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Abstract

In a preliminary investigation at the Physikalisches

Institute in Eonn, highly plane-polarised synchrotron radiation

was passed through an absorption cell within a superconducting

solenoid. The resulting magneto-optical patterns are studied

theoretically in the present thesis. They arise from a

combination of magnetic circular birefringence (Faraday

rotation) and magnetic circular dichroism. The magneto-optica]

vernier method (Connerade 198^[ l]) has been extended with an

improved theoretical treatment as well as faster and more

detailed computational techniques. In these calculations both

MCE and MOR are treated simultaneously, thus making it possible

to determine relative f-values to a very high accuracy. The

method was then applied to the singlet principal series of Sri,

Kgl and Eal at temperatures arround 700°C, particle densities of 
16 -■*about 10 cm  ̂and magnetic field strengths of up to 4.7 Tesla.

Furthermore, experimental instabilities and effects due to 

finite resolution of the spectrograph were taken into account by 

convolving the calculated intensity pattern with an adjustable 

apparatus function. The effect of different functions 

(Lorentzian, Gaussian and triangular) has also been studied and 

the method is shown to be fairly insensitive to various choices 

of profile.

Ey this method, the determination of the f-values of two 

very close-lying lines, originating from different species, 

proved possible under conditions such that the patterns overlap 

and we were therefore able to investigate what effect the 
overlap can have on a precise determination of f-values. Further
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it was proved that singlet-triplet alkaline earth transitions 

are amenable to analysis by the KOV method and the effect of 

including hyperfine structre in the calculations was alsoA
studied.

Finally, calculations of f-values of high Rydberg states

for the principal series of the alkaline earths are presented

and the dependence of f-values on the externally applied

magnetic field is calculated by expanding the relevant

eigenfunctions in terms of LS eigenfunctions.

In another investigation, also involving detailed

calculation of relative intensities but applied this time not to

an atomic vapour but to a highly ionised gas, the results of

calculations of the steady-state ionisation balance in a Silicon

plasma are presented. The effect of collisional de-excitation on

the dielectronic satellite ratios is shown to be important for
19 2 4 - 3electron densities in the range 10 to 10 cm and 

temperatures greater than 100eV. This is the regime of interest 

for laser produced and laser compressed plasmas and for which 

the dielectronic satellite ratios have been proposed as a useful 

density diagnostic.

The sensitivity of the H e - l i k e  r e s o n a n c e  to 

intercombination line ratio:

' A ( 2 1 P 1 ; 1 1 S q )

N ( 2 3P 1 ) A ( 2 3P i ; l ' S 0 )

to the collisional model for "bound-bound" He-like Silicon has 

been investigated. Large differences in the calculated value of 

this ratio result from the use of different collisional models

and so it may be possible to compare results of different



theoretical predictions with experiment.

1. Connerade J.P. J.Phys.B.,16,399 (1983)
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Chapter I_

Background Theory

The theory of magneto-optics is central to a large portion 

of this thesis so it is appropriate that we begin with a very 

brief history. The first experiments studying magneto-active 

materials were performed by Faraday and presented in 1845. This 

was before the electromagnetic theory of radiation had evolved 

and Faraday's motivation in performing these experiments was an 

attempt to develop a unified theory of the electric end magnetic 

forces. In his 1845 article of the Philosophical Kagaz-ine, 
Faraday stated "This is established, I think for the first time, 

a true direct relation and dependence between light and the 

magnetic and electric forces..."[18]. Since then, Faraday's work 

has also been regarded as useful in establishing the transverse 

nature of electromagnetic radiation. Among his last experiments 

Faraday investigated the effect of a magnetic field on the line 

spectrum of radiation. These experiments were inconclusive. 

Guided by Faraday's belief in a magnetic effect on line spectra 

and with the advantage of theoretical predictions by Lorentz 

[ 191, Zeeman performed a series of experiments with equipment 
which was far superior to that available to Faraday. In 1896, he 

presented results which showed a widening of spectral lines 

associated with the presence of a magnetic field ("When the 

electromagnet was put on, the absorption lines immmediately 

widened along their whole length..."[2Cl). The subsequent 
importance of this effect, the Zeeman effect, in the development 

of the role of the angular momentum in the quantum theory of
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atomic structure is well known. Later developments in magneto­

optical theory (such as Voigt's and then Kuhn's work) are 

described in the textbook of Mitchell and Zemansky [21].

More recently magneto-optic effects have proved to be a 

powerful tool in the investigation of the properties of atoms 

and molecules. The application of Magnetic Circular Dichroism 

(MCD) to the study of molecules has been described by Buckingham 

and Stephens [l1,12,17]- In work on which much of this thesis is 

based, Connerade and co-workers [15,22,23] described preliminary 

investigations of the application of the Magneto-Optical Vernier 

technique (MOV) to the study of the spectra of high Rydberg 

states of the principal series of the alkaline earths. The 

novelty in the latter work is the combined application of the 

magnetic circular dichroism (MCD) and of the magnetic optical 

rotation (MOR) in the study of a single spectrum.

Some recent investigations at the Physikalisches Institute 

in Bonn provided spectra of absorption series of an atomic 

vapour in a magnetic field. The availability of synchrotron 

radiation, of superconducting magnets capable of producing 

rather high fields and of a spectrograph of high dispersion had 

lead to the experimental study of such spectra. These results 

prompted us to investigate theoretically combined MCE end MOR 

phenomena in some very simple atomic transitions.

In this chapter, some aspects of the background theory 

necessary for the understanding of magneto-optical spectra will 

be discussed. Sections 1 and 2 will describe the Zeeman effect 

in emission and absorption respectively. Sections 3 end 4 will 

provide the quantum mechanical treatment of the Zeeman effect 

both without and with the inclusion of hyperfine structure.
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Section 5 will provide a discussion of dispersion theory- 

necessary for the understanding of the wavelength dependence of 

the Faraday effect. A brief discussion of transverse 

electromagnetic waves and of the propagation of plane polarised 

light in active media will follow in sections 6 and 7 

respectively. In section 8 and 9 the effects of MOP and MCD will 

be described. Finally, in section 10 the well- known absosrption 

and dispersion relations basic to all our calculations of MCE 

and KCR spectra for a line with a Voigt profile are obtained. 

Previous analyses ([151) had been based on the unrealistic 

approximation of pure Doppler profiles. It is concluded that a 
Voigt line shape is the most suitable choice for the 

calculations of the refractive index and absorption coefficient 

used in the derived intensity formula for a plane polarised wave 

transversing an optically active medium.

1.The Zeeman Effect

Late last century, according to Lorentz's predictions, 

it u>aC found experimentally that when is placed between

the poles of a strong magnet, a spectral line is split into two 

components when observed along the field and into three 

components when observed at right angles to the field. The first 

two components are circularly polarised ( cr+,cr ) end the latter 

three are plane polarised ( a+,7r , a ) [ 5] •

Lorentz assumed that the electrons which revolve in 

circular or elliptical orbits randomly in space (belonging to 

the atoms of the vapour) emit light waves and that their motions 

are affected by the externally applied magnetic field. A random 

motion of an electron can be considered to consist of a motion

q



in a straight line parallel to the field ( with 1/3 probability) 

end of two circular motions in orbits perpendicular to the 

field, one clockwise (with probability 1/3) and one anti­

clockwise (with 1/3 probability). When the B-field is applied, 

the component parallel to the field and its frequency remain 

unchanged, while the two circular motions have their frequencies 

altered by Av=+-eH/4TVmc due to the force F=evAH/c that the B- 

field exerts on the circularly orbiting electrons. Therefore 

when the observer is along the field direction he will observe 

two circularly polarised components; one with frequency 

which is left handed circularly polarised and the other with 
frequency vq- Av which is right handed circularly polarised. 

This is the longitudinal Zeeman effect. When the observer is at 

right angles to the field direction he will observe that the 

linear motion parallel to the field will emit light in the 

transverse direction with the E-vector parallel to the field and 

that the circular components will give two plane polarised waves

of frequencies v + Av and v - Av with the E-vectoro o
perpendicular to the field as the circular components are viewed 

edge-on. This is the transverse Zeeman effect. Both Zeeman 

effects are shown in the diagram below and it can be also 

noticed that in Fig.11 the intensities of the two circularly 

polarised components are equal because with no field the light 

must be unpolarised. In Fig.12 it can be seen that the light 

emitted from the linear motion has an intensity equal to the sum 

of the two plane polarised components and that these two 

components are of equal intensity. This description only applies 

to the normal Zeeman effect end is appropriate for the singlet 

levels. However in general the patterns are more complex
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Fig.11 The longitudinal normal Zeemen effect (shoving the 
p'olaVisations end intensities of the various components 
discussed in the text).

H

t  *++  t

Fig.12 The transverse normal Zeeman effect (showing the 
polarisetions and the intensities of the various components 
discussed in the text).
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(anomalous Zeeman effect). Singlet to triplet transitions will 

be further discussed in Chapter V and also in section 3 of the 

present chapter.

2.The Inverse Zeeman Effect

The inverse Zeeman effect is the Zeeman effect obtained in

absorption [ 3]* In this case white light is sent through an

absorbing vapour and this vapour is placed between the poles of

a magnet. As unpolarised light is considered to consist of equal

amounts of right and left polarised light then the longitudinal

inverse Zeeman effect can be explained as follows: v is theo
natural frequency of the vapour and the left handed circularly

polarised light of frequency is absorbed by the vapour when

the E-field is applied. Therefore the right handed circularly

polarised components of frequency v -j pass through and are

observed. Analogous arguments apply for v This effect is

shown in Fig.I3« In the case of the transverse inverse Zeeman

effect, for ^ , the parallel components of the light are
absorbed and so the perpendicular components are transmitted.
For , the parallel components are all transmitted and half

of the perpendicular components are transmitted as the other

half have positive rotation at frequency v  ̂ are absorbed . The

same arguments apply for Vj* This effect is shown in Fig. 14.

The quadratic Zeeman effect and the universal atomic

diamagnetism of high Rydberg states will be discussed in Chapter 
%

V .

3.The Quantum-Mechanical Description of the Zeeman Effect

The interaction of the atomic electrons with an externally
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T i g ,13 The longitudinal inverse Zeeman effect (showing the 
polarisations and the intensities of the various components 
discussed in the text).

-- V H

\iiiii
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a Im ai

Fig.14 The transverse inverse Zeeman effect (showing the 
polarisations and the intensties of the various components 
discussed in the text).
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applied magnetic field B produces the Zeeman effect. The 

interaction is treated as a small perturbation and has form (for 

sections 3 and 4 see any standard atomic physics textbook such

as [4,5,6,7]):

Hpert= '? (II)

where y is the total magnetic moment of the electrons.

The present section will be divided into two parts: the 

weak field case where it is assumed that the LS coupling holds 

and the strong field case where that coupling approximation 

breaks down and L and S precess independently about B with 

projections and Kg on the z-axis respectively. Equation 11 

can be written as:

remembering that yT=-g., y^Z l.=- y _L (since g,=1 for orbitaL—L 1 r ; 1 c — 1

In the following results, perturbation theory is applied 

to cases where the zero-order eigenstates are degenerate. In 

such cases we must choose a suitable linear combination of

(a)V.Teak-Field Case

In this case the LS coupling scheme is valid. The zeroth 

order Hamiltonian contains the central field

Hpert= ‘^ L  = (uBt + 9suBS (12)

motion) and that yg=-gg Hg? si=-^s

wavefunctions to apply perturbation theory to [ 4].

1 2m
+ ?U(rJ)u 1
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and the electrostatic

e2 Ze2
(2--------2 ---------- 2 U(r.)')

‘ 4,rV i  1

interactions respectively. The electrostatic interaction is
considered to be large compared with the spin-orbit interaction

( E ^(r.)l.s.= s(L,S)L_.S). Further the spin-orbit interaction is l i - i —i
large compared to the Zeeman one and so the former is included 

in the zeroth-order Hamiltonian, so:

yBBext<4? L̂S^ uBB B <S ;(LS)/uB

(13)

is the condition to be satisfied for an external field to be

considered weak. The basis / yLSJMj> is appropriate here. This

can be seen from the fact that J commutes with H , whichz pert
implies that < yLSJKj/H t/y LSJM'^-O, if Mj/ K'j. Now,

!pert "u B̂ !i+^S^'5
(14)

and in /y LSJ> level notation the energy shift due to the Zeeman 

effect is given by:

AE= <YLSJMj /Hpert / vLSJMj >  =

=<YLSJMJ/pBBLz / yLSJMj) + <^LSJMj/uBgsBS2 / YLSJM^>
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Since L and S are the projections of L and S on the z-axis, it z z * —
can be shown that:

(yLSJMj/L / yLSJMj> = <yLSJM,/- J / ylsjm,>
J(J+1) z J

/yLSJMj/Sz / yLSJMj) = <YLSJMy— J / ylsjm >̂
J(J+1) z y

Also

L . J  = 1 / 2  ( J 2+ L 2- S 2 )

S . J  = 1 / 2  ( J 2 - L 2+S_2 )

The energy shift thus becomes:

J ( J + 1 ) + L ( L + l ) - S ( S + l )
aE= (---------------------

2J(J+l)
J ( J + l ) - L ( L + l ) + S ( S + l )

+9c---------------------
2J(J+l) V m j

(15)

2 2 2since / yLSJK > is a simultaneous eigenfunction of L ,S ,J and

J . Returning to equation 11, an effective operator for the z
total magnetic moment Heff can defined as:

- e f f = ' 9 j U g J

and so:
Hp e r t "  =

16



therefore the energy shift becomes:

&E= yLSJMj/ Hpert / yLSOMj = yLSJMj/ 9jUBBJz / yLSJMj =

■ 90uBBMJ (16)

Comparing equations 15 and 16 we obtain:

9j=
J(J+1)+L(L+l)-S(S+l) J(J+1)-L(L+1)+S(S+1)
-------------------  + gs--------------------

2J(J+1) 2J(J+l)

(17)
where gj is the Lande g-value.

For singlet levels, S=0 and since g <si 2 , g,= 1. This meanss tJ
that g T does not depend on L,S or J and so with no resultant 

spin, the Zeeman effect is only introduced from the interaction 

of the orbital magnetic moment of the electrons with the 

externally applied magnetic field.

A level has J=1 , therefore Kj* + 1,0,-1 , and by
equation 16 the Mj degeneracy is lifted, each level J splits 

into 2J+1 states labelled by Mj. So for this particular case we 

get three levels, each differing from the next by an energy 

shift equal to

The electric dipole selection rules for Fj are:

A Mj=0,+-l Mj=0 - ^ H j '=0 i f AJ=0

Further, a M = 0 is connected to the tt-polarisation where an J
electric dipole oscillates in the z-direction and a ̂ j =+”  ̂

connected to the a -polarisation where the dipole oscillates in
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the x-y plane. The n and cr components are plane polarised and 

perpendicular to each other. When only singlet levels are 

involved in a transition the Zeeman effect is referred to as 

normal.

When transitions between multiplets take place, we have

the anomalous Zeeman effect and 1. The frequency of each of

the possible transitions / yL'S'J'M' > to / y LSJK > can be given
J J

by:

hvfl=( E'+aE' )-( E +AE)= hvo +ugB(gj -g/g)

where h v is the difference in energy of the unperturbed 

levels. The components and energy levels of such a transition 

could be calculated in the same way as for the singlet case but 

only that the calculations will be more complex.

(b)Strong-Field Case

In this case we have that:

ubB( lz+ 9ssz) »  c(LS)L.S

and so as a first approximation we do not include the spin-orbit 

in the Hamiltonian. The LS coupling scheme now fails and the 

level notation now becomes / yLSM M >. The energy shift is given

by:
AE=<YLSMLMS /UgB(lz+ gsSz) / = (M̂ +ĝ MjJygB



Now that Mt and Mc are non-degenerate, the spin-orbit term canL c>
be applied as a smaller perturbation:

<yLSMLMs /5(LS)L.S / y LSMlMs> =?(LS)MlMs

So the energy shift, finally becomes:

AE= (Ml+9sMs)ubB +c(LS)MlMs

For the strong-field case, the electric dipole selection 

rules are:

AMs=0 _Af1̂ =0,+-l

where Am ^=0 corresponds to the ir -polarisation and the 

AMt=+-1 to the cr-polarisation. The frequency of each possibleJj
transition in this case is:

hvo = hV uBBAML +( ^ LS)MlmS" ^ L'S')ML MS )

For even stronger fields the Zeeman effect is known as the 

Paschen-Back effect. For intermediate fields the appropriate 

secular equation has to be solved since the Zeeman and the spin- 

orbit interactions are of comparable size. This is described in 

greater detail in Chapter VII.

For intermediate fields, J, K, and Mc cease to be good 

quantum numbers and now the perturbation is given by:
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Hpert = (l2+9sSz )ijBB + ?LS

2This Hamiltonian does not commute with J or L and S but withz z
Jz=Lz+Sz fso M(=Mj=M^+KC!) becomes a good quantum number. Finally

in second order perturbation theory it can be shown that M
2states begin to depend on E whereas they depended only on B in 

first order calculations. This quadratic behaviour will be 

discussed further in Chapter V. States of the same K are found 

to repel each other and states with the same M never cross.

4.The Zeeman Effect of Hyperfine Structure

In 1924 Pauli attributed to the nucleus a totsl angular 

momentum which was labelled by the new quantum number I. This 

quantum number may have an integral or half integral value, 

depending on the number of protons and neutrons in the nucleus 

(both these particles have spin 1/2).

The nucleus has a magnetic moment y^ and the interaction 

of this moment
with the electromagnetic field produced at the nucleus by the 

electrons

gives rise to the hyperfine structure. This small perturbation 

may be 

written as:

Hpert=

The hyperfine structure is small compared with the fine
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structure and therefore we can assume that we are dealing with 

an isolated level whose energy is labelled by J. Further, I and 

J are good quantum numbers and the IJ coupling scheme holds. In 

analogy with the LS coupling, in the IJ coupling the 

perturbation csn be written as:

Hpert= AI.J

where A is a parameter which is obtained experimentally, 

PI=g'I I, g].c5l, g'I=g]./l836 and also Bel06J.

The zeroth-order wavefunctions are / yIJKjJMj> which are 

(21 + 1) (2J+1)-fold degenerate in and Mj. As usual, we can 

express the new zeroth-order eigenfunctions / yIJFKp> as a 

linear combination of the functions /y IMjJtfj> (where F=I + J). 

The Zeeman effect of hyperfine structure (with the IJ coupling 

scheme being valid) deals with the interaction of the total 

magnetic moment ^  and of the nuclear magnetic moment y^ with 

an externally applied magnetic field along the z-axis. The 

(21+1)*(2J+1)-fold degeneracy is now being lifted.

We will consider the case where the Zeeman and the nuclear 

magnetic dipole interactions are the perturbations and where 

the central field and all the internal electrostatic and 

magnetic interactions are included in the zeroth-order 

Hamiltonian in the IJ coupling approximation. The pertubation is 

then:

pert= AH ‘yj!L " HjB = AI.J+ 9jyB j a -gfuRI BPB-

21



where y j = - g j y a n d  ' I 11 E^ * ^  Sjy is much smaller
than A, then we are in the weak field regime (since 

g'j& 1/1836.13) and if gj y is much larger than A we are in 
the strong field regime. It must be noted that the strong field 

case is rare in the fine structure problems whereas it is not so 

in hyperfine structure problems.

(a)Weak-Field Case

For the weak field case (gTllT3B<<A) the wave function isj K a
/yIJFKj,> and AI.J is the first perturbation to be applied . The 

energy shift is given by:

&E= <y IJFMf/ AI.J / y IJFMf> = 1/2 A(F(F+1)-J(J+l)-I(1+1))

Applying the same arguments as for the fine structure

case, we can say that / y I J W y >  is a suitable wavefunction for

the AI.J and for the (g ypJ E-g' y^I B) perturbations. Inj a z i r z
straight analogy with the fine case (equations 15 end 16) the 

energy shift becomes:

gF » BBMF

where the effective g-vaiue ĝ , is given by:

F(F+1)+J(J+1)-I(I+1)

2F(F+1)

F(F+1)-J(J+l)+1(1+1) 

2F(F+1)
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The energy shift for first order is given by:

“ f .Mj. = + b m f

where k=F(F+1 )-J( J+1 )-l(l+1). The selection rules for magnetic 

dipole radiation are the following:

iF=0,+-1 F=0 -f* F=0 aMf=0 <j -polarisation

AMr=+-l tt - polarisationr

(b)Strong-Field Case

In this case the condition reverses and becomes A<<gj y^B 

and also Kj becomes a good quantum number. Therefore the main 

terms in the equation :

Hpert= Ah -  ' W ?  "fl!

are the second and the third. The energy shift is then given’by:

AE= (IJMjMj /9jpbBJ2 -g{uBBI2 / _ g , ^ ^

The term AI.J contributes to AE an amount AM^Mj and so the 

total energy splitting is equal to:

AE= AMjMj +gjyBBMj -gjygBMj
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Finally it should be noted that in the intermediate field 

region, the energy splitting is given by the Breit-Rabi formula 

as follows:

hAv
i E ( F >M)= ‘  -  ■ -  QjugBM +-1/2hA\> ( l + 4 M x / ( 2 I + l  ) + x 2 ) 1 / 2

( 9 j  ^ g j )  S B
hAv

where hAv is the separation between levels F=I+l/2 and F=I-l/2

and also M =MT,=MT+KT.i? l J

5.General and Brief Comments on Dispersion and Absorption Theory 

The theory of dispersion tries to relate and explain the 

variation of the velocity of light in a given material. Since 

the velocity is equal to c/n (where n= refractive index) the 

dispersion theory also gives the refractive index as a function 

of wavelength. The earliest measurements of dispersion were 

mainly in the visible region and in this wavelength region 

absorption bands were not observed; therefore this type of 

dispersion was called normal as opposed to the absorption that 

includes an absorption band and is called anomalous. Plotting n 

versus \ the following facts were observed [l,2,3]:

a) Although the refractive index at a certain X is different 

for various substances, its variation with wavelength has 

usually the same form,

b) n and dn/d^ decrease in magnitude as x increases.



c) In general denser substances have larger refractive indices 

than less dense ones.

Generally it can be said that dispersion curves of 

different materials cannot be related in a simple way. Thus a 

general shape of the refractive index as a function of 

wavelength outside an absorption band can be seen in Fig.15*

Cauchy attempted to find a mathematical formula for the 

normal dispersion curves. It had the form:

n = A + B/x2 + C/x4

where A,B and C were constants characteristic of the material 

involved. However Cauchy's formula could not explain the 

behaviour of the dispersion curve when an absorption band was 

included. The anomalous dispersion is shown in Fig.16.

From Figs.15 and 16 it can be seen that there is a 

discontinuity in the absorption band. It was assumed by 

Sellmeier that the particles in the medium vibrate with a 

natural frequency vQ (that is in the absence of an externally 

applied force). When light passes through the medium it exerts a 

force on the particles and they vibrate with a frequency v . As 

v approaches vQ > the amplitude becomes very large. This 

behaviour can be given by the following formula, which also 

explains Fig.16:

n2 = 1 +

where the summation takes into account the possibility of the 

existence of several (i) absorption bands. Actual experimental

25



Fig.15 A typical dispersion curve of e material away from an 
absorption band.

Fig.16 A typical anomalous dispersion curve of a medium (an 
absorption band is presert).



results (Fig.17), shew that the curve does not go to infinity at 

either side of each X  ̂as would he physically impossible. In 

order to explain the behaviour of Fig.17 , Helmholtz assumed 

that a frictional force proportional to the velocity of the 

particle was exerted on it and that it absorbs the energy of the 

wave.

rf a is the absorption coefficient then it is useful to define a
quantity ^

k = ------
4 ir

where k is a constant and physically represents the fall of the 

intensity to l/exp(4 "irk) in a distance 1 along the medium. 
Therefore, Helmholtz gives the following relations:

n2 -  k 2 = 1+ E Ai

1 (x - x ^ 2 + g ^ 2 /(x - x ^ 2

and 2nk = J2 A i / S i

(x2 - X?)2 + x

where g^ is a measure of the frictional force. A typical plot of 

n and k versus X is shown in Fig.18. The above equations for 

/ X />/ \ /  reproduce Sellmeier's equation.

6.The Electromagnetic Theory of Absorption and Pispersion

The fundamental equations in electromagnetic theory are 

the following four Maxwell equations (for the discussion to 

follow see any standard text book on Electromagnetism such as

[8 >9]). y.D = p

V.B = 0

7 H  = J + 3D/3t 

V E = -3B/3t

27



Fif♦ 17 A typical dispersion curve obtained from experiments in 
the vicinity of an absorption line.
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where D is the electric displacement, p is the charge density, 

B is the magnetic induction, E is the electric intensity and J 

is the current density ( D= eE and B= y qH in the absence of 

magnetic materials). In vacuo they become:

V.E = 0 (18)

7. H = 0 (19)

7 H = e3E/3t (110)
A,

l E = - p 3H/3t
A  0  - (111)

Also,

v j v a ej = ' I2!

and from above

- = ’ u0 V. A = '^3(7^ H)/3t

Since V.E=0 and7.B=0

we get v2E = w E32E/3t20

And similarly, 72H = yQe32H/3t2

The last two expressions represent the wave equations for E and 

H with velosity v=1//e y~ . In a plane wave, E and H have their 

values constant over a plane (y,z) perpendicular to the 

direction of propagation x. Therefore 3/3 y and 3 / 3z of E and
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E vanish. Maxwell’s equations become:

3E /3x = 0 x
3B / 3* * 0
X

3B / 3 t = 0 X
3E / 3t = 0 x

3Ez/3X = 3 B̂ /31 3Bz/3x = -uQe 3Ey/31

3Ey/3x = -3Bz/3t 3B^/3x = \i q e 3Ez/3t

Let us now suppose that E is in the y direction and H in the z

direction. Then can be given as:

iu(t-x/v)
Ey “ Eyo e

(112)

v = 1 /p eo

Using the above equation,

3B7/3x ~{vq 3Hz/3x =) - urte3Ev//3to y'

we obtain that,

Hz

The velocity v can be written as:

= 1 //eP0 = c /y/e/e = c/n

where n' is the complex refractive index equal to:
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n' = n + ik

Therefore equation 112 fcecoir.es now for the z-direction of 
propagation [7,6]:

Ez ,t  = Eo e" kz/c e1-<“(t-zn/c)

The intensity of the light is given by:

I = I e"2ukz/C and 2tok/c = a where a is theZ 0
absorption coefficient

The equation of motion for electrons driven by a force -eE t, z 
is:

x + yx + cû x = -e/m E Pla,t ( y = damping constant)
o 2,0

with solution xz,t
-(e/m) Eo,z

20) ) + iaiY

oj te

. j— i CO +The polarisation is then P. =-A/ex e if there aret, z ^ o , z
^A/^electrons/ unit volume. Further the susceptibility is X = 
P/E, where:

X
m

2, xa) ) + 1 (jjy

Eut since e = e + x o t

QO



z/zQ = 1
2 22e mw ( <u - w ) + iy/2 0 0 0

(113)

But n'= / e/ e and therefore:

(n1) = e /e = 1+ v ' o
fVlT.

2e mco (oj -a) ) + i y / 2  o o v o

Since n'=n-ik and separating real from imaginary parts the 

following expressions are obtained assuming 0” (u/<<(u0 
i.e.near an absorption line (using Nf where f is the
oscillator strength and N is the number density)

n = 1 +
e Nf (v -v )o '

^ m v  (v -v )2 + (y /4tt)2
(114)

e2Nf Y/4ir
k = ------- --------------------

me ( )2 + (y/4ir)2 (115)

These two equations are of great importance and will be used

extensively in the sections to come. Going back to equation 113
2 2it can be seen that if / w ^ />> then a formula of the 

form of Sellmeier's equation can be obtained:

2 _ n -

Ne Ne‘
1 + = 1 +

2 2A Ao A
= 1 +

2 2e m oj - a)0 0 e m 4tt2c2 (A2 - A2)O 0
2 2 A - A o

(116)

where A is a constant and n is real since absorption can be
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neglected. This will be called the far-wing approximation 

equation for future reference.

7.Propagation of Plane Polarised Light in Active Media

Circularly polarised radiation travelling in the z- 

direction ( + sign for right circular polarisation and - sign for 

left circular polarisation) is given by the following expression 

(Buckingham [17])

E +_ = E q e x p (  i a j ( t - n + _ z / c ) ) ( i +  i j )

A A Awhere i,j and k are the unit vectors of the x,y and z axes. Also 

the complex refractive index is:

n+_ = n -  i k

But since E =E +E =E i +E j . the ratio E /E is:+ - x y° * x y

exp(-i(n -n )ztu/c) + exp((-k+-k_)zw/c) 
Ex / Ey ------------- :------------------------

exp(-i (n+-n_)ztu/c) - exp( + (k+-k_)zw/c)

tan - ■'e)

$ ~ 4> -i 0 is the complex magneto-optical angle.
(117)

(i) (f> = o)z(n + -n )/2c represents the Faraday rotation which 
arises from the fact that the two Zeeman frequencies travel with 

different velocities in the medium (see section 8 of present 

chapter) and

(ii) 0 = a) z(-K+-\C )/2c represents the ellipticity angle due to 

the fact that the two Zeeman components have different
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absorption (KCD) (see section 9 of this chapter). In a field- 

free wavelength X of a Lorentz doublet k =k there is no 

dichroism, but in general dichroism and birefringence occur 

together.
The experimental set-up will be extensively discussed in 

Chapter II of this work but at this point it may be said that 

the main components of the experiment are a polariser and an 

analyser which are crossed. Thus, if a wave exits the 

polariser, after it has crossed the analyser the only 

transmitted intensity will arise from a rotation to E .J
Th-erefore the expression (after some algebraic manipulations) is 

the following:

Eq2{(. exp(-k+z) - exp(-k.z))2 + 4exo(-(k++kJz)sin2((n+-nJz/2)}

Relating k to the absorption coefficient a (2 u k +/c=a+) and 

writting z=zco/c [ 7] the intensity can be written as:

I = {(exp(-a+z/2) - exp(-a_z/2))2 + 4exp(-(a +a_)z/2)sin2<{>}

(118)

with expressions for a+ and n+ identical to equations 114 and 

115 of section 6 of the present chapter. For reasons of clarity 

and convenience they will be stated again:

e2Nf rL / 4tt

me (vq - v+ A)2 + (r/4ir)2
(119)

n+. = 1 +
e2Nf

4irm

(v - v+ A ) ' o '

(v0 + °0 (vQ -V + a ) + (r/4n) (120)
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where a =eE/4Timc is the splitting of the Zeeman components and

the B-field is in units of Gauss, p ^ is the natural line width,

i’̂ =(Svl*2 tt and for typical values of ax^l *60 10 ^A [ 7] and

A =2254 A, T is about 4.50 10 Hz. Both formulae for the O Jj
absorption coefficient and the refractive index for a line with 

only natural broadening are therefore given by formulae 1 19 and 

120 in cgs units and shown in Figs.115*

8.The Faraday Effect (Magnetic Optical Rotation)

Faraday discovered that when plane polarised light 

transverses a slab of glass in a direction parallel to the 
applied magnetic field its plane of polarisation is rotated by 

an angle <f> given by [ 3]-

* = VH1 (I21)

where 1 is the thickness of the slab (cm), V is the Verdet 

consta nt different for each medium and H is the magnetic field 

strength .
The Faraday effect is very closely related with the direct 

and inverse Zeeman effects. As mentioned in section 2 of this 

chapter when viewed along the field direction, left circularly 

polarised light with v Q+Av = v } and right circularly polrised 

light with \^-Av = v ̂  will be observed. For each component Vj 

and the corresponding dispersion and absorption curves are 

shown in Fig.19* From this figure it can be seen that for  ̂* 

outside the • ^  region n~ is greater than n+ and therefore

positive rotations can travel faster than negative ones and the 

plane of polarisation is rotated in the positive direction. 

Similarly analogous arguments prove that between and v ^ the
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plane of polarisation is rotated in the negative direction [ 3].

9«Magnetic Circular Eichroism (MCE)

Magnetic circular dichroism occurs when the absorption 

coefficients of right and left circularly polarised light, k + 

and k respectively, in an absorption band are different under 

the influence of an externally applied magnetic field.

The ellipticity angle e of a wave of circular frequency

a) which was initially plane polarised, is defined as:

9 = u)/2c (k_ " k+) (122)

and the rotation angle $ (see the previous section of this 

chapter) is connected to 0 and the complex rotation angle as:

% = <j>- ie = io/2c (n_ - n+) (123)

where n= n- ik is the complex refractive index and n and k have 

their usual meanings. Buckingham and Stephens [11] have written 

a comprehensive review in which they show that MCE and the 

magnetic optical rotation (MOR) provides basic information about 

the symmetry of ground and excited states of molecules in the 

region of an absorption band. The aspects of their arguments 

which are relevant to atoms will be presented briefly in the 

rest of this section [11].

The electric displacement and the magnetic induction E and 

E respectively can be expressed as:

D = E + 2 N ama — a
B = H'  +

(124)

where m and y are the electric and magnetic moments
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respectively and N is the number of molecules per unit volume 

in state a, which in turn can be expressed as:

m = ctQ E + 0 q H ' + a i ( E AH) + S i ( H ' H)

(125)
u = y E + x H 1 +y i (E H) + xi(H’ H)
-  0 -  ° -  - A " -  A —

where a and x are the electric and magnetic polerisability 

tensors and where H is the externally applied magnetic field. 

Using all the above expressions (equations 124 and 125) and the 

four Maxwell equations (equations 18 to 11 1 ) the complex 

refractive index of circularly polarised light near an 

absorption region for two states i and j was found to be equal 

to [111:

n (i^j) = —  N.X{».«0)t»0 {/<i/mx/j>/2 + /<i/my/j>/2>
Ti L

+ 2a)Ini«i/inx/ j > < j / m y/ i » }
(127)

A
<j> = oi/2c n+ ) (126)

A
where X( w , a) )=f( w , to )-ig( u , a> ) , where u is theO O O  0 0 0  O “*0
i__ j transition frequency and where f(w , oj^) and g( w w Q)

have the form of Fig.110.
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Then they [ll] proceed to a more thorough quantum- 

mechanical treatment of the problem [1 3 ] and also attribute a

certain shape to the i__line in question. They assume a line

shape of the type of a damped oscillator (X=l/( - w -i ĉ r ) f

r=FWHM for the i__ j line) but state that the exact spectral

shape does not actually matter.

Outside an absorption band, the rotation was given by [1 3]
as:

<{>(i-Kj) = 

4tt

trc

where:

Na (-
2o> a) A (i j)
°/ 2 27

■ft K  -  w )

tii

2U) - 0)o
2 (B(i-*j) +

C(i-*d)

kT

A ( a - . j )  = ((S/\iz/i)-(*/vz/S>) Im{<a/mx / j X i / r a y / a > }

B ( a - * j )  = Im 7 ^  / U z -'7 y r  ( < a / n y j > < 3 / m y / k > - < a / m y / j X j / m x/ l y ’ ) 
k ^ o .  ™ k a

+ (<(a/mx/j)<1</my/^> -<i/my/j> <k/mz/a »

C(a-*j) = ^a/uz/a)> Im(7a/mx/j){j7my/a)0

Near an absorption band for well resolved lines but for 

unresolved Zeeman components, the rotation angle and ellipticity 

are respectively:

4tt 2w uĵ ((u>  ̂ -uî r . A(a-^j)M r 0 0 Ja
r  Na{-'T~77~‘2 ?72"7 2 ”  272-he Tl ( (oj0 -W ) +0) r -a )

<*»(a—so ) = -
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2 , 2 2 ><U (“g - II) )
l---?„ 2 (

( “ o ) + “  r i a

C (a — )
B(a-*j) + --------- ) } H

kT

(128)

4tt
e ( a - r j )  ----------- N {

•Re a

a, 3i 2 
S 10 ( “ o O!2)

fl(K " T T■0) )
r j a A ( a

T71
0)

a)2rj a )'

oj3r.j a
7 T(%*“ -U)W)

C ( a - * j )
2---£— ( B(a-*j) + -------  ) } H.

+ tu r  • j a kT
(129)

while when the Zeeiran components are well resolved:

<j>(a-rj)
47r

ire a

2, 2 2xoj (o)o - oj )
— 2----2,2 .
( “ o " u ) + “  rja

Qa ( a - * j )

where NaQa ( a- » j )  = N a o f ^ a o ^ a“ ^ J  ̂ + ® ( a - * j ) H z  + ^ ( a “ * J* ) H z /kT)j-

and where Qa Q (a_?. j)  = I m ( <£ / mx / j / ^ j / m ^ / a >
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versus w has the form of
Fig.I9c. Also, as H decreases <j> increases because the lines 

merge closer together.

The basic aim of the MOR and MCI) exercise is to find A,B

and C for any i___ j transition which will then provide

information about the i and j states. Further it might be 

preferable to calculate q rather than <{> since the first is 

easier to resolve in its components and also <(> is more 

susceptible to background rotations.

In order to demonstrate the above facts, Buckingham and
Stephens [11] give a simple example of a ^P__transition. The

state is non- degenerate (Mj=0) while the ^P is triply

degenerate (Mj=+-1,0). Therefore equations 126 and 127 give that

for no field n+(^P-1S)=n (^P-^S) and ^ ( 1P-1S)=0. For the

three ^P states are separated by eE/4-irmc (Fig. 11 1 ) . The

frequencies of the components are now different and Figs.111

become Figs.112. Another point is that the "three ^P (H fO)z
1 Mlevels can be related to the P (H =0) level by the Boltzmanz

relation:

N ( \ ^ o >  = N(1PHZ=0> d  - W( \ f O > Hz/kT>

(130)
where W(’pK)=-<1PK/M /’PM>=ehM/(2mc).z

dX^P-^S) (to first order in H ) contains information 
about the A,B and C terms. The A term occurs when eith’er the 

initial or the final states of the transition are split by the 

field, the C term occurs when the ground state is degenerate 

(and this term is temperature dependent) and finally the E term 

occurs from the perturbation of the initial and final state

For this case (/ A ^ o i g ) ,  *
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wavefunctions by the magnetic field, which causes them to mix 

with the other states [ll].

The basic principles stated above have been extensively 

applied to the analysis of molecular spectra. However, for atoms 

direct observation of the Zeeman effect provides a simple and 

complete determination of J-values and MOR and MCD have 

therefore received less attention in connection with symmetry. 

Another aspect of MCD and KOR is the study of f-values which is 

the main subject of the present thesis.

10.Absorption and Dispersion Relations for _a Line with a_ Voigt 

Profile

If the velocity distribution of electrons is Maxwellian,

then:

P ( 5 )  di- exp (-5/5 d5

is the probability of finding an electron with velocity £ in
1 /2the range ( £ , £ + d̂  ) . Also £ o=(2KT/m) ' . If the observer

observes at a frequency an atom with velocity £ absorbs

at a frequency v /c [ 1 01 . Therefore, the absorption

coefficient and the refractive index for a line with a Voigt 

profile are found by convolving the Lorentzian over a Gaussian, 

as follows:
a+_(v)

Voigt
= j  a +_ ( v  - 5 v / c )  P ( 5 ) dc
—oO

n^ (v)V°igt = J  “ * (v .5v/c) P(s) de
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Vi Vq v2

Fig. 19 Refractive index and absorption coefficient curves used 
to explain the Faraday effect shown in Fig.18.
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F i g . 1 ̂ The Faraday rotation and ellipticity angle curves for 
the P- S transitions in the absence of a magnetic field [ll].
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Fig.^12 The Faraday rotation and ellipticity angle curves for 
the P- S transitions in the presence of a iragnetic field [ll].
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After some algebra, the following expressions are obtained:

e2Nf +<30 -yY r e J dy

Avg me

T r c uy 

/rr { (v-a) -(v-a) - y}2 +y2
(131)

and

v (v) == 1 -
e2Nf ] iroo e -y { ( v - a )  - y }  dy

4m (vQ+ct) AvQ 7 ^ / { ( v - a )  - y }  +t

(132)

where
v - v eB

Y =
4tt Av,

y =
Av,

» a = a /  AVg , a =
4irmc

and v =v - v / Av^ ±s the detuning expressed in Doppler widths, 

Av = v v/c and v' is the variable of integration. As a special
L> O

case if AVp>> Ê  the Voigt profile resembles a Gaussian and the 

resulting expressions for a andfiwould be those corresponding to 

a Gaussian line profile.
In a recent publication, Hui et al [ 14] have studied the 

rapid computation of the Voigt and Complex Error functions.

The Complex Error function is:

2 2i /  J .
p(z)  = s 'z ( 1 + — / e dt )

f n

and they also state that:

P(z)

P(z)

lf ^(z) > 0

^ 2
p(z) + 2e~z i f

Im(z)< 0
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where -kco

P(z)
i e-t

2

dt
Tt J Z ” t
—40

Ey substituting z=s-x+iy , the expression for P(z) is obtained:

P(z) =

T

TT J (

TOO - ty /. e dt
too -tr (s - x - t) dt 

1 e v
t— r + 1 — /  --------7 ? r — z
L + / }  it -L(S - X - t)‘ + y^J ir {(s - x - t) + y >

(133)
Thus, so far it has been shown that for lm(z)>0 the Complex 

Error function can take the form of the above equation with 
clearly separated real and imaginary parts. Hui et el [14] 

equate in their calculations the Complex Error funcion to a 

quotient of the form:

tv'P (z) = —i£ °__________________
,p+l ^ b . X 1£.»0 '

(134)

and the fits which they obtained for p=3 and p=5 give a maximum
-6 _ orelative error of 1.67 10 and 1.11 10  ̂ at reference points 

chosen between 0 and <» .

When this method is coded up and inserted into the 

computer, taking also advantage of the computer's capability to 

decompose a complex expression into real and imaginary parts, 

the real and imginary parts of a Voigt function were obtained. 

The real part represented the absorption coefficient and the 

imaginary the refractive index. Then a+(v ) and n+( v) were 

inserted into the formula obtained for the evaluation of the 

intensity (equation 118).
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Hui et el [ 143 have tabulated values of a^ and b^ for p=5 

and p=6. In this work the above formulae (equations 123 and 124) 

were used to calculate the Voigt expresions with p=6 and the 

results agreed to 5 decimal figures with the values listed in 

tables of Abramovitch 8nd Stegun [l6]. As a concluding comment 

to this chapter, the intensity obtained from the above 

calculations has to be convolved with an apparatus function 

-taking also into account some other effects which will be 

discussed in Chapter III- in order.to obtain a correct and 

realistic expression for the intensity of radiation observed on 

the photographic plate.

The relevance of the ideas introduced in this chapter to 

experiments recently performed by the Eonn/Imperial College 

group is explored in greater detail in the next two chapters.
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Chgpter II

Background Experiment

1.The Experimental Set-Up

The experiments, the results of which are analysed in the 

present thesis, were performed by a team from Imperial College 

and Bonn University on a collaborative project. The object of 

the present thesis is to present suitable computational methods 

which were developed for the reduction of the data. We sought to 

extract as reliable relative f-values as possible, and to make 

suggestions to improve future experiments in the light of our 

detailed analysis. The experimental background is as follows: 
the measurements were performed at the 500 KeV electron 

synchrotron of the Physikalishes Institute in Bonn, where a 

laboratory specialising in high resolution VUV spectroscopy has 

been set up in collaboration with the Blackett Laboratory. The 

main experimental set-up is shown in Fig.111.

The source of radiation is an electron synchrotron. 

Synchrotron radiation is electromagnetic radiation that charged 

particles emit when they move on circular orbits with highly 

relativistic velocities. The following are important advantages 

of Synchrotron Radiation (SR) as a spectroscopic source in the 

current experiment where photon wavelengths shorter than the 

visible are involved (Kunz[ l]).

a) Linear polarisation with E parallel to the orbital plane (for 

the present experiments, this was the crucial property).
b) Circular polarisation above and below the orbital plane.

c) The emited radiation is collimated in the instantaneous
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direction of flight of the emitting particles (the angular 

spread is about 1 mrad) and

d) The spectral distribution of the source can be calculatedand 
and is substantially 'flat' in the wavelength range of interest.

In recent years several publications have dealt with the 

quantitative properties of SR. In a review paper, Kunz [ 1Jgives 

the equation of the radiated power off all the orbit in a 

wavelength dX and an azimuthal angle d^ to be ( ̂  is the 

azimuthal angle, see Fig.1.3 of [ 1]):

ux,4>) s 
27 

32 it3 
where

e2c
~ y ( —. x

c .4 8 , . ,2.2,„2
■) r  ( i + ( Y * r n i < 2 / 3 ( e ) + 1 +(ytii)7~  Kl / 3 ^ }

(1X1)

Xc
is the characteristic wavelength

5 = — - ( 1 + (yC)2)3/2
2 X

Y E/mc^

R=radius of curvature, ^/■z)^2/'2= Modified Eessel functions of 
the Second Kind.

This equation integrated over all azimuthal angles ^

yields:

I(X) =
,5/2

16 -nr

e2c
CO

y 7(- /
Xc/X

dn K5/3(n)

from which it is obvious that the total power per electron , per



second and per unit wavelength interval depends only on X / X 

R and E and therefore a computer program can calculate l(X ) for 

any SR machine or any geometry. Equation 111 can also be 

integrated over all wavelengths to give the power distribution 

in ip :

K<c) (1 + (yO ) V 5/2
7 5 (yO)2

--- + -------------- -
16 16 1 + (y4»)

)

Integrating equation II1 over 
obtained:

2

*tOt ~ o

and X , the following is

Futher Kunz [ l] gives the following very useful relations. The 

angular spread Ai|) can be approximated as:

Aij) = 2/y (er /e)1/3 for e « e c and = hc/X,

and Ai|) = 2/y (ec /e) 1 / 2 for >? e

and also that the total power radiated is:

I(Watt) = 88.5 E^(GeV) j(mA) / R(m)

where j is the current.

In other papers on SR, originally Schott [ 2] and then 

Schwinger [ j] stated that synchrotron is linearly polarised in
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the orbital plane while the radiation emited into directions 

above or below it is elliptically polarised with a high 

percentage of circular polarisation. Heinzman et al [ 4 ] have 

measured experimentally the absolute intensity and the circular 

polarisation of SR for wavelengths 40 to 100 nm. They found that

the intensity distribution of circularly polarised light in the 
vertical plane has a FWHM of 3 mrads. They also

found that the intensity decreases as a function of the vertical 

angle ip (see Fig.3 of [ 4 ] and also Fig.1.3 of [ 1 ]) (both 

results were for X =100nm). Further they show that the fraction 

of circular polarisation stays almost constant as a function of 

X (at about 80$) depending only on the range of ij; and that 

it rises from about 75$ to 100$ as ip goes from 0 to 2.5mrads. 

The problems of the dependence of circular polarisation on X 

and of having a slight admixture of elliptically polarised light 

in the incident beam will be connected with the analysis of the 

results presented in the following chapters and will receive 

there more attention. Let us now return to the description of 

the experimental set-up.

The continuum radiation (mostly plane polarised with 

inevitable fractions of + and - circular polarisation) leaves 

the 500 MeV synchrotron and is collected by a 65cm long 

cylindrical bent mirror which focuses only in the horizontal 
plane. Then the light falls on the veifecal slit of a 3-iretre 

normal incidence out-of-plane Eagle spectrograph designed by 

R.C.M.Learner (1965) and manufactured at Imperial College. It 

has a 5000 line/mm Jobin-Yvon Al+Kg^ overcoat holographic 
grating of 10cm which disperses in the horizontal plane. The
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exposure times are in the range of seven minutes to two hours on 

Kodac SWR plates depending on the level of absorption. 

Calibration in wavelength was achieved by superposing various 

emission spectra on the magneto-optical patterns. The resolution 

of the grating is considered to be the highest currently 

available in first order. It was vital to be able to obtain the 

highest resolving power ( the instrumental limit is 3 0 0 0 0 0 but 

in this case it was less because the apparatus function was 

affected by factors independent of the spectrograph -this will 

be discussed in a following chapter) because the large grating 

tilt in the horizontal plane made the optical system very 

sensitive to the angle between the plane of polarisation of the 

incident radiation and the rulings of the grating surface.

In this experimental arrangement [ 8] the radiation 

emerging from the synchrotron (after being collected by the 

cylindrical mirror as mentioned above) can be regarded as the 

radiation emerging from the polariser of the standard 

experimental set-up for Faraday rotation studies. The 

diffraction grating of the spectrograph can be regarded as the 

analyser. Therefore, in principle, with both components 

'crossed', no emerging light should be observed (however there 

will be some because of instrumental imperfections). 

Furthermore, this is achieved with one optical component (the 

grating) and no transmission optics. Between the synchrotron and 

the cylindrical mirror, a superconducting magnet was inserted. 

In the warm bore of the 50cm-long magnet a wire-wound furnace 

was used as an absorption cell. As mentioned in an earlier 

chapter, the plane of polarisation of the light begins to rotate 

upon its entry in the cell under the influence of the magnetic
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field (Faraday rotation). Therefore, the polariser and the 

analyser will not always be 'crossed', but there will be 

intensity oscillations in the magneto-optical spectra depending 

on the rotation that the plane of the light suffered in the 

cell. It must also be noted that in the standard KOR 

experiments, the angles of rotation are small (only a few 

degrees) whereas, in the present instance / angles of many -jr 

lead to oscillations of intensity.

The following tes-t was performed to check the polarising 

efficiency of the grating. A wedge of crystalline quartz with 

the optical axis running towards the apex, an approximate 

thickness of 5mm at the centre and an angle between the faces of 

about 1 min.of the arc was mounted just in front of the 

spectrograph slit with the axis at 45°̂  to the vertical. The 

difference between n+ and n ( the refractive index for right- 

and left-hand circularly polarised light in crystalline quartz 

is approximately constant as a function of X between 2C00 and 

2500 A). Thus, the optical path difference between positively 

and negatively polarised light is given by:

t  ( n+ -  n .  ) = ( n *  + ! / 2 )  x

where n* is an integer (274 for 2190 A) for the plane of 

polarisation to be rotated by tt /2. Since a wedge was used 

(instead of a slab or a plate), the fringes had a slope and from 

this and other data it was estimated that the polarising 

efficiency of the holographic grating in question was 

approximately 75$ •
The present experiment has been performed on SrI,MgI and 

Eal as those elements possess singlet principal series and can
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exhibit the simple Lorentz doublet. The magnet used is capable 

of producing fields up to 6.CT. The temperatures of the vapours 

in the furnace are between 500 C and 1000 C (corresponding to

2.Basic Principles of the Magneto-Optical Method

A typical magneto-rotation pattern obtained from the

experiments being carried out in Eonn i*s shown in Fig.II2a. In

the middle of the pattern the Lorentz doublet is prominent. On

either side of the two Lorentz components the intensity

oscillates symmetrically about the field-free resonance

wavelength XQ and thus the magneto-optical beats are produced.

In the experimental set-up, the polariser and the analyser are

seen to be crossed (Fig.IH) and as the plane polarised light

emerges from the synchrotron and passes through the high density

vapour (which is contained between the poles of a magnet) it has

its plane of polarisation rotated, according to the Faraday

effect, by many turns towards the centre of the absorption

lines. So, as the profile is scanned in frequency, the emerging

light has its plane of polarisation rotated by integral

multiples of u /2 at different points on the profile due to the

fast change in rotation angle as the line is transversed.

Starting from the far-wing of the line and moving towards the

zero-field line centre, <J> (the rotation angle) rises from zero

to high values and the crossed polerisers transmit a series of

"intensity oscillations" which algebraically are represented by
2equation 118 by the funcion sin <f> . As a consequence the

electric vector (intensity of radiation) oscillates between the 

maximum and minimum values.

particle densities of about
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Fig.II1 The experimental set-up for the magneto-optical studies 
in the Physikalisches Institute in Eonn.
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Lorentz Doublet in Absorption

Absorption

Fig.II2a An experimental m8gneto-optical spectrum (for n = 1 1 in
Vr l).



The expressions derived in Chapter I for the intensity- 

transmitted and for the refractive index and absorption 

coefficient will be restated here for reasons of convenience 

(see equations 118,131 and 132):

I = { ( e x p ( - a + z / 2 )  -  e x p . ( - a _ z / 2 ) ) 2 + 4 e x p ( - ( a ++a J z / 2 ) s i n

a
e 2N f

Av q  me
-oo

dy
{(v-a)

(112)

(113)

n N) V e 2N f

4m (vQ+a) 4vd

e-y2 t(v;a) -  y }  dy 

{(v-a) -  y } 2 +T2
(114)

from which it can be seen that the intensity formula contains 

the product NfzB (N is the particle density, f is the oscillator 

strength, z is the length of the furnace and E is the magnetic 

field strength). The aim of the calculations in the present work 

is to obtain a value of NfzE for several members of the Rydberg 

series, recorded under identical experimental conditions. 

Relative f-values will be therefore deduced since the quantities 

N,z end B cancel out. Obviously, knowledge of the exact value of 

N,z and B is not required although they must be held constant 

during the experiment. An appropriate value of E,z and N (see 

below) is of cource required for the calculations. A typical 

spectral pattern of these calculations is shown in Fig.II2b. 
There are several approaches to the determination of f- values 
from magneto-optical spectra.

The first is the far-wing approximation first given by

61



IN
TE
NS
IT
Y

SRI Nall NFl=9.686*14 P0L=8S.PC ASYMsQ.lS T=7QQ.C B=42T
SlNGLET-SINGIET FINE STRUCTURE

FREQUENCY

Fig. 
Sri) II2_b A theoretical magneto-optical spectrum (for n= 1 1 in



Mitchell and Zemansky [ 7]. They relate the rotation angle

to N,f,z,B and v (the field-free central frequency) aso
follows:

the similarity of this equation with equation 116 is obvious. 

Equation 115 holds for 1^/417 <<eB/4TT m c «  v where was 

defined in Chapter I. From Figs.II2 it can be seen that towards 

the wings of the line the rotation tends to zero whereas moving 

in towards its centre the rotation increases until, at v /2, 
the transmission through the crossed polarisers is maximum. 

Moving further towards the line centre, the magneto-optical 

beats of it tt/2, 277 etc are obtained. Therefore the rotation 

can be determined, and the accuracy of determination is better 

for the 7T peak thsn for the 77 /2 as the first one is sharper 

and the accuracy of measurement of its exact position is far 

better. Also, the rotation angles are independent of most non- 

linearities in emulsion responce which effect relative intensity 

calculations.

However there are a few reasons for this method not being 

the most accurate one in determining relative f-values from 

magneto-optical spectra. These reasons will now be presented 

(Connerade [ 6 ]):

(a) The far-wing formula given by Mitchell and Zemansky [ 7 ] 

stated above, holds best for the outermost rotation peak. But 

since that one is the broadest it can give information of very 

poor accuracy.

(v - vQ)

1
2 (115)
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(b) Connerade [ 6] has plotted the rotation angle versus 

frequency, in Fig.2 of that publication, and shows that "under 

the most ideal conditions only the outermost three or four 

points can be fitted in this way at the available field 

strengths". Therefore, there are systematic errors in this 

analysis which is based on the least accurately determined data.

(c) A careful observation of the experimental spectrum obtained 

(Fig.II2) shows that regions other than the far-wing, especially 

the region between the Lorentz doublet, is very sensitive to 

changes in NfzE.

(d) And finally , the far-wing approximation cannot be applied 
to partially resolved patterns. These patterns will be discussed 

in more detail further below in this section.

The second approach is based on the relations for the 

intensity and for the refractive index and absorption 

coefficient for a Voigt profile presented in Chapter I and 

restated in the begining of this section. The intensity must 

also take into account the polarisation efficiency of the 

grating, the asymmetry between the two Lorentz components and 

then it must be integrated over an appropriate apparatus 

profile. These facts will be discussed in some detail in Chapter

III.

As mentioned earlier in this section, the final formula of 

the intensity will include the product NfzB. An appropriate 

value for the polarisation, the asymmetry, the width of the 

apparatus funcion and KfzB are initially inserted as data in the 

program inserted into the computer to calculate end produce 

graphically the intensity spectrum. The polarisation, the 

asymmetry and the FWHF! of the apparatus function will be given
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the correct value for a certain profile after some trials as 

they affect a particular part of the spectrum in a certain way ( 

a complete discussion of the choice of their correct values will 

be postponed until Chapter III). Therefore, only the product 

NfzE remains to be manipulated for the correct reproduction of 

the experimentally obtained magneto-optical spectra (using the 

calculated formulae). In other words, most of the parameters 

involved in these calculations are held constant from one 

profile to the next for different profiles recorded on the same 

plate for identical experimental conditions (minor exceptions to 

this statement will be discussed in the following chapter). 
Thus, NfzB must be determined for each profile separately. The 

difficulty of determining the correct value of NfzB was overcome 

with the following approach.

The third approach is the Magne.to-Optica 1 Vernier

technique (MOV) (Connerade [ 6]). This method is based on the

behaviour of the computed spectrum with the variation of the

product NfzB. There are two different rates that different parts

of the profiles differ. Firstly in the far-wing the pattern

varies slowly, moving slightly away from the field-free line

centre as NfzB increases (this is in agreement with the far-wing

expression given above), Relative intensities remain almost

constant as long as the magneto-optical intensity oscillations

are outside the Lorentz components. Secondly^. in the region

between the Lorentz doublet where the rotation angles become

much larger^the relative intensities vary very rapidly with the
2variation of NfzB represented by the sin <j> factor in equation 

112. A demonstration of these facts is given in Fig.113* In this 
diagram the x- and y-axes represent the region of the spectrum
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Yig. JI3 The middle part of a computed magneto-optical spectr 
7*1=11 in Sri). Part of a magneto-optical cycle is demonstrated



between the Lorentz doublet (the x-axis is the frequency and the 

y-8xis is the intensity) and the z-axis is the product NfzE. One 

period of the fluctuation of NfzE will be refered to as a 

magneto-optical cycle.

To recapitulate the method used in this piece of work in 

determining relative f-values the following steps were followed.

(i)From the outer parts of the line profile, and with the aid of 

the far-wing formula NfzB can be determined roughly -to 

correctness of an order of magnitude. (ii)-Af terwards, several 

magneto-optical cycles are plotted in order to find out whether 

the values used for NfzB to produce a spectrum cover a magneto­
optical cycle. (iii)At the same time, the computer program is 

made to calculate and write out the actual frequency (or 

wavelength) distance form the line centre that corresponds to a 

tt/2 or a ir rotation -the choice is made depending on which 

of the two gives a more accurate reading. Then by knowing the 

actual dispersion of the plate, it can be checked which cycle 

gives the closest 6v's (or <5x's) for the ^ /2 or ir rotation 
compared with the experimental results. Finally, (iv)by 

comparing all the computed spectra within a cycle (from the MCV 

technique) that has comparable <5v s (for the tt /2 or it

rotation) to the experimental values, the correct value for NfzE 

can be obtained by observing particularly carefully in the 

middle of the pattern. In this method, the magnetic fields were 

of the order of 2.0-4.5 Tesla and were kept constant throughout 
the experiment. The effect of measuring f-values at different 

field strengths will be discussed in Chapter VI. Further, higher
fields (>3«?T ) give a high sensitivity and accuracy in the

-4results, where typical f-values were of the order 10 and the
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relative error was under 5%•

A final point in this section will be on non-well resolved 

magneto-optical patterns. Partially resolved patterns are met at 

relatively high n-values up to the Rydberg series limit for a 

given magnetic field strength. As the f-value decreases so does 

the rotation and eventually the magneto- optical "beats" move 

into the region of the Lorentz doublet. Therefore it becomes 

difficult to attach precise labels to the peaks as was done 

before. As shown by Connerade [ 6] in his Fig.10, the MOV 

technique can still be applied for partially resolved patterns. 

However in the steps of calculation mentioned above, at the 
stage where the wavelength (or frequency) spread of the ^ or 

h /2 components is required as a method of checking whether the 

NfzE value used produces a <$v or 6A (for m or ir /2) in 

agreement with the experimentally obtained value, the choice of 

tt/2 as a rotation angle is compulsory since after that it is 

not clear which peak is the tt rotation. In partially resolved 

patterns, the outer regions change slowly with increasing n- 

value, whereas the central intensity changes fast.
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Chapter III

Calculations! Methods and Computational Techniques

In earlier work done on magneto-optical rotation 

(including both the effects of magnetic circular dichroism and 

magnetic circular birefringence) done by Connerade ([ 1 1 and by 

Garton et al [ 2 ]), it was assumed that the line profile had a 

Lorentzian shape, that the apparatus smoothing was that of a 

"top-hat" and the final calcualtions of the spectra were done on 

a "pet" computer which was a CBM 4032 microprocessor with 

limited accuracy and resolution.

In the present work, for the sake of improvement of the 

accuracy of the calculations performed and for the sake of 

generality, it has been assumed that the line profile has a 

Voigt shape (by modifying the appropriate parameters it can 

become Gaussian or Lorentzian), tha.t the apparatus smoothing can 

be Lorentzian or Gaussian (the triangular has also been 

investigated) and the calculations were performed as well as the 

graphical output, on the 174 main computer of the Imperial 

College. All these aspects will be discussed in greeter detail 

below in this chapter and the great superiority of the produced 

results to the previous calculations done by Connerade [ l] will 

be demonstrated. This chapter will also include a brief 
description of the computational and graphical techniques and of 

the limitations of the computer system used.

In Chapter II, it was mentioned that the grating has a 

finite polarising efficiency and it was also noted from Fig.II2 

that the two Lorentz components are not symmetric in shape to
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each other. Polarisation and asymmetry will also be discussed 

below. In this chapter firstly the various parameters involved 

in the calculations will be discussed, secondly the apparatus 

function and thirdly the computational aspects. In particular, 

section 1 will deal with parameters which can be measured very 

accurately (eg wavelength), section 2 with parameters that are 

measured less accurately in the experiment (eg temperature and 

magnetic field) and their impact' on the analysis of the results 

and sections 3 and 4 with parameters which have to be guessed or 

matched to the data in the course of the calculation because 

they cannot be measured directly (eg polarisation,asymmetry and 
apparatus width respectively). Finally section 5 will deal with 

some of the aspects of the calculations. The general description 

of the MOV method of Chapter II and the details of the 

calculations presented in the present chapter when combined will 

give the final relative f-value results which will be presented 

in Chapter VI.

1 .Wavelength. Determination

Each of the experimental plates that were obtained in 

Eonn, contained several spectra at different values of the 

magnetic field and one zero field spectrum. These plates were 

then microdensitometered at Imperial College and from the zero- 

field separation of the absorption lines between successive 
members of the Rydberg series, we were able to find a very exact 

value of the ratio rwavelength difference/ corresponding 

distance on the micro- densitometer trace. For the wavelength of 

each n-value of the principal transitions in alkaline earths 
that we were interested in, there exist some very reliable

71



publications such as [ jl. Therefore for 0 each member could 

be exactly identified and the correct corresponding wavelength

could then be inserted as data in the calculations.

2.The Effect of the Exact Knowledge of the Value of T and 13 on 

the Computed Spectra

It was mentioned in the previous chapters that the 

frequency spread for the intensity in a Lorentzian profile to 

fall to its 1/e value, was equal to the following expression end 

also that Av (1/e) entered explicitly the refractive

index and the absorption coefficient formulae:

D \/2kT/ra vo
" ( l / « ) -------^------

From this expression, it is obvious that a ( v) and n ( v) and 
therefore the intensity formula depend in some way on the 

temperature T.

In the first instance the value of T used in these

calculations was the one measured at the outer wall of the

absorption cell by our colleagues in Eonn performing the

experiment. They used, for the Strontium experiments, a wall

temperature of T of 700°C. The effect of varying T on the

computed pattern had to be studied and great attention had to be

paid in case that the pattern was very sensitive to changes of T

if the experimental value does not correspond exactly to that of

the vapour. Figs 1111,2 and 3 show patterns computed for Sri

n=11 with all other parameters held constant and values of

temperature of 7C0 C, 600 C and 1000 C respectively. The

patterns were quite similar and it can be said that the pattern
14with T=1C00 C and Nfz = 9«66 10 cm was identical to the one
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Fig.Ill1 Sri n=1 1 pattern calculated with the MOV method at 
T=7COcC and B=4.2T. The polarisation efficiency of the grating 
was assumed to be 85?, the asymmetry of the two Lorentx 
components was k=.t5 and the half width of the apparatus 
function was =8.5 1C1 Hz.
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Lorentz Doublet in Absorption

t

Fig.IIHa Sri n=11 experimental pattern obtained in Bonn.



SRI N=U NFL=9.67E*14 P0L=85.PC RSYM=Q.15 T=600.C 0=42T

F R E Q U E N C Y

SRI N:11 NFL = 9.67E*14 P0L=85.PC RSYH=0.1S T=1000.C B=42T

F R E Q U E N C Y

Figs»IIH and Sri n=1 1 coinput ad s pa c t ra . /II the pa ra in e te rs 
used were identical to those of Fig.1111 except T which was 
600 C and 1CCC C respectively.
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with T = 600 C and Nfz=9.67 10 c m ” (Figs.III3 and 2 
respectively). This implies that a change of 40$ in temperature 

produces a change of 0.1$ in determining the f-value which says 

in other words that tha "approximate" value of T given to us by 

the experimentalists is more than adequate for correct 

calculations of the magneto-optical spectra.

The same problem (of doubting the accuracy of given data)

arises with the magnetic field. Although in the calculations of

relative f-values the E-field contribution cancels, it does

though come in the calculations of each individual intensity

pattern and the effect of its variation must be studied.'

Figs.III4 and 5 represent Sri n=11 (identically produced spectra

with the same parameters) with B=40T and Nfz=9»67 10 4cm and
14 -**•B=40T and Nfz=9-63 10 cm respectively. From these two figures 

and Fig.IIHa it is obvious that Fig.III5 is much closer to the 

experimental spectrum. This means that in order to produce 

identical patterns if the E-field if one goes from 40T to 42T 

then its Nfz value must go from 9*67 lO^cm"2* to 9*63 l O ^ c m ”^, 

ie a 5$ inacurracy in determining B produces a 0.4$ error in 

determining the value of Nfz of a particular member of the 

series. The above argument was for the n=1 1 member (the lowest 

in our experimental data) series. We have also found that as n 

increases the variation of the central (and important) part of 

the E-0 patterns of each n as a function of Nfz decreases. We 

find that this source of systematic errors will produce at most 

a 0.4$ error in determining the Nfz value for a 5% error in 

determining E. Errors in determining the value of the magnetic 

field are not usually greater than that 5$ because then we can 

cross-check the experimetnal E-field given data with the
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SRI N=l 1 NFL=9.625E*14 POL = 05-PC BStH:O.I5 T=700.C B:4QT

F R E Q U E N C Y

Figs.III4 sr.d 5 Sri n=11 computed spectra. All the parameters 
used were identical to those of Fig.IIH except that F=4.CT for 
both figures ard Kfz=9*67 10 and 9*63 1C respectively.



distance between the two Lorentz components ( eB/4TImc). In 

summary, errors in the exact knowledge of temperature and 

magnetic field of 40$ and 5$ respectively produce only errorrs 

in Nfz of the order of a few tenths of a percent. Therefore, as 

far as this aspect is concerned, the MOV method is quite 

reliable.

3 .Polarisation of the Grating and Asymmetry of the Lorentz 

Doublet

When the set-up of this experiment was described in 

chapter II, it was mentioned that the polarising efficiency of 
the grating was not 100$ but something like 70-80$. Therefore 

the formula for the intensity derived in Chapter I (equation 

118) must take into account the effect of the non- 100$ 

efficient grating by multiplying the above expression by P/1 CO 

where P is the polarisation efficiency of the grating.

The intensity formula now becomes after taking into 

account the above facts:

r . !o P V /2 a- z / 2 2 -(a++aJz/2 ?
1 -----------------( e - e r  + 4e ,

4 100 ' Sln +
100-P

100 To 6
- ( a . + a j z

The above expression for the intensity, yields a symmetric 

Lorentz doublet pattern (ie the effect of "asymmetry” has not 

been considered yet). We use the expression introduced by 

Connerade f l] to account for the imperfect polarisation 

efficiency of the grating. A justification for this term is as 

follows: consider the radiation which has passed through the 

system to consist of two parts. Firstly polarised light end 

secondly a small fraction of light of random polarisation.
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Integrating the origingal expression for the intensity over all

angles, gives an intensity proportional to:

which equals:

-a+z/2 -a_z/2 -(a++a_)z/2 2
(e ”e )+4e sin <j>)d<f>

-a z/2 -a z/2 
s IQ /4ir 2 (e + e )

Since a+ and a are non-zero in different regions then (up to a 

constant) we get the same behaviour as that proposed by 

Connerade [ l]. It was mentioned in section 2 of Chapter II that 
the values of polarisation and asymmetry were found by the 

"trial and error" method. Some illustrative examples will show 

how this was done. Fig.III6 shows the Sri n=11 symmetric 

magnetorotation spectrum evaluated assuming that the grating is 

a perfect polariser (ie P=100$). From the above equation it can 

be seen that in the far wing both terms tend to zero and from 

section 2 of Chapter I (inverse Longitudinal Zeeman effect) it 

can be seen that the symmetric Lorentz doublet was half the 

depth of the maximum amplitude (in intensity) . The rest of the 

pattern is as expected with the intensity oscillations discussed 

in the two previous chapters. If in the same pattern every 

parameter remains constant, and the calculations are repeated 

with P=85$> Fig.III7 will be produced. Here again all the main 
features exist, such as the magneto-optical beats as well as the 

Lorentz doublet, with the only difference the intensity of 

various parts of the profile has changed since Fig.1116. For 
example, the far wing does not have zero intensity now, but 

(100-85)/l00 I ( since a+ and a are almost zero out in the far
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SRI N=L1 NFL=9.67E*14 POL=!OO.PC SYM. T=700.C 0=42T

F R E Q U E N C Y

SRI N=!l NFL=9.67E*14 P0L=85.PC STM. T:700.C 8:42T

Fi^s.IIJ6 ajpg 7 Sri n=l 1 computed spectra. T=7C0°C, E=4.2T and 
Nfz=9*67 1C for both figures. The pattern was assumed to have 
identical Lorentz components and also to have 1C0% and S 5 f  
polariasation efficiency respectively.
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wing) which is shown in Fig.III7. Apart from the tt/2 rotation 

intensity peaks which remain constant in intensity, the rest of 

the pattern is shifted upwards (not by a constant amount 

everywhere as might be expected from the second factor of the 

previous equation since it depends on a+ and a- which are 

frequency dependent; see section 10 of Chapter 1). Therefore, as 

the polarising efficiency of the grating decreases, there is an 

upward inhomogeneous shift of the pattern with a simultaneous 

increase in intensity and emphasis on the Lorentz components 

with respect to the magneto-optical fringes. Fig.1118 is the 

same as Figs.1116 and 7 with the only difference that it is 
evaluated with P=4C$. The observations stated above are even 

more prominent in this exmaple. In the extreme case where ¥=0% 

it is obvious from the previous equation that only the two 

absorption peaks will be revealed as in the inverse Zeeman 

effect since the first term vanishes and the second term 

represents just pure absorption. This is shown in Fig.III9» At 

this point, it must be stressed thst the insertion of the 

polarisation efficiency in the intensity formula and its 

calculation, only serves the purpose of trying to reproduce as 

well as posssible the experimental spectrum. Since it only 

affects the level of intensity of the Lorentz components by 

moving the complete pattern up or down does not influence the 

middle part of the magneto-optical pattern, it plays no role 
whatsoever in the determination of the relative f-values.

Next in this section, the asymmetry with respect to the 

line centre of the two Lorentz components in Fig.IIHa will be 
studied and an explanation of the effect will be attempted. A 

first guess might be to explain this asymmetry by any of the
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SRI N=11 NFL = 9.67E*14 P0L = 4Q.PC SYM. T=700.C 0 = 42T

SRI N= 11 NFL = 9.67E*I4 POUO-OPC SYM. 7 = 700.C 8=42T

and c ErI n=11 COICpUted spectra. .All parameters used
av5f 0 ^ entiCSl t0 those of g nd 7 except that P = 40£^ '*r(0 respectively.
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following processes which lead to antisymmetric Faraday effects 

[ 4-]. As the magnetic field is increased, the processes in order 

of significance are: a)the Back-Goudsmit effect which breaks the 

coupling of I and J in hypefine structure, b)the Pachen-Back 

effect which breaks the LS coupling and thus mixes singlet and 

triplet states.

All the effects associated with anti-symmetric rotation 

would act at the same time on all the part from the line centre 

field-free intensity point to the far-wing (the + or - depending 

on the sign of the antisymmetric rotation) through the 

refractive indices and the absorption coefficients, which are 
related to each other through the Kramers-Kroning relations and 

cannot therefore be separately changed. But Fig.IIHa indicates 

that within the experimental errors the pattern is symmetrical 

about the line centre with the only exeption of the one Lorentz 

component being stronger in intensity that the other. This makes 

the explanation of the effect by any antisymmetry of the Faraday 

effect impossible and another-explanation must be found.

Another possible cause of the effect is some ellipticity 

of the incident radiation. It was mentioned in section 1 of 

Chapter II [ 8] that together with the plane polarised radiation 

(in the orbital plane) there is also some elliptically polarised 

radiation that emerges from the synchrotron. If the experimental 

conditions are such that the acceptance angle is out of the 
orbital plane, then there will be inevitably an amount of 

circularly polarised radiation added to the plane polarised one. 
Such an admixture will only strengthen one of the two Lorentz 

components while leaving the rest of the pattern unaffected, ie 
circularly polarised light of a given sense will be absorbed by
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the Lorentz component on one side of the pattern and not by the 

corresponding Lorentz component on the other side. It was found 

that very good results from these calculations were obtained for 

an admixture of circularly polarised light of a few % of the 

incident beam. In terms of the algebra involved in these 

calculations, this can be achieved by adding to the intensity 

formula a factor equal to:

-a
k e

-a_z
or k e

Therefore the intensity equation now becomes:
- a z/2 -a_z/2 -(a +a )z/2 0

I — Iq/4 • P/100 ((e —e ) + 4e sin <j>)

+ k e-az + (100-P)/100I e  ̂+ o

If in the extra term the negative absorption coefficient is 

inserted, then the new pattern produced by using the above 

equation and P*10C$S will give Fig.IIHO. Comparing Figs.1116 and 

10 it can be seen that the latter has every point of the 

spectrum shifted by an amount equal to the constant used k, 

exept the negative Lorentz component which has the same strength 

of intensity in both figures. Therefore, the asymmetry of the 

Lorentz doublet can be reproduced computationally having a very 

good resemblance to the actual experimental spectrum. When the 

asymmetry (in this case k=0.15) is included in the previous 

calculations that gave Figs.III6 to 9* then Figs.11110,1 1 ,1 and 
12 are produced. It must be mentioned again that the only reason 

for including the asymmetry factor in the calculations is the 

achievement of a very good theoretical reproduction of the 

experimental spectra. It should also be stressed that we cannot 

distinguish between grating effects and effects due to impure
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SRI N= 11 NFl=9.67E-t4 POl=lOO.PC flSYMrO.15 T=700-C B=42T

F R E Q U E N C Y

Fig.III1C Sri n 11 computed spectrum. The temperature, P-field 
and Kfz values were identical to those of Fig.IIH. The pattern 
was calcue]ted with k=.15 and P=10C£.



source polarisation by our calculations. Clearly, future 

experiments should test these ideas, eg. by moving the 

experiment out of plane and trying different gratings.Its 

existence does not alter the shape of the centre of the line in 

any way and therefore it does not affect the relative f-value 

determinations. Figs.IIHO, 11,1 and 12 show that their form is 

affected by the values of P and k; a decrease of P emphasising 

the Lorentz components and shifting the pattern upwards while an 

increase of k making the difference between the two Lorentz 

components even larger. Figs.11113 to 16 were calculated with 

k=0.35 and P=100$,85$,40$ and 0% respectively. All the above 
examples lead to the concluding comment, that roughly it can be 

said that an increase in the asymmetry coefficient leads the two 

Lorentz components into having a greater intensity difference 

(asymmetry) while a decrease in the vslue of the polarisation 

emphasises the Lorentz doublet with respect to the rest of the 

pattern and at the same time shifts upwards the whole of the 

pattern. Thus it can be said with certainty that there is no 

other way in determining the exact values of P and k apart from 

trying several pairs of them and observing the result, always 

bearing in mind how each of them can affect the magneto-optical 

pattern. Of cource, the correctness criterion for P and k will
n\be the resemblance of the computed spectrum to the corresponding 

n-value experimental one. Illustrations of this statement are 

given through Figs.III17 to 20 for Sri n=1 1 . The inconsistency 

in variation of P with the n-value (ie wavelength) is still an 

open question that must be answered in the near future. However, 

the irregular variation of k with wavelength is to be expected 

according to the grating manifacturers.
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SRI N=Ii NFL=9*67E*14 P0L=40.PC flSYM=0.15 T=700.C 0=42T

F R E Q U E N C Y

SRI N=ll NFL=9.67E + 14 POL = Q.OPC ASYM=.15 T:700.C B=42T

F R E Q U E N C Y

Figs.IIH 1 sv.d Y2 Sri n=1 1
were identical to those of
respectively.

computed spectre. /.II parameters used
Fig.IIHO except that P=4Cf and Cr
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SRI N=11 NFL=9«67E*14 POl=lOO.PC fiSYM=0.35 T=700*C B=42T

F R E Q U E N C Y

SRI N=11 NFL=9.67E*14 P0L:8S.PC BSYM=0.35 T=700.C B=42T

F R E Q U E N C Y

jigs.Till? end 14 Sri n = 11
were identical to those of
£nd respectively.

computed
Fig.IIH spectre. All paremters used

except that k=o5 srd P=1CO^
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SRI N= 11 NFL=9.67E*14 P0L=4Q.PC RSYH=0.35 T:700.C B=42T

F R E Q U E N C Y

SRI Nr11 NFL:9.67E*14 POLrO.OPC flSYHrO.35 T=700.C Br42T

F R E Q U E N C Y

—?-Fs•III 1 5 snd 1 6 Sri n = 1 1 computed
were identical to those of Figs.IIH
and Cf respectively.

spectra. All parameters used
3 snd 14 except that P=40a
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SRI N»tl NFL=9.67E*14 POL=0O.PC RSrt1=0•15 T=700.C B=42T

F R E Q U E N C Y

SRI N=ll NFL=9-67E*14 P0l=9Q.PC RSTM=Q.15 T=70Q.C B=42T

Figs.IIH? and 18 Sri n = 11 computed spectra. All parameters used 
were identical to those of Fig.IH1 except that k* .15 for both 
figures and P=SC£ figures and °C% respectively.



SRI N= 11 NFL=9-67E*14 P0L=85.PC RSrM=0.10 T=700.C 8=42T

F R E Q U E N C Y

Figs.IIH? and 20 Sri n=1 1 computed spectra. All parameters used 
were identical to those of Figs.III17 and 16 except that 
for both and figures and k=.10 and .20 respectively.
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4.The Apparatus Function
It was mentioned in a previous chapter that the calculated 

intensity of radiation at the end of the furnace must be 

convolved over an appropriate apparatus function in order to 

obtain the final 8nd correct expression for the intensity 

observed on the photographic plate. It must be said that the 

apparatus function is not simply the instrumental function of 

the spectrograph, which could be determined for example by 

analysing a zero-field profile. Effects such as the fluctuations 

of the density of the absorbing vapour or of the B-field during 
the exposure must be included in the apparatus function. The 

apparatus smoothing equation is:

Final
I (v)

■+SO

f I(v - V*) L(v*) dv*
(III1)

-00
where L( v ' ) is the apparatus function whose form will be 

discussed below, and l( v ') is the intensity (see equation III7 

of section 5 of this chapter). Fig.III21 shows the intensity 

spectrum before being smoothed by an apparatus function.

In the present calculations at each frequency point of the 

spectrum, the numerical integration of the apparatus function 

convolution is performed from -2 Av ̂ pp to +2 Av App (where Av App 
is the FWHM of a Lorentz apparatus function). 1 CO frequency 

steps are required to perform the convolution integration 

numerically with sufficient accurac*y. This process is repeated 

1000 times, for the 1000 frequency points that construct the 

final pattern.
In the work previously done by Connerade [ 1 ] on the 

magneto- optical vernier method (KOV) it was assumed that the
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SRI N=ll NFL:9.67E*14 P0L;8S.PC BSTMsO.tS T=700.C 8=42T

F R E Q U E N C Y
SRI N=U NFL=9.S7£*U POL=0S.PC BSYH=0.1S Is700.C Bs42T

FREQUENCY

Fig.III21 A magreto-optival pattern (and in an expanded forir) 
of the n=1 1 Sri lire without apparatus smoothing. The parameters 
used were identical to those of Fig.1111.
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apparatus function was of a simple "top-hat" shape and no 

investigations were made either on the accuracy of the numerical 

aspects or of the influence of this arbitrary choice of profile. 

This section of the present chapter will be devoted to a 

detailed discussion on these two problems -which were crucial 

for the establishment of the MOV method as a practical tool for 

studying M-0 spectra. Indeed, the motivations for the 

theoretical study and computational developments which together 

form the subject matter of the first seven chapters of this 

thesis were (i) establishing the reliability of the MCV approach 

for seme simple atomic spectra and (ii) providing suitable 
theoretical tools in the form of documented computer codes for 

the reduction and analysis of future experiments.

In the present section the following three types of 

profiles are investigated: Lorentzian, Gaussian and triangular. 

The "top-hat" one has already been investigated before [ 1]. The 

Lorentzian and the Gaussian were considered as more reasonable 

representations of the physical situation and are extensively 

studied. The triangular function was also considered for its 

simplicity of representation but is a somewhat crude 

approximation and will be given only limited attention. Section 

4 of this chapterr contains subsections 4a,4b and 4c. Section 4a 

deals with the correct determination of the FWHM value of a 

Lorentzian apparatus profile. It will be seen that exac-fcly the 

same method applies to the determination of the FWHM value of a 

Gaussian function. Section 4b will deal with the numerical 
calculation of the convolution integral. It will tackle the 

question of how many points to use accross a numerical 

integration and also the effect that the replacement of infinity
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limits of the apparatus integration with finite values has on 

the profiles. Finally, section 4c defines the Gaussian and 

triangular profiles, states some of the algebra needed to ensure 

that all profiles have exactly the same value of FWHM as the 

Lorentzian one and also studies the effect of replacing the 

infinity integration limits with finite ones. Intercomparisons 

between magneto-optical spectra obtained using the three above- 

mentioned apparatus functions with and without apparatus 

smoothing will finally be made. At this point, we compare our 

results with experimental data.

4a.Determination of the Correct FWHM Value of a_ Lorentzian 
Apparatus Function

The simplest method of determining the FWHM of the 

Lorentzian apparatus function in question is to treat it as an 

unknown. The check of this correctness will be the reproduction 

of the observed magneto-optical pattern (eg Fig.IIHa for Sri 

n=11).

For this reason calculations with 100 steps between+2Av^pp 

and-2Av^pp, (these assumptions will be justfied in subsequent 

sections) and with varying Av ^pp were performed. Figs. 11122 to 

27 show the computed spectrum for Sri n = 11 for values of

r a p p=27T Avapp equal t0 8#5 1°10’ 4,00 1°1° ’ 6,00 1°10, 9 *5°
10^, 11.00 1C1̂ and 15*00 10^ respectively. From the figures it 

is obvious that the pattern calculated with F^pp=8.50 1 0 ^  is 

the closest to the observed spectrum (Fig.IIHa). As  ̂̂ pp 
increases and the apparatus width becomes greater and smoothes 

the intensity spectrum more and more, there are less and less 
intensity oscillations and they are comparatively weaker. The 

opposite effect occurs as  ̂̂ pp decreases with with more
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stronger and sharper "intensity oscillations" occulting as a 

result. In Figs.III22 to 27 it can be easily seen that the 

middle part of the spectrum lying between the two Lorentz 

components is quite sensitive to any changes of T App not 

because it affects in any way directly the calculations, but 

because the bandwidth associated with the apparatus function is 

effective in smoothing the spectrum in the sensitive and 

important to our calculations middle part.

It is necessary therefore to try and find out with some

greater accuracy the magnitude of this effect and the subsequent

tolerance error. Fig.III25 shows the pattern produced from the
calculations using 101^ (a value of r p is chosen

for these quantitative arguments close to the one considered 
10best -the 8.50 10 - for reasons of greater accuracy because the

greater the deviation from the correct value of ^ p p  't̂ie more 
obvious the error becomes) and with Nfz=9»67 1 0 ^  (as used for 

Fig.IIH which is considered the best attempt for Sri n=11) 

while keeping all the other parameters constant. It can be seen 

that the middle part deviates from the experimental pattern. 

Fig.III28 is identical to Fig.III25 in *APP and the other 
paran̂ fcers and calculations exept that here Nfz=9*66 1 0 ^  and 

produces a pattern whose middle part is much closer to the 

experimental spectrum. Therefore a pattern with ^^pp=®*50 1 0 ^  

and Nfz=9»67 10^4 (Fig. 1111) is almost identical to a pattern 

with FApp=9.50 10U  and Nfz=9.66 101^, ie a change of

about 11$ in the apparatus width produces o n l y  an 

error(deviation) of 0.1$ in the resulting pattern and therefore 

in the determined f-value. This shows that the pattern is 

slightly dependent on the apparatus function width -just to
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SRI N=11 NFL=9-67E*14 P0L=8S.PC RSTM=0.15 T=700.C B = 42T

Fig. Ill 22 This figure is identical to Fi g . I I H  , but is 
repeated here for reasons of convenience.

\
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SRI N= 11 NFL = 9.67E-14 P0I_=8S.PC flSYM=0.lS T=700.C B = 42T

F R E Q U E N C Y

SRI N= 11 NFL=9.67E*14 P0L=85.PC flSYM=0.l5 T=700*C B=42T

Figs.III23 and 24 Frl r=1 1 computed spectre. All parameters 
used were identical to tbpse of Figr.IIH except that the 
apparatus width was 4.C 1C1U end 6.0 101U respectively.
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SRI N=U NFl=9.67E*!4 P0L=8S.PC ASTM=(M5 T=700.C B=42

F R E Q U E N C Y

F R E Q U E N C Y

Fi^s.III26 and 27 Sri n=1 1 computed spectra. All parameters 
used were identical to these of Fig.IXJI except that the 
apparatus width was 11.0 101 end 15*C 1C1 respectively.



SRI N=11 NFL=9.67E*14 P0L=85.PC RSYM=0.15 T=700.C B=42T

F R E Q U E N C Y

SRI N= 11 NPL=9.65SE«14 P0L=85.PC flStM=0.1S T=700.C B=42T

Figg.11125 and 
were identical 
width was 9 • 
respectively.

28 rl n=11 computed spectra. All parameters used 
to tho^e of Fig.III1 except that the apparatus 
I 1C10 and K f z = 9•6 8 10 end 9-655 1 C 14

1 0 0



produce the visual resemblance with the experimental results-but 

that no great accuracy in the knowledge of the exact apparatus 

width is necessary.

4b.Numerical Calculation of the Convolution Integral

It was said above that at each frequency point v the 

intensity was convoluted with the Lorentzian apparatus function 

over a distance + 2 Av^pp "to -2 Av ^pp taking 100 points in 

between, ie: +^ VAPP

I(v) v*) L( v*) dv* (III2)

0*1 CO

■ E£•*

101- 1
*2AvAPP

I { v- (2-4(- 101- 1 4Av

100 AvAPP }. L(2-4(------)^VAPP ) •'
'APP

100 100

Figs.11129,30,31,1 end 32 represent the spectrum of Sri n=1 1 

calculated with the same parameters and *App=8.50 101^ and 

Nfz=9»67 1014 but having different number of steps in the 

convolution summation, ie 21,51,81, 101 and 161 respectively. 

From Figs.III29 to 32 and Fig.IIHa which is the experimental 

figure, it is obvious that a very good quality of the computed 

spectrum is produced when the number of steps between +-2 Av ̂ pp 

is greater or equal to 100. Fig.III72 which is calculated with 

161 steps and takes 1.6 times the computer time required to 

calculate the spectrum with 101 steps (Fig.1111) and the two 
figures are almost identical. Therefore in all the calculations 

the optimum number of steps was considered to be 1CO.
In the calculations described so far, the convolution of 

the intensity profile with the apparatus function at a 
particular frequency point v of the spectrum was considered to 

cover the +2Av ^pp to "2Av^pp frequency range. This means that

1 0 1



SRI N= 11 NFL:9-67E-I4 P0l=85.PC flSYM=0.15 T=700.C B=42T

F R E Q U E N C Y

SRI N=11 NFL=9.67E-14 P0L=85.PC flSYM=0.1S T=700.C B=42T

Figs.III2? and JO Sri n=11 computed spectra. All parameters used 
were identical to those of Fig.IIH except that the number of 
steps between two successive freqeuncy points was 21 and 51 
respectively as opposed to the 101 of Fig.IIH.

I-

1 0 2



SRI N=ll NFL=9.67E-14 P0L=8S.PC RSYMzO.15 T=700.C B=42T

F R E Q U E N C Y

F R E Q U E N C Y

Figs.111^1 and Z2 
were identical to 
steps between two

Sri n=11 computed spectra. All parameters used 
those of Fig.IIH except that the number of 
successive frequency poirts was P1 and 161.

1Q1



the Lorentz function is taken up to the following point
symmetric about the frequency point mentioned in equation

1112: LL(+2

4

r
APP

(rapp /^ir)
( 2a v ) + (rAPP APP

1

17 V 17

ie this can be represented schematically as:

From the above, it is obvious that the assumption of replacing

the infinity limits of the convolution integral with +2 AvAPP
and “2 Av can include information up to (1.-0.058) of the 

total intensity (ie. that 0.058*1^ is left out), after which a 

greater accuracy is not absolutely necessary for good quality 

results but which would greatly increase the computing time 

since as seen above the steps of the summation cannot be smaller 

than 4 ^ A P P ^ ^ *  f̂ iere;fore from the above facts it is justified 
to assume that a frequency step in the numerical calculation of 

the convolution integral must be greater or equal to about 

4Av^pp/iOC and that it is adequate to replace the infinity



as this goes out tolimits of this integration with +-2 Av^pp
0.C58 of the Lorentzian and gives us almost all the necessary 

information whilst keeping the computing time at a reasonable 

level.

4c.Study and Comparison of Lorentzian, Gaussian and Triangular 

Apparatus Functions

So far the apparatus function used in the calculations, 

had a Lorentzian form:

r APP
L(v*) dv* = ---------2-------------- 3- (III4)

(v - + (r / 4ir)APP

where I'^pp=  ̂v ^APP an<* w^ere Av a p p  "^e width half
maximum intensity corresponding frequency spread. The above 

expression is already normalised, since:

+ArOO
L(v*)  dv* =

+ cp 2
(Tap p /4tt) dv:

~ot> APP -/
-tO

(v -v*)2 + (r /4tt )zAPP
= 1 CIII5)

Fig.IIH shows the spectrum of Sri n = 1 1 calculated with a 

Lorentzian apparatus function with p ^pp=8.50 1 0 ^  and with 

using 1CC points to calculate the convolution integral at every 

frequency point of the pattern.

It is useful to see the effect of another apparatus 

profile of the same FWHM intensity on these calculations. A 

Gaussian has the form:

1
L(v*) = —

\fr Av APP
1/e

(1/e)where Avapp is frequency width at the
For the above assumption to hold (ie both

(III6)

1/e intensity. 

Gaussian and
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G 1 1 1
L (half maximum) = -p—

Lorentzian profiles to have the same FWHM), we have:

r a ^y 7T Av-j 2 2
/e ! -(v-v,)2/(^i/e }1

*v l/e
APP

which means that the FY?HM^=2( v -j/2~ v0)=2 A v ^ ^ ^ / i n2 and since

the FWKM^= Av.-n-n® r ATvn/27r it is concluded that:APP APP

Av APP _
1/e

APP

Ait ^ 2

and this can be inserted into the Gaussian profile:

e-(v-v*)2/(AV “ eP )2
LG(v*) dv* = -----------------

/ff ' Av

The above function is already normalised since:

-oo

The usual calculations were performed for Sri n = 1 1 keeping all 

the parameters constant (including r^pp=£*50 10^) but this 

time replacing the Lorentzian apparatus function with the 

Gaussian one just described. From these calculations Fig.III33 

was produced. Comparing Figs.IIH and 33 it can be easily seen 

that the ones computed with the Gaussian function have sharper 

and stronger in intensity magneto-optical beats. This is due to 

the fact that the Lorentzian function is flatter and its maximum 

intensity point is lower than the Gaussian, ie:

l Lo^ 0) = 4/ r App
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whereas:
1 4

L ( O  = — p --- W
^  ^ / e

which means that the Gaussian maximum is /irln2 times stronger 

than the Lorentzian one.

The above figure shows schematically the comparison of the 

Gaussian with the Lorentzian. Figs.IIH and are computed with 

all the parameters and calculations identical (exept that 

Fig.IIH is for a Lorentzian apparatus profile whereas Fig.III33 

is for a Gaussian one) including the assumption that the 

numerical convolution at any frequency point goes from -2 Av 

to +2Av^pp. It was shown in section 4b of the present chapter 

that for the Lorentzian case the calculations go out to 0.058 of 

the total intensity which is of quite adequate accuracy. 

Similarly, for the Gaussian case it can be said that:

LG(+2AvAPP
^exp-(2AuAPp)2/(AuApp(1/e)^2^ ^  ^

1 7 AvAPP1/e
/A APP - it- ln2 
/Avi/e^ e * Xc
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the +"2^^pp assumption includes information up to 
times the maximum intensity which is excellent accuracy. 

Fig.III34 shows the calculation of the Sri n=1 1 pattern where 

the solid line is produced with a Lorentzian apparatus function 

end the dashed line with a Gaussian while every other parameter 

is held constsnt in the two cases. As expected the Lorentzian 

pattern is less sharp and weaker than the Gaussian. This was 

shown in the above figure (the Lorentz function is more spread 

towards the wings and has a weaker peak at the centre) . Furhter 

it was shown that the +-2 assumption loses all the

information after 0.058 Io in the Lorentz case, while O- 06515"

x I in the Gaussian, o
A third type of apparatus function tried in the present 

calculations was assumed to have a triangular form, ie:
j err \j

L (v*) dv* = — ---- Max( I- ---- -----  )

APP APP

In this case the limits of the convolution integral

from -2 Av.-,-. to + 2 Av.__ with 50 steps accross and APP APP
the area under the triangle is normalised again, ie:

extend ed 

therefore

Zrr
Area = 1/2 base*height = (1/2) 2AvApp ---------- 3 1

r APP

and the height of the triangle was 2 it/ F^pp like the Lorentzian 

case. Fig.III35 compares the Sri n=11 pattern produ ced with a 

Lorentzian profile (solid line) and with a triangular one 

(dashed line). Computationally this latter type of apparatus 

function is much preferable as its calculation is much quicker 

and cheaper than exponentials or inverse squares. Further the 

triangular pattern on Fig.III35 resembles roughly to the
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SRI N= 11 NFl=9.S7E+t4 P0L=85.PC flSYM=0.lS T=700.C B=42T

Fig.III33SrI n=11 computed spectrum with a Gaussian apparatus 
profile. All other parameters used were identical to those of 
Fig.1111.
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SRI N= 11 NFL=9.67E*14 P0l=8S.PC ASrMrQ.IS T:700.C B = 42T

SRI M= 1 1 NFL = 9.68E*14 POL-85 PC RSYM = 0 . 15 T=700.C 8 = 4.2T

S O H O  LINEILORENTZ INSTR I OfiSHED LINE t TRIRNG • INSTR.) OflMINSTR . =8.5E* 1 0

F R E Q U E N C Y

Figs.III34 and 35 Sri n=11 computed spectra with (a) a Gaussian 
(dashed line")"' and a Lorentzian (solid line) and (t) a triangular 
(dashed line) an a Lorentzien (solid line) apparatus function. 
All parameters used were identical to those of Fig.IIH.
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SRI N= 11 NFL:9.67E«I4 P0L:85.PC flSTH=0.1S T=700.C B=42T

FREQUENCY

Fig.III36SrI n=11 computed spectrum with a Lorentzian apparatus 
smoothing (solid lire) and with no smoothing (dashed line). All 
the parameters used were identical to those of Fig.IIH.
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experimental spectrum of Fig.HHa, but however the Lorentzian or 

the Gaussian are more realistic.

Finally, as a concluding comment to this section, the 

magneto- optical spectrum was plotted without a smoothing 

apparatus function and Figs.III21 and 21a were produced. As 

expected, the magneto-optical beats were very strong and sharp 

and the ^ / 2 y ^ , 3 tt/2 etc intensity maxims and minima remain at 

the same intensity level until the Lorentz componenets are 

reached (in this case they are more squared than in the smoothed 

case). The smoothing effect of the apparatus function can be 
readily demonstrated in Fig.11136 where it can be seen how it 

chops off the peaks of the beats of the unsmoothed pattern. Also 

the rotation peaks in the Lorentzian spectrum do not remain at a 

constant level but decrease more and more until they reach the 

Lorentz doublet.

5.Computational Techniques
In Chapter I the equation of the emitted intensity from 

the furnace was derived as well as more appropriate expressions 

for the refractive index and absorption coefficient for a line 

with a Voigt profile. Then it was assumed that after inserting 

n+ (v ) and a+ (v ) in the intensity formula, l(v ) must be 

smoothed over the apparatus profile L( v ) which might be 

Lorentzian, Gaussianor triangular. Therefore the following 

integration has to be performed:

Ifinal

where
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L(v*) = r APP ‘ ^
'* + (r APP /4ff)

7

yis the Lorentzien apparatus smoothing. This implies that a +_

(v - v*) and n^+ ( v- v*) have to be calculated in the computer 

code and then synthesise l( v- v*) according to:

v-v*)z/2 -a^(v-v*)z/2
I(v-v*) = 1 / 4  {(e - e ) +

-(a^( v-v*) + aV (v-v*) )z/2 2 v V
4 e + * sin ((n;(v-v*) V (  v-v*) )z/2) }P/100

-(a^(v-v*) + a V(v-v*))z -a±(o-v*) z  
+(100- P)/100 I e “ + '< e (III7)

As mentioned in section 10 of Chapter I, the absorption

coefficient can be related to the real part of the Complex Error

function and the refractive index to the imginary part, since:
2

r 2 ~y
v ,  ^  r  e N f  a f  e dy

a+ ( v - v * )  = ---------------------
Avp m c 7

and
v-v -V* - A «

/ o + 2 2( --------------- y ) + a‘
AvD

n^(v-v*) = 1 -
e2 Nf 1 /• e y ((v"v0‘v*+A ^ AvD “y ) dy

4myt(vq+A)AVq v-v -v* - A o ’)
( ------2------- y ) 2 + a '

AVn

where y,a,A and Av were defined in section 10 of Chapter I and
since:

■f-CO

Im(P(z)J = —  r
ir o'

-t
e (s-a - t) dt

-t
0 e dt

(S -a -  t )  +2“  2 / Re(P(z)) = —  f-g----------
m ^ ̂  +-(S -a - t)

where l(z) 
said that:

is the Complex Error function and z=s-a+i0 > it can be
V, v -v0 -v* - A

a+ {v-v*) = C, * Real ( Zi---- 2----- 1----  + iA) )

Avn
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where

ci ■

nV(v-v*) = 1 - Cg* * Imaginary ( Z

f i t Nf
2

e Nf

V - -V* 7 A

Av
+ i A )  )

Avq me 4m/jr(vQ + A) Avq

and Z(a) ) is the Complex Error function with u) =( v- v c“ v * + 
A)/ AVp+iA. From the paper of Hui et al [ 5] a quick method for 

solving for the real and imaginary parts of a complex error 

function, can provide in this case quick and accurate solutions 

for a (v - v*) and n (v - v*).

After the refractive index and the absorption coefficient 

were obtained at a frequency (v - v*), the apparatus convolution 

was performed. In the present work, the apparatus convolution

was not performed from - « to + (as this is physically
\ Nimpossible) but was performed instead between +2 Av^pp and

-2 Av^pp^ (where Av is the FWHM) taking 100 points of

summation in between. These two assumptions had to be made for

the sake of realistically inexpensive computing time and were

justified previously in section 4 from the quality of the

results obtained. The whole computed spectrum consisted of 1000

frequency points (from +24*A to -24*A).

Schematically, the sequence of the calculations performed

can be shown as follows:
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Main Calculations
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All these calculations were performed on the 174 IBM main college 

computer interactively. Once the values for the intensity of the 

spectrum were obtained as a function of frequency, it was 

desirable to obtain a graphical output of these results and also 

to be able to determine the value of 6v that corresponded to a 

ir/2 or tt rotation as this was necessary to determine, from the 

comparison from the experimentally obtqained spectra whether our 

computed spectrum was in the correct magneto-optical cycle. The 

latter was easily calculated by the computer by making use of 

the fact that the intensity is at a maximum for rotation angle 
7r/2 and at a minimum at rotation angle rr . A new piece of code 

was added at the end of the previously described program in 

order to search for these intensity maxima and minima. The 

computer time used now was almost twice than before inserting 

the extra code to calculate the 6\( tt, it/2 ) distance. In this 

work, three types of graphics routines were used. The first was 

a 3-dimentional graphics routine necessary to produce the MOV 

cycles where the x-axis was the frequency, the y-axis was the 

intensity and the z-axis was the product Nfz. The second type of 

graphics was an accurate presentation of the results requiring a 

large volume of output with many graphs on each file (each graph 

was performed with a different Nfz value -within the correct 

magneto-optical cycle- and by carefully observing the middle of 

the pattern and comparing it with the experimental spectra, the 

correct value of Nfz could be deduced. Finally, the third type 

of graphics used, was very accurate, with very good resolution, 

labelling possibilities and with the ability to have several 

curves on the same graph -ideal for producing the best and firal
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computed spectra. All these three types will be discussed now in 

more detail, but before proceeding to this it must be said that 

in all three cases, the values of the intensity and frequency 

must be first obtained and then use one of the three programs to 

obtain the desired graphical output.

The Imperial College Computer Centre common plotting 

library, is a collection of Fortran-callable routines based on a 

package provided by Calcomp and improved by the ICCC and the 

University of London Computer Centre personnel. The library 

enables users to produce graphical output on the microfilm 

plotter and on the Tektronix graphics terminals.
The first type of graphics required in this work, was used 

to plot 3-dimensionsl graphics and exists in the ICCC routine 

library under the name "Surface" [ 6]. It produces a succession 

of curves plotted on to a regular grid. From a representative 3- 

diment,ional graph for Sri n=11 (Fig.III37) it can be seen that 

the graph cannot be used fo-r a quantitative analysis and 

therefore its application is mainly pictorial. There are several 

different functional possibilities that can be requested by the 

user such as the elimination of any hidden lines in the graph in 

order to improve the visual clarity of the surface, height 

clipping, changable viewing angle amd perspective distance, 

rotation of the axes and picture magnification. Matching 

microfilm hardcopy of any displayed surface picture (on the 
Tektronix terminal) can also be produced. There is a limit of 

10000 points to be plotted per graph. In the present 

calculations for the sake of economising computing time only the 
region between the two Lorentz components was plotted in the (x- 

y) plane (Fig.III37).
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Fif.III37F0V cycle? for n=11,l6,?4 and 18 for 8 r l . The 
sensitivity of the cycle structure to changes in Nfz decreases 
as n increases under otherv/ise identical experimental 
condi tions.



The second graphics routine was stored in the ICCC library 

under the name "Simple" f 7]. This routine as well as every 

graphics routine, consists of a number of plotting functions 

each of which in tern is made up of many basic plotting 

movements. The functions performed by this plotting routine 

include the establishing of a plot origin, drawing straight 

lines or curves (scalling arrays of points to be plotted over a 

given length of plot, drawing various symbols and finally 

drawing and labelling axes. This graphics routine can provide a 

changable overall size of the graph, displacement of the origin, 

production of symbols at specified positions and the x- and y- 
axes. As in the previous case, the graph produced by "Simple" 

can be transferred to microfilm hard copy where a single 

"picture" is prepared on a grid of 16000*16000 points and each 

point can be at any of 30 levels of intensity. Therefore the 

most detailed graphics ‘with excellent resolution can be produced 

on microfilm and the drawing speed is very fast since the 

drawing is dove by an electron beam. All the computed graphical 

spectra presented in this thesis were originally produced on 

microfilm and then developed. Another property of the "Simple" 

routine which was taken advantage of for these calculations, was 

the fact that with some madifications in the commands several 

graphs (corresponding to different Nfz values) could be produced 

one after the other on the same piece of microfilm so that the 
observation of the middle part of the pattern and the comparison 

with experimental results was a comparatively easy task 

(Fig.III38). This saved plenty of time and effort. A]though the 
routine described next produces much more tidy graphs it does 

not possess the above property, which is so useful, that
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"Simple" had to be used at this stage of calculations.

Finally, the next routine used for the plotting of the 

final versions of the spectra was called "Gplot" and was 

originally developed by A.Bradshaw. It is basically of the same 

form as the "Simple" routine (and uses most of its functions and 

subroutines) but has the options of labelling the axes, flexible 

start and end values, a linear or logarithmic x- and y- mesh, a 

selection of various types of curves and the possibility of 

having more than one curve between the same set of axes. Also, 

the axes form a rectangle which produces a very "good-looking" 

graph and also prints the specified intervals on both axes. At 

this final point of the calculations and the computational 

description, some theoretical MOV patterns for Sri n=11,15*20 

and 25 will be shown together with their corresponding 

experimental patterns (Figs.III39 and 40). The excellent quality 
of reproduction is the proof we need to conclude that the MOV 

method is correct.

6.Limitations of the Method

This section will be devoted to recapitulate the points 

mentioned previously which might be a source of error to our 

calculations and which are limitations of the method,

a) From the "given" dats uncertainties can exist in the 

temperature and the E-field. For the n=11-27 Sri example that we 
studied thoroughly, 4Ca and 5% uncertainties in the-above 

quantities respectively produce a C.1# and 0.4a error in the 
determination of f-values. In future experiments, it is clear 

that the E-field should be surveyed more carefully within the 
magnet and its variations with time should be monitored more
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(b)

Figg.IIII9 end 4C Sri n=11,15,2C and 25 spectre theoretical and 
experimental m  quite good agreement.
Phase note that figs (a) and (b) are reversed in energy scale 
with respect to the data.
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exactly. Temperature data Is less crucial but is also required.

b) From the "chosen" data uncertainties can exist in the value 

of the FWHN of the apparatus function and it was found that an 

11J? change in the apparatus width produces only an error of 0.1* 

in Nfz. The optimum number of steps between two successive 

integration points can easily be determined as well as the 

integration limits can be chosen such that the calculated 

profile tends almost to the value it would have with the 

infinity limits. It would seem that the closer the apparatus 

function can be to the true experimental function, the better 

the data will be since the maximum number of oscillations of 
intensity will be observed. Thus future experiments should 

concentrate on stabilising the vapour column (eg. by using test 

pipes) and using more stable superconducting magnets.

c) The particular values of the polarisation of the grating and 

of the pattern asymmetry play no detectable role in determining 

the correct value of Nfz but only affect the appearance of the 

spectra. Therefore, we believe that one need not worry about 

these two factors until the others mentioned above have been 

attended to.

d) The following practical problem did not occur during our 

present calculations but might very easily do so in the future. 

There is a limited number of frequency points across the 

spectrum and of points between two integration steps that the 

presently available College computer can store and calculate. 

However we believe that this problem will only arise if it is 

required to double the resolution or to study many members of a 

series on one run (see for "overlapping lines" FOV technique 
that tackles two or more lines simultaneously Chapter V).
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Conclusions

In this chapter the smoothing of the spectrum by the 

apparatus function was introduced and compared to an unsmoothed 

pattern. At esch frequency point, the apparatus convolution 

procedure was performed by a numerical integration extending 

over + ”2 Av (FWHM intensity frequency spread) with 1OC 

summation steps in between. Foth these assumptions were 

justfied. Then, three types of apparatus smoothing were used to 

compute the spectrum and were compared to the experimental 

pattern of Fig.IIHa. Although the +-2AV ^pp essumption allows 
the Gaussian function to go out up to G'06'5.5 times its 

maximum value and up to 0.058 for the Lorentz case, both of them 

produced very good results. The fact that the MOV method was so 

independent of the exact type of apparatus profile used, was a 

great advantage and a further proof of its correctness and 

reliability. A triangular function was also used (more as a test 

than as a real possibility) and it produced results of the 

correct general shape. Also all the computational details and 

techniques were described in this chapter.

It was also seen that a large variation in tern perature 

affected the determination of f-values very little (0.1f) while 

a 4-»5% variation of the B-field affected them only by 0»?%. In 

what follows it will be assumed that the experimental values 

were correct, but it is worth noting that they need not be 

determined with the greatest accuracy. It was also seen how the 
polarisation and asymmetry terms added to the original intensity 

formula improved the appearance of the patterns without however 

affecting the f-value determination.
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As a concluding remark to this chapter it must be said 

that the more soundly based KOV method with the Voigt line 

profile, the more realistic apparatus function and the more 

elaborate calculations on a large computer turned out to yield a 

big improvement on the early magneto- optical calculations by 

Connerade [ l]. The results obtained with the improved method 

will be presented in Chapter VI.
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Chapter IV

Some Prief and General Comments on Transition Probabilities

In recent years the determination of atomic transition 

probabilities has become a very active research area with 

several hundreds of research articles having as a result to 

increase the number of lines for which we know the transition 

probabilities from 10'' to 10 (for an excellent and general 

reference on transition probabilities see Wiese [ l] and 

references therein).
Atomic transition probabilities and lifetimes are needed 

in the following fields:(i) Astrophysics: transition

probabilities are vital for the determination of stellar 

element abundances.(ii) Space Physics: far UV and soft x-ray 

emission spectra from highly ionised species in the solar corona 

are interpreted with the use of atomic transition probability 

data.(iii) Plasma Physics: transition probabilities, especially 

those of stable gases, are used for plasma diagnostics.(iv) 

Thermonucler Fusion Research: in order to study energy loss 

problems due to small but heavy element impurities in tokamak 

devices, transition probabilities are necessary.(v) Fevelopment 

of Laser Systems: in order to achieve the most desirable 

population inversion in a laser, the knowledge of transition 

probabilities is vital for the determination of level 

populations and lifetimes, and (vi) Isotope Separation: in order 

to separate isotopes, knowledge of transition probability data 

of the transitions involved in stepwise laser excitation and 
photoionisation is needed. Finally atomic transition
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probabilities car be a very sensitive test of atomic theory. The 

accuracy of theoretical results can be compared with 

observations either of transition energies or of transition 

probabilities thus we can have a measure of the quality of the 

radial eigenfunctions. Of the two, atomic transition 

probabilities are a much more sensitive means of checking atomic 

theory because they depend on the overlap between initial and 

final vavefunctions rather than on a single wavefunction.

The rates at which energy is absorbed or emitted by an 

atom are related to the Einstein coefficients. These 

coefficients are defined and explained in Appendix AIV together 

with a classical and quantum-mechanical description of the 

calculation of the absorption coefficient. In the same appendix, 

some approximate methods for calculating transition 

probabilities for light elements are also given.

Atomic transition probabilities can be obtained 

experimentally from emission and absorption measurements. There 

are two basic difficulties associated with each of these 

methods. The first is the correct measurement of the intensity 

which must be compared to that of a standard source and the 

second is the determination of the populations of the relevant 

levels. For relative measurements this latter problem, 

disappears but otherwise it can only be overcome if LTE 

conditions apply and if the temperature is known. For both 

emission and absorption, attention must also be paid that the 

line in au estion is optically thin and, in emission, that there 

is no continuum radiation arround (which would shift the base 

line from its true position) and for absorption measurements 

that the resolution of the instrument is good and that the stray
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scattered light can be made minimal as well as the radiation 

absorbed from the wings of the line. Another basic technique for 

measuring transition probabilities is the "hook" technique where 

opacity and intensity calibration problems are non-existent but 

which fails if the lines are weak or if they overlap with each 

other. All these methods are discussed in greater detail in 

Appendix AIV. The beam foil, the delayed coincidence and the 

Hanle methods can give us life-times and they are also discussed 

in the same appendix. They have relatively simple experimental 

set-ups tut are very susceptible to radiation trapping effects 

which effqct the level populations.

The MOV method decribed in this thesis, does not depend on 

the optical thickness of the vapour. This is a very basic 

advantage over the usual absorption techniques previously 

discussed (as well as in Appendix AIV). The MOV method gives 

relative f-value results, thus having the same problem of 

determining the population density of the level in question, a 

problem which all the absorption and emission measurements have, 

if absolute f-values are to be determined. The MOV method can be 

applied successfully to overlapping lines (see Chapter V) where 

the "hook" technique fails. Unlike the MOV method, the "hook" 

technique involves an interferometer and the wavelength regime 

that it can operate in is determined by the wavelength regime 

for which interferometers are available. In all the techniques 

for measuring atomic transition probabilities (absorption, 

emission and MOV) attention must also be paid sc that the column 

density is not very low, thus producing very weak lines. The 
Hanle method (which also involves a magnetic field like the MOV 

method) can produce absolute f-values by giving us the life-time

130



of the transitions in question. However, for the Harle effect to 

be success fully applied, we need quite strong lines and long 

wavelengths as apposed to the KOV method where such restrictions 

are not required. If there are more than one lower levels that 

the upper level k can combine with (t  ̂= 1/ ? A^), then it is 

not possible to determine the transition probability of one 

particular line from the measured life-time of level k. This is 

another important restriction of the Kanle method.
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Chapter V

Some Further Extensions of the NOV Method

Introduction

This chapter will be devoted to some extensions of the 

magneto- optical method discussed so far in this thesis. With 

the overlapping lines technique it is now possible to calculate 

accurately the spectra of two lines which are very close to each 

other. In the first section of this chapter a criterion of the 

applicability of the method will be derived as well as the 

method itself will be described. Section 2 will show that the M- 

0 method is still applicable for singlet to triplet transitions 

while section 3 will justify the neglect of hyperfine structure. 

Section 4 will show that the Weingeroff method [ 1] of measuring 

absolute f-values cannot be applied to our case since it is 

exclusively applicable in the wings of the lines. Finally in 

Appendix AV second order magnetic field effects will be 

discussed.

1.Overlapping Lines

In this section the influence of overlapping patterns on 

the measurement of relative f-values will be assessed and an 

experimental example of overlapping lines will be given. The 

reason we need to investigate this is that very often it is 

required to determine by refractive index measurements the f- 
values of two lines lying very close to each other.

It is an interesting question to see how the proximity of 

another line (either from an impurity or from another
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transition) can influence the experimental results. This can be 

a very important difficulty to the FOV method. The problem is 

more prominent among the higher members of a Rydberg series even 

before configuration miximg effects begin to prevail (a 

discussion on 1-mixing will follow in section 5), which become 

so closely spaced that there is no longer enough interval 

between two succesive members for a properly resolved magneto­

optical pattern to develop without overlap.

If two adjacent lines sre sufficiently far from each other 

to produce two independent magneto-optical patterns then we will 

proceed as described in the earlier part of this thesis to
Cicalculate the relevant quntities end there will be noA

cancellation of rotation in either of the lines. Otherwise, 

there will be some cancellation of rotation and more 

specifically the positive rotation due to one transition will be 

cancelled by the negative rotation due to the other when the 

patterns are sufficiently close to begin merging together. The 

transition from one category to another is quite abrupt as can 

be seen from Figs.VI and V2. It is therefore necessary (a) to 

try and find the quantitative condition at which this 

overlapping effect becomes important and (b) also to modify the 

theory to take this into account once this is so. These two 

points will now be discussed in some greater detail as follows:

(i) Firstly, we will try and derive a practical criterion for 

the conditions under which overlap is significant. The Faraday 

rotation  ̂is given by:

TTV
$(v) = ---- z(n+ - nj  (VD

c
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where n+ are the refractive indices, given by (equation 122):

_ 2
e2Nf 1 e Y ((v ; a) -y) dy

n,(v) = 1 ----tt?--------------- / 2 2
IT ' ^ A v ^ m  ( v Q ±ct) J  ( ( v  - a) -y) +  y

where the various parameters have been defined in section 10 of 

Chapter I. In the region of interest, y<<((v - a )-y) and 

therefore n+ ( v ) becomes:
2

2 "ye^Nf 1 ^  e ((v - a) -y) dy
n+(v) =  ̂ 772 / I 2

tt ' AUq4iti (vQ+a) y  ((v - a))
—a ?

From the above equation it is obvious that there is a 

singularity at v ^ a=y. Therefore an analytic expression is only 

possible if:

(v
(V2)

ie that v -a >> y
So, for v -a >> y, the refractive indeces become:

e2 Nf fc
1 + --------------- --------

4 / m m  A v q  (vq +  ci) it (v - a)

and no numerical integration is necessary. Inserting these 

values in the rotation angle formula, we obtain:

NfZ Be' '2n'o ^
8 it m2C<: (v 2 - a2)((vlim -vQ)2 - <* )

(V3)
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The above formula is used to calculate the rotation due to the

impurity line v the freauencies v , . where a measurement is 

being carried out. We estimate that if <jj ( v )'>rA 0°, then a full 

calculation of the profile of the impurity line is required for 

an accurate result. The approximations associated with this 

method are: (a) the fact that we choose arbitrarily the 

condition <f> (v )>1 0° and (b) that v- a >> y ( v - a  = 5 0y is 

adequate) for an analytic solution to be possible. However in 

spite of these approximations taken into account, the method is 

still superior to the far-wing approximation given by Mitchell 

and Zemansky [ 4].

(ii) Secondly, once it is established that the lines are so 

close together that they do overlap, the theory must be altered 

to take this into account. In the code used so far and described 

in the previous chapters of this thesis,the rotation angle due 

to each line (if they were alone) cb ( ) -, - , and 4 (v ).. „

respectively were calculated initially. Then the rotation angle 

cj, = (j) ̂ + (jj ̂  was inserted in the intensity formula and the 

overlapping lines' intensity spectrum was produced. From Figs.VI 

and V2 it can be seen that this theory agrees excellently with 

experiment over a wide range of parameters.

2.Possibility of Application of the Present M-C Method to (  ̂S-
*3*
"P) Transitions

It is a very interesting question to investigate how the 

theory should be set up for a singlet-tripl et transition and 

what kind of results one should expect to get.

As mentioned in section 3 of Chapter I for typical values 

of C(LS) the fields we are working with (P<10 Tesla) are
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Fig.VI 
B=2.0T Overlapping patterns for Pal and Sri at T=77R° 

(t) B=2.5T and (c) B=3.CT. and (a)
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• I T*"r 1 - T— | "t r I •’ I

Fig.V2 Overlapping patterns for Eal and Sri at T = 90C°C and (a) 
E=3*CT, (t) E=?.5T and (c) E=4.?T.
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classified in the low-field category form equation T3 • Therefore 
the frequency of any allowed transition will be stated again to 
be equal to:

hv = hvQ + uBB(gj'Mj' - 9/j) 

Also the selection rules are:

(V4)

AMj = 0, +1

Mj = o -f*.Mj' = 0  i f  iJ = 0

In the present problem (applied to Sri) the following energy 

levels are involved: ( SQ)>(''Pq )* ( )  and ("P ). In particular:

1} ls2(1so) has S=0, 1=0, 0 = 0,  Mj=0 and 9j

2) ! s 5 p ( 3P 0 ) has S=l, L = l ,  0 = 0,  Mj=0 and 9 j =0

=1 from equation I 7

3) 1 s 5 p ( i ) has

4) l s 5 p ( 3P 2 ) has

S=l, 1=1, J=l> Mj=0 t1 and g0=3/2 

S=l, L=1, 0=1, Mj=° i1 :2 and 9J=3/Z

Considering the selection rules 

1. — ^(^Pq ) is a forbidden 
and A j=o.

we get that:

transition since H =0--->> K T=0J J

1 ^2. ( S^)— ^('P^) is allowed because of break down of the AS, 

selection rule and for A Fj=C we get the ir-polarisation and for 

A ̂ j=+-1 the a -polarisation. The frequency of the two possible
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and finally,

3. ( Sq )— is forbidden transition since Aj=2.
Mitchell and Zemansky [ 1] give the far-wing expressions

for such transitions which are functions of a and B wheres s
a are the Lande g- factors noted so far as g T and where  ̂s J s

are the intensities for the circularly polarised components. 

They state that according to Kuhn's theory the refractive index 
is given by:

e2Nf
n+(v) = 1 + -------4-TTffl Vq V

Ss
v0 + aS

(V5)

From the tables that Kitchell and Zemensky [ 1 ] give :s denotes 

the fine structure components with s = 1 , a ^=3/2 and 3 ^=1 for 

( Sq )--■>>( ) transitions. Therefore, the Zeeman splitting
factor for singlet-triplet transitions is 3/2 a instead of a 
hat was the factor for singlet-singlet transitions.

The computer code that was used to obtain singlet-triplet 

magneto- optical spectra was the one described in the previous 
chapters of this thesis with the exception of the modification 

of the appropriate wavelength and the splitting factor. Fig.V3 

shows the spectrum obtained from the 5s ( ) - - ■̂ js'f'Jp ("" P ̂ )
transition with the same Nfz input data as the best spectrum of 
5s2(1S0)—  > 5 s V p ( 1P 1) .

It can be seen that the very middle of Fig.V3 exhibits the 
same basic features as the corresponding part of the singlet- 
singlet spectrum shown in Fig.II2. Obviously since the Lorentz 
separation is different for the singlet-triplet spectrum the 
remaining part between the two Lorentz components is slightly 
different for the two cases. Fig.V4 shows the refractive index

t-
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SRI N= 11 NFL:9.68E*14 P0I_ = 85.PC f)SYM=Q.l5 T = 700.C B = 42T

FINE STR. S-T

1 *Fig~.V3 ( S - 'P ) computed magneto-optical spectrum 
pcjgrisetion efficiency=P5/', asymmetry constant3.15 
10 .

for n=11 Sri, 
and Nfz=9*68
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SRI Nrll NFl = 9.68E+14 P0L=8S.PC flSYNrO.1S T=700.C B = 42T

FINE STR. S-T

FREQUENCY

S R I  N = l l  N F L : 9 . 6 8 E « I 4  P 0 L = 8 5 . P C  R S Y f l s O . l S  T s 7 0 0 . C  B = 4 2 T

F I N E  S T R .  S - T

FREQUENCY

Fig-V* Computed refractive index end 
curves for a ( ? - "P ) transition.

absorption coefficient
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and absorption coefficient curves that correspond to singlet- 

triplet transitions. For different Nfz input values, the centre 

part of the pattern "oscillates" up and down, thus making the 

MOV method still applicable.

J, .Magneto-Optical Spectra with Hyperfine Structure Included

So far in this work hyperfine structure has been assumed 

to be negligible in all the calculations. Although intuitively 

one would expect the effect of hyperfine structure to be 

extremely small it will nevertheless be useful to prove it. For 

simplicity we will only deal with hyperfine structure in the 

( Sq )--^ ( P ̂ ) case of transitions encountered in the 

experimental spectra obtained in Eonn and not in the (^S^)--v
•7(''P) hypothetical lines considered in the previous section.

In section 4 of Chapter I we saw that the energy shift

was:

AE = 9JV-b-bmj - 9j > bBMJ + W IMJ O )

Since A o£ [ J( J+1 )+S(S+1 )-L(L+1) ]/4j( J+1) for the singlet levels 

involved L=J and S=0 we get that for both A=0. Therefore the 

last term in the energy shift formula vanishes. Also for both 

levels (from equation 17) gj=1• Therefore

and

AE for (]S0 ) level is = ugBMj - gj'ugBMj 

a E for level is = UgBMj* - 1 UgBMj*
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Recalling the AMj=+-1 and selection rules we obtain

that the energy of allowed transitions is given by:

E = hvQ + aE* - aE = huo + uBB(MJ - mj ) - gr'uBB(Mr* - Mj)

For aMj= +1

AMj35 +1 E " hvo + wBB • 9 r'MBB

AMj = +1 

AMj= -1

AMj= -1 

AMj= +1

E = hvo + yBB + 9i'ubB

E - hvQ - ygB - gj'ygB

AMj= -1

amt= -i E = hvo ' ug8 + 9j'Ug8

From the above energies it can be seen that the difference in 

energy h of the unperturbed levels is shifted by amounts +- 

ygB to give the two Lorentz cr-polarisation components and in 

turn each of these two components is shifted by an amount +- 

g ’l ygE due to the hyperfine structure.

The reason why intuitively we expected that the effect of 

hyperfine structure would be unimportant is because the 

hyperfine energy shift is 1836.1? times smaller than the fine 

energy shift and also smaller than the line Toppler width by two 

orders of magnitude. Therefore, the hyperfine energy splitting 

will be lest in the width of the line.

Another point which should be examined is the distribution
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of nuclear spins in the common isotopes of the elements in 

question. From nuclear tables (see any standard nuclear physics 

textbook, eg Enge f 21), the following data is obtained:

Element

Sr I

Ba I

Mg I

For all

Isotope Abundance % Muclear Spin

82.56%

7.00%

9.86%

0.56%

0+

9/2+

0+

0+

71.66%

11.32%

7.81%

6.59%

2.42%

0.10%
0.10%

0+

3/2+

0+

3/2+

0+

0+

0+

78.70%

10.13%

11.17%

0+
5/2+

0+

three elements we are interested in (Sr,Ea and Vg)
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it can be seen that arround 70-80% of their isotope abundance do 

not possess a nuclear spin* However in the present calculations 

the worst case was considered snd we assumed that we had 100^

isotope abundance with nuclear spin. We then had to include the 

two Zeeman components and the four hyperfine ones. Mitchell and 

Zemansky [ l] state that the refractive index has to be 

calculated by the method of Kuhn but we have to sum over all the 

Zeeman and hyperfine components as follows:

r  e2flf v  s si
n+(v) = 1 + 2—»----------  Z —j  --------------------

i 4ir mvQ si v  - - a a •

where i denotes the hyperfine components, s the fine components

and the other parameters have their usual meaning. was

assumed to be equal to 1/2 since at the limit of zero hyperfine

structure the sum of the two hyperfine components had to equal

the intensity of the corresponding Lorentz line.

The calculated magneto-optical intensity pattern with

hyperfine structure is shown in Fig.V5 and as expected is

identical with the spectrum obtained with only fine structure

(Fig.V3) • Fig.V sh ows the energy level diagram for the
1 1hyperfine structure case of the ( ( P ) transition.
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SRI N: 11 NFL:9-68E*14 P0L=85.PC flSYM=0.15 T = 700*C B = 42T

SINGLET-SINGLET HYPERFINE STRUCTURE

F R E Q U E N C Y

Fig.V5 Coirputed magneto-optical spectrum Including the effect of 
yper- fine structure for n = 1 1 Sri, polarisation efficiency=85f, 

asymmetry constant=.15 and Ffz=9.68 1C' .

147



SRI N=l1 NFL=9.68E*14 P0L:85 PC SSYM=0 IS T:700.C 8;42T

HYPERFINE S-S

SRI N=11 NFL:9.68E*1 4 POL=85.PC RSYMrJ.15 T=700.C B = 42T 

HYPERFINE S-S

0 . 5

oi
LU

0 . 3

#
• 0.1

LUOO
-0.1

o
Q_
£-0o
000Qd

- 0 . 5

T--- '----1----'----1---- -----1----'----1---------1----1----1----1----T

LORI-l-HYPERF. LORI - )*HYPERF•

S O H O  LINE: I LORI - I-HYP. 1.1 LORI - 1 *HYP . )

— I---------1---- -----1----1____I_________I____,____L

F R E Q U E N C Y

Fig.V6 Scheirstic represer te t ion of the 
hyperfine structure.

i?(¥ =+1)tJ levels with
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SRI N= 11 NFL = 9 .68E +14 P0L=85-PC ASYf1 = 0.15 T = 700.C 0 = 42T 

HYPERFINE S-S
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X
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T l

LOR(-l-HPERF. LORI - l*HYPERF

S0L10 LINE=(LORI- l-HYP )♦(LORI - ) +HYP )
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F R E Q U E N C Y

SRI N=I 1 NFL = 9 .68£-14 P0Lr85.PC ASYM=0.15 Tr700 C 3 = 42T 

HYPERFINE S-S
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o
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LOR(-l-HYPERF LOR(-) *HYPERF .

SOLID LINErlLORI - l-HYP )♦(LOR(- ) *HYP . 1

■ 0 . 5  !■< I i I i I ■ 1 I i L, 1 , I ■ 1 . 1 . I . I . 1 , I , 1 . I . I , l . i , l , l , 1 . I , l . I . i . i ■ i

F R E Q U E N C Y

Fig-.V7 Computed refractive index and absorptior coellicient 
curves when hyperfine structure is included in the calculations.
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SRI N=11 NFL = 9.68E*M P0L=85.PC BSYH:0.15 T:7Q0.C B:42T

SINGLET-SINGLET FINE STRUCTURE

F R E Q U E N C Y
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F R E Q U E N C Y

Fig,V6 Computed 
curves when only

refractive index 
fine structure is and absorption coefficient 

ircluded in the calculations.
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Also the refractive indices and absorption coefficients were 

plotted verus frequency for the transitions 1 and 2 respectively 

in Fig.V7. Since, as stated above, the refractive index is the 

summation of all hyperfine components weighted appropriately, 

Fig.V7 which represents that summation is identical with Fig.V6 

which represents the refractive index for the fine case. The 

same results can be deduced from an expanded scale.

4.Investigation of Measuring Absolute f-values from the .K-0 

Spectra by Applying the Veingeroff Method

Weingeroff in 1931 [ l] devised a method of measuring 

atomic lifetimes of some atomic resonance states by a magnetic 

rotation measurement which does not require knowing the vapour 

pressure data.

In this paper [ l] <j> denoted the angle of rotation of the 

analyser from the crossed position ( <f> =C) and I was the 

intensity of light due to the magnetic rotation and the 

continuous background. Stephenson [ 3] showed that absolute f- 

values could be measured by using a null method on the intensity 
pattern, ie setting 1=0 and noting the position of the analyser, 

say (f, , at which the absorption line coincides with the 
continuous background. This would give another equation to the 

system and therefore the unknown product (Nz)f would reduce only 

to f.

For our case even if the photographic recording allowed 

transmitted and absorbed intensities to be "balanced" accurately 

and even if the integration over the profile to determine a 
ratio of transmitted to absorbed intensity was feasible, there 

is one basic difference with the Weingeroff method that would
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make the latter inapplicable to this case. Weingeroff assumes 

that the absorption coefficient given by Mitchell and Zemensky [ 

4 ] and Plaskett [ 5 ] is:

/tt" e2 Nf 
k = -----------
V me A\>g

( e
-(Av/AVq ) A Avr

p= 2 )4tt AVq »it Av

and then becomes:

/tt" e A AVq 
rnc 4ttAv^fir Av2

where Av ̂  is the Doppler width. That is, his theory is 

applicable only to the far-wings of the magneto-optical line and 

when the central region of the line is completely absorbed (this 

is so when the length of the absorbing column or the pressure of 

the absorbing vapour are very high).

So, it is evident that, since the present method (KCV)is 

based on the detection of features at the very centre of the 

line, that the Weingeroff method is not applicable to the data.
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Chapter VI

Results from the Magneto-Optical Method

In the previous chapters the magneto-optical method for

determining relative f-values was described, examined and

discussed. This chapter will present the results obtained.

Section 1 of the present chapter will deal with Sri for several

members of the Rydberg series (n=11,25)» The results will be

compared to those of Parkinson, Reeves and Tomkins [ ll. Section

2 will five the results for Fgl for members n=7,14 and for three
different field strengths. Section 3 will present the results

2 1 1for Eal for a single member 6s ( S^)— £6s15p( ) with a close
2 1 1lying Strontium 5s ( Ŝ ,)— ^4d5p( P̂  ) impurity line for a wide 

range of parameters and the validity of the overlapping lines' 

technique will be demonstrated. Finally, the results for 

Magnesium will indicate that there seems to be a dependence of 

the f-values on the applied magnetic field. This was the 

motivation to study more carefully the work of others on this 

aspect as well as to try and find an approximate theoretical 

method to see how f-values were affected by externally applied 

magnetic fields. These facts will be discussed in Chapter VII 

which follows.

1 '.Strontium Results

The physical background and the computer code described in 

Chapters I to III were used to measure the relative f-values of 

Sri. The experimental plates obtained in Bonn contained members 

of the pricipal series starting from n=1 1 and ending after n=30.
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But since after n=28 the pattern of each Rydberg member 

overlapped very much with the next member and the spectrum was a 

continuous succession of peaks, it was not possible to see any 

definite rotation or any specific Lorentz components. At that 

point 1-mixing had started showing up and would be followed by 

n-mixing. Therefore our analysis had to stop at n=28. Bor each n 

it was found that a slightly different value of the polarisation 

parameter had to be used since the polarising efficiency of the 

grating was wavelength dependent. The asymmetry parameter was 

also changed for each n and not in a systematic way but this was 

to be expected according to the grating manufacturers. The value 
of the apparatus FWHM for optimum results was found to be 8.50 

10^. Having the aim end criterion of the best reproduction of 

the experimental spectrum with our computational method, the 

values of the product Nfz that gave the best results are shown 

in column 2 of table VI1 . Column 3 of the same table shows the 

f-values obtained when our Nfz products are normalised to the f- 

values of 5s ( S^)— *»5s11p( P^) of Parkinson, Reeves and Tomkins

r i ] .

We adopt the standard approach of quantum defect theory [

2] to plot the differential oscillator strength versus quantum 

numbers. The general solution to Schrodinger's equation for r>rQ 

can be written as:

^(v,r) = (f(v,r)cos7Tu - g(v,r)sinmy)

where f( v,r) and g( v,r) sre the regular and irregular 

solutions to Schrodinger's equation, represents their

relative phase and N is a normalisation factor. Further Nv is 
proportional to (n- y) x for negative electron energies and
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n Nfl (c**) f Hei ̂ it_(on) W  idth_Xĉ ) n*

11 9.69C14) .00284 .582
ec%)

.0467
A
..S' 8.372

12 5.74(14) .00168 .417 *0 .0335 •\S 9(*346

13 3.97( 14) .00116 .309 .0248 .•o? 10.330

14 2.71(14) .00079 237 .0190 'OS~ 11.319

15 1.99(14) .000583 .1.32 $5 .0146 ■V 12.311

16 1.42(14) .000416 .144 26 .0116 *k?' 13.302

17 1.13( 14) .000312 .116 Pd .00932 14.30*

18 . 930( 14) .000272 .094 V6 .00761 ©I 15.301

19 .698( 14) .000204 .078 ?G> .00629 - o5~ 16.294

20 .567( 14) .000166 .066 ee .00527 '0 + 17.292

21 . 427( 14) .000125 .055 .00445 18.290

22 .361(14) .000106 .047 n .00379 ‘OS’ 19.293

23 .299(14) .000087 .041 .00326 '°2 20.288

24 .255(14) .000074 .035 *6 .00282 *0 c 21.286

25 .217(14) .000064 .031 °io .00246 -oD 22.288

26 .172(14) .000051 .026 .00216 *ot 23.273

27 .160914) .000047 .024 \o .00190 -OS' 24.281

28 .121(14) .000035 .021 HO .00169 25.273

$ r * 2
hte

vo u^  .O
? * A - kM. ulaC. Vvvl

Table VII Sr I f-value results normalised to n=7 of ( 1)
and data extracted for QDT plots.
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N v is independent of energy for positive electron energies. As 

r— the function y ( v ,r) must tend to zero, ie:

lim ¥ (v,r)
r

0

which implies that sin(v + y)=0 ie that n= v+ y where v is the 

effective quntum number, n is the principal quantum number and 

y is the quantum defect. The frequency of a transition for the 

alkaline earths is given by:

T
R

(n*)7

where T*, is a constant which has the frequency of the series 

limit and R is the Rydberg constant. Since two successive values 

of n* differ by approximately unity, n*2=n*-j+ 1 we can say that

Tn?+| ‘ Tn|-1+J
and also Tn*-J S Tn*+1

or, equivalently :
T
n?+i

= T n 2+i

Returning to Starace's paper f 2] it can be said that the
•zproduct f*(n- y ) will produce a spectrum of oscillator 

strengths that varies slowly from one discrete level to another 

and also joins smoothly in the continuous spectrum of oscillator 
strengths. It is therefore convenient to plot the results as

"Z.consecutive rectangles (whose height is v i/2R and width 

2R/ v y  whose total area equals the f-value. Columns 4 and 5 of 
table VI1 show these quantities for n=11,28 for Sri while column 
6 gives n*. Fig.VH shows such a plot of renormalised oscillator
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strengths as a function of energy. It also shows the smooth join 

which is obtained between the present data (rectengles) and the 

photoionisation cross-section of Sri measured by Hudson et al [ 

8]. Although the shape of the graph at high n is much more 

satisfactory than the one obtained from earlier measurements by 

the "Hook" technique [ l], there are still departures from the 

straight line in F i g . V H  which are not well understood, 

especially for n=18 and for n=25, 26,27 and 28. The jump between 

n=17 and n=18 is present in the "Hook" data of Parkinson Reeves 

and Tomkins [ l] and is even more prominent than in the present 

data. This departure form linearity falls well outside the 
errobars and therefore there must be another reason for this. On 

examining more carefully the spectrum between n = 17 and n = 18 we 

found an impurity line at 2201.42 A due to the 7p( ) in Cal. 

Since this absorption line shows a pair of intensity maxima 

(Fig.VIB) (magneto-optical rotation) it must mean that the 

impurity is mixed with the Strontium vapour inside the 

absorption cell. From the known f-value of the Calcium 

transition [ l], the Ca/Sr ratio in the vapour was calculated 

and found to be about 10 . It must be noted that the 

commercially available "pure" samples of Ca,Sr and Ba from eg 

Alpha or Koch might contain about \/2% metelic impurities which 

is a rather high level.

The values n=25,26,27 and 28 lie below the "best" straight 

line through this data points and this discrepancy increases 

systematically as the f-value increses. However there must be a 

reason for this trend occuring. It might be due to perturbations 

in the f-value produced by the externally applied magnetic 

field. Garton and Tomkins f ?] mention that 1-mixing satellites
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Fig. Vi i
Plot of renormalised oscillator strengths as a fuv~ction of 

energy for the principal series of Sr I showing the smooth 
join which is obtained between the oresent data rectangles) 
and the photoionisation cross section of Sr I as measured by 
Huason et al.(1969), scaled up by 1.5. This is compared with 
'hook aata' by Parkinson Peeves ana Tcmkins 11976-opeo
circles). who suggest a scaling factor of 1.9 for one aata c
Hudson et al.i 1969 1. A scaling factor of 1.7 i,as s’uggestsG by
Lut jens M 972 ; The 'hook*values for ^=11 t0 15 are very close
to the present values arc are oputtec for olanti At nigh
the oresent ^easureme^ts still show see I'scs.rt.urss f  rz t 3_

straignt line a1" a tms is discussed r  tre "sxt,.



The computed KOV Cal impurity pattern line of Sri. next to the n=17
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start appearing arround n=3r0 in fields of 4.0 Tesla and it seems 

that our spectra show that the data becomes difficult to 

interprete at about n=28 at 4.2 Tesla. Although this is still 

speculative it might provide a good explanation of the observed 

effects. A much more systematic investigation has to be carried 

out with spectra obtained at different magnetic fields in order 

to reach a definite conclusion concerning the variation of f- 

values with applied magnetic field at that n-regime.

Relative f-values for the principal series in Sri for 

members with n=11 to n = 28 were also given by Connerade [ 4 ], 

where the initial and not refined form of the KOV technique was 
applied. A simpie dispersion theory and a "top-hat" apparatus 

smoothing was employed [ 4 ]. Fig.VI2 shows the results from [

4 ], the experimental spectrum and the much improved present 

results (for all three cases Sri n=11 was considered a good 

example). Although the overall features of the two calculated 

spectra were the same, the present ones that were produced with 

more elaborate calculations and with a finer mesh, gave a much 

more detailed structure of the central part of the line which is 

in excellent agreement with the experimental pattern. The 

improvement is not surprising since: (a) we considered a Voigt 

line profile where Doppler broadening dominates instead of 

approximating the line profile by standard dispersion theory and

(b) we used a Gaussian or a Lorentzian smoothing profile to 

represent overall apparatus function, which is physically more 

reasonable than the "top-hat" function.

2.Magnesium Results

Following an identical procedure to the one described in
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T

Fig.VI2 Comparison between (a) 
experimental magneto-optical 
(reference (" 4 ] of Chapter Vi) 
Sri).

present calculations, (t) 
spectrum and (c) Connerad 
(all patterns were for n=11

the 
e ' s 
cf
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the previous section, relative f-values for the principal series 

of Mgl for n=7,14 for three different field strengths (B=2.4,

3.7 and 4,5 Tesla) were obtained. The apparatus FWHM was 11.8

u>10.

The results are presented in tables VI2,3 and 4 for the 

three fields in increasing order. Fig.VI3 shows the QBT method 

plot for the three field strengths with all the f-values 

normalised to the n = 7 f-value of Mitchell [ 5]» The three 

different lines definitely signify that there is a E-field 

dependence of the f-values since each one of them falls well 

outside the error-bar region of the other two lines. Fig.VI4 
shows again a QBT method diagram but this time all the f-values 

were normalised to the n=8 f-value of Mitchell [ 5]»This was 

done in case Mitchell's n=7 f-value was incorrect. However, the 

same behaviour was obtained.

In the next chapter there will be an extended discussion 

on the dependence of atomic transition probabilities with 

externally applied magnetic fields. However, form our results it 

is only possible to deduce that the two quantities (f-values and 

E-fields) are experimentally related.

In order to be able to produce more informative 

computational results, two things must be done on the 

experimental side: firstly, in order to repeat our analysis to 

even higher fields in search for a trend, an upgrading of the 
superconducting magnet will be required and secondly, it would 

be desirable to have series of spectra which were taken when the 
field is (i) increasing and (ii) when it is decreasing. This 
latter requirement would rule out any random evaporation 

processes which might substantially alter the column densities
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Fjp.VH Oustturn defect theory f-value plot for Mfl for B=2.5,3.7 
and 4 . 5 T calculated with the MOV method. All results were 
rormalised to the r=7 value of Mitchell (reference f 5 ] of 
Chapter VI) .



Fig.VI4 Quantum defect theory f-velue plot for VgJ for E=2 5 * 7  

and 4.5T calculated with the MOV method. All results’vVre 
normalised to the n=8 value of Kithcell (reference f C 1 of Chapter VI). 1 ' -
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n Nfi(c«;01 f Hei ̂ it (2*7) W idth n*

pr%) A
7 8,50(14) 4.11(-3) :0316 ST .130 - 5.9584

8 4.97(14) 2.409-3) .0294 J O .0816 6.9561

9 3.07(14) 1.48(-3) .0272 .0544 ■ 'Xo 7.9546

10 1.97(14) 9.52(-4) .0250 U .0381 * ic 8.9533

11 1.41(14) 6.82( -4) .0246 J Z .0277 •20 9.9527

12 1.04(14) 5.0*( -4) .0241 H .0208 •2* 10.9516

13 .775( 14) 3.74(-4) .0234 .0160 11.9513

14 .605(14) 2.92( -4) .0233 H .0125 12.9507

15 .470(14) 2.27(-4) .0227 > 0 .0100 13.9504

r ,*ff
ic .

\\-$ \o ^ 8lO iL

Table VI2 Mg I f-value results normalised to n-7 of ( 5) 
and data extracted for QDT plots (B=4.7T).

167



n Nf 1 (c^) f Hei w idth/cu4^ n*

eft) A
7 1.12(15) 4.11(-3) .0316 6 !T .130 * do 5.9584

8 5.50(14) 2.018(-3) .0247 T* .0816 ‘40 6.9561

9 3.30(14) 1.211(-3) .0223 '7c .0544 . 4 0 7.9546

1 0 2.05(14) 7.52( -4) .0197 f'C> .0381 - 4c 8.9533

1 1 1.33(14) 4.88(-4) .0176 ?o .0277 •4:0 9.9527

1 2 .929( 14) 3.41(-4) .0164 .0208 10.9516

13 .598(14) 2.19( -4) .0137 .0160 -4 0 11.9513

14 .465( 14) 1.76(-4) .0136 To .0125 -40 12.9507

,11
Sr ssm-'S- 10

u

Table VI3 As for Table VI2 but for B=3.7T.
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n Nfl f Hei iitfcû W idth (-) n*. - ■ W, J

& % )
A

7 1.10(14) 4.110(-3) .0316 .130 5.9584

8 .535(14) 1.998(-3) .0245 To .0816 . qO 6.9561

9 .292(14) 1.091(-3) .0200 So .0544 >Ho 7.9546

10 .185( 14) 6.912(-4) .0181 s o .0381 -q-o 8.9533

11 .116(14) 4.33(-4) .0156 $>c .0277 «i+O 9.9527

V  r̂ v r  ^

Table VI4 As for Table VI2 but for B=2.5T.

kPS * kMW k k kPRT Present
f 1 (SdSp^P-) . 0022 . 00251 .00191
f 2 (ISp P.) .0018 .00209 .00148
R = f1/f 2 1 . 22 1.201 1.291 1.366+ 0.01

f 2 (corr) . 0016 .00184 .00139

^stands for Penkin and Shabanova (1962)
** stands for Miles and Wiese (1969)
*** stands for Parkinson Reeves and Tomkins (1976)

Table VI 5
f-values of the^Ba lines at 2432.52 X (5d8p P^) and at 
2428.15 X (15p P ^) and their ratio R as obtained by 
various authors.



of the furnace.

7.Barium Results

In this section the computational results obtained for Ea

will be presented. The procedure of the calculations was

identical to the one followed in the cases of Sri and Mgl. This

time the FWKK of the apparatus function was found to be 7«60 
1010 for best results.

Unfortunatelly, a] though we had at our disposal a number 

of magneto- optical spectra obtained at various furnace 

temperatures and at various field strengths, the particle 
density of the furnace happened to be quite low so that the 

rotation was rather small for the majority of the series 

members. Therefore, the spectra were rather insensitive to 

changes in Kfz over the range n=7,to n=10 and as a consequence 

much of the experimental data was left unused.

From the field-free absorption spectrum it can be seen 

that there was a Strontium impurity line at 2428.09 A (4d5p("*P^) 

in Sri) which was only 0.68 A away from the 2427*41 A (l8p(^P^) 

in Eal) transition . Since Eal and Sri have different vapour 

pressures, very small variations in temperature allow large 

variations in relative concentration of the two elements. The 

experimental results indicated that patterns of comparable scale 

could be obtained from both lines over a range of furnace 

temperatues 700 °C to 1000 °C. In section 1 of Chapter V the 

problem of overlapping lines was tackled and discussed and in 

this section it is actually applied. The results obtained were 

in excellent agreement with the experimental patterns, for a 
wide range of magnetic fields end temperatures. This altered the
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degree of overlap of the patterns over a wide range. All these 

facts are shown in Figs. VI5 and 6. Thus, the computed spectra 

that the overlapping lines' technique and applicability 

criterion discussed in Chapter V were verified and we conclude 

that this theory can account for the structure of the observed 

patterns over the full range, from treating the two lines 

completely separately where they keep their individual 

identities to the case where the patterns penetrate each other 

sufficiently to coalesce with cancellation of the positive 

rotation due to one lire by the rotation due to the other.

Fig.VI6 was recorded during a run at high temperature, 

when some of the sample had evaporated and the Nfz product (on 

which the accuracy of the MOV depends) was <1/20th of the value 

of Fig.VI5 at the same field strength. The large rotation angles 

on the data of Fig.VI5 shows that this time less sample had 

evaporated and so accurate values for the ratio R of the intense 

5d8p(^P^) line to the 15p(**P^) line were obtained. The ratio R 
is plotted against <5A (the spread in wavelength of the impurity 

pattern) and shown in Fig.VI7 from which we see that the 

accurate f-values of overlapping lines can be extracted from the 

data even in presence of overlap, provided that a detailed 

analysis of the structures is performed. Earlier authors using 

other techniques did not take into account for the effect of the 

Sri impurity in the spectrum. In the previous work done, the 

uncertainties in determining the correct value of the vapour 

pressure, made it difficult to examine correctly the errors in 

R. Therefore, Penkin and Shabancva [ 6] quote an absolute 8-1 

error and state that the relative f-values were measured with 

"great accuracy" without giving it in numbers. Table VI5 gives
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Fig.VI6 Overlapping patterns for Fal and Sri at T=9CC°C and (a) 
E=3.CT, fb) E=’*5T and (c) F=4.?T.
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R

1 .AO

5b(2.5 Tesla)

_____ I _______

5a(2.0 Tesla)
1 " “ 

5c (3.0 Teala)

1.30

The ratio R of the f-values (defined in the text of 
Chapter VI) plotted a? a function of the wavelength interval 
spanned by the iirpurity line, showing that F is very nearly 
independent of the overlap.
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the relevant data. If we assume that earlier authors were not
aware of the existence in their spectra of this Sri impurity- 

line and that this fact caused systematic errors in their work 

and if we also take our value for B, we obtain corrected values 

for f^ which for each set of data, are smaller than the 

published ones. Thus we believe that the overlap with the Sri 

impurity line caused these systematic errors from 11% (Penkin 

and Shabanova [ 6], Miles and Wiese [ 7]) to 6% (Parkinson 

Reeves end Tomkins [ l]). These errors are within the errorbars 

these authors give but ere still large for relative f-value 

measurements. Again it is worth noting (see comment above) that 
the commercially available samples of "pure" Ea contain about 

1/2% of metallic impurity.
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Chapter VII

Calculation of f-Values and Their B-Field Dependence

This chapter presents calculations of the f-values of high 

Rydberg states (7<n<27) for the principal series of the alkaline 
earths. We also calculate the dependence of the f-values on the 

externally applied magnetic field. There are two elements to 

these calculations:
firstly the calculation of the f-values using a Hartree-Fock 

code in L-S coupling and
secondly by expanding the relevant eigenfunctions in terms of L- 
S eigenfunctions.

Section 1 uses the method described by King [ l] to

investigate the potential problem of having a ^P^ level rather 
•2;close to a . We find that for cases of interest they are not 

sufficiently close to cause problems with the FCV method, but 
should they do the overlapping lines technique described in 
Chapter V could be applied. Section 2 presents some results fron 
a code written by Clark and Taylor [6-, 7] on high-n hydrogenic 

f-values in medium magnetic fields. In section 3 we outline a 

method by which we can approximately account for the P-field 
dependence of the f-values of high n states. Following a brief 
introduction to Hartree-Fock calculations (section 4), in 

section 5 we discuss the necessary modifications which are 
needed to model higb-n states. The details of these calculations 
are presented in section 6. Finally, results from the method are 

presented and discussed in section 1.
An important element to the work discussed in this chapter
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is the calculation of the total interaction Hamiltonian 

(including E-field effects) end its solution for the 

coefficients of the corresponding eigenvectors. Although this 

work is described excellently in [ l], we have included a 

description of it as appendix (Appendix AVIl). Finally, Appendix 

EVII contains a qualitative review of the research by other
•zworkers on the f-value dependence on very high (>10^T) magnetic 

fields.

1 . Pi scu s s i o n on the P. e s u 1 1 s _o_f Appendix A V11 and their 

Application to the KCV Kethod

Using the total Hamiltonian matrix described in Appendix 

AVII and the appropriate input data for the energy and the 

electrostatic and spin-orbit parameters for Sri King [ l] 

obtained that the two a -components (Mj= + -1 ) of the singlets 

were quite dissimilar after a certain n-value for a particular 

field with the +0 being more broadened as the field and 

principal quantum number increased. This was obviously due to 

the fact that the vector coupling at that point had changed (the 

E-field contribution to the coupling had started to dominate the 

spin-orbit and the electrostatic) and as a result the line

approached the P̂̂  one and hence the apparent broadening. In 

particular King [ l] stated that for high laboratory field 

strengths ( 10T) spin decoupling (disappearance of the  ̂+ a ^

state and merging with the "*P̂ (+o ) one) occured at d =2’3.

From the above discussion (and from Appendix AVII) it can
be concluded that for intermediate field strengths there will be 

1 ■*a P̂  and a "P^ state very close together. In Chapter V the KCV 
method was successfully applied to the singlet- triplet
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transitions (section 2 of Chapter V). In the same chapter the 

overlapping lines' problem was also tackled (section 1). 

Therefore it is possible to apply the MOV method to the PaSchen- 

Eack effect as will now be shewn qualitatively:

(a) Use King's total Hamiltonian matrix to evaluate the 

eigenvalues (energy levels) and the coefficients of the 

eigenvectors of an (s-p) configuration of the element in 

question for any field strength.

(b) Having obtained the correct energies of the levels for the

applied magnetic field E it will be probably found that the
3and P̂  levels are very close together. Then, the overlapping

, 1 1 1  ̂lines criterion will be applied to the S^- P̂  and S^-''P^

lines. If the lines are found to be sufficiently far apart they

will be calculated as two separate cases, otherwise the

overlapping lines method will have to be applied. Finally,

(c) Since we know that singlet-triplet transitions exhibit KOV
1 ■*behaviour in their centre part, then the S^-^P^ line will be

no-problem in the Pa^chen-Eack calculations whether treated
1 1separately from the Ŝ ,- P̂  line or as a pert of a complex 

spectrum.

However, as stated above, the Paechen-Eack point seemed to 

be arround n = 23 f l] for F-fields under 1CT (for Sri) and 

therefore for our particular strontium spectra we could say that 

for n< 23 the present calculations are completely reliable as 

far as the neglect of neighbouring triplet states is conserned. 

Using the singlet-triplet (M^ =1) computed energy separation [ 

l] for Sri n=21 at E-6.0T we can see that it is equivalent to
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about 5 Zeeman splittings and also that the triplet has only 4a

intensity. Therefore the neglect in our KCV calculations is
also justified by the fact that it is sufficiently far away from

the ^P. line and also that it is so weak that would not be 1

observed.

2 . A Brief Cu tline of the V/ork of C . W . Cl a rk and K .T.Taylor 
Relevant to the Quadratic Effect in Hydrogen Rydberg Series

Following the experimental results of Garton and Tomkins [ 

of the quadratic Zeeman effect in high Rydberg series much 
theoretical work on this topic had to be done. Although the 

basic quantum-mechanical physics of an atom in a magnetic field 

have been understood since tV\e l*330's > many
more phenomena exhibited have not yet been explained in a 
satisfactory manner. The motion of the electron at large 
distances r from the ionic core inside magnetic fields of the 
order of 10 T have been treated classically by Edmonds and 

Pullen [ 4] and semi-classsically by Edmonds [ 5 ] whereas its 
behaviour near the core has been treated quantum- mechanically 
by Fano ([ 6] and references therein). This section of the 

present chapter will be devoted to describing how Clark and 
Taylor [ 6> 7 ] have calculated hydrogenic wavefunctions and 
energy levels for high Rydberg states in magnetic fields. The 
Rydberg states have to be high ones since only for those the 
force excerted by the laboratory magnetic field on the (outer) 
electron is comparable or greater than the forces due to the 
remainder of the atom. They have not extended their work to 
other elements and unfortunately there curz.no experimental data 
available on hydrogen for comparison whereas there exist* for
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other elements. This work of Clark and Taylor provides the only 

source of study of the behaviour of high Rydberg hydrogen states 

in laboratory attainable magnetic fields. 

In their work they have made some assumptions which will 

now be stated. They have neglected all the relativistic terms in 

the interaction of the nucleus with the electron and there is no 

.spin orbit interaction in their calculations. Consequently they 

are in the Paschen- Back regime. This assumption can be 

justified as follows: the energy difference between two states 

with j=1t,1/2 is given by: 

(a.u) 

where a is the fine structure constant. The diamagnetic shift 

is given by: 

The above two effects become comparable when 6 E=HD' ie when: 

For E=4.7T the two shifts are comparable at arround n=6. Further 

the linear Zeeman effect is HL= S(l +28 ) 
z . z which they assume 

to be approximately equal to a lz and the ratio: 
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HL/ lIE = -,--~--­
Z4 0.2 

is usually much greater than unity indicating that it is 

justifiable to neglect the spin-orbit interaction in the present 

circumstances. 

ThE second assumption made was that they set [ 7J as zero 

the centre of mass momentum of ·the atom although in a real 

experiment there would be a random thermal motion. The effect of 

a centre of mass motion is the same as if there was an electric 

field perpendicular to B and this Stark effect could be treated 

by perturbation theory. 

The magnetic field E=Bz is considered to be in the z-

direction and the vector potential is ~=-1/2 !A~. The 

Schrodinger equation is also: 

where s= eB/2mc, 

E 'l' 

61 is the linear Zeeman energy and z 

1/2 
2 2 . 2 6 r s~n e is the quadratic diamagnetic energy. If the 

linear Zeeman energy is subtracted from both terms of the above 

equation we have: 
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The Coulomb potential ,/r becomes equal to the quadratic 

potential 1/2 82r2sin2e for r= a few thousand Eohr radii and 

Q -~ for ~=10~. Therefore for smaller redii near the core, where we 

have low n eigenstates, the diamagnetic effect can be treated as 

a perturbation or even neglected. Near the ionisation point the 

density of states and the coupling increases very much and this 

perturbative approach stops being valid. 

Continuing with the description of the ~ork of Clark and 

Taylor [6, .7J the reasons for choosing the Sturmian functions 

to diagonalise the Hamiltonian as well as a few words about 

these functions will now follow. The type of wavefunction that 

would be used had to take account of the large influence of the 

magnetic field (through the quadratic potentia I 1/2 {r2s in2e 

at larg~ values of r and of the Coulomb potential (1/r) at 

smaller values of r (where the magnetic effects are negligible). 

Such a function would be of the "form: 

where f,( E,r) are the Coulomb functions of energy E and A1 are 

coefficients. The hydrogenic wavefunctions could be suitable 

functions with reasonable accuracy at small r's and using a 

small nureber of terms. However, for two basic reasons [ 7J, the 

discrete hydrogenic wavefunctions are· thought to be unsui table 

and instead the Sturmian wavefunctions are usee: the first is 
. 2 . 

that the computer needs c long time to compute the r matrix 

elements and if a more efficient (Gauss-Laguerre) scteme is used 
~ 
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a very large number of matrix elements will need to be 

calculated and secondly and mainly that the discrete hydrogenic 

basis is not complete. If part of the hydrogenic continuum is 

included, the calculations converge to the wrong result. These 

two basic disadvantages can be overcome by using the Sturmian 

functions as first pointed out by Edmonds [ 8J. The wavefunction 

.$ is expanded as: 

, (Z). (Z) 
'i' = L.- 'i'n1 .Snl (r) Y1m(r) 

n,l 

where the Sturmian functions Snl(z) are given by: 

(z) I-§n-1-1)~ 
S (t-)= 

n1 2 (n+ 1 )! 
L(21+1)(zr) 
n-1-1 

where L(21+1) (zr) is the associated Laguerre function Bnd 
n-1-1 

is defined as: 

The matrix elements of the magnetic .interaction are given by: 

= f 2 (~) 
r Snl (r) 

o 
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with /l-l'/4 C,2 and vanishes unless /r-n'/4 J • Expressions of

0 , i -i and 0 for /n-n '/ = 0 , + 1 , +2 , + 3 are given innl,n J ni,n 1+2
appendix 1 of [ 7].

A very important property of the Sturm\Oin basis set is the 

fact that any positive value can be given to the variable z. 

When z=2/n then hydrogenic values are been produced (for zero 

field). For n>10 the above comment stops being true (as noted by 

Edmonds) even if 60 Sturmian functions per partial wave were 

included. Clark and Taylor f  7] have found that higher values of 

z than 2/n must be used for such cases. A disadvantage of the 

Sturmian basis is that S^Z^^(r) is orthogonal for 1/r and 
therefore the ovelap matrix is not diagonal in n but instead 

tridiagonal. However, this scheme is convenient since the vector 

components are ordered by increasing quantum numbers 1 and n 

respectively. The number of components that is required obeys a 

certain criterion end can therefore be determined [ 7]. For the 

results of f 7] and for satisfactory convergence of oscillator 

strengths and energy levels thirty lower partial waves 

consistent with m and parity were used.

Using all the above, the equation for tJj becomes an 

eigenvalue problem of the form:

H Mf = £ B !

where H is a banded matrix because of the selection rules 

( AP=0 ,+1,+2,±3 and Al=0,+2). Clark and Taylor used Crawford's 

algorithm ([ 7] and references therein) to solve the above 

equation, by finding the eigenvalues when H end E are both 

banded matrices and then by inverse iteration determining the 

eigenvectors. For these long calculations they used 200C
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Sturmian functions to obtain the eigenvectors and the computer 

was the SERC CRAY-1. Such an inormously large computer was 

necessary for its speed of calculations and its large storage 

capacity. Cnee the eigenvectors had been calculated the dipole 

matrix elements and hence the oscillator strengths were easily 

obtained by inverse iteration [* 7].

Next in this description of Clark's and Taylor's work on 

the oscillator strength determination for high Rydberg series in 

the presence of moderate magnetic fields come a fewr words on the 

convergence of the calculations through the stability of the f- 

values writh respect to the variable z. As the energy and the 

principal quantum number increase, the corresponding 

eigenfunctions move further away from the nucleus. This can be 

compensated up to a cerain degree by decreasing z but at some 

point this stops being useful. There an "unstable" energy region 

has been reached. The convergence of Clark's and Taylor's 

calculations is established as follows [l2 , 13]: There is a 

certain range of values for z for a particular section of the 

spectrum over which the f-values and the energies are very 

stable.Then once this is established, n and 1 can be varied to 

obtain the required accuracy of convergence.

Finally the results of Clark's and Taylor's work for high 

Rydberg members (n=6,28) for hydrogen and for several magnetic 

field strengths will now be presented. Drs Clark and Taylor 

kindly provided us with their code and we ran it for E-fields 

and n values that we were interested in, ie E=2.5,7.5 and 20.C 

Tesla and 2<n<28. From Figs.VII1,2 and 3 where the resulting f- 
values are plotted against energy we can see that for the low 
n's the usual discrete Rydberg pattern is obeyed very well while
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TRYlORtS RESULTS FOR BETfi:0-5E-05

TfiYLORtS RESULTS FOR BETR=0.SE-05

^ig.vin

Results using Clark s and Taylor's code for hydrogenic f— 
values against energy for B=2.5 Tesla.
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TBTLORfS RESULTS FOR BETfi=t.5E-05

TflYLORtS RESULTS FOR BETfl:l.SE-OS

Fig.VII2

As Fig.VII1 but for B=7-5 Tesla.
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TRYLORtS RESULTS FOR BETR=4.E-05

TRYLORtS RESULTS FOR BETfl:4.E-0S

Fig.VII5

'As Fig.VI11 but for E=19*5 Tesla.
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as n increases we begin to see the configuration mixing effects. 

It can also be seen that for this case (M=+1) the 1-mixing is 

weak and the weight of the oscillator strength is or the 

principal line (as opposed to the F=C case [i2> lJ) where the f- 

values are more equally distributed amongst all levels with the 

same n-value). As the field increases, basically the same 

features are exhibited only 1-and n-mixing becoming more obvious 

and more dominant at much lower n's. For high fields (E>50T) the 

program failed to converge.

3.An Approximate_ Theoretical Method to Calculate f-Values in the 

Presence of External Magnetic Fields

As seen in the previous sections of this chapter several 

authors have attempted to study more carefully the dependence of 

f-values with an externally applied magnetic field. However most 

of them but two (Clark and Taylor) have dealt with very high 

magnetic fields OlC^T) which are found in stellar plasmas. 

Clark end Taylor have studied the quadratic E-field f-value 

dependence at lower fields (<TOT) for high Rydberg hydrogenic 

members but in their work they assumed that they were in the 

complete Pechen-Eack regime with 1 and s being decoupled. 

Therefore, there was a need to study this effect for a higher 

element and when the linear Zeeman effect is valid and also for 

any value for the magnetic field. In particular we tried to find 
how the f-values of the principal series of the alkaline earths 

(our test element was Mgl since we already had some experimental 

plates on magnesium taken at several field strenghs) varied with 

the magnetic field.

Ve needed to investigate how the following expression:
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/ ^ground state) /D/ <i(ls^2s^2p^3snp)^>/^

(Viii)

depended on E and n.
From the previous sections of this chapter, using- King's 

work [ 1 ] we can obtain a matrix of the coefficients of the 

eigenvectors as a function of the magnetic field, is:

1 *   ̂
/  P-, > a l 6i Y 1
3

/ 3p2 > a 2 62 y 2
,3
r V a 3 ®3 y 3

Table VII1 Matrix of coefficients of eigenvectors obtained from
T T T  —  .

Therefore, each of the new eigenvectors ^  ^  and can be

expressed as a linear combination of the old LS allowed 
1  ̂ 3eigenfunctions / P^>,/ ^ P a n d  / > as follows:

V  “i /lpi> + /3p2> + Yl
V  “2 /lpi> + b2 /3p2> + Y2 /3p]7

*3 = “ 3 / l p i >  + b3 / 3p2> + y 3 / 3pl >

(V112)
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Arbitrarily we chose to call / P^*>, and the

resulting eigenvectors ^  ^  ai*d ^  ̂ in order of decreasing 

energy (the reason f-or this is that the program used, opperates 

in such a way that ouputs the eigenvectors in order of 

decreasing corresponding eigenvalues). For low E- fields, this 

nomenclature is consistent with the conventional naming of

/ P^*> as the function that contains the highest contribution of
1 3 3the / P^> (ans similarly for / P^*> and / P^*> that contain most

7 3./^P^> and / P,j> respectively) but for highest fields the 

situation changes as will be seen in the text that follows.

Coming back to the f-value problem we see that we have to 

evaluate the following:

/ <3sVD/T1>/^ = / /2 +'/ Yl<3s2/D/3Pl> /2

/ <-3s /D/¥27 / 2 = / a2(3s2/D/1P1> /2+ /B2 <$s 2/D/3P ^  /2 + / y 2 4 s 2/D/3P1>  /2

/ <3s 2/D/T3>/2 = / a3<3s2/p/1P1V 2+ /S3^ s 2/p/3P2> / 2 + / y 3<3s 2/D/3P >  / 2

(VII3)

Using the fact that in IS coupling:

T ^ ) /  D /3P2) and ( \ / D  /3P]>

are zero, then we have to find the following:

2,1f(^)= /ai <3s7'sJ/p/SsnpfV,))/2 , 2
f(?3)- /a3 <3sZ (1S0)/D/3snp( P ^ /

f ( V  = / “ 2 < 3 s 2 ( l s 0 ) / D / 3 s n p ( 1 P 1 ) 7 / 2
(VII4)
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The coefficients
program if we input the wavelength and the electrosta tic and

spin-ordit parameters of the transitions in question (in units

of cm~^). The wavelengths for n=7 to 27 can be used [1 4 ] and

the other two parameters can be calculated by a Hartree-Fock

program that calculates radial functions which will be discussed

later. Therefore at this point we could do two things: 1)either

assume that <3s ( S^)/D/7snp( P̂  ) > = 1 and knowing the a's see

how f( y .), f( f 0) and f( vary relatively to each other with
2 2 2the E-field and the n-value and also a. (or a 0 or a, )I <L t

versus P-field (or n-value) would show how f- values depend on E 

(or n) or 2) try and calculate <^s2( ̂ S^)/E/3sr.p( ̂ )> and using

the above equations and the a's from King's program [ 1 1 we 

would see how f-values depended on E and n in an absolute way. 

In the present work we prefered to do the latter which seemed 

more interesting. To calculate these electric dipole transitions 

we h8ve used a program that was initially developed by Fischer 

and Eaxena [ 9 ] which uses the radial functions obtained from 

Multi-Configurational Hartree-Fock calculations [101. The next 

sections will be devoted to a brief and general discussion on 

the Hartree-Fock problem, to the description of the oscillator 

strength program used and the results obtained.

4»Erief Discussion on Hartree-Fock Calculations

In the work described in this thesis use has been made of 

the Multi-ccrfiguration hartree-Fock program of Froese Fischer 

[10]. A non- standard aspect of this work is its application to 

high n states. In this and the next section we will discuss 

briefly what Hartree-Fock codes do and describe the adaptations

a., cl0 and a* can be obtained from Kind's
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reeded to Fischer's code to model high n states.
The Hartree-Fock method has been used over the last 50 or 

so years to obtain approximate solutions to Schrodinger's 

equation in many electron atoms and ions. A vast literature 

exists and two books [*11, 1 are devoted to the numerical 

aspects of these problems. Here we will brielfy outline what 

Hartree-Fock calculations involve (apart from reference f 1 1 1 

another excellent but shorter review on K-F calculations used 

was [13])•

Cur aim was to solve the non-relativistic Schrcdinger 

equation for an E electron system in .the field of a massive 

point charge (+eZ):

H ¥ -  E ¥

( 7 . 2 + 2 Z / r . )
v t 1 i>J

(VII5)

Instead of solving equation VII5 the Hartree-Fock method seeks 

solutions to:

H $ = E  <$

- i l
i = l

AH = II (*i7i2 + Zy/r +V r̂^
= H

Now if $ is expressed as the product:
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which satisfy:

( 4 vi + Z//ri + v (ri)) $0*) = ^  <|>(i) (VII6)

additionally ("because of spherical symmetry) we can express

<J> (r,9,<f>,a) = —  P(r) (0,(J>) xm^

P(r) satisfies:

( d2/dr2 + 2Z/r - 2V(r) -1 (1+7 )/r2 - £) P(r) = 0

e
(VII7)

subject to the boundary condition P(0)-P( oo ) =0. Thus the one

electron wavefunction may be described in the Hartree-Fock

method by (nlmnm ).I s
There are symmetry requirements which must be imposed on 

$ so that it behaves in the same manner, with the interchange 

of two electrons, as the proper eigenfunction ¥ . This can be 

achieved by expressing $ as a Slater determinant:

(N ft
♦ ](!)

♦n (N) <yn8)
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In the Hartree-Fcck method the radial equation VII7 for <(>' s 
with the same 1 need not he the same. The orthogonality of 

radial wavefunctions with the same 1 is thus not assured hut 
conventionally is imposed.

nlm^ms V l ' m - dr 5 i <5n i 5 ,5 .nn I T  um1m1 1 m$ms

(7119)

This is an additional constraint and not a property of the 
equations.

Further properties which should he possed hy $ can he
2seen hy noting that H is independent of S and (so must

2commute with it) and also commutes with L and I . Therefore wez
expect:

L2$ = L(L+1H , S Z $ 3 S(S+1)cj>

Lz4> = Mjjfr and S * Ms<f>

to hold. This means that it may not he appropriate to express $ 
as a single Slater determinant. Fischer uses:

^(yLS) = \  c • $ • (n-j 11 ̂ 2*12»• • • )
(v m o )

where KCFG is the number of configurations and imposes that
< $ / $ > =  6 

i j i j
The method used to solve for the wave function relies on a 

variational principle. This can be introduced hy considering the 
exact solution of equation VII2C, /y >. Obviously, we have that:

</</>/h-e/ ipy = 0
(VII11)
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If we define 6 < ̂  /A/F > by:

1 im
6.-^0 = /$y+ s/<ŝ j>

where / ^  > is an arbitrary perturbation, ther

5 <>/ H’E/ ^  ^  H-E/ +<ty/ H-E/5î> = 2 < ^ / H - E / ^ =  0

(V1112)

Hartree-Fock calculations aim to find approximate numerical 
solutions to the equations. They use the analogs of equations

VII11 and VII12:

{ * /  H-E/*> = 0 (Villi')

< > /  H-E/ *> =? 0
(VII12f)

and are considered to define the "best" solution for a given 

numerical approximation. The description of / $> and / 6$ > is
restricted by the finite numerical model. So equations V111 1 

and VII12' only imply:

(H-E)/ <f>= R

where E is a residual error which is orthogonal to /$ > end any 
/ 5$>* The solution to equations VII11 and VII12' leave

E(t) =
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stationary with respect to first order pertubations in / $>. 

This is the basis of the method of solution of the Hartree-Fock 

equations. The energy is given by f11]:

NCFG 9

E t o t a ^ L S ) =  £  CJ ( a v e r a g e ) +
0 — ■

NCFG

NCFG
+ amcj mcj ' m  ^ ^ m ^ n T ^ n r V

_  km=l

NCFG

nr nr m^m ‘ 

k
+ ^  dmcj mc j ' mR (V  ̂ mJ m ; V  ̂ mJm ̂m= 1

where and bm ,kffl3im ,Jm .i ^ a r e  inpnted in

k kthe pro gran as data for the F- and G terns respectively,

(VII13)

Fk(nl,n'T) = Rk(nl ,n'l' ;nl ,n'l') and Gk(n1,n'T) = Rk(nl , n T  ; n ' V  ,n1) 

where Rk(o .6‘.“'iB1) = J j P ( < * i r )  P(a' ,r)Uk(r,s)P(S;s) P(3 1 >s) drds

where l r ( r , s )  = s / r  f o r  r ^ s

and = r k / s k+1 f o r  r <  s

The energy must be stationary with respect to changes both in 

the c coefficients end all the P(n,l)'s. This is achieved 
iteratively by alternatively finding the c's which give a 

stationary state for final products and then finding the
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P(n,l)’s which give a stationary state for fixed c's. There are, 

of course, many other levels of iteration since the equations 

are highly non-linear. The conditions that E(total) ve 

stationary lead to an equation for the P(n,l)'s of the form:

( d 2 / d r 2 + —p—( Z - Y ( n l > r ) ) - e n l j n i -  l ( l + l ) / r 2 ) P ( n l . r )  

2 X ( n l , r ) / r  + 2 e n l , n ' l  P ( n ' 1 , r ^vV

where Y (n1,r)
Y ,  Anl ,n'1',k (n ' 11 ,n'1 ;r)

n'T,k n'l'/n'l

X(nl,r) =
n'1'=nl,k n'T/n'T

and Anl ,n'l ’ ,k = (1+snl,n'r Kl.n'l'.k 1 qnl 

Bnl ,n'l1 ,k = bn1,n'V ,k 1 qnl

(V1114)

<5l(nl) = - Q(n 1 ,r)LP(nl ,r) dr

5Fk(nl,n'l') = 2(1+ nl>n,v ) Q(nl,r)P(nl ,r)(l/r)Yk(n ' V  ,n'T ,r) dr 

SGk(nl,nT) = 2 Q(nl ,r )P(n1T  ,r) (l/r)Yk(nl ,n11 1 ,r) dr

The coefficients in equation VII14 depend on the other P(n,l)’s 
and hence iteration is required . Constraints which have "been 

introduced, orthogonality and normalisation, must be accounted
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for in the numerical solution. The Lagrange multipliers 

(described in any mathematics standard textbook as [22]) can be 

used to do this.

^•Solution of the Radial Equation for Large n States

The grid used in the program of Froese-Fischer [ i c ]  and in 

associated programs is given by:

Pi = 1b9e Z r i

with P = -A +B(j-1) (ti = 1 ,2,. ..M) .

the radius at mesh points as:

(VII15)

This gives the values of

ro 1J1 e (V1116)

Values of A = -4 end E =1/16 are recommended f10] for most 

applications. This mesh has two advantages over a mesh uniformly 

spaced in .r. Firstly high resolution is provided near the origin 

where P(nl,r) is expected to change rapidly (it is a singular 
point). Secondly by transforming to p as the independent 

variable, and also tranforming the dependent variable in 

equation VII14, it is possible to perform the calculations more 

economically.

A problem occurs if we wish to have states with n^?10. For 

these cases the increments between successive mesh points, ^r, 
becomes too large at large values of r for the value of B =1/1 6 . 

Using this value of F we found that the results became very 

unphysical at large r. P(nl,r) was no longer smooth as can be 
seen in Figs.VII4 and 8 where the outer region contained 

straight lines rather than curves. Ey solving for P(nl,r) on a
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NG3S30P CONFIG. 30P ELEC • 320PS. LINS

MG3S30P COONFIG.. 30P ELEC- 320PS LOG

Figs.VJI^ grid ^ Computed redial wevefunctior for the 
corfiguratior for F gl or the logarithmic mesh fiver by f 1 6 ] ard 
or the "lirear 5" iresh (see text), both for J 2C poirts.
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HG3S30P CONFIG. 30P ELEC. 62CPS 11N10

MG3S30P CONFIG. jOP ELECT. 620PS. UN20

1  F igs .VI Id. end 5 tut for "linear 10" end 
linear 20" redial g r i d s respectively (both for 62C points eccrcss;.
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M03S30P CONFIG. 30P ELEC. S2QPS. LOG

N03330P CONFIG. 30P ELEC. S20PS. L0GU/2...I

Figs.Vllg end ? As Figs.VII4 end 5 tut or the Icffrittmic racial 
iresh suggested by f 16] end on the "1/2" logarithmic radial mesh 
suggested by the present calculations (see text), both for 620 
points accross.
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mesh where A r was giver by the maximum of 1/z exp( P. .)-l+i
1/z exp( ) (=5,1C end 20 ard for different number of mesh 

points shewn in Figs.VII9»6 end 7 respectively) and A r  

smooth solution to the finite difference equations could be 

obtained. Such a mesh spacing is however incompatible with other 

parts of the program and also with other programs which we used 

to produce the f- values. (The program of f i o ]  which uses 
p = a r + 3 log^r as a variable would be more appropriate for 

overcoming these problems). Instead we used a smaller value of 

B. A. suitable value of B, and increasing the number of points 

untill no further improvement in the results is found. Very good 

results have been achieved for n in the range 7 to >0 for A = -4, 

E=l/32 and 620 mesh points as seen in Fig.VII?* Also the number 

of nodes is correct. If we were not limited by the storage 

capacity of the computer, the mesh interval would have been 

futher decreased end more points would have been included. 

Fig.VII1C shows the radial functions for the inner electrons 

which behave in the expected way. Therefore, so far we have seen 

how to obrtain the radial functions for high-n states in the Egl 

principal series.

6 .The Calculate onal and Computational Aspects of the f-Value 

Betermination Procedure

The second program used in this work was originally 

developed by Fischer and Saxena \ 9] and calculated oscillator 

strengths using the multi- configuration radial functions 

obtained from the previous program. In this program, both length- 

end velocity oscillator strengths are calculated (which are 

defined as):
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5- 0

3 . 0  -

-1.0

- 3 . 0 -
S0L10=1S — -:2 S --------- 2 P  ..:3S

- 5 . n l ---------- >---------- 1---------- ■---------- 1---------- ■---------- 1---------- ----------- 1---------- ■----------
0 . 0  3 . 0  6 - 0  9 - 0  12-0 15-0

Fig.VII10

The computed radial functions of the inner electrons 
(3s3s-3s30p).
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Length form:

£  * —  AE (2S+1) <YLS/ 2 1 r i/y,L ,s p > 2 
3 i

(VII17)

Velocity form:

2 1 2
gf =  —  ---------  ( 2 S + I ) < y L S / X .  V i / Y , L ' S >

3 AE 1 (VII18)

Let us suppose that we have to calculate the matrix elements:

<^y L S / Q / y ,L ' S >

where Q is a tensor of rank 1 (as in equations VII7 and 8' ) and 

where the initial and final states are defined respectively as:

and

n

* ( y L S )  = Z _  a .  » ( y - L S )
1 ' '
n

» (y ' L ' S ) - 2 1  a< *(y 'L'S)
i

Also
m

^LS/Q/Y'L'sj) =
i

m'

J

(V1119)

V j  < V i L S / Q / Y j L S >

This equation reduces to one-electron integrals' expression as:
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(VII20)^ YLS/q/Y 'LS>= J r  aikajk cikjk < nk V Q/nk1$

More technically speaking, the mixing coefficients a. and the 

radial functions were calculated in the previously described 

KCHF code [1 0 J while the coefficients C^j^. used to convert 

equation VII19 to one-electron integrals were calculated in a 

lengthy and complicated program originally developed by Robb

[1 5 ] but subsequently modified for clearer spectroscopic 

notation by Fischer and Saxena [16]-

The matrix elements in length and velocity form are given 
respecively by:

do

<m/q /n'T> = (-1 ) max
/ u  /'pni(r)rPn'T (r) dr©

and

1 -1+1
n'l ;> = (-1) max

max

00

f pnl(r) (d/dr +
o

1 (1+1)-l'(1'+1) 
2r

) pn . . (r) dr

where 1 = m8x(l,l') and P ,(r) and P ,,,(r) are the radialmax nl n 1
wavefunctions. A s  mentioned by Fischer and Saxena [ 9 ] the 

numerical integrations were performed using Simpson's rule and



Stirling's formula for the length and velocity expressions 

respectively.

/II three programs used for finding the f-values were 

obtained from the Computer Physics Communications Library at 

Queen's University in Belfast. Unfortunately, to obtain the 

correct results, it was not just a question of loading them and 

running them on the computer here at Imperial College. Apart 

from the very complicated task of changing in all programs the 

radial mesh spacing for high-n states correct P ^(r) behaviour, 

we also had to convert all the programs from double precision to 

single precision because our computer has a word length greater 
or equal to 4P bits and so double precision should not be used.

The following tables show briefly the input data and 

output results from the three codes used.
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1) number of cases, input, output, tape (a)

2) for each case: order of tensor operator

whether tensor operator is or not 
spin dependent

maximum number of orbitals

output tape (b)

3) nl labelling of all the electrons

4) number of configurations and the number of shells 
in each configuration

5) the In labelling of each electron (for each occupied' 
shell) and the occupation number. And finally,

6) the coupling of the individual shells and then the 
coupling of shells (parentage notation)

v
Inserted in program AAKP (22)

Vi/coefficient of one-electron reduced matrix 
element and indices of the electrons involved

DATA1



1) label of the atom and term, atomic number,

number of points, number of wavefunctions,

number of wavefunctions to be made self- 
consistent with the core to remain fixed,

k knumbe^ of configurations, number of F ,G 
and R integrals.

2) configuration data (labels and weights).

3) For each electron: label, n and 1 quantum
numbers,

estimated screening parameter,

type of method to solve 
differential equation.

4) k k k *The value of the F , G and R integrals if any are, 
present' and the index of electrons they refer to.

5) Type of outputing, number of sweeps through the 
differential equations and the number of equation 
solved after the sweep through the system.

Inserted in program ACRF (16)

V

DATA2 ..........  Amongst other data we obtain the
radial functions and the mixing 
coefficients
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1) DATA1

2) DATA2

3) label and atomic number for the atom, 
number of radial functions,
label and number of configuration of initial and 

■ final states a nd multiplicity (2S+1) value.

4) energy and configuration of initial and 
final states.

Inserted in program ACRZ (15)

y
Oscillator strength of the 

transition in length and velocity form.

BESUITS.



7 .Results

In the f-value program we needed to insert the radial 
functions of the 1s,2s,2p,?s and np electrons for the principal 

series cf Kagnesium. The first four radial functions were 

obtained by running the Hartree-Fock program for the ground 

state and the fifth radial function was obtained from the (3snp) 

excited state. Since the f-value expressions both for length and 

velocity depend strongly on AE, an accurate value of it should 

be inserted in the code and was considered best (also mentioned 

by Fischer and Saxena) rto use the experimetnal values. We 

obtained the foilwing f-values (table VII2) for the principal 

series of Mgl (3s3s-3snp, n=7 to 27).

Ideally, one would expect that the length and velocity 

oscillator strengths should be identical. However, in our 

results they differ by a factor of approximately two. The same 

discrepancy (of a factor of two) was recently observed by 

Griffin et si [17] for the 3p^3d(^ E )-3p^2d^(^E) and (^F) 

transitions in Ti '' who also used Hartree-Fock wavefunctions to 

calculate the transition probabilities. Tiwary et al [18] state 

that FH calculations do not take properly into account 

correlation effects with neighbouring energy states, which are 

in some cases substancial and subsequently they used the 

sophisticated configuration interaction (Cl) wavefur.ctions 

produced by a code written by Hibbert et al [19]« Considering 

the above facts snd that also Kelly's paper [20] who stated that 
the geometric mean of the length and velocity values reduces the 

correlation problems, we calculated these geometric means. Also, 

we normalised all our results to the n = 7 f-value of Kitchell 

r 211 as we had done in Chapter VI. The ratio f (n = 7)/f (n=8) of 
our present calculations (=1.646 ) compared quite well with the 
one obtained from Kite hell's values [ 2 1 1 ( = 1 .756 ).
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n f---V - f— €-
7 4.110(-3) 1.850(-3) 2.757(-3)

8 2.492(-3) 1.127(-3) 1.675(-3)

9 1.635(-3) 7.426(-4) 1.102(-3)

10 1.132(-3) 5.162(-4) 7.644(-4)

11 8.141(-4) 3.693(-4) 5.483(-4)

12 6.116(-4) 2.779(-4) 4.123(-4)

13 4.646(-4) 2.140(-4) 3.153(-4)

14 3.653C-4) 1.668(-4) 2.468(-4)

15 2.899(-4) 1.338(-4) 1.969(-4)

16 2.343(-4) 1.084(-4) 1.594(-4)

17 1.945(-4) 8.975(-5) 1.321(-4)

18 1.628(-4) 7.466(-5) 1.102 (-4)

19 1.350(-4) 6.274(-5) 9.203(-5)

20 1.165(-4) 5.361(-5) 7.903(-5)

21 9.968(-5) 4.607(-5) 6.776(-5)

22 8.758(-5) 3.97(—5) 5.896(-5)

23 7.506(-5) 3.455(-5) 5.092(-5)

24 6.573C-5) 3.0141(-5) 4.471(-5)

25 5.718C-5) 2.660(-5) 3.389(-5)

26 5.083(-5) 2.343C-5) 3.451(-5)

27 4.527(-5) 2.065(-5) 3.057(-5)

Table VII2 f-values (in length end velocity forir end the 
geometric mean) ohtained from the present calculations.
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Unfortunately, Mithell stops at n = 8 and therefore no more 

comparisons can be made. A final comment on these zero-field 

calculated results is that the oscillator strength decreases as 

n increases which obeys the same general trend that we found 

from the experimental data (analysed with the KOV method). Our 

f-values are shown plotted against energy and n-value in 

Figs.VIHI and 12 respectively.

Having obtained the zero-field f-values, and the matrix 

coefficients from King's program we will now present the results 

that we obtained for the f-value E-field and n-value dependence. 

Figs.VII13 and 14 show the E- field dependence (for 3s3s-3s19p 
for Mgl) of the end states for K=+1 end -1

respectively. We can see that in the range of 0 to 6 Tesla 

(which is of experimental interest), there is a negligible E- 

field effect on all but the P^> f-value. The large jump of the 

the /"'?2*> and the / P,j*> f-values is a consequence of the 
convention that we have used to label the states (this has been 

commented on previously) and is a result of the /^P^*> and 

states crossing. Fig.VII15 presents the same information 
but grouped according to the state (for the + and - M 

components). Finally, Figs.VII16,17 and 18 present the same 

results but for nine different n-values (in the range 7 to 27) 

which all show the same trends as noted above.
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PRESENT RESULTS NORM. TO F7 OF MITCHELL FOR MGl 3S2-3SNP N=7...27

58000.0 62000.0

MGI 3S2-3SNP F-VflLUE PLOT Ns7...27 (NO FIELD I

Fipj — I-1.1 flj 1 1 Computed zero fie_____  C ̂  — 77— ------ -r " j. u u ecalculations versus energy end n-ve 
principal series of Kgl (with 7<n<27).

ve lues v/i th 
respectively

present 
for the
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MGI 3S2— 3S19P tn=*t)

B-FI ELD (G)

MG I 332— 3319P (Ms-1 )
-l

1 ~ The p-field dependence of the f-values ( * 
-s!9p traction £pr V g l )  a c c e d i n g  to the present calculof the / P1*> / P2*> pnd /~P,*>states for K=+1
respectively (see text for /1P*>’notation).

s-
. tions 

and y =-1
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Fig.VII15

The same information as in Figs.VII13 and 14 but 
grouped differently.
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Figs.VII16,17 and 18

As Figs.VII13 and 14 but for different n's in the 
range 7 to 27.
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Chapter VIII

A Theoretical Background to Plasma Diagnostic Techniques

In this chapter we introduce some concepts related to the 

use of emission spectroscopy of laser produced plasmas. In, 

particular we discuss the estimation of plasma properties from 

the intensity ratios of spectral lines, since this -is the 

subject of the next chapter (and [ 16]) • This introduction is 

brief and excludes some topics which are not of immediate 

importance to the understanding of this chapter, such as non­

ideal effects (Eurgess [1 7]), the effects of a spatial gradient 

and a detailed treatment of NLTE radiation transport [18] and 

the important topic of plasma line shapes [ 19] • More complete 

introductions to plasma spectroscopy are given by the excellent 

reviews of McWhirter [2 0] and Gabriel and Jordan [21].

1.Introduction

In recent years lasers of very high irradiance have been 

developed (of the order of 10 -10 W/cm ). When these powerful

lasers are focused on gaseous or solid targets, they ionise them 

and convert a thin layer of the surface of the target into a 

plasma. These laser produced plasmas (LPP's) have very high 

density and pressure ( 1 Og/cm” ' and 1C_2-4000 Mbar), 

temperature of the order 10-10C0C eV, very small size and short 

life-time. The reason why LPP's have attracted a great deal of 

scientific interest recently is because of intereset in 

inertially confined fusion (ICF) (an excellent general review 

article on LPP’s is given by Key end Hutcheon[ 1 ]). In the
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present work only the spectroscopy of LPP's will be discussed. 

Spectroscopy is an important plasma parameter diagnostic 

technique. Our aim is to interpret the spectrum of radiation 

emitted from a plasma using a theoretical model in which all the 

possible radiative and collisional processes that ionise the 

plasma and populate the various excited states are taken into 

account.

Atomic physics and astrophysics have been a very useful 

source of basic information but there is always a certain degree 

of error in the data which makes theoretical predictions 

obtained from the plasma model of limited accuracy. In the 
following sections of this chapter we will consider the standard 

models of ionisation of the plasma, the population of excited 

states and the connection of these two with the line and 

continuum intensities. Then we will discuss how the temperature 

of the plasma can be diagnosed and how line ratios and Stark 

broadening can be related to the density of the plasma [ 2] and 

finally, the effects of opacity on ionisation will be 

considered.

2.Local Thermodynamic Equilibrium Model

Complete thermodynamic equilibrium (TE) requires that 

every process (collisional or radiative) and its inverse must 

occur at equal rates by the principle of detailed balance. It is 
often the case that radiative processes are not followed by 

their inverse (if the plasma is optically thin). In local 

thermodynamic equilibrium (LTE) it is assumed that "all the 
thermodynamic properties of the material are the same as their 

thermodynamic equilibrium values at the local values of T and
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density throughout the entire atmosphere" [* 3~\. If the density 

is low so that radiative rates dominate collisions! rates the 

LTE assumption will not be valid. At higher densities where 

collisional rates dominate and the populations of excited states 

are in detailed balance, LTE prevails. When the plasma is in 

LTE, the free electrons will have a Faxwellian velocity 

distribution and the populations of the excited states and 

ionisation stages will be given by the Boltzman and Saha 

equations respectively:

"O') 9 (i) x(i.J')
----  = -----  exp( -------  )
n(j) 9(J) kTg

n(z+l,gr) n g(z+l,gr) 2imkT 3/2 x(z,gr)
------------- = --------- 2( ------— ) exp(------  )
n(z,gr) g(z,gr) tr kT

where n(i), n(j), n(z+1,gr) and n(z,gr) are the populations 

densities of the various levels designated by their quantum 

numbers i,j and gr respectively. g(z,gr) is the statistical 

weight of level gr of ionisation stage z,' x(i,j) is the energy 

between bound levels i and j and x(z,gr) is the ionisation 

potential of the ion of charge z in its ground state [ 4 ].

McWhirter [ 4 ] has suggested the criterion for LTE to hold 

between levels i and j to be (where radiative decay rates give 

about 10$ deparures form LTE):

ngn( i) X(Te ,i,j)^ 10n(i) A(i,j)

where X(T ,i,j) is the de-excitation coefficient and A ( i , j ) is 

the atomic transition probability. Py substitution of the 
appropriate values it becomes:

"e ^  1-6 1012/ V e x(i,j)3 cm'3
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The energy difference between bound levels decreases as n 

increases; hence a lower vslue for the density is required to 

maintain the higher n- states in LTE or in other words for a 

certain n only the higer n-values will be in LTE. This is called 

partial LTE. Another condition which must be fullfilled if the 

plasma is to be maintained in LTE is that the equilibration time 

must be small compared to the time needed for plasma parameters 

to change [ 2l.

Coronal Fodel

In the previous section we considered the case where 

collisional rates are balanced by their inverse processes and 

the plasma was in LTE. In the coronal model collisional 

ionisation balances with radiative recombination and collisional 

excitation with spontaneous decay (we are assuming again an 

optically thin plasma) [ 4 ].

Collisional ionisation and three-body recombination can be 

represented as:

e + N(z) y N(z+1) + e~ +- e”

and radiative recombination and photoionisation can be 

represented as:

e” + A(z+l)— r A(z) + hv

where h\> is the energy of the emmited photon. Collisional

ionisation and radiative recombonation are proportional to ng
2and three-body recombination is proportional to n^ . If the 

plasma is optically thin and the radiation density is low,, the
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photoionisation is also low. At low n^, radiative recombination 

dominates over three-body recombination and the coronal 

equilibrium arises from a balance between collisions! ionisation 

and radiative recombination [ 4], ie:

V ( z . g r )  S(Te>z,gr) = nen(z+l,gr) a(Te ,z+l,gr)

where S(Te,z,gr) is the collisional ionisation coefficient and 

a(Te,z+1,gr) is the radiative recombination coefficient.

Unlike the LTE case, knowledge of atomic parameters is 

required to calculate the population densities (and not 

knowledge of the density). As pointed out by Eurgess [ 5] , the 

radiative recombination should be corrected for dielectronic 

recombination. The radiative recombination coefficient a (z,gr) 

is replaced by a (z,gr) + a(z,totd) where a(z,totd ) is the 

dielectronic rate coefficient summed over all relevant levels [

ll. Ey comparing values of a(z,gr) and a (z,tot^) given by 

WcWhirter [ 4 ] and Eonaldson and Peacock [ 6] respectively, It 

can be seen that for the temperature range of interest in 

fusion, the dielectronic recombination coefficeint exceeds 

a (z,gr) by approximately one order of magnitude for some cases.

In the coronal limit the collisional excitation rate from 

level i to level j must balance all the possible radiative decay 

rates from levels k (where k<j) to level j, ie:

X(T ,i ,j ) n n(i) = n(j) £ .  A(j ,k) 
e e k<j

Several authors have attempted to calculate collisional 

excitation and ionisation rates and some forms will be discussed 

in the next chapter.
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The coronal model holds when the radiative decay of a

level dominates over collisional decay, ie:

J
A(i,j) >/ ng * X(1,j) Ollli)

JCcWhirter [ 4 ] also states that there is a limit to the 

principal quantum number after which the previous inequality is 

not satisfied. Therefore considering only states with n<6 and 

equation VIII1, he gives the upper limit of the electron density 

for the coronal approximation to be:

ne ^ 5 . 6  JO8 (Z+l )6 J j ~  exp( - 162 (Z+1)2
T )

KcWhirter [ 4 ] has also shown that the relaxation time (of a 

LPP) T for the formation of the last ionisation stage is 

comparable to the time-scsle on which the parameters of the 

plasma change and hence a time dependent calculation is 

required.

4 .Collisional-Radiative Fodel

At intermediate densities all the collisional and 

radiative processes must be taken into account. However it may 

be possible to neglect stimulated rates (eg stimulated decay and 

photoionisation). The C-E model includes collisional transitions 

and spontaneous radiative decay between bound levels, 

collisional ionisation from any bound level, three-body 

recombination (or radiative recombination) into any bound level 

(and finally autoionisation from a doubly excited ionic level to 

the next ionic stage and electron capture). In the high density 

limit where all collisional rates dominate, the LTE model
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prevails and in the limit of low density where radiative rates 

dominate, the coronal model prevails.

Although LPP's are of great scientific interest there are 

not many publications on C-R calculations with LPP's parameters. 

In order to obtain population densities in the intermediate 

regions one must either use a sophisticated computer program 

accounting for all the possible processes and levels or an 

approximate model considering the most important processes. The 

first has been attempted by scientists at the Lebedev Institute 

calculating level populations of H-like and He-like ions with 

parameters similar to those of LPP's , by Lee [ 7 ], Seely [ 8] 

and in Chapter IX of this thesis calculating H-, He- and Li-like 

ions with LPP's parameters for Si and A1 plasmas. The latter has 

been attempted by several authors, one amongst them being 

McWhirter. In a paper [ 4 ] he considers one property of the 

plasma which simplifies greatly the calculations. This property 

is that as n(the principal quantum number) increases and the 

energy difference decreases, the collisional rates dominate over 

radiative between bound levels and therefore above a certain 

level one may use LTE equations to calculate the population 

ratios.

Numerical solutions for hydrogenic ions have been

calculated by Eates et al [ 9 ], McVhirter and Hearn [1 0 ] and

several other authors. Eates et al [ 9 ] and NcVhirter and Hearn
[1 0 ] include tables of the collisional ionisation and the *” •
radiative recombination rates.
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5.rielectronic Satellites
When an ion captures a free electron to form a doubly 

excited state, dielectronic recombination takes place [ 3], ie:

A+Z(n,l) + e(E,l"+l)--, A+(Z']) (n ’ ,1+1 ;n'M")

and then stabilises radiatively:

A+(z~^) (n' ,1+1 ;n" ,1") ---y A+(Z"L) (n,l ;n" ,1") + hv

Alternatively, the doubly excited state can decay by 

autoionisation to give a free electron and the initial ion. 

These doubly excited levels of ions from the next lower 

ionisation stage form satellite lines (lines very close to the 

resonance lines). Since resonance lines of He- end H-like ions 

are usually optically thick and their satellite lines are not, 

the latter may be a more useful density diagnostic.

6.Methods of Diagnosing
The rates at which radiation is emitted and absorbed by a 

plasma consisting of photons and electrons, having thickness D 

and density p are given respectively by Cillie [ll] as:

„ „ 06 3 1 6n0n 2 tr m 2 e
n ( v )  = --------  ---------- -----  (-------- ) — _ _  e x p ( - h v  / k T  )

4mp (6u)3/2 k T  c V

and
n n 06 3 n n 2 it m

x M  = — 2 --- J77 (---- )
4irp 6ir) /L k T

e 1
2---------- 3— ( 1 - e x p ( - h v  / k T  )

hem

And the solution of the radiative transfer equation is:
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I(v) = n(v)
1- exp(-x(v)p D)

x H

where the symbols have their usual meaning.

At low frequencies (IR) (̂ v) pE will be large and the 

spectrum will be that of a Bleck-Eody. At higher frequencies 

(Visible, UV and soft x-rays) the spectrum may be dominated by 

Eremsstrahlung and radiative recombination.

6.1 IR Measurements

At the IR region of the spectrum the main source of 

radiation is due to transitions between free electrons. The 

intensity of radiation emitted form the plasma (again of 

thickness E and density p ) is given by [ 4 ]:

I M
where

2h v)3

c2 (exp(hi> /kTg) -1)

nenp 26 __ ™_

4irp (6ir)3^2 kTg

( l -  e x p ( - x ( w )  f> D ) )  

i  e®
)----7--- T  C-exp(-hv /kT ))

hm c vJ e

Hence if the intensity and wavelength of the radiation are 

known, the temperature can be determined without requiring any 

atomic rate coefficient data (Harding et al [ 4 ] and references 

therein). However there are two limitations of this method:

(i)the wavelength must be shorter than that of the plasma 
frequency and (ii) the size of the plasma must be sufficiently 

large so that it is optically thick at the position at which we 

require the temperature. Hence the method is not suitable for 

low- density high-temperature plasmas.
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In a plasma two processes are responsible for the emission 

of continuum radiation. Cne is radiative recombination, where a 

bound state captures a free electron and creates a photon whose 

energy equals the sum of the electron's kinetic and binding 

energies, and the other process is bremsstrahlung where the free 

electrons are scattered by positively charged ions.

The spectral distribution of bremsstrahlung and radiative 

recombination was given by Mandelshtam et al ([ l] and 

references therein) as:

6.2 Visible, UV and Soft X-Ray Rela tive Coni nuum Intensity
Measurements

® o 7 i hv
E ( v T e> = —g :  2 W V " 4 e x P ( -  — ------ )

„  V -  N2 1 VH Z-l, .
------ (— ) H ( J L _ i l L C) ,2NT Z
Z-l

■)

. exp (
(n,c)

kT
■)> ergs/sec/cnr/Hz

.Z-l

2
where B is defined in [ 11, is the total number density of

ions of charge Z, K̂ , is the number density of ions of charge
H Z— 1labelled Z, x is the ionisation potential of hydrogen, £

is the number of available states for recombination into shell n

and x (n>c) is the ionisation potential of shell n of an ion
of charge Z-1 . From the above formula it can be seen that the

slope of ln( a( v)), the electron temperature can be evaluated.
The observed energy range must correspond to the electron

temperature that is to be measured [ 4]* The method fails for
very short wavelenghts due to intensity calibration problems. In

order to overcome such problems, the method should not be
6 oapplied for temperatures lower than 2.0 10 UK for visible and
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soft x-rays [ 4 ].The lower density limit obtained is arround 
161C cm " but more results are needed to give a correct and 

definite lower density applicability limit.

6.3 Line Intensity Measurements in LTE Plasmas

Experimentally speaking, line intensity measurements to 

predict Tg are the most convenient because all the energy of 

radiation is concentrated in a smaller wave band and is easiest 

separated from other sources of radiation f 4 ]. However as 

mentioned previously, some of the atomic data coefficients are 

known with limited accuracy.

The lines preferred for these measurements are resonance 

lines of high principal quentum number in the H- and He- like 

ions sequence of medium Z elements. High n is required because

(a) such levels require smaller ng to have their populations in 

LTE with the next bound state or the next ionic stage (therefore 

the Eoltzman and Saha relations can be used to determine the 

population densities of the excited levels in the plasma if ng 

and Tg are known) and (b) resonance transitions from such high n 

states have lower A-values (and greater Stark widths) and hence 

lower opacity. For the intensity ratio to be a sensitive 

function of temperature [ l] the two upper levels of the lines 

must be separated by an amount of the order of kT^ [ 4 ]. These 

requirements make this method most widely used in the high- 

density low-temperature region. Finally, a line to continuum 

intensity ratio can become a temperature diagnostic where one 

measures the intensity of a spectral line and that of the 

underlying continuum. Attention must be paid to ensure that the 

lines in question are optically thin.
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6.4 Corona Model Measurements
It was seen in section 3 of this chapter that the 

following relation must hold for the coronal limit:

nen(z,gr) X(Te ,gr,p) = n(z,p) Z l  fl(p,q)
q<p

and therefore the intensity of an optically thin line in this 

density region becomes:

A(p,q)
neii(z,gr) X(T ,gr,p) — --------- ds

2 1  A( p,r) 
r < q

From this formula it can be seen that the electron temperature 

of the plasma can be deduced from measurements of the intensity 

of a specific line through Xe(Tg) [ 4]*

a) Helium singlet to triplet method

This method was suggested by Cunningham [12] who observed

that the excitation rates were different for the singlet and

triplet lines in Helium. The values of these rates (obtained by

Lees ([ 4 ] and references therein) were used by Cunningham to
3 x 1 1produce a curve giving the dependence of the 2 P-4^S/2 P-4 D 

ratio on Tg (" 4 ] •

There ere two limitations to this method. The first

occurs when the density becomes such that the collisional
processes compete with the radiative decay of level 4 . The

1second is the neglect of the fact that the 4 B and 4^S levels 

can receive some of their electron population from the 

metastable 2>S and 2 S levels (since ground to metastable 

exciation rate is greater by an order of magnitude than that

i(p.q) = 4n /
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1 vfrom ground to 4 T or 4"'S). This method is valid for low density 

plasmas.

b) He-like (CV) method

Kaufman and Williams [l^] suggested another method of 

determining T^ based on measuring the intensity of the 2^ S-2^P  ̂ 

transition in CV or BIV. They considered the intensity to be 

given by [ 4 ]:

I(z ,23S-23P2) 0.4 it aQ2 ( ---- ---- )* n(z,gr)ne
irm >

ergs/cra /sec

x (z ,2 3R2) 3
hv(l+------ —  ) expMz,2%) /kTe)

Further they suggested that since the above formula is so 

strongly dependent on T , through the exponential factor the

values of the electron temperature obtained with or without the
3inclusion in their calculations of the effects due to the 3 S 

metastable level do not differ very much. This method is valid 

for every density of interest in LPP's but only for between 

105 and 106 °K (for Carbon).

c) Li-like method

The 2s-2p,^2/2s3p^2 t/2 ^n^ens^^y ratio of Li-like ions 
can become a very reliable temperature diagnostic. These 

excitations do not involve metastable statesand therefore m  this case 

one does not have this added uncertainty. This line ratio was 

first calculated by Heroux [1 4 J using collisional excitation 

rates given by Allen and more recently [ 4l by using the values 

of the excitation cross-sections given by Eurke and Tait [ 4 and
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references therein]. The results are shown in Fig.7 of [ 4 ]. As 

it can he seen from that figure the upper limit of the 

temperature to be diagnosed is given by the fact that at high Tg 

the curve becomes insensitive to temperature and the lower limit 

is given by the fact that the intensity ratio becomes too large 

to be observed. Further, the poirt where stepwise processes 

dominate gives the upper density limit.

7. Methods of Determining rî

The plasma density can be determined by two ways: firstly 

by knowing the intensity (and the other plasma parameters) of 

optiaclly thin radiation and secondly by observing the 

broadening of a spectral line.

7.1 Line and Continuum Intensity Methods

Previously we saw that the intensity of radiation of a 

spectral line is given by:

1 r

Therefore by knowing the intensity, the decay rate and the 

plasma volume, n(i,z) can be determined. Then if the plasma is 

in LTE, the Saha relation can be used and the product n(i,z+l)ne 

can be obtained. If the plasma is to be neutral then ne=n(i,z+l) 

for hydrogen. For other ions more lines sre required to solve a 

system of n equations with n unknowns.

7.2 Stark Broadening Method
Lunney [ 2 ] has used the Stark broadening as a density 

diagnostic by matching the measured line profile to a
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theoretical prediction. Empirically it was found [ 2] that the
plasma parameters were related to the half width of a Stark

broadened SiXIII L a line (at T.=T =5-2 1C6 °K and Z=9-3) asWi 1 e
follows:

iAr  5-5( ) 0-57 + 0.03 ^

and that AXj/2̂ T e°*2 (forTe=5.2 106 °K, ne»1.5 1C23), from

where the weak dependence of the line on temperature and the

strong dependence on density are obvious. Lunney [ 2] also

states that the shapes of resonance lines of He-like and H-like

silicon, aluminium and argon with T = 5.2 10^ °K and variouse
values of ng have been computed in order to compare them with

the actual experimental spectra where we wish to determine the

density. The computed spectrum takes account of Doppler

broadening, self-absorption of radiation and the instrumental

function. Lunney [ 2l also stated that several values of p and

Rp (p = density and R= radius) can fit a particular spectrum.

Lunney has plotted the electron density versus the ground state

density of the resonance transition in question (n^) (where n̂

is related to the optical depth by x ( v ,l) C& n̂  1 , where 1 is

the line of sight of the plasma) for the best fit of L ,L ,La 3 Y
and L lines. For large values of n the optically thick region 6 e
is approached. He found that these four lines of best fit 

intersected at a certain point which determines the value of n 

and n̂  which should be close to those found in the experiment.

8.Radiation Trapping

Radiation which is produced in a plasma will interact 

with the plasma for finite optical depths and as a consequence:
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e) the populations of the excited states are irodified fcy the 

absorption of radiation and b) the observed outgoing intensity 

is not just a summation of the intensities of the volume 

elements of the plasma [ 4 ].

8.1 C-R solutions

A few definitions will be listed below without which a 

clear approach to the radiation trapping problem is not possible 

[ 3]« The destruction probability is "the average probability 

that a photon is destroyed when it next interacts with the 

material" [ 3]« Also:

Pd 0£X / (X + Aj j )

where X and A., are the collisional and radiative rates from the li
upper level j to the lower levels i respectively.

A (the thermilisation depth) is the depth at which the 

radiation field reaches its equilibrium value.

P ( t ) is defined as "the probability (of escape), 
averaged over a line that a photon emitted at optical depth x 

escapes from the medium before being absorbed" [ 3]« It is clear 

that the following holds (for a two level atom):

pe(A) = pd

As mentioned in the beginning of this section radiation 

travelling in a plasma can be reabsorbed and therefore the 

opacity and consequently the population densities are different 

from what they would be in the optically thin case. The escape 

probability and the thermal i sa tion depth depend- on how the 
photons are redistributed over the line profile after being
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emitted. If they are emitted coherently there is a great

probability that those absorbed at the line centre will be re­

emitted there (where the opacity is high) and will be trapped up 

to the shallowest layers of the plasma giving a compararively 

small thermalisation depth. In contrast, if the photons are 

completely redistributed over the line profile, then it is quite 

probable that after a few scatterings a photon which was 

absorbed at the line-centre will be emitted in the wing (where 

the opacity is low) and it will therefore escape from the plasma 

f  5?. Ik this case the thermalisation depth is large compared to 

the coherent case. Also and A depend on how much background 

continuum absorption there is in the plasma since the continuum 
sets the the maximum optical depth that a photon can travel to 

be unity (ie an upper limit on the depth from which a photon can 

escape at any frequency).

The escape factor approximation is a useful method which

gives the change of the emergent radiation intensity and the

change in excited level populations, g is the probability of 'a

photon emitted (in the optically thick transition in question)

escaping without being reabsorbed in the plasma. For a two-level

atom the effect of reabsorption can be taken into account by

reducing the decay rate A., to the value (g A..). Therefore theJi Ji
population ratio in the C-R region becomes:

Ni 9 Aji + v  '

The escape factor approximation gives results quite close to 

those obtained performing the proper radiation transfer 

calculations for an optically thick line (Bates et al [ 9 ] 

assumed g=0 for a C-R model Weisheit et al [15] assumed
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g( t )f 0 again for a C-R model). In some cases g( t q ) can be 

zero and therefore it can be concluded that the effective decay- 

rate is zero, ie that the photons emitted are reabsorbed in the 

plasma. Usually g( x 0.

In 8 C-R plasma where stimulated emission has been

neglected, the escape factor can take the form [ 4 ]:
.2 ,-aon . q .

9(t0) = 1 ----:1
ni 91 2h v. . ij

I <j> dv v rv
0

In the coronal density region the following inequality 

(modified with the escape factor) must hold:

9<To ( j ‘9r )) Ajgr> n
e x(Te>J>gr)

and this equation a limit of applicability of the optically 

thick coronal model. If the spectrum of the plasma has more than 

one lines, then it may be the case thst some are optically thin 

and that only the optically thick ones need the escape factor 

correction.
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Chapter IX

Kumerical Calculation of the Steady-State Ionisation 

Ealance for Highly Ionised Silicon

This chapter discusses the radiative and collisional 

processes in a plasma and their effect on ionisation balance in 

a highly ionised plasma. The limits of LTE and coronal 

equilibria are discussed. The numerical solution of the steady- 

state rate equations are then considered. The results of 

previous work on steady state radiation balance in highly 
ionised Silicon are reviewed and a more complete model is 

discussed.

Introduction
The calculation of the ionisation balance is of interest 

because line ratios are used as a diagnostic of plasma 

parameters. In a recent paper Lunney and Seely [ l] have 

proposed that the ratio:

N(2s2p3P) A(2s2p3P;ls2s3S) + N(2p23P) A(2p23P;ls2p3P) 

N(2p21D2 ) A(2p21D2 ;1s2p1P1 )

could be used as a density diagnostic for laser produced 

plasmas, while Vinogradov et al [" 2] have studied the dependence 

of the He-like resonance to intercombination line ratio:

N(21P1) A(21P1 ;11Sq )

N(23P 1) A(23P-| ;11 SQ )

on plasma density. Uncertainties exist in these calculations for 

two principal reasons:
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(i) firstly, uncertainties exist in the collisional rates which 

are employed and (ii) secondly, because of the restricted number 

of states and the restricted coupling between the states which 

are included in the calculations.

In this chapter the results of calculations of the 

ionisation balance in a Si plasma will be presented. These 

include higher-level hydrogenic and He-like states and a fuller 

modelling of the coupling between them than in previously 

reported results. Large discrepancies exist in the calculation 

of collision rates in the He-like ions. The effect of these 

differences on diagnostics has been investigated by performing 

calculations using three different models for the collision 

rates, due to Vinogradov et al [ 2], Mewe [ 3] and Sampson and 

Parks [ 4 ]. This chapter contains: section 2 where the 

collisional and radiative processes involved are described, 

section 3 where the three collisional models are discussed in 

some detail, section 4 where the solution of the rate equation 

is outlined, section 5 in which some of the previous work on 

SiXIII line intensity ratios is presented, section 6 which 

describes the model that was used. In sections 7 and 8 the 

results on the line ratio and on the satellite ratios are 

presented respectively and finally section 9 describes how the 

code can be extended to include Li-like states.

2.Radiative and Collisional Processes

We shall consider five types of processes: (a) bound- 

bound, (b) bound -free, (c) singly excited to doubly excited,

(d) doubly excited to doubly excited and (e) doubly excited to 
the ground state of the next ionic stage.
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(a) Bound-Pound

The radiative processes are: photoexcitation where a 

photon is absorbed by an atom leading to a transition of an 

electron from one bound state to another. The reverse processes 

are spontaneous de-excitation where the excited electron goes 

back to a lower state emitting a photon spontaneously and 

stimulated de-excitation where this process is induced by the 

radiation field.

The number of such transitions per unit time and per unit 

volume is respectively:

"i Bik Jik 

nk Bki Jik

where n^=population density of the lower lying state, 

n^=population density of the higher lying state and the A's and 

B's are the Einstein coefficients related by:

3 , 2
A k i  = B i k  2h v /  c

8i k  ^k Bki

where: g^=statistical weight of the lower state, g^=sta tistica1 

weight of the higher state and v frequency of the transition. 

The oscillator strength f is defined by the following formula:

f.ik
m r3 h2m e  n

s k Z , 2 
8 *  e E er gs

A, .ki

where m,e are respectively the mass and the charge of the
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electron, c= velocity of light, h=Planck's constant and F is 

the energy difference in the transition (in units of ergs).

The f-values can follow the form [13]:

f  -  f 0 + ( l / Z ) ^  + • • •

where f is the hydrogenic value and Z is the charge of the 

nucleus of the element. Using tabulated f-values for H and He we 

fit f against 1/Z using the first two terms of the above 

equation. In this way f-values for SiXIII for bound-bound 

transitions were obtained.

The collisional processes are: collisional excitation were 

an inelastic collision of an atom and another particle (usually 

an electron) leads to the excitation of a bound electron.The 

reverse process is collisional de- excitation. The number of 

such transitions per unit time and per unit volume is 

respectively:

nk ne Cki 

ni "e Cik

where n is the electron number density and C., and C, . are e J lk ki
related by the detailed balance formula:

— !— = — —  = —  exp( E.j - Ek )/ kTe 
nk Cki

A number of collisional formulae are compared in section 3 of 

the present chapter.

(b)Eound-Free
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The radiative processes are photoionisation where a photon 

is absorbed by an atom and causes the atom to ionise. The 

reverse processes are spontaneous radiative recombination and 

stimulated radiative recombinations. These are analogous to the 

"bound-bound" processes. The number of transitions per unit time 

and per unit volume is respectively:

ni Bic Jic

ne n+ Aci

n n B • J. e + ci lc

where n^ =population density of the excited state in the lower

ionic stage and n+ =population density of the ground state in

the lower ionic stage. A  ̂ is obtained by integrating B^Cv)

(the cross-section for radiative recombination) over a

Maxwellian velocity distribution:
oo

Aci / Si ^  V dV

0
E . is calculated from: ci

BCl 1C B,(v) v f(v) ---- j
1 2hv

J dvv

where h v =h v . +mv /2 end finally E. is calculated from:1C  ̂ 1C
.00

Bic J ic = 4* /  Kic(v) J

dv

hv
lC.

where K. ( v ) is the cross-section for photoionisation from1C
level i. For hydrogenic ions with charge Z [ ?]:

96 410 742 it e m  L
Klc(v) =

3 y r  ch 1 gicM
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So,
,9 510 m ,4 ,c it e m L \

A ci  = ^  c3 hb

. 3  > c  / k T e h e

l+ 2(27rmkTe ) 3 / 2

where is the exponential integral. When the field is

Planckian then:

, 9  5 1 0  , 4  ,  3 ah v i c  / k T ec it e L I h e

where

Bci J iC  3 v T c V  l 7 2(27rmkTe )T F T -  Q*(^ic/kTe>

Q * ( x )  =

■O - x
e dx

x(e* - 1)
I*(x) = E-| (x ) + Q*(x)

and oo

I*(x) = 1/x + Inx /2 + 0.577 /2 - In / i ; . E
8 x2j-’°2j x

J  = 1 ( 2 j - l ) ( 2 j ) l

where are the Bernoulli numbers.
The collisional processes are: electron impact ionisation 

where an electron collides with an atom and removes one electron 

and the reverse process, the three-body recombination, where two 

electrons and an ion collide and one electron is captured while 

the kinetic energy and momentum are shared between the atom and 

its other electron. The number of transitions per unit time and 

per unit volume is respectively:

" l  ne c i

n+ na C •+ e ci
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Ey using the Saha equation we get for the three-body 

recombination:

r  2 ( 2 ™ k T e ) 3/2 - h v . „ / k T „
1C '---------T -------- e e c .

9i h . C1

In the computation described later the collisional ionisation 

rates were taken from [ 6].

(c) Singly Excited-Doubly Fxcited

Doubly excited states can be either above or below the 

ionisation potential. In the particular case that we considered 

they were above the ionisation potential so that for calculating 

the reverse process we could use the Saha equation.

The A-values we used were taken from Safronova [ 5 ] and 

the collisional rates from [ 3]»

(d) Doubly Excited-Doubly Excited

In this kind of transitions the A-values were considered 

to be zero and the collisional rates were calculated by Sampson

r 9].

(e) Doubly Excited-Ground State of the Next Ionic Stage

Autoionisation is the process where a doubly excited state 

goes to the ground state of the next ionisation stage leaving a 

free electron. The reverse process is called electron capture.

The autoionisation values we used were given by Safronova 

[ 5 ] and the electron capture was calculated using the detailed 

balance argument by Jacobs and Davis [ 8].

3.Calculation of He-like Inter-Level Collision Eates

Although a large amount of effort has been put into
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calculating bound-bound collisional rates, for a Maxwellian 

electron distribution, the results of some calculations exhibit 

large differences between each other. It is thus important to 

understand the effect of uncertainties in these rates on our 

results. To this end we have preformed calculations using the 

results of three independent collisional rate models, ie those 

of Kewe [ J>], Vinogradov et al [ 2] and Sampson and Parks [ 4 ]. 

Eecause of the importance of these models to this work we give 

the collision rates for each of Keve, Vinogradov et al and 

Sampson and Parks respectively below:

For an i— > j transition between discrete levels, [ 3 ]

gives:

C , , =  1 . 7 0  1 0 ' 3 T 
1 1  e 9 ( y )  i o -5040Eij/Te

where f . . is t-he absorption oscillator strength of the

transition for allowed transitions and for the forbidden

transitions it is the f-value of the allowed transition to the

level with the same quantum number. This allows the same formula

to be used for both allowed and forbidden transitions. E. . is

the excitation energy in eV, T^ is the elctron temperature in

°K, y= E. ./kT and g*(y) is the integrated gaunt factor given by: il ®

g ( y )  = A + ( B y - c / + D ) e  E ^ y )  + Cy

• where ^

E1(y) = J  t ' V yt dt

I

Some of these parameters have been recently revised by the same 

author [ll] but these revisions do not affect the result here.

250



Note that the prescription for forbidden transitions is dubious 

since it is based on allowed transition oscillator strengths. It 

will be shown below that these forbidden rates are not in 

agreement with other calculations. The values of the parameters 

A,B,C and B can be found in [ 3].

For a k— ^ 1 transitions between discrete levels reference 

[ 2 ] gives:
-8 ^1  Rv 3 / 2  ^C = 10 * ( e — -----------

Ek AEk1 9k 6 + Xk1

where and E^ are the ionisation energies of levels k 

measured form the edge, ^=E^-E^, g^ is the statistical 

of level k, E and X are parameters listed in [ 2 ]. Ry
hydrogen ionisation energy and '3 = AE, /kT .kl ©

and 1 

weight 

is the

for transitions without change in spin *(6)= e* (8+1)

for transitions with change in spin ♦ ( B ) -  S3/2

For a q— > q* transition between discrete levels reference 

[ 4 ] gives:
c(q— ► q')

2 “
ira_ N v 0 e kT.

) <n(q- q'3>

where w is the statistical weight of level a, a is the first q  ̂ o
Eohr radius of the hydrogen atom. IH is the hydrogen ionisation 

energy, is the electron temperature, ng is the electron 

number density, n(q— 7>q’ ) is the collision strength for a q— ><
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1 /2q' transition, and v=(8kT /m m) . < ^(q— f q')> is given by:
oo

f  -E/kT
a(q---q ’) - J  d(E/kTe) e < a ( q - * T ) >

where y is the ratio of the excitation energy E to kTg. The 

collision strengths corresponding to the various transitions in 

which we are interested are given by [ 4 ].

The different dependencies of these rates on parameters 

such as thre temperature is evident. Relevant differences between 

the values of the collisional rates from these three formulae 

include: the results given by Mewe [ 3 ] differ very greatly from 

those by Vinogradov et al [ 2 ] and Sampson and Parks [ 4 ] only
•z, ■]for spin-forbidden transitions (2^P;1 S). Similar results have 

been found for all spin-forbidden transitions (indicating the 

incorrectness of Mewe’s formulation). The spin allowed (2^P;1^S) 

values calculated from Sampson and Parks f 4 ] and Vinogradov et 

al f 2 ] can vary by as much as an order of magnitude at 100 eV 

and by a factor or two or more from some transitions at 

temperatures of 800 eV. In Figs.1X7 and 8 these trends are shown 

for one spin allowed and one spin forbidden transition. Since 

the calculation of Mewe [ 3 ] is actually suitable for allowed 

transitions the good agreement between the Mewe [ 3 ] and the 

Sampson and Parks [ 4 ] rates provides a verification of these 
two sets for the higher temperature region shown.

4 .Solution of the Rate Eauation

The equation for each state can be written in the form 

[14]’ ' ^ 1.ni"i(Ri"i+cT"i)
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n X^  (ni ,,/ni) (Ri,• ”+ci"i)+ (R, i ■ +c, i.) = o
( K i )

where R . „ . (or R..,) and C.„.(or C..,) are the radiative and 1 1  n  l i  n
collisional upward rates respectively and R..„(or R..,) the

r  r l i  l i

radiative downward rates. So if we have N states the above 

equation gives N homogeneous equations with N unknowns. We can 

either solve for the ratio of the populations to the population 

of one particular state or use an additional equation:

e

and i is the state, j is the ionisation stage and ng is the

electron density. If we want to be able to fix the total number

density, then since the rates depend on n we must iterate.0

5.Previous Work on SiXIII Line Intensity Ratios

In a recent paper [ l] the use of dielectronic satellite

ratio
N(2s2p 3P) A(2s2p 3P;ls2s 3S) + N(2p2 3P) A(2p2 3P ;1s2p 3P) 

N(2p2 'd2) A(2p2 'd2;1s2p 'p^

has been proposed as a plasma density diagnostic and applied to 

results from laser imploded microballoons at the Rutherford 

Laboratory. In the model described in this chapter the collision 

de-excitation from doubly to singly excited states is not 

included and this may explain the inconsistency between the 

theoretically diagnosed densities and the actual experimental 

spectra that Lunney and Seely [ l] found. The effect of 

including this process is discussed in the coming sections of 

this chapter.
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Vinogradov et al [ 2] have described the use of the ratio

as a density diagnostic. The dependence of this result on the 

choice of collision model will be discussd later.

6.Description of the Model

The ionisation balance in a Silicon plasma has been 

studied numerically. The states which were included were the 

ground states of Sil to SiXIV , bare nucleus, singly and doubly 
excited states of SiXIV (Fig.IXl). It has been found that the 

neglect of higher states is justfiable by performing 

calculations in which the occupation of the highest states which 

were included was always small. The errors due to the neglect of 

higher- energy states were assessed by performing calculations 

with and without the n=5 singly excited He-like state. This 

resulted in the fractional changes of the order 10 J in the 

populations of the states of interest which were the n = 2 states 

and the ground state.

The collisional and radiative rates which were used have 

been described in section 2 of this chapter and are of the form 

of equation 1X1. If we choose to calculate the ratios of the 

populations to that of the ground state of SiXI then we can 

solve for the ground state of Sil to SiX and then for the 

others. The equations for the ground states of Sil to SiX are of 

the form:
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2p2C1D2) 
2s2p(̂ P.) 
2p2(3P2) 
2p2C3P1) 
2p2(3P0) 

2*2pC3?2) 
2a2p(3P1) 
2s 2p<3?0) 
2a2(1So) 
2p2(1SQ)

Si XXV a • 1

5 C3L), 5 C1!) —
4 C3!), 4 C1!) --
3 C3L), 3 C1!) ------ ■ ...

2?<h) -------
2p(3?) --------
2s(1S) ' —
2s(3S) --------

Si XXII ) ls2C1S) 
)
)

— f*1*1 The ioKisetioi) stages of Silicon which *ere used calcula tions. i n the
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This tridiagonal system may he solved using a triangular solving 

routine. The equation for the remaining states is of the form:

A * n = B

where A is a sparce symmetric matrix with positive diagonals and 

negative off-diagonals and n and E are vectors.

X I I  X I I I  X I V  XV

XII r* nXII
r
+Hi2,n

V •

0

XIII ★ nXIII .

•
X

•
— •

XIV *

•

nXIV

XV ★
nv 0

The non-zero eleirent of B represents the 

ground state.The solutior of this large 

eauations is obtained using the method de

coupling of SiXI to the
set of sparce linear 

scribed by Tuff
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This method gives an efficient and very accurate solution, but 

has the disadvantage of requiring large storage space.

7 .Results on the Line Ratio 

The line ratio

A ( 2 1 P 1 ; 1 1 S0 )

M f 2 J P 1 ) A ( 2 J P T ; 1 l SQ )

has been calculated using the model described in the previous

section and each of the three collisional formulae for the

collisional bound-bound exciation rates for He-like Silicon.

Figs.1X2,3 and 4 show the line ratio as a function of n for
temperatures of 100, 400 and 800 eV respectively and with no

radiation field. A good agreement between results from different
23collisional models is found only for electron densities ^ 10

cm ^. At these densities for the temperatures considered the

populations of the states are in LTE. So at these densities the

line ratio depends only on temperature and is not useful for

finding the density. At intermediate densities (10 - 10 cm "')

the results from using the three different collisional models

vary considerably. At lower densities they approach the low-

density limit which is given by the ratio of the excitation 
1 rrates of the 2 P and 2"P levels by electron impact from the

ground state. The range of electron densities of interest for
22 24 -3laser imploded microballoons is 10 to 10 cm .In this range 

the difference between collisional models can lead to order of 

magnitude or more errors in determining the density. The use of 

the set of rates by Sampson and Parks [ 4 ] which is valid for 

both allowed and forbidden transitions should be seen as 

preferable.
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Fig.1X2 The value of the ratio "a" as a function of density for _3
a temprerature of 10CeV using collision rates froir Fewe [ *](-- Electron density (cm )

Fampson and Parks [ 4 1 )  and Vinogradov et al [
2]( ).
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8.Results on Satellite Ratios

The use of dielectronic satellite intensity ratios for 

diagnosing hot, dense, laser compressed plasmas has certain 

advantages. They are less susceptible to opacity effects than 

resonance lines. The satellite line emission is also more 

characteristic of the hot, dense, core region as it has been 

observed that it is only emitted briefly from the hottest plasma 

region.

The calculation of the dielectronic satellite ratios by

Lunney and Seely [ l] did not include collisional de-excitation

from doubly to singly excited He-like states. These rates are

comparable to the radiative de- excitation rates for electron
22 -3densities greater than 10 cm . Figs.1X5 end 6 show the

dielectronic satellite ratio as a function of density for

electron temperatures of 100 and 400 eV respectively, calculated

with and without collisional de-excitation from doubly to singly

excited levels. From these results it can be seen that the

neglect of these rates can lead to overestimates of order 20 to

30$ in the inferred density from the neglect of these rates. At
24 -3temperatures above a few times 10 cm the satellite ratio is 

given by LTE. At low densities the collisional downward rate is 

negligible compared with the radiative rate and the intensities 

depend only on the collisional upward rates.

9«Extension of the Code for Li-Like States

The work described so far in this chapter was extended to 

include Li-like states. The states which were used are shown in 

Fig.IVQ.

264



Fig. 1X5 The satellite line intensity ratio as a function of
density for a temperature of 1COeV excluding (________) and
including collisional de-excitation from doubly to
singly excited He-like states.
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As FlS-IX5 for a temperature of 400eV. ^  (cm-3)
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The radiative and the autoionising rates are taken from 

Safronova f 5~\ • The calculation of collision rates was based on

the collision strength date given by Jacobs and Elaha [ 151 - The 

collision cross-section Q can be expressed in terms of the 

collision strength ^ as:

Q(aLS afL TSf) ira2o
Q(aLS_> a'L'Sf)= ------------------------  *13.6

E(2L+1)(2S+1)

where E is the incident electron energy in eV. The collision 

rates are obtained by integrating over a Maxwellian velocity 

distribution: nn

C-j =*/ f(v) v Q(v) dv

which reduces to:

In calculating these integrals we use linear interpolation 

between the tabulated values given by Jacobs and Elaha [13]- The 

calculation of collision rates for very high temperatures (over 

1KeV) requires collision strengths outside the range which was 

tabulated and for these we assume that the collision strength 
remains constant. The integration has been tested by comparison 

with the collisioral excitation rate coefficients plotted by 

Jacobs and Elaha [ 15“] for A1 XI.

Satellite spectra for temperatures of 4C0 and S’CC eV and 
2C 22 2^ -3densities of 1C ,10 and 10  ̂ cm have been calculated.
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10.Conclusions

A large computer program has been developed to study the 

ionisation balance for highly ionised Silicon. A more complete 

description in both the number of states included and the 

coupling betvzeen them has been included. We have used a recently 

developed sparce linear equation solving routine to calculate 

the ratio of the populations.

Results form this program so far are:

(1) a study of the effect of using different collisional 

formulae for bound-bound transitions, and

(2) finding a correction to the results published by Lunney and 

Seely in 1981 f  1 ]. In a very recent (1983) publication Lunney 

[1 2] has included this correction is his calculations.
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Apper.dix AIV

In this appendix various experimental and theoretical 

methods (other than the magneto-optical) commonly used to 

measure and calculate transition probabilities and lifetimes 

will be described. The discussion however will be limited to 

well established techniques and only a brief outline of each 

will be given. In section 1 theoretical methods of deriving 

spontaneous transition probabilities will be discussed. In 

sections 2 and 3 respectively emission and absorption techniques 

will be discribed and finally in section 4 some lifetime 
measurement techniques will be presented.

1.Transition Probability Calculations

In this section an outline of calculating transition

probabilities will be given. In section 1a the Einstein

coefficients will be derived and the relations between them

presented. In section 1b the absorption coefficient will be

calculated by assuming that we are dealing with a classical atom

in an electro-magnetic field. The value of the absorption

coefficient derived is auite accurste for strong lines whereas

wrong by orders of magnitude for weak lines. In section 1c we

will be considering a quantum mechanical atom in a classical

electromagnetic field and calculate the absorption coefficient.

The spontaneous emission coefficient A., does not come into

these calculations but can be related to E . through thei J
Einstein coefficient relations. However, the most rigorous 

method of calcualtion is to consider a quantum mechanical atom 
in a quantised electromagnetic field, where the correct results
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are obtained immediatelly for all three coefficients but a 

discussion of this may be found in (Merzbacher [ 2] or Sakurai [ 

Following these, in section 1d the Hartree-Fock and Coulomb 

approximation methods for determining transition probabilities 

for light elements will be briefly discussed as a more detailed 

discussion will follow in Chapter VII.

1 a.The Einstein Relations for Bound-Bound Transitions

Let us consider the absorption and emission of radiation [*

4 ] by an atom in a transition between two bound states -a lower

state i which has statistical weight g^ and an upper state j

which has statistical weight g.. Their populations are n. and n.

respectively. Only three processes are likely to occur:

(1) The first process is absorption of radiation end the rate at

which energy is removed from an incident beam of radiation I

in terms of the absorption Einstein coefficient E. . and the

absorption coefficient a ,can be expressed as:v
B- • hv.•lj

a I - n. -----V V 1 4 „

(2) The second process is a spontaneous transition with the

emission of a photon. The Einstein coefficient related to

spontaneous emission per unit time is A.. and the rate ofli
emission of energy is:

Aj j hv. .
nu(spont)= n. _______

J  4 T

(>) Finally, the third process is a transition induced by the 
radiation field (stimulated emission). The rate of energy 

emitted is given in terms of the Einstein coefficient related to 

stimulated emission, by the following expression (which asssumes
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the rate of emission to be proportional to Iv ):

n (induced) n .
J 4

Iv

In thermodynamic equilibrium A.., B.. and E. are related by theJ i 1 l j
following expressions:

JT = 2h>T / C BJT and 9iBji = q.B..J yj 1J

bearing in mind that the occupation numbers of levels i and j 

8re related by the Eoltzman law and that =EV (the Planck 

function). The Einstein coefficients are properties of the atom 

only and are independent of the radiation field.

1b.The Classical Oscillator Model

The equation of motion (for a classically oscillating)

electron of mass m and charge e driven by an oscillating
electric field E, =E eiW (t-r/v) ^^ven [ 5 ]: t.r 0,0

m x + yx = -eE 0 ,r

ioot
e

( A W 1 )

where is the resonant angular frequency and Y takes into 

account all forms of damping. Further, the phase velocity v of 

the electric vector E is given by:

V = c/n‘

where n' is the complex refractive index (r'=n+ik). Therefore

E, becomes: t,r
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( A 3 V 2 )Et,r = E0,0
-ojkr/c iu( t-rn/c) 
e e

The solution of equation AIV1 then becomes (for a fixed value of
i ^ t \r where E, =F e ): t, r o, r

xt,r
-(e/m) Eo>r

2------- 2------- :—(ojg -  OJ ) + i o j y

ia)t
e

defined

electron oscillators per unit volume the polarisation is 

as:

Pt,r ext,r
loot

e

The susceptibility (polarisation per unit field) is X=P/E

i2 m
X = 2 2 !(a»0 - co ) + icoy

Eut the susceptibility is related to the complex refractive

index n * through the p e r m i t i v i t y  e as f o l l o w s :
2 p

1 + X / Go = e /e o=(n') = 1 +e^r/l/'/(2Tr mv q( ( v -v q) + ly /A^ ))• Using 

equation AIV2 and separating resl from imaginary parts, and 

using the relationship c-AAlJ.f (where N. is the number of atoms 

and f is the oscillator strength, which relates the quantum 

mechanical and classical models of absorption) , we obtain the 

following [ 5]*

nv 1 + __________ (v0 -V )________
4tt m vQ (vQ -y)* + (y/4ir)2

irê Nf y /4 ir̂ 

v me ( vQ -v)Z + (y/4ir)^
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From section 1a of the present appendix we had that the 

rate at which energy is removed form an incident beam of 

radiation I,, to be a,. I, =N.E. .1. d> h v,* -/4 tt • Integrating
v  V V  1 J

over the line profile we obtain:

~  h*  •
I  /  <j> d v  =  N . B . . v I v l 1J

■+°° hv

xv K dv = Ni Bu  - J T -  = Ni Bu  I T -  1

T ’

/
(AW  3)

where <j> is the absorption profile. From above, integrating the 

absorption coefficient over the line profile we obtain:

2

A

7re
a dv = v

me Ni fi (AW 4)

Combining equations AIV2 and 4 we get

mhc

f may therefore be related to A .. and E.. as well.li

1c.The Quantum-Mechanical Model

We will now calculate for a quantum-mechanical atom in 

a classical electromagnetic field [10, 4 ].

Suppose that the structure of the atom in a stationary

state j can be described by a wavefuncion of the form jp .(r,t)1
which is also a solution of Schrodinger*s equation:

dip
Ej

(AW 5)

where E. is the energy of state j and H is the Hamiltonian 1
operator. The solution to the above equation is ijj.(t)=ijj .(C)e1 1
i E t /hj 7 ' and with special dependence it takes the slightly more

- iF t/hgeneral form of <£.(r,t)= <J>.(r)e j 7 J. The time-independent1 1
eigenstates (p. are orthogonal and satisfy the equation 1
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H. ^.^E. At t=0 a general solution has the form <f>* £ a .  ̂.A 1 1 1 j J 1
while at any time t it takes the form of:

-iE.t/h>Kt) = S 3j (t) ^(t) = E a^Ct) ^ ( r)e j
Ca w  6)

where a. is such that at t=0, \p(0) = £ a .  ̂ and the probability
* 2of finding the system in a specific state j is a . a.=/a./ .

3 3 3

If H=H. the atom is not perturbed and the a.'s are A 3

constant. If the atom is perturbed by some potential V (eg if

the atom is assumed to be inside an electromagnetic field 
AE=Eqcos a)ti), then the a’s will change with time and the atom 

will undergo transitions from one state to another. So,

V = E.d = (Eq cosoat) (l.d)

where d is the dipole moment of the atom. Therefore 

Schrodinger's equation now becomes:

+ V)ip
dip

ifi ---
at ( A W  7)

Substituting equation AIV6 in equation AIV7 and using equation 

AIV5 we get:

L  v  *„ (AW 8)

Multiplying equation AIV8 by ^ ̂  f integrating over space and
, *defining w =(E -E )/fi and V =< 4> /V/ <p > we get:e mn v m n n m n &

am (t) =m v '
in Eaft) V e nv ' mn

lojmntmn

( A W 9)
Eut also since

vmn = <Eo cos<jt> 1 - < V  1  i  /+n)= <Eo C0S(ut)

iut loot
= 2h cosait = h (e + e ) mn mn ' >mn
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equation AIV9 becomes:

a (t) nr '

1

i”h E  v .)
ioj t mn

mn
i o> t iojt 

(e + e )

Further by assuming that:(a) at t=0 the atom is in definite 

eigenstate k, (b) at t = T (T very eigenstate k is not 

depopulated and (c) e^(t) = 1 for t< T and integrating with 

respect to time, we get:

exp(i (to

am (t) =nr '

^XP(i (o> . +u)t)-lmk - -  ■ --kv - vwmk
( ---------------------- + __________

i n (“mk ) (tomk -OJ

( A W  10)

For absorption processes ( w 0)), the dominant contribution 

to a (t) comes when to mn ô) • Then integrating /sm(t)/ over all 
frequencies that can contribute to the k-^m transitions and 

substituting x=( ̂  ^ ,u=xt/2 and d v =d go/2 m =dx/2 m we obtain 

(assuming that the line profile goes to 0 at frequencies + and - 

00 )

/i-dmk/2 t
/■

- 2 2sin u du =
8m

1 7 7 / i ' - W 2 Jv 1

where d are the dipole moment matrix elements and J is the mn v2mean intensity of radiation ( =c/41T .E /£ 77) • Since the 

Einstein emission coefficient is defined as:

J \ T  = B, J t 
C  km km v
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then

The other two coefficients can be easily obtained. Summing over 

all substates k (of the lower level i) and all substates m (of 

the upper level j), we define the strength of the line to be:

1d.Transition Probabilities for Light Elements

When the atom has more than one electron, the Hamiltonian 

for N electrons becomes:

The first term represents the kinetic energy of the electrons.

The second term their electrostatic attraction to the nucleus

(which has charge Z) and the third term represents the Coulomb

repulsion between all pairs of electrons. In Hartree's self-

consistent field method, the rapidly changing field due to other

electrons (for a given electron) is approximated by a static

mean spherically symmetric field. In this way, the angular

factors in the Schrodinger equation can be separated out exactly

like for the hydrogenic case. There is only an iterative

solution to determine the electronic wavefuncions (see any

standard textbook eg [ 4 ] or [ ?]): we start with an approximate
set of functions, compute the effective nuclear charge Z „„ef f
(seen by an electron considering the effect of the others), 

solve for the radial function, recompute end iterate until
the procedure converges. The line strength can be obtained form
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the following expression assuming that only one electron 

undergoes s transition:

where j(K) is the line strength of the multiplet and J(L) is the

evaluation of * P ,P ,,,dr can be simplified when the largest 

contribution to that integral comes from large values of r where 

the electron moves in a nearly Coulomb potential. In this case, 

the integral is approximated to bydrogenic values. For cases 
where this approximation cannot be made, Hartree-Fock 

calculations are useful and for those where the independent 

particle’ model itself breaks down, new theoretical techniques 

have been developed in recent years f 1] which take into account 

electron-electron correlation effects. The main ones are the 

following: (i) the many body perturbation theory (KEPT) based on 

the work of Erueckner and Goldston and first applied to atoms by 

Kelly which includes all the correlation diagrams (ie all the 

terms of perturbation theory)to a given finite order, (ii) the 

random phase approximation expansion with exchange (RPAE) 

developed by Amusia and Wendin which includes some diagrams to 

all orders of perturbation but does not include all the 

diagrams, (iii) The g-Hartree method developed by Tietz et al 

which includes all the diagrams to second order in an optimised 

basis (rather than in the somewhat arbitrary basis of 

perturbation theory) so that the mean field is correct to all 

orders and finally (iv) the hyperspberieel method developed by 
Kacek and Fa no which considers only two electron correlations

o

strength of the line and their values are tabulated [ 6l.

Eates and Eamgaard [ 7] have shown that the cumbersome
00
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Multi-configurational Kartree-Fock is a less sophisticated 
alternative to the many body approaches above, but also produces 
a significant improvement in agreement between theory and beam- 

foil data for many transitions. In Chapter VII some resonance 
line transition probabilities for Mgl that the author of this 
thesis calculated, will be given in greater detail using the 

multi- configurational Hartree-Fock (MCHF) model (Fischer and 

Saxena [" 8] and references therein).

Another useful new idea was the establishment of rigorous 
upper and lower error bounds to the theoretical data (Viese [ 1] 
end references therein). This approach allows a theoretical 
assessment of the experimental results obtained. However, this 
scheme is limited only to the He-, Li- and Fe-sequence where the 
wavefunctions can be obtained with a reasonably high accuracy.

Relativistic effects in transition probabilities must be 
taken into account for elements with high Z along an 
isoelectronic sequence, since the remaining bound electrons of a 
highly stripped ion (which move in the field of a large nuclear 
charge) approach relativistic speads. This starts happening for 
Z between 15 end 40 depending on the transition f" l].

2.Emission Measurements

So far, the emission technique |" 5] has been the most 
basic source of experimental transition probability data tut not 
necessarily the most accurate. In recent years, attempts have 
teen made to improve the experimental conditions in order to 
obtain a homogeneous, stable, optically thin and vrell analysed 
piasma .

but solves the Schrodinger equation directly.
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The underlying idea behind the eirission measurements is 
that the energy emitted in all directions per unit solid angle, 

per second per unit area accross a layer of thickness 1 is

T2 1=1/ 4 K2A21lh V21(0 )*
For absolute measurements /^^ cpr He obtained by 

determining 1 ^  and K^. However such measurements are extremelly 
difficult to perform accurately. Normally, the intensity would 

be compared with that of a standard source. The second important 
problem to be tackled is the correct calculation of N^. If the 
experimental conditions are chosen such that the gas is in the 

state of local thermodynamic equilibrium (LTE), then can be 
related to the total number density of a species a according to 

the Eoltzman relation:

N = N ka a
\  - w
U(T)

where a represents the ionisation stage, k the excitation level
k, is the excitation energy for level k and U(T) (= E g^e
E /k T\ /k E ) is the partition function (the temperature T can be
measured). True thermodynamic equilibrium cannot hold in a
source such like an arc, as energy is fed in constantly in as

electrical power and comes out as radiation. For LTF conditions
the temperature T and the total number density N are related by
a set of conservation and equilibrium equations (N = E N and

the Ecltzro8n relation). For one-element arcs these equations
enable us to determine the state of the plasma just by knowing

either or T. But for two-element arcs considerable errors
c

arise due to de-mixing effects ("the various components of the 
arc plasma tend to separate out, with the more highly excited 
atoms apparently congregating in the hottest bit of the arc."[
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A third difficulty that has to be overcome in emission 
measurements is the correction for optical thickness effects. 

Most sources usually have cylindrical geometry and symmetry and 
when the line is viewed end-on it tends to be optically thick 

and there might also be a radial temperature gradient. 

Corrections to radiation trapping can be made although ideally 
they should not be needed. Some of these problems seem not to 

exist in wall-stabilised arcs recently developed [ l]. In this 
case, the arc is very stable and enables us to vary its physical 

conditions over a wide range of densities and temperatures for 
the maximum desirable amount of obtainable data. The arc source 

can be any neutral or singly ionised gaseous element and also 
the plasma is homogeneous along the line of sight (for side-on 

observations of a cylindrical plasma the Abel inversion process 
may be applied).

A final uncertainty may arise if there is some continuum 
radiation arround and therefore shifts the base line from its 
true position. Furthermore if the measurement is made at high 
pressures then inevitably there will be a Lorentzian component 

in the line profile. In cutting off 5 FWKM from the line centre 
would produce an error of 7® for the Lorentzian line whereas a 
negligible one if the line was purely Eoppler. This last effect 

may explain the 20f discrepancy between observed and calculated 
transition probabilities in the late sixties when calculations 
had been extended only to 1 FV/HM on either side of the line 
centre 1 ] .

When the determination of N becomes very difficult 
(especially in the case of arc plasmas with several elements)

5]) and two independent measurements have to be made.
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then it must be treated as an unknown and transition probability
data has to be measured on a common relative scale. Absolute 

values can be obtained if the life-time of one of the lines was 
measured with any of the recently developed atomic life- time 

techniques. If one is dealing- with excited states, a lower 
electron density is required to obtain "partial" LTE than for 

the ground state. The transition probability ratios (with an 
arbitrarily chosen reference iine r) are as follows [ l]:

Since /E -E / is equal to a few times kT, the ratio A /A is not x r x r
very sensitive to temperature uncertainties. From the above 

statements it is obvious that relative A-val'ue measurements are 

much more accurate than absolute ones.
Another very usefull emission technique is the branching 

ratio technique in conjunction with life-time measurements. 
Emission lines, originating from a common atomic level are 
defined as branches and if we introduce the definition of photon

Also we know that:

1 1

1 Akj 1 Dkj
Consequently:

1
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In this method, emission spectra were generated in special 
hollow cathode sources (the metal under study was usually what 
the cylindrical cathode was made from). The total line intensity 
measurements were quite accurate (a few %) under normal 
conditions and relative photon intensities of all the branch 

lines were measured for a number of atomic levels. The life­

times of these levels were measured by the beam-foil technique 
which is explained later in this appendix. Therefore in the 

branching ratio technique each group of emission lines 
originating from a given atomic level must be normalised 
individually unlike the relative measurements where only one 

lifetime is needed to normalise all the relative emission data 

for one type of gas [ l].
Furnaces may also be used for emission work but they are 

usually not hot enough (3C0C°K) and sometimes are not optically 

thin, although they have a uniform and well defined T and the 
contained gas is in equilibrium. Shock tubes could be used 
instead, if the temperature could be always measured accurately. 
The wall-stabilised arc desribed above has proved to be the most 
suitable emission measurement source [ 5]«

Absorption Feasurements 

3a.Integra ted Absorption
When light radiation of intensity I (0) is incident on av

column of absorbing medium of thickness 1, the emerging 
intensity is equal to:

1 -a 1
Iv(]) = Iv(0) exp( - r  dx) = 1^(0) e v

0 (A1V11)
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is independent of x.if the medium is homogeneous so that av
The absorption coefficient can be written as:

a =v
1 I (0) 
—  In 
1 I (1) ( A W 12)

For convenience, equation AIV4 will be restated:
o

A
dv =

4e me o

The absorption coefficient has to be obtained from equation
AIV12 as it cannot be measured directly, end the integrated

absorption is the area under the curve when a is plottedv
versus v .

Therefore, knowing the area under/a d , 1 and N 1 wouldv v 1
allow us to determine f [1 »51• The first difficulty of the 
method is the determination of . If the relevant transition 

levels are in LTE then is related to the total number density 
N of species a and the temperature T, through the Eoltzman3
relation. T can be measured fairly accurately using optical 
pyrometry or thermocouples. If we are interested in relative 

oscillator strengths, then need not be measured. If all the 
transitions start from the same lower state then knowledge of T 
is not necessary for relative measurements. For a transition 
starting from the ground state (where we can say that N “= Ng), 

N can be easily found from the equation of state for a gas if 

we know the vapour pressure and temperature (P/kpT=N ) [ 1J.
The second difficulty of the method is that of using an 

instrument of high resolution to obtain a realistic line 
profile. The instrumental width should be much less then the 
line width. If that is not so, then the instrument smooths too
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much the line profile, the curve is flattened out and the value 

for the area is found to he too low. To avoid this difficulty it 
is common to pressure-broaden the line T 5]« Finally, the path 1 

must be defined accurately.

3b. Equivalent Width Fethod
The equivalent width W of a line is given by thev

following formula:
W(v) =

- i
1 i ne

h w  ■ M 1) 

v ° )
dv

(AW 13)

and measures the total energy extracted from the incident 
radiation beam end is almost independent of the instrumental 

resolution. Equation AIV13 can be rewritten as follows in terms

of equation AIV11: -a 1
- e v )dv

1 ine (AW 14)

and for the opically thin case k 1<<1 the above reduces to:v

Wv = 1 dv = 1J ia dv - -------— N-i fl
v 4e me (AW 15)

Therefore by plotting log(W / 5v-n) versus log(Nfl/ SvO forv -L
the optically thin case (where Sv ^ is the half value width) we 
should get a straight line. As the optical depth increases, 
rises much less quickly as a function of Nfl compared to the 
thin case and for a pure loppler line W saturates to a certain 
value since all the radiation that can be absorbed is. Eut, 
however it does not completely saturate for a Lorentzian line, 
where the wings are much more important, since radiation can 
still be absorbed from the line wings even if the line centre

286



has reached its saturation point. Such typical curves of growth 

(logW / 5v-n) versus log(Nfl/ gv p) are shown in Fig.9*9 of [ 5]*v -L
For the optically thin case the straight part of the curve

may he used to determine f from equation AIV15, VJv and 1 can be
measured with a high accuracy. The determination of was
described above. However, the curve of growth could be used to

measure f-velues of optically thick lines as follows:
theoretical curves of growth are computed for several values of

a (a = ln2 5XjV <$Vp)* V is then measured as a function of Kfl.
When the experimental plot of logW versus logNfl is slitv
horizontally over the the theoretical curves and coincides with 
one of them, the absolute value of Rf can be found F 5]«

There are two main sources of error in absorption 
measurements. One is the absorption of radiation from the wings 

of the line which is hard to measure very accurately and the 
other is the fact that inevitable scattered light reduces the 

absorption.

J,c .The Dispersion Technique
In section 1a of the present appendix the expression for 

the refractive index n in the region of an isolated absorption

line of wavelength

nv

X was derived and found to be equal o ^
e2Nf

1 =
4m m v Q (vQ-v )2 + (y/4tt)2

to:

( A 3 V 1 6 )

In 
to :

the region away from v ( vQ~v M i r ) >

nv
e2

e meo

Nf x

x - X.

the above reduces
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In this technique the relation between n and the f-value nearv
X will be applied and is called the "Hook" technique invented o
by Rozhdestvenskii f1 ,51 •

The experimental set-up consists of a Kach-Zehnder 
interferometer which is illuminated by a continuous source. The 
optical path lengths of the two interferometer arms are equal 

and the fringes which are formed on the slit of the spectrograph 

are nearly horizontal. Ey placing a dispersive medium of length 
1 and refractive index n with an absorption line at \ in one 
arm of the interferometer, the fringes become distorted due to 

the rapid change of the refractive index (actually they follow 
the known n-1 curve behaviour). A compensating plate of length 

1' and refractive index n' is inserted in the other arm end a 
very large path difference (order 10^) occurs between the two 

rays. Two characteristic hooks symmetric to the centre of the 
line are formed and their separation can be related to the 
oscillator strength of the transition. Also, because of the 

large path difference, the fringes away from xo slope 
diagonally accross the spectrum. Therefore, the fringe equation 
becomes:

by + (n-1) 1 + (n'-l)l' = pi

where p is a large integer, y is the distance up the 
spectrograph slit and b is equal to ha /f where f is the focal 

length of the lens used to image the source on the spectrograph, 
a is the angle through which the first beamsplitter and mirror 
are rotated about an axis perpendicular to the plane of the 
optical axes end finally, h is the distarce between the first 
beamsplitter and the first mirror.
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The position of the hooks is given by dy/dx =C . Also it 
can be said that the refractive index of the compensating plate 
remains almost constant with wavelength changes: ie dn'/c!X =0., 

From equation AIV16 vre obtain:

e 2 N f  x 3_1 0 I ------ *----------------- n-- = p
16ir e m c (xu -X )o n o

where x u is the book wavelength. Therefore if 2/X U -X /= A ,xi ri 0
2 2 7 2then -p a =e X^N^fl/(4 it eomc) So* can be determined for

relative values by the hook distance A, which can be measured 
to a good accuracy. Uncertainties in the interferometer constant 
are negligible. If absolute f-values are to be obtained, then 
can be obtained by the methods described in the previous 

sections.
The hook method has some very basic adventages compared to 

the emission and absorption intensity measurements.

(a) Wavelength distance is easier to measure than intensity.

(b) There is no radiation trapping, and

(c) There is no need for intensity calibrations.

However, the hook technique has two limitations and cannot 

be successfully applied a) if the lines are weak (the hooks are 
not very clear) and b) if the lines overlap with each other (the 
hooks are not very well separated).

A Lifetime Measurements

If nuin̂ €r spontaneous emissions per unit
time from level 2 to level 1 end there is no absorption or

stimulated emission then state 2 decays as dN^/dt = -K £ A *.J 2 u 21
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This means that:

N2(t) = N2 q exp(-(Z A2i) t)

where the mean lifetime is the time taken for N^Ct) to decay
to 1/e of its original value. Therefore,

T2 " 1 ' ? A2i 1

The basic reason for requiring to measure the lifetime of 

excited stomic states [ 1 ,5 ] is that they are related to 
transition probabilities, through T , =1/  ̂A, . . If in low-lyingK j, Kl
atomic states only one radiative transition k--^i exists or 

dominates, then the lifetime can determine immediately the 

transition probability through * However, in most

cases, a wide range of transitions takes place and from all the 
methods of measuring transition probabilities in this appendix 
it was shown that only relative f-values can be obtained. The 

measurement of only one lifetime can allow us to normalise all 
the relative transition probability data for a given species. 
However, for the branching ratio technique each group of 

emission lines for a given atomic level had to be normalised 
separately (see section 2 of present appendix).

There are three main techniques for measuring lifetimes: 
the delay time, beam-foil spectroscopy and the Kanle effect. 
None of these methods (in contrast to absorption and emission 
measurements) requires knowing the temperature, density and the 
level population of the relevant level or making assumptions of 
LTE, thus avoiding serious sources of error.

4a.Eeam-Foil Kethod
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A beam of ions of various degrees of ionisation 
(accelerated in a Van der Graaf accelerator) passes through a 

thin foil r 5]« The interaction of the beam with the atoms of 
the foil has as a result that the beam emerges in different 
states of excitation. Ey knowing the velocity of the beam and by 
measuring the intensity decay as a function of distance from the 

foil, atomic mean lifetimes can be obtained. For these 
measurements it is preferable to keep the spectrometer fixed and 
measure the intensity of the lines in which we are interested by 
moving the foil upstream. This method is very widely used 

because of the simple experimental set-up. Also, the recent 
progresses in high energy accelerator technology, have made it 
possible to use very highly charged states of heavy elements. In 

this case, the lifetimes are very short and very accurate 

measurements are necessary as well as having the slit very close 

to the foil.
Apart from the advantages of this method, there are some 

problems associated with it. The major is the repopulaticn of 
the upper level (of the transition in question) by radiative 
cascading from higher lying atomic states. Other similar 

problems are radiation trapping and de- and re-population of 
this level collisionally. Low light intensity may also create 

difficulites. Finally, the finite acceptance angle (say 2 6 ) of 
the spectrometer has as a result to accept velocities vsin^Q on

either side of the direction perpendicular to the beam. Eoppler 
shifts will cause the line to appear broadened.

So, if the beam intensity is low, the cascading problems 
can be overcome, but a wider apperture will be needed and the 

Eoppler broadening problem will be enhanced. This is the only
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lifetime measurement method applicable to ionic spectra.

4b.Telsy Methods
The gas which is contained in the vessel shown in Fig.AIVI 

is excited by a pused electron beam [ 5]* At the same time a 
time-to-pulse height converter is switched on. When the emitted 

radiation passes through a monochromator and a photomultiplier, 
the converter is stopped end therefore the height of the pulse 

is proportional to the time the excited level in question took 
to decay from the moment it was excited. Statistics for dF/dt as 

a function of t, show that F decays exponentially with time 
constant T .

Alternatively, we could use a coincidence counter instead 
of a time- to-pulse height converter. In this vay we would 
record the coincidences between the electron pulse that excites 
the atoms and the emitted radiation as a function of a delay 
time t. This delay time is introduced to the signal from the 

electron pulse [ 5]«

4c.The Hanle Effect
In this technique, polarised resonance radiation excites 

atoms in the presence of known magnetic fields. The field causes 
the electrons of the atoms to precess about its direction. The 
radiation that is re-emitted involves the field and the atomic 

lifetime, which therefore may be calculated. The Hanle effect is 
shown schematically in Fig.AIV2 [" 5]*

Plane polarised light in the x-directicn and travelling in 
the y- direction leaves the source and ther enters the resonance 
vessel where it is absorbed and then re-emitted. The 
photomultiplier on the x-axis does not record a signal since the
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Fig*.AIV1 Schematic representation of the delayed coincidence 
experiment to measure atomic lifetimes.

293



/

Schematic representation of the Kanle effect.
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emitted radiation has the same polarisation as the exciting 

radition. When a magnetic field E is applied in the z-directicn 
the photomuliplier records a signal because the resonance 

radiation is partly de-polarised. The electrons that initially 
oscillated in the x-direction now process shout the z-direction. 
If some atoms decay before the precessions! cycle ends the 

intensity of the y-direction will be less than that of the x- 
component originally. The above statement can be expressed 

mathematically as follows:
2Y

+ 4

where I is the intensity of the signal recorded, y is the 

damping constant ( y - W  t ) and is the processional frequency 

( Wp=gj yjjE/h where gj is the Lande g-factor and gj is the Eohr 
magneton). From the FWHK of the signal we get:

Ti
T “ -------------

gJ 2 yB B|

where B+  ̂̂  is the value of the E-field corresponding to half 
maximum intensity points. Therefore if g T is known, t can be

u

determined from the half width of the signal intensity plotted 

against the applied magnetic field.
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Appendix AY

Second Order Magnetic Field Effects 
This appendix will he devoted to a brief discussion of 

second order magnetic field effects. The second order Zeeiren and 

diamagnetic effects are discussed end the fact that these two 

effects never occur simultaneously is demonstrated . Following 
this, some basic features of the alkali and the alkaline earth 
spectra with principal quantum numbers between 6 and 40 will be 

presented [ 1,2] and a brief qualitative [ 2] and quantitative [ 
discussion of these effects will be given. Finally, the work 

on these aspects performed by King [ 4 ] will be outlined briefly 
as well as some of the results of his calculations.

Extending (to higher orders) the formula which gives the 
energies of the 2j + 1 components of a line after the application 
of a magnetic field, we get [ 5 ]:

where

A E m = fiemgB +
f i V  B2

+ 2 ( j + l ) c
f ( j . m )  +

W l )

f ( j . m )
(J+L+S+2)(-J+S+L)(J+S-L+l)(J+L-S+l)(J+M+l)(J-M+l) 

4(J+l)Z(2J+l)(2J+3)

and where 3 = e/2^AC is the Eohr magneton. To first order
approximation for low P's, J precesses about itself much faster

than J about P. For higher F's equation AV1 is a good
2approximation. This second order term in E can also be seen as 

due to a component of y perpendicular to J and is important
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when the spin-orbit and magnetic interactions are of comparable 
size. This case produces the Zeeman pattern asymmetries (partial 

Paschen -Pack effect).
A second type of a spectral line shift in the vicinity of 

a E-field arises from the intrinsic universal atomic 

diamagnetism which all atoms possess. Garton and Tomkins [ l] 
and Van Vleck [ 5 ] have calculated this shift (by considering an 

electron of an atomic core of charge Z to move with velocity v 
at a distance r from the nucleus and influenced by the magnetic 
field B) and found that:

AE *
8 m (AV2)

where r_. is the projection of r perpendicular to B. Eut a more r
thorough quantum mechanical approach by Van Vleck f 5 ] has shown 
the shift to be:

e2 B2
A vq =

8mh c3—  V " * )  d ^ )
(® 3)

where a is the Bohr radius and n* is the effective quantum 0

number.
When the principal quantum number is large, then the spin-

orbit coupling coupling is very weak (the spins of the core and
the atomic electrons are almost uncoupled). Therefore the

diamagnetic term (equation AV2) must be added to the Pachen-Eack
formula ( & E =h$ E Z mn .+2m .) rather than to the one that m 1 li si
corresponds to lower magnetic fields (ie equation AV1). This 
means that the two types of quadratic shifs are never 
simultaneously of great importance. The second order term of 
equation AV1 is proportional to 1/  ̂ (and the spin-orbit
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coupling constant C is proportional to n J ) . Therefore we could
4 2say that the diamagnetic term varies as n E whereas the Lande

* 2term as n^E . At low values of n (where the LS coupling is still 

valid) the two quadratic effects are comparable and none of them 
should he neglected. As n* increases, the Lande factor increases 
as (n*)' and at some point where the LS coupling breaks down it 

becomes negligible whereas the diamagnetic term increases 
constantly as (n*)^ since it does not depend at all on the 

coupling conditions [ 4 ].

King f 4 ] has measured quadratic effects for Sri and Eal.
For Ea he shows that for low n-members the two shifs are

comparable whereas for n in the region (16< n <21) the
diamagnetic shifts dominate (since Lande shift/diamagnetic =

1/n*). A small discrepancy of the measured shifs with calculated
ones (the latter lying above the former) was explained [ 4 ] by

~2the fact that the matrix elements <nl'm' /r /nlm > were 

overestimated since hydrogenic wavefunctions were used instead 
of more realistic ones taking into account the core and 
screening effects. For the higher members n> 27 the LS coupling 

breaks down and therefore the only shifs present are the 
diamagnetic ones. However for these members King noticed that 

the observed shifts lied above the calculated diamagnetic ones. 

At even higher n's the observed points go back to being below 
the calculated ones. The theory that would explain these higher 
n trends has not yet been developed. The results that King [ 4 ] 

gives for Sr are similar to those of Ea, show good linearity 
with E^ and (n*)^ and the observed plots are lying below the 

calculated pure diamagnetic ones. For n< 27 in Sr, the quadratic 
shifts that King [ 4 ] gives are by an order of magnitude smaller
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than the inter-n separation. Therefore at arround n=27 (at which 
point our calculations stop) we can be sure that the quadratic 
diamagnetic effect plays no significant role in the spectrum.

Next in the discussion of this section, comes the problem 
of mixing of configurations in atomic spectra. Experiments were 
carried out in the 1930's by Jenkins and Segre [ 2] using a 

magnetic field of 2.7 Tesla and observing the n=10 to n=35 lines 
of Sodium and Potassium. At the same time Schiff and Snyder [ 3 ] 
presented some very enlightening theoretical explanations.

In these two papers, the whole spectral region they dealt 
with was devided into smaller ones depending on the features 
they exhibited.

2(a) For n<6 the P separation was larger than the magnetic 
splitting.

(b) For n<12 the magnetic splitting begins to increase at the
2expence of the P separation. Further spin and orbital angular 

momenta become uncoupled as n increased and finally the Paschen- 
Pack regime was approached.

(c) For 12<n<2C the components were displaced towards the 
shorter wavelengths by (n*)^E^ (as was dictated by the 
diamagnetic shift discussed previously in this chapter) . The 
shift of the centre of the tvro a -components was twice as much 
as that of the tt -component.

(d) Above n=20 the experimental results start not to agree very 
well with the pure diamagnetic (n*)^ theory. In fact the shift 
goes as (n*)^ as Schiff and Snyder [ 3 ] predict, towards the 
same direction (shorter wavelengths). Jenkins and Segre [ 2 ]
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observed s broadening of the lines in this region (20<r<28) as 

well. They found that the long wavelength component of the a - 
components was stronger, by being enhanced by the wing of an 

adjacent line. The observed shift differed from the expected 
value considerably and this difference could not be attributed 
to measurement errors. This was explained as follows:

The pure diamagnetic theory assumes that a certain P level is 

isolated from states with different L's. However a magnetic 
perturbation causes two states with different L ’s to mix and 
produce what is called configuration mixing effects. Parity 

restrictions allow only mixing between states of L=0,+2,... and 

since only the L=1 of the p-states of an s-p configuration can 
radiate where will only be mixing between the P , F ,H. . . .s tates . 

When the magnetic energy starts being smaller compared to the P- 
F separation then two things happen:(i) To a first approximation 
the eigenfunctions of the P states mix with those of the F 
states. This P and F repulsion causes a displacement of the P 
level towards the shorter wavelengths.(ii) To a higher 
approximation the eigenfunctions of the P states mix with those 
of H,K,... states and this causes S--> F, S--> H etc transitions 

(on the longer wavelength side of the line) which under normal 

circumstances would be forbidden. The proof of the existence of 
such forbidden transitions in the spectra is the line broadening 

(since the poor resolution of the instrument that Jenkins and 
Segre \ 2 ] used showed only one broadened line).

(e) For n>TO the magnetic energy becomes comparable to the n- 
separation energy and thus terms with different n, as well as 

different 1, begin to mix. How the broadening is symmetric (and 
the intensity of these lines decreases constantly) until the
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lines are no longer distinguishable at arround n=40.
At this point it would be useful to state some of the 

theoretical explanations of the above facts treated very well in 

the paper of Schiff and Snyder \ ?]• The diamagnetic term in the 

Hamiltonian stops n and 1 being exact quantum numbers for the 

terms in question. The real eigenfunctions radiate only due to 
the 1=1 contribution. In order to obtain the eigenvalues of the 

terms we are interested in, a diamagnetic matrix was formed with 

non-zero elements only between states with L=0,+2... The matrix 

elements were given by [ 5 ]:

o p  —p 2(1 -1-1+m,
<̂ nl 'm/r sirT9 /nlrn̂  = </r v> ( --------- !---  )

(21-1) (21-3)

Schiff and Snyder [ 3 ] used hydrogenic wavefunctions to evaluate 
the radial functions and assumed that for 1 = 1 , n*=n-0.85 while 
for 1=3,?»»* n*=N. The diagonal and off-diagonal elements (for 
m=+1) of the diamagnetic matrix were given by the following 

expressions:

V^fn.jl) - — j H n ( 5n + 1 -31(1+1)) 1(1+1)

• 8m c e (21+3) (21-1) “

7I4 H2
1,1-2^’t1) j ,, ,

8mJ c e Z

5n‘

2 ( 21- 1)

{ (n 2 - l 2 )(n 2 - ( l - 7 ) 2 )(l+ i ) i (1. 1 ) ( 1 .. 

(21 +1) (21-3)
1/2

}
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At the time when the above work was carried out calculations had 
to be done analytically. However the breadths of the lines as 
well as the centres of gravity of the broadened lines were found 

easily. The matrix was diagonalised by a real, normalised end 

orthogonal matrix S (where £ S.,H,1S.1=E. 5.-,). The position of 
the centre of gravity of the lines as well as their breadth were 

given by:

m e efi H
E ( n , + 1

2fiZ (n*)Z 2m c

4 2 4
n HP (n*)*
-- 3— 2— 2—4mJ cc

A E ( n , + l )  = i { w
f i 4 H 2 ( n * ) 4 

4m3 c 2 e 2

Second order perturbation calculations gave the eigenvalue of 
the peak of each line as higher order of (n*)^ as mentioned 
earlier in this section:

ED(n>+1) = E ( n , + 1 )  +'
h 1 0  H 4 ( n * ) 11 

7 2 4  m/ c 4 e a D

However, since for 28<n<35 for the case of K or Na mentioned by
Jenkins and Segre [ 2], the line broadening becomes symmetric,

E and E begin to have an identical meaning. For n> 35 the P
above approximations become invalid.

King [ 4 ] used a large computer for his calculations, set 
up the matrix and solved for the eigenvalues and the intensities 

of the lines in question. He also noted that for n< 15 the 
lifting of the degeneracy was more pronounced as the electrons 
were closer to the core. Therefore a hydrogenic wavefuncion was
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not the best choice for this region. Cn the other hand n should 
not be so high that n-mixing would prevail. So there is a 

certain n region for which the previous treatment should not be 
applied. King [ 4-1 also obtained some experimental spectra on Sr 

and Ea. He found that his Sr spectra (with 12<n<25) did not 
exhibit any inter-1 mixing even at very high fields which is a 

reasuring point for our f-value calculations with the MOV 
method, since we suspected 1-miximg above n=25, but ignored it 
up to that n value. For the lower members of Ba, King f 4 ] found 
that arround n=19 some very faint 1-mixing lines were present. 
However they were so faint that actually only the first and 

second inter-1 lines could be observed. The experimental 
predictions of the positions of these lines were very slightly 
higher than the observed ones. For the higher members of Ea, 
similar behaviour was observed. He also found that experimental 
results lied much closer to the ones calculated from the 1- 
mixing matrix rather than the pure diamagnetic theoretical ones. 

Of cource results from 1-mixing calculations match with the 
experimental data only in the region where n-mixing is 
insignificant. King [ 4 ] also found that as n increases, the 1- 

spacings become smaller and so r-mixing dominates as one would 
expect.

Finally, in an important paper Garton and Tomkins [ 1] 

present spectra for Ea up to quite high n-values (n=75) end have 
actually experimentally observed what Jenkins and Segre [ 2 ] 
predicted. A significant advance m  this last paper [ 1] was the 
considerable improvement of the experimental set-up which 
enabled them to get very accurate spectra which shoved 
explicitly the 1-mixing effect.
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Garton and Tomkins [ l] and also King 4 ] found that on 
their Earium plates there was a number of equally spaced lines 

beyond the field-free ionisation limit. Subsequent ty, King [ 4-] 
also found that after the 1- and n- mixing spectral regions (ie 
after n=4C for Ea) there were regularly spaced lines by l/2fiw 

(where w=eB/mc ). He noted that there was a region where there 

were a few broad lines separated by hw and afterwards there were 
lines separated by l/2fiw again. He explained this 1/2^ w 

separation "as due to the separation of the M=+1 and M=-1 
spectral lines with a relative shift of hw". Finally he also 
observed spectral lines separated by 3/2fiw below and above the 

field-free ionisation limit. These spacings of the lines were 
called "quasi-Landau levels" [ 4 ] because they reminded us of 
the hw line separations that Landau attributed to a free 

electron gas in a magnetic field.
In the presence of an externally applied magnetic field 

and under the influence of its nucleus (although far away form 
it) an electron obeys the following equations of motion [ 4 ]:

mreduc x

mreduc z

When the electron moves along the z-direction and the Coulomb 

potential dominates over the other potentials, then it will have 
a frequency (olv\ ) which will be much smaller than w and then the 
adiabatic approximation will hold [ 4ard references
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therein].Edmonds [ 6 ] developed a semi-classical model to study 
these line separations (3/2hw) near the field-free series limit 
of Earium. Very near the origin (which is the region of 

importance for radiative transitions) at z = 0 , the above 

equations of motion become invalid and the adiabatic 
approximation failed. Ey applying the Eohr-Sommerfield condition 

and assuming that z-0 (therefore the electron was almost 
entirely in the x-y plane) the equation of motion was given by f"

6 l :
P

a { E

2e

(p + z )?TT

1
( m-j mreduc “+ -------------- —

2n
p^)}2 dp = ifft(N+ --- )

2

After the integration wss performed, the correct values of E 
were chosen so that N would be an integer [ 6 ]. For z = 0 and E^O 

the spacing of the lines was found to be almost 3 /2hw (not 
exactly because of the effect of the electrostatic potential).

Now, we will try to find an explanation for what happens 
above the series limit. The total energy of an atomic electron 
in a magnetic field is given by [ 4 ]:

E = E
m 2 2 2

. mreduc p ^  P

8 2 "Veduc

ojL.
+7

For P^/2inreduc=C we have that E’=mreduc J  p2/8 -^^/( p2 + z  ̂1 /2J. 
.For F'<0 the Coulomb attraction dominates the magnetic 
interaction and in particular if E'<<0 then the electron will 
follow the Eohr orbit while if the electron is less strongly 
bound to the nucleus it will perform an elliptical one. For E ’>C
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the electron trajectory will follow the asymptotic p = p* line
p 4 / p

as (where P = ( 8 E ' / m , w ) . If E'>0 and' reduc
(p^/2m , )-(e^/(p  ̂+ z^))^^<0 then the electron will hereduc
conditionally bound and its energy will be quantised [ 4],ie:

m 2 2
mreduc p ^

8
2m (N)

1
= Tito (N + ---)

2

If the electron's electrostatic energy increases until 
2 2E ’>m , u p /8 then it will be unbound and its energy will be reduc

unquantised.

The above arguments f 1 1 , 9] attempt to explain very
briefly and semi-classically the band periodic structure in the

region of the field-free series limit in terms of bound states
of the electronic motion (if certain requirements are met, ie 

2 2E'<m , a) p/8). Eelow the field-free series limit, the reduc
states are always bound and therefore the same arguments apply 

straight away.
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Appendix AVII

The s-p Hamiltonian Vetrix and the Pachen-Back Effect.

In this appendix the total Hamiltonian matrix for an s-p
configuration will be derived. After the appropriate

transformations it is possible to derive the eigenvalues and the
coefficients of the eigenvectors of the states involved. This

will erable us to verify quantitatively that it is often the 
■* 1case that a "P level is admixed with a P̂  level, m  which case 

the resulting K-0 pattern could be calculated with the 
overlapping lines technique described in section 1 of Chapter V. 

Suppose now that we have a state:

coefficients a^ are the unknowns. Inserting the above equation 

in Schrodinger's equation we get:

N
(AVII1)

where the functions u^ can be any orthonormal set and where the

(AVXI2)

Fultiplynng equation AVII2 by u*^ we get:

N
(AVII3)

where the matrix element 1S defined as:

(AVII4)
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Equation AV1IJ can be rewritten as:

a-|(N-|1~E) + a2^12 + ••• + aN^lN ~

l ] H m  + a2HN2 + ••• + aw(HNrfE) = 0

Such a set of homogeneous equations can only be solved if:

(Hn -E) H12 h in

K21 (H22-E) H2M

h ni HN2 (hn n ~

= 0

The above matrix (known as the secular equation) can be

diagonalised by applying the appropriate transformation. Then
since H* = C unless n = k, the functions u , becomekn n = k
eigenfunctions to the Hamiltonian F and ere the actual
eigenvalues.

The total interaction Hamiltonian matrix H f l] can be 
considered to consist of three basic contributions: the
electrostatic, the spin-orbit and the external magnetic field
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interactions. It is also convenient to show at this stage (table 

AVII1) all the allowed basis states for an s-p configuration 

(table J .b of [ l]), although ideally we should use infinite 
complete sets of functions.

(i) The electostatic contribution to H
The electrostatic contribution to the Hamiltonian is equal 

to:

H E fi - Z 'u

where the one electron operator is equal to:

2 Z e ‘

r .i

and where the two electron operator is equal to:

2e‘
’U

TJ

At this stage spin-orbit and magnetic interactions are ignored 
(the z-components of the orbital and spin angular momenta, 

and M0 respectively, are quantised and constant). Therefore the 
Hamiltonian has no matrix elements between two states which do 

not have the same values of MT and Fc [ l].
L i t

1. The diagonal matrix elements for the one-electron operators 

f. are [” 2*1;i

i (m ) = ^k/fy^>
A 2'*2
0

Rd

dr r

*
'nl

dr
2ZrR ,* R , n I nl dr

(AVI 15)
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Z e r o  O r d .  F u n c t i o n m-] ( 1 ) m-] ( 2 ) ">s ( l ) ms ( 2 ) m l Ms MJ

u i 0 1 i i 1 1 2

U2 0 1 i 4 1 0 1

U3 0 1 4 i 1 0 1

U4 0 1
• * i 1 0 1

U5 0 0 i i 0 1 1

U6 0 0 i 4 0 0 0

U7 0 0 4 i 0 0 0

U8 0 0 4 4 0 - 1 - 1

U9 0 - 1 i 4 - 1 1 0

U1 0 0 - 1 i 4 - 1 0 - 1

u n 0 - 1 4 i - 1 0 - 1

U 12 0 - 1 4 4 - 1 - 1 - 2

Table /■VII1 The basis set for an s-p configuretior.
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2. The diagonal matrix elements for the two electron operators 

g. . are given by the following two expressions for the Coulomb 
and Exchange parts [ 21:

oo

/ i j  / g / i j )>  = ll ( 1 i tnl . ; 1 j n l ) F

(AVII6)

for the Coulomb integral where i and j represent two states, u^ 
and u. respectively and where:

(lim1 ;ljm1 ) = ck(lim1 ;lim1 ) ck(ljm1 l1jmi 
' ' 1 J J 1 1 J J

(AVII7)

and

k , • ■ • •
F (ni ^ j 1 j) = R 3

■ / / ' v , |r,l" v i ,r2)R".,«,r’l"”i,j,rzl

k 2 22r(a)k r1

r(b)1<+T d r l d r 2

and for the Exchange integral we write:

o o  ^

< i j / 9lJ/ j 1 > -  « O v ms.> 2 : ^ 0 ^  ; ! ^  ) G
^ ^  7 1 J k=0 1 J

where
(AVII9)
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(AVII10)bk( i . mi i i *  ) = (c2( i i '"1 . ;1j rai .))2v 1 >-j 0 1 J J

and Gk{ni l i ;ndl j )  = Rk( i j ; j i )
(AVIIU)

= _//" Ini1i(rl) * 1 1 ^  ̂  Fnj1j(ri'>

2r(a)

r(b)k+T rl r2 drldr2

If the K, , Mc criterion is satisfied (ie for non-zero off 
diagonal elements must have AM^=0 and AMg=0) then there will 
exist such elements and it is therefore useful to state the 

general expression for the <ij/g/rt> integral:

/g/ r t f  -
^ 4 ^  (k-/m/)

---------  <S(m ,m ) 5(m ,m )
k“ “ k <k+/m/> 1 r 2 4

(m-, +/m1 /+m, +/nu /+ m, +/m1 /+m, +/m1 /)
(-1) i i j j V V  't ‘t

(y/w, /) 
(1, + /ra-| /)

(21/1) (1 j-/mi ./)
(1,- + /"i /)
J j

( 2 1 / 1 )  ( l r -/m-, / )  / ( 2 1 / 1 )  ( l t - / n 1 / )

(lr + /mlr/) (1* + /Hi /) 
c t (AVII12)

D O  C O

* * 2r(a) ? ?

* "  Rn..l;<rl>Rn,.l^r2)RnJ,.(rl)RnJ„(r2) .„,k+l rl r2 drl
dr\i i j  j  r r  t  t  r(b)

P1 ^m1-/(cos0-j) P] ^(cose-]) (cose-j) sine-| de-j /2tt

P1 /ml / ( c o s e /  P, /ml t / (cos82) Pk/m/(cose2) s ine2 de2 / 2a-

O ,

2tt 2 tt

e x p ( i ( - m - j  +m-j + m ) ^ - | )  d^-j /2 /  e x p ( i ( - m - j  +m-j - m ) ^2) d^2 / 2?r 
i r t/n j t
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Using the basis functions of table AVII1 it is obvious that the 
resulting matrix will possess non-zero diagonal elements where 

A ^ = 0  and AMQ=C5, ie for states u^ end uv , Ug end u^ and u ^  

and u^ .
Equation AVII5 gives us that all diagonal elements contain

a term equal to l(ns)+l(np) since the Hamiltonian involves  ̂f

which is a summation over an (ns) and an (sp) electron of our

(sp) configuration. Equation AVII6 gives us an F°(ns,np) term

for all the diagonal elements. Fquetion AVII9 involves the term

6 (m . ,m .) which is zero for some functions, ie the elements si* sj' ’
H22’ H66’ K77’ H1C1C aTld H1111 have msi="nisi snd there^ore
do not have a non-zero exchange integral. Finally equation

AVII12 can be used to evaluate the direct (<ij/g/rt>) or 
exchange (<ij/g/tr>) integrals for the states which possess non­
zero off-diagonal elements. Since the formlula contains temrs 
like 6 (m . ,m ,)and <5 (m .,m ) for the direct case and ^(m

mor) and 6 (ms^,mc )̂ for the exchange case, then considering the 
basis functions it is obvious that H0_=H-0=H^r7=Hr7/:=H<1 =H„«.^ =

c* y  j  u  i i C l U l i  I I 10

lc 1cC. The values of the coefficients a and c can be found in 

tables and for this s-p configuration case we have that:

<k If.I k> 

<"ij /g/ i 

O j /  g/ ji)>

or

<ij /g/ rt y

-  I°(ns) + I°(np) always

= F°(ns,np) always

= -G-j / 3

= 0 i f m f m
si sj

= 0 (for if r and t) always since
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always since we must satisfy the requirement that AMg=C which
would mean that according to Pauli's principle we could not have

m . =m and m .=m , therefore m .=-m and m . = -m , scs i s r  s j s t  si sr s j st
6(m .,m )= 6(m . ,m ,)=C and finally, <ij/g/tr> = -G./J for thesi sr sj st 1

reverse reasoning given above.

The matrix of the electrostatic interaction of the basis 

set given in table AVI11 is shown in table AVII2 f l]. From the 
above it can be seen that all the diagonal elements without any 

corresponding off- diagonals are triplet states with Kc=+-1. The 
energy of a triplet state is given by:

E(^P) = I (ns) + I (np) + F°(ns,np) -G-j/3

for the case where K c=C and M = 0,+-1 we must solve the
kj 1J

following:

I(ns)+I(np)+F°(ns,np) -G-j/3
= 0

-G-j/3 I(ns)+I(np)+F°(ns,np)

Therefore the energy of the singlet is:

E (1P ) = I (ns) + I(np) +F°(ns ,np) + G-,/3

since the -G^/J term corresporded to the triplet case.

(ii) The magnetic contribution to K
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U 1 U2 U3 U4 U5 U6 U7 U« Un8 9 U 10 un  ui2

U 1 z0- h

U2 Eo*
G-..

U3 4 1* Eo =

U4 Eo"l1;

U5 e o 4 1;

U 6 Eo*
G-j

“T

U7
G-.. 
T  ’ Eo»

U8 Eo 4 1;

U9 e o 4 1 >

U10 Eo’ T

un
Gl-~ T ’ V

U 12 Eo T ’

e -AVTT̂  The electrostatic irsteractior iratrix with respect to 
the furc+iors of Table AVTI1.
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The Hamiltonian for an external magnetic interaction is 

given by:

where a = fine structure constant'. Using the values of and 

of the basis states (table AVII1 ) wTe obtain table AVI 13 [ l] 
which contains only diagonal elements.

(iii) The spin-orbit contribution to H

Some fundamental relations of the individual angular 
momenta of an unfilled shell wTill now be given [ 2 ]:

(AVII13)

(AVII14)

and similarly for the spin angular momenta:

szunlm-| ,ms msunlm^ ,m (AVII15)
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IL '10 11 '12

M=+2
3a2B; M = +1

a2B;

a2B;

2a2 B; M = 0
2

-a B;

0 ;

’10

’ll

!12

0 ;

a2B M = -1
T ~-2a B

-ct2B
-a2B M = -2 

-3a2B

Tskle &VIIJ The irsgretic interectior iretrix with respect to the 
furcticrs of Tsfc]e AVII1.
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For the two electrons (s-p) the total spin-orbit contribution to 

the Hamiltonian is f 1 "I:

s Q j -St+Ij .Sj ) =

'(1xsx+1y V 1zSz)(1)+ 5(1xsx+V J  V z >
(2 )

y y

Since 1 , 1 , s and s involve changes in m, and m (m,, =m,+-1, x y* x y e 1 s 1 1 ’
m ,=mc+-l) then the diagonal elements will involve only the
terms, ie:

<  V / n zsz)0) (1z3z )(2)/u^

For the s-electron m,^^=C and for states uc ,u,,u„ and u0X o / c
(2)m^ =C, therefore these states will have a zero diagonal

element. The remaining ones will have a +-^/2 depending on the
(2) (2)sign of the product m^ irQ

The off-diagonal elements will not contain the 1 and sz z
operators (equations VII14c and 15c). The empirical magnetic 
selection rule must also be satisfied ie that 1S never
crossed. Therefore there are non-zero off-diagonal elements if:

M=M 1 and v (1)-
m (1) 
ms '

II

CMeT m / 2>±l ms ,(2)= (2) msv J
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10 n '12

M=+

Ui f; M = + 1

10

'll

12

c.J
2

c .

c .

0; M = 0

M = -1

0 ; ..e
“7

c
7

C_
2 M 1,2

C
7

Table AVII4 Tbe spin-orbit interaction matrix with respect to 
the functions of Table AVI11.
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M=+1

M=-1 U10

n

U2 U3 U5

S. + a^B ; 
2

—G-j / 3 ; -c/ 2

-6^3 ; EQ+£/2+a^B ; 0

-5/ 2 ; 0 ; W 3'

U8 U10 U11

EQ-G-j/3-2â B ; o ; ?/ 2

0 ; E0-C/2-a2B; -0^3

C/ 2 ; -G-|/3 ; EQ-;/2-a2B

Table AVII5 The sub-ire trices of the total interaction rratrix 
with respect to the functions of Table AVII1 for M=+-1.
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Considering all the stove facts and interchanging states u^ and 

Up with Up. and uD for convenience) we obtain table AVTI4 [ 1j. 
The total Hairiltcnian is given by:

Htot= 2 ( - vi2-2Ze2/ri)+S 2e2/rij+ ^ s V si+ “2(L+2S) .B

and each element (x,y) of the total matrix is just the summation 
of each (x,y) element of the electrostatic, spin-orbit and 
magnetic interaction matrices respectively. This total 

Hamiltonian is given in table AVII5 [ l]. When all the elements 

of the above matrix and the interactions between them are 

considered, the solution to this matrix will give us all the 
eigenvalues of the basis states involved The calculations 

however are cumbersome and a computer is necessary.

If the spin-orbit and the magnetic interactions are small 
compared to the electrostatic interactions then the matrix is 
mainly diagonal and J and Mj are good quantum numbers. However, 
an (s-p) configuration involves P and states and so the 
initial scheme is inappropriate [ l] and the matrix must be 

transposed into a (Kt ,Mq) scheme. At this point it is useful to 
state all the possible combinations of an (s-p) configuration f" 

2]:

Ml = 1 , Ms = l : ( 0+ 1 +)

Ms =0: ( 2 ) - J  (0+1) + (0-1+)
Ms= - 1 : ( 0 - 1 - )

ml = 0 , V 1 : (0+0+)
Ms =0: (2H (0+0-) + (0-0+)
V - i - - (0-0-)

Ml = - 1 , Ms = l : (0+-1+)
Ms=0: (2H (0+-1) + (0-1+)
Ms = - 1 : (0- -1-)
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and

p : M L =1, M s =0: (2)4 (0+1-) - (0-1 + )
ML=0, ms=0: (2)4 (0+0-) - (0-0+)

-1. Ms=0: (2 ) 4  (0+ -1-) - (o- - i+)

* 1The "T end P functions that we ere interested in are the 

ones with F=K+KC = + -1 since we only have matrix blocks for 

K=+-1 which we require to be transposed. They are the following- 

states [ 1 ] :

3pi,0=(u2+u3 )/ /2 

3p0,l=u5

P7,0= û2"u3 ^  /2

end M _1 P-1,0= û10+ul l /2

3p0,-r u8
P-1,0= û10"ull^/ /2

Table AVII6 The s-p eig-enfunctions in representation for

In order to diagonalise the total Hamiltonian matrix, it 

must be trasposed into a (J,Ej) scheme and Uj can be written
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as a linear combination of the old u.„T functions, ief L jFu

JJ,M ^  C (M. ,M ) UM. ,MC
V S  ( ^Mj) L S

where the Clebsh-Gordon coefficients f,c)(j yj) £re
non-zero and given in tables [ 2] if the (j,Mj) functions 

satisfy the condition K=MT+MQ . The new (J,KT) functions are
Li O J

given in table AVII7 [ ll.

F o r  M = + 1 :

■3

' p2 "  <3 p l , 0 +3p0 , ^  / / 2 <U2 + u3 ) / 2  ♦ U 5/ / 2 ( a )

3 . , 0  ■ P o , 1 ) ' Z 2 ( u 2 + U 3 ) / 2  -  U5/ \fl (b)

V
r ( l p r o) ( u 2 - u3 )/{z ( c )

and f o r  M= - 1 :
end

3p2 “  ( 3po , l +3p- l , o ) / / 2 - V J T - + 0  + ^  1? ( a )

3 p , ■ ( 3po , - r 3p- i , o > / &  - V fz-- ( u 1 0+ u n ) /  2 (b)

1?1 = ( V i f0) = (U10 - un > / '/ ’2 (c)

Table AVII7 The s-p eigenfunctions in the (JjNj ) representation 
for F=+-1.

The above table would for eyample give [ 1̂ :

H u( 2 ^ u2 + Ug + 1 / / 2 H
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Eut also from table AVII5:

H u2 = i ( E +  c/ 2 +  a 2B) u 2+ J ( - G 1 / 3 )  u 3+ ; / 2  u5

and similarly for the other (<J,M ) and basis functions. AfterJ
algebraic manipulations, we obtain the + sub-matrices in 

the (J,Mj) representation:

1

3P2

E~+Ĝ ±aj3 0

0 E Q- G 1 + K ± | a 2B:

3 £/ 2

-?/ 2 

- J a 2B

Teble ^VII8 The total interaction ^ -  + -1 sub-rstrices in the 
j) scheme.

The must be transposed again to become diagonal.
Then these diagonal elements will be the eigenvalues per se. 
King [~ l] has written and modified two programs respectively 

-one called "Pasbac" which sets up the (J,Fj) matrix and the 
other called "Figen" (originally an IE F routine) which 
diagonalises the matrix- and has therefore calculated the energy 

levels of Sri, FaI and Hgl. Values of the magnetic field, and 
must be inserted as data into the codes. He used the code for 

fields from 3*CT to 1.7 1C'' T thus covering the range from a 
very weak field to the complete Paschen-Eack effect.
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1. King P.V. PhE Thesis (Univerisity of London 1972)
2. "Quantum Theory of Atomic Structure" by J.C.Slater

Vols.I and II (NcGrsvhill 1?6?)
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Appendix EVII

Qualitative Discussion on the f - Va 1 u e Depend en ce on the 

Externally Applied Magnetic Field

It was mentioned in the introduction of this chapter that 
an attempt will ba made to study the dependence of the f-values 
on the E-field. Several sufhors in various fields of physics 

have dealt with the problem of studying the E-field dependence 
of the energy levels but not many have dealt with the E-field 
dependence of the atomic transition probabilities. Most of the 
published work on this problem is conserned with fields ^10^ 

•which are unatainable experimentally, for instance Erandi et al 

[ 1 ] for E=1 G"/«1 O^T, Santos and Brandi [ 2 ] and Simota and 
Virtamo [3 ] for E>1C6T.

The most complete calculations at medium fields are those 

of Erandi [ 4 ] who has a basis of unpertubed atomic hydrogen and 
then diagonelises the appropriate Hamiltonian and finds the 

energy levels of the fourteen lowest lying states for
410 T. He considers the Hamiltonian for a H atom in a uniform 

magnetic field to be:

HQ=p^/2vi -e^/r +1?

where ^=eE/2 V c is the Larmor frequency, the interaction 
Hamiltonian to be:

Hj= e/ hc A'(p+

where A is the vector potertia1.The eigenvectors are of the
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form:

nr)- Z  c, <Mr)=? c1Nn.l.Fn.l.<x > ^  <9 >»>11 11

where

X=2r/n, nl=2/n
2 (n-1 -1)I i vl-X/2 , X+l ,Y .

(------ 5“ ) anĈ ^nl 6 * - n - l - l ( ^ )
(n+l)1.

22 + 1and vjhere L  ̂ ^(X) are the Laguerre polynomials.
The atomic transition probability A , into solid anglevv

d Q is:

A v v '  dn = e V ( 2 7 T « 2c 2 ) 0)w , / < V ( v  + i  —  i»L 2 Ar ) . e  * /  da

(where e+ ^=-+(x+-iy) /2, e Q = z) wss then calculated by these 
authors who give tables of their results for E=10^-104T in their 
paper [L, A-]. Although we are not interested in the magnetic 

field range they covered (Figs.1 and 2 of [l 1) it is useful to 
point out that f-values depend on the field in an unpredictable 

way. That is, unless one solves the matrix and then the A - v p l u e

formula properly, one cannot anticipate the trend of the graph.
2 5 r iAt fields 10 ^10 T j 4end 5 and references therein]

Praddude found that he could not use spherically symmetric
atomic H basis and therefore used cylindrical coordinates and

associated Laguerre polynomials. Kara and McDowell [5 1 used a
basis of simple separable functions of cylindrical symmetry
which was also chosen so that the phctoicnisation cross-section
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could be easily calculated. Although Kara and KcTowell's paper 
produced similar results for most of the field range to those of 
Praddude, the former was much simpler to use. According to Kara 

and FcBowell [*5 J> the Hamiltonian in cylindrical coordinates in 
the presence of a magnetic field and ignoring spin effect is 

given "by:

H = -  32/ 3p2 -  1/p 3 / 3p -1/ p 2 32/3<j,2 -  32/a z 2 + y L  +y 2P2/4-2/r

where
2 2 2r = p + z , y ^ B / R y d  = hoy/Ryd and ojc= cyclotron freq

frequency

They [5 ] consider the eigenvectors to be of the form:

c ^ ) v  ( r )c xaS<T ' ̂ a»3><5 <*33

where:

(r) = z V -SrV™*

The form of the A-velue expression that they use agrees well 
with the one that Brandi et al [1 ] used and which was mentioned 
above, ie

1

Apq dn = e2/2’10^  y E n>3^  / < P/^/q^ /2 sin2e da
u= -1

wTi th
rQ= z and

r+l= -  (X + iy) //2
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The following selection rules had also to he obeyed:

J: // B Am= 0 att=+-1

jj: / ® Am=H—  1 a77=0

From the above the transition probabilities were 

calculated. For some transitions (especially for strong ones) 
the Kara and KcEowell [*5 ] results disagree with those of Prandi 
et al [ 1 ] in less than 4/£ while for others there is more 

disagreement (up to orders of magnitude) between these two sets 

of results and also in those of Smith et al [6 1. Therefore it 
can be said that the variation of the A-values with increasing 

magnetic field depends on two things: (i) the energy difference 
and (ii) the dipole matrix element snd so it is not always a 

monotonic function.
For a better understanding and interpretation of our Mg I 

results (section 3b of Chapter Vi) ideally we would require an 
extension of Clark and Taylor’s theory (see next section) to 

atoms heavier than hydrogen (Mg) - a presently unresolved 

problem. Calculation should cover the Mgl principal series for 
n=7 to n=14 and for various fields so that a direct comparison 

could be made with our experimertal spectra. However at present, 
as we have seen from the other papers mentioned m  this section, 
it is only known that the f-values do not vary monotonies 1 ly 
with field strength and therefore we can say that our MCV 
results are plausible. It will be a very interesting problem to
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obtain M-C spectra for the alkaline earths both with increasing 
and decreasing fields (to eliminate any errors associated with 

that, then calculate f-values with the MOV method and then 

compare the behaviour of f-va]ues versus field with the ones 
that Clark end Taylor's method would predict, assuming that the 

latter can be more readily extended to alkaline 
(using some form of quantum defect theory) th 

electron spectra considered here.

earth spectra 
an to the two
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List cf Figures

Chapter I

Fig. 11 The longitudinal norirsl Zeeman effect (showing the 
polarisations and intensities of the various components 
discussed in the text).

Fig.12 The transverse normal Zeeman effect (shoving the 
polarisations and the intensities of the various components 
discussed in the text).

Fig.13 The longitudinal inverse Zeeman effect (showing the 
polarisations and the intensities of the various components 
discussed in the text).

Fig.14 The transverse inverse Zeeman effect (showing the 
polarisations and the intensties of the various components 
discussed in the text).

Fig. IT A typical dispersion curve of a material a way from an 
absorption band. \

Fig.16 A typical anomalous dispersion curve of a medium (an 
absorption bend is present).

Fig.17 A typical dispersion curve obtained from experiments in 
the vicinity of an absorption line.

Fig.16 Calculated dispersion(solid line) and absorption 
coefficient (broken line) curves.

Fig. IQ Refractive index and absorption coefficient curves used 
to explain the Faraday effect shown in Fig.16.

F i g .I1C The f and 
(jl) * C0_) = f( 0) w0)-ig(

quantities' curves f 11] (where
% » •

Fig.^11 ̂ The Faraday rotation and ellipticity angle curves for 
the P- S transitions in the absence of a magnetic field [" 1 1 ] •

Fig. 112 ̂ The Faraday rotation and ellipticity angle curves for 
the P- £ transitions in the presence of a magnetic field TlO.
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Fig*. 11? The computed refractive index end absorption coefficient
to be used in the magneto-optical calculations.

Chapter II

Fig.111 The experimental set-up for the magneto-optical studies 
in the Physikalisches Institute in Form.

Fig.II2a An experimental magneto-optical spectrum (for n = 1 1 in 
Sri).

Fig.II2b A theoretical magneto-optical spectrum (for n = 1 1 in 
Srlj.

Fig.II? The middle part of a computed magneto-optical spectrum 
(n=11 in Sri). Part of a magneto-optical cycle is demonstrated.

Chapter III

Fig.1111 Sri n = 1 1 pattern calculated with the FCV method at 
T=700CC and E=4*2T. The polarisation efficiency of the grating 
was assumed to be 8 5*, the asymmetry of the two Lorentx 
components was k=.t5 and the half width of the apparatus 
function was =8.? 10 Hz.

Fig.1111a Sri n=11 experimental pattern obtained in Bonn.

Figs .1112 and _? Sri n = 1 1 computed spectra. All the parameters 
used were identical to those of Fig.1111 except T which was 
60C°C and 10CC,OC respectively.

Figs.III4 and 5 Sri n = 1 1 computed spectra. All the parameters 
used were identical to those of Fig.1111 except that B=4.CT for 
both figures end Nfz=?.67 10 and 9*6? 10 respectively.

Figs .1116 a ^  7 Sri n=1 1 computed spectra. T=7C0°C, EM.2T and 
Kfz=9*67 10 for both figures. The pattern was assumed to have 
identical Lorentz components and also to have 1 CO/L' and 05/ 
polariasation efficiency respectively.

Figs♦III8 and 9 Sri n=11 computed spectra, 
were identical to those of Fig.1116 and

All parameters 
7 except that

use
P M C
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respectively.

Fig. II110 Sri n = 11 corrputed spectrum. The temperature, F-field 
ard Nfz values were identical to those of Fig.IIH. The pattern 
was calcualted with k=.15 and P=1CCf.

Figs.III11 and 12 Sri n=1 1 computed spectra. All parameters used 
were identical to those of Fig.IIHO except that ? = ACf end Of 
respectively.

Figs.11113 and 14 Sri n=11 computed 
were identical to those of Fig.IIH 
and 85^ respectively.

spectra. All paramters used 
except that k=.J5 arc P=1CC£

Figs.III15 end 16 Sri n=11 computed spectra. All parameters used 
were identical to those of Figs.III15 and 14 except that P=ACf 
and Of respectively.

Figs.III17 and 18 Sri n=11 computed spectra. All parameters used 
were identical to those of Fig.1111 except that k=. 1 5 for both 
figures and P=80f figures and 9C$f respectively.

Figs.III1P and 20 Sri n=11 computed spectra. All parameters used 
were identical to those of Figs.III17 and 18 except that P=85^ 
for both and figures and k=.10 and .20 respectively.

Fig.11121 A magneto-optival pattern (and in an expanded form) 
of the n=11 Sri line without apparatus smoothing. The parameters 
used were identical to those of Fig.IIH.

Fig♦III22 This figure is identical to Fig.1111, but is 
repeated here for reasons of convenience.

Figs.III27 and 24 Sri n=11 computed spectra. All parameters 
used were identical to t^pse of Fig^IIl except that the 
apparatus width was 4*0 10 and 6.0 10 respectively.

Figs. III26 and 27 Sri n=11 computed spectra. All parameters 
used were identical to tly^pe of Fig.1^11 except that the 
apparatus width was 11.0 10 and 15*0 1C respectively.

Figs.11128 and 28 Sri n = 11 
were identical to those of 
width was 9*5 10 end
respectively.

computed spectra. All parameters used 
Fig.IIH except that the apparatus 
F f z = 9.6 8 1C end 9-655 1C 14
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Figs.III29 and 30 Sri n=11 computed spectra. All parameters used 
were identical to those of Fig.IIH except that the number of 
steps "between two successive freqeuncy points was 21 end 51 
respectively as opposed to the 1C1 of Fig.IIH.

Figs.11131 and J2 Sri n=11 computed spectra. All parameters used 
were identical to those of Fig.IIH except that the number of 
steps between two successive frequency points was 81 and 161.

Fig.IUI^Srl r.=11 computed spectrum with a Gaussian apparatus 
profile. All other parameters used were identical to those of 
Fig.III1.

Figs.111^4 and 35 $rl r = 11 computed spectra with (a) a Gaussian 
(dashed line) and a Lcrentzian (solid line) and (b) a triangular 
(dashed line) an a Lorertzian (solid lire) apparatus furctior. 
All parameters used were identical to those of Fig.IIH.

Fig.III36SrI n=11 computed spectrum with a Lorentzian apparatus 
smoothing (solid line) and with no smoothing (dashed line). All 
the parameters used were identical to those of Fig.IIH.

Fig.III37M0V cycles for n=11,16,24 and 18 for Sri. The 
sensitivity of the cycle structure to changes in Nfz decreases 
as n increases under otherwise identical experimental 
conditions.

Fig.III38SrI n=11 KOV cycle. The sensitive dependence of the 
middle part on the product Nfz is obvious.

Figs.III79 end 40 Sri n=1 1,15,20 and 25 spectra theoretical and 
experimental in quite good agreement.

Chapter V

Fig.VI Cverlepping patterns for Fa I and Sri at 
B=2.CT, (b) -E=2.5T and (c) E=3-0T. 0

T=775°C and (a)

Fig.V2 Overlapping patterns for Eal and Sri at T = 9CC°C 
F=5.C*T, (b) E=3-5T and (c) E=4.3T.

and (a)

Fig.V3 (1S - 
polarisation 
1C .

*7 1■'P ) computed magneto-optical spectrum for n=1 Sri, 
efficiency=85/, asymmetry constent=.15 end Nfz=9*68
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Fig.V4 Computed refractive index and absorption coefficient
curves for a ( S - "P ) transition.

Fig.V1? Computed magneto-optica] spectrum including the effect of 
hyper- fine structure for r=11 Sri, polarisation efficiency=P5f, 
asymmetry constart=.1? and Nfz=9*£8 1C

Fig.V6 Schematic representation of the J_P(Mj= + 1) levels Kith 
hyperfine structure.

Fig.V7 Computed refractive index and absorption coefficient 
curves when hyperfine structure is included in the calculations.

Fig.VS Computed refractive index and absorption coefficient 
curves when only fine structure is included in the calculations.

Chapter VI

Fig.V11 Quantum defect theory oscillator plot for Sri (for n = 11 
to 2 P). The f-values were calculated with the MOV method.

Fig. VI2 Comparison between (a) present cal cul a t ion s (b) the 
experimental magneto-optical spectrum and (c) Connerade's 
(refererce \ 4 ] of Chapter VI) (all patterns were for r = 1 1 of 
Sri).

Fig.VI3 Quantum defect theory f-value plot for Mgl for B=2.5,3*7 
and 4*5T calculated with the FOV method. All results were 
normalised to the n=7 value of Fitehell (reference [ 5 ] of 
Chapter VI).

Fig.VI4 Quantum defect theory f-value plot for KgI for E=2.5»7*7 
and 4.5T calculated with the FCV method. All results were 
normalised to the n = 8 value cf Fithcell (reference [ 5~j of 
Chapter Vi).

Fig.VI5 Overlapping patterns for Pal and Sri at T=775°C and (a) 
B=2.CT, (b) P=2.5T anc (c) F=*.CT.

Fig.VI6 Cverlapping patterns for Pal and Sri at T=9C0°C and (a) 
P=?.CT, (b) F=7.5T and (c) P=4.7T.
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Fig.VI7 The ratio E of the f-values (defined in the text of 
Chapter VI) plotted as a function of the wavelength interval 
spanned by the impurity line, showing that E is very nearly 
independent of the overlap.

Fig.VIE The computed FOV Cal impurity pattern next to the n = 17 
line of Sri.

Chapter VII

Fig.VII1 Pesults using Clark 
f- values against energy for

Fig.VII2 As Fig.VIIl but for

Fig.VIII As Fig.VIIl but for

s and Taylor's code for bydrogenic 
B=2.? Tesla.

F=7.5 Tesla.

B=19.5 Tesla.

Fi gs. VII4 and 5 Computed radial wevefurcticn for the 7s 3 Op 
configuration for Fgl on the logarithmic mesh given by [ 1 6 ] and 
on the "linear 5" mesh (see text), both for 320 points.

Figs.VII6 and 7 As Figs.VII4 and 5 but for "linear 10" and 
"linear 20" radial grids respectively (both for 620 points 
accross).

Figs.VIIE and As Figs.VII4 and 5 but on the logarithmic radial 
mesh suggested by f16j and on the "1/2" logarithmic radial mesh 
suggested by the present calculations (see text), both for 620 
points accross.

Fig.VII1C The computed radial functions of the inner electrons 
(3s3s-3s30p).

Figs.VII1 1 and 12 Computed zero field f-values with present 
calculations versus energy and n-value respectively for the 
principal series of Fgl (with 7<n<27).

Figs.VII17 end 14 The F-field dependence of the f-values (3s3s- 
3s19p transition fpr Kgl) according to the present calculations 
of the / P^*>, /''¥,*'> and /"P^*>stetes for IT= + 1 end M = -1 
respectively (see text for /1P*> rotation).

Fig.VIIl3 The same information as in Figs.VII13 and 14 but 
grouped differently.
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Figs. VIT 16,17 srd 1P As Figs.VII17 srd 14 tut for different n's 
in the range 7 to 27.

Chapter IX

Fig. 1X1 The iorisation stages of Silicon •which were used m  the 
calculations.

Fig.1X2 The value of the ratio "a" as a function of density for
a temprerature of 1CCeV using collision rates from Mewe [ 3j(--

Sampson and Parks \ 4 " U ) and Vinogradov et al [
2]( )•

Fig.1X3 As Fig.1X2 for a temperature of 40CeV. 

Fig.1X4 As Fig.1X2 for a temperature of 8CCeV.

Fig.1X3 The satellite line intensity ratio ss a function of
density for a temperature of 1OCeV excluding (_______ ) and
including collisicral de-excitation from doubly to
singly excited Ke-like states.

Fig.1X6 As Fig.1X3 for a temperature of 4CCeV.

F^.g.1^7 Temperature absissa end collision rates ordinate for 
2 P-1 S using results from Fewe |" Z^(------ ), Sampson and Parks
r 4i( and Vinogradov et al f 2](

Fig.IXS A.s Fig.1X7 but for the transition (2''P-1 ̂ S).

Fig. 1X9 The added levels (to the ones previously shown for Li- 
like calculations.

Appendix AIV

Fig.AIV1 Schematic representation of the delayed coincidence 
experiment to measure atomic lifetimes.

Fig.AIV2 Schematic representation of the Hanle effect.
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Abstract. The results of calculations of the steady-state ionisation balance in a silicon 
plasma are presented. The effect of colhsional de-excitation on the dielectronic satellite 
ratios is shown to be important for electron densities in the range 1019 to 1024 cm-3 and 
temperatures greater than 100 eV. This is the regime of interest for laser-produced and 
laser-compressed plasmas and for which the dielectronic satellite ratios have been proposed 
as a useful density diagnostic

The sensitivity of the He-like resonance to intercombination line ratio

a =iV(21P1)A(21P1,1 1S0)/A(23P1)A(23P1; LSo)

to the model used for the collision rates between singly bound He-like silicon levels has 
been investigated. Large differences in the calculated value of this ratio result from the 
use of different collisional models and so it may be possible to compare the results of 
different theoretical predictions with experiment.

1. Introduction

The calculation of the ionisation balance is of interest because line ratios are 
used as a diagnostic of plasma parameters. In a recent paper, Lunney and 
Seely (1981) have proposed that the ratio JV(2s2p3P)A(2s2p3P ;ls 2 s 3S) + 
A(2p23P)A(2p23P: ls2 p 3P)/A(2p21D2)A(2p21D 2; ls 2 s 1P1) could be used as a 
density diagnostic for laser-produced plasmas, while Vinogradov et al (1975) have 
studied the dependence of the He-like resonance to intercombination line ratio

a = ^ ( 2 ‘P1)A(2‘P,; l 1S0)/iV(23P1)A(23P1; l'S„)

on plasma density. However, as Weisheit et al (1976) point out the analysis of the 
line ratios should still be corrected for opacity effects before experimental data is 
compared with theory. Uncertainties exist in these calculations for two principal 
reasons. Firstly, uncertainties exist in the collisional rates which are employed and, 
secondly, because of the restricted number of states and the restricted coupling between 
the states which are included in these calculations.

In this paper the results of calculations of the ionisation balance in a Si plasma 
are presented. These include higher-level hydrogenic- and He-like states and a fuller 
modelling of the coupling between them than in previously reported results. Large

0022-3700/82/121939 + 10$02.00 ©  1982 The Institute of Physics 1939
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discrepancies exist in the calculation of the collision rates in the He-like ions. We 
investigate the effect of these differences on diagnostics by performing calculations 
using three different models for the collision rates, due to Vinogradov et al (1975), 
Mewe (1972) and Sampson and Park (1974). The work by Weisheit et al (1976) 
implied that the rates by Vinogradov et al (1975) and Aglitski et al (1974) are 
essentially the same as those of Sampson and Park (1974). This is not correct.

An outline of this paper is: § 2 describes in detail the rate model; the 
states involved, the coupling between them and the solution of the resulting 
algebraic equations. Section 3 describes the collisional models which are used. 
Section 4 describes the results of the calculations of the
A (21Pi)A(21Pi; 11S0)/A (23P1)A(23P1; 1% ) line ratio, and the results for
the dielectronic satellite lines and interprets the difference between these and 
previously reported results (Lunney and Seely 1981).

2. The rate model

The states which are being used in these calculations are shown in figure 1. The errors 
due to the neglect of higher-energy states were assessed by performing calculations 
with and without the n = 5 singly excited He-like state. This resulted in the fractional 
changes of order 10-3 in the populations of the states of interest which were the n = 2 
state and the ground state. The autoionising rates and the energies of doubly excited 
states were taken from Vainshtein and Safronova (1978), as were the radiative rates 
of the transitions of autoionising states to singly excited states.

The processes included are
(i) For ‘bound-bound’ transitions the radiative decay values which were not 

tabulated were obtained from the oscillator strength. The /  values can be expressed 
(Wiese et al 1969) as

/ = /o + Z"1/1+Z"2/2 + ... (1)

where f0 is the hydrogenic value and Z  is the charge of the nucleus of the element. 
Using tabulated /  values for He and H we fit /  against 1 / Z  using the first two terms 
in the power series in equation (1). We thus obtained values for Si xm /  values for 
bound-bound transitions.

A number of models have been used for ‘bound-bound’ collision excitation rates; 
discussion of these has been deferred to the next section. The collision de-excitation 
rates are derived by employing the principle of detailed balance.

(ii) For ‘bound-free’ transitions the collisional ionisation rates are taken from 
Seaton (1962) and the three-body recombination is calculated by the principle of 
detailed balance. The radiative recombination rates may be calculated from the 
photoionisation rates given by Ivanov (1973) in an analogous manner.

(iii) For the case of transitions from the doubly excited levels to the next ionic 
ground state the rates, i.e. autoionisations, are taken from Vainshtein and Safronova 
(1978) and the reverse process, electron capture, is again calculated using detailed 
balance (Jacobs and Davis 1978).

(iv) Finally, for transitions between doubly excited states the radiative decay values 
are considered negligible and the collisional rates have been calculated by Sampson 
(1980).
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Figure 1. The ionisation stages and states of silicon which are used in the calculations

The rate equation of each state has the following form 

-I n,.(R,; + C,-,) + «,{ I [R“-+(~) C'-'] + S U4.’+CV)j

I  + c„.] = o

where R]k and C]k are the radiative and collisional rates from state /  to state k, 
respectively, and an asterisk denotes the local thermodynamic equilibrium value.

The rate equation for the states shown in figure 1 constitutes a homogeneous set 
of n algebraic equations. We choose to solve for the ratio of each of the populations 
to the population of the Li-like ground state. The equations then reduce to an 
inhomogeneous set of n - 1  equations. The solution of this large set of sparse linear 
equations is obtained using the method described by Duff (1976). This method gives 
an efficient and very accurate solution, but has the disadvantage of requiring large 
storage.
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3. Calculation of the He-like interlevel collision rates

Although much effort has been put into calculating bound-bound collisional rates, 
for a Maxwellian electron distribution, the results of some calculations exhibit large 
differences between each other. It is thus important to understand the effect of the 
uncertainties in these rates on our results. To this end we have performed calculations 
using the results of three independent collisional rate models, i.e. those of Mewe 
(1972), Vinogradov et al (1975) and Sampson and Park (1974). Because of the 
importance of these models to this work we give the collision rates from each below. 

For an i -»j  transition between discrete levels Mewe (1972) gives

Q, = 1.7 x 10"37,71/2£ “1/ vg(y)10"5O4OBl'/7'«

where /,, is the absorption oscillator strength of the transition for allowed transitions, 
and for forbidden transitions we assume the /  value of the allowed transition to the 
level with the same quantum number. This allows the same formula to be used for 
both allowed and forbidden transitions. E„ is the excitation energy in electron volts, 
Te is the electron temperature in Kelvin, y —EJkT^  and g(y) is the integrated gaunt 
factor given by Mewe (1972) and has the following form

g(y) = A  + {By -  Cy2 + D) exp(y)£?i(y) + Cy
where

f°°Ei{y) = t 1 exp(-yf) dt.

The values of the parameters A, B, C  and D  are given by Mewe (1972). Some of 
these parameters have been recently revised by the same author (Mewe et al 1980), 
but these revisions do not affect the results here. Note that the use of the prescription 
for forbidden transitions is dubious since it is based on allowed transition oscillator 
strengths. We find below that these forbidden rates are not in agreement with other 
calculations.

For an i -*■ j  transition between discrete levels Vinogradov et al (1975) give

G, exp {-(3)
giifi +X,,)

where E, and E, are the ionisation energies of levels / and j measured from the edge, 
AE t] = E j — E„ g, is the statistical weight of level /, B  and X  are fitted parameters given 
in Vinogradov et al (1975). R y is the hydrogen ionisation energy and = AE tJk T e

0(/3) = /31/2(/3 +1) for transitions without change in spin 

(f>{(3) = 133/2 for transitions with change in spin.

For a i-* j  transition between discrete levels Sampson and Park (1974) give

Q
7raoNev (o, \ k T J

where w, is the statistical weight of level i, a0 is the first Bohr radius of the hydrogen 
atom, In is the hydrogen ionisation energy, Te is the electron temperature, N e is the 
electron number density, fl ( i -»j )  is the collision strength for an / -»j  transition, and



C a lcu la te d  line in ten sity  ra tios 1943

v = (8kTe/7rm)l/2. (fl(i ->/)) is given by

<H(/ =  J d(̂ |r) exp{-E /k T c)tl{i -*j)

where y is the ratio of the excitation energy E to kTe. The collision strengths 
corresponding to the various transitions in which we are interested are given by 
Sampson and Park (1974).

The different dependencies of these rates on parameters such as the temperature 
is evident. Some important differences between the results of the three collision 
formulae are illustrated by figures 7 and 8. Figure 8 shows the large difference between 
the results of Mewe (1972) and those of Vinogradov et al (1975) and Sampson and 
Park (1974) for the spin-forbidden transition (23P; ^S). Similar results have been 
found for all spin-forbidden transitions (indicating the incorrectness of Mewe’s formu­
lation). Figure 7, which gives collision rates for the spin-allowed transition (2*P: ^S), 
shows that the collision rates calculated from Sampson and Park (1974) and 
Vinogradov et al (1975) can vary by as much as an order of magnitude at 100 eV 
and by a factor of two or more at temperatures of 800 eV. Since the calculation of 
Mewe (1972) is actually appropriate for allowed transitions the close agreement 
between the Mewe rates and the Sampson rates provides a verification of these two 
sets for the higher temperature region shown.

4. Results

4.1. Effect of different collision rates on the 
N (21P1)A (21P1; 1 1S0)/N (23P1)A (23P1; 1 ‘S0) ratio

Calculations of the He-like resonance to intercombination line ratio, i.e.

a = N(2'Pt)A(2'Pu l 'S 0)/N(23P1)A(23Pi; l’S„)
have been performed using the model described in § 2 and using each of the three 
collision rate formulae described in § 3, for the collisional rates for ‘bound-bound’ 
transitions.

Figures 2, 3 and 4 show the line ratios as a function of density for electron 
temperatures 100, 400 and 800 eV respectively. Good agreement between results 
from different collisional models is found only for electron densities greater than about 
1023 cm-3, where the limit of l t e  is approached. At low densities the ratio of intensities 
is independent of the density and equal to the ratio of the excitation rates of the 2*P 
and 23P levels by electron impact from the ground state. The relevant collision rates 
are those shown in figures 5 and 6.

The density range of interest for ‘laser-imploded microballoons’ (see e.g. Lunney 
and Seely 1981) is 1022 to 1024 cm~3. In this range of densities the use of different 
collisional models can lead to order of magnitude errors in determining the density. 
The use of the set of rates by Sampson which is valid for both the allowed and 
forbidden rates should be seen as preferable.

4.2. Effect of level scheme on dielectronic satellite ratios

The use of dielectronic satellite intensity ratios for diagnosing hot, dense, laser- 
compressed plasmas has certain advantages. They are less susceptible to opacity
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Figure 2. The value of the ratio a as a function of density for a temperature of 100 eV 
using collision rates from full curve, Mewe (1972), chain curve, Sampson and Park (1974) 
and broken curve, Vinogradov et al (1975).

Figure 3. Same caption as for figure 2 for a temperature of 400 eV

effects than resonance lines. The satellite line emission is also more characteristic of 
the hot, dense, core region as it has been observed that it is only emitted briefly from 
the hottest plasma region.

The calculation of dielectronic satellite ratios given by Lunney and Seely (1981) 
excludes collisional de-excitation from the doubly to singly excited states. These rates 
are comparable with the radiative rates for electron densities greater than 1022 cm-3.
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Figure 4. Same caption as for figure 2 for a temperature of 800 eV.

Collision rates

Figure 5. Temperature abscissa and collision rates ordinate for 2JP—1 *S transition using 
results from full curve, Mewe (1972), chain curve, Sampson (1974) and broken curve, 
Vinogradov et al (1975)

Figures 7 and 8 show the dielectronic satellite ratio as a function of density, for 
electron temperatures of 100 and 400 eV respectively, calculated with and without 
collisional de-excitation from doubly to singly excited levels. From this it can be seen 
that errors can lead to overestimates of order 20 to 30% in the inferred density from 
the neglect of these rates.

At high densities the states are in l t e  and the ratio is only dependent on tem­
perature. At low densities the collisional downward rate is negligible compared with 
the radiative rate and the intensities depend only on the collisional upward rates.
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Figure 6. Same caption as for figure 5 but for the 23P-11S transition

Figure 7. The satellite line intensity ratio as a function of density for a temperature of 
100 eV excluding (full curve) and including (chain curve) colhsional de-excitation from 
doubly to singly excited He-like states
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Figure 8. Same caption as for figure 7 for a temperature of 400 eV

5. Conclusions

Calculations using a rate equation model applicable to the study of high-density 
ne251019 cm-3, and high-temperature, Te^lOOeV, plasmas have been used to 
examine the effects of different collision rates and of incomplete coupling between 
the levels which are used.

In the case of the dielectronic satellite ratio the neglect of the collisional de­
excitation from autoionising to singly excited He-like levels has been shown to result 
in a significant error in the line ratio. This can explain the inconsistency between the 
diagnosed densities and experimental data which Lunney and Seely (1981) explained 
by increased electron capture from the first excited state of the hydrogenic ion. 
However, it should be noted that the original diagnostic predicts electron densities 
which are accurate to 30%.

The effect of using different models for collision rates was investigated by calculating 
the line ratio (2*Pi; l 1S0)/(23Pi; l^ o) using the results of Mewe (1972), Vinogradov 
et al (1975) and Sampson and Park (1974) for collision rates between singly excited 
He-like states. This shows that large differences in the line ratio result from using 
different collisional models, and emphasises the importance of accurate calculation 
of collision rates if meaningful spectroscopic diagnosis of plasmas is to be performed. 
As pointed out by Weisheit (1976) the analysis of line ratios involving resonance 
lines has to include the effect of opacity. This does not alter the importance of accurate 
calculations of collision rates in the theoretical determination of line ratios.
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MAGNETIC ROTATION SPECTROSCOPY WITH SYNCHROTRON RADIATION
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*Blaokett Laboratory, Imperzal College, London SW7 2AZ, U.K.

Physikalisch.es Institut, Universitat Bonn, S3 Bonn, F.R.G.

Resume: Nous decrivons des experiences rAcentes ou la polarisation lin§aire du 
rayonnement synchrotron dans le plan de 1•orbite a ete exploitee pour etudier les 
effets combines de la birefringence magnetique circulaire (effet Faraday) et du 
dichroisme magnetique circulaire (MCD) dans 1 'ultraviolet. A l'heure actuelle. nos 
etudes portent sur les series pnncipales des alcalmo-terreux dans des champs 
magnetiques allant jusqu'a 4,6 Tesla. Nous avons pu observer des oscillations 
d'mtensite dues A 1'effet Faraday jusqu'A n=28 environ. Au-dessus de cette valeur, 
les structures supplementaires dues au melange de 1 en champ intense compliquent 
1 'interpretation du ph§nom£ne. A partir de nos mesures, nous avons pu, par une 
m^thode nouvelle, deduire les forces d 'oscillateur relatives des transitions 
atomiques avec une precision qui va jusqu'a + - 0,25%. et qui depasse done 
largement celle des meilleures determinations anteneures. Notre methode offre 
aussi, du moms en pnncipe, 1' avantage de permettre 1' etude des perturbations de 
la force d 'oscillateur en presence d'un champ magnetique intense. Enfin, elle ne 
necessite qu'une optique reflechissante et peut done etre utilisee dans 
1 'ultraviolet lomtain.
Abstract: We describe recent experiments m  which the linear polarisation of 
synchrotron radiation m  the orbital plane has been exploited to study the combined 
effects of magnetic circular birefringence (Faraday rotation) and magnetic circular 
dichroism (MCD) in the ultraviolet. To date, our experiments have concentrated on 
the principal series of alkaline-earths in magnetic fields of up to 4.6 Tesla. We 
have observed intensity oscillations due to Faraday rotation up to about n=28. 
Above this value, additional structures due to 1-mixing m  high fields complicate 
the interpretation of the patterns. From our measurements, we have been able to 
deduce relative oscillator strengths of atomic transitions by a novel technique. 
The precision of these determinations can be as high as + - 0.25% in favourable 
cases, and is thus considerably higher than m  earlier measurements using different 
techniques. Also, the present method has the advantage that, in principle, one 
could investigate perturbations of the f-value by intense magnetic fields. Finally, 
it requires only reflecting optics and can therefore be used m  the vacuum 
ultraviolet.

Introduction. - The present paper is a report on experiments recently performed 
at the 500 MeV electron synchrotron of the Physikalisches Institut m  Bonn, where a 
laboratory specialised in high resolution vacuum ultraviolet spectroscopy has been 
set up m  collaboration with the Blackett Laboratory, Imperial College. An example 
of investigations aarned out m  Bonn using the same source and spectrographic 
apparatus as the present work is given by Connerade Baig Garton & McGlynn (1980).

In the experiment described below, the high degree of linear polarisation of 
synchrotron radiation in the orbital plane of the accelerator has been exploited to 
study the combined effects of magnetic circular birefringence (Faraday rotation) 
and magnetic circular dichroism from 2300 to about 1600 angstroms.
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Although dichroism and rotation generally can occur together, most experiments 
are designed to isolate one or the other of the two effects. Thus, the present 
combination is believed to be novel and, as will be shown, possesses sane special 
advantages. It does, however, require a new approach for the interpretation of the 
data, and this will be described m  some detail.

Experimental. - The basic experimental arrangement is shown in Fig.1: radiation 
from the 500 MeV accelerator is collected by a cylindrical mirror which focusses 
only m  the horizontal plane, and therefore minimises any admixture of out-of-plane 
elliptically polarised light. The light is thus concentrated on the vertical 
entrance slit of a 3-metre vacuum spectrograph designed and constructed at Imperial 
College (Learner 1965).

The spectrograph is equipped with a 5000 line per mm holographic grating 
manufactured to special order by Jobm-Yvon SA (France). The resolving power of 
this combination is believed to be the highest currently available on a synchrotron 
radiation source. We are applying this experimental advantage to the study of a 
number of atomic and molecular spectra which are outside the scope of the present 
paper (see eg Baig Connerade and Homes 1982 and references therein). In the work 
described here, the optimum spectrographic resolving power (about 300 000) was not 
achieved, because the apparatus function was affected by factors independent of the 
spectrograph (see below). Nevertheless, it was important to use a high density 
ruling, because the large tilt (38 degrees at 2500 angstroms) made the optical 
system very sensitive to the angle between the plane of polarisation, of the 
incident radiation and the rulings on the grating surface. Also, the high 
dispersion enabled intensity oscillations much sharper than the actual linewidth to 
be observed.

The optical system was set up with the grating rulings vertical. Thus, in effect, 
the polanser (or electron accelerator) and analyser (or spectrograph) were 
crossed, as m  the standard configuration for observing the Faraday effect.

Of course, a grating is not an ideal polarising element: its behaviour was 
investigated by a simple experiment in which a wedge of crystalline quartz with the 
optic axis running towards the apex, a nominal thickness of 5 mm at the centre and 
an angle between the faces of about 1 minute of arc was mounted just m  front of 
the spectrograph slit with the axis at 45 degrees to the vertical. The difference 
between n+ and n-, the refractive indices for right- and left-hand circularly 
polarised radiation m  crystalline quartz is roughly constant as a function of 
wavelength between 2500 and 2000 angstroms. Therefore, the optical path difference 
between + and - light expressed in units of wavelength varies as the reciprocal 
wavelength. If t is the thickness of the crystal, we have

t (n+ - n-) = (n + 1 /2) 'X

where n is an integer (274 at 2190 angstroms), as the condition for rotating the 
plane of polarisation through 7V/2. Since, in fact, we used a wedge, we observed a 
succession of sloping fringes, spaced more closely towards short wavelengths. They 
are illustrated in Fig 2. From these and other data, we estimate that the 
polarising efficiency of the grating is about 75%.

Between the synchrotron and the cylindrical mirror, we placed a superconducting 
magnet capable of producing field strengths of up to 4.7 Tesla over a length of 50 
cm. A simple wire-wound furnace was used as the absorption cell m  the warn bore of 
the magnet. For the initial experiments reported here, we have investigated the 
vapours of Sr I and Hg I at temperatures corresponding to measured particle 
densities of about 10 to the 16 cm-3. Further experiments are m  hand on elements 
which possess singlet principal series and therefore exhibit simple Zeeman 
structures.
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Fig 1
Experimental Layout for Magneto-optical studies 
at the Bonn 500 MeV electron-synchrotron. For 
clarity, the experiments on beam lines 1,2 & 3 
are not shown.
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Flg2
Showing the sloping fringes observed when a crystalline quartz 
wedge is interposed between the cylindrical mirror and the 
entrance slit of the spectrograph (see text). Elmssion lines of 
00+ from a hollow cathode source were superposed as wavelength 
markers.

Results and Discussion. - A typical magneto-rotation pattern recorded m  the 
present experiments is shown m  Fig 3- The Zeeman structure, which consists of a 
Lorentz doublet, can be seen towards the centre of the pattern. It is surrounded by 
intensity oscillations which are symmetrical about the field-free resonance 
wavelength and which I shall refer to as ’magneto-optical beats'. The physical 
origin of these beats is as follows: as noted above, the polariser and analyser m  
our experiments were crossed. Also, with the combination of high magnetic field, 
long path length and high vapour density we used, typical atomic f-values resulted 
m  Faraday rotations of many turns towards the centre of absorption lines. Thus, as 
the profile of a line is scanned m  frequency, with the fast change m  rotation 
angle as the line is traversed, the emerging light can have its plane of 
polarisation rotated through different integral multiples of tv/2 at different 
points on the profile, and the intensity therefore oscillates between these points. 
In other words, the electric vector of the light describes a helix with many turns, 
and the actual number of turns varies as the profile is scanned.

In our experiments, magneto-optical patterns have been recorded over a wide range 
of n-values and magnetic field strengths. For example, in Sr I, we have recorded 
patterns from n = 11 to n = 28 in fields of 2.5, 3-0, 3-5, 4.0 ana 4.6 Tesla. Since 
the spectra were recorded photographically for optimum wavelength resolution, the 
patterns for different n-values are all recorded simultaneously. This has the 
following advantages: over the duration of the exposure, some of the parameters of 
the experiment (eg the magnetic field strength or the density of absorbers in the 
furnace) could drift or fluctuate. The variations will, however, be identical for 
all the transitions recorded on the same plate. Since, as will be explained below, 
we are primarily concerned with the determination of relative f-values from the 
product NflB (where N is the number density of absorbers, f is the oscillator 
strength, 1 is the length of the furnace and B the magnetic field strength), this 
simple expedient obviates any need to measure N, 1 or B accurately, although an 
approximate value of B is m  fact necessary to calculate the Zeeman structure at 
the centre. Thus, all that is required is to hold these quantities sufficiently 
constant for the magneto-optical beats to be recorded with good contrast. Snail 
fluctuations in any of them are, m  fact, accounted for in the analysis by the 
introduction of an apparatus function, as will be explained below.
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In Fig 3, we have given names to various parts of the pattern which will 
facilitate the following discussion. Several approaches are helpful in the 
interpretation of the patterns, and they can be applied m  steps of progressively 
increasing accuracy:

1. Estimates of NflB are readily obtained from well-resolved patterns such as the 
one m  Fig. 3 by applying the far-wing approximation of Mitchell and Zemansky 
(1971), which gives the rotation angle ̂  as a function of the detuning from the 
field-free line centre :

_ _j __
" 8 !rmlCz (v'-'if

Clearly, as the detuning increases, the rotation will tend to zero. Conversely, 
moving m  towards the line core, the rotation increases until, at 7*72, the
transmission through the crossed polarisers is maximum. When the detuning is 
reduced still further, we obtain the magneto-optical beats for angles of tt/2, 7T , 
37T/2, 27t, etc. Thus, the rotation angles are determined absolutely, as stressed 
above, and are actually independent of most non-linearities m  emulsion response 
which would affect relative intensity determinations.

The weakness of this first method of analysis is illustrated in Fig 4: The points 
which satisfy the far-wing criteria best are those which give the broadest 
oscillations m  Fig. 3 and are therefore the least accurately determined, while 
those which do not conform to the approximation give sharp structures which would 
be the most useful for an accurate analysis.
2. The second approach is to return to the theory and seek' expressions for the
transmitted intensity which involve none of the far-wing approximations. In 
practice, this means that both the contributions due to magnetic circular dichroism 
and magnetic circular birefringence must be included together. The easiest way to 
do this is through standard electromagnetic theory, by defining a complex 
magneto-optical angle (Buckinham 1969). Several authors (in particular Gawlik et 
al. 1979) have considered closely related situations which are actually special 
cases of the one considered here. In a forthcoming paper (Connerade 1982), the full 
expressions are derived, and the algebra will therefore not be repeated here. 
Rather, we shall concentrate on various numerical approaches we have devised to
calculate the profiles and report on improvements which are still being studied.

To compute magneto-optical patterns, we start from an expression for the 
transmitted intensity:

I P -a+z -a„z -(ar+a_)z 100-P -(a++a_)z
I = - — > [(e 2 - e ~ 2 ) + 4 e 2 sin a ]  + ----  I0e (1)

4 100 100
where I is the intensity of the incident plane wave, P is the polarisation 
efficiency of the grating, a+ and a- are the absorption coefficients for right and 
for left hand circularly polarised radiation, z is the length of the furnace and ^ 
is the Faraday angle.

The quantities a+, a- and $  are clearly functions of the detuning V-v'and of the 
magnetic field strength B. We have tried different expressions for them. The 
simplest to use is the form given by standard dispersion theory, namely:

2
e Nf (174*0

a+ -
me (V0- V  +ot)i+ (P/4 3r)2

(2)
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for singlet terms, where ot= eB/4*mc and all symbols are m  the standard notation 
of Mitchell and Zemanski (1971). The advantage of this expression is that n+ are 
then readily obtained as:

2
e Nf 1 yo - V ± o l

n± - 1 -------------------------------------- (3)4rrm (̂ +ol ) (V0- V ± <x f + (T74x)4
so that the rotation angle <y is readily calculated from:

1 u> z
-------(n+ - n-) (4)
2 c

However, it should be borne m  mind that these expressions for a+ and n- are not 
strictly applicable. In fact, Doppler broadening dominates under the conditions of 
the experiment, and the analysis should be based on a Voigt profile. This 
procedure is more complicated and will be further discussed below.

Magnetic Rotation angle as a function of wavelength (in 
angstroms) for the far-wings of the pattern in Fig. 3. Notice 
how the points move off the theoretical curve as one approaches 
the centre of the pattern, where the sharpest oscillations 
occur. The accuracy of any analysis based on the far-wing 
formula is therefore limited.
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In addition to the expressions (1-4) above, we need to perform an integration 
over the apparatus function. It is worth noting that this is not simply the 
instrumental function of the spectrograph, uhich could be determined, say, by 
analysing a zero-field profile: m  the apparatus function, we must include 
fluctuations of either the magnetic field or the density of absorbers during the 
exposure. The simplest (and crudest) approach is to treat this unknown as a ’top 
hat1 function, the width of which is then adjusted to reproduce observed 
magneto-optical patterns. A more realistic approach may be to use a Lorentzian of 
adjustable width. As we shall see, both give very good results.
We begin by considering the simplest approach, namely (1-4) together with 'top 

hat’ smoothing. Fig. 5 gives two examples of magneto-optical patterns computed m  
this way.

Fig. 5
Computed magneto-optical patterns for n=11 of Sr I, with Nf = 
8.58x10 to the 14 and B = 4.2 Tesla, showing the effect of 
different polariser efficiencies.

Although not strictly relevant to the physics, it may be of interest to point 
out that the computations involved in obtaining Fig.5 were simple enough to be 
carried out on a CBM 4032 Microprocessor after ' some internal modification to 
provide a suitable fast graphics display. More elaborate calculations (which are 
described below) are definitely not m  this class and require a large computer. 
The simpler theory can therefore be useful for a preliminary analysis of data.

As can be seen from Fig. 5, the profiles obtained are quite realistic and 
provide us with a basis to analyse the spectra. Indeed, we can now set up a scheme 
to compute all the profiles using (1-4), while varying the following parameters: P 
(to fit observed intensity ratios of the magneto-optical beats to the Lorentz 
components), the width of the apparatus function (to fit the observed fall in 
intensity of magneto-optical beats as their frequency increases) and NfzB (see 
below). If not measured directly, the magnetic field can be recovered from an 
analysis of the Zeeman structure (a highly accurate value of B is not required, 
since it will anyway factor out of the relative oscillator strength 
determinations). The dispersion width (T/47r) is taken as equal to the Doppler 
width.

Most of the parameters are held constant from one profile to the next for 
different profiles recorded on the same plate, since the experimental conditions 
are identical (We have, however, noticed a variation of the efficiency of the 
grating as a polariser over a range of about 400 angstroms). Ihus. the problem 
reduces to a determination of NfzB for each profile. Attempts along these lines 
have led us to yet a third approach, which we regard as the most accurate to date.
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3- The Magneto-Optical Vernier (MOV) Technique: The basis of this approach is a 
study of the behaviour of computed patterns as NfzB is varied. As it turns out, 
there are different rates of variation of the profiles over different parts of the 
rotation curve: in the far-wing, the pattern varies slowly, moving slightly out 
from the line centre as NfzB increases m  accordance with the far-wing formula, 
while relative intensities remain substantially unchanged, provided the 
magneto-optical beats are well outside the width of the Lorentz components. Moving 
in towards the line centre, where the rotation angles become much larger, one 
finds that the relative intensities in the pattern fluctuate rapidly as a function 
of NfzB.

This behaviour is illustrated m  Fig. 6, which shows just the central part of 
.the computed patterns as a function of Nfz . In what follows, we refer to one 
period of the fluctuation as a magneto-optical cycle. The existence of the cycles 
was already demonstrated by Gawlik et al. (1979) for the special case of fixed 
energy photoexcitation at the zero-field resonance frequency, m  which case the 
dichroism terms cancel, leaving only the fast-varying contribution due to 
birefringence: they were able, by studying the beats as a function of magnetic 
field strength, to obtain an accurate measurement of the relative f-values of the 
sodium D lines. By contrast, in the present method, the field B is held constant 
and the profile is scanned in frequency. This has a number of advantages, (a) We 
can use the outer part of the profiles to determine NfzB coarsely, say, to within 
one magneto-optical cycle, and then use the fast variation at the centre of the 
profile to determine NfzB accurately. This is the MOV method referred to above, 
and is capable of an optimum accuracy of +- 0.25%. (b) Holding the field constant 
allows us to work at very high fields and, by performing measurements at several 
different values of B, it should be possible to study the influence of the 
magnetic field strength itself on the relative oscillator strengths, (c) By 
working with high fields, one achieves a high sensitivity as well as a high 
accuracy, and relative oscillator strengths where one of the f-values is 10 to the 
minus 4 or less can be determined to an accuracy which is still of the order of-t-10%.

As pointed out above, there remains some possibility of systematic errors in an 
analysis based on the MOV technique when the simple dispersion formulae (2-4) are 
used. Nevertheless, we have obtained results which, plotted on the 'renormalised' 
graphs of quantum defect theory (Starace 1976) are more consistent at high n than 
results obtained by the 'hook* technique (Parkinson Reeves and Tomkins 1976) and 
join more smoothly with the photoionisation cross section. This is illustrated in 
Fag.7.
In order to determine the significance of the systematic errors mentioned above 

and also to explore possible improvements m  the details of the predicted 
patleins, we iiave also performed calculations using Voigt profiles, convolved with 
a Lorentzian instrument function. The computations were performed by using a 
simple algorithm (Hui Armstrong and Wray 1978) for the complex error function, the 
real and imaginary parts of which yield the absorption coefficients and refractive 
indices. Many more points were used (about 1000) in order to display well-resolved 
patterns. These calculations were carried out on the CDC 7600 computer at Imperial 
College. A typical profile is displayed in Fig.8.

As can be seen from Fig. 8, the new calculations using Voigt profiles and the 
more reasonable apparatus function are a significant improvement over earlier 
ones based on simple dispersion theory and a 'top hat' smoothing procedure: while 
the overall features are the same, the Lorentz components at the centre of the 

pattern are closer to the experimental lmeshapes, and, with the finer mesh used 
in the more elaborate calculations, more detailed structure can be reproduced. 
Thus, the more elaborate scheme will, it is thought, provide a better framework 
for exploiting the MOV method. At time of writing, this aspect of the analysis is 
still being developed, which is why the results of Fig. 7 are based on simple 
dispersion theory. In particular, we are still exploring the most appropriate



while the far-wing pattern changes slowly with Nfz is the basis of the Magneto-Optical 
Vernier (MOV) technique described in the text.
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Fig. 7
Plot of renormalised oscillator strengths as a function of 

energy for the principal series of Sr I, showing the smooth 
join which is obtained between the present data (rectangles) 
and the photoionisation cross section of Sr I as measured by 
Hudson et al.(1969), scaled up by 1.5. This is compared with 
‘hook data' by Parkinson Reeves and Tomkins (1976-open 
circles), who suggest a scaling factor of 1.9 for the data of 
Hudson et al.(1969). A scaling factor of 1.7 was suggested by 
Lutjens(1972). The 'hook*values for n=11 to 15 are very close 
to the present values and are omitted for clarity. At high n, 
the present measurements still show some departures from a 
straight line and this is discussed m  the text.

apparatus function to use. One might, for example, prefer a Gaussian shape, but 
the matter is not a simple one, because the wfdth of the apparatus function is m  
fact dominated by fluctuations m  furnace density and magnetic field strength, 
rather than just optical effects.

Thus, before deciding on the final method of interpretation, we wish to study 
the influence of various possible choices on the relative f-values obtained for a 
given set of data. This should also provide useful information on the accuracy of 
our technique.
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Fig. 8

Calculated magnetorotation pattern for n=ll in. Sr I. The parameters 
14are Nfl = 8.38 x 10 , H ■ 4.2 Tesla. A Voigt profile was assumed for

the field-free absorption coefficient and the full expression including 
both circular birefungence and dichroism is then smoothed over a Lorentzian 
apparatus function.

Another aspect of the pattern in Fig.3 which has not been discussed so far is 
the asymnetry with respect to line centre which is apparent m  the Zeeman 
components. A first temptation is to seek its cause in one of several processes 
which lead to antisymmetric Faraday effects (cf Fortson and Wilets 1980). These 
are, m  order of significance as the magnetic field strength is increased, the 
Back-Goudsmit effect which breaks the coupling of J and I m  hyperfme structure, 
and the Paschen-Back effect, which breaks LS coupling and thus mixes singlet and 
triplet states. In principle, if both the latter causes of asymmetry could be 
removed, eg by extrapolating to zero field strength, one would be left with the 
Weinberg-Salam effect for atoms, which, however, is much too small to be detected 
by our approach.

All the effects associated with antisymmetric rotation act simultaneously on 
the absorption coefficients and refractive indices, and therefore affect both the 
magneto-optical beats and the Lorentz components at the centre. Now, we find that 
the magneto-optical beats m  well-resolved patterns such as the one in Fig.3 are 
m  fact symmetrical about the centre of the patterns to within experimental error
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(for partially resolved patterns, the situation is slightly different, as 
discussed below). Experimentally, the asymmetry only affects the intensity of the 
Zeeman components. This suggests that the cause, at least for Sr I at the field 
strengths we have studied, is not connected with any antisymmetry of the Faraday 
effect.

Another possibility is some ellipticity of the incident radiation. Synchrotron 
radiation is only plane-polarised in the orbital plane of the accelerator. As one 
increases the acceptance angle out of the plane of the orbit (or if, for some 
reason, the orbit of the electrons migrates slightly from the true plane) the 
radiation will, in fact, be elliptically polarised. In effect, we can represent 
this as a slight admixture of circularly polarised radiation in the incident 
beam. Now, such an admixture does not affect the rotation patterns at all, since 
there is no preferred plane in circularly polarised light. However, the Zeeman 
pattern is affected, because circularly polarised light of a given sense (say 
positive) will be absorbed by the Lorentz component on one side of the pattern, 
but not by the corresponding Lorentz component on the other side.

We have included this effect in our calculations, and we find that good 
results are indeed obtained for an admixture of circularly polarised light of a 
few percent in the incident beam. This is shown in Fig.9. The admixture of 
circularly polarised light for Fig.9 is perhaps a little higher than one would 
expect, but it could conceivably be due to optical imperfections, for example 
to a grazing incidence reflection on one side of the beam line tube.

circularly polarised light, the net effect of which is to 
increase the intensity transmitted through the crossed 
polarisers at all wavelengths except m  the cr peak, at the 
centre of which right hand circularly polarised light is 
strongly absorbed. An asymmetry is thereby introduced m  the 
pattern, but it will be noted that this does not extend to 
the magneto-optical beats. Also, the centre of the pattern 
has the same appearance as m  the profile of Fig.8, which was 
calculated using otherwise identical parameters.



n = 22 n = 23 n = 24 n = 25

Fig.10 - Examples of experimentally recorded magneto-optical patterns under partially resolved conditions, 
^or n = 22, 23, 24 & 25 m  Sr I. Note the rapid variation m  intensity at the centre of the 
patterns (dashed curve), which is the basis of the MOV method (see text).
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So far, the discussion has centred on well resolved magneto-optical patterns, 
le on patterns for which the magneto-optical beats stand well clear of the Zeeman 
structure. A proper understanding of these is clearly necessary to tackle the 
more complex situation where the structures overlap m  energy, which we shall 
refer to as partially resolved patterns.

Partially resolved patterns are encountered as one progresses to higher 
n-values up a Rydberg series for a given magnetic field strength. With decreasing 
f-value, the available rotation decreases also, and eventually the 
magneto-optical beats move into the linewidth of the individual Lorentz 
components, so that it becomes difficult to attach precise labels to the peaks as 
was done in Fig.3.

Examples of partially resolved patterns are given m  Fig.10. The first 
question one might ask is whether the MOV method is still applicable under such 
conditions. Fortunately, a clear answer is provided by the experiment itself: as 
can be seen m  Fig.10, the outer regions of the patterns change slowly with 
increasing n-value, whereas the intensity at the centre (along the dashed curve 
m  the figure) changes fast. This fact demonstrates that the MOV method continues 
to provide enhanced accuracy in the determination of f-values under partially 
resolved conditions.

In addition, the methods of profile computation described above also remain 
applicable under partially resolved conditions, which .is another important 
advantage over the method of analysis based on the far-wing approximation. 
Examples of profiles computed under partially resolved conditions are presented 
in Fig. 11 and are seen to reproduce the observed patterns well.

Figl 1
Examples of computed profiles under partially resolved conditions. 
The corresponding experimental profiles are shown m  Fig.10.
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The plot of oscillator strengths given in Fig. 7 
was obtained by using dispersion theory and the 
simpler of the two computer codes described above. 
Although the trend of the data at high n is much more 
satisfactory than the one obtained from earlier 
measurements by the 'hook' technique (Parkinson Reeves 
and Tonkins (1976), there are still departures from 
the straight line in Fig. 7 which we do not 
understand, in particular (l) around n = 18 and (li) 
for n = 25, 26, 27 and 28.

Considering (l) first, it is interesting that the 
'hook' data (also shown in Fig. 7) exhibit a jump 
between n = 17 and n = 18 which is even more 
pronounced than m  the present data. Our error 
estimate is -t— 1.8% at n = 18, and the departure from 
linearity m  our data therefore seems significant. 
Eshenck (1977 Fig. 3) has presented a quantum defect 
plot based on the earlier data by Garton and Codling 
(1968) which also shows a departure from linearity at 
n = 18, although there seems to be no perturber 
nearby. With this in mind, we have re-investigated the 
upper members of the principal series m  Sr I up to 
n = 85 in zero field. Our new data (Fig. 12) show no 
sign of perturbations m  the quantum defect, or of any 
transitions to triplet states, even at the highest 
values of n recorded.

We have therefore searched for a possible source of 
systematic error in the f-value measurements around 
n = 18. Between n = 17 and 18, there occurs an 
impurity line at 2201.42 & which is due to 7p‘P, in 
Ca I. In the presence of the field, this absorption 
line disappears and is replaced by a pair of 
magneto-optical intensity maxima, thus confiming that 
the impurity is only present within the absorption 
column inside the high-field region. From the known 
f-value of the Ca I transition (Parkinson Reeves and 
Tonkins 1976), we calculate a Ca/Sr ratio in the 
vapour of ~10-4. The additional rotation due to this 
line might conceivably be a source of error in our 
measurements, since its f-value is about 30 times 
greater than that of the n = 18 line m  Sr I, but 
further work is needed to confirm this possibility.

In Fig. 13, we demonstrate that the departure from 
linearity at n = 18 is a real effect by giving both 
experimental and calculated profiles.

Turning now to (ii), it will be noticed that the 
values around n = 25, 26, 27 and 28 m  Fig. 7 lie 
below the 'best' straight line through the data 
points, and that the discrepancy increases 
systematically with increasing n-value. Our estimates 
suggest that the errors are ->-3.7%, 5.6%, 6.7% and 
8.3% respectively for these transitions and that the 
departure from linearity is barely significant. 
Nevertheless, the systematic trend m  Fig. 7 does 
suggest some underlying reason for it.
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Fig. 13 - Experimental and calculated magneto-optical patterns for n = 18 m  Sr I (a) closest calculated fit to the 
data (b) experimental profile and (c) calculated to agree with the straight line in Fig. 7 exactly (see text).
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At time of writing, we can only speculate that this trend might be due to 
perturbations m  the f-value produced by the applied magnetic field. It would 
seem quite reasonable that such perturbations should become important at n-values 
around 25: the data of Garton and Tomkins (1969) show that 1-mixing satellites 
appear around n = 30 in fields of 40kG and, indeed, our own spectra show 
(Fig. 14) that the data become unmterpretable above n = 28 because of high field 
effects. It is an open question what further information could be derived from 
our data at high n-values. We are m  possession of data recorded at several field 
strengths which would allow us in principle to search for systematic changes in 
f-value as a function of the applied magnetic field. Our analysis is still m  
progress, but first results indicate that it may be necessary to repeat our 
experiments at still higher fields to reveal the trend, and this will require an 
upgrade of our superconducting magnet.

One of the advantages of holding the magnetic field constant as we have done 
in our experiment is that high fields are readily obtained and effects due to the 
field are easily probed. This opens up exciting prospects for the application of 
the MOV technique to studies of high field effects.

Conclusion. - We have demonstrated a novel technique for the measurement of 
atomic oscillator strengths, which achieves a higher accuracy and sensitivity 
than other previously known methods. The new approach requires further 
development, both experimental and theoretical to be applied to full advantage. 
For example, in its present form, the theory has only been worked out in detail 
for singlet to singlet transitions. Also, it may be more appropriate to use a 
laser rather than a synchrotron radiation source, and sub-Doppler techniques 
could probably be applied with advantage. The new method holds great promise for 
the study of perturbations m  f-value due to high external magnetic fields.
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(UK) and the B.M.F.T. (West Germany). We are also grateful to the Argonne 
National Laboratory (Illinois, USA) for the loan of the superconducting magnet.
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Fig. 14 - Showing the uppermost series members of Sr I in a field of 4.2 T. Note the increase in complexity 
of the spectrum above n =28 which is attributed to lTmixing.
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MAGNETIC ROTATION SPECTROSCOPY WITH SYNCHROTRON RADIATION

J.P. Connerade*, W.R.S. Garton*, M.A. Baig, J. Hormes, T.A. Stavrakas* and 
B. Alexa
*Blaekett Laboratory, Imperial College, London SW7 2AZ, U.K.

Physikalisohes Institut, Universitat Bonn, 53 Bonn, F.R.G.

Resume: Nous decnvons des experiences rdcentes ou la polarisation lineal re du 
rayonnement synchrotron dans le plan de l'orbite a ete exploitee pour etudier les 
effets combines de la birefringence magnetique circulaire (effet Faraday) et du 
dichroisme magnetique circulaire (MCD) dans 1 'ultraviolet. A l'heure actuelle. nos 
etudes portent sur les series pnncipales des alcalmo-terreux dans des champs 
magnetiques allant jusqu'a 4,6 Tesla. Nous avons pu observer des oscillations 
d ’intensity dues A 1 'effet Faraday jusqu'& n=28 environ. Au-dessus de cette valeur, 
les structures supplementaires dues au melange de 1 en champ intense compliquent 
1 'interpretation du ph6nomdne. A partir de nos mesures, nous avons pu, par une 
m^thode nouvelle, deduire les forces d 'oscillateur relatives des transitions 
atomiques avec une precision qui va jusqu'a + - 0,25%. et qui depasse done 
largement celle des meilleures' determinations anteneures. Notre methode offre 
aussi, du moms en pnncipe, 1' avantage de permettre 1' etude des perturbations de 
la force d 'oscillateur en presence d'un champ magn§tique intense. Enfm, elle ne 
necessite qu'une optique reflechissante et peut done etre utilisee dans 
1' ultraviolet lointam.

Abstract: We describe recent experiments in which the linear polarisation of 
synchrotron radiation in the orbital plane has been exploited to study the combined 
effects of magnetic circular birefringence (Faraday rotation) and magnetic circular 
dichroism (MCD) in the ultraviolet. To date, our experiments have concentrated on 
the principal series of alkaline-earths in magnetic fields of up to 4.6 Tesla. We 
have observed intensity oscillations due to Faraday rotation up to about n=28. 
Above this value, additional structures due to 1-mixing m  high fields complicate 
the interpretation of the patterns. From our measurements, we have been able to 
deduce relative oscillator strengths of atomic transitions by a novel technique. 
The precision of these determinations can be as high as + - 0.25% in favourable 
cases, and is thus considerably higher than in earlier measurements using different 
techniques. Also, the present method has the advantage that, in principle, one 
could investigate perturbations of the f-value by intense magnetic fields. Finally, 
it requires only reflecting optics and can therefore be used m  the vacuum 
ultraviolet.

Introduction. - The present paper is a report on experiments recently performed 
at the•500 MeV electron synchrotron of the Physikalisches Institut m  Bonn, where a 
laboratory specialised in high resolution vacuum ultraviolet spectroscopy has been 
set up in collaboration with the Blackett Laboratory, Imperial College. An example 
of investigations carried out in Bonn using the same source and spectrographic 
apparatus as the present work is given by Connerade Baig Garton & McGlynn (1980).

In the experiment described below, the high degree of linear polarisation of 
synchrotron radiation m  the orbital plane of the accelerator has been exploited to 
study the combined effects of magnetic circular birefringence (Faraday rotation) 
and magnetic circular dichroism from 2300 to about 1600 angstroms.
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MEASUREMENTS OF ATOMIC /-VALUES BY MAGNETO-ROTATION IN THE VUV 

B. ALEXA, M.A. BAIG, J.P. CONNERADE, W.R.S. GARTON, J. HORMES and T.A. STAVRAKAS
Physikahsches Institut der Umversitat Bonn, Germany, and Blackett Laboratory, Imperial College, London, England

We report a technique of exploiting plane polarized radiation from the Bonn 0.5 GeV synchrotron and the surprisingly high degree 
of polarization shown by a close-ruled holographic grating of 3 m radius, as a means of extracting atomic /-values from measurements 
of Faraday rotation in the neighbourhood of absorption lines of a gas in a magnetic field. The techmque has novel and apparently 
promising features for work over most of the Schumann region. Since full descriptions are already in course of publication [1,2], only 
the essential outlines are given here.

The main objective of the expenmental programme m 
Bonn, as regards Zeeman spectroscopy, has been to­
wards study of diamagnetic shifts, splittings and config­
uration mixing effects in long Rydberg senes. To our 
knowledge we have revealed the first resolved Zeeman 
patterns below 2000 A to be recorded in the literature. 
Presumably previous lack of such observations has been 
due to a combination of scarcity of instruments of 
sufficient resolution and magnets of high enough field, 
problems-associated with focussing and polarizing opti­
cal components in the VUV and of sources of polanzed 
light, and of solving this group of problems m a single 
laboratory. Use of the plane polarized light from the 
synchrotron overcomes some of these problems, and we 
have also available modem holographically-produced 
close-ruled gratings and high-field superconducting 
magnets. The general layout of our apparatus is given in 
fig. 1.

Our first expenment showed well resolved structures 
in senes lines of Mg I and Yb I, which will be the 
subject of other papers. In course of the expenments we 
discovered that the grating used (approx. 5000 
lines/mm) showed strong polanzing properties over the 
range 1600-2500 A, and possibly below 1600 A. 
Specifically, the grating is several times more efficient 
for light with the electnc vector parallel to the ruling, 
than traversely. As a result every absorption line has a 
Faraday rotation pattern-extending from the wings and 
through the core of the line. By using classical electro­
magnetic theory it is possible to denve /-values from 
measurement of the photometnc traces like fig. 2. in 
effect we achieve the advantages of MOR measurements 
and those of MCD which, with the exception of recent 
work by Gawlik et al. [3], on the D-lines of Na I, have 
normally been the objectives of different expenments.

The method we ’have developed gives, we believe, 
values which are a# good as or better than those of the 
other method of wide range for the determination of

0167-5087/83/0000-0000/S03.00 © 1983 North-Holland

/-values, namely that of “ Hooks”. As illustration we 
compare in table 1 values of the Sr I /-values for the 
principal senes (5s-np) with previous values derived by 
the method. In this companson we have to note, how­
ever, that recent improvements m the use of the “ hook 
method” [4,5], might improve the values listed in the 
table by as much as a factor of 10 for this method.

We have now sufficient data and interpretation to

Fig. 1. Expenmental layout for magneto-optical studies at the 
Bonn 500 MeV electron synchrotron. For clanty, the expen­
ments on beam lines 1, 2 and 3 are not shown

XI VUV TECHNIQUES/INSTRUMENTATION
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Lorentz Doublet in Absorption

Fig. 2 A typical well-resolved magneto-optical pattern (for n = 11 in Sr I).

know that the existing system is good to at least 1600 A. 
We expect the advantages of the method to enable us to 
work to shorter wavelengths, although we have as yet no 
knowledge of how well the degree of polarization of the

grating behaves as the angle of mcidence is diminished. 
If this falls off seriously we have the possibility of 
working in the second order, by which means we could 
then certauily be able to reach 1200 A and below

Table 1
/-values for Sr I.

n *o(A) n* /  (present) /(re f 7) /(re f 6)

11 2253.954 8 372 0 00851 a 0 00891 ±15% 0 00851 ±12%
12 2238.350 9 346 0 00531 ±0 6% 0 00525 ±15% 000513± 12%
13 2226.997 10.330 0 00351 ±0 7% 0 00372 ±15% 0.00363 ±12%
14 2218.507 11 319 0.00258 ±0 8% 0 00257 ± 15% 000257± 12%
15 2211.999 12.311 0 00187 ± l 3% 000209± 15% 0 00186± 12%
16 2206 927 13.302 0.00141 ±1 5% 000148± 15% 0 00145 ± 15%
17 2202.863 14 302 0 00110± 1 7% - 0 00107 ± 15%
18 2199.579 15 301 0 000924 ±1 8% - 000098± 15%
19 2196.900 16 294 0.000696 ± 1 9% - 0 00078 ±15%
20 2194 663 17 292 0 000555 ± 2 0% - 0 00066 ± 15%
21 2192 788 18 290 0 000447 ±2 2% - 000058± 15%
22 2191.196 19 293 • 0 000378 ±2 6% - 0 00050 ±20%
23 2189 841 20 288 0 000309 ±3 2% - 0.00042 ±20%
24 2188 673 21.286 0 000268 ±3 6% - 0 00033 ± 20%
25 2187 652 22.288 0 000218 ±3 7% - 0 00031 ±20%
26 2186 776 23 373 0 000179±5 6% - 0 00026 ±20%
27 2186 046 24 281 0 000149 ±6 7% - -

28 2185.389 25 273 0 000119 ±8 3% - -

All the present values are normalized onto the n = 11, /-value given by ref 6 which is regarded as exact when specifying the eri 
bars in the column of present measuements
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Abstract
The Magneto-Optical method of measuring f-values is developed. First, 

the complex error function, the real part of which gives the absorption 
coefficient and the imaginary part, the refractive index, is shown to 
provide a better basis for the analysis of the data than earlier 
approximations. Secondly, the results are shown to be insensitive to 
various possible choices of apparatus function. Thirdly, the influence of 
overlapping patterns on the measurement of relative f-values is assessed and 
an experimental example of overlapping patterns from different species is 
calculated in full, the comparison being made over a wide range of 
parameters.

A criterion is given for a magneto-optical pattern to be considered as 
isolated, and an improved 'far-wing' approximation is derived from the 
analysis.
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1. Introduction: Synchrotron Radiation and the MOV Method.
The properties of the electromagnetic field radiated by n equidistant 

electrons moving in a circle with uniform velocity were first studied by G.A. 
Schott (1912), whose work has been neglected for many years, probably because the 
reference is now difficult to find. It is very appropriate to remember him here 
because of the following statement, to be found on page 109 of his book, after a 
detailed calculation of the polarization properties of each of the harmonic 
vibrations into which synchrotron radiation can be decomposed:

"At the equator, where 8=j, the polarization is linear, the electric force • 
being along the equator and the magnetic force perpendicular to it. tN’ear the 
axis, where 9 is very small, the polarization is approximately circular, but the 
harmonic j=l alone has appreciable value. The direction of rotation is that of 
the electron in its orbit. As 9 increases in passing from the axis to the 
equator, the polarization becomes elliptic, the axes of the vibration ellipse 
being in and perpendicular to the meridian; and the perpendicular axis 
predominates more and more".

I believe this to be the first statement of the polarization properties of 
synchrotron radiation. However, as it predates not only Schwinger's (1949) work, 
but even the construction of the first cyclotron (Lawrence and Livingston, 1932), 
the work of Schott (1912) seemed only an exercise in applied mathematics at the 
time. Probably, the motivation for his work lay in Rutherford's speculation that 
the atom might consist of electrons orbiting around point nuclei. Since Schott's 
(1912) calculations showed that, classically, such a system would soon radiate 
all its energy, this approach was soon dismissed.

On the way, Schott (1912) also found that the Bessel function expansion he 
was using only converges if the velocity of the electrons is analler than that of 
light, and he even considered the effect on his equations of a new and rather 
daring theory due to A. Einstein, which seemed to help if one oould believe it.

The present paper is concerned with the exploitation of the polarization of 
synchrotron radiation in the equatorial plane, which (as remarked above) is 
linear with the electric vector in the plane of the orbit.

We have utilised this property for studies of Faraday Rotation in the vacuum 
ultraviolet, where an alternative continuum source would be difficult to find. 
Since quite detailed descriptions of our own method have been published 
(Connerade et al 1982; Gar ton et al 1983; Connerade 1983), We do not repeat them 
here, and give only the briefest of summaries before discussing a more recent 
elaboration of our theoretical work.

We have developed a magneto-optical vernier C S O V ) technique for measuring 
atomic f-values which is, we believe, the first application of synchrotron 
radiation in the field of Faraday Rotation. The fundamental equations on which
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the method is based are given below. In essence, the technique depends on the 
very slow variation against f of magneto-optical patterns in the far wing against 
the rapid variation experienced in the centre of patterns. It is thus possible 
to make coarse- adjustments to fit one part of the pattern and a fine adjustment 
to fit the rapidly changing pattern at the centre. Vfe have achieved accuracies 
of fractions of a percent in a preliminary analysis of our 'data and, before 
embarking on more difficult experiments, we have decided to consolidate cur study 
by optimising the computational approach, and by studying interactions between 
overlapping patterns.

2. Brief summary of technique

The method we are using is essentially a standard layout for the observation of 
Faraday rotation, namely an absorption cell within a solenoid, placed between 
crossed polariser and analyser, to ensure that, for zero field, transmission is 
at a minimum. Thus, for ideal optics, signal would only be detected either (i) 
in the presence of magnetic circular birefringence, i.e. Faraday rotation of the 
plane of polarisation or (ii) in the presence of magnetic circular dichroism, 
i.e. selective absorption of one circularly polarised ocmponent in the Zeeman 
pattern.

The unconventional aspects of our setup are as follows. First, we use the 
synchrotron itself as the polariser. Second, the experiment is performed in a 
very high field (more than 40 k Gauss) with a long solenoid (70 an) vhich 
therefore produces rotations through many turns in the core of absorption line. 
Third, the experiment is performed at rather high resolution 0300,000) in the 
ultraviolet, so that the stability of furnace and field strength during an
exposure lasting a few minutes on Kodak SWR plates are, in fact, the limiting 
factors. Fourth, we use a high dispersion grating (5000 lines /mm) as the
analyser, accepting that it does not behave as an ideal polariser (we make 
allowance for this fact in the analysis), which enables us to conduct the
experiment with minimum loss of light. Vfe have observed magneto-optical patterns 
down to about 1620A using the Bonn 500 MeV electron synchrotron. A typical 
magneto-optical pattern is shown in Fig. 4 below.
3. Development of the MOV Method.

An introduction to the basic theory underlying the method is given by 
Buckingham (1969). The Magneto-Optical Vernier (MOV) method is a measurement 
technique described by Connerade (1983). The following discussion assumes
familiarity with both papers.

For a Maxwellian distribution of velocities, the probability P(v) dv of 
finding an atom with velocity v in the range v, v+dv is

V(y) d-xr -  — <2, dv • <\rc =a/^J*
va v m,
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where the symbols have their usual meanings. The absorption coefficients a+ and
vrefractive indices n +  are then found by convolving the Lorentzian natural line

L — L.shape a+(V) and the corresponding refractive index n+(V) with the Gaussian
distribution P(v) thus:

<30

Q-i (?) = f o i  ( v -  ) T ( y )  4 *

where a+ then has the form of a Voigt profile, a n d
r , : ? )  = V )

The quantities a^ and are then given by standard dispersion theory as

a,± (y)- C h fo O
orn c

and
( v - V c d s .^ ) 2* - *  Q Y u - 7 c ) 2'

1 V - V o  ±  o(
4-K >wt (v>0 ±  * )  (v>0 -  V  ±  d ) %  C f / i f  ^ f)2'

(1 )

( 2 )

(3)

(4)

in which o<= efl/4ttmc and is the natural line width.
in an earlier paper (Connerade 1933), the complexities of the convolution 

(1) and (2) were circumvented by a somewhat crude approximation: "^/An m s  taken
y/ yas equal to the Doppler half width and a+(V), n+(v>) were taken to have the simple 

forms predicted by dispersion theory, before convolution with an apparatus 
function. Although excellent agreement with experiment was obtained, this might 
be considered artificial in that a number of parameters were adjusted for optimum 
fit to the <feta.

The present paper seeks to improve the theoretical basis for the MOV method
Vby adopting a more rigorous approach. First, the correct form is taken for â .(v)

vand n+(v>).

and

where If -

Substituting (3) and (4) into (1) and (2) respectively, we have
<30

f a

Cv)~l -

A ^  J-o* + 3*

\>Q ±cK  +  I f 2,

(5)

(6 )

A t k i . oi s ——  ou^ai v -  is the detuning expressed inifTrAvfe > av* > ^ v p
Doppler widths AV= V0nr/c, and v' is the variable of integration.

As suggested in the earlier paper (Oonnerade 1983), the algorithm of Hui et 
al (1978) lias been applied for rapid computation of the complex error function. 
This leads directly to the integrals in both (5) and (6) by an argument which can 
be regarded as an expression of the Kramers-Kronig relations. The argument runs 
as follows: the complex error function is defined as

£  Or) f a  %-vn C V P °

1  ( ? £ ) % £ ' *  f a
“K »  =

whence
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where • A M

w  ■ *  L .
- t Ve. git
Ir-*

By substituting t=y, z=(v?*)-y + itf, we have from (7)

P ( v > V  5 f°° f c ^
" *  J-. K 1 *  + * *

(7)

(8 )

Thus, for lm(z)>0, the real part of p(z) above yields the form of the absorption 
coefficient (Voigt profile) while the imaginary part yields the corresponding 
refractive index. The condition lm(z)>0 is always satisfied here since 2f, the 
linewidth expressed in Doppler widths, is positive definite.

Following Hui et al (1978) the complex error function was calculated as a 
quotient —  *

Z ,  v4,=0
M  * *

t  + £ * ■ < *
•i sO

(9)

where q= 6 and the coefficients a^ and b^ are tabulated (Hui et al.). The 
errors involved in using this approximation are less than one part in 10^.

The results obtained in this way are then substituted in equation (9) of 
Gonnerade (1983) to calculate the intensity transmitted fcy the crossed polarisers 
as a function of frequency. Fig.l shows the magneto-optical oscillations 
obtained in this way for a typical choice of parameters (for n=ll of Sr I).

Before a comparison with experiment can be made, the spectrum of Fig.l must 
be convolved with an apparatus function. Unfortunately, the appropriate function 
cannot be determined from a separate experiment, because it involves the 
fluctuations in furnace conditions and magnetic field strength as well as 
spectrograph resolution. In all experiments performed to date, these 
fluctuations produced the largest broadening and also varied from one exposure to 
the next. Conneraae (1983) therefore arbitrarily adopted a ‘top hat1 apparatus 
function which is easy to calculate and simply varied its width to obtain the 
optimum fit for a complete experimental spectrum.

Since Gonnerade's (1983) choice of apparatus function is arbitrary, it could 
lead to systematic errors in the interpretation of the data. ■ We have 
investigated this source of error by performing the analysis with three different 
apparatus functions. Details of the procedure are as follows. The convolution 
integral was evaluated numerically over the finite range ± 2 where A v a was 
the FWKM of the apparatus function and was treated as an adjustable parameter 
starting from the value given by Gonnerade (1983). A mesh of 100 points proved 
adequate for the integration. As A va was increased, the fine detail apparent in 
Fig.l was lost, and the narrow oscillations became much weaker. I z  was found that
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a 10% change in A ^ l e d  to only a 0.1% error in the determination of the f-value 
- an indication of how insensitive the analysis is to the choice of apparatus 
function.

To explore this point further, we performed the convolution with the 
following three choices of instrumental function:

A v la /2.k
LU(V ,v )  =

& 'L  (V ,V ) =

for 

= 0 

for

I v - v ' l ^  A t  :  

L T  ( V - v ' ) =  0

| V - V ' |  >  :

0 >-V')a + ( A v LA / i y

A
(10)

f Y r v ' \  
~ V a v tVL  (V,v') =

A v a
A A Aall of which are normalised to unity, with widths , A ^ a n d  chosen to give

the same FWHM in all three cases.
The effect of the different instrumental functions is as follows: the 

Gaussian, with its exponential decay in the far wings, selects more information 
from the immediate vicinity of the frequency V* while the Lorentz ian takes more 
from the wings. The triangular function, like the 'top hat' function used by 
Gonnerade (1983) selects only a finite band of frequencies around V. Nonetheless, 
Gaussian, Lorentzian or triangular functions all lead to closely similar results 
for the energies of the peaks and the overall appearance of the patterns (see 
Fig.2). The differences between the three are mainly in the level of transmitted 
intensity (which cannot anyway be determined accurately from a photographic 
record) and, (to a much lesser degree) in the sharpness of the oscillations 
(which can in practice be corrected for by a slight adjustment of the assumed 
half-width). All the calculations of Fig.2 were performed with identical 
half-widths for the apparatus function to bring out the differences more dearly.

The conclusion reached from this test was that the results are essentially 
independent of the choice of apparatus function. Convolving with a Lorenzian is a 
fairly realistic assumption and is more economical on asmputing time than 
convolving with a Gaussian, because there is no need to evaluate exponentials. It 
was therefore adopted as a convenient schone for the convolution.

Next, we verified that the magneto-optical cycles, the properties of which
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are fundamental to the accuracy of the MOV method, possess the same variation as 
in the earlier calculations based on approximated profiles. Samples of the cycle 
structure are shown in Fig.3. The accuracy of the MOV method depends on the rapid 
intensity variation with NfB on resonance as compared to the line wings, and the 
figure shows how this can fall off with increasing principal quantum number if a 
sequence of measuranents is performed under identical experimental conditions.

The acmputations, carried out on a mesh of 1000 points, were too complex for 
a small computer and were therefore carried out on the CDC 7600 at Imperial 
Gollege.

The improvement over the earlier approximate calculations is illustrated in 
Fig.4. Using our new code, we investigated the’ effect which substantial 
experimental errors in the determination of furnace temperature and applied 
magnetic field (much larger than the probable errors) would have on the accuracy. 
Ws found that a 40% error in measuring the temperature leads to a 0.1% error in 
the relative f-value determination, while 4.5% error in determining the magnetic 
field strength produces 0.3% error in the relative f-values.

4. Experimental Investigation of Overlapping Magneto-Optical Patterns

A basic difficulty in accurate methods of determining f-values from 
refractive index measurements, as pointed out in the Introduction, is the 
influence which the proximity of another transition (either from an impurity or 
from the same atom) can have on the experimental result. This problem arises in 
several ways. Thus, Garton et al. (1983) argue, that the n = 18 f-value 
determination in Sr I is influenced by the proximity of a Ca I impurity line of 
much higher oscillator strength, so that a small impurity concentration of Ca in 
the sample can upset the measurenents by both the hook (Parkinson et al 1976) and 
magneto-optical techniques. More generally, the problem arises among the 
uppermost members of a Rydberg series, which become so closely spaced in energy 
that there is no longer enough interval for a properly resolved magneto-optical 
pattern to develop without overlap. Before changes in f-value due to incipient 
1-mixing can be investigated, it is important to understand the effects of 
overlap between magneto-optical patterns.

This source of error dees not appear to have Igeen investigated 
systematically. We describe now the effect it has on measurements by the MOV 
method.

An experiment was performed with the same apparatus as used by 'Garton et 
al.(1983). The sample was Ba metal, containing <1% Sr metal as an impurity. Two 
transitions, one at 2427.41 A  (15p 1 P( in Ea I) and the other at 2428.09 A 
(4d5p ‘P, in Sr I), which lie only 0.63 A apart, were observed. Since barium and 
strontium have different vapour pressures, slight variations in temperature allow
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large variations in relative concentration of the two elements. It was found by 
experiment that patterns of comparable scale could be obtained fron both lines 
over a range of furnace temperature from 700 to 1000°C. It was also possible to 
vary the magnetic field strength, thereby altering the degree of overlap of the 
patterns over a wide range. A typical sequence of overlapping patterns is 
illustrated in Fig. 5.

The variation of the Faraday angle through two adjacent patterns can 
occur either (i) without any cancellation of rotation when the patterns are 
sufficiently well separated in energy to retain individual identities or (ii) 
with cancellation of the positive rotation due to one line by the negative 
rotation due to the other when the patterns penetrate each other sufficiently to 
coalesce. The transition from (i) to (ii) can be abrupt as the data show, and the 
question arises whether the theory can account for it correctly.

The code described in section 2 was set up for two adjacent lines, and the 
experimental variations were corputed in detail. The calculated profiles are also 
shown in Fig. 5. Thus, the theory is able to account for the structure of the 
observed patterns over the full range from (i) to (ii).

The data of Fig.5, on the other hand, were obtained for large rotation 
angles, and yield accurate values for the ratio R of the intense 5d8p 3 Pj line at 
2432.52 A to the 15p 1P̂  line in the presence of differing degrees of overlap 
with the Sri impurity. The ratio R is plotted against the spread in wavelength of 
the impurity pattern in Fig.6, from which we see that accurate f-values can be 
extracted from the data even in the presence of overlap, provided a detailed 
analysis of the structures is performed.

It is interesting to compare the value of R obtained from Fig.6 with values 
obtained by earlier authors using different techniques, with (it seems) no 
allowance for the effect of the impurity line. It is difficult to form a correct 
assessment of the errors in R from earlier work, because only estimates of the 
errors in absolute f-values are given, and these are dominated by uncertainties 
in vapour pressure determinations which affect all the lines. Thus, Penkin and 
Shabanova (1962) quote an absolute error of 8 - 15 % and state that relative f 
numbers were measured with 'great accuracy', but the latter is unspecified. Table 
1 summarises the available data.

Assuming that the presence of the impurity line at 2428.83 & is the major 
source of error in all the earlier work, and taking our value for R, one obtains 
corrected values of f^ (Table 1) which, for each set of data, are smaller than 
the published values. Thus, we believe that an overlap with the Sr I impurity 
line (which is normally present with available grades of 'pure' barium metal) was 
responsible for systematic errors ranging from 11% (Penkin and Shabanova,1961; 
i'4iles and Wiese, 1969 ) to 6% (Parkinson Reeves and Tomkins 1976) in relative 
f-value determinations involving the 15p*P, transition. The errors are within the
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error bars in the absolute values quoted by these authors, but are larger than 
one might expect for relative measurements.

It is also necessary to give a rough criterion for conditions under which a 
suspected overlap may need to be considered. The Faraday angle % (V) is given

** <8 (y ) = - v  0 +  -  ooCa
where is the length of the furnace, and (6) must be used to evaluate n+ and n-. 
The integration can be performed analytically if (v>^5) » ^ ,  and an explicit 
(approximate) form for ̂ (V) can thus be extracted, which of course is only valid 
outside the line oore:

W i t  VCV-^V^
’  ( ^ - ^ [ ( v - V o )  -  oi2-]

If (12) is used to calculate the rotation due to the inpurity line at a 
frequency V where a measurement is being carried out, and ^(V) > 10, then a 
full calculation including the profile of the impurity line will be required for 
an accurate result. Expression (12) is itself accurate to about 10% as conpared 
to the full formula, within its range of validity. It is thus superior in 
practice to the far wing approximation given by Mitchell and Zemansky (1934), and 
may find wide application in calculations of rotation angles.

5. Conclusion
An important limitation of all the work in the present paper is that the 

structures all possess especially simple Zeeman patterns. In principle, it is 
known that the resonant Faraday Rotation signal exhibits rapid oscillations even 
for more complex patterns, and equations from which full profiles can be derived 
are given by Mitchell and Zsmansky (1971). Thus, we hope to extend our work to 
more complex atomic transitions.

Even so, there is an important class of experiments to which our method can 
already be applied. The properties of atoms in strong fields (Connerade Gay and 
Liberman 1982) are a subject of great current interest. Experiments show (Garton 
and Tonkins 1969; Gay Delande and Biraben 1930) that atonic f-valves must be 
modified by strong magnetic fields. Recently, the first ab initio calculations 
(Kara and McDowell, 1980; McDowell 1982 and references therein) of changes in 
atomic photoabsorption cross-section induced by strong fields have been reported. 
Interest therefore attaches to any experimental method accurate enough to detect 
small changes in f-value among closely spaced upper Rydberg members, under 
externally applied intense magnetic fields. The MOV method, it seems is ideally 
suited for this purpose.
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f-values of the Ba lines at 2432.52& (5d8p3Pj ) and at 2428.15 & (15p 
and their ratio R as obta ined by various authors.

PS MW PRT Present

fl (5d8pJP, ) .0022 .00251 .00191
f 2 (15d lP, ) .0018 .00209 .00143
R = f 1/f 2 1.22 1.201 1.291 1.366 +- 0

f 2 (corr.) .0016 .00184 .00139
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Figure Captions.
Fig.l: A ragneto-optical pattern before allowance is made for the finite spectral 
resolution of the apparatus. A limited efficiency (35%) of the crossed polarisers 
is assumed, as well as a slight apparent asymmetry between and k- (1:1.15) - 
both of which are of instrumental origin. The calculation is for n = 11 of Sr I, 
with Nfl = 9.68:<10,lfan , T = 700°C and B = 4.2 Tesla.
Fig.2: The effect of convolving the pattern of Fig.l with various choices of 
apparatus function, showing (a) the comparison of a Lorentzian (solid curve) with 
a Triangular function (dashed curve) and (b) the comparison between a Lorentzian 
(solid curve) and a Gaussian (dashed curve), the convolution being performed as 
described in the text. The half width of the apparatus functions was 8.5x10 Hz in 
all cases.
Fig.3: The MOV cycle structure for a number of transitions in Sr I. The figures 
are produced by incrementing Nfl in small steps and using three-dimensional 
graphics to display the resulting families of magneto-optical profiles. The scale 
of the change in Nfl is given in units of 1013' an"** for (a) n = 11 (b) n = 16 (c) 
n = 13 and (d) n = 24 of Sr I. The sensitivity of the cycle structure to changes 
in Nfl decreases with increasing n (principal quantum number) under otherwise 
identical experimental conditions.
Fig. 4: Comparison between (a) present calculations (b) an experimental 
magneto-optical pattern and (c) Connerade's (1983) calculation for the n = 11 
transition of Sr I.
Fig.5: A sequence of experimental traces for the overlapping patterns of Bal and 
Sri with T = 775°C and (a) 3 = 2 . 0  Tesla (b) B = 2.5 Tesla and (c) B = 3.0 Tesla. 
Calculated patterns are shown for comparison.
Fig.6: The ratio R of f-values defined in the text and given in Table I plotted 
as a function of the wavelength interval spanned by the impurity line, showing 
that R is very nearly independent of the overlap. Extrapolation to zero field 
gives R = 1.366 +- 0.010. The correspondence with the patterns of Fig.5 and the 
magnetic field strength are also given.

Note: all intensity scales are in arbitrary units and refer 
to theory only.
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Fig. 14 - Showing the uppermost series members of Sr I m  a field of 4.2 T. Note the increase m  complexity 
of the spectrum above n =28 which is attributed to lTmixing.

C2-335



C2-336 JOURNAL DE PHYSIQUE

References.

BAIG, M.A. CONNERADE, J.P. & HORMES,J.
1982 J Phys B 15, L5

BUCKINGHAM, A.D.
1969 Symposia of the Faraday Society, London 
no 3 "Magneto-Optical Effects"

CONNERADE, J.P.
1982 (to be published)

CONNERADE, J.P. BAIG, M.A. GARTON,W.R.S.'& McGLYNN, S.P.
1980 J Phys B 13, 1705

ESHERICK, P.
1977 Phys Rev 15A, 1920

FORTSON, E.N. & WILETS, L.
1980 Advances m  Atomic & Molecular Physics 
Academic Press, New York, Vol 16, page 3^3

GARTON, W.R.S. & CODLING, K.
1968 J Phys B 1, 106

GAWLIK, W. KOWALSKI, J. NEUMANN, R WIEGEMANN, H & WINKLER, K 
1979 J Phys B 12, 3873

HUDSON, R.D. CARTER, V.L. & YOUNG, P.A.
1969 Phys Rev 18Q, 77

HUI, A.K. ARMSTRONG, B.H. & WRAY, A.A.
1978 J Quant Spectrosc Radiat Transfer 19, 509

LEARNER, R.C.M.
1965 (Private Communication)

LUTJENS, P.
1972 Z Naturf 28a, 260

MITCHELL, A.C.G. & ZEMANSKI, M.W.
1971 "Resonance radiation and Excited Atoms"
•Cambridge University Press, Cambridge.

PARKINSON, W.H. REEVES,E.M. & TOMKINS, F.S.
1976 J Phys B 9, 157

STARACE, A.F.
1976 "Photoionisation and Other Probes of Many-Electron Interactions" 
page 395, Plenum Publishing Corporation, New York


