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ABSTRACT

Multiple source localization is an important task in acoustic

signal processing with applications including dereverber-

ation, source separation, source tracking and environment

mapping. When using spherical microphone arrays, it has

been previously shown that Pseudo-intensity Vectors (PIV),

and Augmented Intensity Vectors (AIV), are an effective ap-

proach for direction of arrival estimation of a sound source.

In this paper, we evaluate AIV-based localization in acoustic

scenarios involving multiple sound sources. Simulations are

conducted where the number of sources, their angular sepa-

ration and the reverberation time of the room are varied. The

results indicate that AIV outperforms PIV and Steered Re-

sponse Power (SRP) with an average accuracy between 5 and

10 degrees for sources with angular separation of 30 degrees

or more. AIV also shows better robustness to reverberation

time than PIV and SRP.

Index Terms— spherical microphone arrays, localiza-

tion, direction-of-arrival estimation, spherical harmonic, in-

tensity vector

1. INTRODUCTION

Direction-of-arrival (DOA) estimation is an important task

in acoustic signal processing and is used in spatial filter-

ing, source separation, source tracking, environment map-

ping, dereverberation, speech enhancement and robot au-

dition [1, 2]. Spherical Microphone Arrays (SMAs) have

recently become a popular tool in speech acquisition due

to their ability to analyse sound in three-dimension [3, 4].

Unlike linear, planar and circular microphone arrays, SMAs

have no orientation due to symmetry and therefore provide

direction-independent resolution and accuracy. In this paper,

we address multiple source localization using SMAs.

A range of methods for source localization using SMAs

has been studied over the past decades and can be categorised

into four groups of steered response power methods [2, 5–7],
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subspace methods [8, 9], maximum likelihood methods [10,

11], and intensity vector-based methods [12, 13].

The pseudo-intensity vector method is an attractive DOA

estimator for SMAs as it is fast to compute and provides good

localization accuracy for a single source [12]. However, as

with most localization algorithms, as the level of reverbera-

tion and the number of sound sources increase, localization

accuracy is reduced [14]. On the other hand, our recently

proposed augmented intensity vector, AIV, method [15], has

potential for better localization accuracy compared to PIV for

a single source. This paper evaluates the performance of AIV

method for multiple sources in different conditions of var-

ious numbers of sources, various reverberation times (RTs)

and various source separations.

This paper is structured as follows. Section 2 briefly

reviews the background theory of spherical harmonics, PIV

and SRP. Section 3 introduces our previously proposed AIV

method. Section 4 explains the smoothing of spatial spectrum

obtained from intensity vectors, and finally in Section 5 we

evaluate the accuracy and robustness of AIV compared to

PIV and SRP in the presence of multiple sources.

2. TECHNICAL BACKGROUND

In this section, we briefly review the Spherical Harmonic Do-

main (SHD) representation for SMA signals and PIV-based

DOA estimation. We also present SRP in the SHD.

2.1. Spherical Harmonics

Consider a point (r,Ω) = (r, θ, ϕ) in spherical coordinates

with range r, inclination θ and azimuth ϕ. Let p (k, r,Ω)
denote the sound pressure field at this point where k is the

wavenumber. The Spherical Harmonic Transform (SHT) of

the soundfield is [16]

plm(k, r) =

ˆ

Ω∈S2

p(k, r,Ω)Y ∗
lm (Ω) dΩ, (1)

where
´

Ω∈S2 dΩ =
´ 2π

0

´ π

0
sin (θ) dθdϕ, and (.)

∗
denotes the

complex conjugate. The spherical harmonic basis function

Ylm (Ω) of order l and degree m (satisfying |m| ≤ l) is given



by [16]

Ylm (Ω) =

√

(2l + 1)

4π

(l −m)!

(l +m)!
Plm (cos (θ)) eimϕ, (2)

where Plm is the associated Legendre function and i2 = −1.

The eigenbeams or planewave decomposition of the

soundfield are obtained by compensating for the mode strength

of the SMA, which depends on both its radius and its config-

uration (open or rigid sphere), according to

alm(k) =
plm(k, r)

bl(kr)
. (3)

The mode strength for a rigid SMA, as used in our experi-

mental study, is given by [16]

bl(kr) = 4πil

[

jl(kr) −
j
′

l (kr)

h
(2)′

l (kr)
h
(2)
l (kr)

]

, (4)

where jl is the spherical Bessel function of order l, h
(2)
l is the

spherical Hankel function of the second kind and of order l,

and (.)
′

denotes the first derivative with respect to argument.

2.2. Pseudo-intensity vectors

The pseudo-intensity vector was proposed in [12] and is an

approximation of the active intensity vector. It is calculated

from the first order eigenbeams according to

I(k) =
1
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ℜ
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, (5)

where

Dν(k) =

1
∑

m=−1

Y1m(φν)a1m(k), ν ∈ {x, y, z} (6)

are dipoles steered in the opposite direction of Cartesian axes,

given by φx = (π/2, π), φy = (π/2,−π/2) and φz = (π, 0).
The DOA unit vector u(k) is given by

u(k) = − I(k)

‖I(k)‖ , (7)

where ‖.‖ indicates a vector’s ℓ2-norm.

2.3. Steered Response Power in the Spherical Harmonic

Domain

Steered Response Power [17] is used here as a baseline

method for DOA estimation. In SRP, a beam with an arbitrary

directivity pattern is used to scan different look directions to

find the source directions as directions corresponding to the

highest powers. Beamforming in SHD has been studied in [2]

for example, in which the plane wave decomposition (PWD)

beamformer was employed. The output of the beamformer

steered into an arbitrary look direction Ω is given as [18]

y(Ω) =
∑

k

|
Ld
∑

l=0

l
∑

m=−l

alm(k)Ylm(Ω) |2, (8)

where Ld is the maximum order used in the beamforming.

3. AUGMENTED INTENSITY VECTORS

In this section we introduce our recently proposed method,

AIV [15], which employs higher order (l > 1) eigenbeams

to improve the accuracy of DOAs obtained from PIVs. The

spatial frequency of the spherical harmonic basis functions

increases with the order and so incorporating the information

from higher order eigenbeams allows an increased spatial res-

olution to be obtained.

Consider a plane wave S(k) = α(k)eiβ(k) with amplitude

α(k), phase β(k), and DOA Ωu = (θu, ϕu) arriving from a

single source in the far-field. The SHT of this plane wave is

given by

alm(k) = S(k)Y ∗
lm(Ωu) + nlm(k), (9)

where nlm(k) is a residual due to noise and reverberation.

Approximating S(k) =
√
4πa00(k), by substituting (2)

into (9) for l = 0 in a noise-free case, AIV aims to minimise

the cost function

J(k,Ω) =

L
∑

l=0

l
∑

m=−l

| alm(k)−
√
4πa00(k)Y

∗
lm(Ω) |2,

(10)

whereL is the maximum spherical harmonic order considered

in the optimization.

The optimization is done in the form of a grid search

across a grid of discrete look directions {ΩM} within a search

window of size △ΩM = (△θM ,△ϕM ) centred on the initial

DOA from the PIV. The optimized DOA Ωs(k) is the direc-

tion in which the cost function J(k,Ωs) is minimised

Ωs(k) = argmin
Ω

J(k,Ω), Ω ∈ {ΩM} , (11)

which is then converted into Cartesian coordinates to form the

optimized DOA unit vector us(k). The Augmented Intensity

Vectors Is(k) are then formed using (7) and the initial inten-

sity norm ‖I(k)‖ as

Is(k) = −us(k)‖I(k)‖. (12)

4. SMOOTHING OF SPATIAL SPECTRUM

The spatial spectrum is achieved by making a 2D histogram

(inclination vs azimuth) using the quantized directions of the



intensity vectors. Due to noisy observations and the presence

of multiple irregular peaks in the 2D histogram, we employ

smoothing on the spatial spectrum. In our smoothing process,

a spatial window is centred at each spatial sample, which is

then replaced by the weighted average of the values within the

smoothing window. We employ a Gaussian smoothing kernel

centred on the look direction Ω expressed as

Kθi,ϕi
(Ω) =

1

σ
√
2π

exp

(

−
6 (Ω,Ωθi,ϕi

)2

2σ2

)

, (13)

where Ωθi,ϕi
is the direction of inclination θi and azimuth ϕi,

and σ denotes the standard deviation, which is chosen em-

pirically as defined in Section 5. The kernel is truncated by

removing the entries with K < 0.001.

5. EVALUATION

5.1. Accuracy

We calculate the DOA estimation error εuo,us
(in degrees)

between a true DOA unit vector uo and an estimated DOA

unit vector us as

εuo,us
= cos−1

(

u
T
o us

)

. (14)

For multiple sources and equal number of estimated DOAs,

the average DOA estimation error depends on how we asso-

ciate the true DOAs and the estimated DOAs in (14). The

average errors for all possible sets of pairs are calculated us-

ing (14), and the minimum average error is chosen as the final

DOA estimation error.

Three evaluations are conducted using a simulated room

environment and a SMA. The Acoustic Impulse Responses

(AIRs) of a 32-element rigid spherical microphone array

were simulated using Spherical Microphone arrays Impulse

Response Generator (SMIRgen) [19] based on Allen &

Berkley’s image method [20]. The array with radius 4.2
cm is placed at (2.54, 2.55, 4.48) m in a 5 × 4 × 6 m

shoebox room. Ns number of sources are distributed on a

circle of radius 1 m around the SMA with the same height

as the centre of the array. In each trial, the azimuth of the

first source is chosen randomly from a uniform distribution

around the sphere and the subsequent sources are placed at

regularly spaced intervals △φs (the values of Ns and △φs

are provided later in each experiment as they differ in each

experiment). The source signals consist of different ane-

choic speech signals randomly selected for each trial from

the APLAWD database [21]. The active level of each speech

source according to ITU-T P.56 [22], as measured at p00,

is set to be equal across all trials. Spatio-temporally white

Gaussian noise is added to the microphone signals to produce

a signal to incoherent noise ratio (iSNR) of 25 dB at p00 for

each source.

A sampling frequency of 8 kHz was used with frame

length of 4 ms and 50% overlapping of time frames. PIV and

Fig. 1. The effect of T60. The boxes for SRPs are out

of the y-axis limit as SRP2 and SRP3 have medians of

{45.6, 44.5 , 64.0} and {46.5, 44.7 , 53.0} degrees respec-

tively for T60 = {0.2, 0.4 , 0.6} s.

two versions of AIV and PWD-SRP are used with different

orders L = {2, 3} (respectively referred as AIV2 and AIV3,

and SRP2 and SRP3) in (10) and (8). SRP is steered over

a search grid of 181 × 360 degrees (inclination × azimuth)

while AIV has a search window of size 10 × 10 degrees in

(11), centred on an initial direction indicated, in this example,

by PIV. The smoothing kernel in (13) has σ = 4 degrees.

In experiment 1 the effect of Reverberation Time (RT) is

evaluated for 2 sources with 45 degrees separation. Figure

1 shows the distribution of errors (100 trials per test con-

dition) for T60 = {0.2, 0.4 , 0.6} s. The boxes show the

mean as the black dot, median as the red horizontal line, up-

per and the lower quartiles, and the whiskers extend to 1.5
times the interquartile range based on Monte Carlo simula-

tions. The median errors are {2.5, 3.8 , 5.6} degrees for PIV,

{1.2, 1.8 , 2.2} degrees for AIV3, and {46.5, 44.6 , 53} de-

grees for SRP3 respectively for all RTs. We can see the clear

improvement in AIV compared to PIV as the means, medians

and the interquartile ranges are reduced in all RTs.

In experiment 2 the effect of angular separation of two

Fig. 2. The effect of separation angle



Fig. 3. The effect of number of sources and separation angle

sources is evaluated for a moderate T60 = 0.4 s. Figure 2

shows the distribution of errors over 100 trials for △φs =
{15, 30 , 45 , 90 , 135 , 180} degrees. For clarity of display,

the results are split in two plots. For separations above 30
degrees, AIVs significantly outperform all methods with the

medians around 2 degrees (±0.5 degree) while PIV and SRPs

have very high variations on median as they change from 26
to 3 degrees and 72 to 2 degrees respectively. For the case of

△φs = 15 degrees we observe poor accuracy for all methods

although AIVs still performs most accurately.

In experiment 3 the effect of angular separation and num-

ber of sources is evaluated for T60 = 0.4 s. We define the

’Success Rate’ of a method as the number of times (in %) that

method successfully estimate the correct number of DOAs

corresponding to the number of sources. A failure is when the

method’s spatial spectrum has fewer peaks than the number of

sources. Fig. 3 shows the success rate and the average error of

100 trials as a function of △φs = {15, 30 , 45 , 90 , 135 , 180}
degrees for Ns = {2, 3 , 4 , 5}. The intensity based methods

(PIV and AIVs) have full success in estimation whereas SRPs

start to fail as the number of sources increases from 3 to 5 and

the separation reduces from 45 to 15 degrees especially for

five close sources, where SRPs rarely or never succeed. For

separations above 30 degrees, AIVs significantly outperform

all methods with average error of {5, 7, 10, 12} degrees re-

spectively for {2, 3 , 4 , 5} sources whereas PIV has average

error of {8, 18, 20, 23} degrees respectively.

5.2. Computation Complexity

In this section we discuss the number of computations re-

quired in each method for a single TF-bin in terms of the

number of real multiplications. Note that the multiplication

of two complex numbers is counted as four real multiplica-

tion while | . |2 is counted as two real multiplications. We

do not include the number of multiplications in (2) as we pre-

calculate and store all the required Ylm (Ω).

For PIV, we have 48 (3× 3× 4+ 3× 4) operations where

the numbers in parentheses respectively represent the number

of axes, harmonic modes and the real multiplications in (6)

and the number of axes and the real multiplications in (5).

For AIV using (10), we have 48+ (L+1)2 × (2+ 4+2)
operations for a single look direction where the numbers re-

spectively correspond to the PIV, number of eigenbeams up to

the order L, a real-complex followed by a complex-complex

multiplications, and squared magnitude.

For PWD-SRP using (8), we have (Ld+1)2×4+2 oper-

ations for a single look direction where the numbers respec-

tively correspond to the number of eigenbeams up to the order

Ld, a complex-complex multiplication followed by a squared

magnitude. For a full-grid of 181× 360, PWD-SRP has mil-

lions of operations per TF-bin. This results in significantly

higher computation complexity for PWD-SRP compared to

AIV and PIV.

6. CONCLUSIONS

We presented an evaluation of AIV-based DOA estimation for

multiple source scenarios. The results show that AIV clearly

outperforms the previous PIV-based method, and the baseline

method PWD-SRP in different reverberation times, source

separation angles and the number of sources with noticeably

improved robustness. For extremely low separation of 15 de-

grees all methods fail to accurately localize the sources. For

angular separation of 30 degrees and above, AIV has average

accuracy of 5 to 10 degrees while other methods have highly

varying accuracy of worse than 10 degrees. The PWD-SRP

method is unable to successfully localize all sources for three

or more sources if they are closer than 45 degrees. The results

also show that the third-order AIV estimator does not provide

a noticeable advantage over the second-order AIV estimator

for multiple source scenarios. It is shown that AIV has higher

accuracy and robustness compared to a baseline PWD-SRP

while using the same eigenbeams.
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