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To Abbas

a lovely boy of six 
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though not unquestioningly 

in a rational universe
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(time soothes all sorrows) you will 
be content that you have known me. "
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A B S T R A C T

A unifying framework is proposed for the formulation 
and solution of electromagnetic field problems, with 
emphasis on numerical implementation. It is based on 
a universally defined error that corresponds to the 
constitutive relationship between fields in electromagnetic 
media : the error is positive in general, and zero if,
and only if, the fields satisfy the relationship exactly. 
Minimisation of the error provides a universal variational 
principle which generates complementary and dual solution 
formulations. The approach leads to a descriptive 
structural framework that divides fields, potentials, and 
governing equations between the two sides of the 
constitutive relationship.

For well-posed static problems, the constitutive error 
splits into complementary energy bounds. Complementary and 
dual formulations are derived for a range of problem 
specifications. Contributions are made to three areas of 
interest : inaccuracies in magnetostatic scalar potential
formulations, limitations of mixed formulation, and 
solvability of vector potential formulations.

Error-based derivations are presented for standard 
finite difference, finite element, and boundary element 
equations. The constitutive error is shown to be 
a comprehensive measure of numerical errors in 
consistently specified formulations.
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Two-dimensional finite element computation results 
are presented for linear and non-linear static problems, 
highlighting the comparative computational behaviour of 
complementary formulations. Error-guided mesh refinement 
is demonstrated. Estimates of non-linear lumped circuit 
parameters are shown to be non-bounding.

The approach is extended to the time-varying case. 
The constitutive error does not, in general, split into 
complementary functionals, but solution formulations can 
always be extracted. Complementary formulations are 
derived for the steady-state and transient eddy-current 
problems, as well as the high frequency problem.
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N O T A T I O N

Symbols

Symbols will have the meanings listed below, unless defined 
differently in the text. Where more than one meaning are 
listed, the appropriate one may be inferred from the 
context. SI units are used throughout.

A
B
Br
C
C
D
E
G
H
He
I
J

K

L

M
Q
R

S
T
V
W

vector potential: (1) abstract, (2) magnetic; 
flux density: (1) abstract, (2) magnetic; 
residual field: (1) abstract, (2) magnetic;
capacitance;
pre-defined component of flux density B; 
electric flux density; 
electric field intensity;
pre-defined component of field intensity H; 
field intensity: (1) abstract, (2) magnetic; 
coercive force: (1) abstract, (2) magnetic;
(1) identity operator, (2) electric current;
(1) abstract vector source density, (2) electric 
current density;
(1) abstract surface vector source density,
(2) electric surface current density;
(1 ) length of curve in space, (2) Lagrangian,
(3) inductance; 
magnetomotive force; 
electric charge;
(1) three-dimensional region in space, (2) electric 
resistance, (3) magnetic reluctance; 
surface in space;
electric current - describing vector potential;
(1 ) abstract motive force, (2) voltage;
(1 ) energy, (2) power .
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(1 ) unit vector in direction i, ( 2 ) n x A; 
b n • B;
d n • D;
e  n  x  e ;

h n x H ;
j imaginary unit /^T;
H  curve in space;
n unit normal vector to a surface, outward if

well-defined; otherwise see conventions below; 
p time-differential operator 3/9t;_ -Jp time-integral operator /( )dt, from tQ to t; 
r position vector;
t time;
x Cartesian coordinate;
y Cartesian coordinate;
z Cartesian coordinate.

T functional in both system variables;
Z functional, eqns. 2.17;
0 functional in one-system variables: (1) H-system, 

(2) E-system (static); (3) H-system (time-varying); 
A global constitutive error;
H functional in one-system variables: (1)B-system,

(2) D-system, (3) J-system (static);
(4) E-system (time-varying);

$ flux: (1) abstract, (2) magnetic;
X functional, eqns. 2.17;
¥ functional, eqns. 2.17;
ft scalar potential: (1) abstract, (2) magnetic.

e (1) electric permittivity, (2) general error;
 ̂ product, see eqn. 2.11;
A constitutive error density;
y (1 ) abstract constitutive operator,

(2) magnetic permeability; 
v (1 ) abstract constitutive operator,

(2) magnetic reluctivity;
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p (1) abstract scalar source density, (2) electric
charge density, (3) electric resistivity; 

a (1) abstract surface scalar source density, (2) surface 
charge density, (3) electric conductivity;

<t> electric scalar potential;
X see eqn. 2.8a;
ip see eqn. 2.8b;
0) angular frequency.

Conventions

U, U vector and its magnitude;
U specified value of U;
6 U = u 2 - Ui ; subscripts refer to two estimates of U;
A u = U2 - U-| 7 subscripts refer to regions on two

sides of a surface;
n AU = n_i (U2 - U-| ) = n_2 (Ui - U2 ) 7 subscripts refer to

regions on two sides of a surface; n^ is the unit 
normal to the surface, outward from region i;

pu = 3/3t (U) ;
DICL ft= U dt;

to
Re {U} = real part of U t
Im {U} = imaginary part of U ;

A>3V = u v ;

A IG l< V = U • V ;

(X
A>3V = « <u , v> dR = u v dR ;

<U , V>_ _ <U , V> dR = U • V dR— ' — R R ~ ~ Jk ~  ~

[II , v]s = . <u , v> dS =
s J u v dS ; S

[U , v ] c
f ■<U , V> dS = U • V dSL — r — J g .S “ “ JS ~ ~

del-operator (nabla) defined on a surface, in 
terms of surface coordinates.
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C H A P T E R  O N E

Introduction

1.1 Preview

This thesis is concerned with the formulation and 
solution of electromagnetic field problems. The emphasis 
is on numerical application, a topic marked by numerous 
developments since digital computers became widely available 
some twenty-five years ago.

The thesis identifies an error that corresponds to the 
constitutive relationship, and shows that many existing 
approaches are simply alternative ways of minimising it.
The error-based approach thus provides a unifying frame
work that offers perspective and insight. The error itself 
can provide a common basis for comparison. The theory is 
particularly suited to numerical analysis, the error being 
identically zero in exact analysis.

This introductory chapter sets the background, and 
outlines the thesis. Sec. 1.2 describes the steps involved 
in computing the fields for a given problem. Sec. 1.3 is 
a brief survey of existing implementations of these steps. 
Sec. 1.4 reviews previous work on complementary variational 
principles, a major contribution to the establishment of a 
unifying framework. Finally, sec. 1.5 outlines the work 
presented in the thesis.

1.2 Problem specification and solution formulation

The process of solving an electromagnetic field problem 
is one of constraining the field variables to satisfy the 
given problem specifications. If the latter are well-posed,
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the variables should acquire, everywhere in the region of 
the problem, the values corresponding to the unique field 
distributions.

A problem is uniquely specified by

(i) the constitutive relationship( s ) ;
(ii) Maxwell's equations;
(iii) continuity conditions; and
(iv) boundary conditions.

The geometry and topology of the region are implicit in 
these position-dependent specifications.

As described, the process is analytic, and solution is 
possible for only a limited range of problem specifications. 
Numerical methods can handle a wider range by further 
constraining the field variables to mathematically tractable 
forms. In effect, the solution fields are numerically over- 
specified, and can only approximate the true fields.

The main steps of the solution process are outlined in 
the flow chart of fig. 1.1. It would be difficult to en
visage a treatment that is not described by such a general 
procedure.

The equations formulated in step 2 may be partial 
differential equations, integral equations, or combinations. 
One might include variational energy principles, although 
these are often regarded as means of solving partial 
differential equations. Integral equations are also 
commonly presented as means of solving the corresponding 
partial differential equations. Such emphasis on the 
differential formulation is a carry-over from closed-form 
analysis; it does not necessarily provide the most suitable 
approach to numerical analysis.
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Fig, 1.1 General solution procedure.

1.3 Existing techniques

A cursory look through the literature reveals the 
variety of ways in which the general procedure of fig. 1.1 
can be implemented. Choice is available, and has been 
exercised, at each step.

In general, the constitutive relationship is imposed 
explicitly in step 1. The main choice then is which of
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Maxwell's equations to enforce explicitly, and which to 
base the solution formulation on. This may be viewed as 
a choice between potentials1,1,2, or, more fundamentally, 
between complementary formulations1,3'4. Mixed formulations 
have been developed recently1*5. Variants include recasting 
Maxwell's field equations in network forms1,6,7 .

The solution formulation of step 2 may be differen
tial 1,8,9 , integral1,10,11 , or a combination of the two1,12,13. 
Alternatively, the variational principle, if one exists, 
may be regarded as the solution formulation1,3,14.

Numerical methods, steps 3 and 4, are characterised 
mainly by the analytic formulation from which they 
originate, the process by which they are derived, and the 
numerical constraints they employ. Choice, once again, 
abounds. A short list of the more popular techniques would 
include the finite difference, finite element, and boundary 
integral methods1,3,15. The classification is not exhaustive, 
nor, indeed, rigid; Zienkiewicz1,1S, for example, extends 
the definition of the finite element method to encompass 
the other two.

The above brief survey can only hint at the extensive 
range of choice available. While abundance of choice is 
always desirable, it needs to be rationalised, preferably 
through some unifying theory or framework that allows 
systematic assessment of alternatives. In the absence of 
such a framework, the task of making a choice is more of 
an art than a science, possibly influenced by personal 
circumstance and bias. The magnitude of the difficulty 
of the task may be appreciated by noting the protracted, 
and apparently unresolved, debate on just one of its 
aspects, namely the relative merits of first-order finite 
difference and finite element implementations of two- 
dimensional magnetostatic vector potential formula
tions 1,16 “ 20.
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1.4 The energy approach

Energy is a physical quantity associated with the 
electromagnetic system in its entirety. It is stationary, 
possibly extremal, at the unique solution to the problem.
The variational principle thus defined furnishes the 
solution formulation required in step 2 of the general pro
cedure, fig. 1.1. The variation is constrained by one of 
Maxwell's equations, and enforces the other. Significantly, 
the energy approach shifts emphasis away from the governing 
partial differential equation.

Energy expressions are defined in pairs, giving rise 
to complementary variational principles1*3'114'21'22. Both prin
ciples are extremal under static conditions, one being 
a minimum, the other a maximum. The corresponding energy 
estimates thus constitute upper and lower bounds on the 
true system energy. Recognition of the interrelationship 
between complementary formulations is the essence of the 
contribution of the energy approach to a unifying frame
work. It leads to a concise mathematical structure that 
inter-links the various fields and potentials1*14.

The main limitation of the approach has been its 
inability to generate well-defined functionals for certain 
problems, particularly under time-varying conditions.
V7hile it can often be extended to handle such cases1*3'114, 
the process robs it of much of its attractive simplicity.
The weighted residuals approach is generally considered 
more convenient because it provides a straightforward pro
cedure for deriving workable solution formulations1’15.

In the context of computational electromagnetics over 
the past fifteen years, the development of complementary 
energy principles has proceeded mainly by adapting parallel 
theory from other areas of mathematical physics.

Arthurs1*21 used the theory of linear operators and 
functional analysis to generalise the principles of 
analytical mechanics into an abstract theory of complemen
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tary variational principles. He applied the theory to de
termine upper and lower bounds in a number of problems of 
mathematical physics, including electric capacitance and 
resistance.

Cambrell1*22 used a similar approach to derive bounds 
on inductance and capacitance. He established a mathemati
cal structure for the variables involved, and applied the 
complementary principles to numerical solution of electro
magnetic field problems. He also considered the high 
frequency problem.

Fraser1*14 and Penman and Fraser1’23 used functional ana
lysis to generalise the Hu-Washizu1,24 functionals of elas
ticity into abstract expressions of complementary varia
tional principles, and to describe the mathematical struc
ture of the systems involved formally yet concisely. 
Applications of the general theory, which is restricted to 
static electromagnetics, emphasised numerical implementation 
by the finite element method1’14'25. Solution formulations 
were extended to the harmonic eddy-current problem1’14, and 
the structural framework to the general time-varying

Each of the above derivations was shown to be equi
valent to the hypercircle1’26, an abstract treatment that is 
conducive to intuitive geometrical interpretation.

In contrast to the abstract formalism of the above 
treatments, Hammond and co-workers1’3'27 - 29 emphasised the 
underlying physical processes. The theory of analytical 
mechanics was reinterpreted in electromagnetic terms to 
derive complementary formulations from the principle of 
virtual work. Physically based intuition was also used to 
devise simple ways of calculating highly accurate estimates 
of lumped circuit parameters; the finite element method was 
applied for the same purpose1*30. Hammond1’3 and Hammond and 
Penman1*31 treated time-varying problems by viewing complex 
conjugates of fields as belonging to an adjoint system 
having a negative time-sequence.
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Thatcher1*32 defined a positive error in terms of the 
difference between the complementary numerical estimates of 
the field distributions, and used it to assess mesh 
adequacy in an electrostatic finite element solution.
Cendes et al.1*33 used similar finite element errors, in 
conjunction with Delaunay triangulation, to develop a self- 
adaptive mesh refinement algorithm.

1.5 The proposed error-based approach

This thesis presents an alternative, error-based 
derivation of solution formulations. Chapter 2 gives a 
universal definition of the error in terms of the fields, 
and shows that it is non-negative, being zero if, and only 
if, the fields satisfy the constitutive relationship. In 
effect, error minimisation imposes the constitutive 
relationship on the fields. The universal variational 
principle thus defined furnishes the solution formulation 
required in step 2 of the general procedure of fig. 1.1.
In contrast to existing approaches, the fields are 
constrained to satisfy both of Maxwell's equations 
explicitly during the variation. Details of this implemen
tation of the general procedure are described in Chapter 3 
for the static case. It is shown that, for a well-posed 
problem, the constitutive error separates into complementary 
functionals, or energies, thus providing an alternative 
derivation of complementary variational principles and 
energy bounds. Chapter 4 compares with existing deri
vations, and shows that the error is, in fact, the 
difference between established energy bounds. Extracting 
the bounds from the error, rather than the other way 
around, results in a degree of generalisation since the 
error has a standard, universal definition.

As a direct result of not enforcing the constitutive 
relationship explicitly, the approach leads to a structural 
framework that places each field on one side or the other 
of the relationship. It follows that the remaining physical 
specifications of sec. 1.2, namely Maxwell's equations,
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continuity conditions, and boundary conditions, are 
similarly polarised. Potentials are viewed as solution 
tools that enforce Maxwell's equations on their 
corresponding fields.

Chapter 5 introduces numerical constraints, step 3 in 
fig. 1.1, and presents error-based derivations of standard 
finite difference, finite element, and boundary integral 
element equations, step 4. The constitutive error is a 
comprehensive measure of the numerical error, provided the 
trial fields satisfy the remaining physical specifications 
exactly.

Chapter 6 derives complementary formulations for a 
range of static problems. Linear two-dimensional finite 
element results are presented, highlighting the comparative 
computational behaviour of the complementary solutions. 
Error-guided mesh refinement is demonstrated; the 
constitutive error of the thesis is a generalisation of the 
error defined in references 1.32 and 1.33. Non-linear 
magnetostatic problems are solved in Chapter 7, where it is 
shown that energy bounds yield non-bounding estimates of 
non-linear lumped circuit parameters.

Chapters 8, 9, and 10 apply the proposed approach to 
three areas of some interest in computational electro
magnetics : inaccuracies in magnetostatic scalar potential
formulations, limitations of mixed formulation, and 
solvability of vector potential formulations. The approach 
is found to offer added perspective and insight, often 
suggesting improvements; it also provides a practical means 
for assessing alternatives.

Extension of the error-based approach to the time- 
varying case, detailed in Chapter 11, is straightforward 
because the error, unlike energy, has a standard, universal 
definition. It is shown that although the error is not 
guaranteed to separate as in the static case, complementary 
and dual solution formulations can always be extracted.
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The presentation highlights the error-based numerical 
significance of various formulations, and compares them to 
existing treatments. Complementary formulations are 
derived for the eddy-current problem under steady and 
transient conditions, and for the high frequency problem.

Conclusions are summarised in Chapter 12, the 
principal conclusion being that minimisation of the 
constitutive error is, effectively, what many established 
formulations do, or attempt to do. This is the essence of 
the contribution of the proposed approach to a unifying 
framework, the error being universally defined and 
computable. The chapter goes on to suggest ways by which 
such an error-based framework can be put to good use in 
computational electromagnetics.
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C H A P T E R  T W O  

The Constitutive Relationship

2.1 Preview

This chapter examines the constitutive relationship 
between fields in material media with the purpose of casting 
it in error form. Provided the relationship possesses two 
properties, given in sec. 2.2, such a formulation is possible, 
even for non-linear and anisotropic media. These properties 
are not unduly restrictive; most materials of practical 
interest can be accommodated. The error formulation is 
constructed in sec. 2.3 where its relevant properties are 
also investigated. A simple graphical interpretation of 
the error is presented in sec. 2.4.

2.2 Definitions

We shall be concerned with two vector fields, H and B, 
in a region R whose relevant material properties can be 
represented, at any given point, by a constitutive 
relationship of the general form

B = y (H )H + Br (2.1a)
or

H = v(B)B + Hc (2.1b)

where B and H are known constants. The constitutive —r —c
operators y(H) and v(B) are, in the general case, non-linear 
and anisotropic tensors (or dyads).
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This work is restricted to constitutive relationships 
that possess the following two properties :

1. If and B.j are related to each other by eqns. 2.1, 
and so are H2 and , then

<H2-Hi / B2-Bi> £ 0 (2.2a)
with

<B2“li'i / B2~B1 > = 0 <=> H2 = H1 and B2 = B1
(2.2b)

2. The derivatives 3(y(H)H)/3H and 3(v(B)B)/3B are 
symmetric; i.e.

3(u(H)H)i/3Hj = 3(u(H)H)j/3Hi (2.3a)
and

3(v(B)B)i/3Bj = 3(v(B)B)j/3B± (2.3b)

where the subscripts i and j refer to the space 
components of the respective vectors.

Formally, property 1 states that the constitutive 
operators are strictly monotone2*1. It excludes negative 
slopes, and implies single-valuedness, a one-to-one corres
pondence between H and B. This, in turn, implies that 
y(H)H+Br and v(B)B+Hc are continuous functions of H and B 
respectively, and that over no range of H (or B) is 
y(H)H+Br (or v(B)B+Hc ) constant.

Appendix A shows that one implication of property 2 
is that U(H)H+Br ana v(B)B+Hc are gradients of well-defined, 
computable scalars x(H) anĉ  *MB) w.r.t. the components of 
H and B respectively :

y(H)H + = l a^ 3x(H)/3Hi = gradR x (2.4a)
i

and

v(B)B + H = V a. 3\Jj(B)/3B. = grad_.C T  1 1 ti1
(2.4b)
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where i ranges over the three component directions, and a^ 
is a unit vector in the direction of the ith component; the 
subscripts H and B indicate that the partial derivatives, in 
the gradients, are w.r.t. the components of H and B respec
tively. Formally, eqns. 2.4 state that the constitutive 
operators are potential operators, with x(B) and ^(B) as 
their potentials2,1 . Appendix A further shows that

X(H)

and

H
X<Ho> + <y(h)h + B

J ^H—o
dh> (2.5a)

B
iMB) = ^(Bq ) + <v(b)b + Hc , db> (2.5b)

B—o
where Hq and Bq are arbitrary reference field values, and 
X(Hq ) and \Jj(Bq ) are arbitrary constants. Moreover, Appen
dix B shows that, by virtue of prop. 1, these scalars, or 
potentials, are strictly convex2’1:

<—2 - Si g ra d H x ( S ) >  ̂ X < I 2 >

and

X (Hn ) (2.6a)

< § 2  “  —1 ' g r a d B = ^ < B 2 ) -  iMB«j ) (2.6b)

The practical implications of prop. 2 are somewhat 
abstract. A given constitutive relationship must be examined, 
using eqns. 2.3, to establish whether or not it possesses 
prop. 2. Materials of practical interest in numerical 
electromagnetism generally do. A linear material property 
tensor that is also symmetric possesses prop. 2. So does 
isotropic iron whose permeability is a function of field 
magnitude.

Eqns. 2.1 express the constitutive relationship in the 
most general form applicable to this work. In non-hysteretic 
materials they reduce to

B = u (H )H and H = v(B)B (2.7)
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Moreover, in linear media, y and v are constant, although 
possibly anisotropic.

The constitutive relationship, described above in terms 
of abstract fields, applies to three distinct sets of fields 
in electromagnetism : magnetic fields in magnetically
permeable regions, electrostatic fields in dielectrics, 
and current flow in conductors.

2.3 An error formulation

The general definitions of the scalars x(H) an<̂  *MB) 
are given in eqns. 2.5. Since the reference fields Hq and 

are arbitrary, it is possible, without loss of generality, 
to set them both to zero, so that

X(H>
H
<y(h)h + B , dh> + x(°)

J0
(2.8a)

and

iHB)
B»
< v (b ) b + H , db > + \p (0 )J c0

(2.8b)

X (0) and \Jj (0) are arbitrary constants; we shall find it 
useful to define them as follows :

0 0
x  ( 0 )  + i M O ) < y(h)h+B^,dh> <v(b)b+Hc ,db> (2.9)

The actual manner with which the constant sum is apportioned 
between x(0) anĉ  0) is immaterial.

Now for arbitrary field estimates H and B that are not 
necessaxily related by eqns. 2.1, we can construct, and 
evaluate^ the scalar

A( H, B)  = X (H) + iMB)  -  L, ( H / B ) ( 2 . 1 0 )

where
C(H,B) = <H , B> (2.11)



27

Appendix C shows that, due to the convexity of x(*U 
and \MB), eqns. 2.6, the scalar A(H,B) has the following 
fundamental property :

A(H ,B) > 0 (2.12a)
with

A(H ,B ) = 0 <=> B = y(H)H + B and H = v(B)B + Hr c
(2.12b)

i.e. strict inequality for H and B field values that do 
not satisfy the constitutive relationship, eqns. 2.1.

It is obvious from 2.12 that A(H,B) is an error form 
that corresponds to the constitutive relationship : it is
zero for H and B field estimates that satisfy the constit
utive relationship, and positive otherwise. A is central to 
this work, and will be referred to as the constitutive error 
density. It is definable for constitutive relationships 
that possess prop. 2 of sec. 2.2, and its error significance, 
eqns. 2.12, arises from prop. 1.

It follows, from eqns. 2.12, that A(H,B) is minimum for 
field estimates that satisfy the constitutive relationship. 
From eqns. 2.8-11, the variation of A is given by

6A = 6x + Sip - (2.13a)

= <i_iH + B - B , 6H> + <vB + H - H , 6B> (2.13b)

Clearly, if H and B are related by eqns. 2.1, then

6 A = 0 (2.14)

giving us the stationary point of A, which is a strict 
minimum. It is noted in passing that the actual value of A 
at its stationary minimum was made zero by a specific choice 
of the arbitrary constants x(0) an<3 ^(0) in eqn. 2.9.

It is instructive to note that for a linear, non- 
hysteretic constitutive relationship, the integrations of 
eqns. 2.8 are simple to perform; substituting the results
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into eqn. 2.10, the expression for X simplifies to

X = l<yH , H> + 1<vB , B> - <H , B> (2.15a)

= 1<UH - B , H> + 1<vB - H , B> (2.15b)

and the error significance of X is obvious in this case.

Now consider a region in space, R, where arbitrary 
estimates are made for the field distributions H(r) and B(r). 
Clearly, X(H,B) is a point-defined error. Its volume 
integral over R is the total constitutive error A 
attributed to R for the given estimates of the field 
distributions :

A = / X dR 
R

where
X + Y - Z

X = / X dR 
R

Y = / ip dR 
R

(2.16)

and Z = / L, dR = <H , B>
R R

(2.17)

The volume integral of a non-negative scalar cannot be 
negative, and can be zero only if the scalar is zero every
where (with the possible exception of singularity points, if 
any). Thus, from eqns. 2.12 and 2.16, we have

A  ̂ 0 (2.18a)
with

A = 0 <=> B=y(H )H+Br and H=v(B)B+H^ everywhere in R.
(2.18b)

Strictly, the forward implication does not apply at points 
where X is singular.

From eqns. 2.13 and 2.16, the variation of the global 
constitutive error A is given by

6A = 6X + 6^ - 6Z (2.19a)

= <uH + B - B , 6H> + <vB + H - — —r — — R — —c H , 6B>r (2.19b)
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Clearly, if the estimated distributions H(r) and B(r) satisfy 
the constitutive relationship everywhere in R, then

6A = 0 (2.20)

giving us the stationary point of A, which is a strict 
minimum corresponding to eqn. 2.18b.

2.4 A graphical interpretation

This section presents a graphical interpretation of the 
constitutive error density A for the simple case of an 
isotropic medium in which the constitutive relationship is 
a function of the field magnitudes. Such a relationship 
possesses prop. 2 of sec. 2.2. It is illustrated by the 
B-H curve of fig. 2.1. In accordance with prop. 1, the curve 
is continuous and has a strictly positive slope.

Independently made estimates of H and B define a point 
(H ,B ) that may fall above, below, or on the B-H curve. X(^) 
and \Jj(B) are, respectively, the shaded areas below and above 
the curve, so that x+^ is the total shaded area in either 
figure. It is noted in passing that in magnetic

B B

Fig. 2.1 Illustrating the constitutive relationship and 
error density for different field estimates.
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applications, x corresponds to the energy, while iJj 
corresponds to the co-energy.

The hatched rectangle represents the product of 
magnitudes HB. From either figure

X + ̂   ̂ H B   ̂ H B cos a (2.21a)

where ot is the space angle between H and B. But

£ = H B cos a

by definition, eqn. 2.11. Thus

X + ̂  C (2.21b)

Subtracting £ from both sides, and noting eqn. 2.10

X = x + 'l'-S = 0

as in ineq. 2.12a. For X to be zero, both inequalities in 
2.21a must be reduced to equalities: H and B must be para
llel so that a = 0, and the point (H,B) must lie on the B-H 
curve. Thus X is a comprehensive measure of the error in 
the constitutive relationship, accounting for both mag
nitude and direction. In either figure, the shaded but 
unhatched triangular area corresponds to (x + ̂ -HB); it is 
therefore generally smaller than X, becoming equal to it 
at cos a = 1 , i.e. a = 0.



31

C H A P T E R  T H R E E

Specification and Solution of 
Static Electromagnetic Problems

3.1 Preview

The purpose of this chapter is to present a compact 
theory of static electromagnetic problems, based on the 
error formulation of Chapter 2, and particularly suited 
to numerical solution.

Under static conditions, Maxwell's equations reduce to 
three sets of independent equations relating to magneto
statics, electrostatics, and steady current flow. Recog
nising a unifying pattern, a general model is defined in 
sec. 3.3. The model can, of course, represent other 
physical problems that adhere to the same pattern.

Sec. 3.4 presents a thorough study of physical unique
ness of model fields through an extended development of the 
Helmholtz theorem. The study also covers the implementation 
and interpretation of physical uniqueness in terms of 
potentials, as well as the uniqueness requirements of the 
potentials themselves for problem solvability.

Sec. 3.5 applies the conditions of physical uniqueness 
to the constitutive error formulation devised in Chapter 2, 
resulting in a general, yet concise, theory for the solution 
of the model problem. By way of demonstration, sec. 3.6 
applies the proposed approach to a particular class 
of problem where the specifications, being relatively 
simple, are of some general interest.
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3.2 Maxwell's equations

Maxwell's equations in differential form are

curl - = - + ft - (3.1a)

div D = p (3.1b)

curl 1 = ft 2 (3.1c)

div B = 0 ( 3.1 d )

Under static conditions, where all fields are constant in 
time, eqns. 3.1 reduce to three independent pairs of 
equations corresponding to the three material properties 
of interest in electromagnetics.

(i) In magnetically permeable regions, the relevant 
variables are the magnetic field intensity H and the 
magnetic flux density B, related by the constitutive 
relationship

B = u H + B  or H = vB + H (3.2)

where y is the magnetic permeability, v is the reluctivity, 
B is the residual flux density, and H is the coercive 
force. Under static conditions, eqns. 3.1a and 3.1d yield

(3.3)

(3.4)

where J is the current density. A familiar treatment of 
eqn. 3.3 shows that, across any surface, the discontinuity 
in the tangential component of H is given by

n x AH = K (3.5)

where K is the sheet current flowing over that surface.
The corresponding treatment of eqn. 3.4 shows that the 
normal component of B is continuous, so that

n • AB = 0 (3.6)

and
curl H = J

div B = 0

across any surface.
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(ii) In dielectrics, the relevant variables are the electric 
field intensity E and the electric flux density D, related 
by the constitutive relationship

D = e E or E = e- 1 D (3.7)

where £ is the permittivity. Under static conditions, 
eqns. 3.1c and 3.1b yield

and
curl E = 0 (3.8)

div D = P (3.9)

where P is the charge density. Across any surface, the
tangential component of E is continuous

n x AE = 0 (3.10)

while the discontinuity in the normal component of D is 
given by

n • AD = o (3.11)

where o is the sheet charge density on that surface.

(iii) In electrical conductors, the relevant variables are 
the electric field intensity E and the electric current 
density J, related by the constitutive relationship

J = O E or E = p J (3.12)

where a is the electric conductivity and p is the resis
tivity. Under static conditions, eqns. 3.1c and 3.1a yield

and
curl E = 0 

div J = 0

(3.13)

(3.14)

The tangential component of E and the normal component of 
J are continuous across all surfaces, so that

and
n x AE = 0 

n • A J = 0

(3.15)

(3.16)
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3.3 A model

The static field equations of sec. 3.2 clearly adhere 
to a pattern. For each type of material, there is a pair 
of fields that are related by a constitutive relationship; 
one is an intensity field whose curl and tangential dis
continuities (vector sources) are specified, while the other 
is a flux density whose divergence and normal discon
tinuities (scalar sources) are specified.

In Chapter 2 we considered the constitutive relation
ship between two abstract fields H and B :

B = \i (H ) H + Br or H = v(B)B + Hc (3.17)

We now make these fields less abstract by requiring them 
to be piecewise differentiable, and to satisfy the 
canonical equations

and
curl H = J

div B = p

as well as the continuity equations

and
n x AH = K

n • AB = o

(3.18)

(3.19)

(3.20) 

(3.21 )

Clearly, the abstract fields H and B now conform to the 
pattern described earlier. They are a generalisation of the 
physical pairs of fields identified in sec. 3.2. The 
abstract pair, as defined by eqns. 3.18-21, can therefore 
be used to model the physical pairs. Table 3.1 shows the 
correspondence between physical and model systems, and 
fig. 3.1 shows the structure of the model.

It will be helpful to think of the model as being 
composed of two complementary systems : the H-system 
comprising the left half of fig. 3.1, and the B-system 
comprising the right half. Eqns. 3.18 and 3.20, the
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Model
systems

Magneto
statics

Electro
statics

Steady
current
flow

H H E E
y U z 0

Ed)-Uw B B 0 0
>itni33 J J 0 0

K K 0 0

B B D J
- 1V V £ P

E<D-P
Ui H H 0 0
>i L
W
1m P 0 p 0

0 0 0 0

Table 3.1 Correspondence between physical and model systems.

Fig, 3,1 Model structure.
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variable H, and the vector sources J and K belong to the 
H-system; eqns. 3.19 and 3.21, the variable B, and the 
scalar sources P and a belong to the B-system. Clearly, 
the only link between the two systems is the constitutive 
relationship, eqns. 3.17.

3.4 Problem specification

For our purposes, a problem involves a region in space, 
R, where the model fields of sec. 3.3, H and B, coexist. 
Solving the problem is the process of determining the field 
distributions.

We define R to be a simply-connected region in three- 
dimensional space, bounded by surface S. In general, S is 
composed of N simply-connected sub-sections, so that

S = S. U S9 ... U SM 1 2 N
with

(3.22a)

S . H S . = 0  for i * j I D  J (3.22b)

Within R there are M surfaces across which the tangential 
component H and/or the normal component of B are/is discon
tinuous, i.e. where K and/or a are/is non-zero. Denote the 
union of these discontinuities by :

SA (3.23)

Multiply-connected regions are converted into simply- 
connected ones by the introduction of cuts as in fig. 3.2; 
they can thus be accommodated into the above definition of 
R by including the two facets of every such cut with the 
N sub-sections of S as shown in the figure.

□  k

cut
R

S

R

Fig. 3.2 Converting a multiply-connected region into 
a simply-connected one.



3.4.1 U n i q u e n e s s  of fields

To be able to solve a given problem, it must be well- 
posed, i.e. there must exist unique field distributions for 
the given problem specifications. The purpose of this 
section is to determine what constitutes adequate specifi
cation for the uniqueness of the model fields H(r) and B(r).

With the problem region R, bounding surface S, and 
discontinuities as defined above, we start from the 
following premises :

1. The constitutive relationship :
Everywhere in R, H and B are related by a known 
constitutive relationship, eqns. 3.17, which 
possesses property 1 of sec. 2 .2 .

2. Canonical equations :
Everywhere in R, H and B are piecewise differen
tiable, with the curl of H and the divergence of B 
specified by eqns. 3.18 and 3.19 respectively; the 
source densities J(r) and p(r) are known and finite.

3. Continuity conditions :
Across any surface within R, the discontinuities 
in the tangential component of H and the normal 
component of B are specified, respectively, by 
eqns. 3.20 and 3.21, with the source densities 
K(r) and o(r) known and finite.

The above three specifications constitute a concise 
description of the model we have developed so far. To 
investigate the uniqueness of the fields thus specified, we 
postulate two pairs of distributions, (r), B^(r) and 
fh^r), ^(r), with each pair satisfying all three specifi
cations; the fields are unique if the two pairs coincide.
Next define
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and

W = <6h , 6B>K (3.25)

As each pair satisfies specification 1 above, we can 
substitute eqns. 3.24 and 3.25 into eqns. 2.2 to get

with
W £ 0 (3.26a)

W = 0 <=> 6H = 0 and 6B = 0 (3.26b)

Clearly, uniqueness is ensured by any set of specifications 
that forces the equality in 3.26. Appendix D imposes 
specifications 2 and 3 on 6H and 6B reducing W to

N
W = l w

n=l n (3.27a)

where the summation is over all sub-sections of the boun
dary S, the contribution of each sub-section being

w = [ 6 n L
r•—n

H'dZ  , 6 (n«B)] + (6 H«dA) (6 B-dS) (3.27b)
r—n

n r—o n
rQ defines an arbitrary global reference point in R; 
r^ defines an arbitrary local reference point on S .

As W is not universally zero in eqn. 3.27, it is 
evident that specs. 1, 2, and 3 do not, in themselves, 
suffice for uniqueness. A further specification is 
needed :

4. Boundary conditions :
Over the entire boundary S, the fields H and B are 
so constrained that

N
W = l w = 0 (3.28)i n n=1

where w^ is as defined in eqn. 3.27b, and the 
summation is over all sub-sections of S.

The apparent indefiniteness of spec. 4 reflects the 
large, indeed infinite, variety of boundary specifications 
that are consistent with a unique solution. In the next 
section we examine some of the more common cases.
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3.4.2 Boundary specifications

To investigate ways by which spec. 4 of sec. 3.4.1 can 
be satisfied, we shall find it useful to make a few 
definitions. First let

and
h = n x H 

b = n • B

(3.29)

(3.30)

at any point on the bounding surface
rr—n

Vn H • d l

r—o

S Also let

(3.31 )

and
$n B • dS ( 3 . 3 2 )

where the subscript n refers to a particular sub-section,
Sn , of the bounding surface S, eqns. 3.22. may be regar
ded as an abstract motive force at r relative to r :—n —o

may be regarded as an abstract flux through Sn .

Substituting eqns 3.31 and 3.32 into 3.27, we can
write

and

where

with

and

with

w = w' + w" (3.33a)

w = w ' + w" (3.33b)n n n

N
W' = l w'n (3.34a)

n = .

r
w ' = [6 n J H*d{. , 6 (n*B) ]

r n —n
(3.34b)

N—J IIS: T T1'W (3.35a)n=l n

wn - 5Vn (3.35b)
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Satisfaction of spec. 4 requires W to vanish. The 
above definitions allow us to examine the contributions, 
to W, from the individual sub-sections of S.

Consider first w^, eqn. 3.34b. Clearly, it vanishes 
if either 6h or 6b is zero, i.e. either h or b is known 
on Sn . This leads us to define as the union of boundary 
sub-sections over which h is pre-specified, and as the 
union of boundary sub-sections over which b is pre-specified 
thus

on c S : h is specified => 6h = 0 (3.36)

on c S : b is specified => 6b = 0 (3.37)

h and b are defined in eqns. 3.29 and 3.30 respectively.

w^ also vanishes if Sn is an open boundary section
where H and B approach zero at least as fast as the inverse

2of r . Denoting the union of open-boundary sub-sections 
by S^, we must have

on S c s : r2H and r2B are bounded (3.38)
00

If the conditions on two, or possibly more, boundary 
sections are suitably related to each other, their w^ 
contributions to W can cancel out. This happens with 
certain recurrence relationships. It also happens on the 
two facets of a cut since their outward normals are in 
opposite directions.

Consider next w^. From eqn. 3.35b, it is clear that
w" vanishes if either 6V or 6$ is zero, i.e. if either V n n n n
or is known on Sn - According to the definition of in
3.37 and of $ in eqn. 3.32, $ is pre-specified on all
sub-sections so that their w" contributions automaticallyn J
vanish. The same cannot be said for S, and S : on suchh co
boundary sections, w^ must be accounted for explicitly.

If the motive forces V and fluxes $ on two or moren n
boundary sections are suitably related, their w^ contribu
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tions to W can cancel out. Of particular interest is the 
situation arising on the two facets of a cut. Obviously, 
their outgoing fluxes are equal in magnitude and opposite 
in sign; thus

n2 n 1 n
where the subscripts refer to the two facets; substituting 
into 3.35b and adding the contributions of the two facets :

w" = w" + w*' = 6$ (6V 0 - 6V 1 )n n 1 n2 n n2 n 1

Substituting for V  ̂ and V 2 from eqn. 3.31 :
r-2 r~ 1

w" = 6$ (6 n n JH*d£ - 6 H*d£j = 6$n (<5
r—o r—o

- 2

- 1

where r̂  and r^ are reference points on the two facets; 
choosing these to coincide in space, and substituting for 

from eqn. 3.32, we get

w" = (6 B • dS )(6o H • d Z  ) n i
S  V 1n n

(3.39)

where 5,̂  is a path in R that pierces the cut. It is thus 
evident that w^ vanishes if we specify either the flux 
through the cut, or the motive force around a closed path 
that pierces the cut once.

It is instructive to note that w^ is implicitly 
accounted for in problems with certain simple boundary 
specifications. For example, consider the case where S is 
composed of only two simply-connected sub-sections, and 
S^, which conform to the definitions 3.36 and 3.37; on S^, 
w£ vanishes as explained earlier; it also vanishes on by, 
effectively, allowing the global reference point r^ to 
coincide with the reference point on so that becomes 
zero. This implicit treatment is not possible when S 
includes two or more unconnected S, and/or S sub-sections. 
The motive forces between these sections, or the fluxes 
through them, must be pre-specified if W" is to vanish.
The situation is, in fact, a generalisation of resistive 
circuit analysis, with Vn and $n corresponding, respectively,
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to terminal voltages and currents, with one terminal acting 
as a reference for voltages.

3.4.3 Potentials

Having determined the specifications necessary to 
ensure well-posedness, we now address the question of how 
to impose these specifications on the model fields. We 
shall deal with spec. 1 , covering the constitutive relation
ship, in sec. 3.5, and consider only specs. 2, 3, and 4 in 
this section.

A common method for imposing the canonical equations 
of spec. 2 on the fields involves the definition of 
potentials. Let

H = G - grad ft (3.40a)

where ft is a scalar potential, and G is any pre-defined 
field that satisfies

curl G = J (3.40b)
everywhere in R. Substituting for H from eqns. 3.40 into
3.18, the latter is satisfied. Also let

B = C + curl A (3.41a)

where A is a vector potential, and C is any pre-defined 
field that satisfies

div C = p  (3.41b)

everywhere in R. Substituting for B from eqns. 3.41 into
3.19, the latter is satisfied.

With spec. 2 accounted for, the potentials must be so 
constrained as to effectively impose specs. 3 and 4 on their 
respective fields. We derive the necessary constraints 
below.

Consider, first, the continuity conditions of spec.3. 
Substituting for H from eqn. 3.40a into 3.20, and
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rearranging, we get
n x grad Aft = n x AG - K (3.42)

over any surface within R. Similarly, substituting for B 
from eqn. 3.41a into 3.21, and rearranging, we get

n • curl AA = o - n • AC (3.43)

over any surface within R.

Thus far, the potentials have been considered in 
differential form only. While on the subject of continuity, 
we need to examine the corresponding integral forms as they 
may necessitate the definition of artificial discontinuities 
in the potentials.

Integrating eqn. 3.18 over any surface S^ in R, and
applying Stokes' theorem, we get

o H*d£ = 
) ~£ .

i .

J • dS + Kxn *d£
S.l l

(3.44)

where £. is the contour of S., and £. refers to any discon- i i ' i 2
tinuities in nxH along S^. Substituting for H from 
eqn. 3.40a and rearranging, we get

x Aft = C) G • d£_ - 
£ .£ . i

J*dS - Kxn *d£ (3.45)
S .l

where the summation covers the discontinuities in 
encountered by the path £^.

ft

Integrating, next, eqn. 3.19 over any sub-region R^ 
within R, and applying the divergence theorem, we get

•

o B'dS = p dR +
J

a dS
R

(3.46)
i l l .

where S. is the surface that encloses R., and S^ refers to i i ' i
any discontinuities in n*B within R^. Substituting for B 
from eqn. 3.41a, applying Stokes' theorem, and rearranging 
we get

/
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IS.1

•
AA*d£ =

*
p dR +

• e

o  dS - o
) • A

(3.47)
£ R.l S.lA l ~ l

where refers to a slit, piercing S^, along which nxA is 
discontinuous; the summation covers all such slits.

The right hand sides of eqns. 3.45 and 3.47 are pre
specified, and they are not necessarily zero, thus possibly 
requiring the introduction of artificial discontinuities in 
the respective potentials to balance the equations on their 
left hand sides. Such cuts are in addition to any that may 
be required to convert a multiply-connected region into a 
simply-connected one, as explained earlier with reference 
to fig. 3.2.

Consider, next, the boundary conditions of spec. 4. 
This is best done using the definitions of sec. 3.4.2.

Substituting eqn. 3.40a into 3.29, and applying the 
result to 3.36, we get

on S^ : n x grad = n x G - h (3.48)

Substituting eqn. 3.41a into 3.30, and applying the 
result to 3.37, we get

on S^ : n • curl A = b - n • C (3.49)

Substituting eqn. 3.40a into 3.38, we get

on S : r2|G - grad ft I bounded (3.50a)

which simplifies to

on S : r ft bounded (3.50b)

if G is zero in the open boundary region. Substituting 
eqn. 3.41a into 3.38, we get

on S : r2|C + curl AI bounded (3.51a)
00 1 —  — 1

which simplifies to
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on : r2A bounded (3.51b)
00

if C is zero in the open boundary region.

Substituting eqn. 3.40a into 3.31, performing the 
integration in ft, and rearranging, we get

f t ( r ) - f t ( r ) = y A f t +—n —o L

r—n
G-d£ Vn (3.52)

r—o
where the summation covers all discontinuities in ft encoun
tered by the path from rQ to r^. Substituting eqn. 3.41a 
into 3.32, applying Stokes' theorem, and rearranging, we get

o A • d£
£n

$n C • dS
•Sn

(3.53)

where £n is the contour of Sn , including any slits of the 
form of £^, described in conjunction with eqn. 3.47, that 
may pierce Sn »

This completes the interpretation of specs. 2, 3, and 
4 in terms of potentials. The equations of this section 
are to be viewed as constraints on the potentials; the 
right hand sides are, in general, pre-specified. Forcing 
these constraints on the potentials effectively imposes the 
respective specifications on the corresponding fields.

3.4.4 Uniqueness of potentials - solvability

If the problem is to be posed, and eventually solved, 
in terms of potentials, they must, naturally, be uniquely 
specified. Imposing the specifications of sec. 3.4.1 on the 
potentials, as was done in sec. 3.4.3, ensures the unique
ness of the resulting H and B fields, but not that of the 
potentials themselves. The potential specifications must 
therefore be completed by introducing additional constraints 
on them. A degree of flexibility is available in the choice 
of such constraints, the main criterion being consistency 
with the original, physical, specifications which may not 
be violated, whether explicitly or implicitly.
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As potentials are, in essence, solution tools, the 
additional specifications can be regarded as requirements 
of solvability. In contrast, H and B model the physical 
fields, sec. 3.2, and the specifications on them are 
requirements of physical uniqueness.

3.4.4.1 The H-system scalar potential

Integrating eqn. 4.30a from a global reference point 
rQ to a general point r in R, we have

H • d£ = G • d£ - grad ft • d_£ (3.54a)
£o £o £o

Performing the integration in ft, and rearranging :
r r r

ft(r) = +  £ Aft G*d£ - H *d£ (3.54b)
iO —O £o

where the summation covers discontinuities in ft encountered 
by the selected path from rQ to r. The uniqueness of ft is 
contingent upon the uniqueness of the right hand side, and 
we now examine the individual terms. The line integral in 
G is known since G is pre-defined everywhere. The line 
integral in H is unique if the requirements of physical 
uniqueness are observed.

A discontinuity in ft across a cut necessitated by eqn. 
3.45 is known. A discontinuity in ft arising from n x A H  
and/or n x A G  is given by integrating eqn. 3.42 along 
a curve lying in Sn , the surface of discontinuity :

r r
Aft(r) = Aft(rn ) + £A'ft +

w
AG‘d£ -

•
Kxn#d£

± - n in
(3.55)

rn is a reference point on Sn : if Sn divides R into two 
sub-regions, Aft(rn ) can be chosen arbitrarily; if Sn has 
a floating edge, rn is placed at the edge where Aft(rn ) is 
zero. The line integrals are known. The summation
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accounts for other surfaces of discontinuity intersecting 
Sn : the contributions of cuts are known; the contributions 
of surfaces of discontinuity in n x h and/or n xG, similar 
to Sn , can be determined sequentially. In effect, Aft is 
known, or pre-specified, however it may arise.

The right hand side of eqn. 3.54b is thus unique to 
within a single additive constant, ft(r0 ), which must be 
specified, arbitrarily, to force a unique ft(r).

3.4.4.2 The B-system vector potential

The four specifications of sec. 3.4.1 can be viewed as 
a general theorem of vector uniqueness. It is therefore 
possible to investigate the uniqueness of the vector 
potential A by inserting it into a two system model of its 
own, and applying the theorem.

We begin by introducing a complementary vector F, and 
relating it to A by the constitutive relationship

F = a A (3.56)
Spec. 1 of sec. 3.4.1 requires that the constitutive 
operator a should possess property 1 of sec. 2 .2 . a is 
often made the unit operator, but other definitions are 
sometimes preferable3*1.

The first canonical equation is obtained by 
rearranging eqn. 3.41a :

curl A = B - C (3.57)
The second canonical equation must therefore be

div F = p' (3.58)
where p' is an arbitrary scalar distribution, often chosen 
as zero. Eqns. 3.57 and 3.58 correspond to eqns. 3.18 and 
3.19 of the model of sec. 3.3; A and F correspond to the 
abstract H and B fields respectively.
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Eqn. 3.57 satisfies spec. 2 of sec. 3.4.1 since C is 
pre-defined, and B is implicitly specified in a well-posed 
problem. However, nothing in the physical specifications 
of the problem can force eqn. 3.58 which is often referred 
to as the gauging of the vector potential.

The continuity conditions corresponding to eqns. 3.20 
and 3.21 can be written

and
n x A A = K' 

n • AF = a '

(3.59)

(3.60)

Spec. 3 requires that K 1 and a' be specified over all sur
faces within R. The physical specifications provide 
a constraint on K' : applying a vector identity to the LHS 
of eqn. 3.43, and substituting from 3.59 into the result, 
we find

div K' = n • AC - a (3.61)s — — —

The boundary conditions are best considered through 
the definitions of : 
ding to 3.29-32 are

sec. 3.4.2. The A-F equations corespon

a = n x A (3.62)

f = n • F (3.63)
rn

V' = A • d£ (3.64)n .r—o

n F • dS 
Sn

(3.65)

Using eqns. 3.62 and 3.63, the boundary specifications 
3.36 and 3.37 can be expressed in the form

on S c S : a is a — specified (3.66)

on c S : f is specified ( 3 .6 7 )
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The original, physically specified provides a constraint
on a wherever it coincides with S : applying a vectora
identity to 3.49, and substituting from 3.62 into the 
result, we find

divg a = n • C - b (3.68)

In open boundary regions we must have

on c S : r2A and r2F bounded (3.69)

according to 3.38. The specification in 3.69 is stricter 
than 3.51, which represents the physical requirement.

The motive force V' and the flux $' must comply withn n L J
the corresponding requirements discussed in sec. 3.4.2. 

is partially constrained by eqn. 3.53.

The physical specifications on the vector potential A, 
derived in sec. 3.4.3, fully enforce eqn. 3.57, partially 
constrain eqns. 3.59, 3.64, and 3.66, and leave entirely 
free the specifications of eqns. 3.58, 3.60, 3.65, 3.67, 
and 3.68. Yet all these specifications must be enforced to 
ensure a unique A. It is therefore necessary to complete 
the specification of A by defining, and imposing, the indi
cated additional constraints without, of course, violating 
the original physical constraints, explicitly or implicitly.

3.4.5 Model structure

The structure of the model shown in fig. 3.1 accounts 
for specs. 1, 2, and 3 of sec. 3.4.1. Fig. 3.3 extends it 
to account for spec. 4 by including those boundary con
ditions of sec. 3.4.2 that can be accommodated on such 
a diagram. It also shows the potentials for completeness.

The constitutive relationship is the only link between 
the H- and B-systems in the structure of fig. 3.3. But the 
structure shown does not exhaust the possibilities of allow
able boundary specifications; it excludes conditions
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related to recurrence boundaries, cuts, and abstract motive 
forces and fluxes. In principle, allowable specifications 
that link H and B on parts of the boundary can arise. In 
most applications, however, boundary conditions are 
specified independently for the H- and B-systems.

Fig. 3.3 Model structure.

3.5 Solution

The process of solving a physical problem is one of 
imposing the given specifications on the fields to force 
them to acquire, everywhere in R, the values unique to those 
specifications. A variety of approaches, differing in 
philosophy and/or technique, can be used to implement the 
process. In this section, we present a compact approach 
that is particularly suited to numerical analysis.
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It is proposed that a well-posed problem can be 
solved by minimising the constitutive error, with the 
fields constrained to satisfy specifications 2, 3, 
and 4 of sec 3.4.1 .

The validity of the proposition is established simply 
by recalling inequality 2.18, which was

A £ 0 (3.70a)
with

A = 0 <=> B = yH+B and H = vB+H everywhere in R._  _  _ r _  _  _c

(3.70b)
Clearly, then, spec. 1 is satisfied when A is minimum, thus 
completing the requirements of uniqueness given in 
sec. 3.4.1. Having defined A as a positive error, it is 
logical to expect it to be zero at the correct solution.

The global constitutive error is defined in eqn. 2.16 
as

A(H,B) = X (H ) + 'i'(B) - Z(H,B) (3.71)

where it is evident that X(H) is strictly an H-system 
functional, and 'i'(B) is strictly a B-system functional.
Only Z(H,B) spans both systems.

Let us now investigate the effect, on the constitutive 
error, of constraining H(r) and B(r) as proposed, i.e. the 
behaviour of A for the model problem defined in this 
chapter. We first note that the means by which the fields 
are constrained is inessential to the proposition and its 
validity; any means can be used, provided it ensures strict 
satisfaction of specs. 2, 3, and 4. The potentials of sec. 
3.4.3 are the tools that we shall use for the purpose. In 
particular, we introduce the scalar potential by substitu
ting eqn. 3.40a for H in Z(H,B). Imposing, moreover, 
specs. 2 and 3 on the fields in Z, we get, after some 
algebra given in Appendix E :

A ( ft, H , B ) = 0o(ft,H) + Eq (B) - ro (H,B) (3.72)
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with

0 (ft,H)O —
M M r

X (H ) - <ft,p>R - l [ft^o] A + ft(rQ )( pdR + l odS)
m=l i m=l ̂ Am K Sm

M r r
“o < — >

and

¥(B) - <G,B>_ - l [Aft,n*B0] A + [J>ft + G-d£,n«B]
R m=l _ _ 2 SA J“m r r—o —o

r (fi,HrB)o — —
J -

= [ j H • d£ , n • B ]
r—o

where rQ is, as before, an arbitrary global reference point; 
£Aft covers all discontinuities in ft encountered by the 
selected path from rQ to r; the subscripts 1 and 2 refer to 
the two sides of SA . 0 is a functional in the H-system 
variables ft and H since p and a are known according to 
specs. 2 and 3 respectively. is a functional in the
B-system variable B since G is pre-defined according to 
eqn. 3.40b, and Aft is known according to eqn. 3.55.

The development from eqn. 3.71 to 3.72 is simply this :
the imposition of specs. 2 and 3 on the fields has caused
Z(H,B) to decompose partially into functionals of H-system
variables, and functionals of B-system variables; the former
are included with 0 , and the latter are included with E  .o o
The residue is T , and it clearly relates to the conditions 
on the boundary S. But the boundary conditions of spec. 4 
have not been imposed yet. We shall now show that if the 
constraints on the fields are completed by imposing spec. 4, 
as required by our proposition, the decomposition of T  , and 
hence that of Z, will be complete, allowing us to write

ro (ft,H,B) = rH (ft,H) + rB (B) (3.73)

With an eye on W in eqns. 3.27, 3.28, and 3.33, we proceed 
by expressing rQ in the form

N N
r = I Y = y (y ' + y "} (3.74a)o 'n L . 1 Tn rnJn=1 n=1

where the summation is over all sub-sections of the
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boundary S, the contribution of each sub-section Sn being

= I
r

r — n
H-d£ , n-B] + ( H*d£)( B-dS) (3.74b)

Also
r—n

n r S-o n

y' = [n L H • d£ , n • B] (3.74c)
r—n

n
and

y" = V $ n n n (3.74d)

rn is, as before, an arbitrary local reference point on Sn ;
the abstract motive force V and flux $ are defined inn n
eqns. 3.31 and 3.32 repectively.

According to spec. 4, unique boundary specifications
are those which cause W to vanish, eqn. 3.28. In sec. 3.4.2
we examined boundary conditions which caused wn , the
contribution of to W, to vanish. Noting the kinship
between T and W, we shall show that the same conditions o
cause the corresponding y^ to either vanish, or become a 
functional of only one system rather than both, as antici
pated by eqn. 3.73.

From its definition in eqn. 3.34b, w^ vanishes if
either the H-factor or the B-factor of the product is zero.
This implies that either the H-factor or the B-factor is
specified in the corresponding y^ product, eqn. 3.74c. In
the former case, the term goes into V , and in the lattera
it goes into TH . Similarly for w^ and y^, eqns. 3.35b and 
3.74d.

w^ also vanishes on open boundaries, S^ in 3.38. Under 
these conditions, the corresponding y^ also vanishes, and 
hence drops out entirely from T .

The w^ and/or wJJ contributions of two or more boundary 
sections can cancel out if suitably related to each other, 
as with recurrence relationships, or cuts. The correspon
ding y^ and/or y^ contributions to rQ also cancel out under 
the same conditions.
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Thus eqn. 3.73 is established, at least for the boun
dary specifications of interest. Later examples in this 
work will demonstrate various applications of the above 
reasoning. For now, we substitute eqn. 3.73 back into 
3.72 to get

A(«,H,B) = (0o (fi,H) - rH («,H)) + (=0 (B) - rB(B))

= 0<«,H) + E(B) (3.75)

Thus, for a well-posed problem, the global constitutive 
error A can be expressed as the sum of two functionals :
0 in H-system variables, and E  in B-system variables. These 
functionals correspond to energies in magnetostatics and 
electrostatics, and to power in conduction problems. 
According to ineq. 3.70, they are related by

0 + E = 0 (3.76)

at the exact solution. Moreover, since A is minimum, and 
hence stationary, at the solution, it constitutes a valid 
variational principle so that we can solve

0 = 6 A (3.77a)

= 6 0 + 6 5  (3.77b)

to obtain the required fields.

According to the proposition, the minimisation of A 
in eqn. 3.77 is to be carried out with the fields H and B 
constrained to satisfy specs. 2, 3, and 4. If the con
straints leave H and B unrelated, which is often the case 
as discussed in sec. 3.4.5, 0 and E are themselves 
stationary at the correct H and B distributions. This 
conclusion, derived in Appendix F, leads to

60 = 0 (3.78)
at the correct H solution, and

65 = 0 (3.79)
at the correct B solution. Solving eqns. 3.78 and 3.73 is
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equivalent to solving 3.77; the solutions are independent 
of each other. In an exact solution, the resultant fields 
are related by the constitutive relationship, which is 
imposed by eqn. 3.77.

We close this section with a summary of its thesis :
(i) The model problem can be solved by minimising the 
global constitutive error, eqn. 3.77a, with the fields 
constrained to satisfy the canonical equations, 3.18 and 
3.19, the continuity conditions, 3.20 and 3.21, and the 
boundary conditions, 3.28. (ii) In a well-posed problem, 
the constitutive error separates into an H-system func
tional and a B-system functional, eqn. 3.75. (±ii) If the
boundary conditions do not introduce links between the H- 
and B-systems, the two functionals are themselves stationary 
at the correct distributions of their respective fields, 
which can thus be solved for independently of each other, 
eqns. 3.78 and 3.79.

3 . 6 An application

The principles of the previous sections will now be 
illustrated for a particular problem. So as not to mask 
fundamental issues by too much detail, the problem speci
fications are deliberately made simple; the proposition of 
sec. 3.5 allows a considerably wider range.

3.6.1 The problem

The complete statement of the problem is as follows :

Given a simply connected region R throughout which the 
fields H and B are required to satisfy the constitutive 
relationship

B = u(H)H + Br (3.80a)
and

= v (B ) B + H ---—cH (3.80b)
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as in eqns. 3.17. The constitutive relationship in 3.80 
possesses properties 1 and 2 of sec. 2 .2 .

The fields H and B are also required to satisfy the 
canonical equations

and
curl H = J 

div B = p

(3.81a)

(3.81b)
as in eqns. 3.18 and 3.19. J and p are known and finite 
everywhere in R.

The components n x H and n • B are required to be con
tinuous across all surfaces within R, so that

and
n x AH = 0 

n • AB = 0

(3.82a)

(3.82b)
Eqns. 3.82 are a special case of eqns. 3.20 and 3.21 for 
which K = 0 and 0 = 0 .

R is bounded by a closed surface S which is composed 
of two simply-connected sections and such that

S = S, U S, , S, n S, = 0 (3.83a)h b h b
as a special case of 3.22. Moreover

and

as in 3.36 and 
b is known and

on S, : n x H = h (3.83b)h

on S, b : n • B = b (3.83c)

3.37; h is known and finite on S^, and
finite on S, .b

This completes the statement of the problem, and we 
now examine it for physical uniqueness. Specifications 1, 
2, and 3 of sec. 3.4.1 are satisfied by eqns. 3.80, 3.81, 
and 3.82 respectively. Spec. 4 requires that

W = + w^ + wJJ + w£ = 0 (3.84)

as in 3.33-35 and 3.28. w^ and w^ are both given by
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eqn. 3.34b, and they vanish by 3.83b and 3.83c, respectively.
defined in eqn. 3.32, is known according to 3.83c, so 

that w£ also vanishes, eqn. 3.35b. is defined in eqn.
3.31; it can be made zero by allowing the global reference 
point r to coincide with the local reference on S, ; w[|, 
given in eqn. 3.35b, accordingly vanishes. But this treat
ment of w" is not essential; a more fundamental alternative h
involves integrating eqn. 3.81b over R, applying the diver
gence theorem, and noting 3.82b and 3.83a, to get

/ B*dS + / B-dS = / p dR (3.85)
S, S, Rh b

The volume integral over R and the surface integral over 
are known from eqns. 3.81b and 3.83c respectively. Thus 
the integral over S^, which is by eqn. 3.32, is implicitly 
pre-specified; 6$^ is thus zero, causing wĵ  to vanish, 
eqn. 3.35b. It is thus evident that each of the four con
tributions to W in 3.84 is zero, so that W itself vanishes, 
and the requirements of spec. 4 are satisfied. All four 
specifications of sec. 3.4.1 are thus accounted for, and we 
can conclude that the given problem does have a unique 
solution.

Since the problem is well-posed, the constitutive error 
of eqn. 3.71 is guaranteed to separate into H- and B-system 
functionals as in eqn. 3.75 :

A = X(H) + Y(B) - Z(H,B) (3.86a)

= 0 ( Q , H )  + E (A ,B ) (3.86b)

The H and B distributions can be obtained by minimising the 
error as in eqn. 3.77

0 = 6A = 60 + 6E (3.87)

with the fields constrained to satisfy eqns. 3.81-83, for 
which purpose we shall use potentials in sections 3.6.2 and 
3.6.3. Before doing that, we observe that the boundary 
conditions in 3.83 are specified independently for the H- 
and B-systems, which means that the separated functionals 
are entirely independent of each other. They are, therefore,
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individually stationary in 3.87, allowing us to solve

and
60 = 0 

65 = 0

(3.88a)

(3.88b)
independently of each other to obtain the H(r) and B(r) 
distributions respectively.

3.6.2 H-system potential

The field H can be constrained to satisfy the H-system 
canonical equation 3.81a by defining a scalar potential, ft, 
as follows :

H = G - grad ft (3.89)
as in eqn. 3.40a. G is any pre-specified field that 
satisfies

curl G = J (3.90a)
as in eqn. 3.40b. The particular G distribution we choose 
here has a continuous tangential component, so that

n x AG = 0 (3.90b)
across any surface within R. Substituting eqns. 3.82a and 
3.90b into 3.42, we find that Aft is constant over any sur
face of discontinuity in R. We can, moreover, make ft con
tinuous by suitable choice of G in eqn. 3.45 so that

Aft = 0 (3.91 )
across any surface in R.

To enforce the boundary condition of 3.83b, ft must 
satisfy 3.48; using 3.54, and noting 3.91, we can write

r r
ft(r ) = ft(rh ) + [ G • d£_ - [ H*d£ (3.92a)

^h ^h
where r is any point on S^, rh is the local reference point
on S^, and

r-h
ft (r, ) = ft (r ) + —h —o G •d£ - Vh

r— o

(3.92b)
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The pre-defined G distribution and 3.83b specify ft(r) in 
3.92a to within a single unknown, ft(r^)-

Having expressed the H-system physical specifications 
in terms of the scalar potential ft, we can proceed with the 
decomposition of the constitutive error A. Substituting 
eqn. 3.89 for H in Z(H,B), eqn. 2.11, we get

Z = <G , B> - <grad ft , B>K  K
Applying a vector identity to the second term :

Z = <G , B> + <ft , div B> - / div(ftB) dR R - R R -
Applying the divergence theorem, and noting 3.81b, 3.82b, 
and 3.91 :

Z = <G , B>r + <ft , p>R - [ft , n*B]s 
Substituting back into 3.86a, we can write

A = 0^(ft,H) + H^(B) - P(ft,B) (3.93)
with

Oq ( f t , H) = X( H)  -  <ft , p > R

H^(B) = Y(B) - <G , B>r
and

r^(ft,B) = - [ft , n*B]s

Eqn. 3.93 expresses the partial decomposition of A that 
results from imposing the canonical equations, 3.81, and 
the continuity conditions, 3.82; i.e. specs. 2 and 3 of 
sec. 3.4.1. which relates to boundary conditions, is
a functional of both H- and B-systems. It decomposes by 
substituting for S from 3.83a, and for ft|5 ^ from 3.92a, 
and using 3.32 to write

r
1
o ft(rh )<l)h + [ (H-G)-d£ , n-B]s - [ft , b]

' &h
^h

In the first term on the RHS, is known from eqn. 3.85; 
in the second term, the line integral is known from 3.83b 
and the pre-definition of G; in the third term, b is known 
from 3.83c. Thus the decomposition of is complete, and 
back substitution into 3.93 yields
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A = 0 ' (ft ,H) + E '(B ) (3.94)
with

and
O' ( f t , H) = X ( H) -  <ft , p>R

E '(B) = ¥ (B) - <G r B>R - [ (H - G )•d£ , n •B ]
J

Eqn. 3.94 expresses the final decomposition of A that 
results from constraining the fields to satisfy all the 
physical specifications of the problem, including boundary 
conditions, 3.83.

At this stage, we need to complete the requirements of 
solvability. To perform the H-system solution in ft, it is 
necessary to specify its value at some point in R, sec.
3.4.4.1. An obvious choice is r^. Pre-specification of 
ft(r̂ ) causes the last term in 0 ', namely to drop
out from the extremisation process, 3.88a. In particular, 
we can choose

Eqn. 3.96 expresses the H-system functional for a particular 
implementation of the requirements of solvability on the 
scalar potential ft. The B-system functional, S', remains 
unchanged.

The H- and B-system functionals of this section were 
derived using a scalar potential, ft, to constrain H.
Although the derivation requires B also to be constrained, 
the means by which this is achieved has been left 
unspecified.

3.6.3 B-system potential

The field B can be constrained to satisfy the B-system 
canonical equation, 3.81b, by defining a vector potential,

ft(rh ) = 0 (3.95)
to drop the term from 0 * itself, leaving

0'(ft,H ) = X(H) - <ft , p>R + [ft , b]s
b

(3.96)
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A, as follows :
B = C + curl A (3.97)

as in eqn. 3.41a. C is any pre-specified field that 
satisfies

div C = p (3.98a)
as in eqn. 3.41b. The particular C distribution we choose 
here has a continuous normal component, so that

n • AC = 0 (3.98b)
across any surface within R. Substituting eqns. 3.82b and 
3.98b into 3.61, and comparing with 3.59, we find that 
divg (n.xAA) is zero over any surface of discontinuity within 
R. We can, moreover, make n x A  continuous by suitable 
choice of C in 3.47, so that

n x AA = 0 (3.99)
across any surface within R.

To enforce the boundary condition of 3.83c, A must 
satisfy eqn. 3.49 on or, equivalently, a=nxA must satisfy 
eqn. 3.68. If we let represent any continuous tangential 
vector on S^, pre-defined to satisfy

div a, = n*C - b (3.100a)
then eqn. 3.83c can be enforced by letting

a = + n x gradg 3 (3.100b)
where 3 is a continuous scalar distribution on S^. In this 
way, the freedom available in the specification of a has 
been assigned to 3 .

Integrating eqn. 3.97 on S^, applying Stokes' theorem, 
and noting 3.99, we get

j B • dS =  ̂ A • d£_ + J C • dS

where ^  is the contour of S^. Repeating the procedure 
on S^, we get

/ B • dS = <f> A - d Z  + / C-dS
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where is the contour of S^, which, according to 3.83a, 
is traversed in reverse. Thus the contour integrals are 
equal in magnitude and opposite in sign. Eliminating them 
between the two equations, and rearranging, we can write

/ B-dS + / B-dS = / C • dS + / C-dS = j> C*dS
Sh S}-) Sj-j S]̂  s

Applying the. divergence theorem to the RHS, and noting 
eqns. 3.98, we get eqn. 3.85 again. This short exercise is 
intended to show that the imposition of the boundary con
ditions of S^ on A is sufficient, in this case, to 
implicitly force the correct flux through S^. For more 
complex boundary specifications and different definitions 
of the pre-specified field C, we may need to impose 
additional explicit constraints on a.

Having expressed the B-system physical specifications 
in terms of the vector potential A, we can proceed with the 
decomposition of the constitutive error A. Substituting 
eqn. 3.97 for B in Z(H,B), eqn. 2.11, we get

Z = <H , C> + <H , curl A>K JK
Applying a vector identity to the second term :

Z = <H , C> + <curl H , A> - / div(HxA) dR R R R
Applying the divergence theorem, and noting 3.81a, 3.82a, 
and 3.99 :

Z = <H , C>R + <J , A>r - [nxH , A]s 
Substituting back into 3.86a, we can write

A = Oq (H) + Eq (A,B) - r^(H,A,B)
with

0q (H) = X (I) ~ <1 , C>R 

Hq (A,B) = Y(B) - <J , A>r
and

To (H,A) = - [nxH , A ]s

(3.101 )

Eqn. 3.101 expresses the partial decomposition of A that 
results from imposing the canonical equations, 3.81, and 
the continuity conditions, 3.82; i.e. specs. 2 and 3 of
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sec. 3.4.1. T”F which relates to boundary conditions, is 
a functional of both H- and B-systems. Its decomposition 
proceeds by substituting for S from 3.83a, and for a=nxA|gb 
from 3.100b

Tq = - [h , A]g + [H , abls + [H , nx grad B]g 
h b b

Applying a vector identity and Stokes' theorem to the last
term, and substituting from 3.81a into the result, we get

F"o [h,A]s
h

[n*J,6 ] 0 - j> BH*dS. 
Sb *h

where, in the last term, we have made use of the fact that
is £, traversed in reverse. In the first term on the b h

RHS, h is known from 3.83b; in the second term,a_b is pre
defined; in the third term, J is known; in the fourth term, 
the tangential component of H is known, from 3.83b, over 
and hence over Thus the decomposition of is
complete, and back substitution into 3.101 yields

A = 0"(H ) + H" (A,,B,B)
with

0"(H ) = X (H ) - , C>R - [H ' —b1s.
and D

H h (A,B,&) = ¥(B) - ^ + [h F A] Sh
+ [n • J ' 6]sb + Bh «1 d£

&h
Eqn. 3.102 represents the final decomposition of A that 
results from constraining the fields to satisfy all the 
physical specifications of the problem, including boundary 
conditions, 3.83.

At this stage we need to complete the requirements of 
solvability. Sec. 3.4.4.2 presents these in terms of 
a two-system model. We shall define the simplest such model 
by making the constitutive operator of eqn. 3.56 the 
identity operator so that F = A; we also set p' in 3.58 and 
o '  in 3.60 to zero, and divide the boundary S into at most 
two simply-connected sub-sections, S and S£ . K' of 3.59 
is already zero by 3.99. In such a model, A is unique if 
we impose on it the following additional constraints :
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in R : div A = 0 (3.103)

on S : a a = a' (3.104a)

on : n • A = f (3.104b)

where a a n d  f are to be pre-specified. The gauge on A, 
eqn. 3.103, does not affect the decomposition of A since 
div A does not appear anywhere in A; means of imposing it 
are discussed in Chapter 10. The auxiliary boundary con
ditions, eqns. 3.104, can be introduced by choosing

S_ = S and S _ =  0 (3.105)r 3

to specify the normal component of A, via 3.104b, over the 
entire boundary. The tangential component is constrained 
by 3.100 on S^, but nowhere is it completely pre-specified. 
3 must be assigned some value at an arbitrary point on S^, 
and the decomposition of A in 3.102 remains unaltered. 
Alternatively, we can choose

with
S r  = S, and S = S, f h a b (3.106a)

on S : a = a, (3.106b)a — —b
to specify the normal component on and the tangential 
component on S^. Comparison of 3.106b with 3.100b shows 
that 3 is constant on S^. As 3 must be specified at some 
point, it is completely pre-specified on S^. In this case, 
the last two terms in E" do not participate in the extremi- 
sation process, 3.88b. In particular, we can choose

3 = 0 (3.106c)
to drop the terms from E" itself, leaving

E"(A ,B ) = ^(B) - <J , A> + [h , A ] (3.107)
R - ~ sh

Eqn. 3.107 expresses the B-system functional for a par
ticular implementation of the requirements of solvability 
on the vector potential A. The H-system functional, 0", 
remains unchanged.

The H- and B-ystem functionals of this section were 
derived using a vector potential, A, to constrain B.
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Although the derivation requires H also to be constrained, 
the means by which this is achieved has been left 
unspecified.

3.7 Conclusions

Main features of the proposed approach are :
(i) the various aspects of the problem are divided, 

along clear-cut lines, between complementary 
H- and B-systems;

(ii) minimisation of the constitutive error provides 
a universal variational principle;

(iii) solution formulation is closely linked to the 
requirements of physical uniqueness.

The constitutive error splits into H- and B-system func
tionals, or energies, whose independent extremisations 
provide the complementary solution formulations; complemen
tarity of the functionals is further discussed in Chapter 4.

The procedure for extracting complementary functionals 
from the constitutive error is detailed,in sec. 3.6, for 
a particular set of problem specifications. Other specifi
cations, especially boundary conditions, are considered in 
Chapter 6 .

The proposed approach appears to lend itself to a syste
matic categorisation of the various aspects of computa
tional electromagnetics : H- and B-systems; fields and
potentials; physical uniqueness and solvability; etc. In 
particular, the physical significance of the fields is 
emphasised : the constitutive error, as well as the physi
cal specifications, are given in terms of fields; potentials 
are viewed as solution tools. The presentation of the 
approach proceeds from Maxwell's equations, via uniqueness 
requirements, to solution formulation, with no explicit 
reference, at any stage, to the associated partial 
differential equations.
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C H A P T E R  F O U R  

Complementary Variational Principles

4.1 Introduction

A functional is said to provide a variational principle 
for a given problem if it is known to be stationary at the 
correct solution to the problem. Two such functionals may 
be found that represent the same physical quantity. If, at 
their stationary points, one is a maximum and the other 
a minimum, the two variational principles are said to be 
complementary; the respective functionals define lower and 
upper bounds on the quantity they represent. Sec. 4.2 
presents complementary variational principles in static 
electromagnetics in terms of the approach proposed in 
Chapter 3.

A number of approaches lt' 1 — 6 , all essentially equivalent, 
have already been used to derive complementary variational 
principles in electromagnetism. They have generally 
followed the treatments used in other disciplines, notably 
mechanics, elasticity, and structures. Two representative 
derivations are outlined in sections 4.4 and 4.5. An over
view of the subject is presented in sec. 4.6; it includes 
a comparative review of the various derivations.

4.2 The constitutive error approach

The constitutive error provides a universal variational 
principle for the model problem in H and B. This follows 
directly from its fundamental property, ineq. 3.70, and is 
expressed in eqn. 3.77a, which was

6 A ( H, B ) 0 (4.1 )
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at the correct H and B distributions, provided the fields 
are constrained to satisfy specifications 2,3, and 4 of 
sec. 3.4.1 during the variation. Recalling that these 
constraints cause A to separate into H- and B-system 
functionals

A = 0(H) + ~(B) (4.2)
we can rewrite 4.1

60(H) + 6E(B) = 0 (4.3)

If, moreover, the specifications for the two systems are 
independent of each other, the functionals are individually 
stationary at the solution, so that

and
60(H) = 0 

65(B) = 0

(4.4)

(4.5)

as in eqns. 3.78 and 3.79. In the above equations, H and B, 
between brackets, refer, respectively, to the H-system 
variables, H and Q., and the B-system variables, B and A.
The functionals 0(H) and 5(B) provide the complementary 
variational principles although, strictly, they are not 
themselves the complementary functionals : recalling that
the constitutive error is zero at the correct solution, 
eqn. 4.2 yields

0 = 0(Ho ) + E(Bq ) (4.6)

where H and B denote the correct distributions: either—o —o
functional, and the negative of the other, represent the 
same quantity, and hence are complementary.

We elaborate by considering the upper and lower bounds. 
Let H and B denote distributions that are constrained as 
required by the proposition of sec. 3.5; i.e. they satisfy 
the (Maxwell) canonical equations of spec. 2, the continuity 
conditions of spec. 3, and the boundary conditions of 
spec. 4. They do not necessarily satisfy the constitutive 
relationship of spec. 1. Substituting from eqn. 4.2 for 
A in ineq. 3.70, we get
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0(H) + E (B)  ̂ 0 (4.7a)
with

0(H) + E(B) = 0 <=> H = H and B = B (4.7b)— —o — —o
where the implication in 4.7b holds for a well-posed 
problem having a unique solution, namely and Bq .
A special case of 4.7a is given by

0(H) + E(Bq ) £ 0

which, in conjunction with eqn. 4.6, yields

0(H) £ 0(H ) = - E(B ) (4.8)o o
Similarly

E(B)  ̂ E(B ) = - 0(H) o o (4.9)

If, moreover, the specifications for the H- and B-systems 
are independent of each other, 4.8 and 4.9 can be combined 
to give

0(H) £ 0(H) = - E(B ) £ - E(B) (4.10a)o o
or, equally well,

E (B )  ̂ E (B ) = - 0(H )  ̂ - 0(H) (4.10b)o o
The upper and lower bounds on the decomposed functionals 
0 and E are thus established. Any trial pair of distribu
tions H and B that satisfies specifications 2, 3, and 4 
will bracket the exact functionals as in 4.10.

If the problem specifications do relate the H- and 
B-systems, inequalities 4.8-10 still hold, but with the added 
qualification that the common variable, y  in Appendix F, 
is assigned its exact solution value in 0(H) and E(B).

Clearly, insofar as the abstract model and, indeed, 
the solution are concerned, it is immaterial whether we 
consider the complementary functionals to be 0 and -E, or 
-0 and E. In electromagnetic applications, however, the 
functionals are associated with a physically meaningful 
energy, or power, which dictates the choice; inequalities
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4.10 provide the upper and lower bounds on the energy, or 
power, for either combination of functionals.

Equations 4.4 and 4.5, and inequalities 4.10, establish 
the complementary variational principles for our model, and 
hence for the static electromagnetic systems it represents. 
The principles are definable where the problem specifi
cations allow the constitutive error A to separate into 
independent H-system and B-system functionals, 0(H) and 
E(B). According to sec. 3.5, such separation is guaranteed 
if

(i) the problem is physically well-posed according 
to the requirements of sec. 3.4.1;

(di) the constitutive relationship possesses 
properties 1 and 2 of sec. 2 .2 ; and

(ddi) the boundary specifications for H and B are 
independent of each other.

Regarding the composition of the functionals 0(H) and 
H(B), it is obvious, from eqn. 3.71, that X(H) appears in 
0(H), and ^(B) appears in ~(B). The remaining terms depend 
on the manner with which Z(H,B) splits between the H- and 
B-systems; which, in turn, depends on the potential used to 
effect the decomposition (Q, as in sec. 3.6.2, or A as in 
sec. 3.6.3), and on the particular boundary specifications 
of the given problem. For either potential, the 
decomposition of Z, and hence that of A, is universal 
insofar as it accounts for Maxwell's equations and continuity 
conditions. As for boundary conditions, the wide range of 
acceptable specifications, sec. 3.4.2, renders universal 
expressions impracticable.
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4.3 Alternative derivations

In the published literature, two distinct methods have 
been used to derive the complementary functionals for static 
electromagnetic systems. The first1*'1-1* is based on Hamil
ton's principle of analytical mechanics, with Legendre 
transformations leading, effectively, to Toupin's 
principle 1**5. The second 1**5' 6 is based on a generalised 
energy principle constructed by direct integration, 
originally developed in the theory of elasticity 1*’7.

Both methods address a static problem similar to that 
of sec. 3.3. All fields and potentials are taken to be 
continuous throughout the region R. The boundary S is 
composed of two non-intersecting sections and S^, so 
that

S = S, U S, with S, n S, = 0 (4.12)h b h b

Using the H-system potential ft, and the B-system field 
B, the problem is described by the following, primal, set 
of canonical equations :

grad ft = G - H (4.13) ft = ft, h on Sh (4.14)

UH = B (4.15)

div B = p (4.16) n*B = b on Sb (4.17)

with ft̂ , p, b, and J known; G is any field pre-defined to
satisfy

curl G = J (4.18

Alternatively, using the H-system field H , and the
B-system potential A, the problem is described by the
following, dual, set of canonical equations :

curl H = J (4.19) nxH = h on Sh (4.20)

vB = H (4.21 )

curl A = B - C (4.22) nxA = ab on Sb (4.23)
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with J, h, ^ , and p known; C is any field pre-defined to 
satisfy

div C = p (4.24)

The terms 'primal' and 'dual' above follow Fraser's14’5' 6 

usage for electrostatics; they are the reverse of his 
usage for magnetostatics.

4.4 Analytical mechanics

4.4.1 Primal formulations

If ft, H, and B are constrained to satisfy eqns. 4.13, 
4.14, and 4.15, then the correct solution to the primal set 
must satisfy

0 = <div B - p , 6ft>R - [n*B - b , 6ft ]Sb

for arbitrary infinitesimal variations 6ft. Applying 
a vector identity and the divergence theorem :

0 = - <B , 6 (gradft)> - <p , 6ft> + [n •B , 6ft]R R S
+ [b , Sft]S b -[n*B , 6ft]Sb

Substituting for B from 4.15, for grad ft from 4.13, for S 
from 4.12, and for ft|sb from 4.14 :

0 = <yH , 6H>r - <p , 6ft>R + [b , 6ft]Sb

This is equivalent to

0 = SO'(ft rH) (4.25)
where

0'(ft,H ) = X (H ) - <p , ft>R + [b , ft]Sb (4.26)

0 ' is the standard primal functional corresponding to 
Hamilton's variational principle in 4.25. The standard 
primal Lagrangian is defined by
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L = X(H) - <P , n>sp
so that

0'(fi,H) dR + [b

(4.27)

(4.28)

Alternatively, if H and B are constrained to satisfy 
eqns. 4.15, 4.16, and 4.17, then the correct solution to 
the primal set must satisfy

0 = <grad ^ - G + H , 6B>r _ [ft -

for arbitrary infinitesimal variations 6B. Applying 
a vector identity and the divergence theorem :

0 = <H , 6B>r - <G , 6B>R - <ft,S(divB)>^ + ,6 (n*B)]s
+ [ Q h , 6 (n*B) ]Sh - [n r6 (n-B)]Sh

Substituting for H from 4.15, for div B from 4.16, for S 
from 4.12, and for n*B|s^from 4.17 :

0 = <vB , 6B>r - <G , 6B>r + [fih , 6 (n*B)]s

This is equivalent to

0 = 65'(B) (4.29)
where

H'(B) = Y(B) - <G , B>r + [ Q h  , n*B]Sh (4.30)

5* is the complementary primal functional corresponding to 
Toupin's variational principle in 4.29. The complementary 
primal Lagrangian is defined by

L (B) = - iJj(B) + <G , B> (4.31)cp
so that

~'(B) = - / R cp dR + [ Q h n*B]sh (4.32)
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4.4.2 Dual formulations

If A, B, and H are constrained to satisfy eqns. 4.21, 
4.22, and 4.23, then the correct solution to the dual set 
must satisfy

0 = <curl H - J , 6A>r - [n><H - h , 6A ]

for arbitrary infinitesimal variations 6A. Applying 
a vector identity and the divergence theorem :

0 = <H , 6 (curl A )> - <J , 6A> + [n x H , 6A]CK. i\ o
+ [h , <5A]Sh - [n x h  , 6A]Sh

Substituting for H from 4.21, for curl A from 4.22, for S 
from 4.12, and for nxA|g^ from 4.23 :

0 = <vB , 6b >r - <J , 6A>r + [h , 6A]Sh

This is equivalent to

0 = 6E"(A,B) (4.33)
where

H"(A,B) = V(B) - <J , A>r + [h , A]Sh (4.34)

H" is the standard dual functional corresponding to 
Hamilton's variational principle in 4.33. The standard 
dual Lagrangian is defined by

Lsd(A,B) = \p(B) - <J , A> (4.35)

so that

H”(A,B) = / Lsd dR + [h , A]Sh (4.36)
R

Alternatively, if B and H are constrained to satisfy 
eqns. 4.19, 4.20, and 4.21, then the correct solution to 
the dual set must satisfy

0 = <curl A + C - B , 6H>r - [ n x a - , 5H]

for arbitrary infinitesimal variations 6H. Applying 
a vector identity and the divergence theorem :
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0 = - <B , 6H>r + <C , 6H>r + <A , 6 (curl H)>R + [nxA , 6H]g
+ [ab , 6H]S b - [nxA f 6H]Sb

Substituting for B from 4.21, for curl H from 4.19, for S 
from 4.12, and for nxHls^ from 4.20 :

0 = - <UH , 6H>r + <C , 6H>r + [ab , <$H]Sb

This is equivalent to

0 = 50"(H) (4.37)
where

0"(H) = X (H ) - <C , H>r - [ab , H ]Sb (4.38)

0 " is the complementary dual functional corresponding to 
Toupin's variational principle in 4.37. The complementary 
dual Lagrangian is defined by

Lcd(H) = - x(H) + <C , H> (4.39)

so that

0"(H) = - / Lcd dR - [ab , H]Sb (4.40)
R

4.5 Direct integration

4.5.1 Primal formulations

Direct integration of the primal set of canonical 
equations, 4.13-17, yields the Hu-Washizu functional£t*5' 7

IIp (ft,H,B) = -i<Vfi,B>R -i<H,B>R +<G,B>R +i[^,n-Bfeh -[^h ,n«Bfeh 
+ i<yH-B,H>R
+ ̂<V*B,fi>R +[b,fij5b (4.41)

np is stationary at the correct solution to the primal set:

6JIP 0 (4.42)
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If Q ,  H, and B are constrained to satisfy eqns. 4.13,
4.14, and 4.15, II reduces top
n = 0' = £<v -b ,«>r -<p,n>R + [b,nfeb + 1 <g , b >r

Applying a vector identity and the divergence theorem, and 
substituting from eqns. 4.13 and 4.15 into the result :

0 1 (Q ,H ) = i<lJH , H>r - <p , n>R + [b , fi]Sfa (4.43)

0' is the standard primal functional. The variational 
principle is given by eqn. 4.42, which now becomes

60'(fi,H) = 0  (4.44)

Alternatively, if H and B are constrained to satisfy 
eqns. 4.15, 4.16, and 4.17, II reduces to

np = - s '  = - i < v - B , n > R + i  [ fi /H *b ] s

- ?<V £2 ,B^ - i<vB,B^ + <G,B^ - [S2h /n*B]Sh

Applying a vector identity and the divergence theorem :

H'(B) = i<vB , B>R - <G , B>r + [Qh , n*B]Sh (4.45)

H ' is the complementary primal functional. The variational 
principle is given by eqn. 4.42, which now becomes

65'(B) = 0  (4.46)

4.5.2 Dual formulations

Direct integration of the dual set of canonical 
equations, 4.19-23, yields the Hu-Washizu functional1+*5' 7

nd (A,B,H) = 1<Vx h ,A>r -<J,A>r --HnxH,A]Sh + [h,A]s
+ -2 <vB-H, B> (4.47)

R
+ ̂ <VxA,H>r -£<B,H>r + <C,H>r -^[nxA,H]Sb + [ab ,H]Sb 

nd is stationary at the correct solution to the dual set :

6 IK = 0 d (4.48
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If A, B, and H are constrained to satisfy eqns. 4.21,
4.22, and 4.23, II , reduces tod
nd = H" = i<V*H,A>R - <J,A>R + [h,A]Sh + i<C,H>R -i[nxH,A]g

Applying a vector identity and the divergence theorem, and 
substituting from eqns. 4.21 and 4.22 into the result :

E"(A,B) = |<vB , B>r - <J , A>r + [h , A]Sh (4.49)

S" is the standard dual functional. The variational 
principle is given by eqn. 4.48, which now becomes

6E"(A,B) = 0 (4.50)

Alternatively, if B and H are constrained to satisfy 
eqns. 4.19, 4.20, and 4.21, II ̂ reduces to

= -0" = - |<VxH,A>r + i[n*H,A]g
+ i<VxA,H>R - i<H,uH>R + <C,H>r + [ab ,H]Sb

Applying a vector identity and the divergence theorem :

0"(H) = i<yH , H>r - <C , H>r - [ab , H]Sb (4.51)

0" is the complementary dual functional. The variational 
principle is given by eqn. 4.48, which now becomes

60"(H) = 0 (4.52)

4.6 Overview

The derivation of complementary variational principles 
in sec. 4.4 follows Hammond's approach^. He develops the 
theory in mechanics, and transports it into electromagnetism, 
always emphasising physical implications and highlighting 
analogies. He allows non-linear constitutive relationships 
for a restricted class of non-linearities4*8; the restric
tions are consistent with those of sec. 2.2. It is to be 
noted that Hammond uses the term 'dual' in the sense that 
'complementary' is used in this thesis.
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The derivation in sec. 4.5 is the electromagnetic 
interpretation of Fraser's approach*1*5. He uses abstract 
operators and functional analysis to develop a formal 
theory that encompasses a number of engineering field 
problems. He also constructs formal Tonti diagrams to 
describe the primal and dual system structures and the 
inter-relationships between them; the structures shown in 
figures 3.1 and 3.3 are, in fact, informal versions of 
these. Fraser does not allude to the restrictions on the 
constitutive relationship in sec. 2 .2 ; he does, however, 
require the constitutive operator to be self-adjoint.

We shall compare the functionals derived by the 
various approaches for a particular application of the 
problem described in sec. 4.3 : we require each of and 

to be simply-connected, and thus obtain the problem 
described in sec. 3.6. The error-based derivations of 
section 3.6 are then directly comparable with the deri
vations of sections 4.4 and 4.5. We note that the primal 
statement of the problem employs the H-system scalar poten
tial Q  as in sec. 3.6.2, while the dual statement employs 
the B-system vector potential A as in sec. 3.6.3. The com
parison reveals complete agreement between the respective 
functionals of sections 3.6 and 4.4. However, agreement 
with the functionals of sec. 4.5 are restricted to the 
linear case where X(H) and y(B) simplify to

X (H ) = ^<uH , H>r and ¥(B) = ^<vB , B>R (4.53)

This indicates that the Hu-Washizu functionals in eqns.
4.41 and 4.47 are defined for linear constitutive relation
ships. The integration can, in fact, be extended to allow 
non-linearities that subscribe to property 2 of sec. 2 .2 ; 
agreement with the other approaches would then be complete.

Having established equivalence for the simple problem 
of sec. 3.6, let us now examine the general problem of 
sec. 4.3. Both primal and dual statements of the problem 
satisfy the uniqueness requirements of sec. 3.4.1, but 
neither statement exhausts their possibilities : the field
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discontinuities of spec. 3 are excluded, and boundary con
ditions are restricted to a particular sub-set of those 
allowed by spec. 4 (see sec. 3.4.2). Moreover, both state
ments are given directly in terms of potentials, which 
further restricts the physical specifications and geometry 
of the problem, especially since potential discontinuities 
are excluded. A careful reading of sections 3.4.3 and 
3.4.4, which show how the physical specifications on the 
fields partially constrain the potentials, reveals that the 
reverse process of specifying the potentials, as in sec.
4.3, imposes a number of implicit restrictions on the 
physical specifications. We illustrate by showing that the 
primal and dual statements of sec. 4.3 are not, in general, 
equivalent. This follows immediately from noting that 
while eqn. 4.14 can imply eqn. 4.20, the reverse is not 
true, i.e. eqn. 4.20 does not imply 4.14. Similarly for 
eqns. 4.17 and 4.23. It is evident from eqns. 3.52 and 3.53 
that the primal and dual statements specify, respectively, 
the motive force at, and the flux through, every simply- 
connected sub-section of S^. These specifications are not 
generally equivalent, and hence describe physically 
different problems. The distinction becomes trivial in 
special cases, such as the problem of sec. 3.6 (see eqn.
3.85 and related text).

We can therefore conclude that the problem statements 
of sec. 4.3 describe a particular class of specification of 
the static electromagnetic problem of sec. 3.4.1, and not 
the general problem itself. It follows that the expressions 
for the complementary functionals derived in sections 4.4 
and 4.5 are not universally applicable : they are
restricted to that particular class.

The constitutive error approach extends the theory of 
complementary variational principles to the general static 
electromagnetic problem of sec. 3.4.1, establishing, in the 
process, its limitations; sec. 4.2. Moreover, it starts 
from a physical specification of the problem in terms of 
fields, and views potentials as tools of implementation; 
sections 3.4.3 and 3.4.4.
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While it does not attempt to derive universal 
expressions for the complementary functionals, the proposed 
approach does establish a universal expression for the 
constitutive error, together with the conditions that allow 
it to split into complementary functionals. The solution 
process is viewed as one of minimising the constitutive 
error, with both fields constrained to satisfy their 
respective system specifications; the minimisation 
effectively imposes the constitutive relationship, thus 
completing the requirements of uniqueness.

In contrast, the derivations of sections 4.4 and 4.5 
restrict the range of problem specifications, and derive 
the expressions for the corresponding complementary 
functionals directly. The solution for either field is 
viewed as a process of extremising the corresponding 
functional, with the field constrained to satisfy its own 
system canonical equations as well as the constitutive 
relationship; the extremisation effectively imposes the 
canonical equations of the complementary system, thus 
completing the requirements of uniqueness.

In exact analysis that enforces the constitutive 
relationship, for example sections 4.4 and 4.5, the 
constitutive error is identically zero, and hence invisible 
to the analysis. But according to eqn. 4.2, the error is 
the difference between the complementary functionals

A = 0 - (-E) = E - (-0) (4.54)

In retrospect, it is possible to state that irrespective of 
the approach actually used to derive the complementary 
functionals, the difference between them is, in effect, the 
constitutive error as defined in Chapter two.

For completeness, Appendix G determines the relation
ship between the constitutive error A and the Lagrangians 
of analytical mechanics, sec. 4.4, and between A and the 
Hu-Washizu functionals of elasticity, sec. 4.5.
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C H A P T E R  F I V E

Numerical Solution

5.1 Introduction

The practical solution of a given physical problem 
generally involves two distinct sets of assumptions : the
first set approximates the actual problem by a simplified 
model, and the second set restricts the solution fields to 
mathematically manageable forms. Analytic solutions attempt 
simple models, and do without restrictions. Numerical 
solutions can treat highly accurate models by introducing 
a variety of restrictions. The constitutive error approach 
is especially suited to numerical solution because it 
acknowledges, at the outset, numerical errors; the solution 
is then viewed as a process of minimising a global estimate 
of error.

The numerical restrictions on the solution fields are 
not part of the essential physical specifications of the 
problem. They are, therefore, an over-specification.
Section 5.2 examines them, together with other inessential 
constraints, from the viewpoint of the constitutive error 
approach.

Sec. 5.3 presents three established, and widely used, 
numerical techniques as alternative implementations of the 
variational error-based approach. The presentation 
attempts to highlight common characteristics, as well as 
distinguishing features.
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5.2 Over-specification

The solution of a physical problem is the process of 
imposing the unique problem specifications on the fields.
In the error-based approach, the fields are constrained to 
satisfy Maxwell's equations, continuity conditions, and 
boundary conditions; minimising the constitutive error then 
imposes the constitutive relationship.

It is always possible to impose additional constraints 
on the fields during minimisation; such constraints 
effectively over-specify the fields, the essential, 
physical, constraints being sufficient to determine the 
unique solution. The following sub-sections examine, and 
attempt to classify, over-specifications that are commonly 
used, often implicitly, in numerical analysis.

5.2.1 Numerical over-specification

Analytic solutions that do not restrict the space 
variation of the trial fields are mathematically intractable 
for problems whose physical specifications, geometries in 
particular, are not essentially simple. The alternative is 
to restrict the field and potential distributions to forms 
that can be handled with relative ease, and acknowledge the 
resulting error. This is the essence of numerical 
techniques, as well as methods involving truncated series.

The error arises from the fact that the true field 
distributions are not, in general, describable by the chosen 
trial functions. The minimisation process cannot be guaran
teed to yield zero constitutive error as in eqn. 2 .1 2 b (or 
3.70b). However, according to ineq. 2.12a (or 3.70a), the 
error is universally positive, i.e. for any estimate of the 
solution fields. As the solution is actually an error 
minimising process, its outcome is the particular distribu
tion, in the chosen restricted class, having the minimum 
constitutive error.
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5.2.2 Redundant over-specification

Explicit imposition of the constitutive relationship 
on the fields, in all or part of the problem region, prior 
to the minimisation of the error, constitutes a redundant 
over-specification. The redundancy arises from the fact 
that the minimisation seeks to impose the same relationship 
on the fields. If the fields are constrained in this way 
everywhere, minimisation becomes meaningless because the 
error is zero to begin with.

In closed-form analysis, this type of over-specification 
can be introduced at any stage, in the knowledge that the 
solution fields satisfy the constitutive relationship 
exactly; this results in alternative, but entirely equiva
lent, formulations. In numerical analysis, on the other 
hand, redundant over-specification has a distinct, possibly 
adverse, effect on accuracy. We illustrate by means of 
boundary conditions, natural and forced.

In sec. 3.4.2, eqns. 3.36 and 3.37, we defined 
boundary sub-sections and Sj-, thus

n x H = h on and n • B = b onSj-, (5.1)

where h and b are given in the physical specifications of 
the problem. Exact minimisation of the constitutive error 
yields field distributions that satisfy, among other things,

n x vB = h on and n • pH = b on (5.2)

The fields resulting from a numerical solution, on the 
other hand, satisfy 5.2 only approximately, so that

n x vB - h on Sh and n • yH - b on (5.3)

Eqns. 5.1 describe forced boundary conditions on h |s^ an<̂  
B|s^; eqns. 5.2 and 5.3 describe natural boundary conditions

2^. Forcing 5.2 a priori amounts to 
a redundant over-specification as described above. Clearly, 
it does not alter the results, but only anticipates them, 
in an exact solution. It does, however, alter the outcome

on B|s an<̂  Hi
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of a numerical solution which, otherwise, would produce 
5.3. But the unconstrained solution also produces the 
minimum global constitutive error for the chosen numerical 
over-specifications, sec. 5.2.1; constraining the fields as 
in eqns. 5.2 will certainly increase the global error. We 
can thus conclude that forcing natural boundary conditions 
a priori in a numerical solution trades global accuracy, in 
terms of the constitutive error, for local accuracy on 
boundary sections and S^. This conclusion can be gene
ralised to all forms of redundant over-specification.

5.2.3 Inconsistent specification

In general, any additional constraints and specifica
tions that are introduced must be consistent with the 
essential physical specifications; otherwise, the problem 
actually solved will be different from the one originally 
posed, and the solution will diverge from the correct, 
unique one. The distinction between consistent over
specifications (eg. numerical) and inconsistent specifica
tions of any form is of particular significance to the 
present error-based approach : all effects of the former 
are accounted for in the constitutive error, while the 
latter are entirely invisible to it. We illustrate by an 
extreme, if trivial, example. Inspection of eqns. 2.8-11 
immediately reveals that the constitutive error is iden
tically zero if the medium is non-hysteretic, and the H and 
B field distributions are identically zero everywhere. The 
fact that the error is zero means that the fields satisfy 
the constitutive relationship which, in fact, they do. But 
such null distributions violate the essential specifications 
of any non-trivial problem; they are therefore inconsis
tently specified, and the constitutive error cannot provide 
an estimate of the inaccuracy involved.

Inconsistent specifications do arise in practice. In 
all the various forms they can take, they are, in general, 
justified by the need to simplify the solution process. In 
fact, the simplified approximate model mentioned in sec. 5.1
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involves inconsistent specification because it is different 
from the actual physical problem. The inaccuracy incurred 
by the approximation is not included in the constitutive 
error. The latter provides a comprehensive measure of 
inaccuracies resulting from consistent over-specifications 
only; alternatively, it can be viewed as a measure of the 
error in the approximate model, rather than the original 
physical problem.

5.3 Numerical techniques

Numerical solution methods represent the trial fields 
as prescribed space functions of a finite number of unknown 
parameters u^, i=1,..,n. Substituting such numerically 
over-specified fields into the constitutive error A(H,B), 
we can write

A = A ( u 1 , u 2 , ---- , Ur ) ( 5 . 4 )

According to sec. 3.5, the correct solution minimises the 
global constitutive error, so that

0 = 6A (5.5)

Recalling eqn. 2.16, we can substitute from 5.4 into 5.5 :

° = l f£. <5ui (5.6)
i i

If a particular u^ is unconstrained, its variation 6u^ is 
free, and we must have

0 = I49 u -i (5.7)

Clearly, there are as many equations of the form of 5.7 as 
there are free variables. Solving these simultaneously 
determines the unknown parameters u-̂ , and solves eqns. 5.6 
and 5.5. The numerical procedure thus replaces the original 
infinite degrees of freedom by a finite number of unknown 
parameters5*1. The universal variational principle of eqn. 
5.5 can then be used to determine the values of the para
meters for which the constitutive error is minimum.
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The decomposition of A into H- and B-system functionals, 
0 and E in sections 3.5 and 4.2, allows us to write

a = 0 («1 ,n2 , , ̂  — (A ̂ / ~ 2  f * * * f ~M ̂ (5.8)

where and are the unknown parameters of the H- and 
B-systems, respectively; in this work, they are the 
potentials at preselected points, or nodes, in space. The 
split functionals are extremised as in eqns. 3.78 and 3.79 :

and

0 = 60 = l an. 6Qi1  1

o = SE = l  l 9E <$A.3A. iq
j q iq

(5.9)

(5.10)

where the subscript q refers to a particular space component 
of A^. Thus, for nodal potentials having free variations, 
we must have

and

0 = !£ u d n 1
(5.11 )

(5.12)

As before, there are as many equations as there are free 
variables. 5.11 and 5.12 define two sets of simultaneous 
equations, one for each system. The two sets can be solved 
independently of each other to determine the H-system para
meters, nj_, and the B-system parameters, Ajg.

It is usual, although not strictly necessary, to 
associate the unknown parameters, and the corresponding 
prescribed space functions, with some form of discretisation 
of the region of the problem R. In the following sub
sections we shall consider three common forms of discreti
sation. In all three cases, R is divided into a number, 
say m, of non-overlapping sub-regions

R = R^ U R2 U . . . U R^ with R^n R^ = 0 for i*j
(5.13)

which allows global integrations to be obtained as sums of 
sub-region contributions.
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5.3.1 The finite difference method

The finite difference method superimposes a 
grid over the region of the problem. The unknown parameters 
are the potentials at grid intersections, or nodes. We 
shall illustrate the derivations for a two-dimensional 
region using a rectangular grid; extension to three dimen
sions and/or other types of grid is straightforward, if 
cumbersome.

Fig. 5.1 shows the grid in the region surrounding 
node 0. We stipulate that boundaries, cuts, discontinuities, 
and material interfaces coincide with grid lines, so that, 
within each mesh, potentials and fields are continuous, and 
source densities and material properties are uniform.

Along grid lines, the potentials are taken to vary 
linearly between their nodal values. Thus, along the 
x-directed segment 0 - 1

B = fio t T f (r,1 ' 8ol => |f = H 1 (nl ' no ) (5.14a)
and

A = Ao +!Li:[ r (Ai' Ao> => f £ “ 5 1 (Ai " A° ) <5-i4b>

6 2
mesh 3

3 0

mesh 4

mesh 2 h*
x

1 a 1 b

— — — mesh 1 -- ------
1 c

h-

1 d

Fig. 5.1 Finite difference grid module.



87

Similarly, along the y-directed segment 4-0

and

It is noted that A = Aaz , the analysis being two-dimensional.

No specific definition is given to the space variation 
of the potentials within the meshes. However, the space 
derivatives along each grid line are attributed also to 
the two adjoining half-mesh strips.

The fields H and B, and hence the pre-specified fields 
G and C, have only x- and y-components in two-dimensional 
analysis. We shall take G and C to vary linearly within 
meshes; thus, for mesh 1 of fig. 5.1, we define

f y - y 0 _  X1 r x-xn
[bo1 h 4 b48~bo1 a + —x Cj . + 7 (GQ1 -b 1 )[ 4o h-| 81 4o J

and (5.15)
( x-x0/^ r y-y0/^ %C. + -v ~ C Q1 -C.4o h-| 81 4o Ja + —x [ 01 h4 '^48 0 1 ' j

G^j and C-̂ j are pre-defined constant vectors associated with 
grid segment ij; they are, respectively, parallel and normal 
to the segment ij, always in the sense of the positive x- 
and y-axis directions. Recalling eqns. 3.40b and 3.41b, 
these vectors must satisfy, in mesh 1 ,

j -j - V x G  = ((Gqi -G40 )/h'| + (G48 - Gq -j ) /I14) az
and (5.16)

P '1 = V • C = (C81 - C 4o )/h1 - (C48 -Co 1 )/h4

or, equivalently,

1*1 - h-|h4J-| = oG/d^ - h-^G4Q + t̂ Gg-] - h-|G0-| - h4G4Q
and (5.17)

Q 1 = h 1 h4P1 = <j>C*dS = h4C81 +h-|Co1 - h 4C40 -h-|C4 8 
1

and are, respectively, the vector and scalar source
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densities in mesh 1. With reference to the surface integral 
in 5.17, it is noted that unit length has been assumed in 
the z direction.

Having defined the potential derivatives and pre
specified fields within the individual meshes, we can 
obtain the fields from eqns. 3.40a and 3.41a, which are

and
H = G - grad ft 

B = C + curl A

(5.18a)

(5.18b)

The resulting components of H and B are listed in table 5.1 
for the four quadrants of mesh 1, shown in fig. 5.1.

Mesh quadrants
1 a 1 b 1 c 1 d

Hx Gx- (ft 1 ~fto) /h-j Gx- ( ftg—ft4 ) /h-| Gx- ( ftg-ft4 ) /h-j

hy Gy—(fto-ft4 )/^4 Gy-(fti-ftg)/h4 Gy— ( ft0 ~ft4 ) /b-4 Gy-(ft̂ -ftg)/h4

Bx Cx+ ( Aq —A4 ) /I14 Cx+ (A-| -Aq ) /h4 Cx+ (Aq —A4)/h4 Cx+(Ai-Ag)/h4

By Cy- (A-| -A0 ) /ĥ i Cy- (A-| -A0 ) /h-| Cy-(Ag-A4)/h1 Cy-(A8-A4)/h1

Table 5.1 Field components in mesh 1, fig. 5.1; Gx , Gy, 
Cx , and Cy as defined in eqns. 5.15.

The constitutive error in mesh 1, , can now be
defined by substituting the fields of table 5.1 into 
eqn. 2.16

A1 <X<D
Jmesh 1

+ iMB) £ ( H , B ) ) dR (5.19)

In a similar fashion, the fields and constitutive errors 
can be defined in all meshes of the discretisation. The 
meshes correspond to the sub-regions of eqn. 5.13, and the 
global constitutive error A can be obtained as the sum 
of the individual mesh errors

A = l Ak (5.20)
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According to eqn. 5.7, if is unconstrained, we must have

0 3_A _ y 3Ak
3ft0  ̂ 3£30 (5.21a)

and if A is unconstrained o

0 3_A _ Y
3Aq 1 3A0 (5.21b)

Eqns. 5.21 provide the rule for constructing the solution 
equations : the derivatives are determined for each mesh,
and summed for all meshes to yield the solution equations 
corresponding to node 0. However, it is only in the four 
meshes immediately adjoining node 0 that the fields are 
functions of the potentials at 0 , making the derivatives of 
5.21 identically zero for other meshes. Therefore, only 
the contributions of meshes 1, 2, 3, and 4 of fig. 5.1 need 
be considered for the solution equations corresponding to 
node 0. As a sample, let us determine the contribution 
from mesh 1. Assuming isotropic and non-hysteretic material 
properties, and noting eqn. 5.19, we can write

and

3 Ai 3H
3^ o >1 " <1 ,

3H
dQ(

3 Ai
3A 0 = <V1  '

3B
3A 0 >1

ElVi 3B
3A«

(5.22a)

(5.22b)

Substituting for the fields from table 5.1, and performing 
the algebra, we eventually find

3 A-
dti,

and
3 A- 
3a]

U 1
2h 1 h4 

U 1
+ 8

1
+ 4

1 A„ - A .2 [ 1 4 J(hl2+h|)S2o - h ^ 1 -h*Q4

h4 (3GQi + G48) - h'|(3G4o + G8-| ) 

h1(co1 + c48) ~ h4 (C4o + C8 1 ) (5.23a)

v<| r
2h 1 h4

vi
+ 8

1
4

(h^+h^)A - h^A. - h*A.1 4 o 4 1 1 4 Q 4 *j

h-|(3C4o + C81 ) + h4 (3C0 -j + C48) 

h 1 Ĝo 1 + G48^ + h4^G4o + G81) (5.23b)
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Similar expressions can be derived for the contributions of 
the remaining meshes in fig. 5.1. Adding the contributions 
in accordance with eqns. 5.21 , simplifying, and substituting 
from eqn. 5.17 (and its counterparts for other meshes) into 
the result, we finally get the finite difference equations :

0 = i (u-i 341 + U2S12 + y3$23 + ̂ 3 4 ^ 0

“ H u i a 4i + U2a21) ̂ 1 “ M u 2 a12 + lJ3a32) ̂ 2
- i (U3a23 + U4a43) ̂ 3 - M u 4 a34 + U1 a-| 4) ̂ 4 
-4(0-1 + 02 + 03 + Q4)
-  -  (y-| ĥ i ( 3G4o +G81 ) -  y-| h 4 ( 3Go1 +G48 ) -  U2h 2 ( 3 Go1 +G25 )

-  U2 h1 ( 3Go 2 + G1 5)  “  h 3 h 3 ( 3 GQ2 +G3 5 ) + U3 I12 ( 3 G3 0 +G82 ) 

+ y 4h 4 ( 3 G 3 o +G7 4 ) + M4h 3 ( 3 G 4o +G7 3 ))  , c o 4

0 = i (v-| 3 4 -| + ^ 2 ^ 1 2  + v 3 ^ 2 3  + v 4 $ 3 4 ) Ao

-  h ( v i  a 4 -| + ^ 2 a 21 ) A1 "  i ( v 2 a 1 2 + v 3 a 3 2 )  A2

- 2 (V3 a23 + v4a43) A 3 - \  (v4a3 4 + v-| a-j 4) A4

- i(l1 + I2 + I3 + I4)
- }(-v1 h 1 (3C4o +C81 ) - v-)h4 (3Co 1 +C48) - V2h2 ( 3Co1 +C2 5 )

+ v2h 1 ( 3 C o 2 + C - ] 5 ) + v3h3 ( 3Co 2 +C36 ) + v3h2 ( 3C3 o+C62 ) 
+ v4h4 (3C3o+Cy4) - v4h3 (3C4o+Cy3 )) /n 24b)

Eqns. 5.24 are the standard five-point finite 
difference equations5*2'3, with pre-specified fields included. 
Similar equations can be written for all nodes to set up the 
solution matrices. Boundary conditions and discontinuities 
are forced explicitly on their own system variables, and 
naturally, via C(H,B) in eqn. 5.19, on the complementary 
system solution.

A characteristic feature of the finite difference 
method is the absence of a specific definition for the space 
variation of the potentials within the volume of the mesh.

and

where
a .. = h./h. and iD I D
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One consequence is that the derivation resorted to the error 
equation 5.7, rather than the split functional equations 
5.11 and 5.12; the latter would involve the volume integrals 
<ft , p>^ and <J , A>^, eg. eqns. 3.96 and 3.107. (It is noted 
that the decomposition is complete in eqns. 5.24; the 
complementary potentials, A^ in 5.23a and ft̂  in 5.23b, 
cancel out upon adding the contributions of the four 
meshes.) A more serious consequence is the rather arbitrary 
definition of fields within meshes, table 5.1 : while the 
continuity of n xH and n • B is forced across grid lines, 
unspecified discontinuities arise on the interfaces between 
mesh quadrants, shown dotted in fig. 5.1. Such discontinui
ties amount to sheet sources, eqns. 3.20 and 3.21, and 
violate spec. 3 of sec. 3.4.1, which requires sheet sources 
to be pre-specified. However, it can be easily verified 
that the vertical and horizontal sources cancel out within 
the individual meshes, and are thus invisible to the global 
formulation. The sheet sources can be eliminated entirely 
by allowing the potential derivatives to vary linearly, 
across the mesh, between their values at opposing edges; 
this would introduce the corner potentials at nodes 5, 6 ,
7, and 8 into the equations for node 0 , resulting in nine- 
point finite difference equations.

5.3.2 The finite element method

The finite element process involves (i) replacement of 
the infinite degrees of freedom by a finite number of para
meters, eqns. 5.4-12, and (di) division of the problem region 
into sub-regions, eqn. 5.13, called finite elements5>1'4. We 
shall find it advantageous to begin by considering item (i) 
alone at first.

The numerical over-specification is effected by 
restricting the potential trial distributions to product 
sums of the form

N
ft (r ) = £ ft . a . (r ) 

i=l 1 1
(5.25a)
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A(r) = l  l a A. 6 .(r) (5.25b)
j=l q q 3

where N nodes have been defined for the H-system, and M 
nodes for the B-system; and Aj are the nodal potentials;

and 3j are the corresponding prescribed space functions; 
q indicates the components of Aj , and aq is a unit vector.
As defined, a and 3 are dimensionless, with (r.i ) = 3 j (r j ) =1 ;
in conjunction with their corresponding nodal potentials in 
eqns. 5.25, they must ensure that ft(r) and A(r) satisfy the 
physical specifications of the problem. This implies, 
among other things, that a and 3 are piecewise differen
tiable in R, so that substitution from eqns. 5.25 into 
eqns. 3.40a and 3.41a yields

and

for

H(r) = G (r ) -  l Va-^r)

B(r) = C (r ) ~  l  l Ajq aq xV3j(r)
j  q

the numerically over-specified fields.

(5.26a)

(5.26b)

We shall now use the constrained potentials and fields 
to formulate the complementary solutions for the problem of 
sec. 3.6. H- and B-system functionals are given in eqns. 
3.96 and 3.107 :

0'(ft,H) = X (H ) - <Q , p>R + [fl , b]Sb (5.27a)
and

S"(A,B) = Y(B) - <J , A>r + [h , A ]gh (5.27b)

In general, the functionals 0' and 5" are not strictly 
complementary : they do not necessarily satisfy eqns. 4.2 
and 4.6 because they represent dual formulations. The 
strict complements of 0 * and 5 " are 5 ' and 0 ", given, res
pectively, in eqns. 3.94 and 3.102. However, if the problem 
is well-posed, and the same solvability specifications are 
imposed on the corresponding potentials in primal (ft-based) 
and dual (A-based) formulations, we must have

60 60” and 6r.' 65" (5.28)
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so that
60' + 6H ' = 60" + 65" = 60' + 65" (5.29)

Eqns. 5.28 and 5.29 arise from the uniqueness of solutions; 
they imply that any differences between dual functionals,
O' and 0", or 5' and E", are pre-specified and therefore 
have zero variations. The validity of 5.28 and 5.29 can be 
demonstrated by substitution of the expressions for the 
various functionals. In any case, the constitutive error 
is computable for any pair of estimates, H(r) and B(r), 
irrespective of the manner by which they are obtained, eqn. 
3.71. Moreover, the variational principles of eqns. 5.9 
and 5.10 remain valid; to apply them, we need the variations 
of 0' and 5" in eqns. 5.27 :

60' = <U(H)H + Br f 6H>r - <p , 6ft>R + [b , 6ft]gb (5.30a)
and

65" = <v(B)B + Hc , 6B>r - <J , 6a >r + [h , 6a ]Sh (5.30b)

The variations of fields and potentials are obtainable from 
eqns. 5.25 and 5.26 where, with the exception of the nodal 
potentials, all terms are pre-specified and hence have zero 
variations. Substituting, moreover, for the fields from 
5.26, and taking the spatially invariant nodal potentials 
out from the volume and surface integrals, we find

where
60' = li

I SH .
j 1 3

ft. - D

SH . = <U(H) Va. , <] p VID D l .
t hi = <u(H)G + B , —r Va. > i

(5.31a)

and
65" = T l 6A. { I  I SB . A. - TD }. L iqL h  L in]n ip iqJ l q D P  9 P

,B

where
SB .
^ P <v(B) (ap x V8j ) , ^q x V ^i>R

(5.31b)

,B
'iq = <v(B)C+Hc , a xVB > + ‘ [̂ ' ^ q ei ]Sh
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Recalling eqns. 5.9-12, the solution equation for each 
unconstrained potential is

30'
38.i

8 (5.32a)

and for each unconstrained potential components A^ it is
35"
3A.iq

=  l  l S? . A. - T? = 0  
j p xq3p iq

(5.32b)

The forms of eqns. 5.32 are general for the trial 
functions of eqns. 5.25; the definitions of their terms in 
5.31 apply to the particular problem where the functionals 
are as given in 5.27. The definitions for problems with 
different specifications can be obtained by the same pro
cedure, once the H- and B-system functionals have been 
extracted from the universal constitutive error. In 
general, the decomposition introduces complementary 
boundary and continuity conditions naturally.

The finite element method is a computationally 
convenient implementation of the above procedure. The 
overall region R is divided into sub-regions, called 
elements, as in 5.13; moreover, the space functions ou(r) 
and 3^(r) in eqns. 5.25, now called element shape functions, 
are defined in a piecewise manner over the individual 
elements. Thus

ai (£) e / \= a-L (r) for r a re (5. 33a)

3j (r) = 3j(r) for r e  re (5. 33b)

where re refers to points lying in element e. In 
particular, the method stipulates that

0 = aĵ (r) = 3k(r) for Hk $  — e  (5.34)

so that the trial potential distribution within a given 
element is independent of nodal potentials that do not 
themselves lie in the element. Thus, within each element, 
the summations in eqns. 5.25 need not cover all nodes in R, 
N and M, but only those lying in that element.
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The discretisation of R into finite elements means 
that the volume and surface integrals in 5.31 can be 
obtained by summing element contributions; moreover, 
according to eqns. 5.33 and 5.34, the contributions are 
zero for elements that do not include node i of eqns. 5.31. 
This further implies that the coefficient S^j is zero if 
nodes i and j share no elements.

The shape functions must allow the trial potential and 
field distributions, eqns. 3.25 and 3.26, to satisfy, as 
far as possible, the required problem specifications. It 
is generally possible to impose boundary and continuity 
conditions on n x h and n « B  exactly, provided the trial 
potential distributions on planar element facets are 
independent of nodal potentials not lying on that facet-*4; 
the established families of shape functions'can cater for 
most practical requirements 5*4' 5 .

5.3.3 The boundary integral method

Similar to the finite element method, the boundary 
integral method is an implementation of the general 
procedure that led to eqns. 5.11 and 5.12. The method is 
characterised by its treatment of linear sourceless sub- 
regions which avoids discretisation of their interiors.

Let R^ denote a linear sub-region of R that is free of 
internal volume and sheet source densities. It follows that 
the fields are continuous within Rî , eqns. 3.20 and 3.21, 
and that we can set the pre-specified fields G and C to 
zero, eqns. 3.40b and 3.41b; Maxwell's eqns. 3.18 and 3.19 
take the forms

V X H = o => H = - V Q (5.35a)

V • B = 0 => B = V x A (5.35b)

For any twice differentiable scalar w„(r) and vectorri
w_.(r), vector identities and the divergence theorem yield a
Green's theorem
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<fl,V‘UVwH >Rk-<wH ,V-uVn>Rk = [n,n*yVwH ]sk-[wH ,S(rs )]Sk
and (5.36)
<A,VxvVxwB>Rk-<wB ,VxuVxA>Rk = [A,nxvVxwB ]Sk+[wfi,F(rs )]Sk

where rg refers to points on S^f the surface enclosing R^, 
and

£(r ) = n*ijVj2 , F(r ) = nxvVxA (5.37)s s
The method over-specifies the fields in Rk to the extent 
that each satisfies the complementary system Maxwell 
equation; thus, noting eqns. 5.35,

and
0 = V x vB = V x vV x A 

0 = V • uH = - V • yV ft

(5.38a)

(5.38b)

The over-specification is imposed by substituting 5.38 into
5.36 to drop the corresponding terms. Moreover, w„ and wDri 13
are substituted for by suitable singularity functions for 
which we can write

ft (r') = nH (r' ) <(2(r) , V. • uVr wH<r,r'>>!*,< (5.39a)

A (r') = n2(r' q — a  — )<A(r) , V. x vVr x «^(r,r')>Rk (5.39b)

where r' refers to any point in R^, Ag is a particular
space component of A, and r|„ and r)2 are known functionsrl a
associated with wH and w^ respectively. Substituting from 
5.38 and 5.39 into 5.36, we get

ft(r') = nH (r') [ft(r) ,n*uV. wR (r,r' ) ] Skl ~ ]Sr
and (5.40)
Aq (r ' ) = rig(r ' ) [A(r) .nxvVrxw^(r,r' ) ]Sk + [w^(r,r' ) ,F(r) ]Sk

The numerical over-specification in R^ is restricted 
to the surface S^ where a number of nodes are defined and 
trial functions of the form of 5.25 are used for all four 
surface variables :

ft (rs) — £ ftiai ) r 5(rs )
and i

A(£s> = I A j 8 j (r s ) ,
j

E<£s >

l eiai(£s>i
I Fj6j(rs )
j

(5.41a)

(5.41b)
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where ft̂ , E , ^ , A j , and Fj are the values of the variables at 
node i; a|, aj, 3-] , and 3J are the corresponding prescribed 
space functions; as before, rs refers to points on Sk . 
Substituting the trial functions of eqns. 5.41 into 5.40, 
and rearranging, we get

and

I {^iai s ̂ t ̂ iai (£s ) r — * WH s  r —  s ̂  Sk li
= - I nH(^s) [?ja3^s) ' wH(£s'£s)]sk 

j
(5.4

I {Aiq3i(r^) - ng(r^)[Ai3i(rs ) , nxvV^w^f rs , r<L) ] S}J
= I ng(r^)[Fj3j(rs ) , w^(rs ,r^)]Sk

j
Applying eqns. 5.42 at a sufficient number of test points 
rg on Sk , the following matrix relationships can be 
constructed to link the nodal variables

[M ' ]{ft} = [M"]U} (5.43a)
and

[N ']{A} = [N"]{F} (5.43b)

where {S2} , {£}, (A), and {F} are column vectors listing, 
respectively, the nodal parameters , E,^, A^g, and Fiq? 
[M1], [M"]f [N 1], and [NM] are coefficient matrices whose 
elements are computed using eqns. 5.42; singularities arise 
where the integration point rs coincides with the test 
point r^ , but these are treatable5*4. By choosing as many 
test points as there are nodes, the coefficient matrices 
can be made square, providing an invertible relationship 
between the nodal potentials and the nodal values of their 
surface derivatives. It is important to note, however, 
that these relationships incorporate an inherent inconsis
tency resulting from treating the nodal derivatives E, and F 
as being independent of their respective potentials, ft and 
A, in the definition of the trial functions, eqns. 5.41 5*4 : 
with the variables in 5.40 represented by the trial func
tions of 5.41, the left hand sides cannot, in general, 
model the exact outcome of the computations on the right 
hand sides continuously over Sk . However, equality can be 
forced at a finite number of test points to produce 5.43.
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Now the contribution of sub-region Rk to the global 
constitutive error is given by

= Xk (H) + ¥k (B) - Zk (H,B) (5.44)

Substituting from eqns. 5.35 for the fields in Z^, eqn.
2.11, we get

Zk = - <Vft , B>Rk = <H , VxA>Rk (5.45)

Applying vector identities, recalling the absence of 
volume and sheet source densities, and using the divergence 
theorem, we get

Zk = - [ft , n-B]Sk = - [nXH , A]Sk (5.46)

In either form, the decomposition produces surface terms 
only; these are matched with similar terms contributed by 
adjacent sub-regions sharing Sĵ , or with specified boundary 
conditions if is part of S. The absence of volume terms 
in 5.46 is a direct consequence of the sourcelessness of R^.

Consider, next, and Substituting for the fields
from eqns. 5.35 into the linear forms of eqn. 4.53 :

Xk = ^<UH , H>Rk = % < \ i V Q  , Vft>Rk (5.47a)
and

\  = ^<v- ' ̂ R k  = ^<vVxA , VxA>Rk (5.47b)

Applying vector identities and the divergence theorem, and 
substituting from eqns. 5.37 and 5.38 into the result :

Xk = *[€ , n]Sk and \  = - i[F , A]Sk (5.48)

As only surface terms remain, we can substitute for all 
variables their numerically constrained forms in 5.41 :

and
X,

k

i l l
i j

- i l l  [A±6[(r )
i j

£.a'.'
J  D )]Sk

F. 3V(r 
- J  J “S

(5.49a)

(5.49b)

Using the column vectors defined with relation to eqns. 
5.43, we can rewrite eqns. 5.49 in the form
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Xk = Hfl}T[DH]{S} (5.50a)
and

\  = i{A}T[DB]{F} (5.50b)

where the superscript T indicates transposition. Using 
eqns. 5.43 to eliminate {£} and {F}, we finally get

Xk = H(2}T [DH ][M"r1[M' ]{fi} (5.51a)

\  A} ̂ [Dg] [N1] { a } (5.51b)

X]̂  and expressed here in terms of nodal potentials on
S^, go into the global system functionals 0 and 5 , respec
tively; the solution equations are then obtained using 
eqns. 5.11 and 5.12. The interior of is not discretised 
because the entire contribution of to A is in terms of 
the variables on S^, eqns. 5.46 and 5.51. Exact boundary 
and continuity conditions can be imposed by matching the 
trial functions on S^, eqns. 5.41, to the boundary con
ditions and/or the discretisation used in the regions 
surrounding R̂ ..

5.4 Conclusions

The error-based variational procedure of sec. 5.3 
applies to a number of established numerical methods. The 
various methods, characterised essentially by the numerical 
over-specifications they impose, result in solution equa
tions which can be put in a general, matrix, form

and
[sH]{n} - {TH} (5.52a)

[SB ]{A} - {TB} (5.52b)
{ft} and {A} are column vectors listing the nodal potentials. 
[SB ] and [SB ] are square coefficient matrices; they evolve 
from X (H ) and ^(B), respectively, and thus have standard 
forms in the various numerical methods. {TH} and {Tb} are 
forcing vectors; their composition depends on the specifi
cations of the particular problem being considered; see,
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for example, eqns. 5.31. The two vectors reflect the 
decomposition of Z(H,B) between the H- and B-systems, and 
thus are the mechanism by which the sources, continuity 
conditions, and boundary conditions of one system are 
imposed on the solution of the complementary system; sec.
5.2.2 argues for the natural imposition of continuity and 
boundary conditions in this way, as opposed to explicit 
imposition at the outset. {Th} and {Tb} also force own 
system sources in terms of the pre-specified fields G and C.

Solution of eqns. 5.52 yields the values of the nodal 
potentials, {ft} and {A}, which correspond to the minimum 
constitutive error for the numerical over-specifications 
used. Once the potentials have been determined, the corres
ponding field distributions can be estimated, and the 
constitutive error computed, locally as the error density A, 
and globally as the total error A. In fact, the error is 
computable for any pair of estimated field distributions,
H(r) and B(r), irrespective of the means used to make the 
estimates. There is no fundamental requirement that the 
solution methods used for the two systems should correspond 
to each other in any way; for example, the space functions 
and node numbers in eqns. 5.25 are not necessarily the same 
for the H- and B-systems.

The constitutive error, which is zero in an exact solu
tion, is attributable to the totality of over-specifications 
in a numerical solution. It is, moreover, a comprehensive 
measure of numerical error if the specifications are 
entirely consistent, sec. 5.2.3; accordingly, it can be used 
to assess the accuracy of the over-specifications, locally 
and globally5*6'7. The boundary integral method, sec. 5.3.3, 
provides an example of inconsistent specification where 
additional errors arise that are not accounted for by the 
constitutive error.

Solving either of the two complementary systems alone 
can be viewed as the minimisation of that system's contribu
tion to the constitutive error; however, the solution does
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not produce an estimate of the contribution. As defined in 
this work, the constitutive error resides in both systems 
together, being the sum of their individual errors relative 
to the true solution; both systems must therefore be solved 
if the error is to be determined. Chapters 6 and 7 give 
the errors resulting from complementary finite element 
solutions of a number of static problems.

The error cannot be used directly to assess either of 
the complementary solutions on its own, or to evaluate 
their comparative merits. Indirect schemes can, however, 
be devised. For example, the error may be viewed as an 
approximate, pessimistic estimate of either system error 
relative to the true solution. Alternatively, one solution 
may be retained as reference, with the error computed for 
different implementations of the complementary solution; 
the corresponding changes in the error then reflect the 
effects of the various implementations. This latter scheme 
is used in Chapter 8 to compare alternative definitions of 
the pre-specified fields in the H-solution : the same
B-solution is used with different definitions.
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C H A P T E R  S I X

Linear Applications

6.1 Introduction

This chapter presents complementary solutions to 
a number of static, linear, two-dimensional problems; 
numerical results are obtained by the finite element method 
The selection of problems and the presentation of results 
are intended to highlight the insight provided by the 
constitutive error approach. Particular aspects are empha
sised, including : generation of complementary functionals
especially with regard to boundary specifications; compa
rative behaviour of complementary solutions; distribution 
of discretisation errors; bounds on circuit parameters; etc

6.2 Two-dimensional simplification

According to section 3.4, the solution to a well-posed 
problem imposes the following relationships on the fields 
H and B :

B = u(H)H + —r t H = v (B ) B + He (6.1 )
J = curl H r p = div B (6.2)

K = nx AH on SA ; a = n • AB on (6.3)

h = n x H on Sh ; b = n • B on (6.4)

with, possibly, other boundary conditions, sec. 3.4.2. The 
constitutive error approach imposes eqns. 6.2-4 explicitly, 
and eqn. 6.1 weakly by minimising the error

A(H,B) = X (H ) + V(B) - Z(H,B) (6.5)
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Two-dimensional analysis is possible if sources, 
fields, geometry, and material properties are invariant in 
a particular direction, say the z-axis. The following 
equations then describe a consistent set of restrictions :

and
H = H a x—X + H a

y-y

J = J a z— z ; K = :

Surfaces of discontinuity, S
so that

on S A = n = n a — x—X
The bounding surface, S.  , is

S = Ss u Sp̂
where

on Sj : H = nxix
and

on Sp l n = ± az

B = B a + B a — x—x y—y (6.6)

a ; h = h a z— z ' — z— z (6.7)

, are parallel to the z-axis,

+ n a (6.8)y-y
composed of two main sections

(6.9a)

+ nyay (6.9b)

with n • B = 0 (6.9c)

In effect, the region R is a right cylinder; its length in 
the z-direction is taken to be unity.

The above restrictions are sufficient, but not strictly 
necessary, to extract a two-dimensional solution from the 
general, three-dimensional constitutive error A. They 
allow the potentials to be defined as follows :

with
H = G (x , y )

§ = GX—x +
and

with
B = C (x , y )

G = GX§-X +

The above definition

’y-y curl G = J

UUL i. ri \ A ̂ y / f c\ — n d 2

:yay ; div C = p

)f the vector potential A sat 
the following solvability requirements from sec. 3

(6.10a)

(6.10b)

(6.11a)

(6.11b)

isfies 
.4.4.2 :

and
div A = 0 • AA = 0 on (6.12a)

n • A = 0 on S$ t n x A = 0 on S0 (6.12b)



104

The remaining requirement on n x AA _ is problem-dependent.“ SAOn Sb sections of n x A  may be specified, which results 
in a consistent over-specification of A since n • A is also 
specified on S$, eqns. 6.12b.

6.3 Linear problems

In linear media, the constitutive relationship 
simplifies to

with
B = y H or H = v B

-1 -1 v = y or y = v

(6.13a) 

(6.13b)
The constitutive operators can vary with position, but are 
independent of the fields. They are, moreover, symmetric 
according to property 2 of sec. 2.2. In the examples, we 
shall consider isotropic media only.

Substituting from eqns. 6.13 into 2.8, x(H) and *P(B) 
simplify to

X(H) = i<yH , H> and i|j(B) = i<vB , B> (6.14)
The exact solution fields, H0 and B0 , satisfy the constitu
tive relationship 6.13a, so that substitution into 6.14 
yields

X<H0 > = 2<B0 ,H0> and iMB0 ) = ?<H0 ,B0> (6.15)

Recalling the definition of C(H,B) in eqn. 2.11, we find

X(H0 ) = iMB0 l = i?(H0 ,B0 ) = w (6.16a)

Integrating over the region R, we obtain the globals

X(H0 ) = Y(B0 ) = 2Z(H0 ,B0 ) = W (6.16b)

W denotes the exact energy, or co-energy, in magnetostatic 
and electrostatic applications, and half the exact power 
dissipation in current flow applications; w is the 
corresponding density distribution.
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6.4 Implementation

The examples are solved by the finite element method, 
a general description of which is given in sec. 5.3.2. The 
discretisation employs first-order triangular elements, 
with the potentials at the vertices as the unknowns; these 
elements are well-documented in the literature6*1'2, and will 
not be elaborated here. We only note that the shape 
functions yield constant potential derivatives, and hence 
fields, within the individual elements, and continuous n * H  
and n • B across element interfaces.

Software was developed on an LSI 11/23 with facilities 
for interactive colour graphics. The package is structured 
in distinct stages, fig. 6.1, and uses files to store and 
communicate data6*3'4. Mesh geometry 
is defined manually using MAGMESH, 
the interactive mesh-generating 
program in MAGNET-11 6*5'6 . The 
problem specifier assigns material 
properties, source distributions, 
boundary conditions, and

MAGMESH
mesh generator

Problem
specifier

Material
property
update

Matrix
assembler

I.C.C.G.
solver

Open-ended
postprocessor

potential discontinuities.
The solution matrices 
are formed in the 
matrix assembler, and 
inverted in the solver, |
independently for the two 
complementary solutions. The 
solver employs the incomplete 
Choleski-conjugate gradient method 
with Manteuffel shifts6*7'8; the 
program was made available by the 
electromagnetics group at the
Rutherford Appleton Laboratory. An auxiliary loop updates 
permeabilities and re-forms matrices in non-linear applica
tions. The geometry and solution files are finally fed into 
a special-purpose postprocessor that computes a range of 
relevant results, and produces colour graphic displays by 
means of QUARTO subroutines6*9.

Fig, 6.1 Program 
structure.



6.5 M a g n e t o s t a t i c  examples

In magnetostatics, the equations for fields and
potentials are :

J = curl H ; 0 = div B (6.17)
k = n x AH on Ŝ .; 0 = n • AB (6.18)
H = G - V ft ; B = V x A (6.19)

0 = n x A A (6.20)

Using the B-system vector potential A, Z(K,B) splits as 
follows :

Z (H,B) = <H , B>T3 = <H , VxA>_ = <VxH , A>_ - f V* (HxA) dR K K K
= <1 ' A>r + [n x H , A]Sk - [nxH , A]Sg + [H , nxA]So 

= <1 / A>r + [K , A]Sk - [n x H , A]Ss 

At this stage, we can rewrite eqn. 6.5 in the form

A = 0q (H) + H0(B) - rQ(H,A) (6.21)
where

0Q (H) = X (H)
H0(B) = f(B) - <J , A>r - [K,A]Sk 

ro(H,A) = - [ n x H , A ] ss = [H,nxA]Ss

Alternative definitions of the H-system pre-specified 
field G are analysed at length in Chapter 8; the following 
definition is shown to be consistent with linear shape 
functions for

G (r ) = | J x(r - r_^) => curl G = J (6.22)

and will be used here. is an arbitrary reference point
that can be chosen independently for each conductor. J is 
constant in conductors, and zero in iron and air. Thus G 
is zero outside conductors; the resulting discontinuity in 
n xG at conductor surfaces is absorbed by a jump in Q ,  
computed using eqn. 3.55 G'10. A cut is defined for each 
totally enclosed conductor, eqn. 3.45, with Aft equal to the 
conductor current.
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6.5.1 C-macmet

Fig. 6.2 shows a C-magnet similar to that of reference 
6.11. From symmetry

on : n x H = 0 => Q  =  (=0) (6.23a)

Moreover, the semi-closed nature of the magnetic circuit 
allows us to approximate

on : n • B = 0 => A = (=0) (6.23b)

Substituting these boundary conditions into in eqn. 6.21, 
we find

ro = - [nxH, A]Sh + [ H , n x A ] Sb = 0
so that

A = 0(H) + H (B) (6.24a)
with

0(H) = X (H ) and H(B) = ¥ (B) - <J , A>_ (6.24b)Jt\
From ineq. 4.10a and eqn. 6.16, we have

0(H) £ W £ - E(B) (6.25)

where W is the exact energy in the half-section under 
consideration. The average of numerically computed energy 
bounds

W = 4 (0(H) + (-H(B))) (6.26)

is generally a better estimate of W than either. On the 
electric circuit side, W is given by

W = 2 L I 2 (6.27)

where L and I are the inductance and current of the upper 
coil.

Numerical results are based on a coil mmf of 7700 
Ampere-turns, which corresponds to a current density of 
1 A/mm2. The relative permeability of the iron core is 
taken to be 500.
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Sb

Fig, 6.2 C-magnet outline.

Fig. 6.3 C-magnet convergence curves.
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Complementary solutions were performed on nine suc
cessively refined meshes, starting with 38 elements and 
27 nodes, and ending with 341 elements and 189 nodes. 
Refinement was guided by the distribution of the constitu
tive error density X : regions of high error concentra
tions were broken down into finer elements. The resulting 
convergence curves are shown in fig. 6.3. The finest mesh 
placed the exact energy W at 246.4 J ± 1.6%; the corres
ponding global constitutive error is 7.82 J, and the coil 
inductance is 8.31 N 2 yH, N being the number of turns.

The average of the energy bounds, W, exhibits a general 
downward trend, with occasional slight oscillation. The 
bounds are therefore not strictly symmetric about the exact 
energy, the B-solution (lower bound) being marginally more 
accurate than the H-solution (upper bound) in this problem. 
However, by the third mesh refinement (66 elements, 41 
nodes), W was already within 1 % of the final value it 
attained. The constitutive error, A, improved from 41% to 
3.2% with mesh refinement. Beyond the initial coarse 
meshes, roughly half the error may be associated with each 
of the complementary energy estimates. It follows that 
averaging complementary solutions at 66 elements and 41 nodes 
yields a more accurate estimate of W, and hence L, than 
either solution alone does at 341 elements and 189 nodes.

The above findings regarding global quantities corro
borate those reported by Penman and Fraser6*12 and by Hammond 
and Tsiboukis6*13. We now proceed to examine space 
distributions.

Complementary estimates of energy distributions are 
shown in fig. 6.4, where colour coding provides an indica
tion of actual values*. Linear shape functions for the

* In general, density increases as colours shift from bright to dark. 
More specifically, each colour indicates a density value greater than 
the figure beneath it, and less than the figure above it, in the 
colour-code key of the margin. At the bottom of the scale, white is 
implicitly greater than zero since all energy densities are positive. 
There is no upper limit at the top of the scale, so that black 
provides a 'greater than' indication only.
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Fig. 6.4 C-magnet energy and error density distributions 
in 1 02-element mesh. Clockwise from top left : 
X(H), b(B), \ l> (H,B) , and X(H,B). Upper scale 
corresponds to energies, lower scale to error.
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potentials result in constant fields, and hence constant 
energy densities, within each current-free element. In a 
conductor element, however, x(H) and £(H,B) are position- 
dependent due to the space variation of G, and hence H; in 
this case, colour coding is determined by average densities.

Fig. 6.4 shows substantially similar distributions for 
the three energy estimates, x(h)/ *1>(B) , and 2C(H/B). Energy 
density is greatest in the air-gap, which accounts for some 
70% of the total energy. In fact, for all meshes attempted, 
X(H) and ^(B) in the air-gap fell within 69.59-70.56% of 
the final value of W; neither exhibited a discernible 
pattern with mesh refinement.

Fig. 6.4 also includes the constitutive error density 
distribution. It is noted that the colour scale for A indi
cates smaller density values than the energy scale. In this 
way, the A-distribution highlights the discrepancies between 
the complementary solutions. Clearly, errors tend to con
centrate around corners; A thus quantises this well-known 
feature of numerical analysis. Despite the large energy 
stored in the air-gap, errors are seen to be small due to 
field uniformity.

The influence of the mesh on the numerical results is 
highlighted by the wide variation of error concentration 
over the region of the problem. It is recalled from sec. 
5.2.3 that the constitutive error is a comprehensive measure 
of the numerical inaccuracy. It is therefore natural to 
base mesh refinement on A. Fig. 6.5 shows A-distributions 
at three other stages of the refinement process. Error 
concentrations are seen to recede in the general direction 
of their sources, namely corners. The process may be ter
minated when the global error becomes sufficiently small, 
with acceptable levels of local error in regions of inte
rest. The constitutive error thus provides a useful indi
cation of solution accuracy locally and globally.

Strictly, the constitutive error density A only indi
cates how closely the complementary field estimates, H and
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Fig o 6.5 C-magnet 
at three 
from top

constitutive error density distributions 
stages of mesh refinement . Clockwise 
left : 50-, 90-, and 277-element meshes.
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B, satisfy the constitutive relationship. A vanishingly 
small A, at a given point, does not guarantee that the two 
fields are approaching the true values at that point; the 
true solution requires X  to vanish everywhere simultaneously, 
eqn. 2.12b. It is therefore important to keep track of the 
global error A during the refinement process. Moreover, the 
actual value of A has significance only in relation to the 
energy level; to give a practical indication of overall 
accuracy, A must be normalised, preferably with respect to W.

Thatcher6*14 and Cendes et al.6’15 base mesh refinement on 
errors of the form

and
E ' = <yH - B , yH - B> 

e" = <vB - H , vB - H>

(6.28a)

(6.28b)

For linear material properties, these can be related to the 
constitutive error density X .  Recalling eqn. 2.15b, we have

A = - j<yH -  B , H> + \  < vB -  H , B>

As the constitutive operators are symmetric by property 2 
of sec. 2.2, we can modify the second product, and collect 
terms, as follows

A = ^<yH - B , H> + ^<B - pH , vB>

= i<uH - B , H - vB> (6.29)

The similarity with e ' and e" is now evident. In particular, 
for isotropic media we have

e' = 2 y A and e" = 2 v A (6.30)

While the error forms e '  and e" are entirely valid, A is 
more symmetric, and has the advantage of a clear link, via 
A, to the bounding physical energies.

As demonstrated in sec. 2.4, the constitutive error 
accounts for discrepancies in both magnitude and space 
orientation of the complementary field estimates H and B. 
Fig. 6.6 attempts to show these two aspects separately.
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The B-H plots highlight discrepancies between comple
mentary field magnitudes, H and B. Each plotted point 
corresponds to one of the elements in the mesh detail shown; 
the horizontal coordinate is the value of H, in the element, 
as obtained from the H-solution; the vertical coordinate is 
the value of B from the B-solution. The constitutive rela
tionship is represented by the straight line, on which all 
points should fall in an analytic solution. As the mesh is 
refined, the number of points increases simply because the 
number of elements increases. Clearly, complementary esti
mates of the fields can differ considerably. There is, 
however, a definite migration towards the line as the mesh

(a) 50-element, 33-node mesh; A/W=24.5%.

Fig. 6.6 C-magnet sub-region at three stages of mesh
refinement. Clockwise from top left : finite
element mesh; B-H plot in air; 3-H plot in 
iron; and equipotential contours. NB Steps 
between scalar potential ( Q )  contours in iron 
are 80 times smaller than in air.
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(b) 1 02-element, 62-node mesh; A/W=11.9%.

, 6.6 (continued).Fig
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is refined. Moreover, finer meshes provide field estimates 
closer to corners, where fields tend to be high; plotted 
points thus appear to climb up the line. One conclusion is 
that the average of complementary field estimates is not, 
in general, more accurate than the fields, as has been 
suggested5*12 : averages from coarser meshes do not approach
these higher fields.

Discrepancies between space orientations of complemen
tary field estimates are highlighted by superposition of 
their equipotential contours. Outside conductors, the ft- 
and A-contours should be perpendicular to each other, which 
is seen to be largely true inside the air-gap, less so at 
the edges. Clearly, the two sets of contours approach 
orthogonality as the mesh is refined; note, in particu
lar, the upper right corner of the iron core. The 
B-system A-contours represent flux lines, while the 
H-system ^-contours represent the drop in magnetomotive 
force around the magnetic circuit. Most of the available 
mmf is consumed in driving flux across the air-gap. The 
drop in the iron core is negligibly small. It is therefore 
necessary to use smaller £2 steps in the iron to display the 
contours; the iron/air step ratio in fig. 6.6 is 1/80. 
Inside conductors, Vft is augmented by G to yield H, eqn. 
6.19; thus, no physically meaningful significance can be 
associated with ^-contours there. Note, also, the discon
tinuity in ft at copper/air interfaces, eqn. 3.55; the 
discontinuity also arises at copper/iron interfaces, but is 
masked in fig. 6.6 by the different potential steps used in 
the two regions.

The various points discussed above are further illus
trated by the examples of the following sections.

6.5.2 D.C. machine

Fig. 6.7 shows a half-pole section of a 4-pole d.c. 
machine having a square frame. The closed magnetic circuit 
allows us to approximate
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Fig. 6.7 D.C. machine : (a) equipotentials in air near
pole tip; (b) equipotentials in iron; ft steps 
20 times smaller than in air; scale 1:1 ;
(c) B-H plot in air; (d) B-H plot in iron.
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fi = (= 0) (6.31a)

A = Ab (= 0) (6.31b)

Eqns. 6.31 are identical to eqns. 6.23 for the C-magnet, so 
that rQ vanishes as before to yield eqns. 6.24 and 6.25 
again. The problem was solved for an iron relative permea
bility of 500, and a field excitation of 2000 Ampere-turns. 
A 457-element, 251-node mesh was used, resulting in a 
constitutive error of 1.247 Joules, with the exact energy 
estimated at 38.11 Joules ± 1.65%. Fig. 6.7 shows equi- 
potential contours and B-H plots separately for iron and 
air. Locations of the apparently large discrepancies 
between complementary field magnitudes in iron may be 
deduced from the constitutive error density distribution of 
fig. 6.8. Once again, errors are seen to concentrate 
around corners. The air elements inside the gap and in the 
vicinity of the pole tip, inset to fig. 6.8, account for 
approximately 35% of the global error; the black elements 
alone account for 27.6%.

On load, symmetry that led to eqns. 6.31 can no longer 
be assumed. A full pole pitch must therefore be analysed, 
fig. 6.9. On the external periphery of the yoke, we 
assume, as before,

on : n • B = 0 => A = A^ = constant (6.32)

Periodicity conditions on SQ1 and SQ2 yield, for correspon
ding points,

on S ^  : n • B = 0

Symmetry at no-load yields

and
on S^2 : n • B = 0

on S, : n x H = 0h — —
Summarising, we may write

and
on sh • n x H = 0 =>

on sb : n • B = 0 =>
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Fig„ 6.8 D.C. machine constitutive error density 
distribution. Inset shows enlarged air 
elements inside gap and near pole tip, 
with iron elements masked.
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Ficr. 6.9 Equipotential contours in d.c. machine with
periodic boundary conditions. Scalar potential 
steps in iron 20 times smaller than in air.

n x h |
and

— * — ' s

01
= n X H I s => 02

Q \
S01 fio ~

= n • B| c => A| A_ =
01 S02 S01 0

02

o - A >s J b02
(6.33)

where S7q and A^ are the potential values at point 0. At 
corner points 1 and 2, we must have

Ab A0 " A0 Ab > Ab A0
so that

= $ = © *01 *020
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where $, the flux through the indicated section, is defined 
in egn. 3.32. Choosing, arbitrarily,

fin = 0 and A, = An = 00 b 0
the boundary conditions simplify to

on : n • B = 0 => A = A^ = 0 (6.34a)
and

fi|Q = ~ fi|c and A|_ = -A|c (6.34b)
b01 b02 b01 b02

The null values of fig and Aq are implicit in 6.34b. Sub
stituting into eqn. 6.21

rQ = " [nx H, A ]S()1 - [n x H / A] sQ2 + [ H , n x A ]Sl2

= 0

thus vanishes to yield eqns. 6.24 and 6.25 again. 
Complementary equipotential contours illustrating such 
periodic boundary conditions are shown in fig. 6.9. The 
solution was based on an interpole excitation of 1500 
Ampere-turns. Limitations of the computer program 
prevented inclusion of armature currents for a true 
on-load solution.

6.5.3 Lamination

Fig. 6.10 shows an iron lamination permeated by 
magnetic flux. Because of symmetry, it is sufficient to 
consider the indicated trapezoidal region, with

°n Sh1 : n x H = 0 => Q  = 0 (6.35a)

on Sh2 : n x H = 0 => to ii 3S (6.35b)

The zero potential in 6.35a is chosen arbitrarily; M is 
the magnetomotive force

M r - 2 H • d Z  = fi L  
n  h2

(6.35c)

r̂  is any point on , and r^ is any point on S^ -
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Fig. 6.10 Square iron lamination.

Fig. 6.11 Lamination convergence curves (specified flux).
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Assuming the flux to be confined to the high permeability 
iron, we have

and
on Sb, : n • B = o => A = 0 (6.36a)

on Sb2 : n • B = 0 => A = $ (6.36b)

The zero potential in 6.36a is chosen arbitrarily; $ is
the magnetic flux

$ =
«

*
b • as

shi
= Als b2

(6.36c)

We now substitute the boundary conditions of egns. 6.35 and 
6.36 into r in eqn. 6.21 :

r0 = - [2xH , A ] Ss = - [nxH,A]Sb2 = - H • A xdS
sb2

sb2
H • (A a ) x (a_ x a ) d£ dz Z X/ z

= - A f L 2 H • d£
b2

= M $ (6.37)

Clearly, does not vanish in this case. But M and $ 
correspond to the abstract motive force and flux of eqns. 
3.21 and 3.22 of sec. 3.4.2, where it was shown that 
physical uniqueness would require one of them to be 
specified. Two physically distinct possibilities arise 
as we substitute Fq back into eqn. 6.21 :

(i) Specified mmf (M = M) :

0m (H) = X (H ) , Em (B) = Y(B)-M$ (6.38)

The term M $ forces the specified mmf on the B-solution 
which then estimates the flux accordingly.

(ii) Specified flux ( $ = $) :

0 . (H) = X (H ) - M $<P “ “d>r (B) = Y(B) (6.39)
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The term M$ now forces the specified flux on the 
H-solution, which then estimates the mmf accordingly.

The above demonstrates how the constitutive error A 
splits to yield complementary functionals for both types of 
specification. This type of boundary specification also 
demonstrates the inequivalence of the primal and dual 
statements of sec. 4.3 on alternative derivations of com
plementary variational principles. The primal statement 
corresponds to an assigned mmf specification, while the 
dual statement corresponds to an assigned flux specifica
tion. Fraser6’16 attempts to solve the assigned flux 
problem, and is led to conclude that the H-solution requires 
the exact energy to be known in advance; he employs a 
highly refined B-solution for the purpose. The present 
derivation shows that this is not necessary. This type of 
specification is more common in electrostatic and current 
flow problems, and will come up again in later sections. 
Hammond6’13'17-19 uses the same geometry of the present lami
nation problem to pose an electrostatic one, using and
sb2 denote capacitor plates.

The energy bounds are obtained by applying ineq. 4.10 
and eqn. 6.16 to eqns. 6.38 and 6.39 :

and

M

0m (h) = M > - 5m <b)

V B > > - V H >

and W$ are the exact

(6.40a)

(6.40b)

trapezoidal section for the specified mmf and specified 
flux problems respectively. They are related to the 
magnetic reluctance R by

WM = *M2 /R m and W$ = i 4>2 R$ (6.41)

Substituting into ineqs. 6.40, and rearranging, we get

20m (H) / M 2 6 2 -2E (B) / M 2 (6.42a)
and M

2 B ^ ( B )  / J 2 S R$ £ -20^(H ) / $ 2 (6.42b)



125

In both cases, 0(H) and hence the H-solution are associated 
with the lower bound on reluctance; H(B) and the B-solution 
are associated with the upper bound. This is in basic 
agreement with Hammond's description of the physical 
processes underlying his treatment in terms of slices and 
tubes6’18'19, which he attributes to Maxwell.

The lamination problem was solved for a specified flux 
of 10 mWb and an iron relative permeability of 500. Com
plementary solutions were performed for a number of suc
cessively refined meshes, starting with 4 elements and 6 
nodes. Fig. 6.11 shows convergence curves up to 54 elements 
and 38 nodes, at which stage the energy in the trapezoid is 
estimated at 101.9 mJ ± 0.88%, the constitutive error being 
1.83 mJ. The corresponding reluctance is 2038 Amp-turn/Wb. 
Solutions were actually performed for further error-guided 
refinements; at 213 elements and 128 nodes the energy was 
101.9 mJ ± 0.25%, the error being 0.49 mJ. This is slightly 
more accurate than a regular mesh of 768 elements and 425 
nodes.

The convergence curves of fig. 6.11 exhibit some sharp 
changes initially. This may be attributed to the fact that 
at the extremely coarse meshes in question, the actual 
location of an added node can have significant influence on 
computed results.

Figures 6.12-14 show energy distributions, error dis
tributions, equipotential contours, and B-H plots at certain 
stages of the refinement process. These conform to the 
findings discussed in sec. 6.5.1. Note in 
particular the concentration of energy and error at the 
inside corner of the lamination, where the highest fields 
arise.

The dual problem of specified mmf was solved using the 
same meshes. As expected, the only differences were in 
scaling due to the use of different forcing values. While 
the actual energies differ, reluctance estimates, and, 
indeed, all normalised distributions etc. are identical.
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Fig. 6.12 Lamination 
39-element 
and ic(H ,B )

energy 
mesh.

density distributions in 
From left : x(H)/ ^(B),
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Fig„ 6,13 Lamination constitutive error density 
distributions at three stages of mesh 
refinement : 12, 24, and 39 elements.



128

Fig. 6.14 Lamination finite element mesh, equipotential 
contours, and B-H plot at three stages of 
mesh refinement; specified flux.
(a) 12 elements and 12 nodes; A/W = 10.5%;
( b )  39 e l e m e n t s  a n d  29 n o d e s ;  A/ W= 2 . 5 % ;
( c )  163  e l e m e n t s  a n d  101 n o d e s ;  A/w = 0 . 8 % .
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The reluctance may be expressed by

R = M / $ (6.43)

Given 0= 1 0  mWb, the H-solution in eqn. 6.39 acts on the 
lower bound of R to yield M = 20.13 Ampere-turns for a mesh 
of 39 elements. Forcing this M on the B-solution of the 
dual problem, eqn. 6.38, results in 0=9.758 mWb since it 
acts on the upper bound of R.

6.5.4 Slot conductor

Fig. 6.15 shows a T-shaped conductor embedded in a 
slot. Because of high iron permeability, we may assume

on S, . : n x h = 0hi — —
Symmetry allows the analysis to be confined to the half
slot indicated on the figure, with

on h2 n x h 0

Combining these two conditions, we may write

on S, : n x h = 0 => ft = ft (r ) +— — —o G-d£ (6.44)
where £o

s, = s, 1 u s, 0h hi h2
rQ is an arbitrary reference point on S^; ft(rQ ) is set to 
zero arbitrarily. The top surface of the conductor is 
exposed to air in the slot neck where we assume

on S^ : n • B = 0 => A = (=0) (6.45)

The boundary conditions of eqns. 6.44 and 6.45 cause rQ to 
vanish as in the case of the C-magnet, sec. 6.5.1, so that 
eqns. 6.24-27 apply once again. L in eqn. 6.27 now 
represents the d.c. inductance of the half-slot.

This problem has been examined by Hammond 
Fraser6’16 for the following dimensions

6»13f17/18 and by
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Fig. 6.15 T-conductor in iron.

Mesh refinement (number of elements)

Fig, 6.16 Slot conductor convergence curves.
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a = d = 2 cm, b = c = 1 cm (6.46)

and a current density of 1 A/cm2r so that the half-slot 
current is 5 A.

Using the above dimensions and current, complementary 
solutions were performed for a number of successively 
refined meshes, starting with 5 elements and 7 nodes. Fig. 
6.16 shows convergence curves up to 62 elements and 42 
nodes, at which stage the half-slot energy is estimated at 
18.63 micro-Joules ± 1.83%, the constitutive error being 
0.68 yJ. The corresponding inductance is 1.49 yH.
Solutions were actually performed for further error-guided 
mesh refinements; at 158 elements and 97 nodes, the energy 
was 18.64 yJ ± 0.7%, the error being 0.263 yJ. This is 
slightly more accurate than a regular mesh of 500 elements 
and 276 nodes.

Fig. 6.17 shows energy and error distributions. Energy 
is seen to concentrate in the neck, while errors, as usual, 
are highest at the re-entrant corner. In the 40-element 
mesh, black triangles account for 33.6% of the global error. 
Fig. 6.18 shows equipotential contours and B-H plots. It 
is recalled that ^-contours have no physically meaningful 
significance since V Q  is augmented by G to yield H in the 
conductor, eqn. 6.19. Figures 6.17 and 6.18 illustrate, 
once again, various points discussed in sec. 6.5.1.

Fraser6*16 attempted complementary solutions of the slot 
problem with part of the surrounding iron (yr = 2000) 
included in the region of analysis. The H-solution was 
found to be unsatisfactory, resulting in too much energy in 
the iron part; the error, which was emphasised by juxta
position of upper and lower bounds, is attributable to the 
use of a Biot-Savart defined G in both copper and iron; see 
Chapter 8. The present treatment, which confines G to the 
conducting sub-region, gave satisfactory bounds : for
a mesh of 640 elements and 357 nodes, the over-all energy 
was estimated at 18.59 yJ ± 1.56%, the constitutive error 
being 0.58 yJ. The conducting sub-region had 80 of the
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Fig, 6.17 Slot conductor density distributions.
Top : energies in 40-element mesh,
X(H), ip(B), and ic(H,B) (from left). 
Bottom : constitutive error in 10-,
16-, and 40-element meshes.
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Fig. 6,18 Slot conductor finite element mesh, equipotential 
contours, and B-H plot at three stages of mesh 
refinement :
(a) 10 elements and 11 nodes; A/W=18.7%;
(b) 40 elements and 29 nodes; A/W = 5.2%;
(c) 106 elements and 66 nodes; A/W = 2.0%.



134

elements, 18.55 uJ of the 
energy, and 0.57 uJ of the 
error; the figures are 
very close, although not 
identical, to those quoted 
earlier for the conductor- 
only solution. Bounds, it 
is noted, are defined for 
the over-all energy only. 
Fig. 6.19 shows equi- 
potential contours and 
boundary specifications 
for the problem including 
iron. Of course, the 
examples of sections 6.5.1 
and 6.5.2 provide even 
more general illustrations 
of the applicability of 
complementary principles 
to multi-material regions.

Fig. 6.19 Slot conductor in 
iron : boundary
specification and 
potential contours, 
fi-contours not 
shown in conducting 
sub-region.

One reason why the slot problem has figured so much in 
the literature on complementary energy bounds 6*13/16_ 18 is the 
availability of an analytic solution6*20; it yields

L' = 0.57 u (6.47)o
for the d.c. inductance of the over-all T-shaped conductor 
having the dimensions given in 6.46 6*13'17'18. The most 
accurate solution attempted here (348 elements, 199 nodes) 
estimated the half-slot energy at 18.64 i_iJ ± 0.43%; the 
corresponding half-slot inductance is 1.4912 yH. Noting 
that the two half-slot conductors are in parallel, the 
present estimate of the T-conductor inductance may be 
written

L" = 0.5933 g ± 0.43% (6.48)o
Clearly, the present formulation does not converge to the 
analytic one of eqn. 6.47. It is instructive to examine 
the cause of the apparent anomaly, which is the boundary 
specification on S^, fig. 6.15 and eqn. 6.45. The analytic
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solution is based on the somewhat different boundary 
condition

on Sb : n x H = h = (I / c) az (6.49)

where I is the half-slot current, and c is the half-width 
of the slot mouth, fig. 6.15. With h assumed constant, its 
value in 6.49 is obtainable from Ampere's circuital law, 
with nxH|gb=0 as in 6.44.

Now both boundary specifications, 6.45 and 6.49, are 
adequate descriptions of actual physical conditions on an 
Sb lying well inside a long and narrow slot neck; a crucial 
parameter is the ratio

a = b / 2c (6.50)

which must be large. Reference 6.20 lists inductance 
values for four sets of slot dimensions; the smallest a 
attempted corresponds to the following set (in cm)

a = 1.5, b = 1.3, c = 0.2, d = 0.75 => a = 3.25 (6.51)

The resulting d.c. inductance, using 6.49, is

L' = 3.097 UQ (6.52)

Complementary numerical solutions of this slot, at 575 
elements and 316 nodes, and using the boundary specification 
of 6.45, yielded

L" = 3.098 U ± 0.21% (6.53)o
Clearly, the two boundary conditions are practically equi
valent for the slot dimensions in 6.51. Evidently, equi
valence is not retained for the dimensions in 6.46, where

a = 0.5 (6.54)

giving rise to the discrepancy between L' and L" in eqns. 
6.47 and 6.48.

By way of experiment, the slot dimensions of 6.46 were 
solved once more, this time with a 6 cm column of air 
introduced between the conductor top surface and S^, fig.
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Sb

Fig. 6.20 Slot conductor problem including long, 
current-free neck.
(a) Region of analysis.
(b) Equipotential contours in the vicinity 

of the conductor top surface.

6.20a. In this way, is pushed well into the neck, with 
a =3.5. For a mesh of 704 elements and 398 nodes, the 
over-all half-energy, in conductor and neck, was estimated 
at 112.86 yJ ± 0.186%, the error being 0.3624 yJ. The 
conducting sub-region accounted for 18.64 yJ of the energy, 
and 0.3623 yJ of the error. The corresponding full-slot 
inductance is 0.5932 yH, which is much closer to Ln in 6.48 
than to L 1 in 6.47. This suggests that the boundary speci
fication of 6.45 is to be preferred over that of 6.49 when 
a is small. The divergence of both specifications from 
actual conditions at the conductor top surface is just 
discernible in fig. 6.20b : the one-pixel kink in the
horizontal A-contours indicates that n • B is not quite zero 
as in eqn. 6.45, while the slight compaction of the vertical 
^-contours from left to right indicates that h is not quite 
constant as in eqn. 6.49.
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6.6 Electrostatic examples

In electrostatics, the equations for fields and 
potentials are :

curl E .t p = div D (6.55)
n x AE r a = n • AD on (6.56)
- V 4) J D = Ce + V x Ae (6.57)

0 = A 4) (6.58)
04) is the familiar electric scalar potential; A is an 

electric flux-describing vector potential; C is the 
D-system pre-specified field that accounts for charge 
distributions :

div Ce = p (6.59)

Eqns. 6.55-59 describe the electrostatic interpretation of 
the abstract model of sections 3.3 and 3.4.5; the poten- 
tials 4) and A correspond to the abstract potentials ft and 
A of sections 3.4.3 and 3.4.4. The electrostatic con
stitutive error may be written

A (E ,D) = X (E ) + Y(D) - Z(E,D) (6.60)

Minimisation of A(E,D) enforces the constitutive relation
ship on the fields E and D.

Using the E-system scalar potential 4h Z(E,D) splits 
as follows

Z(E,D) <E , D>r = -<V4> , D>r = <4> , V-D>r 

<4) , P>R + [4) , n«AD]Sa - [4) , n*D]Sg 

<4) , P>R + [4> , a]Sa - [4) , n ‘D]Ss

V* (4>D) dR

[ 4> f n * D ] So

At this stage, we can rewrite eqn. 6.60 in the form

A = 0O (E) + E0 (D) - rQ (E,D) (6 .6 1 )
where
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0q (E ) - X(E) - <({) , p>£ - [ <t> / 0 ] S q  
Hq (D) = Y(D) 

ro (E,D) = - [d> f n • D]Ss

Clearly, further decomposition depends on the boundary con
ditions of the given problem.

To satisfy eqn. 6.59, the definition of Ce may be 
based on Coulomb's law

Ce (r) (r - r ' ) p (r 1 )
4 it I r - r ' I 3 *R

dR(r ') (6.62a)

A numerically simpler definition is available for uniform 
charge distributions

Ce (r> = i  (r - ) p(r) (6.62b)

where rQ is an arbitrary reference point. Comparison bet
ween the two definitions is similar to that between H and— s
T in Chapter 8 on the magnetic pre-specified field. Eqn. 
6.62b sets C to zero in charge-free regions, resulting in 
a discontinuity on the interface between charged and un
charged regions. The discontinuity is absorbed by a jump

0m  A , eqn. 3.43. A cut is defined for each totally 
enclosed charge distribution, eqn. 3.47.

6.6.1 Remote parallel conductors

The textbook problem of parallel cylinders, fig. 6.21, 
will be used to illustrate some points of interest. Because 
of symmetry, only the indicated quadrant need be analysed :

on : n x E = 0 => <J> = 0 (6.63a)

where the constant potential is set to zero arbitrarily.
The tangential component of the electric field at the con
ductor surface vanishes under static conditions :

on : n x E = 0 => (J) = V (6.63b)

V is the voltage
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V r-2 E • d i

(J) | c ( 6.63c)
be2

is any point on , and 
r 2̂ is any point on Se2* The 
voltage between conductors 
is 2V.

Symmetry about the 
horizontal plane allows 
us to write

Fig, 6.21 Remote parallel
cylinders : region 
outline.

and
°n Sd1 : n • D = 0 => Ae = 0 (6.64a)

on Sd2 : n • D = 0 => Ae = Q (6.64b)

where Q is the charge on the upper half of the conductor

Q = dS (6.64c)

The zero potential in 6.64a is chosen arbitrarily.

The open boundary region is terminated artificially by 
S^, which can be specified as an equipotential

on : n x e = 0 => <$> =  $ | s = 0 (6.65a)
e1

or as a flux line

on S. : n • D = 0 => Ae = Ae | =0 (6.65b)
r bd1

We now substitute the boundary conditions of eqns. 
6.63-65 into rQ in eqn. 6.61; for either specification 
on S^f we have

*
ro = - [ < $ > ,  n-D]Ss = - [ < $ ) ,  n • D ]Se2 = -4) I s D-dS

e2 JSe2
= V Q  (6.66)

V and O correspond to the abstract motive force and flux of 
eqns. 3.21 and 3.22 of sec. 3.4.2. Physical uniqueness 
requires one of them to be specified. Two physically
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distinct possibilities arise as we substitute rQ 
eqn. 6.61 :

back into

(i) Specified voltage (V = V) :

0V (E) = X(E) , =V (D) = ¥ (D) - V Q (6.67)

The term V Q forces the specified voltage on the 
D-solution, which then estimates the charge accordingly

(ii) Specified charge (Q = Q) :

0q (E) = X (E ) - V Q  , Hq (D) = V  (D ) (6.68)

The term V Q forces the specified charge on 
E-solution, which then estimates the voltage

the
accordingly.

and
The energy bounds are obtained by applying 

eqn. 6.16 to eqns. 6.67 and 6.68 :
ineq. 4.10

and
0V (E) £ Wy  ̂ - Hy (D) 

SQ (D) 6 WQ 2 - 0q (e )

(6.69a)

(6.69b)

where and Wq are the exact energies in the quadrant 
analysed for the specified voltage and specified charge 
problems respectively. On the electric circuit side, they 
are given by

Wv = (iV2 Cv)/4 and WQ = (iQ2/CQ)/4 (6.70)

where C denotes total line capacitance. Substituting into
ineqs. 6.69, and rearranging, we get

80y (E ) / v 2 a cv 2 -8=V (D) / V 2 (6.71a)
and

8= (D) / Q 2 2 p?- 2 
U Q

-80q (E) / Q 2 (6.71b)

In both cases, the E-system is associated with the upper 
bound on capacitance, while the D-system is associated with 
the lower bound.

The dual problems of specified voltage and specified
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charge are analogous to the dual problems of specified mmf 
and specified flux in the magnetostatic lamination example 
of sec. 6.5.3. The relevant discussion in that section is 
therefore applicable, and will not be repeated here.

Alternative specifications on the artificial boundary 
S^, eqns. 6.65, give rise to another type of duality. 
Numerical estimates of the dual energies are shown in fig. 
6.22, where O'(E) and H'(D) are the complementary energies 
with specified as an equipotential, eqn. 6.65a, while 
0"(E) and 5"(D) are the complementary energies with 
specified as a flux line, eqn. 6.65b. These results corres
pond to a specified voltage V = 2 volts, a conductor diameter 
of 10cm, and a centre-to-centre conductor separation of one 
metre. The figure also shows the exact quarter-space energy 
of the open boundary problem, W. It was obtained using eqn. 
6.70 with

C = tt e / In a (6.72)o
where a is the ratio of conductor separation to radius.

Fig. 6.22 Parallel conductors with specified voltage : 
effect of specification and distance at Sf on 
complementary energy estimates. W is the exact 
energy for the open boundary problem. Crosses 
indicate energy estimates from a refined mesh 
solution.
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In practice, it is usual to perform only one of the 
four solutions of fig. 6.22; the figure shows how they 
relate to each other and to the exact solution. It suggests 
that, having opted for the present crude treatment of the 
open boundary region, there is little to choose from between 
the two specifications on : with too close, they are
equally invalid; with sufficiently far, they are prac
tically indistinguishable. For at 5.5 m, O' and 0" 
differ by 1.17%; the difference decreases to 0.33% at 
10.5 m. The differences between 5' and E" are slightly 
smaller. The potential contours of fig. 6.23 and the D-E 
plots of fig. 6.24 confirm the above conclusion : at 10.5m
they are practically identical for the two specifications.

Fig, 6.23 Remote parallel conductors : potential contours.
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It might appear that the E-solution has an advantage 
over the D-solution, the 0's being closer to W than the E's. 
However, this is probably problem-dependent, and certainly 
mesh-dependent. The curves of fig. 6.22 were obtained using 
rather coarse meshes (151 elements and 95 nodes at 10.5 m), 
with errors ( A / W ) in the region of 14%. A slight mesh 
refinement near the conductor (171 elements and 106 nodes) 
reduced the error to around 10%. The resulting energies are 
shown in the figure, where E is seen to have improved more 
than 0. Mesh dependence is highlighted in the D-E plots of 
fig. 6.24 : the apparent banding of points corresponds to
circular layers of elements surrounding the conductor; it 
has, of course, no physical basis.
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Fig. 6.24 Remote parallel conductors : D-E plots.
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The boundary specifications of eqns. 6.65 describe 
problems that are physically different from the true, open 
boundary one. Eqn. 6.65a describes a problem where the 
conductors are surrounded by a cylinderical conducting 
plate at , while eqn. 6.65b describes a problem where 
the electric permittivity is negligible beyond S^.
Strictly, the complementary energies O', H ' and 0", 5" 
bound, respectively, the exact energies of the two 
approximate problems. When is sufficiently far, how
ever, the two problems become indistinguishable from each 
other, and hence from the true open boundary one; it is 
then possible to assume that the complementary energy esti
mates bound the true energy of the open boundary problem. 
Even then, in fact, the computed energies bound the exact 
energy for the polygonal conductor representing the actual 
circular one. This modelling approximation is necessitated 
by the finite element discretisation; the present solutions 
are for a 20-sided polygon.

We mention in passing that specified charge solutions 
yielded the same potential contours of fig. 6.23, and 
scaled versions of the D-E plots of fig. 6.24.

6.6.2 Parallel conductors near conducting plane

Fig. 6.25 shows parallel conductors situated 
asymmetrically near an infinite conducting plane. The cuts 

and s-jg are introduced to convert the region with holes 
into a simply-connected region, as explained in sec. 3.4 
and fig. 3.2. According to eqns. 6.56, and in the absence 
of surface charge, both fields are continuous across the 
cuts; thus

on 2 and : n xAE = 0, n • AD = 0 (6.73a)

Moreover, continuity of the scalar potential $ in eqn. 6.58 
ensures that

o E • d£ 0 (6.73b)
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Fig. 6.25 Parallel conductors near infinite conducting 
plane : region outline. All dimensions in
metres. Sf is at a radius of 10m, and is 
not shown to scale.

for any closed path in the multiply-connected region. 
Enforcing eqns. 6.73 on the solution variables ensures that 
the cuts are correctly specified as required in sec. 3.4.2, 
particularly eqn. 3.39.

The same cuts are used for the constant discontinuities
0m  A required by the non-zero charges on the conductors :

Q1 -
r D • dS =
S1

AAe c + AA®|_S12 s1g (6.74a)

Q2 = •

•
D • dS =

s 2*
- AAe S1 2 (6.74b)

Q = D • dS = - AAS Si g (6.74c)g ■sg
e e e e ewhere AA = An - A with AD following A clockwise around S..3 a 3 a 1

Adding eqns. 6.74, we get

Q1 + Q2 + Qg = 0 (6.74d)
as physically required.

The boundary conditions on the conductor surfaces are
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on si : n x E = 0 => <t> = V1 (6.75a)

and
on S2 : n x E = 0 => * = V2 (6.75b)

on sg : n x e = 0 => * = vg (6.75c)

sf approximates open boundary conditions by an equipotentia

or

on 

by a
sf : 
flux

n x E 

line

= 0 => <t> = 0 | s = 
g
: V (6.76a)g

on Sf : n • D = 0 => > (D It o (6.76b)

The zero potential in 6.76b is chosen arbitrarily, there
e .being no other reference value for A in the region.

We now substitute the boundary conditions of eqns. 
6.73-76 into rQ in eqn. 6.61; for either specification 
on S^, we have

r o  =  -  [ *  » B ’ D l s g

= - [ $ , n * D ] S l  -  [<!>,n*D]S2 -  [ 4 > , n * D ] s  -  [<t>,n*D]S f

= V1 Q1 + V2Q2 + VgQg <6- 7?a)

The integral on vanishes if eqn. 6.76b is used, and com
bines with the integral on if eqn. 6.76a is used; in the 
latter case, the surface integral on in eqn. 6.74c, and 
hence Q , relate to the true infinite extent of S . Sub-

g gstituting from eqn. 6.74d into 6.77a, we can write

r = (Vl - V ) Q1 + (V9 -V )Q~ (6.77b)o 1 g 1 2 g 2
It is recalled that the conductor voltages and charges 
correspond to the abstract motive force and flux of sec. 
3.4.2, eqns. 3.21 and 3.22. As described in that section, 
they should be adequately specified for uniqueness. The 
most obvious way is to ensure that, for each conductor, 
either voltage or charge is specified. Voltage values can 
be imposed explicitly on the scalar potential (J) in accordance 
with eqns. 6.75, while charge values can be imposed on the 
vector potential discontinuities Aa in accordance with 
eqns. 6.74. Adequate specification for uniqueness causes
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Tq in eqns. 6.77 to split between the E- and D-systems. In 
this way, the constitutive error, A in eqn. 6.61, generates 
complementary functionals for the various possible specifi
cations of this problem.

According to eqn. 6.77b, the following are examples of 
physically sufficient specification : Q-j and Q2 ; (V̂  - Vg )
and (V2 _ V g)? and (V2 - V ); and *V1 ~ Vg^’ ComPle~
mentary solutions were actually performed for the following 
specifications :

V1 = = 1 volt, v2 = = -1 volt (6.78)

According to eqn. 6.77a, this leaves the term V Q , giving9 9rise to the dual problems :

(i) Specified voltage on plane (V = V ) :

©V (E) = X (E ) (6.79a)

Hv (D) = Y(D) - V̂ "Q1 - V^Q2 - \TQg (6.79b)

The D-solution yields estimates of the conductor 
charges , and Q .

(ii) Specified charge on plane (Q =Q ) :9 9
0q (E) = X (E ) - Vgcr (6.80a)

Hq (D) = H»(D) - V^O, - V ^ Q 2 (6.80b)

The E-solution yields an estimate of the plane voltage
V , while the D-solution yields estimates of the con- 9ductor charges and Q2 . This specification includes 
the special case where the plane is floating relative 
to the electric circuit of the conductors, i.e. Qg =0.

Applying ineq. 4.10 and eqn. 6.16 to eqns. 6.79,

0V (E) fc Wv a - SV (D) (6.81)

where is the exact energy in the specified voltage 
problem (assuming S^ is sufficiently far; see sec. 6.6.1).
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Bounds on the exact stored energy are not generally avai
lable in the specified charge problem, since 0^ * X and 
Eq * ¥ . However, in the special case of a floating ground

Q = 0 => 0^(E) = X (E ) (6.82a)g Q -
so that

0q (E) £ WQ £ - Eq (D) (6.82b)

Fig. 6.26 shows equipotential contours for various 
specifications. Numerical solutions were performed on 
a mesh of 724 elements and 399 nodes; errors ( A / W ) were 
in the region of 10.5-13.5 %, being lowest for the rela
tively smooth V = 2 v solution.Kj

Fig. 6.26 Parallel conductors near conducting plane : 
potential contours.
(a) I <

l II o Qg - 4.59 pC;
(b) I lO

 
iQ II o V9 = 0.188 v;

(c) Vg= 2 V, Qg - -48.09 pC;
(d) Vg = -2 V, Qg = 57.28 pC.
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6.7 Conduction examples

The relevant equations in electric conduction are

0 = curl E r 0 = div J (6.83)
0 = n x AE t 0 = n • A J (6.84)

IW n i <i -e- t J = V x T (6.85)
o n > -e- (6.86)

cj) is the electric scalar potential, and T is the electric 
current-describing vector potential; they correspond, 
respectively, to the abstract potentials ft and A of 
sections 3.4.3 and 3.4.4. Eqns. 6.83-86 describe the 
conduction problem interpretation of the abstract model of 
sections 3.3 and 3.4.5. The corresponding constitutive 
error is

A(E,J) = X (E ) + T(J) - Z(E,J) (6.87)

Minimisation of A(E,J) enforces the constitutive 
relationship on E and J. Using the E-system scalar 
potential <J), Z(E,J) splits as follows

rZ(E,J) =

At this stage

<E * J>R = > 1 > R  = «J> r

- [d> , n*J]Ss - [(J) , n*J]So 

we can rewrite eqn. 6.87

V.J>R V* (d>J) dR 
•R

in the form

A = 0 (E) + E (J) - T (E ,J ) o o o
v/here

(6.88)

0q (E) = X (E )
“ o ( J ) = 'MJ)

rQ(E,J) = - [<D , n • J]Ss

A common type of problem is the
general two-terminal conductor,
fig. 6.27. S . and S n are the e1 e2
terminals connected to the 
external circuit, while 
and are the insulated sides.

6.27 Two-terminal 
conductor.

Fig.
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The boundary conditions are

on Se1: n x E = 0 => oii•e-

f-2
(6.89a)

on Se2: n x E = 0 => ii>ii-e- - E • d i (6.89b)
£1

on Sji: n • J = 0 => T = 0 (6.90a)

on Sj2: n • J = 0 => T = I =
•
Ŝ

J • dS 
e1

(6.90b)

where V and I are the voltage across and the current 
through the conductor, respectively. The specifications 
are entirely analogous to those of the trapezoidal lamina
tion sub-region analysed in sec. 6.5.3, so that

rQ = VI (6.91 )

Once again, we get the dual problems :

(i) Specified voltage (v  = V) :

0V (E) = X (E ) , Sy (J) = 'P(- ) " ^1 (6.92)

0V (E)  ̂ Wy £ - Ey (j) (6.93)

(ii) Specified current (1 = 1) :

0I(E) = X (E ) - VI , E t ( J )  = V ( J )  (6.94)

EjtJ)  ̂ Wj > - 0I(E) (6.95)

2WV and 2W^ are the exact values of the power dissipation 
in the two problems; on the electric circuit side, they
are related to the resistance R by

WV = i  V 2 /Rv t Wx = i  I2 Rj (6..96)
so that

1
Ry =20V (E) A

ll

CMl> -2Hv (J)/V2 (6..97a)
and V

2HX(J) A
ll

CM

|H A
llH -20i (E)/I2 (6.,97b)

In both cases, the E-system is associated with the lower 
bound on resistance, while the J-system is associated with 
the upper bound6*18'19.
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With appropriate scaling and interpretation of the 
various parameters, the trapezoidal lamination of sec. 
6.5.3 provides an example of this common type of problem. 
In the following sections, we consider two less common, 
but possibly more interesting, types of problem.

6.7.1 Conductor with skewed terminals

Fig. 6.28 shows a cylindrical, conductor with radially
skewed terminals S . and S S . and S . ~ are the insulatede1 e2 j 2
sides. 2 is a cut that converts the region with a hole 
into a simply-connected one, sec. 3.4 and fig. 3.2; it can 
be placed along any curve joining inner and outer cylindri
cal shells. Both E and J are continuous across the cut, 
eqn. 6.84; moreover, <j> is continuous, eqn. 6.86, so that

■

oE • d£ = 0 (6.98)

for any closed path in the multiply-connected region. The

Fig. 6.28 Cylindrical conductor with radially skewed 
terminals : outline (not to scale). All
dimensions in metres.
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cut is therefore correctly specified according to sec. 
3.4.2, particularly eqn. 3.39. The same cut is used for 
the constant discontinuity in T required by the terminal 
current

I J • dS J • dS = AT (6.99)
^e1 Se2

I is the current flowing from S ^ to S
tor; AT = T0 - T with Tn following T 3 a 3 a
The external boundary conditions are

. inside the conduc- e i
in a clockwise sense.

on Se1 : n x E = 0 => on•e-
on Se2 : n x E = 0 => >n•e-

on Sj1 : n • J = 0 => >-a ii o

on Sj2 : n • J = 0 => T = I

/*—e2
E«d£

J£e1
r J*dS
jS'

(6.100a)
(6.100b)
(6.101a)
(6.101b)

V is the voltage across the conductor, and I' is the current
through any section S' that extends from S^^ 
being cut by There are in
fact two parallel paths of 
current flow through the con
ductor, fig. 6.29. The 
currents are related to the 
J-system potentials by

I = A T
I' = T|s
I" = I -

j 2 (6 .1 0 2 )

sj2

’e2'

to S.~ without 
3 ^

I"—)—

e1

I'
Fig. 6.29 Circuit model

Substituting the boundary conditions into To in eqn. 6.88, 
we get

r o = - [ <t> r n * J ] s s = -[<*> , H-J]se2

= V I

- V J«dS
^e2

(6.103)

Eqn. 6.103 is identical to 6.91, so that eqns. 6.92-97 are 
applicable again, with specified voltage and specified 
current alternatives. In both cases, the J-solution yields 
direct estimates of the branch currents, I* and I", that 
correspond to the upper bound on resistance.



153

Complementary solutions were performed on a mesh of 
695 elements and 382 nodes. For unit conductivity, the 
resistance was estimated at 1.89 ohms ± 5.4%. Fig. 6.30 
shows potential contours and the J-E plot; the cut ^ is 
included in the former. T-contours are in fact current flow 
lines; separation between the parallel paths of fig. 6.29 
can be discerned near the left edge of in fig. 6.30a,
and traced to the lower edge of . I' circles beneath 
the hole, while I" flows above it; the J-solution placed 
their values at 0.2271 and 0.7731 respectively. The 
sharpest discrepancies in the J-E plot of fig. 6.30b occur 
near the edges of the terminals S 1 and S 0 : the transi-

geometrically smooth, fig. 6.28; yet the fields, E and J, 
are required to be tangential to the former and normal to 
the latter. As would be expected, this results in severe 
numerical errors at insulator/terminal meeting points,

just over 1.2 % of the total area, yet contains more than 
half the global constitutive error; the black elements 
alone account for a third of the global error.

fig. 6.31. The detail in the vicinity of shown covers

(a) potential contours (b) j -e plot

Fig. 6.30 Cylindrical conductor with radially 
skewed terminals.



154

Fig. 6 o 31 Cylindrical conductor with radially skewed 
terminals : constitutive error density and
equipotential contours in the vicinity of 
inner terminal Se2 (top), and outer terminal 
Se1 (bottom). Dimensional scales different 
in the two parts. Cut shown by black broken 
line.
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6.7.2 Interlinked boundary specifications

Complementary functionals for the general two-terminal 
conductor are given in eqns. 6.92 for the specified voltage 
case, and in eqns. 6.94 for the specified current case.
Both were derived by appropriate splitting of the constitu
tive error

A (E , J ) = X (E ) + Y(J) - VI (6.104)

This general expression for the constitutive error in a 
two-terminal conductor is obtained by substituting eqn. 6.91 
for in eqn. 6.88. There is a third way of specifying 
boundary conditions, namely

V + R I = V or I + G V = I (6.105)s s s s
The parameters V , Ig , Rg, and Gg are known; they refer to 
the simple circuits of fig. 6.32, where

Gs 1/Rs ' Is G V s s Vs R Is s (6.106)

Clearly, eqns. 6.105 interrelate V and I, but specify 
neither. In effect, they introduce an additional link, 
besides the constitutive relationship, between the E- and 
J-systems. Substitution for V or I in eqn. 6.104 from 
eqn. 6.105 results in only an incomplete splitting of A : 
the resulting E- and J-system functionals will have a common 
variable, and must therefore be extremised simultaneously to 
minimise A. Indeed, proper splitting of A is guaranteed 
only if boundary constraints are specified independently

Fig. 6.32 Conductor in circuit.
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for the two systems, sec. 3.5. However, a treatment is 
available for the particular interlinked boundary conditions 
of eqns. 6.105.

It is based on constructing a lumped-parameter 
constitutive error for the source resistance Rg having the 
properties

A £ s 0 (6.107a)

A = s 0 <=> I = I -G V and V = V -R I (6.107b) s s s s
We now define the total error

At = A + Ag (6.108)

From the properties of A and Ag, we have

At £ 0 (6.109)

with equality occuring if, and only if, both the constitutive 
relationship in R and the boundary conditions 6.105 are 
satisfied. The solution may then be obtained by minimising 
Aj. rather than A; this has the advantage of not requiring 
the boundary conditions 6.105 to be imposed explicitly : 
they are enforced weakly by the solution.

For the procedure to achieve its goal, Ag must be 
defined not only to satisfy eqns. 6.107, but to ensure 
proper splitting of A^ as well. As it happens, such a 
definition is available provided Rg is positive. It is, in 
fact, the lumped-parameter version of the general definition 
of the constitutive error in Chapter 2, eg. eqn. 2.15a.
From fig. 6.32a we may write

A = (V - V ) 2 + -jR 12 - (V - V) I (6.110a)s s s s s
Or, from fig. 6.32b

As = iGsy2 + iRs(Is " I)2 ' v(Is _I) (6.110b)
The two expressions are identical, as can be verified by 
substitution from the relationships in 6.106.
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Substituting for A from eqn. 6.104, and for A fromD
eqn. 6.110, eqn. 6.108 for the total error may be written 
in the form

Afc(E,J) = 0(E) + ~(J) - T (6.111)
where

0(E) = X (E ) + iG V 2 - V I — s s
= (J) = 't'(J) + 3 Rs I2 - Vs I

T is a known constant and has no effect on the solution 
formulations. It may be attached to either 0(E) or H(J) 
to yield the independent complementary functionals. The 
corresponding bounds are

0(E) - T £ W  ̂ - 5 (J) (6.112a)
or

~(J) - r  £ W £ - 0(E) (6.112b)

where 2W is the exact value of the power dissipation in 
R and Rg together. On the electric circuit side, it is 
given by

W = 2 /(R + R ) or W = il 2 /(l- + G ) (6.113)s s s R s
Substituting into 6.112, we get, after some manipulation,

and
ivg2 / - ( j ) - R £ R £ s iVs2 /(0(E)-n - r s (6.114a)

£is2 /0(E) A
ll

A
llU1
u1 iis2 /(E(j)-n -  g s (6.114b)

The above derivations can be extended to non-linear 
resistors R and Rg provided the latter is strictly positive 
statically and dynamically. Uniqueness of the boundary 
specification 6.105 can be established in accordance with 
eqn. 3.28. The procedure used in the derivations of this 
section is instructive : complementary formulations may be
derived in cases where the two systems are interlinked by 
additional constraints that can be cast in an appropriate 
error form, eqn. 6.107, so that the total error may be 
split.
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6.8 Conclusions

The previous sections demonstrate the systematic manner 
with which the constitutive error approach generates comple
mentary solution formulations for various problem specifica
tions : the error splits, as a matter of course, into
complementary functionals, provided the problem specifica
tions are well-posed and do not interrelate the H- and B- 
systems on the boundary; indeed, sec. 6.7.2 shows that the 
second restriction is not rigid. In this way, the approach 
achieves a degree of generality over alternative derivations 
of complementary variational principles, since these are 
based on the primal and dual statements of sec. 4.3. The 
two statements are not in general equivalent. In the lami
nation problem of sec. 6.5.3, for example, the primal state
ment applies to the specified mmf case, while the dual 
statement applies to the specified flux case; attempting 
to use either statement with the wrong problem specification 
results in imperfect formulation6’16. Moreover, both state
ments fail to describe certain physically unique, and hence 
allowable, specifications of the electrostatic problem of 
sec. 6.6.2.

The potentials used to split the constitutive errors 
correspond to Fraser's primal formulations6’16: the vector 
potential in magnetostatic applications, sec. 6.5, and the 
scalar potential in electrostatic and electric conduction 
applications, sections 6.6 and 6.7. The choice is one of 
convenience : in each case, the potential used is continuous
and free of a pre-specified field. Entirely valid dual 
formulations may be derived using the complementary poten
tials, but the derivations tend to be more cumbersome.
Dual formulations are, in fact, equivalent to primal ones, 
since they differ only by constant terms that cannot affect 
the minimisation process.

Combined presentation of computational results for the 
two complementary systems yields a substantial amount of 
information on the adequacy of the numerical solution.
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Acknowledging that true distributions cannot be predicted 
exactly, the next best thing, from a practical engineering 
point of view, is the ability to ascribe a realistic level 
of confidence to the numerically derived results. Useful 
indications are provided by energy distributions, equi- 
potential contours, and B-H plots, but most comprehensively 
by constitutive error distributions. Use of the latter in 
intelligent mesh refinement6,114,15 is demonstrated. The global 
constitutive error quantises confidence assessment, being 
a comprehensive measure of numerical error that can be 
meaningfully normalised with respect to the bounded energy. 
Moreover, computed results corroborate previous assertions 
that complementary solutions, in combination, can lead to 
substantial economy in the estimation of such global quan
tities as energies and lumped circuit parameters6,12'13.

From a more theoretical, research, point of view, com
bined presentation of results sheds much light on the com
parative numerical behaviour of complementary systems. One 
example of this aspect is provided by the investigation of 
the crude treatment of open boundaries in sec. 6.6.1; 
a similar study of more accurate treatments may prove 
beneficial.

Except for very coarse finite element meshes, the rate 
of convergence of complementary solutions with mesh refine
ment was found to be largely similar. Moreover, neither 
emerged as a clear favourite from the viewpoint of ICCG 
convergence : their comparative behaviour depended very
much on the particular problem and mesh. As would be 
expected, the potential with the firmer reference converged 
faster; this was particularly obvious in problems where 
alternative boundary specifications are possible, for 
example the lamination of sec. 6.5.3.
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C H A P T E R  S E V E N

Non-linear Applications

7.1 Introduction

The theory of Chapters 2 and 3 is applicable to non
linear and anisotropic materials, provided the constitutive 
relationships possess properties 1 and 2 of sec, 2.2. In 
this chapter, some of the magnetostatic solutions of 
Chapter 6 are repeated for non-linear, but still isotropic, 
iron. The presentation highlights deviations from the 
linear case. We also present, briefly in sec. 7.4, a con
stitutive error interpretation of the iterative process in 
non-linear solution.

7.2 Energy bounds

The theory of complementary variational principles, as 
presented in Chapter 4, is applicable to non-linear 
problems. In particular, the functional bounds of ineq. 
4.10 still hold :

0(H) £ 0(H) = - 5(B)  ̂- 5(B) o o (7.1a)
or

5(B) £ 5(B) = - 0(H)  ̂- 0(H) o o (7.1b)

where H and B denote exact fields, i.e— — a  '—o —o
0 = A (H ,B ) = X (H ) + Y(B ) - Z(H ,B ) o o —o —o —o —o (7.2)

However, for non-linear constitutive relationships, eqns. 
2.8 for x(H) an(3 4j(B) do not simplify to eqns. 6.14 as in 
the linear case, so that, in general
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XfH^ * 1MBo) * (7.3)

The linear definition of energy, W in eqns. 6.16, is thus 
inapplicable. It is necessary to distinguish between

0 Qenergy and co-energy, whose exact values, W and W respec
tively, are defined as follows :

We = ) and WC = X(H ) (7.4a)—o —o
Substituting into eqn. 7.2, and rearranging, we can write

We + WC = Z(H ,B ) = Z° (7.4b)—o —o
The bounds in ineq. 7.1 may thus relate to energy or 
co-energy, or possibly neither. It all depends on the 
manner with which Z decomposes between H- and B-systems, 
and the resulting composition of the complementary func
tionals 0 and H; this, in turn, depends on problem speci
fications as demonstrated in the examples of Chapter 6.
The examples of this chapter will show that it is not 
generally possible to define bounds on non-linear circuit 
parameters.

7.3 Magnetostatic examples

Previous complementary treatments of non-linearity 
are limited to problems having simple geometries, with 
simple representation of the B-H characteristic7*1'2. Here, 
we shall consider the geometries of sec. 6.5, with the 
B-H characteristic represented as in fig. 7.1. The latter 
has the typical form of ferromagnetic materials, where the 
constitutive operators are functions of field magnitudes :

B = y (H ) H and H = v(B)B (7.5)

Such a constitutive relationship possesses property 1 of 
sec. 2.2 if the B-H curve is continuous, and has a positive 
slope everywhere. To verify that it possesses property 2 
as well, we test by means of eqns. 2.3 :

fiij {w<H)H)± = !h (m (H)H.) = §£§§. . 1 (M) H.H, (7.6a)
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B, Tesla

Fig, 7.1 Non-linear B-H characteristic : piecewise
linear representation used in numerical 
solution. The slope is u0 beyond the 
point 10 KA-t/m, 0.6 T.

where it is noted that

H =  ( I H 2 ) ̂  => 3H/3H. = H./H (7.6b)
k K 3 3

Similarly

!h . (U(H)H). = 1 (§£) H.H. (7.6c)

Equality of the derivatives in 7.6a and 7.6c means that the 
constitutive relationship satisfies eqn. 2.3a, and hence 
possesses property 2.

The B-H characteristic shown in fig. 7.1 is a discrete 
approximation of the actual smooth one. It is the rep
resentation used in the computer solution, and may be 
viewed as part of the modelling approximation of physical 
problems. Such a piecewise linear characteristic is 
sufficient for well-posedness since only C°-continuity is 
required, as discussed in Appendix B. The initial segment 
has a slope of 500 UQ , the same as the linear permeability 
used in the solutions of sec. 6.5. The last segment, which 
extends to infinity, has a slope of u0, the free space per
meability; it corresponds to a fully saturated state.
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For all three problems that will be considered, the 
equations of sec. 6.5 remain unchanged up to, and including, 
the definition of complementary functionals; examination of 
the derivations should reveal that they involve no 
assumption of linearity. Deviations emerge only when we 
come to define energies and their bounds, and attempt to 
relate them to lumped circuit parameters; at that stage, 
it is necessary to distinguish between energy and co-energy, 
sec. 7.2, since they are no longer equal as in the linear 
case, sec. 6.3.

7.3.1 C-magnet

The C-magnet problem is defined in sec. 6.5.1. The 
constitutive error and complementary functionals are given 
in eqns. 6.24 :

A = 0(H) + 5(B) (7.7a)
with

0(H) = X (H ) and 5(B) = 'i'(B) - <J , A> (7.7b)
Jt\

Comparing with eqns. 7.4 and ineq. 7.1, it is evident that
Qbounds are defined for the co-energy W :

0(H) £ WC = < J , A >_ - We £ -5(B) (7.8)
O  K

The H-solution thus yields an upper bound estimate of the 
co-energy, while the B-solution yields a lower bound 
estimate. The complementary solutions also yield estimates 
of the energy We and the product Z°, eqns. 7.4.
From the H-solution :

W® = <UH , H>r - X(H), Z° = <UH , H>r (7.9)

From the B-solution :

w® = ’P(B), Z °  = <J , A>r (7.10)

And from the two solutions together :

wHB = ’ —>R -  ^  ^H) r Z ° B = X(H ) + ( B ) (7.11)
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The energy estimates in eqns. 
bound the exact values We and 
universal positivity of A and 
we can deduce that

7.9-11 do not necessarily
Z°. However, from the
its definition in eqns. 7.7,

WeB £ WHB and (7.12)

On the electric circuit side, the linear relationship 
between inductance and energy in eqn. 6.27 is now 
generalised to

and

W

W

IL (I )
i d(iL(i ))

J0
I
iL ( i ) di —>

J0
I2L(I)

dWC
di IL (I )

(7.13a)

(7.13b)

(7.13c)

Complementary solutions thus yield various estimates of 
inductance, using eqns. 7.13 in conjunction with eqns. 
7.8-11. Bounds cannot be defined for L since its relation- 
ship to W , eqn. 7.13b, is not a direct algebraic one.

Complementary solutions were performed on the nine 
successively refined meshes described in sec. 6.5. The 
finest mesh placed the exact co-energy at 238.1 J ± 1.66%;
The corresponding global constitutive error is 7.90 J. 
Convergence curves are shown in fig. 7.2. The curve for 
the constitutve error A is almost identical to that of the 
linear case in fig. 6.3. So are the curves for the bounds

g0 and 5, but with a downward shift of some 6 J. The W - and 
Z°-curves conform to the inequalities in 7.12. The figure 
shows clearly that W® and W®B do not bound the exact value 
of energy W which, therefore, cannot be estimated with the 
same confidence as the co-energy W . Less evident, from the 
figure, is the fact that Z° and Z?  do not bound the exact

n i D  J t J

Z ;  however, it is clear that Z° does not improve mono- 
tonically with mesh refinement. It is noted that the curve 
for the constitutive error A represents the difference 
between each pair of corresponding curves in fig. 7.2.
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Fig. 7.2 C-magnet with non-linear iron : convergence
curves.
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Energy distributions in fig. 7.3 are seen to be largely 
unchanged from the linear case, fig. 6.4 : while there is
a definite redistribution of energies, it is too small to 
be prominent at the discrete scale of the display. For 
example, at the 102-element mesh shown, X and V in iron 
were almost equal, at 10.1 J, in the linear case; in the 
present, non-linear, case they go up to 33.0J and 15.2J 
respectively, still small fractions of the global estimates, 
254.9J and 209.0J. The air-gap contributions, on the other 
hand, are 152.3 J and 1 50.9 J respectively; as in the linear 
case, these remained substantially unchanged through mesh 
refinement.

Fig. 7.3 also includes the constitutive error density 
distribution. It highlights discrepancies not only between 
complementary energy estimates, but also between linear and 
non-linear distributions. The iron-part contribution to 
the largely unchanged global error is more than doubled, 
from 7.8 % in the linear case to 18.3 % in the non-linear 
case. The most significant increases are at corners, where 
iron is driven more deeply into saturation. This is also 
evident in fig. 7.4 which shows A-distributions for three 
other meshes. Note in particular the iron pole-face corners 
at the 277-element mesh.

The increase of iron-part contribution to substantially 
unchanged global errors implies, naturally, a corresponding 
decrease in the contributions of linear air and copper 
parts. This results from the reduction of permeability in 
non-linear iron : at air/iron and copper/iron interfaces,
the permeability jump is less pronounced than in the linear 
case. For the same reason, error appears to spill into the 
air region above the magnet : as more flux leaks into that
region, its artificial termination at the top becomes less 
justifiable. Clearly, the boundary needs to be placed 
further away from the iron.

Fig. 7.5 shows B-H plots and equipotential contours at 
three stages of mesh refinement. Comparison with the linear 
case, fig. 6.6, reveals that B-H plots in air are only
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Fig. 7.3 C-magnet with non-linear iron : energy and
error density distributions in 1 02-element 
mesh. Clockwise from top left : X(H)/
ip(B) , it (H,B) , and A(H,B). Upper scale 
corresponds to energies, lower scale to 
error.
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Fig. 7.4 C-magnet with non-linear iron : constitutive
error density distributions at three stages 
of mesh refinement. Clockwise from top left : 
50-, 90, and 277-element meshes.

m
 ▼



169

slightly modified, the tendency being one of a general 
reduction in field magnitudes. B-H plots in iron, on the 
other hand, undergo a drastic, if expected, change, 
necessitating a more than four-fold expansion of the hori
zontal H-scale. While there is a general reduction in 
flux density magnitudes, B, there is a far more prominent 
increase in field intensity, H. Migration to the B-H 
characteristic with mesh refinement, as well as the climbing 
effect noted in sec. 6.5.1, are still in evidence. The 
present, non-linear results highlight, rather more 
emphatically, the discrepancies between complementary 
estimates of the fields. Partly because of the downward 
concavity of the B-H curve, the B-solution tends to under-

Fiq, 7.5 C-magnet with non-linear iron : sub-region at
three stages of mesh refinement. Clockwise from 
top left : finite element mesh; B-H plot in
air; B-H plot in iron; and equipotential con
tours. NB Steps between ^-contours in iron are 
80 times smaller than in air.
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(c) 277-element, 156-node mesh; A/Wc =4.5%.

Fig, 7.5 (continued)
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estimate field intensities, as suggested by the larger pro
portion of points below the curve; by the same token, the 
H-solution tends to over-estimate flux densities. Although 
B-H plots fail to predict exact values, they do indicate 
the degree of confidence with which to regard numerical 
estimates of complementary fields.

Comparison with fig. 6.6 also shows that equipotential 
contours in air are only slightly modified. In iron, there 
is a significant increase of ft-contours, reflecting the 
increase of mmf required to drive flux through saturated 
parts. Both ft and A are more uniformly distributed in 
iron, particularly near the pole-face; corner saturation 
effects are noted. The degree of mutual orthogonality of 
complementary contours does not appear to change signifi
cantly from the linear case, suggesting that the increase 
in iron error noted earlier is attributable, in the main, 
to discrepancies in field magnitudes rather than space 
orientations.

Comparison of B-H plots in fig. 7.5 with the B-H 
characteristic of fig. 7.1 indicates that the excitation 
used in the solution (1 A/mm2 => 7700 Ampere-turns) drives 
the magnet just beyond the knee of the curve. Fig. 7.6 
shows the variation of energies with excitation, up to 
twice nominal; the curves are seen to lose linearity as 
excitation increases. The curves for -n(B) and coincide 
in the linear, low excitation range, where energy and 
co-energy converge to a single W, sec. 6.3. Corresponding 
pairs of energy curves differ by A , and conform to inequa
lities 7.8 and 7.12. Fig. 7.7 shows the resulting induc
tance estimates, derived using eqns. 7.8, 1 0 , 11 , and 1 3 . It 
is recalled that these estimates are not guaranteed to 
bound the exact values of inductance in the non-linear 
case. The figure shows that, at the linear limit, induc
tance estimates derived from the co-energy are almost 
symmetric about the exact value estimated in sec. 6.5.1.
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Current density squared, J2 (A/mm2)2
Fig. 7.6 C-magnet with non-linear iron : variation

of energies with coil excitation. Solutions 
performed on 102-element mesh.

N 2L (uH)

Fig. 7.7 C-magnet with non-linear iron : coil
inductance computed from various energy 
estimates for 102-element mesh. N is 
the number of coil turns. LHS arrow 
indicates linear inductance.
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7.3.2 D.C. machine

The d.c. machine problem is defined in sec. 6.5.2. 
Boundary specifications are similar to those of the 
C-magnet, so that eqns. 7.2-12 apply.

Equipotential contours and B-H plots, shown in fig.
7.8, indicate that the machine is driven well into satura
tion, particularly in the constricted pole base. Scalar 
potential contours are stacked so closely there that clarity 
of the display necessitated a change of scale from that of 
fig. 6.7; note also the altered scales of the B-H plots.
The global constitutive error is 0.800 Joules, down from 
1.247J in the linear case; the co-energy is estimated at 
19.05 J ±2.1%, down by half. The energies are V7g = 6.35J and
WHb = 5.55J, down to around just a sixth.

The reduction in global error is attributable to the 
smoother change in permeability at material interfaces.
Fig. 7.9, which shows error density distributions, supports 
this conclusion. For example, the air elements inside the 
gap and in the vicinity of the pole tip, inset to fig. 7.9, 
account for only 8.2% of the global error; this is to be 
compared with 35% of the larger linear error, sec. 6.5.2. 
Much of the error is now concentrated in the constricted 
pole base mentioned earlier; the high magnetisation points 
in fig. 7.8d correspond to the elements of that region.
The mesh, designed to cater for errors in the linear case, 
is not quite suitable for the present non-linear one : it
is too coarse in the pole base, and unnecessarily fine in 
the vicinity of the pole tip.

7.3.3 Lamination

The lamination problem is described in sec. 6.5.3, 
where it is shown that two definitions are possible : 
specified mmf, or specified flux.
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Fig. 7.8 D.C. machine with non-linear iron : (a) equi-
potentials in air near pole tip; (b) equi- 
potentials in iron; Q  steps 6 times smaller 
than in air; (c) B-H plot in air; (d) B-H 
plot in iron.

7x
10

- 
A/
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Fig. 7.9 D.C. machine with non-linea 
error density distribution, 
air elements inside gap and 
iron elements masked.

r iron : constitutive
Inset shows enlarged 

near pole tip, with
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(i) Specified mmf (M = M) •
•

> n © S + 2m (b > (7.14a
with

0m (H) = X(H) , Hm (B) = 4> (B) - M * (7.14b

Comparing with eqns. 7.4 and ineq. 7.1 , we can write

IISII
o2A

ll

S'~s© we £ - (B )M • (7.15)

W® = <UH,H>R-X(H), z° = <u h ,h >r (7.16)

W® = T(B), Z° = M<|> (7.17)

W®B = M<t> - X(H) , Z°B = X(H) + T(B) (7.18)
Also

we  ̂weB “ WHB '
n O  >  „ 0
ZHB = ZB (7.19)

Fig. 7.10 shows convergence curves for a series of sue-
cessively refined meshes; it confirms that bounds are 
defined for the co-energy W , ineq. 7.15, but not for the0energy W , ineq. 7.19.

(ii) Specified flux ((J) = 0) :

A = 0 , (H ) +
V B )

(7.20a)
with

0^(H ) = X (H ) - M0 ,
V B >

= Y(B) (7.20b)

Comparing with eqns. 7.4 and ineq. 7.1, we can write

E , (B ) a we = M4> -- wc  ̂ -
V H )

(7.21 )

W® = X(H),
* 1 -

M * (7.22)

WB = <VB,B>r -Y(B), ZB = <VB,B>R (7.23)

WHB = " I’d), 7° _ZHB " X(H) + t(B) (7.24)
Also

wc > WC H " WHB' ZHB " ZHB (7.25)
Fig. 7.11 shows convergence curves for the same, sue —

cessively refined, meshes of fig. 7.10; it confirms that,
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Mesh refinement (number of elements)

Fig. 7.10 Non-linear lamination convergence curves : 
specified mmf, M =26 Ampere-turns.

in the present specified flux case, bounds are defined for 
the energy W , ineq. 7.21, but not for the co-energy W , 
ineq. 7.25.

The A-curves in figures 7.10 and 11 are almost identi
cal, the specified mmf error being marginally smaller (just 
under 2%) than the specified flux error. Both are greater 
than in the linear case by 11-36 % : error improvement at
air/iron interfaces, discussed in sections 7.3.1 and 2, does 
not arise in the lamination problem, leaving only error 
increasing effects in the iron.
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Fig. 7.11 Non-linear lamination convergence curves : 
specified flux, ‘0 = 10 milli-Webers.

The chosen values of mmf, fig. 7.10, and flux, fig. 
7.11, correspond closely, but not exactly, to each other.
At the finest mesh attempted (213 elements and 128 nodes), 
the specified mmf B-solution, ~M (B) in eqn. 7.14b, estimated 
the flux at 9.95 mWb; the specified flux H-solution, 0^(H) 
in eqn. 7.20b, estimated the mmf at 26.05 A-T. Recalling 
eqn. 7.17, the curve for Z° in fig. 7.10 may be viewed as 
a scaled representation of 0; similarly, recalling eqn. 
7.22, the curve for Z° in fig. 7.11 may be viewed as a 
scaled representation of M. Both were found to increase 
monotonically with mesh refinement. This suggests that
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Fig. 7.12 Non-linear lamination magnetisation curves.
Captions indicate solutions from which the 
curves were obtained. Both solutions were 
performed on 39-element mesh.

the exact magnetisation curve for the lamination may well 
lie between the two numerically derived curves of fig. 7.12, 
although bounds are not formally established.

The static reluctance of the trapezoidal lamination is 
given by

R = M / <J> (7.26 )

Thus each of the magnetisation curves of fig. 7.12 yields 
a corresponding reluctance curve; these are shown dotted in 
fig. 7.13. The figure also shows alternative numerical 
estimates of the reluctance. These are based on the non
linear generalisation of the linear relationship between 
energy and reluctance in eqns. 6.41 :
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(a) Specified mmf solution.

Flux, (f> (milli-VJebers) 
(b) Specified flux solution.

Fig, 7.13 Non-linear lamination : reluctance
computed from various energy estimates 
for 39-element mesh.
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W

W

Z

e

c

o

d>R(d>) d<t> 
J o

f4>

fM 
• o

M
R(M) dM

M 2/R(M) = (J> 2R (<t>)

=>

=>

dW® i p / a. \ 
d* = <t,R(<1,)

i f  =

(7.27a)

(7.27b)

(7.27c)

Bounds cannot be defined for the reluctance R since its
e crelationships to the energy W and co-energy W are not 

direct algebraic ones. Reluctance calculations based on 
other energy estimates were found to be practically indis
tinguishable from those shown in fig. 7.13 at the scale 
used. In all cases they coincide with the linear reluctance 
bounds of sec. 6.5.3 at low excitation.

Figures 7.14-16 show energy distributions, error dis
tributions, equipotential contours, and B-H plots at certain 
stages of mesh refinement; they are to be compared with 
figures 6.12-14 of the linear case. As a result of the 
characteristic concavity of the B-H curve, the B-scale in 
the B-H plots has been halved, whereas the H-scale has been 
more than doubled; corresponding changes are made in the 
sizes of steps between equipotential contours. Rather 
significantly, the energy and error scales remain unaltered. 
As might be expected, there is a more marked redistribution 
of x(H) than there is of M B ) ; global increases are of the 
order of 45% for X(H), and 9% for 'i'(B). It is noted that 
fig. 6.12 includes the distribution ic(H/B) which, in the 
linear case, is an estimate of energy density, eqn. 6.16a; 
as this is no longer true in the present non-linear case, 
fig. 7.14 includes the distribution £(H,B), rather than the 
physically insignificant iC(H,B).

While the tendency of error to concentrate at the 
inner corner is still very much in evidence, there is 
a clear spill of error into the rest of the lamination : 
in the linear case of fig. 6.13, the permeability is uni
form over the entire region, whereas in the non-linear case 
of fig. 7.15 each element boundary is, in fact, an inter
face between sub-regions of differing permeabilities. As
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Fig. 7.14 Non-linear lamination energy density 
distributions in 39-element mesh. 
From left : x(M)' b(B), and £(H,B).
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Fig. 7.15 Non-linear lamination 
density distributions 
mesh refinement : 12,

constitutive error 
at three stages of 
24, and 39 elements.
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Fig. 7.16 Non-linear lamination : finite element mesh,
equipotential contours, and B-H plot at three 
stages of mesh refinement; specified flux.
(a) 12 elements and 12 nodes; A/We = 10.7%;
(b) 39 elements and 29 nodes; A/We = 2.6%;
(c) 163 elements and 101 nodes; A/We = 0.8%.
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a result, there is an overall increase in the global 
constitutive error A, as already noted with reference to 
figures 7.10 and 11.

Of particular interest is the region in the vicinity 
of the outer corner. The distributions of fig. 7.14 and 
the potential contours of fig. 7.16 indicate that energies 
and fields are very small there. The error density, fig. 
7.15, might therefore appear to be disproportionately high, 
especially in comparison with the base region of the lami
nation. A probable explanation is that, near that corner, 
discrepancies in direction are far more significant than 
discrepancies in magnitude : the fields are required to be
parallel to and normal to / yet the two surfaces are
angled at 45 degrees rather than 90. Nature handles the 
specification by setting the fields to zero at the tip of 
the corner; finite elements, on the other hand, concede 
a relatively high level of error. At the inner corner, of 
course, both types of discrepancy are significant. These 
remarks apply equally well to the linear case, although the 
error level, fig. 6.13, is generally lower.

7.3.4 Conclusions

The solutions of the previous sections demonstrate the 
application of complementary variational principles to non
linear problems. The presentation emphasises peculiarities 
of the non-linear case, general aspects having already been 
covered in Chapter 6.

The constitutive error density was found to decrease, 
compared to the linear case, at air/iron interfaces; this 
is attributed to the decrease in iron permeability, resul
ting from the characteristic concavity of the B-H curve. 
Inside iron, error tends to increase because of the 
previously non-existent jumps in permeability across inter
element boundaries; this effect is particularly marked in, 
and around, heavily saturated regions.
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Non-linear B-H plots highlight the vast discrepancies 
possible between complementary estimates of the fields, 
even for what may be regarded as generally adequate meshes.
A tangible level of confidence, in the numerical results, 
may be inferred from the degree of scatter in such plots.
Of course, the constitutive error density distribution 
provides a more comprehensive assessment, accounting for 
discrepancies in both magnitude and direction. In non
linear iron, it is usually the former that are more 
significant.

The computed results support the theory of sec. 7.2 
regarding the existence, or otherwise, of bounds : 
depending on problem specification, bounds may be defined 
either for the energy or for the co-energy, as demonstrated 
by the dual specifications of the lamination problem in 
sec. 7.3.3. In the more common magnetostatic boundary 
specifications of the C-magnet, sec. 7.3.1, bounds are 
defined for the co-energy. In practice, complementary 
numerical estimates of bounded quantities are roughly 
symmetric about the exact value, and approach it mono- 
tonically with mesh refinement. The same is not generally 
true of unbounded quantities, such as the product Z° and 
circuit parameters, even when the numerical estimates appear 
to fall consistently above and below the exact values.

Although the presentation was restricted to magnetic 
non-linearity, the lamination problem can be reinterpreted 
as a resistance problem, as explained in sec. 6.7.1. The 
availability of independently solvable complementary for
mulations for both possible specifications of such a prob
lem is particularly important in the present, non-linear, 
case, since linear scaling cannot be employed to extract 
one solution from the other.
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7.4 Non-linear iteration

The solution of non-linear finite element matrices is 
essentially an iterated tv/o-step process :

(i) Given an estimate of the field distribution, pro
jection on the B-H characteristic yields a corres
ponding permeability distribution.

(ii) Given an estimate of the permeability distribu
tion, linear equations are formed and solved to 
yield a corresponding field distribution.

Starting with some initial field estimate, the process is 
repeated until consecutive estimates agree to within a 
prescribed tolerance. Such a broad description of the pro
cedure covers both simple non-linear iteration, as well as 
the more efficient Newton iteration7*3 . It also leads to an 
interesting interpretation in terms of a modified conception 
of the constitutive error. The modification is this : 
whereas everywhere else in the thesis we associate the error 
with the discrepancies between complementary H- and 
B-solutions, in this section we shall define an H-solution
error Au , and a B-solution error A-,.n a

Consider a non-linear B-solution. Let vT denote the
J - J

estimated reluctivity at some point in the iron, at some 
stage of the iterative process described above. Let B 
denote the resulting field estimate, step (ii) . Unless the 
non-linear solution has converged, the situation would be 
as shown in fig. 7.17a or 7.17b. The non-linear B-solution 
constitutive error may then be defined as follows :

Ab = Ab (vl B,B) = X (vlB) + \p(B) - C(vlB,B) (7.28)

Upon convergence, the situation will be as depicted in 
fig. 7.17c, where

AB = 0 (7.29)

Integrating over the iron, and recalling the properties of 
the constitutive error, eqns. 2.18, we can write
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Fig, 7.17 Non-linear B- 
solution field 
estimates and 
reluctivities.

Fig. 7.18 Non-linear Pi- 
solution field 
estimates and 
permeabilities.
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0 < Ab = X(vlB) + ^(B) - Z(vLB fB) (7.30a)
with

0 = Ag <=> VgB= vB everywhere in iron (7.30b)

That is to say, the global error is zero if and only if 
total convergence has been achieved. Moreover, as the error 
is strictly non-negative, non-linear iteration may be viewed 
as a process of minimising the modified constitutive error. 
The H-solution constitutive error is entirely analogous. 
Referring to fig. 7.18, we can write

0 < Ar = X (H ) + y(uLH) - Z(H,ul H) (7.31a)
with

0 = A„ <=> ;itH = pH everywhere in iron (7.31b)

The error may be computed to provide a reliable indi
cation of convergence at any stage of the iterative process. 
General convergence criteria can be established for the 
normalised error, for example with respect to (X + 'y) or Z. 
Fig. 7.19 presents a graphic illustration of the relation
ship between normalised error and non-linear convergence.

The concept of separate H- and B-solution constitutive 
errors may be pursued further. Returning to fig. 7.17, let 
us address the question : what value of reluctivity to use
in forming the matrix for the following iteration ? The 
figure shows three possibilities, , v2 / and v^.

results from direct projection of the current estimate B 
onto the B-H characteristic; from an energy point of view, 
replacing v by v1 effectively leaves the value of ijj(B) 
unchanged, but modifies x(vTB ) and £(vTB,B) to set the 
error Ag to zero. The second alternative, \>2 r results from 
direct projection of VgB onto the B-H characteristic; from 
an energy point of view, replacing vL by V 2 effectively 
leaves the value of x(vLB ) unchanged, but modifies \|j(B) and 
C(VgB,B) to set the error Ag to zero. Finally, replacing 
VL by V3 effectively retains the value of £(vLB,B), and 
modifies x(v^B ) and \MB) to set Ag to zero. All three 
schemes change the reluctivity in the same direction,
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(a) B-solution.

1 2 3

/  71.6% 4.05% (  \! 0.59%|

Fig. 7.19 Field plots at consecutive non-linear iterations 
of C-magnet solution (7700 Ampere-turns; 102 
elements), using simple iteration in conjunction 
with v3 and u 3 (see text). Scale for each frame 
determined by current field maxima; percentages 
refer to global constitutive errors.
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increasing it in fig. 7.17a, and decreasing it in fig. 7.17b. 
Because of the characteristic concavity of the B-H curve, 

represents the greatest jump, and V2 the smallest; 
falls in between, and may be regarded as an under-correction 
of the oscillation-prone , or as an over-correction of the 
relatively slow v^. Analogous choices arise in the case of 
the H-solution, fig. 7.18.

Non-linear solutions were performed by simple iteration 
using the three schemes described above, together with 
variants. emerged as the clear favourite : it is more
reliable than , and generally faster than v ^ m The plots 
of fig. 7.19 are based on and they are typical in
that convergence is initially fast, but slows down con
siderably as errors become small. Oscillations do set in 
as the iron is driven more deeply into saturation, but the 
choice of under-correction factors is far less critical than 
is common with . Variants that merit consideration may 
possibly involve dynamic choice of schemes and/or relaxation 
factors in individual iron elements, with the choice guided 
by local error and/or position on the B-H curve. One treat
ment that was found effective proceeded as follows : start
with for fast initial convergence, shift to the slow but
sure when oscillation sets in, and return to after
a couple of iterations.

7.5 Conclusions

The theory of non-linear complementary variational 
principles involves no fundamental change from the linear 
case, with the possible exception of the problem-dependent 
definition of energy bounds, and the absence of bounds on 
circuit parameters. Tangible differences are, however, 
evident in the numerical behaviour of complementary solu
tions, especially constitutive error distributions; these 
are illustrated and discussed in sec. 7.3

The constitutive error approach also provides an 
interesting interpretation of non-linear iteration : the
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process may be viewed as one of minimising separate H- and 
B-system constitutive errors defined in sec. 7.4. The 
errors provide reliable indication of non-linear 
convergence, and open up a variety of possibilities for 
what may prove to be efficient non-linear iteration 
algorithms.
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C H A P T E R  E I G H T  

Pre-specified Fields in Magnetostatics

8.1 Introduction

The use of potentials to describe the physical fields 
necessitates the introduction of pre-specified fields to 
account for source distributions; from sec. 3.4.3, we have

H = G - grad ft ; B = C + curl A (8.1a)

ft and A are the potentials; G and C are pre-specified to 
satisfy

curl G = J ; div C = p (8.1b)

where J and p are the H- and B-system source distributions, 
respectively.

In magnetostatics, the absence of magnetic charge p 
allows C to be set to zero. The H-system pre-specified 
field G is often defined by the Biot-Savart law8*1'2. This 
chapter examines the limitations of the definition in 
numerical applications, and proposes a simpler, and more 
accurate alternative; numerical results are compared.

8 .2 The H-system solution formulation

A typical magnetostatic problem, in a given region R, 
may be specified as follows :

B = y(H)H+ Br ; H = V (B )B + Hc (8 .2 )

J = curl H ; 0 = div B (8.3)

0 = n x AH ; 0 = n • AB (8.4)
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The bounding surface S is composed of two simply-connected 
sub-sections

with
S = Sh u sb sh n sb = o (8.5a)

0 = n x H on , 0 = n • B on (8.5b)

Consider the H-formulation. The scalar potential ft 
is introduced to impose H-system specifications on H

H = G - grad ft (8.6)

where G accounts for the current density J; it is pre
specified to satisfy

curl G = J (8.7)

so that H satisfies eqn. 8.3. From eqns. 8.4, 8 .6 , and 
3.55, on a surface of discontinuity

n x grad Aft = n x AG (8.8a)
r

Aft(r) = Aft(rĵ ) + Aft
r—
AG*d£

where rĵ  is an arbitrary reference point on S]̂ . 
8.5, 8 .6 , and 3.54, on the boundary section

(8 .8b) 

From eqns.

n x grad ft = n x G

ft(r) = ft(r^) + Aft G *d£
L h  L h

where r^ is an arbitrary reference point on S^.

(8.9a)

(8.9b)

From sec. 6.5, or sec. 3.6.2, the H-system functional 
is given by

0(H) = X (H ) (8 .1 0 )

The solution formulation is thus given by

0 = 60 = 6X = <y(H)H + Br , 6H>r

Substituting for H from 8 .6 , and noting that G is 
pre-specified
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0 — 60 = <yVft — Br , V6ft>ĵ  — <yG , V6ft>ĵ

Applying a vector identity and the divergence theorem to 
the second term :

0 = 60 = <yVft — t 6Vft>ĵ  + <V* (y(3) , 6ft̂*ĵ
+ [n • (yG) , 6ft]s  ̂- [n • (yG) f 6ft]Sb (8.11 )

where Sy denotes material interfaces; it is noted that 
^Ighis zero from eqn. 8.9b.

The H-formulation solves eqn. 8.11, with G pre-speci- 
fied to satisfy eqn. 8.7 in R, and ft constrained to satisfy 
eqns. 8 . 8  and 8.9.

8 .3 The Biot-Savart definition in numerical analysis

The Biot-Savart law expresses the magnetic field of 
current distributions in free space

Thus

Hs (£) ' J(r1) x (r - r ')
•R 47r | r - r ' I 3

dR(r ' )

curl Hs = J

(8 .1 2 )

(8.13)

Clearly, Hs provides the required definition of the 
pre-specified field G in eqn. 8.7. In numerical appli
cations, however, the actual G imposed on the H-formulation 
can only approximate Hs, so that

G = Hs + z (8.14)

The discrepancy, is due to the smoothness of Hs, and 
arises in two ways :

(i) Although Hs can be computed exactly at individual points, 
integrating it presents a formidable task that must be 
handled numerically, often by means of Gaussian quad
rature. Therefore there is an effective error in all 
integrals involving G in the formulation. Such 
integrals arise in : pre-processing to force H-system
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continuity and boundary conditions on ft, eqns. 8 . 8  and 
8.9; assembly of solution matrices that will force 
the constitutive relationship, or B-system specifica
tions, weakly on ft, eqn. 8 .1 1 ; and post-processing 
operations involving integration of H, eqn. 8 .6 . The 
treatment for this source of error is to improve the 
accuracy of numerical integration, for example by 
increasing the number of integration points in Gaussian 
quadrature.

(ii ) The numerically over-specified space variation of ft is 
generally incapable of depicting smooth integrals in G 
in eqns. 8 . 8  and 8.9. The exact values can be forced 
on ft and Aft at individual points, usually nodes; else
where on and S^, integrals in and h e  arise, 
implicitly, to balance the equality. The error is due 
to incompatibility between the trial functions for ft, 
and the smooth G. The treatment is to relax the numeri
cal over-specification, for example by refining the 
discretisation, or by resorting to higher order trial 
functions.

As a result, the current density distribution perceived 
by the H-formulation differs from the true one. Alterna
tively, the error can be interpreted in terms of physically 
non-existent current-sheets in eqns. 8.9 and 8.10, and 
magnetic charges in eqn. 8 .1 1 .

Initial experience with this definition of G indicated 
large errors in the computed values of H in high permeabi- 
lity iron . The errors were attributed to near
cancellation effects : Hs and Vft tend to be of similar
magnitude and direction in iron parts, so that estimating H 
by eqn. 8 . 6 amplifies essentially proportionate errors in ft. 
However, the error analysis presented here suggests that 
there is a fundamental cause for the inaccuracy, namely 
inexact formulation. The prominence of the inaccuracy in 
iron parts can be explained with reference to eqn. 8 . 1 1  :
e, the implicit error in G, is amplified through multipli
cation by the high iron permeability y.
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The source of the error is substantially reduced8*** 
in linear isotropic iron parts whose contribution to the 
second integral in eqn. 8 . 1 1  is excluded from the formula
tion on the grounds that Hs is solenoidal, so that

div (uHs ) = M div Hs = 0 (8.15)

A greater, and more general, improvement is achieved 
by setting G to zero outside conductors8*5. Referring to 
conducting and current-free sub-regions of R by Rc and Rf 
respectively, we write

in Rc : G = Hs = > curl IQ n \<-
t H 0 (8.16a)

in Rf : G = 0 = > curl G = J = 0 (8.16b)

The discontinuity in G at the interface between R c  and R f  

is imposed on ft through eqn. 8.9b. Depending on the topo
logy, it may be necessary to introduce cuts that allow ft to 
be discontinuous in R f .  Eqns. 8.16 define the two-potential 
formulation, where ft is called a reduced potential in Rc , 

and a total potential in R f 8*5' 6 . Eqns. 8 . 8  and 8.9 are 
unchanged in form, but are now restricted to the conductor 
surface Sc . Eqn. 8.11 simplifies to

0 = 60 = <yVft - Br , 5Vft>R - [n*(U0G) , 6ft]Sc (8.17)

where the permeability of conductors is taken to be that of 
free space, u0 , so that eqn. 8.15 applies. Inexact formu
lation is now restricted to conductor surfaces, both in pre
processing, eqns. 8 . 8 and 8.9, and in matrix assembly, 
eqn. 8.17; the latter effect is relatively harmless due to 
multiplication by yQ , the smallest possible permeability.
The size, location, and discretisation of the conductor 
surface determines the degree of inaccuracy retained in two- 
potential formulation. The postprocessing error is restric
ted to conductors, Rc , since G is set to zero in R f ,  

eqns. 8 . 6 and 8.16. In this way, two-potential formulation 
limits the error inherent in the numerical application
of Hs .
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Although the volume integral for Hs in eqn. 8.12 can 
usually be transformed into a somewhat simpler surface 
integral, the calculation of Hs at individual points is 
a demanding operation in terms of computer time. Therefore, 
error reduction by refinement of discretisation and/or 
numerical integration can lead to a substantial increase 
in run-time.

8.4 An alternative definition

The magnetostatic problem in R includes an implicit 
current flow problem in Rc , the conducting sub-region. In 
simple cases, such as two-dimensional analysis, the solution 
to the problem, J(r), is known exactly. However, the 
solution can always be performed in terms of T, the current
describing vector potential of sec. 6.7 :

curl T = J (8.18)

The two-potential formulation of eqns. 8.16 can be 
generalised to

in Rc : G = T => curl G = J * 0 (8.19a)

in Rf : G = 0 => curl G = J = 0 (8.19b)

The definition of G is then a matter of performing the 
current flow solution prior to the magnetostatic solution.
In principle, the solution for T can always be performed 
numerically using the discretisation of Rc intended for the 
magnetostatic solution. This may be unavoidable with 
irregular conductor geometry. In many practical applica
tions, however, a general solution may be found.

Solution formulations of the current flow problem were 
considered in sec. 6.7. As discussed in sec. 3.4.4.2, the 
physical specifications alone do not force a unique vector 
potential T; additional conditions, arbitrary but consistent 
with the physical specifications, are still to be introduced. 
Hs in eqn. 8.12 corresponds to a particular set of solvabi
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lity conditions. Alternative conditions may yield a T 
distribution that is better suited to numerical applications.

In the two-potential formulation of sec. 8.3, the 
sources of error were found to reside on the conductor sur
face Sc . Let us therefore examine conditions on Sĵ  where

on a Sc : n • J = 0 (8.20)

Clearly, includes the interface between Rc and Rf. 
Substituting for J from eqn. 8.18, introducing surface co
ordinates, and applying a vector identity, we find

0 = n • curl T = n • curl T = div (n x T) — — — s — s — —
It is thus possible to define T on Sĵ  by

n x T = - n xgradg n ( 8.21 )

where n is a scalar distribution defined on Sĵ . 
along a path in Sj,

H (r)
r

n(rk ) + Ar)
’—
T • d£ 

ilk
where r̂ . is an arbitrary reference point on S^. 
a discontinuity given by

Integrating

(8 .2 2 )

An is

An o T • d£_ f fcurl T* dS = J • dŜ  = I
s£ s£

(8.23)

where £ is any path, in S^, that surrounds the conductor; 
S g  is any surface, in Rc , that is bounded by £. The 
discontinuity An is thus defined across a curve, £^ in S^, 
running like a seam along the length of the conductor.
An a p p e a r s  i n  e q n .  8 . 2 2  i f  t h e  i n t e g r a t i o n  p a t h  f r o m  r ^  t o  

r  c r o s s e s  £ ^ .  I  i s  t h e  c u r r e n t  t h r o u g h  t h e  c o n d u c t o r .

Comparing eqn. 8.22 with eqn. 8 .8b, and noting that 
G is zero in Rf, it is evident that we can set

on Sĵ  : Afi = fif - fic = n (8.24)

so that A Q  |s^ in the magnetostatic problem is represented 
by n in the current flow problem. Enforcing eqn. 8.24
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exactly ensures compatibility between the definition of T 
and the trial functions for H on S^. If, moreover, the 
definition of T is simple enough to allow exact integration, 
the two sources of error associated with Hs will have been 
avoided.

Such a definition is available in the special case of 
a straight conductor where the current density J is 
constant, being parallel to the conductor surface, 
eqn. 8.20. The definition is

T(r) = i J x (r - (8.25)

where rQ is an arbitrary reference point in space. Taking 
the curl of both sides and applying a vector identity :

V x T = i (V x (j x r ) - V x (J x rQ ))
= i ((r • V ) J - r (V • J ) - (J • V ) r + J (V • r ))

The first two terms vanish because J is constant in space. 
The differential vector operations in the third and fourth 
terms yield

V x t  = i [ - J  + 3 J ) = J (8.26)

as required in eqn. 8.18. Taking the divergence of both 
sides in eqn. 8.25 :

V • T = i (V • (Jxr) - V • (J x r Q ))
= i (r • V x j - j • V x r)

The first term vanishes because J is constant, the 
second because r is irrotational. Thus

V • T = 0 (8.27)

which is convenient but not essential. Crossing both sides 
of eqn. 8.25 with the unit outward normal n on S^, and 
applying a vector identity :

n x t  = i n x (j x (r - r Q ))

= i(n* ( r - r 0 ))J - 2 (n • J) (r - rQ )
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The second term vanishes by eqn. 8.20. Substituting for 
n * T  from eqn. 8 .2 1 , we get

n x gradg n = - i J ( n * ( r - r 0 )) (8.28)

In numerical applications, is usually discretised into 
planar sections. In each section, n • r , and hence gradg rj , 
are constant. Constancy of the gradient implies linear 
variation of n on the section. Thus eqn. 8.24 can be en
forced exactly provided Aft is at least linear over the 
individual sections of S^.

In three-dimensional analysis, conductors are unlikely 
to be straight throughout the region of the problem.
Often, however, they are 
discretised into straight 
sections. Eqn. 8.25 is appli
cable to the individual sec
tions. At the junction 
between two consecutive 
sections, fig. 8 .1 , we have

Fig. 8.1 Straight conductor 
sections.

n x AT = j  n x  (J2 x(r- > - <Il * <£ - £ 0 1 )) (8.29)

where the subscripts 1 and 2 refer to the two sections Rc-| 
and Rc 2 , and n = n-j = -n/? at the interface S-̂ . Rearranging, 
and applying a vector identity :

n x AT = -j (n x (A J x r ) - n x A (J x r Q ))
- 2  ( (n •r )AJ - (n*AJ)r - nxA(JxrQ ) )

The continuity of n • J at S^ causes the second term to 
vanish, leaving

n x AT = \  ( (n • r ) AJ - n x A (J x r Q ) ) (8.30)

On the plane , n • r , and hence nx AT, are constant. In 
fact, n x T  can be made continuous at S^ by setting n x AT to 
zero in eqn. 8.30, and solving for rQ2 , given , J2 , and 
Tq -j . Continuity of n x T allows ft to be continuous at S^, 
eqn. 8 .8b. However, n • T is discontinuous, and introduces 
the product [n • y0AT , 6ft]5  ̂ into eqn. 8.17.
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We conclude that T in eqn. 8.25 satisfies the various 
requirements set for it. It is compatible with linear, and 
hence higher order, trial functions for ft. It allows exact 
integration with practically negligible demands on computer 
time : the integrals of G in eqns. 8 .8b, 8.9b, and 8.17
can be expanded analytically, and involve simple multipli
cation and addition operations at the individual nodes. 
Moreover, it can be shown that the definition of T in 
eqn. 8.25 also applies to axi-symmetric current density 
distributions.

8 .5 Numerical performance

This section compares the numerical performance of the 
definitions of G in sections 8.3 and 8.4, i.e. Hs and T.

In the two-dimensional magnetostatic examples of Chap
ters 6 and 7, all conductors have polygonal cross-sections, 
as in fig. 8 .2 , either by physical specification, or through
finite element discretisation. 
In either case, the definition 
of G in terms of T, eqns. 8.19 
and 8.25, is applicable; the 
results quoted in Chapters 6 

and 7 are based on T.

For such conductors, Hs 
in eqn. 8 . 1 2  simplifies to 8,7

Hs(r) = I { di(r - ri1) - 
with ^

ai(r') = tj_*r' log r' + |n^

Fig. 8.2 Polygonal conduc
tor contour, t^ and ni are 
unit vectors, tangential 
and normal to segment i.

“i<r - ri2) } t±
(8.31)

where the summation covers all segments of the contour 
polygon. The computational advantage of eqn. 8.25 over 
eqn. 8.31 is obvious; it is compounded by the need to com
pute Hs at all quadrature points, not only nodes, to perform 
the integrations of eqns. 8 .8b, 8.9b, and 8.17 numerically.
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The incompatibility of with numerically over-speci
fied trial functions, item (ii) of sec. 8.3, is illustrated 
in fig. 8.3 for some regular conductor sections. The curve 
of /Hg’d^ along one edge of a square, fig. 8.3a, is seen to 
differ, albeit slightly, from a straight line. The discre
pancies are highlighted in fig. 8 .3b, which also includes 
the triangle and hexagon. The curves approach zero as con
ductor sections approach circularity. The linear finite 
element shape functions used in this work to discretise ft 
cannot absorb these curves exactly as required in eqns. 8 . 8  

and 8.9. The approximation can be improved by refining the 
discretisation of conductor edges, or resorting to higher 
order shape functions. The corresponding integrals in T, 
on the other hand, are exact straight lines; their slopes 
and intercepts are determined by the positions of the indi
vidual edges relative to the reference point rQ , eqn. 8.25. 
Fig. 8.4 shows Hs and T line integrals for the half-slot 
of sec. 6.5.4. With rQ at corner a, the tangential compo
nent of T is zero along edges ab and fa; several solutions, 
of this and other examples,, confirmed that the location of 
rQ has no perceptible effect on results. Note the enhanced 
curvature of the integral in the vicinity of the re
entrant corner f in fig. 8.4.

The contour integral
*
o G • d£ = I (8.32)

p r o v i d e s  a gross indication of one type of numerical integ
ration error associated with H , item (i) in sec. 8.3.—s
I is the current enclosed by the contour. It is given at 
7700 A for the C-magnet of sec. 6.5.1. Columns 4 and 5 of 
table 8 . 1  illustrate the error for two meshes and different 
values of M, where

M = number of Gaussian points on element
sides lying along conductor contours (8.33)

The error can be reduced by increasing M, or refining edge 
discretisation. Table 8.1 illustrates another aspect of 
the error : because the two conductor sections are discre-
tised differently in the finer mesh, the contour integrals
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Fig. 8.3 Curvature of along edges of regular
polygons : equilateral triangle (t), square
(s), and hexagon (h). L is the edge length.

Fig. 8.4 /G.d£_ along contour of half-slot for two defi
nitions of G. £ measured counter-clockwise 
from corner a. The reference point rQ for T 
is also at a. I is the current.
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yield different 
values for what 
should be the same 
current. The T 
integrals yield 
the correct current 
for both meshes.

Having demon
strated quantita
tively the errors 
associated with Hs 
in formulating the 
solution, let us 
now consider the 
errors in its out
come. This is 
best done in con
junction with the 
complementary 
B-solution.

Mesh G M
<
■
) G • d£

(A) "H , B>r 
(J)

left
section

right
section

1 2 3 4 5 6

1 8188 81 88 501 .5
2 7753 7753 474.4

014J 3 7712 771 2 471 .9
C 4 7704 7704 471 .40E H 5 7702 7702 471 .2
0 s 6 7701 7701 471 .2
0 7 7701 7701 471 .2
<N 8 7700 7700 471 .2CN 9 7700 7700 471 .1

T - 7700 7700 471 .2
01 1 7823 7871 492.7
c 2 7708 7712 485.40E H— s 3 7702 7703 484.90 4 7701 7701 484.9
0 5 7700 7700 484.8
co T _ 7700 7700 484.9

Table 8 .1 Inconsistencies in Hs 
solutions of C-magnet.

Column 6 of table 8.1 lists the values of the product 
<H , B > r  for the different M's used. But standard vector 
transformations, with the given boundary conditions, should 
yield

<H * B>R = r A>r (8.34)

where the right hand side is unaffected by changes in M; 
its value is 471.2 J for the coarse mesh, and 484.9 J for 
the fine one. The T solutions yield the correct answer for 
both meshes. The Hg solutions approach the correct answers 
as M is increased. Where <H , B>R differs from the expected 
value, we can conclude that

V x H * J (8.35)

in violation of the H-system physical specifications, eqn. 
8.3. According to the definitions in sec. 5.2.3, we have 
an inconsistent specification here.



206

The inconsistency is highlighted in fig. 8.5 which 
shows the constitutive errors of the two C-magnet meshes for 
different values of M and N, where

N = number of Gaussian points within the
individual conductor elements (8.36)

N arises in postprocessing area integrations involving Hg .
The values N= 1, 3, 4, and 7 correspond to symmetric tri
angle integration formulae of orders 1, 2, 3, and 5 respec
tively8*8. The accuracy of the numerical integration improves 
as N is increased. Fig. 8.5 shows that, contrary to expec
tations, the constitutive error actually increases as the 
number of sampling points is increased from N = 1. The same 
trend is evident in the half-slot conductor solutions, fig. 
8 .6 . As explained in sec. 5.2.3, the constitutive error is 
a comprehensive measure of the numerical errors only in 
consistently specified formulations; inconsistencies involve 
errors that are invisible to it. Highly accurate estimates 
of the energies are given with figures 8.5 and 8 . 6 for 
perspective. The consistent T solution error is at least 
comparable to, and generally marginally less than, the 
corresponding Hs solution error.

The Hg solutions were performed for M up to 9, and N 
up to 7. In general, there were no perceptible improvements 
beyond M = 5 and N = 4 for the problems and meshes attempted; 
in certain cases, lower values were found to be sufficient, 
as can be seen in figures 8.5 and 8 .6 . Clearly, the 'best' 
values, from a practical point of view, depend on the par
ticular problem and mesh, as well as the requirements of 
the analyst.

It is interesting to observe that for a given M in 
table 8.1, the value of <H , B>R is practically independent 
of N; the same was found to be true for the slot solutions. 
This suggests that the associated inconsistency is inherent 
in the over-all solution, and not local to the approximate 
postprocessing integration. In fact, the contribution from 
the C-magnet conductor sub-regions to the over-all integral 
is quite small, and it is only this contribution that is 
affected by N.
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Gauss points per contour element side, M
Fig, 8 .5 C-magnet errors for various Hs-solutions.

Broken lines show errors for T-solutions.
N is number of internal Gauss points per 
element. Energy=246.4 Joules.
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N = 3 , 4 , 7

N = 1

N = 3, 4, 7

N = 1

--------------------1---------------------1---------------------1---------------------1------

2 3 4 5
Gauss points per contour element side, M

Half-slot errors for various Hs-solutions. 
Broken lines show errors for T-solutions.
N is number of internal Gauss points per 
element. Energy=18.64 micro-Joules .
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Figures 8.3-6 and table 8.1 indicate that the errors
and inconsistencies associated with H can be made small by— s
sufficiently refined meshing and a choice of M > 1. They 
are thus reduced to second order effects in the present two- 
potential formulation, but not without cost. Moreover, they 
affect solution accuracy in a generally indeterminate, 
problem- and mesh-dependent, manner. The computational 
effort to overcome them is rendered unnecessary in problems 
where T can be used since it is strictly consistent, of at 
least comparable accuracy to Hg, and far less demanding 
computationally.

8 . 6  Conclusions

Biot-Savart pre-defined fields give rise to physically 
non-existent volume and sheet sources in numerical reduced 
scalar potential magnetostatic formulations. It is 
suggested that the resulting inconsistency is the true 
cause of errors associated with the formulation8’3 ; near
cancellation effects magnify, rather than cause, the errors. 
Two-potential formulations restrict the inconsistency to 
physically non-existent source sheets on conductor sur
faces, thus reducing the error considerably; retention of 
a limited degree of inconsistency is demonstrated by the 
increase of constitutive error with improvement of the 
numerical volume integration.

An entirely consistent definition is proposed for 
conductors composed of straight longitudenal sections, and 
having polygonal cross-sections. The resulting constitutive 
error is shown to be comparable to that of the Biot-Savart 
based formulation. More importantly, the proposed defintion 
is mathematically simpler, resulting in reductions of 
computing time that can run into orders of magnitude.
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C H A P T E R  N I N E

Mixed Formulation

9.1 Introduction

A mixed formulation is one where the solution variable 
is the H-system potential in part of the region, and the 
B-system potential in the remainder. There has been recent 
interest in this type of formulation as it appears to be 
an economical way of tackling three-dimensional problems, 
particularly in eddy current applications9*1-5. Derivations 
have been based on the Galerkin method of weighted 
residuals. This chapter uses the constitutive error 
approach to derive, and examine, mixed formulation under 
static conditions.

9.2 Mixed complementary systems

Consider an abstract problem in a region R where the 
specifications on the fields H and B are

B = y (H )H + Br ; H = v(B)B + Hc (9.1 )
J = curl H ; p = div B (9.2)
0 = nx AH ; 0 = n • AB (9.3)

The boundary surface S is composed of two simply- connected
sub-sections and Sj-j :

s = sh u sb , ^h A sb = 0 (9.4a)
with

h = n x H on ; b = n • B on (9.4b)

The problem specified above is that of sec. 3.6. Conven-
tional H- and B-formulations are derived in sections 3.6.2 
and 3.6.3 respectively.
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To derive mixed formulations, the over-all region R is 
divided into two sub-regions R-j and R 2 as in fig. 9.1 :

R = R-j U R2 , R«j 0 R2 = 0 (9.5)

With the exception of the interface surface SQ , all para
meters are associated with either R-j or R2 , and will be 
subscripted accordingly. For ease of reference, the 
variables are grouped into two systems :

a-system :
and

, Hi ? £ 2 > S 2
(9.6)

3 -system : A 1 , B 1 ; ^2 - M2

For a given problem, two mixed formulations can be defined
a primal formulation based on a-system potentials, fi-j and 
A2 , and a dual formulation based on 3 -system potentials, 
A-j and ft2 . In practice, the choice between dual formula
tions is critical to solution economy. Without loss of
generality, we shall consider the primal formulation based 
on the a-system potentials, and A2; they are defined by

H-I = G 1 - V ;r = £ 2 + v x A2 (9.7)
with

v x Gi = J 1 ;; V • C2 = p2 (9.8a)
and

n x AG'i = 0 ;; n • AC2 = 0 (9.8b)

Fig. 9.1 Region subdivision.



We can choose the following continuity and boundary con
ditions on the potentials
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A$7-| = 0 n x  AA2 = 0 (9.9a)
and

= ^h1 on Sh 1 n x A2 = a.b2 on sb2 (9-9b)

as in sec. 3.6; ^ 1  and ab2 are known.

9.3 Incomplete decomposition of the constitutive error

The constitutive error is a global integral with distinct 
contributions from and R 2 ; thus

The decomposition of Z(H,B) proceeds by substitution of 
a-system potentials, and the usual application of vector 
identities and the divergence theorem :

= <^1 t B-| >r 1 - <Vfi-| ,B-| >Rl + <H2 f C2>r 2 + <H2 / VxA2>r 2 

= <G-] , B-| >R1 + , P1 >r -, - [fii r ’B-i ]s-|US0

+ <12 r 12>R2 + k— 2 ' 12>R2 " [H2xl2 / A 2]s2US0

= <G-| , B-| >r 1 + , p-| >r 1 + <H2 / 12>R2 + <12 r h 2 > R 2

-  [̂ 1 ' bl]Sbi - [fih1 fl1#Bi]sh1 - [̂ 1 /B.1#ll]s0
- [ h .2 r l2 ]sh2 + tl2 f a±)2]sb2 " [H2xl2 * £ 2 ] sQ

Substituting back into eqn. 9.10, we can write

A (H ,B ) = X (H ) + V(B) - Z(H,B) (9.10a)

= X 1 (H-, ) + y-j (B-| ) - Z-, (H-, ,B1 )
+ X2 (H2 ) + ^2(12) - Z2 (H2 ,B2 ) (9.10b)

A ( a , 3 ) = 0 ( a )  + E ( 3 ) -  H a , 3) (9.11 )
with

0(a) = 0(H-j ,B2 ) Xi (H-| ) - , P1 >R-| + t̂ 1 r b1 ̂ Sb1
+ ̂ (I^) “ <12 ’ -2>R2 + [ - 2  ' — 2  ^ Sb2
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H(B) = - (B-| ,H2 ) = (B-j ) - <G-| f Bi >r 1 + [ Ah1 ' H1 * Bi ] s ^1

+ X2 (H2) - <H2 f ̂ 2>R2 ~ / —b2 1 Sĵ 2

where n = n-j = -n2 on SQ , as in fig. 9.1.

The partial decomposition of A between the a- and 
3 -systems accounts for all problem specifications with the 
exception of field continuity across SQ and, of course, the 
constitutive relationship. Explicit imposition of field 
continuity in accordance with eqn. 9.3 yields

nxHi = nxH2 = nxH0 and n *B-| = n*B2 = n *B0 (9.12)

on S0 . The fields n x H 0 and n • B0 are then common to both 
a- and 3 -systems, so that the constitutive relationship is 
not the only link between the complementary systems as was 
the case in conventional formulations. n x H0 and n • B0 

correspond to y in Appendix F , and hence forbid the 
decomposition of A into complementary a- and 3-system 
functionals that can be extremised independently of each 
other. This, incidentally, does not contradict the theory 
of sec. 3.5 which guaranteed the decomposition of A into 
complementary H- and B-system functionals.

9.4 Field continuity in error form

Mixed complementary functionals may possibly be derived 
from an extended error form

where A^ is a positive error expression of field continuity 
across SQ

and
r(a,6) = [ n x H 2 , h . 2 ] S0 - [ « 1 , n • Bi ]Sq

A-f- - A + A a - 0t (a) + (3) (9.13)

(9.14a)
with n x AH = 0

aa = 0 <=> and on So (9.14b)
n • AB = 0
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From 9.13 and 9.14, and the fundamental property of A in 2.18

At   ̂ 0 (9.15a)
with

At = 0 <=> A = 0 and AA = 0 (9.15b)

The total error is then minimised by solving

6At = 0 => 60t (a) = 0 , 6Ht (3) = 0 (9.16)

which imposes both outstanding physical specifications : 
the constitutive relationship, and field continuity 
across S0 .

The definition of AA must be related to field con
tinuity as in 9.14, and ensure the splitting of At into 0{.(a) 
and 5^(8) as in eqn. 9.13. Such a definition, if it exists, 
does not present itself readily.

9.5 Mixed complementary solution formulations

The absence of mixed complementary functionals does 
not invalidate the proposition that the solution to

0 = 6A (9.17)

minimises the constitutive error A, and thus imposes the 
constitutive relationship on the fields. Substituting for 
A from eqn. 9.11, and allowing a- and 8-variables free 
variations, eqn. 9.17 yields

0 = 601 (Hi ) + [ n •®1 ' 6fi1ls0 (9.18a)
0 = 602 (B2 ) - [n x H2 f ^ 2 1 SQ (9.18b)

0 = 6 H1 (Bi) + [ , 6(n • B-j ) ]Sq (9.19a)
0 = 6H2 (H2 ) ~ [^2 , 6(nxH2)]So (9.19b)

where
601 (H-, ) = <u-| {Hi )H/| +Br , 6H 1 >Rl - <Pi , >Ri + [bi , 6«i ] Sb1  

602 (B2 ) = <v 2 (B2 )B2 +Hc , 6B2 >R2 - <J2 , 6A2 >r 2 + [h2 «■ 5A2 lsh2
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6H-j (B-j ) = <v-j (B-j )B-j +HC , 6b -i >̂ -| - <G-j , 6b -| >r -j + [^h1 '  ̂(n*Bl ) lsh1

6~2(H2) = <U2 (H2 )H2+^r / (5H2>R2 ~ K 0 . 2  • <5i*2>R2 ~ ^~b2 ' <5- 2 ŝb2

The varied parameters in eqns. 9.18 are the a-system varia
bles, and in eqns. 9.19 the 8-system variables.

To qualify as a valid solution formulation, eqn. 9.17 
must be augmented, somehow, by the imposition of field con
tinuity across SQ ; otherwise, the conditions of physical 
uniqueness will be incomplete. Moreover, the resulting 
formulation is of practical use only if eqns. 9.18 and 9.19 
are made independent of each other; otherwise, a- and 8- 
systems must be solved simultaneously.

Both requirements relate to the interface S0 ? therefore 
the surface integrals on SQ , in eqns. 9.18 and 9.19, are of 
particular significance. Their role in the solution of 
eqns. 9.18 is to enforce, on SQ ,

n • Ui Hi - n • Bi = 0 , n x V2 B2 - n x H 2 = 0 (9.20)

In the solution of 9.19 they enforce, also on S Q ,

n x v-| B-| - n x H-| = 0  , n • y 2H 2 - n • B2 = 0 (9.21)

The symbol = is used to denote weak equality through the 
minimisation process. For simplicity, Hc and Br are assumed 
zero in eqns. 9.20 and 9.21. The equations can then be 
verified by standard manipulation of the volume integrals 
in eqns. 9.18 and 9.19.

Eqns. 9.20 and 9.21 show that the integrals on S0 
enforce the constitutive relationship between a- and 8~ 
fields , which is consistent with eqn. 9.17. However, it 
is possible to use the integrals to enforce continuity 
weakly. This may be achieved by constraining the a-fields 
explicitly as follows

n*y-|H-| = n * B 2 and n x v  2B2 = n x H-| (9.22)

or by constraining the 8-fields explicitly as follows



216

n x v-j B-j = n x H2 and n • l-i2—2 = H * (9.23)

Either constraint, or both, can be used. Substitution of 
eqns. 9.22 into 9.20, or eqns. 9.23 into 9.21, yields

n x AH = 0 and n • AB = 0 (9.24)

so that field continuity across SQ is imposed weakly by the 
solution of eqn. 9.17, i.e. eqns. 9.18 and 9.19.

But eqns. 9.18 and 9.19 are still coupled, via the SQ 
integrals, and must therefore be solved simultaneously. To 
show how this may be avoided, we rewrite eqns. 9.18 as 
follows

0 = 60-| (H-| ) + [n*B2 , 6 ^  ]s - [n • AB , 6 ^  ]s (9.25a)
0 = 602 (B2 ) - [nxH1 , 6A2 ]g - [nxAH , 6A2]Sq (9.25b)

These are a-system equations; they are coupled to the 
8-system variables through the terms n • AB and nx AH. But 
in exact analysis, weak equalities are exact equalities.
In particular, eqns. 9.24 can be enforced prior to the 
solution as a redundant over-specification, sec. 5.2.2.
Eqns. 9.25 then simplify to

0 = 601(H1 ) + [n • B2 , 6fi1]s (9.26a)
0 = S02 (B2 ) - [n x h 1 , 6A2 ]Sq (9.26b)

irrespective of whether the a-system constraints of eqns. 
9.22, or the 8-system constraints of eqns. 9.23, are used. 
Eqns. 9.26 are entirely in terms of a-system variables, and 
can therefore be solved independently of eqns. 9.19 to 
yield the exact fields.

Eqns. 9.26 can, of course, be formulated numerically, 
and solved to yield approximate estimates of the fields.
In fact they are equivalent to the mixed formulation obtained 
by the Galerkin method of weighted residuals9*2'3; see 
Appendix H . But the present derivation verifies the 
validity of eqns. 9.26 in exact analysis; justification 
in numerical analysis is still to be examined.
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According to the constitutive error approach, a proper 
numerical formulation would solve eqns. 9.25 simultaneously 
with eqns. 9.19 to minimise the error as in eqn. 9.17. The 
fields are constrained by eqns. 9.22 or 9.23 to enforce 
continuity weakly as in eqns. 9.24. But in numerical ana
lysis, weakly enforced conditions are only approximated by 
the solution. Thus, replacing eqns. 9.25 by 9.26 involves 
an approximation that is additional to the standard numeri
cal approximation of the proper formulation. The severity 
of the additional approximation can be gauged by the values 
the solution of eqns. 9.25 attributes to the discontinui
ties, n x AH and n • AB, on SQ ; these are given by rewriting 
eqns. 9.20 as follows

n • AB = n*B2 - n»y-| H-| , nxAH = 11XV2B2 - nxHi (9.27)

Clearly, the smaller the discontinuities, the more justifi
able eqns. 9.26 become. It would thus appear that the 
a-system formulation of eqns. 9.26 requires finer discreti
sation, especially in the vicinity of the interface SQ , 
than conventional H- or B-formulations of comparable over
all accuracy; the mixed formulation is fully justified 
only with infinitely refined discretisation, i.e. exact 
analysis. It would also appear that constraining the 
a-fields by eqns. 9.22 is preferable, from the viewpoint of 
accuracy, to constraining the 3-fields by eqns. 9.23 : 
substitution of eqns. 9.22 into 9.27 causes the right hand 
sides in the latter to vanish, so that the field discon
tinuities are approximated directly to zero as in 
eqns. 9.24. The same cannot be said of the 3-system 
constraints of eqns. 9.23 : the desired eqns. 9.24 follow
from 9.23 only after the simultaneous solution of a- and 
3-systems in a proper formulation; replacing the a-system 
solution of eqns. 9.25 by that of eqns. 9.26 effectively 
accepts an approximate, first iteration estimate of the 
discontinuities without modification by eqns. 9.19. It can 
thus be concluded that the a-system constraint of eqns. 9.22 
has the distinct advantage of relaxing the demands on dis
cretisation refinement. However, it also has the distinct 
practical disadvantage of requiring actual implementation;
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in contrast, the 3-system constraint of eqns. 9.23 need 
only be envisaged conceptually when solving the ot-system 
by eqns. 9.26.

Eqns. 9.26 were derived from eqns. 9.25 by applying 
a redundant over-specification which, in numerical ana
lysis, amounts to an approximation. An alternative deriva
tion is possible : noting that eqns. 9.25 were extracted
from 6A in eqn. 9.17, it follows that eqns. 9.26 are 
extracted from

0 = 6A + [ n * A B , 6^ ] g o  + [ n x AH , 6A2 ] g  ( 9 . 2 8 )

Formally, then, the mixed formulation of eqns. 9.26 does 
not minimise the constitutive error, nor impose field 
continuity across the interface SQ .

A complementary 3-formulation is given by eqns. 9.19; 
its solution is dependent on the a-solution due to the 
presence of and A_2 . An independent , but approximate, 
3-formulation can also be extracted.

9.6 Conclusions

The continuity of fields across the interface S0 , 
which is a requirement of physical uniqueness, forbids the 
definition of mixed complementary functionals, or energies.

Independently solvable mixed formulations can be 
extracted, but involve a degree of approximation in 
numerical application; in effect, they are not associated 
with true minimum principles. Moreover, the formulations 
require additional constraints to be imposed explicitly on 
the fields; the constraints can be chosen to improve 
accuracy, or to simplify numerical implementation, but 
not both together.

The mixed formulation derived here by the constitutive 
error approach is equivalent to that derived by the
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Galerkin method of weighted residuals9*2'3. The question of 
justification, discussed at length in sec. 9.5, can be 
stated in terms of the Galerkin derivation as follows : to
what extent does the mixed formulation, eqns. H.8 in Appen
dix H, enforce the individual residual equations H.3-6 ?
Eqn. H.5, it is noted, relates to field continuity across 
SQ , and does not arise in conventional Galerkin derivations.

Mixed dual and (pseudo-) complementary formulations 
are available, and can be solved simultaneously, or 
independently of each other. Relative accuracy of the 
various options can be assessed quantitatively by 
computing the resulting constitutive error and field dis
continuities at the interface SQ .
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C H A P T E R  T E N

Solvability of Vector Potential Formulations

10.1 Introduction

In order that the solution of a given formulation may 
be performed, the variables must be uniquely specified. 
Section 3.4 distinguishes between the physical uniqueness of 
fields, and the solvability of potentials. The solvability 
requirements on the H-system scalar potential ft, sec.
3.4.4.1, are simple to implement : arbitrary values are
assigned to the potential, and possibly potential discon
tinuities, at certain reference points. The solvability 
requirements on the B-system vector potential A, sec.
3.4.4.2, are equally simple in two-dimensional and axi- 
symmetric applications.

In three dimensions, however, enforcing solvability on 
numerical vector potential formulations is not as straight
forward. Over the past few years, several treatments have 
been proposed, often backed by satisfactory computational 
results. Yet there appears to be lingering confusion regar
ding the requirements of solvability and their implementa
tion 10,1~3'5. This chapter presents an overview of the subject 
in terms of the constitutive error approach. The various 
methods are examined for validity, accuracy, and possible 
extension and improvement.

The constitutive error approach regards potentials as 
mere solution tools of no fundamental physical significance. 
Therefore, a given treatment is considered valid if it 
enforces the physical specifications correctly, and results 
in solvable, i.e. non-singular, solution matrices, irrespec
tive of the manner with which potential solvability is 
secured. Sec. 10.3 considers methods that approximate,



221

numerically, an analytically unique vector potential. Sec. 
10.4 considers methods that enforce solvability directly on 
the numerically over-specified trial functions.

The presentation attempts to predict the relative accu
racy of the various methods. Accuracy relates to the physi
cal specifications, given in sec. 10.2, of which only the 
constitutive relationship is not satisfied exactly. There
fore, the degree to which the constitutive error is mini
mised by a given formulation is indicative of the accuracy 
to be expected from the corresponding solution. Moreover, 
burdening the trial functions with inessential constraints, 
or over-specifications, predictably restricts their ability 
to represent the true solution fields.

10.2 Physical uniqueness

A general magnetostatic problem, in a given region R, 
may be physically specified as follows :

B = U(H)H + Br ; H = V(B)B + Hc (10.1)
J = curl H ; 0 = div B (10.2)
K = n x AH on Sk ; 0 = n • AB (10.3)

According to sec. 3.4.2, boundary conditions that result in 
a physically unique solution can be specified in a variety 
of ways. We recall, in particular, the specifications

h = n x h on S, b = n • B on S, (10.4) — — b

V. = i

r .r ~  1
'r —o

H • d£ =l B • dS (10.5)
S, •hi

where and are non-overlapping sections of the bounding 
surface S

Sh G S ' Sb G S ' Sh n Sb “ 0 (1 0.6 )

Shi ^eno^es simply-connected sub-sections of S^; r^ is an 
arbitrary reference point on is a global reference
point in R. is the magnetomotive force at r^, and is
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the magnetic flux through S ^ .  in many practical applica
tions, the boundary specifications take the simpler form

h = 0 , b = 0 , = 0 (10.7a)
with

s = Sh u sb (10.7b)

Sec. 3.4.3 applies physical specifications to poten
tials in the general case. In the present problem, the B- 
system physical specifications in eqns. 10.2-5 define and 
constrain the vector potential A as follows

and

V X
n •

A
(V x AA) = - • (n x AA)

(10.8)
(10.9)s —

n • (V x A) = - V • (n x A) on S, (10.10)s — — b
•
o
^hi
is

A • d£_

the boundary contour of Ec3ns-

(10.11) 

10.8, 9,
10, and 11 correspond to eqns. 3.41a, 43, 49, and 53 res
pectively; the pre-specified field C is set to zero due to 
the absence of B-system sources.

Physical uniqueness requires eqns. 10.8-11 to be 
imposed on A; in numerical applications, this is usually 
done explicitly. In particular, the curl condition of 
eqn. 10.8 is enforced by substituting curl A for B in the 
constitutive error.

The numerical trial functions are commonly defined to 
make A continuous

AA = 0  => n x AA = 0 and n • AA = 0 (10.12)

so that the continuity condition of eqn. 10.9 is satisfied.

Recalling eqn. 3.100b of sec. 3.6.3, the boundary con
dition of eqn. 10.10 can be enforced through the definition

n x A  = a, + n x V  8 on S, (10.13a)— — —b — s b
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where is any tangential vector distribution on pre
defined to satisfy

V • a, = - b (10.13b)s —b
3 is a scalar distribution on S^. The topology of the 
various sub-sections of S, and the particular way in which 
eqns. 10.5 are specified, determine the form 3 takes : it
may be pre-defined or unknown, continuous or discontinuous. 
The contour in eqn 10.11 may also be a contour of
sub-sections. Thus a non-zero flux may force a discon
tinuous 3 in an adjacent sub-section; if, moreover, 
is not known, the discontinuity cannot be pre-defined. The 
B-system conditions in the common boundary specification of 
eqns. 10.7 can be enforced by choosing

ab = 0 , 3 = 0 (10.14a)
so that

on S, : n x A = 0 (10.14b)b — —

The constitutive error is given by

A(H,B) = X (H ) + 'i'(B) - Z(H,B) (10.15)

Decomposition of Z proceeds by substituting curl A for B, 
eqn. 10.8, applying, as usual, vector identities and the 
divergence theorem, and substituting from eqns. 10.2-13 
into the result. The theory of sec. 3.5 assures us that if 
the physical specifications are well-posed, A will split 
completely between the H- and B-systems :

A (H,B) = 0(H) + 5(B) (10.16)

For example, the common boundary specifications of eqns. 
10.7 and 10.14 yield

0(H) = X (H ) (10.17a)
and

5(B) = ¥ (B ) - <J , A>r - [K , A ] Sk (10.17b)

Minimisation of the constitutive error in eqn. 10.16 
produces the B-system solution formulation :
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0 = 65(B) (10.18)

This equation is not, as yet, solvable since the vector 
potential A has not been uniquely specified. The following 
sections describe methods of enforcing solvability on 
numerical formulations of eqn. 10.18.

10.3 Analytic solvability

An analytically unique vector potential can be defined 
in terms of a two-system model as in sec. 3.4.4.2 :

F = a A r l> ii e i (10.19)
B = V x A t p' = V • F (10.20)

K' = n x AA on SA t o' = n • AF on S . A (10.21)
a = n x A on Sa / f = n • F on (10.22a)

where
S = S Ua sf and s n s. = oa f (10.22b)

and denotes surfaces of discontinuity in n><A and n«F.
a, p', a', and f can be chosen arbitrarily provided they do 
not violate the physical specifications. K 1 is forced by 
the continuity of the numerically over-specified trial 
functions in eqns. 10.12; thus

K* = 0 (10.23)

Moreover, the following choices

a = a-** = 1  and o' = 0 (10.24)

are consistent with the continuity of n«A in eqns. 10.12. 
The values of p' and f are not constrained in any way; for 
simplicity, we choose

p' = 0 and f = 0 (10.25)

It is emphasised that the values in eqns. 10.24 and 25 are
chosen for convenience, and can be altered if desired. As 
they stand, they simplify eqns. 10.19-22 to
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F = A (10.26)
B = V x A ; >no ' A (10.27)
0 = n x AA ; 0 = n • AA (10.28)
a = n x A on S ; — a 0 = n • A on (10.29)

It is noted that the general divergence condition of eqn. 
10.20 has been reduced to the familiar Coulomb gauge in 
eqn. 10.27. Enforcing eqns. 10.27-29 on the solution for
mulation renders it solvable. The curl condition in eqn. 
10.27 is enforced by substitution into E. The continuity 
conditions of eqns. 10.28 are inherent in the numerical 
trial functions, eqns. 10.12. This leaves the divergence 
and boundary conditions, eqns. 10.27 and 29, which will be 
considered in the following sections.

10.3.1 Boundary conditions

Physical specifications divide the boundary S into 
and sections, eqns. 10.6, while solvability conditions 
divide it into and S^. Obviously, the two divisions 
must correspond to each other in some suitable manner.

Consider first S^, where there are no physical speci
fications on A or B. No constraint on n x A  is allowed 
because that would effectively constrain B via

vs • (n x A) = - n • (V x A) = - n • B (10.30)

and hence violate physical specifications. By elimination, 
then, is an boundary :

on S, c S.p : n • A = 0 (10.31)

Imposition of eqns. 10.31 on the trial functions must avoid 
interaction between components so as not to constrain, 
implicitly, nxA, and hence n • B.

Consider next S^. Comparison of eqns. 10.13 and 10.29
indicates that S, sections on which V 8 can be pre-definedb s



226

belonq to S : S, sections on which V 3 cannot be pre-a b s c
defined can only belong to S^. is thus divided into
two parts

s, = s,b ba u sbf ' Sba n Sbf = 0 (10.32)
where

on S, = S : ba a n x A = a, + V 8 = a , —b s — 6 pre-defined
(10.33a)

and

on sbf c s f : ■
' n x A
n • A l — ~

= ab + ?s6 , 6 
= 0

unknown
(10.33b)

From eqns. 10.31-33, the 
10.22 are related by

divisions of S in eqns. 10.6 and

S = S, a ba and Sf = Sbf u sh (10.34)

Eqns. 10.31-34 apply to 
case of eqns. 10.7 they

the general case, 
reduce to

In the common

on S, = h qbf * n • A = 0 (10.35a)
and

on Sb = S :a n x a = 0 (10.35b)

Specification of n A on S can occur — a implicitly due
to component interaction on discretised 
or explicitly by prescribing

curved boundaries,

on S, =b S :a A = 0 (10.36)

instead of eqn. 10.35b. This choice does not violate physi
cal specifications as does the prescription of n xA on 
boundaries; it does, however, introduce an additional, 
inessential constraint. In two-dimensional analysis, for 
example, n • A is automatically zero on the boundary.

10.3.2 The divergence condition

The definition of analytic solvability adopted here 
requires the divergence condition of eqns. 10.27, i.e. the



Coulomb gauge, to be enforced. This can be achieved in 
a weak sense by defining a 'gauge error' as follows :
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A = £<n(r) V - A  , V • A>„ (10.37)g — k
where rj(r) is a positive scalar distribution having the 
units of reluctivity

n(r) > 0 

Clearly, then

A £ 0
with ^

A = 0  < = >  V • A = 0
g ~

(10.38)

(10.39a)

(10.39b)

The total error is now the 
constitutive error A, and 
gauge error A^ :

sum of the physically-based 
the computationally required

(10.40)

From the fundamental property of A in ineq. 2.18, and that
of A in ineq. 10.39, we have g

At £ 0 (10.41a)
with

A. = 0 <=> A = 0 and A = 0 (10.41b)t g
Thus both the constitutive relationship and the gauge condi
tion are enforced weakly by minimising the total error :

0 = 6A, = 6A + 6A t g (10.42)

The B-system functional can be extracted from eqn. 
10.40 by substituting for A from eqn. 10.16; we can then 
write

At (H,B) = 0(H) + Ht (B) (10.43)
where

H.(B) = E(B) + A (B) (10.44)l g
Substituting from eqn. 10.43 into 10.42, we get 

0 = 60(H) + 6Et (B) (10.45)
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As the H- and B-system variables are independent of each 
other, 0(H) and 5t (B) can be extremised independently. The 
B-system solution can thus be obtained by extremising (B )

0 = 5E (B) (10.46)

instead of H (B ) as in eqn. 10.18. Numerical formulation of 
eqn. 10.46 yields a non-singular, and hence solvable, 
solution matrix. The outcome of the solution is a numerical 
approximation to the analytically unique vector potential 
defined in eqns. 10.27-29.

is essentially similar to the functionals derived 
by Coulomb10’1* and by Kotiuga and Silvester10’2 . Coulomb's 
definition of an analytically unique vector potential is 
restricted to the boundary specifications of eqns. 10.7 and 
10.35 which, in fact, cover the majority of practical appli
cations. Kotiuga and Silvester extend the definition to 
allow multiply-connected regions; they consider a slightly 
restricted version of the boundary conditions 10.34 : S ^
is taken to be zero, which implies that all fluxes are 
pre-specified; see text following eqns. 10.13.

The present error-based derivation extends the defini
tion and applicability of E^ to all problem specifications 
that cause the constitutive error A to split into H- and 
B-system functionals, 0(H) and H(B) in eqn. 10.16. This is 
guaranteed for all physically well-posed problems whose 
specifications do not inter-relate H and B on the boundaries. 
Although only S^- and S^-type boundaries were considered in 
this chapter, E in E^ can accommodate all boundary conditions 
that satisfy specification 4 of sec. 3.4.1; according to 
sec. 3.4.2 they include cuts to account for multiply- 
connected regions, as well as open boundaries, recurrence 
relationships, etc. In all cases, the requirements of 
spec. 4 must be observed not only in the physical specifica
tion of the problem, but also in the definition of a unique 
vector potential.
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10.3.3 Implementing the weak formulation

As yet, the multiplier n(r) in the gauge error, eqn. 
10.37, has not been defined beyond the requirement that it 
should be positive as in ineq. 10.38. Various weak gauging 
schemes in the literature can, in fact, be viewed as alter
native definitions of r|(r).

In principle, r|(r) can be treated as an unknown dis
tribution to be discretised and solved for. This is the 
method of Lagrangian multipliers10,5,6 ; it results in a non
linear solution with an increased number of unknowns. The 
solution can be linearised by replacing in eqn. 10.44
with (A ; this, however, invalidates ineq. 10.41a, so 9that the extremum principle is replaced by mere stationarity.

As A has been introduced for solvability, rather than g
physical uniqueness, it can be argued that optimisation of 
n(r) is not essential. The practical difficulties associated 
with Lagrangian multipliers can then be avoided by pre
assigning n(r). Clearly, some criterion must be established 
to assess suitability of ri(r) distributions. The present 
approach views the solution as an error minimising process, 
ineq. 10.41 and eqn. 10.42. The solution performance and 
outcome are therefore expected to reflect the relative mag
nitudes of the two errors involved : the constitutive error
A, and the gauge error A . In effect, the multiplier r|(r)9acts as a weighting factor; to ensure both physical accuracy 
and solvability, ri(r) must be so chosen that neither error 
dominates, locally or globally, to an extent that renders 
the other error negligible, and hence invisible to the 
solution process.

Now, of the various terms in A, the one most directly 
comparable to A^ is 'i'(B); in linear isotropic media, eqn.
2.8b for ¥ and eqn. 10.8 for B yield

¥ = J <v V xA , V x A>r (10.47)

There is, of course, a fundamental difference between ¥ and
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A : the former is an energy, while the latter is an errorythat tends to zero as the exact solution is approached. In 
a numerical context, however, the comparison suggests that 
the choice of a suitable multiplier n can be guided by the 
corresponding reluctivity v :

H(r) « v(r) (10.48)

In anisotropic media, the determinant of the reluctivity 
tensor may be used10’1* .

Increasing the factor of proportionality in 10.48 
causes the gauge condition to dominate the solution; 
decreasing it causes physical accuracy to dominate, which, 
of course, is preferable. At both extremes, the solution 
equations become ill-conditioned and, ultimately, unsolvable 
as one requirement or the other is totally lost. This 
provides the error approach interpretation of the ill- 
conditioning associated with the method of penalty 
functions10,5,6 , which assigns a constant value to n through
out the region R : according to the present argument, the
same r| cannot be a suitable choice for regions of widely 
differing reluctivities, such as iron and air. A better 
choice, according to 10.48, is to set

H (r ) = v (r ) (10.49)

as proposed by Coulomb10,4 and Chari et a 1.10,7 . It is noted 
that -j.(B) reduces to the vector Poisson formulation of 
reference 10.7 for isotropic, piecewise linear regions.
Both references 10.4 and 10.7 report satisfaction with the 
resulting formulation, which supports the above justifica
tion of proportionality 10.48.

But the present error-based argument goes somewhat 
further. It suggests that accuracy can be improved by 
choosing a smaller value for n(*L) to increase the weight of 
the constitutive error A relative to the gauge error A •
The best course is to make ri the smallest fraction of v that 
retains well-conditioned solvability. Test runs to estab
lish a suitable range for the fraction can start from the
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equality in 10.49. It is noted that any definition of 0 
that differs from 10.49 introduces an integral of the form 
<(r|-v)V»A, V»A>r into the functional proposed by Chari 
et al.10*7 , and hence modifies the corresponding vector 
Poisson formulation.

10.4 Numerical solvability

The weak formulation of sec. 10.3 is based on Ej_(B) 
which extends the physically derived B-system functional 
E(B) to include the gauge error A ; solvability of the 
numerical extremisation of B), eqn. 10.46, is guaranteed 
by the uniqueness of the analytic vector potential that the 
solution approximates. There is an alternative, explicit, 
approach : H(B) itself is extremised, eqn. 10.18, with
solvability enforced through numerical over-specification 
of the trial functions. This section discusses three 
treatments that adopt this second approach.

Csendes at al.10*1 enforce the unique vector potential 
defined in eqns. 10.27-29. In particular, the numerically 
over-specified trial functions for A are constructed to 
have zero divergence, eqn. 10.27, by using projection 
operators to filter out divergent behaviour from standard 
finite element shape functions. In effect, the method 
over-constrains the trial functions, and minimises the 
constitutive error; in contrast, the weak formulation of 
sec. 10.3.2 allows freer trial functions, but minimises the 
total error Â_ rather than the physically based constitutive 
error A. Relative accuracy of the two methods may be 
assessed by extrapolating the argument following propor
tionality 10.48 : by enforcing the divergence condition
exactly, the explicit method effectively gives the gauge 
error A infinite weight relative to the constitutive error 
A : the latter is minimised only after the former has been
set to zero exactly. This viewpoint suggests that the 
accuracy of the explicit approach is generally inferior to 
that of the weak formulation.
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Demerdash et al.10*8-11 enforce a unique vector potential 
whose definition differs from the general analytic one of 
eqns. 10.27-29. The definition applies to the numerically 
over-specified distribution : the region is discretised
into finite elements having planar facets, with A constrained 
to vary linearly in space within the individual elements. 
Moreover, A is continuous across element interfaces, so that 
the continuity conditions of eqns. 10.28 are retained.
Lastly, the boundary S includes a section SA composed of at 
least two non-coplanar sub-sections sharing an edge, on 
which A is pre-defined completely :

on SA c sba : A = AA (10.50)

where AA is known, usually zero. SA must belong to Sba, 
eqn. 10.33a, since pre-definition of A implies pre-defini
tion of n x A.

The proof of uniqueness of the discrete vector poten
tial thus defined10'10 is valid, although not general : 
firstly, it requires the physically-defined boundary section 
Sba to include a suitably angled sub-section SA ; secondly, 
the mechanism of the proof places rather subtle restrictions 
on the topology of the finite element discretisation.
Provided these minor restrictions are observed, the resul
ting numerical formulation is solvable. The absence of 
a divergence condition is of no consequence; computed 
results indicate that div A has no fixed pattern10'11. It 
thus appears that eqns. 10.27-29 are not strictly necessary, 
although certainly sufficient, to define a vector distribu
tion uniquely. Indeed, the first three specifications of 
vector uniqueness in sec. 3.4.1 were assumed and not derived.

Clearly, this treatment lacks the generality of the 
weak formulation of sec. 10.3.2, the main restriction being 
its limitation to first order finite elements. Within this 
restriction, however, the explicit method appears to be the 
more accurate one since it corresponds to a minimisation of 
the physically-based constitutive error A, rather than the 
total error as in the weak formulation. The comparison
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is not quite straightforward : although both solutions use
the same trial functions and impose the same essential 
boundary condition on n xA|g^ , they are constrained by 
different inessential boundary conditions. The explicit 
method imposes

on SA G : n • A = 0

leaving A completely unconstrained on S^. 
lation, on the other hand, imposes

on U S ^ : n * A  = 0 (10.52)

and leaves n • A unconstrained on S, , which includes .— — ba A
The influence of the differing constraints on accuracy is 
not obvious, although probably small.

The third treatment circumvents the question of unique
ness altogether by addressing solvability directly : a non
singular, and hence solvable, matrix is extracted from the 
singular one generated by the minimisation of 5(B) in 
eqn. 10.18. Davidson and Balchin10*12 implement this method 
using network theory techniques, which are directly appli
cable to the discrete network representation they have 
developed. The method minimises the constitutive error A, 
rather than the total error Â ., without explicitly over
constraining the trial functions; its accuracy would there
fore be expected to compare favourably with that of the 
weak formulation of sec. 10.3.2. It is noted, however, 
that accuracy is not necessarily the same for all possible 
sets of linearly independent equations that can be extrac
ted from the original singular matrix.

(10.51 )

The weak formu-

10.5 Conclusions

The present error-based approach leads to a general 
framework which accommodates most of the methods used to 
implement vector potential solvability. The constitutive 
error A, and its extension into a total error Afc, provide 
a useful criterion for comparing alternative treatments.
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All the treatments considered are valid, i.e. consis
tent with physical specifications and solvable. 
Analytically-based solvability, sec. 10.3, has the advantage 
of generality, as it does not presuppose a particular method 
of numerical implementation. Numerically-based solvability 
is, by nature, more restrictive, but tends to be more 
accurate.

The error-based interpretation of formulations that 
enforce the divergence condition weakly, sec. 10.3.3, leads 
to a degree of generalisation, a natural assessment of 
accuracy, and a suggestion for improvement.

The presentation highlights the distinctions between 
the essential requirements of physical uniqueness of fields, 
and the inessential requirements of computational unique
ness of potentials. In particular, the specification and 
imposition of essential and inessential boundary conditions 
were reviewed in some detail. Moreover, non-divergence of 
the vector potential was found to be neither essential nor 
physically significant as had been suggested10*1'2 . Methods 
that do not impose a gauge condition are equally valid 
as , and possibly more accurate than, methods that do? 
section 10.4 .
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C H A P T E R  E L E V E N

Time-varying problems

11.1 Introduction

The process of solving a given electromagnetic problem 
is one of imposing its various specifications on the fields. 
The constitutive error approach enforces Maxwell, continuity, 
and boundary conditions explicitly, and minimises the error 
to enforce constitutive relationships weakly. This basic 
concept, introduced in sec. 3.5 for static models, is equally 
applicable to time-varying problems. Its implementation 
involves two major extensions relative to the static case :

(i) As Maxwell's equations regain their general time-varying 
forms, the specifications of sec. 3.4.1 become inadequate 
to define physically unique fields. The extensions 
involved are considered briefly in sec. 11.2 in conjunc
tion with Appendix I.

(ii) A given static problem relates to one material property,
and is classified accordingly : magnetostatic, electro
static, or d.c. conduction. A time-varying problem, on 
the other hand, relates to two, or possibly all three, 
material properties. The corresponding constitutive 
relationships may be enforced simultaneously by mini
mising a suitably weighted combination of the individual 
errors. Sec. 11.2 constructs a general total error, and 
relates it to the requirements of uniqueness.

The bulk of the present chapter, sec. 11.3, is devoted 
to the extraction of complementary and dual eddy-current 
formulations from the corresponding total constitutive 
error. High frequency formulations are considered briefly 
in sec. 11.4
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11.2 The general time-varying problem

Maxwell's equations and the constitutive 
group the electromagnetic fields into H- and E

relationships 
-systems :

H-system : H, J, D (11.1a)
E-system : E, B (11,1b)

Associating Maxwell's 
terns, we have for the

equations with their respective sys- 
H-system

V x h = J + pD , V • pD = -V • J = pp (11 .2a)
n x AH = K , n • ApD = -n • AJ = pa (11.2b)

and for the E-system

V x E = - pB t V • B = 0 (11.3a
n x AE = 0 ? n • AB = 0 (11.3b

The general structure is 
related in pairs by the

shown in fig. 11.1. The 
constitutive relationships

fields 
, eqns.

3.2, 3.7, and 3.12 of sec. 3.2.

Fig. 11.1 General structure of time-varying systems.
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The conditions of physical uniqueness may be derived 
by postulating two sets of fields as in sec. 3.4.1.
Provided that the constitutive relationships retain property
1 of sec. 2.2 , we can write

o IIA iiE£ <6H , SB>_
with

0 = TTmW
— — K

<=> 6H = 0 and onm
l

°o

(11.4a)

VIIo nQ) <6D , 6E>Kwith (11.4b)
0 = ,,sW <=> 6D = 0 and 6E = 0

and

VIIo Wf = <6J , 6E>„X\with ■c (11.4c)
0 = w f A II V o> II 0 and 6E = 0

The required conditions are those which ensure that all 
three W's vanish. As each of the W's is positive, we can 
work with their weighted sum W :

0 S W = 3mWm + 3eWe + $fp“1Wf (11.5a)
with

0 = W <=> Wm = 0 , We = 0 , and V7f = 0 (11.5b)
m 0 fwhere 3 , 3 , and 3 are suitable positive coefficients. 

The time integration of Wr is necessitated by the physical 
units; if W and V7 are differentiated instead, positivity 
of the resulting sum cannot be guaranteed. Appendix I 
sketches a general derivation of uniqueness conditions.

If the constitutive relationships retain property 2 of 
sec. 2.2 as well, instantaneous constitutive error 
densities can be defined as follows :

0 s X™ = xm (H> + 4>m (B) - cra(H,B) (11.6a)
with

0 = X m  <=> B = u H + B and H = v B + H (11.6b)— — —r — — —c

0 S Xe = xe (E) + <l>e (D) - ce (D,E) (11.7a)
with

0 = Ae <=> E = e D and D = eE (11.7b)
and
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0 < Xf = “ Cf(J/E) (11.8a)
with

0 = Af <=> E = p J and J = OE (11.8b)

Am , Ae , and A^ are the magnetic, electric, and current flow 
error densities, respectively. Their volume integrals over 
R yield the global errors Am , Ae , and A .  The constitutive 
relationships can be imposed on the fields by minimising the 
errors

0 = 6Am (H ,B ), 0 = 6Ae (D ,E ), and 0 = 6Af (J,E) (11.9)

Under static conditions, the individual equations can be 
solved independently of each other as in previous chapters. 
Under general time-varying conditions, on the other hand, 
Maxwell's equations interrelate the fields so that the 
three equations must, in principle, be solved simul
taneously. As each of the errors is positive, we can work 
with their weighted sum A :

0  ̂ A = amAm + aeAe + a^p”^A^ (11.10a)
with

0 = A <=> Am = 0 , Ae = 0 , and Af = 0 (11.10b)
m 6 fwhere a ,  a ,  and a are arbitrary positive coefficients. 

Simultaneous solution of the three equations in 11.9 can 
thus be effected by minimising the total error :

0 = 6 A (11.11)

Substitution of eqns. 11.6-8 into 11.10a yields the 
initial composition of A :

A(H,E) = 0(H) + ~(E) - r (H ,E ) (11.12)
where

0(H) = amXm (H ) + a e y e  (D) + afp"1li,f(J)
~(E) = am'i,ITl(B) + aeXe (E) + afp_1Xf (E)

T(H,E) = am Zm (H,B) + aeZe (D,E) + afp“1Zf (J,E)
f 1= am<H , B>r + ae<D , E>r + a p <J , E>R 

We note the kinship between W in eqn. 11.5a and T .  The
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former must be zero for uniqueness, while the latter must 
be split between the H- and E-systems for separate , and 
independent, solution formulations. In general, complete 
decomposition of T ,  and hence A, is not guaranteed even for 
well-posed problems with independent H- and E-system boun
dary and continuity conditions. Such guarantees apply only 
to the static case, sec. 3.5. Their absence from the 
general time-varying case can be traced to the volume terms 
of the time integral of eqn. 1.7 in Appendix I : there can
be no step in the decomposition of T that corresponds to 
their elimination from W as in eqn. 1.8.

The total constitutive error in its general form of 
eqn. 11.12 is of limited practical use. In most applica
tions physical conditions and/or justifiable assumptions 
simplify Maxwell's equations and the corresponding compo
sition of A. In particular, A^ does not arise in non- 
conductors, and A can be negligible at sufficiently slow 
time variation.

11.3 The eddy current problem

Under quasi-static conditions, the displacement 
current pD can be neglected, which reduces the H-system 
equations 11.2 to

V x H = J / V • J = 0 (11.13a)
n x AH = K r n • A J = 0 (11.13b)

The H-system potentials are defined by

H = T - Vft t J = V x T (11.14)

Discontinuities in T and ft are related as in sections 3.4.3 
and 3.4.4.1 (with G replaced by T). The E-system equations 
11.3 are unchanged

V x e = - pB t V • B = 0 (11.15a)
n x AE = 0 r n • AB = 0 (11.15b)

The E-system potentials are defined by
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E = - p A - V (J) , B (11.16a)
0 = Ad) 0 = n x AA (11.16b)

The two systems are related by the magnetic and conduction 
constitutive relationships

B = pH + B — — —r r H = VB + H — — —c (11 .17)
E = p J r J = OE (11 .18)

Fig. 11.2 shows the structure of the eddy current problem. 
Fig. 11.3 shows the general division of the over-all region 
R into an eddy-current sub-region and a specified- 
current sub-region R2

R = R1 U R2 , R1 n R2 = 0 (11.19)

Denoting the bounding surfaces of R, R^, and R2 by S, , 
and S2 respectively, we can write

s i i
= s n

s i S22
= s n s 2 ( 1 1 .20a)

s i ■ s i i U S12 ' S2 = S22 U S 12
( 1 1 .20b)

S ■ s i i U S22 ' S12 - S1 n s 2 (11 .20c)

R-j refers to conductors where currents can be induced. R2 
includes source conductors where currents are specified,
J = Jg and K = Kg , as well as current-free parts, J = 0. The 
current-describing vector potential T is pre-defined in R2»

The presentation will be restricted to the following 
set of common boundary specifications, although the analysis 
can be extended to accommodate a wider range :

on S12 = n • J = 0 (11 .21a)
on Sh1 = n x H = h = 0 => n * J = 0 (11 .21b)
on Se1 : n x E = e => nxA = a, 4) = constant (11 .21c)
on Sh2 : n x H = h (11 .21d )
on Sb2 = n • B = b => n x A = a (11 .21e )

b, and a are pre-defined, usually zero. Moreover
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Fig. 11.2 Structure of the eddy-current problem, including 
potentials. Hc and Br omitted for clarity.

Fig. 11.3 Region partitioning in the 
eddy-current problem.
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S11 ' Sh1 U Se1 'and Sh1 0 Se1 = 0 (11.22a)

S22 = Sh2 U Sb2 ' Sh2 0 Sb2 = 0 (11.22b)

The boundary condition on eqn. 11. 21a, arises from the
continuity of n • J in eqns. 11. 13b. If the eddy current
region R^ is wholly enclosed by R2 1 have

S1 = S12 s n  = 0 (11.23)

and the conditions on S,„ and S „, eqns. 11.21b and c, arem  el
irrelevant. Otherwise, usually denotes conductor ter
minals connected to the external circuit, with either vol
tage or current pre-defined, and S ^  denotes a plane of 
symmetry parallel to current flow. The boundary conditions 
on and S^2 / eqns. 11 .21 d and e, arise from symmetry, or
approximate far boundaries, as in the magnetostatic case.

The total constitutive error A includes a magnetic
m *Perror in R, AR , and a current flow error in R^ , AR^. Thus,

eqns. 11.10 simplify to

0  ̂ A «m „ -1 a f
= ar + “P AR1 (11 .24a)

0 = A <=> A*? = 0 and K a£., = 0R1 (11.24b)

No loss of generality is incurred by having set a = 1 . 
Exclusion of the electric error A may be based on the 
assumption that the electric constitutive relationship bet
ween D and E is satisfied exactly, or that, in an approximate 
solution, A is negligible compared to the retained errors,
Am and A^. The current flow error in R2 , AR2 / is identically 
zero. Physically, the electric field E is indeterminate in 
non-conducting sub-regions of R2 ; computationally, E in R 2 

is irrelevant to the solution.

The initial composition of A can be obtained by sub
stituting the volume integrals of eqns. 11.6a and 11.8a 
into 11.24a; we can then write

A (H,E) = 0q (H) + 5q (E) - rQ (H,E) (11.25)
where
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0o (H) = X™(H) + a p~1 4 ^  (J) 

=o (E) = ¥™(B> + a p'1 (E)

ro (H,E) = Z™(H,B) + «p"1 (J,E)

We now seek to split A between the H- and E-systems by 
decomposing the coupling term r . Recalling the general 
definition of Z in eqn. 2.11, we can write

T (H , E ) = <H , B> + a p"1 <J , E> (11.26)O K — — K”|
Substituting for B and E by the E-system potentials A and $ 
according to eqns. 11.16, and applying vector identities 
and the divergence theorem :

T = <H , V x a > - a p_1 <J , pA + VcJ)>O R K *|
= <V X H , A>r + [n X AH , Ajg^ ~ t — x H t A]g

- a p'1 (<J , pA>Rl - <V • J , d»Rl + [n • J , )

Substituting from the H-system equations 11.13 for V x h,
V • J, and nxAH, and from the boundary conditions 11.21 into 
the boundary integrals :

r o

where

<^3  / A>R2 + / ^ >Ri + [JSs r A ] s k ~ [ h »  A ] g h

—  1 —  1+ [H , a]gb - ap <J , pA>Rl + ap X <t>I
Sel (11.27)

Sh " Sh1 U Sh2 ' S. = S . U S, 0 b e1 b2
and the summation is over the terminals of the conductor R^; 
<t> and I denote the voltage and current inflow at the indivi
dual terminals. The cj)I products account for external cir
cuit connections; they decompose readily if either voltage 
or current is specified. External connections through impe
dance may possibly be treated by defining an extended error 
as in sec. 6.7.2.

Substituting eqn. 11.27 back into 11.25, and 
rearranging, we can write
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A(H,E) = 0(H) + H(E) - r(H,E) (1 1 .2 8 )
where

0(H) = X^(H)+ap_1'f̂ 1 (j)-[H,a]Sb-ap_1Il0 

H(E) = 4'™(B)-<Js ,A>R2+ap"1X^1 (E) - [ K,,, A] sk+ [ h , A] Sh-«P~1 

r(H,E) = <J , A>Ri - a p_1 <J , pA>Rl

(j) and I denote specified voltages and currents, respectively, 
on the terminals of . Eqn. 11.28 represents the final 
stage of general decomposition of A; strictly, no further 
decomposition is possible as explained following eqn. 11.12. 
However, solution formulations can be extracted, although 
they do not correspond to a strict minimisation of the 
constitutive error A. Harmonic and transient formulations 
will be derived in sections 11.3.1 and 11.3.2 respectively. 
The multiplying factor a and the limits of the time integral 
will be shown to have prominent roles.

Having verified the separation of the boundary and 
current-sheet integrals in 11.28, we shall ignore them for 
simplicity. Further derivations will therefore be restric
ted to the following versions of 0, ~ , and T :

0(H) = X™(H) + op'1 4 ^  (J) (11.29a)

S(E) = Y™(B) - <JS , A>R2 + a p ^ X ^ I E )  (11.29b)

F(H,E) = <J , A>r - a p-1 <J , pA>R (11.29c)

The coupling term T, which will be the focus of our atten
tion in the following sections, is unchanged from 11.28.
The boundary integrals can always be reintroduced into the 
resultant formulations.

Eqns. 11.28 and 11.29 express A in what may be referred 
to as a primal form. An equally valid dual form can be 
derived by using the H-system potentials Q  and T to decom
pose rQ in eqn. 11.26. Potential discontinuities at con
ductor surfaces and cuts make the dual form rather awkward 
to work with in a treatment that aims at generality. We 
shall therefore consider the primal form only.
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11.3.1 Steady a.c. conditions

Steady a.c. conditions, where all fields vary sinusoi
dally at the supply frequency, can arise only if all material 
properties are linear. Therefore, the present treatment 
assumes linear magnetic and conductive constitutive relation
ships. According to property 2 of sec. 2.2, linear constitu
tive operators are symmetric. Thus, for example

X (H ) = \  <uH t H> and <yH1 , = <^112 'H-|> (11.30)

Components of harmonic fields and potentials are 
represented by

u(r,t) = u (r ) cos (wt+0(r )) (11.31)

where u(r) is the amplitude, 0 (r) the phase angle, and w 
the angular frequency. u(r,t) may also be expressed in 
the form

u(r,t) = ( uc (r)ejut + u*(r)e_:iu)t ) (11.32a)

= /2 Re { uc (r) ejwt } (11.32b)
where

uc = ue^ ® / /2 and u* = ue  ̂® / /2 (11 .32c)

u is the complex phasor associated with the instan- 
taneous u; u* is the complex conjugate of u . The instan
taneous value of the product of two sinusoidal variables u 
and v is given by

n(r,t) = <u(r,t) , v(r,t)>
sn (r) + 1 C2 n (r]ie2ju)t + Jq*(r)e -2 jwt

sn (r) + Re { c / \ 2"i (i) t ̂ n (r) e }

H <uC , A*> + <u* , vC> )

Re <uC , V*> = Re <u* , vC>

<uC , v S ► and n* = <u* , v*> = (nc )*

The product ri has a time-invariant component r)S , and a
0double-frequency component whose associated phasor is n .
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Ineq. 11.24a and eqn. 11.24b apply to the instantaneous 
constitutive error A(t). As A and its components 0, E, and 
T in eqns. 11.28 and 11.29 are sums of products essentially 
similar to n in eqns. 11.33, they will each have time- 
invariant and double-frequency parts. In particular

n t) = rs + ir°e2 ût + ir*e"2j0Jt (11.34)

Using eqns. 11.32 to represent J(r,t) and A(r,t) in eqn. 
11.29c for T(t), performing the algebra, and collecting 
terms, we find

Ts = Re { (1 + j awl)<Jc , A*>R1 }

rc = (1 - a sin a)T ( sin u)T - j cos cot )) <JC , AC>R^
(11 .35)

where t = t - t is the interval of the time integral of 
A^ in eqn. 11.24a. No values have, as yet, been assigned 
to a and t ; the choices are restricted by

a > 0 and t > 0 (11.36)

to ensure positivity of the instantaneous error A(t) as
gin ineq. 11.24a. Clearly, T cannot be eliminated, or split 

between the H- and E-systems, for any combination of values 
for a and x. T on the other hand can be eliminated by 
choosing

a = 1 and cox = tt/2 (11.37)

Subject to ineq. 11.36, this is the only combination of 
a and x that sets the coefficient in the expression for 
Tc in 11.35 to zero.

As already noted, the total constitutive error A can 
be expressed in the form

A (t ) = As + iAce2;ia)t + iA*e_23a)t (11.38a)

= As + Re { Ac e23u)t ) (11 .38b)

Using eqns. 11.32 to represent the fields and potentials in 
eqns. 11.29, performing the algebra, and collecting terms,

gwe can express the real, time-invariant component A as
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where

and

As = 0s (K ) + HS (E) - rs (H,E)

0s = ' ̂ R  + § < p j c » 0*>R-|
-S

=  i <v*c ' ̂ R  + § <asc - e *>Ri
pS = Re { (1 + j A 0

a *>R i >

5 = CtT ( = 7T / 2C0 )

(11.39)

- Re<J^ , A*>R2

QWith a and t as in eqns. 11.37, the complex phasor A , 
corresponding to the double-frequency component of A, can 
be expressed in the form

Ac
where

ec
and

~c

0C (H) + SC (E) (11.40)

1 c c 1 c c2<^H - HC>r + - J >R

1 /,,r,C 1 .__C _c. , TC _ c.2<v§ ' B >R + 2jS<OE , E >R1 - <JS , A >r 2

The above results can be expressed in two-part nota
tion where the general harmonic variable of eqn. 11.31 is 
represented in the form

u ( j: , t ) = /2 ( ur (r ) cos cot - u1 (r ) sin cot ) (11.41a)
where

ur = u cos 0 / /2 and u^ = u sin 0 / /2 (11 .41b)

u and u are real variables. The product in eqn. 11.33 
can also be expressed in two-part notation :

r|(r,t) = r)S (£) + Tir (r) cos 2cot - riNr) sin 2cot (11.42)
where

s  ̂ r r  ̂ l in = <u , v > + <u / v >
r  ̂ r r.  ̂ i in = <u A> - <u Ai>

i  ̂ r i i rn = <u , v > + <u , v >

Respective comparison of eqns. 11.41 and 11.42 with eqns. 
11.32 and 11.33 leads to

c r . i , c r . iu = u + ju and r) = T) + jn (11 .43)
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c it iu , u , and u correspond to the root mean square value of 
the instantaneous variable u, while r|C / or t and r)1 corres
pond to the peak value of the instantaneous product r\. The
complex functionals in eqns. 11.38 and 11.40 can be ex-
pressed in two-part notation

Ac = Ar + j A1 (11.44a)
0C = 0r + j o1 (11.44b)

+idii
oin . -i 

J - (11.44c)

Substituting for the variables and products in eqns.
11.38-40 by their two-part forms of eqns. 11.43, and collec
ting terms according to eqns. 11.44, we can write

A(t) = As + Ar cos 2wt - A* sin 2wt (11.45)

AS(H,E) = 0s(H) + ~S(E) - rs(H,E) (11.46)
where
0S = |-<UHr,Hr>R +1<uH1,H1>r + |<pJr,Jr>R1 

-S = l<vBr,Br>R +1<VB1,B1>R +|<OEr,Er>Rl

- < J s ^ r>R2 - < 4 ^ * 2
r = <J r A + ̂  J /A , A ~

+

+

|<pj1,j1>R i

|<PEi ,Ei>Rl

_ _ r
r h . >R'|

Ar(H,E) = 0r(H) + =r(E)
where
_r 1 „r TTr 1 TTi TTi 1 _r ,i0 = -2<yH #H >R - — <ijH ,H >R + — <pJ f J >r -|
„r 1 „r „r 1 „i „i 1 _r ^i= = 2<v^ ,B >r -2<vB ,1 >r + ~<0E ,E >R1

- <Js-Ar>R2 + < 4 - A S R2

A1(H,E) = 01(H) + H1(E)
where 
,i ,r -i î.G- = < p r . r > R -2^<pjr -jr>Rl +2L<Pj % r > Rl

H1 = <vBr ,Bi>R -^.<aEr ,Er>Rl +2L<aEi ,Ei>Rl

- < ^ ^ 2  - < 4 ^ * 2

(11.47)

(11.48)
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Having derived the expressions for the constitutive 
error A(t) and its various components, we are now ready to 
consider solution formulations. It is emphasised that 
although the derivations employed the theory of complex 
numbers, A(t) itself is real, instantaneous, and, indeed, 
non-negative. From eqns. 11.38, 44a, and 45, we can write

A(t) = As + I Ac I cos (2cot + tan~^ ) (11.49)A r
where

IAc| = (<Ar>2 + (A1)2)*

According to ineq. 11.24a then

A (t )  ̂ 0 => As S |Ac | S O  (11.50)

The above relationships are illustrated in fig. 11.4. From

A (t )

Fig. 11.4 The constitutive error as a function of time.

eqns. 11.24b and 11.38, we have at the exact solution

A(t) = 0 => AS = 0 and AC = 0 (11.51)

According to eqns. 11.11 and 11.45, the constitutive error 
is minimised by solving

0 = 6 A (t ) = 6AS +(6Ar )cos2a)t-(6A'*')sin2(jot (11.52) 
or

0 = 6AS (11.53)

0 = 6 Ar 0 = 6 A1and (11.54)
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Eqns. 11.54 can be combined using eqn. 11.44a :

0 = 6Ar + j 6A1
= 6AC (11 .55)

The constitutive error approach thus identifies two distinct 
variational principles, one based on the time-invariant 
component, eqn. 11.53, and the other on the double-frequency 
component, eqns. 11.54 and 11.55. We shall now examine the 
two principles and the solution formulations they generate.

As the time-invariant component As is non-negative, 
ineq. 11.50, its stationary point in eqn. 11.53 is a strict 
minimum. As it stands, however, eqn. 11.53 does not yield 
independent H- and E-system solution formulations because 
A does not split between the two systems, eqns. 11.39 and 
11.46. Such formulations can only be derived from an

gapproximate minimisation of A . Appendix J outlines the 
procedure involved, and, by way of example, extracts the 
following E-system formulation :

0 = i6<vBc ,B*>R - ̂ Im<OEc ,6E*>Rl - Re<J^,6A*>R2 (11.56)

The right hand side, specifically the second term, cannot 
be integrated to produce a functional. Eqn. 11.56 
corresponds to solving

0 = 6AS - £Re<OEC-JC ,6E*>Rl - ̂ Im<OEC-JC ,6e *>R i (11.57)

as an approximation to eqn. 11.53. In exact analysis, the 
additional term with A s in.. 11 .57 is set to zero as a redun
dant over-specification, sec. 5.2.2, since the solution is 
expected to impose the conductive constitutive relationship, 
eqns. 11.18, exactly. In numerical analysis, on the other 
hand, eqn. 11.56 describes an approximate formulation that 
lacks a minimum principle. Other formulations can be 
derived from alternative approximations of eqn. 11.53.

Alternatively, independent K- and E-system solution 
formulations can be obtained from the variational principle 
corresponding to the double-frequency component, eqns.
11.54 and 11.55. No assumptions or approximations are
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needed because Ac , Ar , and A1 separate completely into H- 
and E-system functionals, eqns. 11.40, 47, and 48, resulting 
in the following complementary solution formulations :

0 = o> CD M 35 t 0 = <$Er (E) (11 .58)

0 = 601(H ) r 0 = 6H1 (E) (11.59)

0 = 60°(H) i 0 = 6-c (E) (11 .60)

Unlike As, and indeed A (t ) , Ar and A1 can be either positive
or negative. It follows that variational principles based 
on the double-frequency component of the constitutive error, 
eqns. 11.54, 55, and 58-60, represent mere stationarity and 
are not extremal. The 0 and E functionals correspond to the 
double-frequency component of system energy. Each is 
a convex-concave (or concave-convex) saddle functional11,1 ;
0 (H), for example, is convex with respect to H and concave 
with respect to H1, eqn. 11.47. At the exact solution we 
have, from eqn. 11.51,

0 = A r = 0 r + E r = > © h ii i in (11 .61a)

0 = A i = 0 1 + E i = >

•H[i]III
•H© (11 .61b)

0 = A c = 0 C + E c = >

o[i]III
o©

(11 .61c)

In the numerical formulation of static problems, it was 
possible to state that the solution picks out the field 
distributions corresponding to the minimum constitutive 
error for the given numerical over-specifications or con
straints. In the harmonic eddy-current problem, such a 
statement would apply to the true minimisation of the time- 
invariant error A in eqn. 11.53, which requires simul
taneous solution of H- and E-systems. The statement does 
not hold for formulations based on approximate minimisationsof A , eg. eqn. 11.56, or on the non-extremal double
frequency component, eqns. 11.58-60. Moreover, energy

gbounds are not defined : A does not split between the H-
i 3Tand E-systems, while A and A are not guaranteed to be 

non-negative. The constitutive error, on the other hand, 
is always defined and computable.
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The analysis and derivations presented in this section 
indicate that the constitutive error approach is an effec
tive tool for constructing complementary and dual formula
tions of the harmonic eddy-current problem. Perhaps more 
importantly, the approach provides an interpretive frame
work, in terms of steady and double-frequency error compo
nents, that can accommodate various formulations. Appendix 
K, which outlines alternative derivations of complementary 
formulations, shows that Hammond's approach11’2 corresponds 
to the steady error, while Fraser's11*3 corresponds to the 
double-frequency error. The Appendix further shows that 
the present error-based approach is in agreement with their 
respective solution formulations, but not with the complex 
power and energy functionals they propose.

11.3.2 Transient conditions

The transient problem starts from known initial field 
distributions; subsequent time-dependence of the fields is 
not known. Eqn. 11.28 expresses the instantaneous constitu
tive error A(t) which does not split into independent H- 
and E-system functionals : the coupling term, T in eqn.
11.29c, cannot be split or eliminated. The solution can 
still be obtained by minimising A(t) :

0 = 6A = 60(H) + 6E(E) - 6T(H,E) 

■ 6h + 6e
where, using eqns. 11.29,

6r = <UH+Br ,6H>R + a <pj,6J>Rldt

(11.62a) 
(11.62b)

-<A,6J>R i +a <pA,6J>R1dt (11.63a)J+- 1uo
ft ft6 = <vB+H , 6B> - a <aE, V6cJ)>r 1 dt - a <aE,6pA>Rlh c  K j 1 J+. 1
z o  roft

- <Jsf(5A>R2 - <J, 6a >r  ̂+ a <Jf6pA>R^dt
to

(11.63b)

All variables and products are at time t unless otherwise
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indicated. a and t may be chosen arbitrarily provided

a > 0 and t < t (11.64)o
to maintain the positivity of A(t), ineq. 11.24a. The 
notation 6„ and reflects the absence of correspondingn £j
functionals. Only H-system parameters are varied in 6 , 
and only E-system parameters are varied in 6E . As these 
parameters are independent of each other, eqn. 11.62b 
generates the complementary formulations

0 = 6h (11.65a)

0 = 6e (11.65b)

In principle, the two equations must be solved simultaneously 
due to the presence of the E-system variable A in 6 „ ,  and theri
H-system variable J in 6E «

In exact analysis, the solutions can be uncoupled by 
introducing redundant over-specifications, sec. 5.2.2, in 
conjunction with suitable values of a and t . For example, 
we may set

a  = 1 and t = 0 (11.66)o
where t = 0 is the initial instant at which the fields are 
known. Substituting into 11.63b, and performing standard
calculus operations, 6E can be rewritten in the form

6E 5EE + 6EH
where

6EE = “ <̂ s '6- >R2 " <a^'6̂ >Ri
ft

and
6

<aE, VS<t>>Rl dt + <oE - J , 6A>r t=0

EH <p ( aE - J ) , <5A>R -]dt

(11.67)

It is noted that 6 is free of H-system variables, J 
being known. Replacing eqns. 11.62 by

t=0

0 = 6A - 6EH = 6H + 6EE (11 .6 8 )

we obtain the modified complementary formulations
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0 = 6h (11.69a)

0 = 6ee (11.69b)

Eqn. 11.69b describes an E-formulation that can be solved 
independently. The solution is not associated with a mini
mum principle because it corresponds to the approximate 
minimisation of A in 11.68 rather than its true minimisation 
in 11.62. The approximation is justified by the fact that 
exact solution enforces the conductive constitutive relation
ship exactly, so that

6eh = 0  (11.70)

can be viewed as a redundant over-specification. Other 
formulations can be derived from alternative approximations 
of eqn. 11.62. The treatment is similar to that described 
in Appendix J for the harmonic case, with eqns. 11.56 and 57 
as a particular example.

Non-extremal formulations similar to eqn. 11.69b can, 
of course, be formulated numerically. However, it is more 
practical to introduce the approximate minimisation after 
A(t) has been discretised in time : the discrete time-
dependence of the variables may suggest a and t values that 
differ from those of the corresponding exact formulation, 
eg. eqns. 11.66, as we shall now illustrate.

Fig. 11.5 Time discretisation.
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With time divided into discrete intervals as in fig. 
11.5, the solution starts at the first interval, with known 
initial fields at t=0, and proceeds forward in steps. 
During interval I, where

t. - S t s t. i - 1  i
(11.71)

we choose
t = t. -o 1-1 (11 .72)

so that the constitutive error of eqn. 11.24a is now defined 
by

A (t ) = AR (t) + a Ar 1(t) dt (11 .73)
ti-1

The solution may then be obtained by minimising the error

0 = 6 A (t ) (11.74)

at one or more instants, depending on the number of degrees 
of freedom associated with the discrete representation of 
the variables during interval I. Fig. 11.5 illustrates 
zero and first order time functions :

u(t) = u z (11.75)
and

v(t> = - t)vi-i+ ‘t - fci-i >vi) (11 .76)
where

At = t . - t . 1l i-1 (11.77)

Each of the two functions has one degree of freedom within 
interval I : u^ in eqn. 11.75, and v^ in eqn. 11.76. vi_i
in eqn. 11.76 is known from the solution of the preceding 
interval 1-1; thus, during interval I,

6v±_1 = 0  (11.78)

With the variables represented by either function, A can be 
minimised at only one instant. Any instant other than 
t. - =t may be selected. We shall choose t., but note 
that the choice is not, in general, trivial as it leads to 
differing numerical formulations and hence computational 
results.
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Let us now use eqn. 11.75 to discretise the eddy- 
current distribution J and its vector potential T, and use 
eqn. 11.76 to discretise all other fields and potentials. 
This choice is entirely consistent within the H- and E- 
systems individually. The apparent inconsistency between 
a constant J and a linear E is legitimate because the 
constitutive relationship linking them is not enforced 
rigidly, but weakly through error minimisation, eqn. 11.74. 
It is noted that the magnetic vector potential discretisa
tion must be at least continuous in time due to the presence 
of pA in the integrals of eqns. 11.63; thus A, and hence B, 
may not be represented by eqn. 11.75. With the variables dis- 
cretised in time as just described, eqns. 11.63 and 11.65 
yield the following interdependent complementary formula
tions at t^ :

0 = <uHi+Br ,6Hi>R + aAt<pJI ,6JI>Rl
- <aAi_1+(1-a)Ai ,6JI>Rl (11.79a)

and
0= <vB. +H ,6B. > -^<oE. -+OE.,6A.>r -— i —c — i R 2 —i-1 — l' — l K1

+ ̂ r^<0E. , +20E. , 6V(t>. >Rl - <J (t . ) , 6A . >Ro6 — i-1 —l l n1 —s l —l n2
+ (a-1)<JI,6Ai>Rl (11.79b)

The two equations are coupled through their respective last 
terms. The natural choice for a appears to be

a = 1 (11.80)
which simplifies eqns. 11.79 to

0= <yHi+Br ,6Hi>R + At<pJI ,6JI>Rl - <Ai_1,6JI>R1 (11.81a)
and

0 = <vB.+Hc,6Bi>R -l<OEi_1+OEi,6Ai>Rl
+ ̂ p<aEi_1+20Ei ,6Vd>i>Rl - <Js (ti ) ,6Ai>R2 (11.81b)

Clearly, the choice of a in eqn. 11.80 has eliminated the 
coupling term from the E-formulation of eqn. 11.81b, which 
can now be solved independently of eqn. 11.81a. The same 
cannot be said of the H-formulation of eqn. 11.81a which 
has retained the E-system potential A^_.j; true minimisation 
of the constitutive error requires the E-solution of the
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preceding interval 1-1 to be available as input to the H- 
solution of 11.81a. Approximate minimisation can be 
achieved as follows. Integrating eqn. 11.16a, and rearran
ging, may be expressed by

Ai_(| = A ( 0 ) - f^i-1 V(J) dt - ti- 1 E dt (11.82)

This is to be substituted for in the last term of eqn.
11.81a. Now A(0) is known from initial conditions. The 
product involving the 4> integral can be transformed into 
surface integrals over where either <b or n • Jj is known. 
Assuming A(0) and 4) are zero for simplicity, eqn. 11.81a 
can be written in the form

tj_—l

0 = <UHi+Br ,6Hi>R + At<pJI,6JI^ i + < ̂  pJdt , 6Ji >r 1

+ < *1-1 (E - pJ)dt , 6JT>
;0 -I R1 (11.83)

Dropping the last term yields an independent H-formulation 
which corresponds to the approximate minimisation

0 = 6A(t.)i pJ )dt 5Ji>r 1 (11.84)

rather than the true one of eqn. 11.74.

Let us next derive the formulations with all variables, 
including J and T, discretised linearly in time as in eqn. 
11.76. Eqns. 11.63 and 11.65 then yield the following 
complementary formulations at t^ :

0 = <pH. + B , 6H . > + ^^<pj. , + 2pJ . , 6J . >r «.— l —r —i R 6 — i-1 —i — l K1
+ + (2 - a ) ^  , 6Ji>Rl

and
0 = <vB. + Hc ,6B.>r - |<0E . _ 1 + 0E.,6A.>r 1

+ + 2aEi,6V4)i>R1 - <Js (t.),6Ai>R2
+ + (a - 2)J± , 6Ai>R1

(11 .85a)

(11.85b)

Once again, the two equations are coupled through their 
respective last terms. In this case, however, no value of 
a can make either formulation independent. Let us choose

a 2 (11.86)
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This choice assigns more weight to the conductive constitu
tive error, eqn. 11.73, causing a true minimum solution to 
cater for the conductive constitutive relationship. Sub
stitution into eqns. 11.85 simplifies them to

0 = <UHi+Br ,6Hi>R + ̂ < p J i_1 +2pJi ,6Ji>Rl
- <Ai _ 1 , 6J 1 >r 1 (11.87a)

and
o = <vBi+Hc ,6Bi>R - <0^ , 6 ^ >R1 +-^<aEi_1 +2oEi ,670i>Rl

- <Jg (t.),6A . > R2 + <J . _ 1 - OE . _ 1 , 6A . > R1 (11.87b)

As expected, the coupling terms have not been eliminated 
completely. Rather interestingly, the two equations can be 
solved independently of each other during the current inter
val I, but each requires the complementary solution of the 
previous interval 1-1 : the H-formulation of eqn. 11.87a
requires the E-system potential A^_^, while the E-formulation 
of eqn. 11.87b requires the H-system current density .
For true minimisation of A(t^), the two solutions must pro
ceed together through time; they can be interleaved since 
the equations need not be solved simultaneously at the 
individual intervals. As on previous occasions, independent 
formulations can be extracted from approximate minimisation. 
The coupling term retained in eqn. 11.87a is similar to that 
of eqn. 11.81a, and can be treated in the same way; the 
corresponding approximation is that of eqn. 11.84 with 
replaced by J^. Similarly, dropping the last term in eqn. 
11.87b yields an independent E-formulation corresponding to 
the approximate minimisation

0 = 6A(t±) - <Ji _ 1 - oE± _ 1 , 6Ai>Rl (11.88)

The independent E-formulation extracted from eqn. 
11.87b is not identical to that of eqn. 11.81b despite the 
fact that the time discretisation of the E-system variables 
is the same in both cases. This is due to the differing 
values of a, eqns. 11.80 and 8 6 , in conjunction with 
differing time discretisations of the complementary, H- 
system variables. Indeed, the presentation is intended to 
illustrate the range of options available; clearly, these
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have not been exhausted, so that, other formulations are 
possible. One factor that was mentioned, but not explored, 
is the choice of particular instant(s), within the interval, 
at which the constitutive error is minimised.

The E-formulation of eqn. 11.81b is of particular 
interest as it corresponds to a true minimisation of the 
constitutive error, yet employs the simplest allowable time 
functions : piecewise constant in J, and linear in B.
Higher order polynomials are generally associated with 
better accuracy; however, they lead to approximate, rather 
than true, minimisation. The degree of divergence from a 
true minimum principle is indicated by the variational 
statement of the approximate minimisation, eg. eqns. 11.68, 
84, and 88.

The constitutive error cannot be split completely bet
ween the H- and E-systems. This has led to the general 
absence of minimum principles. It also implies that energy 
bounds cannot be defined. The error itself is, as usual, 
defined and computable, locally and globally.

The complementary formulations of this section may be 
regarded as belonging to a primal set originating in eqn. 
11.28, which was derived from the general expression for the 
constitutive error using E-system potentials. Use of H- 
system potentials for the purpose yields a dual set of 
complementary formulations.

11.3.3 Conclusions

The physical specifications of the eddy-current problem 
do not allow the constitutive error to split into indepen
dent H- and E-system functionals. This results in the 
absence of bounds on energy estimates. Moreover, with the 
exception of eqn. 11.81b, the solution formulations are not 
associated with minimum principles. Minimisation of the 
universally positive constitutive error can be regarded as 
a reference point from which the formulations diverge by
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varying, and generally identifiable, degrees, eg. eqns. 
11.57, 68, 84, and 88. These equations describe the 
approximate minimisations effected by their corresponding 
formulations. Alternatively, the formulations may be con
sidered to effect a true minimisation of the constitutive 
error, but with certain complementary fields approximated 
by own system estimates, say oE for J, or pJ for E. This 
simpler viewpoint has the disadvantage of masking the 
processes involved in the solution.

The adverse effects on solution accuracy and economy 
arising from the absence of a minimum principle may be 
countered by refining time and space discretisations to 
approach exact conditions where the formulations are totally 
justified, eqn. 11.70. However, this diminishes the 
acknowledged advantage of independent complementary 
solutions over simultaneous H- and E-system solutions : 
although the latter solve for variables of both systems, 
they can do with coarser discretisations because they truly 
minimise the constitutive error. This is particularly 
significant in cases where the simultaneous solutions are 
only loosely interdependent; for example, eqns. 11.87 are 
solved independently in the individual intervals, as already 
explained.

11.4 A high frequency problem

In the absence of conduction currents, Maxwell's 
H-system equations 11.2 reduce to

V x H = pD t V • D = 0 (11 ,89a)
n x AH = 0 r nQl<• 0 (11.89b)

system equations 11.3 are unchanged

V x E = - p B t V • B = 0 (11 .90a)
n x AE = 0 t n • AB = 0 (11.90b)

The two systems are related by linear magnetic and electric
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constitutive relationships :

and
B = UH , H = V B (1 1 .91a)

E = e"1 D , D = E E (11 .91b)

The following conditions will be assumed on the bounding 
surface S

where
n x H = h on S, h r n x E = e on Si

S = Su h U s. 
b t

wno
n s,

b

(11.92a) 

(11.92b)

Fig. 11.6 shows the structure of the high frequency problem 
specified by the above equations.

The total constitutive error A(t) is composed of the
m pmagnetic and electric errors A and A'. Thus eqns. 11.10K K

simplify to

0 £ A = A? + a A® (1 1 .93a)i\ I\with
0 = A <=> A™ = 0 and A® = 0 (11.93b)

The errors are instantaneous, and the weighting factor a 
is positive

a > 0 (11 .94)
The two constitutive relationships can be imposed on the
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fields by minimising the total constitutive error

0 = 6A (t ) (11.95)

The initial composition of A can be obtained by substitu
ting the volume integrals of eqns. 11.6a and 11.7a into 
11.93a; noting that the material properties are linear, 
we can write

A(H,E) = 0 (H) + 5 (E) - T (K ,E ) (11.96)o o o
where

0o (H) = ' S > R + §<e 1D , D>

H0 (E) = 1<VB , B>r + — <fF p >2 - ' - R
ro (H,E) = <H / B>r + a <D , E>r

All fields are instantaneous; as they are sinusoidal func
tions of time, they will be represented as in eqns. 11.32 
of sec. 11.3.1. All products may then be represented as in 
eqns. 11.33, being composed of time-invariant and double
frequency terms.

We now seek to decompose To between the H- and E- 
systems. From eqn. 11.96, we can write

T = I\ + aT_ (11 .97), O 1 2where
F1 = < *  ' !>R ' r2 = ' 5 >r

Consider T first. According to eqns. 11.33 :

= Re<HC , B*>r
r° = <H° , b c >r

Substituting for B from Maxwell's E-system eqns. 11.90a : 

r® = Re { 3^<Hc , V X E * > r  }

ri = - 3Tr=sc - v - i c>R
Applying vector identities and the divergence theorem :

= Re { —-<V x Hc , E*> - - r - [ n  x Hc1 L j 03 ' —  R J aj — —
r? II I ’ I _

1
A < x Hc , EC> + ~r— [ n  x HC

1 ' - R V *  - ~
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Substituting for V * H  from Maxwell's H-system equations 
11.89a :

T® = Re<Dc , E*>r - Re{^[n x HC , E*]g} 

T? = - < D C ,Ec >r + ± [ n * H C , E c ] s  

Consider T ^  next. According to eqns. 11.33 :
s = Re<DC2 ' — R
c uQVii , EC>2 — ' -  R

Comparing eqns. 11.98 and 11.99, we find

= r2 - M ^ t n x H 0 . I*]s}

^  = - r2 ^ [ n x H C ,EC ]s

Substituting eqns. 11.98 and 11.99 for and 
we can write

r® = Re { (a + 1 )<DC , E*>r - 4^[nx Hc , E*]g }

rc = (a - 1 ) <DC , Ec >d + -r—[n x H° , Ec ]„o —  —  R j or— — ' — JS

(11.98a) 

(11.98b)

(11.99b) 

(11.99b)

(11 .100a) 

(11.100b) 

in 11.97,

(11 .101a) 

(11 .101b)

Substituting from eqns. 11.101 for Fq in 11.96, and 
enforcing the boundary conditions of eqns. 11.92, the 
instantaneous constitutive error may be expressed as 
follows

where

A ( t ) = As  + i A c e 2 j l 0 t  + i A * e - 2 j a ) t  

= As  + R e {  Ac e 2 j u t }

AS = eS(H) + =S(E) - rS(H,E)
with

1<UHC , H*>r ♦ 

1<VBC , B*>r + 

(a + 1 ) Re <DC

|<e-1Dc , D ^ - R e t ^ H 6 , e*]Se}

f’<e—° ' —*>R + Re{j7o[—° ' £*]sh }

(11 .1 0 2 )

(11 .103)

and
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AC = 0C (H) + HC (E) - rC (HfE) (11.104)
with
nc 1 . „c ttC. a . -1^c _c . 1 r „ c  c ,0 = 2<UH , H >R + 2<e D , D >R + ^ [ H  , e ]S(

= i<vBC , BC> + §<eEC , EC>d - -J-[hC , EC 1S 2 —  —  R 2 — ' — R j ajL — ' — J be
rc = (a - 1)<DC , Ec>R

gClearly, T cannot be split or eliminated for any spositive value of a, which means that the steady error A 
cannot be decomposed into independent H- and E-system func
tionals, or energies. r c , on the other hand, is readily 
eliminated by choosing

a = 1 (11.105)
0which splits A , the complex phasor corresponding to the 

double-frequency error. This value of a assigns equal 
weight to the magnetic and electric errors in eqn. 11.93a. 
Using it in eqn. 11.104, and substituting for D and B from 
Maxwell's equations 11.89a and 11.90a respectively, we can 
write

Ac = 0C (H) + Hc (E) (11 .106)
with

ec ^<pHC ,HC>

4<eEC ,EC>

2^2<e-1VxHC ,VxHC>R + ^ [Hc ,eC]Se 

2L2< W X E C , V X E C>R - hC /EC] Sh

The real and imaginary parts of these complementary func
tionals are stationary, but not extremal, at the required 
solution, eqn. 11.95. Solution formulations can also be 
extracted from eqn. 11.103, but these correspond to only

gapproximate minimisation of A . The derivations will not 
be given here because they are virtually identical to eqns. 
11.49-61 of sec. 11.3.1 on the harmonic eddy-current problem.

The complementary functionals of eqn. 11.106 introduce 
boundary integrals into those proposed by Ferrari11*4. He 
avoids boundary terms by associating the functionals with 
dual problems having different inhomogeneous Dirichlet
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conditions. Inclusion of the boundary terms in eqn. 11.106 
allows such boundary conditions to be enforced naturally, 
so that either functional can be used with either problem.

The only value of a that splits the steady error AS is

a = - 1 (11.107)

Using it in eqn. 11.103, and substituting for D and B from 
eqns. 11.89a and 11.90a respectively, we can write

A? = Of(H ) + H?(E) (11.108)
with

0? = 1<UHC ,H*>R - 2^2<e'1VxHc ,VxH*>R - Re{^[Hc ,e*]Se}

E? = 1<£EC,E*>r - 2^2<vV x e C,Vx e *>r +
s s0i and Hi are real complementary functionals, similar to 

those derived by Hammond11*2. Now a in eqn. 11.107 violates 
the requirement of positivity in ineq. 11.94, causing 
eqns. 11.93 to degenerate to

0 2 Ai = Ar - Ar (11.109a)
with

0 = Ai <=> A™ = A® (11.109b)I\ I\
Clearly, in this case we cannot conclude that Ai is 
stationary at the unique correct solution where

A™ = A® = 0 (11.110)K K.
Therefore, the constitutive error approach cannot verify 
that 0f and H? are stationary at the required solution.
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11.5 Conclusions

Extension of the constitutive error approach to the 
time-varying case is based on summing the relevant errors. 
Splitting of the total error depends, to a large extent, on 
the relative weights assigned to the component errors, and 
on the interval of the time integral of the current flow 
error, if included. In general, solution formulations are 
not associated with minimum principles, and energy bounds 
cannot be established.

Steady harmonic derivations are based on the instan
taneous error to avoid the difficulty of interpreting complex 
energies and their stationary points. Appendix K compares 
formulations derived here with previously proposed ones : 
there is agreement on the fundamental derivations of solu
tion formulations, but not on the associated energies.
A degree of generalisation may be claimed for the present 
approach as it leads to two possible treatments, one based 
on the steady component of error, the other on the double
frequency harmonic component.
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C H A P T E R  T W E L V E  

Conclusions

12.1 Preview

In this thesis, the solution of electromagnetic field 
problems is regarded as a process of minimising the 
constitutive error, with the fields constrained to satisfy 
Maxwell's equations, continuity conditions, and boundary 
conditions. The previous chapters show that the proposed 
view provides a unifying framework which leads to systematic 
derivation of complementary and dual solution formulations, 
and sheds useful light on various aspects of computational 
electromagnetics. The present chapter summarises main 
findings arrived at in the various topics considered, and 
suggests further areas that may benefit from the approach.

12.2 Complementary functionals and solution formulations

Under static conditions, the constitutive error splits 
into complementary functionals for well-posed and consis
tently specified problems. Chapter 6 derives the func
tionals for a variety of problem specifications, including 
certain boundary conditions that had previously been thought 
to hinder truly complementary formulations. The only 
restriction here is the requirement that boundary conditions 
be specified independently for the complementary systems, 
although sec. 6.7.2 extends the approach to handle 
a particular set of interlinked boundary conditions.

Having split the error completely between the H- and 
B-systems, its minimisation is achieved by extremising the 
complementary functionals independently of each other,
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which thus provides the complementary solution formulations 
sought.

In mixed-potential solutions, and in time-varying 
problems, the error does not, in general, split completely 
into complementary functionals. In such cases, error mini
misation provides a reference formulation which, upon the 
introduction of additional assumptions, generates 
complementary solution formulations. The assumptions 
constitute redundant over-specification in exact analysis, 
and approximate error minimisation in numerical analysis.
In effect, the solution formulations have no corresponding 
functionals, and are not associated with minimum principles. 
The derivations of Chapters 9 and 11 reveal the alternative 
assumptions available and their implications.

It is emphasised that decomposition of the constitutive 
error is achieved by imposing the physical specifications of 
the problem on the fields in the universal expression for 
the error. If, upon exhaustion of the specifications, the 
error still has not split completely between the complemen
tary systems, it may be concluded that independent 
complementary functionals cannot be defined for the given 
problem.

12.3 Upper and lower bounds

In cases where the error does split into complementary 
functionals, their numerical values constitute bounding 
approximations to the same global quantity. The latter may 
thus be estimated, to a high degree of accuracy, by 
averaging the bounds. This can be done in conventional 
static formulations where, depending on problem specifica
tions, the bounded quantity may correspond to energy or 
co-energy, or possibly neither. Bounds on lumped circuit 
parameters are derived from energy bounds. Although 
complementary estimates of circuit parameters are always 
available, they do not necessarily bound the exact values
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in non-linear solutions, since their relationships to 
energies are not direct algebraic ones.

In cases where the error does not split completely 
into complementary functionals, such as mixed formulations 
and time-varying problems, upper and lower bounds are not 
defined for any quantity.

12.4 Numerical techniques

The proposed approach is particularly suited to 
numerical analysis because it acknowledges, at the outset, 
an error that has a standard positive form, and is totally 
attributable to the numerical constraints on the variables. 
Chapter 5 shows that finite difference, finite element, and 
boundary integral scalar and vector potential formulations 
can be derived as alternative implementations of 
constitutive error minimisation. As the error is always 
defined and computable, it can serve as a basis for 
comparison.

12.5 Error computation

The constitutive error cannot be apportioned between 
the complementary systems. It reflects, quantitatively, 
the local and global adequacy of the numerical discretisa
tion. The error tends to be dense in regions of sharp 
field changes, be they material interfaces or severely 
stepped boundary conditions. At air/iron interfaces, error 
in non-linear solutions is less than in linear solutions 
because of the reduction in iron permeability; within the 
iron, error increases because of the discrete steps in 
permeability.

Adaptive mesh refinement schemes may be based on the 
constitutive error density distribution; the global error, 
which must also be monitored, can be meaningfully normalised 
with respect to energy.
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12.6 Complementary field estimates

The computations of Chapters 6 and 7 indicate that 
discrepancies between complementary estimates of the field 
distributions can be considerable, especially in non-linear 
media; this was evident even with generally acceptable 
discretisations. Unlike global energies, local distribu
tions cannot be predicted, to a higher degree of accuracy, 
from complementary estimates. However, the B-H plots do 
serve to ascribe a realistic level of confidence to 
numerically derived field estimates.

12.7 Magnetostatic scalar potential formulations

Chapter 8 suggests that errors associated with reduced 
scalar potential formulations may be attributed to the 
inconsistency of Biot-Savart pre-defined fields with 
numerical discretisation; near-cancellation effects 
magnify, rather than cause, the errors. Two-potential 
formulations retain a limited degree of inconsistency on 
conductor surfaces. An alternative, entirely consistent, 
definition is proposed for conductors composed of straight 
sections; it is computationally simpler than the Biot- 
Savart definition, and results in comparable constitutive 
errors for two-potential formulations.

12.8 Mixed formulations

Chapter 9 shows that existing mixed formulations are 
based on approximate treatment of field continuity across 
the interface separating scalar potential and vector poten
tial sub-regions. Dual and pseudo-complementary formula
tions, based on alternative treatments of continuity, are 
developed, paving the way for quantitative assessment and 
comparison.
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12.9 Vector potential solvability

Section 3.4.4.2 and Chapter 10 investigate vector 
potential solvability, emphasising the distinctions between 
the essential requirements of physically unique fields, and 
the inessential requirements of computationally unique 
potentials. It is concluded that the imposition of 
a divergence condition on the vector potential is not 
strictly necessary in numerical analysis, alternative 
treatments being equally valid, and possibly more accurate.

Chapter 10 also interprets the weak imposition of 
a divergence condition in terms of a gauge error to be 
added to the constitutive error; minimisation of the 
weighted sum provides the solution formulation. Experimen
tation is needed to determine the most suitable relative 
weights, which are shown to constitute a compromise between 
accuracy and well-behaved solvability.

12.10 Time-varying problems

Chapter 11 extends the proposed approach to time- 
varying problems by constructing suitably weighted sums 
of the constitutive errors corresponding to the relevant 
material properties; the weighting factors are shown to 
play a prominent role in extracting workable solution 
formulations. Complementary formulations are derived for 
the eddy-current and high frequency problems. In general, 
time-varying solution formulations are not associated with 
minimum principles, and energy bounds cannot be established.

Under steady harmonic conditions, formulations can be 
derived in two ways. (i) Minimisation of the time-invariant 
component of the constitutive error; however, complementary 
time-invariant functionals cannot be defined, so that 
solution formulations correspond to approximate minimisation 
of the constitutive error. (ii) Solving for the stationary 
point of the double-frequency alternating component of the
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constitutive error; complementary functionals are defined, 
but they are merely stationary, not extremal, at the 
required solution. In both approaches, derivations are 
based on the instantaneous error to avoid the difficulty of 
interpreting complex energies and their stationary points. 
Appendix K compares complementary eddy-current formulations 
derived here with previously proposed ones.

Chapter 11 also derives complementary formulations for 
the transient eddy-current problem with alternative time 
discretisations.

12.11 Two solutions better than one ?

The argument for performing both complementary 
solutions, rather than settling for only one, forces itself 
on a number of occasions in the thesis. These are reviewed 
briefly here.

Averaging bounds obtained from relatively coarse 
discretisations can yield highly accurate estimates of the 
bounded quantity, say energy. Such a procedure is more 
economical than single-sided estimates, since these would 
require highly refined discretisations to achieve 
comparable accuracy.

The constitutive error is a comprehensive measure of 
numerical inaccuracy, and thus provides a natural basis for 
adaptive mesh refinement. Error computation requires both 
solutions to be performed.

Combined presentation of complementary computational 
results, such as equipotential contours, B-H plots, and 
constitutive error density distributions, provides the 
designer with a tangible and realistic appreciation of the 
confidence level with which to regard distributions of 
interest.
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For the purposes of research, where solution economy 
is somewhat less critical than in industry, combined 
presentation of results leads to deeper insight into the 
numerical behaviour of complementary solutions, and aids 
in assessing alternatives.

The absence of minimum principles from single-sided 
time-varying solutions erodes their acknowledged economic 
advantage over simultaneous complementary solutions which 
actually minimise the constitutive error; this is 
particularly significant in cases where the complementary 
solutions are only loosely interlinked.

12.12 Further applications

The constitutive error approach is a powerful tool 
that can provide insight into various topics of interest in 
computational electromagnetics : solution formulations can
be derived systematically, and alternatives assessed 
theoretically and practically. A number of topics that 
have been considered theoretically in this thesis may be 
further investigated by actually performing complementary 
solutions and computing the corresponding errors. These 
include anisotropic media, three-dimensional problems, 
allernative numerical techniques, mixed formulations, vector 
potential solvability, harmonic and transient eddy-current 
problems, and high frequency applications. Other topics 
that may benefit from the approach would include open 
boundary problems, force computations, moving media, 
permanent magnets, etc. It may also prove fruitful to 
develop the non-linear iteration algorithms suggested in 
sec. 7.4; convergence, it has been shown, may be reliably 
monitored through the modified, separate system constitutive
errors.
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12.13 The Ligurian

It seems inappropriate to close this treatise without 
mentioning that, within the electromagnetics CAD group at 
Imperial College, the constitutive error is better known as 
the 'Ligurian'. The name derives from the beautiful coast 
on the Gulf of Genoa where, some two years ago, the author 
began to appreciate the potential of the constitutive error 
concept. The term 'Ligurian' has the advantage of 
compactness over the more descriptive 'constitutive error'. 
This may be quite relevant if the concept becomes accepted 
and commonly used.
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A P P E N D I C E S

A. Potential operators and potentials

This Appendix seeks to establish a fundamental impli
cation of prop. 2 of sec. 2.2, namely that yH+Br and vB+Hc 
are potential operators; it also derives their corresponding 
potentials, x(H) and iMB) .

The derivations will be made by analogy with some 
familiar concepts from vector calculus. Consider a vector 
field F(r), where r is the position vector in a Cartesian 
coordinate system ( x, y, z)

r = x a  + y a + z a  — —x —  y —z (A . 1 )

a , a , and a are unit vectors in the three coordinate —x ' —y ' —z
directions. The line integral

I F (r )•dr ( A . 2 )

is, in general, a function of the path between the two end
points r̂  and r£. However, if F(r) is the gradient of some 
scalar <t> (r ) , i . e .

then
F = grad ({) (A.3)

r~2
I = grad <Mr) • dr = <t>(r2 ) - (Mr^)

= U t , . t 2 ) (A.4)

and I depends on the end-points only. It is sufficient that 
F(r) be irrotational for it to be a gradient; i.e.

curl F (r ) = 0 <=> F(r) = grad 4) (A.5)
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The above results will now be used as a basis for 
analogy. At any point in the given region R, it is possible 
to postulate an orthogonal coordinate system ( H , HR, H ),

Cx p  y

so that the field H, given by

H H a^ + H0 aQ + H a a —a 3 —3 y —■y (A.6)

is analogous to the position vector r in eqn. A.1 ; a^,
and a^ are unit vectors in the respective directions of the 
components H^, , and H^. The field u(H)H+Br is a function
of H, and hence is analogous to F(r). The integral

J < U (h )h + B , dh> J ^ (A.7)

is a function of the path between and ^  unless y(H)H+Br 
is a gradient of some scalar x(B)> in which case we have

J
r—2

Si
<gradh x dh> = x (H2 ) XtH, )

= J<H-, ,H2 > (A.8)

and the integral J depends only on the end-points and ^ .
The condition for y(H)H+Br to be a gradient is given by

curlR (^(H)H+Br ) = 0 <=> y(H)H+Br _ gradR x (A. 9)

as in A. 5 . To see the implications of A. 9 , the curl 
operation is performed as in Cartesian coordinates, and the 
result set to zero; this yields

(u(H)H)i = (y(H)H). for i,j = a,3,Y? i * j
j i J (A.1Oa)

Noting that y(H) is a tensor (or dyad), A.10a expands to

I . . + Y H, 7T77 y .,I I  k 9H, Mikk j
= y . . + y H, -r-rr y .,ii r k 3H/ik J k 1 J

(k = a ,3/Y )
(A.1Ob)

Eqns. A.10 simply state that 8(y(H)H)/3H is symmetric, 
which is prop. 2 of sec. 2.2.
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We thus conclude that for a constitutive relationship 
that possesses prop. 2 of sec. 2.2, we can write

U(H)H + Br = gradH X
with

s2
<y(h)h + , dh>X(H2 ) = X(H!) +

in accordance with eqns. A. 7 - 9 Similarly
Si

v(B)B + H = grad^ —  —  —c B
with

i|j(B2 ) = ) +
2 - 2

Si
<v(b)b + H , db> — — —c —

(A.11a)

(A.11b)

(A.12a)

(A.12b)

B. Convexity

This Appendix seeks to show that the scalars x(H) and 
iJj(B), derived in Appendix A , are strictly convex for a 
constitutive relationship that is strictly monotone, i.e. 
possesses prop. 1 of sec. 2.2.

Consider ineq. 2.2a. Substituting for B^ and B2 from 
eqn. 2.1a

<H2 - H1 , U (H 2 )H2 - U ( H-j ) H1 > £ 0 ( B . 1 )

with strict inequality for distinct and H2 . Substituting 
from 2.4a, and rearranging

<HH2 -  H1 , g r a d H^x> £ <H2 ~  ^1 ' 9 ra d H lx: (B . 2 )

where the subscripts and H2 indicate the points, in the 
H-coordinate system, at which the gradients are evaluated. 
Prop. 1, or, equally well, eqn. B.1 , implies single
valuedness, so that yH+B^ = gradR x is a continuous function 
of H; this, in turn, implies that x(H) is smooth to at least 
its first derivative (C 1-continuous w.r.t. H). The mean



278

value theorem may therefore be applied to yield

X(H2 ) - X(H-,) = <H2 - H, / 9radH X> (B.3)m
where

Hm = n H2 + (1 —ri) with 0 < n < 1 (B.4a)

so that

-2 " -m = (1_n) (—2 " ] (B.4b)
Ineq. B.2 can, of course, be applied to H2 and Hm :

<H0 - H , grad„ y > = <H~ - H , grad„ y >—2 —m '  ̂ H A —2 —m '  ̂ H A2 m
Substituting for (H~ - H ) from B.4b :—z —m

, gradR x> * (1 -n ) <h 2_— 1 ' 9radH X>2 m
As (1 —n ) is positive by definition, eqn. B.4a , it is 
cancelled out without altering the inequality. Substituting, 
moreover, for the right hand side from eqn. B.3 , we finally
get

<H.2 - H<| , gradR^x> £ X d 2 ) - X (H-] ) (B.5a)

which formally defines x(H) to be convex2’1; it is, in fact, 
strictly convex since we have strict inequality for distinct 
field values and H2 2,1 . Similarly, iJj(B) is strictly 
convex with

<B2 - B1 , gradB \p> £ \MB2 ) - iMB^ ) (8.5b)

Prop. 1 of sec. 2.2 requires u(H)H+Br to be a (C0-) 
continuous function of H; accordingly, the scalar x(H) is 
smooth (C1-continuous) . If, however, ufHJH+B^. is itself 
smooth, the mean value theorem can be applied to ineq. B.1 
to yield

<S2 - £-| > fjj<U<H)H) I (H2 - h 1)> a o (B.6)
H—m

with strict inequality for distinct field values and H2. 
As B.6 holds for all and H2 , and hence for any H^, it
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formally defines the derivative 3(y(H)H)/3H to be positive- 
definite. It is recalled that prop. 2 of sec. 2.2 requires 
the same derivative to be symmetric.

Similarly, the derivative 3(v(B)B)/3B is positive-
definite if v (B )B+H is a smooth function of B.— ---c —

C . The fundamental property of X

This Appendix derives eqns. 2.12 which constitute 
a statement of the fundamental property of X.

X is defined in eqn. 2.10 as

X(H,B) = X (H) + vMB) - £(H,B) (C.1 )

where H and B are estimates that are not necessarily related 
by the constitutive relationship, eqns. 2.1. Substituting 
eqns. 2.8, 2.9, and 2.11 into C.1, and combining integrals :

H B
X(H,B) <yh+B ---r

H—c
dh> + <vb+H ,db> ---c —

0
<H,B>

! rt n \

Let us first evaluate the density X(H^,B^) where H., and 
B., do satisfy the constitutive relationship, i.e. they are 
related by eqns. 2.1. In this case

X(H., ,B1 ) =
-1 A

H—c
<yh+Br ,dh> + <vb+Hc ,db> - <H-j > 

0
Substituting into the integrands from eqns. 2.1 :

MIL, ,b 1 ) =
A A
<b(h ),dh> + <h(b) ,db> - <H-, fB̂  >

H—c
According to Appendix A the integrals are independent of 
the integration paths. Since, moreover, both the upper and 
lower limits of the two integrals are related by eqns. 2.1, 
it is possible to choose paths throughout which h and b are
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related by eqns. 2.1. This allows the two integrals to be 
combined :

A  rS,
MU, ,b 1 ) = (<b , dh> + <h , db>) - <H^ , B^ >

H ,0 —c '

^ 1 ^ 1  >
d<h , b> - <H1 ,

<H ,0>—c
Performing the integration, we find

A(H1,B1) = <H1 , B1> - <Hc , 0> - <H , B ^ >

= 0 (C . 3 )

Clearly, then, A is zero for any pair of H- and B-field 
estimates that satisfies the constitutive relationship.

Let us next postulate another pair of field estimates, 
H2 and , that are also related to each other by eqns. 2.1, 
but with

H2 * H (C.4a)

and hence, according to prop. 1 of sec. 2.2,

B2 * B (C.4b)

To evaluate A(H2 ,B«j) we apply eqn. C.1

A (H2 ,®1 ) = X(H2 ) + 'MB-,) - C(H2 , ) (C. 5 )

But from eqns. C.1 and C.3 we have

A(H1 ,B1 ) = x (H q ) +  ̂(H-j fB^ ) = 0

so that substitution for vJj(B^) in C.5 yields 

A(H2 /B1 ) = x (H2 ) - £ (i l 2 fBq ) " X (Hq ) +

Substituting for the two £'s from eqn. 2.11, and combining 
terms
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= X(H2 ) - X(H1 ) + <»! - H2 ,

Substituting, finally, for from eqn. 2.1a and rearranging

X(H2 ,B1) = <H., - H2 , y(H1 )Hl+Br> - (x (H-, )-X(H2>)
(C.6)

Consider now ineq. 2.6a; making a trivial change in 
subscripts, and substituting for the gradient from 
eqn. 2.4a, it becomes

<H., ~  H2 , U(H1 )H1+Br> £ X<H-| ) " X(H2 ) (C . 7 )

Comparing eqn. C.6 with ineq. C.7 , recalling that 
X(H) is strictly convex, and noting inequalities c. 4 , 
we can conclude that

) > 0 (C .8)

for any pair of field estimates, H2 and B^, that does not 
satisfy the constitutive relationship, eqns. 2.1.

Combining ineq. C.8 with eqn. C.3 , we can state that

A(H,B)  ̂ 0 (C .9)

for any pair of estimates, H and B, with strict inequality 
unless

B = y(H)H + Br
and

(C.1Oa)

H = v (B ) B + H — — — —c (C .1 Ob)

i.e. H and B satisfy the constitutive relationship.
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D. Unique boundary specification

In this Appendix we seek to impose specs. 2 and 3 of 
sec. 3.4.1 on W in eqn. 3.25 to derive eqns. 3.27.

Noting that both and satisfy eqn. 3.18, spec. 2, 
application of the curl operation to both sides of 3.24a 
yields

curl 6h = 0 (D.1a)
everywhere in R. Requiring, moreover, and ^  to satisfy 
eqn. 3.20, spec. 3, we can write

n x A (6H) = 0 (D .1b )
across any surface in R. As R is simply-connected, eqns.
D . 1 imply that there exists a continuous scalar distribu
tion 4>(r) such that

6h = grad (j) (D.2a)
and r

4> (r) = d>(r ) +—o J 6H • d£ (D.2b)
r—o

where rQ defines an arbitrary global reference point in R.

Noting that both and B ^  satisfy eqn. 3.19, spec. 2, 
application of the divergence operation to both sides of 
3.24b yields

div 6B = 0 (D.3a)
everywhere in R. Requiring, moreover, B̂  and B ^  to satisfy 
eqn. 3.21, spec. 3, we can write

n • A (6B) = 0 (D.3b)
across any surface in R.

Substituting from eqn. D.2a for 6H in 3.25 :
W = <grad $ , 6B>R 

Applying a vector identity :
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W <d> div 6B>R div(4> 6B) dR

The first term on the RHS is zero by eqn. D.3a . Applying 
the divergence theorem to the second term, and noting that 
by eqns. D.1 and D.3b <Mr) and n*6B are, respectively, 
continuous, we find

W = [<J> , n • 5B]S 
Substituting for <J) from D.2b :

W = 4) (r ) x o 6B*dS + [-o / - -
S r—o

6H-d£ , n*6B]

The first term on the RHS is zero by a reverse application 
of the divergence theorem and eqn. D.3a . Thus

r
W = [ 6h • d&_ , n • 6b ] (D.4)

r—o
which represents the final reduction of W. We can, however, 
express it in a more convenient form by using the sub
division of S in 3.22 ; thus

with

N
W = l w 

n=l n

w r = [ j 6h • d£_ , n • 6b ]

(D.5a):

(D.5b)
r—o

n

where Sn is the nth simply-connected sub-section of S. If, 
moreover, we use rn to define a local reference point on 
each S^, we can break the line integration of D.5b into 
two stages

w = [ n
r—n
6H,d51 , n*6B]Q + [ , n»6B]

± - o n £n n
But the line integral in the first term is independent of r, 
and hence can be taken out of the surface integration, so 
that

r
H.d£ , 6(n-B)]g (D.6)

rr-n f
v/ = (6 H* d£j (6 | B«dS) + [6

n J L J
± - o

nn _n
where the following relationships, obtainable directly 
from 3.24, were used :
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/SH«d£ = <5/h «cL£, /6B*dS = 6/B'd£3, and n*6B = 6 (n • B )
(D.7)

Eqns. D.5a and D.6 express W in the final form 
that we shall use. They clearly relate to boundary con
ditions. In conjunction with ineq. 3.26, they constitute 
a general statement on allowable boundary specifications 
for well-posedness.

E. Partial decomposition of the constitutive error

In this Appendix we impose specs. 2 and 3 of sec.
3.4.1 on A in eqn. 3.71 to decompose it partially.

From eqn. 2.11, we have
Z(H,B) = <H , B>r 

Substituting for H from 3.40a :
Z = <G , B> - <grad £3 , B>K K

Applying a vector identity to the second term on the RHS :
Z = <G , B> + < Q  , div B> - / div(£2 B) dR R R R

Substituting eqn. 3.19 for div B in the second term, and 
applying the divergence theorem to the third term :

Z = <G , B> + < Q  , p> - [£3 , n*B]I\ WR
M

-  I  {[^1 r +  [^2 '  — 2 * — 2 - ^S ^ ^m=l m m
where the summation is over surfaces of discontinuity; the
subscripts 1 and 2 refer to the two sides of S^. Substitu-m
ting for Q  in the third term from 3.54b, and manipulating 
the variables in the summation term :

r r
Z = <G,B> + <Q, p>  - n(r )oB.dS - [£Aft G • d& , n • B ]

—o _o
+ [

M

^o
H«d£,n«B]s + l {[£}«! ,n-AB]gA + [Afi,n-B2]sA} 

m=l m m

where r is an arbitrary global reference point, and the
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sum in the fourth term covers discontinuities in ft encoun
tered by the path from rQ to r. Applying the divergence 
theorem to the third term, and substituting from eqns. 3.19 
and 3.21 into the result, we finally get

Z = <G , B>r + <ft , p>D - ft(r̂ ) r MP dR + l a dS
1? m=l c A J>m

- [EAS2 G*d.£ , n*B]c + [ H*d£_ , n-B]cO , u
M

r r—o ±-, r—o
+ l {[fi1 , o ]SA + [Aft , n*B2lsA} 

m=l — _ (E.1 )m m

Substituting the above for Z in 3.71, A decomposes 
partially as in 3.72.

F . Minimisation of a decomposed functional

Consider a functional T which has decomposed into two 
functionals, U and V, as follows

T(a,3,Y) = U(a,y) + V(3,Y) (F.1)
where a, 8, and Y are independent variables, all functions 
of position. T has decomposed in a and 8, but not in y ,  
which appears in both component functionals so that they 
are not quite independent of each other. From F.1 
a free variation in T can be written

6T(a,3,Y) = <5U(a, y ) + 6V(3,y ) (F.2)

Consider the case where T constitutes a valid varia
tional principle for a well-posed problem which has a unique
solution at ( a , 3 # Y )7 then o o o

0 = 6T(a,3,Y ) at a,3,Y = a ,3 ,Y (F.3)' o o o
and from F.2

0 = 6U(a,Y) + <$V(8,y ) at a,8,Y = a ,3 ,Yo o o (F.4)
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Now suppose we assign arbitrary values to 3 and y, say
3 = 3-| and Y = * 1

• (F.5a)
then

6V(31 rY ) = 0 (F.5b)
and F.2 reduces to

6T(a,31,Y1) = 6u (a ,Yi * (F.5c)
If, in particular, we choose

3-| = 3q and ■ Yo (F.6a)
then

0 = 6T(a,30 ,Y0 ) = 6u( a ,
V  a t

a = ao . (F.6b)

which results from substituting F.5c and F. 6a into
-F.3 . Similarly, if a and Y are assigned their unique
solution values, a and y ,o o' then

0 = 6T(aQ ,3,Y0 ) = 6v( 6,Yc > at 3 = 6o (F.6c)

We can extract the following results from; F. 6b
and F . 6c :

and
0 = 6u(a,Yo ) at a = ao (F.7a)

0 = <5V(6,Y0 ) at 3 = 3 M Mo (F.7b)

Clearly, U(a,YQ ) and V(6,Yq ) are themselves stationary at, 
respectively, the true solutions olq and 3Q . Provided that 
the true solution for Y, namely y , is known and inserted 
into U and V, the functionals can be extremised indepen
dently of each other, as in eqns. F.7 , to obtain the
solutions for a and 3. In the absence of such knowledge, 
the extremisation is performed as in F.3 . or, equivalently, 
F.4 ' which involves both functionals simultaneously.

Of particular interest is the special case where the 
components U and V are functionals of completely independent 
variables, i.e. y is absent from eqn. F.1 , which becomes

T(a,3) = U(a) + V(3) (F.8).

with a and 3 independent variables, as before. Applying
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eqns. F.7 to this special case, we find
0 = 6U( a ) at a = aQ (F.9a)
0 = 6V(8) at 3 = 30 (F.9b)

U(a) and V($) are themselves stationary at, respectively,
the true solutions a and 8 which can thus be determinedo o
from the independent extremisation of the two functionals.

These conclusions can be applied to the constitutive 
error and its component functionals in eqn. 3.75. If the 
problem specifications leave the H-system variables and the 
B-system variables completely independent of each other, we 
can extremise 0 and H as in 3.78 and 3.79, which correspond 
to F.9. Otherwise, we resort to 3.77, which correspond to 
F.3 and F.4.

G. The constitutive error in alternative derivations
of complementary variational principles___________

This Appendix determines the relationship between the 
constitutive error A and the Lagrangians of analytical 
mechanics, sec. 4.4, and between A and the Hu-Washizu 
functionals of elasticity, sec. 4.5.

Consider the Lagrangians first. Substituting from 
eqns. 4.28 and 4.32 into 4.54, and noting 4.12, we find

A =
“jR
(L (fl,H) - L (B)) dR + [J2 , n*B]sp cp O

for the primal Lagrangians of sec. 4.4.1. Similarly, 
substituting from eqns. 4.36 and 4.40 into 4.54, and 
noting 4.12, we find

A =
•R
(Lsd(A,B) - L^(H)) dR + [nxH,A]cd

for the dual Lagrangians of sec. 4.4.2.

Consider the Hu-Washizu functionals next. Substituting 
the primal equations 4.13, 14, 16, and 17 into eqn. 4.41, and 
multiplying by 2 for convenience :
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211 = <G,B>r - <p,SJ>R + <uH-B,H>R + [n*B,f!]sb - [n*B,«]sh

Substituting the dual equations 4.1 9, 20, 22, and 23 into 
eqn. 4.47, and multiplying by 2 :

2Hd = <C,H>r - <J,A>r + <VB-H,B>R + [nxH,A]Sh - [nxH,A]Sb 
Adding :

2(n + n d ) = (<u h - b , h >r + <v b - h , b >r)
+ (<g ,b >r - <p,n>R + <c ,h >r - <j ,a >r)
+ [n*B,S2]Sb - [n*B,fi]gh + [nxH,A]Sh - [nxH,A]Sb

The term inside the first pair of brackets is twice the 
constitutive error for the linear case, eqn. 2.15b. The 
term inside the second pair of brackets can be simplified 
by substituting for H and B from eqns. 4.13 and 4.22 
respectively, and applying vector identities and the 
divergence theorem to the result; dividing by 2, we get

np + nd = A + <c , G>r + i [n*B,S2]Sb - [n*B,fi]Sh - [n*C,n]g
+ [nxH,A]Sh - [nxH,A]Sb - [nxG,A]s

Substituting for H and B on the boundary S from eqns. 4.13 
and 4.22, applying 4.12, and collecting terms :

n + - a + <c , g >r - [n • c , £7]gb ~ [h xg * h.Is^
+ \ (VfixA + ftVxA)*dS - \  

Sb
(VfixA + fiVxA)*dS 
Sh

We now substitute for $7 in the third term from 4.14, and 
for n x a in the fourth term from eqn. 4.20; we also apply 
a vector identity and Stokes' theorem to the integrands in 
the last two terms; upon rearranging, we get

A = np + nd " ^ >r + [H*C,fih ]sh ~ [£,ab ]Sb
- io fl A • d£_ + Jo fl A • d_& 

î b ^h
where £b and are the contours of Sb and Sh respectively. 
But according to 4.12, &b is simply ^b traversed in 
reverse, so that the two line integrals can be combined :
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A = n + n , -P d <c f G>r - [n • C , Ph ]Sh + [G , ab ]Sb + o Q  A • d&

This relationship between A and the functionals 11̂  and II ̂ 
has been derived by enforcing the primal and dual specifi
cations of sec. 4.3, with the exception of the constitutive 
relationship, eqns. 4.15 and 4.21. It is shown in sec.
4.6 that the primal and dual statements of the problem in 
sec. 4.3 are not, in general, equivalent. For cases where 
they are, with both and a_b pre-specified, the entire 
bracketed term is pre-specified; in such cases, the 
variation is given by

6 A = 611 + 6 IKP a
since the variation of the known term in brackets is zero.

H. Galerkin derivation of mixed formulation

The following derivation of mixed formulation is 
essentially that of references 9.2 and 9.3, limited to 
static problems. It focuses on physical specifications, 
and assumes that vector potential solvability can be 
imposed by suitable extension. As in the constitutive 
error-based derivation, the mixed formulation sought here 
is in terms of the a-system variables, defined in 9.6.

In contrast to the constitutive error approach, the 
method of weighted residuals imposes the constitutive 
relationship explicitly :

= y 1 )E^ + B r  , H2 = v 2 ( B 2 ) B 2 + Hc ( H . 1 )

The a-system specifications are imposed on the fields 
and B2 by defining the potentials ^  and A_2 as in eqns. 
9.7-9. Scalar weighting functions, u^, are defined in , 
and vector weighting functions, v_2 , are defined in R2. In 
the Galerkin approach, the weighting functions û  and v2 
are the basis functions for and A2 respectively. As
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the a-system boundary conditions are enforced explicitly on 
Shi and Sb 2 , we set

U1 l s h1 = 0 '  — 2 IS b2 = ® « « - 2 >

The 3-system specifications are enforced weakly by 
constructing weighted residual errors, and requiring them
to vanish :

0 = <V-B1 - p-| , ui >R1 ,

0 = [n • ABt , ui ]sA1 r

0 = [H*B2-n*B1 , ui]sQ / 

0 = [n • B-j - b-| , ui ]Sb1

The residuals in eqns. H.3 
the physical specifications 
respectively. Applying vec 
gence theorem to eqns. H.3,

0 = <VxH2 - J2 f X2>R2 (H .3)

0 = [n x AH2 , v 2 ]sa2 (H .4)

0 = [ ri x H 2 -2ls0 (H .5)

0 = [nxii2 - h . 2  r - 2 ^sh2 (H.6)

4 , 5, and 6 correspond to
of eqns. 9.2, 3, 3, and 4 
:or identities and the diver- 
they become

0 = - <Bi , VU1 *ri ■ <P1 , U1^ 1  " [ n *AB-, ,U-l ]£
+ [n-j •B-] ,U1 h 0

+ [n*B-| / u1 ]Sb1 + [ n •B-j ,
and
0 = <h 2 -, Vxv2 >R2 ' <h - 2  ’  - 2 >R2 [ n>:AH2 ,V2]<

+ [ n . 2 xH2 ,—2 ]sG + [n x h2 / v2 ]Sh2 + [nxH2 ,

Adding eqns. H.4, H.5, and H.6 to H.7, and substituting 
from eqns. H.1 and H.2 into the result, we get

0 = - <ui (Hi )Hi + Br , Vu-| >Rl - <p-| , u-| >Rl
+ t b 1 r U1 l s b l  + [ n  • B 2 , u i ] S q ( H . 8 a )

and
0 = <v2 (B2 )B2 + Hc , Vx v2>t?2 - <J2 , v 2>R2

+ [h2 ,v2 ]Sh2 - [n x H-, , v 2 ]Sq (H.8b)

where n = n-j = -n2 on SQ as in fig. 9.1. Eqns. H.8 represent 
the a-system mixed formulation.
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I. Uniqueness of time-varying fields

Maxwell's equations interrelate time-varying electro
magnetic fields, but do not define them uniquely. Further 
specifications of physical uniqueness may be derived by 
seeking the conditions which cause the weighted product sum 
W of eqns. 11.5 to vanish. Choosing

Bm = Be = 1 , Bf = 2 (1.1)

eqn. 11.5a for W becomes
Tm „eW = V7m + We + 2 f t  VIf  dtt« (1.2 )

where, according to eqns. 11.4, the constituent products 
are given by

Wm = <6H , 6B>r 
We = <6D , 6E>R
Wf = <6J , 6E>_ R

(I.3a) 
(I.3b) 
(I.3c)

All terms are at time t unless otherwise indicated. Wm can 
be expressed in terms of its value at the initial time t :

TmW = <6H,6B>R

= <SH,6B>r

Similarly for W

p<SH,6B> dt K-O lO
ft

(<p6H,6B>R + <6H,p6B>p)dt (1.4)R--o

W = <6D,6E>r) K (<p6D,6E>13 + <6D,p6E>_) dt (1.5)- - WR-■o

Substituting for J in W from Maxwell's H-system equation 
11.2a, applying a vector identity and the divergence theo
rem, enforcing the continuity conditions of eqns. 11.2b and 
11.3b, and substituting for curl E from Maxwell's E-system 
equation 11.3a, we have

Wf = <Vx 6H,6E>r - <p6D,6E>R
= <6H,Vx SE>r - [SK,6E] +  [6(nxH)f6E]g - <p6D,6E>r

= -<6H, pSB>R-<p<5D, <SE>r- [ 6K, 6E ] Sr+ [ 6 (nxH) , 6E ] g (1.6)
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w h e r e  d e n o t e s  surfa c e s  across w h i c h  n x H is d i s c o n 
tinuous. S u b s t i t u t i n g  eqns. 1.4-6 back into 1.2, c a n c e l l i n g
terms w h e r e  a ppropriate, and rearranging, we o b tain

W <6H , SB>K
2[6(n x H)

+ (<p6H , 6B> -

+ (<6D , p6E> - «K

<6D , 6E>— — R f̂-o
s - 2[6K , 6E]S

k
<6H , p6B>R)

<P6D , 6E>r) dt (1.7)

Uniqueness is ensured by any set of specifications that 
causes W to vanish as in eqn. 11.5b. The individual terms 
in eqn. 1.7 can be made to vanish in a variety of ways; 
typical sufficient specifications are given below. It is 
noted that eqn. 1.7 already accounts for Maxwell's equations 
and constitutive relationships possessing property 1 of 
sec. 2.2.

The two terms at t in eqn. 1.7 relate to initial con
ditions; the first one vanishes if either H(r,t ) or B(r,t ) 
is given, the second if either D(r,tQ ) or E(r,tQ ). The 
surface integral over S, in the time integrand, relates to 
boundary conditions; it vanishes if, on each section of S, 
either n x H or n x E is specified. The surface integral 
over SR relates to continuity conditions; it can be elimi
nated by specification of either K or n x e on S^. The 
volume integrals in the time integrand, bracketed in pairs, 
relate to the magnetic and electric constitutive relation
ships; they vanish for linear symmetric constitutive 
operators :

<p6H , 6B> - <6H , pSB> = <p6H , y6H> - <6H , yp6H>
= <pSH , u 6H> - <u6H , p6H>
= 0  (1.8)

Similarly for the second bracket. It is recalled that linear 
operators that are symmetric possess prop. 2 of sec. 2.2.
The requirement of linearity can be relaxed by using infini
tesimal time intervals and induction, provided the constitu
tive operator is smooth and possesses property 2.
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J. Approximate minimisation of the eddy-current
error under steady a.c. conditions

Under steady a.c, conditions, the instantaneous 
constitutive error is composed of a time-invariant compo
nent and a harmonic, double-frequency component. According 
to ineq. 11.50 and eqns. 11.51, the time-invariant compo
nent has the property

AS £ 0 (J .1 a )

with
AS = 0 <=> A (t ) = 0 (J .1b )

• sMinimisation of A

0 = 6AS (J .2)

minimises A(t), and hence completes the imposition of the 
problem specifications on the fields. As it stands, eqn.
J.2 does not generate independent H- and E-system solution 
formulations since A does not split between the two sys
tems, eqns. 11.39 and 11.46. The coupling term is given by

rs . _r , r. ,_i ,.i.
r  = <j  , a + <j  , a >R^

+ 0)£<Jr , A1>r 1 - 03£<J1 , Ar>Rl (J . 3 )

This Appendix demonstrates a procedure for extracting 
independent H- and E-system formulations from an approximategminimisation of A .

The electric field E is related to the E-system poten
tials A and <t> as in eqns. 11.16a; for harmonic variables 
in two-part notation, we get

Er = wA1 - V(J)r E1 = - uAr - VcJ)3" (J . 4)
3T iSubstituting for A and A from J.4 into J.3, we get

= - -<J
03 — ' —  K 1 03 — — K1

+ 5 <Jr , Er>Rl + SCJ* , Ei>R1 (J.5)

where the <J , V4>>r  ̂ products have been dropped by applying 
a vector identity and the divergence theorem, using V*J=0
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and n*j|s.j2 = 0' and neglecting boundary terms, if any, since
they match terms already dropped from eqns. 11.29. Perfor-

s sming the variation of A in eqn. 11.46 with T as expressed 
in eqn. J.5, we get

6A 6h r  + 6r e  + 6e e  + 6e r

where
«HH= <UHr,6Hr>R + <UH1,6H1>R + l<pJ1,6Jr>Rl

<5he = <5(pJr - Er ) -ifpj1 - E1 ) , 6Jr>Rl 
+ <^(PJr - E r ) + CtpJ1 - E 1 ) , 6J1>Rl

6 ee = <vBr,6Br>R + <vB1 ,6B1>R -l<0E1 ,6Er>Rl
- <Js»«Ar>R2 - <J^,6A1>r2

6eh= < 5(0Er - Jr) + IfoE1 - J1) , 6Er>Rl 
+ <-^(oEr - Jr) + U o E 1 - J1) , 6E1>Rl

(J.6)

1 . Tr fTi^- “ <PJ / >R1

+ -<oE ,6E >R- 0) — — n1

Or, in the more compact complex notation,

6hh = i6<pHc , H*>r + 1 Im <pjc , «J*>Rl 

6HE = 5 Re <pjc - Ec , 6J*>R i - ^ Ira <pjc - EC , 6J*>R i 

6ee = £<5<vBc , B*>r - lira <0EC , 6E*>R i - Re<J^ , 6a *>r 2 

6e h = C Re <oEC - JC , 6E*>R i + -j- Im <PEC - JC , 6E*>Rl

The notation 6..u etc. reflects the absence of corresponding
r i r i

functionals. Close scrutiny reveals that only H-system 
variables appear in and only E-system variables appear
in <5ee. <5re and 6ER, on the other hand, depend on both 
system variables.

Approximating eqn. J.2 by

0 6AS - 6HE = 6HH (6 EE 6EH) (J.7)

generates an independent H-system solution formulation

0 6HH (J.8a)

as well as a dependent E-svstem formulation
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(J.8b)

(J.9)

(J.1Oa)

(J.1 Ob)

It is noted that only E-system parameters are varied in 
eqn. J.8b, and only H-system parameters are varied in 
eqn. J.1Ob. Eqns. J.8a and J.10a are the required H- and 
E-system solution formulations; they can be solved indepen
dently of each other. The approximations which generated 
them are justified by the fact that in exact analysis, the 
conductive constitutive relationship, eqns. 11.18, is 
satisfied exactly, so that

6re = 0 and 6EH = 0  (J.11)

Other formulations can be derived by basing the approximate 
minimisation on exact satisfaction of the magnetic constitu
tive relationship, eqns. 11.17.

0 °EE + 6EH
Alternatively, eqn. J.2 is approximated by

0 6A 6EH (6hh + <5HE) + 5EE
to yield

0 =  6EE
and

0 = 6hh + 6he
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K. Alternative derivations of complementary variational
formulations of the harmonic eddy-current problem

This Appendix outlines the approaches developed by 
Hammond11’2 and Fraser11’3 , and compares their formulations 
with those derived by the constitutive error approach in 
section 11.3.1.

Hammond devises a conceptual adjoint system, having 
negative conductivity or time sequence, to generate the 
power dissipated by the actual system. He then derives 
various dual principles of virtual power to maintain equi
librium instantaneously. One such principle is

0 = 6C = u)2<vB* , 6Bc>T3 - jw <aE* , 6 E C > „  (K.1)

where the surface term has been omitted, and

R = R-j , R2 = 0 (K. 2)

6

6

Introducing two-part notation, eqn. 11.43, 
eqn. K.1 in the form

0 6Cee 6ree + j <5iee
where
r = aj2<vBr ,6Br> + 032 <vB1,6B1>_( - 03<aE1 ,6Er ee k x\
1 = —0 3 2 <vB1 ,6Br>T5 + 0)2<vBr , 6B1>tj - co<aEr ,6Eree — — R — — R — —
According to basic complex number theory, 
the simultaneous equations

we can rewrite 

(K.3)

>_ + oj<aEr , 6E1>T3X\ K
>R - 0)<OE1 , 6 E 1 >r  

eqn. K.3 generates

0 = 6r (K.4a)ee
0 = 61ee (K.4b)

Comparing the expression for 6ee in eqn. K.3 with the ex
pression for 6ee in eqn. J.6 of Appendix J, it is clear 
that, subject to eqns. K.2, the two are related by

6ree (K. 5)

It immediately follows that eqn. K.4a is entirely equivalent 
to eqn. J.10a, and hence to eqn. 11.56, w being constant.
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Thus Hammond*s approach corresponds to, and is in basic 
agreement with, the approximate minimisation of the time-ginvariant error A described in Appendix J and discussed in 
sec. 11.3.1. This conclusion is quite general, although 
established here for a particular case. For example, eqn. 
K.4b can also be derived by the basic procedure of Appen
dix J, but with the redundant over-specification imposed on 
the magnetic constitutive relationship instead of the con
ductive one. Moreover, Hammond's H-system formulations can 
be derived in a similar way. However, the two approaches 
diverge as Hammond goes on to integrate eqn. K.1 to obtain 
the variational principle

0 = 6 - ijw <VBC , B*> i<0EC , e*>r (K.6)

Justification of the varied functional, which does not arise 
in the constitutive error derivation, is not obvious. For 
example

6^<OEC , E*> = f<OEC , 6E*>_ + -2 <OE* , 6 E ° > T3K. K. t\

*  < 0 E *  , 6EC> (K.7)K
Fraser11*3 also questions the validity of the functional in 
eqn. K.6, and concludes that the complex function approach 
is unacceptable for deriving complementary energy func
tionals. Indeed, it is the difficulty of interpreting com
plex energies and their stationary points that prompted the 
instantaneous approach adopted in the harmonic derivations 
of sec. 11.3.1.

Fraser's own treatment represents the variables as 
ordered pairs of real functions corresponding to the real 
and imaginary parts. He then extends his formal approach 
of direct integration to construct the complementary func
tionals ©^(H) and H„(E). These turn out to be identical tor r
the real components associated with the double-frequency 
error, 0r (H) and Hr (E) in eqn. 11.47; i.e.

0p (H) = 0r (H) and Hp (E) = Hr (E) (K.8)

Thus Fraser's approach corresponds to, and is in basic 
agreement with, the variational principles of eqns. 11.54
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which relate to the double-frequency component of the
constitutive error. However, the two approaches diverge as
Fraser goes on to map the real functionals 0F and 5F into 

c ccomplex ones 0„ and H_. His expression for the latter, with . r r
J1 taken to be zero, is —s

Hp = i<vBr ,Br>R + 4<VB1,B1>r - <Jg,Ar>R2
- ̂ < O E r ,Ei>R1 (K.9)

It is not clear how this functional, which does not arise 
in the constitutive error derivation, is implied by E as 
given in eqn. 11.47.

It can thus be concluded that the constitutive error 
approach may be used to generate the solution formulations 
derived by both Hammond11*2 and Fraser11*3 , but not the 
complex power and energy functionals they propose.

Hammond uses his complex power functionals to define 
upper and lower bounds on circuit inductance and resistance. 
Fraser uses his complex energy functionals to define 
bounds on the inductance, and to conclude that there are 
no bounds on resistance. The constitutive error approach 
cannot verify any of the bounds.
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