6, because of excessive side leakage from the bearing.

It is thought likely that the stabilising effect is due 
to preloading of the bearing as the feed pressure is 
increased. Cole (48) and Newkirk and Lewis (19) have 
observed similar effects. Whereas, Akkok and Ettles (47), 
Pinkus (16) and Pope (49) have reported that increased feed 
pressure has a destabilising effect. Tondl (53) and Lund
(52) observed that increased oil pressure did not effect 
stability.

As the test bearing was lightly loaded (9«2p.s.i. or 
0.63bar), a low specific bearing load would only generate 
small hydrodynamic pressures, and hence an increase in 
supply pressure would tend to be more effective in 
preloading of the bearing. The increase in threshold speed 
with increasing clearance noted earlier can be explained by 
assuming that an increase in clearance, results in greater 
amounts of oil passing through the bearing. This oil would 
be pumped to considerable pressure within the bearing, 
producing a greater preloading effect.
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The destabilising effect of increased feed pressure as 
reported by the authors in (16), (47) and (49) can be 
explained by noting that generally, their test rotors ran 
with higher bearing loads. This implies that the cavitation 
boundary region is sharply defined, and hydrodynamic 
pressures are larger than those for light loads. Increase 
in feed pressure tends to suppress cavitation with a 
consequent generation of full,360° film conditions which 
promotes instability.

Figures 6.6. and 6.7 respectively, show plots of 
measured non-dimensional threshold frequency ft *̂ .( = ft>p/a)g) and 
the threshold ratio of fi against y , for c=0.005in,
0.004in and 0.003in. Computed values are also shown for the 
case of c=0.003in.

From Figure 6.6 it is seen that the value of ft *x 
increases with y , a more noticeable increase occurring with 
larger clearances. Above certain values of Y , ft remains 
constant. For c=0.003in, a small increase in ft*T is
observed. Comparing these results with Figure 5.11, it can 
be seen that for c=0.004in and 0.005in, the limit of the 
instability frequency at higher y values corresponds 
approximately to the critical speed for each clearance. 
Hence, constant values of indicate that the rotor is
subjected to oil-whip. However, below these same values of 
y, the rotor is whirling. This was verified by holding the
supply pressure constant and increasing shaft speed to
obtain the expected increase in whirl frequency.
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Figure 6.6 Threshold Frequency Versus Feed Pressure Ra.tio



218
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Figure 6.7 Threshold Ratio Versus Feed Pressure Ratio
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It is seen in Figure 6.6 that little increase of 
occurs for c=0.003in. The value of corresponds closely
to the critical speed of the rotor over the measured range 
of y values and thus, indicates that the rotor is subjected 
to whip. Agreement between predicted and measured values of 
*T is good.

The occurrence of whip at different values of supply
pressure explains why no increase in the instability speed 
o)*t is observed in Figures 6.3» 6.4 and 6.5, beyond a
particular value of y . Hence, as the shaft speed is 
increased beyond the onset of whip, the whip frequency
persists and, therefore, represents the maximum attainable 
stability limit of the system.

Figure 6.7 shows that the threshold ratio decreases
gradually, and becomes constant when and reach their
respective maximum values. The predicted values of 
for c=0.003in are higher than the corresponding measured
values. The computed values decrease from 0.615 at y =0 to 
0.540 at y=3* Measured values did not exceed 0.475 and 
decreased to 0.455. The computed values of the ratio are 
higher because, although, the predicted values of ft *t are 
accurate, the corresponding values of are considerably
on the conservative side, (see Figures 6.3 and 6.6).

The differences between the theoretical and experimental 
thresholds of Figure 6.3 are attributed to a combination of
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four possible factors. These are listed and discussed 
below:

(i) inaccurate specification of boundary conditions 
(that is, cavitation occurring at ambient or 
sub-ambient pressures) in the bearing calculations

(ii) inaccurate estimates of an effective oil viscosity
(iii) misalignment of the journal within the bush
(iv) reduced gyroscopic effects

(i) As the test bearing was lightly loaded (9.2p.s.i. or 
0.63 bar) it is plausible that the assumed Reynolds boundary 
conditions for the bearing calculation were incorrect. This 
is because of the possibility of sub-ambient pressures 
developing withinthe bearing oil-film.

Akkok and Ettles (47) examined theoretically and 
experimentally the effect of small bearing loads P5 , on the 
stability threshold. On their test apparatus it was 
possible to vary P5 up to a maximum value of 50p.s.i. 
(3»45bar). They observed experimentally that changing pt, 
had no signficant effect on stability.

In their calculations they allowed for sub-ambient 
cavitation and cavitation at ambient pressure (Reynolds 
condition). It was observed that good agreement between 
theory and experiment was obtained using the Reynolds 
boundary condition for a range of bearing loads. When
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sub-ambient pressures were allowed, reduction in resulted 
in a lower stability threshold. This was in disagreement 
with observation.

It would, thus, appear that sub-ambient pressures were 
not present, and the cavitated area vented at atmospheric 
pressure as assumed in Reynolds boundary condition.

This evidence is supported by the successful running of 
flexible test rotors with light bearing loads. In 
references (16), (49), (53), Woodcock and Holmes (78), and 
Mayes and Davies (79), bearing loads varied between 7.2 and 
24.6p.s.i. (0.5 to 1.7bar) without any effect on stability. 
In three of the references, that is, (16), (78) and (79), 
the loading was of the order of 8.7p-s.i. (0.6bar) or less. 
Under such light loads, almost pure Sommerfeld conditions 
would be expected producing instability over a wide speed 
range.

(ii) Experiments showed no increase in bearing temperatures 
as the shaft speed was increased with increase in feed 
pressure to determine the change in stability threshold. 
Thus, the effective viscosity could be considered 
constant. This simplified the theoretical analysis, and 
subsequently only occasional checks of the temperature were
carried out.
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To examine the effects of inaccurate temperature 
measurements and consequently inaccurate effective viscosity 
determinations, several values of viscosity were used in the 
computations of The values of ri used correspond to a
range of values of Sommerfeld Number or eccentricity centred 
around the original value. The computed results of w 
against y are shown in Figure 6.8, for c=0.003in. For 
comparison the experimental results of Figure 6.3 are also 
shown.

The trend of the results corresponding to an effective 
viscosity of 57cP agrees quite well with the measured 
values. The value 57cP represents an increase of 68$ on the 
original value of 34cP, and corresponds to a drop in mean 
temperature of 18.6$. However, it is thought unlikely that 
temperature measurements could be in error to such an 
amount. The maximum increase in u)*<p for n=57cP, when 
compared with the value corresponding to n=34cP is only 
6.4$.

Figure 6.9 shows the computed variation of w *t with 
eccentricity e , for four values of y . This confirms that, 
in general, increasing y results in a gradual increase in

over most of the eccentricity range.

(iii) As stated in Section 5.4, misalignment of the journal 
within the bearing bush introduces moments in the oil-film. 
The additional forces within the bearing can be represented
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« THEOR. 13cP c=0.003in, a=30°, a) =359R/s
THEOR. 34cP g

-------  THEOR. 57cP

Figure 6.8 Stability Threshold Versus Feed Pressure Ratio 
for Several Values of Effective Viscosity
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by four rotational stiffness coefficients and four 
rotational damping coefficients. This is in addition to the 
eight linear or direct coefficients which are usually 
applied.

Static misalignment was present in the test
rotor-bearing, due to the deflection of the rotor under
gravity. Some misalignment was also present in the system 
due to its design. That is, one end of the rotor was free 
(test bearing) and the other end pinned or simply supported. 
It was estimated from the design of the rotor, and for 
typical operating conditions that static misalignment was 
approximately thirty times greater than the misalignment due 
to the pinned support. Thus, static deflection of the shaft 
was considered the most important factor contributing 
towards shaft and bearing misalignment.

However, Kikuchi (46) states that although oil-film 
moment tends to raise the stability threshold, its effect is 
insignificant in ordinary shaft systems. In the present 
work it was found that the introduction of a flexible 
pedestal (Section 6.5.4) resulted in better agreement 
between theory and experiment. For low flexibility, 
agreement is typically 7$. This was attributed to the 
achievement of better alignment between the bearing and 
shaft, permitted by support flexibility. This leads the 
present researcher to the conclusion that misalignment can 
be an important factor.
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Another possible influence on the computed values of 
arises from the occurrence of small orbital motions of the 
journal within the bearing bush. This could result in 
transient variations of the stiffness and damping 
characteristics of the oil-film.

(iv) Owing to the rotor design gyroscopic moments must have 
been present, and their effect on the stability of the 
system could be important (46). In general, reducing the 
gyroscopic moment raises the threshold of stability. For a 
typical set of operating conditions it was calculated that 
with zero gyroscopic moment the threshold of stability, w *t , 
is raised by 8.6$ above the non-zero case. The effect of 
zero gyroscopic moment is more pronounced with increase in 
eccentricity, (see Section 6.5.3.3).

The flywheel was attached securely to the shaft as 
discussed in Section 4.3.2. Reduced gyroscopic effects may 
have occurred, however, if the flywheel axis could skew 
relative to that of the shaft by a small amount during 
running.

Another possible explanation for the discrepancy between 
theory and experiment could have arisen if damping were 
present in the Ringfeder locking device. This was 
considered possible since the Ringfeder was assembled with 
thin layers of oil on the tapered rings.
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This damping would manifest its presence as a reduction 
of inertia. However, from Chapter 5 agreement between 
computed and measured critical speeds were good. Thus, 
reduced inertia effects were discounted, as they would have 
resulted in lower measured critical speeds.

6.5.2 Position of Feed Grooves
This section is concerned with the effect on stability, 

of supplying oil to the bearing through either the upstream 
or downstream groove. Figures 6.10, 6.11 and 6.12 depict 
the variation in measured non-dimensional threshold speed 
u}*t with non-dimensional feed pressure Y . Tests were 
conducted for three values of bearing radial clearance c; 
0.003in, 0.004in and 0.005in. The groove angle a was 30° in 
all cases.

In these experiments oil was supplied separately to each 
groove and a series of tests were conducted to ascertain the 
effect of increased feed pressure upon stability speed.

The major conclusion of these particular experiments is 
that supplying oil to the downstream groove alone, has a 
marked destabilising effect compared with supplying oil to 
both grooves, Figures 6.10, 6.11 and 6.12. For reference 
the upper graph represents the case of oil supply to both 
grooves, that is, Figures 6.3, 6.4 and 6.5 respectively. 
Cole (48) has observed a similar effect, although he made no 
further attempt to investigate in any detail.
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Figure 6.10 Threshold Speed Versus Feed Pressure Ratio for Different Groove Positions 
and c=0.003in
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a=30° , oug=278R/s
O   STABILITY THRESHOLD GROOVE UPSTREAM
X --- STABILITY THRESHOLD GROOVE DOWNSTREAM
□   STABILITY THRESHOLD BOTH GROOVES

Figure 6.12 Threshold Speed Versus Feed Pressure Ratio for 
Different Groove Positions and c=0.005in
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Plotted alternatively on the upper graphs of Figures
6.10, 6.11 and 6.12 are points representing oil supply to 
both grooves and the upstream groove alone. Close agreement 
is obtained between the graph representing both grooves and 
the alternative points representing the upstream groove. It 
is deduced that the upstream groove alone produces the same 
change in stability threshold with increase in feed pressure 
as that obtained by using both grooves.

It is thought that supplying oil to the groove in the 
diverging film region, that is, 90° after the load, would 
tend to promote film continuity. Suppressing cavitation in 
this manner will promote instability. Conversely, supplying 
oil to the groove position 90° before the load, that is, in 
the converging film region will tend to reduce film
continuity. A reduction in film continuity will promote
cavitation and increase the stability of the rotor.

Another interesting observation can be made from Figures
6.10, 6.11 and 6.12, by comparing the separate factors 
influencing speed with the upstream and downstream grooves. 
For a given value of y , the destabilising effect is, 
generally, greater for an increase in clearance. This is 
probably due to the increase in clearance generating a
greater film extent and, hence, moving the cavitation 
boundary downstream closer to the downstream groove. In 
this case it is expected that feed pressure will be more
effective in destabilising the rotor.
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6.5.3 Feed Groove Width
This section deals with the effect on stability of an

increase in the width or angular extent of both feed ports.
Three values of groove angle a are compared, and they are 
30°, 60° and 90°. Several other effeCts were investigated in

A

combination with groove angle, and so it is convenient to 
subdivide this section under the headings of these effects.

In this section oil feed pressure to the bearing pf, was 
fixed at 2p.s.i. (13.8KPa).

6.5.3*1 Hysteresis effect
The hysteresis effect is characterised by a reluctance 

of the rotor to enter into a state of whirl or whip. 
However, once this state has been entered and shaft speed is
reduced, the whirl or whip will persist to a speed lower
than the one at which it commenced. Tondl (53) and Pinkus 
(16) have observed this phenomenon.

Figure 6.13, 6.14 and 6.15 depict the change in measured 
threshold speed Nt (R.P.M.) with bearing radial clearance 
c(in), for a=30°, 60° and 90° respectively. These figures 
also show the end of instability on rundown (hysteresis 
effect). It is generally observed that increasing bearing 
clearance reduces the stability threshold, and produces a 
more pronounced hysteresis effect.
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X ---  STABILITY THRESHOLD (BOTH GROOVES)
O ---  END OF INSTABILITY ON RUNDOWN

6.13 Threshold Speed Versus Bearing Clearance for a-30°
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X-- STABILITY THRESHOLD (BOTH GROOVES)
O __ END OF INSTABILITY ON RUNDOWN

Figure 6.14 Threshold Speed Versus Bearing Clearance for a-60°
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X—  STABILITY THRESHOLD (BOTH GROOVES) 
O —  END OF INSTABILITY ON RUNDOWN

Figure 6.15 Threshold Speed Versus Bearing Clearance for a=90°
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Figure 6.16 shows the variation in measured Np against 
c, for a=30°, 60° and 90°. This enables a direct comparison 
of groove angle effect to be made. It is observed that 
increase in groove angle reduces the stability threshold. 
Akkok (51) and Akkok and Ettles (50) have observed the same 
trends from rigid rotor investigations.

In Figure 6.17 the change in measured threshold
frequency fp(CPM) against radial clearance c(in) is shown 
for a=30°, 60° and 90°. Increase in groove angle lowers
threshold frequency, and is particularly noticeable for 
a=90°. fp also reduces in value as c is increased. From 
comparing these results with those of Figure 5.11 it is 
observed that the rotor is in a state of oil-whip for
c=0.003in and a=30° and 60°. Only at these particular
values does the threshold frequency correspond to the 
critical speed of the rotor. At all other values of c and a  

a state of oil-whirl would arise in which the instability 
frequency is less than the critical speed.

6.5.3*2 Feed groove position
The tests detailed in this section are similar to those 

described in Section 6.5.2. The effect of supplying oil to 
the downstream groove alone was investigated for three
groove angles. Figures 6.18, 6.19 and 6.20 depict the
variation in measured threshold speed Np with clearance c
for groove angles a=30°, 60° and 90°. Also shown for
reference are the stability thresholds obtained using both
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*

X   STABILITY THRESHOLD (BOTH GROOVES)
O   STABILITY THRESHOLD (GROOVE DOWNSTREAM)

Figure 6.18 Comparison of Stability Threshold for a=30
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Figure

X  STABILITY THRESHOLD (BOTH GROOVES)
O   STABILITY THRESHOLD (GROOVE DOWNSTREAM)

6.19 Comparison of Stability Threshold for a=60°
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X--  STABILITY THRESHOLD (BOTH GROOVES)
O   STABILITY THRESHOLD (GROOVE DOWNSTREAM)

Figure 6.20 Comparison of Stability Threshold for a=90°



grooves. For all values of a , use of the downstream groove 
alone yeilds a lower threshold than that obtained using both 
grooves.

In Figure 6. 21 the effect of downstrem groove threshold 
against clearance for the same three groove angles are shown 
for comparison. Thresholds for ct=60° and 90° are close 
together and an appreciable amount lower than the threshold 
for a=30°. This would seem to indicate that an increase in 
the downstream groove angle tends to suppress cavitation and 
helps promote instability.

6.5.3 » 3 Theoretical predictions
Figures 6.22, 6.23 and 6.24 depict the computed

non-dimensional threshold speed o)*t versus eccentricity e , 
for the test rotor-bearing system when employing groove 
angles a=30°, 60° and 90° respectively. The bearing radial 
clearance c=0.003in and the non-dimensional feed pressure 
Y = 0. The values of corresponding to the case where the
model of the system has zero gyroscopic moment are also 
plotted. Included in the figures for reference are values 
of a)*i- for a point mass rigid rotor mounted in two identical 
bearings having the same dimensions as the test bearing. 
The threshold of this latter sytem was determined using the 
method described in Section 6.5.1.

Several conclusions can be drawn from Figures 6.22, 6.23 
and 6.24. The stability threshold of the rigid rotor is



TH
RE
SH
OL
D 

SP
EE
D 

N^
xl
CT
 (

RP
M)

243

X---  STABILITY
O --- STABILITY
□ --- STABILITY

THRESHOLD (GROOVE 
THRESHOLD (GROOVE 
THRESHOLD (GROOVE

DOWNSTREAM) a=30° 
DOWNSTREAM) a=60° 
DOWNSTREAM) a=90°

Figure 6.21 Comparison of Stability Threshold for Three Groove Angle
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Figure 6.22 Stability Threshold Versus Eccentricity for
a = 30°
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Figure 6.23 Stability Threshold Versus Eccentricity for
a = 60°
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Figure 6.24 Stability Threshold Versus Eccentricity for
a = 90°
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higher than that of the flexible rotor, with and without 
gyroscopic effects. At high eccentricity (e^0.8) both the 
rigid rotor and flexible rotor without gyroscopic effects 
have a infinite stability threshold at infinite speed. At 
low values of e, the thresholds for the flexible rotor with 
and without gyroscopic effects are very similar and, thus, 
gyroscopic effects are not important. However, for higher 
values of e, Figures' 6.22, 6.23 and 6.24 indicate that 
gyroscopic effects can have an influence on the stability of 
the system. For the rigid rotor and flexible rotor without 
gyroscopic effects, the change in threshold speed over a 
large range of eccentricity is quite small. As the groove 
angle increases the stability threshold for the rigid rotor 
approaches that of the flexible rotor.

Figure 6.25 is plotted to provide a direct comparison of 
the effect of groove angle on the threshold speed of the 
flexible rotor with gyroscopic effects. Reference to this 
figure indicates that over almost the entire eccentricity 
range, increasing groove angle produces a destabilising 
effect. This is in agreement with the experimental findings 
discussed in Section 6.5.3.1.

Table 6.1 lists the theoretical and experimental results 
along with their percentage difference for c=0.003in and 
groove angles of 30°, 60° and 90°. The experimental values 
were obtained for a y value of 0.22 which corresponds to 
Pf=2psi (13.8KPa). Theoretical threshold speeds are given
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GROOVE
ANGLE
a 0

EXPT. 
a)*T

THEOR.
a)*T

g.e.̂ 0

% DIFF. 
EXPT-THE0R/ 

THEOR

THEOR.
w*T

g.e.=0

% DIFF. 
EXPT-THEOR/ 

THEOR

30 1.79 1.40 27.8 1.52 17.8

60 1.66 1.28 29.7 1.48 12.2

90 1.32 1.22 8.2 1.33 0.7

Table 6.1 Gyroscopic Effect on Instability Threshold for
Three Groove Angles
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both for cases which include gyroscopic effects (g.e.) and 
those which do not.

The theoretical cases with zero gyroscopic effects show 
better agreement with the experimental results. In 
Section 6.5.1 the possibility of reduced experimental 
gyroscopic effects were discussed. Allowing for the 
possibility that the flywheel could have skewed by a small 
amount, it is thought likely from the test rotor design that 
some gyroscopic effect was present.

Figure 6.26 depicts the: computed mode shape at the
instability threshold for a = 30°, y =0 and c=0.003in. It
shows the peak to peak amplitude in inches in the
x-direction plotted against distance along the shaft in
inches.

The mode shape was calculated using the method described 
in Section 3.4.4, in which one of the non-zero state 
variables at the left hand end of the rotor was assigned an 
arbitrary value. It is then possible to solve for the 
remaining state variables. Intermediate state vector 
variables along the length of the rotor-bearing system were 
then obtained by matrix multiplication. By measuring the 
non-synchronous amplitdue at the threshold, and at a 
particular axial position on the rotor it is possible to 
assign values to all other stations along the computed mode 
shape .
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Figure 6.26 Mode Shape at Stability Threshold
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The mode shape is similar to the critical speed mode 
shape of Figure 5.14. This is because the frequency of
Figure 5.26 is almost identical to the critical speed of
Figure 5.14. Figure 6.26 thus represents the whip mode
shape in which the critical speed resonance of the rotor is 
excited.

6.5.4 Pedestal Flexibility
This section deals with experimental and theoretical 

investigations of the effects of mounting the test bearing 
on a flexible pedestal without damping, on stability of the 
test rotor-bearing system. The method of obtaining support 
flexibility is described in Section 4.3.4. In all the tests 
conducted, the feed pressure Pf was set at 2psi (13.8KPa)
and the oil feed groove angle was 30°.

Figures 2.27, 2.28 and 2.29 depict the change in
measured non-dimensional threshold speed w *t with 
non-dimensional pedestal stiffness kp>x/kp. kp)X is the 
stiffness of the support of the x-direction and kp is the 
stiffness of the rotor which remains constant. The method 
of non-dimensionalising the support stiffness is given in 
Appendix H. Figures 2.27, 2.28 and 2.29 correspond to
radial clearances c of 0.003in, 0.004in and 0.005in
respectively, and they show the end of instability on
rundown.
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X --  EXPT. STABILITY THRESHOLD
O --  EXPT. END OF INSTABILITY ON RUNDOWN

Figure 6.28 Stability Threshold Versus Vertical Pedestal Stiffness Ratio for c=0.004in
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Figure 6.29 Stability Threshold Versus Vertical Pedestal Stiffness Ratio for c-0.005in
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In Figure 6.27 the computed values of w are plotted 
against kpyX/kR are shown for c=0.003in, a =30° and y =0. 
Also shown for reference are the theoretical and 
experimental thresholds on rigid supports.

For all three values of clearance it is seen that the 
introduction of support flexibility lowers the stability 
threshold. Newkirk (5) in his pioneering experimental 
investigations of 1925 observed similar effects for 
fluid-film bearings on flexible supports. To limit the 
bearing housing vibration to an acceptable level, 
particularly when running through, the critical speed, 
pedestal flexibility was not reduced below kp?x/kp=22.5.

From the theoretical results of Figure 6.27 it is 
interesting to note that at kp>x/kR=l4, the stability 
threholds obtains a minimum. Subsequent reduction in 
kp,x/kR below this value results in a sudden increase in oj*t 
to the maximum value obtained over the range kpjX/kR=1 to 
5000. AT kp>x/kR=4.2, again obtains a minimum, with an 
increase of kp>x/kp above this value again resulting in a 
sudden increase in From kp>x/kj{=4.2 to 1, the value 
of W*T remains constant.

This minimum threshold value corresponds to the system 
critical speed of the rotor. That is, the critical speed of 
the rotor mounted in its journal bearing and supported on 
the flexible pedestal. The corresponding theoretical 
threshold ratio is ft*T/(A)*T= 1 •



Thus, in general, the rotor stability threshold is 
always equal to or greater than the system critical speed, 
and is a function of kp>x/kR. The introduction of support 
flexibility without damping will therefore reduce the system 
critical speed (Section 5.5) and the instability threshold. 
Lund (32) reached similar conclusions from a theoretical 
analysis of a flexible rotor mounted in gas bearings on 
flexible undamped supports. Gunter (31) studying 
theoretically the Jeffcott rotor with rigid bearings on 
undamped flexible supports also observed comparable trends. 
His rotor model was subjected to whirl instability arising 
from internal friction.

It can be observed from Figure 6.27 that good agreement 
is obtained between theory and experiment. The agreement in 
most cases is better than that obtained between similar 
experiment and theory for a rigid pedestal. A possible 
explanation is that with a flexible pedestal the bearing was 
allowed to align with the shaft, thus, reducing the 
misalignment present in the system.

Figure 6.30 is a plot of measured threshold speed 
Nt (RPM) against bearing radial clearance c(in) for the six 
values of support flexibility considered. Also shown is the 
threshold speed for rigid support case. It is seen that for 
a flexible support, an increase in clearance results in a 
gradual reduction in stability threshold. An increase in 
support flexibility also produces gradual lowering of the
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Figure 6.30 Comparison of Threshold Speeds for Different Pedestal
Flexibilities
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threshold. For the rigid support case (kp>x/kg=°°) a more 
pronounced reduction in threshold speed occurs as the 
clearance is increased. There is also marked decrease in N-p 
from the rigid support to the first flexible support, that 
is, kpfx/kg=1189. This would appear to substantiate the 
idea that misalignment was reduced for the flexible support 
case, particularly as misalignment would be more pronounced 
at smaller clearances

Figure 6.31 shows computed values of non-dimensional 
threshold speed go*t plotted against non-dimensional support 
mass ratio Mg/Mg, where Mg is the support mass and Mg is the 

♦ mass of the rotor which is constant. The clearance c is
0.003in, the groove angle a=30° and the non-dimensional feed 
pressure y is 0. The stability threshold for a rigid 
support is also shown for reference. Three values of
kp,x/kR are considered and for the test rotor Mg/Mg was 
fixed at 0.63.

From Figure 6.31, it can be seen that an increase in 
support mass results in a reduction of the stability 
threshold. At particular values of Mg/Mg, the threshold
reaches a minimum value. Subsequent increase in Mg has no 
effect on the threshold. This minimum threshold value 
corresponds to the critical speed of the system including 
support mass and stiffness. Over the range in which 
computations were performed, varying the support mass 
produced no signficant effect on critical speed.
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Figure 6.31 Effect of Support Mass Ratio on Threshold Speed for c=0.003in
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Thus, an increase in support mass lowers the stability 
threshold, and the threshold is always equal to or greater 
than the system critical speed. Gunter (31) made similar 
deductions from his model of the Jeffcott rotor supported on 
rigid bearings with flexible supports.

6.6 SOME FURTHER THEORETICAL PREDICTIONS

This section describes a number of additional 
theoretical investigations on the test rotor-bearing system 
for which no comparison was made experimentally.

6.6.1 Elliptical Bearing
Figure 6.32 shows the non-dimensional threshold speed 

o)*t plotted against eccentricity e for an elliptical or 
two-lobe bearing. The bearing had an L/D=1/2, groove angle 
a =30°, a clearance c=0.003in and a non-dimensional feed 
pressure y=0. The preload A =0.6, where A=d/c and d is the 
offset between bearing c e n t r e s . The threshold for the model 
of the flexible rotor without gyroscopic effects, and the 
threshold of a point mass rigid rotor are also depicted in 
the figure for comparison.

Figure 6.32 resembles that of Figure 6.22, for a 
circular bearing with the same bearing parameter values. 
However, for the two-lobe bearing, the difference between 
threshold values for the flexible rotor with and without
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Figure 6.32 Stability Threshold for Elliptical Bearing A=0.6
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gyroscopic effects and the rigid rotor are considerably more 
pronounced.

For the case of the flexible rotor with gyroscopic 
effects, Figure 6.33 compares the stability threshold for 
the two-lobe and circular bearings, each shown individually 
in Figures 6.32 and 6.22 respectively. The circular bearing 
has better stability properties for values of eccentricity 
up to 0.4. However, beyond eaO.4, the two-lobe bearing is 
considerably more stable.

6.2.2 Flexibility of the Rotor
For the test rotor the maximum static deflection 6 was 

fixed at 0.005in. It is possible to define a flexibility 
parameter for the rotor-bearing system in terms of the ratio 
of <5/c, where c is the radial clearance of the bearing and 
is constant.

Figure 6.34 depicts the stability threshold plotted 
against eccentricity for four values of the flexibility 
parameter. 6/c=1.7 corresponds to the case of the test 
rotor-bearing system for c=0.003in, a=30° and y =0.

It can be observed that an increase in flexibility 
parameter results in a reduction in the stability threshold 
over the entire range of eccentricity. This arises because 
an increase in rotor flexibility lowers its critical speed 
and, hence, the speed at which instability is encountered.
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Figure 6.33 Comparison of Threshold Speed for Circular and Elliptical Bearings
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CHAPTER 7

* CONCLUSIONS

7.1 MAJOR CONCLUSIONS
7.2 SUGGESTIONS FOR FURTHER WORK
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7.1 MAJOR CONCLUSIONS

* The main conclusions of the experimental and theoretical
results are now summarised.

(1) The experimental work has confirmed the overall 
validity of the linear analytical model of the 
rotor-bearing system. The model predicts damped 
critical speeds, amplitude responses and 
instability thresholds. The stability of the 
system is assessed using a graphical method based 
on the Leonhard Locus.

(2) Reducing the bearing clearance increases the first
critical speed of the rotor. For small clearances 
(e.g. 0.003in), agreement between theory and
experiment is within 3%•

(3) Introducing an undamped flexible support reduces
the rotor critical speed. Experimentally
determined critical speeds are somewhat lower than 
those predicted theoretically. With high support 
stiffness the difference was 11$. The discrepancy 
rose to 26$ with low support stiffness.

(4) Theoretical predictions of amplitude response are 
considerably lower than the measured values. 
Several possible explanations are given of which 
the most likely are; flywheel skew, shaft bending 
and journal misalignment.



A decrease in bearing clearance has a pronounced 
stabilising effect. This is partly attributed to 
an enhancement of misalignment with reduction in 
clearance. In general, the rotor-bearing system 
exhibits whirl for large clearances, whereas, the 
system tends to whip for small clearances.

A hysteresis effect on the instability threshold 
was observed for rigid as well as flexible 
supports. This phenomenon becomes more pronounced 
as the bearing clearance increases.

The groove angle has a strong influence on 
stability. Improvement in the stability 
performance can be obtained by decreasing the 
groove angle. Differences of up to 30$ between 
theoretical and experimental values of threshold 
speed are found. Some possible reasons are given 
for this.

It is demonstrated that oil feed from two 
pressurised axial grooves influences stability, 
probably causing a preloading effect. Higher feed 
pressure enhances stability. Discrepancies of up 
to 31$ between theory and measured values are 
observed, the theoretical results being the lower 
ones. Some possible reasons are investigated.
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(9) It is observed that supply of oil to the downstream
groove alone has a destabilising effect. For 
larger clearances (e.g. 0.005in), increasing the
feed pressure lowers the stability threshold, 
probably by control over film extent.

(10) Supplying oil to the upstream groove alone produces 
no significant observable changes to the system 
stability, compared with supplying oil to both 
grooves.

(11) The use of an undamped flexible pedestal affects 
the system stability. An increase in the threshold 
boundary is achieved by increasing the pedestal 
stiffness. Experimental values are higher than 
those predicted; a discrepancy of 6% obtained with 
high support stiffness, increasing to 20/& with low 
support stiffness.

(12) Experimental work appears to justify the use of 
Reynolds boundary condition, implying that 
cavitation occurs at ambient pressure for a lightly 
loaded bearing, even for conditions close to the 
threshold of instability.
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7.2 SUGGESTIONS FOR FURTHER WORK

In Section 6.6.2 some theoretical predictions are 
presented, indicating the effect of an elliptical bearing 
and an increase in shaft flexibility on the stability of the 
rotor-bearing system.

It is recommended that experimental and theoretical work 
be undertaken to ascertain the effect of different bearing 
designs (e.g. variation in preload of elliptical bearings, 
off-set halves etc.) and shaft flexibility on the dynamic 
behaviour of the rotor-bearing system. Introducing extra 
discs on the shaft and changing oil viscosity together with 
the existing variables could also be examined. Pedestal 
damping could also be investigated together with the 
existing flexible pedestal facility.
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Define non-dimensional feed pressure ratio y , with 
respect to projected or specific bearing load F/LD:

i.e. y = Pf/(F/LD) (A.1)

where Pf = feed pressure

Non-dimensional bearing pressure is:

P _ P* 6a)n (A. 2)
c2

Define non-dimensional feed pressure Pf* using equation 
(A.2)

i.e. Pf _ Pf* 6wn __
c2

Non-dimensional bearing load is:

(A.3)

F - F* 6ton L _  (A.4)
c2

Substituting Pf and F from equations (A.3) and (A. 4) 
respectively, into equation (A.1) gives:

y = Pf*/(F*R/D) (A.5)

Substituting D=2R into equation (A.5) gives:

Pf* = 0.5yF* (A.6)
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The non-dimensional form of Reynolds equation (2.10) is
(dropping *):

Introducing the finite difference representation of the 
first and second order partial derivatives for pressure P:

Figure B. 1 shows the "computing molecule" for the 0 -z 
co-ordinate system. Points P̂ , Pe » Ps anc* ?W refer to the 
pressure at compass points North, East, South and West 
respectively, on the molecule.

Substituting equations (B.2) to (B.4) into equation 
(B.1) and rearranging gives:

(B.2)

—  =  ( P j + 1 , k  "  P j - 1 , k ) / 2 A 036 ( B . 3 )

(B. 4)

2(1/(A9 )2 + a / ( A z ) 2 ) p j)k = (i/(Ae)2+a(e)/2Ae)Pj+1>k+(i/(A6)2 
-a(6)/2A6 )Pj_i ,k+(a/tAz)2)Pj)k+1 + (a/(Az)2)Pj)k_l_b(e) (B.5)



290

%

P N ( J , K + 1 )

Figure B.l Finite Difference Computing Molecule
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%

where a(0) 1 —  , b(0) - 1_ [RHS of (B.1)] and a _ /£\2
h 30 h3 V l /

Writting equation (B.5) in algorithm form gives:

P(J,K) _ _  P(J+1 ,K) 
C

_  P(J - 1 , K) + P ( J , K+1) + 
C C

+ —  P(J,K-1) 
C

b (e)
c

(B. 6)

where C = 2 (1 / ( A 0) 2 + a/ (A z) 2 )

CE = 1 / ( A 0 ) 2 + a ( 0 ) / 2 A 0

CW = 1 / ( A 0 ) 2 - a(  0 ) / 2A0

CN = CS = a/ (A z)2
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cc****
C****ccc

PROGRAM R0UTH(INPUT# OUTPUT#TAPE 5 - INPUT*TA P E 6- O U TP U T)
COMMON P < 1 0 0 * 2 0 ) # T H ( 1 0 0 ) # T H B ( 1 0 0 ) # C e T 1 0 0 ) * C W ( 1 0 0 ) * 6 ( 1 0 0 ) * H ( 1 0 0 )  
COMMON H 3 ( 1 0 0 ) * I P ( 1 0 0 # 2 0 ) # E C ( 1 0 ) * A T ( 1 0 ) * A T D ( 1 0 ) * C N # C S # D T * D T S # O Z  
COMMON D Z S * D L S # J T # J T N * J R # J S # J S N * K T # K T N # K T 1 # P I E # A T T * P S I * P S I D # E C C  
COMMON DELTA*WT*W*SMF#WX1#WY1#XI*Y l#NITER#WRES*AXX*AXY#AYX#AYY  
COMMON. BXX#BXY*BYX*BYY#WX*WY#NMAX*CC2#RELAX2  
COMMON/DATA/ X D # Y D * D E L X * D E L Y # IB T

* 1AIN. PROGRAM FOR A LEMON BEARING WITH PRELOAD OR C IRC ULA R  
♦ BE AR IN G ** * **

SET  BEARING TYPE  I B T
1 FOP C IR CUL AR  BEARING
2 FOR LEMON BEARING  
IB T  ■ !

W R I T E ( 6 * 10 2 )  
rlR I T E  ( 6# 106)
W R I T E ( 6 # 1 0 3 )

DER IVE  CONSTANTS FOR F I N I T E  D IF F E R E N C E  PROCEDURE  
P I E - 4 . * A T A N ( 1 . )

SET  NO. OF NODES IN C I RC UM FER EN TIA L  D IR E C T IO N
J T - 7 3
J T N - J T - 1
J R - ( J T * l > / 2
J S N - J R + 1
J S - J R - 1
D T - 2 . * P I E / F L O A T ( J T N )
D T S -D T * * 2

S E T  GROOVE ANGLE IN DEGREES  
IB  E T A - 3 0

CONVERT GROOVE ANGLE TO HALF NODAL WIDTH 
J P - I B E T A * J T N / ( 3 6 0 * 2 )
J P 1 - J P + 1
J l - J R - J P
J 2 - J P + J P
J 3 - J T - J P

SET  NO. OF NODES IN  AX IA L  DI R E C T IO N
K T - 1 1
K T N - K T - 1
K T 1 - K T + 1
D Z - 1 . / F L O A T ( KTN)
D Z S - D Z * * 2

SE T  A X IA L  LENGTH TO DIAMETER RATIO
L / D - l / 2
D L - 2 .
D L S - D L * * 2
S E T  V E L O C I T Y  XDOT YDOT
X D - 0 . 0 0 1
YD-XD

S E T  DISPLACEMENT DELTA X DELTA Y
D E L X - 0 . 0 0 1
D E L Y - D E L X

READ NON-DIMENSIONAL FEED PRESSURE RATIO
PEAD(5*150)GAMMA
WRITE(6*107)GAMMA

I N I T I A L I S E  PRESSURE F I E L D  TO ZERO 
DO 11 J - l *  J T  
DO 12 K - l # K T 1  
P( J * K . ) - 0 .

12 CONTINUE  
11 CONTINUE

I N I T A L I S E  INTEGER PRESSURE F I E L D  TO ZERO 
DO 22 J - l #  J T  
DO 23 K - 1 * K T 1  
I P ( J * K ) - 0  

23 CONTINUE  
22 CONTINUE

I N I T A L I S E  INTEGER PRESSURE F I E L D  TO 1 
DO 19 K-3#  KT1  
DO 18 J - 1 # J P 1  
I P ( J # K ) - 1  

18 CONTINUE
DO 17 J - J 1 # J 2

AT GROOVES

MAIN
C0M1
C0M1
C0M1
C0M1
C0M1
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
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I P ( J > K ) « 1  
17 CONTINUE

DO 16 J » J 3 , J T  
I P  C J # K ) - 1  

16 CONTINUE  
19 CONTINUE

SE T  PRELOAD FACTOR DELTA  
D E L T A - 0 . 5
I F (  I B T . E Q . D D E L T A - 0 . 0

SET LOOP COUNTER L I M I T  FOR ATT ITU DE ANGLE 
L I M I T - 5 * J T

SE T  LOOP COUNTER L I M I T  FOR LOAD 
L I M I T 1 - 5 * J T

SE T  LOOP COUNTER L I M I T  FOR PRESSURE  
NMAX-5*JT

S E T  RELAXATION FOR ATTITUDE ANGLE 
R E L A X - O . 5

SET  RELAXATION FOR LOAD 
R E L A X 1 - 0 . 5

SE T  RELAXATION FOR PRESSURE  
R E L A X 2 - 1 . 8

SET  L I M I T  FOR CONVERGENCE OF ATT ITU DE ANGLE IN RADIANS  
C C - 1 . 7 5 E - 0 5

SET  L I M I T  FOR CONVERGENCE OF LOAD 
C C 1 - 1 . 0 E - 0 7

SET  L I M I T  FOR CONVERGENCE OF PRESSURE  
CC 2 - 1 • 0 E - 0 7

SE T  ATTITUDE ANGLE IN DEGREES
A T T D - 8 0 . 0
A T T - A T T D * P I E / 1 8 0 .

27

S E T  NON-DIM.
W-O.Ol
DO 30 I  ■  1# 9

LOAD

SE T  VALUE OF E C C E N T R I C I T Y  
E C M - F L O A T ( I ) / 1 0 .
E C C - E C M M 1 . - D E L T A )

W R IT E( 6 #1 00 )E C M * E C C

SET  LOOP COUNTER FOR LOAD TO ZERO 
N I T E R 1 - 0

21 N I T E P 1 - N I T E R 1 + 1

DER IVE  NON-DIM. FEED PRESSURE  
PF«0.5*GAMMA*W

SE T GROOVE PRESSURE EQUAL TO FEED PRESSURE

DO 25 K - 3 # K T 1  
DO 26 J - 1 , J P 1  
P ( J / K J - P F  

26 CONTINUE
DO 27 J » J 1 # J 2
P ( J # K ) - P F  
CONTINUE
DO 28 J - J 3 # J T  
P ( J * K ) - P F  

28 CONTINUE  
25 CONTINUE

S E T  LOOP COUNTER FOR ATT ITU DE ANGLE TO ZERO 
N I T E R S - 0

14 N I T E R S - N I T E R S + 1
I F ( I B T . E Q . 1 ) GO TO 10

C A L L S  SUBROUTINES TO EVALUATE C O E F F I C I E N T S  AND F ILM T H IC KN E SS  
C A LL  LOBE 
C A L L  F I L M ( I B T )
CA LL  F I N I T E ( 0 . , 0 . # I B T )
C A LL  IT E R A T E  
C A L L  LOAD 
A N G - P S I - A T T
I F ( A B S ( ANG). L T . C C ) GO TO 15

MAIN 83
MAIN 84
MAIN 85
MAIN 86
MAIN 87
MAIN 88
MAIN 89
MAIN 90
MAIN 91
MAIN 92
MAIN 93
MAIN 94
MAIN 95
MAIN 96
MAIN 97
MAIN 98
MAIN 99
MAIN 100
MAIN 101
MAIN 102
MAIN 103
MAIN 104
MAIN 105
MAIN 106
MAIN 107
MAIN 108
MAIN 109
MAIN 110
MAIN 111
MAIN 112
MAIN 113
MAIN 114
MAIN 115
MAIN 116
MAIN 117
MAIN 118
MAIN 119
MAIN 120
MAIN 121
MAIN 122
MAIN 123
MAIN 124
MAIN 125
MAIN 126
MAIN 127
MAIN 128
MAIN 129
MAIN 130
MAIN 131
MAIN 132
MAIN 133
MAIN 134
MAIN 135
“ AIN 136
MAIN 137
MAIN 138
MAIN 139
MAIN 140
MAIN 141
MAIN 142
MAIN 143
MAIN 144
MAIN 145
MAIN 146
MAIN 147
MAIN 148
MAIN 149
MAIN 150
MAIN 151
MAIN 152
MAIN 153
MAIN 154
MAIN 155
MAIN 156
MAIN 157
MAIN 158
MAIN 159
MAIN 160
MAIN 161
MAIN 162
MAIN 163
MAIN 164
MAIN 165
MAIN 166
MAIN 167

10
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15

24

1320

I F ( N I T E R S . G T . L I M I T ) G 0  TO 15
AT T-ATT+RELA X*ANG
GO TO 14
DW-WT-W
I F ( A B S C D W ) . L T . C C 1 ) G 0  TO 24
I F ( N I T E R 1 . G T . L I M I T 1 ) G 0  TO 24
W«W+RELAX1*DW
GO TO 21
SMF«6.*W
A T T D - A T T * 1 8 0 . / P I E
A N G L E - A N G * 1 8 0 . / P I E
I F (  I B T . E Q . D G O  TO 20
DO 13 NN-1#2
A T D ( N N ) - A T ( N N ) * 1 8 0 . / P I E
W P I T E ( 6 # 1 3 0 ) E C < N N ) # A T D ( N N )
CONTINUE
W R I T E ( 6 # 1 1 3 ) P F
W RI T E (6 # 1 1 2 )N IT E R 1 # D W
W R I T E ( 6 # 1 0 4 ) N I T E P S # A N G L E

PRIN T  OUT RE SI D UA L  AND P ( J # K )  FOR VALUE OF NRES
W R IT E ( 6 # 1 0 5 ) NITER*WRES
W R IT E ( 6 # 1 1 0 ) ( ( P ( J # K ) # K - 1 # K T # 2 ) # J - 1 # J T )
WP. I T E ( 6 # 1 1 1 )

PRINT  TOTAL LOAD SOMMERFELD NO.
WRITE(6#101)WX#VY#W#SMF#ATTD
WX1-W
WY1-0.
X 1 - E C C * C 0 S ( A T T )
Y 1 « E C C * S I N ( A T T )
CA LL  DAMP 
C A LL  S T I F F

AND ATTITU DE ANGLE

TO DETERMINE S T A B I L I T Y  OF DYNAMIC SYSTEM

30
100
113101
102
106
103  
107
104

112
105

110
111
130
150

E C C E N T R I C I T Y - * #

CA LL  SUBR STABLE  
CALL  STABLE  
CONTINUE
FORMAT( 5X#*LOBE E C C E N T R I C I T Y - * # F 4 . 3 # 5X , * B E A R IN G  

♦ F 4 • 3 /)
FORMAT( 5 X # * N 0 N . - D I M . F E E D  P P E S S U R E - * # 1 P E 1 3 . 6 / )  
F 0 R M A T ( 5 X # * W X - * # 1 P E 1 3 . 6 # 2 X # * W Y - * # 1 P E 1 3 . 6 # 2 X # * W - * # 1 P E 1 3 . 6 # 2 X #  

♦ ♦ SOMMERFELD N O . - * # 1 P E 1 3 . 6 # 2 X # * A T T I T U D E  A N G L E - * # 1 P E 1 3 . 6 # IX #  
♦ ♦ D E G R E E S * # /)

F 0R M AT( 5X# *C IRC UL AR BEARING WITH T H I R T Y  DEGREE AXIAL  GROOVES*/)  
FORMAT( 5 X#*GROOVE COMMENCING THREE NODES IN FROM BEARING EDGE*/)  
FORMAT( 5X# *L OVER D H A L F * / )
FORMAT( 5X#»FEED PRESSURE RAT IO GAMMA-*#F3. 1 / / / )
FORMAT(5X#*ATTITUDE ANGLE CONVERSION N 0 . « * # I 3 # 2 X #

♦  ♦ CONVERSION V A L U E - * # 1 P E 1 3 . 6 # 1 X # * D E G R E E S * / )
FORMAT(5X#*L0AD CONVERSION N 0 . - * # I 3 # 2 X #

♦ ♦ CONVERSION V A L U E - * # 1 P E 1 3 . 6 / )
FORMAT( 5 X#*PP.ESSURE CONVERSION NO.»*#  13# 2X#*CONVERSION VALUE-*#  

♦ 1 P E 1 3 . 6 / )
F 0 R M A T ( 6 ( 2 X # 1 P E 1 3 . 6 )  )
FORMAT( / )
FORMAT( 5 X # * E C - * # 1 P E 1 3 . 6 # 2 X # * A T D - * # 1 P E 1 3 . 6 / )
FOR MAT( F 3 . 1 )
STOP
END
SUBROUTINE LOBE
COMMON P ( 1 0 0 # 2 0 ) # T H ( 1 0 0 ) # T H B ( 1 0 0 ) # C E ( 1 0 0 ) # C W ( 1 0 0 ) #G( 1 0 0 ) # H ( 1 0 0 )  

H 3 ( 1 0 0 ) # I P (100# 20)#  E C ( 1 0 ) #  A T ( 1 0 ) # A T D ( 1 0 ) # C N # C S # D T # D T S # D Z  
D Z S # D L S # J T # J T N # J R # J S # J S N # K T # K T N # K T 1 #  P I E # A T T # P S  I# P S I D# E CC  
DELTA#WT#W#SMF#WX1#WY1#X1#Y1#NITEP#WRES#AXX#AXY#AYX#AYY  
BXX#BXY#BYX#BYY#WX#WY#NMAX#CC2#RELAX2

COMMON
COMMON
COMMON
COMMON

♦ ♦ ♦ ♦ ♦ PROGRAM TO CALCULATE  LOBE ATTITU DE ANGLES AND E C C E N T R I C I E S * * * * *

DO 16 NN-1# 2 
I F ( N N . E Q . 2 ) G 0  TO 17
E C ( NN) - S  QRT( ECC **2+D E LTA **2  + 2 * E CC * D E LT  A*COS( A T T ) )
GO TO 18

17 E C ( N N ) - S Q R T ( E C C * * 2 + D E L T A * * 2 - 2 * E C C * D E L T A * C O S ( A T T ) )
18 A T ( N N ) - A S I N ( E C C * S I N ( A T T ) / E C ( N N ) )
16 CONTINUE

RETURN
END
SUBROUTINE F I L M ( I B T )
COMMON P ( 1 0 0 # 2 0 ) # T H ( 1 0 0 ) # T H B ( 1 0 0 ) # C E ( 1 0 0 ) # CW( 1 0 0 ) # G ( 1 0 0 ) # H { 1 0 0 )  
COMMON H 3 ( 1 0 0 ) # I P ( 1 0 0 # 2 0 ) # E C ( 1 0 ) # A T ( 1 0 ) # A T D ( 1 0 ) # C N # C S # D T # D T S # D Z  
COMMON D Z S » D L S # J T # J T N # J R » J S # J S N # K T # K T N # K T l # P I E # A T T # P S  I # P S  ID#ECC  
COMMON DELTA#WT#V#SMF#WX1#WY1#X1#Yl#NITER#WRES#AXX#AXY#AYX#AYY  
COMMON BXX#BXY,BYX#BYY#WX#WY#NMAX#CC2#RELAX2  

C
C*****PROGPAM TO CALCULATE  O I L  F IL M  T H IC K N E S S  FOR LEMON AND CIR CULAR

MAIN 168
MAIN 169
MAIN 170
MAIN 171
MAIN 172
MAIN 173
MAIN 174
MAIN 175
MAIN 176
MAIN 177
MAIN 178
MAIN 179
MAIN 180
MAIN 181
MAIN 182
MAIN 183
MAIN 184
MAIN 185
MAIN 186
MAIN 187
MAIN 188
MAIN 189
MAIN 190
MAIN 191
MAIN 192
MAIN 193
MAIN 194
MAIN 195
MAIN 196
MAIN 197
MAIN 198
MAIN 199
MAIN 200
MAIN 201
MAIN 202
MAIN 203
MAIN 204
MAIN 205
MAIN 206
MAIN 207
MAIN 208
MAIN 209
MAIN 210
MAIN 211
MAIN 212
MAIN 213
MAIN 214
MAIN 215
MAIN 216
MAIN 217
MAIN 218
MAIN 219
MAIN 220
MAIN 221
MAIN 222
MAIN 223
MAIN 224
MAIN 225
MAIN 226
LOBE 2
C0M1 2
C3M1 3
C0M1 4
C0M1 5
CQM1 6
LOBE 4
LOBE 5
LOBE 6
LOBE 7
LOBE 8
LOBE 9
LOBE 10
LOBE 11
LOBE 12
LOBE 13
LOBE 14
LOBE 15
FILM 2
C0M1 2
C0M1 3
C0M1 4
C0M1 5
C0M1 6
FILM 4
FILM 5
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B EA RIN G** ***

D E F I N E  CONSTANTS FOR F ILM  T H IC K N E SS

GENERATE THETA INCREMENTS FOR CENTRE OF BEARING W . R . T .
THE L I N E  OF CENTRES
THB ( D - P I E / 2 . - A T T
I F ( A T T . G T . P I E / 2 . ) T H B < l ) - A T T - P I E / 2 .
H ( 1 ) - 1 . + E C C * C 0 S ( T H B ( 1 ) )
H 3 ( l ) - H ( l ) * * 3
DO 12 J “ 2 , J T
THB< J  ) -THB < J - U + D T
H ( J ) - l . + E C C * C O S ( T H B ( J ) )
H 3 ( J ) - H ( J ) * * 3

12 CONTINUE
I F ( I B T . E Q . D G O  TO 13

BOTTOM LOBE F ILM T H IC KN E SS  
T H ( l ) - P I E / 2 . - A T ( l )
H ( 1 ) > 1 . + E C ( 1 ) * C 0 S ( T H ( 1 ) )
H 3 ( 1 ) * H ( 1 )  **3
DO 10 J - 2 , J S
T H { J ) » T H ( J - 1 ) + D T
H ( J ) - l .  + E C ( l ) * C O S ( T H ( J  ) )
H3< J ) « H < J ) * * 3

10 CONTINUE

TOP LOBE F ILM T H IC K N E S S  
T H ( J R ) » P I E / 2 . + A T ( 2 )
H ( J R ) « 1 . + E C ( 2 ) * C 0 S ( T H ( J R ) )
H 3 ( J  R ) * H ( J R ) * * 3
DO 11 J * J  SN, J T
T H ( J ) « T H ( J - 1 ) + D T
H ( J ) ■ 1 • + E C ( 2 ) * C 0 S ( T H ( J ) )
H 3 < J ) « H ( J ) * * 3

11 CONTINUE
13 RETURN 

END
SUBROUTINE F I N I T E <X D , Y D , I B T )
COMMON P ( 1 0 0 , 2 0 ) , T H ( 1 0 0 ) , T H B ( 1 0 0 ) , C E ( 1 0 0 ) , C W ( 1 0 0 ) , G ( 1 0 0 ) , H ( 1 0 0 )  

H 3 ( 1 0 0 ) , I P ( 1 0 0 , 2 0 ) , E C ( 1 0 ) , A T ( 1 0 ) , A T D ( 1 0 ) , C N , C S , D T , D T S , D Z  
P Z S , P L S , J T , J T N ,  J R , J S , J S N , K T , k T N , K T 1 , P I E , A T T , P S I , P S I O , E C C  
D E L T A , W T , V , S M F , W X 1 , W Y 1 , X I , Y l , N I T E R , W R E S , A X X , A X Y , A Y X , A Y Y  
B X X , B X Y , B Y X , B Y Y , W X , W Y , N M A X , C C 2 , R E L A X 2

COMMON
COMMON
COMMON
COMMON

13

♦ ♦ ♦ ♦ ♦ p p DGp Ah t q  CALCULATE  C O E F F I C I E N T S  AT NODAL POINTS WITH SQUEEZE  
♦ ♦ ♦ ♦ ♦ V E L O C IT Y  TERM*****

C » 2 . / D T S + 2 . * D L S / D Z S
DO 10 J - 1 , J T
I F ( I B T •NE • 1 ) GO TO 13
F C — 3 . * £ C C * S I N ( T H B (  J )  ) / H (  J )
F I — E C C * S I N ( T H B ( J ) ) / ( H 3 ( J ) * C )
F 2 - 2 . / ( H 3 ( J ) * C ) * ( Y D * C O S ( A T T ) - X D * S I N ( A T T ) ) * S I N ( T H B ( J ) )
F 3 - 2 . / ( H 3 ( J ) * C ) * ( X D * C O S ( A T T ) + Y D * S I N ( A T T ) ) * C O S ( T H B ( J ) )
GO TO 12 
I F ( J . L E . J S ) N N » 1  
I F ( J . G E . J R ) N N - 2  
F C — 3 . * E C ( N N ) * S I N ( T H ( J ) ) / H { J )
F I —  EC C NN) *S I N ( TH< J  ) ) / ( H3 ( J  ) * C )
I F ( N N . E Q . 2 ) G 0  TO 11
F 2 - 2 . / ( H 3 ( J ) * C ) * ( Y D * C O S < A T ( N N ) ) - X D * S I N ( A T ( N N ) ) ) * S I N ( T H < J ) ) 
F 3 - 2 . / ( H 3 ( J ) * C ) * ( X D * C O S ( A T ( N N ) ) + Y D * S I N ( A T ( NN) ) ) * C O S ( T H ( J ) )
GO TO 12
F 2 * 2 « / ( H 3 ( J ) * C ) * ( - Y D * C  O S( A T ( NN) ) - X D * S I N ( A T ( N N ) ) ) * S I N ( T H ( J ) )  
F 3 * 2 « / ( H 3 ( J ) * C ) * ( - X D * C 0 S ( A T ( N N ) ) + Y D * S I N ( A T ( N N ) ) ) * C O S ( T H ( J ) )
G ( J ) ■ F 1 + F 2 + F 3
C E ( J ) - ( 1 . / D T S * F C / ( 2 . * D T ) ) / C  
C W ( J ) - ( l . / D T S - F C / ( 2 . * D T ) ) / C
CONTINUE  
C N * D L S / ( D Z S * C )
C S - C N  
RETURN 
END
SUBROUTINE IT E R A T E
COMMON P ( 1 0 0 , 2 0 T , T H ( 1 0 0 ) , T H B ( 1 0 0 ) , C E ( 1 0 0 ) , C W { 1 0 0 ) , G ( 1 0 0 ) , H ( 1 0 0 )  

H 3 ( 1 0 0 ) , I P { 1 0 0 , 2 0 ) , E C ( 1 0 ) , A T ( 1 0 ) , ATD( 1 0 ) , C N , C S , D T , D T S , D Z

11
12

10

COMMON
COMMON
CDMMON
COMMON

d z s , p l s , j t , j t n , j r . , j s , j s n , k t , k t m , k t i , p i e ,  ATT,  p s i ,  p s i d ,  e c c  
d e l t a , wt , w, s m f , w x i , w y i , x i , y 1 , n i t e r , w r e s , a x x , a x y , a y x , a y y  
B X X , B X Y , B Y X , B Y Y , W X , W Y , N M A X , C C 2 , R E L A X 2

♦ ♦ ♦ ♦ ♦ p r o g r a m  TO C A L .  PRESSURE USING IT E R A TI O N  TECHNIQUE*****

F ILM 6
FILM 7
FILM 8
FILM 9
FILM 10
FILM 11
FILM 12
FILM 13
FILM 1A
FILM 15
FILM 16
FILM 17
FILM 18
FILM 19
FILM 20
FILM 21
FILM 22
FILM 23
FILM 2A
FILM 25
FILM 26
FILM 27
FILM 28
FILM 29
FILM 30
FILM 31
FILM 32
FILM 33
FILM 34
FILM 35
FILM 36
FILM 37
FILM 38
FILM 39
FILM 40
FILM 41
FILM 42
FILM 43
FILM 44
F I N I T E 2
C O N I 2
C0M1 3
CONI 4
C0M1 5
C0M1 6
F I N I T E 4
F I N I T E 5
F I N I T E 6
F I N I T E 7
F I N I T E 8
F I N I T E 9
F I N I T E 10
F I N I T E 11
F I N I T E 12
F I N I T E 13
F I N I T E 14
F I N I T E 15
F I N I T E 16
F I N I T E 17
F I N I T E 18
F I N I T E 19
F I N I T E 20
F I N I T E 21
F I N I T E 22
F I N I T E 23
F I N I T E 24
F I N I T E 25
F I N I T E 26
F I N I T E 27
F I N I T E 28
F I N I T E 29
F I N I T E 30
F I N I T E 31
F I N I T E 32
F I N I T E 33
IT E R A T E 2
C3M1 2
C0M1 3
C0M1 4
C0M1 5
C0M1 6
IT E R A T E 4
IT E R A T E 5
IT E R A T E 6
IT E R A T E 7
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c IT E R A T I O N  CONTROLS V A R IA B LE S I T E R A T E 8
N P E S - 1 IT E R A T E 9

c IT E R A T E 1 0
c SET  LOOP COUNTER FOR PRESSURE TO ZERO IT E R A T E 1 1

N I T E R - 0 IT E R A T E 1 2
c I T E R A T E 13
c MAIN LOOP I T E R A T E 14

1 * N I T E P - N I T E R + 1 IT E R A T E 15
RE SUM-O, IT E R A T E 16
XSU M-0 • I T E R A T E 17

c IT E R A T E 18
c CARRY OUT ONE SWEEP IT E R A T E 19

DO 15 J - 2 # J T N IT E R A T E 20
DO 16 K«2#KT IT E R A T E 2 1

c
BOUNDARY CONDITION TO SE T  GROOVE PRESSURE EQUAL TO FEED PRESSURE

IT E R A T E 22
c IT E R A T E 23

I F ( I P ( J # K ) . N E . 1 ) G 0  TO 23 IT E R A T E 24
GO TO 16 IT E R A T E 25

23 CONTINUE I T E R A T E 26
Z - P ( J#  K ) IT E R A T E 27
Z N - C E < J ) * P ( J + 1 # K > + C W < J ) * P ( J - 1 # K ) * C N * P ( J # K * 1 ) + C S * P ( J # K - l ) - G  ( J ) IT E R A T E 28
P ( J # K ) - Z + R E L A X 2 * ( Z N - Z ) IT E R A T E 29

c IT E R A T E 30
c REYNOLDS BOUNDARY CONDITION IT E R A T E 31

I F ( P ( J # K ) . G E . O . ) G O  TO 13 IT E R A T E 32
P < J * K ) - 0 . IT E R A T E 33
GO TO 16 IT E R A T E 34

c IT E R A T E 35
c F I ND WEIGHTED RESID UAL IT E R A T E 36

13 R A B S - A B S ( l . - Z / P < J #  K ) ) IT E R A T E 37
X 5 U M - X S U M + A B S ( P ( J * K ) ) I T E R A T E 38
R E S U M " R E S U M + R A B S * A B S (P ( J # K ) ) IT E R A T E 39

16 CONTINUE I T E R A T E 40
15 CONTINUE IT E R A T E 41

4P.ES-RESUM/ XSUM IT E RA TE 42
c IT E R A T E 43
c END OF S I N G L E  SWEEP IT E R A T E 44
c IT E R A T E 45
c P RES SU RES  E I T H E R  S ID E  OF CENTRE L I N E  S E T  EQUAL IT E RA TE 46

DO 17 J - 2 #  JTN IT E R A T E 47
P ( J #  K T 1 ) - P ( J # K T N ) IT E R A T E 48

17 CONTINUE IT E R A T E 49
I F ( ( N I T E R + N R E S - 1 ) / N P E S - N I T E R / N R E S ) 1 9 # 1 8 » 1 9 IT E R A T E 50

18 CONTINUE IT E R A T E 51
c IT E R A T E 52
c T E S T  FOR E X C E S S I V E  IT E R A T IO N IT E R A T E 53

19 I F ( N I T E R - N M A X ) 2 1 # 2 1 * 2 2 IT E R A T E 54
c IT E R A T E 55
c T E S T  FOR CONVERGENCE IT E R A T E 56

21 I F ( W P E S - C C 2 ) 2 2 # 2 2 # 1 4 IT E R A T E 57
22 CONTINUE IT E R A T E 58

RETURN IT E R A T E 59
END I T E R A T E 60
SUBROUTINE LOAD LOAD 2
COMMON P ( 1 0 0 # 2 0 ) # T H ( 1 0 0 ) pT H B ( 1 0 0 ) >C E ( 1 0 0 ) # CW( 1 0 0 ) ,G t 1 0 0 ) ,H { 1 0 0 ) C0M1 2
COMMON H 3 ( 1 0 0 ) # I P ( 1 0 0 # 2 0 ) » E C ( 1 0 ) # A T ( 1 0 ) # A T D ( 1 0 ) # C N # C S # D T * D T S # D Z C0M1 3
COMMON D Z j # D L S # J T # J T N # J R # J S # J S N > K T # K T N . K T l # P I E # A T T # P $ I # P S I D # E C C  
COMMON DELTA#WT#W#SMF#VXl#WY l#Xl#Y l#NIT EP* WRE S# AXX #A XY #AY X# AYY

C0M1 4
C0M1 5

COMMON BXX#BXY#BYX#BYY#WX#WY#NMAX#CC2#RELAX2 C0M1 6
DIMENSION F N C ( 1 0 0 ) # F N S ( 1 0 0 ) # F X ( 1 0 0 ) # F Y < 1 0 0 ) LOAD 4

c LOAD 5c****i■ PROGRAM TO C A L .  LOAD SOMMERFELD NO. AND ATTI TU DE ANGLE***** LOAD 6
c FOR CENTRE OF LEMON AND CIR CUL AR  B EA RI N G* *** * LOAD 7
c LOAD 8

DO 15 J - l # J T LOAD 9
DO 1* K - 1 # K T LOAD 1 0

c LOAD 1 1
c FORM ARRAY OF P ( J # K ) C O S ( J )  P ( J # K ) S I N ( J ) LOAD 1 2

F N C ( K ) - P ( J # K ) * C D S < T H B (  J ) ) LOAD 13
F N S ( K ) - P (  J # K . ) * S I N ( T H B (  J ) ) LOAD 14

14 CONTINUE LOAD 15
c LOAD 16
c C A L L  SUBR SIMP IN Z DIRN *KT LOAD 17

C A LL  SIMP(FNC#1#K.T#DZ#FNNC) LOAD 18
C A LL  S IMP(FNS#1#K.T#DZ*FNNS) LOAD 19
F X ( J ) - F N N C LOAD 20
F Y ( J J - F N N S LOAD 2 1

15 CONTINUE LOAD 22
c LOAD 23
c C A L L  SUBR SIMP IN  THETA DIRN LOAD 24

C A L L  S IM P { F X# 1 #J T# DT # W X) LOAD 25
C A LL  S I M P (F Y # 1 # J T # D T # W Y ) LOAD 26

c LOAD 27
c EQUATIONS FOR ATTITUDE ANGLE TOTAL LOAD AND SOMMERFELD NUMBER LOAD 28

PS I - A TA N (- W Y /W X) LOAD 29
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*

I F  C P S I . L T . O . O ) P S I - P I E - A B S ( P S I ) LOAD 30
P S I D « P S I * 1 8 0 . / P I E LOAD 31
WT«SQP.T(WX**2+WY**2) LOAD 32
S M F - 6 .*WT LOAD 33
RETURN LOAD 34
END LOAD 35
SUBROUTINE DAMP DAMP 2
COMMON P < 1 0 0 / 2 0 ) / T H ( 1 0 0 ) / T H B ( 1 0 0 ) / C E ( 1 0 0 ) / C W ( 1 0 0 ) / G ( 1 0 0 ) / H ( 1 0 0 ) C0M1 2
COMMON H 3 ( 1 0 0 ) / I P ( 1 0 0 / 2 0 ) / E C ( 1 0 ) / A T ( 1 0 ) / A i D ( 1 0 ) / C N / C S / D T / D T S / D Z C0M1 3
COMMON D Z S / P L 5 / J T / J T N / J R / J S / J S N / K T / K T N / K T 1 / P I E / A T T / P S I / P S I D / E C C CQM1 4
COMMON D E LT A* W T/ W /S M F/ W X1 /W Yl z XI # Y l / N IT E R/ WP.ES/AXX/AXY/AYX/AYY C0M1 5
COMMON BXX/BXY/BYX/BYY/WX/WY/NMAX/CC2/RELAX2 C0M1 6
COMMON/DATA/ X D / Y D / D E L X / D E L Y / I B T DAMP 4

c DAMP 5
C+****PP0GRAH t o  c a l . d a m p i n g  c o e f f i c i e n t s * * * * * DAMP 6
c DAMP 7
c

FOR V E L O C I T Y  XD
DAMP 8

c DAMP 9
C A L L  F I N I T E ( X D / 0 . / I B T ) DAMP 1 0
C A L L  IT E R A T E DAMP 1 1
C A L L  LOAD DAMP 1 2

c DAMP 13
c OBTAIN CHANGE IN  FORCES IN  X AND Y DAMP 14

A L P H A - A T T - P S I DAMP 15
WX2*WT*COS(ALPHA) DAMP 16
W*2-WT*SIN(ALPHA) DAMP 17
W R I T E ( 6 / 1 0 1 )  WX/WY/WT/PSID DAMP 18

c
OBTAIN C O E F F I C I E N T S  BXX BYX

DAMP 19
c DAMP 20

B X X - ( V X 2 - W X l ) / ( X D * W ) DAMP 2 1
B Y X * ( WY2-WY1) / ( XD*W) DAMP 22

c DAMP 23
c FOR V E L O C I T Y  YD DAMP 24

C A L L  F I N I T E ( 0 . / Y D / I B T ) DAMP 25
C A L L  IT ERA TE DAMP 26
C A L L  LOAD DAMP 27

c DAMP 28
c OBTAIN CHANGE IN  FORCES IN X AND Y DAMP 29

AL PHA« A T T - P S I DAMP 30
WX2-WT*C0S(ALPHA) DAMP 31
WY2*WT*SIN{ALPHA) DAMP 32
W R I T E ( 6 / 1 0 1 ) WX/WY/WT/PSID DAMP 33

c DAMP 34
c OBTAIN. C O E F F I C I E N T S  BXY BYY DAMP 35

B X Y * ( VX2—WX1)  / ( YD*W) DAMP 36
BYY- (V»Y2-WY1)/(YD*W) DAMP 37

c DAMP 38
c P R IN T  DAMPING C O E F F I C I E N T S DAMP 39

W R I T E ( 6 / 1 0 0 ) BXX/BXY/ BY X/B YY DAMP 40
1 00 F 0 R M A T ( 5 X / * B X X - * / l P E 1 3 . 6 / 2 X / * B X Y * * / l P E 1 3 . 6 / 2 X / * B Y X - * / l P E 1 3 . 6 / 2 X / DAMP 41

+ * B Y Y - * / l P E 1 3 . 6 / ) DAMP 42
1 0 1 F 0 R M A T ( 5 X / * W X - * / l P E 1 3 . 6 / 2 X / * W Y « * , l P E 1 3 . 6 / 2 X / * W T - * / l P E 1 3 . 6 / 2 X / DAMP 43

♦ * P S I D - * / l P E 1 3 . 6 / ) DAMP 44
RETURN DAMP 45
END DAMP 46
SUBROUTINE S T I F F S T I F F 2
COMMON P ( 1 0 0 / 2 0 ) / T H ( 1 0 0 ) / T H B ( 1 0 0 ) / C E ( 1 0 0 ) / CW( 1 0 0 ) / G { 1 0 0 ) / H ( 1 0 0 ) C0M1 2
COMMON H 3 ( 1 0 0 ) / I P ( 1 0 0 / 2 0 ) / E C ( 1 0 ) / A T ( 1 0 ) / ATD( 1 0 ) / CN /C S /D T/ O TS /D Z C0M1 3
COMMON D Z S / D L S / J T / J T N / J P / J 5 / J S N / K T / K T N / K T 1 / P I E / A T T / P S I / P S I D / E C C  
COMMON DELTA/WT/W/SMF/WX1/WY1/X1/Yl/NITEP/WRES/AXX/AXY/AYX/AYY

C0M1 4
C0M1 5

COMMON BXX/BXY/BYX/BYY/WX/WY/NMAX/CC2/RELAX2 C0M1 6
COMMON/DATA/ X D / Y D / D E L X / P E L Y / I B T S T I F F 4

c S T I F F 5
C*****PP.OGPAM TO C A L .  S T I F F N E S S  C O E F F I C I E N T S * * * * * S T I F F 6
C S T I F F 7
C S T I F F 8
C DISPLACEMENT IN X D I R . S T I F F 9

X 2 - X 1 + D E L X S T I F F 1 0
Y 2 - Y 1 S T I F F 1 1

C S T I F F 1 2
C OBTAIN NEW VALUE OF E C C E N T R I C I T Y  AND AT TIT U DE  ANGLE S T I F F 13

AT T* A T A N (Y 2 /X 2 ) S T I F F 14
A T T D * A T T * 1 8 0 •/ P I E S T I F F 15
E C C * S Q R T ( ( X 2 ) * * 2 + ( Y 2 ) * * 2 ) S T I F F 16
I F ( I B T . E Q . l ) G O  TO 10 S T I F F 17
C A LL  LOBE S T I F F 18

1 0 C A L L  F I L M ( I B T ) S T I F F 19
C A LL  F I N I T E ( 0 . / 0 . / I B T ) S T I F F 20
CA LL  IT E R A T E S T I F F 21
C A L L  LOAD S T I F F 22

c S T I F F 23
c OBTAIN CHANGE IN  FORCES IN X AND Y S T I F F 24

A L P H A - A T T - P S I S T I F F 25
WX2«WT*C0S(ALPHA) S T I F F 26
WY2-WT*SIN(ALPHA) S T I F F 27
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W R I T E * 6 , 1 0 1 ) W X , W Y , W T , A T T D , P S I D

OBTAIN. C O E F F I C I E N T S  AXX AYX 
AXX«*VX2-WX1)/*DELX*W)
AYX-*WY2-WY1)/*DELX*W)

DISPLACEMENT IN  Y D I R .
X 2 - X 1
Y 2 - Y 1 + D E L Y

OBTAIN NEW VALUE OF E C C E N T R I C I T Y  AND A TTI TU DE  ANGLE 
ATT-ATAN* Y Z / X 2 )
A T T D - A T T * 1 8 0 . /  P I E  
ECC-SQRT*  * X 2 ) * * 2 + * Y 2 ) * * 2 )
I F  ( I B T . E Q . D G O  TO 11 
CA LL  LOBE  

11 CA LL  F I L M ( I B T )
C A LL  F I N I T E < 0 . , 0 . , I B T )
CA LL  I T E R A T E  
C A LL  LOAD

OBTAIN CHANGE IN  FORCES IN X AND Y
A L P H A - A T T - P S I
WX2“ WT*COS(ALPHA)
WY2-WT*SIN*ALPHA)
W R IT E * 6 > 1 0 1 )W X ,W Y ,W T ,A T T D ,P S ID

OBTAIN C O E F F I C I E N T S  AXY 
A X Y * ( WX2-WX1)/*DELY*W)  
AYY»*WY2-WY1)/* DELY*W)

AYY

: P RI N T  s t i f f n e s s  c o e f f i c i e n t s
WRITE *6 , 1 0 0 ) AXX, AXY#AYX#AYY

1 00  FORMAT* 5 X , * A X X « * , 1 P E 1 3 . 6 , 2 X , * A X Y - * , 1 P E 1 3 . 6 , 2 X , * A Y X - * , 1 P E 1 3 . 6 , 2 X >  
♦ * A Y Y - * , 1 P E 1 3 . 6 / )

101 F 0 R M A T * 5 X , * V X « * , 1 P E 1 3 . 6 , 2 X , * W Y . * , 1 P E 1 3 . 6 , 2 X , * W T - * , 1 P E 1 3 . 6 # 2 X ,  
+ * A T T D - * , 1 P E 1 3 . 6 , 2 X , * P S I D * * , 1 P E 1 3 . 6 / )

RETURN
END
SUBROUTINE ST AB LE
COMMON P * 1 0 0 , 2 0 ) , T H ( 1 0 0 ) , T H B * 1 0 0 ) , C E * 1 0 0 ) , C W * 1 0 0 ) , G ( 1 0 0 ) , H * 1 0 0 )  
COMMON H 3 l 1 0 0 ) , I P * 1 0 0 , 2 0 ) # E C * 1 0 ) , AT * 1 0 ) , ATD( 1 0 ) , C N , C S , D T , D T S , D Z  
COMMON D Z S , D L S , J T , J T N , J R ,  J S ,  JS  N, K T ,  KTN,  K T 1 ,  P I E ,  ATT ,  PS I ,  PS I D ,  ECC 
COMMON D E L T A , W T , W , S M F , W X 1 , W Y 1 , X I , Y 1 , N I T E P , W R E S , A X X , A X Y , A Y X , A Y Y  
COMMON B X X , B X Y , B Y X , B Y Y , W X , W Y , N M A X , C C 2 , R E L A X 2

♦  ♦ ♦ ♦ ♦ PROGRAM TO C A L .  ROUTHS S T A B I L I T Y  C R I T E R I O N * * * * *

ROUTHS S T A B I L I T Y  C R I T E R I O N  IN TERMS OF S T I F F N E S S  AND DAMPING
C O E F F I C I E N T S
U l - B X X + B Y Y
U2-AXX+AYY
U3 *B XX*B Y Y- BX Y* B YX
U 4» A XX * B YY +A YY* BXX -A XY *B YX- AY X* BXY  
U5*AXX*AYY-AXY*AYX
ST* t U 5 * U 1 * *2 +U 4* *2 -U 1* U 2* U 4)/*  U 1*U3*U4)

PRI NT  VALUE OF S T A B I L I T Y  PARAMETER FOR BOUNDARY BETWEEN STABLE
AND UNSTABLE CONDITION
W R I T E * 6 , 1 7 5 ) S T

175 F 0 R M A T * 5 X , ♦ S T A B I L I T Y  P A R A M E T E R - * , 1 P E 1 3 . 6 / / )
RETURN
END
SUBROUTINE S IM P * F, NA ,NZ >D H, AN SW E R )
DIMENSION F*NZ)

♦ ♦ ♦ ♦ ♦ S IMPSONS NUMERICAL INTEGRATION METHOD*****

SIMPSONS RULE OF INTEGRATION

ADD TERMS WITH C O E F F I C I E N T S  4 
SUM4-0.
NN-N Z-1
MB-NA+1
DO 10 K - N B , N N , 2  
SUM4*SUM4+F * K)

10 CONTINUE

ADD TERMS WITH C O E F F I C I E N T S  2 
SU M2 -0•
NM-NZ-2
NC-NA+2
DO 11 K -N C, N M ,2

S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
S T I F F
STABLE
C0M1
C0M1
C0M1
C0M1
C0M1
STABLE
ST AB LE
STABLE
STABLE
STABLE
STABLE
STABLE
STABLE
STABLE
STABLE
STABLE
STABLE
STABLE
STABLE
STABLE
STABLE
STABLE
STABLE
STABLE
SIMP
SIMP
SIMP
SIMP
SIMP
SIMP
SIMP
SIMP
SIMP
SIMP
SIMP
SIMP
SIMP
SIMP
SIMP
SIMP
SIMP
SIMP
SIMP
SIMP
SIMP

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60  
61 
62
63
64
65
66 2 2

3
4
56
4
56
7
8 
9101112

13
14
15
16
17
18
19
20 21 
22

2
3
4
5
6
78 
910

1112
13
14
15
16
17
18
19
20 21 22
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SUM2-SUM2«-F(K.)
11 CONTINUE

SIMPSONS FORMULA
ANSWER•(D H/ 3 . ) * ( F { N A ) + F ( N Z)+ 4. * S U M ^ + 2 .* S U M 2 )RETURN
END

SIMP
SIMP
SIMP
SIMP
SIMP
SIMP
SIMP

2324
25
26
27
28 
29
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*  WHIRL

A PPEN D IX  D

O R B IT  R EPR ESEN TA TIO N

#
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The semiaxes and orientation of the elliptical whirl 
orbit Figure D.1, are calculated from (reference (34)):

a = j^(xR2+xI2+yR2+yi2) +

V i (xR2+xi2-yR2-yi2)2 + (xRyR+xiyi)2 (d .d
j

/2

xiyR-xRyi (D.2)

Y 1_ tan“ 
2

_1 tan“ 
2

’ [
2(xRyR+Xiyi)

xR2+xi2-yR2_yi2

1 r  2  (

|_XR2-
xRxx+yRyi)
xi2+yR2-yi2

]

]

(D. 3)

(D. 4)

where a is the major semiaxis, b is the minor semiaxis, y 
the angle from the x-axis to the major semiaxis in the 
direction of shaft rotation, and ip is the phase angle. The 
directions of the axes are as adopted in Chapters 2 and 3, 
that is, the x-axis is vertically downwards and the y-axis 
is horizontal. The z-axis is in the direction of the rotor 
axis.

The definition of the phase angle is such that, if the 
x-y coordinate system is rotated through the angle y into an 
xf-yf system (that is, x1 long the major semiaxis), then
the
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Figure D.l Whirl Orbit Representation
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rotation motion can be expressed as:

x1 = a cos(wt+ijj) (D.5a)

y* = b sin(wt+ty) (D.5b)

If the value for the minor semiaxis b is negative, then the 
rotor is precessing or whirling backwards.

Equations (D.1) to (D.4) can be used to compute the 
elliptical whirl orbit of the rotor-bearing system at any 
position where a station is located.
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APPENDIX E

COMPUTER LISTING FOR ROTOR-BEARING 
SYSTEM DYNAMICS

t



oo
o 

o
o
o
o
o
 

o 
o 

oo
 

o 
oo

oo
oo

oo
oo

oo
oo

oo
oo

 o
oo
oo
oo
o

306

S T A B L E (  INPUT# OUTPUT# TAPE5- IM PU T# TAP E6- QL 'T PU T)  
F # F B # A A # A # Z # Z X X # Z X Y # Z Y X # Z Y Y # Z X X F # Z X Y F # Z Y X F # Z Y Y F # Z X X P # Z X Y P  
ZYXP#ZY YP# CP SI# SU N#A LA MBD A# ALA NS #C1# C 2 # C 3 # C 4 # C 5 # C 6 # C 7 # C 8 
C 9 # C 1 0 # C 1 1 # A C # B C # C C # B H F X # B H F Y # B F F X # B F F Y # X P # Y P  
ZTT# ZT P # ZP T »Z PP

PEAL K.XX,KXY#K.YX#KYY#KXP#KYP#MXP#MYP#LOAD#MEER#KTT#KPP
common e c c ( i o ) # a x x ( i o ) # a x y ( i o ) # a y x ( i o ) # a y y ( i o ) # b x x ( i o ) # b x y ( i o )

B Y X ( 1 0 ) # B Y Y ( 1 0 ) # W S S ( 1 0 ) # A X X 1 ( 1 0 ) » A X Y 1 ( 1 0 ) # A Y X 1 ( 1 0 )
A Y Y 1 ( 1 0 ) # B X X 1 ( 1 0 ) # B X Y 1 ( 1 0 ) # B Y X 1 ( I 0 ) # B Y Y 1 ( 1 0 ) # E C C 1 ( 1 0 )
W S S 1 ( 1 0 ) # D I A ( 2 5 ) # B E A M ( 2 5 ) # S I ( 2 5 ) # A M A S S ( 2 5 ) # P I ( 2 5 ) # T I ( 2 5 )  
PIE#C#FnRCE#E#KI#KN#KS#KB#KF#PPM#OMEGA#RPMBETA# BETA#MXP#MYP 
KX P# K Y P #C X P #C Y P # P S I # A L I M  I T # A L I M I T 1 # T I N C # T I N C 1 # E C C X # Z X X P  
VS SY # IP Z# K X X # K .X Y #K Y X ,K Y Y #  ALAMBDA# AL AMS# CXX #C X Y# CY X# C YY #Z Y YP  
F ( 2 5 # Q # 9 ) # F B ( 9# 9) # AA ( 9# 9)  # A ( 9# 9 ) # Z ( 2 5 # 9 ) # A C( 1 7 # 1 7 ) » B C( 1 7 # 1 )  
C C ( 1 7 # 1 ) # X R ( 2 5 ) # X I ( 2 5 ) # X M . ( 2 5 ) #  Y R ( 2 5 ) # Y I ( 2 5 ) # YM( 2 5 ) , RMXP 
T H R ( ? 5 ) # T H I ( 2 5 ) # T H M ( 2 5 ) # P H R ( 2 5 ) # P H I ( 2 5 ) # P H M ( 2 5 ) # B M X R ( 2 5 )  
BM XI(25)#BMXM(2 5 ) # BMYR( 2 5 ) # BMY I( 2 5 ) # BMYM(2 5 ) # S F X R ( 2 5 )
S F X I ( 2 5 ) # S F X M ( 2 5 ) # S F Y R ( 2 5 ) # S F Y I ( 2 5 ) # S F Y M ( 2 5 ) # A M A J 0 R ( 2 5 )BMI N D R ( 2 5 ) # PHASED( 2 5 ) # A TT D( 2 5 ) # XD ( 2 5 ) , Y D ( 2 5 ) # THD( 2 5 )
A R E A ( 2 5 ) # U N 3 L ( 1 0 ) # L 0 A D ( 1 0 ) # C P ( 1 0 ) # G K # A L P # A L P H A # K F 1 # K F 2 # K F 3  
I S P # IR N # K . B 1 # IF 1 # IF 2 # IF 3 # G # T IN C 2 # R P M 1 # R P M B T 1 # P H D ( 2 5 )# R M Y P  
P S I D ( 1 0 ) # P S I R ( 1 0 ) # G M E G A G # Q M E G A 1 # P P M B E T 1 ( 2 0 0 ) # A L I M I T 2 # I L P  
B E T A 1 (2 0 0 )# 0 M E G A T (2 0 0 )# n M E G A C ( 2 0 0 ) # QMEGAW( 2 0 0 ) # RMOD( 2 0 0 )  
R r i I D l ( 2 0 0 ) # T H E T A D ( 2 0 0 ) # D E T R ( 2 0 0 ) # D E T I ( 2 0 0 ) # R N O P M ( 2 0 0 )  
X P P ( 2 5 ) # X I P ( 2 5 ) # Y R P ( 2 5 ) # Y I P ( 2 5 ) # GAM#ALIMIT3 # VI # V 2 # K T T # K P P  
FLEX1

* * * * * i A I N  PROGRAM*****
ALL UNITS  IM PE RIA L  
SET  INTEGER WPITE PARAMETER
1 FOP. F I T T I N G
2 FOR NOT WPITTING
SET LHS AND PHS SUPPORT PARAMETER I S P
1 FOR F R E E - P IN N E D  CONDITION
2 FOR F R E E - F R E E  CONDITION  
I S P - 1
SET TYPE OF A N A LY SI S  PARAMETER IBN
1 FOR FORCED PESPONCE A N A L Y S I S
2 FOR S T A B I L I T Y  A N A L Y S I S ( S E L F  E X C I T E D  RESPONCE AND 
LEONARD LOCUS)
3 FOR MODE SHAPE AT S T A B I L I T Y  THRESHOLD  
i E T  IMPEDANCE PAPAMETER I P Z
1 FOR O I L - F I L M
2 FOR O I L - F I L M + P E D E S T A L  
SET INTEGER GYROSCOPIC PAPAMETER IGP
1 FOP NON-ZERO GYROSCOPIC TERMS
2 FOR ZERO GYROSCOPIC TERMS
SET INTEGER PARAMETTER FOR LEONARD LOCUS PLOT I L P
1 FOR PLOT NOT REQUIRED
2 FOR PLOT REQUIRED  
SET UNBALANCE PARAMETER I F

PROGRAMCOMPLEX
COMPLEX
COMPLEX
COMPLEX

COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
CUM. MON. 
COMMON 
COMMON 
COMMON

IWR FOR MAIN PROGRAM

1ST
2ND
3RD

UNBALANCE
UNBALANCE
UNBALANCE

STATION  NUMBERS FROM L E F T  TO RIGHT

1 FOR 
1 FOR 
1 FOR 
I F 1 - 1  
I F 2 - 1  
I F 3 - 2
SET UNBALANCE  KF1-6 
K F 2 - K F 1 + 1  
K F 3 - 3 0  
SET  P I E
P I E - A •*ATAN( 1 • )
SET  BEARING  
L 0 A D ( 1 ) « 0 .
LO AD (2 ) - 0 .
SET BEARING  CP(1)-0.
C R ( 2 ) - 0 *
SET BEARING STATION P O S IT IO N S  
KB -  3 
K B 1 - 7 0  
SET GRAVITY  
G - 3 8 6 . 4  
SET  D F N SI T Y  
P O E - 0 . 2 8 3  
SET  YOUNGS 
E - 2 . 9 R E + 0 7  
SET SHEAR MODULUS 
G M -1 .1 8 E + 0 7
SET C R O S S - S E C T I O N  SHAPE FACTOR FOR SHEAR DEFORMATION OF SHAFT  
A L P - 0 . 7 5
READ W R IT E # A N A LY SI S  AND PE DESTAL  IMPEDANCE PARAMETERS 
AMD NON-DIM.LOAD AND FEED PRESSURE#CLEARANCE AND PEDESTAL  
MASS# L INEAR AND ROTARY S T I F F N E S S  IN X - Y  D I R S .  
READ(5#*) IWP#IBN#IPZ#WSSY#GAM#C#PMXP#PMYP#KXP#KYP#KTT#KPP

LOADS( L B F )

C L E A R A N C E S ( I N )

CONSTANT

OF SHAFT MATERIAL  

MODULUS FOR SHAFT

FOP SHAFT

MAIN
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
CDM1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
- A I N
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN

22
3
4
56
78 
9

10
11
12
13
14
15
16 
17 IS
19
20 21 
22
23
24
25
26

4
56
78 
9

10
11
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 
61 
62
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READ I N I T I A L  SPEED# SPEED INCP EMENTS# SPEED L I M I T  FOR I B N - 1 # 2  
IN RPM FOR PE$P0NCE AND S T A B I L I T Y  fH&ESHOLD
AND I N I T I A L  FREQUENCY INCP EMENTS AND FREQUENCY INCREMENTS NEAR 
C R I T I C A L  FREQUENCY FOR IB N * 2 # IN  CPM# FOR S T A B I L I T Y  THRESHOLD  
AND SHAFT SPEED(RPM)  AND WHIP FREQUENCY( CPM) FOR I B N - 3 # F 0 R  
MODE SHAPE AT S T A B I L I T Y  THRESHOLD  
P E A D { 5# * )R P M # TI N C # A LI M IT # TI N C 1# TI N C 2# R P M 1# P P M B T1  
READ I N I T I A L  NO. OF STATIONS# F L E X I B I L I T Y  PARAMETER#
INTEGER PARAMETER FOR GYROSCOPIC MOMENTS C LEONARD LOCUS#
AND CONSTANTS FOR I N I T I A L  AND F I N I A L  VALUES OF FREQUENCY FOR 
I B N - 2 #  AND LOWER AND UPPER VALUES OF C R I T I C A L  SPEED(RPM)  
R E A D ( 5 # * ) K I #  F L E X 1 # I G P # I L P # V 1 # V 2 # A L I M I T 2 # A L I M I T 3  
READ MASS UNBALANCE( L B - I N )  £ ANGULAR P O S I T I O N t D E G R E E S ) AT 
THE CORRESPONDING STATIONS SET ABOVE 
DO 17 I » l # 3

17 R E A D ( 5 # * ) U N B L ( I ) # P S I D ( I )
CONVERT UNBALANCE ANGLE TO RADIANS  
DO 15 N ■  1 # 3

15 P S I R ( N ) « P S I D ( N ) * P I E / 1 8 0 . 0
READ IN  NON-DIM. E C C E N T R I C I T Y  DYNAMIC C O E F F I C I E N T S  AND BEARING  

♦  LOAD
DO 1 1*1# 9
P E A D ( 5 # * ) E C C ( I ) # A X X ( I ) # A X Y ( I ) # A Y X ( I ) # A Y Y ( I ) # B X X ( I ) # B X Y ( I ) #

+ B Y X ( I ) # B Y Y ( I ) # W S S ( I )
I F  C I W R . E Q . l ) W R I T E ( 6 # 1 0 1 ) E C C ( I ) # A X X ( I ) # A X Y ( I ) , A Y X ( I ) # A Y Y ( I )# 

+ B X X ( I ) # B X Y ( I ) # B Y X ( I ) # B Y Y ( I ) # V S S ( I )
E C C K I  ) « E C C ( I )AXXim-AXX(I)
A X Y K I ) - A X Y ( I )
A Y X l ( I ) - A Y X d )
A Y Y K I  )»AY Y(  I )
B X X 1 ( I ) -B XX C I )
B X Y 1 ( I ) - B X Y ( I )
BYX1(  I ) - B Y X ( I )
B Y Y K  I ) « B Y Y (  I )i wssim-wssd)

101 F 0 P M A T ( 5 X # F 2 . 1 # 2 X # 9 ( F 8 . 4 # 2 X ) / )
SET F I N I A L  NO. OF STATT IONS  
K N - K I + 1
SET  NCN-DIM. SPEED PARAMETER (RPM)
OMEGAG*SQR T ( G / C ) * 6 0 , / ( 2  . * P I E )
SET 1 S T .  LAT ERAL  BENDING FREQUENCY (CPM)
0MEGA1-2950.
READ IN SHAFT BEND AND SLOPE IN X AND Y D I R S .
AND BEAM LENGTH AND DIAMETER AT EACH STATION  
DO 16 I ■ 1# K I

16 RE AD( 5 # 1 0 7 ) X D ( I ) # Y P ( I ) # T H D < I ) # PHD( I ) » BE AM( I ) # D I A ( I )
107 FOP M A T ( 4 ( E 1 0 . 4 # 2 X ) # 2 ( F 5 . 3 » 2 X ) )

SET BEARING DIAMETER  
B D I A - 2 . 5
SET  BEARING LENGTH  
B L E N « 1 .2 5
SET DISTANCE OF D IS C  FROM LHS AND PHS SUPPORTS P E S P .
A l » 5 .
B l - 2 2 . 50
SET SHAFT LENGTH BETWEEN SUPPORTS  
S L » 2 7 . 50
SET  DIAMETER OF SHAFT  
D I ■ 0•9 84
SET DIS C  DIAMETER AND LENGTH R E S P E C T I V E L Y
D D I A - 6 . 7 6 5
D L E N - 2 . 9 5 0
DERIVE  DI S C  MASS( L B )
W T * P I E * ( D D I A * * 2 - D I * * 2 ) * D L E N * R 0 E / 4 . - 0 . 7 8 1  
DERIVE  SHAPT MASS( LB )
S M » P I E * D I * * 2 * $ L * P 0 E / 4 .
DERIVE  BEARING F O R C E ( L B F ) INCLUDING REACTION OF SHAFT AND JOURNAL 
FO R C E * W T * B 1 / S L+ C S M -O .343) / 2 . + 2 . 4 9 9  
DERIVE  BEARING S P E C I F I C  L O A D ( P S I )
B L 0 A D - F 0 R C 5 / ( B D I A * B L E N  )
D E P IV E  S T A T I C  D E F L E E C T IO N  AT LOAD 
D E L T A « 6 4 . * W T * A l * * 2 * B l * * 2 / ( 3 . * E * P I E * D I * * 4 * $ L )
DERIVE  MAX. S T A T I C  DE FL E CT IO N
DELT MA X- 64 .* W T *A 1 *S Q RT ( ( S L * * 2 - A 1 * * 2 ) * * 3 ) / ( 1 5 . 5 8 8 4 * E * P I E * D I * * 4 *

+ SL )
DEPIVE P O SIT IO N  OF MAX. D E F LE CT IO N  
X M A X « S L - 3 Q P T ( ( S L * * 2 - A 1 * * 2 ) / 3 . )
DE RI VE  PO SIT ION  OF MAX. D E F LE C T IO N  FROM CENTRE OF SHAFT  
X 1 « S L / 2 . - X M A X
DE PI VE  F L E X I B I L I T Y  PARAMETER 
FL E X- P EL T M AX / C
DE P IV F  ROTOR P INNE D-P IN NED  NATURAL FPEQUEENCY( CPM) 
P N » S Q R T ( G / D E L T A ) * 3 0 . / P I E
I F ( I W P . E Q . 1 ) W P I T E ( 6 # 1 0 5 ) A 1 , B 1 # S L # D I # W T # S M  

105 FORMAT(5X# 4 ( F 6 . 3# 2 X ) # 2 ( F 5 . 2 # 2 X ) / )

MAIN 63
MAIN 64
MAIN 65
MAIN 66
MAIN 67
MAIN 68
MAIN 69
MAIN 70
MAIN 71
MAIN 72
MAIN 73
MAIN 74
MAIN 75
MAIN 76
MAIN 77
MAIN 78
MAIN 79
MAIN 80
MAIN 81
MAIN 82
MAIN 83
MAIN 84
MAIN 85
MAIN 86
MAIN 87
MAIN 88
MAIN 89
MAIN 90
MAIN 91
MAIN 92
MAIN 93
MAIN 94
MAIN 95
MAIN 96
MAIN 97
MAIN 98
MAIN 99
MAIN 1 00
MAIN 1 0 1
MAIN 1 0 2
MAIN 103
MAIN 104
MAIN 105
MAIN 106
MAIN 107
MAIN 108
MAIN 109
MAIN 1 1 0
MAIN 1 1 1
MAIN 1 1 2
MAIN 113
MAIN 114
MAIN 115
MAIN 116
MAIN 117
MAIN 118
MAIN 119
MAIN 1 2 0
MAIN 1 2 1
MAIN 1 2 2
MAIN 123
MAIN 124
MAIN 125
MAIN 126
MAIN 127
MAIN 128
MAIN 129
MAIN 130
MAIN 131
MAIN 132
MAIN 133
MAIN 134
MAIN 135
MAIN 136
MAIN 137
MAIN 138
MAIN 139
MAIN 140
MAIN 141
MAIN 142
MAIN 143
MAIN 144
MAIN 145
MAIN 146
MAIN 147



148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
19622

3
4
56
78
91011

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

4
56
78
9

10
11
12
13

308

102
106

12

I F ( I W P . E Q . l ) W P I T E ( 6 , 1 0 6 ) D E L T A , D E L T M A X , X M A X , X 1 , F L E X , P N  
F O P M A T ( 5 X , 2 < F 5 . 4 , 2 X ) , F 5 . 2 , 2 X , 2 ( F 4 . 2 , 2 X ) , F 7 . 2 / )
I F ( I r f P . E Q . l ) W R I T E ( 6 , 1 0 2 ) F O R C E , B L O A D , C , U N B L ( 1 ) , U N 8 L ( 2 )  
FORMAT( 5X,  2 ( F 5 . 2 , 2 X ) , 3 ( F 5 . 4 # 2 X ) / )
DO 12 K P * 1 ,  K. I
DERIVE AREA OF SHAFT AT EACH STATION  
A R E A ( K P ) - P I E * D l A ( K P ) * * 2 / 4 .
DER IVE  MASS AT EACH STATION
AMASS( K P ) * A R E A ( K P ) *REAM( K P ) *ROE
DERIVE  C R O S S - S E C T IO N A L  M. I .  AT EACH STATION

EACH STATION

S I ( K P ) « P I E * P l A ( K P ) * * 4 / 6 4 .
SET POLAR AND TRANSVERSE I N E R T I A  AT STATION 1 TO ZERO 
01 (1) « 0.
T i m « o .
DO 13 K P * 2 ,  K. I

C DERIVE  MASS AT LA ST  STATION
I F ( K P . E Q . K I ) A M A S S ( K P ) - A M A S S ( K P ) / 2 .
I F ( K P . E O . K I ) G O  TO 14

C LUMP MASS TO L E F T  AND RIGHT AT EACH STATION
AMASS{ K P ) » ( A M A S S ( K P ) ♦ A M A S S ( K P + l ) ) / 2 .

C DERIVE  POLAR AND TRANSVERSE I N E R T I A  AT
14 P I ( K P ) - A M A S S  < K P ) * D I A ( K P ) * * 2 / 8 .

T I ( K P ) * A M A S S ( K P ) * ( D I A ( K P ) * * 2 / 1 6 . + B E A K ( K P ) * * 2 / 1 2 « )
I F  ( I G P . N E . 1 ) P I ( K P ) * 0 . 0  

13 I F ( I G P . N E . l ) T I ( K P ) - 0 . 0  
NCOUNT «0 
DO 11 K P ■  1,  K I  
NCOUNT-NCJUNT+1
I F ( I W R . E O . l ) W R I T E ( 6 , 1 1 0 ) N C O U N T * B E A M ( K P ) , D I A ( K P ) , A M A S S ( K P ) #

♦  S I (  K P ) , P I ( K P ) , T I ( K P ) , X D ( K . P ) , Y D ( K P ) , T H D < K P ) , P H D ( K P )
11 CONTINUE

110 F O R M A T ( 5 X , I 2 , 2 ( 2 X , F 5 . 3 ) , P ( 2 X , 1 P E 1 2 . 4 ) / )
C D I V I D E  STATION MA SS(LB)  POLAR G TRANSVERSE IN ERT  I  A S ( L B - I N 2 )
C BY GRAVITY

DO 18 K.P*1,K.I  
AM AS S(K P) *A MA SS( KP J/ G  
P I ( K P ) * P I ( K P ) / G  

18 T I ( K P ) - T I ( K P ) / G
C D I V I D E  PE DESTAL  MASS( L B ) IN X AND Y D IR E C T IO N S  BY GRAVITY

MX P-RMX.P/G 
MYP-RMYP/G

C SET  PEDESTAL  DAMPING I K  X AND Y DI R E C T IO N S
C X P - O .
C Y P - O .

C CALL  IN TER P OL A TIO N  ROUTINE
CALL  INT ERP  
CALL  SPEED  
STOP 
END
SUBROUTINE INTEP.P
COMPLEX F , F B ,  AA, A , Z , Z X X . , Z X Y , Z Y X , Z Y Y , Z X X F , Z X Y F ,  ZYX F ,  Z Y Y F , Z  XXP,  Z XYP 
COMPLEX Z Y X P , Z Y Y P , C P S I , S U M , A L A M B O A , A L A M S , C 1 , C 2 , C 3 , C 4 » C 5 , C 6 , C 7 , C 8  
COMPLEX C 9 , C 1 0 , C 1 1 , A C , B C , C C , B H F X ,  BHFY,  B F F Y , B F F Y , X P , Y P  
COMPLEX Z T T , Z T P , Z  P T , Z  PP
PEAL K X X , K X Y , K Y X , K Y Y , K X P , K Y P , M X P , M Y P , L O A D , M E E R , K T T , K P P  
COMMON E C C ( 1 0 ) , A X X ( 1 0 ) , A X Y ( 1 0 ) ,  A Y X ( 1 0 ) , A Y Y ( 1 0 ) , BX X( 1 0 ) * B X Y ( 1 0 )  
COMMON 9 Y X ( 1 0 ) , B Y Y (  1 0 ) , WSL( 1 0 ) , A X X 1 ( 1 0 ) , A X Y 1 ( 1 0 ) ,  A Y X K 1 0 )
COMMON A Y Y 1 ( 1 0 ) , P X X I ( 1 0 ) , B X Y l ( 1 0 ) , BYX1 < 1 0 ) , B Y Y 1 ( 1 0 ) , E C C 1 <10)
COMMON W S S 1 ( 1 0 ) , D I A ( 2 5 ) , B E A M ( 2 5 ) , S I ( 2 5 ) , A M A S S ( 2 5 ) , P I ( 2 5 ) , T I ( 2 5 )  
COMMON P I E , C , F Q P C E , E , < I , K N , K 5 , K B , K F , R P M , 0 M E G A , R P M B E T A , B E T A , M X P , N Y P  
COMMON K X P , K Y P , C X P , C Y P , P S I , A L I M I T , A L I M I T 1 , T I N C , T I N C 1 , E C C X , Z X X P  
COMMON W S S Y , I P Z , K X X , K X Y , K Y X , K Y Y , A L A M R P A , A L A M S , C X X , C X Y , C Y X , C Y Y , Z Y Y P  
COMMON F ( 2 5 , 9 , 9 ) , F B ( 9 , 9 ) , A A ( < ? , 9 ) , A ( 9 , 9 ) , Z ( 2 5 , 9 ) , A C ( 1 7 ,  1 7 ) , B C ( 1 7 , 1 )  
COMMON C C ( 1 7 , 1 ) , X P ( 2 5 ) , X I ( 2 5 ) , X M ( 2 5 ) » Y R ( 2 5 ) , Y I ( 2 5 ) , Y M ( 2 5 ) # R M X P  
COMMON T H R ( 2 5 ) , T H I ( 2 5 ) , T H K ( 2 5 ) , P H P ( 2 5 ) , P H I ( 2 5 ) , P H M ( 2 5 ) , B M X R ( 2 5 )  
COMMON BMXI< 25) ,BMXM<2 5 ) ,  EMYR( 2 5 ) , BMY I ( 2 5 ) , B M Y M < 2 5 ) , S F X R (2 5 )
COMMON S F X I ( 2 5 ) , S F X M ( 2 5 ) » S F Y P ( 2 5 ) , r F Y I ( 2 5 ) , S F Y M < 2 5 ) , A M A J 0 R ( 2 5 )  
COMMON BMI NCR< 2 5 ) , PHASED( 2 5 ) , A TT D< 2 5 ) , XD( 2 5 ) , Y D ( 2 5 ) , T H D ( 2 5 )
COMMON A P E A ( 2 5 ) , U N B L ( 1 0 ) » LOAD( 1 0 ) , C P < 1 0 ) , G M , A L P , A L P H A , K F 1 , K F 2 , K F 3  
COMMON I S P , I B N , K B 1 » I F 1 , I F 2 , I F 3 , G , T I N C 2 , P P M 1 , P P M B T 1 , P H P ( 2 5 ) , R M Y P  
COMMON. P S I D ( 1 0 ) , P S I R ( 1 0 ) , D M E G A G , 0 M E G A 1 , R P M B E T 1 ( 2 0 0 ) , A L I M I T 2 , I L P  
COMMON B E T A 1 ( 2 0 0 ) , OMEGAT( 2 0 0 ) , OMEGAC( 2 0 0 ) , OMEGAW( 2 0 0 ) , PMOD( 2 0 0 )  
COMMON PM,DDK 2 0 0 ) , T H E T A D (  2 00 )  ,  OETR ( 200 )  ,  DE T I  ( 200)  ,  R NOP M ( 200)
COMMON X R P ( 2 5 ) , X I P ( 2 5 ) , Y P P ( 2 5 ) , Y I P ( 2 5 ) , G A M , A L I M I T 3 , V I , V 2 , K T T , K P P  

F LE X1COMMON
DIMENSION R C ( 4 0 )

C*+***PROGRAM TO INTERPOLATE  11*9 
NB- 8  
N l - N B + 1

„ N 2 « N B * (N B + 1 )/ 2
C CALL  ROUTINE E01AAF TO

CA LL  E 0 1 A A F ( W S S , E C C , R C , N 1 , N 2 , N B , W S S Y )  
E CC X« P C (N 2)
DO 14 1 * 1 , 1 1

S T I F F N E S S  AND DAMPING C O E F F I C I E N T S * * * * *

IN TER PO LA TE  E C C E N T R I C I T Y  FROM LOAD

MAIN
* A INMAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
INTERP
C0M1
COMI
C3M1
C0M1
C0M1
CGM1
C0M1
C0M1
C0M1
C 3 * l
C0M1
CGM1
COMI
CQM1
COMI
COMIC3M1
C3M1
C3M1
COMI
C3M1
COMI
COMI
COMI
COMI
INTERP
INTERP
INTERP
INTERP
INTERP
INTERP
INTERP
INTERP
INTERP
INTERP



309

14

15

16

17

18

19

20

21

22
100
101

HSS (I)-WSSl(I)ECC(I)-ECCKI)CALL ROUTINE E01AAF TO INTERPOLATE DYNAMIC COEFFICIENTS FROM ECCENTRICITYCALL E01AAF(ECC*AXX*RC*N1*N2*NB*ECCX)K X X * R C ( N 2 )00 15 1-1*11 ECC <I)-ECC1(I)AXX(I)-AXXKI)CALL E01AAF{ECC*AXY*PC*H1*N2*NB#ECCX)K.XY-RC (H2)DO 16 1-1*11 ECC(I)-ECC1C II AXY(I)-AXYl(I)
CA LL  E 0 1 A A F ( E C C * A Y X * RC* Ml*N2 *NB *EC CX)K.YX-RCCN2)DO 17 1-1*11 ECC(I) — ECC1CI)AYX(I)-AYXKI)CALL F01AAF{ECC*AYY*PC*N1*N2*NB*ECCX)KYY-RC(N2)DO 18 1-1*11 ECC 11)-ECC1(I)AYY(I)-AYYKI)CALL E01AAF(ECC*BXX*PC*N1*H2*NB*ECCX)CXX-RC(N2)DO 19 1-1*11 ECC(I)-ECC1CI)exxm-BxximCALL E01AAF{ECC*BXY,RC*Ml*N2*NB*ECCX)CXY-RC(N2)DO 20 1-1*11 ECC CI)-ECCl(I)BXY(I)-BXY1(I)CALL FOlAAFt ECC»BYX*PC*N1*N2*NB,ECCX)CYX-RC(N2)DO 21 1-1*11 ECC «I)-ECC1C 11 BYXCIJ-BYXKI)CALL E01AAF(ECC*BYY*RC*M1*H2*NB*ECCX)CYY-RC(N2)DO 22 1-1*11 ECC(I)-ECCKI)
3YY C I ) - B Y Y 1 ( 1 )WPITE< 6*100)GAM*C*ECCX*K.XX*KXY*KYX*KYY*CXX*CXY*CYX*CYY*WSSY FDPMAT(5X*F3.1*2X*F5.4,10(2X*F8.4)/)WRITE(6*101)FLEX1,RMXP*RMYP*KXP*KYP*KTT*KPP FOP MAT(5X*F5.2*2X*2(F6.3*2X)*4(1PE10.3*2X)/)RETURN.ENDSUBROUTINE SPEEDCOMPLEX F,FF*AA*A*Z*ZXX*ZXY*ZYX*ZYY*ZXXF*7XYF*ZYXF*ZYYF*ZXXP*ZXYP CDMPLFX ZYXP*ZYYP,CPSI*SUM*ALAMBDA,ALAMS*C1*C2*C3*C4,C5*C6*C7,C8 COMPLEX C9,C10*C11*AC*CC*CC*BHFX*BHFY,BFFX*BFFY*XP*YP complex ZTT*ZTP*ZPT*ZPPPEAL K.XX*KXY*KYX#K.YY*KXP*<YP*MXP*MYP* LOAD* ME EP * KTT* KP »
COMMON E C C ( I O ) * A X X ( I O ) * A X Y ( 1 0 ) * A Y X ( 1 0 ) , A Y Y ( 1 0 ) * B X X ( 1 0 ) * B X Y ( 1 0 |  
COMMON B Y X ( 1 0 ) * B Y Y ( 1 0 ) * W S S ( 10)* A X X I ( 1 0 ) *  AXY1 ( 1 0 ) *AYX1( 10)COMMO). AYY1(10)*BXX1(10),BXY1(10)*BYX1(10)*BYY1(10)*ECC1(10)COMMON WSSl(10)*riA(25)*BEAM(25)*SI(25)*AMASS(25)*PI(25)*TI(25) COMMON PIE*C*FOP.CE*E*KI*Kf!*KS*KB*KF*RPM,OMEGA*RPMBETA*BETA*MXP*MYP COMMON K.XP*K.YP*CXP*CYP*PSI*ALIMIT*ALIMIT1*TINC*TINC1* ECCX*ZXXP COMMON WSSY* IPZ*K.XX*K.XY*KYX*K.YY*ALAMRDA* AL AMS* C XX, C XY* C YX* C YY* ZYYP F( 25*Q*9),FB(9,0),AA<9*9)*A { 9, 9) , Z ( 2 5* 9) , AC (17* 17) * BC (17* 1) CC(17*1)*XP(25)*XI(25)*XM(25)*YR(25)*YI(25)*YM(25)*RMXP THP(25)*THI(25)*THM(25)*PHR(25)*PHI(25)*PHM(25)*BMXR(25) BMXI(25)*BMXM(25)*PMYP(25)*BMYI(25)*BMYM(25)*SFXR(25) SFXI(25)*SFXM(25),SFYR(25)*SFYI(25)*SFYM(25)*AMAJ0R(25) BMINORt 25)*PHASED(25)*ATTD(25)*XD(25)*YD(25)*THD(25) APEA(25)*UNBL(10), LOAD(10)*CP<10)*GM*ALP*ALPHA*KF1*KF2,KF3 ISP*IBN*KB1*IF1*IF2*IF3*G*TINC2*RPM1,RPMBT1*PHD(25)*RMYP PSID(10)*PSIR(10)*0MEGAG*0MEGA1*RPMBET1(200)*ALIMIT2*ILP BETA1(200)*0MEGAT(200)*0MEGAC(200),OMEGAW(200)*RMQD(200) PMJD1(200)*THETAD(ZOO)*OETP(200)*DET1(200)*RNORM(200) XP.P(25)*XIP(25)*YRP(25)*YIP(25)*GAM,ALIMIT3*VI*V2*KTT*KPP FLEX1TO SET SHAFT SPEED AND FREQUENCY*****

COMMONCOMMONCOMMONCOMMONCOMMONCOMMON.COMMONCOMMONCOMMONCOMMONCOMMONCOMMONCOMMONC*****PPCGRAM

13

SET ARRAYS To ZERO DO 13 KS»1*KN DO 13 J-1* 9 Z(KS*J)-(0.*0.)DO 13 K«l*9 F(KS*J*K)«(0.*0.)VARY NUMBER OF STATIONS DO 99 KS-KI* KN

INTERP 14INTERP 15INTERP 16INTERP 17INTERP 18INTERP 19INTERP 20INTERP 21INTERP 22INTER® 23INTERP 24INTERP 25INTERP 26INTERP 27INTERP 28INTERP 29INTERP 30INTERP 31INTERP 32INTERP 33INTERP 34INTERP 35INTERP 36INTERP 37INTERP 38INTERP 39INTERP 40INTERP 41INTERP 42INTERP 43INTERP 44INTERP 45INTERP 46INTERP 47INTERP 48INTERP 49INTERP 50INTERP 51INTERP 52INTERP 53INTERP 54INTERP 55INTERP 56I.NTERP 57INTERP 58INTERP 59INTERP 60INTERP 61INTERP 62INTERP 63SPEED 2C0M1 2C0M1 3C0M1 4CQM1 5COM 1 6CQM1 7CQM1 8CDM1 9C0M1 10C3M1 11C0M1 12C0M1 13C0M1 14C0M1 15C0M1 16C0M1 17COM 1 18C0M1 19COM 1 20CQM1 21C0M1 22C0M1 23C0M1 24C0M1 25C0M1 26SPEED 4SPEED 5SPEED 6S® EED 7SPEED 8SPEED 9SPEED 10S®EED 11SPEED 12
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*

COMMON RM0D1( 2 0 0 ) , THETAD( 2 0 0 ) , D E T R ( 2 0 0 ) , D E T 1 ( 2 0 0 ) ,R NORM(200)  
COMMON! X R P ( 2 5 ) , X I P ( 2 5 ) , Y R P ( 2 5 ) , Y I P ( 2 5 ) , G A M , A L I M I T 3 , V 1 , V 2 , K T T , K P P  
COMMON F LE X1

C*****PRQGRAM TO DERIVE  TRANSFER MATRIX AT EACH SHAFT S T A T IO N * * * * * *
C SET UP STANDARD TRANSFER MATRICES AT STATIONS 2 TO KS

DO 12 K « 2 ,K S
C S E T  BEARING L I N E A R  AND ROTORY IMPEDANCE TO ZERO

Z X X » ( 0 . , 0 . )
Z X Y - ( 0 . , 0 . )
Z Y X « ( 0 . , 0 . )
Z Y Y « ( 0 . , 0 . )
Z T T - ( 0 . , 0 . )
Z T P - ( 0 . , 0 . )
Z P T - ( 0 . , 0 . )
Z P P - ( 0 . , 0 . )
I F d S P . E Q . D G O  TO 14 
I F ( K .NE  #K B ) GO TO 19 
K . X X - A X X ( l )
K X Y - A X Y ( l )
K Y X - A Y X ( l )
K Y Y - A Y Y ( l )
C X X - B X X ( l )
C X Y - B X Y ( l )
C Y X - B Y X ( l )
C Y Y - B Y Y ( l )
C - C R ( l )
FOPC E - L O A D ( 1 )
GO TO 15

19 I F ( K . N E . K B 1 ) G 0  TO 16 
K X X - A X X ( 2 )
KX Y - A X Y ( 2 )
K Y X - A Y X 1 2 )
K.YY»AYY(2)
C X X - B X X ( 2 )
C X Y « B X Y ( 2 )
C Y X - B Y X ( 2 )
C Y Y * B Y Y ( 2 )
C * C R ( 2 )
F 0 P C E - L 0 A D ( 2 )
GO TO 15

14 I F ( K . N E . K B ) G O  TO 16
C DE R IV E  O I L - F I L M  BEARING IMPEDANCE

15 ZXXF«FOPCE/C*(K.XX+ALAMBDA/OMEGA*CXX)  
ZXYF-FOPCE/C*(KXY+ALAMBDA/OMEGA*CXY)  
ZYXF-FOPCE/C*(KYX+ALAMBPA/OMEGA*CYX)
ZY YF- FOP CE/C*(KYY+ALAMEDA/OMEGA*CYY)
I F ( I P Z •EQ• 1 ) GO TO 10

C DE R IV E  PEDESTAL  IMPEDANCE
ZXXP«MX.P*ALAMS + KXP + ALAMBDA*CXP 
ZYYP«MYP*ALAMS+KYP+ALAKBDA*CYP  

C DERIVE  BEARING AND PED ES TAL  IMPEDANCE
Z X X « Z X X F * Z X X P / ( Z X X F + Z X X P )
Z Y Y * Z Y Y F * Z Y Y P / ( Z Y Y F + Z Y Y P )
GO TO 13

C SET IMPEDANCE TO O I L - F I L M  IMPEDANCE
10 Z X X - Z X X F  

Z Y Y - Z Y Y F  
13 Z X Y - Z X Y F  

Z Y X - Z Y X F
16 F ( K , 1 , 1 ) - ( 1 . , 0 . )

F ( K , 1 , 2 ) - B E A M ( K ) * F ( K , 1 , 1 )
F ( K , 1 , 3 ) - B E A M ( K ) * * 2 / ( 2 . * E * S I ( K ) ) *F C K , 1 , 1 )
F { K , 1 , 4 ) « ( B E A M ( K ) * * 3 / ( 6 . * E * S I ( K ) ) - B E A M ( K ) / ( A L P * A R E A  ( K ) *GM) )*+F(K,1,1)
F ( K , 1 , 9 ) - X D ( K  ) * F ( K . , 1 , 1 )
F ( K , 2 , 2 ) - F ( K , 1 , 1 )
F ( K , 2 , 3 ) - B E A M ( K . ) / (  E * S I ( K . } ) * F ( K , 1 , 1 )
F ( K , 2 , 4 ) » F ( K , 1 , 3 )
F ( K , 2 , 9 ) « T H D ( K ) * F ( K , 1 , 1 )
C 1 - T I ( K ) * A L A M S + Z T T
F ( K , 3 , 2 ) - C M P L X ( P E A L ( C l ) , A I M A G ( C l ) )
C 2 - 1 . + C 1 * F ( K , 2 , 3 )
F ( K , 3 , 3 ) - C M P L X ( R E A L ( C 2 ) , A I M A G ( C 2 > )
C 2 - B E A M ( K ) * ( 2 . + C 1 * F ( K , 2 , 3 ) ) / 2 .
F ( K , 3 , 4 ) « C M P L X ( P E A L ( C 2 ) , A I M A G ( C 2 ) )
C 1 - - C M E G A * P I ( K ) * A L A M B D A + Z r P  
F ( K , 3 , 6 ) * C M P L X ( R E A L ( C 1 ) , A I M A G ( C 1 ) )
C 2 - C 1 * F ( K , 2 , 3 )
F ( K , 3 , 7 ) - C M P L X ( R E A L ( C 2 ) , A I M A G ( C 2 )  )
C 2 - C 1 * F ( K , 1 , 3 )
F ( K . , 3 ,  8 ) - C M P L X ( P E A L ( C 2 ) , A I M A G ( C 2 )  )
C 1 - T H D ( K ) * F ( K , 3 , 2 ) +PHD( K ) * F ( K , 3 , 6 )
F ( K , 3 , 9 ) - C M P L X ( R E A L ( C l ) , A I M A G ( C l ) )
C 1 - - ( A M A S S ( K ) * A L A M S + Z X X )
F ( K , 4 , 1 ) - C M P L X ( P E A L ( C 1 ) , A I M A G ( C 1 ) )

C0M1 2 *
C0M1 25
C0M1 26
MATRIX 4
MATRIX 5
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MATRIX 1 1
MATRIX 1 2
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MATRIX 17
MATRIX 18
MATRIX 19
MATRIX 20
MATRIX 2 1
MATRIX 22
MATRIX 23
MATRIX 24
MATRIX 25
MATRIX 26
MATRIX 27
MATRIX 28
MATRIX 29
MATRIX 30
MATRIX 31
MATRIX 32
MATRIX 33
MATRIX 34
MATRIX 35
MATRIX 36
MATRIX 37
MATRIX 38
MATRIX 39
MATRIX 40
MATRIX 41
MATRIX 42
MATRIX 43
MATRIX 44
MATRIX 45
MATRIX 46
MATRIX 47
MATRIX 48
MATRIX 49
MATRIX 50
MATRIX 51
MATRIX 52
MATRIX 53
MATRIX 54
MATRIX 55
MATRIX 56
MATRIX 57
MATRIX 58
MATRIX 59
MATRIX 60
MATRIX 61
MATRIX 62
MATRIX 63
MATRIX 64
MATRIX 65
MATRIX 66
MATRIX 67
MATRIX 68
MATRIX 69
MATRIX 70
MATRIX 71
MATRIX 72
MATRIX 73
MATRIX 74
MATRIX 75
MATRIX 76
MATRIX 77
MATRIX 78
MATRIX 79
MATRIX 80
MATRIX 81
MATRIX 82
MATRIX 83
MATRIX 84
MATRIX 85
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C 2 - C 1 * F ( K * 1#2)
F(  K , 4 , 2 ) - C M P L X ( R E A L ( C 2 ) > A I M A G ( C 2 ) )
C 2 « C 1 * F { K > 1 / 3 )
F ( K , 4 # 3 ) - C M P L X < R E A L ( C 2 ) > A I M A G C C 2 )  ) 
C 2 « 1 . + C 1 * F ( K , 1 # 4 )
F ( K / 4 # 4 ) - C M P L X ( P E A L ( C 2 ) # A I M A G < C 2 ) )
C l - Z X Y
F < K # 4 # 5 ) - C * i P L X ( P . E A L ( C l ) #  A I H A G ( C l )  )
C 2 - C 1 * F ( K > l / 2 )
F ( K * 4 > 6 ) - C M P L X ( R E A L { C 2 ) » A I M A G ( C 2 ) ) 
C 2 - C 1 * F ( K # 1 # 3 )
F ( K * 4 * 7 ) - C M P L X ( R E A L ( C 2 ) # A I H A G ( C 2 ) )
C 2 « C 1 * F ( K # 1 , 4 )
F ( K , 4 # 8 ) - C M P L X ( P E A L ( C 2 ) * A I M A G ( C 2 )  )
SE T  MASS UNBALANCE PESPONCE TO ZERO IN X D I R .  
C 2 - ( 0 . , 0 .  )
MEER-O.
P S I - O .
I F C K . K E . K F l . A N D . K . N E . K F 2 . A N D . K . N E . K F 3 ) G O  TO 17  
I F ( K . E Q . K F 1 . A N D . I F 1 . E 3 . 1 ) M E E R « U N B L ( 1 ) / G  
I F ( K . E Q . K F 2 . A N D .  I F 2 .  E Q . l )  M.EEP-UNBL ( 2 ) /G 
I F ( K . E Q . K F 3 . A N D . I F 3 . E Q . 1 J M E E R « U N B L ( 3 ) / G  
I F ( K . E Q . K F 1 . A N D . I F 1 . E Q . 1 ) P S I - P S I R ( l )
I F ( K . E Q . K F 2 . A N D . I F 2 . E Q . 1 ) PS I - P S I R ( 2)  
I F C K . E Q . K F 3 . A N D . I F 3 . E Q . 1 ) P S I « P S I R < 3 >  
C P S I - C N P L X ( C r S ( P S I ) # S I N ( P S I ) )
C1-MEEP.*0MEGA**2
C 2 « - C 1 * C P S I

17 C 3 - C 2 + X D ( K ) * F ( K . 4 , 1 > + Y D ( K ) * F < K * 4 , 5 )
F (  K * 4 , 9 ) - C M P L X ( R E A L ( C 3 ) # A I M A G ( C 3 )  ) 
F ( K , 5 , 5 ) - F ( K , 1 , 1 )
F ( K . # 5 # 6 ) - F ( K # 1 » 2 )
F ( K , 5 , 7 ) * F ( K , 1 , 3 )
F ( K # 5 / 8 ) - F ( K # l * 4 )
F ( K , 5 / 9 ) . Y D ( K ) * F ( K # 1 # 1 )
F ( K # 6 # 6 ) - F ( K * 1 » 1 )
F ( K / 6 * 7 ) * F ( M . / 2 * 3 )
F ( K * 6 / 8 ) » F ( M / 1/ 3)
F ( K . , 6 > 9 ) * P H P ( K ) * F ( K , 1 # 1 )
C1»1MEGA*PI(K.  )*ALAMBDA + ZPT  
F ( K , 7 , 2 ) - C M P L X ( P E A L ( C 1 ) , A I M A G ( C l ) )
C 2 » C 1 * F ( K , 2 #  3)
F ( K / 7 #  3 ) - C M P L X ( F E A L ( C 2 ) * A I M A G ( C 2 ) )
C 2 - C 1 » F ( K , 1 >  3)
F ( K . / 7 . » 4 ) " C M P L X ( R E A L { C 2 ) f A I M A G ( C 2 )  ) 
C W I ( K ) * A L A M 5  + ZPP  
F ( K , 7 , 6 ) » C M P L X ( P E A L ( C 1 ) , A I M A G ( C 1 > ) 
C 2 » l . + C l * F ( K / 2 * 3 )
F ( K , 7 / 7 ) » C M P L X ( P E A L ( C 2 ) > A I M A G C C 2 )  ) 
C 2 - B E A M ( K ) M 2 . + C 1 * F ( K , 2 , 3 )  ) / 2 .
F ( K , 7 , 8 ) - C M P L X ( R E A L ( C 2  > ,A IM A G( C 2)  ) 
C 1 - T H P ( K ) * F ( K > 7 , 2 ) + P H D ( K ) * F ( K > 7 # 6 )  
F ( K # 7 * 9 ) - C M P L X ( P E A L ( C 1 ) * A I M A G ( C 1 ) )
C l - Z Y X
F< K # 8 # 1 ) - C M P L X ( R E A L ( C 1 ) # A I M A G ( C l ) )
C 2 - C 1 * F ( K > 1 / 2 )
F ( K # 8 # 2 ) * C M P L X { P E A L ( C 2 ) # A I M :A G ( C 2 ) )
C 2 « C 1 * F ( K , 1 , 3 )
F ( K / 8 / 3 ) » C M P L X ( R E A L ( C 2 ) / A I M A G ( C 2 ) )
C 2 - C 1 * F ( K # 1 # 4)
F ( K , 8 f 4 ) - C M p L X ( P . E A L ( C 2 ) »  AIMAGCC2) )
C l « - ( A M A S S ( K ) * A L A M S + Z Y Y )
F ( K > 8/ 5 ) - C M P L X ( P E A L ( C 1 ) * A I M A G ( C 1 ) ) 
C 2 - C 1 * F ( K , 1 » 2 )
F(  V.,%, & ) - C ‘i P L X ( R E A L ( C 2 ) /  AIMAGCC2) )
C 2 - C 1 * F ( K *It 3)
F (V f B r 7 ) - C M P L X ( P E A L ( C 2 ) # A I M A G ( C 2 ) ) 
C 2 - 1 . + C 1 * F ( K , 1 , 4 )
F ( K , 8 , 8 ) - C M P L X ( P E A L ( C 2 ) * A I M A G C C 2 ) )
SET  MASS UNBALANCE RESPONCE TO ZERO IN Y D I R .
C 2 - ( 0 . / 0 . J
MEER-O.
P S I - O .
I F C K . N E . K F 1 .  AND. K . NE •KF 2 . AND•K , NE.K  F 3 ) GO TO 10 
I F C K . E Q . K F l . A N D . I F 1 . E Q . 1 ) M E E R -U N B L (1 )/ G  
I F ( K . E Q . K F 2 . A N D . I F 2 . EO. 1 ) N E E R -U N B L( 2 ) /G 
I F ( K . E O , K F 3 . A N D . I F 3 . E Q . 1 ) M E E P - U N B L ( 3 ) / G  
I F C K . E Q . K F l . A N D . I F  1 . E Q . l ) P S I - P S I R ( 1 )  
I F ( K . E O . K F 2 . A N D . I F 2 . E Q . l ) P S I - P S I R ( 2 )  
I F ( K . E Q . K F 3 . A N D . I F 3 . E Q . 1 ) P S I - P S I R ( 3 )
C P S I - C M P L X ( S I N C P S I ) # - C C S ( P S I J )
C l - M E E P * 0 ‘iEGA**2
C 2 - C 1 * C P S I

18 C 3 - C 2 + X D < K ) * F ( K , 8 , 1 ) + Y D (  K.) *F <K* 8* 5 > 
F ( K / 8 / Q ) - C M P L X ( P E A L ( C 3 )tAIMAGCC3) )
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12 F ( K # 9 , 9 ) - F ( K . # 1 , 1 )
RETURN
END
SUBROUTINE M . l L T ( I l )
COMPLEX F#FB#AA#A# Z# ZXX ,  ZXY# ZYX# ZYY# ZXXF# ZXYF# Z Y X F # Z Y Y F # Z X X P # Z X Y P  
COMPLEX ZY XP #Z Y YP ,C PS I#5 UM #A LAM BDA #A LAM S# C1# C2 #C3 #C 4# C5# C6# C7# C8  
COMPLEX C 9 # C 1 0 # C 1 1 # A C # B C # C C # B H F X # B H F Y # B F F X # B F F Y # X P # Y P  
COMPLEX Z T T # Z T P # Z P T # Z P P
r e a l  k x x # k x y , k y x # k y y , kx .p , k y p # m x p # m y p , l o a d , m e e r # k t t # k p p
COMMON E C C ( 1 0 ) # A X X ( 1 0 ) # A X Y ( 1 0 ) # A Y X ( 1 0 ) # A Y Y ( 1 0 ) # B X X ( 1 0 ) # B X Y ( 10)  

B Y X ( 1 0 ) , B Y Y ( 1 0 ) # W S C ( 1 0 ) # AXX1( 1 0 ) # A X Y l ( l O ) # A Y X l ( l O )  
A Y Y 1 ( 1 0 ) # B X X 1 ( 1 0 ) # B X Y 1 ( 1 0 ) # B Y X 1 ( 1 0 ) , B Y Y 1 ( 1 0 ) # E C C 1 ( 1 0 )  
W S S 1 ( 1 0 ) # D I A ( 2 5 ) # B E A M ( 2 5 ) # S I ( 2 5 ) # A M A S S ( 2 5 ) # P I ( 2 5 ) # T I ( 2 5 )  
P I E # C # F a R C E # E # K I # K M # K S # K 8»KF#PPM,PMEGA#RP‘1 BETA#BETA#MXP#MYP  
K X P # K Y P , C X P # C Y P # P S I # A L I M I T # A L I M I T 1 , T I N C # T I N C 1 #  ECCX#ZXXP  
VSSY# IPZ#K.XX#KXY#KYX#KYY#  ALAMBDA# ALAMS#CXX#CXY#CYX#CYY#ZYYP  
F ( 2 5 # 9 , 9 ) , F B ( 9 , 9 ) # A A ( 9 , 9 ) , A ( 9 # 9 ) # Z ( 2 5 # 9 ) # A C ( 1 7 * 1 7 ) # B C ( 1 7 # 1 )  
C C ( 1 7 # 1 ) # X R ( 2 5 ) # X I ( 2 5 ) # X M ( 2 5 ) # Y R ( 2 5 ) # Y I ( 2 5 ) , Y K ( 2 5 ) # R M X P  
T H R ( 2 5 ) # T H I ( 2 5 ) , T H H ( 2 5 ) # P H R ( 2 5 ) # P H I ( 2 5 ) # P H M ( 2 5 ) # B M X R ( 2 5 )
BMXI( 2 5 ) #  BMXM( 2 5 ) # B M Y R ( 2 5 ) # B M Y I ( 2 5 ) # B M Y M ( 2 5 ) # S F X R ( 2 5 )  
S F X I ( 2 5 ) # S F X M ( 2 5 ) # S F Y P ( 2 5 ) # S F Y I ( 2 5 ) # S F Y M ( 2 5 ) # A M A J Q R ( 2 5 >
BMINOR( 2 5 ) # PHASED( 2 5 ) # ATTO( 2 5 ) # X D ( 2 5 ) # Y D ( 2 5 ) , THD( 2 5 )  
AR.EA(25)#UNBL(  1 0 ) # L 0 A D (  1 0 ) # C P (  10)  #GM# ALP# ALPHA# K F 1 # K F 2 # K F 3  
I S P # I B N # K B 1 # I F 1 # I F 2 # I F 3 # G # T I N C 2 # R P M 1 # R P M B T 1 # P H 0 ( 2 5 ) # R M Y P  
PS 1 0 ( 1 0 ) # P S I R ( 1 0 ) #3MEGAG#0MFGA1,RPMBET1 ( 2 0 0 ) # A L I M I T 2 # I L P  
BETA1(20 0)#O MEG AT(2 00)# GM EGA C(2 00) #OM EG AW(2 00 )#RM OD(2 00)  
PMODK 2 0 0 )# T H E TA D (  2 0 0 ) # D E T P ( 2 0 0 ) # D E T I (  2 0 0 ) #RNORM( 2 0 0 )  
X R P ( 2 5 ) # X I P ( 2 5 ) # Y P P ( 2 5 ) # Y I P ( 2 5 ) # G A M , A L I M I T 3 , V 1 # V 2 # K T T # K P P  
F L E X 1

TO MULTIPLY  TRANSFER M AT RIC ES *** **

COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
CO"MGN 
COMMON 
COMMON 
COMMON 
COMMON COMMON 
COMMON 
COMMON

C*****PPOGRAM
CAPPYCUT ABRIDGED MATRIX MULT. OMITTING COLUMNS 3#4#7  
TO GIVE  FREE BOUNDARY CONDITION AT STATION 1 
OBTAIN TRANSFER MATRIX FOR STATIONS 2 AND 3 
DO 5 J » 1 # I 1  
DO 5 K.■  1 # I I  
I F ( K . E Q . 3 ) G 0  TO 5 
I F ( K . E Q . 4 ) G 0  TO 5 
I F ( K . E Q . 7 ) G 0  TO 5 
I F ( K . E Q . 8 )G0 TO 5 
SUM-( 0 • # 0 . )
DO 6 L « 1 # I 1
SUM-SL M + F ( 3 # J # L ) * F ( 2 # L # K )
FB ( J#K . ) “ SUM 
CONTINUE  
OBTAIN TRANSFER  
DO 7 M-4#KS

AND 8

MATRIX FOR COMPLETE SHAFT

10
7

DO 0 J » 1 # I 1  
DO 8 K - 1 # I 1  
I F ( K . E Q . 3 ) G 0  TO 8 
I F  ( K . E Q . 4 )  GO TO 8 
I F ( K . E 0 . 7 ) G 0  TO 8 
I F ( K . E Q . 8 )GO TO 8 
5 l ' M « ( 0 . # 0 .  )
DO 9 L - l # I I
S U M - S U M + F ( M # J # L ) * F B ( L # K )
AA( J#K.) -SUM 
CONTINUE  
DO 10 J - 1 # I 1  
DO 10 K - l # I I  
I F ( K . E Q . 3 ) G 0  TO 10 
I F ( K . E Q . 4 ) G D  TO 10 
I F ( K . F Q . 7 ) G Q  TO 10  
I F ( K . E Q . 8 ) G 0  TO 10 
F B ( J # K ) - A A ( J # K )
CONTINUE
CONTINUE
RETURN
END
SUBROUTINE MULTI  ( I D
c o m p l e x  F # F B # A A # a # z # z x x , z x y , z y x , z y y # z x x f # z x y f # z y x f # z y y f # z x x p # z x y p
COMPLEX ZYXP#ZYYP#CPSI#S UM# ALA MB DA# ALA MS# C1 #C2 #C 3#C 4# C5# C6# C7# C8  
COMPLEX C9 #C 1 0# C1 1# AC # B C# CC #  BHFX# BHF Y#BFFX.#BFFY#XP,  YP 
COMPLEX Z T T # Z T P # Z P T # Z P P
PEAL K .XX#KXY#KYX#KYY#KXP#KYp,MXP#MYP,LOAO,MEER#KTT#KPP  
COMMON E C C ( 1 0 ) # A X X ( 1 0 ) # A X Y ( 1 0 ) # A Y X ( 1 0 ) # A Y Y ( 1 0 ) # B XX{ 1 0 ) #  B X Y ( 1 0 )  
COMMON B Y X ( 1 0 ) # B Y Y ( 1 0 ) » W S S ( 1 0 ) #  A X X K 1 0 ) #  A X Y K 1 0 ) #  A Y X K 1 0 )
COMMON A Y Y 1 ( 1 0 ) # B X X 1 ( 1 C ) # E X Y 1 ( 1 0 ) # B Y X 1 ( 1 0 ) , B Y Y K 1 0 ) , E C C 1 ( 10)
COMMON W S S 1 ( 1 0 ) # D I A ( 2 5 ) # 3 E A M ( 2 5 ) # S I ( 2 5 ) » A M A S S ( 25)>  P I ( 2 5 ) # T 1 ( 2 5 )  
COMMON PIE#C#F 0PC E# E#K I# KN, K5 #KB #KF #R PM# 0ME GA #R PMB ET A#  BETA#MXR#MYP 
COMiON KXP,K.YP#CXP#CYP#  PS I#  A L IM IT #  A L IM IT 1  # T I N C #T I N C 1# E C C X ,  ZXXP 
COMMON WS SY , IPZ# KXX #K X Y# KY X# KY Y # AL A« B DA # AL AM S# C XX #C XY # CY X# CY Y # ZY Y P  
COMMON F ( 2 5 # 9 , 9 ) , F B ( 9 , 9 ) , A A ( Q , 9 ) , A ( 9 , 9 ) # 7 ( 2 5 # 9 ) , AC( 1 7 # 1 7 ) # B C( 1 7 # 1 )  
C n M10N C C ( 1 7 # 1 ) # X R ( 2 5 ) # X I ( 2 5 ) # X M ( 2 5 ) # Y R ( 2 5 ) » Y I ( 2 5 ) # Y M ( 2 5 ) » R M X P  
COM ION T H R ( 2 5 ) # T H I ( 2 5 ) # T H M ( 2 5 ) # P H R ( 2 5 ) # P H I ( 2 5 ) # P H M ( 2 5 ) # B M X R ( 2 5 )  
COMMON B M X I ( 2 5 ) # B M X M ( 2 5 ) # B M Y P ( 2 5 ) # B M Y I ( 2 5 ) # B M Y M ( 2 5 ) # S F X R ( 2 5 )

MATRIX
MATRIX
MATRIX
MULT
C0M1
C0M1
C0M1
CQM1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
CQM1
C0M1
C0M1
CQM1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
MULT
MULT
MULT
M'JLT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
M'JLT
MULT
MULT
M'JLT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
M'JLTl
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1
C0M1

171
172
173  2 2

3
4
56
78 
910

1112
13
1 *
15
16
17
18
1920 21 22 
23 
2 *
25
26

4
5
6
7
8 
9

10
1112
13
1 *
15
16
17
18
1920 
21 
22
2324
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 

2 2
3
4
5
6
7
8 
9

101112
13
14
15
16  
17
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n
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COMMON 
COMMON 
COMMON 
COM ION. 
COMMON
common.
COMMON.
COMMON.
COMMON

C*****PRnGRAM

S F X I ( 2 5 ) # S F X N ( 2 5 ) , $ F Y P ( 2 5 ) , S F Y I < 2 5 ) , S F Y M ( 2 5 ) , A M A J O R ( 2 5 )  
B M I N 0 P < 2 5 ) , P H A S E P ( 2 5 ) , A T T D ( 2 5 ) , X D ( 2 5 ) , Y D ( 2 5 ) , T H D ( 2 5 )  
A R E A ( 2 5 ) , U N B L ( 1 0 ) , L 0 A D ( 1 0 ) , C R ( 1 0 ) , G M , A L P , A L P H A , K F 1 , K F 2 , K F 3  
I S P , I B N , K B 1 , I F 1 , I F 2 , I F 3 , G , T I N C 2 , P P M 1 , R P M B T 1 , P H D ( 2 5 ) , R M Y P  
P S I D < 1 O ) , P S I R ( 1 O ) , O M E G A G , 0 M E G A 1 , R P M B E T 1 ( 2 O O ) , A L I M I T 2 , I L P  
B E T A 1 ( 2 0 0 ) , 0 M E G A T ( 2 0 0 ) , 3 H E G A C (  2 0 0 ) , OMEGAW( 2 0 0 )  ,RM 0D (2 00 )  
P M 0 D 1 ( 2 0 0 ) , T H E T A D ( 2 0 0 ) , D E T R ( 2 0 0 ) , D E T I ( 2 0 0 ) , R N 0 R M ( 2 0 0 )  
X R P ( 2 5 ) , X I P ( 2 5 ) , Y R P <  2 5 ) , Y I P ( 2 5 ) , G A * , A L I M I T 3 , V I , V 2 , K T T , K P P  
F LE X1

TO MULTIPLY  F I E L D  TRANSFER MATRICES AND STATE

29
27

32
31
30

VECTOR AT STATION 2

VECTORS FOP OTHER STATIO NS

♦ V ECT ORS *** **
DERIVE  STATE  
DO 27 K - l , I I  
S U M - ( 0 . , 0 . )
DO 29 L - 1 , I 1  
SJM«iUM + F ( 2 , K . , L ) * Z { l , L )
Z ( 2 , K ) - S U M  
DERIVE  STATE  
DO 30 M -3 ,K S  
on 31 K - l , I I  
S U N « ( 0 . , 0 . )
DO 32 L - l , I 1
SUM-SUM + F ( M , K . , L ) * Z ( M - 1 , L )
Z ( M , K ) -SUM
CONTINUE
RETURNewp
SUBROUTINE DETERM(NW)
COMPLEX F , F B , A A , A , Z , Z X X , Z X Y * Z Y X , Z Y Y , Z X X F , Z X Y F , Z Y X F , Z Y Y F , Z X X P , Z X Y P  
COMPLEX Z Y X P , Z Y Y P , C P S I # S U P , A L A M B D A , A L A M S , C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8  
COMPLEX C 9 , C 1 0 , C 1 1 , A C , B C , C C , B H F X , B H F Y , B F F X , B F F Y , X p , Y P  
COMPLEX Z T T , Z T P , Z P T ,  ZPP
PEAL K . X X , K X Y , K Y X , K Y Y , K X P , K Y P , M X P , M Y P , L O A n , M E E P . , K T T , K P P  
COMMON E C C ( 1 0 ) , A X X ( 1 0 ) , A X Y ( 1 0 ) , A Y X ( 1 0 ) , A Y Y ( 1 0 ) , BXX( 1 0 ) , B X Y ( 10)  

B Y X ( 1 0 ) , B Y Y ( 1 0 ) , V S S ( 1 0 ) , A X X 1 < 1 0 ) , A X Y 1 ( 1 0 ) , A Y X 1 ( 1 0 )
A Y Y 1 ( 1 0 ) , B X X 1 ( 1 0 ) , B X Y 1 ( 1 0 ) , B Y X 1 ( 1 0 ) , B Y Y 1 ( 1 0 ) , E C C 1 ( 10)  
W S S 1 ( 1 0 ) , D I A < 2 5 ) , B E A M ( 2 5 ) , S I ( 2 5 ) , A * A S S ( 2 5 ) , P I ( 2 5 ) , T I < 2 5 )  
P I E # C , F 0 R C E , E , K I , K N , K S , K B , K F , R P M , r i M E G A , R P M B E T A , B E T A , M X P , M Y P  
k x p , k.y p , c x p , c y p , p s i , a l i m i t , a l i m i t i , t i n c , t i n c i , e c c x , z x x p
W S S Y # I P Z , K X X , M X Y , K Y X , K Y Y , A L A M B D A , A L A M S , C X X , C X Y , C Y X , C Y Y , Z Y Y P  
F ( 2 5 , 9 , o ) , F B ( 9 , 9 ) , A A ( 9 , 9 ) , A ( 9 , 9 ) , Z <  2 5 # 9 ) # AC ( 1 7 # 1 7 ) # B C ( 1 7 # 1 )  
C C ( 1 7 , l ) , X R ( 2 5 ) , y i ( 2 5 ) , X M ( 2 5 ) , Y R ( 2 5 ) , Y I { 2 5 ) , Y M ( 2 5 ) , R M X P  
TH R( 2 5 ) , T H I < 2 5 ) , T H M ( 2 5 ) # PHR( 2 5 ) # P H I ( 2 5 ) # PHM(2 5 ) # BMXR( 2 5 )  
B M X I ( 2 5 ) # B M X M ( 2 5 ) # B M Y R ( 2 5 ) # R M Y I ( 2 5 ) # B M Y M ( 2 5 ) # 5 F X R ( 2 5 )  
S F X I ( 2 5 ) , S F X M ( 2 5 ) , $ F Y R { 2 5 ) , S F Y I ( 2 5 ) , S F Y M ( 2 5 ) , A M A J Q R ( 2 5 )  
B M I N 0 P ( 2 5 ) # P H A S E r ( 2 5 ) # A T T D ( 2 5 ) # XD( 2 5 ) # Y D ( 2 5 ) # THD( 2 5 )
AREA( 2 5 ) , ' J N B L (  10)  ,LOAD< 10)  , C R (  1 0 ) ,G M ,  A L P , A L P H A , K F 1 # K F 2 # K F 3  
I S P , I  BN#KB 1 # I  F I # I F 2 # I F 3 , G , T I N C  2 , RPM1,RPMBT1,PHD( 2 5 ) , RMYP 
P S I D ( 1 0 ) , P S I R ( 1 0 ) , 3 M E G A G , O M E G A 1 , R P MB E T 1 ( 2 0 0 ) , A L I H I T 2 , I L P  
B E T A 1 ( 2 0 0 ) , 0 M E G A T ( 2 0 0 ) , OMEGAC( 2 0 0 ) , OMEGAW( 2 0 0 ) , RMOD( 2 0 0 )  
PMODK 2 0 0 ) , T H E T A P ( 2 0 0 ) , D E T R (  2 0 0 ) , D E T I ( 2 0 0 ) , R N 0 R M ( 2 0 0 )  
X P P ( 2 5 ) , X I P ( 2 5 ) , Y P P ( 2 5 ) , Y I P ( 2 5 ) , G A M , A L I M I T 3 , V I , V 2 , K T T , K P P  
FLEX 1

TO DETERMINE S T A B I L I T Y  THRFSHOLD FROM THE LEONARD LOCUS

COMMON
COMMON
COMMON
COMMON
COMMON
COMMONCOMMON
COMMON
COMMON
COMMON.
COMMON
COMMON.
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

C**** *PP  OGR AM
BY EVALUATING A COMPLEX 4*4 DETERMINANT*****
SET  UP ELEMENTS OF COMPLEX LAMBDA DETERMINANT  
FOP FP E E - P  IN.NED AND F R E E - F R E E  BOUNDARY CONDITIONS  
PHS SUPPORTS R E S P E C T I V E L Y

AT LHS AND

I F ( I S P . E Q . l ) GO TO 10
I F ( I S  P . EQ. 2 ) GO TO 1 1

10 A ( 1# 1) ■ F B ( 1 , 1 )
A ( 1 , 2 ) ■ F B ( 1 , 2 )
A( 1 , 3  ) ■ F B ( 1 , 5  )
A( 1 , 4 ) - F B « 1 , 6 )
A ( 2 , 1 ) - F B ( 3 , 1 )
A ( 2 , 2  ) - F B ( 3 , 2 )
A ( 2 ,  3) - F B ( 3 , 5 )
A{ 2 , 4 ) ■ F B ( 3 , 6 )
A( 3 , 1 ) - F B ( 5 , 1 )
A ( 3 , 2  ) - F B ( 5 , 2 )
AC 3 , 3 ) ■ F B ( 5 , 5 )
A ( 3 , 4 ) - F B ( 5 , 6 )
A ( A , U - F B C 7 , 1)
A ( 4 , Z ) ■ F B ( 7 , 2 )
A ( 4 , 3  ) • F B ( 7 , 5 )
A( 4 , 4 ) ■ F B ( 7 , 6 )
GO TO 1 2

11 A < 1 , 1 )  
A { 1 , 2  ) 
A( 1 , 3 )  
A < 1 , 4 )  
A ( 2 , 1 )  A(2,2) 
A( 2 , 3  ) 
A ( 2 , A )

F B ( 3 ,  1)  
F B ( 3 , 2 )  
F B ( 3 , 5 )  
F B ( 3 , 6 ) 
FB ( 1)
F B < A , 2)  
F B ( A , 5 ) 
F B ( 4 , 6 )

COMl 18
C0M1 19
COMl 20
C0H1 21
COMl 22
COMl 23
COMl 24
COMl 25
COMl 26
MULTI 4
MULTI 5
MULTI 6
MULTI 7
MULTI 8
MULTI 9
MULTI 1 0
MULTI 1 1
MULTI 1 2
MULTI 13
MULTI 14
MULTI 15
MULTI 16
MULTI 17
MULTI 18
MULTI 19
MULTI 20
MULTI 2 1
DETERM 2
COMl 2
COMl 3
COMl 4
COMl 5
COMl 6
COMl 7
COMl 8
COMl 9
COMl 1 0
COMl 1 1
COMl 1 2
C0M1 13
COMl 14
COMl 15
COMl 16
COMl 17
COMl 18
COMl 19
COMl 20
COMl 2 1
COMl 22
COMl 23
COMl 24
COMl 25
COMl 26
DETERM 4
DETERM 5
DETERM 6
DETERM 7
DETERM 8
DETERM 9
DETERM 1 0
DETERM 1 1
DETERM 1 2
DETERM 13
DETERM 14
DETERM 15
DETERM 16
DETERM 17
DETERM 18
DETEPM 19
DETERM 20
DETERM 21
OETERM 22
DETERM 23
DETERM 24
OETERM 25
DETERM 26
DETERM 27
DETERM 28
DETERM 29
DETERM 30
DETERM 31
DETERM 32
DETERM 33
DETERM 34
DETERM 35
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DO 32 N- 
W P IT E ( 6 * 

+ D E T R ( N ) /  
32 CONTINUE  

101 FORMAT(5 
+ F 6 . 4 , 2 X ,  

GO TO 99 
SE T  LOOP 

98 NC -0  
N l - 0  
N4-NW-1  
CHECK I F  
DO 15 N-  
NC-NC+1  
N l - N C + 1  
I F  CDETR(  

+ D E T I ( H )  . 
CHECK I F  
I  F < D E T P ( 

+ D E T I ( N ) .
I F ( D E T R ( 

+ D E T K N )  . 
GO TO 22

15 CONTINUE
16 DO 17 N* 

NC-NC+1  
N l - N C + 1  
I F ( D E T R (

+ D E T K N )  .
I F ( D E T P ( 

+ D E T K N ) . 
GO TO 22

17 CONTINUE
18 DO 19 N* 

NC-NC+1  
N l - N C + 1
I F ( DET P ( 

♦  D E T I  ( N.) • 
I F ( D E T R ( 

+ D E T K N )  . 
GO TO 22

19 CONTINUE
20 DO 21 N« 

N C-NC+1  
N l - N C + 1  
I F ( D E T R (

+ D F . T I 1 H ) ,  
I F ( D E T P ( 

+ D E T I ( N ) • 
GO TO 22

21 CONTINUE  
S E T  LOOP

30 N C- 0  
N l - 0  
N4-NW-1  
CHECK I F  
DO 31 N-  
NC-NC+1  
N l - N C + 1  
I F ( D E T P (

+ D E T K N )  .
I F ( D E T P ( 

+ D E T K N . ) . 
GO TO 22

31 CONTINUE
24 DO 25 N« 

NC-NC+1  
N l - N C + 1  
I F ( D E T P (

+ P E T K N ) .
I F ( D E T P (  

+ D E T K N )  • 
GO TO 22

25 CONTINUE
26 DO 27 N-  

NC-NC+1  
N l - N C + 1  
I F ( DETP<

+ D E T K N ) .
I F ( D E T P ( 

+ D E T K N )  . 
GO TO 22

27 CONTINUE
28 DO 29 N-  

NC-NC+1

1, NW
10 1 )N »P .P KBE TlO ! ) #BE TAl (N) #0 M EGA C(N )# 0M EG AW (N )*0 ME GAT <N )#  
D E T I ( N ) # R M O D ( N K R M 0 D 1 ( N) > RNOPM<N) * TH ET AD { N)

X , I 3 , 2 X * F 7 . 2 * 2 X # F 6 . 2 # 3 ( 2 X , F 5 . 3 ) # 4 ( 2 X # 1 P E 1 2 . 4 ) , 2 X >
F 6 . 1 )

COUNTERS TO ZEPO

LEONARD LOCUS ROTATES A N T I - C L O C K W IS E  1>N>
N ) . G T . 0 . 0 . A N P . D E T R ( N + 1 ) . G T . O . O . A N D .
G T . O . O .  A N D . D E T K N  + 1)  . G T . 0 . 0 ) G 0  TO 15 

LEONARD LOCUS I N I T I A L L Y  ROTATES CLOCKWISE  
N ) . G T . 0 . 0 . A N D . D E T R ( N + l ) . G T . 0 . 0 . AND.  
G T . O . O . A N D . D E T K N  + l )  . L T . O . O ) G O  TO 30 
N ) . G T . 0 . 0 . A N D . D E T P ( N + l ) . L T . 0 . 0 . AND.  
G T . 0 . 0 . A N D . D E T I ( N + 1 ) . G T . 0 . 0 ) G 0  TO 16

Ml >N4

N ) . L T . O . O . A N D . D F T R ( N + l ) . L T . O . O . A N D .  
G T . O . O . A N D . D E T K N  + l )  .G T . O . O J G O  TO 17 
N ) . L T . O . O . A N D . D E T P ( N + l ) . L T . O . O . A N D .  
G T . O . O . A N D . D E T K N  + l  ) . L T . O . O ) G O  TO 18

N1#K4

N ) . L T . O . O . A N D . D E T P ( N + l ) . L T . O . O . A N D .  
L T . 0 . 0 . A N D . D E T I ( N + l ) . L T . 0 . 0 ) 6 0  TO 19  
N ) . L T . O . O . A N D . D E T P ( N + l ) . G T . 0 . 0 . AND.  
L T . O . O .  AND. D E T K N  + 1) . L T . O . O ) G O  TO 20

N1>N4

N ) . G T . O . O . A N D . D E T P ( N + l ) . G T . 0 . 0 . AND.  
L T . 0 . 0 . A M D .D E T K N  + 1) . L T . O . O ) G O  TO 21 
N ) . G T . 0 . 0 . A N P . D F T P ( N + 1 ) . G T . O . O . A N D .  
L T . O . O .  A N D . D E T K N + 1 ) . G T . O . O ) G O  TO 99

COUNTERS TO ZEFO

LEO)'AP.D 
1#N4

LOCUS ROTATES CLOCKWISE

N) . G T . O . O . A N D . D E T R ( N + l ) . G T . O . O . A N D .  
G T . O . O . A N D . D E T K N  + 1) . G T . O . O )  GO TO 31 
N ) . G T . O . O . A N D . D F T F ( N + l ) . G T . O . O . A N D .  
G T . O . O .  AND. D E T K N  + 1)  . L T . O . O J G O  TO 24

N1#N4

N ) . G T . O . O . A N D . D E T P ( N + l ) . G T . O . O . A N D .  
L T . O . O .  A N D . D E T K N  + 1) . L T . O . O J G O  TO 25 
N ) . G T . O . O . A N D . D E T P ( N + l ) . L T . O . O . A N D .  
L T .  0 . 0 .  AND. D E T K N  + l )  . L T . O . O J G O  TO 26

N K M 4

N) . L T . O . O . A N D . P E  TP(N + l ) . L T . O . O . A N D .  
L T . O . O .  A N D . D E T K N + 1 )  . L T . O . O J G O  TO 27 
N ) . L T . O . O . A N D . D E T R ( N + l ) . L T . O . O . A N D .  
L T . O . O . A N D . D E T K N  + 1 ) . G T . O . O J G O  TO 28

N1/N4

LEONARD 39
LEONARD 40
LEONARD 41
LEONARD 42
LEONARD 43
LEONARD 44
LEONARD 45
LEONARD 46
LEONARD 47
LEONARD 48
LEONARD 49
LEONARD 50
LEONARD 51
LEONARD 52
LEONARD 53
LEONARD 54
LEONARD 55
LEONARD 56
LEONARD 57
LEONARD 58
LEONARD 59
LEONARO 60
LEONARD 61
LEONARD 62
LEONARD 63
LEONARD 64
LEONARD 65
LEONARD 66
LEONARD 67
LEONARD 68
LEONARD 69
LEONARD 70
LEONARD 71
LEONARD 72
LEONARD 73
LEONARD 74
LEONARD 75
LEONARD 76
LEONARD 77
LEONAPD 78
LEONARD 79
LEONARD 80
LEONARD 81
LEONARD 82
LEONARD 83
LEONARD 84
LEONARD 85
LEONARD 86
LEONARD 87
LEONARD 88
LEONARD 89
LEONARD 90
LEONARD 91
LEONARD 92
LEONARD 93
LEONARD 94
LEONARD 95
LEONARD 96
LEONARD 97
LEONARD 98
LEONARD 99
LEONARD 1 0 0
LEONARD 1 0 1
LEONARD 1 0 2
LEONARD 103
LEONARD 104
LEONARD 105
LEONARD 106
LEONARD 107
LEONARD 108
LEONARD 109
LEONARD 1 1 0
LEONARD 1 1 1
LEONARD 1 1 2
LEONARD 113
LEONARD 114
LEONARD 115
LEONARD 116
LEONARO 117
LEONARO 118
LEONARD 119
LEONARD 1 2 0
LEONARD 1 2 1
LEONARD 1 2 2
LEONARD 123
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98

98
STATE  VECTOR AT STATION 1

TO ZERO

10
100
101

Q9

I F  ( I F A I L . E 9 . 0 ) G 0  TO 
r f P I T E ( 6 # 1 0 1 ) I F A I L  
GO TO 99

C MODES OF WHIRLING
C ARRANGE ELEMENTS OF

' Z ( 1 # 1 ) - C C ( 1 * 1 )
Z * 1* 2 ) *CC * 2# 1)
Z * l # 3 ) - * 0 . # 0 . )
Z C l # 4 ) - ( 0 . # 0 . )
Z * l # 5 ) - * 1 . # 0 .  )
Z ( 1 # 6 ) « C C < 3 # 1 )
Z * l # 7 ) - ( 0 . # 0 .  )
Z ( l # 8 ) - ( 0 . # 0 . )
CALL  M U L T K 8 )
S E T  LOOP COUNTER 
NCnUNT-0  
DO 10 M»1#KS 
NCOUNT-NCOUNT+1 
X-AMPLITUDE  
XP * M ) « R E A L ( Z * M , 1 ) )
X I ( M )« A IM A G * Z * M # 1 ))
Y-AMPLITUDE  
Y R M ) » R E A L ( Z * M # 5 ) )
Y I ( M ) - A I M A G * Z * M # 5 ) )
WRITE* 6 # 1 0 0 ) N C 0 U N T # X P * M ) # X I * H ) # Y R ( M ) # Y I ( M )
FORMAT*5X, I 2 # 4 ( 2 X # 1 P E 1 2 . 4 )  )
F n P M A T * 5 X , * I F A l L - * # I 2 )
RETURN 
END
SUBROUTINE SUPPORT
COMPLEX F # F B # A A # A # Z , Z X X # Z X r , Z Y X , Z Y Y , Z X X F , Z X Y F , Z Y X F # Z Y Y F , Z X X P , Z X Y P  
COMPLEX ZY XP #Z Y YP# CP SI# CU M *AL AM 80A #A LAM S#C l#C2 #C 3 # C 4 # C 5# C 6# C 7 , C 8 
COMPLEX C 9 , C 1 0 * C 1 1 * A C * B C * C C * B H F X * B H F Y # B F F X , B F F Y * X P * Y P  
COMPLEX Z T T * Z T P * Z P T * Z P P
REAL KXX# KXY,K.YX*K.YY,KXP*KYP,MXP* MYP,LOAD#MEER*KTT#KPP  
COMMON E C C ( I O ) # A X X * 1 0 ) # A X Y ( 1 0 ) # A Y X ( 1 0 ) # A Y Y ( 1 0 ) # B X X * 1 0 ) #  BXYC10)  
COMMON B Y X * 1 0 ) f B Y Y * 1 0 ) # W S S ( 1 0 ) # A X X 1 ( 1 0 ) »  A X Y K 1 0 ) #  A Y X K 1 0 )
COMMON A Y Y 1 * 1 0 ) * 3 X X 1 * 1 0 ) * B X Y 1 * 1 0 ) # B Y X 1 ( 1 0 ) * B Y Y 1 ( 1 0 ) # E C C 1 ( 1 0 )
COMMON WSS1( 1 0 ) * 0 I A * 2 5 ) # B E A M * 2 5 ) * S I ( 2 5 > *  AMASS* 2 5 ) # P I * 2 5 ) * T I * 2 5 )  
COMMON PIE»C*FaPCE*E*<I*KN*KS#KB*KF,PPM*OMEGA*RPMBETA*BETA*MX»*NYP  
COMMON KX P* K Y p ,C X P * C Y P *  PS I # A L I M I T * A L I M I T 1 * T I N C * T I N C 1 #  ECCX*ZXXP  
COMMON WSSY# I P Z # K X X # K X Y # KYX#K.YY,ALAMBDA# ALAMS#CXX#CXY#CYX#CYY#ZYYP  
COMMON F* 2 5 # Q # 9 ) * F B * Q # 9 ) , A A { 9 , 9 ) > A ( 9 , 9 ) , Z *  2 5 * 9 ) * A C * 1 7 * 1 7 ) * B C ( 17 #1 )  
COMMON CC(  1 7 , 1 ) , X R * 2 5 ) # X . I ( 2 5 ) # X M ( 2 5 ) ,  Y R( 25  ) # Y I * 2 5 ) , Y M (  25)#RMXP  
COMMON T H R * 2 5 ) , T H I * 2 5 ) * T H M ( 2 5 ) # PHR* 2 5 ) # P H I < 2 5 ) # PHMt2 5 ) #  BMXR( 2 5 )  
COMMON B M X I ( 2 5 ) * B M X M * 2 5 ) * B M Y R ( 2 5 ) * B M Y I{ 2 5 ) # B M Y M ( 2 5 ) # S F X R ( 2 5 )

S F X I * 2 5 ) # S F X M ( 2 5 ) # S F Y P t 2 5 ) * C F Y I * 2 5 ) , SFYM* 2 5 ) * AMAJ0R*25)  
BMIN0P*25)*  P H A S E D * 2 5 )* A T T D * 2 5 ) * X D * 2 5 )* Y D *  2 5 ) * T H D ( 2 5 )
AREA* 2 5 ) # U N B L ( 1 0 ) # L C A P ( 1 0 ) # C P < 1 0 ) * GM*ALP*ALPHA*K F 1*K F 2* K F 3 
I S P * I B N # K . R 1 * I F 1 * I F 2 , I F 3 * G * T I N C 2 * P P M 1 , R P M B T 1 * P H D *  25)#RMYP  
P S I D * 1 0 ) * P S I R  ( 1 0 )  #3M.CGAG#0MEGA1#RPMBET1* 2 0 0 ) * A L I M I T 2 * I L P  
BE TAl *2 00) *0M EGAT*20 0)*0MEGACt200)*QMEGAW *200)*RM0D*200)  
RM0D1 (20 0)# TH ET AD(  2 0 0 ) * DETR* 2 0 0 ) # D F T I ( 2 0 0 ) * RNORM* 200)  
X P P ( 2 5 ) * X I P ( 2 5 ) * Y R P ( 2 5 ) * Y I P ( 2 5 ) * G A M * A L I M I T 3 * V I * V 2 * K T T * K P P  
F LE X1

DIMENSION WMSPCE*36)
C*****PPCGRAM TO DETERMINE RESPDNCE OF A F L E X I B L E  PEDESTAL

COMMON
COMMON
COMMON
COMMONCOMMON
COMMON
COMMON
COMMON
COMMON

*****
TRANSMITTED TO BEARING HOUSINGDETERMINE FORCE  

X - D I P E C T I O N  
B H F X - Z ( K B + 1 * 4 ) - Z * K B - 1 * 4 )
BHFXR-RFAL*  BHFX)
3HFXI*AIMAG* BHFX)
BEAPIMG HOUSING FORCE MODJLUS 
BHFXM-SQPT* P H F X P * * 2 + B H F X I * * 2 ) 
Y - D I P E C T I O N
B H F Y - Z ( K B + 1 * 8 ) - Z * K B - 1 * 8 )  
3 H F Y P « R E A L (B H F Y )
BHFY I -A IM AG t  BHFY)
BFARING HOUSING FORCE MODULUS
B H F Y M -S Q R T* B H F YP * *2 *B H FY I* * 2)
DETERMINE PEDESTAL  MOTION
SE T -U P  ELEMENTS OF MATRIX AT BEARING
AC ( 1 # 1 ) «ZXXP
A C ( l * 2 ) - ( 0 . * 0 . )
A C ( 2 * 1 ) « * 0 . * 0 . )
AC ( 2 , 2 )«ZYYP  
BC ( 1 # 1 ) - B H F X  
BC * 2 * 1 ) -BHFY  
N«2 •M»l
I A C - 1 7  
I B C - 1 7  
I C C - 1 7  
I F A I L - 1  
CAL L  L IB R A R Y

STATION

ROUTINE TO INVERT MATRIX AND MULTIPLY  BY COLUMN

MODES 45
MODES 46
MODES 47
MODES 48
MODES 49
MODES 50
MODES 51
MODES 52
MODES 53
MODES 54
MODES 55
MODES 56
MODES 57
MODES 58
MODES 59
MODES 60
MODES 61
MODES 62
MODES 63
MODES 64
MODES 65
MODES 66
MODES 67
MODES 68
MODES 69
MODES 70
MODES 71
MODES 72
MODES 73
SUPPORT 2
C0M1 2
C0M1 3
C0M1 4
C0M1 5
C0M1 6
C0M1 7
C0M1 8
C0M1 9
C0M1 1 0
C0M1 1 1
C0M1 1 2
C0M1 13
C0M1 14
C0M1 15
C0M1 16
C0M1 17
C0M1 18
C0M1 19
C0M1 20
C0M1 21
C0M1 22
C0M1 23
C0M1 24
C0M1 25
C0M1 26
SUPPORT 4
SUPPORT 5
SUPPORT 6
SUPPORT 7
SUPPORT 8
SUPPORT 9
SUPPORT 1 0
SUPPORT 1 1
SUPPORT 1 2
SUPPORT 13
SUPPORT 14
SUPPORT 15
SUPPORT 16
SUPPORT 17
SUPPORT 18
SUPPORT 19
SUPPORT 20
SUPPORT 21
SUPPORT 22
SUPPORT 23
SUPPORT 24
SUPPORT 25
SUPPORT 26
SUPPORT 27
SUPPORT 28
SUPPORT 29
SUPPORT 30
SUPPORT 31
SUPPORT 32
SUPPORT 33
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C MATRIX
C A L L  FOAADFt AC* IAC* BC* IBC* H*M *C C* ICC* WK SP C E * I  F A I L  )
I F ( I F A I L . E Q . O ) G D  TO 10 
W P IT E ( 6 * 1 0 0 ) I F  A I L  
GO TO 99

C APPANGE ELEMENTS OF SOLUTION VECTOR
10 X P - C C ( 1 * 1 )

Y P - C C ( 2 * 1 )
C P E P E ST A L  MOTION IN X - D I P E C T I O N

X P P - P E A L ( X P )
X P I - A I M A G ( X P )

C PEDESTAL  MOTION MODULUS
X P M * S O R T ( X P P * * 2 + X P I * * 2 )

C PE DESTAL  MOTION IN Y- DIP .ECTION
Y P P - P E A L ( Y P )
Y P I * A I * A G ( Y P )

C PEDESTAL  MOTION MODULUS
YPMa SQPT(YPP.**2 + Y P I * * 2 )

C D E T E P H N E  FORCE TRANSMITTED TO BEARING FOUNDATION
C X - r i R E C T I O S

BFFX«BHFX-MXP*ALAMS*XP
B F F X P - P E A L ( B F F X )
B F F X I « A I M A G ( B F F X )

C BEARING FOUNDATION FORCE MODULUS
B F FX M « SQ P T( B F FX P .* * 2+ B F F X I* * 2)

C Y - D I R E C T I O N
BFFY«PHFY-M.YP*ALAMS*YP  
BF FYR*R E A L ( B F F Y }
BFFV I -AIMA GC  B F FY )

C BEARING FOUNDATION FORCE MODULUS
B F F Y M - S Q R T ( P F F Y R * * 2 + B F F Y I * * 2 )
WRITE(  6 * 10 1 )  BHFXP.*BHFXI*BHFXM 
W P IT E ( 6 * 1 0 1 ) PHFYR*BHFYI*BHFYM  
* P I T E ( 6 * 1 0 1 ) XPR* XPI* XPM 
WP. I T E ( 6 * 1 0 1 ) V P R * Y P I * Y P M  
W P IT E ( 6 * 1 0 1 ) B F F XR *B F FX I* B F FX M  
W P I T E ( 6 * 1 0 1 ) B F F Y R * B F F Y I * B F F Y M

100 F G P M A T ( 5 X » * I F A I L « * * I 2 )
101 F 0 P M A T ( 5 X * 3 ( 1 P E 1 2 . A * 2 X ) / )

99 RETURN
END
SUBROUTINE P.ESP
COMPLEX F * F B * A A * A * Z * Z X X * Z X V , Z Y X * Z Y Y , Z X X F * Z X Y F * Z Y X F * Z Y Y F * Z X X P * Z X Y P  
COMPLEX ZYX P*Z YYP *C PS I*S UM *A LAM BDA ,A LAM S* C1* C2* C3 *CA *C5 *C 6* C7* C8  
COMPLEX C 9 , C 1 0 . C 1 1 * A C * B C * C C * B H F X * B H F Y * B F F X * B F F Y * X P * Y P  
COMPLEX Z T T * Z T P * Z P T * Z P P
REAL K.XX*KXY/K.YX*KYY*KXP*KYP*MXP*MYP*LOAD,MEER*KTT*KPP  
COMMON E C C ( I O ) , A X X ( 1 0 ) * A X Y ( 1 0 ) , A Y X ( 1 0 ) , A Y Y ( 1 0 ) * B X X ( 1 0 ) * B X Y ( 10)  
COMMON B Y X ( 1 0 ) * B Y Y ( 1 0 ) * V ’SS (  1 0 ) ,  A X X l ( l O ) ,  AXY1 ( 1 0  ) * AYX1 ( 10)
COMMON A Y Y 1 ( 1 0 ) , B X X 1 ( 1 0 ) * B X Y 1 ( 1 0 ) * B Y X 1 ( 1 0 ) * B Y Y 1 ( 1 0 ) * E C C 1 ( 1 0 )
COMMON W S S 1 ( 1 0 ) * D I A ( 2 5 ) * B E A M ( 2 5 ) * S I ( 2 5 ) * A M A S S ( 2 5 ) * P I ( 2 5 ) * T I ( 2 5 )  
COMMON PIE*C*FOPCE*E*KI*KN*KS*KB*KF*PPM,OMEGA*RPMBETA*BETA*MXP*MYP  
COMMON K.XP*K.YP,CXP*CYP*PSI*  AL IM IT *  A L I M I T 1 * T I N C * T I N C 1 * E C C X * Z X X P  
COMMON W SS Y *I P Z* KX X* K XY *KY X* KYY *A LAM BD A,A LA MS *C XX, CXY *CY X* CY Y*Z YYP  
COMMON F ( 2 5 * 9 , 9 ) , F B ( 9 , 9 ) , A A ( 9 , 9 ) , A ( 9 , 9 ) , Z ( 2 5 * 9 ) * A C ( 1 7 * 1 7 ) , B C ( 1 7 , 1)  
COMMON C C ( 1 7 , 1 ) * Y R ( 2 5 ) , X I ( 2 5 ) , X M ( 2 5 ) , y P ( 2 5 ) * Y I ( 2 5 ) * Y M ( 2 5 ) * R M X P  
COMMON T H P ( 2 5 ) * T M I ( 2 5 ) * T H M ( 2 5 ) * PHR( 2 5 ) *  P H I ( 2 5 ) *PHM(2 5 ) , BMXR(25)  
COMMON B M X I ( 2 5 ) * BMXM( 2 5 ) * BMYR( 2 5 ) * BMYI( 2 5 ) * BMYM( 2 5 ) * 5 F X R ( 2 5 )
COM1QN S F X I ( 2 5 ) * S F X M ( 2 5 ) * j FYP. ( 2 5 ) * S F Y I ( 2 5 ) * S F Y M ( 2 5 ) * A M A J Q R ( 2 5 )  
COMMON B . M I N C P ( 2 5 ) * P H A S E r ( 2 5 ) * A T T D ( 2 5 ) * X D ( 2 5 ) * Y D ( 2 5 ) * T H D ( 2 5 )
COMMON APEA< 25)*L'NBL(  10)  * L OAD ( 1 0 )  * CR ( 1 0 )*GM, ALP* ALPHA* K F 1 * K F 2 * K F 3  
COMMON I S P * I B N * K . B l , I F l , I F 2 , I F 3 * G * T I N C 2 * P pMl* P PM B Tl * PH D ( 25 )* RM Y P  
COMMON PS I D ( 1 0 ) , P S I R < 1 0 ) *  OMEGAG*OMEGA1*RPMBET1 ( 2 0 0 ) * A L I M I T 2 * I L P  
COMMON B E T A 1 ( 2 0 0 ) * 0 M E G A T ( 2 0 0 ) * OMEGAC( 2 0 0 ) * OMEGAW( 2 0 0 ) * RMOD( 2 0 0 )  
COMMON PM0D1( 2 0 0 ) * THETAD< 2 0 0 ) * D E T R ( 2 0 0 ) , P F T I ( 2 0 0 ) , PNOPM( 2 0 0 )
COMMON X R P ( 2 5 ) * X I P ( 2 5 ) * Y R P ( 2 5 ) , Y I P ( 2 5 ) , G AM , A L IM IT 3 * V I* V 2 * K T T * K P P  
COMMON FLEX 1  
DIMENSION WKSPCE( 3 6 )

C***#*pppGPAM TO DETERMINE NATURAL FRE QUE NCIE S  AND R ESPO N CE*****
C EVALUATE STATE  VECTOR AT STAT IO N 1
C SET UP ELEMENTS CF MATRIX FOP F R E E - P IN N E D  AND
C SUPPORTS AT LHS AND PHS R E S P E C T I V E L Y

I F ( I S P •EQ• 1 ) GO TO 20 
I F  ( I S  P • EQ• 2 ) GO TO 21 

20 A C ( 1 * 1 ) - F B ( 1 * 1 )
A C ( 1 * 2 ) » F B ( 1 * 2 )
A C ( 1 * 3 ) » F B ( 1 * 5 )
AC ( 1* 4) «F B (1* 6 )
A C ( 2 * 1 ) » F B ( 3 * 1 )
A C ( 2 * 2 ) - F B ( 3 * 2 )
A C ( 2 * 3 ) « F B ( 3 * 5 )
A C ( 2 * A ) - F B ( 3 * 6 )
A C ( 3 * 1 ) - F B ( 5 * 1 )
A C ( 3 * ? ) « F B ( 5 * 2 )
A C (3* 3 ) * F B (5*  5)

F R E E - F R E E

SUPPORT
SUPPORT

3A
35

SUPPORT 36
SUPPORT 37
SUPPORT 36
SUPPORT 39
SUPPORT AO
SUPPORT A1
SUPPORT A2
SUPPORT A3
SUPPORT AA
SUPPORT A5
SUPPORT A6
SUPPORT A7
SUPPORT A8
SUPPORT A9
SUPPORT 50
SUPPORT 51
SUPPORT
SUPPORT

52
53

SUPPORT 5 A
SUPPORT 55
SUPPORT 56
SUPPORT 57
SUPPORT 58
SUPPORT
SUPPORT

59
60

SUPPORT 61
SUPPORT 62
SUPPORT 63
SUPPORT 6 A
SUPPORT 65
SUPPORT 66
SUPPORT 67
SUPPORT 68
SUPPORT 69
SUPPORT 70
SUPPORT 71
SUPPORT 72
SUPPORT 73
SUPPORT 7A
RESP 2
C0M1 2
CO Ml 3
C0M1 A
C0M1 5
C0M1 6
COM 1 7
C0M1 8
C0M1 9
C0M1 1 0
C0M1 1 1
C0M1 1 2
C0M1 13
C0M1 1A
C0M1 15
C0M1 16
C0M1 17
C0M1 18
C0M1 19
C0M1 20
C0M1 2 1
C3M1 22
C0M1 23
C0M1 2A
C0M1 25
C0M1 26
PESP A
RFSP 5
RESP 6
RESP 7
PFSP 8
PESP 9
RESP 1 0
RESP 1 1
PESP 1 2
RESP 13
PFSP 1A
RESP 15
PESP 16
RESP 17
RESP 18
PESP 19
RESP 20
PESP 2 1



22
232*
25
26
27
28
29
30
31
32
333*
35
36
37
38
3940
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
6566
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
8586
8788
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
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AC (3 *) ■ F B (5#  6)
AC ( 4 1) - F B ( 7 , 1 )
AC ( 4 2) ■ F B ( 7t 2)
AC (4 3) ■ F B ( 7 , 5)
AC ( 4 4) »F B C7 / 6 )
BC (1 1) — F B ( 1 , 9 )
BC ( 2 1) — F B ( 3,9)
BC C 3 1) —  FB< 5 , 9 )
BC ( 4 1) « - F B ( 7 , 9 )
GO TO 23

21 AC (1 1) ■  F B ( 3 # 1 )
AC (1 2) •FB(3,2)
AC (1 3 ) » F B ( 3 > 5 )
AC ( 1 4) *F B ( 3/ 6)
AC ( 2 1) ■ F B ( 4 , 1 )
AC (2 2) »F B ( 4> 2)
AC ( 2 3) « F B ( 4 > 5 )
AC ( 2 4) • F B ( 4 > 6 )
AC (3 1) » F 3 ( 7 , 1 )
AC (3 2) ■ F B ( 7* 2)
AC ( 3 3) - F B ( 7 > 5 )
AC ( 3 ) ■ F B ( 7 , 6 >
AC (4 1) ■ F B ( 8 / 1 )
AC ( 4 2) *F B ( 8> 2)
AC ( 4 3) ■ F 3 ( 8> 5)
AC (* 4) ■  F B{8# 6)
BC (1 1) — F B ( 3 # 9 )
BC 2 1) — F 3 ( 4 # 9 )
BC C 3 1) * - F  B ( 7# 9)
BC (4 1) » - F  B (8# 9)

23 N* 4 
M»1
I  AC ■ 17
IBC ■ 17
I C C - 1 7
I F A I L - 1

C CALL  L I B R A R Y  ROUTINE TO IN VER T MATRIX AND MULTIPLY BY COLUMN
C m a t r i x

CAL L  F 0 4 A D F ( A C # I A C > B C # I B C » N * M * C C * I C C * W K S P C E # I F A I L )
I F « I F A I L . E Q . O J G O  TO 99 
■ / R I T E ( 6 , 1 0 0 )  I F A I L  
GO TO 98

C ARRANGF ELEMENTS OF STATE VECTOR AT STATION 1
99 Z ( l # l ) - C C ( l i l )

7. {1 /  2 ) «CC { 2* 1)
Z ( l > 3 ) « ( 0 . * 0 . )
Z ( l » 4 ) - ( 0 . * 0 . )
Z ( 1 / 5 ) » C C (3# 1)
Z ( 1 / 6 ) * C C ( 4 / 1 )
Z(  1 , 7 ) « ( 0 . , 0 . )
Z ( 1 , 8 ) M 0 . , 0 . )
Z ( l / 9 ) » ( l . , 0 . )
CAL L  MULT1 ( 9 )

C S F T  LOOP COUNTER TO ZERO
NCnUNT-0  
on 10  M,-1#*S 
NCOUNT-NCOUNT+l  

C ^-AMPLITUDE
X P ( M ) - R E A L ( Z ( M , l )  )
X P P ( M ) - X R ( M ) * 2 .
X I  ( M) *A IM AG (Z(H,1) )
X I P ( M ) * X I ( M ) * 2 .

C X-MODULUS
X* 0 1 ) « S Q R T ( X P P ( M ) * * 2 + X I P ( M ) * * 2 )

C SLOPE IN X - D I P •
T H R ( M ) « P E A L ( Z ( M * 2 ) )
T H I ( M )« A IM A G (Z (M # 2 )>

C SLOPE MOOULUS IN X - D I R .
T H M ( M ) « S Q P T ( T H R ( K ) * * 2 + T H I ( M ) * * 2 )

C SENDING MOMENT IN Y - D I R .
BM Y P ( M ) ■  R E AL { Z ( M* 3 ) )
8 M Y I ( M ) “ AI.MAG(Z{M>3) )

C BENDING MOMENT MODULUS IN Y - D I P .
BMYM(M)«SQRT(BMYR(M)**2+BMYI{M)**2)

C SHFAP FORCE IN X - D I R .
S F X P ( M ) « R E A L ( Z ( M > 4 ) )
SFXI (M,)»AIMAG(Z<M#4)  )

C SHEAR FORCE MODULUS IN X - D I R .
SFXrt(M) ■ S Q P . T ( S F X R ( M ) * * 2 + 5 F X I ( M ) * * 2 )

C Y -AMPLITUDE
Y P. ( M) * R E A L { Z ( M/ 5)  )
Y R P ( M ) - Y R ( M > * 2 .
Y I ( M ) - A I M A G ( Z ( M # 5 ) )
Y I P ( M ) » Y I ( M ) * 2 .

C Y -AMPLITUDE MODULUS

RESP  
RES P 
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RFSP  
RESP  
PESP  
RESP  
RESP  
RESP  
PESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RPSP  
PESP  
RESP  
RESP  
RESP  RESP 
PESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
PESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
RESP  
PESP  
RESP  
PESP  
RESP  
PESP  
PESP  
RESP  
Rc S P 
RESP  
RESP  
RESP  
RFSP  
RESP  
RESP  
RESP  RPSp 
PESP  
RESP  
PESP  
RESP  
RESP  
PESP  
RESP  
RESP  
PESP  
RESP  RE SR 
PFSP  
PESP
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c

c

c

c

c

c

Y M * M )- S Q R T * Y P P * M )* * 2 + Y IP ( M) * * 2 )
SLOPE IN Y - D I P .
P H P * M )- R E A L * Z * M * 6 ))
P H I ( M) ■  AIM AG ( Z * M* 6)  )
SLOPE  MODULUS IN Y - D I P .
PHM(M)«SQRT* PHR.*M ) * * 2 + P H I *  M)**2)  
BENDING MOMENT IN X - D I R .  
BMXR(M)«PFAL*Z* M * 7 ) ) 
BM XI(M )»AIMAG*Z*M*7))
BENDING MOMENT MODULUS IN  X - D I R .  
BMXM(M)»SQRT*BMXP*M)**2+BMXI*M)**2)  
SHEAR FORCE IN Y - P I R .  
S F Y R * M ) « R E A L * Z * M * 8 ) ) 
S F Y I ( M ) « A I M A G ( Z ( M * 8 ) )
SHEAR FORCE MODULUS IN Y - D I R .
SFYM*M ) - S Q P T ( S F Y R * M ) * * 2 + $ F Y I * M ) * * 2 )  
F 1 - X R { M ) * * 2 + X I ( M )* * 2 + Y R * M )* * 2 + Y I* M )* * 2  
F 2 « X P ( M ) * * 2 + X I * M ) * * 2 - Y R * M ) * * 2 - Y I * M ) * * 2  
F3-XR(M ) * Y P * M ) + X I * M ) * Y I ( M )
F 4 ■  X I  ( M) *YR * M) —X. R. * M) * Y I  ( M )
F 5 - X R * M )* X I* M )+ Y R * M )* Y I* M )
F 6 - X R ( M ) * * 2 - X I ( M ) * * 2 + Y P  * M ) * * 2 - Y I * M ) * * 2
F 7 - 0 . ? 5 * F 2 * * 2 + F 3 * * 2
I F * F 7 . G E . 0 . ) G 0  TO 12
F 7 - - F 7
F 8 - - S Q R T * F 7 )
GO TO 13

12 F 8 « S Q P T ( F 7 )
13 F Q - 0 . 5 * F 1 + F P

I F  * F 9 . G E . 0 . ) GO TC 14
F Q . - F O

14
15

10

19

16

17

11
100
101
102
103

98

SEMI-MAJOR AX IS  OF E L L I P T I C A L  ORBIT  
AMAJOP(M)*—S Q R T ( F 9 )
GO TO 15
AMAJOP. ( M ) * S Q P T ( F 9 )
SEMI-MINOR A X IS  CF E L L I P T I C A L  ORBIT  
BMINOP(M)«F4/AMAJ0R(M)
PHASE ANGLE BETWEEN FORCE AND RESPONCE  
PHASE«0.5*ATAN* 2 . 0 * F 5 / F 6 )
P H A S ED (M )-P H AS E * 1 8 0 . / P I E
PHASE ANGLE BETWEEN SEMI-MAJDR AXI S  AND X - A X I S  
A T T - O . 5 * A T A N ( 2 . 0 * F 3 / F 2 )
A T T D ( M ) - A T T * 1 8 0 . / P I E
W P I T E * 6 * 1 0 1 ) K C 0 l T . T * X P P ( M ) * X I P * M ) * X M m , Y R P m *  Y IP (M )*  YM(M)
CONTINUE  
WP.ITEt 6* 102 )GO TO 98 NCOUNT-O DO 19 M - l *  KS NCOUNT-NCOUNT+1
WRITE* 6 * 1 0 1 ) NCOUNT*THP(M)*T H I ( M) * THM*M) * P H P *M)* PHI  *M) * PHM( M)
CONTINUE
WPIT E ( 6 * 1 0 2 )
NCOUNT-O 
DO 16 M-1*KS  
NCOUNT■ NCOUNT+1
WRITE ( 6 * 1 0 1 )  NCOUNT*BMXP.( M) *BMXI *M)*BMXM( M) *BMYR( M)*BMYI (M)* 

♦ BMYM(M)
CONTINUE  
WRI TE *6 * 1 0 2 )
NCOUNT-O
DO 17 M-1*KS
NCOUNT-NCOUNT+1
W R IT Et6 *1 01) N C0L 'N T* SF XP  ( M ) * S F X I  *M)*SFXM* M ) * S F Y P * M ) * S F Y I  (M)*+ SFYM* M)
CONTINUE  
WRITE *6*1 02)
NCOUNT-O 
DO 11 M-l* KS 
NCQUNT-NCOUM.T+1
WP.ITE*6*103)NC0UNT*AMAJ0R*M)*BMIN0R*M)*ATTD*M)*PHASED<M)
CONTINUE
W R IT E ( 6 * 1 0 2 )
FORMAT* 5 X * * I F A I L « * * I 2 )
F 0 P M A T ( 1 X * I 2 * 6 { 2 X * 1 P E 1 2 . 4 ) )
FORMAT*/)
FOP M A T ( I X * 12*2* 2 X * I P E 1 2 . 4 ) , 2  *2 X * F 9 . 4 ) )
RETURN
END

RESP 107
RESP 100
P F S P 109
RESP 110
PESP 111
RESP 112
RESP 113
PESP 114
RESP 115
RESP 116
RESP 117
RESP 118
RESP 119
RESP 120
RESP 121
RESP 122
RESP 123
RESP 124
RESP 125
RESP 126
PESP 127
PESP 128
RESP 129
RESP 130
RESP 131
RESP 132
RESP 133
RESP 134
RESP 135
RESP 136
RESP 137
PESP 138
RESP 139
PESP 140
RESP 141
PESP 142
RESP 143
RESP 144
PESP 145
PESP 146
RESP 147
RESP 148
RESP 149
RESP 150
RESP 151
PESP 152
RESP 153
PESP 154
PESP 155
RESP 156
RESP 157
PESP 158
RESP 159
RESP 160
RESP 161
RESP 162
RESP 163
RESP 164
PESP 165
RESP 166
RESP 167
RESP 168
RESP 169
RESP 170
RESP 171
RESP 172
RESP 173
RESP 174
RESP 175
RESP 176
RESP 177
RESP 178
RESP 179
RESP 180
RESP 181
PESP 182
RESP 183
&ESP 184
RESP 185
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APPENDIX F

* SPECIFICATIONS OF TEST ROTOR
AND BEARING

*
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Rotor Mass (total) 36.66lb 16.66Kg

Flywheel Mass 28.591b 12.99Kg

Shaft Mass 8.071b 3.67Kg

Bearing Housing Mass 23.191b 10.54Kg

Length Between Supports 27.5in 6 9 8.5mm

Shaft diameter 0.984in 25 mm

* Flywheel diameter 6.672in 171.8mm

Flywheel Length 3.OOin 74.9mm

Bearing Diameter (nominal) 2.50in 6 3.5mm

Bearing Length (L/D=1/2) 1.25in 31.75mm

Bearing Radial Clearance 0-0.01Oin 0-0.254mi

Mass Unbalance (plane I) 0.021oz-in 15g-mm

Mass Unbalance (plane II) 0.046oz-in 33g-mm
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Figure G.l Principle Dimensions of the Test Rotor-Bearing System
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Figure G.2 Lumped Mass Model of Test Rotor-Bearing System



k l ( i n ) d( i n ) m( l b ) I ( i n 4 ) I p ( l b - i n 2 ) I T ( l b - i n 2 ) A x ( i n ) A y( i n ) A0(Rad) A(j)(Rad)

l 0. 000 2*500 0. 1 .9175E*,00 0. 3. 0. 0. 0. 0.
2 • 001 2. 5 00 6.9(*59E-0<* 1.9175E»00 5.%265E-0*» 2.713 2E-0*# 0. 0, 0. 0.
3 0. 000 2. 500 0. 1.9175E+00 0. 0. 0. 0. 0. 0#
k 0. 000 2. 500 3 . 7662E-01 1.9175E*00 2.9*#2(#E-01 l.(»712E-01 0. 0. 0. 0.
5 3. 500 . 9tt<* 3. 7662E-&1 9.6020E-02 '#•5 583E-02 W.0726E-01 0. 0. 0. 0.
3 0. 000 6.672 l.*#8*#2E»ui 9 . 7273E* 01 8.2 585E+01 l». 1293E+01 0. 0. 1 .5000E-0% 5.0000E-05
7 3* 00 0 6. 672 1.5057E+01 9.7273E*01 B.3783E»01 5. 318*»E»01 0. 0. 1.5000E-0% 5.000OF-05
6 2. 000 • 98<* (#. 8*#23E-0 1 *». 6020F-02 5.8607E-02 1.907 IE-01 0. 0# 0. 0.
9 2. 500 • 98*# 6.99*#i*E-01 W. 6Q2QE-02 8#*»6?5£-02 •*» 0662E-01 0. 0. 0. 0.

10 k. 000 • 98<* 8.60 65E-Q1 (#• 6Q20E-02 1.3 *#19E-01 1 . 1999E»00 0. 0* 0. 0.
11 <». 000 . 98<* 8 . 6085E-01 *♦• 6020E-02 1. 0 **19E-01 1.1999E»00 0. 0. 0. 0.
12 <». 000 • 98*# 7 . 532«*E-01 9.6020E-02 9.1166E-02 1 . 0*#99E*00 0. 0. 0. 0.
13 3* 000 .98(» (*. fl*»23E-01 **• 6020E-02 5.8607E-Q2 3.92*#7E-0t 0. 0# 0. 0.
m 1. 530 .989 1 . 61*»1E-01 9 . 6020c-02 1 .9536E-02 *#• 0 032E-02 0. 0. 0. 0.

K = STATION NUMBER
1 = STATION LENGTH
d = STATION DIAMETER
m - STATION MASS
I = STATION 2ND MOMENT OF AREA
Ip = STATION POLAR MOMENT OF INERTIA

lT
= STATION TRANSVERSE OF INERTIA

Ax, Ay = STATION BEND IN x AND y DIRS. RESP.
A0 , A(J) = STATION SKEW IN x AND y DIRS. RESP.

Table G.l Physical Properties of Test Rotor-Bearing Model Shown in Figure G.2
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APPENDIX H

BEARING PEDESTAL STIFFNESS AND MASS
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BEARING SUPPORT STIFFNESS IN THE VERTICAL (x)

Treating the bearing support as a cantilever, its
stiffness is given by:

k 3EI1P,X = i 3 11 J
(H. 1)

where E, I, and 1-j represent Youngs Modulus for the
material, second-moment of area and support 
respectively. For a hollow tube:

length,

; 11 = JL (D^-Da1*)64
(H. 2)

where D-| and D2 are the external and internal diameters of 
the support, respectively.

BEARING SUPPORT STIFFNESS IN THE HORIZONTAL (y)

k 3E*1kp.y = , 3 
11

(H. 3)

For a hollow tube:

II = - CD1“ -D24 ) 64
(H.4)
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ROTOR STIFFNESS

Treating the rotor as a simply supported beam, with load 
off-centre, the stiffness at the load is given by:

. 3EI212
' a2b2 (H.5)

where I2 and I2 represent the second moment of area and 
support length, respectively. a and b are the distances 
between the load and the left and right hand supports, 
respectively. For a solid circular shaft:

I2 - 1,(14 (H. 6)
64

} where d represents the shaft diameter. When the appropriate
values are inserted in equations (H.5), kp=8.94x1o3lbf/in 
(1.56x106N/m).

Dividing equation (H.1) by equation (H.5) gives the 
non-dimensional ratio of vertical support stiffness to rotor 
stiffness :

kp,x = £l a2b2 
k R I 2 l 13 l 2

(H. 7)
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The non-dimensional ratio of bearing support mass Mg, to 
rotor mass is given by:

MB/MR = 0.63 (H.8)

where Mr  represents the total rotor mass (flywheel plus 
shaft),for MB=23.19lb (10.54Kg) and MR=36.66lb (l6.66Kg).


