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Abstract—Zero-delay transmission of a Gaussian source over
an additive white Gaussian noise (AWGN) channel is considered
in the presence of an additive Gaussian interference signal. The
mean squared error (MSE) distortion is minimized under an
average power constraint assuming that the interference signal is
known at the transmitter. Optimality of simple linear transmission
does not hold in this setting due to the presence of the known inter-
ference signal. While the optimal encoder-decoder pair remains
an open problem, various non-linear transmission schemes are
proposed in this paper. In particular, interference concentration
(ICO) and one-dimensional lattice (1DL) strategies, using both
uniform and non-uniform quantization of the interference signal,
are studied. It is shown that, in contrast to typical scalar
quantization of Gaussian sources, a non-uniform quantizer, whose
quantization intervals become smaller as we go further from zero,
improves the performance. Given that the optimal decoder is
the minimum MSE (MMSE) estimator, a necessary condition for
the optimality of the encoder is derived, and the numerically
optimized encoder (NOE) satisfying this condition is obtained.
Based on the numerical results, it is shown that 1DL with non-
uniform quantization performs closer (compared to the other
schemes) to the numerically optimized encoder while requiring
significantly lower complexity.

I. INTRODUCTION

While the spectral efficiency of communication systems
has improved significantly within the last decade, latency
remains as the bottleneck for many applications. In many
emerging applications, such as those involving cyber-physical
systems (CPS) or wireless sensor networks (WSN), real-time
interaction among distributed autonomous agents is crucial. A
communication link is called real-time when the communi-
cation time is lower than the time constants of the applica-
tion. Such applications impose significantly lower round-trip
latency requirements compared to what is achievable today. For
example, in many applications involving CPSs, local system
measurements are reported by sensor nodes via noisy links
to other network agents. The need to have near real-time
monitoring and control of the underlying physical system
imposes strict delay constraints on the communication links.
In such a scenario, utilizing long block codes for source
compression or channel coding is not viable due to the stringent
delay constraint. Similarly, when tactile control of an object
and hearing/ seeing its reaction through a wireless connection
is desired, a reaction latency on the order of milliseconds will
be imposed on the communication link [1]. For example, for a
typical 1 m/s speed of a finger on a touch screen, the reaction
time for the screen is expected to be approximately 1ms in
order to achieve an unnoticeable displacement of 1mm between
the object to be moved and the finger [2].

Figure 1. Zero-delay transmission of a Gaussian source over an AWGN
channel in the presence of AWG interference known at the transmitter.

We consider zero-delay transmission of system parameters
over wireless channels, that is, a single source sample needs
to be transmitted over a single use of the channel. It is well-
known that zero-delay linear encoding (uncoded transmission)
of a Gaussian source over an additive white Gaussian noise
(AWGN) channel does not result in any performance loss in
terms of the end-to-end mean-squared error (MSE) distortion
[3]. However, this is not the case if there is bandwidth
mismatch between the source and channel [4]–[6], if there is
correlated source side information at the receiver [7], or if there
is a peak power constraint at the transmitter [8]. Characteri-
zation of the optimal transmission strategy is challenging in
general, and remains an open problem in most cases.

In this paper we consider zero-delay transmission of a
Gaussian source over an AWGN channel in the presence of an
additive white Gaussian (AWG) interference signal causally
known at the transmitter. This is known as the dirty-tape
channel. Known interference at the transmitter can be used to
model communication systems which use superposition coding
to transmit multiple data streams simultaneously [9]–[12]. For
the superposed data streams, the codewords corresponding to
lower layers act as known interference. The capacity of the
dirty-tape channel was first studied by Shannon [13], who
characterized the capacity using the so-called Shannon strate-
gies. The channel model when the interference is known non-
causally at the transmitter is known as the dirty-paper channel.
The capacity of the dirty-paper channel was characterized by
Gelfand and Pinsker in [14], and it was later shown in [15]
that, in the Gaussian setting, the capacity of the dirty-paper
channel is equal to the one without interference.

Despite Shannon’s single-letter characterization, there is no
closed-form capacity expression for the dirty-tape channel
even in the Gaussian setting. Willems in [16] proposed the
interference concentration (ICO) strategy for the Gaussian
dirty-tape channel. The basic idea of this scheme is cancelling
the interference by giving a structure to it. Willems showed
that, it is possible to partially cancel the interference at the
receiver by quantizing it at the encoder, and by proper power
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allocation between the interference quantization error and the
channel input signal, which is uniformly distributed over the
quantization region. More recently, Erez et al. [17] proposed
inflated lattice strategies for the Gaussian dirty-tape channel in
[16]. They show that the rate loss of their coding scheme with
respect to no interference, which is shown to be zero in the
case of dirty-paper channel [15], is not more than 0.254 bits
per channel use in the asymptotic high signal to noise ratio
(SNR) regime. On the other hand, it is shown in [18] that
the ICO scheme of Willems performs better than the inflated
lattice based coding scheme in the low SNR regime. In [19],
optimal mappings based on an iterative algorithm are proposed.
Based on the numerical results in [19], it is shown that the
numerically obtained encoder performs well compared to the
scheme proposed in [17].

All of the above mentioned work study the channel coding
problem whereas we are interested in zero-delay joint source
channel coding (JSCC) over the dirty-tape channel. Note that
Shannon’s source-channel separation theorem [20] does not
apply to zero-delay JSCC problems; and hence, we cannot
directly use the above channel coding results to evaluate the
MSE performance. A generalization of this problem is studied
in [21], which further allows correlation between the source
and the interference signals, and bandwidth mismatch between
the source and the channel. While [21] focuses on deriving a
numerically optimized encoder and decoder pair, our goal here
is to develop low-complexity joint source-channel transmission
techniques motivated by the channel coding strategies proposed
in [16] and [17]. Expanding upon our previous work in [22],
we consider ICO and one-dimensional lattice (1DL) schemes
combined with nonlinear companders. While characterizing the
optimal performance is elusive for this problem, we present
numerical results comparing the performance of the proposed
strategies, and provide some heuristics to improve them. In
particular, we propose a counter-intuitive non-uniform quanti-
zation scheme in conjunction with the ICO and 1DL schemes,
which increases the average quantization error, and hence, the
power used for interference concentration, but leads to a lower
MSE since the transmitter can then use a compander with a
larger dynamical range for the more likely interference states.

Similarly to [21], we also characterize the necessary condi-
tion for the optimality of an encoder mapping, and obtain a
numerically optimized encoder (NOE) using steepest descent
to search for an encoder that satisfies the derived necessary
condition. While the MSE achieved by NOE outperforms the
other proposed schemes, it is demanding computationally. It
is shown that non-uniform quantization in conjunction with
1DL performs closer (compared to the other schemes) to the
NOE, while the number of parameters to be optimized for the
1DL scheme (with non-uniform quantizer) is significantly less
than NOE; and hence, it has significantly less computational
complexity.

The rest of the paper is organized as follows: In Section
II we introduce the system model. In Section III zero-delay
transmission schemes under average power constraint are intro-
duced. In Section IV, we characterize the necessary condition

for the optimal encoder, and introduce NOE. In Section V, we
compare all the proposed transmission schemes numerically,
and in Section VI we conclude the paper.

II. SYSTEM MODEL

We consider the transmission of a Gaussian source over an
AWGN channel in the presence of an AWG interference signal,
which is known at the transmitter. The setup is illustrated
in Figure 1. Without loss of generality, we assume, that the
memoryless Gaussian source sample, V , has zero mean and
unit variance, i.e., V ∼ N (0, 1). The interference signal
is independent of the source, and also follows a Gaussian
distribution, S ∼ N (0, σ2

s). The discrete memoryless channel
output Y , is given by Y = X+S+W , where X is the channel
input, S is the known Gaussian interference signal, and W is
the additive Gaussian noise, W ∼ N (0, σ2

n), independent of
the source and interference signals.

We denote the zero-delay encoding function as X =
h(V, S). An average power constraint is imposed on the
channel input:

E[X2] ≤ P, (1)

where the expectation is over all realizations of the source
and interference signal. We are interested in transmitting the
source samples, V , over the channel under MMSE criterion.
We denote the MMSE estimation function at the receiver by
V̂ = g(Y ) , E[V |Y ]. Our goal is to characterize the minimum
MSE E[|V − V̂ |2], for given P , σ2

s and σ2
n values.

We note that, in our setting, due to the zero-delay constraint,
causal and non-causal knowledge of the interference are equiv-
alent. In other words, non-causal knowledge of the interference
is useless, and the transmitter only uses the knowledge of the
current value of the interference.

We define the functions below, which will be used through-
out the paper.
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+

√
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√
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·
(

1 +
m2

2
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)
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where Q(·) is the complementary cumulative function and

is defined as Q(t) =
∞∫
t

1√
2π
e−

u2

2 du. Since we deal with

definite integrals throughout the paper, we will avoid writing
the boundaries of the integrals explicitly when they are from
−∞ to∞. Also, if no limits are specified, the summations are
over all integers Z. We also define the rectangle function R(t)
as

R(t) =

{
1 − 1

2 ≤ t ≤
1
2 ,

0 otherwise. (5)

III. PARAMETERIZED ZERO-DELAY TRANSMISSION
SCHEMES

In this section we introduce five different transmission
schemes for the setup introduced in Section II with increasing
complexity. Later on, in Section V, we will compare and
comment on the performances of these schemes.

A. Interference Cancellation (ICA)
The simplest way to communicate in the presence of a

known interference signal is to cancel the interference. In the
interference cancellation (ICA) scheme, the transmitted signal
X is a simple linear combination of the source realization V
and the interference S. The transmitter decides how much of
the interference will be cancelled depending on the system
parameters. We have

X = aV + bS, (6)

where a and b are the coefficients to be determined. The
channel input has to satisfy

E[X2] = a2 + b2σ2
s ≤ P. (7)

With MMSE estimation at the receiver, the achievable aver-
age distortion is found as

DICA =
1

1 +
P−b2σ2

s

(b+1)2σ2
s+σ2

n

. (8)

The optimal b value that minimizes (8) is given by

b∗ =−P+σ2
s+σ2

n−
√

(P−σ2
s)2+σ2

n+2σ2
n(P+σ2

s)

2σ2
s

. (9)

The optimal value for a can be obtained from (7) and (9).
The ICA scheme consumes part of the transmission power
for interference cancellation; and thus, is expected to perform
poorly especially in the low power regime, when the interfer-
ence power is relatively high compared to the input power.

Remark III.1. We note that in the high signal to interfer-
ence and noise ratio (SINR) regime (P � σ2

s ) the average
achievable distortion is DICA = 1

1+
P−σ2

s
σ2
n

. That is because, by

rewriting b∗ we have
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Figure 2. Source clipping and mapping at the transmitter.

(a)
' −
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s + σ2

n − P
(

1− σ2
s

P +
σ2
n

P

)
2σ2

s

= −1, (10)

where (a) is due to the approximation
√

1− x ' 1 − x/2 for
small x. This is as though the signal X = aV −S, (a = P−σ2

s)
is transmitted over the channel.

The analysis of the performance of the ICA scheme is
relegated to Section V. Next we will introduce alternative non-
linear transmission strategies.

B. Interference Concentration (ICO)

This scheme is motivated by Willems’ ICO scheme for chan-
nel coding [16]. We combine the interference concentration
idea with JSCC of a Gaussian signal under a peak power
constraint (PPC) [8]. The interference signal S is concentrated
to one of the pre-determined discrete points on the real line;
that is, the interference is quantized, and the corresponding
quantization noise is cancelled, rather than cancelling the
whole interference. Only the signal corresponding to the quan-
tization index of the interference is received at the receiver.
The transmitter superposes a companded version of the source
signal such that it is compressed into one quantization interval
of the quantizer.

The signal transmitted over the channel is given by

X = T (V )− (S mod ∆), (11)

where (S mod ∆) ∈ [−∆
2 ,

∆
2 ) corresponds to the quantization

error, and is defined as

S mod ∆ , S −Q(S), (12)

where Q(S) is the nearest neighbour quantizer defined as
below

Q(S) , ∆ ·
⌊
S

∆
+

1

2

⌋
, (13)

where b·c is the floor operation.
The source is clipped and mapped as in Figure 2 to the

interval [−κ/2, κ/2] as below

T (v) =


κ
2 v ≥ ∆v

2 ,
κ

∆v
v −∆v

2 ≤ v <
∆v

2 ,

−κ2 v < −∆v

2 ,

(14)
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Figure 3. Source is clipped to the region [−κ
2
, κ

2
], and the channel input

is limited to the interval [−κ+∆
2
, κ+∆

2
]. Dots are interference concentration

points and dashed lines are the decision thresholds for interference concentra-
tion at the transmitter.

where κ = ∆−2d. Notice that κ+ ∆ is the variation range of
the channel input X (since T (v) and (S mod ∆) are varying
in the intervals [−κ/2, κ/2], and [−∆/2,∆/2]), respectively.
Parameter d can be considered as a guard interval between the
source mappings into different intervals. Parameters d, κ and
∆ are illustrated in Figure 3.

It can be seen from (11) that, in the ICO scheme, s is
concentrated to one of the quantization indices in {i∆ : i ∈ Z},
which corresponds to a uniform quantizer with quantization
interval size of ∆. Power consumed by the transmitter for
interference concentration is equivalent to the average quantiza-
tion noise variance for the interference signal. While the power
allocated to interference concentration, σ2

Smod∆, depends only
on the value of ∆, the power of the compander component,
σ2
T , depends on κ and ∆v parameters. σ2

T and σ2
Smod∆ are to

be chosen such that the channel power constraint is satisfied.
We have

E[X2] = σ2
T + σ2

Smod∆ ≤ P, (15)

where the expectation is taken over the probability density
function (pdf) of the channel input fX(x) = fT (t)?fSmod∆(t),
where ? denotes the convolution operation, and we have

fT (t) =
1√
2πα

e−
t2

2α2 R

(
t

κ

)

+ Q
(
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2

)
·
(
δ
(
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2

)
+ δ

(
t+

κ

2

))
, (16)

fSmod∆(t) =
∑
i

1√
2πσs

e
−
(
i∆+t√

2σs

)2

·R
(
t

∆

)
. (17)

Therefore, for σ2
T and σ2

Smod∆ we have

σ2
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[
1
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+ Q
(
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2

) (
1
2 −

2
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− e−
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8
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σ2
Smod∆ = 1√

2πσs

∑
i

e
− (i∆)2

2σ2
s I2

(
1

2σ2
s
,− i∆σ2

s
,−∆

2 ,
∆
2

)
. (19)

Since solving (15) for equality with respect to d, ∆ and ∆v is
cumbersome, we resort to numerical techniques to find the ∆
and ∆v parameters that satisfy the average power constraint.
The received signal is given by

Y = X + S +W

= T (V )− (S mod ∆) + S +W

= T (V ) +Q(S) +W. (20)

MMSE estimation is directly applied on the received signal
to reconstruct the transmitted source sample:

g(y) =

∫ ∫
vfV (v)fS(s)fY |V,S(y|v, s)dvds∫ ∫
fV (v)fS(s)fY |V,S(y|v, s)dvds

=

∑
i

p(qi)
∫
vfV (v)fW (y − T (v)− qi)dv∑

i

p(qi)
∫
fV (v)fW (y − T (v)− qi)dv

, (21)

where qi , i · ∆, i ∈ Z, are the points to which the
interference is concentrated when we have s ∈ ωi, ωi =[
qi − ∆

2 , qi + ∆
2

)
). By further expanding (21), we have (22)

at the bottom of this page.
Finally, the corresponding average distortion is evaluated as

below

D
(a)
= 1− E[V V̂ ]

= 1−
∑
i

p(qi)

∫∫
vg(T (v) + qi + w)fW (w)fV (v)dwdv, (26)
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.
) , (22)

where p(qi) =

∫
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fS(s)ds = I0
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2
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∆

2σ2
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∆
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2πσn
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)
, (24)

Gy,qi,
κ
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∆ve
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vσ

2
n + κ2)
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,−∆v

2
,

∆v

2

)
. (25)



5

where (a) is due to the MMSE estimation. We can further
expand (26), as shown in (27) at the bottom of this page.

Remark III.2. For the ICO scheme (as well as the other
non-linear encoding schemes introduced later in this sec-
tion) it is possible to use an alternative suboptimal decoding
scheme called MAP-MMSE. In MAP-MMSE, we first decode
the interference concentration index q̂i using maximum a
posteriori (MAP) decoding at the receiver, and then cancel
the interference from the received signal y = T (v) + qi + w.
Finally MMSE estimation is applied on the remaining signal
ynew = T (v) +w+ qi− q̂i to estimate the source sample. This
algorithm, in addition to being suboptimal, is also computa-
tionally more demanding due to the increased computational
complexity in the MMSE stage. Even considering maximum
likelihood (ML) decoder instead of MAP decoder does not
improve the computation time significantly. This is because of
the dependence of the noise signal with the signal produced
by the MAP decoder, ynew, which increases the complexity of
computing fYnew|V (ynew|v). Hence, we restrict our numerical
analysis to MMSE estimation as it provides the optimal per-
formance with reduced complexity.

C. Comparison of ICA and ICO in the Asymptotic Zero-Noise
Regime

In order to illustrate the benefits of ICO over ICA we
consider the asymptotic zero-noise regime, i.e., we assume
that σ2

n → 0. For ICA, one can see that, if P ≥ σ2
s then

the interference can be completely removed using part of the
available power, and zero distortion is achieved in the limit as
the noise disappears. On the other hand, when P < σ2

s , the best
achievable distortion is (σ2

s−P )/σ2
s (this can be easily verified

from (9) and (8)); that is, there is always residual distortion in
the estimation even if there is no noise in the system.

On the other hand, one can show that in the asymptotic
zero-noise regime, independent of the input power constraint,
zero distortion can be achieved by the ICO scheme. In the
absence of noise, since the received signal is always within the
quantization region of the interference signal, the quantization
index can always be detected correctly. Once the quantization
index is known, the effect of interference can be completely
removed.

With MSE estimation applied on the received noiseless
signal T (V ) + Q(S), the reconstructed source samples can
be written as below

g (T (v) +Q(S)) =


e−

∆2
v

8√
2π

v ≥ ∆v

2 ,

v −∆v

2 ≤ v <
∆v

2 ,

− e
−

∆2
v

8√
2π

v < −∆v

2 .

(28)

The remaining distortion is only due to the companding of
the source samples to squeeze them into the quantization re-
gion. By letting ∆v go to infinity we can reconstruct the source
perfectly, and zero distortion can be achieved asymptotically.
Note that, letting ∆v →∞ also means that the average input
power depends only on ∆ in the limit.

These arguments show that the ICO scheme can provide
significant improvements compared to ICA, particularly when
the interference is strong and the noise in the system is low. In
the following, we provide other techniques based on the idea
of providing a structure to the interference. We will observe
that these techniques will further improve the performance of
the ICO scheme.

D. One Dimensional Lattice (1DL)

The idea of using a lattice structure for communication in
the presence of known interference has been considered in [17]
for the channel coding problem. Here we consider using a
similar lattice structure for JSCC. The channel input for the
1DL scheme is given by

X = (T (V )− S) mod ∆, (29)

where T (·) is as defined in (14). In the 1DL scheme, the term
T (v) − s is concentrated to one of the quantization points in
{i ·∆}∞i=−∞.

In order to satisfy the average power constraint, we need to
characterize the pdf of X , which can be obtained as follows:

fX(x) =

{ ∑
i

fT∗S(i∆ + x) −∆
2 ≤ x <

∆
2 ,

0 otherwise,
(30)

where fT∗S(u) is defined as

fT∗S(u) = ∆ve
−

∆2
vu

2

2(∆2
vσ

2
s+κ2)√

2π(∆2
vσ

2
s+κ2)

I0

(
σ2
s∆2

v+κ2

2κ2σ2
s
, uσ2

s
,−κ2 ,

κ
2

)
+
Q(∆v

2 )
√

2πσs

e− (u−κ2 )
2

2σ2
s + e

− (u+κ
2 )

2

2σ2
s

 . (31)

Notice that in 1DL, the channel input X is limited to
[−∆/2,∆/2). The quantization step size, ∆, must be chosen
such that the channel input power constraint is satisfied. We
recall here that due to the fact that finding a closed form
expression for channel power constraint with respect to ∆
and ∆v is cumbersome, we resort to numerical calculations
to evaluate the value of ∆ that satisfies the power constraint.

The received signal can be written as

Y = X + S +W

= (T (V )− S) mod ∆ + S +W

= − [T (V )− S − (T (V )− S) mod ∆] + T (V ) +W

D = 1−∑
i

p(qi) ·

e−∆2
v

8 ·
∫ (
g
(
κ
2 + w + qi

)
− g

(
−κ2 + w + qi

))
fW (w)dw −

∆v
2∫

−∆v
2

∫
vfV (v)g

(
κ

∆v
v + w + qi

)
fW (w)dwdv

. (27)
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= T (V )−Q(T (V )− S) +W. (32)

The numerical results for the 1DL scheme are presented in
Section V. Here we just state that the 1DL scheme achieves
lower MMSE compared to ICO, since 1DL supports a larger
∆ value for an equal power constraint. This is mainly due to
the bounded channel input which leads to a more efficient use
of the available power.

E. ICO with Non-Uniform Quantizer (ICO-NU)

Note that both the ICO and 1DL schemes give some shape
to the interference, rather than simply reducing its variance as
in ICA. Both schemes use uniform quantization for this. In
this section we consider using a non-uniform quantizer for the
ICO scheme, and different companders for the source sample
depending on the interference signal.

In classical scalar quantization, non-uniform quantization is
employed in order to reduce the quantization noise for the
more likely values of the underlying signal at the expense of
the less likely values. With such a quantizer, in our setting,
we would have smaller intervals around zero, and the interval
size would increase as we go further away from the origin.
Note that, this would reduce the transmission power allocated
for interference concentration, since it achieves a lower quan-
tization noise variance. However, this would also mean that
we have to compress the source signal even further when the
interference realization is close to zero. We observe that the
final distortion benefits more from increasing ∆; that is, having
quantization points with larger separation. Hence, we apply the
opposite of classical non-uniform scalar quantization, and use
a lower resolution quantization for more likely values of the
interference, and decrease the quantization interval size as we
go further away from zero.

As before, the interference signal is concentrated to the
middle point of the quantization interval into which it falls.
Since the length of the quantization interval depends on the
realization of the interference, a different compander function
will be used for each interval. We denote by QN (·) the non-
uniform quantizer with decision intervals ωi defined as

ω0 ,

{
s : −∆0

2
≤ s < ∆0

2

}
, i = 0, (33)

ωi , {s : Bi ≤ s < Bi + ∆i} , i = 1, 2, ..., (34)

ωi , {s : −Bi −∆i ≤ s < −Bi} , i = −1,−2, ..., (35)

and quantizations indices qNi corresponds to the middle point
of each interval. We have

qNi = sgn(i) ·
(
Bi +

∆i

2

)
, (36)

where sgn(·) is the sign function1, and

Bi ,


|i| ·∆0/2 i = {1, 0,−1},
∆0

2 +
|i|−1∑
j=1

∆j otherwise.
(37)

1We have sgn(x) = 1 if x > 0, −1 if x < 0, and 0 if x = 0.

We define the function f̄S(s) as follows

f̄S(s) ,
1

fS(s)a
, (38)

where fS(s) is the pdf of the interference S, and a ≥ 0 is a
parameter to be optimized. The length of the i-th quantization
interval, ∆i, is chosen such that

2

∫
s∈ω0

f̄S(s)ds =

∫
s∈ωi

f̄S(s)ds, i = 1, 2, . . . . (39)

For Gaussian interference and a ≥ 0 it can be shown that

|i| > |j| ⇒ ∆i ≤ ∆j , (40)
|i| = |j| ⇒ ∆i = ∆j . (41)

At the transmitter, if S falls into the quantization interval ωi,
we have QN (S) = qNi . Therefore, source V is transformed as
follows

T (v, qNi ) ,


∆i

2 v ≥ ∆v

2 ,
∆i

∆v
v −∆v

2 ≤ v <
∆v

2 ,

−∆i

2 v < −∆v

2 ,

(42)

where we have defined T (v, qNi ) to denote the companding
function, in order to highlight its dependence on the realization
of the interference quantization qNi . The transmitted signal is
generated as below

X = T (V,QN (S))− (S mod ∆N ), (43)

where (S mod ∆N ) denotes the quantization noise for the
non-uniform scalar quantizer with QN (·).

To satisfy the average power constraint we follow the
same approach as in Section III-B. For brevity we define
U , (S mod ∆N ). We have

E[X2] =
∑
i

p(qNi ) ·
∫ ∆i

−∆i

x2fX|QN
(
x|QN (S) = qNi

)
dx

=
∑
i

p(qNi ) ·
(
σ2
T (V,qNi ) + σ2

U |QN (S)=qNi

)
,

=
∑
i

p(qNi ) · σ2
T (V,qNi ) + σ2

U , (44)

where

p(qNi ) = I0

(
σ2
s

2
, qNi ,−

∆i

2σ2
s

,
∆i

2σ2
s

)
, (45)

σ2
T (V,qNi ) = ∆2

i

[
1

∆2
v

+Q
(

∆v

2

) (
1
2 −

2
∆2
v

)
− e−

∆2
v

8

∆v

√
2π

]
. (46)

To evaluate σ2
U in (44), we need the distribution of U for

the non-uniform quantizer. Since max
i
{∆i} = ∆0, we have

U ∈ [−∆0,∆0). The cumulative distribution function (cdf) of
U can be written as

FU (u) =
∑
i

FU |QN
(
u|QN (S) = qNi

)
p(qNi ), (47)
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where FU |QN
(
u|QN = qNi

)
for different i’s can be expanded

as below

FU |QN
(
u|QN (S) = qNi

)
=

∫ qNi +u

qNi −
∆i
2

fS(s)ds

p(qNi )
,−∆i

2 ≤ u <
∆i

2 . (48)

By differentiating (47) with respect to u, and recalling that
qN−i = −qNi and p(qN−j) = p(qNj ), we obtain fU (u) as shown
in (49) at the bottom of this page. Using conventional tools in
probability theory, σ2

U in (44) can be evaluated as

σ2
U =

∑
i

e
− (qNi )

2

2σ2
s

√
2πσs

I2

(
1

2σ2
s

,
qNi
σ2
s

,−∆i

2
,

∆i

2

)
. (50)

The received signal for the ICO-NU scheme is given by

Y = X + S +W

= T (V,QN (S))−
(
S mod ∆N

)
+ S +W

= T (V,QN (S)) +QN (S) +W. (51)

At the receiver we use MMSE estimation as introduced in
Section III-B. The source reconstruction and final distortion is
obtained as in (52) and (53) as shown in the bottom of this
page.

F. 1DL with Non-Uniform Quantizer (1DL-NU)

In this section we consider the 1DL scheme combined with a
non-uniform quantizer similarly to the ICO scheme in Section
III-E. The transmitted signal is given as below

X1DL =
(
[T (V,QN (S))− S] mod ∆N

)
. (54)

To satisfy the average power constraint we follow the same
approach as in Section III-B. We have

E[X2] =
∑
i p(q

N
i ) ·

∫ ∆i
2

−∆i
2

x2fX|QN
(
x|QN (S) = qNi

)
dx. (55)

where

fX|QN
(
x|QN (S) = qNi

)
=

f
qNi
c (qNi + x) + f

qNi
c (qNi + x− sgn(x)∆i), −∆i

2 ≤ x <
∆i

2 , (56)

for all i, where f
qNi
c (u) = fT (V,qNi )(v) ∗ fS|QN (s|QN (S) =

qNi ). fq
N
i
c (u) is obtained as in (57) as shown in the bottom of

this page, where for αi and βi we have

αi =
∆ve

− ∆2
vu

2

2(∆2
vσ

2
s+∆2

i
)

p(qNi )
√

2π(∆2
vσ

2
s + ∆2

i )
, (58)

βi =
∆2
vσ

2
s + ∆2

i

2σ2
s∆2

i

. (59)

The received signal for the 1DL-NU scheme is given by

Y = X + S +W

=
(
[T (V,QN (S))− S] mod ∆N

)
+ S +W

= T (V,QN (S))−QN (S) +W. (60)

At the receiver we use MMSE estimation as introduced in
Section III-B. To reconstruct the source samples at the receiver
we use (52) and (53).

Remark III.3. The intuition behind choosing the function in
38 is the following. We know that clipping the source sample
injects a distortion at the encoder side. Therefore, given an
average power constraint, the larger the ∆v value, the smaller
the distortion introduced by clipping. Since the interference
has a Gaussian distribution, we know that realizations of
the interference around the origin are more likely than those
towards the tails of the distribution. Note that the quantization
noise variance of the quantization scheme we use, corresponds
to the power spent for concentrating the interference at the
transmitter. Therefore, Uniformly quantizing the interference
S, is equivalent to assigning the power budget uniformly

fU (u) =
fS(u)

p(qN0 )
+

∞∑
i=1

fS(−qNi + u) ·R
(

2u+Bi+Bi+1

2(Bi+1−Bi)

)
+ fS(qNi + u) ·R

(
2u−Bi−Bi+1

2(Bi+1−Bi)

)
p(qNi )

, −∆0

2
≤ u < ∆0

2
. (49)

gN (y) =

∑
i

p(qNi ) ·

(
F
y,qNi ,

∆j
∆v

+ e−
∆2
v

8√
2π
·
(
fW (y − ∆i

2 − q
N
i )− fW (y + ∆i

2 − q
N
i )
))

∑
i

p(qNi ) ·
(
G
y,qNi ,

∆j
∆v

+ Q(∆v

2 ) ·
(
fW (y − ∆i

2 − q
N
i ) + fW (y + ∆i

2 − q
N
i )
)) , (52)

D = 1−
∑
i

p(qNi )

∫∫
vgN (T (v, qNi ) + qNi + w)fW (w)fV (v)dwdv. (53)

f
qNi
c (u) =


αiI0

(
βi,

u
σ2
s
,−∆i

2 , u+ ∆i

2

)
+

Q( ∆v
2 )e

− (u+∆i/2)2

2σ2
s

p(qNi )
√

2πσs
−∆i ≤ u < 0,

αiI0

(
βi,

u
σ2
s
, u− ∆i

2 ,
∆i

2

)
+

Q( ∆v
2 )e

− (u−∆i/2)2

2σ2
s

p(qNi )
√

2πσs
0 ≤ u < ∆i.

(57)
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across realizations of the interference, whereas, assigning
larger intervals around the origin distributes the power bud-
get non-uniformly among interference realizations, such that,
more likely interference realizations are quantized with larger
quantization intervals; and hence, they require more power,
but allow smaller distortion due to clipping. The heuristic
interference quantization scheme used here can be further
improved by devising a numerical technique similar to the
classical Lloyd-Max algorithm [23]. We leave the optimization
of the interference quantizer for the ICO and 1DL schemes as
a future work.

IV. NECESSARY CONDITION FOR OPTIMALITY AND
NUMERICALLY OPTIMIZED ENCODER (NOE) DESIGN

As stated in the Introduction, the optimal zero or low-delay
joint source-channel coding scheme is an open problem in
most communication scenarios, with few exceptions [24]. A
common approach for these problems in the literature [25],
[26] is to formulate the optimal encoder mapping as an
unconstrained optimization problem through the Lagrangian,
then to apply calculus of variations techniques to obtain
a necessary condition for the optimal mapping, and finally
numerically obtain an encoder mapping, typically using an
iterative steepest descent algorithm, that satisfies this necessary
condition. Due to lack of convexity, this solution does not
guarantee global optimality, and the final solution is highly
sensitive to the initial mapping. Despite these drawbacks, with
carefully chosen initial mappings, and sufficiently high-grained
quantization of the continuous source and channel alphabets,
these numerically optimized encoders (NOEs) achieve the best
known performance in most scenarios.

In this section, we will follow the same approach as in
[25], [21]. We briefly include the derivations for completeness,
and then, we numerically obtain the encoder that satisfies this
condition. Numerical techniques have been previously used for
joint source-channel mappings in various scenarios in [25]–
[28]. By writing the Lagrangian cost function for this system
model we have

J(h, g) = E[(V − V̂ )2] + λ · E[h(V, S)2]

= 1−
∫∫ (∫

vg(h(v, s) + w + s)fW (w)dw − λh(v, s)2

)
· fV (v)fS(s)dvds, (61)

where λ is the Lagrangian multiplier, and h(V, S) is the en-
coder mapping function. By writing Euler-Lagrange equations
[29, Section 7.5] we have

∇hJ(h, g) =
(

2λh(s, v)−
∫
vg
′
(h(v, s) + w + s)fW (w)dw

)
· fV (v)fS(s), (62)

where g
′
(·) is the derivative of g(·). From calculus of variations

[29], it is well-known that for the optimal encoder mapping,
(62) must be zero. This yields the necessary condition for
optimality as below

h(v, s) =
v

2λ

∫
g
′
(h(v, s) + w + s)fW (w)dw. (63)

The optimal decoder is the MMSE estimator, and the corre-
sponding distortion is obtained as below

D = 1−
∫∫∫

vg(h(v, s) + s+ w)fS(s)fV (v)fW (w)dvdsdw. (64)

Remark IV.1. We note here that the uncoded transmission
satisfies the necessary condition in (63). Considering the
transmitted signal as h(v, s) = av, where a =

√
P , the

MMSE estimation can be simplified to g(y) = cy, where
c = a

a2+σ2
s+σ2

n
and y is the received signal. Substituting h(·),

g(·) in (63) we have

av =
cv

2λ

∫
fW (w)dw ⇒ λ =

c

2a
. (65)

Substituting λ = c
2a in (62) makes the gradient ∇hJ(h, g)

zero. The final resulting distortion in this case is D =

1/
(

1 + P
σ2
s+σ2

n

)
. It is also noticed that for the ICA scheme,

since λ = a
c + bs

c is not a constant, that does not satisfy (63).

A. Numerically Optimized Encoder (NOE)

Since the optimality condition for the encoder derived above
does not have a closed form expression, we use the iterative
steepest decent algorithm to obtain the encoder numerically.
During the iterations the encoder is updated as below

hi+1(v, s) = hi(v, s)− µ∇h(h, g), (66)

where i is the iteration index, µ is the step size, and ∇h(h, g)
is obtained as in (62). At each iteration the initial cost (61) is
decreasing. Iterations are performed until ∇h(h, g) reaches a
predefined threshold value. In order to calculate the integrals
in (62) at each iteration we use discretization. It is worth
mentioning that, since discretization injects some residual error
into the algorithm, it is essential to increase the accuracy in
order to make the residual distortion (due to discretization)
negligible compared to the final achievable distortion. Hence,
the simulation takes considerably longer time to converge at
high SNR values.

In our simulations we start from the low power constraints.
The algorithm is initiated with a vector whose elements are
the different values assigned to each discretized pair of (v, s).
For the lowest power constraint, the initial values are chosen
close to zero to make sure that they satisfy the average
power constraint. The final solution obtained for a low power
constraint is used as the initial guess for the higher power
constraint, and so on. It should be remarked, that there is no
guarantee that this iterative optimization scheme converges to
the global optimal solution. We have also tried to initiate the
NOE from the encoder mappings obtained for ICO and 1-DL
schemes, as well as their non-uniform quantized counterparts;
but in all cases we obtained the exact same final encoder
mapping.

In Figure 4, the encoder structure for numerically optimized
encoder with P = 4 dB is shown. The plot shows, in a
colour-coded fashion, the channel input value (here in range
[−40, 40]) corresponding to each discretized pair of source v
and interference s values. To elaborate the details of Figure 4,
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Figure 4. Encoder mapping h(v,s) for NOE (σ2
s = 4, σ2

n = 1).

the encoder mapping for different values of the source and the
interference outputs are shown in Figures 5 and 6, respectively.
From Figures 4-6, we observe that, i) the source is clipped
similarly to the parameterized nonlinear schemes considered
in Section III (see Figure 5 and Figure 2 for comparison);
ii) Depending on which interval the interference falls into,
the transmitted signal resembles a shifted version of a linear
mapping (see Figure 6). This is similar to the transmission of
quantization noise in ICO and 1DL schemes.

V. NUMERICAL RESULTS

We remark here that obtaining closed-form expressions for
the optimal performance of JSCC under strict delay constraints
is extremely difficult if not impossible. Instead, in this section,
we provide numerical results comparing the performances of
the proposed transmission schemes. We will also include the
Shannon theoretic lower bound (SLB) obtained by evaluating
the rate-distortion function of the Gaussian source at the
capacity of the underlying channel when the interference is
completely removed. Not surprisingly this lower bound is quite
loose in general.

In Figures 7 and 8, performances of the proposed trans-
mission schemes are illustrated and compared with SLB for
different SNR levels. For ICO-NU and 1DL-NU we optimize
(53) over ∆ and ∆v as well as a. As it can be seen in Figures
7 and 8, non-uniform quantization improves the performance
of both the ICO and 1DL schemes. 1DL-NU outperforms all
the other schemes proposed in Section III in both the low and
high SNR regimes. We expect that SLB is loose in general
(especially in the high interference regime), and identifying
a tighter lower bound will be instrumental in characterizing
the performance limits in this problem. We see that, as ex-
pected, NOE outperforms all other encoding schemes, but this
is at the expense of a much longer computation time. We
also observe that the proposed low-complexity parameterized
encoding schemes perform close to NOE, particularly in the
high SNR regime.
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Figure 5. NOE mapping for different interference values (σ2
s = 4, σ2

n = 1).
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proposed schemes for σ2
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n = 1.

We also observe that, 1DL outperforms ICO, even though
the performances of the two schemes have relatively similar
behaviour. Also, in the low interference regime ICA outper-
forms both ICO and ICO-NU. In Figure 9, the size of optimal
∆ versus different channel power constraints for ICO is shown
for different values of ∆v . It can be seen from the figure that
by increasing either P or ∆v , size of ∆ grows non-linearly.
This can be easily verified from (15), (18) and (19). Note that
(19) tends to σ2

s as ∆ increases. On the other hand, in (18) it
can be shown that as ∆ increases, ∆v increases too (for a fixed
value of σ2

T ). For high values of ∆ and ∆v (15) simplifies to
∆ = ∆v

√
P − σ2

s . This linear relation is also observed in the
figure. In Figure 10 the size of the quantization interval ∆ for
both ICO and 1DL is plotted against the power constraint.

As it is seen in this figure, for all power constraint values,
1DL uses a larger ∆ than ICO for quantization, which explains
the improved performance of 1DL compared to ICO (larger ∆
means that the source is mapped into a larger interval, and
hence, can be reconstructed with a smaller average distortion).
A similar observation applies also to the ICO-NU and 1DL-NU
schemes, and the latter outperforms the former.

In Figure 11 the average distortion versus ∆v is plotted for
ICO, and for different input power constraints. We observe
from the figure that the average distortion is a convex function
of ∆v . For high power constraints, distortion is almost constant
beyond a certain value for ∆v (the bottom curve in Figure 11).
As it can be seen, the higher the input power constraint (since
σ2
n = 1, increasing P is equivalent to increasing SNR) the

higher the optimal value for ∆v , which achieves the minimum
average distortion.

In Figure 12 the average distortion with respect to normal-
ized ( κ∆ = ∆−d

∆ ) is plotted for both ICO and 1DL. It is
observed that the average distortion has a minima with regard
to the noise gap, d. It is seen from the figure that there is space
to improve the achievable average distortion by optimizing over
d. Since optimizing the achievable distortion over d, ∆v, ∆ is
demanding, we have obtained the noise gap effect d on the final
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Figure 9. ∆ vs. power constraint for different values of ∆v for ICO (σ2
s = 25,

σ2
n = 1).
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for ICO (for fixed value of power constraint and ∆v).
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distortion only for P = 5 dB in Figure 12 (for the remainder
of the simulations we have assumed d = 0).

VI. CONCLUSIONS

In this paper we have studied the problem of zero-delay
transmission of a Gaussian source over an AWGN channel in
the presence of known interference at the transmitter. Due to
the zero-delay constraint and the memoryless nature of the
source samples and the interference signals over time, causal
and non-causal availability of the interference information are
equivalent in this setting. We have proposed one linear and
five non-linear zero-delay JSCC schemes. The linear scheme
is based on interference cancellation, whereas the non-linear
schemes shape the interference and convert it into structured
interference, and use companding for the transmission of the
source samples.

We have shown that the proposed non-linear coding schemes
can achieve zero-distortion in the limit of zero noise, whereas
this is not possible through the linear ICA scheme when the
interference is strong. We have also introduced the novel idea
of non-uniform interference quantization for this problem, and
have shown that the corresponding 1DL-NU scheme achieves
the best performance among the proposed parametric transmis-
sion techniques.

We have also studied the necessary condition for optimality,
and proposed a numerically optimized encoder (NOE) obtained
using this optimality condition. While NOE outperforms other
proposed encoders, it has a significantly higher computational
complexity compared to the parameterized schemes. Based on
the numerical results it is shown that 1DL-NU performs closer
(among the proposed parameterized schemes) to NOE. We
have also observed that the structure of the encoder mapping
of the proposed parameterized transmission schemes, resemble
that of the encoder mapping obtained numerically in the NOE
scheme. Based on our numerical performance results and the
latter observation, we argue that the proposed low-complexity
parameterized transmission schemes can be instrumental in

practical systems to achieve reasonably good performance with
limited computational resources.
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