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ABSTRACT

This thesis considers optimal choice of output feedbacks F for linear 

systems x(t) = Ax(t) + Bu(t) : x(0) = x^, y(t) = Cx(t), u(t) = Fy(t)

using gradient methods based on Allwright's approach of dominant feedback. 

Let the standard infinite-time quadratic cost be written as XqK(F)Xq .

Then, a feedback F is said to dominate F if XqK(F)Xq _< XqK(F)Xq , for all 

Xq , with the inequality holding strictly for at least one x^, i.e. 

if K(F) < K(F) for the ordering < for positive semidefinite matrices 

defined by K(F) < K(F), K(F) ^ K(F). The methods are extensions of 

gradient methods for scalar optimization to the matrix-valued function 

K(F). A sequence (f ^} is yielded such that K(F^+ )̂ <_ K(F^), for F^+* 

which makes the first-order approximation to Ak  ̂ = K C F ^ S  - K(F“*) , 

denoted by dK"1, negative definite or semi-definite. The former case 

yields actually Ak  ̂ < 0. The latter may generate AK”1 < 0 or not, depending 
on the contributions of the higher order terms of the Taylor expansion of 

AK”1 . Here an implementable version of Allwright's algorithm is given, 

and convergence of the sequence {Amax dK^} to zero when (f ^} is infinite 

is proved. Three extensions of the algorithm are presented, which solve 

the problem when constraints are imposed on the feedback matrix. The 

feasible set defined by the constraint functions is characterized, 

respectively, by (i) a convex compact set, with nonempty interior, defined 

by continuous functions (ii) a linear variety (lii) a particular case of 

(1), where the functions are linear. Implementable versions for the 

algorithm1-are given. Convergence proofs are provided for the first two.

In connection with the above three types of results have been developed, 

namely: (i) derivation of the r-th order derivatives of the solution of

the Lyapunov equation (A+BFC)'K(F) + K(F)(A + BFC) = -(Q + C'F'RFC)

(ii) a method for obtaining the solution of min(|| x-y|| : x c. X, y £ y } 

where X is a convex set and Y is an orthant (iii) discussion of the



non-differentiable problem of optimizing the largest eigenvalue of the

Frechet-differential of K(F).
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1. INTRODUCTION

Consider the linear, time-invariant, multivariable system with 

output feedback, given by the equations:

(1) x(t) = Ax(t) + Bu(t) : x(0) = Xq

(2) y(t) = Cx (t)

(3) u (t) = Fy (t) , 

where:

x 6 JRn is the state vector,

Xq € lRn is the initial state vector,

y  £ HR is the output vector,

u € ]Rm is the control vector,

A £ 3RnXn is the plant matrix, which is assumed to be 

asymptotically stable,

B E ]R is the control matrix, 

rXnC £ 1R is the output matrix, 

inx̂*F £ 1R is the feedback matrix, which asymptotically stabilizes 

the closed loop system.

Suppose the system has the standard infinite-time quadratic performance 

criterion
00

(4) V(x, a) = J (x(t)‘Qx(t) + u(t)'Ru(t)}dt
0

. ,, , , . ^ _nxn . „ ^mxm  ̂ . .with both matrices Q 6 M  and R t I  symmetric and positive definite.
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Now write V in terms of F and Xq using the closed loop dynamic 

equation

x (t) = (A + BFC) x(t): x (0) = xQ , 

which has the solution

x(t) = exp[(A + BFC)t]x^. 

and, from (4),
OO

V(xQ, F) = J x^{exp[(A + BFC)t] ' (Q + C'F'RFC)exp[(A + BFC)t]}xQ dt 

It is convenient to represent V as the quadratic form

(5) V(xQ , F  ̂ = x 0 x 0 

where
CO

(6 ) K(F) 4  j exp[(A + BFC)t]1(Q + C'F'RFC)exp[(A + BFC)t]dt
0

In practice it is often desirable to find an optimal feedback F* 

which minimizes VCx^, F). However V(Xq , F) is also a function of the 

initial state, and it is not practical to choose a different F* for each 

initial condition; therefore it is desirable to find a way to overcome 

this problem, so that an F* is obtained which is "good" for a set of 

initial conditions. Levine and Athans m  their well-known paper [2.16] 

eliminated the dependence of V on the initial state by averaging the 

performance obtained when Xq is a random variable uniformly distributed 

on the surface of the n-dimensional unit sphere. Therefore the optimal 

F* is that which minimizes the expected value of V(Xq , F),

(7) V(F) = e (v (x q, F)}

= tr[K(F)XQ] ,

where = e (xqXq } and tr is the trace function. This identity is
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shown in 12.38).

Allwright and Mao in [6.1] proposed another approach to optimal 

output feedback. It is based on the fact that

x 0 K ( F ) x 0 i  II K(F)  II 2 II - o i l 2 ’

where jj || denotes the 2-norm (see (2.45)). Thus, the largest cost
2value among all those obtained when and F vary is at most |j K(F) || ||xq || 

Therefore a reasonable cost to minimize becomes:

(8 ) V (F) = || K (F) ||

= Amax K(F),

where Amax is the largest eigenvalue. The second equality in (8) is 

a consequence of K(F) being positive semidefinite (from (6)).

A

In the two approaches described, the cost function V(F) is a 

scalar function of the matrix F. A method which has a cost which is a 

matricial function of F has been proposed by Allwright in [2.3] . He 

puts

(9) V (F) = K (F)

Matncial-function optimization requires definition of the order 

relationship to be used. An obvious choice is the usual ordering for 

positive matrices. Then a matrix A is said to be greater than B if and 

only if A-B is positive definite, i.e.

A > B <=» A-B > 0.

1 2  1 2Let us consider that, for two feedbacks F and F , K(F ) > K(F ).

, l i 2Xq K(F )x q > Xq K(F )x q, for all xQ,

Then,
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and therefore,

1 i 2V(xQ, F ) > V(x , F ), for all xQ .

2 1 2  Thus, if K(F ) is "smaller" than K(F ) the cost at F will be smaller

than at F*, for all initial conditions x^. The order relationship

< when used in the feedback coni-ext will be called "strict dominance".
2 1In the above example we say that F strictly dominates F .

Another choice is the "dominance" ordering, defined as follows.

For any two matrices A and B,

A >_ B «=> | x'Ax _> x'Bx, for all x

( x'Ax > x'Bx, for some x.

1 2In particular, if K(F ) >_ K(F ) , then

V(v F1) > V(x0, F2) , for all Xq

v(x0, F1) > v(iV F2) , for some x^

Hence, if either F dominates or strictly dominates F , the cost will be 

reduced at least for some initial condition, and will never be increased 

for any initial condition.

•
Note that neither < nor <_ are total order relationships, since for 

two matrices A and B it might be that neither A > B nor A < B (A _> B 

nor A <_ B). Nevertheless an F* will be defined as a strict local 

minimizer, with respect to <, for K(F) when, for all comparable F in a 

neighbourhood of F*, with F ^ F*,

K (F*) < K(F) .

Or, using <, F* is a strict local minimizer for K(F) when, for all 
comparable F near F*,

K (F*) < K (F) .



12

In the former case F* is "strictly locally dominant" and in the latter 

"locally dominant".

One might have a non-strict minimum in the sense that for all F near 

F*, either K(F*) < K(F) or K(F*) = K(F). Similarly for £.

Allwright has proposed two iterative procedures in [2.3]. Both give 

a sequence of dominating feedbacks, i.e., they generate sequences (f ^j 

such that

(10) K(F°) >_ K(F1) ••• >_ K(F^) _> ...

or else

(11) K(F°) > K i F 1 ) > ... > K(F^) > ...

The first procedure requires the assumption that the system is such 

that rank[B] > dim ker[C]. The second is an algorithm of the gradient 

type for minimizing K(F), and it was the basis for the development of this 

thesis. Assume that F"̂ is a nondominant feedback, i.e., there exist some 

F satisfying K(F) <_ (<) K(F‘)) . An iteration consists of (i) determining 

a normalized matrix such that it minimizes (with respect to either 

_< or <) the first order approximation to K(F^ + S^) - K(F^)

(11) determining a scalar A-* such that K(F^ + A-̂ ŝ ) < (<) K(F^) .
j  -jS is called the search direction and AJ the step length or step size.

Step (i) is the search direction subproblem and step (li) is the

line search (as varying the parameter ^  varies F along a line in the

direction S”1) . There are two versions for the algorithm generating

sequences of the type (10) or (11).

Consider, given a normalized mxr matrix S, the Taylor expansion of 
K(F + S) - K(F) about F,

(12) K(F+S) - K(F) = dK(F; S) + d2K(F; S, S)+ ____

where the right-hand side terms will be defined in Chapter 2. The
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first-order term dK(F; S) is minimized, in Allwright's sense, when its 

largest eigenvalue is minimized. Suppose dK(F; S) < 0. Then, in a 

neighbourhood of F, K(F + As) < K(F) since the higher-order terms are insigni

ficant for small Ac If dK(F; S) = 0, and so K is stationary along S, 

then the higher order terms will define the behaviour of K along S. The 

case dK(F; S) > 0  gives K(F + As) > ft(F) obviously. Finally, if 

dK(F; S) is indefinite, for some set of x^s, Xq K(F + As)x^ > XqK(F)Xq , 

and for another set of XqS, the inequality is reversed. Hence, if 

Amax dK(F; S) < 0, S is a descent direction for K, if Amax dK(F; S) = 0, 

there may be a reduction in K along S, and if Amax dK(F; S) > 0, K does not 

decrease along S. Therefore the search direction subproblem reduces 

to that of minimizing Amax dK (F^; S) . The minimizer S"1 is the "steepest" 
descent direction.

The line search to choose A^ is done by minimizing appropriate scalar 

functions of K(F^ + As^) .

The subject of Chapter 2 is the study of this algorithm. An 

implementable version, for which the line search can be implemented 

computationally, is described. It is proved that, for the implementation, 

if (f -1 } is an infinite sequence such that dKCF”1; S'1) < 0  then, as 

j -> 00, Amax dK(F^; Ŝ ) 0. The interpretation of this property is

that, if it is assumed that F* is some accumulation point of {f ^} 

which stabilizes the system, then Amax dK(F*, S*) = 0 for the steepest 

descent direction S*, and so F* is potentially a locally dominant 

feedback. It is shown that K(F^) converges to some K* _> 0. It is 

also shown that, if is a descent direction, not necessarily the

steepest, giving Amax dK(F^; S^) "sufficiently negative" then 

Amax dK(F^; Ŝ ) -*■ 0 as well.

The three following chapters deal with optimal constrained output 

feedback. Allwright's algorithm has been adapted to accept the
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constraints considered. The basic modification is in the determination 

of the search direction, which now must be feasible, i.e. it is such 

that all feedbacks along it, in the vicinity of the point, are feasible 

(in that they belong to the constraint set).

In Chapter 3 the feasible set for F is a compact convex set, with 

nonempty interior, defined by a finite number of continuous functions.

For the constrained algorithm, convergence of the sequence of Xmaxs 

is proved using the theory of closedness of algorithms. An implementation 

is developed and convergence is proved for that in a direct way.

Chapter 4 first describes the geometric-based method developed by 

Allwright for computing the unconstrained steepest descent direction.

Then it considers the constrained problem where the feasible set is a 

linear variety of the space of feedbacks. This means considering 

entries of F satisfying a set of linear equations, which has applications 

to decentralized control. The method proposed is based on projecting 

the problem onto the linear variety, which permits the problem to be 

viewed as unconstrained, allowing Allwright's method for computing the 

unconstrained search direction to be applied.

The third constrained problem is studied in Chapter 5 and is a 

particular case of the first, where the constraint set is a rectangle.

This arises when the entries of F are desired to take values only in 

certain intervals. This type of constraint might be useful to help 

limit the instantaneous size of u and hence make the feedback

of more practical use. An implementable feasible direction algorithm 

is developed; for it convergence is not guaranteed since the search 

direction is defined now in a "non-closed" form, and thus the theory 

of Chapter 3 does not apply. However computing it seems to be simpler 

than computing a "closed" search direction. To help find search

directions in this case, a method is proposed for obtaining the minimum
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distance between a convex set and an orthant.

Chapter 6 suggests two methods for solving the search direction 
subproblem when the feedback matrix is constrained to any given convex

set. The first requires solving a sequence of problems of the kind:
iminimize tr f(S) , for £ = 1,2,... . The limit of the sequence of

solutions, when £ -»• 00, is the solution to the subproblem. The second 

is to minimize the (nondifferentiable) function dK(F; •) on the

variable S, using subgradient-type algorithms.
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CONTRIBUTIONS OF THE THESIS

(1) Proof of the differentiability of K(F) using the theory of 

Kronecker products and the derivation of its r-th order derivatives 

Lemma (2.11) .

(2) Evaluation of an upper-bovnd for the norm of the r-th Frechet- 

differential of K assuming that K(F) is bounded: Lemmas (2.45) 

and (2.62).

(3) -̂ Determination of lower bound quadratic functions for g(X) =

Xmin[K(F) - K(F + Xs) ] and <f>(X) = tr [Xq (K (F) - K (F + Xs) ) xQ3

and their application to the line search for Allwright's algorithm:

Section 2.4.

(4) Proof of the convergence of the sequence {Xmax dK(F"*; S-̂ ) } for 

Allwright's algorithm : Theorem (2.96) .

(5) Proof of the convergence of the sequence {Xmax dK(F^ ; S"1) } for the 

conceptual constrained algorithm (first case) using the theory of 

closedness of algorithms: Theorems (3.10), (3.17).

(6) A procedure for the constrained feedback problem (first case) with 

an implementable line search: Theorem (3.23) and Section 3.4.

(7) Proof of the convergence of the sequence {Xmax dK(F-̂ ; Ŝ ) } for the 

constrained algorithm (first case) : Theorem (3.33) .

(8) Proof that the minimization of the support function of a set over 

a subspace can be equivalently restated as the minimization of 

the support function of the set projected onto that subspace, and 

application of it to the constrained feedback problem (second case)

Theorem (4.18) .
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(9) Properties of the function X: y — ► II 9(y) - y|| , where 0 (y) :

y arg min(|| x - y|j : x f. P}, for an orthant P: Propositions

(5. 7) and (5.13), (5.22) and Theorem (5.39).

(10) A procedure for obtaining the minimum distance between a general 

convex set and an orthant: Algorithms (5.48), (5.64).

(11) Proof of the equivalence of the two problems: minimizing the 

distance between a convex set and an orthant (which are disjoint)

and minimizing the support function of the convex set over the orthant 

Theorem (5.98) .

(12) A necessary and sufficient condition for optimality of a locally 

constrained dominant feedback (third case): Theorem (5.101).

(13) An implementable procedure for obtaining the constrained dominant 

feedback (third case): Algorithms (5.107), (5.113).

I(14) Determination of the expression for the gradient of tr(dK(F;S) + C6I) 
with respect to the variable S: Theorem (6.12) .

(15) Evaluation of the steepest descent direction at S of the function 

Amax dK(F; S) : Proposition (6.28) .
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As has been said, Allwright's method for finding unconstrained 

dominant output feedbacks uses the descent direction approach of 

algorithms for nonlinear function optimization. At the iteration j, 

a descent direction is selected along which the feedback is varied.

It is chosen to be the matrix which makes the first order approxi

mation to K(F^ + S) - KvF*1) as "negative1” as possible. A line search
j j +1rule is then applied to improve K along S , giving F . Then, provided 

K(F^ + s^) - K(F^) is negative definite, the new point F^+* will 

dominate F^. Thus, the algorithm constructs a sequence of dominating 

output feedbacks. The main question that arises here is: does the 

sequence F^ converge to a locally dominant feedback?

2.1 THE FRECHET-DIFFERENTIAL OF K

The following lemma (11) proves that K(F) is a Frechet-differentiable

function, of class C°°. Let dK(F; S) be the first order change in K

caused by changing F to F+S. The matrix dK(F; S) is then called the

F-differential of K at F with increment S. The first order change in

dK(F; S), caused by changing F to F+D is the second order F-differential
2of K at F with increments S and D, and is denoted by d K(F; S, D). In

general, for the k-th F-differential of K at F, with k increments
1 2 k k 1 2 kS , S ,..., S , the notation is d K(F; s , S ,..., S ). The functions

l kd K are all k-1inear and symmetric m  the arguments S , . . .  , S .

(see Ref. [ 8 ]) .

The first F-differential of K, dK(F; S) can be written in terms of 

the matrices 3K(F)/3f^, as

( 1 ) dK(F; S) = l
3K(F)
3f. . Sij iD ID

m r
in which £ denotes J ][ . Thus, the second differential is

ij i=l j = l
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d K(F; S, D) A d(dK(F; S); D]

- I
u

3dK(F; S)
8fkH

= Ia  3fkt

ki

3k (f ) s. .
«  3fij ij J w

y y 82K(F)
= A  i  3 f a  3 f i j  d « '

and the k-th order differential is

(2) dkK(F; S1,...^) = l  ... 7 8kK(F) 1 s.3f. . ...3f. . i.j
V k  xP l  xk-)k 1 1] 1 1 1 V k

For the sake of simplicity the first partial derivatives will be 

denoted by

(3) r. .(F) - ^ n .
13 of. .

It must be emphasized that the subscripts on this symbol do not refer 

to the entries in the matrix, but to the different matrices. The 

second partial derivatives are denoted by

32K(F)r1^(f ) =
«  3fu 3fij

and, in general,

i D
t K U f ) = akK(F)

3f...... 3f. .
1k^k

We shall give the following definitions and state some propositions 

that will be useful when proving lemma (11).

(4) DEFINITION. The "Kronecker Product", C = (c ), of two matrices   rs
A ,  Z x m, and B, pxq, is defined to be the £p x mq matrix C = A ® B,

in which
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crs a . . b . .
1 1  ̂1 1 2  ̂2

with

r = p(ij_ - 1) + *2
s = q(jj_ - 1) + j2

i i = 1, . . . , 12

ji — I,..., my j2 =

For example,

C = A  ® B =
a l l B

a u B . . . .
a lm B

a 2 1 B a 2 2 B
. . . . a~ B 

2m

- H i B a S.2B
. . . .

(5) PROPOSITION. Let A(x) be a & x m  differentiable, matrix-valued 

function of a scalar x, and let B be a px q constant matrix. Define 

the functions F(x) = A(x) ® B and G(x) = B 0 A(x). Then F(x) and G(x) 

are differentiable and F'(x) = A'(x) 0 B and G'(x) = B 0 A'(x).

PROOF. By definition,

f (x) = a. . (x)b. .rs i131 i 2D2

for i^, j^, , j2 indices satisfying the rules in (4). Then

F' (x) = (f (x)) rs

= (a. . (x)b. . )
X 1J 1 ±2 J 2

A'(x) ® B

= (a! . (x)). Similarly, G'(x) = B ® A'(x).
V i

Since A'(x) V
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(6) PROPOSITION. (Graham [11] page 63) . Let A(X) , &xm, and

B (X) , mxn, be two differentiable, matrix-valued functions of a 

matrix X. Then,

3 (AB)
Sx. .ID

B + A 9b
ID

V

(7) DEFINITION. The "Kronecker Sum" of two square matrices A, 

mxm, and B, nxn, is defined to be the mnxmn square matrix A © B 

given by the expression

A © B = A 0 I + I S B  n m

in which I and I are the identity matrices in ]Rnxn and IR11̂ 111 , n m J

respectively. V

(8 ) PROPOSITION. (Graham [11]). Let U  } and lx1 } be the eigenvalues 
and the corresponding eigenvectors for a m x m  matrix A, and let

and (y'1} be the eigenvalues and the corresponding eigenvectors 

for a n x n  matrix B. Then A @ B has eigenvalues {A^ + p. } , with 

corresponding eigenvectors

{x1 S y^}

PROOF. Using the basic properties of the K-product such as mixed 

product and scalar multiplication rules, as defined by

(M 0 N) (P 0 Q) = MP 0 NQ 

a (M 0 N) = (aM S N) = (M 0 aN) ,
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we obtain the following equality

(A © B) (x ® y) = (A 0 I ) (x 0 y) + (I 0 B) (x ® y)n m

= (Ax ® y) + (x ® By)

= A(x ® y) + n(x ® y)

= (A + n) (x ® y) .

The result follows. V

It is useful to introduce the basis matrices E_^, the components 

of which vanish except for the one labelled i,j, which is unity. The 

arbitrary matrix A = (a^J can then be expressed as the double sum

(9) A = \  a..E..r. 13 13 13
in analogy with the expression for vectors.

Also we introduce the following vec notation for matrices.

(10) DEFINITION♦ Let X be a i x m matrix. Define vec X by the £m-vector 

x which is the column elongation of X by columns, i.e.,

vec X x (x1 1'*--'x£1 'x i2'***'x£2'*"'Xlm'‘**'X£m) ’* V

We may now state the main lemma of this section

(11) LEMMA. Let A(F) = A + BFC and define

F = {f 6 lRm x r : A(F) is asymptotically stable}.

Then the function K(*) : F ]Rnxn defined by
00

(12) K(F) = / exp[A(F)'t][Q + C'F'RFC] expCA(F)t]dt 
0

is of class C°° . The partial F-derivative matrices, T..(F),13
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satisfy the Lyapunov equation,

(13) T. . (F)A(F)+A(F) T. . (F) = -C'E: . [B'K(F) + RFC] - [B'K(F) + RFC] 'E. .C13 13 13 13

The matrices of partial F-derivatives of higher order also satisfy 

different Lyapunov equations.

PROOF. In order to show that F is an open set, which is necessary when 

talking about differentiability on F, consider the function

h: F — ► H

F »-> A.(F) ,

that associates to a matrix F E F, its i-th eigenvalue )u(F) > which 

lies on the open left halfplane denoted by H. Then, since h is con-I
tinuous, F must be open.

It is well known that the matrix K(F) defined by (12) is the 

unique symmetric solution to the matrix equation

(14) K(F)A(F) + A(F)'K(F) = -Q - C'F'RFC.

Refer for example to [5] , page 175 . This equation can be equivalently 

represented by using the Kronecker product between appropriate matrices. 

In fact, let

D(F) = C'F’RFC + Q 

d(F) = vec D(F) 

k (F) = vec K (F) ,

and note that
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(I 0 A(F) ' )k(F) = n A (F) ' o
A (F) '

o A (F) 1

” k 1 (F) n

k2 (F)

_kn (F)

A (F) 'k (F)

A (F) 'k (F)

A (F) 'k11 (F)

= vec (A(F)'K(F))

(A (F) ' ® I ) k (F) =n all<F)In •••• a 1 (F)I nl

a1 2!F)In a 0 (F)I n2

kX(F) 

k2 (F)

a. (F) I . ... a (F)I k (F) - I n  n nn n -

= [Yk..a. ,Yk0.a..,...,7k .a. , ...,Yk,.a. ,Ykn.a. ,u li ll u 2i ll L ni ll L li in L 2i m

...,Yk .a. ]
L m  m

[k (F) a1 (F) , . . . ,k (F) a1 (F) , . . . ,k. (F) a31 (F) ,. . . fk (F)an (F)] I n i n

= vec (K(F)A(F)) .

(15) [ (A (F) ' 0 I ) + (I ® A (F) ' ) ] k (F) = -d(F) ,n n

which, by using definition (7) , can be written as

(16) (A(F)' @ A(F)')k(F) = -d(F).

However, F €  F implies that A(F) is nonsingular. Therefore, according

to Proposition (8), the eigenvalues of the sum P(F) = A(F)' @ A(F)'

are {2X.}, in which X  ̂are the eigenvalues of A(F)' (= eigenvalues of
-1A(F)), thereby making P(F) nonsingular. Thus, the inverse P (F) exists, 

and

(17) k(F) = —P_1 (F)d(F),

in which
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(18) P(F) = (A(F) ' 0 I ) + (I @ A(F) ')n n

Note however that A(F)' is a differentiable function of F. Thus 

proposition (5) applies and the partial derivatives of P(F) are

(19) 9P(F) 
3f. .

3a (F)'
3f. .ID

1 I +n  J
3a (f ). ^

'n 3f. .ID
-1The partial derivatives of the inverse, P (F), can be proved to be

(20) 9P = -P 1 IF) ^P-(F) P 1 (F) .3f. .ID 3f. .ID
In fact, Proposition (6 ) applied to

P-1 (F)P(F) = I

gives

9P (F) P (F) f P 1 (F) °Pi F) = 0,3f. .ID 3fiD
from which (20) follows. From this, and the fact that d(F) is dif

ferentiable, (17) can be differentiated with respect to f „  , yielding

(21) = p"1 (F)3fID
8P(F) p "*1 (F) d(F)3fID

3d (F)
3f. .iD -

The expression for the partial derivatives of P(F) in (19) is easily
-1seen to be continuous for all f.., Further, P (F) is continuous. ThisID

is guaranteed by the Banach inverse theorem (it says that, if A is a
-1 -1continuous linear operator and A exists then A is continuous - 

see [17]), and the fact that P(F) is linear (it is a linear function 

of A(F) = A + BFC) . Hence, the vectors 3k(F)/3f^ in (21) are con

tinuous in f . .. It follows from this that k(F) , and therefore K(F), is a

continuously differentiable function of F (refer to [8 ], page 167) .

In order to determine the higher derivatives, it must be noted first 

that d(F) and A(F), and therefore P(F), are infinitely differentiable 

(all the derivatives, from the second onwards, vanish). Differentiating
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(18) r times gives

3rp(F) 3rA(F) ' „ 3rA(F)'
\A2.) —z---- - —z-----  —5-----d... d... d...

where the dots have an obvious meaning. The r-th derivative of 

P *(F), 9rP *(F)/9..., then is derived from (20) and (22). In fact,
TT — 1if we expand 8 P (F)/9... using (20), we see that-vc ''vn"11 ~eed

the derivatives of P(F) of order up to r, which comes from (22), plus
-1the derivatives of P (F) of order up to r-1, which comes from (20)

itself used recursively. Hence, since it is clear that, for all r,
r -1 009 P (F)/9__ is continuous, k(F) (and K(F)) is of class C .

Equally (13) can be shown to hold as follows. Multiplying (21) by 

P(F) gives

(23) P(F) k (F) - 8d(F)9f. .13 9f. .13 9f. .13
Then, substituting from (19) and (20), (23) becomes

(24) [ A (F) 1 ® I) +(I ®A(F) *)] = -[( % -F)l ® I ) + (I ® ■ ~ ) ] k (F)n n df.. df.. n n df..13 id id
3d (F)
3f. .13

Now, it is obvious that 9k(F)/3f. . (resp. 9d(F)/9f. .) is the13 13
column elongation of 9K(F)/9f^ (i;esp. 9D(F)/9f^). Then, using the 

same reasoning as when we showed (14) was equivalent to (15), (24) 

becomes, in matrix notation,

,25) A(F) + A(F) • = -k (F) ^ S L . ^  K(F) - ^
ij ij ij ij d ij

Note however that

9f
ij 9f . .13

and so



27

(26) 3A(F)
3f. .ID

BE..C, ID

and

27 - z }  = C'E. .'RFC + C F RE . .C.df. . ID J-DID
Finally equation (13) is obtained by substituting 

(25), and by using the notation introduced in (2) 

derivatives of K.

(26) and (27) into 

for the partial

For the partial derivatives of higher order, we differentiate (25) 

with respect to the other entries of F, which yields Lyapunov equations 

of the type

(28) 3, i, j, i, j.
r . (F)A(F) + A(F) ' r * (F) = -T . (F) .

\ \  \ jk \ jk

The expressions for the matrices T 

of lemma (45) in Section 3.

(F) will be developed in the proof

V

Allwright proved the differentiability of K in [2] using a different 

approach. He used a perturbation method, which involved evaluating the 

Lyapunov equation due to a small change m  the feedback. The Lyapunov 

method was used since it enabled estimates for the error between K(F + A) 

and its tangent at F to be found. In fact, an estimate for £ such that,

K(F + A) - K (F) - dK (F; A) || < e|| A

for all A such that F + A € F and || A|| < 6(e) , for some 6(e) , was

found. In the above expression

(29) dK(F; A) = / exp[A(F)'t]H exp[A(F)t]dt, 
0

where

(30) H = C'A'[B'K(F) + RFC] + [B'K(F) + RFCJ'AC,
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which will be shown to be true straightforwardly in Section 3.

An alternative, simpler proof has been obtained here by using

the theory of the Kronecker product between matrices. By transforming

the (matricial) Lyapunov equation in K into a vector equation of the type 
-1 -1k = -P d, in which P and d are continuouslv di ffe-renti abl e functions, 

the differential of K immediately followed. This approach has been 

suggested by Brockett [ 6 ] and Barnett [ 4 ] in order to solve Lyapunov 

equations.

2.2 DESCRIPTION OF THE METHOD

The purpose of this section is to describe the two procedures 

due to Allwright [ 3] for the dominant feedback problem, both of which 

are for the case when there are no constraints on F involved, except 

that F £ F. The distinction between them is basically that in the first the 

dominance is strict, whereas in the second this is not guaranteed. In 

addition, the selection of the step length is done differently, although 

this is not the basic difference between them.

(31) DOMINANT FEEDBACK ALGORITHM [3 ]

1. Set j = 0
0 T-Choose an mtial feedback F £ r.

2. Set

TT(F̂ ) = min{Xmax dK(F^; S) : S £ S}

3. If Tr(F̂ ) >_ 0 terminate; else continue.

4. Choose the search direction S^ such that

SD £ arg min{Arnax dK(F^; S) : S £ S}
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5. Choose the step length X  ̂ such that

X^ G arg max (Xmin[K(F^) - K(F-̂  + Xs^) ] : X ^  0} .

6. Set F"* + ̂ = F^ + X^S^, j = j + 1 and go to step 1. V

Here Xmax[D] (XminfD]) denotes the maximal (minimal) eigenvalue

of the symmetric matrix D, arg min{(|)(x) : x G x} (arg max) denotes the

set of all minimizers (maximizers) by the function $ on the set X,
U ] x rand S denotes the unit Frobenius-sphere in ]R , i.e.

S = {S G ]RmXr : l  5 2. = 1} = (S G ]RIDXr : || S|l = l}“. 1 1  " 1 F

(32) DOMINANT FEEDBACK ALGORITHM [3 ]

1. Set j = 0.
0 ^ t-Choose F G F .

2. Set
TT(F̂ ) = min{Xmax dK(F^; S) : S G S}.

3. If tt (F*̂ ) > 0 terminate; else continue.

4. Choose the search direction S^ such that

S3 G arg min{Xmax dK(F ,* S) : S G S}.

5. Choose the step length X^ such that

X11 G arg max{ tr [ (K ( F 3 ) -K (F3 +XS3 ) ) X ] : Xmin [K (F3) -K (F11 +XS^ ) ] >0, X ■> 0} .

6 . If tr[(K(F^) -K(F^ + X^S-b ) X ] = 0 terminate; else continue.

7. Set F"̂ + 1 = F^ + XjSj, j = j + 1 and go to 2 . V

Here X^ = e {xqXq '} and tr[*] denotes the trace.

In Algorithm (31) the search direction S^ is selected so that 

the first order approximation to K(F") + Ŝ ) - K(F^) , dK(F^; S-̂ ) , is



30

negative definite. In fact, since it is chosen so that TT(F̂ ) =

Amax dK(F^; S^) is negative, then dK(F^; S'1) <0. In algorithm
i j i(32) , S is chosen so as to make dK(F ; S ) negative semi-definite.

We must now specialize the definition of a descent direction 
for the problem of minimizing (9):

(33) DEFINITION A direction S  £ 0 from F will be called a descent

direction at F for K if S is such that K(F + As) <_ K(F)

for all A c  (0, A), for some A > 0. A normalized descent direction S

is such that ||s || = 1. VF

The next lemma proves that is a (normalized) descent direction,
i iyielding a strict reduction in the cost K along it, when dK(F ; SJ) < 0. 

It also shows that F** is locally dominant (there are no descent 

directions emanating from F^) when dK(F^; S^) i  0, i.e., when 

dK(F^; S^) is positive definite or it is indefinite. No information is 

given when dK(F^; Ŝ ) ^  0 with Amax dK(F^; S^) = 0 , and then there may 
be descent directions at F^ or not, depending on the contributions 

of the higher order terms.

(34) LEMMA [ 3 ] . Suppose 7T (F) = min{Amax dK(F; S) : S 6 S} and 
S 6 arg TT (F) . Then, for F <E F,

(a) If tt (F) < 0, there exists a real A > 0 such that

K(F + AS) < K(F), for all A € (0, A) .

(b) If tt (F) > 0, there exists a real a > 0 such that K(F') K(F) ,

for every F' satisfying || F - F' |[ < a. V

Therefore we may establish the following definitions:

(35) DEFINITION S is said to be a first-order descent direction

if and only if Amax dK(F; S) is negative. V
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(36) DEFINITION F is said to be first-order locally dominant 

feedback if and only if tt(F) ^  0, i.e. if and only if there are no 

first-order descent directions at F. V

The structure of the algorithms is based on the information given 

by lemma (34). In fact, if tt(F;}) < 0, algorithm (31) proceeds
j f 1iteratively m  order to tinu a reedback F that strictly dominates 

(K(F-̂  + 1) < K(F^)), which is guaranteed to exist by (34a) . It must 

be noted that the step length A  ̂ found by maximizing Xmin[K(F'J) -KCF^+As-1) ] 

will provide us with such a dominating F^  ̂ = F^ + A^S^. It terminates 

when the first-order locally-dominant feedback (tt(F̂ ) >_ 0) is discovered, 

relying partly on (34b), by deciding to stop when tt(F̂ ) > 0.

Algorithm (32) goes further, iterating when tt(F̂ ) =0, if this is

possible. When 7T(F̂ ) =0, is either descent (not necessarily yielding
j +1 ja strictly dominating feedback) or else it is such that K(F ) = K(F ).

In both cases, any other direction S is non-descent,

since for them it will be the case that Amax dK(F^; S) >0. In the former

case an iteration is carried out whereas in the latter termination is set,

since we will then have a locally dominant F3 . Theorem (37) shows
1 1 + 1that, due to the way A has been defined, F dominates (not 

necessanly# strictly) F^ , by giving the largest possible decrease 

in the expected value of the cost V(Xq , = x q 'K(F)Xq along :

(37) THEOREM [ 3 ]• If algorithm (32) generates a sequence F^,...,F^ , 
then

q 0K(F ) £  ... £ K(F )

PROOF. For any matrix E, the expected value of x'Ex, when x is 

randomly distributed with zero mean and covariance X, is equal to the 

trace of EX. Indeed, using properties of the trace function,
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(38) e{x 'Ex }

= E{tr[x'Ex]}

= E{tr[Exx']}

= tr[EX].

Therefore,

(39) tr[(K(F^) - K(F^ + 1) )XQ] = e {x q’ (K(Fj) - K(Fj + 1))xQ}.

But since F^ + ̂ is chosen to give strictly positive tr[(K(F^)-K (F ̂ + ̂ ) )X q ], 

there must be at least one x^ for which x^'(K(F^) - K(F^+*))Xq > 0.

Now, since Xmin[K(F^) - K(F^ + *)] is kept non-negative, K(F^) >_ K(F^+S  . 

This shows that K(F^) >_ K(F^'^) . V

When tt(F̂ ) = 0, the situation of not being a descent direction 

is detected by checking whether tr[(K(F^) - K(F^ + X^S^))X^] = 0  

holds. The reason for this is that X"* maximizes the trace. Therefore, 

for all X >_ 0 such that Xmin[K(F^) - K(F^ + Xs^)] >_ 0 , we must have

(i) tr[(K(Fj) - K(Fj + Xsj))XQ] = e{x q' (K(Fj) -K(Fj + XS11) ^ }  < 0.

On the other hand the requirement Xmin[K(F^) - K(F^ + XS^)] >_ 0 

implies that xQ'(K(F-)) - K(F-) + XS^Hx^ >_ 0 for all xQ, which gives

(u) E^xo' - K(F:I + XSD) ) X Q } ^  0.

Then, combining (i) and (li),

e{x q '(K(F^) - K(Fj + Xs^))xQ} = 0.

However Xq '(k (F̂ ) - K(F^ + Xs^))Xq is a continuous function of Xq . 

Therefore, by the above,

x q '(K(F^) - K(F^ + Xs^))xQ = 0
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for all Xq , which means that K(F-*) = K(F"* + As■*) . In summary, 

if the condition tr[(K(F^) - K(F-* + A^S^))Xq] = 0 holds then, 

for all A >_ 0 such that Amin[K(F^) - K(F^ + As^) ] >_ 0,
K(F^) = K(F^ + As-*) (i.e., A = 0 is the only A > 0 such that Amin[

K(F^)-K(F^+As^) ] >o) . Thus, Algorithm (32) terminates with a first- 

order locally-dominant -̂ eaclback too (tt(F̂ ) _> 0).

It is worthwhile noting that the initial matrix F may result m  

no iteration at all for either algorithm.

The rest of this section is concerned with a geometrical analysis 

of the step length procedure (Step 5).

Let

E(A) = K(F^) - K (F** + AS1*) 

g(A) = Amin[E(A>] 

h X ( x )  = x 'E (A)x

Then, by definition of the smallest eigenvalue,

g(A) = min{h^(x): x £ B }n

where B is the Euclidean unit sphere in IRn . Therefore we can n
formulate the step length subproblem, in (31) and (32) respectively, 

as

(40) max{g(A) : A >_ 0 } 

and

(41) max(E{h^ (xQ) } : g(A) >_ 0 , A >_ 0 },
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where fact (39) was taken into account to write (41). For the sake
2of geometrical interpretation, consider Xq € B2 c 3R • Then linearize 

into a segment of line L. In this way the quadratic Iî X q ) (in 

the variable Xq ) can be represented as a function on L c 1  . Three 

examples are depicted in Figure (42). Obviously h^(Xq ) is symmetric 

about Xq = 0, and its shape depends on the parameter X. Its maximum 

and minimum values are the largest and smallest eigenvalue, respectively, 

of E(X).

Consider algorithm (31) with step length subproblem (40). Because 
i Xjg(XJ) > 0, the quadratic h (Xq ) is positive for all Xq , as shown in

Figure (42b). For Algorithm (32), subproblem (41) requires that the
X3expected value of h (Xq) be made as large as possible, while this 

curve lies on or above the real axis.

Another criterion could be chosen to determine X^. Optimizing 

the largest eigenvalue of E(X) subject to g(X) >_ 0 is possible, but 
it may happen that it yields big cost reduction for only a few values 

of Xq , and little or no reduction for most values, which would be 

undesirable, as for example, in figure (42c).

2.3 AN UPPER BOUND FOR THE F-DIFFERENTIAL OF K

In this section we shall prove that, for all matrices F such that 

K(F) K(F^), for some F^ € F, then the norm of the Frechet-differential

of K (of any order) is bounded, and we shall determine such a bound.

As a consequence, if {F"1} is a sequence of feedback matrices generated 

by either of the algorithms described in the previous section, and so 
K(F^) <_ K(F^), for all j and initial F^ € F, that result will hold 

for all F^. This result will be needed in the last section of this

chapter.
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In order to do that, the continuity of the function it must be 

proved. It is facilitated by the

(43) THEOREM. [20], Thm. B3.20] . Let Ip: ]RP x ]Rq — ► TR be a continuous 

function and let H be a compact subset of IR*̂ . Then the functions

9: ]RP — ]R and <j>: — ► ]R defined by

9(z) = min{^(z, h) : h 6 h },
<j)(z) = max{i[»(z, h) : h 6 h }

are also continuous. V

(44) LEMMA. The function 

TT: F — H

F i— min{Amax dK(F; S) ; S €. S} 

is continuous.

PROOF. Lemma (11) says that K is continuously differentiable on 

F. The first F-differential dK(F; S) : F x S — >■ ]Rnxn is therefore 

continuous in the variable F. It is also continuous in the variable 

S because it is linear in S (see [ 8 ], page 167). The continuity of

it comes out after applying Theorem (43) twice. Indeed, first consider

the function defined on ]Rn x F x S by

X (z, F, S) = z' dK(F; S)z

and maximize it in z over B . The theorem then says thatn

Amax dK(F; S) = max(x(z, F, S): z 6 B }' n

is continuous in F and S. Then since S is compact, the result follows 

from a second application of the theorem identifying with

Amax dK(F; S). V
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The main result of this section can now be stated.

(45) LEMMA. Let € F be the initial output feedback matrix for 

Algorithm (31) or Algorithm (32), and suppose that it is generated

a sequence {f ^}. Then, for all numbers k >_ 1, and for any matrices
„ „ ^mxrS ̂ , . . . , 6 1R t

d^t F 4.- S1(...,Sk) || < 6k (F0) II S^l . >k ll '

„ 0 in which p (F_) is a finite positive number that depends on F and K. U
the parameters of the system, and || * || denotes the 2-norm.
NOTE. For a symmetric nxn matrix A, the 2-norm ]| A 11 ̂  is defined

by
a | | 2 = max{ || Ax || : ||x(|2 = l}=max{|Xi |: i=l,...,n},

where || * || 2 denotes the Euclidean norm for vectors.

&PROOF. Let F = F for some &. The first step is to establish the
V iexpressions for the matrices T . in the Lyapunov equations (28).

V k
Basically this is accomplished by differentiating equation (14) up 

to k times and rearranging the terms of the equation obtained. 

Differentiating it once gives equation (13), and so we have already 

T. . (k = 1), which is given by the right-hand side of (13). It can
V l

be rearranged as:

(46) T. . (F) = K(F) (BE. . C) + (BE. . C) 'K(F)+ (RFC) 'E . . C+C'E' (RFC)
V l V l  V l V l  V l

The second differentiation of the Lyapunov equation (k=2), with respect

to the entry f^  ̂ (possibly i^ = i2, = j g i v e s

iljl(47) T. . (F) = T. . (F) (BE. . C) + (BE. . C)T. . (F) +
V 2  V l  V 2 12̂  2 V l

F. . (F) (BE . . C) + (BE . . C)T. . (F) + (RE . . C)'E. . C +
V 2 * V l V l  V 2 1 2 J 2 V l

C'El . (RE. . C)
V l  V 2
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We remark that the matrices E are constant. Another differentiation 

gives the case k = 3, i.e.,

V i 1J 1 V i(48) T. . (F) = T. . (F)(BE. . C)+(BE. . C ) T  . (F) +
l 2] 2

x333
12D2

V l

1-533 J3 1333 1 2 J 2

f. . (F)(BE. . C)+ (BE. . C)'T . . (F) +
^ 2 V V 2 X333

12 3 2 1 2 3 2r. . (F) (BE. . C) + (BE. . C) T . , (F) .
V s V l V l V 3

The expression for the general case k > 3 can then be induced, and 

hence

1i 31J 1 V i(49) T . (F) = r . (F)(BE. . C)+(BE. . C ) T  .V i

w ^-l^k-l
Lk 3k \ 3k

(F) +

^Tc-l^k-l

1l-,2 r . (F)(BE

\ - 2 3k - 2
1k-l^k-l

C)+(BE
^-l^k-l

1C) T  . (F) +

\ - 2 3k -2

V k V k

±23 2 12 3 2 r . (F) (BE. . C) + (BE. . C) T  . (F)
.* V l V l
V k V k

Now it is possible to obtain an analytical formula for the partial 

derivative matrices T . Taking into account that the above matrices 

T are symmetric, we can say that the unique symmetric solution to the 

Lyapunov equation (28) is

V i V i(50) T . (F) = / exp[A(F)'t] T . (F)exp[A(F)t]dt.
. : .  o
V k V k

(see [ 5] page 175).

We must digress at this point and prove (29)-(30). The total



39

first-order differential dK(F; S) can be written, using (1), (46) and

(50), as
00

dK(F; S) = / exp[A(F)'t] £ s.. T..(F) exp[A(F)t]dt
0 ij 1D 13

= f exp[A(F)'t](k (F)(b7 s.. E..C) + (bT s .. E..C)'K(F) + 1  ̂ i] ij u n  ni3 13

(RFC)'y s. . E. .C + C'(y s.. E . .)'(RFC) } exp [A (F) t] dt. u i d  13 L n  n13  13

Since \ s^ E__ = S, this proves what we wanted for S = A.

The next step is to obtain upper bounds for the norm of partial 

derivatives matrices T , using (46), (47), (49) and (50), and therefore 

for the norm of the total derivatives, using (2).

Upper bounds on ||t || are obtained taking the norms in equalities

(46), (47) and (49). Therefore, since || E || =1,

(51) T. . (F)
V i
i, j,

(52) || T. . (F)
V 2

and for k >_ 3,

< 2 || B || || C || || K(F) || + 2 || C || || R|| || FC

< 2 || B || 11 C 11 { || I\ (F) || + ||r.. , (F) || } +2 || C1i 31J 1 ±2J 2

(53)
11 3 < i-i j -1’ t U f) || < 2 II B11 II c|| { II r . 1 (F) II +
V k 1k-l3k-l

X2 j 2...+ r . (f)| }

Taking norms in equation (50) gives

V ir : (f) || +
1k-2 3k- 2
V k

■L13 1 1, : (f ) ||
i, j, 

< II T \

1k3k V k

in which
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(55) J(F) = / || exp[A(F) t] | | 2 dt.
0

By observing the norm inequalities (51) - (54), it is immediate that, 

if we find upper bounds for J (F) , || K(F) || and || FC|| , then bounds for
1 1 j 1

|| F . (F) || , for all k, will be obtained using recursively those inequalities.

\ \

That || K(F) || <_ || K(F^) || is immediate from the dominance property

of the algorithms.

Since C'F'RFC 0/ equation (14) gives

K(F) = / exp[A(F)'t][Q +^C'F'RFC] exp[A(F)t]dt 
0

OO

>_ / exp[A(F)'t]Q exp[A (F) t] dt,
~ 0

and therefore

K (F) || ^(Amin Q)J(F) ,

which, since Q > 0 , gives the bound 

(56) J (F) 4  (Amin Q) _1 || K-(F°) || .

A bound for || Fc|| may be obtained by using the following result due to 
Allwright [ 1 ] : for the system x = (A + BF)x, if F is such that 

ll K(F) || ^ || K(F°) || , then

, 0 ,K (F ) II 2 ll , 0, li 2 B K (F ) K(F°)

in which p is such that R _> pi > 0. For the output feedback problem 

x*(A + BFCx) , the above inequality becomes

(57) II FC|| <
P

+ < 2P P r
A F =  c

with p = Amin R.
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Having established the bounds for J (F) , j| K(F) || and ||f c || , we 

have proved that bounds for all norms || r]| exist. In the lemma that 

follows we will develop the expressions for them. For the moment we 

only know that

V i . 0 ,(58) || r . ( F )  || < Yk (F ) ,

for some numbers y, (F ) , for all i ,. . .,i , j , . . .j and k > 1.K 1 K 1 K.

Finally to obtain the last result, observe that ([22], page 183):

(59) V | s . . | < r max 7 |s..| A r 11 S 11 „13 1 =  . v 1 i]' =  " "113 3 i
and

(60) || S || j < Yll S || 2 .

Hence, taking the norms m  (2), it follows from (2) and (58) - (60) 

that

(61) || dJK (F; Sx, . . . ,Sk! £ Yk (F°) l |s‘ | . .. I |s£
iiji 1 1 V k  kJk

„ , 0. 3k/21| „£ Yk (F ) r II S

= 6, (F ) | S k 11 1 V 1 '

where B, (F̂ ) = Y, and y  (F̂ ) are given by (63) - (6 6)k k k

(62) LEMMA. The numbers Yk (F ) > k _> 1, for (58) , are given

recursively by the expressions

(63) Yj_ (F°) = 2 || C || || K(F°) II (Xmin Q) 1 ( || B || || K(F°) || + || R || F^)

0 k 1 (64) Yk (F ) = ^
k-2

(ayx(F ) + b), k > 1

in which
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(65) a = 4 || K(F°) || || B || || c | |  (Xmin Q) _ 1 ,

(6 6) b = 2 11 K(F°) || || c | | 2 || R||(Xmin Q) *, 

and F^ is given in (57).

PROOF. It follows immediately from (51), (54), (56) and (57) that

II r  i  <F> II < ll T (F) II J ( F )13 1 13 1
< (2 11 B || || C11 || K (F) || + 2 || C || || R || || FC |] ) J ( F )

4  (2 || B || || C| |  || K(F°) || + 2 || C || || R11 Fo ) || K(F°)  || (AminQ) * 1

proving (63). Similarly, combining inequalities (52) , (54), (56) and 

(58) , we have

, iî i ii3ill r (F) || £  || T. 1 . (F) || J (F)
1 2-, 2 1 2D2

< ( 2 IIB II IIC 1RIIr (F) II +| |  r  (F) II} + 2 II c  II2 II R | | )  | | k c f °)  ||- J-jJj x l - >2

(Amin Q) ^

± 4 || B || || C II II K(F°) II (Amin Q) (F°) +2 || C || 2 || R || ||k (F0) ||
(Amin Q)_1

= ayi(F ) + b

in which a and b are defined by (65) and (6 6). Hence,

(67) Y2 (F°) = ayx(F°) + b

In the same way, the combination of (53) , (54) , (56) and (67) gives

II r / ^ t F )  || < ^  (ay.  (F ° )  + b)
2 J 2 x

and we therefore may write that
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Y3 (f°) = t  ‘ I ' (aV F°> + b)

By observing the next cases (k > 3), we can establish an induction on 

k. Then, for all k 2,

V i k!r ; (F) II < - f

'k̂ k

\k-2
(ayx(F°) + b),

which proves (64) .

2.4 IMPLEMENTABLE VERSION OF THE ALGORITHM

Algorithms (31) and (32) are both non-implementable since to

evaluate the search direction and step length exactly is inadmissible in 

practice, as such optimization problems cannot be solved normally in a 

finite number of operations. Throughout this chapter we shall assume that 

the search direction can be evaluated and shall concentrate on determining 

a computable approximation for the step length. Recall that the step 

lengths A^ for the two algorithms are defined by the respective solutions 

of the optimization problems:

(40) max{g(A) : A >_ 0 } and 

(41a) max{(J)(A) : g(A) >. 0 , A > _ 0 } where

g (A) = Amin [K (F-*) - K ( F 3 + As^)],

(J>(A) = E tr[x^(K(FJ) - K(Fj + Asj) )x ] .

Here will be suggested implementable procedures to replace con

ceptual rules (40) and (41a), based on Armijo's method for the case 

when TT(F̂ ) < 0. The property to be proved in Section 5 assumes that 

such implementations are used. An implementation for optimization problem 

(40) will generate a A^ such that g(A^) > 0 , and for problem (41a),
(j>(Â ) > 0. By implementing the step length procedure we do not spoil 

the dominance property of either algorithm. First, g(A"]) > 0 implies 

that K(F^+*) < K(F^) directly. Also, as shown in Theorem (37),
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(j)(Aj) > 0 and g(Aj) ^  0 yield K(Fj+1) £  K(Fj) .

Among a number of implementable algorithms for scalar optimization, 

we favour Armijo's method because it is suitable for non-convex functions, 

and on account of its simplicity. In Armijo's method, at each iteration, 

one gradient evaluation and several function evaluations are needed. In 

the method we will present, gradient information is not needed.

When constraints are not considered, Armijo's method is (see 

Figure (68a) and refer to [20] pp 36, 169) : select a and 6 in 
(0, 1) and p > 0 (recommended values are cl = 0.5, 8 6 (0.5, 0.8) andp = l) 
then X is chosen to be p8^, for the smallest integer q >_ 0 such that

f (p8q) >, af' (0) p(3q ,

i.e. such that the function f(A) lies above or on the line y = af'(0)A. 

Here we alter Armijo's method by:

(i) estimating (from below) the gradient of the unidimensional objective 

function (g or (f>) at the origin, by determining a lower bound quadratic 

form for it in either case, and using the gradient of the quadratic for 

which a formula is available.

(ii) including the constraint in situation (41a), by defining the 

initial step size p to be such that g is non-negative for all X <_ p.

If the optimal step length is X ^ = p$q for some q £  0, since p8^ <_ P, 

then g(A^) _> 0.

In order to do this, consider iteration j. For the sake of 

simplicity in what follows F, S, y, and tt denote F^, , y (F̂ )JC K.

and tt(F^), respectively.

Problem (40) is considered first. A quadratic approximation for
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Figure 68.
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g, Q^, will be proved to exist, so that g(A) £  (A) for small A.

One part of the proof concerns showing that, given 6 6 (0, l/3ar ),

for all A in (0 , 6),
3 r

? r ^9(69) || d K(F + AS; S, S) || £  — ^ 1 +
1 - 3ar3/2S

>

and, for Z(A) = K(F + AS) - K(F) - dK(F; AS),

(70) || Z(A) || <_ 1 + 1 l A2
1 - 3ar3/2<5

The Taylor expansion of d K(F + AS; S, S), as a function of its 

first argument, gives

d2K(F+AS;S,S) =d 2K(F;S,S) + Ad3K (F;S,S , S) + -y A2d4K (F; S , S , S ,S) + 

Taking norms, we obtain:

|| d2K(F+AS;S,S) || £|| d2K(F;S,S) || +A|| d3K(F;S,S,S) ||

+ J Y  X2H d4K(F;S,S,S,S) || + ...

< r3Y2 || S || 2 + Ar9/2Y3 || S || 3 + j j  A2r12/2y4 || s ||4 +

(using lemma (45) and (61))

z 3 . 9/2 3!< r y 2 + Xr — 1 ,2 12/2 4!Y2 + I 7 A r  T
^2

V

(using lemma (62) and || s|| £  || S (| = 1)F
r3y

2 r 3/2 31 { a } . , 3/2. 2 4!—  {2 + r IT 2 I A+(r 1 IT I i V +

r Y 00
= — ( 2 + 1  (3ar3/2A)1} 

i=l

(since (i + 2)!/i! < 6 1 for all i > 1)
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(71) + l  ( 3 a r 3 / 2 A ) 1 } 
i=0

3/ 2Now, if we assume that A <_ 5 for some number 6 < l/3ar , the above 

sum has a limit, and then

K(F + AS; S, S) <
1

1
3 a r 3 / 2 A

' •

Hence inequality (69) follows. Now, using the Taylor formula for the 

second-order expansion of K, we have

K (F + AS) = K(F) + dK (F; As) + Z(A)

where
1 2

Z(A) = / (l-t)d K(F+ tAS; AS, As)dt. 
0

Therefore, using (69),

2 1 2(72) || Z (A) || ^  A / (1-t) || d K(F + tAS; S, S) || dt
0

2 1 r3y? f
£  A / (l-t)dt — -—  j 1 + 1

1 - 3 a r 3 / 2 6

r3Y,
1 + 1 o 3/2- 1 - 3ar o

and (70) is proved.

Before going further we need the next fact:

(73) FACT ([22] page 316). For two symmetric matrices A and B, if 

{a_̂ } are the eigenvalues of A and (3^} are the eigenvalues of the 

sum A+B, then for all i,

Si < + II B ll 2 V

It follows from all the above considerations that, for all

x e (o, 6),
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g(X) = Amin [K(F) - K (F + AS) ]

= Amin[-dK(F; As) - Z(X)]

^  Xmin[-dK(F; AS)] - ||-Z(X)|| (by (73))

= -Amax dK(F; As) -  11 Z (A) ]|

= -(Amax dK(F; S))A - || Z(A) ||

(74) A -ttA - || Z (A) ||

> —ttA -
r3y.

1 +
1 - 3ar3/25

- A (by (70))

Hence, for A € (0, 6)

(75) g (A) :> Q 1 (A) 

for

(76) Qx (A) = -itA -
3r Y.

< 1 +
- 3ar3/26 j

Y A'

i.e., for small A, the function g is lower bounded by the quadratic .

A consequence of this fact is that the slope of g at the origin is higher 

than that of Q^, thereby an Armijo line for Q , i.e. any linear variety 

defined by y = otQ̂  ' (0)A, with a  < 1, is an Armijo line for g as well, 

as we can see in Figure (68b). Here we shall use the Armijo line that 

intercepts the quadratic at its maximum point. The equation that defines 

it is:

Hence, the Armijo-based algorithm for determining the solution to problem 

(40) is:

(77) STEP LENGTH SUBALGORITHM FOR ALGORITHM (31).

1. Choose 3 € (0.5, 0.8);
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Set q = 0.

2. Set X = 8q .

3. Compute

9 (X) = g (X) + ~ X .

4. If 0(X) < 0  set q = q+1 and go to 2; else continue.

5. Set X^ = X and stop. V

Problem (41a) is slightly more complicated since we must guarantee ̂  

that X3 satisfies the constraint. First we will modify the statement 

of the problem, to specialize it to the situation when tt(F̂ ) < 0.

Note that this assumption guarantees that there exists a strictly 

dominating feedback along S^, so there exists a X such that g(X) > 0. 

This permits stating (41a) equivalently as

(41b) max{(f>(X): g(X) > 0, X > 0}.

Then, the initial step size p for the Armijo's based subprocedure will 

be chosen so that g(X) > 0 for all X p. So, by setting X^ = pBq , 

we will make sure that g(X^) > 0 since, for any q >_ 0, pSq <_ p.

We shall prove that there exists a quadratic form approximation 

for <j), for small X, such that (J)(X) >_ Q^(X), which will enable the use 

of the tangent of f°r generating an Armijo line for 4).

Let £ be any positive number greater than 2. Then define

(79) 6(£) = ----2---------  > 0 .
3 a r ' (£ - 1)

Similarly to what has been done for problem (40), we will show that, 

given £ satisfying (79), there exists a 6(e), which is given in (79), 

such that, for all X C (0, 6(e)],
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r3Y,
(80) | d K(F + AS; S, S)I <=  2

and, for Z(A) = K(F + XS) - K(F) - dK(F; XS),

r3y
(81) Z(X) <=  4 i e x 2

In fact, consider inequality (71)

d K(F + XS; S, S) I £
3r Y,

(l + l  (3ar3/2X)1}, 
i=0=  2

and assume that X E (0, 5(e)]. Then, from (79)

X < e - 2
3ar3/2(£ - 1)

< 1
3ar3/2

and inequality (71) becomes, as before,
3 rr Y

(82) || d2K(F + AS; S, S)|| < — J 1 + 11 -5 3/2,1 - 3ar X

However, since X < 6(e),

(83) 1 + 1 -2 3/2, =1 - 3ar X
< 1 +

1 - 3ar3/26(£)
= e

Therefore, combining inequalities (82) and (83), we get (80). Also 

from (72) and (80) we obtain (81), i.e.,

2 1 2II Z(A) || £ X / (1-t) || d K(F + tXS; S, S) || dt
0

r3Y
=  4 2 e X2

Now two facts must be remarked:

(84) FACT. For two matrices E >_ 0 and X > 0, tr EX £  Amin Xtr E . 

PROOF. X - (Amin X) 1 ^ 0

=> E* (X - (Amin X) I)E* > 0
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i 4=* tr [E (X - (Amin X) I)E ] ^  0

JL 1=> tr[E2 XE ] >_ Amin X tr [E]

and since tr[ABC] = tr[BCA], the result follows. V

(85) FACT. For a matrix E with eigenvalues {A^},

tr[E] = I A. V. i i
3/2Hence, noting that 6 (e) < l/3ar , we have that, for all A £ (0, 6 (e)] ,

(j) (A) = tr [(K(F) - K(F + AS))Xq]

^  Amin XQ tr[K(F) - K(F + As)] (by (84))

>1 n Amin XQ Amin[K(F) - K(F + AS) ]

(8 6) = n Amin X^ g(A)

>_ -n Amin X^ tt A - n Amin X̂ jj Z(A)j| (by (74))
3n Amin X r y e  ~

(87) > -n Amin X tt A - --------------  A (by (81) )=  0 4

In summary, for all A € (0, 6 (e)],

(8 8) <J> (A) ^  Q (A)

for ^
n Amin X r y e  2

(89) Qn (A) = -n Amin Xn tt A - --------------  A2 U 4

We remark that the above quadratic is a function of the parameter e.

This means that there exists a family of quadratics which approximate

(j) from below in a neighbourhood of the origin. Any member of the

family could provide an Armijo line for (J), in the same way as an Armijo

line for g was obtained from . In whatever case the line equation is 
n Amin X^ tt

y ------------- A. However the one we will select will automatically give2



a feasible initial step size.

Consider the family of quadratics {q ^} for different values of

£ shown in diagram (90). Note that, as £ increases, 5(e), the number
£up to which Q2 <. <pr increases too. Take the first one (for the 

smallest £) such that its positive root, say p , is smaller than 6 (£). 
The formula that gives is obtained from (89). Then

(90) p£ = - 4tt
3

r  Yo

We shall prove that £ satisfying 

12ay,
(91) £(£ - 2)  ̂__

£ - 1 =  y.
1

for a, and Y2 of (63) - (65), implies that p^ 

tt < 0 , and (| S 11 <_ 1, it follows from (61) that
< 6 ( e ). In fact, since

3/2,-7T = -Amax dK(F; S) = || dK(F; S) || £  r ' y .

This, combined with (90) - (91), yields

P£ 3
4tt 4y.

£  -  2
r Y2£ =  3/2r Y2e 3/23ar ' (£ - 1)

= 6 (£)

Now consider an £ satisfying the condition p <_ 6 (£). Then we can prove 

that is eligible for the initial step size in the sense that g(\) >_ 0 

for all A in the interval [0, p£] . In fact, since =  0 for
A £ [0 , p ], then

(n Amin XQ) ^^(A) >_ 0.

However, from (8 6) - (87) - (89), we know that for A £ (0, 6 (E)],
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Figure 90.
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g(A) > 0.

This means that either or 6(e) could be used as an initial step 

size, provided it is the minimum of the two. We shall choose since it 

is a function of 7T and therefore convenient for us in the next section. 

Thus we need p£ to be smaller than 6(e) , and therefore we choose e 

satisfying (91). Finally note that p£ may be such that g(p£) =0, 

which, as mentioned before, is undesirable. Then, the initial step 

size will be defined as P£S. Hence, the algorithm for obtaining the 

solution to problem (41b) is:

(92) STEP LENGTH SUBALGORITHM FOR ALGORITHM (32).

1. Choose 6 € (0.5, 0.8) and the smallest £ > 2 satisfying

£(£ - 2) 
£  -  1

12ay,
=  Y,

where a, y^ and y^ are given in (63) - (65) ; set q = 1.

2. Compute the initial step size

P = - 4tt

r V

3. Set A = p(3

4. Compute
n Amin Xn it

(A) = (p (A) + ----------- A

5. If 0(A) < 0  set q = q+1 and go to 3; else continue.

6 . Set Â  = A and stop.

(93) REMARK. As inequality (91) is equivalent to

12ay.2 r , 12aYi i
£ -  2 +  --------

^2
£ + 1 > o

Y,
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for £ > 2 , and this quadratic is positive for large £, them the choice 

for £ required in step 1 is always possible. V

(94) REMARK. An alternative choice for the initial step size is p=l. 
In this case however one must evaluate g(A) and check if g(\)>0.
2.5 A SPECIAL PROPERTY FOR INFINITE SEQUENCES OF DOMINATING FEEDBACKS

In this section we shall be concerned with infinite sequences of 

feedbacks, with elements such that ttIF"1) < 0 , which are not necessarily 
convergent and are generated using algorithms (31) and (32). Assuming 

that {f ^} is such a sequence, it will be proved that the sequence 

{ it (F^) } tends to zero as j tends to infinity. In the case when {f -̂} 

has accumulation points in F or a limit, this fact has the interesting 

interpretation that the limit or accumulation point F* is first-order 

locally-dominant.

(95) LEMMA [23]. Let {p }, j € {l,2,...},

symmetric matrices such that <_ ...

some P. Then P* = lim P. exists and P* £ P.j-x» 3

be a sequence of n x n

and P. < P, for all j and 
3 -

V

The main result is stated in:

(96) THEOREM. Consider the implementable versions of algorithm (31) 

and (32), in which the step lengths are computed using subalgorithms (77) 

and (92), respectively, and assume that {F*̂ } is an infinite sequence of 

dominating feedbacks constructed by either algorithm, such that tt(F̂ ) < 0. 

Then, as j 00,

K(F:) K*

for some K* £ 0, and 

tM F 3) + 0.

PROOF. The first result of the theorem comes from the monotone 

non-increasing property of the cost sequence, the fact that K(F^) > 0
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for all j, and from lemma (95).

The second result will be shown to hold for Algorithm (32) only, 

although it is true for Algorithm (31) also. The proof for Algorithm 

(31) can be easily obtained by replacing (j) by g and dropping n Amin Xq 

in the following proof. Follow the proof using diagram (97).

The first thing to be shown is that

(98) A"1 = p6q > ^

where q is the smallest number for which 9 (pBq ) >_ 0 , where 6 is given 

in step 4, and p is defined in step 2. Indeed, consider

n Amin X_ tt(F'5)
0(A) = (f)(A) + ------------------  A

2
and denote by £ the first positive root of 0(A) = 0 , i.e. the first 

point at which (p encounters the Armijo line. (If (f) does not intercept 

the line along the positive axis it means that (|) is always above it, 

and so A^ = p, therefore satisfying (98)) . Thus 

n A m m  X„ tt(F̂ )
(99) <MO ------------ -------  £ > 02

However note that, by the way the line was defined, crossing at 

its top,

n Amin X_ tt (F*̂ )
(10 0 )  --------------  A > Q (A) <*=> A € [p/ 2 , «>)2 =  2

Also since M C ) >0, it must be true that

(101) (J>(9) > q 2 (0 ,

which can easily be proved by contradiction using the facts that 

p < 6(e) , q 2( A) 0 A £ [0 , p] and (p (A) > Q2 (A) , for A £ (0 , 6(e)] . 

Therefore it follows from (99) - (101) that
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(1 0 2 ) £ £ [p/2 , ™) .

In order to obtain (98), the next task will be to show that

(103) A > min(p3 , £8).

In fact, since X̂  = pBq for the smallest q £  1 such that 0(A^) _> 0 ,

X̂  <_ pB and A^ _< £, i.e.

(104) A^ = p8q <_ min{p8 , £}.

Now suppose that

(105) A^ = pBq < Bmin{p8 , £} 

then I

p8q 1 £  min{pB/ £}

which contradicts (104) for the smallest q £  1. Thus (105) is 

false and (103) holds.

Note that from (103) and (104) , A -1 belongs to the interval 

(min{pB2 , £ 8K  min{pB, £}) (see figure (97)).

Finally results (102) and (103) will prove (98). Indeed, (102) gives

CB > S i

and B £ (0.5, 0 .8) implies that

pB2 > f  ,

so that

min{£8 , pB2} > .

Combining the above with (103) yields (98).
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Figure 97.
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The convergence of the sequence {tt(F^)} can now be shown.

6 ( A j ) > 0,

n Amin X_ Tr(F2)
<D(X3) > --------------- 2----------A3

Since

> _
n Amin X_ tt(F̂ ) «
--------- -------- (using (98))2 2

(106)
n Amin X_ 3 - 2
— =---------- ttCF-1) (using (90))
r Y2 e

However the convergence of the cost sequence {k (F^)} ensures that, for the 

zero matrix <D,

K(F-1) - K(F-] + A^S3) + 0

and then

c|> (A3) = tr[(K(FJ) - K(FJ + AJSJ))X ] 0.J \ J c 3

Consequently, from the above and (106),

7T(FJ) + 0.

This result, together with the continuity of the function tt, leads 

us to the conclusion that, if F* is an accumulation point of {f ^}, then 

tt (F*) = 0 (observe that we are not saying that there exist accumulation 

points for the sequence). It is of interest to see how inequality (106) 

can be used to prove tt(F̂ ) -*• 0, by means of a partly different approach. 

Our next task will be to describe it.

We shall use the theory of computational algorithms developed by 

Polak in [ 20] .

Consider the problem of minimizing a continuously differentiable 

function f : ]Rn -> 1R . Let us call points in ]Rn desirable if they
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are e.g. local minimizers. Let a: ]Rn 1° be a

search function. The following is an abstract algorithm for computing 

desirable points.

(107) ALGORITHM MODEL [20]

1. Compute a Zq 6 ]Rn .

2. Set i = 0.

3 . Compute a (zj .

4. Set z . . = a(z.).i+l l

5. Determine whether z  ̂ is desirable using f.

6 . If is desirable, stop; else set i = i+l and go to 3. V

(108) THEOREM [20]. Suppose that

(i) f is either continuous at all nondesirable points z 6 IRn or 

else f is bounded from below;

(ii) for every nondesirable z € 1R11 , there exists an £ (z) > 0  and a 

6 (z) > 0 such that

f(z') - £ (a(z')) > £(z)

for all z' such that ||z-z'|| <_ 6 (z) .

Then, either the sequence {z_̂ } constructed by algorithm (107) is finite 

and its penultimate element is desirable, or else it is infinite and 

every accumulation point of {z^} is desirable. V

We shall call a feedback F^ desirable, if it is first-order locally- 

dominant, i.e. if tt(F̂ ) >_ 0. The function f will be identified with 

the continuously differentiable function tr[K(F)X^]. The algorithm
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model to be considered is algorithm (32) with the line search rule

given in (92). Since this algorithm was designed to optimize K(F),

we must show that it also optimizes f, i.e., at each iteration j,

f(F^+S  < f(F^). This is obviously true for it has been proved that 
i +1 iF dominates F , thus, using (39), 

e {x q 'K(F^)Xq - x0 'K(F^+1)xQ}

= tr[K(F^)XQ] - tr[K(Fj+1)XQ]

= f(Fj) - f(Fj+1) > 0.

Therefore, algorithm (32) - (92) fits model (107) with f = tr[K(F)XQ].

It is simple to prove that theorem (108) applies here. Since f is 

continuous, we must only prove that assumption (ii) holds. So, suppose 

that F^ is nondesirable, i.e. 77 (F^) < 0 , and let

£ (F^) = 7T (F^) > 0

Then, by continuity of 77, there exists a 6 (F̂ ) >0, so that, for 

all F' with II FD - F ' || < 6 (F3) ,

77(F-1) — 77 (F * ) | < £ (F-1) = - 77 (F3)

and so,

-77 (F') > - 77 (F^)

which implies

ir(FM2 >= 4

Now, using (106) with F' and S' € arg 77(F'), and the above,

<J>(A) = tr [ (K (F 1) - K (F ' + AS') )XQ]
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= tr[K(F')XQ] - tr[K(F' + XS')X01

n Amin X. 3
> -- --------- TT(F')2

r y 2 £

n Amin X_ 3 . -
>_ -- =-------  7T(F3} > 0
~~ 4r Y 2 £

proving (ii). Thus, theorem (108) holds. Then, for F* an accumulation 

point of {f  ̂}, 7T (F*) >_ 0. However, we cannot have tt(F*) > 0 by 

continuity of TT and since tt(f )̂ < 0 for all j. Hence ir(F*) = 0.

We finish this chapter with two remarks. First, suppose we consider

the search direction is the matrix S which minimizes approximately

Amax dK(F"*; *) over S. Then all the results of this and the previous

sections are valid, if we replace tt(F̂ ) (= Amax dK(F^; Ŝ ) ) by 
i ~iAmax dK(F ; S ). Second, it is worthwhile noting that, although the 

algorithms studied do not always give convergence of feedbacks, this does 

not matter as convergence of {k (F^)} to K* is all that is needed 

practically rather than convergence of {f }̂ to some F*.
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3. CONSTRAINED OUTPUT FEEDBACK

This chapter is concerned with a constrained output feedback problem.

We shall consider the feasible set to be a compact convex set M, having 

a nonempty interior, and defined by continuous functions g1:

M A {x € 3Rmxr : g1 (X) < 0, i - 1,...,q}

An extension of the method described in Chapter 2 will be developed 

here. It is well known that convergence of a sequence of non-desirable 

points generated by a feasible direction algorithm, to a desirable 

point, in constrained optimization, may not be achievable if the 

algorithm is not "closed". In this chapter it will be proved that, 

by choosing the search direction as the vector S which minimizes the 

largest eigenvalue of Xmax(F; S), when F+S lies in M, our algorithm is 

closed. Moreoever, when the search direction is determined approximately, 

in the sense that S is chosen so that Amax dK(F; S) is a fraction of the 

minimum of Amax dK(F; *) over M, closedness is maintained. Therefore 

convergence of a non-desirable sequence of feedbacks to a desirable feed

back is guaranteed. A desirable feedback will be an F satisfying 

min{Amax dK(F; S): F+S 6 M} = 0. As before, convergence means only 

function valued convergence since K is not convex. So, (function

valued) convergence of an (infinite) sequence {f }̂ to F*, within this 

context, implies that F* is an accumulation point of {f ^}, and it is 

desirable. We shall not be concerned in this chapter with implementable 

procedures for determining the search direction. In the chapters that 

follow we shall draw attention to that point. Finally, convergence is 

also proved for the algorithm having a computable step length analogous 

to that of Chapter 2, using a direct approach.
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3.1 STATEMENT OF THE OPTIMIZATION PROBLEM

Given an initial condition x^ for the system (1.1-3), consider the:

(1) CONSTRAINED PROBLEM

Minimize {v (Xq ,f ): F € M} in the dominance sense,

where M is a compact convex set with nonempty interior, defined by
i mx r  ̂^continuous functions g : JR 4  1  as

M = {x G JRmXr : g1 (X) £ 0, i = 1, . . . ,q/ and X is stabilizing, i. e. X G Jp} 

and for which an initial output feedback F° G M is provided. V

Given a feedback F. G J, denote by M(F) the set

M(F) A (Y G ]RmXr : Y = X - F ,  X G M }

thus

(2) F + S G M < = = > S G  M(F) ,

i.e. M(F) is the set of points S such that F + S is feasible.

(3) DEFINITION. A direction S ^ 0 from F will be called a feasible

direction at F , for problem (1), if S is such that F + As G M 

whenever 0 < A £  A, for some A > 0. The cone of the feasible directions 

is defined as the set of all feasible directions from F. V

In a feasible direction algorithm, a descent direction is selected 

from the cone of the feasible directions. Here we shall optimize 

the largest eigenvalue of dK(F; S ), as we have done before in Chapter 2, 

with S varying over M(F), and shall use the optimizing S as the search 

direction, if it is descent. The next important lemma gives a framework

for the feasible direction algorithm:
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(4) LEMMA. Let F G M and suppose

S € arg min{Amax dK(F; S) : S (i M(F)} 

TT (F) = Amax dK(F; S)

Then

(a) If tt(F) < 0, there exists a real A > 0 so that K(F + AS) < K(F) , 

for all A 6 ( 0 , A) .

(b) If 7T (F) = 0 and S = 0 is the only global minimizer, then there 

exists a 6 > 0 so that K(F') K(F) for all F' 6 M:J|f - F ' | | < 6 .
V

The above lemma will be proved in Chapter 5 (see (5.85)), for con

venience. The implication of this lemma is that when tt (F) is negative,

S will be chosen as the search direction, because it ensures a decrease 

in the cost along it. When tt(F) = 0  and S = 0 is the only min^mizer, 

termination will occur since this means that F is locally dominant. For 

the case tt(F) equals zero with a nonzero argument S, as no information 

can be obtained from the lemma, it will be necessary to search along 
S, to determine whether a reduction in the cost is achievable.

The conceptual algorithm for problem (1) is:

(5) FEASIBLE DIRECTION ALGORITHM FOR CONSTRAINED OUTPUT FEEDBACK

1. Select an initial stabilizing matrix F^ in M; set j = 0.

2. Compute
TT(F̂ ) = min{Amax dK(F^; S):S € M(F-^)}

and
Sj € arg min{Amax dK (F^; S) : S f. M(F^)}.
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- i i * 13. If tt(Fj) = 0 and S = 0 is the only minimizer, set F = F and

stop; else select a nonzero rninimizer and continue.

4. Compute the step length X^

X^ £ arg max{tr[K(F^) -K (F̂  + XS^) )Xq] :Xmin[K(F^) - K(F^+Xs^) ] M3,X6[0,1] } .

5. If trtCKCF-1) -K(F“* + Xs ^))Xq] = 0 stop; else continue.

6 . Set F^+  ̂ = F^ + X^S3, j = j+1, and go to Step 2. V

As we can see this algorithm follows the same pattern as unconstrained 

algorithm (2.32). However two obvious differences appear: the first 

concerns the stop condition, which is due to the change of part (b) in 

Lemma 4. The other is a consequence of the inclusion of constraints.

In order to ensure all the pomts^inside M, we require that S^ belongs 

to M(F')) and X^ to the interval [0, 1] . Then since M(F^) is convex, 

all feedbacks of the form F^ + Xs^ , X € [0 , 1], and therefore F^ \  

will belong to M. Fortunately these requirements will not spoil the 

dominance property of the generated sequence. For, consider Theorem 

(2.37) characterizing dominance for algorithm (2.32). The assumptions 

used there are tr[(K(F^) - K(F^ + *))Xq ] > 0 and Xmm[K(F^) - K(F-1 + '*')] >_ 0. 

Since these conditions are imposed by the step length procedure only, which 

is basically the same for this algorithm, then Theorem (2.37) also 

applies here, and therefore we restate it:

(6 ) THEOREM. Let {F~̂ } c= M be a sequence of feedback matrices generated 

by Algorithm (5). Then, for all j ,

K(F-* + 1) <_ K(F^) . V

It turns out then that convergence of the cost sequence {k (F^)} 

to some K > 0 is implied, as was shown in Chapter 2.
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Although this algorithm has the same structure as the unconstrained algorithm, 

the property of convergence proved for that one (namely, 7T (F-1)-*- 0) does not hold 
automatically here, with constraints included. Even though there is 

a dominating feedback created at each iteration, the sequence might 

jam at some point on the boundary of the feasible set, a phenomenon 

that may apppear in constrained optimization, and not get any closer 

to a first order locally-dominant feedback. Thus, convergence must 

not be assumed for the above algorithm, but must be proved. This is 

the subject of the next section.

3.2 CLOSEDNESS PROPERTY OF THE ALGORITHM

An important fact arises when we deal with constrained optimization 

and feasible direction methods. That is, there exists a relationship 

between convergence to a desirable point and the way the search direction 

is chosen. Here, as already mentioned, convergence of a sequence to a 

desirable point means that the sequence has desirable accumulation 

points (not necessarily, but occasionally, a limit point).

We need to generalize the concept of continuity for point-to-point 

mappings to continuity for point-to-set mappings. In the theory of 

algorithms, this continuity property is known as "closedness".

(7) DEFINITION. A point-to-set mapping A: X -* Y is said to be 

closed at x € X i£ the assumptions

(i) xk •* x, xk € X

(ii) yk y ' yk G A(xk]

imply

(iii) y £ A(x).
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The point-to-set mapping A is said to be closed on X if it is closed

at each point of X. By a closed algorithm we mean an algorithm having 
j + 1 ■)x an element of A(x ), with A closed . V

(8) DEFINITION. Let X a  tb?  be a given feasible set. A set T ci ]R^ 

consisting of pairs (x, d), with x € X and d a feasible direction at x, 

is said to be a set of uniformly feasible direction vectors if there 

exists a 5 > 0 such that (x, d) e T implies that x + ad is feasible 

for all a, 0 <_ a <_ 6 . The number 6 is referred to as the feasibility 
constant of the set F . V

The closedness property of algorithms is crucial to establish 

convergence. Refer to [6 , pages 125, 143], where it is shown that,
I

if a feasible direction algorithm uses a closed feasible direction 

selection map and generates uniformly feasible directions, convergence 

is guaranteed, irrespective of how the line search is performed.

In what follows it is shown that Algorithm (5) is closed. More

over, closedness is proved for the algorithm with an approximate search 

direction. Then, in view of the above considerations, convergence to a 

desirable point is achieved, for both cases. Lemma (4) yields the 

necessary condition of optimality for an F, tt(F) = 0. Thus, as before,

F will be called desirable if tt(F) =0. Consequently, for any accumulation 

point F* of {F"1}, tt(F*) = 0 (since M is compact, F* 6 M, and so 7T is 
defined at F*).

For the sake of simplicity, define the function a(F,.) : JRmXr JR by 

a(F, S) = Amax dK(F; S)

Thus, Step 2 of Algorithm (5) requires solving the optimization

problem:
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(9) SEARCH DIRECTION PROBLEM. Given F G M, solve the problem

min{a(F, S) : S G M(f ) }

where

M(F) = {Y G ]RmXr : Y = X - F ,  X G M }  V

Thus, a search direction is selected from the set of arguments that 

minimize <J(F, •) over M(F).

Closedness of Algorithm (5) is demonstrated in two steps:

First, it should be noted that any sequence { (F^, S^)} of ordered 

pairs generated by Algorithm (5), is uniformly feasible. Indeed, since 

S3 must be an element of M(F^), which is convex, F^ + ciŜ  is feasible 
for all a in [0, 1]. The feasibility constant is therefore 6 = 1 .

Then , the proof of closedness of the search direction map is 

shown in the theorem:

(10) THEOREM♦ The point-to-set mapping

d: M -> C (M)

F *-»- arg{mina (F, S) : S G M (F) } , 

is closed, where C(M) is the set of subsets of M.

PROOF. Let F be an arbitrary point in M and {f }̂ be a sequence of 

points in M such that F"1 ->■ F. Assume that, for S"1 G d(F^) , -► S.

First it will be shown that S G M(f ). By definition of M(F),

M(F) = {x - F: g1 (X) £ 0, i = l,...,q}

= {Y: g1(F + Y) £ 0 , i = l,...,q}
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Therefore, the constraints that: define M (F) are functions of two 

variables, F and Y, and we shall denote them by

g1 (F + Y) = G1 (F, Y).

Suppose, for proof by contradiction, that for some constraint G1,

G1 (F, S) > 0

and set £ = G1 (F, S). Then, by the continuity of G1, there exists a 

N > 0 such that, for j > N,

|g 1 (F:I , SD) - G1 (F, S) | < £

and therefore

G1 (F̂ , Ŝ ) > G1 (F, S) - £ = g N f , S) - G1 (F, S) = 0 

which is a contradiction. Then, for all i,

G1 (F, S) < 0, 

and so S £ M (F) .

Next we shall prove that there exists a sequence of matrices 

{ } ,  with X^ £ M(F^), convergent to any given S £ M(F). Refer to 

figure (11) for the geometrical interpretation. Let, for a given £ > 0,

B A {Y: || Y - S11 £}.

Because M(F) has a nonempty interior, and S £ M(F), there is intersection 

between B and M(F). Consider a Y £ B 0 M(F). Then, g N f , Y) < 0, Yi, 

and thus, there exists a N' > 0  such that, for j > N',

Ig N f 3, Y) - G1 (F, Y) | < -G1 (F, Y) ,

i.e.



Figure II.
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G1 (Fj/ Y) <_ 0,

and so Y £ M(F3). Now, let {x3} be the sequence defined by

Xj € arg min{ j| X - sj( : X € M(F3)}

(note that convexity of M(F3) implies uniqueness of X-1). Thus, for 

j >_ N' , since Y £ B D M(F3) ,

ll x 3 - s|| < || y - s|| < e,

i.e. X3 £ B. Finally, as £ can be made as small as we want, this shows 

that X3 S.

To prove that S minimizes cf(F, S) over M(F), suppose that there 

exists a S' £ M(F) such that

0 ( F, S') < a(F, S),

 ̂ „ a(F, s) - a(F, s ' )  xand choose £ = ------------------  > 0 .

Recall that 0 is continuous in both arguments. Then cr(F3, S3) 

Q(F, S), and so there exists a N" > 0 so that for j > N",

a(F3, s 3) - a(F, s) I < £

and consequently,

(12) O (F3 , S3) > CT(F-/. $ ) . + 9.S* • - $ ') .  .
2

On the other hand, if {x^} is a sequence of vectors X3 £ M(F3) convergent 

to S', then a(F3, X3) ■ + G(F, S'), and therefore there exists an 

integer N"' so that for j > N ,M

| CJ(F3 , X3) - a(F, S' ) | < £.

Thus
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(13) 0 ( F 3 , Xj) < g-'F-̂— S-- * a ( F f  S ’ ■■

It follows from (12), (13) that, for j > max{N", N'"}, 

a(F3 , X3) < 0 ( F 3 , S^),

which is a contradiction by the definition of , and thereby 

S € arg min{a(F, S): S € M(F)}.

Hence, d is closed. V

Figure (14) depicts a unidimensional example where, for a sequence 

{f ^} with F^ ■ + F, d(F^) = arg min{a(F , S) : S 6 M(F^)} is a singleton, 
and d(F) is a set. The closedness property of d means that the limit 

point of { s ^ }  is an element of d(F).

If we modify the algorithm and use for the search direction a 
computable vector , which does not necessarily minimize Q(F^, •) 
over M(F^) exactly, the closedness property may still be preserved.
For example, define S"1 as the vector which yields 0 (F3 , S”1) at most 

a 6-fraction of the minimum of a over M(F^), i.e.,

(15) a(F^, S 3 ) < 6min{a(F^, S): S G M(F^)}.

i(Figure (16) shows the set d(FJ), with elements S satisfying (15).

The meaning and significance of the set Q(F^)will be seen in Chapter 4.) 

We have then the following result:

(17) THEOREM. Let 6 £ (0, 1). Then the point-to-set mapping

d: M C (M)

F { s  € M ( F ): a (F,  S) < 5min{a(F,  X ) : X € M(F)}

is closed.
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Figure 14.

Figure 16.
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PROOF. Let F be an arbitrary point in M and {f ^} be a sequence of points 

in M such that F"1 -*■ F. Assume that {s-1} is a' sequence of points 

Sj £ d(F-̂ ) , i.e.

CT(F̂ , sj ) ^  SminlaCF3 , X): X £M(F^)} 

and that

S3 + S.
The assumption S3-»S alone leads to S€M(F) (as proved in Theorem (10)).

AIn order to show that S £ d(F), we suppose, for proof by contradiction, 

that

0(F, S) > 5min{a(F, X) : X £ M(F)}.

It follows from this then that we can define

£ = a (F, S) ~ 6min{a(F, X): X £ M(F)} >
2

As before, the continuity of a will be used. Since F“* -*■ F and -+ S, 

there exists N > 0 such that, for j > N,

|a(FD, s3) -  a(F, s) |  < e

and so

(18) a(Fj, Sj) > a(F' S) + 6min{a(F, X): X £ M(F)}
2

However we can show that d being closed implies that

(19) min{a(F3, X): X £ M(F^)} +min{a(F, X) : X £ M(F)}.

In fact, assume that Y3 £ d(F3) and Y3 ■ + Y. Then Y £ d(F) , i.e.

Y £ arg min{a(F, X) : X £ M(F)}.

This, together with the fact that a(F3, Y3) ■+ G(F, Y) , proves (19) .
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Thus, we can guarantee that for j > N ’, for some N' > 0,

m i n i o i F 3 , X): X € M(F:)} - min{a(F, X): X € M(F)}| <

and hence,

(20) 6min{a(Fj, X) : X £ M(f X  } < *> ««<£■> >
2

Hence, by (18) and (20), if j > max{N, N'},

cr(F-*, ŝ ) > 6min{a(F^, x)s x G M(f -*)},

j  ̂ iwhich contradicts the assumption that S € d(FJ), and that proves that

S G d (F) . V

Before finishing this section we need to add a remark concerning 

the size of the step length interval. Assume that the search direction 

problem is solved exactly. Then it can be shown that there is always a 

solution S'* lying in the boundary of M(F-*) . In order to see this, 

consider S'* with a(F"*, S'*) < 0  and suppose by contradiction that 

Ŝ  £ 9M(F-*) . Then there exists X > 1 such that XS"* G 3M(F"*) , and so

Q(F-*,XS:I) = XmaxdKfF1* ;XS-*) = XXmaxdK (F11; S J ) <XmaxdK (F: ; S 3 ) = 0 ( F 3 ; S 3 ) .

This contradicts the assumption that S'* is the minimizer of a, therefore#
S'* G 3M(F^). Now consider S'* with O ( F 3 , S'*) =0. Then, if S'* £ 3M(F'*) , 

there exists a X such that XS~* G 3M(F^), and O ( F 3 , XS"*) =0. So,

XS"* is a minimizer too. Hence, since by definition of S"*, a(F"*,S^) < 0 

always occur, we have proved what we wanted. Figure (21) illustrates 

a situation for the case where M is defined by linear constraints. In 

some cases S'* may not be unique, for example when the contours of 

a(F“*, •) are linear. The importance of the fact that S'* can always be 

selected in the boundary of M(F“*), is that, by doing this, F~* + XS"*, 

when X ranges over [0 , 1], will span the entire feasible segment of
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Figure 21. 
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line along S^, and so the step length interval becomes simply [0, 1] .

3.3 A COMPUTABLE STEP LENGTH

In this section an implementation for the line search of Algorithm (5) 

(Step 4) is given, for the case when 0 (F^, S^) < 0. An expression for 

the step length will be obtained by considering a lower bound quadratic 

approximation for a along the search direction, the idea we have intro
duced in Chapter 2.

~i ^Let F = F and S € d(F). The exact step length solves

(22) max{tr [IK(F) - K(F + AS) )x ] : Amin [K (F) - K (F + As) ] >_ 0, A € [0, 1]}.

/NAn implementation will be defined by a A such that

<J> (A) = tr [ (K (F) - K(F + As))X ] > 0

and the two constraints of (22) are satisfied. An implementable step 

length is expressed in the following theorem.

(23) THEOREM. Let F and S generated in Alg. (5) , with O(F,S)<0. Then, for

C A f -2a(F, s) c -2a(F, s) „ „A = | -------  , if — 5------- < l
 ̂ r y 2£ r Y 2 £

1 , otherwise
*

where e > 2 is chosen so as to satisfy

e (e - 2) 12adYl
£ - 1 = Y2 '

d is the diameter of M, and a, and y2 are given in (2.63) - (2.65),

tr[(K(F) - K(F + AS))X ] > 0 

AmintK(F) - K(F + AS)] > 0 

A € [0 , 1] ,
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/N

and so X is a computable step length for Algorithm (5).

PROOF. Assume that M has diameter d. Then M(F), because it is a dis

placement of M, has also diameter d, i.e., for S £ M(F) , [| S || £ d. 

Some of the results of Section 2.4 will be used here, and we devote 

the next paragraph to recall them (there d=l).

Given an £ > 2, it is proved in (2.79) - (2.80) that
3

d K(F + AS; S, S) <
r y 2e

for all X £ [0 , 6 (e)], where

(24) 6(e) = e -  2

3adr3/2(e - 1)

Consequently, as stated in (2 .8 7),

(p (X) = tr [ (K (F) - K(F,+ XS))XQ]

1 3 2(25) £-nXmin a(F, S)A - — nXmin X^r Y2G^

A Q (A) .

£This means that, for each e > 2, there exists a quadratic Q (function .

of e) that is a lower bound approximation for (p on the nonempty interval
£[0, 6 ( e ) ] . The positive root of Q is

~ 4Q(F, S)
(26) pe ---------- 3---------r Y2£

It can be easily verified that, as e increases, 6(e) increases too, 

whereas p£ gets smaller. So, it might be expected that, for sufficiently 
large e ^ condition

(27) p£ <6 ( e )

holds. This is actually true, as can be seen in the following. First,
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substitute the expressions for 5(e) and p , from (24) and (26), into

(27) . This gives

e(£ - 2) v 12ada(F, S)(28) e - i i  V2
r y2

Then, consider the fact, derived from Lemma (2.45),

3 /9- a(F, S) = - Amax dK(F; S) = || dK(F; S) || <_ r ' y .

This reveals that, if e is chosen so as to satisfy

(29) e(e  -  2) 
e -- 1 > -

12ady^
Y.

Then (28) is valid. It has already been remarked (see (2.93)) that 

£ > 2 satisfying (29) can always be found, therefore condition (27) 

can be achieved for some £ > 2. Figure (30) illustrates an example

showing two curves determined by numbers £ and £ 1, with £ > £', and
£condition (27) holding for Q . Now, consider an £ > 2 satisfying (27).

£Since the quadratic form Q is positive over (0, p ), fact (25) ensures 

that (j) is positive over (0, p ) as well. Furthermore, (27) guarantees 

that g(A) = Amin[K(F) - K(F + As)]  > 0 for A € (0, p ). In summary, for 

such an £ and all A in (0, p ),

(31) 0(A) > 0
g(A) > 0

 ̂ £Let the number A be defined as the point at which Q attains its
£maximum on [0, 1]. The unconstrained maximum of Q is achieved for

A = P£/2 , therefore

A = P£/2,

l 1,

if p < 2k£

otherwise.

A

Finally, as A satisfies (31) and belongs to the interval [0, 1], and



34

Figure 30.
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expressions (2.63) - (2.65) accounts for the computability of the 

parameters a, y^ and y^, A is a computable step length for algorithm (5 ) . 7

3.4 AN IMPLEMENTABLE ALGORITHM

This is the implementable version of Algorithm (5), using the 
"i ^search direction SJ and line search A = A presented in Sections 3.2 and 

3.3 repectively, and where we assume that, for all j, G(F3, S3) <0.

We assume also that a search direction satisfying (15) can be determined 

numerically, and thus we refer to such a search direction as being 

computable.

(32) AN IMPLEMENTABLE ALGORITHM FOR CONSTRAINED OUTPUT FEEDBACK.

1. Select an initial F° 6 M; select 6 and 6 ' in (0, 1); select a 

number £ > 2 satisfying

£(£ - 2) 
£  -  1

12adyt

^2

where a, y^ and y^ are given in (2.63) - (2.65), and d is the diameter 

of M; set j = 0 .

2. Compute an S3 such that
G (F3 , S3) £ 6min{a(F3, S): S € M(F3)} 

where
G(F, S) A Amax dK(F; S)

3. If -G(F3, S3) < S'  then set F* = F3 and stop; else continue.

4. Compute the step length A 3 using

.sl \  f if -2q (f 3 , S3) < r3y^£ 
r y2£

1 , otherwise
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5. Set = F^ + A^S^, j = j+1, and go to Step 2. V

Convergence for the abstract algorithm (5) (tt(F*) = 0) was proved

in Section 2. Convergence for the implementable version above

will be proved in the next section, and that will justify 

the stop condition encountered in Step 3.

3.5 CONVERGENCE PROOF FOR THE IMPLEMENTABLE ALGORITHM

In Section 2 we have demonstrated, using the theory of closedness 

of algorithms, that if the conceptual algorithm (5) generates an infinite 

sequence of output feedbacks {f ^} such that tt(F̂ ) < 0, then any 

accumulation point F* of the sequence satisfies tt(F*) =0. In this 

section we shall be concerned with proving the same fact for the 

implementable algorithm (32), using a direct approach.

(33) THEOREM. Assume that {f }̂ is an infinite sequence generated by

implementable algorithm (32) , with the initial feedback F^ 6 M, and 
elements F^ satisfying ^(F^) < 0 . Then, for any accumulation point
F* 6 M of {f -̂ },

7T(F*) = 0

PROOF. It follows from Theorem (6 ) which applies also for Algorithm (32), 
and the fact that K(F^) > 0 for all j, that, as j °°,

(34) <|>(Â ) = tr [ (K (F^) - K (F̂  + XjSj))XQ] + 0

(see Theorem (2.96)). Also, for the step length A"5 of Theorem (23), 
for all iterations j,

cf)(\j ) > Q£ (Xj )
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and thus, using (25), 

(35a) <MAj) > Q£(Aj)

(35b)

nAroln x Q a ( F ^, s 3 ) 2 ^  _ 2a ( F j , s j ) < t

r r 2 e r  y 2 e

3
i i r ^2£-nAmin X (a(F , S ) + ----- ) otherwiseU 4

However it is possible to show that situation (35b) does not occur for

very large j, - — ^2a(F3, S3) > 1 is true only for a finite number of
r y  Z

2 o(F3 s 3 )iterations. In fact, suppose by contradiction that - — -  ----  >_ 1
-

for an infinite number of iterations. Then, it follows from (34) and 

(35b) that

r y„£1 i 2a(FJ, s J ) + - — -—  -> 0,

as j 00, and therefore

r Y9e
a(F3 , s 3 ) + -------------

Hence,

20 (F 
3r y

D S3) 1_

2 '

Consequently, for a given 5 £ (0, 1/2), there exists a position N such

that, for all j > N,

2g(F3, S3) 
3r Y2£

_1
2 < 6 ,

and thus,

2a (F- S3)
3r y z

1,

contradicting the assumption. So, from some point of the sequence

onwards, case (35a) always applies, and then (34) implies that
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a(F^, S'1) ** 0. From this fact however, and since cr(F̂ , S^) <_

6 tt(F̂ ) <0, it follows that tt(F̂ ) -+ 0. Compactness of M

implies that any accumulation point of {f -1} lies in M, hence
7T (F*) =0. V
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4. DOMINANT FEEDBACK WITH LINEAR EQUALITY CONSTRAINTS

In Section 1 we shall demonstrate that the search direction problem 

for the constrained feedback algorithm, namely, the minimization of 

the largest eigenvalue of dK(F; S), with S ranging over the unit sphere

5 , is equivalent to solving a minimum norm problem involving a set 

defined by the partial derivatives of K(F). This development is based 

on Allwright's work in [2 ] and [ 1 ] . The subject of Section 2 is the 

definition and analysis of a dominant output feedback problem, subject 

to a set of linear equality constraints. We shall prove that a search 

direction for the feasible direction algorithm associated with the 

optimization problem can also be obtained by means of a minimum norm 

problem solution, as in the unconstrained case, using projections onto 

the subspace defined by the constraints.

Throughout this chapter we shall employ the vec notation for the 

matrices of IR1̂ 27 and transform them into vectors of 3R̂  , p = mr.

As before, we shall denote f = vec F, and by f G F we mean f = vec F, 

where F G F.

4.1 MINIMIZATION OF Amax dK(f; s) OVER THE UNIT FROBENIUS-SPHERE

We start by presenting the following well-known concept of convex 

analysis:

(1) DEFINITION. Let 11 be a convex set in 1R̂  , the support function of 17 
is defined to be the function

17 P -
O : + ]R

S ^  sup{<s, U)> : 0) G 17}

In general, cr̂ (s) may be infinite. If 17 is compact,

O (s) = max{<s, co>: U) G 17} is finite. The support function is convex

V
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(see, for example ['C ], page 36).

The problem we shall be concerned with here is:

(2) SEARCH DIRECTION PROBLEM

minimize{Amax dK(f; s): s € S]

where

S = {s € IR̂  : || s ||F = 1} V

The reformulation of the above problem needs the definition of the 

following abstract set:

convex hull of X (i.e., the set consisting of all the convex com

binations of the elements of X).

Then, the definition of the largest eigenvalue of a matrix, 

and definition (2.1) of dK(f; s), allow us to write:

(4) Xmax dK(f; s)

max{x'dK(f; s)x: x € Bn}

where Bn is the unit Frobenius-sphere in ]Rn , and co{x} denotes the

r r  9 K  (f) . r  -i= maxix' ()s. —-77-z—  )x : x 6 Bn}  ̂ i d f .i

i

= max{<s, GJ>: U) 6 fi(f)}

A arfl(f) (s) .

Throughout most of this thesis the support function will be referred
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to the set ^(f), with the only exception occurring in the following 

section. Therefore, for the sake of simplicity, we shall omit the 

reference to £2(f) (except in Section 4.2, obviously). The variable f 

to which ^(f) refers , however, sometimes needs to be specified. When 

this is the case, a(f, s) will be used for (s) . This is consistent

with the notation employed in previous chapters, and we may summarize 

it as follows:

Xmax dK(f; s) = (s) = G(f, s) = cr(s)

It should be noted that a maximizing x in Bn for x'dK(f; s)x 

is an eigenvector of dK(f; s) associated with its largest eigenvalue, 

On the other hand, observe that a maximizing 0) for <s, U)> in Q(f) 
is a contact point between ^(f) and its supporting hyperplane with 

outward normal s. Hence, result (4) implies that, corresponding to 

any normalized eigenvector x associated with Xmax dK(f; s),

0) = (00.) = 1
, 9K(f) 

x -9f. xi
is a contact point 

Thus, an equivalent formulation for problem (2) is:

(5) SEARCH DIRECTION PROBLEM.

minimizela(s): s € S}

where a is the support function to the set ft(f) given in (3). V

Obviously a solution for the above problem exists, since O is 

convex and S is compact. Allwright has pointed out a procedure for 

solving it partially, which we shall describe next. Let a global 

minimizer be called s. The approach is based on the following three 

theorems [1 ]:

(6 ) THEOREM. Consider a set £1 c hr^ and let O be the support function

of . Then, if 0 £ $3:
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(i) arg min{ || c o | |  : c o  £ fi} is a singleton and, for CO £ arg min{ |j c o  ||  : c o  £  f t }  ,  
min{cf(s) : s £ 5} = - || c o | l  < 0

(ii) arg min{a(s) : s £ S} = {s}, for s = - co/|| coj| V

(7) THEOREM. For Q and G as defined in Theorem (6), if 0 £

(i) min{a(s): s £ S} = 0

(ii) arg min{a(s) : s £ S} = {s £ S: s is an outward normal to a hyperplane 

supporting at 0 } V

O
(8) THEOREM. For ^ and G as defined in Theorem (6), if 0 £ Q :

(i) For c o  £  arg min{ ||  c o [ |  : c o  £  8 S 7 } ,

min{a(s) : s £ S} = || o o | j  > 0

(ii) arg min{a(s) : s £ S} = {s}, for s = U)/|| co|| 7

Let, for the support function associated with ^(f),

7T = min{a(s): s £ S} .

Then tt = tt (f) , for tt (f) defined in previous chapters, since 

Tt(f) Xmax dK(f; s) = Q(s) A_ TT.

Part (l) of all the above theorems suggest the methods for determining 

the sign of tt, which are to investigate whether the origin is outside, 

in the boundary or in the interior of £3(f), i.e., they give the following 
"if and only if" criteria:

(9a) 0 £ ft(f) <=* TT < 0

(9b) 0 £ 3fi(f) <=* tt = 0

(9c) 0 £ ft(f) <=> tt > 0
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Part (ii) is concerned about finding the solution s. Since 

there is no need to actually find a solution to (5) when tt > 0, we 

only should have to seek methods for

(i) determining the minimum norm point of ft(f) when 

0 t  Q(f) .

(ii) determining the outward normal to the supporting 

hyperplane to ft(f) at the minimum norm point when 

0 G 3ft(f) .

Unfortunately the latter seems to be a difficult task to do and we 

shall not be concerned with it here. For the minimum norm problem, 

when 0 £ ft(f), several algorithms are available. Allwright proposes 

the use of one due to Y.C. Ho [4 ], which is of practical implementation 

fo£ the feedback problem. Others can be found in [ 3 ], [ 5 ], [ 6 ],
[ 7 ], [ 8  1 and [ 9  ], for example. Since either 0 £ ft(f) or 0 G ft(f) 

holds, then, for the solution of the minimum norm problem, either 

s ^ 0 or s = 0. Consequently, by solving the minimum norm problem, 

information is obtained that permits us to decide whether tt < 0 or 
tt _> 0, and to find the search direction when tt < 0. Fortunately, this 

is all that is required for an implementation of Algorithm (2.31), as 

far as the search direction is concerned. For the implementation of 

Ho’s Algorithm, the particular thing needed is the evaluation of a 

contact point of the supporting hyperplane to ft(f), normal to a given 

vector s. This can be done nicely, as has been discussed, provided an 

eigenvector associated with dK(f; s) is computed. In Section 5.7 

we shall describe this algorithm, which will be proved to be a particular 
case of an algorithm due to Allwright.
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4.2 THE EQUALITY CONSTRAINED DOMINANT FEEDBACK PROBLEM

The problem we shall be concerned with here is:

(10) EQUALITY CONSTRAINED PROBLEM. Given an initial condition 

Xq £ 3Rn for the system (1 .1-3)

minimize (v (Xq ,F) : Tf=d, f € F} in the dominance sense

where p = mr, £ < p, f E ]RP , d E 1R̂  and T £ HR̂ Xp and is of full 

rank. Besides, an initial feedback f^ £ F satisfying Tf^ = d must 

be provided. V

Consider a point f in the feasible set for (10), the affine set
9of dimension £ < p,

M A {f 6 F: Tf = d}.

A feasible direction from f must satisfy T(f + Xs) = d for small X > 0,
ptherefore the vector s must belong to the subspace of 1R 

L = {x € ]RP : Tx = 0},

and so, not only for some X > 0, but for all X £ ] R ,  f + X s £ M .  

Consequently, the search direction for a feasible direction algorithm 

for (10) should be chosen as the solution of

(11) SEARCH DIRECTION PROBLEM

minimize{Xmax dK(f; s): s E S  fl L}

where

L = {x E 1RP : Tx = 0} V

if the minimum is nonpositive and allows the cost to decrease along
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it. In fact, we shall demonstrate that Lemma (2.34) is valid 

when the constraint s £ S is generalized to s € S fl V , where V is a 

cone (Lemma (5.74)).

Owing to the structure of the feasible set, we shall be able to 

transform the above constrained optimization problem into a simpler 

problem, constrained only to a unit sphere, much like problem (2).

By using (4) we can restate (11) as follows:

(12) SEARCH DIRECTION PROBLEM.

minimize{max{<s, 03>: 03 6 ft(f)}: s € S D L}

for ft (f) of (3) . V

We shall prove some general results concerning an arbitrary convex 

set £2 and an £-dimensional subspace P of IR̂* , with £ < p.

(13) NOTATION. For any point 03 € 3R̂  and subspace P of 3R̂  , we 

denote the orthogonal projection 03+ of 03 onto P by TTp(03) . For a set 
ft c: JR? ,

TTp(ft) = {o3+ = TTp(03) : 03 £ ft} . V

(14) LEMMA.

Let s 6 JR? fixed, and let P be a subspace of 1R̂  with dimension 

£ < p containing s. Then, if ft e jp ? ,

<s, 03> = <s, 03+>

for any 03 6 ft, where 03+ = ttp (03) .

PROOF. Let n be a vector normal to P, of unit norm. Note that the 

orthogonal projection of 0) onto P, 03+ = TTp(03) , satisfies
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oo+ = 03 - < 0 0, n> n ,

and therefore, taking the inner product with s,

+<s, oo > = <s ,oo> - <oo, n><s, n>.

However,.since s G P, <s, n> = 0. Thus, the result is proved. V

This lemma gives rise to the following corollary:

(15) COROLLARY. Let s G TBp and P c  ]R̂  a subspace of dimension 

£ < p containing s . Then, if ^ cz j p  is compact and = TTp(Q) ,

max{<s, oo>: oo € £1} = max{<s, oo+> : oo+ G £ l+} ,

i.e.,

Q , . Q,+ , .a (s) = a (s) ,

and, for a maximizer

oo G arg max(<s, oo>: oo G Q},

the projected point oo = TTp(oo) satisfies

oo G arg maxi<s, oo >: oo G ^ ; .

PROOF. Let 00 G arg max{<s, oo>: oo £ Q }  . Then, by Lemma (14) ,

/\ X -j-(16) <s, oo> = <s, oo >,

/swhere oo = TTp (oo) . The result will be proved if we show that 

<s, oo >= maxi<s, oo >: oo G SI ;.

— + +In fact, this is true. For, suppose that there exists a oo G ^

satisfying
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—+ ^+<s, co > > <s, a) >.

Then, using the ab9ve and (16),

(17) <s, aj+> > <s, £>

But, by the definition of £2+, ui+ = TTp(aj) for some a) € £2, and the 

following relationship holds (using Lemma (14) once more):

<S, aj+> = <S, co>.

Therefore, from this and (17)

<s, aj> > <s, £>,

Awhich contradicts the assumption that 00 minimizes <s, oo> over Q,. V 

Finally we can prove:

(18) THEOREM. Let P c subspace of dimension & < p and let £2 cr Ir be
/\compact. Then s is the solution vector to the problem

(19) min{a^(s): s € S D P}.

iff it solves 

0+(20) min{o (s) : s € S D P} 

for £2+ = TTp($7) .

PROOF.i =>>Since s solves (19) it must belong to P. Therefore it follows 
from Corollary (15) that

o ~ Q+ /n(21) cT(s) = a (s) .

/A -J»Suppose there is a vector s € S 0 P such that

0+ 0+ ~(22) a (S ) < a (S) .
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Then Corollary (15) says that 

/X+ P2 '*'+(23) a (s ) = a (s ) .

Hence, combining (21), (22) and (23), we have

0  i s  ) < 0 (s) ,

which contradicts the assumption that s minimizes (13). This proves
-that (22) is false and then, s minimizes 0 over S fl P, i.e., we 

have proved what we wanted. (This proof is completed on page 102 ) y

Now, setting Q = £3(f) and P = L in Theorem (18), Problem (19) 

becomes the search direction problem (12), and problem (20), the 

desired transformed search direction problem, which we restate below:

(24) SEARCH DIRECTION PROBLEM

minimize{max{ <s , U) > go € Q (£)}: s € S£}

where

€ L: II X IIF = V

ZFormulation (24) reveals an optimization problem in JR , similar 

to the optimization problem corresponding to the unconstrained dominant 
feedback problem described in Section 1,

minimize {an (f) (s) s £ S},

and thus, the theory developed for that can be applied to this 

situation.

Let

7T+ = min{a^ ^  (s) : s £ = mini (7^^ (s) : s £ Sp }
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Then (9) reveals that

0 g ft+ (f) <*=* tt+ < 0 

0 € 8fi+(f) «=> tt+ = 0 

0 € ft+(f) <=> tt+ > 0.

Diagram (25) illustrates examples of two situations: 0 £ Q+(f),
/ \and the corresponding negative solution s of (24) (i.e.,

7T+ = ^  (s) < 0) , and 0 £ f2+ (f) . The shadowed region indicates

the polar cone of f2(f), which is the cone consisting of the vectors
2 fts £ JR such that G(s) < 0, i.e., the descent directions at f . In the

second example there is no intersection between this cone and the
°+ +subspace L, as expected, since 0 £ 9, (f) implies that tt >0, and 

therefore absence of descent directions at.f belonainn- to /.

Much as in Section 1, solution of (24) using Ho's algorithm 

reveals that either 0 £ ^+ (f) or 0 £ ft+(f) , i.e., that either tt+ < 0 

or 7T+ >_ 0 holds, and, in the case TT+ < 0, it computes the required 

solution.

The implementation of the algorithm needs the evaluation of 

the contact point of a supporting hyperplane to f2+ (f), with normal 

s £ However, it can be easily proved, using Corollary (15), that
a supporting hyperplane to S7(f) supports Q+ (f) as well, and any 

contact point to (f) is the projection of a contact point to ^(f) .
ASince this is the vector U) with components

/\0). i = x' 3K(f)
3f.i

for some normalized eigenvector x of dK(f; s) associated with
•flargest eigenvalue, the contact point to Q (f) is computed by

its
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Figure 25. 
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/N+  ̂ /Nto = (o - <(0, n> n ,

for n the normal to L with unit norm.

PROOF OF THEOREM (18) (cont.).
(<=) Let s+ be the solution to problem (20) and assume there is 
s 6 S fl P such that

0̂ (s) < ( P ( s + ) .

Since, by Corollary (15),

^ , A. / A.a (s) = a (s)

and

G^(s+) = G^ (s+), 

the above inequality implies

/ ̂  \ - * A*f.G (s) < G (s ) .

vector

This contradicts the assumption that s+ solves (20), therefore the first 

inequality is false and then.s+'solves (19). V
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5. ALGORITHM FOR FINDING THE MINIMUM DISTANCE BETWEEN AN 
ORTHANT AND A CONVEX SET AND APPLICATION OF IT TO THE 
DOMINANT FEEDBACK PROBLEM

This chapter is concerned first with solving a convex optimization 

problem, in which we have a convex function and the objective is to 

minimize it over a given convex se^. 'T’hpn, the methodology developed 

for that will be applied to the dominant feedback theory, giving a 

solution for the search direction problem (3.12), when a particular 

class of linear constraints is present.

(1) NOTATION. In most parts of this chapter we shall use the vec 

notation for matrices. Corresponding to a mxn matrix A:

- a.. refers to the (i,j)-th element of the matrix A
1 j

- a refers to the vector vec A

- a. refers to the i-th element of the vector ai
- a1 refers to the i-th column of the matrix A

Also, if A is a set of matrices, by a £ A we mean a = vec A, where

A € A.

5.1 PROBLEM FORMULATION

(2) DEFINITION. An orthant m  IB? can be defined as the set of points 

x such that Ax <_ 0, where A is a non-singular diagonal matrix with 

diagonal elements either 1 or -1.

The problem we will be concerned with here can be stated as follows

(3) MINIMUM DISTANCE PROBLEM.

min{ || c || ̂  : c = x-y, x £ P, y £ ft}

where ft c: jr?  is a convex set and P c ir?  an orthant, and 

ft PI P = (J>. V
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In order to reduce the dimension of problem (3) , which is 2p, 

we can minimize with respect to x, leaving the minimization with 

respect to y to be done. Define

0{y) A. arg min{ || x-y]| : x £ P}

2and minimize || 9 (y) - y]| ever SI. We remark that 9 (y) is unique. 

Hence, problem (3) can be equivalently stated, with the number of 

variables halved, as

(4) MINIMUM DISTANCE PROBLEM.

min(x(y) = || 9(y) - y||2 : y 6

where S2 c= tb?  is a convex set. VI

(5) DEFINITION. A function f is K-Lipschitzian if, for some K > 0,

|| f (x1) - f(x2) || £  K 11 x 1 - x ̂ || /

for all x^ and x^ in the domain. V

Note.that a Lipschitzian function is also continuous.

(6) PROPOSITION. Consider the orthant

P A (x £ ]RP : Ax £ 0}

where A is a nonsingular diagonal matrix with diagonal entries 1 

and/or -1. Then, for any y £ P

<0(y) - y, y> < 0

and, for all x £ P,

<9(y) - y, x> > 0.
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PROOF. Suppose y £ P. The closest point in P to y is 0(y) therefore 

the vector c = 0 (y) - y is normal to a supporting hyperplane to P 

at 0(y). If we denote it by H, for some b € H, H is defined by 

{x 6 JR^ :<c, x> = b}. But H passes through the origin since it meets 

P in one entire face containing 0 (y) (see [61, page 101) and all 

faces contain the origin (a face is defined by the intersection of 

hyperplanes of the kind {x: <a1, x> = 0}, where a1 is a column of 

A. The vertex is a zero-dimensional face.) Hence, b = 0 and

H /\ {x 6 1R̂  : <c, x> = 0}

Because H separates (not strictly) P from the point y, then for all 

x 6 P, either

(i) <c, x> >_ 0 and <c, y> < 0

or

(ii) <c, x> _< 0 and <c, y> > 0 .

Note however that <c, 0 (y)> > <c, y>. In fact, this is a consequence 

of || 0(y) - y11 > 0. Therefore (i) applies, and the proposition is

proved. V

We can now prove the following fact:

(7) PROPOSITION. The function 0 : ft — P

y •— ► arg min{ ||x-y|| : x € P}

is 1-Lipschitzian.

PROOF. Consider two points in ft, and y ^ r and let x^ = 0(y^), 

x 2 = 9(y2^* Define the two halflines emerging from x^ and x2,

L 1 = {y G 1 P : y = x 1 - A(x 1 - y ^  , X >_ 0 }

l2 = {y € 1RP : y = x2 - X (x2 - y2) , X >_ 0}.
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Take two arbitrary points in and L^ , 

V1 = X1 " Xl(xl “ yl}

and consider the difference vector

( 8)
V 1 “  v 2 X 1 x 2 - (x 1 - y 1) + V x2 ' y2>

It can be noted that

<X1 “ x2 ’ ~  ^l^xl " yl̂  + ^2^x2 _y2^>— °* 

In fact, first note that

< X 1 —
x 2' X 1 (X1 “ Y l} + A 2 (x2 - y 2 )>

< x ^ A l (xl '" y l)> + < x 2 ' A l (xl - y l)> + < x 1# X 2 (x2 - y 2 )>

< x 2 ' A 2 (x2 '- y 2 )>

A, <x 1 1' X 1 “ y l> + V x 2 ‘, x t - Y l > + A 2 < x l ' x 2 - y 2>

V x 2' X 2 y 2 >

Also, we have that x^ - is orthogonal to*x^, which is a result from 

the projection theorem (see for example [ 3 ], page 64). Then,

(10) < x 1 -  y , x ^> = 0.

Similarly,

(11) <x2 -  y 2 , x 2> = 0

and, from proposition (6), because x^ and x2 belong to P,

(12) < x 1 -  y ^ , x 2> >_ 0 ,

(13) <x2 - y , x^> >_ 0.

It follows from (9) - (13) that, for A^ and X2 non-negative, (9) is
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non-negative too. For the sake of simplicity let a = x^ - and 

b = -A^(x^ “ Yt) + ^2 ̂x2 ~ ^2^ ’ SO/ ^  can wr:*-tten as

(14) v - v2 = a + b

and the non-negativeness of (9) means that

(15) <a, b> >_ 0.

In addition, we have that

|| a + b || 2 = || a || 2 + || b || 2 + 2<a, b>

which implies, by using (15), that

(16) || a + b|| > || a|| .

So, from (14),

II " v2l| >, || x: - x2|| .

Now, since v^ and v^ are two arbitrary points in each halfline, we set 

v^ = y^ and v^ = (^ = ^  = 1 in (8)) and the result follows, i.e.

II -  y2ll < II xj - k2|| . ?

In Propositions (17) and (22) the function x is proved to be convex 

and continuously differentiable.

(17) PROPOSITION. The function 

X : Q  — >■ 1R

y *—► II 0(y) - yII2
is convex.
PROOF. The distance function between an arbitrary point y £ Q and P 

is convex (see [ 5 ], page 34) and non-negative. Since the square function is 

convex and increasing on the positive axis, its square is convex too. V
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Proposition (22) needs the formula for the projection of a point 

y j£ P onto P, which is given next.

(18) PROPOSITION. Consider y £ P. Then

arg minLn{ || x - y || : x E P} = 9 (y) ,

where

(0 (y))i = J y i if <y, a > < 0

0, otherwise

PROOF. Recall that the matrix that defines P, A, is unitary. Therefore,
pits columns form an orthonormal basis for 1R . Let 

y = Ea.a^.l

Therefore,

<y, a'S = (Ea.a^)a^ = Ea.<a^, D 3
a1> a.i

However,

X(y) = || Q(y) - y ||2 = min{||x-y | | 2 : X G P}

(19) = min{E(B. - a.)2: B. < 0}i l i =

where B^ is the component of x for the i-th axis with respect to the 

basis {a1}. Note that x £ P is equivalent to B^ = <x, a1> < 0 by 

definition of P. Now consider the two cases:

(i) a. = <y, a1> < 0.i J

In this case the minimizer of (19) is 3. = a.i l

(ii) a. = <y, a'S > 0 i =

This implies that B. = 0 minimizes (19).i
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So, the solution for (19) is

(20) x = £3.a1l
where

a_̂  if <y, a > < 0

0, otherwise

However, the original basis for ]R̂  , {e1}, is such that

1 . ie = ±a .

Therefore, if x ̂ (y ) is t îe component of x(y) along the i-th axis with

respect to the basis {e1}, then

(21a) a. = 3. *=* x . = y .i 1 3- 3.

(21b) 3. = 0 X. = 0i 1

Thus (20) - (21) imply that

is defined by

(9(y)). = y., if <y, a 1> < 0

0, otherwise*

as we wanted to show.

We can now demonstrate the following:

i(22) PROPOSITION, x is a c -function and Vx(y) - 2 (y - 0 (y) ) .

PROOF. Consider y € SX. The directional derivative of x at y with 

respect to a vector h £  JBp (assuming h is of unit norm) is defined 
to be the limit

|| 0 (y + Xh) - (y + Xh) || 2 - || 9 (y) - y || 2
(23) x'(y; h) 4  lim --------------------------------------

X~K) X
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when it exists- In order to find the expression for X' (y; h) define 

the following set of indices,

(24a) J(y) A {i: a. > 0}
=  1

(24b) J(y) A {i: a. < 0}=  l

(24c) K(y) A. {i : CL̂ = 0, <h, a1> < 0}

(24d) K(y) A {i: a  = 0 , <h, a S  >_ 0}

where ol = <y, a 1>. Denote by V(y, p) the open ball centered at 

y with radius

p = min{|a |:  ̂0, i = l,...,p},

i.e.

V(y, p) A {y* € ]RP : ||y - y ' || < p} .

As m  the previous proposition, let

(25) y = Za.a1l
and

(26) y + Ah = Z6ia1 .

Since by assumption ft f) P = <j>, y £ P, therefore we can suppose a, ^ 0 

for some i (since = 0 for all i implies y = 0, which belongs to 

P ) . Refer to Figure (27) which shows an example with ^ 0 and 

a 2 = 0. Note that cl and are the projections of y and y + Ah, 

respectively, onto the i-th axis i.e., a^=<y,a1>, 3^=<y+Ah,a1> . Thus we have, 

for some a., p=|a. | and, if we consider A small enough so that y + Ah 

belongs to V(y, p) , then (3̂  has the same sign as (in the example

both are positive).



Figure 27.
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In order to evaluate the limit (23) consider the following facts 

separately, where Proposition (18) and Definition (24) have been 

used, p>lus the fact that and B^ have both the same sign:

(28) l  (9 (y) - y).2 = l  (y. - y.)2 = 0
i£j(y) i£J(y)

(29) l  (0(y) - y) .2 = I (0 - y.)2 = I y 2
i€J(y) i£J(y) i£J(y)

(30) £ (9 (y + Xh) - (y + Xh)) 2 = \ ( (y + Xh) . - (y + Xh) .) 2 = 0
i€J(y) 1 i£J(y) 1 1

(31) \ (0(y + Xh) - (y + Xh)) 2 = \ (y + Xh) 2
i£j(y) 1 i£»J(y) 1

Also note that, from (25) - (26),

(32) h = y  T (6. - a .)a1X L i i

and therefore, for i £ K(y) , where 

that < 0. Therefore <y + Xh, a1> 
says that

(0(y + Xh)) = (y + Xh)̂

Thus,

(33) £ (0(y + Xh) - (y + Xh)) 2 = 0
i£K(y) 1

Similarly, for i £ K(y) , (32) implies that B^ >_ 0, i.e.; <y + Xh, a1> _> 0. 

So,

= 0 and <h, a1> < 0, (32) implies 

= Bi < 0, and so Proposition (18)

(0 (y + Xh)) . = 0,i

and therefore, because = 0 implies y^ = 0,

(34) £ (0 (y + Xh) - (y + Xh)) 2
i£K(y) 1

= £ (y + Xh) 2 = 7 (Xh.) 2.
i£K(y) 1 i£K(y) 1
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Finally,

(35) l  (0 (y) -  y) 2 = I  (0 -  0) = 0
i€K(y)UK(y) 1 i€K(y)UK(y)

It follows from (28) - (31), (33) - (35) then that the limit (23) is:

. 1X'(y; h) = lim j  ^
A"K)

X (© (y + Xh) -  (y + X h ) ) ?  -  £(0(y)  -  y) f

= limT i  I
A-*0

= lim 
A-K)

i€J(y)UK(y)
( 0 (y + Ah) - (y + A h ) ) 2 - £ ( 0 ( y ) - y ) 2

i€J(y)

A 3 l  (y. + A h . ) 2 + l  (Ah.)2 - l  y 2 
i€J(y) 1 1 i€K(y) 1 i€J(y) 1

= l i m  y  J l  ( 2 A y.h. + A 2h  2 ) + £ A 2h  2 l 
A + 0  A i c J ( y )  1 1  1 i C K ( y )  1 '

(36) = Ii€J(y)
2 y  . h . 
J l i

By observing the above expression, which is linear and continuous in 

h, we come to the conclusion that x is differentiable at y (see, for 

example, [ 3 ] page 172). For Vx(y), the gradient of X at y,

Vx (y) 'h = x* (y; h)

and so, the components of Vx(y) can be obtained by calculating the 

directional derivatives of x along the axis directions. Hence, using

(36) ,

r ,
(37) (Vx(y))± = I 2y±, if <y, a S  > 0

0 , otherwise

1Note that for <y, a > = 0, y^ = 0, and thereby (Vy(y))^ is continuous. 

Consequently X is continuously differentiable. Moreoever, Vx can be 

written in terms of 0(y). From Proposition (18),
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Vx(y) = 2(y - 0(y)). V

Figure (38) shows the diagram of the contours of X in a two-dimensional 

example. This function is not twice differentiable, since it can be 

observed from (37) that (Vx(y)K is not differentiable at a point y 

such that <y, a’S- = 0.

To finish this section we prove the following property con.— rning 

the function X :

(39) THEOREM. Consider the function

X : ^ 1R

y || Q(y) - y||2

and let y € Q, h € 1R̂  with y + h 6 £2. Then 

X(y + h) £ X(y) + Vx(y) 'h + 21| h ||2

PROOF. The Taylor series expansion for X is

1
X(y + h) = x(y) + !  Vx(y + th)'h dt

0
1

= X(y) + ^ x ( y ) ' h  + / (Vx(y + th) - V x ( y ) ) 'h dt
0

1
£  X(y) + v X(y) 'h + || / (Vx(y + th) - V x ( y )) dt||||h II

0
1

(40) £ x(y) + Vx(y) 'h + / ll Vx(y + th) - Vx(y) || dt||h ||
~  0

However, Propositions (7) and (22) give,

|| Vx(y + th) - Vx(y) ||

= 2 1j th - 9 (y + th) + 0(y) ||

£  2 || th 11 + 2 || 9 (y + th) - 0 (y) ||
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Figure 38.



Hence, from (40),

X(y + ^h) < x(y) + Vx(y) 'h + 4 / t dt||h
“ 0

= X<y> + Vx(y) 'h + 2 II h II2

5.2 DESCRIPTION OF THE ALGORITHM

Different procedures for solving minimum norm problems are found in 

the literature. It is a common practice to minimize the norm function 

over a convex set using a feasible direction algorithm. Bearing this 

approach in mind, a feasible direction algorithm studied by Allwright [ 1 ] 

is discussed next.

Consider the problem of minimizing a convex function f: Y — > 3R

on a compact convex subset y of a Hilbert space, where f is twice
2continuously differentiable on Y with second derivative V f satisfying 

2(41) G <_ V f (y) _< G + ml

for some positive semidefinite matrix G and some finite positive number

m.

At each iteration j, the algorithm minimizes with respect to z € Y 

the following quadratic approximation (at a point y^) to f,

(42) fS (y . , z) = f (y .) + <Vf (y .) , z - y . > + y < z - y . ,  G(z - y .) >3 J 3 3 ^ 3  3

A minimizing z is denoted z_. . The feasible descent direction z_. - y 

is then used as a search direction from y.. The algorithm, in its

non-implementable form, is described by:
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(43) ALGORITHM FOR CONVEX OPTIMIZATION

1. Choose e € (0, 1) , £ Y

Set j = 0.

2. Find the search direction h . = z . - y ., where3 3 3
7 . € arg min{fS (y . , z) : z € Y }3 3sand f ( y , z) is given by (42) .

s3. If f(y^) - f (yj, Zj) < e stop; else continue.

4. Determine the line search parameter

Aj £ arg min{f(y^ + Ah ): A £ [0, 1]}.

5. Set y., = y. + A.h., j = j+1 and go to 2.3+1 3 3 3

The idea upon which the algorithm is based is given by the following
sargument. If f (y^, •) is a reasonably good approximation to f(*),

Athen Zj should be a good approximation to the minimizer y for f, and

so the search along the feasible direction z . - y . from y . should give3 3 3
A Aa fairly good approximation to y. Since m  a neighbourhood of y, f

scan be approximated by f (y , *) quite well, the algorithm is likely 
/\to converge to y. In fact, convergence rate information is obtained 

in [1 ]. When G > 0, a rate is obtained which is independent of the 

geometry of y and of the number of the constraints that define the 

feasible set. This does not always happen when other feasible direction 

algorithms are employed. When G = 0, f (y, •) is a linear approximation 

to f at y, i.e. it is the tangent plane at y. In this case, only the 

diameter of the feasible set affects the convergence rate information.

sThis algorithm has a nice feature that, when f and Y together have 

a suitably simple structure, the minimization in Step 2 can be carried 

out fairly simply. This is the case for problem (4) when considering a
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linear approximation to the cost function, as will be done.

We shall say that a satisfactory point y^ is obtained if, for 

£ small, an £-approximation to y has been achieved, in that 

f(y^) - f(y) < £. This is ensured by the stopping condition of Step 2 

of Algorithm (43). For, from [1 , Lemma 3.1], it turns out that

fs(yj, Zj) <. f (y) .

Since f(y_.) _> f (y) then

0 < f(y > - f (?) £  f (y ) - fS (yj( Zj).

So, a satisfactory point is reached when

f(yj - fS (y_., Zj) < £,
A

and, since (f(y.)} ■ + f(y) ,and z , y (by the Lemma), this condition will j 3
definitely be satisfied for some j.

Although for the proof of convergence of Algorithm (43) ([ 1 ] ,

Theorem 3.1) the objective function f is required to be twice continuously 

differentiable, that is not essential for the convergence study there 

since what is in fact needed, is that

(I) For some M > 0 and for all h such that y + h GY ,

(44) f(y+h)<_f(y) + <Vf (y) , h> + -j<h, Gh> + -j m || h || ̂  

and that

(45) (II) fs (y, y+fi) < f(y),

where fi minimizes fS(y, y+h) with respect to h such that y + h GY.

In order to use Algorithm (43) to minimize X/ which is not a
2C -function, we draw attention to two facts: (i) Theorem (39) proves

inequality (44) for X/ with G = 0 and M = 4; (ii) inequality (45) also
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holds for f = x* In fact, since X is convex and differentiable

x(y + h) _> x(y) + <Vx(y) / h>

(46) = xs(y# y+h), 

and then

Xs (y/ y+h) = min(xs (y, y+h): y + h 6 ft}

£  m i n ( x ( y  + h) : y  + h  £ ft}

= x(y) •

Hence, the convergence (rate) information of Theorem 3.1 [1 ] holds for 

Algorithm (43) , when applied to the function X* We need only to remark 

that, although the proof presented there assumes that an approximate line 

search is used, the proof can easily be modified to accept an exact line 

search, as should be expected, and which will be the case when applying

Algorithm (43) to X- The search parameter considered in [ 1 ] is of the
&Armijo type, i.e. the step length X is chosen to be 3 / for some 6 < 1 

and for the smallest integer & > 0 such that

(47) f ( y  + 3 £h) <f(y) + j  BZ<Vf(y), h > .

\

However the exact line parameter is chosen to be X so that

f(y + Xh) = min{f(y + Xh): X € [0, 1]} 

and hence

f (y + Xh) <_ f (y + B^h) 

f o r  t h e  s m a l l e s t  £ > 0 s a t i s f y i n g  (47).

These considerations lead us to apply algorithm (43) to minimize
gX/ using its linear approximation X of (46). The description of the 

algorithm follows, and diagram (49) sketches the situation at a given

iteration.
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Figure 49.
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(48) ALGORITHM FOR THE MINIMUM DISTANCE PROBLEM

1. Choose £ € (0, 1) , y^ £ ^

Set j = 0.

2. Calculate the gradient v by

v = 2 (ŷ  - 0 (y^)) .

3. Find a point

7?  E arg min{<v/ z>: z E !!7}.

4. Find the search direction

h^ = z ?  -  y^.

5. If <v, -h^> < £, set y = y^ and stop; 

else continue.

6. Determine the line search parameter

A  ̂ € arg min(x(y^ + Ah^) : A £ [0, 1]}.

7. Set y^** = y^ + A^h^, j = j + 1 and go to 2.

(50) REMARK. The determination of 2?  in Step 3 is done by minimizing
"i s i<V\(y ) r z> on Q since this is equivalent to minimizing X (yJ/ z)

on where

(51) xs(yj/ z) A x(yD) + <Vx(y^)/ z - y^> v

(52) REMARK. The stop condition of Step 5 comes from (51) , since 

X(yj) - Xs (yj, ẑ ) = <Vx(y^), y^ - z^> = <v, -h^>,

and Step 3 of Algorithm (43). V

An illustration of the application of Algorithm (48) is shown in 

the two examples of Figure (53). The sequence (y1} actually achieves
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Figure 53.
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y, in the first example, after two iterations.

5.3 THE LINE SEARCH SUBALGORITHM

This section is concerned with the determination of an exact solution 

to the line search problem described in Step 6 of Algorithm (48). The 

fact that the minimum of x along the segment of line [ŷ  , y^ + Ah'1] ,

A £ [0, 1] can be found exactly has an obvious advantage over the Armijo 

implementation since it provides a faster rate of convergence. This 

can be seen by using $ = 1 in the formula given in Theorem 3.1 [1 ].

j  j  ^ *iAt some iteration j, let y = y , h = hJ and the optimizing A = AJ.

Then, for A we have either A G  (0, 1) or A £ (0, l). In what follows

we shall assume that A G  (0 , 1 ) and attempt to obtain X by finding the
value of A that makes zero the derivative 3x(y + Ah)/3A. The procedure

A

for doing that will reveal whether A is actually in (0 , 1 ) or in 

(0, l}.

Let f (A) = x(y + A h ). This function is piecewise quadratic, as 

can be shown by writing it as

f(A) = x(y + Ah) = ^ O t y  + Ah) - (y + Ah)) ? .
i

Note that for i £ J(y + Ah) = {i: <y+Ah,a1> < 0}, (9 (y+Ah)) (y+Ah) ̂ ,

hence the corresponding term in the sum vanishes. For the remaining 
indices i £ {i: <y+Xh,a1> > 0 } , 9(y + Ah)) = 0. For

i G K(y + Ah) U K(y + Ah) = {i:<y+Ah,a1 >=0 }, (y + Ah) = 0 , consequently

f(A) = l (y + Ah) 2 =
i£j(y+Ah) 1

= T (y 2 + 2Ay.h. + X2h.2 )
i£j(y+Ah) 1 1 1  1
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Thus, as X varies on the interval [0, 1] , the point y + Xh varies on 

the segment [y, z] , and therefore the product <y + Xh, a1>, for fixed 

a1 also varies. Since i € J(y + X h ), if and only if <y + Xh, a1> 

is positive, the set J(y + Xh) may change as X varies. Hence we arrive 

at the conclusion that there exists a partition of [0 , 1], formed by 

an ordered set of roots of <y + Xh, a1> = 0, for all i. Inside each 

piece of the partition a certain number of terms is summed up and 

thereby different quadratics are obtained. Thus, f is piecewise 

quadratic, say, on the partition {X^,...,XN } of [0, 1]. It is continuous 

because x is continuous.

(54) EXAMPLE. Diagram (55) shows a two-dimensional example. The 

line segment [y, z], the function f and its derivative are depicted. 

The line segments A, B and C are defined by:

A = [X , X 2 ] (X: <y + Xh, a * >  £  0, < y  + Xh, a 2 > ^  0}

B = [ X 2 , X ] A. {X: < y  + Xh, a * >  _> 0, < y  + Xh, a 2 > >. 0}

1 2C = [X , X^] _ A { X :  < y  + X h, a >  > 0, <y + Xh, a >  < 0} 

The i n d e x  s e t s  a r e :

J (y + Xh) = {2}, X E A 

J(y + Xh) = {l, 2}, X E B 

J (y + Xh) = {1}, X £ C

It follows then that f is defined by:

f(X) =<

+ 2y2h2^ + Y2 ' ^ ^ A

(h2 + h22 )X2 + 2(y1h 1 + y2h2) X + (y2

h 2 X2 + 2y1h 1X + y^2 , X € C

y0 )/ X € b
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Figure 55.
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and its piecewise linear derivative, by:

f ' (A) = -<

2h22 A + 2y2h2, A G A

2(h2 + h 22 )A + 2 (y + y 2h 2 ^  A G B 

2h 2 A + 2y hx, A G C V

(56) EXAMPLE. Another example, three-dimensional, is depicted in 

Figure (57). V

In order to determine the break points of the piecewise function 

f(A) on [0, 1], A 1 ,...,An , we must solve each of the set of equations

(58) <y + Ah, a 1> = 0 ,  i = l,...,p

and consider those solutions A , i = 2,...,N-1, which belong to the 

interval (0, 1). The extremes are A^ = 0, A = 1. Obviously N <_ p, 

where p is the dimension of the space of the variable y. In order 

to solve (58) we assume that <h, a 1> ^ 0. In fact, the indices i so 

that <h^ a 1> = 0 are not considered for we are attempting to find 

the values of A such that < y  + A h ,  a 1> changes sign, and

< y  + Ah, a 1 > = <y, a 1 > + A < h ,  a 1 >,

so, <h, a1> = 0 implies that <y + Ah, a1> does not vary with A. The 

equations of (58) have therefore the solutions'

(59) A. = - < Y '— =1 /u 1 - z./y.<h, a > i ^ i

A criterion to investigate whether A_̂  G (0, 1) , is easily seen to be 

given by

A. G (0, 1) <=* —  
1 yi

< 0.
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Figure 57.
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To form the partition these roots must be ordered. For that, note 

from (59) that

z . z .
(60) A. < X , — — < —

1 3 y± y t

We can summarize what has been said as: the partition {X^,...,XN}, 

N < p is determined by

h  “ 0

(61) J X =i 1 - ~— y— / i £ (2, . , N— 1} = { k  = 1, ,p: < 0}

X = 1N

and the ordering may be done using (60). Two procedures are suggested 

here for the determination of the minimum of f(A):

(i) The derivative f'(X) is piecewise linear, so, once the segment 

containing the optimal X, i.e. the point that makes zero f', has been 

found, ^ may be obtained exactly by linear interpolation. Then, the 

optimization procedure reduces to finding that segment, which can be 

done using the bisection method, which is quite effective for large N.

The bisection method for finding a zero of a function g: 1R HR 

is restricted to the case when the function is defined over a bounded 

interval and changes sign at the zero point. Since it is unrealistic 

in practice to expect to find a point x such that g(x) is exactly 

zero, the algorithm provides an interval [a, b] such that

g(a)g(b) < 0 and j a — b| < 5,

where 6 is some small tolerance. Such an interval [a, b] is called 

an interval of uncertainty when we know the zero lies in it. The 

bisection method reduces the uncertainty interval by comparing function



131

values. Suppose that an interval [a, b] has been specified in which 

g(a)g(b) < 0. We test g((a + b)/2). If it is zero then the algorithm 

terminates; otherwise a new interval of uncertainty is produced by 

discarding the value of a or b, depending on whether g(a) or g(b) agrees 

in sign with g((a + b)/2.

The search for the segment containing a point at which f' equals 

zero will be done using the idea of the bisection method, by seeking 

a segment [a, b] for which f'(a)f'(b) < 0. We shall not be concerned 

with the'scondition |a — b| <6. Instead, a new condition is specified 

ensuring that a and b belong to the same piece of the partition. For 

that, we shall check whether

J (a) = J (b) .

Summarizing: a segment containing the zero is discovered if we find a 

subinterval [a, b] of [0, 1] which satisfies

f* (a)f'(b) < 0 and J(a) = J(b).

Assume that the segment [a, b] has been found. Then,

f' (a) f1 (b) 
b a a)

and hence

(62) * = a - £,(al f  (b) : f1 (a) •

Diagram (63) shows an example in which A is found in five steps. We 

start with the uncertainty interval [a^, b^]. Condition f'(a^)f'(b^) < 0 

holds but not JCa^) = JCb^) (â  ̂ and b^ do not belong to the same piece 

of partition). Then, [a^, b^] is halved and a1 discarded, since 

sign (f'(a^)) = sign (f'(a2)). Therefore b ^  is the new

uncertainty interval, b^ is renamed b^ and the same procedure is
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Figure 63.
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done again. It stops when the uncertainty interval [a, b] is 

obtained. Finally observe that, by the convexity of f(A), we conclude
* Athat f' (0) >_ 0 implies that A = 0, whereas f' (1) _< 0 implies A = 1. 

Since in either case we have f'(0)f'(l) 2l0, the test f'(0)f'(l) < 0 

should inform us that formula (62) is to be used. Hence, the line 

search algorithm is:

(64) LINE SEARCH ALGORITHM (Determination of A^ for step 6 of 

Algorithm (48). Here y, z, h and A refer to y^, z ?  , h^ and A^.)

1. Set a = 0, b = 1.

2. Determine

I = (i€ {1,...,p}: z./y. < 0}i i •
J(y) A_ (i 6 I: <y, a^> > 0}

J(z) ^  {i 6 I: <z, a1> > 0).

3. Evaluate

f'(0) =2£ y h;
i€J (y)

f'(l) = l i  z h
i6J(z)

4. If f1(O)f'(1) < 0  then go to 6 ([0, 1] is the uncertainty interval) 

else continue.

5. If f'(0) 0 set A = 0 and stop; else set A = 1 and stop.

6. If J(a) = J(b) go to 11; else continue.

7. Set m = (a + b)/2.

Determine

J(y + mh) = {i <i I: <y + mh, a'L> > 0}

8.
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9. Evaluate

f '(m) = J 2h?m + 2y.h.
i£j(y+mh) 1 1 1

10- If f' (m) < 0 then set a = m ([m, b] is the new uncertainty interval) 

and go to 6; else, if f'(m) > 0 then set b = m ([a, m] is the 

new uncertainty interval) and go to 6; else set X = m and stop.

11. Evaluate

X = a - f ' (a) b - a
f ' (b) - f ' (a)

(ii) A second procedure to determine the step length is proposed next. 

Here we shall investigate the root of the equation

f '(X) = 0.

Now

f '  U) = 4 -  x<y + too3A

(z) 9z 
9z 3\ z = y+Xh

= 2(y + Xh - 0 (y + Xh))'h

= 2j (y + Xh - 0 (y + Xh)) .h.
L r l

Evaluating the term (y + Xh - 0 (y + Xh))_^, using proposition (18),

we have

(y + Xh - 0 (y + Xh) )
(y + X h ) . , if <y + Xh, a 1> > 0i
0 , otherwise

Consequently,

f 1 (X) = 2 l (y + Xh), h,
i£j(y+Xh)

Hence, f '(X) = 0 if and only if
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l  y,h ,
(65) X = - iej(y+Xh>-----r-

I h ii€J(y+Ah)

A trial and error method that yields the solution to (65) is 
sketched:

(a) Determine the breakpoints A^,...,A for f(A), using (61).

(b) Determine the index set J(y + Xh) from (24b), for X varying

inside each interval [X., A.,.].l l+l

(c) Evaluate the expression (65) for each interval [X^, X^+^],

remembering that J(y + Xh) is the same for each X € [A^, X^+^].

(d) If, for an interval [A , A^+^], X given by formula (65) belongs

to the interval, then X is the solution of (65), and therefore

of f'(X) = 0. This happens because the right hand side of (65)

is constant whenever X 6 [X., X. , ] .i i+l

(e) If f'(X) has no roots in [0, 1] then the minimum of f(A) on

[0, 1] is achieved at one of the ends, 0 or 1. The relevant

end is 0 when f1 (0) _> 0, and is 1 when f1 (1) <_ 0.

5.4 DESCRIPTION OF THE LINEARLY CONSTRAINED DOMINANT OUTPUT FEEDBACK 
PROBLEM

In this and the subsequent sections, we shall study a particular 

linearly constrained optimal feedback problem. An algorithm will be 

devised for that, which is a variation of algorithm (2.32) , with 

the search direction and line search adapted to the constrained situation. 

Unlike in Algorithm (3.5), the search direction will be defined in a way 

that it does not ensure convergence. Nevertheless there is an advantage 
gained from the fact that the method presented in the previous sections
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can be applied to this problem, providing an implementable algorithm.

(66) LINEARLY CONSTRAINED PROBLEM. Given an initial output feedback 

matrix F^ £ F and an initial condition Xq £ ]Rn , for the system 

(1.1-3)

minimize-{v(xQ ,F) : F £ M) in the dominance sense

where

M A {f = (f..) £ F : a.. < f . . < b . . , i € {1,...,m}, j£{l,...,r}} =  13 13 =  13 =  13 J

for some real numbers a . and b . w i t h  a.. ^ b...
13  13  i3  13

Then a feasible direction from F will be a matrix S, such that 

F + S £ M, which (by (3.2)) implies that S £ M(F), for

(67) M(F) A {s £ ]RmXr : S = X - F, X G M }

= {s £ ]R : a.. - f . . < s.. <b.. - f. } 13 13 = 13 =  13 13

{s € M  : g . (F) < s. . < h. . (F) } ,
13  =  13  =  13

where

g. . (f ) A a . . - f13 = 13 13

h ..(F) A b. . - f . .13 = 13 13

The cone of the feasible directions is given by

(68) V = (S 6 lRmxr : As £ M(F), A £ (0, A ] , some A > 0}

1x2(69) EXAMPLE. (Refer to Figure (70)). Consider F = [f , f ] £ m  

2(= ]R ), and assume F lies on the boundary of M, the active constraint 

being i.e. g ^  = Then the set M(F) is defined by



137

Figure 70.
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g U  (F) 4  S U  =  h n (F)

0 4 S12 4 h12(F)
with g^tF) < 0, h^(F) > 0, and h^tF) > °* since there is absence 
of freedom for s^/ in the sense that it cannot take negative values, 

V  will be defined simply as:

V  = {S € lRlx2 : s > 0}

V  = {s € jr‘

in  vec n o ta t io n , we can w r ite

JR2 :
~ 0 0 ' " s i '

< 0}
0 -1 -  S2 -

CM "  1 0 ~ _S1 '
£  0} U {s € M2 :

" 1 0
_ 0 -1 _ - S2 - _ 0 -1 - S2

< 0}

i.e., V is a union of two orthants, as is clear from the figure. V

Because of the geometry of the set M, in a general space IRmxr ,

it is clear that, whatever is the relative position of F in M,

V is a union of orthants, the number of which depends on that relative
. -n _mxrposition. In the particular case of an interior point, V = 1R

The algorithm for solving problem (66) shall use the search direction 

which coincides with Allwright's unconstrained direction when F is 

an interior point of the feasible set M. For, it will be chosen as 

the normalized S such that it minimizes the largest eigenvalue of 

dK(F; S) inside the cone of the feasible directions at F. The 

statement of the optimization problem is

(71) SEARCH DIRECTION PROBLEM.

Minimize {a(F, S): S € S D V ]
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where

S is the unit sphere in IR103̂

0(F, S) = Xmax dK(F; S)

•n A <- , . - ^mxrV A IS = s. ,) 6 F  ;s. =  13 1.. <0, (i,j) E L  x J. ; s.. >0, (i,j) E I_xJ-} n  =* 1 1 i i =  J 2 2

Note that the index sets 1^, I a n d  are all functions of F, and

hold both for the same pair (i,j) (the reason for this is that equality

constraints are not considered, i.e. a.,  ̂ b . .aO 13

We-have seen that the mapping that defines the search direction must 

satisfy certain properties in order to guarantee convergence of the 

resulting algorithm. We shall demonstrate that the search direction 

of (71) does not. However, instead of showing that those properties 

are not valid directly, we shall prove that it does not satisfy 

a necessary condition for convergence. There are examples showing 

that the jamming phenomenon takes place when inactive constraints 

are ignored m  the definition of the search direction, due to the 

fact that not using them may force the step length to go to zero, even 

far from the optimum (see [4 ]).To remedy this, we may ignore only 

the "sufficiently" negative constraints and include those "close" 

to being active. Hence, using inactive constraints to compute the search 

direction is fundamental to guarantee convergence of the algorithm. So, 

it is important to find out whether the definition for the search direction 

given in (71) takes into account the inactive constraints at F.

Clearly it does not, since V  has been defined by means of the active

constraints only. This shows that convergence will not be necessarily
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achieved for the algorithm to be presented here. The results have, however, 
possible applications elsewhere, which is why they are included here.

K kFor any function g with domain X X , it is a fact that

min{g(x): x £ x} = min{min{g(x): x £ X^} : k = 1,...,k }.

Then, the original minimization problem is equivalent to solving all

the K subproblems min{g(x): x € X } and then taking the solution which

gives minimum g. In the same way we shall divide problem (71). Assume

that V  = Ijpk, for some orthants P^. Then, a subproblem will be to k
minimize a on a particular orthant, and there will be as many subproblems 

as the number of orthants. The solution will be chosen among all 

the solutions to the subproblems as the one that gives minimum a.

Denoting a fixed orthant P^ simply by P, we have therefore theI

(72) SEARCH DIRECTION PROBLEM FOR ONE ORTHANT. 

minimize {a(F, s): S € S D P}

where

P  = {s = (s . .) £ !RmXr : s . . < 0, (i / j) £l, xJ. ;s, , > 0 , (i, j) £ i/l. x J/J } in in — 1 1 li =  1 1

= {s £ : As < 0}

where A is a diagonal matrix with diagonal elements a £ {1, -1} 

I={l,...,m},J={l,...,p}. V

Here I/I^ denotes the set {i £ I: i £ 1^}.

The algorithm using rule (71) for the search direction has an analog 

to Lemma (3.4) . So, for the pair

(73a) S 6 arg min{Amax dK(F; S): S £ S  0 V }

(73b) TT (F) = Amax d K (F; S) ,
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we can prove

(74) LEMMA. Let F € M, S and TT (F) given in (73) , then:

A

(a) If tt(F) <0, there exists a real X > 0 so that

K(F + Xs) < K(F), for all X € (0, X] .

(b) If tt (F) > 0, there exists a 6 > 0, so that K(F') K(F) ,

for all F' £ M: |] F - F' || <5.

PROOF.

(a) As K is Frechet-differentiable at F (Section 2.1), given any 

£ > 0, there exists a 6(e) > 0  such that, for all S such that 

*11 s || < 6(e) ,

(75) K(F + S) = K(F) + dK(F, S) + Z 

where

(76) ||z || < e|1 s || .

/N /VAssume that tt(F) is negative and choose £ £ (0,- tt(f )) , then there exists 

6 (£) so that (7 5 ) - (7 6) hold for all S such that || S || < 6(£). Let
X = 6 (£) / 1| S11 , and consider the point F Xs, X £ (0, X] . Then,

|| Xs 11 = X || S || £ X || S || = 5(£) ,

K (F + Xs) = K(F) + dK(F; XS) + Z,

with

II z|l < SII xs|| .

Hence, for all x^ o ,
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x'K(F + AS)x = x ' K (F) x + x'dK(F; AS)x + x'Zx

< x 1K (F) x + x'dK(F; AS)x + e|| As|| x'x

£  x'K(F)x + x'dK(F; AS) x + eAx'x

 ̂ a 9 1/2since II s|| < || s||_ = Y (s. . ) =1. Then," 112 = F u ljii

y y
A y • <-3 V  ( T71 » A S 1 Vx'K(F + As)x < x 1K (F) x + (max ---— , /----- )x'x

y *  0

+ eA x'x

= x 'K(F)x + Amax dK(F; AS)x'x +

+ eA x'x

A= x 'k (f )x + Att(f )x 'x + eA x'x 

= x ' K (F) x + A(tt(f ) + e)x'x 

< x ' K (F) x ,

A -Asince n(F) + e < 0. Consequently, F + AS strictly dominates F for 
/\

A 6 (0, A] .

A /\(b) Assume now that tt(F) > 0 and choose e € (0, tt (F) ) . Then, whenever 

II s|| < 6(e) ,

K (F + S) = K (F) + dK (F; S) + Z

for some Z with || Z || < e|| S ||. Consider any S  ̂0, with || s|| < 6(e) .

Then, for all x,

x 1K (F + S) x > x 1K (F) x + x'dK(F; S)x - x'x|| z||

(77) > x 'K(F)x + S x'dK(F;it II pi )x - x'xe s
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Assume now that S £ V .  Consequently S/Ijs Jj £ V ’ since V  is a cone. ThusF
because || S/’||s ]| |] = 1, we haveF F

Amax dK(F; ------  ) > min{Amax dK(F; X) : IIX |l = 1, X £ V }
||S|| = Fil nF

= 7T(F)

and then, for x an eigenvector of dK(F; ) associated with

Xmax dK(F; S/|| S || ) ,

x 1 dK (F; S/ || S II ) x r
X X

i.e. ,

> 7T(F) ,

(78) x 1 dK (F; )X > 7T (F) X 1 X

So, for that x, if S is such that S € V with || S || < 5(e) , (77) - (78)

hold, and hence, since || S || A_ j| S || < || S || ,—  Z = F

x'K(F + S)x > x'K(F) x + || S | x'dK(F;F )x - x'xe s

> x ' K (F) x + || S ||F TT(F)x,x - x'xells

> x 'K(F) x + || S || x'x(TT(F) - £) — F

> x ' K (F) x

Thus, F + S does not dominate F. Now, since the cone V contains 

M(F), we have shown that, for all sufficiently small S in M(F),
F + S does not dominate F, or, in other words, for all F' C M  

sufficiently close to F, F' does not dominate F. 7

If V  = M  in the above lemma, then

S £ arg min{Xmax dK(F; S): S £ S},
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TT (F) = Xmax dK(F; S) .

Lemma (74) then proves Lemma (2.34), for the unconstrained feedback 

case (proved originally by Allwright in [2 ]).

The information given in Theorem (3.6 ), that each iteration 

yields a domin^tira feedback, aJso holds for the algorithm, which is:

(79) BASIC ALGORITHM FOR A LINEARLY CONSTRAINED DOMINANT 
OUTPUT FEEDBACK

1. Select a F^ E M; set j = 0.

2. Compute

TT(F̂ ) = min{Xmax dK(F^; S):S E -S fl V} 

where V is given in (68).

3. If 7T(F“*) > 0 set F* = F^ and stop; else continue.

4. Define the search direction by

Sj € arg min{Xmax dK(F^; S) :S € S fl V) .

/N -i5. Compute the upper bound AJ for the step length, which 

is such that, for all X € [0, ,

F-1 + As-1 E M.

6. Compute the step length A^

Aj E arg max {tr[ (K(Fj) -K(Fj+Asj))XQ] :Xmin[K(F:j) -K(Fj+Asj) ] >0, AE [0 , P ]  } .A

7. If tr[(K(F^) - K(F^ + A^S^))X.] = 0 stop; else continue.0

8. Set F^+  ̂ = F^ + A^S^, j = j+1, and go to Step 2. V

(80) REMARK. An implementable version of this algorithm will be given

in (113) . V
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The situation here is similar to the unconstrained feedback 

case. . The condition tt(F) < 0 is sufficient for the existence of
A Afeasible descent directions, along which stands S £ arg tt(f ) as the

Asteepest. The situation it(f ) = 0 may also provide feasible descent
/N

directions, in which case they would be the arguments of tt(F) .

We shall complete this section by proving Lemma (3.4) of Chapter 3, 

which had been left, using Lemma (74j and the following result 

(only part (ii) is needed but we prove part (i) for its own sake):

(81) LEMMA. Let F E M and

S € arg min{Amax dK(F; S):S 6 M(F)}

tt (F) = A max dK(F; S)

S £ arg min{Amax dK(F; S) :S £ S fl V ]

TT (F) = Amax dK(F; S) .

Then

(l) TT (F) < 0 <*=> TT (F) < 0

(ii)
A

TT (F) > 0 <=> TT (F) = 0 and S is unique

PROOF. Consider diagram (82).

(i) (=*) Assume tt(F) < 0, and consider the vector S = As. By

the definition of V , there exists a A > 0 so that S £ M(F). For that

A,

g (F, s) = a(F, As) = Aa(F, s) = Att(f ) < 0.

Hence, since S £ M(F),
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Figure 82.
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TT (F) = min{(J(F, X) :X € M(F)} £  0  ( F , S) < 0.

(<=) Now || S|I ^ 0, since tt(F) < 0  (other wise 7T(F) = 0) .

Hence

(83) a(F, — §— ) = — -  0(F, S) A — 1--  tt(F) < 0.
II s|| II s|| ii s'li

Further, since S £ M(F) and V is defined by

V = {x € ]Rmxr : Ax € M(f ), A £ [0, X ], X > 0}, 

then — -—  € V . It follows from this fact and (83) that
Hill

TT (F) = min{cJ (F, S) :S £ S fl D} < a(F, S/|| s|| ) < 0.

A .(ii) (=») Assume that ir(F) >0. Observe that tt(F) can never be 

positive, since 0 £ M(F) for any F € M, and a(F, 0) = 0. Hence, 

the result tt(F) = 0, as well as S = 0 £ arg tt(F) , is an immediate 

consequence of part (i). Now, consider the uniqueness of S. Assume 

that there exists a nonzero S € arg tt(F). Then, for that S

a(F, s) = || s|| a(F, — -—  ) = 0
II sII

and thus, since S/|| s|| € S D V (it belongs to V because S £ M(F)) ,

TT(F) = min{o(F, S) :S £ S n P} < a(F, — -—  ) = 0,
II s II

which is a contradiction.

(<=) Assume that tt (F) = 0  and that S = 0 is the only argument 
for tt(F) . Suppose, for proof by contradiction, that tt(F) =

Then, for S £ S fl V

(84) a(F, S) = 0

0.
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Consider S = AS for some A > 0 such that S € M(F). Then, it follows 

from (84) that a(F, S) = 0, with S ^ 0. Thus there exists a nonzero S 

in M(F) which makes O zero, and so it is an argument for tt(F) = 0, 

contradicting the assumed uniqueness of S. Hence, tt(F)  ̂0. Since, 

by part (i) , tt(F) < 0  cannot hold, it must be true that 7T(F) > 0 .  V

Lemma (3.4) is an immediate consequence of Lemmas (74) and (81), as 

follows:

(85) PROOF OF LEMMA (3.4).

(a) Suppose tt(F) <0. In part (a) of Lemma (74) it is proved that
^ /N
tt (F) = a(F, S) < 0  implies that, for small A, F + As dominates F.

ASince only the negativeness of a at S was used to show that, it is 

also true for S and tF(F) = G(F, S) , i.e. there exists a X > 0 so that, 

for A e (0, A], K(F + AS) < K(F).

(b) Suppose tt(F) = 0 and S = 0 is the only argument of fr (F) . Then

Lemma (74) part (b ) and Lemma(81) part (n) give the result. V

5.5 EQUIVALENCE OF PROBLEMS

In this section we shall formulate a theory relating problems

(4 ) and (72). It will be demonstrated that solving the former problem 

provides useful information about the solution to the latter, and, in 

certain cases, the solution itself. The main results are given in 

Theorems (98) and (101). They generalize some of the results of 

Section 4.1.

For that, we need to prove some facts and introduce some concepts: 

(87) LEMMA. Let P be an orthant in 3R̂  and q € JB? . Then q € P,
if and only if <x, q> > 0 for all elements x of P.
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PROOF.

(=>) Let the orthant be defined by 

P = {x € HRn : Ax £  0},

where A is a diagonal matrix with entries a ^  E {l, -l}, and suppose 

q E P. Let x be an arbitrary exemenr of ?. Then we have Aq <_ 0 

and Ax <_ 0, and thus,

<Ax, Aq> = x ' A ' Aq >_ 0.

2But A'A = A =1, since A is orthogonal. Thus <x, q> > 0.

(*=) Let q E ]R̂  and assume that, for all x E P, <x, q> 0. 

Note however that, for the j-th column of A, â

A(-aj) = A '(-aj) = <aX , -aj> ' II

1----o 
•

1_

<aj; -a^> -1

_<ap ; -aj> _ 1
• • o
____1

This implies that - d ?  E P, and so <-a^, q> > 0 by assumption. Since 

this holds for all j,

-Aq = 1<-a , q> > 0

and hence Aq _< 0, proving what we wanted.

(88) PROPOSITION. Let P be an orthant in ]R̂  given by

V

P = {x E ]RP : Ax < 0}(
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where A is a diagonal matrix with diagonal elements in {l, -l} . If, 

for some y 2 P,

s € -arg min{{max<s, x-y>: x C P}: s £ 5} 

then s € P.

PROOF. Consider the closest point in P to y, 9(y), and let 

c = 9 (y) - y .

It follows from Proposition (6) that, for all x € P,

<c, x> 0

Lemma (87) then says that c € P.

On the other hand define 

Z {z = x-y: x € P}

Thus, changing variables, the expression

s £ -arg min{{max<s, x-y>: x G P}: s 6 S} 

becomes

s e -arg min{{max<s, z>: z G z} :  s G S}

(Refer to diagram (89) for the geometrical interpretation.)
Since 0 ? Z (otherwise y € P) and

max{<s, z>: z G z}  = a(s),

for a(s) the support function to Z, we can use Theorem (4.6) in order 

to say that
A

arg min{a(s) : s 6 5} ={- — ^—  } ,
II 911
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where y is the minimum norm point of Z. However 9 (y) is the closest 

point to y in P, which implies that c = 0(y) - y is the minimum norm 

point of Z. Hence,

arg m min{a(s): s 6 S} = -

and so, since c € P and P is a

s = -arg min{a(s) : s € S }  = — ---  £. P. V
lie ||

(90) COROLLARY. Suppose P PI Q = (j) and let c be the (nonzero) solution 

to Problem (3) . Then s = c/|| c|| belongs to P.

We must now state the following definitions:

(91) DEFINITION. For a convex function f defined on a convex set C 

in a vector space X, we define the convex set [f, C], called the 

epigraph of f, by

[f, C] = { (r, x) £ ]R x X: x £ C, f (x) < r}. V

(92) DEFINITION. Given a concave function g defined on a convex 

subset D of X, we define the hypograph of g as

[g, D] = {(r, x) 6 E  x X: x £ D, r < g(x)}. V

Theorem (98) is an application of the important Fenchel Duality 

Theorem for conjugate functions. Before stating it, we shall introduce 

some concepts of the dual optimization theory (see [3 ]).

(93) DEFINITION. Let f be a convex function defined on a convex 

set C in a normed space X. The conjugate set C* is defined as

C* = {x* £ X*: sup [<x, x*> - f (x) ] < °°} 
x€C
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and the function f* conjugate to f is defined on C* as

f*(x*) = sup [<x, x*> - f(x)]. V
x€C

Here X* denotes the (normed) dual space of X, the space of all bounded 

linear functions on X. If x* is an element of X*, by <x, x*> we mean

x*(x), i.e. the value of the linear function x* £ X* at x E X. For
, in IKthe geometrical interpretation of the conjugate function refer to 

Figure (94) . The dual space of ]R is itself 3R in the sense that the 

function x* can be represented by a vector in ]Rn , normal to the 

hyperplane <x, x*> =0. It is proved that the number f*(x*) is such 

that the hyperplane

r = <x, x*> - f*(x*)

is a support hyperplane of [f, C].

The minimum vertical separation of the sets [f, C] and [g, D] is 

given in terms of the conjugate functions f* and g* as follows:

(95) THEOREM (Fenchel Duality Theorem) [3 ]. Assume that f and g 

are, respectively, convex and concave functions on the convex sets 

C and D in a normed space X. Assume that C fl D contains points in the 

relative interior of C and D and that either [f, C] or [g, D] has 

nonempty interior. Suppose further that p. = min{f(x) - g(x): x £C(1d } 

is finite. Then

p. = m m  { f (x) —g (x) :x 6 C (1 d } = max{g* (x*) -f*(x*):x*EC*flD*}

where the maximum on the right is achieved by some x* E C* fl D*.
If the minimum on the left is achieved by some x^ E C fl D, then

max{<x, x*> - f(x): x E c} = <Xq , x *> - f (x )

and
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min{<x/ x*> - g(x): x E d } = <xQ, x*> - g(xQ) . V

This theorem says that the minimal vertical separation of the 

sets [f, C] and [g, D] is equal to the maximal vertical separation 

of any two parallel supporting hyperplanes separating these sets, 

provided they are not vertical. Refer to

diagram (96a) for the geometrical interpretation.

In what follows we shall define a situation in which the assumption 

concerning C fl D will not hold. However it can be seen that this 

assumption is too strong to prove the result. In fact, it can be 

checked from [3 ], page 202, that C D D is required to contain points 

in the relative interior of C and D in order to guarantee the existence 

of a nonvertical separating hyperplane between [g, D] and [f - |i, C], 

the. vertical displacement of [f, C] tangent to [g, D] at x^. Therefore, 

if we prove that there exists such a separating hyperplane, then Fenchel's 

Theorem can be applied in our case, provided the other assumptions are 

valid. This will be done in Theorem (98) .

In what follows, the sets P and ^(f) (considered as subsets of
p]R , p = mr, when the vec notation is used) will be regarded as part of

the epigraph and the hypograph, respectively, of two functions on 
p— 1

TR (see illustration (96b)). To characterize those functions we
pmust rotate the basis of the coordinate system of ]R . We define the 

direction of the vertical axis to be the direction of c = x - y , 

where x = 0 (y) E P and y E fi(f), i.e., where x, y solve the problem 
min{ || x-y [| : x E P, y E £2(f)}. So, the vertical unit vector is 

c/]| c||. The remaining coordinate directions are not relevant for the 

proof and need not be specified. Define C as the orthogonal projection 

of P onto the subspace normal to c and let f: C -*■ HR so that f(c) is the 

smallest number for which (c, f(c)) belongs to P, i.e.,
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f (c) A_ min{r £ 1R : (c, r) £ P} .

Note that the epigraph [f, C] coincides with P, and that C is convex.
In order to prove that f is convex, take two elements of C, and c2, 

and consider the convex combination otĉ  + (1 -  a ) ot £ [0, 1] .

Let

(97) r = of(c ) + (1 - a)f(c2).

Then

(ac1 + (1 - a)c2, r) = a ( c 1, f(c^)) + (1 - a)(c2, f(c2)),

i.e., the point (ac^ + (1 - ol)c2, r) of ]R̂  equals a convex combination 

of two points of P and thereby belongs to P. It follows from 

the definition of f that, for r of (97),

f (ac + (1 - a) c2) £ r,

showing that f is convex.

Similarly define the concave functional on a convex set 

g: D 3R such that for all elements d € D

g (d) = max{r £ 3R : (d, r) E ft (f) } .

Finally, we can state

(98) THEOREM. If y solves problem (4) and c = 0 (y) - y / 0, then 

8/1| c|| is the only solution for problem (72) .

PROOF. Consider the situation shown in Figure (96b) with the convex 

and concave functions, f and g respectively, defined by the two sets 

P and ft(f). As before, let c = x - y, where y £ ft(f) and x = 0 (y) £ P 
are the closest points in the sets. Let tf̂ and be the supporting 

hyperplanes, at x and y respectively,



158

H = {x: < —    , x> = 0}
1 II al l

H = {x: < —    , x> = -|| c|] }-2 lisil

Recall that if supports P it must contain the origin. H is defined 

c.s the hyperplane parallel to at a distance of Jj cjj, which passes
A

through y. The sign of < ----- , y> (negative, by Proposition (6))
II c||

gives the exact expression. The halfspace defined by H that

contains fi(f) is

{x: < --£-- , x> < -|| S || },
l|S||

since H must separate £3(f) from P and we have (Proposition (6)) that,
✓\

for all x € P, < ---- , x> > 0 > - 1| c ||. It is clear from the figure
II c |1 “

that a supporting hyperplane to Q (f) can be seen as supporting [g, D] 

as well. Thus, the above halfspace contains [g, D] and so, for all 

x € [g, D],

(99) < — £—  , x> < -II c || .
H e l l

Now, consider a point x € [f, C] and define the vertical displacement 

of the set [f, C],

{z = x - c : x £ [f, C] } .

Since by definition of [f, C] , x = (r, y) , for some y € C and r _> f (y) , 

an element of the above set can be written as z = (r, y) - (|| c|| , 0)

= (r - || c|| , y) , and the set as

{ (r - || c|| , y) : y € C, r ^  f (y) }

= { (r - || c || , y): y £ C, r - || c|| f (y) - || c|| }

= { (r' , y): y EC, r' ;>f(y) - || c || }

a  [ f  -  || a|| , C] .
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Now, the fact that we have < 

for all z € [f - || c|| , C] ,

x> _> 0 for all x € P implies that,

< — —  , z + c > > 0,
Hail

and thus

< — ^ , Z> > - || c II .
II ell

Consequently, this fact and (99) proves that H separates [f - || c|| , C] 

from [g, D]. As we have remarked this fact substitutes for one of the 

assumptions of Fenchel's Theorem. The set P (= [f, C]) has nonempty 
interior, therefore the theorem applies for the pair [f, C] and [gr D], 

and we can say that || c|| , the minimal vertical separation of [f, C] 

and [g, D], is equal to the largest of the vertical distances between 

any supporting hyperplane below [f, Cl and above [g, D]. Consequently, 

for any other pair of parallel supporting hyperplanes, the vertical
A

distance between them is not greater than ||c||. Consider now the (orthogonal) 

distance, between any two parallel hyperplanes. Obviously it is not greater 

than the vertical distance, so the situation is that the largest distance 

between any pair of supporting hyperplanes is |[ c|| . In order to write 

down this algebraically, which will lead us to the final result, consider 

two arbitrary supporting hyperplanes to [f, C] and [g, D],

H = {x: <n, x> = 0}

and

H* = {x: <n, x> = -d},

for some d > 0, with n chosen with unit norm and in such a way that 

the halfspace {x: <n, x> >_ 0} contains [f, C] (see Figure (100)) .

Lemma (87) says that a vector n satisfies <n, x> > 0 for all elements 

x of P if and only if n is itself an element of P. Thus, for the normal

#which are parallel
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n to H and H', n € S D P. The distance between the hyperplanes is 

d and, since 0 6 ,H, d can be written in terms of the supporting function 

to ^(f) (see [ 3 ], page 136), as

d = -max{<n, x>: x € fi(f)} = - 0 ( f ,  n).

Therefor,-, er jj c j j  is the largest of those distances, for all n 6 5  fl P ,
/s

|| SII = - o ( f ,  — £—  ) > -c(f, n) ,
IISII =

i.e.

/s

a(f, — —  ) < a(f, n).
IISII =

AQHence, since by corollary (90) the unit vector ---- £ P,
l|s||

/\
— 6 arg min{cr-(f# n) : n £ S fl P},
IISII

A Aand on account of the fact that c/J|c|J is the only unit" normal to H and H1 
with support function -|| cj| , the result follows. V

Another important result is given by:

(101) THEOREM. P fl ^(f) = (f) if and only if cr(f, s) < 0, for s the 

solution to problem (72) (i.e., if and only if s is a first-order 
descent direction).
PROOF. (=*) Suppose S2(f) D P = (j). Then c^O and, for s=c/]] cl] ,<7(f/s)=-ll c ]] <0. 
(from proof of Theorem (98)).

Alternatively, this can be proved directly as follows:
(=») Suppose Q(f) D P = 4>. Then there exists a strongly

separating hyperplane H between ^(f) and P, which implies that there 

exists abnormal n to the hyperplane such that

min{<n, x > : x £ P} > max{<n, co>: 03 € fi(f)}.

However, 0 £ P, therefore the left hand side of the above inequality
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is nonpositive, and so

(102) max{<n, o)>: 0) 6 £2(f)} < 0.

Now consider the supporting hyperplane to P, parallel to H , i.e., with 

normal n as well. In the proof of proposition (6) it is shown that 

any hyperplane supporting P is of the form {x € TRp : <n, x> = 0}. 

Obviously the halfspace (x € 1R̂  : <n, x> > 0} contains P. Thus, for 

all x € P, <n, x> 0. However from this and Lemma ($7) , n € P.

Thus, (102) gives

a(f, s) = min{{max<s, G0>: GO £ fi(f)}: s £ S fl P}

< max{<n, co>: GO £ £2(f)} < 0 

(<=) Assume that

a(f, s) = max{<s, go> :  go £ Q(f)} < 0.

As a consequence, for all go £ !w!(f) , <s, go> < 0. However s is a solution 

to problem (72), and so it must belong to P. It follows from Lemma (87) 

therefore that go £ P. This proves that P f) £2(f) =0. V

The practical significance of Theorems (98) and (101) is summarized 

next. Theorem (101) says that P D fi(f) = cf) if and only if the solution 

to the search direction problem is first-order descent ( O (f, s) < 0). 

Observe however that saying P D Q( f ) = (p is equivalent to saying that 

the solution to the minimum distance problem between P and Q(f) is 

nonzero. Thus, a necessary and sufficient condition for a first-order 

descent solution to the search direction problem is that the minimum 

distance solution be nonzero. If this is true then the minimum distance 

vector defines uniquely the search direction solution, which is what

Theorem (98) demonstrates.
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Thus, the minimum distance solution defines the solution to the 

constrained search direction problem. Theorems (98) and (101) are 

the equivalent of some of the results of Section 4.1 (summarized in 

Theorem (4.6) and result (4.9a)). Those showed the relationship 

between the minimum norm problem and the support function minimization 

problem for a convex set. Since the search direction problem is the 

minimisation of the support function of Q { £ ) , they gave the relationship 

between the minimum norm and search direction problems. Here we have 

related the minimum distance with the constrained search direction 

problems. We end this section by stating the following two results, 

equivalent to (4.9b) and (4.9c):

-P 0 fHf) c 3fi(f) <=* a(f, s) = 0 

-P f! Q(f)  ̂(p cr(f, s) > 0

5.6 ALGORITHM FOR THE SEARCH DIRECTION PROBLEM

The fact that the original problem of seeking a search direction 

for the coftstrained dominant feedback algorithm may be converted into 

a minimum distance optimization problem, enables the use of the theory 

developed in Sections 5.1, 5.2 and 5.3, to be applied for solving the 

former problem. Thus, the algorithm for determining the minimum 

distance between an orthant and a convex set, algorithm (48), will be 

applied' to P and ft(f). In order to adapt it a few remarks must be

The minimum distance problem between the orthant P and the convex

and 0(y) is the projection of y onto P. A point y £ Q(f) is defined 

as an e-approximation for x(y) when |x(y) - X(?) I < £ • Although Theorem 

(98) says that any minimizer y for X such that x(y)  ̂ 0 gives the

made.

when y € Q(f)
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minimizer s for a through the formula 

g = Q(y) ~ Y
II ety) -  y II

an ^-approximation to x(y) will not necessarily give an £-approximation 

to a(s) ( = a(f, s), where the variable f is omitted). This implies 

that the stopping condition given by Step 5 of Algorithm (46) neeas no 

be changed in order to provide a solution that £-approximates D(s) instead

of x(y) •

Diagram (104) depicts the values of both functions x (ŷ ) and tf(ŝ ) , 

for a few iterations of Algorithm (48) on the example of Figure (53b). 

The function which is being minimized is X not &> and thus there is 

no reduction of a at each iteration. Since, unlike x> 0 depends on the 

geometry of fi(f), they have quite different behaviour, even near the 

minimum point. Despite that, we know that the minimum of both coincides 

(in the sense that y gives s) and that a is continuous. So, Algorithm (48) 

will eventually approach the minimal value of a and this will ensure 
a negative cr(ŷ ) after a finite number of iterations, which is basically 

our objective.

The change in the stopping condition must be such that the 

algorithm terminates when a s"' satisfying

(103) |a(sj) - a(s)| < £

is reached. However, from Theorem (98),

Q(s) = - || 0 (y) - Y II /

and since || 0 (y) - y || < || 0(y^) - y^ || ,

-a (s) <_ || 0 (y-*) - y^ ||

which yields
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a(sj) - a(s) ^ a(sj) + || 0(yj) - || .

Thus, it follows from the above that, if at the j-th iteration 

a(s^) + || 0(yj) - yj II < e

then condition (103) is saji-sfied. Hence the above inequality 

an e-approximation to cr(s) , and since (see Figure (105)) ,

(106) d = a(s^) + || 0(y^) - y^ || = < v - , y^ - ^ >

llv II
the stopping condition will be: ^

Besides this, another test examining the negativeness of O must be 

inserted. A computable formula for a(s^) follows from (106), which 

is

O(ŝ ) = < — - —  , y-1 - z^> -  || 0 ( y ^ )  -  || .
INI

Obviously it is impossible to prespecify e and guarantee the termination 

of the algorithm with G(s^) <0. A practical procedure is to re-estimate 

£ if that does not occur. We finish by pointing out that the stopping 

criteria that tests convergence of x in Algorithm (48) is d|| v || < £,

which for ||v|| small, does not imply that d < £, as expected.

The algorithm devised to give a negative solutuon to the search 

direction problem (72) therefore becomes:

(107) ALGORITHM FOR THE SEARCH DIRECTION PROBLEM

1. Choose £ € (0, 1), € £2(f) , e' £ (0,£).

Set j = 0.
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2. Calculate the gradient v by

v. = (Vxty3)). = 1 1 2y ?  , if <y"̂ , a1> > 0

0 , otherwise

where a are the columns of A.

3. (See Remark (108)). Find an eigenvector x^ associated with 

the smallest eigenvalue of dK(f; v), then

x3 6 arg min{x' dK(f; v)x: x € Bn}.

4. (See Remark (108). Find the contact point 7 ? between ^(f) and 

its supporting hyperplane normal to v, where

= j' 3K(f) j 
x 3f, x

j' 3k (f) j
x 3f X P

5. Find the search direction

h^ = 7?  - y^.

V ~ ]6. If < ----- , -h > < £ then go to 7; else go to 8

7. If a(s^) = < — -—  , -h^> - || ©(y3) - y^ || < 0  then set
II vll

s = 0(y"5) -
II 9(yJ) - yJ ||

where Q(y^) is given in (18), and stop: else set £ 
If £ < £' stop; else continue.

= £ / 2

8. Determine the step length parameter using for example

Algorithm (64) .
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9. Set + ̂ = ŷ  + A^h^, j = j+1, and go to 2. V

(108) REMARK. Steps 2 and 3 find the minimizer of <v, •> over ft(f). 

This is done in the same way as to obtain the maximizer (i.e., to 

evaluate the support function of which was shown in Section 4.1.

Although the changes are obvious, we shall describe the procedure for 

them here. Recall that

ft(f) C o { z  £  3R^ : z .l X  ' 3K(f)
3f. X/ x £ Bn }

l

and so, the minimum of <v, z>, as z ranges over Q ( f )  

some z ? of the type

is achieved for

z3 = j' 3K(f) j x 3f x / Xj' 3K(f)
3f

for some x"1 6 Bn. Then

<v, z3> = V . z . 1 1 = l
8K(f) xj 
3f.

= xJ (I
3K(f) x j j 
- 8 f - )X = X dK(f; v)x-

i

i.e. optimizing <v, z> with respect to z € fMf) is equivalent to 

optimizing x'dK(f; v) x with respect to x f. Bn. An x minimizing 

x'dK(f; v)x on Bn is an eigenvector of dK(f; v) associated with the 

minimal eigenvalue of dK(f; v). Hence x^ is such an eigenvector. 

Furthermore, since the minimum of <v, z> is achieved at any contact 

point of fi(f) with its supporting hyperplane normal to v (see 

Figure (105)), then z ? must be a contact point. Steps 5 and 4 find 
x^ and 2?  . V

5.7 THE MINIMUM NORM PROBLEM AND THE UNCONSTRAINED SEARCH DIRECTION

This section is concerned with the particular case in which P = {o}, 

and problem (3) reduces to the:
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(109) MINIMUM NORM PROBLEM♦ 

min{ |! y  || 2 : y Eft},

where ft cz ipp is a convex set. V

The algorithm of [ 1 ] for convex optimization applied to the 

norm function

x (y > = II yII2 .

produces an algorithm, having only two points in which it differs 

from Algorithm (48), which optimizes || 0 (y) - y|| . First, the

expression for the gradient of the function X becomes

^X(y) = 2y.

Also, the line search involves minimizing the quadratic

f (X) = x(y + Xh) = || y + Ah ||2 = £(y + Ah).2 ,

and so, the minimization over the interval [0, 1] is immediate.

The obvious application of this in the dominant feedback theory 

is for the case when the search direction is defined by

s E arg min{Amax dK(f; s) : s E S},

which happens in the unconstrained dominant feedback algorithm. In 

fact, since Amax dK(f; s) is the support function to the set ft(f), 

it follows from Theorem (4.6) that s = co/11 oo | ] , where 03 is the 

minimum norm of ft(f) .

The corresponding algorithm is therefore a slight variation of

Algorithm (107):
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(110) ALGORITHM FOR THE UNCONSTRAINED SEARCH DIRECTION

1. Choose e £ (0, 1), £ fi(f) .

Set j = 0.

2. Calculate the gradient of the norm function 

v = Vx(yj) = 2yj.

3. Find an eigenvector x^ associated with the smallest eigevalue 

of dK(f; v). Then

x^ £ arg min{x'dK(f; v)x: x £ Bn}.

4. Find the contact point 7 ? between (f) and its supporting 

hyperplane normal to v, where

3 j' 9k (F) j
2 ■ x -Sf^-x

X 3K(f) j
Of x P

5. Find the search direction

hj = zj - yj.

6. If < — —— , -h^> < £ then go to 7; else go to 8.
I N I

7. If a(s^) = < — -—  , -h^> - || y^ II < 0  then set s
IMI

and stop; else set £ = e /2 and continue.

8. Determine the step length parameter A-5 by

where the function sat is defined by
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s a t ( a ) i 0, a < 0

a, a <E [0, 11

. 1, a > 1 •

9. Set yj+1 — yj + Ajhj, j = j+1, and go to 1. V

(111) REMARK. The step length is chosen in Step 8 as the scalar A^ 

such that it minimizes the quadratic

f (A) = T((y j )2 + 2yD h 3 A + h 3 A2) ̂ i l i  i
j ,2,

over [0, 1], since the unconstrained minimum of f is -
h  j h jL 2. 1
i ( y ? )j x 2

Actually, since x is the norm function, y^+A^h^ is the closest point to the 

origin of the segment of line [ŷ  , y^+h^l. V

Algorithm (110) is essentially Y.C. Ho's algorithm used in [2 ].

5.8 THE IMPLEMENTABLE ALGORITHM FOR THE LINEARLY CONSTRAINED 
DOMINANT FEEDBACK PROBLEM

Before describing an overall algorithm that finds a dominant 

output feedback with the entries of the feedback matrix ranging over 

given intervals (Problem (66)) , there is still one detail to be dis

cussed: the limit imposed by the constraints on the unidimensional 

search along the search direction. In other words, the problem that 

remains to be solved is, given a search direction, to find the upper 

bound for the step length. This is very simple to do owing to the 

type of constraints considered.

It is helpful to start with the two-dimensional example shown in 

Diagram (112). Suppose the search direction s has been found, by 

finding the closest point in £2(f), as shown in the figure. The search 

interval [0, A] will be determined by finding the first point at which
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a constraint becomes active, as we move along s. Recall from (67) 

that

M (f) = {s 6 1RP : g.(f) < s. < h . (f) } .i = 1 — 1

This set can be equivalently defined as

M(f) = U s  e B P : H  1 ,  s ES, g (f) £ Xs± < h±(f) }.

In the example the constraint Xs^ - h^ < 0 is the first to become
/\

active, therefore X = h^/s^.

In order to develop a general procedure for finding the upper bound 

for the step length along a direction s, consider the following three 

cases i

(i) s. > 0 i

Xs . - h.(f) < 0 gives the solution X = h.(f)/s.i i =  i i
g. (f) - Xs. < 0  holds for all X > 0 since g.(f) = a. - f. <0. i i =  =  i 1 1  =

(ii) s. < 0i

Xs - h (f) < 0 holds for all X > 0, since h (f) = b. - f. > 0  1 1 =  =  i  i i  =
Ag^(f) - Xs^ 0 gives the solution X = g^(f)/s^.

(iii) s. = 0
l

Here both Xs. - h.(f) < 0  and g.(f) - Xs. < 0  hold for all X > 0.
l i — i  i  =  =

Thus, in view of the results for each case, the step length interval
A[0, X] is chosen by

X
r

min i
h. (f)l
s .i

g . (f) 
J___
s .

J

i,j € {l,...,p} such that s^ > 0, s^ < 0

We may now describe the implementation of Algorithm (79).
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(113) IMPLEMENTABLE ALGORITHM FOR LINEARLY CONSTRAINED DOMINANT 
OUTPUT FEEDBACK

1. Select F° € M, £ € (0, 1), 8 € (0.5, 0.8).

Set j = 0.

2. Choose the search direction S'3 by following Steps 2.1 to 2.8 

below, where vec notation is used, and p = mr.

n2.1. Find the active index sets at f

I(f^) = {i = 1,•..,p: fi = ai)
J(fj) = {i = l,...,p: f± = b }.

2.2. If I(f^) U J(f^) ^ (j) then go to Step 2.5 (f"3 lies in the boundary 

of M); else continue.

2.3. Perform Algorithm (110), using f"3 and the tolerance £.

2.4. If C(s) = Amax dK(f^; s) >_ 0 (obtained from (110)) then set

f* = f  ̂and stop; else set the search direction s'3 = s and go to 

Step 3.

2.5 Construct the p x p  diagonal matrix A = (a_) with diagonal elements

-1 if l € I(f3)
1 if i € J(fj)

0 otherwise

k K2.6. Construct the nonsingular diagonal p x p  matrices A , k = 1,...,2 , 

where K is the number of zeros in the diagonal of A, obtained from 

A by substituting the zeros of the diagonal with all possible 

combinations of 1 and -1, i.e., a matrix A will be such that



1 7 6

2.7.

2.7.1

ka. .n

k

= aii' if a. .li

. a. . 
1 11 = ± 1 , if a . .n

k a . .1 = o , if i t

(Note: each A defines an orthant. The wucvrt q x i'S. P.)

For k = 1,...,2 , follow Steps 2.7.1 to 2.7.2.

Perform Algorithm (107) , using f ̂ , the tolerance £, and the orthant 

pk = {x € IR̂ 5 : A^x < o}*

2.7.2 Set s(k) = s.

2.8. If min{a(s(k)): k = 1,...,2K} ^ 0  then set f* = f  ̂ and stop; 

else set the search direction

>-* 6 arg min{a (s (k) ) : k = 1 , , 2K}

-j3. Compute the step length interval [0, AJ] along S by

P  - mm^ bhi‘ fhi fk£ " ak£ h,k€{1,...,m), i ,£ 6{1,...,r},
hi 3k£

such that SlD > 0, s, "l < 0  \ hr k£ i

4.

4.1.

4.2.

Compute the step length A"1 by following Steps 4.1 to 4.6 below. 

Set q = 1.

Compute a k > 2 such that 

12ay.k (k-2) > 1
k - 1 =  y

where



177

a = 4 || K(Fn) || || B || || C || (Amin Q) -1

Yj. = 2 1| C|| || K(FQ) || (Amin Q) _1 (|| b || || K(FQ) || + || r || Pc )

Yo = ayx + b

b = 2 || K(FQ) C || 2 || R|| (Amin Q) 1

F = K(F0} + <
b || 2 II K(F0) ||2 2 || A || || K(Fq)

Amin R (Amin R) Amin R

4.3. Compute

P = - 4a(s^)
, 3 kr y0

4.4. Set A = pB .

4.5. Compute

0(A) = tr[(K(F:) - K(FJ+Asj))X ] + i n  Amin XQ a(Sj)A

4.6. If 0(A) < 0  or A > AJ set q = q+1 and go to 4.4;

else set AJ = A and continue.

6. Set F^ = F^ + A^S^, j = j+1, and go to Step 2. V

(114) REMARK. The parameter A^ is chosen m  Step 4 using the Armijo 

rule described in Section 2.4. The Armijo line function here,

i n  Amin <J(siA, uses (obviously) a(si instead of tt(F̂) . V

(115) REMARK. It is not possible to prove convergence for the above 

algorithm, as already discussed. One way to overcome this problem

is to include the "almost" active constraints in the definition of the 

search direction. This is done, for example, by defining the £-active 

constraints at f, and taking them into account in the definition of the 
orthants. The e-active index sets at f would be:
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I (f) = {i = : a. - f. + £ > 0}£ 1 1  =

J£ (f) = {i = 1 , . . . ,p : f + £ >_ 0} V

It is worthwhile summarizing what has been done in this chapter.

In the first three sections we described a convex optimization problem 

ar\c( developed a method for solving it. In the rest cf tke chapter 

we discussed two applications for this study. First, how it leads 

to a practical procedure to compute a search direction for an algorithm 

for determining a dominant feedback, subject to linear constraints.

Then, how it provides an optimality test for the case in which the 

feedback happens to lie on the boundary of the feasible set, which 

may be done irrespective of the algorithm used. Besides this we 

may add, as another justification for the mathematical work in the 

first three sections, that the proposition and solution of a problem in 

convex optimization theory is of interest in its own right. One 

advantage of the methodology of solution is that the number of variables 

of the original problem is halved. Another nice feature of it, as far 

as the dominant feedback problem is concerned, is that, by minimizing 

II 9 (y) — y 11 over $7(f) , it yields a feasible vector ŝ  = 0(y-̂ ) - y^ 

at each iteration. In contrast, the standard formulation to the problem, 

which 1s to minimize || x-y|| , x  f. P ,  y  f  £2(f) , would only necessarily

produce a feasible vector at the limit point of the resulting sequence. 

Since 0(y) can be evaluated very simply, there is no disadvantage in 

the approach used.

Another important point concerns Lemma (3.4) . Although the result
/\obtained there is based on the premise that the matrix S is an exact 

minimizer for 0 ( S), it can be easily seen, following the proof, that 

part (a) applies also when the optimization is carried out approximately. 

In practical terms this implies that an accurate minimization to find a
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descent direction is not needed. Part (b) however is not true for 

an approximate solution S. In fact, assuming that G(S) >0, it 

is not necessarily true that the minimal value <J(S) is positive, 

i.e., that F is locally dominant. We must emphasize the significance 

of part (a), in that it justifies naming a matrix S such that

Amax dK(F; S) < 0 as a first-order descent direction.



180

REFERENCES

[1] Allwright, J.C., "A Feasible Direction Algorithm for Convex 

Optimization: Global Convergence Rates", JOTA, Vol 30, No 1, 1980.

[2] Allwright, J.C., "LQP: Dominant Output Feedbacks", IEEE Trans. On 

Aut. Control, Vol AC-27, August 1982.

[3] Luenberger, D.G., "Optimization by Vector Space Methods", John Wiley 

and Sons, Inc., London, 1969.

[4] Polak, E., "Computational Methods in Optimization", Academic Press, 

New York, 1971.

[5] Rockafellar, R.T., "Convex Analysis" Princeton University Press, 

Princeton, 1972.

[6] Stoer, J. and Witzgall, C., "Convexity and Optimization in Finite 

Dimensions I", Springer Verlag, 1970.



CHAPTER 6

MINIMIZATION OF THE LARGEST EIGENVALUE OF dK(F; S)

6.1 OPTIMIZING THE 2-NORM OF dK (F; S) + 061

6.2 SUBGRADIENT-BASED OPTIMIZATION OF Amax dK(F; S)

Page

182

188



181

6. MINIMIZATION OF THE LARGEST EIGENVALUE OF dK(F; S)

The aim of this chapter is to describe two methods for minimizing, 

with respect to S, the largest eigenvalue of the Frechet-differential 

dK(F; S). The first method involves a matrix-norm minimization 

problem, and was suggested for solving this problem by Allwright 

in [2 1 . We have added the development of the expression for a 

gradient matrix, which is computable, and is needed for the implementation 

of the method. The procedure is reliable in the sense that convergence 

is achievable, provided some subproblems are solved (by any feasible 

direction algorithm) accurately. The second method relies on the 

theory of subdifferentials. The subdifferential of a convex, not 

necessarily differentiable function, is a point-to-set map. Its 

codomain consists of subgradients. The ideas of subdifferentials and 

subgradients generalize the concept of differential and gradient of 

a differentiable function. These concepts were introduced by 

Rockafellar in [13] and were later extended by Clarke in [51 

for Lipschitzian function, giving rise to the generalized gradients. 

Subgradients and generalized gradients are important tools when 

dealing with nondifferentiable optimization. A simple feasible 

direction algorithm for that uses the generalized gradient instead 

of the gradient. Unfortunately convergence may fail for this 

algorithm - a fact which is explained by the lack of continuity of 

the generalized gradient. To ensure convergence it is necessary to 

replace gradients with the so-called smeared generalized gradients.

For the details, refer to [12]. Here we shall describe how to 

determine the steepest descent direction for the convex function 

Amax dK(F; S) in terms of its subgradient so that a simple algorithm 

for minimizing this function may be obtained. It is hoped that this
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will be helpful in the task of developing a complete algorithm 

using smeared subgradients, which has not been done yet.

6.1 OPTIMIZING THE 2-NORM OF dK(F; S) + al

An algorithm for minimizing the 2-norm of a general symmetric- 

marrix-vctj-aea function when the parameter ranges over any nonempty 

set is studied in [2 ]. This algorithm can be applied to minimizing 

the maximum eigenvalue of dK(F; S) when S ranges over M(F) .

Theorem (2) gives the basis for an algorithm for solving the 

general problem (the infimum is used since the minimum may not 

exist):

(1) MATRIX-NORM MINIMIZATION PROBLEM

Find inf{ (| G(x) || : x 6 c}

where G(x) = G(x) ' £ ]Rnxn for all x £ C, and C c: V

(2) THEOREM. Suppose

(i) G(x) = G(x) ' £ ]Rnxn , for all x € C, C a nonempty subset of 1R̂  . 

(ii) 0 > 0.

i(iii) For each even non-negative integer £, x is chosen to infimize
£tr[G(x) ] approximately on C . In the sense that

(3) tr[G(x^)^] <_ (1+0) inf {tr [G (x) ̂ ] : x £ c} 

is satisfied.

Then, as £ *+ 00,

|| G(xS || -► inf { || G (x) : x € C>.
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Further, if for all x € C, G(x) >_ 0, then the non-negative integers 

Z can be used instead of the even non-negative integers.

PROOF. See [2 ] and Appendix. We conclude that an algorithm for 

minimizing || G(x) || would be to solve approximately the sequence 

of optimization problems

(4) minimize{tr[G(x) ]: x £ c}

where Z = 2,4,..., using a standard algorithm for differentiable functions

The minimization must be carried out as accurately as possible, since
Zsatisfaction of (3) cannot be checked as the minimum of tr[G(x) ] 

on C is not known and a sharp lower bound does not seem to be 

available.

Theorem (5) shows that it is possible to minimize the largest 

eigenvalue of a symmetric matrix by solving a matrix-norm minimization 

problem:

(5) THEOREM. Suppose

(i) L (x) = L(x) ' £ ]RnXn with L(x) >_ -ai, for all x £ C, for 
some real a > 0 .

(ii) G(x) = L (x) + ai.

Then

inf{Xmax L(x) : x £ c} = inf{Amax G(x) : x £ c} - a 

and, if x gives

|| G(x) || <_ inf{ || G(x) ||; x £ c} + £

Then
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Amax L(x) _< inf{Amax L(x) : x £ c} + £ V

PROOF. Since G(x) = L(x) + ai and L(x) >_ -ai, for all x £ C ,

G(x) > 0 .

Hence

(6 ) Amax G(x) = || G(x) || .

However assumption (ii) implies that each eigenvalue A^L(x) is 

equal to A G(x) -a, and so,

(7) Amax L(x) = Amax G(x) - a.

Consequently,

inf {Amax L(x) : x £ c )  = inf {Amax G(x): x £ c} - a

which with (6 ) proves the first assertion of the theorem. Now, 

suppose x is such that

• II G(x) || £ inf{ || G(x) || : x £ c) + z

Then, from this, (ii), (6) a n d  (7),

Amax L (x) = Amax G(x) - a

= || G(x) || - a
<_inf{||g (x ) || : x £ c} - a + e 
= inf{Amax L(x): x £ c) + e

so that the second assertion is proved. V

Theorem (5) reveals that the (approximate) infimum of Amax L(x), 

when x £ C and L(x) is symmetric, can be obtained by infimizing 

(approximately) the norm of another symmetric matrix, as long as a 

lower bound for L(x), for all x in C/ is known. Therefore
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(5) reveals that the (approximate) infimum of Amax L(x), when 

x € C and L(x) is symmetric, can be obtained by infinimizing 

(approximately) the norm of another symmetric matrix, as long as 

a lower bound bound for L(x), for all x in C, is known. Therefore 

Theorems (2) and (5) provide a method of solution for the following 

problem:

(8) Amax MINIMIZATION PROBLEM

infimize{Amax L(x): x £ c}

for L(x) = L (x) r . !Rnxn with L(x) >_ ai, for a given a > 0 and for 

all x € C , and C c= ]R̂  . V

If x is identified with the search direction matrix S, 3R̂  

with 3Rmxr , C with the compact feasible set M(F), and L(x) with 

the Frechet-differential dK(F; S), then problem (8) is just the 

search direction problem (3.9) for the constrained dominant output 

feedback problem.

A lower bound a for dK (F; S) , when S f. M(F) , is obtained as 

follows: for all S f. M(F) , and z f. JRn ,

z'dK(F; S)z = z'( y s . r..)z (see (2.1))
,4 13 ID

Hence

(9)
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for d the diarater of M(F). However, for any matrix A,

=  ( l .  a2 .)̂  = (tr [A1 A] ) ̂  .
13 13

Taking this into account, (9) yields,

dK(F; S) > - mrd J (tr[r2 .])*I =  F. 1313

and so we can use

r 2 \(10) ot = mrd / (tr[T .]) .
• • 1313

Now, let us turn our attention to trace subproblem (4) specialized to 

the dominant feedback problem, namely,

0
(11) minimize{tr(dK(F; S) + ai) : S E M(F)}, 

for fixed Z >_ 2 and ot of (10) .

This objective function is differentiable and an expression for the 

gradient will be derived in Theorem (12). The proof is based on the

works of Hutcheson in [9], where he develops an expression for
Z3trK(F) /3f , and of Allwright/Mao in [1], where 3trK(F) /3f was obtained. 

In that paper the trace approach to the norm-minimization problem was 

used. However the authors' objective there was to minimize || K(F) || , 

attempting to obtain an optimal output feedback.

(12) THEOREM. If F € F, then

9tr(dK(F; S) +ai)
3s

Z

= 2(B'K(F) + RFC)LC1

nxnwhere L = L' € 1R satisfies

(A +  BFC) L + L (A + BFC) ' = -£(dK(F; S) + O i l ) Z - l

PROOF. Let

ZJ(S) = tr(dK(F; S) + ai)
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It follows from definition (2.1) - (2.3) that

3J(S) = 33s. . 3s..i: iD
tr( l r (F)s + ai)

pq
pq pq

tr( £L(f )s +I\ .(F)6S . . +ai) -tr( £ r  (F) s +ai)
A_ lim

5s.. ~K) ID

pq pq ID ID
pq

pq pq

5s. .ID

4: I! 111 5s. .*>0ID

tr ( (dK (F;S) + 011) + T ..(F)6S..)  ̂- tr(dK(F;S) +ai)^ ___________________ ID_____ ID____________________
5s. .ID

However the first-order approximation to the numerator is

tr[(dK(F;S)+ai)£ 1T. . (F)5s. .]+tr[(dK(F;S)+ai)^ 2 T . .(F)6s. .(dK(F;S)+ai)]+..ID !D tD ID

• + tr [T . . (F) 5s. . (dK(F;S) + ai)5'-1]ID ID

Now since tr[A1BA-̂ ] = tr[A1+ B̂] for A ,B symmetric, the above expression
o_iis equal to £tr[(dK(F; S) + Oil) r..(F)5s..]. Hence,ID ID

(13) |J-( — ■ = £tr[ (dK(F; S) + ai) ̂ _1r . . (F) ] .
o s .. ilID

In order to find the expression for the gradient (which is easier to 

compute ), let L = L' be the solution to the Lyapunov equation

(14) (A + BFC) L + L (A + BFC) 1 =-&(dK(F;S) + O i l )  ^~1 ,

and recall the Lypunov equation for the first partial derivatives of K(F) 
(from (2.13)),

(15) (A + BFC) T  . . (F) + T . . (F) (A + BFC) = -C ' E ! . (B ' K (F) + RFC) - (B'K(F) +RFC) 'E CID !D ID ID

post-multiplying (14) by (F) and taking traces,

(16) 2tr[L(A + BFC) (F) 1 = -£tr [ (dK(F; S) + O i l )  (F) ]

p re-multiplying (15) by L and taking traces,
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(17) tr [L(A + BFC) T  . . (F) ] = -tr [LC ' E ! . (B ' K (F) + RFC) ]i j 13

Combining (16) and (17) gives

o_i£tr [ ( dK (F ; S) +ai) r . . (F) ] = 2tr [LC ' E ! . (B'K (F) + RFC) ]
13  13

which can be substituted in (13) , giving

~--S) = 2tr[LC'E: .(B'K(F) + RFC)] os . . 13ID
The gradient matrix of J(S) is obtained by writing the partial derivatives

as e ~ e , where {e^} and (e^} are the standard orthonormal basis
m 27 ir̂ i1for ]R and ]R , respectively, writing the matrices E__ as e eJ , and

using the trace property tr[ab'] = b'a. Hence

e1' dyi—  = 2tr [LC 'ePe1 (B'K(F) + RFC)]

= 2c1 (B'K(F) + RFC)LC1 eP

As this holds for all i,j,

9J(S)
8s = 2(B1K(F) + RFC)LC1

lThus, a computable expression for the gradient of tr(dK(F; S) + Cti) 

is available, and hence, an optimization algorithm for constrained 

optimization, that requires function and gradient evaluation, could be 

used for solving the sequence of subproblems (11). These would lead us 

to the solution of (8 ). It is worthwhile mentioning that Henry in his 

thesis [8 ] gives a detailed description a feasible direction algorithm 

for minimizing || K(F) ||, using the trace approach. It is possible to extend 

if for the case of the minimization of || dK(F,-S) + ai , .

6.2 SUBGRADIENT-BASED OPTIMIZATION OF Amax dK(F; S)

In order to extend methods of feasible directions for problems with 

locally Lipschitz functions, the extension of some concepts of calculus
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are necessary. In what follows we shall review some of these extended 

concepts, which form the basis of the theory of generalized gradients.

(18) DEFINITION. Consider a sequence of real numbers (x^}. We define

lim sup x = sup(x E ]R : x -+ x, for some subsequence (x } of {x. }} . jc ri- n. kk-*°° k k

(19) DEFINITION. Let X be a banach space and f : X -+ ]R locally Lipschitz 

(i.e. Lipshitz on any bounded subset of X), and let v E X. Then the 

generalized directional derivative of f at x, in the direction v, is 

given by

df^(x; v) .. f(x+h+Av) - f(x+h)lim sup -------- --------- -
h+0 X
A-K)+

Recall that the one-sided directional derivative of f at x is

V

, \ ,. f(x+Av) - f(xdf (x; v) = lim ------ 1-------
\-+0

s o , df^(x; v) can be seen as the supremum of the limits

lim df(x+h.; v) 
h .-*0 1l

for all sequences {h_̂ }.

(20) DEFINITION. The generalized gradient of f at x, denoted by 3f(x) , 

is the nonempty set of all £ in X* satisfying

df ̂ (x; v) >_ <v, £>

for all v in X. V

X* is the dual space of X, hence £ is a linear functional on X.

(21) DEFINITION. A function f is said to be regular at x if, for every 

v in X, df(x; v) exists and satisfies df(x; v) = df^(x; v) . V
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(22) FACT. Let f: X -*• 1R be locally Lipschitz. Then

(i) df^(x; •) is the support function of 3f (x). Hence, for all v € X, 

we have

d f ^  x; v) = m a x k v ,  £>: £ 6 3f(x) }

(ii) A necessary condition of optimality is given by 0 € 3(x) .

(iii) If f is continuously differentiable then it is regular and 

3f (x) = (Vf (x) }.

(iv) If f is convex then it is regular and 3f(x) coincides with the

subgradient in the sense of convex analysis. V

The characterization of the generalized gradient and directional 

derivative of a max function is given below:

(23) THEOREM. Let U be a compact subset of ]Rn and let g: JRp x U ]R 

have the following properties:

(i) g(x, u) is continuous in (x, u)

(ii) V^g(x, u) exists and is continuous in (x, u)

Then, if we let f(x) = max(g(x, u): u E u},

df(x; v) = df^(x; v) = max(<v, V^g(x, u)>: u E M(x)}

where

M(x) = (u £ U: g(x, u) = f(x)} 

is the set of maximizers of g(x, u) in U and

3f (x) = co(Vxg(x, u) : u E M(x)} V

This theorem is a simplified version of Theorem (2.1) of [5].
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Now we are ready to obtain the expression for dCJ(s; v) and 3o(s) :

(24) THEOREM. The generalized gradient of the function 0 ( s ) ^  AmaxdK(f; s) 

is

3cr(s) = arg max {<s, 03>: 03 E Ŝ (f)} 

and the directional derivative in the direction v is 

d<J(s; v) = max(<v, 03>: 03 E 3<J(s)}

PROOF. Identifying x with s, u with 03, u  with S2 ff) and g(x, u) with 

<s, 03> in Theorem (23), the function f(x) becomes

max{<s, 0J>; 03 E fi(f) } = Amax dK(f; s) = 0 ( s) .

Since Vsg<s, 03> = 03, the assumptions of the theorem hold. Note that the 

set of maximizers,

M(s) = arg max (<s, 03>: 03 E fi(f)},

is convex. Then, the theorem claims that

9(7(s) = M(s) .

Also, that

dO(s; v) = max{<v, 03>: 03 E M(s)}

(The last expression can be obtained directly using (22.i) and (22.iv)).

V

For the points at which O is differentiable, 3CJ(s) = (VC(s)}. We 

note that the expression for the gradient then can be determined directly, 

using the following fact:

(25) FACT. [4] Let A(x) be a differentiable matrix function of a 

parameter x, and suppose A (A ( x)) is a simple eigenvalue of A(x).
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Then, if v(A(x)) is the eigenvector associated with X(A(x)),

3A(a (x )) , %X1 3a (x )  ̂\— ^ ---- = v(A(x) ) —^ —  v(A(x))

So, when the maximum eigenvalue

-̂/ v V 3K(f)Q(s) = Amax £ s.. —

is simple,

a<7(s) _ , 3k (f)
3s. x 3f . X/i i

where x denotes the normalized eigenvector corresponding to CT (s) . 

gradient is therefore

The

Vcr(s) =

, 3K(f) x g x
1

, 3k (f)
x 3f xP

Now, since x € Bn, that vector is an element of £2(f) , by definition of 

this set, i.e. VO(s) = W(x) . However we have seen earlier (see (4.4)) 

that oo(x) is the maximizer of <s; •> on fi(f) . Hence,

V o  {s)  = arg max (<s, w> : oo £ £2 (F) } .

We conclude from this that a simple eigenvalue 0 ( s) implies differ

entiability of 0 at s, and if CJ is nondifferentiable at

s, then 0(s) is a multiple eigenvalue. The converse is not always true.

A descent direction for O at s will be a normalized vector v along 

which dO(s; v) is negative. It is not true, as might be thought, that 

any vector with opposite direction to an element of the generalized 

gradient is a descent direction, but only some elements. The steepest 

descent direction is the one along which dO(s; v) is most negative, and 

is in the opposite direction to the minimal-norm element of the generalized
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gradient, as shown next.

(26) THEOREM. The steepest descent direction for O at a point s is the

vector v = w|| , for U) the solution of

(27) min(j| U)|j : 0) £ M(s) } 

where

M(s) = arg max(<s, w>: w £ £2(f) } / 
assuming 0 £ £3(f).
PROOF. The steepest descent direction is found by minimizing dCJ(s; v)

pwhen v ranges over the unit sphere in ]R . Then, it is the solution of 

min(max(<v, w>: w £ M(s)}: v £ S}

Recall that the search direction problem for the dominant feedback problem 

(minimize cr(s) on M(f)) assumes that fi(f) . Therefore, since 

M(s) ci Q(f), 0 £ M(s). Consequently, the theor^nfollows from the results 

of Section 4.1. V

Finally we shall turn to the problem of the implementation of problem (27). 

As we have a norm minimization problem on a convex set, it is natural to 

think of applying Y.C. Ho's algorithm. Recall that, for this to be possible, 

a contact point of a supporting hyperplane to M(s) normal to be given 

vector v must be evaluated, i.e. it must be possible to compute a vector 

in

arg max{<v, : w £ M(s)}.

That can be done, as explained next.

(28) PROPOSITION. arg max{<v, U)(x)>: x is a normalized eigenvector 

associated with Amax dK(f; s) } c arg max(<v, co> : w £ m (s) }.

PROOF. Let
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P(f) = {(4(x) € ]R̂  : W_̂ (x) = X 1 — ■ X, X € Bn}.
i

It can be proved (using linearity of the function <s, •>) that

colarg max{<s, oo> : (0 £ p (f) }}

= arg max(<s, co> : co £ co p (f) }

^  arg max(<s, (0> : co £ Q (f) }

= M(s)

However we have seen in (4.4) that 

arg max(<s, co>: (0 £ p(f)}

= {co (x): x is a normalized eigenvector associated with Xmax dK(f; s)} 

therefore we conclude that

(29) M(s) = co{co(x) : x is a normalized eigenvector associated with 

A max dK(f; s) }.

p ^Now, consider any vector v 6 1R and consider an element co of

arg max{<v, co>: co £ M(s) }. Then, since it belongs to M(s) , it follows
 ̂ i ifrom (29) that co is a convex combination of points co(x ) , for x normalized

eigenvectors associated with Amax dK(f; s), i.e.

I
CO = y a.03(x1); a. f (0, 1); 7 a. = 1 . . l i . 1i=l l
^ iSince co maximizes <v, •> on M(s) , and for i = 1 ,..,£, co(x ) 6 M(s),

we have that

(30) <v, co> = £ a.<v, co(x1)> _> <v, co(x"*)>
i ~~

for j = 1,...,&, i.e.

7 a.<v, co(x1)> > (1 - a.)<v, co(x^)>.. i =  3
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Suppose that for some j, say j = 1, the inequality holds strictly.

Then

(31) £ a.<v, w(x1)> > (1 - a1) <v, co(x*)>
i*l 1

which implies that

1 ala,<v, W(x )> < ---- - 7 a.<v, w(x1)>.1 1 “a < • Zi , i1 i?l

Therefore, using the above,

i al i<v, w> = 7 a . <v, co (x1) > < ----  y a.<v,co(x1)> + 7 a.<v, co(x1)>
i 1 1'au^i 1 i^i 1

= T ^ -  I  a  < v ,  u ( x 1 )>
1 1 i^l

a . a .
Note however that £ -— —  = 1 and therefore £ -— —  cofx1) belongs to 

i^l 1 ij*l 1_al
M(s). Hence, the above inequality is a contradiction and so we have 

proved that (31) is false. It follows from (30) then that, for all

j /■

<v, oo> = <v, CO (x^ ) > ,

and so all co(x“*) , j = 1,...,£, are maximizers of <v, •> on M(s) . Then

the proposition is proved. V
#

Thus, m  order to find a maximizer for <v,*> over M(s), the proposition 

suggests to seek it amongst the points of the form co(x), for x a normalized 

eigenvector associated with Amax dK(f; s). Let us write such an eigenvector 
as

x = La, || a|| = 1 ,

where L projects a normalized a £ iRn onto the subspace spanned by the 

eigenvectors associated with Amax dK(f; s) . Then a co(x) can be

represented in terms of a as
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(32) a(a) 011L 1H L01 1

a'L'H La p J

A maximizer for <v, •> over the set of such points w(a), i.e., a point 

in

(33) arg max(<v, u)(a)>; || a(| = l}

can be obtained as follows: write (33) as

arg max {a-* ( £ v.L'H.L)a : ||a[| = l}.
i

A maximizer for that is a normalized eigenvector associated with

Amax £ v.L'H.L. So, choose such an eigenvector a and use formula (32) 
i /X /\ /Nin order to evaluate w, i.e. oo = 03(a) . This completes the proof that the 

minimum-norm point of M(s), and therefore the steepest descent direction 

of 0 (s) at s, can be evaluated.

The steepest descent direction could be used to form a feasible 

direction algorithm for optimising O . Unfortunately the algorithm does not 

necessarily converge to an optimal point, as mentioned earlier. Never

theless it could be the basis for a convergent algorithm: an algorithm that 

defines the search direction using £-smeared generalized gradients, as 

defined below, and uses an £-reduction scheme m  order to drive £ to 

zero as a stationary point is approached.

(33) DEFINITION. For any £ > 0, the £-smeared generalized gradient 

of a Lipschitz function f(x) is defined by

9 f(x) 4  co{ U 3f(x')}
x'€B(x,£)

where B(x, £) is the closed ball centered in x and with radius £. V

The search direction is defined as the vector v = —oj/ [| wjj , where
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Anow W solves

(34) min{|| td|| : 0) £ CF(s) }

instead of Problem (27) . It is know that when functions are "semismooth" 

it is possible to get a good approximation to the minimum norm point 

of the £-smeared generalized gradient in a finite number of operations 

(see [12]) . It is also a fact that a convex function is semismooth 

(see [10]). Hence, it seems possible to obtain a good approximation to 

the solution of (34).

In this section we proposed a non-convergent steepest direction 

algorithm for optimizing the non-differentiable function cr, and we 

pointed out that £-smeared generalized gradients can be used in order 

to develop a convergent algorithm. This is a topic which requires more 

work. The paper [11] is referred to as a possible starting point. There 

an £-smeared descent direction algorithm, using an Armijo-type line

search, was developed for a particular example.
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APPENDIX

PROOF OF THEOREM (2) [2]. Since G(x) is symmetric, it can be written
as G(x) = V A V , where A = diagiA^(x) . . .A (x) } and A_̂ (x) are the

£ £ _i £(real) eigenvalues of G(x) . Hence G(x) = V A v and tr[G(x) ] =

Z X .(x)^.

Let A(x) = [A ̂ (x) . . . (x) ] 1 . Then for even inte gers £ >_ 0

(35) tr[G(x)^] = ZA^tx)^ = Z|A^(x) |̂  = ( || A (x) ||̂ ) ^

This is also true for all integers > 0 if G(x) >_ 0, Vx £ C, since

then A.(x) > 0, Vx € C. From now on it will be assumed that even i =
integers (> 0) are considered for general J and that all integers (> 0) 

are allowed if G(x) is positive semi-definite on C. From (3) and (5)

(36) || A(x^) ||̂  ^  (1 + 6) inf{|| A(x) ||̂  : x £ c}.

For £ > 0, consider x£ € C chosen so

(37) || A(x£> < inf{|| A (x) || ̂  : x 6 C } + e/4

Now

(38) || A(x) || ̂  = max |A (x) | = || G(x) ||
i 1

Subsequently

(39) A 4  infill G(x) || : x € c} = inf i | j A(x) : x € c}.

Hence, from (37) and (39)

(40) II X(xe) II „  < X + e/4

By Jensen's inequality
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ll*(**)|l» < IU(x1)||J

^ (1 + 0 > inf { 11 A(x) |[p : x 6 c} (from (36))

< (1 + 9) || X(xe) || J

SO

(41) II X(xl) IL < (1 + e)1/£ II X(x£) ||£

Clearly

(42) || A(x^) |L £ inf { || A(x) |L : x G c} = A :> 0 

and by Jensen's inequality, as Z ™

II *(x£) II ̂  ** II X(*£) |L

so that there exists £ such that, for all Z > Z  ,

II *<x£) || & - || A(xe) IL < e/4.

Consequently

II X(x£) ||4 < || A(xe) IL + e/4
(43) < A + e/2 , V£ > Z £ (from (40))

Hence

0 £ || A(xS |L - A (from (42))

< ( 1 + 9) 1/1 || A(x£) ||£ - ^ (from (41) )

< (1 + 0) 1 / 1 (A + e/2) - A, V£ > Z e (from (43))

i.e.

(44) 0 £  || A ( x S  | L  “ A £  ((1 + Q)l / l  - 1 ) A + (1 + 6) 1/1 e/2 , VZ > *£ .
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1 /&  « Since (1+9) + 1 as il + can be selected so that

and so that the following hold.

Whenever £• >

(a) (1 + 0) 1 / 1  < 4/3.

(b) ( (1 + 9) 1/£ - 1) X < £/3 

Then, from (44)

0 £ || X ( x Z ) - X  < £, V£ > %'z

This can be done for every real £ > 0; so, as Z 00,

A(x ) II ** A.

In view of (38) and (39) , as & 00

G(x^) II ^ m f  { || G(x) :x e C>. v
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7. CONCLUSIONS

This work was based on Allwright's approach for optimal uncon

strained output feedback, which used a feasible direction algorithm for 

minimizing the matricial function K(F) on the space of stabilizing feed

backs. He has proposed two versions, given in Algorithm 2.31 and 2.32.

An iteration considers a search direction emerging from F, that is the 

steepest descent direction of the cost K, in the sense that it makes the 

first order term of the Taylor expansion of K(F + S) - K(F) to be as 

negative as possible. The matrix dK(F, S) is most negative, in 

Allwright's sense, when its largest eigenvalue is most negative. Along 

the search direction, for one version, the line search is done that makes 

K(F + As) - K(F) the most negative in the above sense. The other version

minimizes Levine-Athans' objective function, tr(K(F + As) - K(F))Xq ,
/%subject to K(F + As) - K(F) <_ 0. Let S be a normalized vector that

/N Aminimizes dK(F; S). If dK(F; S) < 0 then S is the steepest descent 

direction, and a line search is performed along it. Otherwise
/v(i.e. dK(F; S) positive, nonnegative ‘definite or indefinite - implying 

that Amax dK(F; S) _> 0), termination is set for algorithm 2.31. When 

Amax dK(F; b > > 0, F is locally dominant, but for the case Amax dK(F;b) =0 

(F stationary), depending on the other terms of the expansion, K may 

still be reduced along the direction S. This possibility is investigated 

in Algorithm 2.32. If reduction is not possible, it is because either 

K increases or else there may not exist order relationship between feed-
A Abacks along S, and F. The three cases are a consequence of dK(F; S) be

ingnegative definite, positive definite and indefinite, respectively.

In Chapter 2 those algorithms have been described and analysed. 

Implementations for the line searches have been devised, based on

Armijo's method. The slope of the Armijo line is defined as a fraction
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of the tangent at the origin, of a quadratic approximation to the

unidimensional objective function. For the determination of the quadratic,

the main tools were the Lyapunov equations involving the Frechet -

differentials of K. A variable initial step size was used for Algorithm

2.32 due to the fact that at each iteration the line search is constrained.

For those implementations proofs are given for convergence of a sequence

{f ^}, such that Amax dK(F'1/ Ŝ ) < 0, which meant that AmaxdK(F^ ;S^) 0

and K(F^) K* 0, as j •+ 00, and not that the sequence {F"̂ } converges

itself. As a consequence, an accumulation point of the sequence, if it

exists, is first-order locally dominant. It is shown that convergence 
 ̂ialso occurs when S is not the steepest descent direction, but is such 

that it makes AmaxdK(FJ; SJ) a fraction of its minimal value.For evaluating 

the steepest descent direction at F^, i.e. the normalised vector that 

minimizes dK(F^; S), Allwright has proposed a partial solution, that 

suits Algorithm 2.31, as follows. He has shown that minimizing 

Amax dK(F^; S) on S is equivalent to finding the minimum norm point of 

3f2(F^). Then he presents a practical method for computing the minimum 

norm point of a convex set. Since when 0 2 ^(F^) the minimum norm point 

of both fi(F̂ ) and 3fi(F̂ ) coincides, it is possible to find the minimum
*1 O - inorm point of 3fi(FJ) , when 0 fi(FJ) , using that method. However it is 

only possible to evaluate the minimizer of Amax dK(F^; S) in terms of 

the minimum norm point in a simple way, when 0 £ £2(F^). It is shown 

that 0 £ ft(F̂ ) corresponds to the case Amax dK(F^; Ŝ ) <0. The condition 

0 £ fi(F̂ ) obviously can be detected if the solution to the minimum norm 

problem is nonzero. Hence, for Algorithm 2.31, the steepest descent 

direction can always be evaluated.

In the rest of the thesis constraints have been considered. The

algorithms for the case of constrained output feedback have been devised.
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Three cases have been studied.

The first, studied in Chapter 3, considers the feasible set as a 

compact convex set, with nonempty interior, defined by a finite number 

of continuous functions. The procedure is based on Algorithm 2.32, 

of feasible direction type. The search direction subproblem becomes that 

of minimizing Amax dK(F; S) over M(F) , which is a displacement of the 

feasible set. Convergence has been proved using the theory of closedness 

of algorithms. The meaning of convergence is that of above. Then, on 

account of the compactness of M(F) , the subsequences of {F"1} converge 

to first-order locally dominant feedbacks in M(F). Convergence is also 

proved for the algorithm using the search direction S'1 that makes 

Amax dK(F; S) a fraction of its minimum value. The implementation of the 

line search, when dK(F^; S^) < 0 is based on a quadratic approximation of

tr[(K(F-^) - KCF-1 + As^) ) X ] along the line, without the help of an 

Armijo line. Although probably less accurate, this led to the con

vergence proof. The search direction subproblem is dealt with in 

Chapter 6. Two procedures have been suggested. The first, due to

Allwright, requires solving a sequence of problems of the type:
iminimize tr(dK(F; S) + ^1) , where S ranges over M(F). The limit of

the sequence of solutions, when i  00, is the solution to the search
»

direction subproblem. A second method is outlined and its development 

is suggested for future work. It has been described a procedure for 

determining the steepest descent direction at S, of the nondifferentiable 

function Amax dK(F; •), and shown that it can be evaluated. The suggestion 

is that a feasible direction algorithm using C-smeared subgradients be 

developed.

The second constrained feedback problem considers the feasible set 

as a linear variety of the space of feedbacks (Chapter 4). A descent
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direction algorithm is suggested for which the steepest descent direction 

at is the vector that minimizes Amax dK(F*̂ ; S) over L , a displacement 

of the linear variety. The methodology proposed is based on projecting 

the problem onto L . This consists of projecting the set £2(F*̂ ) onto L 

and then, since on L the problem can be viewed as unconstrained, applying 

Allwright's minimum norm procedure for determining the normali ?0,q 

minimizer of Amax dK(F^; S), using the projected set. As in the 

unconstrained situation, convergence occurs.

The third problem, studied in Chapter 5, is a particular case of 

the first. The feasible set is defined by linear inequalities generated 

when the entries of the feedback matrix are to be kept within certain 

intervals. An implementable feasible direction algorithm is developed.

The search direction is defined as the steepest feasible direction, 

i.e., the vector that minimizes Amax dK(F^; S) on the cone generated by 

M(F). The line search is that of Algorithm 2.32. Since the search 

direction as it has been defined does not permit that the close active 

constraints be anticipated, there is no guarantee of convergence. The 

procedure for obtaining the search direction is as follows. When F^ is 

an interior point of the feasible set, it is the steepest descent 

direction, and thus, Ho's algorithm should be used. For F^ on the boundary, 

a geometric-based method has been developed, following the idea of 

Allwright's minimum norm problem equivalence. First we propose an 

algorithm for finding the minimum distance between a convex set and an 

orthant. This problem has been formulated as a norm minimization problem 

and it is shown that Allwright's algorithm for convex optimization for 

twice-differentiable functions can be used to minimize it. Then it 

is proved that, if C is a nonzero solution to the minimum distance 

problem between fi(F) and an orthant, then S = C/|| c|| is the steepest 
descent direction at F on the orthant. Since the cone generated by
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M(F) is a union of orthants, the most negative among such vectors S, 

for all orthants, is the steepest feasible direction. If for all 

orthants C = 0, F is first-order locally dominant. Although there exists 

a relationship between the solutions to the minimum distance problem 

and the search direction problem, there does not exist a relationship 

between their e-approximations, since the two problems optimize 

distinct functions. Therefore the algorithm only terminates after 

ensuring that an e-approximation to the steepest feasible direction 

has been found.

Finally, if one considers the third problem accepting also 

equality constraints, a combination of the second and third methods 

for obtaining the search direction is possible. Note that the 

feasible set could then be viewed as defined by linear inequalities 

only, on the linear variety generated by the equality constraints. 

Therefore the method would involve projecting f2(F) onto L , and 

determining the minimum distance between the projected set and the 

orthants of L generated by M(F).


