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ABSTRACT

This thesis considers optimal choice of output feedbacks F for linear
systems x(t) = Ax(t) + Bu(t) : x(0) = Xy y(t) = Cx(t), ult) = Fy(t)
using gradient methods based on Allwright's approach of dominant feedback.

'K(F)x...

Let the standard infinite-time quadratic cost be written as Xq 0

Then, a feedback F is said to dominate F if xéK(f)xoqi xéK(F)xO, for all

Xqr with the inequality holding strictly for at least one x i.e.

0’
if K(E) S_K(F) for the ordering S_for positive semidefinite matrices
defined by K (F) S'K(F), K(F) # K(F). The methods are extensions of
gradient methods for scalar optimization to the matrix-valued function
K(F). A sequence {Fj} is yielded such that K(F3+1) < K(Fj), for Fj+l
which makes the first-order approximation to AKj = K(Fj*l) - K(Fj),

denoted by dKj, negative definite or semi-definite. The former case

yields actually AKj < 0. The latter may generate AKj.i 0 or not, depending
on the contributions of the higher order terms of the Taylor expansion of
AKj. Here an implementable version of Allwriéht's algorithm i1s given,

and convergence of the sequence {Amax dKJ} to zero when {F]} is infinite

is proved. Three extensions of the algorithm are presented, which solve
the problem when constraints are imposed on the feedback matrix. The
feasible set defined by the constraint functions 1s characterized,
respectively, by (i) a convex compact set, with nonempty interior, defined
by continuous functions (ii) a linear variety (1i1i) a particular case of

(1) , where the functions are linear. Implementable versions for the

algorithm. are given. Convergence proofs are provided for the first two.

In connection with the above three types of results have been developed,
namely: (i) derivation of the r-th order derivatives of the solution of
the Lyapunov equation (A+BFC)'K(F) + K(F) (A + BFC) = -(Q + C'F'RFC)
(i1) a method for obtaining the solution of min{llx—y|[: x £ X,y €v}

where X is a convex set and Y is an orthant (iii) discussion of the



non-differentiable problem of optimizing the largest eigenvalue of the

Fréchet-differential of K(F).
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CHAPTER 1

INTRODUCTION




1. INTRODUCTION

Consider the linear, time-invariant, multivariable system with

output feedback, given by the equations:

(1) x(t) Ax(t) + Bu(t): x(0) = x

i

0
(2) y(t) = Cx(t)
(3) u(t) = Fy(t),
where:
x € R" is the state vector,
x. € R" is the initial state vector,

y € R 1is the output vector,

u € IR 1s the control vector,
nxn . , .
A E R 1s the plant matrix, which is assumed to be

asymptotically stable,

nxm
€

B R 1s the control matrix,
c € R™*™ is the output matrix,
mxy . .
F £ R 1s the feedback matrix, which asymptotically stabilizes

the closed loop system.

Suppose the system has the standard infinite-time quadratic performance

criterion

o0

4)  vi(x, w = [ {x(t)'gx(t) + u(t) 'Ru(t) }at
0

nxn

with both matrices Q € R and R € R° symmetric and positive definite.



Now write V in terms of F and x, using the closed loop dynamic

0
equation
x(t) = (A + BFC) x(t): x(0) = Xge
which has the solution
x(t) = expl(a + BFC)t]xO.
and, from (4),
0
Vixy, F) = J Xé{exp[(A + BFC)t]'(Q + C'F'RFC)exp[(A-*BFC)t]}xO dt
0

It is convenient to represent V as the gquadratic form

(5) V(xo, F) = X0 K(F)xO

where

(6) K(F) A [ expl(a+BFC)t]'(Q+C'F'RFC)expl (A + BFC) t]dt
0

In practice it 1s often desirable to find an optimal feedback F*

which minimizes V(x F). However V(xo, F) 1s also a function of the

0’
initial state, and 1t 1s not practical to choose a different F* for each
initial condition; therefore 1t 1s desirable to find a way to overcome
this problem, so that an F* 1s obtained which 1s "good" for a set of
initial conditions. Levine and Athans 1in their well-known paper [2.16]
eliminated the dependence of V on the initial state by averaging the

performance obtained when x. 1s a random variable uniformly distributed

0

on the surface of the n-dimensional unit sphere. Therefore the optimal

F* 1s that which minimizes the expected value of V(x F),

Ol

(7) V(P = Elvix., F)}

OI

tr[K(F)XO],

where X, = E{xoxé} and tr is the trace function. This identity 1is
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shown in (2.38).

Allwright and Mac 1in [6.1] proposed another approach to optimal

output feedback. It is based on the fact that

xo K(F)xy < || x(F) 1 I Xq

14

I&

where I‘ 1‘2 denotes the 2-norm (see (2.45)). Thus, the largest cost

value among all those obtained when x_ and F vary is at most I{K(F)l]’[xo

0

Therefore a reasonable cost to minimize becomes:

(8)  V(F)

[t

| x () H2

1}

Amax K(F),

where Amax is the largest eigenvalue. The second equality in (8) is

a consequence of K(F) being positive semidefinite (from (6)).

In the two approaches described, the cost function V(F) is a
scalar function of the matrix F. A method which has a cost which is a
matricial function of F has been proposed by Allwright in [2.3]. He

puts
(9)  V(F) = K(F)

Matricial-function optimization requires definition of the order
relationship to be used. An obvious choice is the usual ordering for
positive matrices. Then a matrix A is said to be greater than B i1f and

only if A-B is positive definite, 1.e.
A > B & A-B > 0.

Let us consider that, for two feedbacks Fl and FZ, K(Fl) > K(Fz).

Then,

' 1 ! 2
X K(F )xO > X K(F )xo, for all Xqr

1%



and therefore,

2
U(XO, F1) > V(x., F ), for all x

0 0°

s 2 : " " 1\ 2 ]
Thus, if K(F") is "smaller" than K(F") the cost at F will be smaller
than at Fl, for all initial conditions XO' The order relationship

< when used in the feedback conctext wiil be called "strict dominance".

2 . . 1
In the above example we say that F strictly dominates F .

Another choice is the "dominance" ordering, defined as follows.

For any two matrices A and B,

A > B <= f x'Ax > x'Bx, for all x

[ X'Ax > x'Bx, for some X.
. . 2
In particular, if K(F') > K(F '), then

V(xo, Fl) > V(xo, F2), for all X

Fl) > V(QO, Fz), for some X,..

V(x 0

Ol

. 2 . 1 .
Hence, 1f either F~ dominates or strictly dominates F°, the cost will be
reduced at least for some initial condition, and will never be increased
for any initial condition.

L4

Note that neither < nor < are total order relationships, since for
two matrices A and B it might be that neither A > B nor A < B (A > B
nor A < B) . Nevertheless an F* will be defined as a strict local

minimizer, with respect to <, for K(F) when, for all comparable F in a

neighbourhood of F*, with F # F¥,
K(F*) < K(F).

Or, using <, F*¥ 1s a strict local minimizer for K(F) when, for all

comparable F near F¥%,

K(F*) < K(F).
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In the former case F* is "strictly locally dominant" and in the latter
"locally dominant".

One might have a non-strict minimum in the sense that for all F near

F*, either K(F*) < K(F) or K(F*) = K(F). Similarly for <.

Allwright has proposed two iterative procedures in [2.3]. Both give

a sequencc of dominating feedbacks, i.e., they generate sequences {Fj]

such that

(100 k(&) ZK(FI) > ... ZK(Fj) > ...
or else

(1) k@D > kEH > ...> kEH > L.

The first procedure requires the assumption that the system is such
that rank[B] > dim ker[C]. The second is an algorithm of the gradient

type for minimizing K(F), and it was the basis for the development of this

thesis. Aassume that FJ

1s a nondominant feedback, i.e., there exist some
F satisfying K(F) < (<) K(Fj). An iteration consists of (i) determining
a normalized matrix Sj such that it minimizes (with respect to either

< or <) the first order approximation to K(FJ + Sj) - K(Fj)

{(ii) determining a scalar Ad such that x(FJ + AJSj) < () K(Fj).

J

S is called the search direction and AJ the step length or step size.

Step (i) is the search direction subproblem and step (1i) is the

line search (as varying the parameter A varies F along a line in the
direction SJ). There are two versions for the algorithm generating

sequences of the type (10) or (11).

Consider, given a normalized mxr matrix S, the Taylor expansion of

K(F + S) - K(F) about F,
(12) K(F+8) - K(F) = dK(F; S) + d2K(F; S, S)+ ...

4

where the right-hand side terms will be defined in Chapter 2. The
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first-order term dK(F; S) is minimized, in Allwright's sense, when its
largest eigenvalue is minimized. Suppose dK(F; S) < O. Then, in a
neighbourhood of F, K(F + AS) < K(F) since the higher-order terms are insigni-
ficant for small A. If dK(F; S) = 0, and so K is stationary along S,
then the higher order terms will define the behaviour of K along S. The
case dK(F; S) > 0 gives K(F + AS) > K(F) obviously. Finally, if

'

dK(F; S) is indefinite, for some set of XoS, X K(F + KS)XO > xOK(F)xO,

and for another set of xos, the inequality is reversed. Hence, if

Amax dK(F; S) < 0,Sis a descent direction for K, if Amax dK(F; S) = 0O,
there may be a reduction in K along S, and if Amax dK(F; S) > 0, K does not
decrease along S. Therefore the search direction subproblem reduces

to that of minimizing Amax K (F-; S). The minimizer s? is the "steepest"

descent direction.

The line search to choose A is done by minimizing appropriate scalar

functions of K(F’ + AsJ).

The subject of Chapter 2 is the study of this algorithm. An
implementable version, for which the line search can be implementea
computationally, is described. It is proved that, for the implementation,
if {Fj} is an infinite sequence such that dK(Fj; Sj) <0 then, as
j > =, Amax dK(Fj; Sj) -+ 0. The interpretation of this property is
that, 1f i1t is assumed that F* is some accumulation point of {Fj}
which stabilizes the system, then Amax dK(F*, S*) = 0 for the steepest
descent direction S*, and so F* is potentially a locally dominant
feedback. It is shown that K(Fj) converges to some K*:; 0. It is
also shown that, if Ej is a descent direction, not necessarily the

steepest, giving Amax dK(FJ; Ej) "sufficiently negative" then

Amax dK(FJ; S9)+ 0 as well.

The three following chapters deal with optimal constrained output

feedback. Allwright's algorithm has been adapted to accept the



constraints considered. The basic modification is in the determination
of the search direction, which now must be feasibkle, i.e. it is such
that all feedbacks along it, in the vicinity of the point, are feasible

(in that they belong to the constraint set).

In Chapter 3 the feasible set for F is a compact convex set, with
nonempty interior, defined by a finite number of continuous functions.
For the constrained algorithm, convergence of the sequence of Amaxs
is proved using the theory of closedness of algorithms. An implementation

is developed and convergence is proved for that in a direct way.

Chapter 4 first describes the geometric-based method developed by
Allwright for computing the unconstrained steepest descent direction.
Then it considers the constrained problem where the feasible set is a
linear variety of the space of feedbacks. This means considering
entries of F satisfying a set of linear equations, which has applications
to decentralized control. The method proposed is based on projecting
the problem onto the linear variety, which permits the problem to be
viewed as unconstrained, allowing Allwright's method for computing the

unconstrained search direction to be applied.

The third constrained problem is studied in Chapter 5 and is a
particular case of the first, where the constraint set is a rectangle.
This arises when the entries of F are desired to take values only in
certain intervals. This type of constraint might be useful to help
limit the instantaneous size of u and hence make the feedback
of more practical use. An implementable feasible direction algorithm
is developed; for it convergence is not guaranteed since the search
direction 1s defined now in a "non-closed" form, and thus the theory
of Chapter 3 does not apply. However computing it seems to be simpler
than computing a "closed" search direction. To help find search

directions in this case, a method is proposed for obtaining the minimum



distance between a convex set and an orthant.

Chapter 6 suggests twe methods for solving the search direction
subproblem when the feedback matrix is constrained to any given convex
set. The first requires solving a sequence of problems of the kind:
minimize tr f(S)l, for £ = 1,2,... . The limit of the sequence of
solutions, when £ - ©, is the solution to the subproblem. The second
is to minimize the (nondifferentiable) function dK(F; +) on the

variable S, using subgradient-type algorithms.
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CONTRIBUTIONS OF THE THESIS

(1) Proof of the differentiability of K(F) using the theory of
Kronecker products and the derivation of its r-th order derivatives:

Lemma (2.11).

(2) Evaluation cf an upper-bsnd for the norm of the r-th Frechet-
differential of K assuming that K(F) is bounded: Lemmas (2.45)

and (2.62).

(3)~ Determination of lower bound quadratic functions for g(x) =
Amin[K(F) - K(F + AS)] and $(\) = tr[x(;(K(F) - K(F + Xs))xo}
and their application to the line search for Allwright's algorithm:

Section 2.4.

(4) Proof of the convergence of the sequence {Amax dK(Fj; s} for

Allwright's algorithm : Theorem (2.96).

(5) Proof of the convergence of the sequence {Amax dK(FJ; SJ)} for the
conceptual constrained algorithm (first case) using the theory of

closedness of algorithms: Theorems (3.10), (3.17).

(6) A procedure for the constrained feedback problem (first case) with

an implementable line search: Theorem (3.23) and Section 3.4.

(7) Proof of the convergence of the sequence {Amax dK(F]; SJ)} for the

constrained algorithm (first case): Theorem (3.33).

(8) Proof that the minimization of the support function of a set over
a subspace can be equivalently restated as the minimization of
the support function of the set projected onto that subspace, and
application of it to the constrained feedback problem (second case):

Theorem (4.18).
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(10)

(11)

(12)

(13)

(14)
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Properties of the function X: y — ll@(y) - y{lz, where 0O (y):
y — arg min{|| x - v|| : x € P}, for an orthant P: Propositions

(5. 7) and (5.18), (5.22) and Theorem (5.39).

A procedure for obtaining the minimum distance between a general

convex set and an orthant: Algorithms (5.48), (5.64).

Proof of the equivalence of the two problems: minimizing the
distance between a convex set and an orthant (which are disjoint)
and minimizing the support function of the convex set over the orthant:

Theorem (5.38).

A necessary and sufficient condition for optimality of a locally

constrained dominant feedback (third case): Theorem (5.101).

An implementable procedure for obtaining the constrained dominant

feedback (third case): Algorithms (5.107), (5.113).

Determination of the expression for the gradient of tr(dK(F;S) + QI)

with respect to the variable S: Theorem (6.12).

Evaluation of the steepest descent direction at S of the function

Amax dK(F; S): Proposition (6.28).
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As has been said, Allwright's method for finding unconstrained
dominant output feedbacks uses the descént direction approach of
algorithms for nonlinear function optimization. At the iteration j,
a descent direction is selected along which the feedback is varied.

It is chosen to be the matrix s? which makes the first order approxi-

j L c . .
mation to K(FJ + 8) - K(F ) as '"neyative” as possible. A line search

J

rule is then applied to improve K along S-, giving F3+1. Then, provided

j+1

K(FJ + SJ) - K(FJ) is negative definite, the new point F will

.

dominate FJ. Thus, the algorithm constructs a sequence of dominating

output feedbacks. The main question that arises here is: does the
sequence FA converge to a locally dominant feedback?

2.1 THE FRECHET-DIFFERENTIAL OF K

The following lemma (11) proves that K(F) is a Fréchet-differentiable
function, of class C®. Let dK(F; S) be the first order change in K
caused by changing F to F+S. The matrix dK(F; S) is then called the
F-differential of K at F with increment S. The first order change in
dK(F; S), caused by changing F ta F+Diis the second order F-differential
of K at F with increments S and D, and is denoted by de(F; S, D). In
general, for the k-th F-differential of K at F, with k increments

1 2 . . 1 2
s , s ,..., Sk, the notation is dkK(F; sY, 87,..., Sk). The functions

k T, .
d K are all k-linear and symmetric in the arguments Sl,..., Sk.

(see Ref. [ 81]).

The first F-differential of K, dK(F; S) can be written in terms of

the matrices BK(F)/Bfij, as

(1) aK(F; S) =) aaK(F) g
o .. ij
1] 1]
m x
in which z denotes z Z . Thus, the second differential is

i3 i=1 j=1
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a%k(F; s, D) A d(dk(F; S); DI

. [ dAK (F; S) Jd

3 [ pkE) ]
=)y = S s L a
i km

and the k-th order differential is

1

x
- B NPT 9 K(F) Lo

i

(2) &k s
Ik 11wk t131
For the sake of simplicity the first partial derivatives will be

denoted by

_ OK(F)

ij

It must be emphasized that the subscripts on this symbol do not refer
to the entries in the matrix, but to the different matrices. The

second partial derivatives are denoted by

2
5 32K (F)
ridp = 2 KE)
f ..
k& 9% 09515

and, 1in general,

ij k
r 131(1?) - 0 K(F)
: of, . ... Of, .
i3 *kIk 191
We shall give the following definitions and state some propositions

that will be useful when proving lemma (11).

(4) DEFINITION. The "Kronecker Product", C = (crs), of two matrices
A, £xm, and B, pxq, is defined to be the fp xmg matrix C = A & B,

in which
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a, . i
s 1431 1292

with

s = q(j1 - 1) + j2
i, =1,..., % i, =1,..., p

j1 =1i,..., m; j2 =1,..., g .

For example,

C=A80@B = allB a12B e almB
ale a22B asz
L agB ag,B e ag B

(5) PROPOSITION. Let A(x) be a {xm differentiable, matrix-valued
function of a scalar x, and let B be a px g constant matrix. Define
the functions F(x) = A(x) ® B and G(x) = B @ A(x). Then F(x) and G(x)

are differentiable and F'(x) = A'(x) ® B and G'(x) = B @ A'(x).
PROOF. By definition,

f (x) =a, . (X)b,
1 1

rs 191 232
for il' jl’ 12, j2 indices satisfying the rules in (4). Then
F'(x) = (frs(x))
= (a; , (x)b, )
171 272
=A'(x) @ B
Since A'(x) = (ai . (x)). Similarly, G'(x) =B @ A'(x). v

191



- 21 -

(6) PROPOSITION. (Graham [11] page 63) . Let A(X), Lxm, and
B(X), mxn, be two differentiable, matrix-valued functions of a

matrix X. Then,

d(AB) _ OA OB
0x.. ox.. 2 tPu . ¢ v
1] 1] 1]

(7) DEFINITION. The "Kronecker Sum" of two square matrices A,

mxm, and B, nxn, is defined to be the mnx mn square matrix A @ B

given by the expression
A®B=2A0I +I Q@B
n m

. . . . . . nxn mx
in which In and Im are the identity matrices in R and R m’

respectively. v

(8) PROPOSITION. (Graham [l1]). Let {Ki} and (% } be the eigenvalues
and the corresponding eigenvectors for a mxm matrix A, and let

{uj} and {yj} be the eigenvalues and the corresponding eigenvectors
for a nxn matrix B. Then A @ B has eigenvalues {Ai + uj}, with

corresponding eigenvectors

{xi ® yj} = xi -Xa 7]
.

x :'ﬁ?

5|

PROOF. Using the basic properties of the K-product such as mixed

product and scalar multiplication rules, as defined by

M@ N)(P@ Q) = MP @ NQ

a(M@N) = (aM@N) = (M Q aN),
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we obtain the following equality

(A ®B)(xQY)

ARIHNx®y) + (I @B)(xQYy)
n m

(ax @ y) + (x & By)

]

AMx @ y) + ux @y

A+ wix@y.

The result follows. v

It is useful to introduce the basis matrices Eij' the components
of which vanish except for the one labelled i,j, which is unity. The

arbitrary matrix A = (aij) can then be expressed as the double sum
(9) A=) a, E.
i3 J 1]
in analogy with the expression for vectors.

Also we introduce the following vec notation for matrices.

(10) DEFINITION. Let X be a % xm matrix. Define vec X by the &m-vector

x which is the column elongation of X by columns, i.e.,
—_ - ]
vec X X (Xll"'"Xll’x12""’X22""'X1m""'x2m) . v
We may now state the main lemma of this section.

(11) LEMMA. Let A(F) = A + BFC and define

F=A{F € R™T, A(F) is asymptotically stable}l.

nxn

Then the function K(-:): F - R defined by
(12) K(F) = [ expl[A(F)'t][Q + C'F'RFC] expla(F)tldt
0

is of class C* . The partial F-derivative matrices, Fij(F),
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satisfy the Lyapunov equation,
(13) Fij(F)A(F)+A(F) Pij(F)= -C Eij[B K(F) + RFC] - [B'K(F) + RFC] EijC.

The matrices of partial F-derivatives of higher order also satisfy

different Lyapunov equations.

PROOF. In order to show that F is an open set, which is necessary when

talking about differentiability on F, consider the function

h: F — H

F s A, (F),

that associates to a matrix F € F, its i-th eigenvalue li(F), which
lies on the open left halfplane denoted by H. Then, since h is con-
L

tinuous, F must be open.

It is well known that the matrix K(F) defined by (12) is the

unique symmetric solution to the matrix equation
(14) X(F)A(F) + A(F)'K(F) = -Q - C'F'RFC.

Refer for example to [5], page 175 . This equation can be equivalently
represented by using the Kronecker product between appropriate matrices.

In fact, let

D(F) = C'F'RFC + Q
d(F) = vec D(F)
k(F) = vec K(F),

and note that
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-

(In @ A(F) ") k(F)

A(F) "' kZ(F)

O AE) ' || K(E)

vec (A(F)'K(F))

1]

' I -1 - 1
(A(F)' ® In)k(F) = a“(F)Irl anl(F)In k
2

a12(F)In anz(F)In k.

n

_aln(F)In ann(F)In_ _k

[

1]

vec (K(F)A(F)).
(15) [((A(F)' @ In) + C51® A(F)"')1k(F) = -d4(F),
which, by using defimtion (7), can be written as
(16) (A(F)' @ A(F) "V k(F) = -d(F).

However, F € F implies that A(F) is nonsingular.

TA(F) ! C) “wlm T = Mam ki ] =

) UL U VPP SUL S

[kl(F)al(F),~-'rk (Fal(F),...
n

A(F) 'K (F)

CA(F) 'KT(F) |

(F) | =

(F)

(F) |

LIV SR IS

,kl(F)an(F),...,k (Fya” (7)1
n

Therefore, according

to Proposition (8), the eigenvalues of the sum P(F) = A(F)' & A(F)'

are {ZAi}, in which Ai are the eigenvalues of A(F)' (= eigenvalues of

A(F)), thereby making P(F) nonsingular. Thus, the inverse P—l(F) exists,

and
(17) k(F) = -P (M a(F),

in which
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(18) P(F) = (A(F)' @I ) + (I_ @ A(F)")
n n

Note however that A(F)' is a differentiable function of F. Thus

proposition (5) applies and the partial derivatives of P(F) are

9R(F) _ [ A (F) "

OA (F) !
(19) af.' L af.. ]
ij ij

@I, } * [ @ afij

The partial derivatives of the inverse, P ~(F), can be proved to be

-1
P "(F) _ -1 OP(F) _-1
(20) 3. -P T F) SE P T (F).
i) i3

In fact, Proposition (6) applied to

P YR P(F) =1

n2
gives
-1
oP ~ (F) -1 SP(F) _
SE. P(F) + P ~(F) SE = 0,

ij ij
from which (20) follows. From this, and the fact that 4d(F) is dif-

ferentiable, (17) can be differentiated with respect to fij' yielding

= -1 -
(21) 3t =P " (F) 5 F (F)a(r) SE

ok (F) -1 3P (F) 94 (F) "l
1j - ij ij -

The expression for the partial derivatives of P(F) in (19) is easily
seen to be continuous for all fij' Further, P (F) 1s continuous. This
is guaranteed by the Banach inverse theorem (it says that, if A is a
continuous linear operator and A—1 exists then A_1 is continuous -

see (17]), and the fact that P(F) is linear (it is a linear function

of A(F) = A + BFC). Hence, the vectors Sk(F)/Sfij in (21) are con-

tinuous in fij' It follows from this that k(F), and therefore K(F), is a

continuously differentiable function of F (refer to [8], page 167).

In order to determine the higher derivatives, it must be noted first
that d(F) and A(F), and therefore P(F), are infinitely differentiable

{(all the derivatives, from the second onwards, vanish). Differentiating
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(18) r times gives

r Y r
(R _ 3TA(m) ! AR
(22) J5——=75... % 3

where the dots have an obvious meaning. The r-th derivative of
P_l(F), SrP—l(F)/B..., then is derived from (20) and (22). 1In fact,
if we ._xpand arP—l(F)/B... using (20), we sez that s ~+271 -eed

the derivatives of P(F) of order up to r, which comes from (22), plus
the derivatives of P_l(F) of order up to r-1, which comes from (20)
itself used recursively. Hence, since it is clear that, for all r,

SrP_l(F)/S... is continuous, k(F) (and K(F)) is of class c”.

Equally (13) can be shown to hold as follows. Multiplying (21) by

P(F) gives
ok (F) _ _ OP(F) _ 94(F)
(23) P(F) 5E 3F k(F) Y
ij 1] 1]

Then, substituting from (19) and (20), (23) becomes

' vy Ok(F) _ . JA(F) A (F) '
(24) [A(F) ®In)+(In®A(F) )]———af__ = -[( SF ® In) +(In®3—f.—,_)]k(F)
ij ij ij
_3a(R)
Jf, .
ij

Now, it is obvious that 8k(F)/8fij (resp. 3d(F)/8fij) is the
column elongation of BK(F)/Bfij (nesp. 8D(F)/8fij). Then, using the
same reasoning as when we showed (14) was equivalent to (15), (24)

becomes, in matrix notation,

oK (F) , OK(F) _
5E A(F) + A(F) SE -K(F)
ij ij

JA(F) _Ja(m)'
of, . Jf,.
1] ij

dD(F)

I
ij

(25) K(F)

Note however that

_ _OF
Eis 7 3¢

i]

and so,
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JA(F) _
(26) T BEijC,
1]
and
(27) 9D (F) = C'E..'RFC + C'F'RE, .C.
afij ij ij

Finally equation (13) is obtained by substituting (26) and (27) into
(25), and by using the notation introduced in (2) for the partial

derivatives of K.

For the partial derivatives of higher order, we differentiate (25)
with respect to the other entries of F, which yields Lyapunov equations

of the type

+J 3y 1y

28) T lmaE +am T2 lE) =1 L (m).

3, Wi

i3
The expressions for the matrices T . 1(F) will be developed in the proof

of lemma (45) in Section 3. 1kjk v

Allwright proved the differentiability of K in [2] using a different
approach. He used a perturbation method, which involved evaluating the
Lyapunov equation due to a small change in the feedback. The Lyapunov
method was used since 1t enabled estimates for the error between K(F + A)

and its tangent at F to be found. In fact, an estimate for € such that,
|| K(F + 8) - x(F) - ak(F; &) ]| < €] bl

for all A such that F + A € F and || A|| < &(¢), for some §(g), was

found. 1In the above expression

@

(29) dAK(F; A) = [ explA(F) 'tlH exp[A(F)tldt,
0

where

(30) H = C'A'[B'K(F) + RFC] + [B'K(F) + RFC]'AC,



- 28 -

which will be shown to be true straightforwardly in Section 3.

An alternative, simpler proof has been obtained here by using
the theory of the Kronecker product between matrices. By transforming
the (matricial) Lyapunov equation in K into a vector equation of the type
k = —P_ld, in which P_1 and d are continuouslv differentiable functions,
the differential of K immediately followed. This approach has been
suggested by Brockett [ 6] and Barnett [ 4] in order to solve Lyapunov

equations.

2.2 DESCRIPTION OF THE METHOD

The purpose of this section is to describe the two procedures
due to Allwright [ 3] for the dominant feedback problem, both of which
are for the case when there are no constraints on F involved, except
that F € F. The distinction between them is basically that in the first the
dominance is strict, whereas in the second this is not guaranteed. 1In
addition, the selectiog of the step length is done differently, although

this is not the basic difference between them.

{31) DOMINANT FEEDBACK ALGORITHM [3 ]

1. Set j =20

Choose an intial feedback FO € F.

2. Set

W(Fj) = min{Amax dK(Fj; Ssy: s € S}

3. If W(FJ) > 0 terminate; else continue.

J

4. Choose the search direction S~ such that

3

s’ € arg min{Amax dK(Fj; s): s € S}
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5. Choose the step length A7 such that

Aj € arg max{lmin[K(Fj) - K(Fj + Asj)]z A > 0}.

6. Set FJ+1 = + As?, j = j+1 and go to step 1. v

Here Amax[D] (Amin[D]) denotes the maximal (minimal) eigenvalue
of the symmetric matrix D, arg min{d(x): x € X} (arg max) denotes the
set of all minimizers (maximizers) by the function ¢ on the set X,

and S denotes the unit Frobenius-sphere iniRmxr, i.e.
S={ser™.Vs2 =1} ={s€ % ||s|l_=1}
i3 1] F

(32) DOMINANT FEEDBACK ALGORITHM [ 3 ]

1. Set j = 0.
0

Choose F~ € F

2. Set

ﬂ(FJ) = min{Amax &K (FJ; s): s € S}.
3. If ﬂ(FJ) > 0 terminate; else continue.

4. Choose the search direction SJ such that

s € arg min{Amax dK(Fj; S): s £ S}.

5. Choose the step length A7J such that

A € arg max{tr[ (K (FJ) -k (FI+As7) )X :)\min[K(Fj)—K(F]+)\Sj)];0, A>0}.

6. If tr[(K(FJ)-—K(FJ + A]SJ))XO] = 0 terminate; else continue.
7. set F' 0 =F) + A\IsT, 5 = j+1 and go to 2. v

Here XO = E{xoxo'} and tr[-] denotes the trace.

In Algorithm (31) the search direction s? is selected so that

the first order approximation to K(FJ + Sj) - K(FJ), dK(F]: SJ), is
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negative definite. 1In fact, since it is chosen so that W(FJ) =
Amax dk(F7; s?) is negative, then dK(FJ; sy < 0. 1In algorithm

(32), sd is chosen so as to make dK(FJ; SJ) negative semi-definite.

We must now specialize the definition of a descent direction

fof the problem of minimizing (9) :

(33) DEFINITION A direction S # 0 from F will be called a descent

direction at F for K if S is such that K(F + AS) < K(F)

for all A € (O, i), for some A > 0. A normalized descent direction S
is such that HsHF = 1. b v

The next lemma proves that sj is a (normalized) descent direction,
yvielding a strict reduction in the cost K along it, when dK(Fj; Sj) < 0.
It also shows that Fj is locally dominant (there are no descent
directions emanating from Fj) when dK(Fj; Sj)‘i 0, i.e., when
dK(Fj; Sj) is positive definite or it is indefinite. No information is
given when dK(Fj; Sj):; 0 with Amax dK(Fj; Sj) = 0, and then there may
be descent directions at Fj or not, depending on the contributions

of the higher order terms.

(34) LEMMA [3]. Suppose T(F) = min{Amax &K(F; S): S € S} and

S € arg T(F). Then, for F € F,

(a) If m(F) < 0, there exists a real A > 0 such that

K(F + AS) < K(F), for all A € (0, A).

(b) If mw(F) > 0, there exists a real & > O such that K(F') i_K(F),

for every F' satisfying I[F -F| <a. v
Therefore we may establish the following definitions:

(35) DEFINITION S is said to be a first-order descent direction

if and only if Amax dK(F; S) is negative. v
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(36) DEFINITION F is said to be first-order lccally dominant

feedback if and ecnly if m(F) > O, i.e. if and only if there are no

first-order descent directions at F. v

The structure of the algorithms is based on the information given
by lemma (34). In fact, if ﬂ(Fj) < 0, algorithm (31) proceeds
iteratively in orader to finua a reedback FjH that strictly dominates
Fj (K(Fj+1) < K(Fj)), which is guaranteed to exist by (34a). It must
be noted that the step length Aj found by maximizing Xmin[K(Fj)—K(Fj+ij)]
will provide us with such a dominating Fj+1 = Fj + stj. It terminates

when the first-order locally-dominant feedback (ﬂ(Fj) > 0) is discovered,

relying partly on (34b), by deciding to stop when W(FJ) > 0.

Algorithm (32) goes further, iterating when W(Fj) = 0, if this is
possible. When ﬂ(Fj) = 0, Sj is either descent (not necessarily yieldiné
a strictly dominating feedback) or else it is such that K(Fj+1) = K(Fj).
In both cases, any other direction S is non-descent,

since for them 1t will be the case that Amax dK(FJ; S) > 0. In the former
case an iteration is carried out whereas in the latter termination is éet,
since we will then have a locally dominant Fj. ' Theorem (37) shows

I+l

that, due to the way A] has been defined, F dominates (not

necessarily, strictly) FJ, by giving the largest possible decrease

1in the expected value of the cost V(xo, F) = xO'K(F)xO along Sj:
(37) THEOREM [3]. If algorithm (32) generates a sequence FO,...,Fq ,

then

K(F" ) < ... < K(F)

PROOF. For any matrix E, the expected value of x'Ex, when x is
randomly distributed with 2ero mean and covariance X, is equal to the

trace of EX. 1Indeed, using properties of the trace function,
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(38) E{x'Ex}

1

E{trix'Ex]}

E{tr(Exx']}

]

tr(EX].
Therefore,

(39) i) ~x@EIThx ) = E(x," (K(F) -K(Fj+1)>xo}.

But since FJ+1 is chosen to give strictly positive tr[(K(Fj)—K(F]+1))XO],

there must be at least one x. for which xo'(K(FJ) - K(FJ+1)) > 0.

0

Now, since Xmin[K(FJ) - K(FJ+1)] is kept non-negative, K(Fj) j+1

K(F

%0
> ).

This shows that K(FJ).Z K(FJ+1). v

When ﬂ(FJ) = 0, the situation of Sj not being a descent direction
is detected by checking whether tr[ (K(F)) - K(FJ + KJSJ))XO] =0
holds. The reason for this is that AJ maximizes the trace. Therefore,

for all X > O such that Xmin[K(Fj) - K(Fj + Asj)]:; 0 , we must have
(1) erlEE) - k@) + asIxg) = Blxyt k) -xEI 4 As))x} < 0.

On the other hand the requirement Amin(K(F7) - K(F? + As?)] > 0

implies that xo'(K(Fj) - K(FJ + )\Sj))xO 2 0 for all Xq which gives
(11) E{xo'(K(Fj) - K(F) + XSj))xo}'; 0.
Then, combining (1) and (1i),

E{xo'(K(Fj) - k(P + Asj))xo} = 0.

However xo'(K(FJ) - K(FJ + ASJ))XO is a continuous function of Xq-

Therefore, by the above,

xo'(K(Fj) - K(FI + Asj))xo -0
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for all Xqr which means that K(Fj) = K(F:| + ij). In summary,

if the condition tr[(K(Fj) - K(E‘j + ljsj))XO] = 0 holds then,

for all A > 0 such that Amin(K(F9) - K(F) + AS))] > O,

k() = k(e? + AsT) (i.e., A = 0 is the only A 3 O such that Aminl
K(Fj)—K(Fj+KSj)]go). Thus, Algorithm (32) terminates with a first-

order locally-dominant feadback too (ﬂ(FJ) 2 0.

. . 0
It is worthwhile noting that the initial matrix F may result in

no iteration at all for either algorithm.

The rest of this section is concerned with a geometrical analysis

of the step length procedure (Step 5).

Let
E(A) = K(FJ) - K(F) + AsY)
g(A) = Amin(E(A}]
A

h' (x) = x'E(A)x
Then, by definition of the smallest eigenvalue,
. A
g(\) = min{h"(x): x € Bn}

. . . . n
where Bn is the Euclidean unit sphere in R . Therefore we can

formulate the step length subproblem, in (31) and (32) respectively,

as

(40) max{g(\): A > 0}
and

(41) max{E{hA(xo)}: g(d) > 0, A ;:O},
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where fact (39) was taken into account to write (41). For the sake
2
of geometrical interpretation, consider Xq € B2 C IR . Then linearize

32 into a segment of line L. 1In this way the quadratic hx(xo) (in
the variable xo) can be represented as a function on L € R. Three

examples are depicted in Figure (42). Obviously hx(xo) is symmetric
about Xq = 0, and its shape depends on the parameter A. Its maximum

and minimum values are the largest and smallest eigenvalue, respectively,

of E(A).

Consider algorithm (31) with step length subproblem (40). Because
. 3
g(kj) > 0, the quadratic hA (xo) is positive for all Xys as shown in
Figure (42b). For Algorithm (32), subproblem (41) requires that the

J
expected value of hk (xo) be made as large as possible, while this

curve lies on or above the real axis.

Another criterion could be chosen to determine A°. Optimizing
the largest eigenvalue of E(A) subject to g(X)<; 0 is possible, but
it may happen that it yields big cost reduction for only a few values

of x and little or no reduction for most values, which would be

OI

undesirable, as for example, in figure (42c).

2.3 AN UPPER BOUND FOR THE F-DIFFERENTIAL OF K

In this section we shall prove that, for all matrices F such that
K(F) ; K(FO), for some FO € F, then the norm of the Fréchet-differential
of K (of any order) is bounded, and we shall determine such a bound.

As a consequence, if {Fj} is a sequence of feedback matrices generated
by either of the algorithms described in the previous section, and so
K(Fj) < K(FO), for all j and initial FO € F, that result will hold

for all Fj. This result will be needed in the last section of this

chapter.



Figure 42.
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In order to do that, the continuity of the function T must be

proved. It is facilitated by the

(43) THEOREM. [20], Thm. B3.20]. Let U: R x JRq —» R be a continuous

q

function and let H be a compact subset of R™. Then the functions
8: ]RP — R and ¢: IRq — R defined by

8(z) = min{Y(z, h): h € H},
¢(z) = max{P(z, h): h € H}
are also continuous. v

(44) LEMMA. The function

m F— R

F — min{\max ax(F; S); s € S}
is continuous.

PROOF. Lemma (11) says that K is continuously differentiable on

F. The first F-differential dK(F; S): F x S — R is therefore
continuous in the variable F. It is also continuous in the variable

S because it is linear in S (see [ 8], page 167). The continuity of

it comes out after applying Theorem (43) twice. 1Indeed, first consider

the function defined on R” x F x S by
X(z, F, S8) = z' dAK(F; S)z

and maximize it in z over Bn' The theorem then says that
Amax dK(F; S) = max{x(z, F, S): z € Bn}

is continuous in F and S. Then since S is compact, the result follows
from a second application of the theorem identifying ¥ with

Amax dK(F; S). v
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The main result of this

(45) LEMMA. Let FO € F be
Algorithm (31) or Algorithm

a sequence {FQ}. Then, for

section can now be stated.

the initial output feedback matrix for
(32) , and suppose that it is generated

all numbers k > 1, and for any matrices

mxr
Sl,...,Sk€]R '

Il &Y s

preeeSp 8 @l o sl

. . L e 0
in which Bk(FO) is a finite positive number that depends on F and

the parameters of the system, and || - || denotes the 2-norm.

NOTE. For a symmetric nxn matrix A, the 2-norm ]'A[]z is defined
by

llA[[z = max{llellzz |{x[|2= 1}==max{lki|: i=1,...,n},
where ||‘||2 denotes the Euclidean norm for vectors.
PROOF. Let F = F2 for some %. The first step is to establish the

ilj

expressions for the matrices T in the Lyapunov equations (28).

173
k
Basically this is accomplished by differentiating equation (14) up

to k times and rearranging the terms of the equation obtained.

Differentiating it once gives equation (13), and so we have already

Ti 3 (k = 1), which is given by the right-hand side of (13). It can
1-1
be rearranged as:
(46) Ti (F) =KiF)(BEi . c)+(BEi . c)'K(F)+(RFc)'Ei . C+C'Ei (RFC) .
191 171 171 131 171
The second differentiation of the Lyapunov equation (k=2), with respect
to the entry f1232 (possably i, =1, 3y = 32) gives
iljl
47y T, (F) = Fi (F)(BE, ., C) + (BE, |, c)'I‘i . (F) +
292 171 +292 +232 131
Pi . (F)(BEi . C)+(BEi . C)'Fi (F)+(REi C)'E, . +
292 - 191 171 292 292ty
C'Ei . (RE, . C)
171 232
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We remark that the matrices E are constant. Another differentiation

gives the case k = 3, i.e.,

i3 i3 i1j1
a8y .0t =T . e eE. C1+(BE; . C)'T " (F) +
) 1235 1333 3793 292
133 i3 i
1
e e, o+ee, 0T e .
1335 272 292 373
ij i3]
FiZ.Z(F)(BE. _ C)+(BE; | c>'ri2,2(F>.
393 1134 191 3793

The expression for the general case k > 3 can then be induced, and

hence
i3 i i3
49) T 2l =1 Ve eE, | C)+(BE, . O'T L ey o«
o s Ik kI s
B k-19%~1 k-17k-1
i3 i3
T % 2 (F)(BEi . C) +(BE, . C)'T % 1(F) +
e k-17k-1 Tk-17%-1 nay
k-29k-2 k-27k-2
TkIx TkIk
+
i3 i,3
2
r - 2(F) (BEi . C)+(BEi .ol 2 2(F).
L 171 191 L
kK Ik

Now it 1s possible to obtain an analytical formula for the partial
derivative matrices ['. Taking into account that the above matrices
T are symmetric, we can say that the unique symmetric solution to the
Lyapunov equation (28) is
113y * 113

- (F) = [ exp[A(F)'¢] T . (F)expla(F) t]dt.
S S

(50) T

(see [ 5] page 175).

We must digress at this point and prove (29)-(30). The total
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first-order differential dK(F; S) can be written, using (1), (46) and

(50), as
AK(F; S) = [ exp{A(F)'t] ) s, T,.(F) exp[a(F)tldt
0 iy Y
o]
= [ expla(F) 't]{K(F) (B) s,. E..C) + (B) s.. E..C}'K(F) +
0 ij Tij ij Tij

[ ) Y
(RFC) ') S;4 Bj4C ¥ c) Si3 Eif(RFC)} exp[A(F) t]dt.
Since z sij Eij = S8, this proves what we wanted for S = A.

The next step is to obtain upper bounds for the norm of partial
derivatives matrices I', using (46), (47), (49) and (50), and therefore

for the norm of the total derivatives, using (2).

Upper bounds on lPT|[are obtained taking the norms in equalities

(46), (47) and (49). Therefore, since ]IEin =1,
sn i @ g2l el [Tx@ ]+ 2l cll Irl ] rell
191
113, ‘ 2
s2) |l el <20l el I, o @Il + [, . @ (}+2llcll”]r]
292 171 292
and for k > 3,
1,3 1.5 i3
s (it callsll el it @« @ ...
3y e Le2lx2
i3
i3
e T %m0}
i3

Taking norms in equation (50) gives

i3
(54) || T :

.

1 1,3
@l <l e Tm
Kk Lk

in which
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o

(55) J(F) = [ | expla(® ¢ ]2 at.
0

By observing the norm inequalities (51) - (54), it is immediate that,

if we find upper bounds for J(F), || K(F)|| and || Fc|| , then bounds for
113y
ir

iﬁj

(F)l|, for all k, will be obtained using recursively those inequalities.

That || K(F) || §:|‘K(Fo)ll is immediate from the dominance property

of the algorithms.

Since C'F'RFC > 0, equation (14) gives

[o0]

K(F) exp[A(F) 't] [Q + C'F'RFC] exp[A(F)t]ldt

i
O

[oo)

> | expl[A(F)'t]lQ expl[A(F)tldt,

O

and therefore

|l x@ || >Omin QJ(F),
which, since Q > 0, gives the bound
(56) J(F), < Omin ) 1| k(D || .

A bound for []FCH may be obtained by using the following result due to

Allwright [1]: for the system x = (A + BF)x, if F is such that
lr@® || < |l K(FO)[I, then :
0 2 0.2
Iall el ( sll® x| 2llall xS )
|[Fl|i + 3 + ,
e T o 0

in which p is such that R > pI > 0. For the output feedback problem

x(A + BFCx), the above inequality becomes

Il =] [ el? <& ?  2)al 1 xe® ) )

(57 |l Fc] < + 5 + AF,
P P e

with o = Amin R.
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Having established the bounds for J(F), || k(F)|| ana ||Fc||, we
In the lemma that

have proved that bounds for all norms lITII exist.
For the moment we

follows we will develop the expressions for them.

only know that

i.J
Rt Il < Yk(f‘o),

(58) || T
and k 2_1.

k-k
F) for all i i l ‘l
’ 11---111 ll°--]

for some numbers Yk(
result, observe that ([22], page 183):

Finally to obtain the last
<rmax ] Is | axlsl,

(59) ) Is..l <
iy I j i

and

©0) |Isll, ;r%llsliz.
Hence, taking the norms in (2), it follows from (2) and (58) - (60)
that
61) || a¥k(F; s soll <y &) ¥ st L] R
R A '3 = 'k i g, 't e, i3
i34 1-1 i3y k-k
0, 3k/2
<y 2 s sl
B 0
_Bk(F)“S].H"‘ llSkHr
0y 3k/2 and Yk(FO) are given by (63) - (66).

0
where Bk(F ) = Yk(F )r

(62) LEMMA. The numbers Yk(FO), k > 1, for (58), are given

recursively by the expressions
0 . -1 0
2llcll [l x@E (| Omin @7 ([l [[xED [ + [[r] F)

63) v, (F")
k-2 o
J (aYI(F)+b),k>1

o

(64) Yk(FO) = }—{2—' [

in which
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1}

65 a = 4| x@&) ] |l 8] || cl| Omin )7t

66) b = 2|l kED]| || cll? || r||(Amin o 72,

and Fc is given in (57).
PROOF. It follows immediately from (51), (54), (56) and (57) that

Ir, . @<l (™ || T

191 1

191

A

el sl el llx@ |l + 2l cll I ]l [ £cl] )T )

1

in

il sl el HxE |+ 2llcl &l ey [[xE) || Gming) ™

proving (63). Similarly, combining inequalities (52), (54), (56) and
(58), we have

i3 i3
Tiel< e e || T
1232 = 1dp

T
2

A

clizl ellin, ; @1 «lr, 5 @ 2licl® = ke |
171 172 )

{Amin Q)-1

allsll el 1| @) | Omno ™y, w2l [ r]] Ik ||
(Amin @) !

/s

aYl(FO) + Db
in which a and b are defined by (65) and (66). Hence,

(67) YZ(FO) = aYl(FO) + b

In the same way, the combination of (53), (54), (56) and (67) gives

i.j
1-1 3a 0
i2j2(F)H < S (ay (F) +b)

1393

It

and we therefore may write that
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0, _ §l...i . 0
Y3(F) = 3 5 (ayl(F) + b).

By observing the next cases (k > 3), we can establish an induction on

k. Then, for all k > 2,

k-2
k! a 0
(F)H;—-z—[:;z-] (ay, (F) + b),
which proves (64). v

2.4 IMPLEMENTABLE VERSION OF THE ALGORITHM

Algorithms (31) and (32) are both non-implementable since to
evaluate the search direction and step length exactly is inadmissible in
practice, as such optimization problems cannot be solved normally in a
finite number of operations. Throughout this chapter we shall assume that
the search direction can be evaluated and shall concentrate on determining
a computable approximation for the step length. Recall that the step
lengths Xj for the two algorithms are defined by the respective solutions

of the optimization problems:

(40) max{g(\): A > 0} and

(41a) max{dp(X): g(}\)

v

0, K<; 0} where
g(\) = Amin(K(FJ) - K(F) + As))7,

6 () =E tx(x) (K(F7) - K(FI + )\Sj))xO].

Here will be suggested implementable procedures to replace con-
ceptual rules (40) and (4la), based on Armijo's method for the case
when ﬂ(Fj) < 0. The property to be proved in Section 5 assumes that
such implementations are used. An implementation for optimization problem
(40) will generate a Kj such that g(lj) > 0, and for problem (4la),
¢(kj) > 0. By implementing the step length procedure we do not spoil
the dominance property of either algorithm. First, g(%j) > 0 implies

that K(FJ+1) < K(FJ) directly. Also, as shown in Theorem (37),
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5% > 0 and g > 0 yiela x(®*h < k().

Among a number of implementable algorithms for scalar optimization,
we favour Armijo's method because it is suitable for non-convex functions,
and on account of its simplicity. In Armijo's method, at each iteration,
one gradient evaluation and several function evaluations are needed. 1In

the method we will present, gradient information is not needed.

When constraints are not considered, Armijo's method is (see
Figure (68a) and refer to [20] pp 36, 169): select & and B in
(0, 1) and p > 0 (recommended values are & = 0.5, B € (0.5, 0.8) andp=1);

~

then A is chosen to be qu, for the smallest integer ¢ > 0 such that
£(p8Y) > agr (0)pBY,
i.e. such that the function f(A) lies above or on the line y = af'(0)A.
Here we alter Armijo's method by:

(1) estimating (from below) the gradient of the unidimensional objective
function (g or ¢) at the origin, by determining a lower bound quadratic
form for it in either case, and using the gradient of the quadratic fof

which a formula 1s available.

(ii) including the constraint in situation (4la), by defining the
initial step size p to be such that g is non-negative for all k:i p.
If the optimal step length is A = qu for some q > 0, since qu < p,

then g(kj)_; 0.

In order to do this, consider iteration j. For the sake of
simplicity in what follows F, S, Y and T denote FJ, Sj, Yk(FO)

and T(FJ), respectively.

Problem (40) is considered first. A quadratic approximation for
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f'(0) X\ (TANGENT)

Figure 68.
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9 Qs will be proved to exist, so that g(A) > Ql()\) for small A.
One part of the proof concerns showing that, given § € (O, 1/3ar3/2 ),
for all X in (0, §),

3.

rY; 1

2 1- 3ar3/26 J

69) |l a’k(F +2s; s, 8| <

and, for Z(A) = K(F + AS) - K(F) - dK(F; AS),

2.

3 )
£y [

70) [z < 42 L+ 13/2 s

i - 3ar 8 j

The Taylor expansion of d2K(F + AS; S, S), as a function of its

first argument, gives

de(F+)\S;S,S) =d2K(F;S,S) +)\d3K(F;S,S,S) +% A2d4K(F;s,s,s,S) + o
Taking norms, we obtain:

I a%K (F+AS; S, S) Il <l a%k (F;s,8) 1| +x]] a’k(r;s,s,s) I

1 2 4
+ 5 Al &k(ris,s,8,8 ]+ ..

< r3Y2H st+ }\rg/zyBH SH3 + 51'— >\2r12/2y4}| SH4+

(using lemma (45) and (61))

2
3 9/2 3! a 1 ,2.12/2 4! | a
STy, tAr —z--l—z-]yz+ﬁ—)\r / —2—[5}\(2«1—...

(using lemma (62) and || s|| < || SHF = 1)

3
rry (. 12

Y 37231 {a 3/2.2 41 [ a )4.2

=—— {2+ 11(2J>‘+(r )?{EJA’L"'
r3Y o

£ 522+ ] Gar/Ph

i=1

(since (i+2)!/i! < 6 for all i > 1)
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3
r

A e .
(71) 2 {1+ 7 a0
4

2
i
Now, if we assume that A < § for some number § <1/3ar3/2, the above

sum has a limit, and then

3
r Y, 1

2
| a“k(F + As; s, 9| < 373 .

1 - 3ar A

g~ oo

Hence inequality (69) follows. Now, using the Taylor formula Z:r the

second-order expansion of K, we have

K(F + AS) = K(F) + AK(F; AS) + Z(\)

where
1
z(\) = (1—t)d2K(F-+tAs; AS, As)dt.
0

Therefore, using (69),

2 ! 2
A -ty || @“k(F + tAs; s, 8) || at

(720 Jlzv | <
0
3, ¢ \

1 r'y

;Azf(l—udt 22 1+———1—37—2—-
0 1 3ar §
3

oy

R ~—7 lxz

B 1 - 3ar § J

and (70) is proved.
Before going further we need the next fact:

(73) FACT ([22) page 316). For two symmetric matrices A and B, if
{ai} are the eigenvalues of A and {Bi} are the eigenvalues of the

sum A+B, then for all i,

B, Lo, + I[B(I2 v

It follows from all the above considerations that, for all

A€ (0, O,
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g(A\) = Amin[K(F) - K(F + AS)]
= Amin[-dK(F; AS) - Z(\)]
> Amin[-aK(F; As)) - || -z || @y (73)
= -Amax dK(F; AS) - || z(\) ||
= -(Amax dK(F; S))A - || 20 ||
(74) A -mx = |z ]
r3Y2 1 2
> -TA - 2 1 +m A (by (70))
Hence, for A € (0, &)
(75)  g(A) 2 @, (A)
for r3Y2 1 ] ,
(76) Q@ (M) = -mh - — 1+1——-:;3/T<5 JH\

%.e., for small A, the function g is lower bounded by the quadratic Ql'

A consequence of this fact is that the slope of g at the origin is higher
than that of Ql’ thereby an Armijo line for Ql’ i.e. any linear variety
defined by v = an'(O)A, with o < 1, is an Armijo line for g as well,

as we can see in Figure (68b). Here we shall use the Armijo line that
intercepts the quadratic at its maximum point. The equation that defines

it is:

Hence, the Armijo-based algorithm for determining the solution to problem

(40) is:

(77) STEP LENGTH SUBALGORITHM FOR ALGORITHM (31).

1. Choose B € (0.5, 0.8);
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Set g = 0.
2. set :» = gY.
3. Compute
B0 =g + 3 A

1}

4. If B8(A) < 0 set g = g+1 and go to 2; else continue.

5. Set A = A and stop. v

Problem (4la) is slightly more complicated since we must guarantee ~
that Xj satisfies the constraint. First we will modify the statement
of the problem, to specialize it to the situation when W(Fj) < 0.

Note that this assumption guarantees that there exists a strictly
dominati&g feedback along sj, so there exists a A such that g(A) > 0.

This permits stating (4la) equivalently as
(41b) max{d(X): g(A) > 0, X > O}.

Then, the initial step size p for the Armijo's based subprocedure will

089,

be chosen so that g(A) > 0 for all A < p. So, by setting A7

we will make sure that g(KJ) >0 since, for any q > O, qu_; D.
We shall prove that there exists a quadratic form approximation Q2
for ¢, for small A, such that ¢(A) > Qz(k), which will enable the use

of the tangent of Q2 for generating an Armijo line for ¢.

Let € be any positive number greater than 2. Then define

£ = 2

(79) &(g)
3ar-/% (e - 1)

>0 .

Similarly to what has been done for problem (40), we will show that,
given € satisfying (79), there exists a §(€), which is given in (79),

such that, for all A € (0, &(g)],
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r3Y2
2

(80) || a%k(F + As; s, 8| €

A

and, for Z(A) = K(F + AS) - K(F) - dK(F; AS),

3

y

2 2
4€>\.

81 [zl <

In fact, consider inequality (71)
3

ry © .
| a®kr + as: s, 9)lg —2 {1+ ] Gar’/?01,
i=0

and assume that A € (0, &(g)]. Then, from (79)

€ -2 1

A< <
o 3ar3/2(€ - 1) 3<3.r3/2

and inequality (71) becomes, as before,

I [ ‘
(82) || a°k(F + As; s, s)|| < L+ .
=2 {7 S f

However, since A < §(g),

1 1

372 + =€ .

(83) 1 +
A 1 - 3ar3/25(€)

kA

1 - 3ar

Therefore, combining inequalities (82) and (83), we get (80).

from (72) and (80) we obtain (81), i.e.,

1
lzo |l < A2 [ (-0 a%k(F + tAs; s, 9] at
0
r3Y

2 2

£ A

li A

Now two facts must be remarked:

Also

(84) FACT. For two matrices E > 0 and X > 0, tr EX > Amin XtrE.

PROOF. X - (AminX) I > O

- B x - (AminX) T)E® >0
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= tr[E’\(x - (Amin X) I)Eé] >0

$

i
= tr[E°XE’] > AminX tr[E]

tr[BCA], the result follows. v

and since tr[ABC]
(85) FACT. For a matrix E with eigenvalues {ki},

tr{E] = Z Ai v
i

3/2

Hence, noting that §(g) < 1/3ar , we have that, for all A € (0, &(e)],

d(A) = triK(F) - K(F + xs))xol
> Amin X. tr[K(F) - K(F + AS)] (by (84))

= 0

> n Amin XO Amin [K(F) - K(F + AS)]

(86) = n Amin XO g(A)
> -n Amin Xy TXA - n Amin xO|| z(M || by (74))
n Amin X0r3Y2€ 5
(87) > -n Amin XOTTA - 2 A (by (81))

In summary, for all A € (0, &(eg)1],

(88) () > 9 (N

for
) 3

n Amin Xor Y2€

(89) Q2(A) = -n Amin XO1TA - 2 A

2

We remark that the above quadratic is a function of the parameter €.
This means that there exists a family of quadratics which approximate

¢ from below in a neighbourhood of the origin. Any member of the
family could provide an Armijo line for ¢, in the same way as an Armijo

line for g was obtained from Ql' In whatever case the line equation is

n Amin Xy
y =-——————— \. However the one we will select will automatically give

2
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a feasible initial step size.

Consider the family of quadratics {Qg} for different values of
€ shown in diagram (90). Note that, as € increases, §(€), the number
up to which ngé ¢, increases too. Take the first one (for the
smallest €) such that its positive root, say pe, is smaller than §(g).
The formula that gives p8 is obtained from (89). Then

am
r3Y2€

(90) Pe =~

We shall prove that € satisfying

ele - 2) 12a\{1
(91) -T2 ,
Y2
for a, ! and Y, of (63) - (65), implies that p€=; 8(e). 1In fact, since

T < 0, and || S|| < 1, it follows from (61) that

= -hmax ak(F; §) = || ke ) || < 2.
This, combined with (90) - (91), yields
4y
4T -
Pe =73 S Sm— T - ote)
r Yze r Yze 3ar (e - 1)
Now consider an € satisfying the condition o€ izé(E). Then we can prove

that Pe 1S eligible for the initial step size in the sense that g(A) > 0
for all A in the interval [0, QE]. In fact, since Qg(x) > 0 for

A € [0, pe], then
. -1 €
(n Amin XO) Q2(X) ;_O.
However, from (86) - (87) - (89), we know that for A € (0, §(e)],
. -1 €
g () > (n Amin XO) QZ(A).

So, for A < Pe < S (g)
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53 5@ p

Q3 Ay Q@3
(€=5) (£=4) (€=3)

~ ‘1
Pa Ps A

Figure 90.
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g(A) > 0.

This means that either pE or §(g) could be used as an imtial step

size, provided it is the minimum of the two. We shall choose p€ since it
is a function of T and therefore convenient for us in the next section.
Thus we need Pe to be smaller than §(e), and therefore we choose €
satisfying (91). Finally note that oo may be such that g(pe) = 0,

which, as mentioned before, is undesirable. Then, the initial step

size will be defined as QEB' Hence, the algorithm for obtaining the

solution to problem (41b) is:

(92) STEP LENGTH SUBALGORITHM FOR ALGORITHM (32).

1. Choose B € (0.5, 0.8) and the smallest € > 2 satisfying

e(e - 2) laay,
e -1 = Y2

where a, Yy and Y, are given in (63) - (65); set q = 1.

2. Compute the initial step size

o= - 4m
r3Y2€
3. Set A = qu
4. Compute
n Amin Xoﬁ
B(A) = d(\) + —m—————

2

5. If B(A) < 0 set g = g+1 and go to 3; else continue.
6. Set AJ = X and stop. v

(93) REMARK. As inequality (91) is equivalent to

2

12aY1 12aY1
2|2+ )
{

€ +
Yo J Y

> 0
2
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for € > 2, and this quadratic is positive for large €, them the choice

for € required 1in step 1 is always possible. v

(94) REMARK. An alternative choice for the initial step size is p=1.
In this case however one must evaluate g(A) and check if g(A)>O0.

2.5 A SPECIAL PROPERTY FOR INFINITE SEQUENCES OF DOMINATING FEEDBACKS

In this section we shall be concerned with infinite sequences of
feedbacks, with elements Fj such that ﬂ(Fj) < 0, which are not necessarily
convergent and are generated using algorithms (31) and (32). Assuming
that {Fj} is such a sequence, it will be proved that the sequence
{r(F)} tends to zero as j tends to infinity. In the case when (¢}
has accumulation points in F or a limit, this fact has the interesting
interpretation that the limit or accumulation point F* is first-order

locally-dominant.

(95) LEMMA [23]. Let {Pj}, j € {1,2,...}, be a sequence of nxn

symmetric matrices such that P

1

< szi ... and Pj < P, for all j and

P. v

A

some P. Then P* = lim P, exists and P*
j—)oo J

The main result i1s stated in:

(96) THEOREM. Consider the implementable versions of algorithm (31)

and (32), in which the step lengths are computed using subalgorithms (77)
and (92), respectively, and assume that {Fj} is an infinite sequence of
dominating feedbacks constructed by either algorithm, such that ﬂ(Fj) < 0.

Then, as j > o,
] *
K(F’) > K

for some K* 0, and

v

ﬁ(Fj) - 0.

PROOF. The first result of the theorem comes from the monotone

non-increasing property of the cost sequence, the fact that K(F]) >0
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for all j, and from lemma (95).

The second result will be shown to hold for algorithm (32) only,
although it is true for Algorithm (31) alsc. The proof for Algorithm
(31) can be easily obtained by replacing ¢ by g and dropping n Amin X0

in the following proof. Follow the proof using diagram (97).
The first thing to be shown is that

(98) A = pg% > %?

where g is the smallest number for which 9(qu) > 0, where 8 is given
in step 4, and p is defined in step 2. Indeed, consider
n Amin X. 7(F7)

0
2

B(A) = d(\) + A

and denote by & the first positive root of 68(X) = 0, i.e. the first
point ét which ¢ encounters the Armijo line. (If ¢ does not intercept
the line along the positive axis it means that ¢ is always above it,
and so Aj = p, therefore satisfying (98)). Thus

n Amin XO U(Fj)
(99) &) = - £E>0

2

However note that, by the way the line was defined, crossing Q2 at
its top,

n Amin XO H(Fj)
(100) - 5 A Z_Qz(k) = \ € [p/2, ®

Also since ¢(§) > 0, it must be true that
(101)  ¢(3) 2 Q,(8),

which can easily be proved by contradiction using the facts that
P < 6(e), Qy(A) > 0 =X £ [0, p] and ¢(A) > Q,(A), for A € (0, §(e)1.

Therefore it follows from (99) - (101) that
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(102) & € [p/2, =).

In order to obtain (98), the next task will be to show that
(103)

A s min{pﬁz, ER}.

In fact, since A7 = qu for the smallest q > 1 such that B(AJ) >0,
Kjli oB and )7 <&, i.e.

(102) A3 = pg?

< mn{pB, £}.

Now suppose that

(105) A3 = oY < Bmin{pB, £}

then

p8% < min{p, £}

which contradicts (104) for the smallest g > 1.

Thus (105) is
false and (103) holds.

Note that from (103) and (104), Kj belongs to the interval
(min{sz, £R}, min{pB, &}) (see figure (97)).

Finally results (102) and (103) will prove (98).

Indeed,
g6 > OF

(102) gives

and B € (0.5, 0.8) implies that

2, pB
PR > >

so that

min{&RB, 982} o8

_2— .

v

Combining the above with (103) yields (98).
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The convergence of the sequence {W(FJ)} can now be shown. Since

sy > o,
. n Amin X W(Fj) .
oA > - A
= 2
; J
n Amin XO m™(F-) 80 _
> - ==  (using (98))
2 2
n }\min X B )
(106) - 9 T(FI) (using (90))

3 £
I.'Y2

However the convergence of the cost sequence {k(F1)} ensures that, for the

~

zero matrix O,
k(F) - x(F? + AIsd) >0
and then

o (A3)

trik(F) - x(rd + A3sj))xo] > 0.
Consequently, from the above and (106),
m(Fd) + 0. ° v

This result, together with the continuity of the function m, leads
us to the conclusion that, if F* 1s an accumulation point of {Fj}, then
T(F*) = O (observe that we are not saying that there exist accumulation
points for the sequence). It is of interest to see how inequality (106)
can be used to prove W(Fj) + 0, by means of a partly different approach.

Our next task will be to describe it.

We shall use the theory of computational algorithms developed by

Polak in [20]. N

Consider the problem of minimizing a continuously differentiable

function f: IJI + R. Let us call points in R" desirable if they
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are e.g. local minimizers. Let a: R + R be a
search function. The following is an abstract algorithm for computing

desirable points.

{(107) ALGORITHM MODEL [20]

1. Compute a zO e r™.

2. Set i = 0.

3. Compute a(zi).

5. Determine whether z,

is desirable using f.
i+l

6. 1If Zi is desirable, stopi else set i = i+l and go to 3. v

(108) THEOREM [20]. Suppose that
n

(i) £ is either continuous at all nondesirable points z £ R~ or

else f is bounded from below;

L. n
(ii) for every nondesirable z € R , there exists an €(z) > 0 and a

§(z) > 0 such that

f(z') - £(a(z")) €(z)

v

for all z' such that ||z - z'|] < b (2).

Then, either the sequence {zi} constructed by algorithm (107) is finite
and its penultimate element is desirable, or else it is infinite and

every accumulation point of {zi} is desirable. v

We shall call a feedback F?7 desirable, if it is first-order locally-
dominant, i.e. if W(FJ) > 0. The function f will be identified with

the continuously differentiable function tr[K(F)XO]. The algorithm
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model to be considered is algorithm (32) with the line search rule
given in (92). Since this algorithm was designed to optimize K(F),
we must show that it also optimizes f, i.e., at each iteration j,

f(FJ+1) < f(Fj). This is obviously true for it has been proved that

FJ+1 dominates FJ, thus, using (39),

j+1)x }

' j o
E{xo K(F )xO X K(F 0

tr[K(Fj)XO] - trix@Ethx

0

£(Fl) - gt

y > 0.
Therefore, algorithm (32) - (92) fits model (107) with f = tr[K(F)XO].

It is simple to prove that theorem (108) applies here. Since £ is

continuous, we must only prove that assumption (ii) holds. So, suppose

that Fl is nondesirable, i.e. ﬂ(FJ) < 0, and let
. ]
e(F)) = -F-(—z?—-)—> 0.

Then, by continuity of T, there exists a S(Fl) > 0, so that, for

all F* with || P - F']| < &),
] ] ()
|mrd) - mrn | <eEh = - —
and so,
J
_TEY) > - ”(5 )

which implies

m(F) % > .
Now, using (106) with F' and S' G arg T(F'), and the above,

OG(A) = tr[(K(F') - K(F' + X§))XO]
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tr[K(F')XO] - tr[K(F' + ks')xol

n Amin X. B

> — m(E) 2
T r Y, €
n Amin X. B .
> 3 0 mEh? >0
— 4r Y2 €
proving (ii). Thus, theorem (108) holds. Then, for F* an accumulation

point of {FJ}, T(F*) > 0. However, we cannot have T(F*) > O by

continuity of m and since H(FJ) < 0 for all j. Hence T(F*) = 0.

We finish this chapter with two remarks. First, suppose we consider
the search direction is the matrix gj which minimizes approximately
Amax dK(Fj; *) over S. Then all the results of this and the previous
sections are valid, if we replace W(Fj) (= Amax dK(FJ; Sj)) by
Amax dK(Fj; Ej). Second, it is worthwhile noting that, although the
algorithms studied do not always give convergence of feedbacks, this does
not matter as convergence of {K(Fj)} to K* is all that is needed

practically rather than convergence of {FJ} to some F*.

-
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3. CONSTRAINED OUTPUT FEEDBACK

This chapter is concerned with a constrained output feedback problem.
We shall consider the feasible set to be a compact convex set M, having

a nonempty interior, and defined by continuous functions gl:
: g7 (X) £C, i< 1,...,q}

An extension of the method described in Chapter 2 will be developed
here. It is well known that convergence of a sequence of non-desirable
points generated by a feasible direction algorithm, to a desirable
point, in constrained optimization, may not be achievable if the
algorithm is not "closed". In this chapter it will be proved that,
by choosing the search direction as the vector S which minimizes the
largest eigenvalue of Amax(F; S), when F+S lies in M, our algorithm is
closed. Moreocever, when the search direction is determined approximately,
in the sense that S is chosen so that Amax dK(F; S) is a fraction of the
minimum of Amax dK(F; -) over M, closedness is maintained. Therefore
convergence of a non-desirable sequence of feedbacks to a desirable feed-
back is guaranteed. A desirable feedback will be an F satisfying
min{imax dK(F; S): F+S € M} = 0. As before, convergence means only
function valued convergence since K is not convex. So, (function-
valued) convergence of an (infinite) sequence {Fj} to F*, within this
context, implies that F* is an accumulation point of {Fj}, énd it is
desirable. We shall not be concerned in this chapter with implementable
procedures for determining the search direction. 1In the chapters that
follow we shall draw attention to that point. Finally, convergence is
also proved for the algorithm having\a computable step length analogous

to that of Chapter 2, using a direct approach.



3.1 STATEMENT OF THE OPTIMIZATION PROBLEM

Given an initial condition xO for the system (1.1-3), consider the:

(1) CONSTRAINED PROBLEM

Minimize {V(xO,F): F € M} in the dominance sensg,

where M is a compact convex set with nonempty interior, defined by

. . i mxy
continuous functions g : IR > IR as

i

he .
M={xer™:g(x) <0, i=1,...,9, and X is stabilizing, i. e. X € Fl

0
and for which an initial output feedback F € M is provided. v

Given a feedback F € J, denote by M(F) the set
MF) A {x € ™ : ¥ =x - F, x € M}
thus
(2) F+SEMeseMm,
i.e. M(F) is the set of points S such that F + S is feasible.

(3) DEFINITION. A direction S # 0 from F will be called a feasible

direction at F, for problem (1), if S is such that F + As € M

whenever 0 < A S_X, for some X > 0. The cone of the feasible directions

is defined as the set of all feasible directions from F. v

In a feasible direction algorithm, a descent direction is selected
from the cone of the feasible directions. Here we shall optimize
the largest eigenvalue of dK(F; S), as we have done before in Chapter 2,
with S varying over M(F), and shall use the optimizing S as the search
direction, if it is descent. The next important lemma gives a framework

for the feasible direction algorithm:
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(4) LEMMA. Let F € M and suppose
S € arg min{\max dK(F; S): S € M(F)}
T(F) = Amax dK(F; S)

Then

(a) If T(F) < 0, there exists a real A > 0 so that K(F + AS) < K(F),

for all A € (0, \).

"
"

(b) If T(F) 0 and S 0 is the only global minimizer, then there
exists a § > 0 so that K(F') § K(F) for all F' € M:||F - F'|| < 8.

v

The above lemma will be proved in Chapter 5 (see (5.85)), for con-
venience. The implication of this lemma is that when 7(F) is negative,
S will be chosen as the search direction, because it ensures a decrease
in the cost along it. When T(F) =0 and S = 0 is the only minimizer,
termination will occur since this means that F is locally dominant. For
the case T(F) equals zero with a nonzero argument S, as no information
can be obtained from the lemma, it will be necessary to search along

§, to determine whether a reduction in the cost is achievable.
The conceptual algorithm for problem (1) is:

(5) FEASIBLE DIRECTION ALGORITHM FOR CONSTRAINED OUTPUT FEEDBACK

1. Select an initial stabilizing matrix FO in M; set j = 0.

2. Compute
ﬁ(Fj) = min{Amax dK(Fj; S):S € M(Fj)}
and

s e arg min{imax aK(F7; s): s € M(F9)}.
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. . % .
3. If #(FJ) = 0 and S? = 0 is the only minimizer, set F = FJ and

J

stop; else select a nonzero minimizer S° and continue.

4. Compute the step length Ad

Aj € arg max{tr[K(Fj)—K(FJ +XSJ))XO]:Xmin[K(FJ)-K(Fj+KSJ)]29,X€[O,1]}.
5. 1If tr[(K(FJ)-—K(FJ + Asj))XO] = 0 stop; else continue.
6. Set FJ+1 =rl 4+ stj, j = j+1, and go to Step 2. \

As we can see this algQrithm follows the same pattern as unconstrained
algorithm (2.32). However two obvious differences appear: the first
concerns the stop condition, which is due to the change of part (b) in

TLemma 4. The other is a consequence of the inclusion of constraints.

3

In order to ensure all the poxntswinside M, we require that S- belongs

to M(Fj) and Xj to the interval [0, 1}1. Then since M(Fj) is convex,

all feedbacks of the form Fj + ij, A € [0, 1], and therefore Fj+1,

will belong to M. Fortunately these requirements will not spoil the
dominance property of the generated sequence. For, consider Theorem

(2.37) characterizing dominance for algorithm (2.32). The assumptions

used Ehere are tr[(K(Fj) - K(Fj+1))XO] > 0 and Amln[K(Fj) - K(FJ+1)] > 0.
Since these conditions are imposed by the step length procedure only, which

is basically the same for this algorithm, then Theorem (2.37) also

applies here, and therefore we restate it:

(6) THEOREM. Let {F]} c M be a sequence of feedback matrices generated

by Algorithm (5). Then, for all j,

k() < k(FI). v

It turns out then that convergence of the cost sequence {K(FJ)}

£
to some K > 0 is implied, as was shown in Chapter 2.
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Although this algorithm has the same structure as the unconstrained algorithm,
the property of convergence proved for that one (namely, T (Fj)‘* 0) does not hold
automatically here, with constraints included. Even though there is
a dominating feedback created at each iteration, the sequence might
jam at some point on the boundary of the feasible set, a phenomenon
that may apppear in constrained optimization, and not get any closer
to a first order locally-dominant feedback. Thus, convergence must
not be assumed for the above algorithm, but must be proved. This is

the subject of the next section.

3.2 CLOSEDNESS PROPERTY OF THE ALGORITHM

An important fact arises when we deal with constrained optimization
and feasible direction methods. That is, there exists a relationship
between convergence to a desirable point and the way the search direction
is chosen. Here, as already mentioned, convergence of a sequence to a
desirable point means that the sequence has desirable accumulation

points (not necessarily, but occasionally, a limit point).

We need to generalize the concept of continuity for point-to-point
mappings to continuity for point-to-set mappings. In the theory of

algorithms, this continuity property is known as "closedness".

(7) DEFINITION. A point-to-set mapping A: X > Y is said to be

closed at x € X if the assumptions

Mm
>

(i) Xy > x, Xy
(ii) Yy > v, Yy € A(xk)

imply

(1ii) v € a(x).
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The point-to-set mapping A is said to be closed on X if it is closed

at each point of X. By a closed algorithm we mean an algorithm having

x3+1 an element of A(xj), with A closed . v

(8) DEFINITION. Let X © R® be a given feasible set. A set [ ¢ RZP
consisting of pairs (x, d), with x € X and 4 a feasible direction at x,

1s said to be a set of uniformly feasible direction vectors if there

exists a 6 > 0 such that (x, d) € T implies that x + ad is feasible
for all a, 0 < a < §. The number § is referred to as the feasibility

constant of the set T. v

The closedness property of algorithms is crucial to establish
convergence. Refer to [6 , pages 125, 143], where it is shown that,
]
if a feasible direction algorithm uses a closed feasible direction

selection map and generates uniformly feasible directions, convergence

is guaranteed, irrespective of how the line search is performed.

In what follows it is shown that Algorithm (5) is closed. More-
over, closedness is proved for the algorithm with an approximate search
direction. Then, in view of the above considerations, convergence to a

desirable point 1s achieved, for both cases. Lemma (4) yields the

necessary condition of optimality for an F, T(F) = 0. Thus, as before,
F will be called desirable if T(F) = O. Consequently, for anyaccumulation
point F* of {Fr7}, T(F*) = 0 (since M 1s compact, F* € M, and so T is

defined at F¥).

For the sake of simplicity, define the function o(F,.): R~ - R by

O(F, S) = Amax dK(F; S)

Thus, Step 2 of Algorithm (5) requires solving the optimization

problem:
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(9) SEARCH DIRECTION PROBLEM. Given F € M, solve the problem

min{o(F, S): s € M(F)}
where
ME) ={vye R®*F.v=%x-F, X€EM v

Thus, a search direction is selected from the set of arguments that

minimize O(F, -) over M(F).
Closedness of Algorithm (5) is demonstrated in two steps:

First, it should be noted that any sequence {(FJ, s9)} of ordered
pairs generated by Algorithm (5), is uniformly feasible. Indeed, since
s? must be an element of M(FJ), which is convex, FJ + as? is feasible

for all a in [0, 1]. The feasibility constant is therefore § = 1.

Then , the proof of closedness of the search direction map is

shown in the theorem:
(10) THEOREM. The point-to-set mapping
d: M~ CM
F = arg{mino(F, S): s € M(F)},
is closed, where C(M) is the set of subsets of M.

PROOF. Let F be an arbitrary point in M and {FJ} be a sequence of
points in M such that FJ > F. Assume that, for st € awrdy, s? + s.

First it will be shown that S € M(F). By definition of M(F),

M(F) = {x - F: gi(X) <0, i=1,...,q9}

1,...,q}

[t}

={y: g"(F + V) <O , i
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Therefore, the constraints that define M(F) are functions of two

variables, F and Y, and we shall denote them by
qi(F +Y) = Gi(F, Y).

Suppose, for proof by contradiction, that for some constraint Gi,
Gi(F, Sy >0

and set € = Gl(F, S). Then, by the continuity of Gl, there exists a

N > O such that, for j > N,
lct @, s9) - ¢t s < ¢
and therefore
ctwrd, ) setir, s) e =6, 5 -ctir, s =0
which is a contradiction. Then, for all i,
ctr, 9 <o,

and so S € M(F).

Next we shall prove that there exists a sequence of matrices
{XJ}, with X7 € M(FJ), convergent to any given S € M(F). Refer to

figure (11) for the geometrical interpretation. Let, for a given € > O,
BA{y: [y - s <el.

Because M(F) has a nonempty interior, and S € M(F), there is intersection
between B and M(F). Consider a ¥ € B N M(F). Then, G'(F, ¥) < 0, Yi,

and thus, there exists a N' > 0 such that, for j > N',

It e, v - ctr, v < T(F, ¥,
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M (FV)

M(F) —1

XN’

Figure II.
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¢t (rl, v) < o0,
and so Y € M(Fj). Now, let {XJ} be the sequence defined by
X7 € arg min{||x - s|| : x € M)}

(note that convexity of M(FJ) implies uniqueness of XJ). Thus, for

i N', since Y € B N M(Fj),
I3 = sll <llv-sll <e,

i.e. xJ € B. Finally, as € can be made as small as we want, this shows

that X7 -+ S.

To prove that S minimizes O(F, S) over M(F), suppose that there

exists a S' € M(F) such that

o(F, S') < O(F, 8),

and choose € = a(f, S) - o(F, S') > 0.

2

Recall that 0 is continuous in both arguments. Then O(FJ, SJ) -

O(F, S), and so there exists a N" > 0 so that for j > N",
lo(F3d, s9) - ar, 5] < ¢

and consequently,

o(F, S) + 0(F, 8')
2

(12) oI, sy >

On the other hand, if {x7} is a sequence of vectors X7 € M(rd) convergent
to S', then G(F], XJ) > g(F, S'), and therefore there exists an

integer N'"" so that for j > N'
lord, x9) - o(F, s < €.

Thus,
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O(F, S) + o(F, S")
2

(13) U(Fj, Xj) <
it follows from (12), (13) that, for j > max{N", N},
o(F, x9) < o, sy,
which is a contradiction by the definition of Sj, and thereby
S € arg min{o(F, s): s € M(F)}.
Hence, d is closed. v

Figure (14) depicts a unidimensional example where, for a sequence
{FI} with FJ > F, d(FJ) = arg min{G(FJ, S): s € M(FJ)} is a singleton,
and d(F) 1is a set. The closedness property of d means that the limit

point of {SJ} is an element of 4(F).

If we modify the algorithm and use for the search direction a
computable vector Sj, which does not necessarily minimize O(Fj, -)
over M(Fj) exactly, the closedness property may still be preserved.
For example, define Sj as the vector which yields O(Fj, Sj) at most

a S8-fraction of the minimum of O over M(FJ), 1.e.,
(15) o(F’, s?) < Smin{o(F?, 5): s € MEDH}.

(Figure (16) shows the set a(F]L with elements s? satisfying (15).
The meaning and significance of the set Q(FJ)will be seen 1in Chapter 4.)

We have then the following result:
(17) THEOREM. Let 6§ £ (0, 1). Then the point-to-set mapping
d: M~ C(M
F>{s € ME): o(F, 5) < Smin{o(F, X): x € M(F)}

is closed.



M

Q(F)

Figure 16.
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PROOF. Let F be an arbitrary point in M and {FJ} be a sequence of points
in M such that 17':J > F. Assume that {SJ} is a sequence of points

s? € a(FIy, i.e.
O(Fj, sj) < Smin{g(F?, X): X € M(Fj)}
and that

sd > s.
The assumption sj+S alone leads to SEM(F) (as proved in Theorem (10)).

In order to show that S € 8(F), we suppose, for proof by contradiction,

that
O(F, S) > Smin{o(F, X): X € M(F) }.

It follows from this then that we can define

_0(F, s) - émin{o(F, X): X € MM} 5 0
2

As befdfé, the continuity of 0 will be used. Since FJ > F and s7 + s,

there exists N > 0 such that, for j > N,
loE?, s - o, 51| <«

and so

O(F, S) + Smin{o(F, X): X € M(m) }
. 2

(18) O(Fj, Sj) >

However we can show that d being closed implies that

(19) min{o(F3, x): x € MFH} > minlo(F, ®: x € M@ }.

In fact, assume that Yj € d(Fj) and Yj - Y. Then Y € 4(F), i.e.
Y € arg min{o(F, X): X € M(F) }.

This, together with the fact that O(FJ, YJ) + o(F, Y), proves (19).
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Thus, we can guarantee that for j > N', for some N' > O,
|min{o(x?, x): x € ME)} - minfor, 0 : x € MO} < %

and hence,

o(F, S) + Smin{o(F, X): X € M)}
2

(20) smin{o(Fj, X): X € M(FH} <

Hence, by (18) and (20), if j > max{N, N'},
o), s?) > sminlo(F?, 0 x € MEDH ],

which contradicts the assumption that s’ € d(F]), and that proves that

s € a(F). v

Before finishing this section we need to add a remark concerning
the size of the step length interval. Assume that the search direction
problem is solved exactly. Then it can be shown that there is always a

solution SJ lying in the boundary of M(Fj). In order to see this,

]

consider S- with U(FJ, SJ) < 0 and suppose by contradiction that

s3 g BM(Fj). Then there exists A > 1 such that AS’ € BM(FJ), and so

o(Fj,Asj) =Amade(Fj;Asj) =AAmade(Fj;sj)<Amade(Fj;sj) =oij;sj).

J

This contradicts the assumption that S° is the minimizer of 0, therefore

with o(F7, S?) = 0. Then, if S 7 aM(F?),

sl € BM(FJ). Now consider S7

there exists a A such that ASj € BM(Fj), and O(Fj, Ksj) = 0. So,

KSj is a minimizer too. Hence, since by definition of Sj, O(Fj,sj) é:O
always occur, we have proved what we wanted. Figure (21) illustrates

a situation for the case where M is defined by linear constraints. 1In

some cases SJ may not be unique, for example when the contours of

O(FJ, *) are linear. The importance of the fact that Sj

can always be
selected in the boundary of M(FJ), is that, by doing this, F o4 XSJ,

when A ranges over [0, 1], will span the entire feasible segment of
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Figure 2I.
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line along Sj, and so the step length interval becomes simply [0, 1].

3.3 A COMPUTABLE STEP LENGTH

In this section an implementation for the line search of Algorithm (5)
(Step 4) is given, for the case when O(FJ, SJ) < 0. An expression for
the step length will be obtained by considering a lower bound quadratic

approximation for 0 along the search direction, the idea we have intro-

duced in Chapter 2.

Let F = FJ and S € d(F). The exact step length solves

(22) max{trBK(F)-K(F-+AS))XO]: Amin[K(F) -K(F +As)]1 >0, A € [0, 11},

~

An implementation will be defined by a A such that
d(X) = tr[(K(F) - K(F + As»xyl > 0

and the two constraints of (22) are satisfied. An implementable step

v

length is expressed in the following theorem.

(23) THEOREM. Let F and S generated in Alg. (5}, with o(F,S)<0. Then, for

L a [ -2§(F, S R -2§(F, S .y
riY, € roy, €
1 , otherwise

where € > 2 is chosen so as to satisfy

E(e - 2) 12adY1

g -1 = Y2

d is the diameter of M, and a, Y, and Y, are given in (2.63) - (2.65),

tr[ (K(F) - K(F + Xs))xo] > 0
Amin[K(F) - K(F + AS)] > O

A € 1o, 1],
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and so A is a computable step length for Algorithm (5).

PROOF. Assume that M has diameter d. Then M(F), because it is a dis-
placement of M, has also diameter d, i.e., for S € M(F), [[S]Ii d.
Some of the results of Section 2.4 will be used here, and we devote

the next paragraph to recall them (there d=1).

Given an € > 2, it is proved in (2.79) - (2.80) that

r3Y2€

Il a’k(F + xs; s, )] <

for all A € [0, §(e)], where

(24) §(g) = € - 2 .

3adr3/2(€-1)

Consequently, as stated in (2.87),
d(A) = tr[(K(F) - K(F.+ As))XO]

(25) >-nAmin X  O(F, S)A - l-n)\min X0r3y2€A2

0 4

5o (.

This means that, for each € > 2, there exists a quadratic Q€ (function .

of €) that is a lower bound approximation for ¢ on the nonempty interval

{0, §(e)]. The positive root of Q6 is
_ 40(F, 8S)
(26) 0. = -~z
7Y €

It can be easily verified that, as € increases, §(€) increases too,
whereas pe gets smaller. So, it might be expected that, for sufficiently

large E,w%ondition
(27) b, < 8(e)

holds. This is actually true, as can be seen in the following. First,
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substitute the expressions for §(g) and pe, from (24) and (26), into

(27) . This gives

€(e - 2) _ 12ad0(F, S)

(28) e -1 3/2
r Y2

v

Then, consider the fact, derived from Lemma (2.45),

- O(Fl S) = - )\max dK(F; S) = ” dK(F; S) ” ; r3/2Y1.

This reveals that, if € is chosen so as to satisfy

12aady
(29) ee - 2) o _ 1 '
£ 1 = 'Y2

Then (28) 1is valid. Ithasalready been remarked (see (2.93)) that

g > 2 satisfying (29) can always be found, therefore condition (27)

can be achieved for some € > 2. Figure (30) illustrates an example
showing two curves determined by numbers € and €', with € > €', and
condition (27) holding for QE. Now, consider an € > 2 satisfying (27).
Since the quadratic form Q€ is positive over (0O, pe), fact (25) ensures
that ¢ is positive over (O, OE) as well. Furthermore, (27) guarantees
that.g(K) = Amin[K(F) - K(F + AS)] > 0 for X € (0, QE). In summary, for

such an € and all A in (O, QE),

(31) d(A) >0

1 g(A) >0

B . . . € .
Let the number A be defined as the point at which Q attains its
maximum on [0, 1]. The unconstrained maximum of QE is achieved for

A= p€/2, therefore
= i <
A p€/2, if fe 2
1, otherwise.

Finally, as A satisfies (31) and belongs to the interval [0, 1], and
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Figure 30.
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expressions (2.63) - (2.65) accounts for the computability of the

A

parameters a, Yl and Y2, A is a computable step length for algorithm (5). V

3.4 AN IMPLEMENTABLE ALGORITHM

This is the implementable version of Algorithm (5), using the
search direction Sj and line search Aj = X presented in Sections 3.2 and
3.3 repectively, and where we assume that, for all j, O(Fj, Sj) < 0.
We assume also that a search direction satisfying (15) can be determined
numerically, and thus we refer to such a search direction as being

computable.

(32) AN IMPLEMENTABLE ALGORITHM FOR CONSTRAINED OUTPUT FEEDBACK.

1. Select an initial FO € M; select § and §' in (0, 1); select a

number € > 2 satisfying

£(e - 2) 12adY1
e -1 = Y2
where a, Yl and Y2 are given in (2.63) - (2.65), and d is the diémeter
of M; set j = 0.
2. Compute an Sj such that

O(Fj, sj) < 6min{o(Fj, S): S € M(Fj)}
where

o(F, S) A Amax dK(F; S)
3. 1If —O(Fj, SJ) < §' then set F* = FJ and stop; else continue.

4. Compute the step length A7 using

W2 { _20F?, Y
J T T3

, if 2087, s < riy.e
N 2
2
1

, otherwise
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5. Set FJ+1 =FJ + XJSJ, j = j+1, and go to Step 2. v

Convergence for the abstract algorithm (5) (T(F*) = 0) was proved
in Section 2. Convergence for the implementable version above
will be proved in the next section, and that will justify

the stop condition encountered in Step 3.

3.5 CONVERGEN(E PROOF FOR THE IMPLEMENTABLE ALGORITHM

In Section 2 we have demonstrated, using the theory of closedness
of algorithms, that if the conceptual algorithm (5) generates an infinite
sequence of output feedbacks {Fj} such that ﬁ(Fj) < 0, then any
accumulation point F* of the sequence satisfies T(F*) = 0. 1In this
section we shall be_concerned with proving the same fact for the

implementable algorithm (32), using a direct approach.

(33) THEOREM. Assume that {FJ} is an infinite sequence generated by
implementable algorithm (32), with the initial feedback FO € M, and
elements F’ satisfying T(FH < 0. Then, for any accumulation point

F* € M of {Fj},
T(F*) =0

PROOF. It follows from Theorem (6) which applies also for Algorithm (32),

and the fact that K(F?) > 0 for all j, that, as j + ®,
(34) ¢\ = tr(x(F) - K(FI + Mshx 1 > o

(see Theorem (2.96)). Also, for the step length XJ of Theorem (23),

for all iterations j,

s > oY)
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and thus, using (25),

- . J &3,2 .
. . nAmin X, O(F~, S-) 3 3
(3ga) o) 2 Q"M = = e
T r’Y,€ Y€
3
. . r'y.€
(35b) L —nkmin)ﬂ)(G(FJ, s?) + ) otherwise

However it is possible to show that situation (35b) does not occur for

, 20(Fj, Sj)
very large j, - —5———— > 1 is true only for a finite number of
r € - . .
"2 20(F9, s7)
iterations. 1In fact, suppose by contradiction that --—j;—i————:; 1
r A€
2
for an infinite number of iterations. Then, it follows from (34) and
(35b) that
3
. . r'y.€
a(F7, 87) + 42 ~ 0,

as j -+ «, and therefore

r3Y €
o(F7, s7) +~ - 2
4
Hence,
20?5t 1
r3 e 2’ )
Yo

Consequently, for a given § € (0, 1/2), there exists a position N such

that, for all j > N,

_20(r?, 8%
r3y2€
and thus,

J 43
_ 20, 87

]:‘3 1)
1P
contradicting the assumption. So, from some point of the sequence

onwards, case (3%a) always applies, and then (34) implies that
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G(F], S]) - 0. From this fact however, and since O(FJ, SJ) <
§ T(F) < 0, it follows that T(F’) - 0. Compactness of M
implies that any accumulation point of {FJ} lies in M, hence

mT(F*) = 0.
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4. DOMINANT FEEDBACK WITH LINEAR EQUALITY CONSTRAINTS

In Section 1 we shall demonstrate that the search direction problem
for the constrained feedback algorithm, namely, the minimization of
the largest eigenvalue of dK(F; S), with S ranging over the unit sphere
S, is equivalent to solving a minimum norm problem involving a set
defined by the partial derivatives of K(F). This development is based
on Allwright's work in [2] and [1]. The subject of Section 2 is the
definition and analysis of a dominant output feedback problem, subject
to a set of linear equality constraints. We shall prove that a search
direction for the feasible direction algorithm associated with the
optimization problem can also be ohtained by means of a minimum norm
problem solution, as in the unconstrained case, using projections onto

the subspace defined by the constraints.

Throughout this chapter we shall employ the vec notation for the
. mxy . p
matrices of R and transform them into vectors of R, p = mr.

As before, we shall denote f = vec F, and by £ € F we mean f = vec F,

where F € F,.

4.1 MINIMIZATION OF Amax dK(f; s) OVER THE UNIT FROBENIUS-SPHERE

We start by presenting the following well-known concept of convex

analysis:

p

(1) DEFINITION. Let Q be a convex set in R  , the support function of

is defined to be the function

s P supi<s, w> : w € Q} v

In general, GQ(s) may be infinite. If Q is compact,

0 (s) = max{<s, w>: w £ Q} is finite. The support function is convex
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(see, for example ['( ], page 36).

The problem we shall be concerned with here is:

(2) SEARCH DIRECTION PROBLEM

minimize{Amax dK(f; s): s € S}
where
S={s€IRp:HsHF=1} v

The reformulation of the above problem needs the definition of the

following abstract set:

3
(3) QE) é:co w € R : wi = x' é%éEL X, x € Bn }
i

. n
where Bn is the unit Frobenius-sphere in R , and co{x} denotes the
convex hull of X (i.e., the set consisting of all the convex com-

binations of the elements of X).

Then, the definition of the largest eigenvalue of a matrix,

and definition (2.1) of dK(f; s), allow us to write:

(4) Amax dK (f; s)

A max{x'dK(f; s)x: x € Bn}

K (f)
of .
1

)x: x € Bn}

max{x'(Zsi

K (£)

of .
i

X): x € Bn}

1]

max{ZSi(x'

max{<s, w>: w € Q(f)}

;)

A (s)

Throughout most of this thesis the support function will be referred
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to the set Q(f), with the only exception occurring in the following
section. Therefore, for the sake of simplicity, we shall omit the
reference to (f) (except in Section 4.2, obviously). The variable £

to which §i(f) refers ., however, sometimes needs to be gpecified. When
this is the case, 0(f, s) will be used for OQ(f)(s). This is consistent

with the notation cmploved in rrevious chapters, and we may summarize

it as follows:

. S8

Amax dK(f; s) o(s)

m

(s) = 0(f, s)

It should be noted that a maximizing x in Bn for x'dK(f; s)x
is an eigenvector of dK(f; s) associated with its largest eigenvalue.
on the other hand, observe that a maximizing w for <s, w> in Q(f)
is a contact point between {(f) and its supporting hyperplane with
outward normal s. Hence, result (4) implies that, corresponding to

any normalized eigenvector x associated with Amax dK(f; s),

K (£)

Y X ] is a contact point
i

w = (w,) = [ x'
i
Thus, an equivalent formulation for problem (2) is:

(5) SEARCH DIRECTION PROBLEM.

minimize{o(s): s € S}

where 0 is the support function to the set {2(£) given in (3). \Y

Obviously a solution for the above problem exists, since O is
convex and S is compact. Allwright has pointed out a procedure for
solving it partially, which we shall describe next. Let a global
minimizer be called §. The approach is based on the following three

theorems [1 ]:

P

(6) THEOREM. Consider a set {! € R° and let O be the support function

of . Then, if 0 € Q:
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(i) arg min{|| w|| : w € R} is a singleton and, for & € arg min{|| w||: w€Q},
min{o(s): s € S} = - ||w]| <o
(ii) arg min{o(s): s € S} = {s}, for § = - ﬁ/l]@]l \Y
(7) THEOREM. For ) and 0 as defined in Theorem (6), if 0 € 3Q:
(i) min{o(s): s €S} =0

(ii) arg min{o(s): s € S} = {s € S: s is an outward normal to a hyperplane

supporting Q at 0} v
(8) THEOREM. For @ and 0 as defined in Theorem (6), if O € Q:
(i) For O € arg min{ || w|] : ©w € 3Q},

min{o(s): s € S}

lall >0

(ii) arg min{o(s): s € S} {s}, for § = 6/||6|] v
Let, for the support function associated with Q(f),
m = min{o(s): s € S}.
Then ™ = w(f), for m(f) defined in previous chapters, since

T(£) A Amax dK(£; §) = 0(S) A m.

Part (1) of all the above theorems suggest the methods for determining
the sign of m, which are to investigate whether the origin is outside,
in the boundary or in the interior of Q(f), i.e., they give the following

"if and only if" criteria:
(9a) O € Q(f) =T < 0
(9b) 0 € JQ(f)e==> T =0

(9¢) 0 € Q(f) =T > 0



- 94 -

Part (ii) is concerned about finding the solution S. Since
there is no need to actually find a solution to (5) when T > 0, we

only should have to seek methods for

(i) determining the minimum norm point of Q(£f) when

0 g Q(f).

(ii) determining the outward normal to the supporting

hyperplane to {2(f) at the minimum norm point when

0 € 3Q(f).

Unfortunately the latter seems to be a difficult task to do and we

shall not be concerned with it here. For the minimum norm problem,

when O £ {i(f), several algorithms are available. Allwright proposes

the use of one due to Y.C. Ho [4 ], which is of practical implementation
for the feedback problem. Others can be found in [3]), [5], [61,
[71, [8] and [9 ], for example. Since either 0 € Q(f) or 0 € Q(f)
holds, then, for the solution of the minimum norm problem, either

§ # 0 or § = 0. Consequently, by solving the minimum norm problemn,
information is obtained that permits us to decide whether ™ < 0 or

™ i:O, and to find the search direction when T < 0. Fortunately, this

is all that 1s required for an implementation of Algorithm (2.31), as
far as the search direction is concerned. For the implementation of
Ho's Algorithm, the particular thing needed is the evaluation of a
contact point of the supporting hyperplane to (f), normal to a given
vector s. This can be done nicely, as has been discussed, provided an
eigenvector associated with dK(f; s) is computed. 1In Section 5.7

we shall describe this algorithm, which will be proved to be a particular

case of an algorithm due to Allwright.
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4.2 THE EQUALITY CONSTRAINED DOMINANT FEEDBACK PROBLEM

The problem we shall be concerned with here is:

(10) EQUALITY CONSTRAINED PROBLEM. Given an initial condition

X € R" for the system (1.1-3)

minimize{v(xO,F); Tf=d, £ € F} in the dominance sense

Lxp

wherep=mr,2<p,f€]Rp,d€IR2'andTEJR and is of full

0 . . 0
rank. Besides, an initial feedback f € F satisfying Tf = d must

be provided. v

Consider a point £ in the feasible set for (10), the affine set

of dimensfon L < p,
MA{f€F: T =d}.

A feasible direction from f must satisfy T(f + As) = d for small A > O,

therefore the vector s must belong to the subspace of Ié’
L ={x€ rP: ™ = 0},

and so, not only for some A > 0, but for all A € R, £ + As € M.
Consequently, the search direction for a feasible direction algorithm

for (10) should he chosen as the solution of

(11) SEARCH DIRECTION PROBLEM

minimize{lmax 4K (f; s): s € SN L}

where

L ={x€rP: 7x = 0} v

if the minimum is nonpositive and allows the cost to decrease along
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it. 1In fact, we shall demonstrate that Lemma (2.34) is valid

when the constraint s £ S is generalized to s € S N D, where D is a

cone (Lemma (5.74)).

Owing to the structure of the feasible set, we shall be able to
transform the above constrained optimization problem into a simpler
problem, constrained only to a unit sphere, much like problem (2).

By using (4) we can restate (11) as follows:

(12) SEARCH DIRECTION PROBLEM.

minimize{max{<s, w>: w € Q(H)}: s € SN L}

for U(f) of (3).

We shall prove some general results concerning an arbitrary convex

set  and an 2-dimensional subspace P of I§>, with £ < p.

{13) NOTATION. For any point w € R’ ana subspace P of Ig), we

denote the orthogonal projection w+ of w onto P by ﬂp(m). For a set
Qe R,
a * o .
To(Q) = {w = Tow : w € Q. v
(14) LEMMA.

Let s € R® fixed, and let P be a subspace of RY with dimension

£ < p containing s. Then, if Q < Eg),

+
<s, w> = <s, W >

for any w € §I, where wt = Tp (W) .

PROOF. Let n be a vector normal to P, of unit norm. Note that the

+
orthogonal projection of w onto P, w = ﬂp(w), satisfies
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+
W =W - <w, n>n,

and therefore, taking the inner product with s,
<s, w+> = <s ,W> = <KW, n><s, n>.
However,.since s € P, <s, n> = 0. Thus, the result is proved.
This lemma gives rise to the following corollary:

(15) COROLLARY. Let s € R’ and Pc RP a subspace of dimension

£ < p containing s. Then, if Q < rY is compact and Qi = ﬂP(Q),
max{<s, w>: w € Q} = max{<s, w+>: w* € Q+},
i.e.,
GQ(S) = OQ+(S),
and, for a maximizer
o € arg max{<s, w>: w € Q},
the projected point 6+ = WP(Q) satisfies
@+ € arg max{<s, w+>: w* € Q+}.
PROOF. Let o € arg max{<s, w>: w € Q}. Then, by Lemma (14),
(16) <s, > = <5, W' >,
where £+ = ﬂp(a). The result will be proved if we show that
<s, 8+>= maxi{<s, w': wh e Q+}.

. . . - +
In fact, this is true. For, suppose that there exists a w+ € Q

satisfying
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<S, W > > <s, W >.
Then, using the abgve and (16),
-t A~
(17) <S, w > > <s, W>

But, by the definition of Q+, ot = ﬂp(ﬁ) for some w € 9, and the

following relationship holds (using Lemma (14) once more) :
<s, B> = <s, &>.
Therefore, from this and (17)
<s, @> > <S, @>,
which contradicts the assumption that © minimizes <s, w> over f. v
Finally we can prove:

(18) THEOREM. Let P c< Igiea subspace of dimension £ < p and let ! € R be

compact. Then S is the solution vector to the problem
. )
(19) min{c (s): s € S n P}.
ff it solves
Q+
(20) min{c’ (s): s € S n P} .
for Q' = T5(Q) .

PROOF (=)Since S solves (19) it must belong to P. Therefore it follows

from Corollary (15) that
(21) o (s) =0 (s).

A+
Suppose there is a vector s € S N P such that

+ A .
22) ot (8h < o (&),
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Then Corollary (15) says that

+
Q (s+) QA+

(23) ¢ =0 (s ).

Hence, combining (21), (22) and (23), we have

oQ(As+) < OQ(;) ’

which contradicts the assumption that s minimizes (i1Z). This proves
+
that (22) is false and then, s minimizes O over S N P, i.e., we

have proved what we wanted. (This proof is completed on page 102) v

Now, setting Q = Q(f) and P = L in Theorem (18), Problem (19)
becomes the search direction problem (12), and problem (20), the

desired transformed search direction problem, which we restate below:

(24) SEARCH DIRECTION PROBLEM

minimize{max{<s, w>: ot € Q+(f)}: s € Sz}
where
32 ={xelL: || x“P = 1} v

. . 2
Formulation (24) reveals an optimization problem in R , similar
to the optimization problem corresponding to the unconstrained dominant

feedback problem described in Section 1,

Q(f)(s): s € S},

minimize{d

and thus, the theory developed for that can be applied to this

situation.

Let

Q" ()

= min{o (s): s € SQ} = min{OQ(f)

(s): s € SQ}
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Then (9) reveals that
O€§2+(f) =1 <0

0 €3Q7(F) &= 77

]
o

0 € §+(f) =>7r+ > 0.

Diagram (25) illustrates examples of two situations: 0 & Q+(f),

and the corresponding negative solution s of (24) (i.e.,
+
+ Q) ,~ o+ , .o
T =0 (s} < 0), and 0 € Q (f). The shadowed region indicates
the polar cone of Q(f), which is the cone consisting of the vectors
N,

s €1R2 such that 0(s) < 0, i.e., the descent directions at £. 1In the
second example there is no intersection between this cone and the

. o .
subspace L, as expected, since 0 € Q+(f) implies that m > 0, and

therefore absence of descent directions at.f belonaine to .

Much as in Section 1, solution of (24) using Ho's algorithm
. + + R +
reveals that either 0 € Q (f) or O € Q (f), i.e., that erther m < O
+ +
or m > 0 holds, and, in the case m < 0, it computes the required

solution.

The implementation of the algorithm needs the evaluation of
the contact point of a supporting hyperplane to Q+(f), with normal
s € 32. However, it can be easily proved, using Corollary {15), that
a supporting hyperplane to {(f) supports Q+(f) as well, and any

+
contact point to 2 (£) is the projection of a contact point to Q(f).

Since this is the vector w with components

@ = x' gEiﬁL X
i 8fi !

for some normalized eigenvector x of d&K(f; s) associated with its

+
largest eigenvalue, the contact point to { (f) is computed by
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Q(f)
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4 A A
W =W - <w, n>n,

for n the normal to L with unit norm.

PROOF OF THEOREM (18) (cont.).

(<) Let §+ be the solution to problem (20) and assume there is a vector

§ € S N P such that
&3 <« M.

Since, by Corollary (15),

+
@) = M (3

and
+
Mgty = & gh,

the above inequality implies

+ +
cﬂ (8) < OQ &Y.

+ solves (20), therefore the first

v

This contradicts the assumption that §

At
inequality is false and then.s -solves (19).
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5. ALGORITHM FOR FINDING THE MINIMUM DISTANCE BETWEEN AN

ORTHANT AND A CONVEX SET AND APPLICATION OF IT TO THE

DOMINANT FEEDBACK PROBLEM

This chapter is concerned first with solving a convex optimization
problem, in which we have a convex function and the objective is to
minimize it over a given convex set. Then, the methodology developed
for that will be applied to the dominant feedback theory, giving a
solution for the search direction problem (3.12), when a particular

class of linear constraints is present.

(1) NOTATION. In most parts of this chapter we shall use the vec

notation for matrices. Corresponding to a mxn matrix A:

- aij refers to the (i,j)-th element of the matrix A
- a refers to the vector vec A

-ay refers to the i-th element of the vector a

- a'l refers to the i~th column of the matrix A

Also, if A is a set of matrices, by a € A we mean a = vec A, where

A€ A,

5.1 PROBLEM FORMULATION

(2) DEFINITION. An orthant in rP can be defined as the set of points

x such that Ax < 0, where A is a non-singular diagonal matrix with

diagonal elements either 1 or -1.
The problem we will be concerned with here can be stated as follows:

(3) MINIMUM DISTANCE PROBLEM.

min{]lc[[zz c=x-y, x €EP, vy €Q}

where Q = RP is a convex set and P < ®® an orthant, and

QnNP=¢. v
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In order to reduce the dimension of problem (3), which is 2p,

we can minimize with respect to x, leaving the minimization with

respect to y to be done. Define
8(y) A arg min{ || x-y|| : x € P}

and minimize ]Ie(y) - yﬁlz over . We remark that 6{(y) is unique.
Hence, problem (3) can be equivalently stated, with the number of

variables halved, as

(4) MINIMUM DISTANCE PROBLEM.

min{x(y) = || 8(y) - Y|12= y € Q}

where {2 < R is a convex set.

(5) DEFINITION. A function £ is K-Lipschitzian if, for some K > O,
Ilf(xl) - f(xz)ll < K||x1 - x2H .

for all x1 and x2 in the domain.

Note that a Lipschitzian function is also continuous.
(6) PROPOSITION. Consider the orthant

{x € R

.ﬁ
e

where A is a nonsingular diagonal matrix with diagonal entries 1

and/or -1. Then, for any y # P
<B(y) -y, yvv <0
and, for all x ¢ P,

<Bly) -y, x> > 0.
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PROOF. Suppose Y £ P. The closest point in P to y is 6(y) therefore
the vector ¢ = 6(y) - y is normal to a supporting hyperplane to P

at 0(y). 1If we denote it by H, for some b € R, H is defined by

{x € Eé%(c, x> = b}. But H passes through the origin since it meets
P in one entire face containing 6(y) (see [6 1, page 101) and all
faces contain the origin (a face is defined by the intersection of
hyperplanes of the kind {x: <ai, x> = 0}, where ai is a column of

A. The vertex is a zero-dimensional face.) Hence, b = 0 and
HQ{XEIRP:<C,X>=O}

Because H separates (not strictly) P from the point y, then for all

x € P, either

(i) <e, x> > 0 and <c, y> <0
or

(ii) <c, x> < 0 and <c, y> > O.

Note however that <c, 6(y)> > <c, y>. 1In fact, this is a consequence
of [{6(y) - y[l2 > 0. Therefore (i) applies, and the proposition is

proved.

We can now prove the following fact:

.

(7) PROPOSITION. The function 6: @ — P
y — arg min{|| x-vy|| : x € P}

is 1-Lipschitzian.

PROOF. Consider two points in §, Yy and Yoo and let x, = 6(y1),

1

Xy = e(yz). Define the two halflines emerging from X, and Xy

L ={yG]Rp:y

x, = Alx; =y, A >0}

it

—
1

P . - -
2 {lyer": vy X, k(x2 y2), A 0}.

v
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two arbitrary points in L1 and L2,

vy o® X - Al(x1 - yl)

<
I

5 = Xy - )\2(x2 - Y,

and consider the difference vector

VTV, T X=X, - Al(xl-yl) + Kz(xz-—yz)

It can be noted that

<X1'- Xor = Kl(xl-yl) + Kz(xz-y2)>; 0.

In fact, first note that

(9) <x1 - Xy, - )\l(x1 - yl) + >\2(X2 - Y2)>
= - <xy, Xl(xl-y1)> + <X, Kl(xl-y1)> +<xy, A2(x2-y2)>
- <Xy, Kz(xz-y2)>
= - k1<x1, R A1<x2, X, —y> X2<x1, Xy = Y5>
- X2<x2, Xy = ¥y
Also, we have that Xy - y1 is orthogonal to‘xl, which is a result from
the projection theorem (see for example [ 3], page 64). Then,
(10) <x1 - Yy xl> = 0.
Similarly,
(11) <x2 - Yy x2> =0
and, from proposition (6), because x1 and x2 belong to P,
(12) <x1 - Yl' x2> ; 0,
(13)

<x2 oY x> 2 0.

It follows from (9) - (13) that, for Xl and Xz non-negative, (9) is
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non-negative too. For the sake of simplicity let a = X, - x2 and

b = -ll(xl - yy) ot kz(x2 - ¥,). So, (8) can be written as
(14) v, -v,=a+b
and the non-negativeness of (9) means that
(15) <a, b> > 0.
In addition, we have that

la+bll? = lall® + lIll® + 2<a, b
which implies, by using (15), that
(16) Ila + b[l ;zl{a[l.

So, from (14),

vy = vl

v
»
—
|
<

Now, since vy and v, are two arbitrary points in each halfline, we set

>
1]

>
1]

vy T Yy and vy, T Y, 1 2 1 in (8)) and the result follows, i.e.

AN

ly, =yl < llx) =, v

In Propositions (17) and (22) the function X is proved to be convex

and continuously differentiable.
(17) PROPOSITION. The function

X:Q**]R

2
y —~ |8y - vl
is convex.

PROOF. The distance function between an arbitrary point y € 2 and P
is convex (see [ 5], page 34) and non-negative. Since the square function is

convex and increasing ©on the positive axis, its square is convex too. V
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Proposition (22) needs the formula for the projection of a point

y £ P onto P, which is given next.
(18) PROPOSITION. Consider v £ P. Then

arg min{|| x - yH2 : x € P} =68y,
where
‘ (. i
(e(y))i =y, if <y, a™> < 0

0, otherwise

PROOF. Recall that the matrix that defines P, A, is unitary.

its columns form an orthonormal basis for Eg). Let

y = Zaial.
Therefore,
<y, ai> = (Zu.ajfai = Za.<aj, ai> = Q,
J J i
However,
2 . 2
X{y) = lle(y) - Yll = mln{Hx-yl[ : x € P}
. . 2
(19) = min{Z(B, - o) : B, < 0}
i i i=

Therefore,

where Bi is the component of x for the 1-th axis with respect to the

basis {a’}. Note that x € P 1s equivalent to Bi = <x, a> < 0 by

definition of P. Now consider the two cases:

(1) o, =<y, a™> < 0.

In this case the minimizer of (19) is Bi =q

i

(i) o, =<y, a™> >0

This implies that Bi = 0 minimizes (19).
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So, the solution for (19) is

(20) x = ZB.ai
i

where

. i
= >
Bi a, if <y, a™> < 0

0, otherwise
However, the original basis forimp, {el}, is such that

~

Therefore, if xj}yi) is the component of x(y) along the i-th axis with

respect to the basis {el}, then

(21a) ai = Bl =x =y,
(21b) B, =0 <= x, =0
i i
Thus (20) - (21) imply that the minimizer x € P for l[x - yf|2, B(y),

is defined by

— . i
(G(Y))i = [yi, if <y, a> < 0

0, otherwise
as we wanted to show. v
We can now demonstrate the following:
(22) PROPOSITION. ¥ is a Cl-function and Vy(y) = 2(y - 6(y)).

PROOF. Consider y € 5. The directional derivative of X at y with
respect to a vector h € RrF (assuming h is of unit norm) is defined
to be the limit

Il 6(y +An) - (y+)\h)H2 -l e —sz

(23) X'(y; h) A lim
A0 A
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when it exists. In order to find the expression for X' (y; h) define

the following set of indices,
(24a) 3(y) A {i: 0, > 0}

(24b)  J(y) A {i: a, < 0}

(24c) K(y) A {i: a, =0, <n, al> < o0}

(240) R(y) A {i: @, =0, <, a> > 0)

where ai = <y, a’>. Denote by V(y, P) the open ball centered at

y with radius

o = min{lail: a, #0, 1= 1,...,p},

vy, o Ay € RP: ||y -yl <ol
As 1n the previous proposition, let

_ i
(25) y = Zaia
and

(26) y + Ah = ZBiai.

Since by assumption N P = ¢, y € P, therefore we can suppose ai #0

for some i (since ai = 0 for all i implies y = 0, which belongs to

P). Refer to Figure (27) which shows an example with al # 0 and

a, = 0. Note that oy and Bi are the projections of y and y + Ah,
respectively, onto the i-th axis i.e., ai=<y,al>, Bi=<y+kh,ai>. Thus we have,
for some o, p:lai[ and, if we consider A small enough so that y + Ah

belongs to V(y, p), then Bi has the same sign as oy (in the example

both are positive).



- > V(y,p
T“-.-."f’(w}\n 0 '

P2
P
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In order to evaluate the limit (23)

consider the following facts

separately, where Proposition (18) and Definition (24) have been

used, plus the fact that ui and Bi have both the same sign:

2

(28) ) (B(y) - y)i2 =) v, -yp =0
i€J (y) i€J (y)
20 J 6w -n’=1 ©0-yp?=7 v}
€3 (y) €3 (y) 1€3 ()
(300§ O+ -z +Aa) = [y ), - Gy + A P =0
€3 (y) i€3 (y)
6§ @y - @ ramn =] (v eom ]
1€3(y) 1€3(y)

Also note that, from (25) - (26),

1 i
(32) h =y J(B, -0q)a

and therefore, for i € K(y), where ai

that Bi < 0. Therefore <y + Ah, at> =
says that
(B0(y + Xh))i = (y + )\h)i
Thus,
2
(33) ) (B(y +Ah) - (y +An)) " =0
i€K(y)

0 and <h, a’> < 0, (32) implies

B,
i

< 0, and so Proposition (18)

Similarly, for i € K(y), (32) implies that B, >0,
So,
(B(y + Xh))i = 0,
and therefore, because ai = 0 implies v, = 0,
(34) z (B(y + An) - (y + Ah))j? = Z (y + }\h).2 = Z (Ahi)z.
i€k (y) i€R (y) i€R(y)

i.e., <y + Ah, a’> > 0.



Finally,

35 ) _ (68w
1€R (y) UK (y)
It follows from (28)

lim
A0

X' (y; h)

A0

= lim
A0

= 1lim
A0

(36) =)

>

>

y

(

,

\
,

|
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Y2 =) 0 -0) =0
1€K () UR ()

31), (33) - (35) then that the limit (23) is:

Y(8(y + Ah) - (y + Ah))f - 2(6(y) - 3’)1'7"L

1 1

I Y R S I NGt Bl
i€J(y) UK (y) i€J(y)

I oy +amp?+ 3 omp? -1 vl

i€3(y) Y ieR(y) T i€J(y)

$4 1 @yn +2%nk) + ] 4% |
i€3 (y) i€R(y) J
2yihi

By observing the above expression, which is linear and continuous in

h, we come to the conclusion that X is differentiable at y (see, for

example, [3 ] page 172).

Ux(y)'h = X' (y: h)

For Vx(y), the gradient of ¥ at y,

and so, the components of Vx(y) can be obtained by calculating the

directional derivatives of X along the axis directions. Hence, using

(36),

(

(37) (W), = | 2y, if <y, al> > 0

i

0

Note that for <y, al>

, otherwise

0, v, = 0, and thereby (V)((y))i is continuous.

Consequently X is continuously differentiable. Morecever, V¥ can be

written in terms of 6(y).

From Proposition (18),
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Ux(y) = 2(y - 6(y)). v

Figure (38) shows the diagram of the contours of X in a two-dimensional
example. This function is not twice differentiable, since it can be
observed from (37) that (V)((y))i is not differentiable at a point y

such that <y, a™> = 0.

To finish this section we prove the following property conc..rning

the function ¥X:
(39) THEOREM. Consider the function

X: 0 — R

2
y— |6 - yll
and let y € , h € RP with vy + h € Q. Then
X(y +h) < X(y) + Vx(y)'h + 2||h|12

PROOF. The Taylor series expansion for ¥ is

- 1

X(y + h) =X(y) + [ Ux(y + th) 'h at

0

1

= X(y) + UX(y)'h + [ (Tx(y + th) - Ux(y))'h dt

0

1
<X+ W) o+ || [ (Vx(y + th) - Ux(y))at]|n ||
0

1
(40) < X(¥) + V(¥ 'h + [ || Vx(y + th) - Vx(y) ]| at]|n ||
- 0
However, Propositions (7) and (22) give,
[| ¥x(y + th) - ¥x () ||

= 2“ th - 8(y + th) + e(y)H

< 2]l tn]] + 2] 6(y + th) - 8 ||



Contours
0 | 2 3
igure 38.
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2|l tnfl + 2] tn]]

A

ale] [ nll

Hence, from (40),
1 2
X(y + Ah) < X(y) + Vx(y)'h + 4 [ tat|ln]]
- 0

= x(y) + V(y) 'h + 2|0 > v

5.2 DESCRIPTION OF THE ALGORITHM

~

Different procedures for solving minimum norm problems are found in
the literature. It is a common practice to minimize the norm function
over a convex set using a feasible direction algorithm. Bearing this
approach in mind, a feasible direction algorithm studied by Allwright [ 1]

is discussed next.

Consider the problem of minimizing a convex function f: ¥ — R
on a compact convex subset y of a Hilbert space, where f is twice

continuously differentiable on Y with second derivative sz satisfying

(41) G < V°£(y) < G + mI

for some positive semidefinite matrix G and some finite positive number

m.

At each iteration j, the algorithm minimizes with respect to z € Y

the following quadratic approximation (at a point yj) to £,

s 1
42) £ (y., = f(y.) +<VE(y. —y.>+=<z-y., Glz-yv.)>
( Y:l z) (yj) (yj), z yJ 5 yJ (z yj)

A minimizing z is denoted zj. The feasible descent direction zj - yj
is then used as a search direction from yj. The algorithm, in its

non-implementable form, is described by:
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(43) ALGORITHM FOR CONVEX OPTIMIZATION

1. Choose € € (0, 1), yo €Y

Set j = 0.

2. Find the search direction hj = zj - yj, where
z5 € arg min{fs(yj, z): z € Y}

and fs(yj, z) is given by (42).
3. 1f f(yj) - fs(yj, zj) < € stop; else continue.

4. Determine the line search parameter

Aj € arg min{f(yj + Ahj): A € [0, 11}.

5. Set y. =vy. + A.h, j = j+1 and go to 2.
YJ YJ 375 J J g

+1

The idea upon which the algorithm is based is given by the following
argument. If fs(yj, ) 1s a reasonably good approximation to f(-),

then zj should be a good approximation to the minimizer § for £, and

so the search along the feasible direction zj - yj from yj should give

a fairly good approximation to §. Since in a neighbourhood of §, f

can be approximated by fs(yj, *) quite well, the algorithm is likely

to converge to §. In fact, convergence rate information is obtained

in [1]1. When G > 0, a rate is obtained which is independent of the
geometry of ¥ and of the number of the constraints that define the
feasible set. This does not always happen when other feasible direction
algorithms are employed. When G Z 0, fs(y, .) is a linear approximation
to £ at y, i.e. it is the tangent plane at y. 1In this case, only the

diameter of the feasible set affects the convergence rate information.

This algorithm has a nice feature that, when fS and Y together have
a suitably simple structure, the minimization in Step 2 can be carried

out fairly simply. This is the case for problem (4) when considering a



linear approximation to the cost function, as will be done.

We shall say that a satisfactory point yj is obtained if, for
€ small, an €-approximation to ¥ has been achieved, in that
f(yj) - f(§) < €. This is ensured by the stopping condition of Step 2

of Algorithm (43). For, from [1 , Lemma 3.1], it turns out that
20y, z,) < £()
s M LT
Since f(yj) Z'f(§) then
~ s
0 < f£(y.) - fly) < f(y.) - £ (y., z.).
<L (yj) (y) £ (yj) yj, J)
So, a satisfactory point is reached when
Fly.) - £2(y., z.) < €
3 3" 73 !

~N

and, since {f(y.)} -+ f(§)‘and zj - vy (by the Lemma), this condition will
J

definitely be satisfied for some Jj.

Although for the proof of convergence of Algorithm (43) ([11],
Theorem 3.1) the objective function f is required to be twice continuously
differentiable, that 1s not essential for the convergence study there

since what is i1n fact needed, is that
(I) For some M > 0O and for all h such that y + h €Y,

(44) f£(y + h) é f(y)

+

<VE(y), h> + 3<n, Gh> + = || ]|

and that

N

(45) (11) £5(y, y+h) < £(y),

where i minimizes fs(y, y+h) with respect to h such that y + h € Y.

In order to use Algorithm (43) to minimize ¥, which is not a
2 ) . .
C”"-function, we draw attention to two facts: (i) Theorem (39) proves

inequality (44) for X, with G = 0 and M = 4; (ii) inequality (45) also
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holds for £ = X. 1In fact, since X is convex and differentiable
X(y + h) > x(y) + <¥X(y), h>

(46)

x5y, y+h),
and then

min{xs(y, y+h): vy + h € Q}

X%y, y+h)

min{y(y + h): v + h € Q}

A

X(¥) .

~

Hence, the convergence (rate) information of Theorem 3.1 [1 ] holds for
Algorithm (43), when applied to the function X. We need only to remark
that, although the proof presented there assumes that an approximate line
search is used, the proof can easily be modified to accept an exact line
éearch, as should be expected, and which will be the case when applying
Algorithm (43) to ¥. The search parameter considered in [ 1] is of the
Armijo type, i.e. the step length A is chosen to be Bg, for some B < 1

and for the smallest integer % > 0 such that

(47) f£(y + BQh) < fly) + % B£<Vf(y), h>.

N

However the exact line parameter is chosen to be A so that

£(y + Ah)

min{f(y + Ah): X € (0, 1]}
and hence

£(y + Ah) < £(y + BYh)

for the smallest % > 0 satisfying (47).

These considerations lead us to apply algorithm (43) to minimize
X, using its linear approximation Xs of (46). The description of the
algorithm follows, and diagram (49) sketches the situation at a given

iteration.
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f(-)—/-——fswj,-)

Figure 49.

» £(y;) -0y, 25)

/
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(48) ALGORITHM FOR THE MINIMUM DISTANCE PROBLEM

1. Choose £ € (0, 1), YO € Q

Set j = 0.

2. Calculate the gradient v by

v = 2(y3 - 8yh)).

3. Find a point

zd € arg min{<v, z>: z € Q}.

4. Find the search direction
nd = 23 - yJ.

5. If <v, -h’> < €, set y = y:J and stop;

else continue.

6. Determine the line search parameter

A € arg min{x(y? + And): A € [0, 11}.

7. Set yJ+1 = yJ + thj, j = j+1 and go to 2.

J

(50) REMARK. The determination of z- in Step 3 is done by minimizing

<Vx(yj), z> on {! since this is equivalent to minimizing Xs(yj, z)

on §l, where

1) x5y, 2) A x(y?) + <Vx(yj), z -y v

(52) REMARK. The stop condition of Step 5 comes from (51), since
x(yj) - Xs(yj, zj) = <Vx(yj), yj - zj> = <v, —hj>,

and Step 3 of Algorithm (43). v

An illustration of the application of Algorithm (48) is shown in

the two examples of Figure (53). The sequence {yl} actually achieves



Figure 53.
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§, in the first example, after two iterations.

5.3 THE LINE SEARCH SUBALGORITHM

This section is concerned with the determination of an exact solution
to the line search problem described in Step 6 of Algorithm (48). The
fact that the minimum of ¥ along the segment of line [yj, yj+ Khj],

A € [0, 1] can be found exactly has an obvious advantage over the Armijo
implementation since it provides a faster rate of convergence. This

can be seen by using B = 1 in the formula given in Theorem 3.1 [1 ].

At some iteration j, let y = yj, h = hj and the optimizing - Xj.
Then, for i we have either X G (0, 1) or X {0, 1}. 1In what follows
we shall assume that A€ (0, 1) and attempt to obtain p\ by finding the
value of A that makes zero the derivative 9dx(y + Ah)/3A. The procedure

A

for doing that will reveal whether A is actually in (0, 1) or in

{o, 1}.

Let £(A) = X(y + Ah). This function is piecewise quadratic, as
can be shown by writing it as
E(N) = x(y + Ah) = E(B(y + Ah) - (y + Kh))f .
i
Note that for i € J(y + Ah) = {i: <y+lh,ai> < 0}, (9(y+kh))i=(y+kh)i,

hence the corresponding term in the sum vanishes. For the remaining

indices i € {i: <y+Xh:ai> 2 o}, B(y + Kh))i = 0. For
i € K(y + Ah) U K(y + Ah) = {i:<y+Ah,ai>=o}, (y + )\h)i = 0, consequently
2
£ = ) (y + An) [ =
i€J (y+Ah)
_ 2 2.2
2 (y~ + 2Ayihi + A hi )

i€J (y+Ah)
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Thus, as A varies on the interval [0, 1], the point y + Ah varies on
the segment [y, z], and therefore the product <y + Ah, ai>, for fixed
ai also varies. Since i € J(y + Ah), if and only if <y + Ah, ai>

is positive, the set J(y + Ah) may change as A varies. Hence we arrive
at the conclusion that there exists a partition of (0, 1], formed by

an ordered set of roots of <y + Ah, ai> = 0, for all i. 1Inside each
piece of the partition a certain number of terms is summed up and
thereby different quadratics are obtained. Thus, f is piecewise

quadratic, say, on the partition {\ .,XN} of [0, 1]. It is continuous

1"

because X is continuous.

(54) EXAMPLE. Diagram (55) shows a two-dimensional example. The
line segment [y, z], the function f and its derivative are depicted.

The line segments A, B and C are defined by:

A = [Al, )\2] A {X: <y + An, a1> <0, <y + Ah, a2> > 0}
B = [>\2, >\3] A {X: <y + An, a1> >0, <y + Ah, a2> > 0}
C = [>\3, A4] A {\: <y + An, a1> >0, <y + Ah, a2> < 0}
The index sets are:
Jly + An) = {2}, A €n
Jy + Ah) = {1, 2}, X €B
J(y + An) = {1}, X €cC
It follows then that f is defined by:
(2.2 2
h, AT+ 2y2h2A Yy A €A
£V =4 (h12 + h22))\2 £ 20y h 4y ) ¢ (y12 " y22), A €B
{ hlz)\z + 2y1h1)\ + y12 , A EC
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Figure 55.
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and its piecewise linear derivative, by:

2
2h A+ 2y,h,, A €A

. 3 2 2
£r () =4 2(h1 + hy YA+ 2(y1h1 + y2h2), AEB

2
2h1 A+ 2y1h1, AEC v

(56) EXAMPLE. Another example, three-dimensional, is depicted in

Figure (57). v

In order to determine the break points of the piecewise function

£(A) on [0, 1], A 'AN’ we must solve each of the set of equations

1r00r

(58) <y + Ah, a> =0, i=1,...,p

and consider those solutions Ai’ i=2,...,N-1, which belong to the
interval (0, 1). The extremes are Kl = 0, XN = 1. Obviously N < p,
where p is the dimension of the space of the variable y. In order

to solve (58) we assume that <h, ai> # 0. 1In fact, the indices i so

that <hl a'> = 0 are not considered for we are attempting to find

the values of A such that <y + Ah, a®> changes sign, and

, i .
<y + Ah, a™> = <y, a > + A<h, al>,

so, <h, al> = 0 implies that <y + Ah, al> does not vary with A. The

.equations of (58) have therefore the solutions.

i
A, = -2 :

(59)
1 - Zi/yi

<h, al>
A criterion to investigate whether Xi € (0, 1), is easily seen to be
given by

Z,

A, € (0, 1) & — < 0.
1 yi
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To form the partition these roots must be ordered. For that, note

from (59) that

z z,
(60) Ai<)\.=~~l-<——1 -
J Yl Yi
We can summarize what has been =aid as: the partition {Xl,...,AN},
N < p is determined by
(
)\1—0
1 Zy
61) A, = ————, 1€ {2,...,8-1}={k=1,...,p: — < 0}
i 1—zi/yi Y
A=1
N

and the ordering may be done using (60). Two procedures are suggested

here for the determination of the minimum of f£(A):

(i) The derivative f'(A) is piecewise linear, so, once the segment

containing the optimal X, i.e. the point that makes zero f£', has been
found, ) may be obtained exactly by linear interpolation. Then, the
optimization procedure reduces to finding that segment, which can be

done using the bisection method, which is qﬁite effective for large N.

The bisection method for finding a zero of a function g: R > R
is restricted to the case when the function is defined over a bounded
interval and changes sign at the zero point. Since it is unrealistic
in practice to expect to find a point X such that q(§) is exactly

zero, the algorithm provides an interval [a, b] such that
gla)g(b) < 0 and |a - b| < §,

where § is some small tolerance. Such an interval [a, bl is called
an interval of uncertainty when we know the zero lies in it. The

bisection method reduces the uncertainty interval by comparing function
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values. Suppose that an intexval [a, b] has been specified in which
g(a)lg(b) < 0. We test g((a + b)/2). If it is zero then the algorithm
terminates; otherwise a new interval of uncertainty is produced by
discarding the value of a or b, depending on whether g(a) or g(b) agrees

in sign with g((a + b)/2.

The search for the segment containing a point at which f£' equals
zero will be done using the idea of the bisection method, by seeking
a segment [a, b] for which f'(a)f’'(b) < 0. We shall not be concerned
with the™condition Ia - b|] < 8. 1Instead, a new condition is specified
ensuring that a and b belong to the same piece of the partition. For

that, we shall check whether
J(a) = J(b).

Summarizing: a segment containing the zero is discovered if we f£ind a

subinterval [a, b] of [0, 1] which satisfies

f'(@)f'(b) < 0 and J(a) = J(b).

‘Assume that the segment (a, b] has been found. Then,

fra = - 2B F g

and hence

T T b - a
(62) X = a f'(a) o) - £ (A

A

Diagram (63) shows an example in which A is found in five steps. We

start with the uncertainty interval [al, b,]1. Condition f'(al)f'(bl) <0

1

holds but not J(al) = J(bl) (a1 and b, do not belong to the same piece

1

of partition). Then, [al, b1] is halved and a1 discarded, since
sign (f'(al)) = sign (f'(a;)). Therefore [a2, b1] is the new

uncertainty interval. b1 is renamed b2 and the same procedure is



- 132 -

Figure 63.
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done again. It stops when the uncertainty interval [a, b] is
obtained. Finally observe that, by the convexity of £(A), we conclude
that £'(0) > 0 implies that A = 0, whereas £'(1) < 0 implies A = 1.
Since in either case we have f'(0)f' (1) ; 0, the test £'(0)£'(1) < O

should inform us that formula (62) is to be used. Hence, the line

search lgorithm is:

(64) LINE SEARCH ALGORITHM (Determination of A for step 6 of

Algorithm (48). Here y, z, h and A refer to yJ z?, nd ana A7.)
1. Seta=0,b=1.

2. Determine
1 ={ie {1,...,p}: zi/yi < O}
J(y) A {i€1: <y, a™> > 0}

J(z) A {i€ 1: <z, a*> > 0}.

3. Evaluate

£'(0) =2}y h,
i€ (y)

£'(1) =2) z.h
i€J(2)

4. If £'(0)f'(1) < O then go to 6 ([0, 1] is the uncertainty interval);

else continue.

5. If £'(0) 0 set A = 0 and stop; else set A = 1 and stop.

“ \/

6. If J(a) = J(b) go to 11; else continue.
7. Setm= (a + b)/2.

8. Determine

J(y + mh) = {i € I: <y + mh, a> > 0}.
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9. Evaluate

£'(m) = ) 2hi2m + 2y.h,
i€J (y+mh)

10. If £'(m) < O then set a = m ([m, b] is the new uncertainty interval)
and go to 6; else, if £'(m) > O then set b =m ([a, m] is the

new uncertainty interval) and go to 6; else set A = m and stop.

11. Evaluate

b - a v

A:a-f (a) f'(b) £ (a)

(ii) A second procedure to determine the step length is proposed next.

Here we shall investigate the root of the equation

£'(A) = 0.
Now
£ (M) = 2 x(y + An)
ax &Y
_ ox(z) 9z
T 23z N

z = y+Ah
= 2(y + Ah - 8(y + Ah))'h

= 2§(y +Ah - 8(y + An)) b,

Evaluating the term (y + Ah - O(y + kh))i, using proposition (18),
we have
(y + Ah) , if <y + An, a’> > 0

(y + Ah - O8(y + Kh))i =
0 , otherwise

Consequently,

£'(N) =2) (y + Ah), h,
i€J (y+Ah)

Hence, £f'(A) = 0 if and only if



65) A = - i€J (y+Ah)

i€J (y+Ah)

A trial and error method that yields the solution to (65) is

sketched:

(a) Determine the breakpoints Al""'AN for £(A), using (61).

(b) Determine the index set J(y + Ah) from (24b), for A varying

1.

inside each interval [A., A,
i i+1

(c) Evaluate the expression (65) for each interval [Ki, AL LT,

i+1

remembering that J(y + Ah) is the same for each A € [Ai, A I.

i+l
(&) 1If, for an interval [Ki, Ai+1]’ A given by formula (65) belongs
to the interval, then A is the solution of (65), and therefore

of £'(A) = 0. This happens because the right hand side of (65)

1.

is constant whenever A € [A., A,
. i i+l

(e) If £'(\) has no roots in [0, 1] then the minimum of £(A) on
[0, 1] is achieved at one of the ends, 0 or 1. The relevant

end is 0 when f£'(0) > 0, and is 1 when f‘(l)‘i 0.

5.4 DESCRIPTION OF THE LINEARLY CONSTRAINED DOMINANT OUTPUT FEEDBACK

PROBLEM

In this and the subsequent sections, we shall study a particular
linearly constrained optimal feedback problem. An algorithm will be
devised for that, which is a variation of Algorithm (2.32), with
the search direction and line search adapted to the constrained situation,
Unlike in Algorithm (3.5), the search direction will be defined in a way

that it does not ensure convergence. Nevertheless there is an advantage

gained from the fact that the method presented in the previous sections
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can be applied to this problem, providing an implementable algorithm.

(66) LINEARLY CONSTRAINED PROBLEM. Given an initial output feedback
matrix FO € F and an initial condition X QZRn,
(1.1-3)

for the system

minimize{v(xo,p): F € M} in the dominance sense

where

=(f, ) FF:a,. < f < b..
ij = = 1ij

for some real numbers al. and bi , with ai

L. , i€ {1,...,m}, 3 €{1,...,r}}
1]

. #b... \Y
J 1]
Then a feasible direction from F will be a matrix S,

such that
F + S € M, which (by (3.2))

implies that S € M(F), for

67) M(F) A{ls e R™  :s=x-F, x €M}
={SEI@mr:a - f,.. < s <b,. -f. }
ij ij = Tij = Tij i3
={serR™ . g .(F) <s..<h..(F)},
17 = ij = ij
where
933F) L2y~

h, . (F) Ab.. - £,..
i) = 1] 1]

The cone of the feasible directions is given by

68) D =1{sec rR™F: xs € M(F), X €

= (0, X], some X > 0}
(69)

EXAMPLE. (Refer to Figure (70)). Consider F = [fll' f12] € ]R1X2
(51R2), and assume F lies on the boundary of M, the active constraint
being g12, i.e. g12(F) = 0.

Then the set M(F) is defined by



----- P

29 |

N/

-4
EE.
N M, ()
(F)//O/////f(l")
@  hy(F) S
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11 £y (8

3
I~
]

0 < s, 2h(®

with gll(F) <0, h,,(F) > 0, and h, ,(F) > 0. Since there is absence

11 12

of freedom for s in the sense that it cannot take negative values,

127
D will be defined simply as:
2

D=1{ser*.s

12 2 0

or, denoting S in vec notation, we can write

2 o o1 Sy T
D={s€R": < 0}
L0 -1 ] S,
1 o] [s, ] -1 0 [ s
- (s e r”: Pl <otuiser®: e o3
L0 -1 ] S, _0 -1 | _ s,
i.e., D is a union of two orthants, as is clear from the figure. v

. mxyY
Because of the geometry of the set M, in a general space R ,
1t is clear that, whatever is the relative position of F in M,
D 1s a union of orthants, the number of which depends on that relative

. . mxy
position. In the particular case of an interior point, D = R .

The algorithm for solving problem (66) shall use the search direction
which coincides with Allwright's unconstrained direction when F is
an interior point of the feasible set M. For, it will be chosen as
the normalized S such that it minimizes the largest eigenvalue of
dK(F; S) inside the cone of the feasible directions at F. The

statement of the optimization problem is

(71) SEARCH DIRECTION PROBLEM.

Minimize {o(F, S): s € S n D}



where

. mxr
S is the unit sphere in R

g(F, S) = Amax AK(F; S),

DAfls=(s, ) ERT ;5 s..<0, (1,3 €I, %7

15 i3 s.. >0, (i,3) EIZXJZ},

17 713

1, < f{1,...,m}, I <{1,...,p}. V

. < {1,...,m}, I < {1,...,p}, g

2 2

J, and J, are all functions of F, and

Note that the index sets Il’ 12, 1 2

= = i .. >0 L. <
that I1 n I2 ¢ , J1 n J2 ¢ since s:LJ > and slJ < 0 cannot
hold both for the same pair (i,j) (the reason for this is that equality

constraints are not considered, i.e. aij # bij)'

We ‘have seen that the mapping that defines the search direction must
satisfy certain properties in order to guarantee convergence of the
resulting algorithm. We shall demonstrate that the search direction
of (71) does not. However, instead of showing that those properties
are not valid directly, we shall prove that it does not satisfy
a necessafy condition for convergence. There are examples showing
that the jamming phenomenon takes place when inactive constraints
are i1gnored in the definition of the search direction, due to the
fact that not using them may force the step length to go to zero, even
far from the optimum (see [4 ]). To remedy this, we may 1ignore only
the "sufficiently" negative constraints and include those "close"
to being active. Hence, using inactive constraints to compute the search
direction is fundamental to guarantee convergence of the algorithm. So,
it is important to find out whether the definition for the search direction
given in (71) takes into account the inactive constraints at F.

Clearly it does not, since D has been defined by means of the active

constraints only. This shows that convergence will not be necessarily
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achieved for the algorithm to be presented here. The results have, however,
possible applications elsewhere, which is why they are included here.

K
Xk

For any function g with domain X =kgl , it is a fact that

min{g(x): x € X} = min{min{g(x): x € Xk}: k=1,...,K}.

Then, the original minimization problem is equivalent to solving all

the K subproblems min{g(x): x € Xk} and then taking the solution which
gives minimum g. In the same way we shall divide problem (71). Assume
that D = ng, for some orthants Pk. Then, a subproblem will be to
minimize 0 on a particular orthant, and there will be as many subproblems
as the number of orthants. The solution will be chosen among all

the solutions to the subproblems as the one that gives minimum O.

Denot%ng a fixed orthant Pk simply by P, we have therefore the

(72) SEARCH DIRECTION PROBLEM FOR ONE ORTHANT.

minimize {o(F, s): S € S N P}

where
R - mXr .o . .o
P ={s (sij) € R 155 < 0, (i,3) 611“1'513 >0,(1,1))€ 1/1,x3/3,}
= {s € ®®: as < 0}
where A 1s a diagonal matrix with diagonal elements aij € {1, -1}
1=1{1,...,m}, J=1{1,...,p}. v

Here I/I1 denotes the set {i € I: i ¢ Il}’

The algorithm using rule (71) for the search direction has an analog

to Lemma (3.4). So, for the pair
(73a) S € arg min{Amax dK(F; S): s € S n D}

(73b) T(F) = Amax dK(F; S),



we can prove
(74) LEMMA. Let F € M, § and 7(F) given in (73), then:
(a) If ﬁ(F) < 0, there exists a real i > 0 so that
K(F + A8) < K(F), for all A € (0, Al.

(b) If %(F) > 0, there exists a § > 0, so that K(F') i_K(F),

for all F' € M: ||F - F'|| < &.
PROOF .

(a) As K is Fréchet-differentiable at F (Section 2.1), given any
€ > 0, there exists a 6(g¢) > 0 such that, for all S such that

IIs |l < 8¢y,

(75) K(F + S) = K(F) + dK(F, S) + Z
where

(76) llz || < ¢lls] .

Assume that E(F) is negative and choose € € (0, - ﬁ(F)), then there exists
§(g) so that (75) - (76 ) hold for all S such that ||S]|| < &(e). Let

A = 5(8)/]|§l|, and consider the point F + AS, A € (0, A]. Then,
THISVH PRy

K(F + A§) = K(F) + AK(F; A§) + Z,
with

21l < el as]l

Hence, for all x# o,
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x'K(F-ng)x x'K(F)x + x'dK(F; Ag)x + x'2x

]

N

x'K(F)x + X'dK(F; Xg)x + 8|lk§||x'x

X'K(F)x + x'dK(F; Xg)x + EAX'X

A

" N 21&
since ||Sl]2 < |l SHF =) (§,°) =1. Then,

fl 1
1l J

7' AK(F; AS)¥,
'y

Xl

x'K(F + >\§)x < x"K(F)x +(max
¥#0

+ EA x'x

= x'K(F)x + A\max dK(F; AS)x'x +
+ EX X'X

= x'K(F)x + MT(F)x'x + €\ x'x

= x'K(F)x + A(T(F) + €)x'x

< x'K(F)x,

since ﬁ(F) + € < 0. Consequently, F + AS strictly dominates F for

A€ (0, AL

(b) Assume now that m(F) > O and choose € € (0, E(F)). Then, whenever

I'sll < s,
K(F + S) = K(F) + dK(F; S) + Z

for some Z with I[Z[I < €[lS|L Consider any S # 0, with llsll < §(g) .

Then, for all x,
x'K(F + S)x > x'K(F)x + x'dK(F; S)x - x‘x” ZH

(77) > X'K(P)x + || SHE‘x'dK(F; x - x'x€|IS|

_)
Is Il
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Assume now that S € D. Consequently S/”SHF € D since D is acone. Thus

because H S/HS HF'IF = 1, we have
Amax dK(F; —— ) > min{Amax &K (F; x): ||X ||F =1, X € D}
sl
= T(F)
and then, for x an eigenvector of dK(F; i j ) associated with
s ||
Amax dK(F; S/IISIIF) ' F
X'AK (F; s/Hsl\F)§ R
> AE, :

X'x

(78) x'AK(F;

I,

So, for that x, if S is such that S € D with ||s]|| < §(e), (77) - (78)

hold, and hence, since []s{]é:|ls||2 §=I|S[|F'

X'K(F + S)x > x'K(F)x + || s HFQ'dK(F; l )x - x'xe| s
sl
F

> X'K(F)x + [[s || TEx'x - x'xel| s |
> x'k(E)x + ||s]l xx@@ - e
> X'K(F)x

Thus, F + S does not dominate F. Now, since the cone U contains
M(F), we have shown that, for all sufficiently small S in M(F),
F + S does not dominate F, or, in other words, for all F' € M

sufficiently close to F, F' does not dominate F. v
1£f D = R® in the above lemma, then

S € arg min{Amax AK(F; S): s € S},
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ﬁ(F) = Amax dK(F; §).

Lemma (74) then proves Lemma (2.34), for the unconstrained feedback

case (proved originally by Allwright in {2 ]5.

The information given in Theorem (3.6 ), that each iteration

yields a dominatipo feedback, also holds for the algorithm, which is:

(79)

(80)

BASIC ALGORITHM FOR A LINEARLY CONSTRAINED DOMINANT

OUTPUT FEEDBACK

Select a FO € M; set 3 = 0.

Compute
ﬁ(Fj) = min{Amax ax(F?; s):s € S n D}

where U is given in (68).
If ﬁ(FJ) > 0 set F* = FJ and stop; else continue.

Define the search direction by

Sj € arg min{Amax dK(Fj; s):s € S n D}

Compute the upper bound %7 for the step length, which

is such that, for all A € [0, Xj],

FJ o+ As? € M.

Compute the step length A3

A3 €a1grmn<{tr[(K(Fj)—K(Fj+ASj))XO]:Xmin[K(Fj)~K(Fj+ASj)]ZQ,XE[O,Xj]}.

-

If tr[(K(Fj) - K(FJ + AJSJ))XO] = 0 stop; else continue.

set 3t = ¢ 4 AJsF, 5 = 341, and go to Step 2. v

REMARK. An implementable version of this algorithm will be given

in (113). v
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The situation here is similar to the unconstrained feedback
case. . The cendition TT(F) < 0 is sufficient for the existence of
feasible descent directions, along which stands g € arg ﬁ(F) as the
steepest. The situation %(F) = 0 may also provide feasible descent

directions, in which case they would be the arguments of T(F).

We shall complete this section by proving Lemma (3.4) of Chapter 3,
which had been left, using Lemma (74) and the following result

(only part (ii) is needed but we prove part (i) for itq\own sake) :
(81) LEMMA. Let F € M and

S € arg min{\max dK(F; S):S € M(F)}

T(F) = Amax dK(F; S)

S € arg min{Amax @K (F; S):S € S n D}

T(F) = Amax dK(F; §),
Then

(1) T(F) < 0 &= T(F) <0
(i1) %(F) > 0 e T(F) = 0 and S is unique.

PROOF. Consider diagram (82).

~

(i) (=) Assume ﬁ(F) < 0, and consider the vector S = AS. By

the definition of D, there exists a A > 0 so that S € M(F). For that

A,
G(F, S) = G(F, AS) = AG(F, §) = Am(F) < O.

Hence, since S € M(F),
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Figure 82.
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T(F) = min{o(F, X):X € M(F)} < o(F, S) < O.
(«) Now || S|| # 0, since T(F) < O (other wise T(F) = 0).

Hence

(83) of(F, ) = ——— o(F, & A T(F) < O.

Il sl I\ sl i sii
Further, since S € M(F) and D is defined by

mxr

D={x€emw : AX € M(F), X € [0, X1, X > 0},

5
Il sl

T(F) = min{o(F, 8):s €S n D} <o, §/5|) <o.

then € D. It follows from this fact and (83) that

(ii) (=) Assume that T(F) > 0. Observe that T(F) can never be
positive, since 0 € M(F) for any F € M, and o(F, 0) = 0. Hence,

the result T(F) = 0, as well as S =0€ arg T(F), is an immediate
consequence of part (i). Now, consider the uniqueness of S. Assume

that there exists a nonzero S € arg T (F) . Then, for that 13

a(F, 8 = || 8| o,

and thus, since S/|| S|l € SN D (it belongs to D because S € M(F)),

T(F) = min{o(F, §):s5 € S n D} < o(F, :c'_ ) =0,
| sl
which is a contradiction.
(<) Assume that T(F) = O and that S = 0 is the only argument

for T(F). Suppose, for proof by contradiction, that %(F) = 0.

Then, for seEsSnD

(84) O(F, S) = 0
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Consider S = Ag for some A > 0 such that S € M(F). Then, it follows
from (84) that O(F, S) = 0, with S # 0. Thus there exists a nonzero S
in M(F) which makes O zero, and so it is an argument for T(F) = 0,
contradicting the assumed unigueness of S. Hence, %(F) # 0. Since,

by part (i), T(F) < O cannot hold, it must be true that m(F)> O. \Y

Lemma (3.4) is an immediate consequence of Lemmas (74) and (81), as

follows:

(85) PROOF OF LEMMA (3.4).

(a) Suppose T(F) < 0. In part (a) of Lemma (74) it is proved that
%(F) = O(F, §) < 0 implies that, for small A, F + Xg dominates F.
Since only the negativeness of 0 at § was used to show that, it is
also true for S and T(F) = O(F, §), i.e. there exists a X > O so that,

for A € (0, Al, K(F + AS) < K(F).

(b) Suppose T(F) = 0 and S = 0 is the only argument of T(F). Then

Lemma (74) part (b)) and Lemma (81) part (n) give the result. v

5.5 EQUIVALENCE OF PROBLEMS

In this section we shall formulate a theory relating problems
(4) and (;2). It will be demonstrated that solving the former problem
provides useful information about the solution to the latter, and, in
certain cases, the solution itself. The main results are given in
Theorems (98) and (101). They generalize some of the results of

Section 4.1.

For that, we need to prove some facts and introduce some concepts:

p

(87) LEMMA. Let P be an orthant in R and gq € RP . Then qg £ P,

if and only if <x, g> > O for all elements x of P.
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PROOF' .

(=) Let the orthant be defined by

P={x€er": ax < 0},

=

where A is a diagonal matrix with entries aij € {1, -1}, ana suppose

g € P. Let x be an arbitrary eiement of r. Then we have Aq <O

and Ax < 0, and thus,
<Ax, Ag> = x'A'Ag > 0.

But A'A = A" = I, since A is orthogonal. Thus <x, > > O.

(<) Let q € R and assume that, for all x € P, <x, @ > 0.

Note however that, for the j-th column of A, a]
. . - . i
acady=ar-ady = [ <!, cals [ = lo <o
<al, -al> -1
__<ap, —aj> ) 0 )

This implies that -al) € P, and so <—aj, g> > 0 by assumption.

this holds for all j,

-Aq = <-a1, a> } >0
L.<—ap, q> J
and hence Aqg < 0, proving what we wanted.

(88) PROPOSITION. Let P be an orthant in Y given by

P={X€]RP:AX5_0},

Since
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where A is a diagonal matrix with diagonal elements in {1, -1}. 1f,

for some y € P,
s ¢ -arg min{{max<s, x-y>: x € P}: s € S}
then s € P.
PROOF. Consider the closest point in P to y, 6(y), and let
c=606(y) -y.
It follows from Proposition (6) that, for all x € P,
<c, x> ; 0
Lemma (87) then says that ¢ € P.
On the other hand define

{z = x-y: x € P}

N
e

Thus, changing variables, the expression

s € -arg min{{max<s, x-y>: x € P}: s € S}
becomes

s € -arg min{{max<s, z>: z € z}: s € S}

(Refer to diagram (89) for the geometrical interpretation.)

Since 0 € Z (otherwise y € P) and
max{<s, z>: z € 2} = o(s),

for O(s) the support function to Z, we can use Theorem (4.6) in order

to say that

arg min{o(s): s € S} ={—-——¥—— ),
IRl
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where Y is the minimum norm point of Z. However O(y) is the closest
point to y in P, which implies that ¢ = 6(y) - y is the minimum norm

point of Z. Hence,

el

and so, since ¢ € P and P is a cuue,

arg min{o(s): s € S} = -

s = -arg min{o(s): s € S} = € P. v

el

(90) COROLLARY. Suppoge P N Q = ¢ and let ¢ be the(nonzero) solution

to Problem (3). Then § = &/|| &|| belongs to P.
We must now state the following definitions:

(91) DEFINITION. For a convex function f defined on a convex set C
in a vector space X, we define the convex set [f, Cl, called the

epigraph of £, by
(£, c] ={(xr, x) € R x X: x € C, £(x) < rt. v

(92) DEFINITION. Given a concave function g defined on a convex

subset D of X, we define the hypograph of g as
g, D] = {(r, x) ER x X: x €D, 1 < g(x)}. v

Theorem (98) 1s an application of the important Fenchel Duality
Theorem for conjugate functions. Before stating it, we shall introduce

some concepts of the dual optimization theory (see [3 ]).

(93) DEFINITION. Let f be a convex function defined on a convex

set C in a normed space X. The conjugate set C* is defined as

c* = {x* € x*: sup [<x, x*> - f(x)] < ®}
x€C
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and the function f* conjugate to f is defined on C* as

£*(x*) = sup [<x, x*> - £(x)]. v

x€C

Here X* denotes the (normed) dual space of X, the space of all bounded
linear functions on X. If x* is an element of X*, by <x, x*> we mean
x*(x), i.e. the value of the linear function x* € X* at x € X. For
the geometrical interpretation of the conjugate functionmgéfer to
Figure (94). The dual space of I{i is itself R" in the sense that the
function x* can be represented by a vector in Igj, normal to the
hyperplane <x, x*> = 0. It is proved that the number f*(x*) is such

that the hyperplane
r = <x, X*> - f*(x¥*)
is a support hyperplane of [f, C].

The minimum vertical separation of the sets [f, C] and [g, D] is

given in terms of the conjugate functions £* and g* as follows:

(35) THEOREM (Fenchel Duality Theorem) [3 ]. Assume that £ and g
are, respectively, convex and concave functions on the convex sets

C and D in a normed space X. Assume that C 1 D contains points in the
relative interior of C and D and that either [(f, C] or [g, D] has
nonempty interior. Suppose further that u = min{f(x) - g(x): x €CND}

is finite. Then
p = min{f(x)-g(x) :x €ECND} =max{g*(x*) - £*(x*) :x* £C* N D*}

where the maximum on the right is achieved by some XS &€ C* N D*.

If the minimum on the left is achieved by some X € ¢ N D, then

max{<x, x*> - f(x): x € C} = <xO, x5> = £(x.)

0 0 0

and
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Figure 94.
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*

min{<x, xO

*
> - g(x): x € D} = <x0, Xy> - q(xo). v

This theorem says that the minimal vertical separation of the
sets [£, C] and [g, D] is equal to the maximal vertical separation
of any two parallel supporting hyperplanes separating these sets,
provided they are nolvertical. Refer to

diagram (96a) for the geometrical interpretation.

In what follows we shall define a situation in which the assumption
concerning C N D will not hold. However it can be seen that this
assumption is too strong to prove the result. In fact, it can be
checked from {3 ], page 202, that C N D is required to contain points
in the relative interior of C and D in order to guarantee the existence
of a nonvertical separating hyperplane between [g, D] and [£ - u, CI,

the. vertical displacement of [f, C] tangent to [g, D] at x Therefore,

0"
if we prove that there exists such a separating hyperplane, then Fenchel's

Theorem can be applied in our case, provided the other assumptions are

valid. This will be done in Theorem (98).

In what follows, the sets P and Q(f) (considered as subsets of

p

R , p = mr, when the vec notation is used) will be regarded as part of

the epigraph and the hypograph, respectively, of two functions on

-1 . . .
r (see 1illustration (96b)). To characterize those functions we
must rotate the basis of the coordinate system ofjmp . We define the

direction of the vertical axis to be the direction of ¢ = ¥ - ¢,

where X = 6(¢) € P and § € Q(f), i.e., where X, ¥ solve the problem
min{||x-y|| : x € P, y € Q(£)}. So, the vertical unit vector is

&/|l ¢]l- The remaining coordinate directions are not relevant for the
preoof and need not be specified. Define C as the orthogonal projection
of P onto the subspace normal to ¢ and let f: C - R so that f(c) is the

smallest number for which (c, f£(c)) belongs to P, i.e.,



¢
%9
X

Q(f)

Y
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f(c) émin{r € R: (c, ¥r) € P}.

Note that the epigraph [f, C] coincides with P, and that C is convex.
In order to prove that f is convex, take two elements of C, c1 and 02,

and consider the convex combination occ, + (1 - a)cz, o € [0, 1].

1

Let
(97) r = uf(cl) + (1 - oc)f(cz).
Then

(otc1 + (1 - ot)c2, r) = OL(cl, f(cl)) + (1 - a)(cz, f(cz))'

b

i.e., the point (0c, + (1 - a)c r) of R equals a convex combination

1 27
of two points of P and thereby belongs to P. It follows from

the definition of £ that, for r of (97),

f(ac, + (1 - a)cz)_g r,

1

showing that f is convex.

Similarly define the concave functional on a convex set

g: D > R such that for all elements 4 € D
g(d) = max{r € R: (4, r) € Q(f)}.

Finally, we can state

A

(98) THEOREM. If ¢ solves problem (4) and & = 6(y) - § # 0, then

&/|| é|| is the only solution for problem (72).

PROOF. Consider the situation shown in Figure (96b) with the convex
and concave functions, f and g respectively, defined by the two sets
P and Q(f). As before, let ¢ = % - ¥, where § € Q(f) and X = 8(¥) € P
are the closest points in the sets. Let Hland H2 be the supporting

hyperplanes, at X and ¥ respectively,
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H1 = {x: < ——ﬁi—- , x> = 0}
Il ell

Hy= {x: < —S—, o = -] &}
I &l

Recall that if H1 supports P it must contain the origin. H2 is defined

which passes

v

as the hyperplane parallel to H1 at a distance of !!EH

A

through ¥. The sign of < , ¥> (negative, by Proposition (6))

el
gives the exact expression. The halfspace defined by H2 that
contains Q(f) is
{x: <« —=—, = <-|| &},
I ell -

since H2 must separate Q(f) from P and we have (Proposition (6)) that,
c
I &ll

that a supporting hyperplane to {(f) can be seen as supporting [g, D]

for all x € P, <

, x> > 0> -||&||. It is clear from the figure
as well. Thus, the above halfspace contains [g, D] and so, for all

x € [g, D},

A

(99) < ———, x> < -|| &|
| &l

Now, consider a point x € [f, C] and define the vertical displacement

of the set [f, C],

Since by definition of [f, C], x = (r, y), for some y € C and r > f(y),

an element of the above set can be written as z = (r, y) - (l|6[|, 0)
= (r - || &]| , y), and the set as
{te-llell, n:y€c, r>fwm?
={e-lell,pw:yec, r-llell>ew - [lell?
={(r', y): v €cC, r' > £(y) - || &l }
Arf-|&ll, a.
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Now, the fact that we have < ——E——-, x> > 0 for all x € P implies that,
Il &l| h

for all z€[f - || &]|, c1,

A

C

el

<

z + g>> 0,

and thus
<——, 2> > - |l &l .
el
Consequently, this fact and (99) proves that H2 separates [f - || &|| , c]

from [g, D]. As we have remarked this fact substitutes for one of the
assumptions of Fenchel's Theorem. The set P (= [f, C]) has nonempty
interior, therefore the theorem applies for the pair [f, C] and (g, DI,
and we can say that ||8I|, the minimal vertical separation of [£f, C]

and [g, D], is equal to the largest of the vertical distances between

any supporting hyperplane below [f, C] and above [g, D]{ Consequently,
for any other pair of parallel supporting hyperplanes, the vertical
distance between them is not greater than]!g“-Consider now the (orthogonal)
distance between any two parallel hyperplanes. Obviously it is not greater
than the vertical distance, so the situation is that the largest distance
between any pair of supporting hyperplanes is llé[l. In order to write
down this algebraically, which will lead us to the final result, consider

two arbitrary supporting hyperplanes to [f, C] and [g, DI,

=
It

{x: <n, x> o}
and

HI

{x: <n, x> -d},

1]

for some 4 > 0, with n chosen with unit norm and in such a way that

the halfspace {x: <n, x> > 0} contains [£, C] (see Figure (100)).

Lemma (87) says that a vector n satisfies <n, x> 2 0 for all elements

x of P if and only if n is itself an element of P. Thus, for the normal

#which are parallel
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n toH and H', n € S N P. The distance between the hyperplanes is
d and, since 0 € H, d can be written in terms of the supporting function

to Q(f) (see [3 ], page 136}, as
d = -maxi<n, x>: x € Q(f)} = -0(£f, n).

Thooef 2z || ]| is the largest of those distances, for all n € S N P,

P R A L

A

I ell = -ocs,

l ) > -0(f, n),

(o}

A

C

I &ll

(£, ) < O(f, n).

A

Hence, since by corollary (90) the unit vector < €

I ell

N~

Il ell

€ arg min{o(f, n): n € S N P},

and on account of the fact that c/“c“ is the only unit'normal to H and H'

with support function -|| &|| , the result follows. v
Another important result is given by:

(101) THEOREM. P N Q(f) = ¢ if and only if O(f, 8) < 0, for § the
. solution to problem (72) (i.e., if and only if S is a first-order
descent direction) .

PROOF. (=) Suppose §2(f) N P = ¢. Then ¢#0 and, for §=8/]]3” ,U(f,§)=—” 8” <0.

(from proof of Theorem (98)).

Alternatively, this can be proved directly as follows:

(=) Suppose 2(f) N P = ¢. Then there exists a strongly
separating hyperplane H between Q(f) and P, which implies that there

exists dmﬁormal n to the hyperplane such that
min{<n, x>: x € P} > max{<, w>: w € Q) }.

However, 0 € P, therefore the left hand side of the above inequality
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is nonpositive, and so
(102) max{<n, w>: w € Q(£)} < 0.

Now consider the supporting hyperplane to P, parallel to H, i.e., with
normal n as well. In the proof of proposition (6) it is shown that
any hyperplane supporting P is of the form {x € Ig): <n, x> = 0}.
Obviously the halfspace x € Ig): <n, x> > 0} contains P. Thus, for

all x € P, <n, x> > 0. However from this and Lemma (87), n € P.

Thus, (102) gives

~

g(f, 8) min{{max<s, w>: w € R(£)}: s € S n P}

]

< max{<n, w>: w € Q(f)} < 0
(=) Assume that
O(f, §) = max{<§, w>: w € Q(f)} < 0.

As a consequence, for all w € Q(f), <S, w> < 0. However § is a solution
to problem {72), and so it must belong to P. It follows from Lemma (87)

therefore that w € P. This proves that P N Q(£) = ¢. v

The practical significance of Theorems (98) and (101) is summarized
next. Theorem (101) says that P N Q(£f) = ¢ if and only'if the solution
to the search direction problem is first-order descent (O(f, S) < 0).
Observe however that saying P N Q(f) = ¢ is equivalent to saying that
the solution to the minimum distance problem between P and Q(f) is
nonzero. Thus, a necessary and sufficient condition for a first-order
descent solution to the search direction problem is that the minimum
distance solution be nonzero. If this is true then the minimum distance

vector defines uniquely the search direction solution, which is what

Theorem (98) demonstrates.
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Thus, the minimum distance solution defines the solution to the
constrained search direction problem. Theorems (98) and (101) are
the equivalent of some of the results cf Section 4.1 (summarized in
Theorem (4.6) and result (4.9a)). Those showed the relationship
between the minimum norm problem and the support function minimization
problem for a convex set. Since the search direction problem is the
minimication of the support tunction of {(f), they gave the relationship
between the minimum norm and search direction probiems. Here we have
related the minimum distance with the constrained search direction
problems. We end this section by stating the following two results,

equivalent to (4.9b) and (4.9c):

-P N Q(f) < 3Q(Ef) &> C(f, 8) =0

-PnQE) # b b= G(f, 8) > 0O

5.6 ALGORITHM FOR THE SEARCH DIRECTION PROBLEM

The fact that the original problem of seeking a search direction
for the constrained dominant feedback algorithm may be converted into
a minimum distance optimization problem, enables the use of the theory
developed in Sections 5.1, 5.2 and 5.3, to be applied for solving the
former problem. Thus, the algorithm for determining the minimum
distance between an orthant and a convex set, algoraithm (48), will be
applied to P and Q(f). 1In order to adapt it a few remarks must be

made.

The minimum distance problem between the orthant P and the convex
set Q(f) reduces to minimizing ¥ = || 8(y) - yl{z when y € Q(£)
and 6(y) is the projection of y onto P. A point yv € Q(f) is defined
as an e€-approximation for X(¥) when |X(y) - X(§)| < €. Aalthough Theorem

(98) says that any minimizer § for ¥ such that X(¥) # O gives the



- 164 -

minimizer § for O through the formula

s . 0@ - ¢

lle@ - ¢l

an €-approximation to ¥ (¥) will not necessarily give an €-approximation

to 0(8) ( = 0(f, 8), where the variable f is omitted). This implies

that the stopping condition given by Step S of Algorithm (48) neeas to

be changed in order to provide a solution that €-approximates O (§) instead

of X(¥).

Diagram (104) depicts the values of both functions X(yj) and O(sj),
for a few iterations of Algorithm (48) on the example of Figure (53b).
The function which is being minimized is X not O, and thus there is
no reduction of 0 at each iteration. Since, unlike ¥, O depends on the
geometry of ((f), they have quite different behaviour, even near the
minimum point. Despite that, we know that the minimum of both coincides
(in the sense that ¥ gives 8) and that 0 is continuous. So, Algorithm (48)
will eventually approach the minimal value of 0 and this will ensure
a negative G(yj) after a finite numbef of iterations, which is basically

our objective.

The change in the stopping condition must be such that the

] satisfying

algorithm terminates when a s

(103) |o(sh - 0@ < e

is reached. However, from Theorem (93),

I

>

a(8) = -] e@ -

and since || 0(9) -9 || lle(Yj) - Yj Il

[{PAN

-0(® < Jlewh -y ||

which yields
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Figure 104.
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o(sh) - o® <o) + o) -yl |,
Thus, it follows from the above that, if at the j-th iteration
a(sh + |lewh -¢? |l <e

then condition (103) is salisfied. Hence the above inequality guaranfees

an €-approximation to 0(S), and since (see Figure (105)),

(106) a =a(s) + |leh) -9 || =<2, ¥y - 2%
v |l
the stopping condition will be: =
< A4 ’ yj - zj> < €.
Il vl

Besides this, another test examining the negativeness of 0 must be
inserted. A computable formula for G(sj) follows from (106), which

is

osh) =<« —2—,yI -2 S et ¥ -

Il vl

Obviously it is impossible to prespecify € and guarantee the termination
of the algorithm with O(sj) < 0. A practical procedure is to re-estimate
€ if that does not occur. We finish by pointing out that the stopping
criteria that tests convergence of X in Algorithm (48) is d]lvll < g,

which for Ilvll small, does not imply that d < €, as expected.

The algorithm devised to give a negative solutuon to the search

direction problem (72) therefore becomes:

(107) ALGORITHM FOR THE SEARCH DIRECTION PROBLEM

1. Choose € € (0, 1), y0 € Q(f)y, €' € (0,8).

Set j = 0.
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(vz!)= MIN {¢wz) : 2€QU))

CONTOURS OF (v,z)

A

Figure |05.
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2. Calculate the gradient v by
SRS, N A R N
v (Vx (y ))i 2yi , if <y, a»> >0
0 , otherwise

i
where a~ are the columns of A.

J

3. (See Remark (108)). Find an eigenvector x~ associated with

the smallest eigenvalue of dK(f; v), then

xJ € arg min{x' dK(f; v)x: x € Bn}.

4. (See Remark (108). Find the contact point z79 between Q(f) and

its supporting hyperplane normal to v, where

io_ [ 3" 9KR(£) 3]
2 = X af X
1
j' 9K (£) 3
X 8f X
- p 4 -

5. Find the search direction

hl =z - y].

6. If < Y , -hJ> < € then go to 7; else go to 8.
vl
7. 1If O(Sj) = ¢ —~ —hj> - Ile(yj) - yj || < 0 then set
R4l
- 6(y)) -y
o) - v

where G(YJ) is given in (18), and stop: else set € = €/2.

If € < €' stop; else continue.

8. Determine the step length parameter A’ using for example

Algorithm (64).



9. Set y3+1 = yJ + thj, j = j+1, and go to 2. v

(108) REMARK. Steps 2 and 3 find the minimizer of <v, +> over Q(£f).
This is done in the same way as to obtain the maximizer (i.e., to
evaluate the support function of Q(f)), which was shown in Section 4.1.
Although the changes are obvious, we s@all describe the procedure for

them here. Recall that

Q(f) = co{z € rF . z, = x' QELEL X, x €Bn }
i Sfi

and so, the minimum of <v, z>, as z ranges over {Q(f), is achieved for

some zJ of the type
— L}
j o_ j' OK(f) 3 j' OK(£) _ 3
27 = XT TR X se..s X 3 ¥ '
- 1 p "

for some x:l € Bn. Then

<v, zI> = Y vizf =) vixJ é%%fl x3
i

CIK(£) 3

5. %
1

%7 dK (£f; v)xj

I}
1]

j ]
X (Z vi

i.e. optimizing <v, z> with respect to z € Q(f) is equivalent to
optimizing x'dK(f; v)x with respect to x € Bn. An X minimizing

x'dK(f; v)x on Bn is an eigenvector of dK(f; v) associated with the

minimal eigenvalue of AK(f; v). Hence %3 is such an eigenvector.

Furthermore, since the minimum of <v, z> is achieved at any contact

point of Q(f) with its supporting hyperplane normal to v (see

Figure (105)), then z? must be a contact point. Steps 3 and 4 find

x7 and z7. v

5.7 THE MINIMUM NORM PROBLEM AND THE UNCONSTRAINED SEARCH DIRECTION

This section is concerned with the particular case in which P = {0},

and problem (3) reduces to the:
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(109) MINIMUM NORM PROBLEM.

min{ || y|[2 :y FQ},

p

where € R- 1is a convex set.

The algorithm of [l ] for convex optimization applied to the

norm function

2
x = llvll®,

produces an algorithm, having only two points in which it differs
2
from Algorithm (48), which optimizes l]e(y) = YH . First, the

expression for the gradient of the function X becomes
Vx(ly) = 2y.
Also, the line search involves minimizing the quadratic
£(A) = x(y + Ah) = ||y + Ath = Yy + Ah)iz,
and so, the minimization over the interval {0, 1] is immediate.

The obvious application of this in the dominant feedback theory

1s for the case when the search direction is defined by
$ € arg min{\max dK(f; s): s € S},

which happens in the unconstrained dominant feedback algorithm. In
fact, since Amax dK(f; s) is the support function to the set Q(f),
it follows from Theorem (4.6) that § = ﬁ/ll@[l, where O is the

minimum norm of §(f).

The corresponding algorithm is therefore a slight variation of

Algoxrithm (107):
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1.
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ALGORITHM FOR THE UNCONSTRAINED SEARCH DIRECTION

Choose € € (0, 1), yo € Q(f).

Set j = 0.

Calculate the gradient of the norm function
v = VX(y]) = ZyJ.

J

Find an eigenvector x- associated with the smallest eigevalue

of dK(f; v). Then

x) € arg min{x'dK(f; v)x: x € Bn}.

J

Find the contact point z- between {(f) and its supporting

hyperplane normal to v, where

23 o | {3 9K(F) ]
of
1
j' OK(£) 3
X ~g X
o p -

Find the search direction

A S R

If < L , —hj> < € then go to 7; else go to 8.
|| vl
y v 3 y f Y
If o(s?) = < -h’> - ||y?|| <0 then set § =-Y——
Inal Il

and stop; else set € = €/2 and continue.

Determine the step length parameter AJ by
J, 3
. Zy. h,
A = sat | - ——EPTEE
(th )

where the function sat is defined by
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sat(a) é:[ 0, a<o0

9. Set yj+1 =yl o+ Ajhj, j = j+1, and go to 1. v

(111) REMARK. The step length is chosen in Step 8 as the scalar XJ

such that it minimizes the quadratic

£0 = Ty ? 2y A+ hij A%)
Jyn)

over [0, 1], since the unconstrained minimum of f is - —— .

3.2
2<yi)

Actually, since X is the norm function, y?+AIhd is the closest point to the

origin of the segment of line [yj, y3+h]]. v

Algorithm (110) is essentially Y.C. Ho's algorithm used in [2].

5.8 THE IMPLEMENTABLE ALGORITHM FOR THE LINEARLY CONSTRAINED

DOMINANT FEEDBACK PROBLEM

Before describing an overall algorithm that finds a dominant
output feedback with the entries of the feedback matrix ranging over
given intervals (Problem (66)), there is still one detail to be dis-
cussed: the limit imposed by the constraints on the unidimensional
search along the search direction. In other words, the problem that
remains to be solved 1s, given a search direction, to find the upper
bound for the step length. This is very simple to do owing to the

type of constraints considered.

It is helpful to start with the two-dimensional example shown in
Diagram (112). Suppose the search direction § has been found, by
finding the closest point in Q(f), as shown in the figure. The search

interval [0, A] will be determined by finding the first point at which



\

\\/
XXX

Figure 112.
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a constraint becomes active, as we move along S. Recall from (67)

that
M) ={s € RP: g, (f) <s, <h,(f)}.
1 = 1 == 1
This set can be equivalently defined as

ME) ={xs € RP: A ER, s €S, g (£) <As, <h (£}

In the example the constraint AS, - h, < 0 is the first to become

1

A

active, therefore A = h, /§,.

In order to develop a general procedure for finding the upper bound
for the step length along a direction s, consider the following three

cases [

(i) 8, >0

>

0>
|

=

-
~~
o

A

< 0 gives the solution A = hi(f)/§i

Q
’_A.
Hh
1
>
[0}
[T

< 0 holds for all A > 0 since gi(f) =a, - £, <0.

(ir) 8. < 0

>
n>
1
oy
H
H .
A

< 0 holds for all A > 0, since hl(f) = bi -£,>0

A

< 0 gives the solution A = gi(f)/§i°

Q
Hh
S~

|
>
0>
N

(iii) s, = 0O

Here both AS, - h,(f) < 0 and g, (f) - A8, < 0 hold for all A > O.

1

Thus, in view of the results for each case, the step length interval

(0, X] is chosen by

>>
[t}

min , : i,3 € {1,...,p} such that §i > Q, gj <0
s, g

(
b (£) g, () l
i b J

We may now describe the implementation of Algorithm (79).
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2.2.

2.6.
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IMPLEMENTABLE ALGORITHM FOR LINEARLY CONSTRAINED DOMINANT

OUTPUT FEEDBACK

select FO € M, € € (0, 1), B € (0.5, 0.8).

Set j = 0.

Choose the search direction SJ by following Steps 2.1 to 2.8

below, where vec notation is used, and p = mr.

Find the active index sets at fJ
{i
{i

1(£3)

]
u
1]

L,-eoip: £ ai}

3(£9)

i
1]
1l

L,..op: £ bi}.

If 1(£) U J(fj) # ¢ then go to Step 2.5 (£J lies in the boundary

of M); else continue.
Perform Algorithm (110), using £3 and the tolerance €.

If 0(8) = Amax dK(£7; s) > 0 (obtained from (110)) then set

£* = £3 and stop; else set the search direction st = § and go to
Step 3.
Construct the px p diagonal matrix A = (aij) with diagonal elements
a,, = j -1 if 1 € I(fY) .
ii
{ 1 if i € J(£9)
{ 0 otherwise
. . . k K
Construct the nonsingular diagonal px p matrices A, k =1,...,2,

where K is the number of zeros in the diagonal of A, obtained from
A by subgstituting the zeros of the diagonal with all possible

. , k
combinations of 1 and -1, i.e., a matrix A will be such that



2.7.

2.7.1

2.8.

3.
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a}s =a,,, if a.. #0
ii ii ii
{ a}s =%+1, if a., =0
ii ii
;; =0 , if i # 3

(Note: each Ak defines an orthant. The uaiocn of thew < P.)

For k = 1,...,2K, follow Steps 2.7.1 to 2.7.2.

Perform Algorithm (107), using fJ, the tolerance €, and the orthant

Pk={xEIRp:Akxio}.

set s(k) = 8.

if min{o(s(k)): k = 1,...,2K}_; 0 then set f* = fJ and stop;

else set the search direction

sj € arg min{o(s(k)): k = 1,...,2K}.

J

Compute the step length interval [0, Xj] along S- by
b .- £ f  -a .
&5 . hj h kL
A =min = 3 = ki . :h,k€{1,...,m}, 2,2€{1,...,r},
Shi By

3

3 ] |
such that shi > 0, Skﬁ <0 J .

Compute the step length A7 by following Steps 4.1 to 4.6 below.

Set g = 1.

Compute a k > 2 such that

K(k-2) _ -%3Yq

k-1 = Y2

where
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v
"

allxeg 1l 18]l 1l cll Gming) ™

2l cll I xr || mine) ™ (Il Bl |k 1|+ | &l 7))

=<
.
1

Yo = avy *b

b =2[lxEy |l |l el | 8] (ming ™!
3
2 2 )
I8l ll ke |l Iell*llx@E) 1”2l all [[x@Ey |l
F = + + .
¢ Amin R | (Amin R) ° Amin R J
{
4.3. Compute
n = - 4o§sj) .
kr Y2
4.4. set A = ppY.

4.5. Compute

B(A) = tr[(K(Fj)-K(Fj+Asj))xo] + %11 Amin x0 o(sj)A

4.6. If B(A) <O or A > Kj set g = gq+1 and go to 4.4;

else set \? = A and continue.
o3 Jod L _
6. Set F* =F’ + A°S”, j = j+1, and go to Step 2. v

(114) REMARK. The parameter kj is chosen i1n Step 4 using the Armijo
rule described in Section 2.4. The Armijo 1line function here,

%11 Amin XO G(SJ)X, uses (obviously) 0(s?) instead of T (FJ) . v

(115) REMARK. It is not possible to prove convergence for the above
algorithm, as already discussed. One way to overcome this problem

is to include the "almost" active constraints in the definition of the
search direction. This is done, for example, by defining the €-active
constraints at £, and taking them into account in the definition of the

orthants. The €-active index sets at f would be:



- 178 -

{i 0}

Ig(f)

I
—
e
[\
I
H
+
)
Ihv

1]

J () {i=1,...,p:fi-bi+€;0} v

It is worthwhile summarizing what has been done in this chapter.
In the first three sections we described a convex optimization problem
oand developed a method for solving it. In the rect of the C%apter
we discussed two applications for this study. First, how it leads
to a practical procedure to compute a search direction for an algorithm
for determining a dominant feedback, subject to linear constraints.
Then, how it provides an optimality test for the case in which the
feedback happens to lie on the boundary of the feasible set, which
may be done irrespective of the algorithm used. Besides this we
may add, as another justification for the mathematical work in the
first three sections, that the proposition and solution of a problem in
convex optimization theory is of interest in its own right. One
advantage of the methodology of solution is that the number of variables
of the original problem is halved. Another nice feature of it, as far
as the dominant feedback problem is concerned, is that, by minimizing
| 8(y) N Y|]2 over {1(f), 1t yields a feasible vector s) = 6(yj) - y?
at each iteration. In contrast, the standard formulation to the problem,
which 1s to minimize l[x—y” 2, x € P, y € Q(f), would only necessarily
produce a feasible vector at the limit point of the resulting sequence.
Since O(y) can be evaluated very simply, there is no disadvantage 1in

the approach used.

Another important point concerns Lemma (3.4). Although the result
obtained there is based on the premise that the matrix S is an exact
minimizer for O(S), it can be easily seen, following the proof, that

part (a) applies also when the optimization is carried out approximately.

In practical terms this implies that an accurate minimization to find a
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descent direction is not needed. Part (b) however is not true for

an approximate solution S. 1In fact, assuming that O(g) > 0, it

is not necessarily true that the minimal wvalue O(§) is positive,
i.e., that F is locally dominant. We must emphasize the significance
of part (a), in that it justifies naming a matrix S such that

Amax dK(F; S) < 0 as a first-order descent direction.
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6. MINIMIZATION OF THE LARGEST EIGENVALUE OF dK(F; S)

The aim of this chapter is to describe two methods for minimizing,
with respect to S, the largest eigenvalue of the Frechet-differential
dK(F; S). The first method involves a matrix-norm minimization
problem, and was suggested for solving this problem by Allwright
in [2 1. We have added the development of the expression for a
gradient matrix, which is computable, and is needed for the implementation
of the method. The procedure is reliable in the sense that convergence
is achievable, provided some subproblems are solved (by any feasible
direction algorithm) accurately. The second method relies on the
theory of subdifferentials. The subdifferential of a convex, not
necessarily differentiable function, is a point-to-set map. 1Its
codomain consists of subgradients. The ideas of subdifferentials and
subgradients generalize the concept of differential and gradient of
a differentiable function. These concepts were introduced by
Rockafellar in [13] and were later extended by Clarke in [ & ]
for Lipschitzian function, giving rise to the generalized gradients.
Subgradients and generalized gradients are important tools when
dealing with nondifferentiable optimization. A simple feasible
direction algorithm for that uses the generalized gradient instead
of the gradient. Unfortunately convergence may fail for this
algorithm - a fact which is explained by the lack of continuity of
the generalized gradient. To ensure convergence it is necessary to
replace gradients with the so-called smeared generalized gradients.
For the details, refer to [12]. Here we shall describe how to
determine the steepest descent direction for the convex function
Amax dK(F; S) in terms of its subgradient so that a simple algorithm

for minimizing this function may be obtained. It is hoped that this
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will be helpful in the task of developing a complete algorithm

using smeared subgradients, which has not been done yet.

6.1 OPTIMIZING THE 2-NORM OF dK(F; S) + oI

An algorithm for minimizing the 2-norm of a general symmetric-
matrix-varuea function when the parameter ranges over any nounempty
set 1s studied in [2 ]. This algorithm can be applied to minimizing

the maximum eigenvalue of dK(F; S) when S ranges over M(F).

Theorem (2) gives the basis for an algorithm for solving the
general problem (the infimum is used since the minimum may not

exist) :

(1) MATRIX-NORM MINIMIZATION PROBLEM

Find inf{|| c(x) || : x € c}
where G(x) = G(x)' & R™" for all x € C, and C < rP
(2) THEOREM. Supposg
(1) Gx) =G(x)' E:Rnxn' for all x € C, C a nonempty subset of EP .

(ii) 6 > 0.

(ii1) For each even non-negative integer %, x~ is chosen to infimize

tr[G(x)Q] approximately on C. In the sense that
(3) tr[G(xQ)Q] é:(1-+8) inf{tr[G(x)Q]: x € ¢}
is satisfied.
Then, as £ - <,

leeh || » inel]] s || = x € cb.
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Further, if for all x € C, G(x) > O, then the non-negative integers

% can be used instead of the even non-negative integers.

PROOF. See [2 ] and Appendix. We conclude that an algorithm for
minimizing |‘G(X)” would be to solve approximately the sequence

of optimization problems
e L
(4) minimize{tr[G(x) " ]1: x € c}

where & = 2,4,..., using a standard algorithm for differentiable functions
The minimization must be carried out as accurately as possible, since
satisfaction of (3) cannot be checked as the minimum of tr[G(x)gl

on C is not known and a sharp lower bound does not seem to be

available.

Theorem (5) shows that it is possible to minimize the largest
eigenvalue of a symmetric matrix by solving a matrix-norm minimization

problem:
(5) THEOREM. Suppose

(1) L(x) = L(x)"' € R with L(x) > -0I, for all x € C, for

some real a > 0.
(ii) G(x) = L(x) + aI.
Then
inf{lmax L(x): x € C} = inf{lmax G(x): x € C} - a

and, if x gives

< inf{]]Gc(x)||: x €c} + ¢

Il eGo ]

Then
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Amax L(x) < inf{Amax L(x): x € C} + €

PROOF. Since G(x) = L(x) + oI and L(x) ;:-aI, for all x € C,
G(x) > 0.

Hence

(6) Amax G(x) = l]G(x)!I.

However assumption (1i) implies that each eigenvalue XiL(x) is

equal to Ai G(x) - o, and so,
(7) Amax L(x) = Amax G(x) - Q.
Consequently,
inf{lmax L(x): x € c} = inf{lmax G(x): x € C} - a

which with (6) proves the first assertion of the theorem. Now,

suppose X is such that

e® || < infl{|lex |l : x €c} + ¢
Then, from this, (ii), (6) and (7),
Amax L(X) = Amax (%) - a
= e -a
;1nfﬂb(x)n: x €C} -a +c¢

inf{lmax L(x): x € C} + ¢

so that the second assertion 1s proved.

Theorem (5) reveals that the (approximate) infimum of Amax L(x),
when x € C and L(x) is symmetric, can be obtained by infimizing

(approximately) the norm of another symmetric matrix, as long as a

lower bound for L(x), for all x in C, is known. Therefore
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(5) reveals that the (approximate) infimum of Amax L(x), when

x € C and L(x) is symmetric, can be obtained by infinimizing
(approximately) the norm of another symmetric matrix, as long as

a lower bound bound for L(x), for all x in C, is known. Therefore
Theorems (2) and (5) provide a method of solution for the following

problem:

(8) Amax MINIMIZATION PROBLEM

infimize{\max L(x): x € C}

for L(x) = L(x)' . Ifnnl with L(x) > aI, for a given & > 0 and for

all x € C, and C Eg).

If x is identified with the search direction matrix S, Eg)
. mxr \ . .
with R , C with the compact feasible set M(F), and L(x) with
the Frechet-differential dK(F; S), then problem (8) is just the

search direction problem (3.9) for the constrained dominant output

feedback problem.

A lower bound o for dK(F; S), when S € M(F), is obtained as

follows: for all S € M(F), and z € Efl,
z'dK(F; S)z =z2'() s . T..)z (see (2.1))
: 13 1]
13
=in S157T15 2
2
> -1 s, hrod 2]l
= 13 ij ij"'F F
Hence
(9)  ax(F; S) > -} i3 I Tg5llpT
1]
> -ma Tl
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for d the diamter of M(F). However, for any matrix A,

IlA!IF A ( Z. a%.)% = (tr[A'A])i.
1] 1]

Taking this into account, (9) yields,

gk (F; S) > - mrd E (tr[F?.])£I
= . 1]
1]
and so we can use
(10) @ = mrd ) (ee(r2. 1) .
i3 +J -

Now, let us turn our attention to trace subproblem (4) specialized to

the dominant feedback problem, namely,

. 2
(11) minimize{tr(ax(F; S) + a1) " : S € M(®) },
for fixed £ > 2 and O of (10).

This objective function is differentiable and an expression for the
gradient will be derived in Theorem (12). The proof is based on the
works of Hutcheson in {9], where he develops an expression for
dtr K(F) y9F, and of Allwright/Mao in [1], where BtrK(F)Q/BF was obtained.
In that paper the trace approach to the norm-minimization problem was
used. However the authors' objective there was to minimize ||K(F)|i,

attempting to obtain an optimal output feedback.

(12) THEOREM. If F € F, then

otr (3K (F; S)-+u1)£

as

= 2(B'K(F) + RFC)LC'

nxn
where L = L' € R satisfies

(A + BFC)L + L(A + BFC)"' = -2(aK(F; S) + OLI)IL"1

PROOF. Let

J(S) = tr(dK(F; S) + aI)z ~
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It follows from definition (2.1) - (2.3) that

3J(S) 9 2
= tr( ) T_ (F)s__ + OI)
Bsij Bsij g jolet jelef
er( Jo(F)s_ +T. (F)Ss, +oD) " -tr( J T (F)s_+oD) "
& pa ij ij jole; q
8s. .0 s, .
ij ij
L 2
tr((dK(F;S) +0I) +T,.(F)0s,.) - tr(dK(F;S) +0I)
A 1lim J =J
~ 8s. .»0 8s. .
ij 1]

However the first-order approximation to the numerator is

tr[ (dK (F;S) +0.I) 2‘11‘13. (F) 6sij] +tr[ (dK(F;S) +0I) z-zrij (F) dsij (AK (F;S) +0I) ] +. .

: + trll, (F)Ss, . (K (F;5) + oDy "1
ij ij
Now since tr[AiBAj] = tr[Ai+jB] for A,B symmetric, the above expression
is equal to Ltr[(dK(F; S) + aI)Q-lrij(F)ﬁsij]. Hence,
(13) %‘-T-(-Si = Ler((aK(F; §) + oD YT ;.
sij ij

In order to find the expression for the gradient (which is easier to

compute ), let L = L' be the solution to the Lyapunov equation

(14) (A +BFC)L + L(A+BFC)' = -L(dK(F; S) + o‘l')z-1

r

and recall the Lypunov equation for the first partial derivatives of K(F)

(from (2.13)),

(15) (A +BFC) 'Fij(F) +Fij(F) (A +BFC) = —c‘:»:ij (B'K(F) +RFC) - (B'K(F) +RFC) 'EijC
Post-multiplying (14) by Fij(F) and taking traces,

(16) 2tr[L(A + BFC) 'I’ij (F)1 = -2tr [ (&K (F; S) +01'I)Q'-1Tij(F)]

Fre-multiplying (15) by L and taking traces,
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(17) tr[L(A-+BFC)'Fij(F)] = —tr[LC'Eij(B'K(F) + RFC)]

Zombining (16) and (17) gives

-1

LEr[(dK(F; S) +04I) Tij(F)] = 2tr[LC'Eij(B'K(F) + RFC)]

which can be substituted in (13), giving

BJ(S) — ] - t
= 2tr[LC Eij(B K(F) +RFQC)]

ij
The gradient matrix of J(S) is obtained by writing the partial derivatives

ir 3J(S) ’é’]

5 , where {el} and fgj} are the standard orthonormal basis

as e

L
for R" and Kf:, respectively, writing the matrices Eij as e'e’ , and

using the trace property triab'] = b'a. Hence

ei' 9J (S) gj

S 2tr(Lc'Sler (B'K(F) + RFC)]

i}

2¢ (B'K(F) + RFC)LC'e’

As this holds for all 1i,j,

§%é§) = 2(B'K(F) + RFC)LC' v

Thus, a computable expression for the gradient of tr(dK(F; S) + OLI)2
is available, and hence, an optimization algorithm for constrained
optimization, that requires function and gradient evaluation, could be
used for solving the sequence of subproblems (11). These would lead us
to the solution of (8). It is worthwhile mentioning that Henry in his
thesis [8] gives a detailed description a feasible direction algorithm
for minimizing IIK(F)[L using the trace approach. It is possible to extend

if for the case of the minimization of |ldK(F;S) + 01, .

6.2 SUBGRADIENT-BASED OPTIMIZATION OF Amax dK(F; S)

In order to extend methods of feasible directions for problems with

locally Lipschitz functions, the extension of 'some concepts of calculus
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are necessary. In what follows we shall review some of these extended

concepts, which form the basis of the theory of generalized gradients.
(18) DEFINITION. Consider a sequence of real numbers {xk}. We define

lim sup x :=sup{x ER: x -+ x, for some subsequence {x Yofix }}
k n n k
k-0 k k
\Y
(19) DEFINITION. Let X be a banach space and f: X - IR locally Lipschitz

(i.e. Lipshitz on any bounded subset of X), and let v € X. Then the

generalized directional derivative of £ at x, in the direction v, is

~

given by
ﬁow;v)=lMpr £(x+h+Av) - £(x+h) v
h>0 A
A0t
Recall that the one-sided directional derivative of f at x is
A -
df(x; v) = lim £(x+ Vi £(x)
A0t
so, dfo(x; v) can be seen as the supremum of the limits
lim df(x+hi; V)
h. >0
i
for all sequences {hi}.
(20) DEFINITION. The generalized gradient of f at X, denoted by 9f(x),
is the nonempty set of all £ in X* satisfying
0
df " (x; v) > <v, &>
for all v in X. v

X* is the dual space of X, hence £ is a linear functional on X.

(21) DEFINITION. A function f is said to be regular at x if, for every

v in X, df (x; v) exists and satisfies df(x; v) = dfo(x; v). v
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(22) FACT. Let f: X » R be locally Lipschitz. Then

(1) dfo(x; .) is the support function of 9f (x) . Hence, for all v € X,

we have
0
Af  x; v) = maxi<v, &>: & € 3f(x)}
(ii) A necessary condition of optimality is given by 0 € 9(x).

(iii) If f is continuously differentiable then it is regular and

f(x) = {VE(x)}].

(iv) If f is convex then it is regular and 9f (x) coincides with the

subgradient in the sense of convex analysis. v

The characterization of the generalized gradient and directional

derivative of a max function is given below:

(23) THEOREM. Let U be a compact subset of R” and let g: ®rP x U+ R

have the following properties:
{i) g(x, u) is continuous in (g, u)
(idi) ng(x, u) exists and 1s continuous in (x, u)
Then, if we let f(x) = max{g(x, u): u € U},
df (x; v) = dfo(x; v) = max{<v, ng(x, u)>: u € M(x)}
where
M(x) = {u € u: g(x, u) = f(x)}
is the set of maximizers of g(x, u) in U and
of (x) = co{VXg(x, u): u £ M(x)} v

This theorem is a simplified version of Theorem (2.1) of [5].
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Now we are ready to obtain the expression for d0(s; v) and 30(s):

(24) THEOREM. The generalized gradient of the function O(s) A AmaxdK(f; s)

is
30(s) = arg max {<s, wW>: w € Q(f)}

and the directional derivative in the direction v is
do(s; v) = max{<v, w>: w € 30(s)}

PROOF. Identifying x with s, u with W, U with £(f) and g(x, u) with

<s, W> in Theorem (23), the function f(x) becomes
max{<s, w>: ® € Q(£f)} = Amax AK(f; s) = O(s).

Since lg<s, w> = W, the assumptions of the theorem hold. ©Note that the

set of maximizers,
M(s) = arg max {<s, w>: w € Q(f) },
is convex. Then, the theorem claims that
90 (s) = M(s).
Also, that
dd(s; v) = max{<v, w>: W E M(s)}

(The last expression can be obtained directly using (22.i) and (22.iv)).

v

For the points at which O is differentiable, 30(s) = {Vo(s)}. we
note that the expression for the gradient then can be determined directly,

using the following fact:

(25) FACT. [4] Let A(x) be a differentiable matrix function of a

parameter x, and suppose A(A(x)) is a simple eigenvalue of A(x).
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Then, if v(A(x)) is the eigenvector associated with A(A(x)),

v(A(x)) . v

Bk(i(x)) = v(A(x))"

oA (x)
9 9x

So, when the maximum eigenvalue

K (£)

g(s) = Amax z Si —S?T" v
i 1
is simple,
d0(s) _ ! OK (£) <
s, af !
i i
where x denotes the normalized eigenvector corresponding to O(s). The
gradient is therefore
, OK(£) %
f1
Vo(s) = .
< OK (£)
3t ¢
- p -

Now, since x £ Bn, that vector is an element of {2(f), by definition of

thisset, i.e. VO(s) = W(x). However we have seen earlier (see (4.4))
that W(x) is the maximizer of <s; -> on {2(f). Hence,
VO(s) = arg max {<s, w>: WE QUF)T .

We conclude from this that a simple eigenvalue O(s) implies differ-
entlability of 0 at s, and if 0 is nondifferentiable at

s, then O(s) is a multiple eigenvalue. The converse is not always true.

A descent direction for O at s will be a normalized vector v along
which d0(s; v) is negative. It is not true, as might be thought, that
any vector with opposite direction to an element of the generalized
gradient is a descent direction, but only some elements. The steepest
descent direction is the one along which dO0(s; v) is most negative, and

is in the opposite direction to the minimal-norm element of the generalized



- 193 -

gradient, as shown next.

(26) THEOREM. The steepest descent direction for 0 at a point s is the

vector v = -&/Ilali, for U the solution of
(27) min{{] || : w € M(s)}
where

M(s) = arg maxi<s, w>: w € Q(£) },

assuming 0 € Q(£f).

PROOF. The steepest descent direction is found by minimizing d0(s; wv)

when v ranges over the unit sphere in nﬁ’. Then, it is the solution of

min{max{<v, w>: w € M(s)}: v € S}

Recall that the search direction problem for the dominant feedback problem
(minimize O(s) on M(f)) assumes that U¢ Q(f). Therefore, since
M(s) < Q(f), O € M(s). Consequently, the theors: follows from the results

of Section 4.1. v

Finally we shall turn to the problem of the implementation of problem (27).
As we have a norm minimization problem on a convex set, it is natural to
think of applying Y.C. Ho's algorithm. Recall that, for this to be possible,
a contact point of a supporting hyperplane to M(s) normal to be given
vector v must be evaluated, 1.e. it must be possible to compute a vector

in
arg max{<v, w>: w € M(s)}.
That can be done, as explained next.

(28) PROPOSITION. arg max{<v, W(x)>: x is a normalized eigenvector

associated with Amax dK(f; s)} < arg max{<v, w>: w € M(s) }.

PROOF. Let



- 194 -

p(5) = e € B : w () = x* 315'?(—‘3-)- X, x € Bnl.
i

It can be proved (using linearity of the function <s, ->) that
co{arg max{<s, Ww>: W E P(F) I}
= arg max{<s, w>: W € co P(f)}
A arg max{<s, w>: w € Q(f)}
= M(s)
However we have seen in (4.4) that
arg max{<s, w>: W E P(£f)}
= {w(x): x is a normalized eigenvector associated with Amax dK(f; s)}
therefore we conclude that

(29) M(s) = co{w(x): x is a normalized eigenvector associated with

Amax dK(f; s)}.

Now, consider any vector v € rP

and consider an element @ of

arg max{<v, W>: W € M(s)}. Then, since it belongs to M(s), it follows

from (29) that ® is a convex combination of points w(xi), for x' normalized
eigenvectors associated with Amax dK(f; s), i.e.

A
w =
i

D~

i
1 a,w(x); a, € (0, 1); E a, =1

~

Since W maximizes <v, -> on M(s), and for i =1,..,4, w(x®) € M(s),

we have that

(30) <v, w> =} a,<v, w(xM) > > <v, wixd)>

1

for j = 1,...,%, 1.e.

Z a.<v, w(xl)> > (1 - a.)<v, w(xj)>.
R 1 = J
i#3
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Suppose that for some j, say j = 1, the inequality holds strictly.

Then

(31) T a.cv, wxH> > (1 - a,) <v, 0xH>
. 1 1
i#l

which implies that

a
1 1
a1<v, wW(x")> < T

z ai<v, w(xl)>.
1 i#1

Therefore, using the above,
<v, B> = a,<v, wixD)> < —— T a.<v,0(x)> + ] a.<v, 0(xD)>
O 8 1-a,. i . i
i 1i#1 i#1

1

T z a,<v, W(xh)>

1 i#1
a, . .
Note however that z —— = 1 and therefore Z = w(x") belongs to
. -a . 1-a
i#1 1 i#l 1
M(s). Hence, the above inequality is a contradiction and so we have

proved that (31) is false. It follows from (30) then that, for all

3.
<v, W> = <v, w(xj)>,

and so all w(xj), 3 =1,...,2, are maximizers of <v, > on M(s). Then

the proposition is proved. v

Thus, in order to find a maximizer for <v,-> over M(s), the proposition
suggests to seek 1t amongst the points of the form W(x), for x a normalized
eigenvector associated with Amax dK(f; s). Let us write such an eigenvector

as
x = LO, Ila” =1,

where L projects a normalized O € R® onto the subspace spanned by the
eigenvectors associated with Amax dK(f; s). Then a W(x) can be

represented in terms of O as
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(32) w(@) = OL'L'HlLOL

A maximizer for <v, > over the set of such points W(Qd), i.e., a point
in
(33) arg max{<v, w(®)>: H GH = 1}
can be obtained as follows: write (33) as

arg max{o ( z viL'HiL)d : ||u|[ = 1}.

i

A maximizer for that is a normalized eigenvector associated with
Amax Z viL'HiL. So, choose such an eigenvectcor G and use formula (32)

i
in order to evaluate W, i.e. W = W(Q). This completes the proof that the
minimum-norm point of M(s), and therefore the steepest descent direction

of O(s) at s, can be evaluated.

The steepest descent direction could be used to form a feasible
direction élgorlthm for optimising 0. Unfortunately the algorithm does not
necessarily converge to an optimal point, as mentioned earlier. Never-
theless it could be the basis for a convergent algorithm: an algorithm that
defines the search direction using €-smeared generalized gradlénts, as
defined below, and uses an €-reduction scheme 1n order to drive £ to

zero as a stationary point 1is approached.

(33) DEFINITION. For any € > 0, the €-smeared generalized gradient

of a Lipschitz function f(x) is defined by

I £(x) A col U Af (x") }
x'€B(x,E)
where B(x, €) is the closed ball centered in x and with radius €. v

The search direction is defined as the vector v = —@/Ilﬁl[, where
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now & solves
(34) minl[[w|l :we€d_ s}

instead of Problem (27). It is know that when functions are "semismooth"
it is possible to get a good approximation to the minimum norm point

of the €-smeared generalized gradient in a finite number of operations
(see [12]). It is also a fact that a convex function is semismooth

(see [10]). Hence, it seems possible to obtain a good approximation to

the solution of (34).

In this section we proposed a non-convergent steepest direction
algorithm for optimizing the non-differentiable function 0, and we
pointed out that €-smeared generalized gradients can be used in order
to develop a convergent algorithm. This is a topic which requires more
work. The paper [11] is referred to as a possible starting point. There
an €-smeared descent direction algorithm, using an Armijo-type line

search, was developed for a particular example.
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APPENDIX

PROOF OF THEOREM (2) [2]. Since G(x) is symmetric, it can be written

as G(x) =V A V-l, where A = diag{ll(x)...ln(x)} and Xi(x) are the
(real) eigenvalues of G(x). Hence G(x)l =V sz_l and tr[G(x)Q] =

A, () ©

Let A(x) = [Kl(x)-..Xn(x)]'. Then for even inte gers & > O
(35) tric(x) Y] = >:xi(x)2 = I|A ) 1Sl = (]| M=) llz) 2

This is also true for all integers & > 0 if G(x) > 0, Vx € C, since

then Ki(x) > 0, YVx € C. From now on it will be assumed that even

integers (> 0) are considered for general J and that all integers (> 0)

are allowed if G(x) is positive semi-definite on C. From (3) and (5)
(36) || A (xY) “%z < (1 + 8) ing{|| A(x)llﬁ: x € C}.

For € > 0, consider X € C chosen so

(37) Ilk(xe)ihn < inf{'lk(x)l]w: x €Cl + €e/4
Now
38) [ A, =max [A_x)| = [l G ||
1
Subsequently
(39) A A infl]|lcx) || : x € c} = inf{{\x(x)|lm: x € c}.

Hence, from (37) and (39)

(40 | Mxg) ll, <A+ e/a

©

By Jensen's inequality
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L
2

2

o

I reh 12 < e ]

ffA

A

(1 + 0)inf{|| A (x) H%: x € C} (from (36))

A

(1 +8) | Aex) IIi
SO

@ I rahll, < et/ Ax) |l

A

Clearly

S~

(42) || AedY Il > infl|[ X [|,: x € ¢} = x>

| vV
(@)

and by Jensen's inequality, as { >

Aoy = Ty I,
so that there exists 28 such that, for all % > QE,
Ay = A Il < /4.

Consequently

IIX(XE)HQ <l Ax) |l + €74

(43) <X +e/2, ¥& > L_ (from (40))
Hence
0< I A (™) i, - X (from (42))
<1+ 9)1/Q ]ll(x€)|lz - X (from (41))
<+ 6)1;/2 (A +e/2) - X, V& > &_ (from (43))
i.e.
a0 o< fIrehll, -Acaa 0ol a0t e, v g
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Since (1 + 6)1/2

and so that the following héld.

Whenever £ > Qé

1/2

(a) (1 + ©) < 4/3.

1/%

) ((1+ 0 J X <en

Then, from (44)

o_<_||M>:9“)l|°o - A<k, v > 80

This can be done for every real € > 0; so, as 2 »> *,

RS EY

In view of (38) and (39), as £ > «

| 6™ ||

[ee]

+ 1 as £ + o, Ré can be selected so that Qé > R

- 1nf{§|G(x)||:x € cl.

€
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7. CONCLUSIONS

This work was based on Allwright's approach for optimal uncon-
strained output feedback, which used a feasible direction algorithm for
minimizing the matricial function K(F) on the space of stabilizing feed-
backs. He has proposed two versions, given in Algorithm 2.31 and 2.32.
An iteration considers a search direction emerging from F, that is the
steepest descent direction of the cost K, in the sense that it makes the
first order term of the Taylor expansion of K(F + S) - K(F) to be as
negative as possible. The matrix dK(F, S) is most negative, in
Allwright's sense, when its largest eigenvalue is most negative. Along
the search direction, for one version, the line search is done that makes
K(F + AS) - K(F) the most negative in tﬁe above sense. The other version
minimizes Levine-Athans' objective function, tr(X(F + Ks) - K(F))XO,
subject to K(F + AS) - K(F):; 0. Let S be a normalized vector that
minimizes dK(F; S). If dK(F; §) < 0 then § is the steepest descent
direction, and a line search ié performed along it. Otherwise
(i.e. dK(F; S) positive, nonnegative '‘definite or indefinite - implying

that Amax dK(F; S) > 0), termination is set for algorithm 2.31. When

Amax dK(F;?;\ > 0, F is locally dominant, but for the case Amax dK(F;g) =0
(F stationary), depending on the other terms of the expansion, K may

still be reduced along the direction S. This possibility is investigated
in Algorithm 2.32. If reduction is not possible, it is because either

K increases or else there may not exist order relationship between feed-
backs along g, and F. The three cases are aconsequence of dK(F; §) be-

ing negative definite, positive definite and indefinite, respectively.

In Chapter 2 those algorithms have been described and analysed.
Implementations for the line searches have been devised, based on

Armijo's method. The slope of the Armijo line is defined as a fraction



of the tangent at the origin, of a quadratic approximation to the
unidimensional objective function. For the determination of the quadratic,
the main tools were the Lyapunov equations involving the Fréchet -
differentials of K. A variable initial step size was used for Algorithm
2.32 due to the fact that at each iteration the line search is constrained.
For those implementations proofs are given for convergence of a sequence
{Fj}, such that Amax dK(Fj, gj) < 0, which meant that Xmade(Fj;gj) -0
and K(Fj) > K* > 0, as j > ®, and not that the sequence {Fj} converges
itself. As a consequence, an accumulation point of the sequence, if it
exists, is first-order locally dominant. It is shown that convergence
also occurs when §j is not the steepest descent direction, but is such
that it makes Amade(Fj; §j) a fraction of its minimal value.For evaluating
the steepest descent direction at Fj, i.e. the normalised vector that
minimizes dK(Fj; S), Allwright has proposed a partial solution, that

suits Algorithm 2.31, as follows. He has shown that minimizing

Amax dK(Fj; S) on S is equivalent to finding the minimum norm point of
BQ(Fj). Then he presents a practical method for computing the minimum
norm point of a convex set. Since when O ¢ ﬁ(Fj) the minimum norm point
of both Q2(FJ) anddQ(FJ) coincides, it is possible to find the minimum
norm point of BQ(Fj), when 0 ¢ ﬁ(Fj), using that method. However it is
only possible to evaluate the minimizer of Amax dK(Fj; S) in terms of

the minimum norm point in a simple way, when 0 ¢ Q(Fj). It is shown
that 0 € Q(Fj) corresponds to the case Amax dK(Fj; gj) < 0. The condition
0 ¢ Q(Fj) obviously can be detected if the solution to the minimum norm
problem is nonzero. Hence, for Algorithm 2.31, the steepest descent

direction can always be evaluated.

In the rest of the thesis constraints have been considered. The

algorithms for the case of constrained output feedback have been devised.



Three cases have been studied.

The first, studied in Chapter 3, considers the feasible set as a
compact convex set, with nonempty interior, defined by a finite number
of continuous functions. The procedure is based on Algorithm 2.32,
of feasible direction type. The search direction subproblem becomes that
of minimizing Amax dK(F; S) over M(F), which is a displacement of the
feasible set. Convergence has been proved using the theory of closedness
of algorithms. The meaning of convergence is that of above. Then, on
account of the compactness of M(F), the subsequences of {Fj} converge
to first-order loé;lly dominant feedbacks in M(F). Convergence is also
proved for the algorithm using the search direction Sj that makes
Amax dK(F; S) a fraction of its minimum value. The implementation of the

line search, when dK(FJ; $7) < 0 is based on a quadratic approximation of

tr[ (K(FJ) - K(FI + Asj))xol along the line, without the help of an
Armijo line. Although probably less accurate, this led to the con-
vergence proof. The search direction subproblem is dealt with in
Chapter 6. Tyo procedures have been suggested. The first, due to
Allwright, requires solving a sequence of problems of the type:

minimize tr(dK(F; S) + aI)l, where S ranges over M(F). The limit of

the sequence of solutions, when % - ®©, is the solution to the search
direction subproblem. A second method is outlined and its development

is suggested for future work. It has been described a procedure for
determining the steepest descent direction at S, of the nondifferentiable
function Amax dK(F; -.), and shown that it can be evaluated. The suggestion

is that a feasible direction algorithm using €-smeared subgradients be

developed.

The second constrained feedback problem considers the feasible set

as a linear variety of the space of feedbacks (Chapter 4). A descent
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direction algorithm is suggested for which the steepest descent direction

.

J is the vector that minimizes Amax dK(FJ; S) over L, a displacement

at F
of the linear variety. The methodology proposed is based on projecting
the problem onto L. This consists of projecting the set Q(Fj) onto L

and then, since on L the problem can be viewed as unconstrained, applying
Allwright's minimum norm procedure for determining the normalizeA

minimizer of Amax dK(FJ; S), using the projected set. As in the

unconstrained situation, convergence occurs.

The third problem, studied in Chapter 5, is a particular case of
the first. The feasible set is defined by linear inequalities generated
when the entries of the feedback matrix are to be kept within certain
intervals. An implementable feasible direction algorithm is developed.
The search direction is defined as the steepest feasible direction,
i.e., the vector that minimizes Amax dK(Fj; S) on the cone generated by
M(F). The line search is that of Algorithm 2.32. Since the search
direction as it has been defined does not permit that the close active
constraints be anticipated, there 1s no guarantee of convergence. The
procedure for obtaining the search direction is as follows. When Fl is

an interior point of the feasible set, it is the steepest descent

direction, and thus, Ho's algorithm should be used. For FJ

on the boundary,
a geometric-based method has been developed, following the i1dea of
Allwright's minimum norm problem equivalence. First we propose an
algorithm for finding the minimum distance between a convex set and an
orthant. This problem has been formulated as a norm minimization problem
and it is shown that Allwright's algorithm for convex optimization for
twice~-differentiable functions can be used to minimize it. Then it

is proved that, if 6 is a nonzero solution to the minimum distance

problem between {{(F) and an orthant, then S = C/I|C([is the steepest

descent direction at F on the orthant. Since the cone generated by
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M(F) is a union of orthants, the most negative among such vectors §,

for all orthants, is the steepest feasible direction. If for all
orthants 8 = 0, F is fairst-order locally dominant. Although there exists
a relationship between the solutions to the minimum distance problem

and the search direction problem, there does not exist a relationship
between their €-approximations, since the two problems optimize

distinct functions. Therefore the algorithm only terminates after
ensuring that an €-approximation to the steepest feasible direction

has been found.

Finally, if one considers the third problem accepting also
equality constraints, a combination of the second and third methods
for obtaining the search direction is possible. Note that the
feasible set could then be viewed as defined by linear inequalities
only, on the linear variety generated by the equality constraints.
Therefore the method would involve projecting {2 (F) onto L, and
determining the minimum distance between the projected set and the

orthants of L generated by M(F).



