
GUIDE TO NOTATION

This is not a complete guide to notation in the thesis, but 
a summary of symbols used with consistent meanings throughout. Other 
symbols have different meanings in different sections, particularly 
the more mathematical.

a shape parameter of Weibull distribution - dimensionless

d source-receptor distance in units of hundreds of kilometres 
in Chapter 2 and in metres otherwise

l loglikelihood of data

\ decay parameter of radionuclide in units of s" 1

\ w washout coefficient of radionuclide in units of s" 1

M  mean of exposure distribution in same units as y

U scale parameter of Weibull distribution in yCism " 3 for 
exposures to time-integrated air contamination and UCim for 
those to dry or wet deposition

Ps probability of exposure to a release of duration s hours

p(9) probability that source geostrophic wind is directed into 
the 30* sector centred on 9*, restricted to winds >5 ms " 1

T3 £ /-
N CD probability that in wet conditions source geostrophic wind 

is directed into the 30’ sector centred on 3*, restricted to 
winds >5 ms " 1

s standard deviation of exposure distribution in same units as

a scale parameter of generalize^ Pareto distribution in 
Chapter 8 , in units of pCism for exposures to time- 
integrated air concentration and pCim for those to dry 
or wet deposition.

t duration of release of radionuclide to the atmosphere in 
units of hours

vd deposition velocity of radionuclide in units of ms " 1



APPENDIX: THE MODEL IN USE

A.l Introduction; the probability of exposure

Suppose that is is proposed to site a nuclear installation at 

the city of Luxembourg. In this appendix the methods developed in 

the thesis are used to assess the consequences to an inhabitant of 

the city of Brussels of a release of one Curie of C s j ^  from the 

installation at an arbitrary time, for various release durations.

The cities are situated 180 kilometres apart, and the angle from 

north subtended by Brussels at Luxembourg is approximately 0 = 315°. 

Luxembourg has latitude 49.37° north and longitude 6.08° east. The 

estimation of the probability of exposure to air contamination or wet 

deposition is performed using the results of Chapter 2. Recall that

P 3 = exp{ 8 0 +  3ilog{p(0)} +  & 2 d } ....A.1.1

and

A *
Pt = 1 - exp{ P3 (t/3 )^ } ....A.1.2.

A
Here P g is the estimated probability of exposure due a release of 

duration s>3 hours, p(0) is the long-run proportion of source 

geostrophic winds of speed 5 m/s or more directed into the sector of 

arc 30* centred on 0* , d is the source-receptor distance in hundreds
A A A  *

of kilometres, and the values of the parameters 8 0 > 8 1 , 8 2 * and 6 may

be found in Tables 2.1 and 2.3. To calculate the probability of

exposure to wet deposition, p(0) should be replaced in A . 1.1 by p (0)w
- the long-run proportion of source geostrophic winds directed into 

the sector of arc 30* centred on 0* restricted to occasions when it is
*  A A A

raining at the source - and the values of 8 0 , 8 *, 8 2 * and 6 in Tables 

2.2 and 2.4 used.

The appropriate values of p(0) and Pw (9) are read off from 

Figure 2.12. Luxembourg is very close to the edge of its grid



element (8 E, 49N); it may be wise to bear this in mind. For the 

element (8E,49N), p(315)-pw (315)-0.06. There is only a very small 

difference between these values and the values p(9)-pw (9)-0.05 for 

the element (4E, 49N), so the choice of value 0.06 is not crucial.

There is yet the choice of which set of parameter values 

uniform or Mediterranean - to use. Consultation with the naive 

classifications in Figures 2.14 and 2.16 shows that the uniform
A A A  A

values of 6 o> 3j., 3 2  and 6 are appropriate, a conclusion confirmed by 

the more detailed classifications in Figures 2.15 and 2.17 and 

knowledge of the climatology of the site.

Use of equations A . 1.1 and A . 1.2 then gives the estimates of P 

shown in Table A . 1. That is, for exposures to air contamination due 

to a release of duration three hours,

A
log{ P 3 } = -1.12 +  0 . 284log{p(315)} -O.llOd,

A A
and with p(315)=0.05 and d=1.8, log{ P 3 }=-2.12 and P 3 =0.12. To 

evaluate the probability of exposure due to a release of duration 6 

hours, equation A . 1.2 is used with t= 6  and 6=0.6209. Thus

P6 = 1 - exp{-0.12(6/3 ) ° - 6 2 } = 0.157.

The effect of using p(315)=0.05 is to reduce the estimates of P by 

between 0 . 0 1  and 0 . 0 2  - an insignificant amount.

The estimates are of limited value without some idea of their 

accuracy. This is provided for releases of duration 3 hours by use 

of equation 2.3.6 and the variances and correlations from Tables 2.1 

for exposures to air contamination and 2.3 for exposures to wet 

deposition. In this latter case, recalling that

A A  a  A  A K
Cov( 3., 3, ) = s.e.( 8 . ) x s.e.( 6 , ) x Correl( 6 ., 3, ),

J J K J k

we find upon using this identity and substituting values from the



Exposures to air contamination Exposures to wet deposition

Release
duration

t est. prob. P

95% confidence 

lower

limits

upper est. prob. P

95% confidence 

lower

limits

upper

3 hours . 1 2 0 .084 .173 .033 .016 .068

6 hours .169 .144 .194 .055 .039 .071

1 2  hours .248 .208 .288 .092 .064 . 119

1 day .355 .293 .416 .152 .104 .199

3 days .579 .472 .687 .318 .214 .423

1 week .769 .630 .908 .521 .353 .690

Table A . 1: Estimated probabilities of exposure at Brussels due to releases from Luxembourg



left-hand-side of Table 2.2 in to equation 2.3.7, that
A

t 2 = Var{ log(P 3 ) > = 3.865xl0"3.

Since in this case the estimate of a is a = 0.3622 from Table 2.2, 

di = /( t 2 + o 2 ) = 0.368, and the 95% confidence interval for the true 

value of P 3 is

A A
( Pj exp(-l.96oj) , P3 exp( 1 .96cu) ) = (0.016, 0.068).

For releases of longer duration use must be made of equations 

2.4.2, 2.4.3, and 2.4.4. Consider, for example, deriving 95% 

confidence limits for the probability of exposure to wet deposition
A

for releases of duration 6 hours. In this case y' = log{P 3 ) +  
a
61og{t/3} = -2.87 and t  = 6.217x10 2 , and substituting these into

K _ - tt
2.4.4 and solving numerically gives v = 3.5x10 6 for k = 1 and v = 

7.0xl0“ 3 for k = 2, so that Jx(y'»T ) is 0.945 and J 2 (b'»T ) is 0.93. 

Use of equation 2.4.2 with n t=6072/t then gives 95% confidence 

interval P& ± 1.96/[ Var{P6 ) ]: that is, the interval (0.039, 0.071) 

contains the true value of P6 with probability 0.95. Such confidence 

intervals for P for several values of release duration t are shown 

in Table A . 1.

Equation 2.4.4 may easily be solved graphically by plotting the 

curves log{v} and y' +  log{kx} - t v  on the same graph and finding 

for given x , y ’ and k the unique value v* of v at which they
JL JLintersect. Typically v is close to zero. Alternatively v may be 

found by a simple bisection or other line search using a programmable 

pocket calculator.

There is no reason to suspect unusual divergence of trajectories 

close to Brussels, although the general north-westerly passage of 

air-masses over the area of concern suggests that the equations amy 

slightly overestimate the real long-run values of P t . However the 

effect is unlikely to be big. In cases such as this the estimates



A. 2 The distribution of exposure levels

The distribution of imaginary exposure levels experienced by a

Brussellois due to the hypothetical release of a single Curie of

CS 1 3 7  from the installation at Luxembourg may be estimated using the

results of Chapter 3. Caesium 137 has half-life 28 years,

corresponding to a decay constant X = 4.0446x10” ** s“ * negligable

compared with puff travel times; its deposition velocity v^ is

assumed to be l.OxlO” 3 ms” -1-; and its washout coefficient X isw
assumed for the purpose of the calculation to be 5xlO“ 5 J 0 , 8  s” *, 

where J is the rainfall rate in mm/hour. The source receptor 

distance d is 1.8xl05 m. Note that in this and the next section d is 

measured not in hundreds of kilometres but in metres.
A

For a release of duration three hours, the estimated mean M 3 and
A

standard deviation S3 of the time-integrated air concentration 

distribution are found by use of equations 3.3.1 and 3.3.2 

respectively. Thus

log(M3 ) = 5.155 - 0 . 1583dX -2.869x10” * ^ ,  - 9.263xlO“ 3dX J d w
- 0.93991og(d)

and

log(S3 ) = 10.41 - 0. 1153dX - 2.892xl0_4d v d +  4.209x 10-ItdX

- 1.3281og(d),

so that substitution for d, X, v^ and X ^  gives for exposures to time- 

integrated air concentrations due to three-hour releases of Csi 3 7  

M 3 = 1.74x10“ 3 pCism - 3  and S 3 = 3.29xl0“ 3 yCism” 3 . The effect of 

longer release duration is found using the equations

M t = M 3 (t/3)«,

and t h e i r  c o n f id e n c e  i n t e r v a l s  a re  g e n e r a l ly  v e r y  a c c u r a te .

. . . .A.2.1



Release
duration

t

Estimated mean 
exposure

~ -3(yCism )

Estimated
exposure s.d.
~ -3 (yCism )

Coefficient of 
variation

Weibull shape 
parameter 

a

Weibull scale 
parameter

y -3(ViCism )

3 hours 1.741 x 10" 3 3.294 x 10" 3 1.89 0.56 1.161 x 1 0 " 3

6 hours 1.252 x 10" 3 2.392 x 10" 3 1.91 0.56 8.347 x 10" 4

1 2  hours 9.111 x 10~ 4 1.737 x 10" 3 1.91 0.56 6.074 x 10" 4

1 day 6.469 x 10" 4 1.261 x 1 0 " 3 1.95 0.54 4.043 x 10~ 4

3 days 3.834 x 10~ 4 7.594 x 10" 4 1.98 0.54 2.396 x 10" 4

1 week 2.561 x 10" 4 5.136 x 10" 4 2 . 0 1 0.53 1.552 x 10 ' 4

Table A . 2: Details of estimated time-integrated air concentration exposure distributions

137at Bussels due to releases of Cs from Luxembourg



r ( 1 + V a )
f r n  + 2/a) 1*

r ( 1 + 1/a)
f  H i  + 2/a)

a l  m  + Va)2 " 1J a /  n  1 + Va>2

0.4 3.323 3.141 1.35 0.917 0.749
0.45 2.479 2.606 1.4 0.911 0.724
0.5 2 . 0 2.236 1.45 0.907 0.701
0.55 1.702 1.965 1.5 0.903 0.679
0 . 6 1.505 1.758 1.55 0.899 0.659
0.65 1.366 1.595 1 . 6 0.897 0.640
0.7 1.266 1.462 1.65 0.894 0.622
0.75 1.191 1.353 1.7 0.892 0.605
0 . 8 1.133 1.261 1.75 0.891 0.590
0.85 1.088 1.181 1 . 8 0.889 0.575
0.9 1.052 1.113 1.85 0 . 8 8 8 0.561
0.95 1.023 1.053 1.9 0.887 0.547
1 . 0 1 . 0 1 . 0 1.95 0.887 0.535
1.05 0.981 0.953 2 . 0 0 . 8 8 6 0.523
1 . 1 0.965 0.910
1.15 0.952 0.872
1 . 2 0.941 0.837
1.25 0.931 0.805
1.3 0.924 0.776

Table A.3: Coefficient of variation for Weibull distribution as a function of shape parameter a



and

A

st S3 (t/3)6* ....A.2.2.

A  A

Appropriate values of and 6 2 are found in Table 3.8 and are
A A

<$1=-0.4761 and 6 2 =- 0 . 4 6 1 7  for exposures to air contamination. The 

means and standard deviation Ŝ . of estimated exposure 

distributions for releases of duration t hours are shown in Table 

A. 2.

The shape and scale parameters a and y of the estimated Weibull 

distribution of exposures may be found by solving the equations

T ( 1+2/ot)
r(l+l/a)* }.

and
A

M  = y T ( 1 + 1 /a)

for a and y. Here T(y) is the gamma function C nV~ *e udu. The first 

of these equations involves a alone and may be solved by reading off 

the appropriate values of a and T(l+l/a) from Figure A. 1, or by 

interpolation in Table A.3 if need be, or numerically by a bisection 

or other straightforward root search on a programmable pocket 

calculator. Values of a are usually in the range 0.5-1.0. Values 

obtained graphically for the present example are given in Table A.2.

The mean, standard deviation, and value of the Weibull scale 

parameter y - all in microCuries - for the corresponding dry
A A

deposition distributions are found by multiplying M  , Ŝ . and yt for 

the air concentration distribution by the value of v^. The value of 

the Weibull shape parameter a remains the same since it is scale- 

invariant .

The corresponding calculations for the wet deposition 

distribution are carried out using equations 3.3.3 and 3.3.4 to give



♦

Figure A.1: + 1/a) for given

(*/, ►
'/)J

 
\-*W

i)U
A

v-zn
)J/'



A A
the values of M and St in raicroCuries, and then using equations

A A
A.2.1 and A.2.2 above with appropriate values of 6^ and 62 from Table

3.8 to see the effect of release duration on the exposure 

distributions.

Once the estimated values of and are established, any 

required percentile of the Weibull distribution of exposures

Ft (y) = 1 “ exp[ -(y/pt)a ]

may be found. The p x 100% point of the distribution is y , where 

yp = P t [ -log{1-p} ]i/a . The estimated expected risk to some 

activity with risk function r(y),

/ r(y)aty t I (y/pt )a -1exp[ “ (y/pt )a ]dy,

is easily found analytically or numerically. For a linear risk 

function with r(y) = a +  by, the estimated expected risk is a +  bMt , 

with estimated standard deviation bS^. The estimates will only very 

rarely be more than a factor of three different from the values which 

would have been observed had MESOS been used to compute them, 

provided the statistical model is used within the ranges of the 

parameters for which it was derived, as in the current example.

Less stress has been laid on finding confidence intervals for 

levels of exposure than for probabilities of exposure. They are 

to an extent made spurious by the degree of approximation introduced 

by the dispersion calculations in MESOS, and by the degree of error 

introduced by replacing calculated MESOS exposure distributions with 

estimated Weibull exposure distributions. The results of Section 3.4 

indicate that the upper 70% of the statistically estimated exposure 

distribution is likely to lie within a factor of two to three of the 

distribution which would have been calculated using MESOS, that the 

lower 30% of the distribution will make a tiny contribution to the



total exposure, and that the lower 30% of the MESOS exposures will 

typically be greater than their statistically estimated counterparts. 

If explicit confidence intervals for and Ŝ . are needed, they can 

be found using Tables 3.5 and 3.7 and Normal approximations, as 

discussed on page 176 of the thesis.

A . 3 High levels of exposure

The likely distribution of high levels of exposure may be

predicted using the methods of Chapter 8. For a release of

duration t hours, setting £g=0 in equation 8.1.1 and using equation

8.2.3 with the appropriate parameter values in Table 8.1 yields for

time-integrated air concentration distributions the thresholds and

values of the Poisson parameter P t in Table A. 4. Values of the

geometric clustering probability - which is zero for releases of

duration longer than one day - are found in Table 8.2, and use of

equation 8.3.1 with parameter estimates for £ q =0 enables calculation

of the appropriate values of the generalized Pareto scale parameter

a^. For £o=0 the estimated value of the generalized Pareto shape

parameter is k = -0.233. In the present case, for example, with

X = 4.0446xl0~lA s “ a ,  V j = 1.0xl0“ 3 ms- 1 , X = 5.0xl0"5 J°*8 s“ A , and* d * w *
d = 1.8xl05 m, we find from equation 8.1.1 that with £o=0 the 

threshold is 7.069xl0“3 yCism-3 for exposures to air contamination 

due to releases of duration t=3 hours. From Table 8.2(a) the 

appropriate value of q is 0.5, and equation 8.2.3 gives

P t = exp{ a +  O.61og{p(0)} +  log{t/3} }

= exp{ -4.18 +  0.61og{0.05} +  log{3/3} }

= 2.8xl0'3 ,

using the appropriate value of a from Table 8.4(a) and setting 

p(315)=0.05 and t=3. Finally a is found using the equation



exp{ 23.441 - 0.135dA - 2.304x 10_1+dv, -9.893xlO_3dXd wat
- 1.2271og(d) - 0 . 7201og(t/3) }

= 2.538x10 3 pCism 3

when t=3 hours. Values of qt , P t> and a for releases of longer

duration appear in Table A. 4. The estimated probability of a single 

release of duration t hours exposing the receptor is pt/ ( 1— qt ); its

duration 3 hours in 1973 or 2880 releases of duration 3 hours in 

1976. Thus if t=3 hours, the estimated probability of an exposure 

over the threshold at Brussels is p (1— qt ) = 0.006 or so.

Exposures which exceed the threshold level for a given release 

duration follow the generalized Pareto distribution with form

used in the same way as the Weibull formulae in the previous section.

Suppose now that T consecutive releases each of duration t hours 

escape from the installation, and that it is required to find the

Brussels, there exceeding the threshold. Under the clustering model 

described in Chapter 8 this is

estimated variance is a little less than tpt/6072(l-qt)2 , using the 

fact that estimation of P t was based on either 2024 releases of

Ft (y) = 1 - ( l-ky/at )1/k

distribution of the maximum exposure Y which is experienced inr max

The percentile y^ corresponding to a given probability p exp{ -ptT }

may be found by solving the equation Prob( ^ma x <yp ) = p, and is

yp = at{ l - ( l - p * ) l /k  }/k



I

Release duration 
t

Threshold
-3(yCism )

pt qt at
-3(yCism )

-3 -33 hours 7.069 x 10 2.8 x 10 0.5 2.538 x 10 3
-3 -3 —36 hours 4.372 x 10 5.6 x 10 0.35 1.541 x 10
-3 -2 -412 hours 2.707 x 10 1 . 13 x 10 0.25 9.353 x 10
-3 -2 -41 day 1.677 x 10 2.26 x 10 0.1 5.678 x 10
-4 -2 -43 days 7.845 x 10 6.79 x 10 0 . 2.574 x 10
-4 -41 week 4.367 x 10 0.158 0 . 1.399 x 10

137Table A.4: Calculated parameter values for exposure to high levels of Cs air contamination.



since k*0, where

* _ P^T+log(p)
P Ptf+qtiog(p)*

If p<exp{ -ptT }, then y =0 since there is an atom of probability of 

size exp{ -p T } at y=0, corresponding to the event of no exceedances 

of the threshold in an interval of length T. For given values of p 

and T, p and y^ are easily obtained from these formulae. For 

example, if t=6, T=4 and p=0.9, the value of y^ obtained may be 

regarded as the value which would be exceeded at Brussels by the 

maximum of four consecutive 6-hour releases each of size one Curie 

only in one out of ten such release incidents, on average.

The results of Section 8.4 show that levels of exposure 

predicted using the generalized Pareto distribution will lie within a 

factor 1.3-1.6 of their MESOS counterparts, for all types of 

contamination. Provided that the model is used only for nuclides 

whose depletion parameters lie in the range of those used to 

construct it, as here, prediction of probabilities of high exposures 

will also be very accurate. Wet deposition probabilities may be 

underestimated by a factor of up to four at receptors just downwind 

of the source or where there is orographic enhancement of rainfall, 

but are generally predicted more accurately. Neither of these 

considerations applies here, so there is no reason to disbelieve the 

predictions. If required, variances of predicted return values can 

be found using equations 8.3.5 and 8.3.8 of the thesis, with values 

from Tables 8.6 and 8.8. Use of confidence intervals based on these 

variances, however, seems likely to give the corresponding values an 

air of spurious accuracy, bearing in mind the likely range of error

in the MESOS calculations
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ABSTRACT

The study of contamination due to long-range atmospheric 

transport of radionuclides after a release from a nuclear 

installation is relevant to siting policy for power stations, 

especially for the assessment of its implications for the peoples of 

other states. MESOS is a computer model which uses real weather 

data to calculate exposures due to atmospheric transport of 

radioisotopes, based on approximations to the dispersion and 

depletion of notional puffs of nuclides in the atmosphere.

A  statistical analysis of the MESOS data is performed to enable 

the estimation of long-run distributions of exposure - to air 

contamination and dry and wet deposition - at points remote from any 

source in Western Europe from which a release of duration between 

three hours and one week is deemed to have taken place. This 

statistical model works quite well compared with MESOS and provides 

simple cheap predictions of exposure distributions.

Particular attention must be paid to rare episodes leading to
\

big exposures, so statistical methods which extend the threshold 

models used by hydrologists are developed. The generalized Pareto 

distribution - the natural parametric family for excesses of 

continuous random variables over high thresholds - is studied in 

detail, and characterized as ’t h r eshold-stable1. Estimation problems 

tackled include: fitting the distribution to complex data by maximum 

likelihood; sensitivity of maximum likelihood estimators to sample 

extremes; small-sample behaviour of maximum likelihood estimators; 

and the efficiency of least squares and moment estimators.

Diagnostic procedures developed are based on residuals, a test of 

fit, and the study of influence.

These techniques are applied to the MESOS data with the aim of 

modelling high exposure episodes as accurately as possible.
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1. INTRODUCTION

1.1 Background, motivation, and discussion

Article 37 of the Euratom Treaty among the nations of the

European Economic Community reads:

Each member state shall provide the Commission with 
such general data relating to any plan for the 
disposal of radioactive waste in whatever form as 
will make it possible to determine whether the 
implementation of such plan is liable to result in 
the radioactive contamination of the water, soil, 
or air space of another member state.

Although direct contamination of the water or soil of another country

could happen as a result of a nuclear discharge, by far the most

serious risk to the majority of its population would be due to

transport of radioactive material in the air and consequent

exposures; either directly, from air contamination and irradiation

from deposition on the ground, or indirectly - from consuming produce

from polluted farmland, for example. For this reason w ork in the

Environmental Safety Group at Imperial College has been directed over

the past decade towards the study of long-range atmospheric transport

of radionuclides, to provide methods whereby the implications of the

Article 37 requirements may be assessed.

The MESOS computer model for long-range transport, dispersion, 

and deposition of radionuclides, described by ApSimon et al.(1983), 

has formed the basis for much of the work of the Group.

The idea fundamental to MESOS is this: a continuous constant 

release of a nuclide from a source at a known location in Western 

Europe is modelled as a plume interpolated between an imaginary 

series of tracked puffs released every three hours. The positions of 

the puffs, concentrations of material near the ground, and dry and 

wet deposition, are calculated every ten minutes for the first three 

hours, and hourly thereafter. The puff trajectories develop in as
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realistic a way as possible based on ’present w e a t h e r ’ observations 

from meteorological stations and ships throughout Western Europe.

Geostrophic winds which advect the puffs are deduced from a series of 

pressure fields interpolated between three-hourly measurements. The 

pressure fields, and hence the trajectories, reflect the influence of 

major orographic features.

Each puff is treated as a vertical column of pollutant which 

expands laterally and evolves vertically in a way which depends on 

the local behaviour of the boundary layer at the time of passage.

The mean velocity of the puff within the boundary layer is derived 

from a wind profile - determined by the roughness of the underlying 

surface, the mixing layer depth, and current atmospheric stability - 

whi c h  backs in direction and decreases in strength from the boundary 

layer to the ground. Convective or mechanically induced turbulence 

may carry material aloft, where it may be isolated if the mixing 

layer subsides; later it may be re-entrained if the mixing layer 

grows again. Mixing layer depth follows a diurnal cycle, influenced 

by the roughness of the underlying terrain and wind strength. As 

travel time increases, the lateral dispersion of the puffs is 

gradually dominated by synoptic divergence between their paths, an 

important effect neglected in simpler models. Vertical and lateral 

dispersion are illustrated in Figure 1.1, taken from W r i g l e y ( 1 9 8 2 ) .

Each combination of nuclide, exposure mode, and source has two 

bodies of associated results. Firstly, the puff histories: lateral 

and vertical dispersion of each puff, the vertical distribution of 

material within it, and deposition; and rainfall and other 

meteorological variables. These are recorded in the Lagrangian 

framework of the puff as functions of time since its release, until 

the puff leaves the map area or four days have elapsed. The effect 

on overall exposure levels of ignoring puffs under these
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Ca) Lateral Dispersion

MATERIAL DEPOSITED BY ORY DEPOSITION ANO 
WET DEPOSITION WHEN RAINING

(b) Vertical Dispersion

Figure (1.1') Features of Long-Range Dispersion Modelled in MESOS
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circumstances is small: most puffs cross the map area in between one 

and three days, and although they may pass over the grid again after 

leaving it they are generally relatively very dispersed due to the 

cumulative impact of several cycles of diurnal mixing. Consequently 

little is lost by neglecting them. As the plume passes over a large 

grid of points centred at the source, the notional pollution at each 

point due to different modes of exposure - air contamination, and dry 

and wet deposition - is recorded. These receptor histories are the 

second set of data: time-series of exposures due to successive puffs, 

observed at the fixed Eulerian grid of points.

One of the features of the MESOS exposure database is that given 

a nuclide, release duration, source, and receptor, a complete 

probability distribution of exposures is available. Its elements 

correspond to all the variety of different weather conditions that a 

puff may experience along its path from source to receptor and which 

may prevail while it crosses the receptor. This is a big improvement 

on simple models which only allow the long-run exposures for a 

fairly crude breakdown of different types of source meteorology - or 

in some cases only long-run mean exposures - to be calculated. It 

has the additional virtue of making possible the isolation and study 

of types of weather patterns leading to particular pollution 

episodes; for example those generating especially high exposures at a 

receptor or set of receptors. The distributions of exposure levels 

can be integrated with respect to the distribution over the map area 

of anything for which data are available - people, milk production, 

or anything else of interest. The risk to that population or 

activity associated w ith notional releases from the installation can 

then be evaluated.

MESOS has advantages over many other long-range dispersion 

models, which are often based on straight-line trajectories and
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source weather behaviour, perhaps modified in various ways to make 

the model more realistic. The grid of real weather data used in 

MESOS enables the trajectories to be m uch more complex: they may be 

diverted around mountain ranges; they may loop so as to exposure 

grid-points more than once; and they may turn systematically at long 

ranges due to prevailing weather patterns. Another important 

point is that the spatio-temporal evolution of each puff is treated 

in some detail. Like the pressure field, the occurrence of rainfall 

is based on three-hourly fpresent weather* data smoothed over grid 

squares: it varies in space and time in a fairly realistic way. In 

particular, features incorporated in the 'present weather* data such 

as enhancement of rain over mountains are reflected in the model.

However there are many other weather effects which MESOS does 

not take into account, such as thermal winds, nocturnal jets, and 

small-scale topographic winds. Nor does the puff model allow 

material to be lost to the upper troposphere, although this may occur 

in frontal regions. Moreover the resolution of the rain data is too 

coarse for accurate representation of the effect of wet deposition at 

short distances from the source, where a puff may be comparable in 

size with a convective rain cell: wet deposition at such distances 

may be more patchy than the MESOS data - which are smoothed over grid 

cells of area ~  10^ square kilometres - suggest.

The verification of a model both by Internal calibration and 

comparison with other models designed for the same purpose, and if 

possible its validation against suitable observational or - much 

better - experimental data, are obviously important if the potential 

user is to have confidence in its results.

As far as possible MESOS has been so calibrated that its derived 

marginal distributions of meteorological variables correspond to 

their observed distributions; but the difficulty of measuring many
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atmospheric quantities simultaneously makes it difficult to be sure 

that it always mimics their joint behaviour well.

Various other simpler models have been compared w i t h  MESOS. 

ApSimon and G o ddard(1983, Appendix A) contrast MESOS exposures with 

those from two other models; one a straight-line plume model w ith a 

single boundary layer stability category, and the other a trajectory 

model w ith puffs released every twelve hours but vertical and lateral 

puff development independent of changing weather c o n d i t i o n s .

Exposure distributions for the other two models are more homogeneous 

than for MESOS because of the greater variability of possible puff 

histories it can allow; and high exposures calculated with MESOS tend 

to be greater because the other models allow fewer meteorological 

parameters to vary. Figure 1.2, taken from their report, shows 

histograms of the logarithms of time-integrated air concentrations at 

sixteen receptors, for notional unit daily releases of Iodine 131(p) 

from Mol in Belgium through 1976. The extended lower tail of the 

histograms is typical of the MESOS results but not of the others, 

which do not cater for the possibility of exposures from indirect 

trajectories.

It is much easier to verify a long-range dispersion model by 

calibrating it against weather data and comparing it with other 

models than it is to validate it by checking its exposures w ith real 

ones, because suitable data are hard to find. Experimental data 

adequate to check models against external reality would be 

invaluable, and inert tracer studies are at present being performed 

in the United States (Ferber and Heffter, 1983). Exposure data from 

properly designed experiments to test mesoscale dispersion models 

over Europe do not exist - and possibly never will. There are few 

detailed data from observational studies at long distances from a 

source w i t h  a known release pattern.
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Since appropriate data with known releases at the source could 

not be found, W r i g l e y ( 1982) tried to check MESOS against data 

gathered in Northern Europe shortly after the radioactive discharge 

of estimated size between 20,000 and 30,000 Curies which accompanied 

the fire in a reactor at Windscale on the lOth-llth October, 1957.

He concluded that:

The application of the MESOS model to the dispersion 
of I].3 i releases during the Windscale accident has 
given reasonable agreement w ith m e a s u r e m e n t s , in 
view of the uncertainties in the source term and the 
rather complicated meterological conditions. MESOS 
calculations are generally within a factor of three 
of the measurements and this degree of accuracy is 
comparable with other long-range dispersion models 
(Maul,1980).

The uncertainty in trajectories leads to the most 
significant errors in the dispersion calculations.
Trajectories have been shown to be rather unstable 
because of the movement of the frontal system and 
the high pressure system during and after the period 
of I 1 3 1  emissions at Windscale. Under such 
conditions, trajectories are sensitive to relatively 
small variations in the backing angle of the 
advecting boundary layer winds.

The problems associated with predicting boundary 
layer trajectories could limit the ability of 
dispersion models to forecast, with confidence, the 
consequences of an unplanned release incident.
However the specification of accurate trajectories 
is of lesser importance in the development of 
statistical forecasts for the impact of unplanned 
releases at remote receptors. In the statistical 
approach, predicting the frequency of exposure at 
remote receptors is the main interest, rather than 
giving accurate forecasts of individual trajectory 
p a t h s .

M uch is known about dynamical meteorology, and hence the 

dispersion and trajectory calculations for the puffs are not thought 

to be the main cause of any systematic error in the MESOS database. 

More uncertainty is introduced because less is known about h o w  

nuclides wash out of the air. The physics of droplet formation is 

complicated and not well understood, yet washout has to be simply 

parametrized so that calculations can be performed efficiently. Dry 

deposition is better understood, but uncertainty about the deposition
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velocities to be ascribed to nuclides remains. The values of

deposition velocity v^ and washout coefficient Xw  used in MESOS are 

thought to cover their likely ranges, but are not more accurate than

that. However the statistical methods described in Chapter 3 allow

the effect of varying v, and X to be estimated.d w
Despite the uncertainties surrounding individual MESOS 

trajectories, it remains true that the database is the result of the 

most comprehensive attempt yet made to study long-range atmospheric 

dispersion of radioisotopes in Europe. A  vast body of useful 

information is available. The central point of the preceding 

discussion is this: the attitude users of MESOS results should have 

is one of bold scepticism. The data are the best yet, and every 

attempt has been made to check the model; but the results are still 

only generally right to within a factor of three or so. This thesis 

has feet of clay - not sand.

Others have used MESOS to investigate various aspects of 

pollutant transport through the air: Maul(1980) describes a 

study of sulphur compound transport which uses the MESOS database and 

integrates the diffusion equations governing the vertical 

distribution of pollutant in the puff; apart from the Windscale 

study, Wrigley(1982) used MESOS to obtain the large body of data 

partly summarized in this thesis; Crompton(1982) compared MESOS and 

simpler models based only on source meteorology for computing 

collective doses of radioactivity to the population due to planned 

and unplanned releases; and Alecio(1984) used it to assess United 

Kingdom siting policy for nuclear power stations, paying special 

attention to episodes leading to the highest few exposures.

The central goal of this thesis is to develop a simple 

probabilistic model of atmospheric dispersion over long distances, 

based on the MESOS receptor histories; a model easily used by the



21

non-expert but retaining as far as possible the full scope of 

possible uses of the database. The model can be used to estimate the 

long-run expected exposure distribution, arising from a release of 

duration between three hours and one week, of a nuclide w i t h  given 

half-life, deposition velocity and washout coefficient, at a point 

between 100 and 1000 kilometres away from a source anywhere in 

Western Europe. It is embodied in a system of mathematical equations 

- the result of a statistical analysis of the MESOS data - and is 

suitable for use in satisfying the Article 37 r e q u i r e m e n t s .

Careful efforts have been made to verify the statistical model 

by comparing it with the MESOS data. They are, first, assessment of 

how well the statistical equations fit the data upon w h i c h  they are 

based and the importance and physical significance of discrepancies 

between them; and second, comparison of statistically predicted and 

MESOS exposure distributions for releases not used in building the 

model. Together they provide a good idea both of the nature of 

differences which may arise, and of their probable size and 

direction. However it is important to realise that such verification 

is essentially internal: it consists of comparisons between a 

computer model and a set of equations derived from it.

Throughout this thesis the degree of accuracy of the results 

obtained and methods used is summarized in the fashion characteristic 

of statistical work: probability statements, confidence intervals, 

and significance. However the statistical significance of an 

apparent effect does not necessarily imply that it is practically 

important or that it has a physical meaning; and conversely an 

Important physical effect may not be detectable in given data with a 

high degree of certainty. It is the practical and physical aspects 

of an analysis that are generally of more interest to the user of 

statistical results: this is kept in mind throughout. Thus effects
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found to be statistically significant have been ignored in the 

eventual model as practically unimportant or physically m e a n i n g l e s s , 

but others motivated by the physics of pollutant transport but not 

statistically noticeable have been retained. In particular, one 

implication of Wrigley's comments quoted above about the likely 

accuracy of MESOS exposure levels is that statistically highly 

significant differences between the original and the predicted 

distributions based on them are not important in practical terms.

This is dealt with in Chapter 3. Cox(1982) gives a fuller discussion

of these distinctions between statistical and scientific - in his 

case biological - and practical significance.

Rather strong independence assumptions have been made for most 

of the statistical fitting, in order both that well-tried methods 

could be used for m uch of the work and that a set of equations easily 

understood by the non-statistician would be its eventual outcome. In 

particular it has been assumed that time-series of exposures at 

different receptors are independent, although this is clearly untrue 

in general. Further it is assumed in Chapter 3 that individual 

exposures at single receptors are independent and identically 

distributed. Independence must be regarded as dubious for exposures 

arising from the same set of weather conditions, and the variation in 

the weather from month to month casts doubt on the assumption that 

all the observations have the same marginal distribution. On the 

other hand exposure levels may vary during a single episode by

factors of 103-10I+, but seasonal variations are hard to detect, 

suggesting that such seasonal differences as do occur are 

uninteresting compared with possible diurnal changes. Figure 1.3 

shows the time-series of exposures to Krypton 85 time-integrated air 

concentration observed at three-hourly intervals 800 kilometres north 

of Mol, due to unit releases every three hours. Contamination is



Figure 1.3 : Tirne-series of exposures to time-integrated air concentration at receptor 800 km north of Mol due to
unit releases of Kr^ every three hours during 1976.
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clearly episodic and there are no obviously seasonal changes in 

either the levels of pollution or when it occurs.

The overall effect of assuming independence of results for 

different receptors and of different exposures at single receptors is 

the over-estimation of the precision of the fitted equations. For 

this reason the verification of the statistical model against MESOS, 

limited as it is, is an essential element of this thesis. It gives a 

clear idea of the likely range of probable errors of the model as 

compared with MESOS.

Had the aim of the w o r k  been to produce a stochastic model for 

the dynamics of pollution episodes a much more complicated approach 

would have been necessary. As will be seen, the approach chosen must 

be regarded as remarkably successful w hen the complexity of the 

situation it models is taken into account.

1.2 The MESOS exposure database

Two bodies of weather data exist for input to MESOS. The first 

covers most of middle and late 1973 and early 1974, a period regarded 

as 'average' in meteorological terms. This database has a number of 

fairly short gaps when information adequate for the construction of 

pressure fields over the whole of Northern Europe was not available, 

but has been treated as a continuous record for the purpose of 

analysis. The area covered by the database, from 10° East to 20°

West and 62° to 44° North, is shown in Figure 1.4. The sources from 

which notional releases are deemed to have taken place are Heysham, 

Karlsruhe, and Mol.

The second weather database covers almost all 1976 except for a 

single missing day, henceforth ignored. The year had an unusually 

long hot summer and wet autumn and winter. During the summer there 

were a number of almost stationary blocking anticyclones for long
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Figure 1.4 : Area covered by 1973 meteorological database.
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periods, which would have lead to high levels of exposure had there 

been a nuclear discharge to the atmosphere. The 1976 database, whi c h 

extends southwards to 36° North and hence covers all the mainland of 

Western Europe, is shown in Figure 1.5. The notional sources for 

which data through 1976 exist are M o l ,C a d a r a c h e , and Ispra.

Exposure data for unit discharges of radioactivity over periods 

of three hours are stored on magnetic tape for imaginary releases 

from five sources: Mol in both 1973 and 1976, and two others each 

year. The years chosen are thought adequately to represent the 

likely range of variation of European weather as it affects long- 

range dispersion: in particular, levels of contamination in 1976 are 

thought to be rather higher than those in an A v e r a g e *  year.

Data exist for each source for twelve combinations of nuclide 

and exposure mode: time-integrated air concentrations for 

Iodine 131(p), Iodine 131(g), Caesium 137, Krypton 85, Xenon 133, and 

Xenon 135; and wet and dry deposition data for the depositing Iodine 

and Caesium isotopes. The deposition velocities and washout 

parameters these radionuclides are supposed to have for the MESOS 

calculations, and their half-lives, are given in Table 1.1. The 

inert noble gases Kras, X e i 3 3 , and X e i 3 5  do not deposit, so only air

contamination as material passes overhead is important. 1131 is 

considered in two forms - particulate and gaseous - with different

washout coefficients. When the results are considered together with 

those for C s ^ 3 7  this allows the effects of decay constant, deposition 

velocity, and washout coefficient to be estimated.

Dry deposition, wet deposition, and time-integrated air 

concentrations are calculated separately for the depositing 

radioisotopes, whereas the air contamination for inert ones 

essentially depends only upon travel time from the source to the 

receptor and the vertical cross-section of the puff orthogonal to its
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Figure 1.5 : Area covered by 1976 meterological database.
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Nuclide Half-life Deposition velocity Washout coefficient*

vd Xw
(ms ) (s~1)

1131(P) 8.1 days 3x10“3 5x1o-5 j 0;8

I131(g) 8.1 days 3x10"3 1.5x10~5 J°*8

Cs 137 28 years 1x10~3 5x10"5 J°*8

in00 10 years — —

Xe 133 5.3 days — —

Xe 135 9.1 hours — —

Table 1.1 Parameters of nuclides used in data analysis 

* J is rainfall rate in mm/hour
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trajectory. Thus contamination can be evaluated for any inert 

nuclide with known decay constant once travel time and cross-section 

are known. This is later used to create exposure data for ’pseudo- 

nuclides* - notional isotopes whose decay constants do not correspond 

to those of actual substances, but which help with estimation 

problems encountered with wet deposition.

Exposure data are available every three hours only at sixteen 

receptors for each source. Their locations are shown in Table 1.2. 

Daily exposure data exist for a large grid of receptors centred at 

each source - whose arrangement for Mol is displayed in Figure 1.6 - 

but they have not been used in the analysis.

In addition to the data described above, results for unit 

exposures for three-hourly releases from Hannover and Stuttgart 

through 1973 exist at the receptors shown in Table 1.3, for all three 

exposure modes of the nuclides whose parameters are shown in Table 

1.4. These were not used to fit the statistical equations, but 

retained instead for their verification.

Exposures for unit releases of duration longer than three hours 

- one day, for example - may be obtained from the three-hourly ones 

by aggregating them in blocks of eight, and dividing the resulting 

exposures by eight to get daily contamination levels. This artifice 

has been used where necessary to get data for release durations of up 

to one week.

1.3 The structure of this thesis

The level of technical background needed to read different parts 

of this thesis varies. I hope that much of it is intelligible to 

anyone w ith basic knowledge about the boundary layer and a 

familiarity with statistical notions. However the technical content 

of Chapters 5-7 is greater; they take for granted some understanding
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SOURCE 
COUNTRY 
LATITUDE 
LONGITUDE 
1973 CALC. 
1976 CALC.

Heysham 
Britain 
54.03°N 
2.91°W

/

Karlsruhe 
Germany 
49.70°N 
8.43°E 

> /

Mol
Belgium 
51.18°N 
5.12°E

J

Cadarache 
France 
43.71°N 
5.77°E

Ispra 
Italy 
45.81°N 
8.63°E

> /

1 N 100km N 100km N 100km N 100km N 1 00km
2 N 300 N 300 N 300 N 300 N 300
3 NE 800 N 500 N 500 N 800 N 800
4 E 100 N 800 N 800 NNE 1100 N 1500
5 E 300 N 1300 E 100 NE 300 E 100
6 E 800 E 100 E 300 NE 700 E 300
7 E 1300 E 300 E 500 E 100 SE 300
8 ESE 1100 E 500 E 800 E 300 SE 500
9 SE 800 S 100 S 100 ESE 800 SE 800
10 SE 1300 S 300 S 300 S 100 S 100
11 SSE 1100 W 100 S 500 wsw 800 S 700
12 S 100 W 300 S 700 W 100 W 100
13 S 300 W 500 W 100 W 300 W 500
14 S 800 W 800 W 300 NW 300 NW 300
15 W 100 NW 800 W 500 NW 700 NW 500
16 W 300 NW 1300 W 800 NNW 1100 NW 1 100

Table 1.2 Sources and receptors used in data analysis
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Fi g u r e  1 ;6 • R a d i a l  G r i d  System for Mol



32

SOURCE Stuttgart Hannover
COUNTRY W. Germany W. Germany
LATITUDE 48.47°N 52.23 °N
LONGITUDE 9.12°E 9.44°E
1973 calc. ✓ ✓
1976 calc. — —

1 NE 100 km N 100 km
2 NE 200 N 200

in
-ic -> NE 400 N 400

• H

a 4 NE 800 N 800
o 5 SE 100 E 100+j
Q j  /-
Q) D SE 200 E 200O
2 7 SE 400 E 400
0 8 SE 600 E 600
g 9 SW 100 S 1000
3  1 0 SW 200 S 200
• H

w  1 1o 11 SW 400 S 400a
o 12 SW 600 S 800>

3  13 NW 100 W 100
fO

a) 14 NW 200 W 200
15 NW 400 W 400
16 NW 800 W 800

Table 1.3 Sources and receptors used for model verification only
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Nuclide Decay constant 
X

(s'1 )

Deposition velocity

va
(ms 1 )

Washout coefficient* 
Xw

(s~1)

Case 1 0 1x1 o'3 2.6x10~5J
Case 2 0 1x10~2 2.6x1o'^J

-6 -2 -4Case 3 2.8x10 1x10 1.3x10 J
Case 4 0 1x10~2 1.3x10~4J

Table 1.4 Parameters of nuclides used for model verification only

* J is rainfall rate in mm/hour.
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of the methods of modern statistics. This is unavoidable.

The probability distribution of exposure levels at a remote 

receptor may be thought of as a combination of the long-run exposure 

probability for the receptor, and the distribution of contamination 

levels when it is exposed.

In Chapter 2 the modelling of probabilities of exposure at 

distant receptors is discussed; and a model for both wet and dry 

exposure probabilities is proposed, fitted, commented upon, and 

verified.

In Chapter 3 the complementary problem of finding the 

distributions of exposure levels at remote receptors is tackled. The 

Weibull distribution is shown to give a reasonable fit to the 

data overall; its variation with nuclide characteristics and 

source-receptor distance is expressed in terms of a simple set of 

equations motivated by basic physical considerations; and the 

resulting model is discussed and verified.

Then attention is focussed on the provision of a statistical 

model for extreme events - very high levels of exposure. Chapter 4 

contains a brief review of modelling exceedances over high 

thresholds, then the next three chapters give the thesis* main 

contribution to statistical methodology.

Chapter 5 gives an account of and proves some results for the 

generalized Pareto distribution, an essential ingredient in modelling 

excesses over high levels; Chapter 6 considers in detail statistical 

aspects of the distribution - especially how to use it to model 

complex data; and Chapter 7 goes into diagnostic methods for 

checking that a fitted model describes the data well.

In Chapter 8 these ideas are applied to the MESOS data. Chapter 

9 contains a summary, conclusions, and comments on various aspects of 

the work. The appendix gives an example of the use of the model.
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2. PROBABILITIES OF EXPOSURE

2.1 Introduction

The aim of this chapter is to find a simple method of predicting 

the probability of exposure to pollution for releases over periods of 

from three hours to one w e e k  at points between 100 and 1000 

kilometres from the source of pollutant.

Consider Figure 2.1, from W r i g l e y ( 1982), which shows the 

probability of air contamination and wet deposition due to daily 

releases from Mol during 1973. The probabilities drop with distance 

from Mol, and show also a fairly marked pattern apparently depending 

on the source windrose. Probabilities of exposure to wet deposition 

seem to depend more on the incidence of rain-bearing air masses at 

the source. Figure 2.2 shows the proportion of MESOS geostrophic 

winds greater than 5 m/s directed from 30° sectors at Mol during 

1973. The obvious close connection between the figures suggests that 

it should be possible to relate exposure probabilities to windrose 

proportions and source-receptor distance.

The trajectory roses in Figure 2.3 show that at short and m edium 

ranges exposure probabilities are likely to be highly correlated with 

source windroses, but however this need not be true further away.

The plot shows the numbers of puffs - out of totals of about 2024 in 

1973 and 2880 in 1976 - crossing 10° sectors at various distances 

from their sources, and rather accentuates anisotropy of the 

trajectories. At distances of 750 km the effect of trajectory 

swinging due to obstacles such as the Alps is evident: it is less so 

at shorter distances. Such effects - to an extent site-specific - 

are not uniform throughout Europe and it is difficult to allow for 

them in building a general model for exposure p r o b a b i l i t i e s .

The proportions of geostrophic winds greater than 5 m/s are used
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(c) D a t a b a s e  m a p  a r e a  a n d  Mcl

c o n t a m i n a t i o n r e c e D t o r s

a e o o s i t i o n

Figure 2.1 : Probability of air contamination and wet deposition due to
daily releases from Mol during 1973.
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Figure 2.2 : Proportion of MESOS geostrophic windroses greater than 5 m/s
directed from 30° sectors at Mol during 1973.
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EA S T

(a) releases from Mol during 1973.

NORTH

E A S T

- - - - - - - - - 100 km.
- - - - - - - - -  7 5 0 k m

(b) releases from Cadarache during 1976.

Figure 2.3 : Trajec t o r y  roses at various distances from the source, for
releases of duration 3 hours.
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throughout this chapter because puffs released when source winds are 

rather low are likely to meander, so resulting exposures are less 

highly correlated with the initial direction of the puff. Basing the 

analysis on these proportions rather than the full windrose results 

in a slightly better fit of the eventual model for exposure 

probabilities.

The degree of dependence on distance and source windrose may 

vary with year - 1973 and 1976 had rather different weather patterns 

- and geographical features of the source. The sources in Northern 

Europe - Heysham, Mol and Karlsruhe - generally experience different 

weather to those in the Mediterranean area - Cadarache and Ispra. 

Typical windroses differ, suggesting that trajectory characteristics 

too may differ between the two regions. Figure 2.4(a) shows that 

most of the higher geostrophic winds at Ispra and Cadarache are from 

the north-east; whereas those at the other sites tend to be 

associated with the general south-westerly airflow across Northern 

Europe, with a secondary peak to the east at Mol and Karlsruhe. The 

wet windroses in Figure 2.4(b) show the differences even more 

markedly.

Exposure probabilities depend on release duration. Material 

released over longer periods is more dispersed because of variation 

in source and travel conditions, and consequently exposure 

probabilities increase.

Factors upon which the probabilities may depend are known in 

statistical terms as covariates or explanatory variables, whereas the 

probabilities themselves may be termed response variables. The 

following issues are of main interest:

(a) to what extent do the exposure probabilities depend on these 

factors, and which of them are most important?

(b) can the probabilities be succinctly summarized in terms of
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(a) in all weather.
Figure 2.4 : Proportions of MESOS geostrophic windroses greater than 5 m/s 

directed from 30° sectors.
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1

*

Figure 2.4 : Proportions of MESOS geostrophic windroses greater than 5 m/s 
directed from 30° sectors.
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changes in the covariates?

(c) h o w  may the dependence of the probabilities on the 

covariates be interpreted in terms of physical processes an d  effects? 

These questions are answered in Sections 2.3 and 2.4, after the 

tools used to investigate t h e m  have been described in Section 2.2. 

Section 2.5 discusses wind r o s e  data needed to use the mod e l  developed 

in the previous two sections, w h i c h  is then veri f i e d  against Hannover 

and Stuttgart data in Section 2.6.

2.2 Re g r e s s i o n  analysis; tools, diagnostics, and transformations

The material in this section is included to make the thesis 

fairly self-contained. It is germane to m u c h  of the rest of this 

chapter and the next, and underpins the m aterial in Chapters 6, 7, 

and 8. F a m i liarity w i t h  the basic idea of least squares r e gression 

is assumed.

A  multiple r e gression m o d e l  is one in w h i c h  the n  u n correlated 

r andom quantities Y^ w i t h  common variance a2 are thought to depend 

linearly on the fixed vectors x^ of dimension p; Y^ has expe c t e d  or 

m ean value

EYi  -  x ^ B  -

Here 8 is a p-vector of u n k n o w n  parameters 0^ to be estimated f rom 

the observed values y^ of the Y^, w h ich control the extent to w h i c h 

they depend on the x^. For n  such observations y^ and their
A

covariate vectors x^ the least squares estimate 0 of 0 is

0 - (XTX)-1X Ty ,

where X  is the nxp m a t r i x  { x ^ }  °f rank p and y is the nxl vector
A

{ y ^ } . The estimate 8 minimizes the sum of squared differences

1 ( y ±- x i_T* ) 2 »
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hence its name. The pxp matrix X^X will have an inverse if the 

observed data are adequate to estimate all the parameters 3^, which 

is henceforth assumed. The number of 'independent* observations - in 

a sense - remaining in the data when p parameters are estimated from 

n  original observations is the number n-p of 'degrees of freedom' of 

the model. This does not include allowance for estimating a2 .

Two regression equations are said to be nested if.one reduces to 

the other by restricting some parameter values or their combinations. 

The model E Y ^ B i x ^  is nested within the model E Y ^ = 3 q+ 3 i x ^ j since the 

first is obtained by restricting 3 q to be zero in the second. 

Extending a model equation by including extra parameters will reduce 

the residual sum of squares

l  ( y1“x 3̂ )2
c-i

since more parameters may vary: this will improve the fit of the 

model to the data. However the improvement in fit may only be small, 

so some check is needed to see if the extra parameters are worth 

including. This check is provided by the so-called 'F-test' which 

compares the residual sums of squares for nested models. The basic 

idea is to see if the increase in goodness of fit - measured by the 

difference between residual sums of squares - could have happened by 

chance were the simpler of the nested models true. For example, 

suppose that under Model A, E Y ^ = 3 q ; whereas under Model B,

EY =3o+x. 3i . The estimates 3. and 3_ are found, and it is of 

interest to determine if 3 i=0; i.e. if the observations y^ depend on 

the x ^ . The reduction in sum of squares by fitting the extra 

parameter 3i is

l  (
L=l

) 2  -  U
i=i yi_60B'Xi 3 ) :IB '

which is ssA “ SSg, say. This is likely to be large if the y^ do
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indeed depend on the x^ , and to be small if not, suggesting that 

tests to see if 3 is non-zero be based upon it. If Model A  is 

correct then the so-called F-statistic

(ssA-ssfi)/q 

S S B  / ( n " P B }

has the F -distribution, which depends on q and n-p . Here qq »n-p B
is the difference in the numbers of parameters in the two models and 

p is the number of parameters in Model B; so in this example q=l and 

p fi=2. These statistics are used to compare the fit of different 

regression equations, and are helpful in the search for equations 

which fit data well with as few parameters as possible.

When an equation has been selected as good by comparison of F- 

statistics, it is then usual to assess h o w  well the model fits the 

data by seeing how close the fitted and observed values of the y^
A

are. The fitted - or predicted - value of given x^ and 3 is
A
y ^ = x ^ A3, which has variance

var( y± ) - o2x iT (xTX)-1x i = o2v ^ :

say. The differences y^-y^, the unstandardized residuals, are

uncorrelated with the y and may be used to check the fit of the

regression equation. They may be plotted against the fitted values

y_, or the x, . for different values of i to reveal the extent to which 
a i ij
the data support assumptions made for the purpose of the analysis.

However the variance of y -y is o2 (l-v^), which is not 

constant; this may lead to difficulties in interpreting the plots.

It is usually better to plot the standardized residuals
A

r i s / (1-v, )

instead. Here s2 is the residual mean squared error estimate of a2 :
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i.e. s2 = (n-p)” *E(y.-y.)2 . The r 1 all have mean zero and variance 
L=i i

unity when the assumptions made for the analysis are valid. If in 

addition - as is commonly assumed - each Y^ is Normally distributed 

w ith mean and variance a2 , a plot of the ordered r^' against

Normal order statistics should be a straight line of unit slope and 

zero intercept. This helps to detect cases where Normal assumptions 

are invalid.

There may be observations y^ which do not accord w ith the 

posited linear regression - outliers. Such aberrant data may be 

detected by considering the cross-validatory or jackknife residuals
A

3 ( i / (1"vi )

where s2 ^.^ t l̂e estimate of a2 based on the regression equation 

but with the i tl1 datum y o m i t t e d .  Large values of r * may indicate 

errors of measurement or recording, or more importantly in many 

applications may identify values or areas of values of x^ where 

the postulated equation is a poor approximation to the data.

In addition to outlying values of the observations y , there may 

be outlying or atypical values of the explanatory variables. The 

vectors of covariates x^ may be so arranged - by chance or design -

that their corresponding y^ have more or less influence on the

regression equation. An example is the case E Y ^ = 8 q+ 3 i x ^, where a2=l, 

n=10, and x^=0 for i=l,...,9 and x 10=10. The observed value y 10 of 

Y iq contains almost all the sample information about the true 

value of 3i> which cannot be estimated if Y 10 is unobserved for any 

reason. Contrast this with the case where x ^=i for each i, which is

plainly much more balanced: the equation will be little disturbed if

any single y^ is omitted. The effect on the parameter estimate of 

deleting the i un datum may be seen by considering the statistics
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T = s g n ( r ^ * ) / {■ (n-p) v
h - V "

which will be large in magnitude for observations whose influence on 

the fitted equation is big.

The r^* and the may be plotted in the same way as the r ' to 

find unusual observations y^ or design points x^ respectively.

In many circumstances it will be natural to model the y^ as 

linear functions of the x^, particularly if physical or dimensional 

considerations so dictate. However in other cases, for example if on 

dimensional grounds it seems likely that a relationship

yi ' Xi|-e'Xi£e2Xii6i

holds, then a transformation of the y^ - in this case logarithmic - 

is strongly suggested. Such a transformation may render the 

regression more nearly linear; or may make the error distribution 

more symmetric; or may stabilize the variance of the y^; or may 

remove from the model equation interactions between different 

covariates to give a more plausible and parsimonious regression; or 

it may do all these at once. A  power-law transformation may be 

sought on empirical grounds by following the procedure due to Box and 

Cox(1964). They suggested that the regression equation be applied to

y(X) =
(yx-l)/A

log(y)
( A * 0 )

(A-0)

instead of y, and the value of X be chosen which made the data most 

nearly Normally distributed with constant variance under the assumed
A

regression model. They quantified this by choosing the value X of X 

which maximized the joint probabiity density - the 'likelihood' - of 

the original data. This choice of X often has the desirable 

properties outlined above.
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The books by Seber(1977) and Draper and Smith(1981) give recent 

accounts of mathematical and statistical aspects of linear regression 

analysis. The outline above is based on part of A t k inson(1982).

Cook and W e i s b e r g ( 1982) and Atkinson(1985) give full accounts of the 

topics discussed. Many computer programs are available for such 

analysis. I used GLIM (Baker and Nelder, 1978).

2.3 Exposure probabilities for releases of duration three hours

The exposure probabilities depend on source-receptor distance 

and source windrose. A  form such dependence might take is suggested 

by the following argument.

According to the statistical theory of diffusion, with the 

idealized mathematical assumption of uniform diffusivity, the lateral 

spread of a plume of material at a receptor downwind of a point 

source is proportional to the square root of the source-receptor 

distance. In practice simple models of Gaussian plume type assume a 

power-law relationship - usually established empirically - between 

lateral spread and distance. Suppose then that the lateral spread of 

a plume at a distance d from the source is ad . There the plume 

subtends an angle ad*/27rd = ad^“ 1/2‘ir at the source. Typical values 

of y would be between one-half and one. If the plume is straight it 

will expose a receptor at distance d and angle 0 only if the wind is 

directed into the interval 0±<}>, where (j)=ad^“ 1/2iT. Thus the 

probability that the receptor will be exposed is roughly

J p(u)du,
JQ -p

where p(u) is the probability that the source wind is directed in 

the direction u. This is approximately 2<J>p(0), provided the source 

windrose is fairly smooth. Or



48

log{exposure probability} « log{a/ 2 ir} +  l o g { p ( 0 )} +  (y l ) l o g { d } , 

suggesting that the model

log{exposure probability} = 3o +  8 ilog{p( 0 )} +  3 2 log{d}

be fitted to the data. Here the parameters 3 are to be estimated 

from the data, and p ( 0 ) is the probability that the source windrose 

is directed towards the receptor. The inclusion of the additional 

parameter 3  ̂ is prompted by the consideration that far away f rom the 

source the source windrose is unlikely to have the strong influence 

assumed above: 3 i is expected to be between zero - when the source 

windrose would have no effect on the exposure probabilities - and one 

- were the simplistic argument above valid. As mentioned above, the 

windrose p(.) is restricted to those occasions when the windspeed is 

5 m/s or more, in order to exclude situations in which the puff is 

unlikely to have a straight-line trajectory due to starting in slack 

conditions.

The model

log{exposure probability} = 3q +  3ilog{p(0)} +  32log{d} +  e,

where the e fs are uncorrelated with common unknown variance, was 

fitted to the 96 exposure probabilities corresponding to releases of 

three-hour duration from the sources in Table 1.2. Model fit as 

measured in terms of sums of squares was good, but inspection of the 

residuals revealed that the best such equation tended to under

estimate exposure probabilities at distances up to about 500 km, and

to overestimate them at longer distances. The estimate of 3 j was
A

about 0.36, and values of 6 2 were about -0.35 for northerly and -0.61 

for Mediterranean sources - which correspond to values of y about 

0.65 and 0.39 respectively. These are rather low values of y for 

spread of plume width with distance over this range: the work of
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Doury(1976) suggests that in moderate winds y is one or so for travel 

times of up to a few days and somewhat less thereafter, depending on 

the scale of the turbulence the plume experiences. The pattern of 

the residuals confirms this, and thus it is overoptimistic to suppose 

that a common y at all ranges will adequately fit the data. This 

could be overcome by fitting to the probabilities different values of 

Y over different ranges of d, but this has the drawback that 

estimation at long ranges - where data are scarcer and more likely to 

be affected by long-range effects such as trajectory turning - is 

likely to be inaccurate; furthermore it increases the complexity of 

the model - which, using O c c a m fs razor, is in principle undesirable 

unless a more complicated model is likely to account for the data 

appreciably better. Another possibility is to seek a simple function 

of d which initially grows more quickly than d 0,5 but whose growth 

slows down as d increases.

A  function appropriate on those grounds is dexp{ -ed } for a 

small positive value of e. It grows a little more slowly than d 

initially, reaches a maximum at d = 1/e, and then slowly decreases - 

which is hard to envisage happening to a plume. However, over the 

range of d and e encountered h e r e , this turns out to be a good 

approximation to the effect of distance d on exposure probabilities, 

despite this difficulty in its physical interpretation. It suggests 

that the equation

log{exposure probability} = 3o +  3ilog{p(0)} +  32 d .... 2.3.1

be fitted to the data. When this relationship is fitted by 

ordinary least squares, residual plots for the model equation 

indicate that there are three outlying observations: at the receptors 

1300 km  east of Heysham and north-west of Karlsruhe, and 700 km south 

of Ispra. Their probabilities are respectively too high, too low,
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and too low to be accounted for by the equation. The receptors are 

all quite far from their sources and close to the edge of the map, so 

it is not unreasonable to exclude them from further analysis. The 

high value east of Heysham may be due to the convergence of easterly- 

bound trajectories mentioned by Smith(1980); and the low value north

west of Karlsruhe due to air masses from the south-west diverting 

trajectories travelling long distances to the north and north-west 

from the Continent.

Further evidence for these to be regarded as aberrant is found

when the Box-Cox procedure discussed in Section 2.2 is applied to the

original probabilities of exposure using this model equation. The

parameter X estimated from the entire set of probabilities takes the
A

rather unlikely value X=0.5. This implies that

exposure probability = { 8 q +  3ilog{p(0)} +  02d }2 ,

which is not a very plausible relationship: rather than ultimately 

increase, exposure probabilities ought to die away for low values of 

p(0) and long distances d. However when the three outliers are left
A

out the situation resolves itself and X=0, which implies that the 

logarithmic scale is indeed appropriate for the data and regression. 

This illustrates the fact that the choice of a transformation may be 

strongly influenced by only a few observations and unsupported by the 

bulk of the data. Figure 2.5 shows plots of the maximized log 

probability density for fixed values of X, for both the full and 

reduced datasets. Especially in the light of the reasoning which 

began this section, both curves rule out the use of the untransformed 

data - regression of the probabilities themselves on the covariates 

could lead to prediction of negative probabilities. The three-hour 

exposure probabilities are quite small - in the range 0-0.25 or 

thereabouts - and the prediction of inadmissible values would be
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390 -

Figure 2.5 : Partially maximized loglikelihood f°r Box-Cox power
transformation of probabilities of exposure to air
c ontamination.
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certain were the regression equation based on the original data.

More complex models than 2.3.1 above may be fitted to the data. 

For example, a model equation w ith different values of 3q at the five 

different sources, different values of 3 1 in the two years, and two 

different values of 32 at Mediterranean and other sources ma y  be 

written in an obvious shorthand as

SOUR +  YEAR. P + MED. DIST, 

whereas the model equation at 2.3.1 is simply

P +  DIST.

Model 2.3.1 has 90 degrees of freedom; the more complex one has 84 = 

93 (96 observations - 3 outliers) - 5 (different values of 3 0 at each 

source) - 2 (1973 and 1973 values of 3^) - 2 (Mediterranean and 

non-Mediterranean values of 32 )»

Numerous models were fitted to the log-exposure probabilities. 

Their nesting structure, including their residual sums of squares and 

associated degrees of freedom, is shown in Figure 2.6. An arrow from 

one box to another denotes nesting: it points to the box representing 

the simpler model. The best-fitting model is SOUR +  P +

SOUR.DIST, with residual sum of squares 2.697 on 82 degrees of 

freedom. The F-test for comparing this model with the basic model 

2.3.1 is
(4.012-2.697)78

2.697/82 4.998,

indicating that the model is a significant improvement over 2.3.1.

The corresponding statistic which compares MED +  WIND +  MED.DIST 

with 2.3.1 is 16.46, a dramatic improvement over the simpler model. 

However the residual sum of squares is not further significantly 

reduced by allowing different values of &0 and 82 at each source.
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Figure 2.6 : Nesting structure of regression models fitted to log-
probabilities of exposure to air contamination.
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The practical import of Figure 2.6 is that the linear regression 

model of this type which best represents the data is the model MED +

P + MED.DIST. This allows different means 3^ and effects of 

distance 6 2 at Mediterranean and non-Mediterranean sources, but fits 

the same effect 3i of source windrose at all five sources. Allowing 

parameters to vary from year to year or source to source gives no 

real improvement in fit. The windroses for Mol in 1976 and 1973 are 

not identical but are fairly similar, giving grounds for a belief 

that yearly differences at sources are embodied in their windroses.

The regression equation for Mol, Karlsruhe, and Heysham is

log{exposure probability} = O.2841og{p(0)} - 1.12 - O.llOd .. 2.3.2
(0.0349) (0.108) (7.24xl0-3)

where the standard errors of the parameter estimates are below the 

estimates themselves. The equation for Ispra and Cadarache is

log{exposure probability} = 0.2841og{p(0)} - 0.739 - 0.148d .. 2.3.3
(0.0349) (0.123) (8.85x10-3)

The estimated value of a is 0.1822. Details of the regression 

equations are displayed in Table 2.1.

For the Mediterranean sources the overall mean is higher than 

for the others, but the probabilities fall more rapidly with 

distance. For a given value of p(0), exposure probabilities at 

distances up to about 700 km for releases from sources in the 

Mediterranean area are higher than those from other s o u r c e s , but they
A

are lower thereafter. The value 0.284 of $ 1  suggests that source

geostrophic windrose p ( 0 ) is connected to exposure probabilities

by roughly a cube- or fourth-root law, consistent with the argument
A

above that should lie between zero and one. The value 3i~0.3 

expresses the effect of synoptic divergence and turning of the 

trajectories over the distances of hundreds of kilometres of interest



North Mediterranean
Parameter Estimate s.e. Parameter Estimate s.e.

Bo -1.12 0.108 Bo -0.739 0.123
0.284 0.0349 B , 0.284 0.349

B2 -0.110 0.00724 B2 -0.148 0.00885

Correlation matrices of estimates
North Mediterranean

B0 B i B2 o
CO.

B i B2

Bo 1.0 0.926 -0.367 Bo 1.0 0.898 -0.313

B 1 1.0 -0.0642 B , 1.0 0.0439

B2 1.0 B2 1.0

Estimate of & is S = 0.1822

Table 2.1 Details of regression equations for probabilities of exposure in all 
conditions due to releases of duration three hours.

UiOl
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here. Over shorter distances use of similar models could be expected
A

to produce values of 3^ closer to but still less than one. The
A

values of the estimates 3^ suggest that rapid broadening of the puffs 

stops at distances of about 900 km and 700 km from northerly and 

Mediterranean sources respectively; which may be interpreted to 

imply that relatively less large-scale turbulence affects releases in 

the Mediterranean region than in northern Europe.
A

The plot of standardized residuals r^* against fitted values y^ 

in Figure 2.7(a) shows a slight departure from randomness insofar as 

the plot tapers off to the right and indicates that the spread of the 

log-probabilities decreases as they themselves increase.

Qualitatively this means that confidence intervals for probabilities 

predicted from the regression equation will be a little too wide for 

higher predicted values and too narrow for lower ones. Since the 

effect is small and any improvement would not be big, it is not worth

adjusting the model to take it into account. Inspection of the

numerical values of the r ^ f reveals small systematic but not

statistically significant departures from the fitted equations. Any 

attempt to take account of them would lead to a more complex model 

with no real gain to the user. In fact the model fits five 

parameters to 93 observations to soak up over 80% of the absolute 

variation in the data.

The plot of the ordered r * against Normal order statistics in 

Figure 2.7(b) is close to a straight line and shows that the 

residuals are roughly Normal. The plot of the statistics T^ in 

Figure 2.7(c) shows two rather anomalous points, which correspond to 

the receptors 1500 km north of Ispra and 1300 km south-east of 

Heysham. Dropping them from the data and refitting the regression 

model has little effect on the estimated parameters. Note that they 

belong to receptors far from their respective sources and out of the
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(b) ordered standardized residuals r , . x ' vs. Normal order statistics.
( 1 )

Figure 2.7 : Residual plots for regression of log-probabilities of exposure
to air contamination.
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(c) m o d i f i e d  Cook statistics T. vs. fitted values y,.1 1

Figure 2.7 : Residual plots for regression of log-probabilities of
exposure to air contamination.
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range over which the regression equations must be good. The

jackknifed residuals in Figure 2.7(d) show no outliers.

The shape of the residual plot Figure 2.7(a) suggests that the

binomial distribution might provide an alternative model for

probabilities of exposure. However fits of such a model in GLIM show

that the data are very overdispersed relative to the binomial

distribution. Moreover since exposures due to separate three-hour

releases are not independent the basis for use of the binomial

distribution must be regarded as suspect.

A  similar set of regression analyses performed on the 96

probabilities of exposure to wet deposition used the source windrose

p (9) restricted to winds of speed at least 5 m/s and occasions when w
it was raining at the source. Strictly speaking, p (0) does notw
exactly measure the probable incidence of rainbearing air masses at 

the source, but it provides the best information easily available 

about it. Parallel regressions were performed using the source 

geostophic windose under all conditions, and the entire wet source 

windrose, but that using p^(0) gave the best fitting equations, and 

is recorded here. The regression using p(0) was markedly worse than 

both the others, w ith substantially larger residual sum of squares - 

an unsurprising result.

The nesting diagram for models fitted to the log-wet exposure

probabilities using p (0) is shown in Figure 2.8. Details of thew
'best' model, MED +  MED.P + MED.DIST. are displayed in Table 2.2.

It is clear that the data are more variable than the exposure 

probabilities in all conditions - the residual sums of squares for 

the models are about three times larger. The estimated value of a 

is 0.3622, almost exactly twice its value of 0.1822 for the previous 

regression.

The fitted equation for Mol, Karlsruhe, and Heysham is
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MODEL FORMULA

Residual Degrees
sum of of
squares Freedom

Figure 2.8 : Nesting structure of regression models fitted to log-
probabilities of exposure to wet deposition.



North Mediterranean
Parameter Estimate s.e. Parameter Estimate s.e.

oCO. -2.487 0.1370 o00. -0.6393 0.5929

B, 0.2873 0.03547 B1 0.8191 0.1883

B2 -0.06376 0.01308 B2 -0.1208 0.01763

Correlation matrices of estimates
North Mediterranean

Bo B, B2 Bo Bi b2

Bo 1.0 0.8227 -0.3936 Bo 1.0 0.9833 -0.2697

B, 1.0 0.0819 1.0 -0.1264

B2 1.0 b2 1 .0

Estimate of O is S = 0.3622

Table 2.2 Details of regression equations for probabilities of exposure in wet 
conditions due to releases of duration three hours.
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log{wet exposure probability} = 0.28781og{p (0)} - 2.487 - 0.0637d
(3.547 x 10“ 2)w  (0.1370) (1.308><10” 2 )

•••• 2.3.4

and that for Ispra and Cadarache is

log{wet exposure probability} = 0.81911og{p (0)} - 0.6393 - 0.1208d
(0.1883) w (0.5929) (1 .763xl0“2)

• • • • 2.3.5.

These equations show that patterns of behaviour for exposures to wet

deposition differ for releases from different parts of Europe. Wet

exposure probabilities for sources not in the Mediterranean area

display quite low correlations w ith their source windroses and a

fairly weak - but significant - decline with distance d. In

contrast, wet exposure probabilities for sources in the Mediterranean

area are highly correlated with p ( 0 ) and drop more quickly asw
source-receptor distance increases. This suggests that trajectories

spread and meander more in wet conditions in Northern Europe, but are

narrower and straighter in similar conditions in the Mediterranean

basin. For p (0)^0.2, wet exposure probabilities for releases from w
Mediterranean sources are higher than for their more northerly

counterparts by a factor about 2 .0 - 1 .5, decreasing as d increases;

the corresponding factor for p (0)-O.l is 1.5-1.0 or so; and forw
Pw (0)-O.O5 the probabilities for releases from Mediterranean sources 

exceed those for northerly ones only up to about 450 kilometres, and
A

thereafter are lower. The values of the estimates 0̂ . suggest that 

rapid broadening of the puffs in wet conditions stops at distances of 

about 1500 km and 800 km respectively for releases from northerly and 

Mediterranean sources. These distances are larger than the 

corresponding values for exposures in all conditions and suggest that 

turbulent effects on dispersion occur on a larger scale in wet than 

in dry conditions, particularly over northern Europe, and to a lesser
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extent in the Mediterranean area.

Residuals for the regression model are plotted in Figure 2.9. 

There are no obvious outliers or very influential points, but there 

are a number of rather large negative residuals. These correspond to 

probabilities at receptors mostly far to the south or west of their 

sources, and imply that trajectories travelling long distances to the 

south and west in wet conditions are slightly less frequent than the 

equations predict. This is consistent with the eastward-bound 

passage of wet air masses over Northern Europe. The residuals do not 

invalidate the fitted equations - which should be interpreted and 

used with care rather than treated as a deus ex statistica.

Confidence intervals for the MESOS values of exposure 

probabilities P 3 for releases of duration three hours may be based on
A

the fact that log{P 3 ) is roughly Normally distributed w ith mean

6 0 +  3ilog{p(0)} +  B2d .... 2.3.6

A

and variance t 2 = Var{ l o g ( P 3 > }, with

Var{log(P3)} = Var ( B 0) +  2Cov(3 0 ,0i)log{p(0)} +  2Cov(B 0 ,32 )d

+  V a r ( 3 1 )log{p(0 ) } 2  +  2Cov(3 1 ,02 )log{p(0)}d

+  Var(3 2 )d 2  .... 2.3.7.

A

Conditionally on the value of log{P 3 ), the MESOS log-probability may
A

be thought of as Normally distributed with mean l o g { P 3} and variance

a2 . Thus unconditional confidence intervals for log{P 3 ) may be found

from the Normal distribution with mean l o g { P 3} and variance oj 2 = a 2

+  t 2 , w ith a 2  taken to be the estimate of a 2 obtained from the
a a A

regression model. That is, a2 = (n-p)- 1 £ (y -y )2 . Hence P 3 lies in
{.=-» 1 1

A A
the interval ( PsexpCz^m), P 3 exp(-zato) ) with probability 

approximately l-2 a, where $(z ) =* a » and a<0.5.
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Normal scores

(b) ordered standardized residauls r,..' vs. Normal order statistics( 1 )

Figure 2.9 : Residual plots for regression of log-probabilities of exposure
to wet deposition.
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Figure 2.9 : Residual plots for regression of log-probabilities of exposure
to wet deposition.

< >i 
< >i
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W r i g l e y ( 1982) proposed that probabilities of exposure for 

releases of duration longer than three hours be related to those for 

release duration three hours by the power-law

Pt - P 3 (t/3)S .

Here is the probability of exposure of a given type at a receptor 

due to releases of duration u hours at some fixed source. Typically 

6=0.5. Although simple and appealing this formula has the obvious 

disadvantage that if used for large values of t it predicts 

probabilities greater than one as it has not the right asymptotic 

behaviour. This difficulty may be overcome by considering the 

following argument.

Suppose that a series of infinitesimal puffs is released from 

a source, and that the release times of those which later expose a 

remote receptor are noted. Suppose in addition that the probability 

of an exposure of the receptor by a puff released over a short time 

interval of length At is pAt, and that exposures to different puffs 

are independent. The process of release times might look like

fci*te
■—  * * ------- -----------*--------------- x------ x------------- -------------------------► ,

2.4 Exposure probabilities for releases of longer duration

and is a homogeneous Poisson process of rate p. It has the property 

that the number of infinitesimal puffs released during an interval of 

length t which later expose the receptor has the Poisson distribution

(p t)kProb( number of exposures = k  ) =  £-j—  exp( -pt )

for non-negative values of k. It follows that the probability of at 

least one exposure due to the entire release is

1 - exp( -pt )
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For a given positive value of p this rapidly approaches one as t 

increases: if p-0.1 is the probability of exposure at a MESOS 

receptor due to a three-hourly release, then the" probability of 

exposure due to a daily release would be about 0.55, whereas a 

typical value in the MESOS exposure database is 0.3. Clearly this is 

because exposures at receptors are not random. Short-term 

persistence of weather conditions leads to correlation among 

successive puff trajectories and so the probability of exposure to 

releases over longer periods rises more slowly than the form above.

The argument nevertheless suggests the following somewhat 

empirical modification of the equation:

P t = 1 “ exp{ - P 3 (t/3)* },

for values of t greater then three hours.

Note as an aside that the Palm-Khintchine equations (Cox and 

Xsham, 1980) imply that no stationary orderly process exists with

Prob{ no points in (0,t) } = exp( -pt* ),

but this is a quibble since exposures of a receptor are not 

stationary, nor orderly, nor even a point process.

The modified form for P has the desirable property that for all 

values of P 3 >0, t>3, and 6>0 it lies in the range zero to one. 

Moreover for P 3=:0.25 or less and fairly small values of t

S i
P fc =* 1 “ exp{ - P 3 (t/3) } = P 3 ( t / 3 ) ,

which agrees with with the formula which ushered in this section.

The value of 6 may be estimated from the MESOS data by noticing

that

log{ -log(l-Pt ) } - l o g { P 3 } = Slo g { t / 3 } .

Regression of the known left hand side of this equation on log{t/3}
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enables 6 to be estimated.

Processes at different receptors were assumed approximately

independent in Section 2.3, but this cannot even be roughly true of

the values of P and P for different values of s and t at a single s t
receptor. For each of the 96 receptors for which three-hourly data 

are available, a longer release duration t = 6, 12, 24, 72, or 168 

hours was randomly chosen and the probability P found from the MESOS 

data. The randomization was balanced to enable good estimation of 

source, year, or 'Mediterranean' effects on 6. A  different
A

randomization led to almost exactly the same values of 6 - which 

depend little on the particular randomization used.

Rather than the actual values of P 3 , the estimates P 3 predicted 

from the equations derived in Section 2.3 were used, so that a true 

idea was obtained of the variability which could eventually be 

expected in the estimates of P^. This hardly affects estimates of 6 

at all, but it inflates their variance.

The regressions on log{t/3} are very strong. A  nesting diagram 

and parameter estimates for probabilities of all types of exposure 

are shown in Figure 2.10 and Table 2.3. Statistically the best model 

is that which allows 6 to be different in each year, but although an 

interesting result this is not useful since a model is needed for 

predictions in arbitrary y e a r s . The model which allows 6 to depend 

on whether or not the source is Mediterranean is adopted instead.
A

The values of 6 are close to the values expected; roughly 0.62 for 

more northerly sources, but about 0.58 for those in the Mediterranean 

basin. This indicates that probabilities for non-Mediterranean 

sources increase rather faster with release duration. An 

interpretation of this is that correlation between successive 

trajectories tends to be higher for releases from sources in the 

Mediterranean area because typical weather conditions there are
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exposure to air contamination on release duration.
Figure 2.10 : Nesting structure for dependence of probabilities of

TIME

Model Parameter Estimate s e.

Time 6 0.6040 0.0062

Time. Med 6 Uni form 0.6209 0.0074

6 Mediterranean 0.5763 0.0094

Table 2.3 : Parameter estimates for dependence of probabilities of 
exposure in all conditions on release duration.
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influenced by factors different to those affecting more northerly 

sources. This is probably confounded to some extent with the effect 

on atmospheric dispersion of the unusual series of anticylones over 

north-west Europe in the summer of 1976 - so-called blocking 

situations - which would have led to higher correlation between 

trajectories initiated at sources there, explaining why the model 

allowing yearly variation of 6 fits well.

The corresponding diagram and estimates for exposures to wet 

deposition may be found in Figure 2.11 and Table 2.4. They have the 

same pattern as those in Figure 2.10, but the sums of squares are 

lower, indicating a better overall fit of the model. Once again the 

equation to be preferred allows 6 to depend on source location. The
A

values of 6 are higher: about 0.77 in the north and 0.69 in the 

Mediterranean. Introduction of an extra element - rainfall at the 

receptor - makes wet exposure more nearly random than exposure in all
A a

conditions, hence the slightly higher values of 6 . The values of 6 

again imply that trajectories are more highly correlated for 1976 

and Mediterranean sources.

The residual plots for the regressions display an excellent 

fit, except for an outlier in the wet exposure probabilities. It 

represents wet exposure at the receptor 800 kilometres south-east of 

Ispra due to releases of duration one week. Its probability is too 

high to be properly fitted by the model, and has been discarded.

Estimates of exposure probabilities at remote receptors are of 

little use if there is no idea - in the form of confidence intervals 

or the like - of their likely variability. Such intervals are easily 

obtained - as outlined above - for three-hour releases, but are 

harder to find for longer releases. Suppose that a predicted 

probability of exposure at some receptor due to a three-hour release
A A A

is P 3 . Given P 3 and 6 as fixed, the estimated probability of
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exposure to wet deposition on release duration.
Figure 2.11 : Nesting structure for dependence of probabilities of

TIME

Model Parameter Estimate s.e.

Time 5 0.746 0.0071

Time. Med ^Uniform 0.771 0.0073

® Mediterranean 0.695 0.0099

Table 2.4 : Parameter estimates for dependence of probabilities of 
exposure in wet conditions on release duration.
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exposure due to a t-hour release is
A

= l-exp{ -P3(t/3) }.

If there are periods of length t hours in a year, and if exposures
A

in each of them are independent, then the variance of P is the usual 

binomial formula P ^ C l - P ^ ) / ^ ,  with P the true t-hour exposure
A

probability. However this does not allow for the variability of P 3 .

A  set of approximate confidence intervals whi c h  allow for this is 

found by recalling that for any random variable Z,

Var(?t ) = Ez [ V a r ( P t | Z=z) ] +  V a r J  E ( P fc | Z=z) ].

A A
Now log ( P 3 ) +  61og(t/3) is roughly Normal with m ean p' and variance

A
about x2 , say, since the variance of 6 is very small compared with

A
that of log(P 3 ). Suppose that Z has the standard Normal 

distribution, in which case

A
P = 1 - exp{ -exp{ p'+xZ } } = g(p'+xZ),

say. Then

A qQ
E [ Var(P | Z=z) ] = ( n / 2 t0 - 1 / exp( -z 2 /2 )g(p'+xz)(l-g(p'+xz))dz,

L X  -oO

and moreover

A OO
Var [ E(P | Z=z) ] = (/2 tt)“ 1/ exp( -z2 /2 -2exp{u*+Tz} )dz

L t - oO

+  { (/2 it)- 1/ exp( - z 2/2 -exp{p'+Tz} )dz}2 ;
-  00

thus if

J (y*,T) = (/2ir)“ ^/ exp( -z2 /2 - k e x p { p ’+Tz} )dz,
-o&

A

the unconditional variance of P_ ist

Var( Pt ) = { J x C u 1,!) - J 2( p ',t ) }/nt +  J 2 ( m ’,t ) - J 1( p ,,x)2 .. 2.4.1.

The idea now is to use approximate Normal confidence intervals for 

the true value of P - to say that an approximate (l-2cx)xl00%
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A A
confidence interval for the true value of P is P ± z /Var(P ),t t a t
where $(z )=<*, and a<0.5. a

A  good approximation to the integral J^( p ',t ) is needed. This 

can be found using a saddlepoint expansion: if

K  = (/2tr)” 1/ exp( -h{z} ) dz,
-tA

then if z* is such that h*(z*)=0 and some regularity conditions hold,

K  = exp( -h{z*} ) / / h f '{z*}.

In this case h(z) = z2 /2 +  kexpCp'+xz), so after some differentiation 

and substitution it turns out that

J^(u*,x) =* exp{ - v * 2 - v * / t  }//( 1+xv* ) .... 2.4.2

where v is the unique solution of the equation

log{v} = u f +  log{kx} - xv .... 2.4.3

Note that v is positive and always exists if x>0; v is easily found 

graphically or by a simple bisection search on a programmable pocket 

calculator. It generally lies close to zero for the range of values 

of p* and x of interest here. Approximate intervals based on these 

equations are within ±0.001 of those based on more sophisticated 

*exact* calculations, which are not reported here, so these 

approximate intervals are quite adequate to the job for which they

are intended.
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2.5 A  taxonomy of windroses

Statistical analysis of the exposure probabilities suggests 

different types of puff trajectory behaviour depending broadly on 

whether or not the source is in the Mediterranean basin. Here 

geostrophic windrose data needed to apply the model equations to 

releases from sources in Western Europe are displayed and discussed. 

The emphasis is on classification of the windroses for the present 

purpose rather than on wholly meteorological issues, although Figure 

2.12 is of interest in its own right. This section is based partly 

on Man n i n g ( 1 9 8 4 ) , who extracted the windroses from the MESOS database 

and interpreted them.

Figure 2.12 shows for a 7x13 grid over Europe the proportion of 

winds of speed 5 m/s or more compared with all windspeeds, directed 

into 30° sectors, for winds in all conditions and winds in wet 

conditions. The grid elements are 2° latitude by 4° longitude. The 

map area and grid elements are displayed in Figure 2.13, which also 

shows ground over 3000* - about 1 km - high. The windrose for each 

element is an average of those at sixteen points spacely evenly 

within the element, deduced from pressure fields found by polynomial 

interpolation between appropriately adjusted measurements at surface 

stations and weather ships throughout the year 1976. The original 

observations are fpresent weather* data recorded every three hours; 

conditions are deemed *wet' at a point on the grid element if 

precipitation is observed there or nearby.

Note that the windroses are not probability density functions. 

The value corresponding to 0° on any one of them is an estimate of 

the annual average proportion of geostrophic winds of strength 5 m/s 

or more in wet and in all conditions directed into a sector of arc 

30° centred on 0. In the notation of Section 2.3, they are roughly
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Figure 2.13 Map area and grid elements for windrose classification. 
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*< 7 /p(u)du

and

* * n f p (u)du, 
e-*l J w

where n^irx 15/360. It is assumed that variation in p(0) over arcs of 

30° or less is irrelevant to the purpose at hand.

The windroses in all conditions have been classified twice. 

Figure 2.14 shows a naive classification of them into roughly uniform 

(0) or Mediterranean (M) types; whereas Figure 2.15 shows a more 

detailed classification taking into account the qualifications below.

Figure 2.12 shows a few almost truly uniform windroses: at 

(16E,61N) behind the Scandinavian mountains; over the Spanish 

peninsular at (8W,41N), (8W,39N), and (4W,39N); and at (4E,49N) and 

(8E,49N).

Windroses over Britain and the North Sea show the expected 

slight maximum for westerly winds, but are grouped with the uniform 

windroses. The same applies to those just south of the Norwegian 

mountains, which have a secondary maximum for easterly winds. 

Windroses to the west of these mountains shows few winds from the 

east and just south of east. Of the five affected - (0,61N), 

(4E,61N), (0,59N), (4E,59N), and (8E,61N) - the first four lie over 

the North Sea, but the fifth - in Norway - though tentatively classed 

as uniform, may need separate consideration if the regression 

equations are to be used for sites in that area.

Three windroses for the area towards the north of the eastern 

boundary of the map - (16E,53N), (16E,55N), and (16E,57N) - also have 

winds mainly from one direction. They have been classified as 

uniform but may need separate treatment. The two more northerly ones 

lie mostly over the Baltic Sea and the last lies over Poland.

The windroses for the north of Europe may be contrasted with 

those in the Mediterranean area, the Alps, the Pyrenees, and Southern
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IO°W 2°W 6°E 14° E

I8°E
Key to Symbols

0 Uniform 
M  Mediterranean
+ See more detailed classification

Figure 2.14 : A simple classification of geostrophic winds of speed 5 m/s
or more in all conditions.
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T T SI 

T S2 S2 

SI S2 S2 

SI S2 S2 

S2 S2 S2 (PI) 

S2 S2 S2 S2 

S2 0 0 (PI) 

S2 PI PI PI 

PI PI PI 

PI PI PI 

PI PI PI PI 

SI SI SI S2 

PI/T PI/T 

Key to Symbols 

o Uniform 

S1 Roughly sinusoidal with single peak 

S2 Roughly sinusoidal with double peak 

P1 Single sharp peak 

P2 Two sharp peaks 

T Transitional 

Figure 2.15 A detailed classification of geostrophic winds of speed 5 mls 

or more in all conditions. 
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France, which tend to be strongly dominated by winds from a single 

direction - which however varies in different parts of the region.

All grouped together as one category, they are dominated by 

cyclogenesis in the lee of the Alps or a local climatology due to 

a moist basin of w a r m  water surrounded almost entirely by 

mountain barriers. The two grid elements over southern Spain and 

Portugal - (8W,37N) and (4W,37N) - do not fall into this class as 

they show strong contributions from both westerly and easterly winds 

in the Straits of Gibralter. However they are treated as 

Mediterranean in the simple classification in Figure 2.14.

Figure 2.16 shows a naive classification of wet geostrophic 

windroses into northerly (0) and Mediterranean (M); and Figure 2.17 

shows a more detailed classification.

The pattern the wet windroses take over north-west Europe is 

consonant with the passage of wet air-masses from the Atlantic: the 

windroses generally have a peak corresponding to the arrival of moist 

air from the west and south-west, and a dip for easterly winds. This 

is the general pattern - albeit with local variations - north of a 

line roughly joining Galicia at (8W,43N) to the north of the Alpine 

barrier at (8E,49N) and then to (16E,49N), for areas in the body of 

Europe unaffected by the Scandinavian mountains. It is more obvious 

over land than over the sea, for two possible reasons: ’present 

weather' data is scarcer over the sea, so the database is less 

accurate; and - more plausibly - an air mass from any direction 

arriving at any point out to sea is moist, but this is not the case 

for points over land. Over continental Europe, for example close to 

the Alps at (8E,49N), (8E,51N), and (4E,51N), wet winds tend to be 

associated with south-south-easterly as well as south-westerly winds, 

due to thunderstorms in anticyclonic conditions through the hot

summer of 1976
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0 Uniform 
M Mediterranean

Figure 2.16 : A  simple classification of geostrophic winds of speed 5 m/s
or more in wet conditions.
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IO°W

Key to Symbols

0 Uniform
51 Roughly sinusoidal with single peak
52 Roughly sinusoidal with double peak 
P1 Single sharp peak
P2 Two.sharp peaks 
T Transitional

Figure 2.17 : A detailed classification of geostrophic winds of speed 5 m/s
or more in wet conditions.
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The grid elements surrounding the Scandinavian mountains have 

wet windroses dominated by moist air masses from the south-west and 

from south-east over the Baltic Sea. This explains the roses for the 

elements (16E,61N), (16E,59N) and (16E,57N), particularly since air 

arriving from the west is there relatively dryer due to the 

orographic effects of the Norwegian mountains.

The wet windroses over northern Europe, and especially to the 

north-west, are in general exaggerated and skewed versions of the 

roses in all conditions; the windroses in all and in wet conditions 

for grid elements over the Mediterranean and Italy tend to coincide 

closely with one another. This suggests that winds in dry conditions 

in much of this region are light and uniformly distributed. However 

the windroses do not follow each other so closely over the bulk of 

the Spanish peninsular, although that at (8W,37N) near the Straits of 

Gibraltar is an exception; nor near Marseille - (4E,43N) - where the 

windrose is affected by both the Alps and the Pyrenees; nor over the 

Alps themselves; nor over Austria and Yugoslavia at (16E,45N) and 

(16E,47N), which are transitional between typical northerly and 

Mediterranean w i n d r o s e s .

If it is intended to use the model described in Sections 2.3 and

2.4 to predict exposure probabilities for releases from a source in 

the map area in Figure 2.13, then the classifications of the grid 

element in which the source lies should be found from Figures 2.14 

and 2.16. The equations appropriate to the types of the windroses in 

the grid element should then be used to predict probabilities of 

exposures in wet and in all conditions. For exposures to time- 

integrated air concentrations or dry deposition, for example, the 

equation for Heysham, Karlsruhe, and Mol should be used if the grid 

element is type 0, but the equation for Cadarache and Ispra should be 

used if the element is type M. A  similar procedure should be
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followed for exposures to wet deposition. It may be useful to 

compare the results of both equations in cases where the more 

detailed classification indicates some uncertainty about source 

windrose type. It seems plausible that if a source is not 

exclusively dominated by either a northerly or a Mediterranean 

climatology, then dispersion characteristics of releases initiated 

there will tend to lead to probabilities which lie between the values 

predicted by the different equations.

2.6 A  verification study

The accuracy of the model described above m a y  be assessed by 

comparing its predictions with MESOS probabilities for releases from 

Hannover and Stuttgart computed using the 1973 database. These MESOS 

probabilities were not used to fit the statistical equations, so to 

an extent such comparison provides independent verification of them. 

The study is incomplete insofar as data for releases from sources in 

the Mediterranean basin - apart from Cadarache and Ispra - have not 

been obtained using MESOS. However there seem to be no a priori 

reasons why qualitiatively different conclusions would be reached 

were such data available for comparison to be made.

The comparison is made for exposures in all conditions in Table 

2.5. Agreement is generally very good for releases from both 

Hannover and Stuttgart. The maximum error for releases of duration 

three hours is about 6%, and for those of duration one week is about 

25%; but most sets of probabilities compare much more favourably. 

Systematic errors arise because the simple predictive equations used 

take no account of trajectory persistence in certain directions and 

of topographic effects. Thus exposure probabilities for three-hour 

releases from Hannover are underpredicted by 2% or so to the east and 

are overpredicted by a similar amount to the north and west. There
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Table 2.5

Release duration (hours)
Receptor___________ 3__________6

1 100 km N 10.6 15.1- 12.8 17.9
2 200'km N 7.4 10.011.5 16.2
3 400 km N 5.3 8.0

9.2 13.2
4 800 km N 4.1 5.95.9 8.7
5 100 km E 16.5 23.4

15.2 20.8
6 200 km E 15.5 22.013.6 18.9
7 400 km E 12.3 18.4

10.9 15.5
8 600 km E 11.2 16.28.8 12.6
9 100 km S 11.7 16.5

10.8 15.3
10 200 km S 10.6 14.99.7 13.8
11 400 km s 9.0 12.57.8 11.3
12 800 km s 2.9 4.4

5.0 7.4
13 100 km w 11.6 16.213.7 19.0
14 200 km w 10.6 14.912.3 17.2
15 400 km v 9.4 11.89.9 14.1
16 800 km u 6.4 8.8

6.4 9.3

12 24 72 168
21.8 31.7 56.5 85.226.2 37.3 60.3 79.0
16.1 23.8 46.2 72.823.8 34.2 56.2 75.3
12.1 18.2 38.1 62.4
19.6 28.5 48.5 67.5
9.1 15.1 27.0 41.613.1 19.4 34.8 51.5
34.4 48.3 76.1 94.730.2 42.5 66.5 84.3
31.7 44.7 74.0 91.627.5 39.1 62.5 80.9
27.3 40.8 69.7 89.222.8 32.8 54.4 73.6
25.3 38.0 62.9 83.218.7 27.3 46.8 65.6
24.2 32.5 56.0 77.322.5 32.5 54.0 73.1
21.0 27.3 49.2 70.820.4 29.7 50.1 69.2
17.0 23.4 47.1 73.316.8 24.6 42.8 61.1
7.4 11.9 27.4 51.511.2 16.6 30.2 45.6
23.2 31.7 54.3 75.827.7 39.3 62.8 31.2
21.6 29.7 48.3 68.4
25.2 36.1 58.7 * 77.6
17.0 23.8 44.1 53.4
20.8 30.2 50.9 69.9
12.1 17.0 32.5 55.5
14.0 20.6 36.7 53.9

(a) : Comparison of MESOS and statistically predicted Z-probability of exposure ac

16 receptor points for several release durations : Hannover dry deposition.

MESOS

statistical prediction
1-probability
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Release duration (hours)
Receptor 3__________6

1 100 tan NE 15.9 21.7
- 12.5 17.5

2 200 tanNE 14.3 21.111.2 15.8
3 400 tanNE 11.3 15.49.0 12.9
4 800 tanNE 7.7 10.35.8 8.5
5 100 tanSE 15.0 21.110.8 15.3
6 200 tanSE 11.7 16.69.7 13.8
7 400 tanSE 5.1 8.17.8 11.3
8 600 tanSE 1.6 3.06.2 9.1
9 100 tanSW 14.5 19.3

13.1 18.3
10 200 tanSW 14.8 19.811.8 16.6
11 400 tanSW 14.4 19.4

9.5 13.5
12 600 tanSW 13.7 18.87.6 11.0
13 100 tanNW 11.4 16.113.1 18.3
14 200 tanNW 9.6 14.0

11.8 16.6
15 400 tanNW 7.1 10.09.5 13.5
16 800 tanNW 4.2 6.26.1 8.9

12 24 72 168
30.9 40.9 67.4 92.625.6 36.5 59.3 78.1
27.1 38.0 58.8 82.023.2 33.4 55.3 74.4
21.2 31.3 50.7 74.819.1 27.8 47.6 66.5
14.5 21.4 38.2 58.012.8 19.0 34.0 50.5
28.3 42.3 69.7 88.222.5 32.5 54.0 73.1
23.8 34.0 61.0 82.720.4 29.7 50.1 69.2
12.5 18.2 35.2 57.016.8 24.6 42.8 61.1
5.0 8.7 21.1 43.613.7 20.3 36.1 53.2
27.7 38.0 67.0 86.226.7 38.0 61.2 79.8
27.7 39.6 67.9 89.724.3 34.8 57.1 76.2
27.1 37.2 68.3 89.720.0 29.1 49.3 68.4
24.0 33.3 60.1 86.716.4 24.1 42.1 60.3
23.2 33.6 58.0 79.326.7 38.0 61.2 79.8
20.4 29.7 54.1 78.824.3 34.8 57.1 76.2
13.9 20.2 38.2 62.4
20.0 29.1 49.3 68.4
9.3 14.3 27.9 45.113.4 19.9 35.5 52.3

Table 2.5 (b) : Comparison of MESOS and statistically predicted ^-probability of exposure at 

16 receptor points for several release durations : Stuttgart dry deposition.
MESOS ")

statistical prediction
%-probability
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is quite close agreement between MESOS and statistically predicted 

probabilities to the south of Hannover, except at 800 km where the 

statistical model cannot allow for diversion of trajectories around 

the A l p s •

Exposure probabilities for three-hour releases from Stuttgart 

show a similar pattern. Probabilities to the north-west are over

predicted and those to the north-east are underpredicted, by about 2% 

or so. However the Alps play a more prominent role in determining 

the probabilities of exposure to the south-east and south-west of 

Stuttgart. Three-hour exposure probabilities to the south-west are 

underpredicted by an amount increasing from 1% to 6% as source- 

receptor distance increases and trajectories are increasingly 

diverted around the Alps. Corresponding probabilities to the south

east are underpredicted north of the Austrian Tyrol and overpredicted 

south of it, because of the blocking and diverting effect the Alps 

and Tyrol have on puff trajectories. Exposure probabilities for 

releases of longer duration generally agree well even in cases where 

there are likely to be big topographic blocking effects.

MESOS and statistically predicted exposure probabilities for wet 

deposition due to releases from Hannover and Stuttgart are compared 

in Table 2.6.

Effects such as orographic rainfall lead to a more complicated 

pattern of MESOS wet exposure probabilities, which do not necessarily 

fall systematically with distance. This contrasts with the behaviour 

of probabilities of exposure in all conditions - except where 

topographic diversion of trajectories is particularly strong, as it 

is south-west of Stuttgart, for example.

North and west of Hannover, wet exposure probabilities for all 

release durations tend to be overpredicted by the statistical model - 

by 1-2% for releases of duration three hours, and by 10-15% for
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Release duration (hours)
Receptor___________3__________6

1 100 km N 2.7 4.2■ 4.3 7.0
2 200 IdaN 1.9 3.2

4.0 6.6
3 400 km N 1.9 3.3

3.5 5.8
4 800 km N 2.0 3.12.7 4.5
5 100 km E 4.6 7.54.6 7.6
6 200 km E 5.1 8.34.3 7.1
7 400 km E 3.5 6.13.8 6.3
S 600 km E 3.3 5.13.4 5.6
9 100 km S 2.7 4.2

2.1 3.5
10 200 km s 2.3 3.82.0 3.3
11 400 km S 2.7 4.4

1.7 2.9
12 800 km s 0.8 1.51.3 2.3
13 100 km w 1.8 3.02.9 4.8
14 200 km w 1.8 2.52.7 4.5
15 400 km w 1.9 2.92.4 3.9
16 800 km w 1.9 2.7

1.8 3.1

12 24 72 168
7.0 12.7 27.8 54.011.6 19.0 38.9 61.2
5.8 10.7 24.4 45.611.0 18.0 37.0 58.8
5.2 9.5 22.7 42.19.7 16.0 33.4 54.2
5.6 9.5 21.0 36.27.6 12.6 27.0 45.4
13.3 23.4 53.0 80.712.6 20.5 41.4 64.2
14.1 23.4 51.8 81.211.8 19.3 39.4 61.9
10.9 19.8 45.8 80.710.5 17.2 35.7 57.2
8.5 14.3 32.5 55.09.3 15.3 32.2 52.6
7.0 12.7 30.4 55.55.9 9.8 21.4 37.1
6.8 12.3 25.3 44.65.5 9.3 20.3 35.3
7.0 11.9 26.5 48.14.9 8.2 18.1 31.8
2.8 4.4 10.7 21.83.8 6.4 14.3 25.7
5.2 8.7 21.4 36.78.0 13.2 28.2 47.0
4.6 7.6 . 15.0 27.37.5 12.5 26.' ‘‘i.?
5.2 8.4 17.1 27.36.6 11.0 23.9 40.3
4.4 6.4 14.2 23.85.2 8.7 19.1 33.4

Table 2.6 (a) : Comparison of MESOS and statistically predicted Z-probabllity of exposure at

16 receptor points for several release durations : Hannover wet deposition.

MESOS

statistical prediction
,-probability
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Receptor 3 Release duration (hours)
6 12 24 72 168

1 100 ka NE 4.6 7.0 11.1 16.7 35.2 62.4- 4.0 6.6 11.1 18.1 37.3 59.2
2 200 lea NE 3.1 4.9 8.2 14.3 29.7 49.13.8 6.3 10.4 17.1 35.5 56.9
3 400 ka NE 3.1 4.6 7.4 12.7 27.5 47.63.3 5.5 9.2 15.2 32.0 52.4
4 800 ka NE 1.6 2.6 4.6 8.0 18.1 27.8

2.6 4.3 7.2 12.0 25.8 43.7
5 100 ka SE 6.8 10.7 16.3 25.7 54.1 82.73.3 5.5 9.2 15.1 31.8 52.1
6 200 ka SE 5.0 8.0 13.3 21.0 44.7 72.83.1 5.2 8.6 14.3 30.2 49.9
7 400 ka SE 1.9 3.1 5.4 8.7 19.4 35.22.7 4.6 7.6 12.7 27.1 45.5
8 600 ka SE 0.5 0.8 1.4 2.8 7.3 17.42.4 4.0 6.8 11.2 24.3 41.4
9 100 ka SW 3.9 5.9 10.1 17.0 37.8 64.92.5 4.2 7.1 11.9 25.5' 43.2
10 200 ka SW 4.0 6.1 9.9 16.3 33.5 60.02.4 4.0 6.7 11.2 24.1 41.2
11 400 ka SW 2.8 4.3 7.4 12.3 28.4 51.5

2.1 3.5 5.9 9.9 21.6 37.3
12 600 ka SW 2.8 4.0 5.8 9.5 20.2 37.71.9 3.1 5.2 8.3 19.3 33.7
12 100 km NW 1.9 3.3 5.8 9.5 21.9 39.73.5 5.8 9.6 15.9 33.2 53.9
14 200 ka NW 1.8 3.0 5.2 9.5 23.3 41.63.3 5.4 9.1 15.0 31.5 51.7
15 400 ka NW 1.7 3.1 5.2 8.0 19.8 36.72.9 4.8 8.0 13.3 28.3 47.3
16 800 ka NW 1.6 2.4 3.8 6.4 13.4 21.3

2.2 3.7 6.3 10.5 22.8 39.1

Table 2.6 (b) : Comparison of MESOS and statistically predicted ^-probability of exposure at

16 receptor points for several release durations : Stuttgart wet deposition.

MESOS

statistical prediction
i-probability
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releases of duration one week. The amount of overprediction depends 

on the exact siting of the receptor: for short releases exposure 

probabilities fall little and may rise with distance from the source. 

This is consistent w ith the observation in Section 2.3 that puffs 

tend to spread faster in wet conditions, due to bigger turbulent 

effects of fronts and depressions - especially for releases from 

northerly sources. Note also that even if receptors which lie at 

different distances from the source have the same three-hour exposure 

probability, their exposure probabilities for releases of longer 

duration may differ: this is plain, for example, at the receptors 200 

k m  and 400 km north; and 100 km and 200 km west; and 400 k m  and 800 

k m  west of Hannover. The first and third of these pairs of exposure 

probabilities show different rates of increase with release duration 

- though their three-hour exposure probabilities are the same - due 

to greater clustering of wet exposures to the west of the source, 

where dispersion episodes leading to contamination in wet conditions 

are as rare as in the north, but more prolonged.

South and east of Hannover, MESOS and statistically predicted 

three-hour exposure probabilities are comparable, but within 400 km 

of the source exposure probabilities for releases of longer duration 

tend to be underpredicted by up to 20-25% at duration one w e e k  

because the statistical model does not allow for the weaker effects 

of clustering in these directions.

Broadly similar comments apply to probabilities for releases 

from Stuttgart, which again are overpredicted by 1-2% to the north

west. Agreement is good to the north-east. Once again the diverting 

effect on trajectories of the Alps and Austrian Tyrol is manifest, 

particularly 600 km south-east of the source. Probabilities south of 

Stuttgart differ by 2-3% for releases of duration three hours, and by 

up to 30% - but usually 10-20% - for releases of duration one week.
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Hannover Stuttgart

release duration all wet all wet

3 hours 4 1 4 1

6 hours 3 0 3 1

12 hours 2 0 2 1

1 day 1 0 1 1

3 days 0 0 1 1

1 w eek 0 0 0 1

Table 2.7: Numbers out of 16 receptors at which MESOS exposure 
probabilities lie outside their 95% confidence 

intervals

Table 2.7 shows for the sources Hannover and Stuttgart the numbers 

out of their 16 receptors at which the MESOS exposure probabilities 

lie outside their 95% confidence intervals. The intervals for wet 

exposure probabilities are plainly very good, but those for exposures 

in all conditions underestimate for short release durations the 

systematic effect of trajectory blocking by mountains. For longer 

release duration the intervals are good despite blocking effects.

The comparisons in this section show that little information is 

lost by using the statistical model to predict exposure 

probabilities, although at receptors which lie in regions of unusual 

trajectory divergence due to the effects of mountain barriers there 

may be systematic effects on probabilities which cannot be taken into 

account in such a general and simple set of predictive equations. 

Confidence intervals for the MESOS probabilities for releases of 

duration up to about twelve hours based on their statistical 

estimates are accurate except where blocking effects are great, and 

those for longer release durations are adequate even if blocking is

severe
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3. THE DISTRIBUTION OF LEVELS OF EXPOSURE

3.1 Introduction, and exploratory analysis

This chapter of the thesis deals with the analysis of the levels 

of contamination experienced when a receptor is exposed. Its aims 

are: to summarize the exposures in the MESOS database in a 

parsimonious and mathematically tractable form which does not 

drastically misrepresent the data; then to generalise this by finding 

explicit ways to represent the effects of changes in the nuclide 

parameters, source-receptor distance, and release duration on the 

exposure distributions; and finally to check that the eventual model 

is adequate for the job for which it is intended. There are roughly 

300,000 positive exposures in the database being considered here: six 

sources each with sixteen receptors each experiencing an average 200 

positive exposures to each of twelve combinations of nuclide and 

exposure mode. The most obvious - and possibly the only - way to 

summarize the data is to fit a suitable parametric distribution to 

the exposure distributions at each receptor, and then to explore how 

the parameters of the fitted distributions themselves vary. It is 

over-optimistic to hope that a two-parameter distribution - or one 

with three or more parameters - will give a uniformly good 

representation of exposures which depend on a multitude of varying 

factors. However a single family of distributions has to be used so 

that the work is coherent: the effects on exposure levels of altering 

nuclide parameters, release duration, and source-receptor distance 

must be capable of explicit representation.

Typically there are at least three steps to carry out w h e n  it 

has been decided to fit probability distributions on an empirical 

basis to large datasets of any provenance. These are:

(a) exploration of the data and its properties and a comparison
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of different distributions to assess their suitability;

(b) choice and fitting of a suitable distribution;

(c) confirmation that the chosen distribution is indeed 

appropriate, and in particular that such departures as may occur will 

not materially alter any conclusions resulting f rom the a n a l y s i s .

The division is somewhat arbitrary since the results of (c) may 

demand that work begins again at (a) or that (b) be reconsidered. 

Often the last two phases may be carried out together. However there 

is a clear conceptual distinction between the open-endedness of (a) 

and the narrower outlook of (c). This section concentrates on (a) 

and (b), and the next deals with (c).

Many parametric probability distributions have been proposed for 

fitting to air pollution data, partly because physical considerations 

do not seem to favour any particular distribution uniquely, and 

partly because of the multitude of different types of data and 

reasons for the fitting. Since such data are by their nature the 

result of many complex phenomena, it does not seem reasonable to 

expect that any particular distribution will describe them all 

uniformly better than all its competitors.

There is a large body of literature dealing with the frequency

distributions of air pollutants. Georgopoulos and Seinfeld(1982)

give a critical review which concentrates on pollution from areal

sources, discuss the fitting of several distributions to such data,

and give examples of their use. The same eclectic approach is taken

by Holland and F i tz-Simons(1982), who describe a computer program for

fitting and assessing the fit of the Normal and three-parameter

log-Normal, the three-parameter gamma and Weibull, and the Beta and

Johnson S distributions. Poll a c k ( 1975) discusses concentration B
frequency distributions for point sources, and derives the log-Normal 

or log-chi-squared distributions for them - depending on the
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assumptions made - by a mixture of theoretical and empirical 

arguments. However these arguments apply to time-averaged rather 

than time-integrated air concentrations. The distinction is subtle: 

a three-hourly time-averaged concentration is the average 

concentration observed at a receptor over a three-hour period - 

perhaps due to the passage of a number of different puffs - whereas a 

three-hourly time-integrated concentration is that due to a single 

puff released over a period of three hours, integrated over the 

period the puff takes to cross the receptor, whatever its length.

Data for continuous releases, whether from point or area sources, are 

almost by definition time-averaged, since the time at which the 

pollutant was released cannot usually be determined from its 

concentration profile at the receptor.

In the absence of either a direct link between these different 

types of data or compelling physical arguments in favour of a 

particular distribution for time-integrated air concentrations, an 

empirical approach to the MESOS data is adopted.

A  plot which distinguishes distributions of different types, 

based on comparison of their lower-order moments, is described by Cox 

and 0akes(1984). Let f(y) be the probability density of a positive 

variable. Its variance and skewness are

V 2  = /.(y-hi)2 f(y)dy

and

U3 3  J#( y - y i ) 3 f(y )d y

respectively, where Ui=/yf(y)dy is the mean of the distribution.

Then the coefficient of variation y and standardized skewness Y 3 of 

the distribution are / ^ / ^ l  and • From dimensional

considerations they do not depend on the scale of the distribution, 

but only its shape, so that comparison of them for different
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distributions provides an idea of their relative shapes: y summarises 

the spread of the distribution relative to its mean, and Y 3 its 

degree of asymmetry. For example Y and Y 3 are respectively: 1 and 2 

for the exponential distribution; l//a and 2 //a for the two-parameter 

gamma distribution with shape parameter a; and y =A w - 1) and 

Y3=(w+ 2)/(w - 1) for the log-Normal distribution with w=exp(a2 ) where a 

is the shape parameter of the distribution.

Figure 3.1 shows y3 plotted against Y for a few distributions. 

The Weibull and gamma lines intersect at the exponential 

distribution. The general qualitative picture to emerge is that the 

log-logistic distribution is most skewed of all for a given value of 

Y, and that the gamma and Weibull distributions are less skewed 

depending on the value of y « Only the Weibull is capable of negative 

s k e w n e s s .

The idea now is that the sample values

✓{(n-l)-l£(Y-?)2 }
c = - - - - - - - - - - - - =— 2- - - - - - - - - -Y

and
n -1I(Y 1-Y)3

C3 " { ( n - l ) - 1^ - ? ) 2}^

of Y and Y 3 be found - here Y  is the mean of the simple random 

sample Yj,...,Y - and plotted on such a graph.

Figure 3.2(a) shows the plot for the sixteen receptors for Mol 

for which dry deposition exposures due to three-hourly releases of 

II 3 l(g) are available. Most of the points cluster closely together, 

but the four closest to Mol have higher skewnesses due to a number of 

individually higher observations at the r e c e p t o r s . The high values 

do not seem aberrant in this case. The equivalent plot for Ispra 

I l 3 l(p) wet deposition is displayed in Figure 3.2(b). Here random 

scatter is larger because there are fewer observations in each
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Figure 3.1 Comparison of moments for different distributions.
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Figure 3.2 : Standardized moment plots for exposure distributions due to three-hour releases.
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dataset. Both these graphs and the others in Figure 3.2 show that 

the Weibull or possibly the gamma distributions offer the most 

promising fit to the data.

Three points should be noted: the sample values of y and y 3 will 

usually provide biased estimates of their true values; they m a y  have 

big variances; and sample moments are rather sensitive to outlying 

observations - although this may prove useful for an exploratory 

procedure since it can alert the user to oddities of the datasets. 

This means that such plots should be interpreted with caution, 

especially if there are only a few sets of data or if they themselves 

are small. However they provide a good map for the exploration of 

big databases.

Figure 3.3, taken from W r i g l e y ( 1 9 8 2 ) , shows histograms of 

exposure data for both three-hourly and daily unit releases of 

pollutants from several sources. They have a variety of shapes, but 

many have an extended lower tail, which suggests that the log-Normal 

and log-logistic distributions are unlikely to fit them well. The 

Normal distribution is a non-starter. The effect of decay on the 

exposures is evident from a comparison of Figures 3.3(a) and 3.3(b): 

the lower X e ^ s  exposures are smeared to the left by up to three 

orders of magnitude; and because of the separation between exposures 

from direct and indirect trajectories the histograms tend to be 

bimodal, especially close to the source. The histograms for the 

daily releases are very similar, which suggests that a distribution 

suitable for exposures from short-term releases is likely to fit 

those from longer ones.

Wrigley(1982) found that the Weibull distribution 

P( Y<y ) = 1 - e x p { -(y/y)a }

( y > 0 ; a, y> 0  )
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releases of X e 135 from Mol during 1973.
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was appropriate for MESOS exposure distributions, particularly for 

slowly depleting nuclides such as K r 8 5 , and that its fit generally 

improved with distance from the source. Figure 3.4 shows ordered 

exposures plotted on a Weibull scale. Those for I i 3 i(p) and K r 85 are 

not too far from linearity, but that for Xie^s 100 kilometres north 

of Mol strikingly shows the bimodality of the exposure distribution. 

Upper outliers are obvious in Figure 3.4(b). The largest two arise 

from the same dispersion incident on 26t*1 October 1973. High 

exposures are considered from a statistical viewpoint in Chapter 8.

As a result of this exploratory work, Weibull distributions were 

fitted by maximum likelihood to a large number of sets of MESOS 

exposure data, using the GLIM algorithm described by Aitken and 

Clayton(1980). Some of the parameter estimates are shown in Table 

3.1. The estimated values of a are almost all less than one, 

indicating that the exposure distributions are more spread out than 

the exponential. This is consistent with Figure 3.2. Comparison of 

the estimates for the K r 8 5 results for Mol in both years shows that 

the shape parameters are generally quite close, but that the scale 

parameters u tend to be higher in 1976 by a factor of up to 1.4.

The values of a for the depleting nuclides are lower than for K r 8 5 

because the distributions are more extended. The shape parameter 

estimates for the X e 1 8 5 distributions are very low indeed and reflect 

the marked effect of its short half-life on exposures.
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Probability (%) that 
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Figure 3.4 : Cumulative frequency distributions of nuclide exposures for unit releases over three hours from Mol during
pro(b) 800 km North of Mol.
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[ol 1973 Krs 5 a*r 

a yxlO3

Mol 1976 Krss air 

a tixlO3

Mol 1976 X e 135 

<£ yxlO1*

.63 2.99 .66 3.67 .35 7.16

.84 1.38 .78 1.81 .44 1.76

.89 .672 .78 1.02 .45 .673

.80 .420 .83 .579 .54 .228

.71 3.45 .76 4.99 .45 15.0

.93 1.15 .85 1.48 .51 2.38

.95 .691 .86 1.01 .54 .910

.92 .506 .92 .506 .61 .284

.59 2.22 .67 4.11 .38 7.45

.96 .966 .82 1.50 .44 1.56

1.06 .646 .94 .964 .51 .461

1.18 .410 1.05 .627 .57 .154

.62 3.76 .65 3.77 .34 6.83

.85 1.39 .81 1.61 .42 1.31

.91 1.08 .82 .983 .46 .469

1.33 .600 1.14 .652 .56 .347

Estimated Weibull parameters for MESOS exposure distributions 

Units for m are C i s m ~ 3xl 0 ” 6
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3.2 Confirmatory analysis

The process of elim i n a t i o n  w h i c h  a r r ived at the Weibull 

distrib u t i o n  for MESOS exposures was d e s c ribed in the previous 

section. Here its a d equacy as a summary of M E S O S  three-hour exposure 

distributions is c a r e fully checked. Six datasets of exposures at 

sixteen receptors e a c h  are used in order to cover a wide v a r i e t y  of 

nuclides and sources: air c o n t amination d ata for releases of K r g 5 

f r o m  Heysham, X e i 3 3  f r o m  Karlsruhe, X e 1 3 5  f r o m  Cadarache, and ^ i 3 i(p) 

from Mol through 1973; dry deposi t i o n  for I i 3 1 (g) released f r o m  Mol 

throughout 1976; and wet deposition for I i 3 i(p) released f r o m  Ispra. 

At each of the sixteen receptors the t wo-parameter Weibull 

d i s tribution fitting the d ata rb e s t T - the m a x i m u m  likelihood 

estimate - is compared w i t h  the exposure d i s t r i b u t i o n  itself, b o t h 

v i s u a l l y  and using a sensitive statistical test of fit.

It was stated in Chapter 1 that it is important to be sure 

that any discrepancies be t w e e n  fitted and M E S O S  distributions are not 

physi c a l l y  important, w h a t e v e r  their s tatistical size. For this 

reason the visual c o mparison of the distributions is more relevant 

here than the c a l c ulation of a statistical test, h o w ever p o werful or 

useful it ma y  be: a single number cannot contain the i n f o rmation in a 

pertinent plot. Moreover, since real observations will never be 

e x a ctly distributed according to any mat h e m a t i c a l  formula, some lack 

of fit w ill always be found in very large datasets. A  test statistic 

provides a rule of thumb rather than a strict prescript. H o w e v e r  it 

ma y  give valuable help in seeking out inadequacies of fit, then 

assessed graphically.

S t e p h e n s (1977) gives significance points of tests for the 

goodness of fit of the Gumbel distribution

H(y) - exp{ -exp( - x ( y - 0  ) }



Receptor Heysham Kr05 air Karlsruhe Xe133 air Mol 1973 
Il3l(p) air

Mol 1976 
Il3l(«) dry

Cadarache Xej35 air Ispra
1 1 31CP> wet

1 .2 1 .93* 1.48® 2.80® 4.10“ .29
2 .65 .42 .59 .69 1.80® .37
3 .83* .85* .39 1.45“ 1.65® .49
4 .35 .28 .40 1.08" .58 .69
5 .87* .92* 2.97® 2.09® 2.38° .36
6 .89* .76 2.79® .51 1.43“ .35
7 .76* 1.46® 2.51® .30 4.47® .29
8 .47 1.05® .48 .55 1.85® .49
9 .39 3.20® 1.80® 1.0 1* 1.37® .18

10 .48 1.73° .40 .48 8.87® .96*
1 1 .30 1.64® .57 .64 3.02® .26
12 .64 .73 .72 .34 3.51® .64
13 .28 .75 1.32® 1.1 0® 1.48® .44
14 2.23® .89* .30 .40 1.63® .59
15 1.33® .60 .95* .76* 2.1 0® .67
16 .49 1.1 1° 1.09° .29 .53 .55

Table 3.2: Anderson-Darling statistics for exposure data 
(a) release duration three hours 

* significance level between .05 and .01 
® significance level less than .0 1

Receptor Heysham Kr85 air Karlsruhe 
Xe133 air

Mol 1973 11 3 1(p) air Mol 1976 
ii3i(g) dry

.Cadarache Xe 1 35 air IspraIl3 1(p) wet

1 .26 .23 .64 .70 1.53® .27
2 .2 2 .24 .28 .23 .81 .54
3 .55 .92* .29 .31 1.00* .48
4 .48 .29 .61 .47 1.00* .45
5 .50 .77* 1.39® .40 1.08“ .49
6 .49 .85* 1.09® .46 .44 .23
7 .2 2 .86* 1.68® .2 2 2.1 1® .19
8 .30 .58 .45 .48 .94* .68

9 .30 .51 .59 .46 1.05® .49
10 .38 .55 .61 .37 4.81® .29 _ O
11 .50 .64 .38 .41 1.27® .29 00

12 .28 .69 .50 .39 2.00“ .48
13 .62 .47 .88* .43 .53 .56
14 .94* .48 . 2 1 .46 .97* .34
15 .66 .69 .25 .33 .81* 1.19®
16 .64 .74 .23 .97* .34 .41

Table 3.2: Anderson-Darling statistics for exposure data 
(b) release duration one day 

* significance level between .05 and .01 
° significance level less than .0 1
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Heysham 
Kr 85 air

Karlsruhe 
X e 133 air

Mol 1973 
X 131(P) air

Mol 1976 
ii3i(g) dry

Cadarache 
X e 135 air

Ispra
*13l(p) wet

.19 .27 .24 .27 .89* .52

.47 .48 .27 .39 .58 .46

.25 .96* .40 .25 .65 .25

.41 .20 .24 .26 .64 .27

.29 .21 .80* .50 .64 .35

.25 .36 .90* .28 .70 .27

.37 .09 1.13° .35 1.48° .52

.36 .29 .69 .27 .89* .61

.69 .27 .50 .19 .36 1.04°

.33 .31 .31 .63 2.17° .83*

.42 .34 .22 .36 .59 . .41

.28 .38 .64 .27 1.30° .25

.56 .17 .77* .39 .46 .56

1.04* .77* .80* .31 .87* .39

.39 .41 .23 .42 .39 .85*

.36 .37 .46 .44 .20 .28

Table 3.2: Anderson-Darling statistics for exposure data 

(c) release duration one week 

significance level between .05 and .01 

° significance level less than .01
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( ye/R ; x>0 , £e 01 )

with scale and location parameters t and £, to simple random samples, 

based on their empirical distribution functions. The tests he 

describes are all based on the fact that if the random variable Y has 

a Gumbel distribution, then H(Y) is uniformly distributed in the unit 

interval. Hence the transformed values = H(Y^) of a simple 

random sample Y^ (i*l,...,n) form a sample of size n from the unit 

uniform distribution, and a variety of tests of their uniformity can 

be constructed, although they are not directly applicable in cases
A

where the parameters t and C are unknown. However if estimates x
A

of x and C of ? are available, the 'configuration* of the sample Z -
A A

whose n elements are Z^ = t (Y^-5), ” is invariant with respect to the 

parameters 5 and x. That is, it is independent of their true values, 

and hence so are the distributions of tests based on Z for the 

'Gumbelness' of the Y^. This is essentially the same as noticing 

that the Y^ should lie close to a straight line on Gumbel plotting 

paper, and testing for this independently of its slope and intercept. 

The tests may be extended immediately to the Weibull distribution by 

using the fact that if Y  is Gumbel with parameters x and £, then 

exp(-Y) is Weibull w i t h  scale and shape parameters T and exp(-£). 

Stephens gives the significance points of a number of closely related 

tests, but the one used here is the Anderson-Darling statistic 

n
-n-n-lH (2i-l)logU(i) + (2n-2i+l)log(l-U(i)) },

where are the ordered values of the U^=exp{ -exp( -Z^ ) }, which

is equally sensitive to departures from 'Weibullness' throughout the 

range of Y.

Table 3.2 shows for the data described above the numbers of 

these statistics significant at various probability levels, for unit 

releases of duration three hours, one day, and one week. Were the
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data Weibull, roughly 5 - rather than the observed 46 - of the 96 

statistics in Table 3.2(a) would be significant at the 5% level, and 

1 - rather than 35 - at the 1% level. The fit is clearly quite poor, 

nor does it improve much with distance except at ranges of 1000 

kilometres or more. The Weibull fit to the X e i 3 5 data is worst, and 

to the wet deposition data best. A  poor fit to the X e 135 exposures 

was expected because of their bimodality.

With slight variations the same story is told by Tables 3.2(b) 

and (c). The fit improves with release duration, but 23 and 17 of 

the sets of 96 statistics in them are significant at the 5% level or 

lower. Other test statistics show a similar pattern: the Weibull 

density does not generally fit well from a statistical point of view.

These departures are more informatively displayed in Figure 

3.5, which shows the observed and fitted distributions of the data on 

a logarithmic scale. The three-hourly exposure X e 133 and I].3i(g) 

datasets in Figure 3.5(a) and (b) were chosen because their fit as 

judged by the Anderson- Darling statistics is poor, and those in 

3.5(c) and (d) because their statistics give the opposite impression. 

The first two have some common features compared with their Weibull 

approximations: the lower tail of the Weibull distribution is too 

long; from about the 10% level to the median the Weibull exposure 

levels are too high by a factor of up to about 1.5; between the 

median and the 90% level the Weibull levels are too low by a factor 

at most 1.5; and then the Weibull exposure levels are too high in the 

top 5-10% of the data. Divergence is most marked in the lower tails, 

where below the 5% probability level the ratio of observed to fitted 

levels exceeds two. The upper 70% of the exposure levels lie within 

a factor 1.5 of each other, except in the extreme upper tail where 

the Weibull is a conservative approximation. This is typical of the 

worst-fitted datasets analyzed.
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L 0 G 1 0 ( E X P O S U R E  L E V E L  I N ^ C I S / K L )

(a) X e ^ 3 5  air contamination Cadarache receptor 10, release duration 
3 hours.

L 0 G 1 0 C E X P O S U R E  L E V E L  I N ^ M C I )

(b) I l3 1 (g) dry deposition Mol 1976 receptor 1, release duration
3 hours.

Figure 3.5 : Comparison of MESOS and fitted Weibull cumulative
exposure distributions.
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L O G I C ! E X P O S U R E  L E V E L  I N j u C I S / K L )

(c) K r Q _ air contamination Heysham receptor 8 5 release duration 3 hours.

L O G l O t E X P O S U R E  L E V E L  I N ^ C I )

(d) 1^31(P ) wet deposition Ispra receptor 8, release duration 3 hours.

Figure 3.5 : Comparison of MESOS and fitted Weibull cumulative
exposure distributions.
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L 0 Q 1 0 ( E X P O S U R E  L E V E L  I N ^ C I S / K L )

(e) Xe 135 air c ontamination Cadarache receptor 2, 
1 week.

release duration

L 0 G 1 0 ( E X P O S U R E  L E V E L  I N ^ C I )

(f) dry d e position Mol 1976 receptor 1, release duration
1 day.

Figure 3.5 : Comparison of MESOS and fitted Weibull cumulative
exposure distributions.



115

L O G l O l E X P O S U R E  L E V E L  I N ^ C I S / K L )

(g) Kr air contam i n a t i o n  Heysham receptor 1, release duration 
85

3 days.

L 0 G 1 0 ( E X P O S U R E  L E V E L  I N ^ i C I J

(h) 1 1 3 1 ^ ^  wet depos i t i o n  Ispra receptor 8 , release duration
1 w e e k .

Figure 3.5 : Comparison of MESOS and fitted Weibull cumulative
e xposure distributions.
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Two three-hourly exposure distributions which the Weibull fits 

well are shown in Figure 3.5(c) and (d). The fit is good at all 

levels, even in the distribution tails, especially for the K t q s  

e x p o s u r e s .

Comparisons for longer release durations are shown in Figure 

3.5(e)-(h). Discrepancies between MESOS and fitted Weibull levels 

which are apparently much greater are not statistically significant 

because of smaller sample sizes. Figure 3.5(e) shows differences 

approaching an order of magnitude for X e i 3 5  exposures due to releases 

of duration one week. This, together w i t h  Figure 3.5(f), represents 

the worst discrepancies found; the fit observed in Figure 3.5(g, h) 

is more typical. Note that fit in the upper tails is fairly good 

even in Figure 3.5(e, f).

The Weibull distribution fits most exposure distributions 

appreciably better than those in Figure 3.5(a, b, e, f). Recalling 

the uncertainties in the MESOS data themselves, the further 

approximations introduced by representing them as Weibull are not 

unacceptable, even in the worst cases.

The possibility of fitting to the data the gamma rather than 

the Weibull distribution was mentioned in the previous section. A  

general way to test the usefulness of this is to embed the two 

distributions in some larger family, thus enabling a direct 

comparison to be made. One appropriate family is the generalized 

gamma family whose probability density is

f ( y )  -  X ' exp{

( a, 3, P>0; y>0 )

whi c h  is Weibull w hen 3=1 and gamma w h e n  a=l. The idea is then to 

fit the more general distribution and see if it provides a better
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representation of the data then the Weibull. Since the gamma

distribution is being considered as an alternative the possibility

that a - 1 is of interest. The statistic which isd i r t

, A. A A A A
2  { £ (a ,3 ,u ) -  £ (0 4 , 1 , H i) }

is displayed in Table 3.3 for the three-hourly exposure data. Here

£(a,3,u) - the loglikelihood of an exposure dataset evaluated at a,

3, P - is a measure of the plausibility of the generalized gamma

density in accounting for the observed data. The m a x imum likelihood
a a  A

estimates of (a,3,p) w h e n  all three parameters may vary are (a,3,p); 

and those when 3=1, whi c h  corresponds to the Weibull distribution,
A A

are (oii,l,p). The statistics in Table 3.3 would be chi-squared on 

one degree of freedom were the data truly Weibull; large values of 

them indicate that the generalized gamma distribution fits the data 

better.

Some of the values of the loglikelihooi ratio statistic are 

large; they generally correspond to datasets which Table 3.2(a) shows 

are poorly fitted by the Weibull distribution. However none of their
A

values of a, shown in Table 3.4 for the X e ^ s  data, are close to one.
A

They are usually smaller than the corresponding values of , showing 

that departures from the Weibull distribution are not in the 

direction of the gamma distribution. Although on some occasions the 

generalized gamma distribution does appreciably better, it does not 

do so consistently enough to supplant the Weibull.

The conclusion drawn is that the Weibull function is flexible 

enough to model the distribution of the MESOS exposure levels 

sufficiently well for the present purpose, for a wide range of 

distances, types of exposure, and release durations.
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Heysham 
K t 85 air

Karlsruhe 
Xei 3 3 air

Mol 1973 
Il 3 l(p) air

Mol 1976 
*13l(g> dry

Cadarache 
Xeias air

Ispra
Il3l(p) wet

.62 .76 1.71 .33 .08 .23

.07 2.67 .27 1.02 8.91° .02

5.82* 4.24* .12 1.36 .63 .15

00o• .07 1.34 .20 1.14 1.49

7.49° 1.39 9.56° 3.01 11.15* 2.86

7.13° 3.83 17.88* .36 3.66 .48

00o• 14.1 6 1 24.1 2 1 .04 3.47 1.10

1.67 8.19° .13 2.81 6.40* .41

2.36 10.54° 12.00* 1.26 12.98* .26

1.88 22.00* .32 .27 15.35* .95

.58 5.12* .12 3.07 21.78* .12

2.56 2.02 1.76 .10 .58 2.16

.47 1.27 1.41 5.15* 5.70* .34

18.83* 1.18 .17 2.01 4.00* .82

17.01! 1.74 .01 2.00 4.19* .30

3.74 6.45* 5.49* .93 4.32* 1.34

Table 3.3: Loglikellhood ratio statistics for Weibull distribution 

within generalized gamma family

significance level between ,05 and .01 

0 significance level between .01 and .001 

‘ significance level less than .001



Weibull generalized gamma

Receptor No of 
Exposures a1

*M1 x 10 a 6
*
P 0aif f

1 504 0.39 46.33 0.36 0.89 3.12 X 1 ( f 4 0.08

2 317 0.45 6.22 0.18 0.19 2.31 X
-710 8.91

3 186 0.50 1.98 0.37 0.62 4.23 X , < r 6 0.63

4 111 0.56 0.76 0.34 0.42 4.02 X 1 0 ' 7 1.14

5 328 0.41 9.87 0.14 0.14 2.98 X io " n 11.15

6 194 0.54 2.61 0.28 0.31 2.28 X io "7 3.66

7 457 0.35 36.98 0.21 0.40 2.64 X ,< f 6 3.47

8 324 0.43 7.02 0.20 0.26 4.05 X , < f 8 6.40

9 126 0.55 1.10 0.10 0.04 1.18 X K f 19 12.98

10 613 0.38 73.29 0.92 3.47 7.92 X 10-3 15.35

11 225 0.55 1.54 0.10 0.04 2.08 X K f 20 21.78

12 589 0.36 65.05 0.31 0.77 2.33 X 10"4 0.58

13 413 0.45 11.03 0.25 0.38 1.49 X 1<f6 5.70

14 345 0.45 6.94 0.26 0.41 1.47 X H f 6 4.00

15 140 0.48 1.86 0.15 0.12 8.18 X io -12 4.19

16 96 0.54 0.87 0.19 0. 14 1.67 X , < f 10 4.32

* units for u1
and p are 

-3Cism x 10

Table 3.4 Weibull and generalized gamma parameter estimates : Cadarache Xe,__« l j  jintegrated air concentration data.
three-hourly time-

119
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3.3 The effect of covariates

Summarization of MESOS exposure distributions in terms of two 

parameters is a big reduction of the data, but does not cut them down 

to size enough - the effect of nuclide characteristics and other 

variables is not explicitly represented, and so cannot be found for 

other nuclides of interest. This dependence must be built into a 

simple model interpretable in terms of appropriate physical ideas. 

Such a model can be posited by considering the following chain of 

reasoning.

Suppose that a puff released from a source initally contains Q 0

Curies of a nuclide with decay constant X (seconds” 1 ), deposition

velocity v (metres/second), and washout coefficient X J ° « 8 d w
(seconds” 1 ). Here J is the rainfall rate in millimetres/hour. After 

a travel time T the quantity of material still in the cloud is 

roughly
Q0exp{ - XT - vd (T/h) - X^Tp(rain) },

where h is the m ean height of the puff over its trajectory and 

p(rain) is the proportion of travel time during which rain has 

fallen on the puff. Here it is assumed that wet and dry deposition 

do not interact. If the source-receptor distance in metres is d, 

then T=d/u, where u  is the mean speed of the puff, at least for 

fairly direct exposures. If the puff is thought of as roughly 

brick-shaped, it has approximate volume

T*uhd“ ,

where d10 is its lateral dispersion and T* is the time it takes to 

cross the receptor - which will be small compared with its travel 

time T. Many simple trajectory models use a power-law representation 

of plume broadening; see Doury(1976), who argues that to—1•

Then the mean time-integrated air concentration at a receptor
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should be proportional to

exp{ - dX/u - dv./uh - dX p(rain)/u - ujlog(d) }, d w

which suggests fitting a linear model of form

+  0 i*dX^ +  QglogCd)

to the log-mean of the Weibull exposure distributions. Here the 

unknown parameters 6 are to be estimated from the data. All but 0^

- which represents an overall m ean - are expected to be negative; and 

they may be simply interpreted as functions of u, h and so on:

0 2  = -1/u, 0 3 - -1/uh, 0i* - -P(rain)/u, and 05 - -w. A  similar 

equation
<j>l +  <j>2dX +  (Jigdv^ +  <J>i*dX^ +  (fjg lo g C d )

may be fitted to the log-standard deviation of the Weibull 

d i s t r i b u t i o n s .

Although a and y parametrize the Weibull density conveniently 

for m a x imum likelihood estimation, it must be parametrized in terms 

of its mean and standard deviation for the regression modelling. The 

mean and standard deviation of a Weibull distribution with parameters 

a and y are

M = yr(l+l/a)

and

S = y{ r(l+2/a) - r(l+l/a)2 }/jt

where T(x) (x>0) is the gamma function J ^ u ^ ^ e ^ ' M u .  Given values of 

M  and S, a and y can be recovered by numerical or graphical solution 

of these equations.

The regression equations were fitted in GLIM using ordinary 

least squares. Regression was based on the m e a n  and standard 

deviation of the time-integrated air contamination exposure
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distributions at the sixteen receptors for Ii 3 i(p)> ^I 3 i(g)» Csj.37 , 

Kr g 5 , X e 133 , and X e 1 3 5 for Mol in both 1973 and 1976; and fi 3 i(p)> 

Rrss, and Xei 3 5 results for the other sources: 368 observations in 

all for each regression.

The fitted equation for the distribution log-mean is

5.155 - 0.1583dX - 2 . 8 6 9 x 1 0 " ^  - 9.263x10“ ^ !
(0.r831) (4.188xl0” 3) (5.132xl0~5) d (3.081xl0“ 3) W

0.93991og(d) ____ 3.3.1,
(3.105xl0“ 2 )

where the estimated standard errors of the parameter estimates are 

displayed beneath the estimates themselves. All the estimates are 

statistically significant. The effect of fitting the four extra 

parameters in addition to the overall mean to the data is to reduce 

the sum of squares for regression from 863.3 on 367 degrees of 

freedom to 56.3 on 363 degrees of freedom, a drop whose size 

indicates that the fitted equation explains the variation in the 

log-Weibull means well. Inspection of the residuals from the fitted 

equation reveals no particular dependence on nuclide half-life, 

deposition velocity, or washout coefficient, but shows that the 

equation tends to underestimate the mean by a little at 100 kilomtres 

and by slightly more at distances of 1100 kilometres or greater. 

However the largest numerical difference between a log-mean and its 

fitted value is - 1.3, and only 31 of the 368 residuals correspond to 

error factors of two or more between fitted and Weibull means. Of 

the 31, 21 are for Xei35 , which the Weibull distribution does not fit 

well because of the bimodality of the exposure distributions close 

to the source.

Residual plots for the regression are on display in Figure 3.6 

(a)-(d). Dependence of the standardized residuals r'^ on distance is 

apparent in Figure 3.6(a), which shows the r* plotted against the
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Normal scores

(b) ordered standardized residuals r, ' vs. Normal order statistics.
( 1 )

Figure 3.6 : Residual plots for regression of log-Weibull means; air 
contamination data.

< >1
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(c) m o d i f i e d  C o o k  statistic vs. fitted values

Figure 3.6 : Residual plots for regression of log-Weibull means; air
contamination data.
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fitted values y^ for the regression. That the r f^ are roughly 

Normally distributed is clear w h e n  their ordered values are plotted 

against Normal order statistics as in Figure 3.6(b). The plot of the
A

Cook statistics T^ against the y^ in Figure 3.6(c) shows three rather
A

large values for small y^, but w hen the corresponding y^ are omitted

and the parameters re-estimated the regression equation changes

little. Accordingly they have been retained. The plot in Figure
* A3.6(d) of jackknifed residuals r against the y^ is little 

different from Figure 3.6(a). The regression is adequate.

Weather conditions in 1976 lead to generally higher exposures 

than in 1973. This is reflected in the very significant F 5 35q 

statistic 10.75 for testing different regression equations for each 

year against the single equation. The biggest difference of 

parameters is between 02 (1973) anc* ®2(1976)» w hich reflect the 

influence of Xd on exposure levels. Their values are .14 and .18 

respectively, and correspond to mean puff windspeeds of 7.1 m/s in 

1973 and 5.6 m/s in 1976. This suggests that the overall effect of a 

glimmer with many blocking anticyclones on mean puff windspeeds is to 

decrease them by roughly 1-2 m/s.

The equation fitted to the log-Weibull standard deviations of 

the distributions is

10.41 - 0. 1153dX - 2.892xl0“ \iv, +  4.209xlCr\lX
(0.377) (4.122xl0- 3 ) (5.042xl(T5 ) (3.032xl0” 3 ) w

- 1.3281og(d) ____ 3.3.2,
(3.056xl(T2 )

which reduces the sum of squares for the regression from 938.9 on 367 

degrees of freedom to 54.5 on 363 degrees of freedom. Details of 

both regression equations are shown in Table 3.5, and Figure 3.7 

gives residual plots for the standard deviation regression. Broadly 

the same comments as above apply to them as did to those for the
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Parameter Estimate s.e •

$ 5.155 0.38311
-3

*2 -0.1583 4.188 x 10
-4 -5

*3 -2.869 x 10 5.123 x 10
-3 -3

*4 -9.263 x 10 3.081 x 10
-2

*5 -0.9399 3.105 x 10

*1 10.41 0.3770
-3

<P2 -0.1153 4.122 x 10
-4 -5

*3 -2.892 x 10 5.042 x 10
-4 -3

<P4 4.209 x 10 3.032 x 10
-2

*5 -1.328 3.056 x 10

A 2Q = 0.1550

A2a 0.1502

Correlation matrix of estimates

1 2 3 4 5
1 1.0 0.4719 0.1 36 7 -0.1422 -0.9974
2 1.0 0.1127 0.1381 -0.5040
3 1.0 -0.3403 -0.1468
4 1.0 -0.1523
5 1.0

Table 3.5 Details of regression equations for dependence of Weibull
air concentration distributions on covariates.
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Normal scores

(b) ordered standardized residuals r, ' vs. Normal order statistics.( 1 )

Figure 3.7 : Residual plots for regression of log-Weibull standard 
deviations; air contamination data.

A t
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(d)

Figure 3.7 : Residual plots for regression of log-Weibull standard 
deviations; air contamination data.

*:
 >
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mean regression. The dependence of the residuals on distance 

apparent in Figure 3.6 is less obvious in Figure 3.7, but the big 

residuals for both equations generally correspond to each other, and 

once again it is the X e 135 residuals which tend to be worst.
A

Although retained in the equation, ^  is smaller than its standard 

error, indicating that washout has little or no detectable effect on 

the spread of exposures to air contamination and consequently dry 

deposition.

As already explained, the equations may be interpreted in terms 

of physical quantities. The mean equation implies that u = 6.3 m/s, 

h - 550m, p(rain) = 0.06, and u> = 0.94. The value of h seems rather 

a small mean height for the puff; and lateral broadening of a puff 

almost proportional to source-receptor distance seems large for the 

distances being considered here, although presumably some allowance 

must be made for the effect of synoptic divergence of trajectories, 

which otherwise is not built into this simple model. Lateral 

dispersion is not always well-described by a power-law, and it seems 

likely that the simplistic use of puff broadening proportional to d ^  

is responsible for the high value of u) and the low mean puff height. 

Despite this the values of u and p(rain) are consistent with the work 

of Wrigley(1982).

The equation for the standard deviation is best interpreted by 

considering the coefficient of variation of the fitted exposure 

distribution, its standard deviation divided by its mean, a measure 

of the relative variation of a distribution about its mean. This is 

roughly

exp{ 5.3 +  4.3xlO”2dX - 2.3xl0-6dv. +  g ^ x l O ^ d X  - 0.391og(d) }.1 a w

The approximate ranges over which the nuclide parameters and distance 

vary are: source-receptor distance d a 105 - 106 m; nuclide decay
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rate X =* 10” 9 - 3.0xl0-5 s” 1; deposition velocity - 0 - 3.0x10” 3

ms- 1 ; and washout coefficient X -  0 - 5.0xl0“ 5J 0,8 s” 1. Clearly the

values of v. and X have little or no d i s c e m a b l e  impact on the d w
spread of the air contamination exposure distributions relative to 

their means, at least for the ranges of d of interest here. However 

the value of X is important: nuclides such as Xei 3 5 whose decay 

constants correspond to short half-lives of the order of a few hours 

have exposure distributions whose relative spread changes little as 

source-receptor distance increases, but nuclides with half-lives 

greater than the time taken for material to cross the map have 

exposure distributions whose relative spread drops by a factor two or 

so as d increases from 105 to 106 metres.

A  qualitative explanation for this may be deduced from Figure

3.8 - amalgamated from Figures 5.10 and 5.11 of Wrigley(1982) - which 

shows scatter diagrams for time-integrated air concentrations 

experienced 100 and 800 kilometres north of Mol in 1973, as functions 

of travel-time. Note that both scales are logarithmic. The Krgs 

exposures indicate for inert nuclides the range of variability due 

solely to meteorological conditions, whereas the effect of decay is 

manifest from the Xei 3 5 exposures. The Ii 3 i(p) results, more 

complicated because of the effect of wet and dry deposition, are not 

directly relevant just now; but nevertheless it is informative to 

note that the overall effect of deposition seems to be to increase 

tha spread of the distribution for a given travel-time by a factor 

which grows from about one to about ten as travel-time increases from 

about two hours to its maximum possible value of four days, and 

to reduce its mean by similar factors.

To return to the effect of decay constant on the spread of an 

air contamination distribution relative to its mean, compare the Krgg 

and X e 135 exposures in Figure 3.8. The overall spread of both Kr8^
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distributions is about 103-10It, but the mean exposure drops by a 

factor 10 or so with the extra 700 kilometres - from 3,500 to 460 

pCism"3 . However the overall spread of the Xei 3 5  distributions drops 

from a factor about 106 to about 1 0 \  and the mean from about 101* to 

about 102 as distance increases, because of the effect of the large 

decay constant. The spread of the X e ^ g  data diminishes with 

distance by a factor comparable with the decrease in mean exposure, 

so the coefficient of variation changes little with distance.

The exposure distributions for dry deposition are very simply

related to those for air contamination, since in almost all cases the

level of dry deposition is just v, times the time-integrated aird
concentration. This is not the case when prolonged stability of the

lower part of the boundary layer leads to a non-uniform vertical

concentration profile of pollutant due to preferential depletion of

its lowest few metres. This is rare and leads to relatively low

exposures so does not noticeably alter the shape of the exposure

distribution. Table 3.6 gives an idea of the degree of consistency

observed between the air contamination and dry deposition exposure

distributions due to unit three-hourly releases from Mol of C s 137

through 1973 and Ii 3 i(p) through 1976. Corresponding estimates of

the Weibull shape parameter a are very close - almost always within

one standard error of each other, which implies that any differences

may be ascribed to estimation errors. The ratio of dry deposition

Weibull scale parameters y to their air contamination counterparts is

usually slightly less than the appropriate value of v ,, and moreoverd
the same is true of the actual means and standard deviations of the 

distributions. This is a consequence of the argument given above for 

the distributions to be virtually identical apart from scale except 

that occasionally dry deposition is inhibited by the stability of the 

boundary layer. It implies that finding the dry deposition
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receptor t i c  a dry dep.a ^dry/^TICx1° M,. /M,_t_x 10“3 3dry 3TIC Q3dry/Q3TICXl0

1 0.528 0.525 0.95 0.96 0.96
2 0.673 0.676 0.93 0.92 0.93
3 0.702 0.697 0.96 0.96 0.99
4 0.703 0.694 0.97 0.99 1.01
5 0.589 0.594 0.97 0.95 0.91
6 0.723 0.724 0.98 0.98 0.98
7 0.779 0.779 0.99 0.99 0.99
8 0.775 0.712 0.98 0.99 1.00
9 0.474 0.475 0.98 0.96 0.94
10 0.689 0.691 0.99 0.99 0.98
11 0.729 0.729 0.98 0.99 0.99
12 0.744 0.743 0.99 0.99 0.99
13 0.507 0.509 0.95 0.95 0.95
14 0.679 0.668 0.92 0.94 0.93
15 0.706 0.702 0.95 0.95 0.98
16 0.990 0.989 0.86 0.86 0.91

Table 3.6 Comparison of Weibull and actual means and standard deviations of three-hourly exposure distributions

(a) TIC and dry deposition. Mol 1973

receptor tic a dry dep.a U. A L T„xl0“3 dry TIC M,. /M_ x 10*"3 3dry 3TIC O /Q x10~3 y3dry y3TIC

1 0.438 0.439 2.82 2.81 2.66
2 0.548 0.545 2.63 2.79 2.80
3 0.560 0.553 2.76 2.76 2.81
4 0.594 0.593 2.84 2.85 2.89
5 0.534 0.537 2.87 2.83 2.79
6 0.638 0.640 2.94 2.93 2.89
7 0.633 0.633 2.95 2.95 2.95
8 0.634 0.634 2.96 2.95 2.96
9 0.487 0.489 2.88 2.85 2.82
10 0.604 0.606 2.95 2.94 2.94
11 0.760 0.760 2.95 2.95 2.94
12 0.779 0.777 2.99 2.98 2.99
13 0.453 0.452 2.77 2.77 2.74
14 0.524 0.521 2.72 2.78 2.86
15 0.599 0.587 2.78 2.87 2.94
16 0.707 0.707 2.81 2.84 2.91

Comparison of Weibull and actual means and standard deviations of three-hourly exposure distributions 

(b) I13l(p) TIC and dry deposition. Mol 1976

Table 3.6
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distribution of dry deposition simply by multiplying the distribution 

of air contamination by a factor v^ would tend to overestimate dry 

deposition were the Weibull a perfect fit to the air contamination 

data. Given the known discrepancies between the Weibull and MESOS 

exposure distributions, this procedure is totally adequate.

This simple idea will not work for wet deposition, which depends 

also on the incidence of rain at the receptor. When it is raining 

there, however, wet deposition is roughly proportional to the 

time-integrated air concentration, and thus is

X^exp{ - dX/u - dv^/uh - dXw jj?(rain)/u - wlog(d) }.

However washout coefficient X^ depends on rainfall rate J - whose

mean value varies in different parts of Europe due to the influence

of orographic effects and so on - so this is unlikely to be so good a

fit as the corresponding equation for air contamination. Throughout

the rest of this thesis the various values of X are taken to be thew
numerical values of the constants in Tables 1.1 and 1.4: dependence 

on the values of the rainfall rate J is generally ignored. Because 

of the restriction to wet weather at the receptor the values of u, h, 

p(rain), and a> may not be the same as those above, but it seems 

likely that a model for wet deposition will emerge from following a 

procedure akin to that used above for air contamination: in this case 

fitting model equations

l°g(^w) + hi + n2dX + n3dv^ + n^dX^ + Ti5log(d)
and

logCX^) +  Vĵ  +  v2dX +  v3dv^ +  v^dX +  v5log(d)

to the log-means and log-standard deviations of the Weibull wet 

deposition distributions. The unknown parameters q and v are to be

estimated from the data
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However a difficulty arises with estimating the effect of decay 

constant on wet deposition. The depositing isotopes I 1 3 1  and C S 1 3 7  

have half-lives 8 days and 30 years - long compared with the mean 

travel-time of a puff across the map - which make it hard to assess 

the effect of decay on wet deposition exposures simply by using their 

values. The model suggested by the arguments above fits the data 

quite well, but does not have any simple interpretation because of 

the impossibility of estimating the effect of X with adequate 

precision. The consequence of this uncertainty is that parameter 

estimates are statistically significant but have the wrong signs. 

P s e u d o - n u c l i d e 1 exposures can be constructed to overcome this.

A  pseudo-nuclide is one whose half-life is artificial: it does 

not belong to a radioisotope posing potentially grave risks to the 

public as a result of leaks from nuclear power stations, but is 

considered solely to tackle the problem described above. Exposures 

to a pseudo-nuclide whose deposition velocity and washout coefficient 

correspond to those of I 1 3 1  but whose decay constant is the specified 

value X may be constructed as follows.

For a given receptor all the exposure time-series are archived 

together in the MESOS database. By taking a specific wet deposition 

incident and comparing the X e ^ 3 3  and X e ^ s  exposures at the time, the 

travel-time associated with the incident can be found; it is

T» _ log(Ql33> ~ log(Ql35)
*135 “ *133

where Q 1 3 3  and Q 1 3 5  and * 1 3 3  and X 1 3 5  are the exposure and decay 

constants for X e ^  and X e ^ s  respectively. The wet deposition 

exposure which would have occurred had the puff experienced exactly 

the same weather conditions along its path, but contained a nuclide 

with the same deposition parameters as those ascribed to I]_3 j_ and 

decay rate X rather than X 1 3 1  is
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Ql31exP{ -T*(X-X131) }

in an obvious notation. This is a useful trick for varying the 

effect of decay constant on exposure; but since the effects of 

depletion and deposition depend on the exact history of the puff - 

not just its travel-time - they cannot be varied in the same way.

Three-hourly wet deposition exposures at sixteen receptors were 

created with deposition parameters the same as those of l].3 i(p)»

X 1 3 1 (g) and C S 1 3 7  for releases from: Cadarache and Mol through 1973 

with half-lives of one day; Karlsruhe and Ispra with half-lives of 

two days; and Heysham and Mol through 1976 with half-lives of four 

days. In all, 288 three-hourly wet exposure distributions 

corresponding to these short-lived imaginary isotopes were created 

for the regression. The means and standard deviations of 288 

original MESOS three-hourly wet deposition distributions are 

available, for li 3 i(p)» 3 1 (g) and ^S 137 exposures for releases 

from all sources. Use of the extra data enabled the effect of 

half-life on wet deposition exposures to be estimated and resulted in 

a reasonable model.

The equations eventually fitted to the log-means and standard 

deviations for the wet exposure data are

log(X ) +  8.703 - 0.1753dX
w  (0.4381) (1.265xl0“ 2)

- 1.057xl0”2dX - 0.81481og(d) ____ 3.3.3
(1.755xl0-3) w  (3.640xl0“ 2)

and

log(X ) +  13.79 - 0.1269dX - 1.1861og(d)____ 3.3.4
W  (0.3518) (1.376xl0- 2 ) (2.808xl0“ 2 )

respectively. The corresponding drops in residual sums of squares 

due to the inclusion of the sets of four parameters n2-r|5 an<* V2“ V5 

are 722.1 to 125.4, and 895.2 to 148.8, with drops of from 575 to 572
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and 573 degrees of freedom. These are not such big proportional 

drops as seen in the air contamination data, because of the added 

variability introduced by rainfall.
AIn the equations fitted initially, the parameter estimates n 3 ,

A A
v 3 , and Vit, were not statistically significant. These represent

the effect of the dry deposition velocity on the mean and spread of

the exposures, and the effect of the washout coefficient X on thew
spread of the wet deposition distribution. The sign of q 3 was

positive, whereas in fact increasing v, ought to decrease the fluxd
surviving to remote receptors. On the other hand it is not 

statistically significant and there is no way to use pseudo-nuclides 

to estimate it more accurately. Accordingly, and in view of the 

difficulty of interpreting positive estimates in physical terms, 

these particular parameters were not eventually fitted to the data. 

Had a larger range of deposition velocities been used in the original 

MESOS calculations, the parameters could have been estimated and this 

difficulty would not have arisen. Details of the equations are given 

in Table 3.7, and the residuals are plotted in Figures 3.9 and 3.10.

The fit of the equations seems good; in particular the residuals 

display no strong dependence on half-life. Although there are some 

lower outliers in the standard deviation plots they do not have high 

leverage so have not been excluded from the fit. They correspond to 

the same outlier included several times in the pseudo-nuclide 

calculations.
%

The parameter estimates give the following approximate values 

for physical quantities: u - 5.7 m/s and p(rain) - 0.06, both quite 

plausible. The value of mean puff windspeed u is slightly smaller 

than the one for time-integrated air concentration, and the value of 

p(rain) is a little low. The predicted coefficient of variation of 

the wet deposition exposure distributions is
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a2

a2

0.2192

0.2597

Correlation matrix of estimates of
1 2 4 5

1 1.0 0.3025 0.6750 -0.9976

2 1.0 -0.0190 -0.3181

4 1.0 -0.7055

5 1.0

Correlation matrix of estimates of V

1 2 5

1 1.0 0.4274 -0.9972

2 1.0 -0.4678

5 1.0

Table 3.7 Details of regression equations for Weibull wet 
deposition distributions.
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Normal scores

(b) ordered standardized residuals r, ' vs. Normal order statistics
(1)

Figure 3.9 : Residual plots for regression of log-Weibull means; wet
deposition data.
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(c) modified Cook statistic vs. fitted values y .

r . *
1 41

3 -

* * * jb*

" ^5  -

-4 -*

(d) jack-knifed residuals r^* vs. fitted values y^.

Figure 3.9 : Residual plots for regression of log-Weibull means; wet
deposition data.
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(b) ordered standardized residuals r (jj' vs* Normal order statistics.

Figure 3.10 : Residual plots for regression of log-Weibull standard
deviations; wet deposition data.
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T. 8-i
1

A(c) modified Cock statistics T. vs. fitted values y.l  i

Figure 3.10 : Residual plots for regression of log-Weibull standard
deviations; wet deposition data.

>
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exp{ 5.1 +  4.6xlO_2dX +  1.6xlO_2dX^ - 0.37 log(d) }.

Decay rate, largest for I 131 with half-life eight days, has little

impact on relative spread. Washout has a greater effect on wet than

on air exposures: at short distances it has little effect on their

spread, but at 1000 kilometres it may smear the distributions

relative to their means by a factor of between 1.3 and 2.2, depending

on the value of X^. Taken together with the effect of distance on

relative spread, the coefficient of variation is halved over

distances of 100 to 1000 kilometres if Xw =1.5xlO” 5J ° * 8 s” 1, but it

remains roughly constant if X =5.0xl0” 5J°*8 s” 1.w
The model described above enables exposure distributions for 

three-hour releases to be predicted - with an accuracy assessed in 

Section 3.4. However the effect of release duration must be 

incorporated if the model is to have general applicability.

Some dispersion models based directly on wind measurements 

parametrize lateral spread of a plume as a power-law function of 

release duration, with spread - /(release duration). See Clarke 

(1976). This suggests that relationships of the form

log(Mt ) = log(M3) +  6 1log(t/3) .... 3.3.5

log(St) = log(S3) +  62log(t/3) .... 3.3.6

may be useful to relate the mean M  and standard deviation S of ant t
exposure distribution for a unit nuclide release over t hours to 

the corresponding quantities M 3 and S 3 for unit releases over the 

baseline period of 3 hours. The estimates of <5j and 62 should be 

roughly -/£, at least for air contamination distributions.

So far in this chapter, a fairly cavalier attitude has been 

adopted towards assumptions made in the course of the analysis. The 

intermittent positive exposures at each receptor have been treated as
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independent and identically distributed, a gross oversimplification

made for the sake of building as comprehensible a model as possible.

However it seems overbold to treat the time-series of exposures for

different release durations at the same receptor during the same

period as independent. For this reason 208 ( =* 13 exposure

datasets of 16 receptors each ) time-series of exposures were

taken, and a release duration t = 3, 6, 12, 24, 72, 168 hours was

selected at random for each. The release durations were allocated to

exposure datasets in such a way as to enable balanced estimation of

the effects of different years and sources, but the only significant
a a

differences arise between the values of 5^ and <S2 f°r a*-r

concentration and wet deposition exposures. The parameter estimates
a  a

are given in Table 3.8. The values of 6]̂  and S2 for dry deposition 

and air contamination, both about -0.47, are consistent with 

trajectory broadening with release duration at the rate indicated in 

the argument above, but the values -0.7 or so for wet deposition show 

that the mean and spread of wet exposure distributions drop more 

quickly as release duration increases. This is to be expected 

because wet deposition is a more sporadic phenomenon than dry 

exposure•

The fit of these equations is adequate: plots of the residuals 

show no big anomalies; there seem to be no systematic departures from 

them. Some large residuals from the equation for for small 

release durations indicate that in some cases the fitted equations 

may slightly underestimate the spread of the exposure distributions 

for short release durations. Any inadequacies in the prediction 

equations due to this are discussed in Section 3.4.

To summarize, the mean and spread of the fitted Weibull 

distributions vary systematically with source-receptor distance, 

nuclide characteristics, and release duration; and moreover this
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exposure type parameter estimate s.e.

air 5i -0.4761 1.740x10~2
contamination _2

62 -0.4617 1.993x10

wet 51

S2

-0.6483 2.015x10"2
deposition

-0.6957 2.393x10~2

Table 3.8 Details of regression equations for dependence of Weibull 
means and standard errors on release duration.
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variation can be expressed succinctly in a few simple equations. The 

likely error introduced by use of these equations rather than the 

MESOS data itself is assessed in Section 3.4, where so far as 

possible they are verified.

3.4 Verification of the fitted equations

Exposure data for the notional nuclides whose parameters are 

given in Table 1.4, for releases from Hannover and Stuttgart through 

1973, are here used to verify the regression equations detailed in 

Section 3.3. Recall that although these data were calculated using 

MESOS, they were not used to construct the statistical model and to 

that extent provide independent verification of it. The receptors at 

which data are available are given in Table 1.3. None of these 

notional isotopes are inert - non-depositing - so comparisons are 

also made for some inert nuclide data used in model fitting.

Of the imaginary nuclides in Table 1.4, only the nuclide 

labelled Case 3 decays - its decay constant X corresponds to a half- 

life of about 3 days. The effect of decay can be assessed for 

depositing isotopes by the ’pseudo-nuclide1 device: the generation of 

nuclides with imaginary half-lives using the technique explained in 

Section 3.3.

Only Case 1 has a deposition velocity in the same range as those

used to build the model. Cases 1 and 2 have washout parameters X^ in

the same range as those used to derive the model, whereas those of

Cases 3 and 4 are rather larger. Prediction of exposures for Case 1

therefore enables the model to be verified for depleting nuclides

whose parameters are similar to those used to build it. Prediction

for Case 2 enables the effect of extrapolating deposition velocity

v, alone to be found; and the effect on prediction of extrapolating d
both v and X can be seen by considering Case 4.U ^
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Figure 3.11 shows the comparisons for Case 1. The fit is very 

good in parts (a)-(c), which correspond to a nuclide with infinite 

half-life. It is not so good in parts (d)-(f). The biggest 

discrepancy occurs when in (d) the Weibull levels exceed the MESOS 

ones by a factor 2.5 over part of their range. Most Weibull levels 

are too low by a factor two or so in Figure 3.11(e). The fit in the 

tails of the distribution follows the same pattern as seen in Section 

3.2. These results are typical for such a nuclide, and show that in 

the ranges of decay and deposition parameters used to fit the 

equations, the regression model gives air contamination - and hence 

dry deposition - predictions which disagree with MESOS calculations 

only to an unimportant extent.

The effect of using Case 1 deposition parameters but applying

pseudo-nuclide calculations to the data to get an isotope with a

short half-life of 9.1 hours is displayed in Figure 3.11(g, h). This

extrapolation beyond the range of X for depositing nuclides used to

fit the model gives a poor fit to the lower 60% of the distribution

at the receptor 100 km from its source, which suffers the joint

effect of both high decay and deposition. The effect is especially

marked in the lower exposures of the receptor, often due to

meandering indirect puff trajectories, whose levels are overestimated

by a factor at worst about 100. It is much less obvious in the

comparison at 800 kilometres, whose MESOS levels are roughly a factor

6 higher than those statistically predicted. These comparisons

illustrate the dangers of applying the statistical model inside the

ranges of v, and X but outside that of X for which it was derived, d w
In Figure 3.12 the MESOS and predicted cumulative exposure 

distributions for Case 2 air contamination are compared at two 

receptors. At short distances the statistical model tends to under

estimate depletion by of dry deposition, and hence the distribution
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IN yACIS/KL)

(a) case 1, infinite half-life, Hannover receptor 4, release duration 
3 hours.

(b) Case 1, infinite half-life, Hannover receptor 1, release duration 
1 day.

Figure 3.11 : Comparison of MESOS and statistically predicted
cumulative exposure distributions; Case 1 air
contamination for releases from Hannover.
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L 0 0 1 0 ( E X P O S U R E  L E V E L  I N ^ C I S / K L J

(c) Chse 1, infinite half-life, Hannover receptor 1, release duration 
1 week.

L O G l O t E X P O S U R E  L E V E L  I N ^ C I S / K L )

(d) Case 1, half-life 8.1 days, Hannover receptor 13, release duration 
3 hours.

Figure 3.11 : Comparison of MESOS and statistically predicted
cumulative exposure distributions; Case 1 air
contamination for releases from Hannover.
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L 0 Q 1 0 C E X P O S U R E  L E V E L  I N  ^ C I S / K L )

(e) Case 1, half-life 8.1 days, Hannover receptor 16, release duration 
3 hours.

L O O l O t E X P O S U R E  L E V E L  I N ^ u C I S / K L )

(f) Case 1, half-life 8.1 days, Hannover receptor 16, release duration 
1 week.

Figure 3.11 : Comparison of MESOS and statistically predicted
cumulative exposure distributions; Case 1 air
contamination for releases from Hannover.
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(g) Case

(h) Case

Figure 3.11

L O C I 0 ( E X P O S U R E  L E V E L  I N y x C I S / K L J

, half-life 9.1 hours, Hannover receptor 1, release duration 
hours.

L 0 0 1 0 C E X P O S U R E  L E V E L  I N ^ C I S / K L )

, half-life 9.1 hours, Hannover receptor 4, release duration 
hours.

: Comparison of MESOS and statistically predicted
cumulative exposure distributions; Case 1 air
contamination for releases from Hannover.
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L O O l O t E X P O S U R E  L E V E L  I N / i C I S / K L )

(a) infinite half-life, receptor 9, release duration 3 hours.

L 0 G 1 0 1  E X P O S U R E  L E V E L  I N > * C I S / K L )

(b) infinite half-life, receptor 12, release duration 3 hours.

Figure 3.12 : Comparison of MESOS and predicted cumulative exposure
distributions, Case 2 air contamination, Hannover.
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L O O I O I E X P O S U R E  L E V E L  I N , n C I S / K L )

(c) infinite half-life, receptor 9, release duration 1 day.

L 0 0 1 0 C E X P O S U R E  L E V E L  I N ^ C I S / K L J

(d) infinite half-life, receptor 12, release duration 12 hours.

Figure 3.12 : Comparison of MESOS and predicted cumulative exposure
distributions, case 2 air contamination, Hannover.
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is overpredicted by a factor of about 6. Prediction is more accurate 

at longer distances, however. Figure 3.13 shows equivalent plots for 

Case 4 air contamination at two receptors, for which fit is very 

poor, because of the extrapolation of nuclide parameters beyond the 

range in which the model was derived.

The Hannover and Stuttgart MESOS computations did not include 

inert - non-depositing - nuclides, exposures to which cannot be 

obtained from existing data by using pseudo-nuclides. Therefore some 

of the inert nuclide data used to fit the regression model were taken 

and their MESOS and those predicted from the statistical model 

compared. Individual exposure datasets have little influence on the 

fitted equations, so this is close to direct verification of the 

model using Hannover and Stuttgart results.

Comparisons are made in Figure 3.14 for Kt q s  air contamination 

data due to releases from Heysham. The half-life of Krgs is 

effectively infinite for the purpose of the MESOS calculations.

The distribution in Figure 3.14(a) is underpredicted by a factor at 

most 2.5 in its top half, increasing to about six at its 10%-point. 

The top 70% of the data lie within a factor three of the predicted 

distribution. The fit is better further away from the source at 

receptors 3 and 10. These differences are repeated in the 

comparisons at longer release durations, with a large overprediction 

for receptor 10 data for exposures to one-day releases.

Figure 3.15 shows comparisons for Xei 3 3 releases from Cadarache. 

They show a similar pattern; exposure levels are in general 

underpredicted by the statistical model by a factor three or so, but 

the fit is worse for long release durations.

Comparisons for Xei 3 5 - whose half-life is 9.1 hours - released 

from Mol during 1973 are displayed in Figure 3.16. Near the source 

the levels are very similar over the top half of the distribution,
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L 0 Q 1 0 C E X P O S U R E  L E V E L  I N ^ C I S / K L )

(a) infinite half-life, receptor 13, release duration 3 hours.

.  L 0 B 1 0 ( E X P O S U R E  L E V E L  I N  / * C I S / K U

(b) infinite half-life, receptor 16, release duration 3 hours.

Figure 3.13 : Comparison of MESOS and predicted cumulative exposure
distributions, Case 4 air contamination, Hannover.
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L O O I O C E X P O S U R E  L E V E L  I N  ; u C I S / K U

(c) infinite half-life, receptor 13, release duration 3 days.

L O O I O C  E X P O S U R E  L E V E L  I N ^ C I S / K L J

(d) infinite half-life, receptor 16, release duration 1 day.

Figure 3.13 : Comparison of MESOS and predicted cumulative exposure
distributions, Case 4 air contamination, Hannover.
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L 0 G 1 0 ( E X P O S U R E  L E V E L  I N / t C I S / K L )

(a) receptor 1, release duration 3 hours.

L O G I Q t E X P O S U R E  L E V E L  I N  ^ C I S / K L )

(b) receptor 3, release duration 3 hours.

Figure 3.14 : Comparison of MESOS and predicted cumulative exposure
distributions, Kroc air contamination, Heysham.

o j
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L O O l O t E X P O S U R E  L E V E L  I N ^ C I S / K L )

(c) receptor 10, release duration 3 hours.

(d) receptor 1, release duration 1 day.

Figure 3.14 : Comparison of MESOS and
distributions, Krg 5

predicted cumultive exposure 
, air contamination, Heysham.
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L 0 G 1 0 C E X P O S U R E  L E V E L  I N ^ C I S / K L J

(e) receptor 3, release duration 12 hours.

L 0 0 1 0 1  E X P O S U R E  L E V E L  I N / i C I S / K L )

(f) receptor 10, release duration 1 day.

Figure 3.14 : Comparison of MESOS and predicted cumulative exposure
distributions, Kroc air contamination, Heysham.

O J
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L Q G 1 0 1  E X P O S U R E  L E V E L  I N ^ l C I S / K L )

(a) receptor 7, release duration 3 hours.

L 0 0 l 0 (  E X P O S U R E  L E V E L  I N / » C I S / K L )

(b) receptor 11, release duration 3 hours.

Figure 3.15 : Comparison of MESOS and predicted cumulative exposure
distributions, X e . ^ 3  air contamination, Cadarache.
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L 0 G 1 0 ( E X P O S U R E  L E V E L  I N / C I S / K L )

(c) receptor 16, release duration 3 hours.

L Q G 1 0 ( E X P O S U R E  L E V E L  I N ^ C I S / K L l

(d) receptor 7, release duration 1 day.

Figure 3.15 : Comparison of MESOS and predicted cumulative exposure
distributions; X e . ^ 3  a *r contamination, Cadarache.
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(e)’ receptor 11, release duration 1 day.

(f) receptor 16, release duration 1 week.

Figure 3.15 : Comparison of MESOS and predicted cumulative exposure
distributions; Xe^.^ air contamination, Cadarache.
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L O G l O t E X P O S U R E  L E V E L  I N  / ( C I S / K L J

(a) receptor 2, release duration 3 hours.

L O G l O t E X P O S U R E  L E V E L  I N ^ C I S / K L J

(b) receptor 13, release duration 6 hours.

Figure 3.16 : Comparison of MESOS and predicted cumulative exposure
distributions; X e 1 3 5  air contamination, Mol 1973.
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L 0 G 1 0 C E X P O S U R E  L E V E L  I N y u C I S / K L )  

(c) receptor 16, release duration 6 hours.

(d) receptor 2, release duration 1 week.

Figure 3.16 : Comparison of MESOS and predicted cumulative exposure
distributions, X e ^ ^  a ^r contamination, Mol 1973.



165

L O G l O t E X P O S U R E  L E V E L  I N  / C I S / K L )

(e) receptor 13, release duration 3 days.

L 0 0 1 0 C  E X P O S U R E  L E V E L  I N ^ C I S / K L )

(f) receptor 16, release duration 1 day.

Figure 3.16 : Comparison of MESOS and predicted cumulative exposure
distributions; Xe,-C air contamination, Mol 1973.

l
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but they are overpredicted in its lower half. Further from the 

source the fit is better throughout the distribution. The predicted 

Weibull level is generally a conservative approximation and fit is 

best towards the upper tail of the data.

Figure 3.17 compares MESOS calculations and Weibull predictions 

for exposures to Case 1 wet deposition due to releases from 

Stuttgart. The effect of decay for a short half-life of 8.1 days is 

almost imperceptible. The distribution levels generally lie within a 

factor three of each other, but there are bigger differences in parts 

(e) and (f) of the figure - where the Weibull distributions are 

conservative.

Figure 3.18 shows comparisons for Case 4 wet deposition. The 

effect of the high deposition parameters is to overpredict exposure 

levels, most notably in the lower half of the distributions. Again 

the statistical model tends to give high exposure levels.

To summarize: the likely error introduced by using statistically 

predicted rather than MESOS air contamination and dry deposition 

exposure distributions for nuclides whose parameters X, v^ and X^ lie 

in the range of those used in the MESOS data on which the statistical 

model is based is usually a factor of about two to three over the 

upper 70% of the exposure distribution. However it may be greater - 

up to a factor six or so - for exposures due to releases of duration 

one day or more, especially far from the source, where the predicted 

distributions are typically conservative. The correspondence in the 

top 25% of the exposure data is usually appreciably better: the 

Weibull approximation is generally conservative, yielding exposure 

levels within a factor two of the MESOS levels; however it may be in 

error by a factor four or so in the worst cases.

If nuclide parameters are extrapolated beyond the range used to 

develop the model, the differences are likely to be much worse:
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L Q G I O C E X P O S U R E  L E V E L  I N / * C I )

(a) infinite half-life, receptor 9, release duration 3 hours.

L 0 G 1 0 1 E X P O S U R E  L E V E L  I N ^ u C I )

(b) infinite half-life, receptor 16, release duration 3 hours.

Figure 3.17 : Comparison of MESOS and predicted cumulative exposure
distributions, Case 1 wet deposition, Stuttgart.
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(c) half-life 8.1 days, receptor 8, release duration 3 hours.

L 0 0 1 0 C E X P O S U R E  L E V E L  I N ^ C I )

(d) infinite half-life, receptor 9, release duration 1 day.

Figure 3.17 : Comparison of MESOS and predicted cumulative exposure
distributions, C ase 1 wet deposition, Stuttgart.
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L Q 0 1 0 ( E X P O S U R E  L E V E L  I N / * C I )

(e) infinite half-life, receptor 16, release duration 12 hours.

L 0 0 1 0 1  E X P O S U R E  L E V E L  I N ^ C I J

(f) half-life 8.1 days, receptor 13, release duration 1 week.

Figure 3.17 : Comparison of MESOS and predicted cumulative exposure
distributions, Case 1 wet deposition, Stuttgart.
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L O G l O t E X P O S U R E  L E V E L  I N / 4C I )

(a) infinite half-life, receptor 1, release duration 3 hours.

L 0 0 1 0 ( E X P O S U R E  L E V E L  I N ^ C I )

(b) infinite half-life, receptor 3, release duration 3 hours.

Figure 3.18 : Comparison of MESOS and predicted cumulative exposure
distributions, Case 4 wet deposition, Stuttgart.
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L Q B 1 Q ( E X P O S U R E  L E V E L  I N ^ u C I )

(c) half-life 8.1 hours, receptor 5, release duration 3 hours.

L 0 G 1 0 ( E X P O S U R E  L E V E L  I N / « C I )

(d) half-life 8.1 hours, receptor 5, release duration 12 hours.

Figure 3.18 : Comparison of MESOS and predicted cumulative exposure
distributions, Case 4 wet deposition, Stuttgart.
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(e) infinite half-life, receptor 3, release duration 12 hours.

L O G l O t E X P O S U R E  L E V E L  I N  ^ C I )

(f) half-life 8.1 hours, receptor 2, release duration 3 days.

Figure 3.18 : Comparison of MESOS and predicted cumulative exposure
distributions, Case 4 wet deposition, Stuttgart.
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exposure levels may then be over- or underestimated by a factor of 

six to ten, but possibly as great as two orders of magnitude.

The statistical model for wet deposition is generally accurate 

to within a factor three for releases of short duration and nuclide 

parameters in the range of those used to build the model. For longer 

durations and nuclide parameters outside the range of those in the 

original MESOS calculations the statistical equations overpredict 

exposure levels by a factor up to about ten, although fit is better 

in the upper tail of the data.

Fit may appear to be worse for both air concentration and wet 

deposition exposures due to longer release durations because fewer 

observations are then available to assess it.

The statistically predicted Weibull distributions do not fit the 

MESOS data exactly, because of differences between Weibull and MESOS 

exposure distributions and the gross simplification introduced by the 

model regression equations. To assess the likely maximum effect of 

the discrepancies, suppose that for some source and receptor, the 

probability distribution function of exposure of a given type to some 

nuclide is F(.). That is,

Prob( exposure < x ) = F(x).

Let r(x) be the risk to some activity or individual at the receptor 

due to an exposure of size x. The function r ( .) will invariably be 

increasing and will often be linear: r(x) = ax, for some positive 

constant a. It may be a dose-response curve for long- or short-term 

effects of ionising radiation on humans, for example. In some such 

cases It has been suggested that a quadratic curve r(x) = ax+bx2 

(a, b>0) is more likely: see Hemming et al.(1983). The exact form of 

r(.) is immaterial here, but it will increase at least linearly.

The expected risk to the individual or activity due to a release
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resulting in an exposure distribution F ( .) at the receptor is 

/r(x)dF(x) = /r(x)dF(x) +  /r(x)dF(x)
o * * *

= I 1 +  x2» 

say, where X75 is the value of x for which

F(x 75) - 0.75.

The comparison of MESOS and statistically predicted exposure levels 

above suggests that levels above X75 may be in error by at very worst 

a factor four or so, and those below X 75 by a factor at very worst 

ten, provided the equations are used within their range of validity. 

Making the unrealistic assumption that levels below and above X 75 may 

vary independently, the biggest probable range of error for the 

expected risk is

al]//10 +  a ^ ' M  < expected risk < 101]/ +  412',

* * *  r«a
where I]' = JxdF(x) and l 2 f = JxdF(x).

0 •*»<
Table 3.9 shows for two Krss exposure distributions - chosen as 

being relatively homogeneous - the percentage contribution to the 

distribution mean, 100%*fxdF(x)//xdF(x), for several values of y.O o

About three-quarters of the mean exposure is due to the top 25% of 

the exposure distribution. In distributions for exposures to 

decaying or depositing nuclides the relative contribution by the the 

highest exposure levels is even greater.

Thus at worst the likely range of error of the expected risk 

calculated using a statistically predicted distribution rather than a 

MESOS one is (R/5, 5R), where R  is the risk which would have been 

found were the MESOS data used directly. Usually the expected risks 

based on Weibull and MESOS distributions will be much closer.



Mol 1976 Krg5 receptor 4 

level y % contribution
-3 -4 yCism x10 #obs>y to mean Q(y)

0 258 0

1.22 143 2.5

2.45 111 7.2

3.67 88 12.8

4.89 72 18.3

6.11 59 24.2

7.34 50 29.2

8.56 40 35.7

9.78 31 42.5

11.00 28 45.0

12.23 26 46.9

Mol 1976 Kr receptor 6 85

level y % contribution
-3 -4 yCism x10 #obs^y to mean Q(y )

0 431 0

5.02 208 5.26

10.04 146 13.8

15.06 101 24.6

20.08 80 31.8

25.1 48 45.9

30.12 38 51.2

35.14 29 56.8

40.17 26 59.1

45.19 23 61.6

50.21 20 64.4

TABLE 3.9: Percentage contributions to mean exposure by excesses over thresholds.
Kr0_ distributions

( v rQ(y) = | xdF(x )/ xdF(x) x 100%
'o 'o
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For a linear risk function r(x) = ax the mean risk predicted
a  a

using the statistical model is aM^, where M fc is found using equations 

3.3.1 and 3.3.5 with appropriate parameter values in Table 3.8. For 

exposures to wet deposition use must be made of equations 3.3.3 and 

3.3.5.

Confidence intervals for the MESOS value of M^ may be based on
A

the Normal distribution of logtM^} under the model. For exposures to 

time-integrated air contamination, conditionally upon the estimated 

parameter values, the variance of log{Mt > is S2 = 56.3/363 = 0.1551, 

and the unconditional variance of log{Mt ) is

A
Var( log{M } ) = S2 +  x  DZ / v

Here x is the row vector

( 1, dX, dv , dX log{d>, log{t/3} ),Cl w
A

D is the 6x6 matrix whose diagonal elements are s.e.CQj^),
A A A

s.e.(02)>•••> s.e.(0 5 ), s.e.CSj), and V is the 5x5 matix of
A

correlations between the parameter estimates 9^. Then a (l-2a)xl00% 

confidence interval for the MESOS value of M^ is

A A
( M  exp{ xz }, M  exp{ - t z  } ), t r a t a
A

where x = /Var(log{M }) and $(z )=a for a<0.5, and $(.) is thet a
A

standard Normal distribution. For wet deposition exposures the 0^ 

are replaced by the n^, S2 = 125.4/572 = 0.2192, and V is taken from 

Table 3.7. Confidence limits for standard deviations of MESOS 

exposure distributions may be obtained similarly.

In view of the discrepancies between predicted Weibull and MESOS 

exposure levels, use of standard statistical techniques to find 

confidence intervals for MESOS exposure levels based on their
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predicted values would be spurious, giving a false impression of the 

accuracy of the statistical model. The rather qualitative assessment 

above seems preferable.

Table 3.9 explain the stress laid above on the fit in the upper 

tails of the exposure distributions and the relative indifference to 

their lower tails. It shows the importance of statistical methods 

for high exposures - discussed in the next few chapters and used for 

data-analysis in Chapter 8.
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4. EXCESSES OVER HIGH THRESHOLDS

The work presented in the next few chapters was motivated by the 

need for statistical techniques for the analysis of the upper tails 

of the MESOS exposure data; in particular methods for studying their 

dependence on the distance of the receptor from the source, nuclide 

decay and depletion characteristics, release duration, and other 

potential explanatory variables. The approach taken is to consider 

only the events occurring when contamination exceeds some high 

threshold level.

The problem of statistical inference for such excesses may arise 

in any area of science where analysis of sequences of observations 

and their extremes is important: hydrology, metallurgy, meteorology, 

oceanography, medicine, air pollution, and many others. The 

sequences of observations may be independent or may exhibit trend, 

seasonality, and long- or short-term dependence, all of which will 

probably complicate analysis. They may be related, for example 

several sequences of water levels at different points along the same 

river, or pollution levels at a number of different locations 

relative to a common point source of contaminant. It may then be 

required to link the sequences using covariates, which might be 

hydrological variables in the first case, and meteorological ones in 

the second.

Only exceedances over upper thresholds are considered, since 

those below lower ones may be treated simply by negating the data.

A  number of approaches to modelling upper extremes of such 

sequences may be possible, depending on the structure and complexity 

of the data. If the sequences are fairly long, the classical method 

treating annual maxima of consecutive periods of equal length, for 

example years, months or days, of the series as independently and 

identically distributed in one of the extreme value distributions is
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often espoused, following the work of Gumbel(1958). The method is 

commonly used in environmental applications and has met with success. 

As at present used, it has some drawbacks:

(i) parameter estimation in the presence of covariates, formal 

tests of goodness of fit (as opposed to informal graphical checks), 

and studies of influence are rather under-developed for the method, 

except in special cases - see Stephens(1977);

(ii) more seriously, its use of data is rather uneconomical and 

inference based on short sequences is likely to be unreliable.

This last difficulty is common to all methods of analysis for sample 

extremes; the point here is that if, say, k years data are available, 

then - other things being equal - inference based on the upper k 

order statistics ought to be at least as good as inference based on 

the annual maxima. This is because order statistics are at least as 

great as the annual maxima and so might be expected to be more 

informative about the upper tail of the distribution.

Weissman(1983) discusses and gives references to methods of 

analysis based on the use of a fixed number k of upper order 

statistics in simple random samples when the sample size n-n» and 

k/n+0. Under these conditions and some weak assumptions about the 

tail behaviour of the distribution function of the original sample, 

the joint asymptotic distribution of the order statistics can be 

derived and inference based upon it. These techniques have been 

developed partly to perform analysis in life-testing situations where 

a very large number of similar components are in use and it is hoped 

to estimate their minimum life. In this situation dependence on 

covariates may not be important, but no doubt the ideas could be 

extended to allow for it if necessary. However the joint density of 

the k statistics is potentially complicated and the method seems 

likely to be unwieldy in all but fairly simple situations.
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Other suggestions with less theoretical basis have been made. 

Berger et al.(1982) report the study of high levels of atmospheric 

sulphur dioxide by fitting two-parameter exponential distributions 

to concentrations exceeding high threshold levels; the fit obtained 

is apparently very good. The authors of the Flood Studies 

Report(1975), inter alia, advocate modelling extremes of river-flow 

series by fitting the two-parameter exponential distribution to fixed 

numbers of upper order statistics, a variant of the ’Peaks Over 

Threshold1 methods developed by hydrologists.

This family of models was first explicitly proposed by Todorovic 

and his co-workers (Todorovic and Zelenhasic, 1970; Todorovic and 

Rouselle, 1971; Todorovic and Woolhiser, 1972), in order to analyse 

the extremes of river-flow series. See also the Flood Studies 

Report(1975, I, Section 2.7). Essentially the idea is this: impose a 

high threshold level on the data and ignore what goes on beneath it - 

typically giving clusters of exceedances and their times of 

occurence; then model maxima Y^ (peaks) of different clusters as 

independent one-parameter exponential variables, and the times T^ at 

which they occur as a Poisson process. The most flexible version of 

this in the hydrological literature is probably that of North(1980), 

whose peak epochs T^ are a seasonally varying Poisson process, and 

whose peak sizes Y^, conditionally upon T -t , have independent 

exponential distributions with seasonally varying parameter X(ti ). 

Smith(1983), who reviews these models from a statistical viewpoint, 

observes that the twin assumptions of Poissonness of peak times and 

conditional independence of peak values are supported by empirical 

evidence and theoretical arguments, as in Todorovic(1979). However 

there are two issues worth raising in this context.

The first is the clustering of exceedances which occurs in 

practice. Although very many commonly studied stochastic processes
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do not exhibit clustering of extremes (Leadbetter, Lindgren, and 

Rootzen, 1983), it is an unfortunate fact that this does appear in 

data - caused by storms, tidal surges, and other natural events which 

persist over a few hours or days but not weeks or m o n t h s . 

Incidentally, one broad implication of this is that it may be 

dangerous to model a set of data by, for example, a Gaussian process 

or a time-series model with Normal margins and then to try to derive 

extremal behaviour from the estimated parameters, since the original 

model may not adequately describe the tails of the data, exactly 

where fit is hardest to assess. This point is also made by 

DeMouchel(1983), in the context of fitting stable laws to whole 

samples to estimate their behaviour in the tails: he concludes that 

models specifically for the tails are likely to be less misleading, 

and goes on to suggest ideas enlarged upon below. Smith(1983) 

propounds a model of clustering and goes on to fit it successfully to 

wave-height data, but does not allow for the much more complicated 

possibilities which may arise if exceedance sizes in the same cluster 

are allowed to be dependent - a hard and unsolved problem.

The second issue is the choice of distribution with which to 

model the excesses themselves. Although the exponential distribution 

seems to fit the sulphur dioxide data mentioned above and some 

hydrological and oceanographic data well, it lies in the max-domain 

of attraction of the type I (Gumbel) extreme-value distribution and 

so cannot possible model all tail behaviour for exceedances, which 

could include Pareto-type tails and upper endpoints. Following 

Smith(1983), Davison(1983), and EfeMouchel(1983), the generalized 

Pareto distribution

r 1 - ( 1-ky / a )1/k ( k*0)

F(y) = <
1 - exp( -y/a) ( k-0),
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( -» < k < »  , a > 0  ; 1-ky/ a > 0 ),

is proposed as the natural form for the purpose. The justification 

for this is Pickands1(1975) important result that a continuous 

distribution function G(.) with yi=sup{ x:G(x)<l } satisfies the 

condition

lim inf sup J { l-G(u+x) }/{ l-G(u) } - 3"(x;a,k) | =* 0,
u+jr G<a<°° 0<x<°°

where ̂ (y;a,k) = l-F(y), if and only if G lies in the max-domain of 

attraction of an extreme-value distribution. The practical 

consequence of this is that the generalized Pareto distribution may 

be regarded as the natural parametric family for exceedances over 

high thresholds, since their distribution functions can be made 

arbitrarily uniformly close together for high enough thresholds u and 

a suitable choice of a. The approximation has potentially wide 

applicability, since all common continuous statistical distributions 

lie in the domain of attraction of an extreme-value distribution.

As Smith(1983) points out, there is a close connection with the 

classical generalized extreme-value distribution

G(y)

| exp{ -( l-k(y-a)/a1/^  } ( k*0)

exp{ -exp( -(y-a)/a ) } ( k = 0 ) ,

( -® < k,a < « , a > 0 ; l-k(y-a)/a > 0 ),

as follows. Consider a simple random sample of n variates with 

upper endpoint y^<°° , and suppose that an increasing sequence of 

thresholds u^ y^ is imposed. Take some value x>0 and consider the 

distribution of the maximum of the sample, which may be written

n
Prob( M  <u +xv ) = 7 (”)f (u  )n _ i { 1-F(u ) }* Prob( Y<u -Hxv )i *n n n JLr} ^  n L n J n n
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The right-hand side of this is

where S ’Cy) = l-F(y) is the survivor function of the variables Y^.

Provided that F(.) is smooth enough for the sequences {u } and {v }n n
to be chosen so that n 3(u ) -► X>0 and to make u +xv )/ 3 ( u  )^ n n n n
tend to the generalized Pareto limit as n  + then by the usual 

Poisson limit to the binomial distribution we have

00

Prob( (M -u )/v < x } £ e“ * { X-X(l-kx/a)1/k } V i !
n n n i=0

= exp{ -XCl-ky/a)1^  }

for some a>0 and real k - the generalized extreme-value distribution. 

This heuristic argument shows the connection between the limiting 

distributions clearly: for a given underlying F(.) the values of k 

for both the limit distribution of the maximum and the limiting 

conditional exceedance distribution are exactly the same.

The next few chapters of this thesis are laid out as follows.

In Chapter 5 some of the basic statistical properties of the 

gneralized Pareto distribution, and their uses, are described, and it 

is characterized by its 'threshold-stability'.

In Chapter 6 maximum likelihood estimation of the distribution 

is studied in detail, both for complex covariate-dependent data and 

for simple random samples, for which results on bias, censoring, and 

influence for maximum likelihood estimates are given. Two other 

methods of estimation are compared - fairly unfavourably - with 

maximum likelihood.

Chapter 7 gives some diagnostic tools for assessing fit of the 

distribution; these include residuals, a score test for fit, and 

ideas for looking at influence of observations on estimators.
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5. THE GENERALIZED PARETO DISTRIBUTION

This chapter describes some basic properties of the generalized 

Pareto distribution, with comments about their statistical 

implications. Then a theorem characterising the distribution 

precisely as the only distribution which is 'threshold-stable' - in a 

sense later defined - is stated and proved.

For k<0 the distribution

was one of three proposed by Pareto(1897), and consequently is known 

as a Pareto type II distribution. Karl Pearson derived it as type VI 

of the family of distributions which bears his name, and later 

Macguire, Pearson and Wynn(1952) found that it was the compound of 

exponential variates with gamma-distributed random hazard. In a 

different context to that of extremes Davis and Feldstein(1979) call 

the Pareto type III a generalized Pareto distribution, but here the 

usage of Pickands(1975) - who seems to have coined the phrase 

'generalized Pareto* - is followed, and the term is applied to the 

law F(.) above.

Its density is monotonic decreasing for k<l and increasing for 

k>l: it is uniform when k=l, triangular when k=J^, and exponential 

when k=0. The rtk moment of the distribution exists when r+l/k is 

negative, and is then

F(y) =

1 - exp(-y/a)

(ke R , a>0, l-ky/a>0),

1 - (l-ky/a)1/k (k*0)

(k=0)

E[xr] = ar(-k)“r-1r(l+r) r(-l/k-r)/r(l-l/k) .
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The first four central moments are

U i - 0 / d - H O ,  u3=2 0 3(l-k)/[Cl+k)3(l+2k)(l+3k)],

U2=°2/ [ (1+k)2 (l+2k) ], u1)=3a1' ( 2kz- k + 3 ) / [ (1+k) (l+2k) (l+3k) (l+4k) ],

when they exist. The hazard function is (a-ky)-1 for y less than y ^ , 

the upper support point sup{ y : F(y)<l } of the density, which is 

the finite value a/k for k positive.

The expected value of the r^*1 order statistic in a simple random 

sample of size n exists provided that n+l-r>-k, and is then

r
E[ Y  ] = -k-1a [ n (n+l-i)/(n+l-i+k)-l]. 

r,n i=l

Provided the expectations exist, the difference between two 

successive order statistics is

r
E [ Y ^  , -Y ] = (n-r+k)-1 H (n+l-i)/(n+l-i+k).L r+i n r,n i=1

The corresponding quantity for the exponential distribution is 

(n-r)- 1 , motivating the idea of plotting ordered sample values 

against exponential order statistics. Such a graph should be concave 

for k>0, a straight line for k=0, and convex for k<0, providing a 

means of assessing the weight of the sample upper tail. Estimation 

procedures based on sample order statistics can be developed which 

sometimes have high efficiency in other applications, and may be 

useful for this distribution when k is large and positive.

The conditional distribution of Y-s for a positive threshold 

s < y i , given that Y>s, is generalized Pareto with parameters k and 

a-ks. This property suggests a characterization of the distribution 

- to which I return below - but for now note that provided k>-l is 

implies that

E[ Y-s | Y>s ] = (a-sk)/(1+k),
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and suggests the following graphical procedure for assessing the tail 

behaviour of simple random samples: for a succession of increasing 

levels s form the mean excess y(s) of the sample over s, and plot 

y(s) againt s. As s increases the generalized Pareto distribution 

will in almost all cases approximate the tail of the data, where the 

graph should be a straight line with slope -k/(l+k) and intercept 

a/(l-Hc). This has two practical uses: it provides rough estimates of 

k  and a; and it suggests a minimum level at which the threshold 

should be drawn, namely above any non-linear lower portion of the 

graph.

Figure 5.1 shows this plot for the data in Figure 1.3, the set 

of exposures to Kr85 time-integrated air concentration at the 

receptor 800 km north of Mol in 1976, due to one Curie releases 

of the isotope from Mol every three hours. It shows a strong upward 

trend, indicating that k is negative and that the data have a
/v ^Pareto-type tail. Graphical estimation gives cj~ 0.003 and k~0.55. In 

this instance the graph gives little information about where the 

threshold should be drawn, suggesting as it does that the 

generalized Pareto distribution should fit the entire dataset quite 

well.

Here is the characterisation result mentioned above, given as 

the first of only two theorems in this thesis:

Theorem 1:

If F is a non-degenerate d . f . with mass between the points 

yo=inf{y : F(y)>0) and yi=sup{y : F(y)<l}, if 0<yo<y1<°°, and if a 

random variable Y  with d.f. F has the property that

Prob( Y>s+ta(s) | Y>s ) = Prob( Y>t ) .... 5.1

for all CKs,t<yi and some function a(s), then F is the generalized 

Pareto distribution. Conversely the generalized Pareto distribution



Figure 5.1 : Mean excesses over thresholds : Krg5 time-integrated air concentrations 800 km north of Mol due to 
unit releases over three-hourly periods through 1976.
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satisfies 5.1.

Remark that if in the above expression we have a(s)=l, we have 

the well-known floss of m emory1 characterisation of the exponential 

distribution. By analogy with the so-called 'max-stable* property 

which characterises the generalised extreme-value distribution, we 

call condition 5.1 'threshold stability', since it implies that the 

renormalised excess of Y  over any level s<y! has precisely the 

distribution of Y.

The proof of the theorem is elementary but rather tedious. It 

proceeds in two halves: that for a d.f. satisfying 5.1 the only 

possible form of a(s) is 1+bs with b negative if y^ is finite and b 

non-negative otherwise; and that for such an a(.), F(.) must be 

generalized Pareto. The components of the proof are given as three 

lemmas. Throughout suppose that 3" is the survivor function which 

corresponds to the distribution function F, that is, 3(x) = l-F(x).

Lemma 1:

If the d.f. of a random variable Y satisfies the conditions of 

the theorem above, then yQ=0 and <x(s)=l+bs, with b<0 if y^ is finite, 

and b>0 otherwise.

• a(s) is positive if it is defined. For if a(s)=*0 for some s, 

then

1 - P[ Y>s | Y>s ] = P[ Y>t ] ( V t  ),

and F is degenerate, a contradiction. And if for some s, a(s)<0, 

then

1 * P[ Y>s+ta(s) | Y>s ] = P[ Y>t ]

for all yi>t>y0 , and F is degenerate, again a contradiction.

When s<yi, rewrite 5.1 as the functional equation

3 (  ta(s)+s ) = 3 < s )  3(t) 5 2• • • •  • 4i •
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with 0<s,t<y1 . Set t=0 to see that 3 ’(0)=1, and set s=0 to see that 

ct(0)=l.

(i) Suppose that yj is finite, and choose any t such that l>5(t) >0, 

letting a=a(t) for short. Then

1 > 3 ( t ) n = 3( t(l+a+.. .+an_ 1)) > 0

by induction on 5.2. Then a=a(t)<l, otherwise t(l+ori-a2+ . . ,+an )>yl 

for some n, leading to a contradiction. But as n increases, so 

3  (t)n + 0, and

t[ (1-ah)/(1-a) ] -»• y i ,

implying that yi=t/(l-a(t)), whatever the value of te[yg,yj]. That 

is, a(t)=l-t/y1 for such t.

I now prove that yg=0 by supposing otherwise and by deducing 

that 3-(.) is a step-function obtaining yet another contradiction.

If y 0>0 then 3 < y 0)<l, so a(yo)=l-yo/yi• Choose s and t so that 

y 0<s<t<yi, so that

0 < (t-s)/ct(s) = y x[ (t-s)/(y1-s) ] < y : ,

and thus

3 ( t )  = 3(s) 3  ---- 5.3,

from 5.2. Setting s=yg, it follows that 3 ( t ) =  3(yo) whenever 

yo<t<yo+7o(yi-yo)/yi» that i s , 3 ( . )  is constant in the interval 

[yo»yo+yo<yi-yo)/yi)- It follows easily by induction that 3* has 

constant value 3 ( y o ) ^  on each interval

k — i k
[ yo l  d - y o / y i ) 1 » yo I d - y o / y i ) i+ 1 )*

i=0 1=0

Now choose s and t on opposite sides of yo(2-yg/yi), but close enough 

so that (t-s/a(s) < yg. Then

3 ( y o ) 2 - 3 0 0  - 3(s) 3- ( = 3 ( y 0),
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a contradiction. Thus yo=0, and a(s)=l-s/yi, as required.

(ii) Now suppose that y^ = °®. The sequence argument above at the 

start of (i) shows that a(t)>l for t>0 and that a(0)=l. Another 

step-function argument shows that yo=0. It only remains to show that 

a(s)=l+bs for some positive b.

The function 3  is strictly monotonic. For if 3(s) = ^(t),

and 0<s<t, then

and thus ^ ( ^ f y )  = !• But yo=0> so s*t. Therefore 3 ” 1 exists, 

and since

3 < s ) 3 ( t )  = 3(t) 3(s)
it follows that

3 ( s + t a ( s ) )  = 3(t+sa(t))

and so s+ta(s) = t+sa(t) for all s,t>0. Thus (a(s)-l)/s = (a(t)-l)/t 

= b, for some non-negative constant b, which establishes the lemma. •

Before preceeding to prove the theorem, I now make a definition, 

and state and prove two lemmas, one short, and one slightly longer. 

Define the support S(b) for b e R  thus:

S(b)

(  r
[ 0, «  ) (b>0)

1 [ 0, -1/b) (b<0).

Henceforth assume that when b and 3  appear together, the particular 

b chosen is such that 5.1 is satisfied with a(s)=l+bs.

Lemma 2:

1. If yeS ( b ) , then 3 ( y ) n = 3  ( 1+by)n 1 j .

2. If y, aeS(b), and a<y, then (y-a)/( (l+ba)y ) < 1.
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• 1. Proved using 5.3 by induction on n.

2. Since yeS(b), l+by>0, so y+yba > y-a, so 1 > (y-a)/( (l+ba)y ), 

provided that y>a. •

Lemma 3:

If be/R and F(.) is a d.f. with mass in S(b) whose survivor 

function 3  satisfies the equation

3(s) 3(t) = 3(t+s+tsb)

whenever s, teS(b), then:

(i) if b=0, F is the exponential distribution function;

(ii) if b*0, F(y) = 1 - (l+by)” 1/c for some real c with the same 

sign as b.

• This proof is in three stages.

(i) b=0. The result is well-known, and is given in Feller (1968, 

p359), under the weaker condition that 3  be bounded in some 

interval.

The proof of part (ii) is a clumsy adaptation of Feller's proof.

(ii) b>0. No w 3<0)=1, and 3(x)>0 for all positive x. Choose the

positive c for which 3 ( 1 ) (1+b) 1/c=sl, and define v(x) = 3 ( x ) (  1+bx) 1/c 

for all positive x. v(x) is bounded in bounded sets, in particular 

in the unit interval, and satisfies equations 5.2 and 5.3.

I aim to contradict the boundedness of v(.) if v(.) is not

identically one in S(b) by showing that otherwise a sequence {u^}

the unit interval exists with the property that v(u )•*» as n ^ .n
To begin, suppose that ueS(b) has v(u)=q*l. If u>l, note that 

v(u) = v ( 1)v( (u-1)/(1+b) ) = v( (u-1)/(1+b) ) = q, 

and repeatedly replace u with (u-1)/(1+b) until u<l. If q<l, note

that
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1 = v( (1-u +  u ) = v(u)v( (l-u)/(l+bu) ),

and therefore that by part 2 of Lemma 2, u* = (l-u)/(l+bu) < 1 and 

v ( u f)>l. This establishes that if v(.) is not identically unity in 

S(b), it exceeds it at some point of the unit interval.

Now
v(u)n * v[ { (l+bu)n-l }/b ],

by part 1 of Lemma 2, and so the sequence u^ in [0,1] defined as 

{ (l+bu)n-l }/b if this is less than one, and as any xe(0,l) for 

which v(x)=v(u)n otherwise, has v(un ) unbounded. Such a sequence can 

always be found because v(u) =* v( (u-l)/(l+b) ) if u>l.

But v(.) is bounded in bounded sets, a contradiction, and so if 

b>0, v(x) is identically one in S(b).

b<0. Choose zeS(b) and c<0 such that ̂ C z ) = (l+bz)- 1 / c , and define 

v(x) as above. v(z)=l, and again v(.) satisfies equations 5.2 and

5.3 and is bounded on compact subsets of S(b). The proof now follows 

much as before, except that z takes the place of the point 1.

This completes the proof of the lemma. •

Theorem 1 may now be proved as follows.

• If for some function a(s), 3- satisfies the conditions of 

Theorem 1, then by Lemma 1, a(s)=l+bs for some b, and the 

distribution function F=l-3- puts all its probability mass in S(b). 

Apply Lemma 3 to establish the first half of the result. The 

converse is verified by direct substitution. •

The objective of this part of the thesis is to develop and study 

methods for the statistical analysis of extremes, rather than to 

pursue the probabilistic ramifications of this theorem. But note 

that is provides one of the main building-blocks for a proof of the 

conjecture that if a non-degenerate d.f. G(.) and some function 3(.)



have the property that the limit
1-G( s+t3(s) )lim

s+xj 1-G (s)

where xi=sup{ x : G(x)<l }, exists at all continuity points of the 

survivor function 3"(.), then 3  is the survivor function of the 

generalized Pareto distribution. In fact the theorem proved above is 

directly analgous to Theorem 1.4.1 of Leadbetter, Lindgren and 

Rootzen(1983)'s version of the 'extremal types theorem': the 

well-known result that the generalized extreme-value law is the only 

possible limiting from for the distribution of maxima sets of i.i.d. 

variates.

Part of the second half of the conjecture is contained in 

Theorem 2, which shows that a non-degnerate 3* arising as above must 

of necessity be threshold-stable at its points of continuity.

Theorem 2:

Suppose that G is a distribution function with upper support 

point xi=sup{ x : G(x)<l }, and that a function 8(s) exists such that 

the limit

1-G{ s+tg(s) }
lim 1-Gisl = 3"(t)
s+xi

exists at all continuity points of 3  , which is the survivor
-3r

function of a non-degenerate distribution. Then^must be threshold- 

stable where it is continous.

• Say that yi=sup( x : 3(x)>0 ). First suppose that 0< t,u <yi,

and that t and u are continuity points of 3", and consider:

H{ s+t0(s) } H{ s+0(s){ t+ua (s) } }
3 ( t )  3(u) = lim ------------------ ----------------------------------

S/*xi H{s} H{ s+t0(s) }

H{ s+3(s){ t+uat (s) } }
lim
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where at (s) = 3(s+t3(s))/3(s) and H(s)=l-G(s).

The function 0̂ ( 3 ) must be bounded as s approaches xi. For if 

y X 00, then t+uo ( s X y j ,  so a^Cs)<l-t/yi. And if yi**00, then if a^Cs) 

is not bounded, a sequence s^ exists such that at (sn )>n for each 

natural number n. In which case 3"(t) 3  (u) < 3 ( t + u n )  for each n, 

which is impossible.

Therefore a sequence s exists such that a (s ) converges to an t n
limit a t , say, for each fixed t; without loss of generality either

o^Cs^) increases or it decreases.

Suppose first that a. (s ) + a . Thent n t
h [s +3(s ){t+ua >] H[s +3(s ){t+ua (s )}] h [s +3(s ){t+ua (s )}] u n n t ^ n n t n ^ n_____n_______ t m

H{s > H{s } H{s }n n n

for any fixed m<n. Letting n tend to infinity,

3 {  t+ua.. ) > 3 ( t )  3 ( u )  > 3 (  t+ua (s ) ) . u c m

And letting m  tend to infinity, since 3  is right-continuous it must 

be threshold-stable.

Now suppose that at (sn ) + a t > and by a similar argument see that

3 (  t+urt,(s ) ) > oF(t)3(u) > 3 ( t + u a  ). t m  t

If 3(t) 3(u) =* 3 ( t + u a t ), the result is proven, so assume otherwise, 

i.e. 3(t) 3(u) > 3(t+uat ). 3  is continuous at u, so a 5>0 exists

such that

3 [  t+(u+6)a (s ) 1 > ^ ( t ) 3 ' ( u )  > 3 ( t + u a  ).L t m  J t

But for large enough m, (u+5)a (s ) > ua , since a (s ) + a and sot m  t t m  t

3(t-Hia.) > lim 3" [ t+(u+S)o (s ) ] ,
C m —  c m

a contradiction.

Thus 3* is threshold-stable at its points of continuity,
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establishing the theorem. ®

Theorems 1 and 2 go some way towards a direct proof of Pickands’ 

(1975) result. What remains is some tidying-up, and some effort to find 

equivalent conditions for convergence of distributions of maxima and 

those of excesses. I turn instead to statistical inference for the 

generalized Pareto distribution.



6 ESTIMATION OF THE DISTRIBUTION

A  major aspect of statistics is the description of systematic 

variation in response variables in terms of the behaviour of 

explanatory variables. Here there is the need to assess the extent 

to which exceedances for different but related series depend on 

external factors. There is a further point to make specifically in 

the context of extremes. The generalized Pareto distribution is an 

asymptotic approximation to the distribution of exceedances, an 

approximation which should improve as the level over which it is made 

increases. Use of covariates to synthesise tail information from 

several series allows higher thresholds to be imposed in each, so the 

overall approximation may be closer.

McCullagh and Nelder(1983) give an account of the analysis of 

complicated data through the use of the generalized linear model, 

which has proven to be a very successful technique. It provides a 

temptingly powerful tool for describing, unifying and assessing the 

dependence of random variables on known covariates. The temptation 

is not resisted much longer.

A  great strength of the idea is the use it makes of maximum 

likelihood estimation, but in the present context this is not always 

possible: such estimation of the parameters k and a of a generalized 

Pareto random variable is non-regular in the sense that the score 

statistic is not asymptotically Normal if k>/£ (Smith, 1985); and if 

k>l it has infinite mean and so the usual Taylor expansions cannot be 

made. Smith studies maximum likelihood estimates in a number of 

non-regular cases, including the generalized Pareto distribution with 

k> and derives results about their rates of convergence.

Experience with fitting the distribution to data indicates that such 

non-regularity is not a common problem, a view which seems to be 

shared by others working with the extreme-value distributions.
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Typically the value of k is fairly close to zero. If the problem of 

non-regularity does arise it may be overcome by using Bayesian 

techniques, although the specification of a meaningful joint prior 

distribution for the parameters and programming and computation of 

the appropriate numerical integrations seem likely to be hard in all 

but the simplest cases.

Smith(1985) suggests in that in single-sample problems the upper 

endpoint of the distribution may be estimated by top sample order 

statistic, but it is not clear how to extend this to problems where 

the data involve dependence on covariates.

Cheng and Amin(1983) propose a class of estimators which allow 

endpoints to be estimated in such cases, but their results do not 

extend immediately to censored data.

Throughout this chapter the are regarded as generalized 

Pareto variates which are independent, conditionally on the values of 

their associated covariates. In view of the comments in Chapter 4 

this assumption will only rarely be exactly right for excesses from 

the same cluster, but it seems an appropriate starting-point for what 

follows.

Section 6.1 gives some fairly detailed results about maximum 

likelihood estimation and hypothesis testing for a general 

parametrization of the distribution. Section 6.2 turns to more 

detailed results on bias, censoring, and influence for maximum 

likelihood estimates in the special case of a simple random sample. 

Then in Section 6.3 moments and least-squares estimation for the 

distribution are considered and their efficiency assessed. Finally 

Section 6.4 contains some results on discrimination between different 

types of tail behaviour for simple random samples.
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6.1 Maximum likelihood estimation: generalities

Suppose that the Y^ (1=1...n) have generalized Pareto 

distributions with parameters k^ and o^, that conditionally on the 

known value of p+1- and q+l-vectors of covariates x^ and z^ they are 

stochastically independent, and that k^<y£for all i so that standard 

maximum likelihood theory applies. Suppose in addition that 

k^=k(ytz^) and that o^«=o(0tx^) in terms of parameters 0=( y ,8). The 

natural functions k(.) and a(.) here are the identity and exponential 

functions respectively, in which case ^ =Ytzi and a ^ e x p C 8 tx ^ ) , but 

other possibilities may be suggested by the nature of or examination 

of the data. Finally suppose that the Y^ may be upper-truncated by 

some mechanism independent of them, perhaps representing random 

censoring in a medical context, or loss of information due to a 

measuring instrument going out of its range of calibration or being 

blown down or washed away. Say that 6^=0 if the observed value y^ of 

Y^ is the true one, and otherwise that 6^=1 in which case the actual 

value of Y^ is known to be equal to or greater than y^. Then the 

contribution to the loglikelihood made by the i ^  observation is

r (l/ki-l)log{l-kiyi/ai}-logai+6i[logaitlog{l-kiyi/oi}] (k^O)

”y i^ai_logai +<Silog ai Oc±-0)

(ai>0, 7i>0, 1" V i /ai> 0 ) ’

and the p+-q+2 vector 0(y >3) of unknown parameters is to be estimated 

from the data. Often, the k^ will have common value k  for all 

observations and there is no censoring; the resulting formulae for 

information matrices and so on are then much simpler. Here are the 

elements of the score vector, the second derivatives of, and the 

Fisher information matrix i Q for the loglikelihood of the
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whole data: the score vector

where

; a ,lc)/31ci

and

3£i (y;<*,k)/3ai

3*/3Ys = l ± *l8k1,W 1(y1!«1.k1)/9k1.

3*/3Bu - I± *tu®i , M i<yi;V ki)/9V

-k” 2log(l-ky/a)+(l-l/k)y/(a-ky)-Sy/(a-ky) 

y/a-Ji(y/a)2-6y/a

(l-k)y/{a(a-ky)}-l/a+6[l/a+ky/{a(a-ky)}] 

[y/a-1+6 ]/a

the matix of second derivatives

32i/3Yg3Yt - [ ki ,232*1(y1;°1>ki)/3ki2
+k1 " 3 t ( y 1 ;o 1 >k1 ) / 3 ki ] .

32*/8Y,aPu -  l± zls xlu  Y V ^ V V V V ^ V V

32il/36u 3Bv = l± x lu x lv  [ o1 - 232t 1 (y 1 ; « 1 ,k 1 )a o 1 2

+  a ^  ,3A(yi ;oi ,ki )/aai ],

where

3z£i (y;a,k)/3ki 2 = <

f 2k 3log(l-ky/a)+2y/{k2 (a-ky)}

+  (l-l/k)y2/( a-ky) 2-<%y2/( a-ky)2

(y/a)2 [ l-2y/3a ] - 6c(y/a)2

32^± (y;a »k)/3k^3a^ = <

(  -y/(a(a-ky)}+(l-k)y2/]a(a-ky)2}

+  y/{a(a-ky)}+ky2/{a(a-ky)2} ]

(k*0)

(k=0)

(k*0)

(k=0);

(k*0)

(k=0),

(k*0)

y(y/a-l)/a 2  +  <$y/a2 (k=0 ),
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and

(k-l)y[ l/a+l/(a-ky) ]/(a(a-ky)}+l/a2
(k*0)

32£;L(y;a,k)/8ai2 = i
- 5[ l/a2+ky{l/a+l/(a-ky)}/{a(a-ky)} ] 

(l-2y/a)/cr2 - 6/a2 (k=0);

the elements of the Fisher information matrix are

-E[ 3**/3Ts 3rt ] - l t  «l8»lty 2

-El 32*/3Y>3Bu ] - l ± «1.xluk1*a1

-E[ 32Jl/3P 30 ] = L  x. x, o.'2L u v J ‘'i iu iv i

where the j 1s are given by the expressions

jk k (yi ;W ’

•jka

a ( y ^ V V *

jk k (y;a>k ) 3 [ 2-6fc<2+2w+w2-4kw-3kw2+ 2 k 2w 2 )(l-ky/a)1/k" 2 ]/

{ (l-k)(l-2k) },

jka (y;a »k) = -[ l-&(l+w+2kw)(1-ky/a)1/k" 2 ]/{ a(l-k)(l-2k) }, 

j a a (y;a,k) = [ 1— <SjC 1—Icy/a)1 /k~ 2 ]/{ (i-2k)a2 }.

Throughout the equations, 0<s,t<q, 0<u,v<p, and z^ q=x ^ q=1; while 

o ^ ’jk^* and so on are the derivatives of and k^ with respect to 

their arguments; and w=y/a.

In the case when k ^ k  for all i, and there is no censoring, 

without otherwise losing generality set £ x^ *0 for l*u<p so that the 

overall mean is orthogonal to all the other regressors. The Fisher 

information matrix is then

(l-2k)_1

XCX

0

0

0

2n/(l-k) 

-n/(1-k)

-n/(1-k)

of side p+2, and this is easily inverted if Xtx is full rank. This
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form of the matrix has obvious implications for the robust and 

optimal design of experiments for sample extremes; however such data 

only rarely arise from designed trials.

Deatils of computational procedures for the estimates are not 

studied here. Nevertheless note that if each k^<0, methods for 

unconstrained optimization of the likelihood may be used, but that if 

some or all of the k^ are positive, maximisation is subject to the 

constraints l>k^y^/a^, and a suitable algorithm may be needed.

A  consequence of the non-regular behaviour of the estimators for

k >Yt is that when CKkX'/? and expecially when l/3<k,, confidence i i i ’
intervals for parameters - and computational procedures for their 

estimates - which depend on quadratic approximations to the 

loglikelihood may be poor, so that it may be desirable to find 

confidence regions based on the likelihood ratio statistic rather 

thatn the asymptotic Normal distribution of the estimates. Plotting 

the loglikelihood is a useful guide as to the need for this; the 

matter is studied in more detail in the next section.

The usual theory of hypothesis testing for the effect of 

particular covariates, based on difference of maximized 

loglikelihoods, may be used, but care should be taken if any k^ are 

positive. One hypothesis of interest when the data are not censored 

and are divided into homogeneous subsamples is that the shape 

parameter k^ is constant throughout the data or some collection of 

subsamples, the alternative being that it differs in each. More 

generally it may be required to test the hypothesis of constant k 

against tl * alternative that some explanatory factors influence the

k i*
Althou*. h the difference of the maximized loglikelihoods under 

the models c a i be found, it will usually be more economical to 

construct a sc^re test for the null against the alternative
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hypothesis.

Such a test is based on partitioning the vector 0 into 

parameters £ of interest and nuisance parameters £ ,  and testing the 

possibility that £= 5 q » some particular null value. If *s

the maximum likelihood estimate of 0 on the hyperplane C=Co> then the 

statistic W^=U(0o)i(0o)“ 1U(0o) is asymptotically when the

true value of C is Here U(0(j) and 1( 0 q ) are respectively the

score statistic and Fisher information evaluated at 0O . The test has 

power properties similar to those of the likelihood ratio test but 

the likelihood need only be maximized on the null hypothesis - an 

advantage in potentially non-regular situations. See Cox and 

Hinkley(1974, Chapter 9) for more details.

For testing Y=0, i(9(j) is the p+q+2 matrix

2(l-k)"1ZtZ - ( l-k)_1ZtX 0

- ( l - k ^ ^ Z XfcX 0

0 0 M

where M  is (l-2k) times the Fisher information matrix for (Yo »&())• 

The upper left qxq element of i-1(0o) is

Q = (l-k)(Ztz)“1Zt[ I+V^a-k^XE^Xt JzCZtZ)-1,

where E is the matrix

Xt{ I- l4(l-k)“ 1Z(ZtZ)_1Zt >X.

The sth (l<s<q) element of U(0 q ) is

h"* l± z±3i k(k-l)yi(ai-kyi)“1 - logCl-ky^^) >,

giving W  =U t (0 q )QU (0n), where U is the vector of the q uppermost u q  q q
elements of the score U, to be compared with x2 •
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6.2 Maximum likelihood estimation: simple random samples

6.2.1 Existence of estimators

Smith(1983) points out that when the n variates Y^ are 

independent and identically distributed according to the generalized 

Pareto law with parameters a and k it is possible to reduce the 

search for maximum likelihood estimates to a one-dimensional problem 

by means of a reparametrization. Letting T=o/k, the sample 

loglikelihood is

£(x,k) = nlog(x/k) +  (1/k-l) l o g C l - x y ^

(keflfc , x<l/max{yi > ) , 

and its differential with respect to k is

3£(x,k)/3k = -n/k - 1/k2^  l o g C l - x y ^ ,  

so that for a given value of x, 3£/3k=0 implies that

k(x) = n-1£±lo g (l-xyi ).

The second derivative 32&(x,k(x))/3k2 is almost surely defined and 

negative, so the maximum likelihood estimates of k and x - if they
A

exist - may be found by maximizing &o(x)=£(x,k(x)) as a function of 

x, either graphically or numerically.

The function £ 0 has a singularity as x I -l/max{Y^}, and if one 

exists a local maximum of £,q should be chosen to provide maximum 

likelihood estimates. A  local minimum must exist if a local maximum 

does, because of the singularity, so some care is needed to find the 

correct root of the equation Z o *(t )=0. Table 6.1 shows the results 

of a small simulation study to investigate the existence of maximum 

likelihood estimates in single samples. Changes of sign of I q ' were 

sought in the interval ( -l/max{Y^}, 20 ), for samples generated for
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a=l and several values of k. The number of cases out 100, for 

several sample sizes, in which they could be found by evaluating the 

function at a mesh of points of separation - 0.01 is recorded in the 

table. Clearly roots of the equation exist with high probability 

except for very small sample sizes and positive k. These results are 

in broad agreement with those of Smith and Weissman(1985) for the 

closely related case of estimating the parameters of the Weibull 

distribution in non-regular and almost non-regular cases.

sample
size -0.6 -0.4

value

-0.2

of k 

0.0 0.2 0.4

10 88 88 74 75 54 37

25 100 100 100 96 97 85

40 100 100 100 100 99 98

65 100 100 100 100 100 99

Table 6.1: Numbers out of 100 simulated simple random samples
in which likelihood equation roots could be found.

6.2.2 Their small-sample properties

Although such estimators are asymptotically unbiased, they are

usually biased to some extent in finite samples. In some cases

expressions for the bias to order n” 1 or higher may be obtained as

follows (Bartlett, 1952; Haldane, 1953; Shenton and Bowman, 1977):

make a second-order Taylor expansion of the likelihood equation 
A

3-t(Y;0)/30=O about the true parameter-value 0, and solve the 

resulting equations to find the bias E[0-0] to order n _ 1 . For the 

case of a simple random sample of generalized Pareto variables with 

parameters a and k, it emerges after appreciable calculation that the

A
nE [ k - k ] = 2(l-k)3/(l-2k)(l-3k)+0(n“ 1) ,

biases are
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A
na_1E[a-a] = -2k(4k2-k-l)/(l-2k)(l-3k)+0(n” 1),

when standardized to be 0(1) and independent of the scale a, provided 

that k< so that the appropriate expansions can be made and 

expectations taken. Table 6.2 shows these expressions calculated for 

a few values of k, together with some simulated standardized biases.

The simulated results are based on 1000 samples each of sizes 

25, 50 and 100 for each of the values of k indicated in the table.

The one-dimensional line-search discussed above was used to find the 

estimates, if possible, until 1000 samples in which they could be 

found had been generated. The table also gives the total numbers of 

samples of size 25, 50 and 100 generated.

Comparison of the simulated and theoretical biases reveals that 

the 0(n- 1 ) theoretical biases underestimate the actual bias of the
A

estimators, except that of k when k=0.2; furthermore none of the 

theoretical values lies inside the approximate 95% confidence 

intervals based on the simulated biases. In fact for samples of size
A

about 25 the bias in k will be about 0.1 over most of the range 

considered, and amount likely to be practically unimportant compared 

with the sampling variation of the estimates, but is it worth knowing 

that the value of k tends to be slightly overestimated and hence the 

tail weight slightly underestimated in samples of small and moderate 

size. The value of a is slightly overestimated, and by a similar 

amount. In some sense this might be thought of as compensating for 

overestimating k.

The discrepancy between the theoretical and simulated values may 

be caused by the 0(n- 1 ) terms in the expression for standardized 

bias, although were this the case it would seem odd that the 

differences between the simulated biases for n=25 and n=100 are not 

greater. Further terms in the expansion for bias could be found, but 

as the bias is not large enough to be dangerous except in very small



shape parameter k

-0.6 -0.4 -0.2 0.0 0.2 0.4

Theory 1.330 1.386 1.543 2.00 4.267
standardized 3 II to U1 2.43810.539 2.504+0.525 2.656+0.437 3.013+0.394 2.770+0.365 2.218+0.305
bias of k oinIIc 2.29210.723 2.410+0.669 3.115+0.599 2.708+0.528 3.256+0.470 3.00 +0.397

n=100 2.33011.013 1.956+0.939 2.954+0.780 2.607+0.673 3.680+0.631 3.818+0.560

Theory 0.303 0.008 0.114 0.0 1.733
standardized n=25 3.30210.660 3.792+0.679 2.810+0.577 3.238+0.540 2.763+0.496 1.975+0.420
bias of a oinIIc 2.77310.839 3.231+0.815 3.344+0.808 2.746+0.705 3.321+0.656 2.76 +0.557

n=100 2.60611.130 2.692+1.119 3.87111.018 2.98310.927 3.650+0.889 3.423+0.821

Table 6.2 Standardized bias of maximum likelihood estimates for generalized Pareto distribution
bias ± 1.96 x s.e. (bias)

206
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samples the result seems unlikely to justify the effort involved.

I now address the question of the speed of approach to Normality 

of the maximum likelihood estimators of a and k, again by simulation. 

Mardia, Kent and Bibby(1979, pages 21 and 148) define multivariate 

measures of skewness and kurtosis, b]̂  and b 2 respectively, for use in 

comparing populations of multivariate data with the multinormal 

distribution. The asymptotic distributions of b^ and b 2 are known 

when the underlying population is multivariate Normal. The observed
A A

values of bi and b 2 for the joint distribution of (a,k) in 1000 

simulated samples of sizes 25, 50 and 100 are given in Table 6.3 for 

several underlying values of k, together with their asymptotic 95% 

confidence intervals based on the assumption that the estimators are 

bivariate Normal. The skewness is much too high even for n=100, as 

is the kurtosis for n<50, but for n=100 the kurtosis is high but lies 

inside the interval for each value of k. Thus the estimates are not 

close to their asymptotic distribution even for n=100, which might in 

some contexts be regarded as a fairly large sample size.

These results tie in with those of Johnson and Haskell(1983), 

who studied properties of maximum likelihood estimators of the 

three-parameter Weibull distribution by simulation. For samples of 

size 70 they found that the estimates were not Normally distributed, 

being both biased and skewed.

This non-Normality raises the issue of the small-sample 

distortion of asymptotic confidence regions for the true parameter 

values, based on the sample loglikelihood. The usual three 

statistics upon which such confidence regions are based are Wilks' 

statistic, equal to twice the log-likelihood ratio evaluated at the 

estimates and null point respectively, and regions based on the 

asymptotic Normal distribution of the estimates using either the 

inverse expected or inverse observed information matrix, evaluated at



shape parameter k

-0.6 -0.4 -0.2 0.0 0.2 0.4

n= 25 1.427 2.369 0.784 0.771 0.817 1.321
n= 50 0.554 0.610 0.872 0.343 0.513 0.633
n=100 0.203 0.305 0.100 0.232 0.271 0.364

n= 25 10.36 12.89 9.548 9.083 9.090 9.393
n= 50 8.758 8.585 9.788 8.737 9.531 8.977
n=100 8.382 8.479 8.341 8.383 8.252 8.382

Table 6.3 Observed multivariate skewness and kurtosis of mle (a,k) for 1000 simulated samples. 
Asymptotic 95% confidence intervals: b̂  G (0.003, 0.067)

b2 £ (7.504, 8.496)

(see Mardia, Kent, and Bibby (1979), pages 21, 148)
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the estimates, as the covariance matrix of the estimators. All three 

sets of regions are based on the asymptotic x22 distribution of the 

test statistics. One difficulty with situations such as this in 

which the Fisher information matrix is only positive definite for a 

limited range of some parameter - in this case k - is that the matrix 

may not be positive definite at the estimate. In the example to
A

hand, if k>/£, then although the observed information is positive 

definite, the expected information is not. The only sensible policy 

in this circumstance is to use Wilks* statistic or the observed 

likelihood for confidence regions.

Table 6.4 shows the results of a small simulation study to 

compare the behaviour of the statistics relative to their asymptotic 

significance points in samples of sizes 25, 50, and 100. Wilks* 

statistic is close to its asymptotic points even for n=25. The 

statistics based on observed and expected information are roughly 

comparable but are overdispersed relative to the limiting 

distribution and are not close to it even for n=100. This point is 

brought out more strongly in Table 6.5, which shows some of the 

observed significance points of the statistics in the same 

simulations. The nominal .95 and .99 significance points are 5.99 

and 9.21 respectively. Wilks* statistic behaves well even in the 

almost non-regular case k=0.4 for which only the second moment of the 

score is finite, but for n=100 and the totally regular case k=-0.6 

the nominally chi-squared statistics based on observed and expected 

information are not close to their asymptotic distributions.

The immediate practical implication of these results is that 

confidence regions for the parameters of the generalized Pareto 

distribution should be based on the likelihood ratio statistic rather 

than the asymptotic Normality of the estimators, which is approached 

only rather slowly even in totally regular cases. They also suggest
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n=25 n=50 n=l 00

.95 .99 .95 .99 .95 .99

Z .960 .987 .963 .995 . .941 .985

oII 0 .770 .831 .827 .891 .819 .903
E .901 .926 .871 .910 .802 .854

Z .952 .991 .937 .986 .941 .990
k=0.2 0 .746 .818 .829 .892 .861 .926

E .802 .852 .762 .829 .795 .845

z .943 .991 .929 .987 .958 .991
k=0.0 0 .774 .844 .834 .908 .913 .961

E .777 .829 .801 .880 .886 .941

z .944 .988 .938 .989 .944 .983

(NOII 0 .802 .869 .859 .921 .914 .958
E .780 .836 .832 .888 .897 .945

Z .925 .987 .973 .991 .930 .991

** II 1 O 0 .815 .878 .917 .938 .902 .954
E .788 .852 .896 .926 .904 .954

z .946 .992 .944 .986 .954 .990
k=-0.6 0 .838 .905 .882 .941 .927 .965

E .826 .887 .871 .938 .917 .964

Table 6.4 Observed proportion of likelihood confidence region statistics 
less than the 95- and 99-percentage points of their asymptotic 
distribution in 1000 samples of size n for different underlying 
values of k.

Key to statistics:

Z = twice loglikelihood ratio - Wilks1 - statistic; 
0 = observed information matrix;
E = expected information matrix.
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n*25 n=50 n=100

.95 .99 .95 .99 .95 .99

l 5.53 10.07 5.52 7.90 6.18 9.87
lc* 0.4 0 36.17 146.3 18.68 52.54 14.70 24.53

E 15.01 65.56 26.01 200.5 46.61 881.1

l 5.96 9.07 6.37 10.33 6.38 9.13

CNOIf 0 37.79 135.1 17.23 50.09 11 .65 23.43
E 32.17 215.3 42.61 245.7 29.28 130.6

l 6.15 8.61 6.88 9.36 5.75 8.75
k= 0.0 0 27.95 123.1 15.8 39.62 8.04 19.43

E 46.54 279.7 27.4 241.3 16.83 29.06

l 6.42 9.47 6.47 9.86 6.34 9.82
k=-0.2 0 22.38 91.79 12.24 26.17 8.57 20.35

E 35.58 163.1 15.24 42.85 9.70 23.03

l 7.94 9.70 6.37 8.87 6.75 8.87
k=-0.4 0 28.38 82.10 10.61 19.13 8.86 16.6 1

E 48.49 120.9 12.54 23.62 8.98 1 " . 90

l 6.11 8.88 6.35 9.43 7.20 9.11

x* n i o cn 0 14.10 43.64 10.70 23.14 11.12 14.74
E 17.09 60.85 11.25 23.73 11.31 15.50

Table 6.5 Observed 95 and 99 %-points of statistics for likelihood-based confidence
regions, in 1000 samples each of size n. for different underlying values
of

Regions based on:
2, ■ twice loglikelihood ratio - Wilks' - statistic; 
0 * observed information matrix;
E 3 expected information matrix.
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the more general speculation: is it possible to find analytically a 

correction factor for the small-sample distribution of Wilks* 

statistic, even in caes such as k=0.4 when the usual practice of 

basing an OCn” 1) correction on the third and higher moments of the 

score breaks down?

6.2.3 Influence and censoring

In the study of statistical extremes it is important to 

appreciate the extent to which estimation depends on the few largest 

or smallest observations. In order to quantify this I now present 

some results on the asymptotic loss of information due to censoring, 

and investigate the properties of theoretical influence curves for 

maximum likelihood estimators.

Consider therefore the distribution

U - H ^ C y ) }  [l-Cl-ky/a)1^ ]  +  H^Cy)

F(y) = i

{1-H (y)} [ l-exp(-y/a) ] +  H (y) c c

(k*0)

(k=0)

(a>0, y>0, l-ky/a>0),

which is generalized Pareto for y<c but puts an atom of probability

of size a=( 1 - k c / a ) ^ k  if k*0, or a=exp(-y/a) if k=0, at c. The

Heaviside function H  (y) here is zero when y<c and one otherwise.c
The components of the Fisher information matrix i (c) for a single0
observation drawn from this distribution are

-e [32Z/3q 2 ] = {l-(l-kz)1/k-2}/a2 (l-2k),

-E[32£/3a3k] = -{l-(l+z-2kz)(l-kz)1/k“ 2}/a(l-k)(l-2k>, 

-E[32*/3k2 ] = {2-(2+2z+z2-4kz-3kz2+ 2 k 2z2 )(l-kz)1/k“ 2}/(i-k)(l-2k),

where z=c/a, provided that k<'/£.
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The overall asymptotic information loss for estimation of k and

a is

{det(i0(c))/det(i0) } 4  x  100% ,

which is given in Table 6.6 for several values of k and probability a 

that the exact value of Y is unobserved and hence set equal to c.

Cox and Hinkley(1974) discuss this as a measure of large-sample 

relative efficiency of different asymptotically Normal estimators 

based on the same data, whereas here it is used to compare efficiency 

of asymptotically optimal estimators derived under different sampling 

schemes. Large-sample results may not apply to small and medium 

samples, but they provide useful guidelines.

probability a(%)

k 1 5 10 20 50

-0.4 95.4 81.9 69.1 49.9 16.3

-0.2 92.8 76.2 62.2 43.1 13.2

0.0 87.6 67.4 52.9 34.9 9.9

0.2 76.5 53.7 40.1 25.1 6.5

0.4 49.3 30.6 21.5 12.6 3.0

Table 6.6: Asymptotic relative efficiency(%) of upper-truncated
maximum likelihood estimation of the generalized Pareto 
distribution for different truncation probabilities a.

The information loss is severe for positive k even for a as low 

as 0.05, and for all values of k considered as a increases from 0.1. 

These results show where information for estimation of extremes comes 

from: in large samples truncation of the top 1% of the data can lead 

to the loss of one-half of the total sample information for the
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parameters! This is related to the fact that for k>'4the uppermost 

order statistic is a superefficient estimator of the endpoint a/k. 

There is also a close connection with the theoretical influence 

curves for the estimators.

The influence curve IC (y) of an estimator T ( .) at aT,F
distribution F(.) measures the suitably standardized effect on T of 

adding a single observation at the point y as the sample size 

approaches infinity when the model under consideration is correct. 

Mathematically it is defined as the Frechet derivative of the 

statistical functional T(.) at F(.) in the direction of the 

distribution function 6y which puts weight on at y:

T[(l-e)F+e6y]-T[F]
ICT,F(y) "4*8

provided the limit exists at each y in the domain of F.

Hampel(1968) and Andrews et al.(1972) use the influence curve to 

compare estimators and to suggest robust alternatives to them. I use 

it only to assess the sensitivity of maximum likelihood estimators to 

observations corresponding to various quantiles of the underlying 

distributions. For such estimators the curves are defined thus:

ic0 (y) - i0-1M(y;e)/3e ,

A
the sample version of which is approximately 9-0 by the usual 

large-sample theory. These functions are shown in Table 6.7 for 

different values of k  for several percentage points of their 

respective distributions, together with values of the influence 

curves of maximum likelihood estimators for the N(p,a2 ) and 

exponential(X) distributions, for comparison. The estimators for the 

generalized Pareto distribution are more heavily influenced by 

observations at the upper quantiles of the distribution than for the 

Normal and exponential distributions.
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Probability Y>y

k 0.1 0.05 0.02 0.01 0.005 0.002 0.001

0.4 0.79 1.06 1.22 1.16 0.87 0.04 -1.07

0.2 0.95 0.91 0.33 -0.58 -1.95 -4.58 -7.31

0.0 0.95 0.50 -0.83 -2.39 -4.44 -7.88 -11.04

-0.2 0.82 -0.05 -2.02 -4.02 -6.42 -10.09 -13.20

-0.4 0.59 -0.68 -3.13 -5.41 -7.96 -11.64 -14.59

-0.6 0.29 -1.33 -4.14 -6.59 -9.21 -12.85 -15.68

a. Influence curves IC(y) for the maximum likelihood estimator
A
k for the generalized Pareto distribution.

k 0.1 0.05 0.02 0.01 0.005 0.002 0.001

0.4 1.57 2.25 2.97 3.32 3.45 3.18 2.48

0.2 2.00 2.51 2.66 2.31 1.49 -0.41 -2.59

0.0 2.26 2.50 2.08 1.21 -0.14 -2.67 -5.14

-0.2 2.38 2.34 1.48 0.30 -1.26 -3.83 -6.11

-0.4 2.41 2.11 0.95 -0.36 -1.94 -4.34 -6.32

-0.6 2.38 1.86 0.52 -0.82 -2.34 -4.50 -6.22

b. Influence curves IC(y) for the maximum likelihood estimator

a for the generalized Pareto distribution •

0.1 0.05 0.02 0.01 0.005 0.002 0.001

X/X 1.30 2.00 2.91 3.61 4.30 5.22 5.91
AV 1.28 1.65 2.05 2.33 2.58 2.88 3.09

o/o 0.32 0.85 1.61 2.21 2.82 3.64 4.28

c. Influence curves IC(y) for maximum likelihood estimators 

for exponential and Normal distributions.

Table 6 . 7: Comparison of influence curves
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Particular conclusions to be drawn from these results will 

depend on the use to which they are to be put. A  plain implication 

in the present context is that any inadequacies of MESOS leading to 

systematic errors in the calculation of the most extreme exposures 

will exert a very strong influence on statistical models for high 

exposure episodes based on the generalized Pareto distribution.

More generally, in the study of sample extremes through the methods 

studied here very careful attention must be paid to events leading to 

the few highest observations, as these have considerable impact on 

inference - perhaps not a very surprising point. A  comment relevant 

to collection of data is that is it important to ensure that 

instruments are well-calibrated even out of their usual range, so 

that events which seem rather unlikely a priori are recorded as 

accurately as possible. Powerful statistical methods cannot 

compensate for unreliable data, expecially in the statistics of 

extremes, as is clear from Tables 6.6 and 6.7.

6.3 Some other estimators

6.3.1 Least squares estimators

In the special case when k^=k for all observations and there is 

no censoring, naive least squares may be used to find estimates of 

the parameters 0, as follows. Assume that a = e x p ( x ^ 0 ^ ) ,  with x^ a 

p+1 vector of covariates including an overall mean effect. Take 

logarithms of the data Y to see that the n-vector V = log(Y) 

satisfies

V = Xt0 +  (eo+*l)j +  e >

where e is a n-vector of independent log-generalized Pareto variates 

with zero mean; ic (r>l) are the cumulants of the log-generalized 

Pareto distribution with parameters 1 and k; and j is an n-vector of
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ones. Without loss of generality parametrize so that the columns 

of X sum to zero: i.e. the mean is orthogonal to regression effects.

The usual least-squares estimate 3 = (XCX) AXtV of 3 is unbiased 

and asymptotically Normally distributed with covariance matrix 

n - 1 (XtX ) “ 1 < 2  (Cox and Hinkley, 1968) and the inverse Fisher
A

information for the maximum likelihood estimates 3 of 3 is 

(X^-X)-1 (l-2k), provided . The asymptotic relative efficiency of 

3 relative to 3, Aj(k) = (l-2k)/<2» is given in Table 6.8 for several 

values of k. For positive k it drops rapidly as k  approaches \  , but 

is quite high for negative k.

shape parameter k

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5

A 1(k)xl00% 91.2 91.2 83.7 77.8 60.8 35.1 0.0

A 2 (k)xl00% 78.0 69.4 57.1 42.2 26.9 13.5 0.0

Table 6.8 Asymptotic relative efficiency of least squares estimates 
of parameter 0.

Estimates of 3o and k may be based on the residual sum of 

squares of the model; their joint efficiency A 2 (k), the square root 

of the ratio of the determinants of the covariance matrices of their 

maximum likelihood and least squares estimates, is also displayed in 

Table 6.8. The asymptotic relative efficiency of 0 in a model with p 

covariates is

{ A 1(k)PA2 (k)2 } ' ' ( p + 2 )  x 10Q% ^

which approaches A^ for large p. A 2 (k) is substantially less than 

A^(k) over the range |k|< of usual values of k, indicating that the 

overall loss of information due to use of least squares estimates for 

0 can be severe. If k is thought to be negative or close to zero,
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least squares fitting either to explore data to find suitable models 

later to be fitted by maximum likelihood or to find consistent 

starting values for 8 for numerical maximum likelihood procedures may 

be useful; but it cannot be recommended if k  is thought to be 

positive.

6.3.2 Moment Estimators

When the appropriate moments of random variables Y  exist, 

consistent parameter estimates based on sample moments may be found 

by equating their sample and theoretical values and solving the 

resulting expressions simultaneously. In the case of a simple random 

sample of size n from the generalized Pareto distribution, the 

equations are

a/(l4k) = n~ l l  y = Y ,
i-i 1

and

o2/(l+k)(l+2k) = (n-1)"1 l  (Y - Y ) 2 - S2 .
L-i 1

These give estimators k* and a*;

k* « { Y 2/S2 - 1 } ,

a* *■ Y { 1 +  Y 2/S2 } ,

which only have finite variance-covariance matrix for k>- '/̂ . This 

matrix is easily found to OCn"1) by making Taylor expansions and 

recalling that in terms of the cumulants ic of the generalized Pareto 

distribution, Var( Y ) =» kc2/ti, Cov( Y,S2 ) = K$/n, and 

Var( S2 ) = Kk/n  + 2<2/(n-l).

The asjnnptotic relative efficiency of k* and a* is given in 

Table 6.9 for k  < xl% , the only range in which they can be

compared with the asymptotically optimum maximum likelihood 

estimates. It is fairly low except for k=*0, where it is very high
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because when k is zero the likelihood equations and those determining 

the moment estimates are the same. The general conclusion is that 

except for k-0, moment estimates are not very good. However if k>l, 

when the likelihood equations fail to yield even consistent 

estimates, those based on moments may be useful, although their 

variances are large so that big datasets will be needed to give the 

estimators reasonable standard errors - see Table 6.10.

k ARE( k*,a* ) ARE( k* ) ARE( a* )

-0.25 0.0 0.0 0.0

-0.20 51.2 28.9 32.1

-0.15 75.5 58.4 66.3

-0.10 90.2 81.7 87.8

-0.5 97.8 95.7 97.5

0.00 100.0 100.0 100.0

0.05 98.2 96.4 98.4

0.10 93.4 87.5 94.5

0.15 86.5 75.9 89.3

0.20 78.1 63.5 83.6

0.25 68.6 51.7 77.5

0.30 58.4 41.2 71.4

0.35 47.6 32.2 65.2

0.40 36.2 24.7 59.3

0.45 23.6 18.7 53.4

0.50 0.0 0.0 0.0

Table 6.9: Asymptotic relative efficiency(%)
generalized Pareto distribution

of moment estimates of
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k Var( k*) Var( a*) Cov( k*,a* )

0.0 1.00 2.00 1.00

0.5 1.80 2.10 1.80

1.0 4.80 2.53 3.40

1.5 10.39 3.00 5.52

2.0 19.29 3.49 8.14

2.5 32.23 3.97 11.27

3.0 49.97 4.47 14.89

3.5 73.25 4.96 19.02

4.0 102.80 5.46 23.64

Table 6.10: Standardized variances and covariances of moment
estimates k* and a* of generalized Pareto distribution

6.4 Two tests for tail weight

Although the generalized Pareto law is a single parametric 

family of distributions, different values of k correspond to 

qualitatively different types of tail behaviour: power-law for k<0; 

exponential for k=0; and curtailed above for k>0. In some 

circumstances it may be necessary to test the hypothesis k=0 against 

either or both alternatives k positive or negative. Hosking(1984) 

compares a number of tests for this in the closely related case of 

the generalized extreme-value distribution: here I give a small 

discussion of the problem for simple random samples of size n from 

the generalized Pareto law. Two relatively informal graphical 

procedures which relate to this situation were given in Chapter 5. 

Here I deal with formal tests.

The scale parameter a is a nuisance parameter: the null 

hypothesis k=0 is composite. There are broadly two approaches to 

obtaining exact tests for composite null hypotheses, based on appeal
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to the invariance principle or on the construction of similar 

critical regions.

Exact similar test statistics may be found by observing that if 

k=0, then the statistic Z=£y ^ is sufficient for a, and hence the 

conditional distribution of the data { }n ^ _ 1 given the observed 

value z of Z is independent of a. Z is certainly boundedly complete 

and so critical regions such that

Pr[ t(Y) e 0)̂  j Z=z; k=0 ] = a

for a suitable test statistics t(Y) have Neyman structure and are

similar of size a. By the Neyman-Pearson lemma, the uniformly most

powerful tests for the alternatives k>0 and k<0 against k=0 are based

on the ratio of the conditional likelihoods of the data under the

hypotheses, or equivalently the conditional score statistic.

Here a problem arises: the joint density of the data {Y^}n ^_^

given the value of Z is unknown under the alternative hypothesis, so 
not"

it is^obvious how to find the relevant score. However the 

unconditional score statistic is easily derived and turns out to be 

equivalent to

G -  l  (Y /Z)2 
i=l 1

conditionally on the observed value z of Z. Then under the null 

hypothesis the quantities D ^ Y ^ / z  are distributed exactly as the 

spacings of a sample of size n-1 from the unit uniform distribution. 

Clearly the distribution of G is independent of a either 

unconditionally or conditionally on Z.

The statistic G, or Greenwood’s statistic, has a long history. 

Neyman(1941) derived it as a test for overdispersion in analysis of 

variance; Greenwood(1946) proposed it as a test for departures from 

Poissonness of a series of events; and Moran(1947, 1951, 1953) and
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others have studied it in the context of point processes. See also 

Pyke(1965). The distribution of G is unknown even under the null 

hypothesis, but Burrows(1979), Currie(1981) and Stephens(1981) give 

its significance points for selected sample sizes up to n=500. G is 

asymptotically Normal, but its approach to Normality is unusually 

slow. It has support in the interval [ 1/n, l], mean uG = 2/(n+l),

and variance a2 = 4(n-l)/{ (n+l)2(n+2)(n+3) }. Large values of T =
G

(li„-G)/cr indicate k>0, and conversely. Significance points of T are v» o
easily found from those of G.

Because of the slow approach to unit Normality by T when k=*0, it

is compared with a statistic

n-i v,
S - { 2 l  ( n - r ) Y , . / Z  -  (n-l)/2 } [ 12/(n-l) ] 1 

r=*n v '

whose null distribution is known to converge to it rapidly.

The statistic S was suggested by the fact that when k=0, the

quantities V ^ Y ^ ,  ^ ( n - l K Y ^ - Y ^  > • • • »Vn =s(Y (n )"Y^n _1 ^) are

independent exponential variates with parameter a. The statistic

V=£ V is sufficient for o, and the joint distribution of the 
r r

U (r) = l  V± , (r=l,..•,n-l), given that IrVr=v, is the joint

distribution of order statistics from a random sample of size n-1

from the uniform distribution on [o,v]. To see the effect of k*0

on the U, N , recall from Chapter 5 that (r)

Y (r+ 1)-Y (r) 1 “ «(n-rt*)-1n<l-H»tfIl)-1

where a. = (n-i+1)"1, so that i ,n

e [ D (r) ] ■ « !  n(l+ka^^n )-1 .

If k>0 then the will tend to increase, and if k<0 they will

tend to decrease, relative to their expected positions when k=0. The
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n-1 n-1 n
statistic H = £ u / \/V = 2 £ (n-i)Y. . / £ Y has the Irwin-Hall

r=l i=l u ;  i=l 1
distribution, tending rapidly to Normality with mean (n-l)/2 and 

variance (n-l)/12 as n*00, under the null hypothesis; large values of 

H indicating k>0 and vice versa.

A  simulation experiment to compare the power of the statistics S 

and T in small samples was performed for values of k in the range - 

to '/% , taking 100 samples each of sizes 10, 25 and 50. Table 6.11 

shows the observed power of S and T for tests of nominal size 0.05 

against one-sided alternatives. Figure 6.1 displays some of the same 

information. After allowing for sampling variation, it seems that 

the tests have very similar power for n=10, but that for n=50 T is a 

little more powerful for tests of k<0, and S is more powerful for 

tests of k>0. The rather poor apparent size of the test based on T 

for n=25 and 50 may be due to inaccuracies in Stephens1 logNormal 

approximation for the percentage points of G.

The message from this study is that in smallish samples the 

statistics S and T have about the same power against the alternatives 

k*0: S will usually be preferred on the grounds that it does not need 

to be referred to special tables.

Other test statistics could be based on the hazard function 

(a-ky)” 1 of the of generalized Pareto distribution. A  test for k 

negative would then be for decreasing failure rate, and one for k 

positive for increasing failure rate. Proschan and Pyke(1967) give 

some tests for increasing failure rate. I shall not consider these 

further here but there are clearly many possibilities.

The problem of finding good test statistics for k*0 in more 

complex cases of covariate-dependent data has not been studied here, 

but it seems likely that it is very hard to find exact tests and that 

asymptotic theory must be deployed.



n = 1 0 n=25 n=50

S
+

T
+

S
+

T
+

S
+ -

T
+

-.5 .350 .013 .340 .013 .628 .001 .649 .001 .866 .001 .873 .001
-.4 .284 .016 .262 .017 .506 .004 .552 .002 .742 0.0 .757 0.0
-.3 .192 .018 .192 .019 .360 .007 .392 .003 .608 .002 .643 .002
-.2 .161 .017 .152 .017 .256 .012 .317 .007 .352 .006 .391 .004
-.1 .075 .038 .086 .036 .122 .036 .177 .022 .179 .017 .224 .009

oo .038 .053 .037 .055 .043 .048 .065 .026 .058 .050 .077 .024
. 1 .027 .074 .028 .076 .016 .086 .017 .048 0.010 .138 .004 .090
.2 .016 .099 .010 .097 .003 .170 .003 .107 0.0 .262 0.0 .234
.3 .004 .140 .003 .144 .002 .263 .001 .183 oo .446 0.0 .444
.4 .007 .165 .003 .167 oo .367 oo .278 oo .673 0.0 .698
.5 .003 .212 .002 .223 oo .509 oo .434 0.0 .809 0.0 .846

Table 6.11 Power of Sand T for different values of k:
proportion of 1000 simulations significant at the one-sided 5% level.
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7. DIAGNOSTICS

Techniques commonly used for checking goodness of fit in 

statistical modelling include:

(i) the inspection of residuals;

(ii) embedding the fitted model in a more comprehensive 

alternative and testing fit against the larger model;

(iii) the study of influence.

I consider some possible modifications of these ideas suitable in the 

present context.

7.1 Residuals

Plots and other procedures based on residuals are commonly used 

in statistical modelling. Atkinson(1982), Cook and Weisberg(1982), 

Green(1984) and McCullagh and Nelder(1983) are some recent 

references. Several possible definitions of residuals are available: 

those due to Cox and Snell(1968), and the deviance residuals defined 

by Pregibon(1981) are discussed here.

Cox and Snell gave a general definition of residuals for a broad 

class of models, and suggested a method of approximating their means, 

variances, and covariances. For a model where the observations 

have some expression

Y i * gi^e »ei^ (1-1,...,n)

in terms of a vector of unknown parameters 0 and the independent 

identically distributed variables e^, and the equations

\  - g1 (9.R1 )

have a unique solution for R, in terms of Y  and the maximum
A

likelihood estimate 0 of 0, they define the crude or unadjusted
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residuals R^ as that solution and go on to find m e a n s , variances and 

covariances of the R^ to order n ” 1 , which can then be used to modify 

the R^ to have the same means and variances to that order. Their 

results suggest that even in fairly small samples these adjustments 

make little difference to the R^ for plotting purposes.

With this in mind, define

A K A
= -ki" 1log(l-kiy 1/ai ) (i=l,...,n),

which are crude residuals in the sense above. These should be 

distributed approximately as independent unit exponential variables 

when the model is correct, and so may be checked for outliers, 

dependence, and distributional form in the usual way using graphical 

techniques for the exponential distribution. The values of test 

statistics should be interpreted with great care, and can be 

misleading in many cases, as Durbin’s contribution to the discussion 

following Cox and Snell(1968), and their 1971 paper make clear.

Levels of significance of test statistics may be seriously 

underestimated if they are formed from unadjusted residuals, so their 

systematic use is not recommended.

In some circumstances it may be useful to use the 

= l-exp(-R^), which should be approximately uniform on (0,1), 

rather than the R^. Two cases when this may be informative are:

(i) when the data is divided into subsamples, in which case 

plotting the against subsample number or some meaningful physical 

quantity may reveal distortions in the fitting of the GPD to specific 

subsamples, or discrepancies between them;

(ii) when plotting the data to investigate the possibility of 

serial dependence or clustering into groups (possibly occurring 

together in time) of the observations.

If in these situations the plots are made on the original scale,
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the skewness of the may lead to difficulties of interpretation 

alleviated by plotting the U^.

Another possible general definition of residuals is motivated as 

follows. Suppose there are n independent observations y^ with 

associated unconstrained parameters 0^, so that the total 

loglikelihood of the data is

* = l

for the full or maximal model. As it stands this model is not

especially useful, since unless the 0^ are linked in some way there

will be dim{0^} parameters for each observation, and so at least n

parameters in all. Fewest parameters are needed if 0^=0 for all i,

which amounts to proceeding as if all the variates were identically

distributed: the minimal model. A  reasonable summary usually lies

between these two extremes, and constrains the parameter vector

0 = (0i,...,0 ) to lie on a sub-manifold 0=0(8) of the full n
dim{0}-dimensional parameter space. The maximum loglikelihood 

achievable is attained on the full model, and the minimum on the 

minimal model; other values lie in-between.

The idea behind deviance residuals, exploited by Pregibon(1981) 

and others, is to measure the discrepancy between the full model and 

the intermediate model 0=0(8) due to individual observations by 

considering the quantities

rD (yi;0) = s g n ( 0 ^ - 0 )  /{ 2 U ( 0 ^ ) - £ ( 0 ) )  } ,

A A

the deviance residuals, where 0=0(8) is the maximum likelihood 

estimate of 0 under the intermediate model and 0 ^ ^  is the value of 9 

whose j un components (j*i) equal those of 0 but whose i un component 

is chosen to maximise The quantities r^ should be

approximately independently unit Normally distributed if the model
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0=0(3) is adequate, and may be inspected to check this.

Jorgensen(1983) gives some more definitions of residuals, all quite 

closely related to the rD#

An important point is that the r^ defined exactly as above 

cannot be used if a generalized Pareto distribution with separate 

shape k^ as well as scale parameters is regarded as the maximal

model. For then the optimum difference of loglikelihoods is achieved 

when an atom of probability is put at each observation: all the r^ 

equal ±°°! If however the maximal model has a common shape parameter 

k this problem is avoided and the r^ can be sensibly defined. This 

may or may not be a relevant point in other contexts - Pregibon did 

not have to face it since his concern was with logistic regression 

models - but it is a potential difficulty here. For the case of 

independent generalized Pareto variates with difference scales 

but the same shape k, the deviance residuals may be written thus:

rDi = sgn(yi/a^-l)/2 [ (l/k-l)log{(l-k)/(l-ky^c^)} - log^/c^} ] .

Two types of residual are now defined, and it is of some 

interest to determine their relationship, especially as McCullagh and 

Nelder(1983) suggest that deviance residuals are very close to 

Normality. One possible method of assessing the relationship for 

variates Y^ with continuous distribution function F(y;0) is as 

follows.

For such variables Cox-Snell residuals can be formed simply by 

taking the probability integral transform of Y. Then F(Y;0) is 

uniformly distributed in the unit interval and X = ^(FCY;0)) has 

the standard Normal distribution. Provided the function F_1 is 

well-defined this suggests that the random variables 

G(X) = r^(F“ 1($(X);9);0) and X be compared. For if the random 

variable r^(Y;0) is exactly unit Normal then obviously G(x)=x: a
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straight line of unit slope through the origin. Departures from 

Normality manifest themselves as departures from this null behaviour.

The graph may be interpreted as a plot of deviance residuals for

a very large sample whose underlying distribution function is F,

against Normal order statistics. The correlations among the

residuals are asymptotically neligible provided a fixed number of

parameters is being estimated, and in the limit G(x) is observed.

The effect on the residuals of assuming the deviance corresponding to

a distribution function F when the true distribution function of the

data is H may be seen by considering r^(H_ 1 ($(x))) as a function of

x. In this case however, the effect of parameter estimation should 
be taken into account. I shall discuss this no further.

Taking the case F(y;0)=$( (y-0i)/02)» obviously 

rp(y;9)= (y- 9l)/02 and hence G(x)=x, exactly as expected.

For the case of the generalized Pareto distribution, the 

function G(x) is plotted in Figure 7.1 for several values of k, 

together with the line G(x)=x for comparison. The residuals are 

negatively biased by an amount which depends on k, but the plots are 

almost straight. The function G and its first three derivatives at 

x=0 are tabulated in Table 7.1 for the same range of values of k.

The table emphasises the impression gained from the figure: the 

function G is very nearly linear for the usual range of values of k. 

The table can be used to modify the r^ to produce residuals with 

asymptotic slope and intercept unity and zero respectively and x=0, 

which might be valuable in some applications.

Cox-Snell seem preferable to deviance residuals because they are 

asymptotically unbiased and there are no difficulties defining them 

when the k^ are not all equal.



Figure 7.1 : Comparison of deviance and Cox-Snell residuals for generalized Pareto distribution.
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k G( 0) G ' (0 ) G"(0) G V (0)

0.4 -0.551 0.945 -0.017 -0.011

0.2 -0.440 0.987 -0.002 -0.008

0.0 -0.345 1.023 0.007 -0.009

-0.2 -0.262 1.052 0.012 -0.013

-0.4 -0.187 1.076 0.013 -0.020

-0.6 -0.119 1.097 0.011 -0.029

-0.8 -0.057 1.114 0.007 -0.039

Table 7.1 Residual comparison function G(.) and its first 
few derivatives for several values of k



233

7.2 A  score test

Possible more formal methods of checking fit of a model to data 

are to test the fit of the model against alternatives:

(i) which make the same distributional assumptions but include 

more factors or combinations of them in the systematic part of the 

model;

(ii) representing plausible but separate families of hypotheses 

(Cox, 1961,1962);

(iii) which embed the random component of the model in some 

more general distribution;

(iv) in which the systematic part of the model applies to some 

transformation of the data (Box and Cox, 1964).

Here the possibilities are logically distinct; I pursue (iii) but 

tests for alternatives of type (i) can be made simultaneously by 

generalizing the procedure proposed.

The question of transformations is an important one from the 

point of view of improving the generalized Pareto approximation to a 

set of sample excesses over some threshold, which as an asymptotic 

approximation need not be good in small samples, although it may be 

expected to improve as the threshold increases. As this happens, 

however, less of the sample will be available and the uncertainty of 

eventual conclusions will increase, so it may be wise to transform 

the data and then to apply techniques based on thresholds, thus 

retaining a reasonable proportion of the data for analysis whilst 

improving the approximation. Ideally such a transformation should be 

based on knowledge of the physical processes underlying the data, but 

in situations where suitable assumptions cannot be made, the 

possibility of more or less empirical transformations should be

considered.
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Here a score test for the possibility that not Y^/a^, but 

<j)-1{exp((|)(Y^/a^)^)-l}, has the generalized Pareto distribution with 

parameters k  and 1, for some A>0 and -‘K ^ 00, is considered. For <j)=0 

and A=1 this reduces to the null hypothesis. Others have constructed 

score tests in not dissimilar contexts: Atkinson(1973, 1982) gives 

tests in case (iv) for the Box-Cox family of power transformations 

and for the folded-power family for proportions (Mosteller and Tukey, 

1977); Cook and Weisberg (1983) give a score test for homogeneity of 

variance in the normal-theory linear model; and Spiegelhalter(1983) 

has derived several score tests for checking distributional 

assumptions against specific alternatives. The test is locally 

uniformly most powerful for the alternatives considered, but is 

specific to them, so should be used together with residual plots to 

reveal other possible discrepancies of the data. Significance of the 

test means that a transformation of the form <j)“ 1{exp(<|>(y^/a^)^)-l} 

for some <j> and A should improve the fit of the generalized Pareto 

distribution to the data.

Here I construct the test for independent variates Y^ with 

38 exp( ) and common shape parameter k, parametrized so
»V

that J x ^  = 0 for u=l,...,p; i.e. the parameters are

orthogonal to 8.. These conditions are not essential to theu

derivation of the test but they clarify the details. For more 

complex models, perhaps with k ^ k  for all i, the test statistic is 

probably best computed numerically.

After some tedious calculations, it emerges that provided k*0 

and |k| <'/i, the inverse information matrix for the parameters 

(8,k,3o,A,<j>) when A=1 and <J>=0 is

( X ^ ^ a ^ k )  0

0 P
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where the 2x2 corner submatrix of P corresponding to (A,<j>) is

2 A” 1
2k“ 2 (l+2k)(1+k)2 (b-k2-l) (k+1)(l-4k2 )(l-2k+2c)k~1

(k+1)(l-4k2 )(l-2k+2c)k"1 2(l-2k)(4k2+2k+l)

with

A=( 16bk2+8bk+4b-32ck3-24k3+16k2c2-20k2+8kc+16ck2-4k-4c2-4c-5).

Here b=ir2/6+^'(-1/k) and c=log(-k)+i/>(-l/k)-iK2) when k<0, and 

b=ir2 /6+ij;,(l+l/k) and c=log(k)+\Ki+l/k)-^(2) when k>0; with ^(») and 

respectively the first and second derivatives of the log-gamma 

function.

The corresponding elements of the score vector U are

V * i (yi/oi )(1_ ^ 1_k) (1“kyi /ai )’ 1)
and

U l+ln(yi /ai )-( 1-k)(y1/a± ) l n C y ^ c ^ )  ( i - k ^ / ^ ) ” 1 ].

When in addition it is required to test k=0, the parameters k  and <j> 

give the same type of first-order departure from the model, so that

their components of the score vector are equal and i- is singular.o
One of them must be dropped, in which case we have the p+3-sided 

matrix

i -1
0

( X ^ ) " 1 0

0 P*

where P* is the matrix

/ - 1

tt2/3-(y-2)2 -y
-Y 1

tt2 /6-(y -1)(Y-2) -1

7r2/6-(Y-l)(Y-2)
-1

A+l

with A= tt2/6-(y _ 1)2-1 and Y Eul e r ’s constant. The parameter vector 

here is 0=(0,3o,A,<{>). The components of the score statistic are
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^  = l± [ l4.Cy1 /a,± )2-y1 /a± ] and U ^ J ^ f l + U - y ^ a ^ l o g C y ^ c ^ )  ], so that 

the test for the hypothesis (J>=0,X=1 is based on the statistic

Wu = n-lA-l[u+ 2(A+1)-2U^ 0x+Ux2]

which has asymptotic x22 distribution when it is true.

There are analytical difficulties with this test which arise 

when X is included since then maximum likelihood theory is not 

regular if k < - ' S i n c e  in most environmental applications |k| < Vz. 

(Jenkinson, 1969), these difficulties are unlikely to restrict the 

use of the test much. For k<-J£, a goodness-of-fit test may be based 

on the part of the score statistic corresponding to <{> alone, which 

has asymptotic chi-squared distribution on one degree of freedom.

The small-sample properties of the test under the null

hypothesis were investigated by simulation. One thousand samples of

sizes 25, 50 and 100 were generated from the generalized Pareto

distribution for values of k = -0.6 ( 0.2) 0.4, the parameters

estimated by maximum likelihood, and their values of the statistic Wu
A.

grouped according to the value of k. The results, shown in Table 

7.2, demonstrate that is under-dispersed relative to the x22 

distribution, especially for k>0.3. The nominal significance points 

of the statistic at levels .90, .95, .975, .99 are 4.61, 5.99, 7.38 

and 9.21 respectively. The behaviour of is unknown in more 

complex situations but Table 7.2 provides at least some guidance for 

small samples.

Finally, note that contributions to the test made by individual 

observations can be plotted in order to identify particular points or 

groups thereof influencing the statistic unduly; see Atkinson(1982) 

or Cook and Weisburg(1982) for discussion of this idea. This may 

help to distinguish aberrant values if a single datum or group of 

data contributes overmuch to the significance of the test, or
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-.5^k<-.3 -.3<k<-.1 -.1<k<.1 .1<k<.3 .3<k<.5

.90 2.78 2.80 2.65 1.41 0.68

.95 4.39 3.96 3.78 2.08 1.02
n=25 .975 5.89 5.57 5.02 2.80 1.39

.99 7.52 8.21 6.84 4.24 1.94
M 652 818 996 961 862

.90 2.68 3.30 2.95 1.66 0.71

.95 3.97 4.72 4.05 2.37 0.96
n=50 .975 5.52 6.24 5.36 3.42 1.26

.99 7.06 8.70 9.85 4.33 1.54
M 793 959 994 1088 927

.90 3.09 3.69 3.44 2.04 0.78

.95 4.43 5.07 4.67 2.75 1.06
n=100 .975 5.57 6.90 6.23 3.62 1.32

.99 7.39 9.57 8.18 4.57 1.72
M 904 991 1039 954 969

TABLE 7.2: Observed significance points of score test of fit Wu
(M = numbers of samples on which points are based)
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conversely may show that evidence of failure to fit is spread 

throughout the entire data.

7.3 Influence

Theoretical results about the influence curves of maximum 

likelihood estimators for the generalized Pareto distribution were 

given in Section 6.2.3. Here the more practical matter of assessing 

the influence, or leverage, that an individual element of a given set 

of data exerts upon the parameter estimates based on that sample, is 

discussed. The treatment follows that of Cook and Weisberg(1982, 

Chapter 5). The {Y.}n are regarded throughout as independenti i>i
generalized Pareto variables whose unknown parameters may depend on 

the values of known covariates.

Suppose that the parameter estimate 0 is found by maximum 

likelihood based on the entire sample. Then one obvious way of
A

investigating the dependence of 0 on individuals y^ is to drop them
A A

from the sample and to re-estimate 0, thus obtaining n estimates 0 ^ ^  

each based on n-1 observations. However this has the drawback that 

n+1 maximizations are required, potentially an expensive procedure.
A

Cook and Weisberg suggest replacing the 0 ^ ^  by one-step estimates
A i
0 arising from a quadratic approximation to the loglikelihood 

of the data without its i*-*1 datum. Thus if
( i )  -tii i

i(i)(e) ~ ^ ( i ) ^  + +j£e-e)*"(i)(8)(e-8),

then *s approximately maximized at

A

0l (i)  -  9 -  < * " ( 1 ) < 8 » - l * * ( 1 ) Ce>.

where £ ' ^ ^ ( 0 )  and £ f,(^)(0) are respectively the score statistic and

observed information for the reduced dataset, at the overall maximum
A  a  A

likelihood estimate 0. Note that .(0 ) = to see(i) 1
that
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® \ i )  = ® +  (* " ( l ) (®))"l r i (®)-

1The one-step estimates may expected to be close to the
A

fully iterated estimates 9 ^  provided the loglikelihood is locally 

quite quadratic. The results of Section 6.3.2 suggest that this is 

not the case, but some experimentation indicates that the non- 

quadraticity makes no serious difference to the one-step estimates, 

which anyway serve only as an approximation designed to give a 

qualitative idea of the effect of jackknifing the estimates.

Sometimes the one-step estimates for the generalized Pareto 

distribution lie outside the range of allowable parameter v a l u e s , and 

then the full iterated estimates must be found. Cook and Weisberg 

suggest that an overall idea of the effect on the estimates of 

leaving the it 1̂ observation out may be found by considering the 

likelihood distances

*d(1) = 2{ i(9)-A(8l )},

A A
which should be large if is far from measured in terms of

the loglikelihood £ of the whole data.

Table 7.3 shows an example of these ideas at work on a set of 

MESOS exposures to air contamination 800 km north of Mol, due to 

notional releases of one Curie of radiation every three hours through 

1976. The entire sample is plotted in Figure 1.3 : 187 values in 

all. The threshold was taken to be 0.0011 uCism"3 and the resulting 

set of 28 excesses multiplied by 1010. No declustering was employed: 

the remaining exposures comprise more than one-half of the total 

experienced at the receptor in 1976. Both the clustering of the 

extremes and the huge variation in exposure levels are evident from 

the table and figure.
A

The maximum likelihood estimates of the parameters are k=-0.296
A

and a=9.23, with estimated standard errors 0.245 and 2.809 and
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excess
time(hrs) 

4-3
„. -3 ,„10 Cism x10 1

CTa ) k1<ii £d<i»

105 19.93 8.55 -.33 .07
294 1.10 9.85 -.27 .05
295 1.37 9.82 -.27 .04
504 4.40 9.49 -.29 .01
505 8.65 9 . 70 -.32 .01
510 10.82 8.95 -.32 .02
512 87.81 9.71 -.05 2.71
604 .12 9.97 -.26 .07
606 1.66 9.79 -.27 .04
611 10.76 8.96 -.32 .02
612 7.30 9.21 -.31 .01
613 11 .74 8.90 -.33 .02
874 19.48 8.56 -.33 .06
1269 1.97 9.75 -.28 .03
1270 2.20 9.73 -.28 .03
2192 2.29 9.71 -.28 .03
2228 1.39 9.82 -.27 .04
2430 16.49 8.66 -.33 .05
2504 2.88 9.65 -.28 .02
2531 8.05 9.15 -.31 .01
2532 8.00 9.16 -.31 .01
2533 7.28 9.22 -.31 .01
2534 10.49 8.97 -.32 .01
2535 49.70 8.48 -.25 .33
2536 30.65 8.38 -.32 .12
2537 8.01 9.16 -.31 .01
2539 23.89 8.46 -.33 .09
2540 6.35 9.30 -.31 .01

TABLE 7.3: MESOS exposure dataset and influence diagnostics: time-
integrated air contamination through 1976 800 km north of
Mol due to unit releases of Kr_ during every three-hour

8 -10 -3period; exceedances of 1.1x 10 Cism
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covariance -0.427 based on expected information. The likelihood 

ratio test for k=0 is 2.72 as x2i> just over the 10% level; the score 

test for lack of fit at 0.14 is not especially notable. The table
A A

shows the jackknifed values of and k ^ ^  and the £ d ^ ^ .  The only

large Z d ^ ^  is for 1=7, corresponding to the largest sample value,
A

for which k ^ y — 0.05. Incidentally, this was the only observation 

for which the fully iterated parameter estimates had to be found. 

Figure 7.2 confirms the implication of the table, that the parameter 

estimates are sensitive only to the loss of the largest datum, which
A

contains virtually all the evidence for k<0. The value of 0 Is close
A

to the centre of the other If there were prior suspicion that

y 7 arose from a recording error or an instrument failure a decision 

to exclude it from further analysis might be made, but as it is the 

statistician just has to live with the situation. This example 

confirms at a data-analytical level the implications of the theory in 

Section 6.2.3: parameter estimation in extreme-value contexts may 

depend critically on the few highest values. Given the nature of the 

problem, any other conclusion would be a surprise.
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Figure 7.2 : Jack-knifed maximum likelihood estimates for data in Table
7.3.
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8. HIGH EXPOSURE EPISODES

8.1 Introduction

Accurate prediction of high levels of exposure to radioactivity 

as a result of potential releases from nuclear installations is 

important because high contamination levels pose the gravest direct 

risks to the individual and population. Another reason for laying 

particular stress on modelling the upper tails of the MESOS exposure 

data is that the distributions are so skewed that the upper few 

observations of each of them contain a substantial proportion of the 

total annual exposure - see Table 3.9. Figure 1.3 shows that these 

high values tend to occur in clusters, an important aspect of 

modelling extremes. In this chapter the statistical methods 

developed in the previous three chapters are used to analyse the 

MESOS data.

This analysis relies upon the generalized Pareto distribution as 

an approximation to the distribution of exceedances of the MESOS data 

over high thresholds. The choice of threshold is clearly an 

important practical and theoretical issue: the tension between the 

need for a high threshold so that the generalized Pareto 

approximation is adequate and the need to retain sufficient data for 

analysis has already been mentioned. Here theoretical considerations 

are bypassed: the thresholds are chosen empirically by regression of 

the upper percentiles of the MESOS exposure distributions on 

covariates. That the resulting thresholds are adequately high and 

retain enough data for analysis is verified below in Section 8.3.

If inference is to be made for given data, a threshold level 

could be determined by minimizing some function of goodness of fit of 

the generalized Pareto distribution to the data tail and the number 

of data which exceed the threshold - the mean squared prediction 

error for some high return value, say. However an integral part of
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the present problem is the prediction of extremes for distributions 

with as yet unknown covariates. This suggests that thresholds be 

made to depend on the covariates. One crude way to do this is as 

follows.

Arguments in Section 3.3 suggest that the scale of an exposure

distribution should depend on nuclide parameters X, v , and X ,d w
source-receptor distance d, and release duration t hours in such a

way that it is a linear function of dX, dv,, dX , log{d}, andd w
log{t/3}. This in turn suggests fitting to the data the model

l ° g { y [ n p ] >  = £o +  +  +  +  ^ 5 l o g { t / 3 )  +  e ,

where y^  ̂ is t îe sample order statistic corresponding to the pxl00%

point of the exposure distribution, the e fs are uncorrelated

identically distributed errors, and the £'s are unknown parameters

to be estimated. Fits of this equation to the exposure distributions

- using GLIM - for different values of p in the range 0.9-0.99
A A

reveal that the values of the estimates are quite stable, and
A

that increases with p. Treating as fixed the estimated parameters 

for p=0.9, the equation

exp{ K0 +  9.463 - 0.1678dX - 0.3497xl0"3dvd - 0.5473xl0"2dXw

- 1.1821og{d} - 0.69131og{t/3} } .....  8.1.1

is henceforth adopted to give thresholds in yCism” 3 for time-

integrated air concentration distributions for exposures at a

receptor d metres from a source at which a unit release over a period

of duration t hours has occurred. Corresponding thresholds in pCim"2

for dry deposition distributions are obtained simply by multiplying

air concentration thresholds by deposition velocity v ,; the equationd
for exposures to wet deposition in yCim-2 is
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*w exp{ £0 +  11.49 - 0.0901dA - 0.9692x10 “ z& \^  -  0.97931og{d}

- 0.66451og{t/3} } .... 8.1.2.

In both 8.1.1 and 8.1.2, Co - loosely called the threshold - may take 

values from 0 to about 2 as p rises from 0.9 to 0.99.

Equations 8.1.1 and 8.1.2 are now regarded as fixed - up to the 

choice of Co “ and determine thresholds below which exposures are 

regarded as irrelevant to this analysis of extremes. Clearly it is 

important that any model proposed for extremes is not critically 

dependent on the exact value of Co chosen; hence the data are 

analysed separately for different values of Sg.

Throughout Chapter 3 emphasis was laid upon prediction of 

marginal distributions of exposures: variation of exposure levels 

with time was ignored. Although it is hard to sustain the belief 

that there is no seasonal variation in exposure levels, it is small 

compared with the much greater variation due to diurnal changes in 

the boundary layer. Clustering of exposures due to persistence of 

weather conditions has also been largely ignored, but it cannot be 

brushed aside if doing so may lead to serious overestimation of the 

probability of high values during an arbitrary period because their 

propensity to occur together has not been taken into account. Thus 

there is a need for a model for clustering of extremes.

Clustering aspects of the extremes of the MESOS data are 

studied in Section 8.2, and exceedances themselves analyzed in 

Section 8.3; the proposed model is tested in Section 8.4.
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8.2 A  clustering model for extremes

It is important to distinguish between two questions which may 

be asked of a model for high exposures at a given receptor due to to 

releases of a given nuclide from a known source. The first is this: 

what is the distribution of extreme exposures due to a single unit 

release of some known duration t hours which starts at an arbitrary 

time? This must be answered to satisfy the Euratom Treaty Article 37 

requirements. The second is this: what is the distribution of the 

maximum exposure due to a number of unit releases over successive 

periods each of duration t hours? This is harder to answer because of 

the need to take into account clustering of high exposures. The aim 

of this section is to provide a clustering model for extremes which 

allows the second question to be addressed: it is then easy to answer 

the first.

Here the aim of attacking clustering is to enable reasonably 

good prediction of return values, not to study the small-scale 

structure in time of extreme episodes. Thus for the present purpose 

the essential ingredients of a suitable clustering model are: 

firstly, a mechanism which generates cluster centres; secondly, a 

mechanism which determines the number of points in a cluster; and 

thirdly, a mechanism to determine the size of the exposure attached 

to each point. A  cluster is a group - defined in a way below - of 

exceedances over a threshold. The size, or number of excesses in a 

cluster is a random positive integer. The excesses in a cluster are 

regarded as distinct but as all occurring simultaneously at the 

cluster centre, an approximation which serves the current need.

Another approximation is introduced by thinking of exposure 

taking place in continuous time, whereas in fact they occur in 

discrete time. This results in considerable simplification, and the 

bias thus generated is small unless exposures take place rather
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frequently - which is not the case here. The bias is biggest for 

releases of duration one week, but is not then serious.

The unambiguous definition of a cluster of exposures at a single 

receptor due to releases of any duration t hours must precede the 

formulation of a clustering model. A  cluster of excesses over a 

given threshold is said here to begin with a single exceedance and 

end with a period of one day or more during which none occur - so by 

definition exposures due to releases of duration more than one day do 

not cluster. This is crude but not unreasonable: clusters so defined 

may not overlap, which if they are interpreted as corresponding to 

meteorological episodes is a sensible requirement which also leads to 

a simple statistical analysis. The rationale for this definition or 

one like it is that a day is a natural meteorological unit of time - 

due to diurnal variation of the mixing layer - and so it is plausible 

that if there is a gap of one day or more in high levels of exposure, 

they have arisen as a result of different dispersion episodes. This 

does not preclude the possibility that a single episode may last 

several days, although in the MESOS data they rarely last more than 

two days. The choice of a one day gap is not crucial - defining a 

cluster as ending with no excesses in any period between twelve hours 

and a few days makes little difference to the sizes of the clusters.

Leadbetter, Lindgren, and Rootzen(1983) prove that under weak 

conditions on a stationary stochastic process, the process of its 

exceedances over a high threshold should converge to a homogeneous 

Poisson process as the threshold increases. This suggests that for 

releases of duration t hours the process of cluster centres - which 

correspond to meteorological situations leading to high exposures at 

a given receptor - be modelled as a homogeneous Poisson process of 

rate pfc, say. That is, the numbers of clusters in non-overlapping 

time periods are independent of each other, and the number of
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clusters in any period of length T has the Poisson distribution with 

mean Tp^. The i*1*1 cluster centre has attached to it a cluster of

The next ingredient is a recipe to determine cluster sizes - 

which are necessarily positive. Analysis of the MESOS data suggests 

that the geometric distribution is appropriate; that is

Prob( = k ) = (l-q)qk-1

for some q in the range (0,1). This distribution has probability 

generating function

G(u) u (1-q)
1-qu 8 . 2 . 1 ;

its mean is l/(l-q), and its variance is q/(l-q)2 . The probability q 

changes with release duration and threshold £0 but is assumed 

independent of receptor location, nuclide type, and source.

The final ingredient is the specification - for a given release 

duration and threshold - of the joint distribution of the exposures 

in the i ^  cluster given its size. An appropriate model is this: 

given M^=m^, the values of the exceedances {Y } over the threshold 

are independent and identically distributed in some distribution 

F(.). Moreover F(.) does not depend on seasonal or other time- 

dependent factors. Under this model the distribution of the maximum 

exposure experienced at the receptor due to T successive t-hour 

releases at the source is

Prob( Y t  < y ) - exp{ Tpt [ G( F(y) ) - 1 ] } .... 8.2.2.

These assumptions are now tested. Results are reported for the 

analysis of time-integrated air concentration data at all 16 

receptors for releases of Rrgg from Mol during 1976. Results for 

other sources and nuclides are similar.
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Cox and Lewis(1966, Chapter 6) discuss methods of testing if a 

point process observed for a fixed length of time T is a homogeneous 

Poisson process. The Anderson-Darling statistic with =

(t^-tg^T, where tg is the time at which the process began to be 

observed and the t^ are the times of successive events, provides a 

powerful test for departures from Poissonness. This test applied to 

the data with 5 0=O yields two out of sixteen values significant at 

the 5% but not the 1% level, weak evidence of departures from 

Poissonness; however for £q =0.5 or more there is no such evidence.

The Poissonness of clusters is not in doubt.

Table 8.1 shows for £q=0 and releases of duration three hours 

the observed distribution of cluster sizes compared with their 

expected distribution based on assuming them geometrically 

distributed. The maximum likelihood estimate of q is then 0.49, and 

the total number of clusters is 194. The observed distribution is a 

little overdispersed relative to the expected one; but for higher 

values of £g and longer release durations the match is better, and 

there is no reason to question the geometricity of cluster sizes.

The likelihood ratio statistic for the hypothesis of different values 

of q at different receptors against the null hypothesis of the same 

value of q at all receptors is 24.89, nominally x2is# Just not 

significant at the 5% level, this casts doubt on the null hypothesis. 

However the effect is not big enough to be physically important, nor 

is it marked in other datasets: thus it is adequate to use a single 

value of q for given 5 q and release duration at all receptors.

Values of q appropriate for exposures in all conditions are given in 

Table 8.2(a).
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cluster size : 1 2 3 4 5 6 >6

observed : 115 37 16 11 7 3 5

expected : 98.3 48.5 23.9 11.8 5.8 2.9 2.8

Table 8.1 : Comparison of observed and expected cluster sizes for 
exposures to air contamination due to three-hour 
releases of Krflq from Mol in 1976; threshold gn=0

The assumptions about the m^ exceedances Y (j = l ,... ,râ ) in the

ith cluster may be checked without assumptions about the form of 

F(.)» as follows. The first assumption is that the mean values of 

the Y do not depend on the cluster index i. Denote the overall 

mean of the exceedances Y ^  by Y . . and the cluster means by Y^..

Then if the true cluster means are different, the statistic

E4 ( - Y.. )2

V  ‘ V  )2

should be larger than would be expected otherwise. An approximation

to the full randomization distribution of A  under the null hypothesis

of no variation of the mean values of the Y between clusters is

obtained by randomly permuting them - say 99 times - and calculating

the value A  of A  corresponding to each permutation, then finding perm
the significance level of A  the observed value of A. That is,

p . - { #A < A  }/100obs 1 perm obs J

is an approximation to the actual significance level of A  on the

full permutation distribution of the Y^ under the null hypothesis.

Combination of the values of the p , for all 16 different receptorsobs
and £n=0 by noting that -21og{p , } has the x2 ? distribution on theu obs
null hypothesis leads to the test statistic 30.45, distributed as 

X2 3 2 ; there is no evidence against the hypothesis that the cluster

means are the same. This is confirmed by analysis of other datasets



release duration

So 3 hours 6 hours 12 hours 1 day

0 0.5 0.35 0.25 0.10

0.5 0.45 0.30 0.20 0.05

1.0 0.40 0.25 0.15 0.0

(a) Exposures to air contamination

release duration

3 hours 6 hours 12 hours 1 day

0 0.35 0.20 0.10 0.05

0.5 0.25 0.10 0.05 0.02

1.0 0.15 0.0 0.0 0.0

(b) Exposures to wet deposition

TABLE 8.2: Values of clustering probability q for different
thresholds and release durations.
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The assumption of no correlation among the exceedances Y in
ij

a single cluster may be checked in a similar way. The subscript j 

now indicates the order in time of the excesses within a cluster.
A

If m  >1, then estimates y. of the lag k  (k<m ) correlationX 1C 1
coefficients y of the Y may be obtained from the Y . A k ij ij
statistic which should be relatively larger if there are indeed non

zero correlations among the excesses in a cluster is

> - K |  V-
Once again an approximation to the full randomization distribution of 

B under the null hypothesis of no autocorrelation among the 

(identically distributed) Y ^  can be found by permuting the Y . The 

combined test statistic for all 16 receptors and £ 0=O is 33.16 as 

X 3 2 » giving no evidence against the null hypothesis. Excesses in 

the same cluster may reasonably be held to be uncorrelated: for the 

purpose of this analysis I make the stronger assumption that they are 

independent. This is appropriate to the simple model being built 

here, but would merit closer examination in a formulation aimed 

primarily at modelling the dynamics of pollution episodes.

A  similar analysis was performed for Ii 3 i(p) wet deposition data 

for releases from Heysham through 1973. For £ q =0 there is again weak 

evidence for departure from Poissonness of the process of cluster 

centres, but the evidence vanishes as increases. Table 8.3 shows 

a comparison of observed and expected cluster sizes for £ q = 0 ,  based 

on the assumption that they are geometrically distributed. The fit 

is very good. The likelihood ratio statistic for different values of 

q at the different receptors - nominally x22 “ is 8.29: there is no 

evidence of overdispersion. Values of q appropriate for different 

release durations and thresholds are given for exposures to wet 

deposition in Table 8.2(b).
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Table 8.3 shows that most clusters have size one, so there is 

little information to be gained in using test statistics A  and B to 

check assumptions about excesses between and within clusters. The 

Poisson clustering model posited above seems satisfactory for both 

wet and dry extremes.

cluster size : 1 2 3 4 5 6 > 6

observed : 64 2 0 7 3 0 0 0

expected : 64.5 2 0 . 2 6.4 2 . 0 0 . 6 0 . 2 0 . 1

Table 8.3 : Comparison of observed and expected cluster sizes for 
exposures to wet deposition due to three-hour releases 
of I t 3 i(p) from Heysham during 1973; £n=0

The Poisson process parameter at a single receptor depends on

release duration t hours and possibly on other factors. Important 

factors may be found by assuming that it is a function of covariates,

- nuclide parameters, source-receptor distance, release duration, etc

- and using GLIM to regress the observed numbers of clusters on the 

covariates using a Poisson likelihood. It emerges that nuclide 

parameters and source-receptor distance have little effect on the 

observed numbers of clusters and that appropriate prescriptions are

= exp{ a +  O.61og{p(0)} +  log{t/3} } .... 8.2.3,

for exposures in all conditions, and

p = exp{ a +  0.41og{p (0)} +  log{t/3} } .... 8.2.4 t w

for exposures in wet conditions, where p ( 0 ) and p ( 0 ) are the sourcew
windrose probabilities used in Chapter 2 and t is the release 

duration in hours. Since p^ is a linear function of t, the expected 

number of clusters of exposures during a given time-period at a 

receptor is fixed, regardless of the duration of the releases
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windrose type: for exposures to air contamination, sources in the

Mediterranean area have higher values of a than those with more

uniform windroses, but the opposite is true for exposures to wet
a.

deposition. Values of a are given for several values of Co *n Table 

8.4. Values appropriate for exposures in all conditions are lower 

for sources with more uniform windroses: values of p̂ _ for Heysham, 

Karlsruhe, and Mol are lower than those for Cadarache and Ispra by a 

factor of 0.6-0.3 depending on the value of Co* The high dependence 

0 . 6  of clustering parameter p̂ _ on source windrose for exposures to 

time-integrated air concentrations shows that for all sources the 

incidence of high exposures is more closely related to the source 

windrose than the bulk of exposures. It is interesting that the 

dependence of p̂ _ on source windrose is weaker for exposures to wet 

deposition - presumably because of local rainfall effects such as 

orographic rain. Model fit improves as Co increases. For lower 

values of Co the numbers of clusters seem overdispersed as judged by 

the deviances for their regressions, but since counts for different 

nuclides at the same receptor are not independent the deviances are 

artificially high.

Under this model the number of clusters of exposures which have

at least one exceedance of a threshold Co experienced at a receptor

due to T releases each of duration t hours has approximately the

Poisson distribution - with mean Tp^ and variance also Tp -t t
conditionally on the estimated value of a. It is easy to see from 

the standard errors of the parameter estimates a in Table 8.4 that 

any extra variation introduced by use of the estimates a rather than 

their true values is tiny and can safely be ignored.

considered for that time-period. Values of a depend on the source
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S0 aUniform M e d i t e r r a n e a n
0.0 -4.18 (0.027) -3.74 (0.035)
0.5 -4.89 (0.038) -4.23 (0.047)
1.0 -5.88 (0.063) -5.11 (0.070)

(a) Exposures in all conditions

So aUniform aMedi terranean
0.0 -4.84 (0.054) -5.44 (0.091)
0.5 -5.40 (0.071) -6.07 (0.125)
1.0 -6.35 (0.115) -6.93 (0.192)

(b) Exposures in wet conditions

Table 8.4: Dependence of Poisson rate on threshold parameter

estimate (standard error)

8.3 High exposure levels

The arguments of Chapters 4 and 5 suggest strongly that the 

generalized Pareto distribution

F(y)
1 - ( 1 -ky/a )1/ ĉ 

1  - exp( -y/a )

(k*0 )

(k=0 )
•••• 8.3.1.

is apt to describe the sizes of exposures which exceed high 

thresholds. Further, the previous section suggests that it will be 

adequate to treat high exposures at a single receptor due to releases 

of a given nuclide over a known release duration at a fixed source as 

independent and identically distributed. However the unknown scale 

parameter a - and possibly also k  - will probably depend upon source- 

receptor distance, nuclide characteristics, and release duration.

This section elucidates this dependence for exposures in all and in 

wet conditions.

To recap, if the shape parameter k  of the generalized Pareto 

distribution is zero, the distribution is exponential; if k is
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positive, the distribution has an upper terminal beyond which no 

values can occur; and increasingly negative values of k  correspond to 

power-law tails with no upper terminal and increasing weight.

The data used to study extremes in all conditions consist of 

3524 observations exceeding the thresholds defined at equation 8.1.1 

with 5q=0, anc* in wet conditions of 2390 observations exceeding the 

thresholds defined at equation 8.1.2 with £0=O. These datasets were 

split into equal halves and analysis only performed for one half, in 

order to cross-validate the models.

The argument which began Section 3.3 suggests that a suitable 

form for the dependence of a on covariates is

a = exp{ 3q +  3idX +  02dvd +  +  log(d ) +  3slog(t/3) } .... 8.3.2.

Here d is the source-receptor distance in metres; X (s- 1 ), v (ms” 1)d
and X^ (s"1) are nuclide decay constant, deposition velocity and 

washout coefficients respectively; and t is release duration in 

hours. The parameters 8 are to be estimated from the data and may be 

interpreted in terms of physical quantities related to pollutant 

transport in conditions leading to high exposures.

Table 8.5(a) shows for exposures in all conditions the successive 

reductions in model deviance - twice the minus loglikelihood of the 

data - due to fitting to the data by maximum likelihood the 

covariates in the order given in the table. The reduction achieved 

by fitting each of them decreases as increases. The effects of 

release duration, lateral broadening, half-life, and washout 

coefficient are large at all levels £ q .

The corresponding parameter estimates and their standard errors 

based on the observed information matrix are displayed in Table 8 .6 .

The parameter estimates are similar for all values of £ 0 ; however the 

effect of release duration on exposure is more marked, and the tail
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Reduction in Deviance

Covariate >n o II o C0 - 0-5 >n o II 1.0

log{t/3} 142.0 44.4 22..4

log{d} 1438.0 769.2 320..0

dX 432.0 274.6 158.,0
dX0) 66.0 21.6 6..4

dvd 16.0 5.8 0..8

# observations 1762 751 280

(a ) Exposures to air contamination

Covariate 50 = ° C0 = 0.5 vTM O II O

log{t/3} 109.0 110.4 49.2

log{d} 528.0 221.8 92.8

dX 18.0 8.4 15.2

6. G 11.0 10.0

dva 2.0 0.2 . 0.4

# observations 1195 622 279

(b) Exposures to wet deposition

Table 8.5 Reductions in deviance due to introduction of
successive covariates for different threshold 
levels .



Threshold Level

Parameter Estimate s.e• Estimate s.e. Estimate s.e.

Bo 23.441 0.502 24.987 0.748 25.050 1.177
-3 -3 -3-0.135 4.933 X 10 -0.137 6.671 X 10 -0.143 9.464 X 10

-4 -5 -4 -5 -5 -4
^2 -2.304 x 10 5.510 X 10 -1.799 x 10 7.676 X 10 -8.863 X 10 1.196 X 10

-3 -3 -3 -3 -2 -3
B3 -9.893 x 10 3.144 X 10 -8.691 x 10 4.583 X 10 -1.112 X 10 7.323 X 10

-2 -2 -2
B4 -1.227 3.999 X 10 -1.316 5.986 X 10 -1.294 9.423 X 10

-2 -2 -2
B5 -0.720 3.704 X 10 -0.840 4.901 X 10 -1.065 7.850 X 10

-2 -2 -2 -2k -0.233 3.101 X 10 -0.121 4.089 X 10 -5.227 X 10 6.289 X 10

Table 8.6 Parameter estimates for different thresholds for exposures to time-integrated air concentrations (pCism ).

258
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of the data apparently becomes more nearly exponential (k+0 ) , as
A

increases. It is noteworthy that the value of 8 2 decreases at high 

levels: as £ q increases dry deposition is increasingly less 

important. The estimates suggest that mean puff speed u=7 ms- 1 ; that 

the mean height of the puff over its travel time is h=*600 m; and that 

the proportion of travel time over which rain is experienced is about
A.

0.07. The values of 0 .̂ suggest that the relative effect of plume 

broadening with distance is greater for high than for all levels of 

exposure.

The partially maximized loglikelihood l  (k) is shown for £n=0max
in Figure 8.1. It is close to being quadratic about its maximum and 

yields (-0.27, -0.19) as an approximate 95% confidence interval for 

k, with those based on the inverse observed and expected information 

matrices (-0.29, -0.17) and (-0.29, -0.18) respectively. For £ 0=0 

the hypothesis k = 0  is quite untenable, although the excesses are 

closer to exponentiality for higher thresholds.

It might be thought that different dispersion conditions might 

apply to releases over periods of twelve hours or less and those over 

periods of one day or more - which should be affected to a greater 

extent by the diurnal mixing cycle. The likelihood ratio test for 

different values of k in these two sets of release durations - but a 

common value of 0 - gives evidence for this for £ 0 = 0  at between the
A

5% and 1% levels. The value of k for exposures due to releases of 

duration twelve hours or less is -0.25, but that for exposures due to 

releases of longer duration is -0.08. This confirms the idea that 

exposures due to releases of duration a day or more are lighter

tailed than those due to shorter releases.

When the hypothesis that different values of k apply at 

different distances from the source, a similar effect is found for 

£ q=0» The likelihood ratio test for the hypothesis that the value of
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k

Figure 8.1 Partially maximized loglikelihood £ (k) for high exposuresmax
to air contamination; threshold £q=0.
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k at receptors 100 kilometres from their sources is different to that 

at greater distances is significant at between the 5% and 1% levels. 

This lends support to the notion that dispersion mechanisms which 

affect high exposure levels at distances of more than 100 km have 

less effect on those at 100 km or less, with the consequence that the 

tail behaviour of extreme exposures is different over the two ranges
A.

of source-receptor distances. The value of k at the longer distances 

is -0.19, whereas that at receptors 100 km from their sources is 

-0.36: exposures have heavier tails closer to their sources.

The value of Wilks* statistic for a test of the hypothesis that 

the values of k  differ for depositing and non-depositing isotopes is 

0.04. This gives no evidence in support of the hypothesis.

The score statistics for goodness of fit are 4.90, 2.12, and 

1.73 for 5g=0, 0*5, and 1.0 respectively. None are significant at 

their nominal 5% level, although the first is significant at the x22 

10% level, possibly as a result of the heterogeneity of the values of 

k mentioned above. The plot of Normal Cox-Snell residuals when £0=0
A

- that is, [ F^(Y^) ], with $(.) the standard Normal distribution
A

function and F^(.) the estimated generalized Pareto distribution of 

the excess - against the linear predictor log{a^} in Figure 8.2(a) 

shows no outlying values, although there seems to be more variation 

for big values of the linear predictor than for smaller ones - as a 

result of the variation of k. The plot in Figure 8.2(b) of the
A

empirical distribution function of the F (Y ) - which should be 

roughly uniform - shows the same effect: rather too many high values
A

of the F^(Y^), due to their overdispersion. However an 

Anderson-Darling test using the parameter estimates in Table 8.6 

applied to the half of the data previously retained for cross- 

validation yields for £0=0 the very low test statistic value 0.084; 

not nearly significant even at the 15% level. Calculation of the
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(i) Mi)

(b) empirical distribution function of uniform residuals F^(y^)

Figure 8.2 : Residual plots for model for high exposures to air 
contamination; threshold £jg=0.

alog Q. 
1
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likelihood differences based on one-step jackknifed parameter 

estimates reveals no single particularly influential observations.

This seems reasonable: the sample size is 1762 and the covariate 

matrix is quite well balanced. Similar calculations show better 

model fit at higher thresholds; in particular the evidence for 

heterogeneity of the values of k  disappears.

The conclusion to be drawn is that there is good evidence for

some heterogeneity of values of k  for exposures due to releases of

different durations and at different distances from their sources,

but model fit for air contamination - and by implication dry

deposition - data is adequate for the present purpose, especially if

the likely sizes of inaccuracies in MESOS exposure levels are

recalled to mind. The high values of dry deposition distributions -

in pCism " 2 - may be predicted by multiplying the predicted scale

parameter a of the nuclide time-integrated air concentration

distribution by the deposition velocity v appropriate to thed
radionuclide in question.

A  form for a suitable for exposures to wet deposition is

a = X^expf 0O +  3idX +  32<lv^ +  33dX^ +  S^logtd) +  3slog{t/3} } .... 8.3.3.

Successive reductions in model deviance due to fitting the covariates 

in order are given for exposures to wet deposition in Table 8.5(b).

The reductions due to fitting the effects of release duration, 

source-receptor distance, and half-life are biggest at all threshold 

levels. The reduction due to fitting the effect of deposition 

velocity is not statistically significant.

Parameter estimates and their standard errors based on the 

observed information matrix are displayed in Table 8.7. The values 

of all the parameter estimates are less stable for wet exposures than 

for air contamination. Although pseudo-nuclides were generated to
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Threshold Level

50 = 1-0

Parameter Estimate s.e. Estimate s.e. Estimate s.e.

60 23.238 1.088
-2 -2

21.845
-2

1.580
-2

18.971 2.534

e, -7.214 x 10
-5

2.532 x 10
-5

-5.514 x 10
-5

3.615 x 10
-5

-0.133 5.045 x 10 2 
-5 -4

62 -8.250 x 10
-2

6.642 x 10
-3

-4.084 x 10
-2

9.445 x 10
-3

-9.544 x 10
-2

1.488 x 10
-3

^3

e5
k

-1.184 x 10 

-0.822 

-0.647 

-0.397

3.906 x 10
-29.279 x 10
-23.553 x 10

3.906 x 10"2

-1.919 x 10 

-0.688 

-0.703 

-0.460

5.884 x 10 

0.135

4.780 x 10"2 

5.854 x 10~2

-2.743 x 10 

-0.413 

-0.784 

-0.505

8.684 x 10 

0.216

7.817 x 10"2 

9.008 x 10"2

Table 8.7 Parameter estimates for different threshold levels for exposures to wet deposition (pCim ).
i
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A

assess the effect of decay constant X on high exposures, 3  ̂ is not 

very accurately determined, but it has the right sign and roughly the
A A

right size. The same is true for 8 2 • The values of B3 are 

reasonably consistent for different threshold levels: they are bigger 

in absolute value than those for air contamination exposures.
A

Values of 3 i+ - representing the effect of plume broadening with 

distance - increase as 5q increases. This suggests that the effect 

of plume broadening is increasingly weaker for higher levels of £0 , 

though why this should be so is not clear. On the other hand the
A

value of 3 5 decreases as £0 increases, indicating a slightly bigger 

effect of release duration for exposures over higher thresholds. The 

effect of release duration on exposures to wet deposition is smaller 

than on exposures to air contamination. Finally, the apparent weight
A

of the distribution tail - measured by the value of k - increases 

with » unlike its behaviour for exposures to air contamination.

This very different type of tail behaviour may be due to the fact 

that rainfall rate varies for different rainfall episodes. Such 

variation tends to overdisperse exposures to wet deposition relative 

to those to air contamination, but it is not clear why such 

overdispersion should increase with £0 .
A  A

In view of the indeterminacy of 3* and B2 , it is possibly
A

misleading to interpret the values of the 3 for exposures to wet 

deposition in terms of mean puff height during its travel-time, its 

mean speed, and so on.

Figure 8.3 shows the partially maximized loglikelihood ĴTTiay(k) 

for 5g=0 f°r exposures to wet deposition. Its shape is rather 

different to Figure 8.1 insofar as Figure 8.3 is quite non-quadratic 

even near its maximum; moreover despite the large sample size there 

is clearly less information about the value of k. The 95% confidence 

interval for k based on Figure 8.3 is roughly (-0.51, -0.31), but
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k

Figure 8.3 : Partially maximized loglikelihood for high exposures
to wet deposition; threshold £g=0.
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those based on inverse expected and observed information are 

(-0.48, -0.32) and (-0.47, -0.32) respectively. The maximum 

likelihood estimate of k is about -0.4. The data plainly do not have 

an exponential tail. Testing the hypothesis of one value of k  at 

receptors 1 0 0  km from their source but a different one at all other 

distances gives a W i l k s ’ statistic significant at the 5% but not at 

the 1% level. The test for different values of k  for exposures due 

to releases of duration one day or more, or twelve hours or less, is 

not quite significant at the 0.1% level. Thus there is again good 

eveidence of heterogeneity of values of k.

The score test statistics for goodness of fit - nominally x 2 2 if
A
k has absolute value less than one-half - are 1.77 and 0.35 for £ 0 = 0  

and 0.5 respectively; whereas that for £ 0=1, nominally standard 

Normal, is 0.52. None of these indicate gross departures from the 

model. Nor do the residual plot in Figure 8.4(a) and the plot of the
A

empirical distribution function of the F (Y^) in Figure 8.4(b), for 

£q =0. The one-step jackknifed parameter estimates show that some of 

the observations which correspond to pseudo-nuclides have large 

influence on one or more of the estimated parameters. This is 

because there is little information for determining 8  ̂ in exposures 

due to the other, longer-lived, isotopes.

The Anderson-Darling statistic for the fit of the model at 

equation 8.3.3 with 5 q =0 and the corresponding parameter estimates in 

Table 8.7 to the data retained for cross-validation is 2.12 - 

significant at between its 10% and 5% levels. The model fits the 

data adequately, despite the heterogeneity of the values of k and 

the fluctuations in the parameter estimates at different thresholds.

It is recommended that the threshold level £0=0 be chosen for 

prediction of high exposures to time-integrated air concentration, 

dry deposition, and wet deposition, and the relevant parameter values
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F (v (i) Mi)

(b) empirical distribution function of uniform residuals F^(y^)

Figure 8.4 : Residual plots for model for high exposures to wet 
deposition; threshold £g=0.
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in Tables 8.2, 8.4, 8 . 6  or 8.7 used. For releases of duration three 

hours an exposure will exceed the threshold 5 q = 0  with probability 

about 0.005-0.01; the probability of such an exceedance increases for 

increasing release durations.

Under the clustering model proposed in the previous section, the 

probability that a single release of duration t hours will lead to an 

exposure which exceeds the appropriate threshold is p^/( 1 —q ), where 

is taken from Table 8.2 - qt=0 if t is greater than 24 hours. The 

distribution of an excess over the threshold for an exposure to time- 

integrated air concentration is the generalized Pareto form 8.3.1 

with scale parameter a defined in equation 8.3.2 and with parameter 

estimates taken from Table 8 .6 ; for a wet deposition distribution it 

is the generalized Pareto form with scale parameter a defined in 

equation 8.3.3 and parameter estimates taken from Table 8.7.

Consider exposures to a nuclide with parameters X, v,, and X ,
a  W

at a distance d metres from a source, for releases of duration t
a a

hours. Since k*0 for £ q=0, estimated return value x^ for such

exposures for a given probability p, conditionally on the threshold

having been exceeded, is

a  a  V  1 AXp = a{ 1 - (l-p)k }/k .... 8.3.4.

A A
If D is the matrix whose diagonal elements are s.e.( 3 0), s.e.(8 i),

A A
..., s.e.CBs), s.e.(k) and zeroes elsewhere, and V is the correlation 

matrix for the estimates - in Table 8 .8 (a) or (b) - then the variance
A

of the predicted return value x is
P

Var( x ) = x 2 x DVD xT .... 8.3.5,

where x is the row vector

( 1, dX, d v , , dX , log{d), log{t/3}, -log{l-p}(a/kx -1) -1/k ). a w  p
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parameter

B0 B, 62 B3 S4 BS k

Bo 1.0 .482 .289 .093 -.995 -.194 . 110

B, 1.0 .060 .216 -.517 .093 .006

B2 1.0 -.702 -.271 -.551 .072

B3 1.0 -.129 .316 -.032

B4 1.0 .148 -.055

6, 1.0 -.105

1.0

(a) Exposures to air concentration

B o B, B2 B3 B4 in
CQ k

B o
1.0 -.101 .626 .662 -.997 -.022 -.023

B, 1.0 -.198 -.353 .095 .290 -.007

S2 1.0 .207 -.646 .044 -.012

B3 1.0 -.676 -.039 -.049

B4 1.0 -.021 .050

B5 1.0 -.042

k

(b) Exposures to wet deposition

1.0

8.8: Correlation matrices for estimated parameters of generalized
Pareto distribution for £ = 0o

TABLE



271

Thus an approximate (l-2a)xl00% confidence interval for the value of

x which would have been obtained had MESOS been used for the 
P

A A  A  A
calculation is ( x +z /Var(x ), x -z /Var(x ) ), where $(z )=<*, a is p a  p p a p a
one-half or less, and $(.) is the standard Normal integral.

The distribution of the maximum exposure Y at a receptor duemax
to T successive t-hour releases each of duration t hours is found 

using equations 8.2.1 and 8.2.2; it is

Prob( Yma x <y } = 6 X p [ Tpt { - 1 ( ] •

The percentile y^ for Y ^ y corresponding to a given probability 

p > exp{ -Tp^ } may be found by solving the equation

Prob( Y <y ) = p, and is max p

A A r *  1 i Ky p = a{ l-(l-p*)k  }/k 8.3.6

since k*0, where

Tp^-Hog(p)
Tpt+qtlog(p) 8.3.7.

If p < exp{ -Tp }, then y =*0 since there is an atom of probability t p
of size exp{ “Tp^ } at y=0, corresponding to the event of 

exceedances of the threshold in an interval of length T.

no

The estimation error of pfc is very small compared with that of 8
A.

and k, so it is suggested that it be ignored in finding confidence
A

intervals for the MESOS values of y . Thus the variance of y isP P

Var( y ) = y 2 x* DVD x *T •••• 8.3.8,

4 ? 4̂?where x is the vector of covariates defined above but with p 

substituted for p in its last term.
A

These formulae for variances of the estimated return values x

and y^ depend on several approximations: first, Normal approximations
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to the distribution of the parameter estimates and return values; 

second, the approximations introduced by use of the generalized 

Pareto distribution; and third, the approximations introduced by 

using MESOS rather than experimental or observational data. The 

third of these dominates the others. To anticipate the conclusions 

of Section 8.4: although the model for tail behaviour is apparently 

very accurate, it is only as trustworthy as the MESOS calculations on 

which it is based.

8.4 A  verification study

It is meet and right that the model for extremes be verified by

comparison with data not used to derive it - only thus can it be

properly assessed. The data are for MESOS calculation for releases

from Hannover and Stuttgart through 1973. The notional radionuclides

concerned - labelled Cases 1-4 for convenience - mostly have

deposition parameters larger than those used to develop the model.

Their nuclide characteristics are summarized in Table 1.4. Case 1

has deposition parameters in the same range as those used to derive

the model, and an infinite half-life; Case 2 has a larger deposition

velocity v^, and an infinite half-life; Case 3 has a half-life of

just less than three days and large deposition velocity and washout

coefficient X ; and Case 4 has an infinite half-life and the same w*
deposition parameters as Case 3.

Consider first the verification of the model for episodes of 

high exposure to time-integrated air contamination, for threshold 

levels defined at equation 8.1.1 with £q =0 an<* releases from 

Hannover. The three elements of the model to be considered are: the 

occurrence of clusters of exposures; the sizes of the clusters; and 

the sizes of the individual excesses in the clusters.

Under the model the numbers of clusters observed at receptor j
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due to T releases each of duration t hours is Poisson with mean 

E^=Tpt and pt is defined at equation 8.2.3. If the observed number 

of clusters at the receptor over the period is 0_j, then the statistic

x2 ■ h <yv2/Y
where the sum is over all 16 receptors, should be distributed 

approximately as x 2 16 ^  the model is a good fit to the data, and 

should be rather large otherwise.

For Case 1, and releases of duration 3 hours, 12 hours, and 3 

days, the values of X 2 are respectively 18.54, 22.42, and 11.11, none 

of which casts serious doubt on the model. The largest contributions 

to the values of X2 come from the receptors 100 and 200 km south of 

Hannover, where the numbers of clusters are underestimated for 

shorter release durations. The numbers of clusters of exposures 

exceeding the relevant thresholds for releases of Case 2, Case 3, and 

Case 4 - all of which have deposition parameters bigger than those 

used to derive the model - are considerably underestimated, 

especially far from Hannover. This implies that for time-integrated 

air concentrations and dry deposition threshold, dependence on 

nuclide deposition velocity is too strong, leading to too low 

thresholds at long distances. As a result, the numbers of clusters 

of exposures experienced at receptors more than 300 km from their 

sources are generally underpredicted by a factor of between three and 

five.

In addition to the numbers of clusters, the observed and 

predicted sizes of the clusters of exposures at all 16 receptors can 

be compared using the statistic X 2 . The 0^ are now the observed 

sizes of clusters and the their expected sizes, and the statistic

should approximately the x2 7 distribution. For Case 1 and releases 

of duration 3 hours and 12 hours, X 2 has values 13.22 and 11.82
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respectively, both of which indicate slight overdispersion of the 

data relative to the model. For the other three notional isotopes 

the model fits very poorly because the threshold is too low so that 

far from the source clusters are bigger than the model predicts - 

leading to massive overdispersion. For Case 2, for example, the 

values of X2 for releases of duration 6 hours and one day are 30.17 

and 132.3 respectively: the low threshold renders the clustering 

model inadequate.

The situation improves considerably when the sizes of the 

excesses themselves are considered. For Case 1 and E>q= 0» 

conditionally upon the appropriate parameter values in Table 8.6, the 

Anderson-Darling statistics for fit of the generalized Pareto 

distribution to excesses at all 16 receptors are 1.088, 0.725, and 

0.159 for releases of duration 3 hours, 12 hours, and 3 days 

respectively. All of these indicate a good fit of the distribution 

to the data. The picture is equally rosy for other radionuclides: 

for example, the Anderson-Darling statistic for exposures to Case 3 

due to releases of duration one week is 1.252; and that for exposures 

to Case 4 due to releases of duration 3 hours is 2.094. The nominal 

5% level of the statistic is 2.492 for samples of size 5 or more, 

so there is no evidence of any statistical discrepancies between the 

observed and predicted distributions.

To assess the practical significance of such discrepancies as do 

occur, Figure 8.5 shows for various nuclides and release durations 

plots of against i, where o ^  is the (appropriately

scaled) observed i***1 order statistic of the excesses, and e ^ ^  is the 

expected i***1 order statistic for a generalized Pareto distribution 

with shape parameter k=-0.233. If the expected and observed 

distributions matched perfectly, the plot would be a straight line of 

gradient zero through the origin.
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(a) Case 1, release duration 3 hours.

(b) Case 1, release duration 1 day.

Figure 8.5 : Plots of differences of log-observed and log-expected order 
statistics for high levels of air contamination due to 
releases from Hannover.
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(c) Case 2, release duration 6 hours.

(d) Case 2 , release duration 1 day.
Figure 8.5 : Plots of differences of log-observed and log-expected order 

statistics for high levels of air contamination due to 
releases from Hannover.
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(e) Case 3, release duration 3 hours.

(f) Case 4, release duration 3 hours.
Figure 8.5 : Plots of differences of log-observed and log-expected order 

statistics for high levels of air contamination due to 
releases from Hannover.



278

Figure 8.5(a, b) shows the plot for Case 1 exposures due to 

releases of duration 3 hours and 3 days. In Figure 8.5(a) the 

expected distribution levels are too high by a factor 1.3 or so 

for almost all values of i; part (b) of the figure shows a very good 

fit throughout the range of the data. The rest of the figure shows 

the same pattern: observed and predicted values generally lie within 

a factor 1.3 or so of each other, although the bottom few exposures 

are usually a factor 1.6 or so too low and the uppermost few the same 

factor too high.

To draw conclusions from these data, the model for high levels 

of exposure to time-integrated air concentrations and dry deposition 

is very good for radionuclides whose parameters lie in the range of 

those used to build the model. There is evidence that probabilities 

of high levels of exposure are slightly overdispersed relative to 

those predicted by the model, but the prediction of high levels of 

contamination is very accurate indeed. The model for probabilities 

of high exposures to isotopes with big deposition and washout 

parameters is less adequate because thresholds are too low at 

moderate and long distances from the source: uncritical use of the 

model could lead to probabilities of high exposures being 

underestimated by a factor of up to five. However the model for the 

sizes of these high exposures is about as accurate for such 

radionuclides as for those used to derive the model.

Consider now the verification of the model for episodes of high 

exposures to wet deposition for threshold levels defined at 8.1.2 

with 5o=0.

For Case 1 the X2 statistics for comparison of expected and 

observed numbers of clusters at all 16 receptors for releases from 

Hannover of duration three hours and one day are 26.31 and 15.17 

respectively; for releases from Stuttgart of duration 3 hours, 12
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hours and one week they are 122.4, 85.53, and 28.25. These 

statistics clearly indicate some massive overdispersion of the data 

relative to the model. Comparison of the observed and expected 

numbers of clusters shows that major discrepancies arise only at a 

few receptors: those 100 and 200 km east of Hannover; and those 100 

km north-east, 100 and 200 km south-east, and 600 km south-west of 

Stuttgart. Overdispersion due to discrepancies at the same receptors 

is evident - though to a lesser extent - for exposures to wet 

deposition of Case 2. This implies two things: that the frequency of 

high exposures to wet deposition is underpredicted by a factor of up 

to four at receptors generally downwind of the source in wet 

conditions; and that effects such as orographic rain may have a 

substantial effect on the frequency of such incidents. For Cases 3 

and 4, with their higher washout coefficients, thresholds are rather 

high and the numbers of clusters of high exposures tend to be 

slightly overpredicted, but the observed and expected numbers are not 

significantly different.

The X2 statistic for comparison of observed and predicted 

cluster sizes for exposures to wet deposition of Case 1 are 6.08 and 

2.22 for releases from Hannover of duration 3 hours and one day; and 

25.72 and 15.17 for releases from Stuttgart of duration 3 hours and 

12 hours respectively. This is good evidence that observed cluster 

sizes are overdispersed relative to the model; in the Stuttgart data 

this is mostly a result of the high number of exposures at the 

receptors 100 and 200 km south-east of the source. The same is true 

of exposures to Case 2 wet deposition, but there Is no evidence of 

lack of fit for exposures due to wet deposition of Cases 3 or 4.

The Anderson-Darling statistics for excesses of Cases 1 

exposures to wet deposition are 2.228, 2.776, and 0.473 for releases 

from Stuttgart of duration 3 hours, 12 hours, and one week
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respectively; and are 0.204 and 1.764 for releases from Hannover of 

duration 3 hours and one day. The Stuttgart results give some 

evidence of lack of fit. The same is true of exposures due to 

releases of Case 2 from Stuttgart - for releases of duration 6 hours 

and one day the Anderson-Darling statistics are 4.693 and 4.318 

respectively, both significant at at least the 1% level. However 

there is no evidence of discrepancies between the data and the model 

for exposures to wet deposition of Cases 3 or 4.

In Figure 8.6 the practical significance of these differences is 

assessed using the order statistic plots described above. Figure 8.4 

(a, b) shows their size for releases of duration three hours from 

Stuttgart and one day from Hannover. Apart from overprediction of 

the top and bottom few order statistics, the distributions lie within 

a factor 1.6 of each other. This is true for other nuclides, as 

evidenced by the rest of the figure.

Thus for episodes of exposures to wet deposition of nuclides 

with parameters in the range of those used to derive the model it may 

be concluded that: first, probabilities of such episodes are 

generally accurately predicted but may be underestimated by a factor 

of up to four at receptors either downwind of the source in rainy 

conditions, or at those where there is orographic enhancement of 

rain; and second, that the distributions of high values derived using 

the statistical model generally lie within a factor 1.6 of the MESOS 

results, and often closer. For isotopes whose washout coefficients 

are bigger than those used to derive the model, probabilities of 

exposure to wet deposition are slightly but not seriously under

estimated using the model; and the values of high exposures are 

generally accurate to within a factor of 1.6.

For short release durations the absolute values of the 

probabilities of the extreme events being considered here are often
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(a) Case 1, releases of duration 3 hours from Stuttgart.

(b) Case 1, releases of duration 1 day from Hannover.

Figure 8 . 6  : Plots of differences of log-observed and log-expected order
statistics for high levels of wet deposition.
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(c) Case 2, releases of duration 1 day from Stuttgart.

(d) Case.3, releases of duration 3 days from Stuttgart.

Figure 8 . 6  : Plots of differences of log-observed and log-expected order
statistics for high levels of wet deposition.
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(e) Case 4, releases of duration 3 hours from Stuttgart.

(f) C 4 se 4, releases of duration 1 day from Stuttgart.

Figure 8 . 6  : Plots of differences of log-observed and log-expected order
statistics for high levels of wet deposition.



284

of the order of 0.01 or less, so even when multiplied by the factors 

of four or five by which they may be in error, the events are rare. 

Prediction of probabilities of exposure to air contamination, dry 

deposition, and wet deposition, is generally better for releases of 

duration longer than one day. Although not perfect, this model for 

high exposure episodes generally works well.



285

9. SUMMARY, CONCLUSIONS, AND DISCUSSION

This thesis has two main themes. The first is the provision of 

a method of estimating the distributions of exposure due to airborne 

transport of radioisotopes from a source situated at any point in 

Western Europe to a receptor between 100 and 1000 kilometres away, 

based on a statistical analysis of the results of the MES0S model for 

long-range atmospheric dispersion. The second is the development and 

study of the properties of statistical techniques for modelling 

exceedances of continuous random variables over high - or under low - 

thresholds, based on the use of the generalized Pareto distribution.

Chapter 1 provides background and motivation for the task 

undertaken in Chapters 2, 3 and 8: the statistical analysis of the 

MESOS exposure data. MESOS - a complex puff trajectory model for 

long-range atmospheric pollutant transport - and its associated input 

databases of meteorological measurements and output databases of puff 

and receptor histories are described. Attempts to verify MESOS by 

internal calibration and comparisons with other models and to 

validate it by reference to observational data are discussed, and the 

current lack of data suitable for a comprehensive validation of such 

models is lamented. Some areas of uncertainty in MESOS - notably its 

modelling of rainfall, and simple parametrizations of complex 

physical processes - are discussed; so too are the strong statistical 

assumptions made for the purpose of later data-analysis.

A  statistical analysis of the MESOS probabilities of exposure to 

air contamination and wet deposition is performed in Chapter 2.

Two equations which account for much of the observed variation in 

exposure probabilities are derived by a mixture of heuristic 

physical, probabilistic, and empirical arguments; and parameters in 

them are estimated from the MESOS data. Parameter values depend 

on the type of exposure which they describe - air contamination or
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wet deposition - and the climatology of the source. Investigation of 

the second leads to the study of geostrophic windroses in Section 

2.5, where naive and more sophisticated classifications of windroses 

are made. In Section 2.6 verification of the equations leads to the 

conclusion that prediction of probabilities is accurate except where 

trajectories are systematically diverted by features such as mountain 

barriers. Prediction of probabilities of exposure to wet deposition 

is less accurate than to air contamination because of local effects - 

such as orographic rainfall - which it is hard to include in such a 

model. Notwithstanding this, prediction is generally good, and it 

will often be possible to assess qualitatively the effects of 

trajectory turning and localized rainfall.

Attention turns in Chapter 3 to the estimation of the 

distribution of contamination at an exposed receptor. This is more 

complicated for a variety of reasons, chief among them that exposure 

distributions depend on many factors whose combined effect may be 

assessed qualitatively but is difficult to parametrize in a simple 

form capable of direct physical interpretation. In the absence of 

physical arguments for a particular probability distribution of 

exposures, an empirical approach is taken which leads to the choice 

of the two-parameter Weibull form to represent the MESOS exposure 

data. Weibull distributions fit the MESOS exposures well enough for 

the present purpose. Heuristic physical arguments suggest equations 

for the dependence of exposure distributions on factors such as 

nuclide characteristics, source-receptor distance, and release 

duration; this leads to the estimation of associated parameters - 

some of which have a direct physical interpretation - from the data. 

In Section 3.4 verification of the equations indicates that they are 

generally sufficiently accurate for their intended purpose. 

Statistically predicted distributions usually lie within a factor of
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two to three of their MESOS counterparts - which are thought to be 

generally accurate to a similar factor - over the important part of 

their ranges. However, if extrapolated beyond their ranges of 

validity they may lead to serious prediction errors. For these 

reasons this part of the model must be regarded as less satisfactory 

than the prediction of exposure probabilities, but despite this is 

simple to use and correctly used is accurate to the same order as 

MESOS.

Chapter 4 gives a short review of modelling excesses of 

continuous random variables over high thresholds - which has roots in 

the hydrological 'Peaks Over Threshold1 models, and introduces a 

major tool in such analysis: the generalized Pareto distribution.

The distribution is studied in some detail in Chapter 5, where its 

basic properties are described, with particular emphasis on those 

useful for statistical inference; as an aside it is characterized by 

a generalization of the Hamel equation.

Statistical inference for the distribution is considered at 

length in Chapter 6, where a general formulation is given for maximum 

likelihood estimation in complex data. Estimation - mostly by 

maximum likelihood - in simple random samples is studied in some 

detail, and the information in the tails of the distribution is 

weighed by consideration of the effect of censoring and influence 

curves for maximum likelihood estimates. It is concluded by use 

of simulation that uncritical use of large-sample theory for 

confidence regions can be dangerous since convergence to asymptotic 

distributions of estimates is slow. Much information about the 

values of parameters is contained in the tails of the data, with the 

particular implication that any systematic errors in the calculated 

MESOS high exposures will have a profound effect on statistical 

models for them. Estimation by moments and least squares are
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discussed in special cases and their efficiency assessed: they are 

not generally to be recommended. Two tests for tail weight are 

considered in Section 6.4, one of which is to be preferred on the 

basis of its small-sample properties.

In Chapter 7 diagnostic techniques are developed for the 

models described in Chapter 6, based on residuals, a score test for 

goodness of fit, and sample influence calculations. A  simple example 

shows that in small samples critical information about parameter 

values may be contained in the biggest sample order statistic.

Chapter 8 describes the analysis of high exposure episodes in 

the MESOS exposure database, based on the techniques developed in the 

previous few chapters. A  simple model for clustering of high values 

is proposed and the MESOS exposures examined to see if it fits them. 

The generalized Pareto distribution is fitted to excesses over 

empirically determined thresholds, and resulting models for extreme 

exposures are discussed and verified. The statistical model for high 

exposure levels gives results very close to the MESOS data, even 

for isotopes not used to derive it. Statistically predicted and 

MESOS high exposures generally lie within a factor 1.6 or so of each 

other - and often less. Prediction of the probabilities of episodes 

of high exposures to air contamination and dry deposition is good for 

radionuclides with parameters in the range of those used to derive 

the model, but is less accurate for others. There is underprediction 

of probabilities of high exposures to wet deposition at receptors 

usually downwind of the source in wet conditions or due to orographic 

enhancement of rain, which is not taken account of in the model.

The statistical model developed in Chapters 2, 3, and 8 is a 

useable and useful tool which predicts exposure probabilities and 

distributions to about the same accuracy as MESOS, for a wide variety 

of radionuclides, release durations, and sources in Western Europe.
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Its use is illustrated in a forthcoming CEC report. Its main virtues 

are: its simplicity and conciseness in describing a complex physical 

situation; its accuracy over the range for which it was derived; and 

the fact that its statistical basis enables explicit statements to be 

made about the probable degree of accuracy of quantities derived from 

it. This last quality is highly desirable, especially in view of use 

within the nuclear industry of probabilistic risk assessment.

However statements of statistical uncertainty based on this work are 

always made relative to the results of the dispersion model MESOS, 

not to some physical experiment designed to validate such results. 

When - if - suitable results from such experiments become available, 

it may be possible to give more positive guidance about the relative 

importance of statistical errors and those introduced in the course 

of physical modelling.

The main vice of the empirical statistical approach taken in 

this thesis is undoubtably that although its elements are generally 

physically motivated, not all of them are capable of direct 

interpretation in terms of physical processes. A  drawback of this is 

that it does not necessarily give fresh insight into the processes.

On the other hand to generate such insight is not a primary aim of 

this work, and whilst it would be possible to build a stochastic 

model for dispersion based on analysis of the MESOS puff histories 

there is no guarantee that it would be as simple or concise as that 

developed here. Moreover it is likely that any attempts to 

incorporate a stochastic element into a trajectory dispersion model 

will have empirical components like those here.

The main contribution of Chapters 4-7 lies not in the 

originality of the basic ideas - covariate-dependent data, estimation 

by maximum likelihood, diagnostic techniques, and so on - but in 

their wholesale application to the modelling of sample extremes, and
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in particular to excesses over high thresholds using the generalized 

Pareto distribution. To my knowledge this is new. It makes possible 

the construction of flexible and potentially rather complex models 

for extremes, together with apparatus for fitting them, assessing 

their fit, and testing relevant hypotheses. Big issues avoided 

include: the choice of threshold over which to apply the generalized 

Pareto approximation; the related question of so-called penultimate 

approximations, raised by the behaviour of the tails of the data in 

Section 8.3; problems - such as non-independence of nearby excesses - 

associated with the clustering of high values; problems posed by 

transformations chosen to accelerate convergence of data to 

asymptotic extremal distributions; and the analytic study in small 

samples of maximum likelihood estimates. Nor has attention been paid 

to computational problems which may arise in maximum likelihood 

estimation. Bayesian inference and decision-theoretic issues have 

not been covered, but this is not to deny their potential importance 

in other extremal situations.

As a final point, it cannot have escaped the readers' notice 

that by focusing on exposures at single receptors - albeit sited 

anywhere in a large annulus centred on the source - the spatial 

structure of the data has been emasculated. As a result, questions 

about simultaneous exposures at two or more receptors cannot be 

answered. Stochastic models capable of tackling these problems will 

almost certainly have a strong underlying physical basis. Statistics

of extremes for such data are almost unknown
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