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ABSTRACT

This thesis is  concerned with the study o f photogalvanic c e lls  

based on two types o f photosensitiser; w ater-so luble th iaz in e  dyes 

and m etal!oporphyrins. K inetic  parameters fo r  both of these systems 

have been studied using the Optical Rotating Disc Electrode (ORDE) 

and the theory fo r  th is  technique has been fu rth e r  developed.

ORDE resu lts  fo r  the w ater-so luble th iaz in e  dye DMST2 have been 

compared to resu lts  obtained using flash  photo lysis , flash  e le c tro 

lys is  and stopped flow . A complete description o f the iron-DMST2 

system is  given in  terms o f quantum e ffic ie n c ie s  fo r  the production 

of sem ithiazine and leucoth iazine and ra te  constants fo r  the reactions  

of these species.

Studies of the w ater-so luble m etal!oporphyrin ZnTMPyPCl^ using 

the ORDE technique allowed us to ca lcu la te  rate constants fo r  the 

electron tran s fe r quenching reaction and fo r  reverse reaction o f the 

photoproducts. An unexpected feature o f the work on ZnTMPyCl^ was 

th a t increasing the concentration o f quencher decreases the y ie ld  of 

photoproducts above an optimum quencher concentration. A mechanism 

invo lving the formation o f a complex between the photo-excited m eta llo - 

porphyrin and quencher species is proposed which is  shown to be con

s is te n t with the experimental observations.

The results obtained fo r  both the th iaz in e  system and the m eta llo - 

porphyrin system are considered in  the lig h t  o f requirements fo r an 

ideal photogalvanic c e l l .
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Chapter 1

INTRODUCTION

In 1839, B e q u e re l^  found th a t a current flows when two id en tic a l 

electrodes immersed in  a d ilu te  acid solution are illu m in a ted . This was 

the f i r s t  observation o f a photoelectrochemical e f fe c t  and since then 

many other systems have been investigated  which show an electrochemical 

change on illu m in a tio n . These systems may be divided in to  three main 

groups according to where the l ig h t  is  absorbed:

(1 ) Absorption by an electrode (e .g . a t a semiconductor- 

e le c tro ly te  in te rfa c e ) -  photovoltaic c e l l s ^ * ^ .

(2 ) Absorption a t the surface o f an electrode (e .g . in  a 

dye laye r attached to the surface o f an e lectrode) -  

dye sensitised e l e c t r o d e s ^ .

(3) A homogeneous photochemical reaction y ie ld s  e le c tro 

active  products which d iffu se  to and react a t an 

electrode -  photogalvanic c e l l s ^ .

This thesis is  p r in c ip a lly  concerned with the th ird  o f these 

categories -  photogalvanic c e lls .

In a typ ica l photogalvanic c e ll (f ig u re  1 .1 ) ,  l ig h t  enters through 

a transparent electrode and is absorbed by a dye, A. Electron tra n s fe r  

quenching then occurs between the excited  dye molecule and a species Z, 

producing e le c tro ac tive  products B and Y.

The reaction schemes fo r the dye couple A/B and the quencher couple 

Y/Z are shown below.



Figure 1 .1 . A typ ica l photogalvanic c e l l .

Figure 1 .2 . Operation of a photogalvanic c e l l .
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In  the dark A + Z s  ̂ B + Y K «  1

'

Under illu m in a tio n  <

A

A* + Z
V.

hv
------> A*

B + Y

At the electrodes

B

Y ± e
V.

-?• A ± e

»  Z

u
Thermal back r + Y ___ —
reaction a

1 .1 . Essential Features o f a Photogalvanic Cell

For the c e ll to work, the reaction a t the electrodes supplying 

power to an external load must be exergonic. I t  follows then th a t the 

photolysis reaction forming the e lec tro ac tive  products must be an 

endergonic process. A second requirement o f the system is  th a t the 

products o f the photolysis reaction must be completely returned to 

th e ir  s ta rtin g  m aterials in a c y c lic  fashion.

A photogalvanic c e ll based on an aqueous e le c tro ly te  w i l l  have 

a high io n ic  strength . This means th a t any e le c tr ic  f ie ld  e ffec ts  

w il l  be n e g lig ib le  and th a t transport o f species w ith in  the solution  

w ill  be by d iffu s io n . However, the e le c tro ac tive  products B and Y 

can d iffu se  to e ith e r  electrode and so the c e ll must have d if fe r e n t ia l
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electrode k in e tic s  i f  the electrodes are not merely to catalyse the 

back-reaction .

There are sixteen combinations in  which the two couples are 

revers ib le  (a c tiv e ) or ir re v e rs ib le  (in a c tiv e ) a t the two electrodes.

Of these, e ig h t combinations have both couples ir re v e rs ib le  a t one or 

both o f the e lectrodes. With th is  s itu a tio n  no current could flow and 

so the c e ll w i l l  not produce any power. In a fu r th e r  four o f the 

combinations, the Y/Z couple is  revers ib le  a t both e lectrodes. No 

voltage is  produced in  th is  arrangement because o f the p roportionate ly  

small change in  concentration o f the species in  the Y/Z couple upon 

il lu m in a tio n . The remaining four combinations are shown in tab le  1.1 

and are described below.

Case 1

We can re je c t case 1 because both couples are revers ib le  a t the 

illum in ated  e lec tro de . The electrode can catalyse the back reaction  

and no net e lectron tra n s fe r occurs.

Case 2

In th is  arrangement, both electrodes are se le c tiv e  fo r  the A/B 

couple. This would be the case i f  both electrodes were made o f the 

same m a te ria l. The device works as a concentration c e l l ,  th a t is ,  

by d ifferences in the concentration o f the A/B couple a t the two 

electrodes. Albery and A rc h e r ^  have shown th a t a large p o ten tia l 

can be achieved a t open c ir c u it ,  but when a load is  applied the po ten tia l 

w il l  only be -  RT/F, i . e .  about 59 mV. Under open c ir c u it  conditions  

a large d iffe rence  can be maintained between the concentrations o f B 

a t the two electrodes, but when a current passes i t  lowers th is  d ifference
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Table 1.1

Possible Combinations o f Reversible (R) and Irre v e rs ib le  ( I )  

Electrode K inetics fo r  a Photogalvanic Cell

Illum inated
f

Electrode Dark Electrode

Couple A/B Y/Z A/B Y/Z

Case 1 R R R I R eject

Case 2 R I R i !
concentration  

L c e ll
Case 3 R I I R D iffe re n tia l

< Electrode
Case 4 R I R R Kinetics
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and the voltage is considerably reduced. A photogalvanic c e ll with  

both electrodes se le c tiv e  fo r  the A/B couple would thus have a maximum 

e ffic ie n c y  o f less than 0.3%.

Case 3

The electrodes can discrim inate between the two couples so th a t 

B and Y may be separated. This means th a t the c e ll voltage is  simply 

the d iffe rence  in  the electrode po ten tia ls  o f the two couples, and 

(the photoelectrochemical co llec tio n  e ffic ie n c y ) approaches the value 

o f <j>, the quantum e ffic ie n c y  fo r  generation o f B and Y. The electrode  

s e le c t iv ity  o f th is  system gives a th eo re tica l maximum e ffic ie n c y  o f 

1 8 % ^  fo r  conversion of l ig h t  in to  e le c tr ic a l energy.

Case 4

In an ideal c e l l ,  a l l  o f the l ig h t  w i l l  be absorbed close to 

the transparent electrode and none w i l l  reach the other side o f the 

c e l l .  The c e ll is  then said to be d i f fe r e n t ia l ly  illu m in ated . Species 

B is  generated close to the illum in ated  electrode and so i t  does not 

have to d iffu se  fa r  to  reac t. However, B cannot reach the dark electrode  

as i t  w i l l  be destroyed by reaction with Y. As a re s u lt , fo r  a d i f 

fe r e n t ia l ly  illum inated  c e l l ,  case 4 is e f fe c t iv e ly  the same as case 3 -  

there is  no need to d if fe re n t ia te  between the two couples a t the dark 

electrode because none o f the species B reacts there .

The d if fe r e n t ia l  electrode k in e tics  in cases 3 and 4 means th a t 

B must only d iffu se  a re la t iv e ly  short distance to the illum in ated  

electrode where i t  can react. Y must d iffu se  r ig h t across the c e ll 

to the dark electrode and because o f th is , the c e ll must be th in  to  

prevent concentration po la risa tio n  which would reduce the curren t.
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I f  the dye is  not strongly absorbing, B is generated a t  a considerable 

distance from the illum in ated  electrode and w il l  be destroyed by reaction  

with Y before reaching the e lec tro de . Having a th in  c e ll also helps to 

reduce ohmic losses.

These requirements suggest th a t an e f f ic ie n t  photogalvanic system 

should consist o f a strongly absorbing dye species A, between two closely  

spaced electrodes with d if fe r e n t ia l  electrode k in e tic s . A c e ll working 

according to these p rin c ip les  is  shown in fig u re  1 .2 .

The conditions required fo r an e f f ic ie n t  photogalvanic c e ll have 

been worked out by Albery and A rc h e r^ " ^  and th e ir  findings are discussed

1 .2 . Theoretical Analysis o f the Photogalvanic Cell

The steady s ta te  concentration p ro f i le  fo r  B in a working photo

galvanic c e ll is

below.

2
+ 9 k_2CBDCY: = 0 (1.1)

3X

D iffusion  Photochemical Back reaction  
generation

where

g = (f>I eCA3 (1.2)

and

D is the d iffu s ion  c o e ff ic ie n t

x is the distance across the c e ll

P is  the quantum e ffic ie n c y  fo r  generation o f B
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e is the natural ex tinc tion  c o e ff ic ie n t o f A

I is  the f lu x  o f photons

k_2 is  ^ e  back reaction ra te  constant

. The f i r s t  term describes transport o f B by d iffu s io n , the second 

term photochemical generation o f B and the th ird  term loss o f B by 

reaction with Y. No convective term is included because we assume 

th a t the electrode spacing is too small fo r  natural convection to 

occur. In th is  treatm ent i t  is  assumed th a t the irrad iance obeys 

the Beer-Lambert law,

I = I Q exp(-e[IA3x) (1 .3 )

where

I = I a t  x = 0

The c e ll is best described in terms o f the four c h a ra c te r is tic  

lengths depicted in fig u re  1.3 and lis te d  in tab le  1 .2 .
/ 7-g \

D etailed analysis^ ' shows th a t the requirements fo r  an e f f ic ie n t  

c e l l ,  based on the c h a ra c te ris tic  lengths, are as follow s:

10Xe « 2Xk = XG < iX £ ' (1 .7 )

must be greater than X£, so that B is generated close enough to

the illuminated electrode to reach it before being destroyed by reaction
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Table 1.2

C harac te ris tic  Lengths in a Photogalvanic Cell

Name D escripti on Symbol and Equation

Cell Length Distance between 
electrodes x*

Absorption length Distance over which 
the l ig h t  is  ab
sorbed

X =z 1 /ecA: (1 -4 )

Generating length Distance over which 
A can d iffu se  in  
the l ig h t  f lu x  I 
before being con^ 
verted to B

h  - ( D / ^ I 0 ) i (1 .5 )

K inetic  length Distance over which 
B can d iffu se  before 
being destroyed by 
reaction with Y

X II (D /k .2 cY3)J (1 .6 )
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< >

h v

Io

1— >
X

Figure 1 . 3 . The c h a ra c te ris tic  lengths in tab le  1.2.



23

with Y. X£ has to be an order o f magnitude sm aller than Xq to ensure 

th a t a l l  o f the l ig h t  is  absorbed w ithout the so lu tion  becoming bleached 

and X must be a t  le a s t 20 times greater than X so th a t B can only react 

a t  the illum in ated  e lectrode. This la s t  condition also ensures th a t a l l  

o f the processes occur w ith in  the length o f the c e l l .
SoLatC _-j

I f  we take a typ ica l value fo r  th e Airra d ia n c e , I Q = 1.6 x 10

-2 -1 -5mol cm s , and ra th er o p tim is tic  values fo r  the system o f D = 10

cm2 s '1 , e = 108 cm2 mol"1 and <}> = l^ 8 ) ,  we fin d  th a t

XG = TO'3 cm (1 .8 )

from which i t  follows th a t the ideal c e ll w i l l  have

X  ̂ = 4 x 10  ̂ cm

X = 10  ̂ cm£

X£ > 2 x 10 3 cm

(1 .9 )

(1.10)

(1.11)

From the value of X̂  we fin d  th a t = 60 s

The concentration o f Y is fixed  because Y must carry current across 

the c e ll w ithout causing concentration p o larisation  a t  the dark e lectrode. 

Using the e lectron flu x  th a t would be flowing in an e f f ic ie n t  c e ll we 

calcu la te  that
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CY2 « 1 0 '2 M ( 1. 12)

which means th a t k_, < 6000 s~T

An excited  molecule of the dye A* may be subject to electron tran s fe r  

quenching with Z, or to a thermal deactivation process.

A* A

Z + A* q ) B + Y

I f  the e lectron tran s fe r process is to predominate a high concentration  

of quencher is required such th a t

cz: > kT/kq (1 .1 3 )

In a working c e l l ,  however, a low concentration o f Z is desirable to provide 

the maximum voltage d ifference between the two electrodes. For many systems 

a quencher concentration o f 10 mM is  enough to e f f ic ie n t ly  quench the dye. 

Therefore in a working c e ll we have

c z: = io“2 m (1 .1 4 )
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1 .3 . Concentration P ro files  in a Cell

Concentration p ro file s  fo r  the ideal photogalvanic c e ll are shown 

in fig u re  1 .4 .

The d iffu s io n  o f Y and Z across the c e ll in opposite d irections  

requires th a t the concentration gradients of Y and Z a t  the dark electrode  

should be equal to the concentration gradient o f B a t the illum in ated  

e lec tro de . The concentration gradient o f B extends over the absorption 

length which is  shorter than the c e ll length , over which the concentration  

gradients o f Y and Z occur. The concentrations o f both Y and Z must 

therefore be s ig n if ic a n tly  g reater than the concentration of photo

generated B. This leads again to the requirement th a t

[Y3 = CZD = 1 0 '2 M (1 .1 5 )

1 .4 . Ideal Power Output

The ideal power conversion e ffic ie n c y  fo r  a photogalvanic c e ll is  

about 18%. The maximum power output is given b y ^

wm = 0 .8 F $ IoaE° = 140 Wm"2 (1 .1 5 )

Before th is  e ff ic ie n c y  can be achieved, the fo llo w in g , ra th er severe con

s tra in ts  must be s a tis f ie d .

( i )  A must be a very soluble dye (= 0.1 M) with a high ex tin c tio n

c o e ff ic ie n t.



Figure 1 .4 . Concentration p ro file s  in  a photogalvanic c e l l .  

Note the changes in scale on the y -a x is .
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( i i ) The electrode k ine tics  o f the A/B couple a t the illum in ated  

electrode must be rapid (kg > 0 . 1  cm s~^).

( i i i )  The electrode k in e tics  o f the Y/Z couple a t  the illum in ated

-12 -1electrode must be very slow (k^ < 10 cm s ) .

( iv )  Despite the large thermodynamic driv ing  force of -  1.1 V, 

back reaction between B and Y must be very slow

(k_2 < 6000 M'1 s ' 1) .

(v ) The ra te  constant fo r  quenching o f A* by Z must be h igh, 

so th a t as much o f the excited  dye as possible can be 

converted to e le c tro ac tive  products. This means th a t  

(k q i)  ̂ < 10 mM, where x is  the natural life t im e  of A*.

1 .5 . Photogalvanic Systems

Systems based on the quenching o f ruthenium complexes by F e ( I I I )  

have been studied by several w o rkers^0" ^

Ru( I I ) L 3 + Fe ( I I I )  Ru ( I I I ) L 3 + F e ( I I )

A Z B Y

where L is  a ligand , e .g . 2 ,2 ' -b ip y rid in e .

These systems have the advantage th a t <j>, the quantum e ffic ie n c y  fo r  

production o f B is  close to un ity  but a t present there are no electrodes  

ava ilab le  which are se lec tive  towards ruthenium complexes. Also, the 

back reac tio n , is too fa s t to  s a tis fy  the condition required fo r  

X^. By choosing d if fe re n t ligands, k_2 can be reduced but unfortunately  

th is  also lowers the c e ll v o lta g e ^ ^ .
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An e ffic ie n c y  o f 0.3% has been reported fo r  an iro n -io d in e  photo- 

galvanic system

2Fen  + I
hv

3 ^ 2Fe I I I + 31"

In th is  c e ll the back reaction is very slow - the photostationary s ta te  

takes several hours to decay, and a degree of s e le c t iv ity  is a v a ila b le , 

n-Sn02 being se lec tive  fo r the F e ^ /F e ** *  couple and glassy carbon fo r  

the iodine couple. However the power av a ila b le  from the c e ll is  lim ited  

by the small d ifference between the standard electrode po ten tia ls  o f the 

two couples ( aE° -  236 mV). Cells with rhodamine B as the dye species 

have also been investig ated . In one system the excited  dye is  quenched 

by hydroquinone. The illum inated  electrode is  made o f SnC^, and th is  

is p a r t ia l ly  se lec tive  towards the dye couple, the quinone/hydroquinone 

couple reacts a t a gold e lectrode. In another system F e ( I I I )  acts as 

the quencher but because F e ( I I I )  is  f a i r ly  ir re v e rs ib le  on SnO^* both o f  

the electrodes must be made o f gold. The low e ffic ie n c y  o f these c e lls  

is  thought to be due to a high rate  constant fo r  the back reaction and 

to ir re v e rs ib le  reactions o f the oxidised and reduced dye species.

1 .6 . The Iron Thiazine Photogal vanic- System

Thionine and its  one electron and two electron reduction products, 

semithionine and leucothionine are shown in fig u re  1 .5 .

The photobleaching o f aqueous ac id ic  solutions o f th ionine in the 

presence o f ferrous sa lts  was f i r s t  observed by W e is s ^ ) .  The system 

was f i r s t  used to convert l ig h t  in to  e le c t r ic i ty  in a photogalvanic c e ll
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Th

X O C u ,

Figure 1.5 The structures o f th io n in e , sem ithionine  

and leucothionine

Figure 1.6 Absorption spectrum o f th ionine
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(14}by Rabinowitciv ' .  The v is ib le  spectrum o f th ionine is  shown in fig u re  1 .6 , 

the absorption is  a s in g le t-s in g le t  tra n s it io n . In sulphate medium, the 

fluorescence li fe t im e  is 345ps^^^ and the fluorescence y ie ld  is  0 .0 4 7 ^ ^ ^ .

The excited  s in g le t undergoes e f f ic ie n t  intersystem  crossing to a 

t r ip l e t  with a li fe t im e  of 20 y s ^ ) ,  and in the presence o f ferrous ions 

th is  t r ip l e t  s ta te  is  subject to e lectron tran s fe r quenching to produce 

fe rro u s , and the semithionine rad ica l (S ’ ) .  These reactions are summarised 

below

Th

'Th*

hv
------------ ^
599 nm

klsc > 3Th*

= 5.6 x 104 dm3 m o l'1 cm-1

3Th* + F e ( I I ) S + F e ( I I I ) = 3 .5  (± 0 .7 ) x 109 

dm3 m o l'1 S -V 1 6 .1 7 )

The iro n -th io n in e  system is  more complicated than the schematic 

A,B/Y,Z system because o f the rapid disproportionation o f the semithionine  

radical to form thionine and le u c o th io n in e ^ ’ ^ .

The k in e tic  scheme may be conveniently depicted as fo llo w s ^

k -3 k_3

Th
A

hv s*
k_1C F e(III)D k_2 C F e ( I I I )□ a

k j k3
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where

k_1 = 7 .9  x 104 dm3 m o l'1 s '1 (17)

k.g = 2 .6  x 102 dm3 m o l'1 s '1 ( 17)

k_3 = 1 .0  x 104 dm3 m o l'1 s ' 1 (1 9 )

k3 = 2 .4  x 109 dm3 m o l'1 s ' 1 ( 16>17)

At moderate l ig h t  in te n s it ie s , when an appreciable amount o f S* 

is  produced the dismutation is so rapid th a t most o f the photoproduct 

is present as leucoth ionine.

One o f the main problems with the iro n -th io n in e  system is  the low

s o lu b il ity  o f th ionine ( -  50 yM in 50 mM ^S O ^), In the ideal c e ll the

dye has a concentration o f about 0.1 M and the electrodes are d if fe re n t ly

illum in ated  -  one electrode receives the fu l l  in c iden t l ig h t  in te n s ity

and the other electrode receives no ir ra d ia t io n . Because of the low

s o lu b il ity  o f the dye, L ich tin  has investigated  a c e ll using th ionine

in which both electrodes receive approximately the same irra d ia n c e , the

to ta l ly  illu m in a te d -th in  laye r (o r T I-T L ) c e l l .  For the c e ll to operate

e f f ic ie n t ly ,  both electrodes must be s e le c tiv e , because the dye couple

is  now ava ilab le  to react a t  both electrodes and not a t one, as is  the

case with the d i f fe r e n t ia l ly  illu m in a te d -th in  layer c e l l .  This type of

c e ll is in e f f ic ie n t  however, because the low dye concentration increases

the like lih o o d  o f bleaching, with a consequent reduction in c u r r e n t ^ .

Several d if fe re n t  approaches have been suggested to increase the

s o lu b il ity  o f the dye couple. Another th iaz in e  dye, new methylene blue

is  soluble up to approximately 10  ̂ M in  aqueous s o l u t i o n a n d  th is

dye has been investigated  by Albery and Foulds using the o p tica l ro ta tin g

( 21)disc (0RDE) techniquev ' .  The dye was found to dimerize a t concentrations  

-4as low as 10 M and the action spectrum showed th a t the photoredox reaction  

is  driven only by the monomer. 0RDE experiments also showed th a t the
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photoexcited dye is  subject to d iffu s io n  contro lled  self-quenching  

by both the monomer and the dimer.

In another approach, B o w e n s o l u b i l i s e d  th ionine in m ic e lla r

sodium dodecyl sulphate so lu tion . The surfactan t increases the dye

concentration from 50 uM to about 3 mM, however the m ic e lla r  system

3 -1was found to increase the back reaction rate  constant from 430 dm mol 

s  ̂ to 1 x 10^ dm̂  mol  ̂ s and the quantum e ffic ie n c y  fo r  leucothionine  

production was s ig n if ic a n tly  reduced. The ra te  constant fo r  the reaction  

o f the dye couple a t the illum inated  electrode was also found to decrease.

L ich tin  and co-workers have investigated  the iro n -th io n in e  system 

in mixed aqueous-organic solvents. The s o lu b il ity  o f  th ionine is  in 

creased to about 1 mM in 50% h^O/MeCN so lu tion . An increased rate  

constant fo r  e lectron tran s fe r quenching o f the t r ip l e t  dye is  o b s e rv e d ^ )  

in  these systems, possibly caused by the complexation o f F e ( I I )  leading  

to an anionic bridge between the dye and F e ( I I ) .

Several approaches have been used to lower the ra te  constant fo r

(24 251the back reaction in  the iro n -th io n in e  system. Shigehara and co-workersv 5 '

have studied a th in -la y e r  c e ll in  which thionine is  bound to a ca tion ic  

polymer. I t  is  proposed th a t the back reaction is  slowed by e le c tro s ta tic  

repulsion between the polymer and F e ( I I I ) ,  although th is  w i l l  depend on 

the s ta te  o f complexation o f the fe r r ic  ion. The power ava ilab le  from 

the device was again lower than th a t fo r  a simple iro n -th io n in e  ce ll 

because of the high in tern a l resistance o f the c e ll and slow d iffu s ion  

o f e le c tro ac tive  species w ith in  the gel medium.

I t  has been found th a t the addition o f anions such as f lu o r id e , 

c itra te  and 2-ami nopropionate, which complex Fe( I I I )  more strongly than 

F e ( I I )  can increase the power output from a th in -la y e r  c e ll by as much 

as 500 times. The reasons fo r  th is  are not fu l ly  understood, but i t  

has been suggested th a t the rate  of the back reaction is  reduced by the
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complexation. The standard electrode p o ten tia l o f the F e ( I I ) / F e ( I I I )  

couple w i l l  be reduced, leading to a g reater c e ll vo ltage, and the 

electrochemical ra te  constant fo r  the F e ( I I ) / F e ( I I I )  couple w i l l  also 

be a ffec ted .

Recent studies o f the reaction between leucothionine and F e ( I I I )  

have produced disagreement over the processes which are involved. Several 

w o rk e r s ^  ^  have shown th a t in  the presence o f excess f e r r ic ,  the 

pseudo -firs t order rate  o f oxidation o f leucothionine approaches a lim it in g  

value with increasing CFe( 111)□. This has been ascribed to the rap id , 

revers ib le  formation of a complex between the two species. Brokken-Zijp  

and c o -w o rk e rs ^ ) have shown however, th a t the ra te  of reappearance of 

th ionine depends on the concentration o f thionine present in the so lu tio n . 

They emphasize the importance o f the synproportionation reaction between 

th ionine and leucothionine and the oxidation o f semithionine by F e ( I I I ) ,  

and suggest th a t the assumption o f complex formation is  not required to 

explain the non-pseudo f i r s t  order behaviour.

The amount o f in c ident rad ia tio n  which can be u t i l iz e d  by a photo- 

galvanic c e ll is  lim ite d  by the re la t iv e ly  narrow absorption band o f the 

photoreactive dye. The absorption e ffic ie n c y  can be increased by using 

several absorbing dyes. The added dye species may be photoreactive, e .g . 

other th iaz in e  dyes, or they may be sens itisers  which, although not 

photoreactive themselves are capable o f absorbing lig h t  and tran s fe rrin g  

e x c ita tio n  energy to the photoreactive dyes. L ich tin  and co-workers 

found th a t the power output o f a T I-TL  c e ll can be increased i f  rhodamine 

66 is added as a s e n s itis e r .
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Chapter 2

APPARATUS AND EXPERIMENTAL'

2 .1 . E lectronics

The co n tro llin g  system of e lec tro n ics  used fo r  the dark e le c tro 

chemistry and ORDE experiments was based on designs by Chadw ick^^  

and H i l lm a n ^ ) .

2 .2 . E lectronics fo r  Flash E lec tro lys is

A p o ten tio s ta t was constructed to a design by G o d d a r d w h i c h  

enabled the p o ten tia l o f the working electrode to be kept constant 

over the timescale o f charging and discharging o f the e le c tr ic a l double 

layer capacitance. The response time o f the p o ten tio s ta t was about 

10 ys. A diagram o f the c ir c u it  is  shown in fig u re  2 .1 .

The p o ten tio s ta t was housed in an aluminium box which included 

a compartment fo r  the electrochemical c e l l .  The voltage supply and 

charger arrangement fo r the p o ten tio s ta t are shown in fig u re  2 .2 . To 

reduce in terfe ren ce  from electromagnetic noise which might be caused 

by an external a ,c . power source, a b a tte ry  of rechargeable c e lls  was 

mounted onto a prin ted  c ir c u it  board and fixed  w ith in  the box o f the 

p o ten tio s ta t. These c e lls  were charged by an external 9 mA, 55 V d .c . 

constant current source, which could be completely disconnected from 

the p o ten tios ta t before use. The voltage output from the rechargeable 

c e lls  to the e lec tro n ics  o f the p o ten tio s ta t was mediated by a p a ir  

of ± 15 V voltage regulators (type 7815-R.S. 305-901 and type 7915-R.S. 

305-923). Using th is  arrangement the p o ten tio s ta t u n it could be charged 

overnight and used continuously fo r  about seven hours before i t  was 

necessary to recharge the b a tte rie s .
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Rm= 10k ii or 100k_n

Fipure 2 .1 . C irc u it diagram fo r  the rapid response 

p o ten tio s ta t.



Figure 2 .2 . Voltage supply and charger arrangement fo r the ranid resoonse n o te n tio s ta t.
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For some flash  e le c tro ly s is  experiments we considered double 

layer charging e ffec ts  in the presence of a faradaic  curren t. Under 

these conditions the high impedance saturated calomel reference electrode  

used fo r  the ORDE experiments resulted in a long r is e  time and damped 

o s c illa tio n s  o f the current s ig n a l. To allow inform ation to be gathered 

w ith in  the f i r s t  few m illiseconds a f te r  the fla s h , the dual electrode  

s y s te m ^ ) shown in fig u re  2 .3  was used.

This system combines a w ire and an SCE coupled to each other and 

to the p o ten tio s ta t reference input. The values o f the elements in the 

coupling c ir c u it  are chosen so th a t the p o ten tio s ta t e f fe c t iv e ly  sees 

only th is  impedance. The coupling c ir c u it  behaves such th a t two paths 

are provided through which the current may pass. The capacitor provides 

a r e la t iv e ly  low impedance, through which current flows fo r  the f i r s t  

10 ys. At longer tim es, and under d .c . conditions the standard reference  

electrode is  c o n tro llin g . An add itional featu re  o f the dual reference  

is  th a t the system acts as a f i l t e r  fo r power-line frequency noise.

2 .3 . Electrodes

The platinum ro ta ting  disc electrodes used were set in a mantle 

o f e ith e r  te flo n  or a r a ld ite . Any major abrasions to the surface were 

removed using 6 urn and then 3 urn diamond lapping compounds (Engis) on 

a purpose b u i l t  polishing machine. A m irror f in is h  was achieved by 

hand polishing w ith a s lu rry  o f 1 ym and then 0 .3  ym alumina (Banner 

S c ie n tif ic )  in deionised, doubly d is t i l le d  water (DDW) on co tto l wool. 

Polishing with 0 .3  ym alumina was repeated before each experiment.

The semi transparent electrodes used in ORDE and flash  e le c tro 

lys is  experiments were prepared in the follow ing manner. Spectrosil 

Quartz rods (4 mm diam eter, 120 mm long, Thermal Syndicate) were
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o To potentiostat

22Mn lOnF

Saturated
calomel
electrode

Pt wire 
reference

F i g ure  2 3 The dua l  r e f e r e n c e

Plate 2.1 An ORDE
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mechanically polished a t  each end u n til free  from scratches and op tica l 

d is to rt io n . Polishing began with 180, 320 and then 600 grade carborundum 

discs (Engis) with water as lu b ric a n t. The f in a l polishing was w ith a 

s lu rry  o f Tecepol ( I I I )  in  DDW (A brafact) on a Hyprocell Pell on polishing  

pad (Engis).

The polished rods were cleaned by soaking in Decon 90 (BDH) and 

thoroughly d ried . A coat o f platinum p a in t (Johnson Matthey PBC 2532) 

was applied to one end o f the rod fo r  a length o f 2 cm and a small over

lap (about 0 .5  mm) was made as a ring  on the face to allow  e le c tr ic a l  

contact. The- pa in t was f ire d  in a ca rb o lite  MF3 furnace according to 

the manufacturer's instructions to remove the organic components and 

leave a th in  layer o f platinum.

Tin oxide was deposited on the face o f the electrode by spraying 

a solution o f SnCl^ and SbCl^ in ethyl acetate onto the rod. The spraying
3

solution was prepared by dropwise addition  of 16.7 cm o f SnCl^ (Koch 

Light) and 1 cm3 o f SbCl^ (BDH) to 33.3 cm3 of ice -co ld  ethyl acetate  

(BDH). The molar ra t io  of Sn:Sb = 95:5 provides the maximum conductiv ity  

fo r the f i l n / 36) .  The solution was allowed to age fo r  one month, during 

which time i t  changed in colour from straw yellow  to black. When applying  

the spraying so lu tio n , the quartz rod was rotated a t  5 Hz and heated to 

red heat using an oxygen/natural gas flame. The solution was applied to 

the heated rod with a De Vi Ib is  spray gun (No. 1 nozzle , using compressed 

a i r ) .  Sprayed rods were tested fo r  op tica l and e le c tr ic a l properties  

and only those with a resistance o f less than 100 ft between the edge and 

centre o f the op tica l face were used. In terference fringes created by 

the t in  oxide f ilm  indicated th a t the thickness o f the f ilm  was 400-700 nm. 

The prepared rods were f i t t e d  in to  brass sheaths using heat shrink tubing 

(Radio Spares 399.940 9 .5  mm diam.) and e le c tr ic a l contact made to the
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brass with s ilve r-lo ad ed  pa in t (Johnson Matthey FSP 51). F in a lly  three

coats o f enamel p a in t (Humbrol) were applied over the s ilve r-lo ad ed

pa in t to give the fin ished  e lectrode. Electrodes prepared in  th is  manner

(37)were characterised by capacitance measurements (by Hillman and B a r t le t t '  ' )  

and by c yc lic  voltammetry and were found to be reproducible.

A tra v e llin g  microscope was used to measure electrode diameters.

To ca lcu la te  the electrode area, the mean value o f twelve evenly spaced 

diameters was used. An ORDE under illu m in a tio n  is  shown in p late  2 .1 .

P oten tia ls  were measured with respect to home-made saturated calomel 

electrodes (SCEs). The p o ten tia ls  o f these electrodes were p e r io d ic a lly  

checked against a commercial SCE (Radiometer) and agreement was always 

found to be b e tte r than ± 1 mV.

The counter and generating electrodes used were large area platinum  

gauzes. These were reg u la rly  cleaned in Decon 90 so lu tion .

2 .4 . The Rotation System

The experimental arrangement is  shown in  p la te  2 .2 . The l ig h t  

source and bearing assembly were mounted above the electrochem ical c e ll 

on two s ta in less  s teel rods. The electrodes were supported in  a bearing 

block containing a sealed mercury contact designed by H e s lo p ^ ^ .

Because o f the need to illu m in a te  through the electrode sh a ft i t  was 

not possible to use a d ire c t drive system between the motor and the 

electrode. Therefore a toothed drive  b e lt  (Aurora) was used to couple 

the motor to the bearing assembly. The assembly was driven by a p rin ted  

armature d .c . servo motor and an Oxford Electrodes motor c o n tro lle r .

The ro ta tio n  speed was continuously measured by a s lo tte d  opto-switch  

(Radio Spares 306.061) connected to the motor s h a ft, and was displayed  

on a d ig ita l readout. The system provided ro ta tion  speeds between 1 Hz 

and 50 Hz, which were stab le to ± 0 . 1  Hz.
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Plate 2.2
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2 .5 . Cell Assembly

The electrochemical c e ll assembly is  shown in fig u re  2 .4 . The 

c e lls  were purpose b u i l t  double-walled glass vessels therm ostatted a t

25.0 (± 0 .2 )°C  by c irc u la tin g  water through the outer ja c k e t. The 

counter electrode was held in  a side-arm behind a grade 3 glass f r i t  

to prevent contamination o f the solution by products o f the reaction  

a t the counter e lectrode. The c e ll was mounted on a platform  supported 

above the baseplate, so th a t i t  could be re a d ily  lowered and removed to 

allow the electrode to be changed w ithout d isturb ing the l ig h t  source 

and bearing block. A ll solutions were degassed w ith white spot nitrogen  

which had previously been purged o f any traces o f oxygen by a tra in  of 

dreschel bo ttles  containing a caustic so lu tion  o f anthraquinone-2-sulphonate  

in contact w ith amalgamated z inc.

2 .6 . Solutions and Chemicals

A ll solutions were fres h ly  prepared using doubly d is t i l le d  water 

(DDW) and were deoxygenated fo r a t le a s t 15 minutes before use.

A ll simple inorganic chemicals were AnalaR grade and were used 

w ithout fu rth e r  p u r if ic a t io n . Thionine was supplied by Fluka and A ldrich . 

Insoluble im purities  were removed by f i l t r a t io n ,  and the resu ltin g  solutions  

shown to be free  from dye im purities  by chromatography on alumina. The 

concentration o f th ionine solutions was determined spectrophotom etrically  

a t 599 nm (eggg/mol dm  ̂ cm  ̂ = 5 6 0 0 0 ^ ^ ) .

2 .7 . L ight Sources

The l ig h t  source fo r  ORDE experiments was an A l/223 , 250 W, 24 V 

quartz iodine pro jec tor lamp bulb with a filam en t temperature o f 3350 K.

Light in te n s ity  measurements using a photodiode showed th a t there  

was a 5 to 10% v a ria tio n  in  the l ig h t  in te n s ity  using an a .c . source.
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Figure 2.4 An electrochemical cell.
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This was unacceptable fo r steady-state  ORDE experiments, so a d .c . source, 

designed by F is h e r ^ ^  was used to power the lamp. A c ir c u it  diagram fo r  

the lamp power supply is shown in  fig u re  2 .5 . 10 nm band pass in te r 

ference f i l t e r s  (Ealing IR I 25 mm) were used to monochromate the l ig h t  

and the in te n s ity  was varied using Ealing neutral density f i l t e r s .  In 

shutter experiments a GB Kershaw 450 camera shutter and cable release  

were used. The r is e  time o f the shutter was about 2.5 ms.

The l ig h t  source used in  the flash  e le c tro ly s is  experiments was a 

Prinz 770c camera flashgun. The flash  tube in th is  u n it is  a "colour 

coated Xenon tube w ith a colour temperature o f 5600 K". The u n it is  

powered by Nickel-Cadmium rechargeable b a tte ries  which are used to charge 

a capacitor. Discharge o f the capacitor across the flash  tube creates  

the photolysis flash  fo r  the experiment, but also causes a considerable  

amount o f electrom agnetic noise. To prevent th is  noise from in te r fe r in g  

with the co n tro llin g  e le c tro n ic s , the flashgun u n it was housed in  a d ie -  

cast aluminium box and the l ig h t  delivered to the photolysis c e ll v ia  a 

l ig h t  pipe (Dolan-Jenner In d u s trie s , 61 cm long, 0.33 cm diam eter).

Figure 2 .6  shows a block diagram o f the flash  e le c tro ly s is  apparatus. 

The semitransparent electrode was held s ta tionary  and the current tran s ie n t  

was recorded on a Gould 0S4000/1 d ig ita l  storage oscilloscope, triggered  

by a photodiode. The response time o f the photodiode was about 250 ns.

Once stored, transients  were 'ro lle d  out' a t a lower speed on a Bryans 

29000 chart recorder.

Stopped flow experiments were performed using a Nortech 5F 2A 

stopped flow spectrophotometer f i t t e d  with a grating  monochromator and 

the control system from the SF 3A model. A ll experiments were conducted 

under pseudo -firs t order conditions. The solution reservoirs  were modi

f ie d  so th a t a i r  sens itive  compounds could be electrogenerated in  s i t u .
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Figure 2 .5 . 250 W Lamp power supply u n it. cn



Figure 2 .6 . Apparatus used in flash e le c tro ly s is  experiments.
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Thiazine dyes were produced in the leuco form by electrogeneration  a t  

a platinum gauze. A useful featu re  o f the apparatus was the 'r a t io  arm* 

which allowed the reactant syringes to be driven in  various volume 

ra tio s , so th a t the concentrations o f the reactants could be varied

w ithout making up solutions a t  each concentration.

Solutions fo r  flash  photolysis were outgassed by repeated free ze -

thaw cycles. Conventional microsecond flash  photolysis measurements 

were made with an Applied Photophysics K200 system, using a dichromate 

f i l t e r  to remove e x c ita tio n  wavelengths < 550 nm as described by 

West(67\
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Chapter 3

THEORY

The Rotating Disc Electrode and Optical Rotating Disc Electrode  

Techniques

The measurement o f electrochemical currents in an un stirred  solu

tio n  provides irreproduc ib le  re s u lts . The composition o f the solution  

at the electrode surface is  changed as soon as any current flow s, and 

stray convection may be caused by thermal gradients and mechanical shock.

A system with reproducible mass transport is required to e lim inate  these 

e ffec ts  and so a number o f forced convection systems have been developed. 

These include the dropping m e rc u r y ^ ) ,  t u b e ^ ) ,  wall j e t ^ )  and bubbling 

gas e le c t r o d e s ^ ) , as w ell as the ro ta tin g  disc e l e c t r o d e w h i c h  has 

been used in  th is  work.

3 .1 . The Rotating Disc Electrode (RDE)^ 3 * ^ )

We f i r s t  consider the hydrodynamics o f a ro ta tin g  electrode in  solu

tio n . The system may be described in  terms o f c y lin d ric a l po lar coordinates 

<p, r  and x as shown in fig u re  3 .1 , The exact pattern o f flow set up in the 

solution by the spinning disc was calcu lated  by von Karman in  1 9 2 1 ^ ) .

The v e lo c itie s  o f flow along the three coordinates are given by:

= ro)G(xH) (3.1)

vr = noF(xH) ( 3 . 2)

vx = (wv)2 H(xh) (3 . 3)



Figure 3 . 1 . Co-ordinate system and f lu id  v e lo c ity  

comoonents fo r  the RDE.

Figure 3 . 2 . The functions F, G and H describing the 

f lu id  flow at the RDE.



50

where

and

v is  in cm s

u is  the ro ta tio n  speed in  radians s”^

2 -1v (= n/p) is  the kinematic v isco s ity  in cm s 

XH = x / X H 

XH = (v / oj)^

( 3 . 4 )

( 3 . 5)

X̂ j is  the hydrodynamic len g th , which is  c h a ra c te r is tic  o f the system 

and is  ty p ic a lly  0.1 -  1 mm.

The functions F, G and H are p lo tted  against i n fig u re  3.2.  I t  

is important to note th a t vx is  independent of r-j which means th a t tran s 

port to the disc is  uniform across i ts  surface, The equations provide 

a mathematical description o f the flow o f solution below the disc. The 

angular v e lo c ity  o f the solution increases as i t  is  drawn up towards the 

electrode and as the solution gets near to the disc i t  is  thrown out 

c e n tr ifu g a lly . Very close to the disc however, there is  a stagnant layer  

ca lled  the d iffu s io n  layer which rotates with the d isc .

The mathematical model fo r  hydrodynamic flow to a disc allowed 

L e v ic h ^ )  to ca lcu la te  the mass transport to a disc e lectrode. The 

f u l l  d i f fe r e n t ia l  equation contains terms fo r  both m igration and d i f 

fusion but the m igrational term may be omitted when background e le c tro 

ly te  is added to the so lu tion . Under these conditions the d if fe r e n t ia l  

equation s im p lifie s  to

2
a c a c

= v „  —
2

a x a x

D iffusion Transport
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where

C is  the concentration of e le c tro ac tive  species in  mol cm , and

2 - 1D is the d iffu s io n  c o e ff ic ie n t in cm s .

Solving equation (3 . 6)  using the boundary condition th a t C -* 

as x « , we fin d  th a t j ,  the f lu x  o f e le c tro ac tive  species to the 

electrode is  given by:

- 3

where Xq is  the thickness o f the d iffu s io n  layer in cm given by

XD = 0.643 v1/6 D1/3 w'1/2 (3.8)

_0 _ ]

where .1 is in  mol cm s , W is  the ro ta tion  speed o f the electrode in  Hz
-3

and CQ is  the surface concentration in mol cm .

The p ro f i le  o f concentration w ith distance from the electrode is  

shown in fig u re  3.3.

The distance Xg divides the concentration p ro f i le  in to  two regions. 

When x < Xq transport is d iffu s io n -c o n tro lle d  and there is  a lin e a r  con

centration  gradient between x = 0 and x = Xg but when x > Xg there is  suf

f ic ie n t  motion o f the f lu id  fo r  the solution to be w ell s t ir re d  and the 

concentration is uniform.

To ca lcu la te  the current which flows a t the electrode we must consider 

not only mass transport to the electrode surface but also the ra te  o f 

reaction o f the e le c tro ac tive  species a t the electrode - the electrode
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Figure 3 . 3 . V aria tion  of concentration w ith distance 

from an RDE.

1,0
x/XD

2,0
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k in e tic s . For the reduction o f a species a t the electrode the rate  

constant k' is  given by:

where

a is  the e lectron tran s fe r c o e ff ic ie n t , and 

k£, is  the standard electrochem ical ra te  constant.

In the steady s ta te , the f lu x  o f m aterial reacting  a t  the electrode  

surface must be equal to the f lu x  transported through the d iffu s io n  la y e r. 

The f lu x  a t the electrode is given by:

k' = k£, exp(-oF(E -  E' ) /RT) (3 .9)

j  = k'Co (3.10)

and su b stitu ting  fo r  CQ from equation (3.7)  we obtain

+ (3.11)
3 k'C

00

where k^ is the d iffu s io n  a! rate  constant given by

D
(3.12)
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Equation (3,11)  has two lim it in g  forms:

(a) When k^ >> k 1, j  = k'C^ and CQ = C^, the f lu x  is  contro lled  

by the electrode k in e tics  and

(b) When k^ << k ' ,  j  = k^C  ̂ and CQ «  C^, the f lu x  is contro lled  

by transport to the electrode and is independent o f p o te n tia l.

This is shown in fig u re  3.4.

When transport is  the c o n tro llin g  fa c to r, the lim itin g  flu x  is  

given by:

JL = kDC» “ DC«/X D ( 3 ' 13>

Converting the f lu x  to the electrode in to  a current

i L = nAFjL (3.14)

and using equation (3.8)  we obtain the fa m ilia r  Levich eouation

i L = 1.554 nFAD2 /3  v '1 /5  C, W1/2 (3.15)

where A is  the electrode area.

This expression predicts th a t the lim itin g  current i^ ,  varies  

lin e a r ly  with the square root o f ro ta tio n  speed, and allows us to ca lcu la te  

the d iffu s io n  c o e ff ic ie n t o f a species in a solution of known concentration.

The shape o f an ir re v e rs ib le  current-vo ltage curve may be obtained 

by combining equations (3.11)  and (3. 13) :
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Figure 3 .4 . Schematic polarogram fo r  the reduction of an e le c tro 

active  species at an RDE. Schematic concentration  

p ro file s  are shown in se t.
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j  i k' 1
—  ■* —  =•------------- -------------------  (3 .1 6 )
j L i L kp + k' 1 + kD/k '

S ubstitu tion  from equations (3 .9 )  and (3 .1 3 ) gives the Tafel equation

k  \  k \  a F ( E - E ' )
- In  —  -  1 = - In  —  + In k * , ---------------------

\ i  / \ CJ  RT
(3 .1 7 )

from which we can ca lcu la te  the standard electrode p o ten tia l fo r  a revers ib le  

couple.

3 .2 . Optical Rotating Disc Electrode Theory

In the steady-state O R D E^- ^ ,  the solution is  illum in ated  by a 

uniform, p a ra lle l beam o f l ig h t  through a semitransparent ro ta tin g  disc 

e lec tro de . The photoproduct B is  generated with a quantum e ffic ie n c y  $ 

in the reaction

A + Z
hv,<f>

B + Y

The follow ing assumptions are made to construct the d if fe re n t ia l  

equation fo r  convective d iffus ion  o f B:

( i )  The l ig h t  makes only a small perturbation  to the concentration  

o f A. This means th a t the solution does not bleach and th a t the l ig h t  has 

a Beer-Le.mbert p r o f i le .

(3.18)
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e is  the natural ex tin c tio n  c o e ff ic ie n t o f A, 

x is  the distance from the electrode and 

I is  the irrad ian ce . I = I Q when x = 0.

( i i )  CY3 »  DB3, so th a t the back reaction is  p seudo -firs t order 

with a rate  constant given by

k = k_2CY: (3 .1 9 )

( i i i )  The electrode is  a t a p o ten tia l such th a t the Y/Z couple is  

in ac tive  w h ils t a l l  o f the photoproduct B a rriv in g  a t the electrode is  

converted to A.

Using these assumptions the convective d iffu s io n  equation fo r  B

is ( 48>

32b 3b , i t -eax+ <j>lg£aeD ------ +
0 VX“ - kb = 0 (3 .20 )

bye 3 X

D iffusion Convection Generation Back Reaction

where a and b are the concentrations of A and B respective ly  and vx is  the 

v e lo c ity  o f flow towards the e lectrode. This equation is  the same as the 

usual equation fo r  the ro ta tin g  disc e lec tro de , eqn (3 .6 ) except fo r  the 

addition of terms fo r  the generation and loss o f B.

The system is  characterised by the lengths introduced previously, 

namely:
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the hydrodynamic length XH = (2 W W )1/2 (3 .5 )

the d iffu s io n  length XD = 0.643 W‘ 1/2 \>1/6 D1/3 (3 .8 )

the k in e tic  length Xk = (D /k)1/2 ( 1 .6)

the absorption length X = 1/ea£ (1 .4 )

Solving equation (3 .2 0 ) we obtain the fo llow ing re s u lt fo r  the 

photoelectrochemical co llec tio n  e f f i c i e n c y ^ 5̂

hv = cosech(<') <

c o s h (K ') -------s inh (K ') — ) e c

k '/?  - c/<'

e x p (-^ -H < ’ ) 2 )

ic'/c

exp - I * 3 V -

1 -

1 + X"21 XG,k *

where

K' = XD/X G,k

X* = (Xq X£/3 .7  5(2)1

C = Xn/X and u e

Njj = ( f lu x  o f e le c tro n s )/( f lu x  o f photons)

(3 .2 1 )

(3 .2 2 )

(3 .2 3 )

(3 .2 4 )

(3 .2 5 )

(3 .2 6 )
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Thankfu lly , s im p lifie d  forms of the equation fo r  are obtained 

when the re la t iv e  sizes of the c h a ra c te ris tic  lengths are considered. 

Equations fo r  under d if fe re n t conditions are shown in fig u re  (3 .5 ) .

When Xq is la rg e , no bleaching occurs, and fo r  region A of fig u re

(3 .5 )  the c o llec tio n  e ffic ie n c y  is equal to u n ity . X£ < X  ̂ so the l ig h t  

is  absorbed close to the electrode and because X£ < X^, a l l  o f the photo

generated B reaches the electrode before i t  is destroyed. In  region B 

the back reaction is  s u f f ic ie n t ly  fa s t to  destroy the m ateria l on i ts  

passage across the d iffu s io n  layer and only m aterial generated w ith in  

X  ̂ can reach the e lectrode.

In zones C, D and E the back reaction is s u f f ic ie n t ly  slow to allow  

m ateria l from outside the d iffu s io n  layer to reach the e lectrode. In 

region C, l ig h t  does not penetrate fa r  outside the d iffu s io n  layer and 

the amounts o f m ateria l reaching the electrode from inside and outside 

the d iffu s ion  layer are roughly equal. In region D, l ig h t  penetrates  

beyond the hydrodynamic layer and the co llec tio n  e ffic ie n c y  becomes 

constant. In region E the k in e tics  are so rapid th a t the loss of photo

generated species is  caused by the back reaction ra th e r than by con

vection.

For zones A and B the photocurrent is independent o f ro ta tio n  speed 

since a l l  o f the m aterial reaching the electrode orig inates  w ith in  the 

d iffu s io n  la y e r. In zone D an increase in ro ta tion  speed increases both 

convective d ilu tio n  and mass tran sport. These two e ffec ts  cancel each 

other out and the photocurrent is  again independent o f ro ta tion  speed.

In zone C the photocurrent varies with W~̂  and so an increase in ro ta tion  

speed decreases the photocurrent. This is most unusual -  the normal 

behaviour a t a ro ta tin g  disc electrode is  fo r  the lim it in g  current to 

increase with increasing ro ta tion  speed, as the d iffu s io n  thickness
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becomes sm aller. In th is  case however, as the d iffu s io n  layer becomes 

narrower, there is  less space fo r  species to  be generated w ithout risk  

of them being swept away by rad ia l convection.

3 .3 . ORDE fo r DMST2

The iro n -th io n in e  system is  more complicated than the A,B/Y,Z  

system because o f the intermediacy o f S*. The mechanism may be described 

thus:

f,h v
Th v s*<e-

T‘ k_1c F e ( I I I )3  k_2c F e ( I I I ) :

L

k3 k3

(3 .2 7 )

C harac te ris tic  lengths defined in  section 1.2 must be redefined  

to include the behaviour o f the semi-reduced species.

= (D/<f>i<f.2$ I t  = 1 £ ) ‘  and (3 .2 8 )

= (D /( l  -  *2) k .2c F e ( I I I )D ) i (3 .2 9 )

where

$ is the frac tio n  of l ig h t  transm itted by the neutral 

density f i l t e r

I i is the f lu x  o f photons per u n it area fo r  $ = 1 
$1 is  the quantum e ffic ie n c y  fo r  production o f S* and

<f>2 is  the frac tio n  of S* th a t is  converted in to  L .

In equation (3 .2 1 ) <j> is now given by

(3.30)
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In the generating length , the term arises because bleaching the 

solution requires the conversion of th iaz ine  to leuco th iazine . For 

s im ila r  reasons the fa c to r o f (1 -  $2) appears in  the d e fin it io n  of 

because th is  is the fra c tio n  of sem ithiazine forming th ia z in e .

ORDE fo r  DMST2 with no Added F e rr ic

In the case where  ̂ is  the longest o f the c h a ra c te ris tic  lengths 

and X£ is  large we have

In the ORDE experiment fo r  DMST2 with no added fe r r ic  the concentra

tio n  o f A used in the experiment is  low and so the concentration of photo

generated Y w i l l  be correspondingly low. Also the ra te  o f the back 

reaction is  qu ite  low. We therefo re  assume th a t photogenerated Y has 

a n e g lig ib le  e f fe c t  on the concentration of species B.

The system has ch arac te ris tics  of both zones C and D in fig u re

(3 .5 )  and equation (3 .21 ) reduces to

(3 .32 )

I f  we now assume that

exp(- 1.3 XH/X £) » 1 (3 .3 3 )

and th a t when Xq  ̂ »  XD

3.7 X »  1 (3.34)
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Equation (3 .3 2 ) becomes

4> X 3.7  x££ n

In terms of measured currents

Nhv i

* AFIo i hv

or

Nhv i

2^ * 1  ( 1hv>* = 1 *

(3 .3 5 )

(3 .36 )

(3 .3 7 )

where the fa c to r  o f \  appears because in the absence o f added f e r r ic ,  the 

reaction of sem ithiazine with fe r r ic  is n e g lig ib le  and ^  = | .  The fac to r  

of 2 arises because two electrons are tran sferred  when a molecule o f 

leucoth iazine reacts at the e lectrode.

Thus we have

or

^ D + _ J d

= i xc 3- 7 x;

V h v  ‘
X£W2 3.7

643 v1/5 D1 /3 \

\ 2tTV

(3 .3 8 )

(3 .3 9 )
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ORDE fo r  DMST2 with Added F e rr ic

For DMST2, when fe r r ic  is  added to the s o lu tio n , the length Xg k 

becomes shorter and

XD < XG,k 51 Xk < Xe (3 .4 0 )

X£ is  large and the system shows ch arac te ris tics  o f zones B, C and D 

in  fig u re  ( 3 .5 ) .  Equation (3 .2 1 ) may be re -w ritte n  as

With X > Xu , th is  equation has two forms depending on the re la t iv e  sizes£ n
of Xq and Xgjk .

( i )  At low ro ta tion  speeds, when X  ̂ > Xg k the Cl -H u  term 

is n e g lig ib le  and

Nhv

<f> X T £

(3 .4 2 )

where N-j. is obtained from the lim itin g  value of the graph in fig u re

(5 .2 0 ) .
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( i i )  At high ro ta tion  speeds, when  ̂ the cl -  H: term

dominates, and

X Xn £ D

3 .7  XH X£

(3 .4 3 )

For a p a r t ic u la r  fe r r ic  concentration, 1S constant and, return ing  

to the f u l l  expression fo r  the photoelectrochemical c o llec tio n  e ffic ie n c y  

(eqn. (3 .4 1 ))  we can w rite

2 / /  W K' ) 2cosh(K') -  e x p (-J (K ') ) / [1  + ---------------

3 .7  X
F = H (3 .4 4 )

Nlim si nh( k 1)

In the reaction scheme (3 .2 7 ) ,  f  is  the photogenerated flu x  of 

sem ithiazine and is  given by

f  = = i * (3 .4 5 )

Using th is  reaction scheme and employing the s teady-state  approximation 

fo r  cS *:, cL: and cTh: respective ly  we obtain

f  + k^cL il = 2k3cS*32 + k^cS* 1 (3 .4 6 )

. 2
k3cS l  = k^cLn (3 .4 7 )

f  = k3cS‘:2 + k ^ c S 'ii (3 .4 8 )
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The quantum e ffic ie n c y  fo r  production o f L from S* is  given by

k-cS*:2
<f>2 = ------------------------------ - (3 .4 9 )

k‘-|CS*3 + 2k3cS*3

Thus

1 2k,cS#n
------------  = 1 + — -------  (3 .5 0 )

1 - 2<f>2 k ^

and from the d e fin it io n  of f  and equation (3 .48 )

1

(1 -  2 ^ ) 2

4 fk3

k !1c F e ( I I I ) 3 0
(3 .5 1 )

Rearrangement of th is  expression generates an expression fo r

*2
l  1 + 4k3f / ( k . 1c F e ( I I I):o)2

1 “I2

(3 .5 2 )

where c F e ( I I I )n o is  the fe r r ic  concentration a t the electrode surface.

3 .4 . ORDE fo r  the ZnTMPyP^+/Fe System

4+In the ORDE experiments with ZnTMPyP , the back reaction is  

very fa s t and
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The resu lts  f a l l  in to  zone B o f fig u re  (3 .5 )  with

Nhv -  Xk/X e (3 .5 3 )

The concentration o f A is  qu ite  large in  the experiment and fo r  th is  

system the back reaction is  rap id . The concentration of photogenerated 

species Y is  therefore im portant. For the porphyrin system we must con

s ider the s itu a tio n  where the two photogenerated species react w ith second

f 491order k in e tics  and where species B is  e le c tro ac tive  but Y is  notv ' .

When there is  no added species Y, increasing the ro ta tio n  speed in 

creases the photocurrent. This is  because the distance over which Y must 

d iffu se  to escape the d iffu s io n  layer is  reduced. The concentration o f Y 

near to the electrode decreases and there is  less Y av a ila b le  to react with  

B and so decrease the flu x  o f B reaching the e lectrode. I f  a s ig n if ic a n t  

concentration o f species Y is added to the solution the concentration of 

photogenerated Y is  n e g lig ib le  compared to the concentration in  the bulk.

The photocurrent is therefore  independent of ro ta tio n  speed.

3 .5 . Flash E lec tro lys is  Theory^ ^ >52,53)

The flash e le c tro ly s is  technique allows us to fo llow  the homogeneous 

reaction k in e tics  o f species B (leuco dye in  the case o f the th ia z in e s ). A 

short pulse o f uniform, p a ra lle l l ig h t  is  passed through a s ta tio n ary  semi

transparent electrode which is  set a t a p o ten tia l where B is  e le c tro a c tiv e . 

Deviation of the measured current tran s ien t from the tran s ien t in  the 

absence o f the perturbing reaction allows a rate  constant fo r  the perturbing  

reaction to be measured.
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The d if fe r e n t ia l  equation fo r  transport o f B to the electrode is  

derived using the fo llow ing assumptions:

( i )  The flash  is  o f in f in i t e ly  short duration and occurs a t t  = 0.

( i i )  The op tica l density o f the so lu tion  is  low, so th a t the concentra

tion  of B a t t  = 0, b . is  uniform with distance from the e lec tro de . Thiso
condition becomes redundant i f  the solution is bleached by the fla s h .

( i i i )  The back reaction is  p seudo -firs t order in  the bulk so lu tion .

That is  bQ »  cY: and one o f the boundary conditions is

b = bQe 'k t  as x + -  (3 .5 4 )

( iv )  The electrode is  a t a p o ten tia l where the Y/Z couple is  in ac tive  

but a l l  the B reaching the electrode is  converted to A. This gives the 

second boundary condition:

With these assumptions the d if fe r e n t ia l  equation fo r  transport of B 

to the electrode is

where

k = k_2:Y: (3 .1 9 )

When x = 0, b = 0 (3 .5 5 )

ab a2b

2at ax
kb (3 .5 6 )

D iffusion Back Reaction
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Using the dimensionless variab les

mt  ■ <boe' k t -  b> /bo (3 .5 7 )

T = k t (3 .5 8 )

xk -  X/Xk (3 .5 9 )

we obtain

3mt  a^mt

— T  '  mt
3xk

(3 .5 0 )

with boundary conditions

= 0 a t x = 0 (3 .6 1 )

= e T a t = 0. (3 .6 2 )

mt  = 0 as xk +  °° (3 .6 3 )

Solution by Laplace tra n s fo rm .^ ) then gives

/  3mA e"T

\ 3*lJ  W *

(3 .6 4 )

o
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and thus

j  = (D /tt)4 b0t '^  e‘ k / t  (3 .6 5 )

or

ln ( i t ^ )  = - k t  + constant (3 .6 6 )

Equation (3 .6 6 ) predicts th a t the current w i l l  tend to in f in i t y  a t

t  = 0, which experim entally  is  impossible. In p ractice  the tran s ien t is

i n i t i a l l y  dominated by charging and discharing e ffec ts  o f the double layer

capacitance a t  the working e lec tro d e , which can be described mathematically

M l 53 541by Dawson's In te g r a l  * * ' . The observed photocurrents are thus due

to a combination of three e ffe c ts : double layer charging, d iffu s io n  and

p seu d o -firs t order decay o f photocurrent.
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Chapter 4

THIAZINE DYES

This chapter describes the electrochem istry and photochemistry o f 

some w ater-so luble th iaz in e  dyes and the pH and temperature va ria tio n  o f 

the back reaction in  the iro n -th io n in e  system.

4 .1 . pH and Temperature V aria tion  of k ,  fo r  Thionine^5^

The voltage developed by a photogalvanic c e ll can be increased by

<0"s h ift in g  the E of the dye system to more negative p o te n tia ls . The pH

va ria tio n  o f the standard electrode p o ten tia l fo r  the th ion ine-leucoth ion ine

couple has been measured by L ich tin^5^̂  and by Albery e t  a l ^ \  These

investigations show th a t below pH 3, E fo r the couple decreases by 90 mV
. 0 .

per pH u n it. The s h if t  in  E w i l l  also a ffe c t k_£ however, and thus the 

va ria tio n  of k_£ with which might occur in  an operating c e ll has

been investigated fo r the iro n -th io n in e  system. A so la r c e ll is  l ik e ly  to 

operate a t temperatures greater than 25°C, and so the v a ria tio n  o f k_2 with  

temperature was also in vestig ated .

The ra te  determining step in  the oxidation of leucothionine by fe r r ic  

ions is the generation of S*. The reaction was therefore monitored by 

fo llow ing the reappearance o f th io n in e , produced by the raDid disproportiona  

tio n  o f S , using the stopped flow technique. Figure (4 .1 )  shows a typ ica l 

stopped flow tran s ien t as a p lo t o f transmittance against time under nseudo- 

f i r s t  order conditions. Figure (4 .2 ) shows the data p lo tted  according to ‘ 

equation (4 .1 ) .

ln d g ( I0/ I^ )3  = -k t  + constant (4 .1 )



Figure 4 .1 . Typical stopped flow tra n s ie n t. 

= 5 .0 , T = 308.6 K.

0 0-5

photomultiplier
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In th is  case ch^SO^il/M = 0 .5 , cFe( 111) 1/mM
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Figure 4 .2 . Stopped flow data p lo tted  according to  

equation (4 .1 ) .
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The io n ic  strength o f solutions was held constant a t 0.5 M using 

Li^SO^. Solutions o f d if fe re n t  acid concentration contained the same 

concentration o f added sulphate, so th a t the same mixture of f e r r ic  com

plexes was present in  each experiment. In th is  m e d iu m ^ ), F e ( I I I )  ex is ts

as a mixture of cFe(S04) : + and cFe(S04 ) 2: “ ions. Bisulphate ions are not

f 591thought to be involved in  the complexation. L ite ra tu re  valuesv ' fo r  the 

acid d issociation  constant o f leucoth ionine, pKa-j = 4 .38 and pKa2 = 5 .3 ,  

suggest th a t the leucothionine species w i l l  be in  the same, doubly-protonated  

form throughout the range o f acid concentrations studied .

For each pH, measurements were made a t temperatures between 25°C and 

50°C. A typ ica l Arrhenius p lo t fo r  the oxidation of leucothionine by 

F e ( I I I )  is  shown in  fig u re  ( 4 .3 ) .  Values fo r the ac tiva tio n  energy E^, 

and the pre-exponential fa c to r , A, a t four d if fe re n t values o f pH are 

given in  tab le  4 .1 .

The data are presented in  terms o f a frequency fa c to r  and a c tiv a tio n  

energy fo r  the reaction ra ther than in  terms o f the enthalpy and entropy 

changes because there is  some complexation between leucothionine and 

fe r r ic  and because the reaction can proceed by many paths. The resu lts  

o u tlin e  the pH dependence which would be found in an operating photogalvanic 

c e l l ,  the behaviour has not been broken down in to  the ind iv id ua l reaction  

routes.

The resu lts  are conveniently displayed in fig u re  (4 .4 ) as a contour

diagram fo r  k_2 - I t  was d i f f i c u l t  to obtain accurate values fo r  the cH+ :

in  the range studied because o f the inaccuracy o f glass electrodes in th is

+  2 -region and because o f the e q u ilib r ia  between H and S0^ . However the rate  

was found to be roughly inversely  proportional to cH+: and the fo llow ing  

mechanism may be proposed:



Figure 4 .3 . Arrhenius p lo t fo r the oxidation of 

leucothionine by fe r r ic .
- C

In th is case cLnQ/M = 9 .8  x 10
c F e ( I I I ) : /M  = 2 .4  x 10 

CH2S04:/M = 0.5
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Table 4.1

Arrhenius parameters fo r  the reaction of 1eucothionine

with F e ( I I I )

'
CH2S043/M E^/kJ mol"^ 102A/dm3 mol' 1 s' 1 k_2(298)/dm3 mol' 1 s' 1

0.01 59(±4) 30 1690

0.02 59(±2) 35 1520

0.05 62(±2) 67 980

0.5 56(±1) 17 270
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T / K

250 3 0 0 350 40 0 450

Figure 4 .4 . Is o k in e tic  p lo t fo r  the oxidation of leuco- 

thionine by f e r r ic .  Lines jo in  values of 

temperature and lgcHgSO^: a t which the back 

reaction rate constant has the same value.

Symbol k -2/M“  ̂ s' 1
0 102
V 103
o 104
X 105
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Two ways in which the e ffic ie n c y  o f an iro n -th io n in e  c e ll can be 

improved are to change the redox p o ten tia l o f the dye couple and to in 

crease the s o lu b il ity  o f the dye.

The power a v a ila b le  from a photogalvanic c e ll depends on the d i f 

ference between the standard electrode po ten tia ls  o f the A/B and Y/Z 

couples. S o u to -B a c h ille r^ ^  and W ils o n ^ ^  have synthesized methoxy- 

substitu ted  th iazines to - make the standard electrode p o ten tia l o f the 

dye couple more negative and thus increase the p o ten tia l d ifference  

a v a ila b le . Structures o f the dyes, dimethoxy thionine (DMeOT) and 

methoxysulphonated th ionine (MeOST) are shown in fig ure  ( 4 .5 ) .  DMeOT 

was found to aggregate strongly to form dimers and higher aggregates.

The dark electrochem istry of these dyes is described la te r .

-4In chapter 1 we said th a t in  an ideal c e l l ,  X£/cm = 1 x 10 •

For a saturated so lu tion  o f thionine in  50 mM f^SO^ (aq) = 0.16 cm. 

Thionine is  not s u f f ic ie n t ly  soluble in  aqueous s o lu tio n , so a number 

of sulphonated th iazines  have been synthesised to increased the dye 

s o l u b i l i t y ^ ’ ^ . We now describe the properties o f dimethyldisulphonated  

th ionine isomer 2 (DMST2) (fig u re  (4 .5 ) )  which has a s o lu b il i ty  in 0.05 M 

H2S04 o f 1 x 10‘ 3 M to 1 x 10' 2 M a t 25°C.

4 .2 . Photochemistry o f DMST2

The ground sta te  spectrum of DMST2 is s im ila r  to th a t o f th ionine  

and is  shown in fig u re  (4 .6 ) .  V is ib le  spectra of the dye showed no evidence
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Figure 4 .5 . Structures o f the th iaz in e

dyes.
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Figure 4 .6 . Absorption spectrum of DMST2 in 50 mM I^SO^
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of dim erisation up to 1 x 10 M. In th is  respect, DMST2 and other s u l-  

phonated th iaz in e  isomers are considerably more su itab le  as dyes fo r  a 

photogalvanic system than, fo r  example, thionine and new methylene b l u e ^ 5̂  

which show dim erisation in  aqueous solution a t concentrations as low as 

1 x 10' 4 M.
- f i

The t r ip le t  spectrum o f a 1.1 x 10 M solution o f DMST2 was obtained  

using flash  photo lysis . Bonnean and S te v e n s ^ )  have shown th a t the t r ip le t  

absorption spectrum o f th ionine is  pH dependent, as an equ ilib rium  ex is ts  

between the mono-protonated and di-protonated species:

3TH?+ 3TH+ + H+ (4 .2 )

The t r ip le t  spectrum o f DMST2 shown in figure  (4 .7 )  corresponds to th a t of 

the di-protonated thionine species but is  s h ifted  to the red by 55 nm.

K inetic  flash photolysis was used to measure the t r ip le t  decay by 

monitoring a t 700 nm. A typ ica l decay tran s ie n t is  shown in fig ure  ( 4 .8 ) .

The decay obeys f i r s t  order k in e tics  and the t r ip le t  life t im e  may be found 

by p lo ttin g  In(absorbance) against time (fig u re  ( 4 .9 ) ) .  From an average 

o f several values, the t r ip le t  li fe t im e  of DMST2 was estimated as 13(±2)ys.

In the presence of 10 mM F e ( I I )  in  a degassed s o lu tio n , t r ip l e t  

DMST2 can be e f f ic ie n t ly  quenched to y ie ld  the sem ithiazine ra d ic a l. The 

absorption spectrum of th is  species was obtained using flash  photo lysis . 

Absorbance measurements of semi reduced DMST2 in  50 mM H2SO4 were recorded 

100 ys a f te r  a 10 ys pnotoflash and the resu lting  spectrum, corresponding 

to the d i-protonated s’erftithiazine s p e c i e s ^ * ^  is  shown in fig u re  (4 .1 0 ) .

I f  we assume th a t semi-reduced DMST2 does not absorb a t 625 nm, a fig u re  

fo r  the e x tin c tio n  c o e ffic ie n t a t 750 nm can be ca lcu lated .

3 -1 -10750/ dm mol cm = 12,8000

-3



species.
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Figure 4 .8 . Decay of diprotonated t r ip le t  DMST2 monitored a t 700 nm.
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Figure 4.9 Plot of ln(absorbance) against time for triplet

DHST2 to find the triplet lifetime.



Figure 4 .1 0 . Transient absorption spectrum of diprotonated semi- 

reduced DMST2.

03cn



4 .3 . Thiazine Electrochem istry  

DMST2
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A curren t-vo ltage  curve fo r  reduction of DMST2 a t a platinum  

electrode is  shown in fig u re  (4 .1 1 ) . Figure (4 .1 2 ) is a Tafel p lo t 

fo r  the wave (eqn. 3 .1 7 ). The slope of the p lo t is  th a t expected fo r  

a two-electron revers ib le  wave ( i . e .  >> kj.) and the in te rcep t on

the x-axis is  a t +158 mV vs. SCE which is  the formal electrode p o te n tia l,

E ' . Figure (4 .1 4 ) is  a Nernst p lo t fo r  the couple ( ^ ) .  jh e 

slope o f th is  p lo t confirms a value o f n = 2 and the in te rcep t on the 

y -ax is  is  a t +162 mV, which is  again a value fo r  the formal electrode  

p o te n tia l.

Obtaining s o lid , c ry s ta llin e  samples of small qu an tities  o f the 

th iaz in e  dyes proved d i f f i c u l t ,  so the e x tin c tio n  c o e ffic ie n t could not 

be found by dissolving a known quan tity  o f the s o lid . The problem can 

be overcome however, by measuring the concentration of the dye e le c tro -  

chem ically. Using the method o f Albery and H itc h m a n ^ ), the d iffu s io n  

c o e ffic ie n t o f an e le c tro ac tive  species can be determined independent 

of i ts  concentration or the number of electrons tran sferred . • In th is  

technique a sm all, known volume of solution is exhaustively e lectro lysed  

by a large ro ta tin g  electrode a t the lim itin g  curren t. Under these con

d itions  the current follows a simple f i r s t  order decay and a p lo t o f ln | i jJ  

against time (f ig u re  (4 .1 5 ))  is  l in e a r , with a slope given by:

1.554 AD2/3  W1/2
| s 1 ope [ aH = -----------------------------  (4 .3 )

v1/6 V

where V is  the volume o f so lu tion . A value fo r  D the d iffu s ion  c o e ff ic ie n t



Figure 4 .1 1 . Current voltage curve fo r  the reduction o f DMST2 at 

platinum RDE.
a



Figure 4 .12 . Tafel p lo t fo r  DMST2.

Figure 4.13. Levich plot for DMST2.



Figure 4.14. Nernst plot for DMST2.



Figure 4 .1 5 . V aria tion  of lim itin g  current with time according to equation 

(4 .3 )  to  fin d  the d iffu s io n  c o e ffic ie n t o f DMST2. VOo



91

of the dye can be found from equation (4 .3 ) .  For DMST2

D/cm2 s' 1 = 5.1 x 10"6 (4 .4 )

Since equation (4 .3 ) does not involve the concentration or the number 

of electrons tran s fe rred , the expression may be used to determine the d i f 

fusion c o e ff ic ie n t. The dye concentration may then be calculated from the 

v a ria tio n  o f lim it in g  current with ro ta tio n  speed using the Levich equation:

i'L = 1.554 nFAD2/3 v' 1/6 w1/2 (3 .1 5 )

Figure (4 .1 3 ) shows a Levich p lo t fo r  DMST2 in  50 mM F^SO^. Once 

the concentration o f the dye has been found in th is  manner, the e x tin c tio n  

c o e ffic ie n t may be re ad ily  determined spectrophotom etrically. The value 

obtained fo r  DMST2 in 50 mM h^SO  ̂ was

e(decadic)/dm^ mol”  ̂ cm  ̂ = 8 .0  x 10^ (4 .5 )

Results fo r  DMST2, along with values fo r DMeOT and MeOST are sum

marised in tab le  ( 4 .2 ) .
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Table 4 .2

Properties o f th iaz in e  dyes a t 25°C 

in 0.05 M HqSO^

MeOST DMeOT DMST2

xmax^nm 590 595 626

E,/raV (SCE) + 99 +117 +158

E®/mV (SCE). +104 +127 +162

D/10' 6 cm2 s"1 3.3 2.8 5.1
6 2 -1

e (n a tu ra l)/10 cm mol 81 100 180

3 -1 -1E(decadic)/dm mol cm 35,000 44,000 80,000
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Chapter 5

KINETIC STUDIES OF DMST2

One of the sulphonated th iaz in e s , DMST2, was synthesized in s u ff ic ie n t  

quantity  to allow a thorough in ves tig a tio n  of the k in e tic  parameters o f the 

iron-DMST2 system. This chapter describes the use o f flash  photo lysis , 

stopped flo w , flash  e le c tro ly s is  and the ORDE technique to determine quantum 

e ffic ie n c ie s  fo r  the production of sem ithiazine and leucoth iazine and ra te  

constants fo r  the reactions of these species.

Flash Photolysis

In co llaboration  with Darwent, the fa te  of the sem ithiazine ra d ic a l, 

both in  d isproportionation and in  reaction with fe r r ic  was studied using 

flash  p h o t o l y s i s ^ " ^ .

5 .1 . D isproportionation Reaction o f Semi DMST2

When no fe r r ic  has been added to the solution the predominant reaction  

o f S* is  d isproportionation:

H+ + 2S’ Th + L (5 .1 )

At constant pH the ra te  expression fo r  th is  reaction is  given by

-d c S 'n /d t = 2k3cS‘ :2 (5 .2 )

By in te g ra tio n , and using the Beer-Lambert Law we obtain
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= 2eD£k3t  + — —
(OD) (OD),

(5 .3 )

where

eq is  the decadic ex tin c tio n  c o e ff ic ie n t,

i  is  the path length , and

(OD) 1S °P'tl*ca  ̂ density when t  = 0.

The concentration of S* was followed by absorbance measurements a t 750 nm. 

A typ ica l tran s ie n t is  shown in fig u re  (5 .1 ) .  A p lo t o f 1 / ( OD) against 

time according to equation (5 .3 ) is  shown in  fig u re  (5 .2 ) and from i t  we 

can obtain a value fo r  k^. Measurements were made in  0.05 M and

0.50 M H2S0. a t 21°C.

In 0.05 M H2S04 k3/M_1 s"1 = 1 .8  (±0 .3 ) x 109 (5 .4 )

In 0.50 M H2S04 k3/M' 1 s"1 = 1.2 (±0 .3 )

CTtOX (5 .5 )

a t 2 I°C

5 .2 . Reaction of Semithiazine with F e rric

I t  is  d i f f i c u l t  to determine a value fo r the ra te  constant o f the 

reaction between S* and F e ( I I I )  by follow ing the disappearance o f the 

sem ithiazine absorption a t 750 nm. This is  because the fe r r ic  reaction  

is  competing with the very fa s t (d iffu s io n  contro lled ) disproportion  

reaction of sem ithiazine ra d ic a l. The reaction with fe r r ic  was best 

studied by fo llow ing the reappearance of DMST2 on a time scale which 

is short compared to th a t fo r the oxidation o f leucoth iazine by f e r r ic .
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Figure 5 .1 . Semithiazine decay monitored a t 750 nm.
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Figure 5 .2 . Decay of semi reduced DMST2 with no added fe r r ic  

p lo tted  according to equation (5 .3 ) .
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The two competing reactions are

H+ + S' + S' ------- Th + L (5 .4 )

* k-1 +
Fe ( I I I )  + S --------Th + Fe ( I I )  + H (5 .5 )

The ra te  expressions in  terms of the th iaz in e  and sem ithiazine  

concentrations are

dcThH/dt = k3x̂  + k^x

dx/d t = - 2k3x^ -  k ^ x

where x = cS’ :

and k ^  = k_-| c F e (III)D

From equations 5.6 and 5 .7  we obtain

dcTh: k3x + k ^

dx 2k3x + k ^

1 \  k ^

2 2k3x + k ^

(~00 o /

dcTh: = -
1 k 12

2 2k3x + k_-|
dx

'

(5 .6 )

(5 .7 )

(5 .8 )

(5 .9 )

(5 .1 0 )

(5 .1 1 )

(5 .1 2 )

o
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cTh:oo
1 i  k l i
— x + -------- - ln (k ^  + 2kjX)

2 2k3
- 1 0

= x0/2 + k ^ /4 k 3 ln ( l  + 2xQk3/k _ 1)

(5 .1 3 )

(5 .1 4 )

1 1
-  + -  (1 /0  1n(1 + e ) ) = R (5 .15 )

2 2

where

0 = 2k3x0/ k ^  (5 .1 6 )

cTh:

At each concentration o f F e ( I I I ) ,  a value o f R was obtained from 

the flash photolysis tra n s ie n t, figure  (5 .3 ) .  In a process of t r i a l  

and e r ro r , values o f 0 were inserted  in to  equation (5 .15 ) u n til 0 cor

responding to each experim entally determined value of R was ca lcu la ted .

From equation (5 .7 ) we have:

dx
---------------------- = -d t

p2k3x + k -jX

dx / , \
k̂ -| + 2k3x

dx /1 2k.

k'-1

(5 .17 )

(5 .1 8 )

x k -̂| + 2k3x

(5 .1 9 )
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Figure 5.3. Semithiazine decay monitored at 625 nm with 
cFe(III)3/mM = 14.9. At this wavelength we 
follow the re-appearance of DMST2.
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- k^t = In x/xQ In
k]_i + 2k^x

k-l + 2k3xo

(5.20)

In!
x/x,

1 + 0x/x,

= - 1 n(1 + e) - k^-jt (5.21)

Integrating equation (5.11) between CTh: = 0 and CTh: = CTh: we obtain

cTh: 1 1 / 1 + 0
-------= -  + —  In (5.22)

x0 2 20 \ 1 + 0x / x /  2xq

Using equation (5.15) this rearranges to

cTh: cTh:
= x / 2xq + 1/20 1n(1 + 0x /x Q) (5.23)

xrto o

A series of values of x/xQ in the range 0 < x/xQ < 1 were inserted 

into equation (5.23) to calculate corresponding values of (cTh:^ - cTh:). 

Values of time corresponding to (cTh:^ - cTh:) can be read off from the 

flash photolysis transient (figure (5.3)) and plotted according to equation

(5.21), figure (5.4) to find k^. Values of k̂-j were determined over a 

range of ferric concentrations and-the variation of k^ with Fe(III) is 

shown in figure (5.5). This plot yields a figure for the second order 

rate constant in 0.05 M ^SO^ at 21 °C:

k_-|/dm̂  mol  ̂ s~̂  = 8.4 x 10̂ (5.25)



101

Figure -5.4. Plot of 1 n < x/xo
1 + ex/x,

- aoainst t

according to equation (5.21). For 
this data cFe(III)1/mM = 14.9.



Figure 5 .5 . P lo t of the 

pseudo f i r s t  order rate  

constant fo r oxidation  

of S* by fe r r ic  against 

cFe(111)□ .

2000 -

1000  -

0
i i
10 20 iFe(m)1

mM
30

oro



103

The p lo t o f k -̂j vs c F e ( I I I )3  (f ig u re  (5 .5 ) )  suggests th a t complexa- 

tio n  between S and F e ( I I I )  is  not s ig n ific a n t fo r  DMST2 in the range of 

F e ( I I I )  concentrations studied. The formation o f a complex between F e ( I I I )  

and S has been suggested fo r  th ionine in  50 v/v% aqueous a c e to n itr i le .  

L ich tin  and c o - w o r k e r s f o u n d  th a t , fo r  th io n in e , the value o f k^-j/kg 

decreased with increasing c F e ( I I I ) : .  However the decrease was too small 

and the experimental uncerta inty too large to permit evaluation o f an 

association constant. The method which we have used to in vestig ate  the 

p o s s ib ility  o f complexation is  more sensitive  than th a t used by L ich tin  

because we obtain an ind iv id ua l rate  constant k ^  from the an a ly s is , -ra th er  

than the ra tio  o f constants k^-j/kg found previously.

5 .3 . Flash Photolysis Determination o f k_, fo r  DMST2

Reaction o f leucoth iazine with fe r r ic  produces sem ithiazine which 

rap id ly  disproportionates to form th ia z in e . The d isproportionation o f 

semi DMST2 is  d iffu s io n -c o n tro lle d , so the oxidation o f leuco DMST2 by 

fe r r ic  can be studied by follow ing the concentration o f DMST2 a t 625 nm.

A series of flash photolysis transients  were obtained w ith:

DMST2/M = 1.5 x 10‘6
cF e(II):/m M  = 10 

c F e (III)V m M  = 1.04

A typ ica l tran s ie n t is shown in fig u re  (5 .6 ) .  In fig u re  (5 .7 ) the 

data are p lo tted  as IncLll against time and th is  y ie ld s  a rate constant 

fo r  the back reaction:

k_2/M_1 s' 1 = 2 .4 (±  0 .2 ) x 103 (a t  21°C) (5 .2 6 )



Figure 5 .6 , A typ ica l flash  photolysis tran s ie n t used 

to determine fo r DMST2. In th is  case 

c F e ( I I I ) ] /H  = 1.04 x 1 0 '3.

Timescale: 0.1 s /d iv is io n .



tn(SV)

Figure 5 .7 . F irs t  order p lo t fo r  the reaction of leuco-DMST2 

with fe r r ic .  For th is  data cFe(III)D /m M  = 1.04.

o
<_n
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5 .4 . Stopped Flow Determination o f k 2 fo r  DMST2

The reaction between fe r r ic  and leuco DMST2 in 50 mM was

studied using the stopped flow technique. K inetics were measured under 

p seudo -firs t order conditions over a range o f concentrations of both 

reactan ts .

From the reaction scheme fo r  the iro n -th ia z in e  system given in 

equation (3 .2 7 )

I f  k3cS : »  k_1c F e ( I I I ) i (5 .2 7 )

1
then 3CLD/3t = - -  k « c F e ( I I I ) DCLl 

2
(5 .2 8 )

since h a lf  of the leucoth iazine lo s t returns to the leuco form by d is -

proportionation .

I f  k3cS*a «  k_1c F e ( I I I )□ (5 .2 9 )

then acLn/at = -k_2c F e ( I I I ) :c L : (5 .3 0 )

since no leuco dye is  regenerated by d isproportionation . The fa c to r  o f 

two arises from the fa te  o f sem ithiazine which can react with e ith e r  S 

or F e ( I I I ) .

Using the steady-state assumption fo r  cS n and w ritin g

cLn = c (5 .3 1 )

:S ‘ : = X (5 .3 2 )

ki i  = k_-, c F e ( I I I ) : (5 .3 3 )

k-2 = k_2c F e ( II I )n (5 .3 4 )
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we have:

c =  k ^ x  + 2k^x^ (5 .3 5 )

and considering the consumption o f F e ( I I I ) :

dc 1
—  = -  -  (k ^ c  + k ^ x )  (5 .36 )

dt 2

From equation (3 .5 3 ) ,

2k3x2 + k \ x  -  k'_2 c = 0 (5 .37 )

and solving th is  quadratic expression fo r  x we obtain

3c

at

1
-  k ^ c  

2
1 +

( k ^ ) 2

4k3 k '_2 c

1 +
8k3 k ^  c

( k ^ ) 2

-1 (5 .38 )

The v ita l  switch parameter between the two cases is  y where

y = 4k3k :2c /(k : 1)2

3C 1 A
—  = -  -  k :2c {1 + ((1 + 2y)2 -  1) / y ) } 
at 2

1
-  — k '«c when y »  1 

2

-  k ^ c  when y «  1

(5 .39 )

(5 .4 0 )

(5 .4 1 )

(5 .4 2 )
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Now y is  proportional to c, and w ritin g  

t  = k_2c F e ( I I I ) : t  

we have

ay 1 i
—  = ----  (Y + (1 + 2y)* - 1)
8 t  2

(5.43)

(5 .44 )

By in teg ra tio n  we obtain

x = constant -  In
y(3 + (1 + 2y) )̂3

1 + (1 + 2y)2
(5 .45 )

I t  is  help fu l to define x-j, the value o f t fo r  which y = 1, the 

balance point between the two regimes.

From eqn. (3 .45 ) we now obtain

T T1 In
y(3 + (1 + 2Y)')3 

(1 + (1 + 2y )J 6(3 + 2 /3)

(5 .46 )

cL: = cLii when t  = 0 o

A p lo t o f ln (cL3/cLJ0 ) against cFe(111) i t  is  shown in  fig u re  (5 .8 )  

along with a p lo t o f Iny against (x -  x -jJ /k ^  obtained from equation 

(5 .4 6 ) .



Figure 5 .8 . Comparison of theory (s o lid  lin e )  and experiment (c irc le s )  fo r  back
-1 -1 3reaction data obtained by stopped flow . A value o f ^ / M  s = 3 .7  x 10 

was used fo r the theory curve.

105[F e (m )]t /M s

O
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In these stopped flow resu lts  fo r  DMST2 y = 1 and the experimental 

data c le a rly  shows a switch from the in i t i a l  g rad ien t, where

3 ln c L :/3 t = 1 .7  x 103 M' 1 s' 1 = k ,2/2  

to the f in a l grad ien t, where

(5 .4 7 )

3 lncL3 /3t = 3 .7  x 103 M' 1 s' 1 = k_2 (5 .4 8 )

A value o f k_2/M"^ = 3 .7  x 10^ (a t  25°C) was used in the th eo re tica l

p lo t shown with the data in  fig u re  (5 .8 ) .

From the experimental and th eo re tica l curves in  fig u re  (5 .8 )  and 

comparing equations (5 .3 8 ) ,  (5 .3 9 ) ,  (5 .4 3 ) and (5 .4 6 ) we obtain

ln (cL V cL 30) -  Iny = ln (k 31c F e ( I I I ) ] /4 k 3k .2cL:o) (5 .4 9 )

= -3 .2

From the previous ana lys is , equation (5 .48 )

(5 .5 0 )

k .2/M_1 s' 1 = 3 .7  x 103 (5 .4 8 )

and fo r  th is  tran s ien t

cLd0/M = 7.6 x 10'6 

c F e (X II) 3/M = 3 .8  x 1C' 3



m

Hence we obtain a value fo r  kg/k_.j

k3/ k f 1 = 0.83 (a t  25°C) (5 .5 1 )

Using flash  photolysis we found 

,  1.8 x 109
k ,/k  i = ----------------------= 0.26 (a t  21°C) (5 .5 2 )

0 “ 1 4 9
(8 .4  X i ( r r

There is reasonably good agreement between the ra te  constants obtained 

using flash  photolysis and those obtained using stopped flow considering  

th a t the experiments were conducted a t d if fe re n t temperatures.

R e-w riting  equation (5 .4 0 ) as

alny i
-----------H I  + C(1 + 2y ) *  - H / y ) (5.53)

3t

and by d if fe re n t ia t io n , we fin d  th a t the point o f maximum curvature in a 

p lo t o f Iny against ( t  -  t -j ) / k _2 ( f ig u re  (5 .8 ) )  occurs when y -  1 .7 .

K inetic  parameters fo r  DMST2 and thionine are compared in  tab le

( 5 . 1 ) .

For stopped flow experiments using cL :q = 7.6 x 10~^ M and c F e ( I I I ) :  =
_3

3.8 x 10 M, in i t i a l  values o f y are:

yQ (th io n in e) = 0.014 

y 0 ( DMST2) = 7 . 6

2



1 1 2

Table 5.1

K inetic  Parameters fo r  Thionine and DMST2

t
Thionine DMST2

k ^ / M ' V 1 5 .8  (± 2 .1 )  x 105 8 .4  x 104

k ^ / M ' V 1 2 .4  (± 0 .4 )  x 102 3.7 x 103

k j / M ' V 1 2 .4  x 109 1.8 x 109

+Results o f Brokken-Zijp and de Groot^^^ a t 22°C 

0 < pH < 2 .5 .
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In an experiment using th io n in e , y < 1 throughout the tra n s ie n t,

- a ln : L : /8t  = k_2 and a p lo t of ln (c L :/c L :Q) against c F e ( I I I ) i t  is  

l in e a r  with slope = -k_2 . Using DMST2,at the beginning of the tran s ien t 

y > 1 and -a lncLD /at = \  k- 2 . At the end of the tran s ie n t when almost 

a l l  o f the leuco dye has been consumed, y < 1 and -a ln c L n /a t = k_2 .

Hence a p lo t o f ln (c L :/c L 3 0) against c F e ( I I I )□ t  fo r  DMST2 shows curvature  

with a fa c to r o f 2 between the in i t i a l  and f in a l slopes.

An Arrhenius p lo t ,  describing the temperature v a ria tio n  o f the 

reaction between leuco DMST2 and fe r r ic  is shown in  fig u re  ( 5 .9 ) .  The 

k in e tics  were measured under pseudo -firs t order conditions with CDMST21 =

9.1 x 10 6 M and c F e ( I I I ) :  = 5.2 x 10  ̂ M. From fig u re  (5 .9 )  we obtain 

a value fo r  the ac tiv a tio n  energy o f the back-reaction

Eact/kJ  mol"1 = 60 (± 2) (5 .5 4 )

and a value fo r  the ra te  constant a t 25°C

k_2/M_1 s' 1 = 3 .6  (±  0 .3 ) x 103 (5 .5 5 )

5 .5 . Flash E lec tro lys is  Measurements on DMST2

The ra te  of the back-reaction between F e ( I I I )  and leucoth iazine can 

be determined by flash e le c tro ly s is . Figure (5 .1 0 ) shows a typ ica l cur

rent tran s ie n t with CDMST2: = 35 x 10"^ M and c F e ( I I I ) :  = 4 .0  x 10’  ̂ M.

The electrode was held a t +401 mV (SCE), the po ten tia l o f zero dark 

current.

Figure (5 .11 ) shows the data from a flash e le c tro ly s is  tran s ie n t

p lo tted  according to equation (3 .6 6 ) . In th is  case cFe( 111) D/M = 2 .2  x 10 

and the observed rate  constant is k^2/s~^ = 9 .8 .  A series o f transients

_3



10 0 

I n  k_2

9 0

80

3-1 3 2 33

Fi_gure 5 .9 . Arrhenius p lo t fo r  the reaction between leuco-DMST2 and 
in  0.05 M H2SO4.

_i____3*4

fe r r ic



Figure 5 .1 0 . Typical flash e le c tro ly s is  tra n s ie n t. In th is  case 

cFe(III)3 /m M  = 4 .02 .

U1
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t/ms

Figure 5 .1 1 . Flash e le c tro ly s is  tran s ien t analysed according 

to equation (3 .6 6 ) . In this case cFe( 111)□

= 2.2 mM.
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were obtained in  a range of f e r r ic  concentrations and the v a ria tio n  o f 

observed rate  constant with fe r r ic  concentration is  p lo tted  in  fig u re  

(5 .1 2 ) . In the c F e ( I I I ) :  range studied , c F e ( I I I )3  >> CDMST23 and

k l2 = cFe(111)□ k_2 (5 .5 6 )

The back-reaction rate  constant k_2 can thus be determined.

k_2/M_1 s '1 = 4 .5  (± 0 .6 ) x 103 (a t  25°C) (5 .5 7 )

5 .6 . ORDE Experiments on DMST2

A ll o f the ORDE experiments were carried  out a t 25°C in  0.05 M 
_2

with 10 M F e ( I I )  and ir ra d ia t in g  a t 626 nm unless otherwise sta ted .

Figure (5 .1 3 ) shows current voltage curves fo r  the nhotogalvanic 

solution a t an ORDE in both the l ig h t  and the dark. In the po ten tia l 

range +0.25 V to 0.55 V vs SCE the major electrochemical reaction is  the 

oxidation of photogenerated leuco-DMST2.

(a) ORDE Experiments Without Added F e rric

Experimental resu lts  fo r  the DMST2/Fe system are shown in fig u re  (5 .1 4 ) .  

The resu lts  are fo r  a 'c lean ' ORDE which has not been coated with th ionine  

and so is not p e rfe c tly  se lec tive  between leuco dye and f e r r ic .

Reduction o f photogenerated F e ( I I I )  thus makes a contribution  to the 

photocurrent. When Xq < Xg, L has only to d iffuse  across the short distance  

Xq to reach the electrode but the escape o f photogenerated F e ( I I I )  across 

the d iffu s ion  layer is  a slower process and so F e ( I I I )  builds up w ith in  

the d iffu s io n  la y e r. Photocurrents are measured a t the p o ten tia l o f zero 

dark current which means th a t the only current contribution  from the



Figure 5 .1 2 . V aria tion  of observed ra te  constants with fe r r ic  concentra

tio n  fo r  flash  e le c tro ly s is  experiments on DMST2.



Figure 5 .13 . Current-voltage curves a t an ORDE in  the l ig h t  and in  the dark fo r  a solution  

containing cH2S04 : / m = 0 .0 5 , cDMST2]/uH = 20 and c F e (III)3 /M  = 0.010.
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Figure 5 .14 . (see o v e rle a f).
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Figure 5 .1 4 . Typical photocurrent-rotation  speed curves fo r  solutions  

with no added F e ( I I I ) .  Each curve is  la b e lle d  w ith the 

fra c tio n a l transm ittance of the neutral density f i l t e r  

used, $. The photocurrents were measured a t the po ten tia l 

of zero dark curren t. Broken lines connect the observed 

data; the so lid  lines  connect points fo r  the data a f te r  

correction fo r  the reaction o f photogenerated F e ( I I I )  a t 

the e lec tro d e , according to equation (5 .8 9 ) .
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F e ( I I ) / F e ( I I I )  couple arises from photogeneration. A correction fo r  the 

current caused by photogenerated F e ( I I I )  may be calcu lated  using equation 

(5 .8 9 ) in  Appendix (5 .1 ) .

/
1L “ ^bs

k'X,
1 +

t= F e (III)]p

c F e ( I I )3D

\

/

(5 .8 9 )

where i ^  = i^  -  ip e, the concentrations o f F e ( I I )  and F e ( I I I )  are th e ir  

values in  the dark and k 1 is  the electrochemical ra te  constant fo r  reduc

tion  o f F e ( I I I )  on the electrode a t  the p o ten tia l o f zero dark curren t. 

Values o f k 1 were estimated from a Tafel p lo t fo r  the reduction of F e ( I I I )  

on the electrode a t the time of the experiment. The e f fe c t  o f the cor

rection  is  shown in  fig u re  (5 .1 4 ) by the fu l l  l in e . The residual maxima 

are more marked in experiments on DMST2 than those o f t h io n in e ^ ^ ,  and 

probably a rise  from losses due to the back reaction of leuco dye with  

F e ( I I I )  which has b u i l t  up in  the concentration close to the e lec tro de . 

This hypothesis is  supported by the fa c t th a t the e f fe c t  is  greatest 

under conditions of high lig h t  in te n s ity  and low ro ta tio n  speed.

The fo llow ing scheme describes the generation o f semi-reduced 

DMST2 ( S ') .

S + F e ( I I I )
hv 3 k<-v F e ( I I )  . /

Th --------- > ■ Th ----- T h ---------------- —----------- (S , F e ( I I I ) )

*SV Th + F e ( I I )

T

(5 .5 8 )

Th
'V
Th
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where

({>2 is  the e ffic ie n c y  o f intersystem  crossing 

4>2y is  the e ffic ie n c y  o f Stern-Volmer quenching 

<p£ is the e ffic ie n c y  o f escape from the solvent cage 

k j  is the ra te  constant fo r  thermal deactivation  o f the 

t r ip le t  th ia z in e .

The quantum e ffic ie n c y  fo r  production of S is  then given by

■♦l = 4,5 ^ (5 .59 )

Hence

< ' + (5 .60)

‘h c F e ( II) :
V

where Kg is  the Stern-Volmer quenching constant and

(5 .6 1 )

Combining equations (3 .3 9 ) and (5 .60 ) we obtain

$ (constant)
(5 .6 2 )
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A p lo t o f $/iW2 against 1/c F e ( I I )□ fo r  DMST2 is  shown in fig u re  (5 .1 5 ) .  

The slope y ie ld s  a value of

Kg/mol dm"3 = 1.1 x 10"3 (5 .63 )

The current a t the ORPF. with no added fe r r ic  is  described by 

equation (3 .3 9 ) . This equation may be re -w ritte n  as

i / $  = ({j-ja-jW  ̂ + <j>-|b.j (5 .6 4 )

where a-j and b-j are known constants. <j>̂ can thus be found from a p lo t o f  

i /$  against W"̂  as in fig u re  (5 ,1 6 ) .

Using the experim entally determined values o f

i hv/A = 440 x 10

Xg .j/cm = 5 .0  x 10

and

X£/cm = 0.14

we fin d

$1 = 0.44

(5 .65 )

(5 .66 )

(5 .6 7 )

(5 .68 )

By keeping the photon f lu x , I _  ̂ constant and varying the ir ra d ia t io n  

wavelength, an action spectrum fo r  the dye may be determined. Figure (5 .17 ) 

shows the action spectrum obtained using th is  technique to c losely fo llow  

the absorption spectrum o f the dye.



Figure 5 .1 5 . V aria tion  o f photocurrent with cFe( 11)□ p lo tted  according to

equation (5 .6 2 ) .

rv>cn
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0-49 □

0* 31 7

0*19 +

0 097 X

0-073 0

Figure 5 .16 . Variation  o f ( i / $ )  w ith ro ta tion  

speed which enables us to fin d  

<f>1 fo r DMST2.



Figure 5 .1 7 . Action spectrum (c irc le s )  and absorption spectrum 

(s o lid  lin e ) o f DMST2 normalised to th e ir  values 

at 626 nm.
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Figure 5 .18 . Typical photocurrent-rotation  speed curves fo r  a 

solution with c F e ( I I I ) :7mM = C.27. The notation  

is the same as th a t fo r fig u re  5 .14. The electrode  

was set a t a po ten tia l of +330 mV (SCE).
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(b) ORDE Experiments with Added F e rric

Figure (5 .1 8 ) shows photocurrent-rotation  speed resu lts  a t the 

p o ten tia l o f zero dark current (+ 330 mV (SCE)) fo r  a so lu tion  con- 

ta in in g  39 x 10'6 M DMST2 and 2 .7  x 10'4 M F e ( I I I ) .

Equation (3 .44 ) re la tes  the photoelectrochemical c o lle c tio n  

e ff ic ie n c y , to N ^ ,  the lim itin g  value a t  low ro ta tio n  speed where

N. = Nt - hv lim (3 .42 )

Using equations (3 .4 2 ) and (3 .4 4 ) we are able to ca lcu la te  values 

fo r  and fo r  the photocurrent ( i ca-]c ) which we would expect to flow  

a t an op tica l ro ta tin g  disc e lectrode.

calc = * Nhv1hv (5 .69 )

The concentration o f f e r r ic  a t the electrode surface cFe( I I I )□ is  

greater than th a t in the bulk c F e ( I I I ) 3 oo because photogenerated fe r r ic  

builds up in the d iffu s io n  la y e r. A value fo r  EFe( I I I ) can be calcu lated  

using equation (5 .7 0 ) ,

c F e ( I I I):0 = c F e ( I I I )3 w + 2i pXD/nAFD (5 .70 )

where i p is  the current which flows a t the electrode w ith c F e ( I I I ) = 1 .0  M 

and a ro ta tio n  speed o f 1 Hz.

In a typ ica l experiment:

ip  = 9 .5  x 10' 3 A 

= 0.44 (5 .6 8 )
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ihv = 436yA

A = 0.12 cm̂

X = 0.138 cm

CDMST23 = 39 UM

From the exhaustive e le c tro ly s is  determ ination,

D = 5.1 x 10' 6 cm2 s*1 (4 .4 )

so XD>1 = 5 .0  x 10‘3 cm

From stopped flow and flash  e le c tro ly s is  experiments,

k_2 = 5 x 103 M' 1 s"1

and from flash  photolysis

k_i = 8.1 x 104 M' 1 s"1 
k3 = 2 x 109 M' 1 s"1

In fig u re  (5 .19 ) we compare the observed photocurrent from a DMST2 

ORDE experiment with th a t calcu lated  from theory. Agreement between the 

two values is  qu ite  good over two orders o f magnitude, confirming the ORDE 

theory given in  section (3 .3 ) .

As fu rth e r  evidence fo r  the agreement between theory and experiment 

we can compare values o f ^  calculated using eqn. (3 .5 2 ) with values 

calculated  by another method.

By combining equations (3 .4 6 ) , (3 .4 7 ) and (3 .4 8 ) obtained using the 

steady-state assumption, we fin d  an expression fo r  the concentration of 

leucoth iazine in the photostationary s ta te .

(5 .2 5 )

(5 .4 )



Figure 5.19 CO
ro
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[Fe(ni)] /mM Symbol

0 -0 4 0 o

0-077 A

0 -2 7 □

0-49 7

1-02 +

1-87 X

Figure 5 .1 9 . Comparison of observed and th eo re tica l 

values of photocurrent fo r the D.MST2 

ORDE with added fe r r ic .
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CL:pss

f<i>,

(1 -  * 2 ) k_2 c F e ( I I I ) :

By analogy with equation (3 .1 3 ) , the f lu x  o f leucoth iazine to 

electrode in  the photostationary s ta te  is  given by

DcL:

JL =
pss

and from the d e fin itio n s  of the c h a ra c te ris tic  lengths 

xk = (D /( l  -  * 2 ) k_2 c F e ( II I )n )^

Combining these three equations we obtain the expression 

JL = ♦2f 1* ( 0 / ( l  -  * 2 ) k_2 c F e ( I I I ) : ) ^  

or from equation (3 .1 4 )

i L = n A F ^ f ^ D /O  -  <f>2 ) k_2 cFe ( 111) □) ̂

Thus

i cFe ( I I I ) 3^/® = nAF+g-f-, cD/{l  -  * 2 ) k_2:*  = y

where

(5 .7 1 )  

the

(5 .72 )

(3 .29 )

(5 .73 )

(5 .74 )

(5 .7 5 )

f  = $ fv (5 .7 6 )
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In fig u re  (5 .2 0 ) we p lo t i c F e ( I I I ) 3^/^ against ( c F e (III)D /W )^ .

At low ro ta tio n  speed y is  constant fo r  a p a r t ic u la r  l ig h t  in te n s ity  

and fe r r ic  concentration and is  determined by the value o f $2 .

From the d e fin it io n  o f <j>2 , the lim it in g  value is  <|>2 = \  so the 

l im it in g  value of y in th is  low ro ta tio n  speed region is  given by

y 1im = nAFf) (D/2k_2 ) J (5 .7 7 )

and thus

y i
-------  = 4»2c2 /(1  -  $2 ) : s = r  (5 .7 8 )

^lim

Solving th is  quadratic equation we obtain values o f $2 .

♦ 2 = r 2c(l + 8/ r 2 )^ -  1d/4  (5 .7 9 )

In fig u re  (5 .2 1 ) values o f ( ^ o b s *  s ta in e d  i °  th is  way (using 

^lim  = m̂ )  are comPare<i with  values found using equation (3 .5 2 ) ,

(^2) c a lc ' ^ooc* a9reement  holds between the two methods.



UDCO

Figure 5.20. (see overleaf).
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[Fe( mi)] / m M Symbol

0 0 4 0 o

0 077 •

0*27 X

0*46 ♦

1*02 7

V 87 □

i
Figure 5.20. Plot of icFe(III)ll2/<l> against 

(cFe(III)3/w)^ for the DMST2 
ORDE.
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Symbol [Fe(m)]/mM

X 1-03

0 1-87

Figure 5.21. Comparison of observed and theoretical values of <{>̂  

for the DMST2 ORDE.
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APPENDIX 5.1

ORDE Correction fo r  Photogenerated F e rric

I f  the electrode is  not p e rfe c tly  s e le c tiv e , there w il l  be a contribu

tion  to the photocurrent from F e ( I I I )  generated by the photoredox reactions:

’ obs = 1L '  1Fe (5 .8 0 )

where

i Qbs 1S the observed photocurrent

i^  is  the photocurrent due to leucoth iazine and

ip e is the photocurrent due to the Fe( I I ) / F e ( I I I )  couple.

In the dark, when the electrode is held a t the p o ten tia l o f zero 

current

k 'c F e ( I I I ) : D = k 'c F e ( I I ) : D = 0 (5 .8 1 )

where k ' and k' are the heterogeneous rate  constants fo r  the reactions o f  

F e ( I I )  and F e ( I I I )  a t the electrode a t th is  p o te n tia l.

I f  we assume th a t the currents are small enough to avoid concentration  

p o la ris a tio n , and th a t on illu m in a tio n  there is a small displacement in  

th e ir  concentration (C^ ) ,  then we can w rite

111

AF

k ' { c F e ( I I I ) + Chy) -  k '( c F e ( I I ) 3 D -  Chy) (5 .8 2 )

and hence from equation (5 .81 )
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A c F e ( I I ) : D J
c F e ( I I I ) : D

(5 .83 )

An estim ate o f k' can be obtained from the analysis o f a polarogram 

o f F e ( I I I )  a t  the electrode used.

We must also estim ate the value o f C. a t the electrode surface.

This term is  made up o f contributions from the d iffu s io n  la y e r and from 

the bulk. Two cases are considered:

O ) — XG,k

Under these conditions the major contribution to ip e is from F e ( I I I )  

generated close to the e lectrode.

In order to maintain steady s ta te  conditions, the photogenerated 

F e ( I I I )  must d iffu se  across the d iffu s io n  la y e r to balance the f lu x  o f  

leucoth iazine removed by the e lectrode. Thus

where j^  is the f lu x  o f leucoth iazine removed by the electrode and the 

fa c to r of two arises from the stoichiom etry.

(5 .8 4 )

D

( i i )  x ^ o f e 5k

These conditions correspond to zone C o f the ORDE analysis . The

f lu x  o f leucoth iazine to the electrode is  made up o f approximately equal 

contributions from the d iffu s io n  layer and the bulk (fig u re  (5 .2 2 ) ) .
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Figure 5 .2 2 . Schematic concentration p ro file s  fo r  F e ( I I I )  

and L.
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Thus

Ji^n
( Chv>0 -  —  + ( Chv>x = X, (5 .85 )

v hv'x  = Xq , the concentration a t the d iffu s io n  la y e r boundary is  

given by

(Ch J x  = XD
JLXD

D
(5 .8 6 )

and so

(ch A
2j LXD

D

(5 .87 )

Thus fo r  d if fe re n t reasons we obtain the same re s u lt from the two 

lim it in g  cases. Substitu ting  in equations (5 .86 ) and (5 .8 3 ) gives the 

approximate correction required:

i L a obs

C Fe ( 111) 3 D 

: F e ( I I ) : D

(5 .8 9 )

This correction fo r the current due to ph o togenera ted "F e(III) has 

been tested e x p e r im e n ta lly ^ )  by using 0.1 M HC1 as background e le c tro ly te ,  

in  which the F e ( I I ) / F e ( I I I )  electrode k ine tics  are less r e v e r s i b l e ^ ) .

Under these conditions the calcu lated  correction is  very small (< 2%) and 

the observed photocurrents f i t  the theory w ithout correction .
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Chapter 6

IMPLICATIONS FOR IRON-THIAZINE PHOTOGALVANIC CELLS

In an ideal photogalvanic c e ll (see chapter 1) the absorption length ,

-4X£ , should be about 1 x 10 cm. Thiazine dyes have natural e x tin c tio n

“8 2 -1c o e ffic ie n ts  o f about 1 x 10 cm mol and th is  means th a t the dye con

centration  must be about 0.1 M. With th is  dye concentration the ra te  of

3 -1 -1the back reac tio n , k_^ must be less than 6 x 10 M s  but in 0.05 M

F^SO  ̂ a t 25°C the maximum s o lu b il ity  o f DMST2 is  about 1 x 10  ̂ M. In

an e f f ic ie n t  c e ll using th is  dye concentration the ra te  o f the back reac-

2 -1 -1tio n  should be less than 6 x 10 M s but the experim entally determined
3 -l -1

value fo r  DMST2 is  about 4 x 10 M s .  Even with the in troduction o f 

two sulphonate groups in to  the th iaz in e  nucleus, the dye is not s u f f ic ie n t ly  

soluble in acid so lu tion  fo r  a c e ll to be e f f ic ie n t .

Results fo r  th ionine and DMST2 are given in table (6 .1 ) .

The photoelectrochemical c o lle c tio n  e ffic ie n c y  o f a photogalvanic 

c e ll is given b y ^ ^

Nhv = l / c l  + ( ♦ i W e K - z / D 2)1' 33 (6- 1 )

Using the figures in table (6 .1 )  and with

I Q = 4 x 10 ® mol cm  ̂ s  ̂ (6 .2 )

-2
and X = 1 x 10 cm we have 

1

fo r  th ionine = 3.1 x 10 ^

and fo r  DMST2 = 0.34

(6 .3 )

(6 .4 )



Table 6.1

Collected Data fo r  Thionine and DMST2

Thionine DMST2

k . i / M ' V 1 5 .8  x 105+ 8.4 x 104
k_2/M"1s*1 2 .4  x 102+ 3 .7  x 103
k . ^ / M 'V 1 2 .4  x 109+ 1.8 x 109

CThW M 5 x 10'5 1 x 10'2
0.5 0.44

e(decadic)/M  ^cm ^ 5.6 x 104 8 x 104
D/cm^s"^ 6 x 10'6 5.1 x 10‘6 

______________

^Results o f Brokken-Zijp and de G ro o t^ ^  

0 < pH < 2 .5 .
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Although the back reaction fo r  DMST2 is  fa s te r  than th a t fo r  th io n in e , 

the c o lle c tio n  e ffic ie n c y  is strongly dependent on the absorption length  

and X£ is  much shorter fo r  the sulphonated dye.

For a photostationary s ta te  where leuco dye is  being destroyed on 

an electrode instead o f reacting  with fe r r ic  the quantum e ffic ie n c y  fo r  

production o f leucoth iazine is  given by^®^

<f>2 = 1 /(2  + k_1 c F e ( I I I )□ /k 3cS : )  (6 .5 )

I f  k_-j cFe ( 111) □ »  k ie s ’ ll then most o f the photogenerated semi- 

th iaz in e  returns to th iaz in e  by reaction with f e r r ic ,  <j>2 is  very small 

and the c e ll is  in e f f ic ie n t .  However, i f  k^cS'ii »  k_^cFe( 111)□ the 

sem ithiazine is  destroyed by disproportionation and h a lf  o f the photo

generated sem ithiazine becomes leuco dye. In th is  case <j>2 reaches its  

optimum value o f Hence we require

2k3cS*3

k _ - ,c F e ( III ) :

2k39

k ^ c F e ( I I I ) ]

> 1 (6 .6 )

or from the d e fin it io n  o f g, (eqn. 1 .2)

CFe ( 111 )a < (24>1 I 0k3e[;Th:/k?1) J (6 .7 )

“8 “2 -1Using the resu lts  in tab le  (6 .1 )  and taking 1 = 4 x 1 0  mol cm s 

we obtain

fo r  th ionine cFe( 111)□ < 1 .4  x 10"2 M

and fo r  DMST2 c F e ( I I I ) :  < 0.13 H

(6 .8)

(6 .9 )



146

For the c e ll to be e f f ic ie n t ,  f e r r ic  must be added to the photo-

galvanic e le c tro ly te  to carry current across the c e ll w ithout causing

concentration p o la risa tio n  a t the dark e lectrode. In a working ce ll
- 2

the f e m e  concentration should be about 1 x 1 0  M, and th is  is  above 

the fe r r ic  concentration l im i t  fo r  a th ionine c e l l .  However the ca lcu la 

tio n  above shows th a t the quantum e ffic ie n c y  fo r production of leuco 

DMST2 is  not reduced by th is  concentration o f f e r r ic .  Although the 

addition  o f fe r r ic  to carry current reduces the c o llec tio n  e ffic ie n c y  

o f a th ionine c e l l ,  the problem is  not encountered in a c e ll using DMST2 

because o f the much slower reaction between fe r r ic  and the semi-reduced 

dye.

The standard electrode p o ten tia l fo r  reduction o f DMST2 is  50 mV 

more negative than th a t fo r  reduction o f th ion in e . This means th a t the 

voltage ava ilab le  from a c e ll containing DMST2 w il l  be about 50 mV greater  

than th a t fo r  a th ionine c e ll and th a t the power generated w i l l  be cor

respondingly g rea ter.

Measurement o f the standard electrode po ten tia ls  o f m ethoxy-substituted  

th iazines has shown th a t the voltage between the two electrodes o f an iro n -  

th iaz in e  c e ll can be increased s t i l l  fu rth e r  by in troduction o f these 

e lec tro n -re leas in g  substituents. However, Albery et  a t have shown 

th a t an increase in  the voltage d ifference between the Th/L and Fe( 1 1 ) /F e ( I I I )  

couples is accompanied by an increase in the rate  o f the back reac tio n , k ^ -  

The e ffic ie n c y  o f a c e ll based on DMST2 would not be increased by in troduc

tio n  o f methoxy groups to the th iaz in e  nucleus because k_2 is  already too- 

large fo r  th is  dye.

Ideal values o f aE0 and are 1.1 V and 1 resp ective ly . With these 

values and a ce ll th a t absorbed a ll  o f the so lar rad ia tion  above 1.8 eV the 

e ffic ie n c y  of a photogalvanic c e ll would be about 2 0 % ^ . In using
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~2 ”1 ~8I Q/mol cm s = 4 x 1 0  in our calcu lations we have assumed th a t the

dye absorbs 1 /8  o f the required photons. Factors which determine the

e ff ic ie n c y  o f an iro n -th ia z in e  c e ll are summarised in tab le  (6.2) .

The value o f about 0.07 fo r  aEN^  a t X^/cm = 1 x 10-  ̂ means

th a t a fu r th e r  fa c to r o f 14 is lo s t in the c e ll operation . Consequently

we a rr iv e  a t a predicted e ffic ie n c y  fo r  an iron-DMST2 c e ll o f only about

0.4%. K inetic  studies o f the iro n -th io n in e  system in section (4 .1 )

suggest th a t the ra te  o f the back reaction can be reduced by changing

the pH. In th is  way the power a va ilab le  from a c e ll could be approximately

doubled by using an optimised pH value.

The work on DMST2 shows th a t the e ffic ie n c y  o f an iro n -th ia z in e  c e ll

can be improved by increasing the dye s o lu b il i ty .  However, even when the
- 2

s o lu b il ity  o f the dye is increased to 1 x 10 M the e ffic ie n c y  is  s t i l l  

very poor. The e ff ic ie n c y  o f a photogalvanic c e ll could be improved i f  

the s o lu b il i ty ,  e x tin c tio n  c o e ff ic ie n t and breadth o f spectral absorption  

o f the dye could be increased s t i l l  fu r th e r . W ater-soluble porphyrins and 

metal!oporphyrins show broad spectral absorptions and high ex tin c tio n  

c o e ffic ie n ts  and the remainder o f th is  thesis describes work done to 

characterise a m etalloporphyrin photogalvanic system.
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Table 6 .2

Factors determining the e ffic ie n c y  o f the iro n -th ia z in e

c e ll w ith  X_/cm = 1 x TO'4
■ -- -- - • C 1

DMST2 Cell Best Possible

Absorption o f ra d ia tio n3 0.12 0 .5b

Quantum e ff ic ie n c y , <J>-| 0.44 0 .5 C

C ollection  e f f ic ie n c y , N^v 0,34 0.5

Voltage fa c to r 0,2 0 ,3 d

0,4% 4%

aA single dye only absorbs about 1 /8  o f the to ta l 

in s o la tio n .

^An ideal mixture o f dyes should absorb about one-half 

o f the to ta l in so la tio n .

cThe ideal value should be un ity  but resu lts  fo r th ionine  

show <|>i -  0 .5 .

^The ideal c e ll should produce 1.5 V but try in g  to achieve 

la rg e r voltages leads to lower c o llec tio n  e ffic ie n c ie s  and 

i t  is  u n re a lis t ic  to expect more than about 0 .3  V.
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Chapter 7

PORPHYRINS AND METALLOPORPHYRINS

7 .1 . In troduction

The porphyrins and metal!oporphyrins show many o f the c h a rac te ris tics  

required o f a good photosensitiser. Metalloporphyrins are characterised  

by strong absorbances across the v is ib le  region o f the spectrum and a zinc  

porphyrin can c o lle c t  about 30% o f the incident so lar energy. The m eta llo - 

porphyrins generally  have a high t r ip le t  y ie ld , re a d ily  undergo photoredox 

reactions and compared to the th ia z in e  dyes fo r example, many o f them have 

a high s o lu b il ity  in  w ater.

Some o f the problems encountered in  using porphyrins as photosensitisers  

are discussed below.

( i ) Aggregation

The porphyrins H2TMPyP, H2TPPS and H2TPPC and most o f th e ir  metal 

deriva tives  are soluble over a wide range o f pH and concentration. However, 

th e ir  usefulness fo r  so lar energy conversion is lim ite d  by the exten t to 

which aggregation occurs. D im erisation broadens and decreases the e x tin c 

tion  c o e ff ic ie n t o f the B-band in the UV-visible spectrum and causes a 

no n-lin ear Beer's law p lo t. D im erisation also increases the rate  o f 

in te rn a l conversion from the f i r s t  excited  s in g le t s t a t e a n d  so there  

is  a lower frac tio n  o f excited s ta te  porphyrin species av a ila b le  to the 

photoredox reaction .

The m etalloporphyrin tetrasulphonates tend to dimerise in aqueous 

solu tion  even a t  modest concentrations, in  the order

PdTPPS4" > ZnTPPS4" > SnTPPS4"
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The dim erisation constant fo r  ZnTPPS  ̂ has been measured by nmr methods 

as

KqiM ^  " 10 (7-1)

Aggregation is  also found fo r  l^TPPC and its  d e r i v a t i v e s , even 

though the carboxyl groups are ionised below pH 5.

The N-methylpyridinium s a lts  are much less prone to aggregation.

The dim erisation constant fo r  ZnTMPyP^+ in aqueous solution o f io n ic  

strength 0.1 M has been m easu red ^ ) as

Kq iM ^  = ® (7 -2 )

Dim erisation o f F e ( I I I )  complexes o f H2TMPyP and H^TPPS has been 

shown to be pH d e p e n d e n t^ ’ ^ ^ .

( i i )  Dem etallation

An equilib rium  exists  between a m etalloporphyrin and the metal and 

free  base porphyrin,

m2+ + PH2 HP + 2H+ (7 .3 )

The equ ilib rium  constant K0 is  given by

Ke 9 (7 .4 )
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the ra tio  between the rates o f incorporation (k^ ) and displacement 

o f the central metal atom from the free  base porphyrin.

For ZnTMPyP^*, the ra te  o f incorporation is  given b y ^ ^

R.j = ki cPH2:cZn2+:

and the ra te  o f displacement is  given by

Rd = kdcZnPxH+a2

At 25.5°C and io n ic  strength 1 M

k./M -1 s"1 = 3 .7  x 10“2

kd/M"2 s"1 = 8 .5  x 10"3 
and

ki
Ke/M = —  = 4 ,4  

kd

The displacement reaction is catalysed by chloride ions and i 

presence o f ch loride the ra te  equation is found to b e ^ Z)

Rd = kcjCZnP:][:H+:]2i:Cl~:i2

At 27°C the ra te 'c o n s ta n t k^ is

kd/M'4 s' 1 = 6.8 x 10'2

( kd>

(7 .5 )

(7 .6 )

(7 -7 )

(7 .8 )

(7 .9 )

n the

(7 .1 0 )

(7 .1 1 )
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7 .2 . Photochemistry

The most intense band in the absorption spectrum o f the m eta llo - 

porphyrins is  the B band a t  about 420 nm which is  the o rig in  o f the second 

excited  s in g le t s ta te . The weaker Q bands in  the region 500-550 nm are 

caused by e x c ita tio n  to the f i r s t  excited  s in g le t s tate  and to a v ib ra tio n a l 

overtone. Spectral data fo r  many water soluble metal!oporphyrins has been 

obtained by Kalyanasundaram and N eu m an n-S pa llart^^ . The spectrum o f a 

typ ica l water soluble m etalloporphyrin ZnTMPyPCl^ is  shown in  fig u re  (7 .1 ) .

Information about the excited  s in g le t and t r ip le t  states has been 

obtained using flash p h o t o ly s is ^ ’ ^ ^ . Data for'some o f the water soluble  

metal!oporphyrins is co llected  in tab le  (7 ,1 ) .

Fluorescence life tim e s  o f the m etalloporphyrins are too short fo r  

the excited  s in g le t s ta te  to be useful in in term olecular photoredox processes. 

The t r ip le t  life tim e s  are much longer than those o f the excited  s in g le t  

states and the y ie ld  o f t r ip le ts  is  high, so there is  much more chance of 

in term olecular photoredox processes occurring v ia  the t r ip le t  s ta te .

7 .3 . Redox Reactions o f the Metal!oporphyrins

Redox reactions may involve e ith e r  the central metal ion or the 

porphyrin periphery. Where the porphyrin ligand is  involved, ir-rad ica l 

anions or cations are created (fig u re  ( 7 .2 ) ) .

No d ire c t evidence can be obtained from electrochem istry as to the 

exact nature o f the redox process. However, i t  is  often p o s s ib le ^ )  to 

assign a redox reaction to e ith e r  the central metal ion or the porphyrin 

ligand from U V-vis ib le  spectra or from the d ifference between the standard 

electrode p o ten tia ls  o f oxidation and reduction, Additional inform ation  

can be obtained from esr and from bulk s u s c e p tib ility  measurements.
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Figure 7 .1 . V is ib le  spectrum of ZnTMPyPClA in water.
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Table 7.1

Photophysical Properties o f Some Metalloporphyrins in 

Outgassed Aqueous S o l u t i o n ^ * ^

M etalloporphyrin xs/ns T y / y S

ZnTMPyP 1.5 0.90 1220
PdTMPyP < 0.5 1.00 170

SnTMPyP - 0.95 900

h2tpps 10.4 0.78 420

ZnTPPS 1.7 0.84 1400

PdTPPS < 0.5 . 1.00 380

SnTPPS - 0.95 1000

ts excited  s in g le t-s ta te  l i fe t im e .

Ty t r ip le t -s ta te  l i fe t im e .

<j>y quantum y ie ld  fo r  formation of t r ip le t  s ta te .



Figure 7.2. Oxidation of a metal!oporohyrin to form a 
-iT-radical cation.
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7 .4 . Photoredox Reactions o f the Metalloporphyrins

The t r ip l e t  excited states o f the metal!oporphyrins are mild 

r e d u c ta n ts ^ )  and are oxidised by a wide range o f e lectron acceptors 

to the 7r-rad ica l cation

P* + Q P+" + Q"' (7 .1 2 )

Values o f the e lectron tra n s fe r ra te  constants fo r  some w ater-so luble  

metal! oporphyri ns and quenchers have been measured by flash  p h o to ly s is ^ )  

and are given in tab le  (7 .2 ) .

From c lass ica l k in e tic  theory, the ra te  o f a reaction between charged 

species is  dependent on the io n ic  strength (y) and th is  behaviour may be 

described by equation (7 .1 3 ) ,

lgk = lg k0 + 1.02 ZAZB» r̂ (7 .1 3 )

where kQ is the ra te  o f the reaction when y = 0. For reactions between 

highly charged species lik e  ZnTMPyP^* and MV^+ (where Z^Zg = 8) the ra te  

o f the reaction is strongly a ffec ted  by the io n ic  strength o f the medium.

Once quenching o f the t r ip le t  s ta te  m etalloporphyrin has occurred, 

the products o f the quenching reaction must escape from the solvent cage 

before the separated ion products can react a t the e lectrode, The quantum 

e ffic ie n c y  fo r  the formation of redox products (<l>-ions) is  given by

^ions = x <J>q x $$ (7 .1 4 )

where is  the fra c tio n  o f products o f the e lectron tran s fe r quenching 

reaction leaving the solvent cage as separated ions. Escape from the cage
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Table 7.2

Rate Constants fo r  Quenching o f the Metalloporphyrin  

Excited State (from r e f .  79)

Metal!oporphyrin Quencher kq/M_1 s’ 1

ZnTPPS4"
2+

M1T 1 .4x l010
S 02~ 52u8 6.9x105

PdTPPS4" mv2+ o a .  1010

S2°8 -

SnTPPS4' mv2+ < 104

S2°8 o a .  105
ZnTMPyP4"1" mv2+ 1 . 8x107

S 02” b2U8 9 . Oxl08
cCo (NH3)5C1:2+ 1 .5 x l0 8
' Fe3+ 1.9x108

PdTMPyP4+ mv2+ 3.5x104

S2°8 1 .9x104
CCo (NH3 )5C132+

00o1—X
•

Fe3+ 6 .9 x l0 7
SnTMPyP4+ mv2+ < 104

S20f l.O xlO 7
Fe3+ 1 oa ,  10̂

i
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depends on the e le c tro s ta tic  forces between the excited  species and

quencher, and these forces are p a r t ic u la r ly  im portant fo r  w ater-so luble

porphyrins because o f th e ir  high charges. This has been demonstrated

by Harriman e t  a l who found a high y ie ld  o f separated ion products

4+ 2+in the reaction between ZnTMPyP and MV = 0 ,8 ) but a very low

4- 2+y ie ld  o f ion products from the reaction between ZnTPPS and MV 

(<f>5 < 0. 01) under the same conditions.

Experimental Results fo r  the Metal!oporphyrin System

The m etalloporphyrin species studied in th is  work are shown in  

fig u re  (7 .3 ) .

7 .5 . Dark Electrochem istry o f ZnTMPyPCl^

Figure (7 .4 )  shows a steady-state  polarogram, corrected fo r  solvent 

decomposition fo r  the oxidation o f ZnTMPyPCl^ a t pH 2 .5 . The wave cor

responds to the oxidation o f the porphyrin ring to the 7r-rad ica l ca tion . 

Tafel ana lys is , (Figure (7 .5 ) )  shows th a t the wave is  qu as i-revers ib le  

with half-wave p o te n tia l, Ê  = +962 mV (SCE). The standard electrode  

p o ten tia l is  calcu lated  as E0 = +940 (± 10) mV (SCE).

In contrast w ith the observations made by Neumann-Spallart and 

Kalyanasundaram ^) using c yc lic  voltammetry, no second oxidation o f  

the m etal!oporphyrin to the d ication  species was observed. C ontrolled  

po ten tia l e le c tro ly s is  studies suggest th a t the ir-monocation slowly 

reverts back to the porphyrin species. This observation is in agreement 

w ith the work o f Neumann-Spallart and Kalyanasundaram ^^. Attempts to 

study the fa te  o f the TT-monocation a t a rin g -d isc  electrode were fru s tra te d  

by the large currents caused by solvent decomposition. The 'so lvent 

window' can be extended to more p o sitive  po ten tia ls  by making the medium
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Z n T MP yP C l ^ :

Z n T H P y P C l ;  ;

Z n T P S P y P  :

Z n T P P S N a ;  ;

Co l  I I I I T P P S N a ^

P e l  I I D T P P S N a

Figure 7 .3 .

Mr Zn . Rr

M= Zn . Rr

M=Zn . Rr

; M r C o ( I I I )  . Rr

; M r F e ( I I I )  . Rr

Structures of the water soluble  

metalloporphyrins studied.
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E/mV(SCE)

Figure 7 .4 . S teady-state polarogram fo r  the oxidation  

of ZnTMPyPC14 a t dH 2.5 .



2

Figure 7 .5 . Tafel o lo t fo r  the oxidation o f ZnTMPyPCl^.
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more ac id ic  but th is  would increase the rate  o f ac id -catalysed  dem etallation  

o f the porphyrin.

A Levich p lo t fo r  ZnTMPyP^* a t +1150 mV (SCE) is  shown in fig u re  (7 .6 ) .  

The background e le c tro ly te  used fo r  th is  experiment was 50 mMM^SO^ brought 

to pH 2.5  with H2SO4. This p lo t has been corrected fo r  currents caused by 

the background e le c tro ly te .

4+The d iffu s io n  c o e ff ic ie n t o f ZnTMPyP in a 0.58 mM porphyrin solu

tio n  was measured using the rotation-speed step technique o f Albery et a l  

in  the pH 2.5  medium. Rotation speed was stepped from 3 Hz to 9 Hz. A 

typ ica l current tran s ie n t is shown in  fig ure  (7 .7 )  and a p lo t o f W^tp 

xs is  shown in  fig u re  (7 .8 ) .

A value fo r  the d iffu s io n  c o e ff ic ie n t was obtained using the mean 

of 8 determ inations.

For ZnTMPyP4+, D/cm2 s"1 = 3,1 x 10-6 (7 .1 5 )

7 .6 . Dark Electrochem istry o f  ZnTHPyPCl^

The electrochem istry o f ZnTHPyPCl^ was studied a t a glassy carbon 

RDE. As w ith ZnTMPyPCl^ a t pH 2 .5 , a single one-electron wave was obtained  

corresponding to the generation o f the ir-rad ical ca tio n . This oxidation  

is qu as i-revers ib le  and has a half-wave p o ten tia l o f +974 mV (SCE). Tne 

standard electrode p o ten tia l was calculated as E0 = +960 mV (SCE). No 

second wave was observed although currents were measured a t values o f  

poten tia l as high as +1240 mV (SCE).

Attempts to foilo'w‘ the fa te  o f the 7r-rad ica l cation using a ro ta tin g  

r in g -d isc  electrode (RRDE) apparatus were fru s tra te d  by high currents  

caused by solvent decomposition a t the po ten tia l needed to reduce th is  

species. An example o f work using the RRDE apparatus is  given by the 

study o f Fe(III)TPPSNa3 .
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Levich p lo t a t +1150 mV fo r  ZnTMPyPCl^ at pH 2 .5 .Figure 7 .6 .



Figure 7 .7 . Rotation speed step tran s ien t fo r  ZnTMPyPCl^.

CD
CO



Figure 7 .8 . Rotation soeed sten tran s ien t fo r ZnTMPyPCl^ analysed by the method o f 

Albery e t  .
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7 .7 . Ring-Disc Experiments on Fe(III)TPPSN ao

Ring polarograms o f Fe( IIIJTPPSNa^ in 1 mM HC1 (aq) are shown in  

fig u re  (7 .9 ) .

For polarogram (a) the disc was held a t 0 mV (SCE). At p o ten tia ls  

above +850 mV, porphyrin (F e ( I I I ) P )  is  oxidised to porphyrin ir-rad ica l 

cation ( F e ( I I I ) P +‘ ).

For polarogram (b) the disc was held a t  +1000 mV (SCE). Below 

+850 mV the ring electrode carries  a current corresponding to the reduc

tion  of Fe( I I I ) P + to F e ( I I I )P .  At p o ten tia ls  g rea ter than +850 mV the 

ring  is  also oxid is ing  Fe( I I I ) P  to F e ( I I I ) P + ’ but the ring  is  'sh ie lded ' 

from the bulk porphyrin concentration by oxidation o f porphyrin a t  the 

disc. At p o ten tia ls  less than +550 mV there is  a fu r th e r  current cor

responding to the reduction o f free  F e ( I I I )  to F e ( I I ) .

Fe( 111)P is  unstable in ac id ic  aqueous solution and the decomposi

tio n  y ie ld s  free  F e ( I I I )  and an electrochem ically  in ac tive  porphyrin 

species. In 1 mM HC1, E0 Fe( I I ) / F e ( I I I )  was measured as +480 mV (SCE).

In another experiment, again in 1 mM HC1, the disc was p o ten tio - 

s ta tte d  a t  +1000 mV where F e ( I I I )P  is  oxidised to F e ( I I I ) P + *, w hile the 

ring electrode was p o ten tios ta tted  a t +800 mV, where F e ( I I I ) P +* is  reduced 

to Fe( I I I ) P  but where F e ( I I I )  is  in a c tiv e .

Albery and H itchm an^^  have discussed the case where an e le c tro 

generated interm ediate decomposes on its  way from the disc to the ring  

electrode by f i r s t  order k in e tic s .

In th is  case:

disc Fe ( 111) P ---------^ F e ( I I I ) P + ' (7 .1 6 )

solution Fe (1 1 1 )P+" ■> products (7.17)



Figure 7 .9 . Ring polarograms of F e ( I I I )  TPPS.
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ring F e ( I I I ) P +* ----------* F e ( I I I )P  (7 .1 8 )

Using a th eo re tica l p lo t o f N against k., values o f the k in e tic  

co llec tio n  e ffic ie n c y  were used to ca lcu la te  kg from the equation

k2 = 0.248 kB w' 1 D' 1/3 v 1 / 3  (7 .1 9 )

C ollection  e ffic ie n c ie s  were measured over a range o f ro ta tio n  speeds 
2

and a p lo t o f < against 1/w, according to equation (7 .1 9 ) is  shown in  

fig u re  (7 .1 0 ) .

The ra te  constant fo r  the decomposition reaction o f F e ( I I I ) P + * in  

the bulk solution was found to be

kg/s"1 = 0.50 (± 0 .0 5 ) a t 25°C (7 .2 0 )

The resu lts  o f dark electrochem istry experiments using the m eta llo - 

porphyrins are summarised in tab le  (7 ,3 ) .

Photoelectrochemistry o f some Water-Soluble Metalloporphyrins

Photoredox reactions o f some w ater-so luble m etalloporphyrins were 

investigated  using the 0RDE technique. The systems studied are lis te d  

in tab le  (7 .4 ) .

For many o f these combinations o f metal!oporphyrin and quencher, 

no photocurrent was observed. There are three possible reasons fo r  th is :

(a ) When the porphyrin contains a paramagnetic tra n s itio n  metal ion , 

the t r ip le t  li fe t im e  is  very short

(b) Where the products o f the e lectron tran s fe r quenching reaction  

have opposite charges, e le c tro s ta tic  a ttra c tio n  means th a t the



2
Figure 7 .1 0 . P lot o f k against 1/w according to equation (7 .1 9 ) fo r  

the decomposition o f the Fe( 111 )TPPSNa3 TT-radical 
cation .

cnoo
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Table 7.3

Dark Electrochem istry o f Water Soluble Metalloporphyrins

Compound Medi urn E|(l)/m V(SCE) Ej(2)/mV(SCE) 2 -1 D/cnrs

ZnTMPyPCI. 0.1 M Na2S04 
adjusted to pH 2,5

+960 3.1x10-6

ZnTHPyPCl4 0.1 M Na2S04 +975

adjusted to pH 2.5

ZnTPPSNa4 1 M Na2S04 +600 +890

Co(III)TPPSNa3 
Fe(III)TPPSN a3

+ 5 mM H2S04 
50 mM H2S04 
0.5 M HC1

+875

+925

+1120

,

2.3x1 O'6 
1.8x1 O' 6



Table 7.4

Metalloporphyrin-quencher Systems Studied by 

the QRDE Technique

Metalloporphyrin Quencher ' Observation

FeTPPS3' F e ( I I I ) No photocurrent^a ,b ^

FeTPPS3" mv2+ No photocurrent^a ’ b ^

ZnTPPS4' mv2+ No p h o to c u rre n t^

ZnTPPS4' Thionine No p h o to c u rre n t^

ZnTPPS4' F e ( I I I ) No p h o to c u rre n t^

ZnTPPS4' cFe(CN)5a3' Photocurrent observed

ZnTMPyP4+ F e ( I I I ) Photocurrent observed

ZnTHPyP4+ F e ( I I I ) Photocurrent observed

ZnTPSPyP F e ( I I I ) No p h o to c u rre n t^

(a) The porphyrin contains a paramagnetic tra n s itio n  metal 

and the t r ip le t  l ife t im e  is  very s h o r t ^ ^ .

(b) E le c tro s ta tic  a ttra c tio n  between the products o f the 

photoredox reaction means th a t the frac tio n  o f product 

species leaving the solvent cage is  considerably 

reduced ̂  ^.

(c) Red fluorescence was observed,
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fra c tio n  o f products o f the photoredox reaction leaving the 

solvent cage is  considerably r e d u c e d ^ ) .

(c) Reaction between the t r ip le t  m etal!oporphyrin and quencher 

may not be possible on thermodynamic grounds, depending on 

the redox p o ten tia ls  o f these two species.

The la rg es t photocurrents were observed fo r  ZnTMPyP^+ w ith F e ( I I I )  

as quencher and th is  system was chosen fo r fu rth e r study.

7 .8 . QRDE Studies o f the ZnTO PyP '^ /Feflll) System

The wavelength o f l ig h t  used to exc ite  the m etalloporphyrin was th a t

corresponding to the Soret absorption band a t  435 nm. Measurements o f

photocurrent were made a t  the p o ten tia l o f zero dark curren t. The p o ten tia l

being re-ad justed w ith each addition  o f ferrous or f e r r ic  ion.

A 'map' showing the regions o f c F e ( I I) :  and c F e ( I I I ) :  th a t were

studied is  shown in  fig u re  (7 .1 1 ), The experiments a t pH 1.35 are discussed

in th is  work, experiments a t pH 2.5 followed roughly the same p a tte rn . When

there was no ferrous ion added to the so lu tio n , the concentration o f ferrous
-fiphotogenerated from fe r r ic  was estimated to be 1 x 10 M and th is  is  the 

value used in fig u re  (7 .1 1 ) . Crosses in the diagram in d ica te  concentrations  

of ferrous and fe r r ic  a t which the va ria tio n  o f photocurrent with l ig h t  

in te n s ity  and ro ta tio n  speed was investigated .

In agreement with other a u t h o r s w e  believe th a t the reaction  

scheme is  as fo llow s:

ZnTOPyP4+ + F e ( I I I ) — — 4  ZnTMPyP5+ + Fe ( 11) (7 .2 1 )

Zn™PyP5+ + F e ( I I )

i—i 
i—i 
i—i0)Ljl_++CL.£££

r̂.i

(7 .2 2 )
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Figure 7 .1 1 . Regions of cFe( 11)□ and cFe( 111)□ studied by the 

ORDE technique.
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There are two processes involved. On the one hand the forward 

reaction ky promoted by F e ( I I I )  and on the other hand the back reaction  

k_7 promoted by F e ( I I ) .

(1 ) The Forward Reaction k.

Experiments in  which cFe( I I I )3 was varied  suggest th a t there is  an 

optimum concentration o f fe r r ic  a t which the photocurrent is  a maximum. 

This has been confirmed by flash  p h o t o l y s i s a n d  by the ORDE technique 

a t pH 2 .5 (8 8 ) .

At low concentrations o f f e r r ic  the behaviour is  as expected. In 

creasing the concentration o f quencher increases the quantum e ffic ie n c y  

fo r  the production o f porphyrin ir-rad ica l cation and thus increases the

photocurrent. This is  the s itu a tio n  found in  other photogalvanic systems

3+e .g . the iro n /th ia z in e  system and the iron/Ru(bpy) system.

At higher concentrations o f f e r r ic  the quencher reacts w ith excited  

m etalloporphyrin to y ie ld  products which are not e le c tro ac tive

P* + F e ( I I I )  i- ? (7 .23)

I f  F e ( I I I )  causes Stern-Volmer quenching o f P* in th is  way <f>, the quantum 

e ffic ie n c y  fo r  the production o f the e le c tro ac tive  7r-rad ica l cation w il l  

be given by

1
<f> = ---------------------------  (7 .2 4 )

1 + k cFe( I I I )n
H

This re la tio n sh ip  is  indeed found to hold a t  higher concentrations o f

F e ( I I I )  and so <p unexpectedly passes through a maximum as the fe r r ic  

concentration is  increased.
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(2 ) The Back Reaction k

A value has been r e p o r te d ^ )  fo r  the reverse e lectron  tran s fe r  

reaction k_7

k /M' 1 s' 1 = 2 x TO8 (7 .2 5 )

and th is  is in good agreement w ith our work which gives a value of

k /M' 1 s' 1 = 1 x 108 (7 .2 6 )

A typ ica l concentration of ferrous ion used in these experiments

-4was c F e (II) : /M  = 2.6 x 10 . Under these conditions the life t im e  o f the

porphyrin ir-rad ical cation , t y  given by

t j  = l/k__7: F e ( I I ) :  (7 .2 7 )

is  about 40 ys and the k in e tic  length given by

Xk = (D/k_y cFe( 11)□ )^ ( 1. 6)

-5
is  1.1 x 10 cm.

k^y is  therefore  so rapid th a t we can assume th a t Xk w i l l  be the 

shortest o f the four c h a rac te ris tic  lengths in the theory o f the ORDE.

The system fa l ls  in to  region B o f fig u re  (3 ,5 )  and the photoelectro- 

chemical co llec tio n  e ffic ie n c y  is given by

Nhu = V Xe (3 .5 3 )
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Light is  trapped by the porphyrin over a distance X£ from the working 

electrode but the e le c tro ac tive  u -rad ica l cation cannot reach the electrode  

unless i t  is generated w ith in  the distance X^.

ORDE experiments were conducted both with and w ithout the addition  o f  

ferrous ion and these cases are considered separate ly .

( i ) When no F e ( I I )  has been added to the solution

In th is  case the only ferrous present is photogenerated by the e lectron  

tra n s fe r quenching reaction . Oxidised porphyrin reacts a t the ORDE but the 

ferrous ion cannot react there and is  removed from the region o f the electrode  

by ro ta tio n . Increasing the speed o f ro ta tion  decreases the thickness o f the 

stagnant d iffu s io n  layer next to the electrode and thus decreases the distance  

over which F e ( I I )  must d iffuse  to escape. Increasing the ro ta tio n  speed 

therefore  decreases the ferrous concentration near to the electrode and 

increases the curren t.

The convective d iffu s io n  equation fo r  the ORDE, equation (3 .2 0 ) , can 

be s o lv e d ^ )  fo r  the case where two photogenerated species react together 

and where one o f the species is  e le c tro ac tive  and the other is  not. The 

f lu x  o f oxidised metal!oporphyrin to the e lec tro de , j  is  given by

j  = 0 2 / y / v  l / 3x - V 3 (7 .28 )

where

g = <j> IQ e cZnTMPy (7 .2 9 )

and

XD = 0.643 v1/6d1/3w-1/2 (3 .8 )

Thus

j  « w
1 / 6 (3 .9 )
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This dependence o f photocurrent upon ro ta tio n  speed has been observed^*^  

4+fo r  the ZnTMPyP / F e ( I I I )  system a t  pH 2.5 but in the medium used fo r  these 

experiments (50 mM H2SO4, pH 1 .35 ) the behaviour was found to be more complex 

and is  described la te r .

( i i ) When F e ( I I )  has been added to the so lution

When the concentration o f photogenerated ferrous is  n e g lig ib le  compared 

to the concentration o f added fe rro u s , the distance is  even shorter than 

before the ad d itio n , and is  again the shortest o f the c h a ra c te ris tic  lengths. 

Removal o f photogenerated ferrous by convection now causes an in s ig n if ic a n t  

change in the ferrous concentration close to the electrode and so the photo

current is independent o f ro ta tio n  speed.

7 .9 . Experiments a t a Series o f F e rric  Concentrations with no Added 

Ferrous

Generation o f the porphyrin 7r-rad ica l cation is  accompanied by photo

generation o f ferrous ion. A value fo r  the concentration o f F e ( I I )  can be 

calculated  from the ro ta tio n  speed and the photocurrent a t  the ORDE. In 

th is  series o f experiments described by lin e  A in fig u re  (7 .1 1 ) we studied  

the v a ria tio n  o f photocurrent with ferrous concentration a t the e lectrode  

surface a t d if fe re n t f e r r ic  concentrations in the range

1.2 mM < c F e ( I I I ) :  < 71 mM

Ferrous ions react w ith the oxidised porphyrin as in scheme (7 .22 )

ZnTMPyP5+ + Fe(II)—  t > ZnTMPyP4+ + Fe(III) (7.22)
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However the s itu a tio n  is  complicated by the existence o f another f i r s t

A s teady-state  curren t-vo ltage curve was obtained fo r  the reaction  

of F e ( I I )  a t  the t in  oxide electrode used fo r  the ORDE experiment. A 1 mM 

solution of ferrous gave a lim it in g  current o f 10.0  yA a t 1 Hz. This value 

enables us to ca lcu la te  the concentration o f photogenerated ferrous a t the 

electrode surface c F e (II)D Q from equation (7 .2 4 ) .

where

□ F e ( I I ) i s  the concentration of ferrous in the bulk solution  

( c F e ( I I ) : oo = 0 in  th is  series  o f experim ents),

order route (k?) fo r  the decomposition o f ZnTMPyP,5+

k^ = k? + k_7 cFe( 11 )□ (7 .2 3 )

c F e (II)3 0 = c F e ( I I ) : „  + - 2 -

ip w*
(7 .2 4 )

w

P

F

is  the measured photocurrent,

is  the lim it in g  current fo r  a 1 M solu tion  o f F e ( I I )  a t  

a ro ta tio n  speed o f 1 Hz on the e lectrode used fo r  the 

ORDE experiment, and 

is  the ro ta tio n  speed in Hz.

Using equations (3 .36 ) and (3 .5 3 )

(7 .2 5 )

and from the d e fin it io n  o f the k in e tic  leng th ,

Xk = (D /(k , + k7 c F e (II)D 0 ) ) (7 .2 6 )
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we fin d  th a t

v

W (

2
k? + k ,7 : F e ( I I ) : 0

D

(7 .2 7 )

o
Plots o f ( $ / i )  against c F e ( I I ) : Q a t each fe r r ic  concentration, 

(figu res  (7 .1 2 ) , (7 .13 ) and (7 .1 4 ))  are lin e a r  and when

( $ / i ) 2 = 0 , c F e ( II)3 Q = -k ,/k _ 7

The resu lts  o f experiments a t nine d if fe re n t f e r r ic  concentrations  

show a common in te rc e p t a t -0 .0 2  mM and so

where is the in te rc e p t on the y -ax is  fo r a p a rt ic u la r  f e r r ic  concentra

t io n , from figures (7 .1 2 ) , (7 .1 3 ) and (7 .1 4 ) .

At high concentrations o f added fe r r ic  io n , increasing the fe r r ic  

concentration decreases the quantum e ffic ie n c y  fo r  production o f the 

porphyrin ir-radical cation . I f  th is  e f fe c t  is due to Stern-Volmer quenching 

o f the excited  porphyrin, <p w i l l  be given by

k_7/M_1 s '1 = 5 x 104 k? (7 .28 )

From equation (7 .2 7 ) , when c F e ( II)3 Q = 0 we obtain the expression

(7 .2 9 )

* = (7 .3 0 )
1 + KqcFe(111 )□
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where K is  the Stern-Volmer quenching constant, Combining equations
H

(7 .2 9 ) and (7 .3 0 ) we obtain

y f n t = (1 + Kqc F e ( I I I ) : ) X £ (k?/ D ) M hv (7 .31 )

1
Plots o f y? £ against c F e ( I I I ) :  are shown in figures (7 .1 5 ) and 

(7 .1 6 ) .

These two plots give reasonable s tra ig h t l in e s , confirming the 

hypothesis th a t f e r r ic  causes Stern-Volmer quenching o f the excited  

sta te  porphyrin to y ie ld  e lectrochem ically  in ac tive  products. In th is  

series o f experiments the fe r r ic  concentration was high and K q C F e (III):  > 1. 

I t  was therefore  not possible to obtain a value fo r  the Stem-Volmer 

quenching constant from the negative in tercep t on the x -ax is . However 

the gradient is  used la te r  to fin d  a value fo r  K .̂

7 .10 . ORDE Experiments with a Low Concentration o f Added Ferrous Ion

This series o f experiments is  shown as lin e  B in fig u re  (7 .1 1 ) . A 

low concentration o f ferrous ion was added to the so lu tion  (cFe(II)iiadded = 

0.126 mM) and the fe r r ic  ion concentration was varied over the range 0.56 mM 

to 9 .2  mM.

We assume th a t the concentration o f photogenerated ferrous w il l  be 

n e g lig ib le  compared to the concentration o f ferrous ion added. Values o f  

$ /i were found to be f a i r ly  constant fo r  each fe r r ic  concentration studied  

(tab le  (7 .5 )  and fig ure  (7 .1 7 ))  and th is  confirms th a t photogenerated 

ferrous is  unimportant under these conditions.

The range o f f e r r ic  concentrations studied here was lower than th a t 

used in the previous series o f experiments ( lin e  A in fig u re  (7 .1 1 ) ) ,  and 

enables us to ca lcu la te  a value fo r K , the Stern-Volmer quenching constant
M



Figure 7 .1 5 . P lo t o f y |   ̂ against cFe(111)□

according to equation (7 .31 ) fo r  

the ZnTMPyP OPxDE with no added 

fe rro u s .
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Fiqure 7.16 P lo t o f y?  ̂ against cFe(111)□ according to equation

(7 .3 1 ) fo r  the ZnTMPyP ORDE with no added ferrous.
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Table 7.5

Values of $ / i  fo r  the Series o f Experiments with  

a Low Concentration o f Added Ferrous Ion

These experiments are shown by lin e  B in fig u re  

(7 .1 1 ) . Each value of $ /i represents the average 

o f measurements a t s ix  d if fe re n t  electrode ro ta 

tio n  speeds.
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Symbol [Fe(ni)]/mM

o 0-56

X 1-37

A 1 90

□ 2-67

o 506

+ 7-22

7 9-16

Figure 7 .1 7 . Plots of photocurrent against

$ a t d if fe re n t fe r r ic  concentra

tions fo r  the ZnTMPyP ORDE.
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Figure 7 .17 .
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fo r  reaction o f the ex c ited -s ta te  porphyrin with fe r r ic  which y ie ld s  

electrochem ically  in ac tive  products.

Combining equations (7 .2 7 ) and (7 .3 0 ) we obtain the expression

* / f  = Xe (1 + Kqc F e ( I I I ) ] ) ( k ,  + k .7 c F e ( I I )30/D ) ^ / ihv (7 .3 2 )

A p lo t o f $ / i  against c F e ( I I I ) :  fo r  th is  data (fig u re  (7 .1 8 ))  gives a good 

s tra ig h t lin e  with an in te rc e p t on the x-axis  o f

K"1 = 0 .8  mM'1

Hence

K = 1 .3  x 103 M

This value fo r  the Stern-Volmer constant explains why n e g lig ib le  

in tercepts  were found in  figures (7 ,1 5 ) and (7 .16 ) fo r  the series o f 

experiments w ith no added ferrous. In those experiments, the fe r r ic  

concentrations used were too high fo r  the in te rc e p t to be s ig n if ic a n t.

From equations.(7 .3 2 )  and (7 .2 8 ) the gradient o f the p lo t in  

fig u re  (7 .1 8 ) is  given by

(7 .3 3 )

(7 .3 4 )

X Kn
(g rad ien t) = —  -■ 

ihv

and thus k? is given by

k?( l + 5 x !C r c F e ( I I ) :0 )

k? =
1 + 5 x K T c F e J im

hv (g rad ien t)

X K 
e q

\z

/

(7 .3 5 )

(7 .3 6 )



mM

Figure 7 ,1 8 . P lo t o f against fe r r ic  

concentration according to 

equation (7 .32 ) fo r  the 

ZnTMPyP ORDE.
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Now th a t a value has been found fo r  K we can also obtain a value
M

fo r k? from the experiments in  which no ferrous ion was added to the 

so lu tion . Returning to equation (7 ,31 ) and figures (7 .1 5 ) and (7 .1 6 ) ,  

the gradient o f these plots is  given by

gradient = xeKq ( k? /D)^ / i hv = 0,70 (7 .37 )

Rearranging th is  equation we obtain an expression fo r  k?

k? = D( 1'hv ( 9 ra d ie n t) /X elV 2 (7 .38 )

Using the value previously obtained fo r  the d iffu s io n  c o e ff ic ie n t  

o f ZnTMPyP4*  (equation (7 .1 5 ))  D/cm2 s’ 1 = 3.1 x 10~6 we obtain the 

values fo r  k_7 and k , given in tab le  (7 .6 ) .

I t  is pleasing to note tha t the values fo r k_y and k? both w ith , 

and w ithout ferrous ions added to the solution are in good agreement and 

th a t the value fo r k_7 is s im ila r  to th a t reported by Harriman and 

W illiam s^72);

s '1 = 2 x 108 (7 .2 5 )

ORDE experiments in which the concentration o f F e ( I I I )  was varied  

suggest th a t the current a t the electrode (and thus the quantum e ffic ie n c y  

fo r  production o f the Tr-radical cation) goes through a maximum as the 

fe r r ic  concentration increases, These findings have since been confirmed 

by flash  p h o to ly s is ^ 7) and by the ORDE t e c h n i q u e a t  pH 2 .5 . The 

existence o f an optimum fe r r ic  concentration can be explained in terms 

o f the fo llow ing mechanism:



Table 7.6

Results fo r  the Fe/ZnTMPyP System

cZnTMPyP^/mM

cFe<n  Padded = 0 cFe( n >] added “ ° - 13 mM

Oo 70 1.2

X /cm£ 3.2  x TO'3 1.9 x 10*3

W uA 77 44

k?/s _1 1 .4  x 103 2.1 x 103

1 x 108 1 x 108



193

P

hv

P
A

-> *p ( P F e ( I I I ) )

F e ( i r i )  k8

F e ( I I I )
■» d2+ H2°

e le c tro 
chemical! y 
in ac tive  
isoporphyrin

4+where P is  the ground-state m etalloporphyrin ZnTMPyP , the t r ip le t  o f

which can form a complex with F e ( I I I ) .  The quantum e ffic ie n c y  fo r

5+ +production o f the rad ical cation ZnTMPyP (P in th is  no ta tion ) is  

gi ven by

k2c * P :c F e ( I I I ) :  + k8cC:
$ = --------------------------------------------------------------

kgc*Pi + k2c * P : :F e ( I I I )3  + kg.cC: + k4cC: + k5 c F e ( II I ) :c C :

where cC: is  the concentration of the p o rp h y rin -fe rr ic  complex ( P F e ( I I I ) ) ,  

and where

ecu = K c *P :c F e ( II I) :

E lim inating cC: and c*P: we obtain

k2cFe( 111)□ + kg K c F e (I I I) :
* = -------------------------------------------------------------------

kg + k2c F e ( I I I ) :  + k g K c F e (III):  + k4K c F e ( I I I)3 + k5K c F e ( I I I ) ]2

(7 .3 9 )

(7 .4 0 )

(7 .4 1 )

(7 .4 2 )
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When c F e ( I I I ) :  is  very sm all, the kg term dominates the denominator o f 

th is  expression. Increasing the concentration o f added fe r r ic  ion in 

creases (p, and thus the current a t the ORDE increases. When the so lu tion
. p

contains a substantial concentration o f fe r r ic  io n , the k g K c F e (III):  

term is dominant and increasing the fe r r ic  concentration decreases <j>.

This means th a t when the fe r r ic  concentration is  high, increasing c F e ( I I I ) :  

decreases the current a t the e lectrode.

In our calcu lations we have assumed th a t k^ is n e g lig ib le  and th a t the 

kg term is also n e g lig ib le  under the conditions o f the experiment ( i . e .  the 

solution contains a substantial concentration o f F e ( I I I ) ) .  In th is  case 

we have

♦ = 1
!(  | ksKq F e ( I I I )

k2 + k8Kq
(7 .4 3 )

This expression has the same form as equation (7 .3 0 ) and comparing 

the two equations we fin d  th a t

V

k5K

k2 + kgK
(7 .4 4 )

where is  the Stern-Volmer quenching constant.

The above hypothesis is te n ta tiv e  and we have not characterised the 

products o f the reaction between P* and F e ( I I I )  a t high fe r r ic  concentra

tio n . However th is  mechanism explains the maximum in photocurrent ob

served as the fe r r ic  concentration is  increased in an ORDE experiment. 

This has important consequences fo r  the e ffic ie n c y  o f a porphyrin
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photogalvanic c e ll because i t  reveals a fu r th e r  l im i t  to the y ie ld  o f  

e le c tro a c tiv e  products o f the photoredox reaction .

7 .11 . Im plications fo r  a M etalloporphyrin Photogalvanic Cell

The metal!oporphyrins have many a ttr ib u te s  which make them su itab le  

compounds fo r  a photogalvanic c e l l .  They are cheap, easy to synthesize  

and have strong absorbances in  the v is ib le  region of the spectrum. Because 

they have long t r ip l e t  s ta te  life tim e s  and t r ip le t  quantum y ie ld s  ap

proaching unity  they re ad ily  undergo photoredox reactions. Compared to 

the th iaz ine  dyes, m etalloporphyrins have a high s o lu b il ity  in water and 

so a high concentration o f chromophore can be employed.

In the design o f a metal!oporphyrin photogalvanic c e ll there are 

however many problems to be overcome. The ZnTMPyP/Fe system requires  

an ac id ic  medium to prevent the p re c ip ita tio n  o f F e ( I I I )  as fe r r fc  

hyroxide. Dem etallation o f the porphyrin is catalysed by protons and 

thus even in the dark the m etalloporphyrin is  unstable in so lu tio n .

This tendency fo r porphyrins to deme t a l l  ate in ac id ic  solution re s tr ic ts  

the range of pH a t which a ce ll could operate.

Many m etalloporphyrins, p a r t ic u la r ly  anionic species, are prone to 

aggregation and th is  has important consequences fo r  a photogalvanic c e l l .  

The ra te  o f in te rn a l conversion from the f i r s t  excited  s in g le t s ta te  o f 

a dimer g rea tly  exceeds th a t o f the corresponding m onom er^). As was 

observed fo r the th iaz in e  photogalvanic c e l l ^ ^ ,  useful photochemistry 

can only be obtained from the monomer species and so a s ig n if ic a n t amount 

o f dim erisation severely reduces the e ffic ie n c y  o f the c e l l .

In th is  work we have shown th a t fo r the ZnTMPyP/Fe system there is  

an optimum concentration o f fe r r ic  required to maximise the y ie ld  o f 

porphyrin 7r-radical cation . For other photogalvanic systems, e .g . those
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using th iazines  and cRufbpy)^ , increasing the concentration o f quencher 

merely increases the y ie ld  o f e le c tro ac tive  species u n til a p lateau is  

reached. In the ZnTMPyP/Fe system, the concentration o f quencher must 

not be too la rg e , or the unfavourable Stern-Volmer quenching term w il l  

reduce the e ffic ie n c y  o f the c e l l .

In chapter one we stated th a t the ra te  constant fo r  the reverse

3 -1 -1e lectron  quenching reaction should be less than 6 x 10 M s . However,

fo r  the ZnTMPyP/Fe system we have found th a t the ra te  constant is

8 "1 ” 11 x 10 M s , which is  very high and much higher than fo r  those 

systems using th iaz in e  dyes. For the c e ll to operate e f f ic ie n t ly  there  

must be a s u ff ic ie n t  concentration o f F e ( I I )  present to pass current 

a t  the dark e lec tro de . This requirement places a severe lim ita t io n  on 

the power a va ilab le  from a m etalloporphyrin photogalvanic c e ll as the 

precious porphyrin ir-rad ical cation is  rap id ly  removed by reaction with  

F e ( I I ) ,  even a t comparatively low concentrations o f ferrous.

Harriman and W i l l ia m s ^ )  have constructed a ZnTMPyP/Fe photo- 

galvanic c e ll and have studied the e ffe c ts  o f various■parameters on 

the e ff ic ie n c y . A d e ta iled  analysis o f the photogalvanic c e ll has been 

performed by Albery and c o -w o rk e rs ^ ) . An important conclusion o f 

th e ir  work was th a t fo r  a successful c e l l ,  the rate  o f the back reaction  

between the products o f the photoredox reaction must be low. The very 

high rate  of th is  reaction in the ZnTMPyP/Fe system is  one o f the major 

reasons why Harriman and W illiams were fo ile d  in  th e ir  attem pt to bu ild  

an e f f ic ie n t  c e l l .  They found a power conversion e ffic ie n c y  o f about 

1 0 '3%.

In th e ir  paper, Harriman and W illiams report the v a ria tio n  of photo

voltage with fe r r ic  concentration. In view o f our work i t  would be 

in te re s tin g  to measure the e f fe c t  o f cFe( 111)□ on the photocurrent

2+
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ava ilab le  from a c e l l .  Our experiments p red ic t th a t in a th in - la y e r  

c e l l ,  the photocurrent w i l l  decrease as c F e ( I I I ) :  is  increased above 

about 10”^ M.
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