IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY

(University of London)

RECONCILIATION OF PREDICTED AND MEASURED MODAL PROPERTIES

OF STRUCTURES

by

Joga SIDHU

A thesis submitted to the University of London for the
degree of Doctor of Philosophy, and for the Diploma of

Imperial College.

Department of Mechanical Engineering

Imperial College, LONDON SW7 2BX

SEPTEMBER 1983



ABSTRACT

The subject of this thesis can be divided into two parts;
(i) advanced modal testing methods and (ii) the utilization
of modal properties to locate areas of discrepancy between

theoretical and experimental models.

Theoretically generated data with known types and
amounts of nonlinearity were analysed using a 1linear
identification process, and a damping matrix was constructed
for the data in the vicinity of resonance. The matrix
showed a systematic change when examined on a 3-D diagram
which could be used to identify the characteristics of the
system. The technique was applied to a real structure and
ways of obtaining 'best' wvalues for the modal properties,
even in the presence of nonlinear effects, have been

discussed.

The response of nonlinear systems to nonsinusoidal
excitation was investigated using an analogue computer and
it was found that the presence of nonlinearities could not

easily be detected from such measurements.

A new method was developed by which it is possible to
locate areas of poor modelling using FE and incomplete

experimental modal properties.

'Pseudo’ inverse matrices can be calculated for both
the experimental and the FE model properties, which,
together with the full FE model spatial matrices, are then

used to calculate approximate mass and stiffness error



matrices. The non-zero elements in the error matrices serve
to locate the areas of disagreement, while their absolute
values indicate the magnitude of the discrepancy between the

two models.

The technigue has been evaluated initially using two
versions of a theoretical 8 DOF mass-spring system, the only
difference between them being in the stiffness of one of the
springs. In this case, only 4 modes were needed to locate
the position where the spring stiffness was altered. The
method has also been applied to a small welded beam and a

practical structure.
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NOTATION
a Amplitude of vibration.
e Exponential constant (2.7182..).

f(X,X) Displacement and velocity function.

i v-1.

k Spring constant.

k' Equivalent spring constant.

m Number of measured modes.

m_ Modal mass of the r mode.

n Number of measured coordinates.

r Counter.

t Time.

uy Displacement of coordinate 1.

v, Rotation of coordinate 1.

rqu Modal constant of the rth mode corresponding to
receptance g

F Amplitude of forcce.

F(t) Time dependent force.

N Number of coordinates in an FE model.

R Radius of modal circle.

R Dry friction.

X; Amplitude of vibration of point i.

X(t) Time dependent amplitude of vibration.

Yp,q Mobility corresponding to apq'

{F} Forcing vector.

{v} Displacement vector.

c] System damping matrix.

[Dk] Difference of pseudo stiffness matrices.



o3
[E.]
[E,]
L1l
[K]
[K]
[K.]
[K,]

Difference of pseudo mass matrices.

Stiffness error matrix.

Mass error matrix.

Identity matrix.

System stiffness matrix.

Pseudo stiffness matrix.

Element stiffness matrix.

Experimental stiffness matrix (assumed to be exact).
Experimental pseudo stiffness matrix.

Analytical (FE) stiffness matrix (assumed to be
approximate).

Analytical (FE) pseudo stiffness matrix.

System mass matrix.

Pseudo mass matrix.

Element mass matrix.

Experimental pseudo mass matrix.

Analytical (FE) pseudo mass matrix.

Receptance (response at point p due to force input
at q).

Cubic stiffness coefficient.

Constant.

Constant.

Viscous damping ratio (C/Cz)

Loss factor.

Loss factor of the rth mode.

Loss factor calculated using frequency point i below
and j above resonance.

Horizontal average 1loss factor of the kth column

(3-83).



h row (3-64).

Vertical average loss factor of the kt
Average loss factor of a submatrix where k is the
size of the submatrix (3-85).

th modal constant.

Phase angle of the r
Equivalent damping coefficient.
Ratio of k'/k.

Excitation frequency.

Natural frequency of the rth mode.
Undamped natural frequency.

A frequency point such that w) < ”g'
A frequency point such that Wy > wye
Equivalent resonance frequency.

Modal constant confidence factor (4-82).

pth element in the rth mass-normalised eigenvector.

pth element in the rth

eigenvector.

See figure 2-93.

Masé-normalised eigenvector.

Arbitrary normalised eigenvector.

Reduced mass-normalised eigenvectors matrix.
Diagonal eigenvalues matrix.

Experimental: reduced mass-normalised eigenvectors
matrix.

Analytical (FE): reduced mass-normalised
eigenvectors matrix.

Diagonal matrix containing the reciprocals of
measured eigenvalues.

Diagonal matrix <containing the reciprocals of

analytical (FE) eigenvalues.
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1. INTRODUCTION

l.1. GENERAL

The study of structural vibration, besides being
important for its practical applications, is also useful as
a link between the various branches of physics in which
vibrations occur. The simplest natural vibrating systems
have two attributes; 1inertia and stiffness about an
equilibrium position. To a first approximation, the force
tending to restore the system to equilibrium is often
proportional to the displacement. Such systems are called
‘linear systems' and can be represented by linear
differential equations which in turn can easily be solved to
obtain the characteristics of the systems. This kind of
analysis is now a relatively straightforward task, and has
been greatly aided in the recent past by the advent of

minicomputers.

Parallel to the analytical methods, inertance
measurement techniques together with modal analysis have
become a very popular means of studying the dynamic
behaviour of complex structures. This process reveals the
basic modal properties of a structure under test (natural
frequency, damping, modal constants etc.) and these may be
further processed to display the mode shapes or to construct
a mathematical model which can be used for a wide range of

further applications.

For most of the modal testing currently being



performed the basic assumption is made that the structure
under test is either linear or can be approximated as linear
over a certain frequency range. Often, analytical models
are constructed and correlated with the test results, again
assuming a linear system. In most cases, the 1linear
assumption is adequate but there are many instances where
this is not the case, resulting in poor correlation and

incorrect conclusions.

Many complex structures need system analysis and
system identification for the investigation and
qualification of their dynamic behaviour. System analysis
according to construction drawing leads to approximate
results based on several assumptions and simplifications.
Most aerospace structures are so complex that even when
considered in small components, they defy accurate modelling
by purely theoretical methods and thus prevent a complete

system model from being formed.

In practice, we often have two models; an experimental
model which is incomplete but a true representation of the
structure and an analytical model, such as a finite
element (FE) model which completely defines the structure
(in a given frequency range and at points of interest on the
structure) but is not always accurate. The modal properties
of such models are often compared by displaying the mode
shape vectors and a visual comparison of the natural
frequencies is carried out. This simple technique sometimes
reveals large discrepancies between the two models, but

giﬁes very little or no information about the location and



the amount of discrepancies between the two models. It does
not inform the analyst why the analytical model is
inaccurate (assuming that the experimental model is more
accurate) or what action to take in order to improve the
correlation. In the two sets of modal data - analytical
(FE) and experimental - there should be enough informétion
about the two models to be able to locate the areas and to

quantify the extent of the discrepancies between the two

models.

One objective of this study is to discuss the problems
faced in integrating and correlating experimental and
analytical modal properties in order to locate the areas of
discrepancies. The current techniques available will also
be examined to see 1if there 1is any indication in the
comparison of these data about the size and location of the

areas that are inaccurately modelled.

1.2. MODAL TESTING

The remarkable advances made in theoretical dynamics
have not diminished the importance of experimental dynamic
analysis, instead it has become more popular. The
development of mini and digital computers means that many of
the processes in modal testing can be automated, thus
reducing the amount of time spent on experiments. Most of
the methods for analysis of the measured data are based on
curve-fitting routines, whether in the frequency or the time

domain.



Modal testing can be divided into two major parts;

measurement and analysis.

1.2.1. MEASUREMENT METHODS

The testing method used to acquire frequency response
data from a structure depends on several factors, such as
the availability of hardware, the size of the structure,
testing environment, allowable testing time etc.
Nevertheless, measurement techniques can be divided into two

categories; multi point and single point excitation.

Multipoint excitation was the main technique used for
modal testing in the 196ds. This method was mainly confined
to the aerospace industry because of the high cost of the
hardware required to carry out such tests, and only large
companies had the resources to be able to afford the
necessary edquipment. Not only the cost was high but the
usage of such equipment requires skilled operators.
However, those people who have mastered the art of the
multipoint technique obtained very good results with

it [1'2'3'4]'

In the multipoint excitation method, the structure is
excited at several points simultaneously using shakers which
are tuned to vibrate the structure at a mode of interest of
vibration. The main advantage of this method is that it can
be used to determine the modal properties of a structure
with high modal density i.e. close modes [5]. Once a mode

of vibration is excited, very 1little further analysis is



required to extract the modal properties.

Despite the ability of the multipoint excitation
method to analyse close modes, it 1is very rarely used
nowadays and the only people who are using this technique
are the ones who have invested large. sums of money in the

eguipment and the software to automate the tuning process.

Oon the other hand, single-point excitation hés become
very popular since the early 1978s and has been the main
technique which has been used for most of the modal testing
these days. Relative to multi point excitation the hardware

for this type of testing is inexpensive and the setting up

time for tests is short.

In the single-point excitation method the structure is
excited at a point and the response measured at all the
points of interest on the structure. The modal consistency
can be checked by moving the point of excitation and
repeating the measurements. The disadvantage of the
technique is that certain modes of vibration might not be
excited, but this can be overcome if the point of excitation
is moved to another location on the structure. However, if
the point of input happens to be close to a node for a

particular mode of vibration then the structure will not be

adequately excited.



1.2.2. ANALYSIS OF MEASURED DATA

The data acquired from a test structure are usually in
the form of frequency response plots at discrete frequency
points and further analysis is required to reveal the modal
properties. There are several methods that can be used to
extract modal properties and all of them are based on one or
other form of curve fitting process, ranging from the single

degree-of-freedom (SDOF) to the 'global' curve fit.

Now we shall briefly describe some of the common and
the latest methods used to extract modal properties from

measured data.

(i) Single degree-of-freedom (SDOF) curve fitting. As
the name suggests, each resonance of a
multidegree-of-freedom system is assumed to behave as a SDOF
system in the immediate vicinity of the resonance. Thus a
multidegree-of-freedom system can be treated as several SDOF
systems by considering one mode at a time. The properties
of this mode are usually extracted from the Nyquist plot
using a development of the Kennedy and Pancu method [6].
This offers a very simple yet reasonably accurate way of
analysing a 'well Dbehaved' structure. However, this
technique does not always produce a consistent set of modal
properties especially for structures with high modal density

(close modes).

(ii) Multidegree-of-freedom (MDOF) curve fitting.
This is an extension of the SDOF method. One plot of

frequency response data from a whole set of measured



system
transfer functions are treated as a MDOFAand simultaneous

curve fit to all the modes reveals the modal properties of
the structure. The contribution of the modes outside the
frequency range of measurement can also be estimated [7].
This technique 1is especially useful for analysis of
structures with high modal density. To increase the
efficiency of the computational process, an initial estimate
of modal parameters can be used as starting values
(i.e. from SDOgi ;Qzlysis) and these, together with the
measured data and subsequent iterations, converge to the
'correct' values. However, the process does not always

converge to the desired values especially if the data are

polluted with noise or by nonlinearities.

(iii) Global curve fitting. This <curve fitting
routine, unlike the previous ones, fits simultaneous curves
to all the measured frequency response functions hence
ensuring modal consistency i.e. only one value of natural
frequency and modal damping is estimated for each mode,
while the SDOF and MDOF give one estimate for each mode of
each transfer function and these are usually slightly
different for each transfer function. This may Dbe
considered to be a disadvantage because from just one
estimate it- is not possible to check the quality of the
identified parameters whereas with SDOF and MDOF one has
many estimates and the variation of these can be used as a
measure of the consistency. Also, the mode shape vectors
extracted using global curve fitting are automatically

orthogonal. The disadvantage of this approach is that



errors in the measured data, such as those due to noise and
nonlinearities, make the curve-fitting process very unstable
and also it can only be used on machines with a large memory
because of the large amount of data that has to be used
simultaneously. Although the 1latter disadvantage can be
overcome and may be less of a problem in the near future
because of inexpensive computer memory; the former is a

serious drawback.

(iv) Ibrahim time domain (ITD). This is one of the
latest techniques used to identify modal properties and the
main difference between this and the previously described
routines is that this uses the data in the time domain whereas

the others use the data in the frequency domain. A curve
fit to the free-decay response gives the modal properties of
structures. Because it is less costly and faster to measure
free-decay rather than frequency response function hence
this technique can be very fast in identifying modal
properties. Although this method is based on the
free-decays, it can be applied to the data in other forms
providing that free-decay response can be computed from
these. The method can easily be automated and hence
requires very little input from the operator. However, it
is known to.Dbe very sensitive to small nonlinearities and
can sometimes extract modal properties of a mode which is

not present [8,9].



1.3. IDENTIFICATION OF NONLINEARITIES

Structural nonlinearities must be taken into account
when constructing a model from identified modal parameters.
Failure to do so may lead to an incorrect model being formed
which might have very 1little resemblance to the actual
testpiece. Many of the trouble-shooting problems in modal
analysis are associated with small structural
nonlinearities. Although the apparent effect of these
pollutants may be small on the measured frequency response
data, they can result in very large errors in the extracted
modal properties which in turn may 1lead to incorrect

conclusions.

Theoretically generated data with known types and
amounts of nonlinearity can contribute a great deal to the
understanding of nonlinearities in real structures. For
example, the effect of cubic stiffness on frequency response
data was examined by Ulm and Morse [19] who showed that this
type of nonlinearity has a large effect on the spacing of
the frequency points. No attempt was made to investigate
the effect of this type of nonlinearity on the extracted
modal properties. However, there are other types of
nonlinearity, such as frictional (dry friction), which do
not distort the spacing and hence will be difficult to
detect. The Ulm and Morse method is not very useful in
practice because most structural nonlinearities are small
and hence the distortion of the frequency response functions
is small and visual examination in general will not be

adequate to detect small deviations.



The Hilbert transform [11,12,13] offers a method by
which the measured frequency response function vcan be
checked for «contamination by nonlinearities or other
pollutants. The complex transfer function can be split in
to its real and imaginary parts and it is possible to
galculate one from the other usingﬁwﬁilbert transform
e.g. the real part of frequency response function may be

measdr
Ccvnpubed from the, imaginary part and vice versa. The
transformation is carried out assuming that the structure is
linear and hence in the cases where the data are polluted
with nonlinearities the transformation will not yield
identical components of the transfer function to the
measured ones. Hence, comparison of the measured and
calculated constituents will show any discrepancy between
the actual and the computed parts and a systematic shift in
the two versions of, say the real part, can be attributed to
nonlinearities. However, it must be stressed that the
difference nwﬂﬁhe measured and calculated constituent is
generally very small and so a close examination of the two
sets of data must be carried out. Because of this small
deviation, it will be difficult in practice to say whether
the change is due to nonlinearities or to other pollutants

in the data. Nevertheless, this technique offers a very

useful way of assessing the quality of measured data.



l.4. CORRELATION OF MODELS

Experimental modal testing serves two basic purposes;
first, 1in the absence of any analytical model, an
experimental approach is the only way of understanding the
dynamic behaviour of a complex structure; secondly, if an
analytical model, such as one using the finite element
method, exists it is usually necessary to verify it using
the experimental data which are assumed to be a true
representation of the structure. There are very few papers
that deal with the subject of verifying an FE model in a
systematic manner using experimental data. Any comparison
between two such sets of data has generally been indirect,
inconvenient and slow. For most cases, this comparison has
consisted of manually interfacing the results and perhaps
some arbitrary modification of one model in an attempt to
impro?e the correlation. This 'trial-and-error' process is

costly and seldom yield the optimum modification.

Methods based on the sensitivity of the modal
parameters are sometimes used (i.e. derivatives of
eigenvalues and eigenvectors with respect to a given
parameter, such as the stiffness or the mass of an element).
The determination of eigenvalue derivative is shown to be a
straightferward and simple calculation [14,15,16,17], but
the calculation of eigenvector derivatives is found to be
much more complicated [18]. With the aid of the sensitivity
method it is possible to determine the minimum alteration
that must be carried out in order to achieve a given shift

in the natural frequency of the structure. Unfortunately,



there are cases when the derivative method predicts changes
that are impossible to carry out in practice (negative mass
etc.) and have no physical meaning. Incorporating these
unrealistic changes will (give the desired results
numerically but the model might not be a true representation
of the actual structure. Another reason why the sensitivity
method is not widely used is the high cost of computing the

eigenvector derivatives.

Other techniques on the subject of correlating the
analytical and experimental models rely on the assumption
that either the mass or the stiffness matrix in the
analytical model is correct and only one of these needs
modifying ([19,20]. It is most 1likely that if an error
exists between the two models then it would be expected to
be in both the mass and the stiffness matrices. Despite the
above-mentioned assumption, this technique is very involved
mathematically, and that is perhaps why most engineers are

reluctant to use it.

The perturbation method [21] is very useful in
predicting the effect of changes but before such a change
can be made it is necessary to know where it should be made.
Gaukroger [22] recently proposed a method by which it is
possible to obtain specified natural frequencies Dby
modifying given structural stiffnesses. Again, the choice

of area to be modified is left to the analyst's judgement.

Clearly, there is a need to develop new techniques to

aid the analyst to locate the areas that should be altered



in an FE model in order to reduce the discrepancies between

the experimental and the FE models. The ‘trial-and-error'

methods are no longer acceptable as they are slow, costly

and seldom give the optimum region to be modified.

In the light of the problems that need investigating,

the following presentation has been adopted.

Basic principles of Finite Element modelling and
experimental modal analysis are given in chapter 2. Chapter
3 opens with a discussion of the difficulities faced in the
modal analysis of real structures which exhibit small
nonlinearities and to highlight the problems, the results
from a special structure - the NASTRAN testpicce - are
presented. The major part of chapter 3 1is devoted to a
study of theoretical nonlinear SDOF and linear 2DOF systems
in investigating the effecté-of small nonlinearity on the
identified modal properties. Chapter 4 contains the results
of a detailed study carried out on the NASTRAN structure.
The response of nonlinear SDOF systems to sinusoidal, random
and transient inputs was studied using an analogue computer

and the results, together with the necessary theory, are

given in chapter 5.

The comparison of modal properties are dealt with in
chapters 6 and 7. In chapter 6 a new method is developed by
which it is possible to compare modal properties of two
models in order to locate the areas of discrepancy between
them. The technique has been applied to synthesised data
from an 8DOF system while chapter 7 concentrates on the
application of this method to real structures the SAMM II B

beam and the NASTRAN structure.
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2. FINITE ELEMENT MODELLING AND MODAL IDENTIFICATION

PRINCIPLES

2.1. INTRODUCTION

Two techniques which are widely used to develop models
that describe dynamic characteristics of structures are
experimental modal analysis and finite element (FE) methods.
The technique of characterizing a structure's dynamic
behaviour from experiment has the advantage of providing the
engineer with a model of the actual structure rather than an
idealisation of it. This can often provide a more
representative description of the dynamics than do the
results of an analytical model such as would be provided by
a finite element analysis. On the other hand, the
analytical épproach has the advantage that it can be used to
evaluate the structural modal properties without carrying
out any experiments and, consequently, the test hardware

equipment is not required.

Both experimental and the FE modelling techniques have
their own advantages and both are frequently used in the
study of structural wvibration. In this chapter we shall
outline the basic concepts of these methods. Only the very
fundamental topics will be mentioned because the aim is to
use the existing techniques with 1little modification to
obtain the necessary information (accurate modal properties)

about the structure.



2.2. BASIC FINITE ELEMENT METHODOLOGY

2.2.1. GENERAL CONCEPTS

Most structures are so complex that their behaviour
cannot easily be predicted with accuracy. However, small
parts of the structure may often be assumed to behave in a
relatively simple manner. For example, it may be assumed
that the stress over a small part of a long beam 1is
constant, or that the temperature over a small area of a
plate is constant etc. In finite element analysis these
small parts of the structure are referred to as finite

elements.

Any structure, large or small, complex or simple, can
be represented by a set of finite elements which are assumed
to interact at particular points. The number of variables
(unknown displacements and rotations) at each point is
called the number of 'degrees-of-freedom' (DOF) .
Theoretically, a continuous structure has an infinite number
of degrees-of-freedom, but in finite element analysis, such
a structure is approximated by selecting a finite number of

elements and hence a finite number of degrees-of-freedom.

The geometry of the element used depends on the size
of the structure. There exist many types of elements e.g.
bar, beam, plate, cylindrical etc. The choice of elements
depends to some extent on the geometry of the structure but
to a great extent on the individual's choice, as there is

more than one element that may be used to represent the



structure. For most complex problems a combination of
several types of element is necessary for an efficient and

accurate analysis.

In structural dynamics, an FE analysis requires the
formulation of mass [M], stiffness [K] and damping [C]
matrices. Often, damping is not included in the analysis;
this 1is Jjustified if the damping is small, but even in
heavily damped structures, the presence of damping is
ignored because it cannot easily be modelled. Consequently,
the analysis 1is usually reduced to one of undamped

vibration.

2.2.2. FORMULATION OF MASS AND STIFFNESS MATRICES

There are two types of element that are frequently
used in the study of structural vibration; namely, beaﬁ
elements and plate elements. Most engineering structures
can be analysed using one or both of these types of element.
In this study, we shall only consider beam élements,
although the theories for beam and plate elements are very
similar. The beam element is assumed to be a straight bar

of uniform cross-sectionidarea (figure 2-91).

Using stress analysis, it is possible to relate forces
to the displacements via the properties of the material and

the geometry of the element [23].

(F} = IK,1{r) (2-61)
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The square matrix [Ke], which 1is 12x12 in this case, 1is
known as the ‘element stiffness matrix'. By considering the
dynamics of the element, it is also possible to relate the

forces to the accelerations.

{F}=IM,1{V} (2-22)

where {¥} is the second time derivative of the displacement

vector and matrix [Mej is the 'element mass matrix'.

The mass and stiffness matrices for beam and plate
elements have been derived by many authors [23,24]. The bar
element is perhaps one of the simplest and its mass and
stiffness matrices are to be found in the majority of books
and papers dealing with the basics of finite element
analysis [25,26,27]. The mass and stiffness matrices for
beam, rectangular plate, triangular plate and many othef
types of elements, have also Dbeen constructed by
Prezemieniecki [23] and Szilard [24]. The mass and
stiffness matrices for the beam element in figure 2-81 are

given in appendix 18.1.

In a finite element analysis, mass and stiffness
matrices are constructed for all the elements of the
structure and these are then joined to form the overall mass

[M] and stiffness [K] matrices of the complete model. This



process is called 'assembling the element matrices'. There
is no general method for assembling these matrices and each}
problem has to be tackled individually. As an example, the
overall stiffness matrix for a straight beam, with three
elements, shown in figure 2-@02, 1is given in table 2-921,
where the matrix [Ke]n is the ntB element's stiffness
matrix. More examples on assembling element matrices can be

found in reference 28.

Once the overall mass and stiffness matrices are
assembled for the structure, then the problem reduces to

that of an eigenvalue solution i.e. solving equation 2-23.

[(k1- M1 (x) = {0} (2-83)

There are many standard subroutines that are capable of
solving equation 2-@3 to produce eigenvalues tk%ﬁ and the

corresponding eigenvectors [V¥]. The eigenvectors may be

mass normalised;
(81" [(M][&] = [1]

(2-04)
(217 (k1121 = [22]

where [®#] is the mass normalised eigenvector matrix. These

two matrices, Ek%l and [®], completely characterize the

undamped behaviour of the structure.



2.3. MODAL TESTING

2.3.1. GENERAL CONCEPTS

Modal analysis, via the experimental route, has become
a very popular means of analysing the dynamic behaviour of
an existing structure, especially since the recent reduction
in the cost of minicomputers. During the 1940s, modal
analysis was applied exclusively in the aerospace industry,
largely due to the high cost of the hardware which was
required for the tests. Nowadays, it is gquite common for
small companies to have the necessary equipment to carry out

the tests and to analyse the test data.

There are two main techniques that are currently used
to obtain modal data from a test structure. Probably the
easiest and the most popular, is the single point excitation
technique. As the name suggests, the structure is excited

at a single point and its response is measured at points of

interest.

The other technique, which is not so widely used these
days, 1is the multi-shaker (or multi point) excitation
method. In this method several shakers are attached to the
structure. The magnitudes of displacement and phase of each
shaker are varied until a pure mode is excited. The
advantage of this technique is that once a mode of vibration
is excited, very little further analysis is needed to derive
the modal properties. The main drawback of this method is
that it is very cumbersome to tune the shakers so as to

excite the mode of interest and to do this one needs to have



a reasonably good knowledge about the nature of the mode

which is to be excited.

Just as there are several techniques available for
measuring data, there are also several different types of
inputs that may be used to excite the structure under test
e.g. stepped or discrete sine, swept sine, random, impact
etc. The choice of input depends on a number of factors,
such as the hardware, the length of time available to carry
out the test and so on. For a broad band frequency
measurement, step sinusoidal excited tests take longer than
the nonsinusoidal tests but the quality of data generated by
discrete sinewave excitation is superior to that generated
by other types of inputs. Regardless of the type of input
used, the end result is in the form of frequency response
data at discrete frequency points. For each coordinate that
is measured on the structure, one set of frequency response
data is obtained. These data can take one of three forms,
now commonly used, inertance (X/F), mobility (X/F) or
receptance (X/F). It is possible to construct a matrix of
test data as shown in table 2-82, where symbol a denotes
receptance and @®pq is defined as the complex ratio of

response (X) at point p due to a force (F) at point q.

e

"‘pa=fp (2-05)
q

Only one row or column of the matrix in table 2-92 is
required to characterize the dynamic behaviour of the

structure. Normally, more than one row or column is



measured, so as to provide a check on the gquality of the

measurad data and the derived modal properties [29].

2.3.2. SINGLE-DEGREE-OF-FREEDOM MODAL TESTING THEORY

There are several types of 1linear curve fitting
routines that may be used to extract modal properties from
the measured data i.e. single-degree-of-freedom (SDOF),
multi-degree-of-freedom (MDOF), poly curve fitting (taking
more than one set of measured éata and fitting a
simultaneous curves to these), curve fitting in the time
domain, which is often called the ‘'Ibrahim Time Domain'
(ITD) etc. The simplest of these is the SDOF routine and is
sometimes known as the ‘'circle fitting' method. This

technique was developed by Kennedy and Pancu [6].

In this section we shall consider only the Kennedy and
Pancu method because one of the aims of this study is to see
how we can use the simplest of techniques to identify
nonlinearities and to extract 'accurate' modal properties

witnhout using nonlinear curve fitting routines.

The dynamic behaviour of a structure, in terms of its

modal properties, is given by [31,32,33]:

(Y ¥,)
Apg(w) = z mw(1— {w/w,;z +in,) (2-26)

r=1

where m - number of modes;

w. = natural frequency of the rth mode;



- loss factor of the rth mode;

r
th
m. - modal mass of the r mode;
rwb - pth element in the rth mode shape vector {V¥};
qu - qth element in the r ! mode shape vector {V}.

Equation 2-96 can also be written in the form;

(2,)(2,)
%) = Z KT @l ¥ 1) (2-87)
r=]
R
4=
(2-98)
$, = ad
reg m,
th

The vector {®} is the r 'mass normalized' mode shape

corresponding to the vector {¥}.

The modal constant (rqu) for the rth mode is defined as;

Ape = (2,)(2) (2-89)

Since _V_,

r

rW , .$_ and r¢q are all complex quantities, the

r'p
modal constant is also a complex number. In terms of the

modal constants, equation 2-87 becomes;

I U %
%pql) = z A=/ F 7) (2-19)

r=1

where 6 is the phase associated with the r* modal constant

(figure 2-83). The receptance equation for a single mode of



a structure is;

|4,,|€
w§(1 = (w/wp)? + in)

o (w) = (2-11)

The above equation may easily be separated into its real and

imaginary parts.

Real, = IA’;"'(“ _(“’/“’0)2)0053+n8in0)
(2-12)
|4,0] /(1 = (w/wg)?)sind — neos §
Imaga = pq( 0 5 )
N (1= (w/eg?)
Eliminating the excitation frequency (w) from
equations 2-12;
|4, sin6\2 |4, cos8\2 /A, |\2
(Reala"""“_—w%n ) +(Imagan+————w%n ) —(—fwg—n) (2-13)

Clearly, the above expression is the equation of a circle,

|4,,|sin8 —|4, |cosd
win win

with centre at coordinates ( ) and radius

(k&d); as shown in figure 2-03.

2win
The natural frequency (wg) is given when the rate of
change of the angle €, with respect to the excitation

frequency (w), is maximum, i.e.



when is maximum

i
(2-14)

or =0

&9
Ow?
The above equation gives the natural frequency of a SDOF
system. Once Wy is known, the complexity (6) of the modal
constant (A) can easily be calculated. From this and the
geometry of the circle, it is possible to show [30], that

the modal damping (7) is given by;

2_ .2
_ 2-15
K w (tan ¢, + tan ¢2) ( )

1]

w - a frequency point such that wy < wys
¢l,¢2 - are the angles subtended by the,diameter of the
circle passing through the point wg and the arcs
‘joining the displaced origin to the points of w

1
and w5 respectively (see figure 2-04).

The radius (R) of the circle is related to the modal

properties by;

| 4,4l
R T 2wl
(2-16)
|4,,| = 2R win
The four quantities, natural frequency (wg), loss

factor (), modulus of the modal constant (qu) and the



modal phase (6), define completely the mode under
consideration. A multi-degree-of-freedom system can be
analysed by considering frequency points in the vicinity of
each resonance to behave locally as a SDOF system. Thus a
MDOF system may be broken down into several SDOF systems.

The error introduced by this process can be calculated [30].

More rigorous theory on MDOF systems can be found in

references 7 and 31.
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FIGURE 2-01 : Beam element.
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FIGURE 2-02 : Straight beam: three elements.
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FIGURE 2-03 : Displaced modal circle.

FIGURE 2-04 : Modal circle.
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3. IDENTIFICATION OF NONLINEARITIES FROM

FREQUENCY - RESPONSE DATA

3.1. INTRODUCTION

The measurement of frequency-response data does not
present any dgreat difficulties, whether it be in the
frequency domain or in the time domain. It is possible to
obtain good measured data with the aid of reasonably priced
eguipment. The main difficulty arises in the analysis of
these data. Perhaps the main cause of error in the analysis
is due to structural nonlinearities because the algorithms
used to extract modal properties are based on a assumptions
of linearity. The errors due to these unwanted effects can
be reduced and in some cases eliminated, by wusing a
nonlinear modal identification algorithm. Unfortunately,
the various types of nonlinearity present in the data are
not known until some analysis is completed. Hence the exact
form of the nonlinearity to be incorporated in the

identification process is not known at the analysis stage.

Since most of the modal identification algorithms are
based on linear relation between the applied force and the
measured response, it is necessary to check whether the
structure under test behaves as a 1linear system or, at
least, is approximately linear within a certain frequency
range. This requires some consideration of the measured

data and the type of excitation method used [34,35,108].



It is frequently found that an actual structure, and
even a simple one, does not satisfy the linearity criteria.
For this reason, it 1is advisable for the user of
experimental modal analysis to judge by visual examination
of the measured data (as a first step) whether the structure
under test is linear. This judgement can be a turning point
in the process of obtaining ‘'good' modal properties.
Unfortunately, it is impossible to detect slight
nonlinearities by visual examination of the measured data.
Apparently linear data can produce modal properties which
are not truly representative of the structure's behaviour.
Modal constants derived from such data, using a linear
algorithm, may well be so complex (large phase angle) that
no reasonable explanation can be given for this complexity.
Modal constants may defy the basic law of reciprocity and
modes of vibration are seldom orthogonal to each other. To
make matters worse, repeatability is often found to be
inadequate. All these unwanted effects can be attributed to
small structural nonlinearities which increase the
uncertainty in the quality of the modal parameters

extracted.

The key to 'accurate' modal properties is the early
detection of nonlinear behaviour. One of the tasks of any
modal analyst should be to check whether the structure is
linear. If nonlinearities are detected at the measurement
stage then the experiment should be carried out in such a
way as to reduce the effect of nonlinearities [36].

Unfortunately, this check is usually overlooked and it is



only at or after the analysis stage, when the results are
not what they should be, that one starts to 1look for
possible explanations of these unexpected and unacceptable

results.

It is possible to use very basic knowledge in the
processing of measured frequency response data to detect
nonlinearities. There is no need to use complex
multidegree-of-freedom curve fitting routines or, even
worse, nonlinear curve fitting routines. The simplest modal
identification process (linear single-degree-of-freedom
identification routine in the immediate wvicinity of
resonance) can yield the necessary information for the

detection of nonlinearities in a structure.

3.2. CRITICAL ASSESSMENT OF THE SINGLE-DEGREE-OF-FREEDOM

MODAL IDENTIFICATION METHOD

This study commenced by the investigation of the modal
properties of the 'NASTRAN' structure: a special testpiece
consisting of a stiffened Dbase plate, supporting a
square-sectioned plated tower with various diaphragms
positioned inside. One side of the tower consists of a
lightweight honeycomb sandwich panel. On top of the tower
is a mounting arrangement for a heavy mass which is
connected to the structure via three pin supports. The
structure is connected to the ground in eight positions
around the base plate. The structure was designed to
contain many of the features common in aircraft construction

which give rise to problems and uncertainties in the



theoretical modelling stage, such as rivetted Jjoints,
stiffened plates, honeycomb sandwich panels, heavy masses on

relatively flexible components etc. (figure 3-01).

The structure has four modes of vibration in the
frequency range from 3@ to 120 Hz. Discrete sinusoidal
excitation was used to vibrate the structure and the
response was measured using accelerometers. The value of
mobility was computed, using a Solartron 1172 frequency
response analyser, for each frequency point. A typical
mobility modulus plot (Yg7,12) of the NASTRAN structure 1is
shown in figure 3-22. Modal parameters for each mode were
extracted from polar plots (in the immediate vicinity of
each mode) in the Nygquist plane as described in the 1last
chapter. These modal properties (table 3-01) can, in turn,
be used to regenerate a theoretical model of the measured
mobility data. Both measured and regenerated data were
plotted on the same axis (figure 3-02). These curves
indicate a reasonable agreement between the measured and
generated data and hence the derived modal properties can be

taken as an accurate representation of the structure.

However there is a large scatter on the measured data
around 53 Hz, as a consequence of which the quality of the
curve fit in this area is not so good. The reason for the
poor quality of data around 50 Hz is that the response of
the structure in this frequency range 1is very small and
hence the actual signal to noise ratio is low (due to mains

interference).



The quality of the measured data may be improved by
increasing the input force (by increasing the gain of the
power amplifier) because the higher the input force, the
higher the responsea (for a 1linear system). This will
improve the signal to noise ratio and, these data with a

high level of excitation are displayed in figure 3-33.

The region around 50 Hz has now been ‘'cleaned up' and
once again modal parameters were extracted using a 1linear
algorithm (table 3-82). This frequency response plot
resists attempts to perform a satisfactory modal analysis on
it; the best results obtained being shown in figure 3-03
together with the measured data. This peculiarity is very
puzzling because it is usually assumed that the better the
quality of measured data, the better will be the curve fit,
but in this case the reverse is the case. To understand
this strange phenomenon it 1is necessary to consider

nonlinearities.



3.2.1. NONLINEARITY CHECK ON THE °‘NASTRAN' STRUCTURE

For a linear system, or structure, the ratio of
response to input force is constant at a given frequency.
However, for a nonlinear system this ratio is no longer
constant but is a function of the applied force. Perhaps
the simplest way of dJetecting nonlinearities would be to
verify this law, and this can be accomplished by carrying
out the measurement at several different forcing 1levels.
Figures 3-f4 and 3-95 show some results (Y12,12) from such
tests on the NASTRAN structure for modes 3 and 4
respectively. It is clearly seen that the ratio of response
to force is not constant as the force changes for a given
frequency. This dJdemonstrates the structure's nonlinear
behaviour and any 'blind’ attempt to extract modal
properties from the measured data, using a linear algorithm,

will generally yield unsatisfactory results.

The modal properties derived from these sets of curves
using a linear algorithm are listed in tables 3-03 and 3-04
for modes 3 and 4 respectively. The force is given in terms
of volts (output of charge amplifier) rather than Newtons
because over a narrow frequency range, as in this case the
force applied to the structure is proportional to the

voltage output of the charge amplifier.

Tables 3-93 and 3-94, together with figures 3-04 and
3-25, indicate that in this case, the modal properties are
very much dependent on the forcing level and it is difficult

to say what the true value of the modal parameters should be



because the variation in the natural frequencies (for the
two modes éonsidered) are about 3% while the change in the
estimates of damping and modal constant is of the order of
30%. Clearly, the modal parameters are force dependent and,

hence the structure under test must be nonlinear.

3.3. IDENTIFICATION OF NONLINEARITIES FROM A SINGLE

FREQUENCY—-RESPONSE CURVE

Most modal analysts, especially in industry, are not
fortunate enough to have the time to carry out tests at
several different forcing 1levels in order to check for
nonlinearities. In most cases there is only one set of data
and no comparison can be carried out as described above.
Consequently, the technique of 1last section cannot be

applied.

Structural nonlinearities can effect the frequency
response data in many ways; the spacing of the frequency
points might be distorted; the level of response may be
altered for a given frequency; the natural fregquency might
be shifted from its true position etc. £37,38,39,449].
Thus, it is conceivable that the nonlinearities might be
detected by making use of one or more of the features

mentioned above, and we shall now explore this possibility.

The modal damping of a linear system may be determined
using equation 3-91 and is independent of the choice of

frequency points (v, and w,) used for the calculation

(figure 3-06).



2_ .2
__ Wy Tw

n= w%

( 1 ) (3-01)

tang, + tang,

In fact, many estimates of damping (%) can be computed using

equation 3-01 by choosing different frequency points w, and

1
wy§ below and above the natural frequency (wg)‘ In theory,
for a linear system, with well separated modes, all these
estimates of damping will be identical. In practice,
however, typical experimental data yields small variations
in these damping estimates, due to small random errors in
the measured data. Usually, an average value of these
estimates is taken to be a good indication of the damping in
that mode. The standard deviation of the estimates serves
as a check on the gquality of the results; the lower the
standard deviation, the higher the confidence in the
identified modal properties. Normally, the percentage
variation is small - of the order of 2 or 3 % - but there
are cases when the variation 1is very large and this
indicates a significant scatter in the damping estimates
which often cannot be accounted for by small random errors
in the measured data. In such cases, before an average
value is assumed to be a good representation, it is
necessary to 1look for any recognizable pattern or any
unusual trend in the derived estimates of damping. This is
conveniently done by displaying the computed estimates in a
matrix form [4;] as shown in table 3-25, where "ij is the
damping estimate calculated using frequency point i below

resonance (wi = Qi < wz) and j above (wj = Qj > ”g)



L/ Then Jw%wi( ! ) (3-02)

In general, the loss factor matrix thus obtained will be
rectangular and a typical result obtained from experimental

data is given in table 3-06.

As well as for damping, matrices of estimates for the
angle PHI (figure 3-26) and the modal constant can also be

constructed in a similar manner.

Table 3-06 exhibits small random variations in the
damping values for different combinations of points, but
requires careful scrutiny to see any trends. Such a matrix
may more easily be examined by displaying its values in an
isometric three-axis plot. Two base axis are the two
frequency axis; one for the points below resonance and the
other for those above resonance, while the third axis
represents the magnitude of the elements in the matrix
(figure 3-27). When plotted on such a diagram, the loss
factor wvalues of table 3-86 produce the shape shown in

figure 3-23.

For a linear system with well separated modes, the
surface of such a plot should be flat and any systematic
deviation from this will probably indicate the presence of

nonlinearities and/or that of closely-coupled modes.

The average value of the elements in the loss factor
matrix is the one that is normally used for further analysis

but if the plot is not flat then this average value is very



much dependent upon which points are chosen for its
calculation from the matrix. We shall now examine the three
types of average that will be useful in the next section but
before this, it is necessary to renumber the elements of the
matrix in table 3-95 wusing normal matrix convention,
(i.e. the first element in the matrix (top left hand side)
is numbered 1,1 and, the second element in the top row is

1,2 and so on.)
Three types of average that may be useful are;

(i) Horizontal : this is the average of the elements

in a row and is given by;

1
ﬁhk=ﬁznik (3-63)

where n - the number of damping estimates in the kth row;

ihk -~ horizontal average loss factor of the kth Trow.

(ii) Vertical : this is the average of the elements in

a column and is given by;

1
nvk_ﬁ

Z”"" (3-04)
i=1

where n - the number of damping estimates in the kth column;

Mok ~ vertical average loss factor of the kth column.

(iii) Diagonal : this is the average of the elements
in a square submatrix of the 1loss factor matrix. The

submatrix is taken from the top left hand side of the loss



factor matrix.

1
ﬂdk='ﬁz ij (3-85)

j=1

k
i=1 j=

where k - the size of the submatrix;

Tk diagonal averages loss factor of submatrix.

3.4. NUMERICAL STUDY

It 1is customary to demonstrate and to evaluate new
techniques using theoretically generated data with known
parameters. In dynamics this means solving differential
equations of motion to obtain an analytical solution. The
advantage of a numerical study is that the effect of varying
any parameter can easily be investigated by keeping the
values of all other parameters constant. The solution of
the equations of motion can be obtained in the time or the

frequency domains.

Because of the 1low cost of digital computers,
numerical techniques for solving differential equations have
become very popular. The computing cost is not the only
factor in favour of numerical solutions; perhaps the main
reason for using this technique is the fact that most
nonlinear differential equations have no known analytical

solutions.

Approximate numerical methods for solving complicated
nonlinear differential equations can be employed under

certain constraints. An approximate method which 1is



frequently used in the solution of such equations is the
‘perturbation' method. This requires an initial estimate of
the unknown parameter and then provides an update of this
value via the governing differential equation, leading to
the 'correct' value. Unfortunately, this technique does not
always converge to the desired value or does not converge at

all.

Another method which can be used for solving equations
with small nonlinearities is the ‘equivalent linearization'
method. In this method, a nonlinear equation is replaced by
an equivalent linear equation which in turn can easily be
solved wusing numerical methods. This technique will be
employed to solve all the nonlinear equations described in

this section.

The following study is confined to the analysis of

four systems;

(i) Linear single-degree-of-freedom (SDOF) system with
viscous damping. This provides a datum case against which

all other cases will be compared.

(ii) sSingle-degree-of-freedom system with viscous

damping and softening cubic stiffness spring.

(iii) Single-degree-of-freedom system with viscous

damping and Coulomb friction (Dry friction).

(iv) Linear two-degree-of-freedom system with
hysteretic damping. This system will be used to investigate

the effect of close modes on the modal properties derived



using the SDOF analysis method and, in particular, on the

isometric loss factor plots.

3.4.1. LINEAR SINGLE-DEGREE-OF-FREEDOM SYSTEM WITH VISCOUS

DAMPING

The equation of motion of a linear SDOF system with

viscous damping is:
X + 20X +wdX = F() (3-06)
where { - viscous damping ratio (C/Cg);

wy natural frequency of the system (rad/sec);

F(t) - forcing function.

If the forcing function F(t) is sinusoidal then

equation 3-@6 becomes;
X + 2w X +wiX = Fe (3=37)
where w - the excitation frequency (rad/sec);
F - amplitude of force (N/Kg).

An equation of the form 3-87 describe Damped Forced Harmonic
Vibrations, and it's steady state solution is given by the

Particular Integral of the equation. Thus the solution is;

o= ( (w2 — 0?) — (Qtwyw)i ) (3-28)

(w3 — w2)? + (2kwyw)?

where a - the amplitude of vibration which is given by;



X (1) = ae™ (3-99)

In the receptance (a=a/F) form;

(w3 — @?) = 2fwqwi _
(W3 — w22+ (2543(,«:)2 (3-10)

a(w) =

Separating real and imaginary parts;

2,2
Wy~ w

Real (o) = (0} — )2 + Qbwgw)?

(3-11)

_ —2¢wyw
Imagle) = (=57 F Goge)?

For different values of damping coefficient (t),
equations 3-11 can be used to generate data in the form of

real and imaginary receptance as a function of excitation

frequency (w).

Frequency response data generated for the following

conditions;

w, = 497 rad/sec (28 Hz)

1.0 N/Kg

!
0

§ = 3.993, 9.095, 9.91 and 9.92

are plotted on mobility modulus, mobility phase and Nyquist
diagrams (figure 3-99). These plots indicate that for a
given frequency both the response_and the diameter of the
modal circle decrease but the natural frequency appears to

be unaffected by the amount of viscous damping in the



system. The real against imaginary receptance (Nyquist)
plots for viscous damping are not true circles but for

systems with small damping these may be assumed to be almost

circles.

These data were analysed using a linear SDOF algorithm
to extract modal properties from each set of data
(table 3-27). The angle PHI, loss factor and modal constant
matrices were compiled and are given in table 3-298 for
viscous damping coefficient (¢{) = 0.905. These matrices are
best examined oh 3-D isometric and conventional (averages)
plots (figures 3-19 through 3-12). For a SDOF system,
linear or otherwise, the angle PHI always increases as the
frequency points, taken in the calculation of this angle,

move away from the natural frequency.

3.4.2. EQUATION OF MOTION FOR NONLINEAR

SINGLE-DEGREE-OF-FREEDOM SYSTEMS

In general, the equation of motion of a forced

nonlinear system is;

X+ X +uf(X,X)=F(0) (3-12)

where # - is a constant;
£(X,X) - function of displacement (X) and velocity (X);

F(t) - forcing function.

For small nonlinearities, i.e. K << 1, the above equation

may be written in an approximate equivalent linear form

[42,45];



+XX + QX =F() (3-13)

where \ - is the equivalent damping coefficient:
oy - is the equivalent natural frequency.

Both X and Gb are amplitude dependent and are given by;

2x

= ;;‘%‘-) J-f(acos¢,-awosin¢)sin¢d¢
0

(3-14)
2x
W= wé + ;“5 Jf(acos¢,—awosin¢)cos¢d¢
0

where a - is the amplitude of vibration;

wy = is the natural frequency of the linear system.

If the forcing function of equation 3-13 is sinusoidal,

i.e. F(t) = Felwt, then the steady state solution 1is
obtained by;
c_o——wz—in iw
x0 = (Gt o
(03— w?)? + (\w)
a= F (3-15)

\/ (@03 — )2 + Aw)?

In the real .and imaginary receptance form;

Real (a) = — wf ~
(@ — w22 + (Rw)?
Imag(a) = —— —@A (3-16)
(@ — w?2)2 + Aw)?
tanf = Aw

W —oF (3-17)



where 6 is the phase difference between the applied force

and the response vector.

3.4.2.1. SINGLE-DEGREE-OF-FREEDOM SYSTEM WITH VISCOUS

DAMPING AND SOFTENING-CUBIC-STIFFNESS

The equation of motion of a SDOF system with viscous

damping and softening cubic stiffness is;

X + 20X + wd(X —8X%) = F() (3-18)

2)_

where B - is the cubic stiffness coefficient (m

The above equation can be written in the same form as

equation 3-12 with;

F(1) = Fé'“ (3-19)
W (X, X) = 260X - olpx? (3-20)

Using equations 3-14 to obtain the equivalent damping ( \ )

and the natural frequency (Gb);

2x
A= % J(wao(—awo sin @) — Bwia’ cos’ ¢) sin ¢ dp
0

X=2£wo (3-21)

2x

— 1

w§ = wf, + 7z J. (2éwy(—awysing) ~ ﬁwf,a’ cos’ ¢) cos odo
0



w3 = wi(1 - 38a%/4) (3-22)

Equation 3-21 indicates that the equivalent damping of a
softening cubic stiffness system is identical to that of a
linear system (i.e. cubic stiffness does not directly effect
the damping of the system). The equivalent resonamce
frequency (equation 3-22) has now been reduced by a factor
of JT:@EZE . The natural frequency of a softening cubic
stiffness system, will always be 1lower than the natural
frequency (“g) of the linear system because both 'B' and ‘'a’
are positive quantities and hence the expression in the

brackets of equation 3-22 is less than unity.

The system becomes unstable when;
1-38a’/4 <0

Ba’ > 4/3 (3-23)

Substituting equations 3-21 and 3-22 into equation 3-15

gives;

F

= Vil —3Ba2[/4)? + 2tww)?

Simplifying, we obtain;

(3/48w)%a® — 3/2(w? — w)Buwia® + ((wi— ) + Qbwgw))a’ - F> =0 (3-24)

The above equation is a cubic polynomial with amplitude
squared (az) as the unknown variable and its values are

given by the roots of the equation 3-24.



Depending on the values of the parameters,
equation 3-24 can either have one real and two complex roots
or three real roots. In the latter case, the well - known
jump phenomenon occurs as shown in figure 3-13 [43,44,45].
For real structures, nonlinearities are usually small and in
such cases the jump phenomenon does not occur
(i.e. equation 3-24 has only one real root for different
values of the excitation frequency). In this study we shall

only consider the case of one real root.

Equation 3-24 has an exact solution which allows the
value of the amplitude of vibration (a) to be calculated as
a function of the excitation frequency. Once the amplitude
is known, the equivalent damping (X) and the equivalent
natural frequency (Eb) can be computed using equations 3-21

and 3-22 and hence the real and imaginary parts of

receptance can be calculated (equation 3-15).

Frequency response data were generated for different
levels of softening cubic stiffness. Mobility modulus,
mobility phase and Nyquist plots were constructed for the

following input values;

w, = 407 rad/sec (20 Hz)

o
tE = B.0985

F = 1.0 N/Kg.

B = 58, 280, 400 and 608 m 2.

and these plots are shown in figure 3-14.

The mobility modulus diagram 'leans back' but its



maximum response (or mobility because force is constant)
appears to be unaffected by the amount of cubic stiffness.
However, the frequency at which this maximum response occurs
is dependent on it. For high levels of nonlinearity the
frequency spacing, especially near resonance, is distorted
and the mobility modulus plots are no longer symmetrical
about the frequency of maximum response. Nyquist plots also
show the distortion of frequency spacing although the
diameters of the modal circles are virtually independent of

the amount of cubic stiffness.

Modal parameters extracted from these data, using a
linear SDOF algorithm, are given in table 3-29. Again, 3-D
isometric plots, together with the different types of
averages, are constructed and figures 3-15 and 3-16 show the
plots for 8= 50 and 209 m-2 respectively. The value of loss
factor that. one would obtain (input value), in the absence
of softening cubic stiffness (8= 0 m-z) are marked on the

3-D plots with asterisks.

For the frequency points below resonance the 1loss
factor increases as the point for the calculation of this
value move away from the resonance (02, frequency point
above resonance being fixed). However, for points above
resonance the 1loss factor decreases with increasing
frequency (figures 3-15 and 3-16) and the 'tilt' of the 3-D

diagrams increases with increasing nonlinearity.

It is interesting to note that the graph for the

vertical averages is a straight line, the slope of which is



a function of the nonlinearity and increases with it.
However, there is no simple relation between the slope and

the amount of nonlinearity.

The diagonal-average diagram exhibits a maximum, the
value of which is very close to the input or true value of

the loss factor (table 3-108).

Unlike in the theoretical study, the amount of
nonlinearity in the real structure cannot be changed easily.
The only function that can be readily altered is the input
force and this 1is equivalent to keeping the nonlinearity
constant and carrying out tests at several different but
constant levels of excitation, as in section, 3.1.1. To
study the effect of keeping nonlinearity constant and

changing the force, the following input data were used;

w = 497 rad/sec (20 Hz)

2

£ = 3.005

B = 208 m 2

F=20.5 1.0, 1.5 and 2.9 (N/Kg)

The mobility modulus, mobility phase and Nygquist
diagrams are displayed in figure 3-17. The effect of
increasing the force is the same as that of increasing the
softening cubic stiffness. Again, modal parameters were
extracted from these data using a linear SDOF algorithm
(table 3-11). The isometric loss factor plots for this case
are shown in figure 3-18. The graphs of the averages are
omitted because they are similar to those obtained for

varying levels of cubic stiffness (figures 3-15 and 3-16).



The isometric loss factor diagrams indicate that the effect
of increasing the force is the same as increasing the amount

of nonlinearity.

Also constructed are the graphs of mobility modulus,
mobility phase and Nyquist plots (figure 3-19) as a function
of softening cubic stiffness for several values of the
excitation frequency. These diagrams indicate how the
response varies as a function of the nonlinearity. The
locus of real against imaginary receptance is a circle and
the effect of cubic stiffness is to distort the Nyquist plot
clockwise. As the nonlinearity increases the amount by

which the modal circle is distorted also increases.

3.4.2.2. SINGLE-DEGREE-OF-FREEDOM SYSTEM WITH VISCOUS

DAMPING AND COULOMB FRICTION

The equation of motion of a SDOF system with viscous

damping and coulomb (or dry) friction is;

| <.

X + 260X + o3X + RS- = F(1) (3-25)

=

where R - is the dry friction coefficient (N/Kg).
Comparing equations 3-25 and 3-12 yields;

F(1) = F“ (3-26)

>

and wf(X,X)=2twX + R (3-27)

)

The equivalent damping and natural frequency c¢an be



calculated using equations 3-14;

2x -
A= ;-a—cl.,o(_[ 2kwy(—awysing)singdep + 2R | (=sing) d¢)
° 0

4R

A=2£w0+r—-—awo (3-28)

2r

— 1 h
wi= wg + 'u-_d( J. 2twy(—awysing) cospdo + 2R J(— cos ¢) d¢)
0 0

3B = Wl (3-29)

Equations 3-28 indicate that the damping of the egquivalent

linear system has increased by an amount of éﬁ) but the
0

natural frequency remains unaffected (equation 3-29).

Substituting equations 3-28 and 3-29 into the

equivalent linear equation 3-15 gives;

F
a=

\/ (w3 — w)? + (2twpw + -:%; )2
4Rw

rawo

(wg - )t + (2twqw + )2a2 = F?

Simplifying yields;

((w?,--wz)2 + (ZEwow)z)az + &‘::—Ra + ( %OS)Z_FZ) =0 (3-32)
The above equation is a quadratic polynomial, with
amplitude (a) as the variable, which can be calculated from
the roots of this equation for different values of the
excitation frequency. Hence, the equivalent damping and the
natural frequency can also be computed from equations 3-28
and 3-29 respectively. Knowing this, the real and imaginary

parts of receptance can be obtained from equations 3-16.



The stability of the system, represented Dby
equation 3-30 depends on the form of the roots of this
equation. If the roots are real then the system defined by
the equation is stable otherwise it becomes unstable

i.e. the equation of stability is;

(R Y - o((R2 — F)((d - o) + Qtug)?) > 0 (3-31)

™ Tw,

Frequency response data calculated for different values of
dry friction are displayed in the form of mobility modulus,
mobility phase and Nyquist plots (figure 3-28) for the

following input values;

w, = 487 rad/sec (20 Hz)

9.905

1.9 N/Kg

ool Lo | o
I\

3.19, ©.25, .40 and 9.55 N/Kg

As the dry friction increases, the mobility decreases
thus indicating an increase in damping as shown by the
equation 3-28. The natural frequency does not appear to
change with dry friction. At low levels of dry friction
(R =0.19 and ©.25 N/Kg), the Nyquist plots appear to be
circles (almost) but of different diameters and as the
nonlinearity increases, the modal diameter decreases
distorting the circle into an 'egg’ shaped plot

(R = 8.55 N/Kg).

The identified modal properties derived using a linear

SDOF curve fitting process are shown in table 3-12. 1In the



case of dry friction, the conventional plots of different
types of average give no useful information and so only the
isometric (3-D) diagrams are displayed (figure 3-21). These
plots indicate that the damping decreases as the frequency
points used in the calculation of loss factor move away from
the resonance below and above. The maximum estimated value
of the damping occurs around the resonance i.e. maximum
damping is given by ﬁhe two adjacent points around
resonance, one below and one above the natural frequency.
Data polluted with dry friction nonlinearity give damping
estimates that are much higher than those that would be

obtained in the absence of any nonlinearity.

As in the case of cubic stiffness, here we shall also
examine the effect of altering the force while the amount of
dry friction remains constant. For this the following input

data were used:;

wo = 40T rad/sec (20 Hz)
¢ = 3.9085
R = 8.25 N/Kg
F=0.5 1.8, 2.2 and 5.8 (N/Kg)

The mobility modulus, mobility phase and Nyquist plots
are exhibited in figure 3-22. The effect of increasing the
force appears to be the same as that of reducing the dry
friction. At high 1levels of force, the Nyguist plots are
circular but as the force decreases these circles degenerate
'

into ‘'egg' shaped plots. The modal properties extracted

from these data using a linear SDOF algorithm are shown in



table 3-13. The 1loss factor isometric plots (figure 3-23)
indicate a reduction in the effect of the dry friction as
the force is increased and at low levels of excitation, the
dry friction has large influence on the estimated values of

loss factor.

The effect of varying dry friction on the response,
for a given excitation frequency was also investigated
(figure 3-24). The Nyquist plot shows that as the dry

friction increases the modal diameter decreases.

3.4.3. LINEAR TWO-DEGREE-OF-FREEDOM SYSTEM WITH HYSTERETIC

DAMPING

In the analysis of SDOF systems, it is often assumed
that the modes of vibration are well separated from each
other so that the effect of all the modes except the one
under consideration is assumed to be constant over a narrow
frequency range. With this assumption, a
multi-degree-of-freedom system can be analysed as several
SDOF systems by considering the frequency points in the
immediate vicinity of each mode separately. Tnis leads to a
simple method for extracting modal properties from the
frequency response data. However, there are many cases when
the modes are too close for this assumption to be valid.
Analysis of data from such cases using a SDOF circle-fitting
routine will 1lead to inaccurate results and to a badly

identified curve.

In this section we shall investigate how close coupled



modes effect the modal properties identified using a SDOF
algorithm. Again, the loss factor values around resonance

will be examined together with the angle PHI plots.

The equation governing a multidegree of freedom system

is;
m
| Apgle™
() = z X1 = (0/w,? +in,) (3-32)
r=1
where p,q - coordinates of response and excitation;

- natural frequency of the 0 mode;

@r
n. - loss factor of rth mode;
. th .
rqu - modal constant of the r mode;
or - modal phase of the rth mode;
m - number of modes.
In the case of two modes only:;
A eml e"ez
apq(w) —_ ll Pq' IZquI (3_33 )

0 = @/ Fin) T Sf(0=(w]wy)Finy)

The above equation can be solved to obtain the real and

imaginary parts of receptance.

The effect of close coupled modes can be investigated
by altering the natural frequencies of one or both of the
modes (wz and wl) so that they converge towards a single
frequency value. The natural frequency of mode 1 (wl) was
kept constant at 29 Hz while that of mode 2 (wz) was

decreased from 21 to 20 Hz. The input data for



equation 3-33 were as follows;

MODE 1 w, =407 rad/sec (20 Hz)
A = 1. K
1*pq 1.0 1/Kg
01 = @ deg
MODE 2 wy = 21.90, 20.6, 20.4 20.2, 20.1 and 20.9 Hz
"2 = g.91
A = 1.0 K
2”pq 1/¥g
02 = 2 deg

The mobility modulus and mobility phase plots are displayed
in figure 3-25 and the corresponding Nyquist plots in
figure 3-26. Table 3-14 shows the derived modal properties

from these data using the SDOF identification process.

Some of the 3-D loss factor and angle PHI plots for
modes 1 and 2 are shown in figures 3-27 and 3-28

respectively.

The  damping plot for mode 1 (w2 = 20.6 Hz;
figure 3-27) indicates a large variation in the loss factor
estimates. The maximum value occurs at exactly the same
frequency as that of the second mode. The angle PHI diagram
also shows a large change at the point where a peak is
detected on the loss factor plot. As mentioned earlier, the
angle PHI always increases as the frequency points used in

the calculation of this angle move away from resonance and

the only time the angle PHI does not increase is when the



effect of a neighbouring mode is not negligible.

The angle PHI is increasing for the frequency points
below resonance but above resonance there 1is a sudden
change.- Since this change (in the PHI matrix) occurs at the
frequency points above natural frequency this indicates the
presence of at least one mode in the neighbourhood of the
mode under consideration, its natural frequency being higher
than the mode being analysed. Similarly, plots for mode 2

(figure 3-28) reveal the presence of at least one mode below

the second mode.

3.5. CONCLUSIONS

For any linear SDOF system the modal parameters are
independent of the choice of frequency points for their
derivation, but for close modes and for nonlinear
systems, the choice of points can greatly influence the
results. In the case of close modes, an error of
the order of 1880% is not unusual if a simple average is
taken for the modal parameters for all the combinations of

points. Large errors may also occur due to the

nonlinearities.

From the study of theoretical data, we have been able
to calibrate the 3-D plots so that diagrams from the data of
real structures may be compared with these to identify the
the type of pollutant and hence to determine what steps
should be taken in order to reduce its effect in the final

data e.g. to reduce the effects of cubic stiffness, a low



level of excitation should be used and to reduce the effect

of dry friction, a high input force is necessary.

Isometric plots of 1loss factor estimates are more
sensitive to cubic stiffness and close modes than to dry
friction. A large amount of dry friction produces a
relatively small change in the shape of the loss factor
plot. Consequently, dry friction will be more difficult to
detect from these plots than will cubic stiffness or close

modes.

In applying the above criteria, one must be very
careful because the results, in this thescs , relate to only
two types of nonlinearity and it is ineviéable that in real
structures other types of nonlinearities will exist and
could produce similar effects. Further, it is possible that
the combination of two or more types of nonlinearity
together with close modes may also produce similar changes
in the isometric loss factor plots as illustrated above for
each type of nonlinearity individually. Nevertheless, the
above technique provides a useful diagnostic when the data

are not ideal and care must be taken when interpreting the

results.



MODE NATURAL LOSS RMS MODAL . MODAL
NUMBER FREQUENCY FACTOR ERROR CONSTANT PHASE
x1000 x1000
(Hz) (%) (1/Kg) (Deg)
1l 33.1359 14.47 1.13 3.4293 g.65
2 34.9859 11.50 3.01 4.5876 ~-170.95
3 7907566 6.79 0#71 50@@89 _2-55
4 194.4700 13.72 g.89 2.1217 -178.19
TABLE 3-01 : Identified modal parameters of YO7 12
(Low level of excitation).
MODE NATURAL LOSS RMS MODAL MODAL
NUMBER FREQUENCY FACTOR ERROR CONSTANT PHASE
x1000 x1000
(Hz) (%) (1/Kg) (Deg)
1 32.9625 15.06 1.62 3.1891 -@.39
2 34.7159 14.20 1.76 4.6423 -157.95
3 79.4063 7.51 @.35 4.8883 -2.18
4 104.20039 12.91 8.57 1.9059 176.73
TABLE 3-02 : Identified modal parameters of Y

(High level of excitation).

07,12




EXCITATION NATURAL LOSS RMS MODAL MODAL
LEVEL FREQUENCY FACTOR ERROR CONSTANT PHASE
* x1000 x1000

(volts) (Hz) ' (%) (1/Kqg) (Deg)
9.05 79.1650 6.89 1.56 5.1543 -148.36
B.10 78.91009 6.87 1.93 4.5386 -134.05
g.20 78.6650 6.31 5.99 3.8205 -136.65
g.39 78.4909 6.25 4.83 3.5742 -132.33
3.49 78.3358 5.66 8.93 3.1355 -122.31
J .60 78.1168 5.57 13.27 2.9322 -129.79
.89 77.8600 5.28 17.27 2.6092 -121.65
1.9 77.6150 7.18 9.65 3.2074 -120.16

TABLE 3-03 :

Identified modal parameters of mode 3 for point

mobility Y as function of &excitation
12,12
level.
EXCiTATION NATURAL LOSS RMS MODAL MODAL
LEVEL FREQUENCY FACTOR ERROR CONSTANT PHASE
x1000 x1000

(volts)* (Hz) (2) (1/Kg) (Deg)
J.05 103.9809 13.74 2.46 2.8771 19.73
9.19 163.8900 14.11 @.27 2.8235 12.14
2.20 193.6350 14.69 2.22 2.7806 21.69
g.30 193.4900 14.68 1.20 2.6765 28.37
0.40 193.2799 12.89 2.16 2.2755 33.58
g.69 192.9200 12.91 3.47 2.9010 40.60
2.80 192.7109 11.64 6.64 1.9677 38.79
1.99 192.4200 12.39 4.87 2.0216 38.09

TABLE 3-04 : Identified modal parameters of mode 4 for point

mobility Y

level.

* 1L vwlt 2 227

12,12

as

function of

excitation




frequency points below resonance
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TABLE 3-05 : Matrixof damping estimates around resonance.




TABLE OF LOSS FACTORS x1000

9 8 7 6 5 4 3 2 1

10 14.81 14.29 13.69 12.60 12.55 13.39 12.31 12.9Q 12.95
11 12.58 12.96 12.88 12.23 12.25 12.99 12.12 12.65 12.71
12 14.79 14.53 14.11 13.25 13.12 13.64 12.78 13.24 13.25
i3 13.17 13.29 13.18 12.64 12.61 13.09 12.42 12.84 12.86
14 14.16 14.10 13.87 13.27 13.16 13.58 12.88 13.25 13.26
15 13.63 13.65 13.52 13.64 12.97 13.35 12.75 13.09 13.11
16 13.67 13.16 13.10 12.73 12.79 13.96 12.54 12.87 12.90
17 13.62 13.64 13.53 13.14 13.907 13.39 12.86 13.16 13.17
18 13.36 13.40 13.33 13.00 12.95 13.24 12.77 13.65 13.37

19 13.78 13.79 13.68 13.33 13.26 13.53 13.05 13.39 13.31

TABLE 3-06 : Experimental loss factor matrix.

ViSCcous NATURAL LOSS RMS MODAL MODAL
DAMPING | FREQUENCY | FACTOR ERROR | CONSTANT PHASE
x1000 x1000

(Hz) (%) (1/Kg) (Deg)

2.003 20.0000 5.97 13.91 995,77 8.50

2.005 20 .0000 13.05 4.75 | 1004.71 5.31

2.010 20.0000 20.03 g.83 | 10981.45 2.29

0.020 20.0002 39.99 g.21 1000.24 g.29

TABLE 3-07 : Identified modal properties as a function of

viscous damping.




TABLE OF ANGLE PHI(DEG)

21 29 19 18 17 16 15 14 13

22 53.3 106.1 142.8 165.4 179.6 189.1 195.9 200.9 284.7
23 90.3 143.9 179.8 202.3 216.6 226.1 232.8 237.8 241.6
24 112.9 165.7 202.4 225.9 239.2 248.8 255.5 260.5 264.3
25 127.2 182.0 216.7 239.3 253.5 263.1 269.8 274.8 278.6
26 136.8 189.5 226.3 248.9 263.1 272.6 279.4 284.3 288.2
27 143.6 196.3 233.1 255.6 269.9 279.4 286.1 291.1 294.9
28 148.6 201.3 238.0 260.6 274.9 284.4 291.1 296.1 299.9
29 152.4 205.1 241.9 264.4 278.7 288.2 294.9 299.9 303.7
30 155.4 2P8.2 244.9 267.5 281.7 291.2 298.9 322.9 306.8
31 157.9 218.6 247.3 269.9 284.2 293.7 398.4 385.4 309.2

ABLE OF SS_FACTORS_ x1000

21 20 19 18 17 16 15 14 13

22 9.98 18.902 10.82 18.02 10.92 18.02 19.02 18.062 10.92
23 10.00 106.02 10.02 108.82 10.92 190.92 10.92 10.02 10.82
24 19.91 18.02 10.82 12.02 10.02 18.92 10.92 13.02 10.82
25 190.01 19.92 10.02 19.02 10.02 19.82 10.92 10.02 10.082
26 10.41 10.02 10.82 106.82 10.92 10.92 19.82 18.02 10.082
27 10.01 19.02 10.02 198.82 10.02 10.82 10.92 12.02 10.02
28 10.92 10.92 10.82 10.02 19.02 10.22 10.92 10.982 10.82
29 19.92 196.02 19.062 16.82 19.02 10.82 123.82 18.02 10.082
30 10.082 190.92 19.02 198.02 16.92 19.92 19.92 18.02 10.22

31 18.02 10.02 10.962 10.82 18.92 10.82 18.92 10.82 18.02

TABLE OF MODAL CONSTANTS (1/Kg)

21 20 19 18 17 16 15 14 13

22 1.9 1.60 1.92 1.00 1.80 1.00 1.99 1.00 1.00
23 1.00 1.8 1.80 1.00 1.0 1.80 1.8¢0 1.00 1.00
24 1.69 1.00 1.00 1.900 1.90 1.00 1.00 1.00 1.00
25 1.3 1.8 1.8 1.080 1.00 1.0 1.60 1.0 1.08
26 1.6 1.9 1.00 1.80 1.00 1.860 1.90 1.860 1.89
27 1.6 1.00 1.90 1.00 1.60 1.8 1.0 1.060 1.80
28 1.6 1.88 1.00 1.6 1.9 1.00 1.60 1.90 1.80
29 1.90 1.880 1.0 1.0 1.00 1.60 1.60 1.80 1.80

39 1.0 1.0 1.0 1.00 1.8 1.986 1.8 1.88 1.80

31 1.6 1.0 1.99 1.86 1.8¢0 1.09 1.8 1.080 1.80

TABLE 3-08 : Angle PHI, 1loss factor and modal constant

matrices for viscous damping ( £ = 0.005).



SOFTENING NATURAL LOSS RMS MODAL MODAL
CUBIC FREQUENCY FACTOR ERROR CONSTANT PHASE
STIFFNESS
2 x1000 x1000
(m °) (Hz) (%) (1/Kg) (Deg)
50 19.9775 9.76 8.95 973.97 -168.42
200 19.9225 9.25 19.04 919.65 -151.97
400 19.8675 8.89 20.99 881.02 -143.55
609 19.8275 8.65 23.08 855.10 -1403.96
EXACT VALUE 23 19 2 1000 -180
TABLE 3-09 : Identified modal properties as a function of
softening cubic stiffness (F = 1.0 N/Kg).
SOFTENING SLOPE OF MAXIMUM VALUE OF
CUBIC VERTICAL DIAGONAL AVERAGES
STIFFNESS AVERAGE
LOSS FACTOR
-2 -2
(m ©) (m ™)
50 3.64E-04 0.9100
209 6.12E-04 2.0998
490 7.35E-04 g.0994
600 8.15E-04 0.0093
EXACT VALUE |  ——=--- J3.01

TABLE 3-10 :

Slope of vertical averages and maximum value of

the

diagonal

plot

as

softening cubic stiffness.

a function of




EXCITATION NATURAL LOSS RMS MODAL MODAL
FORCE FREQUENCY FACTOR ERROR CONSTANT PHASE
x1000 x1000
(N/Kg) (Hz) (%) (1/Kg) (Deg)
9.5 19.9775 9.76 8.95 973.97 -168.42
1.5 19.8325 8.59 42.80 849.15 -121.62
2.9 19.7775 8.24 26.43 813.25 -131.73
EXACT VALUE 20 10 7} 1023 -180
TABLE 3~11 : Identified modal ©properties as function of
excitation force (B = 200 m-z)
DRY NATURAL LOSS RMS MODAL MODAL
FRICTION FREQUENCY FACTOR ERROR CONSTANT PHASE
' x1000V x1000
(N/Kg) (Hz) (%) (1/Kg) (Deg)
J9.19 19.9975 11.12 3.51 923.92 4.70
@.25 19.9975 12.69 1.83 739.19 3.83
0.40 19.9975 14.67 3.55 529.82 2.27
Jg.55 20.00508 16.71 8.47 274.99 -2.61
EXACT VALUE 20 19 %} 1920 -180
TABLE 3-12 : Identified modal properties as function of dry

friction (F = 1.0 N/Kg).




EXCITATION NATURAL LOSS RMS MODAL MODAL
FORCE FREQUENCY | FACTOR ERROR | CONSTANT PHASE
x1000 x1000
(N/Kg) (Hz) (%) (1/Kg) (Deg)
8.5 20.0050 16.74 5.98 4091.55 -3.11
1.9 19.9975 12.60 2.94 739.17 3.83
2.9 19.9975 11.19 3.72 865.19 4.790
5.9 19.9975 10.47 4.38 953.28 5.08
EXACT VALUE 29 19 ] 1000 %]

TABLE 3-13 : Identified modal properties as function of

excitation force (R = 0.25 N/Kg).



MODE1
INPUT
NATURAL NATURAL LOSS RMS MODAL MODAL
FREQUENCY FREQUENCY | FACTOR ERROR | CONSTANT PHASE
OF MODE 2
x1000 x1000"
(Hz) (Hz) (%) (1/Kg) (Deg)
21.9 19.9959 9.50 13.02 930@.97 9.36
20.6 20.0100 8.73 11.78 870.93 -2.46
20.4 19.9858% 16.37 8.22 987.08 18.90
20.2 19.98509 19.69 12.89 2982.87 51.13
290.1 20.8559 12.66 4.54 2178.98 .60
20.9 20.0950 10.09 0.91 2000.10 -0.901
EXACT VALUE 20 10 g 1000 g
MODE2
INPUT
NATURAL NATURAL LOSS RMS MODAL MODAL
FREQUENCY FREQUENCY | FACTOR ERROR | CONSTANT PHASE
OF MODE 2
x1000 x1000
(Hz) (Hz) (%) (1/Kg) (Deg)
21.0 21.080509 9.16 3.78 891.77 9.97
2.6 20.5800 6.96 29.79 783.66 17.37
29.4 20.3600 6.54 40.74 8140. 31 33.11
20.2 20.2259 18.50 7.88 2835.69 -51.91
17 3% A [NOODRISISI S ISR [ E U —
7Y 2 A [N (VRN (R (PSS [ S—
EXACT VALUE|INPUT VALUE 10 g 1000 g

TABLE 3-14

Identified modal properties of modes 1 and 2.
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FIGURE 3-04 : Mobility modulus and Nyquist plots for point
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excitation (mode 3).
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excitation (mode 4).
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FIGURE 3-07 : An isometric representation of table 3-05.
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4. A DETAILED STUDY OF SOME MODAL PROPERTIES OF THE

‘NASTRAN' STRUCTURE

4.1. INTRODUCTION

In section 3.2.1 it was noted that the 'NASTRAN'
structure (figure 3-81) is nonlinear. This was shown by
testing the structure at several different but constant
levels of excitation. Since the mobility modulus and
Nyquist plots were found to be force dependent, the

structure must be nonlinear.

In this chapter we shall ¢try to identify the
nonlinearities and, if possible, see how 'accurate' modal
properties may be obtained even in the presence of these
pollutants. But before this, it is necessary to outline the
criterion to be used to check the quality of the identified

modal properties.

4.2. ASSESSMENT OF THE QUALITY OF IDENTIFIED MODAL

PROPERTIES

The first step in checking the measured modal
properties 1is to see how large is the variation in the
different estimates of loss factor around resonance. This
is easily done by noting the RMS error: the smaller the
error, the better the results. A second check that can give
some indication of the reliability of the data is the degree
of complexity of the modal constant (value of modal phase):

the closer the modal phase is to @ or 189 degrees, the
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greater the confidence in the identified value. Sometimes
the second check can give misleading information because
close modes and nonproportionally damped
structures can also produce large values of modal phase.
Nevertheless, this serves as a first check and warns the

analyst.

Another method ' of assessing the reliability of
measured modal data is by examining the consistency of the
various parameters measured at different points on the
structure. All the frequency response functions should
yield identical results for the natural frequencies and
damping wvalues for each mode analysed. Any discrepancies
encountered must be justifiable in terms of the accuracy of
the various measured quantities but close inspection of this
feature often reveals wider scatter than can be attributed
to 'measurement errors'. A more discriminating check can be
obtained from the other parameters - the modal constants.
The nature of this check is to make measurements with the
excitation at various points on the structure so that we

obtain a set of modal constants;

rAjp' rqu etc. r=1,m; j=1,n.

where p,q are the points of excitation.

In a simple example, we shall consider two series of
measurements, first with the exciter at point p and secondly
at point g. Amongst the many frequency responses measured
will be a_ , « in the first series and a_ , « in the

pp qp Pa aq
second. For each mode of the structure we shall thus find:
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rPpp’ rPqp’ rPpq’ rPaq

and it may be seen from the definition of modal constant
(equation 2-09) that these four wvalues should Dbe

inter-related so that;

rAPP rAqq —rqu f"qp =0 (4_gl )

If we define;

’APP H49‘7 -
A =1-"r M (4-82)
4 ’AP‘I "4‘11’

then the closeness of AA to zero will provide an assessment

of the reliability of the results obtained for that mode.

Two alternative versions of the same concept are

(i) the measurement and comparison of a reciprocal pair of

frequency responses, @ hg and % gp and (ii) the use of two
measured (and analysed) functions - such as app and agp ~ to
predict or synthesize the respective third - @qq While the

first of these checks is useful, the second can sometimes
give a falsely negative results because of limitations to

the amount of data used [50].
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4.3. CONSTANT FORCE TESTS ON THE °‘'NASTRAN' STRUCTURE

4.3.1. IDENTIFICATION OF NONLINEARITIES

For this study we shall examine the response of the
'NASTRAN' structure (figure 3-01) at two points - 7 and 12
- due to sinusoidal excitation at these points, exciting one
point at a time. First the structure was tested to check
for nonlinearities by the simple procedure of constant
forcing levels. Results from similar tests were shown in
chapter 3 but it was necessary to repeat these tests as
there was a gap of about 9 months between the first tests
and this more detailed study. Mode 3 was considered to be a
good specimen for the purpose of detecting nonlinearities
because it is well separated from other modes (figure 4-01)
and any variation in the loss factor plot could reasonably

be attributed to nonlinearities rather than to close modes.

Exciting one point at a time - 7 or 12 - and measuring
the response at points 7 and 12, produces a 2x2 mobility
matrix: shown in table 4-01. Some of the measured data for
at several constant forcing 1levels are

Y and Y

12,12 87,12
shown in figures 4-02 and 4-03 respectively. These plots
show a slight drop in the mobility modulus and a large
decrease in the natural frequency as the forcing 1level is
increased. As in the last chapter, these data were analysed
using a SDOF algorithm and the modal properties thus
extracted are shown in tables 4-02 and 4-83 for Y12,12 and
Y‘Z,.,'12 respectively. The modal properties for le,g7 and

Y57 g7 Were also identified and are given in reference 36.
14
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The following conclusions are drawn from the extracted

modal properties of tables 4-02 and 4-03;

As the excitation force increases:
(1) the resonance frequency decreases;
(ii) the loss factor decreases;
(iii) in general, the modal constant decreases;
(iv) the complexity of the modal constant increases;
(v) the RMS error increases, indicating a 1large

scatter in the damping estimates at high levels

of excitation.

Isometric loss factor plots were constructed and are
displayed in figures 4-04 and 4-95 for ‘Y12,12 and 'Yg7,12
respectively. These plots indicate a systematic change,
rather than a random one, in the estimated damping values
around resonance. The plots for a low level of excitation
(F = 8.95 v) show a reasonably flat surface, except near the
origin (two adjacent points around resonance) where the
value of damping is largest compared with the rest of the
values and may be due to some type of frictional
nonlinearity - perhaps dry friction (compare this plot with

those with dry friction given in chapter 3).

As the forcing level increases, the plots lose their
flatness and become tilted, somewhat similar to cubic
stiffness plots, and this suggests a stiffness type of
nonlinearity (cubic stiffness). For a high 1level of
excitation (F = 1.0 v), there is a larger variation in

estimates of 1loss factor for different points around the
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resonance frequency. The first indication of this is given
by the 1large RMS error in the modal properties of

tables 4-82 and 4-03.

The isometric plots, together with the mobility
modulus and Nygquist diagrams, indicate the presence of two
types of nonlinearity, a frictional type (dry friction) -
the effect of which is maximum at low levels of excitation -
and a softening stiffness type nonlinearity (softening cubic
stiffness) -~ the effect of which increases with increasing
force. The softening cubic stiffness nonlinearity is the
dominant of the two. The effect of dry friction is very
small; and it may be ignored, hence we shall not consider it

in subsequent analysis of the NASTRAN structure.

4.3.2. ASSESSMENT OF IDENTIFIED MODAL PROPERTIES

Next we shall employ the criterion outlined in
section 4.2 to examine the quality of the identified modal

properties.

Tables 4-02 and 4-03 show an increase in both the
modal phase and the RMS error as the excitation force
increases and hence an indication of a drop in the quality
of the identified modal parameters. For a given excitation
force, we have four estimates of the natural frequencies for
each mode, one for each of the measured mobility plots
listed in table 4-01. Figure 4-06 shows these four
estimates plotted as a function of the excitation level. At

low forcing levels, the calculated values of the natural
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frequencies are reasonably close to each other (as indeed
they should be because the natural frequency is a property
of the structure and in theory is independent of the points
of excitation and response), but at high levels (F = 0.8 and
1.0 v) there is a 1large spread. Consequently, at high
levels of excitation the confidence 1in the calculated

natural frequency is low.

Figure 4-07 shows the variation of AA as a function of
the excitation force. At low levels of excitation, values
of AA are close to the zero line (AA < 5%) but as the force
increases so does AA. The value of AA being close to zero
does not necessarily mean that the identified modal
constants are accurate, as two or more errors in these
parameters can cancel out and give misleading results.
However, if AA is not close to the zero line, then certainly
the modal parameters cannot be accurate. A deviation of 10%
from the zero line is considered to be acceptable for most
practical applications. In this case the values of AA for
high levels of excitation are greater than 18% - one being
close to 353% - hence using these identified modal parameters
in further analysis may lead to inaccurate predictions or

inaccurate model of the structure.
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4.4. CONSTANT AMPLITUDE OF VIBRATION TESTS ON THE 'NASTRAN'

STRUCTURE

4.4.1. WHY USE CONSTANT AMPLITUDE OF VIBRATION ?

All the evidence from the measurements point to a
particular type of nonlinearity - softening stiffness - as
being dominant. Nonlinearities of this %ind can be

represented analytically by;

F=kX{1-(y,X +7,X7:X>+...)} (4-23)

where F

the force;
k - stiffness coefficient;
X - displacement of spring;

71,72,..- constants.

If the vibration displacement amplitude is kept constant as
the frequency of excitation (w) varies, then the expression
in the curly brackets of equation 4-03 1is a constant

(say ¢ ), thus;
F =kXo

(4-24)

where k' = ko

Equation 4-04 is of the same form as a linear spring
although k' is now smaller than k (for a hardening spring k'
will be larger than k). This means the natural frequency of

a system with a softening type nonlinearity will be lower
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than its natural frequency if the nonlinearity was not

g = k/m). As the amplitude of vibration (X)

present (w
increases, the value of X' decreases and for a given
amplitude it remains constant. Thus, constant amplitude of
vibration tests on any structure with a stiffness type of
nonlinearity will effectively linearise the structure and
produce data that can be analysed using a linear algorithm
but it must be borne in mind that the identified modal

properties are amplitude-dependent and are, in turn,

dependent on the force and are not the ‘'true' (linear)

values.

4.4.2. TEST WITH CONSTANT AMPLITUDE OF VIBRATION

These tests can only be carried out using sinusoidal
excitation because it is not possible to keep the amplitude
of vibration constant with any other type of excitation.
The amplitude of vibration of point 12 was kept constant and
the response was measured at points 12 and 7 first with the
input force at point 12 and then with the force at point 7.
Figures 4-08 and 4-09 show the mobility modulus and Nyquist
plots for mode 3 from Y12,12 and Y07'12 respectively. By
comparing these diagrams with those with constant force
(figures 4-32 and 4-03) shows the effect of keeping the
amplitude constant. Each plot appears to be linear but
differs from the other plots in the sense that the resonance
frequency is not the same for ény two plots. The Nyguist
plots of these data appear to form continuous circles,

unlike the constant forcing tests which had 1large
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distortions in the spacing of frequency points. As the
amplitude of vibration increases, the modal diameter
decreases but still remains circular. The modal properties
identified from these plots are given in tables 4-04

and 4-05.

Tables 4-04 and 4-05 show that the RMS error is now
very small (less than 2%) and also the modal phase is close
to 4 or 180 degrees. These results indicate the apparent
linearity of the structure for a given value of amplitude.
The variation in the natural frequencies and the damping for
different mobilities (i.e. Yﬁ7,12' Y12,12 etc.) are more

consistent than in the constant force tests.

Some of the 3-D 1loss factor plots for le’12 and
Yg7'12 are given in figures 4-10 and 4-11 respectively. All
these diagrams are flat, without exception, and are similar
to those obtained from the analytical 1linear model
(chapter 3). As the amplitude of vibration increases the
3-D plots are shifted (i.e. damping increases) but the plots
retain their flatness. These results prove that the
structure's main nonlinearity is the stiffness type which we

have been able to 1linearise using constant amplitude of

vibration tests.
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4.4.3. ASSESSMENT OF RESULTS

The variation of AA as a function of the amplitude of
vibration of point 12 of the 'NASTRAN' structure
(figure 3-81) is shown in figure 4-12. The deviation of Ap
from the zero line is much smaller (less than 7%) compared
with the wvalues obtained for the constant force cases

(figure 4-07).

The wvalues of AA are not zero, as they should be in
theory, because;
(i) of the random errors in the measured data;
(ii) the structure is most 1likely to posess other
types of nonlinearities as well as the softening

stiffness and dry friction.

4.5. CONCLUDING REMARKS

The constant force results showed that the 'NASTRAN'
structure is nonlinear with at 1least two types of
nonlinearity - frictional type (dry friction) and softening
stiffness (softening cubic stiffness) - the latter being the

dominant.

The effect of cubic stiffness can be reduced by
decreasing the excitation force but unfortunately this
increases the effect of dry friction (see chapter 3). Since
cubic stiffness is the dominant nonlinearity in this case,
low levels of excitation force should be used in order to

obtain accurate modal properties. The identified modal



- 119 -

parameters have very good consistency at low forcing levels
(table 4-02 and 4-03), however, it is not always possible to
excite a structure adequately using low excitation force
because this usually results in a high level of signal to
noise ratio in the measured data, which 1is Jjust as
undesirable as the effect of nonlinearities. Instead, a
constant amplitude of vibration should be used as this will
give Dbetter results than equivalent constant force.
However, it is much more difficult in practice to control
the amplitude of vibration than the force, especially for a
nonlinear structure because the response is not directly
proportional to the force (i.e. doubling the force does not

necessarily double the response).

In any event, using a constant amplitude of vibration
does not solve all the problems because large amplitudes of
vibration also give inconsistent modal properties but the
inconsistency is smaller than that for the constant force.
The main disadvantage of using constant amplitude excitation
is that in practice, the amplitude can only be kept constant
over a very narrow frequency range, constant force
excitation can be used over a much wider frequency range.
For example, in this study it was possible to use a constant
value of excitation force for the first four modes, but the
constant amplitude was applicable for the first two modes
only and this value had to be reduced for the higher modes.
It appears that each method has its merits; a constant force
of excitation helps to identify the type of nonlinearities

present in the data and a constant amplitude of vibration
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serves to produce an equivalent linear structure in the case

of stiffness type of nonlinearities.
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Y

12,12

TABLE 4-01 : Measured mobility matrix.

EXCLiTATION NATURAL LOSS RMS MODAL MODAL
LEVEL FREQUENCY Fi?ggg ERROR C?ﬂ%ﬁﬁ?T PHASE
(volts) (Hz) (%) (1/Kg) (Deg)

J.05 79.26 6.92 1.13 5.0995 26.44
9.10 79.14 7.01 2.15 4.9949 20.83
9.20 78.94 5.52 7.97 3.6666 24.98
0.30 78.71 4.83 10.68 3.0346 55.45
0.40 78.59 6.48 11.43 3.9054 37.14
2.60 78.32 5.09 21.88 2.7485 40 .24
1.99 77.94 4.37 23.13 1.9256 43.92
TABLE 4-02 : Identified modal properties of mode 3 for
measurement Y12,12 as function of excitation
level.

EXCITATION NATURAL LOSS RMS MODAL MODAL
LEVEL FREQUENCY ??ﬁgg? ERROR C%ﬁ%ﬁﬁ?T PHASE
(volts) (Hz) (%) (1/Kg) (Deg)

9.05 79.24 6.96 g.29 4.5812 39.32
9.19 79.14 7.06 1.89 4.4925 20.23
g.20 78.94 5.99 8.66 3.5805 22.26
0.30 78.72 5.53 8.59 3.1249 45.25
0.40 78.56 5.38 9.19 2.8628 48.21
J.60 78.32 5.40 24.25 2.6898 37.28
1.00 77.89 4.67 21.33 1.99032 62.55
TABLE 4-03 : Identified modal properties of mode 3 for

measurement Y as function of excitation
07,12

level.




- 122 -

AMPL. OF
VIBRATION NATURAL LOSSs RMS MODAL MODAL
OF Pt. 12 FREQUENCY FACTOR ERROR CONSTANT PHASE
x1000 x1000
(um) (Hz) () (1/Kq) (Deg)
5 79.35 7.69 g.35 5.3679 -3.39
8 79.20 7.82 1.00 5.4319 -4.26
12 78.96 8.84 g.28 5.4887 ~3.39
15 78.84 9.09 g.49 5.3959 -4.07
20 78.65 9.56 1.89 5.1155 -19.53

TABLE 4-04 : Identified modal ©properties of measurement

Y12 1o a8 function of amplitude of vibration of
’

point 12 (mode 3).

AMPL. OF
V1BRATION NATURAL LOSS RMS MODAL MODAL
OF Pt. 12 FREQUENCY | FACTOR ERROR | CONSTANT PHASE
x1000 x1000
(em) (Hz) (%) (1/Kg) (Deg)
5 79.34 7.71 1.82 4.9049 -1.43
8 79.19 7.88 9.79 4.8804 g.06
10 79.08 7.99 g.92 4.6987 -2.09
12 78.95 8.81 2.87 4.8711 -1.80
15 78.84 8.97 g.67 4.7341 -3.77
20 78.62 9.87 9.93 4.7820 -1.43

TABLE 4-05 : Identified modal properties of

measurement
Y07’12 as function of amplitude of vibration of

point 12 (mode 3).
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5. SIMULATION OF NONLINEAR-SINGLE-DEGREE-OF-FREEDOM SYSTEMS

USING AN ANALOGUE COMPUTER

5.1. GENERAL

The recent past has seen many advances in the
measurement of frequency response data. The availability of
computing power makes it possible to carry out complex
operations on the measured data at the same time as they are
being measured. Statistical methods based on
fast-Fourier-transformation (FFT) are very desirable under
certain circumstances. A structure is excited using random
or transient input and the response is measured in the time
domain and is then transformed from the time domain into the
frequency domain. These nonsinusoidal techniques are very
useful for testing structures when the environmental input
disturbance§ cannot Dbe controlled, e.g. noise, ground
vibrations, wind loading, etc. Another advantage of such
methods is the high speed at which they permit us to acquire
the test data, compared with the case of sinusoidal

excitation.

Fast Fourier Transform machines wa%iz= usz o  Duhamel's
Integral [47,31], which is 1linear and therefore the
structure's linearity  misis automatically be assumed.
Unfortunately, very few complex structures are linear and
hence do not fall into the linear category. Even though FFT
machines are intended to test only linear structures, it is
gquite common practice to make use of them for all sorts of

structures and situations. Before using FFT machines on
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nonlinear structures, it is essential that the effects of
nonlinearities on the test data are investigated. For this
study we shall use an analogue computer because it is very
difficult to solve nonlinear equations to obtain analytical
solutions and the degree of difficulty is increased many

fold if the input function (force) is nonsinusoidal.

5.2. ANALOGUE COMPUTER

Analogue simulation can contribute a great deal to the
development and utilization of mathematical models in
dynamic systems. Multi-degree-of-freedom systems with known
modal properties and nonlinearities can easily be simulated.
To study the response of these systems to different types of
excitation does not present any difficulty as would be the

case for a numerical study.

The operation of an analogue computer is very simple
because there are only two primary components; integrators
and summers [48]. The symbols of these and other components
used for this study are given below:

SYMBOL NAME

X—— 1 =X INVERTER

S -(aX_ +bX_.) SUMMER
b 1 2
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x——»—»- ﬁ( dt  INTEGRATOR

X aX a<l POT

Different combinations of integrators and summers
simulate the desired model. Becauss the analogue computer
can only integrate a function and not differentiate it, a
differential equation can only be solved for the highest
derivative in the equation. However, further integration
produces the next derivative down and so on until all the

variable are computed [49] (e.g. f, X and X).

In this study the response of a nonlinear SDOF system
will be investigated when excited using sinusoidal, random
and transient inputs. Sinusoidal excitation should produce
the same results as those obtained from ¢the analytical
solutions in chapter 3 and comparison of these data with the
analytical values will serve to indicate the accuracy of

representing such systems on an analogue computer.

Only two types of nonlinearity are examined: softening

cubic. stiffness and dry friction.
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5.3. SOFTENING CUBIC STIFFNESS SYSTEM

As before, the egquation of motion of a SDOF system

with viscous damping and softening cubic stiffness is;

X + 260X + ol(X —8X%) = F (1) (5-01)

|

where { - viscous damping ratio (9.9495);

wy natural frequency (10 rad/sec):
B - cubic stiffness coefficient (m-z):

F(t) - forcing function (N/Kg).

When the above values of coefficients are substituted,

equation (5-01) becomes;

X +2x0.005% 10X + 103X ~8x3%) = F(2)
X +0.1% + 100X - 8X%) = F(1)
X = F(t)-0.1X - 100X + 1008x°

or X= —{—F(z) +0.1X + 100X — 100ﬁx’} (5-82)

In the steady-state, the integral of X gives X and the
integral of X is equal to X.

Mathematically;

(5-83)
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It is necessary to estimate the maximum values of X, X and X
so that the equations can be 'scaled' to prevent the
computer from overloading. The analogue computer used for
this study (SAE 38l1) becomes overloaded if the voltage in
any part of the circuit exceeds 15 volts. It has been
found, by a trial-and-error method, that the maximum values
of ¥, X and X are likely to be 1 m/sec?, @.1 m/sec and
J.91 m respectively. If the estimated values are lower than
the actual wvalues then fhe coﬁputer will overload, on the
other hand, if the maximum values are overestimated then the
output signals will be very small and noise is 1likely to
have a large effect on the measured data (signal). Using

these values;

X¥\_ | X X Voot — 1008l XY o1 2
I(T)— {F(t)+0.1(0‘l)0.1+100<0.01)0.01 1006(0'01)0.01$

- - X\ (X ) 0( XY 5-84
X | F(t)+0.01(10_1)+<10_2)+10 3(10_2)2 ( )
and X==Ii?t

or (g%)=10jk?t (5-85)
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and also X=J‘)?dt

oo()= (&)
o ()

T

)dt (5-06)

Equations 5-04 through 5-26 can be represented on a circuit
diagram as shown in figure 5-31. So far we have not placed
any conditions on the forcing function F(t) and so it can be

either sinusoidal, random or transient.

Another type of scaling that is often used is the
'time scale' the effect of this is to represent the real
time in computer time wunits i.e. it slows or speeds up
simulated process. This 1is especially wuseful when the
actual process might take too long or the time duration of a
process is too short. For example, in order to study the
creep properties of a material an actual experiment can take
several years, but it can be simulated on an analogue

computer and the results obtained in a much shorter time.

In this study, a time scale of 0.1 seconds was used,
the effect of which is to divide any time-dependent function
by 10 e.g. the natural frequency will be shifted from 10 to
138 rad/sec, the force simulated in the circuit will be 100
times the input force and the acceleration signal output
will also be 100 times the real value. Since we are

interested in the ratio of (X/F) and both of these
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quantities are multiplied by 100, the ratio remains
unalterad. However, the measured frequency will be 10 times
the set frequency (i.e. the <circuit will resonate at

1804 rad/sec rather than at 10 rad/sec).

The nonlinearity in the circuit (B8) was changed by
altering the pot setting K (equation 5-94 and figure 5-01).
Below is a table of values of pot setting for different

amounts of nonlinearity coefficient (8):

Pot Setting (K) Nonlinearity (B m—z)
3.05 59
.29 239
J.4y 403
Jg.69 6J9

Three types of input were used; Sinusoidal,Random and

Transient.
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5.3.1. SINUSOIDAL EXCITATION

A Solartron 1172 Frequency Response Analyser (FRA) was
used for these tests. The input force was kept constant as
the frequency varied and tests were carried out at different

but constant values of nonlinearity coefficient (8).

The mobility modulus and Nyquist plots are presented
in figure 5-02 and the modal properties obtained using a
linear SDOF algorithm are shown in table 5-91. Isometric
loss factor plots were constructed and are displayed in
figure 5-03. These results are very similar +to those
obtained from the analytical study of a system with
softening cubic stiffness and so the conclusions drawn from
the analytical study apply equally to this case, confirming
the correct representation of the system by the analogue

circuit (figure 5-01).

5.3.2. RANDOM EXCITATION

For this part of the study, a 2-channel FFT machine
(HP5420A) was used. The forcing function of equation 5-94,
F(t), is now random (white noise) and the response of the
system was measured and processed by the HP5420A. The
transformation of both signals from the time domain to the
frequency domain was carried out and the data displayed in
the form of mobility modulus and Nyquist plots
(figure 5-84) for the folowing condibiong S5e o]
Cenkre $reguemey = l6-ohy ; bandwidfy = 2ok ; Averages = 100 ; Hliw) = S i)

These graphs show that as the nonlinearity (B8)

increases, the natural frequency and the diameter of the
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modal circle decrease but the mobility modulus and Nyquist
relaki Vc@

plots remain , symmetrical about the frequency of maximum

response, similar to the plots obtained from linear data.

However, this apparently linear behaviour is unlike that

from sinusoidal excitation where the plots lean backwards

and, in the extreme case, show a clear jump. With random

excitation, there are no jumps or distortion in the spacing

of the frequency response points.

Modal properties extracted from these data using a
linear SDOF algorithm are shown in table 5-02. The loss
factor estimate plots corresponding to these results are
shown in figure 5-85 where the plots indicate a drastic
change 1in shape compared with those obtained wusing
sinusoidal excitation. With random excitation the plots
have become flat, similar to those obtained from 1linear
system and as the nonlinearity increases the surfaces are
generally raised while still retaining their apparently
linear characteristics (i.e. the damping appears to Dbe

increasing with an increase in nonlinearity).

It is also to be noted that the RMS error and the
modal phase are very small compared with those for
sinusoidal excitation (table 5-81). In the case of random
excitation, the 1loss factor increases as the amount of
nonlinearity is increased whereas sinusoidal excitation gave

a decreasing loss factor.
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5.3.3. TRANSIENT EXCITATION

Again, the FFT analyser (HP5420A) was used and a
transient excitation was simulated using a rectangular
voltage pulse input for a short duration. The analyser was
set up as in section 5.3.2 and continuously took samples of
the signals from the analogue computer. Because of the
damping in the simulated system, the response signal became
very small after few seconds and at this time another pulse
was input and the system was again excited, as shown
opposite.

The data obtained from ihese tests are displayed as
mobility modulus and Nyquist plots shown in figure 5-06 and
the 3-D loss factor plots are given in figure 5-@7. Again,
the results indicate an apparently linear behaviour of the

system when using transient excihabion.

5.4. DRY FRICTION SYSTEM

The equation of motion of a SDOF system with viscous

damping and dry friction is;

)'f+2gwo,\"+ng+kl—§—l=1~*(r) (5-07)

where ¢ - viscous damping ratio (3.005);

wyz — undamped natural frequency (14 rad/sec);

R

dry friction coefficient (N/Kg);

F(t) forcing function (N/Kg).

Substituting these values in equation 5-87 gives;

X +2%0.005% 10X + 102X + R

=F(@®

S| ¢

|X]
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X +0.1% + 100X + R2- = F()
|X|
X = —{-F(1)-0.1X + 100X +R,§.l (5-28)

The integration of equation 5-08 with respect to time gives
the velocity (X) and the integral of velocity gives the

displacement (X) i.e.

(5-89)
X’=ﬁ[id:

As in the cubic stiffness case, the maximum values of
—acceleration, velocity and displacement had to be estimated
to prevent the computer from overloading or underloading.
These values are taken to be the same as those for the
previous study, namely, acceleration to be 1 m/secz,
velocity to be 3.1 m/sec and displacement ©.01 m.

Equation 5-08 is now scaled with these values as being the

maximum. Thus,

i"=—;—F(I)+0.01( X )+( X )+R£.—-§ (5-18)

10! 10 -2 X

and (_‘f—) = 10jfdr (5-11)
10-!

also (%5) - 10!(%:)«“ (5-12)
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The circuit diagram for equations 5-18 through 5-12 is shown
in figure 5-¢98. Again, a time scale of ©.1 seconds is used

as described earlier.

The amount of dry friction in the circuit can be
altered by changing the voltage as shown in the circuit

diagram.

1 volt = #.1 N/Kg of dry friction

and tests were carried out for different values of dry

friction R.

5.4.1. SINUSOIDAL EXCITATION

As in the case of cubic stiffness, this circuit was
also tested using sinusoidal input so that the results from
this could be compared with the analytical data (chapter 3)
to check the validity of the analogue circuit. The mobility
modulus plots, together with the corresponding Nyquist
diagrams, are shown in figure 5-09. As usual, these data
were analysed using a linear SDOF algorithm and the modal

parameters identified are displayed in table 5-03.

The 3-D diagrams are presented in figure 5-18. These
results compare very well with those obtained from
analytical study, and it is therefore concluded that the

circuit indeed represents the desired system.
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5.4.2. RANDOM EXCITATION

Again, the FFT Analyser was used for these tests. The
mobility modulus and the Nyquist plots obtained are shown in
figure 5-11 and the modal properties extracted are given in
table 5-04. The loss factor plots for this case
(figure 5-12) show no tendency to tilt as the amount of
nonlinearity is increased. It is therefore concluded that
nonlinearity cannot be detected from a single

frequency-response curve when random excitation is used.

5.4.3. TRANSIENT EXCITATION

These tests were carried out in exactly the same
manner as those for softening cubic stiffness case for
transient excitation. The data from tests are displayed in
figure 5-13 in the form of mobility modulus and Nygquist plot
and loss factor plots are displayed in figure 5-14. Again,
these data do not indicate the presence of any

nonlinearities.
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5.5. CONCLUSIONS

It 1is seen from the two types of nonlinearity
considered that nonsinusoidal inputs generally produce flat
loss factor plots. The small random variation of these
surfaces caﬂnot be attributed to the nonlinearities because
it is more likely to be due to the small random errors in
the measurements. Random and transient excitation appear to
linearize the system but this does not mean that the random
and transient produce more accurate modal properties than
sinusoidal. The identified modal parameters in the tables
show that all types of input give inaccurate modal
properties when the data acquired from nonlinear systems are
analysed using linear SDOF algorithm. A single frequency
response curve obtained using nonsinusoidal excitation is
not sufficient to identify or even to detect the presence of
nonlinearities. Thus, one must be very careful when drawing
conclusions from such data as the modal properties are most

unlikely to be true representation of the structure.
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SOFTENING NATURAL LOSS RMS MODAL MODAL
CUBIC FREQUENCY FACTOR ERROR CONSTANT PHASE
STIFFNESS
2 ‘ x1000 x1000
(m 7) (Hz) (%) (1/Kg) (Deg)
59 15.8820 10.30 3.68 19069.7 17.35
200 15.8220 9.99 13.45 859.4 38.24
400 15.7660 6.70 18.91 644.9 59.00
6909 15.7440 6.60 26.41 639.0 49.19
EXACT VALUE 15.9155 10 a 1000 %]
TABLE 5-01 : Identified modal parameters as function of
softening-cubic stiffness: Sinusoidal
excitation.
SOFTENING NATURAL LOSS RMS MODAL MODAL
CUBIC FREQUENCY FACTOR ERROR CONSTANT PHASE
STIFFNESS
-2 x1000 x1000
(m *) (Hz) (3) (1/Kg) (Deg)
50 15.9125 10.69 0.35 1012.5 -.04
200 15.8781 11.89 3.15 1975.5 .93
400 15.8437 14.69 1.11 1189.7 -2.21
6989 15.8156 16.70 4.42 1188.1 -2.32
EXACT VALUE 15.9155 19 g 1900 2
TABLE 5-02 : Identified modal properties as function of

softening-cubic stiffness: Random excitation.
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DRY NATURAL LOSS RMS MODAL MODAL
FRICTLION FREQUENCY | FACTOR ERROR | CONSTANT PHASE
x1000 x1000
(N/Kg) (Hz) (%) (1/Kqg) (Deg)
2.00 15.9160 10.60 1.44 1011.3 1.80
g.10 15.9140 13.80 @.35 1134.0 2.65
g.25 15.8160 7.69 3.87 2024.6 16.57
EXACT VALUE | 15.9155 10 1) 1003 )

TABLE 5-03 Identified modal parameters as function of dry
friction: Sinusoidal excitation.
DRY NATURAL LOSS RMS MODAL MODAL
FRICTION FREQUENCY FACTOR ERROR CONSTANT PHASE
x1000 x1000
(N/Kg) (Hz) (%) (1/Kg) (Deg)
0.10 15.9131 11.49 2.27 1001.4 g.25
g.15 15.9106 12.30 2.33 989.4 ~2.78
J.20 15.91086 17.30 2.00 996.5 g.08
J.25 15.90882 47.90 2.31 °00.9 -0.95
EXACT VALUE 15.9155 10 (%) 1009 (%]

TABLE 5-04

friction:

Random excitation.

Identified modal parameters as function of dry
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SOFTENING CUBIC STIFFNESS «+ RANDOM EXCITATION.
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CUBIC STIFFNESS: B = 200 m-2s
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FIGURE 5-07 : Isometric loss factor plots for

softening cubic stiffness:Travsient excitation.
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ORY FRICTION : SINUSOIDAL EXCITATION.
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DRY FRICTION : RANDOM EXCITATION.
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DRY FRICTION: R = 0.15 N/Kge
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FIGURE 5-14 : Isometric loss factor plots for dry friction:

Transient excitation.
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6. CORRELATION OF ANALYTICAL AND MEASURED MODAL PROPERTIES

6.1. INTRODUCTION

The theoretical study of complex vibrating structures
centres around an analytical model and the ultimate test of
such a model is how well it performs when it is applied to
the problem it was designed to handle. When a model is
used, it may lead to inaccurate predictions. The model is
then modified, generally relying on ‘'trial and error'
methods, frequently resulting in another equally unsuitable
model. 1In dynamics, such model is often used anyway because

it is usually better than nothing.

There is an increasing interest in techniques for
improving or refining theoretical models for vibration
analysis based on measurements of a structure's response
under laboratory testing. Theoretical models which are to
be used to predict dynamic response under shock or other
complex loading may be validated and refined |using
measurements made under simpler and 1lower 1levels of
excitation using the techniques of frequency responssz
measurements. Much of the current activity in this area
combines finite element (FE) modelling leading to prediction
of undamped natural frequencies and mode shapes with modal
testing techniques which permit the estimation of similar
modal properties for an actual piece of hardware. All too
often, however, the subsequent comparison of the two sets of
results is based only on a qualitative correlation of

theoretical and measured mode shapes together with a
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guantitative comparison of their respective natural
frequencies. Relatively few studies have addressed the
problem of how to improve one or other set of results by
systematic adjustment of the model based on a numerical

comparison process between the two sets of modal data.

The objectives of this study are to explore methods of
locating weaknesses in a mathematical model and of
determining the necessary modifications which will bring the
model into <closer agreement with the actual (test)
structure's vibration characteristics. There are two
aspects to this process : that of location and that of
correction of the discrepancies. A number of recent studies
have dealt with the latter task (see chapter 1), but
relatively few have dJdealt with the former problem of
locating the errors or weaknesses which are in the

analytical model.

Generally, it is assumed that the experimental set of
data are the 'correct' values and that it is the theoretical
model which is in error. However, it must always be kept in
mind that errors will exist in the experimental results and
at all stages in the process the possibility that it is the
experimental data, and not the theoretical model, which are

in error must be considered.

Having given attention to the quality of frequency
response data in chapters 3, 4 and 5, we shall now consider
a number of methods which make use of such data to validate

the analytical model. In general this means using both the
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natural frequencies and the mode shape data in a numerical
comparison process. Of particular note is the use of the
mass-normalised mode shape properties rather than the

arbitrarily-scaled mode shape vectors which are often used.

6.2. COMPARISON OF MODELS

The two types of model can be compared at three stages
of the analysis process - frequency response, modal
properties or the spatial mass and stiffness matrices stages
(figure 6-01). Because of a shortage of experimental data,
caused in many cases by a lack of time, it is not always
possible to carry out the comparisons at all three stages.
The usual practice is to compare the data in the form of
frequency response plots and a visual comparison of modal
properties. Very 1little effort has been devoted to the
comparison of mass and stiffness matrices. This is mainly
due to the fact that to obtain the full mass and stiffness
matrices from an experimental approach requires a very large

number of measurements.

The theory of comparison of modal properties is still
in its infancy and so these methods are best illustrated by
application to a case study. In this chapter we shall
undertake a numerical study basad on the 8 DOF mass-spring
system shown in figure 6-82. Two slightly different
versions of this system were analysed, the only difference
between these being in the stiffness of spring element kL3’
which was 1.95 MN/m in the datum case and 1.50 MN/m in the
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second. The idea of using two models is that one represents
the 'true' system - simulating data obtained from tests on
an actual structure - while the second one represents a
somewhat approximate model of the system - such as would be
obtained from an FE analysis of a practical structure.
Adjustment of the stiffness parameter kL3 represents the
real situation where (at least) one of the system properties

is slightly inaccurately modelled.

The eigenvalues and eigenvectors for the datum case
(where kL3 = 1.95 MN/m) are assumed to be equivalent to
experimental data and those for kL3 = 1.50 MN/m are taken as
representing an FE model (table 6-91). Thereafter, the two

sets of modal properties will be referred to as the

experimental and the FE model data.

6.2.1. COMPARISON OF NATURAL FREQUENCIES

Comparison of natural frequencies of the two models
considered is a straightforward task. The percentage error
in the natural frequencies 1is calculated for each mode

(table 6-02).

The natural frequencies of the FE model
(kL3 = 1.50 MN/m), are 1lower than in the experimental
(kL3 = 1.95 MN/m) values for all the modes. This is to be

expected as the stiffness of one of the springs in the FE
model is lower than the experimental model. A discrepancy
of less than 3% in the natural frequency is often considered

to be adequate for many practical situations and table 6-02
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shows that the natural frequencies (except for mode 4) 1lie
below this wvalue. In practice, an FE model which is so
close to the experimental model would be considered to be
very good and no further alterations or modifications would
be carried out. However, in this case we know that the
stiffness of spring kL3 was changed by 23% and hence the two
stiffness matrices, and therefore the two models, would not

be considered to be in good agreement.

The natural frequencies do not indicate the nature or
the location of the discrepancy because a change in the
natural frequencies can be attributed to a change in the
mass, stiffness or both mass and stiffness matrices. Thus
it 1is impossible to say from the comparison of natural
frequencies only whether it is the mass or the stiffness

matrix that is in error.

6.2.2. COMPARISON OF MODE SHAPES

There are two main technigues that are used to compare
the mode shape vectors. First, the experimental and the FE
mode shape plots are overlaid (figure 6-03) revealing the
nature of any distortion in the mode of vibration of the
structure at points of interest. Figure 6-03 indicates that
modes 1 and 3 of the 8 DOF system are of the opposite sign
(mpre about this 1later). There appears to be excellent
agreement between the two sets of mode shapes although it is
still not possible to locate the specific cause of the
discrepancy between the two versions of the 8 DOF system

from these mode shape graphs.
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The second method [51,52], is a 1little more
quantitative than the first and involves plotting the
elements of the mode shape vector from one model against the
corresponding elements from that of the other model
i.e. experimental against the FE mode shape vector
(figure 6-04). 1Ideally, all points on such a plot should
lie along a line of slope +1 and deviations from this ideal
line can be used to indicate the degree of discrepancy
between the two mode shapes. As mentioned earlier, modes 1
and 3 of the 8 DOF system are of the opposite sign and hence
lie close to a line of slope -1, while all the other modes
lie near a line of slope +1 because in the former case the
elements in the measured and predicted mode shape vectors
have one-to-one ratio and in the latter case the ratio is

minus-one-to-one.

Here again, the correlation is very good but there is
no indication of the location or the size of discrepancy
between the two models. Nevertheless, this technique is
useful in cases of very complex-shaped modes where a mode
shape plot may not be immediately recognizable, and the
question of whether a particular predicted mode relates to a

particular measured mode can be resolved quickly.
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6.3. COMPARISON OF ‘PSEUDO' INVERSE MASS AND STIFFNESS

MATRICES

In the last section the natural frequencies and the
mode shapes were compared separately by taking data for one
mode at a time. No attempt was made to combine these two
sets of properties. Now we shall see how these two parts of
the modal model (natural frequencies and mode shapes) may be
combined into a single set of data that may be compared
taking into account several modes simultaneously. The

following theory explains the basis.

For a system that is completely defined by N degrees
of freedom, the eigensolution will yield N natural
frequencies and associated mode shape vectors. If the mode
shapes are mass-normalised, then the following relationship

may be established.

[Q];N[M]NN[Q’]NN = [I]NN

(6-91)
[‘I’];N [K]NNIQ]NN = [XE]
NN
where EX§J - diagonal matrix of eigenvalues;
[®#] - mass normalised eigenvectors;
[M] - system mass matrix;
and [K] - system stiffness matrix.
Rearranging equation 6-@1 gives;
[M1yn = Blyn(@ly
(6-02)

Kl = Blua[1/%] [81F
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where [M]"1 - system inverse mass matrix:;

[K]_l - system inverse stiffness (flexibility) matrix.

If only m modes are available, but the full (Nx1)
eigenvector is obtained at each of the m Xknown natural
frequencies, these may be combined to form the reduced modal

matrix [@R]Nxm. For only one mode the modal matrix reduces

R
to a vector {& }le.

Equation 6-92 may be used to compute the 'pseudo
inverse mass' and 'pseudo inverse stiffness' matrices for a

single mode of interest as shown below;

(M ]1—le = {‘I’R}Nl{q’k }1TN
(6-23)
Ky = (&3 [18] (%)

* -1 . 4
where [M] - 'pseudo' inverse mass matrix:

¥.-1 . . .
and (K] - 'pseudo'’ inverse stiffness matrix.

A 'pseudo' matrix has the same dimensions as the full matrix
(i.e. NxN) but the elements in such a matrix are not
identical to those in the full (or complete) equivalent (see
appendix 10.2). Pseudo matrices will be represented with an

asterisk as in equation 6-03.

In the case of a reduced modal matrix £¢R]Nxm

equations 6-U3 may be modified to give;
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M1y = [ 1y ml@® 1o
(6-24)
K13y = 1%, 1/N] 18%17

Equation 6-03 is a special case of equation 6-94 for m = 1.

As the number of modes (m) is increased, the elements
in the pseudo matrices converge towards the values of the
corresponding elements in the full matrix and, of-course,
when the number of modes (m) and the number of
coordinates (N) are the same, £he pseudo matrices are

identical to the full (complete) matrices. In mathematical

form;

Jim, [ 0130 ] = (M 15

(6-05)

Jim [IK15y ] = (K17

Equation 6-04 offers a method that can be utilized to
compare experimental and analytical modal properties. By
taking m modes at n points of interest on the structure, the
experimental pseudo inverse mass [ﬁe]-l and pseudo inverse
stiffness [ie]_l matrices may be computed using
equation 6-84 (n < N). The corresponding m modes at the
same n points from the analytical model gives the analytical
pseudo inverse mass [ﬁp]—l and pseudo inverse stitiness

* -
LKPJ 1 matrices. Because of the discrepancies in the

experimental and analytical models, these matrices should
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not in general be identical but the elements will be very

similar for small differences in the two models. Hence, the

difference in the two pseudo inverse mass and two pseudo

inverse stiffness matrices can be used as a measure of the

discrepancies in the two models i.e.

where [Dm] -

[p,1 -

* -1
M 17t -
* -1
Ci,) -
[k, 17t -

x -1
[KPJ -

In terms of

and [Dk] are

[D,,),, = [M ), M)
(6-06)

D) = [K 17 = (K )0

difference of pseudo inverse mass matrices;
difference of pseudo inverse stiffness
matrices;

experimental pseudo inverse mass matrix;
analytical (FE) pseudo inverse mass matrix;
experimental pseudo inverse stittness matrix;
analytical (FE) pseudo inverse stiffness

matrix.

modal properties, the difference matrices [Dm]

given by;

[Dplon = 81,9510, = (851, 12517,

(6-07)

D = @F1,[ 1] 18RI~ 8510 1/N,] 19507,

where [¢§] -

R
[e ] -

experimental eigenvector matrix containing m
modes at n coordinates;
analytical eigenvector matrix containing m

modes at n coordinates corresponding to the
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matrix [¢§];

El/xiéj - diagonal matrix containing the reciprocals of
m measured eigenvalues;

El/xipj - diagonal matrix containing the reciprocals of
m analytical eigenvalues corresponding to m

measured modes.

Using the modal data of table 6-f1 and equation 6-07, we
shall compute the pseudo inverse mass and the pseudo inverse
stiffness matrices for different combinations of the modes.
Figure 6-05 shows some of the difference of pseudo inverse
mass matrices plotted on 3-D diagrams while in figure 6-96
the difference of pseudo inverse stiffness matrices are

displayed.

Since the aim is to 1locate the coordinates of the
largest elements 1in the difference matrices, possibly
indicating the area of largest discrepancy it was more
convenient to plot the absolute values of the elements in
the difference matrices. The heading on the plots (MM1,
MM1 MM2 MM3 etc.) indicates which modes have been used to
compute the difference matrix: e.g. 'MM1' means it was
computed from mode 1 and in the case of 'MM1 MM2 MM3', the
difference matrix was computed using 3 modes; numbers 1, 2
and 3. (M - mass; S - stiffness). The diagrams shown are
those for an increasing number of modes in the calculation
of the difference matrices - starting with a single mode and

going up to the complete set of 8 modes.

The difference plots of pseudo inverse mass matrices
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(figure 6-85) do not show any clear trend in the shape of
the surtaces of these diagrams. They vary over a wide range
but the plot 'MM1' shows a flat surface with very small
(almost zero) values at every point, indicating a good
agreement between the two sets of modal properties based
just on the first mode. This is also confirmed by the small
error in the natural frequency for this mode (©.054%) and
also the comparison of mode shapes, which showed very little

discrepancy (figure 6-83).

The last diagram, calculated using all 8 modes, also
has a flat surface with almost zero value at every point.
This is to be expected because the mass matrices of the two
versions of the 8 DOF system are identical and when all 8
modes are used to calculated the difference matrix it gives
the difference of the inverse of two identical mass

matrices, which is a null matrix.

Figure 6-06 shows the difference in the experimental
(kL3 = 1.95 MN/m) and FE (k; 3 = 1.50 MN/m) pseudo inverse
stiffness matrices. Again, the plot obtained using just the
first mode (SM1l) shows very little discrepancy between the
two models. There exists no clear indication about the
amount or the location of discrepancy which is between the
coordinates Xz and X3 in this case. As the number of modes
is increased, large peaks start to appear on the diagrams

but these are not at the coordinates X2 and X.,. Thus, it

3
appears as though this technique can only be used to compare
the modal properties and not to locate the areas of poor

modelling.
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6.4. COMPARISON OF SPATIAL PROPERTIES

6.4.1. DERIVATION OF ERROR MATRIX EQUATION

The comparison of modal properties and pseudo inverse
matrices did not yield the required information about the
two models- namely, the area of weak modelling could not be
located by these techniques - and we must look further to
find another approach. Suppose the full (or complete)
stiffness matrices were available for the experimental model
as well as for the FE model, then the difference between
these two matrices will give not only the amount of any
discrepancy in the stiffness matrix but also the coordinates
of the largest errors which are directly related to the area
of poor modelling. The same process can also be carried out
for the mass matrices but in the analysis presented here

only stiffness matrices will be considered.

Let [Ke] - be the exact stiffness matrix (experimental
model);
[Kp] - be the approximate stiffness matrix (FE model);

and [Ek] - stiffness error matrix such that;
[E) = K- [K)] (6-08)

For the 8 DOF mass-spring system both the experimental and
the FE complete stiffness matrices are known, and hence the
EXACT stiffness error matrix [Ek] can be calculated using
equation 6-08. Again, this matrix may be examined by

representing its elements on an isometric plot



- 185 -

(figure 6-907). The stiffness plot is basically flat with
zero values except at the elements (2,2), (2,3), (3,2) and
(3,3), indicating an error between coordinates X2 and X3
(i.e. spring kL3). The amount of error is given by the
height of the peak of the plot. The mass error matrix plot
(not shown) has zero elements everywhere because the mass
matrices for the two versions of the 8 DOF system are

identical.

In practice, the full experimental stiffness matrix
[Ke] is not known because to construct such a matrix
requires a very large number of measurements to Dbe
performed. Even if it were possible to carry out such a
large number of measurements, it is not easy to measure the
rotational terms and hence the experimental matrix which
contains rotational coordinates could not be assumed to be
more accurate than the FE matrix. For these reasons the
full [Ke] matrix is normally not available and consequently
the exact error matrix cannot be <calculated wusing
equation 6-08. However, it 1is possible to compute an
approximate error matrix, even with incomplete experimental
data, by considering pseudo inverse stiffness matrices.

Rearranging equation 6-98;

(K] = [K,] + [E,] (6-09)

and inverting both sides gives;

k3" = [i&,) + £1]"

= ([ + & E])
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)™ = [+ &, E | KT (6-18)

Considering the expression in the large square brackets,

that 1s;

[+ &g ] (6-11)

and provided that the matrix ([Kp]_l[EkJ) is small i.e.
UKH—WEA] = [0] (6-12)

expression 6-11 can be expanded using the Binomial expansion

in the matrix form [53];

[+ iEd] = - e + [ 5] - [k B ] + o (6-13)

Substituting equation 6-13 into equation 6-19 and post

multiplying throughout by l'_Kp]_l gives;

If the matrix product ([Kp]_l[Ek]) is such that its square
and higher powers are small compared with the matrix [Kp],
meaning the FE model closely resembles the experimental
model, then equation 6-14 can be approximated by its first

two terms i.e.:;

K] = (K, = (K] EJIK,]

or [K)ENIK) T = K = K]

Pre-and post-multiplying both sides by matrix [Kp] gives;
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£ ~ K[ 1K1 - (K17 i, (6-15)

The above equation 1is a general expression giving the
approximate error matrix [Ek] in terms of the matrices
[Kp]-l, [Ke]-l and matrix [Kp]. Before this equation can be
applied to the problem of comparing modal properties to
locate the weaknesses in the FE model, some modifications
have to be made to the equation because of the inevitable

incompleteness of the data available to define the matrix

-1
(K1 .

The only known quantity in equation 6-15 is the matrix
[Kp] from the FE model of the structure. It is not always
possible to invert this matrix to obtain [Kp]_l, for
example, for a free-free system at least one eigenvalue (}\)
is zero (rigid body mode) and this makes the stiffness
matrix singular. However, it 1is possible to obtain the
pseudo matrices of [Kp]nl and [Ke]—l as explained 1in

section 6.3.

In order to use equation 6-15 in practice, it 1is
necessary to assume that in place of the full matrix [Ke]—l
we can use the pseudo matrix [ie]—l which may be computed
from eigenvalues and eigenvectors (equation 6-03). Now, if
the corresponding modes and coordinates are selected from
the FE model (as used for [iej-l), then an equivalent pseudo
matrix [Rp]_l can also be computed. It appears that both
[I“ip]_1 and its inverse [ip] are required in the egquation
6-15 and, as explained in appendix 10.2, it is not possible

to invert pseudo matrices. To avoid this inversion process
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it will be further assumed that in equation 6-15 the pre-and

post-multiplication may be carried out using the [Kp] matrix

which is already known from the FE model.

Equation 6-15 thus becomes;

* -1
where [Ke] -

[k 17t -

[Kp] -

(Bl ~ K] 1K1 — 1K 35 1K (6-16)

pseudo inverse stiffness matrix formed by
using m modes and n coordinates from the
experimental eigenvalues and eigenvectors
(m < n; equation 6-93);

pseudo inverse stiffness matrix formed by
using m modes and n coordinates
(corresponding to the experimental data) from
the FE analysis (equation 6-03);

stiffness matrix from the FE analysis.
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6.4.2. NUMERICAL STUDY

In the course of deriving equation 6-16, it has been
necessary to make several assumptions, namely that the error
matrix [E] is small, pseudo matrices can be used in place of
the full matrices and the complete [Kp] matrix should be
used for pre-and post-multiplication. To 1lend support to
these assumptions, it is appropriate to perform some
numerical calculations for which the exact error matrix [E]
is known from other sources (figure 6-97) so that comparison
ot the error matrices obtained using equation 6-16 with the
exact error matrix will indicate the wvalidity of this
method. We shall use the data of table 6-21 and
equation 6-16 to investigate the accuracy of the error
matrix equation in the process of locating weaknesses (areas

of poor modelling) in the FE model.

The stiffness error matrices were calculated for
several combinations of modes using the data of table 6-81
and equation 6-16. It was discovered that the matrices are
additive, that is, if [E1'2'3'._.] represents the error
matrix from modes 1,2,3,... taken together and [El], [EZJ,
[E3J,... are error matrices for mode 1, mode 2, mode 3,...

individually, by taking only one mode into account at a

time, then;

[E),2,3,...0 = [E}] + [E;] + [E5] + ...

The order in which the modes are taken in the [¢R] matrix

does not effect the error matrix and for 3 modes, for

example, we can write;
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= [E ] etc.

LE), 5,31 = [Ey 3,1 = [E5 5 ;] 1,3,2

Some of the error matrix plots are shown in figure 6-98.
These diagrams indicate how the stiffness error matrix
changes as the number of modes in its calculation are

increased from 1 (SM1 plot) to 8 (last plot).

The 'SM1' diagram indicates very small error as the
surface of the 3-D plot is close to the zero value. As the
number of modes is increased, the error also increases and
for four modes, there appears a 1large error Dbetween
coordinates X, and X5. These are the coordinates that are
directly affected by changes in the stiffness of the spring

k As the number of modes is increased from four, the

L3
peak at these coordinates becomes more clearly defined with
respect to the rest of the matrix. Other coordinates also
appear to have small error even though there were no
discrepancies at these points, but the reason for this is
that the error matrix calculated using equation 6-16 is

approximate. The last plot, calculated using all 8 modes,

shows no error except between the coordinates X2 and X3.

In practice, the number of modes predicted would far
exceed the number ot measured modes. To simulate a
practical situation, we shall only take some ot the modes in
the calculation of the stiffness error matrix and these are
mafked with an asterisk in table 6-03 (which is part
reproduction of table 6-01). The modes to be included in
the calculation of the stiffness error matrix are 2, 3, 4, 6

and 7 from the experimental data (column 2) and the
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corresponding modes from the FE model (column 3).

Using equation 6-16 and the modal data from
table 6-01, the stiffness error matrix was computed which,
when displayed on an isometric plot, clearly shows the
maximum error to be Dbetween coordinates X2 and X3
(figure 6-99). Comparison of this plot with the exact
diagram (figure 6-87) indicates the location of the area and
the amount ot discrepancy to be ot the correct order. The
mass error matrix for these modes (not shown) indicates a
very small error, so it may be assumed that the discrepancy
in the complete mass matrices is negligible, which is true

because the mass matrices for the two versions of the 8 DOF

system are, in fact, identical.

If this error is a true representation of the exact
error matrix then it should be possible to calculate a more
accurate stiffness matrix than that trom the FE model by
using equation 6-09. 1In this equation [Kp] is the stiffness
matrix for kL3 = 1.50 MN/m and error matrix [Ek] has been
calculated wusing equation 6-16, hence [Ke] or a more
accurate stiffness matrix can Dbe calculated using
equation 6-@9. This new matrix [Ke] should give modal
properties that are closer to the experimental ones than the
FE ones. The eigenvalues computed using the more accurate
stiffness matrix and the original mass matrix are given in
column 5 of table 6-@3. The percentage error between these
and the exact (experimental) eigenvalues are displayed in

column 6. The percentage error for the modes that were

included in the calculation of the error matrix [Ek] have
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been considerably reduced (modes 2, 3, 4, 6 and 7) compared
with the percentage error of the unmodified FE values
(column 4), but the errors in the modes that were excluded
from the calculation have increased. This demonstrates that
for this case equation 6-16 is an effective error matrix
equation, despite all the assumptions made in the process of

its derivation.

6.5. CONCLUSIONS

This chapter has concentrated on the comparison of
modal properties and spatial properties derived wusing
ihcomplete modal data. The analytical study made it
possible to compare the merits of different techniques, each
of which has its own advantages and drawbacks. The first
method - comparison of modal properties - 1is especially
usetul in deciding which modes are compatible by plotting

wedle 5/,.,,,: covves A mode shape
experimental , against the ,analytical nand this' informs the
analyst whether the correct modes are being compared. The
second method, comparison of éseudo inverse matrices, gives
an isometric plot of the discrepancies betwaen the two
models. The main advantage of +this technique is that
several modes can be combined into a single matrix but
untortunately this method, like the first, is incapable of
precisely locating the areas of any discrepancies. The
third and the 1last method - comparison of spatial model
properties - has been found to be the most useful technique.
Not only can it be used to compare the properties of several

modes at once but it also informs the analyst what action to
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take in order to reduce the discrepancies between the two
models (i.e. modify mass/stiffness matrix at the coordinates

of maximum error).

In the last section 6.4 , it has been demonstrated
that it is feasible to locate the areas of poor modelling
using incomplete experimental and complete FE modal data.
Although the data used in this work were synthesized by
analysis and were not actual measured data; the Dbasic
concept has been demonstrated. Although only an 8 DOF model
was used, it is recognised that most practical structures
require many more degrees of freedom for adequate
representation. In this study it was also assumed that all
the coordinates taken to represent the structure in the
analytical model are measurable whereas, in practice, far
more coordinates are analysed than measured. Neverthéless,
the technique ot error matrices appear to work with the data

from this simple 8 DOF system.
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MODE| kL3 NATURAL MASS NORMALISED MODE SHAPE
No. FREQUENCY .
(MN/m) (Hz) X1 X2 X3 X4 X5 X6 X7 X8
1.95 21.3844 .0699 .p728 .P678 .8432 -.P456 -.0628 -.P635 -.0261
1
1.590 21.3729 | -.9786 -.0737 -.09663 -.0428 .P457 .P626 .P632 .H259
1.95 34.4434 .0882 .PP28 -.P508 -.z367 ~.0533 .0456 .0742 .0348
2
1.50 33.8582 .0813 .@105 -.9549 -.0392 -.@507 .9442 .8724 .9332
1.95 79.5973 -.P8598 -.9437 -.1479 -.2214 -.0502 -.2102 -.1702 .0519
3
1.50 78.4522 .8502 -.8827 .1478 .2881 .©340 .2139 .1594 -.0427
1.95 93.2860 | -.9509 -.2611 -.@276 -.@BO0 -.B767 .P785 -.1860 .Pl46
4
1.58 89.8641 -.0598 -.2680 -.P357 -.1085 ~-.9865 .@325 -.1156 .@372
1.95 103.4937 | ~.1241 -.2450 -.2854 -.1961 ~.1310 -.2560 -.2616 -.2942
5
1.59 133.4225 ~.1248 -.2535 -.2855 ~-.1877 -.1325 -.2489 -.2652 -.2941
1.95 213.3259 | ~-.2184 -.2992 -.1388 .3264 -.2211 =-.3221 -.1317 .3424
6
1.50 212.5663 ~.2266 -.3093 -.1324 .3232 -.2293 -.3384 -.1238 .3392
1.95 393.8984 ~.5623 -.3601 .2594 -.0907 ~-.5660 -.3951 .2675 -.0914
7
1.50 296.4734 ~-.5202 -.3655 .2647 -.1808 -.5237 -.408B9 .2747 -.1019
1.95 | 418.08176 ~.7796 .4098 -.PBB9 .P1l31 -.7828 .4265 -.0924 .0133
8
1.58 | 406.7665 -.8058 .3894 -.7730 .Q117 -.8892 .4P76 -.0#812 .©@1l16

TABLE 6-01 : Computed eigenvalues and eigenvectors of

undamped 8 DOF mass-spring systen.
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kL3 1.95 MN/m 1.50 MN/m
(=EXPERIMENTAL) (=FE MODEL)
MODE NATURAL NATURAL ERROR
NO. FREQUENCY FREQUENCY
(Hz) (Hz) (%)
1 21.3844 21.3729 9.954
2 34.4434 33.8532 1.714
3 79.5973 78.4522 1.439
4 93.2860 89.8641 3.668
5 103.4937 103.4225 2.969
6 213.3259 212.5663 @.356
7 303.8984 296.4734 2.443
8 410.0176 406.7665 8.793
TABLE 6-02 : Comparison of natural frequencie of the

undamped 8 DOF mass-spring system.

kL3 1.95 MN/m 1.50 MN/m 1.58 MN/m
(=EXPERIMENTAL) (=FE MODEL) MODIFIED FE MODEL
MODE NATURAL NATURAL ERROR NATURAL ERROR
NO. FREQUENCY FREQUENCY FREQUENCY
(Hz) (Hz) (%) (Hz) (%)

1 21.3844 21.3729 3.954 21.3725 2.956
2" 34.4434 33.8532 1.714 34.3504 0.270
3" 79.5973 78.4522 1.439 79.4316 9.208
4" 93.2860 89.8641 3.668 92.2860 1.972
5 193.4937 193.4225 0.969 103.6894 -2.189
6" 213.3259 212.5663 @.356 213.1857 0.966
7" 303.8984 296.4734 2.443 301.859% g.671
8 410.9@176 406 .7665 @.793 406 .3512 9.894

TABLE 6-03 :

Experimental, FE and modified FE eigenvalues of

the undamped 8 DOF mass-spring system.
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FIGURE 6-04

mass-spring system.
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7. APPLICATIONS OF THE ERROR MATRIX EQUATION

7.1. INTRODUCTION

The error matrix equation 6-16, developed in chapter 6
was evaluated wusing an 8 degrees-of-freedom mass-spring
system. In that case the number of coordinates measured and
the coordinates in the FE model were the same, which means
that the dimensions of +the matrices were identical.
However, in practice the FE model requires many more
degrees-of-freedom for accurate modelling than it is
possible to measure, and consequently the dimensions of the
matrices in the two models are different, i.e. the
dimensions of [Ke] are different from those of [Kp].
Clearly, the matrix multiplication required by equation 6-16

is not possible because of the incompatibility of the

matrices.

Another question that did not arise in the last
chapter is that of 'real' and 'complex' mode shapes because
the two versions of the 8 DOF mass-spring system were both
undamped and hence the mode shapes were all real. The

measured modes are usually complex and those from an FE

analysis are real.

In this chapter we shall address the above mentioned
questions and apply the error matrix equation to two real
structures - a small beam (SAMM II B beam) and the NASTRAN

structure, first described in chapter 3.
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7.2. COMPATIBILITY OF THE MATRICES USED IN THE ERROR MATRIX

EQUATION

Because of the different dimensions of the measured
and the FE spatial matrices it is not possible to use the
error matrix equation 6-16 without modification. Rewriting

the stiffness error matrix equation;

B =~ K[ 1R, - 1R ] iK,) (7-81)

where [Kp] — is NxN; N is the number of DOF in the FE model.

%* -

[Ke] 1 _ is nxn; n is the number of measured
coordinates.

* -1 .

[Kp] - is also nxn

and N >> n.

Matrices obtained from an FE analysis, such as the [Kp]
matrix, are generally very large, while the experimentally
derived matrices, such as [Ee]-l, are relatively much
smaller. There are two possible options open to make these

matrices conform;

(i) to reduce the [Kp] matrix by ignoring the rows and
columns that correspond to the coordinates which are not
measured and this will be referred to as the 'elimination
method'. The effect of this is to assume that there are no
errors at the coordinates that are excluded (see

appendix 16.3).

(ii) to use a condensation technique of the type

employed in the eigenvalue and eigenvector calculations,
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such as the Guyan reduction [54,55]. 1In this case the full
[Kp] matrix can be reduced to one referred just to the
measured coordinates so that all the matrices in the
calculation of an error matrix then have the same

dimensions (nxn), and equation 7-81 thus becomes;
[Edln =~ K R1,] (K 15— 1R 35 |k 1, (7-02)

where [KS] - is the reduced stiffness matrix.

Before attempting to use these reduction techniques in
the calculation of error matrices it 1is necessary to

investigate the accuracy of such procedures.

7.3. GUYAN VERSUS ELIMINATION MATRICES

For this study, the beam shown in figure 7-01 was
considered. The beam was divided into 10 elements
(11 nodes), each node having six DOF; total 66 DOF. The
experimental and FE data were simulated by increasing the
length of element 2 and decreasing that of element 8 as
shown in table 7-01. In this case, the error matrices
should show discrepancies between coordinates 2 and 3
(element 2) and between coordinates 8 and 9 (element 8) in
all X, Y and 2Z-directions as well as in the rotational

coordinates.

Using the beam element's mass and stiffness matrices
(appendix 10.1), spatial mass and stiffness matrices were
constructed for both versions of the beam model. It was

then a simple task to compute the undamped eigenvalues and
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eigenvectors of the beam in the free-free state. The mass
and stiffness error matrices were constructed for the
first 7 non-rigid body modes using both the Guyan reduction
technique and the elimination of rows and columns method.
The isometric error matrix plots for the Y-direction are
shown in figure 7-92 and those for the 2Z-direction 1in

figure 7-03.

All the plots indicate errors between coordinates 2
and 3, and between 8 and 9 and so by using either Guyan
reduction or by elimination of rows and columns, we have
been successful in locating the areas of discrepancies.
However, it should be noted that the magnitude of the
discrepancies (given by the heights on the 3-D plot) are
different in the two cases because the vertical scales are
not the same. Comparing these results with the exact error
mass and stiffness plots (not shown) indicate that the error
matrix calculated using the Guyan reduction method is much

closer to the correct values.

Although both reduction methods 1located the areas
containing discrepancies, only one - Guyan reduction -
indicated the true nature of the error. 1In cases where only
the areas of discrepancies are required either technique can

be used.
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7.4. ERROR MATRICES OF THE SAMM II B BEAM

The SAMM II B beam, which consists of welded channel
section elements is shown in figure 7-04. Special features
of the beam are the welded joints, and the two holes, which
are situated near each end of the beam. The joints are

welded on only one side and hence are quite flexible.

Frequency response functions for +this beam were
measured in the free-free state wusing random excitation.
The beam was excited at point 6 in the Y-direction and
responses were measured at 11 points in the Y-direction.
The excitation was then changed to the Z-direction and again
the responses for all 11 points in the Z-direction were
measured. Two point mobility plots from these tests,

and Y are shown in figure 7-05. The

Y 06,y26 206, 206"
measured data were analysed using a linear SDOF algorithm to

extract the.required modal properties (chapter 2).

A finite element analysis similar to that described in
section 7.3, using 19 beam elements with 6 DOF. at each node,
was carried out to predict the dynamic characteristics of
the beam. In the FE analysis no allowance was made for the
holes and all the joints were assumed to be rigid even
though it was clear that the actual welded joints were more
flexible. Damping was also ignored and consequently the

analysis reduced to that of a free-free undamped beam.

The measured and predicted natural frequencies for the
first six non-rigid body modes are shown in table 7-82. The

measured mode shapes were only slightly complex (modal phase
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close to @ or 180 degrees) and it was assumed that the
modulus of each eigenvector element was a true
representation of the undamped behaviour of the beam. It
was observed that the measured natural frequencies of the
modes in the Z-direction were greater than the predicted
values and that the reverse was true for those in the
Y-direction. This suggests that the FE model give a lower
stiffness 1in the Z-direction and that the predicted
stiffness in the Y-direction was greater than the
experimental model (assuming the inertia or mass matrix is

correct in the FE model).

The correlation between measured and predicted mode
shapes (figure 7-86) indicates large discrepancies between
the two models, especially for modes 3 and 4, but again does
not indicate the area(s) of the discrepancy. Using the
error matrix equation 7-21 and these data, stiffness error
matrices were computed for both the Y and the Z-directions
separately, as described in the last section. In this case,
the [Kp] matrix was reduced by ignoring the rows and columns
that were not measured (55 rows and 55 columns were ignored
out of 66). Again, 3-D plots were constructed and
figures 7-07 and 7-08 show the results for the Y and the
Z-directions respectively. The notation 'SM2' indicates
stiffness matrix calculated using mode 2 and 'SM2 SM5 SM6'
implies stiffness error matrix plot from the data of 3 modes

numbers 2, 5 and 6 as before.

The stiffness error plot SM2 (figure 7-07) indicates

an error at element (5,5) i.e. node 5 on the beam, while
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plots SM5 and SM6 show very good correlation between the
measured and predicted modal properties for these two modes.
The last plot of figure 7-@7, diagram SM2 SM5 SM6 which is
the overall stiffness matrix for the 3 modes of vibration in
the Y-direction, indicates an error at coordinate 5, which
is one of welded joints. The plot SMl in figure 7-808 shows
errors in elements (3,3), (1,9) and (1,11]), where the
offdiagonal terms imply possible errors at both of the
coordinates e.g. (1,9) means errors at coordinates 1 and 9.
The diagram SM3 shows errors at (9,9) and (11,11]) and the
overall error plot SM1l SM3 SM4 indicates discrepancies at

joints 3 and 9.

The stiffness error plots, figures 7-07 and 7-08 have
suggested errors in the FE stiffness matrix at coordinates
3, 5 and 9, all of which are at welded joints. One might
expect an error at these points but the plots did not show
any error at point 7 which is also a welded joint. A close
visual examination of the beam's joints revealed that the
welding at joint 7 had penetrated through the joint, making

it closer to a rigid joint than was the case for other 3.

Figures 7-39 and 7-12 show the mass error plots in the
Y and Z-directions respectively. Plot MM2 suggests an error
in the mass matrix at point 18. As in the case of the
stiffness error matrices, plots MM5 and MM6 demonstrate that
there is a reasonable agreement between the measured and the
predicted modal properties for modes 5 and 6. The overall
mass error plot suggests errors near points 2 and 16, which

are coordinates that 1lie close to the holes. Plot MM2
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(figure 7-19) shows an error between points 1 and 2 and plot
MM3 points out a very large discrepancy between the measured
and the predicted mass matrices at point 11. The error at
coordinate 11 is also indicated by the overall error plot.
This is probably because one of the holes is close to this
point. The other hole is almost midway between coordinates
1 and 2 (element 1) and any error in the mass matrix due to
this hole will be shared between them. Consequently, the
effect of this hole on the mass error matrix is smaller than
that of the hole at point 11, even though both are the same
size. The plot MM3 of figure 7-10 shows a large error in
the mass matrix at coordinate 11 which is close to one of

the holes.

We shall now seek to demonstrate that the error at
coordinate 11 is probably due to the hole and not to other
defects %n the beam. Studs were placed in the holes so that
they-;ré filled with the same type of material as that of
the beam and the beam was retested. All the modes in the
Z-direction were remeasured and it was found that only
mode 3 was significantly affected, indicating that only this
mode out of the 3 modes measured was sensitive to the effect
of the hole near point 11. The data from these and the
previous tests, together with the FE modal properties for

mode 3 are given in table 7-03.

The mass error matrices were computed once again with
the remeasured data. These error matrices, together with
those obtained with holes in the Z-direction, are displayed

on 3-D plots as shown in figures 7-11 and 7-12, with the
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negative elements pointing downwards and positive up.
Comparing the mass error plots we see that there is a
significant change near point 11 for mode 3 but the rest of
the plots are very similar in shape. Also, there is a small
change in the stiffness error plots near point 11 for this
mode but again, the rest of the plots are virtually
uneffected by the studs which this suggests that only mode 3

is sensitive to the studs.

It is possible that the error at coordinate 11 may be
due to poorly identified modal properties in this region
rather than the effect of the hole. To eliminate this
possibility the beam was retested, after a time lapse of
about 12 months. These tests ware carried out for both
cases - the holes and the studs - but only mode 3 was
remeasured because this was the mode that showed
discrepancies due to the holes. Only two coordinates were
measured with the studs in place - coordinates 19 and 11 in
the Z-direction - and 3 coordinates with holes - numbers 6,
1y and 11. Identified modal properties from these data
together with those from the first tests are given in
table 7-04. The repeatability appears to Dbe adequate
i.e. the identified modal properties of the two tests, 12
months apart are reasonably similar. This indicates that
the error at point 11 of plot MM3 (figure 7-10) was probably
due to the hole and not due to poorly identified modal

properties or other defects in the beam.

We have seen from this study that even a small simple

structure, such as the SAMM II B beam, can be very difficult
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to model accurately. The two types of discrepancies between
the FE and the experimental médels were due to the welded
joints and the holes. It is possible to include the holes
in an FE model using plate elements but this increases the
number of DOF significantly. However, the stiffness of the
welded joints present in this case cannot be modelled
easily. It has been possible to locate the areas of likely
errors and visual examination of the beam also points to the
same areas as were located by the error matrix equation as

being poorly modelled.

7.5. ERROR MATRICES OF THE NASTRAN STRUCTURE

The NASTRAN structure, first described in chapter 4
was slightly modified by removing the heavy mass from the
top and installing an empty tank instead and the coordinates
of interest were renumbered, as shown in figure 7-13, for
the purpose of an experimental study. A finite element
model of the structure was constructed, by Westland
Helicopters Plc., having about 1500 DOF using plate elements
and the undamped eigenvalues and eigenvectors extracted and

made available for this study.

The first 4 modes of vibration in both the X and the
Y-directions were measured at 28 points on the structure.
The modes of vibration in the X-direction were excited by
forcing point 5X using sinusoidal excitation and those in
the Y-direction by forcing point 6Y (figure 7-13). The

measured and predicted eigenvalues are shown in table 7-04
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The measured and predicted natural frequencies are
very close to each other; the maximum error being less
than 3%. The correlation of the eigenvectors is also very
good but the data for these are too large to be able to
include in this study and can be found in reference 56.
With such good agreement between the measured and the
predicted modal parameters, any discrepancies in the

experimental and the FE models are likely to be small.

The [Kp] matrix was reduced to the measured coordinate
set using Guyan reduction and mass and stiffness error
matrices were computed for the X and the Y-directions
separately. The 3-D plots of the error matrices are given
in figures 7-14 through 7-17. The code SM1X on the plot
denotes: S-stiffness; M1lX-first mode in the X-direction; and
'SMiX SM2X SM3X' implies the overall stiffness error in the
X-direction —calculated wusing all the modes in that

direction.

Figures 7-14 and 7-15 show two main areas of
discrepancies between the measured and predicted stiffness
matrices; these being at the interface between the tank and
the tower and also between the tower and the base, the
latter effect being quite small. There appears to be very
little discrepancy at other points on the structure.
Examination of the mass error matrices (figures 7-16
and 7-17) points to two areas of discrepancies, again at the
junction between the tank and the tower but also at the four
outer corners of the base, which appear to be areas .of poor

modelling. The error in the base is much greater than that
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at the interface of the tower and the tank although there
was no error indicated at the base corners by the stiffness

matrices (figures 7-14 and 7-15).

It appears that there were three areas which were
inadequately modelled: the junction between the tank and the
tower, that between the tower and lastly, the base and the

corners of the base.

7.6. CONCLUSIONS

It was necessary to modify the error matrix equation
so that the matrices used in its application were compatible
and this may be achieved by two techniques - reduction by
elimination of rows and columns or Guyan reduction.
Although both of these techniques were able to locate the
areas of discrepancies, only one - Guyan reduction -
actually gave a true indication of the amount of error in
the FE model. The main advantage of the reduction method by
eliminating rows and columns is that it is very simple to
implement whereas a Guyan reduction requires partition of
the matrix into 'slave' and 'master’ coordinates and further
matrix manipulation of these matrices are also

necessary [55].

Application of the error matrix equation to an
apparently simple beam (SAMM II B) revealed areas of large
discrepancy in the mass and stiffness matrices of the FE
model. These results were very encouraging because visual

examination of the beam pointed to these same areas as being
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difficult to model accurately. The tests with studs in the
holes demonstrated that the error at point 11 was due to the
holes because it disappeared when studs were placed in the

holes.

The application of the error matrix equation to the
'NASTRAN' structure was the first real test of this
technique because in all the previous applications the
structures were small. The fact that this technique pointed
to precisely defined areas (around the junction of the tank
and the tower), rather than to random points around the
structure as being poorly modelled, demonstrates the
usefulness of the error matrix equation. No attempt was
made to remodel the structures with the knowledge gained
from the error matrix plots since the aim was to locate the
areas of poor modelling, and once this has been acheived
methods in the current literature are capable of making use

of this in the remodelling process [22].
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(=EXPERIMENTAL) (= FE MODEL)
ELEMENT ELEMENT INCLINATION CHANGE IN NEW
NUMBER LENGTH TO X-AXIS LENGTH LENGTH
(mm) (deg) (mm) (mm)
1 99.23 2.9 0.00 99.23
2 99.23 9.0 -19.23 80.09
3 44.01 43.8 .09 44.01
4 44.01 43.8 0.00 44.01
5 71.42 0.0 0.00 71.42
6 71.42 9.9 0.00 71.42
7 44.01 -43.8 0.00 44.01
8 44.01 -43.8 5.99 50.00
9 67.48 6.9 .00 67.48
19 67.48 0.9 0.00 67.48
TABLE 7-01 : Geometry of the beam elements used in the two
versions of the beam.
EXPERIMENTAL FE MODEL
MODE NATURAL NATURAL ERROR DIRECTION
NO. FREQUENCY FREQUENCY
(Hz) (Hz) (%)
1 303.9220 245.8022 19.12 Z
2 279.2930 330.3359 -18.28 Y
3 423.1660 369.0759 12.78 Z
4 918.7089 670.4446 27.02 Z
5 753.8639 886.0863 -17.54 Y
6 1192.8709 1401.1474 -17.46 Y
TABLE 7-02 : Measured and predicted natural

frequencies of

SAMM II B beam for the first six non-rigid body

modes.
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FE EXPERIMENTAL
{(NO HOLES) (HOLES) (STUDS)
NATURAL
FREQUENCY 369.9876 423.166 422.320
(Hz)
COORDINATES MODE MODE PHASE MODE PHASE
NUMBER SHAPE SHAPE (deg) SHAPE (deg)
21 0.2104 0.0820 -2.69 0.9960 -5.26
Z2 2 -9.1027 0.8774 173.87 0.0998 -160.88
Z 3 -0.4123 @.2387 178.90 B.2237 -161.39
Z 4 -3.1687 0.9575 3.90 0.0482 2.42
Z 5 0.2728 0.2834 3.86 0.2602 -2.57
Z 6 0.0851 @.1364 -1.20 9.1101 2.01
z 7 0.0856 0.1102 -171.92 0.0667 ~-173.41
Z 8 @.5317 0.2759 9.42 0.2620 6.43
Z 9 B.9749 0.6344 5.93 0.6035 -0.68
219 -3.1730 2.4230 -175.30 0.3822 179.49
Z211 -1.3264 2.2585 176.48 1.3956 173.85
TABLE 7-03 : Mass normalised mode shape vectors of mode of

the SAMM II B beam with holes and studs.
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COORD. TEST NATURAL LOSS MODAL
NO. FREQUENCY FACTOR CONSTANT
(Hz) (1/Kg)
FIRST 423.0322 @.0004 2.931450
6Z HOLES
SECOND 423.9160 g.0906 2.21618
FIRST 421.0986 9.99012 @d.85259
187Z HOLES
SECOND 422.1288 9.9016 9.05380
FiRST 419.3481 2.9017 2.17699
11Z HOLES
SECOND 423.4150 g.9016 2.20730
FIRST 420.4199 g.9013 @9.084547
18Z STUDS
SECOND 420.4830 g.99013 2.04106
FIRST 418.8281 0.0918 9.15818
11Z STUDS
SECOND 418.6139 0.99015 0.14990
TABLE 7-04 : Remeasured data for mode 3 of SAMM II B bean.

EXPERIMENTAL FE MODEL
MODE NATURAL NATURAL ERROR DIRECTION
NO. FREQUENCY FREQUENCY
(Hz) (Hz) (%)
1 48.9393 48.9770 -1.95 X
1 48.1104 48.9770 -1.80 Y
2 83.8234 84.5997 -9.93 Y
3 152.5860 154.9673 -1.56 X
3 152.8810 154.9673 -1.36 Y
4 233.5210 239.5457 -2.58 X
TABLE 7-05 : Measured and predicted natural frequencies of

the NASTRAN structure for the first 4 modes.



- 221 -

25 "

l wl l
OJ ~5281°0

-3
TL—

-7 E

2"

"‘I I‘(_J. 25"
l

i1

10

«8 [+9

8 7

S

o

13

2
2

FIGURE 7-01 : Ten beam elements.




- 222 -

NS
A3

v
v
Vi

DO

VAN

p:.‘\.ﬂr

‘z

h

i

,

\ /..../‘N‘

NN és‘ P
/q\,/.;.x...;, N
AN A

sepow; SSINAAILS * ABY

¥ONN3 3107058V

£
8

S ‘\H’)’w).

N@-a\

PRt e A

A A —a s g

ainnasav

: Mass and stiffness error matrices for the Y

direction of the beam (Guyan v.

FIGURE 7-02

Elimination).



N\ AN S
W LR

S wl«,))//ﬁ)é’?“.‘)/“/‘l’/‘-
,/’HF‘E'!EZHMWPUWWW-'r

A
ﬂ%@«r""
~XJ .“1/“\ 2=y ‘ 0
W

N
VS

- 223 - -

and stiffness error

FIGURE 7-03 : Mass

(Guyan v. Elimination).

of the bean



224

«?°E

S.81

i :
|4mw—||% 18

.hmﬁL f. 520

4
T

370H

SINIOf Q3073M

.3 ot

8

mo

1 &

: The SAMM II B beam.

FIGURE 7-04




- 225 -

Yy08, yos

-58
- .
4 ' it
B i |
MOBILITY T H
B) i
v H
-+~ M
i:
- { \ '
N v/
. (%4
+ G
-,
- :
-180 + —+ —4 —+ —+ —+ —+ —

288 LIN FREQUENCY (Hx)

Y208, 206

1288

-82
- <
- " e
\J. 1 :
MOBILITY - .
wn T : H
: : ' ;
: - :
%
- 3
~148 + —t ~+ —+ —t + —+ *

288 LIN FREQUENCY )

FIGURE 7-05 : Measured mobility modulus plots Y

YzOG,zOG of SAMM II B bean.

1209

y06,y06 and



FREQUENCY = 323, B22 Hx.

.\.ou

PRED.

MODE3  FREQUENCY = 423.186 Hz.

MEAS. 4
7
/
/
7
37
o’le PRED.

FREQUENCY = 753, 863 Hax.

FIGURE 7-06

Correlation

226

measured

MODE2  FREQUENCY = 278.283 Haz.

MEAS. Ve

.\.

7/
7
e

PRED.

MODE4  FREQUENCY = 918.788 Ha.

PRED.

MODE®  FREQUENCY = 1182.87 Hx.

and predicted

shapes for the SAMM II B beam.

mode




N

AR
//474;.»«\“')1’" X

ﬂ\ V'

- 227 -

QA

P N
AV \WNZATINVANY, 2. GANNANAN
AN A,

% .1‘umVa|v/Alr
\ ﬁ«%@%V/
/,

1

: Stiffness error matrix plots of SAMM II B beam

" in the Y direction.

FIGURE 7-07



- 228 -

X NS N
S RN
SSNENAN

NN NDAN

AN

"dv)"/ﬂﬁlw” _

ENARADT A
A SN TSRS
VRIS
At N A WO N L0 RS
\,4,.@\ ANz

,4_,,\;«

s

: Stiffness error matrix rPlots of SAMM II B beam
'in the Z direction.

FIGURE 7-08



S S SN

NN
AN SN

AN
oS
NeSSava

o ST
//ﬂ'”a/' OSSN
N U S
ll!l&'llﬁ-"‘

NP, .h’dﬂﬁM“WV
\ WA

=l
o

- 229 -

AT
RS DN SN
X SIS

BRSO

PR
,,«»'\v %,WM»//”)

M.

N SE

¥O¥Y3 3LnT0osav

YO¥Y3 31N0S8Y

of SAMM II B beam in

ots

pl

FIGURE 7-09 : Mass error

ctio

the Y dire



- 230 -

/RN

D

WX

§

N
Y

)’/é—,.\.a.”

7ot £ 1

14, ]

¥OXA3 AtNosav

YouH3 31n70sav

¥0WN3 3innosav

¢ Mass error matrix plots of SAMM II B beam in

FIGURE 7-10

the Z direction.



< N \(

A c8°- ﬂmmMm“MmmmnqzﬂmmmWMHIINMIﬂmwm. 8-
& NNl <7 /W
LKA /ﬁ ,/// N \“P\bf

W

HYWA HEWW HTHWW

- 231 -

NS

NN

HEWNW

NN
<D

‘lhl""

of the SAMM II B beam with

ots

rl

: Mass error

FIGURE 7-11

holes.



W G N\

JUAY.
xban’

QAW

- 232 -

hmu-a-a.'V. ;’f/

A\ = Za\
Sa SOV
~d, ’y,'

ALy

SYHW SEWK STWKW

¢/

- “-ﬂmmr'r
e\

SENNW

with

.;ﬁwf

N
N\W, - AV
NV

<\ 1\ N\,

of the SAMM II B beamn

ots

pl

.L““f&“‘-mﬂ“““m_M"t
llulpn.'ul'.
NS SN

e

FIGURE 7-12 : Mass error




- 233

Tank

T o

’ ’ \
[4 /s s

Ny (0)] Q7

<\ @\, ¢

-4

e I P

NASTRAN tower with tank.

FIGURE 7-13




- - o4 "1"11'10’"
R O R O,
= S
Oﬁh%?‘@m) I
D SR ORI ) LN
DRGSR VT ey
R A T R AN
R S o A

l# SN = I' N B e B
VACSSINSOMN
M,‘......

JWﬂk}ﬁ&M.QJASJQ
sty
el

L e
0“.:.‘ 1

e e A . - M BN .« — . - . -
T S e S o N N e,
NS N S o S S S SR

XEWS X2HS XTIWS

X o...&», X r.“‘

.

AR O

e eeeeswaaaw TSI
. RS S ST RO O

- W W, W, W W
T e L S

the X direction.

e AR

S o A e s

Stiffness error Plots of the NASTRAN structure

in

FIGURE T7-14

XS 1



. L T W
N e N S oy
- - - - . -

>

SNEIA S
.I!W}-Irlw.h’/'“‘”.vhl

L4} [u

AEWS AZHWS ATWS AENWS

SR

8 - N . ¢
//V‘.""’“‘u IH._ 4«'/».. .LS
I e AN b 7

R Iy

i ?5 1
mﬁ
|}

.-W“ .4. '.o 4
AN
‘ v

ACHS rn. —

e O e
TS TIPS SO o

Stiffness error plots of the NASTRAN structure
the Y direction.

iln

FIGURE 7-15



A} LOSTR
/

XEWN XSHH XTHW

R

Y N
A% e,

\/ ) .‘."

XShAW

XEWNH

S T T R RS '/‘“"N’l

N S NN L1 ) ‘.’ DRRN\N

- - s me LW N '

DA

XTHA

Mass error plots of the NASTRAN structure in

FIGURE 7-16

the X direction.



AEWW ACHW ATHNW

ACHN

BOW3 1LN0S8Y

SN
U, SRR

'“'—

A@Wﬂ?ﬂ%ﬂ?ﬁﬂﬂ%&ﬂﬂ“ﬂc
\ e S L0 _/

AEWN

-~ = . T T T T . T T WL T . T W T Y

-
o o S e e W S, T Y W W W W W < S,

e T N R R T S R e SO
aae SO
R

S W
R e
e e e e e e S S e A )

e S )

- —— s e

ATHNW

¥oRE unosay

in

Iy

¢t Mass error plots of the NASTRAN structure

FIGURE T7-17

the Y direction.



CHAPTER
-8-



- 239 -

8. CONCLUDING REMARKS

The results presented in each section were discussad and
detailed conclusions were drawn at the end of each chapter.
A brief summary of these conclusions is presented here as a

review of the entire thesis.

8.1. MODAL TESTING AND NONLINEARITIES

The presence of certain types of nonlinearity may be
detected by forcing the structure at constant but different
excitation 1levels thus obtaining several mobility plots.
These diagrams should be similar in the sense that the ratio
of response to the excitation force should be constant and
any significant deviation from this constant ratio for a
given frequency which cannot be attributed to experimental
errors may be due to nonlinearities. However, such tests
are time consuming, and a better method which requires only
one set of measured data in the form of a frequency response
at constant forcing 1level, was developed. This method
relies on the fact that for any 1linear system with
well-separated modes, the estimated values of damping are
independent of the frequency points chosen for the
calculation. A damping matrix can be constructed for each
mode of interest and it is found that small random errors
due to inaccuracies in the measured data usually exist but
that these produce random variations in the estimated values
of damping while nonlinearities had a markedly systematic

effect. The damping matrix thus obtained was examined by
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displaying the elements in the matrix on a 3-D plot.

An analytical study, using known types and amounts of
nonlinearity, made it possible to calibrate the isometric
loss factor plots. Two types of nonlinearity were
considered - softening cubic stiffness and dry friction -
and these had different effects on the shape of the 1loss
factor diagrams. The cubic stiffness produced a very large
variation in the estimated values of damping while that due
to the dry friction was much smaller. It was further noted
that the effect of cubic stiffness may be reduced by
decreasing the input force; but in a practical situation
there is a limit beyond which the force cannot be reduced
without increasing the noise to signal ratio. On the other
hand, to reduce the effect of dry friction, a large input

force must be used.

The effect of closely-coupled modes on the isometric
loss factor plots was also investigated and in this case the
angle PHI plots were useful as well as the loss factor plots
in deciding whether the effect of the neighbouring mode was
small or not. The closely-coupled modes produced large and
sudden changes in the estimated values of damping, unlike

the nonlinearities where the variation was gradual.

The NASTRAN structure was shown to be nonlinear by
testing it at several different but constant forcing levels
and 3-D loss factor plots from the measured data indicated
the presence of two types of nonlinearity - frictional and

softening stiffness types - the latter having a large effect
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on the variation of the estimated damping values. This
conclusion was strengthened because it was possible to
linearise the structure's data using constant displacement
amplitude tests and only a stiffness type of nonlinearity

can be linearised by this technique.

The effect of different types of excitation force on
the response from a nonlinear system was examined using an
analogue computer. In the case of the two nonlinearities
investigated - dry friction and softening-cubic stiffness -
it was found to be difficult to detect the presence of
either type of nonlinearity from a single frequency response
curve when the system was excited using random or transient
inputs. The effect of such an input was to produce linear
data, similar to the constant amplitude tests. A possible
explanation for this might be that the structure is being
excited at several amplitudes of vibration and at many
frequencies within the chosen bandwidth, hence the measured
response is the average response due to all of these inputs
and may well be linear or very close to it. Although random
and transient excitation appear to linearise the measured
data, this does not mean that these types of excitation are
better than sinusoidal because the analogue study showed
that the modal properties extracted from these data using a

linear SDOF algorithm were not the actual input values.

It seems that sinusoidal excitation tests, although
sometimes slower than the random tests, produce superior
frequency response data which may be analysed to identify

nonlinearities. Furthermore, sinusoidal excitation 1is
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useful because constant amplitude vibration tests can only
be performed using this type of input and structures with
stiffness type nonlinearities may be 1linearised by this

method.

8.2. CORRELATION OF MEASURED AND PREDICTED MODAL PROPERTIES

The examination of the current methods available for
comparing measured and predicted modal properties showed
that it is not possible to use these data in a systematic
and quantitative manner to locate the areas of discrepancies
between the two models. However, these techniques were
useful in deciding which measured mode corresponds to which

predicted mode.

The development and application of the error matrix
equation made it possible to use the modal data of two
models to locate the areas of discrepancies. This technique
was applied to an undamped 8 DOF mass-spring system and it
was possible to locate exactly the areas of discrepancies.
Although the 8 DOF system was far from a realistic
situation, it was nevertheless very useful in investigating

the accuracy of the error matrix equation.

Before applying the error matrix to real structures it
was necessary to make further modifications, especially to
the full FE model mass and stiffness matrices, so that these
were compatible with the measured pseudo inverse mass and

stiffness matrices.

The full spatial mass and stiffness matrices may be
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reduced either by eliminating rows and columns that
correspond to the unmeasured coordinates or by Guyan
reduction. Both of these reduction techniques appeared to
be capable of locating the areas of discrepancy between the
two models although only the Guyan reduction method gave the

true magnitude of the error.

The application of the error matrix equation to the
SAMM II B beam showed that 3 out of 4 welded joints were
inadequately modelled by the FE analysis and also the
comparison for mode 3 located the presence of error in the
mass matrix near one of the holes. This error was shown to
be due to the hole because it was reduced when studs were
inserted in the holes. The possibility of errors being
present in the measured data was checked and shown to be

negligible by remeasuring the jreguemey response of the beam.

The NASTRAN structure's FE model appeared to be poorly
modelled at 3 distinct locations. This finding was very
encouraging because these areas are probably in error due to

joints which cannot easily be modelled in the analysis.
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8.3. SUGGESTIONS FOR FURTHER RESEARCH

There are two main areas that need further
investigation - the analysis of frequency response data and

the correlation of measured and predicted modal properties.

In this study we used the simplest of the
curve-fitting routine (SDOF) to identify nonlinearities and
only certain types of nonlinearities can be detected by this
technique i.e. it was difficult to detect small amounts of
dry friction while stiffness type nonlinearities appear to
be easily detectable. Furthermore, in the nonlinear
analytical study, only single degree-of-freedom systems were
used while the real structures have infinite
degrees-of-freedom and perhaps several types of
nonlinearities. A more realistic study would be to simulate
multidegree-of-freedom systems with several types of

nonlinearities, perhaps using the analogue computer.

The error matrix equation developed in chapter 6
appears to be very useful in locating the areas of weak
modelling and hence requires further investigation to

clarify fe=w points, especially the following:

(i) the two types of reduction techniques - the Guyan
and the elimination of rows and columns - used to reduce the
full spatial matrices from the FE analysis appear to give
the correct areas of discrepancies between the two models
but there was no justification in reducing these matrices by
the techniques used and this needs further investigation and

perhaps other types of reduction techniques might be more
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accurate than the ones considered;

(ii) the error matrix equation is only valid providing
the matrix product [Kp]-l[E] is small but it was found that
in the 8 DOF system this condition was not satisfied for all
the modes yet the correct area of discrepancy between the
two models was located using only 4 modes. Not only the
area of discrepancy was located but also the amount of
discrepancy indicated by the error matrix was of the correct
order. This may have something to do with the pseudo

matrices being singular;

(iii) it would be ideal if the error matrix can be
substituted direct into the spatial matrices to correct the
mass and stiffness terms. At the moment it is not possible
to do so because the dimensions of the error matrix are
different from those of the spatial matrices. This might be
overcome by interpolating to estimate the errors at the
coordinates that are not measured and hence making the error

matrix of the same order as the spatial matrices.
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APPENDICES

MASS AND STIFFNESS MATRICES OF BEAM ELEMENT

The beam element is assumed to be straight bar of

uniform cross section area as shown in figure 2-01.

Let {F} be the force and bending moment vector and {V}

be the displacement and rotation vector.

From statics and dynamics,

and

{F}=IK}{V}

{F}=IMJ{V}

where [Ke] and [Me] are the element's mass and

matrices and are given by:
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190.2. PSEUDO INVERSE MATRICES

We shall only consider the ‘'pseudo' inverse stiffness
matrices but the same argument may also be applied to the

‘pseudo'’ inverse mass matrices. From equation 6-04 we have;

K1y = [@F 1y ml1 /AT % 1

The mass-normalised eigenvector matrix [@R] is a rectangular
while the 'pseudo' inverse stiffness matrix is square and
symmetrical. In strict mathematical terminology, the word
'pseudo' 1is applied to a rectangular matrix but in this
study we shall apply the term ’'pseudo' to a square matrix

which is obtained using a rectangular eigenvector matrix.

Numerical calculations show that 'pseudo' matrices are
singular. This 1is because for m < n the rank of the
'pseudo’ 1inverse matrix is m, which 1is 1less than the
dimensions of this matrix (nxn); consequently, there must be
rows and columns that are linear combinations of some or all
of the other rows and columns, hence, the 'pseudo' matrix
must be singular. For a single mode (m = 1) the above
statement may be shown to be true for a general case

i.e. for any vector.

Let the elements of a mode shape vector be;
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¢

L2}
{Q}nl =

The ‘'pseudo’ stiffness matrix is given by:;

s 1
[I(]rml = {Qk}nl )\_2 {@R}IJ;:
0
¢,
23
1
=A_2 . {¢l ¢2 e e . ¢II}T
0 .
¢,
(0.6, 162 - . . $0,]
ke 69 - - . b8,
N
68 G2 69,

Clearly, the rows and columns of the above matrix are
related to each other (e.g. common factor in the first
column is ¢; and in the second column is ¢2 and so on). The
rank of the above matrix is one. Because of the dependency
of the rows and columns, the determinant of the matrix is

zero and hence it cannot be inverted in the usual manner.
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16.3. ON THE REDUCTION OF FULL MATRICES BY ELIMINATING ROWS

AND COLUMNS

The term reduced means that matrix [Mp] is reduced
from NxN to nxn dimensions (N > n) by ignoring rows and
columns.

Let us assume that the FE model has a [MP] matrix which is

4x4 and its coordinates are u's and v's as shown below;

» -

ay, a, a; a4 u
. 1
Correspondin
a, 4» a3 a, P 9

[M,) = . i

ay 4y 4y a, coordinate =
u,
a, 992 93 ay vector §
-~ 2

Let us further assume that the measured coordinates are uy
and u,. In this case the reduced matrix will by 2x2 while
the full matrix is 4x4. The matrix [Mp] can be reduced to
the same dimensions as the measured [Me] matrix by ignoring
the rows and columns corresponding to v's i.e. rows 2 and 4

and columns 2 and 4). The reduced [ME] thus becomes;

Now we shall examine the effect on the error matrix of
omitting these rows and columns. Let us partition the mode

shape vector into two sections - measured and unmeasured

[#] [[ il
Sl =
N [ QZ](N —n)Xm,

coordinates, then;
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where @l - the measured coordinates (known);

¢§ - the unmeasured coordinates (unknown).

The inverse pseudo mass matrix is given by;

M1 = F’][@ ®,)"
Q 1 2
2

*
where [M] 1 the inverse pseudo mass matrix and
. % %%
M1 =

M, M)
M, M,
The pseudo matrix is also partitioned in four portions -

[Ml] is completely known where as [MZJ' [M3] and [M4] are

not known because these depend on the unknown gquantity dy-

The error matrix equation requires the difference of
the pseudo inverse matrices in the calculation of the error

i.e.
[D,) =M, - (M)

-1 ~1
_ [Mpx MP;] [Mﬁ M'z]
MP; Mh M‘s 4
D, D,
D, D,

X
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Again only [Dl] is the known quantity because [D2], [D3] and
[D4] depend on [Me2]' [Me3] and [Me4] which are unknown.
Since the matrix [Dll is the difference of two similar
matrices then its elements will be small hence we shall
assume, although it cannot be justified that the unknown
quantities - namely [D2], [D3] and [D4] - are small (zero),

then matrix [Dm] becomes;
D, 0
[D,] =
0 0

Substituting this in the the error matrix equation gives;

[E,] = [M,][D,][M,]

= rMp, Mp;][Dl 0]l M, M,
My, M JL0 of|M, M,

['MPID,MPI MP,D,MPZ]

| M, DM, M, DM,

El E2

E3 E4
But when we omit the rows and columns we reduce the [Mp] to
just [Mpl], in this case the error matrix becomes;

which is the known part of the [Em] matrix.

So the effect of neglecting rows and columns is to
assume that the unknown elements in the difference matrix

are zZero.



