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ABSTRACT

A  discussion of consolidation of saturated clay is presented. The 

governing differential equations are reached using the concepts of 

continuum mechanics of a mixture, where one phase represents the 

deformable clay skeleton, and the other represents the pore fluid 

Which fills the pores of the skeleton. A  geometrically non-linear- 

system and a elasto-visccplastic-plastic material are accounted for. 

For the gecmetrically non-linearity the up-dated Lagrange method is 

applied. Two independent yield surfaces have been used to describe the 

viscoplastic- plastic constitutive relationship, and an associative 

and/or a non-associative flew rule have been assumed.

Darcy's law for a deformable skeleton and a permeability matrix 

dependent on the void ratio have been taken into account.

An algorithm based on finite element discretization and numerical 

integration in time is adopted for the numerical treatment of the 

transient process. The finite element type chosen is a variable eight 

noded isoparametric one where the same number of nodes for 

displacement and pore water pressure have been adopted. A  semi- 

implicit type method for time integration is used. For each time 

and/or load step a tolerable equilibrium condition is achieved 

iterativelly to take into account the material and geometric non- 

linearities .

A sample of numerical examples have been calculated to show the
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general abilities of the computer program.

Key words - Consolidation, finite elements, plasticity, creep, large 

deformation.



CONTENTS

vi

CHAPTER I - INTRODUCTION

1.1 - Need for More Realistic Analysis.............................. 1

1.2 - Purpose of this Research.......................................2

1.3 - Original Characteristics........................................ 3

1.4 - Summary of the Contents and Scope of this Research............4

CHAPTER II - PHENOMENOLOGICAL CONCEPTS

11.1 - Introduction..................................................  7

11.2 - Consolidation Phenomena........................................ 8

11.3 - Initial Settlement............................................. 9

11.4 - Primary Consolidation........................................  10

11.5 - Secondary Consolidation...................................... 11

11.6 - Terminology...................................................  12

11.7 - Basic Principles: Discussion.................................  13

CHAPTER III - CONSOLIDATION THEORY : BRIEF SURVEY

111.1 - Introduction.................................................  16

111.2 - Basic Characteristics and Applicability.................... 16

111.3 - Non-Oonsistent Theory: Brief Discussion....................  18



111.4 - Self Consistent Theory: Biot's Theory......................  20

111.5 - Gontinumn Theory Approach...................................21

111 . 6 - Solution Methods............................................ 23

CHAPTER IV - CONTINUOUS MECHANICS OF MIXTURE REVIEW

IV. 1 - Introduction................................................  24

IV.2 - Body Motion..................................................  25

IV.3 - Independent Variables......................................... 27

IV.4 - Strain Definitions............................................ 30

TV.5 - Strain Invariants............................................  35

TV . 6 - Ccnpatibility Conditions...................................... 40

IV.7 - Force Distribution, Mass Density, Internal Energy Density... 42

IV . 8 - Global Balance Law............................................ 43

IV.9 - Local Balance Laws............................................ 46

IV. 10 - Definition of Stress........................................ 49

1. Stress Vector.............................................. 49

2. Stress Tensor.............................................  51

CHAPTER V - VARIATIONAL METHOD

V. l - Introduction................................................ 60

V.2 - A Brief Survey of Different Approaches....................... 61

vii



viii

V. 3 - Principle of Virtual Work................................... 65

CHAPTER VI - FIELD EQUATION IN INCREMENTAL FORM

VI. 1 - Introduction...................................................69

VI.2 - Velocity Increment..... .....................................  73

VI.3 - Strain Increment.............................................  74

VI.4 - Stress Increment.............................................  76

VI.5 - Stress-Strain Increment Relationship for the Solid Skeleton. 78

VI . 6 - Stress-Strain Increment Relationship for the Fluid Phase

and Darcy Law................................................. 81

VI.7 - Bernoulli's Theorem - Darcy's Law........................... 83

VI . 8 - Total Lagrange Formulation...................................85

VI.9 - Updated Lagrange.............................................. 88

VI. 10 - Linearization of Equilibrium Equations.....................  90

CHAPTER VII - FINITE ELEMENT SOLUTION

VII. 1 - Introduction............................................... 93

VII.2 - Finite Element Solution.....................................93

VII.3 - Finite Element Matrices...................................... 95

VI1.4 - Numerical Integration........................................ 99

VII.5 - Equilibrium Iteration 101



CHAPTER VIII - CONSTITUTIVE LOCAL STRESS-STRAIN RELATIONSHIPS

VIII. 1 - Preliminaries............................................107

VIII.2 - Brief Description of Soil Properties..................... 108

VIII.2.1 - Soil Properties in the Quasi-Static Region.............Ill

1. Triaxial Test Conditions.............................. Ill

2. Third Stress Invariant.................................. 125

VIII.2.2 - Properties of the Material in the Kinematic Region....  131

1. Speculative Introduction................................131

2. Failure Envelope Line................................... 132

3. Peak Strength, Pore Water Pressure Generation............133

VIII.2.3 - Effect of the Strain Rate on the Stress-Strain Relationship 

Based on the Elasto-Plastic Theory...................... 136

1. First Yielding.......................................... 136

2. Shape of the Yield Locus and Plastic Potential..........136

3. Elastic Constants....................................... 137

VIII.2.4 - Material Behaviour for Rates Smaller than the Quasi-Static 

One....................................................... 138

VIII.3 - Brief Ccmnents on Various Attempts....................... 139

VIII.3.1 - Elasticity- Viscoelasticity..............................140

VIII.3.2 - Hyper and Hypoelasticity-Visco-Hyperelasticity..........142

VIII.3.3 - Hypo-Elasticity.........................................  142

ix



X

VIII.3.4 - Elasto-Plasticity.......................................144

VIII.3.5 - Elasto-Viscoplasticity Endochronic Theory..............155

VIII.3 .6 - Viscoelastic-Plastic and Viscoelastic-Viscoplastic

Models.................................................. 156

VIII.3.7 - Elastic-Viscqplastic-Plastic Model..................... 159

VIII.3 .8 - Elasto-Plastic Kinematics Hardening Model..............161

VIII.3.9 - Elasto-Viscoplastic Kinematic Hardening Model......... 163

VIII. 4 - Explicitly Local Constitutive Stress-Strain Relationship. 164

1. Elasto-Viscoplastic Kinematics.......................... 165

2. Elasto-Viscopastic Kinematics- Vanishing elastic region. 173

3. Elasto-Viscoplastic-Plastic Model........................ 178

4. Constitutive Law in Stiffness Form......................  179

5. Yield and Potential Surfaces Form........................ 181

6 . Practical Application of the Models...................... 201

CHAPTER IX - SAMPLE SOLUTIONS

IX. 1 - Introduction........................................... 234

IX.2 - Static Linear Analysis................................  236

IX.2.1 - General..................................................... 236

IX.2.2 - One-dimensional Test......................................  237



IX. 2.3 - Two-dimensional Problem................................. 248

IX.2.4 - Axi-syrrmetric Load on Finite Layer....................... 251

IX.2.5 - Creep Effect.............................................. 253

IX.3 - Static Non-linear Analysis..................................255

IX.3.1 - General.....................................................255

IX.3.2 - Linear Material Non-linear Geometry Analysis.............257

IX.3.3 - Elasto Perfectly Plastic Material and Non-linear Geometry 257 

IX.3.4 - Elasto-plastic Material and Linear Geometry............... 259

IX. 3.5 - Non-linear Geometry and Creep Influence..................262

CHAPTER X - CONCLUDING REMARKS

X. l - General Results............................................. 265

X.2 - Future Developments........................................... 268

APPENDIX A - A BRIEF SUMMARY CF MATHEMATIC BACKGROUND............... A1

APPENDIX B - GEOMETRIC TRANSFORMS IN DEFORMATION - AREA AND VOLUME. B1

APPENDIX C - EXPLICIT STIFFNESS MATRICES.............................Cl

APPENDIX D - MATRICES OF ELASTIC CONSTANTS.......................... D1

APPENDIX E - REFERENCES.............................................. El

xi



xii

NOTATIONS AND LIST OF SYMBOLS

Both indicial notation and matrix notation have been used in this 

report. Notations from classical continuum mechanics will be used 

unchanged as far as possible.

Tensors are to a great extent treated as dyadics implying that the 

specification of a coordinate system is conveniently avoided. However, 

tensor equations and scalar equations are also given in a component 

form with indices. The sunmation convention is used if not otherwise 

specified in the text. Equations containing physical variables are 

often given in a matrix form, which is convenient for programming 

purposes. Although, notation and symbols are explained as they appear 

in the text for the first time, some explanation will be made in a 

general list of symbols and notations.

The right subscript in the roman characters i, j, k, etc denote 

variation of the index over a range of values 1, 2,and 3. The greek 

index a denote variation over a range of values 1 and 2. The left 

superscript define the configuration of the body to vhich the variable 

is referred to. Ihe left subscript define vhich independent variable 

describe the function.In the case of two left subscript the first 

refers to the independent variable and the second refers to the 

reference frame (deformed and undeformed frame).

Latin Letters:

A -Generalized point, Constant.
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~A -Constant.

a -Identity matrix, Ordinate of the bound or yield surface. 

a, -Vector position. 

a0 -Ordinate of the yield surface.

0s -Ordinate of the surface f5 . 

a, -Interpolation function. 

ac -Acceleration.

B -Danain, Strain displacement matrix. Constant.

ZF -Constant.

b -Third invariant function of Lode angle, Ordinate of the surface

fs.

bt -Vector position, Unit vector in the direction of gravity. 

bp -Elipse semi-axes length.

C -Stiffness matrix, Constant 

C; -Constant.

Cu -Shear strength in compression.

Cue -Shear stregth in extension.

Cp -Peak strength in compression.

C'p -Elasto-plastic flexibility natrix.

~£ -Constant.
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Cfj —Deformation tensor 

cijkl -Stiffness matrix 

jcijkl -Jauman's stiffness matrix. 

c -Lagrange multiplier, Ordinate of the surface f5 .

Cvi -1-D coeficient of consolidation.

Cv3 -3-D coeficient of consolidation.

Cq -The proper numbers.

D -Linear elastic matrix, Transformed permeability matrix, Stiffness 

matrix, Constant.

25" -Constant.

D ep -Elasto-plastic stiffness matrix.

d -Angle between the stress rate direction and the normal to the 

yield surface, Ordinate of the surface f8 .

dct -Determinant.

div -Divergent.

d r -Differential of the vector r .

E -Elastic modulus, Gradient of interpolation function matrix, 

Lagrange multiplier, Constant.

E -Constant.

etJ -Strain tensor.

e -Simplified notation of the strain tensor e.. , Void ratio, Neper



X V

number.

#  -Plastic void ratio. 

ehe2, e3 -Principal strain ccnponents. 

e,j -Deviator strain tensor.

e -Simplified notation of the deviator strain tensor eij . 

eklm -Alternative tensor.

F -Force vector, Constant, Ratio between the quasi-static yield 

surface and the reference quasi-static yield surface.

/ -Force by unit of total volume mixture, Generalized scalar 

function.

f -Compressive (positive) strain in the x direction. 

fs -General yield surface, Plastic potential or bounding surfaces. 

f2R -Reference quasi-static yield surface.

G -Finite element matrix.

Gs -Shear modulus.

g -Generalized scalar function, Plastic potential. 

g. -General shape function on the r -plane. 

gxy -Expansive (negative) strain in the y direction.

H  -Finite element matrix.

H p -Hardening parameter at a point on the yield surface.

-Maximum hardening parameter.



H r -Hardening parameter at a point on the bounding surface.

H  -Scalar function.

h -Hydraulic head, Vector of creep law (function of stresses and 

time).

J -Ccmponent of unit vector constant.

/,, /2, /3 -Strain invariant.

7i,72T 3 -Deviatoric strain invariant.

(/) -Indicate iteration i.

J -Jacobian.

“Stress invariant.

Jm -First stress invariant of the translated stresses.

J 3 -Third deviatoric stress invariant of the translated stress.

J\<JVJ3 -Deviatoric stress invariant. 

j -Approximate determinant of J.

K -Permeability matrix.

Ktj -Permeability matrix.

K l -Finite element matrix.

Knl -Finite element matrix.

K r -Hardening parameter at a point cn the bounding surface.

xvi

k -Constant ratio of the second deviatoric stress invariant to the
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first invariant, hardening parameter. •

L -Finite element matrix, Generalized gecmetric transformation, 1-D 

sairple length.

/ki -Infinitesimal strain tensor, interpolation function. 

m  -Number of finite element, Mass. 

m v -Coefficient of compressibility.

TV -Finite element matrix.

nb -Value of 77 at ordinate b on the surface f8 . 

nc -Value of rj at ordinate c on the surface f8 . 

nk -Ocmponents of unit normal vector. 

n\k> nu « nu -Principal directions.

P -Generalized point, Generalized point on the yield surface.

Pje -Mean stress at failure in ccnpression. 

ps. -Mean stress at failure in extension. 

p.j -Viscous stress tensor. 

p -Pore-Pressure, Mean stress. 

pQ -Initial pore water pressure. 

q -Function of the second invariant of stresses.

R -Vector of boundary conditions. Generalized point at bounding 

surface.

r -General variable, Distance between two points.



Sa -Tangent at ordinate a of surface f8 .

S~a -Tangent at ordinate a of surface f8 for $ “  r/6 .

Sc -Tangent at ordinate c of surface f8 .

3^ -Tangent at ordinate c of surface f8 for 6 —  r/6.

3J -Tangent at ordinate a of surface f8 .

5 -Element area.

T -Generalized transformation symbol, Transformation matrix. 

7 , —1—D time factor.

T3 -3-D time factor. 

t -Time. 

tol -Tolerance 

tr -Trace.

U -Dimensionless pore water pressure.

Uj -Displacement vector, 

v -Velocity, 

w -Settlement.

wk, -Infinitesimal rotation tensor. 

w -Total settlement.

xviii

x -Position vector.
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Greek Letters;

a -Integration constant, Translated tensor. 

a/j -Translated tensor.

a„ -Spherical component of the translated tensor. 

atj -Deviatoric components of the translated tensor.

(3 -Constant, Integration constant, Rate function parameter, Stress 

rate direction.

7/ -Pore fluid unit weight.

A -Increment.

5 -Virtual increment,Transformed distance between a point on the 

yield surface and the conjugate on the bounding surface.

bkl -Kronecker Delta.

8i -Distance between two points in distinct surfaces.

bQ -Maximum distance between two points in distinct surfaces (material 

memory)

t -Strain vector, Internal energy density. 

t -Elastic strain tensor. 

t'p -Visco-plastic strain tensor. 

tv -Volumetric strain component.

-Deviatoric strain component. 

i -Plastic strain tensor.
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ttj -Linear strain tensor, Part of the strain tensor function of linear 

terms of displacement increment.

tj -Ratio of the second deviatoric invariant to the first invariant.

tj(J -Part of the strain tensor function of non-linear terms of 

displacement increment.

9/ -Lode angle of strain.

Oj -Lode angle of stress.

k -Carpressibility constant.

/j -Constants.

A -Creep function (function of time).

A -Stretch of line segment, Ocnpressibility constant, Constant. 

n -Constant. 

v -Poisson ratio

£k -Finite element interpolation function.

?0 -Ratio between two ordinates of the general surface for 0 — x/6 .

I, -Ratio between two ordinates of the general surface f for 

6 =  t/6

| 2 -Ratio between two ordinates of the general surface f8 for 6 =  x/6 . 

x -Constant. 

p -Mass density. 

a -Stress tensor.
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akl -Stress tensor.

<r(fl) -Force per unit of surface of the mixture.

<jm -First stress invariant.

a -Second deviator stress invariant, Second deviator stress invariant 

of the translated stress.

c+ -Second deviator stress invariant for 6 =  t /6 .

-Deviator stress tensor. 

jtk -Traction vector.

rk -Generalized tensor field, Vector function.

$ -Friction angle, Creep function (function of stresses), 

x -Constant.

vj/ -Vector function, Generalized function, F i n i t e  e l e m e n t  

interpolation function.

fi -Ccnplementary energy function.

a; -General surface.

d -Volume.
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Script Letters and Miscellaneous Symbols;

C -Internal energy.

JC -Kinematic energy. 

l/{ -General energy source.

W  -Rate of work for force and couples.

* -Cross product symbol.

• -Scalar product symbol.

or * -Material time derivative. 
dt

V -Gradient operator.

a
-Space differentiation. 

dxk

-Time derivative. 
dt

T -Indicate Transport.

-Angle between the tangent at the general surface fs and the axes 

direction, for 6 = x/6 .

62 -Angle between the tangent at the general surface f and the axes 

direction, for 8 — ir/6 .
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CHAPTER I

INTRODUCTION

1.1 The Need for More Realistic Analysis

In engineering practice the requirement for analysis of the mechanical 
behaviour of clays has always been a challenge for the engineer. After 
Therzaghi's pioneering work (1925,1943) an enormous amount of 
literature has been dedicated to this subject, and a lot has been 
done. Frcm a broad point of view, the modelling technique employed in 
predicting the mechanical behaviour of clays should take into account 
the most flexible boundary conditions (static and dynamic analysis for 
periodic and non-periodic loading conditions), the consolidation 
phenomena, the effect of geometry change, the material non-linearity, 
the time effect on the material properties and multidimensional 
effects.

The need for such an analysis can be appreciated if one considers for 
example the problem of predicting the effect of changing the hydraulic 
equilibrium in an aquifer confined by a clay layer. Such non­
equilibrium conditions may arise from ground water discharge, 
tunnelling in rock or soil beneath the aquifer, or from a change of 
the infiltration characteristics of the surface in urban environments. 
These problems can involve a significant amount of pore-pressure 
decrease beneath the clay vhich yields consolidation until hydraulic
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equilibrium is achieved. Obviously a reliable prediction of the 
resulting non-uniform settlement, vhich may cause serious damage to a 
building standing on the surface, can not be achieved if the major 
mechanical concerns described previously are not taken into account.

Although innumerable analytical consolidation problems has been 
considered for specific circumstances, there has been no evidence of a 
case, which has yet taken into account these major mechanical 
characteristics . In fact most of existing analytical consolidation 
theories in engineering practice assumes an isotropic linear material 
with geanetric linearity, static and fixed boundary conditions and 
one-dimensional straining and pore-water flew. There is an urgent need 
for the development of more appropriate models.

Although much has been achieved in this direction there is still a lot 
which needs to be done, especially in the area concerning the 
modelling of material properties which has not yet been definitely nor 
satisfactorily solved.

1.2 Purpose of this Research

The main aim of this research is to describe the consolidation process 
of saturated clay which embodies all the features mentioned in the 
previous section, except for the cyclic and dynamic loading, and to 
provide a solution procedure for the appropriate governing partial 
differential equations resulting fran the general equation of motion 
for a mixture of two ccntinua.

The model proposed here provides a tool for computation of settlement,
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lateral movement, stresses, pore-pressure and the failure stresses , 
creep, etc... for any static non-periodic loading path-time programme 
with variable geometry in an unified manner. If the failure stresses 
are known the safety factor can be estimated for the specified loading 
path-time progranrne.

Based on the finite element method a relatively flexible computer 
program has been implemented. The computer results should be observed 
with due attention to the reliability of the input data concerning 
whether the material model (based on data obtained in simplified 
laboratory conditions with disregard for some important material 
properties) is representative of the field conditions, the difficulty 
in obtaining true values for the constitutive parameters and initial 
stresses and, also the uncertainty over the laboratory precision.

1.3 Original Characteristics

To the author's knowledge some features concerning consolidation 
analysis are original in this work:

1) Application of total Lagrange and up-dated Lagrange method to 
describe the governing equation of the consolidation problem and the 
use of up-dated Lagrange in the finite element consolidation problem.

2) The preposition of a general elasto-viscoplastic non-associated 
model which can be siirplified to almost any known elasto-viscoplastic 
model and can be calibrated to almost any experimental results. The 
advantage is that, apart frem embodying the usual more rigid models, 
it also allows the engineer to accomodate more soil features, which
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are not possible in other models.

3) The use of an elasto-viscoplastic-plastic constitutive model which 
allows consolidation at large displacement to occur simultaneously.

1.4 Stannary of the Contents and Scope of this Research

In Chapter II, clay characteristics are broadly described together 
with the usual concepts, principles and terminology concerning the 
consolidation problem.

In Chapter III, a very brief description of the main approaches used 
for modelling the consolidation phenomena, with particular emphasis or 
the distinction between non-cons is tent and consistent theories. 
References to the continum mechanics approach are also made.

In Chapter IV a very compact and solid review of the equation of 
motion for a mixture of continua is described where nothing is left 
unjustified. Every single equation being based on previously 
established ones. The Euler and Lagrange methods are both considered 
and when pertinent the various interelations between variables from 
one approach to the other are included. No restriction at all, apart 
from disregarding the acceleration effect, is made to this 
formulation. In this chapter the equation of motion for the mixture is 
obtained in the local reference frame as a function of Euler and 
Lagrange variables and is then converted to a global reference frame.

A brief description of the variational method is considered in Chapter 
V. In this chapter, the principle of virtual work to represent the
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equilibrium equations and an integral form of the continuity equation 
are included.

In Chapter VI the conditions required for frame-indifference 
constitutive equations and permeability matrix are discussed in 
detail. Various constitutive equations and permeability matrices are 
postulated and the geometric transformation to be applied to the 
postulated property to satisfy the frame indifferent principle are 
deduced for the most fundamental stress and strain rate definitions.

The Darcy law for large displacement is also included. Additionally a 
more convenient form of the total Lagrange and up-dated Lagrange 
consolidation theories for finite element application are presented. 
Finally the required transformation of these non-linear theory to an 
approximated linear one is introduced.

The system of approximated linear equations presented in Chapter VI 
are discretized for a finite element solution in Chapter VII. All the 
finite element matrices are presented for the Lagrange and up-dated 
Lagrange methods. Numerical integration in space and time is briefly 
discussed. Also the equilibrium iteration scheme, the calculation 
procedure and convergence conditions are presented.

In Chapter VIII a local stress-strain relationship review is 
presented. Fundamental experimental results proving the 
inapplicability of the Rendulic principle (one of the basic 
assumptions of the critical state theory) are presented. It is 
interesting to note that even for isotropic kaolin it does not seem to 
be applicable.
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In this chapter two distinct constitutive model for the solid skeleton 
are described. One based upon the elastic-viscoplastic kinematic 
approach and the other upon the elasto-viscoplastic-plastic kinematic 
approach. In the first model the shape of yield surface and plastic 
potential can be assumed as functions of the initial conditions and 
the past history of stress and also of the strain or stress rate. 
Also, the hardening parameter can be assumed as an independent 
function of plastic strain and either strain or stress rate. In the 
second model an inviscid behaviour in accounted for within the concept 
of critical state and the viscid behaviour is accounted for by means 
of an appropriate creep law. Although cyclic loading is not discussed 
in this report the effect of this kind of action could be included. 
Consequently liquefaction due to growth in pore-pressure is beyond the 
scope of this report.

The ccnputer program, its construction and versatility is briefly 
described in Chapter IX. A sample solution illustrating the accuracy 
and flexibility of the program is presented. The response to the 
variation of the parameters is studied too.

Concluding renarks and suggestions for future research in the area of 
consolidation with related problems are found in Chapter X.

Four appendices containing information to support the main text are 
included. That is to say, mathematical background, explicit finite 
element matrices, the general elasticity matrix and references to
literature.
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CHAPTER II

PHENOMENOLOGICAL CONCEPTS

II.1 Introduction

From the physical microscopic model point of view, clay is inherently 
a multi-phase system consisting of a mineral phase, known as the 
mineral skeleton , plus fluid phases, denominated pore fluids. The 
clay particles consist of crystalline particles, mainly silicate 
molecules. The mechanical properties of the skeleton are affected by 
aggregates, which are formed from clay particles linked together by 
physico- chemical forces. Oxides or organic molecules may also be 
present, giving special features to the mechanical properties of the 
clays .

Since the solid particles are, in most cases, surrounded by water 
ions, they do not touch each other directly.

The distribution of particles in the aggregates as well as the way in 
which the aggregates attach to each other, form what is called the 
soil structure.

The structure, which greatly depends on the environment of 
sedimentation, reflects the mechanical properties of clays.
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For example, in marine clays the aggregates are large and dense and 
are arranged in such a way that produces large pores. In lacustrine 
clays, however, the aggregates are comparatively small and the 
skeleton is compact giving a smaller porosity.

II.2 Consolidation Phenomena

From the mechanical point of view clay is a deformable porous medium. 
During Geological history, clay, in situ, has always been pre-stressed 
and pre-deformed. This initial state of stresses equilibrates forces 
acting over the soil mass. Such forces are usually gravitational 
forces and percolation forces, created by natural flow conditions.

When a layer of clay is subjected to an additional surface load, a 
field of deformation occurs. If this load is instantaneously applied, 
partly initial and partly time-dependent settlements will occur. The 
concept of instanteneous loading is an idealized assunption, and it is 
only used for the sake of simplicity. Also, when this time dependent 
process is induced by a change in pore-pressure, no such initial 
settlement will occur in saturated clay soil .

Usually, consolidation settlement is defined as the phenomenon caused 
by a time-dependent volume change in the soil skeleton. It is, 
however, convenient to point out here that volume change without 
deviatoric strain does not occur in practice, and the water flow takes 
place, in general, in three directions.

Although in the standard oedometer test the straining and water flow 
takes place vertically only, the stress state changes in a particular
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way in tnaxial conditions, so, it is common to interprete the field 
consolidation settlements for almost any stress-path, from the axial 
displacement obtained oedometer test .

Also the consolidation phenomenon is usually divided into a main part 
called "primary consolidation" which is followed by a secondary part 
named "secondary consolidation". Such classification of consolidation 
is due to the fact that the process as observed in the early days of 
experimentation, an oedometer test results, was considered composted 
by two different physical processes. A different approach will be 
discussed later in this chapter.

II.3 Initial Settlement

The initial settlements are caused by recoverable and irrecoverable 
deformations. If the clay is normally consolidated or slightly 
overconsolidated, irrecoverable deformation will dominate, for active 
loading increment. Obviously, recoverable-irrecoverable deformation 
generally occurs with volume change of the soil skeleton (swelling or 
contraction).

From a physical point of view, clay is often assumed to be initially 
incompressible. The validity of this assumption, however, requires 
that the clay must be saturated and pore water and solid particles 
must be considered incompressible. In practice, the latter assumptions 
are quite reasonable whilst the former is not always valid.

It is clear, then, that if the above assumptions hold, the 
incompressibility condition of the system is in fact a direct
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consequence of the assumption that the deformation takes place under 
the constraints of undrained conditions. This does not imply, however, 
that there will be no local flow of pore water through the clay pores. 
Within the framework of a theoretical continuum model for clay, the 
incompressibility condition can be verified. In this idealized model, 
however, nothing is required to be said about the individual 
compressibilities of the soil particles and the fluid. The difficult 
task involved in including individual compressibilities is encountered 
in the definition of the load sharing among the different phases.

II.4 Primary Consolidation Process

The main feature of the primary consolidation process is the transient 
flow of pore water, followed by a field of deformation of the solid 
skeleton. It is widely accepted that the flow is governed by the water 
pressure gradient introduced by loading. The process is usually 
treated as quasi-dynamic because acceleration effects are considered 
negligible both in the soil skeleton and in the pore water.

For pulsing loads like wave loads in offshore engineering or for 
shock loads from deformations, however, inertia effects must be 
included.

The rate of change of water flow from a unit of bulk volume equals the 
rate of skeleton volume change during deformation. This latter remark 
comes from the continuity matter assumptions in the consolidation 
theory formulation.

The deformation field in a consolidation process continues until a
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state of hydraulic equilibrium is achieved or failure of the clay mass 
occurs due to uncontrolled growth of deformations. For constant 
boundary conditions a stable process have the deformation field 
theoretically the process is asymptotic in time, though, in practice a 
certain finite time is required to finish the process.

It is usually assumed that the hydraulic equilibrium (steady state 
flow or no flow) corresponds to zero volumetric strain rate, which, if 
no creep(or relaxation) is included, the constitutive properties of 
the clay skeleton, is equivalent to zero effective volumetric stress 
rate.

The steady state will occur when the excess pore pressure boundary 
conditions are non-homogeneous, while no flow conditions are present 
when these boundary conditions are homogeneous.

II.5 Secondary Consolidation

Secondary Consolidation is usually thought of as the process which 
follows the primary one. It is characterized by the continuation of 
settlement in the oedometer test after pore pressures have apparently 
dissipated. The physical character of the secondary consolidation 
process has not quite been satisfactorly investigated and, hence, is 
not fully explained. It is believed, however, that the secondary 
process presented by the deformation of clay skeleton are of viscous 
type and a large literature has been dedicated to visco-elastic or 
visco-elasto-plastic creep in soils.

In practice it has been observed that the viscous effect appears in
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all soil but is particularly significant for normally consolidated 
clay. There has been some disagreement about the achivement of rupture 
state by creep (Bishop,1966) . However, it is believed that creep 
rupture may occur under certain conditions (Mitchell, 1976).

II.6 Terminology

The distinction between primary and secondary consolidation is 
traditional in Soil Mechanics. Both processes however, are 
simultaneous during the entire deformation process. One possible 
physical interpretation of this phenomena, is that the volume change 
caused by the flow conditions breaks the local equilibrium of the soil 
structure, which can not find its new local equilibrium configuration 
instantaneously. Acompaning the dissipation of pore pressure and 
volume changes(due to what is known as primary consolidation) 
additional volume and hydraulic gradient changes are introduced due to 
the accomodation of particles on the way to their final local 
equilibrium. These interactive processes occur until no flow occurs. 
As a matter of fact it goes on even after no noticeable flow is 
recorded.

Following the same argument, towards the end of the process when 
hydraulic equilibrium is achieved, the rate of accomodation of 
particles has been reduced to a level where deformation can occur 
without any considerable change in hydraulic gradient, and 
consequently causing no noticeable fluid flow. Flow however must occur 
otherwise the solid particles themselves have to suffer change in 
volume, which is unlikely.
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In this thesis the term consolidation will be use to describe the more 
involved process mentioned above. In other vrords the rate of 
deformation (both volumetric and deviatoric parts) is controlled 
partly by the constitutive law governing the diffusion and partly by 
the rheology of the soil skeleton , where both phenomena interact 
throughout the whole process.

II.7 Basic Principles: Discussion

In an analysis of the consolidation process some principles must be 
adopted before obtaining a final result from the computation. Some 
basic priciples are presented and commented on briefly. They are as 
much as possible in agreement with the physical observation discussed 
above.

The formulation has to be founded in the classical concepts of 
mechanics. The distribution of the various quantities in space and 
time are formulated with the support of the Continunm Mechanics Model.

Although it is well known from the microscopical observations of soil 
that the microstructure to some extent has a random constitution which 
results in discontinuities within the soil mass, a two phase 
continuous medium is assumed.

As mentioned previously, this internal characteristic may to a large 
extent govern the macrophysical behaviour of clay during the entire 
process of deformation. Even yield processes occuring in normally 
consolidated clay may be explained by the propagation of small local 
structure colapse.
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Also the physical characteristics of soil material contained within an 
infinitesimal volume element are considered to be the same as those 
determined experimentally from meassurements on samples with finite 
dimensions.

Secondly, the effective stress principle is assumed. This principle, 
first postulated by Terzaghi (1923), means that the effective stresses 
in the soil skeleton and the pore water pressure are considered as 
partial stresses, which are assumed to act in the entire bulk volume. 
In addition, skeleton deformations are only due to the effective 
stresses. Because pore water viscocity is neglected in the equations 
of motion, (although not neglected in the’ flow relations) the pore 
water stress is considered to be isotropic, i.e.independent of the 
flow velocity gradients.

A third feature concerns the loading procedure. For explicit 
formulation of governing equations it is considered that the load (at 
least for most theories) is instantaneously applied. The accuracy of 
such an idealization should be judged in conjuction with permeability 
and compressibility properties of the soil skeleton. In fact, 
consolidation and creep occurs even during the construction stage, 
which means that in cases where the permeability is not small and the 
viscosity is not very large, the time dependent processes during 
loading can not be neglected.

A fourth feature concerns the geometry change during the consolidation 
process. Again for explicit formulations the governing equation of 
consolidations is assumed to retain its initial geometric 
configuration during the whole process of deformation. This
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idealization may be applied in cases when the soil compressibilility 
is relatively small but when very compressible material, (as is 
usually true of normally consolidated clay) is analysed, such 
assumptions may provide extremely crude results.

A fifth feature concerns the proper choice of constitutive models. The 
main constitutive characteristic of the clay skeleton is that it can 
accomodate recoverable and irrecoverable deformations. Ihe actual 
classification of these deformations into elastic, plastic or viscous 
remains yet to be achieved.

It is indeed recommendable to think of the constitutive characteristic 
of a constitutive model as being reflected by recoverable and 
irrecoverable deformations, whose actual value depends on the strain 
rate of deformation. Depending on prior anisotropic stresses in the 
soil mass, material anisotropy will be induced (which effects the 
constitutive relations). Even loading-unloading stress-paths on 
initially isotropic material still produces remarkable effects on the 
constitutive law (the Hysteresis effect)•

According to the observations pointed out previously one wsuld be 
discouraged from searching for a simple model to represent the 
constitutive model for soil.
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CHAPTER III

CONSOLIDATION THEORY : BRIEF SURVEY

III.l Introduction

No attempt has been made to go into details of the entire development 
of the consolidation theories, but entire books have been dedicated to 
the matter (Zaretskii, 1967).

The intention here is to emphasize the mam points of the constitution 
of multi-dimensional self-consistent models.

Although the well known non self-consistent one dimensional theories 
have played a great role in pratical calculations since the birth of 
soil mechanics, only brief comments will be made on them.

The term non self-consistent is applied in this thesis to those 
theories where total equilibrium and strain compatibility are not 
satisfied.

III.2 Basics Characteristics and Applicability

A number of theories for the theoretical treatment of the 
consolidation of soil have been presented in the literature. Many of
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these theories, however, are restricted to conditions which are 

characterized by the explicit solution technique to be employed. Many 

of the older theories are characterized by properties which seriously 

affect their applicability.

In particular it is frequently assumed that the strain and flow 

conditions are uni-dimensional. Only under certain rather idealized 

circumstances do calculations based on these hypotheses give accurate 

results.

It is implicity assumed in the one dimensional theories that 

differential settlement within the soil mass can not occur.

Most engineering loading produce differential settlement which is at 

variance with the uni-dimensional theories.

Most consolidation models, whatever the soil skeleton constitution, do 

not satisfy the basic requirement of equilibrium and continuity 

conditions , i.e., they provide the calculation of pore-pressure but

not the effective stresses. The convenient consolidation equation is 

obtained from the continuity equation under the assumption of certain 

strain and flow conditions. Such models are said to be non self- 

consistent.

The imposed strain conditions do not coincide with those corresponding 

to the effective stress field assumed in most of engineering practice, 

especially in the inelastic range where the disagreement may be 

substantial.

Also in most practical circumstances, for example when pore pressure
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redistribution takes place, the assumption of constant total stress 

imposed by most non-consistent theories may seriously affect the 

effective and pore-pressure calculations and consequently the strain 

distribution.

The stress distribution is often obtained by evaluating the total 

stress directly. Particularly in the plain strain situation it is 

common to assune an infinite half-plane loaded with a surface load 

while the clay is assumed to be an elastic isotropic solid. Even 

rougher stress estimates are frequently used. Such estimates are 

obtained under the assumption that the vertical stress beneath the 

centre of a uniform load decreases hyperbolically with the depth 

underneath the load surface. A slightly improved formula was proposed 

by Frohlick (1933), who also provided the estimation of stresses off 

the centre line of a circular load.

It seems that not many comparisons between the pratical application 

and the self-consistent theory has been made. A problem for which noDr- 

consistent theory seems to give acceptable results is consolidation by 

means of vertical drains, particularly when the water flow will be 

radially towards a cylindrical d r a m  resulting in a one dimensional 

flow equation in radial coordinates, and the strain is assumed to be 

uniform and vertical only.

III.3 Non-Consistent Theory Brief Discussion

The most well known one-dimensional theory is that by Terzaghi (1943). 

In this theory excess pore pressure is evaluated by a parabolic 

differential equation of the heat conduction type. Within the same
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basic assumptions , the generalization of this theory was first 

suggested by Rendulic (1936) and it is known as Biot's pseudo-theory 

(see Schiffman et al (1964))

Few versions of the Therzaghi-Rendulic theory has been presented for 

particular problems. A two dimensional variation is used in ground 

water hydrology for the analysis of aquifers. The variation of the 

hydraulic head is assumed to be horizontal and strain is assumed to be 

vertical .

Although distortion can occur in the Therzaghi theory the change in 

effective stress is assumed to be zero initially. Obviously, this 

assumption is very crude from the engineering practice point of view, 

apart from seeming inconsistent. A slight modification was introduced 

by Skempton and Bjerrum (1957), who assumed that the initial pore 

pressure is not equal to the total vertical stress. In this way they 

provided a tentative attempt to avoid the assumption of zero lateral 

strain imposed in the one-dimensional theory. In such a case non-zero 

initial settlement is obtained.

Rheological effects in one dimensional problems were introduced by 

Taylor and Merchant(1940), Tan (1957), see also McNabb (1960) and 

Gibson et al (1961). In Taylor's theory, for example, the soil 

skeleton is assumed to behave as a Kelvin body, while in Tan's theory 

a Maxwell type solid is considered.

In these theories primary and secondary consolidation are assumed to 

occur simultaneously. However, they have been restricted to linear

models.
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Consolidation theories where non-linear rheological effects are 

considered were introduced by Schiffman (1959), Murayama and Shibata 

(1958) and Abdel -Hady and Hervm (1966). Schiffman (1959) proposed a 

linear elastic and constant viscous effect. In the Murayama and 

Schibata (1958) and Abdel- Hady and Hervin (1966) both viscous and 

elastic effects are considered to be non-linear. A discussion of 

Murayama and Shibata's model can be found in the Rheology of Soil 

Mechanics (1964). Many other models were introduced , each combining 

different arrangements of springs, dashpots, and friction bodies.

III.4 Self Consistent Theory Biot's Theory

The self consistent theories are those where equilibrium and 

compatibility conditions are fully satisfied. This is the case for 

Biot's theory. In the first formulation Biot (1941a and 1941b) a 

linear isotropic soil skeleton and linear permeability were assumed. 

The resulting theory was completely linear and uncoupled. Later 

refinements were presented in a series of papers by Biot 

(1941b,1955,1956). The displacement of the soil skeleton and pore- 

pressure became coupled to the governing differential equations. The 

principle of effective stress was also introduced. Further, a fluid 

strain parameter was considered, but unfortunately this is not 

convincingly supported from the continimn mechanics point of view.

There is no need to go into further details about Biot's theory here. 

A comprehensive study is due to Sandhu (1968),and a comparison of the 

self- consistent and pseudo theory was presented by Schiffman et al 

(1964). Verruijt (1968) introduced an additional derivation of the 

governing equations of consolidation to include partly saturated
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soils.

III.5 Continunn Theory Approach

In spite of the consistency of Biot's theory and its degree of 

generality it still contains some inconveniences.

A part from the restrictions discussed before, the finite deformation 

is not included in the equilibrium equation.

Many conceptual difficulties are encountered in expand this theory to 

consider non-saturated mass, finite deformations, water viscosity 

effects m  the equation of motion, etc.... These conceptual 

difficulties can be reduced if a theory of a mixture of many media is 

used. A comprehensive discussion of mixture theory for a many phase 

material was presented by Bowen (1976), where two approaches are 

discussed. The first of these approaches was introduced by Green and 

Atkins(1964) in the discussion of diffusion of a fluid through an 

elastic porous solid. In this approach the continuity equation 

(conservation of mass) and the linear momentum equation for the 

mixture were proposed as postulates.

The second, somewhat different approach was given by Green and Naghdi 

(1965), m  which the basic equations were derived from an energy 

balance equation for the mixture. It is necessary to.postulate such an 

equation if one wants to take thermodynamic effects into account. Also 

in this case an entropy production inequality has to be postulated, as 

used by Green and Naghdi in their previous paper. If the thermodynamic 

effect is neglected, the two approachs come to the same result. By
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making use of the same approach, Green and Steel (1966) treated the 

special case of Newtonian fluid flow through an elastic porous medium, 

while Crochet and Naghdi (1966) extended the analysis to a non- 

Newtonian fluid.

For a discussion of this later paper see Sandhu (1968) who first 

applied the mixture theory to clay.

An important point which comes from these approaches is the 

proposition of a generalized Darcy Law for a compressible solid 

skeleton. A different approach, however, can be used to arrive at a 

generalized Darcy Law. Some authors introduced a diffusive dynamic 

force conjugated with the diffusion velocity. Others such as Tabaddor 

and Little (1971) arrived at the generalized Darcy Law by rewriting 

the equation of motion under the constraint of the fluid being 

incompressible and assuming that the so called intrinsic permeability 

is small.

With appropriate assumptions in the mixture theory it converts to 

Biot's theory. However, the whole transformation process is 

interpreted as transient, or quasi-dynamic, i.e. the equilibrium 

equations are obtained from the equation of motion. Also, the 

principle of effective stress is automatically satisfied.

In this thesis, however, the Biot theory can not be used, because it 

is only valid for the linear case. In the next chapter the mixture 

theory will be used to obtain the equation of motion for the soil 

mass. The Darcy Law is then obtained by postulating the mass 

continuity for all parts of the body and independently for each phase.
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III.6 Solution Methods

A great nunber of solutions for one dimensional consolidation problems 

have been provided, by both analytical and numerical methods. The 

choice between one method and the other strongly depend on the 

characteristics and complexity of the problem.

General methods of analytical solution have been developed in terms of 

stress and displacement functions (Biot 1956b). A stress function 

formulation was used by Josseling de Jong (1957) to treat axi- 

symmetric boundaries, while Macnamee and Gibson (1960a) developed a 

solution for plane strain and axi- symmetric problems by means of 

displacement function formulations.

There is a great number of closed form solutions for the consolidation 

problem, and discussion of these is out of the scope of this 

thesis (for detailed discussion see Zaretskn, 1967)). Numerical 

methods have been used almost exclusively in solving multi-dimensional 

problems, and the finite element method is frequently adopted to 

discretize the space domain while finite difference is assumed when 

the time domain is discretized.

A brief discussion of the analysis of consolidation using the finite 

element method is given in text books such as Desai and Abel (1972) 

and Zienkiewicz (1977). In the following chapters of this thesis all 

developments concerning the techniques of solving the consolidation 

problem by finite element are fully discussed.
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CHAPTER IV

CONTINUOUS MECHANICS OF MIXTURE REVIEW

IV. 1. Introduction

The purpose of this chapter is to formulate a consistent System of 

Equilibrium and Continuity Equations to act as a model for the non­

linear consolidation problem. TVo systems of equations are presented, 

one as a function of the Euler variable and the other as a function of 

the Lagrange variable. In subsequent chapters, however, the Lagrange 

approach prove to be more convenient for the application purpose in 

question.

The compact notation utilized made it possible to present the major 

features of the entire formulation in a relatively short chapter.

The mathematical descriptions were built up, step by step, from the 

basic concepts of Continuous Mechanics, all subsequent passes always 

being based on previously established ones. Firstly the Lagrange 

strain tensor is defined as a fanction of the Green deformation tensor 

and the Euler strain tensor as a function of the Cauchy deformation 

tensor. From these definitions the various interelations are deduced. 

In the same section relations between the strain vector and 

deformation vector are presented in a general form. Also the most 

general expressions for the Lagrange and Euler tensor as functions of
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the infinitesimal strain tensor are deduced. The definition of strain 

invariants is introduced either as a function of the deviatoric strain 

tensor or as a function of the natural strain tensor.

Next the Global and Local Balance Laws, and their restrictions are 

presented. Under the assumption of the validity of these laws, one 

continuity equation as function of the Euler variables and one as 

function of the Lagrange variables are deduced.

By using the equation of balance of momentum the local stress vector 

and tensor are defined. Applying the balance of linear momentum law 

locally the first law of Cauchy Law (equation of motion of deformable 

body) is obtained, associated with its jump conditions.

To transform these equations to a fix reference frame the definition 

of the Piola-Kirchhoff pseudo stresses (either defined by unit of 

underformed area or by unit of deformed area) are introduced as 

functions of the Euler stress tensor. Thus the equation of motion in a 

reference frame can then be stablished.

Finnaly, the stress invariants either as function of deviatoric stress 

tensor or as function of the natural stress tensor are given.

IV.2 Body Motion

The mathematical description of motion requires, necessarily, the 

utilization of a convenient frame of reference.

In most physical problems, particularly in soil mechanics, it is
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sufficient to adopt a fixed system of reference attached to the earth 

motion.

Imagine a physical body with different phases(especially with two 

phases), in continuous motion, in such way that it experiences 

different positions and time in order to satisfy the requirements of 

equilibrium. Let any of these states be defined as a body 

configuration.

in Figure IV.2.1 a body in three different equilibrium configurations 

is presented. The first configuration is any previously known 

configuration or the initial configuration (I.C.) defined by a domain 

°B , bounded by a surface *w and occupying a volume V  . Any area 

element related to this configuration is written as "s . The second is 

an actual configuration (A.C.) of the body which is defined by a 

donain XB , bounded by the surface xu and occupies a volume xti and 

any area element referred to this configuration is represented by xs 

. The previously known or initial configuration may be referred to as 

the configuration at time t=0 whereas the actual configuration is that 

at time t .

The third configuration is any one after the second configuration. So, 

when configurations one and two are referred to only, the position 

vector will be represented by and x° respectively and when we 

refer to configurations 1,2 and 3 the position vector will be 

represented by of , bf and respectively.
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IV.3 Independent Variables

From an initial configuration, a body, under the action of external 

loads, finds itself in dynamic equilibrium (or particularly quasi­

static equilibrium) in an actual configuration. A description of this 

motion may be expressed in two ways: in a parametric form (refer to 

Figure IV. 2.1)

(IV.3.1) x° = x°(a°,a\,aal% l) or

or,
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(IV. 3.3) or

or, in a vector form

(IV.3.3) a“=<>v.o'

where a = \orl represents the material phases 1 and 2 respectively. In 

this thesis the material phase 1 is the same as the linear fluid phase 

of the body and the material phase 2 is the same as the non-linear 

solid phase of the body.

The equation (IV.3.1) means that any position point Qa at initial 

configuration is found in a spatial position x* in an actual 

configuration . Inversely the equation (IV.3.3) states that the 

material point at time t occupying the spatial position xa may be 

traced back to its original position aa

The transformation of equation (IV.3.1) into (IV.3.3) and conversely, 

is unequivocally determined if they are continuous, possess continuous 

first order partial derivatives and the Jacobian J , defined by

does not vanish in the neighbourhood of . Inversely, the same may

be stated for

In fact, the functions stated by equations (IV.3.1) and (IV.3.3) are 

considered to be continuous and differentiable to any order as 

required.



29

This hypothesis is known under the name of the "Axiom of Continuity", 

expressing the indestructibility of matter. No domain, which 

corresponds to a finite positive volume, can be deformed into a domain 

of zero or infinite volume. Motion represented by equations (IV.3.1) 

and (IV.3.3) therefore, transform any domain into another domain, any 

surface into another surface and any curve into another curve.

In practice, there are examples in which this axiom is violated. For 

example, the material may fracture or transmit shock waves or other 

kinds of discontinuities. Special attention must be given to these 

cases.

Referring to the Figure (IV.2.1) the representation of the position 

vector in the second configuration can be replaced by b and x can be 

used as the position vector for the third configuration, as explained 

before.

Therefore let 7, be tdie transformation from o® to i* , and 72 be 

the transformation from to xf , which can be written 

symbolically as b° = 7,0® and x° = T2b° , respectively. Also the 

product t2 7, means the transformation from configuration a* to jc“

, that is, x* = 727,fl“ . This product will be proper if the Jacobian, 

defined by det{dx^doj) , is not infinite or zero. However, by the 

chain rule of differentiation

day db% daj

may be written, so that by the property of product of determinants,

)
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(IV.3.4)

Since neither Jt nor J2 vanishes or is infinite their product is 

neither zero nor infinite and the transformation T27, is proper.

Also, when the position vector x° is very close to A" the 

determinant of 3x“/db̂  may approximate to the first order terms as

To show this, take = b* + w“ and evaluate dx*jdb* and then evaluate 

the determinant where the second order terms in are neglected.

IV.4 Strain Definitions

In the following chapters any quantity, scalar, vector, or tensor 

refered to a configuration "a" will be denoted by a left superscript. 

For example, if "r" refers to a configuration "a" it will be written 

ar . Also, when relevant, the independent variable of any quantity 

will be defined by a left subscript. The left subscript "a” means that 

the current quantity defined is a function of the Lagrange variable 

and the left subscript "x" means that the current quantity is a 

function of the Euler variable.

For example a quantity *e is defined at configuration "x" and 

depends on the Lagrange variable.

(IV.3.5)

In this text the particular concern is studying the strain state
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variation when passing from the neighbourhood of point a* defined by 

the vector daa in °B to a corresponding neighbourhood x defined by 

the vector dxa in XB when finite deformation occurs. The 

transformation of such a vector daa into dxa is shown schematically in 

Figure IV.4.1.

Making use of equations (A.4) and (A.6) it is possible to express the 

square of the arc length in aB as a function of the variables in 

XB as :

(IV.4.1) / . a a\2 _ i &a k , a , a
r ) dx°dXid J

conversely

(IV.4.2) r ) Ûda°da<*d id i

where

(IV.4.3)
„ da? d a f

tCij =  f a j ’
or _  t dJ ±  dJ ±

ac U u  d a f  d a j

are, respectively, Cauchy's deformation tensor and Green's deformation
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tensor

Note also that Cauchy's deformation tensor is a function of Euler's 

variable, whilst Green's deformation tensor is a function of Lagrange 

variable.

Lagrangian and Eulerian strain tensors are defined, respectively, by

(IV.4.4) jfu = i U ,  -4„) A,  = {(hi~xcki)

It is useful sometimes to have a relationship between Cauchy's 

deformation tensor and Green's deformation^®, tensor, which is 

nearly the same as the relationship between Lagrangian's and 

Eulerian's strain tensors.

By making use of equations (IV.4.2), (A.3) and (IV.4.4); and similarly 

for equations (IV.4.1), (A.4) and (IV.4.4)

(IV.4.5) (<*vf ^eek l^  ak^ al 2xekl dxldx a
l

may be written. From this and (A.6)

(IV.4.6) a = a dx°k Bx°i
° ' j  * kt daf d a j ’ xe k l

These equations also ensure that both ae° 

absolute tensors.

a ,j  dx°k dxf

and x c k l are second-order

The strain tensors may also be expressed in terms of the displacement 

vector u® which extends from a material point in the I.C. to its 

spatial location at time t in the A.C., as shown schematically in
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Figure (IV.4.1). From this Figure one may write:

(IV.4.7) u = x — a or a a U. = XL -

Ihe displacemnt vector may be expressed in terms of its Lagrangian and 
Eulerian components uk{aal t t) and

By differentiating (IV.4.7) one may get:

(IV.4.8) dxttk (bkl +
/ = ft*

Bu^.
Bx̂ Jdx

a
k

By taking dx^Jdaf and da°ldxak from the above equation and
substituting in (IV.4.4) one gets

(IV.4.9)
j cki x̂eki bkl Bxf

Bu? Bu% Bu°i | m tt\
dx°k Bx% Bxf

Buak Buf Bu°m Bu“__ ^ ___ «* > K i i j fn m
Bcki -  °ki + zae*/ “ */ Baf

which are the strain tensors Euler and Lagrange,respectively,in terms 
of the the linear and non-linear components of the displacement 
gradients.

The Lagrange strain tensor aekl will be used a great deal in future 
chapters and its explicity expression can be found in the Appendix C.

The strain tensors, as well as the deformations tensors, are symmetric 
tensors, i.e.

a r k ! I k ' .e,, = .ejrc / k ' Ci, = Srkl I k ' c k l  - CI k
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if arranged in a matrix form as:

r
e eXX *y XI

e. e . e  .yx yy yi
e . e eIX *y a

which is a matrix symmetrical with respect to its main diagonal. The 
strain components e xx. eyy, e zx displayed in the main diagonal are 
called normal strains,while the others are called shear strains. This 
symmetry is exploited a great deal to save an enormous amount of 
computer memory when programming deformable bodies.

Also often employed in linear theories of continua, are the
infinitesimal strain tensors J akl , /«X1 kl and infinitesimal
rotation tensors aWk! • xW°kl defined by

(IV.4.10) 1° =  ~( «'*' 2\
du i d u f \  
k daf daf ) J ‘u “

duf +
dxf

d u f \
d x f )

A ,  - r ( t o f  _V daf daf )• A i  -  j(
duf

.dxf
d t f \
dx%)

also called symmetric part and anti-symmetric part of the 
infinitesimal strain tensor.

From (IV.4.10) it may be written

(IV.4.11)
d a f  a' kI ' a r  k l '

=  /“ +
Qx a x ' k l ^ x * k l

and substituting into equation (IV.4.9)

xCkl =  1 ~  2xekl =  kl “*■ (j mk'l' xw mk ) U  ml ^  xW m l )

(IV.4.12)

A, = h, + vi/ = h, + v i,  + uik +x* )u:„ + X/)
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is obtained, and from which,in various physical situations, 
approximate expressions are obtained by dropping various combinations 
of products.

IV.5 Strain Invariants

It is of interest to determine, at a given point in the material body, 
the directions for which the stretch takes extreme values. Bearing in 
mind Figure (B.l) and defining an*k and xnak as the unit vectors along 
da* and dx* , respectively,

(IV.5.1) a = da°k _  daak = dx°k =  dx^ 
\daa\ d«r»’ k \dx°\ d xr°

where d ar° and d xr° , whose squares are defined by equations 
(IV.4.1) and (IV.4.2), respectively, are the length of daa and 
dxa . The stretch 'V = '"X* is the ratio of d xrajd ar* . When it is 
considered as a function of V* , ‘n\ * is written , and when it is 
considered as a function of xn* , ’n\ * is written.

So, (IV.5.2) "X° = d xi°
d ar«

_ (  a a a a a V  _ d xtA _ , // a x a x
= nk nl) ’ A - -J7Z - n* n‘)

From (IV.5.2) it is clear that the normal components of ac and 
xc* in the direction of V* and xn* are, respectively, the square 
and the inverse square of stretches in these directions.

Now to obtain the direction for which the stretch takes extreme values 
the above equation must be differentiated in relation to °n*m t 

where °n*m is subject to the condition
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Using Lagrange*s method of multipliers and introducing the inverse of 
(IV.4.4) it may be deduced that

(IV.5.4) 0

,(IV.5.3) “ 1

where

(IV. 5.5) 2E° =  ca - \

and ° is the unknown Lagrange multiplier.

Now solving (IV.5.4) for an° . A nontrivial solution of this 
equation exists if the coefficient determinant vanishes, i.e.

(IV.5.6) t̂̂ aekl ae<t̂kl)
e® -  e®rii a

a yx

tTxy

o y y  a
e®9 XI
e®a y z

a zy

0

Upon expanding this determinant, a cubic equation is obtained, known 
as the characteristic equation of the strain tensor:

(IV.5.7) e3 — /, e~ +  J2 e — /3 =  0

where 0e* has been changed to e for simplicity.
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The quantities 7, ,72, /3 are known as the principal invariants of the 
strain tensor. These quantities remain invariant upon the
transformation of coordinates • A second-order tensor ae*kl in «3 
possesses only three independent invariants, that is, all other 
invariants of A , can be shown to be functions of the above three 
invariants.

The charateristic equation (IV.5.7) possesses three rootsae°(£ = 1,2,3) 
called principal strains. The coefficients 7, , 72 , 73 of the 
characteristic equation are the sums of the products of these roots 
taken one, two and three at a time, i.e.

(IV.5.8)
ea = ea -f 

ae kk aexx ^ A A

yy e e +i zz a xx e e —i xx a^yy a yz - _ a xy 73 =  det ac k l

The three linear equations (IV.5.4) determine a direction anak 

corresponding to each principal strain 1,2,3) • If the principal
strain is real and distinct , then the directions and an\k

are real and uniquely determined. By using equation (IV.5.4) and the 
symmetric property of the strain tensor, it may be proved that all 
principal strains are real.

Also the principal directions corresponding to two distinct principal 
strains may be proved to be orthogonal and, furthermore, it is always 
possible to find at a point aa at least three mutually orthogonal 
directions for which the stretch takes the stationary values. However, 
the state of strain takes a particularly simple form when the 
reference frame is selected to coincide with the principal directions. 
In this case °nalk - 0 whenever l * k  . It may be written 
°nlk = blk and from (IV.5.4) it follows that
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(IV.5.9) = JLbrnrmk

where underscored indices are sumned. That is, in matrix notation 
(IV.5.9) leads to

(IV.5.10)
r *v

e »
e yz

e zy eJ

r A
e, 0 00 e, 00 6

Where the superscript indices have been dropped, for simplicity.

Hence, the determination of principal directions and principal strains 
of a tensor aeakl is equivalent to finding a rectangular frame of 
reference in which the matrix \\aeak,\\ takes the diagonal form, i.e.
the principal strains are the normal components of the strain tensor, 
and the shear components of the strain tensor in the principal frame 
of reference vanish.

The usual procedure to solve the characteristic equation is by 
changing the dependent variable etJ by

where the subscript has been dropped for simplicity.

Substituting the previous equation into equation (IV.5.7) one may 
have:

(IV.5.11) e3 - T2e - 73 = 0
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where the principal deviatoric strain invariants are:

(IV. 5.12)
r2- 3/J-/J = ( v-*„ )2

+ f + 6(£+<£+f2, )] -

(IV.5.13) 3̂ h 2 eU^U*U

Since it is known that all roots of the equation (IV.5.11) are real 
and they can be found to be:

(IV.5.14) ei - l z T 2sin(0j +  ̂ r ) ,e 2 = -^7"2sin 0,,e3 - - ~ T 2s\n{0j +  4^) 
V 3 3 V 3 v 3 3

where a trigonometric equation similar to (IV.5.11) was used to find 
the solutions (Nayak and Zienkiewicz,1972) and

(IV. 5.15)

Hence for the three principal components of strain (*^ e 2^ e 3) the 
expression

-^Tjsin^ + ̂ x) + j/, V 3 3 3

(IV.5.16) e2 -7=^2sin 0y + {/, 
yj 3 3

c>3 = - ^ - T 2s\n{d, +  ̂ t)+
■J 3 3 3

can be written
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In order to give a geometric interpretation to the strain 
transformation from the I.C. to the A.C. the following simplification 
is introduced.

In the principal triad the square of the arc length is given by

Where according to (IV.5.5) cj = 1 + 2ea& are the proper numbers. 
For {dxr° f = k7 fixed, the previous equation represents an ellipsoid 
called the strain ellipsoid of Cauchy. The stretchesKp\ a =  'ff\ a =  d xr°/dara 

along the principal axes of this ellipsoid are given by

where bp are the lengths of the semi-axes.

Geometrically speaking, the strain ellipsoid of Cauchy means that an 
originally spheric isotropic solid material in the I.C. becomes an 
ellipsoid in the A.C. with the semi-axes lying down in the principal 
strain directions and the stretch values are given by (IV.5.17). The 
reciprocity holds for the inverse transformation(Aris, 1962).

IV,6 Compatibility Conditions

In three-dimensional space the deformation tensor ckl and the strain 
tensor eakl each possess six components which are expressible in

(IV.5.17)

terms of three components u% of the displacement vector, i.e.
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(IV.6.1) dflj bcPk daf

Thus,given three , six cakl can be calculated. If, on the other 
hand six ck/ or eak, are given, can a single-valued displacement field 
be found corresponding to this strain? It is clear that this requires 
the integration of six partial differential equations (IV.6.1) for the 
three unknowns wj . Unless certain integration conditions known as the 
compatibility conditions, are satisfied, this may not be possible.

One way of finding the compatibility conditions is through the 
elimination of uak from (IV.6.1) by partial differentiation. An 
alternative method is to use the theorem of Riemann (Eringen et al, 
1974).

By using one of the two methods the compatibility conditions for /*/ 
and xe°kl can be obtained. It may be written in terms of xeakl as

Where * and « have been dropped for simplicity.

Also, when strains are small their products are dropped to obtain the 
compatibility conditions for the infinitesimal strain tensor.

(IV.6.2)
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IV.7 Force Distribution, Mass Density, Internal Energy Density

In the study of a one-phase continuum media, one is concerned with the 
manner in which forces are transmitted through a medium. At this 
stage, one is concerned specifically with two classes of forces. The 
first is the so- called external or body force distribution, 
distinguished by the fact that it acts directly on the distribution of 
matter in the specified domain, such as gravitation or eletromagnetic 
forces. Accordingly , it is represented as a function of position and 
time and will be denoted by /(*,.,/) . Ibis force is an intensity
function and is generally evaluated per unit mass or per unit of
volume of the material acted upon. The second is the internal or 
contact force which is to be regarded as acting on an element of 
volume through its bounding surface. If the element of volume has an 
external bounding surface, the specified force is called surface 
traction which is an intensity defined by unit of area ,and is a
function of the position Xj , time t , and the orientation n of the
surface element, according to Cauchy's principle. They are denoted

fay %>(*/•') •

In the study of two-phase continua, the body force in each phase is 
defined in relation to the total volume of the media. They are denoted 
as f \ x r t) and f 2(xiyt) or simply /%*,,') . The internal, force
in each phase is defined per unit of total surface, instead of by unit 
of individual phase surfaces, which are denoted as aj,,/*,.,/)
and a(2n)U (.,/j or simply •

With these simplifications the two following identities hold for a
volume element:
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(IV. 7.1)
f ( Xl, t) =  / Ju , , /) +  f 2(Xi, t) =  f°lxt, n

a(niXi'') = aU Xi )̂ +  0  =  aU Xi'f)

Also in continuous mechanics the existence of continuous mass measure 

(mass density) and the internal energy density are postulated: ( p,« )

The total mass 777 within a volume is given by

(IV.7.2) 777 =

and the total internal energy

pd 0  < p < oo

<f in the same volume is given by

(IV.7.3) € = j ptdti

The expression for the mass and internal energy for each phase may 

written in a similar way to the body force distribution, so,

be

(IV.7.4)

and

777 = J P7d$ = tri + rf = nr
4

0 £p\ p2< co

(IV.7.5)
- I

pddtd t) = ̂  + C1

IV.8 Global Balance Law

In continuous mechanics there are five laws which are postulated, 

irrespective of material constitution and geometry, each law having 

its own domain of applicability .These laws are restricted to 

relativistic speeds (for special relativity) and restricted in
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relation to dimensions (for general relativity); also microscopic and 

quantun-mechanical phenomena can not be treated. They are valid for 

all bodies subject to thermomechanical effects. Because of the nature 

of the problem concerned, only four of these laws are presented(not 

the Entropy Law):

l.Law of Conservation of Mass: The total mass of a body is unchanged 

with motion, or

(IV.8.1) I Pd* = t - I Pld# + t - I P7d$ = 0dt J dt J dt J
j o «)

Where d/dt is the material time derivative. Also, the Law of 

Conservation of Mass may state that the intial mass of the body is the 

same as the total ness of the body at any other time, i.e.

(IV.8.la) J v v = f
•d

By using the transformation law d xd = J d ad given by(B.3) this may be 

written as

(IV.8.lb) J\ ai > - xP J ) d ad  =  0 or ap ~ xp J  = 0
•a

2. Balance of Linear Momentum: The time rate of change of momentum in 

a volume element is equal to the resulting force acting on it.

(IV.8.2) ~  J p v d - d  = + J p f d t i  or alternatively
o * <>

(IV.8.3) J(pV + I>2v2)dd = + OaM d s + j V / 1 + Ss2)dd



3. Balance of Moment of Momentum : Hie time rate of change of moment 
of momentum is equal to the resultant forces and couples acting on the
body . So,

(IV.8.4) ~  ^paxaxvadti =  o x W ^ d s + ^p°x*xfad-d or, alternatively,

where the left-hand side is the time rate of the total moment of 
momentum about the origin. On the right-hand side the surface integral 
is the moment of the surface tractions about the origin, and the 
volume integral is the total moment of body forces about the origin.

4. Conservation of Energy: The time rate of the sum of Kinetic 
energy jc and internal energy £ is equal to the sum of the rate of 
work of all forces and couples w and all other energy uk that 
enters and leaves the body per unit of time.

the other energy ^ = (£=1..n ) that enters and leaves the body may
be thermal, eletromagnetic, chemical, physico-chemical or of some 
other origin.

(IV.8.6)

where
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IV.9 Local Balance Laws

These laws are particularly important in establishing the equilibrium 
and the boundary conditions in continuum mechanics.

They are found by applying the global balance law established 
previously to the local conditions.

-Conservation of mass locally.

If the material time derivative of a volume integral defined by 
equation (A.26) is now applied to the equation of global conservation 
of mass given by (IV.8.1) where ^ —x p

can be written, where *pxv =*p'V + xp2xv2 defines the mean velocity 
*v •

It is now postulated that all balance laws are valid independently for 
each part of the mixture and for every part of the body and 
discontinuity surfaces. Applied to equation (IV.9.2) this implies that 
the integrants of the integral must vanish independently. Thus in 
component form,

(IV.9.1)

or

(IV.9.2)
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(IV- 9.3)

(IV- 9-4)

' i _  & p
dt a x

0

,] n =  0

These are the equations of local conservation of mass and the jump 
conditions.

Also, if the functional dependency x =  x(a,t) in equation (IV.9.3) is 
changed it becomes,

(IV.9.5) , x d aVk __ < * > '
d l  °P dak d t

= 0

where equation (A.15) and, = p(x(a),r)= xp(a,f) is made use of. Tracing 
back it is found,

(IV.9.6) 'p = V ‘V«./) = v ‘>

It can also be written that xavk =  vk(x(a),i) = xvk( a j ) which, traced 
back becomes

(IV.9.7) = XvM ' ku /

To write the jump conditions first note the relations between the 
exterior unit normal xn at the deformed surface and an at the 
undeformed surface. From equation (B-2) one may have

j X  _  x J d f l /  , a

d  s* J dxk d s■(IV.9.8)
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(IV.9.9) \  -  d xst l(d ‘s,d's, )*= ̂ A , = d %/(rfV\ )’ d as

hence,

(IV.9.10) = V da' »■8 a* , d xs

Using (IV.9.8)

(IV.9.11) d  °s _  x j — 1/ — I o a—  - y (f„ n, nj

is obtained, thus

(IV.9.12) =  O.,\Cln nl nJ  Qx  ̂ nn

Putting this into equation (IV.9.4) the material form of the jump 
conditions, are obtained

(IV.9.13) 0

Also, if phases 1 and 2 are submitted to an isochronic flow, i.e. 
p(a,i) = constant, the equation (IV.9.5) may be replaced by

(IV.9.14) 0

or

(IV.9.15) dM  dx\\
b*t~d^~b"fa~ 0

If it is now postulated that equation (IV.9.15) vanishes independently 
for each phase and the solid and fluid phases are considered less
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compressible than the soil skeleton, the following equation may be 

written:

(IV.9.15a)
d*v2 0

which is another form of (IV.9.15).

The same argument can be used to get a similar equation equivalent to 

(IV.9.3)•

IV.10 Definition of stress 

1. Stress Vector

To clearly define stress at a given point represented by the vector 

position xt in A.C., a tetrahedron is considered adjacent to the 

surface xs of the body. Consider a tetrahedron of volume having 

three coordinate surfaces a xs .

By using the equation of balance of momentum (IV.8.2) and the mean 

value theorem for this tetrahedron, the following can be written

(IV. 10.1.1) ~  (VVA'tfj = *o;n)A*s - xa[Axsk + V 7 *

where V ,  V ,  y  are respectively, the values of p , v and f at seme 

interior point of the deformed tetrahedron and x<r*n) and *o9k are the 

values of a(n) on the deformed surface Axs and on coordinate surfaces Axsk 

, Figure (IV. 10.1),



50

Figure IV. 10.1

In the limit as a*»>̂ 0 one has

(IV.10.1.2) lim „ ^-(VVAt?) =  xpx'vdx$ + x‘vZrf7d =  xp xvd#a**)-* to d t

since the conservation of total mass equation (IV.8.1) ensures .that 

*pdxi3 = 0 . In the limit d x#ldxs -* 0

(IV. 10.1.3) \ n)d xs = \  d xsh

is obtained. Here xak is called the total stress vector at x .

similarly, if the balance of moment for a two phase material given by 

equation (IV.8.3) is used, the following is obtained

(IV.10.1.4) X-) dxs = X  d\  a ~ ]or2

Bearing in mind the tetrahedron, the area vector d xs is equal to the 

sun of the coordinate area vectors, i.e.
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(IV.10.1.5) dxs = xndxs = dxsk ik

or

(IV.10.1.6) d xsk = \ d xs

Introducing this into equation (IV.10.1.3) gives

(IV.10.1.7) X and

Fran these it nay be concluded that

X

(IV. 10.1.8) ff( -n )  a ( n ) and

This means that the traction is a linear function of the normal and 

that the tractions acting at the opposite sides of a surface area are 

equal in rragnitude and opposite in sign.

2. Stress Tensor

The stress tensor akl is the 1th component of the stress 

vector ak acting on the positive side of the kth coordinate surface.

(IV.10.2.1) ek ~ ukih

The positive components of <rkl on the faces of a parallelepiped 

built on the coordinate surface are shown on Figure (IV.10.2). In 

order to avoid confusion only the stress components on two pairs of 

parallel coordinate surfaces have been shown. Note that when the
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exterior normal of a surface is in the same direction as the 

coordinate axes perpendicular to the surface, the positive stress 

components on that surface are in the positive direction of the 

coordinates. Similarly, when the exterior normal is opposite in 

direction to the coordinate axes, the positive stress components are 

in the opposite direction to the coordinates.

The components axx , ayy , oJt are called normal stresses, and a 

, a are called shear stresses.

Also the stress tensor may be arranged in a matrix form.

(IV.10.2.2) ffki

f  N
° x z

c a
y* yy y*

°ry
V. J

The traction is given by
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directly from (IV.10.2.1) and (IV.10.1.7)

Another important property of the stress tensor is its symmetry. So, 

taking the equation of balance of linear momentum (IV.8.2) associated 

with equations (A.13) and (A.26) where <£ = P v and rk —  ok t

(IV.10.2.4) J +  + 0
1 k k J w

is obtained. If this is postulated for all parts of the body, the 

integrants vanish independently. Upon using (IV.9.3), this is 

simplified to

(IV. 10.2.5) + ( f — v ) * = 0 in # — m

(IV.10. 2.6) [p^k-uk)~ °k\nk = ® on w

. d v  , d vwhere v ---- f- —  Vl.
dr d x k k

Equation (IV.10.2.5) is the first law of Cauchy expressing the local 

balance of momentum, and (IV. 10.2.6) is the associated jump condition 

on the singular surface u .

Upon carrying (IV. 10.1.7) into the equation of balance of moment of 

momentum (IV.8.4) and using (A. 13) and (A.26) locally one obtains

(IV. 10.2.3) ff(n) ~ ukl ttk,l

(IV.10.2.7) 'k x*k= 0 in l}— U)
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where the local laws of conservation of mass and balance of momentum 

(IV.9.3), (IV.9.4), (IV.10.2.5) and (IV.10.2.6) were used. The 

associate jump conditions for the moment of the momentum is satisfied 

identically.

When (IV.10.2.1) is used, (IV.10.2.7) gives 

(IV. 10.2.8) akl — olk

thus, the necessary and sufficient condition for the satisfaction of 

the local balance of moment of momentum is the symmetry of the stress 

tensor.

H  Piola~Kirchhoff stress tensor.

To find the equation of motion in a fix reference frame the stress 

tensor must be transformed from the local and deformed coordinate 

system to the original fix one. Thus, let *ok be the stress at a 

spatial point x in the A.C. but referred (measured) by unit of area 

at a in the I.C. If d xs and d xsk are, respectively, the area surface 

at x and the components of the area surface at x and askare the 

area components, when tracing back the components of the area surface 

at x to the initial configuration, the following equation can be 

written

(IV. 10.2.9) d \  ■= fr* d \

where xn is the normal of the area element at x



55

By making use of the equation (B.2)

(IV.10.2.10) X  _  ,-] & X k  X

J<Tk ^  da. a° 1' • Qt
da
"et,

1 x  
x ° k

can be written, where xak is the stress vector defined at % by unit 

of deformed area and I*/ is the stress vector defined at x by unit 

of undeformed area.

To represent the components the Piola-Kirchhoff pseudo 

stresses lai and aaok, are introduced and defined by

(IV. 10.2.11) <Pl axa l m'*'m

where xaxo,m is the mth scalar component of the stress 

vector xc, obtained on the deformed axes. Now, tracing back to the 

undeformed axis, *n. is found with the effect of the inverse 

transformation B a jdxm (the same explanation was used in arriving at 

equation (A.5)). Or,

(IV.10.2.12) X

axa lm
x a**
00° In da.

and x„ — * - - I aaaln da

so that by (IV.10.2.10) one can write

(IV.10.2.13) *ax*ln
fyx
dxk *?kn' xx̂ kn da, da, damtt° km

(IV.10.2.14) aoaln c x ° / m  d x J dxk dxm * %Ck™

Thus, to obtain the stress tensor * o (defined at A.C. but measured by 

unit of surface at I.C. and at the coordinate system at I.C.) as
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function of xXJp (defined at A.C., measured by unit of surface at A.C. 
and at the deformed coordinate at A.C.) the transformation given by 
equation (IV. 10.2.14) should be used. Transformation among xarr , xxa 

and can also be obtained , from the same equation.

Now, substituting (IV.10.2.10) into (IV.10.2.5) and using (A.11),
(IV.8.16)

(IV. 10.2.15a) + W - N -  ̂

is obtained, which is the Cauchy's equation of motion in the reference 
frame. For component representation (IV.10.2.11) is introduced into 
(IV.10.2.15a) or (IV.10.2.14) into (IV.10.2.15a) and two different 
forms of the equation of motion are obtained:

(IV.10.2.15b) i a ixs jt* \ _
da, +  M  - a

(IV.10.2.15c) , dx. 1 da *)

Cauchy's second law of motion follows from ° k i ~ aik an^ using 
(IV.10.2.13) ,too. Also using akl = alk another two different forms are
obtained,

(IV.10.2.15d) , ax, dXj
dak ax ki Bak

(IV.10.2.15e) X X
ocPkj acPjk

TO write the jump conditions in the reference frame, equations 
(IV.10.1.2),(IV.10.2.10) are introduced into equation (IV.10.2.6) to
find
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Finally, it may be possible to express equations (IV.10.2.13) in 
relation to the infinitesimal strain tensor lk, and infinitesimal 
rotation tensor wkl . By using (IV.4.8) and (IV.4. 10) the following
can be written

(IV. 10.2.16) ^

Introducing this into equation (IV.10.2.13), equations 

(IV. 10.2.17) exck, »

(IV. 10. 2.15f) [ w *  - - Jr, 1 ■\  - 0

(IV.10.2.18) l ° k l  ~  $ /« * * *  -  Wl n a kn ~  Wn k °n l  +  Wml Wm n°kn

are obtained where it has been assumed that lk, is small compared 
to 1 and ;==!+ lkk as given by (IV.3.5)

-Principal Directions of Stress: invariants of the stress tensor

Now that the concept of stress in the vector and tensor form has been 
established, this tensor can be expressed by the theorems demonstrated 
in the Strain Definitions section. In particular, it can be shown(on 
the basis that the law of transformation for the normal stress tensor 
is analogous to that for strain tensor) that for every point in a body 
after deformation there exists three mutually perpendicular surfaces 
on which all shear stresses are zero, and on which normal stresses 
assume stationary values. By reasoning analogous to that in the strain 
section, it may be shown that a similar characteristic equation for
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the stress tensor can be obtained. Following the same procedure as 
used for the characteristic equation of strain, the three roots of the 
characteristic equation of stress may give the principal stress 
tensor:

cI

(IV.10.2.19) a 2 Tjsin 9j ■+ Jj
V  3

a , ^  ^ a3

ff3 -~72sin(07 + ̂ ») +J,

(IV.10.2.20)
5<*

i
3 ° k h

(IV.10.2.21) 7« V  + + ****** “ ryi
1
2 Vtf

(IV.10.2.22) “ ai> 3 ̂ijakk

(IV.10.2.23) J2 - 3J;-J2 - j[(a„-aw)l+ f + (*„-** f

+ 6(tJx+ tL + tJx )] =

(IV. 10.2.24) 73 - J3-/2/, + 2/J - J3 + 72/, -/} -

(IV.10.2.25) j
1 . / 3 -s/ 3 J3
3 arC S,nV 2 T 3|2

arc tan
2<t2 — ctj — Oj
>/3(<r, - ff3)]

The stresses invariants /, , 72 and given by the previous
equations , together with the strain invariants /, , 72, ^  given by 
equation (IV.5.12) are to play, in future, an important role in the
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definition of local stress-strain relationship.
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CHAPTER V

VARIATIONAL METHOD

V.l Introduction

The consolidation problem will be adequately represented by a system 
of differential equations with its respective boundary and/or side 
conditions.

It is well known that, except for simple cases, it is impossible to 
find a closed form solution to these equations which in addition must 
satisfy the boundary conditions. Another alternative is to seek an 
approximate method of solution.

Because of the possibility of using the finite element method for 
numerical solutions, a consistent variational approach is therefore 
required. The variational method consists in replacing the system of 
continuous equations by an equivalent global statement , which accepts 
approximate functions as its solutions. Ihe continuous equations are 
usually transformed in a fuctional by an energy theorem. A functional 
may be defined as a special type of function where the independent 
variables are one or more unknown functions.

By transforming the continuous equations into a functional, it is 
always nececessary to find the conditions which these unknown 
functions must satisfy in order to make the functional a stationary 
point, usually the minimum. It may be shown that a functional has a
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minimum stationary point when its integrand satisfies the Euler- 
Lagrange equations, as well as the boundary and side conditions( 
Washizu (1968)).

It is well known that the particular choice of approximated function 
characteristic of the finite element method, imply substantial 
advantages.

The discussion of the method of solution, and applicability of the 
finite element method has been published in a nunber of publications, 
see for example Naylor (1981), Zienkiewcz (1972), Cook (1974) and 
Smith (1982). In the first text book the applications of many 
important problems in soil mechanics are discussed, and a mathematical 
analysis of the method is given by Strang and Fix (1973).

Another alternative to the finite element method is the boundary 
element method, Banerjee and Butterfield (1979) , in which 
approximations are introduced only on the boundary. With the aid of a 
fundamental solution, the differential equations are reformulated as 
integral equations. Evidently, the method would be powerful in 
combination with the finite element method to account for the effect 
of semi-infinite regions occuring frequently in soil mechanics 
problems. The application to the consolidation problem still remains 
for the future, and is beyond the scope of this thesis.

V.2 A Brief Survey of Different Approaches

Although in this thesis the transformation of the continuous field 
equations into finite element equations is reached by means of virtual
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work rate definition, a brief description of previous formulations is 
presented

Many formulations have previously been discussed in relation to the 
case of complete linear problems, i.e., linearity is assuned both in 
kinematics and in the material constitution. The latter restriction 
is, however, not essential when different functionals are discussed.

In the case of linear kinetics a nunber of approaches which can be 
used to reach the finite element equations are possible.

One of the first approaches was introduced by Christian and Boehmer 
(1968,1969) , who solved a sequence of ficticious undrained problems.
After load is added in a time interval, the pore pressure and 
displacement field generated are evaluated for the undrained case. The 
pore pressure generated is then used in the continuity equation to 
evaluate the rate of volumetric deformation. Keeping the rate constant 
during the next step, one easily obtains an additional volumetric 
strain increment. For each known total volumetric strain a new set of 
displacement and pore pressure are obtained at the end of the time 
step. The method nay be seen as a foward Euler Scheme with sucessive 
application of Reisner's variational principle, as the continuity 
equation is a constraint condition (stepwise incompressiblility during 
each time-step).

Following an approach established by Gurtin (1964) for linear initial 
value problems like heat conduction and viscoelasticity, Sandhu (1968) 
solved a pseudo-variational problem (stationary point), where the 
associate functional contains convolution products in the time domain. 
In practice the method can be shown to be equivalent to a semi­
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discrete method, with Crank-Nicholson's finite difference scheme in 
the time domain. Explicit results of the linear problem for plane 
strain and plane flow have been presented by Sandhu and Wilson (1969), 
who used 6 noded isoparametric elements , where displacement and pore- 
pressure are aproximated in the same manner.

Similar variational principles have been suggested for related coupled 
problems, Sandhu and Pister (1970), and an extension to non-linear 
problems and mixed formulations have been made by Sandhu (1976). No 
pratical applications have, however, as far as the author knows, been 
presented for the latter cases .

Using similar methods to those previously described( Galerkins method 
in the space domain and Crank-Nicholson's finite difference scheme in 
the time domain) Hwang et al (1971) obtained a solution for the linear 
case. Taking advantage of the decay in the process they work with 
logarithmic time increments.

A mixed formulation of the linear problem based on the variation of an 
extended functional corresponding to the Hu-Washizu*s variational 
principle in elasticity was proposed by Yokoo et al (1976). 
Independent variables are displacements, strains, effective stresses, 
excess pore pressures , hydraulic gradient, and diffusion velocities. 
Restricting themselves to the ordinary theory with displacement and 
excess pore pressures as unknown, which in fact may also be considered 
as mixed theory, Yokoo et al (1976) present results for the case of 
the load growing from zero linearly to a final value during a finite 
time. All unknowns are assumed to be zero initially. For a linear 
theory the continuous loading approach requires more than one solution 
step which is contrary to the initial loading approach. On the other
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hand, this disadvantage disappears at the extension of such non-linear 
models for which an initial loading approach requires an incremental 
loading technique, while the algorithm for the continuous loading 
approach will be unchanged in principle. Of course, the continuous 
loading may well be motivated by physical reasons, i.e., consolidation 
effects during loading should not be neglected. This type of approach 
is adopted in this thesis.

Yokoo et al (1974) used the discontinuous loading approach also. In 
their work it was considered, that in such a case, i.e., consolidation 
following undrained deformation, approximations of the excess pore 
pressure have to be discontinuous in time.

A totally different approach was used by Booker (1974). The field 
equations are made explicity independent of time by a Laplace 
transformation. Such a transformation yields an eigenvalue-problem in 
the Laplace transform space. An approximation for the finite element 
method provided a discrete approach with associated eigenfunctions in 
terms of nodal unknown values. The approximate transforms are expanded 
in terms of their discrete points, i.e. the eigenvalues, and are 
finally inverted. Solutions have been presented mainly for isotropic 
linear elasticity and isotropic permeability.

A more simple approach for non-linear kinematics was presented by 
Carter, Booker and Small (1979) where the equilibrium equations were 
treated by the principle of virtual displacement in rate form and the 
continuity equation described by an equivalent of integral form, also 
in rate form. The use of the principle of virtual work approach is 
supported by the fact that this principle reflects the condition of 
equilibrium, which makes it valid for linear and non-linear problems.
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Also, it may be shown that this principle satisfies the Galerkin 
process which makes it correspond to a functional.

Finally the Crank-Nicholson finite difference scheme in time was used. 
Their formulation, however, used an Euler approach which is different 
to the so called total Lagrange and updated Langrange method assumed 
in this thesis. In the next chapter it will be shown that the updated 
Lagrange approach yields a symmetric finite element equation whilst 
the Euler approach makes the finite element equation non~symmetric, 
and inconvenient.

V.3 Principle of Virtual Work

In this section, integral equations representing the equilibrium 
equation and also the continuity equation are presented. In particular 
the principle of virtual displacement is applied to the total 
equilibrium and an integral form of continuity equation is used to 
link both phases.

Principle of Virtual Displacement:Considering an deformable body which 
moves continuously in space, the principle of virtual displacement 
assumes that a distinct equilibrium configuration exists in the very 
close neighbourhood of the current equilibrium configuration. If at a 
particular configuration (the equilibrium position at time t) a 
virtual displacement buk is imposed, the body moves virtually to an 
adjacent equilibrium configuration, associated with time t +  Ai . See 
Figure V.3.1.
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Figure V.3.1.

Using this assumption, the principle of virtual displacement requires:

(V .3 .1) J  ,+%  «,+4,e,y+J'dt5 =  ,+4,«

where r+ArJ? is the external virtual work expression for isochronic 

flow. However for compressible and/or viscous fluid the quantity 

r+A//; can be substituted by ,+**y + f+Al4  .

(V.3.2J t+*R = ( r+Ax_ x. i+A/j , i { f+Ar .
J <4AlaJ:K ^ + J P* + tofkiuk

t+Mj
,+“:dd
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Note that this principle is an equilibrium requirement being valid, of 
course, for both linear/non-1inear problems and also for a body under 
non -conservative external forces.

In equations (V.3.1) and (V.3.2) 8uk is a virtual variation of the

Equations (V.3.1) and (V.3.2) may be proved to be equivalent to the 
field equations (IV.10.2.5) and (IV.10.2.6).

Integral Form of the Continuity Equation Based on the same argument 
and using the same assumptions used to establish the principle of 
virtual displacement, an integral equation equivalent to the 
continuity equation can be derived. One simple vray to obtain such an 
equation is by means of Galerkin Method or even by physical reasoning. 
Such an equation may be written as:

current displacement components ****uk and 6,+Arey are the
corresponding variations in strain, i.e

(V.3.3) J 5 i+aA j) ̂

where

is the rate of deformation of the fluid phase derived from the field 
velocity of the fluid phase when a = l ,and is the rate of deformation
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derived from the field velocity of the solid skeleton when a =  2 . 
And

bfj is the Kronecker Delta,

t+A,aJj is the virtual variation os stress for the fluid phase,

is the virtual variation of stress for the solid skeleton.

Note that equations (V.3.1) and (V.3.3) cannot be solved directly
since the configuration at time /-l-Ar is unknovai. One way to overcome 
this inconvenience and arrive at a solution is to refer all variables 
for this current configuration to a previously known one. Any
previously known configuration can be chosen.

However, usually, the choice lies between two different 
approaches,namely, total Lagrange and updated Lagrange approaches. In 
fact a third approach could be used - the so-called Euler approach - 
but this formulation makes the stress - strain law definition 
incovenient for finite element applications, since it leads to a non- 
symmetric stress - strain law from a geometric point of view.

Both total Lagrange and updated Lagrange method will be developed in
the next chapter by transforming the equations (V.3.1), (V.3.2) and
(V.3.3) accordingly.
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CHAPTER VI

FIELD EQUATION IN INCREMENTAL FORM

VI.1 Introduction

In the previous chapter the principle of virtual work was established 
in rate form. These principles are now made use of to formulate the 
governing equation of consolidation in rate form. Two systems of
integral equations will be reached, one by the so called total
Lagrange formulation and the other by the so called updated Lagrange 
formulation.

Although these approaches have been used when stablishing the field 
equations for other kind of problems, they have not yet been explicity 
applied to the Consolidation problem.

However, before introducing these treatments, the various rate
definitions of the variables involved are summarised.

Firstly, the velocity vector measured in the deformed and undeformed 
frame of reference and the various definitions of strain rate and 
stress rate are given. Detailed treatment showing their
interelationship are also presented.

Next, the various stress-strain relationships are introduced as well 
as the linear combinations between them. Also the Bernouilli theorem 
and Darcy's Law for the finite deformation conditions are included.
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After the basic definitions , by making use of the principle of 
virtual work for the equilibrium equation and the integral form of the 
continuity equation, the general incremental form of the consolidation 
equations are reached by the use of total Lagrange and updated 
Lagrange methods.

Finaly, after linearization, it can be seen that the total Lagrange 
Formulation exhibits a system of non-symmetric equations while the 
updated Lagrange formulation provides a system of equations which 
still mantains its symmetry. As the Euler approach also provides a 
non-symmetric system of equations (Carter et al 1979), the previous 
conclusion makes the updated Lagrange formulation the best choice for 
the solution technique.

A fourth option could be used where the solid skeleton is treated by 
the total Lagrange formulation, while the fluid equation is treated by 
the Euler formulation. This approach was used by Argyris (1981) to 
analyse incompressible viscous flow through solid media.

This option is not discussed here but its deduction follows the same 
procedure presented in this chapter.

To formulate the incremental theory it is essential to define rate of 
strain, velocity and stress rate. However, instead of rate of strain, 
velocity and stress rate, the strain increment, velocity increment and 
stress increment,will be used.

Firstly, the loading path of the solid body problem is divided into a 
number of equilibrium states. Figure VI.1.1 shows schematically three
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of these equilibrium configurations.

Figure VI.1.1
In the first configuration all variables are known and referred to as:

Time 0 or 0

Volume or

Area ° s or

Generalized point °P{Wz ) or ap

Position vector °x i or %

Velocity vector V or V

Pore pressure °p or a
p
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In the second configuration all variables are known and referred as:

Time r or t

Area or *s

Volume or

Generalized point *P 1\ W 2 ) or bP

Position vector or b* i

Velocity vector *va or V

Displacement vector fu or bu

Pore pressure V or b
P

The third configuration is one step away from configuration 
the variables are unknown and would be referred to as:

Time / + At or t + At

Area t+ *s or xs

Volume or xt?

Generalized point ,+A7>(,+AV +AV, or XP

Position vector t+ A t
X, or Xx

Velocity vector f+Afya or V

Displacement vector '+*U or xu*

Pore Pressure t+At a
P or x a

p

Referring to Figure VI.1.1
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(VI.1.1) 'jr#- 0jr1+rul. '+AfWl -  V  + Aut

(VI.1.2) = °Jfy 4 fu, 4 Au,

(VI.1.3)

can be written.

Sometimes a variable may also be refered to in one configuration but 
measured in relation to another. In this case it would be written, 
say, for stress tensor as baokl (or alternatively t°akl ), or for 
strain xaeakl (or alternatively 0i+Atekl ) meaning, respectively, that the 
stress tensor is defined at geometry "a" but measured using geometric 
dimensions at "b", (or the stress tensor is defined at time 0 but 
measured by the geometric dimensions at time t); the strain tensor is 
defined at geometric configuration "x" xC+Atxt) but measured using 
the geometric dimensions at "a" (%) , (or, the strain tensor is
defined at time t 4 At but measured using the geometric dimensions at 
time 0 ).

VI.2 Velocity Increment

By using the expression (IV.9.7) the velocity components V ( measured 
at current configuration "b" which has undergone a transformation 
dbkId a j in relation to the referential configuration "a") may be 
written as a function of the velocity components measured at "a" as,
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(VI.2.1) Jv*-
dak b 
dbj bvJ

If the body experiences additional movement from its equilibrium 
position at "b" to another equilibrium position at "X" and also the 
reference frame suffers a transformation dx^dbj , the velocity 
components in this new equilibrium position may be related to:

(VI.2.2) + fy)

and the velocity components viewed from the initial reference frame 
"a" may be expressed:

(VI. 2.3) (k + + “ W t 5^CV< +
da. db.

or the incremental components of the vector velocity may be related to 
each other:

(VI.2.4) _ da, da. db. dat _
0 * dbj b J dbj dx{ * 1 dxt x 1

VI.3 Strain Increment

By using expression (IV.4.9) the Lagrange strain tensor at "b" but 
measured at "a" and the Lagrange strain tensor \ eki at "x” but 
measured at "a" may be written as

(VI.3.1) . d'u? d'uf d'u^d'u*
Loekl day dal dal dQ?

( 3('ug + Aug) , d{'u°m+£iu°m)d('u°m +  *U°J
aekl ~ daf dal + da% daf(VI. 3.2) 2



From these equations,

(VI.3.3) 2AX/ "
( b + Bu^djAu,) / du, \ djAu,) d{Aut) djAut)
V il daf )  dak \ ik **" dak )  da, dak da,

is readily obtained,and where x0eakl = hBeak, + and A*eJ; is the
increment strain tensor from "b" to "x" but measured as a function of 
the geometric dimension at "a".

Also, the Lagrange strain increment Axbeak, at "x" but measured at "b" 
can be written as:

(VI.3.4) dbf db% dbf dbf

Note that the l im x^ bAxbekl may be found to be the deformation rate which 
is defined by the material time derivate of the expression (A.4), 
where (A.22) is used. Also note that the l im x-.aK eki may be found to 
be the material derivative of the Lagrange strain tensor, which may be 
found by taking the material time derivative of (A. 4) where (A.22) and 
(A.5) are used. Consequently, the relationship between the two limits 
may be readily found to be approximately,

(VI. 3.5) a V  =  A
akl da%da beij'

x  a  x aA p =  __* __L A xpa
* biJ dbfdb?*06"

It is convenient to breakdown the expression of the strain increment 
into linear and non-linear terms in Au, , so,
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where the first part of the expression on the righhand side contains 
linear terms and the latter contains nonlinear terms.

VI.4 Stress Increment

By using the expression (IV.10.2.14) the Kirchhoff stress tensor baok, at 
"b" may be written as a function of the Euler stress tensor at 
"b" . So,

(VI.4.1) b a  =  b , - \ ^ _ ^ J _ b  a 
b ° i j  I Q a a  Qq o  aa k!

where oukl is written instead of and fa" instead of fka“ .bai bb i j

The Kirchhoff stress tensor *aokl = baokl + at "x" measured at "a" may 
also be written as a function of the Euler stress tensor defined as

JTi! —  kff . i  +  A  i<7. . ,  S O ,x u i j  b i j x V

(VI.4.2) dxf*
b a  I A x  a  __ *  ,  — I o x i j  /b a  i Ax a  \b°<j + &x°ij- J

Also the Kirchhoff stress tensor Ja*, =  hbakl +  A xbakll a t "x", but defined at 
"b", may be defined as a function of the Euler stress tensor at "x" 
becoming

(VI.4.3) b o 
b°i. +  A  j

, dx? dx° .x a x j  — 1 UAf J ib

*a i j  S a l  d a ?  fcl
J ib a  i a jc or \

tel daflf>°kl +

Combining the expression (VI.4.2) and(VI.4.3) and using the equation 
(IV.3.4) and(VI.4.1)
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(VI.4.4)

is obtained, where AJ<rl7 is called the Truesdell stress increment 
tensor.

The relationship between the Truesdell stress tensor and the Euler 
stress tensor may be derived from (VI.4.3) if relations (IV.3.5), 
(VI.4.1), (VI.4.3) are used. So,

Note that \akl basically differs from by a rigid body rotation.

The expression (VI.4.5) may also be obtained by taking the material 
time derivative of (IV.10.2.14)2 with similar simplifications.

Finally, the Jaumann stress increment tensor will be defined. Consider 
that a small rectangular parallelepiped in equilibrium with the Euler 
stress tensor has undergone an incremental motion to find its new 
equilibrium position under the Euler stress tensor + A**,-, .

Intuitively, therefore, the stress tensor at this new position may be 
defined approximately as the Euler stress tensor minus a rigid body 
rotation, so, in a matricial form,

where



78

viie re [jff +  A-'ffJ -  [j<r +  A*a] +  l£.][j<y +  Aj<r ] [ I ] T

(VI.4.6) [L)

f
0 &lH'n *̂ 3̂1 

“AJh/,2 0 A^k*23
A bw  23 0

V. J

Neglecting terms of products of a higher order, the Jaumann stress 
tensor increment can be expressed by

[a'a] = [aJt] + [ Ja] [a> ] + [a Jw] [ja]
(VI.4.7) or

A j  _ . jc b a x b a x
a U -  A x ° t J - b a ,i  A bwi j  -  t P j i  A bwu

as function of the Euler stress increment tensor.

Also, by combining equation (VI.4.7) with equation (VI.4.5) the 
relationship between the Truesdell stress tensor increment and the 
Jaumann stress tensor increment can be obtained:

(VI. 4.8) A x a Abfftj
_ . j  a b a a x b a x= A Ja!!- bau A b(j l - f t ,  A f t , I b a x 

+  ba i j A b(JI

VI.5 Stress-Strain Increment Relationship for the Solid Skeleton

Material indifference principle: Quantities which depend only on the 
orientation of the reference frame, which is given by [L], and not on 
the other aspects of the motion of the reference frame (such as its 
translation) are said to be indifferent (Stokes' Hypothesis). Under
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this hypothesis indifferent quantities are, except for rotation, 
independent of the reference frame. Scalars, vectors and tensors, are 
transformed according to,

The constitutive equations (for example the stress - strain increment 
relationship) represents an intrinsic response of the material. This 
response must be seen to be the same for all observers, as otherwise 
it would not be intrinsic to the material.

Now considering that the rate of strain of a body may be represented 
by pure rate of stretching along three mutually perpendicular axes, 
plus the rate of rotation of these three axes and choosing to observe 
this body from a reference frame which is moving and rotating with 
these axes , all that is left to see is the rate of stretching along 
the three axes

If the rate of stretching is the material response under the stress 
rate , which may be written symbolically as xi = g(xE ) for the rotating 
axes, the material response viewed from the fixed axes must be written 
as

to be seen as invariant.

However, transformations are not always as simple as those stipulated 
by the Stokes' Hypothesis. A more general transformation for the 
stress tensor than the one stipulated by equation (VI.5.1) may be, for

(VI.5.1) y  = y, \ = L x\\ aT =  L XT L t

(VI. 5.2)



example, represented by equations (VI.4.4) or (VI.4.5).

So, the principle of material indifference may be postulated more 
generally as: The response of the material is the same for all 
observers independently of the kind of transformation suffered by the 
material.

Next postulating the stress strain incremental relationship for the 
solid skeleton.

One of the most natural assumptions may be to postulate the 
relationship between JrJ and A xbetj or and Ajffj in the following
form

Naturally, in these equations, xbcjjkl may include the effect of the 
past history of the material. Particularly, for one purpose, the 
stress increment are the effective stress increment and the strain 
increment are the total strain increment for the solid.

If (VI.5.3) is the intrinsic response of the material, a proper 
transformation to be applied to *bcijkl nay be deduced to obtain the 
relationship between Axfla0- and A*<A/ . So, with the aid of equations 
(VI.3.5)2, (VI. 4.4) and (VI.5.3)

(VI.5.4) or

may be written, where
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(VI. 5.5)
dafdajda? da?

An alternative natural assumption may be to postulate t±e relationship

The equation (VI.5.6) has been used frequently in the theoretical 

development and analysis of elasto-plastic problems.

If equation (VI.5.6) is postutlated as material intrinsic property, 

then the relationship between A a n d A j « t/ may be derived if 

equations (VI.4.8) and (VI.5.6) are combined. So, xbcijkl to be used in 

(VI.5.3) is given by

Also with the aid of (VI.5.5) and (VI.5.6) an expression may be found 

for xacaijk, to be used in (VI.5.4), so,

between A y<ry and Ajf*, as the intrinsic property of the material, or

(VI. 5.6)

(VI.5.7)

(VI.5.8)

VI.6 Stress-Strain Increment Relationship for the Fluid Phase

and Darcy Law

If the stress system is such that an element of area always 

experiences a stress normal to itself and this stress is independent
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of the orientation, the stress is called hydrostatic. All fluid at 

rest exhibits this stress behaviour. This means that for any 

normal n * n.a is always proportional to n and furthermore, the 

constant of proportionality is independent of n . Writing this 

constant as —p ,

(VI.6.1) n i a ij ~  ~ P nj

This equation means, however, that any vector is a characteristic 

vector of a which must therefore be spherical. Thus

(VI. 6.2) au = -ph'j

For a compressible fluid at rest, p may be identified with the 

pressure of classical thermodynamics. On the assumption that there is 

local thermodynamic equilibrium even when the fluid is in motion this 

concept of stress may be held. For an incompressible fluid the 

thermodynamic, or more correctly thermostatic, pressure caanot be 

defined except as the limit of pressure in a sequence of compressible 

fluids. It may be seen that it has to be taken as an independent 

dynamic variable

A general stress tensor nay always be written as 

(VI. 6.3) au = -pbi} +  Pu

where is called the viscous stress tensor, and is a function of 

the fluid velocity. PjJ vanishes for a hydrostatic stress field, an 

incompressible Newtonian fluid and perfect fluids.
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When 0̂  is defined as in (VI.6.3) the transformation required to be 

applied to ensure the frame indifference is similar to the ones 

stipulated for the solid skeleton. In this vrork, only the case of an 

incompressible Newtonian fluid is considered.

VI.7 Bernoulli^ Theorem ~ Darcy's Law

The Bernoulli theorem establishes the value of the total energy 

carried by a fluid particle at each instant of its movement over a 

stream line. For different flow conditions this energy equation 

assumes different functions.

For a particular barotropic laminar flow the energy function "h" is a 

time constant given by unit of weight as,

Where p is the hydrostatic pressure

b. is the unit vector in the direction of gravity according to 

the adopted reference frame

7/ is the unit weight of the pore fluid 

h is called hydraulic head.

The Darcy Law relates the fluid velocity with the hydraulic gradient. 

So, the natural way to define the Darcy Law is to define it in a 

reference frame which moves and deforms as the soil skeleton does. 

Thus, postulating

(VI. 7.1)
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then transforming by using (VI.2.4) to obtain the relationship 

between A*(v]-vf) and dAhjdbj as,

(VI. 7.2) dAh
V(»J - 0  - where

(VI.7.3)
x , dbm* is _  i ts m

b V dxt lm dxj which

is the proper transformed permeability matrix to be used in (VI.7.2).

The same postulated permeability matrix is viewed from a reference 

frame "a", as

(VI.7.4) xka*lj
da, damt ts m
dx, A/m dxj

to be used in

(VI.7.5)
dAh 

,J daj

An alternative assumption may be to postulate the relationship between 

Afcx(v>! - v?) an<̂  dAhjdbj as the intrinsic permeability of the material. 

Thus,

(VI.7.6) Mri-*?)
X
b
. d{Ah) 
'' dbj

If this is postulated then the relationship 

between A and dAhJdaj defines *K.j which may be obtained with 

the aid of (VI.7.4), as
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(VI.7.7)

VI.8 Total Lagrange Formulation

In the total Lagrange formulation all variables in equations (V.3.1), 

(V.3.2) and (V.3.3) are referred to the initial configuration.

The applied forces in equation (V.3.2)are evaluated by using the 

following expression:

where it is assumed that the direction and magnitude of the forces 

o+Aivk and °p are independent of the specific configuration

However, if the traction ,+A/0aik is dependent on the deformation, a 

convenient computational form of the expression (IV.10.2.10) must be 

used.

The equation of virtual displacement (V.3.1) in terms of the Cauchy 

stresses and the infinitesimal virtual strain must be transformed by 

means of equation (IV.4.6) and (IV.10.2.14)2 to give:

(VI.8.1)

(VI.8.2)

(VI.8.3)

for isochronic fluid flow.
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Also, the Integral form of the continuity equation given by (V.3.3) 

may be transformed by means of expressions (VI.3.5)2 and (IV.10.2.14)2 

to give:

|  M r + A r A j “  5 ' * * 0 !j ’ + ^ d  |  6ij  ( t + * d j ) 6  ‘ + A ’a l ,+A,</#  =

(VI.8.4)

M-A(r2 
0 eiJK

i+CJ I o'd& + f  t /’f+A / -2 \ x A/ 2 0 j  gJ Mo eij>&o aij d # 0

where incremental strain has been replaced in (VI.3.5)2 by strain 

rate, and

(VI.8.5) f+Arrft = 2,
0 2 \ d a k dd; d a k d d j ) '

and r+A< 0 p a  =

By relating expressions (VI.8.1), (VI.8.2) and (VI.8.3) with equations 

(V.3.1) and (V.3.2) ; and by relating expression (VI.8.4) with (V.3.3) 

two expressions may be obtained,

(VI.8.6) 1 /r+Af 1 . r+At 2 \ s r-t-A/„2 0 j  o _  l+A/D  lo °lj +  0 a i j ) 5 0 ei J d » ~  R

(VI.8.7) f x  (t+Al-1 r+4/;2\,<tdf 1 O j  . ,
I V o  ei ] ~ 0  a iJ d d  +

J

(VI.8.8) *+*R - | ?*idk6Auk0ds + ̂ oP^'f^Au^d#
Oj

The expression (VI.8.6) represents the equilibrium equation for the 

body in the configuration at time t + At but referred to the
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configuration at time 0 .The expression (VI.8.7) represents the 

continuity equation for the body in the configuration at

time t +  bt but referred to the configuration at time 0. In expression 

(VI.8.6) J+A/ffywas replaced by + J+Af<r?> •

Since the stresses , o+A*au • an<̂ strains r are unknown for

solution purposes, the following incremental decompositions are used.

( V I .8 .9 ) ‘ + %  =  ‘t P ]J  +

(VI.8.10) ^ " “0 -= ̂  + A x0„ l

(VI.8.11) - '0e l  +  A',',

(VI.8.12) A t 2 
0  e i j

, Ax 2 
o cy + ^ oe :j

where and Je*. , JeJ are the known second Piola-Kirchhoff 

stresses for the fluid phase when a =  l, for the solid skeleton when 

a = 2 and the Green-Lagrange strains in the configuration at time t. It 

follows from equations (VI.8.9), (VI.8.10), (VI.8.11) and (VI.8.12) 

that

and l(A'0+ % )  = 6 V «

vdiere A ^ j j is defined by equation (VI.3.3), A0oJ is defined by 

equation (VI.5.4) and A0ajj is defined by equation (VI.6.2).

Equation (VI.8.3) may now be written as:
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+ 1 - ,+"* - J i f i J / d O

Similarly, equation (VI.8.4) leads to:

A)8Ap°dd = 0

where equations (VI.8.5), (VI.3.3),(IV.10.2.14), (IV.4.6J2,(VI.6.2)

(VI. 7.5) and (VI.8.12) have been used and

(VI.8.15) h  —  r—p +  A, x k .ikJw *

where ik is the direction of gravity in relation to the fixed reference 

frame adopted.

VI.9 Updated Lagrange

In the updated Lagrange formulation all variables in equations 

(V.3.1), (V.3.2) and (V.3.3) are referred to the previously known 

configuration (configuration at time t). By a similar procedure, as 

used to derive the equation for the total Lagrange formulation 

equation (V.3.1) may be written in this case, as

where !+AVj are the components of the second Piola-Kirchhoff stress

tensor from the configuration at time t to the configuration at time 

r + Ar and referred to the configuration at time t.

(VI.9.1)

tensor and ,t + A t  a I e ij are the components of the Green-Lar>grange strain
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Since deformation is considered not to affect external loading, ,+A,Z? 
is evaluated as in total Lagrange formulation.

Also, equation (V.3.3) may be transformed to give,

(VI.9.2) J J„C+%  - + | -  0
•d

Itie incremental decomposition of stress, strain and velocity used in 
this case is,

(VI. 9.3) f+A<\_.w _ t a i . x a
t a u  ~  ,"11 +

(VI.9.4)

(VI. 9.5) \ * \  - r “K*w)

where [oj are the components of the Cauchy stress tensor for fluid 
and the soil skeleton, and Af(r“- are the components of the second 
Piola-Kirchhoff stress increment tensor referred to the configuration 
at time t. The expression for is given by equation (VI.3.4)

As in the case of the total Lagrange formulation, equations (VI.9.1) 
and (VI.9.2) may be written as,

(VI 9 6) I + J tta'ijhAtyh /d 'd + | 
v v v

+ J - J 'r:J6 A ftd d
V

f (* -  +
dA,Um

db,
Bh d M  
db, Bbi ld i5- 0(VI.9.7)
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where h is as already defined.

VI.10 Linearization of Equilibrium Equations

It should be noted that the system of equations (VI.8.13), (VI.8.14) 
and (VI.9.6), (VI.9.7) are,theoretically, equivalent and provided the 
appropriate constitutive equations are used,both equations yield 
identical solutions. However, it will be seen that the finite element 
matrices established for solutions are, of course, different.

The solution of the system of equations (VI.8.13), (VI.8.14) and 
(VI.9. 6), (IV.9.7) cannot be evaluated directly, since they are non­
linear in the displacement increments. An approximate solution can be 
obtained by assuming that in equation (VI.8.13) = SAqC*. and in 
equation (VI.9.6) 5 =  S

This means that, in addition to using

= and 4AZ - 4A,(=

respectively, the incremental constitutive relations employed are,

2 2 
AfPiJ “ 0 cijkl o'kl and ^ia]j =  fijki&tki

Also, the following tensors
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(dbm d&um\ , /. , oa(um^aV „

Ahmay be simplified respectively to £ and 6^ to avoid non-linear
da,

terms Au Ah

Equation (VI.8.13) and (VI.8.14) may then be written as

(VI.10.1) J  oc ijk i +  | H y 'o P  +  o ° i j ) 6 A  o \ , ° ^

•o <y

+  J  - Z i j & o P b i & o t i j f d #  =  ‘ + * R  ~  +  i* y K V . y ) ° rf*

(Vi. 10.2) J ̂  V J - J f'C+̂ j)i \P ° d o  -  0

and equations (VI.9.6) and (VI.9.7) leads to,

(VI. 10.3)
|  f i j k I  A ,(kt 5 A i£/> ' d d  +  | M y  'oP +  i* y )15 A  f l i j  ‘ d  *  

s> «

+  J  ;)'</■ > -  ,+4fc -  +  Xy)*(AfyjYdi

(V I. 10.4) J  W * / ^ * ^ ' * * - J 4V =  a

where <xjy = -6iy/> Ac^ " ~ V ap) *?y = V  Aff5"sAV  *5 “ V A “ A“i

After the linearization, equation (VI.10.3) and (VI.10.4) will be seen 
to be still symmetric while equation (VI. 10.1) and (VI. 10.2) will no 
longer be symmetric. In the next chapter, these equations are going to
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be transformed into a more convenient form and used in finite element 
method. Then, the symmetry and the non-symmetry characteristic of the 
resulting field equations obtained by the updated and total Lagrange 
method will be clearer.
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CHAPTER VII

FINITE ELEMENT SOLUTION

VII,1 Introduction

In this chapter the system of incremental equations representing 
consolidation, obtained in the previous chapter, are transformed for 
the finite element method.

Although both formulations, total Lagrange and updated Lagrange, must 
arrive at the same solution, the finite element equations will be seen 
to be quite different. Both formulations are presented explicity but 
only the updated Lagrange is actually used in the programming form.

Following the presentation of finite element matrices, the numerical 
integration schemes, equilibrium iteration and convergence criteria 
are briefly discussed.

VII.2 Finite Element Solution

The two systems of equations (VI.10.1), (VI.10.2) and 
(VI.10.3),(VI.10.4) represent, respectively, the total Lagrange and 
updated Lagrange formulations of a geometric non-linear consolidation 
problem, where one may consider the constitutive stress-strain
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relationship and permeability matrix, dependant on the history of the 
soil stresses.

A general solution for these equations is impossible unless an 
approximate method is used.

Here, a numerical method of solution is presented by means of the 
finite element technique.

In the total Lagrange formulation the approximate equilibrium and 
continuity equations to be solved are, in matrix form:

(VII.2.1

(VII. 2.2)

whereas in the updated Lagrange formulation they are:

(VII.2.3)

(VII.2.4)
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where a7 — (L J, 1,0,0,0) and aT
t  d  d  d“ (1,1,0,1) (axisymmetric case) V -

(VII.2.5)

The equations (VII.2.1), (VII.2.2) and (VII.2.3), (VII.2.4) are linear 
equations in incremental displacement and pore-pressure for total 
Lagrange and updated Lagrange formulations, respectively. The 
derivation of matrices corresponding to a single isoparametric element 
are given since the assembling procedure is standard •

VII,3 Finite Element Matrices

In the isoparametric element solution the coordinates, displacement 
and pore-pressure are interpolated using

m m m

(VII.3.1) a,

m m

(VII. 3.3)

, b} , xf are the coordinates of the nodal point jc corresponding 
to direction i at time 0, t and / + Ar t respectively; ’uf r lpk are
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defined similarly to bf ; £* is the interpolation function 
corresponding to nodal point k ; and m is the number of nodal points 
of the element.

Using equations (VII.3.1), (VII.3.2), (VII.3.3) to evaluate the 
displacement and pore-pressure derivatives required in the integrals, 
equations (VII.2.1) and (VII.2.2) become, respectively, for a single 
element,

(VII.3.4) ioK L (Ajv i)̂  ou qL  &  oP 0‘

(VII.3.5)

where qG , 'qF , ‘qN , thus obtained are
defined as
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'f -  Ji« ,+a,R = J °</i + Jî '/
OJ *s *I>

-  J VT'<,Tr '0K V'J} ViS = [ ;£ r iZ> V'Jl °dt
•l) *|>

In the above equations 1qBl and TQBNL are linear- and non-linear strain 
displacement transformation matrices respectively, , due only to 
incremental displacement; J blx , due to initial displacement and 
incremental displacement, is called the initial displacement stiffness 
matrix; qB sl  , due to initial stresses and incremental displacement is 
also called the initial stress stiffness matrix; 0C is the
incremental naterial property matrix; J,<x is a matrix of 2nd Piola- 
Kirchhoff stresses; ‘0a is a vector of these stresses; is the
interpolation function for displacement within the element; tp is the 
interpolation function for pore-pressure within the element; is the 
permeability matrix for a pore-pressure increment; ‘0T is a 
transformation matrix which depends on the initial displacement; *§ is 
the prescribed total traction vector; / is the dead weight by unit 
volume; l0H is a scalar depending on the direction of gravity relative 
to the adopted reference frame; v and a have already been defined. 
All matrix elements correspond to the configuration at time t and are 
defined with respect to the configuration at time 0 .

Similarly, the finite element equations in the updated Lagrange 
formulation may be found to be:
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(vii. 3.6) = ,+A/* -\f

(VII.3.7) ~ \ H  /  -J/V

where \*L =

<i) M

£  = j’;£7> £'</>>, ^ = ; r T^

'+iU* - ;f = j V ; ^ "
•5 «i) 'i)

;yv = J^ Jvr ;r;A: v;w Vt? = J ^ r )̂ v;>7 Vi?

It should be noted that all integrals from equation (VII.3.4) until 
now are functions of the natural element co-ordinate and that the 
volume integrations are performed using a co-ordinate change from 
cartesian to natural co-ordinates.

The explicity form of the previous defined finite element equations 
are presented in the Appendix C.
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VII.4 Numerical Integration

Time integration - equations (VII.3.5) and (VII.3.7) contain the 
material time derivate of the nodal displacement points which are 
unknown. The time integration of these equations is impossible to 
evaluate exactly. So, an approximate procedure is required.

Let a typical time integral have the following approximation:

l+Af

(V I I .4-1) j  p k  d t =  a l t ' / +  U - a  ) & ' + * / ■ * ( ' / + P * . , P k ) A t

I

and 0 = 1  - a

where a may vary from 0 to 1.

a =1/2 linear variation in time 

a = 0 fully explicit method 

a = 1 fully implicit method

In order to ensure a stable calculation procedure, it is necessary to 
adopt 1/2 < cr < 1 (Booker and Small -1974).

Now evaluating the integration over time of equation (VII.3.5) with 
the aid of equation (VII.4.1)
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(VI1.4.2) - '0H V *  - 0 Ar' G a/  =  ‘qN  At +  Atf0G

is  obtained. A similar procedure may be used to integrate equation 
(VII.3.7) for the updated Lagrange formulation to find

(VII.4.3 )  Atuk -& A t\G A /  = Jyv A f  +  A f  \G \pk

Finally re-writing equations (VII.3.4) and (VII.3.5) in the following 
form:

(VII.4.4) (( o qKnl) 
\ ^ T

- ‘0L \/A0u*\ = ( ’+A‘R \
-iSAf'G J VAoPkJ V&/V Ar + Ar̂ G

and similarly for equations (VII.3.6) and (VII.3.7)

(VII.4.5) (c k l+ P nl) -\l v v *w  \V ~ \L T -0A t\G  J K A j t ) Vj;VAr + At'fi'p)

Volume integration - equations (VII.3.4), (VII.3.5) and (VII.3.6), 
(VII.3.7) must be integrated over the volume of each element. The 
integration function is, except for linear interpolation, very complex 
and is in most cases impossible to be integrated exactly. Hence, 
integration is evaluated approximately and numerically. There are many 
schemes for numerical evaluation of defined integrals; however the 
Gauss method has proved most useful for finite element work. The 4 to



1 0 1

3 variable-number-noded element has been used in the sample solutions 
in this vrork and the numerical integration is done using 2 x 2 Gauss 
points for any number of nodes per element.

VII.5 Equilibrium Iteration

It is important to realise that the system of equations (VII.4.4) or 
(VII .4.5) are only approximations of the actual equations to be 
solved in each load-time step. Depending on the non-linearities of the 
system, the linearization of equations (VI.8.13), (VI.8.14) and 
(VI.9.6), (VI.9.7) may introduce errors which ultimately results in 
solution instability. For this reason it may be necessary to iterate 
for each load time step until, within the simplified assumptions of 
the material response and numerical time integration, 
equations(VI.8.13), (VI.8.14) or (VI.9.6), (VI.9.7) are satisfied to a 
required tolerance. The system of equations in the total Lagrange 
formulation is then

(VII.5.1) { W + l  K»l) VV ~'0L T —f3Ai'0G Jx^opj;}

f + A / 1 >  __l + A f  cI K ° Vo \

It should be noted that for / = 1 , equation (VII.5.1) corresponds to 
equations (VII.3.4), (VII.3.5), i.e. A0u* = A0u*.AoP* «= ,'+ MF(0) = 'aF,

0 yv(D) 0/v ’ 0 (̂0) 0U -

The vector of nodal point forces equivalent to the element stresses 
, is the finite element evaluation of Jo+A,%(/)5o+A ŷ(/)°̂  *

where the subscript </) indicates that the stresses and strains are
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evaluated using 
Since *»+ai =

°0 tij

point forces for

r+ A f (/) * 
3A u,1/ dAW/ 

2 V  d a j
+ 5 •

s ^ Ui ,dAu„ d’+“ Ul > ,
d a ,  8 a : d a ,  d a . da." i  " J

the first two degrees of freedom are
the nodal

f+ A /0 0) f  f+ A r  o  T f + A j_  0 . ,  
I 0 ° US)0 aU)

in which the matrices ,+AtoB llo and i+A/s(/J correpond to the matrices 
qBl and off but are defined for time f + Ar and iteration <o , 

respectively

The vector of nodal point forces for the third degree of freedom o+AfA'(/) 
and ;+"C(0 y  are

i+x ,  - J r 4,f

r+ A f
0 G(»'oPk

I /f4 Atc T f+A/r̂  t+Atj? 0 . Q\f *
J(o E Du)o E d#)oP

where '+Af£ = , q+a,£)(j) and V o+a,/7(j) correspond to the matrices 0'Z)
and V ’qH but are defined for time r + Af and iteration w r 
respectively.

In the updated Lagrange formulation the system of equations used for a 
single element with equilibrium iteration is:

(VII.5.2) f(',K, + \K„l)V X T
„ l r + A r p  _r + A ip

-'f. V X  = ( ,+a' (i-') 'i
-SSto'.G + Ai SS!C(..l);p*''

in which the vector of nodal point forces equivalent to the element
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stresses \ , is the finite element evaluation of

j f+Af * /+Af . 9
l+Al<Tij(i)°t+At€ij(i) O V (i)

A

i.e.
l+i/n   | 1+A/nT l+4l_ l+Al j o
t+Atr {i) I l + A r °  Hi)t+Aia(i) a V (i)

■ A ,

where JX i f i lu ) and correspond to the matrices Jfi£and 'a
respectively, but are defined for time r + Ar and iteration to , 
respectively.

The vector of nodal point forces for the third degree of
freedom and tt+ t Gv)iPk are

r+Ar., _  1 t+Afr- T t+Ar~.
i+Ar/V(») r+Ar̂  d) i + Atu {i)

H  At?

f t+Atc T l+A/rx ~jt+Aifj j o 
I f+Af*" (/') f+Ar̂ i) v t+Ain (i)a  u {i)

where ,+aA u) »t+Atty) * ̂ \+a/̂(/)

l+A/̂
l+Aia(i)

f+A/ r 
l + Af̂ f)

f+Af
(/)

correspond to the matrices j£ , Jz) , VjA/, respectively, but are 
defined for time t 4- Af and iteration (l, , respectively.
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Procedure Iterative Calculation 

Define the following constants:

/o/ £0,01 nit'Z. 3 0 1, r •

A. Calculate displacement increment

1. If a new stiffness matrix is to be formed, calculate 
triangularize TZ , that is:

t t_ ((‘tKL + 'tKNi) \ _ T7TTi
X ~ \  - \ L T —0At  )  -  z z z

2. Form the effective load vector,

l +  rR  =  , +  * ' R  -  ' F

3. Solve for displacement and pore-pressure increment,

Z D  L {Au,Ap}T = ,+TR

4. If required,.iterate for non-linearities, that is:

a. / = i + 1

b. Evaluate the (i-l)st approximation to displacement

/+rA«(/_J} = rAu + Au(i_o-D

c. Calculate (i-l)st effective out-of-balance loads,

l+r
0-1)

and



105

d. Solve for the ith correction to displacement and pore-pressure 
increment,

Z7X2T {Au{i) + A p {j)} =

e. Calculate new displament and pore-pressure increments:

Au(f) = Au + Am(/) Ap(/) = Ap + Apu)

f. Check for convergence HAm|0||/||'Au + Au(<)|| < to l

If it converges:

Am = Am(/) , Ap = Ap{i) and go to B.

If it does not converge and i <nit : go to 1; otherwise restart 
using the new stiffness matrix and/or a smaller time step.

B. Calculate new displacements, pore-pressure, strain, stress and 
return to new load-time step.

A few words about convergence

Equations (VII.5.1) and (VII.5.2) are now ready to be solved at 
discreet points and time for a specific load path.

Provided the chosen element for the sample solution satisfies the 
criteria of invariance, continuity of displacement and pore-pressure 
within the element, rigid body deformation modes, constant strain and
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pore-pressure behaviour, inter-element compatibility of displacement 
and pore-pressure (which is the case when isoparametric 4 to 8 
variable-number-noded element with constant thickness is 
used,integrated at 2 x 2 Gauss points) the only reason for errors 
which could nake the absolute convergence requirement uncertain are 
those derived from the numerical integration and iterative calculation 
schemes adopted.

The iterative calculation procedure converges, however, to the right 
answer, if some care is taken with numerical time and volume 
integration schemes.

As far as time integration is concerned, the process is stable if the 
scalar /3> l j2  i s assumed (Booker and Small,1975).

As far as volume integration is concerned, the 2 x 2  Gauss points for 
a four to eight noded, constant thickness, isoparametric element is 
nearly ideal to ensure the convergence of the process. (Pugh, Hinton 
and Zienkiewicz, 1978; Bicanic and Hinton, 1979).

These suggestions were used as an integration rule in the computer 
programme with great success.
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CHAPTER VIII

CONSTITUTIVE LOCAL STRESS-STRAIN RELATIONSHIPS

VIII.1 Prelimi naries

Whichever model one considers to simulate the stress-strain 

relationship for soil, determining the parameter definitions for 

feeding into such a model has proved to be the most difficult task. 

This is not suprising when cne considers the number of variables which 

the soil response depends on, such as previous stress history, 

inherent anisotropy, induced anisotropy (influence of stress ratio 

direction or strain ratio direction), modulus of strain rate (or 

stress rate), irreversibility of deformation, mineralogical 

ccrnposition, laboratory technique etc... Extreme difficulties are 

encountered in distinguishing their different effects on the soil 

properties.

Innumerable laboratory investigations have been made to show these 

influences and a qualitative pictures of the soil response have been 

already achieved. For a quantitative analysis, however, they seem only 

to be applicable for the specific conditions (initial conditions, 

stress-path, stress rate ..., and type of soil under consideration). 

For a quantitive purpose a siirplified model has to be assumed and in 

this respect innumerable stress-strain relationships for soils have 

been proposed. Some of these models are better supported by the
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physical properties of the soil than others, however, the more 
realistic a model becomes the more costly is its practical 
application. Ihe choice of the type of model is then a question of 
cost-benefit, though seme times it becomes only a matter of preference.

Before presenting the various attempts to represent the stress-strain 
relationship, a brief description of soil properties will be given.

VIII.2 Brief Description of Soil Properties.

As far as the modulus of strain rate (or stress rate) is concerned the 
soil properties can be classified into two distinct regions. Cne where 
the modulus of strain rate (or stress rate) considerably affects the 
soil properties and the other region in which the properties are 
reasonably insensitive to the modulus of strain rate (or stress rate). 
The limiting strain rate(stress rate) modulus which separates these 
two regions can be called the quasi-static strain rate (stress rate) 
modulus and the soil properties obtained for strain rate (stress rate) 
moduli smaller than (or equal to) the limiting one, are defined as 
quasi-static properties, while the properties for the higher range of 
rates are called kinematic properties. The existence of such an 
idealized classification is strongly supported by many laboratory 
investigations but only a few will actually be mentioned here, such as 
Smith et al(1969), Vaid and Canpanella(1977), Gens(1982), De Campos 
(1982), Takashi(1981) and Right(1982), Lacasse(1979), Bjerrum (1971), 
Ladd et al(1972), Buri(1978), Crawford(1968a,b), Lovenbury(1969), 
Shmertmann(1975).

Smith et al (1969) have carried out Ko-consolidation tests with pore- 
pressure neasurement for three different soils at different constant
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vertical strain rate moduli. The pore-pressures were measured at the 
base of the sample, therefore the expected non-homogeneity of pore- 
pressure was taken into account in order to evaluate the effective 
average vertical stress. By plotting the change in void ratio versus 
effective vertical stress, it could be seen that the compressibility 
( A and K ) and the pre-consolidation pressure changed considerably 
for a certain range of strain rate moduli for calcium-montmorilIonite 
and Massena clay. It was also noticed that compressibility and pre­
consolidation pressure were not greatly affected by strain rate moduli 
lower than a certain value.

Although the influence of strain rate modulus considerably affects the 
properties of these two soils it does not seen to cause much influence 
on kaolinite. The latter's compressibility seems to be greatly 
insensitive to the strain rate modulus.

Similar consolidation tests under constant rate were carried out by 
Wissa et al(1971).

Undrained triaxial tests have been carried out on Lower Craner Till by 
Takahashi (1981), Gens(1982), Hight(1982), De Campos(1984) where 
isotropic and anisotropic normally and overconsolidated samples have 
shewn that the undrained stress- paths converge to one path when the 
strain rate(stress rate) modulus decreases.

Also Lacasse (1979) has carried out a comprehensive literature survey 
on the effect of shearing rates on the behaviour of clays. The 
behaviour of three materials was selected as prototypes of time- 
related behaviour observed in other soils. The selected three 
materials are: Drammen clay (Bjerrum, (1971)), Atchofalaya clay (Ladd
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et al(1972)) and Haney clay (Vaid and Cairpanella, (1977)). It is clear 
that in all three soils the strain rate modulus effect tends to become 
negligible as the testing rate decreases.

Other investigators have also reported the influence of strain 
rate (stress rate) modulus in one way or another in their laboratory 
observations, however just a few of them like Singh and 
Mitchell(1968), iakahashi(1981), De Caiipos(1984) and Hight( 1982) have 
systematically approached the effect of strain rate on the soil 
properties inside the kinematic region.

In the quasi-static region the mechanical properties of soils are 
better known than in the kinematic region. Most laboratory results are 
obtained for stress conditions restricted to triaxial or plane strain 
conditions, and just a few results has been obtained in more general 
stress state conditions. Hcwever, because most of the soil test are 
restricted to special conditions, i.e., triaxial compression, 
extension and plane strain, it is usually assumed that the behaviour 
of soil for a more general stress condition can be obtained by 
extrapolating from the properties of soil obtained in these simple 
conditions.

Bearing in mind this restriction the following simplified soil 
behaviour nay be stated:
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VIII.2.1 Soil Properties on the Quasi-Static Region

1. Triaxial Test Conditions

1.1 K-Consolidation Test and Swelling Test

laboratory test results of constant k tests are concentrated in the 
Jj/y, -plane with b=0 (or <t2 =  a3 = <rmin). Sane laboratory results start 
fran a slurry sample (null stress state) and consolidation at constant 
k is carried out until a high stress level is achieved. Others start 
fran compacted samples.

Although in the early stage of a k-consolidation test on slurry some 
reorientation of strain occurs, as soon as considerable strain occurs 
the strain rate direction remains constant until the end of the test 
(Gens,1982). Most investigators (Ladd (1965), Whitman et al (1960), 
Danaghe and Tcwsend (1978), Khera and Krizek(1967), Mitachi and Kitago 
(1976), Olson (1962) and Henkel and Sowa (1963), Lewin and Burland 
(1970), and Gens (1982)) report that k-constant consolidation tests 
for different values of k plot parallel in the water content versus 
logarithm of mean stress space, and in this plot water content for a 
certain mean stress usually decreases when k decreases. However, 
Whitman et al(1960) and Henkel and Sowa(1963) found a unique 
relationship between water content versus mean stress for 
isotropically consolidated and k -consolidated specimens, but they 
started with compacted samples.

Also Yudhdir et al (1978) report that the slope of the virgin 
consolidation line depends on the stress ratio.
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Sane k -consolidated tests on specimens Which have been previously 
prepared at a fairly lew water content have been reported by Lee and 
Morrison (197b) and Broms and Ratnam (1963). They found a unique 
relationship between water content and vertical stress, which 
confirmed Rutledge's hypothesis for initially compacted samples.

Swelling tests on samples initially normally consolidated at different 
constant k seems to show an unique slope when plotted in water 
content-logarithm of mean stress space (Gens, 1982), (Burland, 1967).

1.2 Failure Envelope Line, Critical State Line (triaxial conditions)

The ultimate failure stress state for most soil in triaxial 
compression seems to lie on the Mohr-Coulomb envelope line, 
independently of whether the soil is normally consolidated 
isotropically or anisotropically (for any value of k constant). 
Furthermore it seems to be only slightly sensitive to stress 
rate(strain rate) modulus and direction. However, if cyclic loading is 
applied sane difference is observed (Gens (1982), De Campos (1984), 
Takahashi (1981)).

In addition, the Mohr-Coulomb failure line seems to represent the 
locus of specimens which experience no aditional change in volume when 
further shear is imposed (Gens, 1982). A line which represents the 
ultimate possible state of stress of soil specimens and where no 
further change in volume occurs under an increasing shear strain is 
called the critical state line. Strictly speaking, however, 
anisotropically consolidated specimens find more difficulty in



113

reaching this state than isotropically consolidated samples. 

Anisotrcpically consolidated samples seems to require much larger 

shear strain to achieve a true critical state, if it is ever achieved.

1.3 Peak Strength

1.3.1 Peak Strength for a Stress Path Directed Towards the Hvorslev 

Line (triaxial conditions)

It seems that a specimen isotropically normally consolidated or 

anisotrcpically normally consolidated, isotropically over consolidated 

and anisotropically over consolidated which has its stress-path 

directed to the Hvorslev line in triaxial compression seems to find 

its stress peak on the Hvorslev Line (Gens, 1982). However, the path 

which specimens follow from the Horslev line to the critical state is 

not unique. Isotropically over consolidated sanples have been tested 

under triaxial undrained conditions and many possible stress paths 

from the Hvorslev line to the critical state line were found. Thus two 

extreme stress path can be idealized:

a- Once reached the Hvorslev line the stress path drop almost 

vertically to find its final position on the critical state line.

b- Once reached the Hvorslev line the stress state moves on it until 

the interception point between the Hvorslev line and the critical 

state line is achieved.

Vaughan et al (1976) postulated two classes of clay to explain these 

tvso distinct stress path observed in seme undrained laboratory tests.
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a- Soil with a high proportion of clay particles, 

b- soil with a lew proportion of clay particles.

They suggested that an overconsolidated specimen of clay type a after 

reaching the failure (Hvorslev line) would orientate its predominantly 

clay particles if further strain is imposed. The orientation of 

particles would weaken the material rapidly on the way to the critical 

state line (or by reducing the effective stress friction angle). A  

good example of this kind of behaviour is observed on isotropically 

over consolidated Mucking clay as reported fcy Wesley (1975).

If a similar sample of clay type b is tested in undrained conditions, 

not much clay fraction is present to be orientated , therefore the 

stress path does not drop frem the failure line (Hvorslev) but runs 

along it until the interception between the Hvorslev line and the 

critical state line is encountered. This kind of behaviour is observed 

in Weald and London clay as reported by Henkel (1958, 1959) and in 

Lcwer Crcmer Till as reported fcy Gens (1982).

Two completely different idealized criteria for failure and or 

softening behaviour have therefore been defined. For clay type a, 

failure occurs at the moment of reaching the failure envelope 

(Hvorslev line). Softening (or hardening) occurs continuously and 

slowly until the failure envelope is reached and from this point the 

critical state line is reached rapidly,the material neither softening 

nor work hardening. In practice, hewever, it seems that if material 

reaches the failure envelope by softening then it work hardens until 

the critical state. If material reaches the failure line by working 

hardening, then it softens until it reaches the critical state line.
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For clay type b the undrained strength is controlled by the water 

content, independently of whether the effective failure envelope is 

reached. In this kind of neterial softening and or hardening occurs 

continuously and slowly until the failure point (interception of the 

Hvorslev line with the critical state line) is reached.

There is, of course, scope for soils of intermediate behaviour in 

which both criteria have sane influence.

It should be noted however that the previous explanation is applicable 

only for undrained conditions because the drained test would give the 

same peak strength in terms of ( a, - <r3 ) for both types of idealized 

clay a and b. The drained peak strength would generally be closer to 

the undrained shear strength of the clay type a than that of clay type 

b, as reported by Gens (1982).

Although there is not much information available for anisotropically 

over consolidated soil of clay type a. tested under undrained 

conditions it is expected that the previous simplified picture can 

also be applied. Gens (1982) carried out undrained triaxial 

compression test on over consolidated samples where the stress path 

went towards the Hvorslev line and found no peak strength. The stress 

path engaged the failure line (Hvorslev line) and ran along it until 

the critical state was reached. However, the Lower Craner Till tested 

by Gens (1982) behaves more like clay type b than clay type a.

In conclusion, clay type a would present the same peak strength in 

drained and undrained tests while clay type b would present no peak 

strength in undrained tests but the drained peak, if in terms of
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( 0-, — <r3 ), would plot closer to the undrained peak strength of clay 

type a.

Also it can be concluded that the Hvorslev line seems to be applicable 

for any stress path which follows that direction, independently of the 

specimen conditions, but the stress path and the softening rule from 

the Hvorslev line to the critical state seems to have no simple way to 

be governed. The clay proportion in the material can be an indicator 

of tthe tendency of the he material stress path (and softening rule) 

frcm the Hvorslev line to the critical state line.

1.3.2 Peak Strength for Stress-Paths which Go Beyond the Hvorslev Line 

(triaxial conditions).

It seems that isotropically consolidated samples do not show any peak 

strength for stress paths which do not go in the direction of the 

Hvorslev surface, which is the case of isotropically normally 

consolidated and slightly over consolidated specimens. Drained and 

undrained tests on isotropically normally consolidated samples which 

experience stress paths not in the direction of the Hvorslev line find 

their ultimate strength at the critical state line without any peak 

strength, independently of the clay type.

The hardening and softening rules seem to be a continuous function of 

stress state, and the transition between hardening and softening seems 

also to be a continuous function of stress state independently of the 

type of clay.

Anisotrcpically consolidated (normally and slightly over consolidated)
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samples sheared in compression with the effective stress-path 

direction not towards the Hvorslev line, can present peak strength 

before the ultimate strength is achieved at the critical state. The 

peak strength seems to be more pronounced in low plasticity clays than 

in high plasticity ones. For exanple no peak is reported by Noorany 

and Seed (1965), and only a snail one by Henkel and Sowa (1963) and 

Mitachi and Kitago (1979). Hcwever, a peak is reported by Donaghe and 

Townsend (1978), Koutsoftas (1981), Ladd (1965), Ladd and Lambe 

(1963), Vaid and Campanella (1974), Gens (1982). Also, Gens (1982) 

reported that the brittleness increases sharply for samples which have 

previously been consolidated at lcwer k-constant values.

Large differences between undrained peak and ultimate strength usually 

involve significant differences between the friction angles at peak 

and ultimate conditions. The reverse does not seem to be true. Soil 

like Atdrafalaya clay (Ladd and Edgers, 1972) and Kawasaki clay (Ladd, 

1965) shews very little undrained brittleness but large differences 

between peak and ultimate friction angles. Hcwever, since the strain 

rate modulus in the different tests were different it is dangerous to 

cane to any conclusive pattern of behaviour.

It seems also that the strength of isotropically normally and over 

consolidated samples and the ultimate strength of anisotropically 

normally and over consolidated sanples all coincide for the clay type 

b as postulated fcy Vaughan et al(1976), independently of the stress 

rate (or strain rate) direction. In fact undrained and drained test 

carried out by Gens (1982) show that the previous statement holds. 

Hcwever, clay type a, as postulated by Vaughan et al(1976), would have 

to run along the critical state until it finds an ultimate strength 

cannon to all kind of soil conditions. This statement needs much more
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experimental confirmation before any definitive conclusion can be 

achieved.

1.4 Stress Path Effect on Soil Response 

1.4.1 General

Before discussing the stress path(strain path) influence on soil 

response a brief review of the critical state theory will be 

presented.

Rendulic (1936,1937) and later Henkel (1960) observed that the stress 

path followed by undrained tests on samples previously isotropically 

consolidated were very similar to the constant void ratio contours 

derived frcm drained tests carried out cn the same types of sample.

Roscoe et al (1958) incorporated these observations into the concept 

of the state boundary surface which relates the stress states and void 

ratio observed in normally consolidated samples. Together with other 

contributions from Roscoe and Poorooshasb (1963), Roscoe and Bur land 

(1968), Schofield and Wroth (1968), Atkinson and Bransby (1978) the 

basic postulate of the critical state theory becomes;

On the "wet" side:

1. All possible states of stress (usually defined by the stress 

invariants , T2, 6j ) and void ratio (or water content, or volume) 

forms a surface in the four-dimensional space and it is called the 

state boundary surface (SBS).
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2. A Three-dimensional form of this surface for 6j =constant, 

particularly for 8j = r/6 or b =0 (or a2 = <r3 = omin ) has the 

following properties:

a. The interception of a family of planes 7 Jjl - constant with the 

SBS, plot as parallel straight lines in water content- logarithm of 

mean stress space.

b. The interception of a family of constant volume (or void ratio) 

planes with the SBS plot as a family of parallel curves in 72 , 

space.

c. Any sectional line in a surface find its locus in a two-dimensional 

representation of the surface. This is the case of drained, undrained 

or any other non-special stress path on the state boundary surface.

d. The plastic potential in the two-dimensional representation 

coincides with the SBS, but does not coincide in three-dimensional 

representation. If the plastic potential coincides with the SBS in the 

three-dimensional plot (p, q, e) the strain rate does not necessarily 

plot orthogonaly in the two-dimensional representation.

On the "dry" side:

On the dry side the soil specimens fail at the Hvorslev line and the 

ultimate strength with no further change in volume is found when the 

sample reaches the so called critical state line. Here, soil specimens 

if further sheared (in the same direction), experience no further 

change in volume or in stress state.

The four-dimensional form of this surface is considered to be achieved
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by interpolating the observed response in different 0, ^constant 
section, i.e., test results on 8j = x/6 , 8j =  0 , 6j = t/6 can be 
used to find the general form of the SBS function of J, , 7 2 , 8j and
void ratio.

Basic Corollaries:

1. A  directly consequence of postulate 2 .b. is that the state boundary 

surface is normalisable in the J 2 , space, i.e., reducible to a 

two-dimensional curve in J2, J, space. Particularly, reduction to a 

two-dimensional plot can be achieved by nonmlization in relation to 

water content or any other variable which can uniquely be related to 

the water content, for example, mean stress at virgin consolidation 

line (Pe).

2. A line on the SBS obtained by the interception of Jj/J, constant 

planes with constant volume plane plot as a point on the same line in 

water content-logarithm of mean stress space as postulated in 2.a..

3. The 7 2//, constant plane plotted in the two-dimensional 

representation of SBS, in the 72 , , 8 =eonstant space, reduces to 

a point.

1.5 Stress Path influence

Very few results strictly obey the idealised assumptions of the 
critical state theory. Innumerable discrepancies has been reported:
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For example Roscoe and Thurairajah (1964) found inportant differences 

between normalized stress paths observed in undrained conventional 

triaxial test on kaolin, i.e., they do not obey the Rendulic 

principle.

Using a biaxial apparatus, Hambly (1972) tested anisotropically 

consolidated sanples under plane strain conditions and when plotting 

equal volume change contours, he found that they were no longer 

geometrically similar to each other or to the undrained stress path.

Le Lievre and Wong (1970) reported that by using stress controlled 

tests on certain kinds of kaolin the normalised stress path 

differences could be reduced but not eliminated. Newland (1975) 

published a complete set of results concerning triaxial tests on 

kaolin and found that normalized stress paths in drained and undrained 

test are different. Lewin and Bur land (1970) reporting results on 

slate dusts shewed different normalized stress paths for drained and 

undrained tests. Gens (1982) reported quite different normalized 

stress paths obtained in drained and undrained (and many others paths) 

on isotropically consolidated sairples of Lower Cromer Till.

The non-uniqueness of the normalized stress path can be at least 

partly attributed to the development of an anisotropic structure 

during consolidation (Gens, 1982).

The stress path has also a great influence on the direction of the 

strain rate, which will be discussed in the next section.

1 2 1
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1.6 Strain Rate Direction

It is assumed in the critical state theory that the strain rate 

direction is normal to the SBS in the normalized J 2 , /, stress space, 

being a function of the stress state alone.

Many discrepancies in these assumptions have been reported. For k - 

constant consolidation tests innumerable variations in the ratio 

i) = 7JJX when plotted against 7 JJ\ have been reported by Roscoe 

and Fooroshasb (1963), Balasubramanian(1969), Le Lievre (1967), Namy 

(1970), Gens (1982).

Furthermore, many investigators have shewn the strong influence of the 

previous consolidation history on the strain rate direction (Lewin 

(1973, 1975), Wood (1973, 1975, 1981) and Wood and Wroth (1977), Gens 

(1982)).

In general a sudden change in direction of the stress path makes the 

strain rate direction rotate with some delay from the previous 

established direction until it finally achieves a new direction 

corresponding to the imposed new stress ratio direction. Lewin (1973), 

Gens (1982) carried out many tests to show this and sane of the stress 

paths used by them will be described:

First sequence of set of tests:

1. One set of samples was consolidated, each with constant k (k 

varying fran 1 to k at critical state), to a high stress level. The 

direction of strain rate for each constant k was recorded.
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2. One (or many) sanples were consolidated uni-dimensionally (k=0.5) 

and then sheared undrained until k=0.667 was reached, from which 

further consolidation was carried out. The recorded strain rate ratio 

fran k=0.667 onwards was not the same as that corresponding to k=0.667 

obtained in the consolidation test where the stress rate direction was 

always steady (as obtained in the first item). However the strain rate 

direction seens to converge to the one corresponding to k=0.667 (with 

steady stress ratio direction) at a higher mean stress. Usually 

convergence occurs for a mean stress twice or more that corresponding 

to the initial stage of the consolidation test with k=0.667.

3. One (or many) samples ware consolidated uni-dimensionally (K=0.5) 

and then unloaded until k=l, from which further consolidation was 

carried out. Again, the recorded strain rate ratio during k=l 

consolidation was no longer equivalent to the one corresponding to the 

consolidation with k=l as obtained in the first item. Strain rate 

directions for samples with a history of stress previous to k=l 

consolidation, as presented in this item, do not appear to converge to 

the one correspondent to k=l consolidation (as obtained in the first 

item) at least until the mean stress reaches four times the one at the 

initial stage of k=l consolidation. Hcwever, the tendency to do so can 

be observed.

Other stress histories have been imposed to show the effect on the 

strain rate direction. The effect on the strain rate for stress paths 

in the b=0 plane has been reported fcy Lewin (1978), Gens (1982); and 

for b=l by Lewin (1978), and for stress paths in the deviatoric plane 

by Wbod (1981).

Most observations on the influence of stress path direction on the
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strain rate direction are for the following test pattern.

Strain rate ratio is observed for a steady stress path and then, after 

the stress ratio has suddenly changed to another direction, the 

rotation of strain rate is observed for a new steady stress ratio.

The general conclusion is that the change from one steady stress ratio 

direction to another steady stress ratio direction results in strain 

rate direction being no longer equivalent to that obtained if the 

sanple were tested steadily with an unique stress ratio corresponding 

to the second stress ratio direction. However a clear tendency to 

converge to it is observed when the last steady stress path has 

reached a high level of mean stress. The value of mean stress depends 

on the material and the stress path under consideration, nevertheless, 

a mean stress twice or more the mean stress at the beginning of the 

last steady stress ratio is acceptable.

Also, whether the convergence occurs frcm higher or lcwer values than 

the convergent one depends on the sample stress history. For example, 

for specimens uni-dimensionally consolidated and then unloaded 

previous to subsequent consolidation with a higher constant k (for 

b=0) the strain rate is shewn to converge frcm a lcwer value than the 

convergent one. Hcwever, specimens consolidated at constant k=l and 

then loaded previously to a subsequent consolidation at higher value 

of constant k, shew that the strain rate converges fran a higher value 

than the convergent one.

Although important gains have been achieved in these researches; the 
influence of a more ocnplex stress path on the strain rate direction 
is yet to be knewn.



125

2. Third Stress Invariant Effect

2.1 General

The soil behaviour described previously was concentrated on the 

behaviour observed in the plane b=0 ( 6 — rf6 ). Soil in the field, 

however, presents a much more general stress path than those allowed 

in the b=0 plane. Consequently it is highly desirable to find out how 

soil responds in a more general stress space.

An attempt to define the third stress invariant influence on the soil 

can be made by carrying out extension tests (triaxial test equipment) 

and plane strain tests (plane strain equipment). However, for a more 

systematic observation, a true triaxial equipment and/or hollow 

cylinder apparatuses is required. But,unfortunately a discussion of 

the advantages and disadvantages of these apparatus is out of the 

scope of this thesis.

Although most results are reported for triaxial extension (triaxial 

test equipment) and plane strain (plane strain equipment) some more 

general studies in the t -plane have been reported when using the 

true-triaxial and or hollow cylinder apparatus, these being: Krieg 

(1975) and Ladd et all (1977), Sekiguchi and Ohta (1977), Tavenas et 

al (1979), Tavenas and Leroueil (1977), Vaid and Campanella (1977), 

Wissa et al (1971), Hashiguchi (1977,1981).
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2.2 Critical State Surface and Hovslev Surface.

There has been a lot of arguments as to whether the Mohr-Coulomb 

evelqpe represents the critical state or not. Innumerable test results 

have been carried out in order to measure the friction angle for 

extension and plane strain conditions and a few of these are reported 

here.

-Extension tests give similar angles to those measured in compression 

only for normally consolidated specimens. Even in this circumstance 

exceptions were found where the difference between the ccmpression and 

extension friction angle can be, for example, 13.6°, 6.8°or 34°as 

reported by Mitachi and Kitago (1979), Brans and Casbarian (1965) and 

Leon and Alberro (1972), respectively, the extension friction angle 

being greater. The difference between effective stress friction angles 

observed in the extension test on anisotrcpically consolidated samples 

and in ccmpression is in general as high as 1.6°, 2.1°, 2.5°, 4°, 5°, 

7.2° as reported ty Gens (1982), Mitachi and Kitago (1980), Koutsoftas 

(1981), Vaid and Campanella (1974), Ladd and Varallyay (1965), Parry 

and Nadarajah (1974), respectively. The same friction angle in 

ccnpression and extension for anisotropic consolidated samples was 

reported ty Andersen et al (1980). No pattern between the friction 

angle obtained in undrained extension and in undrained compression 

tests can be arrived at. Mitachi and Kitago (1980) found the friction 

angle for extension tests on isotropically consolidated sample greater 

by 14° whereas Parry and Nadarajah (1974) reported friction angle 

values lower ty 7.5°. Friction angles obtained in undrained extension 

on samples anisotrcpically consolidated sample greater by 1. 3° and
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1.5° have been reported by Gens (1982) and Ladd and Varallyay (1965), 

respectively.

The value of friction angle obtained in undrained plane strain on 

samples consolidated isotropically have been reported to be higher 

when compared with the value of friction angle in t r i a x i a l  

compression. (Lade and Musante, 1977, 1978; Yong and Mckyes ,1967, 

1971; and Wood, 1973). However, Pearce (1970, 1971) and Wu et al 

(1963) have found the Mohr-Coulomb failure criterion applicable, 

though the latter had to use Hvorslev parameters in order to do so.

A  great number of studies involving plane strain tests on k - 

consolidated samples have been reported also. Duncan and Seed (1966), 

Roscoe et al (1959), Ladd et al (1971), Hambly (1972), Sketchley and 

Bransby (1973), Gens (1982) reported the same friction angles obtained 

in triaxial compression and in plane strain conditions on samples 

consolidated anisotropically, where the angle of friction under 

consideration is the maximum mobilized angle of friction.

However, observations reported by Mitachi and Kitago (1980) suggest a 

different friction angle for both cases. Larger difference exists if 

the angle of friction at peak is considered.

Furthermore, a series of drained test carried out by Gens (1982) on 

Lower Cromer Till show that no great error is involved in the 

assumption of a unique value for the ultimate friction angle 

corresponding to the critical state. Again, if the peak friction angle 

is considered then greater differences would be encountered. (Simons, 

1960a; Gens, 1982).
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Similar values of angle of friction in drained and undrained tests 

have also been reported by Amerasinghe and Parry (1975), Hambly and 

Roscoe (1969), Henkel (1956,1959), Parry (1960), Simons (1960a, 

1960b).

Fran these observations it is clear that the Mohr-Coulomb failure 

envelope is not generally applicable.

Also, although the Hvorslev surface may be applicable for certain 

types of isotropic soil it does not seem to be so in extension for 

sane anisotrcpically consolidated samples.

2.3 Lindrained Shear Strength and Mean Stress at Failure for tests

Other than the Compression Test.

2.3.1 Isotropically Consolidated Specimens.

The undrained shear strength obtained in compression ( Cul) and 

extension (Cue) tests on isotropically consolidated soil does not 

exhibit any peak. Ihe ratio CjCue is usualy 1.15 or higher for most 

soils. Gens (1982) found the ratio CjCue to be 1.18, being strongly 

independent of the over consolidation ratio, although similar values 

for both strengths were reported by Parry and Nadarajah (1974), 

Mitachi and Kitago (1979), and Leon and Alberro (1972).

The value of mean stress at failure observed in extension and in 

ccmpression Pjc on isotropically normally consolidated soil are not in 

general equal. For Lcwer Craner Till the ratio PfejPfc e<3ual to

1.18. However, almost equal mean stresses at failure for compression
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and extension on normally consolidated soil have been reported by 

Parry (1971).

Hie normally consolidated stress path forms a kind of boundary for all 

the other stress paths for over consolidated sample.

Also, it can be observed that the initial undrained shear modulus for 

caipression and extension on isotropically consolidated samples are 

almost the same.

2.3.2. Anisotrcpically consolidated specimens

Not many undrained triaxial ccnpression and extension tests have been 

carried out on anisotrcpically consolidated soil. Actually, just a few 

have been reported for normally consolidated, such as Mitachi and 

Kitago (1979), Ladd and Varallyay (1965), Gens (1982) for 

reconstituted sanples; and Koutsoftas (1981) and Vaid and Campanella 

(1974) for intact sanples. From these results the following may be 

concluded:

Anisotropically consolidated sanples sheared in triaxial compression 

present a peak in strength ( Cp ) and an ultimate strength ( Cu ) whilst 

when sheared in extension no peak is noticeable. However, no 

pronounced peak has been reported by Vaid and Campanella (1974). The 

peak characteristic of clay seems to be related to its plasticity 

index. The lower the plasticity index the more pronounced the peak . 

Furthermore, it is clear that the degree of undrained brittleness 

increases sharply for sanples which have been previously consolidated 

at lower k-constant values. The magnitude of the anisotropy, as
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suggested by comparison of the ultimate values in compression and 

extension, increases substantially as the k-constant consolidation 

ratio (carried out previous to the undrained shear) reduces. High 

stress levels during consolidation also appears to reduce the 

stiffness Which is observed after the sample has gone into extension. 

(Gens, 1982).

Although the ultimate stress values of a series of anisotropic 

consolidation and isotropic consolidation tests coincide, they are 

quite distinct for samples sheared in extension. Part of this 

difference can be explained by the anisotropy effect, part by the 

change in b, and part by the difference in friction at the boundary 

introduced by the loading conditions.

Comparing results from isotropic and anisotropic tests, assuming the b 

effect will be the same in both, the effect of anisotropy on the 

ultimate undrained strength for anisotropically consolidated sample 

can be evaluated. Ey doing so Gens (1982) showed that the resulting 

horizontal/vertical ratio of critical state strengths turned out to be 

an approximately constant value of 0.79, against a value of 0.83 

obtained from undrained tests on horizontal and vertical samples 

previously consolidated anisotropically. Ihe strength ratio was found 

to be approximately constant for all over consolidation ratios (OCRs).

The normally consolidated stress path forms a kind of boundary for all 

the other stress paths and so it provides the envelope of the possible 

peak strength values. The resulting undrained brittleness defined as 

CpfCu is seen to depend strongly on the degree of overconsolidation.

Similar comments can be made in relation to the plane strain tests on
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anisotrcpically consolidated samples.

VIII.2.2 Properties of the Material in the Kinematics Region.

1. Speculative Introduction

Because of the nature of the linking betweeen particles, soil exhibit 

viscous effects. An static sample of clay achieves its internal 

mechanical equilibrium by balancing the various atractive and 

repulsive forces acting within its volume. Similarly for a static 

sanple of sand to be in internal equilibrium it has to satisfy the 

contact and repulsive forces acting within its volume.

An external action on the soil mass boundary has to break this 

internal equilibrium before making the soil deform. The intensity of 

the resistive force offered to the action seems to depend on the rate 

of the actions and its direction is opposite to it. When deformation 

occurs the material goes on changing its structure either until a new 

stable structure for kinematics is achieved or until static boundary 

conditions are achieved. If, however, a material under a kinematic 

boundary condition experiences a sudden change in the boundary, such 

as a change of modulus and/or direction of the stress rate, new change 

in structure are observed until a new stable structure is achieved. 

Each change of the boundary conditions, frcm static to kinematic, fran 

one kinematic state to another kinematic state seems to be accompanied 

by a change in structure.The change in structure, therefore, is a 

function of deformation and time (as explained elsewhere).
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Fran the physical point of view this time dependent process occurs 

continuously and seans to be more important for strain rates higher 

than the quasi-static one. Special care must be taken when measuring 

the material properties in this range of strain rate (or stress rate) 

because of the degree of non-uniformity of the physical material 

response which seems to increase for higher strain rates.

Also, standard triaxial test equipment results, must be viewed with 

great care, particularly the comparisson between compression and 

extension tests, because of the difference in the friction at the 

boundary, and this can generate a greater source of errors.

The influence of the strain rate (or stress rate) larger than the 

quasi-static on the soil properties will then be described as follows:

2. Failure Envelope Line (and surface)

The friction angle obtained at the ultimate stress state in a triaxial 

compression test does not seeem to be considerably affected by the 

strain rate intensity. Indeed, undrained compression tests carried out 

by De Canpos (1984), Takahashi (1981), Hight (1982) on isotropically 

consolidated and overconsolidated specimens of Lower Cromer Till 

shewed no great effect of the strain rate intensity on the effective 

stress friction angle. Also the majority of data presented by Lacasse 

(1979) agrees with this conclusion. Furthermore, undrained triaxial 

compression tests on sand carried cut by Shelley (1984) on inherently 

anisotropic sand consolidated isotropically does not reveal any 

significant strain rate intensity effect on the friction angle 

obtained at the ultimate stress state.
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Uhdrained triaxial extension tests carried out by Takahashi (1981) 

shewed that the friction angle is semehew affected by the strain rate 

intensity.

More laboratory results for other materials and other conditions than 

triaxial compression or triaxial extension are necessary to show the 

influence on the Hvorslev surface.

3. Peak Strength, Pore Water Pressure Generation.

Undrained triaxial compression tests on isotropically consolidated 

soil exhibit large undrained strength increases for larger strain rate 

intensities.

Certainly because less time has elapsed during the period when larger 

strain rates are applied in the undrained triaxial tests less 

relaxation in mean stress and consequently in generation of pore water 

pressure are observed, Lacasse (1979), Takahashi (1981), Hight (1982).

Several investigators (Vaid and Campanella (1977), Bjerrum et al 

(1958), Richardson and Whitman (1963), Crawford (I960), De Campos 

(1984)), shewed that the effect of strain rate intensity on the soil 

strength is more pronounced in isotropically overconsolidated 

specimens than in isotropically normally consolidated ones. Richardson 

and Whitman (1963), however, point out that the water migration 

effects have an important influence on the measured strength of an 

overconsolidated sample.

The observed undrained peak strength in compression of anisotropically 

normally consolidated or slightly overconsolidated sanples seems to be
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greatly increased by an increase in the strain rate. (Hight , 1982; 

Gens, 1982; De Campos, 1984; Takahashi , 1981).

It should be mentioned that the ultimate undrained strength of 

anisotrepically consolidated sample can be nuch less sensitive to the 

strain rate. (Gens, 1962; Takahashi, 1981; Hight, 1982).

Undrained triaxial extension test on isotropically normally 

consolidated and overconsolidated sample suggested similar trend of 

behaviour: Less pore-pressure generation and higher undrained strength 

with increase in strain rate. (Takahashi, 1981; De Campos, 1984)

By observing the laboratory test results it can be concluded that the 

increase in ultimate undrained strength for isotropically and 

anisotropically normally consolidated samples due to increase of 

strain rate, can not represent by itself the amount of decrease in 

pore-pressure generation for stress levels below the critical one. 

Indeed, decrease in water pressure generation with increase in strain 

rate at the earliest stage of an undrained test can be substantially 

higher than the increase in ultimate strength.

It will be seen that the decrease in pore-pressure generation with 

increase in strain rate in an undrained test can be, at least 

partially, explained by the decrease in the material compressibility 

due to the strain rate increase.

Many laboratory results such as Lacasse (1979), Takahashi (1981), De 

Campos (1984) , Hight (1982), have suggested sane kind of pewer law or 

exponential function to represent the empirical relationship between 

strain rate and undrained strength. A typical function is that the
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undrained strength obtained in compression tests increases linearly 

with the logarithm of strain rate. The overconsolidation ratio and the 

plasticity index also influences this empirical relationship.

Ccrrpressibility: smith (1969) and Wissa et al (1971) carried out k - 

consolidation tests at a constant rate of deformation and reported 

substantial decreases in compressibility ( X , K ) and increase in pre­

consolidation pressure vhen the strain rate intensity increases, the 

effect of change being more pronounced in more plastic material. No 

test including a change in the direction of action has been performed 

yet.

No information, however, can be obtained about the effect of a change 

in strain rate on the soil compressiblity. A  consolidation test 

changing its constant strain rate to another would show this 

influence.

In practice the effect of a change in strain rate on the soil 

properties is extremely important. For example, a n o r m a l l y  

consolidated soil (static conditions) when loaded to a certain stress 

rate will exhibit a compressibility characteristic different from that 

exhibted when loaded from static equilibrium to another stress 

intensity. Obviously innumerable rates will occur in engineering 

practice vhich will only add to the other difficulties in finding a 

proper model for soil.

In k -consolidation tests the Young's modulus obtained for effective 

stress can be shown to increase at higher strain rates.

Also a considerable increase in the Young's Modulus can be observed in
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undrained tests on isotropically and anisotropically normally and 

overconsolidated sample when sheared at a higher strain rate. 

Obviously the increase in undrained shear modulus may be associated 

with the decrease in compressibility as discussed previously.

VIII.2.3 Effect of the Strain Rate on the Stress-Strain 
Relationship Based on the Elasto-Plastic Theory.

1. First Yielding.

The first yield locus is dependent cn the strain rate. Indeed as the 

first yield depends on the pre-consolidation pressure, it must be a 

rate function.

2. Shape of the Yield Locus and Plastic Potential.

One should remember that the yield locus shape, as obtained by the 

critical state theory, is based on Rendulic's Principle, i.e., all 

possible stress paths for normally consolidated samples can be reduced 

to an unique cue when normalized with relation to the mean stress 

obtained in the isotropically consolidated test.

Also it has been mentioned previously that this principle does not 

seem to be applicable to most soils and it is much less applicable if 

the strain rate is taken into account. Many yielding surfaces exist, 

one for each initial condition, each stress path, each strain rate (or 

stress rate) intensity. In soil mechanics practice the shape of the
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yield locus is obtained based on the undrained stress-path and as the 

undrained stress-path is a function of the rate, so will the yield 

locus be.

3. Elastic Constants

The elastic constants are functions of the strain rate (or stress 

rate). As the elastic constants can be expressed as a function of the 

slope of the reconsolidation line (k) they will be rate functions.

To take into account all these influences, or any of these influences 

is not an easy task. Many simplified model taking strain rate into 

account have been proposed. The first, which corresponds to the 

observation described in item "a" and "c" above considers the material 

as viscoelastic-plastic, which means that the rate causes no effect on 

the plastic deformation. The difficulty here lies in defining the 

visco strain in the elastic region, which is usually assumed to be a 

function of time and stress level, and in defining the first yielding. 

Also, material points moving to the elastic region would be difficult 

to consider.

This kind of approach can be very useful when introducing the rate 

effect in an overconsolidated region by means of kinematic hardening.

Secondly, the consideration of the soil as an elasto-viscoplastic 

material, which means that the viscous effect occurs in the plastic 

region. This approach makes it easier to define the first yielding 

surface, which can be useful when introducing the rate effect for the 

normally consolidated region.
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Many other approaches exist and they will be discussed in the next 

section. However, all of them are extremely rigid and can be applied 

only for each special circumstance.

In this work a more flexible approach will be suggested.

VIII.2 .4 Material Behaviour for Rates Smaller than the
Quasi-Static One:

It has been seen that the rate effect (creep law) in the kinematic 

region can be expressed by some empirical law.When, however, the 

strain rate becomes smaller than the quasi-static one, different 

values for the constant must be used, because it has been shown that 

the soil responds to the rate action in a ocnpletely different manner 

for this range of strain rates. A discussion in more detail will be 

given in the next section.

A material straining at very large strain rates would experience 

extremely small deformations , while the stress state changes 

dramatically because of the smaller ccnpressibility of the material. 

Eventually, material straining at very high strain rates would fail at 

the Mohr-Coulcrrib type envelope after the occurence of infinitesimably 

small strains. In other vords, the material, on the way towards the 

Mohr-Coulanb envelope would experience neither work hardening nor 

softening, and the response would be of a perfectly plastic material 

with a Mohr-Coulcmb type envelope. In this sense, there would also be 

a strain rate where the material would experience virtually no 

deformation on the way towards the Von-Mises type envelope to finally
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end at the Mohr-Coulcmb type envelope. Also, there would be a strain 

rate where material would strain elasto- plastically through a yield 

surface dependent on second degree terms of mean stress.

Results of undrained tests on normally consolidated samples at higher 

strain rates consistently show the undrained stress-strain 

relationship to be stiffer , the pore-pressure generation to diminish 

and the undrained strength to increase, which agrees with the soil 

response as viewed fran the consolidation test point of view, where 

the soil carpressibility decreases and the pre-consolidation pressure 

increases at higher strain rate intensities.

The usual classifications of an idealized soil material are presented 

next, together with their respective difficulties and restrictions of 

applicability.

VIII.3 Brief Contents on Various Attempts

In elasticity theory there are basically three approaches to define 

the constitutive behaviour of materials. Although retaining the 

concept of "elasticity" they provide constitutive equations which no 

longer produce the same results. In fact, three different types of 

generalization are obtained, which are named by Truesdell (1965) as 

elasticity, hyperelasticity and hypoelasticity.

Since the Eulerian stress tensor and the Eulerian-Almasi strain tensor 

are related uniquely to the Kirchhoff stress tensor and Green-Lagrange 

strain tensor respectively, these three "elastic" constitutive 

equations hold for small and finite strain conditions. However,
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special difficulties are encountered in the concept of stress rate 

used in hypoelastic (or plastic) type materials. The difficulties care 

when the requirement of invariance of the stress rate is not satisfied 

by a unique relationship (Oldroyd (1950), Truedell (1953), Prager 

(1961), Cotter and Rivlin (1955)).

However, Oldrcyd pointed out that the differences among the various 

definitions of stress rate are not important once they can be uniquely 

related to each other. In chapter IV all linear combinations of 

different stress rate definitions, were presented. (For more details 

see references above)

Next, the various attempts are going to be considered without 

discussing the derivations. The derivations for almost any idealized 

attempt will be discussed separately in a following section.

VIII.3.1 Elasticity - Viscoelasticity

The first definition (elasticity) is based on Cauchy's approach and 

states that the current state of stress depends only on the current 

state of deformation (i.e., stress is a unique function of strain, 

independently of the stress (or strain) path history of the loading 

cycle (loading, unloading, etc...)) and time (viscous effect).

Elasticity (or linear elasticity) has been extensively used in the 

past to model clay skeleton behaviour by means of Biot's theory. The 

first consistent application was introduced by Sandhu and Wilson 

(1969), Hwang et al (1972), Verruijt (1972,1977), Matsumoto (1976) 

etc... Very few theoretical approaches , hewever, include the viscous
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behaviour, except Biot (1956a), who has proposed a general 

viscoelasticity theory with a thermodynamic approach, and Mandel 

(1957) and Tan (1957a,b), who has proposed a general three dimensional 

theory where the rheological type model (Maxwell-type solid) was 

assumed to simulate the soil (clay) behaviour. Very few applications 

have included these models, but viscoelasticity has been used to some 

extent, Suklje (1977), Booker and Small (1977), Zienkiewicz and 

Cormeau (1974), Shrith (1982).

Fran a computer point of view visco-elastic models are very attractive 

since they provide a very simple and inexpensive solution.

Fran the physical point of view linear elasticity (or viscoelasticity) 

may be sufficient to predict behaviour of heavily overconsolidated 

clay, especially for the dry crust of a clay layer. If this crust has 

a substancial thickness, linear elasticity can be perfectly justified 

in the case of a sinple surface loading, even if the subsoil is only 

slightly overconsolidated, the reason being that the additional 

stresses fran the applied load decrease rapidly with depth and the 

deformation field for small stress changes will be of little 

significance even for strongly non-linear soil masses. Of course, this 

conclusion is not absolute and its validity has a compromise which 

lies between the variation of overconsolidation with depth and the 

absolute value of the additional stress level.

Although many non-linear models have been preposed, linear elasticity 

will always be used for soil because the more sophisticated models are 

restricted to a certain simple circumstances, for which linear 

elasticity can, to certain extent, provide similar answers in pratical 

engineering for much less cost.
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VIII.3.2 Hyper and Hypoelasticity-Viscohyperelasticity

The second definition (hyperelasticity) is based cn Green's method and 

assumes the existence of a strain energy density t (or a 

complementary energy function ft ) such that the current state of 

stress (or a current state of strain) is a function of the rate of 

change of the strain energy density (or the stress energy density) 

with respect to strain (or with respect to stress). In this t is, in 

general, an analytical function of strain but normally stipulated as a 

function of strain invariants and ft is, in general, an analytical 

function of stress but normaly stipulated as a function of stress 

invariants.

VIII.3.3 Hypo-Elasticity

The third definition (hypo-elasticity), also called the incremental 

model, embodies the rate theory and describes the mechanical behaviour 

of a class of materials in which the state of stress depends on the 

current state of strain as well as on the stress path followed to 

reach that state. This class of material is reversible for 

infinitesimally small increments, thus justifying the use of suffix 

"elastic" in the term hypoelastic used by Truesdell, but not 

reversible for ^

The so called pseudo elasticity which is a hybrid form of hyper- 

hypoelasticity was first introduced by Duncan and Chang (1970).
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In this a volume energy f u n c t i o n  is a s s u m e d  to e x i s t  

(hyperelasticity), but deviatoric strain-stress relations are of rate 

type, i.e., the bulk modulus is assumed to be a function of the mean 

stress (in practice often restricted to the initial mean stress), 

while the tangent shear modulus continuously decreases with mobilized 

shear stress and tends to zero when the deviatoric stress approaches a 

maximun value (asynptotically) determined by a Mohr-Coulomb failure 

criterion.

More recently, Duncan (1960) has extended the model to take into 

account volume change and cyclic loading but neither intermediate 

stress influence nor anisotropy are taken into account.

A more rigorous treatment for the hyperlastic model is given by Nelson 

and Baron (1971) for isotropic conditions and cyclic loading and 

Saleeb and Chen (1980) where only isotropic conditions and 

monotonically increasing loading are allowed. Both approaches, 

however, include the influence of the intermediate stress component, 

and provide invariant oonstitutitve equations. Also volume change is 

taken into account.

Many applications of non linear elasticity of Duncan's type have been 

used: Cauvodinis (1975), Osaimi (1977), Desai and Saxema (1977), 

etc...

As far as the author kncws neither a consistent hyperelastic nor a 

visco-hyperelastic model has been applied yet.

From the ccnputer point of view some advantages seems to exist in 

using hyper elasticity (or visco-hyperelasticity) when compared with
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elasto-plastic (or elasto-viscoplastic) nodels.lt seems that they can 

be less time consuming.

On the other hand hyperelasticity does not violate the thermodynamics 

law if treated consistently but it has no physical meaning because it 

assumes that the directions of stress rate and strain rate always 

coincide (at least incrementally). Hcwever, reasonable answers may be 

achieved in the prediction of clay behaviour if used consistently.

VIII.3.4 Elasto-Plasticity

The hyperelastic model may predict clay response with sane realism for 

certain circumstances if applied consistently, although it is assumed 

that the direction of incremental strain and stress always coincide 

which in general is incorrect, particularly when the stress level 

approaches the critical state. One way to overcome these limitations 

is to use the plasticity theory . Although this theory is more 

flexible and to a certain extent has more foundation physicallly it is 

still restricted to applications in simple circumstances.

Fran the application point of view the main feature of interest in the 

flow theory of plasticity is a proper choice of a yield criterion 

(and/or critical state), a flow rule, and a hardening (and/or 

softening) rule.
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The initial yield criterion may then be classified as:

1. Mean stress independent

This type of criterion, such as Von Mises's and Tresca's, involve 
assumptions which provide a pure 7Z dependence and 7Z , 6j 

combined dependence, respectively; Where 72 and Oj are the second 
stress invariant and Lode angle with respect to stress, respectively. 
The bar means that the is a invariant function of deviator stress.

It might be argued that pure deviator dependence can be used in an 
undrained situation, in which a total stress analysis can sometimes be 
used instead of effective stress analysis. In this case the clay is 
then considered as a cne phase medium (Hoeg, Christian and Whitman 
(1968)).

2. Linear mean stress dependence:

Examples of this type of yield criteria are Drucker-Prager, Mohr- 
Tresca and Mohr-Coloumb. The first of these criteria has a pure 72 

dependence on the deviatoric stress whilst the other two have a 
combined J2 and 8f dependence. For discussion see Nayak and 
Zienkiewicz (1972).

A snooth curve in the deviactoric plane (where the dependence is, of 
course, due to J2 , 8j ) has been suggested by Lade and Duncan 
(1975), Zienkiewicz and Pande (1976), Gudehus et al (1977). For 
discussion see Eekelen (1980), Zienkiewicz and Pande (1975), Argyris 
et al (1974).
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Sane investigators have argued that associated flow rules should not 
be used when combined with linearly mean stress dependent yield 
conditions/ Davis (1968), Potts and Gens (1982). Sane effects of a non 
associative flew rule can be observed in Ziekiewicz et al (1975), Pots 
and Gens (1982). For soft clay it is quite obvious, because it is 
contractant whilst an associated flow rule generally implies 
dilatancy, the volume expansion will be overestimated, at least for 
deviator stresses approaching the critical ones. If such an analysis 
is used, the consequence is to produce a decrease in pore-pressure and 
less decrease in effective stresses, due to the plastic dilatance 
introduced. Thus, when the stress path moves towards the yield cone an 
overestimation of the deviactoric strength is implied. It must be 
enphasized that when linear mean stress dependent yield criteria are 
used in soft clay, they should be used as critical state (in the sense 
of critical state theory) rather than initial yield.

According to section VIII.2, the ultimate state of stress does not 
always satisfy the Mohr-Coulcrnb criteria. In that sense the general 
expression provided by Eekelen (1980) can be used where the constant 
of the equation should be calibrated to each soil characteristic.

As a non-associated flow rule implies a non-symmetric tangential 
stiffness matrix, a convenient solution technique may be the 
ficticious visccplasticity approach, as suggested fcy Zierikiewicz et al 
(1975), Cormeau (1975), in which plasticity is assumed to be a 
limiting stage of a stable creep process.

Consolidation analysis with a rigid-plastic model has been performed 
by Shall et al (1976). The inital yield is that of Mohr-Coulomb type
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and an associative flow rule was then assumed. Also Carter et al 
(1979) has presented a small strain large rotation consolidation 
analysis adopting the same rigid-plastic model.

3. Non-linear mean stress dependence:

The first attempt to use this kind of dependence was made by Druker, 
Gibson and Henkel (1957) and later Jenike and Shield (1959). 
However,non-linear elasto-plasticity has also been assumed in the 
critical state theory at Cambridge where exhaustive work in this 
subject has been done by Roscoe and Schofield (1963), Roscoe, 
Schofield and Thurairajah (1963),Roscoe and Burland (1968), Palmer and 
Pierce (1973) etc...

The fundamental assumptions in the critical state theory are that 
Rendulic's Principle is applicable and the plastic potential depends 
only on the state of stress, where, particularly, associative flow 
rule is assumed (as in the most classical theory of plasticity).

As discussed in section VIII.2 there is strong evidence that neither 
Rendulic's Principle is applicable nor is the plastic potential a 
function of the state of stress only. Furthermore, normality is not a 
general property of the soil.

Because of these disagreements of real response and the proposed 
theory, innumerable elasto-plastic models have been proposed. The 
shape of yield surface and/or plastic potential in the T J J X plane 
can assume several forms such as a straight line (Larsson, 1977), 
circle (Drucker, Gibson and Henkel, 1957; Jenike and Shield, 1959),
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bullet shape (Roscoe and Schofield, 1963? Roscoe, Schofield and 
Thurairajah, 1963), ellipse (Christian, 1966; Roscoe and Burland, 
1968; Hagmamn, 1971), exponential (DiMaggio et al, 1971), cone 
(Prevost and Hoeg, 1975), and several other combinations of parabola, 
hyperbole, ellipse and straight line have been assumed. Each of these 
shapes fit one particular kind of soil for certain specific testing 
circumstances.

To recapitulate on section VIII.2, the soil property for the 
quasi-static region has been stated as:

1. There are almost as many yield surface as stress-paths, i.e., 
Rendulic's principle is not applicable. This soil characteristic can 
be, at least partially, explained by the induced anisotropy during the 
consolidation process.

In many soils the associative flew rule does not apply and the strain 
rate direction depends not cnly cn the stress state but on the stress 
history also.

As rational and interesting attempt to unify the plasticity theory for 
soil without having to obey the Rendulic's principle was made by 
Calandine (1963) by applying the slipping theory. In this theory the 
material has one yield locus for each combination of mean stress and 
deviatoric stress, and consequently, the yield for each sample (or 
material point) is obtained ty adding the yielding on each plane of 
the sample, applying this approach is difficult and expensive for 
obvious reasons, however, it can provide a better framework, making 
possible the calibration of experimental data with reasonably 
justification
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Innumerable empirical models have been proposed to acccmodate the two 
previously described soil properties. Each empirical hardening law, 
and evolution rule for the yield surface and plastic potential, is 
valid only for the characteristics of the soil and the conditions 
under which it has been tested. Details of these empirical models are 
out of the scope of this research. However, a very flexible model will 
be assumed here , which will allow accomodation of most of the 
empirical models for each material, stress-path, etc... The 
fundamental procedure to arrive at these models in the T j J x plane, 
particularly for compression triaxial tests at quasi-static strain 
rates, will be briefly presented as:

1. A yield locus is obtained from the undrained stress-path. This 
yield surface depends on the type of clay or sand, on the conditions 
of anisotropy , on the previous history of stress ,etc...

2. Another yield surface is obtained frcm the drained stress path, or 
alternatively, the locus of water content and stress state is measured 
and adopted as one of the limiting conditions.

The normalized drained stress path depend on the type of clay or sand, 
on the conditions of anisotropy and on the previous stress history, 
while the normalized state of stress obtained by k-constant 
consolidation tests depends on the type of soil and the initial 
conditions of the sample.

3. The direction of strain rate is measured for k-constant 
consolidation tests. The direction of the strain rate for this simple 
kind of stress-path depend on the type of soil.



4. The yield surface for other simple stress-path are observed. For 
example, stress-paths lying between drained and undrained stress- 
paths.

5. The direction of strain rate for other stress-paths are observed. 
For example, a sample initially consolidated at k^=constant is sheared 
until k2=constant from Which it is consolidated again at k2=constant. 
The variation in the strain rate direction during this last period of 
consolidation is observed and compared with the strain rate direction 
if the soil had been consolidated frcm slurry at k2=constant.

6. The evolution of the yielding surface for the particular soil being 
tested and for the range of stress-path under consideration is 
observed and a empirical rule is proposed.

7. The variation of strain rate for the soil, stress history and 
stress-path under consideration is observed and an empirical rule is 
proposed.

For more detailed information about different empirical models and 
influence of stress hystory, stress-path, the following work should be 
considered: Wong and Mitchell (1975), Tavenas (1981), Tavenas and 
Leroueil (1977,1979a,1979b), Tavenas et al (1979), Leroueil et al 
(1979), Nany (1970), Lewin (1971,1973 , 1975,1978), Lewin and Bur land 
(1970), Gens (1982), Ohmaki (1979,1980,1982), Wood (1973,1975,1981), 
Wood and Wroth (1977), Palmer and Pierce (1973), Lewin et al (1982).

The application of these empirical models to different conditions frcm 
those which they have been obtained for, seems to be inappropriate,
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because of the strong dependence of the yielding surface and plastic 
potential on the stress history. The shape of the yield locus for 
natural clay has been found to be different in the field from those 
obtained for specific laboratory conditions (Mitchell, 1970; Wong and 
Mitchell, 1975; Crocks and Graham, 1976; Pender et al, 1975). In this 
sense if an elasto-plastic model is to be used the yield surface and 
plastic potential should be obtained from sample as natural as 
possible and applying the specific conditions of the field boundary 
conditions. There is no point in using an expensive model if its 
results are accompanied by an enormous degree of uncertainty.

\

Usually in the elasto-plasticity theory for soil, anisotropically 
consolidated soil have different model from the isotropically 
consolidated soil. Normally, the isotropic yield function is rotated, 
translated or both with no attention being paid to the principal 
stress direction in relation to the direction of anisotropy (Baladi 
and Sandler, 1980; Runesson, 1978; Kblymbas and Gudehus, 1980). One 
way to introduce the effect of the anisotropy would be to use the slip 
theory (Callanaine, 1971). However, a different and interesting 
approach to introducing the anisotropy in where the principal stress 
direction is incorporated implicity, as provided by Matsuoka (1974), 
Tatsuoka (1980); Yamada and Ishihara (1982).

The model preposed by Tatsucka (1980) and Yamada and Ishihara (1982) 
is based on the postulate proposed by Matsuoka (1974), which assumes 
that any component of the principal strains in the three-dimensional 
deformation of sand can be represented as the summation of the two 
strains that are supposed bo developed cn two imaginary slip planes. 
To explain that let x, y and z denote the direction of the three 
effective principal stresses ffjr » a and az . In the case of the
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stress conditions, ox>oy><rz , the imaginary slip planes are envisaged 
for three pairs of two-dimensional stress system, ax> a y , vx> o and 
oy> a z , as schanatically shown in Figure VIII. 1.

z

Figure VIII.l

Therefore, the three principal strains *x # ey and c. are broken 
dcwn each into two ocmponents as follows,

i x ~  fxy fxz' (y ~~ &xy fyz' *z ~  8xz 8yz

where f  means compressive (positive) strain in the x direction and 
gxy means expansive (negative) strain in the y direction, which are 
caused by the two-dimensional slipping in <ry><rz stress system. 
Similarly fxz and gxz are compressive and expansive strains, 
respectively, for ox>oz stress system, and fyz and gyz are 
compressive and expansive strains, respectively, for ay> ° x stress 
system.

This procedure seems to be powerful, in principle, to calibrate data 
with certain judgement.
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Another approach is provided ty Mizuno and Chen (1980) Who suggested a 
general equation to be calibrated to the particular material to be 
analysed.

To analyse soil response under cyclic loading many models have been 
proposed. A basic formulation is presented by Mroz (1967), Dafalias 
and Popov (1975), and Prevost (1977). In this model a surface, called 
the bounding surface, encloses a family of nesting surfaces vhere each 
surface is defined by the actual stress state, and more, it can 
shrink, expand, rotate and distort with the motion of the stress 
state. Although the plastic potential can have its own rule of 
transformation, usually an associative flew rule is assumed.

A simplified version of this model called a two-surface model have 
been presented by Dafalias and Popov (1975), Krieg (1975), Prevost 
(1977), Dafalias et al (1980), Mroz et al (1978, 1979) where two 
surfaces are defined and are named bounding (or consolidation) surface 
and yielding surface. The bounding surface divides the space into two 
regions. In the region inside the bounding surface the material is in 
an elastic state if the stress state is inside the yield surface, but 
can be in a transitory elasto-plastic behaviour if the stress state is 
on the yield surface. A stress point on the bounding surface is in a 
fully elasto-plastic regime. The behaviour of the material in the 
transitory elasto-plastic region is obtained ty an interpolation rule 
which is a function of the distance of the stress state from the 
bounding surface, measured in the direction of the stress increment. 
Although the plastic potential can have its cwn transformation rule, 
it is usually assumed to coincide with the bounding surface and the 
direction of the strain rate assumed is normal to a point on the
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bounding surface Which is obtained by the interception of the stress 
vector increment direction with the bounding surface (conjugate 
point).

Also, after the suggestion by Palmer and Pierce (1973), this kind of 
model was extended by Mroz et al (1979) to accomodate plasticity 
without a yielding surface as will be discussed later.

It should be mentioned that a delay function for the strain increment 
direction in relation to the stress increment direction can be 
incorporated into this kind of kinematic model.

Although this kind of model can be used to analyse cyclic loading if a 
realistic (experimental) hardening law and/or plastic potential 
evolution rule are used, it has not been yet applied succesfully. This 
model will be seen here as a technique to analyse overconsolidated 
soil submitted to a simple stress path.

Van Eekelen and Potts (1978) extended the modified cam-clay model to 
acocmodate cyclic loading, vhere one of the material properties is the 
pore-pressure generation in an undrained test.

The first convenient form for application of the critical state theory 
into finite elements was formulated by Zienkiewcz and Naylor 
(1972) ,Zierikiewcz et al (1975). At first the critical state line was 
considered to be of Drucker-Prager type, i.e., only J 2 dependence 
on the deviatoric plane. Zienkiewcz et al (1975) introduced a 0, 
dependence by considering a Mohr-Coulcmb section type for the linear 
and non-linear part of yielding. Lade and Duncan (1973), Zienkiewicz 
and Pande (1976), Gudehus et al (1977) have sugested a smooth yield
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surface in the deviatoric plane for both the linear and non-linear 
sections of yielding.

To incorporate anisotropically consolidated soil the yielding surface 
has been rotated in the 7 Z/J l plane and a simplified function is 
assumed in the deviatoric plane. For example, Baladi and Sandler 
(198fc) and Runesson (1978) have assumed a rotated elipse for the 
triaxial k-constant line and in the deviatoric plane another elipse is 
assumed v̂ hose major axis is in the direction of the maximum effective 
stress. More experimental evidence, however, will be necessary to 
support the assumption of those models.

VIII.3.5 Elasto-Viscoplasticity, Endochronic Theory

The notion of an elasto-viscoplastic material is reserved for those 
materials which shews viscous properties in the plastic region only. 
This idealization evidently simplifies the argument justifying the 
choice of an adequate initial yield criterion (i.e., the initial yield 
surface is time independent, although it does not reflect the soil 
material response). This idealization may be useful (or sufficient ) 
when creep effects are not significant below the preconsolidation 
stresses.

However, the endochronic theory, which is regarded as a special form 
of viscoplasticity (in vhich the strain rate is not only a function of 
the stress and strain states but also implicitly a function of the 
strain rate ) provides a better framework. The constitutive equations 
can be formulated in a form similar to viscqplasticity if the ordinary 
time variable is replaced by a fictitious time measure, called
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intrinsic time, incorporating both the true time and the length of the 
(total) strain path traced. Also irrecoverable strains are obtained 
for every stress state except identically zero. This is contrary to 
the ordinary viscoplasticity approach , which defines a region bounded 
by a quasistatic loading surface within Which strains are always 
recoverable. In that sense the endochronic theory provides a concept 
which could be said to be different from both viscoplasticity and 
elastic-viscoplastic theories. For more details see Bazant et 
al(1980).

Ihe application of this theory, hcwever requires much more information 
fran the experimental field.

VIII.3.6 Viscoelastic-Plastic and Viscoelastic-Viscoplastic 
Models

Aditional difficulties are encountered in establishing the plastic 
state in a viscoelastic body. In order to discuss this let a load path 
in the nine-dimensional space of stresses be illustrated in Figure 
VIII.2.

Figure VIII.2
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In an elastic body the plastic state will be reached at the same 
point, represented fcy A , independent of the time taken in reaching 
that state, provided that the load path is the same in each case. If 
the material is viscoelastic the plastic state may be reached at 
different points A x or A2, say, depending cn the time elapsing during 
the load path execution. It is also clear that fcy passing through the 
same path or in the same overall time but with different strain-rates, 
different yield limits will be obtained.

In order to describe the complicated problem of a viscoelastic 
material becoming plastic the notion of a flow surface will be 
introduced in agreement with Naghi and Murch (1963).

f* “ /V.^.0) = o

The elastic-viscoplastic state is determined by the condition f s — 0, 
while the viscoelastic states correspond to the condition /J<0*

Now consider the time-variability of a flow surface. The time 
derivative of the function f gives,

If the state under consideration is elastic-visccplastic and undergoes 
a change such that f *<0 , this change leads to a viscoelastic state 
because f * + f sdt gives a new value of f vhich lies below zero. Such a 
change of the stress state will be dencminated an unloading process. 
During this process there is no increase in plastic strain, 
therefore e/’ = 0 .
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Since p can be expressed in terms of physical relations and 
particularly as a function of the stress rate or strain rate, the 
mathematical condition for unloading can ncw be written as

f-°- (^)T' + (l7)7»<0

A change of state of stress from one elastic-viscoplastic state to 
another elasto-viscoplastic state accompanied by no increase in 
plastic strain, the so called neutral process will be characterized fcy

f 0

By considering the flew surface in the stress space it can be observed 
easily that the neutral process does not correspond to the direction 
of the stress increment ad t tangential to the flew surface at the 
point considered. This is different from flow theory. An active 
process vhich is accompanied by an increase of the plastic strain 
takes place if

r=o. 'a + { % )  **>o

A neutral state will new be realized if the vector of stress increases 
ad t deviates frem the direction normal to the flow surface by the 

angle d , vhere

d -a r c c o s [ -( ^ -) r i)/|§7 | H ]

which also is different from the classical theory of plasticity. 
Viscoelastic-plastic material presents viscous effects in the whole 
stress space, the viscous effect being incorporated into the elastic
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part of the strain rate, while the viscoelastic-viscoplastic body 
presents viscous effect in the whole stress space but the viscous 
effect is part of both elastic and plastic strain rates.

VIII.3.7 Elastic-Viscoplastic-Plastic Model

This idealized rheological model consists of springs, a Bingham body 
(or Maxwell body) and a frictional slider, coupled in some way. A 
typical 1-D arrangement is presented in Figure VIII.3 where the 
spring, Bingham body and frictional slider are coupled in series.

01 2

Figure VIII.3 a) ID-rheological model 
b)yield surface in stress space

The yield stresses associated with the slider are denoted by k^, and 
y.2 , where (°^erw:*-se t îe nodel has no meaning because the
Bingham body will always be inactive). Associated with the sliders are 
two families of closed surfaces in stress space, see Figure VI11.3 , 
the inviscid ( dynamic) yield surface / 1 and the quasi-static yield 
surface /2 . Associated to each of these surfaces there will be two
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hardening (or softening) parameters . Hcwever it could be assumed that 
one or both of these parameters are independent of the plastic strain.

Depending on the position of the stress state in the stress space a 
different regime of strain is obtained (see Figure VIII.3). In the 
first region the material is in elastic conditions. In the second 
region the material under elasto-viscoplastic, i.e., there are two 
components of strain rate, one elastic strain and another viscoplastic 
strain, vhich is usually evaluated by means of a creep law. In the 
third region the material is assumed to be in a elastic-viscoplastic- 
plastic regime. The elastic-viscoplastic strain rate is evaluated as 
described previously and the plastic strain rate is evaluated by means 
of the usual plasticity theory.

In the existing versions of viscoplasticity it has been assumed, a 
priori, that the viscqplastic strain rate is normal to one (or more) 
of the loading surfaces, Perzyna (1966), Philips and Wu (1973), This 
restriction will also be adopted here.

The division of material states into three distinct regions sinplifies 
very much the determination of the first inviscid yield surface and 
quasistatic yield surface but it is a mathematical fiction and there 
is little justification from a physical point of view. However, it 
could be applied to the case of a single loading condition or could be 
associated with a carpiementary model, such as the one which will be 
presented later.
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VIII. 3.8 Elasto-Plastic Kinematic Hardening Model (Two Surfaces
Model)

This kind of model assumes that there are two distinct families of 
surfaces. The first family (/=0), the yield surfaces, encloses the 
elastic region. The second family of surfaces, f ] = 0 define a region 
vhich also encloses the elastic region. Material with a state of 
stress that lies within the region defined ty the yield and bounding 
surfaces experience elasto- and transitory plastic deformation. The 
materials with stress state on the bounding surface are under a regime 
of elasto- fully plastic deformation.

The bounding or consolidation surface is defined as the locus of 
maximum loading stress. This surface may expand, contract, according 
to the stress rate direction.

The yield surface, always enclosed by the bounding surface, may
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family of surfaces. The bounding surfaces can expand and contract 
While the yield surface can expand, contract and translate in the same 
way as for the elasto-plastic kinematic hardening. The third surface, 
bounding surface /2 , can expand and contract, accordinly with the 
expansion and contraction of the bounding surface /' .

According to the stress state position, the material state is then 
defined as:

1. Stress states inside the yield surface f °  -  The material produces 
only elastic deformation vhich is calculated ty the usual Hooke's law.

2. Stress State on the yield surface- The material is in an elasto- 
transitory visccplastic regime. The calculation is like that for the 
elasto-plastic kinematic hardening but in this case the bounding 
surface / is rate dependent and the strain rate direction can be 
either defined at Z?1 or any R as can be seen in Figure VIII.5.

_  ♦

Figure VIII.5
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expand, contract and translate kinematically, according to the stress 
rate movement.

Ihe rules for the expansion of the bounding and yield surfaces are as 
in soil plasticity and the rule for contraction of the yield and 
bounding surfaces are calculated frcm the amount of plastic strain, 
Which is interpolated from the plastic strain that would occur on the 
yield surface and that Which would occur cn the bounding surface. The 
translational rule for the yield surface is defined by imposing the 
condition that the yield and bounding surface apart frcm being similar 
they do not cross each other and are, similar .Also, the direction of 
plastic strain rate is assumed normal to the point cn bounding surface 
obtained frcm the interception of this surface with the stress rate 
direction. See Figure VIII.4.

VIII.3.9 Elasto-Viscoplastic Kinematic Hardening Model (Three
Surfaces Model)

In this model three families of surfaces will be assumed. Figure 
VIII.5. Ihe first family of surfaces, the yield surfaces, /° = 0 , 

enclose the elastic region. The second family of surfaces, the 
bounding surfaces, /* *= 0 , define a region Which encloses the elastic 
region and the elasto-transitory plastic region and they are defined 
for the quasi-static strain rate «' (or stress rate, jr1 ). The third 
family of surfaces, f 2 = 0 is the bounding surface y2 , obtained for 
strain rate «2 (or stress rate, t 1 ) in the kinematic range. Between 
the second and third family of surfaces lies many families of 
surfaces, bounding surfaces, for strain rates between quasi-static <' 
and the chosen kinematic strain rate t2 corresponding to the third
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Hie point R is evaluated by first evaluating the point /?' as in 
elasto- plastic kinematic hardening and R is then obtained by 
determining the interception of the bounding surface / for the 
actual stress rate 'a with the line that passes through the origin 0 
and the point R 1 .

3. Stress states on the region defined fcy the bounding surface /' and 
f 2 are in an elasto-viscoplastic state. Now the interpolation rule is 
radial only, that is, point R ] is at the end of the stress increment 
and the point R is obtained by the interception of the bounding 
surface / (defined by the actual stress rate) with the radial line 
that passes through the point R 1 .

VIII.4 Explicitly Local Constitutive Stress-Strain Relationship

Two distinct formulations will nowbe presented . In the first 
formulation the material will be considered as an elasto-viscoplastic 
kinematic one. In fact a set of formulations are included in this 
model, that is, simplification to elasto-plastic kinematic, elasto- 
plastic and elastic can be obtained fcy introducing restrictions to the 
basic model.

In the second formulation the material is considered to be an elasto- 
viscoelastic-plastic body and restrictions can be imposed to obtain 
elasto-plastic, and elastic kinds of models.
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Basic Formulation

1. Elasto-viscoplastic kinematic (Three surface model)

In this elasto-viscoplastic kinematic model an associative flow rule 
is assumed, though it is not necessary to impose such a restriction. 
To introduce the nan-associative flew rule, two more surfaces (quasi­
static bounding plastic potential and viscoplastic bounding yield 
surface) , would be required, and, in this case the model would be 
called a five surfaces model. Despite this, the basic definition for 
non-associative flow rules are provided for both finite and vanishing 
elastic regions.

1.1 Elastic behaviour

The elastic behaviour is defined by the generalized Hooke's law, that 
is,

t  =  D  'a

where D is the stiffness matrix of elastic constants which is 
defined explicity in Appendix D.

1.2 Viscoplastic behaviour cn the bounding surface / .

One must be reminded that / lies between /* and f 2 , according to 
the stress rate intensity a , that is / will be a type of surface 
defined by



166

and

where t is the actual time.

Because / is not generally normalized in relation to a , a 
numerical calculation to take into account the influence of o will 
be proposed. If for each iteration f  is considered a independent, 
the flew rule is as in the classical theory of plasticity, that is to 
say, for non-associative flew rule

where g is the plastic potential surface,

/' is the bounding surface,

H r is a positive constant,

Kr is also a positive constant,

n is the normal unit to the plastic potential and

— is the stress rate tensor projected onto the normal m to 
the bounding surface.

The rate of volumetric plastic change can be deduced fran (VI11.4.1),

(VIII.4.1)

where

to be:
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(V III.4 .2) /r ^ - X ' lr ^ -x ' /r / i

Which relates to the rate of change of plastic void ratio by:

(VIII.4.3) V  = (1 + e)trV

Since / is iteration by iteration independent of a for active 
loading, the consistency conditions provides,

(VIII.4.4)

Substituting (VIII.4.2) into (VIII.4.3) and if the resulting equation 
is introduced into (VIII.4.4), H R can be evaluated, that is,

(VIII.4.5) H l = - $ L ( \ 4-deP 1̂ +  ’da

To relate H R and KR the definition of n and m will be 
considered.

(VIII.4.6) and m = df Ida

By using (VIII.4.1) and the previous definition of the normal to the 
plastic potential and the normal to the bounding surface, respectively 
the required relation is achieved as,
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(V III.4 .7)

For an associative flew rule HR becomes

(VIII.4.8)

and

(VIII.4.9)

1.3 Viscoplastic behaviour under the bounding surface / .

It will be assumed that the viscoplastic strain rate on the yield 
surface (consequently under the bounding surface) is obtained by 
interpolating the hardening parameter from the point on the yield 
surface to the conjugate point obtained on the bounding surface by an 
convenient interpolation rule.

Because the shape of the yield surface and the bounding surface are 
not in general similar then the interpolation rule as proposed by Mroz 
et al (1978a) for the elasto-plastic kinematic model can not be used 
by itself, but a different option will be adopted here.

The rule for elasto-viscoplastic kinematic (three surfaces model) will 
be divided into two rules. An interpolation rule for the quasi-static 
plastic strain rate and another for the viscous strain rate. The 
quasi-static plastic strain rate will be calculated in the same way as
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the elasto-plastic kinematic (two surfaces model), whilst for the 
viscous strain rate another rule will be given subsequently.

1.3.1 Quasi-static plastic strain rate interpolation rule.

The rule for translation, expansion or contraction of the yield and 
bounding surfaces for quasi-static stress rates is the same as that 
for the two surfaces model by Mroz et al (1976a). In this case the two 
surfaces are f °  and /' of similar shape. According to Mroz (1978a) 
it will then be assumed that the surfaces f °  and /' do not intercept 
but engage each other along a cannon normal. This assumption can be 
expressed mathematically by associating each point P on the yield 
surface f °  with the conjugate point R l on the bounding surface f x 
characterized by the same direction of exterior normal. (Figure 
VIII.5). Denoting the stresses at P and R l by ap and aR' and the 
stresses at a point which divides the line 0  A and O 'A ' in the same 
proportion as ap and aR> , one has,

by similarity.

a' and a0 are respectively the middle point of the segment of stress
O A and O 'A '

The equation (VIII.4.10) may be transformed to give

(VIII.4.10) f — a ?  _  a Ri — o F  

a0 fl1

(VIII.4.11)



170

Considering again that according to Mroz (1978a), the relative motion 

of "P" with respect to R x to be directed along 0 = P R ,

(VIII.4.12) 0 = a R  — a p — — a 1 a r + a P (al— fl° )J

can be written.

By taking the time derivative of (VI11.4.11) and substituting 

(VIII.4.10) into the left equation frcm (VIII.1.1), one can write.

(VIII.4.13) 0M = -oP — aR +(ffP -aP)(̂  j-a

and

(VIII.4.14) • P _  a- , • /?1 , O ~ 0° 1 P P\ 
a = 0 m +« H----~ r ~ { a  - a  )lTJ

Now, assumimg that the yield surface and the bounding surface are 

similar, the scalar U can be evaluated from the consistency 

conditions, that is,

(VIII.4.15) (£)ria + ($£L\T' ' + Of!!. = n
Vda'V +  dip °

By making use of equation (VIII.4.14) one finds:
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(VIII.4.16) M =
'+(crF-ap)

where,

(VIII.4.17)
\-k

flu—  = / =  constant 
a’

and • i =  ai - p  _ y i  al .Jg = • i a\ 
\ - k *  X X - k t r da x X-Jfe t rn

(VIII.4.18) / ai

1.3.2 Viscous strain rate interception rule

To include the stress rate intensity influence it is now postulated 

that during the time period of application of the stress increment, 

the stress point P moves towards the stress point /?' on the quasi­

static bounding surface /' while the stress point R 1 moves in a 

radial path, towards the stress point R on the viscoplastic bounding 

surface / . Ihe stress rate intensity is approximately known at each 

iteration as the iteration by iteration stress ocrrputation progresses.

That is while P moves towards R 1 , and defines R 1 on the quasi-static 

bounding surface, R 1 moves radially towards R during the stress 

increment, iteratively as the stress iteration progresses during the 

evaluation of the strain increment.

In nathematical form, the successives positions of the stress p>oint
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oR is achieved by the interpolation of the radial line

(VIII.4.19)

with the successive shape of the rate-dependent surfaces

(VIII.4.20) / ( a ,  a) =  0 , f o r constant 0

which is defined at the stress point aR' .

17= V 3-̂- , defined at the conjugate stress point a77' and a is the
” mm

second stress invariant, vhilst am is the first stress invariant.

1.3.3 Rule for the variation of HR .

To complete the model description it is necessary to specify the rule 
for the variation of H R during the plastic deformation. Let it be 
assumed that H R varies continuously from its value on the yield 
surface to the value of H R , on the viscoplastic yield surface. H R is 
computed by using equation (VIII.4.7) or (VIII.4.9) according to 
whether non-associative or associative rules are used.

The interpolation rule is similar to that suggested by Mroz et al 
(1978a), but H R and 6 are new stress rate functions. Thus,

(VIII.4.21)
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H r is calculated iteratively according to the movement of the stress 
point aR which is governed fcy the stress rate intensity aR and the 
plastic deformation tF . Also, 5 is calculated by adding the value 
8V defined by the distance between the stress point a and a , to 
the quasi-static 8 , aR being a function of the stress rate
intensity aR .(See Figure VIII.5). That is, 8 is equal to the 
distance P R . 50 is the maximum value of the distances between the
yield and the bounding surfaces for the quasi-static surfaces. That 
is, S0 is the maximum value of 8qs .

2. Elasto-Viscoplastic Kinematic- Vanishing elastic region

As the elastic behaviour in item 1.1 and the viscoplastic behaviour on 
the bounding surface / are as in item 1.2, the only pertinent aspect 
left to discuss is the viscoplastic behaviour under the bounding 
surface /.

2.1 Visccplastic behaviour under the bounding surface /.

The incremental relations derived for the vicoplastic behaviour under 
the bounding surface / in the previous section, describing the three- 
surfaces mcdel, can be particularized for the case when aQ = 0 , that 
is, the elastic domain shrinks to a point. See Figure VIII.6. This 
hypothesis is convenient from the computational point of view as there 
is no need to make a distinction between elastic and viscoplastic 
domains nor is there the need to trace the variation in the size of 
the yield surface.
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Two different interpolation rules for viscoelastic strain rate will be 
considered:

2.1.1 When the plastic potential bounding surface is 0 -independent

The plastic potential bounding surface is the plastic potential 
corresponding to the yield bounding surface which is the only bounding 
surface which has been used up till now.

In this case, it is assumed that for any increment d  a  , the vector 
normal to the plastic potential bounding surface, coinciding with the 
direction of the viscoplastic strain increment, is parallel to the 
normal n R at the conjugate point R  at the intersection of the 
stress increment vector with the plastic potential bounding surface, 
see Figure VI11.6. Note that no restriction is imposed on the bounding 
yield surface which consequently may have any desired shape, and can 
be a function of 6 or not as required.

Obviously in the case where an associative flow rule is used the 
bounding yield surface must coincide with the plastic potential.
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Figure VIII.6

When the plastic potential bounding surface in 0 independent the 
calculation is simpler, therefore it is easier to use a non- 
associative flew rule, that is to say:

(VIII.4.22) tP =  77-nR am =  x nR x'^ 0

where nR is the normal to the plastic potential bounding surface and 
am is the stress rate component in the direction normal to the yield 
bounding surface. =  a.m , nR and m are defined by equation 
(VIII.4.6).

Therefore, as the yield surface reduces to a stress point ap , its 
centre reduces to /  , or in a rate form.

(VIII.4.23)
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For the interpolation rule it is necessary to compute 5 as seen in 
Figure VIII.6. It must be clear that g is the viscoplastic bounding 
plastic potential and, consequently, only one interpolation rule is 
necessary new.

For each iteration 8 can be calculated as:

(VIII.4.25) 8 =

Where:

ap and aR are the second and first invariants of stress at P, andfn r

a* and a* are the second and first invariants at R . Because of them

shrplice shape assumed for the bounding plastic potential, explicit 
expressions for aR and o* can be achieved. Ihat is, a* and aR are 
evaluated by the interception of the equation of the bounding plastic 
potential (to be defined as stress rate function) with the straight 
line

_R ____P Ia = a -r
tan/S

f R p \ where d o
- T F

2.1.2 When the plastic potential bounding surface are 6 -dependent.

If it is assumed, as in the previous section, that the strain rate 
direction is defined by the normal to the bounding plastic potential 
at the stress point of interception between the stress increment 
direction and the bounding plastic potential, the calculation
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procedure is as in the previous section. However in this case 
additional difficulties may be introduced because, in the general case 
it is not possible to find a explicit expression for the invariants 
aR and a* at R .

To make the calculation procedure less expensive it will be assumed 
that the stress point R will be obtained at the interception between 
the bounding plastic potential and the projection of the stress rate 
direction in the 9 constant plane.

vhere, 6 =  6P + d 8

and 6P is the value of 6 before applying to the stress increment.

In this case the position of the stress point R can be determined 
explicitly for any surface function on 0 .

that used in the previous section.

The stress point R will be defined by the interception of the bounding 
plastic potential (to be defined as stress rate function) with the 
straight line

(VIII.4.26)

Once aR and aR are evaluated, the calculation procedure reduces to

(VIII.4.27) a* = tan7 (0^ — a Pm) + aP cos d  6 , for the plane 0
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r'(oJ> sin </0)2 + (</a)2l — 2op cosd 6 ^vhere tan 7 =  -------- ^ —  ---------, do = — o,

. dd dd do dJ3 

“  do' dJ3' do' do

3. Elasto-Viscoplastic-Plastic Model

This model, as described previously, assumes the existence of a yield 
surface /' and a viscoplastic surface / 2 , as seen in Figure VIII.3b. 
/' is usually defined at a very high stress rate, and it is 
considered as time independent, f 2 is usually obtained for a very lew 
stress rate. In practice, however /' and f 2 are not in general 
similar.

Although this approach is inferior to the previous one, the 
application in Finite Element practice is straight forward.

In general the strain rate tensor is divided into three distinct 
components: Elastic, viscqplastic and plastic. The elastic component 
is defined by the Hooke's law and the plastic strain component as in 
the plasticity theory. As this model is more or less a mathematical 
fiction, the associative flew rule will be assumed. The only strain 
component left to be discussed is the viscoplastic strain.

, dd do . dd o73 . a d =  —  —  o +  ——  -5 — 0  do do dJ^ do

will be defined later.

3.1 Visccplastic strain rate.

The visccplastic strain rate is defined by means of a flow rule (creep
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law) similar to that for inviscid strain rate (high strain rate). 
Thus, the creep law is defined by:

(VIII.4.28) A(0<$(F)> 8/ 2/da 4L
*da\

vhere *2 A(/)<$(F)>

A(/) is the viscosity and assumed to be a time function only, <4(F)> 
means that <$(F)> =4>(F) for 4(F) £0 and <4(F)> = 0 for
4(F)<0 . The reference parameter f \  may be chosen arbitrarily and
is introduced only to make the argument of the scalar function 4 
non-dimensional.

4. Constitutive Law in Stiffness Form

4.1 Elasto-viscoplastic kinematic model.

Consider that /° > 0, /‘>0 and / = 0 , that is, the yield and quasi­
static bounding surfaces are in contact, and consequently the material 
is in an elasto-viscoplastic state. In this case:

(VIII.4.29) c = ef + evp

By making use of (VIII.4.1), (VIII.4.2) and the consistency conditions 
the elasto-viscoplastic stiffness and flexibility matrices can be 
expressed as
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(VIII.4.30)
D e p  —  D  —

(VIII.4.31) cep = c -

where C and D are respectively the flexibility and stiffness matrices 
of elastic constants, and,

H r is given by equation (VIII.4.6) and KR is given by equation 
(VIII.4.8).

For an associative flew rule g and f  are identical surfaces.

Note that the relations (VIII.4.30), (VIII.4.31) and (VIII.4.32) are 
similar to those for an elasto-plastic material, however, the gradient 

, - L  are new rate dependents.
da da

4.2 Elastic-visccplastic-plastic.

Consider that / ’>0 and / 2 = 0 , that is, the material is an elastic- 
viscoplastic-plastic state. In this case:

(VIII.4.32)

(VIII.4.33) t - 6' + i* + ?
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By making use of equations (VIII.4.1), (VIII.4.2), (VIII.4.28) and the 
consistency conditions the formal inversion of (VIII.4.33) can be 
achieved as:

(VIII. 4.34) a - D ep[ t -  h(a, /)]

h(<r,t) is the creep law vector as given by equation (VIII.4.28).

(VIII.4.35) D'p = D - p % m TD T 
(§{)T D ” (I£)T §£

(|^) is given try (VIII.4.32) where g is replaced by f.

The special cases of elasticity, elasto-viscoplasticity and elasto- 
plasticity can be readily obtained frcm (VI11.4.34).

5. Yield and potential surfaces form

5.1 General shape for /* .

According to the review presented in section VIII.2 the yield surface 
and the plastic potential can in general assume almost any shape. The 
adoption of one of the shapes make the application of the model 
restricted to a particular soil type and physical conditions. To avoid 
this incovenience a general equation is assumed which can be 
calibrated to most circumstances for which the other models are 
proposed for.
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-On the J j j | plane;

Before extending the model to the general state of stress the triaxial 
conditions will be analyzed, that is, when two principal effective 
stresses and strain are regarded as negative, the stress and strain 
states can be defined as:

(VIII.4.36)

P = -|(*i + 2<t2) q = a2 “ a\ 

2
«v =  “ (fl +  2f2) =  3 ^ 2 - f l)

The shape of the yield surface, plastic potential, boundary (or 
consolidation) surface, and nesting surfaces will be based on the 
general equation:

f s = A p 2 +  2Bpq +  Cq2 +  2Dp +  2 Eq +  F  =  0 s - 1,2,3,.

The paramenters A, B, C, D, E and F will be determined from the 
following conditions:

1) p = 0, q = 0

2) p =  2a, q =  0, d p ’dq =  -S~a

3) p =  b, q =  bnb

p =  c, q = cnc,4) dq/dp = 5(
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These conditions imply the following from the upper portion of the 
surface { q > 0 )

/’“ {", + S[l-2l2+ 2H;(2i2-l) ]}pJ +

+ hwja )1 m

(VIII.4.37) +J-{(1 -2{,)[s;(2lj- !)-» , + 2n6(l-{2 )] + 25>t[5;(?! - ? 1) - ? 1 nc]}<?!

-2 |n ,+ ^ I-2 {J+2^(2fr1 )]|o/>

+ 2[s;K - 2 ^  - 2^ +  4?, jjj) +  3>, + 2(1 -1,)] aq q> 0

where

£2 =  ?  n b ~  tana?,, n c =  tan<o2, 2Ff l“ tan6,, 3^. =  tan62
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For q < 0 , q can be substituted by -q in the equation (VIII.4.37) and 
a proper value for , £2 » ^  • nb • nc îas to be chosen. An exanple 
will be given elsewhere.

In order to examine general kinematic types of models, an equation
similar to (VIII.4.37) but with different dimensions will be required.
The similarity of surfaces f s and f ° can be represented 

- o ~ a fl° _ a fl0mathematically bry f0 = —  = — = - = p»£2 = - = c5 and if the coordinate 
of point P are represented by a , a the equation for f ° is readily
obtained; by changing p to p - a p + =- and q to q — aa in (VIII.4.37), 
that is:

p t

f °  =  A { p - a pf  +  ~E{p—ap )(q- aq) + V (q -a q f  +

(VIII.4.38) f"(2A ~7) tQ )(p - ap) + y { B + F Zjiq - aq) 
to to

0) = o
£0

-In the general stress space.

To represent the surfaces f * and f ° for a general state of stress, 
the stress invariant of the "translated" stress will be introduced in 
agreement with Pietruszczak and Mroz (1979), as follows

(VIII.4.39)
1

7 3 S aij aij){aki &ki)(Ckj 5kj)

Tftj is the deviator stress and au , zs(y. denote the spherical and
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deviatoric canponents of the translation tensor zi(j of the f °  type of 
surface. The definition of the deviator stress and the Lode angle 
remained unchanged and were given by equations (IV.10.2.22) and 
(IV.10.2.25), respectively. Also the relationships between the 
invariants defined by the equations (IV. 10.2.23) and (IV. 10.2.24) 
still hold.

For the ,'triaxial" stress state, i.e., a2 = <r3 the following relations 
are applied:

p — a„ =  = —cx_ + - a• P /H 1 a = V3a+

where am 

8 *= t/6.
a — au and a+ denote the value of a fOr ff2 = Oy

Thus, the expression for /° can be rewritten as follows:

f  = A (a„ - ja)2 - V3 B(am - ia)«r+ + 3 C

(VIII.4.40) ~ ( 2 A  -/)f0)K-{a)+ V 3 ? V  + F?0)<f+
£o J £o

0) =  0
*0

Assuming that the yield curve in the * -plane can be expressed as

(VIII.4.41) V*=0+g5

vhere
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( V I I I .4 .4 2 )  g , « - --------------^ ----------- rj-s, *,(t /6 ) =  1
[*/2 + */3sin(tH + 3e)J

and kiX., k{2 , kt3 , kj4 , kiS , are constants and i can assume the values 0, 
1, 2, 3, 4, or 5. Similar expressions were proposed by Eeklen (1980), 
Argyris (1973), Gudehus (1973) and Zierikiewicz and Pande (1975).

If now the equation (VIII.4.41) is introduced into equation 
(VIII.4.40) it results in,

/°  =  -4 k  -  -  V 5 « (» .  -  ±or)£ +  3C ^  -  ^ ( 2 4  -X ) i 0g0 )
3 3 *5 *5 £0

(VIII.4.43)
k - 5 0  ) +  V3^(B + £  { + ( ^ ) 2(-4 - D  0  -  0

*0 £0

New considering that £0 • • £2 • # Sc for values of 0 different
from x/6 can be expressed as functions of ?0 , f, , ?2 , 3̂  , 3̂  defined 
at 6 — r /6 , that is,

*0 = ?«r*0 £| = £2 =

(VIII.4.44) Sf- 3 ^ 3 s c =  8\> ^  = 0

5*0 Sa - g 4, Ta = 0

where g. has been given by (VIII.4.42); expressions for /° and A, B, 
C, D, E as a function of 6 can then be obtained as:

/° = -*k-v*)2- V3Bk-i« )| + 3C^--^-(2,4- d  foJo)
®3 ?|0̂ 0

(VIII.4.45)

)+ +£ ^  + (i~) ̂  ~D *oZo) =
,0 \2

3 ' ' lô o' ’° ° U 8s v*o*o'
0

where
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C - 1{(1 -2!,^)[5A (2|2ft- 1 ) - n c + 2 nb{\-|2*2)]

+ 2 Sa - 1, Si)

(VIII.4.46)

In addition |0 , ^ ^  ^  can also be functions of strain rate
(or stress rate), stipulated by any empirical law.

Equation (VIII.4.45) is geometrically represented by a surface with, 
in general, variable cross-sectional shapes in each t -plane. More 
specific surfaces can be obtained by fixing the various constants for 
the specific physical problem under consideration.

The gradient tensor of this surface is given by:

(VIII.4.47)

vhere
= ££! C ' = —d o '  do ' c3 d6

Also, fran (VIII.4.45)
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df° y/3 B . 1 - v/3fl0,DJ_„7 \
^  “  6Ci T  > + J^}B +E £o?0 ] ’

§ f  =  2 A  (a m -  |cr) -  V3 B  £  -  £ ( 2 A  - D  i 0g0 ) ,
gi t0g0

^  - T £^-[2'4foS5("0,-5«)-'/3Bf05-fl{oil0- 2 fl«(/l-C{0g0 )]^
Vo gigs

+ ^ 2  [siSM  ~ 2V  82) +  nc +  2r}JVg2 “ ]) + gAnbncSa + *3*4«fc5A ]  ̂

W 3 %*> 1 1(1 + - 5«)s + W 3 1  % Z  §5(l + ̂ "‘s“+ 2«o*°sJ0° 5T nr €| *3

. o n c -z 0/ 1 \ 8 n c V  0- ?£l
66 + 2?-. u 1 , g° x2

—  g3S r(2/ir -  nj(?m - - «  +  — )

+  ̂ [ ( , - 2 £ | £ |) ( g lS c ~  2 n b ) +  &  £ 4n b S  a $<•] ° 2 -  2 J 3 Ys (1 “  *3 *4 ̂  S c) (a ,n ~ \ a ) anigi

-2V3r ^-(2f0g0-l +g)g4̂ 5 r)a°ff--^-(2f()g0{2g A +  l-g3g4S0S, )aV m- i a ) + ^ ^ fl°!
t e o g s  to  go 3 ?o£o

d g 2

dd

+  ^ ( 2 ^ 2 - 1  )(ff„-i« +  z^ -)J +  ̂ :r<1- 2lI* 1 )(2{Jg!- l ) S c +  2g1n4S o5,.({2g2-|,g,)l1 b V 3 t08o n T,g$l  J

+ 2̂ 3 ^ + 2̂ 'g| g4nbn<̂ ° + V-g2g4nlK ](ff« “ 3“)̂  + ~ ^  2l0̂ 0̂ 4«/,'If^

- 2 to  go + 4*0*o?i g\ "f - 21, g, nc + nc- 2{, g, g4 - {2g2g4/*j3; ] a°a
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+ 2^[(l-2?2ft K  + 2n,(2{,gl-l)]flVm-5“) -2^a0’[(l -2l2g>,+ 2nc(2£,gl - 1)] Oil
dd

+
^ [ ^ 2 * 2  ~  f  | 8 l ) i 3S c ~  f  I *1  « r ]  ^  ^  J - ^ S M \8 \nc +  *2 * 2  nl  ) .(* «  “

gs ^ o ^ o n//^ c  £o8onbnc 2 to 8 o » &  2 £ i * i wc ^ c  2  £ 2 82nb̂ ~c J fl a ?£±
dd

-r-^— I" 6 C f0 goo1 + y /3 g 5{B + E £ 0gQ)a0 ( f -y /3 B  t0g0g5{cm -  ̂ a)| %  
£0So*lL J

and dgj =  3kn ki3kiS cos(&,4 + 38) 
d d r . nA,s+1

[*/2 +  k i3 sin(̂ i4 +  30JJ

0,1,2,3,4,5.

To ccrnplete the kinematic hardening type of stress-strain relationship
it will be necessary to derive O il , that is:

da°

d f °
da0 -Z^— {2A -££02o)K„~ + 7 iB +  EZ0go)a + 2-̂ —  (A ~£>£0g0)

*o8o 3 *o*o*s £q£5

and frcm equations (IV. 10.2.23), (IV.10.2.24) and the definitions of 
<t„, 1 ° and T^ ,

do

1
1
1
0
0
W

_  J_ 
do 2d

az- a z

2(T>r ayz) 
2
2(r_. — a_..)
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$

b y ­ *y)[°y - (Tzy~azv f
te x - “xPz “ 5J iTxz ax: )

2((t«
tex - **) tey -«>■) “ (Txy~axy )
~ ax2l Txy ~ axy)~' (?x~ax )(Tyz~ayz

2{(t,2 ayz)(Txy ~ atxy)-- (<t-CCy f j  Xj~CCXz
2{{Ty: ayzP x z - axz) " h xy~ axy

)}
)}
)}

'j

1
1

+ 5*2 1
0
0

4

0y

a nIn addition ty setting a, = 0, af( = -3-— and a — a the equation for
ZoSo

f 1 for the general stress space can be obtained if equation 
(VIII.4.45) is used. The invariants defined by (VIII.4.39) ncw becane:

Jm = ° = aa = a-■a-u u u

and f s as

W  Kff- + ? T ) s  + 3 C - -ZqSq' si

(VIII.4.48)
r̂ -(2A - D  l ag„ )(a„ + r^-) + V3r^-(B + £ i0«o)f; + (r^~) <A ~ D toSo) =  0 
f0So W  fo?o Ss W

with the gradient tensor defined ty (VIII.4.48), where H I  , H i  ,
8o„ daTTl

H I are new given ty:86 * 1

§? “ 61c 7i - # B('- + r r )■+ r H j B + -E >si ZQ go' Z0Sogs

^ -  =  2A {am +  ^ - ) - - J i B -  r — (2A - D ?„*„) 
m £0£o Z0g0

i l l  =  i l l  , but (o -  1-a) =  (am +  - 2 - )  and dd 86 3 V "* t „ /Z M

l,fl° , a a ( ,2 a \
“ 3° + =----a»,+ z—  + -—  = ( +  ~— J

ZqBu ZoSo Z(jgo "ZqSq‘

The variation 8 f s/8a will be given ty



It will also be necessary to evaluate tr (d f s/d a ) which is the same 
as d f  jdam given above.

It should be noted that a , , f2 , 5̂  , S~c can be functions • of the 
plastic strain (or stress) rate. Any empirical law, in principle, can 
be adopted.

The number of combinations of the surfaces f s , f °  which can be 
considered in order to form a model are enormous. Each particular 
condition provides elements to rule the arrangement and transformation 
of those surfaces. Retrictions can be introduced to those surfaces to 
fit almost any theoretical soil model and in principle, any set of 
soil test data can be used to calibrate and specifically define the 
surfaces f s , f ° and their transformation rule. The particular 
conditions and transformation rules to be imposed on those surfaces to 
represent any kncwn model will be presented elsewhere. Here, just a 
few of them will be discussed.

The conditions necessary to be imposed on the general model to reduce 
to a particular one is presented. together with the transformed 
equations in table I whilst the pertinent gradients and derivates for 
each model are presented in table II.



TABLE I

f  - M u - j “ )’ -  V i« ( . . - 5 a  ) i  + s c - ~ ( 2 A  
to/a

"  D SofoX<V~« )+ >/3-— {B + E  U  
J klati

)» + ( p - ) ’(-« -O |ll| j )  + F - 0  
to to

D E S C R I P T I O N A B C D

H U B E R - M I S E S 0 0 0 0

D R U C K E R - P R A E G E R 0 0 0 1

T R E S C A 0 0 0 0

M O H R  - C O U L O M B 0 0 0 J

L A R S S O N 0 0 0 1*

OR IGIN A L C A M - C L A Y 1 2

M O D I F I E D C A M - C L A Y 1 0 iW * 2

N O V A  A N D  W O O D  F I R S T S U R F A C E 1 « * ( ! - ■ ) 7 2

TRlAXIAL M O D E L S E C Q N d S u r f a C E 1 2

P I E T R U S Z C Z A K  A N D  F I R S T S U R F A C E 1 ^ ( 1 - 0 2

M R O Z  M O D E L  S E C O N D S U R F A C E 1 ^ ( 1 - 0 2

M O D E L X  F I R S T S U R F A C E

T W O  - S U R F A C E S  M O D E L
S E C O N D S U R F A C E  1

!-*»♦ (. >>.♦ T_i] 
I l ia *  ^ i - * a « u a w «  ' /

^'[(i - % £ S £ b )’- 15*]

1
9
2



TABLE I— CONT

4 «* b ab

l- b a »  • bat
5

y-crTxw1

o

^ 0 -0

^ ( 1 -0

^ ( • - 0

^ ( ■ - 0

^(i-i43Ssl«r3r,S*)

-c  cot#

-C  cot# 

l a

l-b n t  
i —bn ♦ »J»jJ

3-bntl-wtuaM

l-iint
J-iia tiia lt

)-»ln ♦

f5 k 1 h a

i 0 0 1 l i -2 i  
i

J-bat
(W« 0 0 1 i i -ll

1

lonib 0 0 1 i l _ l £
i

)ib« 0 0 1 i i _2al
I

1 5 0 1 i i _i«L
I

1 ir 0 ! f i
- i i#

'
0 0 1 i i -3rf

1 0 0 I 1 I
. a

1 0 0 1 ? I
_ a

i

. 0 0 I I I a

I-tin* 
PuatiiajJ 0 0 I i f

_ a
i

J-bat
1-batiiaJ# 0 l f ! a

S ^ a t l ? 5 0 ! I I
1

193
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By substituting into eqaution XVIU.4.45 the constants 
stipulated on Table I for each specific model, a field of 
equations representing any of those particular models are 
readily obtained, that is:

--- H U B E R  - M I S E S

f x —  >/3of — ay =  0

---  D R U C k E R - P R A C E R

, _  y/3(3-sin<t» )
^ °m 6sin$ ff-ccot4>“ 0

t r e s c a

f x —  2<rcos4> — ay —  0

M O H R - C O U L O M B

<t — c cot$ *= 0
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L A R S S O N

f +  y j  “i H T o  +  2 a  —  0,  o  <  —
2>/3sin#  

(3— sin #  sin 30 )

O R I G I N A L  C A M - C L A Y

yj’i j e - l X3—sin# ) _
6 sin # °m a

(3 -s in $  )2 

12 sin2#
(e2- 3 e + 1 jo2 +  2 a a m +

)
3—sin #  

sin
Off 0, W 3 s in S  .  

(3—s in $ s in 3 f f )

M O D I F I E D  C A M - C L A Y

r\ _ 2 ,
/ “ *« +

(3 -s in #  f _ 2 

12sin20
+  2 a  a —  0,ftl ’ (7 < — 2 \/3 sin #  

(3—sin#  sin 30 )

N O V A  A N D  W O O D  T RI A X  IA L M  0 D E L

F I R S T  S U R F A C E

V  3(3—sin $  )._/•l _ 2 "v -'v-' Jr; ■> \ _ . sin1*' y >2 •>
--------3 sin $  l * " 1 K ° +  - 7 ^ r r ( l - 2 (  ) jF

. (3—sin#  ) )o_o + '
12 sin2#

+ 2 tf ff -f
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2>/3(3—sin*  ) 
3 s in *

(l-| )aa — 0 . M*l.

*-!• " - 1

S E C O N D  S U R F A C E

f1
2>/3(3—sin4» ) 

3 s in * (I” 1 K,ff + (3—s in *  

3 sin2 *
(1 —2£ )2 32 + 2 a am +

4 V 3(3—sin $  ) 
3 s in * (I—I )av - 0,

I - jVl +M. 9^ - 2 > /3 s in *  
( 3 - s in * s in 30 )*"*

—  PI E T R  U S  Z C Z A K  A N D M R O Z

F I R S T  S U R F A C E

f °  =  3 sin2*(ff„ -  ^a)2 -  6 sin2*-^-r^fl°(am ”  “

\Z3(|-1 )sin*(3 - sin*sin30)£(cr/M — ̂ a)- ^ a°Jff +

-  2£)(3 -  sin *s in 30 )J
_2a +  3 a®2 sin2 *^ -z 2̂  =  0

r
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S E C O N D  S U R F A C E

f x -  3sin2«f>(<rm + a f  -  V 3 (£ - I )sin$(3 -  sin $ sin 2B\am + 2 a) a +

[ * - 2£ X3“*sin<J>sin30 ,]V- 3 a 2sin2$

—■—  M O D E L  l

F I R S T  S U R F A C E

r o _ ( _  _  1 _.\2 / -3 - s in  $  sinB f  3 -s in $ >  x . v  1 %

(3—sin ‘J*sin 30 ) 

12sin2$
17, 3 ~ sin<l> V  12sin$ T—  "1 _2 01 -

*3-sin$>sin30 )  3 - s i n4>s i n3 0 2a  t

/ - 3 -sin  3>sin 30 fl°[~ 3 -  sin <S> x .  ̂x/ . ___ _
3sin<I> | |_3—sin$sin30 '  3—

3 -  sin $  T , 3sin<i> \~] _ , 

sin $  sin 30 3—sin$

= 0
(

S E C O N D  S U R F A C E

r \ , , fl \2 /-3-sin<f>sin 30 (  3/ “ (o„ + T ) - V 3 —  (— 3 — sin $

3 -s in  $  sin 30 ?_1 )(*«+y )* +
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(3 -sin  $  sin 30 f  I”/ _ 3 — sinS* \ 2

12sin2$  [_\ 3—sin <t> sin 30 '

12 sin ̂

3 — sin $  sin 30

_2a

y - 3—sin $  sin 30 a 1!" 3 - s i n $  ____ 3_

3sin4> 1 1_3—sin $  sin 30 '  3—si

3 - s i n $

sin $  sin 30

3sin$  

3—sinf>
a +

1—2|
t

=  0



TABLE II

C,

d e r i v a t i v e s

df „ df . 3y/3Jt df y/i df
JST' d9 *  2#4cos3« dl* ^  2VJco*3lM

D E S C R I P T I O N c ,

H U B E R - M I S E S 0 >/3

T R E S C A 2 co* 1(1 + (in f tan 31) Vi uit
7 5 n 3

D R U C k E R - P R A G E R 1
Vi( !-•<•♦)

M O H R  - C O U L O M B 1
1—1

♦*•!!) VO
' * — ‘ VO

L A R S S O N 0 &

ORIGIN A L C A M  — CLA Y ! i^ ( « » - 3 « +  ■ )» -£  ^  )•

M O D I F I E D  C A M - C L A  Y + «)

N O V A  A N D  W O O D  F I R S T S U R F A C E 2 ( . .  + « ) - % ^ ( H  )»

T R I A X I A L M O D E L  S E C O N D  S U R F A C E

P I E T R U S Z C Z A K  F I R S T S U R F A C E J -  V X R  tin *(3 -  tin ♦ tin 31) 1 (2tin31 sin4  + 3 )[l( l -2 |ft3 -a in ** in 3 # )» -  V i f t - I  ) • « * ( * . -  f  -  ^ f l0)]

A N D M R O Z  M O D E L  S E C O N D  S U R F A C E  

M O D E  LX F I R S T S U R F A C B  

T W O - S U R F A C E S  M O D E L
S E C O N D S U R F A C E

••in1* ^ * * ' ) - V i ( f - 1  )*in4(3-*in**in3l)»

These expressions can be 
given by equation ( VIII.4

(2 tin# sin 31 + 3 )[-V 5 (f-  I jt io * ^ . +  2rf) + } ( l- 2 f  )J(3 -* in *  sin 3I>]

obtained from the general gradient tensor 
.47) .



C,

0
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6. Practical Application of the Models

This section will be dedicated to compare the proposed models with 
seme laboratory results. The triaxial test conditions will be chosen. 
For the elasto-viscoplastic-kinematic model the vanishing elastic 
region version will be the only one to be considered, but obviously 
the two surface model could be used.

6.1 Elasto-Visccplastic-Kinematic with Vanishing Elastic Region:

For the triaxial conditions the general equation f *  for the yield 
surface and/or plastic potential (see Figure VIII.8) can be simplified 
to a convenient form, that is,

, 2 , 3 - s in $  , (3 -s in #  /
/ = P + . . --(£-1 )pq +

3 sm #  36 sin $

— lap —3—sin#

3 sin#

. 63̂ sin#
aq = 0, g>0

vhere a = a{<%) , S0 =  S0(q) and £ = £(g)

For g<0 it is necessary to substitute q by -q, £ by 
3-sin $ by 3+sin#

3—sin# | 
3 sin# and

To evaluate the function that relates and I with the stress rate 
q , the undrained standard triaxial test for different constant stress 
rate q will be considered. This procedure is justified by the fact 
that the shape of the yield surface is obtained based on the 
normalised undrained stress-path and as the undrained stress path is
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rate function so will be the yield surfaces. Ihe change in the shape 
of the undrained stress- path together with the change of stress rate 
is justified by the change on the compressibilty constants and the 
pre-consolidation pressure with the change of stress rate. Thus, 
another way to introduce the rate effect is by establishing the 
function that relates the compressibility constants and pre­
consolidation pressure with the stress rate. However, this kind of 
procedure is more difficult because the effect of the stress rate on 
the compressibility constants and pre-consolidation pressure also 
seems to depend upon the stress ratio y = qjp .

Also the elastic constants is dependent on the stress rate. The bulk 
modulus for an isotropic material relates directly with the 
carpressibility k, which justifies its dependence to stress rate. 
Laboratory results also shown that the initial elastic modulus seems 
to depend on the stress rate. In conclusion, it can be said that the 
Poisson ratio is a function of the stress rate. At the moment, 
however, it will be assumed that elastic constants are independent of 
the stress rate and that will explain the discrepancies between the 
model prediction and the laboratory results.

By analising the undrained constant stress rate test (Takahashi, 1981) 
the relation between and q ; and 1 and q are as plotted in 
Figure VIII.9.

The matrices of elastic constants are given ty
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for the following stress and strain invariants definition

q = o-2- ct,, p
fff + 2<t2

3 c« “(«i + 2€2)

By making use of (VIII.3.1) the relation for the effective stress- 
controlled loading programme is given by (see Figure VIII.8):

For /< 0

Where

1 {af/aq)

3 G, K,\%\

(dfldq)(dfldp)

. _ I 1 Widpf
4 K A U
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df _  (3 - s in $ ) 2 
Bq 18 sin2 (2 | - 1  ?~ 12£Ŝ sin$ 

3 — sin$ <1r  +
3—sin$ 
3sin$ (1-1 )Pr 3—sin$ 

3sin4> 2(|-1 > 6Ŝ sinf> 
3 — sin$

a
da 2 P r

3—sin ft 
3 sin ft 2(|-1 > 63JJsinft 

3 — sin ft 4/? § f
dp 2(pR - a) + 3—sin ft 

3 sin ft (?-i )«*

K*+K,o (f)
7+1

Kr
df\+e Bf I dp 
Ba\-ka | |Z |2

qR ~{x2- r y - x

(pP-^tan0)[2tan/3 + y|£(£-l )] - 2^=?^({-l )-^£r+tan^ 

t»n’/3 +  l)tan/J +  ̂ = $ - [ ( 2 f -  i f -

a

___________(Pp ~  qP tan p)(pP -qp tan ft -  2 a)__________
+ a ?  d - 1  )«»f + ̂ [ ( 2f-l M g ^ ]

P r  = P p  + ^ B { q R - q P )
dp

S ~  [(?« -?ff + (pR ~ P r f] i0 2 a

d  a

3 — sin ft _ 
3 +  sinft ĉ
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KP0 is the hardenning modulus at the beginning of discanpression in a 
e-lnp curve, i represent the power necessary to calibrate the non­
linearity of the disccmpression line e-lnp.

is the friction angle and e is the void ratio.

for / = 0 , the same relations are valid, except that new

V  _ rf R P
A  p A  (X (T

For a mixed loading programme Where the volume changes and the 
deviator stress are prescribed, the deviator strain and mean stress 
change response are given by;

B H S  S3 0
Where

B2 - - b 3 d1 
A* Ba

*4

Now tan (5 beccmes
B3d q + B 4dtv

------Ti----

and the other relations are unchanged.

To show the accuracy of this model a series of constant stress rate 
undrained standard triaxial test will be analised. Ihe soil tested is 
lewer Craner Till (Takahashi, 1981) and the test procedure was as 
follows:

The material was first consolidated anisotropically and then swelled
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back to an isotropic stress state. Ihe undrained stress path is shown 
in Figure VIII. 10 and the stress-strain relationship in Figure 
VIII. 11. Note that neither the original cam-clay nor the modified cam- 
clay can predict the pore-pressure generation accurately. A much 
better prediction can be achieved by adopting | = 1. 2 and 3̂  *= 0. 2 
in the proposed model. Ihe extension test could be improved if SjJ was 
adopted as function of 6 which is allowed in the general model.

The stress-strain relationship (Figure VIII. 11) can also be reasonabl 
predicted by the assumed model while the state of stress at failure 
( and />. ) are both very well predicted by the proposed model, 
while the modified cam-clay over-predict and the original cam-clay 
under-predict , both and p j .

The previous test correspods to a lew constant deviator stress rate. 
To calculate the undrained stress path for other stress rates it will 
be assumed that the value of 3̂  and 1 for different stress rates are 
determined by a linear interpolation in the 3^- Ini? space and J-lnq 

space, as presented in Figure VIII.9. In doing so the prediction of 
the pore-pressure in undrained constant stress rate test cire presented 
in Figure VIII. 12, and the stress-strain relationship in Figure 
VIII. 13. It can be seen that the pore-pressure generation is quite 
good and the stress-strain relationship for the extreme stress rates 
are reasonably predicted. An improvement in the stress-strain 
relationship can be achieved if the elastic constants are considered 
as rate function. Also a non-associative flew rule may be necessary. 
However, the degree of strain is quite samll and the accuracy of the 
laboratory test must be seen with a certain reserve in this range of 
strain level. The stress-strain relationship prediction for other
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constants stress rate are presented separately in Figure VIII. 14 so it 
would not overload Figure VIII. 13. In this figure only compression 
test are presented.

New seme standard undrained tests are going to be simulated with 
variable stress rate in sample with the same stress history before the 
undrained test as presented in the constant stress rate tests.

It will be assumed that the stress rate invariant is given as a 
exponential function of the stress invariant as shown in Figure 
VIII.15.

The curve characteristics are given in Table 3. The first two curves 
represent tests which begin with high stress rate and then decrease 
exponentially until the end of the test. The initial stress rate and 
the rate of change of stress rate are shewn in the Table 3. The third 
curve reprents a test which begins with a small stress rate until a 
certain stress level when the stress rate increase until another 
stress level and then keep constant until the end of the test. The 
fourth curve represents a test which begins with high stress rate and 
decreases to a lower stress rate until a certain level of stress and 
frem there the stress rate increase until another level of stress and 
then keeps constant until the end of the test. The fifth curve 
represent a test which starts with small stress rate and increase 
until certain level of stress and frem there decreases until another 
level of stress and then keeps constant until the end of the test. Ihe 
sixth curve represents a test which starts with a high stress rate and 
then reduces quickly to another level of stress rate which is kept 
constant until the end of the test. Finally the seventh curve
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represents a test which starts with slow stress rate and then 
increases quickly to another stress rate and fro m  there kept constant 
until the end of the test.

In table III p. represent the initial tangent of the exponential 
function at the specified stress state and stress rate as given in 
table H I .  see also Figure VIII. 15.

The undrained stress-path for each of those conditions is presented in 
Figure VIII. 16. It can be seen that the increase in stress rate makes 
the pore-pressure generation to decrease while the decrease in stress 
rate makes the pore-pressure generation to increase, which are 
coherent with the laboratory results. However, to compare with real 
data more laboratory tests will be required. Also, a model which does 
not take the stress rate (strain rate) into account can have as many 
yield surfaces as the loading conditions (as stipulated by Figure 
VIII.15). As for the sake of curiosity, the loading conditions 
stipulated by the curve number 2 of Figure VIII. 15 produce a yield 
surface vhich is an ellipse.
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TABLE H i

Curve

no

Stress

State

Stress

Rate
fin

Stress

State

Stress

Rate
fin

1 0. 1.000 -0.0250 - - -

2 0. 14.12 -0.5430 - - -

3 0. 0.008 0. 100.0 0.008 0.0242

4 0. 1. -0.05 100.0 0.008 0.00242

5 0. 0.008 0.00242 100.0 14.12 -4.278

6 0. 14.12 0. 200.0 14.12 -47.07

7 0. 0.008 0. 150.0 0.008 0.0266

0, represents the initial tangent of the exponential function at the 
specified stress state and stress rate.

It is more difficult to compare the prediction of the model with 
experimental results for the overconsolidation region because of the 
scarcity of test information.

The stress rate effect in this region seems to be much less important 
then in the normally consolidated region as seen in Figure VI11.18a. 
The test represented in this figure was carried cut with displacement 
control but with the stress rate equivalent to 0.008 Kpa/sec and 0.11
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Figure V i. 8.
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Figure VIM. 9.
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Kpa/sec, therefore the difference in the stress path is not so 
pronounced. Additional difficulty will be encountered when analising 
the laboratory results which considers the stress control test carried 
out on the same material with the constant stress rate of 0.008 
Kpa/sec and 14.12 Kpa/sec as shown in the Figure VI11.18b. The 
influence of stress rate increase in this stress control test is the 
opposite when compared with the displacement control test of Figure 
VIII. 18a. It is acceptable however that the displacement control test 
gives more reliable results, Hight (1981) and De Catipos (1984).

The model can predict the two effects according to the paramenters 
adopted but for the time being, the material behaviour in this region 
it is going to be considered stress rate independent and the 
prediction for any stress rate and its laboratory results are compared 
in Figure VIII. 18c. The stress path predicted can be seen to be quite 
reasonable whilst the deformation prediction still need some 
improvement. However, considering that the deformation level is too 
small and the laboratory results' precision to this level of 
deformation is doubtful 1, the prediction can be acceptable.

6.2 Elasto-Viscoplastic-Plastic

In this model the viscoplastic strain rate is determined as function 
of the two independent variables: The stress level and time . This is 
ccrrpletely ficticious since it is known that the viscoplastic strain 
rate is a function of the stress rate and stress level as presented in 
the previous section. The choice of such model for finite element 
application ,in the case of this thesis, is merely due to its
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sinplicity.

The elasto-visccplastic model presented previously, hcwever, can also 
be used in finite element method but its application is going to be a 
subject for future research.

Before presenting the experimental verification of this model for sane 
restricted circumstances the introduction of the creep law is 
necessary.

Creep Law:

The creep law vhich is going to be presented here is similar to the 
one proposed by Singh and Mitchell (1968), Lovenbury (1969), Larsson 
(1977) for triaxial test conditions. The difference lies in that the 
creep law is decanposed into two components, according to the shape of 
the plastic potential. As normality is assumed, the creep law is 
broken into two components rate t p , tvp , according to the shape of 
the yield surface. Also as the shape of the yield surface depends on 
the stress level so will the viscoplastic strain rate components do 
too.

Note that the shape of the yield surface (triaxial condition) depend 
on the deviatoric stress level and mean stress which make the creep 
law dependent not only to the deviatoric stress but to the mean 
stress, too.

In addition, it seems reasonable to take explicit time hardening into



2 2 5

account

The stipulation of the functional expressions $(F) is still envolved 
with great uncertainty because most of the available results are from 
undrained test with free development of pore-pressure. This means that 
the effective stresses were not kept constant and relaxation in mean 
stress and creep in deviatoric strain occured simultaneously.

With these short ccmings in mind an explicit time hardenning law can 
be proposed as:

For the functional creep law $ (F ) two expressions are suggested, a 
linear one for the overconsolidated region and a exponential one for 
the normally consolidated region, that is:

These expressions were suggested by laboratory results carried out by 
Lovenbury (1969), Larsson (1977), Singh and Mitchell (1968), and are 
seme of the many suggested by Perzyna (1966)

ir represent a reference time, often chosen as 60 sec.

(VIII.4.49)

r

(VIII.4.50)

The creep parameters Ac , mc and at are determined from tests were 
the total effective stress state is kept constant and not only the
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deviator stress.

The time hardenning parameter me is determined by plotting In |<vp| 
versus In t from testing for />>/,. and an arbritary but
constant value of F. (see Figure VIII.19). The parameters must be 
chosen in a way that the initial conditions of no creep strain can be 
satisfied for an arbitrary development of stresses, say, in pure creep 
with constant stresses. For me to be arbitrary one must choose 
/y>0 , otherwise the restriction mc<  1 must be imposed. Usually
tj is choosen as 1 sec. for pure creep test.

To completely define F the reference value f \  , as stated previously, 
must be choosen. It is convenient to adopt f \  equal to 2a2 , that is 
the value for p7 which satisfy /2 for q2 — 0 .It also seems 
reasonable to consider that p1 =  2a2 is the in situ mean stress, which 
means that the in situ stress lie in the quasi-static yield surface 
and consequently there is no creep occurance in situ. Further F0 is 
defined as the value of F for stresses on the initial (dynamic) yield
surface. Such stress state is defined by p =  2al and q = 0 . Thus, for

• . . . 1 / 2  o'the triaxial test conditions and isotropic material F0 =  2a 2a = — .
Assuming that f 2 and /' are of the same shape. The value of F0 can
be estimated basicly frcm two undrained test, one slow to define the
shape of /* and f 2 and other fast to evaluate the constant F0 • See
Figure VIII.20.

To determine Ac and af the plot of |€,,p| versus F> should be 
considered for a certain time / = tr - t i . The value of Ac and ac 

are estimated as shewn in Figure VIII.21.
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Experimental Verification:

The proposed creep law given by equations (VIII.4.49) and (VIII.4.50) 
will now be compared with laboratory test. The triaxial undrained test 
carried out by Lars son (1977) will be used. First the samples were 
consolidated to the in situ stress and then the deviatoric stress were 
increased to a certain level and kept constant. Relaxation in mean 
stress and creep for the vertical stress increases to three different 
levels in the overoonsolidated region as shewn in Figure VI11.22 and 
VIII.23. for Swedish clay.

Assuming linear elasticity for rapid loading, the stress path is pure 
deviatoric without any increase in the effective mean *stress. Some 
deviation from this assumption was reported at the experiments. 
Relaxation in mean stress is demonstrated in Figure VIII.22 where the 
effective mean stress moves horizontally to the left along the stress 
paths. The vanishing stress rates reported will be the locus of the 
observed quasi-static yield surface which can be compared with the 
theoretical quasi-static yield surface obtained from the creep law 
given by equations (VIII.4.49) and (VIII.4.50).

It will be assumed that the quasi-static yield surface is isotropic 
and passes through the in situ stress point. Because the model is 
completely ficticious the shape of the quasi-static and inviscid yield 
surface will be considered as an ellipse.Thus, the following soil 
constants will be adopted:

$ =30°, *0 = 0,84, a2 = 20.87*pa, p « 40.65*pa, q = l.\4Kpa, a1 = 28.3*/w,

Ks = 2500*pa, Gs =  1154Kpa, tf = lsec., tr = 60sec., mc — 0,7, Ac — l.dO5
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Since only elastic and creep deformation occurs in this region, the 
stress strain relationship can be simplified to:

3̂ -+ 7(0^ nq = 3̂  + hq{p,q j,)t iv = + y (t)F ' np *= j^  + h p{p,q,t)

vhere - (
* - v /4* [(§£)’+ © ’] ’

"/■= ̂ [ ( s i ) 2 + (l^)2]' §5 - 2<7/"J’ §£ -

For the mixed loading progranme it beccmes,

= w  + hq{p,qj)JLf;

In the undrained test, previously described, after the instantaneous 
deformation have occured, the deviatoric creep strain and the 
relaxation in mean stress can be evaluated by considering the initial 
value problem.

<, =  p { 0 )  ■= p i

p = K,h/p,c,t) i,(0 )-0

Where c is the initial value of q and p, is the initial value of p.

The result of this equation is plotted on Figure VI11.22 and Figure 
VIII.23.

Thus, it can be seen that the theoretical quasi-static surface lies on 
the left of the experimental one. This can be explained by the fact 
that the rapidly load increase makes the mean stress to increase and
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in the theoretical calculation the effective initial mean stress has 
been considered constant.

In the Figure VIII. 23 the theoretical prediction shews that for lower 
deviator stress level there is a tendence of the strain to decrease 
non-linearly vhile for higher deviatoric stress level this tendence is 
not observed at least for the time interval considered.
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Figurt V III. 21.
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CHAPTER IX

SAMPLE SOLUTIONS

IX.1 Introduction

Based on the assunptions discussed in previous chapters a computer 
program has been developed with the aim of evaluating stresses, 
strains, pore-pressure and displacement in plane strain and complete 
axi-synmetric conditions. Static analyses using non-linear geometry 
and material were allowed. Material non-linearity refers to the 
elasto-plastic, elasto-plastic-viscoplastic skeleton stress-strain 
relationship and the non-linear permeability matrix. The linear model 
considers isotropy and orthotropy and although the general elasto- 
viscoplastic-plastic model proposed includes orthotropy, the program 
is restricted to non-linear isotropy.

For the geometric non-linearity only up-dated Lagrange is considered.

Additional facilities such as field construction, dam reservoir 
filling and long term seepage through an earth dam are included. For 
the field construction the incremental loading schemme suggested by 
Clough and Woodward (1966) is used.

The program uses variable 3 to 8 nodes isoparametric elements and the 
active column solution techniques developed by Bathe and Wilson
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(1973). Although the use of the same number of nodes for pore-pressure 
and displacement are not supported by the theory, because of the 
incompatibility of inter-element boundary conditions, it has not been 
noticed to have produced any harm. Furthermore, it has actually 
improved the accuracy for pore-pressure calculation. In the column 
solution technique the out-of-core stiffness matrix is stored in a 
block form, with a minimum of two.

The solution of the system of equations with an indefinite coefficient 
matrix is performed by a direct Crout method, Bathe and Wilson (1976).

No input data generation nor plotting output facilities are available.

Next, the sairple analysis will be selected with some objectives in 
mind. The first aim is to present solutions which demonstrate some of 
the analysis capabilities of the present program. Therefore, linear 
and geometrically non-linear analysis are presented using the elements 
and material models available in the program.

A further objective is to study the accuracy and stability of the 
solutions. Therefore, a ccnparison between the theoretical solution 
and the respective responses predicted by other researchers is given. 
In this context, the importance of equilibrium iteration in some 
analysis is investigated.

The non-linear solutions have been obtained using the algorithm 
presented in chapter VII. For static non-linear consolidation, 
undrained analysis and long term settlement the equilibrium iteration 
depends on the load-time step. For example, the drained, undrained and 
partially drained standard triaxial test for geometric and material
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non-linearity with 44 load-time steps requires one or two equilibrium 
iterations to converge to the required tolerance ( tolerance < 0.001). 
Hcwever, a geanetricaly non-linear consolidation test with a very 
small time increment (time factor less than 0.001) requires changing 
the general stiffness to achieve the convergence requirement. 
Nevertheless, there is little practical interest in consolidation 
problems over such a snail initial time.

An important problem is the optimization of the load steps in non­
linear anlysis. Although in this work no specific attention has been 
given so far to this problem, it should be noted that the order of all 
systems considered in this report was snail and the ccrnputer time used 
rather negligible.

IX.2 Static Linear Analysis

IX.2.1 General

A few sample solutions will be chosen to be compared with closed 
analytical solutions and other investigators researchers.

First, the one-dimensional case and subsequently the two-dimensional 
case is analysed. In the one-dimensional case fixed boundary 
conditions are considered first and then variable boundary conditions 
are discussed.

The boundary conditions, the material profile, and the material 
constants are given separately in each example. For this section
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linear elasticity and isotropy is assumed. As a consequence of the 
linear elasticity assumption the stresses and strains in situ are 
irrelevant. Also, the coupled theory and the uncoupled theory for one­
dimensional analysis coincides. In the two-dimensional analysis the 
two theories will be shewn to be distinct.

The Terzaghi case and the problem of twD-contiguous finite layer with 
the same compressibility but with two different constant 
permeabilities are analysed.

The two-dimensional plane strain problem with infinite thickness is 
considered and compared to the closed analytical solution. One of the 
aims here is to show that the finite element solution, by being 
coupled, can detect the Mandel Cryer effect.

Finally, an axi-symmetric problem (deformation and flow in three- 
directions) with a finite continuous length is considered.

IX.2.2 One-dimensional Tests.

Fixed boundary conditions:

1. Vertical deformation and flow of an axi-symmetric finite length 
geemetry. (Terzaghi case)

A cylinder of length L cut out from a continuous layer is now 
considered. This cylinder is uniformly loaded with the intensity a 

given the uniform initial excess pore-pressure p0 = throughout the 
total length L. Free drainage is assumed at the top vhilst the bottom
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is considered impervious. Complete axi-synmetry is considered in the 
analysis.

If m v is the compression modulus, the uniform compressive strain and 
total settlanent are, respectively, given fcy

t fl*nv and w‘ —

Ihe usual definition of consolidation factor is given fcy

L

U  - \p(z)d2
<rL Jo

which is equivalent, in this one-dimensional case, to U —  w/w’ , 

where w is the current settlement. Care must be taken because the 
numerical errors in the space discretization may cause the two 
expressions not to coincide in the computation.

The set of graphics presented in Figure IX.la, b represent, 
respectively, the pore-pressure generation pja versus the depth 
ratio z/L and the average pore-pressure dissipation versus the time 
factor. The 8 equal element mesh was used in this example, though a 5 
variable size element mesh, where the upper elements are thinner, 
could be used, and would give the same accuracy in the results (not 
presented here). The schematic problem with its boundary conditions is 
also included in Figure IX.la and IX.lb.

The percentage of settlement U plotted against the vertical time 
factor 7, are both given fcy the equation,
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7, and v E  (1 —  v) k

t is the length of time, E is the elastic modulus, v is the 
Poisson ratio, k is the permeability and 7/ is the unit weight of 
water.

It can be seen that the finite element results approximate to the 
exact solution of this problem very closely. Though time steps 
decrease with the tolerance, almost indistinguishable results are 
obtained for a tolerance less or equal to 0.05 (not presented here).
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2. Two contiguous layers

Two contiguous layers with the same ccnpres sibility, the upper being 
four times as permeable as the lower one, is now considered. Again 
free drainage is assumed at the top while the bottom is considered to 
be impervious.

Although no closed solution is known for this case, a few approximated 
solutions have been presented up to now. Schmidt (1924) presented a 
solution using a graphical procedure; Lusher (1965) proposed a 
solution using a ccnputer analogy and Harr (1967) described a solution 
using the finite difference method. The first finite element solution 
were presented ty Christian (1969).

Figure IX.2 presents the excess pore-pressure pjd against the 
depth ratio z/L , for the different solutions. In this case T] is 
defined ty

T, “ Cvl(/ iJ

and Cvl refer to Cvl of the drainage side, that is to say,

_ 4 *0 £(!-,)
vl 7/ 2(1+*0(1-2*)

Thus, it can be seen that there is considerable spread among these 
results. Lusher (1965), because of the assurrption involved, expected 
his results to be too slow. Harr's explicit finite difference 
procedure (ccrrputes values at the end of time steps) does not consider 
the compressibility of the nearby material at the interface between
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two materials, and it therefore leads to a too fast consolidation. Ihe 
correct solution is, therefore, expected to be between the two 
previous solutions. Christian's finite element solution, Schmidt's 
graphical procedure and the finite element solution achieved in this 
report coincide and lie between the two previous extreme solutions, 
and are believed to be accurate. However, it should be enphasized that 
all solutions to this problem are approximated solutions.
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3. Variable loading conditions.

One-dimensional incremental deposition to simulate the time-dependent 
deposition and simultaneous consolidation of a saturated layer of 
material is now analysed. A closed analytical solution for the 
distribution of pore-pressure is given by Gibson (1958) for both 
impervious and permeable bases.

The time factor is defined by m2t j c v where m is the rate of 
deposition (units of length/time). When the time factor T is infinite, 
deposition is instantaneous and no consolidation occurs during 
deposition. When T is a finite value, it represents a finite rate of 
deposition, and consolidation occurs during deposition. To simulate 
the rate of deposition shewed in Figure IX.3a and IX.3b, elements are 
added to the mesh at a certain time interval, as shown schematically 
in the right top position of Figure IX.3a and IX.3b, element number 2 
is placed on top of element number 1, and element number 3 is placed 
on top of element number 2, and element number 4 is placed on top of 
element number 3 at a certain time interval.

In the Figure IX.3a the pore-pressure ratio defined by f/TI ( pore- 
pressure by unit of total weight) is plotted against the weight ratio 
defined by z/L for an impermeable base and Figure IX.3b presents the 
same plot for the permeable base. It can be seen that the finite 
element solution shows good agreement with Gibson's analytical 
solution for both flew boundary conditions.
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IX.2.3 Two-Dimensional Problem.

The only linear two-dimensional problem analysed here is the strip 
load on a half-plane where the uniform load d is applied over a 
width 2a. Free drainage is assumed at the surface and because of the 
synmetry only a quarter-plane has to be analysed. Plane strain and 
plane flew are assumed. The general method for analytical solution for 
Biot's equations for complete isotropy (under the particular 
assumptions of this plane strain problem) is presented fcy McNamee and 
Gibson (1960a,b). Schiffman et al (1969) have evaluated numerically 
the stresses, pore-pressures and deformations for the uniformly loaded 
half-plane.

The choice of the boundary conditions for finite elements when 
analysing infinite regions is a difficult task. A few tentative tests 
are required until the boundary is sufficiently far away to ensure 
that they do not influence the results in the major zone of interest. 
The final tentative mesh, the schematic problem and its boundary 
conditions, and the pertinent results are presented in the Figure IX.4 
and IX.5. Figure IX.4 shows the variation of excess pore-pressure 
beneath the centre of the loaded area, for a general T2=0 »l and 
Poisson ratio v — 0 . New T and Cv are defined by:

where Gs is the shear modulus, and the other parameters are as 
already defined.

and

The tolerance chosen was 0.01 and the convergence can be seen to be
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good for /3 = ̂  . Certainly if the w-method (non-linear interpolation 
for the time integration) were used, the same degree of accuracy can 
be achieved with less element in the mesh. However, the accuracy is 
very good though this extreme situation (Poisson ratio equal to zero) 
is unrealistic in practice.

Figure IX.5 gives the variation of excess pore-pressure with time for 
two general chosen lines x ja =constant in the half-plane. Again the 
accuracy of te finite element program can be seen to be good. The 
Mandel-Cryer effect is demonstrated by both the analytical and the 
finite element solutions.

IX.2.4 Axi-symnetric Load on Finite Layer.

To shew the ability of the proposed program to analyse axi-symmetric 
consolidation a circular area with diameter 2a, uniformly loaded with 
an intensity d , over an finite thickness layer is now considered. 
Carpiete axi-symmetry of flew, load and deformation are assumed. Free 
drainage is assumed at the surface and an impervious base is 
considered at the bottom. The general solution for this problem 
(Biot's theory) is given by Gibson et al (1970).

The consolidation process at the center of the loaded area together 
with the schematic geometry, boundary conditions, and the final finite 
element mesh are given in Figure IX.6. In this figure ̂  represents the 
settlement at the point

z
a
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for the conditions

S - l -  - 0.

The time factor and coefficient on consolidation Cvl are given ty

T  —  ^*v3* H 2 and 'v3
2 Gsk

V

It can be seen in this figure that the finite element solution 
approximates the theoretical solution very closely.

The value of 0 for the time integration was 1/2 and the tolerance 
0.05.

IX.2.5 Creep Effect

The creep influence will be shown by comparing the finite element 
prediction with the laboratory test.

The oedaneter test carried out ty Buri (1978) on mucking clay is the
one chosen to be canpared with the elasto-viscqplastic-plastic model.
The sairple considered is a slightly overconsolidated one with OCR=

21.3. The vertical preconsolidation pressure <rc =65KN/m and actual
2vertical stress level is at a = 50KN/m . Ihe friction angle assumed

2is $ = 36° and the elasticity modulus E= 190KN/m and the Poisson
2ratio v = 0.3 (corresponding to the Bulk modulus B= 238 KN/m and 

K0=0.5). The creep parameters are choosen as = lsec., tr -  60sec., 
Ac = 1x10 ^ , mc =0.75 and the isotropic permeability is given by K= 
1.373x10 ^ an/seg..
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The inviscid preconsoldation pressure can be estimated by the relation 
with the vertical preconsolidation pressure <rc as

p\ - |(1 + 2*>c - 43.333̂  N  j m 2

As both the inviscid preconsolidation pressure p\. and the quasi­
static preoonsolidation pressure p] are associated with loading along 
the k^-line , p2c is calculated by

p\ - p ' J O C R  - 33.333K N  / m

2Because the additional load is A a =  10 KN/m the parameters associated 
with the behaviour in the past yield are not necessary.

The plot in Figure IX.7 shews the laboratory results of the odometer 
test and the finite element prediction in this report. The finite 
element mesh, geanentric and boundary conditions are also displayed in 
this figure. It is demonstrated that the predicted and measured volume 
decrease due to creep are in good agreement.lt should be emphasized 
that in the approach considered here no settlement can occur without 
volume change, and consequently without pore water flow. Finite water 
flew was observed in the calculation after the 'primary consolidation' 
had finished. The tolerance chosen was 0.05 and /3 =1/2

IX. 3 Static Non-Linear Analysis.

IX.3.1 General

Very few solutions have been developed for consolidation with the non­
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linearity influence.

For geometric non-linearity seme one-dimensional theories have been 
presented fcy Gibson et al (1967), aniles and Boulos (1969), Monte and 
Krizek (1976) etc ... No multi-dimensional theory including the large 
strain effect is known to the author, and also, no material non­
linearity effect has been considered in the analytical solution for 
consolidation (at least not to the author's knowledge). Computational 
results by finite element are only presented for elastic-perfectly 
plastic material (Carter et al (1979)).

Due to such restriction the comparison of the ability of this program 
with other solutions is possible cnly in a few cases.

For testing the geometric non-linearity effect two cases will be 
considered: One-dimensional flew and defometion with linear material 
and non-linear geometry, and secondly two-dimensional flow and 
deformation with elastic- perfectly plastic material and non-linear 
geometry.

To test the material non-linearity the only alternative is to compare 
with local stress-strain relationships obtained from the laboratory 
results. Drained , partially drained and undrained standard triaxial 
tests on weald clay will be considered.

The drained test is first shown and subsequently a consolidation test 
with drainage at both ends for different stress rate is considered. In 
this simulation the drained test result is achieved using a slow 
stress rate, the undrained test is achieved using a high stress rate 
and partial drained test using an intermediate stress rate.
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Finally, to demonstrate the large deformation and creep influence in 
tvo-dimensional problems, the strip loading on an infinite ha If-plane 
has been considered.

IX.3.2 Linear Material Non-Linear Geometry Analysis.

The one-dimensional flew and deformation field of an axi-symmetric 
load and geometry problem is now considered. Linear material behaviour 
and non-linear geometry are taken into account. Constant permeability 
and complete isotropy and null initial stress level are assumed. 
Different load/elastic modulus ratios (<?/£) are computed. The two 
extreme cases <r/£ -»0 and 5/£ ■* 1 are plotted in Figure IX.8. The 
result obtained by Carter et al (1979), the finite element mesh and 
the initial geometry and boundary conditions are also displayed in 
this figure. The finite element result achieved in this report can be 
seen to have a very good agreement with results obtained by Carter et 
al (1979), despite the fact that the latter seems to have solved the 
problan only by updating the geometry, without iterating in each load­
time step. Obviously many more load steps are necessary to converge to 
the right answer. Here only 44 load-steps are needed to converge, 
since 0 =1/2 and tolerance = 0.01 are chosen.

IX.3.3 Elasto-Perfectly Plastic Material and Non-T.-inear Geometry

The two-dimensional elasto-perfectly plastic consolidation problem of 
a rigid strip loading on a finite layer of soil lying on a smooth 
rigid base is new considered.
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Constant permeability and full isotropy is assumed. Flow and 
deformation occur in two-dimension and free drainage is considered at 
the surface vhile the base is assumed impermeable. The soil constants 
are given as friction angle $ =30° Poisson ratio v =0.3 and the

influence is considered negligable, that is T̂ a/G} ->0 . A few constant 
loading ratios defined by

were choosen. Figure IX.9 shew the finite element analysis obtained in 
this report and the one given by Carter et al (1979). The results for 
three loading rates are displayed ( t  = 0 .1 4 3 ,  $ =1.43 and § =143 ). 
Good agreement betveen the two finite element analyses are clear and 
basically no distinction between the small and large displacement 
analyses can be seen. The loading rate of 143 corresponds to the 
undrained test, the loading rate of 0.143 correspond to the drained 
analysis and the loading rate of 1.43 correponds to a partially 
drained analysis.

IX,3.4 Elasto-Plastic Material and Linear Geometry.

To check the accuracy of the stress-strain relationship and the 
consolidation of non-linear material, a set of standard triaxial tests 
with different constant stress rates are new considered. Deformation, 
and flow occurs in three-dimensions and free drainage is considered at 
both ends. Constant permeability and ccnplete isotropy is assumed.

In addition the density

and
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Ihe soil choosen is weald clay (Bishop and Henkel (1971)) with the
following parameters Gg=3000Kpa, X =0.088, K=0.031, eg=1.0575,

“9$ =23° v =0.4, K=1.3x10 cm/seg. and the initial effective stresses 
a, — a2 — a3 * p — 207Kpa. The tests were carried out at constant 
displacement rates, however, the equivalent approximate stress rates 
in Kpa/sec are given as 0.00035, 0.0035, 0.01398, 0.03495, and 0.3495.

Figure IX. 10 shews the finite element mesh, the schematic geometry and 
boundary conditions and the result obtained by the finite element 
analysis in this report and also the experimental results. Good 
agreement between the finite element analysis and the experiments is 
clearly shewn by the figure. Again /? =1/2 and toleranceof 0.05 are 
assumed.

IX.3.5 Non-Linear Geometry and Creep Influence.

Strip loading on a half-plane vhere the uniform load has been applied
over a width 2a has been chosen to demonstrate the influence of large
deformation and creep. Free drainage has been assumed at the surface
and because of the synmetry only a quarter plane has to be considered.
The finite element mesh, the schematic problem and its boundary
conditions and pertinent results are presented in Figure IX. 11. The
dimensionless settlement w/a of the centre point of the strip load is
also shown in the figure as a function of the time factor, for two
ratios of <t/Gs and v — 0 , 7/ = 0 . The curves show that the
difference between large deformation and small deformation theories is
more pronounced for larger e?jGs ratios. For the creep analyses the

-5 -5parameters ac =  mc= 1 and A= 1x10 or A = 2.0x10 have been chosen.
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Hie definition of Cv and time factor are shewn.

The integration constant 0 =1/2 and the tolerance level of 0.01 were 
chosen.
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CHAPTER X

CONCLUDING REMARKS

X.l General Results

Basically this report contains three main parts. These parts deal with 
the achievement of the finite element equations for geometric and 
material non-linear consolidation, with the constitutive equations for 
the soil skeleton and pore pressure fluid behaviour, and with the 
numerical solution of the differential equations, so produced.

Two sets of integral equations representing the geanetric and material 
non-linear consolidation are arrived at, one based on the method kncwn 
as the total Lagrange method and the other based on that known as the 
up-dated Lagrange method. The set of integral equations obtained on 
the basis of the up-dated Lagrange method is discretized in space and 
time and applied in the finite element program.

The constitutive behaviour of the soil is described using two distinct 
approaches. One considering the elasto-vis coplastic concept and the 
other involving the so called elasto-viscoplastic-plastic concept. The 
derived constitutive equation based on the first concept is compared 
with triaxial test results and exhibits quite good agreement.

It has been considered advantageous that the proposed model brings
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together all basic known model into a unique equation and in addition 
allows a very large flexibility in calibrating almost any experimental 
data. Hie adoption of such a general model is justified by the non­
uniqueness of the yield and plastic potential for soil and 
consequently the adoption of an rigid unified model is not justified 
and actually quite pretentious.

Although the elasto-viscoplasic model is more firmly based on physical 
concepts, only the elasto-viscoplastic-plastic model is used in finite 
element progranming. Hie basic behaviour of the clay during undrained 
loading , consolidation and creep seems to be qualitatively well 
described fcy this elasto-visccplastic-plastic constitutive model. The 
comparison with the triaxial test shews that the accuracy of the model 
shape is good in both hydrostatic and deviatoric planes.

The discrepancies between test results and the prediction for 
undrained creep may almost certainly be due to the linear elasticity 
assunption in the overconsolidated region at rapid loading. This is 
not in agreement with the experiments which sometimes show a pronouced 
non-linearity, depending on the stress rate (or strain rate) of 
testing.

Consideration of the effect of major variables influencing the 
consolidation problem will be presented separately as a main subject. 
This area requires more study because of the lack of full scale 
experimental data which make the judgement of the quantitative results 
incomplete and inconvenient, in particular, where it concerns the 
recording of horizontal displacements. Further difficulties are 
encountered when judging the time effect on the constitutive law 
because inviscid and viscous effect can hardly be separated in
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observed deformations. In this respect the elasto-vicoplastic approach 
seems to be more convienient.

It is demonstrated that, because a purely rate-type constitutive 
equation has been adopted for undrained loading, the undrained loading 
algorithm and the consolidation process algorithm can be formulated 
very similarly. In the former case it is formulated as an initial 
value problem in "fictitious time"; and in the latter case it is 
formulated as an ordinary initial value problem.

In the solution of the initial problem the adopted load stepping 
procedure can be interpreted as an Euler extrapolation scheme. The 
time integration scheme is efficient and accurate because of the 
optimal choice of time step, based on an acceptable range of the local 
truncation error. Numerical sample solutions demosntrate that the 
accuracy is good and the sensitivity of the process of calculation for 
change in tolerance level is small.

The element mesh prepared to analyse initial value problem were 
designed to account for steep gradients. Though the computer program 
is coded in single precision (IBM 360/370) no problems due to ill- 
conditioning of the system of computed equations have become apparent.

To conclude, an important practical problem related to consolidation 
can be analysed based on the theory supported in this report. The 
presented numerical algorithm is applicable to practical problems such 
as: External loading on a footing, acceleration of consolidation by 
means of drains, calculation of secondary settlements in urban 
environments due to changes in the ground water hydraulics, dam 
construction, deformation, consolidation and long term seepage, and
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slope stability.

X.2 Future Development.

In the field of consolidation there is the need for research in three 
main related areas: Further development and verification of 
constitutive models, experimental test on laboratory-scale and full- 
scale conditions and additional development of numerical methods.

The constitutive model used in this report has been experimentally 
verified and numerically tested under rather restricted conditions. 
Experimentally the model has been verified for slow rate analyses in 
the hydrostatic planes. In fact it has been developed based on tests 
carried cut by keeping the slew rate stress-path on the hydrostatic 
planes. To extend this model to predict for other paths, such as those 
which are more likely to happen in the field, is not yet recommended. 
It is known, however, that the isotropic version of this model is not 
able to predict the defoliation obtained from stress-paths developed 
on the ir -plane. This makes one believe that the model is only 
strictly applicable to analyse problems which experience the same 
restricted stress-path fran which it was obtained.

Although sane results have been achieved the investigation of very 
overconsolidated soils still remains to be done.

However, vhat is more serious is that the fundamental assumption of 
critical state theory has to be re-analysed because the Rendulic 
principle does not seems to be applicable at all. This can really 
cause serious inconvenience for the unification of the constitutive
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model for soils. Perhaps a different approach such as the slipping 
theory, or the use of a more flexible model which would allow the 
calibration for any specific circumstances, as proposed in this 
report, should be adopted. In fact porgramming the general model as 
proposed in this report is reccmendable and should be considered as 
one of the next tasks.

To investigate the anisotropy of the initial and subsequent loading 
surfaces it is not sufficient to investigate the behaviour in the 
principle stress space. In particular, it is not sufficient to conduct 
active and passive triaxial tests on samples which are taken 
vertically from the ground. Tests should be performed on samples taken 
vertically, horizontally and any other direction from the ground, 
because of the need to relate the direction of the anisotropy with the 
direction of the stress rate. No model which does not take the 
relation between the direction of action and the direction of 
anisotropy into account can be of practical value.

Creep and or rate effect must be studied much further with the 
intention of unifying these two effects. In the study of creep law it 
will be adequate to fix the effective stresses so that no relaxation 
occurs. This means in particular that during creep tests in a triaxial 
apparatus the pore-pressure change with time must be compensated so 
that the effective stress is held constant. If this procedure is 
adopted then there will be no elastic volume change and the observed 
amount of water which has drained is the volumetric part of creep 
strain.

However, it is the author's opinion that rate control in a partially 
drained and/or undrained test would be a preferable approach to
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incorporate the time effect on the constitutive equations, although 
the calculation procedure is more complicated. The effect of both 
constant and continuously changing rates of testing should be analysed 
for undrained and partially drained tests.These would provide 
important reliable information about the influence of rate and change 
of rate on the compressibility parameters and preconsolidation 
pressure.

A major theoretical attempt should consider the iteraction between 
subsoil and a flexible superstructure through a rigid footing or the 
iteraction between the subsoil and a flexible raft resting on the 
ground should be considered as well. Also it is often necessary to 
take into account the three-dimensional effect. Theoretical 
development may be of minor practical importance if the computer 
calculation becomes progressively less expensive. In this context a 
more efficient algorithm such as the combination of implicit-explicit 
schemes could be conveniently adopted.

For the introduction of three-dimensional effect the facilities of 
mesh generation and plotting routine output vould be indispensable.
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A BRIEF SUMMARY OF MATHEMATICS BACKGROUND

-Basic Definitions

This appendix sets down some prerequisites mathematics that will be 
useful in subsequent developments of chapter number four and others.

Referring to Figure A.l we can write the following basic relationship:

Figure A.l
The position vector of a two-phase material element in an initial 
configuration (I.C.) and in an actual configuration (A.C.) is 
represented as :

o • a q ■(A.l) a - Qkik = Jfkik

Where, and henceforth, except for a , the usual summation convention
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is understood over the repeated indices, i.e. aa = 0“/, + a\i2 + a*i3 or 
0 — fl[/, + a \i2 + flJ/3“</i,+i/i2+ //3The infinitesimal differential vectors at 
I.C. and at A.C. are respectively

(A. 2) daa = da°k ik ,dxa — d xk ik

The squares of the arc length at I.C. and at A.C. are given by

(A. 3) (^V )2 = da° daa =  d °ak daak = 6ktdaakda<i

and

(A .4 )  ( dxra) 2 = dxa.dxa =  dxak.dxak = bkld xakd x"

where bkl =  ik.i( is the Kronecker Delta, which is equal to unity when 
the two indices are equal and otherwise zero. These differential 
vectors may be interpreted as a infinitesimal distance between two 
particles, i.e., da is the distance between two fluid particles in 
the I.C. and dx2 is the distance between two solid particles in the 
A.C..

The interest , now,is to map the neighbourhood of the particle at aa 

in the I.C. into a particle xa at A.C. If da° is a spherical 
neighbourhood at, a

(A.5) dxa = x \a * + d a \ t )  -  xn(a“,r)

is the spherical neighbourhood at xa .

By using Taylor's Theorem (Hildelbrand (1976)) one may approximate to



the first order terms ( since, the magnitude /da0j of da° tends to 
zero),

A3

(A. 5) x°(a" +  da‘ ,t) = x°[a\t ) + ̂  da‘
da*

or in a paramentric form

(A.6) , a dxk . O . a _ da? . a da, — ax. 1 dxl k

where the linear transformation dxakjda° is called deformation 
gradients

Sometimes it is appropriate to make use of so-called alternative 
tensor or permutation symbols defined by

(A.7) eklm

1 if u.™ are in cyclic order 1.2.3,3.1.2,...

0 if any two of kjj* , are equal 

-1 if *./.m are in anticyclic order 3.2.1,1.3.2,...

provided one of the transformation dxajdaa or da°fdxa is known, it 
might be of interest to find the other. So, by the chain rule of 
differentiation, it nay be written

(A.8) dx? da"k m _ r
da*t dxf kl

This set consists of nine linear equations for the nine 
unknown dxakjdaam or da*Jdxj . A unique solution exists according to 
Cramer's rule of determinants, provided the jacobian does not vanish
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and is given by

(A.9) dak 1 r 1 &£ d.V?
dxf ~  j  CofaCt0r(dfl2 / ~~ 2 j ekmreinsda^'da j

where e . ,  andKfftr e/ns are the permutation symbols defined by (A.7), and

(A. 10) / d.xf \ ] d.xf dxf dxf 
- 3j e^mr€i ’^dafdafndaf

(See Aris (1962;)

By differentiating equation (A.9) and (A.10) two important identities 
are obtained

(A.11) J L (  i ? 0 l \  -  «
daf V d.xf )

(A. 12) dJ c l  d-v? \ ,, ~ cofactor! 3—7 ) - J - r ~  
d{d.xfjdtif) 'dcikJ d.xf

of which the latter is attributed to Jacobi.

At a later stage, we shall refer to time differentiation many times. 
For example, velocity acceleration, rate of deformation, stress rate, 
etc. However, at this stage it is appropriate to define what is 
understood by material time differentiation of material and spatial 
functions and to define time differentiation of basic functions, 
vectors and tensors, but firstly, let us set down the generalized 
Green-Gauss Theorem for a tensor field rk over the surface S -  co of 
the body 0 - u> which states
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(A.13}

where the volume t?-w means the volume of the body excluding the 
material points located on the discontinuity surface u> . Similarly, 
the integral over the surface S-w excludes the line of intersection 
of w with S.

The material time of a vector (or tensor) / is defined by

where the subscript x indicates the that x is held constant in the 
differentiation of / . If / is a function of material coordinates,

(A.14)

fiiiyt) = f k( a j ) i k then d f  _  f)jk . = df_
lit dt ,/c dt

If / is a function of spatial coordinates

/ = f i x , t ) —f k (x, n ik , then

so, one can write

(A.15)

which is called the material derivate of f k . The first term on the 
right is called the local or non-stationary rate, and the second term
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is the convective time rate. This expression is applicable also to 
material vectors and tensors.(Aris (1962))

Also, the material derivative obeys the ordinary rules of the partial 
differentiation involving sums and products, i.e.

+ * , > = ^  +
d8k difkgi > = d_ h a , f d8,
dt ’ di  dt  Sl Jk di

Now follows some basic definitions:

Velocity: The velocity vector V is the time rate of change of the 
position vector

(A.16) = vV.r) =

If one substitute equation (IV.3.3) into (A.16) one will get 

(A.17) v° = .'“[/(/,/),/] - va\x°,t) = v'r(.vn,i)ik

Where the functional dependencies were changed, i.e. the velocity can 
be regarded as a time.dependent vector field. In fact, the 
acceleration and any time-dependent scalar, vector or tensor may be 
regarded either as a function of the particle and time or as
a function of the place and time, provided that a defined
motion (IV.3.3) is given. The m a t e r i a l  time rate 
of and (̂*a,r) are given by equation (A. 15) where f k is
replaced by \f/k .

Acceleration : The acceleration vector ac is the time rate of change
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of the velocity vector, so,

(A. 18) ac d v 
dt and

(A. 19) ac°(aa, t ) =  ^  ik = acak{ua,t)ik and

/ o n  \ at a \ </ f »/ « , dv jU ", t ) d r f  \(A.20) «  (* .«) = (a- ,/)J = (-igp—  + ~fey H i ) 1*

The following are some fundamental lemmas ensuing directly from the 
basic definitions above.

The material derivative of the displacement gradient given by equation 
(A.5) or (A.6) is found to be

A(-l) = A  (A7) = A  = dx°™
d A  day) d a j \ d t )  'iia'f dx^daf

since in the operation d\d t , 07 is fixed so that d\d t and d/3a“ 
commute.

The material derivative of the distance between two points in A.C. is 
given by

(A. 22) dt\duf l)
d\“k j  a »\ _ u Cl 1daf 1

___ / t O
dxf da% 1/ tn

or

Ak
d.xj d.xa

l

A corollary of this lemma is
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(A.23)

proof: Taking the material differentiation of (A.8) 

d t \ d a ^ d x ? )  (j t \da<‘ l J d x f d a % - j  t \  d x f  )

may be written. From this equation, together with (A.21) one can write 
equation(A.23)

The material derivative of the Jacobian is given by

(A. 24) J
d x k

where (A.12) and (A.21) were used

The material derivative of an infinitesimal volume is given by

(A.25) ^ -{dxti) =  ^ j - d ad — Jdt dt °xk

Time differentiation of a volume integral of a tensor field ^ . 
Consider a material volume i> intercepted by a discontinuity surface 
u(t) moving with velocity v . The material derivative of the volume 
integral of a tensor field  ̂over d - w  is given by

(A-26)
d  / v(i£v) d~d + J \ p ( v - v j Jds

u 0-l

The volume integral tf-u- means the volume 0 of the body excluding
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the material points located on the discontinuity.

Other function differentiations will be given after definition of 
strain and stress tensors.
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APPENDIX B

Geometric transforms in Deformation - area and volume

In this appendix considerations about the geometric transformation 
that takes place when a material point at the I.C. (initial 
configuration) moves to its corresponding point in the A.C. (deformed 
configuration), is given. The main concern is how an infinitesimal 
oriented surface element transforms during the deformation.

Area and Volume Change

An infinitesimal rectangular parallelepiped with edge vectors /,da° , 

i2d , iyda" at a° after deformation becomes a rectilinear 
parallelepiped at xa with corresponding edge &\d a^tf^d a^fi^d a*

(see Figure B.l)

Figure B.l

Based on equations (A.5) and (A.6) the vectors daa and dx" may be
written as:



B2

(B.l) da° = da°kik, „ d.\-j a „ #c j ifl.V = 3—-rtfl 
d a '! /'A

where dA
daf

Now if the Figure B.l is considered, where an element of area is built 
on the edge vectors i ^ a *  and i2da°2 which after deformation becomes 
the area with the edge vectors (f^da\ and p°2da2 the deformed area is 
given by

xd s" - f i d  a* * f i d  a*
dxnk dxat . 
dâ  'da%'kxitda*daa2

dxk dx° 
da<f' da$eklmkm d s

a
3

where ad sa =  d a “ d o 2 .But from (A.9) we have

da* _  d.\*k th?
^ dx*t 1 da'f' day so that, r̂ 3

da3 a
dx°L

where this expression represents the oriented area element xds“ in 
relation to its components in the orthogonal reference system in which 
unit vector is represented by im

Finding similar expressions for Vi" and xds2 one can write the Kth 
components as

(B.2) r • odsk al

To evaluate the deformed volume element, we neke the scalar product of 
d as°i with p°da° , is made so:
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_ . a a Ra , a  = .
d  i/ d  S y fj^ d  J  «-v _ / i5jf2** A  daj >niJ

d as\d o3

rlv£' (jlô or

(B.3) d x0 = J d ° d
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APPENDIX C

EXPLICIT STIFFNESS MATRICES 

TOTAL LAGRANGIAN FORMULATION

•Incremental Strains

_ d&u, d0,ui 6Aul d'u2 dAu2 1 P /aA /*,\ /3Au2\*j
oen -  ~d^  du, +  aa, ao, +  2j_v da, r l  /J

aAu2 a'u, dAu, d'uj 3Au2 , lj" /aAu, \2 /aAu2\2~|
°c22 8=1 da2 da2 da2 da2 da2 2[_'  dai ' V da, /  J

_  l/'dAw, t dAu2  ̂  ̂ \{d'U\ dA//, d,u2 dAf/2 ( d'a, aAw ,^a 'u2 dAu2 
°fl2 2^ da2 dai / 2 \da, da2 dal ’ da2 da2 ’ da, da2 ‘ da,

1/dAu, dAa, dAu2 dAw2 \
2 '  da, da2 da, ’ da2 )

0*31
*u\ , t^, ,
fl» (a,)2 2V «, )

-Linear Strain Displacement Transformation Matrix

Making 0 °L “*0*

where o* (o^po^’-ohz’o^'

and

(A0u k )T  =  (A//J Ai/2 Aw2 Aw2 Ai/2 Ai/2... A A u 2

0*1 0 *10 "** 0 *L l

o'̂ i

0 -  0 r1 0aa, • u aa, w 3a, w
0 I  0 |  0 |
3{. d{. a{, 5{, aj.

%  0 
0 %
«iA *f.*̂3 ŝ3 ŝa pvv

5 a ]  5a] 5 a ]  5a* 5 a ] 5 a ] • • • Sa2 "5a]

0 ? 0 0 0
V.
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N

where
' - Za, —  ) k̂al r

A - l

a2 initial nodal coordinates

N -number of nodes

o &L\

/ £hi 3a,

/ £*12 3aj
l 2\ K} 
2̂2

'll 3̂  
'l2^

I IT1*21 3a, 
*22 33j

( ' ii § 1+  '12 H i)  ('21 2j +  '22I3;) ( ' h 5^ +  '12 3^) ('21 ^  +  '223^)
/ ^ '33 a, / ^ '33 S,

‘II 3a7
/ ^M2 3a7

1
‘21

'22^7
•••('ll 3 ^  +  'l2 ̂ f )  ('21 +  ' 2 2 ^ )

0/ fc*33 a,

where
/V /V

72» = X  ̂ 1,W2> /33 = **,u
A - l  A-l

f)/a,

'11 = X ^ ' u>" '2i ~ X  4 /,j Z 4 ' " ’
A-l A-l A — I

-Non-linear Strain Displacement Transformation Matrix

0 % L

3aT 0 3% 0 £do, 0  . 0

Cfflj 0 3 0 3a^ 0  . 3f,v 
■ • 3a2 0

0 £ 0 2 : 0 2 ; . . .  0 Sj
0 & 0 § 0 . .  0 %
L
5 , 0 t

®l
0 i i

fli
0  . { * 0

-And The Second Piola-Kirchoff Stress Matrix and Vector

0 0
>

0
r  t-fi 
O a ll |_

ff2l '*22 0 0 0 0*<r = O a 22/_
0 0 ,£hi '*.2 0 O a l2

0 0 '*21 '*22 0 0,ff33 L -,*V
l 0 0 0 0

V
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-The matrix 0'e  = v0ty is
r

d a x o a t a a t * • • d a t

£ %<302 Oflj 00, 002

-The Matrix od = o t T ok is

i
oD

v.r'oK,',
f0̂ 21 *0̂ 21 V?|1 *0̂ 12 “*■ I *0̂ 22 ̂
O^O^l 0̂ 12 0*̂ 12 0̂ 220 ̂22/

where

A'

*«l

S

A-l
0 ̂21

*-i
da2 2

0‘D is not in general symmetric.

The scalar 0fH is 0*H = &./, = 6,/, + 62/2 where It are the
component of the unit vector in the gravitational direction relative 
to the adopted referencial frame. And,

V 0'// = ^  dl\ 7i + b* 72)’ ^  da2̂ ‘7‘ + b* ̂1
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UPDATED LAGRANGE FORMULATION

Incremental Strain

■Linear Strain Displacement Transformation Matrix

Making ,< = X  V

where l* C€] 1*|C22»2 /CI2’»(33)

and r

K

8; o 8; o . ‘5̂ 0
0 ^  0 g;... 0 7̂ft £lhdF| oDj 00| -Sfdfvoo“Tli-o" " 5, 0

where t N -number of nodes
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-Non-Linear Strain Displacemnt Transformation Matrix

8;0S|0 . -3570Si0Si0 .. &35j008;0S; .. 0■3570$0Si-.. 0357
k 0k 0 .. k • 5, 0

-Cauchy Stress Matrix and Stress Vector

r

' c r , , ' ( r l2  0  0  0
r " 

t—
,<t2I ,(722 0 0 0 O'7!!

r—
0  0  V , ,  ' a ,2 0 \v ~

0̂ 22/—
0  0  ,a 2t /o-22 0 0 f f l2  r—
0  0  0  0  V 33 0a33

k .

-The Matrix p  =  V p p is

c

i'E
Vi dtj dU
53] aa, 33] • • • 33|
a^ at, at, â v
a3] a/?j 3/?] * ■ • *537

. /

-The Matrix p  = ,̂T tk is

p  is the symmetric, and the scalar p  is tH  bj Ig bx /, ■+ b212
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where /, are the components of the unit vector in the gravitational 
direction relative to the adopted referencial frame. And,
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APPENDIX D

MATRICES OF ELASTIC CONSTANTS

For an orthotropic material and with the geometric axes coinciding 
with the anisotropic axes, the [D] matrix has the form:

£,(1 “ *ii) E x(Vyzvlx + vxy) Ejpyipxy + Pzx)
1 E y(vyz»ix + *xy) E J<1 ~  ̂ x) LJ (p p +1/ ] *y\yzx xy 1 yz>

I = 7— — y? — |>2 — 2v v v Ex{vylvxy +  V1X) E z{pxxvxy + Vyz)
yz :x 'xy yz zx xy 0 0 0

0 0 0
l 0 0 0

0 0 0
0 0 0
0 0 0

Jp —
xy0 1'V*11H

A* 0
^ y - 2 P yIPtxPxy)Glx

0
0

0 0 1 1 1 *x>> ^yz vzx vxy

Because of the symmetry requirement, it follows form [D] that,

E x  vyx Ey vxy •

E  » =  Eiy iy y*

El VX2 = EX .



D2

when,
Vzx =  vyz =  Vh Vxy =  ‘'v*

E x = E y =  E h E z -  £ v,

=  G yz =  G xy “  G v

The matrix [D] transform to:

U>]-
1

(I + pv){1 - vv-2v\)

E d[1 “ ̂  E h{vv +  *j) £ a„a(i -f „y) 
£*K +  E h(\ -  v\) E hvh{ 1 +  pv) 

E vvh{ 1 +  i»J E vvh{ 1 +  i>v) E v( 1 - vj)

0
0
0

(1 +i/vXl -»/v-2^)Ga 
0 
0

0
0
0
0

(1 + vjl -V, 
0

- 2̂ )^

0
0
0
0
0

(1 +»vXl- pv-2pI)Gv

To obtain the matrix of elastic constants for an isotropic material 
the following conditions must be incorporated into the basic matrix 
[D], that is,

V =  V — v = zx yz vxy

Gzx - G yz = Gxy = G = 2(1 + p)

Ex = Ey= Ez = £
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