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ABSTRACT

The subject of this thesis can be divided into two parts;
(i) advanced modal testing methods and (ii) the utilization 
of modal properties to locate areas of discrepancy between 
theoretical and experimental models.

Theoretically generated data with known types and 
amounts of nonlinearity were analysed using a linear 
identification process, and a damping matrix was constructed 
for the data in the vicinity of resonance. The matrix 
showed a systematic change when examined on a 3-D diagram 
which could be used to identify the characteristics of the 
system. The technique was applied to a real structure and 
ways of obtaining 'best' values for the modal properties, 
even in the presence of nonlinear effects, have been 
discussed.

The response of nonlinear systems to nonsinusoidal 
excitation was investigated using an analogue computer and 
it was found that the presence of nonlinearities could not 
easily be detected from such measurements.

A new method was developed by which it is possible to 
locate areas of poor modelling using FE and incomplete 
experimental modal properties.

'Pseudo' inverse matrices can be calculated for both 
the experimental and the FE model properties, which, 
together with the full FE model spatial matrices, are then 
used to calculate approximate mass and stiffness error
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matrices. The non-zero elements in the error matrices serve 
to locate the areas of disagreement, while their absolute 

; values indicate the magnitude of the discrepancy between the
two models.

The technique has been evaluated initially using two 
> versions of a theoretical 8 DOF mass-spring system, the only

difference between them being in the stiffness of one of the 
springs. In this case, only 4 modes were needed to locate 
the position where the spring stiffness was altered. The

»
method has also been applied to a small welded beam and a 
practical structure.

>-

ft
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NOTATION

a Amplitude of vibration.
i e Exponential constant (2.7182..).

f ( x , x ) Displacement and velocity function.
i V-l .

> k Spring constant.
k' Equivalent spring constant.
m Number of measured modes.
m> r

tTiModal mass of the r mode.
n Number of measured coordinates.
r Counter.
t Time.

♦
U1 Displacement of coordinate 1.

V1 Rotation of coordinate 1.

rApq Modal constant of the r ^  mode corresponding to
* receptance <* .pq

F Amplitude of force.
F(t) Time dependent force.
N

ft
Number of coordinates in an FE model.

R Radius of modal circle.
R Dry friction.
X.

* X(t)
Amplitude of vibration of point i.
Time dependent amplitude of vibration.

Y
p#q
{F}

Mobility corresponding to a . 
Forcing vector.

{V} Displacement vector.
[C] System damping matrix.

[Dk3 Difference of pseudo stiffness matrices.
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C V Difference of pseudo mass matrices.
C V Stiffness error matrix.

C V Mass error matrix.
[i] Identity matrix.
[K] System stiffness matrix.
*UK] Pseudo stiffness matrix.
CKe] Element stiffness matrix.
CRe]
*CKe]

Experimental stiffness matrix (assumed to be exact). 
Experimental pseudo stiffness matrix.

» [Kp] Analytical (FE) stiffness matrix (assumed to be 
approximate).

★CV
[M]
£M]

Analytical (FE) pseudo stiffness matrix. 
System mass matrix.
Pseudo mass matrix.

CMe]
CMe]

— ** [M ]P

Element mass matrix.
Experimental pseudo mass matrix. 
Analytical (FE) pseudo mass matrix.

a
pq

Receptance (response at point p due to force input 
at q) .

* fi Cubic stiffness coefficient.
7i Constant.
72 Constant.
$4 Viscous damping ratio (C/C^)
V Loss factor.

"r tilLoss factor of the r mode.

j Loss factor calculated using frequency point i below 
and j above resonance.

^hk • th Horizontal average loss factor of the k column
(3-03).

column
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tTiIf ^ Vertical average loss factor of the k row (3-04).
Average loss factor of a submatrix where k is the

r size of the submatrix (3-05).

»r Phase angle of the r modal constant.
X Equivalent damping coefficient.
<r

k
Ratio of k'/k.

03 Excitation frequency.

"r Natural frequency of the r mode .

"0 Undamped natural frequency.

‘ “ l A frequency point such that

“ 2 A frequency point such that

“0 Equivalent resonance frequency.

♦  a a
Modal constant confidence factor (4-02).

r+p
t T ip element in the r mass-normalised eigenvector.

r*p
th , , th p element in the r eigenvector.

Q See figure 2-03.
{+} Mass-normalised eigenvector.
{*} Arbitrary normalised eigenvector.
C4>R] Reduced mass-normalised eigenvectors matrix.

* Diagonal eigenvalues matrix.
L*l2 Experimental: reduced mass-normalised eigenvectors 

matrix .

* Analytical (FE): reduced mass-normalised 
eigenvectors matrix.

2tl/X^eJ Diagonal matrix containing the reciprocals of 
measured eigenvalues.

2Cl/X^-J Diagonal matrix containing 
analytical (FE) eigenvalues.

the reciprocals of
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1- INTRODUCTION

1.1- GENERAL

The study of structural vibration, besides being 
important for its practical applications, is also useful as 
a link between the various branches of physics in which 
vibrations occur. The simplest natural vibrating systems 
have two attributes; inertia and stiffness about an 
equilibrium position. To a first approximation, the force 
tending to restore the system to equilibrium is often 
proportional to the displacement. Such systems are called 
'linear systems' and can be represented by linear 
differential equations which in turn can easily be solved to 
obtain the characteristics of the systems. This kind of 
analysis is now a relatively straightforward task, and has 
been greatly aided in the recent past by the advent of 
minicomputers.

Parallel to the analytical methods, inertance 
measurement techniques together with modal analysis have 
become a very popular means of studying the dynamic 
behaviour of complex structures. This process reveals the 
basic modal properties of a structure under test (natural 
frequency, damping, modal constants etc.) and these may be 
further processed to display the mode shapes or to construct 
a mathematical model which can be used for a wide range of 
further applications.

For most of the modal testing currently being



13

performed the basic assumption is made that the structure 
under test is either linear or can be approximated as linear 
over a certain frequency range. Often, analytical models 
are constructed and correlated with the test results, again 
assuming a linear system. In most cases, the linear 
assumption is adequate but there are many instances where 
this is not the case, resulting in poor correlation and 
incorrect conclusions.

Many complex structures need system analysis and 
system identification for the investigation and 
qualification of their dynamic behaviour. System analysis 
according to construction drawing leads to approximate 

* results based on several assumptions and simplifications.
Most aerospace structures are so complex that even when 
considered in small components, they defy accurate modelling 
by purely theoretical methods and thus prevent a complete 
system model from being formed.

In practice, we often have two models; an experimental 
« model which is incomplete but a true representation of the

structure and an analytical model, such as a finite 
element (FE) model which completely defines the structure 
(in a given frequency range and at points of interest on the 
structure) but is not always accurate. The modal properties 
of such models are often compared by displaying the mode 
shape vectors and a visual comparison of the natural 
frequencies is carried out. This simple technique sometimes 
reveals large discrepancies between the two models, but 
gives very little or no information about the location and
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the amount of discrepancies between the two models. It does 
not inform the analyst why the analytical model is 
inaccurate (assuming that the experimental model is more 
accurate) or what action to take in order to improve the 
correlation. In the two sets of modal data - analytical 
(FE) and experimental - there should be enough information 
about the two models to be able to locate the areas and to 
quantify the extent of the discrepancies between the two 
models.

One objective of this study is to discuss the problems 
faced in integrating and correlating experimental and 
analytical modal properties in order to locate the areas of 
discrepancies. The current techniques available will also 
be examined to see if there is any indication in the 
comparison of these data about the size and location of the 
areas that are inaccurately modelled.

1.2. MODAL TESTING

The remarkable advances made in theoretical dynamics 
have not diminished the importance of experimental dynamic 
analysis, instead it has become more popular. The 
development of mini and digital computers means that many of 
the processes in modal testing can be automated, thus 
reducing the amount of time spent on experiments. Most of 
the methods for analysis of the measured data are based on 
curve-fitting routines, whether in the frequency or the time
domain.
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Modal testing can be divided into two major parts;
measurement and analysis.

1.2.1. MEASUREMENT METHODS

i

♦

%

*

The testing method used to acquire frequency response 
data from a structure depends on several factors, such as 
the availability of hardware, the size of the structure, 
testing environment, allowable testing time etc. 
Nevertheless, measurement techniques can be divided into two 
categories; multi point and single point excitation.

Multipoint excitation was the main technique used for 
modal testing in the 1960s. This method was mainly confined 
to the aerospace industry because of the high cost of the 
hardware required to carry out such tests, and only large 
companies had the resources to be able to afford the 
necessary equipment. Not only the cost was high but the 
usage of such equipment requires skilled operators. 
However, those people who have mastered the art of the 
multipoint technique obtained very good results with 
it [1 ,2,3,4].

In the multipoint excitation method, the structure is 
excited at several points simultaneously using shakers which 
are tuned to vibrate the structure at a mode of interest of 
vibration. The main advantage of this method is that it can 
be used to determine the modal properties of a structure 
with high modal density i.e. close modes [5]. Once a mode 
of vibration is excited, very little further analysis is
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required to extract the modal properties.

Despite the ability of the multipoint excitation 
method to analyse close modes, it is very rarely used 
nowadays and the only people who are using this technique 
are the ones who have invested large sums of money in the 
equipment and the software to automate the tuning process.

On the other hand, single-point excitation has become 
very popular since the early 1970s and has been the main 
technique which has been used for most of the modal testing 
these days. Relative to multi point excitation the hardware 
for this type of testing is inexpensive and the setting up 
time for tests is short.

In the single-point excitation method the structure is 
excited at a point and the response measured at all the 
points of interest on the structure. The modal consistency 
can be checked by moving the point of excitation and 
repeating the measurements. The disadvantage of the 
technique is that certain modes of vibration might not be 
excited, but this can be overcome if the point of excitation 
is moved to another location on the structure. However, if 
the point of input happens to be close to a node for a 
particular mode of vibration then the structure will not be 
adequately excited.



1.2.2. ANALYSIS OF MEASURED DATA

The data acquired from a test structure are usually in 
the form of frequency response plots at discrete frequency 
points and further analysis is required to reveal the modal 
properties. There are several methods that can be used to 
extract modal properties and all of them are based on one or 
other form of curve fitting process, ranging from the single 
degree-of-freedom (SDOF) to the 'global' curve fit.

Now we shall briefly describe some of the common and 
the latest methods used to extract modal properties from 
measured data.

(i) Single degree-of-freedom (SDOF) curve fitting. As 
the name suggests, each resonance of a 
multidegree-of-freedom system is assumed to behave as a SDOF 
system in the immediate vicinity of the resonance. Thus a 
multidegree-of-freedom system can be treated as several SDOF 
systems by considering one mode at a time. The properties 
of this mode are usually extracted from the Nyquist plot 
using a development of the Kennedy and Pancu method [6]. 
This offers a very simple yet reasonably accurate way of 
analysing a 'well behaved' structure. However, this 
technique does not always produce a consistent set of modal 
properties especially for structures with high modal density 
(close modes).

(ii) Multidegree-of-freedom (MDOF) curve fitting. 
This is an extension of the SDOF method. One plot of 
frequency response data from a whole set of measured
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system
transfer functions are treated as a MDOF. and simultaneousA
curve fit to all the modes reveals the modal properties of
the structure. The contribution of the modes outside the
frequency range of measurement can also be estimated C*73 -
This technique is especially useful for analysis of
structures with high modal density. To increase the
efficiency of the computational process, an initial estimate
of modal parameters can be used as starting valuessystem(i.e. from SDOFA analysis) and these, together with the 
measured data and subsequent iterations, converge to the 
'correct' values. However, the process does not always 
converge to the desired values especially if the data are 
polluted with noise or by nonlinearities.

(iii) Global curve fitting. This curve fitting 
routine, unlike the previous ones, fits simultaneous curves 
to all the measured frequency response functions hence 
ensuring modal consistency i.e. only one value of natural 
frequency and modal damping is estimated for each mode, 
while the SDOF and MDOF give one estimate for each mode of 
each transfer function and these are usually slightly 
different for each transfer function. This may be 
considered to be a disadvantage because from just one 
estimate it- is not possible to check the quality of the 
identified parameters whereas with SDOF and MDOF one has 
many estimates and the variation of these can be used as a 
measure of the consistency. Also, the mode shape vectors 
extracted using global curve fitting are automatically 
orthogonal. The disadvantage of this approach is that
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errors in the measured data, such as those due to noise and 
nonlinearities, make the curve-fitting process very unstable 
and also it can only be used on machines with a large memory 
because of the large amount of data that has to be used 
simultaneously. Although the latter disadvantage can be 
overcome and may be less of a problem in the near future 
because of inexpensive computer memory; the former is a 
serious drawback.

(iv) Ibrahim time domain (ITD). This is one of the 
latest techniques used to identify modal properties and the 
main difference between this and the previously described 
routines is that this uses the data in the time domain whereas 

the others use the data in the frequency domain. A curve 
fit to the free-decay response gives the modal properties of 
structures. Because it is less costly and faster to measure 
free-decay rather than frequency response function hence 
this technique can be very fast in identifying modal 
properties. Although this method is based on the 
free-decays, it can be applied to the data in other forms 
providing that free-decay response can be computed from 
these. The method can easily be automated and hence 
requires very little input from the operator. However, it 
is known to - be very sensitive to small nonlinearities and 
can sometimes extract modal properties of a mode which is 
not present [8,9].



1-3. IDENTIFICATION OF NONLINEARITIES

Structural nonlinearities must be taken into account 
when constructing a model from identified modal parameters. 
Failure to do so may lead to an incorrect model being formed 
which might have very little resemblance to the actual 
testpiece. Many of the trouble-shooting problems in modal 
analysis are associated with small structural 
nonlinearities. Although the apparent effect of these 
pollutants may be small on the measured frequency response 
data, they can result in very large errors in the extracted 
modal properties which in turn may lead to incorrect 
conclusions.

Theoretically generated data with known types and 
amounts of nonlinearity can contribute a great deal to the 
understanding of nonlinearities in real structures. For 
example, the effect of cubic stiffness on frequency response 
data was examined by Ulm and Morse [10] who showed that this 
type of nonlinearity has a large effect on the spacing of 
the frequency points. No attempt was made to investigate 
the effect of this type of nonlinearity on the extracted 
modal properties. However, there are other types of 
nonlinearity, such as frictional (dry friction), which do 
not distort the spacing and hence will be difficult to 
detect. The Ulm and Morse method is not very useful in 
practice because most structural nonlinearities are small 
and hence the distortion of the frequency response functions 
is small and visual examination in general will not be 
adequate to detect small deviations.



The Hilbert transform [11,12,13] offers a method by
which the measured frequency response function can be
checked for contamination by nonlinearities or other
pollutants. The complex transfer function can be split in
to its real and imaginary parts and it is possible to

thecalculate one from the other usingn Hilbert transform
e.g. the real part of frequency response function may be

r e dcc-mpuber/ from theA imaginary part and vice versa. The 
transformation is carried out assuming that the structure is 
linear and hence in the cases where the data are polluted 
with nonlinearities the transformation will not yield 
identical components of the transfer function to the 
measured ones. Hence, comparison of the measured and 
calculated constituents will show any discrepancy between 
the actual and the computed parts and a systematic shift in 
the two versions of, say the real part, can be attributed to 
nonlinearities. However, it must be stressed that the 
difference the measured and calculated constituent is
generally very small and so a close examination of the two 
sets of data must be carried out. Because of this small 
deviation, it will be difficult in practice to say whether 
the change is due to nonlinearities or to other pollutants 
in the data. Nevertheless, this technique offers a very 
useful way of assessing the quality of measured data.



1.4- CORRELATION OF MODELS

Experimental modal testing serves two basic purposes; 
first, in the absence of any analytical model, an 
experimental approach is the only way of understanding the 
dynamic behaviour of a complex structure; secondly, if an 
analytical model, such as one using the finite element 
method, exists it is usually necessary to verify it using 
the experimental data which are assumed to be a true 
representation of the structure. There are very few papers 
that deal with the subject of verifying an FE model in a 
systematic manner using experimental data. Any comparison 
between two such sets of data has generally been indirect, 
inconvenient and slow. For most cases, this comparison has 
consisted of manually interfacing the results and perhaps 
some arbitrary modification of one model in an attempt to 
improve the correlation. This 'trial-and-error' process is 
costly and seldom yield the optimum modification.

Methods based on the sensitivity of the modal 
parameters are sometimes used (i.e. derivatives of 
eigenvalues and eigenvectors with respect to a given 
parameter, such as the stiffness or the mass of an element). 
The determination of eigenvalue derivative is shown to be a 
straight/crw>orc£ and simple calculation [14,15,16,17], but 
the calculation of eigenvector derivatives is found to be 
much more complicated [18]. With the aid of the sensitivity 
method it is possible to determine the minimum alteration 
that must be carried out in order to achieve a given shift 
in the natural frequency of the structure. Unfortunately,
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there are cases when the derivative method predicts changes 
that are impossible to carry out in practice (negative mass 
etc.) and have no physical meaning. Incorporating these 
unrealistic changes will give the desired results 
numerically but the model might not be a true representation 
of the actual structure. Another reason why the sensitivity 
method is not widely used is the high cost of computing the 
eigenvector derivatives.

Other techniques on the subject of correlating the 
analytical and experimental models rely on the assumption
that either the mass or the stiffness matrix in the
analytical model is correct and only one of these needs

* modifying [19,20] . It is most likely that if an error
exists between the two models then it would be expected to 
be in both the mass and the stiffness matrices. Despite the 

^ above-mentioned assumption, this technique is very involved
mathematically, and that is perhaps why most engineers are 
reluctant to use it.

% The perturbation method [21] is very useful in
predicting the effect of changes but before such a change 
can be made it is necessary to know where it should be made. 
Gaukroger [22] recently proposed a method by which it is 
possible to obtain specified natural frequencies by
modifying given structural stiffnesses. Again, the choice 
of area to be modified is left to the analyst's judgement.

Clearly, there is a need to develop new techniques to 
aid the analyst to locate the areas that should be altered
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in an FE model in order to reduce the discrepancies between 
the experimental and the FE models. The *trial-and-error’ 
methods are no longer acceptable as they are slow, costly 
and seldom give the optimum region to be modified.

In the light of the problems that need investigating, 
the following presentation has been adopted.

Basic principles of Finite Element modelling and 
experimental modal analysis are given in chapter 2. Chapter 
3 opens with a discussion of the difficulities faced in the 
modal analysis of real structures which exhibit small 
nonlinearities and to highlight the problems, the results 
from a special structure - the NASTRAN testpiece - are

% presented. The major part of chapter 3 is devoted to a 
study of theoretical nonlinear SDOF and linear 2D0F systems 
in investigating the effects- of small nonlinearity on the 

♦ identified modal properties. Chapter 4 contains the results
of a detailed study carried out on the NASTRAN structure. 
The response of nonlinear SDOF systems to sinusoidal, random 
and transient inputs was studied using an analogue computer 
and the results, together with the necessary theory, are 
given in chapter 5.

« The comparison of modal properties are dealt with in
chapters 6 and 7. In chapter 6 a new method is developed by 
which it is possible to compare modal properties of two 
models in order to locate the areas of discrepancy between 
them. The technique has been applied to synthesised data 
from an 8D0F system while chapter 7 concentrates on the 
application of this method to real structures the SAMM II B
beam and the NASTRAN structure.



CHAPTER
- 2 -
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2. FINITE ELEMENT MODELLING AND MODAL IDENTIFICATION
PRINCIPLES

2.1. INTRODUCTION

%

*

*

*

*

«f

Two techniques which are widely used to develop models 
that describe dynamic characteristics of structures are 
experimental modal analysis and finite element (FE) methods. 
The technique of characterizing a structure's dynamic 
behaviour from experiment has the advantage of providing the 
engineer with a model of the actual structure rather than an 
idealisation of it. This can often provide a more 
representative description of the dynamics than do the 
results of an analytical model such as would be provided by 
a finite element analysis. On the other hand, the 
analytical approach has the advantage that it can be used to 
evaluate the structural modal properties without carrying 
out any experiments and, consequently, the test hardware 
equipment is not required.

Both experimental and the FE modelling techniques have 
their own advantages and both are frequently used in the 
study of structural vibration. In this chapter we shall 
outline the basic concepts of these methods. Only the very 
fundamental topics will be mentioned because the aim is to 
use the existing techniques with little modification to 
obtain the necessary information (accurate modal properties)
about the structure.



2-2. BASIC FINITE ELEMENT METHODOLOGY

2 - 2 -1- GENERAL CONCEPTS

Most structures are so complex that their behaviour 
cannot easily be predicted with accuracy. However, small 
parts of the structure may often be assumed to behave in a 
relatively simple manner. For example, it may be assumed 
that the stress over a small part of a long beam is 
constant, or that the temperature over a small area of a 
plate is constant etc. In finite element analysis these 
small parts of the structure are referred to as finite 
elements.

Any structure, large or small, complex or simple, can 
be represented by a set of finite elements which are assumed 
to interact at particular points. The number of variables 
(unknown displacements and rotations) at each point is 
called the number of 'degrees-of-freedom' (DOF). 
Theoretically, a continuous structure has an infinite number 
of degrees-of-freedom, but in finite element analysis, such 
a structure is approximated by selecting a finite number of 
elements and hence a finite number of degrees-of-freedom.

The geometry of the element used depends on the size 
of the structure. There exist many types of elements e.g. 
bar, beam, plate, cylindrical etc. The choice of elements 
depends to some extent on the geometry of the structure but 
to a great extent on the individual's choice, as there is 
more than one element that may be used to reprê e-nf the
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structure. For most complex problems a combination of 
several types of element is necessary for an efficient and 
accurate analysis.

In structural dynamics, an FE analysis requires the 
formulation of mass [M], stiffness [K] and damping [C]

t matrices. Often, damping is not included in the analysis;
this is justified if the damping is small, but even in 
heavily damped structures, the presence of damping is
ignored because it cannot easily be modelled. Consequently,

I the analysis is usually reduced to one of undamped 
vibration.

* 2.2.2. FORMULATION OF MASS AND STIFFNESS MATRICES

There are two types of element that are frequently 
used in the study of structural vibration; namely, beam

* elements and plate elements. Most engineering structures 
can be analysed using one or both of these types of element. 
In this study, we shall only consider beam elements,

* although the theories for beam and plate elements are very 
similar. The beam element is assumed to be a straight bar 
of uniform cross-sectionaiarea (figure 2-01).

* Using stress analysis, it is possible to relate forces 
to the displacements via the properties of the material and 
the geometry of the element [23].

{F} =  lKe ]{V} ( 2 - 0 1 )
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*

*

where

{F} =
>i

{V} =

M y2
K J  \ K

The square matrix [Kg], which is 12x12 in this case, is 
known as the 'element stiffness matrix'. By considering the 
dynamics of the element, it is also possible to relate the 
forces to the accelerations.

{F} = lMe){V} (2-02)

where { V }  is the second time derivative of the displacement 
vector and matrix [Mg] is the 'element mass matrix'.

The mass and stiffness matrices for beam and plate 
elements have been derived by many authors [23,24]. The bar 
element is perhaps one of the simplest and its mass and 
stiffness matrices are to be found in the majority of books 
and papers dealing with the basics of finite element 
analysis [25,26,27]. The mass and stiffness matrices for 
beam, rectangular plate, triangular plate and many other
types of elements, have also been constructed by
Prezemieniecki [23] and Szilard i—i to i_i • The mass and
stiffness matrices for the beam element in figure 2-01 are
given in appendix 10.1.

In a finite element analysis, mass and stiffness 
matrices are constructed for all the elements of the 
structure and these are then joined to form the overall mass 
[M] and stiffness [K] matrices of the complete model. This
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process is called 'assembling the element matrices'. There
is no general method for assembling these matrices and each
problem has to be tackled individually. As an example, the
overall stiffness matrix for a straight beam, with three
elements, shown in figure 2-02, is given in table 2-01,
where the matrix [K ] is the n element's stiffnesse
matrix. More examples on assembling element matrices can be 
found in reference 28.

Once the overall mass and stiffness matrices are 
assembled for the structure, then the problem reduces to 
that of an eigenvalue solution i.e. solving equation 2-03.

[[X] — 0>2[Af ]]{JC} = {0} (2-03)

There are many standard subroutines that are capable of
osolving equation 2-03 to produce eigenvalues and the

corresponding eigenvectors [>£]. The eigenvectors may be 
mass normalised;

[4-]t[3/][$] = [/]

- fx2]

(2-04)

where [4>3 is the mass normalised eigenvector matrix. These
2two matrices, and [4>], completely characterize the

undamped behaviour of the structure.



2.3. MODAL TESTING

2.3.1. GENERAL CONCEPTS

Modal analysis, via the experimental route, has become 
a very popular means of analysing the dynamic behaviour of 
an existing structure, especially since the recent reduction 
in the cost of minicomputers. During the 1940s, modal 
analysis was applied exclusively in the aerospace industry, 
largely due to the high cost of the hardware which was 
required for the tests. Nowadays, it is quite common for 
small companies to have the necessary equipment to carry out 
the tests and to analyse the test data.

There are two main techniques that are currently used 
to obtain modal data from a test structure. Probably the 
easiest and the most popular, is the single point excitation 
technique. As the name suggests, the structure is excited 
at a single point and its response is measured at points of 
interest.

The other technique, which is not so widely used these 
days, is the multi-shaker (or multi point) excitation 
method. In this method several shakers are attached to the 
structure. The magnitudes of displacement and phase of each 
shaker are varied until a pure mode is excited. The 
advantage of this technique is that once a mode of vibration 
is excited, very little further analysis is needed to derive 
the modal properties. The main drawback of this method is 
that it is very cumbersome to tune the shakers so as to 
excite the mode of interest and to do this one needs to have



Just as there are several techniques available for 
measuring data, there are also several different types of 
inputs that may be used to excite the structure under test 
e.g. stepped or discrete sine, swept sine, random, impact 
etc. The choice of input depends on a number of factors, 
such as the hardware, the length of time available to carry 
out the test and so on. For a broad band frequency 
measurement, step sinusoidal excited tests take longer than 
the nonsinusoidal tests but the quality of data generated by 
discrete sinewave excitation is superior to that generated 
by other types of inputs. Regardless of the type of input 
used, the end result is in the form of frequency response 
data at discrete frequency points. For each coordinate that 
is measured on the structure, one set of frequency response 
data is obtained. These data can take one of three forms, 
now commonly used, inertance (X/F), mobility (X/F) or 
receptance (X/F). It is possible to construct a matrix of 
test data as shown in table 2-02, where symbol a denotes 
receptance and apq is defined as the complex ratio of 
response (X) at point p due to a force (F) at point q.

a reasonably good knowledge about the nature of the mode
which is to be excited.

Only one row or column of the matrix in table 2-02 is 
required to characterize the dynamic behaviour of the 
structure. Normally, more than one row or column is



measured, so as to provide a check on the quality of the
measured data and the derived modal properties [29].

2.3.2. SINGLE-DEGREE-OF-FREEDOM MODAL TESTING THEORY

There are several types of linear curve fitting 
routines that may be used to extract modal properties from 
the measured data i.e. single-degree-of-freedom (SDOF), 
multi-degree-of-freedom (MDOF), poly curve fitting (taking 
more than one set of measured data and fitting a 
simultaneous curves to these), curve fitting in the time 
domain, which is often called the 'Ibrahim Time Domain*
(ITD) etc. The simplest of these is the SDOF routine and is 
sometimes known as the 'circle fitting' method. This 
technique was developed by Kennedy and Pancu [6].

In this section we shall consider only the Kennedy and 
Pancu method because one of the aims of this study is to see 
how we can use the simplest of techniques to identify 
nonlinearities and to extract 'accurate' modal properties 
without using nonlinear curve fitting routines.

The dynamic behaviour of a structure, in terms of its 
modal properties, is given by [31,32,33]?

m
(2-06)

r - 1

where m - number of modes
natural frequency of the rth moder
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*

n - loss factor 'r of the r mode;
mr - modal mass of the :th , r mode;
r^p — element in the thr mode shape vector W ;

- q ^  element**■ 'l in the thr mode shape vector {*} .

Equation 2-06 can also be written in the form;

m

= Y j
r<= 1

«2(1 - (cj/wr)2 + I7jr) (2-07)

*

%

*
V m r'  P

*
$ = - ^ L  —V W r

(2-08)

%

t*hThe vector {<f>} is the r 'mass normalized' mode shape 
corresponding to the vector {'I'} .

4* ViThe modal constant ( A ) for the r mode is defined as;r pq

^  = ( , W  (2-09)

Since , >£ , anĉ  are a1  ̂comPlex quantities, the
modal constant is also a complex number. In terms of the 
modal constants, equation 2-07 becomes;

“ « ( “ ) = ir «  1

\APy -
0̂ (1 - (“/“,)2 +  ‘V,) (2-10)

i. y.where 8r is the phase associated with the r modal constant 
(figure 2-03). The receptance equation for a single mode of



a structure is;

«P9(<*0 “8(1 ” (̂/w0)2 + irj) (2-11)

The above equation may easily be separated into its real and 
imaginary parts.

Real
PR

—  (a>/a>0)2) cos 6 +  t; sin 6 \ 
(l-(oj/coq)2)2 +  ?72 '

(2-12)

Imaga \Apq\ ( {l -  {w/ao)2)sm0 - ticosO\  

"8 (1 “  («/«o )2f  +  *72

Eliminating the excitation frequency (w) from 
equations 2-12;

wisin#y + M w lcosfl\; _ z'MJv
/ \ 2oĵ t; / (2-13)

Clearly, the above expression is the equation of a circle,

with centre at coordinates f Mpglcos0 \ and radius
V ’ uji? /

 ̂ as Sh0wn in figure 2-03.\ 2o)fri)

The natural frequency (w^) is given when the rate of
change of the angle ft , with respect to the excitation
frequency (o>), is maximum, i.e.
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AOwhen —  is maximum 
da)

(2-14)

The above equation gives the natural frequency of a SDOF 
system. Once is known, the complexity (0) of the modal
constant (A) can easily be calculated. From this and the 
geometry of the circle, it is possible to show [30], that 
the modal damping (*f) is given by?

where ^  - a frequency point such that > w^?
— a frequency point such that < w0 *

•moda t
<t>. - are the angles subtended by theA diameter of theLi Z

circle passing through the point and the arcs

The radius (R) of the circle is related to the modal 
properties by?

(2-15)

joining the displaced origin to the points of 
and respectively (see figure 2-04).

(2-16)

\ A p q \ =  2 R o > o n

The four quantities, natural frequency (w^), loss
factor (n)» modulus of the modal constant (A ) and the

pq
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modal phase (0), define completely the mode under 
consideration. A multi-degree-of-freedom system can be 
analysed by considering frequency points in the vicinity of 
each resonance to behave locally as a SDOF system. Thus a 
MDOF system may be broken down into several SDOF systems. 
The error introduced by this process can be calculated [30].

More rigorous theory on MDOF systems can be found in 
references 7 and 31.

to

to

to

to
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*

*
TABLE 2-01 : Overall stiffness matrix for a

beam.

♦

“ l l “ 12 • • “ in

« 2 1 “ 22  • * “ 2n

“ „1 “ n2 * ‘ a nn_

*

24x24

three element

TABLE 2-02 : Receptance table
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*

f t
FIGURE 2-02 : Straight beam: three elements.
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FIGURE 2-03 : Displaced modal circle.

FIGURE 2-04- : Modal circle.



CHAPTER
- 3-



3. IDENTIFICATION OF NONLINEARITIES FROM
FREQUENCY - RESPONSE DATA

3.1. INTRODUCTION

The measurement of frequency-response data does not 
present any great difficulties, whether it be in the 
frequency domain or in the time domain. It is possible to 
obtain good measured data with the aid of reasonably priced 
equipment. The main difficulty arises in the analysis of 
these data. Perhaps the main cause of error in the analysis 
is due to structural nonlinearities because the algorithms 
used to extract modal properties are based on a assumptions 
of linearity. The errors due to these unwanted effects can 
be reduced and in some cases eliminated, by using a 
nonlinear modal identification algorithm. Unfortunately, 
the various types of nonlinearity present in the data are 
not known until some analysis is completed. Hence the exact 
form of the nonlinearity to be incorporated in the 
identification process is not known at the analysis stage.

Since most of the modal identification algorithms are 
based on linear relation between the applied force and the 
measured response, it is necessary to check whether the 
structure under test behaves as a linear system or, at 
least, is approximately linear within a certain frequency 
range. This requires some consideration of the measured 
data and the type of excitation method used £34,35,10].



It is frequently found that an actual structure, and 
even a simple one, does not satisfy the linearity criteria. 
For this reason, it is advisable for the user of 
experimental modal analysis to judge by visual examination 
of the measured data (as a first step) whether the structure 
under test is linear. This judgement can be a turning point 
in the process of obtaining 'good' modal properties. 
Unfortunately, it is impossible to detect slight 
nonlinearities by visual examination of the measured data. 
Apparently linear data can produce modal properties which 
are not truly representative of the structure's behaviour. 
Modal constants derived from such data, using a linear 
algorithm, may well be so complex (large phase angle) that 
no reasonable explanation can be given for this complexity. 
Modal constants may defy the basic law of reciprocity and 
modes of vibration are seldom orthogonal to each other. To 
make matters worse, repeatability is often found to be 
inadequate. All these unwanted effects can be attributed to 
small structural nonlinearities which increase the 
uncertainty in the quality of the modal parameters 
extracted.

The key to 'accurate' modal properties is the early 
detection of nonlinear behaviour. One of the tasks of any 
modal analyst should be to check whether the structure is 
linear. If nonlinearities are detected at the measurement 
stage then the experiment should be carried out in such a 
way as to reduce the effect of nonlinearities C36j. 
Unfortunately, this check is usually overlooked and it is
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only at or after the analysis stage, when the results are 
not what they should be, that one starts to look for 
possible explanations of these unexpected and unacceptable 
results.

It is possible to use very basic knowledge in the 
processing of measured frequency response data to detect 
nonlinearities. There is no need to use complex
multidegree-of-freedom curve fitting routines or, even 
worse, nonlinear curve fitting routines. The simplest modal 

% identification process (linear single-degree-of-freedom
identification routine in the immediate vicinity of
resonance) can yield the necessary information for the 
detection of nonlinearities in a structure.

3.2. CRITICAL ASSESSMENT OF THE SINGLE-DEGREE-OF-FREEDOM 
MODAL IDENTIFICATION METHOD

¥

This study commenced by the investigation of the modal 
properties of the 'NASTRAN' structure: a special testpiece 

^ consisting of a stiffened base plate, supporting a
square-sectioned plated tower with various diaphragms 
positioned inside. One side of the tower consists of a 
lightweight honeycomb sandwich panel. On top of the tower 
is a mounting arrangement for a heavy mass which is 
connected to the structure via three pin supports. The 
structure is connected to the ground in eight positions 
around the base plate. The structure was designed to 
contain many of the features common in aircraft construction 
which give rise to problems and uncertainties in the



theoretical modelling stage, such as rivetted joints, 
stiffened plates, honeycomb sandwich panels, heavy masses on 
relatively flexible components etc. (figure 3-01).

The structure has four modes of vibration in the 
frequency range from 30 to 120 Hz. Discrete sinusoidal 
excitation was used to vibrate the structure and the 
response was measured using accelerometers. The value of 
mobility was computed, using a Solartron 1172 frequency 
response analyser, for each frequency point. A typical 
mobility modulus plot (Y^ °f the NASTRAN structure is 
shown in figure 3-02. Modal parameters for each mode were 
extracted from polar plots (in the immediate vicinity of 
each mode) in the Nyquist plane as described in the last 
chapter. These modal properties (table 3-01) can, in turn, 
be used to regenerate a theoretical model of the measured 
mobility data. Both measured and regenerated data were 
plotted on the same axis (figure 3-02). These curves 
indicate a reasonable agreement between the measured and 
generated data and hence the derived modal properties can be 
taken as an accurate representation of the structure.

However there is a large scatter on the measured data 
around 50 Hz, as a consequence of which the quality of the 
curve fit in this area is not so good. The reason for the 
poor quality of data around 50 Hz is that the response of 
the structure in this frequency range is very small and 
hence the actual signal to noise ratio is low (due to mains 
interference) .



The quality of the measured data may be improved by 
increasing the input force (by increasing the gain of the 
power amplifier) because the higher the input force, the 
higher the response (for a linear system). This will 
improve the signal to noise ratio and, these data with a 
high level of excitation are displayed in figure 3-03.

The region around 50 Hz has now been 'cleaned up' and 
once again modal parameters were extracted using a linear 
algorithm (table 3-02). This frequency response plot 
resists attempts to perform a satisfactory modal analysis on 
it; the best results obtained being shown in figure 3-03 
together with the measured data. This peculiarity is very 
puzzling because it is usually assumed that the better the 
quality of measured data, the better will be the curve fit, 
but in this case the reverse is the case. To understand 
this strange phenomenon it is necessary to consider 
nonlinearities.



3.2.1. NONLINEARITY CHECK ON THE * NASTRAN1 STRUCTURE

For a linear system, or structure, the ratio of 
response to input force is constant at a given frequency. 
However, for a nonlinear system this ratio is no longer 
constant but is a function of the applied force. Perhaps 
the simplest way of detecting nonlinearities would be to 
verify this law, and this can be accomplished by carrying 
out the measurement at several different forcing levels. 
Figures 3704 and 3-05 show some results (Y^ 1 2  ̂ from such 
tests on the NASTRAN structure for modes 3 and 4 
respectively. It is clearly seen that the ratio of response 
to force is not constant as the force changes for a given 
frequency. This demonstrates the structure's nonlinear 
behaviour and any 'blind' attempt to extract modal 
properties from the measured data, using a linear algorithm, 
will generally yield unsatisfactory results.

The modal properties derived from these sets of curves 
using a linear algorithm are listed in tables 3-03 and 3-04 
for modes 3 and 4 respectively. The force is given in terms 
of volts (output of charge amplifier) rather than Newtons 
because over a narrow frequency range, as in this case the 
force applied to the structure is proportional to the 
voltage output of the charge amplifier.

Tables 3-03 and 3-04, together with figures 3-04 and
3-05, indicate that in this case, the modal properties are 
very much dependent on the forcing level and it is difficult 
to say what the true value of the modal parameters should be
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because the variation in the natural frequencies (for the 
two modes considered) are about 3% while the change in the 
estimates of damping and modal constant is of the order of 
30%. Clearly, the modal parameters are force dependent and, 
hence the structure under test must be nonlinear.

3.3. IDENTIFICATION OF NONLINEARITIES FROM A SINGLE 
FREQUENCY-RESPONSE CURVE

Most modal analysts, especially in industry, are not 
fortunate enough to have the time to carry out tests at 
several different forcing levels in order to check for 
nonlinearities. In most cases there is only one set of data 
and no comparison can be carried out as described above. 
Consequently, the technique of last section cannot be 
applied.

Structural nonlinearities can effect the frequency 
response data in many ways; the spacing of the frequency 
points might be distorted; the level of response may be 
altered for a given frequency; the natural frequency might 
be shifted from its true position etc. [37,38,39,40]. 
Thus, it is conceivable that the nonlinearities might be 
detected by making use of one or more of the features 
mentioned above, and we shall now explore this possibility.

The modal damping of a linear system may be determined 
using equation 3-01 and is independent of the choice of 
frequency points (w^ and (*>2) used for the calculation 
(figure 3-06).
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*

*

*

1____ ) (3-01)
v  Uan^j +  tan 0 2 ̂

In fact, many estimates of damping (»?) can be computed using 
equation 3-01 by choosing different frequency points and 
u>2 ? below and above the natural frequency (w^) . In theory, 
for a linear system, with well separated modes, all these 
estimates of damping will be identical. In practice, 
however, typical experimental data yields small variations 
in these damping estimates, due to small random errors in 
the measured data. Usually, an average value of these 
estimates is taken to be a good indication of the damping in 
that mode. The standard deviation of the estimates serves 
as a check on the quality of the results; the lower the 
standard deviation, the higher the confidence in the 
identified modal properties. Normally, the percentage 
variation is small - of the order of 2 or 3 % - but there 
are cases when the variation is very large and this 
indicates a significant scatter in the damping estimates 
which often cannot be accounted for by small random errors 
in the measured data. In such cases, before an average 
value is assumed to be a good representation, it is 
necessary to look for any recognizable pattern or any 
unusual trend in the derived estimates of damping. This is 
conveniently done by displaying the computed estimates in a 
matrix form [41] as shown in table 3-05, where is the
damping estimate calculated using frequency point i below 
resonance < w^) and j above = Qj >
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OSj~U>}

0)i Htan < p i  +  tan - (3-02)

* In general, the loss factor matrix thus obtained will be 
rectangular and a typical result obtained from experimental 
data is given in table 3-06.

*
As well as for damping, matrices of estimates for the 

angle PHI (figure 3-06) and the modal constant can also be 
constructed in a similar manner.

»
Table 3-06 exhibits small random variations in the 

damping values for different combinations of points, but 
requires careful scrutiny to see any trends. Such a matrix 

* may more easily be examined by displaying its values in an
isometric three-axis plot. Two base axis are the two 
frequency axis; one for the points below resonance and the 

m other for those above resonance, while the third axis
represents the magnitude of the elements in the matrix 
(figure 3-07). When plotted on such a diagram, the loss 
factor values of table 3-06 produce the shape shown in 
figure 3-03.

For a linear system with well separated modes, the 
surface of such a plot should be flat and any systematic 
deviation from this will probably indicate the presence of 
nonlinearities and/or that of closely-coupled modes.

The average value of the elements in the loss factor 
matrix is the one that is normally used for further analysis 
but if the plot is not flat then this average value is very
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much dependent upon which points are chosen for its 
calculation from the matrix. We shall now examine the three 

m types of average that will be useful in the next section but
before this, it is necessary to renumber the elements of the 
matrix in table 3-05 using normal matrix convention, 
(i.e. the first element in the matrix (top left hand side) 
is numbered 1,1 and, the second element in the top row is
1,2 and so on.)

Three types of average that may be useful are;

(i) Horizontal : this is the average of the elements 
in a row and is given by;

♦  n

<3"0 3 >
i-l

*

*

tilwhere n - the number of damping estimates in the k row;
t i l- horizontal average loss factor of the k row.

(ii) Vertical : this is the average of the elements in 
a column and is given by;

_ 1 
n (3-04)

t i lwhere n - the number of damping estimates in the x column; 
~ vertical average loss factor of the k*"*1 column.

(iii) Diagonal : this is the average of the elements 
in a square submatrix of the loss factor matrix. The 
submatrix is taken from the top left hand side of the loss



factor matrix.

k k

/=i j-1

where k - the size of the submatrix;
'Wgk - diagonal averages loss factor of submatrix.

3.4. NUMERICAL STUDY

It is customary to demonstrate and to evaluate new 
techniques using theoretically generated data with known 
parameters. In dynamics this means solving differential 
equations of motion to obtain an analytical solution. The 
advantage of a numerical study is that the effect of varying 
any parameter can easily be investigated by keeping the 
values of all other parameters constant. The solution of 
the equations of motion can be obtained in the time or the 
frequency domains.

Because of the low cost of digital computers, 
numerical techniques for solving differential equations have 
become very popular. The computing cost is not the only 
factor in favour of numerical solutions; perhaps the main 
reason for using this technique is the fact that most 
nonlinear differential equations have no known analytical 
solutions.

Approximate numerical methods for solving complicated 
nonlinear differential equations can be employed under 
certain constraints. An approximate method which is

( 3 - 0 5 )
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frequently used in the solution of such equations is the 
'perturbation* method. This requires an initial estimate of 

» the unknown parameter and then provides an update of this
value via the governing differential equation, leading to 
the 'correct' value. Unfortunately, this technique does not 
always converge to the desired value or does not converge at 
all.

Another method which can be used for solving equations 
with small nonlinearities is the 'equivalent linearization' 
method. In this method, a nonlinear equation is replaced by 
an equivalent linear equation which in turn can easily be 
solved using numerical methods. This technique will be

* employed to solve all the nonlinear equations described in 
this section.

The following study is confined to the analysis of
*

four systems;

(i) Linear single-degree-of-freedom (SDOF) system with 
viscous damping. This provides a datum case against which 
all other cases will be compared.

(ii) Single-degree-of-freedom system with viscous
,4 damping and softening cubic stiffness spring.

(iii) Single-degree-of-freedom system with viscous 
damping and Coulomb friction (Dry friction).

(iv) Linear two-degree-of-freedom system with 
hysteretic damping. This system will be used to investigate 
the effect of close modes on the modal properties derived



using the SDOF analysis method and, in particular, on the
isometric loss factor plots.

3.4,1, LINEAR SINGLE—DEGREE-OF-FREEDOM SYSTEM WITH VISCOUS 
DAMPING

The equation of motion of a linear SDOF system with 
viscous damping is;

where £ - viscous damping ratio (C/C^);
Ug - natural frequency of the system (rad/sec);

F(t) - forcing function.

If the forcing function F(t) is sinusoidal then 
equation 3-06 becomes;

where w - the excitation frequency (rad/sec);
F - amplitude of force (N/Kg).

An equation of the form 3-07 describe Damped Forced Harmonic 
Vibrations, and it's steady state solution is given by the 
Particular Integral of the equation. Thus the solution is;

X  +  2̂ o)0X  +  o%X — F(t) (3-06)

(3-37)

(3-08)

where a - the amplitude of vibration which is given by;
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X{ t )  =  aeiut (3-09)

In the receptance (cr=a/F) form? 9

a(co) = (̂ o ~ co2) — 2£cu0oo/
H  ~ w2)2 + (2£a>0a>)2 (3-10)

Separating real and imaginary parts;

R eal(a) = 2 2 u0 03
H  ~ w2)2 +  (2£a)0w)2

I mag{a) = —2%(c0(c
(«o ~ w2)2 + (2^0a;)2

(3-11)

*

♦

For different values of damping coefficient (£),
equations 3-11 can be used to generate data in the form of 
real and imaginary receptance as a function of excitation 
frequency (w).

Frequency response data generated for the following 
conditions;

Uq  — 407T rad/sec (20 Hz)
F = 1.0 N/Kg
£ = 0.003, 0.005, 0.01 and 0.02

are plotted on mobility modulus, mobility phase and Nyquist 
diagrams (figure 3-09). These plots indicate that for a 
given frequency both the response and the diameter of the 
modal circle decrease but the natural frequency appears to 
be unaffected by the amount of viscous damping in the
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system. The real against imaginary receptance (Nyquist) 
plots for viscous damping are not true circles but for 
systems with small damping these may be assumed to be almost 
circles.

These data were analysed using a linear SDOF algorithm 
to extract modal properties from each set of data 
(table 3-07). The angle PHI, loss factor and modal constant 
matrices were compiled and are given in table 3-03 for 
viscous damping coefficient (£) = 0.005. These matrices are 
best examined on 3-D isometric and conventional (averages) 
plots (figures 3-10 through 3-12). For a SDOF system, 
linear or otherwise, the angle PHI always increases as the 
frequency points, taken in the calculation of this angle, 
move away from the natural frequency.

3.4.2.______EQUATION_____OF_____MOTION_____FOR NONLINEAR
SINGLE-DEGREE-OF-FREEDOM SYSTEMS

In general, the equation of motion of a forced 
nonlinear system is?

X + a ] p c  +  n f ( X , X )  =  F ( t ) (3-12)

where m - is a constant;
f(X,X) - function of displacement (X) and velocity (X);
F(t) - forcing function.

For small nonlinearities, i.e. M << 1, the above equation 
may be written in an approximate equivalent linear form 
[42,45]?



where X - is the equivalent damping coefficient;
Uq - is the equivalent natural frequency.

Both X and are amplitude dependent and are given by;

2x

A =  J f(a  cos 0, -au30 sin 0) sin 0 </0
o

(3-14)
2x

wg =  wj +  ^  J / (a cos 0, —aw0 sin 0) cos 0 */0 
o

where a - is the amplitude of vibration;
u>0 - is the natural frequency of the linear system.

If the forcing function of equation 3-13 is sinusoidal, 
i.e. F(t) = Felwt, then the steady state solution is 
obtained by;

/  Wj? — W2 — w A/ \ {

X(t) = ( ---------------=—  )Fe
(wjj — a)2)2 +  (Aw)2 -

Fa =  — -
yj(0>l ~ «2)2 + (XOJ)2

(3-15)

In the real and imaginary receptance form;

Real {a) = OJ;o ~"2
— co2)2 + (Aw)2

/  mag(a) = ____ —wX___
(« j — w2)2 +  (Aw)2

(3-16)
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where 0 is the phase difference between the applied force 
and the response vector.

3.4.2.1. SINGLE—DEGREE-OF—FREEDOM SYSTEM WITH VISCOUS
DAMPING AND SOFTENING-CUBIC-STIFFNESS

*

¥

The equation of motion of a SDOF system with viscous 
damping and softening cubic stiffness is;

* +2£avr + o*J(*-/9*3) = F(/) (3-18)

_2where (3 - is the cubic stiffness coefficient (m ) .

The above equation can be written in the same form as 
equation 3-12 with;

F(t) = Feiwt

/</(*,*) = 2*0*0*  -a$3*3

(3-19)

(3-20)

Using equations 3-14 to obtain the equivalent damping ( X ) 
and the natural frequency (w^);

X = (2*o*0(—oo*o sin <f>) - /5o*q0 3 cos3 <f>) sin <t> d(f>

(3-21)

2x

(2*o*0( —0o*o sin 0 )  — /9ojq03 cos3 </>) cos <f> d<f> 
o

X - 2*0*0
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*

*

*

*

%

*

%

"3 = «o(1-3/3o2/4) (3-22)

Equation 3-21 indicates that the equivalent damping of a 
softening cubic stiffness system is identical to that of a 
linear system (i.e. cubic stiffness does not directly effect 
the damping of the system) . The equivalent reso-na-nce, 
frequency (equation 3-22) has now been reduced by a factor 
of /l - 3(Ja2/4 • The natural frequency of a softening cubic 
stiffness system, will always be lower than the natural 
frequency (w^) of the linear system because both '/S' and 'a' 
are positive quantities and hence the expression in the 
brackets of equation 3-22 is less than unity.

The system becomes unstable when;

1 — 3/Ja2/4 < 0

0a2 > 4/3 (3-23)

Substituting equations 3-21 and 3-22 into equation 3-15 
gives;

___________ F___________
V<4(1 - 3fia2/4)2 + (2*v>)2

Simplifying, we obtain;

(3/4/3a;o)2fl6~ 3 /2 (o)q — o>2)/Sa>ofl4 +  ((^o“ aj2)2 (2|w0aj)2)fl2 — F 2 = 0 ( 3 —2 4 )

The above equation is a cubic polynomial with amplitude 
2squared (a ) as the unknown variable and its values are 

given by the roots of the equation 3-24.



Depending on the values of the parameters,
equation 3-24 can either have one real and two complex roots 
or three real roots. In the latter case, the well - known 
jump phenomenon occurs as shown in figure 3-13 [43,44,45]. 
For real structures, nonlinearities are usually small and in 
such cases the jump phenomenon does not occur
(i.e. equation 3-24 has only one real root for different 
values of the excitation frequency). In this study we shall 
only consider the case of one real root.

Equation 3-24 has an exact solution which allows the 
value of the amplitude of vibration (a) to be calculated as 
a function of the excitation frequency. Once the amplitude 
is known, the equivalent damping ( X ) and the equivalent 
natural frequency (oT̂ ) can be computed using equations 3-21 
and 3-22 and hence the real and imaginary parts of 
receptance can be calculated (equation 3-15).

Frequency response data were generated for different 
levels of softening cubic stiffness. Mobility modulus, 
mobility phase and Nyquist plots were constructed for the 
following input values;

a>0 = 40 7r rad/sec (20 Hz)
£ = 0.005 
F = 1.0 N/Kg.
0 = 50, 200, 400 and 600 m-2. 

and these plots are shown in figure 3-14.

The mobility modulus diagram 'leans back' but its
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maximum response (or mobility because force is constant) 
appears to be unaffected by the amount of cubic stiffness. 

% However, the frequency at which this maximum response occurs
is dependent on it. For high levels of nonlinearity the 
frequency spacing, especially near resonance, is distorted 
and the mobility modulus plots are no longer symmetrical 
about the frequency of maximum response. Nyquist plots also 
show the distortion of frequency spacing although the 
diameters of the modal circles are virtually independent of 

* the amount of cubic stiffness.

Modal parameters extracted from these data, using a
linear SDOF algorithm, are given in table 3-39. Again, 3-D
isometric plots, together with the different types of
averages, are constructed and figures 3-15 and 3-16 show the

_2plots for 0= 50 and 200 m respectively. The value of loss
4 factor that one would obtain (input value), in the absence

_2of softening cubic stiffness ( (3 = 0 m ) are marked on the 
3-D plots with asterisks.

1,1 For the frequency points below resonance the loss
factor increases as the point for the calculation of this 
value move away from the resonance (w^, frequency point 

^ above resonance being fixed). However, for points above
resonance the loss factor decreases with increasing 
frequency (figures 3-15 and 3-16) and the 'tilt' of the 3-D 
diagrams increases with increasing nonlinearity.

It is interesting to note that the graph for the 
vertical averages is a straight line, the slope of which is



a function of the nonlinearity and increases with it. 
However, there is no simple relation between the slope and 
the amount of nonlinearity.

The diagonal-average diagram exhibits a maximum, the 
value of which is very close to the input or true value of 
the loss factor (table 3-10).

Unlike in the theoretical study, the amount of 
nonlinearity in the real structure cannot be changed easily. 
The only function that can be readily altered is the input 
force and this is equivalent to keeping the nonlinearity 
constant and carrying out tests at several different but 
constant levels of excitation, as in section, 3.1.1. To 
study the effect of keeping nonlinearity constant and 
changing the force, the following input data were used?

“>0 = 40 tt rad/sec (20 Hz)
$ = 0.005 
/3 = 2 0 0  nf2
F = 0.5, 1.0, 1.5 and 2.0 (N/Kg)

The mobility modulus, mobility phase and Nyquist 
diagrams are displayed in figure 3-17. The effect of 
increasing the force is the same as that of increasing the 
softening cubic stiffness. Again, modal parameters were 
extracted from these data using a linear SDOF algorithm 
(table 3-11). The isometric loss factor plots for this case 
are shown in figure 3-18. The graphs of the averages are 
omitted because they are similar to those obtained for 
varying levels of cubic stiffness (figures 3-15 and 3-16).



The isometric loss factor diagrams indicate that the effect 
of increasing the force is the same as increasing the amount 
of nonlinearity.

Also constructed are the graphs of mobility modulus, 
mobility phase and Nyquist plots (figure 3-19) as a function 
of softening cubic stiffness for several values of the 
excitation frequency. These diagrams indicate how the 
response varies as a function of the nonlinearity. The 
locus of real against imaginary receptance is a circle and 
the effect of cubic stiffness is to distort the Nyquist plot 
clockwise. As the nonlinearity increases the amount by 
which the modal circle is distorted also increases.

3.4.2.2. SINGLE-DEGREE-OF—FREEDOM SYSTEM WITH VISCOUS
DAMPING AND COULOMB FRICTION

The equation of motion of a SDOF system with viscous 
damping and coulomb (or dry) friction is;

(3-25)

where R - is the dry friction coefficient (N/Kg).

Comparing equations 3-25 and 3-12 yields;

F(t) =  Feiut (3-26)

and
#

rf(X,X) = 2(woX + R - I L (3-27)

The equivalent damping and natural frequency can be



calculated using equations 3-14;
2t

X =  7Fo^ ( J  2^o(~awo s in  <f>) s in  <f>d<t> +  2 R  J(-sin 0) </</>)

Y _ , 4/2
(3-28)

2t
"o ~  wo +  J  2£w0(— tfo>0 sin 0 ) c o s  <pd<f> +  2/? J(-cos0 ) J0 ^

0)2 = Wq (3-29)

Equations 3-28 indicate that the damping of the equivalent
A Dlinear system has increased by an amount of but the•* ■* iracoQ

natural frequency remains unaffected (equation 3-29).

Substituting equations 3-28 and 
equivalent linear equation 3-15 gives;

F
a  =

3-29 into the

-  0)2)2 +  (2£o)0o) +

, 2 2x2 2 , /«,. , 4/? 0)x2 2 _ r>2(o)0 -  0) ) a +  (2£o)0o) +  -=rr) a -  F

Simplifying yields;

( ( 4  -  -  V  +  ( W > 2 +  +  ( ( ^ ) 2 -  ' 2) =  °  ( 3 - 3 0 )

The above equation is a quadratic polynomial, with 
amplitude (a) as the variable, which can be calculated from 
the roots of this equation for different values of the 
excitation frequency. Hence, the equivalent damping and the 
natural frequency can also be computed from equations 3-28 
and 3-29 respectively. Knowing this, the real and imaginary 
parts of receptance can be obtained from equations 3-16.



The stability of the system, represented by 
equation 3-30 depends on the form of the roots of this 
equation. If the roots are real then the system defined by 
the equation is stable otherwise it becomes unstable 
i.e. the equation of stability is;

Frequency response data calculated for different values of 
dry friction are displayed in the form of mobility modulus, 
mobility phase and Nyquist plots (figure 3-20) for the 
following input values;

As the dry friction increases, the mobility decreases 
thus indicating an increase in damping as shown by the 
equation 3-28. The natural frequency does not appear to 
change with dry friction. At low levels of dry friction 
(R = 0.10 and 0.25 N/Kg), the Nyquist plots appear to be 
circles (almost) but of different diameters and as the 
nonlinearity increases, the modal diameter decreases 
distorting the circle into an 'egg' shaped plot 
(R = 0.55 N/Kg).

>2) + (2£o0a>)2) >  0 (3-31)

<*>0 = 40 ̂  rad/sec (20 Hz)
£ = 0.005 
F = 1.0 N/Kg
R = 0.10, 0.25, 0.40 and 0.55 N/Kg

The identified modal properties derived using a linear 
SDOF curve fitting process are shown in table 3-12. In the



case of dry friction, the conventional plots of different 
types of average give no useful information and so only the 
isometric (3-D) diagrams are displayed (figure 3-21). These 
plots indicate that the damping decreases as the frequency 
points used in the calculation of loss factor move away from 
the resonance below and above. The maximum estimated value 
of the damping occurs around the resonance i.e. maximum 
damping is given by the two adjacent points around 
resonance, one below and one above the natural frequency. 
Data polluted with dry friction nonlinearity give damping 
estimates that are much higher than those that would be 
obtained in the absence of any nonlinearity.

As in the case of cubic stiffness, here we shall also 
examine the effect of altering the force while the amount of 
dry friction remains constant. For this the following input 
data were used;

Wg = 4 0 7r rad/sec (20 Hz)
£ = 0.005 
R = 0.25 N/Kg
F = 0.5, 1.0, 2.0 and 5.0 (N/Kg)

The mobility modulus, mobility phase and Nyquist plots 
are exhibited in figure 3-22. The effect of increasing the 
force appears to be the same as that of reducing the dry 
friction. At high levels of force, the Nyquist plots are 
circular but as the force decreases these circles degenerate 
into 'egg' shaped plots. The modal properties extracted 
from these data using a linear SDOF algorithm are shown in
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* the force is increased and at low levels of excitation, the 
dry friction has large influence on the estimated values of 
loss factor.

* The effect of varying dry friction on the response, 
for a given excitation frequency was also investigated 
(figure 3-24). The Nyquist plot shows that as the dry 
friction increases the modal diameter decreases.

*

3.4.3. LINEAR TWO-PEGREE-OF-FREEDQM SYSTEM WITH HYSTERETIC 
DAMPING

♦
In the analysis of SDOF systems, it is often assumed 

that the modes of vibration are well separated from each 
other so that the effect of all the modes except the one 
under consideration is assumed to be constant over a narrow 
frequency range. With this assumption, a
multi-degree-of-freedom system can be analysed as several

* SDOF systems by considering the frequency points in the
immediate vicinity of each mode separately. This leads to a 
simple method for extracting modal properties from the

^ frequency response data. However, there are many cases when
the modes are too close for this assumption to be valid. 
Analysis of data from such cases using a SDOF circle-fitting 
routine will lead to inaccurate results and to a badly 
identified curve.

table 3-13. The loss factor isometric plots (figure 3-23)
indicate a reduction in the effect of the dry friction as

In this section we shall investigate how close coupled



modes effect the modal properties identified using a SDOF 
algorithm. Again, the loss factor values around resonance 
will be examined together with the angle PHI plots.

The equation governing a multidegree of freedom system
is;

- Y ____ !Zwa- (w/ajr)2 + / T]r) (3-32)

where p,q
b)
V

r

r
Ar pq

r
m

coordinates of response and excitation;
i . Vnatural frequency of the r mode; 

loss factor of r mode; 
modal constant of the r ^  mode; 
modal phase of the r mode; 
number of modes.

In the case of two modes only;

+ \l*paW'
ul(l-(.(o/ui2)2-H 1J2) (3-33)

The above equation can be solved to obtain the real and 
imaginary parts of receptance.

The effect of close coupled modes can be investigated 
by altering the natural frequencies of one or both of the 
modes (<*>2 an<̂  w^) so that they converge towards a single
frequency value. The natural frequency of mode 1 («^) was
kept constant at 2 0 Hz while that of mode 2 (w 2 ^ was
decreased from 2 1 to 20 Hz. The input data for



equation 3-33 were as follows;

MODE 1 = 40 rad/sec (20 Hz)
= 0.01

MODE 2 w 2 = 21.0, 20.6, 20.4 20.2, 20.1 and 20.0 Hz 
^2 = 0-01

2 Ap q  “ I - ®  l / * 3
#2 = 0 deg

The mobility modulus and mobility phase plots are displayed 
in figure 3-25 and the corresponding Nyquist plots in 
figure 3-26. Table 3-14 shows the derived modal properties 
from these data using the SDOF identification process.

Some of the 3-D loss factor and angle PHI plots for 
modes 1 and 2 are shown in figures 3-27 and 3-28 
respectively.

The damping plot for mode 1 ( « 2 - 20.6 Hz; 
figure 3-27) indicates a large variation in the loss factor 
estimates. The maximum value occurs at exactly the same 
frequency as that of the second mode. The angle PHI diagram 
also shows a large change at the point where a peak is 
detected on the loss factor plot. As mentioned earlier, the 
angle PHI always increases as the frequency points used in 
the calculation of this angle move away from resonance and 
the only time the angle PHI does not increase is when the
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effect of a neighbouring mode is not negligible.

The angle PHI is increasing for the frequency points 
below resonance but above resonance there is a sudden 
change. Since this change (in the PHI matrix) occurs at the 
frequency points above natural frequency this indicates the

* presence of at least one mode in the neighbourhood of the 
mode under consideration, its natural frequency being higher 
than the mode being analysed. Similarly, plots for mode 2 
(figure 3-28) reveal the presence of at least one mode below 
the second mode.

3.5. CONCLUSIONS
*

For any linear SDOF system the modal parameters are 
independent of the choice of frequency points for their 
derivation, but for close modes and for nonlinear

♦
systems, the choice of points can greatly influence the 
results. In the case of close modes, an error of
the order of 1 0 0 % is not unusual if a simple average is 
taken for the modal parameters for all the combinations of 
points. Large errors may also occur due to the
nonlinearities.

♦ From the study of theoretical data, we have been able 
to calibrate the 3-D plots so that diagrams from the data of 
real structures may be compared with these to identify the 
the type of pollutant and hence to determine what steps 
should be taken in order to reduce its effect in the final 
data e.g. to reduce the effects of cubic stiffness, a low
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level of excitation should be used and to reduce the effect 
of dry friction, a high input force is necessary.

* Isometric plots of loss factor estimates are more 
sensitive to cubic stiffness and close modes than to dry 
friction. A large amount of dry friction produces a

* relatively small change in the shape of the loss factor 
plot. Consequently, dry friction will be more difficult to 
detect from these plots than will cubic stiffness or close 
modes.

♦
In applying the above criteria, one must be very 

careful because the results, in this theses , relate to only 
two types of nonlinearity and it is inevitable that in real 
structures other types of nonlinearities will exist and 
could produce similar effects. Further, it is possible that 
the combination of two or more types of nonlinearity

* together with close modes may also produce similar changes 
in the isometric loss factor plots as illustrated above for 
each type of nonlinearity individually. Nevertheless, the

* above technique provides a useful diagnostic when the data 
are not ideal and care must be taken when interpreting the 
results.

♦
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MODE
NUMBER

NATURAL
FREQUENCY

(Hz)

LOSS
FACTOR 
x1 0 0 0

RMS
ERROR
(%)

MODAL
CONSTANT 
x 1 0 0 0  
(1/Kg)

MODAL
PHASE
(Deg)

1 33.1350 14.47 1.13 3.4293 0.65
2 34.9850 11.50 3.01 4.5876 -170.95
3 79.7560 6.79 0.71 5.0089 -2.55
4 104.4700 13.72 0.89 2.1217 -178.19

*
TABLE 3-01 Identified modal parameters of Y q ^ ^  

(Low level of excitation).

♦

MODE
NUMBER

NATURAL
FREQUENCY

(Hz)

LOSS 
FACTOR x1 0 0 0

RMS
ERROR
(%)

MODAL 
CONSTANT 
x 1 0 0 0 ' 
(1/Kg)

MODAL
PHASE
(Deg)

1 32.9625 15.06 1.62 3.1891 -0.39
2 34.7150 14.20 1.76 4.6423 -157.95
3 79.4060 7.51 0.35 4.8883 -2.18
4 104.2000 12.91 0.57 1.9059 176.73

TABLE 3-02 Identified modal parameters 

(High level of excitation).
of Y07,12
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EXCITATION
LEVEL
(volts y*

NATURAL
FREQUENCY

(Hz)

LOSS 
FACTOR 
x 1 0 0 0

RMS
ERROR
(%)

MODAL 
CONSTANT 
x 1 0 0 0  
(1/Kg)

MODAL
PHASE
(Deg)

0.05 79.1650 6.89 1.56 5.1543 -148.36
0 . 1 0 78.9100 6.87 1.93 4.5386 -134.05
0 . 2 0 78.6650 6.31 5.99 3.8205 -130.65
0.30 78.4900 6.25 4.83 3.5742 -132.33
0.40 78.3350 5.66 8.93 3.1355 -122.31
0.60 78.1100 5.57 13.27 2.9322 -129.79
0.80 77.8600 5.28 17.27 2.6092 -121.65
1 . 0 0 77.6150 7.18 9.65 3.2074 -120.16

TABLE 3-03 : Identified modal parameters of mode 3 for point

mobility 12 as function of excitation
level.

EXCITATION NATURAL LOSS RMS MODAL MODAL
LEVEL FREQUENCY FACTOR ERROR CONSTANT PHASE

*
(volts J* (Hz)

x 1 0 0 0
(%)

xiooo - 
(l/Kg) (Deg)

0.05 103.9800 13.74 0.46 2.8771 10.73
0 . 1 0 103.8900 14.11 0.27 2.8235 12.14

*
0 . 2 0 103.6350 14.60 2 . 2 2 2.7806 21.69
0.30 103.4900 14.68 1 . 2 0 2.6765 28.37
0.40 103.2700 12.89 2.16 2.2755 33.58

* 0.60 102.9200 1 2 . 0 1 3.47 2 . 0 0 1 0 40.60
0.80 102.7100 11.64 6.64 1.9677 30.79
1 . 0 0 102.4200 12.30 4.87 2.0216 38.00

TABLE 3-04 i Identified modal parameters of mode 4 for point

mobility Y ^  12 as function of excitation 
level.

-* l  VoLt ^  22 A/
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*

*

*

*

TABLE OF LOSS FACTORS xIOOO

9 8 7 6 5 4 3 2 1

1 0 14.81 14.29 13.69 12.60 12.55 13.30 12.31 12.90 12.95
1 1 12.58 12.96 1 2 . 8 8 12.23 12.25 12.90 1 2 . 1 2 12.65 12.71
1 2 14.79 14.53 14.11 13.25 13.12 13.64 12.78 13.24 13.25
13 13.17 13.29 13.18 12.64 12.61 13.09 12.42 12.84 1 2 . 8 6

14 14.16 14.10 13.87 13.27 13.16 13.58 1 2 . 8 8 13.25 13.26
15 13.63 13.65 13.52 13.04 12.97 13.35 12.75 13.09 13.11
16 13.07 13.16 13.10 12.73 12.70 13.06 12.54 12.87 12.90
17 13.62 13.64 13.53 13.14 13.07 13.39 1 2 . 8 6 13.16 13.17
18 13.36 13.40 13.33 13.00 12.95 13.24 12.77 13.05 13.07
19 13.78 13.79 13.68 13.33 13.26 13.53 13.05 13.30 13.31

TABLE 3-06 : Experimental loss factor matrix.

VxSCOUS
DAMPING

NATURAL
FREQUENCY

(Hz)

LOSS 
FACTOR 
x 1 0 0 0

RMS
ERROR
(%)

MODAL 
CONSTANT 
x 1 0 0 0  
(1/Kg)

MODAL
PHASE
(Deg)

0.003 2 0 . 0 0 0 0 5.97 13.01 995.77 8.50
0.005 2 0 . 0 0 0 0 10.05 4.75 1004.71 5.31
0 . 0 1 0 2 0 . 0 0 0 0 20.03 0.83 1001.45 2.29
0 . 0 2 0 2 0 . 0 0 0 0 39.99 0 . 2 1 1000.24 0.29

TABLE 3-07 t Identified modal properties as a function of
viscous damping.
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*

TABLE OF ANGLE PHI(DEG)

21 20 19 18 17 16 15 14 13
22 5 3 .3 1 0 6 .1 1 4 2 .8 1 6 5 .4 1 7 9 .6 1 8 9 .1 1 9 5 .9 2 0 0 .9 2 0 4 .7
23 9 0 .3 1 4 3 .0 1 7 9 .8 2 0 2 .3 2 1 6 .6 2 2 6 .1 2 3 2 .8 2 3 7 .8 2 4 1 .6
24 1 1 2 .9 1 6 5 .7 2 0 2 .4 2 2 5 .0 2 3 9 .2 2 4 8 .8 2 5 5 .5 2 6 0 .5 2 6 4 .3
25 1 2 7 .2 1 8 0 .0 2 1 6 .7 2 3 9 .3 2 5 3 .5 2 6 3 .1 2 6 9 .8 2 7 4 .8 2 7 8 .6
26 1 3 6 .8 1 8 9 .5 2 2 6 .3 2 4 8 .9 2 6 3 .1 2 7 2 .6 2 7 9 .4 2 8 4 .3 2 8 8 .2
27 1 4 3 .6 1 9 6 .3 2 3 3 .1 2 5 5 .6 2 6 9 .9 2 7 9 .4 2 8 6 .1 2 9 1 .1 2 9 4 .9
28 1 4 8 .6 2 0 1 .3 2 3 8 .0 2 6 0 .6 2 7 4 .9 2 8 4 .4 2 9 1 .1 2 9 6 .1 2 9 9 .9
29 1 5 2 .4 2 0 5 .1 2 4 1 .9 2 6 4 .4 2 7 8 .7 2 8 8 .2 2 9 4 .9 2 9 9 .9 3 0 3 .7
30 1 5 5 .4 2 0 8 .2 2 4 4 .9 2 6 7 .5 2 8 1 .7 2 9 1 .2 2 9 8 .0 3 0 2 .9 3 0 6 .8
31 1 5 7 .9 2 1 0 .6 2 4 7 .3 2 6 9 .9 2 8 4 .2 2 9 3 .7 3 0 0 .4 3 0 5 .4 3 0 9 .2

TABLE OF LOSS FACTORS xIOOO

21 20 19 18 17 16 15 14 13
22 9 . 9 B 10 02 10 02 10 02 10 02 10 02 10 02 10 02 10 .0 2
23 1 0 . 00 10 02 10 .0 2 10 02 10 02 10 02 10 02 10 02 10 .0 2
24 1 0 . 01 10 02 10 .0 2 10 02 10 02 10 02 10 02 10 02 10 .0 2
25 10 01 10 02 10 .0 2 10 02 10 .0 2 10 02 10 .02 10 .0 2 10 .0 2
26 10 01 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2
27 10 01 10 02 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2
28 10 02 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2
29 10 02 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2
30 10 02 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2
31 , 10 02 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2 10 .0 2

TABLE OF MODAL CONSTANTS (1 /K q )

21 20 19 18 17 16 15 14 13
22 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0
23 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0
24 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0
25 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0
26 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0
27 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0
28 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0
29 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0
30 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0
31 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0 1 .0 0

TABLE 5~08 t Angle PHI, loss factor and 

matrices for viscous damping (
modal constant 

= 0.005).
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SOFTENING
CUBIC

STIFFNESS
(nf2)

NATURAL
FREQUENCY

(Hz)

LOSS
FACTOR
x 1 0 0 0

RMS
ERROR

(%)

MODAL
CONSTANT
x 1 0 0 0  
(1/Kg)

MODAL
PHASE

(Deg)
50 19.9775 9.76 8.95 973.97 -168/42

2 0 0 19.9225 9.25 19.64 919.65 -151.97
400 19.8675 8.89 20.90 881.02 -143.55
600 19.8275 8.65 23.08 855.10 -140.06

EXACT VALUE 2 0 1 0 0 1 0 0 0 -180

TABLE 3-09 : Identified modal properties as a function of 
softening cubic stiffness (F = 1.0 N/Kg).

*

*

*

SOFTENING
CUBIC

STIFFNESS
, -2 *(m )

SLOPE OF 
VERTICAL 
AVERAGE
(m )

MAXIMUM VALUE OF 
DIAGONAL AVERAGES

LOSS FACTOR

50 3.64E-04 0 . 0 1 0 0

2 0 0 6.12E-04 0.0098
400 7.35E-04 0.0094
600 8.15E-04 0.0093

EXACT VALUE 0 . 0 1

TABLE 3-10 : Slope of vertical averages and maximum value of
the diagonal plot as a function of
softening cubic stiffness
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EXCITATION
FORCE
(N/Kg)

NATURAL
FREQUENCY

(Hz)

LOSS 
FACTOR 
x 1 0 0 0

RMS
ERROR
(%)

MODAL 
CONSTANT 
x 1 0 0 0  
(1/Kg)

MODAL
PHASE
(Deg)

0.5 19.9775 9.76 8.95 973.97 -168.42
1 . 0 19.9225 9.25 19.64 919.65 -151.97
1.5 19.8325 8.59 42.80 849.15 -121.62
2 . 0 19.7775 8.24 26.43 813.25 -131.73

EXACT VALUE 2 0 1 0 0 1 0 0 0 -180

TABLE 5-11 : Identified modal properties as function of
excitation force ( 0 = 200 m” ;.

DRY
FRICTION
(N/Kg)

NATURAL
FREQUENCY

(Hz)

LOSS 
FACTOR 
x 1 0 0 0

RMS
ERROR
(%)

MODAL 
CONSTANT 
x 1 0 0 0  
(1/Kg)

MODAL
PHASE
(Deg)

0 . 1 0 19.9975 1 1 . 1 2 3.51 923.92 4.70
0.25 19.9975 12.60 1.83 739.19 3.83
0.40 19.9975 14.67 3.55 529.82 2.27
0.55 20.0050 16.71 8.47 274.99 -2.61

EXACT VALUE 2 0 1 0 0 1 0 0 0 -180

TABLE 3- 12 : Identified modal properties as function of dry 
friction (F = 1.0 N/Kg).



EXCITATION
FORCE
(N/Kg)

NATURAL
FREQUENCY

(Hz)

LOSS 
FACTOR 
x 1 0 0 0

RMS
ERROR
(%)

MODAL 
CONSTANT 
x 1 0 0 0  
(1/Kg)

MODAL
PHASE
(Deg)

0.5 20.0050 16.74 5.98 401.55 -3.11
1 . 0 19.9975 12.60 2.94 739.17 3.83
2 . 0 19.9975 1 1 . 1 0 3.72 865.19 4.70
5.0 19.9975 10.47 4.38 953.28 5.08

EXACT VALUE 2 0 1 0 0 1 0 0 0 0

: Identified modal properties as 
excitation force (R = 0.25 N/Kg).

TABLE 3-13 function of
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MODE1

INPUT 
NATURAL 

FREQUENCY 
OF MODE 2

(Hz)

NATURAL
FREQUENCY

(Hz)

LOSS
FACTOR
x1 000

RMS
ERROR

(%)

MODAL
CONSTANT
x1 000 
(1/Kg)

MODAL
PHASE

(Deg)
21.0 19.9950 9.50 13.02 930.97 9.36
20.6 20.0100 8.73 11.78 870.93 -2.46
20.4 19.9850 10.37 8.22 987.08 18.90
20.2 19.9850 19.69 12.89 2982.87 51.13
20.1 20.0550 12.66 4.54 2178.98 0.60
20.0 20.0050 10.00 0.01 2000.10 -0.01

EXACT VALUE 20 10 0 1000 0

MODE 2

INPUT
NATURAL NATURAL LOSS RMS MODAL MODAL

FREQUENCY FREQUENCY FACTOR ERROR CONSTANT PHASE
OF MODE 2

x1 000 x 1 000
(Hz) (Hz) (%) (l/Kg) (Deg)
21.0 21.0050 9.16 3.78 891.77 0.97
20.6 20.5800 6.96 29.79 783.66 17.37
20.4 20.3600 6.54 40.74 810.31 33.11
20.2
20.1
20.0

20.2250 18.50 7.88 2835.69 -51.91

EXACT VALUE INPUT VALUE 10 0 1000 0

TABLE 3-14 Identified modal properties of modes 1 and 2
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FIGURE 3-01 The general view of the NASTRAN test
structure
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FIGURE 3-02 : Mobility modulus plot of measured and 
generated data of Y ^  ^

(Low level of excitation).

FIGURE 3-03
LOG FREQUENCY Ofe>

Mobility modulus plot of
generated data of Y0̂7,12
(High level of excitation).
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FIGURE 3-04 : Mobility modulus and Nyquist plots for point 

measurement Y ^  2̂ 
excitation (mode 3).

under constant levels of
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FIGURE 3-05 Mobility modulus and Nyquist plots for point 
measurement Y12j12 under constant 
excitation (mode 4).

levels of
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FIGURE 3-06 : Circle fit in the Nyquist plane.

FIGURE 5-07 : An isometric representation of table 3-05.
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FIGURE 5-08 : An isometric plot of experimental loss factor
matrix.
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FIGURE 3-09 : Mobility modulus, mobility phase and Nyquist

plots for varying levels of viscous damping.

LIN



VER
TIC

AL

88

— R-S ? ~ 1 0 : Isometric and conventional plots of angle
for viscous damping ( £ = 0 0 0 5 ).
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FIGURE 3~ 1 1 s Isometric and conventional plots of loss
factor for viscous damping ( £ = 0 0 0 5 ).
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FIGURE 3-12 Isometric and conventional plots of modal
constant for viscous damping ( £= 0 0 0 5 ).
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FIGURE 3-13 : The jump phenomenon for the softening spring.
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softening cubic stiffness



i 

t 
• ... 
.t 

; 

~ 
Z ., 
l 

• 

.. ... 

... .•. ... .. .. 

.. ... 
.. 

I II! ; 
'I II t 
~ l • 

FIGURE 3-17 

... . ..... 

.. 

..... 

... 
N 

! 
..I 

! 

-

~ 
;; 
e 
~ 
! 

I 

I 

~ 
N 
e 
:! 
! 

! 

I 

95 -

= 

t 
• r 

~ 

• ~ ., 
i 
~ 

• 

. ... 
. ....................... 

. . ... 

.... . ... .. ... 

I • ., 
'I Id 
J.\1'l .. 

......... 

• i 

! 
..I 

~ 
N 
e 
:! 
! , 
II: 

I 

~ 
; 
e 
! 
! 

! ,. 

I 

Mobility modulus, mobility phase and Nyquist 

plots of softening cubic stiffness for varying 

levels of excitstinn ~n~~Q 



♦
€

*

LOSS FACTOR 8 • LOSS FACTOR

#
*

CU
BI
C 
ST
IF
FN
ES
S*
 
F 
- 
2.
0 
N/
Kg

CD CD



X 
+ 2

£(i
)qX
 +
 U)20

{X
 -

fi
x3

) =
 Fe

97

*

FIGURE 3-19 : Mobility modulus, mobility phase and Nyquist
eplots as function of softening cubic stiffness

for .various excitation frequencies.
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FIGURE 3-20 i Mobility modulus, mobility phase and Nyquist
plots for varying levels of dry friction.
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d ry FRICTION* R - 0.55 N/Kg
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FIGURE 3-21 : Isometric loss factor plots for dry friction.



FIGURE 5~22 : Mobility modulus, mobility phase and Nyquist
plots of dry friction for varying levels of
excitation force
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DRY FRICTION: F - 1- 0 N/Kg

FIGURE : Isometric loss factor plots of dry friction

for varying levels of excitation force.
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FIGURE 3-24 : Mobility modulus, mobility phase and Nyquist

plots as function of dry friction for various 
excitation frequencies.
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FIGURE 3-23 Mobili ty 
linear

modulus and mobility phase plots 
two-degree-of-freedom system

for
for

varying resonance frequencies of mode 2.
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FIGURE 3-26 : Nyquist plots for linear two-degree-of-freedom 

system for varying resonance frequencies of
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for o>2 » 20.6 and 21.0 Hz.
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FIGURE 3-28 : Isometric plots of angle PHI and loss factor 

of mode 2 for = 20.6 and 21.0 Hz.



CHAPTER
- 4-



4. A DETAILED STUDY OF SOME MODAL PROPERTIES OF THE
'NASTRAN' STRUCTURE

4.1, INTRODUCTION

In section 3.2.1 it was noted that the 'NASTRAN1

structure (figure 3-01) is nonlinear. This was shown by
testing the structure at several different but constant 
levels of excitation. Since the mobility modulus and 
Nyquist plots were found to be force dependent, the 
structure must be nonlinear.

In this chapter we shall try to identify the 
nonlinearities and, if possible, see how 'accurate' modal 
properties may be obtained even in the presence of these 
pollutants. But before this, it is necessary to outline the 
criterion to be used to check the quality of the identified 
modal properties.

4.2, ASSESSMENT OF THE QUALITY OF IDENTIFIED MODAL
PROPERTIES

The first step in checking the measured modal
properties is to see how large is the variation in the 
different estimates of loss factor around resonance. This 
is easily done by noting the RMS error: the smaller the
error, the better the results. A second check that can give 
some indication of the reliability of the data is the degree 
of complexity of the modal constant (value of modal phase): 
the closer the modal phase is to 0 or 180 degrees, the
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greater the confidence in the identified value. Sometimes 
the second check can give misleading information because 
close modes and nonproportionally damped
structures can also produce large values of modal phase. 
Nevertheless, this serves as a first check and warns the 
analyst.

*
Another method of assessing the reliability of 

measured modal data is by examining the consistency of the 
various parameters measured at different points on the 

% structure. All the frequency response functions should
yield identical results for the natural frequencies and 
damping values for each mode analysed. Any discrepancies

* encountered must be justifiable in terms of the accuracy of 
the various measured quantities but close inspection of this 
feature often reveals wider scatter than can be attributed 
to 'measurement errors'. A more discriminating check can be

*
obtained from the other parameters - the modal constants. 
The nature of this check is to make measurements with the 
excitation at various points on the structure so that we

* obtain a set of modal constants;

rA jp' rA jq etc> r = 1,1117 j = 1'n "

* where p,q are the points of excitation.

In a simple example, we shall consider two series of
measurements, first with the exciter at point p and secondly
at point q. Amongst the many frequency responses measured
will be a , a _ in the first series and a , a in thePP qp pq qq
second. For each mode of the structure we shall thus find;
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*

*

rApp' rAqp' rApq' rAqq

and it may be seen from the definition of modal constant 
(equation 2-09) that these four values should be 
inter-related so that;

r ^ p p  qq r  ̂ p q  r ^ q p  ®
(4-01)

If we define;

A =i-^£E—dsi (4-02)

then the closeness of to zero will provide an assessment 
of the reliability of the results obtained for that mode.

Two alternative versions of the same concept are
(i) the measurement and comparison of a reciprocal pair of
frequency responses, a and a and (ii) the use of twoPq qP
measured (and analysed) functions - such as ^ and 0 - top p  qp
predict or synthesize the respective third - a • While theqq
first of these checks is useful, the second can sometimes 
give a falsely negative results because of limitations to 
the amount of data used [50].
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4.3. CONSTANT FORCE TESTS ON THE 'NASTRAN' STRUCTURE

4.3.1. IDENTIFICATION OF NONItINEARITIES

For this study we shall examine the response of the 
'NASTRAN' structure (figure 3-01) at two points - 7 and 12 
- due to sinusoidal excitation at these points, exciting one 
point at a time. First the structure was tested to check 
for nonlinearities by the simple procedure of constant 
forcing levels. Results from similar tests were shown in 
chapter 3 but it was necessary to repeat these tests as 
there was a gap of about 9 months between the first tests 
and this more detailed study. Mode 3 was considered to be a 
good specimen for the purpose of detecting nonlinearities 
because it is well separated from other modes (figure 4-01) 
and any variation in the loss factor plot could reasonably 
be attributed to nonlinearities rather than to close modes.

Exciting one point at a time - 7 or 12 - and measuring 
the response at points 7 and 12, produces a 2x2 mobility 
matrix: shown in table 4-01. Some of the measured data for 
^ 1 2  1 2 an<̂  ^07 1 2 at several constant forcing levels are 
shown in figures 4-02 and 4-03 respectively. These plots 
show a slight drop in the mobility modulus and a large 
decrease in the natural frequency as the forcing level is 
increased. As in the last chapter, these data were analysed 
using a SDOF algorithm and the modal properties thus 
extracted are shown in tables 4-02 and 4-03 for .̂2 an<̂  
Y07 12 resPectively- The modal properties for 0 7  and 
Y07 07 were a^so identified and are given in reference 36.



As the excitation force increases:
(i) the resonance frequency decreases;
(ii) the loss factor decreases;
(iii) in general, the modal constant decreases;
(iv) the complexity of the modal constant increases;
(v) the RMS error increases, indicating a large 

scatter in the damping estimates at high levels 
of excitation.

Isometric loss factor plots were constructed and are 
displayed in figures 4-04 and 4-05 for 1 2 an<̂  Y07 12
respectively. These plots indicate a systematic change, 
rather than a random one, in the estimated damping values 
around resonance. The plots for a low level of excitation 
(F = 0.05 v) show a reasonably flat surface, except near the 
origin (two adjacent points around resonance) where the 
value of damping is largest compared with the rest of the 
values and may be due to some type of frictional 
nonlinearity - perhaps dry friction (compare this plot with 
those with dry friction given in chapter 3).

As the forcing level increases, the plots lose their 
flatness and become tilted, somewhat similar to cubic 
stiffness plots, and this suggests a stiffness type of 
nonlinearity (cubic stiffness). For a high level of 
excitation (F = 1.0 v), there is a larger variation in 
estimates of loss factor for different points around the

The following conclusions are drawn from the extracted
modal properties of tables 4-02 and 4-03;
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resonance frequency. The first indication of this is given 
by the large RMS error in the modal properties of 
tables 4-02 and 4-03.

The isometric plots, together with the mobility 
modulus and Nyquist diagrams, indicate the presence of two 
types of nonlinearity, a frictional type (dry friction) - 
the effect of which is maximum at low levels of excitation - 
and a softening stiffness type nonlinearity (softening cubic 
stiffness) - the effect of which increases with increasing 
force. The softening cubic stiffness nonlinearity is the 
dominant of the two. The effect of dry friction is very 
small; and it may be ignored, hence we shall not consider it 
in subsequent analysis of the NASTRAN structure.

4,3.2, ASSESSMENT OF IDENTIFIED MODAL PROPERTIES

Next we shall employ the criterion outlined in 
section 4.2 to examine the quality of the identified modal 
properties.

Tables 4-02 and 4-03 show an increase in both the 
modal phase and the RMS error as the excitation force 
increases and hence an indication of a drop in the quality 
of the identified modal parameters. For a given excitation 
force, we have four estimates of the natural frequencies for 
each mode, one for each of the measured mobility plots 
listed in table 4-01. Figure 4-06 shows these four 
estimates plotted as a function of the excitation level. At 
low forcing levels, the calculated values of the natural



frequencies are reasonably close to each other (as indeed 
they should be because the natural frequency is a property 
of the structure and in theory is independent of the points 
of excitation and response), but at high levels (F = 0.8 and 
1.0 v) there is a large spread. Consequently, at high 
levels of excitation the confidence in the calculated 
natural frequency is low.

Figure 4-07 shows the variation of AA as a function of 
the excitation force. At low levels of excitation, values 
of Aa  are close to the zero line (AA < 5%) but as the force 
increases so does AA . The value of AA being close to zero 
does not necessarily mean that the identified modal 
constants are accurate, as two or more errors in these 
parameters can cancel out and give misleading results. 
However, if AA is not close to the zero line, then certainly 
the modal parameters cannot be accurate. A deviation of 10% 
from the zero line is considered to be acceptable for most 
practical applications. In this case the values of AA for 
high levels of excitation are greater than 1 0 % - one being 
close to 35% - hence using these identified modal parameters 
in further analysis may lead to inaccurate predictions or 
inaccurate model of the structure.



4.4. CONSTANT AMPLITUDE OF VIBRATION TESTS ON THE 'NASTRAN'
STRUCTURE

4.4.1. WHY USE CONSTANT AMPLITUDE OF VIBRATION ?

All the evidence from the measurements point to a 
particular type of nonlinearity - softening stiffness - as 
being dominant. Nonlinearities of this kind can be 
represented analytically by?

f -Jur{i-(7,* + T2*J‘r3*s + ..)} (4-03)

where F - the force;
k - stiffness coefficient;
X - displacement of spring?

T l '^2'” - constants •

If the vibration displacement amplitude is kept constant as 
the frequency of excitation (w) varies, then the expression 
in the curly brackets of equation 4-03 is a constant 
(say <r ), thus ?

F = kXa

= k X (4-04)

where k = ka

Equation 4-04 is of the same form as a linear spring 
although k* is now smaller than k (for a hardening spring k' 
will be larger than k). This means the natural frequency of 
a system with a softening type nonlinearity will be lower
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than its natural frequency if the nonlinearity was not 
present = k/m) . As the amplitude of vibration (X)
increases, the value of X' decreases and for a given 
amplitude it remains constant. Thus, constant amplitude of 
vibration tests on any structure with a stiffness type of 
nonlinearity will effectively linearise the structure and 
produce data that can be analysed using a linear algorithm 
but it must be borne in mind that the identified modal 
properties are amplitude-dependent and are, in turn, 
dependent on the force and are not the 'true' (linear) 
values.

4.4.2. TEST WITH CONSTANT AMPLITUDE OF VIBRATION

4

These tests can only be carried out using sinusoidal 
excitation because it is not possible to keep the amplitude 
of vibration constant with any other type of excitation. 
The amplitude of vibration of point 12 was kept constant and 
the response was measured at points 12 and 7 first with the 
input force at point 1 2 and then with the force at point 7. 
Figures 4-08 and 4-09 show the mobility modulus and Nyquist 
plots for mode 3 from ^2 an<̂  ^07 12 resPective^y • By 
comparing these diagrams with those with constant force 
(figures 4-02 and 4-03) shows the effect of keeping the 
amplitude constant. Each plot appears to be linear but 
differs from the other plots in the sense that the resonance 
frequency is not the same for any two plots. The Nyquist 
plots of these data appear to form continuous circles, 
unlike the constant forcing tests which had large
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distortions in the spacing of frequency points. As the 
amplitude of vibration increases, the modal diameter 
decreases but still remains circular. The modal properties 
identified from these plots are given in tables 4-04 
and 4-05.

Tables 4-04 and 4-05 show that the RMS error is now 
very small (less than 2%) and also the modal phase is close 
to 0 or 180 degrees. These results indicate the apparent 
linearity of the structure for a given value of amplitude. 
The variation in the natural frequencies and the damping for 
different mobilities (i.e. Y^2 12 etc *) are more 
consistent than in the constant force tests.

Some of the 3-D loss factor plots for an<̂  

Y07 12 are 9^ven figures 4-10 and 4-11 respectively. All 
these diagrams are flat, without exception, and are similar 
to those obtained from the analytical linear model 
(chapter 3). As the amplitude of vibration increases the 
3-D plots are shifted (i.e. damping increases) but the plots 
retain their flatness. These results prove that the 
structure's main nonlinearity is the stiffness type which we 
have been able to linearise using constant amplitude of
vibration tests.
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4,4.3, ASSESSMENT OF RESULTS

The variation of AA as a function of the amplitude of 
vibration of point 12 of the 'NASTRAN' structure 
(figure 3-01) is shown in figure 4-12. The deviation of AA 
from the zero line is much smaller (less than 7%) compared 
with the values obtained for the constant force cases 
(figure 4-07).

The values of A^ are not zero, as they should be in 
theory, because;

(i) of the random errors in the measured data;
(ii) the structure is most likely to posess other 

types of nonlinearities as well as the softening 
stiffness and dry friction.

♦ 4,5. CONCLUDING REMARKS

The constant force results showed that the 'NASTRAN' 
structure is nonlinear with at least two types of

* nonlinearity - frictional type (dry friction) and softening 
stiffness (softening cubic stiffness) - the latter being the 
dominant.

•
The effect of cubic stiffness can be reduced by 

decreasing the excitation force but unfortunately this 
increases the effect of dry friction (see chapter 3). Since 
cubic stiffness is the dominant nonlinearity in this case, 
low levels of excitation force should be used in order to
obtain accurate modal properties. The identified modal



parameters have very good consistency at low forcing levels 
(table 4-02 and 4-03), however, it is not always possible to 
excite a structure adequately using low excitation force 
because this usually results in a high level of signal to 
noise ratio in the measured data, which is just as 
undesirable as the effect of nonlinearities. Instead, a 
constant amplitude of vibration should be used as this will 
give better results than equivalent constant force. 
However, it is much more difficult in practice to control 
the amplitude of vibration than the force, especially for a 
nonlinear structure because the response is not directly 
proportional to the force (i.e. doubling the force does not 
necessarily double the response).

In any event, using a constant amplitude of vibration 
does not solve all the problems because large amplitudes of 
vibration also give inconsistent modal properties but the 
inconsistency is smaller than that for the constant force. 
The main disadvantage of using constant amplitude excitation 
is that in practice, the amplitude can only be kept constant 
over a very narrow frequency range, constant force 
excitation can be used over a much wider frequency range. 
For example, in this study it was possible to use a constant 
value of excitation force for the first four modes, but the 
constant amplitude was applicable for the first two modes 
only and this value had to be reduced for the higher modes. 
It appears that each method has its merits? a constant force 
of excitation helps to identify the type of nonlinearities 
present in the data and a constant amplitude of vibration
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serves to produce an equivalent linear structure in the case 
of stiffness type of nonlinearities.

♦

♦

*

»



121

Y07,07 Y07,12

_Y 12,07 Y 12,12

TABLE 4-01 : Measured mobility matrix.

EXCITATION
LEVEL
(volts)

NATURAL
FREQUENCY

(Hz)

LOSS 
FACTOR x1 000

RMS
ERROR
(%)

MODAL 
CONSTANT x 1 000
(1/Kg)

MODAL
PHASE
(Deg)

0.05 79.26 6.92 1.13 5.0995 26.44
0.10 79.14 7.01 2.15 4.9940 20.83
0.20 78.94 5.52 7.97 3.6666 24.93
0.30 78.71 4.83 10.68 3.0346 55.45
0.40 78.59 6.48 11.43 3.9054 37.14
0.60 78.32 5.09 21.88 2.7485 40.24
1.00 77.94 4.37 23.13 1.9256 43.92

TABLE 4-02 : Identified modal properties of mode 3 for
measurement 
level.

^12 12 as fuuotion of excitation

EXCITATION NATURAL LOSS RMS MODAL MODAL
LEVEL FREQUENCY FACTOR x 1 000 ERROR CONSTANT x1 000 PHASE
(volts) (Hz) (%) (l/Kg) (Deg)
0.05 79.24 6.96 0.29 4.5812 30.32
0.10 79.14 7.06 1.89 4.4925 20.23
0.20 78.94 5.99 8.66 3.5805 22.26
0.30 78.72 5.53 8.59 3.1249 45.25
0.40 78.56 5.38 9.19 2.8628 48.21
0.60 78.32 5.40 24.25 2.6898 37.28
1.00 77.89 4.67 21.33 1.9032 62.55

TABLE 4-05 : Identified modal properties of mode 3 for 
measurement Y ̂  ^  as function of excitation
1 evel
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AMPL. OF 
VIBRATION 
OF Pt. 12

(/urn)

NATURAL
FREQUENCY

(Hz)

LOSS 
FACTOR 
x 1 000

RMS
ERROR
(%)

MODAL CONSTANT 
x1 000 
(1/Kg)

MODALPHASE
(Deg)

5 79.35 7.60 0.35 5.3679 -3.39
8 79.20 7.82 1.00 5.4319 -4.26
10 79.09 7.87 0.60 5.1604 -4.47
12 78.96 8.84 0.28 5.4887 -3.39
15 78.84 9.09 0.49 5.3959 -4.07
20 78.65 9.56 1.89 5.1155 -10.53

TABLE 4-04 : Identified modal properties of measurement 

^12 12 as ^unc ^̂ -on amplitude of vibration of 
point 12 (mode 3)•

AMPL. OF 
VIBRATION 
OF Pt. 12

(Mm)

NATURAL
FREQUENCY

(Hz)

LOSS 
FACTOR x 1 000

RMS
ERROR
(%)

MODAL 
CONSTANT x 1 000 
(1/Kg)

MODAL
PHASE
(Deg)

5 79.34 7.71 1.02 4.9049 -1.40
8 79.19 7.88 0.79 4.8804 0.06
10 79.08 7.99 0.92 4.6907 -2.09
12 78.95 8.81 0.87 4.8711 -1.80
15 78.84 8.97 0.67 4.7341 -3.77
20 78.62 9.87 0.93 4.7820 -1.43

STABLE 4-05 : Identified modal properties of measurement

^07,12 as ^unction of amplitude of vibration of 
point 12 (mode 3).
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Y07. 07

Y
12. 12

FIGURE 4-01 : Measured point mobility modulus plots of

Y07,07 and Y 12,12*
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^12 12 ^ ons^an^ ^opce)

^12 12 ^ ons^an  ̂■Potcg)
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FIGURE 4-02 Mobility modulus and 
for point measuremen 
forcing levels.

Nyquist
t Y

1 2 , 1 2

plots of mode 3
under constant



125

%

Yq? ^  (Constant force)

Yq? (Constant force)

FIGURE 4-0? : Mobility modulus and Nyquist plots of mode 3
for point measurement YQ7f12 under constant 
forcing levels.
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FIGURE 4-04 Isometric loss factor plots of mode 3 for

measurement * 12,12 nnier constant forcing 
levels.
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FIGURE 4-05 Isometric
measurement

loss factor plots of moc

^07,12 under constant
3 for 

forcing
levels.
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Y0707. Y1207. * • * • • Y1212.
MODE 3.

Y0712.

FIGURE 4-06 : Variation of natural frequency as a function 
of excitation force (mode 3).

■ FORCE Cv»lU> 1

FIGURE 4-07 : A. as function of the excitation level. ---------------  A
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Y 12 12 <C o n s t a n t  a m p l i t u d e )

Y 12 12 C o n s t a n t  amplitude)*

IMG ^

s• • ,r• • i
• •• •*.. •

• •
• •
• •
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Amp11 tudo Incroa*i ng
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FREOUENCY RANGE i 7 7  H z TO BO Hz.

FIGURE 4-08 : Mobility modulus and Nyquist plots for Y 1 _I C» y I ̂
under constant amplitude of vibration of point 
12 (mode 3)•
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7 7  U IN  FREQUENCY <Hz> BO

Y q ? ^  C o n s t a n t  a m p l i t u d e )

FIGURE 4-09 : Mobility modulus and Nyquist plots for Yn0 i f 1 2
under constant amplitude of vibration of point 
12 (mode 3)•
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FIGURE 4-10 : Isometric loss factor plots for measurement 

^12 12 un<*er constant amplitude of vibration 
of point 12 (mode 3)»
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FIGURE 4-11 i Isometric loss factor plots for measurement 

Yq ? .j 2 under constant amplitude of vibration 
of point 12 (mode 3).
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FIGURE 4-12 : as function of the amplitude of vibration.
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5. SIMULATION OF NONLINEAR-SINGLE-DEGREE-OF—FREEDOM SYSTEMS
USING AN ANALOGUE COMPUTER

5 -1. GENERAL

The recent past has seen many advances in the 
measurement of frequency response data. The availability of 
computing power makes it possible to carry out complex 
operations on the measured data at the same time as they are 
being measured. Statistical methods based on 
fast-Fourier-transformation (FFT) are very desirable under 
certain circumstances. A structure is excited using random 
or transient input and the response is measured in the time 
domain and is then transformed from the time domain into the 
frequency domain. These nonsinusoidal techniques are very 
useful for testing structures when the environmental input 
disturbances cannot be controlled, e.g. noise, ground 
vibrations, wind loading, etc. Another advantage of such 
methods is the high speed at which they permit us to acquire 
the test data, compared with the case of sinusoidal 
excitation.

Fast Fourier Transform machines usz of Duhamel's 
Integral [47,31], which is linear and therefore the 
structure's linearity automatically assumed. 
Unfortunately, very few complex structures are linear and 
hence do not fall into the linear category. Even though FFT 
machines are intended to test only linear structures, it is 
quite common practice to make use of them for all sorts of 
structures and situations. Before using FFT machines on
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nonlinear structures, it is essential that the effects of 
nonlinearities on the test data are investigated. For this 
study we shall use an analogue computer because it is very 
difficult to solve nonlinear equations to obtain analytical 
solutions and the degree of difficulty is increased many 
fold if the input function (force) is nonsinusoidal.

5.2. ANALOGUE COMPUTER

Analogue simulation can contribute a great deal to the 
development and utilization of mathematical models in 
dynamic systems. Multi-degree-of-freedom systems with known 
modal properties and nonlinearities can easily be simulated. 
To study the response of these systems to different types of 
excitation does not present any difficulty as would be the 
case for a numerical study.

The operation of an analogue computer is very simple 
because there are only two primary components; integrators 
and summers [48]. The symbols of these and other components
used for this study are given below

SYMBOL NAME

m x INVERTER

X.

X

2

1
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#

%

*

X------► -ofyX d t INTEGRATOR

x— *— x ^ y ------- a<1 P°T

Different combinations of integrators and summers 
simulate the desired model. Because the analogue computer 
can only integrate a function and not differentiate it, a 
differential equation can only be solved for the highest 
derivative in the equation. However, further integration 
produces the next derivative down and so on until all the 
variable are computed [49] (e.g. X, X and X).

In this study the response of a nonlinear SDOF system 
will be investigated when excited using sinusoidal, random 
and transient inputs. Sinusoidal excitation should produce 
the same results as those obtained from the analytical 
solutions in chapter 3 and comparison of these data with the 
analytical values will serve to indicate the accuracy of 
representing such systems on an analogue computer.

Only two types of nonlinearity are examined: softening 
cubic- stiffness and dry friction.
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5.3, SOFTENING CUBIC STIFFNESS SYSTEM

As before, the equation of motion of a SDOF system 
with viscous damping and softening cubic stiffness is;

*

*

• *5 l I S-01 IX + 2&qX + a20(X - /SAT3) = F(t) V '

where £ - viscous damping ratio (0.005);
- natural frequency (10 rad/sec);

_2/3 - cubic stiffness coefficient (m );
F(t) - forcing function (N/Kg).

When the above values of coefficients are substituted, 
equation (5-01) becomes;

X + 2 X 0.005 X 10* + 10 2{X -0X3) = F(t)

X + 0.1* + 100(* -0*3) = F(t)

X = F(t) - 0.1* - 100AT + 100/S*3

or X = ~[-F(/) + 0.1* + 100* - 100/SAT3} (5-02)

In the steady-state, the integral of X gives & and the 
integral of X is equal to X.
Mathematically;

X = JXdt

(5-03)

X = J Xdt
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It is necessary to estimate the maximum values of X, X and X
so that the equations can be 'scaled' to prevent the 
computer from overloading. The analogue computer used for 
this study (SAE 381) becomes overloaded if the voltage in 
any part of the circuit exceeds 15 volts. It has been 
found, by a trial-and-error method, that the maximum values 
of X, X and X are likely to be 1 m/sec , 0.1 m/sec and 
0.01 m respectively. If the estimated values are lower than 
the actual values then the computer will overload, on the 
other hand, if the maximum values are overestimated then the 
output signals will be very small and noise is likely to 
have a large effect on the measured data (signal). Using 
these values;

—F(t) + 0.1

(5-04)

and

or (5-05)
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and also X = J Xdt

aoi(4 ) - M £ > ‘ 

°r (ife ) - 10 J

Equations 5-04 through 5-06 can be represented on a circuit 
diagram as shown in figure 5-01. So far we have not placed 
any conditions on the forcing function F(t) and so it can be 
either sinusoidal, random or transient.

Another type of scaling that is often used is the 
'time scale' the effect of this is to represent the real 
time in computer time units i.e. it slows or speeds up 
simulated process. This is especially useful when the 
actual process might take too long or the time duration of a 
process is too short. For example, in order to study the 
creep properties of a material an actual experiment can take 
several years, but it can be simulated on an analogue 
computer and the results obtained in a much shorter time.

In this study, a time scale of 0.1 seconds was used, 
the effect of which is to divide any time-dependent function 
by 10 e.g. the natural frequency will be shifted from 10 to 
100 rad/sec, the force simulated in the circuit will be 100 
times the input force and the acceleration signal output 
will also be 100 times the real value. Since we are 
interested in the ratio of (X/F) and both of these
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quantities are multiplied by 100, the ratio remains 
unaltered. However, the measured frequency will be 10 times 
the set frequency (i.e. the circuit will resonate at 
100 rad/sec rather than at 10 rad/sec).

The nonlinearity in the circuit (0) was changed by 
altering the pot setting K (equation 5-04 and figure 5-01). 
Below is a table of values of pot setting for different 
amounts of nonlinearity coefficient (0):

Pot Setting (K) _2Nonlinearity ( 0 m )

0.05 50
0.20 200
0.40 400
0.60 600

Three types of input were used; Sinusoidal,Random and 
Transient.

*
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5-3.1. SINUSOIDAL EXCITATION

A Solartron 1172 Frequency Response Analyser (FRA) was 
used for these tests. The input force was kept constant as 
the frequency varied and tests were carried out at different 
but constant values of nonlinearity coefficient (0).

The mobility modulus and Nyquist plots are presented 
in figure 5-02 and the modal properties obtained using a 
linear SDOF algorithm are shown in table 5-01. Isometric 
loss factor plots were constructed and are displayed in 
figure 5-03. These results are very similar to those 
obtained from the analytical study of a system with 
softening cubic stiffness and so the conclusions drawn from 
the analytical study apply equally to this case, confirming 
the correct representation of the system by the analogue 
circuit (figure 5-01).

5.3.2. RANDOM EXCITATION

For this part of the study, a 2-channel FFT machine 
(HP5420A) was used. The forcing function of equation 5-04, 
F(t), is now random (white noise) and the response of the 
system was measured and processed by the HP5420A. The
transformation of both signals from the time domain to the
frequency domain was carried out and the data displayed in 
the form of mobility modulus and Nyquist plots
(figure 5-04) for (he jolfov'ny ce-nd'ho-ns >

S/x (u)
tc-ntrc frequency = '^*2 ; = 2-otfz ; forty*5 s ,o0 > H({̂  5 Sff M

These graphs show that as the nonlinearity (/3)
increases, the natural frequency and the diameter of the
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modal circle decrease but the mobility modulus and Nyquist 
plots remain A symmetrical about the frequency of maximum 
response, similar to the plots obtained from linear data. 
However, this apparently linear behaviour is unlike that 
from sinusoidal excitation where the plots lean backwards 

« and, in the extreme case, show a clear jump. With random
excitation, there are no jumps or distortion in the spacing 
of the frequency response points.

* Modal properties extracted from these data using a
linear SDOF algorithm are shown in table 5-02. The loss 
factor estimate plots corresponding to these results are 
shown in figure 5-05 where the plots indicate a drastic 
change in shape compared with those obtained using 
sinusoidal excitation. With random excitation the plots 
have become flat, similar to those obtained from linear 
system and as the nonlinearity increases the surfaces are 
generally raised while still retaining their apparently 
linear characteristics (i.e. the damping appears to be

♦ increasing with an increase in nonlinearity).

It is also to be noted that the RMS error and the 
modal phase are very small compared with those for 

^ sinusoidal excitation (table 5-01). In the case of random
excitation, the loss factor increases as the amount of 
nonlinearity is increased whereas sinusoidal excitation gave 
a decreasing loss factor.
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5-3.3- TRANSIENT EXCITATION

Again, the FFT analyser (HP5420A) was used and a 
transient excitation was simulated using a rectangular 
voltage pulse input for a short duration. The analyser was 
set up as in section 5.3.2 and continuously took samples of 
the signals from the analogue computer. Because of the 
damping in the simulated system, the response signal became 
very small after few seconds and at this time another pulse 
was input and the system was again excited, as shown 
opposite.

The data obtained from these tests are displayed as 
mobility modulus and Nyquist plots shown in figure 5-06 and 
the 3-D loss factor plots are given in figure 5-07. Again, 
the results indicate an apparently linear behaviour of the 
system when using transient mdUhiart.

5.4. DRY FRICTION SYSTEM

The equation of motion of a SDOF system with viscous 
damping and dry friction is;

X  + 2 & qX  + a) ] x + R  = F ( t ) (5-07)

where £ - viscous damping ratio (0.005);
u)0 - undamped natural frequency ( 1 0 rad/sec); 
R - dry friction coefficient (N/Kg);

F(t) - forcing function (N/Kg).

Substituting these values in equation 5-07 gives;
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*  + 0.1* + 100* + R A- = F(t)
1*1

*  =  - | - F ( / ) -  o .i* +  ioo* +rA- 
( 1*1

(5-08)

The integration of equation 5-08 with respect to time gives 
the velocity (X) and the integral of velocity gives the 
displacement (X) i.e.

w

♦

*

*  =

*  =

(5-09)

As in the cubic stiffness case, the maximum values of 
acceleration, velocity and displacement had to be estimated 
to prevent the computer from overloading or underloading. 
These values are taken to be the same as those for the 
previous study, namely, acceleration to be 1 m/sec , 
velocity to be 0.1 m/sec and displacement 0.01 m. 
Equation 5-08 is now scaled with these values as being the 
maximum. Thus,

and

0 0

X = -

( i F i ) - 1" ! * "

(5-10)

(5-11)

also (5-12)
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The circuit diagram for equations 5-10 through 5-12 is shown 
in figure 5-08. Again, a time scale of 0.1 seconds is used 
as described earlier.

The amount of dry friction in the circuit can be 
altered by changing the voltage as shown in the circuit 
diagram.

1 volt = 0 . 1  N/Kg of dry friction

* and tests were carried out for different values of dry
friction R.

5.4.1, SINUSOIDAL EXCITATION

As in the case of cubic stiffness, this circuit was 
also tested using sinusoidal input so that the results from 

^ this could be compared with the analytical data (chapter 3)
to check the validity of the analogue circuit. The mobility 
modulus plots, together with the corresponding Nyquist 
diagrams, are shown in figure 5-09. As usual, these data%
were analysed using a linear SDOF algorithm and the modal 
parameters identified are displayed in table 5-03.

* The 3-D diagrams are presented in figure 5-10. These
results compare very well with those obtained from
analytical study, and it is therefore concluded that the
circuit indeed represents the desired system.
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5-4,2, RANDOM EXCITATION

Again, the FFT Analyser was used for these tests. The 
mobility modulus and the Nyquist plots obtained are shown in 
figure 5-11 and the modal properties extracted are given in 
table 5-04. The loss factor plots for this case
(figure 5-12) show no tendency to tilt as the amount of 
nonlinearity is increased. It is therefore concluded that 
nonlinearity cannot be detected from a single 
frequency-response curve when random excitation is used.

5-4,3. TRANSIENT EXCITATION

These tests were carried out in exactly the same 
manner as those for softening cubic stiffness case for 
transient excitation. The data from tests are displayed in 
figure 5-13 in the form of mobility modulus and Nyquist plot 
and loss factor plots are displayed in figure 5-14. Again, 
these data do not indicate the presence of any
nonlinearities.

+



5 .5 - CONCLUSIONS

It is seen from the two types of nonlinearity 
considered that nonsinusoidal inputs generally produce flat 
loss factor plots. The small random variation of these 
surfaces cannot be attributed to the nonlinearities because 
it is more likely to be due to the small random errors in 
the measurements. Random and transient excitation appear to 
linearize the system but this does not mean that the random 
and transient produce more accurate modal properties than 
sinusoidal. The identified modal parameters in the tables 
show that all types of input give inaccurate modal 
properties when the data acquired from nonlinear systems are 
analysed using linear SDOF algorithm. A single frequency 
response curve obtained using nonsinusoidal excitation is 
not sufficient to identify or even to detect the presence of 
nonlinearities. Thus, one must be very careful when drawing 
conclusions from such data as the modal properties are most 
unlikely to be true representation of the structure.
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SOFTENING
CUBIC

STIFFNESS
, -2%(m )

NATURAL
FREQUENCY

(Hz)

LOSS
FACTOR
x 1 000

RMS
ERROR

(%)

MODAL
CONSTANT
x1 000 
(1/Kg)

MODAL
PHASE

(Deg)
50 15.8820 10.30 3.68 1000.7 17.35
200 15.8220 9.90 13.45 859.4 38.24
400 15.7660 6.70 18.01 644.9 59.00
600 15.7440 6.60 26.41 639.0 49.19

EXACT VALUE 15.9155 10 0 1000 0

TABLE 5-01 : Identified modal parameters as function of
softening-cubic stiffness: Sinusoidal

excitation.

SOFTENING
CUBIC

STIFFNESS
(m )

NATURAL
FREQUENCY

(Hz)

LOSS
FACTOR
x1 000

RMS
ERROR

(%)

MODAL
CONSTANT
x 1 000 
(1/Kg)

MODAL
PHASE

(Deg)
50 15.9125 10.60 0.35 1012.5 -.04
200 15.8781 11.80 3.15 1075.5 .93
400 15.8437 14.60 1.11 1189.7 -2.21
600 15.8156 16.70 4.42 1188.1 -2.32

EXACT VALUE 15.9155 10 0 1000 0

TABLE 5~02 i Identified modal properties as function of

softening-cubic stiffness: Random excitation.
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DRY NATURAL LOSS RMS MODAL MODAL
FRICTION FREQUENCY FACTOR x 1 000 ERROR CONSTANT x 1 000 PHASE
(N/Kg) (Hz) (%) (l/Kg) (Deg)
0.00 15.9160 10.60 1.44 1011.3 1.80
0.10 15.9140 13.80 0.35 1134.0 0.65
0.25 15.8160 7.69 0.87 2024.6 16.57

EXACT VALUE 15.9155 10 0 1000 0

TABLE 5-03 : Identified modal parameters as function of dry 
H, friction: Sinusoidal excitation.

DRY NATURAL LOSS RMS MODAL MODAL
FRICTION FREQUENCY FACTOR x1 000 ERROR CONSTANT x 1 000 PHASE
(N/Kg) (Hz) (%) (l/Kg) (Deg)
0.10 15.9131 11.40 2.27 1001.4 0.25
0.15 15.9106 12.30 2.33 989.4 -2.78
0.20 15.9106 17.30 2.00 996.5 0.08
0.25 15.9082 47.90 2.31 900.0 -0.05

EXACT VALUE 15.9155 10 0 1000 0

TABLE 5-04 : Identified modal parameters as function of dry 
friction: Random excitation.
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FIGURE 5-01 Analogue circuit for SDOF system with 
softening cubic stiffness.

C
U

B
IC



154

*

s o f t e n in g  CUBIC STIFFNESS I SINUSOIOAL EX C ITA T IO N .
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and Nyquist plots for varying
softening cubic stiffness:

Sinusoidal excitation
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SOFTENING CUBIC STIFFNESS . RANDOM EX C ITATIO N .

e
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FIGURE 5-04 Mobility modulus and Nyquist plots for varying
levels of softening-cubic stiffness: Random
excitation
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FIGURE 5-07 Isometric loss factor plots for

softening cubic stiffness : Tmnsic-nt excitation.
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FIGURE 5-08 : Analogue circuit for single- degree-of-freedom 
system with dry friction.
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FIGURE 5-09
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—  -P-H-E- 5~1° ! Isoraetri° loss factor plots for varying levels 
of dry friction: Sinusoidal excitation.
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DRY FRICTION t RANDOM EXCITATION.

DRY FRICTION i RANDOM EXCITATION.

FIGURE 5-11 Mobility modulus and Nyquist plots for varying 
levels of dry friction: Random excitation.
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*

FIGURE

DRY FRICTION* R = 0. 15 N/Kg*

5-14 : Isometric loss factor plots for dry friction:
U-nt excitation.
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6- CORRELATION OF ANALYTICAL AND MEASURED MODAL PROPERTIES

6 -1. INTRODUCTION

The theoretical study of complex vibrating structures 
centres around an analytical model and the ultimate test of 
such a model is how well it performs when it is applied to 
the problem it was designed to handle. When a model is 
used, it may lead to inaccurate predictions. The model is 
then modified, generally relying on 'trial and error' 
methods, frequently resulting in another equally unsuitable 
model. In dynamics, such model is often used anyway because 
it is usually better than nothing.

There is an increasing interest in techniques for 
improving or refining theoretical models for vibration 
analysis based on measurements of a structure's response 
under laboratory testing. Theoretical models which are to 
be used to predict dynamic response under shock or other 
complex loading may be validated and refined using 
measurements made under simpler and lower levels of 
excitation using the techniques of frequency response 
measurements. Much of the current activity in this area 
combines finite element (FE) modelling leading to prediction 
of undamped natural frequencies and mode shapes with modal 
testing techniques which permit the estimation of similar 
modal properties for an actual piece of hardware. All too 
often, however, the subsequent comparison of the two sets of 
results is based only on a qualitative correlation of 
theoretical and measured mode shapes together with a
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quantitative comparison of their respective natural 
frequencies. Relatively few studies have addressed the 
problem of how to improve one or other set of results by 
systematic adjustment of the model based on a numerical 
comparison process between the two sets of modal data.

The objectives of this study are to explore methods of 
locating weaknesses in a mathematical model and of 
determining the necessary modifications which will bring the 
model into closer agreement with the actual (test) 
structure's vibration characteristics. There are two 
aspects to this process : that of location and that of 
correction of the discrepancies. A number of recent studies 
have dealt with the latter task (see chapter 1), but 
relatively few have dealt with the former problem of 
locating the errors or weaknesses which are in the 
analytical model.

Generally, it is assumed that the experimental set of 
data are the 'correct' values and that it is the theoretical 
model which is in error. However, it must always be kept in 
mind that errors will exist in the experimental results and 
at all stages in the process the possibility that it is the 
experimental data, and not the theoretical model, which are 
in error must be considered.

Having given attention to the quality of frequency 
response data in chapters 3, 4 and 5, we shall now consider 
a number of methods which make use of such data to validate 
the analytical model. In general this means using both the
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natural frequencies and the mode shape data in a numerical 
comparison process. Of particular note is the use of the 
mass-normalised mode shape properties rather than the 
arbitrarily-scaled mode shape vectors which are often used.

6.2. COMPARISON OF MODELS

The two types of model can be compared at three stages 
of the analysis process - frequency response, modal 
properties or the spatial mass and stiffness matrices stages 
(figure 6-01). Because of a shortage of experimental data, 
caused in many cases by a lack of time, it is not always 
possible to carry out the comparisons at all three stages. 
The usual practice is to compare the data in the form of 
frequency response plots and a visual comparison of modal 
properties. Very little effort has been devoted to the 
comparison of mass and stiffness matrices. This is mainly 
due to the fact that to obtain the full mass and stiffness 
matrices from an experimental approach requires a very large 
number of measurements.

The theory of comparison of modal properties is still 
in its infancy and so these methods are best illustrated by 
application to a case study. In this chapter we shall 
undertake a numerical study based on the 8 DOF mass-spring 
system shown in figure 6-02. Two slightly different 
versions of this system were analysed, the only difference 
between these being in the stiffness of spring element k^* 
which was 1.95 MN/m in the datum case and 1.50 MN/m in the
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second. The idea of using two models is that one represents 
the 'true' system - simulating data obtained from tests on 
an actual structure - while the second one represents a 
somewhat approximate model of the system - such as would be 
obtained from an FE analysis of a practical structure. 
Adjustment of the stiffness parameter k ^  represents the 
real situation where (at least) one of the system properties 
is slightly inaccurately modelled.

The eigenvalues and eigenvectors for the datum case 
(where k ^  = 1-95 MN/m) are assumed to be equivalent to 
experimental data and those for k ^  = 1*50 MN/m are taken as 
representing an FE model (table 6-01). Thereafter, the two 
sets of modal properties will be referred to as the 
experimental and the FE model data.

6.2.1. COMPARISON OF NATURAL FREQUENCIES

Comparison of natural frequencies of the two models 
considered is a straightforward task. The percentage error 
in the natural frequencies is calculated for each mode 
(table 6-02).

The natural frequencies of the FE model 
(k^ - 1-50 MN/m), are lower than in the experimental 
(kL2 = 1-95 MN/m) values for all the modes. This is to be 
expected as the stiffness of one of the springs in the FE 
model is lower than the experimental model. A discrepancy 
of less than 3% in the natural frequency is often considered 
to be adequate for many practical situations and table 6-02
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shows that the natural frequencies (except for mode 4) lie 
below this value. In practice, an FE model which is so 
close to the experimental model would be considered to be 
very good and no further alterations or modifications would 
be carried out. However, in this case we know that the 
stiffness of spring k ^  was changed by 23% and hence the two 
stiffness matrices, and therefore the two models, would not 
be considered to be in good agreement.

The natural frequencies do not indicate the nature or 
the location ot the discrepancy because a change in the 
natural frequencies can be attributed to a change in the 
mass, stiffness or both mass and stiffness matrices. Thus 
it is impossible to say from the comparison of natural 
frequencies only whether it is the mass or the stiffness 
matrix that is in error.

6.2.2. COMPARISON OF MODE SHAPES

There are two main techniques that are used to compare 
the mode shape vectors. First, the experimental and the FE 
mode shape plots are overlaid (figure 6-03) revealing the 
nature of any distortion in the mode of vibration of the 
structure at points of interest. Figure 6-03 indicates that 
modes 1 and 3 of the 8 DOF system are of the opposite sign 
(more about this later). There appears to be excellent 
agreement between the two sets of mode shapes although it is 
still not possible to locate the specific cause of the 
discrepancy between the two versions of the 8 DOF system 
from these mode shape graphs.
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The second method [51,52], is a little more 
quantitative than the first and involves plotting the 
elements of the mode shape vector from one model against the 
corresponding elements from that of the other model 
i.e. experimental against the FE mode shape vector 
(figure 6-04). Ideally, all points on such a plot should 
lie along a line of slope +1 and deviations from this ideal 
line can be used to indicate the degree of discrepancy 
between the two mode shapes. As mentioned earlier, modes 1 
and 3 of the 8 DOF system are of the opposite sign and hence 
lie close to a line of slope -1, while all the other modes 
lie near a line of slope +1 because in the former case the 
elements in the measured and predicted mode shape vectors 
have one-to-one ratio and in the latter case the ratio is 
minus-one-to-one.

Here again, the correlation is very good but there is 
no indication of the location or the size of discrepancy 
between the two models. Nevertheless, this technique is 
useful in cases of very complex-shaped modes where a mode 
shape plot may not be immediately recognizable, and the 
question of whether a particular predicted mode relates to a 
particular measured mode can be resolved quickly.



6.3. COMPARISON OF * PSEUDO1 INVERSE MASS AND STIFFNESS 
MATRICES

In the last section the natural frequencies and the 
mode shapes were compared separately by talcing data for one 
mode at a time. No attempt was made to combine these two 
sets of properties. Now we shall see how these two parts of 
the modal model (natural frequencies and mode shapes) may be 
combined into a single set of data that may be compared 
taking into account several modes simultaneously. The 
following theory explains the basis.

For a system that is completely defined by N degrees 
of freedom, the eigensolution will yield N natural 
frequencies and associated mode shape vectors. If the mode 
shapes are mass-normalised, then the following relationship 
may be established.

(6-01)

Ja w  [̂ ];vtv ~ k2]L X NN

2where - diagonal matrix of eigenvalues?
L<i>] - mass normalised eigenvectors; 
CM] - system mass matrix;

and [K] - system stiffness matrix.

Rearranging equation 6-01 gives?

M w’af = iS*
(6-02)
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where - system inverse mass matrix?
[K]”  ̂- system inverse stiffness (flexibility) matrix.

If only m modes are available, but the full (Nxl)
eigenvector is obtained at each of the m known natural
frequencies, these may be combined to form the reduced modal
matrix E^ For only one mode the modal matrix reduces
to a vector {4> }XT , .Nxl

Equation 6-02 may be used to compute the 'pseudo 
inverse mass' and 'pseudo inverse stiffness' matrices for a 
single mode of interest as shown below;

[tftfjv- {**}*,{*''}?«
(6-03)

* -1where [MJ - 'pseudo' inverse mass matrix;
i .and LKJ - 'pseudo' inverse stiffness matrix.

* A 'pseudo' matrix has the same dimensions as the full matrix 
(i.e. NxN) but the elements in such a matrix are not 
identical to those in the full (or complete) equivalent (see 

% appendix 10.2). Pseudo matrices will be represented with an
asterisk as in equation 6-03.

TJIn the case of a reduced modal matrix C<£ ]„ ,Nxm
equations 6-03 may be modified to give?
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*

♦

[m )-'n = [**w**]J*

(6-04)
1* 1™  = [*k]^

Equation 6-03 is a special case of equation 6-04 for m = 1.

As the number of modes (m) is increased, the elements 
in the pseudo matrices converge towards the values of the 
corresponding elements in the full matrix and, of-course, 
when the number of modes (m) and the number of 
coordinates (N) are the same, the pseudo matrices are 
identical to the full (complete) matrices. In mathematical 
form?

Jim [[«]-'„] ~  [A/]-'w

(6-05)

Equation 6-04 offers a method that can be utilized to
compare experimental and analytical modal properties. By
taking m modes at n points of interest on the structure, the
experimental pseudo inverse mass [Me3 and pseudo inverse 

* —1stiffness [Ke3 matrices may be computed using
equation 6-04 (n < N). The corresponding m modes at the
same n points from the analytical model gives the analytical

★ —1pseudo inverse mass and pseudo inverse stiffness
* —1LKp3 matrices. Because of the discrepancies in the 
experimental and analytical models, these matrices should



not in general be identical but the elements will be very 
similar for small differences in the two models. Hence, the 
difference in the two pseudo inverse mass and two pseudo 
inverse stiffness matrices can be used as a measure of the 
discrepancies in the two models i.e.

(6-06)
w k]nn =  [K er J : - [ K prJi

where [D ] m

* —l[Me]
c m r 1P* —lCKe ]
* —1

t V

difference of pseudo inverse mass matrices; 
difference of pseudo inverse stiffness 
matrices;
experimental pseudo inverse mass matrix; 
analytical (FE) pseudo inverse mass matrix; 
experimental pseudo inverse stillness matrix; 
analytical (FE) pseudo inverse stiffness 
matrix.

In terms of modal properties, the difference matrices [D^] 
and are given by;

*1T
p  J mn

(6-07)
L *mm L ^nm

where experimental eigenvector matrix containing m 
modes at n coordinates;
analytical eigenvector matrix containing m 
modes at n coordinates corresponding to the
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£matrix [$e]; 
oTl/AreJ - diagonal matrix containing the reciprocals of 

m measured eigenvalues;
2P./Arpj - diagonal matrix containing the reciprocals of 

m analytical eigenvalues corresponding to m 
measured modes.

%

Using the modal data of table 6-01 and equation 6-07, we 
shall compute the pseudo inverse mass and the pseudo inverse 
stiffness matrices for different combinations of the modes. 
Figure 6-05 shows some of the difference of pseudo inverse 
mass matrices plotted on 3-D diagrams while in figure 6-06 
the difference of pseudo inverse stiffness matrices are 
displayed.

Since the aim is to locate the coordinates of the 
largest elements in the difference matrices, possibly 
indicating the area of largest discrepancy it was more 
convenient to plot the absolute values of the elements in 
the difference matrices. The heading on the plots (MM1,

# MM1 MM2 MM3 etc.) indicates which modes have been used to
compute the difference matrix: e.g. 'MM1' means it was
computed from mode 1 and in the case of ' MM1 MM2 MM3', the

• difference matrix was computed using 3 modes; numbers 1, 2
and 3. (M - mass; S - stiffness). The diagrams shown are 
those for an increasing number of modes in the calculation 
of the difference matrices - starting with a single mode and 
going up to the complete set of 8 modes.

The difference plots of pseudo inverse mass matrices



183

(figure 6-05) do not show any clear trend in the shape of 
the surfaces of these diagrams. They vary over a wide range 
but the plot ' MM1' shows a flat surface with very small 
(almost zero) values at every point, indicating a good 
agreement between the two sets of modal properties based 
just on the first mode. This is also confirmed by the small 
error in the natural frequency for this mode (0.054%) and 
also the comparison of mode shapes, which showed very little 
discrepancy (figure 6-03).

The last diagram, calculated using all 8 modes, also 
has a flat surface with almost zero value at every point. 
This is to be expected because the mass matrices of the two 
versions of the 8 DOF system are identical and when all 8 
modes are used to calculated the difference matrix it gives 
the difference of the inverse of two identical mass 
matrices, which is a null matrix.

Figure 6-06 shows the difference in the experimental 
(kL2 — 1.95 MN/m) and FE (k^ = 1*50 MN/m) pseudo inverse 
stiffness matrices. Again, the plot obtained using just the 
first mode (SMI) shows very little discrepancy between the 
two models. There exists no clear indication about the 
amount or the location of discrepancy which is between the 
coordinates and X^ in this case. As the number of modes 
is increased, large peaks start to appear on the diagrams 
but these are not at the coordinates X£ and X^. Thus, it 
appears as though this technique can only be used to compare 
the modal properties and not to locate the areas of poor 
modelling.
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6.4. COMPARISON OF SPATIAL PROPERTIES

6.4.1. DERIVATION OF ERROR MATRIX EQUATION

The comparison of modal properties and pseudo inverse 
matrices did not yield the required information about the 
two models- namely, the area of weak modelling could not be 
located by these techniques - and we must look further to 
find another approach. Suppose the full (or complete) 
stiffness matrices were available for the experimental model 
as well as for the FE model, then the difference between 
these two matrices will give not only the amount of any 
discrepancy in the stiffness matrix but also the coordinates 
of the largest errors which are directly related to the area 
of poor modelling. The same process can also be carried out 
for the mass matrices but in the analysis presented here 
only stiffness matrices will be considered.

Let LKe] - be the exact stiffness matrix (experimental 
model);

[K ] - be the approximate stiffness matrix (FE model);P
and [E^] - stiffness error matrix such that;

[£j = [/g-[/y (6-08)

For the 8 DOF mass-spring system both the experimental and 
the FE complete stiffness matrices are known, and hence the 
EXACT stiffness error matrix [E^] can be calculated using 
equation 6-08. Again, this matrix may be examined by 
representing its elements on an isometric plot
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(figure 6-07). The stiffness plot is basically flat with 
zero values except at the elements [ 2 , 2 ) ,  [ 2 , 3 ) ,  [ 3 , 2 )  and
(3,3), indicating an error between coordinates and
(i.e. spring k^) • The amount of error is given by the 
height of the peak of the plot. The mass error matrix plot 
(not shown) has zero elements everywhere because the mass 
matrices for the two versions of the 8 DOF system are 
identical.

In practice, the full experimental stiffness matrix
[K ] is not known because to construct such a matrix e
requires a very large number of measurements to be 
performed. Even if it were possible to carry out such a 
large number of measurements, it is not easy to measure the 
rotational terms and hence the experimental matrix which 
contains rotational coordinates could not be assumed to be 
more accurate than the FE matrix. For these reasons the
full [Ke] matrix is normally not available and consequently 
the exact error matrix cannot be calculated using 
equation 6-08. However, it is possible to compute an 
approximate error matrix, even with incomplete experimental 
data, by considering pseudo inverse stiffness matrices. 
Rearranging equation 6-08?

[*,] = [*„] + [£*] (6-09)

and inverting both sides gives;

uy-' = [wy + [£*]]“'

= ((*„][[/] + [*„]■'[£*]])
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W  - [in + (6-10)

Considering the expression in the large square brackets, 
that is;

[[/] + [x,r'[£»]] (6-11)

and provided that the matrix

[[jg_1 [£*]]“ = [0]

is small i.e.

(6-12)

expression 6-11 can be expanded using the Binomial expansion 
in the matrix form [53];

[[/] + [*,]“'[£*]]'' = [/] - [*,]-'[£*] + + (6-13)

Substituting equation 6-13 into equation 6-10 and post
multiplying throughout by [K ]  ̂gives;P

[*.]"' - (*,r' - + ..(e-i4)

If the matrix product (LK ]” iE ]) is such that its squareP K
and higher powers are small compared with the matrix [K^], 
meaning the FE model closely resembles the experimental 
model, then equation 6-14 can be approximated by its first 
two terms i.e.;

or [Ay-'yyijy1« [*,r‘ - t*,r'

Pre-and post-multiplying both sides by matrix gives;
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(6-15)

The above equation is a general expression giving the
approximate error matrix CE^] in terms of the matrices
[K ] CK l”1 and matrix [K ]. Before this equation can be p e p
applied to the problem of comparing modal properties to 
locate the weaknesses in the FE model, some modifications 
have to be made to the equation because of *the inevitable 
incompleteness of the data available to define the matrix
ck r 1.e

The only known quantity in equation 6-15 is the matrix 
LKp] from the FE model of the structure. It is not always 
possible to invert this matrix to obtain CKp]” ,̂ for 
example, for a free-free system at least one eigenvalue (X) 
is zero (rigid body mode) and this makes the stiffness 
matrix singular. However, it is possible to obtain the 
pseudo matrices of CKp3  ̂ and [Ke3 1 as exPlained in 
section 6.3.

In order to use equation 6-15 in practice, it is
necessary to assume that in place of the full matrix [K ] ^
we can use the pseudo matrix CKg] which may be computed
from eigenvalues and eigenvectors (equation 6-03). Now, if
the corresponding modes and coordinates are selected from
the FE model (as used for [Kg] )# then an equivalent pseudo 

* -1matrix CKp] can also be computed. It appears that both 
* *CK ] and its inverse CK ] are required in the equation P P

6-15 and, as explained in appendix 10.2, it is not possible 
to invert pseudo matrices. To avoid this inversion process
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it will be further assumed that in equation 6-15 the pre-and 
post-multiplication may be carried out using the [K 1 matrix

Jr

which is already known from the FE model.

Equation 6-15 thus becomes;

(6-16)

where [K ]  ̂e

*
LV

-1

CV

pseudo inverse stiffness matrix formed by 
using m modes and n coordinates from the 
experimental eigenvalues and eigenvectors 
(m < n; equation 6-03);
pseudo inverse stiffness matrix formed by 
using m modes and n coordinates 
(corresponding to the experimental data) from 
the FE analysis (equation 6-03); 
stiffness matrix from the FE analysis.



6.4.2. NUMERICAL STUDY

In the course of deriving equation 6-16, it has been 
necessary to make several assumptions, namely that the error 
matrix [E] is small, pseudo matrices can be used in place of 
the full matrices and the complete [K^] matrix should be 
used for pre-and post-multiplication. To lend support to 
these assumptions, it is appropriate to perform some 
numerical calculations for which the exact error matrix [E] 
is known from other sources (figure 6-07) so that comparison 
of the error matrices obtained using equation 6-16 with the
exact error matrix will indicate the validity of this
method. We shall use the data of table 6-01 and
equation 6-16 to investigate the accuracy of the error
matrix equation in the process of locating weaknesses (areas 
of poor modelling) in the FE model.

The stiffness error matrices were calculated for 
several combinations of modes using the data of table 6-01  

and equation 6-16. It was discovered that the matrices are 
additive, that is, if [E, 0 ~ ] represents the error
matrix from modes 1,2,3,... taken together and [E^, £e2], 
[E^],... are error matrices for mode 1, mode 2, mode 3,... 
individually, by taking only one mode into account at a 
time, then;

[Ei ,2,3,...] = CE^ + [E2] + [Eg] + ....

The order m  which the modes are taken in the [<i> ] matrix 
does not effect the error matrix and for 3 modes, for 
example, we can write?
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CE
1 ,2,3̂ LE2,3,13 tE3,2,l*1 tEl,3,23 etc.

Some of the error matrix plots are shown in figure 6-08. 
These diagrams indicate how the stiffness error matrix 
changes as the number of modes in its calculation are 
increased from 1 (SMI plot) to 8 (last plot).

The 'SMI' diagram indicates very small error as the 
surface of the 3-D plot is close to the zero value. As the 
number of modes is increased, the error also increases and 
for four modes, there appears a large error between 
coordinates X£ and X^- These are the coordinates that are 
directly affected by changes in the stiffness of the spring

As the number of modes is increased from four, the 
peak at these coordinates becomes more clearly defined with 
respect to the rest of the matrix. Other coordinates also 
appear to have small error even though there were no 
discrepancies at these points, but the reason for this is 
that the error matrix calculated using equation 6-16 is 
approximate. The last plot, calculated using all 8 modes, 
shows no error except between the coordinates and X^.

In practice, the number of modes predicted would far 
exceed the number of measured modes. To simulate a 
practical situation, we shall only take some of the modes in 
the calculation of the stiffness error matrix and these are 
marked with an asterisk in table 6-03 (which is part 
reproduction of table 6-01). The modes to be included in 
the calculation of the stiffness error matrix are 2, 3, 4, 6 

and 7 from the experimental data (column 2) and the
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corresponding modes from the FE model (column 3).

Using equation 6-16 and the modal data from 
table 6-0 1, the stiffness error matrix was computed which, 
when displayed on an isometric plot, clearly shows the 
maximum error to be between coordinates and X^ 
(figure 6-09). Comparison of this plot with the exact 
diagram (figure 6-07) indicates the location of the area and 
the amount of discrepancy to be of the correct order. The 
mass error matrix for these modes (not shown) indicates a 
very small error, so it may be assumed that the discrepancy 
in the complete mass matrices is negligible, which is true 
because the mass matrices for the two versions of the 8 DOF 
system are, in fact, identical.

If this error is a true representation of the exact 
error matrix then it should be possible to calculate a more 
accurate stiffness matrix than that from the FE model by 
using equation 6-09. In this equation is the stiffness 
matrix for kT ~ = 1.50 MN/m and error matrix t 3 has been

• calculated using equation 6-16, hence 1—1 * (D I_
l or a more

accurate stiffness matrix can be calculated using
equation 6-09. This new matrix [Ke3 should give modal
properties that are closer to the experimental ones than the 
FE ones. The eigenvalues computed using the more accurate 
stiffness matrix and the original mass matrix are given in 
column 5 of table 6-03. The percentage error between these 
and the exact (experimental) eigenvalues are displayed in 
column 6. The percentage error for the modes that were 
included in the calculation of the error matrix have
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»

been considerably reduced (modes 2, 3, 4, 6 and 1) compared 
with the percentage error of the unmodified FE values 
(column 4), but the errors in the modes that were excluded 
from the calculation have increased. This demonstrates that 
for this case equation 6-16 is an effective error matrix 
equation, despite all the assumptions made in the process of 
its derivation.

6.5. CONCLUSIONS

This chapter has concentrated on the comparison of
modal properties and spatial properties derived using
incomplete modal data. The analytical study made it
possible to compare the merits of different techniques, each
of which has its own advantages and drawbacks. The first
method - comparison of modal properties - is especially
useful in deciding which modes are compatible by plotting 

■n'va/e skaftc m o J *  sAape.
experimental „ against the „ analytical * and this' informs the
analyst whether the correct modes are being compared. The
second method, comparison of pseudo inverse matrices, gives
an isometric plot of the discrepancies between the two
models. The main advantage of this technique is that
several modes can be combined into a single matrix but
unfortunately this method, like the first, is incapable of
precisely locating the areas of any discrepancies. The
third and the last method - comparison of spatial model
properties - has been found to be the most useful technique.
Not only can it be used to compare the properties of several
modes at once but it also informs the analyst what action to
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take in order to reduce the discrepancies between the two 
models li.e. modify mass/stiffness matrix at the coordinates 
of maximum error).

In the last section 6.4 , it has been demonstrated 
that it is feasible to locate the areas of poor modelling 
using incomplete experimental and complete FE modal data. 
Although the data used in this work were synthesized by 
analysis and were not actual measured data, the basic 
concept has been demonstrated. Although only an 8 DOF model 
was used, it is recognised that most practical structures 
require many more degrees of freedom for adequate 
representation. In this study it was also assumed that all 
the coordinates taken to represent the structure in the 
analytical model are measurable whereas, in practice, far 
more coordinates are analysed than measured. Nevertheless, 
the technique of error matrices appear to work with the data 
from this simple 8 DOF system.
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MODE
NO.

kL3
(MN/m)

NATURAL
FREQUENCY

(HZ) XI
MASS NORMALISED MODE 

X2 X3 X4 X5
SHAPE
X6 X7 X8

1.95 21.3844 .0699 .0728 .0670 .0432 -.0456 -.0628 -.0635 -.0261
1.50 21.3729 -.0706 -.0737 -.0663 -.0428 .0457 .0626 .0632 .0259

1.95 34.4434 .0802 .0028 -.0508 -.0367 -.0533 .0456 .0742 .0340
1.50 33.8582 .0813 .0105 -.0549 -.0392 -.0507 .0442 .0724 .0332

1.95 79.5973 -.0598 -.0437 -.1479 -.2214 -.0502 -.2102 -.1702 .0519
1.50 78.4522 .0502 -.0027 .1478 .2081 .0340 .2139 .1594 -.0427

1.95 93.2860 -.0509 -.2611 -.0276 -.0800 -.0767 .0705 -.1060 .0146
1.50 89.8641 -.0598 -.2680 -.0357 -.1085 -.0865 .0325 -.1150 .0372

1.95 103.4937 -.1241 -.2450 -.2854 -.1061 -.1310 -.2560 -.2616 -.2942
1.50 103.4225 -.1248 -.2535 -.2855 -.1077 -.1325 -.2489 -.2652 -.2941

A 1.95 213.3259 -.2184 -.2992 -.1388 .3264 -.2211 -.3221 -.1317 .3424
1.50 212.5663 -.2266 -.3093 -.1324 .3232 -.2293 -.3384 -.1238 .3392

1.95 303.8984 -.5623 -.3601 .2594 -.0907 -.5660 -.3951 .2675 -.0914
1.50 296.4734 -.5202 -.3655 .2647 -.1008 -.5237 -.4089 .2747 -.1019

1.95 410.0176 -.7796 .4098 -.0889 .0131 -.7828 .4265 -.0924 .0133
1.50 406.7665 -.8058 .3894 -.7730 .0117 -.8092 .4076 -.0812 .0116

TABLE 6-01 Computed 
und amped

eigenvalues and eigenvectors 
8 DOF mass-spring system.

of
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kL3

MODE
NO.

1.95 MN/m 
(^EXPERIMENTAL)

NATURAL
FREQUENCY

(Hz)

1.50 MN/m 
(=FE MODEL)
NATURAL

FREQUENCY
(Hz)

ERROR
(%)

1 21.3844 21.3729 0.054
2 34.4434 33.8532 1.714
3 79.5973 78.4522 1.439
4 93.2860 89.8641 3.668
5 103.4937 103.4225 0.069
6 213.3259 212.5663 0.356
7 303.8984 296.4734 2.443
8 410.0176 406.7665 0.793

TABLE 6-02 : Comparison of natural frequencie of the 
undamped 8 DOF mass-spring system.

kL3 1.95 MN/m 
(^EXPERIMENTAL)

1.50 MN/m 
(=FE MODEL) 1.50 MN/m 

MODIFIED FE MODEL
MODE
NO.

NATURAL
FREQUENCY

(Hz)
NATURAL ERROR 

FREQUENCY
(Hz) (%)

NATURAL
FREQUENCY

(Hz)
ERROR
(%)

1 21.3844 21.3729 0.054 21.3725 0.056
2* 34.4434 33.8532 1.714 34.3504 0.270
3* 79.5973 78.4522 1.439 79.4316 0.208
4' 93.2860 89.8641 3.668 92.2860 1.072
5 103.4937 103.4225 0.069 103.6894 -0.189
6* 213.3259 212.5663 0.356 213.1857 0.066
7* 303.8984 296.4734 2.443 301.8590 0.671
8 410.0176 406.7665 0.793 406.3512 0.894

TABLE 6-03 s Experimental, FE and modified FE eigenvalues of 
the undamped 8 DOF mass—spring system.
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EXPERIMENTAL (i) Frequency-responce ANALYTICAL

(ii) Modal properties

CM] , CK]
Ciii) Spatial mass 

and stiffness 
matrices.

FIGURE 6-01 : Three stages of data comparison.
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FIGURE 6-02 : Undamped 8 DOF mass-spring system
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MODE 1
NOOE 2

FIGURE 6-03 : Mode shape comparison of the undamped 8 DOF
mass-spring system.
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FIGURE 6-05 Plots of difference of pseudo inverse mass
matrices as function of number of modes.



TW
M

U4I0 SUM
illt MIAMI ° 

JHKHOAAIO UBUAUt MIAMI " 
flM

M
UAIO U

iU
illl MIAMI

200

*

FIGURE 6-06 : Plots for difference of pseudo inverse 
stiffness matrices as function of number of
modes.



AB
SO

LU
TE

 E
RR

OR

EXACT ERROR MATRIX

FIGURE 6-07 Exact stiffness error plot of the undamped 8 
DOF mass-spring system.
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FIGURE 6-08 Stiffness error plots of the undamped 8 DOF
mass-spring system.
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FIGURE 6-09 Stiffness error matrix plot for modes 2, 3, 
6 and 7.
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7. APPLICATIONS OF THE ERROR MATRIX EQUATION

7.1. INTRODUCTION

The error matrix equation 6-16, developed in chapter 6

was evaluated using an 8 degrees-of-freedom mass-spring
system. In that case the number of coordinates measured and
the coordinates in the FE model were the same, which means
that the dimensions of the matrices were identical.
However, in practice the FE model requires many more
degrees-of-freedom for accurate modelling than it is
possible to measure, and consequently the dimensions of the
matrices in the two models are different, i.e. the
dimensions of [K ] are different from those of [K ].e p
Clearly, the matrix multiplication required by equation 6-16 
is not possible because of the incompatibility of the 
matrices.

Another question that did not arise in the last 
chapter is that of 'real' and 'complex' mode shapes because 
the two versions of the 8 DOF mass-spring system were both 
undamped and hence the mode shapes were all real. The 
measured modes are usually complex and those from an FE 

♦ analysis are real.

In this chapter we shall address the above mentioned 
questions and apply the error matrix equation to two real 
structures - a small beam (SAMM II B beam) and the NASTRAN 
structure, first described in chapter 3.
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7,2, COMPATIBILITY OF THE MATRICES USED IN THE ERROR MATRIX 
EQUATION

Because of the different dimensions of the measured 
and the FE spatial matrices it is not possible to use the 
error matrix equation 6-16 without modification. Rewriting 
the stiffness error matrix equation;

[£*] =  [^ ][[^p ]'‘ -  [*«]'■][*,] (7 -0 1 )

where [K ] - is NxN; N is the number of DOF in the FE model. P* —1[K ] - is nxn; n is the number of measurede
coordinates.

* —1[K ] - is also nxnP
and N >> n.

Matrices obtained from an FE analysis, such as the [K ]P

* —1derived matrices, such as
matrix, are generally very large, while the experimentally

are relatively much 
smaller. There are two possible options open to make these 
matrices conform;

(i) to reduce the [K^] matrix by ignoring the rows and 
columns that correspond to the coordinates which are not 
measured and this will be referred to as the 'elimination 
method'. The effect of this is to assume that there are no 
errors at the coordinates that are excluded (see 
appendix 10.3).

(ii) to use a condensation technique of the type 
employed in the eigenvalue and eigenvector calculations,



such as the Guyan reduction £54,55]. in this case the full
[K ] matrix can be reduced to one referred just to the
measured coordinates so that all the matrices in the 
calculation of an error matrix then have the same 
dimensions (nxn), and equation 7-01 thus becomes;

Before attempting to use these reduction techniques in 
the calculation of error matrices it is necessary to 
investigate the accuracy of such procedures.

7.3. GUYAN VERSUS ELIMINATION MATRICES

For this study, the beam shown in figure 7-01 was 
considered. The beam was divided into 10 elements 
(11 nodes), each node having six DOF; total 56 DOF. The 
experimental and FE data were simulated by increasing the 
length of element 2 and decreasing that of element 8 as 
shown in table 7-01. In this case, the error matrices 
should show discrepancies between coordinates 2 and 3 
(element 2) and between coordinates 8 and 9 (element 8) in 
all X, Y and Z-directions as well as in the rotational 
coordinates.

Using the beam element's mass and stiffness matrices 
(appendix 1 0.1 ), spatial mass and stiffness matrices were 
constructed for both versions of the beam model. It was 
then a simple task to compute the undamped eigenvalues and

(7-02)

where [K ] - is the reduced stiffness matrix P
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eigenvectors of the beam in the free-free state. The mass 
and stiffness error matrices were constructed for the 
first 7 non-rigid body modes using both the Guyan reduction 
technique and the elimination of rows and columns method. 
The isometric error matrix plots for the Y-direction are 
shown in figure 7-02 and those for the Z-direction in 
figure 7-03.

All the plots indicate errors between coordinates 2 
and 3, and between 8 and 9 and so by using either Guyan 
reduction or by elimination of rows and columns, we have 
been successful in locating the areas of discrepancies. 
However, it should be noted that the magnitude of the 
discrepancies (given by the heights on the 3-D plot) are 
different in the two cases because the vertical scales are 
not the same. Comparing these results with the exact error 
mass and stiffness plots (not shown) indicate that the error 
matrix calculated using the Guyan reduction method is much 
closer to the correct values.

Although both reduction methods located the areas 
containing discrepancies, only one - Guyan reduction - 
indicated the true nature of the error. In cases where only 
the areas of discrepancies are required either technique can
be used.
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7.4. ERROR MATRICES OF THE SAMM II B BEAM

The SAMM II B beam, which consists of welded channel 
section elements is shown in figure 7-04. Special features 
of the beam are the welded joints, and the two holes, which 
are situated near each end of the beam. The joints are 
welded on only one side and hence are quite flexible.

Frequency response functions for this beam were
measured in the free-free state using random excitation.
The beam was excited at point 6 in the Y-direction and
responses were measured at 11 points in the Y-direction.
The excitation was then changed to the Z-direction and again
the responses for all 11 points in the Z-direction were
measured. Two point mobility plots from these tests,
Y and Y ne., are shown in figure 7-05. They06,y06 z06,z06 ^
measured data were analysed using a linear SDOF algorithm to 
extract the,required modal properties (chapter 2 ).

A finite element analysis similar to that described in 
section 7.3, using 10 beam elements with 6 DOF. at each node, 
was carried out to predict the dynamic characteristics of 
the beam. In the FE analysis no allowance was made for the 
holes and all the joints were assumed to be rigid even 

# though it was clear that the actual welded joints were more
flexible. Damping was also ignored and consequently the 
analysis reduced to that of a free-free undamped beam.

The measured and predicted natural frequencies for the 
first six non-rigid body modes are shown in table 7-02. The 
measured mode shapes were only slightly complex (modal phase
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close to 0 or 180 degrees) and it was assumed that the
modulus of each eigenvector element was a true
representation of the undamped behaviour of the beam. It 
was observed that the measured natural frequencies of the 
modes in the Z-direction were greater than the predicted 
values and that the reverse was true for those in the 
Y-direction. This suggests that the FE model give a lower 
stiffness in the Z-direction and that the predicted 
stiffness in the Y-direction was greater than the 
experimental model (assuming the inertia or mass matrix is 
correct in the FE model).

The correlation between measured and predicted mode 
shapes (figure 7-06) indicates large discrepancies between 
the two models, especially for modes 3 and 4, but again does 
not indicate the area(s) of the discrepancy. Using the 
error matrix equation 7-01 and these data, stiffness error 
matrices were computed for both the Y and the Z-directions 
separately, as described in the last section. In this case, 
the matrix was reduced by ignoring the rows and columns
that were not measured (55 rows and 55 columns were ignored 
out of 66). Again, 3-D plots were constructed and 
figures 7-07 and 7-08 show the results for the Y and the 

• Z-directions respectively. The notation 'SM2' indicates
stiffness matrix calculated using mode 2 and 1SM2 SM5 SM6 ' 
implies stiffness error matrix plot from the data of 3 modes 
numbers 2, 5 and 6 as before.

The stiffness error plot SM2 (figure 7-07) indicates
an error at element (5,5) i.e. node 5 on the beam, while



plots SM5 and SM6 show very good correlation between the 
measured and predicted modal properties for these two modes. 
The last plot of figure 7-07, diagram SM2 SM5 SM6 which is 
the overall stiffness matrix for the 3 modes of vibration in 
the Y-direction, indicates an error at coordinate 5, which 
is one of welded joints. The plot SMI in figure 7-08 shows 
errors in elements (3,3), (1,9) and (1 ,1 1 ), where the 
offdiagonal terms imply possible errors at both of the 
coordinates e.g. (1,9) means errors at coordinates 1 and 9. 
The diagram SM3 shows errors at (9,9) and (11,11) and the 
overall error plot SMI SM3 SM4 indicates discrepancies at 
joints 3 and 9.

The stiffness error plots, figures 7-07 and 7-08 have 
suggested errors in the FE stiffness matrix at coordinates 
3, 5 and 9, all of which are at welded joints. One might 
expect an error at these points but the plots did not show 
any error at point 7 which is also a welded joint. A close 
visual examination of the beam's joints revealed that the 
welding at joint 7 had penetrated through the joint, making 
it closer to a rigid joint than was the case for other 3.

Figures 7-09 and 7-10 show the mass error plots in the 
Y and Z-directions respectively. Plot MM2 suggests an error 
in the mass matrix at point 10. As in the case of the 
stiffness error matrices, plots MM5 and MM6 demonstrate that 
there is a reasonable agreement between the measured and the 
predicted modal properties for modes 5 and 6 . The overall 
mass error plot suggests errors near points 2 and 1 0, which 
are coordinates that lie close to the holes. Plot MM2
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(figure 7-10) shows an error between points 1 and 2 and plot 
MM3 points out a very large discrepancy between the measured 
and the predicted mass matrices at point 11. The error at 
coordinate 11 is also indicated by the overall error plot. 
This is probably because one of the holes is close to this 
point. The other hole is almost midway between coordinates 
1 and 2 (element 1 ) and any error in the mass matrix due to 
this hole will be shared between them. Consequently, the 
effect of this hole on the mass error matrix is smaller than 
that of the hole at point 1 1 , even though both are the same 
size. The plot MM3 of figure 7-10 shows a large error in 
the mass matrix at coordinate 11 which is close to one of 
the holes.

We shall now seek to demonstrate that the error at 
coordinate 11 is probably due to the hole and not to other 
defects in the beam. Studs were placed in the holes so that 
they are filled with the same type of material as that of 
the beam and the beam was retested. All the modes in the 
Z-direction were remeasured and it was found that only 
mode 3 was significantly affected, indicating that only this 
mode out of the 3 modes measured was sensitive to the effect 
of the hole near point 11. The data from these and the 
previous tests, together with the FE modal properties for 
mode 3 are given in table 7-03.

The mass error matrices were computed once again with 
the remeasured data. These error matrices, together with 
those obtained with holes in the Z-direction, are displayed 
on 3-D plots as shown in figures 7-11 and 7-12, with the
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negative elements pointing downwards and positive up. 
Comparing the mass error plots we see that there is a 
significant change near point 11 for mode 3 but the rest of 
the plots are very similar in shape. Also, there is a small 
change in the stiffness error plots near point 11 for this 
mode but again, the rest of the plots are virtually 
uneffected by the studs which this suggests that only mode 3 
is sensitive to the studs.

It is possible that the error at coordinate 11 may be 
due to poorly identified modal properties in this region 
rather than the effect of the hole. To eliminate this 
possibility the beam was retested, after a time lapse of 
about 12 months. These tests were carried out for both 
cases - the holes and the studs - but only mode 3 was 
remeasured because this was the mode that showed 
discrepancies due to the holes. Only two coordinates were 
measured with the studs in place - coordinates 10 and 11 in 
the Z-direction - and 3 coordinates with holes - numbers 6, 
10 and 11. Identified modal properties from these data 
together with those from the first tests are given in 
table 7-04. The repeatability appears to be adequate 
i.e. the identified modal properties of the two tests, 12 

months apart are reasonably similar. This indicates that 
the error at point 11 of plot MM3 (figure 7-10) was probably 
due to the hole and not due to poorly identified modal 
properties or other defects in the beam.

We have seen from this study that even a small simple
structure, such as the SAMM II B beam, can be very difficult
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to model accurately. The two types of discrepancies between 
the FE and the experimental models were due to the welded 
joints and the holes. It is possible to include the holes 
in an FE model using plate elements but this increases the 
number of DOF significantly. However, the stiffness of the 
welded joints present in this case cannot be modelled 
easily. It has been possible to locate the areas of likely 
errors and visual examination of the beam also points to the 
same areas as were located by the error matrix equation as 
being poorly modelled.

7,5. ERROR MATRICES OF THE NASTRAN STRUCTURE

The NASTRAN structure, first described in chapter 4 
was slightly modified by removing the heavy mass from the 
top and installing an empty tank instead and the coordinates 
of interest were renumbered, as shown in figure 7-13, for 
the purpose of an experimental study. A finite element 
model of the structure was constructed, by Westland 
Helicopters Pic., having about 1500 DOF using plate elements 
and the undamped eigenvalues and eigenvectors extracted and 
made available for this study.

The first 4 modes of vibration in both the X and the 
Y-directions were measured at 28 points on the structure. 
The modes of vibration in the X-direction were excited by 
forcing point 5X using sinusoidal excitation and those in 
the Y-direction by forcing point 6Y (figure 7-13). The 
measured and predicted eigenvalues are shown in table 7-04
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The measured and predicted natural frequencies are 
very close to each other; the maximum error being less 
than 3%. The correlation of the eigenvectors is also very 
good but the data for these are too large to be able to 
include in this study and can be found in reference 56. 
With such good agreement between the measured and the 
predicted modal parameters, any discrepancies in the 
experimental and the FE models are likely to be small.

The [K ] matrix was reduced to the measured coordinate P
set using Guyan reduction and mass and stiffness error 
matrices were computed for the X and the Y-directions 
separately. The 3-D plots of the error matrices are given 
in figures 7-14 through 7-17. The code SM1X on the plot 
denotes: S-stiffness; MIX-first mode in the X-direction; and 
'SMiX SM2X SM3X* implies the overall stiffness error in the 
X-direction calculated using all the modes in that 
direction.

Figures 7-14 and 7-15 show two main areas of 
• discrepancies between the measured and predicted stiffness

matrices; these being at the interface between the tank and 
the tower and also between the tower and the base, the 
latter effect being quite small. There appears to be very 
little discrepancy at other points on the structure. 
Examination of the mass error matrices (figures 7-16 
and 7-17) points to two areas of discrepancies, again at the 
junction between the tank and the tower but also at the four 
outer corners of the base, which appear to be areas of poor 
modelling. The error in the base is much greater than that
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at the interface of the tower and the tank although there 
was no error indicated at the base corners by the stiffness 
matrices (figures 7-14 and 7-15).

It appears that there were three areas which were 
inadequately modelled: the junction between the tank and the 
tower, that between the tower and lastly, the base and the 
corners of the base.

7.6. CONCLUSIONS

It was necessary to modify the error matrix equation 
so that the matrices used in its application were compatible 
and this may be achieved by two techniques - reduction by 
elimination of rows and columns or Guyan reduction. 
Although both of these techniques were able to locate the 
areas of discrepancies, only one - Guyan reduction 
actually gave a true indication of the amount of error in 
the FE model. The main advantage of the reduction method by 
eliminating rows and columns is that it is very simple to 
implement whereas a Guyan reduction requires partition of 
the matrix into 'slave' and 'master' coordinates and further 
matrix manipulation of these matrices are also
necessary [55].

Application of the error matrix equation to an 
apparently simple beam (SAMM II B) revealed areas of large 
discrepancy in the mass and stiffness matrices of the FE 
model. These results were very encouraging because visual 
examination of the beam pointed to these same areas as being
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difficult to model accurately. The tests with studs in the 
holes demonstrated that the error at point 11 was due to the 
holes because it disappeared when studs were placed in the 
holes.

The application of the error matrix equation to the 
'NASTRAN' structure was the first real test of this 
technique because in all the previous applications the 
structures were small. The fact that this technique pointed 
to precisely defined areas (around the junction of the tank 
and the tower), rather than to random points around the 
structure as being poorly modelled, demonstrates the 
usefulness of the error matrix equation. No attempt was 
made to remodel the structures with the knowledge gained 
from the error matrix plots since the aim was to locate the 
areas of poor modelling, and once this has been acheived 
methods in the current literature are capable of making use 
of this in the remodelling process [22].
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(^EXPERIMENTAL) (= FE MODEL)
ELEMENT
NUMBER ELEMENTLENGTH

(mm)
INCLINATION 
TO X-AXIS 

(deg)
CHANGE IN NEW LENGTH LENGTH 

(mm) (mm)
1 99.23 0.0 0.00 99.23
2 99.23 0.0 -19.23 80.00
3 44.01 43.8 0.00 44.01
4 44.01 43.8 0.00 44.01
5 71.42 0.0 0.00 71.42
6 71.42 0.0 0.00 71.42
7 44.01 -43.8 0.00 44.01
8 44.01 -43.8 5.99 50.00
9 67.48 0.0 0.00 67.48

10 67.48 0.0 0.00 67.48

TABLE 7-01 : Geometry of the beam elements used in the two
versions of the beam.

MODE
NO.

EXPERIMENTAL
NATURAL
FREQUENCY

(Hz)

FE MODEL
NATURAL
FREQUENCY

(Hz)
ERROR
(%)

DIRECTION

1 303.9220 245.8022 19.12 Z
2 279.2930 330.3359 -18.28 Y
3 423.1660 369.0759 12.78 Z
4 918.7080 670.4446 27.02 Z
5 753.8630 886.0863 -17.54 Y
6 1192.8700 1401.1474 -17.46 Y

TABLE 7-02 : Measured and predicted natural frequencies of 
SAMM II B beam for the first six non-rigid body
modes
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FE
(NO HOLES)

EXPERIMENTAL
(HOLES) (STUDS)

NATURAL
FREQUENCY

(Hz)
369.076 423. 166 422. 320

COORDINATES
NUMBER

MODE
SHAPE MODE

SHAPE
PHASE
(deg)

MODE
SHAPE

PHASE
(deg)

Z 1 0.2104 0.0820 -2.69 0.0960 -5.26
Z 2 -0.1027 0.0774 173.87 0.0998 -160.88
Z 3 -0.4123 0.2387 178.00 0.2237 -161.39
Z 4 -0.1687 0.0575 3.90 0.0482 2.42
Z 5 0.0728 0.2834 3.86 0.2602 -2.57
Z 6 0.0851 0.1364 -1.20 0 .1 1 0 1 2.01

Z 7 0.0856 0.1102 -171.92 0.0667 -173.41
Z 8 0.5317 0.2759 0.42 0.2620 6.43
Z 9 0.9740 0.6344 5.03 0.6035 -0.68

Z10 -0.1730 0.4230 -175.30 0.3822 179.49
Zll -1.3264 2.2585 176.48 1.3956 173.85

TABLE 7-03 : Maas normalised mode shape vectors of mode of 
the SAMM II B beam with holes and studs.
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COORD. TEST 
NO.

NATURAL
FREQUENCY

(Hz)
LOSS

FACTOR
MODAL

CONSTANT
(1/Kg)

FIRST 423.0322 0.0004 0.01450
6Z HOLES

SECOND 423.9160 0.0006 0.01618

FIRST 421.0986 0.0012 0.05259
10Z HOLES

SECOND 422.1288 0.0016 0.05380

FIRST 419.3481 0.0017 0.17699
11Z HOLES

SECOND 420.4150 0.0016 0.20730

FIRST 420.4199 0.0013 0.04547
10Z STUDS

SECOND 420.4830 0.0013 0.04106

FIRST 418.8281 0.0018 0.15818
11Z STUDS

SECOND 418.6130 0.0015 0.14990

TABLE 7-04 : Remeasured data for mode 3 of SAMM II B beam

MODE
NO.

EXPERIMENTAL
NATURAL

FREQUENCY
(Hz)

FE MODEL
NATURAL

FREQUENCY
(Hz)

ERROR
(%)

DIRECTION

1 48.0393 48.9770 -1.95 X
1 48.1104 48.9770 -1.80 Y
2 83.8234 84.5997 -0.93 Y
3 152.5860 154.9673 -1.56 X
3 152.8810 154.9673 -1.36 Y
4 233.5210 239.5457 -2.58 X

TABLE 7-03 : Measured and predicted natural frequencies of 
the NASTRAN structure for the first 4 modes.
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FIGURE 7-02 Mass and 
direction

stiffness error matrices for the Y
of the beam (Guyan v. Elimination).
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FIGURE 7-03 : Mass and stiffness error matrices for the Z
direction of the beam (Guyan v. Elimination).



FIGURE 7-04 : The SAMM II B beam
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FIGURE 7-05 : Measured mobility modulus plots Y ^yOo,y06 and
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FIGURE ,7-07 : Stiffness error matrix plots of SAMM II B beam
in the Y direction.
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FIGURE 7-08 Stiffness error matrix plots of SAMM II B beam
in the Z direction.



229

FIGURE 7-09 : Mass error matrix plots of SAMM II B beam in
the Y direction.
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FIGURE 7-10 Mass error matrix plots of SAMM II B beam in
the Z direction.
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FIGURE 7-1 1 Mass error plots of the SAMM II B beam with
holes
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FIGURE 7-13 : NASTRAN tower with tank
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Stiffness error plots of the NASTRAN structure 
in the X direction.

FIGURE 7-14
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FIGURE 7-15 : Stiffness error plots of the NASTRAN structure
in the Y direction.
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FIGURE 7-16 : Mass error plots of the NASTRAN structure in
the X direction.
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8. CONCLUDING REMARKS

The results presented in each section were discussed and 
detailed conclusions were drawn at the end of each chapter. 
A brief summary of these conclusions is presented here as a 
review of the entire thesis.

8.1- MODAL TESTING AND NONLINEARITIES

The presence of certain types of nonlinearity may be 
detected by forcing the structure at constant but different 
excitation levels thus obtaining several mobility plots. 
These diagrams should be similar in the sense that the ratio 
of response to the excitation force should be constant and 
any significant deviation from this constant ratio for a 
given frequency which cannot be attributed to experimental 
errors may be due to nonlinearities. However, such tests 
are time consuming, and a better method which requires only 
one set of measured data in the form of a frequency response 
at constant forcing level, was developed. This method 
relies on the fact that for any linear system with 
well-separated modes, the estimated values of damping are 
independent of the frequency points chosen for the 
calculation. A damping matrix can be constructed for each 
mode of interest and it is found that small random errors 
due to inaccuracies in the measured data usually exist but 
that these produce random variations in the estimated values 
of damping while nonlinearities had a markedly systematic 
effect. The damping matrix thus obtained was examined by
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displaying the elements in the matrix on a 3-D plot.

An analytical study, using known types and amounts of 
nonlinearity, made it possible to calibrate the isometric 
loss factor plots. Two types of nonlinearity were 
considered - softening cubic stiffness and dry friction - 
and these had different effects on the shape of the loss 
factor diagrams. The cubic stiffness produced a very large 
variation in the estimated values of damping while that due 
to the dry friction was much smaller. It was further noted 
that the effect of cubic stiffness may be reduced by 
decreasing the input force; but in a practical situation 
there is a limit beyond which the force cannot be reduced 
without increasing the noise to signal ratio. On the other 
hand, to reduce the effect of dry friction, a large input 
force must be used.

The effect of closely-coupled modes on the isometric 
loss factor plots was also investigated and in this case the 
angle PHI plots were useful as well as the loss factor plots 
in deciding whether the effect of the neighbouring mode was 
small or not. The closely-coupled modes produced large and 
sudden changes in the estimated values of damping, unlike 
the nonlinearities where the variation was gradual.

The NASTRAN structure was shown to be nonlinear by 
testing it at several different but constant forcing levels 
and 3-D loss factor plots from the measured data indicated 
the presence of two types of nonlinearity - frictional and 
softening stiffness types - the latter having a large effect
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on the variation of the estimated damping values. This 
conclusion was strengthened because it was possible to 
linearise the structure's data using constant displacement 
amplitude tests and only a stiffness type of nonlinearity 
can be linearised by this technique.

The effect of different types of excitation force on 
the response from a nonlinear system was examined using an 
analogue computer. In the case of the two nonlinearities 
investigated - dry friction and softening-cubic stiffness - 
it was found to be difficult to detect the presence of 
either type of nonlinearity from a single frequency response 
curve when the system was excited using random or transient 
inputs. The effect of such an input was to produce linear 
data, similar to the constant amplitude tests. A possible 
explanation for this might be that the structure is being 
excited at several amplitudes of vibration and at many 
frequencies within the chosen bandwidth, hence the measured 
response is the average response due to all of these inputs 
and may well be linear or very close to it. Although random 
and transient excitation appear to linearise the measured 
data, this does not mean that these types of excitation are 
better than sinusoidal because the analogue study showed 
that the modal properties extracted from these data using a 
linear SDOF algorithm were not the actual input values.

It seems that sinusoidal excitation tests, although 
sometimes slower than the random tests, produce superior 
frequency response data which may be analysed to identify 
nonlinearities. Furthermore, sinusoidal excitation is
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useful because constant amplitude vibration tests can only 
be performed using this type of input and structures with 
stiffness type nonlinearities may be linearised by this 
method.

8.2, CORRELATION OF MEASURED AND PREDICTED MODAL PROPERTIES

The examination of the current methods available for 
comparing measured and predicted modal properties showed 
that it is not possible to use these data in a systematic 
and quantitative manner to locate the areas of discrepancies 
between the two models. However, these techniques were 
useful in deciding which measured mode corresponds to which 
predicted mode.

The development and application of the error matrix 
equation made it possible to use the modal data of two 
models to locate the areas of discrepancies. This technique 
was applied to an undamped 8 DOF mass-spring system and it 
was possible to locate exactly the areas of discrepancies. 
Although the 8 DOF system was far from a realistic 
situation, it was nevertheless very useful in investigating 
the accuracy of the error matrix equation.

Before applying the error matrix to real structures it 
was necessary to make further modifications, especially to 
the full FE model mass and stiffness matrices, so that these 
were compatible with the measured pseudo inverse mass and 
stiffness matrices.

The full spatial mass and stiffness matrices may be
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reduced either by eliminating rows and columns that 
correspond to the unmeasured coordinates or by Guyan 
reduction. Both of these reduction techniques appeared to 
be capable of locating the areas of discrepancy between the 
two models although only the Guyan reduction method gave the 
true magnitude of the error.

The application of the error matrix equation to the 
SAMM II B beam showed that 3 out of 4 welded joints were 
inadequately modelled by the FE analysis and also the 
comparison for mode 3 located the presence of error in the 
mass matrix near one of the holes. This error was shown to 
be due to the hole because it was reduced when studs were 
inserted in the holes. The possibility of errors being 
present in the measured data was checked and shown to be 
negligible by remeasuring the j-r̂ uc-ncy response, the. beam.

The NASTRAN structure's FE model appeared to be poorly 
modelled at 3 distinct locations. This finding was very 
encouraging because these areas are probably in error due to 
joints which cannot easily be modelled in the analysis.
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8.3. SUGGESTIONS FOR FURTHER RESEARCH

There are two main areas that need further 
investigation - the analysis of frequency response data and 
the correlation of measured and predicted modal properties.

In this study we used the simplest of the 
curve-fitting routine (SDOF) to identify nonlinearities and 
only certain types of nonlinearities can be detected by this 
technique i.e. it was difficult to detect small amounts of 
dry friction while stiffness type nonlinearities appear to 
be easily detectable. Furthermore, in the nonlinear 
analytical study, only single degree-of-freedom systems were 
used while the real structures have infinite 
degrees-of-freedom and perhaps several types of 
nonlinearities. A more realistic study would be to simulate 
multidegree-of-freedom systems with several types of 
nonlinearities, perhaps using the analogue computer.

The error matrix equation developed in chapter 6 
appears to be very useful in locating the areas of weak 
modelling and hence requires further investigation to 
clarify few points, especially the following:

(i) the two types of reduction techniques - the Guyan 
and the elimination of rows and columns - used to reduce the 
full spatial matrices from the FE analysis appear to give 
the correct areas of discrepancies between the two models 
but there was no justification in reducing these matrices by 
the techniques used and this needs further investigation and 
perhaps other types of reduction techniques might be more
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accurate than the ones considered;

(ii) the error matrix equation is only valid providing 
the matrix product [E] is small but it was found that 
in the 8 DOF system this condition was not satisfied for all 
the modes yet the correct area of discrepancy between the 
two models was located using only 4 modes. Not only the 
area of discrepancy was located but also the amount of 
discrepancy indicated by the error matrix was of the correct 
order. This may have something to do with the pseudo 
matrices being singular;

(iii) it would be ideal if the error matrix can be 
substituted direct into the spatial matrices to correct the 
mass and stiffness terms. At the moment it is not possible 
to do so because the dimensions of the error matrix are 
different from those of the spatial matrices. This might be 
overcome by interpolating to estimate the errors at the 
coordinates that are not measured and hence making the error 
matrix of the same order as the spatial matrices.
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10. APPENDICES

10.1. MASS AND STIFFNESS MATRICES OF BEAM ELEMENT

The beam element is assumed to be straight bar of 
uniform cross section area as shown in figure 2-01.

Let {F} be the force and bending moment vector and {V} 
be the displacement and rotation vector.

From statics and dynamics, it is possible to show that;

{F} = [Ke\{V} 

{F} = [Me]{V}

where [K ] and [M ] are the element's mass and stiffness e e
matrices and are given by;
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10.2. PSEUDO INVERSE MATRICES

We shall only consider the 'pseudo' inverse stiffness 
matrices but the same argument may also be applied to the 
'pseudo' inverse mass matrices. From equation 6-04 we have;

The mass-normalised eigenvector matrix [4> ] is a rectangular 
while the 'pseudo' inverse stiffness matrix is square and 
symmetrical. In strict mathematical terminology, the word 
'pseudo' is applied to a rectangular matrix but in this 
study we shall apply the term 'pseudo' to a square matrix 
which is obtained using a rectangular eigenvector matrix.

Numerical calculations show that 'pseudo' matrices are 
singular. This is because for m < n the rank of the 
'pseudo' inverse matrix is m, which is less than the 
dimensions of this matrix (nxn); consequently, there must be 
rows and columns that are linear combinations of some or all 
of the other rows and columns, hence, the 'pseudo' matrix 
must be singular. For a single mode (m = 1) the above 
statement may be shown to be true for a general case 
i.e. for any vector.

Let the elements of a mode shape vector be?
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W*i =

/0i 
*2,|

*:

The 'pseudo' stiffness matrix is given by?

[*]J -{**}.! Ao

H

01
02

0 , V/t1

{01 02 • * • 0 n )T

0101 0102 •

1 0201 0202 • *
H

_0„01 0„02 * ' <t>n\

Clearly, the rows and columns of the above matrix are
related to each other (e.g. common factor in the first
column is 0^ and in the second column is *2 and so on). The
rank of the above matrix is one. Because of the dependency 
of the rows and columns, the determinant of the matrix is 
zero and hence it cannot be inverted in the usual manner.
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10.3, ON THE REDUCTION OF FULL MATRICES BY ELIMINATING ROWS 
AND COLUMNS

The term reduced means that matrix CM ] is reducedP
from NxN to nxn dimensions (N > n) by ignoring rows and 
columns.
Let us assume that the FE model has a [M ] matrix which isP
4x4 and its coordinates are u's and v's as shown below;

*11 *12 *13 *14“
/  u *

*21 *22 *23 *24
Corresponding

1 v i
*31 *32 *33 *34 coordinate = 1 1

) *  2
*41 *42 *43 *44 vector

'  V2

Let us further assume that the measured coordinates are u^
and U2* In this case the reduced matrix will by 2x2 while
the full matrix is 4x4. The matrix [M ] can be reduced toP
the same dimensions as the measured [Me] matrix by ignoring
the rows and columns corresponding to v's i.e. rows 2 and 4
and columns 2 and 4). The reduced [M ] thus becomes;P

Now we shall examine the effect on the error matrix of 
omitting these rows and columns. Let us partition the mode 
shape vector into two sections - measured and unmeasured 
coordinates, then;
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where <J>1 - the measured coordinates (known);
<f>2 - the unmeasured coordinates (unknown).

The inverse pseudo mass matrix is given by;

L*2J
[*1 *2]

where the inverse pseudo mass matrix and

[M]-i * ,* 2

* 2*2

-1

The pseudo matrix is also partitioned in four portions - 
[M^] is completely known where as [M^] and are
not known because these depend on the unknown quantity <j>2*

The error matrix equation requires the difference of 
the pseudo inverse matrices in the calculation of the error 
r * e.

[Dm] =  [M pY '  -  [ M J H
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Again only [D^] is the known quantity because [D2-L [D^] and 
[D4] depend on CM^] an<̂  M̂e4^ whicl1 are unknown.
Since the matrix [D^] is the difference of two similar 
matrices then its elements will be small hence we shall 
assume, although it cannot be justified that the unknown 
quantities - namely [D^] and [D^] - are small (zero),

3
then matrix [D ] becomes; m

Substituting this in the the error matrix equation gives; 
I£J  - W p][DJ[Mp]

K  ^ jp , oir^
LM P> AfJLo o] | a/,

[V.«„ MpP xMPi J 

p, £2]
U  £J

But when we omit the rows and columns we reduce the [M ] toP
just [M 3̂, in this case the error matrix becomes;

[£J = [AfPl][D,][JI/Pi] - [£,]

which is the known part of the [E ] matrix.m

So the effect of neglecting rows and columns is to 
assume that the unknown elements in the difference matrix
are zero.


