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Abstract

In this thesis, we investigate some information theoretic limits of two specific types

of MIMO wireless networks. In the first one, the effect of channel uncertainty at the

transmitter (due to estimation error, feedback latency, and so on) in MIMO broadcast

channels is investigated. In this setting, we capture this imperfectness in the bounds

for the DoF region of the channel. The second one is the point to point deterministic

MIMO channel with input amplitude constraint. For certain settings, the capacity of

this channel is derived, while for the general problem, upper and lower bounds for the

capacity are obtained.
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Chapter 1

Introduction

MIMO wireless networks are of significant interest due to their several beneficial features

including the increased multiplexing gain. It is known that in a point to point MIMO

channel, knowledge of the channel state at the transmitter does not affect the multiplex-

ing gain, while in MIMO networks such as MIMO broadcast channels, it is crucial to

know the channel for interference cancellation. From a more practical point of view, the

assumption of perfect CSIT may not always be true due to channel estimation error and

feedback latency. Hence, it is interesting to consider the idea of communication under

some sort of imperfection in CSIT and see how it degrades the performance. Chapter 2

of this thesis is devoted to this problem.

The remaining part of this thesis deals with communication with peak power constraint.

Although the literature on the capacity with average power constraint is extensive, less

attention has been paid to the scenario with peak power constraint. Our motivation for

investigating this problem is the recent concept of MIMO transmission with a single RF

chain.

The more detailed content of this thesis is as follows. In Chapter 2, a MIMO BC is

considered in which the effect of imperfect channel state information at the transmitter

is investigated. The performance metric is the DoF region which could be interpreted

as the region constructed by the number of interference-free private data streams that

users receive simultaneously per channel use. A probabilistic model for CSIT is adopted,

i.e., the CSI of a user could be perfect, delayed or unknown with corresponding marginal

probabilities. Given the marginal probabilities of CSIT, an outer bound is derived for

1



Chapter 1. Introduction 2

the DoF region. This outer bound is shown to be tight in certain scenarios. A set

of inequalities is derived based on the joint CSIT distribution which shows that in

general, the DoF region of the K-user MISO BC (when K ≥ 3) cannot be characterized

completely by the marginal probabilities in contrast to the two-user case. Finally, an

outer bound on the DoF region of a two user MIMO BC, in which the CSIT of a user is

either perfect or unknown, is provided, and it is shown to be tight in some scenarios.

In Chapter 3, the capacity of a point to point static MIMO channel under peak and

average power constraints is investigated. For the identity channel matrix, the capacity-

achieving distribution is obtained. It is shown that for a fixed peak power constraint,

when the number of antennas is large enough, constant amplitude signaling is optimal.

Finally, several upper and lower bounds are obtained on the capacity of the general

non-identity channel matrix.

In Chapter 4, the scalar AWGN channel with peak power constraint is considered whose

capacity has no closed form expression. The aim of this chapter is to further refine the

analytical upper bounds for the capacity of this channel.

In Chapter 5, a 2-by-2 static MIMO channel is considered in which the input is forced

to have a fixed amplitude. It is shown that the optimal input has a finite number of

mass point on a circle whose radius is the square root of the peak power constraint.

Finally, Chapter 6 is devoted to conclusions and future works.



Chapter 2

DoF Analysis of the MIMO

Broadcast Channel with

Alternating/Hybrid CSIT

2.1 Overview

In this chapter, we first consider aK-user multiple-input single-output (MISO) broadcast

channel (BC) where the channel state information (CSI) of user i(i = 1, 2, . . . ,K) may

be instantaneously perfect (P), delayed (D) or not known (N) at the transmitter with

probabilities λiP , λiD and λiN , respectively, while perfect CSI is assumed at the receivers.

In this setting, according to the three possible CSIT for each user, knowledge of the joint

CSIT of the K users could have at most 3K states. Given the marginal probabilities

of CSIT (i.e., λiP , λiD and λiN ), we derive an outer bound for the DoF region of the

K-user MISO BC. Subsequently, we tighten this outer bound by taking into account

a set of inequalities that capture some of the 3K states of the joint CSIT. One of the

consequences of this set of inequalities is that for K ≥ 3, the DoF region is not completely

characterized by the marginal probabilities in contrast to the two-user case. Afterwards,

the tightness of these bounds is investigated through the discussion on the achievability.

After the discussion on MISO BC, a two user MIMO BC having CSIT among P and N

is considered in which an outer bound on the DoF region is provided and it is shown

to be tight in some scenarios. Finally, an alternative proof for the DoF region of the

3
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K-user MIMO BC with no CSIT and perfect CSIR is provided. Based on this proof, the

capacity region of a certain class of MIMO BC with channel distribution information at

the transmitter (CDIT) and perfect CSIR is derived.

2.2 Introduction

In contrast to point to point MIMO communication where the CSIT does not affect the

spatial multiplexing gain1, in a multiple-input single-output (MISO) broadcast channel

(BC), knowledge of CSIT is crucial for interference mitigation and beamforming pur-

poses [1]. However, the assumption of perfect CSIT may not always be true in practice

due to channel estimation error and feedback latency. Therefore, the idea of commu-

nication under some sort of imperfection in CSIT has gained more attention recently.

The so called MAT algorithm2 was presented in [2] where it was shown that in terms of

the degrees of freedom3, even an outdated CSIT can result in significant performance

improvement in comparison to the case with no CSIT. Assuming correlation between

the feedback information and current channel state (e.g., when the feedback latency is

smaller than the coherence time of the channel), the authors in [3] and [4] consider the

degrees of freedom in a time correlated MISO BC which is shown to be achievable by a

combination of zero forcing beamforming (ZFBF) and MAT algorithm. Following these

works, the general case of mixed CSIT and the K-user MISO BC with time correlated

delayed CSIT are discussed in [5] and [6], respectively. While all these works consider

the concept of delayed CSIT in time domain, [7] and [8] deal with the DoF region and

its achievable schemes in a frequency correlated MISO BC where there is no delayed

CSIT but imperfect CSIT across subbands, which is more inline with practical systems

as Long Term Evolution (LTE) [1]. In [9], the synergistic benefits of alternating CSIT

over fixed CSIT was presented in a two user MISO BC with two transmit antennas. In

[10] and [11], the MISO BC with hybrid CSIT (Perfect or Delayed) was considered. The

recent work of [12] investigates the DoF region of the K-user MISO BC with hybrid CSIT

and linear encoding at the transmitter. [13] and [14] show that the optimal sum DoF

(in the case of perfect CSIT) is achievable if the CSIT is not too delayed in broadcast

channels and interference networks, respectively.

1The spatial multiplexing gain is the gain achieved when a system is transmitting different streams
of data from the same radio resource in separate spatial dimensions.

2The term ”MAT” comes from the name of the authors in [2].
3defined in section 2.3.
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The complete characterization of the MISO BC with perfect, delayed or unknown CSIT

is an open problem. The main aim of this chapter is to investigate this problem and

provide some answers toward this goal. To this end, our contributions are as follows.

• Given the marginal probabilities of CSIT in a K-user MISO BC, we derive an

outer bound for the DoF region.

• A set of inequalities is proposed as an outer bound that captures not only the

marginals, but also the joint CSIT distribution. This shows that for the K-user

case (K ≥ 3), marginal probabilities are not sufficient for characterizing the DoF

region.

• The tightness of the outer bound is investigated in certain cases.

• A two-user MIMO BC is considered in which the CSI of a user is either perfect or

unknown. An outer bound for the DoF region is provided and it is shown to be

tight when the joint CSIT probabilities satisfy a certain relationship.

• An alternative proof for the DoF region of the K-user MIMO BC with no CSIT and

perfect CSIR is provided. Based on this proof, the capacity region of a certain class

of MIMO BC with channel distribution information at the transmitter (CDIT) and

perfect CSIR is derived.

This chapter is organized as follows. In section 2.3 the system model and preliminar-

ies are presented. An outer bound is provided in section 2.4 based on the marginal

probabilities and the proof is given in section 2.5. Section 2.6 provides an outer bound

that depends on the joint CSIT probabilities. The tightness of the outerbounds will be

discussed in section 2.7. Section 2.8 investigates a two user MIMO BC with CSIT either

perfect or unknown, and section 2.9 discusses the K-user MIMO BC with no CSIT.

2.3 System Model

We consider a MISO BC, in which a base station with M antennas sends independent

messages W1, . . . ,WK to K single-antenna users (M ≥ K). In a flat fading scenario,

the discrete-time baseband received signal of user k at channel use (henceforth, time
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Figure 2.1: A CSIT pattern with λDPP = λNDP = λPNP = 1
3 .

instant) t can be written as

Yk(t) = HH
k (t)X(t) + Zk(t) , k ∈ [1 : K] , t ∈ [1 : n] (2.1)

where X(t) ∈ C(M×1) is the transmitted signal at time instant t satisfying the (per

codeword) power constraint
∑n

t=1 ‖x(t)‖2 ≤ nP . Zk(t) and Hk(t) are the additive white

Gaussian noise with unit variance and channel vector of user k, respectively, and are also

assumed i.i.d. over the time instants and the users. We assume global perfect Channel

State Information at Receivers (CSIR).

The rate tuple (R1, R2, . . . , RK), in which Ri = log(|Wi|)
n , is achievable if there exists a

coding scheme such that the probability of error in decoding Wi at user i(i ∈ [1 : K]) can

be made arbitrarily small with sufficiently large coding block length. The DoF region

is defined as {(d1, . . . , dK)|∃(R1, R2, . . . , RK) ∈ C(P ) such that di = limP→∞
Ri

logP , ∀i}

where C(P ) is the capacity region (i.e., the closure of the set of achievable rate tuples).

The probabilistic model used in this chapter for CSIT availability allows the transmitter

to have a Perfect (P) instantaneous knowledge of the CSI of a particular user at some

time instants, whereas at some other time instants it receives the CSI with Delay (D),

and finally, for the remaining time instants the CSI of the user is Not known (N) at the

transmitter. The CSIT model can be fixed (i.e., as in the hybrid model), alternating, or

both (i.e., fixed for a subset of the users and alternating for the remaining subset.) When

there is delayed CSIT, we assume that the feedback delay is much larger than the coher-

ence time of the channel making the feedback information completely independent of the

current channel state. In this configuration, the joint CSIT of all the K users has at most

3K states. For example, in a 3 user MISO BC, they will be PPP, PPD,PPN,PDP, . . .

with corresponding probabilities λPPP , λPPD, λPPN , λPDP , . . . and, as an example, the

marginal probability of perfect CSIT for user 1 is λ1
P =

∑
Q,Q′∈{P,D,N} λPQQ′ .
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Figure 2.2: A symmetric CSIT pattern for the 3-user MISO BC with the marginals
λP = 1

3 , λD = 2
3 .

By CSIT pattern we refer to the knowledge of CSIT represented in a space-time matrix

where the rows and columns represent users and time slots, respectively. The channel

remains fixed within each time slot, while it changes independently from one slot to

another. For simplicity, we assume that the delayed CSI arrives at the transmitter after

one time slot. Figure 2.1 shows an example of a CSIT pattern, in which the transmitter

knows the channels of users 2 and 3 perfectly at time slot 1 and has no information

about the channel of user 1. The CSI of user 1 will be known in the next time slot due

to feedback delay and is completely independent of the channel in time slot 2.

Finally, a symmetric CSIT pattern means that the marginal probabilities of perfect,

delayed and unknown CSIT are the same across the users, i.e. λiQ = λQ, ∀i ∈ [1 :

K], Q ∈ {P,D,N}. As an example, Figure 2.2 shows a symmetric CSIT pattern for the

3-user MISO BC in which λP = 1
3 , λD = 2

3 .

2.4 An outer bound given the marginals

Theorem 2.1. Let πj(.) be an arbitrary permutation of size j over the indices (1, 2, . . . ,K),

and απj (.) be an ordering of πj satisfying4

(λ
α
πj

(i)

P + λ
α
πj

(i)

D ) ≤ (λ
α
πj

(i+1)

P + λ
α
πj

(i+1)

D ) , i ∈ [1 : j − 1]. (2.2)

Given the marginal probabilities of CSIT for user i, an outer bound for the DoF region of

the K-user MISO BC with M transmit antennas at the transmitter (M ≥ K) is defined

4The reason for arranging the users according to the sum of the perfect and delayed CSIT probabilities
becomes clear in (2.28).
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by the following sets of inequalities

j∑
i=1

dπj(i)

i
≤ 1 +

j∑
i=2

∑i−1
r=1 λ

πj(r)
P

i(i− 1)
(2.3)

j∑
i=1

dπj(i) ≤ 1 +

j−1∑
i=1

(λ
α
πj

(i)

P + λ
α
πj

(i)

D ) , ∀πj , j ∈ [1 : K]. (2.4)

For the symmetric scenario, the sets of inequalities are simplified as

j∑
i=1

dπj(i)

i
≤ 1 + λP

j∑
i=2

1

i
(2.5)

j∑
i=1

dπj(i) ≤ 1 + (j − 1)(λP + λD) , ∀πj , j ∈ [1 : K]. (2.6)

For K = 2, the outer bound boils down to the optimal DoF region in [9].

2.5 Proof of Theorem 2.1

For simplicity, we assume j = K, since it is obvious that each subset of users with

cardinality j (j < K) can be regarded as a j-user BC. Also, we assume the identity

permutation (i.e., πK(i) = i) while the results could be easily applied to any other

arbitrary permutation.

2.5.1 Proof of (2.3)

First, we improve the channel by giving the message and observation of user i to users

[i+ 1 : K] (i ∈ [1 : K − 1]). Hence, from Fano’s inequality,

nRi ≤ I(Wi;Y
n

[1:i]|W[1:i−1],Ω
n) + nεn (2.7)

where Ωn denotes the global CSIR up to time instant n, W0 = ∅ and εn goes to zero as n

goes to infinity. By this improvement, channel input and outputs (i.e., the enhanced ob-

servations of users) form a Markov chain which results in a physically degraded broadcast

channel [15]. Therefore, according to [16], since feedback does not increase the capacity

of physically degraded broadcast channels, we can ignore the delayed CSIT (D) and
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replace them with No CSIT (N). Therefore, it is equivalent to having the channel of

user i perfectly known with probability λiP and not known otherwise. From now on, we

ignore the term nεn for simplicity (since later it will be divided by n and n → ∞) and

write

K∑
i=1

nRi
i
≤

K∑
i=1

I(Wi;Y
n

[1:i]|W[1:i−1],Ω
n)

i
(2.8)

≤ h(Y n
1 |Ωn) +

K∑
i=2

[
h(Y n

[1:i]|W[1:i−1],Ω
n)

i
−
h(Y n

[1:i−1]|W[1:i−1],Ω
n)

i− 1

]
+ no(logP )

(2.9)

where Y0 = ∅ and we have used the fact that
h(Y n

[1:K]
|W[1:K],Ω

n)

nK ∼ o(logP ), since with

the knowledge of W[1:K] and Ωn, the observations Y n
[1:K] can be reconstructed within the

noise distortion. Before going further, the following lemma is needed.

Lemma 1. Let ΓN = {Y1, Y2, . . . , YN} be a set of N(≥ 2) arbitrary random variables

and Ψj
i (ΓN ) be a sliding window of size j over ΓN (1 ≤ i, j ≤ N) starting from Yi i.e.,

Ψj
i (ΓN ) = Y(i−1)N+1, Y(i)N+1, . . . , Y(i+j−2)N+1

where (.)N defines the modulo N operation. Then,

(N −m)h(Y[1:N ]|A) ≤
N∑
i=1

h(ΨN−m
i (ΓN )|A) , 1 ≤ m ≤ N − 1 (2.10)

where A is an arbitrary condition.

Before proving the lemma, the following example clarifies the usage of this lemma.

Consider N = 4 and m = 1. We have

Γ4 = {Y1, Y2, Y3, Y4}

Ψ3
1(Γ4) = Y1, Y2, Y3

Ψ3
2(Γ4) = Y2, Y3, Y4

Ψ3
3(Γ4) = Y3, Y4, Y1

Ψ3
4(Γ4) = Y4, Y1, Y2.
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Therefore, (2.10) is equivalent to

3h(Y1, Y2, Y3, Y4) ≤ h(Y1, Y2, Y3) + h(Y2, Y3, Y4)

+ h(Y3, Y4, Y1) + h(Y4, Y1, Y2).

Note that the number of entropies on the left hand side is the same as the number of

arguments of the entopies on the right hand side and vice versa.

Proof. We prove the lemma by showing that for every fixed m(≥ 1), (2.10) holds for

all N(≥ m + 1) using induction. It is obvious that for every m(≥ 1), (2.10) holds for

N = m + 1. In other words, h(Y[1:N ]|A) ≤
∑N

i=1 h(Yi|A). Now, considering that (2.10)

is valid for N(≥ m+ 1), we show that it also holds for N + 1. Replacing N with N + 1,

we have

(N + 1−m)h(Y[1:N+1]|A)

= h(Y[1:N+1]|A) +(N −m)h(Y[1:N−1],

Z︷ ︸︸ ︷
YN , YN+1 |A)

≤ h(Y[1:N+1]|A) +
N∑
i=1

h(ΨN−m
i (ΦN )|A) (2.11)

= h(Y[1:N+1]|A) +
m∑
i=1

h(ΨN−m
i (ΦN )|A) +

N∑
i=m+1

h(ΨN+1−m
i (ΓN+1)|A) (2.12)

= h(Y[N−m+1:N ]|YN+1, Y[1:N−m], A) +
m∑
i=1

h(ΨN−m
i (ΦN )|A) + h(YN+1, Y[1:N−m]|A)

+
N∑

i=m+1

h(ΨN+1−m
i (ΓN+1)|A) (2.13)

= h(Y[N−m+1:N ]|YN+1, Y[1:N−m], A) +
m∑
i=1

h(ΨN−m
i (ΦN )|A) +

N+1∑
i=m+1

h(ΨN+1−m
i (ΓN+1)|A)

=
m∑
i=1

h(YN−m+i|YN+1, Y[1:N−m+i−1], A) +
m∑
i=1

h(Y[i:N−m+i−1]|A)

+
N+1∑
i=m+1

h(ΨN+1−m
i (ΓN+1)|A) (2.14)
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≤
m∑
i=1

h(YN−m+i|Y[i:N−m+i−1], A) +
m∑
i=1

h(Y[i:N−m+i−1]|A) +
N+1∑
i=m+1

h(ΨN+1−m
i (ΓN+1)|A)

(2.15)

=
m∑
i=1

h(ΨN+1−m
i (ΓN+1)|A) +

N+1∑
i=m+1

h(ΨN+1−m
i (ΓN+1)|A)

=
N+1∑
i=1

h(ΨN+1−m
i (ΓN+1)|A) (2.16)

where in (2.11), ΦN = {Y[1:N−1], Z} and we have used the validity of (2.10) for N . In

(2.12), we have used the fact that ΨN+1−m
i (ΓN+1) = ΨN−m

i (ΦN ) for i ∈ [m+ 1 : N ] . In

(2.13), the chain rule of entropies is used and in (2.14), the sliding window is written in

terms of its elements. Finally, in (2.15), the fact that conditioning reduces the differential

entropy is used. Therefore, since m(≥ 1) was chosen arbitrarily and (2.10) is valid for

N = m+ 1 and from its validity for N(≥ m+ 1) we could show it also holds for N + 1,

we conclude that (2.10) holds for all values of m and N satisfying 1 ≤ m ≤ N − 1.

Each term in the summation of (2.9) can be rewritten as

(i− 1)h(Y n
[1:i]|W[1:i−1],Ω

n)− ih(Y n
[1:i−1]|W[1:i−1],Ω

n)

i(i− 1)

=
(i− 1)h(Γi|Ti,n)− ih(Y n

[1:i−1]|Ti,n)

i(i− 1)

≤

∑i
r=1

[
h(Ψi−1

r (Γi)|Ti,n)− h(Y n
[1:i−1]|Ti,n)

]
i(i− 1)

(2.17)

=

∑i−1
r=1 [h(Y n

i |Er,i, Ti,n)− h(Y n
r |Er,i, Ti,n)]

i(i− 1)
(2.18)

where Γi = {Y n
[1:i]}, Ti,n = {W[1:i−1],Ω

n} and Er,i = {Y n
[1:i−1]}−{Y

n
r }. (2.17) is from the

application of Lemma 1 (m = 1) and (2.18) is from the chain rule of entropies. Before

going further, the following lemma is needed. This lemma, which is based on [17], is the

key part in the proof.

Lemma 2. In the K-user MISO BC defined in (2.1), for the users m, q ∈ [1 : K]

(m 6= q), we have

lim
n,P→∞

h(Y n
m|A)− h(Y n

q |A)

n logP
≤

 1 CSIT of q is P

0 CSIT of q is N
(2.19)
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where A is a condition such as the condition of entropies in (2.18) or later in (2.25).

Interestingly, (2.19) is only a function of the CSIT of the second user.

Proof. Based on the four possible states for the joint CSIT of m and q, we have

1. CSIT of m is N or P and CSIT of q is P

h(Y n
m|A)− h(Y n

q |A) ≤ h(Y n
m|A)︸ ︷︷ ︸

≤n log(P )

−h(Y n
q |A,W[1:K])︸ ︷︷ ︸
no(logP )

(2.20)

A Gaussian input with the conditional covariance matrix of ΣX|A = Pu⊥q u⊥q
H

achieves the upper bound, where u⊥q is a unit vector in the direction orthogonal

to Hq (since Hq is known).

2. CSIT of m is N and CSIT of q is N

In this case both Y n
m and Y n

q are statistically equivalent (i.e., having the same

probability density functions, and subsequently, the same entropies.) Therefore,

h(Y n
m|A)− h(Y n

q |A) = 0 (2.21)

3. CSIT of m is P and CSIT of q is N

This is the second result of Theorem 1 in [17],i.e., ”Settling the PN conjecture”.5.

From (2.9) and (2.18), we have

K∑
i=1

nRi
i
≤

K∑
i=2

i−1∑
r=1

h(Y n
i |Ar,i)− h(Y n

r |Ar,i)
i(i− 1)

+ n logP + no(logP )

≤ n logP +
K∑
i=2

i−1∑
r=1

nλrP
i(i− 1)

logP + no(logP ) (2.22)

5The differential entropy terms in the left hand side of (2.19) can be written in terms of the expectation
of the difference of entropies conditioned on the realizations of A. Since the conditional probability
density functions exist and have a bounded peak, the same steps of [17] as discretization, considering
the cannonical form and bounding the cardinality of aligned image set can be applied.
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where Ar,i is the condition of the entropies in (2.18) and (2.22) is from the application

of lemma 2 and the fact that n is sufficiently large. Therefore,

K∑
i=1

di
i
≤ 1 +

K∑
i=2

∑i−1
r=1 λ

r
P

i(i− 1)
. (2.23)

It is obvious that the same approach can be applied to any other permutations on

(1, 2, . . . ,K) which results in (2.3).

2.5.2 Proof of (2.4)

We enhance the channel in two ways:

1. Like the approach in [9], whenever there is delayed CSIT (D), we assume that it is

perfect instantaneous CSIT (P ), but we keep the probability of delayed CSIT. In

other words, the CSIT of user i is perfect with probability λiP + λiD and unknown

otherwise.

2. We give the message of user i to users [i+ 1 : K].

Therefore,

nRi ≤ I(Wi;Y
n
i |W[1:i−1],Ω

n) + nεn , ∀i ∈ [1 : K]. (2.24)

By summing (2.24) over users and writing the mutual information in terms of differential

entropies,

K∑
i=1

nRi ≤
≤n logP︷ ︸︸ ︷
h(Y n

1 |Ωn) +
K∑
i=2

[
h(Y n

i |W[1:i−1],Ω
n)− h(Y n

i−1|W[1:i−1],Ω
n)
]

+ no(logP ).

(2.25)

By applying the results of Lemma 2 to (2.25), we have

K∑
i=1

di ≤ 1 +
K∑
i=2

(λi−1
P + λi−1

D ) = 1 +
K−1∑
i=1

(λiP + λiD). (2.26)
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Figure 2.3: A symmetric CSIT pattern for the 3-user MISO BC.

Let πK(.) be an arbitrary permutation of size K on (1, . . . ,K). Applying the same

reasoning, we have

K∑
i=1

di ≤ 1 +

K−1∑
i=1

(λ
πK(i)
P + λ

πK(i)
D ) , ∀πK(.). (2.27)

(2.27) results in K inequalities all having the same left hand side. Therefore,

K∑
i=1

di ≤ 1 + min
πK(.)

K−1∑
i=1

(λ
πK(i)
P + λ

πK(i)
D ) (2.28)

This is due to the possible orders of channel enhancements and it is obvious that απK (.)

will minimize (2.28) if it satisfies (2.2) (for j = K.)

2.6 An outer bound capturing the joint CSIT probabilities

In the previous section, an outer bound was provided in terms of the marginal proba-

bilities. In this section, we tighten the outer bound by introducing a set of inequalities

that captures the joint CSIT probabilities. We start with simple motivating examples.

Consider the pattern shown in Figure 2.3 with λPNN = λNPN = λNNP = 1
3 . By Fano’s

inequality, we write,

nR1 ≤ I(W1;Y n
1 |Ωn) (2.29)

nR1 ≤ I(W1;Y n
1 |Ωn,W2). (2.30)

Adding (2.29) and (2.30) results in

2nR1 ≤ I(W1;Y n
1 |Ωn) + I(W1;Y n

1 |Ωn,W2). (2.31)
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By doing the same for R2, we have

2nR2 ≤ I(W2;Y n
2 |Ωn) + I(W2;Y n

2 |Ωn,W1). (2.32)

Finally, the rate of user 3 is written as

nR3 ≤ I(W3;Y n
3 |Ωn,W1,W2). (2.33)

Therefore,

2nR1 + 2nR2 + nR3 ≤ h(Y n
2 |Ωn,W1)− h(Y n

1 |Ωn,W1)︸ ︷︷ ︸
≤n

3
logP

+h(Y n
3 |Ωn,W1,W2)

+h(Y n
1 |Ωn,W2)− h(Y n

2 |Ωn,W2)︸ ︷︷ ︸
≤n

3
logP

+h(Y n
1 |Ωn)︸ ︷︷ ︸

≤n logP

+h(Y n
2 |Ωn)︸ ︷︷ ︸

≤n logP

−h(Y n
1 |Ωn,W1,W2)− h(Y n

2 |Ωn,W1,W2)︸ ︷︷ ︸
≤−h(Y n1 ,Y

n
2 |Ωn,W1,W2)

(2.34)

≤ 8n

3
logP + h(Y n

3 |Ωn,W1,W2)− h(Y n
1 , Y

n
2 |Ωn,W1,W2) (2.35)

= h(Y n
3 |Ωn,W1,W2)− h(Y n

2,PNN , Y
n

1,NPN , Y
n

1,NNP |Ωn,W1,W2)︸ ︷︷ ︸
o(logP )

+
8n

3
logP

−h(Y n
1,PNN , Y

n
2,NPN , Y

n
2,NNP |Ωn,W1,W2, Y

n
2,PNN , Y

n
1,NPN , Y

n
1,NNP )︸ ︷︷ ︸

≤−h(Y n1,PNN ,Y
n
2,NPN ,Y

n
2,NNP |Ωn,W1,W2,Y n2,PNN ,Y

n
1,NPN ,Y

n
1,NNP ,W3)∼o(logP )

(2.36)

≤ 8n

3
logP (2.37)

where in (2.34), lemma 2 is applied to the differences resulting in the values written

under the braces. We have split the observations of users 1 and 2 in terms of the joint

CSIT, i.e., Y n
1 = (Y n

1,PNN , Y
n

1,NPN , Y
n

1,NNP ) and Y n
2 = (Y n

2,PNN , Y
n

2,NPN , Y
n

2,NNP ) such

that, for example, Y n
2,PNN denotes the received signal of user 2 when the joint CSIT is

PNN. (2.36) is due to the facts that there is at least one unknown CSIT (N) in the joint

states of user 1 and user 2 (i.e., PN, NP and NN. see rows 1 and 2 of the CSIT pattern

shown in figure 2.3). Therefore, we have the following inequalities for the pattern shown
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in figure 2.3

2d1 + 2d2 + d3 ≤
8

3

2d1 + d2 + 2d3 ≤
8

3

d1 + 2d2 + 2d3 ≤
8

3
. (2.38)

From (2.38), the sum DoF of the pattern in figure 2.3 has the upper bound of 8
5 , while

it can be easily verified that for the pattern with PPP in the first slot and NNN in the

next two slots, which has the same marginals as in figure 2.3, the sum DoF is 5
3(≥ 8

5).

This simple example confirms that for the K-user MISO BC (K ≥ 3), the marginal

probabilities are not sufficient in characterizing the DoF region6. Motivated by this

simple example, we can have the following set of inequalities for the 3-user MISO BC

with P and N

2d1 + 2d2 + d3 ≤ 2 + 2λP + λPP−

2d1 + d2 + 2d3 ≤ 2 + 2λP + λP−P

d1 + 2d2 + 2d3 ≤ 2 + 2λP + λ−PP (2.39)

where a dashed line in the above means that the CSIT of the corresponding user is

not important (for example, λPP− = λPPP + λPPN which is a summation over all the

possible states for the CSIT of user 3). By looking at the difference of entropies in

(2.35), it is observed that this difference is of order o(logP ) when there is at least one

N in the joint CSIT of users 1 and 2 (i.e., PNN, PNP, NPN, NPP, NNP and NNN) and,

therefore, is upperbounded by n(λPPP +λPPN ) logP . This results in the first inequality

of (2.39) and the same reasoning applies to the remaining two inequalities. (2.39) is a

set of inequalities that captures the joint CSIT probabilities and is not only a function

of the marginals.

Now consider the pattern shown in figure 2.4 for the 4-user MISO BC. From (2.31),

6It is important to emphasize on the difference between the following two statements
a) Two CSIT patterns with different marginals can have the same DoF regions.
b) Two CSIT patterns with the same marginals can have different DoF regions.
The first statement is already known in literature. For example, by comparing the original 2-user

MAT (i.e., λD = 1) and the scheme DN,ND,NN in [9], it is concluded that both of them have the sum
DoF of 4/3, while having different marginal prbabilities (for the latter, λD = 1

3
). However, the set of

inequalities proposed in this section addresses the second statement which is a new problem and cannot
result from the first statement.



Chapter 2. DoF Analysis of the MIMO Broadcast Channel with Alternating/Hybrid
CSIT 17

Figure 2.4: A symmetric CSIT pattern for the 4-user MISO BC.

(2.32) and (2.33), we can write

2n(R1 +R2 +R3) ≤ h(Y n
2 |Ωn,W1)− h(Y n

1 |Ωn,W1)︸ ︷︷ ︸
≤n

4
logP

+h(Y n
1 |Ωn,W2)− h(Y n

2 |Ωn,W2)︸ ︷︷ ︸
≤n

4
logP

+h(Y n
1 |Ωn)︸ ︷︷ ︸

≤n logP

+h(Y n
2 |Ωn)︸ ︷︷ ︸

≤n logP

+h(Y n
3 |Ωn,W1,W2)− h(Y n

1 |Ωn,W1,W2)︸ ︷︷ ︸
≤n

4
logP

+h(Y n
3 |Ωn,W1,W2)− h(Y n

2 |Ωn,W1,W2)︸ ︷︷ ︸
≤n

4
logP

− 2h(Y n
3 |Ωn,W1,W2,W3)

≤ 3n logP − 2h(Y n
3 |Ωn,W1,W2,W3) (2.40)

Alternatively, we can change the role of users 1 and 3 and write

2nR1 ≤ I(W1;Y n
1 |Ωn,W2,W3) + I(W1;Y n

1 |Ωn,W2,W3)

2nR2 ≤ I(W2;Y n
2 |Ωn) + I(W2;Y n

2 |Ωn,W3)

2nR3 ≤ I(W3;Y n
3 |Ωn) + I(W3;Y n

3 |Ωn,W2).

Following the same reasoning in (2.40), we have

2n(R1 +R2 +R3) ≤ 3n logP − 2h(Y n
1 |Ωn,W1,W2,W3). (2.41)

Adding (2.40) and (2.41), we have

4n(R1 +R2 +R3) ≤ 6n logP − 2 (h(Y n
1 |Ωn,W1,W2,W3) + h(Y n

3 |Ωn,W1,W2,W3))

≤ 6n logP − 2h(Y n
1 , Y

n
3 |Ωn,W1,W2,W3). (2.42)
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For the rate of user 4, we can write

2nR4 ≤ 2I(W4;Y n
4 |Ωn,W1,W2,W3)

= 2h(Y n
4 |Ωn,W1,W2,W3)−2h(Y n

4 |Ωn,W1,W2,W3,W4)︸ ︷︷ ︸
o(logP )

. (2.43)

Adding (2.42) and (2.43), we get

4n(R1 +R2 +R3) + 2nR4

≤ 6n logP + 2 (h(Y n
4 |Ωn,W1,W2,W3)− h(Y n

1 , Y
n

3 |Ωn,W1,W2,W3)) (2.44)

≤ 6n logP+

2
(
h(Y n

4 |Ωn,W1,W2,W3)− h(Y n
3,PNNN , Y

n
1,NPNN , Y

n
1,NNPN , Y

n
1,NNNP |Ωn,W1,W2,W3)

)︸ ︷︷ ︸
o(logP )

− 2h(Tn|Y n
3,PNNN , Y

n
1,NPNN , Y

n
1,NNPN , Y

n
1,NNNP ,Ω

n,W1,W2,W3) (2.45)

≤ 6n logP −2h(Tn|Y n
3,PNNN , Y

n
1,NPNN , Y

n
1,NNPN , Y

n
1,NNNP ,Ω

n,W1,W2,W3,W4)︸ ︷︷ ︸
o(logP )

.

(2.46)

where Tn = {Y n
1 , Y

n
3 } − {Y n

3,PNNN , Y
n

1,NPNN , Y
n

1,NNPN , Y
n

1,NNNP }. Therefore, we have

2d1 + 2d2 + 2d3 + d4 ≤ 3 (2.47)

In the left hand side of (2.47), user 4 has the coefficient of 1 and the remaining 3 users

have the coefficient of 2. Also, instead of changing the roles of user 1 and 3, roles of user

2 and 3 or roles of user 1 and 2 could have been changed. Although this
(

3
2

)
changes

would not result in a new inequality due to the structure of the pattern shown in figure

2.4, these changes of the roles of the remaining 3 users (with coefficient 2) are necessary

in general. Therefore, motivated by this simple example, we can have a set of inequalities

for the 4-user MISO BC with P and N.

2d1 + 2d2 + 2d3 + d4 ≤ 2 + 4λP + min{λPP−−, λP−P−, λ−PP−}

d1 + 2d2 + 2d3 + 2d4 ≤ 2 + 4λP + min{λ−PP−, λ−P−P , λ−−PP }

2d1 + d2 + 2d3 + 2d4 ≤ 2 + 4λP + min{λP−P−, λP−−P , λ−−PP }

2d1 + 2d2 + d3 + 2d4 ≤ 2 + 4λP + min{λP−−P , λPP−−, λ−P−P } (2.48)
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where each inequality in (2.48) is obtained from
(

3
2

)
inequalities each of which with

the same left hand side. The general K-user MISO BC can be addressed by using the

following definition

λ(a, b) = The probability that the CSIT of users a and b is perfect.

a, b ∈ [1 : K] , a 6= b. (2.49)

Theorem 2.2. Let πj(.) be an arbitrary permutation of size j over [1 : K]. For the

K-user symmetric MISO BC with no delayed CSIT, we have7

2

j−1∑
i=1

dπj(i) + dπj(j) ≤ 2 + 2(j − 2)λP + min
a,b∈[1:j−1]:a<b

{λ(πj(a), πj(b))} ∀πj , j ∈ [3 : K].

(2.50)

Proof. The proof is a straightforward generalization of the previous examples.

2.7 On the achievability

In this section, we consider the bounds in (2.6) for the symmetric scenario. 8 For K ≥ 3,

we show that given the marginal probabilities of CSIT, there exists at least one CSIT

pattern that achieves the outer bound in the following two scenarios.

2.7.1 λD = 0

In this case, 2K−1 inequalities in (2.5) are active and the remaining inequalities become

inactive. The reason can be easily verified from the inequalities, however, a simpler

intuitive way is to consider that when there is no delayed CSIT, those inequalities derived

from the degraded broadcast channel are inactive. In this case, the region is defined by

2K − 1 hyperplanes in RK+ and has the following K corner points

(1, λP , . . . , λP ), (λP , 1, λP , . . . , λP ), . . . , (λP , . . . , λP , 1) (2.51)

7The assumptions of symmetric scenario and no delayed CSIT are only used for the readability of
formulations. It is important to note that the approach in this section can be applied to the general asym-
metric scenario including the delayed CSIT (in this case, the delay is enhanced to perfect instantaneous
as in subsection 2.5.2).

8The main goal of this section is to show that these bounds can become tight and are not always
loose.
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Figure 2.5: Region in case A for 3 user BC

The corner points have the unique characteristic that the whole region can be constructed

by time sharing between them. Therefore, the achievability of these points is equivalent

to the achievability of the whole region. Figure 2.5 shows the region for the 3 user

broadcast channel. The corner points are simply achieved by a scheme that has N time

slots and consists of two parts: in the first λPN time slots, zero forcing beamforming

(ZFBF) is carried out where each user receives one interference-free symbol. In the

remaining λNN time slots, only one particular user (depending on the corner point of

interest) is scheduled.

2.7.2 λN ≤ λD∑K
j=2

1
j

Before going further, we need the following simple lemma.

Lemma 3. The minimum probability of delayed CSIT for sending order-j symbols in

the K-user MAT is

λminD (K, j) = 1− K − j + 1

K
∑K

i=j
1
i

. (2.52)

Proof. From [2], the MAT algorithm is based on a concatenation of K phases. Phase j

takes (K − j + 1)
(
K
j

)
order-j messages as its input, takes

(
K
j

)
time slots and produces

j
(
K
j+1

)
order-j + 1 messages as its output. In each time slot of phase j, the transmitter
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sends a random linear combination of the (K − j+ 1) symbols to a subset S of receivers

, |S| = j. Sending the overheard interferences from the remaining (K − j) receivers

to receivers in subset S enables them to successfully decode their (K − j + 1) symbols

by constructing a set of (K − j + 1) linearly independent equations. Therefore, the

transmitter needs to know the channel of only (K − j) receivers. In other words, at

each time slot of phase j, the feedback of (K− j) CSI is enough. In the MAT algorithm

the number of output symbols that phase j produces should match the number of input

symbols of phase j + 1. The ratio between the input of phase j + 1 and output of phase

j is:
(K − j)

(
K
j+1

)
j
(
K
j+1

) =
(K − j)

j
.

This means that (K − j) repetition of phase j will produce the inputs needed by j

repetition of phase j+1. In general, in order to have an integer number for repetitions, we

multiply phase 1 by K! (i.e., repeat it K! times), phase 2 by K!
(K−1) , and so on. Therefore,

phase j will be repeated ((j − 1)!(K − j)!)K times which takes ((j − 1)!(K − j)!)K
(
K
j

)
time slots. Since (K − j) feedbacks from each time slot is sufficient, the number of

feedbacks will be ((j − 1)!(K − j)!)K
(
K
j

)
(K − j). For a successive decoding or order-j

symbols, all the higher order symbols must be decoded successfully. Therefore, instead

of having delayed CSIT at all time instants from all users, the minimum probability

of delayed CSIT is the number of feedbacks from phase j to K divided by the whole

number of time slots multiplied by the number of users,

λminD (K, j) =

∑K
i=j(i− 1)!(K − i)!K

(
K
i

)
(K − i)∑K

i=j(i− 1)!(K − i)!K
(
K
j+1

)
K

= 1− K − j + 1

K
∑K

i=j
1
i

.

In this case (i.e., λN ≤ λD∑K
j=2

1
j

), the 2K −K − 1 inequalities having
∑

i di (summation

with equal weights) in the left-hand side become inactive and the remaining
∑K

j=1 j!
(
K
j

)
inequalities are active which construct

∑K
j=1 j!

(
K
j

)
hyperplanes in RK+ . The region

has 2K − 1 corner points. In other words, if the coordinates of a point are shown

as (p1, p2, . . . , pK), there are
(
K
j

)
(j ∈ [1 : K]) points where j of its K coordinates are

1+λP
∑j
i=2

1
i∑j

i=1
1
i

and the remaining K − j coordinates are λP . The region for the 3 user
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Figure 2.6: Region in case B for 3 user BC

Figure 2.7: Achievable scheme in case B for 3 user BC

broadcast channel and the achievable scheme are shown in figure 2.6 and figure 2.7,

respectively. The achievable scheme is based on a concatenation of ZFBF and MAT as

follows. For the
(
K
j

)
corner points, we write

λP =
M1

N1
, λD =

M2

N2
, λminD (j, 1) =

m

n
(2.53)

where m,n,Mi and Ni (i = 1, 2) are integers. Making a common denominator between

λP and λD we have

λP =
nM1N2

nN1N2
, λD =

nN1M2

nN1N2
. (2.54)

We construct nN1N2 time slots where the CSIT of each user can be Perfect (P) or

Delayed (D) in nM1N2 or nN1M2 time slots, respectively. In the first nM1N2 time

slots, ZFBF is carried out. In the remaining n(N1N2 −M1N2) time slots, j-user MAT
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Figure 2.8: An example.

algorithm is done. At each time slot of the ZFBF part, 1 interference-free symbol is

received by each user and in the MAT part, n(N1N2−M1N2)

1+ 1
2

+···+ 1
j

symbols are sent to each of

the users in subset S (with |S| = j) where S depends on the corner point of interest. In

order to do the MAT algorithm in the second part, the minimum probability of delayed

CSIT should be met

nN1M2 ≥ λminD (j)n(N1N2 −M1N2) (2.55)

Dividing both sides by nN1N2,

λD ≥ λminD (j, 1)(1− λP ) = λminD (j, 1)(λD + λN ) (2.56)

which results in

λN ≤
λD∑j
i=2

1
i

. (2.57)

Since it should be valid for all j, we have

λN ≤
λD∑K
i=2

1
i

. (2.58)

which is the condition assumed in this case.

Finally, through an example, we show that the bounds in Theorem 2.2 can be tight.

Consider the pattern shown in figure 2.8. According to sections 2.4 and 2.6, the DoF

region has the following outer bound

0 ≤ d1, d2,d3 ≤ 1 , d1 + d2 ≤
3

2
(2.59)

2d1 + d2 + 2d3 ≤ 3 (2.60)

d1 + 2d2 + 2d3 ≤ 3. (2.61)

The achievable point (d1, d2, d3) = (1
2 ,

1
2 ,

3
4) makes the inequalities in (2.60) and (2.61)

tight therefore, it is on the boundary of DoF region. This point is achievable as shown

in figure 2.9 where the receivers are called A,B and C. Symbols are shown in red where
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Figure 2.9: The achievable scheme for the boundary point (1
2 ,

1
2 ,

3
4 ).

the transmitter has perfect CSIT and those received signals that are not important in

the achievability scheme are shown as ”...”.

2.8 Two user MIMO

In previous sections, the K-user MISO BC was considered. The general MIMO BC is

more challenging due to the mismatch between the number of receive antennas9. In

this section, we consider a two user MIMO BC where each user is equipped with Nk

(k ∈ [1 : 2]) antennas and a base station with M(≥ N1 + N2) antennas wishes to send

two independent messages W1 and W2 to their corresponding receivers. The received

signal of user k is given by

Yk(t) = HH
k (t)X(t) + Wk(t) , k ∈ [1 : 2] , t ∈ [1 : n] (2.62)

where the channel matrices are assumed to be full rank almost surely. We assume that

the CSI of a particular user is either instantaneously Perfect (P) or Not known (N)

resulting in the four possible states PP, PN,NP and NN with corresponding probabil-

ities λPP , λPN , λNP and λNN . Let Yi,j denote the received signal at the jth antenna of

user i (i ∈ [1 : 2], j ∈ [1 : Ni]). Without loss of generality, we assume N1 ≥ N2. An outer

bound on the DoF region is provided in Theorem 3 and its achievability is discussed

afterwards.

Theorem 2.3. An outer bound for the DoF region of the channel in (2.62) is given by

d1

N1
+
d2

N2
≤ 1 + λPP + λNP = 1 + λ2

P (2.63)

d1 + d2 ≤ N1 +N2(λPP + λPN ) = N1 +N2λ
1
P (2.64)

9It is important to note that with different number of antennas, as stated in [18], the dimensions of
useful signals and interference signals are not the same in contrast to the symmetric case. Furthermore,
the users have different capabilities of decoding which must be taken into account in the achievability
schemes.
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Proof. By enhancing user 1 with the message of user 2, Fano’s inequality (ignoring nεn)

results in

nR1 ≤ I(W1; Yn
1 |Ωn,W2) = h(Yn

1 |Ωn,W2)− h(Yn
1 |Ωn,W1,W2)︸ ︷︷ ︸
no(logP )

(2.65)

nR2 ≤ I(W2; Yn
2 |Ωn) = h(Yn

2 |Ωn)︸ ︷︷ ︸
≤nN2 logP

−h(Yn
2 |Ωn,W2). (2.66)

Ignoring o(logP ), we have

n(N2R1 +N1R2) ≤ nN1N2 logP +N2h(Yn
1 |Ωn,W2)−N1h(Yn

2 |Ωn,W2) (2.67)

≤ nN1N2 logP +

N1∑
i=1

h(ΨN2
i (ΓN1)|Ωn,W2)−N1h(Yn

2 |Ωn,W2)

(2.68)

= nN1N2 logP +

N1∑
i=1

[
h(ΨN2

i (ΓN1)|Ωn,W2)− h(Yn
2 |Ωn,W2)

]
(2.69)

≤ nN1N2 logP + nN1N2(λPP + λNP ) logP (2.70)

where in (2.68), Lemma 1 has been applied with ΓN1 denoting the N1 elements of Yn
1

(i.e., Yn
1,[1:N1]) and m = N1−N2. Applying the same procedure of section 2.4 and lemma

2 to each term of the summation in (2.69) results in (2.70). By dividing both sides of

(2.70) by n logP and taking the limit n, P →∞, (2.63) is obtained.

For the inequality in (2.64), we have

nR1 ≤ I(W1; Yn
1 |Ωn)

= I(W1;Y n
1,[1:N2]|Ω

n) + I(W1;Y n
1,[N2+1:N1]|Ω

n, Y n
1,[1:N2])

= h(Y n
1,[1:N2]|Ω

n)− h(Y n
1,[1:N2]|Ω

n,W1) + h(Y n
1,[N2+1:N1]|Ω

n, Y n
1,[1:N2])

− h(Y n
1,[N2+1:N1]|Ω

n, Y n
1,[1:N2],W1)

≤ h(Y n
1,[1:N2])︸ ︷︷ ︸

≤nN2 logP

−h(Y n
1,[1:N2]|Ω

n,W1) + h(Y n
1,[N2+1:N1])︸ ︷︷ ︸

≤n(N1−N2) logP

−h(Y n
1,[N2+1:N1]|Ω

n, Y n
1,[1:N2],W1,W2)︸ ︷︷ ︸

no(logP )

(2.71)

≤ nN1 logP − h(Y n
1,[1:N2]|Ω

n,W1)− no(logP ) (2.72)
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where in (2.71), we used the fact that conditioning reduces the entropy. We enhance

user 2 with the message of user 1. Therefore,

nR2 ≤ I(W2; Yn
2 |Ωn,W1) = h(Yn

2 |Ωn,W1)− h(Yn
2 |Ωn,W1,W2)︸ ︷︷ ︸
no(logP )

. (2.73)

By adding (2.72) and (2.73), we get

nR1 + nR2 ≤ nN1 logP + h(Yn
2 |Ωn,W1)− h(Y n

1,[1:N2]|Ω
n,W1)︸ ︷︷ ︸

≤nN2(λPP+λPN ) logP

−2no(logP ) (2.74)

where the same procedure of section 2.4 has been applied to the difference in (2.74).

Therefore,

d1 + d2 ≤ N1 +N2(λPP + λPN ) = N1 +N2λ
1
P . (2.75)

In the sequel, we show that when λPN ≤ N2
N1
λNP , the outer bound, which is defined by

(2.63) and (2.64), is tight. Specifically, we show the achievability of the inner bound

defined by the following inequalities

d1

N1
+
d2

N2
≤ 1 + λ2

P (2.76)

d1 + d2 ≤ N1 +N2(λPP + min(λPN ,
N2

N1
λNP )). (2.77)

It is obvious that when λPN ≤ N2
N1
λNP , the inner bound coincides with the outer bound.

We consider a block of n (sufficiently large) time instants. In this block, there are nλPN

time instants in the PN state (i.e., where the CSI of user 1 is perfectly known and CSI of

user 2 is unknown), nλNP time instants in the NP state, nλPP time instants in the PP

state and nλNN time instants in the NN state. Without loss of generality, we assume

n is chosen in such a way that all these numbers are integers. From now on, whenever

it is said that N symbols are sent orthogonal to the matrix H, it is meant that these N

symbols are precoded by a matrix whose columns are chosen from the null space of HH .

The following achievable schemes are based on a simple interference cancellation scheme.

In other words, if at each of the m time instants in the PN state, N1 private symbols

are sent to user 1 and N2 private symbols are sent (orthogonal to the channel of user

1) to user 2, user 2 needs to get rid of nN1 interfering symbols from user 1 to decode
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Figure 2.10: The DoF region when N1λPN ≤ N2λNP .

its own symbols. If we pick mN1
N2

time instants in the NP state, at each of these time

instants, N2 interfering symbols can be sent to user 2 and since these interfering symbols

are already known at user 1, N1 new private symbols can be sent (orthogonal to the

channel of user 2) to user 1. This could be viewed as a generalization of the S
3
2
3 [9] to

the MIMO case where the mismatch between the number of receiving antennas across

the users is taken into account. The achievability is divided into two scenarios.

2.8.1 N1λPN ≤ N2λNP

In this case, the region is shown in figure 2.10.

2.8.1.1 N1 −N2 +N2λ
1
P ≤ N1λ

2
P

The region (figure 2.10 (a)) has the corner points A1(N1, N2λ
1
P ) and A2(N1 − N2 +

N2λ
1
P , N2).

The achievability of A1 is as follows.

Phase 1: At each of the nλPN time instants, N1 and N2 private symbols are sent

to user 1 and user 2, respectively. These N2 private symbols are sent orthogonal to

H1(t). Therefore, user 1 receives its intended nN1λPN symbols and user 2 receives

n(N1 +N2)λPN symbols. User 1 can decode its symbols immediately, while user 2 has

to get rid of nN1λPN interfering symbols.

Phase 2: Among the nλNP time instants in the NP state, N1
N2
nλPN (≤ nλNP ) time

instants are selected. At each of these selected time instants, N2 interfering symbols of

phase 1 are sent to user 2 and N1 new private symbols are sent to user 1. These N1

private symbols are sent orthogonal to H2(t). User 2 receives the nN1λPN interfering
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symbols which enables it to decode its private symbols in phase 1. The interfering

symbols of user 2 are already known at user 1, therefore, user 1 can successfully decode

its private symbols in this phase.

Phase 3: In the remaining time instants in the NP state (i.e., nλNP − N1
N2
nλPN ) and

all the nλNN time instants, N1 private symbols are sent to user 1.

Phase 4: In all the nλPP time instants, N1 and N2 private messages orthogonal to

H2(t) and H1(t), respectively are sent to user 1 and user 2.

Therefore, user 1 and user 2 can, respectively, decode nN1 and nN2(λPP +λPN ) private

symbols in the block of n time instants which achieves the first corner point (N1, N2λ
1
P ).

The achievability of A2 is as follows.

Phase 1: Among the nλNP time instants in the NP state, nN1
N2
λPN time instants

are selected. At each of these selected time instants, N2 and N1 private symbols are

sent to user 2 and user 1, respectively. These N1 private symbols are sent orthogonal

to H2(t). Therefore, user 2 can decode nN1λPN private symbols and user 1 receives

n(N1 +N2)N1
N2
λPN symbols of which nN1λPN symbols are interferers.

Phase 2: At each of the nλPN time instants, N1 interfering symbols in phase 1 are

sent to user 1 and N2 private symbols to user 2. These N2 private symbols are sent

orthogonal to H1(t). Therefore, user 1 is able to decode its private symbols in phase 1.

Phase 3: There are nλNP−N1
N2
nλPN remaining time instants in theNP state. nλNN

(N1−N2)
N2

of them are selected (note that nλNN
(N1−N2)

N2
≤ nλNP − N1

N2
nλPN due to the condition in

the figure 2.10(a)). At each of these selected time instants, N2 and N1 private symbols

are sent to user 2 and user 1, respectively. These N1 private symbols are sent orthogonal

to H2(t). Therefore, user 1 has to get rid of nλNN (N1 −N2) interfering symbols.

Phase 4: At each of the nλNN time instants, N2 private symbols are sent to user 2 and

N1 − N2 interfering symbol from phase 3 are sent to user 1. The interfering symbols

are already known at user 2, therefore user 2 successfully decodes its symbols. User 1,

having N1 antennas, is capable of decoding all the sent symbols in this phase.

Phase 5: In the remaining time instants in the NP states, N2 and N1 − N2 private

symbols are sent to user 2 and user 1, respectively. These N1 −N2 private symbols are

sent orthogonal to H2(t).
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Phase 6: The same as phase 4 for the achievability of A1

Therefore, user 1 and user 2 can, respectively, decode n(N1 − N2 + N2λ
1
P ) and nN2

private symbols in the block of n time instants which achieves the second corner point.

2.8.1.2 N1 −N2 +N2λ
1
P > N1λ

2
P

The region (figure 2.10 (b)) has the corner points B1(N1, N2λ
1
P ), B2(N1λ

2
P , N2) and

B3(N1 −
N1N2(λ2

P−λ
1
P )

N1−N2
,
N1N2λ2

P−N
2
2λ

1
P

N1−N2
).

The achievability of B1 is the same as that of A1 and the achievability of B2 is as follows.

Phase 1 and 2: Similar to the phase 1 and phase 2 in the achievability of A2.

Phase 3: There are nλNP − N1
N2
nλPN remaining time instants in the NP state. At each

of these remaining time instants, N2 and N1 private symbols are sent to user 2 and user

1, respectively. These N1 private symbols are sent orthogonal to H2(t). Therefore, user

1 has to get rid of nN2λNP − nN1λPN interfering symbols.

Phase 4: There are nλNN time instant in the NN state. nN2λNP−nN1λPN
N1−N2

of them are

selected (note that nλNN > nN2λNP−nN1λPN
N1−N2

due to the condition in the figure 2.10(b))

At each of these selected time instants, N2 private symbols are sent to user 2 and N1−N2

interfering symbols from phase 3 are sent to user 1. Therefore, with N1 antennas, user

1 can decode its private symbols in phase 3. Since these interfering symbols are already

known at user 2, it can successfully decode its N2 private symbols in this phase.

Phase 5: In the remaining time instants in the NN states, N2 private symbols are sent

to user 2.

Phase 6: The same as phase 4 in the achievability A1.

Therefore, user 1 and user 2 can, respectively, decode nN1λ
2
P and nN2 private symbols

in the block of n time instants which achieves the second corner point.

The achievability of B3 follows the same lines as the achievability of B2 except that in

phase 5, in the remaining NN time instants, instead of sending N2 private symbols to

user 2, N1 private symbols are sent to user 1.
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Figure 2.11: The achievable DoF region (i.e., the inner bound) and the outer bound
when N1λPN > N2λNP .

In conclusion, the outer bound in Theorem 2.3 is the optimal DoF region in this case

(i.e., N1λPN ≤ N2λNP ).

2.8.2 N1λPN > N2λNP

In this case, the achievable region has three corner points C1(N1, N2λPP +
N2

2
N1
λNP ),

C2(N1λ
2
P , N2) and C3(N1−N2λNP , N2λ

2
P +

N2
2

N1
λNP ). This is shown in figure 2.11 along

with the outer bound where the outer bound has two corner points (C2 and D) when

λ1
P ≥ λ2

P and three corner points otherwise (i.e., C2, E and D).

The achievability of C1 is as follows.

Phase 1: There are nλPN time instants in the PN state and nN2
N1
λNP (≤ nλPN ) of

them are selected. At each of these selected time instants, N1 and N2 private symbols

are sent to user 1 and user 2, respectively. These N2 symbols are sent orthogonal to

H1(t). Therefore, user 1 receives its intended nN2λNP symbols and user 2 receives

n(N1 + N2)N2
N1
λNP symbols. User 1 can decode its symbols immediately, while user 2

has to get rid of nN2λNP interfering symbols.

Phase 2: At each of the nλNP time instants in the NP state, N2 interfering symbols of

phase 1 are sent to user 2 and N1 private symbols are sent to user 1. These N1 symbols

are sent orthogonal to H2(t). User 2 receives the nN2λNP interfering symbols which

enables it to decode its private symbols in phase 1. Since these interfering symbols are

already known at user 1, it can successfully decode its N1 private symbols in this phase.
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Phase 3: In the remaining time instants in the PN state (i.e., nλPN − N2
N1
nλNP ) and

all the nλNN time instants, N1 private symbols are sent to user 1.

Phase 4: The same as phase 4 in the achievability of A1.

Therefore, user 1 and user 2 can, respectively, decode nN1 and n(N2λPP +
N2

2
N1
λNP )

private symbols in the block of n time instants which achieves the first corner point.

The achievability of C2 is as follows.

Phase 1: At each of nλNP time instants, N2 and N1 private symbols are sent to user

2 and user 1, respectively. These N1 symbols are sent orthogonal to H2(t). Therefore,

user 2 can decode its intended nN2λNP symbols and user 1 receives n(N1 + N2)λNP

symbols of which nN2λNP are interferes.

Phase 2: Among the nλPN time instants in the PN state, nN2
N1
λNP (≤ nλPN ) time

instants are selected. At each of these selected time instants, N1 interfering symbols of

phase 1 are sent to user 2 and N2 private symbols are sent to user 2. These N2 symbols

are sent orthogonal to H1(t). Therefore, user 1 can decode its private symbols in phase

1.

Phase 3: In the remaining time instants in the PN state (i.e., nλPN − N2
N1
nλNP ) and

all the nλNN time instants, N2 private symbols are sent to user 2.

Phase 4: The same as phase 4 in the achievability of A1.

Therefore, user 1 and user 2 can, respectively, decode nN1λ
2
P and nN2 private symbols

in the block of n time instants which achieves the second corner point.

The achievability of C3 follows the same lines as the achievability of C2 with the difference

that in phase 3, in the remaining time instants in the PN state and all the nλNN time

instants, instead of sending N2 private symbols to user 2, N1 private symbols are sent

to user 1.

As an example, figure 2.12 shows the achievability of the corner pointB3 in figure 2.10(b).

In this example, λPN = λPP = 1
6 , λNP = λNN = 1

3 . u and v are private symbols from

(independently) Gaussian encoded codewords for user 1 and user 2, respectively and

n = 12. When the CSI of a user is known at the transmitter, it is shown in red.
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Figure 2.12: An example for achieving the corner point B3(N1 −
N1N2(λ

2
P λ1P)

N1 N2
,
N1N2λ

2
P N22λ

1
P

N1 N2
) =(2,53). InthisexampleλPN = λPP =

1
6,λNP =

λNN =
1
3.
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2.9 MIMO BC with no CSIT

The DoF region of the MIMO BC with no CSIT was first shown in [19], [20] for the two

user case and later in [21] for the general K-user BC.

In this section, we provide an alternative proof for the results obtained in the mentioned

papers based on Lemma 1 of section 2.5.1, where its advantage over [21] is in extending

the results of [20] for the capacity region of special two-user broadcast channels to special

K-user BCs.

We consider a MIMO BC, in which a transmitter with M antennas sends independent

messages W1, . . . ,WK to K users (receivers), where each receiver is equipped with Ni

receive antennas (i ∈ [1 : K]). The discrete-time baseband received signal of user i at

channel use t can be written as

Ỹi(t) = HH
i (t)X(t) + Zi(t) , i ∈ [1 : K] , t ∈ [1 : n] (2.78)

where X(t) ∈ CM×1 is the transmitted signal satisfying the (per codeword) power con-

straint
∑n

t=1 ‖x(t)‖2 ≤ nP . Hi(t) ∈ CM×Ni and Zi(t) ∈ CNi×1 are, respectively, the

channel matrix and the additive noise vector of receiver i. The elements of Hi(t) are

i.i.d. across time and users. The noise vectors and the elements of the channel matrices

are drawn from continuous probability density functions (independent of X(t)) and the

channel matrices are assumed to be full rank almost surely. We assume no CSIT and

perfect local channel state information at the receiver (CSIR) i.e., at time slot t, user i

has perfect knowledge of Hi([1 : t]).

Theorem 2.4. [21]: The DoF region of the K-user MIMO BC with no CSIT and perfect

CSIR is given by

D = {(d1, d2, . . . , dK) ∈ RK≥0|
K∑
i=1

di
ri
≤ 1} (2.79)

where ri = min{M,Ni}.

2.9.1 An alternative proof for 2.79

Unlike [19] and [20], the proof is not based on the degradedness of the MIMO BC under

no CSIT. Without loss of generality, we assume N1 ≥ N2 ≥ . . . ≥ NK and we enhance
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the channel by giving the messages of users [i + 1 : K] to user i. We also assume that

each user not only knows its own channel, but also has perfect knowledge of the other

users’ channels. In other words, perfect global CSIR is assumed. It is obvious that this

assumption does not reduce the outer bound which means that the bound with local

CSIR is inside the bound with global CSIR; however, the achievability is based on only

local CSIR. The region is further enhanced by giving all the noise vectors to each user.

According to the Fano’s inequality

nRi ≤ I(Wi; Ỹ
n
i |Ωn,Λn,W[i+1:K]) + nεn , i ∈ [1 : K] (2.80)

where WK+1 = ∅ and εn goes to zero as n goes to infinity. Ωn is the global channel

state information up to time slot n and Λn denotes the set of all the noise vectors

across the users (extended over n time slots). Let Si denote the index set of the ri(=

min{M,Ni}) linearly independent elements of the Ni-dimensional vector HH
i X (note

that Si is not necessarily unique). We decompose the Ni-dimensional received signal

of user i as Ỹi = (Yi, Ŷi) where Yi corresponds to the set of ri linearly independent

elements having their index in Si , i.e. Yi = Ỹi,Si , and Ŷi can be reconstructed by

linear combination of the elements in Yi within noise level (for example, when M < Ni,

we have ri = M . Therefore, given M linearly independent observations is sufficient

reconstruct the M transmitted symbols within the noise level.). From the chain rule of

mutual information,

nRi ≤ I(Wi; Y
n
i |Ωn,Λn,W[i+1:K]) + I(Wi; Ŷ

n
i |Ωn,Λn,W[i+1:K],Y

n
i )︸ ︷︷ ︸

o(logP )

+nεn. (2.81)

For simplicity, we ignore nεn (since later it will be divided by n and n → ∞) and the

term with o(logP ) and write

K∑
i=1

nRi
ri
≤

K∑
i=1

I(Wi; Y
n
i |Ωn,Λn,W[i+1:K])

ri

≤ h(Yn
K |Ωn,Λn)

rK︸ ︷︷ ︸
≤n logP

+
K−1∑
i=1

[
h(Yn

i |Ωn,Λn,W[i+1:K])

ri
−
h(Yn

i+1|Ωn,Λn,W[i+1:K])

ri+1

]

(2.82)
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where we have used the fact that
h(Yn

1 |Ωn,Λn,W[1:K])

r1
∼ o(logP ), since with the knowledge

of Ωn,Λn,W[1:K], the observation Yn
1 can be reconstructed.

Each term in the summation of (2.82) can be written as

ri+1h(Yn
i |Si,n)−rih(Yn

i+1|Si,n)

riri+1
(2.83)

=
ri+1h(Yn

i,1,Y
n
i,2, . . . ,Y

n
i,ri |Si,n)

riri+1
−
rih(Yn

i+1|Si,n)

riri+1
(2.84)

≤
∑ri

p=1 h(Ψ
ri+1
p (Γri)|Si,n)

riri+1
−
rih(Yn

i+1|Si,n)

riri+1
(2.85)

=

ri∑
p=1

[
h(Ψ

ri+1
p (Γri)|Si,n)

riri+1
−
h(Yn

i+1|Si,n)

riri+1

]
(2.86)

=

ri∑
p=1

[
h(Ap,i,nX

n + Bp,i,n|Si,n)

riri+1
− h(Ci,nX

n + Di,n|Si,n)

riri+1

]
(2.87)

= 0 (2.88)

where Si,n = {Ωn,Λn,W[i+1:K]} and in (2.85), since ri+1 ≤ ri, the result of Lemma

1 is applied (with N − m = ri+1 and N = ri) in which Γri = {Yn
i,1,Y

n
i,2, . . . ,Y

n
i,ri}

is the set of ri linearly independent elements in Yn
i . In (2.87), we write Ψ

ri+1
p (Γri)

and Yn
i+1 as large nri+1 dimensional vectors as follows. Ψ

ri+1
p (Γri) = Ap,i,nX

n + Bp,i,n

and Yn
i+1 = Ci,nX

n + Di,n where Ap,i,n and Ci,n (∈ Cnri+1×nM ) capture the channel

coefficients over the n time slots, Xn is the nM dimensional input vector and Bp,i,n

and Di,n capture the noise vectors over the n time slots. Since Ap,i,n and Ci,n are

identically distributed channel coefficients and the noise terms are provided at each

user, the arguments of the differential entropies in (2.87) are statistically equivalent

(i.e., have the same probability density function) which results in (2.88). Therefore,

(2.82) is simplified to
K∑
i=1

nRi
ri
≤ n logP. (2.89)

After dividing both sides by n logP and taking the limit n, P →∞, we get

K∑
i=1

di
ri
≤ 1. (2.90)

The above DoF region is achieved by a simple time sharing across the users where only

local CSIR assumption is necessary.
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Finally, it can be observed that the assumption of independent channels across the users

was not used in the proof and since it does not change the achievability, it is not a

necessary condition and can be relaxed.

2.9.2 Capacity region analysis

In this section we consider i.i.d. Gaussian channels and noise vectors. We also assume

M ≥ N1 ≥ N2 ≥ . . . ≥ NK which results in Ni = Ni(i ∈ [1 : K]) and therefore,

Ỹ
n
i = Yn

i . From Fano’s inequality,

K∑
i=1

nRi
Ni
≤

K∑
i=1

I(Wi; Y
n
i |Ωn,W[i+1:K])

Ni

≤ h(Yn
K |Ωn)

rK
−
h(Yn

1 |Ωn,W[1:K])

r1︸ ︷︷ ︸
n log(2πe)

(2.91)

+
K−1∑
i=1

[
h(Yn

i |Ωn,W[i+1:K])

Ni
−
h(Yn

i+1|Ωn,W[i+1:K])

ri+1

]
︸ ︷︷ ︸

≤0

(2.92)

where the last non-positive term is a result of lemma 1. From the above results, we get

an outer bound for the achievable rate region as

K∑
i=1

Ri
Ni
≤ h(Yn

K |Ωn)

nrK
− log(2πe). (2.93)

Therefore, an outer bound for the ergodic capacity region is

K∑
i=1

Ri
Ni
≤

maxΣX :tr(ΣX)≤P E
[
log det(IrK + HH

KΣXHK)
]

rK
(2.94)

and since the channels have i.i.d. Gaussian elements, the optimal input covariance

matrix is P
M IM [22]. Hence,

Co(P ) = {(R1, R2, . . . , RK) ∈ RK≥0|

Ri ≤ E
[
log det(INi +

P

M
HH
i Hi)

]
∀i

K∑
i=1

Ri
Ni
≤
E
[
log det(IrK + P

MHH
KHK)

]
rK

} (2.95)
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It is obvious that the outer bound is more affected by the capacity of the point-to-point

link from the transmitter to the user with the lowest number of receive antennas.

Definition. We define a class of channels (a set of matrices) Θ(p, q,m) where each

channel (matrix) in this class has its elements drawn from the distribution p in such a

way that the optimal input covariance matrix for achieving the capacity of the point-to-

point link from the transmitter to the virtual user defined by this channel is diagonal

with equal entries. The details for this condition are given in [23, Exercise 8.6]. We also

assume that for each channel in this class, all the singular values have the distribution

q. In other words,

Θ(p, q,m) =
{
H ∈ Cm×n ∀n ≤ m| Elements of H ∼ p,

arg max
ΣX :tr(ΣX)≤P

E
[
log det(In +HHΣXH)

]
=
P

m
Im,

and λi(H
HH) ∼ q,∀i = 1, . . . , rank(H)

}
. (2.96)

Theorem 2.5. In a K-user Gaussian MIMO BC with M ≥ N1 ≥ N2 ≥ . . . ≥ NK and

all the channels from the class of Θ(p, q,M), the capacity region with CDIT is given by

C(P ) =

{
(R[1:K]) ∈ RK≥0|

K∑
i=1

Ri
Ni
≤ Eq

[
log(1 +

P

M
λ)

]}
(2.97)

where Eq
[
log(1 + P

M λ)
]

=
∫

log(1 + P
M x)q(x)dx.

Proof. According to (2.94) and the properties of Θ(p, q,M), we have

K∑
i=1

Ri
Ni
≤
∑rK

i=1E
[
log(1 + P

M λi(H
H
KHK))

]
rK

. (2.98)

If the singular values of HK have the same distribution, we can write

K∑
i=1

Ri
Ni
≤ E

[
log(1 +

P

M
λ1(HH

KHK))

]
. (2.99)

Also, if the singular values have the same distribution across the users, the outer bound

is easily achieved by orthogonal transmission strategies, and therefore it is the optimal

capacity region.
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A special case of theorem 2.5 was shown for the two user Gaussian MIMO BC in [20],

in which all the eigenvalues of HH
k Hk(k = 1, 2) are unity.



Chapter 3

On the Capacity of Vector

Gaussian Channels With

Bounded Inputs

3.1 Overview

The capacity of a static multiple-input multiple-output (MIMO) channel under the peak

and average power constraints is investigated. For the identity channel matrix, the ap-

proach of [24] is generalized to the higher dimension settings to derive the necessary and

sufficient conditions for the optimal input probability density function. This approach

avoids the usage of the identity theorem of the holomorphic functions of several com-

plex variables which seems to fail in the multi-dimensional scenarios. It is proved that

the support of the capacity-achieving distribution is a finite set of hyper-spheres with

mutually independent phases and amplitude in the spherical domain. Subsequently, it

is shown that when the average power constraint is relaxed, if the number of antennas is

large enough, the capacity has a closed form solution and constant amplitude signaling

at the peak power achieves it. Moreover, it will be observed that in a discrete-time mem-

oryless Gaussian channel, the average power constrained capacity, which results from

a Gaussian input distribution, can be closely obtained by an input distribution whose

support set of its magnitude is discrete and finite. Finally, we investigate some upper

39
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and lower bounds for the capacity of the non-identity channel matrix and evaluate their

performance as a function of the condition number of the channel.

3.2 Introduction

The capacity of a point-to-point communication system subject to peak and average

power constraints was investigated in [25] for the scalar Gaussian channel where it was

shown that the capacity-achieving distribution is unique and has a probability mass

function with a finite number of mass points. In [24], Shamai and Bar-David gave a

full account on the capacity of a quadrature Gaussian channel under the aforementioned

constraints and proved that the optimal input distribution has a discrete amplitude

and a uniform independent phase. This discreteness in the optimal input distribution

was surprisingly shown in [26] to be true even without a peak power constraint for the

Rayleigh-fading channel when no channel state information (CSI) is assumed either at

the receiver or the transmitter. Following this work, the authors in [27] and [28] inves-

tigated the capacity of noncoherent AWGN and Rician-fading channels, respectively. In

[29], a point to point real scalar channel is considered in which sufficient conditions for

the additive noise are provided such that the support of the optimal bounded input has

a finite number of mass points. These sufficient conditions are also useful in multi-user

settings as shown in [30] for the MAC channel under bounded inputs.

The analysis of the MIMO channel under the peak power constraints per antenna is a

straightforward problem after changing the vector channel into parallel AWGN channels

and applying the results of [25] or [24]. Recently, the vector Gaussian channel under

the peak and average power constraints, where the peak power constraint is on the

norm of the input vector, has become more practical by the new scheme proposed in

[31]. More specifically, this scheme enables multiple antenna transmission using only

one RF chain and the peak power constraint (i.e., a peak constraint on the norm of the

input vector rather than on each antenna separately) is the very result of this single RF

chain. The capacity of the vector Gaussian channel under the peak and average power

constraints has been explored in [32] and [33]. However, according to [34], it seems

that the results of the aforementioned papers in the higher dimension settings are not

rigorous due to the usage of the Identity Theorem for holomorphic functions of several

complex variables without fulfilling its conditions. As shown by an example in Section



Chapter 3. On the Capacity of Vector Gaussian Channels With Bounded Inputs 41

IV of [34], a holomorphic function of several complex variables can be zero on Rn, but

not necessarily zero on Cn. Since Rn is not an open subset of Cn, the identity theorem

cannot be applied. Therefore, the problem of finding the capacity of a MIMO channel

under the peak and average power constraints has remained open. To this end, the

contributions of this chapter are as follows.

• For the identity channel matrix, the approach of [24] is generalized to the vector

Gaussian channel in which the complex extension will be done only on a single

variable which is the amplitude of the input in the spherical coordinates. The

necessary and sufficient conditions for the optimality of the input distribution are

derived and it is proved that the magnitude of the capacity-achieving distribu-

tion has a probability mass function over a finite number of mass points which

determines a finite number of hyper spheres in the spherical coordinates. Further,

the magnitude and the phases of the capacity-achieving distribution are mutually

independent and the phases are distributed in a way that the points are uniformly

distributed on each of the hyper spheres.

• It is shown that if the average power constraint is relaxed, when the ratio of peak

power to the number of dimensions remains below a certain threshold (≈ 3.4), the

constant amplitude signaling at the peak power achieves the capacity.

• It is also shown that for a fixed SNR, the gap between the Shannon capacity and

the constant amplitude signaling decreases as O( 1
n) for large values of n, where n

denotes the number of dimensions.

• Finally, the case of the non-identity channel matrix is considered where we start

from the MISO channel and show that the support of the optimal input does not

necessarily have discrete amplitude. Afterwards, several upper bounds and lower

bounds are provided for the general n by m MIMO channel capacity. The perfor-

mance of these bounds are evaluated numerically as a function of the condition

number of the channel.

The chapter is organized as follows. The system model and some preliminaries are

provided in Section 3.3, respectively. The main result of this chapter is given in Section

3.4 for the identity channel. The general case of the non-identity channel matrix is

briefly investigated in Section 3.5. Numerical results are given in Section 3.6.
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3.3 System Model and preliminaries

In a discrete-time memoryless vector Gaussian channel, the input-output relationship

for the identity channel is given by

Y(t) = X(t) + W(t), (3.1)

where X(t), Y(t) (∈ Rn) denote the input and output of the channel, respectively.

t ∈ Z+ denotes the channel use index and {W(t)} is an i.i.d. vector noise process with

W(t) ∼ N(0, In) (and independent of X(t)) for every transmission t. 1

The capacity of the channel in (3.1) under the peak and the average power constraints

is

C(up, ua) = sup
FX(x):‖X‖2≤up, E[‖X‖2]≤ua

I(X; Y) (3.2)

where FX(x) denotes the cumulative distribution function (CDF) of the input vector,

and up, ua are the upper bounds for the peak and the average power, respectively.

Throughout this report, any operator that involves a random variable reads with the

term almost-surely (e.g. ‖X‖2 ≤ up)2.

It is obvious that

sup
FX(x):‖X‖2≤up, E[‖X‖2]≤ua

I(X; Y) ≤ sup
FX(x):E[‖X‖2]≤min(up,ua)

I(X; Y). (3.3)

Therefore, a trivial upper bound for the capacity is given by

C(up, ua) ≤ CG =
n

2
ln

(
1 +

min(up, ua)

n

)
(3.4)

where CG is achieved by a Gaussian input vector distributed as N
(
0,

min(up,ua)
n In

)
.

We formulate the optimization problem in (3.2) in the spherical domain. The rational

behind this change of coordinates is due to the spherical symmetry of the white Gaussian

noise and the constraints which, as it will be clear, enables us to perform the optimization

problem only on the magnitude of the input. By writing the mutual information in terms

1It is obvious that the m-dimensional complex AWGN channel can be mapped to the channel in (3.1)
with n = 2m.

2More precisely, let Ω be the sample space of the probability model over which the random vector X

is defined. ‖X‖2
a.s.

≤ up is equivalent to Pr{ω ∈ Ω| ‖X(ω)‖2 ≤ up} = 1.
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of differential entropies, we have

I(X; Y) = h(Y)− h(Y|X) = h(Y)− n

2
ln 2πe (3.5)

where the entropies are in nats. Motivated by the spherical symmetry of the white

Gaussian noise and the constraints, Y and X can be written in spherical coordinates as

Y = Ra(Ψ) , X = Pa(Θ) (3.6)

where R and P denote the magnitude of the output and the input, respectively. Ψ =

[Ψ1,Ψ2, . . . ,Ψn−1]T and Θ = [Θ1,Θ2, . . . ,Θn−1]T are, respectively, the phase vectors of

the output and the input, in which Ψi, Θi∈ [0, π](i ∈ [1 : n−2]) and Ψn−1,Θn−1 ∈ [0, 2π).

a(φ) = [a1(φ), . . . , an(φ)]T is a unit vector in which

ak(φ) =

 cosφk
∏k−1
i=1 sinφi k ∈ [1 : n− 1]∏k−1

i=1 sinφi k = n
. (3.7)

As it will become clear later, this change of coordinates avoids the usage of the iden-

tity theorem for holomorphic functions of several complex variables. The optimization

problem in (3.2) is equivalent to

C(up, ua) = sup
FP,Θ(ρ,θ):P 2≤up, E(P 2)≤ua

h(Y)− n

2
ln 2πe. (3.8)

The differential entropy of the output is given by

h(Y) = −
∫
Rn
fY(y) ln fY(y)dy (3.9)

= −
∫ ∞

0

∫ π

0
. . .

∫ π

0︸ ︷︷ ︸
n−2 times

∫ 2π

0
fY(y(r, ψ)) ln fY(y(r, ψ))| ∂y

∂(r, ψ)
|dψdr (3.10)

= −
∫ ∞

0

∫ π

0
. . .

∫ π

0︸ ︷︷ ︸
n−2 times

∫ 2π

0
fR,Ψ(r, ψ) ln

fR,Ψ(r, ψ)

| ∂y
∂(r,ψ) |

dψdr (3.11)

= h(R,Ψ) +

∫ ∞
0

fR(r) ln rn−1dr +

n−2∑
i=1

∫ π

0
fΨi(ψi) ln sinn−i−1 ψidψi (3.12)

where | ∂y
∂(r,ψ) |(= rn−1

∏n−2
i=1 sinn−i−1 ψi) is the Jacobian of the transform and h(R,Ψ) de-

notes the joint entropy of the output variables. The conditional pdf of R,Ψ conditioned
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on P,Θ is given by

fR,Ψ|P,Θ(r, ψ|ρ, θ) =
1

(
√

2π)
n e
− r

2+ρ2−2rρaT (θ)a(ψ)
2 rn−1

n−2∏
i=1

sinn−i−1 ψi. (3.13)

From (3.13), the joint pdf of the magnitude and phases of the output is

fR,Ψ(r, ψ) =

∫ ∞
0

∫ π

0
. . .

∫ π

0︸ ︷︷ ︸
n−2 times

∫ 2π

0
fR,Ψ|P,Θ(r, ψ|ρ, θ)dnFP,Θ(ρ, θ) (3.14)

in which FP,Θ(ρ, θ) denotes the joint CDF of (P,Θ). By integrating (3.14) over the phase

vector ψ, we have

fR(r) =

∫ ∞
0

L(r, ρ)fP (ρ)dρ (3.15)

where 3

L(r, ρ) =

∫ π

0
. . .

∫ π

0︸ ︷︷ ︸
n−2 times

∫ 2π

0
fR,Ψ|P,Θ(r, ψ|ρ, θ)dψn−1 . . . dψ1. (3.16)

It is obvious that

h(R,Ψ) ≤ h(R) +

n−1∑
i=1

h(Ψi) ≤ h(R) +

n−2∑
i=1

h(Ψi) + ln 2π (3.17)

where the first inequality is tight iff the elements of {R,Ψ1, . . . ,Ψn−1} are mutually

independent, and the second inequality becomes tight iff Ψn−1 is uniformly distributed

over [0, 2π). From (3.12) and (3.17)

h(Y) ≤ h(R)+
n−2∑
i=1

h(Ψi)+

∫ ∞
0

fR(r) ln rn−1dr+
n−2∑
i=1

∫ π

0
fΨi(ψi) ln sinn−i−1 ψidψi+ln 2π.

(3.18)

For the sake of readability, the following change of variables is helpful

V =
Rn

n
, Ui =

∫ Ψi

0
sinn−i−1 δdδ , i ∈ [1 : n− 2]. (3.19)

3The reason that L(r, ρ) is not a function of the phase vector θ is due to the spherically symmetric
distribution of the white Gaussian noise. In other words, L(r, ρ) is the integral of the Gaussian pdf
N(x, I) over the surface of an n-sphere with radius r which is invariant to the position of x as long as
‖x‖ = ρ, i.e.

L(r, ‖x‖) =

∫
‖y‖=r

e−
‖y−x‖2

2

(
√

2π)n
dy =

e−
r2+‖x‖2

2

(
√

2π)n

∫
‖y‖=r

ex
tydy

which is constant on ‖x‖ = ρ. (3.15) implies that in the AWGN channel in (3.1), fR(r) is induced only
by fP (ρ) and not fΘ(θ).
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Since R ≥ 0 and Ψi ∈ [0, π](i ∈ [1 : n − 2]), it is easy to show that the two mappings

R→ V and Ψi → Ui (defined in (3.19)) are invertible. Also, the support set of Ui is SUi =

[0, αi] where αi =
√
πΓ(n−i

2
)

Γ(n−i+1
2

)
(the Gamma function is defined as Γ(t) =

∫∞
0 xt−1e−xdx.)

From (3.15), the pdf of V is 4

fV (v) = fV (v;FP ) =

∫ ∞
0

Kn(v, ρ)dFP (ρ) (3.20)

where the notation ;FP in fV (v;FP ) is to emphasize that V has been induced by FP .

Note that the integral transform in (3.20) is invertible as shown in Appendix D. The

kernel Kn(v, ρ) is given by

Kn(v, ρ) =
L( n
√
nv, ρ)

( n
√
nv)n−1

=

∫ π

0
. . .

∫ π

0︸ ︷︷ ︸
n−2 times

∫ 2π

0

1

(
√

2π)
n e
− ( n
√
nv)2+ρ2−2 n

√
nvρaT (θ)a(ψ)

2

n−2∏
i=1

sinn−i−1 ψidψn−1 . . . dψ1

(3.21)

= e−
( n
√
nv)2+ρ2

2


In

2−1(ρ n
√
nv)

(ρ n
√
nv)

n
2−1 ρv 6= 0

1

Γ(n
2

)2
n
2−1 ρv = 0

∀n ≥ 2 (3.22)

where Iα(.) is the modified bessel function of the first kind and order α. The calculations

are provided in Appendix A. Note that Kn(v, ρ) is continuous on its domain. The

differential entropy of V is

h(V ) = h(V ;FP )

= −
∫ ∞

0
fV (v;FP ) ln fV (v;FP )dv

= −
∫ ∞

0
fR(r) ln

fR(r)

rn−1
dr. (3.23)

The differential entropy of Ui is given by

h(Ui) = −
∫
SUi

fUi(u) ln fUi(u)du

= −
∫ π

0
fΨi(ψi) ln

fΨi(ψi)

sinn−i−1 ψi
dψi , i ∈ [1 : n− 2]. (3.24)

4The existence of fV (v) is guaranteed by the Gaussian distribution of the additive noise.
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Rewriting (3.8), we have

C(up, ua) = sup
FP,Θ(ρ,θ):P 2≤up,E[P 2]≤ua

h(Y)− n

2
ln 2πe

≤ sup
FP,Θ(ρ,θ):P 2≤up,E[P 2]≤ua

{
h(V ;FP ) +

n−2∑
i=1

h(Ui) + (1− n

2
) ln 2π − n

2

}
(3.25)

≤ sup
FP (ρ):P 2≤up,E[P 2]≤ua

h(V ;FP ) +
n−2∑
i=1

lnαi + (1− n

2
) ln 2π − n

2
(3.26)

where (3.25) results from (3.18), (3.23) and (3.24). (3.26) is due to the fact that since SUi

(the support of Ui) is bounded, h(Ui) is maximized when Ui is uniformly distributed. It

is easy to verify that if the magnitude and phases of the input are mutually independent

with the phases having the distributions

Θn−1 ∼ U [0, 2π) , fΘi(θi) = α−1
i sinn−i−1 θi , i ∈ [1 : n− 2], (3.27)

the magnitude and phases of the output become mutually independent with the phases

having the distributions

Ψn−1 ∼ U [0, 2π) , fΨi(ψi) = α−1
i sinn−i−1 ψi , i ∈ [1 : n− 2] (3.28)

where αi =
√
πΓ(n−i

2
)

Γ(n−i+1
2

)
. In other words, having the input distribution

FP,Θ(ρ, θ) =
θn−1

2π
FP (ρ)

n−2∏
i=1

∫ θi

0
α−1
i sinn−i−1 θdθ (3.29)

results in

FR,Ψ(r, ψ) =
ψn−1

2π
FR(r)

n−2∏
i=1

∫ ψi

0
α−1
i sinn−i−1 ψdψ. (3.30)

The above result can be easily checked either by solving for fR,Ψ(r, ψ) in (3.14) or by

the fact that the summation of two independent spherically symmetric random vectors

is still spherically symmetric.5 Also, note that having Ψi (i = 1, . . . , n−2) distributed as

(3.28) implies uniform Ui on [0, αi] (i = 1, . . . , n− 2). It can be observed that the input

pdf in (3.29) makes the inequalities in (3.25) and (3.26) tight. Since the constraint is only

5The magnitude and the unit vector of a spherically symmetric random vector are independent and
the unit vector is uniformly distributed on the unit ball. It can be verified that this property is equivalent
to the vector having the distribution of (3.30) in spherical coordinates.
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on the magnitude of the input and fV (v) is induced only by fP (ρ), it is concluded that

the optimal input distribution must have mutually independent phases and magnitude

with the phases being distributed as (3.27). Therefore,

C(up, ua) = sup
FP (ρ):P 2≤up,E[P 2]≤ua

h(V ;FP ) +
n−2∑
i=1

lnαi + (1− n

2
) ln 2π − n

2
. (3.31)

Before proceeding further, it is interesting to check whether the problem in (3.31) boils

down to the classical results when the peak power constraint is relaxed (i.e., up →∞).

From the definition of V ,

E[V
2
n ] =

1
n
√
n2
E[n+ P 2]. (3.32)

This can be verified by a change of variable (i.e., V = Rn

n ) and using the derivative of

(D.6) with respect to β. Therefore, when up →∞, the problem in (3.31) becomes maxi-

mization of the differential entropy over all the distributions having a bounded moment

of order 2
n which is addressed in Appendix B for an arbitrary moment. Substituting m

with 2
n and A with n+ua

n√
n2

in (B.3), the optimal distribution for V is obatined and from

(3.20), the corresponding fP ∗(ρ) has the general Rayleigh distribution as

fP ∗(ρ) =
n
n
2 ρn−1e−

nρ2

2ua

2
n−2

2 u
n
2
a Γ(n2 )

(3.33)

which is the only solution, since (3.20) is an invertible transform (see Appendix D).

Furthermore, it can be verified that the maximum is

C(∞, ua) =
n

2
ln(1 +

ua
n

) (3.34)

which coincides with the classical results for the identity channel matrix [22].

Similar to [25] and [24], we define the marginal entropy density of V as

h̃V (x;FP ) = −
∫ ∞

0
Kn(v, x) ln fV (v;FP )dv (3.35)

which satisfies

h(V ;FP ) =

∫ ∞
0

h̃V (ρ;FP )dFP (ρ). (3.36)

(3.35) is shown to be an invertible transform in Appendix D and this property will

become useful later on.
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3.4 Main results

Let εP denote the set of points of increase6 of FP (ρ) in the interval [0,
√
up]. The main

result of the chapter is given in the following theorem.

Theorem 3.1. The supremization in (3.31), which is for the identity channel matrix,

has a unique solution and the optimal input achieving the supremum (and therefore the

maximum) has the following distribution in the spherical coordinates,

F ∗P,Θ(ρ, θ) =
θn−1

2π
F ∗P (ρ)

n−2∏
i=1

∫ θi

0
α−1
i sinn−i−1 θdθ (3.37)

where F ∗P (ρ) has a finite number of points of increase (i.e., εP ∗ has a finite cardinality).

Further, the necessary and sufficient condition for F ∗P (ρ) to be optimal is the existence

of a λ(≥ 0) for which

h̃V (ρ;F ∗P ) ≤ h(V ;F ∗P ) + λ(ρ2 − ua) , ∀ρ ∈ [0,
√
up] (3.38)

h̃V (ρ;F ∗P ) = h(V ;F ∗P ) + λ(ρ2 − ua) , ∀ρ ∈ εP ∗ . (3.39)

Note that when the average power constraint is relaxed (i.e., ua ≥ up), λ = 0.

Proof. The phases of the optimal input distribution have already been shown to be

mutually independent and have the distribution in (3.27) being independent of the mag-

nitude. Therefore, it is sufficient only to show the optimal distribution of the input

magnitude. This is proved by reductio ad absurdum. In other words, it is shown that

having an infinite number of points of increase results in a contradiction. The detailed

proof is given in Appendix C.

Remark 1. When the average power constraint is relaxed (i.e. ua ≥ up), the following

input distribution is asymptotically (
up
n → 0) optimal

F ∗∗P,Θ(ρ, θ) =
θn−1

2π
u(ρ−√up)

n−2∏
i=1

∫ θi

0
α−1
i sinn−i−1 θdθ (3.40)

6A point Z is said to be a point of increase of a distribution if for any open set Γ containing Z, we
have Pr{Γ} > 0.
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where u(.) is the unit step function. Further, the resulting capacity is given by

C(up, up) ≈
up
2

when
up
n
� 1. (3.41)

Later, in the numerical results section, we observe that the density in (3.40) remains

optimal for the non-vanishing ratio
up
n when it is below a certain threshold.

Proof. Since the density in (3.40) has spherical symmetry, it is sufficient to show that

F ∗∗P (ρ) = u(ρ−√up) is optimal when
up
n → 0. From (3.4), we have

lim
up
n
→0

C(up, ua) ≤
up
2
. (3.42)

The CDF F ∗∗P (ρ) = u(ρ−√up) induces the following output pdf

fV (v;F ∗∗P ) = Kn(v,
√
up) = e−

( n
√
nv)2+up

2

In
2
−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2
−1

. (3.43)

When
up
n is small,

lim
up
n
→0

h(V ;F ∗∗P ) = lim
up
n
→0
−
∫ ∞

0
fV (v;F ∗∗P ) ln fV (v;F ∗∗P )dv (3.44)

= lim
up
n
→0

∫ ∞
0

e−
( n
√
nv)2+up

2

In
2
−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2
−1

[
( n
√
nv)2 + up

2
− ln

(
In

2
−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2
−1

)]
dv

(3.45)

=
n

2
+ ln

(
Γ(
n

2
)2

n
2
−1
)

+ lim
up
n
→0

{
up −

∫ ∞
0

e−
( n
√
nv)2+up

2

In
2
−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2
−1

ln

(
1 +

up( n
√
nv)2

2n

)
dv

}
(3.46)

=
n

2
+ ln

(
Γ(
n

2
)2

n
2
−1
)

+ lim
up
n
→0

{
up −

up
n

(
n+ up

2
)

}
(3.47)

=
n

2
+ ln

(
Γ(
n

2
)2

n
2
−1
)

+
up
2
. (3.48)

where in (3.46), we have approximated the modified bessel function with the first two

terms in its power series expansion as follows

In(x) ≈ xn

Γ(n+ 1)2n
(1 +

x2

4(n+ 1)
) ,

x

n
→ 0. (3.49)
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In (3.47), we use the approximation ln(1 + x) ≈ x (x � 1) and in (3.48), the higher

order term is neglected. Given the input distribution F ∗∗P , the achievable rate with small

ratio
up
n is given by (see (3.31))

lim
up
n
→0

h(V ;F ∗∗P ) +
n−2∑
i=1

lnαi + (1− n

2
) ln 2π − n

2
=
up
2

(3.50)

where we have used the fact that

n−2∑
i=1

lnαi = − ln Γ(
n

2
) +

n− 2

2
lnπ. (3.51)

From (3.50) and (3.42), it is concluded that the pdf in (3.40) is asymptotically optimal for

up
n � 1 when up ≤ ua. Note that the distribution in (3.40) is not the only asymptotically

optimal distribution. There are many possible alternatives, one of which, for example, is

the binary PAM in each dimension with the points −
√

up
n and

√
up
n which can be verified

to have an achievable rate of
up
2 when

up
n � 1. Specifically, in the low peak power regime

(up � 1), a sufficient condition for the input distribution to be asymptotically optimal

is as follows. First, it has a constant magnitude at
√
up. Second, its Θ1 is independent

of (P,Θ2, . . . ,Θn−1) and has a zero first Fourier coefficient

∫ π

0
ejθfΘ1(θ)dθ = 0. (3.52)

The claim is justified by noting that fulfilling the second condition results in the spherical

symmetric output distribution of (3.30) as follows. Using the approximation ex ≈ 1 +

x (x� 1), at small values of up, (3.13) can be approximated as

fR,Ψ|P,Θ(r, ψ|ρ, θ) ≈ 1

(
√

2π)
n e
− r

2+ρ2

2 (1 + rρaT (θ)a(ψ))rn−1
n−2∏
i=1

sinn−i−1 ψi. (3.53)

If Θ1 is independent of (Θ2, . . . ,Θn−1, P ), substituting (3.53) in (3.14) results in

fR,Ψ(r, ψ) ≈
∫ ∞

0

∫ π

0
. . .

∫ π

0︸ ︷︷ ︸
n−3 times

∫ 2π

0

∫ π

0

1

(
√

2π)
n e
− r

2+ρ2

2 (1 + rρaT (θ)a(ψ))rn−1

.
n−2∏
i=1

sinn−i−1 ψidFΘ1(θ1)dn−1FP,Θn−1
2

(ρ, θn−1
2 )

(3.54)
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where θn−1
2 = (θ2, θ3, . . . , θn−1). If Θ1 has a zero first Fourier coefficient, due to the

structure of a(θ) (see (3.7)), we have

∫ π

0
aT (θ)a(ψ)dFΘ1(θ1) = 0. (3.55)

Therefore, (3.54) simplifies as

fR,Ψ(r, ψ) ≈
∫ ∞

0

1

(
√

2π)
n e
− r

2+ρ2

2 rn−1
n−2∏
i=1

sinn−i−1 ψidFP (ρ) (3.56)

which implies that when up → 0, having Θ1 independent of all other spherical variables

with a zero first Fourier coefficient results in the output distribution in (3.30) which

makes the inequalities (3.25) and (3.26) tight. Finally, fulfilling the first condition (i.e.,

having a constant magnitude at
√
up) validates the previous reasoning starting from

(3.43).

The asymptotic optimality of the constant-magnitude signaling in (3.40) can alterna-

tively be proved by inspecting the behavior of the marginal entropy density h̃V (ρ;FP )

when
up
n is sufficiently small. From (3.20)

fV (v;FP )→ e−
( n
√
nv)2

2

Γ(n2 )2
n
2
−1

∫ ∞
0

e−
ρ2

2 dFP (ρ)︸ ︷︷ ︸
constant = C

when
up
n
→ 0. (3.57)

Therefore,

h̃V (ρ;FP ) = −
∫ ∞

0
e−

( n
√
nv)2+ρ2

2

In
2
−1(ρ n

√
nv)

(ρ n
√
nv)

n
2
−1

ln fV (v;FP )dv

→
∫ ∞

0
e−

( n
√
nv)2+ρ2

2

In
2
−1(ρ n

√
nv)

(ρ n
√
nv)

n
2
−1

[
( n
√
nv)2

2
+ ln

(
Γ(n2 )2

n
2
−1

C

)]
dv (3.58)

=
ρ2 + n

2
+ ln

(
Γ(n2 )2

n
2
−1

C

)
(3.59)

It is obvious that (3.59) is a (strictly) convex (strictly) increasing function. Hence, the

necessary and sufficient conditions in (3.38) and (3.39) are satisfied if and only if the

input has only one point of increase at
√
up which proves the asymptotic optimality of

(3.40) for
up
n � 1 and ua ≥ up.
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Remark 2. For a fixed SNR, the gap between the Shannon capacity and the constant

amplitude signaling decreases as O( 1
n) for large values of n.

Proof. By writing the first two terms of the Taylor series expansion of the logarithm

(i.e., ln(1 + x) ≈ x− x2

2 , x� 1), we have

when n→∞ ,
n

2
ln(1 +

up
n

) ≈ up
2
−
u2
p

4n
. (3.60)

From (3.47), the achievable rate obtained by the constant envelope signaling is

when n→∞ , I(X; Y) ≈ up
2
−
u2
p

2n
. (3.61)

This shows that the gap between achievable rate and the Shannon capacity decreases as

u2
p

4n(= O( 1
n)), when n goes to infinity.

While remark 2 shows an asymptotic behavior of the gap, the following remark provides

an analytical lower bound for any values of n.

Remark 3. The following lower bound holds for the capacity of constant amplitude

signaling.

sup
FX(x):‖X‖2=up

I(X; Y) ≥ n− 1

2
log

1 +
2

2
n−1
−1up

e
[
(n− 1)Γ(n−1

2 )
] 2
n−1

 . (3.62)

Proof. Let X′ and X′ be defined as

X′ = [X1, X2, . . . , XN−1, 0]T , Y′ = [Y1, Y2, . . . , YN−1, 0]T . (3.63)
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Due to the Markov chain X′ ↔ X ↔ Y ↔ Y′ and the fact that ‖X‖2 = up implies

‖X′‖2 ≤ up, we can write

sup
FX(x):‖X‖2=up

I(X; Y) ≥ sup
FX′ (x

′):‖X′‖2≤up
I(X′; Y′) (3.64)

= sup
FX′ (x

′):‖X′‖2≤up
h(Y′;FX′)−

n− 1

2
log 2πe (3.65)

≥ sup
FX′ (x

′):‖X′‖2≤up

n− 1

2
log
(

2
2

n−1
h(X′) + 2πe

)
− n− 1

2
log 2πe

(3.66)

=
n− 1

2
log

1 +
2

2
n−1
−1up

e
[
(n− 1)Γ(n−1

2 )
] 2
n−1

 (3.67)

where in (3.66), the (n − 1)-dimensional EPI has been used7 and (3.67) is due to the

fact that for the (n− 1)-dimensional vector X′, we can write

sup
FX′ (x

′):‖X′‖2≤up
h(X′) = log

(
2(πup)

n−1
2

(n− 1)Γ(n−1
2 )

)
, n ≥ 2 (3.68)

whose proof follows the same steps from (3.110) to (3.117) with λ = 0 and a = n
(
√
up)n .

The asymptotic decrease of the gap in remark 2 can be alternatively proved by using

the lower bound in (3.67) which is provided in Appendix E.

Remark 4. When ua < up, the following input distribution is asymptotically (ua → 0)

optimal

F ∗∗P,Θ(ρ, θ) =

[
(1− ua

up
)u(ρ) +

ua
up
u(ρ−√up)

]
θn−1

2π

n−2∏
i=1

∫ θi

0
α−1
i sinn−i−1 θdθ (3.69)

7The Entropy Power Inequality (EPI) states that if X and Y are two independent n-dimensional
vectors which have pdfs, and Z = X + Y, then

2
2h(Z)

n ≥ 2
2h(X)

n + 2
2h(Y)

n .

Note that the reduction of dimensions from n to n − 1 in (3.63) is necessary. The reason is that the
usage of the n-dimensional EPI is NOT permissible for the constant amplitude vector, since an n-
dimensional vector with a fixed norm has at most (n − 1) degrees of freedom (or equivalently at most
(n− 1)-dimensional support).
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and the resulting capacity is given by

C(up, up) ≈
ua
2

when ua � 1. (3.70)

Proof. The proof is given in Appendix F.

Remarks 1 and 4 are essential for the initial stage of the simulation results when either

ua or up are assumed to be very small at first and afterwards they are increased gradually

by a step size.

Remark 5. The fact that the magnitude of the optimal input distribution has a finite

number of mass points remains unchanged if the average constraint in (3.2) is generalized

as

E(g(P )) ≤ ua (3.71)

in which g(z) is holomorphic on an open subset D(⊆ C) which includes the non-negative

real line (i.e., R≥0 ⊂ D).

Proof. The proof is given in Appendix G.

Remark 6. The peak power constraint in (3.2) can be generalized to

‖P‖2
a.s.
∈ Dup ⊆ [0, up]. (3.72)

Proof. Since all the conditions (compactness, continuity, etc.) remain unchanged, the

support of the optimal input distribution will be some concentric shells having the mass

points of the magnitude in Dup .

3.5 The MIMO case with deterministic channel

First, we consider the multiple-input single-output (MISO) channel in which (3.1) changes

to

Y (t) = hTX(t) +W (t) (3.73)
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where h(∈ Rn×1) is the deterministic channel vector and W ∼ N(0, 1). Let Xnew = hTX.

The capacity of this channel under the peak and average power constraints is given by

C(up, ua) = sup
FX(x):‖X‖2≤up, E[‖X‖2]≤ua

I(X;Y )

= sup
FX(x):‖X‖2≤up, E[‖X‖2]≤ua

I(X, Xnew;Y ) (3.74)

= sup
FX(x):‖X‖2≤up, E[‖X‖2]≤ua

I(Xnew;Y ) + I(X;Y |Xnew)︸ ︷︷ ︸
=0

(3.75)

= sup
FX(x):‖X‖2≤up, E[‖X‖2]≤ua

I(Xnew;Y )

≤ sup
FXnew (x):|Xnew|≤

√
up‖h‖, E[|Xnew|2]≤ua‖h‖2

I(Xnew;Y ) (3.76)

where (3.74) is due to the fact that Xnew is a function of X and (3.75) is a result of the

following Markov chain X −→ Xnew −→ Y . (3.76) is due to the fact that any input cdf

having the support ‖X‖2 ≤ up and satisfying E[‖X‖2] ≤ ua induces a cdf for Xnew with

the support in [−√up‖h‖,
√
up‖h‖] and satisfying E[|Xnew|2] ≤ ua‖h‖2. This could be

readily verified by the following convex optimization problem

max
x

hTx

S.t. ‖x‖2 ≤ up (3.77)

where the maximum is
√
up‖h‖ and it is achieved when x is matched to the channel

(i.e., x =
√
up

h
‖h‖). Further, from Cauchy-Schwartz inequality, we have

E[|Xnew|2] = E[|htX|2] ≤ E[‖h‖2]E[‖X‖2] ≤ ua‖h‖2 (3.78)

where the inequalities change to equality iff X is in the direction of h and E[‖X‖2] = ua.

The supremization in (3.76) is the same problem of finding the capacity of a scalar

Gaussian channel which has been addressed in [25] where it was shown that the optimal

input distribution is a pmf over a finite set of points in the interval defined by the

peak power constraint and also it satisfies the average power inequality with equality.

It is obvious that having X located on the hyperplane hTX = ei (confined in the

ball ‖X‖2 ≤ up) with probability pi results in having Xnew equal to the mass point

ei ∈ [−√up‖h‖,
√
up‖h‖] with probability pi. If the average power constraint is relaxed
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(i.e., ua ≥ up), the support of the capacity-achieving distribution of the MISO channel

with the input bounded in a ball becomes a finite number of hyper planes confined in that

ball (all of these hyperplane have the normal vector h). Note that the discrete amplitude

property is no longer a necessity for the optimal input distribution in contrast to the

MIMO with identity channel. In other words, the necessary and sufficient condition for

the optimality is that X is located in each of these hyperplanes with the corresponding

probabilities. There is a common characteristic of the optimal input distribution in

both the MIMO (with identity channel) and MISO scenarios which is the fact that the

support of the optimal input distribution does not include any open set in Rn. Finally,

if the average power constraint is active (i.e., ua < up), the support of the optimal input

becomes a finite number of mass points in the direction of h (from (3.78) and the fact

that E[|Xnew|2] = ua‖h‖2) and confined in the ball ‖X‖2 ≤ up.

For the general deterministic MIMO channel, we have

Y′(t) = HX′(t) + W′(t) (3.79)

where H ∈ Rnr×nt denotes the deterministic channel. By an SVD (i.e., H = DΛNT

where D ∈ Rnr×nr , Λ ∈ Rnr×nt , N ∈ Rnt×nt), we get

Ỹ′(t) = DTY′(t) = Λ NTX′(t)︸ ︷︷ ︸
X̃′(t)

+ DTW′(t)︸ ︷︷ ︸
W̃′(t)

. (3.80)

Let n = rank(H) and Q(t) be the first n elements of the vector Q̃′(t) (for Q =

Y,X and W). It is obvious that (3.80) is equivalent to the following

Y(t) = X(t) + N(t) (3.81)

with the noise distributed as N(0,Σ) where Σ = diag{λ−2
1 , λ−2

2 , . . . , λ−2
n } and λi (i ∈

[1 : n]) is the ith singular value of H. Therefore, the capacity of the deterministic channel

in (3.79) is the same as the capacity of the additive non-white Gaussian noise channel

in (3.81). It is assumed that the condition number of H is not unity, since in that case,

it becomes equivalent to the scenario with identity channel matrix discussed in section

3.3. From now on, we consider n = 2.
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Two possible changes of coordinates are as follows. Motivated by the elliptical symmetry

of the noise, X and Y could be written in the following elliptical coordinates

Y = RΣ
1
2 a(Ψ) , X = PΣ

1
2 a(Θ) (3.82)

and using a similar approach as in section 3.3, the optimization problem becomes

C(up, ua) = sup
FP,Θ(ρ,θ):P

2aT (θ)Σa(θ)≤up,E[P 2aT (θ)Σa(θ)]≤ua
h(V,Ψ;FP,Θ)− ln 2πe. (3.83)

where V = R2

2 . The joint entropy of the output variables is given by

h(V,Ψ;FP,Θ) =

∫ ∞
0

∫ 2π

0
h̃V,Ψ(ρ, θ;FP,Θ)d2FP,Θ(ρ, θ) (3.84)

where the joint marginal entropy density writes as

h̃V,Ψ(ρ, θ;FP,Θ) = −
∫ ∞

0

∫ 2π

0
K(v, ψ, ρ, θ) ln fV,Ψ(v, ψ;FP,Θ)dψdv (3.85)

in which

fV,Ψ(v, ψ;FP,Θ) =

∫ ∞
0

∫ 2π

0
K(v, ψ, ρ, θ)d2FP,Θ(ρ, θ) (3.86)

and

K(v, ψ, ρ, θ) =
1

2π
e−v−

ρ2

2
+ρ
√

2v cos(ψ−θ). (3.87)

Alternatively, due to the spherical symmetry of the constraint, the input and the output

could be written in the spherical coordinates in which

C(up, ua) = sup
FP,Θ(ρ,θ):P

2≤up,E[P 2]≤ua
h(V,Ψ;FP,Θ)− ln(2πe

√
|Σ|). (3.88)

(3.84) to (3.86) remain unchanged, while the kernel is given by

K(v, ψ, ρ, θ) =
1

2π
√
|Σ|

e−
1
2 [
√

2va(ψ)−ρa(θ)]
T

Σ−1[
√

2va(ψ)−ρa(θ)]. (3.89)

Using neither of the above coordinates makes the separation of the magnitude and

the phases possible as done in (3.17). This is due to the different symmetries of the

noise (elliptical) and the peak power constraint (spherical). Since the conditions of

compactness, convexity and continuity remain unchanged, we can only proceed up to
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the point of writing the necessary and sufficient conditions for the joint cdf FP,Θ(ρ, θ) to

be the optimal solution. By using the spherical coordinates, the necessary and sufficient

conditions for the optimal input distribution is given by

h̃V,Ψ(ρ, θ;F ∗P,Θ) ≤ h(V,Ψ;F ∗P,Θ) + λ(ρ2 − ua) , ∀ρ ∈ [0,
√
up], ∀θ ∈ [0, 2π) (3.90)

h̃V,Ψ(ρ, θ;F ∗P,Θ) = h(V,Ψ;F ∗P,Θ) + λ(ρ2 − ua) , ∀(ρ, θ) ∈ ε∗P,Θ. (3.91)

where ε∗P,Θ is the set of points of increase in F ∗P,Θ.

To make the problem caused by the different symmetries of the noise and the constraint

more clear, let’s assume λ1 = λ2 (i.e., as in the previous section with identity channel.)

In this case, we rewrite the optimization problem as

C(up, ua) = sup
FP,Θ(ρ,θ):P

2≤up, E[P 2]≤ua
h(V,Ψ;FP,Θ)− ln(2πeλ2

1). (3.92)

It is already known that the optimal solution must have independent phase and magni-

tude with the former being uniformly distributed on [0, 2π). This can alternatively be

inferred from the above necessary and sufficient conditions as follows. Let f∗P,Θ(ρ, θ) =

f∗P (ρ)f∗Θ|P (θ|ρ) denote the (unique) solution of (3.92) with ε∗P,Θ as its points of increase.

Let the pdf lεP,Θ be defined as

lεP,Θ(ρ, θ) = f∗P (ρ)f∗Θ|P (θ − ε|ρ) (3.93)

where ε is a constant arbitrarily chosen from (0, 2π). Let LεP,Θ be the corresponding

CDF. It can be easily verified that

fV,Ψ(v, ψ;LεP,Θ) = fV,Ψ(v, ψ − ε;F ∗P,Θ) (3.94)

and therefore,

h(V,Ψ;LεP,Θ) = h(V,Ψ;F ∗P,Θ). (3.95)

Since LεP,Θ satisfies the constraints and the optimal solution is unique, it is concluded

that

f∗P,Θ(ρ, θ) = lεP,Θ(ρ, θ) (3.96)
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which in turn results in

fΘ|P (θ|ρ) = fΘ|P (θ − ε|ρ). (3.97)

Since ε ∈ (0, 2π) was chosen arbitrarily, we conclude that fΘ|P (θ|ρ) = fΘ(θ) = 1
2π . The

problem in the case when λ1 6= λ2 is that if the elliptical domain is used, (3.94) remains

true, but LεP,Θ does not satisfy the spherical constraints any more, and if the spherical

domain is considered, LεP,Θ satisfies the constraints, but (3.94) does not hold any longer.

Therefore, in what follows, we provide some upper bounds and lower bounds for the

capacity of the deterministic channel.

1. Bounds based on the cubic constraints: For brevity, let

F(a,b) = {FX(x)|FXi(xi) = 0 xi < 0, FXi(xi) = 1 x2
i ≥ ai,

∫
Rn
x2
i d
nFX(x) ≤ bi , ∀i ∈ [1 : n]}

(3.98)

be the set of all CDFs with the cubic constraints defined by the vectors a and b,

respectively. By strengthening or weakening the constraints of (3.2), we have

sup
FX(x)∈F1

I(X; Y) ≤ C(up, ua) ≤ sup
FX(x)∈F2

I(X; Y) (3.99)

as long as F1 ⊆ {FX(x)|FX(x) = 1 for ‖x‖2 ≥ up,
∫
Rn ‖x‖

2dnFX(x) ≤ ua} ⊆ F2.

One possible choice for F2 is obtained with the enhanced cubic constraints as

follows

F2 = F(up1, ua1) (3.100)

where 1 is the n-dimensional all-one vector. Also, a trivial option for F1 would be

F1 = F(
up
n

1,
ua
n

1). (3.101)

Since the noise elements are independent, we have

n∑
i=1

sup
FXi (xi):|Xi|

2≤up
n
,E[|Xi|2]≤ua

n

I(Xi;Yi) ≤ C(up, ua) ≤
n∑
i=1

sup
FXi (xi):|Xi|

2≤up,E[|Xi|2]≤ua
I(Xi;Yi)

(3.102)

which leads to

n∑
i=1

CS(
λ2
iup
n

,
λ2
iua
n

) ≤ C(up, ua) ≤
n∑
i=1

CS(λ2
iup, λ

2
iua) (3.103)
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In which CS(., .) is the capacity of a scalar AWGN channel under peak and average

power constraints defined in [25]. The resources could alternatively be allocated

according to the noise covariance matrix Σ such that the resource of each compo-

nent is inversely proportional to its noise variance. Therefore, another possible set

for obtaining a lower bound is

F1 = F(upv, uav) (3.104)

in which vi =
λ2
i∑n

j=1 λ
2
j
. We name this last set of constraints as modified cubic

constraints.

2. Bounds based on the elliptical constraints: Another possible set of lower and upper

bounds is obtained by strengthening or weakening the constraints in (3.83). By

noting that

min{λ−2
1 , λ−2

2 , . . . , λ−2
n } ≤ aT (θ)Σa(θ) ≤ max{λ−2

1 , λ−2
2 , . . . , λ−2

n } (3.105)

we get the two following sets of constraints for the lower and the upper bounds of

(3.83), respectively.

F1 = {FP,Θ(ρ, θ)|P 2 ≤ min{λ2
1, . . . , λ

2
n}up , E[P 2] ≤ min{λ2

1, . . . , λ
2
n}ua}

(3.106)

F2 = {FP,Θ(ρ, θ)|P 2 ≤ max{λ2
1, . . . , λ

2
n}up , E[P 2] ≤ max{λ2

1, . . . , λ
2
n}ua}.

(3.107)

Following the same approach as in the proof of the theorem, it can be verified that

with these sets of constraints, the lower and the upper bounds results from the

input distributions that have finite number of concentric hyper-ellipsoids as their

support.

3. Bounds based on whitening the noise: Another trivial set of upper and lower

bounds is obtained by whitening the noise and therefore, making it spherically

symmetric. It is obvious that

sup
Σ=max{λ−2

1 ,...,λ−2
n }I

I(X; Y) ≤ C(up, ua) ≤ sup
Σ=min{λ−2

1 ,...,λ−2
n }I

I(X; Y) (3.108)
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where the bounds are obtained by distributions that have finite number of con-

centric hyper-spheres as their support as in section 3.4. It can be easily verified

that the bounds in 2) and 3) are actually the same, although the former is based

on weakening or strengthening the constraint and the latter is based on whitening

the noise.

4. Lower bound based on Entropy Power Inequality (EPI): The mutual information

can be lower bounded as

I(X; Y) = h(Y)− 1

2
ln((2πe)n|Σ|)

≥ n

2
ln
(
e

2
n
h(X) + e

1
n

ln((2πe)n|Σ|)
)
− 1

2
ln((2πe)n|Σ|) (3.109)

where in (3.109), vector EPI [35] has been used. In order to get a lower bound for

the capacity, we notice that the maximization of h(X) under the peak and average

constraints could be written as

sup
FX(x):‖X‖2≤up, E(‖X‖2)≤ua

h(X) = sup
FP (ρ):P 2≤up, E(P 2)≤ua

−
∫ ∞

0
fP (ρ) ln

fP (ρ)

ρn−1
dρ

+
n−2∑
i=1

lnαi + ln 2π. (3.110)

By the change of variable T = Pn

n , we have

sup
FP (ρ):P 2≤up, E(P 2)≤ua

−
∫ ∞

0
fP (ρ) ln

fP (ρ)

ρn−1
dρ = sup

FT (t):T≤u
n
2
p
n
, E(T

2
n )≤ ua

n
2
n

h(T ).

(3.111)

It can be verified that optimization theory guarantees a unique solution for (3.111)

and the necessary and sufficient conditions for f∗T to be the optimal pdf is the

existence of a λ ≥ 0 for which the following inequality holds for any fT (t) that has

its support inside the interval [0,
u
n
2
p

n ]

∫ u
n
2
p
n

0
(ln f∗T (t) + λt

2
n )(f∗T (t)− fT (t))dt ≤ 0. (3.112)
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It is obvious that when ua ≥ nup
n+2 , λ = 0 and the optimal distribution will be

uniform. In the case ua <
nup
n+2 , λ 6= 0 and the optimal distribution is given by

f∗T (t) = ae−λt
2
n , t ∈ [0,

u
n
2
p

n
] (3.113)

or equivalently

f∗P (ρ) = aρn−1e
− λρ2

( n
√
n)2 , ρ ∈ [0,

√
up] (3.114)

since it satisfies (3.112) with equality. The two degrees of freedom a, λ are uniquely

obtained by solving the two following equations:

∫ u
n
2
p
n

0 t
2
n e−λt

2
n dt∫ u

n
2
p
n

0 e−λt
2
n dt

=
ua

n
2
n

(3.115)

a =

∫ u
n
2
p
n

0
e−λt

2
n dt


−1

. (3.116)

It can be verified that the left-hand side of (3.115) is a strictly decreasing function

of λ having the range (0,
nup

(n+2)n
2
n

] and by continuity, there exists a unique λ > 0

that satisfies (3.115). Substituting this λ in (3.116) gives the value of a which

results in

h(X) =
λua

( n
√
n)2

+ ln

(
2(
√
π)n

aΓ(n2 )

)
(3.117)

Substituting (3.117) in (3.109), we get the following lower bound for the capacity

C(up, ua) ≥
n

2
ln

(
2

2
nπ

(aΓ(n2 ))
2
n

e
2λua

n( n
√
n)2 + 2πe n

√
|Σ|

)
− 1

2
ln((2πe)n|Σ|) (3.118)

A visual representation of some of the bounds is shown in figure 3.1 for n = 2, λ2
1 = 2λ2

2

and ua ≥ up. It is obvious that the figures inside the circle (which shows the peak power

constraint for the 2-dimensional channel) strengthen the constraint and those outside

the circle weaken it. In figure 3.1(a), the two ellipsoids are obtained from (3.105). In

other words the inner and the outer ellipsoids are given by

aT (θ)Σa(θ) = min{λ−2
1 , λ−2

2 }
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and

aT (θ)Σa(θ) = max{λ−2
1 , λ−2

2 },

respectively. The inner and outer squares in figure 3.1(b) are [−
√

up
2 ,
√

up
2 ]2 and [−√up,

√
up]

2,

respectively. The modified cubic constraint in figure 3.1(c) is based on resource allocation

according to the channel gains (i.e.,λ1 and λ2). Channels 1 and 2 have the peak power

of
λ2

1

λ2
1+λ2

2
up(=

2
3up in this example) and

λ2
2

λ2
1+λ2

2
up(=

1
3up in this example), respectively.

3.6 Numerical results

As stated in Theorem 3.1, the magnitude of the optimal input distribution has a finite

number of mass points and the phases are distributed according to (3.27). The algorithm

8 for finding the number, the positions and the probabilities of the optimal mass points

is exactly the same as that explained in [24]. When the average power constraint is

relaxed, Figures 3.2 to 3.6 show the capacity of the channel in (3.2) along with the

capacity-achieving input distribution for different values of n. In these figures, black,

red and green points have their probabilities in the intervals [0.7, 1], [0.3, 0.7] and [0, 0.3],

respectively. These points represent the optimal input mass points.

Figure 3.7 shows the capacity of the four dimensional channel versus up along with

the optimal input for a fixed average power ua = 10. It is obvious that the capacity

saturates at its conventional value given in (3.34). This saturation shows the near-

optimal performance of the discrete input for the conventional unbounded scenario. For

example, when n = 4 and ua = 10 the capacity of the channel with unbounded input

(i.e., CG = 2.5055) which is achieved by a generalized Rayleigh distributed P , can also

be achieved with good approximation (i.e., I(X; Y) = 2.5052) by a pmf having only

three mass points below
√

30.

Figure 3.8 shows the capacity versus the average power constraint for a fixed value of

the peak power (up = 20). It is obvious that for ua ≥ up, the average constraint becomes

inactive and the capacity is determined only by up. We have already shown that when

the peak power is very small (i.e., up � 1) and ua ≥ up, the optimal input has only one

8The codes for this section are available at http://www.ee.ic.ac.uk/bruno.clerckx/Research.html .
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Modified cubic constraint

(c) Modified Cubic Constraint

Figure 3.1: Weakening or strengthening the peak power constraint for n = 2 and
λ2

1 = 2λ2
2.

mass point at ρ =
√
up. Let FP1 denote the cdf of this optimal input. Therefore,

fV (v;FP1) = Kn(v,
√
up) (3.119)

h̃V (ρ;FP1) = −
∫ ∞

0
Kn(v, ρ) ln(Kn(v,

√
up))dv. (3.120)
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Figure 3.2: Capacity vs. up for n = 1 (ua ≥ up), and the optimal input mass points.
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Figure 3.3: Capacity vs. up for n = 2 (ua ≥ up), and the optimal input mass points.
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Figure 3.4: Capacity vs. up for n = 4 (ua ≥ up), and the optimal input mass points.

When up � 1, the above marginal entropy density is a convex and increasing function of

ρ and satisfies the equality of (3.39) (with λ = 0) at ρ =
√
up and the inequality of (3.38)

at all other points. As up increases, FP1 remains optimal until it violates the necessary

and sufficient conditions. By observing the behavior of h̃V (ρ, FP1), it is concluded that
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Figure 3.5: Capacity vs. up for n = 10 (ua ≥ up), and the optimal input mass points.
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Figure 3.6: Capacity vs. up for n = 20 (ua ≥ up), and the optimal input mass points.
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Figure 3.7: Capacity vs. up for n = 4 (ua = 10), and the optimal input mass points.

as up increases, the first point to violate the necessary and sufficient conditions will

happen at ρ = 0. Therefore, the peak power threshold utp for which FP1 remains optimal
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Figure 3.8: Capacity vs. ua for n = 4 (up = 20), and the optimal input mass points.

(when ua ≥ up) is obtained by solving the following equation for utp

h̃V (0;FP1) = h(V ;FP1). (3.121)

By solving (3.121) numerically, the values of the peak power threshold are obtained for

different values of n as shown in figure 3.9. For example, for n = 4, utp ≈ 12.81 which

means that when the peak power is below 12.81, the support of the optimal input has

only one hyper-sphere, and at this threshold it gets another mass point at zero as already

shown in figure 3.4. For n = 20, when up ≤ 66, constant amplitude signaling is optimal

which is consistent with figure 3.6. From figure 3.9, it can be observed that the ratio

up
n does not necessarily need to be vanishingly small to guarantee the optimality of FP1 .

Specifically, for the ratios of
up
n below (approximately) 3.4, FP1 remains optimal.

It has already been shown that when the number of antennas is above a certain threshold,

constant amplitude signaling at the peak power (i.e., ‖X‖ =
√
up) becomes optimal.

Figure 3.10 compares the achievable rate of the constant amplitude signaling 9at the

peak power with the capacity of the channel (with the constraint ‖X‖2 ≤ up) and

the unbounded Gaussian input having an average power of up. As it can be observed,

when the number of antennas is sufficiently large, constant amplitude signaling is not

9The rate has been obtained by numerical evaluation of

sup
FX(x):‖X‖2=up

I(X; Y) = −
∫ ∞

0

e−
( n√nv)2+up

2
In

2
−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2
−1

ln

(
e−

( n√nv)2+up
2

In
2
−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2
−1

)
dv

− n

2
ln(2e) + ln 2.
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Figure 3.9: The peak power threshold for which FP1 remains optimal versus n (ua ≥
up).

only optimal but also it has a performance close to that of the unbounded Gaussian

signaling.

Figures 3.11 and 3.12 demonstrate the bounds for the deterministic MIMO channel in

(3.79) for two values of the condition number of the channel. It can be observed that the

gap between the elliptical lower and upper bound increases with the condition number.

This is intuitively justified by noting that the elliptical bounds converge to the actual

capacity of the channel when the condition number approaches unity. For large values of

the condition number, the lower bound obtained by modified cubic constraints performs

better than the equal resource allocation at small values of the peak power. Finally, it is

important to note that although the lower bound obtained by EPI is loose in these two

figures, it becomes asymptotically tight for large values of up. It can be easily verified by

the fact that when the average power constraint is relaxed, we have λ = 0 and a = n

u
n
2
p

in (3.117). When up → ∞ the lower bound in (3.118) gets arbitrarily close to h(X) in

(3.117) which is obviously an upper bound for the capacity. This justifies the asymptotic

tightness of the bound resulted from EPI at large values of up.
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Chapter 4

A Tighter Bound for the Capacity

of the Amplitude-Constrained

Scalar AWGN Channel

4.1 Overview

This chapter slightly improves the upper bound in Thangaraj et al. on the capacity of

the amplitude-constrained scalar AWGN channel. This improvement makes the upper

bound within 0.002 bits of the capacity for Eb
N0
≤ 2.5 dB.

4.2 Introduction

The capacity of the point-to-point communication system subject to amplitude and

variance (or equivalently, peak and average power) constraints was investigated in [25] for

the scalar Gaussian channel where it was shown that the capacity-achieving distribution

is unique and has a probability mass function with a finite number of mass points.

Consequently, the capacity and its achieving distribution can be evaluated numerically

where the number, position and probabilities of the mass points are obtained numerically.

In [36], an analytic upper bound is provided on the capacity which reduces the com-

putational burden of numerical methods significantly. Recently, the bound in [36] was

71
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refined in [37]. In this chapter, this bound is further refined by means of increasing the

optimization parameters.

This chapter is organized as follows. Section 4.3 provides some preliminaries helpful

for the following sections. The main result is given as a theorem in section 4.4. A

comparison of the bounds is provided in section 4.5.

4.3 Preliminaries

For a memoryless channel with input X, output Y , input Cumulative Distribution Func-

tion (CDF) FX(x) with support S and the channel density fY |X(y|x), we have (as in

[37])

C = sup
FX(x)

I(X;Y )

= sup
FX(x)

∫
D(fY |X(y|x)||fY (y))dFX(x) (4.1)

≤ sup
FX(x)

∫
D(fY |X(y|x)||qY (y))dFX(x) (4.2)

≤ sup
x∈S

D(fY |X(y|x)||qY (y)) (4.3)

where in (4.1), D(a||b) denotes the relative entropy between the densities a and b. The

inequality in (4.2) is a direct consequence of the non-negativity of relative entropy, i.e.

D(fY (y)||qY (y)) ≥ 0 in which qY (y) is an arbitrary test density. Note that, the more

similar qY (y) is to fY (y), the tighter becomes the upper bound in (4.2).

For the scalar AWGN channel, we have

Y = X +N (4.4)

where N ∼ N(0, 1) is a Gaussian noise independent of the input. The amplitude-

constrained capacity of this channel is

C = max
FX(x):|X|≤A

I(X;Y ) (4.5)

where A denotes the amplitude constraint.
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Figure 4.1: The optimal output density as A increases.

It was shown in [25] that the capacity-achieving distribution F ∗X(x) has a finite number

of mass points in [−A,A]. McKellips proposed an analytic upper bound for C based on

bounding the entropy of Y in [36]. In [37], the upper bound for the capacity is further

refined. The main idea is to find a simple test density qY (y) that looks quite similar to

the optimal output density f∗Y (y), which results from the optimal input F ∗X(x), and plug

it into (4.2) to get a tight upper bound. Since, as mentioned before, the more similar

qY (y) is to fY (y), the tighter becomes the upper bound in (4.2).

Figure 4.1 shows the optimal output density f∗Y (y) for three values of the amplitude

constraint (A1 < A2 < A3). As it can be observed, it is intuitive to take a test density

qY (y) which is uniform on [−A,A] and has Gaussian tails towards infinity1.

The following functions are frequently used throughout this chapter

ψ(x) =
1√
2π
e−

x2

2

Q(x) =

∫ +∞

x
ψ(t)dt

g(u) , u2Q(u)− uψ(u).

For the capacity in (4.5), a trivial upper bound is the capacity with average power

constraint, i.e. 1
2 log(1 + P ) in which P = A2. Therefore, the bounds proposed in

1According to Figure 4.1, this choice of test density is more acceptable in small or very large values
of A.
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literature have the general form of

C ≤ min

{
T (P ),

1

2
log(1 + P )

}
(4.6)

where in [36], we have

T (P ) = log

(
1 +

√
2P

πe

)
(4.7)

and in [37], it was tightened further for P ≤ 6.303 dB as2

T (P ) = β(P ) log

√
2P

πe
+H(β(P )) (4.8)

in which β(P ) = 1
2 −Q(2

√
P ) and H(x) = −x log(x)− (1− x) log(1− x).3

In the following section, we further tighten T (P ) for the whole SNR regime.

4.4 Main results

Theorem 4.1. The capacity in (4.5) has the following upper bound

C ≤ min

{
R(P ) +W (P ),

1

2
log(1 + P )

}
(4.9)

where

W (P ) =
1

2

(
log σ2(P ) +

1

σ2(P )
− 1

)(
1

2
+Q(2

√
P )

)
+
g(2
√
P )

2σ2(P )
(4.10)

in which

σ2(P ) = 1 +
2g(2
√
P )

1 + 2Q(2
√
P )
, (4.11)

and

R(P ) =


log

(
1 +

√
2P
πe

)
P ≥ 6.303dB

β(P ) log
√

2P
πe +H(β(P )) otherwise

. (4.12)

Note that in the very small/large SNR regimes (i.e., P � 0.1 or P � 0.5), σ2(P ) ≈ 1

and g(2
√
P ) ≈ 0 which makes the bound boil down to (4.7) and (4.8).

2This is the RHS of (17) in [37].
3The logarithms are in base e.
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Proof. Consider the following family of test densities

qY (y) =


β

2A |y| ≤ A
1−β√
2πσ2

e−
(y−A)2

2σ2 |y| > A
(4.13)

where σ2 and β(∈ [0, 1]) are parameters to be optimized. With this choice of test density,

the relative entropy in (4.3) is evaluated as

D(fY |X(y|x)||qY (y)) =

∫ +∞

−∞
ψ(y − x) log

ψ(y − x)

qY (y)
dy

= log
2A

β
√

2πe
+ log

β
√

2πe

(1− β)2A
[Q(A− x) +Q(A+ x)]

+
1

2

(
log σ2 +

1

σ2
− 1

)
[Q(A− x) +Q(A+ x)]

+
1

2σ2
[g(A− x) + g(A+ x)] (4.14)

We first find the maximum of (4.14) over x ∈ [−A,A] and then minimize this maximum

value over the parameters β and σ2. In other words,

C ≤ min
β,σ2

max
−A≤x≤A

D(fY |X(y|x)||qY (y)). (4.15)

As it can be observed, (4.14) is an even function of x which makes the region of interest

as x ∈ [0, A]. Also, the optimization of the first two terms in (4.14) was done in [37].

Therefore, we focus on the remaining terms.

Lemma. The following inequality holds for ∀x ∈ [0, A]

g(A− x) + g(A+ x) ≤ g(2A). (4.16)

Proof. The proof is provided in Appendix H.

It can be easily verified that Q(A− x) +Q(A+ x) is an increasing function of x ∈ [0, A]

and log x+ 1
x − 1 ≥ 0 for x > 0. Therefore, we can write

1

2

(
log σ2 +

1

σ2
− 1

)
[Q(A− x) +Q(A+ x)] +

1

2σ2
[g(A− x) + g(A+ x)]

≤ 1

2

(
log σ2 +

1

σ2
− 1

)(
1

2
+Q(2A)

)
+

1

2σ2
g(2A). (4.17)
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Figure 4.2: Comparison of the bounds.

The RHS of (4.17) is minimized by setting σ2 as in (4.11) and the minimum is equal to

W (P ) in (4.10). This completes the proof.

Note that the lemma is the key part in allowing to add σ2 to the optimization parameters,

since if the trivial upper bound of zero is used instead of (4.16), the optimal value of σ2

would be one (as used in [36] and [37]).

4.5 Numerical results

Figure 4.2 compares the bounds in literature with the one proposed in this chapter.

We observe that the addition of σ2 to the optimization problem results in the tightest

bound. This small improvement is mainly visible in the range [−1.5, 2.5] dB (SNR per

bit) as shown in the figure.



Chapter 5

Constant Envelope Signaling in

parallel Channels

5.1 Overview

The capacity of the point-to-point vector Gaussian channel under the peak power con-

straint is not known in general. In this chapter, we consider a simpler scenario in which

the input signal vector is forced to have a constant envelope (or norm). The capacity-

achieving distribution for the non-identity 2 × 2 parallel when the input vector lies on

a circle in R2 is obtained and is shown to have a finite number of mass points on the

circle. Subsequently, it is shown that the degrees of freedom (DoF) of a full-rank n by

n channel with constant envelope signaling is n− 1 and it can be achieved by a uniform

distribution over the surface of the hypersphere whose radius is defined by the constant

envelope.

5.2 Introduction

The capacity of the Gaussian MIMO with identity channel under the peak and average

power constraints is shown in chapter 3 (and in [38]) where the support of the optimal

input distribution is a finite set of hyper-spheres with mutually independent phases and

amplitude in the spherical domain. However, the capacity of the general point-to-point

Gaussian MIMO channel under the peak power constraint is an open problem. In this
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chapter, we address a simpler problem in which the input is forced to have a constant

envelope (i.e., for any codeword xn(m) where m denotes the message index, instead of

the peak power constraint which is equivalent to ‖xi(m)‖ ≤ R , ∀i ∈ [1 : n], a stronger

condition, which is ‖xi(m)‖ = R , ∀i ∈ [1 : n], must be satisfied). A 2 by 2 non-identity

channel matrix is considered. The capacity of this channel under constant-norm inputs

is obtained and it is shown that the capacity achieving distribution has a finite number

of mass points on the circle defined by the constraint. Although the capacity does not

have a closed form solution, lower and upper bounds can be obtained for it which are

sufficient to give the optimal degrees of freedom (DoF). As a result, it is shown that

the degrees of freedom (DoF) of a full-rank n by n channel with constant envelope

signaling is n − 1 and it can be achieved by a uniform distribution over the surface of

the hypersphere whose radius is defined by the constant envelope.

The steps for proving the finiteness of the support of the optimal input is similar to

that in [25] which is based on contradiction. More precisely, first, it is assumed that the

optimal input has an infinite number of mass points. By using some tools in real and

complex analysis, this assumption leads to an equality (involving a probability density

function) which must be satisfied on a set. The last part of the proof is showing that

this equality does not hold, and therefore disproving the first assumption of an infinite

number of points for the optimal input distribution. In [25] and [24] this contradiction

is obtained by directly solving for the probability density function (by means of Fourier

and Laplace transforms) and showing that either it is not a legitimate pdf or it cannot be

induced by the input. Hermite polynomials and its properties were used in [39] to solve

for the probability density function and get the contradiction. The application of these

methods and solving for the pdf is not straightforward for the problem considered in this

chapter. Therefore, knowing that the right hand side of the aforementioned equality is a

constant, we obtain the contradiction by showing that the left hand side of this equality

can become unbounded with its parameter.

This chapter is organized as follows. Section 5.3 explains the system model under con-

sideration. Section 5.4 states the main result of this chapter through a theorem whose

detailed proof is given in section 5.5. The asymptotic behavior of the capacity-achieving

input distribution for small values of SNR along with the degrees of freedom under

constant envelope signaling are presented in section 5.6 . In section 5.7, the problem
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is analyzed in the polar coordinates and the notations of this section will be used in

section 5.8 which shows the numerical results.

5.3 System model

We consider a 2× 2 discrete-time memoryless vector Gaussian channel given by

Yi = HXi + Wi (5.1)

in which i denotes the channel use. H = diag{λ, 1} (|λ| 6= 1) is the deterministic channel

matrix and {Wi} is an i.i.d. noise vector process with Wi ∼ N(0, I2) (and independent

of Xi) for every transmission i ∈ [1 : n]. The assumption of |λ| 6= 1 is to exclude

the identity channel matrix for which the capacity-achieving distribution under a fixed

transmission power is already known in [40] (i.e., the optimal input has uniform phase

on the circle defined by the constant norm). It can be easily verified that it is sufficient

to consider only the case λ > 1. 1

The capacity of this channel under a fixed transmission power (i.e., constant norm) is

C(R) = sup
FX(x):‖X‖a.s.= R

I(X; Y) = sup
FX(x):‖X‖a.s.= R

h(Y)− ln(2πe) (5.2)

where R denotes the constant envelope and the capacity is in nats
channel use

. FX(x)

denotes the CDF of the input over which the optimization is done. The pdf of the

output determined by the input is given by

fY(y;FX) =

∫∫
‖x‖=R

1

2π
e−

(y1−λx1)2

2
− (y2−x2)2

2 d2FX(x) (5.3)

where the notation fY(y;FX) is to emphasize that Y has been resulted by FX. Due to

the symmetry of noise and constant amplitude of the input, it suffices to consider the

input distributions that satisfy the following

d2FX(x) = (dFX1(x1)).

[
1

2
δ(x2 −

√
R2 − x2

1) +
1

2
δ(x2 +

√
R2 − x2

1)

]
dx2 (5.4)

1This can be justified by a simple normalization and symmetry of the noise.
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where δ(·) is the Dirac-delta function. In other words, any other input distribution that

does not take the form in (5.4), cannot be an optimal distribution and hence is excluded

from our consideration.

Substituting (5.4) in (5.3), we get the output pdf as

fY(y;FX1) =

∫ R

−R
K(y1, y2, x)dFX1(x) (5.5)

where the kernel is 2

K(y1, y2, x) =
1

2π
e−

(y1−λx)2

2

[
1

2
e−

(y2−
√
R2−x2)2

2 +
1

2
e−

(y2+
√
R2−x2)2

2

]
. (5.6)

The marginal entropy density of the output variables induced by the input is defined as

[25]

h̃Y(x;FX1) = −
∫ ∞
−∞

∫ ∞
−∞

K(y1, y2, x) ln fY(y;FX1)dy (5.7)

which satisfies the following (which in turn justifies why it is named density)

h(Y;FX1) =

∫ R

−R
h̃Y(x;FX1)dFX1(x). (5.8)

Finally, the optimization problem in (5.2) becomes equivalent to

C(R) = sup
FX1

(x):X1∈[−R,R]
h(Y;FX1)− ln(2πe) (5.9)

where X1 ∈ [−R,R] is in a.s. sense.

5.4 Main results

Let ε∗X denote the set of points of increase of the optimal input distribution.3

2The kernel function is the same as the conditional pdf of the output given the input i.e., fY|X(y|x).
3A point P is said to be a point of increase of a distribution if for any open set Γ containing P , we

have Pr{Γ} > 0.
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Theorem 5.1. The optimization problem in (5.9) has a unique solution (denoted by

F ∗X1
(x)) which satisfies the following necessary and sufficient conditions

h̃Y(x;F ∗X1
) = h(Y;F ∗X1

) ∀x ∈ ε∗X (5.10)

h̃Y(x;F ∗X1
) < h(Y;F ∗X1

) ∀x ∈ [−R,R]− ε∗X . (5.11)

Further, ε∗X consists of a finite number of mass points in the interval [−R,R] (i.e.,

|ε∗X | <∞).

5.5 Proof of Theorem 5.1

The steps of the proof are as follows. The uniqueness of the solution along with the nec-

essary and sufficient conditions are obtained through the convex optimization problem.

The finite cardinality of ε∗X is proved by contradiction. In other words, it is shown that

infinite number of mass points for the optimal input is not possible.

Let FR denote the set of all cumulative distribution functions having their support in

the interval [−R,R], i.e.

FR = {FX1(x)|FX1(x) = 0 ∀x < −R , FX1(x) = 1 ∀x ≥ R}. (5.12)

Proposition 1. The metric space (FR, dL) is convex and compact where dL denotes

the Levy metric [41].

Proof. The proof is the same as that in [42] and [26, Appendix I].

Proposition 2. The differential entropy h(Y;FX1) : FR → R is continuous.

Proof. The proof is the same as that in [42], [24, Proposition 3], [26, Appendix I] and

[29, Proposition 1].

Proposition 3. The differential entropy h(Y;FX1) : FR → R is strictly concave and

weakly differentiable.
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Proof. The proof is the same as that in [42], [24, Proposition 4], [26, Appendix II] and

[29, Proposition 2].

The weak derivative of h(Y;FX1) at F 0
X1

is given by

h′F 0
X1

(Y;FX1)

= lim
ζ→0

h(Y; (1− ζ)F 0
X1

+ ζFX1)− h(Y;F 0
X1

)

ζ

= lim
ζ→0

∫ R
−R h̃Y

(
x; (1− ζ)F 0

X1
+ ζFX1

)
d
(
(1− ζ)F 0

X1
(x) + ζFX1(x)

)
−
∫ R
−R h̃Y

(
x;F 0

X1

)
dF 0

X1
(x)

ζ

= lim
ζ→0

(1− ζ)
∫ R
−R h̃Y(x;F 0

X1
)dF 0

X1
(x) + ζ

∫ R
−R h̃Y(x;F 0

X1
)dFX1(x)−

∫ R
−R h̃Y

(
x;F 0

X1

)
dF 0

X1
(x)

ζ

=

∫ R

−R
h̃Y(x;F 0

X1
)dFX1(x)− h(Y;F 0

X1
) , ∀FX1 ∈ FR. (5.13)

Since h(Y;FX1) is a concave map from FR to R, Lagrangian optimization [43] guarantees

a unique solution for (5.9) and the necessary and sufficient condition for the maximizer

F ∗X1
is ∫ R

−R
h̃Y(x;F ∗X1

)dFX1(x) ≤ h(Y;F ∗X1
) , ∀FX1 ∈ FR. (5.14)

It can be shown that (5.14) is equivalent to (5.10) and (5.11) (as in [25, Corollary 1]).

The marginal entropy density can be extended to the complex domain, i.e.

h̃Y(z;FX1) = −
∫ ∞
−∞

∫ ∞
−∞

K(y1, y2, z) ln fY(y;FX1)dy , z ∈ C. (5.15)

Let D = C− {(−∞,−R] ∪ [R,+∞)}.

Proposition 4. The kernel K(y1, y2, z) is holomorphic on D.

Proof. This can be verified4 by the fact that the real and imaginary parts of K(y1, y2, z =

x + jy) have continuous partial derivatives and satisfy the Cauchy-Riemann equations

on D. As a result, by Cauchy’s theorem, for every rectifiable closed curve γ in D,

∫
γ
K(y1, y2, z)dz = 0. (5.16)

4Alternatively, it can be verified by noting that D is the domain where log(R2 − z2) is holomorphic.
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Proposition 5. The marginal entropy density h̃Y(z;FX1) is holomorphic on D.

Proof. First, we show the continuity of h̃Y(z;FX1) on D. Let {zm}∞1 be a sequence of

complex numbers in D converging to z0 ∈ D. Since K(y1, y2, z) is holomorphic on this

domain, it is continuous. Therefore,

lim
m→∞

K(y1, y2, zm) ln fY(y;FX1) = K(y1, y2, z0) ln fY(y;FX1). (5.17)

By the application of Lebesgue’s dominated convergence theorem, the continuity and

boundedness of the kernel guarantees the continuity of fY(y;FX1) given in (5.5). This

allows us to write

min
x∈[−R,R]

K(y1, y2, x) ≤ fY(y;FX1) ≤ max
x∈[−R,R]

K(y1, y2, x). (5.18)

Therefore,

1

2π
e−

y2
1+y2

2
2
−λ

2R2

2
−λR|y1| ≤ fY(y;FX1) ≤ 1

2π
e−

y2
1+y2

2
2
−R

2

2
+λR|y1| coshRy2 (5.19)

which results in

| ln fY(y;FX1)| ≤ ln(2π) +
y2

1 + y2
2

2
+
λ2R2

2
+ λR|y1|+ ln(coshRy2). (5.20)

It can be verified that

|h̃Y(zm;FX1)|

≤
∫ ∞
−∞

∫ ∞
−∞
|K(y1, y2, zm)|| ln fY(y;FX1)|dy

≤ | 1

2π
e−

(λ2−1)z2m
2 |e−

R2

2

∫ ∞
−∞

∫ ∞
−∞

e−
y2
1+y2

2
2 |eλy1zm || cosh(y2

√
R2 − z2

m)|| ln fY(y;FX1)|dy

≤ | 1

2π
e−

(λ2−1)z2m
2 |e−

R2

2

∫ ∞
−∞

∫ ∞
−∞

e−
y2
1+y2

2
2 eλy1Re(zm)e|y2|

√
R2+|zm|2 | ln fY(y;FX1)|dy

(5.21)

<∞ (5.22)

where in (5.21), we have used the fact that |ez| = eRe(z), | cosh(z)| ≤ cosh(Re(z)) and

cosh(x) ≤ e|x|(x ∈ R). (5.22) is due to the upper bound in (5.20) and the term e−
y2
1+y2

2
2

in the integration. Since the absolute value of the integrand of h̃Y(zm;FX1) is integrable,
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by Lebesgue’s dominated convergence theorem, we have

lim
m→∞

h̃Y(zm;FX1) = − lim
m→∞

∫ ∞
−∞

∫ ∞
−∞

K(y1, y2, zm) ln fY(y;FX1)dy

= −
∫ ∞
−∞

∫ ∞
−∞

lim
m→∞

K(y1, y2, zm) ln fY(y;FX1)dy

= −
∫ ∞
−∞

∫ ∞
−∞

K(y1, y2, z0) ln fY(y;FX1)dy

= h̃Y(z0;FX1) (5.23)

which proves the continuity of h̃Y(z;FX1). Let ∂T denote an arbitrary triangle in D.

We can write,

∫
∂T
h̃Y(z;FX1)dz = −

∫
∂T

∫ ∞
−∞

∫ ∞
−∞

K(y1, y2, z) ln fY(y;FX1)dydz

= −
∫ ∞
−∞

∫ ∞
−∞

∫
∂T
K(y1, y2, z)dz ln fY(y;FX1)dy (5.24)

= 0 (5.25)

where (5.24) is allowed by Fubini’s theorem, because for a given rectifiable triangle ∂T ,

∫
∂T
|h̃Y(z;FX1)|dz <∞. (5.26)

(5.25) is due to the holomorphy of K(y1, y2, z) (see (5.16)). Therefore, by Morera’s

theorem (with weakened hypothesis) [44], it is concluded that h̃Y(z;FX1) is holomorphic

on D.

If ε∗X has an infinite number of points, since it is bounded in [−R,R], it must have an

accumulation point by Bolzano-Weierstrass theorem. If the accumulation point is in

(−R,R), it is also in the domain where the marginal entropy density is holomorphic

(i.e., D = C − {(−∞,−R] ∪ [R,+∞)}). Therefore, by using the identity theorem of

holomorphic functions of one complex variable, the following must be satisfied

h̃Y(z;F ∗X1
) = h(Y;F ∗X1

) , ∀z ∈ D. (5.27)

If the accumulation point is on the boundary (i.e. it is ±R) where the holomorphy fails

to hold (and the usage of identity theorem is not allowed), we can still show that (5.27)

must hold. The reason is as follows. Note that an accumulation point of P (∈ [−R,R])



Chapter 5. Constant Envelope Signaling in Parallel Channels 85

on the x1 axis is equivalent to an accumulation point of
√
R2 − P 2 (∈ [−R,R]) on the

x2 axis and vice versa. Therefore, if there is an accumulation point of ±R on x1 axis,

there is an accumulation point of 0 on x2 axis. By using an alternative representation

of the input distribution in (5.4), we can write

d2FX(x) = (dFX2(x2)).

[
1

2
δ(x1 −

√
R2 − x2

2) +
1

2
δ(x1 +

√
R2 − x2

2)

]
dx1 (5.28)

which results in an equivalent optimization problem as

C(R) = sup
FX2

(x):X2∈[−R,R]
h(Y;FX2)− ln(2πe) (5.29)

with the following modified terms

fY(y;FX2) =

∫ R

−R
K ′(y1, y2, x)dFX2(x) (5.30)

h̃Y(x;FX2) = −
∫ ∞
−∞

∫ ∞
−∞

K ′(y1, y2, x) ln fY(y;FX2)dy (5.31)

K ′(y1, y2, x) =
1

2π
e−

(y2−x)2

2

[
1

2
e−

(y1−λ
√
R2−x2)2

2 +
1

2
e−

(y1+λ
√
R2−x2)2

2

]
. (5.32)

By using the same tools in analysis, an accumulation point of ±R on x1 axis (which is

equivalent to an accumulation point of 0 on x2 axis) results in

h̃Y(z;F ∗X2
) = h(Y;F ∗X2

) , ∀z ∈ D. (5.33)

This also means that all the points on the x2 axis in the interval (−R,R) are points of

increase of F ∗X2
. Hence, all the points on the x1 axis in the interval (−R,R) − {0} are

points of increase of F ∗X1
which in turn results in having an accumulation point (6= ±R)

on the x1 axis. Therefore, regardless of having the accumulation point on x1 axis in

the interior or the boundary of [−R,R], the assumption of having an infinite number of

mass points in ε∗X results in (5.27). In what follows, the equality in (5.27) is disproved.

Rewriting (5.27), we have

− 1

2π

∫ ∞
−∞

∫ ∞
−∞

e−
(y1−λz)

2

2

[
1

2
e−

(y2−
√
R2−z2)2

2 +
1

2
e−

(y2+
√
R2−z2)2

2

]
ln fY(y;F ∗X1

)dy = c,

∀z ∈ D (5.34)
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where c(= h(Y;F ∗X1
)) is a constant. Let z = x+ iε (ε 6= 0). For any given x <∞, (5.34)

implies

lim
ε→0
− 1

2π

∫ ∞
−∞

∫ ∞
−∞

e−
(y1−λ(x+iε))2

2

[
1

2
e−

(y2−
√
R2−(x+iε)2)2

2 +
1

2
e−

(y2+
√
R2−(x+iε)2)2

2

]
× ln fY(y;F ∗X1

)dy = c. (5.35)

Since the absolute value of the integrand in (5.35) is integrable, by the application of

Lebesgue’s dominated convergence theorem, we can take the limit inside the integrals

and obtain

− 1

2π

∫ ∞
−∞

∫ ∞
−∞

e−
(y1−λx)2

2

[
1

2
e−

(y2−
√
R2−x2)2

2 +
1

2
e−

(y2+
√
R2−x2)2

2

]
ln fY(y;F ∗X1

)dy = c,

∀x ∈ R. (5.36)

In the sequel, it is shown that (5.36) does not hold. More precisely, it is shown that the

left hand side of (5.36) becomes unbounded as x goes to infinity and therefore it cannot

be a constant on the whole real line. We rewrite fY(y;F ∗X1
) as

fY(y;F ∗X1
) =

1

2π
e−

y2
1+y2

2
2
−R

2

2 g(y;F ∗X1
) (5.37)

where

g(y;F ∗X1
) =

∫ R

−R
e−

(λ2−1)x2

2
+λy1x cosh(y2

√
R2 − x2)dF ∗X1

(x). (5.38)

By substituting (5.37) in (5.36), we obtain

ln(2π) +R2 + 1 +
λ2 − 1

2
x2 −

∫ ∞
−∞

∫ ∞
−∞

K(y1, y2, x) ln g(y;F ∗X1
)dy2dy1︸ ︷︷ ︸

I

= c , ∀x ∈ R.

(5.39)

The double integral in (5.39) at large values of x can be written as (note that we make

use of the equality cosh(ix) = cos(x))

I = e−
(λ2−1)

2
x2

∫ ∞
−∞

∫ ∞
−∞

e
−y2

1−y
2
2+2λy1x

2 cos(y2

√
x2 −R2) ln g(y;F ∗X1

)dy2dy1 (5.40)

= lim
a,b,c,d→+∞

e−
(λ2−1)

2
x2

∫ b

−a

∫ d

−c
e
−y2

1−y
2
2+2λy1x

2 cos(y2

√
x2 −R2) ln g(y;F ∗X1

)dy2dy1.

(5.41)

If it can be shown that |I| ≤ O(x) (i.e., the growth of I with x is at most linearly), then
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the proof is complete by observing that the left hand side of (5.39) does not converge to

any real number as x increases and therefore it cannot be a constant on the whole real

line.

Let M,K be two sufficiently large numbers satisfying K �M and define I(M) as

I(M) = I−K−∞ + IK−K + I+∞
K (5.42)

in which

Iba , e−
(λ2−1)

2
x2

∫ b

a

∫ M

−M
e
−y2

1−y
2
2+2λy1x

2 cos(y2

√
x2 −R2) ln g(y;F ∗X1

)dy2dy1,

a, b ∈ R ∪ {−∞,+∞}. (5.43)

In what follows, we find upper bounds for each of the terms in (5.42) when x is sufficiently

large.

lim
x→+∞

|IK−K |

≤ lim
x→+∞

e−
(λ2−1)

2
x2

∫ K

−K

∫ M

−M
e
−y2

1−y
2
2+2λy1x

2 | cos(y2

√
x2 −R2)|| ln g(y;F ∗X1

)|dy2dy1

≤ lim
x→+∞

e−
(λ2−1)

2
x2

∫ K

−K

∫ M

−M
e
−y2

1−y
2
2+2λy1x

2 | ln g(y;F ∗X1
)|dy2dy1

≤ lim
x→+∞

e−
(λ2−1)

2
x2

∫ K

−K

∫ M

−M
e
−y2

1−y
2
2+2λy1x

2 R(λ|y1|+ |y2|)dy2dy1 (5.44)

= 0 (5.45)

where in (5.44), we use the following upper bound for g(y;F ∗X1
) defined in (5.38)

g(y;F ∗X1
) ≤ eR(λ|y1|+|y2|). (5.46)

Similarly, for the term I−K−∞, we can write

lim
x→+∞

|I−K−∞| ≤ lim
x→+∞

e−
(λ2−1)

2
x2

∫ −K
−∞

∫ M

−M
e
−y2

1−y
2
2+2λy1x

2 R(λ|y1|+ |y2|)dy2dy1 (5.47)

= 0. (5.48)
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Bounding I+∞
K is more involved. First, according to the boundary of integration in I+∞

K ,

we have y1 ≥ K �M ≥ |y2|. By rewriting g(y;F ∗X1
) in this regime, we get

g(y;F ∗X1
) =

∫ R

−R
e−

(λ2−1)x2

2
+λy1x cosh(y2

√
R2 − x2)dF ∗X1

(x)

=

∫ R

−R

[
1

2
e−

(λ2−1)x2

2
+λy1x+y2

√
R2−x2

+
1

2
e−

(λ2−1)x2

2
+λy1x−y2

√
R2−x2

]
dF ∗X1

(x)

≈
∫ R

−R

[
1

2
eλy1x +

1

2
eλy1x

]
dF ∗X1

(x) (5.49)

=

∫ R

−R
eλy1xdF ∗X1

(x) (5.50)

where (5.49) is due to the fact that y1 ≥ K �M ≥ max{|y2|, R} and this approximation

gets better when M →∞ and K grows faster than M . Therefore,

lim
M→+∞:x�K�M

|I+∞
K | (5.51)

= lim
M→+∞:x�K�M

∣∣∣∣e− (λ2−1)
2

x2

∫ ∞
K

∫ M

−M
e
−y2

1−y
2
2+2λy1x

2 cos(y2

√
x2 −R2) ln g(y;F ∗X1

)dy2dy1

∣∣∣∣
≈ lim

M→+∞:x�K�M

∣∣∣∣e− (λ2−1)
2

x2

∫ ∞
K

e
−y2

1+2λy1x

2

∫ M

−M
e−

y2
2
2 cos(y2

√
x2 −R2)dy2

× ln

(∫ R

−R
eλy1xdF ∗X1

(x)

)
dy1

∣∣∣∣
= lim

K→+∞:x�K

∣∣∣∣√2πe−
λ2

2
x2+R2

2

∫ ∞
K

e
−y2

1+2λy1x

2 ln

(∫ R

−R
eλy1xdF ∗X1

(x)

)
dy1

∣∣∣∣ (5.52)

≤ lim
K→+∞:x�K

√
2πe−

λ2

2
x2+R2

2

∫ ∞
K

e
−y2

1+2λy1x

2 Rλy1dy1

= lim
K→+∞:x�K

√
2πRλe

R2

2

∫ ∞
K

e−
(y1−λx)2

2 y1dy1

= lim
K→+∞:x�K

√
2πRλe

R2

2

(
e−

(K−λx)2

2 +
√

2πλxQ(K − λx)

)
(5.53)

= lim
x→+∞

2πRe
R2

2 λ2x (5.54)

where in (5.52), we have used the equality
∫ +∞
−∞ e−βx

2
cos bxdx =

√
π
β e
− b

2

4β (Re{β} > 0)

and this approximation becomes better as M grows. In (5.53), Q(a) =
∫∞
a

e−
t2

2√
2π
dt. The
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limit of the left hand side of (5.39) is

lim
x→+∞

ln(2π) +R2 + 1 +
λ2 − 1

2
x2 − I

= lim
M→+∞:x�K�M

ln(2π) +R2 + 1 +
λ2 − 1

2
x2 − I(M) (5.55)

= lim
M→+∞:x�K�M

ln(2π) +R2 + 1 +
λ2 − 1

2
x2 − I−K−∞ − IK−K − I+∞

K

≥ lim
M→+∞:x�K�M

ln(2π) +R2 + 1 +
λ2 − 1

2
x2 − |I−K−∞| − |IK−K | − |I+∞

K |

≥ lim
x→+∞

ln(2π) +R2 + 1 +
λ2 − 1

2
x2 − 2πRe

R2

2 λ2x

= +∞. (5.56)

Note that the assumption of λ > 1 is crucial for all of the bounds specially in (5.56).

Therefore, (5.39) does not hold on the whole real line (and in turn (5.27) does not hold

on D) which makes the assumption of infinite number of mass points incorrect. This

completes the proof.

5.6 Asymptotic behavior

Corollary 1. For λ ≥ 1, when the norm of the input vector is very small, we have

C(R) ≈ λ2R2

2
, R→ 0 (5.57)

and the asymptotically optimal input distribution is given by

F
asym
X (x) =

[
1

2
u(x1 −R) +

1

2
u(x1 +R)

]
u(x2) (5.58)

where u(.) is the unit step function.

Proof. From (5.2), we can write

C(R) ≤ sup
FX(x):E[‖X‖2]≤R2

I(X; Y)

=
1

2
ln(1 + λ2P ∗1 ) +

1

2
ln(1 + P ∗2 ) (5.59)
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where the solutions of the water filling algorithm are given by

(P ∗1 , P
∗
2 ) =

 (R2, 0) R2 ≤ 1− 1
λ2

(
R2+1− 1

λ2

2 ,
R2−1+ 1

λ2

2 ) o.w.
. (5.60)

When R is vanishingly small, from (5.59) and (5.60), we have

lim
R→0

C(R) ≤ lim
R→0

1

2
ln(1 + λ2R2) =

λ2R2

2
. (5.61)

In what follows, we show that the distribution in (5.58) achieves the upper bound in

(5.79) asymptotically. The pdf of the output induced by this input distribution is

fY(y;F
asym
X ) =

1

2π
e−

y2
2
2

(
1

2
e−

(y1−λR)2

2 +
1

2
e−

(y1+λR)2

2

)
. (5.62)

When R is small,

h(Y;F
asym
X ) = lim

R→0
−
∫ ∞
−∞

∫ ∞
−∞

fY(y;F
asym
X ) ln fY(y;F

asym
X )dy

= lim
R→0

∫ ∞
−∞

∫ ∞
−∞

1

2π
e−

y2
2
2

(
1

2
e−

(y1−λR)2

2 +
1

2
e−

(y1+λR)2

2

)
×
(

ln 2π +
y2

2

2
+
y2

1

2
+
λ2R2

2
− ln cosh(λRy1)

)
dy

= lim
R→0

∫ ∞
−∞

∫ ∞
−∞

1

2π
e−

y2
2
2

(
1

2
e−

(y1−λR)2

2 +
1

2
e−

(y1+λR)2

2

)
×
(

ln 2π +
y2

2

2
+
y2

1

2
+
λ2R2

2
− λ2R2y2

1

2

)
dy (5.63)

= lim
R→0

1 + ln 2π +
λ2R2

2
(5.64)

where in (5.63), we have used the approximations coshx ≈ 1 + x2

2 and ln(1 + x) ≈ x

for x � 1 and in (5.64), we have dropped the higher order terms of R. Therefore,

when the norm of the input is very small, the mutual information resulted by the input

distribution F
asym
X (x) is

lim
R→0

h(Y;F
asym
X )− ln 2πe =

λ2R2

2
(5.65)

which confirms that the upper bound in (5.79) is asymptotically tight.

The asymptotic optimality of the distribution in (5.58) can alternatively be proved by

inspecting the behavior of the marginal entropy density h̃Y(x;FX1) when R is sufficiently
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small. From (5.19), we have

fY(y;FX1)
R→0−→ 1

2π
e−

y2
1+y2

2
2 . (5.66)

Therefore,

h̃Y(x;FX1) = −
∫ ∞
−∞

∫ ∞
−∞

K(y1, y2, x) ln fY(y;FX1)dy (5.67)

→
∫ ∞
−∞

∫ ∞
−∞

1

2π
e−

(y1−λx)2

2

[
1

2
e−

(y2−
√
R2−x2)2

2 +
1

2
e−

(y2+
√
R2−x2)2

2

]
× (ln 2π +

y2
1 + y2

2

2
)dy (5.68)

= 1 + ln 2π +
R2

2
+
λ2 − 1

2
x2 (5.69)

which is a strictly convex (and even) function. Hence, the necessary and sufficient

conditions in (5.10) and (5.11) are satisfied if and only if the input is distributed as

(5.58)5. Note that in contrast to the optimal distribution, the asymptotically optimal

distribution is not unique. As a special case, when λ = 1, the distribution in (5.58) with

two mass points is still asymptotically optimal. However, the optimal input distribution

has an infinite number of mass points uniformly distributed on the circle with radius R

(as shown in [40]).

Corollary 2. For high SNR values, we have

lim
R→∞

C(R)

lnR
= 1. (5.70)

In other words, the constant envelope signaling in a 2 by 2 channel has only one degree

of freedom.

5It can alternatively be verified that when R� 1, h̃Y(x;FX2) becomes strictly concave and one mass
point at zero on the x2 axis is optimal which is equivalent to (5.58).
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Proof. By writing the input of the channel in polar coordinates as X = R[cos Θ , sin Θ]T ,

the differential entropy of the input in polar coordinates is given by

h(X) = −
∫
‖x‖=R

fX(x) ln fX(x)dx

= −
∫ 2π

0
fX(x(R, θ)) ln fX(x(R, θ))| ∂x

∂(R, θ)
|dθ

= −
∫ 2π

0
fΘ(θ) ln

fΘ(θ)

| ∂x
∂(R,θ) |

dθ

= h(Θ) + lnR

≤ ln 2πR (5.71)

where ∂x
∂(R,θ) = R is the Jacobian of the transform and the maximum in (5.71) is achieved

iff the Θ ∼ U [0, 2π). The capacity is bounded below as follows.

C(R) = sup
FX(x):‖X‖=R

h(Y;FX)− ln(2πe)

≥ sup
FX(x):‖X‖=R

ln
(
eh(HX) + eh(W)

)
− ln(2πe) (5.72)

= sup
FX(x):‖X‖=R

ln
(
eln |det(H)|+h(X) + 2πe

)
− ln(2πe)

= ln(2πλR+ 2πe)− ln(2πe) (5.73)

where (5.72) is due to the vector entropy-power inequality (EPI) and in (5.73) the upper

bound in (5.71) is used.

The capacity is bounded above as follows.

C(R) = sup
FX(x):‖X‖=R

h(HX + W;FX)− ln(2πe)

≤ sup
FX(x):‖X‖=R

h(HX,W;FX)− ln(2πe)

≤ sup
FX(x):‖X‖=R

h(HX;FX) + h(W)− ln(2πe)

= ln(2πR) + lnλ. (5.74)

Combining (5.73) and (5.74), we have

ln(2πλR+ 2πe)− ln(2πe) ≤ C(R) ≤ ln(2πR) + lnλ. (5.75)
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Dividing by lnR and letting R→∞ results in (5.70).

The analysis can be readily generalized to the n-dimensional full rank channels by noting

that

h(X) ≤ ln

(
2π

n
2Rn−1

Γ(n2 )

)
(5.76)

which is tight iff the distribution of the phase vector of X in the spherical coordinates

is as follows

fΘ(θ) =
1

2π

n−2∏
i=1

α−1
i sinn−i−1 θi (5.77)

where αi =
√
πΓ(n−i

2
)

Γ(n−i+1
2

)
. Therefore, we have

n

2
ln

(
(
2Rn−1π

n
2 |det(H)|

Γ(n2 )
)

2
n + 2πe

)
−n

2
ln(2πe) ≤ C(R) ≤ ln

(
2π

n
2Rn−1

Γ(n2 )

)
+ln |det(H)|

(5.78)

which results in

lim
R→∞

C(R)

lnR
= n− 1. (5.79)

Intuitively, that loss of 1 degree of freedom is due to the fact that for a constant norm

n-dimensional vector, given its n−1 elements, the remaining element has the uncertainty

of at most 1 bit which does not scale with R as it goes to infinity. Finally, note that the

phase distribution in (5.77) is equivalent to uniform distribution on the surface of the

hypersphere with radius R which is optimal in the DoF sense6.

5.7 Analysis in polar coordinates

In this section, the problem in (5.2) is analyzed in polar coordinates. Also, in the

numerical section, we adopt the notations used in this section. By writing the input and

output of the channel in polar coordinates, we have

X = R[cos Θ , sin Θ]T , Y = P [cos Ψ , sin Ψ]T Θ,Ψ ∈ [0, 2π) , P ∈ [0,∞). (5.80)

6It is important to note that the DoF-achieving distribution is not unique in contrast to the capacity-
achieving distribution.
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Therefore,

h(Y) = −
∫
R2

fY(y) ln fY(y)dy (5.81)

= −
∫ ∞

0

∫ 2π

0
fY(y(ρ, ψ)) ln fY(y(ρ, ψ))| ∂y

∂(ρ, ψ)
|dψdρ (5.82)

= −
∫ ∞

0

∫ 2π

0
fP,Ψ(ρ, ψ) ln

fP,Ψ(ρ, ψ)

| ∂y
∂(ρ,ψ) |

dψdρ (5.83)

= h(P,Ψ) +

∫ ∞
0

fP (ρ) ln ρdρ (5.84)

= h(V,Ψ) (5.85)

where ∂y
∂(ρ,ψ) = ρ is the Jacobian of the transform and V = P 2

2 . It can be easily verified

that

fV,Ψ(v, ψ;FΘ) =

∫ 2π

0
K̃(v, ψ, θ)dFΘ(θ) (5.86)

where the kernel function is given by

K̃(v, ψ, θ) =
1

2π
e−

λ2−1
2

R2 cos2 θ−R
2

2
+R
√

2v(λ cosψ cos θ+sinψ sin θ)−v. (5.87)

The marginal entropy density of the output variables induced by the input distribution

is defined as

h̃V,Ψ(θ;FΘ) = −
∫ ∞

0

∫ 2π

0
K̃(v, ψ, θ) ln fV,Ψ(v, ψ;FΘ)dψdv (5.88)

which satisfies the following

h(V,Ψ;FΘ) =

∫ 2π

0
h̃V,Ψ(θ;FΘ)dFΘ(θ). (5.89)

Finally, the optimization problem in (5.2) becomes

C(R) = sup
FΘ(θ)

h(V,Ψ;FΘ)− ln(2πe) (5.90)

Let ε∗θ denote the set of points of increase for the optimal input phase distribution F ∗Θ(θ).

Analogous to the proof of the theorem in Cartesian coordinates, Lagrangian optimization
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gives the necessary and sufficient condition for the unique maximizer F ∗Θ(θ) as

h̃V,Ψ(θ;F ∗Θ) = h(V,Ψ;F ∗Θ) ∀θ ∈ ε∗θ

h̃V,Ψ(θ;F ∗Θ) < h(V,Ψ;F ∗Θ) ∀θ ∈ [0, 2π)− ε∗θ. (5.91)

For the second part of the proof (i.e., showing that |ε∗θ| < ∞), the difference between

investigating the problem in the Cartesian and polar coordinates is in the extension to

complex domain. In other words, the kernel and marginal entropy density are entire

functions (i.e., holomorphic on the whole complex plane) in polar coordinates. This

helps us avoid the consideration of checking the position of accumulation point (see the

paragraph below (5.27)). Therefore, the assumption of an infinite number of points of

increase results in

h̃V,Ψ(z;F ∗Θ) = h(V,Ψ;F ∗Θ) , ∀z ∈ C (5.92)

or equivalently

− 1

2π
e−

R2

2

∫ ∞
0

∫ 2π

0
e−

λ2−1
2

R2 cos2 z+R
√

2v(λ cosψ cos z+sinψ sin z)−v ln fV,Ψ(v, ψ;F ∗Θ)dψdv = c,

∀z ∈ C (5.93)

where c is a constant (= h(V,Ψ;F ∗Θ)). Taking z on the imaginary line, we have

cos z = t (t ≥ 1) , sin z = i
√
t2 − 1. (5.94)

By replacing (5.94) in (5.93), we get

− 1

2π
e−

R2

2

∫ ∞
0

∫ 2π

0
e−

λ2−1
2

R2t2+R
√

2v(λ cosψt+i sinψ
√
t2−1)−v ln fV,Ψ(v, ψ;F ∗Θ)dψdv = c , ∀t ≥ 1.

(5.95)

Finally, by separating the real and imaginary parts of the left-hand side of (5.95), the

following is resulted

− 1

2π
e−

R2

2

∫ ∞
0

∫ 2π

0
e−

λ2−1
2

R2t2+R
√

2vλ cosψt−v cos
(

sinψR
√

2v(t2 − 1)
)

× ln fV,Ψ(v, ψ;F ∗Θ)dψdv = c (5.96)

− 1

2π
e−

R2

2

∫ ∞
0

∫ 2π

0
e−

λ2−1
2

R2t2+R
√

2vλ cosψt−v sin
(

sinψR
√

2v(t2 − 1)
)

× ln fV,Ψ(v, ψ;F ∗Θ)dψdv = 0. (5.97)
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It is easy to verify that the integrand of (5.97) is an odd function with respect to ψ = π

which is a consequence of the symmetry of the additive noise. Therefore, (5.97) is always

true. The way to show that (5.96) does not hold is similar to that for disproving (5.36).

5.8 Numerical results

The theorem in section 5.4 states that the optimal input has a finite number of mass

points on the circle defined by the constraint. The algorithm for finding the number,

the positions and the probabilities of these points is the same as that explained in [24]

where we start with two points for very small R and then increase R by some step and

check the necessary and sufficient conditions. At any stage that these conditions are

violated, we increase the number of points, do the optimization to find the position and

probabilities of the points, check the conditions and keep repeating this process.

The support of the capacity achieving input and the marginal entropy densities induced

by them are shown in Figures 5.1 to 5.4 for λ = 2 and different values of R. Here,

we have performed the optimization in polar coordinates. The optimality of the points

in the left subfigures is guaranteed by the necessary and sufficient conditions in (5.91)

which can also be verified through right subfigures. As it can be observed, the points

of increase of the optimal input, which correspond to the peaks in the marginal entropy

densities, have a finite number.

Let F 1
X1

(x) be defined as

F 1
X1

(x) =
1

2
[u(x−R) + u(x+R)] . (5.98)

According to section 5.6, we know that this CDF is optimal for sufficiently small values of

R. As R increases, F 1
X1

(x) remains optimal until it violates the necessary and sufficient

conditions. By observing the behavior of h̃Y(x;F 1
X1

), it is concluded that as R increases,

the first point to violate the necessary and sufficient conditions will happen at x = 0

(which is equivalent to (0, R) and (0,−R) on the circle).
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Figure 5.1: The support of the optimal input (a) and the marginal entropy density
induced by it (b) for R = 0.5477 and λ = 2. In (a), the pairs represent the phase and

its probability as in (θ, PΘ(θ)).
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Figure 5.2: The support of the optimal input (a) and the marginal entropy density
induced by it (b) for R = 0.6325 and λ = 2. In (a), the pairs represent the phase and

its probability as in (θ, PΘ(θ)).

This is shown in figure 5.5 for λ = 10. Therefore, the norm threshold (Rt) for which

F 1
X1

(x) remains optimal is obtained by solving the following equation for Rt

h̃Y(0;F 1
X1

) = h̃Y(R;F 1
X1

) (5.99)

which, after some manipulation, becomes equivalent to

1√
2π

∫ +∞

−∞
(e−

(y−λR)2

2 − e−
y2

2 ) ln cosh(λRy)dy =
(λ2 − 1)

2
R2. (5.100)
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Figure 5.3: The support of the optimal input (a) and the marginal entropy density
induced by it (b) for R = 1.0954 and λ = 2. In (a), the pairs represent the phase and

its probability as in (θ, PΘ(θ)).
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Figure 5.4: The support of the optimal input (a) and the marginal entropy density
induced by it (b) for R =
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2 and λ = 2. In (a), the pairs represent the phase and its
probability as in (θ, PΘ(θ)).

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

3.2

3.25

3.3

3.35

3.4

3.45

x

h̃
Y
(x

;F
1 X
1
)

 

 

R = 0.1647
R = 0.16
R = 0.15
R = 0.14

Figure 5.5: For small values of R, when R increases, the first point to become a mass
point is x = 0. (here λ = 10).
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By solving (5.100) numerically, the values of Rt are obtained for different values of λ.

For example, for λ = 10, Rt = 0.1647 which means that when the norm R is below

0.1647 the support of the optimal input has only two equiprobable mass points at (R, 0)

and (−R, 0), and at this threshold it gets another mass point at zero as already shown

in figure 5.5.



Chapter 6

Conclusion and Future Works

In this thesis, we tried to address some of the communication limits in MIMO wireless

networks. The main focus was on the effect of two practical constraints: 1) Imper-

fect channel state information at the transmitter and 2) Transmission with peak power

constraint.

In Chapter 2, given the marginal probabilities of CSIT, an outer bound was derived

for the DoF region of the K-user MISO BC with alternating/hybrid CSIT . This outer

bound was shown to be achievable by specific CSIT patterns in certain regions. A set

of inequalities was provided based on the joint CSIT distribution which shows that in

general, the DoF region of the K-user MISO BC (when K ≥ 3) cannot be characterized

completely by the marginal probabilities. Afterwards, an outer bound for the DoF region

of a two user MIMO BC in which the CSIT of a user is either perfect or unknown was

derived which was shown to be tight in some scenarios. Finally, an alternative proof for

the DoF of a K-user MIMO BC was proposed which was used to obtain the capacity

region of certain types of channels.

In Chapter 3, we have shown that the capacity-achieving distribution of the vector Gaus-

sian channel with identity channel matrix under the peak and average power constraints

has a finite number of mass points for its amplitude and the points are uniformly dis-

tributed on the hyper-spheres determined by the amplitude mass points. It was shown

that when the peak power is the only active constraint, constant amplitude signaling at

the peak power is optimal when the number of dimensions is above a threshold. Finally,

some upper and lower bounds were given for the general deterministic channel and their

100
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performance was evaluated numerically as a function of the condition number of the

channel.

The results of this chapter could be applied to the MIMO communication systems with

only one single RF chain at the transmitter which is of great interest and necessitate

the peak power constraint. The importance of the results becomes more pronounced in

the massive MIMO settings, where it was shown that the capacity has a closed form

solution and no computer program is needed to find the optimal input distribution.

In Chapter 4, the capacity of a scalar AWGN with amplitude-constrained input was

considered and a further refinement of the previous bounds in literature was proposed.

In Chapter 5, constant envelope signaling in point-to-point Gaussian parallel channels

was considered. For a 2 by 2 channel, we showed that the capacity-achieving input

distribution has a finite number of mass points on the circle defined by the constant

norm. In this setting, the optimal DoF of a full rank n by n channel was shown to be

n − 1 which is achieved by a uniform distribution over the surface of the hypersphere

defined by the constant envelope.

There are many open and challenging problems related to the topics mentioned in this

thesis. Some of them are

• Characterization of the DoF region of the 3-user MISO BC with alternating/hybrid

CSIT. It is important to note that even for some fixed CSIT patterns, the DoF

region is not known.

• The capacity of the 2 by 2 deterministic MIMO channel with peak power con-

straint.

• The capacity region of a SISO BC with peak power constraint. Although the

channel is degraded and superposition coding is optimal, the region is not explicitly

known.



Appendix A

Derivation of (3.22)

The following lemma is useful in the sequel.

Lemma. Let a and b be two real numbers with a > 0. Also, let N0 be the set of

non-negative integers. Then,

∫ 1

−1
In(a

√
1− u2)(

√
1− u2)ne−budu =

√
2πan

In+ 1
2
(
√
a2 + b2)

(
√
a2 + b2)n+ 1

2

, n =
k

2
∀k ∈ N0.

(A.1)

Proof. By using [45, pp. 698], (A.1) could be shown for n = 0. Also, by some manipula-

tion, (A.1) holds true for n = 1
2 , 1,

3
2 . For general n, we use induction as follows. Denote

the left-hand side of (A.1) by Qn. It is shown that if (A.1) is true for n, it will also be

true for n+ 1
2 . In other words, if

Qn =
√

2πan
In+ 1

2
(
√
a2 + b2)

(
√
a2 + b2)n+ 1

2

(n ≥ 3

2
) (A.2)

then

Qn+ 1
2

=
√

2πan+ 1
2
In+1(

√
a2 + b2)

(
√
a2 + b2)n+1

. (A.3)
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By using the recursive identity for the bessel function (i.e., Iα(z) = Iα−2(z)−2(α−1)
z Iα−1(z)),

we have

Qn+ 1
2

=

∫ 1

−1
In− 3

2
(a
√

1− u2)(
√

1− u2)n+ 1
2 e−budu

−
2(n− 1

2)

a

∫ 1

−1
In− 1

2
(a
√

1− u2)(
√

1− u2)n−
1
2 e−budu

=

∫ 1

−1
In− 3

2
(a
√

1− u2)(
√

1− u2)n+ 1
2 e−budu− 2(n− 1

2
)
√

2πan−
3
2
In(
√
a2 + b2)

(
√
a2 + b2)n

(A.4)

where in (A.4), we have used (A.2). From (A.2), we have

Qn− 1
2

=
√

2πan−
1
2
In(
√
a2 + b2)

(
√
a2 + b2)n

. (A.5)

By taking the derivative of (A.5) with respect to a and using the identity I ′α(z) =

1
2(Iα−1(z) + Iα+1(z)) for α 6= 0, we have

∫ 1

−1
In− 3

2
(a
√

1− u2)(
√

1− u2)n+ 1
2 e−budu+Qn+ 1

2
= 2
√

2π
∂

∂a

{
an−

1
2
In(
√
a2 + b2)

(
√
a2 + b2)n

}
.

(A.6)

Solving for Qn+ 1
2

in (A.4) and (A.6) results in

Qn+ 1
2

=
√

2πan−
1
2
∂

∂a

{
In(
√
a2 + b2)

(
√
a2 + b2)n

}

=
√

2πan+ 1
2
In+1(

√
a2 + b2)

(
√
a2 + b2)n+1

(A.7)

where in (A.7), we have used the identity d
dx{

In(x)
xn } = In+1(x)

xn .

(3.22) is equivalent to

∫ π

0
. . .

∫ π

0︸ ︷︷ ︸
n−2 times

∫ 2π

0

1

(
√

2π)
n e

xaT (θ)a(ψ)
n−2∏
i=1

sinn−i−1 ψidψn−1 . . . dψ1 =


In

2−1(x)

(x)
n
2−1 x 6= 0

1

Γ(n
2

)2
n
2−1 x = 0

∀n ≥ 2. (A.8)

If x = 0, it is obvious that the left-hand side of (A.8) is the hyper-surface area of an

n-sphere with unit radius (= 2π
n
2

Γ(n
2

)) divided by (
√

2π)n which results in the value shown
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on the right-hand side. Therefore, we consider x 6= 0. It is obvious that (A.8) is valid

for n = 2. Denote the left-hand side of (A.8) by Wn and assume it is valid for n ≥ 2. It

can be verified that

Wn+1 =

∫ π

0

In
2
−1(x sin θ sinψ)

√
2π(x sin θ sinψ)

n
2
−1

sinn−1 ψex cos θ cosψdψ

=

∫ 1

−1

In
2
−1(x sin θ

√
1− u2)

√
2π(x sin θ)

n
2
−1

(
√

1− u2)
n
2
−1e−x cos θudu (A.9)

=
In−1

2
(x)

(x)
n−1

2

(A.10)

where in (A.9), u = − cosψ and in (A.10), we have used the lemma.
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Appendix B

Proposition. Let X be a non-negative random variable and m ∈ R+. The following

optimization problem

sup
fX(x):E[Xm]≤A

H(X) (B.1)

has a unique solution. Further, the maximum is

Γ(m+1
m )

Γ( 1
m)

− ln

m
m

√
Γ(m+1

m
)

Γ( 1
m

)A

Γ( 1
m)

 (B.2)

and is achieved by the following distribution

fX∗(x) =

m m

√
Γ(m+1

m
)

Γ( 1
m

)A

Γ( 1
m)

e
−Γ(m+1

m )

AΓ( 1
m )

xm

. (B.3)

Proof. Let Ω denote the set of all probability density functions on the non-negative real

line. It can be shown that Ω is convex and compact in the Levy metric. Further, the

following function

L(fX(x)) = H(X)− λ(

∫ ∞
0

xmfX(x)dx−A) (B.4)

is for λ ≥ 0, a continuous, weakly differentiable and strictly concave function of fX(x)

having the weak derivative at f0
X(x) as

L′f0
X(x)(fX(x)) =

∫ ∞
0

(ln f0
X(x) + λxm)(f0

X(x)− fX(x))dx. (B.5)
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Therefore, the Lagrangian optimization guarantees a unique solution for (B.1) and the

necessary and sufficient condition for fX∗(x) to be the optimal solution is the existence

of a λ ≥ 0 for which L′fX∗ (x)(fX(x)) ≤ 0 ∀fX(x) ∈ Ω. It can be verified that for

λ =
Γ(m+1

m
)

AΓ( 1
m

)
, the distribution in (B.3) results in L′fX∗ (x)(fX(x)) = 0 which satisfies the

necessary and sufficient conditions. Hence, the pdf in (B.3), which has the differential

entropy in (B.2), is the unique solution of (B.1).
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Proof of Theorem 3.1

Let Fup denote the space of all cumulative distribution functions satisfying the peak

power constraint, i.e.

Fup = {FP (ρ)|FP (ρ) = 0 ∀ρ < 0 , FP (ρ) = 1 ∀ρ ≥ √up}. (C.1)

The metric space (Fup , dL) is convex and compact ([42], [26, Appendix I]) where dL

denotes the Levy metric [41] (note that the proof of the compactness in [26] relies only

on the average power constraint). The differential entropy h(V ;FP ) : Fup → R is

continuous ([42], [24, Proposition 3], [26, Appendix I], [29, Proposition 1]) (note that

the proof of continuity in [29] is more general in the sense that it does not rely on the

Schwartz properties), strictly concave and weakly differentiable ([42], [24, Proposition

4], [26, Appendix II], [29, Proposition 2]) and has the weak derivative at F 0
P given by

h′F 0
P

(V ;FP ) = lim
ζ→0

h(V ; (1− ζ)F 0
P + ζFP )− h(V ;F 0

P )

ζ

=

∫ √up
0

h̃V (ρ;F 0
P )dFP (ρ)− h(V ;F 0

P ) ,∀FP ∈ Fup . (C.2)

The average power constraint is denoted by

G(FP ) =

∫ √up
0

ρ2dFP (ρ)− ua ≤ 0. (C.3)
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It is obvious that G : Fup → R is linear and weakly differentiable having the weak

derivative at F 0
P given by

G′F 0
P

(FP ) = G(FP )−G(F 0
P ) ,∀FP ∈ Fup . (C.4)

Since h(V ;FP ) and G(FP ) are concave maps from Fup to R, Lagrangian optimization

[43] guarantees a unique solution for (3.31) and the necessary and sufficient condition

for FP ∗ to be the optimal solution is the existence of a λ(≥ 0) such that

∫ √up
0

(h̃V (ρ;FP ∗)− λρ2)dFP (ρ) ≤ h(V ;FP ∗)− λua , ∀FP ∈ Fup . (C.5)

It can be shown that (C.5) is equivalent to (3.38) and (3.39) ([25, Corollary 1]). In order

to show the finiteness of the cardinality of εP ∗ , we extend the marginal entropy density

in (3.35) to the complex domain i.e.,

h̃V (z;FP ) = −
∫ ∞

0
Kn(v, z) ln fV (v;FP )dv , z ∈ C. (C.6)

Proposition 1. The kernel Kn(v, z) is an entire function in z for every v.

Proof. This can be verified by the fact that the real and imaginary parts of K(v, z =

x + jy) have continuous partial derivatives and satisfy the Cauchy-Riemann equations

which leads to its holomorphy over the complex plane. As a result, by Cauchy’s theorem,

for every rectifiable closed curve γ in C,

∫
γ
Kn(v, z)dz = 0. (C.7)

Proposition 2. The marginal entropy density h̃V (z;FP ) is an entire function.

Proof. First, we show the continuity of h̃V (z;FP ). Let {zm}∞1 be a sequence of com-

plex numbers converging to z0. Since Kn(v, z) is holomorphic (see Proposition 1), it is

continuous. Therefore,

lim
m→∞

Kn(v, zm) ln fV (v;FP ) = Kn(v, z0) ln fV (v;FP ). (C.8)



Appendix C. Proof of Theorem 3.1 109

Because the kernel is continuous and Kn(v,+∞) = 0, it is also bounded (i.e., 0 ≤

Kn(v, ρ) <∞ for all ρ ∈ R≥0.) The continuity and boundedness of the kernel guarantees

the continuity of fV (v;FP ) given in (3.20) by the application of Lebesgue’s dominated

convergence theorem. This allows us to write

0 < e−
( n
√
nv)2+up

2
1

Γ(n2 )2
n
2
−1
≤ min

ρ∈[0,
√
up]
Kn(v, ρ) ≤ fV (v;FP )

≤ max
ρ∈[0,

√
up]
Kn(v, ρ) ≤ e−

( n
√
nv)2

2

In
2
−1(up n

√
nv)

(up n
√
nv)

n
2
−1

<∞ (C.9)

since In(x)
xn (x > 0) is a strictly increasing function. Therefore,

| ln fV (v;FP )| ≤ ( n
√
nv)2 + up

2
+ | ln(

In
2
−1(up n

√
nv)

(up n
√
nv)

n
2
−1

)|

≤ ( n
√
nv)2 + up

2
+ up

n
√
nv + ln(Γ(

n

2
)2

n
2
−1) (C.10)

≤ ( n
√
nv)2

2
(1 + up) + up + ln(Γ(

n

2
)2

n
2
−1) (C.11)

where in (C.10), we have used the inequality

Iν(x)

xν
<

coshx

2νΓ(ν + 1)

x>0
<

ex

2νΓ(ν + 1)
(C.12)

which was proved in [46]. From (C.11), it can be verified that

|h̃V (zm;FP )| ≤
∫ ∞

0
|e−

( n
√
nv)2+z2m

2 ||
In

2
−1(zm n

√
nv)

(zm n
√
nv)

n
2
−1
|| ln fV (v;FP )|dv (C.13)

≤ |e−
z2m
2 |
∫ ∞

0
e−

( n
√
nv)2

2

In
2
−1(|zm| n

√
nv)

(|zm| n
√
nv)

n
2
−1
| ln fV (v;FP )|dv (C.14)

≤ |e
|zm|2−z2m

2 |
(

(|zm|2 + n)

2
(1 + up) + up + ln(Γ(

n

2
)2

n
2
−1)

)
(C.15)

<∞ (C.16)

where in (C.14), we have used the fact that |In(z)| ≤ In(|z|) and in (C.15) the upper

bound in (C.11) has been used. Since the absolute value of the integrand of h̃V (zn;FP )

is integrable, by Lebesgue’s dominated convergence theorem, we have

lim
m→∞

h̃V (zm;FP ) = lim
m→∞

∫ ∞
0

Kn(v, zm) ln fV (v;FP )dv (C.17)

=

∫ ∞
0

lim
m→∞

Kn(v, zm) ln fV (v;FP )dv (C.18)
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=

∫ ∞
0

Kn(v, z0) ln fV (v;FP )dv (C.19)

= h̃V (z0;FP ) (C.20)

which proves the continuity of h̃V (z, FP ). Let ∂T denote an arbitrary triangle in the

complex plane. We can write,

∫
∂T
h̃V (z;FP )dz = −

∫
∂T

∫ ∞
0

Kn(v, z) ln fV (v;FP )dvdz

= −
∫ ∞

0

∫
∂T
Kn(v, z)dz ln fV (v;FP )dv (C.21)

= 0 (C.22)

where (C.21) is allowed by Fubini’s theorem, because for a given rectifiable triangle ∂T

∫
∂T
|h̃V (z;FP )|dz <∞. (C.23)

(C.22) is due to the holomorphy of Kn(v, z) (see (C.7)). Therefore, by Morera’s theorem

(with weakened hypothesis), it is concluded that h̃V (z;FP ) is holomorphic on the entire

complex plane.

Alternatively, the holomorphy of the marginal entropy density can be proved as follows.

The following integral

h̃V (z;FP ) = −
∫ ∞

0
Kn(v, z) ln fV (v;FP )dv (C.24)

is uniformly convergent for all z ∈ K (where K is a compact subset of C) in the sense

that for ∀δ > 0, there exists some real number L0 such that

| −
∫ L2

L1

Kn(v, z) ln fV (v;FP )dv| < δ (C.25)

for ∀L1, L2 satisfying L0 < L1 < L2. Therefore, by the differentiation lemma [44],

h̃V (z;FP ) is holomorphic on the complex plane.

If εP ∗ has infinite number of points, since it is a bounded subset of the real line (⊆

[0,
√
up]), it has an accumulation point in R by Bolzano-Weierstrass theorem [47]. Hence,

according to (3.39), the two holomorphic functions h̃V (z;FP ∗) and h(V ;FP ∗)+λ(z2−ua)

become equal on an infinite set that has an accumulation point in C. Therefore, by
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the identity theorem for holomorphic functions of one complex variable [44], the two

functions are equal on the whole complex plane, i.e.

h̃V (z;FP ∗) = h(V ;FP ∗) + λ(z2 − ua) , ∀z ∈ C (C.26)

which results in

h̃V (ρ;FP ∗) = h(V ;FP ∗) + λ(ρ2 − ua) , ∀ρ ∈ R. (C.27)

In the following, we show that (C.27) leads to a contradiction.

1. λ = 0. In this case, in which the average power constraint is relaxed, (C.27) results

in

fV (v;FP ) = e−h(V ;FP∗ ) (C.28)

which is a constant and is guaranteed by the invertibility of (3.35) to be the only

solution. The uniform distribution in (C.28) cannot be a legitimate pdf for V on

the non-negative real line. This contradiction can be observed in an alternative

way. By noting that from (C.28) and (3.20), if fV (v;FP ) is to be constant (shown

by C), then

fP (ρ) = Cρn−1 ρ ≥ 0 (C.29)

which is the only solution for fP (ρ) by the invertibility of (3.20). Again, it is not

a legitimate pdf for ρ and obviously violates the peak power constraint.

2. λ > 0. In this case (C.27) holds iff

fV (v;FP ) =
2(
√
λ)n

Γ(n2 )
e−λ( n

√
nv)2

(C.30)

which also holds iff

fP (ρ) = (

√
λ

1− 2λ
)n
ρn−1e−

λ
1−2λ

ρ2

Γ(n2 )
(C.31)

with λ =
Γ(n

2
+1)

Γ(n
2

)(ua+n
2

) . It is obvious that for 0 < λ < 1
2 , the solution in (C.31)

violates the peak power constraint and for λ > 1
2 , no legitimate fP (ρ) results in

(C.30). For λ = 1
2 , fP (ρ) = δ(ρ) which implies a unit mass point at zero. This, of
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course, contradicts the first assumption of FP ∗ having infinite points of increase

and also results in C(up, ua) = 0.

Therefore, the magnitude of the optimal input has a finite number of mass points. This

completes the proof of the theorem.
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Two Invertible Transforms

In this section, we show that the two following integral transforms are invertible (i.e.,

one-to-one),

q(v) =

∫ ∞
0

Kn(v, ρ)t(ρ)dρ (D.1)

w(ρ) =

∫ ∞
0

Kn(v, ρ)g(v)dv (D.2)

where t is allowed to have at most an exponential order and g a polynomial with a finite

degree, so that the transforms exist. The invertibility of (D.1) and (D.2) is equivalent to

the invertibility of (3.20) and (3.35), respectively. The following lemma will be helpful

in the sequel.

Lemma. The kernel function Kn(v, ρ) satisfies the two following equations,

∫ ∞
0

Kn(v, ρ)ρn−1e−sρ
2
dρ =

e−
s

2s+1
( n
√
nv)2

(
√

2s+ 1)n
(D.3)∫ ∞

0
Kn(v, ρ)e−s(

n√nv)2
dv =

e−
s

2s+1
ρ2

(
√

2s+ 1)n
(D.4)

where s ≥ 0.

Proof. From the properties of probability density functions,

∫
Rn

1

(
√

2πσ2)n
e−
‖y−x‖2

2σ2 dy = 1. (D.5)
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By writing y and x in spherical coordinates (i.e., y ≡ (r, ψ) and x ≡ (ρ, θ)), and by

substituting β = 1
2σ2 and α = ρ

σ2 , we get

∫ ∞
0

∫ π

0
. . .

∫ π

0︸ ︷︷ ︸
n−2 times

∫ 2π

0
e−βr

2+αraT (θ)a(ψ)rn−1
n−2∏
i=1

sinn−i−1 ψidψn−1dψn−2 . . . dψ1dr

= (

√
π

β
)ne

α2

4β . (D.6)

By using (D.6) and by change of variables, (D.3) and (D.4) are obtained.

In order to show the invertibility of (D.1), it is sufficient to show that the following

∫ ∞
0

Kn(v, ρ)t(ρ)dρ = 0 (D.7)

results in t(ρ) = 0. From (D.7), we have

∫ ∞
0

∫ ∞
0

Kn(v, ρ)t(ρ)dρe−s(
n√nv)2

dv = 0 s ≥ 0. (D.8)

By changing the order of integration, which is allowed here by Fubini’s theorem, and by

(D.4) ∫ ∞
0

t(ρ)
e−

s
2s+1

ρ2

(
√

2s+ 1)n
dρ = 0 s ≥ 0. (D.9)

which results in ∫ ∞
0

t(
√
x)√
x
e−µxdx = 0 µ ∈ [0,

1

2
). (D.10)

Again, by extending µ to the complex domain, it is easy to verify that the left-hand side

of (D.10) is holomorphic on the complex plane. Since this holomorphic function is zero

on an infinite set ([0, 1
2)) which has an accumulation point in C, it is zero on the whole

complex plane and consequently the real line by the identity theorem. Therefore,

∫ ∞
0

t(
√
x)√
x
e−µxdx = 0 µ ∈ R (D.11)

which results in t(ρ) = 0. The uniqueness of this solution results from the invertibility

of Laplace transform (by considering the non-negative values for µ). It is obvious that

the same approach can be carried out to show the invertibility of the transform (D.2).
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Alternatively, the following property of the kernel function

Kn(v, ρ) = Kn(
ρn

n
, n
√
nv) (D.12)

could be used in (D.1) to show the invertibility of (D.2).
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Appendix E

From [48] and [49], we have1

Γ(x+ 1) <
√
π(
x

e
)x(8x3 + 4x2 + x+

1

30
)

1
6 . (E.1)

Let f(n) , 2e
[

(n−1)
2 Γ(n−1

2 )
] 2
n−1

. From (3.67), we can write

CG ≥
n− 1

2
log

(
1 +

up
f(n)

)
≥ n− 1

2
log

(
1 +

up
F (n)

)
(E.2)

in which F (n) is an upper bound for f(n) and is obtained from (E.1) as

F (n) = 2e

[
(n− 1)

2

√
π

(
n− 3

2e

)n−3
2
(

8(
n− 3

2
)3 + 4(

n− 3

2
)2 +

n− 3

2
+

1

30

) 1
6

] 2
n−1

.

(E.3)

The behavior of F (n) as n goes to infinity can be obtained as follows.

lim
n→∞

ln
F (n)

2e
= lim

n→∞

n− 3

n− 1
ln(

n− 3

2e
)

+ lim
n→∞

2

n− 1
ln

[
(n− 1)

2

√
π

(
8(
n− 3

2
)3 + 4(

n− 3

2
)2 +

n− 3

2
+

1

30

) 1
6

]
︸ ︷︷ ︸

=0

= +∞. (E.4)

1Tighter bounds for Gamma function can be found in [50].
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Therefore,
up
F (n) goes to zero with n, and from the expansion of ln(1 + x) when x � 1,

we can write

lim
n→∞

n− 1

2
ln

(
1 +

up
F (n)

)
= lim

n→∞

up(n− 1)

2F (n)

≥ lim
n→∞

up(n− 1)

2(n+ 25)
(E.5)

where in (E.5), we have used the fact that for n ≤ 1010, it can be verified that n <

F (n) < n + 25. The gap between CG and constant amplitude signaling can be written

as

lim
n→∞

CG − lim
n→∞

sup
FX(x):‖X‖2=up

I(X; Y) ≤ lim
n→∞

up
2

(
1− n− 1

n+ 25

)
(E.6)

=
13up
n+ 25

(E.7)

which completes the proof.
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Proof of (3.69)

We have

C(up, ua) ≤ C(∞, ua) =
n

2
ln(1 +

ua
n

) (F.1)

and

lim
ua→0

C(up, ua) ≤
ua
2
. (F.2)

The CDF F ∗∗P (ρ) = (1− ua
up

)u(ρ) + ua
up
u(ρ−√up) induces the following output pdf

fV (v;F ∗∗P ) = (1− ua
up

)Kn(v, 0) +
ua
up
Kn(v,

√
up) (F.3)

= (1− ua
up

)
e−

( n
√
nv)2

2

Γ(n2 )2
n
2
−1

+
ua
up
e−

( n
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nv)2+up

2

In
2
−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2
−1

(F.4)

= (1− ua
up

)
e−

( n
√
nv)2

2

Γ(n2 )2
n
2
−1

1 +
ua

up − ua
e−

up
2 Γ(n2 )2

n
2
−1In

2
−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2
−1

 . (F.5)

When ua is small,

lim
ua→0

h(V ;F ∗∗P ) = lim
ua→0

−
∫ ∞

0
fV (v;F ∗∗P ) ln fV (v;F ∗∗P )dv (F.6)

= lim
ua→0

∫ ∞
0

(1− ua
up

)
e−

( n
√
nv)2

2

Γ(n2 )2
n
2
−1

+
ua
up
e−

( n
√
nv)2+up

2

In
2
−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2
−1

×( n
√
nv)2

2
+ ln

(
Γ(n2 )2

n
2
−1

(1− ua
up

)

)
− ua
up − ua

e−
up
2 Γ(n2 )2

n
2
−1In

2
−1(
√
up n
√
nv)

(
√
up n
√
nv)

n
2
−1

 dv

(F.7)
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= lim
ua→0

n

2
(1− ua

up
) + (1− ua

up
) ln

(
Γ(n2 )2

n
2
−1

(1− ua
up

)

)
− ua
up

+
ua
up

(
n+ up

2
)

+
ua
up

ln

(
Γ(n2 )2

n
2
−1

(1− ua
up

)

)
− u2

a

up − ua
γ(up)︸ ︷︷ ︸

constant

(F.8)

=
n

2
+
ua
2

+ ln
(

Γ(
n

2
)2

n
2
−1
)

(F.9)

where the six terms in (F.8) are obtained by multiplying the terms in the brackets of

(F.7) in order. In (F.9), we have neglected the last higher order term in (F.8) and have

used the approximation ln(1− x) ≈ −x when x� 1. Therefore,

lim
ua→0

h(V ;F ∗∗P ) +

n−2∑
i=1

lnαi + (1− n

2
) ln 2π − n

2
=
ua
2
. (F.10)

(F.10) and (F.2) show the asymptotic optimality of the distribution in (3.69).
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Appendix G

Since
√
z is holomorphic on the complex plane excluding the non-positive real line (i.e.,

the domain where the principal branch of the complex logarithm function is holomor-

phic), g(
√
x) has the following power series expansion about ε > 0

g(
√
x) =

∞∑
m=0

gm(x− ε)m =
∞∑
m=0

g̃mx
m (G.1)

where its interval of convergence is (0,∞). Assuming infinite number of mass points,

with the constraint in (3.71), (C.27) changes to

h̃V (ρ;FP ∗) = h(V ;FP ∗) + λ(g(ρ)− ua) , ∀ρ ∈ R (G.2)

or equivalently

−
∫ ∞

0
Kn(v, ρ) ln fV (v;F ∗P )dv = λg(ρ) + h(V ;F ∗P )− λua , ∀ρ ∈ R. (G.3)

Multiplying both sides of (G.3) by ρn−1e−sρ
2

(s ≥ 0) and integrating with respect to ρ

gives

−
∫ ∞

0
ln fV (v;F ∗P )

e−
s

2s+1
( n
√
nv)2

(
√

2s+ 1)n
dv =

∫ ∞
0

[λg(ρ) + h(V ;F ∗P )− λua]ρn−1e−sρ
2
dρ (G.4)
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where we have used the transform in (D.3). By a change of variables as v = t
n
2

n and

x = ρ2, we have

−
∫ ∞

0
ln fV (

t
n
2

n
;F ∗P )t

n
2
−1 e−

s
2s+1

t

(
√

2s+ 1)n
dt =

∫ ∞
0

[λg(
√
x) + h(V ;F ∗P )− λua]x

n
2
−1e−sxdx.

(G.5)

By substituting (G.1) in (G.5), we get

−
∫ ∞

0
ln fV (

t
n
2

n
;F ∗P )t

n
2
−1 e−

s
2s+1

t

(
√

2s+ 1)n
dt =

∞∑
m=1

g̃mΓ(n2 +m)

s
n
2

+m
+

[h(V ;F ∗P )− λua + λg̃0]Γ(n2 )

s
n
2

.

(G.6)

Taking the inverse transform gives the unique solution as

ln fV (
t
n
2

n
;F ∗P ) =

∞∑
m=0

cmt
m (G.7)

where the coefficients are obtained from the following set of equations

 −
∑∞

m=0
cmΓ(n

2
+m)(2s+1)m

s
n
2 +m ≡

∑∞
m=1

g̃mΓ(n
2

+m)

s
n
2 +m +

[h(V ;F ∗P )−λua+λg̃0]Γ(n
2

)

s
n
2

h(V ;F ∗P ) = −
∫∞

0 fV (v;F ∗P ) ln fV (v;F ∗P )dv
. (G.8)

If there is no solution satisfying (G.8), (G.2) does not hold, which is the desired con-

tradiction. However, in the case of having a solution for the coefficients in (G.8), we

have

fV (v;F ∗P ) = e
∑∞
m=0 cm( n

√
nv)2m

. (G.9)

In the case cm = 0 (m ≥ 1), fV becomes a constant on the non-negative real line which

cannot be a probability density function. The case cm = 0 (m ≥ 2) does not result in a

legitimate pdf, either (see (C.30) and its following discussion.) For the remaining case

of having at least one non-zero cm(m ≥ 3), (G.9) leads to a contradiction as follows. Let

m∗ = maxm{m|cm 6= 0}. If cm∗ > 0, (G.9) is not integrable over the non-negative real

line, hence, it is not a pdf. However, if cm∗ < 0, no FP (ρ) can result in fV , since from

(C.9),

f−1
V (v;FP ) = O(e

( n
√
nv)2

2 ) (G.10)

while the behavior of the inverse of (G.9) is different from (G.10) as v goes to infinity.

Therefore, it is concluded that (G.9) cannot be resulted by any FP (ρ) due to its behavior

at large v. This implies that the discrete nature of the magnitude of the optimal input

distribution does not change when the average constraint is generalized to (3.71).



Appendix H

Proof of Lemma

Let

fA(x) , g(A− x) + g(A+ x) , x ∈ [0, A].

For the function g, we can obtain the following properties

g(u) ≤ 0 , u ≥ 0 (H.1)

g′(u) ≥ 0 , u ≥ 1. (H.2)

(H.1) is obtained as

g(u) = u2Q(u)− uψ(u)

< uψ(u)− uψ(u)

= 0

where we have used the inequality xQ(x) < ψ(x). (H.2) is obtained as

g′(u) = 2uQ(u)− ψ(u)

>
u2 − 1

u2 + 1
ψ(u)

≥ 0 , for u ≥ 1

where we have used the inequality Q(x) > xψ(x)
1+x2 .
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Therefore, for A ≥ 1, we have

fA(x) < g(A+ x) (H.3)

< g(2A) (H.4)

where (H.3) and (H.4) are due to (H.1) and (H.2), respectively.

For A ≤ 1, we proceed as follows. The fourth derivative of g is given by

d4

du4
g(u) = u(5− u2)ψ(u)

Hence, for u ∈ [0,
√

5), d4

du4 g(u) > 0 which indicates that d3

du3 g(u) is strictly increasing.

This results in
d3

dx3
fA(x) =

d3

du3
g(A+ x)− d3

dx3
g(A− x) ≥ 0 (H.5)

for A ≤ 1. (H.5) results in

f ′′A(x) ≥ f ′′A(0)

= 2g′′(A)

= 2[2Q(A)−Aψ(A)]

>
2A(1−A2)

1 +A2
ψ(A) (H.6)

where in (H.6), we have used the inequality Q(x) > xψ(x)
1+x2 . Therefore, for A ≤ 1, we

have f ′′A(x) > 0 which results in f ′A(x) > f ′A(0) = 0. Finally, having an increasing fA(x)

confirms

fA(x) < fA(A) = g(2A).

This completes the proof.
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