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ABSTRACT

A discussion of consolidation of saturated clay is presented. The
governing differential equations are reached using the concepts of
continuum mechanics of a mixture, where one phase represents the
deformable clay skeleton, and the other represents the pore fluid
which fills the pores of the skeleton. A geometrically non-linear-
system and a elasto-viscoplastic-plastic material are accounted for.
For the geametrically non-linearity the up-dated Lagrange method is
applied. Two independent yield surfaces have been used to describe the
viscoplastic— plastic constitutive relationship, and an associative

and/or a non-associative flow rule have been assumed.

Darcy's law for a deformable skeleton and a permeability matrix

dependent on the void ratio have been taken into account.

An algorithm based on finite element discretization and numerical
integration in time is adopted for the numerical treatment of the
transient process. The finite element type chosen is a variable eight
noded isoparametric one where the same number of nodes for
displacement and pore water pressure have been adopted. A semi-
implicit type method for time integration is used. For each time
and/or load step a tolerable equilibrium condition is achieved
iterativelly to take into account the material and geometric non-

linearities.

A sample of numerical examples have been calculated to show the



general abilities of the camputer program.

Key words - Consolidation, finite elements, plasticity, creep, large

deformation.
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NOTATIONS AND LIST OF SYMBOLS

Both indicial notation and matrix notation have been used in this
report. Notations from classical continuum mechanics will be used

unchanged as far as possible.

Tensors are toO a great extent treated as dyadics implying that the
specification of a coordinate system is conveniently avoided. However,
tensor equations and scalar equations are also given in a component
form with indices. The sunmation convention is used if not otherwise
specified in the text. Equations containing physical variables are
often given in a matrix form, which is convenient for programming
purposes. Although, notation and symbols are explained as they appear
in the text for the first time, some explanation will be made in a

general list of symbols and notations.

The right subscript in the roman characters i, j, k, etc denote
variation of the index over a range of values 1, 2,and 3. The greek
index a dencte variation over a range of values 1 and 2. The left
superscript define the configuration of the body to which the variable
is referred to. The left subscript define which independent variable
describe the function.In the case of two left subscript the first
refers to the independent.variable and the second refers to the

reference frame (deformed and undeformed frame).

latin Letters:

A —Generalized point, Constant.
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xiii

—Constant.

-Identity matrix, Ordinate' of the bound or yield surface.
-Vector position.

—Ordinate of the yield surface.

-Ordinate of the surface f°.

-Interpolation function.

-Acceleration.

-Damain, Strain displacement matrix, Constant.
—Constant.

-Third invariant function of Lode angle, Ordinate of the surface

-Vector position, Unit vector in the direction of gravity.
-Elipse semi-axes length.

—-Stiffness matrix, Constant

—Constant.

-Shear strength in campression.

-Shear stregth in extension.

~Peak strength in campression.

-Elasto-plastic flexibility matrix.

-Constant.
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¢;; —Deformation tensor

¢ —Stiffness matrix
Je,juy ~Jauman's stiffness matrix.

¢ -Lagrange multiplier, Ordinate of the surface £,
C, -1-D coeficient of consolidation.

C,, -3-D coeficient of consolidation.

¢z —The proper numbers.

D -Linear elastic matrix, Transformed permeability matrix, Stiffness

matrix, Constant.
D —Constant.
D -Elasto-plastic stiffness matrix.

d -Angle between the stress rate direction and the normal to the

yield surface, Ordinate of the surface £.
det -Determinant.

div -Divergent.

d r -Differential of the vector r .

E -Elastic modulus, Gradient of interpolation function matrix,

Lagrange multiplier, Constant.
E -Constant.
e,. =Strain tensor.

7

e -Simplified notation of the strain tensor ¢, , Void ratio, Neper



number .

'4

e, €

€xim

F

—Plastic void ratio.

=Principal strain camponents.

-Deviator strain tensor.

~Simplified notation of the deviator strain tensor &, .

-Alternative tensor.

-Force vector, Constant, Ratio between the quasi-static yield

surface and the reference quasi-static yield surface.

S -Force by unit of total volume mixture, Generalized scalar
function.
Ly -Campressive (positive) strain in the x direction.
f° =General yield surface, Plastic potential or bounding surfaces.
% -—Reference quasi-static yield surface.
G -Finite element matrix.
G, -Shear modulus.
g —Generalized scalar function, Plastic potential.
g —General shape function on the = -plane.
g, —Expansive (negative) strain in the y direction.
H -Finite element matrix.
H, -Hardening parameter at a point on the yield surface.
H_ -Maximm hardening parameter.



H, -Hardening parameter at a point on the bounding surface.

B

~Scalar function.

h  -Hydraulic head, Vector of creep law (function of stresses and

time).
I ~Component of unit vector constant.
1,,1,,1; -Strain invariant.
1,,T,, I, -Deviatoric strain invariant.
(» -Indicate iteration i.
J —Jacobian.
J.J,J;-Stress invariant.
J, -First stress invariant of the translated stresses.
J, -Third deviatoric stress invariant of the translated stress.
J. T, Ty Deviatoric stress invariant.
J  -Approximate determinant of J.
K -Permeability matrix.
K., -Permeability matrix.
K, -Finite element matrix.
Ky, -Finite element matrix.

K, -Hardening parameter at a point on the bounding surface.

k —-Constant ratio of the second deviatoric stress invariant to the
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first invariant, hardening parameter. -

L ~Finite element matrix, Generalized geametric transformation, 1-D

sample length.

l,; =Infinitesimal strain tensor, interpolation function.
m -Number of finite element, Mass.

m, —Coefficient of campressibility.

N -~Finite element metrix.

n, -Value of » at ordinate b on the surface £.

n. -Value of 5 at ordinate ¢ on the surface £.

n, -Camponents of unit normal vector.

.. Ny Ny —Principal directions.

P -Generalized point, Generalized point on the yield surface.
P, -Mean stress at failure in campression.

P;, -Mean stress at failure in extension.
P; -Viscous stress tensor.

p -—Pore-Pressure, Mean stress.
p, -—Initial pore water pressure.

g -Function of the second invariant of stresses.

R -Vector of boundary conditions, Generalized point at bounding

surface.

r —General variable, Distance between two points.
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S, -Tangent at ordinate a of surface £.
S, -Tangent at ordinate a of surface £ for f= /6 .

S, -Tangent at ordinate c of surface £,

%

-Tangent at ordinate ¢ of surface £ for 9= x/6.

A

-Tangent at ordinate a of surface £.
s =Element area.

T =Generalized transformation symbol, Transformation matrix.
T, -1-D time factor.

T, -3-D time factor.

t -Time.

1ol -Tolerance

tr -Trace.

U -Dimensionless pore water pressure.
u, =Displacement vector.

v ~Velocity.

w —Settlement.

w,, —Infinitesimal rotation tensor.
w -Total settlement.

x -Position vector.
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Greek letters:

o -=Integration constant, Translated tensor.
-Translated tensor.

o, -Sphericél camponent of the translated tensor.
@, -Deviatoric camponents of the translated tensor.

g -—Constant, Integration constant, Rate function parameter, Stress

rate direction.
¥y -Pore fluid unit weight.
A -Increment.

8 =Virtual increment,Transformed distance between a point on the
yield surface and the conjugate on the bounding surface.

8, —Kronecker Delta.

5. -=Distance between two points in distinct surfaces.

8, -Maximum distance between two points in distinct surfaces (material

memory)

¢ =Strain vector, Internal energy density.
¢ =Elastic strain tensor.

¢? ~Visco-plastic strain tensor.

¢, -Volumetric strain camponent.

¢ —Deviatoric strain camponent.

¢ ~Plastic strain tensor.



¢; -Linear strain tensor, Part of the strain tensor function of linear

terms of displacement increment.
7 -Ratio of the second deviatoric invariant to the first invariant.

n; —Part of the strain tensor function of non-linear terms of

displacement increment.

6, -Lode angle of strain.

6, -Lode angle of stress.

k —Campressibility constant.

kij -Constants.

A -Creep function (function of time).

A -Stretch of line segment, Compressibility constant, Constant.
p -Constant.

v —Poisson ratio

¢, -Finite element interpolation function.

£, -Ratio between two ordinates of the general surface £° for 6=x/6 .

{, -Ratio between two ordinates of the general surface £° for

=x/6 .
£, -Ratio between two ordinates of the general surface £ for 6= /6 .
= —Constant.
p =Mass density.

¢ =Stress tensor.
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o, —Stress tensor.
o —Force per unit of surface of the mixture.

¢, -First stress invariant.

& =—Second deviator stress invariant, Second deviator stress invariant

of the translated stress.

7, =—Second deviator stress invariant for 6=x/6 .

7,; -Deviator stress tensor.

7, -Traction vector.

7, —Generalized tensor field, Vector function.

® -Friction angle, Creep function (function of stresses).

X =Constant.

¥V -Vector function, Generalized function, Finite element

interpolation function.
Q2 —Camplementary energy function.
w =General surface.
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¢ -Internal energy.

KX =Kinematic energy.

U, =—General energy source.
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¥ =Cross product symbol.

+ ~=Scalar product symbol.

d  or + -Material time derivative.
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9 _Time derivative.

T -Indicate Transport.
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CHAPTER 1

INTRODUCTION

I.l The Need for More Realistic Analysis

In engineering practice the requirement for analysis of the mechanical
behaviour of clays has always been a challenge for the engineer. After
Therzaghi's pioneering work (1925,1943) an enormous amount of
literature has been dedicated to this subject, and a lot has been
done. Fram a broad point of view, the modelling technique employed in
predicting the mechanical behaviour of clays should take into account
the most flexible boundary conditions (static and dynamic analysis for
periodic and non-periodic loading conditions), the consolidation
phenanena, the effect of geametry change, the material non-linearity,
the time effect on the material properties and multidimensional

effects.

The need for such an analysis can be appreciated if one considers for
example the problem of predicting the effect of changing the hydraulic
equilibrium in an aquifer confined by a clay layer. Such non-
equilibrium conditions may arise from ground water discharge,
tunnelling in rock or soil beneath the aquifer, or from a change of
the infiltration characteristics of the surface in urban enviroments.
These problems can involve a significant amount of pore-pressure

decrease beneath the clay which yields consolidation until hydraulic



equilibrium is achieved. Obviously a reliable prediction of the
resulting non-uniform settlement, which may cause serious damage to a
building standing on the surface, can not be achieved if the major

mechanical concerns described previously are not taken into account.

Although innumerable analytical consolidation problems has been
considered for specific circumstances, there has been no evidence of a
case, which has yet taken into account these major mechanical
characteristics . In fact most of existing analytical consolidation
theories in engineering practice assumes an isotropic linear material
with geametric linearity, static and fixed boundary conditions and
one—-dimensional straining and pore-water flow. There is an urgent need

for the development of more appropriate models.

Although much has been achieved in this direction there is still a lot
which needs to be done, especially in the area concerning the
modelling of material properties which has not yet been definitely nor

satisfactorily solved.

I.2 Purpose of this Research

The main aim of this research is to describe the consolidation process
of saturated clay which embodies all the features mentioned in the
previous section, except for the cyclic and dynamic loading, and to
provide a solution procedure for the appropriate governing partial
differential equations resulting fram the general equation of motion

for a mixture of two continua.

The model proposed here provides a tool for camputation of settlement,



lateral movement, stresses, pore-pressure arnd the failure stresses ,
creep, etc... for any static non-periodic loading path~time programme
with variable geametry in an unified manner. If the failure stresses
are known the safety factor can be estimated for the specified loading

path-time programme.

Based on the finite element method a relatively flexible computer
program has been implemented. The camputer results should be observed
with due attention to the reliability of the input data concerning
whether the material model (based on data obtained in simplified
laboratory conditions with disregard for some important material
properties) is representative of the field conditions, the difficulty
in obtaining true values for the oconstitutive parameters and initial

stresses and, also the uncertainty over the laboratory precision.

1.3 Original Characteristics

To the author's knowledge some features concerning consolidation

analysis are original in this work:

1) Application of total Lagrange and up-dated Lagrange method to
describe the governing equation of the consolidation problem and the

use of up—dated Lagrange in the finite element consolidation problem.

2) The proposition of a general elasto-viscoplastic non-associated
model which can be simplified to almost any known elasto-viscoplastic
model and can be calibrated to almost any experimental results. The
advantage is that, apart fram embodying the usual more rigid models,

it also allows the engineer to accamodate more soil features, which



are not possible in other models.

3) The use of an elasto-viscoplastic-plastic constitutive model which

allows consolidation at large displacement to occur simultaneocusly.

I.4 Ssumary of the Contents and Scope of this Research

In Chapter II, clay characteristics are broadly described together
with the usual concepts, principles and terminology concerning the

oconsolidation problem.

In Chapter III, a very brief description of the main approaches used
for nodelling the consolidation phenamena, with particular emphasis or
the distinction between non-consistent and consistent theories.

References to the continum mechanics approach are also made.

In Chapter IV a very compact and solid review of the equation of
motion for a mixture of continua is described where nothing is left
unjustified. Every single equation being based on previously
established ones. The Euler and Lagrange methods are both considered
and when pertinent the various interelations between variables from
one approach to the other are included. No restriction at all, apart
from disregarding the acceleration effect, is made to this
formulation. In this chapter the equation of motion for the mixture is
obtained in the local reference frame as a function of Euler and

Lagrange variables and is then converted to a global reference frame.

A brief description of the variational method is considered in Chapter

V. In this chapter, the principle of virtual work to represent the



equilibrium equations and an integral form of the continuity equation

are included.

In Chapter VI the conditions required for frame-indifference
constitutive equations and permeability matrix are discussed in
detail. Various constitutive equations and permeability matrices are
postulated and the geometric transformation to be applied to the
postulated property to satisfy the frame indifferent principle are

deduced for the most fundamental stress and strain rate definitions.

The Darcy law for large displacement is also included. Additionally a
more convenient form of the total Lagrange and up-dated Lagrange
consolidation theories for finite element application are presented.
Finally the required transformation of these non-linear theory to an

approximated linear one is introduced.

The system of approximated linear equations presented in Chapter VI
are discretized for a finite element solution in Chapter VII. All the
finite element matrices are presented for the Lagrange and up-dated
Lagrange methods. Numerical integration in space and time is briefly
discussed. Also the equilibrium iteration scheme, the calculation

procedure and convergence conditions are presented.

In Chapter VIII a local stress-strain relationship review is
presented. Fundamental experimental results proving the
inapplicability of the Rendulic principle (one of the basic
assumptions of the critical state theory) are presented. It is
interesting to note that even for isotropic kaolin it does not seem to

be applicable.



In this chapter two distinct constitutive model for the solid skeleton
are described. One based upon the elastic-viscoplastic kinematic
approach and the other upon the elasto-viscoplastic-plastic kinematic
approach. In the first model the shape of yield surface and plastic
potential can be assumed as functions of the initial conditions and
the past history of stress and also of the strain or stress rate.
Also, the hardening parameter can be assumed as an independent
function of plastic strain and either strain or stress rate. In the
second model an inviscid behaviour in accounted for within the concept
of critical state and the viscid behaviour is accounted for by means
of an appropriate creep law. Although cyclic loading is not discussed
in this report the effect of this kind of action could be included.
Consequently liquefaction due to growth in pore-pressure is beyond the

scope of this report.

The camputer program, its construction and versatility is briefly
described in Chapter IX. A sample solution illustrating the accuracy
and flexibility of the program is presented. The response to the

variation of the parameters is studied too.

Concluding remarks and suggestions for future research in the area of

consolidation with related problems are found in Chapter X.

Four appendices containing information to support the main text are
included. That is to say, mathematical background, explicit finite
element matrices, the general elasticity matrix and references to

literature.



CHAPTER II

PHENOMENOLOGICAL CONCEPTS

II.1 Introduction

From the physical microscopic model point of view, clay is inherently
a multi-phase system consisting of a mineral phase, known as the
mineral skeleton , plus £fluid phases, denominated pore fluids. The
clay particles consist of crystalline particles, mainly silicate
molecules. The mechanical properties of the skeleton are affected by
aggregates, which are formed from clay particles 1linked together by
physico- chemical forces. Oxides or organic molecules may also be
present, giving special features to the mechanical properties of the

clays .

Since the solid particles are, in most cases, surrounded by water

ions, they do not touch each other directly.

The distribution of particles in the aggregates as well as the way in
which the aggregates attach to each other, form what is called the

soil structure.

The structure, which greatly depends on the enviroment of

sedimentation, reflects the mechanical properties of clays.



For example, in marine clays the aggregates are large and dense and
are arranged in such a way that produces large pores. In lacustrine
clays, however, the aggregates are comparatively small and the

skeleton is compact giving a smaller porosity.

I1I.2 Consolidation Phenomena

From the mechanical point of view clay is a deformable porous medium.
During Geological history, clay, in situ, has always been pre-stressed
and pre—deformed. This initial state of stresses equilibrates forces
acting over the soi1l mass. Such forces are usually gravitational

forces and percolation forces, created by natural flow conditions.

When a layer of clay is subjected to an additional surface load, a
field of deformation occurs. If this load is instantaneously applied,
partly 1initial and partly time~dependent settlements will occur. The
concept of instanteneous loading is an idealized assumption, and it is
only used for the sake of simplicity. Also, when this time dependent
process is induced by a change in pore-pressure, no such initial

settlement will occur in saturated clay soil .

Usually, consolidation settlement is defined as the phenomenon caused
by a time—dependent volume change in the soil skeleton. It is,
however, convenient to point out here that volume change without
deviatoric strain does not occur in practice, and the water flow takes

place, in general, in three directions.

Although in the standard oedometer test the straining and water flow

takes place vertically only, the stress state changes in a particular



way in triaxial conditions, so, it is common to interprete the field
consolidation settlements for almost any stress-path, from the axial

displacement obtained oedometer test .

Also the consolidation phenomenon is usually divided into a main part
called "primary consolidation” which is followed by a secondary part
named "secondary consolidation". Such classification of consolidation
is due to the fact that the process as observed in the early days of
experimentation, an oedometer test results, was considered composted
by two different physical processes. A different approach will be

discussed later in this chapter.

II.3 Initial Settlement

The 1initial settlements are caused by recoverable and irrecoverable
deformations. If the clay is nomally consolidated or slightly
overconsolidated, 1rrecoverable deformation will dominate, for active
loading 1ncrement. Obviously, recoverable-irrecoverable deformation
generally occurs with volume change of the soil skeleton (swelling or

contraction).

From a physical point of view, clay is often assumed to be initially
incompressible. The wvalidity of this assumption, however, requires
that the clay must be saturated and pore water and solid particles
must be considered incompressible. In practice, the latter assumptions

are quite reasonable whilst the former 1s not always valid.

It is <clear, then, that if the above assumptions hold, the

incompressibility condition of the system is in fact a direct
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consequence of the assumption that the deformation ;akes place under
the constraints of undrained conditions. This does not imply, however,
that there will be no local flow of pore water through the clay pores.
Within the framework of a theoretical continuum model for clay, the
incompressibility condition can be verified. In this idealized model,
however, nothing is required to be said about the individual
compressibilities of the soil particles and the fluid. The difficult
task involved in including individual compressibilities is encountered

in the definition of the load sharing among the different phases.

II.4 Primary Consolidation Process

The main feature of the primary consolidation process is the transient
flow of pore water, followed by a field of deformation of the solid
skeleton. It is widely accepted that the flow 1s governed by the water
pressure gradient introduced by loading. The process is usually
treated as quasi—dynamic because acceleration effects are considered

negligible both in the soil skeleton and in the pore water.

For pulsing loads 1like wave Jloads in offshore engineering or for
shock loads from deformations, however, inertia effects must be

included.

The rate of change of water flow from a unit of bulk volume equals the
rate of skeleton volume change during deformation. This latter remark
comes from the continuity matter assumptions in the consolidation

theory formulation.

The deformation field in a consolidation process continues until a
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state of hydraulic equilibrium is achieved or failure of the clay mass
occurs due to uncontrolled growth of deformations. For constant
boundary conditions a stable process have the deformation field
theoretically the process is asymptotic in time, though, in practice a

certain finite time is required to finish the process.

It 1s usually assumed that the hydraulic equilibrium (steady state
flow or no flow) corresponds to zero volumetric strain rate, which, if
no creep(or relaxation) is included, the constitutive properties of
the clay skeleton, is equivalent to zero effective volumetric stress

rate.
The steady state will occur when the excess pore pressure boundary

conditions are non~homogeneous, while no flow conditions are present

when these boundary conditions are homogeneous.

I11.5 Secondary Consolidation

Secondary Consolidation 1is usually thought of as the process which
follows the primary one. It is characterized by the continuation of
settlement in the ocedometer test after pore pressurés have apparently
dissipated. The physical character of the secondary consolidation
process has not quite been satisfactorly investigated and, hence, is
not fully explained. It 1s believed, however, that the secondary
process presented by the deformation of clay skeleton are of viscous
type and a large literature has been dedicated to wvisco-elastic or

visco—~elasto—-plastic creep in soils.

In practice it has been observed that the viscous effect appears in
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all soil but is particularly significant for nommally consolidated
clay. There has been some disagreement about the achivement of rupture
state by creep (Bishop,1966) . However, it is believed that creep

rupture may occur under certain conditions (Mitchell, 1976).

I1.6 Terminology

The distinction between primary and secondary consolidation 1is
traditional in Soil Mechanics. Both processes however, are
simultaneous during the entire deformation process. One possible
physical interpretation of this phenomena, is that the volume change
caused by the flow conditions breaks the local equilibrium of the soil
structure, which can not find its new local equilibrium configuration
instantaneously. Acompaning the dissipation of pore pressure and
volume changes(due to what is known as primary consolidation)
additional volume and hydraulic gradient changes are introduced due to
the accomodation of particles on the way to their f£final local
equilibraum. These interactive processes occur until no flow occurs.
As a matter of fact 1t goes on even after no noticeable flow is

recorded.

Following the same argument, towards the end of the process when
hydraulic equilibrium 1s achieved, the rate of accomodation of
particles has been reduced to a level where deformation can occur
without any considerable <change 1in hydraulic gradient, and
consequently causing no noticeable fluid flow. Flow however must occur
otherwise the solid particles themselves have to suffer change in

volume, which is unlikely.
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In this thesis the term consolidation will be use to describe the more
involved ©process mentioned above. In other words the rate of
deformation (both volumetric and deviatoric parts) is controlled
partly by the constitutive law governing the diffusion and partly by
the rheology of the soil skeleton , where both phenomena interact

throughout the whole process.

II.7 Basic Principles: Discussion

In an analysis of the consolidation process some principles must be
adopted before obtaining a final result from the computation. Some
basic priciples are presented and commented on briefly. They are as
much as possible in agreement with the physical observation discussed

above.

The formulation has to be founded in the classical concepts of
mechanics. The distribution of the various quantities in space and

time are formulated with the support of the Continumm Mechanics Model.

Although it is well known from the microscopical observations of soil
that the microstructure to some extent has a random constitution which
results in discontinuities within the soil mass, a two phase

continuous medium is assumed.

As mentioned previously, this internal characteristic may to a large
extent govern the macrophysical behaviour of clay during the entire
process of deformation. Even yield processes occuring in normally
consolidated clay may be explained by the propagation of small local

structure colapse.
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Also the physical characteristics of soil material contained within an
infinitesimal volume element are considered to be the same as those
determined experimentally from meassurements on samples with finite

dimensions.

Secondly, the effective stress principle is assumed. This principle,
first postulated by Terzaghi (1923), means that the effective stresses
in the soil skeleton and the pore water pressure are considered as
partial stresses, which are assumed to act in the entire bulk volume.
In addition, skeleton deformations are only due to the effective
stresses. Because pore water viscocity is neglected in the equations
of motion, (although not neglected in the flow relations) the pore
water stress is considered to be isotropic, i.e.,independent of the

flow velocity gradients.

A third feature concerns the 1loading procedure. For explicit
formulation of governing equations it is considered that the load (at
least for most theories) is instantaneously applied. The accuracy of
such an idealization should be judged in conjuction with permeability
and compressibility properties of the soil skeleton. In fact,
consclidation and creep occurs even during the construction stage,
which means that in cases where the permeability is not small and the
viscosity is not very 1large, the time dependent processes during

loading can not be neglected.

A fourth feature concerns the geometry change during the consolidation
process. Again for explicit formulations the governing egquation of
consolidations is assumed to retain its initial geometric

configuration during the whole ©process of deformation. This
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1dealization may be applied in cases when the soil compressibilility
is relatively small but when very compressible material, (as is
usually true of normally consolidated clay) 1is analysed, such

assumptions may provide extremely crude resuits.

A fifth feature concerns the proper choice of constitutive models. The
main constitutive characteristic of the clay skeleton is that it can
accomodate recoverable and irrecoverable deformations. Thé actual
classification of these deformations into elastic, plastic or viscous

remains yet to be achieved.

It is indeed recommendable to think of the constitutive characteristic
of a constitutive model as being reflected by recoverable and
irrecoverable deformations, whose actual value depends on the strain
rate of deformation. Depending on prior anisotropic stresses in the
soil mass, material anisotropy will be induced (which effects the
constitutive relations). Even loading-unloading stress-paths on
initially 1sotropic material still produces remarkable effects on the

constitutive law (the Hysteresis effect).

According to the observations pointed out previously one would be
discouraged from searching for a simple model to represent the

constitutive model for soil.
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CHAPTER 111

CONSOLIDATION THEORY : BRIEF SURVEY

1II.1 Introduction

No attempt has been made to go into details of the entire development
of the consolidation theories, but entire books have been dedicated to

the matter (Zaretskii, 1967).

The intention here is to emphasize the main points of the constitution

of multi—-dimensional self-consistent models.

Although the well known non self-consistent one dimensional theories
have played a great role in pratical calculations since the birth of

soil mechanics, only brief comments will be made on them.
The term non self-consistent 1is applied in this thesis to those

theories where total equilibrium and strain compatibility are not

satisfied.

I111.2 Basics Characteristics and Applicability

A number of theories for the theoretical treatment of the

consolidation of soil have been presented in the literature. Many of
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these theories, however, are restricted to conditions which are
characterized by the explicit solution technique to be employed. Many
of the older theories are characterized by properties which seriously

affect their applicability.

In particular it is frequently assumed that the strain and flow
conditions are uni~dimensional. Only under certain rather idealized
circumstances do calculations based on these hypotheses give accurate

results.

It is implicity assumed in the one dimensional theories that

differential settlement within the soil mass can not occur.

Most engineering loading produce differential settlement which is at

variance with the uni-dimensional theories.

Most consolidation models, whatever the soil skeleton constitution, do
not satisfy the basic regquirement of equilibrium and continuity
conditions , 1i.e., they provide the calculation of pore-pressure but
not the effective stresses. The convenient consolidation equation is
obtained from the continuity equation under the assumption of certain
strain and flow conditions. Such models are said to be non self-

consistent.

The imposed strain conditions do not coincide with those corresponding
to the effective stress field assumed in most of engineering practice,

especially in the inelastic range where the disagreement may be

substantial.

Also in most practical circumstances, for example when pore pressure
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redistribution takes place, the assumption of constant total stress
imposed by most non—-consistent theories may seriously affect the
effective and pore-pressure calculations and consequently the strain

distribution.

The stress distribution is often obtained by evaluating the total
stress directly. Particularly in the plain strain situation it 1s
common to assume aﬁ infinite half-plane loaded with a surface load
while the clay is assumed to be an elastic isotropic solid. Even
rougher stress estimates are frequently used. Such estimates are
obtained under the assumption that the vertical stress beneath the
centre of a uniform load decreases hyperbolically with the depth
underneath the load surface. A slightly improved formula was proposed
by Frohlick (1933), who also provided the estimation of stresses off

the centre line of a circular load.

It seems that not many comparisons between the pratical application
and the self-consistent theory has been made. A problem for which non-
consistent theory seems to give acceptable results is consolidation by
means of vertical drains, particularly when the water flow will be
radially towards a cylindrical drain resulting in a one dimensional
flow equation in radial coordinates, and the strain is assumed to be

uniform and vertical only.

I11.3 Non—Consistent Theory : Brief Discussion

The most well known one—dimensional theory is that by Terzaghi (1943).
In this theory excess pore pressure 1is evaluated by a parabolic

differential equation of the heat conduction type. Within the same
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basic assumptions , the generalization of this theory was first
suggested by Rendulic (1936) and it is known as Biot's pseudo-theory
(see Schiffman et al (1964))

Few versions of the Therzaghi-Rendulic theory has been presented for
particular problems. A two dimensional variation is used in ground
water hydrology for the analysis of aquifers. The variation of the
hydraulic head is assumed to be horizontal and strain is assumed to be

vertical .

Although distortion can occur in the Therzaghi theory the change in
effective stress 1is assumed to be zero initially. Obviously, this
assumption is very crude from the engineering practice point of view,
apart from seeming inconsistent. A slight modification was introduced
by Skempton and Bjerrum (1957), who assumed that the initial pore
pressure is not equal to the total vertical stress. In this way they
provided a tentative attempt to avoid the assumption of 2zero lateral
strain 1imposed in the one~dimensional theory. In such a case non—-zero

initial settlement is obtained.

Rheological effects in one dimensional problems were introduced by
Taylor and Merchant(194¢), Tan (1957), see also McNabb (1960) and
Gibson et al (1961). In Taylor's theory, for example, the soil
skeleton 1s assumed to behave as a Kelvin body, while in Tan's theory

a Maxwell type solid is considered.

In these theories primary and secondary consolidation are assumed to
occur simultaneously. However, they have been restricted to linear

models.
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Consolidation theories where non-linear rheological effects are
considered were introduced by Schiffman (1959), Murayama and Shibata
(1958) and Abdel -Hady and Hervin (1966). Schiffman (1959) proposed a
linear elastic and constant viscous effect. In the Murayama and
Schibata (1958) and Abdel~ Hady and Hervin (1966) both wviscous and
elastic effects are considered to be non-linear. A discussion of
Murayama and Shibata‘'s model can be found in the Rheology of Soil
Mechanics (1964). Many other models were introduced , each combining

different arrangements of springs, dashpots, and friction bodies.

I11.4 Self Consistent Theory : Biot's Theory

The self consistent theories are those where equilibrium and
compatibility conditions are fully satisfied. This is the case for
Biot's theory. In the first formulation Biot (194la and 1941b) a
linear 1sotropic soill skeleton and linear permeability were assumed.
The resulting theory was completely linear and uncoupled. Later
refinements were ©presented in a series of papers by Biot
(1941b,1955,1956) . The displacement of the soil skeleton and pore-
pressure became coupled to the governing differential equations. The
principle of effective stress was also introduced. Further, a fluid
strain parameter was considered, but unfortunately this is not

convincingly supported from the continumn mechanics point of view.

There 1s no need to go into further details about Biot's theory here.
A comprehensive study is due to Sandhu (1968),and a comparison of the
self- consistent and pseudo theory was presented by Schiffman et al
(1964). Verruijt (1968) aintroduced an additional derivation of the

governing equations of consolidation to include partly saturated
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soils.

111.5 Continumn Theory Approach

In spite of the consistency of Biot's theory and its degree of

generality it still contains some inconveniences.

A part from the restrictions discussed before, the finite deformation

1s not included in the equilibrium equation.

Many conceptual difficulties are encountered in expand this theory to
consider non-saturated mass, finite deformations, water viscosity
effects 1n the equation of motion, etc.... These conceptual
difficulties can be reduced if a theory of a mixture of many media is
used. A comprehensive discussion of mixture theory for a many phase
material was presented by Bowen (1976), where two approaches are
discussed. The first of these approaches was introduced by Green and
Atkins(1964) in the discussion of diffusion of a £fluid through an
elastic porous solid. In this approach the continuity equation
(conservation of mass) and the 1linear momentum equation for the

mixXture were proposed as postulates.

The second, somewhat different approach was given by Green and Naghdi
(1965), in which the basic equations were derived from an energy
balance equation for the mixture. It is necessary to .postulate such an
equation if one wants to take thermodynamic effects into account. Also
in this case an entropy production inequality has to be postulated, as
used by Green and Naghdi in their previous paper. If the thermodynamic

effect 1s neglected, the two approachs come to the same result. By
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making use of the same approach, Green and Steel (1966) treated the
special case of Newtonian fluid flow through an elastic porous medium,
while Crochet and Naghdi (1966) extended the analysis to a non-

Newtonian fluid.

For a discussion of this later paper see Sandhu (1968) who first

applied the mixture theory to clay.

An important point which comes from these approaches is the
proposition of a generalized Darcy Law for a compressible solid
skeleton. A different approach, however, can be used to arrive at a
generalized Darcy Law. Some authors introduced a diffusive dynamic
force conjugated with the diffusion velocity. Others such as Tabaddor
and Little (1971) arrived at the generalized Darcy Law by rewriting
the equation of motion under the constraint of the fluid being
incompressible and assuming that the so called intrinsic permeability

is small.

With appropriate assumptions in the mixture theory it converts to
Biot's theory. However, the whole transformation process is
interpreted as transient, or guasi-dynamic, i.e. the equilibrium

equations are obtained from the equation of motion. Also, the

principle of effective stress is automatically satisfied.

In this thesis, however, the Biot theory can not be used, because it
1s only valid for the linear case. In the next chapter the mixture
theory will be used to obtain the eguation of motion for the soil
mass. The Darcy Law is then obtained by postulating the mass

continuity for all parts of the body and independently for each phase.
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I1I.6 Solution Methods

A great number of solutions for one dimensional consolidation problems
have been provided, by both analytical and numerical methods. The
choice between one method and the other strongly depend on the

characteristics and complexity of the problem.

General methods of analytical solution have been developed in terms of
stress and displacement functions (Biot 1956b). A stress function
formulation was used by Josseling de Jong (1957) to treat axi-
symmetric boundaries, while Macnamee and Gibson (196@a) developed a
solution for plane strain and axi~ symmetric problems by means of

displacement function formulations.

There is a great number of closed form solutions for the consolidation
problem, and discussion of these 1s out of the scope of this
thesis(for detailed discussion see Zaretskii, 1967)). Numerical
methods have been used almost exclusively in solving multi-dimensional
problems, and the finite element method is frequently adopted to
discretize the space domain while finite difference is assumed when

the time domain is discretized.

A brief discussion of the analysis of c§nsolidation using the finite
element method is given in text books such as Desai and Abel (1972)
and Zienkiewicz (1977). In the following chapters of this thesis all
developments concerning the techniques of solving the consolidation

problem by finite element are fully discussed.
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CHAPTER IV

CONTINUOUS MECHANICS OF MIXTURE REVIEW

IV.l. Introduction

The purpose of this chapter is to formulate a consistent System of
Equilibrium and Continuity Equations to act as a model for the non-
linear consolidation problem. Two systems of equations are presented,
one as a function of the Euler variable and the other as a function of
the Lagrange variable. In subsequent chapters, however, the Lagrange
approach prove to be more convenient for the application purpose in

question.

The compact notation utilized made it possible to present the major

features of the entire formulation in a relatively short chapter.

The mathematical descriptions were built up, step by step, from the
basic concepts of Continuous Mechanics, all subsequent passes always
being based on previously established ones. Firstly the Lagrange
strain tensor is defined as a function of the Green deformation tensor
and the Euler strain tensor as a function of the éauchy deformation
tensor. From these definitions the various interelations are deduced.
In the same section relations between the strain vector and
deformation vector are presented in a general form. Also the most

general expressions for the Lagrange and Euler tensor as functions of
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the infinitesimal strain tensor are deduced. The definition of strain

invariants is introduced either as a function of the deviatoric strain

tensor or as a function of the natural strain tensor.

Next the Global and Local Balance Laws, and their restrictions are
presented. Under the assumption of the validity of these laws, one
continuity equation as function of the Euler variables and one as

function of the Lagrange variables are deduced.

By using the equation of balance of momentum the local stress vector
and tensor are defined. Applying the balance of linear momentum law
locally the first law of Cauchy Law (equation of motion of deformable

body) is obtained, associated with its jump conditions.

To transform these equations to a fix reference frame the definition
of the Piola-Kirchhoff pseudo stresses (either defined by unit of
underformed area or by unit of deformed area) are introduced as
functions of the Euler stress tensor. Thus the equation of motion in a

reference frame can then be stablished.

Finnaly, the stress invariants either as function of deviatoric stress

tensor or as function of the natural stress tensor are given.

IV.2 Body Motion

The mathematical description of motion reguires, necessarily, the

utilization of a convenient frame of reference.

In most physical problems, particularly in soil mechanics, it 1is
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sufficient to adopt a fixed system of reference attached to the earth

motion.

Imagine a physical body with different phases(especially with two
phases), in continuous motion, in such way that it experiences
different positions and time in order to satisfy the requirements of
equilibrium. Let any of these states be defined as a body

configuration.

In Figure IV.2.1 a body in three different equilibrjum configurations
is presented. The first configuration is any previously known
configuration or the initial configuration (I.C.) defined by a domain
°B , bounded by a surface % and occupying a volume % . Any area
element related to this configuration is written as “ . The second is
an actual configuration (A.C.) of the body which is defined by a
domain *B , bounded by the surface *» and occupies a volume *¥ and
any area element referred to this configuration is represented by “s

. The previously known or initial configuration may be referred to as
the configuration at time t=@ whereas the actual configuration is that

at time t .

The third configuration is any one after the second configuration. So,
when configurations one and two are referred to only, the position
vector will be represented by 7 and xj respectively and when we
refer to configurations 1,2 and 3 the position vector will be

represented by o , 6 and x{ respectively.
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Figure 1IV.2.1

IV.3 Independent Variables

From an initial configuration, a body, under the action of external
loads, finds itself in dynamic equilibrium (or particularly quasi-~
static equilibrium) in an actual configuration. A description of this
motion may be expressed in two ways: in a parametric form (refer to

Figure IV.2.1)

(Iv.3.1) x; = x{(a},a},a5.1) or xg = x{(ag.1)

or,
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(IV.3.3) a; = aj(xf, X3, X3,1) or ay = ag(x?,1)
or, in a vector form
(IvV.3.3) x® = x%a%1), a*=a"(x", t)l

where o = lor2 represents the material phases 1 and 2 respectively. In
this thesis the material phase 1 is the same as the linear fluid phase
of the body and the material phase 2 is the same as the non-linear

solid phase of the body.

The equation (IV.3.1) means that any position point 4@ at initial
configuration 1s found 1in a spatial position x* in an actual
configuration ; Inversely the equation (IV.3.3) states that the

material point at time t:occupying the spatial position x* may be

traced back to its original position a4 .

The transformation of equation (IV.3.1) into (IV.3.3) and conversely,
is unequivocally determined if they are continuous, possess continuous

first order partial derivatives and the Jacobian J, defined by

J = dcx(g—g)

does not vanish in the neighbourhood of q; . Inversely, the same may

be stated for 7%

In fact, the functions stated by equations (IV.3.1) and (IV.3.3) are
considered to be continuous and differentiable to any order as

required.
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This hypothesis is known under the name of the "Axiom of Continuity",
expressing the indestructibility of matter. No domain, which
corresponds to a finite positive volume, can be deformed into a domain
of 2zero or infinite volume. Motion represented by equations (IV.3.1)
and (IV.3.3) therefore, transform any domain into another domain, any

surface into another surface and any curve into another curve.

In practice, there are examples in which this axiom is violated. For
example, the material may fracture or transmit shock waves or other
kinds of discontinuities. Special attention must be given to these

cases.

Referring to the Figure (IV.2.1) the representation of the position
vector in the second configuration can be replaced by b and x can be
used as the position vector for the third configuration, as explained

before.

Therefore let 7, be the transformation from af to b* , and T, be

13

the transformation from by to x* , which can be written

symbolically as &7 =T,af and x;=T,b , respectively. Also the

i [

product 7,T, means the transformation from configuration a4 to X
» that 1is, x{=T,T\a] . This product will be proper if the Jacobian,
defined by dedaxf/aq;) , is not infinite or 2zero. However, by the

chain rule of differentiation

axz _ ax2 abg

a.’ aba 6aj’

may be written, so that by the property of product of determinants,
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(IV.3.4) J = dct(:%z) = dcx(g—‘bg)dcl(‘;%) =1,J,

Since neither J, nor J, vanishes or is infinite their product is

neither zero nor infinite and the transformation 7,7, is proper.

Also, when the position vector x! 1is very close to b the

determinant of dx{/db; may approximate to the first order terms as

Ox] Ou; .
(IV.3.5) de‘(a—bg) = 6ik + .a_bj =J2

To show this, take xf =5} + 4 and evaluate dx7/ob; and then evaluate

the determinant where the second order terms in y, are neglected.

IV.4 Strain Definitions

In the following chgpters any quantity, scalar, vector, or tensor
refered to a configuration "a" will be denoted by a left superscript.
For example, if "r" refers to a configuration "a" it will be written
% . Also, when relevant, the independent variable of any Qquantity
wi1ll be defined by a left subscript. The left subscript "a" means that
the current quantity defined is a function of the Lagrange variable
and the left subscript "x" means that the current gquantity is a

function of the Euler variable.

For example a quantity Je is defined at configuration "x" and

depends on the Lagrange variable.

In this text the particular concern is studying the strain state
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variation when passing from the neighbourhood of point 4® defined by
the vector da® in “B to a corresponding neighbourhood x defined by
the wvector dx* in *B when finite deformation occurs. The
transformation of such a vector da® into dx® is shown schematically in

Figure IV.4.1.

039X3

Figure IV.4.1

Making use of equations (A.4) and (A.6) it is possible to express the

square of the arc length in “B as a function of the variables in

B as :
2 6a% da?

a ey _ k ! ay o
(IV.4.1) (d r) = 6“§X—f &}dx‘.dxj
conversely

x avl _ a“‘iax‘f a a
(IV.4.2) (d I’) = 6*‘6_0,56—07‘1‘7" daj
where

. dagoa  , _ axqgox

(Iv.4.3) “5 = %35 Gxe o€ij = Oy 3a¢ Ja°

are, respectively, Cauchy's deformation tensor and Green's deformation
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tensor

Note also that Cauchy's deformation tensor is a function of Euler's
variable, whilst Green's deformation tensor is a function of Lagrange

variable.
Lagrangian and Eulerian strain tensors are defined, respectively, by

a 1 1
(Iv.4.4) o€kl = 5661: "51‘1) £k = 5(5;‘1 = %)
It is useful sometimes to have a relationship between Cauchy's
deformation ,c;’j tensor and Green's defomationacfj tensor, which is

nearly the same as the relationship between Lagrangian's and

Eulerian's strain tensors.

By making use of equations (IV.4.2), (A.3) and (IV.4.4); and similarly

for equations (IV.4.1), (A.4) and (IV.4.4)
(IV.4.5) (@) = 2,¢f,daldal = 2,68, dx3d x}

may be written. From this and (A.6)

dxg 3x2 dag 943
(Iv.4.6) ,e?}=xefla—q_,a—aj.' i1 =a‘§a_x§cﬁ

These equations also ensure that both ., and ., are second-order

absolute tensors.

The strain tensors may also be expressed in terms of the displacement
vector y* which extends from a material point in the I.C. to its

spatial location at time t in the A.C., as shown schematically in
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Figure (IV.4.1). From this Figure one may write:
(1v.4.7) = x"—q" or ug = xj —a

The displacemnt vector may be expressed in terms of its Lagrangian and

Eulerian components u,(af.t) and uf(xz.r) .

By differentiating (IV.4.7) one may get:

(IV.4.8) dxy = (8, + a_a;:)dal' daf = (8, —~ 7=)dx}

By taking  4x{/da? and da}[ax; from the above egquation and
. substituting in (IV.4.4) one gets

duf duf | oul dup,
o) =08,,—2.8,, =208 6 ——ort - —L 4 —m__m
xtkl kil x“kl ki axla axtkl aX; 6,\’7’

(IV.4.9)

- 4 ouf + du} | duf, dul
Gy =8 2.8 =0y Jag " 3ag T Gag day

a

which are the strain tensors Euler and Lagrange,respectively,in terms
of the the 1linear and non-linear components of the displacement

gradients.

The Lagrange strain tensor g, will be used a great deal in future

chapters and its explicity expression can be found in the Appendix C.

The strain tensors, as well as the deformations tensors, are symmetric

tensors, i.e.

& — Lo a . o a . a a _ _a
axt = ik Jfrt T A€l k1 T Clke <kt T aClk



34

if arranged in a matrix form as:

€xx ex)' €r:
€1 ?, x e” e,,,
e 4

2x ezy 22

which is a matrix symmetrical with respect to its main diagonal. The
strain components € €0 €py displayed in the main diagonal are
called normal strains,while the others are called shear strains. This
symmetry is exploited a great deal to save an enormous amount of

computer memory when programming deformable bodies.

Also often employed in 1linear theories of continua, are the
infinitesimal strain tensors /i, o+ i and  infinitesimal

rotation tensors _w;, , ,w,, defined by

o _ Vgouy  Oup N )(Bu‘ ﬁ_zz,f)

(IV.4.10) a'kl 5(50_‘," Fa_‘,{) Dkl o\axg  9xg
« _ V(Ouy Ouf o _ lgoup duf

i = 3(a am) (G e

also called symmetric part and anti-symmetric part of the

infinitesimal strain tensor.

From (IV.4.10¢) it may be written

(IV.4.11) ouy _ ouj
axg

a a Y a
daz ~ a W =dut vy

and substituting into equation (IV.4.9)

Kkt =0y = 21‘—’:/ =8y =2t (x’:k“"x“’a,k ) mt W)

n

(Iv.4. 12)

aCZI =&, + 2an/ =0, + 2,05+ (a/:ﬂ:+ wh, )(a"' + e )

a’ mk ml! a "mi
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is obtained, and from which,in various physical situations,
approximate expressions are obtained by dropping various combinations

of products.

IV.5 Strain Invariants

It i1s of interest to determine, at a given point in the material body,
the directions for which the stretch takes extreme values. Bearing in
mind Figure (B.l) and defining °n; and *nf as the unit vectors along

da” and dx* , respectively,

das dag ro_ dxy d
|d a|

nb

X,

(IV.5.1) “ng =

o,
3

C T (e

Ry

a,

2

where dae and d*~= , whose squares are defined by equations
(Iv.4.1) and (IV.4.2), respectively, are the 1length of dge and
d xa . The stretch “\®=")\% is the ratio of 4*°/d°* . When it is

a a

considered as a function of “n® , ™\° is written , and when it is

X a

considered as a function of *»*, "\° is written.

1[G, g )}

So, (IV.5.2) ‘me =

dx'a=( aaaa a)% 'nAn

n
dara \eEkt T T dara

From (IV.5.2) it 1is clear that the normal components of ¢ and

a

e in the direction of “4* and “n" are, respectively, the square

and the inverse square of stretches in these directions.

Now to obtain the direction for which the stretch takes extreme values
the above equation must be differentiated in relation to “n, .

where “n? is subject to the condition

m
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(IV.5.3) by, ng 'y =1

Using Lagrange's method of multipliers and introducing the inverse of

(Iv.4.4) it may be deduced that

where
(IV.5.5) 2E° = ¢"—1

and ¢® is the unknown Lagrange multiplier.

Now solving (IV.5.4) for “ . A nontrivial solution of this

equation exists if the coefficient determinant vanishes, i.e.

oCax ~ o aezy o€
(IV.5.6) dcl(aé’:, - ae"é“) = ae;x ae:y —aea P =0
. a“zx nel;y o2 o

Upon expanding this determinant, a cubic equation is obtained, known

as the characteristic equation of the strain tensor:

(IV.5.7) -1+ Le—1,=¢

where ,* has been changed to e for simplicity.
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The quantities 71, ,1,, 7, are known as the principal invariants of the
strain tensor. These quantities remain invariant upon the
transformation of coordinates . A second-order tensor %{, in #®’

possesses only three independent invariants, that is, all other
invariants of ¢, can be shown to be functions of the above three

invariants.

The charateristic equation (IV.5.7) possesses three roots,f(f=1,2,3)
called principal strains. The coefficients I, ,/, ,J; of the
characteristic equation are the sums of the products of these roots

taken one, two and three at a time, i.e.

= - S o o a
]I = a€kk = afxx + aCyy + a2z

(Iv.5.8)

Iy= e o€t s60aae t o€0 a8, ~ ae;zz — oo ne:yz , 1y =det ¢,
The three 1linear equations (IV.5.4) determine a direction %ﬁ
corresponding to each principal strain ;{@==1.z3) . If the principal
strain is real and distinct , then the directions  “nj;.°nj, and “nj,
are real and uniquely determined. By using equation (IV.5.4) and the
symmetric property of the strain tensor, it may be proved that all

principal strains are real.

Also the principal directions corresponding to two distinct principal
strains may be proved to be orthogonal and, furthermore, it is always
possible to find at a point 4" at least three mutually orthogonal
directions for which the stretch takes the stationary values. However,
the state of strain takes a particularly simple form when the
reference frame is selected to coincide with the principal directions.
In this case “nj, =@ whenever I#k . It may be written

°nf, =38,  and from (IV.5.4) it follows that
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(IV. 509) ae:m = ae‘I:n‘égk
where underscored indices are summed. That is, in matrix notation

(IV.5.9) leads to

xx exy €y € 0 0
(Iv.5.10) e. e e = |0 e O
0 0

rx Yy yz =

Where the superscript indices have been dropped, for simplicity.

Hence, the determination of principal directions and principal strains
of a tensor ¢, 1is equivalent to finding a rectangular frame of
reference in which the matrix I}, takes the diagonal form, i.e.
the principal strains are the normal components of the strain tensor,
and the shear components of the strain tensor in the principal frame

of reference vanish.

The usual procedure to solve the characteristic equation 1is by

changing the dependent variable e; by

where the subscript has been dropped for simplicity.

Substituting the previous equation into equation (IV.5.7) one may

have:

(Iv.5.11) &-Te-T,= o
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where the principal deviatoric strain invariants are:

1 2 2
T,=31%-1,= z[(e“—e”) + (e,—e,, )
(IV.5.12) 1
+ (e,,—e,, )2 + 6(e:z+efx+e§’ )] = EEU?U
s _ 1
(IV.S. 13) T3 = ’3""lzl| + 2’] = Seuaueu

Since it is known that all roots of the eguation (IV.5.11) are real

and they can be found to be:
2 . 2 2 . 2 x
IV.S. 14 P, == e pusg P = —— P = M -
( ) ,el \/stsm(ﬂ, + 31). X J§T251n 6,.8 \/stsm(o, + 43)

where a trigonometric equation similar to (IV.5.11) was used to £find

the solutions (Nayak and Zienkiewicz,1972) and

YK

(IV.5.15) b, = larcsin(aJ ,7-3) = arctan -2—€3:—e'—:—e_3 -I< 6, <
3 2T} 3e, —e3) 6

Hence for the three principal components of strain (e, 2e,2e¢,) the

expression
2 . 2 1
e = :/gfzsm(o, + -3-1) + 31,
2 . 1
(IV.5.16) e = —:TZSID 91 + 51‘
V3

2 4 1
e; = —T,sin(f, + — =)+ =1,
U3 3 3

can be written.
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In order to give a geometric interpretation to the strain
transformation from the I.C. to the A.C. the following simplification

is introduced.

In the principal triad the square of the arc length is given by

x a2 _ ax‘l: aX‘; — a, a2
(d r ) —6“&?6—%_,5111:.'(10;— Ca(daﬁ)
B
Where according to (IV.5.5) c3=1+2¢ are the proper numbers.
For (d’ff = k? fixed, the previous equation represents an ellipsoid

called the strain ellipsoid of Cauchy. The stretches®\* = "\"= d’r"/d"r"

along the principal axes of this ellipsoid are given by

(IV.5.17) “N=k[dag = c}=k/[b,

where b, are the lengths of the semi-axes.

Geometrically speaking, the strain ellipsoid of Cauchy means that an
originally spheric isotropic solid material in the I.C. becomes an
ellipsoid in the A.C. with the semi~axes lying down in the principal

strain directions and the stretch values are given by (IV.5.17). The

reciprocity holds for the inverse transformation(Aris, 1962).

IV.6 Compatibility Conditions

In three~dimensional space the deformation tensor ¢, and the strain
tensor e, each possess six components which are expressible in

terms of three components u§ of the displacement vector, i.e.
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dup | oup | dup du
dag = dag  Oag daf

(Iv.6.1) oy =8, +2f, =5, +

Thus,given three u§ , six ¢, can be calculated. If, on the other
hand six ¢, or ¢, are given, can a single-valued displacement field
be found corresponding to this strain? It is clear that this requires
the integration of six partial differential equations (IV.6.1) for the
three unknowns w2 . Unless certain integration conditions known as the

compatibility conditions, are satisfied, this may not be possible.

One way of finding the compatibility conditions is through the
elimination of 4 from (IV.6.1) by partial differentiation. &an
alternative method is to use the theorem of Riemann (Eringen et al,

1974).

By using one of the two methods the compatibility conditions for €k

and ,e}, can be obtained. It may be written in terms of ¢, as
=1
€inim ™ Clmikn™ Ckmin™ €lnkm ™ Crs [("k,.n'*"’m,k_"kn.r )

(Iv.6.2)

(el:.m + Cmst elm,s) - (Pk r,m+emr,k—ekm.r )(el.l,n+eru_l_eln,: )] =0

Where x and « have been dropped for simplicity.

Also, when strains are small their products are dropped to obtain the

compatibility conditions for the infinitesimal strain tensor.
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IV.7 Force Distribution, Mass Density, Internal Energy Density

In the study of a one-phase continuum media, one is concerned with the
manner in which forces are transmitted through a medium. At this
stage, one is concerned specifically with two classes of forces. The
first is the so~ called external or body force distribution,
distinguished by the fact that it acts directly on the distribution of
matter in the specified domain, such as gravitation or eletromagnetic
forces. Accordingly , it is represented as a function of position and
time and will be denoted by f(x;.7). This force is an intensity
function and is generally evaluated per unit mass or per unit of
volume of the material acted upon. The second is the intermal or
contact force which 1s to be regarded as acting on an element of
volume through its bounding surface. If the element of volume has an
external bounding surface, the specified force is called surface
traction which is an intensity defined by unit of area ,and is a
function of the position x; , time t , and the orientation n of the

surface element, according to Cauchy's principle. They are denoted

by o, (x.1) -

In the study of two-phase continua, the body force in each phase is
defined in relation to the total volume of the media. They are denoted
as  f'(x,1) and fix,.1) or simply  f%x.1) . The internal. force
in each phase is defined per unit of total surface, instead of by unit
of individual phase surfaces, which are denoted as  o,(x;.1)

and ol,(x.1) or simply of,(x.f) .

With these simplifications the two following identities hold for a

volume element:
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Slxt) = o0 + fn = fox.n
(IV.7.1)

N | 2 __ _a
”(n)(xi' 1) = o)x; 1) F oi(x; 1) = o (x,. 1)

Also in continuous mechanics the existence of continuous mass measure

(mass density) and the internal energy density are postulated: ( p,¢ )
The total mass m within a volume ¢ is given by
I
and the total internal energy ¢ in the same volume is given by
(IV.7.3) £= Jp(dﬂ
9

The expression for the mass and internal energy for each phase may be

written in a similar way to the body force distribution, so,

(IvV.7.4) m=Jmo=J,ﬂw+wa=m‘+nf=rrf @ <p', pP<oo
] 9 9
and
(IV.7.5) £'=de06d0=Jp'e'd0+‘[pzezd0=€l+€z
] v J

IV.8 Global Balance Law

In continuous mechanics there are five laws which are postulated,
irrespective of material constitution and geometry, each law having
its own domain of applicability .These laws are restricted to

relativistic speeds (for special relativity) and restricted in
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relation to dimensions (for general relativity); also microscopic and
quantum~mechanical phenomena can not be treated. They are wvalid for
all bodies subject to thermomechanical effects. Because of the nature
of the problem concerned, only four of these laws are presented (not

the Entropy Law):

l.Law of Conservation of Mass: The total mass of a body is unchanged

with motion, or

(Iv.8.1)

=
o G

R~

a

<

i
S
& Sy
b‘—

o,

<o

+
ol LY
& e—y

b-@

Q

<

]

Q

Where d/dt is the material time derivative. Also, the Law of
Conservation of Mass may state that the intial mass of the body is the

same as the total mass of the body at any other time, i.e.

(IV.B. la) Japd 00 = ’[ xpd X‘9
) xy
By using the transformation law d4*9=Jd% given by(B.B) this may be

written as

(Iv.8.1b) '[("p—"p.l)d"a =g or “="pJ = @
)
2. Balance of Linear Momentum: The time rate of change of momentum in

a volume element is equal to the resulting force acting on it.

(IV.8.2) ‘% j- pvdd = §am,d: + J pfdv or,alternatively
v

$ 0

d
(1V.8.3) - J(n'V' + 97V )d9 = §o(n,d: + §o(,,)ds + j(p‘f' + o' f2)d9
9 »

s
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3. Balance of Moment of Momentum : The time rate of change of moment
of momentum is equal to the resultant forces and couples acting on the

body . So,

|

(Iv.8.4)

QU

. J'p"x‘i Vido = §)x°xof’n,ds + J‘p"x"xf"dﬂ or, alternatively,
9

s 0

d
(IV.8.5) Py j(p'x'xv' + pzxzxvz)dﬂ = §(Xlxﬂ(n)l + xzxo(,,)z)ds+.[(p'.x'xj' + pzxzxfl)dz’
v
where the 1left-hand side is the time rate of the total moment of
momentum about the origin. On the right-hand side the surface integral
is the moment of the surface tractions about the origin, and the

volume integral is the total moment of body forces about the origin.

4. Conservation of Energy: The time rate of the sum of Kinetic
energy x and internal energy ¢ 1is equal to the sum of the rate of
work of all forces and couples w and all other energy 1y, that
enters and leaves the body per unit of time.

d
* - — =
(1Iv.8 6) I(.X'F f) w+ E Uk

£

where,

£=J‘p¢d0‘ _X:%J.pl'xl’do, w=§0(,‘)!VdS+J’pfod19.
v v s v

the other energy % =(¢=1,.,n) that enters and leaves the body may

be thermal, eletromagnetic, chemical, physico~chemical or of some

other origin.
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IV.9 Local Balance Laws

These laws are particularly important in establishing the equilibrium

and the boundary conditions in continuum mechanics.

They are found by applying the global balance law established

previously to the local conditions.
~Conservation of mass locally.
If the material time derivative of a volume integral defined by

eguation (A.26) is now applied to the equation of global conservation

of mass given by (IV.8.1) where ="p

(IV.9.1) J‘[% +div"p*v )]d"\"i- J [’p(’v —u)]."ndxs-‘—‘ o]

d-w w
or x| X .2
J [aa” + dn{"p”v')]d’o + J [5—” + divf'p“v’)]d‘a
! or
V-w d-w
(1V.9.2) + J [ev- v )] na*s = o

w

can be written, where *p*v=",'"'+%?%? defines the mean velocity

Xv .

It is now postulated that all balance laws are valid independently for
each part of the mixture and for every part of the body and
discontinuity surfaces. Applied to equation (IV.9.2) this implies that
the integrants of the integral must vanish independently. Thus in

component form,
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) ‘ 2
F , 8 _¥, 8

a*p a
Iv.9.3 (o =L _O x 1x 1, __ x 2x =
( ) ax, p*v,) + k( A bl x‘( PV = o

ar or 0 x

(IV.9.4) [’p('v - y)].'n= o

These are the equations of local conservation of mass and the Jjump

conditions.

Also, if the funétional dependency x = x(a,7} in equation (IV.9.3) is

changed it becomes,

d:p x a:vk d:pl x la:VL —_ d;pz x 233"2
(1v.9.3) dr YeP3a, = dr TP s, = dr TP G, — 9

where equation (A.15) and, *p = p(x(a).1)="pla,r) is made use of. Tracing

back it is found,

(IV.9.6) p="""%la) ="
It can also be written that v = v (x(a).1) = "v (a,1) which, traced
back becomes
g . axka . . X .
(1Iv.9.7) v (a, i, = 3a, vlan)i, = *v (x,1)i,

To write the jump conditions first note the relations between the
exterior unit normal *n at the deformed surface and °» at the

undeformed surface. From equation (B.2) one may have

X aa a
(Iv.9.8) d*s, =*J a~x—id s,
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] x L de
(1v.9.9) *n, =d s, )(d*s,;d*s, )= ‘z::. ’n = dask/(dn-‘lda-‘l )} = 4 5;
hence,
(IV9 lg) x ="Jﬂa d9s
oo " ax, " s
Using (IV.9.8)
a ]
(Iv.9.11) Z—xj =77 Yc;) %n, “n,) ?
is obtained, thus
- -0
(IV-go 12) xnk = (Clnl a”l ann) Ia%" anm
A

Putting this into equation (IV.9.4) the material form of the jump

conditions, are obtained

e /x X a a
(IV.9.13) [ p(av,‘ - Vk)I:J':‘] n, =@

Also, if phases 1 and 2 are submitted to an isochronic flow, i.e.

plat) = constant, the equation (IV.9.5) may be replaced by
axl (] x 2 ax
Iv.9. = =21, =
(IV.9.14) 3a, Vi 2, Vi 30, v, =0
or
(Iv.9.15) Lhie' v =

If it is now postulated that equation (IV.9.15) vanishes independently

for each phase and the solid and fluid phases are considered less
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compressible than the soil skeleton, the following equation may be

written:

a 2 Fvi _
(1v.9.15a) ‘5ua_al(x";'"x"k)'5u'gg =0

which is another form of (IV.9.15).

The same argument can be used to get a similar equation equivalent to

(Iv.9.3).

IV.10 Definition _cg stress

_Zg_._ Stress Vector

To clearly define stress at a given point represented by the vector
position x; in A.C., a tetrahedron is considered adjacent to the
surface s of the body. Consider a tetrahedron of volume A™ having

three coordinate surfaces A's .

By using the equation of balance of momentum (IV.8.2) and the mean

value theorem for this tetrahedron, the following can be written
(Iv.10.1.1) ‘—7—' (p* v At = LIV Tg8%s, + %" AT

where “p°, *v*, %f" are respectively, the values of p , » and f at some
interior point of the deformed tetrahedron and %, and "o; are the
values of ¢, on the deformed surface A”s and on coordinate surfaces A”s,

, Figure (Iv.18.1),
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V

\%

— d(],,)Axsx

— 0(3.) A’S,

Figure IV.10.1
In the limit as avs.@ one has
A~ D

(IV.10.1.2)  lim g—:-(xp'xv'At’)=xp"de0 +5 5 d T = % ud

since the conservation of total mass equation (IV.8.1) ensures .that

*d = o . In the limit 4"9[d"s- o
(Iv.lﬂ. 103) . xﬂ(n)d XS = xU‘ d XS‘
is obtained. Here *r, is called the total stress vector at x .

similarly, if the balance of moment for a two phase material given by

equation (IV.8.3) is used, the following is obtained
(Iv.10.1.4) “oiyd’s="d} d*s, a=lor2

Bearing in mind the tetrahedron, the area vector 4xs is equal to the

sum of the coordinate area vectors, i.e.
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(IV. 19.105) de = xndxs = dxsk "k
or

(IV.18.1.6) d*s, = *n d*s

Introducing this into equation (IV.1@.1.3) gives

(IV. 1@. 107) xa(n, = xa*x"k and JGZ’) —_ xa: xn:

From these it may be concluded that

x a

X =_z __xg
(Iv.10.1.8) %(-n) Iim) and %i=n) = T On)
This means that the traction is a linear function of the normal and
that the tractions acting at the opposite sides of a surface area are

equal in magnitude and opposite in sign.

g; Stress Tensor

The stress tensor o,;is the 1th component of the stress

vector g, acting on the positive side of the kth coordinate surface.

(IV.lg.Z.l) Uk = c“.il

The positive components of ¢, on the faces of a parallelepiped
built on the coordinate surface are shown on Figure (IV.10.2). In
order to avoid confusion only the stress components on two pairs of

parallel coordinate surfaces have been shown. Note that when the
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exterior normal of a surface is
coordinate axes perpendicular to
camponents on that surface are in

coordinates. Similarly, when the

in the same direction as the
the surface, the positive stress
the positive direction of the

exterior normal is opposite in

direction to the coordinate axes, the positive stress components are

in the opposite direction to the coordinates.

0(2")
(]

A

Figure IV.10.2

The components o,,, o, , 0, are called normal stresses, and o,

yy

¢ 0,... are called shear stresses.

y

Also the stress tensor may be arranged in a matrix form.

Orx Ory Oxs
(IV.lﬁ.z.z) akl = U),x Ury ny
Tes Ogy Oz

The traction is given by
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(IV.10.2.3) Oy = Tat My

directly from (IV.1£.2.1) and (IV.10.1.7)

Another important property of the stress tensor is its symmetry. So,
taking the equation of balance of linear momentum (IV.8.2) associated

with equations (A.13) and (A.26) where ¢ =pv and 1, =0,

d(pv) a do, +J - + =
(IV.10.2.4) ‘,J.;[ - +5;;(pvvk)_m_,,f]do [oMn=v) + o4 Jmds = @

L

is obtained. If this is postulated for all parts of the body, the
integrants vanish independently. Upon using (IV.9.3), this is

simplified to

do,
IV.lﬂ.Z.S _i + - = in -
( ) axk (f V) 7] ?—-w
(IV. lgo 206) [pv(v‘ "Vk)—ﬂk]nk =g on w
where = ﬂv,‘
ar  ox,

Equation (IV.10.2.5) is the first law of Cauchy expressing the local
balance of momentum, and (IV.10.2.6) is the associated jump condition

on the singular surface w .

Upon carrying (IV.18.1.7) into the equation of balance of moment of

momentum (IV.8.4) and using (A.13) and (A.26) locally one obtains

(IV.18.2.7) iy 20, = @ in d-w
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where the 1local laws of conservation of mass and balance of momentum
(Iv.9.3), (Iv.9.4), (Iv.1@¢.2.5) and (IV.1€0.2.6) were used. The
associate jump conditions for the moment of the momentum is satisfied

identically.
When (IV.10.2.1) is used, (IV.10.2.7) gives

(IVOIQOZOB) Ot = Ulk

thus, the necessary and sufficient condition for the satisfaction of
the 1local balance of moment of momentum is the symmetry of the stress

tensor.

- Piola-Kirchhoff stress tensor.

To find the equation of motion in a fix reference frame the stress
tensor must be transformed from the local and deformed coordinate
system to the original fix one. Thus, let js, be the stress at a
spatial point x in the A.C. but referred (measured) by unit of area
at a 1n the I.C. If 4% and d”s, are, respectively, the area surface
at x and the components of the area surface at x and 4%, are the
area components, when tracing back the components of the area surface
at  «x to the initial configuration, the following eguation can be

written

(IV. lgo 2.9) U(‘")dxs = :0* dxsk = :ﬂkd OS‘

where *; is the normal of the area element at x .
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By making use of the egquation (B.2)
x X d 1
(Iv.10.2.10) =J =—10 =J=—3

can be written, where jo, is the stress vector defined at x by unit
of deformed area and ;0, is the stress vector defined at x by unit

of undeformed area.

To represent the components the Piola-Kirchhoff pseudo

stresses 4% and %, are introduced and defined by

(IV. lg. 2. 11) :Ul = :Xalm'iﬂl
where ;o is the mth scalar component of the stress

vector Jo, obtained on the deformed axes. Now, tracing back to the
undeformed axis, o, is found with the effect of the inverse
transformation da,/dx, (the same explanation was used in arriving at
equation (A.5)). Or,

(IV.10.2.12) fg =g %n and xy =, Pn

ax m=aaalna_a“ a
so that by (IV.10.2.10) one can write

9q, —10% -1 0x, 9x
10233 =TSy o m s S 1 B

da da, do

x x n n X
0%n = a:%1m axm = axk axmxzckm

(IV.10.2.14)

Thus, to obtain the stress tensor ro (defined at A.C. but measured by

unit of surface at I.C. and at the coordinate system at I.C.) as
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function of ;o (defined at A.C., measured by unit of surface at A.C.
and at the deformed coordinate at A.C.) the transformation given by

x

equation (IV.1P.2.14) should be used. Transformation among o, .0

aa

and %o can also be obtained , from the same eguation.

Now, substituting (IV.10.2.10¢) into (IV.10.2.5) and using (A.11),
(Iv.8.16)

o
(IV.18.2.15a) Faf + (5 -%)=

is obtained, which is the Cauchy's equation of motion in the reference
frame. For component representation (IV.16.2.11) is introduced into
(Iv.16.2.15a) or (IV.1P0.2.14) into (IV.1@.2.15a) and two different

forms of the equation of motion are obtained:

ax
(IV.lﬂ-z. J.Sb) Ia&l + ofk a k ).:z 2

a(aaolq axl/ da; ) a

(IV.10.2.15c) 3, +%(f - = o

Cauchy's second law of motion follows from o, =9, and using

(Iv.10.2.13) ,too. Also using o,, =g, another two different forms are

obtained,
ax; dx;
x i _ X J
(IV. 1”0 20 lw) ¢xokj-aT* = ‘"‘a“"m
(IV.18.2.15€) 0% = aa¥jk

To write the Jjump conditions in the reference frame, equations
(Iv.10.1.2),(IV.1€.2.1¢) are introduced into equation (IV.10.2.6) to

find
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X X aa X
(IV.10.2.15f) [‘n,t’(’v-.n)ﬁ -.rn]"ru =0

Finally, it may be possible to express equations (IV.10.2.13) in
relation to the infinitesimal strain tensor [, and infinitesimal
rotation tensor w,, . By using (IV.4.8) and (IV.4. 1¢) the following
can be written

da
(IV.10.2.16) a_xf =00 — by — Wiy

Introducing this into equation (IV.10.2.13), equations

(IV. lg. 2. 17) :Ukl = 6""':(7.1 - W"m:ff",
(IV. lg- 2. 18) :a“ = 6‘“6,‘” - w‘ﬁakﬂ - W”kon: + w”" wm"ak"

are obtained where it has been assumed that [/, is small compared

to 1 and j=1+/, as given by (IV.3.5)

~Principal Directions of Stress: invariants of the stress tensor

Now that the concept of stress in the vector and tensor form has been
established, this tensor can be expressed by the theorems demonstrated
in the Strain Definitions section. In particular, it can be shown(on
the basis that the law of transformation for the normal stress tensor
is analogous to that for strain tensor) that for every point in a body
after deformation there exists three mutually perpendicular surfaces
on which all shear stresses are zero, and on which normal stresses
assume stationary values. By reasoning analogous to that in the strain

section, it may be shown that a similar characteristic equation for
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the stress tensor can be obtained. Following the same procedure as
used for the characteristic equation of strain, the three roots of the

characteristic equation of stress may give the principal stress

tensor:
2 - . 2
o, = EJ:SIH(BJ + ;‘l’)"l']l
UZSL_ 2Sin9_,+],. 5,262203
(IV.10.2.19) 3
2 . 4
gy = 7%725"‘(0: + 31) +J,
(IV.10.2.20) J - %(an-f-o” +a,)= %m
(Iv.10.2.21) J1= 050, T 0,0, t 0,0, 7:: - T:x- 7.3:= Ealiall
(IV.10.2.22) 3, = oy =3 8%

(IV.10.2.23) T,=3J2—J, = %[(a,,—a,,)’+ (06,)~055 )2 + (0,504,

1
+ 6(‘r:,,+1'3x+1'iz )] = %%

1
(Iv.10.2.24) T ,=J,~JJ,+203=1,+T,J,-J}= 3%,%i%y

(IvV.10.2.25) ¢, = %arc sin( -

The stresses invariants J, ,J, and ¢, given by the previous
equations , together with the strain invariants 1, , T,, 4; given by

equation (IV.5.12) are to play, in future, an important role in the
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definition of local stress-strain relationship.
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CHAPTER V

VARIATIONAL METHOD

V.1l Introduction

The consolidation problem will be adequately represented by a system
of differential equations with its respective boundary and/or side

conditions.

It is well known that, except for simple cases, it is impossible to
find a closed form solution to these equations which in addition must
satisfy the boundary conditions. Another alternative is to seek an

approximate method of solution.

Because of the possibiiity of using the finite element method for
numerical solutions, a consistent variational approach is therefore
required. The variational method consists in replacing the system of
continuous equations by an equivalent global statement , which accepts
approximate functions as its solutions. The continuous equations are
usually transformed in a fuctional by an energy theorem. A functional
may be defined as a special type of function where the independent

variables are one or more unknown functions.

By transforming the continuous equations into a functional, it is
always nececessary to find the conditions which these unknown
functions must satisfy in order to make the functional a stationary

point, usually the minimum. It may be shown that a functional has a
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minimum stationary point when its integrand satisfies the Euler~
Lagrange equations, as well as the boundary and side conditions(

Washizu (1968)).

It is well known that the particular choice of approximated function
characteristic of the finite element method, imply substantial

advantages.

The discussion of the method of solution, and applicability of the
finite element method has been published in a number of publications,
see for example Naylor (1981), Zienkiewcz (1972), Cook (1974) and
Smith (1982). In the first text book the applications of many
important problems in soil mechanics are discussed, and a mathematical

analysis of the method is given by Strang and Fix (1973).

Another alternative to the finite element method is the boundary
element method, Banerjee and Butterfield (1979) , in which
approximations are introduced only on the boundary. With the aid of a
fundamental solution, the differential equations are reformulated as
integral equations. Evidently, the method would be powerful in
combination with the finite element method to account for the effect
of semi-infinite regions occuring frequently in soil mechanics
problems. The application to the consolidation problem still remains

for the future, and is beyond the scope of this thesis.

V.2 A Brief Survey of Different Approaches

Although in this thesis the transformation of the continuous field

equations into finite element equations is reached by means of virtual



62

work rate definition, a brief description of previous formulations is

presented

Many formulations have previously been discussed in relation to the
case of complete linear problems, i.e., linearity is assumed both in
kinematics and in the material constitution. The latter restriction

is, however, not essential when different functionals are discussed.

In the case of 1linear kinetics a number of approaches which can be

used to reach the finite element equations are possible.

One of the first approaches was introduced by Christian and Boehmer
(1968,1969) , who solved a sequence of ficticious undrained problems.
After load is added in a time interval, the pore pressure and
displacement field generated are evaluated for the undrained case. The
pore pressure generated is then used in the continuity equation to
evaluate the rate of volumetric deformation. Keeping the rate constant
during the next step, one easily obtains an additional volumetric
strain increment. For each known total volumetric strain a new set of
displacement and pore pressure are obtained at the end of the time
step. The method may be seen as a foward Euler Scheme with sucessive
application of Reisner's wvariational principle, as the continuity
equation is a constraint condition (stepwise incompressiblility during

each time-step).

Following an approach established by Gurtin (1964) for linear initial
value problems like heat conduction and viscoelasticity, Sandhu (1968)
solved a pseudo—~variational problem (stationary point), where the
associate functional contains convolution products in the time domain.

In practice the method can be shown to be equivalent to a semi-
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discrete method, with Crank-Nicholson's finite difference scheme in
the time domain. Explicit results of the linear problem for plane
strain and plane flow have been presented by Sandhu and Wilson (1969),
who used 6 noded isoparametric elements , where displacement and pore-~

pressure are aproximated in the same manner.

Similar variational principles have been suggested for related coupled
problems, Sandhu aﬁd Pister (1970), and an extension to non-linear
problems and mixed formulations have been made by Sandhu (1976). No
pratical applications have, however, as far as the author knows, been

presented for the latter cases .

Using similar methods to those previously described( Galerkins method
in the space domain and Crank-Nicholson's finite difference scheme in
the time domain) Hwang et al (1971) obtained a solution for the linear
case. Taking advantage of the decay in the process they work with

Jogarithmic time increments.

A mixed formulation of the linear problem based on the variation of an
extended functional corresponding to the Hu-Washizu's variational
principle in elasticity was proposed by Yokoo et al (1976).
Independent variables are displacements, strains, effective stresses,
excess pore pressures , hydraulic gradient, and diffusion velocities.
Restricting themselves to the ordinary theory with displacement and
excess pore pressures as unknown, which in fact may also be considered
as mixed theory, Yokoo et al (1976) present results for the case of
the load growing from zero linearly to a final value during a f£inite
time. All unknowns are assumed to be zero initially. For a linear
theory the continuous loading approach requires more than one solution

step which is contrary to the initial loading approach. On the other
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hand, this disadvantage disappears at the extension of such non-linear
models for which an initial loading approach requires an incremental
loading technique, while the algorithm for the continuwous loading
approach will be unchanged in principle. Of course, the continuous
loading may well be motivated by physical reasons, i.e., consolidation
effects during loading should not be neglected. This type of approach

1s adopted in this thesis.

Yokoo et al (1974) used the discontinuous loading approach also. In
their work it was considered, that in such a case, i.e., consolidation
following undrained deformation, approximations of the excess pore

pressure have to be discontinuous in time.

A totally different approach was used by Booker (1974). The field
equations are made explicity independent of time by a Laplace
transformation. Such a transformation yields an eigenvalue-problem in
the Laplace transform space. An approximation for the finite element
method provided a discrete approach with associated eigenfunctions in
terms of nodal unknown values. The approximate transforms are expanded
in terms of their discrete points, i.e. the eigenvalues, and are
finally inverted. Solutions have been presented mainly for isotropic

linear elasticity and isotropic permeability.

A more simple approach for non-linear kinematics was presented by
Carter, Booker and Small (1979) where tﬁe equilibrium equations were
treated by the principle of virtual displacement in rate form and the
continuity egquation described by an equivalent of .integral form, also
in rate form. The use of the principle of virtual work approach is
supported by the fact that this principle reflects the condition of

equilibrium, which makes it valid for linear and non-linear problems.
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Also, it may be shown that this principle satisfies the Galerkin

process which makes it correspond to a functional.

Finally the Crank-Nicholson finite difference scheme in time was used.
Their formulation, however, used an Euler approach which is different
to the so called total Lagrange and updafed Langrange method assumed
in this thesis. In the next chapter it will be shown that the wupdated
Lagrange approach yields a symmetric finite element equation whilst
the Euler approach makes the finite. element equation non-symmetric,

and inconvenient.

V.3 Principle of Virtual Work

In this section, integral equations representing the equilibrium
equation and also the continuity equation are presented. In particular
the principle of wvirtual displacement is applied to the total
equilibrium and an integral form of continuity equation is used to

link both phases.

Principle of Virtual Displacement:Considering an deformable body which

moves continuously in space, the principle of virtual displacement
assumes that a distinct equilibrium configuration exists in the very
close neighbourhood of the current equilibrium configuration. If at a
particular configuration (the equilibrium position at time t) a
virtual displacement éu, is imposed, the body moves virtually to an
adjacent equilibrium configuration, associated with time ¢+ Ar . See

Figure V.3.1.
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Figure V.3.1.

Using this assumption, the principle of virtual displacement requires:

(V. 3. 1) 1+Alaij 61+A1"?j I+Ald 9 = 1+A1R

tay

where ""4R  is the external virtual work expression for isochronic
flow. However for compressible and/or viscous fluid the quantity

2 .
r+af)) can be substituted by ., .el+ 06 -

(v.3.2) R = _[ b s + J- A g, b, "t o

e+ay teary
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Note that this principle is an equilibrium requirement being valid, of
course, for both linear/non-linear problems and also for a body under

non —conservative external forces.

In equations (V.3.1) and (V.3.2) 6w, is a virtual variation of the

current displacement components ‘*‘&q and b,,,¢,; are the

corresponding variations in strain, i.e.

1 du; allj
6:+Aleij = 65(6”";‘.!"- + al‘fdlxi)

Equations (V.3.1) and (V.3.2) may be proved to be equivalent to the

field equations (IV.10.2.5) and (IV.10.2.6).

Integral Form of the Continuity Equation Based on the same argument

and using the same assumptions used to establish the principle of
virtual displacement, an integral equation equivalent to the
continuity equation can be derived. One simple way to obtain such an
eguation 1s by means of Galerkin Method or even by physical reasoning.

Such an eguation may be written as:

(V.3.3) I dylraaly = rray)d' Vo, TV Y + j. 8y (rali P 0l ¥d 0 = o

1+ reary

l( v} A

-a
where €6 =5 grFan T gty

). o= lor2

is the rate of deformation of the fluid phase derived from the field

velocity of the fluid phase when a =1 ,and is the rate of deformation
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derived from the field velocity of the solid skeleton when a=2 .

And

b; 1s the Kronecker Delta,

t+4Ar }
o,

;1S the virtual variation os stress for the fluid phase,

s+Ar 2

o;; is the virtual variation of stress for the solid skeleton.

Note that equations (V.3.1) and (V.3.3) cannot be solved directly
since the configuration at time ¢+ Ar is unknown. One way to overcome
this inconvenience and arrive at a solution is to refer all variables
for this current configuration to a previously known one. Any

previously known configuration can be chosen.

However, usually, the <choice 1lies between two different
approaches,namely, total Lagrange and updated Lagrange approaches. In
fact a third approach could be used - the so-called Euler approach -
but this formulation makes the stress -~ strain law definition
incovenient for finite element applications, since it leads to a non-

symmetric stress - strain law from a geometric point of view.

Both total Lagrange and updated Lagrange method will be developed in
the next chapter by transforming the equations (V.3.1), (V.3.2) and

(vV.3.3) accordingly.
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CHAPTER VI

FIELD EQUATION IN INCREMENTAL FORM

VI.1l Introduction

In the previous chapter the principle of virtual work was established
in rate form. These principles are now made use of to formulate the
governing equation of consolidation in rate form. Two systems of
integral equations will be reached, one by the so called total

Lagrange formulation and the other by the so called updated Lagrange

formulation.

Although these approaches have been used when stablishing the field
equations for other kind of problems, they have not yet been explicity

applied to the Consolidation problem.

However, before introducing these treatments, the various rate

definitions of the variables involved are summarised.

Firstly, the velocity vector measured in the deformed and undeformed
frame of reference and the various definitions of strain rate and
stress rate are given. Detailed treatment showing their

interelationship are also presented.

Next, the various stress-strain relationships are introduced as well
as the linear combinations between them. Also the Bernouilli theorem

and Darcy's Law for the finite deformation conditions are included.



70

After the basic definitions , by making use of the principle of
virtual work for the equilibrium equation'and the integral form of the
continuity equation, the general incremental form of the consolidation
equations are reached by the use of total Lagrange and updated

Lagrange methods.

Finaly, after linearization, it can be seen that the total Lagrange
Formulation exhibits a system of non-symmetric equations while the
updated Lagrange formulation provides a system of egquations which
still mantains its symmetry. As the Euler approach also provides a
non-symmetric system of equations (Carter et al 1979), the previous
conclusion makes the updated Lagrange formulation the best choice for

the solution technique.

A fourth option could be used where the solid skeleton is treated by
the total Lagrange formulation, while the fluid equation is treated by
the Euler formulation. This approach was used by Argyris (1981) to

analyse incompressible viscous flow through solid media.

This option is not discussed here but its deduction follows the same

procedure presented in this chapter.

To formulate the incremental theory it is essential to define rate of
strain, velocity and stress rate. However, instead of rate of strain,
velocity and stress rate, the strain increment, velocity increment and

stress increment,will be used.

Firstly, the loading path of the solid body problem is divided into a

number of equilibrium states. Figure VI.l.1 shows schematically three
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of these equilibrium configurations.

[ 3

%ty

Figure VI.1l.1

In the first configuration all variables are known and referred to as:

Time ' o or ]
Volume % or 9
Area O or o
Generalized point °p (°x0."2 ) or °p
Position vector O, or A %,
Velocity vector 0o or %?

Pore pressure p or p
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In the second configuration all variables are known and referred as:

Time r or t
Area s or bs
Volume ‘v or by
Generalized point 'Pix.p. ") or bp
Position vector x, or bx,
Velocity vector W or by
Displacement vector 'u or by
Pore pressure 'p or b

The third configuration is one step away from configuration two where

the variables are unknown and would be referred to as:

Time t+ At or t+ At
Area i or s
Volume tang or 9
Generalized point '*tAfp("*A4f 1A, A1) or *p

Position vector Ty, or *x
Velocity vector ot or e
Displacement vector rHan, or W
Pore Pressure ran or e

Referring to Figure VI.1.1
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(VI.1.1) o, =0x 4w, A =y 4 Ay,

(VI.1.2) Sty = Ox, + Ay =% 4+ U, + Ay,
(VI.1.3) W= élt-?l‘, Hane = %IHA‘, av] = %
(VI.1.4) AT = R AV, AN AR gl 2y Avl -av

can be written.

Sometimes a variable may also be refered to in one configuration but
measured 1in relation to another. In this case it would be written,
say, for stress tensor as ,,, (or alternatively %,,), or for
strain e, (or alternatively %, ) meaning, respectively, that the
stress tensor is defined at geometry "a" but measured using geometric
dimensions at "b", (or the stress tensor is defined at time @ but
measured by the geometric dimensions at time t); the strain tensor is
defined at geometric configuration "x" x{*"%x) but measured using
the geometric dimensions at "a" (%) , (or, the strain tensor is

defined at time -+ Ar but measured using the geometric dimensions at

time 9 ).

VI.2 Velocity Increment

By using the expression (IV.9.7) the velocity components V ( measured
at current configuration "b" which has undergone a transformation
abk/aaj in relation to the referential configuration "a") may be

written as a function of the velocity components measured at "a" as,
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(VI.2.1) vk = 3p. 8%

If the body experiences additional movement from its equilibrium
position at "b" to another equilibrium position at "X" and also the
reference frame suffers a transformation aq/a@ » the velocity

camponents in this new equilibrium position may be related to:
2.2 b x abJ' X x
(VI.2.2) (v; + Ab";) = 5x—,("" + Aly))

and the velocity components viewed from the initial reference frame

"a" may be expressed:

QD

b x _ 9 X\ — aak ab]
(VI.2.3) Cv, +8%v) = EF:(,,VJ + Abg) = %, ECV, +4%y)

or the incremental components of the vector velocity may be related to

each other:

s o 9% bubad S’ :
(VI.2.4) Bave = 30, Bs% = 3h, 3x, B T ax, A

VI.3 Strain Increment

By using expression (IV.4.9) the Lagrange strain tensor ‘¢, at "b" but
but

measured at "a" and the Lagrange strain tensor e at "x"
measured at "a" may be written as

g A%t | 8'u%d'ul,

ba __ i T
(VI.3.1) 2061 = Ggg + Fay T ey da

L alug+aun) | a(ug +Aug) | At +ou )3(fuz, + Aug)
V1-3-2) Zew= g * g T ag a7
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From these equations,

du;\8(Au;) &aw,) | &Au;) 8(Au)
(VI.3.3) 2A e“ (6” + = ) aak + (611+aa ) aal + aak aal

is readily obtained,and where Ief, =%, +aZX, and Al

is the

increment strain tensor from "b" to “x" but measured as a function of

the geometric dimension at "a".

Also, the Lagrange strain increment Aje;, at "x" but measured at "b"

can be written as:

8(Auk) Auf) +a(Au;.')a{Au;')
by obg aby ~ aby

Note that the /im,_ A%}, may be found to be the deformation rate which

1s defined by the material time derivate of the expression (A.4),

where (A.22) is used. Also note that the /im,_,Aze;;, may be found to

be the material derivative of the Lagrange strain tensor, which may be

found by taking the material time derivative of (A.4) where (A.22) and

(A.5) are used. Consequently, the relationship between the two limits

may be readily found to be approximately,

b db
’A" T B3 = g ars Al

(VI.3.5) Ade, = 3 ag 2 660

It is convenient to breakdown the expression of the strain

into linear and non-linear terms in A4y, , So,

(VI.3.6) Aiez, = A:Ck‘ + A:nu

increment
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where the first part of the expression on the righhand side contains

linear terms and the latter contains nonlinear temms.

VI.4 Stress Increment

By using the expression (IV.10.2.14) the Kirchhoff stress tensor :a“ at
"b" may be written as a function of the Euler stress tensor 5, at
"b" . So,

ab? ab"
b o b,-
(VI.4.1) 800 = |laaa day a“kl

where .0}, is written instead of ‘0%, and ,’,’a,‘; instead of },f .
The Kirchhoff stress tensor X,, =%, + AXs,, at "x" measured at "a" may
also be written as a function of the Euler stress tensor defined as

x _ b x
a..—buu.+Axa,.j r SO,

xVij

(VI.4.2) 405+ A%,

Also the Kirchhoff stress tensor o, =’s,, +4js,,'at "x", but defined at
"b", may be defined as a function of the Euler stress tensor at "x"

becoming

o« _ x,-19% 9
(VI.4.3) u T A:au =7 3ag dag b"u B30%1)

Combining the expression (VI.4.2) and(VI.4.3) and using the equation

(IV.3.4) and(VI.4.1)
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a_b;.._ .a_b". A:Uk,

VI.4.4 Ao, =By

is obtained, where 4o;; is called the Truesdell stress increment

tensor.

The relationship between the Truesdell stress tensor and the Euler
stress tensor may be derived from (VI.4.3) if relations (IV.3.5),

(vi.4.1), (Vi.4.3) are used. So,

a b a a x
(VI.4.5) Abot; = 8395~ 8 gy~ :ajnA Poi = 91 261~ :"jl By + :”u 8y
1 a(A";') a(Aau)
X —_ — [

Note that }o,, basically differs from 0;; by a rigid body rotation.

The expression (VI.4.5) may also be obtained by taking the material

time derivative of (IV.10.2.14)2 with similar simplifications.

Finally, the Jaumann stress increment tensor will be defined. Consider
that a small rectangular parallelepiped in equilibrium with the Euler
stress tensor ﬁnj has undergone an incremental motion to find its new

equilibrium position under the Euler stress tensor :qji-A:aU.

Intuitively, therefore, the stress tensor at this new position may be
defined approximately as the Euler stress tensor minus a rigid body

rotation, so, in a matricial form,
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where [ga + Afa] = [ﬁa + Aja] + lLl[ﬁc+A;a ][L]T
0 Ajwyy —Ajwy,
(VI.4.6) [L1= |-4jw, O 5%23
X

Qpwy  Ajwy 0

Neglecting terms of products of a higher order, the Jaumann stress

tensor increment can be expressed by

(o] = [ase] + [se] o]+ o))

j — AX, _0b x., _b x
A'0;; = A0, 40 Ab”lj <47, Apwy,
as function of the Euler stress increment tensor.

Also, by combining eguation (VI.4.7) with equation (VI.4.5) the
relationship between the Truesdell stress tensor increment and the

Jaumann stress tensor increment can be obtained:

xa _ Arfja_ba,,x _ b x b \x
(VI.4.8) Ao = &0y, ba,,Abej, 8%t Btis AR YO

V1.5 Stress—-Strain Increment Relationship for the Solid Skeleton

Material indifference principle: Quantities which depend only on the
orientation of the reference frame, which is given by [L], and not on
the other aspects of the motion of the reference frame (such as its

translation) are said to be indifferent (Stokes' Hypothesis). Under
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this hypothesis indifferent quantities are, except for rotation,
independent of the reference frame. Scalars, vectors and tensors, are

transformed according to,
(VI.5.1) =% S=1L% ‘T=L*TL"

The constitutive equations (for example the stress - strain increment
relationship) represents an intrinsic response of the material. This
response must be seen to be the same for all observers, as otherwise

it would not be intrinsic to the material.

Now considering that the rate of strain of a body may be represented
by pure rate of stretching along three mutually perpendicular axes,
plus the rate of rotation of these three axes and choosing to observe
this body from a reference frame which is moving and rotating with
these axes , all that is left to see is the rate of stretching along

the three axes

If the rate of stretching is the material response under the stress
rate , which may be written symbolically as " = g(*£) for the rotating
axes, the material response viewed from the fixed axes must be written

as

(VI.5.2) °f = L[gE)]|LT

to be seen as invariant.

However, transformations are not always as simple as those stipulated

by the Stokes' Hypothesis. A more general transformation for the

stress tensor than the one stipulated by equation (VI.5.1) may be, for
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example, represented by equations (VI.4.4) or (VI.4.5).

So, the principle of material indifference may be postulated more
generally as: The response of the material is the same for all
observers independently of the kind of transformation suffered by the

material.

Next postulating the stress strain incremental relationship for the

solid skeleton.

One of the most natural assumptions may be to postulate the
X

relationship between jof and Aje; or jof; and Ajg; in the following

form
x  _x x X __x x
(VI- 5. 3) Abaij = bcijklAbekl Abaij - bcijklAbekl

Naturally, in these equations, ,¢;, may include the effect of the
past history of the material. Particularly, for one purpose, the
stress increment are the effective stress increment and the strain

increment are the total strain increment for the solid.

If (VI.5.3) is the intrinsic response of the material, a proper
transformation to be applied to ¢ may be deduced to obtain the
relationship between A"¢, and Al,, . So, with the aid of equations

(VI.3.5)2, (VI. 4.4) and (VI.5.3)

(VI.5.4) A0y =i Aen or &% o, = xacijklea‘kl

may be written, where
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- 9?04 daf daf
— b, I
(VI.5.5) i =y :Cmﬁi-#;abgﬂg

An alternative natural assumption may be to postulate the relationship

between Aja,j and Aje¢, as the intrinsic property of the material, or,

(VI.5.6) Aoy =15, 85

The equation (VI.5.6) has been used frequently in the theoretical

development and analysis of elasto-plastic problems.

If equation (VI.5.6) is postutlated as material intrinsic property,
then the relationship between Ajo; andAjq, may be derived if
equations (VI.4.8) and (VI.5.6) are combined. So, :"u‘k' to be used in
(VI.5.3) is given by

x a —Jja _ba
(VI.5.7) 8Cijk1 = "Cijkt T ik O

b a b a
it — 89, ; +b"lj6k1

ik Yit
Also with the aid of (VI.5.5) and (VI.5.6) an expression may be found

for :c:.’ju to be used in (VI1.5.4), so,

x a _ b,
(VI.S.B) C.. - Jl——— Cpqrs—bo'p,

day 04; dag daj [j 5
qrops b pg-rs

Bos = 104r0ps T 40 a]

V1.6 Stress-Strain Increment Relationship for the Fluid Phase

and Darcy Law

If the stress system is such that an element of area always

experiences a stress normal to itself and this stress is independent
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of the orientation, the stress is called hydrostatic. All fluid at
rest exhibits this stress behaviour. This means that for any
normal n. no is always proportional to n and furthermore, the
constant of proportionality is independent of n . Writing this

constant as -p ,

(VI.6.1) no;; = —pn,

This equation means, however, that any vector is a characteristic

vector of ¢ which must therefore be spherical. Thus

(VI-G.Z) UIJ=-p61j

For a compressible fluid at rest, p may be identified with the
pressure of classical thermodynamics. On the assumption that there is
local thermodynamic equilibrium even when the fluid is in motion this
concept of stress may be held. For an incompressible fluid the
thermodynamic, or more correctly thermostatic, pressure cannot be
defined except as the limit of pressure in a sequence of compressible
fluids. It may be seen that it has to be taken as an independent

dynamic variable

A general stress tensor may always be written as

where P, is called the viscous stress tensor, and is a function of

the fluid wvelocity. P,

,; vanishes for a hydrostatic stress field, an

incompressible Newtonian fluid and perfect fluids.
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When o¢; is defined as in (VI.6.3) the transformation required to be
applied to ensure the frame indifference is similar to the ones
stipulated for the solid skeleton. In this work, only the case of an

incompressible Newtonian fluid is considered.

VI.7 Bernoulli's Theorem ~ Darcy's Law

The Bernoulli theorem establishes the value of the total energy
carried by a fluid particle at each instant of its movement over a
stream 1line. For different flow conditions this energy equation

assumes different functions.

For a particular barotropic laminar flow the energy function "h" is a

time constant given by unit of weight as,
h =p/7/ + x; b,

Where p is the hydrostatic pressure

5, is the unit vector in the direction of gravity according to
the adopted reference frame

v is the unit weight of the pore fluid

h is called hydraulic head.

The Darcy Law relates the fluid velocity with the hydraulic gradient.
So, the natural way to define the Darcy Law is to define it in a
reference frame which moves and deforms as the soil skeleton does.
Thus, postulating

dAh

(VI.7.1) avi = v) = Ky
J
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then transforming by using (VI.2.4) to obtain the relationship

between A)(vj—V}) and aAh/a@ as,

x dAh
(VI.7.2) A, (v: — v ) bKu 2%, where
(VI.7.3) g = Py b which

ij = ‘kl im aXJ

is the proper transformed permeability matrix to be used in (VI.7.2).

The same postulated permeability matrix is viewed from a reference

frame "“a", as

da, d
(VI.?.Q) XK[J a' KI"I a‘;m
to be used in
x drh
(VI.7. 5) Aa(V‘! - ) ﬂKlJ a
9

An alternative assumption may be to postulate the relationship between

AS(vi—v}) and aAh/a@ as the intrinsic permeability of the material.

Thus,
x Ah
(Vi.7.6) s, (v K,Iagb )
If this is postulated then the relationship

between AX(v —v}) and aAh/ag defines ;K; which may be obtained with

a’™ij

the aid of (VI.7.4), as
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da; da,,
(Vi.7.7) :KU ab LK ab

VI.8 Total Lagrange Formulation

In the total Lagrange formulation all variables in equations (V.3.1),

(V.3.2) and (V.3.3) are referred to the initial configuration.

The applied forces in equation (V.3.2)are evaluated by using the

following expression:

(VI.8.1) v Al PRl AP
(VI.8.2) rha, e rhblg g 0, HHAt Oy

where it is assumed that the direction and magnitude of the forces

1+ At

0 F, and % %, are independent of the specific configuration
\ H—A:- _ 1+A: l+Ax t+Ar :+Ar
at time ¢+ 4As . That means, !T85 = "9, and o afi= .

However, if the traction'*¥g, is dependent on the deformation, a

convenient computational form of the expression (IV.18.2.1¢) must be

used.

The equation of virtual displacement (V.3.1) in terms of the Cauchy
stresses and the infinitesimal virtual strain must be transformed by

means of equation (IV.4.6) and (IV.18.2.14)2 to give:

+ 2
(VI1.8.3) J :+:‘7U 6I+Ar’|j’+~d J= J, :)+N”IJ :)+A‘eij %d 9
rhary )

for isochronic fluid flow.
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Also, the integral form of the continuity equation given by (V.3.3)

may be transformed by means of expressions (VI.3.5)2 and (IV.10.2.14)2
to give:
j 6i)(r+A1é:j n+mf:1,)5'+m”:/'+md‘7 + J' 8 r+AI U)‘SHN 3 od =

~rary

1+
(VI.8.4)

+ A4t r+A2 +A1|0 +4r 2 t++Aa1 20
J'a,j‘ el =0 e )a’ d0+J 8o V'e;j)85 Yoj,'dV = @
L

%

where incremental strain has been replaced in (VI.3.5)2 by strain

rate, and
rrane 1895 Oxp | 897 dxf
(V1.8.5) o &j 5('5;; da, * 8a, da; )'
and oy = )
T o &y dt® ij

By relating expressions (VI.8.1), (VI.8.2) and (VI.8.3) with equations

(V.3.1) and (V.3.2) ; and by relating expression (VI.8.4) with (V.3.3)

two expressions may be obtained,

(VI.B.G) J‘(:’-ﬁbt ] +r+At ‘2-,)6r+AI ?.Odt’ = l+AlR
L

(V1.8.7) J‘ 5, (67 ey — 6T Vel) 55" ey, %d 0 + J‘ 8o %%e])6" e}, °d 0 = &
% %

where
(VI.8.8) AR = j'“‘a §4u,%ds + J.op”A'fk&Auk ds
Oy

The expression (VI.B8.6) represents the equilibrium equation for the

body in the configuration at time f+4r but referred to the
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configuration at time @ .The expression (VI.8.7) represents the
continuity equation for the body in the configuration at
time t+ At but referred to the configuration at time #. In expression

(VI.8.6) {,“'auwas replaced by § t+ar 1 +:,+AtzJ .

Since the stresses ;'%%! , %% , and strainsi"®%,, are unknown for
% r o Oy il

solution purposes, the following incremental decompositions are used.

(VI.8.9) o o= goy + B3y
(V1.8.10) o Yol = tai + Ajer,

(VI.8.11) o Vel = Gel, + Ael,
(Vi.8.12) +ar2 _ 12

o €;™ofy;t Aoeu

where (s, o goj; and (e, . e}, are the known second Piola-Kirchhoff

stresses for the fluid phase when a =1, for the solid skeleton when
a=2 and the Green-Lagrange strains in the configuration at time t. It
follows from equations (VI.8.9), (VI.8.18), (VI.8.11) and (VI.8.12)

that
56t = 8440 and 5(AFT %)) = 44e);

where A}, is defined by equation (VI.3.3), Ayl

U]

is defined by

equation (VI.5.4) and Aou‘.’J, is defined by equation (VI.6.2).

Equation (VI.8.3) may now be written as:
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(VI.8.13) J-ocu“AoeiiaAoe:lod\) + J‘:,a:ijon?jodd + Jgofj 58gm%do
% g L

+ j YURINCA PR R B J-:,a‘.j 8806°d 0
% o

Similarly, equation (VI.8.4) leads to:

db,, . dAu, ah a(AP)o d a2 0
(VI.8.14) J'(-&'— + B—a‘)OK"” 567&.— do— 5‘,5( oeu)tsAp dd =g
%

LY

where equations (VI.8.5), (VI.3.3),(IV.10.2.14), (IV.4.6)2,(VI.6.2),

(VI. 7.5) and (VI.8.12) have been used and,
(VI.8.15) h=,ylp+7;, h = x,.d,
where 7, is the direction of gravity in relation to the fixed reference

frame adopted.

V1.9 Updated Lagrange

In the updated Lagrange formulation all wvariables in equations
(V.3.1), (V.3.2) and (V.3.3) are referred to the previously known
configuration (configuration at time t). By a similar procedure, as
used to derive the equation for the total Lagrange formulation

equation (V.3.1) may be written in this case, as
(VI .9. l) J‘(:'O'Ata:j + :+A‘U,-2_,-)5;+A'e}j rd', = t+NR
L\

where ;"7 are the components of the second Piola-Kirchhoff stress

tensor and :*A?; are the components of the Green-Langrange strain

tensor from the configuration at time t to the configuration at time

r+ Ar and referred to the configuration at time t.
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Since deformation is considered not to affect external loading, "**R

is evaluated as in total Lagrange formulation.
Also, equation (V.3.3) may be transformed to give,

(VI.9.2) J UC"'AEU :4&-2)5H4f 1 ’dl’+ J (:*N 1)6 1+At 2)!d0 = g
L] L

The incremental decomposition of stress, strain and velocity used in

this case is,

(VI.9.3) e ey = 107 + AT
(VI.9.4) e = AT,
(VI.9.5) At = T8 x(n)

where kg are the components of the Cauchy stress tensor for fluid

and the soil skeleton, and A,e], are the components of the second

Piola-Kirchhoff stress increment tensor referred to the configuration

at time t. The expression for [*e is given by equation (VI.3.4)

As in the case of the total Lagrange formulation, equations (VI.9.1)

and (V1.9.2) may be written as,

(VIog 6) J"CUkIA e“ 6A 82 ‘dl’ + J:afj l”lj 'd"’ + j Ja lﬂl[‘d"
v »

»
+ J‘A,u,‘ij,e,zj‘dt? =R -J.;o,-ij,e,fdd
L/ L

A h oA d
(VI.9.7) I(a + Ltim ab )"K"*'ab (P)zdt, j"'d o s0p ' = o
) 0
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where h is as already defined.

Vi.1¢ Linearization of Equilibrium Equations

It should be noted that the system of egquations (VI.8.13), (VI.8.14)
and (VI.9.6), (VI.9.7) are,theoretically, equivalent and provided the
appropriate constitutive equations are used,both equations yield
identical solutions. However, it will be seen that the finite element

matrices established for solutions are, of course, different.

The solution of the system of equaﬁions (Vi.8.13), (vI.8.14) and
(V1.9. 6), (IV.9.7) cannot be evaluated directly, since they are non-
linear in the displacement increments. An approximate solution can be
obtained by assuming that in equation (VI.B.13) JAge], =, and in

equation (VI.9.6) 64e) =38Ac;

€ij

This means that, in addition to using
80ge]; = 82t and d0,e), =54
respectively, the incremental constitutive relations employed are,

2 _ 2 2 2
A4 = ofijki okt and 8,07 = €y Bt

Also, the following tensors
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(5o 4 2okm) and (b + 35

may be simplified respectively to %» and §,, to avoid non-linear

i
terms Au, Ak .

‘Equation (VI.B8.13) and (VI.B8.14) may then be written as

(VI.18.1) J.o"uqu‘u 88y, °d9 + j(“su 'w + 10,)88gn;; 4D
% »

+ I—auawa(aoe,.j)"do =tap — I (—a,.j o+ :,a,.j)a(Aoe,,)"da
LY LV

8, . 8.k dAp) d
(VI.10.2) J‘a—a,o ,,,,3-‘;—’5 aa“:’ °40—Ja,jz T 5e,)080p%d0 = &

% L)

and equations (VI.9.6) and (VI.9.7) leads to,

Ia‘u‘u By S8k, 'dY + J(_‘su’ 'w +g9,)88,0,'dV
% v
(VI.18.3)

+ I—%‘A,Pb(A.ﬁj)'d 9 ="R - J(-bu:l’ +0,)88,)'d
» )

mi 3b, °~ab, gy o

(VI.10.4) 'fa,,,,.,k a"’aM‘w-ja d('“‘ )6ap'dd = o
L LY

= S 2 _ 2 2 2 _
where o, =-b,p Ao 8(8p) oy =0y Boy=Ag, € =¢ AU =y

After the linearization, equation (VI.1£.3) and (VI.1#.4) will be seen
to be still symmetric while equation (VI.1#.1) and (VI.1@.2) will no

longer be symmetric. In the next chapter, these equations are going to
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be transformed into a more convenient form and used in finite element
method. Then, the symmetry and the non-symmetry characteristic of the
resulting field equations obtained by the updated and total Lagrange

method will be clearer.
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CHAPTER VII

FINITE ELEMENT SOLUTION

VII.1 Introduction

In this chapter the system of incremental equations representing
consolidation, obtained in the previous chapter, are transformed for

the finite element method.

Although both formulations, total Lagrange and updated Lagrange, must
arrive at the same solution, the finite element equations will be seen
to be quite different. Both formulations are presented explicity but

only the updated Lagrange is actually used in the programming form.

Following the presentation of finite element matrices, the numerical

integration schemes, equilibrium iteration and convergence criteria

are briefly discussed.

VII.2 Finite Element Solution

The two systems of equations (vVi.10.1), (Vi.10.2) and
(V1.10.3),(VI.18.4) represent, respectively, the total Lagrange and
updated Lagrange formulations of a geometric non-linear consolidation

problem, where one may consider the constitutive stress-strain
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relationship and permeability matrix, dependant on the history of the

soil stresses.

A general solution for these equations is impossible unless an

approximate method is used.

Here, a numerical method of solution is presented by means of the

finite element technique.

In the total Lagrange formulation the approximate equilibrium and

continuity equations to be solved are, in matrix form:

(VII.2.1 ) j.b(Aoc)7°C Aye’dd + J s(au) VT Lo v(au) °d 9 -
)

ja(Aoe)TaADp"da =!tap Js(AB.)T;,a %

L) LY
(VII.2.2) J‘é(Aop)TVToTToKVhOJI9+ J.B(Aop)rarg—x(oe) %49 = o
oy

oy

whereas in the updated Lagrange formulation they are:

aw) VT o v(Au)'dv ~

—

(VII.2.3) Jé(A,c)r,CA,e'dd + Ja
L] L]

5(8) abp'dy ="AR - J.G(A,e)rja'dﬂ
%

S

(VII.2.4) J‘ @pY T TT KVR'de + Ib(Ap)T T:t( )do = @
W L
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. 9
wherea’ = (1,1,1,0,0,0)and a’ = (1,1,0,1) (axisymmetric case) v - (a_i.f_.
a, da, da,

(VII.2.5) oR = J. sou)’ 2% s + J- G(Au)roFodﬂ
oy (¥

The equations (VII.2.1l), (VII.2.2) and (VII.2.3), (VI1.2.4) are linear
equations in incremental displacement and pore-pressure for total
i.agrange and updéted Lagrange formulations, respectively. The
derivation of matrices corresponding to a single isoparametric element

are given since the assembling procedure is standard .

VII1.3 Finite Element Matrices

In the isoparametric element solution the coordinates, displacement

and pore-~pressure are interpolated using

m m m

k=] k=] k=1
(VII.3.2) u; = Zek'u,‘.‘, Au, = ZEkAuf =y auf, i=123
ko= k=1
m m
(VII.3.3) p= ka P, ap= Zh‘ ap* =y, apt
k=] k=]

ai ,bf ,x are the coordinates of the nodal point k  corresponding

to direction 1 at time @, t and s+ 4Ar , respectively; 'wf , p* are
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defined similarly to bf ; & is the interpolation function
corresponding to nodal point k ; and m is the number of nodal points

of the element.

Using equations (VII.3.1), (VII.3.2), (VII.3.3) to evaluate the
displacement and pore—pressure derivatives required in the integrals,

equations (VII.2.1) and (VII.2.2) become, respectively, for a single

element,

(VII.3.4) (K, + Ky )agu* =LA  =""4 R —{F
' d k _ 1t k 4

(VII.3.5) —tH — ot =G p* =N

where (K, +oKnro oL o+ oH + 4G ¢+ oF 1+ oV o "R thus obtained are

defined as:

k= [l o Ky = [18hbeimy a0 4= [i8Taiw, %y
% LY L

! _ T T 0 - T
oxBLEO‘B +0’Bl.l OH —J’(’)%a :)BL dl’-:)L
oy

6 = (o i vy Y0 = [(ETi0iE s G = iy, o =T ik
1) oy
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Ql

%dy "R = Jg.;{%% +Ig¢{7 %o
Xy %

= [
%

‘N = J.",\,L;VT{,TT(',K VoH %d9 = J{,ET;D Vol %0
% &

In the above equations ¢B, and ¢B,, are linear- and non-linear strain
displacement transformation matrices resg:tec’t:ive].y.(,'B“a , due only to
incremental displacement; 4'8;, » due to initial displacement and
incremental displacement, is called the initial displacement stiffness
matrix; ¢B,, » due to initial stresses and incremental displacement is
also called the initial stress stiffness matrix; ,C is the
incremental material property matrix; ;¢ is a matrix of 2nd Piola-
Kirchhoff stresses; @ is a vector of these stresses; ¥, is the
interpolation function for displacement within the element; ¢, is the
interpolation function for pore-~pressure within the element; (K is the
permeability matrix for a pore-pressure increment; o7 is a
transformation matrix which depends on the initial displacement; % is
the prescribed total traction vector; s is the dead weight by unit
volume; oA is a scalar depending on the direction of gravity relative
to the adopted reference frame; Vv and a4 have already been defined.
All matrix elements correspond to the configuration at time t and are

defined with respect to the configuration at time o .

Similarly, the finite element equations in the updated Lagrange

formulation may be found to be:
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(VII.3.6) (K, + Kyp)apt— L apt="""R-IF
gy 4 k_re &
(VII.3.7) —’H E'u —'G'p =’N
where i, = (167 .c18,140. Ko, = [187 015y a9
(4] )

o = [wramm a0 =1t = [8lalya0 8] =15,
10} n

6 = [T Koy, ao - (BT w0, 5~ vy, b -iTTK

L] 1]

g = [wrwas + (Wl as, i = 8750
)

S 1)

= [wrvTirik iR = [T v 0o
L

"

It should be noted that all integrals from equation (VII.3.4) until
now are functions of the natural element co-ordinate and that the
volume integrations are performed using a co-ordinate change from

cartesian to natural co-ordinates.

The explicity form of the previous defined finite element equations

are presented in the Appendix C.
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VII.4 Numerical Integration

Time integration - equations (VII.3.5) and (VII.3.7) contain the
material time derivate of the nodal displacement points which are
unknown. The time integration of these equations is impossible to

evaluate exactly. So, an approximate procedure is required.

Let a typical time integral have the following approximation:

1+ At
(VII.4.1) J' pAdi=abt'p* + (1—a )AITapk = (p* + ga p*)ar

and B=l—-a

where o« may vary from @ to 1.

a =1/2 linear variation in time

R
]

g fully explicit method

1 fully implicit method

In order to ensure a stable calculation procedure, it is necessary to

adopt 1/2 sa<! (Booker and Small -1974).

Now evaluating the integration over time of equation (VII.3.5) with

the aid of equation (VII.4.1)
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(VII.4.2) —oH Agu* — BALSG Ap* = N At + ALG

is obtained. A similar procedure may be used to integrate equation

(VII.3.7) for the updated Lagrange formulation to find
(VII.4.3) —tH A~ BAG Ap* =N A+ AG p*

Finally re-writing eguations (VII.3.4) and (VII.3.5) in the following

form:

(6K + tKwe)  —oL Bquty _ ("R —GF
(VII.4.4) ( _aLT —BA!‘{,G (Aopk) - (6N AI+AF(')G (')P")

and similarly for equations (VI1I.3.6) and (VII.3.7)

(VII.4.5) (K, +iKy,) -IL (A,u")=( AR —1F )
—iLT  —BAG J\apk) T IV ar+ AnGlp

Volume integration - equations (VII.3.4), (VII.3.5) and (VII.3.6),
(VII.3.7) must be integrated over the volume of each element. The
integration function is, except for linear interpolation, very complex
and is in most cases impossible to be integrated exactly. Hence,
integration is evaluated approximately and numerically. There are many
schemes for numerical evaluation of defined integrals; however the

Gauss method has proved most useful for finite element work. The 4 to
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8 variable-number-noded element has been used in the sample solutions
in this work and the numerical integration is done using 2 x 2 Gauss

points for any number of nodes per element.

VII.5 Equilibrium Iteration

It is important to realise that the system of equations (VII.4.4) or
(VII .4.5) are only approximations of the actual equations to be
solved in each load-time step. Depending on the non-linearities of the
system, the 1linearization of equations (VI.8.13), (VI.8.14) and
(VI.9.6), (VI.9.7) may introduce errors which ultimately results in
solution instability. For this reason it may be necessary to iterate
for each load time step until, within the simplified assumptions of
the material response and numerical time integration,
equations(V1.8.13), (VI.8.14) or (V1.9.6), (VI.9.7) are satisfied to a
required tolerance. The system of equations in the total Lagrange

formulation is then

I+AIR —_ I+A!F

(K, +iKy,) =L ) Aou".‘ o (i-1)
VII.5.1 ot T oRNL 0 =
(VII.S.1) ( —LTT —BAIG (Aop,k) (s §ON ) + A 6+m(;(,._l)g,pk)
It should be noted that for i=1 , eguation (VII.5.1) corresponds to

equations (VII.3.4), (VII.3.5), i.e. Aguf =agpt.apf =ap tF,=IF,

t+Ar +4 -
o Ngy =oN.o 'Gg =G.

The vector of nodal point forces equivalent to the element stresses

+4 : _— . 0
o Y'Fy , is the finite element evaluation of J;*“qﬂnég“kuﬁ)do ,

. L. % .
where the subscript ) indicates that the stresses and strains are
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evaluated using "%y, .

. 0Au alt3u, dAu oit&y, Ju
Since +ar dAy, J k k 0 k k the nodal
8o ey = 2( da; T 5 Eramk da; + da; 85a, )

point forces for the first two degrees of freedom ar'e

1+Ar — 1+4r t+A1_ O
0 F(,,—j Bl 7 dd

oy

in which the matrices ""#(8];, and "3, correpond to the matrices

0B, and oF but are defined for time t+Ar and iteration ® v

respectively

The vector of nodal point forces for the third degree of freedom g “'N,,

1+Ar, r k
and o VG, op* are

1+Ar _ 1+A +4r +aAr 0
o Npy= J‘ 'E o D;; Vl Hgdv
[X)

8+AA‘G(”:)p" = J.(HAIETHND(')HN °d0):,p"

L)

where {*¥E =!E , ("D, and v “H,correspond to the matrices (D

and V,H but are defined for time (+4Ar and iteration ® ,

respectively.

In the updated Lagrange formulation the system of equations used for a

single element with equilibrium iteration is:

r+ ArR [ad AIF

(K, +iKny) =L ) aufy _ &)
(VII.5.2) ( gt _garG (A,p.*) (AI:IS:N(,-.)“‘ *"‘Gu)"")

I+A(

in which the vector of nodal point forces equivalent to the element
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stresses |i4/F; . is the finite element evaluation of

1+A4At +ar
J. +a%ij (i)6 1+ar€ij (i) d l’(i)

S

i.e.
1+Ar — 1+A1, T 1+A. tt+Ar
rarf@) = J‘ aB Liyitadey 49
1eay
where 1387, and |45, correspond to  the matrices 'p,and o

respectively, but are defined for time r+ Ar and iteration @ ,

respectively.

The vector of nodal point forces for the third degree of

t+3rp; t+Ar 1k
freedom N, and  (1,0,p @ are

r+Ar — 1+Ar~ T 1+Ar +Ar 1+A4t
alMi) = J‘ r+arf @) i+arlin I+AlE(I) d"u)
HA:‘,U)
1+ar _ t+A1 - T 144t 1+Ar 57
x+.uG(i) - J :+A:E(i) :+A1D(1)V1+A1H(i)d"(i)
"N"(i)

+Ar~T t+Ar 1+4r
where . 5E Gyri+aliy o VisaHy

correspond to the matrices (E, /D , V,H, respectively, but are

defined for time r+ Ar and iteration , , respectively.
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Procedure Iterative Calculation

Define the following constants:

1ol 0,01 , nit=3 , =1

A. Calculate displacement increment

l. If a new stiffness matrix is to be formed, calculate

triangularize K , that is:

2. Form the effective load vector,

I+1R = l+ArR _IF

3. Solve for displacement and pore-pressure increment,

IDL {Au,ap}T =R
4. If required,.iterate for non-linearities, that is:

a. i=i+1

b. Evaluate the (i-1)st approximation to displacement

t+r =1
Auy_yy = Au+Ay;_,,

c. Calculate (i~1l)st effective out-of-balance loads,

+ - lp _1tr
Ri-n= R ="Fyy

and
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d. Solve for the ith correction to displacement and pore-pressure

increment,

Toa,, " \T r
IDL {Au,+4p,)T =R,
e. Calculate new displament and pore-pressure increments:

Au;y = Au + Au;, B8p;, = A4p + Ap;,

f£. Check for convergence |Aul / I'Au + Aug,)|| <tol

If it converges:

Au=Au, , Ap = Ap;, ~and go to B.

If it does not converge and i <nit : go to 1; otherwise restart

using the new stiffness matrix and/or a smaller time step.

B. Calculate new displacements, pore-pressure, Strain, stress and

return to new load-time step.

A few words about convergence

Equations (VII.5.1) and (VII.5.2) are now ready to be solved at

discreet points and time for a specific load path.

Provided the chosen element for the sample solution satisfies the
criteria of invariance, continuity of displacement and pore-pressure

within the element, rigid body deformation modes, constant strain and
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pore~pressure behaviour, inter—element compatibility of displacement
and pore-pressure (which is the case when isoparametric 4 to 8
variable-number-noded element with constant thickness is
used,integrated at 2 x 2 Gauss points) the only reason for errors
which could make the absolute convergence requirement uncertain are
those derived from the numerical integration and iterative calculation

schemes adopted.

The iterative calculation procedure converges, however, to the right
answer, if some care 1is taken with numerical time and volume

integration schemes.

As far as time integration is concerned, the process is stable if the

scalar 521/2is assumed (Booker and Small,1975).

As far as volume integration is concerned, the 2 x 2 Gauss points for
a four to eight noded, constant thickness, isoparametric element is
nearly ideal to ensure the convergence of the process. (Pugh, Hinton

and Zienkiewicz, 1978; Bicanic and Hinton, 1979).

These suggestions were used as an integration rule in the computer

programme with great success.
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CHAPTER VIII

CONSTITUTIVE LOCAL STRESS-STRAIN RELATIONSHIPS

VIII.1l Preliminaries

Whichever model one considers to simulate the stress-strain
relationship for soil, determining the parameter definitions for
feeding into such a model has proved to be the most difficult task.
This is not suprising when one considers the number of variables which
the soil response depends on, such as previous stress history,
inherent anisotropy, induced anisotropy (influence of stress ratio
direction or strain ratio direction), modulus of strain rate (or
stress rate), irreversibility of deformation, mineralogical
camposition, laboratory technique etc... Extreme difficulties are

encountered in distinguishing their different effects on the soil

properties.

Innumerable laboratory investigations have been made to show these
influences and a qualitative pictures of the soil response have been
already achieved. For a quantitative analysis, however, they seem only
to be applicable for the specific conditions (initial conditions,
stress-path, stress rate ..., and type of soil under conside;ation) .
For a quantitive purpose a simplified model has to be assumed and in
ﬂmis respect innumerable stress-strain relationships for soils have

been proposed. Some of these models are better supported by the
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physical properties of the soil than others, however, the more
realistic a model becomes the more costly is its practical
application. The choice of the type of model is then a question of

cost-benefit, though sametimes it becames only a matter of preference.

Before presenting the various attempts to represent the stress-strain

relationship, a brief description of soil properties will be given.

VI11iI.2 Brief Description of Soil Properties.

As far as the modulus of strain rate (or stress rate) is concerned the
soil properties can be classified into two distinct regions. One where
the modulus of strain rate (or stress rate) considerably affects the
soil properties and the other region in which the properties are
reasonably insensitive to the modulus of strain rate (or stress rate).
The limiting strain rate(stress rate) modulus which separates these
two regions can be called the quasi-static strain rate(stress rate)
modulus and the soil properties obtained for strain rate(stress rate)
moduli smaller than (or equal to) the limiting one, are defined as
quasi-static properties, while the properties .for the higher range of
rates are called kinematic properties. The existence of such an
idealized classification is strongly supported by many laboratory
investigatious but only a few will actually be mentioned here, such as
Smith et al(1969), Vaid and Campanella(1977), Gens(1982), De Campos
(1982), Takashi(1981) and Hight(1982), Lacasse(1979), Bjerrum (1971),
Ladd et al(1972), Buri(l1978), Crawford(1968a,b), Lovenbury(1969),

Shmertmann(1975).

Smith et al (1969) have carried ocut Ko-consolidation tests with pore-

pressure neasurenent for three different soils at different constant
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vertical strain rate moduli. The pore-pressures were measured at the
base of the sample, therefore the expected non-homogeneity of pore-
pressure was taken into account in order to evaluate the effective
average vertical stress. By plotting the change in void ratio versus
effective vertical stress, it could be seen that the compressibility
( » and K ) and the pre-consolidation pressure changed considerably
for a certain range of strain rate moduli for calcium-montmorillonite
and Massena clay. It was also noticed that compressibility and pre-
consolidation pressure were not greatly affected by strain rate moduli

lower than a certain value.

Although the influence of strain rate modulus considerably affects the
properties of these two soils it does not seem to cause much influence
on kaolinite. The latter's compressibility seems to be greatly

insensitive to the strain rate modulus.

Similar consolidation tests under constant rate were carried out by

Wissa et al(1971).

Undrained triaxial tests have been carried out on Lower Cramer Till by
Takahashi (1981), Gens(1982), Hight(1982), De Campos(1984) where
isotropic and anisotropic normally and overconsolidated samples have
shown that the undrained stress— paths converge to one path when the

strain rate(stress rate) modulus decreases.

Also Lacasse (1979) has carried out a camprehensive literature survey
on the effect of shearing rates on the behaviour of clays. The
behaviour of three materials was selected as prototypes of time-
related behaviour observed in other soils. The selected three

materials are: Drammen clay (Bjerrum,(1971)), Atchofalaya clay (Ladd
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et al(1972)) and Haney clay (Vaid and Campanella, (1977)). It is clear
that in all three soils the strain rate modulus effect tends to beccme

negligible as the testing rate decreases.

Other investigators have also reported the influence of strain
rate(stress rate) modulus in one way or another in their laboratory
observations, however just a few of them like Singh and
Mitchell(1968), Takahashi(198l), De Campos(1984) and Hight(1982) have
systematically approached the effect of strain rate on the soil

properties inside the kinematic region.

In the quasi-static region the mechanical properties of soils are
better known than in the kinematic region. Most laboratory results are
oObtained for stress conditions restricted to triaxial or plane strain
corditions, and just a few results has been cbtained in more general
stress state conditions. However, because most of the soil test are
restricted to special conditions, i.e., triaxial compréssion,
extension and plane strain, it is usually assumed that the behaviour
of soil for a more general stress condition can be obtained by
extrapolating fram the properties of soil obtained in these simple

conditions.

Bearing in mind this restriction the following simplified soil

behaviour may be stated:
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VIII.2.1 Soil Properties on the Quasi-Static Region

1. Txiaxial Test Conditions

1.1 K-Consolidation Test and Swelling Test

Laboratory test results of constant k tests are concentrated in the
J,/J, -plane with b= (or o,=o,=0,,). Some laboratory results start
fran a slurry sample (null stress state) and consolidation at constant

k is carried out until a high stress level is achieved. Others start

fram campacted samples.

Although in the early stage of a k-consolidation test on slurry some
reorientation of strain occurs, as soon as considerable strain occurs
the strain rate direction remains constant until the end of the test
(Gens,1982) . Most investigators (Ladd (1965), Whitman et al (1969),
Danaghe and Towsend (1978), Khera and Krizek(1967), Mitachi and Kitago
(1976), Olson (1962) and Henkel and Sowa (1963), Lewin and Burland
(197v), and Gens (1982)) report that k-constant consolidation tests
for different values of k plot parallel in the water content versus
logarithm of mean stress space, and in this plot water content for a
certain mean stress usually decreases when k decreases. However,
Whitman et al(1%w) and Henkel and Sowa(l1963) found a unique
relationship between water content versus mean stress for
isotropically consolidated and k —-consolidated specimens, but they

started with campacted samples.

Also Yudhdir et al (1976) report that the slope of the virgin

consolidation line depends on the stress ratio.
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Sane k —consolidated tests on specimens which have been previously
prepared at a fairly low water content have been reported by Lee and
Morrison (197v) and Broms and Ratnam (1963). They found a unique
relationship between water content and vertical stress, which

confirmmed Rutledge's hypothesis for initially campacted samples.
Swelling tests on samples initially normally consolidated at different

constant k seems to show an unique slope when plotted in water

content-logarithm of mean stress space (Gens, 1982), (Burland, 1967).

1.2 Failure Envelope Line, Critical State Line (triaxial conditions)

The ultimate failure stress state for most soil in triaxial
compression seems to lie on the Mohr-Coulomb envelope line,
independently of whether the soil is normally consolidated
isotropically or anisotropically (for any value of k constant).
Furthermore it seems to be only slightly sensitive to stress
fate(strain rate) modulus and direction. However, if cyclic loading is
applied same difference is cbserved (Gens (1982), De Campos (1984),

Takahashi (1981)).

In addition, the Mohr-Coulomb failure line seems to represent the
locus of specimens which experience no aditional change in volume when
further shear is imposed (Gens, 1982). A line which represents the
ultimate possible state of stress of soil specimens and where no
further change in volume occurs under an increasing shear strain is
called the critical state line. Strictly speaking, however,

anisotropically consolidated specimens find more difficulty in
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reaching this state than isotropically consolidated samples.
Anisotropically consolidated samples seems to require much larger

shear strain to achieve a true critical state, if it is ever achieved.

1.3 Peak Strength

1.3.1 Peak Strength for a Stress Path Directed Towards the Hvorslev

Line (triaxial conditions)

It seems that a specimen isotropically normally consolidated or
anisotropically normally consolidated, isotropically over consolidated
and anisotropically over consolidated which has its stress-path
directed to the Hvorslev line in triaxial compression seems to find
its stress peak on the Hvorslev Line(Gens, 1982). However, the path
which specimens follow fram the Horslev line to the critical state is
not unique. Isotropically over consolidated samples have been tested
under triaxial undrained conditions and many possible stress paths
fram the Hvorslev line to the critical state line were found. Thus two

extreme stress path can be idealized:

a- Once reached the Hvorslev line the stress path drop almost

vertically to find its final position on the critical state line.

b- Once reached the Hvorslev line the stress state moves on it until
the interception point between the Hvorslev line and the critical

state line is achieved.

Vaughan et al (1976) postulated two classes of clay to explain these

two distinct stress path cbserved in same undrained laboratory tests.
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a- Soil with a high proportion of clay particles.
b- soil with a low proportion of clay particles.

They suggested that an overconsolidated specimen of clay type a after
reaching the failure (Hvorslev line) would crientate its predaminantly
clay particles if further strain is imposed. The orientation of
particles would weaken the material rapidly on the way to the critical
state line (or by reducing the effective stress friction angle). A
good example of this kind of behaviour is observed on isotropically

over consolidated Mucking clay as reported by Wesley (1975).

If a similar sample of clay type b is tested in undrained conditions,
not much clay fraction is present to be orientated , therefore the
stress path does not drop fram the failure line (Hvorslev) but runs
along it until the interception between the Hvorslev line and the
critical state line is encountered. This kind of behaviour is cbserved
in Weald and London clay as reported by Henkel (1958, 1959) and in

Lower Cramer Till as reported by Gens (1982).

Two completely different idealized criteria for failure and or
softening behaviour have therefore been defined. For clay type a,
failure occurs at the moment of reaching the failure envelope
(Hvorslev line). Softening (or hardening) occurs continuously and
slowly until the failure envelope is reached and from this point the
critical state line is reached rapidly,the material neither softening
nor work hardening. In practice, however, it seems that if material
reaches the failure envelope by softening then it work hardens until
the critical state. If material reaches the failure line by working

hardening, then it softens until it reaches the critical state line.
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For clay type b the undrained strength is controlled by the water
content, independently of whether the effective failure envelope is
reached. In this kind of material softening and or hardening occurs
continuously and slowly until the failure point (interception of the

Hvorslev line with the critical state line) is reached.

There is, of course, scope for soils of intermediate behaviour in

which both criteria have same influence.

It should be noted however that the previous explanation is applicable
only for undrained conditions because the drained test would give the
same peak strength in terms of ( o,~0¢; ) for both types of idealized
clay a and b. The drained peak strength would generally be closer to
the undrained shear strength of the clay type a than that of clay type

b, as reported by Gens (1982).

Although there is not much information available for anisotropically
over consolidated soil of clay type a tested under undrained
corditions it is expected that the previous simplified picture can
also be applied. Gens (1982) carried out undrained triaxial
campression test on over consolidated samples where the stress path
went towards the Hvorslev line and found no peak strength. The stress
path engaged the failure line (Hvorslev line) and ran along it until
the critical state was reached. However, the Lower Cramer Till tested

by Gens (1982) behaves more like clay type b than clay type a.

In conclusion, clay type a would present the same peak strength in
drained and undrained tests while clay type b would present no peak

strength in undrained tests but the drained peak, if in terms of
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( 0,—0; ), would plot closer to the undrained peak strength of clay

type a.

Also it can be concluded that the Hvorslev line seems to be applicable
for any stress path which follows that direction, independently of the
specimen corditions, but the stress path and the softening rule from
the Hvorslev line to the critical state seems to have no simple way to
be governed. The clay proportion in the material can be an indicator
of tthe tendency of the he material stress path (and softening rule)

fran the Hvorslev line to the critical state line.

1.3.2 Peak Strength for Stress~Paths which Go Beyond the Hvorslev Line

(triaxial conditions).

It seems that isotropically consolidated samples do not show any peak
strength for stress paths which do not go in the direction of the
Hvorslev surface, which is the case of isotropically normally
consolidated and slightly over consolidated specimens. Drained and
undrained tests on isotropically normally consolidated samples which
experience stress paths not in the direction of the Hvorslev line find
their ultimate strength at the critical state line without any peak

strength, independently of the clay type.

The hardening and softening rules seem to be a continuous function of
stress state, and the transition between hardening and softening seems
also to be a continuous function of stress state independently of the

type of clay.

Anisotropically consolidated (normally and slightly over consolidated)
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samples sheared in compression with the effective stress-path
direction not towards the Hvorslev line, can present peak strength
before the ultimate strength is achieved at the critical state. The
peak strength seems to be more pronounced in low plasticity clays than
in high élasticity ones. For example no peak is reported by Noorany
and Seed (1965), and only a small one by Henkel and Sowa (1963) and
Mitachi and Kitago (1979). However, a peak is reported by Donaghe and
Townsend (1978), Koﬁtsoftas (1981), Ladd (1965), Ladd and Lambe
(1963), Vaid and Campanella (1974), Gens (1982). Also, Gens (1982)
reported that the brittleness increases sharply for samples which have

previously been consolidated at lower k-constant values.

lLarge differences between undrained peak and ultimate strength usually
involve significant differences between the friction angles at peak
and ultimate conditions. The reverse does not seem to be true. Soil
like Atdrafalaya clay (Ladd and Edgers, 1972) and Kawasaki clay (Ladd,
1965) shows very little undrained brittleness but large differences
between peak and ultimate friction angles. However, since the strain
rate modulus in the different tests were different it is dangerous to

cane to any conclusive pattern of behaviour.

It seems also that the strength of isotropically normally and over
consolidated samples and the ultimate strength of anisotropically
nomally and over consolidated samples all coincide for the clay type
b as postulated by Vaughan et al(1976), independently of the stress
rate (or strain rate) direction. In fact undrained and drained test
carried out by Gens (1982) show that the previous statement holds.
However, clay type a, as postulated by Vaughan et al(1976), would have
to run along the critical state until it finds an ultimate strength

cammon to all kind of soil conditions. This statement needs much more
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experimental confirmation before any definitive conclusion can be

achieved.

1.4 Stress Path Effect on Soil Response

1.4.1 General

Before discussing the stress path(strain path) influence on soil
response a brief review of the critical state theory will be

presented.

Rendulic (1936,1937) and later Henkel (1960) observed that the stress
path followed by undrained tests on samples previously isotropically
consolidated were very similar to the constant void ratio contours

derived fram drained tests carried out on the same types of sample.

Roscoe et al (1958) incorporated these cbservations into the concept
of the state boundary surface which relates the stress states and void
ratio cbserved in normally consolidated samples. Together with other
contributions fram Roscoe and Poorooshasb (1963), Roscoe and Burland
(1968), Schofield and Wroth (1968), Atkinson and Bransby (1978) the

basic postulate of the critical state theory becames;

On the "wet" side:

1. All possible states of stress (usually defined by the stress
invariants 4 , J,, 6, ) and void ratio (or water content, or volume)
forms a surface in the four-dimensional space and it is called the

state boundary surface (SBS).
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2. A Three-dimensional form of this surface for 0, =constant,
particularly for 6,=x/6 or b=b (or o¢,=o;=0,, ) has the

following properties:

a. The interception of a family of planes 72/1, = constant with the
SBS, plot as parallel straight lines in water content- logarithm of

mean stress space.

b. The interception of a family of constant volume (or void ratio)
planes with the SBS plot as a family of parallel curves in 7T, , J,

space.

c. Any sectional line in a surface find its locus in a two-dimensional
representation of the surface. This is the case of drained, undrained

or any other non-special stress path on the state boundary surface.

d. The plastic potential in the two-dimensional representation
coincides with the SBS, but does not coincide in three-dimensional
representation. If the plastic potential ocoincides with the SBS in the
three-dimensional plot (p, q, e) the strain rate does not necessarily

plot orthogonaly in the two—-dimensional representation.

On the "dry" side:

On the dry side the soil specimens fail at the Hvorslev line and the
ultimate strength with no further change in volume is found when the
sample reaches the so called critical state line. Here, soil specimens
if further sheared (in the same direction), experience no further

change in volume or in stress state.

The four-dimensional form of this surface is considered to be achieved
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by interpolating the observed response in different 6, =constant
section, i.e., test resultson 6,=«/6 , 6,=0, ¥ =x/6 can be
used to find the general form of the SBS function of J, , J,, 6, and

void ratio.

Basic Corollaries:

1. A directly consequence of postulate 2.b. is that the state boundary
surface is normalisable in the J,, J, space, i.e., reducible to a
two-dimensional curve in J,, J, space. Particularly, reduction to a
two-dimensional plot can be achieved by normalization in relation to
water content or any other variable which can uniquely be related to
the water content, for example, mean stress at virgin consolidation

line (Ppe).

2. A line on the SBS obtained by the interception of 7,/J, constant
planes with constant volume plane plot as a point on the same line in

water content-logarithm of mean stress space as postulated in 2.a..

3. The 7,/J, constant plane plotted in the two-dimensional
representation of SBS, in the J,, J,, 6 =constant space, reduces to

a point.

1.5 Stress Path influence

Very few results strictly obey the idealised assumptions of the

critical state theory. Innumerable discrepancies has been reported:
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For example Roscoe and Thurairajah (1964) found important differences
between normalized stress paths observed in undrained conventional
triaxial test on kaolin, i.e., they do not obey the Rendulic

principle.

Using a biaxial apparatus, Hambly (1972) tested anisotropically
consolidated samples under plane strain conditions and when plotting
equal volume change contours, he found that they were no longer

geanetrically sindilar to each other or to the undrained stress path.

Le Lievre and Wong (197¢) reported that by using stress controlled
tests on certain kinds of kaolin the normalised stress path
differences could be reduced but not eliminated. Newland (1975)
published a complete set of results concerning triaxial tests on
kaolin and found that normalized stress paths in drained and undrained
test are different. Lewin and Burland (1979) reporting results on
slate dusts showed different normalized stress paths for drained and
undrained tests. Gens (1982) reported quite different normalized
stress paths obtained in drained and undrained (and many others paths)

on isotropically consolidated samples of Lower Cramer Till.

The non-unigueness of the normalized stress path can be at least
partly attributed to the development of an anisotropic structure

during consolidation (Gens, 19&2).

The stress path has also a great influence on the direction of the

strain rate, which will be discussed in the next section.
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1.6 Strain Rate Direction

It is assumed in the critical state theory that the strain rate
direction is normal to the SBS in the nonmmalized J,, J;, stress space,

being a function of the stress state alone.

Many discrepancies in these assumptions have been reported. For k -
constant consolidation tests innumerable variations in the ratio
n=7T,/J, when plotted against J,/J, have been reported by Roscoe
and Pooroshasb (1963), Balasubramanian(1969), Le Lievre (1967), Namy

(1979), Gens (1982).

Furthermore, many investigators have shown the strong influence of the
previous consolidation history on the strain rate direction (Lewin
(1973, 1975), wood (1973, 1975, 1981) and Wood and Wroth (1977), Gens

(1982)).

In general a sudden change in direction of the stress path makes the
strain rate direction rotate with some delay from the previous
established direction until it finally achieves a new direction
corresponding to the imposed new stress ratio direction. Lewin (1973),
Gens (1962) carried out many tests to show this and same of the stress

paths used by them will be described:
First sequence of set of tests:
1. One set of samples was consolidated, each with constant k (k

varying fram 1 to k at critical state), to a high stress level. The

direction of strain rate for each constant k was recorded.
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2. One (or many) samples were consolidated uni-dimensionally (k=0.5)
and then sheared undrained until k=0.667 was reached, from which
further consolidation was carried out. The recorded strain rate ratio
fran k=0.667 orwards was not the same as that corresponding to k=0.667
obtained in the consolidation test where the stress rate direction was
always steady (as obtained in the first item). However the strain rate
direction seems to converge to the one corresponding to k=0.667 (with
steady stress ratio'direction) at a higher mean stress. Usually
convergence occurs for a mean stress twice or more that corresponding

to the initial stage of the consolidation test with k=0.667.

3. One (or many) samples were consolidated uni-dimensionally (K=(.5)
and then unloaded until k=1, from which further consolidation was
carried out. Again, the recorded strain rate ratio during k=1
consolidation was no longer equivalent to the one corresponding to the
consolidation with k=1 as obtained in the first item. Strain rate
directions for samples with a history of stress previous to k=1
consolidation, as presented in this item, do not appear to converge to
the one correspondent to k=1 consolidation (as obtained in the first
item) at least until the mean stress reaches four times the one at the
initial stage of k=1 consolidation. However, the tendency to do so can

be observed.

Other stress histories have been imposed to show the effect on the
strain rate direction. The effect on the strain rate for stress paths
in the b=0 plane has been reported by Lewin (1978), Gens (1982); and
for b=1 by Lewin (1978), and for stress paths in the deviatoric plane

by Wood (1981).

Most observations on the influence of stress path direction on the



124
strain rate direction are for the following test pattern.

Strain rate ratio is observed for a steady stress path and then, after
the stress ratio has suddenly changed to another direction, the

rotation of strain rate is observed for a new steady stress ratio.

The general conclusion is that the change fram one steady stress ratio
direction to another steady stress ratio direction results in strain
rate direction being no longer equivalent to that obtained if the
sample were tested steadily with an unique stress ratio corresponding
to the second stress ratio direction. However a clear tendency to
converge to it is observed when the last steady stress path has
reached a high level of mean stress. The value of mean stress depends
on the material and the stress path under consideration, nevertheless,
a mean stress twice or more the mean stress at the beginning of the

last steady stress ratio is acceptable.

Also, whether the convergence occurs fram higher or lower values than
the convergent one depends on the sample stress history. For example,
for specimens uni-dimensionally consolidated and then unloaded
previous to subsequent consolidation with a higher constant k (for
b=<0) the strain rate is shown to converge fram a lower value than the
convergent one. However, specimens consolidated at constant k=1 and
then loaded previously to a subsequent consolidation at higher value
of constant k, show that the strain rate converges fram a higher value

than the oonvergent one.

Although important gains have been achieved in these researches; the
influence of a more camplex stress path on the strain rate direction

is yet to be known.
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2. Third Stress Invariant Effect

2.1 General

The soil behaviour described previously was concentrated on the
behaviour cbserved in the plane b= ( §=x/6 ). Soil in the field,
however, presents a much more general stress path than those allowed
in the b= plane. Consequently it is highly desirable to find out how

soil responds in a more general stress space.

An attempt to define the third stress invariant influence on the soil
can be made by carrying out extension tests (triaxial test equipment)
and plane strain tests (plane strain equipment). However, for a more
systematic observation, a true triaxial equipment and/or hollow
cylinder apparatuses is required. But,unfortunately a discussion of
the advantages and disadvantages of these apparatus is out of the

scope of this thesis.

Although most results are reported for triaxial extension (triaxial
test equipment) and plane strain (plane strain equipment) some more
general studies in the «x —plane have been reported when using the
true-triaxial and or hollow cylinder apparatus, these being: Krieg
(1975) and Ladd et all (1977), Sekiguchi and Chta (1977), Tavenas et
al (1979), Tavenas and lerocueil (1977), Vaid and Campanella (1977),

wWissa et al (1971), Hashiquchi (1977,198l1).
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2.2 Critical State Surface and Hovslev Surface.

There has been a lot of arguments as to whether the Mohr-Coulomb
evelope represents the critical state or not. Innumerable test results
have been carried out in order to measure the friction angle for
extension and plane strain conditions and a few of these are reported

here.

-Extension tests give similar angles to those measured in compression
only for normally consolidated specimens. Even in this circumstance
exceptions were found where the difference between the campression and
extension friction angle can be, for example, 13.6°, 6.8%r 34°as
reported by Mitachi and Kitago (1979), Brams and Casbarian (1965) and
Leon and Alberro (1972), respectively, the extension friction angle
being greater. The difference between effective stress friction angles
cbserved in the extension test on anisotropically consolidated samples
and in campression is in general as high as 1.6°, 2.1°, 2.5°, 4°, 5°,
7.2° as reported by Gens (1982), Mitachi and Kitago (1980), Koutsoftas
(1981), Vaid and Campanella (1974), Ladd and Varallyay (1965), Parry
and Nadarajah (1974), respectively. The same friction angle in
campression and extension for anisotropic consolidated samples was
reported by Andersen et al (1980). No pattern betgveen the friction
argle obtained in undrained extension and in undrained compression
tests can be arrived at. Mitachi and Kitago (198¢) found the friction
angle for extension tests on isotropically consolidated sample greater
by 14° whereas Parry and Nadarajah (1974) reported friction angle
values lower by 7.5°. Friction angles obtained in undrained extension

on samples anisotropically consolidated sample greater by 1. 3° and
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1.5° have been reported by Gens (1982) and Ladd and Varallyay (1965),

respectively.

The value of friction angle obtained in undrained plane strain on
samples consolidated isotropically have been reported to be higher
when compared with the value of friction angle in triaxial
campression. (Lade and Musante, 1977, 1978; Yong and Mckyes ,1967,
1971; and Wood, 1973). However, Pearce (1970, 1971) and Wu et al
(1963) have found the Mohr-Coulomb failure criterion applicable,

though the latter had to use Hvorslev parameters in order to do so.

A great number of studies involving plane strain tests on k -
consolidated samples have been reported also. Duncan and Seed (1966),
Roscoe et al (1959), Ladd et al (1971), Bambly (1972), Sketchley and
Bransby (1973), Gens (1982) reported the same friction angles obtained
in triaxial compression and in plane strain conditions on samples
consolidated anisotropically, where the angle of friction under

consideration is the maximum mobilized angle of friction.

However, observations reported by Mitachi and Kitago (1989) suggest a
different friction angle for both cases. Larger difference exists if

the angle of friction at peak is considered.

Furthermore, a series of drained test carried out by Gens (1982) on
Lower Cromer Till show that no great error is involved in the
assumption of a unique value for the ultimate friction angle
corresponding to the critical state. Again, if the peak friction angle
is considered then greater differences would be encountered.(Simons,

19%wa; Gens, 1982).
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Similar values of angle of friction in drained and undrained tests
have also been reported by Amerasinghe and Parry (1975), Hambly and
Roscoe (1969), Henkel (1956,1959), Parry (1960), Simons (1960a,

196@b) .

Fram these observations it is clear that the Mohr-Coulomb failure

envelope is not generally applicable.
Also, although the Hvorslev surface may be applicable for certain

types of isotropic soil it does not seem to be so in extension for

sane anisotropically consolidated samples.

2.3 Undrained Shear Strength and Mean Stress at Failure for tests

Other than the Campression Test.

2.3.1 Isotropically Consolidated Specimens.

The undrained shear strength obtained in compression (C,) and
extension (C, ) tests on isotropically consolidated soil does not
exhibit any peak. The ratio C,/C,, is usualy 1.15 or higher for most
soils. Gens (1982) found the ratio C(,/C,, to be 1.18, being strongly
independent of the over consolidation ratio, although similar values

for both strengths were reported by Parry and Nadarajah (1974),

Mitachi and Kitago (1979), and Leon and Alberro (1972).

The value of mean stress at failure observed in extension P, and in
campression Py on isotropically normally consolidated soil are not in
general equal. For Lower Cramer Till the ratio Pﬁ/Pﬂ is equal to

1.18. However, almost equal mean stresses at failure for compression
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and extension on normally consolidated soil have been reported by

Parry (1971).

The normally consolidated stress path forms a kind of boundary for all

the other stress paths for over consolidated sample.

Also, it can be dbserved that the initial undrained shear modulus for
campression and extension on isotropically consolidated samples are

almost the same.

2.3.2. Anisotropically consolidated specimens

Not many undrained triaxial campression and extension tests have been
carried out on anisotropically consolidated soil. Actually, just a few
have been reported for normally consolidated, such as Mitachi and
Kitago (1979), Ladd and Varallyay (1965), Gens (1982) for
reconstituted samples; and Koutsoftas (1981) and Vaid and Campanella
(1974) for intact samples. From these results the following may be

concluded:

Anisotropically consolidated samples sheared in triaxial compression
present a peak in strength ( C, ) and an ultimate strength (C, ) whilst
when sheared in extension no peak is noticeable. However, no
pronounced peak has been reported by Vaid and Campanella (1974). The
peak characteristic of clay seems to be related to its plasticity
index. The lower the plasticity index the more pronounced the peak .
Furthermore, it is clear that the degree of undrained brittleness
increases sharply for samples which have been previously consolidated

at lower k-constant values. The magnitude of the anisotropy, as
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suggested by comparison of the ultimate values in compression and
extension, increases substantially as the k-constant consolidation
ratio (carried out previous to the undrained shear) reduces. High
stress levels during consolidation also appears to reduce the
stiffness which is observed after the sample has gone into extension.

(Gens, 1982).

Although the ultimate stress values of a series of anisotropic
consolidation and isotropic consolidation tests coincide, they are
quite distinct for samples sheared in extension. Part of this
difference can be explained by the anisotropy effect, part by the
change in b, and part by the difference in friction at the boundary

introduced by the loading conditions.

Camparing results fram isotropic and anisotropic tests, assuming the b
effect will be the same in both, the effect of anisotropy on the
ultimate undrained strength for anisotropically consolidated sample
can be evaluated. By doing so Gens (1982) showed that the resulting
horizontal/vertical ratio of critical state strengths turned out to be
an approximately constant value of 6.79, against a value of ©£.83
obtained from undrained tests on horizontal and vertical samples
previously consolidated anisotropically. The strength ratio was found

to be approximately constant for all over consolidation ratios (OCRs).

The normally consolidated stress path forms a kind of boundary for all
the other stress paths and so it provides the envelope of the possible
peak strength values. The resulting undrained brittleness defined as

Cp,/ C, is seen to depend strongly on the degree of overconsolidation.

Similar camments can be made in relation to the plane strain tests on
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anisotropically consolidated samples.

VIII.2.2 Properties of the Material in the Kinematics Region.

1. Speculative Introduction

Because of the nature of the linking betweeen particles, soil exhibit
viscous effects. An static sample of clay achieves its internal
mechanical equilibrium by balancing the various atractive and
repulsive forces acting within its volume. Similarly for a static
sample of sand to be in internal eguilibrium it has to satisfy the

contact and repulsive forces acting within its volume.

An external action on the soil mass boundary has to break this
internal equilibrium before making the soil deform. The intensity of
the resistive force offered to the action seems to depend on the rate
of the actions and its direction is opposite to it. When deformation
occurs the material goes on changing its structure either until a new
stable structure for kinematics is achieved or until static boundary
conditions are achieved. If, however, a material under a kinematic
boundary condition experiences a sudden change in the boundary, such
as a change of modulus and/or direction of the stress rate, new change
in structure are observed until a new stable structure is achieved.
Each change of the boundary conditions, fram static to kinematic, fram
one kinematic state to another kinematic state seems to be accampanied
by a change in structure.The change in structure, therefore, is a

function of deformation and time (as explained elsewhere).



Fram the physical point of view this time dependent process occurs
continuously and seems to be more imbortant for strain rates higher
than the quasi-static one. Special care must be taken when measuring
the material properties in this range of strain rate(or stress rate)
because of the degree of non-uniformity of the physical material

response which seems to increase for higher strain rates.

Also, standard triaxial test equipment results, must be viewed with
great care, particularly the comparisson between compression and
extension tests, because of the difference in the friction at the

boundary, and this can generate a greater source of errors.

The influence of the strain rate (or stress rate) larger than the

quasi-static on the soil properties will then be described as follows:
2. Failure Envelope Line (and surface)

The friction angle obtained at the ultimate stress state in a triaxial
campression test does not seeem to be considerably affected by the
strain rate intensity. Indeed, undrained compression tests carried out
by De Campos (1984), Takahashi (1981), Hight (1982) on isotropically
consolidated and overconsolidated specimens of Lower Cromer Till
showed no great effect of the strain rate intensity on the effective
stress friction angle. Also the majority of data presented by Lacasse
(1979) agrees with this conclusion. Furthermore, undrained triaxial
campression tests on sand carried out by Shelley (1984) on inherently
anisotropic sand consolidated isotropically does not reveal any
significant strain rate intensity effect on the friction angle

obtained at the ultimate stress state.



Undrained triaxial extension tests carried out by Takahashi (1981)
showed that the friction angle is samehow affected by the strain rate

intensity.

More laboratory results for cother materials and other conditions than
triaxial campression or triaxial extension are necessary to show the

influence on the Hvorslev surface.
3. Peak Strength, Pore Water Pressure Generation.

Undrained triaxial campression tests on isotropically consolidated
soil exhibit large undrained strength increases for larger strain rate

intensities.

Certainly because less time has elapsed during the period when larger
strain rates are applied in the undrained triaxial tests less
relaxation in mean stress and consequently in generation of pore water

pressure are observed, Lacasse (1979), Takahashi (1981), Hight (1982).

Several investigators (Vaid and Campanella (1977), Bjerrum et al
(1958), Richardson and Whitman (1963), Crawford (1960), De Campos
(1984)), showed that the effect of strain rate intensity on the soil
strength is more pronounced in isotropically overconsolidated
specimens than in isotropically normally consolidated cnes. Richardson
and Whitman (1963), however, point out that the water migration
effects have an important influence on the measured strength of an

overconsolidated sample.

The observed undrained peak strength in campression of anisotropically

normally consolidated or slightly overconsolidated samples seems to be
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greatly increased by an increase in the strain rate. (Hight , 1982;

Gens, 1982; De Campos, 1984; Takahashi , 198l).

It should be mentioned that the ultimate undrained strength of
anisotropically consolidated sample can be much less sensitive to the

strain rate. (Gens, 1982; Takahashi, 1981; Hight, 1982).

Undrained triaxial extension test on isotropically normally
consolidated and overconsolidated sample suggested similar trend of
behaviour: Less pore-pressure generation and higher undrained strength

with increase in strain rate. (Takahashi, 1981; De Campos, 1984)

By observing the laboratory test results it can be concluded that the
increase in ultimate undrained strength for isotropically and
anisotropically normally consolidated samples due to increase of
strain rate, can not represent by itself the amount of decrease in
pore-pressure generation for stress levels below the critical one.
Indeed, decrease in water pressure generation with increase in strain
rate at the earliest stage of an undrained test can be substantially

higher than the increase in ultimate strength.

It will be seen that the decrease in pore-pressure generation with
increase in strain rate in an undrained test can be, at least
partially, explained by the decrease in the material compressibility

due to the strain rate increase.

Many laboratory results such as Lacasse (1979), Takahashi (1981), De
Campos (1984) , Hight (1982), have suggested same kind of power law or
exponential function to represent the empirical relationship between

strain rate and undrained strength. A typical function is that the
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undrained strength obtained in campression tests increases linearly
with the logarithm of strain rate. The overconsolidation ratio and the

plasticity index also influences this empirical relationship.

Campressibility: Smith (1969) and Wissa et al (1971) carried out k -
consolidation tests at a constant rate of deformation and reported
substantial decreases in campressibility ( A, K ) and increase in pre-
consolidation pressuré when the strain rate intensity increases, the
effect of change being more pronounced in more plastic material. No
test including a change in the direction of action has been performed

yet.

No information, however, can be obtained about the effect of a change
in strain rate on the soil compressiblity. A consolidation test
changing its constant strain rate to another would show this

influence.

In practice the effect of a change in strain rate on the soil
properties is extremely important. For example, a normally
consolidated soil (static conditions) when loaded to a certain stress
rate will exhibit a campressibility characteristic different fram that
exhibted when loaded from static equilibrium to another stress
intensity. Obviously innumerable rates will occur in engineering
practice which will only add to the other difficulties in finding a

proper model for soil.

In k -consolidation tests the Young's modulus obtained for effective

stress can be shown to increase at higher strain rates.

Also a considerable increase in the Young's Modulus can be cbserved in
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undrained tests on isotropically and anisotropically normally and
overconsolidated sample when sheared at a higher strain rate.
Obviously the increase in undrained shear modulus may be associated

with the decrease in campressibility as discussed previously.

VIII.2.3 Effect of the Strain Rate on the Stress-Strain

Relationship Based on the Elasto-Plastic Theory.

1. First Yielding.

The first yield locus is dependent on the strain rate. Indeed as the
first yield depends on the pre-consolidation pressure, it must be a

rate function.

2. Shape of the Yield Locus and Plastic Potential.

One should remember that the yield locus shape, as obtained by the
critical state theory, is based on Rendulic's Principle, i.e., all
possible stress paths for normally consolidated samples can be reduced
to an unique cne when normalized with relation to the mean stress

obtained in the isotropically consolidated test.

Also it has been mentioned previously that this principle does not
seem to be applicable to most soils and it is much less applicable if
the strain rate is taken into account. Many yielding surfaces exist,
one for each initial cordition, each stress path, each strain rate (or

stress rate) intensity. In soil mechanics practice the shape of the
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yield locus is obtained based on the undrained stress-path and as the
undrained stress-path is a function of the rate, so will the yield

locus be.

3. Elastic Constants

The elastic constants are functions of the strain rate (or stress
rate). As the elastic constants can be expressed as a function of the

slope of the reconsolidation line (k) they will be rate functions.

To take into account all these influences, or any of these influences
is not an easy task. Many simplified model taking strain rate into
account have been proposed. The first, which corresponds to the
observation described in item “"a" and "c" above considers the material
as viscoelastic-plastic, which means that the rate causes no effect on
the plastic deformation. The difficulty here lies in defining the
visco strain in the elastic region, which is usually assumed to be a
function of time and stress level, and in defining the first yielding.
Also, material points moving to the elastic region would be difficult

to consider.

This kind of approach can be very useful when introducing the rate

effect in an overconsolidated region by means of kinematic hardening.

Secondly, the consideration of the soil as an elasto-~viscoplastic
material, which means that the viscous effect occurs in the plastic
region. This approach mekes it easier to define the first yielding
surface, which can be useful when introducing the rate effect for the

normally consolidated region.
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Many other approaches exist and they will be discussed in the next
section. However, all of them are extremely rigid and can be applied

only for each special circumstance.

In this work a more flexible approach will be suggested.

VIII.2.4 Material Behaviour for Rates Smaller than the

Quasi-Static One:

It has been seen that the rate effect (creep law) in the kinematic
region can be expressed by some empirical law.When, however, the
strain rate becomes smaller than the quasi-static one, different
values for the constant must be used, because it has been shown that
the soil responds to the rate action in a campletely different manner
for this range of strain rates. A discussion in more detail will be

given in the next section.

A material straining at very large strain rates would experience
extremely small deformations , while the stress state changes
dramatically because of the smaller campressibility of the material.
Eventually, material straining at very high strain rates would fail at
the Mohr-Coularb type envelope after the occurence of infinitesimably
small strains. In other words, the material on the way towards the
Mohr-Coulamnb envelope would experience neither work hardening nor
softening, and the response would be of a perfectly plastic material
with a Mochr-Coulamb type envelope. In this sense, there would also be
a strain rate where the material would experience virtually no

deformation on the way towards the Von-Mises type envelope to finally
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end at the Mochr-Coulamb type envelope. Also, there would be a strain
rate where material would strain elasto- plastically through a yield

surface dependent on second degree terms of mean stress.

Results of undrained tests on normally consolidated samples at higher
strain rates consistently show the undrained stress-strain
relationship to be stiffer , the pore-pressure generation to diminish
and the undrained strength to increase, which agrees with the soil
response as viewed fram the consolidation test point of view, where
the soil campressibility decreases and the pre-consolidation pressure

increases at higher strain rate intensities.

The usual classifications of an idealized soil material are presented
next, together with their respective difficulties and restrictions of

applicability.

VIII.3 Brief Coments on Various Attempts

In elasticity theory there are basically three approaches to define
the constitutive behaviour of materials. Although retaining the
concept of "elasticity" they provide constitutive equations which no
longer produce the same results. In fact, three different types of
generalization are obtained, which are named by Truesdell (1965) as

elasticity, hyperelasticity and hypoelasticity.

Since the Eulerian stress tensor and the Eulerian-Almasi strain tensor
are related uniquely to the Kirchhoff stress tensor and Green—-Lagrange
strain tensor respectively, these three "elastic" constitutive

equations hold for small and finite strain conditions. However,
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special difficulties are encountered in the concept of stress rate
used in hypoelastic (or plastic) type materials. The difficulties came
when the requirement of invariance of the stress rate is rnot satisfied
by a unique relationship (Oldroyd (1950), Truedell (1953), Prager

(1961), Cotter and Rivlin (1955)).

However, Oldroyd pointed out that the differences among the various
definitions of stress rate are not important once they can be uniquely
related to each other. In chapter IV all linear combinations of
different stress rate definitions, were presented. (For more details

see references above)
Next, the various attempts are going to be considered without

discussing the derivations. The derivations for almost any idealized

attempt will be discussed separately in a following section.

VIII.3.1 Elasticity - Viscoelasticity

The first definition (elasticity) is based on Cauchy's approach and
states that the current state of stress depends only on the current
state of deformation (i.e., stress is a unique function of strain,
independently of the stress (or strain) path history of the loading

cycle (loading, unloading, etc...)) and time (viscous effect).

Elasticity (or linear elasticity) has been extensively used in the
past to model clay skeleton behaviour by means of Biot's theory. The
first consistent application was introduced by Sandhu and Wilson
(1969), Hwang et al (1972), Verruijt (1972,1977), Matsumoto (1976)

etc... Very few theoretical approaches , however, include the viscous
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behaviour, except Biot (1956a), who has proposed a general
viscoelasticity theory with a thermodynamic approach, and Mandel
(1957) and Tan (1957a,b), who has proposed a general three dimensional
theory where the rheological type model (Maxwell-type solid) was
assumed to simulate the soil (clay) behaviour. Very few applications
have included these models, but viscoelasticity has been used to some
extent, Suklje (1977), Booker and Small (1977), Zienkiewicz and

Cormeau (1974), Smith (1982).

Fran a camputer point of view visco—-elastic models are very attractive

since they provide a very simple and inexpensive solution.

Fram the physical point of view linear elasticity (or viscoelasticity)
may be sufficient to predict behaviour of heavily overconsolidated
clay, especially for the dry crust of a clay layer. If this crust has
a substancial thickness, linear elasticity can be perfectly justified
in the case of a simple surface loading, even if the subsoil is only
slightly overconsolidated, the reason being that the additional
stresses fram the applied load decrease rapidly with depth and the
deformation field for small stress changes will be of little
significance even for strongly non-linear soil masses. Of course, this
conclusion is not absolute and its validity has a compromise which
lies between the variation of overconsolidation with depth and the

absolute value of the additional stress level.

Although many non-linear models have been proposed, linear elasticity
will always be used for soil because the more sophisticated models are
restricted to a certain simple circumstances, for which linear
elasticity can, to certain extent, provide similar answers in pratical

engineering for much less cost.
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VIII.3.2 Ryper and Hypoelasticity-Viscohyperelasticity

The second definition (hyperelasticity) is based on Green's method and
assumes the existence of a strain energy density ¢ (or a
caplementary energy function © ) such that the current state of
stress (or a current state of strain) is a function of the rate of
change of the strain energy density (or the stress energy density)
with respect to strain (or with respect to stress). In this ¢ is, in
general, an analytical function of strain but normally stipulated as a
function of strain invariants and Q is, in general, an analytical
function of stress but normaly stipulated as a function of stress

invariants.

VIII.3.3 Hypo—Elasticity

The third definition (hypo—elasticity), also called the incremental
model, embodies the rate theory and describes the mechanical behaviour
of a class of materials in which the state of stress depends on the
current state of strain as well as on the stress path followed to
reach that state. This class of material is reversible for
infinitesimally small increments, thus justifying the use of suffix
"elastic" in the term hypoelastic used by Truesdell, but not

reversible for A o o bnrs in WMWiL

The so called pseudo elasticity which is a hybrid form of hyper-

hypoelasticity was first introduced by Duncan and Chang (1979).
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In this a volume energy function is assumed to exist
(hyperelasticity), but deviatoric strain-stress relations are of rate
type, i.e., the bulk modulus is assumed to be a function of the mean
stress (in practice often restricted to the initial mean stress),
while the tangent shear modulus continuously decreases with mobilized
shear stress and tends to zero when the deviatoric stress approaches a
maximun value (asymptotically) determined by a Mohr-Coulomb failure

criterion.

More recently, Duncan (1980) has extended the model to take into
account volume change and cyclic loading but neither intermediate

stress influence nor anisotropy are taken into account.

A more rigorous treatment for the hyperlastic model is given by Nelson
and Baron (1971) for isotropic conditions and cyclic loading and
Saleeb and Chen (198¢) where only isotropic conditions and
monotonically increasing loading are allowed. Both approaches,
however, include the influence of the intermediate stress component,
and provide invariant constitutitve equations. Also volume change is

taken into account.

Many applications of non linear elasticity of Duncan's type have been
used: Cauvodinis (1975), Osaimi (1977), Desai and Saxema (1977),

etc...

As far as the author knows neither a consistent hyperelastic nor a

visco~-hyperelastic model has been applied yet.

Fram the camputer point of view some advantages seems to exist in

using hyper elasticity (or visco~hyperelasticity) when compared with
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elasto-plastic (or elasto-viscoplastic) models.It seems that they can

be less time consuming.

On the other hand hyperelasticity does not violate the thermodynamics
law if treated consistently but it has no physical meaning because it
assumes that the directions of stress rate and strain rate always
coincide (at least incrementally). However, reasonable answers may be

achieved in the prediction of clay behaviour if used consistently.

VIII.3.4 Elasto—Plasticity

The hyperelastic model may predict clay response with same realism for
certain circumstances if applied consistently, although it is assumed
that the direction of incremental strain and stress always coincide
which in general is incorrect, particularly when the stress level
approaches the critical state. One way to overcome these limitations
is to use the plasticity theory . Although this theory is more
flexible and to a certain extent has more foundation physicallly it is

still restricted to applications in simple circumstances.

Fram the application point of view the main feature of interest in the
flow theory of plasticity is a proper choice of a yield criterion
(and/or critical state), a flow rule, and a hardening (and/or

softening) rule.
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The initial yield criterion may then be classified as:
1. Mean stress independent

This type of criterion, such as Von Mises's and Tresca's, involve
assumptions which provide a pure J, dependence and 7, , 6,

cambined dependence, respectively; where J, and §, are the second
stress invariant and Lode angle with respect to stress, respectively.

The bar means that the is a invariant function of deviator stress.

It might be argued that pure deviator dependence can be used in an
undrained situation, in which a total stress analysis can scametimes be
used instead of effective stress analysis. In this case the clay is
then considered as a one phase medium (Hoeg, Christian and Whitman

(1968)).

2. Linear mean stress dependence:

Examples of this type of yield criteria are Drucker-Prager, Mohr-
Tresca and Mochr-Coloumb. The first of these criteria has a pure 72-
dependence on the deviatoric stress whilst the other two have a
combined J, and 6, dependence. For discussion see Nayak and

Zienkiewicz (1972).

A smooth curve in the deviactoric plane (where the dependence is, of
course, due to J, , 6, ) has been suggested by Lade and Duncan
(1975), Zienkiewicz and Pande (1976), Gudehus et al (1977). For
discussion see Eekelen (1980¢), Zienkiewicz and Pande (1975), Argyris

et al (1974).
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Same investigators have argued that associated flow rules should not
be used when combined with linearly mean stress dependent yield
conditions, Davis (1968), Potts and Gens (1982). Same effects of a non
associative flow rule can be observed in Ziekiewicz et al (1975), Pots
and Gens (1982). For soft clay it is quite obvious, because it is
contractant whilst an associated flow rule generally implies
dilatancy, the volume expansion will be overestimated, at least for
deviator stresses approaching the critical cnes. If such an analysis
is used, the consequence is to produce a decrease in pore-pressure and
less decrease in effective stresses, due to the plastic dilatance
introduced. Thus, when the stress path moves towards the yield cone an
overestimation of the deviactoric strength is implied. It must be
enphasized that when linear mean stress dependent yield criteria are
used in soft clay, they should be used as critical state (in the sense

of critical state theory) rather than initial yield.

According to section VIII.2, the ultimate state of stress does not
always satisfy the Mohr-Coularb criteria. In that sense the general
expression provided by Eekelen (198¢) can be used where the constant

of the equation should be calibrated to each soil characteristic.

As a non-associated flow rule implies a non-symmetric tangential
stiffness matrix, a convenient solution technique may be the
ficticious viscoplasticity approach, as suggested by Zienkiewicz et al
(1975), Cormeau (1975), in which plasticity is assumed to be a

limiting stage of a stable creep process.

Consolidation analysis with a rigid-plastic model has been performed

by Small et al (1976). The inital yield is that of Mohr-Coulomb type
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and an associative flow rule was then assumed. Also Carter et al
(1979) has presented a small strain large rotation consolidation

analysis adopting the same rigid-plastic model.

3. Non-linear mean stress dependence:

The first attempt to use this kind of dependence was made by Druker,
Gibson and Henkel (1957) and later Jenike and Shield (1959).
However,non-linear elasto-plasticity has also been assumed in the
critical state theory at Cambridge where exhaustive work in this
subject has been done by Roscoe and Schofield (1963), Roscoe,
Schofield and Thurairajah (1963),Roscoe and Burland (1968), Palmer and

Pierce (1973) etc...

The fundamental assumptions in the critical state theory are that
Rendulic's Principle is applicable and the plastic potential depends
only on the state of stress, where, particularly, associative flow

rule is assumed (as in the most classical theory of plasticity).

As discussed in section VIII.Z there is strong evidence that neither
Rendulic's Principle is applicable nor is the plastic potential a
function of the state of stress anly. Furthermore, normality is not a

general property of the soil.

Because of these disagreements of real response and the proposed
theory, innumerable elasto-plastic models have been proposed. The
shape of yield surface and/or plastic potential in the 7T,/J, plane
can assume several forms such as a straight line (Larsson, 1977),

circle (Drucker, Gibson and Henkel, 1957; Jenike and Shield, 1959),
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bullet shape (Roscoe and Schofield, 1963; Roscoe, Schofield and
Thurairajah, 1963), ellipse (christian, 1966; Roscoe and Burland,
1968; Hagmamn, 1971), exponential (DiMaggio et al, 1971), cone
(Prevost and Hoeg, 1975), and several other cambinations of parabola,
hyperbole, ellipse and straight line have been assumed. Each of these
shapes fit one particular kind of soil for certain specific testing

circunstances.

To recapitulate on section VIII.2, the soil property for the

quasi-static region has been stated as:

1. There are almost as many yield surface as stress-paths, i.e.,
Rendulic's principle is not applicable. This soil characteristic can
be, at least partially, explained by the induced anisotropy during the

consolidation process.

In many soils the associative flow rule does not apply and the strain
rate direction depends not only on the stress state but on the stress

history also.

As rational and interesting attempt to unify the plasticity theory for
soil without having to obey the Rendulic's principle was made by
Calandine (1963) by applying the slipping theory. In this theory the
material has one yield locus for each cambination of mean stress and
deviatoric stress, and consequently, the yield for each sample (or
material point) is obtained by adding the yielding on each plane of
the sample. Applying this approach is difficult and expensive for
obvious reasons, however, it can provide a better framework, making
possible the calibration of experimental data with reasonably

justification
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Innumerable empirical models have been proposed to accamodate the two
previously described soil properties. Each empirical hardening law,
and evolution rule for the yield surface and plastic potential, is
valid only for the characteristics of the soil and the conditions
under which it has been tested. Details of these empirical models are
out of the scope of this research. However, a very flexible model will
be assumed here , which will allow accomodation of most of the
empirical models for each material, stress-path, etc... The
fundamental procedure to arrive at these models in the 7,/J, plane,
particularly for campression triaxial tests at quasi-static strain

rates, will be briefly presented as:

1. A yield locus is obtained from the undrained stress-path. This
yield surface depends on the type of clay or sand, on the conditions

of anisotropy , on the previous history of stress ,etc...

2. Another yield surface is obtained fram the drained stress path, or
alternatively, the locus of water content and stress state is measured

and adopted as one of the limiting oonditions.

The normalized drained stress path depend on the type of clay or sard,
on the conditions of anisotropy and on the previous stress history,
while the normalized state of stress obtained by k-constant
consolidation tests depends on the type of soil and the initial

corditions of the sample.

3. The direction of strain rate 1is measured for k-constant
consolidation tests. The direction of the strain rate for this simple

kind of stress—path depend on the type of soil.
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4. The yield surface for other simple stress-path are observed. For
example, stress-paths lying between drained and undrained stress-

paths.

5. The direction of strain rate for other stress-paths are observed.
For example, a sample initially consolidated at k1=constant is sheared
until k2=constant fram which it is consolidated again at k,=constant.
The variation in the strain rate direction during this last period of
consolidation is observed and compared with the strain rate direction

if the soil had been consolidated fram slurry at k2=constant.

6. The evolution of the yielding surface for the particular soil being
tested and for the range of stress-path under consideration is

observed and a empirical rule is proposed.

7. The variation of strain rate for the soil, stress history and
stress-path under consideration is observed and an empirical rule is

proposed.

For nore detailed information about different empirical models and
influence of stress hystory, stress—path, the following work should be
considered: Wong and Mitchell (1975), Tavenas (198l1), Tavenas and
Leroueil (1977,1979a,1979b), Tavenas et al (1979), Leroueil et al
(1979), Namy (1979), Lewin (1971,1973 , 1975,1978), Lewin and Burland
(1970), Gens (1982), Ohmaki (1979,1980,1982), Wood (1973,1975,1981),

wWood and Wroth (1977), Palmer and Pierce (1973), Lewin et al (1982).

The application of these empirical models to different conditions fram

those which they have been obtained for, seems to be inappropriate,
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because of the strong dependence of the yielding surface and plastic
potential on the stress history. The shape of the yield locus for
natural clay has been found to be different in the field from those
obtained for specific laboratory conditions (Mitchell, 1970; Wong and
Mitchell, 1975; Crooks and Graham, 1976; Pender et al, 1975). In this
sense if an elasto-plastic model is to be used the yield surface and
plastic potential should be obtained from sample as natural as
possible and applying the specific conditions of the field boundary
conditions. There is no point in using an expensive model if its

results are accampanied by an enormous degree of uncertainty.

Usually in the elasto—piasticity theory for soil, anisotropically
consolidated soil have different model from the isotropically
consolidated soil. Normally, the isotropic yield function is rotated,
translated or both with no attention being paid to the principal
stress direction in relation to the direction of anisotropy (Baladi
and Sandler, 1989; Runesson, 1978; Kolymbas and Gudehus, 1988). One
way to introduce the effect of the anisotropy would be to use the slip
theory (Callandine, 1971). However, a different and interesting
approach to introducing the anisotropy in where the principal stress
direction is incorporated implicity, as provided by Matsuoka (1974),

Tatsuoka (1980); Yamada and Ishihara (1982).

The model proposed by Tatsucka (1989) and Yamada and Ishihara (1982)
is based on the postulate proposed by Matsucka (1974), which assumes
that any camponent of the principal strains in the three-dimensional
deformation of sand can be represented as the summation of the two
strains that are supposed to developed on two imaginary slip planes.
To explain that let x, y and z denote the direction of the three

effective principal stresses o , ¢, and o, . In the case of the
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stress conditions, ¢,>¢,>0, , the imaginary slip planes are envisaged
for three pairs of two-dimensional stress system, o¢,>0, , o¢,>0, and

0,>0, , as schematically shown in Figure VIII.1.

Figure VIII.1

Therefore, the three principal strains ¢ , ¢ and ¢ are broken

down each into two camponents as follows,

(x =fxy +fx:' ‘y = gxy +f_.y:' ez = gxz + gy:

where f means campressive (positive) strain in the x direction and
g,, Means expansive (negative) strain in the y direction, which are
caused by the two-dimensional slipping in ¢,>0, stress system.
Similarly f,, and g, are compressive and expansive strains,
respectively, for o¢,>¢, stress system, and f, and g, are

campressive and expansive strains, respectively, for o¢,>0, stress

system.

This procedure seems to be powerful, in principle, to calibrate data

with certain judgement.
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Another approach is provided by Mizuno and Chen (1980) who suggested a
general equation to be calibrated to the particular material to be

analysed.

To analyse soil response under cyclic loading many models have been
proposed. A basic formulation is presented by Mroz (1967), Dafalias
and Popov (1975), and Prevost (1977). In this model a surface, called
the bounding surface, encloses a family of nesting surfaces where each
surface is defined by the actual stress state, and more, it can
shrink, expand, rotate and distort with the motion of the stress
state. Although the plastic potential can have its own rule of

transformation, usually an associative flow rule is assumed.

A simplified version of this model called a two-surface model have
been presented by Dafalias and Popov (1975), Krieg (1975), Prevost
(1977), Dafalias et al (1980), Mroz et al (1978, 1979) where two
surfaces are defined and are named bounding (or consolidation) surface
and yielding surface. The bounding surface divides the space into two
regions. In the region inside the bounding surface the material is in
an elastic state if the stress state is inside the yield surface, but
can be in a transitory elasto-plastic behaviour if the stress state is
on the yield surface. A stress point on the bounding surface is in a
fully elasto-plastic regime. The behaviour of the material in the
transitory elasto-plastic region is obtained by an interpolation rule
which is a function of the distance of the stress state from the
bounding surface, measured in the direction of the stress increment.
Although the plastic potential can have its own transformation rule,
it is usually assumed to coincide with the bounding surface and the

direction of the strain rate assumed is normal to a point on the
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bounding surface which is obtained by the interception of the stress

vector increment direction with the bounding surface (conjugate

point).

Also, after the suggestion by Palmer and Pierce (1973), this kind of
model was extended by Mroz et al (1979) to accomodate plasticity

without a yielding surface as will be discussed later.

It should be mentioned that a delay function for the strain increment
direction in relation to the stress increment direction can be

incorporated into this kind of kinematic model.

Although this kind of model can be used to analyse cyclic loading if a
realistic (experimental) hardening law and/or plastic potential
evolution rule are used, it has not been yet applied succesfully. This
model will be seen here as a technique to analyse overconsolidated

soil submitted to a simple stress path.

Van Eekelen and Potts (1978) extended the modified cam~clay model to
acoomodate cyclic loading, where cne of the material properties is the

pore-pressure generation in an undrained test.

The first convenient form for application of the critical state theory
into finite elements was formulated by Zienkiewcz and Naylor
(1972),Zierkiewcz et al (1975). At first the critical state line was
considered to be of Drucker-Prager type, i.e., only J, dependence
on the deviatoric plane. Zienkiewcz et al (1975) introduced a 6,

dependence by considering a Mohr-Coulamb section type for the linear
and non-linear part of yielding. Lade and Duncan (1973), Zienkiewicz

ana Pande (1976), Gudehus et al (1977) have sugested a smooth yield
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surface in the deviatoric plane for both the linear and non-linear

sections of yielding.

To incorporate anisotropically consolidated soil the yielding surface
has been rotated in the 7,/J, plane and a simplified function is
assumed in the deviatoric plane. For example, Baladi and Sandler
(1986) and Runesson (1978) have assumed a rotated elipse for the
triaxial k-constant line and in the deviatoric plane another elipse is
assumed whose major axis is in the direction of the maximum effective
stress. More experimental evidence, however, will be necessary to

support the assumption of those models.

VIII.3.5 Elasto-Viscoplasticity, Endochronic Theory

The notion of an elasto-viscoplastic material is reserved for those
materials which shows viscous properties in the plastic region only.
This idealization evidently simplifies the argument justifying the
choice of an adequate initial yield criterion (i.e., the initial yield
surface is time independent, although it does not reflect the soil
material response). This idealization may be useful (or sufficient )
when creep effects are not significant below the preconsolidation

stresses.

However, the endochronic theory, which is regarded as a special form
‘of viscoplasticity (in which the strain rate is not only a function of
the stress and strain states but also implicitly a function of the
strain rate ) provides a better framework. The constitutive equations
can be formulated in a form similar to viscoplasticity if the ordinary

time variable is replaced by a fictitious time measure, called
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intrinsic time, incorporating both the true time and the length of the
(total) strain path traced. Also irrecoverable strains are obtained
for every stress state except identically zero. This is contrary to
the ordinary viscoplasticity approach , which defines a region bounded
by a quasistatic loading surface within which strains are always
recoverable. In that sense the endochronic theory provides a concept
which could be said to be different from both viscoplasticity and
elastic-viscoplastic theories. For more details see Bazant et

al(19s9).

The application of this theory, however requires much more information

fram the experimental field.

VIII.3.6 Viscoelastic-Plastic and Viscoelastic-Viscoplastic

Models
Aditional difficulties are encountered in establishing the plastic

state in a viscoelastic body. In order to discuss this let a load path

in the nine-dimensional space of stresses be illustrated in Figure

Figure VIII.2
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In an elastic body the plastic state will be reached at the same
point, represented by 4 , independent of the time taken in reaching
that state, provided that the load path is the same in each case. If
the material is viscoelastic the plastic state may be reached at
different points A,or 4,, say, depending an the time elapsing during
the load path execution. It is also clear that by passing through the
same path or in the same overall time but with different strain-rates,

different yield limits will be obtained.

In order to describe the complicated problem of a viscoelastic
material becoming plastic the notion of a flow surface will be

introduced in agreement with Naghi and Murch (1963).

S =f"c.¢.8)=0

The elastic-viscoplastic state is determined by the condition f'=0,

while the viscoelastic states correspond to the condition f*<0.

Now consider the time-variability of a flow surface. The time
derivative of the function f gives,

o (Y o4 (LY w4 (3L

r=(35) +(3c) 2+ (35) »
If the state under consideration is elastic-viscoplastic and undergoes
a change such that f‘<0 , this change leads to a viscoelastic state
because f*+ f‘d: gives a new value of f which lies below zero. Such a
change of the stress state will be dencminated an unloading process.
During this process there is no increase in plastic strain,

therefore ¢€=0 .
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Since P can be expressed in terms of physical relations and
particularly as a function of the stress rate or strain rate, the

mathematical condition for unloading can now be written as

A change of state of stress from one elastic~viscoplastic state to
another elasto-viscoplastic state accompanied by no increase in

plastic strain, the so called neutral process will be characterized by
- af’ T, af: T,
r=0. (355) o+ (35) B0

By oonsidering the flow surface in the stress space it can be dbserved
easily that the neutral process does not correspond to the direction
of the stress increment od: tangential to the flow surface at the
point considered. This is different from flow theory. An active
process which is accompanied by an increase of the plastic strain
takes place if
Ars\T. af: T,
r=o. (&) o+(35) b0

A neutral state will now be realized if the vector of stress increases
ocd: deviates fram the direction normal to the flow surface by the

angle d , where
afsN\NT. [,8f .
d = arc cos[—(%) ﬁ/'%””l]

which also is different from the classical theory of plasticity.
Viscoelastic-plastic material presents viscous effects in the whole

stress space, the viscous effect being incorporated into the elastic
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part of the strain rate, while the viscoelastic-viscoplastic body
presents viscous effect in the whole stress space but the viscous

effect is part of both elastic and plastic strain rates.

VIII.3.7 Elastic-Viscoplastic-Plastic Model

This idealized rheological model consists of springs, a Bingham body
(or Maxwell body) and a frictional slider, coupled in some way. A
typical 1-D arrangement is presented in Figure VIII.3 where the

spring, Bingham body and frictional slider are coupled in series.

elastic-viscoplastic-plastic

Ky ( elastic-viscoplastic
Io} ———>C d
) e%?stic
ky 2k, o fl =0
cij f =(

7 T
o hardening

Figure VIII.3 a) lD-rheological model

b)yield surface in stress space

The yield stresses associated with the slider are denoted by kl' and
k, . where k, >k, (otherwise the model has no meaning because the
Bingham body will always be inactive). Associated with the sliders are
two families of closed surfaces in stress space, see Figure VIII.3 ,
the inviscid ( dynamic) yield surface f' and the quasi-static yield

surface f?. Associated to each of these surfaces there will be two
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hardening (or softening) parameters . However it could be assumed that

one or both of these parameters are independent of the plastic strain.

Depending on the position of the stress state in the stress space a
different regime of strain is obtained (see Figure VIII.3). In the
first region the material is in elastic conditions. In the second
region the material under elasto-viscoplastic, i.e., there are two
camponents of strain rate, one elastic strain and another viscoplastic
strain, which is usually evaluated by means of a creep law. In the
third region the material is assumed to be in a elastic-viscoplastic—
plastic regime. The elastic-viscoplastic strain rate is evaluated as
described previously and the plastic strain rate is evaluated by means

of the usual plasticity theory.

In the existing versions of viscoplasticity it has been assumed, a
priori, that the viscoplastic strain rate is normal to one (or more)
of the loading surfaces, Perzyna (19%6), Philips and Wu (1973), This

restriction will also be adopted here.

The division of material states into three distinct regions simplifies
very much the determination of the first inviscid yield surface and
quasistatic yield surface but it is a mathematical fiction and there
is little justification from a physical point of view. However, it
could be applied to the case of a single loading condition or could be
associated with a camplementary model, such as the one which will be

presented later.
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VIII.3.8 Elasto-Plastic Kinematic Hardening Model (Two Surfaces

Model)

This kind of model assumes that there are two distinct families of
surfaces. The first family (f=0), the yield surfaces, encloses the
elastic region. The second family of surfaces, f' =0 define a region
which also encloses the elastic region. Material with a state of
stress that lies within the region defined by the yield and bounding
surfaces experience elasto- and transitory plastic deformation. The
materials with stress state on the bounding surface are under a regime

of elasto- fully plastic deformation.

Figure VIII.4

The bounding or consolidation surface is defined as the locus of
maximun loading stress. This surface may expand, contract, according

to the stress rate direction.

The yield surface, always enclosed by the bounding surface, may
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family of surfaces. The bounding surfaces can expand and contract
while the yield surface can expand, contract and translate in the same
way as for the elasto-plastic kinematic hardening. The third surface,
bounding surface f?, can expand and contract, accordinly with the

expansion and contraction of the bounding surface f .

According to the stress state position, the material state is then

defined as:

1. Stress states inside the yield surface f° - The material produces

only elastic deformation which is calculated by the usual Hooke's law.

2. Stress State on the yield surface- The material is in an elasto-
transitory viscoplastic regime. The calculation is like that for the
elasto-plastic kinematic hardening but in this case the bounding
surface f is rate dependent and the strain rate direction can be

either defined at R' or any R as can be seen in Figure VIII.S.

71

v

Figure VIII.5
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expand, contract and translate kinematically, according to the stress

rate movement.

The rules for the expansion of the bounding and yield surfaces are as
in soil plasticity and the rule for contraction of the yield and
bounding surfaces are calculated fram the amount of plastic strain,
which is interpolated fram the plastic strain that would occur on the
yield surface and that which would occur on the bounding surface. The
translational rule for the yield surface is defined by imposing the
condition that the yield and bounding surface apart fram being similar
they do not cross each other and are,similar.Also, the direction of
plastic strain rate is assumed normal to the point on bounding surface
obtained fram the interception of this surface with the stress rate

direction. See Figure VIII.4.

VIII.3.9 Elasto-Viscoplastic Kinematic Hardening Model(Three

Surfaces Model)

In this model three families of surfaces will be assumed, Figure
VIII.5. The first family of surfaces, the yield surfaces, f°=90 ,
enclose the elastic region. The second family of surfaces, the
bounding surfaces, f'=0, define a region which encloses the elastic
region and the elasto-transitory plastic region and they are defined
for the quasi-static strain rate ¢ (or stress rate, # ). The third
family of surfaces, f =0 is the bounding surface f? . obtained for
strain rate ¢ (or stress rate, # ) in the kinematic range. Between
the second and third family of surfaces lies many families of

surfaces, bounding surfaces, for strain rates between quasi-static ¢

and the chosen kinematic strain rate ¢ corresponding to the third
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The point R is evaluated by first evaluating the point R' as in
elasto- plastic kinematic hardening and R is then obtained by
determining the interception of the bounding surface f for the
actual stress rate & with the line that passes through the origin 9
and the point R'.

3. Stress states on the region defined by the bounding surface f' and
f? are in an elasto-viscoplastic state. Now the interpolation rule is
radial only, that is, point R' is at the end of the stress increment
and the point R is obtained by the interception of the bounding
surface f (defined by the actual stress rate) with the radial line

that passes through the point R'.

VIII.4 Explicitly Local Constitutive Stress—-Strain Relationship

Two distinct formulations will nowbe presented . In the first
formulation the material will be considered as an elasto-viscoplastic
kinematic one. In fact a set of formulations are included in this
model, that is, simplification to elasto-plastic kinematic, elasto-
plastic and elastic can be obtained by introducing restrictions to the

basic model.

In the second formulation the material is considered to be an elasto-
viscoelastic-plastic body and restrictions can be imposed to obtain

elasto-plastic, and elastic kinds of models.
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Basic Fornulation

1. Elasto-viscoplastic kinematic (Three surface model)

In this elasto-viscoplastic kinematic model an associative flow rule
is assumed, though it is not necessary to impose such a restriction.
To introduce the non-associative flow rule, two more surfaces (quasi-
static bounding plastic potential and viscoplastic bounding yield
surface) , would be required. and, in this case the model would be
called a five surfaces model. Déspite this, the basic definition for
non-associative flow rules are provided for both finite and vanishing

elastic regions.
1.1 Elastic behaviour

The elastic behaviour is defined by the generalized Hocke's law, that

is,

€=D""s
where D 1is the stiffness matrix of elastic constants which is
defined explicity in Appendix D.

1.2 Viscoplastic behaviour on the bounding surface f .

One must be reminded that f lies between f‘ and f’ , according to
the stress rate intensity o , that is f will be a type of surface

defined by
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where ¢ is the actual time.

Because f is not generally normalized in relation to ¢ , a
numerical calculation to take into account the influence of o will
be proposed. If for each iteration f is considered ¢ independent,
the flow rule is as in the classical theory of plasticity, that is to

say, for non-associative flow rule

¢ = -l—ég(g)rbsi'g—is L

-— =‘| ¢! .
(VIII.4.1) Hg 90 K "om T XN AN20, x20

where A = L(g)rb, X'=—¢

where g 1is the plastic potential surface,
f' is the bounding surface,
Hp 1is a positive constant,
Kp; 1is also a positive constant,
n is the normal unit to the plastic potential and
o, =o.m 1is the stress rate tensor projected onto the normal = to

the bounding surface.

The rate of volumetric plastic change can be deduced from (VIII.4.1),

to be:
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w1 O .
(VIIi1.4.2) ”‘P=)‘l”ag=x'lrn

do
which relates to the rate of change of plastic void ratio by:

(VI1I.4.3) & =(1+e)re

Since f is iteration by iteration independent of ¢ for active

loading, the consistency conditions provides,

fT.. o ,_
(VIII.4.4) 530+59e*’ 0

Substituting (VIII.4.2) into (VIII.4.3) and if the resulting equation

is introduced into (VIII.4.4), Hp can be evaluated, that is,

(VIII.4.5) =9 9%
Hg (1 +e)ag

To relate Hp; and K; the definition of 5, and m will be

considered.

- 0
[(#)'¢]
By using (VIII.4.1) and the previous definition of the normal to the

plastic potential and the normal to the bounding surface, respectively

the required relation is achieved as,



(VIII.4.7) - [(gg)’ 35] [(%)r%]

For an associative flow rule H, becames

/A of
(VIi1.4.8) Hp=-35:(1+e)75
and
H
(VIII.4.9) Kp=—23%

1.3 Viscoplastic behaviour under the bounding surface f .

It will be assumed that the viscoplastic strain rate on the yield
surface (consequently under the bounding surface) is obtained by
interpolating the hardening parameter from the point on the yield
surface to the conjugate point obtained on the bounding surface by an

convenient interpolation rule.

Because the shape of the yield surface and the bounding surface are
not in general similar then the interpolation rule as proposed by Mroz
et al (1978a) for the elasto-plastic kinematic model can not be used

by itself, but a different option will be adopted here.

The rule for elasto-viscoplastic kinematic (three surfaces model) will
be divided into two rules. An interpolation rule for the quasi-static
plastic strain rate and another for the viscous strain rate. The

quasi-static plastic strain rate will be calculated in the same way as
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the elasto-plastic kinematic (two surfaces model), whilst for the

viscous strain rate another rule will be given subsequently.

1.3.1 Quasi-static plastic strain rate interpolation rule.

The rule for translation, expansion or contraction of the yield and
bounding surfaces for quasi-static stress rates is the same as that
for the two surfaces model by Mroz et al (1978a). In this case the two
surfaces are f° and f' of similar shape. According to Mroz (1978a)
it will then be assumed that the surfaces f° and f' do not intercept
but engage each other along a camon normal. This assumption can be
expressed mathematically by associating each point P on the yield
surface f° with the conjugate point R' on the bounding surface s!
characterized by the same direction of exterior normal. (Figure
VIII.5). Denoting the stresses at P and R' by o and 4f' and the
stresses at a point which divides the line 04 and 0 4 in the same

proportion as of and of', one has,

(VII1.4.10) o —of _ gf'—ak'
al al

by similarity.

a' and a° are respectively the middle point of the segment of stress

0OA4 and 0O'A4A’

The equation (VIII.4.10) may be transformed to give

1 0 \
(VIII.4.11) o' =a® 426 =) and o =af o+ LR )
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Considering again that according to Mroz (1978a), the relative motion

of "P" with respect to R' to be directed along =PR ,
(VI11.4.12) 8= oR'—f = #[aoakl -d'ad + ¢1‘p(al—a0 )]

can be written.

By taking the time derivative of (VIII.4.1l1l) and substituting

(VIII.4.10) into the left equation fram (VIII.1.1l), one can write.

- ) ol — 20N
(VIII.4.13) © Br=of'-" ="'+ —ap)(a - )"aP
a®
and
o130
(VIII.4.14) of = ButaR'+3 =2 (o —a”)

Now, assumimg that the yield surface and the bounding surface are
similar, the scalar i can be evaluated from the consistency

conditions, that is,

(VIII.4.15) (%))Tb+(g—:)ra’+%b°=o

By making use of equation (VIII.4.14) one finds:



(VIII.4.16) w= L
P)
(%) s
where,
1 _ ) e "_°= =
(VIII°4-17) a —a,cxp(x_—k), py = constant
1 1 1
and g =Gy %08 G
a )‘_ke" AA—k"aa X s—glrn
0
(VIII.4.18) =24 =14
a

1.3.2 Viscous strain rate interception rule

To include the stress rate intensity influence it is now postulated
that during the time period of application of the stress increment,
the stress point P moves towards the stress point R' on the quasi-
static bounding surface s' while the stress point R' moves in a
radial path, towards the stress point R on the viscoplastic bounding
surface f . The stress rate inteﬁsity is approximately known at each

iteration as the iteration by iteration stress camputation progresses.

That is while P moves towards R', and defines R' on the quasi-static
bounding surface, R' moves radially towards R during the stress
increment, iteratively as the stress iteration progresses during the

evaluation of the strain increment.

In mathematical form, the successives positions of the stress point
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o® is achieved by the interpolation of the radial line

(Vi1I.4.19) 7= ‘/—na,,,
with the successive shape of the rate-dependent surfaces

(VIII.4.20) Slo,@,0)=0 , for constant ¢

which is defined at the stress point o®' .

n= \/561 , defined at the conjugate stress point ¢f 'and 7 is the
m

second stress invariant, whilst o, is the first stress invariant.

1.3.3 Rule for the variation of H, .

To camplete the model description it is necessary to specify the rule
for the variation of Hp during the plastic deformation. Let it be
assumed that Hy varies continuously fram its value H,, on the yield
surface to the value of Hy, on the viscoplastic yield surface. H; is
canputed by using equation (VIII.4.7) or (VIII.4.9) according to

whether non-associative or associative rules are used.

The interpolation rule is similar to that suggested by Mroz et al

(1978a), but H; and 6§ are now stress rate functions. Thus,

_ é y+1
(VIII.4.21) H =H,+ H‘”(é_o)
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H, is calculated iteratively according to the movement of the stress
point ¢ which is governed by the stress rate intensity o® and the
plastic deformation ¢ . Also, & is calculated by adding the value
6, defined by the distance between the stress point o®' and o , to
the quasi-static ¢, , of being a function of the stress rate
intensity of .(See Figure VIII.5). That is, & is equal to the
distance PR. §, is the maximum value of the distances between the
yield and the bounding surfaces for the quasi-static surfaces. That

is, ¢, is the maximum value of 3§, .

2. Elasto-Viscoplastic Kinematic- Vanishing elastic region

As the elastic behaviour in item 1.1 and the viscoplastic behaviour on
the bounding surface / are as in item 1.2, the only pertinent aspect
left to discuss is the viscoplastic behaviour under the bounding

surface f.

2.1 Viscoplastic behaviour under the bounding surface f.

The incremental relations derived for the vicoplastic behaviour under
the bounding surface f in the previous section, describing the three-
surfaces model, can be particularized for the case when a®=0 , that
is, the elastic damain shrinks to a point. See Figure VIII.6. This
hypothesis is convenient fram the camputational point of view as there
is no need to make a distinction between elastic and viscoplastic
damains nor is there the need to trace the variation in the size of

the yield surface.
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Two different interpolation rules for viscoelastic strain rate will be

considered:

2.1.1 when the plastic potential bounding surface is 60 -independent

The plastic potential bounding surface is the plastic potential
corresponding to the yield bounding surface which is the only bounding

surface which has been used up till now.

In this case, it is assumed that for any increment do¢, the vector
normal to the plastic potential bounding surface, coinciding with the
direction of the viscoplastic strain increment, is parallel to the
normal n, at the conjugate point R at the intersection of the
stress increment vector with the piastic potential bounding surface,
see Figure VIII.6. Note that no restriction is imposed on the bounding
yield surface which consequently may have any desired shape, and can

be a function of 6 or not as required.

Obviously in the case where an associative flow rule is used the

bounding yield surface must coincide with the plastic potential.
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Figure VIII.6

When the plastic potential bounding surface in @ independent the
calculation is simpler, therefore it is easier to use a non-

associative flow rule, that is to say:
(VIII.4.22) e’=KLnRa',,,=‘x‘nR X2 0
P

where n, is the normal to the plastic potential bounding surface and
o, 1is the stress rate camponent in the direction normal to the yield

bounding surface.gs,=om, n, and m are defined by equation

(V1II.4.6).

Therefore, as the yield surface reduces to a stress point o° its

centre reduces to o , Or in a rate form.

(VIII.4.23) o =of
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For the interpolation rule it is necessary to compute § as seen in
Figure VIII.6. It must be clear that g is the viscoplastic bounding
plastic potential and, consequently, only one interpolation rule is

necessary now.

For each iteration é can be calculated as:

3 2 2 |}
(VIII.4.25) 5=[m(ﬁk-ap) + (oF—o” ]
where:
77 and a:, are the second and first invariants of stress at P, and

7® and of are the second and first invariants at R. Because of the
simplice shape assumed for the bounding plastic potential, explicit
expressions for & and a,‘: can be achieved. That is, @& and af, are
evaluated by the interception of the equation of the bounding plastic
potential (to be defined as stress rate function) with the straight

line

._.

x
o,
Q

3

%L
I
%L
+

P _
tanﬁ(a'"_a'" ) where tang = 7

2.1.2 when the plastic potential bounding surface are ¢ —dependent.

If it is assumed, as in the previous section, that the strain rate
direction is defined by the normal to the bounding plastic potential
at the stress point of interception between the stress increment

direction and the bounding plastic potential, the calculation
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procedure is as in the previous section. However in this case
additional difficulties may be introduced because, in the general case
it is not possible to find a explicit expression for the invariants

7% and ¢* atR.

To make the calculation procedure less expensive it will be assumed
that the stress point R will be cbtained at the interception between
the bounding plastic potential and the projection of the stress rate

direction in the ¢ constant plane.

where, 0=6"+do
(VIII.4.26) - p(dJ; _ds
d 0 = tan 30 (315’ a”)

and 67 is the value of 6 before applying to the stress increment.

In this case the position of the stress point R can be determined

explicitly for any surface function on 9 .

Once 3% and of are evaluated, the calculation procedure reduces to

that used in the previous section.
The stress point R will be defined by the interception of the bounding

plastic potential (to be defined as stress rate function) with the

straight line

(VIII.4.27) 7* = tany(oX —o¥) + 5" cosd g , for the plane §
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[(Tr” sind6)’ + (dﬁ)z] — 26" cosd 0

__ g9
where tany = da. , dg= ada,
9997 ., 3 8.
0= a0 35,30 °
o % o o, '1lt;edf' ed lat
8&' 613’ 60’, Jo w1 erin ater.

3. Elasto-Viscoplastic-Plastic Model

This model, as described previously, assumes the existence of a yield
surface s' and a viscoplastic surface f’ , as seen in Figure VIII.3b.
f' is usually defined at a very high stress rate, and it is
considered as time independent. f 2 is usually obtained for a very low
stress rate. In practice, however f' and f? are not in general

similar.

Although this approach is inferior to the previous one, the

application in Finite Element practice is straight forward.

In general the strain rate tensor is divided into three distinct
canponents: Elastic, viscoplastic and plastic. The elastic component
is defined by the Hocke's law and the plastic strain component as in
the plasticity theory. As this model is more or less a mathematical
fiction, the associative flow rule will be assumed. The only strain

camponent left to be discussed is the viscoplastic strain.

3.1 Viscoplastic strain rate.

The viscoplastic strain rate is defined by means of a flow rule (creep
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law) similar to that for inviscid strain rate (high strain rate).

Thus, the creep law is defined by:

2
o = ay<ary> L1 2 F=pr}

[eye] "

(VIII.4.28)

A = A(N<®(F)>

wheére 2 [(a:)r %g:li

A(t) is the viscosity and assumed to be a time function only, <®F)>
means that <®(F)>=%&(F) for ®(F)=0 and <®F)>=0 for
&(F)<0 . The reference parameter f fz may be chosen arbitrarily and
is introduced only to make the argument of the scalar function ¢

non-dimensional.

4. Constitutive Law in Stiffness Form

4.1 Elasto-viscoplastic kinematic model.

Consider that f°>0, f'20 and f=0 , that is, the yield and quasi-
static bounding surfaces are in contact, and consequently the material

is in an elasto-viscoplastic state. In this case:
(VIII.4.29) e=¢+¢€?

By making use of (VIII.4.l), (VIII.4.2) and the consistency conditions
the elasto-viscoplastic stiffness and flexibility matrices can be

expressed as
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p¥(¥%) b
D?=D - T T
(VIII.4.30) (gz) D gx-(%) 2
ep - a‘(%)T
(VIII.4.31) c?=cC AT

where C and D are respectively the flexibility and stiffness matrices

of elastic constants, and,

vmrasn (%)% - -n - ([ £ G E]

H, is given by equation (VIII.4.6) and K, is given by equation

(ViIr.4.s).
For an associative flow rule g and [ are identical surfaces.
Note that the relations (VIII.4.30), (VIII.4.31) and (VIII.4.32) are

similar to those for an elasto-plastic material, however, the gradient

g_g ' g_f are now rate dependents.
(3 o

4.2 Elastic-viscoplastic-plastic.

Consider that f'>0 and f?=0, that is, the material is an elastic-

viscoplastic—-plastic state. In this case:

(VIII.4.33) e=E+ P4+ P
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By making use of equations (VIII.4.l), (VIII.4.2), (VIII.4.28) and the

consistency conditions the formal inversion of (VIII.4.33) can be

achieved as:
(VIII.4.34) &= D" he, :)]

h(c,1) is the creep law vector as given by equation (VIII.4.28).

of\T
(VIII.4.35) p7=D- DEE) DT

CAFYEENE:

T
(—) %j% is given by (VIII.4.32) where g is replaced by f.

The special cases of elasticity, elasto-viscoplasticity and elasto-

plasticity can be readily obtained fram (VIII.4.34).

5. Yield and potential surfaces form

5.1 General shape for f*.

According to the review presented in section VIII.2 the yield surface
and the plastic potential can in general assume almost any shape. The
adoption of one of the shapes make the application of the model
restricted to a particular soil type and physical conditions. To avoid
this incovenience a general equation is assumed which can be
calibrated to most circumstances for which the other models are

proposed for.
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-on the J,/J, plane;

Before extending the model to the general state of stress the triaxial
conditions will be analyzed, that is, when two principal effective
stresses and strain are regarded as negative, the stress and strain

states can be defined as:

1
p= —3-(0'1 + 20’2) g =o0,—o0,

(VIII.4.36) | )
e, = —(¢ + 2¢,) €©= 5(‘2 —-¢)

The shape of the yield surface, plastic potential, boundary (or
consolidation) surface, and nesting surfaces will be based on the

general equation:
fi=Ap*+2Bpg+Cq*+2Dp+2Eq+F =90 s=1,2,3,.

The paramenters A, B, C, D, E and F will be determined from the

following conditions:

1) pP=0, ¢9=92
2) p=22, gq=¢&, dp/dg=-5,
3) p=b g=bn,

4) p=c¢ g=cn, dqldp=7,
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v

2a

Figure VIII.7

These conditions imply the following from the upper portion of the

surface (¢>o)

s < z P (0 2
fi= {nc+5c[1-252+2;;(2£z—1) Pi+

S PN

2[52—1—”:%“(251—]_25?“"5+Ez%fa )]pq
1 AN - - — -\ =

(ima.3) 20285 - ) nt 2018 )]+ 250 SE - BB ]}

n,__
- Z{nc+§‘[l—2§2 +2;,;(25|'1 ):I}ap

+2[$@—2:—:§;—2% + 4, :—2) +35 0+ 21 —E,)] ag ¢>@

where

n,=tanw, n,=tanw, S,=tan6,, S_=tan6,

(AL
~
1
aln
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For ¢<@ , g can be substituted by —q in the equation (VIII.4.37) and
a proper value for §,%,, 5,, 5., n,, n has to be chosen. An example

will be given elsewhere.

In order to examine general kinematic types of models, an equation
similar to (VIII.4.37) but with different dimensions will be required.

The similarity of surfaces ff and f° can be represented

. - & a_ a_a%_ g a° . .
mathematically byfo—ﬁ-;v£,=;=mv£2=z=ﬁand if the coordinate

of point P are represented by a, , a, the equation for f° is readily
a0

obtained; by changing p to p-aq, +§_ and g to g-a, in (Vi11.4.37),
0

that is:

P =Ap-a) +B(p-a,)g-a)+ Tlg-a, } +

0 0 _
(VIII.4.38) g—(ﬁ—b'go )(p—a,) + %( BF+EE)g-a,)
0 0
* =
+ '_—2(7 - ﬁfo) =0
&
-In the general stress space.

To represent the surfaces f* and f° for a general state of stress,
the stress invariant of the "translated" stress will be introduced in

agreement with Pietruszczak and Mroz (1979), as follows

}
L1 1
In = 5("11 - 7= [E(T’” ~%)(ey ‘5.-1)]

(VIII.4.39)

1 _ -
Jy= S(ﬂu - au’)("m "ﬁki)(a"f _E"j)

7 is the deviator stress and LT denote the spherical and
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deviatoric camponents of the translation tensor &; of the [ ° type of
surface. The definition of the deviator stress and the Lode angle
remained unchanged and were given by equations (IV.18.2.22) and
(IV.19.2.25), respectively. Also the relationships between the
invariants defined by the equations (IV.10.2.23) and (IV.18.2.24)

still hold.
For the "triaxial" stress state, i.e., ¢, =0; the following relations
are applied:

1 -
p—ap=—.lm=—am+§a q—aq=\/36+

1
where Om = 30 &= and @, denote the value of & for o,=o0,,

0==x/6.

Thus, the expression for f° can be rewritten as follows:

(VIII.4.40) -§—° (07 - D)o, ~ 3a) + ‘/52_0 & + FE)s,
0 0

+&Y@-pE)= 2

€

Assuming that the yield curve in the = -plane can be expressed as
(V111.4.41) T=07,85 T, =7/g

where
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kll
. kis?
[Kip + Ky sinli,y + 30)]

(VIII.4.42) g = gi(x/6)=1

and k;, .+ k;y 1 ki3 + k4 + k;s , are constants and i can assume the values @,
1, 2, 3, 4, or 5. Similar expressions were proposed by Eeklen (1980),

Argyris (1973), Gudehus (1973) and Ziernkiewicz and Pande (1975).

If now the equation (VIII.4.41) is introduced into equation

(VIII.4.49) it results in,

S=4(,, —;a) -V3B(o,, —%a) S+3C—————(2A—D£0go)

g & &

(VIII.4.43)
(@, —%a)+\/3 (3+£g) (O)Z(A-DEO)=¢

I3 I

Now considering that &, ¢ , ¢ +» S, , S, for values of § different
fram 7/6 can be expressed as functions of &, § , % , §,, 5, defined

at § = /6 ,that is,

&= Eo-go = El-gx &L= Ez-gz
(VIII.4.44) . S,.=3g S0 S.=g, 5.=0
S,=%5g S+#0 S,=g, S=0

where g, has been given by (VIII.4.42); expressions for f® and A, B,

C, D, E as a function of ¢ can then be obtained as:

f°=A(am-%a -V3B(c,, —%a) +3Cg—g—_—(2A D, g,)

(VIII.4.45)

1 7.4 - 7 a® \? -
—a )+v3—(B+EEg )= +(—)(4-DE —_—
(a 3 ) £, 2 050 )g5 (Sogo> 080 )

where 2n — 2n,
4= "c+3:33[1 - ”_b{ + 25282(71;— 1)]
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2
- n - n
B = 2{5282_ 1- ;1‘23;83[22181 -1+ ZE,S:n,,g, &t 5522328284]}

C= nlg{(l ‘22181)[3_:83(22282' 1)-n+ 2n,(1 "Ezgz)]

+25;m, e Srbrea~Eig) -Eiain |}
(VIII.4.46)

- 2n,, _
D = Z{nc + Eg,[l -2+ 71,_(25‘8' - l)]}
— = n, n, . n _
E = Z{ch3[50g4—2n—b S.2 -2’-1-2 +4% g, n_g] +38,n.8,+2(1-E,8, )}

In addition &,, £, 4, 5,, S, can also be functions of strain rate

(or stress rate), stipulated by any empirical law.
Equation (VIII.4.45) is geametrically represented by a surface with,
in general, variable cross-sectional shapes in each «~ -plane. More

specific surfaces can be cbtained by fixing the various constants for

the specific physical problem under consideration.
The gradient tensor of this surface is given by:

winaan 5= e (i e ) () omam)(E)

where afo . aro _ ‘?_f_o

Also, from (VIII.4.45)
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3f° 7 V3B, 1 V3
- - ——a )+ = (B+EE)g )
97 £l &s on 3 ) £, 8085 0%
afo 1 =, 7
9 - -= 2 _2 24-p
3o, 2A4(c a)—+/3B z fogo( INIE
0 0 _ - _ _ F
%fo -’az (24 & g5(0, = %“)— V3BE7- Dfoao— 2a°(A-DEyg, )] GL(‘))
£,858s
68

+

"ié:§ [g;?t(l —25,8) + n + 2n(E,8,= 1) + gymyn S, + g8, an_aSr] 7

=n._ & - 1 n, £ &
—4\/3,,—2515;(1 +g4ana){am—§a)o+4\/ —1;)——-&,—(1 + g,n,S, + 2£,8,5.)a’s

1 n. § 28, _ 1 a®

Be 2( dg
+8:-°F, 0%, —-a)- 8= =a" | =t + | =g, 5.2n.—n,)le,— za+—)
ny 3 " Eo8o a6 ny, 53 3 &g
6E, = = = 1
+———"gg'§[(l -2%,8)(gS.—2n,) + g,8,n,S, S] 2\/3— -8,8:5, Sl.)(am—ga)a
_ = 1y, 45,85, o2f 9
(250g0— 1+g,8S,S. )a’s — —(2$0g0£2g3S +1-g,8S,S. )ao(om— —a)+ —ZJ—ao 34
08 3 £8
2n.=n, _ 1 a® \? 3 = = - (T = _2
+ nb SC(ZEZEZ -1 )(am— Sa + a) + n;gz[“—2€|g| )(22282 -1 )S‘. + 2gd"b:¢asr(£282—flgl )] g
050 24

2J3 3,
& Zogon}

5 ~ _ :
+24/3 g[Zflg, —n,+2E g g,nyn.S,+E,8,8,15, ](am - la)? +——

3 [Eogoga"bs 22080 84 ”h”cs—a

—2Egon. + 4fog0§,g. n.—2%gn +n—2zg, ga"b”cs_a“fzgz&"iya ]"0a
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S, - - 1 S, & - - )
+ 25 (1-2F,, ), + 202, 8~ 1) | o0, = 30) =235 (1 -~ 2B, 0m, + 202, 2, 1)) | 57

w]

6S _ —_ - 438y - 1
+ ‘?';;[(Ezgz-flgl)&sc—flgln‘_]ﬁz+ 7 g—jfaSc(Elglnc-!-fzgzn: )(am—ga)ﬁ

’ 4

2J§g, S - - - - - 7]
+Tg_‘—a[50g0"b$+ Eogon,,nc—2£0g0n$:—2£,gl ";E-zfzgz"bst :lao'&' s
b sfogo

- - - - 1 ag
- [6 CE,g7° + V3g(B + EEyg)a" 5 — V3B E 8850, — 5m)] =5
fogogg ’
and %,_ _ 3k, ki k;s cos(k;, + 36) P =01.2345.

kt1?
[ iz + ki sinlky + 30)]

To camplete the kinematic hardening type of stress-strain relationship
it will be necessary to derive 3_fz , that is:
a
aft 1 J3

. 1 _ 0 _
505 = ——— (24 = DE,go)(0,,— z0) + = (B + E§,g))7 + 2—— (4 — DE,g,)
£08 3 08085 £

and fram equations (IV.10.2.23), (IV.10.2.24) and the definitions of

O',Earldj:’,

m

\
) r
c.—a
1 XX
1 =
do, 111 & _ | : s
T =3 ol’ % % 2(7),2—01”)
OJ 2(7”—“.‘:‘
\0 L2(‘r‘,‘y—¢!x},)J
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r ) .
- 2
(@, ~a)o,-a)=(r,~a, )2 |
(Ex ax)(a: - Ez) - (sz—ax )2 1
%{1 = (Ex ax)(ay - a} - (Txy-a,\y ) + %62 (])
2 {(sz - aszTxy - axy) - (ax_ax )(Tyz ayz )} 0
!
2{(1'y2 - ayz)(-rxy - axy) - (ay—a). Jr—ey, )} 0]
\ 2{(Tyz - ayxXsz - axz) - (_z_a: )(Txy—axy )} )
In addition by settinga; =0, «;= —3_L and a®=a the equation for

£080
S’ for the general stress space can be obtained if equation

(VIII.4.45) is used. The invariants defined by (VIII.4.39) now beccme:

1 1_ _ ¢ ol
Jm=§"n" o (5“.. ij)" TS—SU'jaijﬂij
and f° as
_ — —2
ri=a(o,+ =) -ViB(o,+ =) +3cZ -
080 8 3 -4
(VIII.4.48)

- 2 _
L 24-DEygy )(om+ 22 ) +VIZ(B + EFpg) g + (35 ) (4 - DEgo) =

Eo 8o fogo fogo fogo

with the gradient tensor defined by (VIII.4.48), where g_f_’ , of ,
a

m
‘z_-’; are now given by:

o, + )+ _‘/3“ (B+EEg, )
&8 Eogogs

af _ 24(0,+ =)= V3B -—-(24 - Dz,
m Eogo £0g0

[ 3 §080
1 0
a",—§a+:a— =am+_-i- +_L =\g, t+ _2—0)
&8 &8 & §080

The variation &f°/da will be given by
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3
U (o, + L)+ Lo+ 2
£8o 5085

(A —-D Eog[l )

It will also be necessary to evaluate tr (9f°/ds)  which is the same

as df/ds, given above.

It should be noted that a, £ , § , S,, §. can be functions.of the
plastic strain (or stress) rate. Any empirical law, in principle, can

be adopted.

The number of combinations of the surfaces f° , f° which can be
considered in order to form a model are enormous. Each particular
condition provides elements to rule the arrangement and transformation
of those surfaces. Retrictions can be introduced to those surfaces to
fit almost any theoretical soil model and in principle, any set of
soil test data can be used to calibrate and specifically define the
surfaces f*, f° and their transformation rule. The particular
conditions and transformation rules to be imposed on those surfaces to
represent any known model will be presented elsewhere. Here, just a

few of them will be discussed.

The conditions necessary to be imposed on the general model to reduce
to a particular one is presented.together with the transformed
equations in table I whilst the pertinent gradients and derivates for

each model are presented in table II.



Li=Ale, ——a)' ViB(o, --a )"+3c

DESCRIPTION
HUBER-MISES
DRUCKER-PRAEGER
TRESCA
MOHR -COULOMB
LARSSON
ORIGINALCAM —CLAY
MODIFIEDCAM -CLAY
NOVA AND WOOD FIRSTSURFACE
TRIAXIALMODELgp ~oNDSURFACE
PIETRUSZCZAK AND FIRSTSURFACE
MROZ MODEL ggcONDSURFACE

MODELL FIRSTSURFACE

TWO-SURFACES MODEL

»

8 L

SECONDSURFACE

TABLE I

(24 - Dl g)o. -—a )+Jsz——(n+st,:, )2 +(Eo )(A-ozo,,)n -2

0&ods

A B
0 0
0 0
0 0
0 o
0 0
- ez
| 0
! FEE-1)

| ta L )
1 bale-n
! bE-1)

1 (i)

U Sty

8o

(sl (30 41)

3-sins)'

Jsin’®

1+a ¢ } 1

e (1= 20)
osetl -
(el - 2
G-
Sl 1~ dtrzsta) - ottt wesia
Gl (1- i) - it wasia]

~

»

¢6T



L2y

Ayint) (1 - st e 2.

5 ]

(-ab

0

Lt -
Lo -

)
i)

5)-‘:'40!(] -a

3):'\0!(1 -

-Jsin®

J-simbun

)

E+

lindé S;lo

J-ae®

-sind *

5.5

)
)

-0

-ccotP

-0,

—-ccotd

o

o

TABLE I-—-CONT.
] 5n 5
1} 1 1
1 1 1
1 | 1
1 | 1
1 1 1
1 1 1
| | 1
1 1 |
1 1 1
l 1 1
1 | 1
~uine _)-1he |

~sa P J-sin®sindd

&

A

“A

A

&

&

€6T



194

By substituting into egaution XVII1.4.45 the constants
stipulated on Table I for each specific model, a field of
eguations representing any of those particular models are

readily obtained, that is:

e HUBER-MISES
fl = \/3?-0),= 0
e DRUCLER-PRAGER
f'= o, + ﬁ%%?%@—)?-ccow-o
= TRESCA
S'=28cos®-0, =0
e MOHR-COULOMB

3(3-sin®sin30
fl=dm+\/ ( 6sin®d )3-ccot<b=0




o= LARSSON

Sl=0,+/35,5+2a=0, 7< -

o= ORIGINAL CAM-CLAY

> . . 2
1_ 2 \/3(e=2 )3=sin®) (3=sin® )" , )
S = e m ap €3t )7+ 200, +
\/3 3—sind 2\/§sind>
—3- =0, 7S - —
337e) sind (3-sin®sin30) "
w— MODIFIED CAM~CLAY
i 2, (3-sind ), o __ 23sin®
S =t 5ano ° T 249.=0, (3-sin®sin36 ) ™

o NOVA AND WOOD TRIAXIALMODEL

FIRST SURFACE

2 J3(3-sin® )

l=
f m 3sind

(E— 1 )am 4

_ . (3-sin® )
Rrrey e
12sin“®
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2/3sin®

(3—sin®sin36 ) ™
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6. Practical Application of the Models

This section will be dedicated to compare the proposed models with
same laboratory results. The triaxial test conditions will be chosen.
For the elasto-viscoplastic-kinematic model the vanishing elastic
region version will be the only one to be considered, but obviously

the two surface model could be used.

6.1 Elasto-Viscoplastic-Kinematic with Vanishing Elastic Region:

For the triaxial conditions the general equation s’ for the yield

surface and/or plastic potential (see Figure VIII.8) can be simplified

to a convenient form, that is,

o 24 3sin® (3—sin4> ) SPRY 12FS-sm<I> 2
/= 3sin® Sene &P 36sin’® -1V -3=ms
3—-sin® | . - 6S,sin® _
2ap— = 2= V)35 | 99 =0 ¢>0
where a=a(é), §,=S5y9) and =i .

For ¢<0 it is necessary to substitute q by —q, ¥ by 33—5?31: 3 and
sin
3—sin® by 3+sin® .

To evaluate the function that relates 5, and f with the stress rate
g, the undrained standard triaxial test for different constant stress
rate g will be considered. This procedure is justified by the fact
that the shape of the yield surface is obtained based on the

normalised undrained stress-path and as the undrained stress path is
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rate function so will be the yield surfaces. The change in the shape
of the undrained stress— path together with the change of stress rate
is justified by the change on the compressibilty constants and the
pre-consolidation pressure with the change of stress rate. Thus,
another way to introduce the rate effect is by establishing the
function that relates the compressibility constants and pre-
consolidation pressure with the stress rate. However, this kind of
procedure is more difficult because the effect of the stress rate on
the canpressibility constants and pre-consolidation pressure also

seems to depend upon the stress ratio n=g¢fp .

Also the elastic constants is dependent on the stress rate. The bulk
modulus for an isotropic material relates directly with the
campressibility k, which justifies its dependence to stress rate.
Laboratory results also shown that the initjal elastic modulus seems
to depend on the stress rate. In conclusion, it can be said that the
Poisson ratio is a function of the stress rate. At the moment,
however, it will be assumed that elastic constants are independent of
the stress rate and that will explain the discrepancies between the

model prediction and the laboratory results.
By analising the undrained constant stress rate test (Takahashi, 1981)
the relation between §; and ¢ ; and f and g are as plotted in

Figure VIII.9.

The matrices of elastic constants are given by

_{3G, 0 -1_[= 0
o=[% &] w07 =[% &]
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for the following stress and strain invariants definition

o, + 20 2
g=o,~0, p=—- 3 : 9,"3(‘2-‘1)» 6= —(g +2¢)

By making use of (VIII.3.1) the relation for the effective stress-

controlled loading programme is given by (see Figure VIII.8):

For f<0

=14 2] ¥

where

1 . (8s/aq)’
4= 36, T kL
p _(as/aq)(3f/ap)

UK
_ 1, (affepy
R AT

- (A



204

of (3-sin®)?| __ ., 12ES,sin® 3—sind =
—_—  c———— - -— . — - 2 —l — -
aq 18sin’® ( ) 3—sne |I% 3sin® (=1 )pg 3sin®d (1) 3—sind [°

af _ 3—sind 6S;sin® af _ 3-sin® - .\
da PR~ Ssine -1 )-3=50s | % ap = App—a)¥ 3sin® (-1 )4z
_ 5\ __Of1+e ofdp -(x-y)—
KP KR +KP°(60) KR -a—ax_kam qr (X Y) X

(pr —gp tanﬂ)[Ztanﬂ + Lsink(z_) )] - 2%’[(@—1 )—%gsf,i,—";-nanﬁ] a

tan'p + 5388~ uang + S| o8- 1) - 5555t |

y = (pp — gptanB)(p, — gptanf—2a)
- 2
—si 3-sind® - S si
tan2g + 33n2(E—1 Jtang + g—,-lm;n ) [(25—1 )’——;—&—;‘Z‘i,;“"]

Pr=pPpt+ tanﬁ(qR -qp) tanf = ——

6= [(QR = QP)I + (PR_PP )2]%v 6 = 2a

11+e 0ffop rof
da= —-—_°%,21°P (0] af
ka"ka,gélz (aq"‘l‘*ﬁ"l’)

£=£ §=£=3_Sil‘l¢_
ca oo 3+sind>£‘




205

K,y is the hardenning modulus at the beginning of discompression in a
e-lnp curve. 1+ represent the power necessary to calibrate the non-

linearity of the discampression line e-lnp.
¢ is the friction angle and e is the void ratio.

for j =0 , the same relations are valid, except that now

KP =KR’ UR =O'P

For a mixed loading programme where the volume changes and the
deviator stress are prescribed, the deviator strain and mean stress

change response are given by;

HE Rt

where

Now tanf beccamnes

B,dq+B,de,
tanﬁ=————3 qu

and the other relations are unchanged.

To show the accuracy of this model a series of constant stress rate
undrained standard triaxial test will be analised. The soil tested is
lower Cramer Till (Takahashi, 1981) and the test procedure was as

follows:

The material was first consolidated anisotropically and then swelled
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back to an isotropic stress state. The undrained stress path is shown
in Figure VIII.1Q and the stress-strain relationship in Figure
VIII.1ll. Note that neither the original cam-clay nor the modified cam-
clay can predict the pore-pressure generation accurately. A much
better prediction can be achieved by adopting (=12 and  §;=0,2

in the proposed model. The extension test could be improved if &, was

adopted as function of 8 which is allowed in the general model.

The stress-strain relationship (Figure VIII.1ll) can also be reasonabl
predicted by the assumed model while the state of stress at failure
( a and P, ) are both very well predicted by the proposed model,
while the modified cam-clay over-predict and the original cam-clay

under-predict , both 4, and p, .

The previous test correspods to a low constant deviator stress rate.
To calculate the undrained stress path for other stress rates it will
be assumed that the value of J; and ! for different stress rates are
determined by a linear interpolation in the §,—Ilng space and §-Ing

space, as presented in Figure VIII.9. In doing so the prediction of
the pore-pressure in undrained constant stress rate test are presented
in Figure VIII.1l2, and the stress—strain relationship in Figure
VIII.13. It can be seen that the pore-pressure generation is quite
good and the stress-strain relationship for the extreme stress rates
are reasonably predicted. An improvement in the stress-strain
relationship can be achieved if the elastic constants are considered
as rate function. Also a non-associative flow rule may be necessary.
However, the degree of strain is quite samll and the accuracy of the
laboratory test must be seen with a certain reserve in this range of

strain level. The stress-strain relationship prediction for other
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constants stress rate are presented separately in Figure VIII.1l4 so it
would not overload Figure VIII.13. In this figure only compression

test are presented.

Now some standard undrained tests are going to be simulated with
variable stress rate in sample with the same stress history before the

undrained test as presented in the constant stress rate tests.

It will be assumed that the stress rate invariant is given as a
exponential function of the stress invariant as shown in Figure

VIII.15.

The curve characteristics are given in Table 3. The first two curves
represent tests which begin with high stress rate and then decrease
exponentially until the end of the test. The initial stress rate and
the rate of change of stress rate are shown in the Table 3. The third
curve reprents a test which begins with a small stress rate until a
certain stress level when the stress rate increase until another
stress level and then keep constant until the end of the test. The
fourth curve represents a test which begins with high stress rate and
decreases to a lower stress rate until a certain level of stress and
fram there the stress rate increase until another level of stress and
then keeps constant until the end of the test. The fifth curve
represent a test which starts with small stress rate and increase
until certain level of stress and fram there decreases until another
level of stress and then keeps constant until the end of the test. The
sixth curve represents a test which starts with a high stress rate and
then reduces quickly to another level of stress rate which is kept

constant until the end of the test. Finally the seventh curve
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represents a test which starts with slow stress rate and then
increases quickly to another stress rate and from there kept constant

until the end of the test.

In table III B, represent the initial tangent of the exponential
function at the specified stress state and stress rate as given in

table III. See also Figure VIII.15.

The undrained stress-path for each of those conditions is presented in
Figure VIII.16. It can be seen that the increase in stress rate makes
the pore-pressure generation to decrease while the decrease in stress
rate makes the pore-pressure generation to increase, which are
ccherent with the laboratory results. However, to compare with real
data more laboratory tests will be required. Also, a model which does
not take the stress rate (strain rate) into account can have as many
yield surfaces as the loading conditions (as stipulated by Figure
VIII.15). As for the sake of curiosity, the loading conditions
stipulated by the curve number 2 of Figure VIII.15 produce a yield

surface which is an ellipse.
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TABLE TTI
Curve Stress Stress Stress Stress

B B>
no State Rate State Rate
1 g. 1.000 -0.0250 - - -
2 0. 14.12 —2.5430 - - -
3 o. 0.008 o. 100.9 0.008 0.9242
4 2. 1. -0.95 100.9 9.008 0.00242
5 o. 9.908 0.00242 100.9 14.12 -4.278
6 g. 14.12 2. 200.0 14.12 -47 .97
7 9. 9.008 D. 150.0 2.008 9.0266

B, represents the initial tangent of the exponential function at the

specified stress state and stress rate.

It is more difficult to compare the prediction of the model with
experimental results for the overconsolidation region because of the

scarcity of test information.

The stress rate effect in this region seems to be much less important
then in the normally consolidated region as seen in Figure VIII.1l8a.
The test represented in this figure was carried out with displacement

control but with the stress rate equivalent to 0.208 Kpa/sec and ©0.11
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Kpa/sec, therefore the difference in the stress path is not so
pronounced. Additional difficulty will be encountered when analising
the laboratory results which considers the stress control test carried
out on the same material with the constant stress rate of 0.008
Kpa/sec and 14.12 Kpa/sec as shown in the Figure VIII.18b. The
influence of stress rate increase in this stress control test is the
opposite when campared with the displacement control test of Figure
VIII.1l8a. It is acceptable however that the displacement control test

gives more reliable results, Hight (1981) and De Campos (1984).

The model can predict the two effects according to the paramenters
adopted but for the time being, the material behaviour in this region
it is going to be considered stress rate independent and the
prediction for any stress rate and its laboratory results are campared
in Figure VIII.18c. The stress path predicted can be seen to be quite
reasonable whilst the deformation prediction still need some
improvement. However, considering that the deformation level is too
small and the laboratory results' precision to this level of

deformation is doubtfull, the prediction can be acceptable.

6.2 Elasto-Viscoplastic-Plastic

In this model the viscoplastic strain rate is determined as function
of the two independent variables: The stress level and time . This is
campletely ficticious since it is known that the viscoplastic strain
rate is a function of the stress rate and stress level as presented in
the previous section. The choice of such model for finite element

application ,in the case of this thesis, is merely due to its
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simplicity.

The elasto-viscoplastic model presented previously, however, can also
be used in finite element method but its application is going to be a

subject for future research.

Before presenting the experimental verification of this model for same
restricted circumstances the introduction of the creep law is

necessary.

Creep Law:

The creep law which is going to be presented here is similar to the
one proposed by Singh and Mitchell (1968), Lovenbury (1969), Larsson
(1977) for triaxial test conditions. The difference lies in that the
creep law is decamposed into two camponents, according to the shape of
the plastic potential. As normality is assumed, the creep law is
brcken into two camponents rate ¢’ , ¢ , according to the shape of
the yield surface. Also as the shape of the yield surface depends on
the stress level so will the viscoplastic strain rate components do

too.

Note that the shape of the yield surface (triaxial condition) depend
on the deviatoric stress level and mean stress which make the creep
law dependent not only to the deviatoric stress but to the mean

stress, too.

In addition, it seems reasonable to take explicit time hardening into
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acoount.

The stipulation of the functional expressions &(F) is still envolved
with great uncertainty because most of the available results are from
undrained test with free development of pore-pressure. This means that
the effective stresses were not kept constant and relaxation in mean

stress and creep in deviatoric strain occured simultaneously.

With these short camings in mind an explicit time hardenning law can

be proposed as:

(VIII.4.49) o) = A((ﬁ) ‘
For the functional creep law $(F) two expressions are suggested, a
linear one for the overconsolidated region and a exponential one for
the normally consolidated region, that is:

Fi, F<F,
(VIII.4.50) &(F)= Fi—1+ exp[ac(F%—Fé )] F2F,

These expressions were suggested by laboratory results carried out by
Lovenbury (1969), Larsson (1977), Singh and Mitchell (1968), and are

sane of the many suggested by Perzyna (1966)
1, represent a reference time, often chosen as 69 sec.

The creep parameters A, , m, and o, are determined from tests were

the total effective stress state is kept constant and not only the
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deviator stress.

The time hardenning parameter m, is determined by plotting In|¢”?|

versus Int from testing for $>>1, and an arbritary but
constant value of F. (see Figure VIII.19). The parameters must be
chosen in a way that the initial conditions of no creep strain can be
satisfied for an arbitrary development of stresses, say, in pure creep
with constant stresses. For m. to be arbitrary one must choose
1,>0 , otherwise the restriction m.<1 rmust be imposed. Usually
1, is choosen as 1 sec. for pure creep test.

To campletely define F the reference value f; , as stated previously,
must be choosen. It is convenient to adopt f; equal to 242 , that is
the value for p> which satisfy f? for ¢°=0 . It also seems
reasonable to consider that p?= 24’ is the in situ mean stress, which
means that the in situ stress lie in the quasi-static yield surface
and consequently there is no creep occurance in situ. Further F; is
defined as the value of F for stresses on the initial (dynamic) yield
surface. Such stress state is defined by p=2¢'and ¢=0 . Thus, for

S 1
the triaxial test conditions and isotropic materialF, = 2d' / 2° =%

a?’
Assuming that f? and f' are of the same shape. The value of F, can
be estimated basicly fram two undrained test, one slow to define the
shape of f' and f? and other fast to evaluate the constant F, . See

Figure VIII.2@.

To determine ‘4, and «. the plot of |[¢¥| versus F! should be
considered for a certain time 1=y -y . The value of 4, and «,

are estimated as shown in Figure VIII.21.
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Experimental Verification:

The proposed creep law given by equations (VIII.4.49) and (VIII.4.50)
will now be campared with laboratory test. The triaxial undrained test
carried out by Larsson (1977) will be used. First the samples were
consolidated to the in situ stress and then the deviatoric stress were
increased to a certain level and kept constant. Relaxation in mean
stress and creep for the vertical stress increases to three different
levels in the overconsolidated region as shown in Figure VIII.22 and

VIII.23. for Swedish clay.

Assuming linear elasticity for rapid loading, the stress path is pure
deviatoric without any increase in the effective mean ‘stress. Some
deviation from this assumption was reported at the experiments.
Relaxation in mean stress is demonstrated in Figure VIII.22 where the
effective mean stress moves horizontally to the left along the stress
paths. The vanishing stress rates repoxted will be the locus of the
observed quasi-static yield surface which can be compared with the
theoretical quasi-static yield surface obtained from the creep law

given by equations (VIII.4.49) and (VIII.4.50).

It will be assumed that the quasi-static yield surface is isotropic
and passes through the in situ stress point. Because the model is
canpletely ficticious the shape of the quasi-static and inviscid yield
surface will be considered as an ellipse.Thus, the following soil

constants will be adopted:

[ =30°, K, = 0,84, a= 20.87K pa, p = 40.65K pa, g = 7.14K pa, a' = 28.3K pa,

K, = 2500K pa, G, = 1154K pa, 1, = lsec., t, = 60sec., m_ = 0,7, A, = 1..10°
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Since only elastic and creep deformation occurs in this region, the
stress strain relationship can be simplified to:

. g ; _ g Y I
cq—3—GJ+7(t)F’ n, —3—5"*'}’,,(1’.9.1.), «=x tyOF n =%+hp(p.q.r)

where -

In the undrained test, previously described, after the instantaneous
deformation have occured, the deviatoric creep strain and the
relaxation in mean stress can be evaluated by considering the initial
value problem.

¢, = h(p.c.1) p(0) = p,

p=Khpet) ¢ =0

where c is the initial value of q and p; is the initial value of p.

The result of this equation is plotted on Figure VIII.22 and Figure

VIII.23.

Thus, it can be seen that the theoretical quasi-static surface lies on
the left of the experimental one. This can be explained by the fact

that the rapidly load increase makes the mean stress to increase and
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in the theoretical calculation the éffective initial mean stress has

been considered constant.

In the Figure VIII.23 the theoretical prediction shows that for lower
deviator stress level there is a tendence of the strain to decrease
non-linearly while for higher deviatoric stress level this tendence is

not observed at least for the time interval considered.
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CHAPTER IX

SAMPLE SOLUTIONS

IX.1 Introduction

‘Based on the assumptions discussed in previous chapters a computer
program has been developed with the aim of evaluating stresses,
strains, pore-pressure and displacement in plane strain and complete
axi-symmetric conditions. Static analyses using non-linear geometry
and material were allowed. Material non-linearity refers to the
elasto-plastic, elasto-plastic-viscoplastic skeleton stress-strain
relationship and the non-linear permeability matrix. The linear model
considers isotropy and orthotropy and although the general elasto-
viscoplastic-plastic model proposed includes orthotropy, the program

is restricted to non-linear isotropy.

For the geametric non-linearity only up-dated Lagrange is considered.

Additional facilities such as field construction, dam reservoir
filling and long term seepage through an earth dam are included. For
the field construction the incremental loading schemme suggested by

Clough and Woodward (1966) is used.

The program uses variable 3 to 8 nodes isoparametric elements and the

active column solution techniques developed by Bathe and Wilson
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(1973) . Although the use of the same number of nodes for pore-pressure
and displacement are not supported by the theory, because of the
incampatibility of inter-element boundary conditions, it has not been
noticed to have produced any harm. Furthermore, it has actually
improved the accuracy for pore-pressure calculation. In the column
solution technique the out-of-core stiffness matrix is stored in a

block form, with a minimum of two.

The solution of the system of equations with an indefinite coefficient

matrix is performed by a direct Crout method, Bathe and Wilson (1976).

No input data generation nor plotting output facilities are available.

Next, the sample analysis will be selected with some objectives in
mind. The first aim is to present solutions which demonstrate some of
the analysis capabilities of the present program. Therefore, linear
and geametrically non-linear analysis are presented using the elements

and material models available in the program.

A further objective is to study the accuracy and stability of the
solutions. Therefore, a camparison between the theoretical solution
and the respective responses predicted by other researchers is given.
In this context, the importance of eguilibrium iteration in some

analysis is investigated.

The non-linear solutions have been obtained using the algorithm
presented in chapter VII. For static non-linear consolidation,
undrained analysis and long term settlement the equilibrium iteration
depends on the load-time step. For example, the drained, undrained and

partially drained standard triaxial test for geometric and material
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non-linearity with 44 load-time steps requires one or two equilibrium
iterations to converge to the required tolerance ( tolerance < 0.001).
However, a geametricaly non-linear consolidation test with a very
small time increment (time factor less than ©9.991) requires changing
the general stiffness to achieve the convergence requirement.
Nevertheless, there is little practical interest in consolidation

problems over such a small initial time.

An important problem is the optimization of the load steps in non-
linear anlysis. Although in this work no specific attention has been
given so far to this problem, it should be noted that the order of all
systems considered in this report was small and the computer time used

rather negligible.

IX.2 Static Linear Analysis

IX.2.1 General

A few sample solutions will be chosen to be compared with closed

analytical solutions and other investigators researchers.

First, the one-dimensional case and subsequently the two-dimensional
case is analysed. In the one-dimensional case fixed boundary
conditions are considered first and then variable boundary conditions

are discussed.

The boundary conditions, the material profile, and the material

constants are given separately in each example. For this section
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linear elasticity and isotropy is assumed. As a consequence of the
linear elasticity assumption the stresses and strains in situ are
irrelevant. Also, the coupled theory and the uncoupled theory for cne-
dimensional analysis coincides. In the two-dimensional analysis the

two theories will be shown to be distinct.

The Terzaghi case ard the problem of two-contiguous finite layer with
the same compressibility but with two different constant

permeabilities are analysed.

The two—dimensional plane strain problem with infinite thickness is
considered and campared to the closed analytical solution. One of the
aims here is to show that the finite element solution, by being

coupled, can detect the Mandel Cryer effect.

Finally, an axi-symmetric problem (deformation and flow in three-

directions) with a finite continuous length is considered.

IX.2.2 One—dimensional Tests.

Fixed boundary conditions:

1. Vertical deformation and flow of an axi-symmetric finite length

geametry. (Terzaghi case)

A cylinder of length L cut out from a continuous layer is now
considered. This cylinder is uniformly loaded with the intensity @
given the uniform initial excess pore-pressure p,=3% throughout the

total length L. Free drainage is assumed at the top whilst the bottom
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is considered impervious. Camplete axi-symmetry is considered in the

analysis.

If m, is the campression modulus, the uniform compressive strain and

total settlement are, respectively, given by
€ =73/m, and w =GL[m,

The usual definition of consolidation factor is given by

L
1
U=1—— d
aJ‘p(Z) z
0

which is equivalent, in this one-dimensional case, to U=w/Ww ,
where w is the current settlement. Care must be taken because the
numerical errors in the space discretization may cause the two

expressions not to coincide in the camputation.

The set of graphics presented in Figure IX.la, b represent,
respectively, the pore-pressure generation pf@ versus the depth
ratio z/L and the average pore-pressure dissipation versus the time
factor. The 8 equal element mesh was used in this example, though a 5
variable size element mesh, where the upper elements are thinner,
could be used, and would give the same accuracy in the results (not
presented here). The schematic problem with its boundary conditions is

also included in Figure IX.la and IX.lb.

The percentage of settlement U plotted against the vertical time

factor T, are both given by the equation,
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T = 2 . _k_ EQ-v) _ k

t is the length of time, E 1is the elastic modulus, v is the
Poisson ratio, & is the permeability and 7, is the unit weight of

water.

It can be seen that the finite element results approximate to the
exact solution of this problem very closely. Though time steps
decrease with the tolerance, almost indistinguishable results are

obtained for a tolerance less or equal to @.85 (not presented here).
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2. Two contiguous layers

Two contiguous layers with the same campressibility, the upper being
four times as permeable as the lower one, is now considered. Again
free drainage is assumed at the top while the bottom is considered to

be impervious.

Although no closed solution is known for this case, a few approximated
solutions have been presented up to now. Schmidt (1924) presented a
solution using a graphical procedure; Lusher (1965) proposed a
solution using a camputer analogy and Harr (1967) described a solution
using the finite difference method. The first finite element solution

were presented by Christian (1969).

Figure IX.2 presents the excess pore-pressure P against the
depth ratio z/L , for the different solutions. In this case T, is

defined by

T, = C,t/L?

and C, refer to C, of the drainage side, that is to say,

c =tk E(-y)

Y 21+ N1 - 2)

Thus, it can be seen that there is considerable spread among these
results. Lusher (1965), because of the assumption involved, expected
his results to be too slow. Harr's explicit finite difference
procedure (camputes values at the end of time steps) does not consider

the campressibility of the nearby material at the interface between
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two materials, and it therefore leads to a too fast consolidation. The
correct solution is, therefore, expected to be between the two
previous solutions. Christian's finite element solution, Schmidt's
graphical procedure and the finite element solution achieved in this
report coincide and lie between the two previous extreme solutions,
and are believed to be accurate. However, it should be enphasized that

all solutions to this problem are approximated solutions.
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3. Variable loading conditions.

One-dimensional incremental deposition to simulate the time-dependent
deposition and simultaneous consolidation of a saturated layer of
material is now analysed. A closed analytical solution for the
distribution of pore-pressure is given by Gibson (1958) for both

impervious and permeable bases.

The time factor is defined by mZI/Cv where m is the rate of
deposition (units of length/time). When the time factor T is infinite,
deposition is instantaneous and no consolidation occurs during
deposition. When T is a finite value, it represents a finite rate of
deposition, and consolidation occurs during deposition. To simulate
the rate of deposition showed in Figure IX.3a and IX.3b, elements are
added to the mesh at a certain time interval, as shown schematically
in the right top position of Figure IX.3a and IX.3b, element number 2
is placed on top of element number 1, and element number 3 is placed
on top of element number 2, and element number 4 is placéd on top of

element number 3 at a certain time interval.

In the Figure IX.3a the pore-pressure ratio defined by 3/vL ( pore-
pressure by unit of total weight) is plotted against the weight ratio
defined by z/L for an impermeable base and Figure IX.3b presents the
same plot for the permeable base. It can be seen that the finite
element solution shows good agreement with Gibson's analytical

solution for both flow boundary conditions.
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IX.2.3 Two—-Dimensional Problem.

The only linear two-dimensional problem analysed here is the strip
load on a half-plane where the uniform load & is 'applied over a
width 2a. Free drainage is assumed at the surface and because of the
symmetry only a quarter-plane has to be analysed. Plane strain and
plane flow are assumed. The general method for analytical solution for
Biot's equations for complete isotropy (under the particular
assumptions of this plane strain problem) is presented by McNamee and
Gibson (1968a,b). Schiffman et al (1969) have evaluated numerically
the stresses, pore-pressures and deformations for the uniformly loaded

half-plane.

The choice of the boundary conditions for finite elements when
analysing infinite regions is a difficult task. A few tentative tests
are required until the boundary is sufficiently far away to ensure
that they do not influence the results in the major zone of interest.
The final tentative mesh, the schematic problem and its boundary
conditions, and the pertinent results are presented in the Figure IX.4
and IX.5. Figure IX.4 shows the variation of excess pore-pressure
beneath the centre of the loaded area, for a general T2=ﬂ.1 and

Poisson ratio »=0 . Now T and C, are defined by:

26 k
C,==

T = Ctfd and

where G, is the shear modulus, and the other parameters are as

already defined.

The tolerance chosen was 9.91 and the convergence can be seen to be
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good for g = % . Certainly if the w-method (non-linear interpolation
for the time integration) were used, the same degree of accuracy can
be achieved with less element in the mesh. However, the accuracy is
very good though this extreme situation (Poisson ratio equal to zero)

is unrealistic in practice.

Figure IX.5 gives the variation of excess pore-pressure with time for
two general chosen lines x/a =constant in the half-plane. Again the
accuracy of te finite element program can be seen to be good. The
Mandel-Cryer effect is demonstrated by both the analytical and the

finite element solutions.

IX.2.4 Axi-symmetric Load on Finite Layer.

To show the ability of the proposed program to analyse axi-symmetric
consolidation a circular area with diameter 2a, uniformly loaded with
an intensity & , over an finite thickness layer is now considered.
Camplete axi-symmetry of flow, load and deformation are assumed. Free
drainage is assumed at the surface and an impervious base is
considered at the bottom. The general solution for this problem

(Biot's theory) is given by Gibson et al (1979).

The consolidation process at the center of the loaded area together
with the schematic geametry, boundary conditions, and the final finite

element mesh are given in Figure IX.6. In this figure 5§ represents the

settlement at the point
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for the conditions
H
a

=1, vy=0.

The time factor T, and coefficient on consolidation C,; are given by
C,t
T,= H—g and C,=—=—

It can be seen in this figure that the finite element solution

approximates the theoretical solution very closely.

The value of g for the time integration was 1/2 and the tolerance

2.05.

IX.2.5 Creep Effect

The creep influence will be shown by comparing the finite element

prediction with the laboratory test.

The oedameter test carried out by Buri (1978) on mucking clay is the
one chosen to be campared with the elasto-viscoplastic-plastic model.
The sample considered is a slightly overconsolidated one with OCR=
1.3. The vertical preconsolidation pressure o, =65KN/m2 and actual
vertical stress level is at ¢ = 5@KN/m2. The friction angle assumed
is ¢ = 36° and the elasticity modulus E= 19ﬁKN/m2 and the Poisson
ratio » = 0.3 (corresponding to the Bulk modulus B= 238 KN/m2 and
Kg={o.5). The creep parameters are choosen as f; = lsec., !, = 6@sec.,
a_ = 1x18™>, m, = .75 and the isotropic permeability is given by K=

1.373x16°° cm/seg. .
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The inviscid preconsoldation pressure can be estimated by the relation

with the vertical preconsolidation pressure o, as
L= (1 + 2k;)0, = 43333KN [m’
Pe=3 LA .

As both the inviscid preconsolidation pressure p". and the quasi-
static preconsolidation pressure pf are associated with loading along

the kg-line R pi is calculated by

pl=p!//OCR =33333KN / m

Because the additional load is A ¢.= 10 KN/m2 the parameters associated

with the behaviour in the past yield are not necessary.

The plot in Figure IX.7 shows the laboratory results of the odometer
test and the finite element prediction in this report. The finite
element mesh, geamentric and boundary conditions are also displayed in
this figure. It is demonstrated that the predicted and measured volume
decrease due to creep are in good agreement.It should be emphasized
that in the approach considered here no settlement can occur without
volume change, and consequently without pore water flow. Finite water
flow was observed in the calculation after the 'primary consolidation'

had finished. The tolerance chosen was 0.5 and g =1/2 .

IX.3 Static Non-Linear Analysis.

IX.3.1 General

Very few solutions have been developed for consolidation with the non-
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linearity influence.

For geametric non-linearity same cne-dimensional theories have been
presented by Gibson et al (1967), Smiles and Poulos (1969), Monte and
Krizek (1976) etc ... No multi-dimensional theory including the large
strain effect is known to the author, and also, no material non-
linearity effect has been considered in the analytical solution for
consolidation (at least not to the author's knowledge). Computational
results by finite element are only presented for elastic-perfectly

plastic material (Carter et al (1979)).

Due to such restriction the camparison of the ability of this program

with other solutions is possible only in a few cases.

For testing the geometric non-linearity effect two cases will be
considered: One-dimensional flow and deformation with linear material
and non-linear geometry, and secondly two-dimensional flow and
deformation with elastic- perfectly plastic material and non-linear

geamnetry.

To test the material non-linearity the only alternative is to compare
with local stress-strain relationships obtained from the laboratory
results. Drained , partially drained and undrained standard triaxial

tests on weald clay will be considered.

The drained test is first shown and subsequently a consolidation test
with drainage at both ends for different stress rate is considered. In
this simulation the drained test result is achieved using a slow
stress rate, the undrained test is achieved using a high stress rate

and partial drained test using an intermediate stress rate.
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Finally, to demonstrate the large deformation and creep influence in
two—dimensional problems, the strip loading on an infinite half-plane

has been considered.

IX.3.2 Linear Material Non-Linear Geometry Analysis.

The one-dimensional flow and deformation field of an axi-symmetric
load and geametry problem is now considered. Linear material behaviour
and non-linear geametry are taken into account. Constant permeability
and complete isotropy and null initial stress level are assumed.
Different load/elastic modulus ratios (#/E) are computed. The two
extreme cases d/E -0 and G/E =1 are plotted in Figure IX.8. The
result obtained by Carter et al (1979), the finite element mesh and
the initial geametry and boundary conditions are also displayed in
this figure. The finite element result achieved in this report can be
seen to have a very good agreement with results obtained by Carter et
al (1979), despite the fact that the latter seems to have solved the
problem only by updating the geametry, without iterating in each load-
time step. Obviously many more load steps are necessary to converge to
the right answer. Here only 44 load-steps are needed to converge,

since B =1/2 and tolerance = 9.0l are chosen.

IX.3.3 Elasto-Perfectly Plastic Material and Non-Linear Geometry

The two—-dimensional elasto-perfectly plastic consolidation problem of
a rigid strip loading on a finite layer of soil lying on a smooth

rigid base is now considered.
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Constant permeability and full isotropy is assumed. Flow and
deformation occur in two-dimension and free drainage is considered at
the surface while the base is assumed impermeable. The soil constants
are given as friction angle & =309 Poisson ratio v =0.3 and the
elasticity modulus/cochesion ratio E /c =200. In addition the density
influence is considered negligable, that is #%,4/G,—»0 . A few constant

lcading ratios defined by

7= dd(ﬁ;/‘c) and T = Cvt/L2
were choosen. Figure IX.9 show the finite element analysis obtained in
this report and the one given by Carter et al (1979). The results for
three loading rates are displayed ( 7 =0.143, & =1.43 and § =143 ).
Good agreement between the two finite element analyses are clear and
basically no distinction between the small and large displacement
analyses can be seen. The loading rate of 143 corresponds to the
undrained test, the loading rate of ©.143 correspond to the drained
analysis and the loading rate of 1.43 correponds to a partially

drained analysis.

IX.3.4 Elasto-Plastic Material and Linear Geametry.

To check the accuracy of the stress-strain relationship and the
consolidation of non-linear material, a set of standard triaxial tests
with different constant stress rates are now considered. Deformation,
and flow occurs in three-dimensions and free drainage is considered at

both ends. Constant permeability and camplete isotropy is assumed.
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The soil choosen is weald clay (Bishop and Henkel (1971)) with the

following parameters Gs=3ﬂﬂBKpa, A =0.088, K=0.031, e,=1.8575,

1]
® =239 v =p.4, K=1.3x10"° cm/seg. and the initial effective stresses
0,=0,=0,=p= 207Kpa. The tests were carried out at constant

displacement rates, however, the equivalent approximate stress rates

in Kpa/sec are given as ©.90935, ©.0035, 0.91398, ©.03495, and ©.3495.

Figure IX.19 shows the finite element mesh, the schematic geametry and
boundary conditions and the result obtained by the finite element
analysis in this report and also the experimental results. Good
agreement between the finite element analysis and the experiments is
clearly shown by the figure. Again B =1/2 and toleranceof ©.95 are
assumed.

IX.3.5 Non-Linear Geometry and Creep Influence.

Strip loading on a half-plane where the uniform load has been applied
over a width 2a has been chosen to demonstrate the influence of large
deformation and creep. Free drainage has been assumed at the surface
and because of the symmetry only a quarter plane has to be considered.
The finite element mesh, the schematic problem and its boundary
conditions and pertinent results are presented in Figure IX.1ll. The
dimensionless settlement w/a of the centre point of the strip load is
also shown in the figure as a function of the time factor, for two
ratios of 3/G, and v=0 , Y%=0 . The curves show that the

difference between large deformation and small deformation theories is

more pronounced for larger ?/(;A ratios. For the creep analyses the

parameters a, = m.=1 and A-E- lxl@-5 or Ac= Z.leﬁ_s have been chosen.
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The definition of C, and time factor are shown.

The integration constant g =1/2 and the tolerance level of @.01 were

chosen.
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CHAPTER X

CONCLUDING REMARKS

X.1l General Results

Basically this report contains three main parts. These parts deal with
the achievement of the finite element equations for geometric and
material non-linear consolidation, with the constitutive equations for
the soil skeleton and pore pressure fluid behaviour, and with the

numerical solution of the differential equations, so produced.

Two sets of integral equations representing the geametric and material
non~-linear consolidation are arrived at, one based on the method known
as the total Lagrange method and the other based on that known as the
up—dated Lagrange method. The set of integral equations obtained on
the basis of the up-dated Lagrange method is discretized in space and

time and applied in the finite element program.

The oonstitutive behaviour of the soil is described using two distinct
approaches. One considering the elasto-viscoplastic concept and the
other involving the so called elasto-viscoplastic-plastic concept. The
derived constitutive equation based on the first concept is compared

with triaxial test results and exhibits quite good agreement.

It has been considered advantageous that the proposed model brings
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together all basic known model into a unique equation and in addition
allows a very large flexibility in calibrating almost any experimental
data. The adoption of such a general model is justified by the non-
uniqueness of the yield and plastic potential for soil and
consequently the adoption of an rigid wmified model is not Jjustified

and actually quite pretentious.

Although the elasto-viscoplasic model is more firmly based on physical
concepts, only the elasto-viscoplastic-plastic model is used in finite
element programming. The basic behaviour of the clay during undrained
loading , consolidation and creep seems to be qualitatively well
described by this elasto-viscoplastic-plastic constitutive model. The
camparison with the triaxial test shows that the accuracy of the model

shape is good in both hydrostatic and deviatoric planes.

The discrepancies between test results and the prediction for
undrained creep may almost certainly be due to the linear elasticity
assumption in the overconsolidated region at rapid loading. This is
not in agreement with the experiments which sametimes show a pronouced
non-linearity, depending on the stress rate (or strain rate) of

testing.

Consideration of the effect of major variables influencing the
consolidation problem will be presented separately as a main subject.
This area requires more study because of the lack of full scale
experimental data which make the judgement of the quantitative results
incamplete and inconvenient, in particular, where it concerns the
recording of horizontal displacements. Further difficulties are
encountered when judging the time effect on the constitutive law

because inviscid and viscous effect can hardly be separated in
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observed deformations. In this respect the elasto-vicoplastic approach

seems to be more convienient.

It is demonstrated that, because a purely rate-type constitutive
equation has been adopted for undrained loading, the undrained loading
algorithm and the consolidation process algorithm can be formulated
very similarly. In the former case it is formulated as an initial
value problem in "fictitious time"; and in the latter case it is

formulated as an ordinary initial value problem.

In the solution of the initial problem the adopted load stepping
procedure can be interpreted as an Euler extrapolation scheme. The
time integration scheme is efficient and accux;ate because of the
optimal choice of time step, based on an acceptable range of the local
truncation error. Numerical sample solutions demosntrate that the
accuracy is good and the sensitivity of the process of calculation for

change in tolerance level is small.

The element mesh prepared to analyse initial value problem were
designed to account for steep gradients. Though the computer program
is coded in single precision (IBM 36@/37¢0) no problems due to ill-

conditioning of the system of camputed equations have became apparent.

To conclude, an important practical problem related to consolidation
can be analysed based on the theory supported in this report. The
presented mumerical algorithm is applicable to practical problems such
as: External loading on a footing, acceleration of consolidation by
means of drains, calculation of secondary settlements in urban
environments due to changes in the ground water hydraulics, dam

construction, deformation, consolidation and long term seepage, and
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slope stability.

X.2 Future Development.

In the field of consolidation there is the need for research in three
main related areas: Further development and verification of
constitutive models, experimental test on laboratory-scale and full-

scale conditions and additional development of numerical methods.

The constitutive model used in this report has been experimentally
verified and mmerically tested under rather restricted conditions.
Experimentally the model has been verified for siow rate analyses in
the hydrostatic planes. In fact it has been developed based on tests
carried out by keeping the slow rate stress-path on the hydrostatic
planes. To extend this model to predict for other paths, such as those
which are more likely to happen in the field, is not yet recommended.
It is known, however, that the isotropic version of this model is not
able to predict the deformation cbtained from stress-paths developed
on the =« -plane. This makes one believe that the model is only
strictly applicable to analyse problems which experience the same

restricted stress-path fram which it was obtained.

Although scame results have been achieved the investigation of very

overconsolidated soils still remains to be done.

However, what is more serious is that the fundamental assumption of
critical state theory has to be re-analysed because the Rendulic
principle does not seems to be applicable at all. This can really

cause serious inconvenience for the unification of the constitutive
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model for soils. Perhaps a different approach such as the slipping
theory, or the use of a more flexible model which would allow the
calibration for any specific circumstances, as proposed in this
report, should be adopted. In fact porgramming the general model as
proposed in this report is recamendable and should be considered as

one of the next tasks.

To investigate the anisotropy of the initial and subsequent loading
surfaces it is not sufficient to investigate the behaviour in the
principle stress space. In particular, it is not sufficient to conduct
active and passive triaxial tests on samples which are taken
vertically fram the ground. Tests should be performed on samples taken
vertically, horizontally and any other direction from the ground,
because of the need to relate the direction of the anisotropy with the
direction of the stress rate. No model which does not take the
relation between the direction of action and the direction of

anisotropy into account can be of practical value.

Creep and or rate effect must be studied much further with the
intention of unifying these two effects. In the study of creep law it
will be adequate to fix the effective stresses so that no relaxation
occurs. This means in particular that during creep tests in a triaxial
apparatus the pore-pressure change with time must be compensated so
that the effective stress is held constant. If this procedure is
adopted then there will be no elastic volume change and the observed
amount of water which has drained is the volumetric part of creep

strain.

However, it is the author's opinion that rate control in a partially

drained and/or undrained test would be a preferable approach to
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incorporate the time effect on the constitutive eguations, although
the calculation procedure is more complicated. The effect of both
constant and continuously changing rates of testing should be analysed
for undrained and partially drained tests.These would provide
important reliable information about the influence of rate and change
of rate on the compressibility parameters and preconsolidation

pressure.

A major theoretical attempt should consider the iteraction between
subsoil and a flexible superstructure through a rigid footing or the
iteraction between the subsoil and a flexible raft resting on the
ground should be considered as well. Also it is often necessary to
take into account the three-dimensional effect. Theoretical
development may be of minor practical importance if the computer
calculation becames progressively less expensive. In this context a
more efficient algorithm such as the canbi.rlat':ion of implicit-explicit

schemes could be conveniently adopted.

For the introduction of three-dimensional effect the facilities of

mesh generation and plotting routine ocutput would be indispensable.
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APPENDIX A

A BRIEF SUMMARY OF MATHEMATICS BACKGROUND

~Basic Definitions

This appendix sets down some prerequisites mathematics that will be

useful in subsequent developments of chapter number four and others.

Referring to Figure A.1 we can write the following basic relationship:

iy

a3|X3

Figure A,1
The position vector of a two-phase material element in an initial

configuration (I.C.) and in an actual configuration (A.C.) is

represented as :

(A.1) a® = api, X" =aq,

Where, and henceforth, except for « , the usual summation convention
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is understood over the repeated indices, i.e. a" = afi, + a3, +aji; OF
a'= a}i, + ayi, + a}iy=di, +¥iy+ Ji,The infinitesimal differential vectors at
I.C. and at A.C. are respectively

(A.2) da®" =daji, ,dx"= dxgiy

The squares of the arc length at I.C. and at A.C. are given by

2
(A.3) () = da"da® = daj.dag = b, da5da]
and
X o 2
(A.4) (45) = dr"dx = dxgdxi = b, d3d

where §,, =i, is the Kronecker Delta, which is equal to unity when
the two indices are equal and otherwise zero. These differential
vectors may be interpreted as a infinitesimal distance between two
particles, i.e., da' is the distance between two fluid particles in

the I.C. and dx’ is the distance between two solid particles in the

AIC. .

(-4

The interest , now,is to map the neighbourhood of the particle at a

a

in the I1.C. into a particle x° at A.C. If da* is a spherical

neighbourhood at, 4"

(A.5) dx® = x"a" + da® 1) — x"(d°1)

is the spherical neighbourhood at x°.

By using Taylor's Theorem (Hildelbrand (1976)) one may approximate to
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the first order terms ( since, the magnitude |[dd"| of da° tends to

zero),

(A.5) *%(a® + do1) = XU 1) + g"i'daﬂ
aa

or in a paramentric form

oy | -
(A.6) dxi=>—dd], da
a

Led
- 94

o
= E‘dek

where the linear transformation éi}/da; is called deformation

gradients

Sometimes it is appropriate to make use of so-called alternative
tensor or permutation symbols defined by

( 1 if &«tm are in cyclic order 1.2.3,3.1.2,..

(A7) ey, = @ if any two of «im , are equal

-1 1f «sm are in anticyclic order 3.2.1,1.3.2
.

N oen

provided one of the transformation ax°laa®  or da®[ax® is known, it
might be of interest to find the other. So, by the chain rule of

differentiation, it may be written

(A.8) dxy day, _
dag, dxy ki

This set consists of nine linear equations for the nine
unknown dx;/éa, or dayfdxy . A unigue solution exists according to

Cramer's rule of determinants, provided the jaccbian does not vanish
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and is given by

QD

(3.9) %

axg dx% ox<
I cofactor(—— ! n 9%;

! Y =
J aa;') = 3 Ckmr€ins gaa Gga

~Q

where e, and e, are the permutation symbols defined by (A.7), and

[

ox
a

-~

B Bx ox
(A.10) J =dei(5) = 2 I 0% 0%;

= = CimClnsTe T T
31 kmrinsgae daz dae

Q
3

(See Aris (1962))

By differentiating equation (A.9) and (A.10) two important identities

are obtained
(A.ll) i(]%):g

aJ

da
8{axs/aas )

(A.22) -
-

= cofaclor(g-%g) =J

of which the latter is attributed to Jacobi.

At a later stage, we shall refer to time differentiation many times.
For example, velocity acceleration, rate of deformation, stress rate,
etc. However, at this stage it is appropriate to define what is
understood by material time differentiation of material and spatial
functions and to define time differentiation of basic functions,
vectors and tensors, but firstly, let us set down the generalized
Green-Gauss Theorem for a tensor field r, over the surface S-w of

the body Y-« which states
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(A.13) $ rds, = f %do + J[Tk],,kds

~w
O-w $

where the volume ¥-~o means the volume ¢ of the body excluding the
material points located on the discontinuity surface w . Similarly,
the integral over the surface S-w« excludes the line of intersection

of w with S.

The material time of a vector (or tensor) f is defined by

_
<
|

(A.14)

<,
I

N
Il

where the subscript x indicates the that x is held constant in the

differentiation of f . If f is a function of material coordinates,

g ) df _ . _ o
Jla,t)= fila.1)i, ,then T = o =
If f is a function of spatial coordinates,
o e — : df _ (9 ofy 0x,\. _ of | of ax
f—f(_.\,l)—fk(x.!llk ,then E_(E|‘+TTIW)I“_E+5}E
S0, one can write
A.15 4 -9/ i[ -\ ]fﬁ
( ) d’fk(x,l) mfk(.\,r)-k ax, Silxn |5

which is called the material derivate of j . The first term on the

right is called the local or non-stationary rate, and the second term
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is the convective time rate. This expression is applicable also to

material vectors and tensors. (Aris (1962))

Also, the material derivative obeys the ordinary rules of the partial

differentiation involving sums and products, i.e.

df dg, d(f;g) d dg

Now follows some basic definitions:

Velocity: The velocity vector V is the time rate of change of the
position vector
(A.16) v =VvYa%1) = [x"(a", I)] = vi(a® 1)i,

[x"(a", t)] =

o
2o

If one substitute equation (IV.3.3) into (A.16) one will get

(A.17) V= v“[a"(x".l)./] = vi{x% 1) = Vv{(x"1)i;

Where the functional dependencies were changed, i.e. the velocity can
be regarded as a time.dependent vector field. In fact, the
acceleration and any time-dependent scalar, vector or tensor may be
regarded either as a function ¢(a°.r) of the particle and time or as
a function ¢(x°1) of the place and time, provided that a defined
motion (IV.3.3) is given. The material time rate
of Wa%1) and ¢{x°1) are given by equétion (A.15) where f, is

replaced by ¢, .

Acceleration : The acceleration vector ac is the time rate of change
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of the velocity vector, so,

(A.18) ac = %l; and
. vy .
(A.19) ac®(a®,1) = %[V"(a",t)] = a—," i, = aci(d®1)i, and

(A.20) ac(x" 1) = i[v"(xa, ,)] _ (av‘;.(x".t) 4+ e ﬁa),

or axg ot b

The following are some fundamental lemmas ensuing directly from the

basic definitions above.

The material derivative of the displacement gradient given by equation

(A.5) or (A.6) is found to be

(A.21) g_(a.xz)= d (d_)7)= r'il‘: _0vyox?,

das\ di day — 9xe, day

since in the operation d|dr , af is fixed so that d|d+ and 9;8d]

commute.

The material derivative of the distance between two points in A.C. is

given by
d,, e _ doxg N _ 0 g axt
(A.22) dl(d.\k) = _d—l(gu? da,) = aalsda‘ = F\_? 0—0-;-1’;0'0‘ or
d a0
—(dxy) = 35dx
de % expT

A corollary of this lemma is
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a.23 d (dapy _ _ 9v; da}
( ) di (ax") axs, dxa,

proof: Taking the material differentiation of (A.8)

£(3858)- L3N HL(5E)- o

”m

may be written. From this equation, together with (A.21) one can write

equation(A.23)

The material derivative of the Jacobian is given by

d _d oxgy | _ axg\\d (dxgy _ v,
(A.24) “1—[(]) = E[dm(t_’;“;)] = (a.// (du“));{—j (-35‘;;) = Ja;‘
where (A.12) and (A.21) were used

The material derivative of an infinitesimal volume is given by

i(d“n‘}) = Q—J—d"o =J -—d v
di

(A.25) a1 o,

Time differentiation of a volume integral of a tensor field ¢ .
Consider a material volume ¢ intercepted by a discontinuity surface

w(r) moving with velocity » . The material derivative of the volume

integral of a tensor field y over 9—w is given by

(A.26) — J“Ldl’— j‘{a"‘dlv(xﬁv :|d19+'{. \l/(v—v)

Vv~-u

The volume integral ¢-« means the volume 9 of the body excluding
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the material points located on the discontinuity.

Other function differentiations will be given after definition of

strain and stress tensors.
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APPENDIX B

Geometric transforms _1_Q Deformation - area and volume

In this appendix considerations about the geometric transformation
that takes place when a material point at the I.C. (initial
configuration) moves to its corresponding point in the A.C. (deformed
configuration), is given. The main concern is how an infinitesimal

oriented surface element transforms during the deformation.

Area and Volume Change

An infinitesimal rectangular parallelepiped with edge vectors i,daj ,
iday ,iyddi at o after deformation becomes a rectilinear
parallelepiped at x= with corresponding edge B day.65d a3.3d a5
(see Figure B.l

dsy
& 3 ﬁ;da;'

gda;

iday Biday

Figure B.1

Based on equations (A.5) and (A.6) the vectors dao* and dx™ may be

written as:
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oxy
(B.1) da® =dali,, dx"= 60,,(10,:,‘

h ax9q
o __ _k
where ﬁ, 60'[

Now if the Figure B.1l is considered, where an element of area is built
on the edge vectors i, da] and i,da; which after deformation becomes

the area with the edge vectors gjdd| and g}da; the deformed area is

given by
2 9xg axg oxg
xds3 P)ad ay xﬁ‘d (12 aan da"" x da da 0 = da° (')aneklm m dSJ
where ‘ds” = dajda, .But from (A.9) we have
da4 axy oy s w day ,
./a_\i e"’"'d_af'@ SO that, (/53 =] _;,, dCJ .

where this expression represents the oriented area element ds;  in
relation to its components in the orthogonal reference system in which
unit vector is represented by i, .

Finding similar expressions for “ds and *ds; one can write the Kth

components as
aa%
X g la, a
(B.2) dsg =Jgds]

To evaluate the deformed volume element, we make the scalar product of

d%; with B5da; , is made so:



(Bo3)

B3

a pHa a aaa . 6X:’ . o
d* =d°s5.p5da =J E’Ké'*'(lﬁ‘;"m)das’d%
%9 =138 Smy g0 or

axg dag km

d'9 =J1d%
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APPENDIX C

EXPLICIT STIFFNESS MATRICES

TOTAL LAGRANGIAN FORMULATION

~Incremental Strains

_ 8Au, | 8y'v; dAu, | d'uy dAu, 1] dAx, ddu,
n = 3z, * 3a, Ga, | Ba, da, T2 (aal )+( aa, )

dAu,  8'u; 8Au, , &u, dAu, | 1[ (0Au;\2 (0Auyy;
2= 5o, T 5a, ( 3a, ) +( aa,)

,  da, da, ' Oa, da, 2
_ lgdAu, | 06Au, 1 0'u, 8Au,  d'u, dAu, O'u; 8lu,
Lt 5( da, + da, )+ —(E' da, ' da, da, ' da, da,

2

d'uy 0Au,
da,” da, )

1/08Au, 6Au, , 8Au, dAu,
+ 5 3a, “9a, | oa, " oa )

= PRCLL
(a)) 2

033 = a, a,

—Linear Strain Displacement Transformation Matrix

where €7 = (4611 029 20190 of33)
0 011+ 0€22° “0¢12° 033
(3%) = (An) Aud 8id A And AdS... Auf AuY)
14 - ! !
0B, =080t oBL
and
4 3
3t o, . Of . 3,
Mogogo.Fo
i3 at at o
g |0 EOBOR. 0%
0By = | o, ot 86 ok, ot 3 3, o
s 5313‘_';57’:37’1&;: az'éﬁ
¢ [3 [3 £
gf 0 5“ 0 gf 0 "_if 0)
\
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N
— k
where “I_kaan ’
k=1

d,, 6, initial nodal coordinates

N ~number of nodes

F
at % ok, ¢
"uzif Izn%?f ’nizj Izlaﬁf
¢ 13
g = L5, Iy 1I23¢% L5
0PLy — at ot 13 )3 13 8¢ 3 at
(111 3, T ,) (lu &, T 12253‘,) (1u33§ +1, ,) (lzxa?:z, + 122%1.)
L Iy 2 0 Iy 8 0
at a
Ingﬁ’ 121'8%
3 oky
Iy a, 1223?5;
a¢ 5 at ot
---("uﬁﬁ +1, a,)(lzlﬁ"f + b, a,)
§
133-‘.5I 0
N N
where L, = i,k Ly = ( "Wkya
21 a, Up In = £ w)g,
k=1 k=1
N N o N
Ok ¢ & kit ok 1 &
1” = Z }ﬁ‘“l ) 122 = Z a_az'uf’ ]‘2 = Fa—’;'"l
k=1 k=i k=1

~Non-linear Strain Displacement Transformation Matrix

( A

3 9, a¢ 3
RO0FEO0R 0.0

3 at d¢ 9ty
mOo@OPO.FO
' _ at 9 a £
0By, =|0E0F0P o5k
3 (43 9 9%y
0xO0FoR... 0%

¢ 13 £ 1%
l,—,gogzloglo...-aa‘oj

~And The Second Piola-Kirchoff Stress Matrix and Vector

[
's),'¢;, O 0 O 0%

[} ] a

o'“= o 022‘0 '0 0 o“’ = |07
0 ‘oy,/0,, O 0212

00 'an'an,O 0033

0 0 0 0 '
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-The matrix (E =¥,y is

Q

hl?vhm
W

o'E =

18y
B&h&
N

Qs

~
~
"

~The Matrix D =/T7 /K is

'D = (0”110’(!! + 0721 0K| 071 oKJz+ 0721 oKu)
° ‘oM "oKip F 0M220'K21 6 Mo’ 0220 K22

where
N N ) N s N
k1 - Ex - Ex 08
o = Z a_ bM< Z 372""1 0y = Z da, - x » oM = z aaz'
=1 k=1 k=1 k=1

. . . .
oD 1s not in general symmetric.

The scalar JH is oH =b1,=b1+b,1, where I; are the

component of the unit vector in the gravitational direction relative

to the adopted referencial frame. And,

N N
ot E);
VI H = Z 37*1(1;’;1, + b5 1), z S (by], + b5 1)

k=1 k
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UPDATED LAGRANGE FORMULATION

~Incremental Strain
A 1] /842 (AU, \?
= da, +5[( da, )+( da, )

=2 G (5 |

_ l[aA,u, 4 6A,u2:| ][c’)A,ul 9A,u, + dAu, aA,uz]

2

€127 35 da, da, da, da, da, da,

~Linear Strain Displacement Transformation Matrix
. I/ k
Making € = B du

where ¢'=

! (:‘nv:‘zz'z‘:‘u- 1533)

and . }
13 oas 0 a 0
V | Tt a0
a¢ ot o
,'B 06203-5; ..0;,—5‘1-'
L = |9 g o6 o, Oky 9k
E-Etalm;zgyl ©* 0, b:
S obko. o0

where b, = Z £65 , N ~number of nodes
k=1
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=Non-Linear Strain Displacemnt Transformation Matrix

Q
~
D

sre

H* o o

k1
v
Q
v

~

2
N

I~ o o f
o o

o

K
o

~Cauchy Stress Matrix and Stress Vector

02’ 622 0 0
o = 0 'oy)'e), O g
0 0 'sy /sy, O
0 0 0 0 oy
~The Matrix [E =vgy, is
af, ot, at
e |-
a, A, 3,
' By By Ty
~The Matrix D =7 k s
p = (Kn K)o
D _(KZI Ky) ¢
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where I, are the components of the unit vector in the gravitational

direction relative to the adopted referencial frame. And,

v = [1,.12]
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APPENDIX D

MATRICES OF ELASTIC CONSTANTS

For an orthotropic material and with the geometric axes coinciding

with the anisotropic axes, the [D] matrix has the form:

[ E(1-2) E(y,,u,,+v D E(v,v,, +v.,)
| Efvw,t+r,) Ef1-%) Efv,r,+v,)
[D] = l—yz —',2 —”2 2‘, v. vy E("y;'xy‘*‘” ) (szvxy+y 8( "31)
yz zxVxy 0 0 0
0 0 0
{ 0 0 0
0 0 0
0 0 0
(=22 ..20 ) 0 0
1=vi —v; —vy, —20,.v,.v.)G 0 0
OO = = =, = 0,0, )Gy 0
0 0 (===, =2, )G,

yz f24 xy yz72x"xy.

Because of the symmetry requirement, it follows form [D] that,
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when,
Vox SV = ¥y Vi =¥y,

E,=E =E, E,~E,

Gx=6,,=G, G,=G

xy v

The matrix [D] transform to:

)
E(1=v}) E\v,+}) En(1 +v,)
o] | fh(v(vl++vz)) EEh(E]-:%))EEvf(l +v;),)
D] = 7 v, v v 1-
H+whl-v=20 1 "0 " "To 7 o "
0 0 0
0 0 0
\
\
0 0 ()}
0 0 0
0 0 ()
(1 4+ )1 =v,—22)G, 0 0
0 (1+v)1-»,— Zuf,)Gh 0
0 0 (14w )1 —vv—Zu%)GvJ

To obtain the matrix of elastic constants for an isotropic material

the following conditions must be incorporated into the basic matrix

[D], that is,

l’zx = V)Az = l’x’ =,
G.,=G,=G, =G = E_,
200 + )
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