
Department of Computing
Imperial College London

Performance Modelling with Adaptive Hidden
Markov Models and Discriminatory Processor

Sharing Queues

Tiberiu Chis

Submitted in part fulfilment of the requirements for the degree of Doctor
of Philosophy in the Department of Computing at Imperial College

London

July 25, 2016

Declaration of originality

I declare that this thesis was written by myself and the work presented here is my own,
unless otherwise stated.

Copyright declaration

The copyright of this thesis rests with the author and is made available under a Creative
Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to
copy, distribute or transmit the thesis on the condition that they attribute it, that they do
not use it for commercial purposes and that they do not alter, transform or build upon it.
For any reuse or redistribution, researchers must make clear to others the licence terms of
this work.

ii

Abstract

In modern computer systems, workload varies at different times and locations. It is im-
portant to model the performance of such systems via workload models that are both
representative and efficient. For example, model-generated workloads represent realistic
system behaviour, especially during peak times, when it is crucial to predict and address
performance bottlenecks. In this thesis, we model performance, namely throughput and
delay, using adaptive models and discrete queues.

Hidden Markov models (HMMs) parsimoniously capture the correlation and burstiness of
workloads with spatiotemporal characteristics. By adapting the batch training of standard
HMMs to incremental learning, online HMMs act as benchmarks on workloads obtained
from live systems (i.e. storage systems and financial markets) and reduce time complex-
ity of the Baum-Welch algorithm. Similarly, by extending HMM capabilities to train on
multiple traces simultaneously it follows that workloads of different types are modelled in
parallel by a multi-input HMM. Typically, the HMM-generated traces verify the through-
put and burstiness of the real data. Applications of adaptive HMMs include predicting
user behaviour in social networks and performance-energy measurements in smartphone
applications.

Equally important is measuring system delay through response times. For example, work-
loads such as Internet traffic arriving at routers are affected by queueing delays. To meet
quality of service needs, queueing delays must be minimised and, hence, it is important to
model and predict such queueing delays in an efficient and cost-effective manner. There-
fore, we propose a class of discrete, processor-sharing queues for approximating queueing
delay as response time distributions, which represent service level agreements at specific
spatiotemporal levels. We adapt discrete queues to model job arrivals with distributions
given by a Markov-modulated Poisson process (MMPP) and served under discriminatory
processor-sharing scheduling. Further, we propose a dynamic strategy of service alloca-
tion to minimise delays in UDP traffic flows whilst maximising a utility function.

iii

Acknowledgements

I would sincerely like to thank Professor Peter Harrison for allowing me to be his PhD
student. The research achieved in this thesis would not exist without his support, wisdom
and contributions. Professor Harrison has guided me through difficult concepts in queue-
ing theory and has offered valuable experience in the world of research and beyond! I
will always cherish my time at Imperial College, from the early days as an indecisive un-
dergraduate joining in 2007 to more than eight years later as a PhD candidate submitting
his thesis. Throughout my struggles and (many) lessons learnt, these years in academia
were truly golden and I thank Professor Harrison for giving me the chance to be a part of it.

I am also grateful to Professor William Knottenbelt for being my second supervisor dur-
ing the PhD. He provided expert advice, has led by example and often encouraged me
during the conferences and workshops we attended together. I would like to thank the
many members of my research group, past and present, that have bettered my experi-
ence and taught me many important skills. I am proud to call the following colleagues
my friends, in order of acquaintance: Anton, Chris, Tony, Jeremy, Giuliano, Gareth, Uli,
Richard, Nigel, Iryna, Zhan, Weikun, Rasha, Juan, April, Silvia, Nicolai, David, Ilya,
Victoria, Daniel, Pooyan, Andrea, Salvatore, Tanya and Ruth. An honourable mention
goes to the reliable and helpful Amani, the friendly support staff including Ann, Barbara,
Bridget, Teresa, Sarah, Mark, and the Computer Support Group including Geoff, Lloyd,
and Duncan. Further, I would like to thank my DramSoc friends including Tosin, Kristen,
Owain, Megan, Simon and, more recently, Fahdi from ICTV. These talented individuals
allowed me to act alongside a great bunch of people in theatrical plays and short films,
which I will always treasure with fond memories.

Last but not least, thank you to my amazing family, Liliana, Diana, Mircea and my grand-
parents, for their love, inspiration and putting up with me for the last 27 years! Without
you, I would not be here. Thank you to my wonderful girlfriend, Florence, for her love
and support and to her awesome family, Luke, Leonie and Ella. Another thank you goes
to my legendary friends from Imperial and beyond, which include Levitt, Mikey, James,
Chris Marsh, Alexandra, Dino, Jay, Anna, Hemal, Eemaan, John Paul, Gajan, Richard,
Karin, Mitesh, Tom, Nic, Vera, Ravi, Frank, Christina, Jamie, Lindsay, Paul, Sinead,
Ziggy, Mark, Shamini, Rebecca, Jack, Mira, Patrick and all the usual suspects. You have
made these last few years a blast!

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3

1.2.1 Adaptive workload models . 3
1.2.2 Analytical queueing models . 5

1.3 Thesis outline and contributions . 7
1.4 Related publications . 9

2 Background 13
2.1 Introduction . 13
2.2 Unsupervised learning models . 13

2.2.1 Model selection . 14
2.2.2 Clustering . 15
2.2.3 Method of moments . 18
2.2.4 Hidden Markov Models . 18
2.2.5 Normalisation for underflow . 24
2.2.6 HMM applications . 26
2.2.7 MAPs and MMPPs . 29

2.3 Queueing models . 31
2.3.1 Scheduling . 31
2.3.2 Type of queueing systems . 32
2.3.3 PS applications . 33
2.3.4 Response times . 34
2.3.5 Response time in PS queues . 34
2.3.6 Queueing with MMPPs . 37
2.3.7 Response time in MMPP/M/1 queues 38

2.4 Performance-energy applications . 40
2.4.1 Measuring smartphones . 40
2.4.2 Data transmission and cellular radio modes 41
2.4.3 Battery guidelines . 43
2.4.4 Existing battery models . 44
2.4.5 Modelling data centres . 45

v

CONTENTS

3 Adaptive Workload Models 47
3.1 Introduction . 47
3.2 Incremental HMM . 49

3.2.1 Motivation . 50
3.2.2 Adaptive Baum-Welch algorithm 50
3.2.3 IncHMM simulation . 54
3.2.4 Results . 55
3.2.5 Related work . 57
3.2.6 Conclusion and future work . 57

3.3 Sliding HMM . 58
3.3.1 Motivation . 58
3.3.2 Simple moving average . 59
3.3.3 Sliding Baum-Welch algorithm 59
3.3.4 SlidHMM convergence rates . 60
3.3.5 SlidHMM simulation . 60
3.3.6 Results . 61
3.3.7 Conclusion and future work . 62

3.4 Multi-dimensional HMM . 63
3.4.1 Motivation . 63
3.4.2 MultiHMM algorithm . 64
3.4.3 MultiHMM simulation . 66
3.4.4 Results . 66
3.4.5 MultiHMM advantages . 70
3.4.6 Related work . 71
3.4.7 Conclusion and future work . 71

3.5 Online HMM . 72
3.5.1 Motivation . 73
3.5.2 OnlineHMM simulation . 73
3.5.3 Results . 75
3.5.4 Conclusion and future work . 78

4 Queueing Models 80
4.1 Introduction . 80
4.2 M/M/1-EPS queues . 81

4.2.1 Motivation . 81
4.2.2 EPS queue assumptions . 82
4.2.3 Obtaining response time moments for EPS queues 82
4.2.4 Kim and Kim’s response time moments for EPS queues 84
4.2.5 Simulating M/M/1-EPS response time moments 86
4.2.6 Conclusion and future work . 88

4.3 M/M/1-DPS queues . 88
4.3.1 Motivation . 88
4.3.2 Moment-generating algorithm for DPS queues 89
4.3.3 Case study- M/M/1-DPS analytical response times 90

vi

CONTENTS

4.3.4 Numerical algorithm for higher response time moments 91
4.3.5 Case study- M/M/1-DPS analytical and simulated moments . . . 93
4.3.6 Conclusion and future work . 95

4.4 MMPP/M/1-DPS queues . 96
4.4.1 Motivation . 96
4.4.2 Weighted superposition for DPS queues 96
4.4.3 Response time density . 97
4.4.4 Data sets . 99
4.4.5 Results . 100
4.4.6 Moments for MMPP(2)/M/1-EPS queue 100
4.4.7 Moments for MMPP(2)/M/1-DPS queue 102
4.4.8 Moments for MMPP(4)/M/1-DPS queue 104
4.4.9 Conclusion and future work . 106

5 Applications 108
5.1 Introduction . 108
5.2 Financial forecasting strategy . 108

5.2.1 Motivation . 108
5.2.2 Collecting time-series . 109
5.2.3 FTSE and NASDAQ traces . 110
5.2.4 Conclusion . 111

5.3 Performance-energy modelling in smartphones 111
5.3.1 Motivation . 111
5.3.2 Data set . 112
5.3.3 Strategy 1: Power consumption model 114
5.3.4 Strategy 2: Performance-energy trade-off 116
5.3.5 Conclusion and future work . 117

5.4 Traffic flow model . 118
5.4.1 Motivation . 118
5.4.2 UDP flow-level model . 119
5.4.3 Dynamic flows . 119
5.4.4 Dynamic allocation strategy . 120
5.4.5 Results . 121
5.4.6 Conclusion . 122

6 Conclusion 123
6.1 Summary of achievements . 123
6.2 Future work . 124
6.3 Evaluation . 126

6.3.1 Adaptive workload models . 126
6.3.2 Queueing models . 128

vii

CONTENTS

Appendix A 142
A.1 Proof of HMM properties . 142
A.2 Mathematica algorithm M/M/1-DPS . 143
A.3 Parametrisation of MMPP(4)/M/1-DPS queue 144
A.4 MAP-fitting with KPC-toolbox . 145

viii

List of Figures

2.1 QBD process for MMPP/M/1 . 38
2.2 Defragmented network traffic of rare-big (left) and often-little (right) models [56]. 42
2.3 Android battery usage with high (left) and low (right) cellular radio modes [10]. . 42

3.1 The components of the IncHMM with converged parameters at (4). 50
3.2 Burstiness for clustered, HMM and MultiHMM-generated data. 69
3.3 log(error) vs number of BWA and MultiBWA iterations for Twitter traces. . . . 70
3.4 Autocorrelation for Netapp reads. 77
3.5 Autocorrelation for Netapp writes. 78
3.6 Autocorrelation for Microsoft reads. 78
3.7 Autocorrelation for Microsoft writes. 78

4.1 E[T] (left) and E
[(

T−E[T]
)2] (right) for increasing load. 87

4.2 Mathematica code for two K-class moments. 90
4.3 E[T1] and E[T2] for HTC (left) and CloudStack (right) traces under increasing load. 91
4.4 σ2

1 (left) and σ2
2 (right) for the HTC trace under increasing load. 91

4.5 σ2
1 (left) and σ2

2 (right) for the CloudStack trace under increasing load. 91
4.6 Inter-arrival times (I.A.T.) of packets from CAIDA data set 1 (left) and 2 (right). 99
4.7 Response time PDFs via moments in Tables 4.7 (left) and 4.8 (right). 101
4.8 Response time PDFs via moments in Table 4.9 for class 1 (left) and 2 (right) jobs. 103
4.9 Response time PDFs via moments in Table 4.10 for class 1 (left) and 2 (right) jobs.104
4.10 Response time PDFs under low load (ρ = 0.4) for class 1 (left) and 2 (right) jobs. 105
4.11 Response time PDFs under high load (ρ = 0.9) for class 1 (left) and 2 (right) jobs. 106

5.1 IncHMM forecasts of BARC, AAPL and FORD prices. 110
5.2 IncHMM forecasts of HSBC, NDX and FTSE prices. 111
5.3 Distribution of charging (left) and discharging (right) sessions for 100 users. . . 114
5.4 Data transfers for an HTC One user by browsing (left) and streaming (right). . . 114
5.5 Charge increase with durations for two users. 115
5.6 Cost function for varying µ. 117

A.1 Mathematica code for response time moments in M/M/1-DPS queues [8]. 144

ix

List of Tables

3.1 The four adaptive HMMs with their corresponding data sets. 48
3.2 Convergence for variations of the Baum-Welch algorithm. 49
3.3 Reads/bin statistics on the raw, HMM and IncHMM NetApp traces. 56
3.4 Writes/bin statistics on the raw, HMM and IncHMM NetApp traces. 56
3.5 Reads/bin statistics on the raw, HMM and IncHMM Microsoft traces. 56
3.6 Writes/bin statistics on the raw, HMM and IncHMM Microsoft traces. 56
3.7 Reads/bin statistics on the raw, HMM and SlidHMM-generated NetApp traces. . 61
3.8 Writes/bin statistics on the raw, HMM and SlidHMM-generated NetApp traces. . 61
3.9 Reads/bin statistics on the raw, HMM and SlidHMM-generated Microsoft traces. 61
3.10 Writes/bin statistics on the raw, HMM and SlidHMM-generated Microsoft traces. 62
3.11 Viterbi state sequence ratio for the NetApp trace for HMM and SlidHMM. . . . 62
3.12 Twitter User 1 Traces: Raw, HMM and MultiHMM. 67
3.13 Twitter User 2 Traces: Raw, HMM and MultiHMM. 67
3.14 Twitter User 3 Traces: Raw, HMM and MultiHMM. 67
3.15 Twitter Group 1 Traces: Raw, HMM and MultiHMM. 67
3.16 Twitter Group 2 Traces: Raw, HMM and MultiHMM. 67
3.17 Twitter Group 3 Traces: Raw, HMM and MultiHMM. 67
3.18 Average correlation coefficients for HMM and MultiHMM-generated traces. . . 68
3.19 Pairwise correlation coefficients for four Twitter users using MultiHMM. 68
3.20 Pairwise correlation coefficients for five Twitter users using MultiHMM. 68
3.21 sMAPE values for Twitter groups on HMM and MultiHMM-generated traces . . 69
3.22 Twelfth Netapp read after no slides: raw, HMM and MultiHMM. 75
3.23 Seventieth Netapp write after no slides: raw, HMM and MultiHMM. 75
3.24 First Netapp read after nine slides: raw, HMM and OnlineHMM. 76
3.25 Fourth Netapp write after four slides: raw, HMM and OnlineHMM. 76
3.26 Fourth Microsoft read after no slides: raw, HMM and MultiHMM. 76
3.27 Sixth Microsoft write after no slides: raw, HMM and MultiHMM. 76
3.28 Second Microsoft read after five slides: raw, HMM and OnlineHMM. 76
3.29 Twentieth Microsoft write after three slides: raw, HMM and OnlineHMM. . . . 76

4.1 Moments for µ = 1 with varying ρ (left) and varying µ with fixed ρ = 0.5 (right). . 84
4.2 M/M/1-EPS moments (sec) for µ = 1. 87
4.3 Response time moments (sec) from TCP data set 1. 94
4.4 Response time moments (sec) from TCP data set 2. 94
4.5 Response time moments (sec) from GRID data set. 95

x

LIST OF TABLES

4.6 Statistics for CAIDA Equinix-Chicago data (dirB) collected on Oct 15th 2015. . 99
4.7 MMPP(2)/M/1-EPS moments (sec) on low load GRID data (ρ= 0.37). 101
4.8 MMPP(2)/M/1-EPS moments (sec) on high load GRID data (ρ= 0.83). 101
4.9 MMPP(2)/M/1-DPS moments (sec) on low load (ρ = 0.4). 102
4.10 MMPP(2)/M/1-DPS moments (sec) on high load (ρ = 0.9). 103
4.11 MMPP(4)/M/1-DPS moments (sec) on low load (ρ = 0.4). 104
4.12 MMPP(4)/M/1-DPS moments (sec) on high load (ρ = 0.9). 105

5.1 Statistics of battery data traces analysed. 113
5.2 Sample of handset models with manufacturer and date of first log. 113
5.3 sMAPE for several smartphone users comparing three predictive battery models. 115
5.4 Dynamic allocation results for DWRR (fixed) and FlowDPS (dynamic). 122

xi

Notation

N = number of HMM states or MMPP phases.
K = number of clusters or job classes.
π = initial state distribution for an HMM.
A = state transition matrix for an HMM.
B = observation matrix for an HMM.

Ot = observation at time t.
αt(i) = forward term of forward-backward algorithm.
βt(i) = backward term of forward-backward algorithm.

ξt(i, j) = transition at time t between state i and j used in Baum-Welch algorithm.
γt(i) = transition at time t from state i used in Baum-Welch algorithm.

T = response time of a system.
L = mean number of jobs in the system.
λ = mean arrival rate.
λ j = mean arrival rate for a class j job.
λi j = mean arrival rate for a class j job from MMPP state i.
µ j = mean service rate for a class j job.
ρ j = utilisation for a class j job.

wi j = superposition weights for MMPP state i for a class j job.
pi = invariant probability for MMPP remaining in state i.

qi j = MMPP rate from state i to state j.
αj = priority weights for a class j job under DPS.

G∗x = the Laplace transform of G with respect to x.
S j(x) = elapsed response time for class j jobs after tagged job attains service x.
Nj(x) = number of class j jobs in the system after tagged job attains service x.
T (·) = transform for joint distribution of response time and number of jobs.

E[T k] = the kth response time moment.

E[T k
j] = the kth response time moment for a class j job.

E[T k
i j] = the kth response time moment for a class j job from MMPP state i.

P(T = x) = response time probability density function.
P(T < x) = response time probability distribution function.

xii

Chapter 1

Introduction

Chapter Description

Section 1.1 introduces motivating challenges of performance in modern computer systems
and justifies workload models and queueing models as cost-effective solutions. Objectives
in section 1.2 argue that adaptive workload models (1.2.1) and queueing models (1.2.2)
represent spatiotemporal behaviour, save resources and respect service level agreements.
Section 1.3 outlines the thesis structure and we present related publications in section 1.4.

1.1 Motivation

The performance of modern computer and communication systems is a key issue for
international enterprises with a global online presence [21, 27]. Institutions and busi-
nesses increasingly face technical challenges that system performance imposes on critical
IP applications, remote desktops or video conferencing [23]. Such challenges include
lag in waiting times, availability and congestion with real-time, spatiotemporal-varying
system conditions and user behaviour. Individual users demand availability, security and
consistent performance of applications on large platforms and also on tablets and smart-
phones. For example, smartphone users wait, on average, approximately nine seconds for
a web page to load [144] before opting for more reliable performance from competitors.
Whether it is downloading files on smartphones using Wi-Fi or streaming web content on
a virtual cloud environment, the delay principle still applies. To meet quality of service
(QoS) goals (i.e. reducing queueing delays), application developers and content providers
aim for short response times (or latency, i.e. the time between a job arriving and leaving
the system) to minimise performance bottlenecks [7]. Typically, stochastic models are
a simplistic representation of delays, given certain assumptions, and simulation offers a
means of verifying analytical results. However, simply aiming to minimise mean response
time (i.e. the average time users wait for one or more tasks to complete) is usually not
acceptable nowadays because users tend to be equally frustrated with a highly variable
service. Thus, users demand response time that is predictable [31] and, hence, it is de-
sirable to obtain response time moments and distributions of traffic data in different parts
of the system and at different times. Queueing models offer tractable solutions for ap-
proximating response time moments and also abstracting complex processes of networks

1

1.1. MOTIVATION

and storage systems. Further, queueing models represent queueing delays by approxi-
mating response time distributions that are measured against QoS goals set by realistic
service level agreements (SLAs) from respective clients and vendors. For example, an
SLA could demand that 95% of the time, a type of request will complete within 0.05
seconds at a specific part of the system. However, maintaining consistent performance
for all parts of the system, by continuously upgrading infrastructure or increasing band-
width, is expensive to match a large user-base with heavy demand [6]; a similar problem
faces cloud service providers (CSPs) with respect to storage and service delays in data
centres. In cloud environments, oversubscribing shared resources such as disks may be
costly with a risk of failing strict SLA requirements [24]. Hence, a target is to obtain a
class of queueing models to act as benchmarks for predicting and improving spatiotem-
poral performance at peak times.

Modern server systems with multiple applications and traffic from many servers need to
maintain adequate performance for all applications. Despite server virtualisation reduc-
ing the number of server systems handling multiple applications, traffic to shared storage
is largely varied due to operations and integration between virtualised systems [66]. This
leads to a mixture of traffic flows at different time periods from many servers, and thus it
is advantageous to characterise such workloads. In general, characterising storage work-
loads is useful for performance evaluation including measurement, simulation and (if pos-
sible) analytical modelling. For measurement and simulation, I/O traces can be collected
from production systems. However, such traces are often very large (i.e. many gigabytes,
which prolong download times), difficult to obtain and might be outdated [72]. Hence,
an alternative is building a class of parsimonious workload models with few parameters,
which are used to generate multiple representative traces with key characteristics. Such
models are comparatively cost-effective in terms of resources than the aforementioned
production systems used to collect large I/O traces. Indeed, obtaining key workload pa-
rameters (e.g. job arrivals or throughput) from traces is highly desirable, where workload
models may be used in further experiments with new storage system designs (i.e. hybrid
Flash and disk) [64]. Further, characterising I/O workloads offers possible answers for the
demand exerted on data centres and allows construction of accurate performance models.

Workloads should typically represent time-varying correlated traffic streams that might
lead to possible resource bottlenecks in different parts (or layers, as with Flash) of the
system. Hence, realistic workload models should reproduce such behaviour in an eco-
nomic and efficient manner, thereby incorporating important features of traffic modelling
[81] that include: to be accurate, to capture spatiotemporal correlation, and to be fast at
fitting. Many workload benchmarks [66, 107, 109, 110] have been constructed for profil-
ing and system modelling in recent decades. Such benchmarks often train parameters on
traffic data in batches and, hence, static learning is inadequate for obtaining characteris-
tics of live systems due to costly computational requirements in the re-training process.
Hence, we seek improvements in workload models to obtain incremental benchmarks that
reduce computational complexity by training parameters online and, thus, offer runtime
analysis of live systems. Additionally, it is desirable to build workload models capable of

2

1.2. OBJECTIVES

treating customers with different classes. Multi-class models train on multiple workloads
simultaneously with reduced resources and measure correlation.

Minimising energy consumption whilst maintaining acceptable performance is a cru-
cial tradeoff for large storage systems and is incorporated into environmentally-friendly
SLAs. Particularly, companies such as AISO.net use green technology resources via
solar-powered hosting [115]. More generally, CSPs aim for environmentally-friendly
cost minimisation for data centres with sustainable goals (i.e. reduce carbon emission
footprint) and exploit the locational, time-varying fluctuation of electricity prices. Whilst
saving operational costs in the long-term, there might be additional short-term queue-
ing delays when re-distributing user requests to cheaper data centres, which may re-
duce QoS standards. Hence, queueing models with performance-energy measurements
are useful in analysing energy cost of large-scale systems with conflicting performance
goals [132]. With mobile technology growing rapidly, cloud services such as software-
as-a-service (SaaS) and platform-as-a-service (PaaS) are expected to run efficiently on
devices with full functionality and integrate with other applications. As these services
scale with the number of active devices, smartphone and tablet users must adhere to rec-
ommended power consumption guidelines to save energy costs and protect battery life
of device [164]. Hence, incorporating power consumption into performance models is
a key target for planning efficient use of data transfers given user charging patterns. On
a larger scale, distributed storage systems must address both performance guidelines to
meet SLAs and reduce energy consumption for long-term sustainable goals.

1.2 Objectives
To address the aforementioned challenges and adapt existing workload models, we pro-
pose a combination of solutions, as justified in this section. The solutions translate into
two main objectives of this thesis, which we list as follows:

• To build adaptive workload models that extract key characteristics from system
traces with comparatively reduced resources, can train efficiently on live production
systems with multiple streams and act as representative workload benchmarks.

• To build analytical queueing models that represent important characteristics of sys-
tem performance, abstract real-world complex processes and approximate queueing
delay through response time moments and distributions.

First, we introduce the features of the adaptive workload models. Secondly, we sum-
marise the queueing models, which approximate important performance measurements
from diverse systems. In each subsequent section, we clarify which of the aforemen-
tioned challenges have been addressed with the solution.

1.2.1 Adaptive workload models
In modern, large-scale, computer and communication systems, workload arises from
multiple, time-varying, correlated traffic streams affecting different parts of the system.

3

1.2. OBJECTIVES

Therefore, it is important to categorise and model workload in a portable and efficient
way for at least four purposes:

1. To generate similar traces for system simulation.

2. To train on live systems using fewer resources.

3. To model multiple workloads simultaneously.

4. To provide input parameters for analytical performance models.

By addressing all four purposes, our aim is to build portable benchmarks to characterise
workloads in diverse computer systems at different times. Building such benchmarks in
terms of time-series models such as moving averages is often easy and offers fast train-
ing times, but ignores higher moments, omits seasonal trends, and smooths spikes in
time-series [87]. Further, autoregressive moving average (ARMA) models [92], which
are also popular in forecasting [90, 91], suffer from similar drawbacks including assum-
ing stationarity of time-series and normality of the residuals [88]. On the other hand, the
Markov-modulated Poisson process (MMPP) and the hidden Markov model (HMM) offer
parsimony, accurate capture of correlation and burstiness in multi-application workloads.
Such workloads might be pre-scheduled to optimise system utilisation, access time and
availability. Simple stochastic models, such as Poisson processes, cannot provide realis-
tic tools for modelling time-series of complex systems including Internet traffic or storage
access, failing to account for long-range dependency (LRD) or burstiness. Therefore,
to improve this, researchers are turning their attention to more complex models, such as
MMPPs and HMMs [66, 86, 174]. In fact, the MMPP may also be viewed as a discretely-
indexed non-stationary HMM by observing intervals between events as a sequence of
dependent random variables [100]. The HMM has been successful in accounting for
correlation, self-similarity and burstiness of jobs through its mode-switching capabilities
[69, 83]. Applying similar models, such as the Kalman filter and the extended Kalman
filter [89], are useful when the state space of the time-series is continuous and (both latent
and observed) variables have Gaussian distributions. A benefit of the HMM is that it does
not assume Gaussian distributions for the dynamics of the workload.

The first purpose of modelling and categorising workload is to generate traces for sim-
ulating real-world systems. The Markov chain that forms part of the HMM represents
workload dynamics via modes of its generator matrix. This switching between modes
offers advantages over existing models such as Box-Jenkins [49, 54] and spectral analysis
[61, 101] and is represented by transitions between HMM states (i.e. evolving as a Markov
chain), which is typically captured at various timescales in the time-series. Hence, HMMs
are portable, comparatively cheap and parsimonious models that generate multiple repre-
sentative traces with key workload characteristics to simulate realistic system behaviour,
thus addressing the first purpose.

We address the second purpose by adapting HMMs to train on data in an incremental

4

1.2. OBJECTIVES

fashion. It takes considerable system resources such as time, training-data and comput-
ing power to produce a reliably parametrised model. Hence, an incremental approach
is appealing in terms of its run-time performance because a model’s parameters are pro-
gressively updated rather than periodically re-calculated [66]. Further, the need to learn
workload data in an online manner (i.e. “on-the-fly”) is particularly useful for live sys-
tems where latency has a significant impact for users (i.e. social media and high frequency
trading) [30]. The question is, therefore, are such incremental HMMs accurate? We seek
an answer from several directions: validation through statistical moments (i.e. mean,
standard deviation, skewness, etc.) of HMM-generated data compared to original data;
obtain mean absolute percentage error of incremental HMMs and compare with standard
HMMs; generate graphs of original data compared with forecasts produced by the in-
cremental model. Further, such prediction using incremental learning of HMMs can be
combined with energy measurements to analyse important performance-energy tradeoffs
that are relevant in, for example, smartphone applications where data usage influences
battery consumption [56].

The third purpose is addressed by constructing a multi-input HMM to train on differ-
ent traces, where clustering is used as initial configuration. Typically, HMM training (via
the Baum-Welch algorithm) is executed per trace and a useful upgrade would be to obtain
a model capable of training on multiple traces simultaneously, thus modelling multiple
workloads. Further, the capability for training models on multiple workloads is growing
in importance with the analysis of online interactions on social media and across systems
with shared resources. For example, variations of HMMs have identified trends in group
activity on Twitter, such as coupled HMMs [82], which represents each user as a Markov
chain and the coupling of chains as the social interaction. However, scaling to large data
sets adds computationally-expensive coupling and, hence, this model is unrealistic in real-
world applications of online social interactions. A solution is to build a scalable, adaptive
multi-input HMM, which trains on multiple users in a resourceful manner without signif-
icantly reducing accuracy of synthetic traces produced [5]. Further, we model burstiness
and correlation between users in social networks and recognise trends in groups of users.

The fourth purpose concerns input parameters obtained from workload models to be used
in analytical performance models. We build such analytical models using queueing theory
[7] and discuss the advantages offered towards obtaining realistic performance measure-
ments (i.e. response time moments) to address SLA requirements, with important energy
tradeoffs. Incorporating adaptive workload models with queueing models provides real-
world benefits to storage systems, social media, and financial strategies, to name but a
few. We dedicate the subsequent section to justifying analytical queueing models for
approximating performance measures in real-world systems.

1.2.2 Analytical queueing models

In many modern systems, response time is a key measurement for approximating delay
in different queueing scenarios and, hence, is representative of system performance [21].

5

1.2. OBJECTIVES

Queueing delay typically arises when packets are made to wait at routers before being
redirected to respective destinations. Traffic in a packet-switching network is bursty and
delay can be averaged in two ways; as averages across all bursts or as averages within
bursts. However, both such measurements ignore variability of packet burstiness. There-
fore, it is important to consider the second moment (and higher) of delays at peak times,
when throughput is highest and has a direct effect on utilisation. Response time distribu-
tions are approximated from moments and may be compared to SLA delay requirements
to ensure performance goals of the system [145]. As part of QoS aims, there exist queue
management techniques that ensure the high-priority, delay-sensitive traffic has minimal
mean delay curve [146]. This is crucial for providing QoS to network traffic as the queue-
ing delay is minimised for important jobs such as voice data. Further, measuring spa-
tiotemporal delay (i.e. in different parts of the system at different times) benefits planning
of resource allocation for large-scale storage systems, mobile technology, wireless sensor
networks, etc.

Queueing models provide a tractable solution for modelling queueing delay and can ap-
proximate response times under different system conditions. When modelling queueing
delays, it is imperative to avoid averaging delay for only one class of job and, therefore,
priorities should be implemented in queues to facilitate multiple job classes (i.e. typically
two to five levels of priority is common). Hence, discrete queueing models approximate
higher moments of response time for multiple classes of jobs, whilst providing an analyt-
ical alternative to computationally-expensive simulation. Further, we utilise underlying
continuous time Markov chain (CTMC) properties of queueing models in order to ab-
stract dynamic system processes and obtain representative performance measures. Fluid
queues, which were first used by Pat Moran [36], also rely on a CTMC as a generator
and can approximate discrete queues, but allow continuous arrivals and typically utilise
the moments of busy periods. Further, fluid queues have modelled the performance of
network switches and routers [116]. For Internet applications including packets arriving
at a router, it is reasonable to use discrete queues to model the packet arrivals and service
requirements (i.e. discrete packet sizes). For example, in ideal scheduling algorithms
such as generalised processor-sharing (GPS), the traffic modelled is assumed to be fluid,
which does not match the actual (discrete) packet sizes.

Parametrising a discrete queueing model with key rates obtained from system measure-
ments depends on the distribution of the processes under investigation. For example,
using Kendall notation [11], the M/M/1 queue has Poisson arrivals, exponential service
times and one server. Hence, in a simplified scenario of packets waiting at a router,
we parametrise the M/M/1 queue as follows: the mean arrival rate (λ) is given by the
average throughput of the packets and the mean service rate (µ) is given by transmis-
sion rate divided by the average packet size. An important assumption we make in this
scenario is steady state on arrival (i.e. the utilisation is less than one). Once the queue-
ing model is parametrised, analytical approximations of response time (i.e. representing
queueing delay) and queue length distribution are calculated. Further, more complex ar-
rival distributions (i.e. MMPP-induced arrivals) can be represented in queueing models

6

1.3. THESIS OUTLINE AND CONTRIBUTIONS

with a variety of scheduling disciplines such as first-come first-served (FCFS) and the
equally-weighted processor-sharing (PS). Additionally, queues that schedule jobs with
discriminatory processor-sharing (DPS) represent heterogeneous time-sharing systems
and are popular for modelling buffers in routers and sizing links in transport networks
[34]. We discuss the improvements and extensions of existing M/M/1-PS queueing mod-
els [151, 155] offering more realistic scenarios to represent Internet traffic at routers and
workloads from storage systems.

We have briefly described how queueing models allow us to approximate queueing de-
lay, achieve fairness and address QoS requirements in an efficient and mathematically
tractable manner. We summarise the novel contributions for queueing models achieved in
this thesis:

• Build a class of M/M/1-PS queues that abstract complex system processes and ob-
tain explicit equations for higher response time moments for a single job class.

• Construct an automated moment-generating algorithm to obtain higher response
time moments in multi-class, M/M/1-DPS queues for scenarios of different loads.

• Adapt a weighted superposition technique to obtain higher response time moments
in MMPP/M/1-DPS queues from a numerical algorithm, which calculates moments
iteratively. Form a dynamic allocation strategy using MMPP/M/1-DPS queues for
modelling traffic flows at routers whilst minimising delay.

• Use the mean response time to approximate average delay in smartphone applica-
tions, which is combined with power consumption in an objective cost function to
address a performance-energy tradeoff.

In the research reported in this thesis, we compare analytical results with numerical re-
sults to validate our queueing models. In one respect, analytical response time moments
produced by a class of discrete queues should be compared to response time moments
simulated in a real-world environment (or obtained from simulating models with repre-
sentative parameters). On the other hand, we obtain numerical results on real data and
also parametrise our queueing models with realistic inputs such as mean arrival and ser-
vice rates from system traces of real traffic. Note that the analytical queueing models
relate only to single queues that approximate response time moments and do not obtain
closed-form network solutions. In the next section, we outline the thesis structure by
chapters and summarise the novel contributions made to research. We support our contri-
butions through peer-reviewed publications.

1.3 Thesis outline and contributions
In this section, we outline the structure of the thesis by including the main chapters and
highlight the contributions, which correspond to publications in section 1.4.

7

1.3. THESIS OUTLINE AND CONTRIBUTIONS

Chapter 2: Background

The background covers a range of relevant topics in machine learning and queueing the-
ory including: an introduction to model selection for unsupervised learning; advantages
and disadvantages of clustering and justification of using the k-means algorithm; defini-
tion of HMMs and relevant HMM applications in storage systems [66], modelling arrivals
[4], social media [82] and finance [74]; definition of MAPs and MMPPs; an introduction
to fundamental queueing theory including M/M/1 queues and scheduling disciplines; ex-
isting work on response times for processor-sharing disciplines; abstractions of queueing
models to measure performance in modern computer systems. To support the models used
in this thesis, we describe wider applications in smartphone applications, battery models,
cloud computing and data centres.

Chapter 3: Adaptive HMMs

This chapter provides detailed algorithms for modifying standard HMM processes to
build parsimonious workload models that are adaptive with the following distinct bene-
fits: through incremental learning of discrete traces, where HMM parameters are updated
“on-the-fly,” we obtain the IncHMM [1, 2] with reduced Baum-Welch convergence rate;
improving the IncHMM with a fixed sliding window that discards obsolete data points as
new data points are trained on the model, we form the SlidHMM [3]; multi-dimensional
learning on groups of traces via a doubly-clustering k-means algorithm builds the Mul-
tiHMM [5], which reduces computational complexity of training a standard HMM se-
quentially per trace for multiple iterations; combining features of the SlidHMM and
MultiHMM allows efficient online learning of multiple (simultaneous) traces in the On-
lineHMM [6]. For each adaptive model, we provide specific modifications of HMM-
based algorithms, present results on varied data sets from diverse applications and discuss
potential improvements.

Chapter 4: Queueing models

We begin with an M/M/1-EPS queue, for which we obtain explicit response time mo-
ments under egalitarian processor-sharing (EPS) via an iterative algorithm [7]. To include
multiple job classes, we extend this moment-generating algorithm for discriminatory PS
(DPS) disciplines using the constructs of an M/M/1-DPS queueing system [8]. Hence, we
approximate workload in smartphone activity and servers in data centres, obtaining ex-
plicit response time moments as important performance measures. Improvements to the
M/M/1-DPS model include using an MMPP to distribute the multi-class queueing arrivals
and obtain corresponding response time distributions to address SLAs. Hence, we build
an MMPP/M/1-DPS queue [9]. We obtain higher response time moments and distribu-
tions using a weighted superposition of M/M/1-DPS queues under the assumption of slow
switching phases of the MMPP. We parametrise the MMPP/M/1-DPS queue with traces
of CAIDA IP traffic. Possible applications of this model include verifying spatiotemporal
SLA requirements for Internet traffic.

8

1.4. RELATED PUBLICATIONS

Chapter 5: Applications

In this chapter, we analyse applications using our adaptive models to give the reader
some ideas of relevant areas that our work may contribute to. First, we investigate the
performance-energy tradeoff in smartphone applications, which consists of an HMM-
based power consumption model and a tradeoff involving mean delay and energy con-
sumption [10]. Smartphone data is collected from over 700 users with 100 different hand-
sets from the OpenBattery application [124], which we use to draw conclusions about
usage patterns and battery consumption of different users. Secondly, a dynamic alloca-
tion strategy uses a UDP flow-level model to minimise delay whilst maximising a utility
function. Specifically, this application involves applying the MMPP/M/1-DPS queueing
model to build the UDP flow-level model (aka FlowDPS) and compare the performance of
the FlowDPS model to a simplified, static deficit weighted round robin (DWRR) schedul-
ing algorithm.

1.4 Related publications
During my PhD (April 2012 - November 2015), I wrote the following peer-reviewed
publications:

[1] Tiberiu Chis, Peter G. Harrison: Incremental HMM with an improved Baum-
Welch algorithm, In Proceedings of the 2nd Imperial College Computing Student
Workshop (ICCSW), London, UK, 2012.

This workshop paper introduces two techniques for adapting the backward formula
of the Baum-Welch algorithm to achieve incremental learning of HMMs. This in-
cremental HMM (IncHMM) uses k-means clustering to pre-process discrete data
and, once trained, outputs synthetic traces that we compare statistically via mean
and standard deviation to original, unclustered traces. Despite achieving encour-
aging results, these preliminary IncHMM experiments are valid for one only data
set.

[2] Tiberiu Chis, Peter G. Harrison: iSWoM: The incremental Storage Workload
Model using Hidden Markov Models, In Proceedings of the 20th International
Conference on Analytical and Stochastic Modelling Techniques and Applications
(ASMTA), Ghent, Belgium, 2013.

This conference paper improved the techniques introduced in [1] by building an
incremental storage workload model using the IncHMM. Results on two different
data sets compare mean and standard deviation of original and IncHMM-generated
storage traces, including 95% confidence intervals after many simulation runs. De-
spite reducing the computational requirement of the Baum-Welch algorithm, this
work seeks an improvement in maintaining the size of training sets and providing
an objective error measurement of the IncHMM versus the standard HMM.

9

1.4. RELATED PUBLICATIONS

[3] Tiberiu Chis: Sliding Hidden Markov Model for Evaluating Discrete Data, In
Proceedings of the 10th European Workshop on Performance Engineering (EPEW),
Venice, Italy, 2013.

This workshop paper improves online training of IncHMM by incorporating a slid-
ing window, hence forming a sliding HMM (SlidHMM). This new feature reduces
the size of the observation set by discarding old data points as new ones arrive,
which minimises convergence rates for the Baum-Welch algorithm. Metrics for
validating results are similar to [2] and we introduce new metrics measuring the
training steps saved with SlidHMM over the standard HMM.

[4] Tiberiu Chis, Peter G. Harrison: Analysing and Predicting Patient Arrival Times,
In Proceedings of the 28th International Symposium on Computer and Information
Sciences (ISCIS), Paris, France, 2013.

This symposium paper applies HMMs to traces of hospital patient arrivals, pro-
viding similar validation measures as introduced in [2]. Additional features of the
paper include: autocorrelation results on original and HMM-generated traces; de-
coding HMM-generated traces using the Viterbi algorithm; and methods for obtain-
ing the optimal number of hidden states via merging.

[5] Tiberiu Chis, Peter G. Harrison: Modeling Multi-User Behaviour in Social Net-
works, In Proceedings of the 22nd IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MAS-
COTS), Paris, France, 2014.

This conference paper introduces a multi-input HMM (MultiHMM), capable of
training on multiple traces simultaneously and reducing training time compared to
a standard HMM. We collected Twitter user activity and pre-processed traces us-
ing a doubly-clustering k-means algorithm. We validated the MultiHMM against
standard HMM-generated traces using moments, autocorrelation, mean absolute
percentage error (MAPE) and Baum-Welch algorithm convergence rates. The Mul-
tiHMM provides promising applications for recognising group trends on social me-
dia, planning resource allocation for social networks and building user profiles for
security.

[6] Tiberiu Chis, Peter G. Harrison: Adapting Hidden Markov Models for Online
Learning, In Elsevier Electronic Notes in Theoretical Computer Science (ENTCS),
318, pp. 109-127, 2015.

This journal paper introduces the hybrid OnlineHMM, which combines methodolo-
gies of the IncHMM and the MultiHMM and, thus, trains on multiple traces simulta-
neously in an incremental fashion. A significant advantage of the OnlineHMM over
existing HMMs is the reduced convergence rate of the adapted Baum-Welch algo-
rithm trained on discrete time-series. We validate the OnlineHMM via centralised
moments calculated on model-generated time-series and on empirical data. Further,
we obtain accurate autocorrelation results from OnlineHMM-generated traces. A
possible extension is using the switching rates from a converged OnlineHMM as

10

1.4. RELATED PUBLICATIONS

inputs into an MMPP, which acts as a bursty job arrival process in, for example,
multi-tiered storage systems.

[7] Tiberiu Chis, Peter G. Harrison: Moment-Generating Algorithm for Response
Time in Processor Sharing Queueing Systems, In Proceedings of the 12th Euro-
pean Workshop on Performance Engineering (EPEW), Madrid, Spain, 2015.

This workshop paper introduces a new moment-generating algorithm for calculat-
ing response time explicitly in processor-sharing (PS) queues, which is extended for
multiple job classes. The algorithm is presented in full, as implemented in Math-
ematica, and iteratively calculates the explicit first four moments of response time
for PS queues with one job class. Additionally, we plot the first two moments of
real-world traces exhibiting two distinct job classes. Our algorithm methodology is
compared with existing work and extensions are offered.

[8] Tiberiu Chis, Peter G. Harrison: Higher response time moments for M/M/1 dis-
criminatory processing-sharing queues, In Proceedings of the 9th EAI Interna-
tional Conference on Performance Evaluation Methodologies and Tools (VALUE-
TOOLS), Berlin, Germany, 2015.

This short paper presents an automated algorithm to yield higher response time
moments in M/M/1-DPS queues with multiple job classes. We obtain up to four
moments of response time with two distinct job classes. The results in this paper
reveal that analytical approximations match simulated moments well under low and
high utilisation. Applications of this numerical algorithm include modelling multi-
class Internet traffic, where delay addresses QoS constraints, and spatiotemporal
resource allocation in networks.

[9] Tiberiu Chis, Peter G. Harrison: Modeling Packet Delay and Traffic Flow with
MMPP/M/1 Discriminatory Processing Sharing Queues, Submitted for publica-
tion, 2015.

This paper provides a methodology for approximating response time moments and
distributions for MMPP/M/1-DPS queues. First, an automated moment-generating
algorithm is applied to yield higher moments of multiple job classes in M/M/1-
DPS queues. Then, we adapted a weighted superposition technique to M/M/1-
DPS queues for estimating the response time in MMPP/M/1-DPS queues, under the
approximating assumption of slow switching phases of the MMPP; the analytical
approximations match simulation results fairly well, but failed in some cases for
high loads. Further, we utilise our response time approximations to represent packet
delay in routers and as part of a flow-level allocation strategy. In doing so, we prove
that DPS scheduling algorithms, coupled with MMPP bursty properties, are efficient
at service differentiation at flow level (under simulated scenarios).

[10] Tiberiu Chis, Peter G. Harrison: Modeling Performance and Energy in Smart-
phone Applications, Submitted for publication, 2015.

This paper investigates the performance-energy tradeoff of smartphone applications
by following two strategies: first, a power consumption model forecasts battery

11

1.4. RELATED PUBLICATIONS

draw using the OnlineHMM; secondly, a tradeoff structured as an objective cost
function incorporates mean delay and energy consumption. For both strategies,
logged smartphone activity for over 700 users is collected using an open source
smartphone data-collection application. Hence, we build two hypotheses from our
strategies: first, burstiness and mode-switching is present in data transfers and bat-
tery behaviour; secondly, power consumption increases as mean delay decreases.

12

Chapter 2

Background
Chapter Description

First, this chapter introduces different models and applications of unsupervised learning,
namely model selection (2.2), clustering (2.2.2), method of moments (2.2.3) and hidden
Markov models (2.2.4). Secondly, section 2.3 describes queueing models focusing on the
PS discipline (2.3.3), response times (2.3.5) and Markov-modulated Poisson processes in
queues (2.3.6). Lastly, we explain some performance-energy applications in section 2.4.

2.1 Introduction
This chapter introduces background information in three parts and explains fundamental
theoretical concepts that are developed in subsequent chapters. In the first part, we pro-
vide an overview of unsupervised learning techniques including model selection, three
types of clustering, and method of moments. Further, we define hidden Markov models
(HMMs), prove the fundamental HMM algorithms and highlight the benefits and lim-
itations of existing HMM applications. In the second part of the background, we in-
troduce key principles of queueing theory, processor-sharing (PS) queues and existing
work of response times under PS with potential extensions. Finally, we explore existing
performance-energy models used in mobile technology and data centres. This chapter
allows the reader to understand the basic principles of existing models, the relevant appli-
cations and limitations, and how improving such models benefits performance and saves
resources and energy.

2.2 Unsupervised learning models
It was said by statistician George Box that “all models are wrong, but some are useful”
[54]. This famous quote fuelled the all models are wrong aphorism in statistics, which
attaches more importance to how useful models are over their correctness. Indeed, obtain-
ing models for analysing, training and forecasting time-series provides many real-world
benefits for social media, finance and storage systems, to name but a few. For example,
a stock prediction model uses historical daily stock prices to adopt an effective invest-
ment strategy [74], which aims for diversification across asset classes and uses histori-

13

2.2. UNSUPERVISED LEARNING MODELS

cal volatility to dynamically select low-risk assets. Often, time-series are “unlabelled,”
meaning they exhibit a hidden structure from an unknown underlying distribution. Unsu-
pervised learning models provide solutions for modelling such unlabelled time-series and
explain features of data in an efficient manner.

Many unsupervised learning models exist in the literature including clustering, method
of moments and expectation maximisation (EM) [15]. Specifically, the EM algorithm it-
eratively finds maximum likelihood estimates of model parameters [17]. A special case of
EM is the Baum-Welch algorithm [13], which is used in HMMs to find the local maximum
likelihood. By considering parameter learning in HMMs via the Baum-Welch algorithm,
we associate the application of EM with HMMs. To select the best unsupervised learning
model given a data set, an objective criterion is typically required for model evaluation.
As noted, we consider usefulness and applications as part of the model selection process.
As this chapter will justify, we select HMMs as our choice of adaptive models because of
their parsimony, efficiency and applicability for real-world scenarios.

2.2.1 Model selection
An important aim in training data for analysis and forecasting is selecting the optimal
model from a set of candidate models [22]. It is known that with unsupervised learning
techniques, possible solutions cannot be evaluated with a reward signal, as is the case
with supervised learning. Therefore, to infer our own “function” from unlabelled data, we
investigate the criteria for an efficient unsupervised learning model: first, we investigate
variations of the mean absolute percentage error (MAPE); secondly, we focus on the well-
known Akaike Information Criterion (AIC) [16].

MAPE

A validation of forecasting models is the error between the model-generated time-series
and the original data. A widely used metric is the mean absolute percentage error (MAPE),
which measures accuracy of the forecast value against the actual value. The MAPE for-
mula, expressed as a percentage for a time-series of n values, is given by:

MAPE =
1
n

n∑
t=1

∣∣∣∣∣at − ft

at

∣∣∣∣∣ (2.1)

where at is the actual value and ft is the forecast value.

An averaged MAPE measure calculated on multiple time-series is sometimes distorted
if particular time-series produce inflated values (i.e. significantly larger than one), which
jeopardises reliable comparisons [29]. To solve such an issue, we use the symmetric
MAPE (sMAPE) measure defined by:

sMAPE =
2
n

n∑
t=1

| ft − at |

|at | + | ft |
(2.2)

14

2.2. UNSUPERVISED LEARNING MODELS

where at is the actual value and ft is the forecast value.

AIC

A well-known test for model selection is the Akaike information criterion (AIC) [16],
which measures model efficiency in terms of the number of independent parameters (p)
and the maximised likelihood function (L) in an effort to combat overfitting. AIC, seen as
a trade-off between goodness-of-fit and model complexity, is defined as:

AIC = 2p − 2log(L) (2.3)

Critics of AIC have highlighted that AIC favours models with fewer parameters and less
accuracy over more accurate, complex models [18]. AIC selects models that approxi-
mate reality, suggesting that reality should always have lower dimensionality, which is
not always the case. Further, AIC assumes that its models possess a likelihood function
and lacks general error measures that encompass all models such as sMAPE and clas-
sification precision. Therefore, the aim is to improve weaknesses of AIC by employing
an objective cost function (ideally incorporating measures such as sMAPE) as a model
selector. Further, we select models that are easy to implement, train efficiently and have
useful features for characterising and classifying data.

2.2.2 Clustering
Clustering is defined as the process of separating data items into homogeneous groups
with similar features [20]. This is an unsupervised learning problem for providing a class
structure to an apparently randomly distributed data set, where we are unaware of class
labels or the number of classes in the data. A cluster is essentially a group, where all
clustered data points share common attributes. Thus, we assign each point in the collec-
tion to a cluster, where data points from one cluster differ from the points belonging to
another. Moreover, “hard” clustering dictates that data points either strictly belong to a
cluster or do not, whereas “soft” clustering uses probabilities for associating a particular
data point with a specific cluster. Generally, we seek clusters with high intra-cluster sim-
ilarity and low inter-cluster similarity. A typical similarity criteria is geometrical distance
such that each cluster contains points near one another, which is an example of distance-
based clustering. Further, similarity criteria has other measurements excluding distance
(i.e. conceptual clustering) and is another important feature of cluster analysis.

Clustering is used to solve a range of small and large-scale problems [83]. Some exam-
ples of clustering applications include: classifying flora and fauna in ecology via repre-
sentative features across different communities in heterogeneous environments; assigning
genotypes (i.e. the genetic makeup of an organism) in bioinformatics; developing future
marketing programs via distinct groups using customer databases; detecting earthquake
“danger zones” in seismology by clustering epicentres; identifying areas of frequent crim-
inal incidents temporally.

15

2.2. UNSUPERVISED LEARNING MODELS

The wide range of applications offered by clustering is supported by its simplicity and
parsimony. Hence, by minimising the number of parameters, clustering is advantageous
for systematically grouping data sets of variable size in a straightforward manner. Other
advantages include revealing significant trends in data sets and creating profiles of in-
dividual data points. However, some types of clustering have increased computational
complexity with very large data sets and specifying the number of initial clusters as an
input, specifically for the k-means clustering algorithm, is often a challenge.

The three main classifications of clustering algorithms explored in subsequent sections
are hierarchical, density-based, and centroid-based clustering. For each classification
type, we elaborate on methodologies, benefits and possible drawbacks.

Hierarchical clustering

Hierarchical clustering forms new clusters from the union of two existing clusters with the
smallest common distance. The first type of hierarchical clustering algorithm is agglom-
erative, where clusters are merged iteratively in a “bottom-up” fashion. The algorithm
terminates when all objects form one cluster. A famous example of agglomerative clus-
tering is Agglomerative Nesting (AGNES) introduced by Kaufmann and Rousseeuw [19].
AGNES merges nodes with common features until all nodes form one cluster and is typi-
cally implemented in statistical analysis packages such as S+. A disadvantage of agglom-
erative clustering is the O(T 2) computational complexity for T data points, which does
not scale well with large data sets. Another drawback is that steps executed in AGNES
cannot be reversed. The second type is divisive hierarchical clustering, which splits clus-
ters iteratively in a “top-down” process, forming successively smaller clusters until each
cluster is one object. Divisive Analysis (DIANA) [19] is a typical example, which acts as
the inverse of AGNES and is also implemented in S+.

Integrating hierarchical clustering with distance-based approaches, one obtains a data
clustering method known as Balanced Iterative Reducing and Clustering using Hierar-
chies (BIRCH) [33]. BIRCH uses a clustering feature tree and incrementally improves the
quality of sub-clusters for multi-dimensional metric data points whilst addressing mem-
ory and time constraints. By observing that data space is typically not uniformly occupied
and priorities vary among data points, BIRCH saves computation complexity and reduces
I/O costs from training on a subset of data points and existing clusters.

Density-based clustering

Density-based clustering algorithms form clusters in bounded areas of high density, where
lower density parts act as boundary points or noise. Therefore, important features of
density-based clustering include the discovery of arbitrary-shaped clusters and the ability
to handle noise. One of the most popular types of density-based clustering is Density-
Based Spatial Clustering of Applications with Noise (DBSCAN), which was proposed by
Ester et al. [35] and uses the idea of density-reachability, where a data point is within a
boundary distance or neighbourhood of another point. In this scenario, a cluster is a max-

16

2.2. UNSUPERVISED LEARNING MODELS

imal set of density-connected points (i.e. data points x and y are density-connected if they
share a common point p such that (x, p) and (y, p) are density-reachable). DBSCAN has a
run-time complexity of O(Tlog(T)) for T data points if it has an efficient index structure;
otherwise, the complexity is O(T 2).

DBSCAN has the advantage of handling noise, does not require an initial number of
clusters as an input parameter and identifies arbitrarily-shaped clusters (i.e. clusters sur-
rounded by other clusters). On the other hand, DBSCAN relies on a getNeighbours(T)
function, which contains the collection of points T and the distance measure that defines
the ε error value. With multi-dimensional data, this distance metric becomes useless and
it is difficult to assign an accurate value to ε.

Centroid-based clustering

Centroid-based clustering involves grouping data using a central point, which is usually
the mean value of all data points in the cluster. The simplest centroid-based clustering
is the k-means algorithm developed by MacQueen [44]. The k-means algorithm requires
that each data point be assigned to one of k clusters, where each cluster has a centroid
calculated as the mean of its data points. The k-means algorithm is summarised in four
steps:

1. Choose a value for k and then calculate k initial centroids among the data points.

2. Match each data point with the nearest cluster centroid using Euclidean distance.

3. Once all the data points are assigned, re-calculate positions of the k centroids.

4. Repeat steps 2 to 3 until centroids converge (i.e. fix position) then terminate.

Note that, initially, it is important to strategically choose initial centroids as far as pos-
sible from each other. The k-means algorithm has a complexity of O(T KI) where T is
the number of data points, K is the number of clusters and I is the number of iterations.
By increasing I, one ensures the initial randomly selected centroids have less effect on
the outcome of the algorithm. Advantages of k-means include easy implementation and
acceptable convergence rates for large data sets. K-means is often used as a preprocess-
ing step for other algorithms (i.e. EM) and, thus, provides an initial configuration. For
these reasons, we choose k-means as the clustering algorithm with which to partition and
group our discrete data sets. Some disadvantages of k-means include: choosing a suit-
able value of k for the data set; k-means does not handle noisy data and is sensitive to
outliers; convergence to a local minimum may not achieve the desired result even after
many iterations. Preliminary testing for a range of values for k (i.e. the initial number
of clusters) typically addresses the first disadvantage. Despite other disadvantages, the
k-means algorithm is more suitable for modelling the data sets used in this thesis as it has
the lowest training complexity compared to the other types of clustering.

17

2.2. UNSUPERVISED LEARNING MODELS

2.2.3 Method of moments
The method of moments (MoM) was originally introduced by Pearson in 1894 [53] (the
reader may find a modern implementation in [173]) and is described in a few steps. Let
X be a random variable that takes real values, and the distribution of X has a set of k
unknown parameters θ = {θ1, θ2, . . . , θk}. Generating a sequence of n independent random
variables X1, X2, . . . , Xn, where each Xi has the same distribution as X, we seek parameter
estimators by matching sample moments with distribution moments. Let µi(θ) = E[Xi],
i ∈ {1, 2, . . . , k}, be the ith moment of X and let Mi(X) = n−1 ∑n

j=1 Xi
j , which is the ith sample

moment. Assuming Mi(X) is an unbiased estimator of µi(θ), we aim to match estimators
Y1,Y2, . . . ,Yk with unknown parameters θ1, θ2, . . . , θk, which results in k equations for k
unknowns:

µi(Y1,Y2, . . . ,Yk) = Mi(X1, X2, . . . , Xn)

where i ∈ {1, 2, . . . , k}.

Advantages of MoM include: the comparative ease of obtaining consistent estimators
by hand, whereas equations of likelihood rely heavily on computer calculation; finding
maximum likelihood estimates by repeated approximations; in cases when relevant proba-
bility distributions are unknown, method of moments is preferred to maximum likelihood
when estimating specific parameters (e.g. of a utility function).

MoM presents the following disadvantages: biased estimators are often obtained; small
samples may produce estimators outside the parameter space; not all relevant sample in-
formation is considered by estimators. We find that the maximum likelihood method im-
proves MoM as it offers more consistently unbiased estimators with higher probabilities
of matching original variables. Further, maximum likelihood estimates are always within
the parameter space. This is another reason to select HMMs as our choice of models.

2.2.4 Hidden Markov Models
The hidden Markov model (HMM) is one of the most widely used statistical tools for
modelling discrete time-series. The HMM was first developed by Baum and Petrie [12]
to encode information on time-series evolution with a parameter estimation algorithm
inferring the behaviour of the given series. As HMMs efficiently represent workload dy-
namics, acting as parsimonious models that obtain trace characteristics, their applications
include storage workload modelling [66], speech recognition [65, 76] and genome se-
quence prediction [68]. We list a number of advantages that HMMs possess over existing
models and techniques:

1. HMMs are parsimonious with only three parameters, which converge efficiently
using the EM algorithm.

2. The mode-switching of HMMs captures burstiness, unlike in Poisson processes,
and hidden states represent cyclic behaviour of time-series (i.e. financial markets
[26]).

18

2.2. UNSUPERVISED LEARNING MODELS

3. Unlike HMMs, auto-regressive moving average (ARMA) and linear regression mod-
els assume normality of residuals and omit nonlinear trends in data [87, 88].

4. HMMs offer good approximation capacities similar to artificial neural networks
(ANNs), but ANNs are often poor at generalisation due to overfitting [78].

5. HMMs offer portability and can efficiently build a class of workloads used for sys-
tem simulation or as inputs into analytical models.

Further, HMMs act as benchmarks to explain and predict the complex behaviour of multi-
application workloads and provide representation for inputs of large, complex systems. In
this thesis, we build adaptive HMMs for discrete processes by adapting the corresponding
underlying HMM mechanisms for online learning of systems.

To train and test HMMs as benchmarks, one must first utilise the statistical algorithms
to solve three fundamental problems associated with HMMs related to workload traces:
the first problem is determining P(O | λ), which is the a priori probability of the observed
trace or sequence O given some model λ; the second is to maximise P(O | λ) by adjusting
model parameters of λ for a given observation sequence O; the third problem is finding the
most likely hidden state sequence associated with a given observed sequence. The three
fundamental problems are solved respectively by applying the forward-backward algo-
rithm [12], the Baum-Welch algorithm1 [13] and the Viterbi algorithm [14]. We remind
the reader that the Baum-Welch algorithm is a special case of the EM algorithm, which
finds the local maximum likelihood. Before elaborating further on the three algorithms,
we first provide formal definitions of Markov chains and HMMs.

The HMM is defined as a bivariate Markov chain that encodes information about time-
series evolutions. Essentially, there is a hidden Markov chain {Ct}t∈N, which has unobserv-
able states, and a discrete time stochastic process {Ot}t∈N, which is observable. Combining
these processes, we obtain the bivariate Markov chain {(Ct,Ot)}t∈N. Note that Ct governs
the distribution of Ot via emission probabilities, but we reserve statistical inference for
Ot, as Ct is not observed. We formally define a Markov chain as follows:

Definition 1 Let {Ct}t∈N be a stochastic process with state space S = {1, . . . , r}. Then
{Ct}t∈N is a Markov chain if

P(Ct+1 = ct+1 | Ct = ct,Ct−1 = ct−1, . . . ,C1 = c1) = P(Ct+1 = ct+1 | Ct = ct)

where c1, c2, . . . , ct+1 ∈ S .

Given definition 1 , the HMM is formally defined as:

Definition 2 Suppose we have a Markov chain {Ct}t∈N with state space S = {1, . . . , r},
initial distribution π = (πi)i∈S , transition matrix A = (ai j)i, j∈S , observation matrix B =

(bik)i∈S, k∈J, and a stochastic process {Ot}t∈N with values in J = {1, . . . ,m}. Then, the
bivariate stochastic process {(Ct,Ot)}t∈N is a hidden Markov model if it is a Markov chain
with transition probabilities

1The Baum-Welch algorithm includes the forward-backward algorithm iteratively.

19

2.2. UNSUPERVISED LEARNING MODELS

P(Ct = ct,Ot = ot |Ct−1 = ct−1,Ot−1 = ot−1) = P(Ct = ct,Ot = ot | Ct−1 = ct−1) = act−1ctbctot

where ct−1, ct ∈ S , ot−1, ot ∈ J.

A useful property that is defined conditionally on {Ct}t∈N is that {Ot}t∈N are independent
states, which gives the following:

P
(
O1 = o1, . . . ,On = on | C1 = c1, . . . ,Cn = cn

)
=

n∏
i=1

P(Oi = oi | Ci = ci) (2.4)

Results similar to equation (2.4) are useful properties for HMMs and are reserved for
the appendix (see A.1). Such properties provide useful mathematical tools for solving
the three fundamental problems relates to HMMs. Before defining the three fundamen-
tal problems, it is necessary to define joint probability and likelihood functions. The
probability of joint processes (C1,O1), (C2,O2), . . . , (Cn,On) allows calculation of HMM-
related probabilities, where the joint probability function is given by:

Jπ(c1, o1, . . . , cn, on) = P(C1 = c1,O1 = o1, . . . ,Cn = cn,On = on)
= P(C1 = c1,O1 = o1)P(C2 = c2,O2 = o2 | C1 = c1) . . .

. . . P(Cn = cn,On = on | Cn−1 = cn−1)

= πc1bc1,o1

n∏
i=2

aci−1,cibci,oi

(2.5)

where the initial distribution of the chain is πc1 = P(C1 = c1).

This is the joint probability function for observed and unobserved random variables. It
follows that the likelihood function Lπ of observations o1, o2, . . . , on is given by:

Lπ(o1, o2, . . . , on) = P(O1 = o1,O2 = o2, . . . ,On = on)

=
∑

c1,...,cn

Jπ(c1, o1, . . . , cn, on)

=
∑

c1,...,cn

πc1bc1,o1

n∏
i=2

aci−1,cibci,oi

(2.6)

Note that hereinafter the likelihood function Lπ is written as P(O | λ), where O is the
observation set and λ is the model. In the next sections, we solve the three problems asso-
ciated with HMMs, namely the forward-backward, Baum-Welch and Viterbi algorithms.

Forward-backward algorithm

The first problem solved for HMMs is described as follows: Suppose we have a sequence
of T observations O = (O1,O2, . . . ,OT) and the model λ = (π, A, B), where π is the initial
distribution, A is the hidden state transition matrix and B is the observation matrix. The

20

2.2. UNSUPERVISED LEARNING MODELS

goal is to find P(O | λ) [12], which is the probability of the observed sequence O given
the model λ. Essentially, we determine the likelihood of O. By methods in [71], we label
the “forward” part of the forward-backward algorithm as the α-pass. We define αt(i) as
the probability of the observation sequence up to time t and of state qi at time t, given our
model λ. Hence, we write term αt(i) as follows:

αt(i) = P(O1,O2, . . . ,Ot, st = qi | λ) (2.7)

where i = 1, 2, . . . ,N and t = 1, 2, . . . ,T .

We change the notation of bik (as seen in definition 2 previously) to bi(k) for given i
and k values. Then, the inductive solution of αt(i) is given by:

1. Initiating forward probabilities, for i = 1, 2, . . . ,N, we have

α1(i) = πibi(O1) (2.8)

2. then, for i = 1, 2, . . . ,N and t = 1, 2, . . . ,T − 1, we have

αt+1(i) = bi(Ot+1)
N∑

j=1

αt(j)aji (2.9)

where αt(j)aji is the probability of the joint event that O1,O2, . . .Ot are observed
and there is a transition from state q j at time t to state qi at time t + 1.

3. it follows that

P(O | λ) =

N∑
i=1

αT−1(i) (2.10)

where we obtain αT−1(i) = P(O1,O2, . . . ,OT , sT−1 = qi | λ) using equation (2.7).

The “backward” part of the forward-backward algorithm is known as the β-pass. We
define the backward variable βt(i) as the probability of the observation sequence from
time t + 1 to the end of the sequence, given state qi at time t and the model λ. The
mathematical notation is given by:

βt(i) = P(Ot+1,Ot+2, . . .OT | st = qi, λ) (2.11)

The inductive solution of βt(i) is written as:

1. For i = 1, 2, . . . ,N, we have
βT (i) = 1 (2.12)

2. then, for i = 1, 2, . . . ,N and t = T − 1,T − 2, . . . , 1, we have

βt(i) =

N∑
j=1

aijbj(Ot+1)βt+1(j) (2.13)

where any state qj can generate the observation Ot+1.

21

2.2. UNSUPERVISED LEARNING MODELS

Baum-Welch algorithm

The second problem solved for HMMs is described as: given the model λ = (π, A, B)
and the observation sequence O = (O1,O2, . . . ,OT), maximise P(O | λ) by adjusting
parameters π, A, B. This problem is solved using the iterative Baum-Welch algorithm
[13]. First, we define the probability of a path being in state qi at time t and making a
transition to state q j at time t + 1, given O and λ, as follows:

ξt(i, j) = P(st = qi, st+1 = q j | O, λ) (2.14)

Next, we calculate ξt(i, j) using a product of three terms: first, observations O1,O2, . . .Ot

ending in state qi at time t are represented by the term αt(i); secondly, the transition from
qi to qj, where Ot+1 was observed at time t + 1, is represented by the term ai jbj(Ot+1);
thirdly, the remaining observations Ot+2,Ot+3 . . .OT beginning in state qj at time t + 1
are incorporated in the term βt+1. Multiplying these terms together and dividing by a
normalising term (i.e. P(O | λ)), we rewrite ξt(i, j) as:

ξt(i, j) =
αt(i)ai jbj(Ot+1)βt+1(j)

P(O | λ)
(2.15)

Summing the ξt(i, j) term over j = 1, . . . ,N, we obtain P(st = qi | O, λ), which is the
probability of being in state qi at time t, given O and λ. Therefore, this probability is
written as follows:

γt(i) = P(st = qi | O, λ) =

N∑
j=1

ξt(i, j) (2.16)

Summing γt(i) over time t up to T , we obtain
∑T

t=1 γt(i), which is the number of times we
expect to visit state qi. Summing γt(i) up to time T − 1, we obtain the expected number
of outgoing transitions from qi, which is

∑T−1
t=1 γt(i). Similarly, summing ξt(i, j) over t

up to T gives us
∑T−1

t=1 ξt(i, j), which is the expected number of times states qi and qj are
visited consecutively. However, terminating at T − 1 returns the sum

∑T−1
t=1 ξt(i, j), which

is the expected number of transitions made from state qi to state qj. Using these terms, we
define re-estimation formulas for the HMM parameters (π′, A′, B′):

1. Initially at t = 1, we have
π′i = γ1(i) (2.17)

where i = 1, 2, . . . ,N.

2. then, we update A′ as

a′i j =

∑T−1
t=1 ξt(i, j)∑T−1

t=1 γt(i)
(2.18)

where this formula is the expected number of transitions from qi to qj divided by
the expected number of transitions emitted from qi.

22

2.2. UNSUPERVISED LEARNING MODELS

3. for B′, it follows that

b′j(k) =

∑T
t=1,Ot=k γt(j)∑T

t=1 γt(j)
(2.19)

where this is the expected number of times state qj is visited whilst observing k,
divided by the number of times qj is visited.

Thus, we iteratively re-estimate our model λ′ = (π′, A′, B′), where π′ = {π′i}, A′ = {a′i j}

and B′ = {b′j(k)}. At each iteration, check whether P(O | λ′) > P(O | λ) to obtain
a model that maximises the likelihood of producing the given observation sequence O.
Once the termination condition is met (e.g. minimal error threshold is reached), the HMM
parameters (π, A, B) converge and generate synthetic observation traces.

Viterbi algorithm

The third HMM problem is described as follows: given O = (O1,O2, . . . ,OT) and λ =

(π, A, B), find an optimal state sequence for the underlying Markov chain, thus decoding
the hidden part of the HMM. This problem is solved using the Viterbi algorithm [14].
Essentially, we require the best state sequence (i.e. S = (S0, S1, . . . , ST−1)) such that:

S ∗ = argmax
S

P(S | O, λ) = argmax
S

P(S ,O | λ) (2.20)

where P(O | λ) is independent of S .

The Viterbi algorithm calculates this optimal state sequence S ∗. At each time step t,
the Viterbi algorithm allows S ∗ to retain all optimal paths finishing at the N states. At
the next time step t + 1, the N optimal paths are updated and S ∗ continues to grow in this
manner. Let S ∗t (i) be the optimal path ending in state i for the observations O1,O2, . . . ,Ot.
Then, we define δt(i) = P(O1,O2, . . . ,Ot, S ∗t (i) | λ), which is the probability of generating
observations O1,O2, . . . ,Ot from path S ∗t (i), given the model. Finally, we use an array
ψt(i) to keep track of each t and i that have maximised the last δt(i). The steps of the
Viterbi algorithm are described as follows:

1. For i = 1, 2, . . .N, initialise the variables

δ1(i) = πibi(O1) (2.21)

ψ1(i) = 0 (2.22)

2. recurse for j = 1, 2, . . . ,N and t = 1, 2, . . . ,T on the variables

δt(j) = max
1≤i≤N

[δt−1(i)ai j]bj(Ot) (2.23)

ψt(j) = argmax
S

[δt−1(i)ai j] (2.24)

23

2.2. UNSUPERVISED LEARNING MODELS

3. terminate with
P∗ = max

1≤i≤N
[δT (i)] (2.25)

ST = argmax
S

[δT (i)] (2.26)

4. for t = T − 1,T − 2, . . . , 1, backtrack through the state sequence

S ∗t = ψt+1(i∗) (2.27)

In the next section, we explain the notion of underflow, which occurs when calculating
small terms for long time-series. Normalisation is offered as a possible solution to under-
flow occuring in the Baum-Welch and Viterbi algorithms.

2.2.5 Normalisation for underflow
The solutions to the three fundamental problems associated with HMMs are typically im-
plemented using any double point precision language (i.e. C) and converge for discrete
observation sequences. However, as we increase the number of observed points in the dis-
crete trace, the Baum-Welch algorithm succumbs to underflow. This results in decreasing
the size of probabilistic terms and sufficient iterations in the algorithm produces infinites-
imally small values, which might returns errors if dividing by such values. Using results
from [83], we solve the underflow problem for both Baum-Welch and Viterbi algorithms.

With the Baum-Welch algorithm, we normalise the α and the β sets using similar normal-
ising procedures as [94]. First, we define normalising terms α̂t(i) such that

∑N
i=1 α̂t(i) = 1

using the following equations:

α̂t(i) =
αt(i)∑N

i=1 αt(i)
=

P(O1,O2, . . . ,Ot, st = qi | λ)
P(O1,O2, . . . ,Ot | λ)

=
P(O1,O2, . . . ,Ot, st = qi, λ)

P(O1,O2, . . . ,Ot, λ)

= P(st = qi | O1,O2, . . . ,Ot, λ)
(2.28)

Hence, the complete solution of α̂t(i) is given by:

1. For i = 1, 2, . . . ,N, initialise the forward probabilities

α̂1(i) =
πibi(O1)∑N
j=1 πjbj(O1)

(2.29)

2. then, for j = 1, 2, . . . ,N and t = 1, 2, . . . ,T − 1 we have

α̂t+1(i) =

[∑N
j=1 α̂t(j)aji

]
bi(Ot+1)∑N

k=1
[∑N

j=1 α̂t(j)ajk
]
bk(Ot+1)

(2.30)

For the β̂t(i) variables, we apply the α normalising terms, but note that the β values do not
sum to 1 for any time t. Thus, the solution of β̂t(i) is given by:

24

2.2. UNSUPERVISED LEARNING MODELS

1. Initially, for i = 1, 2, . . . ,N, we have

β̂T (i) = βT (i) = 1 (2.31)

2. then, for i = 1, 2, . . . ,N and t = T − 1,T − 2, . . . , 1, it follows that

β̂t(i) =

∑N
j=1 ai jb j(Ot+1)β̂t+1(j)∑N

k=1
[∑N

j=1 α̂t(j)ajk
]
bk(Ot+1)

(2.32)

Note that α̂t(i)β̂t(i) is expressed as:

α̂t(i)β̂t(i) =
αt(i)βt(i)∑N

i=1 αT (i)
=
αt(i)βt(i)
P(O | λ)

(2.33)

Therefore, the γt(i)s are calculated, for t = 1, 2, . . . ,T , as follows:

γt(i) =

N−1∑
j=0

ξt(i, j) =
αt(i)βt(i)∑N

j=1 αt(j)βt(j)
=

α̂t(i)β̂t(i)∑N
j=1 α̂t(j)β̂t(j)

(2.34)

Using the definition of γt(i) terms, the ξt(i, j) term is given by:

ξt(i, j) =
α̂t(i)ai jbj(Ot+1)β̂t+1(j)[∑N

k=1
[∑N

j=1 α̂t(j)ajk
]
bk(Ot+1)

][∑N
j=1 α̂t(j)β̂t(j)

]
=

γt(i)ai jbj(Ot+1)β̂t+1(j)[∑N
k=1

[∑N
j=1 α̂t(j)ajk

]
bk(Ot+1)

]
β̂t(i)

(2.35)

The re-estimation formulas of the HMM parameters (π, A, B) now use the normalised γt(i)
and ξt(i, j) variables.

With the Viterbi algorithm, underflow is avoided via logarithm summations. Summing
logarithms of the α and the β values is achievable, but computing γ values requires manip-
ulating a sum of αt(i), which is not in the logarithm domain. Therefore, taking logarithms
of terms, the enhanced Viterbi algorithm is given by:

1. Initialise the following variables, for i = 1, 2, . . . ,N:

δ1(i) = log(πibi(O1)) (2.36)

ψ1(i) = 0 (2.37)

2. for j = 1, 2, . . . ,N and t = 1, 2, . . . ,T , recurse on the variables

δt(j) = max
1≤i≤N

[δt−1(i) + log(ai j)] + log(bj(Ot)) (2.38)

ψt(j) = argmax
S

[δt−1(i) + log(ai j)] (2.39)

25

2.2. UNSUPERVISED LEARNING MODELS

3. terminate
P∗ = max

1≤i≤N
[δT (i)] (2.40)

ST = argmax
S

[δT (i)] (2.41)

4. for t = T − 1,T − 2, . . . , 1, backtrack

S ∗t = ψt+1(i∗) (2.42)

2.2.6 HMM applications
Given the definition of the solutions to the three fundamental problems associated with
HMMs, we have seen how to parsimoniously obtain converged parameters given discrete
data. This section is dedicated for the variations and applications of HMMs in domains
ranging from storage systems to finance. Further, we discuss the limitations of existing
HMM applications and aim to address such drawbacks in this thesis.

HMM for Flash memory workload

Harrison et al. present a workload analysis technique that creates HMMs for representing
workloads that generate synthetic traces [66]. Further, rates of Markov-modulated fluid
processes are estimated from the HMM and used as input to an analytical performance
model of Flash memory. Harrison et al. apply HMMs on trace-level operation sequences
(i.e. reads and writes) using partitioning and clustering of traces, after which the HMM
parameters are trained until convergence via the Baum-Welch algorithm. Further, HMM-
generated synthetic traces are produced and validated with mean, standard deviation and
autocorrelation against original, unclustered traces. Within the context of storage work-
load characterisation and its importance for performance evaluation, Harrison extracts key
workload parameters from traces, utilising the parsimonious and burstiness capabilities of
the HMM tailored for multi-application workloads. Additionally, HMMs are particularly
effective when time-series dynamics are influenced by switching between modes, where
each mode represents underlying characteristics.

Possible improvements of the work by Harrison et al. include: considering other levels of
the storage stack for traces; handling infrequent, higher density, additional loads; online
characterisation of workloads via an incremental HMM, where its parameters are updated
“on-the-fly” as more workload data becomes available. Indeed, without this incremental
model, continually generating new “static” HMMs at run-time requires further computa-
tional costs. We extend this work through the IncHMM [1, 2], which is a discrete-state,
incremental HMM with reduced computational complexity of the Baum-Welch algorithm.

HMM with k-means clustering

Inspired by the aforementioned work of Harrison et al., a similar HMM was constructed
by Chis and applied to storage workloads and hospital patient arrivals [83]. We sum-
marise Chis’ HMM as follows: first, unlabelled data from a time-series is partitioned into

26

2.2. UNSUPERVISED LEARNING MODELS

“bins” by counting the number of read and write commands per second; secondly, the
k-means algorithm groups this sequence of bins into k distinct clusters (k∈Z, k>1) such
that the distance from the cluster centroid (i.e. mean of the cluster) to the surrounding
points is minimised; thirdly, assign each bin in the time-series a value between one and
k and use this discrete trace as an input into the Baum-Welch algorithm; fourthly, train
the HMM via the Baum-Welch algorithm and obtain converged parameters once a mini-
mal error boundary is reached; finally, the HMM uses its parameters to generate a likely
sequence of observations (i.e. cluster centroids) and obtain representative synthetic traces.

Similarly to work by Harrison et al., the HMM by Chis is statically re-trained on his-
torical data and expected centroid values are generated accordingly. The power of this
model lies in the HMM switching modes (and burstiness) and the simple categorisation
of k-means as a useful preprocessing step for the EM algorithm. Additionally, Chis ex-
tends this HMM to obtain a basic incremental model (with a sliding training window for
new data points) by creating a simple forward-recurrence formula to estimate the new β
variables (corresponding to new data points), which originally used a backward formula
requiring a one-step lookahead. Despite improving work by Stenger et al. [117], which
sets all new β variables to one, the prediction error of Chis’ model increases with each
step of incremental training. Therefore, an extension of the model by Chis is obtaining
a more reliable (and mathematically rigorous) incremental backward formula to enable
online EM learning. Extending Harrison’s work [66], the IncHMM [2] in this thesis pro-
vides such incremental capabilities and the SlidHMM [3] goes further to improve upon
the IncHMM by adding the sliding window for parameter training on a dynamic data set.

Incremental HMMs

We summarise existing work on incremental learning of HMMs. A survey of techniques
[47] for incremental learning of HMM parameters offers a comparison of past work in
terms of block-wise (i.e. training symbols are blocks of sub-sequences) and symbol-wise
(or sequential, i.e. where training symbols are observed one at a time) algorithms for mea-
suring convergence properties and time and memory complexity. Further, the survey is
also divided into objective functions, such as minimum model divergence (MMD), min-
imum prediction error (MPE) and maximum likelihood estimation (MLE), of which the
EM algorithm offers monotonic convergence and is numerically more robust against poor
initialisation. Additionally, the EM algorithm is easier to apply then gradient-based tech-
niques since derivatives and line-search are not required, which supports its popularity as
an MLE incremental technique. For example, for large observation sequences (i.e. over
one million data points), incremental work on the EM algorithm by Florez-Larrahondo
et al. [103] uses symbol-wise learning algorithms and has constant memory complexity
compared to block-wise algorithms used by Mizuno et al. [48], which grow linearly as the
training window size is increased. Other works employing incremental learning of HMM
parameters include an online EM algorithm by Cappe [42] and adaptive ROC-based en-
sembles of HMMs applied to anomaly detection [40]. Mongillo et al. [59] calculate log
of likelihood errors between batch and online Baum-Welch algorithms and extend the ob-
servation training set to continuous data.

27

2.2. UNSUPERVISED LEARNING MODELS

We compare our work in this thesis with the foremost incremental EM achievements
(or the algorithm with the most efficient time and memory complexity in the survey [47]),
which is work by Florez-Larrahondo et al. [103]. Hence, we obtain novel techniques
for online training of symbol-wise algorithms on a number of target applications with re-
duced resources, faster EM convergence and efficient validation techniques. Such work
is summarised in the IncHMM [1, 2] and SlidHMM [3]. Additionally, our incremental
algorithms offer the following advantages over existing work: incorporating both block-
wise and symbol-wise learning algorithms on discrete-time data; incremental training has
constant memory complexity as training window size increases, which matches the com-
plexity offered by Florez-Larrahondo et al. [103]; new applications including spatiotem-
poral modelling of I/O commands in storage systems, forecasting Twitter user activity
and predicting stock price movements.

Other HMM variations

Recently, the literature has seen more research into parallelisation of HMM training al-
gorithms (i.e. Baum-Welch), mainly due to increasing applications of HMMs to multi-
user modelling and pattern classification. One technique involves GPUs to parallelise the
Baum-Welch algorithm using CUDA implementations [79, 80]. To avoid costly compu-
tation arising from thread synchronisation that enables parallel HMMs to train simulta-
neously, alternate research has relied on HMM hybrids by modifying the structure of its
fundamental algorithms. For example, a factorial HMM [58], where observed outputs
are combined, requires separate hidden state sequences to train the observation chain.
Each sequence of hidden states is independent from the next and there is no interaction
between chains via state probabilities. Other hybrids include coupled HMMs, where indi-
vidual HMMs have inter-connected links between hidden states and emit an observation
given a probability. The coupling of hidden state sequences, as applied to groups of Twit-
ter users [82], is seen as user interaction and results in many possible combinations for
model setup. However, with increased interaction (i.e. coupling of HMMs), Baum-Welch
training becomes more computationally expensive, which is a potential problem when
scaling with more users.

Layered HMMs are used for multiple sensory channels [70] with a collection of hid-
den state sequences corresponding to one observation sequence, which iteratively up-
dates based on its likelihood. This model is less likely to suffer from overfitting, but will
be computationally more expensive on Baum-Welch training compared to the traditional
HMM. In [62], two parallel and independent HMMs are combined and information about
sign language is merged for each model using a token passing algorithm. Despite the
reduced computation requirement needed for the two models, scaling to higher numbers
of models (i.e. to train on larger vocabularies) would not be as efficient.

To address issues with the aforementioned models, we propose a robust multi-user HMM
(MultiHMM) [5] to reduce cost of training on multiple traces simultaneously, whilst
maintaining accuracy of model-generated traces compared to unclustered traces. The

28

2.2. UNSUPERVISED LEARNING MODELS

MultiHMM uses two layers of clustering and an adapted Baum-Welch algorithm, where
multiple traces can be processed simultaneously by a single HMM.

Financial HMMs

HMMs are powerful tools for forecasting stock market behaviour [74, 75]. This is no
surprise since HMMs are known for their temporal pattern recognition, parsimonious na-
ture and burstiness. For example, HMMs are trained on historical financial time-series to
predict future market state over a forecast horizon (i.e. hours or days) as either trending
or normal. The HMM switching modes are ideal for capturing temporal cyclic behaviour
for indices and individual stocks. Further, annualised historical volatility applied to HMM
forecasts evaluates the risk of financial instruments as low or high. However, disadvan-
tages exist for HMMs: first, pre-processing financial data into discrete time-series for
input into the Baum-Welch algorithm often involves binning or clustering, which offers
further partitioning challenges; secondly, using HMM parameters for multi-step forecasts
requires an indication of initial direction (i.e. linear prediction or moving averages) of
time-series.

Despite such limitations, HMMs offer advantages over other existing models. One exam-
ple is the auto-regressive moving average (ARMA), which acts as a forecasting model in
numerous fields [90, 91, 92] and is widely included in the financial literature [96]. Further,
hypothesis testing for stationary ARMA processes with generalised autoregressive con-
ditional heteroskedasticity (GARCH) errors [95] is commonly used in forecasting, which
use estimating-function methodologies. However, a disadvantage of ARMA models is the
assumption of stationarity of time-series, where in reality financial traces are often non-
stationary and require adjustment for seasonality. Additionally, ARMA accepts normality
of residuals and often omits analysis of nonlinear trends in data [87, 88]. HMMs, how-
ever, cater for nonlinear trends and represent cyclic market behaviour in hidden states.
Research in [66] argues that HMMs are needed to parametrise fluid models, which then
parametrise MMPPs and, more generally, MAPs. To address such applications and, more
importantly, understand the models discussed in this thesis, we devote a section of the
background to MAPs and MMPPs.

2.2.7 MAPs and MMPPs
Stochastic models, such as Markovian arrival processes (MAPs), batch MAPs [102] and
phase-type distributions provide analytical tools for measuring time-series whilst captur-
ing correlation and burstiness in an efficient manner. There is a range of models to analyse
properties of time-series, where one of the simplest is the Poisson process (PP) that mod-
els inter-arrival times. The PP is a continuous-time stochastic point process, in which
inter-arrival times (between events) are independent and exponentially distributed. This
process can be discretised, by partitioning timestamped data into “bins,” and turned into a
portable, discrete-time stochastic process or time-series. Further, PPs are generalised by
MAPs, which evolve according to transitions in a continuous-time Markov chain (CTMC)
[86]. We formally define a MAP as follows:

29

2.2. UNSUPERVISED LEARNING MODELS

Definition 3 Let Q = D0 + D1 be an infinitesimal generator for a CTMC, where D0 and
D1 are square matrices (with non-negative off-diagonal elements of D0 and elements of
D1). Then, a MAP(D0,D1) is a point process where an event occurs in the CTMC by a
transition associated with D1. A MAP(D0,D1) of order two, MAP(2), has parameters:

D0 =

(
−(σ1) α12

α21 −(σ2)

)
and D1 =

(
λ11 λ12

λ21 λ22

)
where σ1 = α12 +

∑
j λ1 j, σ2 = α21 +

∑
j λ2 j, αi j ≥ 0 are hidden transitions made from

states i to state j, λi j ≥ 0 are observable transitions of D1, for i, j = 1, 2.

A subset of MAPs that considers job types on arrival is the Markov-modulated Poisson
process (MMPP). In fact, a MAP becomes an MMPP when D1 (from definition 3) is a
diagonal matrix. Advantages of MMPPs include closed-form expressions for correlation
between inter-arrival times and modelling multiple job types. For example, in the case of
the latter, an MMPP(2) (i.e. an MMPP with two states) acts as a job arrival process that
switches between periods of frequent arrivals (state one), with mean arrival rate λ1, and
few arrivals (state two), with mean arrival rate λ2, where λ1 > λ2 [85]. Therefore, the
infinitesimal generator of MMPP(2) (i.e. D = D0 + D1) is defined as follows:

D =

(
−(α12 + λ1) α12

α21 −(α21 + λ2)

)
+

(
λ1 0
0 λ2

)
where αi j are hidden transitions made from state i to state j, for i, j = 1, 2.

When fitting MMPPs and (more generally) MAPs, we seek efficient methods. In sub-
sequent sections, we compare methods of fitting MAPs and discuss the advantages and
limitations for each method.

Fitting MAPs

It is important to fit MAPs for discrete data traces in a fast and accurate manner. A
simple method includes obtaining mean inter-arrival times directly from data traces and
parametrising an MMPP (or MAP) with the mean Poisson arrival rates. Another method
is obtaining the maximum likelihood estimate (MLE), which is often used by variations
of MMPPs such as hidden Markov models (HMMs) [6]. However, MLE techniques are
typically computationally expensive and depend on the length of trace being fitted and
a quadratic in the number of states. To solve such issues, there exist methods of fitting
empirical data using moment-matching techniques, such as the KPC-Toolbox [50]. The
KPC-toolbox is not only fast at fitting empirical data into a Markov model, but it auto-
matically calculates the optimal number of states, which improves existing MLE meth-
ods. KPC-toolbox is a library of MATLAB functions for fitting an empirical data set
into Markov models such as MAPs and MMPPs, where only the input trace (e.g. packet
inter-arrival times) is required. There are two fitting techniques employed by the KPC-
toolbox: first, the Kronecker product composition (KPC) method reduces the moment and

30

2.3. QUEUEING MODELS

temporal dependence fitting problem to assigning the characteristics of smaller MMPPs
with two states; secondly, the automatic attributing of order of MMPPs used in the fitting.
There is an option for manually specifying the order of MMPPs before the KPC fitting
commences, but this results in a trade-off between faster training or more accurate fitting.
We summarise the procedure for fitting MAPs and MMPPs using KPC-toolbox in the ap-
pendix (A.4).

Other methods of fitting MAPs and MMPPs include an algorithm proposed by Heyman
and Lucatoni [34] to accurately estimate parameters of superimposed MMPPs from sim-
ulated data while reducing the number of new states to ensure model tractability. In this
thesis, we extend [34] by obtaining higher response time moments from MMPP queueing
models, as explained in subsequent sections, whereas Heyman and Lucatoni only produce
first-order performance measures (i.e. mean queue length and mean delay).

2.3 Queueing models
In this section, we introduce key queueing concepts and justify the importance of queue-
ing models. The queueing models used in this research are single-server queues (SSQs)
of varying complexity, but we do not experiment with queueing network models (QNMs),
which we leave for future work. Further, this section summarises different scheduling dis-
ciplines, describes processor-sharing applications and compares several types of queueing
systems. Additionally, we define response time and explain existing work for obtaining
response time moments under different scheduling disciplines.

2.3.1 Scheduling
Queueing models abstract the dynamic processes governing modern, complex systems
and obtain representative performance measurements, such as response time, with mini-
mal computational cost [27]. Fundamentally, scheduling is an integral part of queueing
models for obtaining such measurements. The most well-known is the first-come, first-
served (FCFS) discipline, which serves jobs in order of arrival and the job that waits the
longest is served first. The best example of the FCFS discipline is in the first-in, first-out
(FIFO) queue when organising a data buffer. Other scheduling disciplines include last-
come, first-served (LCFS), which selects the most recent job and serves it first. The most
fundamental example of a data structure which implements LCFS is a stack. In terms of
system utilisation (ρ), LCFS suffers from greater variability than FCFS as ρ→ 1 [21].

Organising servers under processor-sharing (PS) disciplines, such as egalitarian PS (EPS),
allows for current jobs to be served at equal rates. Under EPS, if there are n jobs in the
system with service rate 1, each job will be served at 1/n times the speed of the processor,
which means there is no queueing and all jobs start immediately. One useful property of
EPS is its fairness, where the expected response time of a job is directly proportional to
its size [165]. Often, the equal distribution of EPS omits important real-world applica-
tions with higher priority jobs and asymmetrical distributions, and therefore, we consider

31

2.3. QUEUEING MODELS

variants of PS.

Discriminatory PS (DPS) [156], where each class j job in the system receives its own
percentage of the server, extends EPS by supporting multiple job classes. In DPS, K job
types are served by a vector of weights (αj > 0, j = 1, . . . ,K) and, assuming there are ni

class i jobs (i = 1, . . . ,K) in the system, each class j job is served at rate:

rj(n1, . . . , nK) =
αj∑K

i=1 αini
, j = 1, . . . ,K (2.43)

This suggests that the share of a job class increases with the number of jobs, which pre-
vents classes with smaller weights from starving. Note, the system is EPS if αi = αj,
for i, j = 1, . . . ,K. By varying DPS weights, the choice of instantaneous service weights
of different job classes enables differentiated quality of service among specific type of
jobs. For example, ADSL subscribers are offered different payment rates in return for
corresponding shares of available bandwidth. Existing work in the literature proves, via
experiments, that the expected unconditional response time of EPS systems is reduced by
33% with DPS [162].

Round robin (RR) scheduling offers equal time slices for each job, assigned in circular or-
der and without priorities. The EPS algorithm is seen as an idealisation of RR scheduling
in time-shared computer systems [168]. The following section incorporates distributions
in queues to represent mean job arrival rates and mean job service times for respective
scheduling disciplines. Thus, we form queueing systems that act as benchmarks to ab-
stract complex systems and model performance in a cost-effective manner.

2.3.2 Type of queueing systems
The most fundamental queueing system is the M/M/1-FCFS queue, which is written in
standard Kendall notation [11]. This discrete queue has Poisson mean arrival rate λ and
exponential mean service rate µ for one server with FCFS scheduling. Similarly, the
M/M/1 queue under PS scheduling is written as M/M/1-PS. Generalising, the G/G/m
queue has general (G) arrival and service time distributions for m parallel servers. Note
that arrivals and service times may have specific distributions such as hyperexponential,
phase-type, MMPP-induced, etc. In this thesis, we model M/M/1-DPS and MMPP/M/1-
DPS queues motivated by obtaining higher moments of delay in routers and networks [9].

It is beneficial to utilise underlying continuous-time Markov chain (CTMC) properties
of discrete queues for summarising transition rates involving arrivals and service times.
Discrete queues offer specific advantages over fluid queues for modelling delay through
response times in routers and networks. For example, fluid queues rely on a busy period,
which is the length of time from when a job first arrives in an empty system until the
moment the system is empty again, and this has been used for understanding delays in
routers [116]. However, an assumption is that the system must be busy to behave as a
fluid queue, which affects packets with small delays. In Internet traffic scenarios, discrete

32

2.3. QUEUEING MODELS

queues approximate packet sizes that are variable without being infinitesimal (i.e. as is
the case in fluid queues) and can model delay at single network points such as routers.
Hence, we elaborate how response times obtained from discrete queues can approximate
delays.

Response time is a key performance measurement because it approximates system delay
for a number of applications including large-scale storage systems, routers in networks,
mobile technology and wireless sensor networks (WSNs) [21]. In networks, discrete
queues approximate delay at output buffers in routers and incorporate minimum packet
delay through service rates using packet sizes [28]. Typically, response time distributions
can be approximated using discrete PS queues, given queueing theoretic assumptions.
However, it is difficult to obtain product-form solutions for response time in PS systems
due to the dependency of future arrivals in the queue. The following section discusses the
important applications of PS scheduling.

2.3.3 PS applications

Within queueing systems, the PS discipline has been of considerable interest for sev-
eral decades. PS has been applied to modelling the performance of bandwidth-sharing
protocols in packet-switched networks [134, 143, 169]. Another PS application is ap-
proximating the fair-queueing service disciplines used in communication network routers
[170], where delays and congestion control are key measures. Further, PS is useful for
heavy-tailed distributions [150] and bulk arrivals [152]. Stochastic analysis of PS systems
dealing with power management and energy consumption has also been of interest. More
specifically, a queueing model with EPS scheduling was employed when setting bounds
on performance of dynamic speed scaling [148]. When predicting queueing delays, for
example, the PS discipline is more complex to model than FCFS because the remaining
response times in PS depend on future (i.e. uncertain) arrivals and service requirements.
Nonetheless, the simplicity of PS, coupled with fairness properties, has made it easily
applicable to a variety of high-speed, computer systems that are typically abstracted by
queues.

We investigate why PS is an adequate discipline for modelling servers seen in smart-
phones and networks. Such servers are difficult to replicate precisely in a numerically
tractable way; we assume a PS scheduling discipline for a number of reasons:

• PS is popular for web server design [130] and evaluating flow-level performance of
end-to-end flow control mechanisms like TCP [169].

• Under PS, there is no queueing per se and arriving jobs start immediately to access
server resources.

• The implicit fairness means expected job response time is directly proportional to
its size.

33

2.3. QUEUEING MODELS

• PS is effective for heavy-tailed service times, which may arise, for example, as
short jobs are allowed to overtake long jobs. It also facilitates tractable asymptotic
analysis of heavy-tailed distributions [150].

In the subsequent section, we define one of the most important performance metrics:
response time. Further, we explore methods of approximating delay using response time
obtained from efficient PS queueing models.

2.3.4 Response times
We refer to response time (sometimes called sojourn time or waiting time) as the length of
time that a job spends in the system before departing from it. In queueing terms, response
time T is the sum of the queueing time and the service time (i.e. duration of customer
service). The average response time is computed using Little’s law, irrespectively of
scheduling discipline. Let λ be the mean arrival rate, µ be the mean service rate, ρ =

λ/µ < 1 be the steady system utilisation, L = ρ/(1 − ρ) be the mean number of jobs
in the system and E[T] be the mean unconditional response time. Then, it follows that
L = λE[T] and re-arranging for E[T] gives us:

E[T] =
L
λ

=
ρ

λ(1 − ρ)
=

λ/µ

λ(1 − λ/µ)
=

1
µ(1 − λ/µ)

=
1

µ(1 − ρ)
(2.44)

When jobs require x units of service time, the mean conditional response time is given
by E[T (x)] = x/(1 − ρ). Therefore, E[T (x)] is linear in x, meaning that jobs with twice
the size have double the response time, on average. Note that this fairness property only
applies to means. Terms only affected by the mean of the service distribution exhibit the
insensitivity property [161]. As ρ→ 1, the unconditional mean response time E[T] tends
to 1/(1 − ρ) and is independent of the variability of service time distribution.

In the FCFS case, the response time probability density function is well known [128]
as:

f (t) = (µ − λ)e−(µ−λ)t (2.45)

where t > 0 and f (0) = 0.

Calculating higher moments of response time under PS scheduling requires an advanced
understanding of layered branching of incoming jobs into the system [141]. In the ensuing
section, we present existing work (including limitations and improvements) for approxi-
mating response times in PS queues.

2.3.5 Response time in PS queues
There are numerous works on approximating response time under PS scheduling, but few
which adopt analytical queueing theory using M/M/1-PS queues. Some of the earliest
significant work on M/M/1-PS queues is by Coffman et al. in 1970 [122], which analysed
mean and variance of waiting time for PS systems and compared the results to the FCFS

34

2.3. QUEUEING MODELS

discipline. In 1980, Fayolle et al. [114] summarised results of Kleinrock and Mitrani
for DPS scheduling and also obtained average response time (both conditionally and un-
conditionally on job request sizes) in M/M/1-DPS queueing systems. Further, Laplace
transforms provided average waiting time for multiple class types and obtained asymp-
totic behaviour of service demand, but no results on higher response time moments were
given.

The abstraction of PS scheduling as a layered branching of incoming jobs into the system
was first used implicitly by Yashkov in 1987 [141] and has led to a derivation of condi-
tional response time moments a decade later [142], where E[T (x)k] is the kth moment. We
present the definition of these response time moments for the reader (omitting the proof)
as follows:

E[T (x)k] = −

k∑
i=1

(
k
i

)
(−1)iE

[
T (x)k−i]αi(x)

αk(x) =
k

(1 − ρ)k

∫ x

t=0
(x − t)k−1F(k−1)∗(t)dt

F0∗(x) = 1

Fn∗(x) =

∫ x

0
F(n−1)∗(x − u)dF(u)

F(x) =
1
β1

∫ x

0

(
1 − B(u)

)
du

(2.46)

where B(x) is the general service time distribution with mean length β1 < ∞.

It is possible to approximate response time moments using equation (2.46), but calcu-
lating moments in such a nested manner is computationally expensive. Further, Yashkov
does not obtain analytical higher moments in terms of utilisation rate (i.e. system load).

In 2003, Masuyama et al. obtained the complementary response time distribution (or
survival function) using a recursive function [151]. Specifically, assuming an M/M/1-PS
queue with mean arrival rate λ, mean service rate µ and job size x, the complement of
response time T̄ (x) = 1 − T (x) is defined recursively as:

T̄ (x) =

∞∑
n=0

(1 − ρ)ρn
∞∑

k=0

(λ + µ)kxk

k!
e−(λ+µ)xhn,k (2.47)

where, for n = 0, 1, . . . , and k = 0, 1, . . . , we have

hn,0 = 1

hn,k+1 =
n

n + 1
µ

λ + µ
hn−1,k +

λ

λ + µ
hn+1,k

(2.48)

where h−1,k = 0.

35

2.3. QUEUEING MODELS

The advantage of Masuyama’s equation is omitting calculations of moments, but the com-
putationally intensive recursive function is more costly than Yashkov’s iterative solution.
Storing previous terms in a buffer would speed up calculations, but evaluating multiple
infinite sums is still a computational disadvantage of Masuyama’s method.

In 2004, Kim and Kim offered a joint transform to obtain response time moments for K job
classes in M/M/1-DPS queues [155]. Further, Kim and Kim assume a M/M/1-DPS queue-
ing system, where ρi = λi/µi, for all jobs i = 1, . . . ,K, and ρ =

∑K
i=1 ρi < 1 holds. Then, let

Ni be the number of jobs in the system at steady state and let Q(z1, . . . , zK) = E
[
zN1

1 . . . zNK
K

]
be the joint probability generating function in the system at steady state. Kim and Kim
tag a job i with required service time greater than x. When the tagged job i attains service
x, let Si(x) and Ni j(x) denote the elapsed response time of job i and the number of class j
jobs in the system, j = 1, . . . ,K, respectively. Then, a joint transform derives a relation
on the joint distribution of Si(x) and Ni j(x) as follows:

Tix(s; z1, . . . , zK) = E
[
e−sSi(x)zNi1(x)

1 . . . zNiK (x)
K

]
(2.49)

which is defined for | zi | ≤ 1, i = 1, . . . ,K, and s ≥ 0.

Kim and Kim derive an expression for the joint transform Tix(s; z1, . . . , zK) (see [155]
for proof), which is governed by the following partial differential equation (PDE):

∂

∂x
Tix(s; z1, . . . , zK) = −

K∑
j=1

αj

αi

(s +

K∑
k=1

λk(1 − zk)
)
z j − µj(1 − z j)

 ∂

∂z j
Tix(s; z1, . . . , zK)

−

(
s +

K∑
j=1

λj(1 − z j)
)
Tix(s; z1, . . . , zK)

(2.50)

where i = 1, . . . ,K.

An unconditional joint transform for the tagged class i job is given by Ti(s; z1, . . . , zK) =

E
[
e−sSizNi1

1 . . . zNiK
K

]
, where Si and Ni j are the response time of the tagged job class i until its

departure and the number of jobs of class j left behind at departure (tagged job excluded),
respectively. Thus, the joint transform Ti(s; z1, . . . , zK) satisfies the following PDE:

−µiQ(z1, . . . , zK) + µiTi(s; z1, . . . , zK)

= −

K∑
j=1

αj

αi

(s +

K∑
k=1

λk(1 − zk)
)
z j − µj(1 − z j)

 ∂

∂z j
Ti(s; z1, . . . , zK)

−

(
s +

K∑
j=1

λj(1 − z j)
)
Ti(s; z1, . . . , zK)

(2.51)

where i = 1, . . . ,K.

36

2.3. QUEUEING MODELS

Note the basic relation between the aforementioned joint transforms is defined as:

Ti(s; z1, . . . , zK) =

∫ ∞

0
µie−µi xTix(s; z1, . . . , zK)dx. (2.52)

By successive differentiation of equation (2.50) with respect to s and z j, j = 1, . . . ,K,
conditional moments of response time are obtained. Similarly, unconditional moments of
response time are derived from differentiating equation (4.18). In both cases, the method
of Kim and Kim solves (K+1)(K+2)/2 linearly independent equations to obtain unknown
moments M jk

i , 0 ≤ j ≤ k ≤ K, for each i, i = 1, . . . ,K, which are defined as:

M jk
i =

∂

∂z j∂zk
Ti(s; z1, . . . , zK)

∣∣∣∣∣∣
s=0,z1=···=zK=1

(2.53)

We find such moments for the K = 1 case in this thesis, thereby validating our M/M/1-PS
response time moments against the joint transform method of Kim and Kim. Further,
we provide an automated algorithm (see A.1 in a later chapter) for calculating higher re-
sponse time moments numerically for the K = 2 case.

With applications of modern systems exhibiting more complex arrival distributions than
the simple Poisson arrival distribution, the M/M/1 queue is fast becoming a limited queue-
ing model [39]. Hence, we turn our attention to MMPPs and the useful state-switching
behaviour to model burstiness and capture significant correlation in job arrivals for varied
real-world scenarios. The next section describes queueing models with arrivals deter-
mined by MMPP switching rates.

2.3.6 Queueing with MMPPs

We have discussed the advantages of modelling job arrivals with MMPPs over Poisson
processes, namely for capturing correlation and burstiness in workloads. Combining
queueing models with MMPPs as arrival processes increases the modelling capabilities
of more complex system processes and adds to the possible applications. Indeed, in-
corporating an exponentially distributed server into an MMPP queueing model provides
the capability of approximating important performance metrics such as delay through re-
sponse time. Figure 2.1 shows the quasi-birth-death (QBD) process of an MMPP/M/1
queue with MMPP(2) arrivals (λ1 or λ2), exponential service times (µ), one server and
transitions between states (α12 or α21). Note, the exponentially distributed server is an
oversimplification that can be improved, but there exists sufficient research suggesting
that media file sizes follow exponential distributions [63]. Therefore, the approximation
of exponential job sizes in discrete queues simplifies the modelling of TCP/IP flows and
other protocol streams in Internet applications. However, multiple rates of service times
can be specified (i.e. µ1 and µ2) in other distributions, such as hyper-exponential (or, more
generally, phase-type) with corresponding probabilities (p1 + p2 = 1) for the rates.

37

2.3. QUEUEING MODELS

λ1

µ

α12 α21 α12 α21
µ

λ2

λ1

µ

α12 α21

. . .λ1

µ

µ

λ2
. . .λ2

µ

Figure 2.1: QBD process for MMPP/M/1

Queueing models allow us to abstract the dynamic processes governing modern, complex
computer systems and obtain representative performance measures (i.e. response times)
with minimal computational cost. By modelling multi-class jobs as part of queueing
systems, one can (ideally) predict response time moments, avoid system bottlenecks and
cater for resource allocation in a range of modern computer systems with spatiotemporal-
specific applications.

2.3.7 Response time in MMPP/M/1 queues
Approximating response times with M/M/1-PS queues [21, 114] is sometimes viewed as
insufficient for spatiotemporal Internet traffic behaviour given the weak Poisson arrival
assumption. In the context of the Internet, MMPPs handle correlated streams of arrivals
and, thus, can account for burstiness properties using state-switching modes. Existing
work in the literature have applied MMPPs to model arrivals in FCFS queues. For exam-
ple, Ciciani et al. [39] approximate cumulative distribution functions (CDFs) of response
time for MMPP/M/1-FCFS queues through weighted superposition of separate M/M/1-
FCFS queues. Incoming traffic was modelled by an MMPP with n states (S1, . . . , Sn) and
Mi/M/1-FCFS represented an M/M/1-FCFS queue2 whose arrival rate is λi, as observed
in state Si. A key assumption is that if the MMPP is in state Si long enough without
transitioning to another state, the response time approaches closely the same steady state
as seen in the Mi/M/1-FCFS queue. The same is assumed for the queue length. Hence,
Ciciani studied two approximations for MMPP/M/1-FCFS queues based on weighted su-
perposition of the n steady state Mi/M/1-FCFS queues: unbiased approximation and lower
bound approximation.

Unbiased approximation

The mean response time (E[T]) is averaged over the number of incoming requests, which
are not distributed equally over time. For example, the rate of requests λi during state Si

is different from the rate λj in state S j, where i , j. Nonetheless, E[T] for an MMPP/M/1-
FCFS queue is given by a weighted sum of E[Ti] for Mi/M/1-FCFS queues. The weights
(wi) are scaled to account for different arrival rates for each state:

wi =
piλi∑n

i= j pjλj
(2.54)

2where the mean service rate µ is constant for all states.

38

2.3. QUEUEING MODELS

Thus, E[T] for an MMPP/M/1-FCFS queue is given by:

E[T] =

n∑
i=1

wiE[Ti] (2.55)

This approximation is extended to the CDF of response time by employing the same tech-
nique of weighted superposition of the corresponding CDFs in the separate Mi/M/1-FCFS
queues. However, unbiased approximation does not allow guarantees of overestimating
mean response time due to errors between analytical approximations and exact values
during transient periods (we refer the reader to [39] for specifics). This issue is addressed
with the lower bound approximation.

Lower bound approximation

As with unbiased approximation, determining the error between the analytical approxi-
mation and the actual value is not exact. A lower bound process is constructed on the
queue length by matching the behaviour of MMPP/M/1-FCFS queues during steady state
periods, whilst overestimating the queue length during transient periods. The lower bound
approximation is similar to the unbiased approximation in cases when the system jumps
from a state of low utilisation to a state of high utilisation. However, unlike the unbiased
approximation, the lower bound approximation will always jump from a state of higher
utilisation to a state of lower utilisation only at the very end of the transient period –
hence the overestimation. Further, Ciciani et al. modify the invariant probabilities pi of
the modulating Markov chain to reflect the proportions of average times spent in different
states of the MMPP [39].

Initially, the lower bound approximation defines qi j as the transition rate between states
Si and S j of the MMPP. The mean arrival rates λi and the mean service rate µ are defined
as before. Hence, the step-by-step process for the lower bound approximation is:

1. Evaluate the invariant probabilities for each state Si in the MMPP, and denote these
probabilities pi.

2. Evaluate the transient periods for all transitions observed by using the formulas
presented in [43]. Let ti j be the transient period from state Si to S j.

3. Calculate: p′i = pi +
∑

j:λi>λ j
piqi jti j −

∑
j:λi<λ j

piqi jti j, where
∑n

i=1 p′i = 1. Hence, this
formula adds to each pi the probability of a transient period from Si to S j having
lower λj and subtracts the probability of transitioning from S j to Si with higher λj.

4. Generate a lower bound using a weighted superposition of the output processes of
the MMPP states Si and the probabilities p′i . Further, PDFs and CDFs are obtained
by similar derivations.

Ciciani et al. validate their approximations using data from a GRID server [43]. Initially,
an analysis of normalised duration of transient periods is performed for increasing server

39

2.4. PERFORMANCE-ENERGY APPLICATIONS

utilisation with a ratio metric reflecting the duration of transient periods divided by the
duration of steady state periods. The results revealed that for medium to low utilisation,
the ratio is less than 1.5%, but for heavy utilisation, the ratio increases to around 22%,
which exposes the analytical approximations to high errors under high load scenarios.
CDFs of response time are plotted under heavy and medium loads, where the simulated
distribution agrees well with the analytical approximations.

In this thesis, we extend the response time approximations proposed by Ciciani et al.
to DPS scheduling, and, thus, are able to handle multiple classes of incoming jobs. This
forms an MMPP/M/1-DPS queue, which extends the EPS queue (since EPS models only
one job type) and, hence, supports more real-world applications. In fact, few works have
obtained higher moments of response time for DPS queues with MMPP-distributed ar-
rivals. In terms of superposition techniques, Heyman and Lucatoni [34] reduce the num-
ber of states in superpositioned MMPPs. The MMPP/M/1-DPS queueing model used in
this thesis employs a weighted superposition technique using M/M/1-DPS queues in slow
transient periods of individual rates of the MMPP. With useful modelling tools such as the
aforementioned queueing models, it is important to apply these efficient tools to a variety
of real-world scenarios involving performance and energy measurements.

2.4 Performance-energy applications
Models used in this thesis provide a range of real-world applications for popular computer
systems. This section introduces a number of applications and existing performance-
energy models that have similar goals to ours. First, the focus is mobile technology
including studies on measuring smartphone performance, strategies using cellular radio
and battery models. Secondly, existing work on modelling performance and energy in
data centres concludes this chapter. The purpose of this section is twofold: to allow the
reader to gain insight into applications from which we extract important data to validate
our adaptive workload models and queueing models; and to understand the limitations of
existing models and, hence, highlight improvements and usefulness from our models.

2.4.1 Measuring smartphones
A recent study by Shye et al. on the Android G1 logged workload characteristics (i.e.
phone calls, Wi-Fi sessions, etc.) for 25 users [73]. As a result, patterns in phone use,
power consumption (via simple regression estimation) and Wi-Fi session durations helped
characterise end-users. Further, Shye et al. derived a user activity model from clustering
real user activity traces. Despite advantages of identifying the most power-consuming
hardware components and recording changes in CPU utilisation, there were also disadvan-
tages: CPU utilisation was logged only when the screen was on, thus ignoring background
apps and syncing; no workload characterisation was attempted during Wi-Fi sessions; the
“miscellaneous” state is too transient to represent specific user behaviour; studying more
handsets is ideal. Work in this thesis models performance for over 100 smartphone hand-
sets and profiles users in terms of data and power consumption in real-world contexts.

40

2.4. PERFORMANCE-ENERGY APPLICATIONS

More recently, benchmarking has spawned a race for releasing the ultimate handset. For
example, EEMBC [164] helps designers select optimal processors and analyse perfor-
mance and energy characteristics. AndEBench-Pro evaluates Android platform perfor-
mance and provides hardware tests on CPU, GPU and storage subsystems using component-
specific algorithms [166]. Amongst the top handsets in 2015 (i.e. with highest AndEBench-
Pro score) were Meizu-MX4 (20,683 pts) and Samsung Galaxy S5 Duos LTE (20,400 pts)
[166]. Whilst measuring CPU speed and power capabilities is useful in ideal situations,
most users rarely cooperate with indicated guidelines for performance optimisation. In-
deed, human error leads to numerous inefficiencies such as allowing automatic syncing
of apps, turning off power-saving modes, allowing frequent data downloads during in-
termittent Wi-Fi sessions and consistently overcharging the device for prolonged periods
of time. Unfortunately, such benchmarks [164, 166] cannot measure or change user be-
haviour and its unpredictability. This thesis aims to forecast battery life given user be-
haviour through a power-consumption model and uses a performance-energy trade-off to
theoretically evaluate smartphone applications.

2.4.2 Data transmission and cellular radio modes

With emerging technology companies having aimed to sell increasingly more smart-
phones – Xiaomi and Huawei each aimed to sell 100 million handsets in 2015 [177, 178] –
wireless communication via mobile devices will only intensify. Therefore, it is important
to understand the effect of asynchronous data transmission on power consumption and
cost, especially from a user’s point of view. Smartphones have four radios for transmit-
ting data: cellular, Wi-Fi, bluetooth and near field communication (NFC). Cellular radio
transmission occurs over large geographical areas using cellular networks and base sta-
tions. Wi-Fi is essentially a wireless local area network (WLAN) as it connects to access
points from (typically) limited distances, a geographical disadvantage over cellular radio.
Bluetooth is a wireless technology standard where data is exchanged between devices
over short distances, typical of personal area networks (PANs). NFC allows minimal dis-
tance between mobile devices for transmitting data (i.e. less than 10 cm) and is useful for
contactless payment and social networking in crowded areas.

Techniques exist for reducing the activity of the aforementioned radios to prolong bat-
tery life. For example, airplane mode disables all radios and is ideal for saving battery life
when travelling or when smartphones are idle. Users might prefer to disable only unused
radios and enable one that is required for the relevant activity. Cellular radio is known
to drain the battery when there is no access to a cellular radio tower [182] and often is
powered on for up to thirty seconds, irrespective of data transfer size [56]. Such heavy
power consumption requires further investigation of cellular radio modes. Cellular radio
is controlled by a state machine that balances low latency and longer battery life. When no
data is transferred via radio, it enters a low-power state to save battery life. When sending
data over radio, it switches to full-power mode and the application initiates data transfers.
The radio waits in full-power mode for data to be transferred; if no data is detected for

41

2.4. PERFORMANCE-ENERGY APPLICATIONS

five to ten seconds, the radio switches to an intermediate low-power state. Consequently,
if there is no data to be transferred after a minute or so, the radio switches to stand-by
mode. Switching in between modes, or state transitions, is power-consuming and drains
the battery, so must be minimised.

8%

12%17%

63%

High
Active
Low
Idle 37%

21%

42%

Figure 2.2: Defragmented network traffic of rare-big (left) and often-little (right) models [56].

Display

Other Battery
7%

4%

Radio
43%

OS
46%

Display

Other Battery
9%

14%

Radio
19%

OS
58%

Figure 2.3: Android battery usage with high (left) and low (right) cellular radio modes [10].

There are two key transfer models for cellular radio: the “rare-big model” downloads
data as infrequently as possible (with large chunks of data downloaded per session) and
minimises the number of transfers whilst maximising bandwidth use; alternatively, the
“often-little model” transfers small amounts of data frequently, which is costly in terms
of battery discharge since radio is on nearly constantly. Figure 2.2 summarises the dif-
ferences of the two techniques, where the rare-big model reduces radio usage. Figure
2.3 distinguishes between full-power and low-power modes of cellular radio for battery
usage in typical Android smartphones, where monthly data was obtained from profiling.
Potential user interaction exists for controlling data transfers and by switching models of
data transfer, which prolongs battery life [182].

User-friendly methods of optimising data transfers exist, which can be used in conjunc-
tion with the rare-big transfer model [56]. For example, users can identify cyclic data
transfers and use apps to pre-fetch this group of intermittent transfers. By generating
graphs for battery usage, users create profiles and analyse patterns of updates or transfers.
For example, short cyclic periods of transfers identified on the graph can be batched to-
gether, especially non-time-critical transfers. This pre-fetch of data reduces latency and

42

2.4. PERFORMANCE-ENERGY APPLICATIONS

minimises full-power radio connections [32] (e.g. in six seconds, 3G pre-fetches enough
information for up to 5MB of data [57]) and, thus, prolongs battery life. Such techniques
assist performance prediction for mobile devices through scheduling and planning of re-
sources. For example, a potential real-world application may schedule to use HTTP live
streaming because data is transferred in bursts rather than continuously (a problem that
keeps the radio consistently highly active). Updates sent to users recommending charging
their device when cyclic downloads occur (i.e. app syncs and updates) are beneficial for
long-term battery resource allocation. Other simple strategies include eliminating client-
side polling and not relying on a refresh button [56].

2.4.3 Battery guidelines

Multinational companies including Samsung and Apple invest millions into new battery
features and capabilities [183], with a focus on charging and discharging patterns and
the corresponding effects on battery life. Simultaneously, smartphone researchers and
scientists have debunked several battery myths originating from early 2000s. One such
myth is based on the “memory effect”: energy capacity of a battery is reduced after re-
peated recharging in a partially discharged state. This myth suggests that batteries should
be fully discharged (i.e. from 100-0%) to keep their maximum capacity. In reality, this
works for Ni-Mh batteries, but does not hold for modern Li-ion batteries as there is no
memory effect present. Another assumption, related to heat, is that when smartphone
batteries overheat this “damages” internal battery components. In fact, heat is likely to
reduce battery capacity under heavy utilisation, especially for laptops where the surround-
ing electronics heat the battery. Similarly, maintaining a fully charged battery at elevated
temperatures results in loss of capacity and shortens battery life [137].

Such “guidelines” for battery use still confuse many of today’s smartphone users. Modern
handsets provide self-containing energy-saving states, most of which are automatic, but
may be personalised by users with an added interest. A common technique to prolong
battery life is switching to a low-power mode to conserve resources [147]. For example,
Android smartphones have three states: awake with screen on, awake with screen off and
“deep-sleep.” Therefore, when users are not actively using their smartphones, this sleep
mode consumes little battery. Otherwise, when background apps are running, the use of
wakelocks keep the phone partially awake whilst performing those processes. Some of
these wakelocks can be disabled to maintain deep-sleep for longer, which acts as a power-
saving mode. Other tips to save power on smartphones include: using the built-in battery
usage screen to see the worst-offending apps, adjusting the backlight to be less bright,
disabling GPS when not in use, and preventing apps from syncing constantly (i.e. built-in
email apps). These tricks are short-term solutions and depend on user profile and activity
type. For example, an avid web surfer will rarely turn radios off compared to a music
listener using only local apps. Figure 2.2 and previous examples highlight the impor-
tance of considering cellular radio techniques in managing power consumption. With the
help of profiling and cellular radio strategies, we address important aspects of smartphone
power consumption in this thesis. Additionally, we employ a predictive model to forecast

43

2.4. PERFORMANCE-ENERGY APPLICATIONS

power consumption for different handsets and measure accuracy amongst other predictive
models.

2.4.4 Existing battery models

Battery behaviour is approximated via analytical models and as simulations of electro-
chemical processes. One example is the Battery Design Studio [126], which is a com-
mercial electrochemical simulator; another is the Kinetic Battery Model (KiBaM) [127],
which is an analytical model using kinetic abstraction. The KiBaM was especially devel-
oped to model large lead-acid storage batteries, which have a flat discharge rate, unlike Li-
ion batteries found in smartphones. The KiBaM two-well model, which describes the rate
capacity effect well, is adapted to different battery types, including nickel-metal hydride
(NiMH) [121]. Rohner et al. model battery life [120], focusing on two key battery dis-
charge behaviours: rate capacity effect, which states that battery capacity decreases as dis-
charge rate increases, and charge recovery, which assumes that an intermittent discharge
is more efficient than a continuous one. For example, the charge recovery behaviour of
Rohner’s simulated battery model was assumed to exhibit simple periodic loads, produc-
ing low (4mA) and high (25mA) discharge rates. However, the mode-switching of HMMs
would better capture complex bursty behaviour of intermittent loads, typical of data trans-
fer and updates in mobile apps. We model power consumption based on data activity and
charging status using an online HMM.

From a queueing perspective, Jones et al. have attempted to prolong battery life by im-
posing a power-saving mode in smartphones when the charge in a rechargeable battery
falls below a threshold, which can significantly prolong battery life [147]. The threshold
battery level is chosen such that the power requirement of battery usage is optimised. The
performance-energy models used in this thesis employs a similar idea of a power-saving
mode, but relies more on minimising response times and lowering power consumption
through an objective cost function. Similarly, Prabhu et al. also employed analytical
queueing models, using batteries as servers [123], where the service system is exhaustive
or non-exhaustive, thus allowing for intentional vacations during busy periods. As a re-
sult, these vacations exploit battery charge recovery increasing battery life at the expense
of increased packet delay performance. A packet-delay-constraint algorithm (with server
vacations) was proposed to improve the number of packets served, but did not improve
mean system delay. We improve the work in [123] by extending the delay metric to higher
moments and obtain a full delay distribution. Further, the unrealistic “vacations” proposed
by Prabhu et al. may be replaced by user-defined (i.e. user-in-the-loop) switching-off of
cellular radio, thus saving data and prolonging battery life.

Modelling battery life has changed with the development of smaller, wireless mobile de-
vices. Abstracting physical processes of batteries as an equivalent circuit model (ECM) is
useful for system engineers and researchers. For example, a lithium battery was modelled
with thermal effects for system-level analysis as an ECM [119]. In this ECM, each com-
ponent was modelled through a function with parameters that included state of charge,

44

2.4. PERFORMANCE-ENERGY APPLICATIONS

temperature, current and voltage. The authors created a battery cell model using Sim-
scape [135], which used physical modelling methods to build electrical and thermal net-
works. Lookup tables were used for parameter estimation, such as the voltage at specific
temperatures, using Simulink [136]. For our modelling of battery life in this thesis, we
use a simplified ECM setup to simulate the physical processes of Li-ion batteries, such as
discharge rate.

2.4.5 Modelling data centres

We review existing techniques for modelling data centres with respect to performance and
energy measurements. In fact, these terms are interrelated as a trade-off of overall costs,
which must be minimised to support sustainable, energy-efficient data centres.

To recap aforementioned information, cloud service providers (CSPs) must fulfil the con-
sumer requirements through SLAs. Typically, the SLA specifies price and quality of ser-
vice (QoS). The QoS metric includes delay constraints and fairness among users. Further,
predicting workloads in advance allows meeting the QoS standards and avoids overload-
ing. SLA penalties are incurred if queueing delays of requests or other network delays
occur. Key energy measurements for CSPs include electricity consumption costs, carbon
emission taxes and cooling cost. Modelling power efficiency in data centres is common
via power usage efficiency (PUE) and achieves an overall energy consumption measure.

The best models are often those which consider both performance and energy measure-
ments. For example, a request routing framework named FORTE (Flow Optimisation-
based framework for requesting Routing and Traffic Engineering) provides a trade-off be-
tween electricity cost, access latency and carbon footprint [132]. FORTE exploits the spa-
tial and temporal variation of electricity price and of carbon footprint tax of grid stations
by using three algorithms: the first algorithm controls the amount of user traffic directed
towards each data centre; the second targets data replication given user request pattern;
the third is an online algorithm which assigns user requests to data centres. Given such
algorithms, FORTE reduces cost by considering the cheapest data centre with minimum
latency and differentiates between request types (i.e. throughput-intensive or latency-
intensive) to inform assignment decisions. Limitations of FORTE include no fairness
amongst consumers, no workload prediction and no service provisioning. An improved
model, known as Green-Fair, uses an algorithm to ensure fairness amongst consumers and
offers constraints in latency and service capacity [133]. Green-Fair utilises green renew-
able energy resources to minimise queueing delays via scheduling jobs to data centres
near target users. Additionally, fairness constraints apply to electricity and latency costs,
which cater to strict SLA demands.

Other significant performance-energy models for data centres consider SLAs to provide
energy efficient load migration and resource allocation. For example, Ghoreyshi et al.
offer a heuristic model called VR-HM (Virtual machine Resizing Heuristic Migration),
which provides online migration of VMs for handling the high failure rate in cloud en-

45

2.4. PERFORMANCE-ENERGY APPLICATIONS

vironments [25]. Further, VR-HM consists of: a global manager to distribute jobs from
users to data centres based on QoS and energy metrics; a local manager in each data cen-
tre to provision VMs for handling jobs, monitor fault tolerance and energy consumption
of VMs, and delegate resizing and migrations of VMs. Essentially, VR-HM aims to se-
lect the most appropriate processor through considering deadline and energy consumption
constraints. Efficient use of resource allocation includes intelligent scheduling combined
with dynamic voltage and frequency scaling (DVFS) to keep the CPU operating at mini-
mum voltage level, frequency and power consumption [52]. This approach reduces elec-
tricity consumption by not requiring VMs to have knowledge about underlying physical
infrastructure, which is assumed in previous works.

46

Chapter 3

Adaptive Workload Models

Chapter Description

The adaptive workload models include: an incremental HMM (IncHMM) applied to stor-
age workloads (3.2); a sliding HMM (SlidHMM) that updates the training set by discard-
ing old observations (3.3); a multi-dimensional HMM (MultiHMM) that reduces com-
putational complexity of the Baum-Welch algorithm by clustering traces (3.4); an online
HMM (OnlineHMM) is formed by merging features of SlidHMM and MultiHMM (3.5).

3.1 Introduction

In this chapter, we build adaptive workload models using clustering and HMMs capable
of incremental and multi-dimensional EM learning on discrete time-series. As justified
in the background section, HMMs are parsimonious, can capture mode-switching and are
widely applicable, thus offering advantages over Poisson processes, ARMA models and
linear regression models. Further, HMMs offer portability and can efficiently build a class
of workloads used for system simulation or as inputs into analytical models. The standard
HMM can be improved through incremental learning, which essentially updates HMM
parameters “on-the-fly” as new training data is available. This reduces the heavy compu-
tational burden of static training of standard HMMs, whilst achieving accurate trace repro-
duction. The incremental HMM (IncHMM) introduced in this chapter updates parameters
iteratively through one-step lookahead modifications of the backward algorithm (i.e. one
half of the forward-backward algorithm). The incremental training used in the IncHMM is
improved by applying a sliding window to dynamically update the training set, thus form-
ing the sliding HMM (SlidHMM). Multi-dimensional learning allows HMMs to train on
multiple discrete traces simultaneously without losing accuracy of model-generated data
compared to original data. The multi-dimensional HMM (MultiHMM) uses this adapta-
tion through weights applied on clustered individual streams. Ideally, it is beneficial to
combine incremental and multi-dimensional HMM features to achieve dynamic workload
benchmarks capable of real-time analysis on groups of discrete workloads or time-series.
Hence, we build a multi-input, online HMM (OnlineHMM) as the ideal adaptive work-
load model.

47

3.1. INTRODUCTION

The data sets chosen to evaluate the adaptive HMMs should reflect the applicability and
uses of each model. For example, the IncHMM, the SlidHMM, and the OnlineHMM eval-
uate I/O operations arriving incrementally at NetApp and Microsoft file servers. These
data sets complement the online learning feature of these three models. However, the
MultiHMM primarily trains on groups of traces simultaneously and, hence, evaluates
Twitter data sets representing social interactions of groups of users. The MultiHMM does
not support incremental learning of data and, thus, its data sets differ from those of the
other three models. Nonetheless, for consistency, we provide results for MultiHMM using
NetApp and Microsoft data traces. We summarise the data sets and their corresponding
models in Table 3.1.

Table 3.1: The four adaptive HMMs with their corresponding data sets.

Results on data sets
Model NetApp/Microsoft Twitter
IncHMM Section 3.2.4 -
SlidHMM Section 3.3.6 -
MultiHMM Section 3.5.3 Section 3.4.4
OnlineHMM Section 3.5.3 -

The usefulness of a model should be represented by the various applications it caters for,
which defines the range of data sets used to train and test the specific model. Thus, the
reader should not be surprised to observe new data sets or validation strategies for each
model being introduced in this chapter. We evaluate the adaptive models on different data
sets via statistical methods, as follows: we compare higher moments obtained from raw
traces (i.e. original and unclustered observations) with moments from synthetic traces for
all adaptive HMMs after many simulation runs; the Viterbi algorithm is used as valida-
tion for the SlidHMM; correlation, burstiness and symmetric mean absolute percentage
error (sMAPE) are evaluated for the MultiHMM; we calculate autocorrelation for raw and
synthetic traces in the OnlineHMM; convergence rates for all adaptive HMMs highlights
the most efficient model. Comparisons among adaptive HMMs in terms of Baum-Welch
training complexity further support our results, which we summarise in the next section.

Training complexity

The space and time complexity for batch learning of a standard HMM using the Baum-
Welch algorithm is given by O(N2T), where T is the trace length and N is the number
of hidden states. Table 3.2 presents analytical results for an HMM and its variations
(i.e. IncHMM, SlidHMM, MultiHMM, and OnlineHMM) measuring the following: first,
the convergence complexity of the Baum-Welch algorithm when trained on H distinct
traces; secondly, the convergence complexity with K incremental updates in the data set
(i.e. K slides with one new data point added per slide); thirdly, the convergence com-
plexity with K slides on H traces. Examining the four models in Table 3.2, it seems that
the OnlineHMM is the least affected by scaling of H and K in terms of space and time

48

3.2. INCREMENTAL HMM

complexity of the Baum-Welch algorithm. For example, the IncHMM must train H sep-
arate times to learn from all H traces and the MultiHMM will learn incrementally only
through re-training on the accumulated observation set with each slide. In practical sce-
narios found in real-world systems, the values of K and H increasing to tens of thousands
would add a few seconds to the training times of standard HMMs. Further, values of K
and H of over a million would add approximately a minute to the extra training times
required for standard HMMs, based on online experiments. Hence, for large storage sys-
tems and networks, the extra time needed to train standard HMMs over adaptive HMMs
(i.e. OnlineHMMs) would add a significant delay for detecting potential bottlenecks.

Table 3.2: Convergence for variations of the Baum-Welch algorithm.

Model H traces K slides K slides on H traces
HMM O(HN2T) O(N2(T + K(T + K+1

2))) O(HN2(T + K(T + K+1
2)))

IncHMM O(HN2T) O(N2(T + K)) O(HN2(T + K))
SlidHMM O(HN2T) O(N2(T + K)) O(HN2(T + K))
MultiHMM O(N2T) O(N2(T + K(T + K+1

2))) O(N2(T + K(T + K+1
2)))

OnlineHMM O(N2T) O(N2(T + K)) O(N2(T + K))

3.2 Incremental HMM

We explain incremental learning in the context of storage workload modelling, where we
create an incremental model for characterising I/O commands at file servers. Such mod-
els are desirable in industry for the potential of runtime analysis and planning, where the
main challenges include the dependency of parameters on all preceding data. In terms
of HMM dynamics, this problem requires an approximation on the new backward vari-
ables of the Baum-Welch algorithm to avoid recomputing the terms for the accumulated
observation set. In fact, the difficulty in achieving an accurate approximation for the
backward-recurrence formula explains why little work exists in this domain.

The IncHMM forms one part of a larger incremental storage workload model (iSWoM),
which consists of various procedures and sub-models. The components of the IncHMM
are given in Figure 3.1. First, we gather a raw trace consisting of I/O operations, which
we transform into a binned trace using partitioning, and then into an observation trace (i.e.
with observations numbered between 1 and k) using k-means clustering. Such methods
are introduced to the reader in the background chapter. Secondly, our IncHMM trains on
the observation trace using the adapted Baum-Welch algorithm and provides estimates for
model parameters until this iterative process terminates when new data is no longer avail-
able. Thirdly, on completion, the IncHMM defines (a special case of) a discrete Markov
arrival process (dMAP). The dMAP and a random distribution, which probabilistically
selects input values from a specified cluster, form the iSWoM. For notational purposes,
the terms IncHMM, dMAP and iSWoM are used interchangeably henceforth.

49

3.2. INCREMENTAL HMM

21
Bin trace

3
Cluster trace

4
Train IncHMM

Re-train

Figure 3.1: The components of the IncHMM with converged parameters at (4).

3.2.1 Motivation

In modern, large-scale storage environments, workload arises from multiple, time-varying,
correlated traffic streams that may create different resource bottlenecks in the system at
different times. It is therefore important to categorise and model workload in a portable
and efficient way for obtaining workload traces for live systems, on which quantitative
measurements can then be made. It takes considerable time, training-data and computing
power to produce a reliably parametrised model and our incremental approach, by which
a model’s parameters are progressively updated rather than periodically re-calculated, is
appealing in terms of its run-time performance. Therefore, the question worth investigat-
ing is: how accurate is this approach?

One of the strengths of the IncHMM is its capability of processing incoming data incre-
mentally and updating its parameters dynamically with new data available. The IncHMM
then generates unlimited discrete traces, corresponding to and representative of the re-
spective observation traces used as input into the model. These generated traces are val-
idated for accuracy using statistical comparisons (mean, standard deviation, etc.) against
unclustered traces. The Viterbi algorithm processes both the raw and IncHMM-generated
traces and produces hidden state sequences for each, where accuracy is obtained by com-
paring corresponding hidden state patterns.

3.2.2 Adaptive Baum-Welch algorithm

The creation of an adaptive Baum-Welch algorithm is the foundation of the IncHMM
and is perceived as an updated Baum-Welch algorithm with a new forward-backward
algorithm. More specifically, the backward part of the forward-backward algorithm is
updated with a forward-recurrence formula such that the probabilities for the new obser-
vation set are easily calculated. We describe modifications to the forward-backward and
Baum-Welch algorithms along with a mathematical approximation for the backward vari-
ables. The approximations are followed by the definition of the IncHMM parameters.

The re-estimation of the model λ′ = (A′, B′, π′) only works on a fixed set of observations.
The aim of the adaptive Baum-Welch algorithm is to continually read in new trace data
and update its parameters on-the-fly. This forms the basis of the IncHMM, which is ca-
pable of efficiently supporting real-time workload data, so demonstrating that infrequent,
higher density, additional loads are handled for online characterisation of workloads as
in [66]. Initially, the IncHMM is a standard HMM training on a set of observations, but

50

3.2. INCREMENTAL HMM

it then updates its parameters A, B, π according to incoming data. Therefore, after the
standard HMM has finished training on its observation set, we calculate the revised α, β,
ξ and γ variables based on the new set of observations.

To achieve an efficient IncHMM, we initially update the α and β terms of the forward-
backward algorithm. First, we train a standard HMM on a trace of T observations and
subsequently add M new observations. To update our model incrementally, we notice
that the next α value is given by αT+1(i) = [

∑N
j=1 αT (j)aji]bi(OT). The knowledge of

the terms αT (j), aji and bi(OT) allows the new α variables to be computed easily using
the forward-recurrence formula. However, obtaining βT+1(i) is more difficult because of
its dependence on a one-step lookahead βT+1(i) =

∑N
j=1 ai jbj(OT+2)βT+2(j) and, unfortu-

nately, we do not have βT+2(j). Therefore, an approximation for the β variables is needed,
preferably a forward-recurrence formula similar to the α formula. The β approximations
presented in the next sections are adapted from [1], which was a preliminary attempt on a
single data trace. As explained in the following sections, the new ξ and γ variables (and
also the entries a′i j and b′j(k)) are calculated easily once the α and β sets are complete.

First beta approximation

The first β approximation will assume that, at time t and for state i, we have that βt(i) =

δ(t, i) is a continuous function with parameters t and i. For any state i, the function δ(t, i),
with respect to t, is increasing from 0 to 1. Equivalently, δ(t, i) tends to 0 as t → 0. The
logic of this assumption comes from the backward-recurrence formula in (2.11), which
calculates the β values with a one-step lookahead. All β terms ranging from t = T − 1 to
t = 1 are less than 1, and with every step that t decreases, βt(i) gets closer to 0 through the
computations of the backward formula. Therefore, for a sufficiently large observation set,
we obtain the approximate equality δ(t, i) ≈ 0 ≈ δ(t, j), where i and j are different states
such that i , j. We write the β approximation as:

βt(i) ≈ βt(j) (3.1)

Let us transform the β backward-recurrence formula into a forward-recurrence version.
We set N = 2 to represent an IncHMM with two hidden states. It follows that:(

βt(1)
βt(2)

)
=

(∑2
j=1 a1 jbj(Ot+1)βt+1(j)∑2
j=1 a2 jbj(Ot+1)βt+1(j)

)
(3.2)

Choosing βt(1) and expanding the summation on the RHS, we obtain:

βt(1) = a11b1(Ot+1)βt+1(1) + a12b2(Ot+1)βt+1(2) (3.3)

Assuming that t + 1 is sufficiently small and using (3.1) we deduce that βt+1(1) ≈ βt+1(2),
giving us:

βt(1) = βt+1(1)(a11b1(Ot+1) + a12b2(Ot+1)) (3.4)

Re-arranging βt+1(1) as the subject results in:

51

3.2. INCREMENTAL HMM

βt+1(1) =
βt(1)

a11b1(Ot+1) + a12b2(Ot+1)
(3.5)

Generalising for state i yields our forward-recurrence β approximation:

βt+1(i) ≈
βt(i)∑N

j=1 ai jbj(Ot+1)
(3.6)

Second beta approximation

Let us assume an IncHMM with N hidden states. By definition of β, we re-write the
system of linear equations as a matrix multiplication equation:

βt(1)
...

βt(N)

 =


a11b1(Ot+1) · · · a1NbN(Ot+1)

...
. . .

...
aN1b1(Ot+1) · · · aNNbN(Ot+1)



βt+1(1)
...

βt+1(N)

 (3.7)

Pre-multiplying by the inverse of the N × N matrix gives us:
a11b1(Ot+1) · · · a1NbN(Ot+1)

...
. . .

...
aN1b1(Ot+1) · · · aNNbN(Ot+1)


−1 

βt(1)
...

βt(N)

 = IN


βt+1(1)
...

βt+1(N)

 (3.8)

where IN is the N × N identity matrix.

Hence, terms βt+1(i), for i = 1, . . . ,N are obtained from the LHS of equation (3.8), given
that the N × N matrix is invertible1. Since we run experiments with a two-state IncHMM,
we simplify equation (3.7) for the N = 2 case. It follows that:(

βt(1)
βt(2)

)
=

(
a11b1(Ot+1) a12b2(Ot+1)
a21b1(Ot+1) a22b2(Ot+1)

) (
βt+1(1)
βt+1(2)

)
(3.9)

Pre-multiplying by the 2 × 2 inverse matrix gives us:(
a11b1(Ot+1) a12b2(Ot+1)
a21b1(Ot+1) a22b2(Ot+1)

)−1 (
βt(1)
βt(2)

)
= I2

(
βt+1(1)
βt+1(2)

)
(3.10)

For the N = 2 case, we include the matrix inverse explicitly in the equation:(
βt+1(1)
βt+1(2)

)
=

1
b1(Ot+1)b2(Ot+1)(a11a22 − a21a12)

(
a22b2(Ot+1) −a12b2(Ot+1)
−a21b1(Ot+1) a11b1(Ot+1)

) (
βt(1)
βt(2)

)
(3.11)

where b1(Ot+1) , 0, b2(Ot+1) , 0 and a11a22 , a21a12.

In cases when bi(Ot+1) = 0 for a state i, the 2 × 2 matrix is singular and has no inverse.

1For N = 2, we discuss cases when this matrix is singular.

52

3.2. INCREMENTAL HMM

Note that the third case (i.e. a11a22 , a21a12) holds due to model re-parametrisation,
stochastic matrix properties and initialisation of state transition probabilities. Adopting a
simple β approximation for the N = 2 case, it follows that:

(
βt+1(1)
βt+1(2)

)
=



 1.0
βt(2)

a22b2(Ot+1)

 , if b1(Ot+1) = 0

 βt(1)
a11b1(Ot+1)

1.0

 , if b2(Ot+1) = 0

(3.12)

Given the two β approximations, equation (3.6) is more stable and extends to higher num-
ber of states. Inverting the matrix in equation 3.8 is more computationally complex as N
increases. Further, any zero probability given by bi(Ot+1), for i = 1, . . . ,N, produces a
non-invertible matrix, which results in a further approximation using linear transforma-
tions (as seen in equation (3.12) for the N = 2 case) that are less effective with larger
values of N. Hence, we use the β approximation given in equation (3.6) for validating the
IncHMM on our data sets.

Approximating Baum-Welch parameters

With two β approximations defined in equations (3.6) and (3.8), we run the forward-
backward algorithm and execute the α-pass, followed by the β-pass. Following the calcu-
lations of both α and β sets on the new observations {OT+1,OT+2, . . . ,OT+M}, the ξ and γ
values are defined for T + 1 ≤ t ≤ T + M − 1 as follows:

ξt(i, j) =
αt(i)ai jbj(Ot+1)βt+1(i)

P(O | λ)
(3.13)

and for T + 1 ≤ t ≤ T + M,

γt =
αt(i)βt(i)
P(O | λ)

(3.14)

We define the IncHMM (based on methods in [83]) using the updated forward-backward
algorithm in the adaptive Baum-Welch algorithm. For each new observation, we define
modified re-estimation formulas for IncHMM parameters (π̂, Â, B̂) as follows:

π̂i = γ1(i) (3.15)

âT+1
i j =

∑T
t=1 ξt(i, j) + ξT+1(i, j)∑T

t=1 γt(i) + γT+1(i)

=

∑T
t=1 γt(i)∑T+1
t=1 γt(i)

∑T
t=1 ξt(i, j)∑T

t=1 γt(i)
+

ξT+1(i, j)∑T+1
t=1 γt(i)

=

∑T
t=1 γt(i)∑T+1
t=1 γt(i)

âT
i j +

ξT+1(i, j)∑T+1
t=1 γt(i)

(3.16)

53

3.2. INCREMENTAL HMM

where we only compute the new ξT+1(i, j) and γT+1(i) for each new observation (note the
ξt(i, j) values for 1 ≤ t ≤ T are already stored in previous sums and in the âT

i j entry).

b̂j(k)T+1 =

∑T
t=1,Ot=k γt(j) +

(
γT+1(j)|OT+1=k

)
∑T

t=1 γt(j) + γT+1(j)

=

∑T
t=1 γt(i)∑T+1
t=1 γt(i)

b̂j(k)T +
γT+1(j)|OT+1=k∑T+1

t=1 γt(i)

(3.17)

where we only update γT+1(j) (such that OT+1 = k) by storing all existing γ values in
previous sums and in b̂j(k)T entries.

We provide a summary of training the IncHMM in algorithm 1. With the training com-
plete, subsequent sections elaborate the simulation of the IncHMM on real-world traces,
which includes initial parametrisation, generating synthetic traces and obtaining relevant
results.

Algorithm 1 Training the IncHMM parameters
Input: {O1, . . . ,OT } = existing observation set; {OT+1, . . . ,OT+M} = new observation set;

N = number of hidden states; K = number of clusters in k-means; A = state transition
matrix; B = observation matrix; π = initial hidden state distribution; α, β = forward-
backward probabilities; ξ, γ = probability sums.
Train HMM on the observation set {O1, . . . ,OT } to obtain A, B, π from equations (2.17),
(2.18), and (2.19).
Set π̂i = πi.
for t = T + 1 : T + M − 1 do

Assign a cluster value to Ot between 1 and K.
for i = 1 : N do

Calculate αt(i) = [
∑N

j=1 αt−1(j)aji]bi(Ot−1).
Calculate βt(i) and βt+1(i) using equations (3.6) or (3.8).
for j = 1 : K do

Calculate ξt(i, j) and γt(i) using equations (3.13) and (3.14), respectively.
Update ât

i j and b̂j(k)t using equations (3.16) and (3.17), respectively.
end for

end for
end for

Output: A = {âi j}; B = {b̂j(k)}; π = {π̂i}

3.2.3 IncHMM simulation
We train the IncHMM on two traces of I/O commands: the first is a timestamped trace
of reads and writes collected from NetApp file servers (aka the NetApp trace, here-
inafter); the second timestamped trace consists of reads and writes collected from Mi-
crosoft servers (aka the Microsoft trace). We set k = 3 in the k-means clustering algorithm

54

3.2. INCREMENTAL HMM

after testing with different values of clusters and found that higher values of k returned
sparse (and sometimes empty) clusters. We initialise the IncHMM with two hidden states
as the most parsimonious model to reduce complexity of the Baum-Welch algorithm. In
some experiments, attributing three or four hidden states to the IncHMM returned a con-
verged state transition matrix with two near-identical rows of probability values.

To achieve the first simulation, the NetApp trace is first partitioned and clustered into
pairs of the number of reads and writes per second. Then, this discrete trace is passed as
input into the Baum-Welch algorithm as an initial training set of 8000 points (i.e. 8000
seconds). The IncHMM is trained on this set (as a standard HMM) until parameters A, B,
and π converge. Afterwards, 2000 new observations are added incrementally and are eval-
uated using the new β approximation, given in equation (3.6), from the forward-backward
algorithm. We chose this β approximation as it is more stable for larger number of states.
Thus, an IncHMM will converge with fixed parameters and stores information on 10000
consecutive observation points. Note that adding 2000 increments of new observations is
an arbitrary number (i.e. the number of new observations added with each incremental
update should be less than the size of the original observation set) and is used in this sim-
ulation for presenting adequate results. The IncHMM generates its own synthetic NetApp
trace using parameters (A, B, π), where observed values are chosen using random gener-
ation sampling and runs are simulated many thousands of times. In fact, the IncHMM
possesses its own distribution of NetApp reads and writes defined by mean and standard
deviation, where 95% intervals are performed on simulations. We compare IncHMM-
generated results with mean and standard deviation statistics for raw (i.e. original, un-
clustered reads and writes) and HMM-generated traces. Note that the HMM-generated
trace is a result of a traditional HMM trained on an observation trace of length 10000,
with no incremental learning. The second simulation involves a Microsoft data trace as
input and follows the same process as that of the NetApp trace. A new set of 2000 unseen
Microsoft data points is added to the training set of 8000 points and, once converged, the
IncHMM produces synthetic traces.

3.2.4 Results
NetApp and Microsoft traces

Tables 3.3 and 3.5 present statistics on reads per bin and Tables 3.4 and 3.6 represent
writes per bin, where the bin is a one-second interval. For example, a “raw mean of
111.35 reads/bin” implies that the raw NetApp trace produces, on average, 111.35 read
commands per second. The “IncHMM mean” and “IncHMM std dev” are the mean and
standard deviation of the IncHMM-generated trace, respectively. The HMM-prefixed av-
erages are calculated from a standard HMM-generated trace with no incremental activity.

Table 3.3 shows very similar results between raw and HMM-generated mean and stan-
dard deviation. The IncHMM produces a mean of 113.32 with a 95% confidence interval
of 0.60 (to two decimal places) after 10000 simulation runs, but this mean is less accurate
than the HMM-generated result. The standard deviation of the IncHMM-generated trace

55

3.2. INCREMENTAL HMM

(255.32) matches the raw trace well and slightly outperforms the HMM-generated value.
Table 3.4 presents good results for the IncHMM-generated mean and standard deviation
of write commands, which again slightly underperform compared to values produced by
the HMM-generated trace.

Table 3.3: Reads/bin statistics on the raw, HMM and IncHMM NetApp traces.

Trace Mean Std Dev
Raw 111.35 254.90
HMM 111.26 ± 0.66 254.38 ± 0.65
IncHMM 113.32 ± 0.60 255.32 ± 0.59

Table 3.4: Writes/bin statistics on the raw, HMM and IncHMM NetApp traces.

Trace Mean Std Dev
Raw 0.38 0.21
HMM 0.38 ± 0.0005 0.21 ± 0.001
IncHMM 0.41 ± 0.0005 0.24 ± 0.001

Table 3.5: Reads/bin statistics on the raw, HMM and IncHMM Microsoft traces.

Trace Mean Std Dev
Raw 74.23 214.64
HMM 74.38 ± 0.50 214.30 ± 0.67
IncHMM 73.76 ± 0.47 213.18 ± 0.62

Table 3.5 summarises the statistics for the raw, HMM and IncHMM-generated Microsoft
reads. The IncHMM mean and standard deviation are only slightly outperformed by the
traditional HMM-generated traces after 10000 simulation runs. Nonetheless, the compu-
tation time of training the IncHMM on live traces is heavily reduced compared to training
the standard HMM, as demonstrated in Table 3.2.

Table 3.6: Writes/bin statistics on the raw, HMM and IncHMM Microsoft traces.

Trace Mean Std Dev
Raw 0.24 0.72
HMM 0.24 ± 0.001 0.72 ± 0.001
IncHMM 0.24 ± 0.001 0.72 ± 0.001

The statistics for the Microsoft writes in Table 3.6 reveal similar results for raw, HMM and
IncHMM-generated traces. Further, the mean and standard deviation results are almost
identical for the HMM and IncHMM-generated traces with the IncHMM means outper-
forming the HMM means. The confidence intervals at the 95% level are identical for both
models based on an empirical sampling size of 10000 simulations.

56

3.2. INCREMENTAL HMM

3.2.5 Related work
We compare the IncHMM with existing work in workload system benchmarks and in-
cremental EM learning. First, we explore existing storage workload benchmarks from
the literature. Zhang et al. conduct measurements on three benchmarks (namely TPC-
W [110], TPC-C [107] and RUBiS [106]) with the aim of understanding behaviour of
e-commerce storage systems [104]. These findings consist of workloads dominated by
transactions (i.e. writes) requiring more storage than workloads dominated by brows-
ing (i.e. reads). Similarities exist between the I/O traces used in this chapter and the
e-commerce workload, in terms of increased demand of work. Regardless, the IncHMM
provides online data characterisation for its workloads (reads or writes), which Zhang et
al. lack. A different workload characterisation is presented by Kurmas et al., where open
mail traces are collected at an FC-60 disk array [109]. The authors formed a cumulative
distribution function (CDF) of read latency using a workload generator that reads values
from a list. The I/O requests used in their workload included read or write commands
and were replicated in a synthetic trace, much like the IncHMM-generated traces, but no
incremental learning was attempted.

Notable related work on incremental EM learning includes the adaptive symbol-wise al-
gorithm of Florez-Larrahondo et al. [103], which used a backward formula in its learning
that was not recursive in terms of previous β values. The IncHMM backward formu-
las presented in this thesis, however, store all information on the complete β set and,
hence, are less prone to knowledge corruption, which is a key issue surveyed by Khreich
et al. [47]. Additionally, the IncHMM formulas are improvements on the formula used
by Stenger et al. [117], where all β variables were equal to one. In fact, our forward-
recurrence β formula in the IncHMM is statistically validated by two different data traces,
namely NetApp and Microsoft data, and produces acceptable simulated results after in-
cremental training. Time and memory complexity offered by Florez-Larrahondo’s in-
cremental model (the best among its competitors surveyed in [47]) is maintained by the
IncHMM in its incremental training. Further, our IncHMM provides a range of target
applications including incremental workload benchmarks. Moreover, an extension to the
symbol-wise learning of the IncHMM is to provide block-wise learning (i.e. multiple
observation points trained incrementally as a sequence).

3.2.6 Conclusion and future work
HMMs, combined with the supporting clustering analysis and appropriate choice of bins,
are able to provide a concise, parsimonious and portable synthetic workload. This has
already been established in [66], but the deficiency of such models is their heavy com-
puting resource requirement, which essentially precludes them from any form of online
analysis. The incremental model we have developed (i.e. IncHMM) has a vastly reduced
computing requirement, thus making it ideal for modelling workload data in real-time. In
fact, with the availability of decoding new data, the IncHMM avoids re-training on “old
data” like the traditional HMM. Additionally, compared to the resource-costly HMM, the
IncHMM provides excellent accuracy of training data. Such mathematical descriptions

57

3.3. SLIDING HMM

of workload should be measured quantitatively against independent data (i.e. traces not
used in model construction) that they represent and more extensive tests are planned for
our incremental model. Nonetheless, the IncHMM β approximations are successful after
statistical comparisons between raw and IncHMM-generated traces.

There exist possible extensions that can be made to the IncHMM regarding the training
on observation sets. For example, when new data points are submitted for training, the
IncHMM increases the size of its observation set, which has accumulated outdated points
from previous incremental updates. It would be beneficial to discard the outdated points
whilst simultaneously training on new incoming data points, which creates a dynamic ob-
servation set that is constantly updated during model training in an incremental fashion.
Further extensions to the IncHMM arise from other possible validation techniques of the
model including adding skewness in the comparisons between real and synthetic traces.
Validating the IncHMM against standard HMMs using hidden state sequences is a possi-
ble extension, where model-generated (i.e. synthetic) traces produce such sequences via
the Viterbi algorithm. Another extension might be approximating a CDF for the IncHMM
workload distribution. Given any processed trace, a CDF offers probabilities, such as ob-
serving a specific number of reads or writes within a set time, and is useful for resource
planning. This will highlight the IncHMM as a more transparent probabilistic model. An
extension to the symbol-wise learning of the IncHMM is to provide block-wise learning
such that multiple observation traces are trained incrementally simultaneously.

3.3 Sliding HMM
In previous sections, we modelled the IncHMM to form an incremental workload model
[1, 2], on which quantitative measures were made. This work proved that computation
time for a reliable model can be significantly reduced, whilst maintaining model accu-
racy. However, improvements exist for IncHMM, which we address by forming a sliding
version of the HMM (SlidHMM).

3.3.1 Motivation
The IncHMM adapted the Baum-Welch algorithm through a forward-recurrence back-
ward approximation. However, the training of new data points results in the accumulation
of an increasingly large observation set. As a result, previously trained observation points
become outdated after many updates and should not necessarily be included in statistical
measurements of traces at present time. Thus, we seek a more efficient online training
method for discrete time analysis to improve the IncHMM. Therefore, the new addition
to the IncHMM is a fixed sliding window to effectively analyse discrete data traces (ap-
propriately discarding the outdated observations) whilst updating its model parameters.

The sliding HMM (SlidHMM) has a number of benefits over the standard HMM: first,
it is capable of handling infrequent, higher density, additional loads mainly for online
characterisation of workloads; secondly, it reduces the space and time complexity of the

58

3.3. SLIDING HMM

Baum-Welch algorithm. These benefits are also matched by the IncHMM, but where the
SlidHMM maintains a fixed window of observations for training, the IncHMM has an
observation set that grows continuously over time. This will make the SlidHMM com-
putationally more efficient than the IncHMM for training on large data sets and, hence,
reduces the complexity of the adaptive Baum-Welch algorithm. The SlidHMM allows for
effectively comparing different sections of the observation set using its sliding window,
a technique which neither the IncHMM nor the standard HMM can achieve. We employ
the simple moving average technique on the SlidHMM, enabling the updating of terms
whilst maintaining a fixed size training window.

3.3.2 Simple moving average

A moving average is a statistical technique where a set of data points is split into subsets
and averages are calculated on each of these subsets. Moving averages have seen many
applications in industry, such as trend following analysis in finance [98]. For a simple
moving average (SMA) [99], we select a fixed subset size (n) and shift along, subtracting
old points from the summation whilst simultaneously adding new points. Considering a
simple example, we have data points {x1, x2, . . . , xn} with an average of:

ave =
x1 + x2 + · · · + xn

n
(3.18)

Then, from (3.18) we create a SMA by adding one more data point (xn+1):

sma =
x1 + x2 + · · · + xn + xn+1 − x1

n
= ave +

xn+1

n
−

x1

n
(3.19)

The idea of SMA is applied to HMMs for observation sets with discrete data. New data
points are added to the input trace without any unnecessary re-calculations of model
parameters, whilst simultaneously discarding any “outdated” observations. We replace
generic data points xt by model recurrence terms such as αs, βs, etc. This process is ex-
plained in the following section, where we present a simple algorithm for executing the
slide on discrete data.

3.3.3 Sliding Baum-Welch algorithm

To perform the slide on an observation set, the adapted Baum-Welch algorithm trains
on new data, whilst storing information on the original data set, in similar fashion to
IncHMM. However, the training set discards outdated observations whilst adding new
points before passed as input to the Baum-Welch algorithm. With the active training
window, we approximate corresponding β values using either of the incremental backward
formulas and obtain α, ξ and γ sets using the standard formulas. Hence, the SlidHMM
re-estimation formulas for π̂, Â and B̂, for i = 1, . . . ,N, are defined as follows:

π̂i = γ1(i) (3.20)

59

3.3. SLIDING HMM

âT+1
i j =

∑T+1
t=1 ξt(i, j) + ξT+1(i, j) − ξ1(i, j)∑T

t=2 γt(i) + γT+1(i)
=

∑T+1
t=2 ξt(i, j)∑T+1

t=2 γt(i)
(3.21)

b̂j(k)T+1 =

∑T
t=1,Ot=k γt(j) +

(
γT+1(j)|OT+1=k

)
−

(
γ1(j)|O1=k

)
∑T

t=2 γt(j) + γT+1(j)
=

∑T+1
t=2,Ot=k γt(j)∑T+1

t=2 γt(j)
(3.22)

The training methodology for the SlidHMM is identical to that in algorithm 1 with the
only difference being that equations (3.21) and (3.22) are used to update ât

i j and b̂j(k)t,
respectively.

3.3.4 SlidHMM convergence rates
Since the SlidHMM (and the IncHMM) requires only a partial computation of the for-
ward and backward variables (i.e. the new observations), parameters converge faster than
training with the traditional Baum-Welch algorithm. If we train a model on T new obser-
vations k successive times, the number of steps (S1) required to train the SlidHMM is kT .
In the same scenario, a standard HMM will need T + 2T + · · ·+ kT steps (S2). Hence, the
difference between the number of steps S2 and S1 is given by:

S2 − S1 = [T + 2T + · · · + kT] − [kT] = T
k−1∑
i=1

i =
T (k − 1)k

2
(3.23)

Hence, we expect to save T (k − 1)k/2 training steps with the SlidHMM, which can have
profound effects on time and memory complexity as the terms k and T scale high for
continuous training. Knowledge of reduced computational complexity allows us to move
on to simulating the SlidHMM to validate the accuracy of model-generated traces against
original traces.

3.3.5 SlidHMM simulation
To simulate the SlidHMM on different sets of time-series, we use the NetApp and Mi-
crosoft traces, which we introduced for the IncHMM. As we did for the IncHMM, we
set k = 3 in the k-means clustering algorithm and initialise the SlidHMM with two
hidden states. The main reasons for this are that higher values of k produced clusters
with very few data points and three hidden states of the SlidHMM generated a converged
state transition matrix with two near-identical rows. Each discrete trace has a constant
length of 8000 observations, with the dynamic training window updating this observa-
tion set by appending 2000 new points and simultaneously discarding 2000 old points.
At each “slide,” the adapted Baum-Welch algorithm iterates until the SlidHMM param-
eters converge. When no new observations are added to the dynamic sliding window,
the SlidHMM generates its own synthetic NetApp and Microsoft traces using the A, B,
and π parameters. In a similar fashion to the IncHMM simulations, the SlidHMM re-
sults are simulated thousands of times with 95% confidence intervals. We compare the

60

3.3. SLIDING HMM

SlidHMM-generated results with mean, standard deviation and skewness for the raw and
the HMM-generated traces.

3.3.6 Results

To validate the SlidHMM, we use the NetApp and Microsoft data sets that were intro-
duced for the IncHMM. Further, it is important to train our models on different parts of
the data sets, which the sliding window of the SlidHMM provides. As mentioned previ-
ously, the SlidHMM introduces new dynamics to incremental training through updating
the observation set continuously to create a dynamic observation set.

Mean and standard deviation comparisons

We present results for the NetApp and Microsoft traces in Tables 3.7 - 3.10, where a
bin represents a one-second interval. Table 3.7 indicates similar results between raw and
HMM-generated means and standard deviation. Out of all four traces in this section,
Table 3.8 reveals the best results for the SlidHMM-generated traces, which slightly un-
derperform skewness values produced by the HMM-generated traces.

Table 3.7: Reads/bin statistics on the raw, HMM and SlidHMM-generated NetApp traces.

Trace Mean Std Dev Skew
Raw 111.35 254.90 2.28
HMM 112.07 ± 0.63 255.23 ± 0.61 2.28 ± 0.01
SlidHMM 109.15 ± 0.55 255.46 ± 0.58 2.31 ± 0.01

Table 3.8: Writes/bin statistics on the raw, HMM and SlidHMM-generated NetApp traces.

Trace Mean Std Dev Skew
Raw 0.38 0.19 3.57
HMM 0.38 ± 0.001 0.19 ± 0.001 3.59 ± 0.01
SlidHMM 0.38 ± 0.001 0.19 ± 0.001 3.68 ± 0.01

Table 3.9: Reads/bin statistics on the raw, HMM and SlidHMM-generated Microsoft traces.

Trace Mean Std Dev Skew
Raw 50.61 180.60 8.04
HMM 50.54 ± 0.35 180.13 ± 0.59 8.07 ± 0.03
SlidHMM 49.30 ± 0.35 178.07 ± 0.59 8.20 ± 0.03

61

3.3. SLIDING HMM

Table 3.10: Writes/bin statistics on the raw, HMM and SlidHMM-generated Microsoft traces.

Trace Mean Std Dev Skew
Raw 0.55 0.11 1.95
HMM 0.55 ± 0.001 0.11 ± 0.001 1.96 ± 0.01
SlidHMM 0.54 ± 0.001 0.11 ± 0.001 2.13 ± 0.01

Viterbi hidden state sequence

The Viterbi algorithm returns a sequence of hidden states, corresponding to a sequence
of observations. Essentially, the Viterbi algorithm uses the parameters A, B and π to
calculate a hidden state sequence and evaluates, through this state sequence, the similarity
of parameters for two different HMMs. We compare the hidden state sequence based
on the original observation trace (i.e. the sequence of observations used as input into a
standard HMM), which was calculated by the Viterbi algorithm using HMM parameters,
with the hidden state sequence based on the SlidHMM-generated trace. This process is
applied to the NetApp trace for both models, in turn. Unlike the simulation of 10000
runs that used the Baum-Welch algorithm, the Viterbi uses only one observation trace per
hidden state sequence. The results of the Viterbi algorithm using HMM parameters to
decode the NetApp trace and its SlidHMM equivalent are given as follows:

Table 3.11: Viterbi state sequence ratio for the NetApp trace for HMM and SlidHMM.

Trace State 1 State 2
HMM 7938 2062
SlidHMM 8182 1818

The sequences seen in Table 3.11 match very well, with an approximate 4:1 ratio sup-
ported by both HMM and SlidHMM traces. Thus, it proves that both the HMM and
the SlidHMM produce a set of parameters that are in agreement in terms of hidden state
sequences. The Viterbi algorithm validates the SlidHMM accuracy given agreeable hid-
den state sequences and shows the SlidHMM can obtain similar model parameters to the
traditional HMM whilst reducing the computational complexity of incremental training.

3.3.7 Conclusion and future work
The sliding version of the HMM developed in this work has a vastly reduced comput-
ing requirement making it ideal for modelling workload data in real-time. In fact, with
the availability of new data, the SlidHMM [3] avoids re-training on “old data” like the
traditional HMM. Additionally, compared with both the resource-costly HMM and raw
traces, the SlidHMM provides excellent accuracy of training data. In comparison to the
IncHMM [2], the SlidHMM will handle fast-growing observation sets more efficiently,
as it trains on different parts of the data. Where the IncHMM increases its observation
set after every incremental training session, the SlidHMM discards outdated data points
using its sliding window.

62

3.4. MULTI-DIMENSIONAL HMM

There are a few extensions which follow from the SlidHMM. First, the sensitive auto-
correlation function would be a useful validation method for our model, mainly because
it allows comparisons of time-series comparison through lagged versions of the original
data trace. Hidden trends can be exposed in both raw and SlidHMM-generated autocorre-
lated data. Secondly, we seek a multi-dimensional model to train on many discrete time-
series simultaneously. This block-wise learning (i.e. training on groups of traces with one
model) would be a significant addition to the symbol-wise learning (i.e. sequential train-
ing with one observation at a time given one model) of the SlidHMM. Further, coupling
multi-trace analysis with incremental training offers a useful application for modelling a
range of live computer systems.

3.4 Multi-dimensional HMM

In social networks, there is a need to analyse the behaviour of groups of online users for
a number of reasons including network resource allocation and marketing user prefer-
ences. We address this issue with a multi-dimensional HMM (MultiHMM) to act as a
workload classifier for multiple users. The MultiHMM is an adaptation of the original
HMM, using clustering methods and training on multiple traces simultaneously via an
adapted Baum-Welch algorithm. The goals of the MultiHMM are to classify multiple
online user streams with minimal processing needs, represent burstiness and correlation
among groups of users and to improve security measures in social networks. Experiments
are carried out using multiple traces from Twitter data, where original traces are analysed
and compared with the MultiHMM-generated traces. The metrics involved in validating
our model include means, standard deviation, skewness, correlation, burstiness, symmet-
ric mean absolute percentage error (sMAPE) and convergence rates.

3.4.1 Motivation

In the last decade, leading social media companies, such as Twitter and Facebook, have
grown to manage enormous online user-populations, which has led to an explosion of
stored multimedia content. For example, in Twitter’s short history, the average number
of tweets per day has grown from 5000 in 2007 to 500 million in 2013 [163]. Thus, the
individual and collective behaviour of the ever-increasing user-base is a popular research
topic and, consequently, properties of online social interactions are modelled extensively.
For example, researchers have used Twitter data to examine links within tweets and de-
termine characteristic patterns that help define misinformed events [45]. Such work has
evolved the analysis of multiple crisis events (i.e. the Boston marathon bombings in 2013)
and aims to prevent bad information or “rumours” spreading via Twitter and similar so-
cial media sites. To accurately represent such user activity, one of the simplest models
is the Poisson process, which is a continuous-time stochastic point process, in which
inter-arrival times (between events) are independent and exponentially distributed. This
process can be discretised, via partitioning timestamped data into “bins,” and turned into

63

3.4. MULTI-DIMENSIONAL HMM

a portable, discrete-time stochastic process or time-series. From such processes, parsi-
monious models such as the HMM can be constructed, which provide mode-switching
characteristics for efficiently classifying Internet traffic data. Further, HMMs have anal-
ysed traffic burstiness from Internet packet-level sources [69] and variations of HMMs
have identified trends in user behaviour in social networks [82]. More specifically, [82]
introduces a new class of coupled HMMs to describe temporal patterns of user activity
which incorporate user’s neighbours in the social network. Each HMM corresponds to
one user and the coupling of models represents user interaction. These coupled HMMs
provide better explanatory and predictive power compared with existing models such as
those based on renewal processes or uncoupled HMMs. However, with increased interac-
tion, the coupling of HMMs became more complex and the training more computationally
expensive. Therefore, an improvement suggested in [82] involves developing more effi-
cient models for the social analysis of groups of users. Another example includes HMMs
used for individual email communication [67], where classifying characteristics of differ-
ent groups was impossible for one model.

Not surprisingly, then, a common problem that arises from such work as [67, 82] is the
lack of efficient training on multiple traces, derived from communicating users, to rep-
resent and classify multi-user behaviour. We propose a model that overcomes this issue,
using a hybrid HMM to classify multi-user temporal activity, without decreasing in accu-
racy and computational efficiency. Essentially, this is a multi-user HMM (MultiHMM),
which uses k-means clustering and a multi-input Baum-Welch algorithm to obtain the re-
quired parameters to form a discrete Markov multi-arrival process (dMMAP). The terms
MultiHMM and dMMAP are used interchangeably hereinafter. We describe the Mul-
tiHMM algorithm in the following section.

3.4.2 MultiHMM algorithm

The novel contribution, namely a hybrid HMM for multi-user training, consists of a k-
means clustering algorithm for user traces and a weighted multi-trace Baum-Welch al-
gorithm (MultiBWA), which trains on multiple discrete traces simultaneously and main-
tains accuracy with respect to moments of trace comparisons. The metrics for validating
our MultiHMM are trace means, standard deviation, skewness, correlation, burstiness,
sMAPE and convergence rate. Clustering is used in pre-processing of input traces for
training the Baum-Welch algorithm. One method involves k-means clustering to group
the data points from h traces into k distinct clusters [83]. Each trace has data points be-
longing to one of c categories, which produces many possible combinations for the h
traces. When h is large, this leads to very large values for k (i.e. hc). Therefore, we
propose our own clustering method, using k-means, which reduces h traces to k traces:
we choose a value for c by inspection, and set k = c. If k < h, reduce h to k by grouping
together data points from the same cluster; if h = k, then points are no longer grouped
and the clustering terminates. Once the traces are grouped in this manner, we apply the
standard k-means algorithm. This extra clustering reduces the computational burden for
the multi-input Baum-Welch algorithm to train on the doubly-clustered traces.

64

3.4. MULTI-DIMENSIONAL HMM

Algorithm 2 Training using the MultiHMM

Input: K = number of clusters; Trace(i) = ith trace; Cluster(k) = kth cluster; Groupt(k)
= group of data points in kth cluster at time t; Ot(i) = data point at time t from Group
i; ωk = kth weight; H = number of traces; T = length of trace; N = number of hidden
states; {O1, . . . ,OT } = observation set; A = state transition matrix; B = observation
matrix; π = initial hidden state distribution; α, β = forward-backward probabilities; ξ, γ
= probability sums.
for i = 1 : H do

while Cluster points not fixed do
Perform k-means clustering on Trace(i)

end while
end for
for t = 1 : T do

for j = 1 : K do
for h = 1 : H do

if Ot(h) ∈ Cluster(j) then
Groupt(j)← Ot(h)

end if
end for

end for
end for
while MultiBWA parameters not converged do

for t = 1 : T do
for i = 1 : N do

for j = 1 : K do
Calculate α̂t+1(i) = ω jbi

(
Groupt+1(j)

)∑N
m=1 αt(m)ami

Calculate β̂t(i) = ω j
∑N

m=1 aimbm
(
Groupt+1(j)

)
βt+1(m)

end for
end for

end for
for i = 1 : N do

Calculate π̂i = γ1(i)
for j = 1 : K do

Calculate ξt(i, j) and γt(i) using equations (2.15) and (2.16) and terms α̂t(i) and
β̂t(i).

Calculate âi j =
∑T−1

t=1 ξt(i, j)∑T−1
t=1 γt(i, j)

and b̂j(k) =
∑T

t=1,Ot=k γt(j)∑T
t=1 γt(j)

end for
end for

end while
Output: A = {âi j}; B = {b̂j(k)}; π = {π̂i}

The full pseudo-code for the MultiBWA is provided in algorithm 2. The algorithm ini-
tialises its weights (ωk) with equal probabilities for each group k, but a possible extension

65

3.4. MULTI-DIMENSIONAL HMM

would be to prioritise the weights, according to the respective user streams. These prior-
ities can define variations of the MultiHMM, depending on the groups of users involved
in training the model. After training on multiple traces simultaneously, the MultiHMM
now contains multi-user information, and traces generated synthetically by the model can
be compared to individual user profiles. Methods of validation includes sMAPE between
original user tweeting activity and MultiHMM-generated tweets. In the next section, we
explain the simulation of the MultiHMM for various groups of Twitter users along with a
collection of corresponding results.

3.4.3 MultiHMM simulation
We simulate a two-state MultiHMM for different groups of Twitter users: the first sim-
ulation analyses only three Twitter users; the second simulation analyses three groups of
Twitter users, with each group representing a common topic (i.e. hashtag). Timestamped
“tweet” information was captured from each user and we refer to this time-series of tweets
as a user’s “Twitter trace.” Each Twitter trace was partitioned into one hour intervals (i.e.
to form a binned trace) by counting the number of tweets present in each interval or “bin.”
This binned trace was then filtered through a k-means clustering algorithm, where we
set the number of clusters k = 5 and, thus, obtained five clusters for assigning integer
values for our discrete time-series (i.e. to form an observation trace). Each data point in
the observation trace is an integer between one and five (inclusive). The Twitter traces
all have length 3000 (i.e. users are observed for 3000 hours) and are passed as input (in
various groups) to the MultiHMM, where iterative training using the MultiBWA results
in model-parameter convergence (i.e. parameters A, B, π converge).

The MultiHMM, using its fixed parameters, can generate synthetic traces on all types
of user groups involved in the training and, specifically, it can output the cluster centroid
representing the clustered group of a specific observation (obtained from the observation
matrix B during generation of synthetic traces). Therefore, we obtain synthetic Twitter
traces using MultiHMM parameters (A, B, π) and random generation sampling. Further,
we simulate our results 10000 times to obtain 95% confidence intervals. In fact, the
MultiHMM uses its own distribution of user Twitter data defined by mean and standard
deviation. We compare our MultiHMM-generated results with mean, standard deviation
and skewness for raw and (standard) HMM-generated traces; the HMM-generated trace
is a result of a traditional HMM trained on an observation trace of length 3000. Note
that a trace length of 3000 hours will monitor the social network for weeks and choosing
shorter monitoring periods is also an option.

3.4.4 Results
Trace moments

We calculated statistics (per hour) on discrete traces of user tweets (original and synthetic)
in two formats: first, each trace corresponds to one user where results are averaged per
user and presented in Tables 3.12 (user 1), 3.13 (user 2) and 3.14 (user 3); secondly, each

66

3.4. MULTI-DIMENSIONAL HMM

trace represents the group activity of users with a common hashtag, which we summarise
by group in Table 3.15 (group 1), Table 3.16 (group 2) and Table 3.17 (group 3). The
MultiHMM-generated results match the raw results well in most cases. Note, the same
MultiHMM is used to generate each trace, whereas one standard HMM produces only
one trace. This is an obvious advantage of the MultiHMM over the standard HMM.

Table 3.12: Twitter User 1 Traces: Raw, HMM and MultiHMM.

Trace Mean Std Dev Skewness
Raw 1.0 1.54 1.54
HMM 1.0 ± 0.007 1.53 ± 0.004 1.56 ± 0.011
MultiHMM 0.99 ± 0.002 1.54 ± 0.002 1.56 ± 0.004

Table 3.13: Twitter User 2 Traces: Raw, HMM and MultiHMM.

Trace Mean Std Dev Skewness
Raw 0.68 0.82 1.47
HMM 0.67 ± 0.003 0.81 ± 0.002 1.48 ± 0.002
MultiHMM 0.67 ± 0.001 0.78 ± 0.001 1.56 ± 0.001

Table 3.14: Twitter User 3 Traces: Raw, HMM and MultiHMM.

Trace Mean Std Dev Skewness
Raw 1.0 1.6 1.62
HMM 1.0 ± 0.007 1.6 ± 0.004 1.64 ± 0.011
MultiHMM 0.97 ± 0.002 1.61 ± 0.002 1.65 ± 0.004

Table 3.15: Twitter Group 1 Traces: Raw, HMM and MultiHMM.

Trace Mean Std Dev Skewness
Raw 56.75 28.53 1.47
HMM 56.53 ± 0.062 27.37 ± 0.034 1.47 ± 0.003
MultiHMM 57.38 ± 0.108 25.86 ± 0.147 1.68 ± 0.018

Table 3.16: Twitter Group 2 Traces: Raw, HMM and MultiHMM.

Trace Mean Std Dev Skewness
Raw 29.57 20.92 2.5
HMM 29.4 ± 0.050 19.96 ± 0.043 2.51 ± 0.010
MultiHMM 29.31 ± 0.094 21.0 ± 0.188 2.92 ± 0.030

Table 3.17: Twitter Group 3 Traces: Raw, HMM and MultiHMM.

Trace Mean Std Dev Skewness
Raw 41.0 17.81 0.68
HMM 41.26 ± 0.056 17.0 ± 0.017 0.63 ± 0.004
MultiHMM 40.9 ± 0.116 19.02 ± 0.083 0.75 ± 0.012

67

3.4. MULTI-DIMENSIONAL HMM

Correlation

Correlation between users and groups of users can be used to find social “intruders” and
provides a useful initial measurement for security in social networks. We define Pearson’s
correlation coefficient [55], as applied to a sample, as follows:

c =

∑N
t=1(xt − x̄)(yt − ȳ)√∑N

t=1(xt − x̄)2
√∑N

t=1(yt − ȳ)2
(3.24)

where x̄ and ȳ are the means of observations x1, x2, . . . , xN and y1, y2, . . . , yN , respectively.
Average correlation coefficients are generated (after 10000 runs) by pairing HMM and
MultiHMM-generated traces with raw traces. Table 3.18 presents statistics for individual
users.

Table 3.18: Average correlation coefficients for HMM and MultiHMM-generated traces.

Trace User 1 User 2 User 3
HMM 0.4555 0.9356 0.9785
MultiHMM 0.5865 0.9931 0.9992

Analysing pairwise correlation between users is beneficial in terms of finding trends in
their online relationships. This could be interpreted as how often a pair of users tweet
each other, whether they are online at similar times, etc. Information on pairwise user
correlation is summarised in Tables 3.19 and 3.20.

Table 3.19: Pairwise correlation coefficients for four Twitter users using MultiHMM.

User 1 2 3 4
1 1.0 0.23 -0.31 0.42
2 - 1.0 0.32 0.46
3 - - 1.0 0.23
4 - - - 1.0

Table 3.20: Pairwise correlation coefficients for five Twitter users using MultiHMM.

User 1 2 3 4 5
1 1.0 0.20 0.17 -0.01 0.27
2 - 1.0 0.21 0.12 0.15
3 - - 1.0 0.21 0.07
4 - - - 1.0 -0.01
5 - - - - 1.0

Burstiness

We measure trace burstiness for the HMM and the MultiHMM in relation to Twitter user
activity. Figure 3.2 presents tweeting activity for an arbitrary user obtained from clustered
(i.e. a trace of tweets per hour grouped into clusters), HMM, and MultiHMM-generated
traces. In this example, only two clusters are used to partition the tweeting activity: one

68

3.4. MULTI-DIMENSIONAL HMM

cluster with a centroid of 1.07 tweets per hour and another cluster has a centroid of 4.89
tweets per hour. Hence, if the user had a five-hour tweeting pattern of 0, 5, 1, 0, 4, for
example, then this translates to a cluster sequence of 1, 2, 1, 1, 2. With more clusters
assigned to the user’s tweeting trace, a clearer representation of burstiness would also
lead to higher complexity of the k-means algorithm. Given Figure 3.2, it seems the HMM-
generated trace has large periods of sparse user activity (i.e. very few tweets), unlike the
clustered and MultiHMM traces, which have similar, more frequent tweeting patterns.

150 180 210
1

2

3

4

5

Hours

Tw
ee

ts
(C

lu
st

er
ed

)

150 180 210
1

2

3

4

5

Hours

Tw
ee

ts
(H

M
M

)

150 180 210
1

2

3

4

5

Hours

Tw
ee

ts
(M

ul
tiH

M
M

)

Figure 3.2: Burstiness for clustered, HMM and MultiHMM-generated data.

sMAPE

Simulations of the Baum-Welch algorithm and MultiBWA were executed 10000 times.
Then, sMAPE values were obtained by comparing raw and HMM-generated traces and
also comparing raw traces with MultiHMM traces. We summarise average sMAPE values
in Table 3.21 for groups of users. The results reveal that the HMM is less consistent than
the MultiHMM as it produces more varied errors on average after 10000 simulations.

Table 3.21: sMAPE values for Twitter groups on HMM and MultiHMM-generated traces

Trace Group 1 Group 2 Group 3
HMM 0.637 ± 2e-04 0.720 ± 2e-04 0.906 ± 2e-04
MultiHMM 0.715 ± 2e-04 0.741 ± 2e-04 0.789 ± 2e-04

Convergence of Baum-Welch algorithm

The order of convergence of the Baum-Welch algorithm is given by O(T 2N), where T
is the trace length and N is the number of hidden states. We perform a simulation to
analyse the computational efficiency of the Baum-Welch algorithm (trained on one trace)
compared to that of the MultiBWA (multiple traces trained at once). Figure 3.3 plots the
number of iterative Baum-Welch algorithm steps against the logarithm of the error (i.e.
the maximum error between the state transition matrix entries at each step) and is evidence
that training the MultiHMM on many traces simultaneously is more efficient than training
the standard Baum-Welch algorithm per trace. Generally, the number of steps required
to train the MultiHMM on h traces simultaneously (through the MultiBWA) has order
O(T 2N), compared to O(T 2hN) for the standard HMM.

69

3.4. MULTI-DIMENSIONAL HMM

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
2−10

2−8

2−6

2−4

2−2

No. of iterations

lo
g(

er
ro

r)
HMM (User 1 only)
HMM (User 2 only)

MultiHMM (Users 1 and 2)

Figure 3.3: log(error) vs number of BWA and MultiBWA iterations for Twitter traces.

3.4.5 MultiHMM advantages

Based on the MultiHMM results presented in this chapter, there is statistical evidence that
the accuracy of the MultiHMM matches that of the standard HMM, in terms of synthetic
generation of user traces. Further, the MultiHMM reduces the computational complexity
of the standard HMM whilst training on multiple traces simultaneously. We list some
advantages of the MultiHMM over the standard HMM and other stochastic models:

1. Very few parameters are needed for the MultiHMM setup (i.e. A, B, π), compared
to the heavy parametrisation seen in [67].

2. Periodic behaviour for the MultiHMM is not fixed to a time period, as was the case
in [67], where the inter-session rate of the Poisson process was set to one week.

3. Other models (i.e. priority queueing models) fail to account for cycles and sessions
of high activity (i.e. burstiness), which the MultiHMM faithfully replicates for large
groups of users.

4. The MultiHMM provides inference into user behaviour through hidden states, and
more so than trivial labelling of states as “passive” or “active” [67, 82].

5. The MultiHMM characterises group features of users and can help identify social
“intruders” rather than prioritising a high volume of users over model features (as
was done in [67]).

6. The MultiHMM saves steps in training and convergence of its MultiBWA, whereas
standard HMMs are poorly-suited in situations where multiple processes interact.

7. The CoupledHMM of [82] is computationally expensive, relying on increased cou-
pling between Markov chains to represent social influence amongst users. Our Mul-
tiHMM extends [82], acting as a basic “social influence”-driven model for groups
of users.

70

3.4. MULTI-DIMENSIONAL HMM

3.4.6 Related work
We compare the MultiHMM with existing models in social media applications. In previ-
ous background sections, we described coupled HMMs with inter-connected hidden state
sequences resulting in resource-costly training through many combinations of state in-
teractions [82]. Similarly, [62] combined two parallel and independent HMMs to merge
information about sign language using a token passing algorithm, but found it computa-
tionally expensive to train on very large vocabularies. The MultiHMM reduces the com-
putational complexity of the Baum-Welch algorithm through grouping traces using two
layers of clustering and, thus, is capable of training on individual traces simultaneously.

In social networks, studies show that multi-user queries result in multiple operations and
are expensive in terms of performance [51]. To model these multi-user interactions, se-
lective replicated partitioning was implemented through a temporal activity hypergraph
model [51], where vertices represented users and nets corresponded to multi-user queries.
The hypergraph model performed simultaneous partitioning and replication to reduce
query span while respecting load balance and I/O load constraints under replication. In-
deed, it was shown that the hypergraph model is the best choice (among other graph-based
approaches) for predicting future query patterns and significantly improving latency and
throughput. However, replicating whole sections of Twitter networks using hypergraphs
method proved costly, in terms of storage and computational complexity, for increased
number of users and their interactions. The MultiHMM attempts to solve some of these
issues, acting as a parsimonious model (i.e. efficient training with few input parameters)
capable of multi-user training with interactions on common topics.

3.4.7 Conclusion and future work
In user classification, individual parameter estimates fluctuate less over time than they
do across individuals. Therefore, individual attributes are quite persistent and can be
good candidates for characterising users as demonstrated in our multi-user classification
model (i.e. MultiHMM). It has already been established that HMMs, combined with
the supporting clustering analysis and appropriate choice of bins, are able to provide a
concise, parsimonious and portable synthetic workload [66]. However, the lack of multi-
user analysis or block-wise learning of standard HMMs results in a heavy computing
resource requirement for multi-input training with such models. The MultiHMM has a
vastly reduced computing requirement for parallel training making it ideal for modelling
workload data with multiple streams, whilst at the same time providing excellent accu-
racy compared with the resource-costly traditional HMM and against the original training
traces themselves. Validation of the MultiHMM, in terms of means, standard deviation,
and skewness, has proved a straightforward method for verifying average “bin” probabil-
ities of workloads (i.e. tweets per hour), in simple terms. Additionally, burstiness in a
network of users has been replicated by the MultiHMM for extended periods of time. The
MultiHMM improves current Markovian temporal models, with some useful potential ap-
plications for social media: spam detection by recognising “fake” users; modelling group
behaviour of users on trending topics; efficient online resource allocation by exploiting

71

3.5. ONLINE HMM

the highs and lows of user burstiness at peak times; user classification for security (e.g.
normal, criminal, robot, etc.).

Extensions to our MultiHMM include using hierarchical clustering to improve the clus-
ter allocation in different user traces. This will increase convergence times of clustering,
but might give a better choice for the number of clusters and improve the accuracy of
model-generated trace distributions. Also, we plan to adapt the MultiHMM training al-
gorithm to use varying weights for each trace to represent priorities in streams of users.
Another extension is to look specifically at retweets for very popular tweets (i.e. millions
of users retweeting celebrities). This could predict “super busy times” in the network and
thus help in resource allocation. In terms of training the model in real-time scenarios on
live social networks, we seek to merge the incremental EM learning from the SlidHMM
with the multi-input capabilities of the MultiHMM. In doing so, we seek to build an on-
line benchmark to classify and predict multiple streams in a portable and parsimonious
fashion.

3.5 Online HMM

In modern computer systems, the intermittent behaviour of infrequent, additional loads
affects performance. Often, representative traces of storage disks or remote servers can
be scarce and obtaining real data is sometimes expensive. Therefore, stochastic mod-
els, through simulation and profiling, provide cheaper, effective solutions, where input
model parameters are obtained. A typical example is the MMPP, which can have its
time index discretised to form an HMM. These models have been successful in captur-
ing bursty behaviour and cyclic patterns of I/O operations and Internet traffic by using
underlying properties of the discrete (or continuous) Markov chain. However, learning
on such models can be cumbersome in terms of complexity through re-training on data
sets and we have addressed this with the IncHMM and the SlidHMM. Ideally, adding
multi-input features of MultiHMM to such incremental models would be beneficial for
modelling correlated and time-varying workload in an online fashion. Thus, we provide
an online learning HMM (OnlineHMM), which is composed of two existing variations
of HMMs: first, a sliding HMM using a moving average technique to update its parame-
ters “on-the-fly” (i.e. SlidHMM) and, secondly, a multi-input HMM capable of training
on multiple discrete traces simultaneously (i.e. MultiHMM). The OnlineHMM reduces
data processing times significantly and, thence, synthetic workloads are made more com-
putationally cost effective. We measure the accuracy of generating representative traces
through comparisons of moments on original data points and HMM-generated synthetic
traces. Further, we compare autocorrelation functions (ACFs) between standard HMMs
and the OnlineHMM in order to validate the dynamics of the generated workload traces
in terms of inter-bin correlation. We present, analytically, training steps saved from the
adapted Baum-Welch algorithm used by the OnlineHMM compared to other HMM vari-
ations. Finally, we conclude our work and offer model extensions for the future.

72

3.5. ONLINE HMM

3.5.1 Motivation

In storage systems, it is important to model workloads exhibiting spatio-temporal char-
acteristics with multiple job classes. As discussed earlier, generated workload traces can
save resources and time, where burstiness and correlation are common features of such
traces. Indeed, non-deterministic events dictate traffic behaviour and should be modelled
to improve storage system performance and allow for experimenting with new storage
system designs. As we have seen with the IncHMM and the SlidHMM, it is beneficial to
build online models for training on live system traces to reduce computational complexity
and save resources. Additionally, modelling multiple job classes, as with the MultiHMM,
provides correlation and burstiness for groups of workloads simultaneously, which also
reduces training time. A useful extension is to combine the incremental and the multi-
dimensional training of the aforementioned models to save further resources.

To address such issues, we propose an online, multi-input HMM capable of training mul-
tiple traces in an incremental fashion, without decreasing accuracy and computational
efficiency. We adapt the well-known k-means clustering and Baum-Welch algorithms to
support multiple traces simultaneously and obtain the discrete-time OnlineHMM. Appli-
cations of this model include multi-job traffic classification and workload benchmarking
for live systems. To validate the effectiveness of our methods, we quantitatively com-
pare moments and autocorrelation from the raw (i.e. unclustered), standard HMM and
OnlineHMM-generated traces. Potential online applications of our model include: char-
acterising workload patterns of burstiness to predict peaks of high activity; building user
profiles “on-the-fly” in social networks based on online interactions; managing resource
allocation for shared applications with intermittent patterns of activity.

3.5.2 OnlineHMM simulation

The OnlineHMM has two hidden states and the adapted Baum-Welch algorithm is trained
on observations until parameter convergence (i.e. A, B, π become fixed). Traces used for
simulating the OnlineHMM include the NetApp and Microsoft traces. We choose eleven
clusters for initialising the MultiHMM-adapted k-means clustering, after optimising the
distance-based iterations during trial runs. The online Baum-Welch algorithm slides along
the data set, which is updated incrementally, and trains on multiple traces simultaneously.
This learning is a combination of the adapted Baum-Welch algorithms from the SlidHMM
and the MultiHMM, but reduces parameter convergence time on both. With each new
point added to the data set, an outdated point is discarded by the OnlineHMM whilst
parameters are updated. Therefore, the OnlineHMM, having first trained on a block of
T observations, trains on T new observations, but retains information on a set of 2T data
points. On the other hand, a standard HMM trains on T data points and then re-trains on
2T points when a new block of T observations are available, etc. Hence, as the observation
set grows increasingly large, the standard HMM re-trains on this accumulated data set in
a batch fashion. We summarise the training of the OnlineHMM in algorithm 3.

73

3.5. ONLINE HMM

Algorithm 3 Training the OnlineHMM

Input: K = number of clusters; Trace(i) = ith trace; Cluster(k) = kth cluster; Groupt(k) =

group of data points in kth cluster at time t; Ot(i) = data point at time t from Group i; ωk

= kth weight; {O1, . . . ,OT } = existing observation set; {OT+1, . . . ,OT+M} = new obser-
vation set; N = number of hidden states; A = state transition matrix; B = observation
matrix; π = initial hidden state distribution; α, β, ξ, γ = probabilities.
Train on {O1, . . . ,OT } using the MultiHMM as seen in algorithm 2 to obtain A, B, π.
for t = T + 1 : T + M do

for i = 1 : H do
while Cluster points not fixed do

Perform k-means clustering on Trace(i).
end while

end for
for h = 1 : H do

Assign a cluster value to Ot(h).
for j = 1 : K do

if Ot(h) ∈ Cluster(j) then
Groupt(j)← Ot(h).

end if
end for

end for
end for
for i = 1 : N do

Calculate π̂i = γ1(i).
end for
for t = T + 1 : T + M − 1 do

while Online BWA parameters not converged do
for i = 1 : N do

for j = 1 : K do
Calculate α̂t(i) = ωjbi

(
Groupt−1(j)

)∑N
m=1 αt−1(m)ami.

Calculate β̂t(i) = ωjβt−1(i)/
∑N

m=1 aimbm
(
Groupt(j)

)
.

Calculate β̂t+1(i) = ωjβt(i)/
∑N

m=1 aimbm
(
Groupt+1(j)

)
.

end for
end for
for i = 1 : N do

for j = 1 : K do
Calculate ξt(i, j) and γt(i) using equations (3.13) and (3.14), respectively.
Update ât

i j and b̂j(k)t using equations (3.21) and (3.22), respectively.
end for

end for
end while

end for
Output: A = {âi j}; B = {b̂j(k)}; π = {π̂i}

74

3.5. ONLINE HMM

For the OnlineHMM simulation, we initialise A, B, and π with equiprobable distributions
and the length of traces (T) ranges from approximately 600 to 60000 seconds. We perform
up to 10000 consecutive slides using NetApp and Microsoft reads and writes, with groups
of up to 1000 traces. Once the parameters converge, the model generates individual syn-
thetic traces. Note, the same OnlineHMM generates many traces (one-to-many relation-
ship), whereas a standard HMM produces only one trace. This is an obvious advantage
of the OnlineHMM over the standard HMM with respect to computation complexity of
training, which we summarise in the subsequent section. We obtain mean, standard devi-
ation, skewness and autocorrelation on original and synthetic reads and writes, which we
present in the results section.

3.5.3 Results

Trace moments

We calculated statistics on discrete traces of NetApp and Microsoft reads and writes using
original, HMM and OnlineHMM-generated data points. Particular traces have been simu-
lated 10000 times and corresponding statistics are evaluated per bin with 95% confidence
intervals. For example, Table 3.26 shows a mean of HMM-generated Microsoft reads of
“48.84 ± 0.08,” indicating that the HMM produced, on average, 48.84 reads per second,
with a confidence interval of 0.08. Further, the “fourth Microsoft read after no slides”
means we chose the fourth trace (out of a group of 1000) of Microsoft reads, where no
new reads were added during training (i.e. the MultiHMM was used). A variety of traces
are presented in Tables 3.22 - 3.29. As expected, the HMM provides better estimates of
mean, standard deviation and skewness in most of the results. The clustering techniques
and backward approximation equation used in the MultiHMM and the OnlineHMM may
be responsible for the difference in accuracy of these estimates. Nonetheless, the On-
lineHMM meets minimum benchmarks for accuracy, sometimes outperforming the stan-
dard HMM (see Tables 3.24 and 3.26).

Table 3.22: Twelfth Netapp read after no slides: raw, HMM and MultiHMM.

Trace Mean Std Dev Skewness
Raw 62.52 152.92 3.03
HMM 62.34 ± 0.001 151.92 ± 0.008 3.04 ± 0.001
MultiHMM 62.61 ± 0.12 136.30 ± 0.21 3.08 ± 0.005

Table 3.23: Seventieth Netapp write after no slides: raw, HMM and MultiHMM.

Trace Mean Std Dev Skewness
Raw 0.50 5.54 19.12
HMM 0.50 ± 0.004 4.75 ± 0.05 15.59 ± 0.1
MultiHMM 0.52 ± 0.006 5.20 ± 0.06 15.81 ± 0.13

75

3.5. ONLINE HMM

Table 3.24: First Netapp read after nine slides: raw, HMM and OnlineHMM.

Trace Mean Std Dev Skewness
Raw 100.96 248.52 2.54
HMM 102.07 ± 0.60 245.35 ± 0.68 2.6 ± 0.012
OnlineHMM 102.77 ± 0.25 250.81 ± 0.33 2.51 ± 0.004

Table 3.25: Fourth Netapp write after four slides: raw, HMM and OnlineHMM.

Trace Mean Std Dev Skewness
Raw 0.43 0.12 -0.37
HMM 0.43 ± 0.001 0.12 ± 0.002 -0.41 ± 0.004
OnlineHMM 0.41 ± 0.001 0.21 ± 0.001 -0.27 ± 0.009

Table 3.26: Fourth Microsoft read after no slides: raw, HMM and MultiHMM.

Trace Mean Std Dev Skewness
Raw 49.09 167.49 4.32
HMM 48.84 ± 0.08 164.76 ± 0.16 4.36 ± 0.012
MultiHMM 49.09 ± 0.14 165.66 ± 0.31 4.29 ± 0.008

Table 3.27: Sixth Microsoft write after no slides: raw, HMM and MultiHMM.

Trace Mean Std Dev Skewness
Raw 0.66 0.16 1.02
HMM 0.67 ± 0.002 0.16 ± 0.002 0.96 ± 0.012
MultiHMM 0.62 ± 0.001 0.22 ± 0.001 1.10 ± 0.009

Table 3.28: Second Microsoft read after five slides: raw, HMM and OnlineHMM.

Trace Mean Std Dev Skewness
Raw 47.87 166.34 4.36
HMM 46.78 ± 0.25 160.61 ± 0.50 4.51 ± 0.013
OnlineHMM 51.39 ± 0.12 149.21 ± 0.30 4.75 ± 0.009

Table 3.29: Twentieth Microsoft write after three slides: raw, HMM and OnlineHMM.

Trace Mean Std Dev Skewness
Raw 0.45 1.61 4.28
HMM 0.45 ± 0.003 1.65 ± 0.006 4.43 ± 0.02
OnlineHMM 0.45 ± 0.002 1.79 ± 0.005 4.51 ± 0.01

76

3.5. ONLINE HMM

Autocorrelation

A major benefit of autocorrelation is observing trends or cycles in the self-correlated time-
series. As autocorrelation is normalised autocovariance, the two terms are, unfortunately,
sometimes used interchangeably in industry. The lag k autocorrelation function (ACF) for
observations y1, y2, . . . , yN (with mean ȳ) is defined as follows:

pk =

∑N−k
t=1 (yt − ȳ)(yt+k − ȳ)∑N

t=1(yt − ȳ)2
(3.25)

We investigate the ACFs for both NetApp and Microsoft data and compare the autocor-
relation obtained from the raw (i.e. unclustered) data points with the corresponding syn-
thetic traces as generated by the HMM and the OnlineHMM. Figure 3.4 shows varied be-
haviour in ACF for raw, HMM and OnlineHMM-generated NetApp reads. Self-similarity
of raw reads is best captured by the OnlineHMM from lag 32 to 62 and from lag 70 to
80. For the first 30 lags, both the HMM and the OnlineHMM ACFs reveal less autocorre-
lation than the raw ACF, but only the OnlineHMM produced any negative values of ACF
from lag 72 to 104; this differs from the ACF vaues produced by the HMM, which display
spikes with values of 0.1 during the same lag period. Figure 3.5 shows that the behaviour
of raw writes is matched by the OnlineHMM more accurately than the HMM, with no
autocorrelation from HMM writes. The lags in which the peaks of raw ACF match the
OnlineHMM ACF include 12, 36, 49, 60, and 67. Indeed, this matching of ACFs gives
the OnlineHMM power as a bursty classifier, with applications in I/O management and
resource allocation for disks and file servers. In Figure 3.6, there is a similar ACF pattern
evident in both HMM and OnlineHMM-generated Microsoft reads, which offer slightly
less ACF compared to raw reads from lag 0 to 60. Seemingly, the OnlineHMM ACF stays
above zero for most lags, but the HMM reads are repeatedly moving into negative ACF
values. Further, the OnlineHMM ACF matches the spikes of the raw Microsoft reads at
lag 77 and again at lag 88. Figure 3.7 reveals that the HMM-generated Microsoft writes
match ACF values for the first 30 lags more accurately than the OnlineHMM-generated
writes. However, after lag 30, the only model to vaguely represent any significant ACF
value of original writes is the OnlineHMM, acknowledging the positive peak at lag 68,
whereas HMM-generated writes have ACF values only below zero.

0 10 20 30 40 50 60 70 80 90 100 110

−0.1

0

0.1

0.2

0.3

Lag

A
C

F

Raw
HMM
Online

Figure 3.4: Autocorrelation for Netapp reads.

77

3.5. ONLINE HMM

0 10 20 30 40 50 60 70

0

0.1

0.2

Lag

A
C

F
Raw

HMM
Online

Figure 3.5: Autocorrelation for Netapp writes.

0 10 20 30 40 50 60 70 80 90 100 110

−0.1

0

0.1

0.2

0.3

0.4

Lag

A
C

F

Raw
HMM
Online

Figure 3.6: Autocorrelation for Microsoft reads.

0 10 20 30 40 50 60 70 80

0

0.1

0.2

Lag

A
C

F

Raw
HMM
Online

Figure 3.7: Autocorrelation for Microsoft writes.

3.5.4 Conclusion and future work
We have analysed variations of HMMs that, combined with clustering analysis and adapted
online learning algorithms, provide parsimonious and portable synthetic workloads. By

78

3.5. ONLINE HMM

proposing an online HMM (OnlineHMM) that learns efficiently using a sliding data train-
ing window and is capable of multi-input evaluation, we have reduced the heavy com-
puting resource requirement of the Baum-Welch algorithm, as summarised in Table 3.2.
Further, the OnlineHMM is ideal for modelling multi-class, workload data in real-time,
such as collecting synthetic traces to build a profile of I/O commands at disks or of packet
arrivals at routers. By analysing long-term behaviour of a live system, through abstract-
ing low-level implementations using queueing theory, the OnlineHMM aims to improve
scheduling of jobs and manage system resources and (crucially) bottlenecks.

Obtaining realistic synthetic traces, in terms of matching moments to original data points,
has been important for validating accuracy of this research. Also, matching autocorrela-
tion to raw data has validated the dynamics of the generated workload traces, focusing on
the inter-bin correlation. This has added benefits to the OnlineHMM, in terms of observ-
ing burstiness and self-similarity for extended periods of time. Despite our mathematical
approximation of workloads, the OnlineHMM should cyclically recalibrate (i.e. train a
standard HMM after K slides) and train on a variety of traces to obtain a wider synthetic
representation base. Nonetheless, from an analytical point-of-view, the OnlineHMM out-
performs the standard HMM and other variations of HMMs with its adapted Baum-Welch
algorithm that is based on the SlidHMM and the MultiHMM.

Possible extensions to the OnlineHMM include using hierarchical clustering to improve
the cluster allocation during data pre-processing. Currently, a challenge with k-means
is choosing an optimal value for the initial number of clusters, which affects the model
performance in generating accurate traces with respect to moments. By eliminating clus-
tering altogether, it is possible to reduce computational time during training even further.
Also, we plan to adapt the OnlineHMM training algorithm to use varying weights for
each trace, which gives priorities to groups of traces and is useful for scheduling impor-
tant jobs (or flows) to servers. Another addition to our work is obtaining an OnlineHMM
that is capable of training using a continuous state space. This would require a continuous
version of the Baum-Welch algorithm, as seen in [84], and would act as an online, sliding
algorithm for continuous time-series.

79

Chapter 4

Queueing Models

Chapter Description

The queueing models in this chapter include: the M/M/1-EPS queue for calculating re-
sponse time through a moment-generating algorithm (4.2); the M/M/1-DPS queue for ap-
proximating delays via response time moments for smartphones and cloud applications
(4.3); the MMPP/M/1-DPS queue using a weighted superposition technique to approxi-
mate response time moments and distributions for multi-class jobs in Internet traffic (4.4).

4.1 Introduction

In this chapter, we utilise the adaptive HMMs from the previous chapter to construct ef-
ficient queueing models that represent important system performance metrics. The aims
are to use the transition rates of HMMs to input into MMPPs (i.e. discretely-indexed non-
stationary HMMs), which model jobs arriving at a server with processor-sharing schedul-
ing, and to approximate queueing delay through higher response time moments. How-
ever, we first obtain response time moments using the simpler Poisson arrival process via
M/M/1 queues and then build up to the more complex MMPP/M/1 queues. Hence, we
present work on three types of single server queueing models to represent queueing de-
lays for real systems. The first model is the M/M/1/EPS queue, which has long been used
to model round-robin scheduling, and from which we approximate explicit response time
moments via an iterative moment-generating algorithm. The M/M/1-EPS queue approxi-
mates response time moments for one-class jobs and we compare analytical results against
simulated results obtained from JSIMwiz, which is a simulation package that forms part
of the Java Modelling Tools (JMT) framework [37]. The second model is the M/M/1-DPS
queue, which models response time for multiple job classes, where different job classes
have different time quanta (i.e. larger for high priority classes). Such queueing models are
approximations for servers in smartphone applications and data centres, where response
time moments are the performance measures to meet quality of service (QoS) guidelines.
We obtain data to test the M/M/1-DPS queue in two ways: first, we use mean arrival rates
and packet sizes of TCP/IP packets captured on a network; secondly, we parametrise the
DPS queue with values obtained directly from a GRID network application [43]. The
third queueing model is an MMPP/M/1-DPS queue, which uses the Markov-modulated

80

4.2. M/M/1-EPS QUEUES

Poisson process (MMPP) to model correlated and mode-dependent traffic (i.e. packet ar-
rivals at routers) and can approximate long-range dependency (LRD). We obtain higher
response time moments and density functions using a weighted superposition of M/M/1-
DPS queues under the assumption of slow switching phases of the MMPP. Hence, re-
sponse time density functions and corresponding CDFs allow comparison with realistic
service level agreement (SLA) guidelines of delay. Applications of the MMPP/M/1-DPS
queue include approximating delay of packets arriving at routers and building a dynamic
allocation strategy to minimise mean and variance of delay whilst maximising a utility
function.

4.2 M/M/1-EPS queues

4.2.1 Motivation
We have discussed how processor-sharing (PS) queueing models provide an abstrac-
tion for modern computer systems and allow analytical response time metrics to rep-
resent system delay and, hence, performance. Minimising mean response time alone
is usually not acceptable nowadays because users tend to be equally frustrated with a
highly variable service. They demand response time that is predictable [140, 165], which
makes it important to calculate moments, at least, and ideally response time distribu-
tions, which is not straightforward. Further, approximating delay distributions through
response time obtained from PS queues is useful for meeting QoS standards (i.e. queue-
ing delay at routers) and verification of SLA requirements without replicating system
behaviour. Additionally, varying the level of utilisation in the parametrisation of dis-
crete queues offers useful system scenarios and stress-testing of analytical approxima-
tions. In the past three decades, existing work has addressed response time in various
ways using PS queues [21, 138, 141, 142, 155, 160]. In the present work, we introduce
a novel moment-generating algorithm to calculate higher response time moments analyt-
ically from M/M/1-EPS queues. Hence, we offer the following contributions:

• Iterative computation of moments, in terms of mean service rate (µ) and utilisation
(ρ) of the system, using a partial differential equation for the Laplace transform of
response time density.

• Obtain explicit expressions for the first four moments of response time for one job
class under egalitarian PS (EPS).

• Compare analytical response time moments with simulated moments for low to
high load levels.

In the background section 2.3.5, we have described other methods of obtaining response
time approximations in PS queues, notably that of Kim and Kim [155]. In subsequent
sections, we introduce a novel moment-generating algorithm that can iteratively calculate
arbitrary moments of response time, thus improving an aspect of Kim and Kim’s method
in this respect. We explain some important assumptions for our discrete EPS queues in
the next section.

81

4.2. M/M/1-EPS QUEUES

4.2.2 EPS queue assumptions
Initially, we make three assumptions for our EPS queueing systems:

• The queueing system is stable (i.e. utilisation is less than one).

• Job service times are exponentially distributed.

• Slow phases allow individual Poisson arrivals in each phase.

First, it is reasonable to assume that the total offered load at the server is less than one
(i.e. ρ < 1), which avoids saturation of resources. Secondly, existing research proposes
that media file sizes follow exponential distributions [63] and, therefore, it is beneficial
to simplify our analysis by choosing applications with exponential job sizes. Thirdly, it
is reasonable to assume different Poisson arrivals for different phases of applications (e.g.
frequent or infrequent packet arrivals). Further, it allows approximation of response time
moments from separate Mi/M/1-EPS queues for each phase i.

We use discrete M/M/1-EPS queues to approximate moments of delay (i.e. represented
here as response time), given the aforementioned assumptions. Such queues abstract the
complex scheduling of processors when serving multiple classes of exponentially-sized
jobs. Note that increasing the number of parallel processors physically adds a multi-core
functionality, but in an EPS queueing model all servers are considered collectively and
with a single rate. This approximation is accurate at moderate to high loads where cores
can be kept busy.

The EPS queues fix discrete arrival and service rates at any given time and, therefore,
differ from fluid models. However, the discrete queues distinguishes two types of job: the
aggregate class of those present under equilibrium conditions and a particular new arrival
with its own specific characteristics. For example, when a job arrives at the queue, n
other jobs are already present with geometric probability (1−ρ)ρn at equilibrium. Each of
these n queueing jobs has a system demand given by the specified exponential distribution,
having arrived from different applications with individual arrival rates1 (λ1, λ2, λ3, . . . , λn),
which are well approximated by a superposition of independent renewal processes with
aggregate arrival rate λall =

∑n
i=1 λi, which is close to Poisson if no individual arrival

stream dominates. On the other hand, the server treats the newly arrived job differently
from the class of existing jobs in the system in that it may have any specified service
demand, x. In this way, our EPS queues act as pseudo-multi-class queues. We proceed
to the pseudo-algorithm for obtaining explicit higher moments of response time, which is
explained in the next section.

4.2.3 Obtaining response time moments for EPS queues
In a PS queue with utilisation ρ, the response time T of an arriving customer that requires
x units of service time is known to have a probability density function that has Laplace

1Assuming arrivals are independent and identically distributed.

82

4.2. M/M/1-EPS QUEUES

transform:

W∗(s | x) =
(1 − ρ)(1 − ρr2)e−[ρµ(1−r)+s]x

(1 − ρr)2 − ρ(1 − r)2e−[1/r−ρr]µx (4.1)

where r is the smaller root of the equation ρr2 − (ρ + 1 + s/µ)r + 1 = 0. The result is long
known, see for example [21, 122], and is derived by solving a partial differential equation
(PDE) for a certain generating function G(z, s, x), viz.

(µz2 − (ρµ + µ + s)z + ρµ)
∂G
∂z
−
∂G
∂x

= (ρµ + s − µz)G (4.2)

which yields W∗(s | x) = (1 − ρ)G(ρ, s, x). We make the following observations:

1. The unconditional response time density for an arriving customer that has exponen-
tially distributed service time requirement with mean 1/u is the product of u and
the Laplace transform of W∗(s|x) with respect to x, evaluated at Laplace parameter
u.

2. To calculate moments, the generating function’s derivatives need only be computed
at s = 0.

3. There is no need to solve the differential equation (4.2) for the generating function
G since the moments are given by its derivatives evaluated at s = 0 and z = ρ,
corresponding to the geometric equilibrium queue length probability distribution.

4. The Laplace transform of derivative ∂G/∂x yields the term uG∗x(z, s, u)−G(z, s, 0),
where G∗x denotes the Laplace transform of G with respect to x and the initial value
G(z, s, 0) is known to be 1/(1 − z).

5. At s = 0 and z = ρ, the coefficient of ∂G/∂x vanishes. Thus, by successive differen-
tiation of the Laplace-transformed equation (4.2), we can determine the moments
recursively.

In this way, we obtain the following unconditional moments for response time:

E[T] =
1

µ(1 − ρ)
(4.3)

E[T 2] =
4

µ2(2 − ρ)(1 − ρ)2 (4.4)

E[T 3] =
12(ρ + 2)

µ3(2 − ρ)2(1 − ρ)3 (4.5)

E[T 4] =
48(48 + 52ρ − 10ρ2 − 6ρ3 − 24ρ4 + 9ρ5)
µ4(2 − ρ)3(1 − ρ)3(3 − 2ρ)(4 − 3ρ)

(4.6)

In Table 4.1, we summarise response time moments with fixed µ = 1 whilst increasing ρ
and also obtain moments with fixed ρ = 0.5 whilst increasing µ. The mean service rate (µ)

83

4.2. M/M/1-EPS QUEUES

is measured per second and we assume one job class. We extend the moment-generating
algorithm to multiple job types in subsequent sections.

Table 4.1: Moments for µ = 1 with varying ρ (left) and varying µ with fixed ρ = 0.5 (right).

Moment ρ = 0.2 ρ = 0.5 ρ = 0.8
E[T] 1.25 2.0 5.0
E[T 2] 3.47 10.67 83.33
E[T 3] 15.91 106.7 2.9e+03
E[T 4] 105.3 1.6e+03 1.1e+05

Moment µ = 0.5 µ = 2.5 µ = 8.5
E[T] 4.0 0.8 0.235
E[T 2] 42.67 1.71 0.147
E[T 3] 853.3 6.82 0.174
E[T 4] 2.5e+04 40.5 0.303

This method of obtaining explicit higher moments of response time should be compared
against the algorithm of Kim and Kim [155]. We dedicate the following section to this
comparison, which includes derivation of the same PDE for EPS queues and advantages
of our moment-generating methodology over that of Kim and Kim.

4.2.4 Kim and Kim’s response time moments for EPS queues
Conditional and unconditional joint transforms of response time are given in equations
(2.50) and (4.18), respectively. This allows calculation of conditional and unconditional
moments of response time [155], where there are K job classes. For the K = 1 case, let
us assume the following conditions for Kim and Kim’s M/M/1-EPS queueing model:

1. The mean arrival rate is λ and the mean service rate is µ.

2. Utilisation is ρ = λ/µ < 1.

3. z1 = z/ρ, where z is the parameter from equation (4.2).

Let Q(z1) = E
[
zN1

1
]

be the probability generating function in the system steady state for one
job type, where N1 is the number of jobs in the system at steady state. Note that z1 = z/ρ,
where z is a parameter from equation (4.2), which is the difference of deconditioning on
ρ. Further, Kim and Kim tag a job with required service time greater than x. Therefore,
when the tagged job attains service x, let S1(x) and N1(x) denote the elapsed response
time and the number of jobs in the system, respectively. Then, Kim and Kim use a joint
transform to derive a relation on the joint distribution of S1(x) and N1(x):

Tx(s; z1) = E
[
e−sS1(x)zN1(x)

1
]

(4.7)

which is defined for | z1 | ≤ 1 and s ≥ 0.

Kim and Kim obtain an expression for the joint transform Tx(s; z1), governed by the PDE
in equation (2.50), where a proof is given in [155] and is omitted here. We evaluate the
expression for this PDE, for the K = 1 case, such that we obtain equation (4.2) as follows:

∂

∂x
Tx(s; z1) = −

α1

α1

((
s + λ(1 − z1)

)
z1 − µ(1 − z1)

)
∂

∂z1
Tx(s; z1) − (s + λ(1 − z1))Tx(s; z1)

84

4.2. M/M/1-EPS QUEUES

Simplifying terms gives us

∂

∂x
Tx(s; z1) = −

(
sz1 + λz1 − λz2

1 − µ + µz1

)
∂

∂z1
Tx(s; z1) − (s + λ − λz1)Tx(s; z1)

Substituting z/ρ for z1, we have

∂

∂x
Tx(s; z1) = −ρ

(
s

z
ρ

+ λ
z
ρ
− λ

z2

ρ2 − µ + µ
z
ρ

)
∂

∂z
Tx(s; z1) − (s + λ − λ

z
ρ

)Tx(s; z1)

Simplifying terms further and using relation ρ = λ/µ gives us

∂

∂x
Tx(s; z1) =

(
− sz − λz + λ

z2

ρ
+ ρµ − µz

)
∂

∂z
Tx(s; z1) − (s + λ − λ

z
ρ

)Tx(s; z1)

∂

∂x
Tx(s; z1) =

(
− sz − ρµz + µz2 + ρµ − µz

)
∂

∂z
Tx(s; z1) − (s + ρµ − µz)Tx(s; z1)

Replacing G for Tx(s; z1) and rearranging terms gives us equation (4.2) as follows(
µz2 − (ρµ + µ + s)z + ρµ

)
∂G
∂z
−
∂G
∂x

= (ρµ + s − µz)G

Obtaining unconditional moments of response time uses repeated differentiation of the
PDE given in equation (4.18), where we use the joint transform T (s; z1) for the K = 1
case. To obtain the first moment of response time T (i.e. E

[
T
]
), we use Little’s law. The

second moment requires derivation of (K + 1)(K + 2)/2 linearly independent equations
with unknown moments L j,M0,M j,M00,M0 j, j = 1, . . . ,K, and L jk,M jk, k = 1, . . . ,K,
0 ≤ j ≤ k ≤ K. For K = 1, the moments are defined as follows:

L1 =
∂

∂z1
Q(z1)

∣∣∣∣∣
z1=1

, M0 =
∂

∂s
T (s; z1)

∣∣∣∣∣
s=0,z1=1

, M1 =
∂

∂z1
T (s; z1)

∣∣∣∣∣
s=0,z1=1

,

M00 =
∂2

∂s2 T (s; z1)

∣∣∣∣∣∣
s=0,z1=1

, M01 =
∂2

∂s∂z1
T (s; z1)

∣∣∣∣∣∣
s=0,z1=1

,

L11 =
∂2

∂z2
1

Q(z1)

∣∣∣∣∣∣
z1=1

, M11 =
∂2

∂z2
1

T (s; z1)

∣∣∣∣∣∣
s=0,z1=1

(4.8)

Evaluating derivatives for these moments gives us

L1 = E
[
N1z(N1−1)

1
]∣∣∣

z1=1
, M0 = E

[
−S1e−sS1zN1

1
]∣∣∣

s=0,z1=1
, M1 = E

[
e−sS1 N1z(N1−1)

1
]∣∣∣

s=0,z1=1
,

M00 = E
[
S 2

1 e−sS1zN1
1

]∣∣∣
s=0,z1=1

, M01 = E
[
−S1e−sS1 N1z(N1−1)

1
]∣∣∣

s=0,z1=1
,

L11 = E
[
N1(N1 − 1)z(N1−2)

1
]∣∣∣

z1=1
, M11 = E

[
e−sS1 N1(N1 − 1)z(N1−2)

1
]∣∣∣

s=0,z1=1

(4.9)

85

4.2. M/M/1-EPS QUEUES

Substituting values for s and z1, we have

L1 = E
[
N1

]
, M0 = E

[
−S1

]
, M1 = E

[
N1

]
, M00 = E

[
S 2

1
]
, M01 = E

[
−S1N1

]
,

L11 = E
[
N1(N1 − 1)

]
, M11 = E

[
N1(N1 − 1)

] (4.10)

Note that L1 = M1 and L11 = M11 such that these terms are used interchangeably here-
inafter. Further, it is known that E

[
N1

]
= ρ/(1−ρ) and E

[
−S1

]
= −1/µ(1−ρ). In the K = 1

case, taking partial derivatives of equation (4.18) gives us three linearly independent equa-
tions from which we solve the moments. The first equation is obtained by taking partial
derivatives twice in equation (4.18) with respect to s and evaluating at s = 0, z1 = 1:

µM00 + 2M01 = −2M0 (4.11)

Then, we take partial derivatives of equation (4.18) with respect to s and z1 and evaluate
at s = 0, z1 = 1:

(2µ − λ)M01 + M11 = λM0 − 2M1 (4.12)

Again we take partial derivatives twice in equation (4.18), but this time with respect to z1

and evaluate at s = 0, z1 = 1:

(µ − λ)M11 = 2λM1 (4.13)

Solving equations (4.11), (4.12) and (4.13), we obtain the following values for the mo-
ments:

M00 =
4

µ2(2 − ρ)(1 − ρ)2 ; M01 =
−λ(3 − ρ)

µ2(2 − ρ)(1 − ρ)2 ; M11 =
2ρ2

(1 − ρ)2 (4.14)

Therefore, we verify that values for M00 from equation (4.14) and E
[
T 2] from equation

(4.4) are indeed the same for the K = 1 case. Extending analysis to the third moment
(with notation M000 or E

[
T 3]) is computationally more complex and Kim and Kim do not

provide explicit values for M000 as we do for E
[
T 3] in equation (4.5).

4.2.5 Simulating M/M/1-EPS response time moments

We approximate response time for jobs with one class (K = 1). Hence, we parametrise
M/M/1-EPS queues with mean service rate µ = 1 per second and varying utilisation
from 0.2 to 0.8. We simulate the centralised response time moments from the JMT tool
for M/M/1-EPS queues on six million observations and obtain 95% confidence intervals
from 10000 simulated samples. Hence, we present analytical and simulated moments in
Table 4.2 under varying utilisation.

86

4.2. M/M/1-EPS QUEUES

Table 4.2: M/M/1-EPS moments (sec) for µ = 1.

λ = ρ = 0.2
Moment Analytical Simulated
E[T] 1.25 1.25±7e-04

E[(T−E[T])2] 1.91 1.94±2e-03
E[(T−E[T])3] 6.80 7.08±9e-03
E[(T−E[T])4] 50.97 52.60±0.06

λ = ρ = 0.4
Moment Analytical Simulated
E[T] 1.67 1.68±1e-03

E[(T−E[T])2] 4.17 4.19±4e-03
E[(T−E[T])3] 26.62 25.38±3e-02
E[(T−E[T])4] 329.24 348.54±0.34

λ = ρ = 0.6
Moment Analytical Simulated
E[T] 2.50 2.50±1e-03

E[(T−E[T])2] 11.61 11.31±0.01
E[(T−E[T])3] 146.05 152.83±0.14
E[(T−E[T])4] 3027.4 2871.8±2.75

λ = ρ = 0.8
Moment Analytical Simulated
E[T] 5.00 4.94±3e-03

E[(T−E[T])2] 58.33 56.83±0.05
E[(T−E[T])3] 1916.7 2006.6±1.68
E[(T−E[T])4] 6.7e+04 6.6e+04±13.2

Further, we plot the mean and variance of response time in Figure 4.1 obtained from the
centralised moments in Table 4.2 under increasing utilisation. The plots display the well-
known “delay curve” and is an effect of queueing delay, where the average delay a packet
experiences increases as utilisation increases. The analytical moments match the results
of Kim and Kim [155] for the one class (i.e. K = 1) case.

0 0.2 0.4 0.6 0.8
0

5

10

15

Load

E
[T

]

0 0.2 0.4 0.6 0.8
0

50

100

150

Load

E
[(T
−
E

[T
]) 2]

Figure 4.1: E[T] (left) and E
[(

T−E[T]
)2] (right) for increasing load.

87

4.3. M/M/1-DPS QUEUES

4.2.6 Conclusion and future work
We have obtained a moment-generating algorithm for response time in M/M/1-EPS queues.
Our explicit moment formulas were compared to simulated moments obtained from a
JMT framework and tested under low, medium and high levels of utilisation. Compar-
isons with existing work by Kim and Kim [155], where a joint transform was used, reveal
similarities through the reliance on the same PDE for EPS queues. However, the advan-
tages of our methodology include iterative calculation of higher moments and explicit
formula obtained for each moment.

We extend our M/M/1-EPS queues to discriminatory PS (DPS) scheduling, which sup-
ports modelling of multiple job classes as used by Kim and Kim. Further, the next queue-
ing model experiments with more applications where priorities determine the weight of
service given to each job class. Additionally, it is desirable to obtain response time den-
sities given response time moments, which is straightforward given distribution-fitting
algorithms. Such densities are useful for delay distributions used in SLA requirements
for performance of many systems.

4.3 M/M/1-DPS queues

4.3.1 Motivation
We have shown some applications of EPS that have benefited from the implicit fairness
properties. Often, the equal distribution of EPS omits applications with priorities and,
hence, it is important to consider variants of EPS such as discriminatory PS (DPS) [156].
We have defined DPS scheduling more rigorously in the background section 2.3.1. In
DPS, each job class has weights to determine the service received and the share of a job
class increases with the number of jobs, which prevents classes with smaller weights from
starving. By varying DPS weights, the choice of instantaneous service weights of differ-
ent job classes enables differentiated quality of service among specific type of jobs. For
example, ADSL subscribers are offered different payment rates in return for correspond-
ing shares of available bandwidth. Existing work in the literature proves, via experiments,
that the expected unconditional response time of PS systems is reduced by 33% with DPS
[162]. With such work focusing primarily on reducing mean response times, it is impor-
tant to consider higher moments to understand the effects of variance and skewness on
response time distributions. Similarly, existing work for approximating response times
in M/M/1-DPS queues [7, 21, 114, 155] is limited by the number of moments obtained
or the number of job classes considered. Hence, we provide an automated algorithm to
iteratively calculate higher response time moments (i.e. more than two) for multiple job
classes in M/M/1-DPS queues. Our contributions are as follows:

• Extend the two-moment equations introduced by Kim and Kim [155] (utilised in an
algorithm by Chis and Harrison [7]) via an automated algorithm.

• Provide an explicit formula for the third moment of response time in M/M/1-DPS

88

4.3. M/M/1-DPS QUEUES

queues for two classes.

• Obtain arbitrary (up to any order) response time moments numerically for multi-
class M/M/1-DPS queues.

4.3.2 Moment-generating algorithm for DPS queues

We build an automated moment-generating algorithm for multiple job classes, which sup-
ports DPS scheduling for K job classes and incorporates service weights αi for each
job class i, i = 1, . . . ,K. For simplicity of presentation, we use equal job weights (i.e.
αi = αj, i, j = 1, . . . ,K), but this is not a requirement of our method. Adapting a multi-
class version of the PDE given in equation (4.2), we apply repeated differentiation to
determine moments recursively. Assuming two job classes (i.e. K = 2), with mean arrival
rates λ1 and λ2, mean service rates µ1 and µ2, and utilisation ρ1 = λ1/µ1 and ρ2 = λ2/µ2

such that ρ1 + ρ2 < 1, we obtain respective mean response times E[T1] and E[T2] as:

E[T1] =
1

µ1(1 − ρ1 − ρ2)
; E[T2] =

1
µ2(1 − ρ1 − ρ2)

(4.15)

Further, we derive second moments of response time E[T 2
1] and E[T 2

2] as:

E[T 2
1] =

4
(
µ1(1 + ρ2) + µ2(1 − ρ2)

)
µ2

1(1 − ρ1 − ρ2)2(µ1(2 − ρ1) + µ2(2 − ρ1 − 2ρ2))
(4.16)

E[T 2
2] =

4
(
µ1(1 − ρ1) + µ2(1 + ρ1)

)
µ2

2(1 − ρ1 − ρ2)2(µ1(2 − 2ρ1 − ρ2) + µ2(2 − ρ2))
(4.17)

These expressions were obtained by solving the moment equations through repeated dif-
ferentiation of equation (4.18) up to two times. The algorithm to do this, written in
Wolfram’s Mathematica, is shown in Figure 4.2. Obtaining the variance (i.e. σ2

i =

E[T 2
i] − E[Ti]2) of a class i job reveals the spread of the response time distribution from

the mean. Further, calculating higher moments of response time is useful for predicting
performance in a variety of multi-class applications where jobs have different priorities
– or shares of a PS server. As with the second moment, higher moments are derived
by differentiating equation (4.18) and defining the steady state generating function Q(·),
which is straightforward to derive. This is the approach used in Figure 4.2 for just two
moments, which is easy to extend to any higher moments. The difficulty that arises is
the number of calculations needed, since every partial derivative up to p is required to
calculate moment p – a rapidly increasing number, especially if there are many classes.
A symbolic solution is surely intractable, but mathematical software could easily cope
with a numerical solution when values are pre-set for the parameters of the model. Using
such an automated multi-class algorithm, it is straightforward to estimate the probability
distribution of response time for K job classes; good approximations can usually be found
from the first four moments or so.

89

4.3. M/M/1-DPS QUEUES

Figure 4.2: Mathematica code for two K-class moments.

4.3.3 Case study- M/M/1-DPS analytical response times

We obtained workload traces from two applications, which we abstract using M/M/1-DPS
queueing models, each with two job classes (i.e. K = 2). The first application is an HTC
One (M7) smartphone transmitting data via 4G cellular radio, where a timestamped trace
was recorded from a transmission period of 30 minutes. We summarise this HTC trace
with the following mean service rates for each job class: µ1 = 0.6 and µ2 = 2.4. The
second application is an Apache CloudStack VM executing programs on an Intel Core
i7-2600 CPU @ 3.40GHz host machine. The CloudStack trace was recorded with mean
service rates µ1 = 1.4 and µ2 = 6.1. Using equation (4.15), we plot mean response times
(i.e. E[Ti], for i = 1, 2) in Figure 4.3 with increasing system load (i.e. ρ1 + ρ2) for the
HTC and CloudStack traces. Further, using equations (4.16) and (4.17), we plot variance
(i.e. σ2

i , for i = 1, 2) of response time with increasing values of ρ1 and ρ2 for the HTC
and CloudStack traces in Figures 4.4 and 4.5, respectively. Note that for the variance, the
total system load (i.e. ρ1 +ρ2) does not exceed one. The measurements for response times
are in milliseconds (ms) and throughout the analytical approximation we assume equal α
weights (α1 = α2 = 0.5) for two job classes. For systems with more than two job classes,
it is important to measure performance via response time moments for resource planning
whilst considering different system load. Indeed, the DPS moment-generating algorithm

90

4.3. M/M/1-DPS QUEUES

allows such measurements for any K job classes.

0 0.2 0.4 0.6 0.8

20

22

24

HTC load (ρ1 + ρ2)

E
[T

](
m

s)
E[T1]
E[T2]

0 0.2 0.4 0.6 0.8
2−3

20

23

CloudStack load (ρ1 + ρ2)

E
[T

](
m

s)

E[T1]
E[T2]

Figure 4.3: E[T1] and E[T2] for HTC (left) and CloudStack (right) traces under increasing load.

0 0.2 0.4 0.6 0.8

101

102

103

HTC load (ρ1)

σ
2 1

(m
s)

ρ2 = 0.2
ρ2 = 0.5
ρ2 = 0.8

0 0.2 0.4 0.6 0.8
2−2

22

26

HTC load (ρ1)

σ
2 2

(m
s)

ρ2 = 0.2
ρ2 = 0.5
ρ2 = 0.8

Figure 4.4: σ2
1 (left) and σ2

2 (right) for the HTC trace under increasing load.

0 0.2 0.4 0.6 0.8
100

101

102

CloudStack load (ρ1)

σ
2 1

(m
s)

ρ2 = 0.2
ρ2 = 0.5
ρ2 = 0.8

0 0.2 0.4 0.6 0.8
2−5

2−1

23

CloudStack load (ρ1)

σ
2 2

(m
s)

ρ2 = 0.2
ρ2 = 0.5
ρ2 = 0.8

Figure 4.5: σ2
1 (left) and σ2

2 (right) for the CloudStack trace under increasing load.

4.3.4 Numerical algorithm for higher response time moments
We present an automated algorithm for obtaining higher response time moments from
M/M/1-DPS queues. To obtain the general kth response time moment in M/M/1-DPS
queues, we extend the work of [7] by forming an iterative algorithm, implemented in Wol-
fram’s Mathematica. This numerical algorithm is based on the direct approach of solving
the moment-equations obtained by differentiating Kim and Kim’s PDE [155] repeatedly
(i.e. k times for the kth moment), which is given in equation (4.18). The full details are
summarized in algorithm 4 and we explain the fundamental concepts briefly. For two job
classes, Kim and Kim define Ti(s; z1, z2) = E[esS izNi1

1 , zNi2
2] as the Laplace transform of the

91

4.3. M/M/1-DPS QUEUES

unconditional joint density of response time and probability generating function of class
populations, for i = 1, 2. Note that z0 is taken to be the Laplace-parameter s. Further,
Q(z1, z2) = E[zN1

1 , z
N2
2] is the joint probability generating function for two job classes. The

aforementioned joint transform and generating function are governed, for i = 1, 2, by the
following PDE:

µi

(
Ti(s; z1, z2) − Q(z1, z2)

)
=

−

2∑
j=1

αj

αi

(s+

2∑
k=1

λk(1−zk)
)
z j − µ j(1−z j)

 ∂

∂z j
Ti(s; z1, z2)

−

(
s+

2∑
j=1

λ j(1−z j)
)
Ti(s; z1, z2)

(4.18)

Unconditional moments of response time are derived by differentiating equation (4.18).
Initially, we substitute s = 0 into equation (4.18) and check that the LHS equals the RHS.
The LHS evaluates to zero, as Ti(s; z1, z2) = Q(z1, z2) when s = 0, and the RHS also
evaluates to zero. The next step is to notice that the terms independent of s can be pre-
calculated in advance of the terms that depend on s. Thus, differentiating w.r.t. z1 and z2,
we calculate all possible combinations of derivatives for the kth moment. For example, to
obtain the fourth unconditional moment, given that j1 + j2 + j3 + j4 = 4, we define:

M j1 j2 j3 j4
i =

∂4

∂z j1∂z j2∂z j3∂z j4
Ti(s; z1, z2)

∣∣∣∣∣∣
s=0,z1=z2=1

(4.19)

Hence, the fourth unconditional response time moment for a class i job is simply M0000
i

from equation (4.19) as we set s = z0 and j1 = j2 = j3 = j4 = 0. Using the derivatives
w.r.t. z1 and z2 of the (k − 1)th moment, we can form a recursive relationship with terms
used to obtain the kth moment. Notice how one partial derivative of Ti(s; z1, z2) in the RHS
of equation (4.18) is being differentiated w.r.t. to z j, for j = 1, 2. Hence, to obtain the
kth moment (Mk

i) for class i, we differentiate k times to construct a simplified recursive
relation (i.e. letting Ti(·) = Ti(s; z1, z2) and omitting non-important terms) as follows:

Mk
i = −

2∑
j=1

αj

αi
k
∂k−1

∂sk−1

[
∂

∂z j
Ti(·)

]
− k

∂k

∂sk−1 Ti(·) (4.20)

Note that, by Leibniz’s rule, we can swap the positions of ∂k−1/∂sk−1 and ∂/∂z j on the
RHS of equation (4.20). Hence, we obtain a recursive relation of derivatives, whereby the
current moment can be calculated directly given the previous moment. Mathematica im-
plements this algorithm efficiently and solves the recursive equations for any kth moment
symbolically. The full description of the moment-generating algorithm for M/M/1-DPS
queues is given in algorithm 4.

92

4.3. M/M/1-DPS QUEUES

Algorithm 4 Two-class moments for M/M/1-DPS queues
Input: Equilibrium queue length distribution on arrival.

Input the following queueing parameters:
α1, α2 = priority weights
λ1, λ2 = mean arrival rates
µ1, µ2 = mean service rates
k = the number of moments
Calculate all possible derivatives w.r.t to z1 and z2, as shown in equation (4.19), and
store in a queue length array.
Differentiate the PDE in equation (4.18) k times to obtain the kth response time moment
recursively using the pre-calculated queue length array.
Using equation (4.20), Mathematica evaluates derivatives of the joint transform only at
s = 0 and z1 = z2 = 1.

Output: The first k unconditional response time moments.

Using this algorithm, we display the third moment E[T 3
1] in equation (4.21) symbolically

for job class 1 (with corresponding class 2 moment E[T 3
2] obtained by inverting subscripts

1 and 2). Note that we set α1 = α2 = 0.5 for presentation purposes, but the service weights
α can have any distribution given all weights sum to one:

d1E[T 3
1] = µ2

1

(
ρ1 (ρ2 − 1) − 2

(
ρ2

2 + 4ρ2 + 1
))
− 2µ1µ2 (ρ1 − 2ρ2 + 2) (ρ2 + 1)

+ µ2
2 (ρ1 − 2ρ2 + 2) (ρ2 − 1)

(4.21)

where 12d1 = µ3
1 (ρ1 +ρ2−1)3 (µ1(ρ1−2) + µ2(ρ1 +2ρ2−2))2.

Note that using algorithm 4, third (and higher) moments may be expressed in terms of
their general α weights, but we omit such results for presentation purposes.

4.3.5 Case study- M/M/1-DPS analytical and simulated moments
We calculate results from two workloads: first, we collect inter-arrival times of TCP traffic
from experiments on Intel Core i7-2600 CPU @ 3.40GHz machines, which form the TCP
data set; secondly, we use parameters from a GRID network application [43]. Both data
sets exhibit multiple job classes with different access priorities and, hence, are suitable
for our M/M/1-DPS queue. Class priorities are calculated using packet type and size. We
approximate analytical response time moments using the numerical algorithm in Figure
A.1. To obtain simulated moments, we execute 10000 runs of one million observations
using the JMT tool and provide 95% confidence intervals.

TCP data sets

Data is collected from servers running data applications with TCP packet delivery. Using
inter-arrival times from a TCP data set, we parametrise our M/M/1-DPS queue as follows:
λ1 = 0.2, λ2 = 0.3, µ1 = 1, µ2 = 2, α1 = α2 = 0.5. Hence, we obtain analytical

93

4.3. M/M/1-DPS QUEUES

and simulated response time moments (in seconds) for class 1 and class 2 moments in
Table 4.3. Analytical moments are calculated from the numerical algorithm in Figure
A.1, where all moments are centralised to reveal the spread from the mean. Further,
we set appropriate priority weights for each job class, which is typical of TCP packets
arriving with different-sized requests. For example, one class i may have higher share
of the server (i.e. larger αi value), but have lower mean service rate (µi). We collect
mean arrival and service rates from a second TCP data set and parametrise our queue
with λ1 = 0.2, λ2 = 0.6, µ1 = 2, µ2 = 1.2, α1 = 0.33 and α2 = 0.67. The corresponding
multi-class response time moments are summarised in Table 4.4.

Table 4.3: Response time moments (sec) from TCP data set 1.

Class 1
Moment Analytical Simulated
E[T] 1.54 1.54±9e-04

E[(T−E[T])2] 3.25 3.29±2e-03
E[(T−E[T])3] 16.64 16.86±0.01
E[(T−E[T])4] 174.62 177.15±0.10

Class 2
Moment Analytical Simulated
E[T] 0.77 0.78±4e-04

E[(T−E[T])2] 0.88 0.89±5e-04
E[(T−E[T])3] 2.67 2.69±2e-03
E[(T−E[T])4] 16.71 16.95±0.01

Table 4.4: Response time moments (sec) from TCP data set 2.

Class 1
Moment Analytical Simulated
E[T] 1.68 1.69±1e-03

E[(T−E[T])2] 6.30 6.37±4e-03
E[(T−E[T])3] 64.88 65.73±0.04
E[(T−E[T])4] 1286.8 1305.5±0.74

Class 2
Moment Analytical Simulated
E[T] 2.0 2.02±1e-03

E[(T−E[T])2] 7.27 7.35±4e-03
E[(T−E[T])3] 71.40 72.34±0.04
E[(T−E[T])4] 1394.6 1414.8±0.80

The applicability of modelling multiple arrivals and the flexibility of setting arbitrary
weights allows the automated algorithm in Figure A.1 to improve existing work; previ-
ously, either all αi weights were equal, as with Chis and Harrison’s work [7], or different
weights were used to approximate response time for up to two moments only, as with Kim
and Kim’s work [155].

94

4.3. M/M/1-DPS QUEUES

GRID network

For the second experiment, we parametrise an M/M/1-DPS queue with values obtained
directly from a GRID network application [43] as follows: λ1 = 22.1, λ2 = 7.16, µ1 =

50, µ2 = 20, α1 = 0.25 and α2 = 0.75. We obtain response time moments for two job
classes in M/M/1-DPS queues presented in Table 4.5.

Table 4.5: Response time moments (sec) from GRID data set.

Class 1
Moment Analytical Simulated
E[T] 0.15 0.15±8e-05

E[(T−E[T])2] 0.06 0.06±3e-05
E[(T−E[T])3] 0.06 0.07±4e-05
E[(T−E[T])4] 0.14 0.14±8e-05

Class 2
Moment Analytical Simulated
E[T] 0.18 0.18±1e-04

E[(T−E[T])2] 0.07 0.07±4e-05
E[(T−E[T])3] 0.07 0.07±4e-05
E[(T−E[T])4] 0.14 0.14±8e-05

4.3.6 Conclusion and future work

We proposed an automated moment-generating algorithm that calculates response times
analytically using single server M/M/1-DPS queues. This iterative algorithm uses a partial
differential equation for recursively evaluating terms in a Laplace transform for multiple
job classes. For the results, we analytically examined workloads from a smartphone and
a VM and obtained mean and variance of response time. Further, we obtained analytical
and simulated results (i.e. the first four moments of response time) on two case studies,
namely TCP traffic and a GRID network application, each with two priority classes. Pos-
sible applications include resource allocation in data centres and prediction of peak delays
for multi-class workloads. Indeed, response times have become essential components of
SLAs and, thus, support the long-term performance goals of many systems.

It is possible to extend this research by collecting more data from smartphone appli-
cations. Specifically monitoring delay, approximated as response time, on smartphone
applications running on different handsets might build useful user profiles. Another ex-
tension is to use the response time moments to approximate distributions of response time
to meet SLA requirements (e.g. 99% of jobs are executed within 0.01 seconds). Further,
we seek to improve modelling job arrivals by replacing the Poisson distribution with more
bursty distributions such as the MMPP. In this way, we utilise the switching modes of the
MMPP to represent the different characteristics of job types (or traffic flows).

95

4.4. MMPP/M/1-DPS QUEUES

4.4 MMPP/M/1-DPS queues

4.4.1 Motivation
In the context of Internet traffic, handling correlated streams of arrivals motivates the
use of MMPPs, which can account for burstiness properties and state-switching [39, 66].
Therefore, approximating response times with M/M/1-DPS queues [114, 21] is insuf-
ficient for spatiotemporal Internet traffic behaviour given the simplified Poisson arrival
assumption. MMPPs are useful in capturing the spatiotemporal behaviour in jobs ar-
riving in smartphone applications and multi-tiered cloud platforms, where obtaining re-
sponse times from such systems is beneficial for predicting delays and for resource plan-
ning. Essentially, we aim to combine MMPPs with discrete processor-sharing queues
parametrised from empirical data to model delays at routers and in networks. In the
literature, there are techniques of approximating response time moments in MMPP/M/1-
FCFS queues from M/M/1-FCFS queues assuming slow phases of MMPP. Hence, we
adapt Ciciani’s FCFS weighted superposition method [39] to DPS queues and, therefore,
approximate response time moments for MMPP/M/1-DPS queues. With weighted super-
position, we use the existing moment-generating algorithm for M/M/1-DPS queues from
the previous section. Further, it is possible to use the switching rates from the IncHMM
to input into the MMPP arrival process, which we reserve for future work.

4.4.2 Weighted superposition for DPS queues
Obtaining higher response time moments through an MMPP/M/1-DPS queueing model
is novel work, to our best knowledge. To achieve this queueing model, we first adapt
the weighted superposition technique of Ciciani et al. to DPS queues, given an impor-
tant assumption. In order to apply the technique of weighted superposition of Poisson
processes to form an arrival process based on MMPPs, we assume (as an approximation)
the quasi-stationarity property. This property states that, provided the queue dynamics
are sufficiently faster than the state changes of the underlying MMPP, the queue reaches
equilibrium immediately in each state of the MMPP. Therefore, with the arrival process in
state i, the response times of the multiple job classes of the DPS queue can be estimated
using the known response time moments of the Mi/M/1-DPS queue. Further, the uncon-
ditional response time of the MMPP/M/1-DPS queue can be estimated using a weighted
average of the response time in each M/M/1-DPS queue, where each weight is the equi-
librium probability of the MMPP being in each of its states.

Ciciani et al. use a notion of quasi-stationarity for FCFS queues, but do not obtain explicit
response time moments for DPS queues. Hence, we adapt their weighted superposition
methodology for MMPP/M/1-DPS queues, with N phases in the MMPP arrival process:

1. For each state i, ensure
∑N

j=1 qij = 0. Use rates qij to calculate pi, which is the
invariant probability that the MMPP remains in state i, and is calculated 2 using
linear equations.

2for N = 2, we have p1 = q21/(q12 + q21) and p2 = q12/(q12 + q21).

96

4.4. MMPP/M/1-DPS QUEUES

2. For each class j job, calculate the weights wi j for all states i = 1, . . . ,N using the
following equation:

wij =
piλij∑N

k=1 pkλkj
(4.22)

3. For a class j job, calculate the kth moment of response time (E[T k
i j]) for all Mi/M/1-

DPS queues, i = 1, . . . ,N, using the algorithm from Figure A.1.

4. Approximate the kth moment of response time for a class j job in an MMPP/M/1-
DPS queue as:

E[T k
j] =

N∑
i=1

wijE[T k
ij] (4.23)

Note, the assumption of slow MMPP phases is essential in applying the weighted su-
perposition technique. However, we plan improvements to this approximation, namely
modelling an MMPP with faster switching rates, as future work.

4.4.3 Response time density
After obtaining response time moments, we approximate a response time probability den-
sity function (PDF) when it is too complex to numerically invert the Laplace transform.
One such distribution-fitting approximation is the generalised lambda distribution (GLD)
[154, 157, 159], which inputs the first four moments of response time as parameters. The
GLD is parametrised with mean (m1), variance (σ2), skewness (g) and kurtosis (κ) to
approximate distribution (F(t)) and density (f (t)) functions. Let Q(u) ≡ F−1(u) (where
0 < u < 1) be a quantile function for a four-parameter generalisation of Tukey’s lambda
family of distributions [158]:

Q(u) = Λ1 +
1

Λ2

(uΛ3 − 1
Λ3

−
(1 − u)Λ4 − 1

Λ4

)
(4.24)

where the kth moment is finite if min(Λ3,Λ4) > −1
k [159].

The four Λ parameters are defined as follows: Λ1 is the location parameter, Λ2 is the scale
of data and Λ3 and Λ4 capture the shape of the empirical distribution. Note, Λ3 = Λ4 in a
symmetric distribution. Therefore, the goal is to find parameters Λi, for i = 1, 2, 3, 4, such
that the moments of the theoretical GLD match the empirical moments (i.e. m, σ2, g and
κ). Hence, we define equations, inspired from Lakhany et al. [159], as follows:

g =
v3 − 3v1v2 + 2v3

1

(v2 − v2
1)3/2

; κ =
v4 − 4v1v3 + 6v2

1v2 − 3v4
1

(v2 − v2
1)2

(4.25)

where quantities vk are defined, for k = 1, 2, 3, 4, as

vk =

k∑
j=0

(−1) j

Λ
k− j
3 Λ

j
4

(
k
j

)
β
(
Λ3(k − j) + 1, Λ4 j + 1

)
(4.26)

where β(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt for Re(x),Re(y)> 0.

97

4.4. MMPP/M/1-DPS QUEUES

After deriving Λ3 and Λ4, we compute Λ1 and Λ2 using the following formulae:

Λ2 =
(v2 − v2

1)1/2

σ
; Λ1 = m +

1
Λ2

(1
Λ3 + 1

−
1

Λ4 + 1

)
(4.27)

Thus, we approximate the distribution F(t) by letting t = Q(u) and F(t) = u (where
0 < u < 1) [153]. Similarly, the response time probability density (f (t)) is obtained
parametrically [131] using t = Q(u):

f (Q(u)) =
Λ2

uΛ3−1 + (1 − u)Λ4−1 (4.28)

Algorithm 5 Response times from MMPP/M/1-DPS queues
Input: {It} is the trace of packet inter-arrival times.

Other terms are defined as follows:
N = number of MMPP states.
D = infinitesimal N×N generator matrix of MMPP.
K = number of job classes.
λi j = mean arrival rate for a class j job from state i in MMPP.
λ j = mean arrival rate for a class j job.
µ j = mean service rate for a class j job.
ρ j = λ j/µ j is the utilisation for a class j job.
wi j = superposition weights for MMPP state i for a class j job.
αj = priority weights for a class j job under DPS.
E[T k

i j] = the kth response time moment for a class j job from state i in MMPP.
E[T k

j] = the kth response time moment for a class j job.
The methodology begins as follows:
Fit {It} by matching moments and autocorrelation in KPC-toolbox to obtain an N ×N
MMPP(D0,D1) with fixed rates.
for j = 1 : K do

for i = 1 : N do
Calculate the weights wi j using equation (4.22).
Parametrise rates λi j and µj for Mi/M/1-DPS queue.
Obtain moments E[T k

i j] from algorithm in Figure A.1.
Calculate E[T k

j]+= wi jE[T k
i j].

end for
From moments E[T k

j], use GLD equations (4.24) - (4.28) to approximate the response
time PDF P(Tj = x) and calculate the corresponding CDF P(Tj < x).

end for
Output: For a class j job, output the response time PDF P(Tj = x) and CDF P(Tj < x).

The quality of fit is ascertained only through a goodness-of-fit test because closed-form
solutions do not exist for the lambda parameters. Lakhany et al. found that the GLD
moment-matching technique produced a lower Kolmogorov-Smirnov (KS) test statistic
when compared to the least squares and starship methods [159]. With response time

98

4.4. MMPP/M/1-DPS QUEUES

moments obtained from equation (4.23), it is straightforward to parametrise the GLD
and obtain approximative PDFs. We summarise this process in algorithm 5. In the next
section, we discuss the data sets used to test our MMPP/M/1-DPS queueing model.

4.4.4 Data sets

The data sets consist of anonymised CAIDA passive data collected from backbone OC192
links. Every month since April 2008, one-hour traces are collected on the OC192 moni-
tors between 13:00 UTC and 14:00 UTC, with statistical information including flow and
protocol characteristics. Among this information, we note that the maximum load for the
OC192 link is approximately 10 billion bits/sec. For more information, the reader may
explore the CAIDA anonymised Internet traces [77]. We present a summary of statistics
for one recent trace from Equinix-Chicago (dirB) in Table 4.6. The collection of data
analysed consists of 25 traces from Equinix-Chicago (dirB) spanning the two most recent
years 2014 and 2015. In total, this is the equivalent of analysing approximately of 50
billion IPv4 packets of Internet traffic.

Table 4.6: Statistics for CAIDA Equinix-Chicago data (dirB) collected on Oct 15th 2015.

Duration (hh:mm:ss) 01:02:01
Total IPv4 packets 1.5 bill.
Total IPv6 packets 30.2 mill.
Mean IPv4 packet size 856 bytes
Mean IPv6 packet size 970 bytes
Mean packets/sec 414.6k/sec
Mean flows/sec 10.2k/sec
Mean utilisation 0.286

For two arbitrary data sets, with similar statistics as shown in Table 4.6, we plot the packet
inter-arrival times for an initial session in Figure 4.6.

0 1,000 2,000
0

3 · 10−2

6 · 10−2

9 · 10−2

Packet ID

I.A
.T

(s
ec

)

0 1,000 2,000
0

5 · 10−2

0.1

0.15

Packet ID

I.A
.T

(s
ec

)

Figure 4.6: Inter-arrival times (I.A.T.) of packets from CAIDA data set 1 (left) and 2 (right).

99

4.4. MMPP/M/1-DPS QUEUES

4.4.5 Results

We approximate response time moments from MMPP/M/1-DPS queues by modelling
traces of packets arriving at an anonymised router. We use KPC-toolbox to fit the traces
of packet inter-arrival times and, hence, parametrise the MMPP arrival process. The steps
are summarised in algorithm 5. Whilst the number of priority classes (K = 2) remains
fixed, a number of parameters in the MMPP/M/1-DPS queueing system are varied for
two CAIDA data sets in separate experiments. First, we vary the number of MMPP states
(or phases) to take values two and four, therefore capturing the burstiness of packet inter-
arrival times with MMPP(2) and MMPP(4) models, respectively. Secondly, the load (or
utilisation) is parametrised with low (ρ = 0.4) and high (ρ = 0.9) values. The wide range
of utilisation is chosen specifically to stress-test our DPS-queueing model and, hence,
identify at what load level the weighted superposition technique of response time mo-
ments fails. Hohn et al. argue that high utilisation scenarios with significant delay are
of most interest [116] and we investigate this through our high load experiments. The
results are further validated by applying the two-sample Kolmogorov-Smirnov (KS) test,
which compares two distributions and returns 0 (i.e. accept null hypothesis) if the sample
vectors are from the same continuous distribution. Otherwise, it returns a value of 1 (i.e.
reject null hypothesis).

We simulate response time moments using the Java Modelling Tools (JMT) software [37].
We input relevant workload and queueing parameters obtained from the CAIDA data sets
into the simulation models. To obtain response time moments for a MMPP/M/1-DPS, the
JMT software offers JSIMwiz, which is a user-friendly interface for performance analysis
measurements given different scenarios involving routers and networks. We use JSIMwiz
to simulate over 60 million MMPP-distributed packet arrivals at a router, which are sam-
pled over one million times.

4.4.6 Moments for MMPP(2)/M/1-EPS queue

Before experimenting with the CAIDA data sets, we first parametrise a two-state MMPP
(i.e. MMPP(2)) under EPS scheduling with values obtained directly from a GRID network
application [43] as follows: q12 = 0.17, q21 = 0.08; p1 = 0.32, p2 = 0.68. Further,
assuming only one job class (K = 1), the arrival rates are given by λ1 = 22.1, λ2 = 7.16
and the weights are w1 = 0.59, w2 = 0.41. Hence, analytical and simulated centralised
response time moments (in seconds) are produced for MMPP(2)/M/1-EPS queues. By
varying the mean service rates, we experiment with low load and high load to compare
response time approximations.

Low load

For the low load scenario, we set the following parameters: µ = 80, ρ1 = 0.28 and
ρ2 = 0.09. This gives a combined load of ρ = 0.37. The analytical and simulated
centralised moments of response time are presented in Table 4.7 with corresponding 95%

100

4.4. MMPP/M/1-DPS QUEUES

confidence intervals. The simulation results match the analytical approximations well for
the first three moments and with reasonable accuracy for the fourth moment.

Table 4.7: MMPP(2)/M/1-EPS moments (sec) on low load GRID data (ρ= 0.37).

Moment Analytical Simulated
E[T] 0.016 0.016±2e-06

E[(T−E[T])2] 3.24e-04 3.24e-04±6e-08
E[(T−E[T])3] 1.65e-05 1.64e-05±4e-09
E[(T−E[T])4] 1.77e-06 1.43e-06±3e-10

High load

For the high load scenario, we set the following service and load parameters: µ = 35,
ρ1 = 0.63 and ρ2 = 0.2. Such parameters result in a combined utilisation of ρ = 0.83,
which we consider high load (under equilibrium) in the GRID network. In Table 4.8, we
present analytical and simulated response time moments.

Table 4.8: MMPP(2)/M/1-EPS moments (sec) on high load GRID data (ρ= 0.83).

Moment Analytical Simulated
E[T] 0.0602 0.0596±6e-06

E[(T−E[T])2] 0.0078 0.0074±1e-06
E[(T−E[T])3] 0.0031 0.0028±5e-07
E[(T−E[T])4] 0.002 0.002±2e-07

Using the analytical and simulated moments from Tables 4.7 and 4.8, we approximate
probability density functions (PDFs) on the GRID data. GLD fits the distribution parame-
ters from the given empirical moments and outputs representative PDFs for low and high
load. In both cases, the GLD returns a beta prime distribution, or a beta distribution of the
second kind. The beta prime distribution has Pearson distribution type VI and is one par-
ticular parametrisation of the F distribution. Hence, we present response time PDFs for
the GRID data set in Figure 4.7 for low and high loads. The analytical GLD-fitted PDFs
match the simulated PDFs well, with slightly higher errors for higher load (i.e. ρ = 0.83).

0.1 0.2 0.3 0.4
0

10
20
30
40

x

P
(T

=
x)

Analytical
Simulation

0.1 0.2 0.3 0.4
0
5

10
15
20

x

P
(T

=
x)

Analytical
Simulation

Figure 4.7: Response time PDFs via moments in Tables 4.7 (left) and 4.8 (right).

101

4.4. MMPP/M/1-DPS QUEUES

4.4.7 Moments for MMPP(2)/M/1-DPS queue
We return to DPS queues and experiment with the CAIDA data sets for two job classes
(K = 2). After data-fitting with KPC-toolbox, an MMPP(2) is first parametrised for class
1 jobs. The MMPP(2) transition rates to other states are q(1)

12 = 0.18 and q(1)
21 = 16.2 for

class 1 jobs. Hence, state probabilities are calculated as p(1)
1 = 0.01, p(1)

2 = 0.99. The
MMPP(2) mean arrival rates are λ11 = 83.3 and λ21 = 429.1. Further, we obtain weights
wi1 for class 1 jobs in state i as follows: w11 = 0.001 and w21 = 0.999. Similarly, for class
2 jobs, the MMPP(2) transition rates are q(2)

12 = 0.44 and q(2)
21 = 45.7, with corresponding

state probabilities p(2)
1 = 0.01 and p(2)

2 = 0.99. The mean arrival rates for class 2 jobs are
λ12 = 1960.7 and λ22 = 11933.9. Hence, we obtain weights w12 = 0.002 and w22 = 0.998.
Essentially, we observe that for both job classes, the second state is heavily weighted,
which influences the MMPP(2) arrival process into behaving (for the most part) as a
Poisson arrival process with one mean rate. We set priority weights α1 = 0.4 and α2 = 0.6
for each class of data packet as a function of packet size and mean arrival rate. We
parametrise an MMPP(2)/M/1-DPS queue and obtain analytical and simulated response
time moments for both job classes under low and high loads. For both loads, we stress-test
our queueing model and verify if the analytical and simulated results are from the same
distribution with the KS test.

Table 4.9: MMPP(2)/M/1-DPS moments (sec) on low load (ρ = 0.4).

Low load (ρ = 0.4)
Class 1 jobs

Moment Analytical Simulated
E[T] 5.92e-04 5.50e-04±2e-06

E[(T−E[T])2] 4.33e-07 3.24e-07±6e-09
E[(T−E[T])3] 7.36e-10 4.16e-10±4e-13
E[(T−E[T])4] 2.65e-12 9.20e-13±3e-16

Class 2 jobs
Moment Analytical Simulated
E[T] 2.03e-05 2.10e-05±4e-07

E[(T−E[T])2] 5.67e-10 5.12e-10±3e-12
E[(T−E[T])3] 4.13e-14 3.19e-14±3e-17
E[(T−E[T])4] 6.49e-18 3.92e-18±3e-21

Low load

We experiment with CAIDA data set 1 for low total load (ρ = 0.4) on our MMPP(2)/M/1-
DPS queueing system. Since, we have two job classes (K = 2), it follows that ρ1 = ρ2 =

0.2, which gives us ρ = ρ1 + ρ2 = 0.4. Note, to achieve such specific load requirement,
we modify the mean service rate for each job class. It follows that the mean service rate
for job class 1 is µ1 = 2562 and for job class 2 it is µ2 = 69473. We present response time
moments for classes 1 and 2 in Table 4.9. The GLD fits the distribution parameters from
the given empirical moments and outputs representative PDFs for classes 1 and 2 under

102

4.4. MMPP/M/1-DPS QUEUES

low load. In both cases, the GLD returns a beta prime distribution. We performed KS
tests on both job classes to test the accuracy of the analytical approximation compared to
the simulated response time distribution. We plot the low load PDFs of response time in
Figure 4.8. For class 1 jobs, the KS test returned 0 and we accept the null hypothesis that
distributions match in this scenario. For class 2 jobs, the KS test also returned 0, which
indicates that analytical and simulated distributions are in agreement.

1 2 3
·10−3

0
500

1,000
1,500

x

P
(T

=
x)

Analytical
Simulation

1 2
·10−4

0

1

2

·104

x

P
(T

=
x)

Analytical
Simulation

Figure 4.8: Response time PDFs via moments in Table 4.9 for class 1 (left) and 2 (right) jobs.

Table 4.10: MMPP(2)/M/1-DPS moments (sec) on high load (ρ = 0.9).

High load (ρ = 0.9)
Class 1 jobs

Moment Analytical Simulated
E[T] 0.0037 0.0022±3e-05

E[(T−E[T])2] 2.66e-05 8.28e-06±2e-07
E[(T−E[T])3] 4.15e-07 1.36e-07±1e-10
E[(T−E[T])4] 2.12e-08 5.26e-09±5e-12

Class 2 jobs
Moment Analytical Simulated
E[T] 1.09e-04 7.99e-05±2e-06

E[(T−E[T])2] 2.51e-08 1.39e-08±1e-11
E[(T−E[T])3] 1.69e-11 1.22e-11±5e-15
E[(T−E[T])4] 2.32e-14 2.41e-14±2e-18

High load

We experiment with CAIDA data set 1 for high total load (ρ = 0.9). The individual
load for the two job classes is ρ1 = 0.45 and ρ2 = 0.45. The mean service rates for job
classes 1 and 2 are µ1 = 1139 and µ2 = 30877, respectively. The mean arrival rates (λi j),
superposition weights (wi j) and priority weights (αj) for classes 1 and 2 are fixed with the
same values as those used in the low load experiment previously. Hence, response time
moments for classes 1 and 2 are presented in Table 4.10. For class 1 results, the analytical
moments overestimate the simulated moments. The class 2 analytical moments are also
overestimated for the first three moments, but match the simulated moments more closely

103

4.4. MMPP/M/1-DPS QUEUES

with excellent accuracy for the fourth moment. We plot the response time PDFs in Figure
4.9 for both job classes based on the moments presented in Table 4.10. For class 1 jobs,
the KS test returns a value of 1, which means we reject the null hypothesis. Further, this
signifies that the analytical approximation produced a different distribution than the JMT
simulated results under high utilisation. For class 2 jobs, the KS test returns a value of 0
and, hence, we accept the null hypothesis.

1 2 3
·10−2

0
100
200
300

x

P
(T

=
x)

Analytical
Simulation

2 4 6
·10−4

0
0.3
0.6
0.9
·104

x

P
(T

=
x)

Analytical
Simulation

Figure 4.9: Response time PDFs via moments in Table 4.10 for class 1 (left) and 2 (right) jobs.

4.4.8 Moments for MMPP(4)/M/1-DPS queue
We obtain results for a four-state MMPP and parametrise our MMPP(4)/M/1-DPS queue
with 8 different mean arrival rates. For clarity, we list these rates for each job class as
follows: class 1 jobs have mean arrival rates λ11 = 41103.6, λ21 = 857.5, λ31 = 611.5,
λ41 = 3112.7; class 2 jobs have mean arrivals rates λ12 = 26.8, λ22 = 60.7, λ32 = 11.1,
λ42 = 191.8. We reserve calculations of the MMPP transition rates and probabilities from
both job classes in appendix (A.3). Hence, we define 8 weights for the superposition
approximation, namely wi j, for i = 1, . . . , 4 and j = 1, 2, using equation (4.22). Priority
weights are set as α1 = 0.7 and α2 = 0.3 given the packet sizes. We compare the results
of the MMPP(4) in modelling bursty traffic with the MMPP(2) via stress-testing under
higher utilisation.

Table 4.11: MMPP(4)/M/1-DPS moments (sec) on low load (ρ = 0.4).

Low load (ρ = 0.4)
Class 1 jobs

Moment Analytical Simulated
E[T] 5.34e-06 4.81e-06±3e-08

E[(T−E[T])2] 3.42e-11 2.51e-11±2e-14
E[(T−E[T])3] 5.08e-16 2.97e-16±4e-19
E[(T−E[T])4] 1.61e-20 6.08e-21±5e-24

Class 2 jobs
Moment Analytical Simulated
E[T] 7.90e-04 7.78e-04±2e-06

E[(T−E[T])2] 6.95e-07 6.20e-07±3e-09
E[(T−E[T])3] 1.35e-09 1.03e-09±6e-12
E[(T−E[T])4] 5.75e-12 2.70e-12±7e-15

104

4.4. MMPP/M/1-DPS QUEUES

Table 4.11 presents response time moments of MMPP(4)/M/1-DPS queues for both job
classes experiencing low load (ρ = 0.4) and Table 4.12 presents results for high load
(ρ = 0.9). From the moments in Tables 4.11 and 4.12, we plot the low load and high
load density functions of response time in Figures 4.10 and 4.11, respectively. Similar to
previous plots, the density functions in Figure 4.10 exhibit a beta-prime distribution for
both classes. However, the KS test rejects the null hypothesis after comparing distribu-
tions from class 1 jobs. For class 2 jobs, the KS test returns 0, which accepts the null
hypothesis that analytical and simulated plots belong to the same distribution.

Table 4.12: MMPP(4)/M/1-DPS moments (sec) on high load (ρ = 0.9).

High load (ρ = 0.9)
Class 1 jobs

Moment Analytical Simulated
E[T] 1.67e-05 1.56e-05±4e-07

E[(T−E[T])2] 4.25e-10 3.05e-10±3e-13
E[(T−E[T])3] 2.81e-14 1.53e-14±5e-17
E[(T−E[T])4] 3.77e-18 1.32e-18±1e-23

Class 2 jobs
Moment Analytical Simulated
E[T] 0.0022 0.0018 ± 3e-05

E[(T−E[T])2] 6.49e-06 3.48e-06 ± 1e-09
E[(T−E[T])3] 4.71e-08 1.56e-08 ± 2e-11
E[(T−E[T])4] 7.17e-10 1.15e-10 ± 4e-13

2 4 6
·10−5

0

0.5

1

1.5
·105

x

P
(T

=
x)

Analytical
Simulation

2 4 6
·10−3

0

500

1,000

1,500

x

P
(T

=
x)

Analytical
Simulation

Figure 4.10: Response time PDFs under low load (ρ = 0.4) for class 1 (left) and 2 (right) jobs.

Examining the high load density functions in Figure 4.11, which we obtained from the
moments in Table 4.12, it follows that, for class 1 jobs, the KS test accepts the null
hypothesis. Unsurprisingly, the KS test rejects the null hypothesis for class 2 jobs, which
indicates that analytical and simulated results are from different distributions. Hence, this
stress-test, combined with the KS test, indicates that for high utilisation (i.e. ≥ 0.9), the
MMPP(4)/M/1-DPS model fails to accurately match realistic packet delay distributions
at router queues. The same can be said regarding moments for high load jobs from class
1 that were approximated using the MMPP(2)/M/1-DPS queueing model and presented

105

4.4. MMPP/M/1-DPS QUEUES

in Figure 4.9. Possible explanations linked to such results include: failure of the quasi-
stationarity property since there is no equilibrium solution in any phase of the MMPP for
high enough loads; or a poor initial choice of priority weights (i.e. α1 = 0.7 and α2 = 0.3)
that are fixed for the two job classes. In practice, such weights are automatically assigned
by the network manager to optimise flow in a network scenario. In the next chapter, we
develop a dynamic allocation strategy using a UDP flow model and an MMPP/M/1-DPS
queue to assign optimal priority weights to flows.

0.3 0.6 0.9
·10−4

0
2
4
6
·104

x

P
(T

=
x)

Analytical
Simulation

0.4 0.8 1.2
·10−2

0
200
400
600

x

P
(T

=
x)

Analytical
Simulation

Figure 4.11: Response time PDFs under high load (ρ = 0.9) for class 1 (left) and 2 (right) jobs.

4.4.9 Conclusion and future work
We have provided a methodology for obtaining response time moments and PDFs using
MMPP/M/1-DPS queues. First, an automated moment-generating algorithm was applied
to yield higher moments for multiple job classes using M/M/1-DPS queues. Then, we
applied a weighted superposition technique to estimate the response time moments using
MMPP/M/1-DPS queues, under the approximating assumption of slow switching phases
of the MMPP; the analytical approximations match the JMT simulation results fairly well.
Applications include modelling multi-class, correlated Internet traffic, where delay met-
rics address SLA constraints and offer spatiotemporal resource allocation policies. For
example, in the following chapter, we present a dynamic, service weight allocation strat-
egy for flows are routers, whilst minimising the mean and variance of delay.

Possible extensions of this work include generalising job arrivals to full MAPs – ulti-
mately, possibly, to any inter-arrival time distribution – and hence finding response time
moments in MAP/M/1-DPS (or G/M/1-DPS) queues. Similarly, adding different service
time distributions to our queueing system, such as hypo-exponential, hyper-exponential
or phase-type, would increase the range of modelling scenarios, whilst maintaining math-
ematical tractability through the Markov property. Currently, such DPS queueing mod-
els assume steady state (i.e. λ < µ) in the response time approximations and an ex-
tension is to handle overutilisation of the system when load is greater than one. Pos-
sible solutions include spectral analysis, which has been used for Markov-modulated
queues [101], and matrix geometric methods [108]. Another possible extension is in-
corporating energy cost into our performance models, which would approximate modern
SLA requirements more realistically. Indeed, battery models are popular in the litera-
ture [119, 120, 121, 123, 124, 147], but there is scarce analysis on power consumption
related to performance via higher response time moments for multiple job classes. The

106

4.4. MMPP/M/1-DPS QUEUES

next chapter considers application of various adaptive models and discrete queues, which
includes a performance-energy trade-off with mean delay and power consumption.

107

Chapter 5

Applications
Chapter Description

The applications we explore are based on adaptive models from previous chapters and in-
clude: a forecasting strategy for stocks and indices using IncHMMs (5.2); a performance-
energy trade-off in smartphone applications and an HMM-based power consumption
model that trains on recent data transfer activity (5.3); a dynamic allocation strategy for a
UDP flow-level model to minimise delay whilst also maximising a utility function (5.4).

5.1 Introduction
In this chapter, we analyse new applications for our adaptive models. The first applica-
tion uses the IncHMM used to forecast FTSE and NASDAQ stocks. We plot graphs of
close-of-day prices generated from the IncHMM against the real stocks and indices. In
the second application, we adapt the OnlineHMM to consider the performance-energy
trade-offs of smartphone applications. Smartphone data is collected from over 700 users
with 100 different handsets from the OpenBattery application [124]. Using this data to
draw conclusions about usage patterns and battery consumption of different users, we in-
vestigate two strategies: use the OnlineHMM to forecast power consumption given user
data activity; formulate a performance-energy trade-off using an objective cost function
incorporating mean delay and power consumption. The third application involves ap-
plying the MMPP/M/1-DPS queueing model to form a dynamic allocation strategy for a
UDP flow-level model (i.e. FlowDPS). This allocation strategy updates the weights of
the DPS algorithm to minimise the delay mean and variance, whilst maximising a util-
ity function. The performance of the FlowDPS model is compared to a simplified static
DWRR scheduling algorithm.

5.2 Financial forecasting strategy

5.2.1 Motivation
Online forecasting time-series provides benefits for real-world applications such as intra-
day algorithms and high frequency trading in finance [26]. For example, stock prediction

108

5.2. FINANCIAL FORECASTING STRATEGY

uses historical daily stock prices to adopt an effective investment strategy, which aims for
diversification across asset classes and uses historical volatility to select low-risk assets.
We have discussed in this thesis how HMMs provide temporal pattern recognition, parsi-
mony and can be modified to act as online models for forecasting and run-time analysis.
Online models are desirable in industry for potential analysis of live systems and resource
planning, where main challenges include the dependency of model parameters on all pre-
ceding data. In terms of HMM dynamics, such online models require an approximation
of the backward formula used in the Baum-Welch algorithm to save time computing the
terms for the accumulated observation set. Hence, we use the IncHMM, along with its
backward approximation, and build a live forecasting strategy for financial time-series.
We summarise our contributions as follows:

• Collect and pre-process financial time-series, which are the close-of-day prices for
stocks and indices from FTSE and NASDAQ stock markets.

• Using the IncHMM, build an online forecasting strategy that predicts future stock
and indices movements given historical prices. Benefits include forecasting trends
in stocks for risk prediction and using stock correlation for asset allocation.

5.2.2 Collecting time-series
Historical daily stock prices were collected from several financial websites (e.g. Yahoo
finance). Time-series of close-of-day prices on 35 American and European stocks were
updated by replacing the actual price with the price difference from the day before. Es-
sentially, for a stock price st, we calculated the change in price from the day before and
recorded the difference (i.e. st − st−1). Each time-series was clustered using a value of
k = 2 (i.e. stock either moves up or down) in the k-means algorithm and then used as
input into both the standard HMM and the IncHMM, which were each initialised with
two hidden states. We reserve experiments with different values of k for the k-means
clustering algorithm as future work.

It is important to note that non-stationary time-series are typically adjusted for season-
ality using such models as X-12-ARIMA [38], developed by the US Census Bureau. Our
real-world data sets are also seasonally adjusted through time-series decomposition in the
following way: first, we checked if the seasonal component acts additively for the stock
time-series; secondly, we calculated the variation of seasonality for each time-series (i.e.
every three months for stocks); thirdly, we subtract this seasonal component from our
original time-series. With the stock time-series now decomposed, we focus on trends and
cyclic behaviour. After pre-processing the time-series, we validate the IncHMM by us-
ing the error between the model-generated time-series and the original data. Thus, via
the sMAPE metric, we form a forecast strategy that involves iterative training on updated
time-series using the IncHMM. We summarise this strategy in algorithm 6 for a generic
forecast model M. Additionally, we provide 95% confidence intervals for S = 10000 sim-
ulation runs, as presented in the results section. There are many combinations of training
windows and forecast horizons for the IncHMM. Experiments with heatmaps that output

109

5.2. FINANCIAL FORECASTING STRATEGY

average sMAPE values from forecasts revealed that a training period of 250 days was the
best choice that produced the smallest errors.

Algorithm 6 Forecasting strategy
Input: {X} = time-series; L = size of {X}; M = forecast model; T = training window; F

= forecast horizon; S = simulation runs; c = 0; T < t < (L − F).
while c < S do

At time t, start with point Xt.
while t < L do

Train model M on {Xt−T+1,...,Xt}.
Update model parameters for M.
Forecast F new points {X′t+1,...,X′t+F}.
t = t + F.

end while
c = c + 1.

end while
Output: {X′} = forecast time-series.

5.2.3 FTSE and NASDAQ traces
From our experiments, we plot one-day forecasts for four stocks and two indices in Fig-
ures 5.1 and 5.2 , which reveal representative IncHMM-generated prices. For our fore-
casts, we chose a period from June 29th 2006 to September 1st 2006. However, the training
period dates back to 2005 as it constitutes 250 days in the past. The IncHMM often fore-
casts sudden jumps in stock fairly accurately including the rise in BARC on day 15 to
reach 600 and the small peak in FORD on day 31 just below 8. Similarly, such accurate
forecasts are evident in the FTSE index on day 5 and day 31. Further, there are some
directional changes in stock prices that the IncHMM predicts one day ahead of the ac-
tual event. For example, notice the sharp drop of FORD stock from 8 to 7 predicted by
the IncHMM on day 55, which occurs on day 56. Whilst there exist some IncHMM-
generated forecasts that are in the opposite direction to the actual stock movements, such
movements will experience a mean reversion effect (i.e. eventually the stock prices will
move towards an average in the market). Nonetheless, the incremental capacity of the
IncHMM allows such forecast strategies to run alongside live systems without increasing
computation costs or heavily reducing accuracy of model-generated results.

0 20 40 60
550

600

650

days

BARC

IncHMM

0 20 40 60
50

60

70

80

days

AAPL

IncHMM

0 20 40 60

7

8

9

days

FORD

IncHMM

Figure 5.1: IncHMM forecasts of BARC, AAPL and FORD prices.

110

5.3. PERFORMANCE-ENERGY MODELLING IN SMARTPHONES

0 20 40 60
800

820

840

860

days

HSBC

IncHMM

0 20 40 60
1,600

1,650

1,700

1,750

days

NDX

IncHMM

0 20 40 60

5,600

5,800

days

FTSE

IncHMM

Figure 5.2: IncHMM forecasts of HSBC, NDX and FTSE prices.

5.2.4 Conclusion
In this work, we used the IncHMM to build a forecasting strategy to predict movements
of stock and indices. We collected and pre-processed historical close-of-day prices for
stocks and indices from FTSE and NASDAQ stock markets, then trained our IncHMM to
predict future prices. The main advantage of using the IncHMM is its incremental capac-
ity that allows forecasting to run alongside live systems without increasing computation
costs. Further, the IncHMM produced pleasing results by replicating cyclic patterns and
burstiness in price movements on a range of stocks.

Possible extensions include obtaining the implied volatility from our IncHMM strategy,
which is the expected future variance of prices. We can currently calculate the histor-
ical volatility as the standard deviation of annualised log returns of prices, which is an
estimate of the price “risk”. However, option traders require an estimate of the implied
volatility (or “view”) to be able to price their options. Another extension is calculating
the future stock correlation from the predicted prices, which is useful for investors in their
asset allocation strategies to achieve more diverse portfolios.

5.3 Performance-energy modelling in smartphones

5.3.1 Motivation
In the last decade, smartphone technology has advanced faster than almost any other,
with widespread applications in e-commerce [179], healthcare [176] and personal use
[73, 129]. However, despite the development of handsets with faster multi-core CPUs,
smaller physical components and high resolution displays, smartphone batteries are yet to
improve at commensurate rates. Further, smartphone batteries are misused and applica-
tions are managed poorly, leading to elevated discharging rates and inefficient re-charging
cycles. Additionally, Wi-Fi and background applications drain battery life despite pro-
viding obvious advantages to user needs. Therefore, a greater aim is to understand the
performance-energy trade-off: maintaining high performance standards for smartphones
without severely limiting battery life.

Some argue that performance is driving the smartphone industry. For example, we men-

111

5.3. PERFORMANCE-ENERGY MODELLING IN SMARTPHONES

tioned at the beginning of this thesis that smartphone users wait, on average, just over
nine seconds for a web page to load [144]. Whether it’s using smartphones to download
files, stream web content or run background apps, the same delay principle applies. From
a queueing perspective, delay and response time are closely related, but measuring delay
is computationally expensive in real systems. We have seen the appealing properties of
DPS scheduling, coupled with the abstraction properties of queueing systems to obtain
response times. Real traces of smartphone activity and battery data may be used to feed a
power consumption model and so characterise representative battery behaviour. Further,
queueing models provide a more cost-effective alternative to replicating real smartphone
servers and/or running applications. One of our strategies is to employ an adaptive work-
load model to forecast battery levels given current charging state and data activity.

To address the aforementioned challenges, we propose two strategies to investigate per-
formance and energy in smartphone applications:

• Use the OnlineHMM to forecast power consumption, given recent data activity
history of user and current charging state of device.

• Pose a performance-energy trade-off via an objective cost function incorporating
mean delay and energy consumption.

From these strategies, we form two hypotheses: burstiness and mode-switching is ob-
served in data activity and in power consumption rate of batteries; and power consump-
tion increases as mean delay decreases. The rest of this section is organised as follows:
we summarise the data collection process, describe each strategy in separate subsections
and conclude with possible extensions of each strategy.

5.3.2 Data set

This section provides an overview of the data set used in this work and some data pro-
cessing before building the two strategies. We use the original, unanonymised smartphone
data from OpenBattery [124], which is a data collection application chronologically log-
ging the following information: smartphone model, manufacturer and timestamped bat-
tery data ranging from February 2012 to September 2014. More specifically, each row of
battery data stored in the OpenBattery database consists of: a timestamp (UTC), charge
level (%), temperature, health status, plugged status, charging status, current capacity and
voltage. Additionally, we collect timestamped packet data transferred for specific hand-
sets from experiments to complement the battery data. An overview of data statistics is
shown in Table 5.1, where there is collectively over 1.8 million aggregate hours of battery
data.

112

5.3. PERFORMANCE-ENERGY MODELLING IN SMARTPHONES

Table 5.1: Statistics of battery data traces analysed.

Total smartphones 766
Total applications 4,857
Total charge cycles > 58.2k
Total aggregate hours > 1.8m
Median trace duration 367.5

Table 5.2 presents a sample of 12 different handset models (from a total of 766) and the
corresponding manufacturer, as collected by OpenBattery. Among this sample, we also
record the first data log for each model. It is important to collect data from a range of
handset models to avoid overfitting the training parameters. Further, the more diverse
data we obtain in testing the models, the more impact our claims have.

Table 5.2: Sample of handset models with manufacturer and date of first log.

Model Manufacturer Date
Blade ZTE 2012-02-23
LS670 LGE 2012-03-18
LT15i Sony Ericsson 2012-03-24

Huawei-M920 Huawei 2012-08-16
Novo10 Hero MID 2013-04-24

Nebula 6.9 ZIGO 2013-08-07
Q800 XOLO 2013-10-19

Chaser TeleEpoch 2013-12-28
Xperia Z C6603 Sony 2014-04-12

i867 Motorola 2014-07-04
HTC One M8 HTC 2014-07-23
GT-I8190N Samsung 2014-09-12

Using this data set, we investigated the charging and discharging habits of different users.
More specifically, we plotted time-series of power consumption for 100 users (i.e. a rep-
resentative sample of the data set) to find any distributions or patterns among charging
behaviour. For example, Figure 5.3 presents the distribution of session durations with
charging and discharging for 100 users from March 2014 to July 2014; both distributions
exhibit an exponential-like distribution, where about 90% of users never charge smart-
phones for over ten hours.

113

5.3. PERFORMANCE-ENERGY MODELLING IN SMARTPHONES

0 200 400 600 800
0

2

4

6

Time (min)

Fr
eq

ue
nc

y

0 200 400 600 800
0

2

4

6

Time (min)

Fr
eq

ue
nc

y

Figure 5.3: Distribution of charging (left) and discharging (right) sessions for 100 users.

Figure 5.4 reveals patterns in 3G data transfers for a HTC One user: on the left, the user is
browsing websites using Chrome, which results in small packet sizes being transmitted;
on the right, the user has two sessions of streaming YouTube videos resulting in two
large bundles of packets (of almost 50KB) being transferred. The bursty nature of such
transfers requires parsimonious models with switching modes and capabilities to generate
correlated streams, which makes the HMM (and its adaptive variations) suitable for fitting
on such data.

0 50 100 150 200
0

5

10

Time (s)

Pa
ck

et
si

ze
(K

B
)

0 50 100 150 200
0

25

50

Time (s)

Pa
ck

et
si

ze
(K

B
)

Figure 5.4: Data transfers for an HTC One user by browsing (left) and streaming (right).

Such examples of data transfers on smartphones invoke the inevitable question: how can
we reduce unnecessary data transfers and prolong battery life in the process? We investi-
gate this question through two strategies.

5.3.3 Strategy 1: Power consumption model

One of our aims is to obtain a power consumption model for smartphones. First, we con-
sider the charge behaviour of two users given specific handsets. Figure 5.5 summarises
the session durations and the corresponding increase in charge level; considering charg-
ing sessions under 100 minutes, user 329 has a positive (reasonably linear) correlation of
duration vs charge, whereas longer sessions offer a more uniform distribution of charge.
Thus, charging (and discharging) activity are key to understanding the diurnal power con-
sumption of smartphones.

114

5.3. PERFORMANCE-ENERGY MODELLING IN SMARTPHONES

0 20 40 60 80 100
0

50

100

150

200

Charge (%)

D
ur

at
io

n
(m

in
) user 82 (MZ601)

user 329 (C6503)

Figure 5.5: Charge increase with durations for two users.

Strategy 1 focuses on forecasting power consumption to reveal trends in battery dis-
charge for smartphone users. To incorporate bursty and cyclic data transfers into the
power consumption model, we employ an OnlineHMM. Notably, burstiness and mode-
switching are two well-known phenomena occurring in data transmission and Internet
traffic, which gives the OnlineHMM advantages over simplistic models such as the Pois-
son process. The hidden states of the OnlineHMM represent the sizes of data transfers
by the applications of the smartphone. For example, in a two-state OnlineHMM, if the
smartphone cellular radio is frequently in full-power mode (state 1), data transfers will
often be larger than if the cellular radio were in low-power mode (state 2). The benefit
of forecasting with HMMs is knowing the most recent hidden state, which provides a
likelihood of the type of forecast likely to occur given the state. Further, the Viterbi algo-
rithm can produce the sequence of hidden states to match the corresponding observations
from the data trace. Multiple traces of timestamped data transfers are clustered using the
k-means algorithm and the OnlineHMM trains on the clustered traces simultaneously in
an incremental fashion (i.e. dynamically updating as new data becomes available) to con-
verge its parameters as described in algorithm 3. Given the user’s data transfer history,
the charging status of the smartphone and the current hidden state of the OnlineHMM, the
model outputs the most likely change in power (approximated using real rates obtained
from profiling with battery manufacturers’ parameters) and updates the smartphone bat-
tery level accordingly. In this way, the OnlineHMM can predict battery life for 24 hours
and aid in resource planning and energy-saving strategies. Using sMAPE as validation,
we executed 10000 simulations with 95% confidence intervals and compared results of
the two-state OnlineHMM against two models: the first is a simple regression model sim-
ilar to [73], which fits a nonlinear curve of expected power consumption; the second is
a moving average of recent data consumption that averages recent power consumption to
forecast future consumption.

Table 5.3: sMAPE for several smartphone users comparing three predictive battery models.

Model HTC One GT-I9300 Nexus 7
OnlineHMM 0.32±2e-4 0.28±1e-4 0.35±4e-4
Moving Avg. 0.54±8e-9 0.24±4e-9 0.44±1e-8
Regression 0.40±1e-8 0.33±6e-9 0.44±7e-9

115

5.3. PERFORMANCE-ENERGY MODELLING IN SMARTPHONES

Table 5.3 shows the OnlineHMM as the most consistent forecast model. The moving
average model performs well on steady charging or discharging rates as observed for the
GT-I9300 trace, but poorly on traces with intermittent behaviour (i.e. HTC One and Nexus
7 traces). The regression model is more consistent than the moving average, but produces
higher errors by over 20%, on average, than our OnlineHMM predictive model. These
results highlight that HMM forecast models are useful for capturing intermittent battery
use for smartphones and, hence, can plan optimal charging times and durations. The
OnlineHMM power consumption model we have investigated for three smartphone users
proves that burstiness and mode-switching exists in both smartphone data activity
and battery behaviour. The next strategy formulates a theoretical performance-energy
trade-off of smartphone applications, involving mean delay and energy.

5.3.4 Strategy 2: Performance-energy trade-off

Strategy 2 investigates the effect of mean delay of smartphone applications on power
consumption rates. To address this, we formulate an objective cost function, C, as part
of a performance-energy trade-off. Recall that µ is the service rate, ρ < 1 is the util-
isation and the arrival rate λ = µρ holds at equilibrium for positive terms. Let rall be
the total power consumption rate for general OS processes, background applications and
active power cellular radio modes. Let rrad be the power consumption rate for active ra-
dio only excluding other applications or processes. The rates rall and rrad are based on
profiling devices from the OpenBattery data set and using Li-ion manufacturers’ parame-
ters [180, 181]. Such parameters are extracted from typical Li-ion discharge curves (i.e.
voltage vs capacity) and include: voltage (∼3.9V) and capacity (∼1.1Ah) when the expo-
nential zone ends; voltage (∼3.6V) and capacity (∼5.1Ah) when the nominal zone ends;
capacity (∼5.7Ah) at cut-off voltage (∼2.5V); internal resistance is set to ∼0.05Ohm. It is
important to incorporate such realistic rates into power consumption given varying levels
of data transfers and cellular radio modes.

The performance term of the cost function is the mean response time under EPS (for
one job class): µ−1(1 − ρ)−1. The energy term is more complex: let B be the busy period,
which represents the duration that the cellular radio is in active power mode continuously;
let t1 be the time needed to switch the radio to a low power mode; let I be the idle time
spent with the radio in low power mode; let t2 be the time needed to switch the radio to
active power again; and define t = t1 + t2 as the total time spent switching between these
states. The system operates as a sequence of B, I, B, I, . . . delay cycles and averaging over
B and I yields:

rallE[B] + rradE[I]P(I ≤ t)
E[B + I]

(5.1)

where we use P(I ≤ t) = 1 − e−tµρ, ρ = E[B]/E[B + I] and (1 − ρ) = E[I]/E[B + I] to
obtain:

rallρ + rrad(1 − ρ)(1 − e−tµρ) (5.2)

116

5.3. PERFORMANCE-ENERGY MODELLING IN SMARTPHONES

Let 0 < α < 1 be a scaling parameter for performance and energy terms. Having intro-
duced all terms, we define the cost function C as follows:

C =
α

µ(1 − ρ)
+ (1 − α)(rallρ + rrad(1 − ρ)(1 − e−tµρ)) (5.3)

Observe that when cellular radio is in low power mode, we eliminate the term rrad(1 −
ρ)(1 − e−tµρ) and, therefore, save energy in the process. In Figure 5.6, we plot µ against
C for increasing values of t and fix ρ = 0.5, α = 0.05, rall = 20, rrad = 7, where battery
profiling and manufacturers’ information was used as guidance. Given the three values of
t, we observe in Figure 5.6 that C has a global minimum and is essentially a minimisation
problem with respect to µ (i.e. service rate). Further, µ is the most important parameter
since it is used to calculate mean delay and energy consumption from cellular radio. Note
that changing the parameter values used in the cost function would alter the slopes of the
minimisation curves for different values of t.

0.25 0.5 0.75 1 1.25 1.5
11

12

13

14

15

µ

C

t = 2 t = 5 t = 8

Figure 5.6: Cost function for varying µ.

Exploring both performance and energy constraints of the cost function, we hypothesise
that power consumption increases as mean delay decreases. In other words, there is
a trade-off between saving energy and speeding up performance of applications. This is
supported by our cost function in equation (5.3) as increasing µ (i.e. the service rate)
decreases the mean response time (i.e. the term µ−1(1 − ρ)−1), but increases the power
consumption required to, for example, serve more jobs from smartphone applications.
Smartphone users typically observe small changes in delay of applications only when
downloading files or waiting for a webpage to load. The cost function we formulated,
although theoretical, is useful when leveraging delays of non-urgent applications to reduce
battery draw in bursts rather than over extended time periods.

5.3.5 Conclusion and future work
In this work, we have investigated two strategies: first, to forecast power consumption
using OnlineHMMs; and secondly, to build a performance-energy trade-off structured as
an objective function incorporating mean delay and power consumption. As a result, we
have formulated two hypotheses. First, adaptive HMMs are useful models to represent
burstiness and mode-switching for data activity and battery behaviour compared to other
models such as moving averages and regression-based models. Secondly, power con-
sumption in smartphones increases as mean delay of its applications decreases according

117

5.4. TRAFFIC FLOW MODEL

to our performance-energy trade-off. Important observations in data usage highlight the
need to consider both performance (i.e. representing delay as response time) and energy
(i.e. power consumption) for a number of applications.

Extensions include improvements to each of the strategies. We extend strategy 1 by
executing more forecasts on different handsets and focusing on specific applications to
understand the effect on the battery life. Strategy 2 can be extended by incorporating
higher response time moments into the objective cost function C and modelling more job
classes with DPS scheduling to replace the simplified EPS assumption. Further exper-
iments are planned using the useful OpenBattery data including: test the cost function
from strategy 2 on real smartphone data for specific applications; investigate the effect of
two cellular radio modes (i.e. rare-big and often-little) on the data saved (i.e. from 3G or
4G transfers) and the battery life of varied smartphone users.

5.4 Traffic flow model

5.4.1 Motivation

A traffic flow (or packet flow) is a sequence of packets sent from a particular source to
a particular destination, as defined by the RFC 2722 [41]. Typically, a flow consists of
packets in a specific transport connection, but is not a one-to-one map to that respective
connection. Alternatively, a flow can represent a media stream with a finite time interval.
A flow is uniquely identified within a time period by source and destination IP addresses
and ports, as well as the layer 4 protocol (i.e. UDP, TCP, etc.). In UDP, all packets with
the same source address/port and destination address/port within a time interval belong to
one flow. A TCP connection begins with a three-way handshake and creates two flows,
which ends in a four-way handshake or a time-out. Since UDP is uni-directional, it is
simpler to model its traffic flows than handling the handshaking of TCP or ICMP, for
example. Further, it is important to model dynamic flows (i.e. existing flows close as
new flows appear) in real-world Internet traffic scenarios and, ideally, to represent such
dynamic flows in a parsimonious and cost-effective manner.

By using our DPS queueing models, we aim to model traffic flows dynamically in a re-
sourceful way that allows comparisons (via simulation) with existing flow scheduling
policies such as deficit weighted round robin (DWRR). Unlike the FCFS assumption at
the system input and a fluid queue at the output used by Hohn et al. [116], the discrete
queues in this chapter measure delay (i.e. the delay in the output buffer of the router)
under DPS scheduling. This way, packets of varying sizes from different interfaces are
considered in the delay approximation. Note that we model traffic flows at a single point
(i.e. a router), but a greater aim is to extend our performance analysis to networks [125].
In the next section, we define a flow-level model specifically for UDP packets.

118

5.4. TRAFFIC FLOW MODEL

5.4.2 UDP flow-level model
We describe the parameters of the UDP flow-level model (FlowDPS) covering the main
conditions given in [46]. Let L = {1, . . . ,L} be a set of links. Each link l ∈ L has
capacity Cl > 0. Let ak be the per-flow rate limit (i.e. access rate is limiting). A class k is
characterised by route L′k, which is a specific subset of links. Let x = (x1, . . . , xk), where
xi is the number of flows of class i in progress. Let φk be the total capacity allocated to
flows of class k; then the allocation satisfies the following conditions:∑

k:l∈L′k

φk(x) ≤ Cl , l = 1, . . . ,L and φk(x) ≤ xkak , k = 1, . . . ,K (5.4)

The allocation is Pareto efficient if there exists a saturated link l on L′k. In other words,
∃ l ∈ L′k s.t. φk(x) = xkak. We set traffic conditions for utilisation (ρk) as follows:∑

k:l∈L′k

ρk < Cl , l ∈ L (5.5)

The metrics for the class k arrival rate (λk), service rate (µk) and system utilisation (ρk) in
a DPS queueing model are equivalent to the flow-level model as follows:

λk = µkρk =
1
E[xk]

ρk (5.6)

Given the conditions of the flow-level model, we make an important claim involving
DWRR and DPS scheduling algorithms.

Claim Suppose there is a system with N classes (or flows) of packets scheduled by a
DWRR algorithm and let the rate of the server be one for simplicity. Then, the rate for
serving a class j job is proportional to the DPS rate.

Justification Let R be the rate of the server, Rj be the rate of serving a class j job in
the DWRR scheduling algorithm, Qj be the quantum for class j, and n j be the number of
class j jobs in the system. Setting R = 1, N = K and Qj = αjn j, it follows that:

Rj =
Qj∑N

i=1 Qi
R =

αjn j∑K
i=1 αini

= rj(n1, . . . , nK)nj (5.7)

where rj(n1, . . . , nK) is the DPS rate from equation (2.43). This claim also follows from the
Kuhn-Tucker theorem, which states that the capacity allocated to flows under the same
constraining links is shared in proportion to their weights [46]. Having proved similar
properties between DWRR and our DPS flow model (FlowDPS), we turn our attention to
dynamic flows.

5.4.3 Dynamic flows
In existing work, network utility is modelled with a fixed number of permanent flows
[172]. In reality, flows do not last indefinitely. Each flow corresponds to the transfer of a

119

5.4. TRAFFIC FLOW MODEL

finite volume of data (or flow size) and ceases when the transfers complete. The evolution
of the number of flows in progress clearly depends on the way new flows are generated,
their sizes, and how bandwidth is shared between competing flows. In particular, the fact
that an allocation is optimal in the sense of some utility function in a static scenario does
not necessarily imply that this allocation is optimal in a dynamic scenario. The allocation
may well lead to a steady state where overall utility is low. For example, maximising mean
flow rate may lead to unstable traffic conditions and allow the number of flows to increase
indefinitely. Hence, bandwidth-sharing objectives cannot reasonably be defined without
taking flow-level dynamics into account. When building our dynamic allocation strategy,
we change priority weights in the FlowDPS model to optimise a flow set that updates
periodically. Further, in order to adhere to QoS demands, we model Internet traffic at
flow level and also at packet level to obtain delay metrics. The MMPP/M/1-DPS queue
allows us to obtain higher response time moments to approximate delay distributions at
routers given bursty packet arrivals with multiple classes. The dynamic allocation strategy
is introduced in the following section.

5.4.4 Dynamic allocation strategy
To utilise the service differentiation of multi-class jobs offered by DPS scheduling and the
response times obtained from our MMPP/M/1-DPS model, we build a dynamic allocation
strategy for modelling UDP flows. Using expected throughput from the most recent set
of UDP flows, we measure delay given this throughput and aim to maximise a log utility
function by optimally allocating DPS priority weights. We experiment with different
loads to achieve the best QoS targets and minimise mean and variance of delay.

Algorithm 7 Dynamic Allocation Strategy for UDP flows
Input: F = { f1, . . . , fK} is the set of active UDP flows.

while F not empty do
for k = 1 : K do

Calculate expected throughput λk for flow fk.
Using the MMPP/M/1-DPS queue, calculate response time density function
P(Tk = x) for flow fk using algorithm 5.
Solve maximisation problem in equation (5.8) with given αk weights.
Check if mean and variance of delay meet acceptable QoS levels:
while Mean and variance of delay are not minimised do

Obtain mean and variance of response time from MMPP/M/1-DPS queue to
represent delay.
Update allocation weights αk in equation (5.8) to re-calculate mean and variance
whilst maximising U.

end while
end for
Update active flow set F.

end while
Output: Collection of mean and variance of delay for all flows in F.

120

5.4. TRAFFIC FLOW MODEL

The allocation provided by a system with DPS scheduling can be represented by the allo-
cation that maximises the aggregate utility of the different classes for a given number of
jobs. Hence, it is important to achieve some weighted proportional fairness from the allo-
cation associated with a log utility function U, which is increasing and strictly concave.
In a single server system with K traffic classes (or flows), we assume that there are n j class
j jobs, for j = 1, . . . ,K. As suggested in [46], the logical formulation of a minimisation
problem is given by:

max
rj, j=1,...,K

{ K∑
j=1

αjnjU
(

rj

αjnj

)}
s.t.

K∑
j=1

njrj < 1 (5.8)

It can be shown that the rates that solve the utility function in equation (5.8) are given
by DPS rates rj from equation (2.43) [60]. Generally, discriminatory allocations help
realise service differentiation allowing users with higher rates to obtain better quality of
service. Hence, DPS introduces an implicit fairness into flow allocations in networks. We
summarise our dynamic allocation strategy using the FlowDPS model and MMPP/M/1-
DPS queue in algorithm 7. The following section presents results for the FlowDPS model.

5.4.5 Results
We simulate our FlowDPS model as part of a dynamic allocation strategy for UDP flows
using JSIMwiz and measure delay under two load scenarios. We experiment with our dy-
namic allocation strategy, as summarised in algorithm 7, using statistics from 20 CAIDA
data sets as input into JSIMwiz simulations. We divide the data sets into two scenarios:
low and high load UDP flows. From the CAIDA data sets, we select ten monthly traces
with a low mean load of ρ = 0.41 and ten monthly traces with a very high mean load
of ρ = 0.88. We adapt the dynamic allocation strategy in algorithm 7 for two schedul-
ing algorithms: first, the DWRR algorithm with fixed priority weights (i.e. once the first
flow begins, the α weights do not change with the simulation); secondly, the FlowDPS
scheduling algorithm with dynamic priority weights that update as flows evolve in the
simulation. Hence, we present mean (i.e. E[T]) and variance (i.e. E[(T−E[T])2]) of de-
lay under both scheduling algorithms in Table 5.4. Based on the results in Table 5.4, we
make the following observations and offer relevant recommendations given appropriate
scenarios:

• For low loads, FlowDPS does not notably decrease the mean delay over DWRR,
but it significantly reduces the variance of delay (as seen for class 1 jobs).

• For high loads, FlowDPS prioritises one class (i.e. class 2) and optimises weights
to reduce mean and variance of delay when compared to DWRR.

• DPS allocation is suitable for service differentiation in UDP flows if it is dynamic
(i.e. priority weights are updated regularly with new flows).

• Dynamic allocation reduces delay for high priority UDP packets with small sizes
(i.e. voice data).

121

5.4. TRAFFIC FLOW MODEL

Table 5.4: Dynamic allocation results for DWRR (fixed) and FlowDPS (dynamic).

Low load scenario (ρ = 0.41)
Model Class 1 jobs

E[T] E[(T−E[T])2]
DWRR 3.0e-04±2e-06 2.6e-07±4e-09

FlowDPS 2.6e-04±5e-06 1.5e-10±2e-13
Class 2 jobs

E[T] E[(T−E[T])2]
DWRR 5.6e-03±9e-05 7.2e-05±3e-07

FlowDPS 4.2e-03±1e-05 3.9e-05±5e-07

High load scenario (ρ = 0.88)
Model Class 1 jobs

E[T] E[(T−E[T])2]
DWRR 0.075±3e-04 0.014±8e-04

FlowDPS 0.076±4e-04 0.02±6e-04
Class 2 jobs

E[T] E[(T−E[T])2]
DWRR 2.5e-03±3e-05 2.1e-05±7e-07

FlowDPS 1.3e-03±3e-05 2.8e-06±5e-08

5.4.6 Conclusion
Queueing management is a key requirement of QoS to reduce delays in networks. We
have utilised our response time approximations to represent packet delay at routers and
as part of a flow-level allocation strategy. The dynamic allocation strategy was simulated
at low and high loads with mean and variance of delay collected. The results indicate
that FlowDPS reduces delay mean and variance using its dynamic allocation of priority
weights compared to a simplified DWRR scheduling algorithm with static weights for all
flows. Further, we have proved that DPS scheduling algorithms, coupled with MMPP
bursty properties, are efficient for service differentiation at flow level.

Extensions to the FlowDPS model include adding more representative service time distri-
butions to represent packets with varying requests at routers. This can be achieved with
an MMPP/PH/1-DPS queueing model, where PH represents the phase-type service time
distribution, and the model should support multiple phases. Further, it is interesting to
investigate heavy-tailed service time distributions and, specifically, understand the cor-
relation of response time tails to the length of busy periods. Alternatively, it is possible
to replace discrete DPS queues with fluid queues to utilise the busy period and measure
delay of output buffers found in routers. It would be beneficial to compare the FlowDPS
model to a wider range of scheduling algorithms, including shortest-job-first (SJF) and
last-come first-served (LCFS), to investigate how delay varies under allocation weights
and higher loads with such scheduling disciplines.

122

Chapter 6

Conclusion
Chapter Description

Section 6.1 summarises the achievements and contributions of this thesis with respect
to adaptive HMMs and processor-sharing queueing models. In section 6.2, extensions
include improving accuracy of model-generated results and combining adaptive HMMs
with DPS queues to form new dynamic strategies to save resources. In section 6.3, we
evaluate our research in terms of model components and discuss the impact of our work.

6.1 Summary of achievements
In the work presented in this thesis, we succeeded in adapting HMMs as online workload
models and building discrete queues for processor-sharing systems to approximate de-
lay measures. First, the incremental and multi-input HMMs act as efficient and portable
benchmarks for measuring and modelling: throughput in live storage systems, commu-
nication patterns in social media for groups of users and power consumption in smart-
phones. Adaptive models such as the SlidHMM, the MultiHMM and, combining the best
of both models, the OnlineHMM have reduced training times of standard (batch-trained)
HMMs by clustering and incremental EM learning of the Baum-Welch algorithm. Sec-
ondly, our discrete queueing models have approximated delay through response time mo-
ments obtained from traces in Internet traffic scenarios by parametrising M/M/1-DPS and
MMPP/M/1-DPS queues. Explicit moment formulas obtained from an iterative algorithm
offer fast calculation of response time moments and density/distribution functions for
approximating queueing delay and, more importantly, meet SLA requirements. Hence,
through this research we have developed strategies to measure delay efficiently, with re-
spect to QoS definitions, whilst saving resources in online measurements of computer
systems. These strategies are supported by parsimonious models for generating represen-
tative traces reflecting spatiotemporal behaviour of system performance, which include
throughput and delay.

We list our successful contributions in this thesis as follows:

• We formed adaptive models including the IncHMM (3.2), the SlidHMM (3.3), the
MultiHMM (3.4) and the OnlineHMM (3.5) that reduce computational complex-

123

6.2. FUTURE WORK

ity of training whilst providing incremental and/or multi-class learning of discrete
data. Hence, classes of parsimonious workload benchmarks generate representative
traces for replicating spatiotemporal-specific behaviour in a portable and efficient
manner.

• We approximated important performance metrics such as delay using response time
moments calculated from single M/M/1-DPS queues (4.3) under certain assump-
tions. An automated algorithm produced explicit formulas for higher response
time moments. Further, we used MMPP/M/1-DPS queues (4.4) to approximate
response time distribution using an improved iterative algorithm, which modelled
bursty packet arrivals with DPS scheduling serving multiple job classes. SLA re-
quirements can be matched against the response time distributions obtained from
the MMPP/M/1-DPS queueing models for different loads.

• We formed strategies for the adaptive HMMs and queueing models including: a
financial strategy for stock prediction (5.2); an incremental power consumption
model and an objective function for performance-energy tradeoffs in smartphone
applications (5.3); a dynamic allocation strategy at flow-level (5.4), which mod-
elled queueing delay of Internet traffic at routers.

Given the achievements in this thesis, there is room for improvements and further appli-
cations for new research to extend our models. We discuss the extensions in detail in the
subsequent section.

6.2 Future work
For future work, we seek a wider impact of our research and identify the methods of
achieving this and outline the improvements required. This section presents the exten-
sions for adaptive HMMs, discrete processor-sharing queues and improvements related to
combining HMMs with queueing models. Future directions are also discussed in previous
chapters, namely at the end of each section for the appropriate model. First, we discuss
improvements related to the adaptive HMMs, which include:

• Building an incremental k-means algorithm to update clusters with new data points.
As it stands, new data points are assigned to an existing cluster (i.e. formed in the
k-means algorithm preceding incremental training) and these clustered data points
are passed as input into the incremental HMM. An incremental k-means algorithm
would save resources and improve classification accuracy in cases when new obser-
vations require a new cluster. Alternatively, the k-means algorithm can be repeated
at periodic times to form new clusters.

• Obtaining a calibration period for the incremental HMMs in order to determine
when batch training should re-occur (periodically) to stabilise model parameters.
For example, after a number of incremental slides, train the model using a standard
Baum-Welch algorithm. Once this batch training is complete, incremental slides

124

6.2. FUTURE WORK

continue to save time and memory complexity through the adaptive Baum-Welch
algorithm.

• For the multi-input training used by the MultiHMM and the OnlineHMM, we rec-
ommend experiments with unequal weights used in the clustering of traces. For
example, after clustering all data points per trace and clustering these traces again
into groups with similar characteristics, these doubly-clustered traces (used in the
adapted forward-backward algorithm) can be weighted to prioritise specific groups
of traces. This would essentially add priorities to multiple job classes according
to the importance of respective traffic streams and, hence, build different classes of
MultiHMMs and OnlineHMMs.

• Build a continuous-time OnlineHMM with continuous state spaces. For example,
we could adapt a continuous version of the Baum-Welch algorithm used in [84] or
use approximate methods such as the extended Kalman filter.

For the class of discrete, processor-sharing queues used in this thesis, we list possible
extensions as follows:

• Extending response time analysis of DPS to heavy-tailed service time distribu-
tions and, hence, define M/G/1-DPS and MMPP/G/1-DPS queues in Kendall no-
tation. Ideally, the G service time distributions may be approximated using hyper-
exponential (i.e. two or more weighted exponential phases) by defining new popu-
lation terms in the PDE in (4.2) to represent the new exponential phases. Further,
continuous phase-type distributions represent light-tailed service time distributions
and also approximate heavy-tailed distributions.

• Improving the performance-energy trade-off problem in (5.3.4) by incorporating
higher moments of the response time into the objective cost function in (5.3). This
adds more dimensions to the optimisation problem that requires new constraints,
but can be handled using nonlinear global optimisation frameworks [113]. Ideally,
distributions estimated from the higher moments can target SLAs in an optimised
scenario.

• Single DPS queues assume steady state such that mean arrival rate is never more
than the mean service rate; whilst this holds most of the time, on average, there exist
cases when the router experiences overutilisation (i.e. there are more jobs than can
be processed by the router) and the steady state assumption fails. Hence, in cases
of overutilisation, the response time and the number of jobs present in the system
can be obtained using spectral expansion methods [101].

• Approximating response times for networks to represent delay on a wider scale for
more realistic systems. For example, to measure end-to-end delays for networks, an
improvement is to group our DPS queueing models into clusters and measure the
total response time for a one-directional traffic flow.

125

6.3. EVALUATION

A major aim of our future work is to incorporate queueing models with features of adap-
tive workload models. In this way, we can obtain representative performance measures
whilst saving training time and reducing memory complexity in different applications. To
justify incorporating workload models into queueing models, we list potential applica-
tions with corresponding benefits:

• Job arrivals in discrete queues can be modelled using incremental HMMs to provide
the transition probabilities for MMPPs, which saves time over batch training, and,
hence, can predict throughput for live systems.

• Using explicit moment equations, response time can be calculated “on-the-fly,”
given incremental HMM-workload prediction, to approximate delay distributions,
which ensures rapid verification of SLA targets for delay-sensitive applications.

There exist multiple paths for developing this work with such adaptive queueing models
including: modelling spatiotemporal performance of multi-tiered systems; inferring new
statistical properties of workloads and higher number of servers under varying loads, and
replicating behaviour of servers with other scheduling disciplines (i.e. shortest job first).
This thesis provides only a flavour of the possibilities of the queueing theory discipline in
modern computer systems and should serve as a starting point for a well-known approach
with new-found adaptations.

6.3 Evaluation
To evaluate the research reported in this thesis, we explain the choice of models including
the relevant parameters and validation techniques. In doing so, we discuss the lessons
learnt from our performance modelling and the impact of our research. We summarise
the evaluation separately in two subsections, focusing on our adaptive workload models
and queueing models.

6.3.1 Adaptive workload models

The adaptive HMMs, which behaved as workload benchmarks for different experiments,
consisted of the following components: clustering algorithms to pre-process discrete data
for batch HMM training and also to group traces for multi-input HMM training; back-
ward approximation formulas to allow incremental learning using a forward-recurrence
equation; parametrisation and validation of adaptive HMMs. We discuss these three com-
ponents in the subsequent paragraphs.

Clustering

K-means clustering was used as a pre-processing technique to assign discrete data to an
integer value representing a cluster. This was also applicable in incremental learning
where data points were selected from traces “on-the-fly” and assigned a cluster from an

126

6.3. EVALUATION

existing set of clusters. K-means was chosen as a clustering algorithm due to its com-
paratively low convergence rate for big data sets, unlike the expensive training cost of
hierarchical clustering, which was quadratic in terms of trace length. Further, k-means
was simple to implement for the discrete data sets in our experiments (i.e. no more than
two dimensions required) and we could manipulate the algorithm for assigning weights in
multi-input training scenarios (i.e. for the MultiHMM). Ideally, another classification al-
gorithm to reduce the convergence rate of the k-means whilst pre-processing traces would
be beneficial to improve performance of adaptive models.

Backward formula

The backward approximations (or β formulas) used in the adaptive Baum-Welch algo-
rithm offered a forward-recurrence relationship in terms of the time variable, much like
the α formula, and was necessary for incremental learning. Our β formulas improved
simple approximations where new β terms were assumed to all have a value of one. The
formula provided by Florez-Larrahondo et al [103] allowed for incremental learning with
acceptable accuracy of HMM-generated traces and eliminated the reliance of β variables
altogether. In the survey by Khreich et al [47], we found that retaining the values of
the β variables was important to avoid knowledge corruption achieved via a complete set
of the forward-backward probabilities. Hence, building an adaptive Baum-Welch algo-
rithm with a forward-recurrence formula for the backward variable addressed this issue
whilst providing incremental learning for symbol-wise (i.e. IncHMM and SlidHMM) and
block-wise (i.e. MultiHMM and OnlineHMM) learning.

Parametrisation and validation

The adaptive HMMs used in our experiments were parametrised with two hidden states.
After initial tests on discrete data sets, we found that three or more hidden states produced
duplicate rows of probabilities in the state transition matrix. Further, by reducing the
number of hidden states in the online HMMs, the training complexity of the Baum-Welch
algorithm (i.e. O(N2T) with N hidden states and T observations) was minimised. Gen-
erating synthetic HMM traces allowed comparisons with original traces and validated the
models through mean error measurements (i.e. sMAPE) and autocorrelation functions.
We note that the error of the likelihood function is also a possible validation technique
between adaptive HMMs, but we found sMAPE and autocorrelation metrics more reflec-
tive of model usefulness with respect to the data sets investigated and the correlation or
burstiness replicated. A Monte Carlo simulation is another option for replicating similar
results given the data sets to validate the HMM-generated traces.

Impact

The impact of the adaptive HMMs exists in the cost-effectiveness and applicability of
such parsimonious models acting as online workload benchmarks for storage systems
(i.e. modelling read and write operations at file servers), social networks (i.e. predicting

127

6.3. EVALUATION

activity of Twitter users in groups), smartphone battery (i.e. predicting power consump-
tion given user activity) and financial strategies (i.e. forecasting stock movements for
different indices). A prerequisite of the adaptive HMMs is that the traces have discrete
data, but the incremental and multi-input modifications save computational complexity of
training models on live systems (compared to standard HMMs trained in a batch manner)
that are typically latency-sensitive (i.e. high-frequency trading and users interactions on
social media). Combining the resource-saving capabilities of the adaptive HMMs with the
burstiness and mode-switching features of standard HMMs allows modelling spatiotem-
poral activity of computer systems to avoid bottlenecks during peak times and, hence, fa-
cilitate resource planning. Future applications of adaptive HMMs include characterising
workloads according to their HMM parameters and modelling similar workload environ-
ments either as inputs to simulation or analytical models (i.e. Markov-modulated fluid
models).

6.3.2 Queueing models

We evaluate the discrete, processor-sharing queueing models. Specifically, we address
the methods for approximating response time moments and discuss the impact of the
queueing models for different applications.

Response time approximation

For M/M/1-EPS and M/M/1-DPS queues (i.e. discrete queues with egalitarian and dis-
criminatory processor-sharing disciplines, respectively), we approximate response time
moments by differentiating a Laplace-transformed partial differential equation (PDE) and
evaluating at specific values to obtain moment expressions. Continuing with successive
differentiations, we determine response time moments recursively, via an automated al-
gorithm, and obtain explicit formulas. Such response time moments essentially represent
delays in storage systems and Internet traffic (i.e. queueing delays at routers). In contrast
to work by Kim and Kim [155] that manipulates a similar PDE to produce an algorithm
for obtaining only the first two moments, we provide explicit formulas of higher response
time moments (i.e. up to four) for one and two job classes. Given more than one job class,
the formulas for higher moments were lengthy with hundreds of terms, most of which
were priority weights as part of DPS scheduling. We validated our analytical response
time moments against simulated moments, obtained from JSIMwiz queueing simulations
as part of the JMT modelling suite. We extended our response time approximations for
MMPP/M/1-DPS queues, which were able to capture the burstiness of multi-class job
arrivals using a weighted superposition technique of M/M/1-DPS queues. Further, we
built density functions from response time moments using distribution-fitting algorithms,
such as the general lambda distribution (GLD), that allow comparisons with service level
agreements (SLAs). Having experimented with single queues, an aim is to build a network
of DPS queues to represent delays in more complex systems.

128

6.3. EVALUATION

Impact

The queueing models have multiple applications for modelling delay in different com-
puter systems. Using MMPP/M/1-DPS allowed modelling of Internet traffic, specifically
packets arriving at a router, which allowed the discrete packet arrivals to be serviced by
DPS queues. Typically, fluid queueing models allow arrivals to be continuous and have
modelled the performance of network switches and routers [116]. The theoretical delay
moments obtained from single DPS queues should be compared with delay information
based on busy periods from fluid models. The flow delay strategy (i.e. FlowDPS), which
used response time moments obtained from MMPP/M/1-DPS queues, offered dynamic
allocation of multi-class jobs to minimise mean and/or variance of delays. The applica-
tions of modelling queueing delay for Internet traffic such as voice data, typically found
in small data packets, offer incentives to reduce jitter (i.e. minimise variance of packet de-
lays). Such strategies are preliminary experiments for at least two purposes: first, to find
similarities with existing scheduling disciplines (i.e. DWRR) that can be modelled and
replicated; secondly, to obtain performance measurements in a more resourceful setting
with aims to reduce delay, speed up allocation, and train on live systems.

129

Bibliography

[1] T. Chis, P. G. Harrison: Incremental HMM with an improved Baum-Welch Algo-
rithm, In Proc. ICCSW, p. 29-34, London, UK, 2012

[2] T. Chis, P. G. Harrison: iSWoM: The incremental Storage Workload Model using
Hidden Markov Models, In Proc. ASMTA, p. 127-141, Ghent, Belgium, 2013

[3] T. Chis: Sliding Hidden Markov Model for Evaluating Discrete Data, In Proc. EPEW,
p. 251-262, Venice, Italy, 2013

[4] T. Chis, P. G. Harrison: Analysing and Predicting Patient Arrival Times, In Proc.
ISCIS, p. 77-85, Paris, France, 2013

[5] T. Chis, P. G. Harrison: Modeling Multi-User Behaviour in Social Networks, In Proc.
IEEE MASCOTS, p. 168-173, Paris, France, 2014

[6] T. Chis, P. G. Harrison: Adapting Hidden Markov Models for Online Learning, In
Elsevier Electronic Notes in Theoretical Computer Science, 318, pp. 109-127, 2015

[7] T. Chis, P. G. Harrison: Moment-Generating Algorithm for Response Time in Pro-
cessor Sharing Queueing Systems, In Proc. EPEW, p. 80-95, Madrid, Spain, 2015

[8] T. Chis, P. G. Harrison: Higher response time moments for M/M/1 discriminatory
processing-sharing queues, In Proc. EAI VALUETOOLS, Berlin, Germany, 2015

[9] T. Chis, P. G. Harrison: Modeling Packet Delay and Traffic Flow with MMPP/M/1
Discriminatory Processing Sharing Queues, Submitted for publication, 2015

[10] T. Chis, P. G. Harrison: Modeling Performance and Energy in Smartphone Applica-
tions, Submitted for publication, 2015

[11] D. G. Kendall: Stochastic Processes Occurring in the Theory of Queues and their
Analysis by the Method of the Imbedded Markov Chain, In The Annals of Mathe-
matical Statistics, 24(6), pp. 338-354, 1953

[12] L. E. Baum, T. Petrie: Stastical Inference for Probabilistic Functions of Finite
Markov Chains, In The Annals of Mathematical Statistics, 37, pp. 1554-1563, 1966

[13] L. E. Baum, T. Petrie, G. Soules, N. Weiss: A maximization technique occurring in
the statistical analysis of probabilistic functions of Markov chains, In The Annals of
Mathematical Statistics, 41, pp. 164-171, 1970

130

BIBLIOGRAPHY

[14] A. J. Viterbi: Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm, In IEEE Transactions on Information Theory, 13, pp. 260-269,
1967

[15] A. P. Dempster, N. M. Laird, D. B. Rubin: Maximum Likelihood from Incomplete
Data via the EM Algorithm, In Journal of the Royal Statistical Society, 39(1), pp.
1-38, 1977

[16] H. Akaike: A new look at the statistical model identification, In IEEE Transactions
on Automatic Control, 19(6), pp. 716-723, 1974

[17] R. Sundberg: Maximum likelihood theory and applications for distributions gener-
ated when observing a function of an exponential family variable, PhD Thesis, Insti-
tute for Mathematical Statistics, Stockholm University, 1971

[18] H. Bozdogan: Akaike’s Information Criterion and Recent Developments in Infor-
mation Complexity, In Journal of Mathematical Psychology, 44, pp. 62-91, 2000

[19] L. Kauffman, P. J. Rousseeuw: Finding Groups in Data: An Introduction to Cluster
Analysis, In Wiley, 1, 1990

[20] A. K. Jain, M. N. Murty, P. J. Flynn: Data Clustering: A Review, In ACM Comput-
ing Surveys, 31(3), pp. 264-323, 1999

[21] P. G. Harrison, N. M. Patel: Performance Modelling of Communication Networks
and Computer Architectures, Addison-Wesley, 1993

[22] U. Gahde, S. Hartmann, J. H. Wolf: Models, Simulations, and the Reduction of
Complexity, De Gruyter, 1, 2013

[23] M. Hajjat, X. Sun, Y. E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, M. Tawar-
malani: Cloudward Bound: Planning for Beneficial Migration Enterprise Applica-
tions to the Cloud, In Proc. ACM SIGCOMM, p. 243-254, New Delhi, India, 2010

[24] S. A. Baset, L. Wang, C. Tang: Towards an Understanding of Oversubscription in
Cloud, In Proc. Hot-ICE, p. 1-6, San Jose, USA, 2012

[25] S. M. Ghoreyshi: Energy-Efficient Resource Management of Cloud Data Centers
under Fault Tolerance Constraints, In Proc. IGCC, p. 1-6, Arlington, USA, 2013

[26] C. Brownlees, R. Engle, B. Kelly: A Practical Guide to Volatility Forecasting
through Calm and Storm, In Jour. Risk, 14(2), p. 3-22, 2012

[27] M. N. O. Sadiku, S. M. Musa: Performance Analysis of Computer Networks, In
Routledge, 1, 2013

[28] R. S. Prasad, C. Dovrolis, M. Thottan: Router Buffer Sizing Revisited: The Role of
the Output/Input Capacity Ratio, In Proc. CoNEXT, p. 1-12, New York, USA, 2007

131

BIBLIOGRAPHY

[29] C. Tofallis: A Better Measure of Relative Prediction Accuracy for Model Selection
and Model Estimation, In Journal of Operational Research Society, 66, pp. 1352-
1362, 2014

[30] C. C. Moallemi, M. Saglam: The Cost of Latency in High-Frequency Trading, In
Operations Research, 61, pp. 1070–1086, 2013

[31] D. F. Galletta, Y. Zhang: Human-Computer Interaction and Management Informa-
tion Systems: Applications, In Springer, 1, 2013

[32] A. Parate, M. Bohmer, D. Chu, D. Ganesan, B. M. Marlin: Practical Prediction and
Prefetch for Faster Access to Applications on Mobile phones, In Proc. UbiComp, p.
275-284, Zurich, Switzerland, 2013

[33] T. Zhang, R. Ramakrishnan, M Livny: BIRCH: an efficient data clustering method
for very large databases, In Proc. ACM SIGMOD, p. 103-114, Montreal, Canada,
1996

[34] D. P. Heyman, D. Lucatoni: Modeling Multiple IP Traffic Streams With Rate Limits,
In IEEE/ACM Transactions on Networking, 11(6), pp. 948-958, 2003

[35] M. Ester, H. Kriegel, J. Sander, X. Xu: A density-based algorithm for discovering
clusters in large spatial databases with noise, In Proc. KDD, p. 226-231, Portland,
USA, 1996

[36] P. A. P. Moran: A probability theory of dams and storage systems, In Journal of
Applied Sciences, 5, pp. 116-124, 1954

[37] M. Bertoli, G. Casale, G. Serazzi: JMT: performance engineering tools for system
modeling, In ACM SIGMETRICS Performance Evaluation Review, 36(4), pp. 10-15,
2009

[38] X-12-ARIMA, http://www.census.gov/srd/www/x12a/

[39] B. Ciciani, A. Santoro, P. Romano: Approximate Analytical Models for Networked
Servers Subject to MMPP Arrival Processes, In Proc. IEEE NCA, p. 25-32, Rome,
Italy, 2007

[40] W. Khreich, E. Granger, A. Miri, R. Sabourin: Adaptive ROC-based ensembles of
HMMs applied to anomaly detection, In Journal of Pattern Recognition, 45(1), pp.
208-230, 2012

[41] RFC 2722, https://tools.ietf.org/html/rfc3697

[42] O. Cappe: Online EM Algorithm for Hidden Markov Models, In Journal of Compu-
tational and Graphical Statistics, 20(3), pp. 728-749, 2011

[43] H. Li, M. Muskulus, L. Wolters: Modeling Job Arrivals in a data-intensive Grid, In
Proc. JSSPP Workshop, p. 210-231, St. Malo, France, 2006

132

BIBLIOGRAPHY

[44] J. B. MacQueen: Some Methods for classification and Analysis of Multivariate Ob-
servations, In Proc. BSMSP, p. 281-297, 1967

[45] K. Starbird, J. Maddock, M. Orand, P. Achterman, R. M. Mason: Rumors, False
Flags, and Digital Vigilantes: Misinformation on Twitter after the 2013 Boston
Marathon Bombing, In Proc. iConference, p. 654-662, 2014

[46] T. Bonald, A. Proutiere: Insensitive bandwidth sharing in data networks, In Queue-
ing Systems, 44, pp. 69-100, 2003

[47] W. Khreich, E. Granger, A. Miri, R. Sabourin: A survey of techniques for incremen-
tal learning of HMM parameters, In Elsevier Information Sciences, 197, pp. 105-130,
2012

[48] J. Mizuno, T. Watanabe, K. Ueki, K. Amano, E. Takimoto, A. Maruoka: On-line
Estimation of Hidden Markov Model Parameters, In Proc. Discovery Science, p. 155-
169, Kyoto, Japan, 2000

[49] G. E. P. Box, G. Jenkings: Time series analysis: forecasting and control, Holden-
Day, 1976

[50] G. Casale, E. Z. Zhang, Smirni: KPC-Toolbox: Simple Yet Effective Trace Fitting
Using Markovian Arrival Processes, In Proc. QEST, St. Malo, France, 2008

[51] C. Aykanat, A. Turk, O. Selvitopi, H. Ferhatosmanoglu: Temporal Workload-Aware
Replicated Partitioning for Social Networks, In IEEE Transactions on Knowledge and
Data Engineering, p. 1-14, 2014

[52] R. N. Calheiros, R. Buyya: Energy-Efficient Scheduling of Urgent Bag-of-Tasks
Applications in Clouds through DVFS, In Proc. IEEE CloudCom, p. 342-349, Singa-
pore, 2014

[53] K. Pearson: Contributions to the mathematical theory of evolution, In Philosophical
Transactions of the Royal Society of London, A., pp. 71, 1894

[54] G. E. P. Box: Robustness in the strategy of scientific model building, In Robustness
in Statistics, Academic Press, p. 201-236, 1979

[55] K. Pearson: Notes on regression and inheritance in the case of two parents, In Proc.
Royal Society of London, 58, pp. 240-242, 1895

[56] DevBytes: Efficient Data Transfers - Understanding the Cell Radio,
https://www.youtube.com/watch?v=cSIB2pDvH3E

[57] If You’re Programming A Cell Phone Like A Server You’re Doing It
Wrong, http://highscalability.com/blog/2013/9/18/if-youre-programming-a-cell-phone-like-
a-server-youre-doing.html

133

BIBLIOGRAPHY

[58] Z. Ghahramani, M. Jordan: Factorial hidden Markov models, In Machine Learning,
29, pp. 245-273, 2012

[59] G. Mongillo, S. Deneve: Online Learning with Hidden Markov Models, In Neural
Computation, 20, pp. 1706-1716, 2008

[60] E. Altman, K. Avrachenkov, U. Ayesta: A Survey on Discriminatory Processor Shar-
ing, In Queueing Systems, 53(1), pp. 53-63, 2006

[61] M. B. Priestly: Spectral analysis and time series, Academic Press, 1981

[62] C. Vogler, D. Metaxas: Parallel Hidden Markov Models for American Sign Lan-
guage Recognition, In Proc. ICCV, p. 116-122, Kerkyra, 1999

[63] L. Guo, E. Tan, S. Chen, Z. Xiao, X. Zhang: The Stretched Exponential Distribution
of Internet Media Access Patterns, In Proc. PODC, Toronto, Canada, 2008

[64] P. G. Harrison, N. M. Patel, S. Zertal: Response Time Distribution of Flash Memory
Accesses, In Elsevier Performance Evaluation, 67, pp. 248-259, 2010

[65] J. Ashraf, N. Iqbal, N. S. Khattak, A. M. Zaidi: Speaker Independent Urdu Speech
Recognition Using HMM, In Proc. IEEE INFOS, p. 1-5, 2010

[66] P. G. Harrison, S. K. Harrison, N. M. Patel, S. Zertal: Storage Workload Modeling
by Hidden Markov Models: Application to Flash Memory, In Elsevier Performance
Evaluation, 69, pp. 17-40, 2012

[67] R. D. Malmgren, J. M. Hofman, L. A. N. Amaral, D. Watts: Characterizing Individ-
ual Communication Patterns, In Proc. KDD, p. 226-231, Paris, 2009

[68] C. Burge, S. Karlin: Prediction of complete gene structures in human genomic DNA,
In Journal of Molecular Biology, 268, pp. 78-94, 1997

[69] J. Domanska, A. Domanski, T. Czachorski: A HMM Network Traffic Model, In
Proc. ICNFI, p. 17-20, Istanbul, Turkey, 2012

[70] N. Oliver, A. Garg, E. Horvitz: Layered Representations for Learning and Infer-
ring Office Activity from Multiple Sensory Channels, In Computer Vision and Image
Understanding, 96, pp. 163-180, 2004

[71] L. R. Rabiner, B. H. Juang: An Introduction to Hidden Markov Models, In IEEE
ASSP Magazine, 3, pp. 4-16, 1986

[72] A. J. Smith: Trace Driven Simulation in Research on Computer Architecture and
Operating Systems, In Proc. NDSMC, p. 43-49, Tokyo, Japan, 1994

[73] A. Shye, B. Scholbrock, G. Memik, P. A. Dinda: Characterizing and Modeling User
Activity on Smartphones, Technical Report, Northwest University, 2010

134

BIBLIOGRAPHY

[74] M. Hassan, B. Nath: Stock Market Forecasting Using Hidden Markov Model: A
New Approach, In Proc. IEEE ISDA, p. 192-196, Wroclaw, Poland, 2005

[75] L. de Angelis, L. J. Paas: A dynamic analysis of stock markets using a hidden
Markov model, In Journal of Applied Statistics, 40(8), pp. 1682-1700, 2013

[76] L. R. Rabiner: A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition, In Proc. IEEE, 77(2), pp. 257-286, 1989

[77] The CAIDA UCSD Statistical information for the CAIDA Anonymized Internet
Traces, http://www.caida.org/data/passive/passive trace statistics.xml

[78] G. Zhang, E. Patuwo, M. Hu: Forecasting with Artificial Neural Networks: The
State of The Art, In International Journal of Forecasting, 14(1), pp. 35-62, 1998

[79] C. Liu: cuHMM: a CUDA Implementation of Hidden Markov Model Training and
Classification, http://liuchuan.org/pub/cuHMM.pdf

[80] S. Hymel: Massively Parallel Hidden Markov Models for Wireless Applications,
MSc Thesis, Virginia Polytechnic Institute and State University, 2011

[81] M. Wang, A. Ailamaki, C. Faloutsos: Capturing the spatio-temporal behavior of real
traffic data, In Elsevier Performance Evaluation, 49(1/4), pp. 147-163, 2002

[82] V. Raghavan, G. Steeg, A. Galstyan, A. Tartakovsky: Coupled Hidden Markov Mod-
els For User Activity In Social Networks, In Proc. IEEE ICMEW, p. 1-6, San Jose,
USA, 2013

[83] T. Chis: Hidden Markov Models: Applications to Flash Memory Data and Hospital
Arrival Times, MSci Thesis, Department of Computing, Imperial College London,
2011

[84] M. Zraiaa: Hidden Markov Models: A Continuous-Time Version of the Baum-
Welch Algorithm, MSc Thesis, Department of Computing, Imperial College London,
2010

[85] T. Osogami: Analysis of Multi-Server Systems via Dimensionality Reduction of
Markov Chains, PhD Thesis, Computer Science Department, Carnegie Mellon Uni-
versity, 2005

[86] G. Casale: Building Accurate Workload Models Using Markovian Arrival Pro-
cesses, In ACM SIGMETRICS Tutorial, June, 2011

[87] A. Barbulescu, E. Bautu: A Hybrid Approach for Modeling Financial Time Series,
In International Arab Journal of Information Technology, 9(4), pp. 327-335, 2012

[88] A. Lo: The Adaptive Markets Hypothesis: Market Efficiency from an Evolutionary
Perspective, In Journal of Portfolio Management, 30(1), pp. 15-29, 2004

135

BIBLIOGRAPHY

[89] R. Kalman: A New Approach to Linear Filtering and Prediction Problems, In Jour-
nal of Basic Engineering, 82(1), pp. 35-45, 1960

[90] G. Box, G. M. Jenkins, G. C. Reinsel: Time Series Analysis: Forecasting and Con-
trol, Prentice-Hall, 3, 1994

[91] P. J. Brockwell, R. A. Davis: Introduction to Time Series and Forecasting, Springer,
2, 2010

[92] P. Whittle: Hypothesis Testing in Time Series Analysis, PhD Thesis, University of
Uppsala, 1951

[93] H. Y. Wei, S. C. Tsao, Y. D. Lin: Assessing and Improving TCP Rate Shaping over
Edge Gateways, In IEEE Transactions, 53, pp. 259-75, 2004

[94] C. X. Zhai: A Brief Note on the Hidden Markov Models (HMMs), Department of
Computer Science, University of Illinois at Urbana-Champaign, 2003

[95] M. Ghahramani, A. Thavaneswaran: Financial applications of ARMA models with
GARCH errors, In Journal of Risk Finance, 7(5), pp. 525-543, 2006

[96] J. H. Cochrane: Time Series for Macroeconomics and Finance, Lecture Notes,
Chicago Booth School of Business, 1997

[97] S. W. M. Au-Yeung, U. Harder, E. McCoy, W. J. Knottenbelt: Predicting patient
arrivals to an accident and emergency department, In Emergency Medicine Journal,
26, pp. 241-244, 2009

[98] G. Burghardt, R. Duncan, L. Liu: What You Should Expect From Trend Following,
In Alternative Edge Research Note, 2004

[99] Y. Chou: Statistical Analysis, In Holt International, 17, 1975

[100] S. L. Scott, P. Smyth: The Markov Modulated Poisson Process and Markov Poisson
Cascade with Applications to Web Traffic Data. In Bayesian Statistics, 7, pp. 671-680,
2003

[101] I. Mitrani: Spectral Expansion Solutions for Markov-Modulated Queues, In Net-
work Performance Engineering, 5233, pp. 423-446, 2011

[102] P. Salvador, A. Pacheco, R. Valadas: Modeling IP traffic: Joint Characterization
of Packet Arrivals and Packet Sizes using BMAPs, In Computer Networks, 44, pp.
335-352, 2004

[103] G. Florez-Larrahondo, S. Bridges, E. A. Hansen: Incremental Estimation of Dis-
crete Hidden Markov Models on a New Backward Procedure, In Proc. AAAI, pp.
758-763, Pittsburgh, USA, 2005

[104] X. Zhang, A. Riska, E. Riedel: Characterization of the E-commerce Storage Sub-
system Workload, In Proc. QEST, 5, p. 297-306, St. Malo, France, 2008

136

BIBLIOGRAPHY

[105] J. Curtis: 10 top cloud computing providers for 2014,
http://www.cbronline.com/news/enterprise-it/it-services/10-top-cloud-computing-providers-
for-2014-4401618

[106] RUBiS Implementation, http://rubis.objectweb.org/

[107] On-Line Transaction Processing (OLTP) Benchmark, http://www.tpc.org/tpcc

[108] J. F. Perez, B. Van Houdt: Quasi-birth-and-death processes with restricted transi-
tions and its applications, In Elsevier Performance Evaluation, 68(2), pp. 126-141,
2011

[109] Z. Kumas, K. Keeton, R. Becker-Szendy: I/O Workload Characterization, In Proc.
CAECW, 2001

[110] Transactional Web e-Commerce Benchmark, http://www.tpc.org/tpcw

[111] C. Velazco: Google gives students unlimited cloud storage,
http://www.engadget.com/2014/09/30/google-drive-for-education/

[112] J. Wray: Where’s The Rub: Cloud Computing’s Hidden Costs,
http://www.forbes.com/sites/centurylink/2014/02/27/wheres-the-rub-cloud-computings-
hidden-costs/

[113] R. Misener, C. A. Floudas: ANTIGONE: Algorithms for coNTinuous / Integer
Global Optimization of Nonlinear Equations, In Journal of Global Optimization,
59(2), pp. 503-526, 2014

[114] G. Fayolle, R. Iasnogorodski, I. Mitrani: Sharing a Processor Among Many Job
Classes, In Journal of the ACM, 27(3), pp. 519-532, 1980

[115] AISO.net, http://www.aiso.net/index.html

[116] N. Hohn, D. Veitch, K. Papagiannaki, C. Diot: Bridging router performance and
queueing theory, In Proc. SIGMETRICS/Performance, p. 355-366, New York, USA,
2004

[117] B. Stenger, V. Ramesh, N. Paragois, F. Coetzee, J. Buhmann: Topology Free Hid-
den Markov Models: Application to Background Modeling, In Proc. ICCV, p. 297-
301, Vancouver, Canada, 2001

[118] K. Keeton, A. Veitch, D. Obal, J. Wilkes: I/O Characterization of Commercial
Workloads, In Proc. CAECW, p. 1-9, Toulouse, France, 2000

[119] T. Huria, M. Ceraolo, J. Gazzarri, R. Jackey: High fidelity electrical model with
thermal dependence for characterization and simulation of high power lithium battery
cells, In Proc. IEEE IEVC, p. 1-8, Greenville, USA, 2012

137

BIBLIOGRAPHY

[120] C. Rohner, L. M. Feeney, P. Gunningberg: Evaluating Battery Models in Wireless
Sensor Networks, In Proc. LNCS WWIC, 7889, p. 29-42, St. Petersburg, Russia,
2013

[121] V. Rao, G. Singhal, A. Kumar, N. Navet: Battery model for embedded systems, In
Proc. IEEE VLSID, p. 105-110, Washington DC, USA, 2005

[122] E. G. Coffman Jr., R. R. Muntz, H. Trotter: Waiting Time Distributions for
Processor-Sharing Systems, In Journal of the ACM, 17, pp. 123-130, 1970

[123] B. J. Prabhu, A. Chockalingam, V. Sharma: Performance Analysis of Battery
Power Management Schemes in Wireless Mobile Devices, In Proc. IEEE WCNC,
p. 825-831, Orlando, USA, 2002

[124] G. L. Jones: Open Battery, http://www.openbattery.com/

[125] O. Younes, N. Thomas: Modelling and performance analysis of multi-hop ad hoc
networks, In Elsevier Simulation Modelling Practice and Theory, 38, pp. 69-97, 2013

[126] Battery Design Studio, http://www.batdesign.com/batterydesign.html

[127] J. F. Manwell, J. G. McGowan: Lead acid battery storage model for hybrid energy
systems, In Elsevier Solar Energy, 50, pp. 399-405, 1993

[128] W. J. Stewart: Probability, Markov Chains, Queues, and Simulation: The Mathe-
matical Basis of Performance Modeling. Princeton University Press, pp. 409, 2009

[129] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, P. Bahl: Anatomizing Applica-
tion Performance Differences on Smartphones, In Proc. ACM Mobisys, p. 165-178,
San Francisco, USA, 2010

[130] M. A. Kjaer, M. Kihl, A. Robertsson: Response-Time Control of a Processor-
Sharing System using Virtualised Server Environments, In Proc. IFAC, p. 3612-3618,
Seoul, South Korea, 2008

[131] S. W. M. Au-Yeung, N. J. Dingle, W. J. Knottenbelt: Efficient Approximation of
Response time Densities and Quantiles in Stochastic Models, In Proc. ACM WOSP,
p. 151-155, San Francisco, USA, 2004

[132] P. X. Gao, A. R. Curtis, B. Wong, S. Keshav: It’s not easy being green, In Proc.
ACM SIGCOMM, p. 211-222, Helsinki, Finland, 2012

[133] R. Y. Alawnah, I. Ahmad, E. A. Alrashed: Green and Fair Workload Distribution
in Geographically Distributed Data, In Journal of Green Engineering, 4, pp. 69-98,
2014

[134] L. Massoulie, J. W. Roberts: Bandwidth sharing and admission control for elastic
traffic, In Telecommunication Systems, 15, pp. 185-201, 2000

138

BIBLIOGRAPHY

[135] Simscape, http://www.mathworks.co.uk/products/simscape/

[136] Simulink, http://www.mathworks.co.uk/products/simulink/

[137] BU-808: How to Prolong Lithium-based Batteries,
http://batteryuniversity.com/learn/article/ how to prolong lithium based batteries

[138] T. J. Ott: The Sojourn-Time Distribution in the M/G/1 Queue with Processor Shar-
ing, In Journal of Applied Probability, 21, pp. 360-378, 1984

[139] A. Wierman: Scheduling for Today’s Computer Systems: Bridging Theory and
Practice, School of Computer Science, Carnegie Mellon University, 2007

[140] A. Wierman, M. Harchol-Balter: Classifying Scheduling Policies with Respect to
Higher Moments of Conditional Response Time, In Proc. ACM SIGMETRICS, p.
229-240, Banff, Canada, 2005

[141] S. F. Yashkov: Processor-Sharing Queues: Some Progress In Analysis, In Queue-
ing Systems, 2, pp. 1-17, 1987

[142] A. P. Zwart, O. J. Boxma: Sojourn time asymptotics in the M/G/1 processor sharing
queue, In Queueing Systems, 35, pp. 141-166, 2000

[143] J. W. Roberts: A survey on statistical bandwidth sharing, In Computer Networks,
45, pp. 319-332, 2004

[144] S. Lohr: For Impatient Web Users, an Eye Blink Is Just Too Long
to Wait, http://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-
loading-sites.html

[145] P. Bodik, C. Sutton, A. Fox, D. Patterson, M. Jordan: Response-Time Modeling
for Resource Allocation and Energy-Informed SLAs, Technical Report, University of
California, Berkeley, USA, 2010

[146] M. Curado, R. Veludo, E. Monteiro: Queue Management and QoS Routing for
Traffic Differentiation, In Proc. ICOMP, p. 209-215, Las Vegas, USA, 2005

[147] G. L. Jones, P. G. Harrison, U. Harder, T. Field: Fluid Queue Models of Battery
Life, In Proc. IEEE MASCOTS, p. 278-285, Singapore, 2011

[148] A. Wierman, L. L. H. Andrew, A. Tang: Power-aware speed scaling in proces-
sor sharing systems: Optimality and robustness, In Elsevier Performance Evaluation,
69(12), pp. 601-622, 2012

[149] G. Casale, P. G. Harrison: AutoCAT: Automated Product-Form Solution of
Stochastic Models, In Matrix-Analytic Methods in Stochastic Models, 27, pp. 57-85,
2013

[150] R. N. Queija: Sojourn times in non-homogeneous QBD processes with processor
sharing, In Stochastic Models, 17, pp. 61-92, 2001

139

BIBLIOGRAPHY

[151] H. Masuyama, T. Takine: Sojourn time distribution in a MAP/M/1 processor-
sharing queue, In Operations Research Letters, 31, pp. 406-412, 2003

[152] N. Bansal: Analysis of the M/G/1 processor-sharing queue with bulk arrivals, In
Operations Research Letters, 31, pp. 401-405, 2003

[153] A. Lebrecht: Queueing network models of Zoned RAID system performance, PhD
Thesis, Department of Computing, Imperial College London, 2009

[154] J. Ramberg, B. Schmeiser: An approximate method for generating asymmetrics
random variables, In Communications of the ACM, 17, pp. 78-82, 1974

[155] J. Kim, B. Kim: Sojourn time distribution in the M/M/1 queue with discriminatory
processor-sharing, In Elsevier Performance Evaluation, 58, pp. 341-365, 2004

[156] L. Kleinrock: Time-shared systems: A theoretical treatment, In Journal ACM,
14(2), pp. 242-261, 1967

[157] J. Ramberg, E. Dudewicz, P. Tadikamalla, E. Mykytka: A probability distribution
and its uses in fitting data, In Technometrics, 21, pp. 201-214, 1979

[158] M. Freimer, G. Mudholkar, G. Kollia, C. Lin: A study of the generalized Tukey
Lambda family, In Communications in Statistics, 17, pp. 3547-3567, 1988

[159] A. Lakhany, H. Mausser: Estimating the parameters of the General Lambda Distri-
bution, In ALGO Research Quarterly, 3, pp. 47-58, 2000

[160] A. R. Ward, W. Whitt: Predicting Response Times in Processor-Sharing Queues,
In Proc. Fields Institute Conference on Communication Networks, 2000.

[161] F. Kelly: Stochastic Networks and Reversibility, In Wiley, 1, 1979

[162] K. Avrachenkov, U. Ayesta, P. Brown, R. Nunez-Queija: Discriminatory Processor
Sharing Revisited, In Proc. IEEE Infocom, p. 784-795, Miami, USA, 2005

[163] Twitter Usage Statistics, http://www.internetlivestats.com/twitter-statistics/# trend

[164] Embedded Microprocessor Benchmark Consortium (EEMBC), http://eembc.org/

[165] A. Wierman: Scheduling for Today’s Computer Systems: Bridging Theory and
Practice, PhD Thesis, School of Computer Science, Carnegie Mellon University, 2007

[166] AndEBench-Pro, http://eembc.org/andebench/index pro.php

[167] M. Taboga: F distribution, http://www.statlect.com/F distribution.htm

[168] S. Aalto, U. Ayesta, S. Borst, V. Misra, R. Nunez-Queija: Beyond Processor Shar-
ing, In ACM SIGMETRICS Performance Evaluation Review, 34, pp. 36-43, 2007

[169] A. A. Kherani, A. Kumar: On Processor Sharing as a Model for TCP Controlled
HTTP-like Transfers, In Proc. IEEE ICC, p. 2256-2260, Paris, France, 2004

140

BIBLIOGRAPHY

[170] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, N. McKeown: Processor Sharing
Flows in the Internet, In Proc. LNCS IWQoS, 3552, p. 271-285, Passau, Germany,
2005

[171] N. L. Johnson, S. Kotz, N. Balakrishnan: Continuous Univariate Distributions,
Wiley, 2, 1995

[172] P. Hande, S. Zhang, M. Chiang: Distributed Rate Allocation for Inelastic Flows, In
IEEE/ACM Transactions on Networking, 15(6), pp. 1240-1253, 2007

[173] A. Moitra, G. Valiant: Settling the Polynomial Learnability of Mixtures of Gaus-
sians, In Proc. IEEE FOCS, p. 93-102, Las Vegas, USA, 2010

[174] W. Wei, B. Wang, D. Towsley: Continuous-time hidden Markov models for net-
work performance evaluation, In Elsevier Performance Evaluation, 49(1/4), pp. 129-
146, 2002

[175] K. Pearson: Mathematical Contributions to the Theory of Evolution XIX. Second
Supplement to a Memoir on Skew Variation, In Philosophical Transactions of the
Royal Society of London 216, pp. 429-457, 1916

[176] Y. Park, J. V. Chen: Acceptance and adoption of the innovative use of smartphone,
In Industrial Management and Data Systems, 107, pp. 1349-1365, 2007

[177] M. Huilgol: Xiaomi aims to sell 100 million smartphones in 2015,
http://www.bgr.in/news/xiaomi-aims-to-sell-100-million-smartphones-in-2015/

[178] M. Moore: Huawei Looks To Shift 100 Million Smartphones in 2015,
http://www.techweekeurope.co.uk/mobility/huawei-100m-smartphones-2015-160308

[179] I. Macleod: Two-fifths of online sales to be via smartphones and
tablets by 2018, http://www.thedrum.com/news/2014/06/23/two-fifths-online-sales-be-
smartphones-and-tablets-2018

[180] BU-204: Lithium-based batteries,
http://batteryuniversity.com/learn/article/lithium based batteries

[181] PSIM Tutorial: How To Use Lithium-Ion Battery Model,
http://powersimtech.com/wp-content/uploads/2013/04/Tutorial-How-to-use-Lithium-
Ion-battery-model.pdf

[182] J. P. Cohen: Cell Radio ShutOff,
https://play.google.com/store/apps/details?id=the.radioshutoff

[183] P. Sawers: Samsung drives $17M investment round in Seeo to help build bet-
ter batteries for electric cars, http://venturebeat.com/2014/12/09/samsung-drives-17m-
investment-round-to-help-build-better-batteries-for-electric-cars/

141

Appendix A

A.1 Proof of HMM properties

We prove useful properties of HMM equations introduced in the background chapter.
Such mathematical properties prove the equations used as part of the Baum-Welch algo-
rithm. Note, we use the shorthand term Ot to represent Ot = ot and, similarly, Ct replaces
Ct = ct.

Property 1 For all integers t and l such that 1 ≤ t ≤ l ≤ T , we have:

P(Ol, . . . ,OT | Ct, . . . ,CT) = P(Ol, . . . ,OT | Cl, . . . ,CT) (A.1)

Proof From the definition of conditional probability, we re-write the LHS as:

P(Ol, . . . ,OT | Ct, . . . ,CT)

=
1

P(Ct, . . . ,CT)

∑
c1,...,ct−1

P(Ol, . . . ,OT | C1, . . . ,CT)P(C1, . . . ,CT)

=
1

P(Ct, . . . ,CT)

∑
c1,...,ct−1

P(Ol | Cl) . . . P(OT | CT)P(C1, . . . ,CT)

=
1

P(Ct, . . . ,CT)
P(Ol | Cl) . . . P(OT | CT)

∑
c1,...,ct−1

P(C1, . . . ,CT)

=
1

P(Ct, . . . ,CT)
P(Ol | Cl) . . . P(OT | CT)

[
P(Ct, . . . ,CT)

]
= P(Ol, . . . ,OT | Cl, . . . ,CT)

which is the RHS as required. �

Property 2 For t = 1, 2, . . . ,T , we have:

P(O1, . . . ,OT | Ct) = P(O1 . . . ,Ot | Ct)P(Ot+1, . . . ,OT | Ct) (A.2)

Proof Using the mutual independence of O1, . . . ,OT , given C1, . . . ,CT , the LHS is:

142

A.2. MATHEMATICA ALGORITHM M/M/1-DPS

P(O1, . . . ,OT | Ct)

=
1

P(Ct)

∑
c1,...,ct−1

∑
ct+1,...,cT

P(C1, . . . ,CT)P(O1, . . . ,Ot | C1, . . . ,CT)P(Ot+1, . . . ,OT | C1, . . . ,CT)

=
1

P(Ct)

∑
c1,...,ct−1

∑
ct+1,...,cT

P(O1, . . . ,Ot,C1, . . . ,CT)P(Ot+1, . . . ,OT | C1, . . . ,CT)

Using equation (A.1), we obtain:

=
1

P(Ct)

∑
c1,...,ct−1

∑
ct+1,...,cT

P(O1, . . . ,Ot,C1, . . . ,CT)P(Ot+1, . . . ,OT | Ct, . . . ,CT)

Summing over {ct+1, . . . , cT }, we obtain:

=
1

P(Ct)

∑
c1,...,ct−1

P(O1, . . . ,Ot,C1, . . . ,CT)P(Ot+1, . . . ,OT | Ct)

Summing over {c1, . . . , ct−1} gives us:

=
1

P(Ct)
P(O1, . . . ,Ot,Ct)P(Ot+1, . . . ,OT | Ct)

= P(O1, . . . ,Ot | Ct)P(Ot+1, . . . ,OT | Ct)

which is the RHS as required. �

Property 3 For t = 1, 2, . . . ,T , we have:

P(Ot, . . . ,OT | Ct) = P(Ot | Ct)P(Ot+1, . . . ,OT | Ct) (A.3)

Proof We sum the RHS expression of equation (A.2) over the set {o1, . . . , ot−1} and obtain:

P(Ot, . . . ,OT | Ct) =
∑

o1,...,ot−1

P(O1, . . . ,Ot | Ct)P(Ot+1, . . . ,OT | Ct)

= P(Ot | Ct)P(Ot+1, . . . ,OT | Ct)

which is the RHS as required. �

A.2 Mathematica algorithm M/M/1-DPS

An example screenshot of the Mathematica algorithm is given in figure A.1. This numer-
ical algorithm initialises different weights and rates for two job classes and outputs four
response time moments (sufficient for the purpose of approximating density functions),
but easily extends to higher moments as it is fast in its numerical iterations. The pseudo-
code along with explanations on how the algorithm was derived is given in algorithm
4.

143

A.3. PARAMETRISATION OF MMPP(4)/M/1-DPS QUEUE

Figure A.1: Mathematica code for response time moments in M/M/1-DPS queues [8].

A.3 Parametrisation of MMPP(4)/M/1-DPS queue
For the MMPP(4)/M/1-DPS model, the class 1 generator matrix has non-cyclic rates given
by: q(1)

13 = 1713.3, q(1)
24 = 26368.9, q(1)

31 = 1693.7, q(1)
32 = 19.6, q(1)

41 = 2573.7, q(1)
42 =

23796.3, and q(1)
12 = q(1)

14 = q(1)
21 = q(1)

23 = q(1)
34 = q(1)

43 = 0. Similarly, the class 2 generator
matrix rates are: q(2)

12 = q(2)
34 = 0.04, q(2)

13 = 36.5, q(2)
14 = 0.025, q(2)

21 = q(2)
43 = 5.62, q(2)

23 = 3.51,
q(2)

24 = 1338.3, q(2)
31 = 36.45, q(2)

32 = 0.063, q(2)
41 = 9.0, and q(2)

42 = 1333. These MMPP rates

144

A.4. MAP-FITTING WITH KPC-TOOLBOX

relate directly to state transition probabilities p(s)
i for i = 1, . . . , 4, and s = 1, 2, which are

defined as:

p(s)
i =

∑4
j=1,i, j q(s)

ji∑4
j=1,i, j q(s)

ji +
∑4

j=1,i, j q(s)
ij

(A.4)

Further, it is possible to extend this technique beyond four MMPP phases. Typically, four
phases are sufficient to capture the burstiness of the job arrival process whilst maintaining
the computational complexity of training the model relatively low.

A.4 MAP-fitting with KPC-toolbox
We summarise the steps for fitting a MAP with the KPC-toolbox as follows:

1. Pre-process the timestamped packet traces collected at routers to obtain traces of
packet inter-arrival times (in seconds). Then, calculate moments, autocorrelations
and bicovariances from the traces using the KPC-toolbox.

2. Perform order selection for the MAP during pre-fitting to select the number of
states. Using trace descriptors, run KPC-based fitting that minimises an objective
cost function whilst matching autocorrelation.

3. Output the matrices D0 and D1. Compare original and MAP-fitted results of mo-
ments (up to three) and autocorrelation (for ten different lags). If matrix D1 is
diagonal, transform MAP(D0,D1) into an MMPP with the same order.

145

	Introduction
	Motivation
	Objectives
	Adaptive workload models
	Analytical queueing models

	Thesis outline and contributions
	Related publications

	Background
	Introduction
	Unsupervised learning models
	Model selection
	Clustering
	Method of moments
	Hidden Markov Models
	Normalisation for underflow
	HMM applications
	MAPs and MMPPs

	Queueing models
	Scheduling
	Type of queueing systems
	PS applications
	Response times
	Response time in PS queues
	Queueing with MMPPs
	Response time in MMPP/M/1 queues

	Performance-energy applications
	Measuring smartphones
	Data transmission and cellular radio modes
	Battery guidelines
	Existing battery models
	Modelling data centres

	Adaptive Workload Models
	Introduction
	Incremental HMM
	Motivation
	Adaptive Baum-Welch algorithm
	IncHMM simulation
	Results
	Related work
	Conclusion and future work

	Sliding HMM
	Motivation
	Simple moving average
	Sliding Baum-Welch algorithm
	SlidHMM convergence rates
	SlidHMM simulation
	Results
	Conclusion and future work

	Multi-dimensional HMM
	Motivation
	MultiHMM algorithm
	MultiHMM simulation
	Results
	MultiHMM advantages
	Related work
	Conclusion and future work

	Online HMM
	Motivation
	OnlineHMM simulation
	Results
	Conclusion and future work

	Queueing Models
	Introduction
	M/M/1-EPS queues
	Motivation
	EPS queue assumptions
	Obtaining response time moments for EPS queues
	Kim and Kim's response time moments for EPS queues
	Simulating M/M/1-EPS response time moments
	Conclusion and future work

	M/M/1-DPS queues
	Motivation
	Moment-generating algorithm for DPS queues
	Case study- M/M/1-DPS analytical response times
	Numerical algorithm for higher response time moments
	Case study- M/M/1-DPS analytical and simulated moments
	Conclusion and future work

	MMPP/M/1-DPS queues
	Motivation
	Weighted superposition for DPS queues
	Response time density
	Data sets
	Results
	Moments for MMPP(2)/M/1-EPS queue
	Moments for MMPP(2)/M/1-DPS queue
	Moments for MMPP(4)/M/1-DPS queue
	Conclusion and future work

	Applications
	Introduction
	Financial forecasting strategy
	Motivation
	Collecting time-series
	FTSE and NASDAQ traces
	Conclusion

	Performance-energy modelling in smartphones
	Motivation
	Data set
	Strategy 1: Power consumption model
	Strategy 2: Performance-energy trade-off
	Conclusion and future work

	Traffic flow model
	Motivation
	UDP flow-level model
	Dynamic flows
	Dynamic allocation strategy
	Results
	Conclusion

	Conclusion
	Summary of achievements
	Future work
	Evaluation
	Adaptive workload models
	Queueing models

	Appendix
	Proof of HMM properties
	Mathematica algorithm M/M/1-DPS
	Parametrisation of MMPP(4)/M/1-DPS queue
	MAP-fitting with KPC-toolbox

