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ABSTRACT

In this thesis a design methodology is proposed for design-
ing controllers for nonlinear systems. Since frequency
response design techniques can be used only in special cases
nonlinear systems are designed, in practice, by multiple
simulation. The complexity of the design objectives can make
design by simuiation difficult and time consuming; thus, any
reduction of simulation time will substantially reduce the
the overall design time. The design methodology is based on
expressing the stability and performance requirements as a
collection of simple and (or) functional (i.e. infinite di-
mensional) constraints and then using optimization methods to
find a controller which satisfies these constraints.

The most important gonstraint in control system design is
stability, and to ensure stability it would appear necessary
to compute the system trajectory for all initial states and
all time. It is shown, in this thesis, how simulation time,
required for ensuring stability, can be considerably reduced.

The algoritbms which solve: these problems replace the
semi-infinite constraints by simple inequalities. There is,
therefore, a need for efficient algorithms to solve these
sub-problems; four algorithms have been developed for this
purpose. A new feasible point algorithm which, under mild as-
sumptions, finds a solution to a finite set of inequalities
and converges quadratically, has been developed. This algo-
rithm requires exact gradient calculations which are often

difficult to make. Two new derivative free algorithms are,



therefore, proposed. Convergence of these algorithms has been
established. The fourth algorithm presented, minimizes a
cost function subject to equlity and inequality constraints.
The algorithm is of the exact penalty type and includes a new
method for computing the penalty parameter; in this algo-
rithm, the penalty parameter is allowed to decrease. Global
convergence is established. Examples show good performance.

Implementation of the design technique also requires an in-
teractive environment to simulate nonlinear systems. SIMNON,
a command driven simulation program for nonlinear system, has
been implemented on a Perkin Elmer computer and enhanced to
permit implementation of the design method (To improve the
run-time capabilities " of this package a compilexr has been
written to translate +the <code generated by SIMNON into
maching code) .

To demonstrate the usefulness of +the optimization based
design method several design studies were undertaken. A con-
troller was designed to stablize a double inverted pendulum
in an upright position. A different design methodology was
used for the design of nonlinear controllers for torque con-
trolled zrobot arms. A controller was designed to ensure
robust performance and robust stability of the system despite
variation in load mass. Finally, linear and nonlinear optimal
controllers were designed for a seventh order nonlinear model
of a single machine power system to improve the transient
performance of the system and to satisfy stability and other

soft constraints.
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CHAPTER 1

INTRODUCTION

1.1 - OPTIMIZATION BASED COMPUTER AIDED DESIGN

The introduction of computers and recent developments in
computer science have resulted in changes, not only in so-
ciety in general, but also in scientific methodology. Numeri-
cal solutions are not only acceptable but are now as impor-
tant as analytical solutions. In other words, the class of
methods which are practical has changed; this, in turn, has
greatly influenced the development of theory advances. This
can best be seen in solving engineering problems. Design, as
opposed to synthesis, is iterative in nature because the
often imprecise objective and constraints, and the possibili-
ty of trading off one desirable quality for another requires
constant interaction with +the desigher. However, synthesis
techniques which solve precisely specified problems are use-
ful +tools for solving sub-problems which may recur in the

design process.

Many design problems can be formulated as constrained optim-
ization problems, in which inequality constraints correspond
to design specifications([1,2,3,4]. The solution of such pre-
cisely formulated problems is only one stage of the design
process. The designer must be able to interact at each stage,
changing the constraints, relaxing some and tightening others

(e.g. to obtain a simpler controller he could relax perfor-



mance constraints). Since there is such a close relationship
between design and constrained optimization, algorithms for
solving constrained optimization problems, or more generally,
for satisfying inequality constraints play an important role

in computer aided design.

Many of the design specifications can be +transcribed into
standard inequality constraints, so that feasible point type
algorithms may be employed. However, many other design
specifications including control design requirements, involve
infinite dimensional constraints of the form ¢(z, w) ¢ O for
all weQ, where w denotes frequency, time or parameter vec-
tors. In design of controllers, for example, the parameters
"z" of a controller are to be chosen such that the resultant
closed loop system satisfies certain constraints, including
stability and hard constraints on control and states. A typi-
cal constraint in this group of problems is: y(z, t) ¢ a for
te[t1, t2], where y(z, .) 1s the response of the closed loop
system to a step input. In another class of problems, the
parameter values of +the actual system, structure or device
differ from the nominal values used in the design. This
difference may occur because of lack of precise knowledge of
some of parameters in the system (e.g. unknown mass in the
design of controller for robot arms). A satisfactory design
may require satisfaction of certain constraints, not only by
nominal design but also, by all possible realizations of cer-
tain parameters. A typical example is design of robust con-
trollers, where +the controller must be such that the design

constraints are satisfied for all values of certain plant



parameters lying in a specified set. Taking into account con-
ventional (finite dimensional) constraints, many design prob-

lems may, therefore, be expressed either as

a) determine a ze€F; or

b) minimize {f(z)lzeF},
A P
where F = {zeR |g(z) < 0, wQ(z) ¢ O} (1.1.1)

and where g : RP - R, and 0y : RP + R is defined by

g (2) 8 nax max v3(z, w) (1.1.2)
weQ JjeEm
where m denotes the set {1,2,...,m}. These problems are obvi-

ously very complex and require global solution of a maximiza-
tion problem. However, semi-infinite constraints can be re-
placed by an infinite sequence of inequalities. Let us ignore
the conventional constraints and restrict the number of func-

tional constraints to one so that F is defined by
A p
F = {zeR mQ(z) < O} (1.1.3)

where, now ®g RP 4+ R is defined by

0g(2) 8 nax v(z, w) (1.1.4)
wEQ
Let QO denote any subset of Q@ (e.g. QO={w1,w2,...,ws)); then
the set F defined by
2



F., &

0 {(z|p(z,w) € O, weQ.} (1.1.5)

0 o

is clearly aSﬁgfset of F. Hence, FQ is called an outer ap-
0
proximation to F. The outer approximation algorithms employ a

' FQ r e ey to F, each
1 2

described by a finite number of inequalities. The following

sequence of outer approximations FQ

(conceptual) algorithm can be used to determine a feasible

point [3].

Algorithm 1: to find a 2zeF:

. P, ini =
Data: zOER : QO a finite subset of Q (e.g. QO {wo))
Step 0: Set i=0

Step 1: Compute any zieFQ .
i

Step 2: Compute w, to solve max{$(zi,w) weEQ} .

Step 3: Set Qi+1 = QiU{wi}, set 1=i+1 and go +to Stepl.

It can be shown [5,6] that any accumulation poi nt z* of an
infinite sequence {zi} generated by the above algorithm is
feasible (z*EF). The algorithm can be easily modified to
deal with the constrained optimization problem min{f(z)]|zeF}

as follows.

Algorithm 2: to solve min{f(z)|zeF}
Data: zOERp; Q, a finite subset of Q.
Step 0: Set i=0

Step 1: Compute a Z; to solve

Pi: min{£(z) ZEFQi).

- 11 -



Step 2: Compute w, to solve max(w(zi,w) weQl .

Step 3: Set Qi+ = QiU{wi}, set i=i+1 and go to Stepl.

1

These algorithms have several defects: exact solution of the
problems in Steps 1 and 2 are required and the cardinality of
Qi tends to infinity with i, making the problem in Step 1
progressively more difficult to solve. These defects have
been removed in the implementable outer approximation algo-
rithms [7,8] by modifying the alove algorithms so that prob-
lem Pi (Step 1 Algorithm 2) and the problem max{w(zi,w) weQ)}
(Step 2 Algorithms 1 and 2) need only be solved approximate-
ly. An outer approximation technique is proposed by Gonzaga
and Polak [8] which offers considerable advantage in con-
straint dropping over earlier scheme such as those due to
Eaves and 2Zangwill [5]. Becker, Heunis and Mayne [3] have
proposed an implementable version of Algorithms 1 and 2 by
making use of an additional finite approximation éi to Q for
Step 2. Thus, if Q is frequency (or time) interval .[w1, wz],
then éi 4 {w1,w1+A,w1+2A,...,w2}, where A=(w2—w1)/i is a

suitable approximation.

Algorithm 3: to find a ze€F:

Data: z.erRP, Qqr  6€(0,1)

o
Step O0: Set i=0

Step 1: Compute any zieFQ .
i

Step 2: Compute w, to solve max{w(zi,w) wEQi).

Store w,
i



j 1 . .
Step 3: Set Qi+1 = {wi w(zi,wj) b 63—6 ¢ J=1,2,...,1},

set i=i+1 and go to Step 1. .

Notice that the test q)(zi,wj»&:’-—bl (for inclusion of wy in

Qi+1) is difficult for low values of j and becomes more dif-

ficult as i+« since 61*0. If $(.,.) is continuously differen-
tiable, then, any accumulation point z* of an infinite se-
quence (zi} generated by the algorithm is feasible [8]. Im-
plementable version of Algorithm 2 is presented in [7]. Let

GQ (.):RP+R be an optimality condition for Pi i.e.
i . .

8. (z) ¢ O for all z and @

Q Q‘(z)=0 if, and only if, zLeFQ (z)

i i i

and satisfies certain necessary conditions of optimality.

Then, one example of an implementable version of Algorithm 2

follows [3].

Algorithm 4: to solve min{f(z)|zeF}

Data: z.eRP, ., 5€(0,1), ~ve(0,1)

0 o'

Step 0: Set i=O0

Step 1: Compute a zi such that
i

GQ1(zi) s Y

Step 2: Compute wy to solve max{w(zi,w) wEQi}.
Store w.
i
. — 5 P SR .
Step 3: set Qi+1 = (wi w(zi,wj) » 8°-867,3=1,2,...,1},
set i=i+1 and go to Step 1.

Sub-algorithms are required either for finding a feasible
point or solving Pi' These are essentially conventional (fin-

ite dimensional) mathematical programming problems for which



many algorithms exist [9,10,11,12], however, because of the
complexity of the total problem, large rewards are obtained
through the use of efficient programs. It is the purpose of
this thesis to obtain efficient algorithms for +the above

sub-problems and to investigate their use in design.

1.2 - STABILITY AND DESIGN OF NONLINEAR SYSTEMS
stability

The modern Xﬁheory of automatic control, no matter how
presented, 1is based on the simple strong formulation due to
A.M. Liapunov, of stability theory [13]. As a consequence of
the many distinct behaviour of nonlinear systems, most
methods of analysis are directed towards solving special
problems such as the existence of the 1limit cycles. In
several methods, the assumptions made are based on the ex-
pected form of solutibn, so that some knowledge of the possi-
ble forms of nonlinear behaviour is a requirement for the
analyst[15]. Although frequency domain techniques are widely
used for designing (stabilizing) linear systems, the exten-
sion of these methods to nonlinear systems has only been
utilized in a certain class of nonlinear systems, namely
those which have a forward path which is a linear time in-
variant dynamics system and a feedback element which is non-
linear or nonstationary or both [18]. The resulting stability
criteria (e.g. Popov's criterion and the «circle criterion)
are frequency domain constraints. However, many design prob-
lems do not fall into this restricted class and existing

tools do not appear adequate. On the other hand, control

- 14 -



design specifications often relate to system time response
behaviour and there are few analytical techniques for non-
linear systems which can be used with confidence to guarantee
these design requirements (for a survey of the existing
methods see [15,16]). The limitations of the various analyti-
cal methods for nonlinear systems mean that simulation is
frequently used in practice as a design +tool but the com-
plexity of +the design objectives (e.g.’'the satisfaction of
the step response of constraints at every time in a specified
interval), the large number of control parameters, can make
design by simulation difficult and time consuming. However,
it 1is possible to utilize optimization methods to aid this
methodology. In this thesis it is shown how optimization can
be used in a new methodology for the design of feedback con-
trollers for nonlinear systems to satisfy various stability

and performance constraints.

1.3 - OUTLINE OF THE THESIS AND LIST OF CONTRIBUTIONS

In Chapfer 2 a procedure for designing of feedback controll-
ers for nonlinear systems is proposed, analysed and incor-
porated in SIMNON, an interactive simulation package which is
implemented on a Perkin Elmer 8/32 computer. Illustrative

examples are given.

In Chapter 3 a new feasible point algorithm is presented
which, wunder mild assumptions, finds a solution in a finite

number of iterations. A complete +theoretical analysis is

- 15 -



given. Quadratic rate of convergence (in the absence of a
stopping condition) is established. Numerical examples are

computed and a comparison is made with existing results.

In Chapter 4 two new derivative free feasible point algo-
rithms are presented. Convergence properties are established.
Numerical results are given. The algorithms are incorporated

in SIMNON.

In Chapter 5 a new globally convergent optimization algo-
rithm for constrained problems is presented. In this algo-
rithm a new method for computing the penalty parameter 1is
proposed. The penalty parameter computed in this way can be
decreased. It is proposed to solve a linear program which en-
sures eXxistence of a search direction vector. A complete
theoretical analysis, under mild assumptions, is given. Nu-
merical examples are computed and comparison is made with the

existing results.

In the next few chapters the new design method and the new

algorithms are applied to practical examples.

In Chapter 6 a double inverted pendulum is stablized at the
upright position using the design technique proposed in
Chapter 1. Minimum order and functional observers are
designed and the resultant system is simulated under severe

disturbances.

In Chapter 7 a design methodology is proposed for design of

- 16 -



nonlinear controllers for torque controlled robot arms.
Robust performance and robust stability of such a system for
unknown mass is established by numerical simulation of the

resultant system.

In Chapter 8 linear and nonlinear optimal controllers are
designed for a seventh order nonlinear model of a single
machine power system to improve the transient performance of
the system and to satisfy stability and other soft con-

straints. Simulation results are given.

In Chapter 9 our conclusions are presented.

Since SIMNON is heavily machine dependent, it was extensive-
ly modified +to implement our design procedure. Several new
commands are included. A compiler is written to translate the
Reverse Polish Notation of SIMNON into machine language; this
is presented in Appendix I. This improved the efficiency of

the package by a factor of five.
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CHAPTER 2

2. DESIGN OF FEEDBACK CONTROLLERS FOR NONLINEAR SYSTEMS

2.1 - INTRODUCTION

The substantial progress in the design of linear multivari-
able systems makes it opportune to re-examine the difficult
problem of designing controllers for nonlinear multivariable
systems. Of course, it has always been recognized that linear
models merely approximate the nonlinear processes mainly en-
countered in practice. Hence, several design procedures have
been proposed; one of the most widely used of these is the
describing function method. In common with most of the avail-
able methods, this method assumes that the feedback loop con-
sists of +two subsystems, one linear, the other nonlinear,
connected in tandem. The method approximates the nonlinearity
by an amplitude dependent transfer function, and assesses
stability from the Nyquist plots of the transfer function of
the 1linear system and the amplitude parameterized family of
approximate transfer functions of the nonlinear system. It is
known (see e.g. [1]) that satisfaction of the describing
function criterion does not, in dgeneral, ensure stability,
even when the nonlinearity is memoryless and time invariant.
For the latter case, rigorous stability criteria (the circle
criterion and Popov's criterion) have been developed and are
amenable to simple graphical interpretations. All these
methods, however, are restricted to systems consisting of

linear and nonlinear (possibly memoryless) subsystems. For

- 20 -



more general systems, it appears that the Liapunov's stabili-
ty criterion is the only resort. However, it is notoriously
difficult and virtually impossible in practice to obtain
Liapunov functions for systems of order higher than three.
Since obtaining such a function represents only part of the
design process, this approach is not generally applicable.
Efficient methods for determining optimal open loop controls
do exist and are employed in aero-space and some process con-
trol applications; these methods cannot be used for determin-

ing satisfactory feedback controllers.

In the face of such poor assistance from system theory it
appears +that many engineers employ simulation as their major
design tool. Controllers, whose structure is motivated by
past experience, are added to a simulation of the nonlinear
system and parameters are adjusted until closed-loop simula-
tions indicate (but do not guarantee) stability and adequate
performance. For reasons given below, it is believed that any
generally applicable method for the design of nonlinear sys-
tems will, of necessity, involve repeated simulations. Atten-
tion should, therefore, be devoted to the problem of reducing
the substantial computation involved. To assess stability it
appears necessary, at first sight, to evaluate the state tra-
jectory at all times (in the finite interval [0O,«)) and for
every initial state (in some compact subset X of the state
space Rn). It appears impossible to relax the latter require-
ment; however, recent works by Polak and Mayne [2] and Mayne
and Sahba [3] show that it is possible, in the assessment of

stability, to reduce the interval of simulation from the in-

- 21 -



finite interval [0,») to a finite interval [0,T], where T may
be quite small, resulting in a considerable reduction in com-
putation. The requirement that all initial states in X must
be considered may be handled by formulating the stability re-
quirement as an inifinite dimensional constraint. Algorithms
for such constraints are given in Chapter 1. It will be shown
how these procedures [2,6] can be wused, with the aid of
numeriacl examples, for designing of nonlinear systems. It

will be also shown how the new algorithms may be employed +to

obtain satisfactory performance (e.g. low tracking error).
2.2 - STABILITY OF NONLINEAR SYSTEMS
Suppose that the system to be considered is described by

x(t) = £(x(t), ult)) (2.2.1)

]

~

where £ : RPxr™ - Rnis continously differentiable. We also
suppose that the set of initial states of interest is some
compact subset X of Rn, and that the origin is the equlibrium
state (E(0,0) = 0) and lies in the interior of X. Suppose

that the controller structure has been chosen so that

u(t) = h(x(t), 2z) (2.2.2)

where h : R™xRY + R™ defines the controller and it is assumed
to be continuously differentiable and to satisfy h(0,z)=0 for
all zeRr; zeRT specifies the controller parameters +to be

chosen. Hence the closed loop system satisfies

- 22 -



x(t) = £(x(t), z) (2.2.3)

n>

where £ : R™xRT + R® is defined by f(x, z) £ f£(x, h(x,z)) and

is continuously differentiable and satisfies f(0,z)=0 for all
zeRT.

For any initial state X, at t=0 let x(t; Xgr z) denote the
solution of (2.2.3) at time t. The formal definitions of sta-
bility [1] involve the solution x(t; Y z) of (2.2.3) at all
te[0, «) and all xoex (the origin is globally asymptotically
stable if x(t; X1 zZ) + 0 as t +» » for all Xq and if for all
€>0 there exists a 6>0 such -that uxou < & implies that

hx(t; x z)Il < & for all t 3 O0). A frequency domain charac-

o’
terization 1s not possible since the system is nonlinear so
that this escape from an infinite number of time responses is
not availéble. If a candidate Liapunov function
(x,2) » W(x,z) were available, to test it would still require
the evaluation of W(x) & W_(x)f(x,z) at all xeX; while infin-
ite dimensiona 1lity in the time domain is now absent, it
must be remembered that determination of W involves even more
computation.

n

Let V : R° » R be continuous function with the following

properties
a) V(x) » O for all xeR"

b) V(ax) = aV(x) for all a)0, all xeR®

Cc) V(x) = 0 if and only if x = O.

- 23 -



An example of such a function is V(x) = (xTPx)”2 where P is

a positive definite matrix. For all x let B(xXx), a subset of

Rn, be defined as follows

B(x) & (x'er?v(x') ¢ V(x)} (2.2.4)

It is easily established that B(ax) = aB(x) for all

a€{0, «), where aB(x) is defined in the usual way[2]

aB(x) & (ax'erR®|x'eB(x)} (2.2.5)
We immediately obtain

V(x') ¢ V(x) implies that B(x') c B(x) (2.2.6)

clearly B(yx) is a subset of B(x) for all ~e€(0,1) and

B(0)={0}.

If a controller could be chosen so that the resultant tra-
jectories satisfy &(x) ¢ O for all x#0 where W(x) 4 V(x)z,
then the system would be globally asymptotically stable with
a Liapunov fuction W(x). Since this approach is not fruitful,
we relax the demand on V (or W). Instead of requiring that V
decreases monotonically along trajectories, we merely require
that a decrease in V is achieved at times T, 2T, 3T, ... etc,
for some finite T; V is allowed to increase in the intervals
(kT, (k+1)T), k = 1,2,... provided that certain boundedness

conditions are met. The following stability theorem [2] make

the comment more precise.



THEOREM 2.2.1
suppose xeR™ is such that X is a subset of B 8 p(x). 1If

there exists Be(0,1), ve(1,»), zeR' and Te(0,~) such that

i) =x(T, x5, z) € BB(xy) for all XOEE

ii) x(t, x4, z) € YB(x,) for all xOEE and all te[O,T].
Then

a) x(t, x5, z) € YB(Xy) € vB for all xoeﬁ,
and all te[0,«),

b) x(t, x., z) - 0 as t + «, for all xoeﬁ.

o’
A proof is given in [2]; we present here a graphical motiva-
tion (see Fig. 2.1). The set of initial states ' of in-
terest is X; X is a subset of B which is chosen to be (the
smallest) set of form B(x) (for some xeR™such that X is a
subset of B. Theorem 2.2.1 states that if z and T can be
chosen so that a trajectory starting at any Xq in B lies
within VB(xo) for all te[0,T] and +terminates (at T) in
BB(xO), then the origin is asymptotically stable with a re-
gion of attraction B, which includes X. It is obvious that
in the interval [T,2T] this trajectory will be within ByB(xO)
and terminate (at 2T) in BZB(XO), etc. Hence, asymptotic
stability for all initial states in B is ensured if hy-
potheses (i) and (ii) are satisfied; these conditions can be

organized as infinite dimensional constraints (to be satis-

fied for all onE, all te[O,T]).
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2.3 - RESPONSE FUNCTIGON V

The procedure obtained above depends on the choice of func-
tion V and associated set value function B; a wise choice
will permit a small value for T. The following choice should

be suitable for many applications:

(a) Choose a control structure (possiblly dynamic) which per-
mits linear control (e.g. by setting certain components
of z to zero); if dynamic, incorporate the extra states
in x.

(b) Linearise the system (eqn. 2.2.1) about +the equilibrium

point yielding

w(t) = Aw(t) + Bu(t) (2.3.1)

where a 2 £.(0,0) and B 2 f (0,0) if the equilibrium

point is the origin. The linearized output equation is
y(t) = cw(t) (2.3.2)

where ¢ 2 g,(0,0).

(c) Design a linear controller
u = -Kew(t) + w(t) (2.3.3)
so that the closed loop system

w(t) = (A - BKc)w(t) + Buw(t) (2.3.4)
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is stable.

(d) For some symmetric matrix Q>0, compute the sysmmetric po-
sitive definite solution P of the Liapunov equation for
egqn. (2.3.4) (with the same 1linear controller) in the
neighbourhood of the origin. In this neighbourhood, pro-
vided that 8 and y are appropriately chosen, T=0+ will

suffice.

It is, therefore, plausible that this choice of V will per-

mit a relatively small value of T to be chosen for the non-

linear design problem. Since V(x) = uqu, it follows that
Ix (KT, x., z)0, < B5Nx.1 (2.3.5)
rtor P o'p T
so that appropriate choices are g = ebT, ¥ = 1.58, in which

case (1/85) is effectively the "time constant" of the control

system and should be appropriately chosen.

A disadvantage of the above procedure is that the controlled
nonlinear system is forced to behave like a linear system, at
least at multiples of T. This may require excessive control
action when x is large. One way of avoiding this is to permit
a variable "time constant" (1/86) by allowing B or T (or both)
to vary with x. To save computation, it may be preferable to
replace T by T(x), where T(x) is small if Ixl#i is small and
large if nxi is large. The +time constant is now
(1/8(t)) = T(x)/1ng and is only small when lixll is small. The

stability theorem is easily extended.
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THEOREM 2.3.1

Suppose xeR® is such that X is a subset of B 2 B(x). If

there exist Be(0,1), «~YeE(1,»), T:B - [T1 T2] and zeRY such
14

that

i) x(T(xy):%y,z)€BB(x,) for all xoeﬁ

ii) x(t,xy,z)eYB(Xy) for all xoeﬁ, te[0,T(x)]
then

a) x(t,x;,z)eYB(x,) © ~vB for all xoeﬁ and all te[0,)

b) x(t,x;,z) = 0 as t + = for all xOEE.
PROOF: If x'egXB(x)=B(g¥X), from (i)
x(T(x'),x',z)epB(g* %) = 85" 'B(%).
Since f is autonomous it follows that

x(t O,z)eBkB(i) for all x,eB(x)

k' ¥

where

It follows from (ii) that
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x(t,x',z)eyB(x') © yB¥B(X) ¢ yB(X) for all telty t, 1]
then as t + «, k + » and

(a) x(t,x5,2) € YB(xy) € yB for all xoeﬁ, all te[0,=)

(b) x(t,x5,z) + 0 as t + = for all xoeﬁ. .

Since values of T(x) are restricted to 1lie in the range

[T1, T2] the effective "time constant" 1lies in the range

[T,/1ng,T5/1n8].

It is possible under certain circumstances, to discard the
second infinite dimensional constraint (hypothesis (ii)) in
each of the above theorems. Suppose that (x,u) -+ E(x,u) and
(x,p) » h(x,p) are continuously differentiable, so that
h(0,z) = O, for all zeZ where Z, the set of feasible solution

of 2z, is compact. From the mean value theorem we have that
f(x,z) = £(0,2z) + (3£(Z,2)/3x)x  ZeB (2.3.6)
or
uf(x,z)HP P4 uf(O,z)HP + Ilaf(z,z)/axllpllxllP (2.3.7)
Since 8f(x,z)/8x is continuous and B is compact

Hdf(x,z)/dxN_. ¢ M for all xeB and all zeZ,

P

where M is finite. Hence,
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NE(x,z)I, ¢ Mixl;, for all xeB, all zeZ (2.3.8)

P

But
t
le(t,xo,z)llP 'Y uxonp + guf(x(s),z)npds
t
< leollp + émnx(s)upds (2.3.9)

and from the Bellman-Gronwall Lemma

n_ eME (2.3.10)

on p

llx(t,xo,z)llP <

for all x.e€B and all ze€Z. Hence, if T (Tz) is chosen to be

(0]
sufficiently small (such that eMT £ v) it follows that

x(t,xo,z)EYB(xO) (2.3.11)

for all xoeﬁ and all +¢[0O,T] ([0, T(x)1).

Hence, for such a T (Tz) hypothesis (ii), in Theorems 2.2.1
and 2.3.1 1is automatically satisfied. Under such conditions
asymptotic stability is obtained with zeZ satisfying the ine-

quality

llx(t,xo,z)llP - suxOuP ¢ O for all xOEB (2.3.12)
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2.4 - PERFORMANCE

Satisfaction of the stability constraint automatically en-
sures satisfaction of one performance criterion; the closed
loop system must have a specified "time constant", in the

sense that x(kT,xo,z)EakB(x if a constant T is employed,

o)
and x(Tk(xO),xo,z)eakB(xo) otherwise, where Tk(xo)E[kT1,kT2].
Hence, by choice of T and B, a satisfactory rate of recovery
from an initial state is ensured. Other performance con-
straints (e.g. tracking error less than specified limit, zero
steady-state error to step, ramp and parabolic inputs) can
also be satisfied (these constraints are, usually, infinite
dimensional constraints). For example, in the sigle-input,

single-output case, the output y(t) due +to +test input

r(t)=aH(t) (and zero initial state) may be required to satis-

fy

y(t) < vy, (t,a) (2.4.1)
and

y(t) > y,(t,a) (2.4.2)

for all te[O,T] and all a in the set A of amplitudes of test
signals. This performance criterion is illustrated in Fig.
2.2. Note that, typically, a longer response time is permit-
ted for a larger change in demand output. Tighter tracking
under transient conditions can be achieved as follows. Sup-

pose that the reference input r belongs to the class R de-
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fined by

R 4 {rjr(t) = a ta ,t+...+a tk_1,aEA} (2.4.3)

0o 1 k-1

(ao,...,ak_1)T and A is a compact subset of rRX. an

>

where a

element r of R has the finite parametric representation

r(t) = (a,é(t)) (2.4.4)

(1, t, t~2, ey tk'1).

ne>

where p(t)

The closed loop system with a controller specifigd by z and

an input reR can be described by

x(t) = E(x(t), z, a) » (2.4.5)

y(t) g(x(t)) (2.4.6)

The instantaneous tracking error is

2

2 .
e(t,xo,z,a) 4 [g(x(tnxorz.a))]— ka,p(t)>] (2.4.7)
and a scalar valued tracking criterion is
c(z) = max{e(t,xo,z,a) xOEX, a€eA, teT} (2.4.8)

where T = [0, t'] is an interval of interest. Typically there
are also constraints on the magnitude of u(t) and in some

cases on the magnitude of u(t). Thus constraints of the form



lu(t)] ¢ U (2.4.9)

must also be satisfied for all te€[0O,T] and all ae[0O,A] where
u(t) is the control signal in response to a step input

r(t) = aH(t).

Summarising, the performance constraints may be expressed in

the form
mj(z,t,a) < 0, i=1,...,J (2.4.10)

for all te[O,T] and all aeA. The parameter z emphasises the
fact that the responses y(t) and u(t) depend on the controll-
er parameters. For example, the constraint |u(t)| < U may be

expressed  as

‘p.,(z't'a) u(t) - U ‘0 and

wz(z.t,a) = -u(t) - U 0.

Another design objective is that of robust performance, i.e.
that the performance constraints must be satisfied even if
the plant differs (with limits) from the model employed for
design [7]. To quantify +this suppose that the closed loop

system is described by

x(t) = £(x(t), r(t), z, p) (2.4.11)

where p is a vector (p1,...,pq) of plant parameters which may

be known or may, indeed, vary. Suppose p. specifies the nomi-
0
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nal plant and that p always lies in a known set Q. Then the
response Yy(t) and control u(t) will depend on p as well as z
and a (i.e. r). In order to ensure robustness performance the

following constraints must be satisfied

(2.4.12)

Il
—-—
3
.
-
o

‘Pj(zrtrarp) < 0, J

for all te[O,T], all aeA and all peQ. The constraint in
(2.4.12) represents a constraint on the output y(t) or the
control u(t) in response to test input (specified by a) when
the plant parameter is p and the controller parameter is z.
Satisfaction of (2.4.12) ensures that the performance con-

straints are satisfied for all plants such that p lies in Q.

2.5 - CONTROLLER STRUCTURE

There has, unfortunately, been relatively little interaction
between the areas of system theory and controller design [7].
However, recent results on characterising admissible con-
trollers in linear multivariable systems have suggested use-
ful controller structure; recent results on transforming non-
linear +to equivalent linear systems [8] may permit similar

techniques to be used.

In many cases, controller structure will be chosen either on
the basis of prior experience or in some standard form (e.g
multivariable proportional plus integral controller, or a con-

1

troller with +transfer function [1/d(s)]N(s) or D(s) 'N(s)

where N(s) is a matrix polynomial, D(s) a diagonal matrix of

- 34 -



polynomials and d(s) a polynomial). The parameters of any
such controller may be specified by the vector z and the
dynamic equations of the plant and the controller combined to
yield a closed loop system described by i(t) = £f(x,2z) (or

x(t) = £(x,2z,r)) and y = g(x).
2.6 -~ ALGORITHMS FOR SOLVING SEMI-INFINITE CONSTRAINTS

The design constraints can be expressed as a finite number
of conventional (p(z) ¢ O) and semi-infinite (@(z,a) ¢ O for
all a€A) constraints. Hence, the design problem can be ex-

pressed as
P1: Determine a z such that ¢(z,a) ¢ O for all aeA, or
P2: Minimize {(c(z)]|ew(z,a) ¢ O, atcA}

where A is an infinite dimensional set (e.g. A = B for the
stability constraint in hypothesis (i) of Theorems 2.2.1 and
2.3.1, a = B x [0,T] for the stability constraints of hy-
pothesis (ii) ). Algorithms for these problems are described

in Chapter 1.

2.7 - ILLUSTRATIVE EXAMPLES
EXAMPLE 1. Harmonic oscillator with two control variables.

Let us examine the stability of a simple dynamic system with

two control variables

- 35 -



% .
I

-ax1 + wx2 + r1

X = —wx1 - ze + r2

Let the feedback signal be given by

where (z1, z2) are the control parameters. The closed 1loop

system is then given by

where

A —(u+z1) w
- -w -(u+22) :

The Liapunov function is defined by

/2

vix) & (xTpx)’

where P is a symmetric positive definite matrix defined by

Q = -(PF + FTP)

Let Q = I and a =0, w =1, z1

solution of the above equation,

= 1 and z, = 2, then, P,

is given by

the



Now, let us choose x = (0, 1); this implies that

V(x) = 2.36, and

T /2

B(X) = (x| (x*px)'/? ¢ 2.36).

We have employed a feasible point algorithm to find the
design parameters (z1, z2) satisfying +the stability con-
straints; this means that the stability constraints must be
satisfied for all initial points in the set B(x). We have em-
ployed the Monte Carlo method for randomly choosing 500 ini-

tial states in B(x). Figure 2.3. shows sample trajectories,

computed over the interval {0,5sec], for iterations 1 to 3.

EXAMPLE 2. Two coupled alternators

The open loop system equations are described by

x1 = x1 + 0.5 ~ s:.n(x3 + w/6) + u1
x2 = 2x2 - 0.5 + SLn(x3 + w/6) + u,
X = X, ~ X,

The system equations and their adjoints (required for the

computation of the gradient wz(z,a)) are integrated using an
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efficient program due to Sargent and Sullivan [9]. The algo-
rithm yielded a stable controller (assessed by 500 initial
states in X, randomly chosen) within three iterations of the
master algorithm. The state trajectories and V for
X5 = (1.6,-1,-1) are plotted in Figure 2.4. Note that V ini-

tially increases before decreasing, unlike conventional

Liapunov function.
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CHAPTER 3
AN EFFICIENT ALGORITHM FOR SOLVING INEQUALITIES

3.1 - INTRODUCTION

The problem considered is that of finding a point z in R

satisfying the finite set of inequalities

gl(z) <0, 3 =1, ..., m. (3.1.1)

Several algorithms have been presented for this problem. It
is well known, for example, that a standard feasible direc-
tion algorithm may be employed; however, convergence can be
slow [1]. 1In Reference 2 a modified Newton step is employed
as the search direction, provided that it exists and satis-
fies certain properties; the modification consists of adding
to the Newton step a perturbation directed to the interior of
(the first order approximation to) the feasible set. The
modification ensures finite convergence. If the Newton step
does not exist or does not satisfy certain requirements, a
first order descent direction for ¢(z), where d):Rn + R is de-

fined by

v(z) & maxigd(zyls = 1,...,m, (3.1.2)

is employed. In Reference 3 an alternative approach is em-
ployed. Again a modified Newton step is employed. In this

case the modified step is that p in R" of minimum norm which
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satisfies

gl(z) + gl(z)p ¢ -e, 3 =1,...,m. (3.1.3)
Again, if such a p does not exist or does not satisfy cer-
tain properties, a descent direction (for a surrogate cost
function) is employed. A scheme for adaptively reducing e

consistently with finite convergence completes the algorithm.

Although these algorithms, which have been extensively used
in many design studies, generally work well, it has been ob-
served that in some cases the reversion to a first order
search direction, when the modified Newton step does not ex-
ist or does not satisfy certain conditions, can cause slow
convergence. An alternative Newton type proposed in Reference
4 employs an active set strategy. Quadratic rate of conver-
gence 1is established under stronger assumptions than those
employed in our work. This algorithm does not necessarily
find a solution in a finite number of iterations. The algo-
rithm presented in this chapter attempts to avoid these defi-
ciencies by always employing a Newton step directed to the
interior of the linearized feasible set as the search direc-
tion. The algorithm employs as its search direction that vec-

tor p, of minimum norm, which solves
97(z) + gd(z)p < ~e, F =1, ..., m, (3.1.4)

where € is chosen, subject to certain constraints, to be as

large as possible. The value of ¢ is ascertain by solving a
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linear program. Thus, whenever possible, the search direc-
tion p 1is computed such that z + p lies in the interior of
the first order approximation to the feasible set. This en-

sures finite convergence.

3.2 - THE ALGORITHM

For all z and p in R? 1let v(z,p) denote the following first

order approximation to Y (z+p)
v(z,p) & maxtgl(z) + g;(z)p jem} (3.2.1)

where m denotes the set (1,2,...,m}. The Newton step at z, if

it exists, is that p in R® which solves:

min{ Npl | ®(z,p) € O}. (3.2.2)

Since the set {P|¢(Z:P) ¢ O} may be empty (implying nonex-
istence of the Newton step) another approach is required. Let

the functions wo and wg :R® + R be defined, for all €30, by

&o(z) 8 min{ i(Z.P) peP} (3.2.3)
and

12(z) & max(@®(z), -l (3.2.4)
where



n>

P = ( per" | npu_ ¢ L} (3.2.5)
and L is some suitably chosen large number (without the con-
straint peP the solution of (3.2.3) may be unbounded). If
wo(z) ¢ O then a solution to (3.2.2) exists, since the set
{p|v(z,p) ¢ O} 1is not empty. Note that (3.2.3) is equivalent

to a linear program which we denote LP(z).

We can now define our search direction at z. It is that P,

which solves the following quadratic program (QPe(z))
min{ Npl l oiz,p) < 0020, (3.2.6)

Since the level sets of p = lpll are strictly convex and
{plw(z,p) £ wg(z)} is convex pe(z), the p which solves

QPe(z), is unique.

To complete the algorithm we have to specify the step length

Ae(z). Let 8:R™xR" + R be defined by
A -
8(z,p) = ¢v(z,p) - ¥(z). (3.2.7)

Clearly 6(z,p) is a first order approximation of

n

v(z+p) - P(z). Similarly let 8 amd-ee:R + R be defined by

nw>

8'(z) & v°(z) - w(z), (3.2.8)

and
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Be(Z) 4 ig(z) - P(z) = max{8'(z), -(p(z)+e)}. (3.2.9)
Clearly
BG(Z) = 08(z, pe(z)) (3.2.10)

is an estimate of Y(z + pe(z)) - Y(z), i.e. an estimate of
the change of cost obtained by employing the search direction
pe(z). The step length Ae(z) is <chosen to be the largest
step, in a finite set, such that the actual reduction in ¢ is

at least half of the estimated reduction. More precisely,

Ae(z) is the 1largest number in the set S a {1, B, 82,...},
Be(0,1), satisfying
v(z + Ap_(z)) - w(z) < A8 _(2)/2
= A[w(Z.Pe(z)) - ¥(z)1/2 (3.2.11)

We now have all the ingredients for defining the first ver-

sion of the algorithm.
ALGORITHM 1

Data: eR™, €'€(0, 1), L >> 1, Be(0, 1).

20

Step 0: Set i = 0; set ¢ = e‘w(zo),

Step 1: Compute ¢°(zi) = min{¥(z;, p)|peP}.
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Step 2: Compute 12 pe(zi) = argmin{lipl w(zi,p) < wg(zi)}.

Step 3: Compute Ai Ae(zi), the largest A in S such that

nb(zi + Api) - w(zi) 4 Aﬁe(zi)/Z.

Step 4: Set zi+1 =z + Aipi, set 1 = 1 + 1.

Go to step 1. ]

3.3 - CONVERGENCE

Let the set F be defined by
F 8 (zlg9(z) < 0, jem) = tzlw(z) < 0} (3.3.1)

and let FC denote the complement of F, i.e.

F€ = (z|w(z) » O}. (3.3.2)

We make the following assumptions:

H1: The functions gJ : R™

-+ R, jem, are continuously
differentiable.

H2: For all z in Fc,
8‘(z) < O. (3.3.3)

Assumption H2 ensures that Y(z) can be decreased at all z in

F¢ (since 6'(z) = min{v(z,p)|peP} - Y(z)) 1is a first order
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estimate of Y(z+p(z)) - P(z). A sufficient condition for H2
is +the positive linear independence, for all z in FT of the
set {VgJ(Z) jeI(z)}, I(z) 4 {jem gJ(z) = ¢p(z)} (i.e. the set
of gradients of the most active constraints).

our first task is to establish that ¥(z,p) is indeed a first
order estimate of ¢Y(z+p). This is easily done. For all z,
all 5>0 let Bb(z) denote {(z'|liz'-zll ¢ B}.
PROPOSITION 3.3.1

For all n>0, all z in R® there exists a 60 such that

v(z'+p) - v(z',p)| < nlipl

for all z'EBb(z), all pEBb(O).
PROOF: As shown in Reference 2,

v(z'+p) - v(z'+p)| < max{lgl(z'+p) - gl(z',p)||jem}
where

gj(z,p) 4 gj(z) + g;(Z)p.

Now
. . 1 . )
gl(z'+p) - gl(z',p) = [I[gg(z'+tp) - gg(Z')]dt]p.
0
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so that

1, .
fhgl(z'+tp) - gJ(z')ndt|up.

lgd(z'+p) - g7(z',p)I| ¢ [
(0]

£y

Since g;

is uniformly continuous in any compact set and
since z‘EBa(z) and pEBa(O) imply that z'+tp € B26(z) for all
te[0,1], it follows that, for all n>0, 8 can be chosen so

that

W(z'+p) - ¥(z',p)| < nipl
for all z'EBa(z) and all p in BG(O)' "

Our next +task 1is to establish that the algorithm map
z - Ae(z) 4 z + Ae(z)pe(z) (defined by Steps 1 - 4 of the al-
gorithm) has certain continuity properties. Our first result

is:

PROPOSITION 3.3.2

-

‘bO

n

R” + R is continuous.

PROOF: Let z be any arbitrary point in R™ and let §>0. Let z'
be an arbitrary point in B(z) and let pe(z) (pe(z')eP) satis-

fy

-~ -~

02(z) = w(z, p_(2))



02(z') = wiz',p_(z").

Hence

$2(z) - ¥°(z) = ¥(z',p_(z')) - W(z,p_(2))

N

w(Z‘,pe(Z')) - w(Z.pe(Z'))

and

02(z) - $°(z*) = b(z,p_(2)) - (z',p_(z'))

¢ W(z,p _(2)) - w(z',p_(z')).

-~

since y is uniformly continuous in Bb(z)xP it follows that
vo(z') - vO(z)| »+ 0 as z' + z. .

COROLLARY

n

For all >0, wg :R” » R is continuous. .

PROPOSITION 3.3.3

(i) 8' and Be, for all €30, are continuous.

(ii) For all zeFS and all €30, 8._(z) < O.

PROOF: (i) The continuity of 8' and Be follows from the con-

tinuity of wo, wg and .
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(ii) By H2, 8'(z) < O for all z in FS. From (3.2.9),

Be(z) = max{08'(z), -(P(z) + €)}. Since v(z) » O, then,
Be(z) < 0. "

PROPOSITION 3.3.4

For all zeF©€ there exist a 6>0 and a (positive)

A1es such that

v(z' + A1Pe(z )) - w(z') < A18€(Z')/2
for all z'EBb(z)amL all £20.

PROOF: By Proposition 3.3.3 there exists a 61>0 such that
Ge(z') € [(3/2)95(2). (1/2)6€(z)]

where

Ge(z) < 0

for all z'EB6 (z). From Proposition 3.3.1 there exists a
1

6E(O,61] such that
(z'+Ap) - v(z',Ap)| < (-BC(Z)/4)A

for all z'EBb(z), all peP, all Ae[0,5/L] (so that ApeBa(O)

for all peP). Hence, for all z'EBé(z), all Ae[0,5/L]:
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Dz 4AB_(2')) - b(z') € $(z',Ap_(z*)) - b(z')

+ Jwczteap_(z')) - wiz' Ap_(2'))
Since A - i(z',Ape(z')) - ¢(z') 1is convex,
$(z'+ Ap_(z')) = w(z') ¢ [¥(z',Ap_(2')) - w(z')] - AB_(2)/4

¢ ALb(z',p_(2')) - ¥(z')] - A8 _(z)/4

A8 _(z') - 8_(z)/4]

for all z'EBb(z), all Ne[O,5/L]. Since Be(z') 4 Be(z)/2 im-

plies that —Be(z) P4 -28€(z') it follows that

b(z' + APS(Z')) - P(z') ABE(Z')/2
amd all €20
for all z'EBG(z), all AE[O,G/th The desired result follows
with A1 the 1largest number in S which is not greater than
&/L. »

COROLLARY

For all zeF°© there exist a 6§>0 and a A1>0 such
that the step length Ae(z') generated by the algorithm satis-
fies

A (zZ') > Ay

- 53 -



for all z' EB& (z)aadall Exom

We can now easily establish that +the algorithm generates

convergent subsequences.

THEOREM 3.3.1

x
Any accumulation point z of an infinite sequence {zi) gen-

. ‘
erated by Algorithm 1 satisfies Ge(z ) = 0 and, therefore,

lies in F.
PROOF: Let z be any point such that Be(z) ¢ O (and, hence,

not 1lying in F). Then, by Proposition 3.3.4, and its Corol-

lary, there exist a 6>0, and a A1>O such that
WA _(z')) - b(z') = ¥(z' + A_(z')p_(2')) - ¥(z')
< Ae(z‘)ﬂe(z')/Z
< A1B€(z')/2

for all z'EBb(z). Since Be is continuous, & can be chosen so

that

8.(z') < 8_(2)/2

for all z'EBb(z). Hence the algorithm map

nw>

z -+ Ae(z) zZ + Ae(z)pe(z) has the uniform continuity proper-

ty



w(Ae(z')) - P(z') ¢ A16e(z)/4

for all z'EBb(z). Hence, by Theorem 1.3.3. 1in Reference 1,
*

any accumulation point z of an inifinite sequence {zi} gen-

erated by the algorithm must satisfy Be(z) = 0 and, hence,

lie in F. .

Since every accumulation point z* of an infinite sequence
{zi) generated by the algorithm satisfies w(z*) < 0, it fol-
lows that there exists a finite i such that w(zi) < 0, 1i.e.
the inequalities are solved in a finite number of iterations.
(The practical version of the algorithm employs a stopping

condition: if w(zi) ¢ O, stop).
3.4 - RATE OF CONVERGENCE

Theorem 3.3.1 establishes finite convergence. We now examine
rate of convergence assuming that the algorithm does not in-
corporate a stopping condition. Although rate of conver-
gence does not appear relevant to an algorithm stopping in a
finite number of iterations, a superlinear rate of conver-
gence requires an asymptotic step length of unity which con-

tributes to the efficiency of the algorithm.

Suppose the algorithm generates an infinite sequence (z.}

i

* ~ *
converging to z where wo(z ) < —e. It follows that
w°(zi) ¢ - so that wg(zi) = -e¢ for all i sufficiently large.

For all such i, therefore, the search direction pe(zi) solves



min{lipl w(zi,p) § —-¢}

which is equivalent to
min{liph gj(z.) + gj(z.)p § -e, jem}
i z “i =

and can, therefore, be recognized as the Newton step for the

problem of determining a zeR™ such that
gg(z) 8 43(z) + ¢ ¢ o0, jem.

Hence, under standard assumptions, quadratic convergence (to
a point z* satisfying w(z*) ¢ -€) 1s easily established. How-
ever, since ¢ cannot be chosen a priori sufficiently small to
ensure that any accumulation point z* satisfies w(z*) < -¢g,

it is necessary to modify the algorithm slightly as follows.

ALGORITHM 2

Data: eR®, €'€(0, 1), L >> 1, Be(0, 1).

%0
Step O: Set 1 = 0; set ¢ = e'w(zo),

Step 1: Compute &o(zi) = min{i(zi, p) | pEP}.
Step 2: Compute

. - “0
p; = pe(zi) = argmin{lipll w(zi,p) < wei(zi)}.
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Step 3: Compute Ai = Ae (zi), the largest A in S such that
i

‘b(zi + )\pi) - ‘b(zi) £ )\B(zilpi)/z-

- e _
Step 4: Set Zi4q = %5 + Aipi. If ¢ (zi) ? €41 set €41 equal
to the largest € in the set {ei,eilz,...} such that
o) _ ..
)] (zi) < -g; else set €541 = ;- Set i =i + 1. and
go to Step 1. .

We note that the only change is the introduction in Step 4
of a ﬁechanism to reduce €, - In order to recover the conver-
gence results established for Algorithm 1, we need to estab-
lish that € is reduced only finitely often, so that it even-
tually becomes constant. For this we need an additional as-

sumption

H3: The set {z|{(z) < w(zo)} is compact. (Alternatively, any
infinite sequence {zi} generated by the algorithm is com-

pact).
PROPOSITION 3.4.1

Given H1 - H3, € is reduced in Step 4 only finitely often

x
so that g, = € > 0 for all i sufficiently large.

PROOF: It is easily established, as in the proof of Theorem
3.3.1, that Algorithm 2 is well defined so that ¢ is reduced

at each iteration. Hence, w(zi) e w(zo) for all i»0 so that



{zi), generated by the algorithm, is compact and therefore
x

possesses accumulation points. Let z be an accumulation

point of (zi). Suppose contrary to what is to be proven, that

€ is reduced infinitely often in Step 2 when i€K. Hence,

-~ - K . *
w°<zi) » —ey for all ieK. Since wo(zi) - ¢°(z ) and e; - 0 as

- % *
i + », it follows that wo(z ) » O and, hence, Y(z ) 3 0. It

follows from H2 that 8'(z*) = wo(z*) - w(z*) < O so that
*
w(z ) > O.
Steps 1 to 3 (with z, =2, €g; = €¢) define an algorithm map

zZ -+ Ae(z) = z + Ae(z)pe(z) (so that =z = Ae‘(zi)). It is

i+1
i

clear that wg(z) £ wg(z) for all z and all €30 so that
A 1O _
B(z,pe(z)) < BO(Z) = wo(Z) $(z)

for all €30 and all zeR". Clearly eo is continuous, Bo(z) <0
for all =z such that ¢(z) > O and Bo(z) =0 if P(z) = O (in
contrast with 9e which satisfies Be(z) < 0O for all 2z such
that ¥(z) » 0). The convergence analysis given in the proof
of Theorem 3.3.1 with ee replaced Eov BO reveals that any
accumulation point z* of an infinite sequence (zi} generated
by Algorithm 2 satisfies Go(z*) = 0, so that ¢(z*) ¢ O. But
this contradicts the fact that w(z*) > 0. Hence, €5 is re-

duced only finitely often in Step 4. "
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COROLLARY

Suppose that 8°‘'(z) < O for all z such that yY(z) 3> ~€g- Then
x
any accumulation point z of an infinite sequence {zi} gen-

erated by Algorithm 2 satisfies 8 *(z*) = 0 and w(z*) 74 —e*,
€

*
for some € €(O0, eo]. The inequality ¥(z) ¢ O is satisfied in

a finite number of iterations.

PROOF: That 6 ,(z ) = 0, ¢ €(0,e,] and ¥(z ) < O follow from
€

Proposition 3.4.1 and Theorem 3.3.1. Since
x * *
8 ,(z ) = max{8'(z*), —(e +P(z ))} it follows that
€
x . * x * x
8 ,(z ) <0 1f Y(z ) > -e . Hence ¥(z ) € -¢ =

€

*
It follows from Step 4 of Algorithm 2 that for all i 3 i ,

hd x
say, the inequality wo(zi) < -e; = -¢€ holds. Hence, for all

-

X *
i i, wg (zi) = -g so that P, (zi) solves
i i

. . *
min{ihpl gJ(z) + g;(z)p { -e , jem}

and is, therefore, a Newton step for the problem of solving

the inequalities
J * .
g (Z) + € < ov JEm.
We replace H2 by the strengthened hypothesis

H2A: For all z such that ¢(z) » -¢ the set

Ol
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(vgl(z), jei(z)}, I(z) & (jem|g?(z) = w(z)}
is linear independent (so that 8'(z) < 0).

We assume, in the sequel, that H1, H2a and H3 hold.

PROPOSITION 3.4.2

* x
Let ¢ €(0, eo] and let 2z be any point in F satisfying

w(z*) = -e*. Then there exist a 6>0, k and k1e(o,~) such that

(1) 1P L (z)0 ¢ k,[0(z) + € ]
€

(ii) p ,(z +p ,(z))N < klp *(z)nz
€ € €

for all z in Bb(z*).

PROOF: Let p(z) denote the minimum norm solution (when a

solution exists) of
j * 3 . *
(g7 (z) + € )+ + gz(z)p =0, JeI(z ) (3.4.1)

where, for any «€R, (cx)+ denotes max{a, O}. Equation (3.4.1)

may be written as
A(z)p + (b(z))+ =0 (3.4.2)
where the matrix A(z) and the vector b(z) are constructed,
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3 x
respectively, from the sets {gg(z) JeI(z )} and
3 *
{gJ(Z)+e jEI(z*)) and (b(z))+ denotes the vector whose com-

ponents satisfy bj(z) = (bj(z))+, jEI(z*).

*
Since A(z ) has full rank and A and (b)+ are continuous

there exists 61>0 such that p is continuous and satisfies

1

p(z) = [A(z2)Ta(2)1 a2 T(b(2)), (3.4.3)

for all zeB6 (z*). Since max(gj(z*) jEI(z*)} = w(z*) and
1

max{gj(z*)|j¢1(z*)} < w(z*), there exists a 625(0,61] such

that

SeI(z )} (3.4.4)

(z) = max{g?(z)
H(b(z)) I = b(z) + ¢ (3.4.5)

for all ZEB6 (z*). It follows from (3.4.3) that there exists
2
a k1E(0,m) such that

1B(Z) < X h(b(z)) 1 = k [6(z) + ¢ ] (3.4.6)
for all zEB6 (z*). Next there exists a 636(0,62] such that
2

J * J - . *
(a) g/(z) + € + qz(z)p(z) < 0, 3JeI(z )

J * J - . *
(b) g (z) + ¢ + gz(z)p(z) ¢ 0, 3JeIi(z )



for all 2556 (z*) ((a) follows from the definition of p
3

(b) follows from (3.4.6)

and

and the fact that
j, % x x * ) *
g'(z ) + e < Y(z ) + € =0 for all j¢I(z )). Hence, p ,(z),

€

the minimum norm solution of (a) and (b), satisfies

P ,(z)I < Np(z)i (3.4.7)
€

*
for all ZEB6 (z ), thus providing (i).
3

Choose 6€(O,63] such that Hlp ,(z)lI ¢ &
€

There exists a constant kZE(O,u) such that

*
3 for all ZEBa(z ).

ugz(z) - gz(y)ﬂ 4 k2uz - vyl

(3.4.8)
*
for all z, y in B (z ). Now:
263
b(z + p ,(z)) = b(z) + A(z)p ,(z) + e(2) (3.4.9)
€ €
where by virtue of (3.4.8),
le(z)l ¢ kyip ,(z)1° (3.4.10)
€
for all z in Ba(z*). Since, from the definition of p ,
€
b(z) + A(z)p ,(z) < O (3.4.11)
€
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it follows that

Nb(z + p ,(2)] 0 < Me(z)H ( kzllpe(z)ll2 (3.4.12)
€

for all z in Bb(z*). The desired result follows from (3.4.6)

and (3.4.7) with k = k1k2. "
PROPOSITION 3.4.3

x *
Let z and € be as in Proposition 3.4.2. Then there exists

a &6>0 such that the step length A ,(z) (defined in Step 3 of
€

x
Algorithm 2 with z; replaced by 2z, € replaced by € ) is uni-

*
ty for all z in B ,(z ).
€

PROOF: It follows from the proof of Proposition 3.4.2 +that

there exists a 616(0,w) such that p ,(z) exists (and satis-
€

fies gJ(z) + gg(z)p «(Z) £ —e*) for all ZEB6 (z*). Hence,
€ 1

8 ,(z) = &0*(z) - Y(z) = -[w(z) + e*] for all zt—:B6 (z*). From
€ € .

Proposition 3.4.2, there exists a 66(0,61] and a k1E(0,w)

*
such that Hp ,(z)I ¢ k [¥(z) + e 1 for all zeB (z ). It is
] .

evident from Proposition 3.3.1 that & can be chosen suffi-

ciently small so that



bz + P ,(2z)) - w(z, p ,(2))| < Ip ,(z)N/4k,
€ € €

< [v(z) + e*]/4
< -8 ,(z)/4

for all ZEBa(z*). Hence

b(z + p ,(z)) - P(z) [‘L(z, P ,(2)) - ¥(z)]

€ €

+ locz + 2 (2)) - Wiz, P ,(2))
€ €

<8 ,(z) -8 ,(z)/4

<8 ,(z)/2
€

*
so that A ,(z) = 1 for all ZEBG(Z ). ]
€

THEOREM 3.4.2

Let {zi) and {ei} be infinite sequences generated by the al-
x
gorithm. Then €; = € >0 for all i sufficiently large and z;

- - x
converges quadratically to a z satisfying ¢(z) § -¢

*
PROOF: From Proposition 3.4.1 there exists an integer i such

x * x
that €; = € e(O,eo] for all i > i . Let z be an accumulation
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point of {zi}. From Corollary to Proposition 3.4.1,

* x * 4
b(z ) ¢ -e . Suppose ¥(z ) < -e¢ . Since p ,(z) = O for all z
€

%
such that b(z) ¢ —-¢e , it follows that
* . 0
p, = Pei(zi) = pe*(zi) = 0 (so that z; =z ) for all i suffi-
* *
ciently large. Then, suppose that ¢(z ) = -e . Choose §>0 to

satisfy the hypotheses of Proposition 3.4.2 and 3.4.3. By

*
Proposition 3.4.2 there exist an i, » i and a ke(0,«) such

1
that

*
(a) zi1EBa/2(z )

(b) "pi n = ip *(zi W <1/(2/k)

From Proposition 3.4.3, Ai = 1 so that
1

*

*
"Zi1+1 -z I < Hzi1 -z I + Hpi1ﬂ

< 6/2 + 5/4 = (3/4)6

Hence Ai1+1 = 1 and
2
"pi +1H 4 kllpi ] < (k/2k)llpi I ¢ &/8
1 1 1
so that
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%
Hzi1+2 -z Il ¢ (7/8)b

*x
Proceeding in this fashion we find that Ai = 1 and ziEBb(z )

Also, since Ilip,;

for all i » i i+

2 . . .
1° I <k Hpiu for all 1 3 11 it

follows that the sequence {zi} is a Cauchy sequence and hence

- x
converges to a z in Bb(z ). Clearly (Proposition 3.4.1 and

its Corollary), 8 ,(z) = O and ¥ ,(z) ¢ O. Finally,
€ €

nhp. ]
lim —2FL ¢ x. -
1#¥oo 2

Hpiﬂ

This is a sufficient condition for the sequence {zi} to con-

verge quadratically to z as i = . "

3.5 - NUMERICAL EXAMPLES

In the following two examples we compare the performance of

our algorithm with that in Reference 2.

EXAMPLE 1: The feasible set consists of a pair of squares of

sides w, centered at (-w/2, 0) and (3w/2, O), and is defined

by

sin z, ¢ O

—cosz2 ¢ O
z1—211(0
z2 ~ /2 ¢ O
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-7 €0
-z, - w/2 ¢ O.

Starting from zg = {0, 75), a feasible point z = (-1.5, 0)
was located 1in 2 iterations, compared with four iterations

taken by algorithm in Reference 2.

EXAMPLE 2: The feasible set is specified as follows

z1>0.
z3 3 O,
(2, - 25)% - (25 - 202 - 45 0,
(zi -13%0, i1=25,17
2,1/2

2 vy -
(z3zi - zzzi+1)/(z2 + z3) -1 3 0 i=4, 6

_ _ 2 _ 2:1/2 _ .
[(z2 z1)zi+1 + (z1 zi)z3]/[z3 + (z2 z1) 1 130, 1=4,
24 - z,z3 3 O.
Starting from an initial point zZq = (3, 0, 2, -3, 1.5, &5,
o), €y = 0.0025 a feasible point z = (6.734, 2.192, 3.561,

1.807, 1.01, 3.809, 1.01) was located in six iterations, com-
pared with thirteen iterations taken by algg£ithm of Refer-
ence 2. Figure 3.1 shows the performance of the algorithm
when +the stop condition is removed; the rate of convergence

is clearly quadratic.



3.6 - DISCUSSION

The algorithm has been programmed in Fortran and extensively
tested. It has also been incorporated in SIMNON and employed
for the design of nonlinear dynamic systems to satisfy non-
linear constraints. The algorithm works well in high order
problems where the linearized feasible set is often empty. In
Step 1 of +the algorithm &o(z) = Y(z) indicates that the
linearized feasible set is empty (this indicates +that the

feasible set is, probably, empty).
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CHAPTER 4

DERIVATIVE FREE ALGORITHMS FOR SOLVING NONLINEAR
INEQUALITIES IN A FINITE NUMBER OF ITERATIONS

4.1 - INTRODUCTION

It is well known that an important group of engineering
problems can be transcribed into the problem of finding any

point satisfying:
gl(z) ¢ O je{ 1,...,m } (4.1.1)

where gj:Rn + R is continuously differentiable. There are
several algorithms for solving a set of inequalities
[1,2,3,4], but they all require explicit computation of the
gradient ng(z), j=1,...,m. In some engineering problems, it
is not possible to evaluate the gradient analytically (e.qg.
when +the constraint values are computed by solving a set of
differential equations [5]). In these <cases, 1in orxder to
evaluate Vg(z), one has either to employ a finite difference
approximation, or solve a system of adjoint equations and in-
tegrate a differential equation. The latter is not always
available, and in any case the operation may be very expen-
sive. Hence, there is a great incentive to construct an algo-
rithm, which uses function values only, for solving inequali-
ties. Since Newton type algorithms are generally known to be
very efficient we need to find an approximation to +the gra-

dient VQJ(z), 3 =1,...,m. The most direct way of avoiding
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the computation of ng(z) is to use a finite difference ap-
proximation of the partial derivatives. A method for approxi-
mating Vg(zi) has been proposed by Broyden [6]. A desirable
feature of +the algorithm is that it should find a feasible
point in a finite number of iterations and, if allowed to
proceed, should have a reasonable rate of convergence. There
are a few methods [1,2,3] which find a solution in a finite
number of iterations. In this chapter we construct two algo-
rithms which only require function evaluations and neverthe-
less find solutions in a finite number of iterations. The
first algorithm only utilizes finite difference approximation
of +the gradient, while in the second algorithm a mixture of
finite difference approximation and Broyden +type approxima-

tion of the gradient is employed.

4.2 - DEFINITIONS AND ASSUMPTIONS

We define y: R + R by

w(z) a max{gj(z) jem} (4.2.1)
where m 4 {1,2,...,m}. Let g(z) denote the (column) vector
(' (z),....a"z)).

Assumption 1: The function g(.):Rn + R™ is continuously dif-
ferentiable.

For any zeR™ , T30, jem, let ngJ(z) be an approximation to

the gradient ng(z), where 1t indicates the precision of the
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approximation.

Assumption 2: Given any compact set C, a subset of Rn, and
any up>0, +there exists a t>0 such that for all zeC, all

t€[0,7] and all jem
HVTgJ(z) - VgJ(z)H £ u.
Assumption 3: For all >0 and jenm, ngJ(.) is continuous.

An example which satisfies the above assumptions is the sim-

ple difference formula given by [5]:

(gj(Z+r1e1) - gj(z))/r1
v.gl(z) = e (4.2.2)

(gl(z+r e ) - gl(z))/v,

where e. is the jth column of identity matrix and rje(o,;],
j =1,...,n, 150 are positive constants. The matrix DTg(z) is

defined to be the approximation to the gradient matrix whose

Yows are DTgJ(z) a [ngJ(z)]T, j=1,...,m. For =0, we de-
fine

A J A 3
Dog(z) = gz(Z). Dog (z) = gz(z). (4.2.3)

Let the set F be defined by:

F 2 (zlgIz) < 0, jem). (4.2.4)



For all z, p in R? let Y(z,p) denote the following first

order approximation to ¢ (z+p)

$(Z.p) a max{gj(z) + Dogj(z)p jem} (4.2.5)
For all t>0, let it(z,p) be defined by

v_(z,p) & max(g?(z) + p_g7(z)p|jem. (4.2.6)

The approximate Newton step at z, if it exists, is that p in

N which solves

min("p"'iT(z,P) ¢ O}). (4.2.7)

Since the set (plwt(z,p) { O} may be empty (implying the non

existence of the Newton step) another approach is required.

- -~

Let functions ¢°, wo, wo , and $° :R" + R be defined, for
T T,€ O,¢

all >0 and all >0, by

o) A . N

v (z) = min{b(z,p) |peP}, (4.2.8)
W(z) £ min{wt(z,p)IpEP} (4.2.9)
and

e} A o) 3

wT'e(z) = max{wr(z), e), (4.2.10)
0y (2 8 maxw®(z), -e}, (4.2.11)

1 €

where
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ne>

P £ (peR™|upi_ < L} (4.2.12)
and where L is some suitably chosen large number (without the
constraint peP the solutions of (4.2.8) and (4.2.9) may be
unbounded). If w:(z) ¢ 0, the solution of (4.2.7) exists

(the set {p wT(z,p) { O} is not empty).

We now define our search direction P, e(z) given z, <t, and
!

€: it is that p which solves the following quadratic program
min{"pulw (z,p) < ¥° (z)}. (4.2.13)
T T, €

Since the level sets of p =+ lipll are strictly convex and

since {ple(z,p) £ wg e(z)} is convex, P, €(z) is unique.
1 4

Also for all T, €, and z, pT e(z)eP.

For all >0, let 8 and BT:Rann + R be defined by

8(z,p) a i(Z.p) - ¥(z), (4.2.14)
and
éT(Z.p) 2 &T(z.p) - b(z). (4.2.15)

Clearly 68(z,p) is a first order approximation of

Vv(z+p)

|

v(z). Similarly, for all >0 and all >0, 8° 82

and 83 :Rn

7

+ R are defined by

y]

nw>

8%(z) & 4%(z) - w(z), (4.2.16)



02(z) & 4 _(2) - w(z) (4.2.17)
and

e} A O

GT’S(Z) = wr,e(Z) - Y(z). (4.2.18)
Clearly eZ(z) = max{8°(z), -(V(z)+e)}. (4.2.19)
Also

‘o -

BT'C(Z) = BT(Z,pT'e(z)) (4.2.20)
is an estimate of w(z+pT e(z)) - ¢(z), i.e. an estimate of

change of cost obtained by employing the search direction
pT €(z). Let FC denote the complement of F, i.e.
1 4

F€ & (z|w(z) » O}. (4.2.21)

Assumption 4: For all z in Fc, Bo(z) < 0.

The above assumption ensures that {(z) can be decreased at

¢ A sufficient condition for A4 is the positive

all =z in F
linear independence, for all =z in F, of the set
{ng(z) jeI(z)}, where 1I(z) a {jem gj(z) = P(z)} (i.e. the

set of gradient of the most active constraints).

The step length is chosen to be the greatest number 1in the
set S 4 {1,3,82,...}, Be (0O,1) such that the actual change in

Y is at least half of the estimated change.
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4.3 - ALGORITHM

We now have all the ingredients to state our first algo-

rithm:

Algorithm 1.

Data:

Step O:
Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

zOERn, e'€(0,1), L >> 1, Be(0,1), Ty > O, A ; > O.
Set i1 = 1, set € = e'w(zo).

If w(zi) ¢ O stop.

Find T = r(zi) the largest TE(Ti_1’ ri_1/2,...} such

‘o
that ari,e(zi) e T

Compute

_ . N “0
P ’e(zi) = argmin{lipll wT_(zi.p) 4 wT_’e(zi)}.

T.
1 1 1

Find, if possible, Ai = AT e(zi) the largest number
il

in S not less that A_._ 1. such that
min i

o)
‘b(zi-'-AipTi,G(zi)) - ‘b(zi) £ )\ierl'e(zi)/z

else, set T,

i-1 = ri_1/2 and go to Step 2.

Set Zi4q1 = zi+AipTi'e(zi), set 1 = i+1. Go to Step



4.4 - CONVERGENCE
For all z, all 6>0 let B, (z) 8 zlnz'-zn < &).

We shall first establish that the algorithm has certain con-

tinuity properties. o —
PROPOSITION 4.4.1

For all t30, z =~ ws(z) is continuous.
PROOF: Let z be any arbitrary point in R® and let 5>0. Let z'
be any arbitrary point in BG(Z)’ Let pT(z), pT(z‘) be any
points in P satisfying

02(z) = b_(z,p_(z))

T 1Py !

W2(z') = _(z',p_(2'))

T T i .

Hence,

0z - 02(2) = v (z',p_(z')) - b_(z,p_(2))

T T T 1Py 2Py

< wT(Z‘.pT(z)) - iT(Z.pT(z))

and
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~

$o(z) - V(2 = b (z,p_(2)) - b (z',p (2"))
< wT(Z.pT(Z')) - wT(Z‘,pT(z')).
Since $r is uniformly continous in Bb(z)xP, it follows that

ig(z') - $$(Z) + 0 as z' -+ z. .

n

COROLLARY: For all €>0 and all T30, wg JR" + R is continu-

’

ous.
PROPOSITION 4.4.2

For all €30,

o

: o
i) 8 xee n

:R" -+ R are continuous,

ii) for all zeFS, 8:(2) < 0,

c . . - . . . +
iii) the function (z,t) - 83 8(z) is continuous 1in Ran '
1}

iv) for all =z eFC, there exists a 1,>0, and a ¢>0, such that

0 1

T1’€(Z) 4 ~T4

for all zeBQ(zo).
PROOF: i) The continuity of 8° and 92 follows from the con-
. . "o ‘o
tinuity of ¢, wo and ¢.
[ €

ii) By Assumption 4, Bo(z) < 0, for all zeF¢. Thus
Bg(z) = max(eo(z). -(b(z)+e)} < O

for all zEFc.

iii) Consider the function ni:Ran+ + R, defined by



1 .
é[[g;.(z+srei)r]/r ds

ng(z,r) 4 [[gj(z+rei)-gj(z)]/r] :

1 .
fgj (z+ste. )ds
0 Z%i i

for all i = 1,...,n, all jem. Since g; is uniformly continu-
i
ous on any compact set, then, for all §>0, there exists a >0
such that ng; (z*'') - g; (z')Il ¢ 8 for all z' and z'' in
i i

B . Th
Q(z) us

. . 1 . .
ndcz',t) - iz <|£[g;i<z'+sr'ei)—ggi<z+srei)1ds|

1 . .

J ! ‘ ]

4 fl[gz.(z +sT ei) gz.(z+srei)]'ds.
0 i 1

Hence for all &>0, there exists a p>0 such that

. . 1
ni(z',t') - nl(z,v)| ¢ [ 8ds = &
0

for all z'EBQ/z(z), all T EBQ/z(r) (so that
(z'+sv‘ei)eBQ(z+srei) if se[0,1] ), all i = 1,2,...,n. and
all jem. This implies that (z,t,p) =+ &T(z,p) is continuous.
The continuity of (z,t) -+ ig(z) = min{@r(z,p) peP} (and,
hence, of (z,t) -+ $$'€(z)) is +then established by Berge's
maximum theorem [9]. Continuity of (z,t) - é?,e(z) follows

from continuity for €30 of (z,t) - ¢$ e(z), and .
'

-~

eFS. From Gii), (z,t) - af (z) is con-

iv) Let €30 and z c
1}

o
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tinuous and from (ii) 82(z0)<0, hence, there exists a T, >0

o]
such that 9T e(z) £ Ty

. < 0, for all ZEBg(zO). .

By virtue of Proposition 4.4.2(iv) Step2 of the algorithm is

well defined, i.e. if zEFc, a Ty satisfying

Gg e(z) < -1y ¢ 0 is achieved in a finite number of itera-
1!

tions.

PROPOSITION 4.4.3
For all n>»0, all z in Rn, there exists a ¢>0 such that
W(z'+p) - w(z',p)| < nups
for all z'EBQ(z), and all pEBQ(O).
For a proof of proposition 4.4.3 see the proof of Proposi-
tion 3.3.1 of Chapter 3.
PROPOSITION 4.4.4

Let €30. For all z in FC, there exists a ¢>0 and a positive

T in S such that
bz +tp. (2')) - b(z') ¢ 187 (2')/2 ¢ 82(2)/4 <O

for all z' in BQ(z), and all te[O,T].



PROOF: By Proposition 4.4.2 for all €30 and zeFC there exists

a g1>0 and a r1>0 (sufficiently small) such that

-~

87 ((z') € [(3/2)80(2), (1/2)80(2)],  82(z) < O

for all rE[O,r1] and all z‘eBQ (z). From Proposition 4.4.3
1

(since peP implies IIApll ¢ AL for some L ¢ «) there exists a

QG(O,Q1] such that
0(z'+ap) - bz Ap)| ¢ (-0%(z)/8)A

for all z'EBQ(z), all peP, all Ne(0,¢/L]}. Hence, for all

TE[O,r1], all z‘EBg(z), and all Ae(0,po/L]
w(z'+APT'e(Z‘)) - $(z') ¢ i(z‘,APT'E(Z')) - $(z') +
m(z‘+ApT'e(z')) - &(z',ApT'E(z')) .
< bz oAb, (2')) - w(z') - Aeg(z))e.

(We have made use of the fact that pT e(z')EP.)
1

Since A - mI:(z',)\pT t’:(z')) - ¢(z') 1is convex,
f f _ i - ] ] - ' - o
w(z +ApT’€(z )) V(z') ¢ ANw(z +pT'€(z )) w(z')] A8 _(z)/8

4 A[wT(Z‘,p 'e(z')) - P(z')] +

T

Mecziee (20 - b (ztp, (200 |-2e2(2) /8
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= ag°
T

'e(z')+A w(Z‘+pT’€(Z'))—wT(Z',pT'e(Z‘))

- ABZ(Z)/B.

. o . o . . ) _ o) .
Since 8T e(z ) € ee(z)/2 implies ee(z) I'e Zer'e(z ), and

also
bzt e, (20 = b(ztp, ()| = |mgxtgdzivgdizip, (2
_ p JPR oo ' .
m%x{g (z )+DTg (z )Pr'e(z )},. JEm
¢ max|tgI(zr+ad(z)p. (z*)
3 z T,¢€
-gj(z’)—D gj(Z')p (Z')}I. JeEm
T T, € -
j ' - j ' ' 3
¢ max|(Lgl(z') - D g?(z)Ip_ _(z)}] jem.
Hence

Vlzup (2')) - b (z',p. (2°))] ¢ Ng,(z') = D (z)N.lp, (z)0.

Given Assumption 2, there exists a ?6(0,11]F]S such that for

all ve[0,7], and all z'eB_(z)
vz',p. (2)) - b (z',p (z'))]| ¢ -80(2)/8.

Thus
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Bz AR, (2°)) - W(z') < ABD (2')/2 < A8 _(2)/4

for all z'eB (z), all Ae[0,0/L], and all te[0,t]. The desired
result follows with 1, the largest number in S which is not

greater than max[e/L,T]. .

COROLLARY: For all €30, and all zeF®, there exists a >0 and
>0 such that A_ _(z') » v for all z'EBg(z), and all
T

te[0,T]. "

Let AS:R+an+Rn be defined by Ae(r,z) = z+rpT e(z). Then,
!
as a result of Proposition 4.4.4, for all ZEFC, and €30 there

exists a u(z), e(z), and t(z) > O such that
v(z'') - vw(z') ¢ -p(2z) (4.4.1)

for all z'eB (z), all Z"=A€(T,Z'), and all <te(0,t(z)].

e(z)

Given the above propositions, the algorithm is well defined.

We can now state our main convergence results.

PROPOSITION 4.4.5

If the algorithm constructs an infinite sequence {zi)g, ei-

ther T 0 or {zi)g has no accumulation points in FC.

x
PROOF: Let z be any accumulation point of an infinite se-

*
quence {zi}, i.e. z; K z for some set K in {(0,1,2,...1}.
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Since {ri) is a monotonically decreasing sequence, bounded
from below, it must converge. Suppose, contrary to what is to
be proven, that A T* > O. Then, by construction, for some
i* large enough and for all i>i*, ri=r* >0. For all zich and
i)i* from Step 2,

ho

*
T

,€

and from Step 4,

W(zy, ) - w(zy) <A, (2;08°, (z,)/2

T ;€ T ,€
*"0
< Apint 8k (2072
T , €
* _.C
If z €eF~, then
1i *g© *y72 < 0 4.4.2
iig [w(zj) = W(zZ)] € AT BT, e(z )/2 < (4.4.2)

i,Jj€eK
where i and j are successive numbers in K. Since {w(zi)} is

a monotonically decreasing sequence, bounded from below, it

must converge, i.e.

iiz [w(zj) - ¥(z;)1 =0

i,jeK

which contradicts (4.4.2); we conclude that T 0. .
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THEOREM 4.4.1

Let {zi} be an infinite sequence constructed by the

algo-

rithm. If {zi) is finite then its last element is desirable;

if {zi) is infinite every accumulation point is desirable.

PROOF: Suppose the sequence (zi} is finite and =z
i

the

last element. The algorithm then constructs an infinite se-

quence {yj)g . where ijAe[r.* /27, z_*], j=0,1,2,....
i-1 i
Suppose, contrary to what is to be proven that z ,¢F, then
i
- 3189
‘b(Yj) 'b(z‘*) > Amin[T‘* /2 ][8.‘. 'e(z‘*)lz]l
i i -1 . ¥ 1
i
j =0,1,2, (4.4.3)

As a result of Proposition 4.4.4, there exists a u(z ,) > O,

e(z ,) > 0, and a t(z ,) > O such that
i i

v(z'') - W(z') € -ulz )
1

for all Zz'€B
e(z

i
t€(0,t(z ,)]. Let j*E{O,1,...} be such
i
- * -~
v, /27« min[—u(Z_,)/[A 8° (z ,)/2], r(z_*)].

. min T, ¢
i -1 i 1 i

1

Hence
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that



Oy - 00z ) € mulz ) € Ao

v, /29106°
i i i -1

T *ve(z.*)/zl

. 1
1

*
for all j»j . This contradicts (4.4.3) and we conclude that

z ,EF.
1

Now suppose {zi} is infinite and has an accumulation point
R .
z . Let K, a subset of {(0,1,2,...}, define a sequence such
* } 4
that z; K z . Suppose that z ¢F. By Proposition 4.4.5, T 0]

*
and hence, there exists a k1eK such that T § 1(z ) for all

* *
be such that ziEB . (z ), for all i3k , and
e(z )

ieK. As a result of Proposition 4.4.4, for zeF¢ and for all

*
i»k,. Let k 3k
1 1
i€{0,1,...} we obtain

Wiz, ) - blzg) ¢ ~ulz)) (4.4.4)

*
for all ik , and ieK. Hence,

N —
lim  [b(z;) - b(z3)] < -u(z ).
1 %00
i,jeK
where 1 and j are successive numbers in K. But {w(zi)}z=o is
a monotonically decreasing sequence, bounded from below, it

must converge, thus

iig [w(zj) - w(zi)] =0

i,jeK

which contradicts (4.4.4). "
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Since every accumulation point z* of an infinite sequence
{zi) generated by the algorithm satisfies w(z*) < 0, then,
there exists an i*, large enough, such that for all i)i*,
w(zi) ¢ 0, 1.e. the inequalities are solved in a finite

number of iterations.

4.5 - SECANT METHOD

Gradient evaluations by finite difference method requires
m(n+1) function evaluations. It may be desired to reduce the
computation required for gradient approximation. Broyden [6]
has derived a method for solving a system of equations. We

shall use his method of gradient approximations.

Given Assumption 1 and an open convex set C such that for

given zi in C and p # 0, the vector zi+1 = zi + pi belongs to
C, let G(Zi+1) denote the Broyden approximation to gz(zi+1)
given by
(y - G(zi)s)sT
G(z;,q) = Glz;) + <s, s> (4.5.1)
where s 4 z - 2z. and vy a g(z, ) - g(z.) For a full
i+1 i i+1 i°-

description of this method see [6,7]. Broyden's approximation
can be carried out with m scalar function evaluations. The
price paid is a reduction from quadratic to, probably, super-
linear rate of convergence. The degree of approximation in

this method increases as uzi+1—ziu decreases. It is obvious



that if the initial point is far from the solution, Broyden's

method may only give a good approximation for a few itera-

tions.

The gradient approximation must then be refined using

finite difference method.

Algorithm 2

Data:

Step O:
Step 1:

Step 2:

Step 3:

Step 4:

z.€R™®, e'€(0,1), L > 1, Be(0,1), To > 0 A, > O,

0
isec > 1.
Set i = 1, set ¢ = e'w(zo).

If ¢(zi) ¢ O stop.

Find T, = r(zi) the largest TE{Ti_1' Ti-1/2""} such

e}
that BT_'e(zi) 4 "ty

i
Compute
_ . N e)
PT.'G(zi) = argmin{lipli wr.(zi,p) < wT_’e(zi)}_
i i i
Find, if possible, Ai = AT 8(zi) the largest number
il

in S not less that A_. 1. such that
min i

t_:(zi)/z.

"o
w(zi+AiPTi'€(Zi)) - w(zi) < AigTi'

Else, if Broyden's approximation is wused at +this
iteration, use the finite difference approximation
and go to Step 2; if the finite difference approxima-
tion is used at this iteration, set Tiq = Tj-4/2 and

go to Step 2.
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Step 5: Save z; and g(zi), set Zi4q = zi+AipTi'e(zi), set
i = i+1. Use Broyden's approximation for “isec' con-
secutive iterations, then use the finite difference

approximation for one iteration and go to Step

1. ]

Since the finite difference approximation is used at least,
at every (isec+1)th iteration, the algorithm's convergence
property in a finite number of iterations is established by

Theorem 4.4.1.

4.6 - SCALING

In the numerical approximation of the derivatives by finite
difference it may be necessary to take special precautions to
ensure sufficient accuracy. A method for choosing appropriate
step length is proposed by Curtis and Ried [8]. In their

method estimates of truncation and round-off errors are given

by:
A, = I[g(Z+h)—g(z—h)]/2h - [g(z+h)—g(z)]/h| (4.6.1)
A.=h max{'[g(z+h)—g(z)]/h| ' '[g(z+h)—g(z)]/h|} (4.6.2)

The balance between Atand Ar is maintained if u At/Ar is

u ], then

1. If u9{[umin' max

kept in the range of [umin' U ax
1/2

h = hold[u/max(u,1)] . where u is chosen in +the range

new



(u

, u 1. Finally, h is restricted to a range

min max

min' hmax].

4.7 - NUMERICAL EXAMPLES

The algorithms have been successfully applied to several
test problems and incorporated in an interactive optimization
based design package. To illustrate performace of the algo-
rithms, we present three examples, in which, the following

parameters are used.

w™
I
o

.1, isec = 3, L = 1.e6, Tg = 1.e-4

EXAMPLE 1 [3]: The feasible set consists of a pair of squares

of sides w centered at (-w,0), and (3w/2,0) and is defined by

sin z, ¢

—-COsZ

N
|
w
=]
~
© O O O O O

-2

Starting from zo=(0, 75), Algorithm 1 located a feasible
point in two iterations (z=(-1.56, 0.)), while Algorithm 2
found a solution in four iterations (z=(-0.417, -1.153)). 1In

the first iteration the linearized feasible set was expanded
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to ensure a solution. The algorithm given in [3], employing

exact gradients, found a solution in four iterations.

The following two examples are minimization problems cited
in [10]. We have employed the cost functions as additional
constraints by perturbing the optimal cost to ensure that the

feasible séts satisfy the assumptions of our algorithms.

EXAMPLE 2 (Colville's first problem): The minimum cost value
is -33.87. We added an extra constraint i.e cost + 33.80 ¢ 0"
to the existing fifteen constraints with five variables. Al-
gorithm 1 found a solution in eleven iterations while Algo-

rithm 2 took only nine iterations to find a solution.

EXAMPLE 3 (Colville's third problem): The optimal value is
-30665.538. We added the constraint cost + 30665.5 £ 0" to
the existing sixteen constraints with five variables. Both

algorithms took three iterations to find a feasible solution.

4.8 - DISCUSSION

We have presented two new derivative free algorithms for
solving a set of inequalities in a finite number of itera-
tions. One of the algorithms presented uses a Broyden type
approximation to the gradient matrix to improve the efficien-
cy of the algorithm. If the algorithm is used interactively,
designer has the additional flexibility of controlling wheth-
er the algorithm uses Broyden or the finite difference ap-

proximation of the derivatives.
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CHAPTER 5

A GLOBALLY CONVERGENT ALGORITHM FOR NONLINEARLY
CONSTRAINED OPTIMIZATION CONVERGENCE

5.1 - INTRODUCTION

In this chapter a new algorithm for the problem of minimiz-
ing a cost function subject to nonlinear equality and ine-
quality constraints is presented and analysed. The problem

considered is:

P: min { £(z) g(z) < O, h(z) =0} (5.1.1)

m r

where f£:R"” - R, g:Rn -+ R, h:R® + R Several algorithms
possessing a superlinear rate of convergence but which are
only locally convergent are described in the literature. The
exact penalty function technique was employed by several au-
thors [1-5] for globally stabilizing these algorithms. 1In
this class of algorithm the constrained optimization problem
P is replaced by an unconstrained non-differentiable optimi-
zation problem. The search direction is determined by solving
a first or second order approximation to the original problem
and step length is then determined by approximately minimiz-
ing an exact penalty function. The main difficulties encoun-
tered 1in +these methods [1],[5] are the choice of penalty
parameter, the choice of step length, and the "Maratos ef-

fect"[3] (the exact penalty function step length procedure

can truncate the step length near a solution, thus destroying
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superlinear convergence). Mayne and Polak [5] have proposed
an algorithm to overcome these problems. They utilize a qua-
dratic approximations for determining the search direction
but resort to a first order approximation if the Newton step
is unsatisfactory; an exact penalty function for choosing the
step length. When sufficiently close to a solution, an arc
search vector 1is employed to avoid the "Maratos effect" and
to achieve superlinear convergence. Their algorithm is rela-
tively complexi 'Chagpg:lainmet al [6] have proposed an algo-
rithm based on Han's algorithm [1]. They employ the watchdog
technique to avoid truncation of the step length near a solu-
tion; this technique allows, at some iterations, step lengths
that are much 1longer than those that would be normally al-
lowed by the line search objective function. This method is
said to be effective, if employed in a controlled way.
Powell's earlier algorithm [8] has, despite good numerical
performance on some examples, several drawbacks: the pro-
cedure for updating the penalty parameter does not guarantee
global convergence.(see [9] for a counter example) and unity
step length in the neighbourhood of the solution (essential
for superlinear convergence) is not ensured. Schittkowski
[15] replaces the exact nondifferentiable penalty function of
Powell[8] with a differentiable augmented Lagrange function.

Under certain assumptions he proves convergence of this algo-

rithm.

In this chapter we present an algorithm which avoids some of
the complications involved in other algorithms; the algorithm

employs a method for computing the penalty parameter which is
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not based on the Lagrange multipliers. A procedure is then
proposed for automatically increasing or decreasing the
penalty parameter to ensure global convergence. Since the
linearized feasible set is often empty, we propose to solve a
linear program which ensures existence of a search vector.
Global convergence of the algorithm using only linear search
direction 1is established. Computational results suggest good

numerical performance.

5.2 - DEFINITIONS

Let L:R"xR™xRT + R denote the Lagrangian defined by:

L(z, A, u) & F(z)+<A,g(z)>+<p,h(z)>. (5.2.1)

nxn

Let HeR denote a positive definite estimate of +the Hes-

sian LZZ(Z,A.u). The exact penalty function employed
v:R®xR + R is defined by

v(z,c) & f(z)+c v(z) (5.2.2)

where tb:Rn + R is defined by

w(z) g max{gj(z),jem ;Ihj(Z)I:jEL: 0} (5.2.3)

n>

and where m 2 (1,2,...m} , r 2 (1,2,...r}.

-

The first order estimates «(z,p,c) of x(z+p,c) and Y(z,p) of



V(z+p) are defined by

¥(z,p,C)=£(2)+f_(z)p+c max{$(z,p);0) (5.2.4)
b(z,p) & max{gj<z)+g2<z)p,jem; hj<z)+h2(z)p|,je;} (5.2.5)

Let the function nbo:Rn + R be defined by

&o(z) A max{min[$(z,p) peP] ;0} (5.2.6)
where
p 4 {pERnl HpH“<J} (5.2.7)

where J is some suitably chosen large number. Notice that

-

014 &o(z)  ¢(z); if wo(z)=¢(z) and V(z)>0 then the feasible

set of min{w(z,p)|peP} is empty. The search direction p(z,H)

is obtained by solving the following quadratic program:
QP(z,H): min{fz(z)p+0-5pTHP v(z,p) < wo(z),p6§} (5.2.8)

where H is a positive definite matrix. The set of desirable

points D is defined by

A

D {zeRn|(z,A,u)is a Kuhn Tucker triple for P} (5.2.9)

Let T:RPxRTxRT - R+ denote a function satisfying T(z,A,u) =0
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if (z,A,u) is a Kuhn Tucker triple for P. A simple and suit-

able function is:

T(z, A w) & w(2)40vE (z)+g) (2)a+nl (z)un?. (5.2.10)
The penalty parameter c defined in this chapter must satisfy
£ (z)pte [0°(2)-0(2)] ¢ ~[4°(z)-4(z)]?
which is equivalent, when io(z)#w(z), to

c > b(z)-°(2)+[£_(2)p1/[(2)-0°(2)]. (5.2.11)
Let 8:R"xR™xR + R be defined by

8(z,p,c) & ;(z,p,c)—x(z,c)

=£_(z)p*c [max(b(z,p) ;0)-b(z)] (5.2.12)

so that 8(z,p,c) is a first order estimate of
Y(z+p,c)-y(z,c); p is a descent direction for «v(z,c) if
8(z,p,c) < O.

Let 82(.,H):Rn + R be defined by

8(z,p(z,H),c)

Bg(z,H)

£ (z)p(z,H) + c [0°(z)-w(z)] (5.2.13)
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If [&O(z)—w(z)] is negative, a positive c always exists such
that Bg(z,H) 14 —[&o(z)—w(z)]z < 0, i.e. such that p(z,H) is a
descent direction for y(z,c). However, if =zeF, +then
eg(z,H)=fz(z)p(z,H) <0 (see Proposition 5.6.2) i.e. p(z,H) is
a descent direction for «v(z,c) for all c>0. If BZ(Z,H)=O, for

any c satisfying (5.2.11), then zeD (see Proposition 5.6.1).

Finally, let F, the set of feasible points, and Fc, the com-

plement of F, be defined by:
A
r A {xllb(x) = 0} (5.2.14)
c A
rC 2 {xlxb(x) > 0} (5.2.15)
5.3 - THE PENALTY PARAMETER

The constrained optimization problem P can be replaced by

the equivalent unconstrained optimization problem PC defined

by:

P - min{y(z,c) zERn] (5.3.1)

for c large enough. Let function c:F¢ + R be defined by

- R f (z)p(z,H)
c(z) & v(z)-vo(z) + 2 = (5.3.2)
v(z)-¢ (z)

Since w(z)—wo(z)>0 for all zeFS (this is implied by assump-
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tion H2), c:F¢ + R is well defined. Our test function

c:R™® + R is defined by:

-~

{max{c(z), O} if Y(z) > O

c(z) S ; (5.3.3)

otherwise

where ;>O. Powell [8] notes that a choice of ¢ which is too
large, may be inefficient, because too much weight is given
to satisfying the constraints. Existing procedures (with
guaranteed convergence) require that C; e if cy is changed
infinitely often[5] and usually require that c; must be non-
decreasing. In this chapter we propose a method for choosing
=N in which S only if cy is changed infinitely often,
but ci may remain constant or even decrease if certain tests

are satisfied. A procedure for choosing c; is given below

PROCEDURE FOR CHOOSING Cy:

Step 1: Compute E(zi).

Step 2: (test a) If c(zi) { C and w(zi) 4 wold - €, set

i-1

~

ci = max { c(zi) ,c } and set wold = w(zi). Return to
main algorithm.
Step 3: (test b) If E(zi) > c;_, (and W(z;) > 0), set
c; = max{E(zi), (c;_,+8)}. Return to main algorithm.
Step 4: (test c) If c(zi) £ C;_4 OF w(zi) = 0, set C;=C;_1-

Return to main algorithm.
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5.4 - THE STEP LENGTH

The choice of step length is important, since it forces con-
vergence from any starting point and an asymptotic step
length of unity is necessary for superlinear convergence of
the algorithm. Since <« is not differentiable, the standard
Armijo test, can not be employed. We shall use an Armijo like
test, similar to that of [5], which compares the actual
change in y¥(z,c) with its first order estimate ;(z,p,c). In-
stead of uwz(z,c)p in the Armijo test we use the estimate
6(z,ap,c) of yv(z+ap,c)-v(z,c). Since 8(z,ap,c)<ab(z,p,c) for

all «€[0,1], the modified Armijo test is given by

y(z+ap,c) - v(z,c) € ta8(z,p,C) (5.4.1)

The step length is chosen to be the largest o« 1in the set
s & (8,82, ...) satisfying (5.4.1), where Be(0,1) and te(0,1);

a sensible choice for 1 is 1=0.1 or 1=0.05.

5.5 - ALGORITHM
We can now state our algorithm.
Main Algorithm.

Data: =z eR", H

1 1
8=0.1), t€(0.,0.25) (e.g. t=0.05), c¢ > O (e.g. c=1.),

=In' J>»1 (e.g. J=1.E+6), Be (O, 1) (e.qg.

& >0 (e.g. 6=0.01), € > O (e.q. e=0.01w(zo)).
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StepO: Set 1i=1, co = ¢ and wold = w(zo).

Step1: Compute wo(zi).

Step2: Compute pi=p(zi,Hi) the minimum norm solution of
QP(zi.Hi).

Step3: Compute c; using the given procedure.

Step4: Compute ui=ac(zi) the largest a in S such that
o)
Y(zi+aipi,ci) - y(zi,ci) < ruiec(zi,Hi).

Step5: Set z. 0. Set 1 = i+1,

l+1=zi+aipi. Update Hi to H

i+1

and go to Stepil. =

5.6 - GLOBAL CONVERGENCE

For all ZERn, let

I(z) & GGem | g9(z) = w(z)) (5.6.1)
and
E(z) 2 (jer | nI(z) = w(z) (5.6.2)

We make the following assumptions.

H1: the functions f, g, and h are continuously differenti-
able.
H2: For all z the vectors {ng(z),jeI(z),VhJ(z),jEE(z)} are

positive linearly independent.
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H3: The sequences {zi} and {Hi} generated by the algorithm

are bounded.

These assumptions are reasonable; in particular, H2 can not
be further relaxed without loosing the ability of the algo-

rithm to find a feasible point.

To proceed we need to define the set DC

D A (zer™ 02(z,H) = 0}. (5.6.3)

&xu@n
Note that Dc is not necessarily the set of Apptimal points

for Pc’
PROPOSITION 5.6.1.
For all cpc(z) and all H>O, zeD if and only if zZeD .

PROOF: Let «c)»c(z) and zeD_. Suppose that ©(z)>0, then

c3c(z) »c (z) implies that

82(z,H) = £ (z)p(z,H)+c [b°(2)-¥(z)] < O
which contradicts zEDC. Hence $(z) = O which implies g(z)<0
and h(z)=0. Since 92(2,H)=0, and (z)=0°(z)=0 then,
fz(z)p(z,H) = 0. From QP(z,H) we obtain

£,(2)p(z,H)+0.5p" (z,H)Hp(z,H)=0,

- 104 -



since H is positive definite, p(z,H)=0. From the dual problem

of QP(z,H) there exist AeRn, and pERr such that
VE(z)+g, (z)A+h. (z)u=0
gT(z)A=O
A30

which imply zeD.

Now, let zeD which implies that there exist AeR™  and uERr

such that
g(z)<0, h(z)=0, A9, ATg(z)=0,and
T T _
vE(z) + g (z)A + h (z)u = O (5.6.4)

Let p be the unique solution of QP(z,H). From (5.6.4) and

zeF we obtain

fz(z)p pTVf(z)

T T T, T
- p gz(z)A p hz(z)u

But AT(g(z)+gZ(z)p)=O and h(z)+hz(z)p=g, hence

fz(z)p = ATg(Z) + uTh(z) = 0.

- 105 -



Since ¥(z)=0 and f_(z)p(z,H)=0 imply that ag(z,a) =0, we

conclude that zeDc. =
PROPOSITION 5.6.2.

i) ioan + R is continuous.

ii) For all zeF, z¢D, and ceRn, 82(z,H)<0

iii) For all H > O, the function p(.,H):Rn + R® is continu-
ous

iv) ¢:F€ + R is continuous.

v) For all cyc(z) and H > O, 82(.,H):Rn + R is continuous.

PROOF: i) the proof is similar to that of Proposition 3.3.2.
ii) Let zeF, z¢D, and ceR™. Let (p,A,u) be a Kuhn-Tucker

triple for QP(z,H), satisfying the following conditions:

VE(z)+Hp+g) (z)A+h) (z)u = O (5.6.5)
h(z)+h_(z)p = O (5.6.6)
g(z)+g, (z)p < O (5.6.7)
A3 O

A (g(z)+g,(z)p) = O. (5.6.8)

We also have

Gg(z,H) = £ (z)p (5.6.9)
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or from egn (5.6.5)

£,(z)p = pva(z)

= -pTHp - pTgl(z)A - pThl(z)u

= -pTHp + ATg(z) + uTh(z). (5.6.10)
But h(z) = O, g(z) < O and A > O, hence, 82(z,H) < O.

iii) Let H > 0. We note (see [1]) that (5.2.8) is equivalent

to:
q(z.H)=min{fz(z)p+o.SPTHp+d[$(z.p)—$°(z>]+| pe B } (5.6.11)

for d sufficiently large (since [tb(z,p)—nbo(z)]+ is convex and
fz(z)p+0.5pTHp is strictly convex, d>0 exists such that

(5.2.8) and (5.6.11) are equivalent). From [11,pp 115, 116]

q(z,H) 1s continuous and solution set 1is upper semi-
continuous. Since (5.6.11) has a unique solution, the solu-
tion set contains a single element p(z,H). It, then, follows

[11,pp. 117] that p(.,H) is continuous.

iv) Follows from continuity of ¢ ,wo ,p(.,H) ,and Vf.

v) Follows from continuity of ¢, w°. p(.,H), c, and Vf. =

- 107 -



Steps 1 to 4 of the algorithm define a map Ac(.,H):Rn - Rn;

A_(z,H) A z+a_(z)p(z, H) (5.6.12)

Since p(z,H) always exists and is unique, Ac is well de-

fined.
PROPOSITION 5.6.3.

i) For all n>0, all ZERn, and ceRn, there exists a 5>0 such

that
Y(z'+p',c)-x(z',p',c)| € nlip*'M (5.6.13)

for all z’EBb(z), all p'EBb(O).
ii) For all z¢D_, all H>0, and all cyc(z), there exist a

g1>0 and a 6§,>0 such that

1

Y(AC(Z'.H),C)-x(z',c) < -oy (5.6.14)

for all z'eB_ (z).
54

iii) For all c3c(z), zEDc is a necessary condition of op-

timality for Pc.

PROOF: i) Let ceR™, then
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Y(Z'+p',C)-Y(Z‘,p',C)’ < If(Z'+p‘)—f(Z',p')|+

c max{lgj(z'+p')-gj(z'.P')I,jem;

|hj(Z'+p')—ﬁj(z',p')|.jEL} (5.6.15)
But
. -3 1 3 .
gl(z'+p')-gl(z',p') = [I(gz(2'+tp')—g;(Z‘))dt]p' (5.6.16)
o
so that

1 . .
f“g;(z'+tp‘)-gg(z')"dt]"p'" (5.6.17)

gJ(Z‘+p‘)—gj(z',p')| e [
0]

Similarly,
- 1
f(z'+p')—f(z',p')| < [Ilfz(z'+tp')—fz(z')|dt]up'u (5.6.18)
(0]
and
. .. 1 . .
hj(z'+p')—h3(z',p')| < [Inhg(z'+tp')—h;(z')udt]up‘u (5.6.19)
0
Since fz’ g;, and h; are uniformly continuous in any compact

set and since z'EBa(z) and p'eBb(O) imply that z'+tp'6826(z),
for all te[0,1] it follows that, for all n>0, & can be chosen

so that
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y(z'+p',c)-y(z',p',c)| < nlp'l (5.6.20)
for all z'EBa(z) and all p‘EBb(O).

ii) 1let =z¢p_, H>O0, cyc(z). From (5.2.12) and since

y(z,u1p,c) is convex in o, (for all z, p, and c), we obtain

Y(z',ap' C)=y(z',c) < a,80(z' H) (5.6.21)

for all u1e[0,1] and p' A p(z',H). Since Bg(.,H) is continu-
ous, there exists 5>0 such that
ag(z',H)e[(3/2)eg(z,n),(1/2)ag(z,H)], for all z'eB,(z). From

(i), there exists a 616(0,6] such that
Y(z'+a p',c)-y(z',a,p' )| < (-82(2,H)/4)a1 (5.6.22)

for all z'eB; (z), all peP, all «€[0,6,/3] (so that
1

@ peB, (0) for all peP). Hence, for all z'€B, (z),and all
1 1

u1e[0,61/J],
y(z'+a,p',c)-v(z',c) « a1[82(z',H)—82(z,H)/4]

¢« 80(z,H)/4. (5.6.23)
Now, for all uc(z) b3 u1€[0,61/J], we obtain

.Y(Ac(z.yH)'c)_'Y(z"c) < "Q1 (5.6.24)
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>

for all z'eB_ (z) and e4 —ac(z)ag(z,H)/4.

54

iii) Follows from (ii). "
PROPOSITION 5.6.4.

*
Any accumulation point z of an infinite sequence {zi} gen-
erated by the main algorithm, where zi+1=Ac(zi'Hi)' Hi>0 and

*
c)ci, for all i satisfies z €D.

PROOF: Let cjc, for all i, where ci is obtained from theé pfo—
cedure for 'choosing c;. From Proposition 5.6.3(ii) and
Theorem (1.3.3) of [12] we obtain that z*eDc. If z  is in F,
then from the procedure for choosing Cir ci>max{6(zi),;) for
all i (this is obvious in Step 2 of the procedure for choos-
ing cy and can be easily deduced from Steps 3 and 4), hence
c)E(z*)=;. It then follows from Proposition 5.6.1 that
z*ED.

X
* . lof . * .
Suppose z 1s 1n F~, since zi +z , Xc {1,2,...} and since

- — x... x
c:F¢ + R is continuous, it follows that c(zi) + c(z ). Hence

- - %
c > c(zi) for all i implies that ¢ 3 c(z ). This implies that

* *
8 (z )<O which 1is a contradiction (since z EDC implies that

ono

* *
6 (z ) = 0) and we conclude that z 1is in F and, hence, in F

Cc

and, hence, in D. =
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THEOREM 5.1.

%
Any accumulation point z of an infinite sequence {zi} gen-

*
erated by the algorithm satisfies z €D.
PROOF: We consider the following possible cases:

Case a (satisfaction, infinitely often, of "test a" in the
procedure for choosing ci) Suppose that there exists an in-
finite subset of X a {0,1,..}, say K, such that test (a) is
satisfied. The fact Aal Y(Z:0) & ‘T’ (z2;) - & jo/

all ¢ swch JSAal "Ze‘st.'ou’- /5 Sea //_sf/.e'oé;' Con Fradicts

m£ fmof Z%wf' %CZQ)ZJ? fbrcta¢ﬂ'
' . " Hence , "test a" cannot be satisfied in-
finitely often. Hence, there exist an io ( iO is the last

element in K) such that for all i>io, ci is either increased

(case b) or kept constant (case c).

Case b (satisfaction, infinitely often, of "test b") Suppose

that there exists an infinite subset of X+, say M, such that

Mo,

is a monotonically increasing sequence and z. =+ z

’ i

{c ieM

Notice that for all ieM, z; is in FC. However, there exists

i

an i0 large enough such that for all i)io and ieM, z; is in
%

N, where N is a small compact neighbourhood of z . Since

- C — M_. *x

c:F~ -+ R is continuous, c(zi) + c(z ). However, Cit when in-

creased, 1is increased by an amount not less than 5, so that
eventually, c; remains constant. This is a contradiction i.e.

“test b" cannot be satisfied infinitely often. The proof,
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then, follows from (case c).

Case c (satisfaction, infinitely often, of "test «<¢") This
implies that there exists an i0 such that for all i i o' i
remains constant. Then, from Proposition 5.6.4, any accumul-

. . * . . . . ] *
ation point z of an infinite sequence {zi};_i satisfies z €D.s
iate}

5.7 - NUMERICAL RESULTS

The algorithm has been successfully applied to several test
problems. We have employed the BFGS procedure with Powell's
modification to update the estimate of the Hessian. To illus-
trate +the procedure for choosing c, let us consider the fol-
lowing simple example:

minimize z?+z§

s.t. sin(z1) <

n

-cos(z1)

0
(0]

2, 2
z1+z2—n/2 < 0O,
0
o}

—z1—n <

—ZZ—W/Z £
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i z, Z, v2(z,)| cola c(z;) c; a;| T(z;)

1| -1. 75. 1.34E1] 1.E6 5.61E3| 5.61E3| 1 | 5.43E6
2| 2.54E1| 3.79E1| oO. 5.61E3| 2.08E3| 2.08E3| 1 | 1.24E4
3| 2.s1e1| -1.57 | o. 2.08E3| 6.33E2| 6.3382| 1 | 2.73E3
al -3.14 | -0.74 | o. | 6.33E2| 9.47 | 9.48 1| 5.56-3
5| 9.8E-4| 3.3E-2| O. 9.48 | -3.38 | 1. 1| 5.8E~6
6| -3.-10| -1.1E-3| 0. 1. F 1. 1| 3.E-14
7| -8.8e-8| 2.sE-9| oO. 1. F 1. 1| 7.E-29

Table 1.

The optimal point is z* = (0, 0), and the starting point
zq = (-1, 75) 1is chosen. Table 1 shows the numerical results
computed by the algorithm. Notice that in the first iteration
the 1linearized feasible set is expanded to ensure the ex-
istence of the Newton step. It can be seen that ¢ is de-

creased 1in the first four iterations and then remained con-

stant at its lower bound (c=1.).
The second problem considered is that of Chamberlain[9]:

minimize z,

2 3
1%24

-2(1-2) %4 (1-2) 242

s.t. -2z +22 > 0,

5 ? 0.
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Chamberlain has shown that when starting from =z (0, 0),

o

Powell's algorithm [8] cycles between Zq and z,

This occurs because of the updating scheme for penalty param-

(1, 0).

eter in [8]. Table 3 illustrates the computation results.

i z, z, c; oy T(zi)

1 0. 0. 2.01 0.4 2.246

2 0.4 0 2.248 1. 0.159

3 0.501 0.379 1.733 1. 2.38E-6

4 0.5 0.375 2.003 1. 6.91E-14
Table 3.

Other interesting problems cited in the literature are
Colville's problems[16]. Starting from the initial points
suggested by the author fast convergence 1is obtained and

displayed in Table 4.

Problem number of number of number of
constraints variables iteration T(z*)
Colville 1 15 5 8 1;457e—6
Colville 2 20 15 16 2.13e-6
Colville 3 16 5 3 7.742e-11

Table 4.
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5.8 - DISCUSSION

The new algorithm presented is, under mild assumptions, glo-
bally convergent. In an attempt to solve some of the out-
standing problems in optimization algorithm, several features
are employed (in the algorithm) which are not present in pre-
vious algorithms. All the algorithms (known by the author ),-
at best, assume that the columns of the gradient matrix of
the most active constraints are lineargindependent. We have
relaxed this assumption to positive linear independence, and
by employing a linear program (in Step 1 of the algorithm), a
feasible solution to the Newton step is ensured, A fixed po-
sitive definite matrix (e.qg. Hi=I’ for all i) can replace the
estimate of the Hessian, in which case assumption H3 can be
further relaxed. An interesting feature of the algorithm is
the new rule for choosing the penalty parameter c, which al-
lows ¢ to decrease. This permits high initial values and 1low
final values. However, to establish superlinear rate of con-
vergence of the algorithm, we need to show that step 1length
of wunity can be achieved in a neighbourhood of the solution.
This has not been the aim of this project; interested readers

are refered to an interesting work by Pantoja [18].
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CHAPTER 6
DESIGN OF OPTIMAL CONTROLLERS FOR A DOUBLE INVERTED PENDULUM

6.1 - INTRODUCTION

In this chapter the design methodology of Chapter 2, embed-
ded in an interactive CAD package SIMNON, is employed to
design a stabilizing controller for a double inverted pendu-
Jum [1,2]. While the double inverted pendulum has been well
studied, it, nevertheless, presents an interesting and chal-
lenging control problem. Strugen and Loscutoff [3] have
treated this problem using state space approach. They con-
sidered a linear model and designed a feedback controller to
stabilize the pendulum at upright position using a full order
observer. K. Furuta, T. Okulani and H sone [9] considered the
same linear system and designed a state feedback optimal con-
troller by minimizing a quadratic criterion function. They
used a first order functional observer. These controllers do

not work satisfactory when

(a) the system state is outside a small neighbourhood of the
equilibrium state

(b) the pendulum system is not identified accurately

(c) a disturbance arising, for example, from inclination of

the rail exists.

A controller effective for the latter two cases, must in-

clude an integrator to accommodate constant disturbances, and
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is called a servo-controller. K. Furuta, H Kajiwara and K.
Kosuge [6] used a servo-controller to stabilize a double in-
verted pendulum on an inclined rail at upright position and
at a given reference point. We shall show how our multipur-
pose CAD package SIMNON can be used to design an optimal con-
troller for the nonlinear model of a double inverted pendu-
lum. SIMNON is an interactive simulation package written in
Fortran [10], which includes the optimization algorithm [8]
of Chapter 3 as a subsystem. It provides graphics facilities
to monitor progression of the design and the user can inter-
rupt the task, if he wishes, to change the design parameters
and continue without 1losing any computation prior +to the

interruption of the task.

The following notation is used:

e = input voltage to the amplifier, V

eo = constant parameter, 0.3 V

r = position of the cart, m

ro = constant, 0.5 m

91 = angular position of lower pendulum, rad

810 = constant, w/3 rad

92 = angular position of upper pendulum, rad

820 = constant, w/3 rad

M = equivalent mass of the cart-drive system, 0.574 kg

m, = mass of lower pendulum, 0.103 kg

m, = mass of upper pendulum, 0.07 kg

F = equivalent friction constant of the cart-drive system,
2.81 kg/s



a = gain of overall cart driving system and the amplifier,

46.7 N/V
cy = friction constant of lower pendulum, 1.92><10-3 kgmzls
c, = friction constant of upper pendulum, 8.93x10—4 kgm2/s
o = angle of the inclined rail, rad
11 = distance from pin of cart and pendulum to center of
gravity of lower pendulum, 0.225 m
l2 = distance from pin of upper and lower pendulum to
center of gravity of upper pendulum, 0.177 m
L = length of lower pendulum, 0.379 m
J1 = mass moment of inertia of lower pendulum,
2.386x10" > kgm?
J1 = mass moment of inertia of upper pendulum,
1.521x10" > kgm?
g = acceleration due to gravity, 9.8 m/sz.

6.2 - PHYSICAL SYSTEM AND MATHEMATICAL MODEL

A double inverted pendulum consists of two rods (Fig. 6.1),
the lower pendulum is hinged to the cart whose motion is res-
tricted to the vertical plane containing +the 1line of the
rail. The upper pendulum is connected to the lower pendulum
in the same way. Since we do not have experimental apparatus
we use the model and specifications of a double pendulum sys-
tem given by K. Furuta et al [6]. The cart moves on a rigid
length of 1.0m. The cart driving system consists of an 80 W
DC motor, a pulley and a belt transmission system using a

timing belt and a DC power amplifier. The mathematical model
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of the system is constructed under the following assumptions

[9]:

(a) Each pendulum is a rigid body.

(b) Length of the belt does not change.

(c) Driving force to the cart is directly applied to the cart
without delay, and is proportional to the input to the
amplifier.

(d) Friction forces against the motion of the cart, and those
generated at connecting hinges of the pendulum, are pro-
portional to the velocities of the upper and lower pendu-

lum, respectively.

According to the above assumptions, a mathematical model can

be derived based on the Lagrange equation (see [6]) and is

given by
K1x o= K2x0 + K3 + K4u + K551n o (6.2.1)
where x. = [x, 8 ] ]T u = e/e
0] T 20 0
and
my+m,+M (myly+myL)cos (ot8 ) m,1,cos (a+8.,))
K1— (m1l1+m2L)cos(u+e1) J1+m1l1+m2L m212Lcos(e1 82)
mzlzcos(q+92) m212Lc05(81—82) I +m l2
2 272
(6.2.2)

- 122 -



-F (m,1 +m2L)51n(u+81)91 m21251n(q+82)§2

171
K2= 0 “C47Cy m212L51n(81—82)82+c2 (6.2.3)
0 m212L51n(81—62)91+c2 —c2
0o
K3 = (m1l1 + mzL)g sin 81 (6.2.4)
mzlzsin 82

ega
K4 = 0 (6.2.5)

0

—(m1 + m2 + M)g
K5 = 0 (6.2.6)

(0]

where e is the input voltage to the amplifier satisfying

lel < eq (6.2.7)
Let
X
x810° (6.2.8)
o)

The mathematical model of the double inverted pendulum is
then given by

. o)

x = (6.2.9)

-1 : .
K1 (K2xo + K3 + K4u + K551n x
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In the neighbourhood of x = O, the following 1linear model

can be derived:

x = Ax + bu + hd (6.2.10)
where d = sin «
- | Q33 I3 _ 031 — |91
A= b ) h >
Ly [Lyq:Dy,] Ly Ky Ly Kg
L, =K,| 8, =0,=0
0 0 0
Lyy = 8 (myly + myLdg o ?
0 2+29
-F 0
Lyo = 8 €4 TGy S
€2 )

Parameters of the model are either measured or experimental-
ly identified and are given in Section 6.1 (see Reference 6).
These parameters are substituted in the linear model (edn.
(6.2.10)), and since eigenvalues of matrix A are [7.2193,
4.1242, 0, -3.223, -6.087, -10.7545], there exist two un-

stable modes. The system, however, is observable, because

(Gz] = 1¢ (6.2.11)
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and the observability index is 2. The controllability matrix

vV, i.e.

has full rank. This can be verified by examining the eigen-

TV, which are [6.33E+13,

values of the Grammian matrix V
4.03E+9, 2.77E+7, 1.28E4, 1.45E+3, 1.13E+1]. The square root
of the ratio of the maximum and minimum root of ViV is found
to be 2.36E+6, which means that the system is very difficult
to control [3,6,9]. Since the linear system is controllable,
the poles of the closed loop system are asignable symmetri-
cally and arbitrary, and the system can be stabilized. But a
nonlinear unstable system, like a double inverted pendulum
may not be stabilized by using the controller designed for
its linearized model, since the system state sometimes devi-
ates considerably from the equilibrium state, whereas the
linearized model is valid [9]. There are also other physical
constraints on the system, such as saturation of the power
amplifier, limitations on cart movement etc. Since satisfac-
tion of these constraints are not explicit in terms of the
location of poles or the criterion function, application of
the <classical control is a formidable task. Our method of
designing a controller for such a system as a double inverted
pendulum 1is based on minimization of a criterion function
such that all the performance and stability constraints are
satisfied. In the following sections we shall show how this

can be achieved.
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6.3 - DESIGN OF OPTIMAL SERVO CONTROLLER FOR THE DOUBLE
INVERTED PENDULUM

In the presence of constant disturbance, such as unknown an-
gle of inclination of the rail, the linear model of the sys-
tem can be stabilized using a servo control system [6]. 1In
order to stabilize the system, at a given reference position
on the rail when constant or random disturbances exist, we

employ a servo controller of the form

T t -
us=-z,x + z,[ rdt (6.3.1)
1 2o

~

where r A h and z eRs, z eR1 are the vectors of design

a -~ *i 1 2
parameters. The following equations for the closed loop sys-
tem can be derived from eqns. (6.2.10) and (6.3.1) for the

constant disturbance 4 and constant command signal rq:

D= {[e18,50 8 - Bt =} s

1x5] o

The above linear system has been stabilized wusing the CAD

package SIMNON [10], yielding

[2.196, -17.14, 39.44, 5.61, 2.196, 6.03]

N
I

0.315.

N
Il

Egqn. (6.3.2) can be rewritten as
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ﬁ[’;‘] = a [’f] (6.3.3)

where A is given by

[ O 0] 0 1 o 0 o )
o 0 o o 1 0 o
o 0o (0] 0 0o 1 o

-50.7 393.4 -910.7 -134.1 -49.97 -139.6 7.265 [(6.3.4)
147.3 -1102. 2634. 389.6 144.9 405.9 -21.11
-17.13 80.46 -258.5 -45.29 -16.22 -47.63 2.454
L -1.0 o o 0 o 0 o J

-1
]

The eigenvalues of ; are given by
Apihy = -11.507 +« 25.837J

A, = —-3.0478 + 4.221J

Agihg = -0.21 + 0.13794J

A, = -7.299

We can now compute the symmetric positive definite matrix P

of the Liapunov equation

ATP + PA = —I7

where matrix P is given by

(28 .7 5.36 42.5 13.56 5.39 6.88 -9.97 ]
5.36 38.7 -65.0 -4.76 -2.41 -9,71 -2.6
42.5 -65.0 250.3 45.76 19.62 38.66 -12.16
P = [13.56 -4.76 45.76 11.21 4.66 7.24 -4.27
5.39 -2.41 1962 4.66 1.97 3.1 -1.67
6.88 -9.71 38.66 7.24 3.1 6.05 -1.98
(-9.97 -2.6 -12.16 -4.27 -1.67 -1.98 4.99
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(6.3.4)

Let us define function V : R® =+ [O,)

ne>

vix) & (xTpx)1/2 (6.3.5)

where positive definite matrix P is given by eqn. (6.3.4).

Let us choose

x¥ = [0.1, 0.05, 0.05, 0, 0, O, O]. (6.3.6)

The set of initial points (domain of attraction) is given by
B(x) = {x|V(x) - V(x) < O}. (6.3.7)

We are now in a position to set up a system of inequalities
for the design requirements. In setting up the system of ine-
qualities wj(z) ¢ 0, the function ¢(.) must be chosen to re-
flect +the design requirements. Let response of the system
(position of the cart on the rail) to a step input
(rd = ;H(t)) be x(t,xo,z). The requirements are: a rise time
of less than or equal to tf seconds; an overshoot of less
that or equal to 10%; and the absolute value of the control
signal must not exceed 1.0. Other constraints are stability

constraints to ensure asymptotic stability of the system in

B(x). The above requirements can be specified by

(a) x1(t,xo,z) » 0.65r for all tf ¢ t ¢ T and xOEB(i)
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(b) x,(t,;x5,2z) ¢ 1.1r for all O ¢ t < T and all onB(§)
(c) Iu(t,xo,z)l ¢ 1.0 for all 0 ¢ t ¢ T

(d) V(x(T,x5,2)) < BV(x) for all xoea(i), ge (0,1).

Notice that the above inequalities are actually infinite di-
mensional, each inequality being index by a time point in the
relevant time interval; or by an initial state in B(xX). 1In
order to reduce the number of inequalities and, indeed, to
improve the efficiency of the optimization program, we have

reformulated the above set of constraints as

T ~
(i) ¢1(xo,z) = { |x1(t,xo,z) - rldt < oy
f

T -
(ii) wy(x5,2) = f|x1(t,x0,z)2 - 1.21r2|dt <0
0

if le(t,xo,z)I > 1.1r

T
(iii) ¢3(x0,z) = élu(t,xo,z) - 1.0|dt < 0 1if lu(t,xo,z) > 1.
(iv) @, (x5,2) = V(X(T,x5,2)) - BV(x) < O for all xoeB(i).

Be (0, 1)

where oy is a scalar which is initially set to some positive
value and then can be interactively reduced to obtain an op-

timal design.

The above optimization problem is programmed in SIMNON

language, and the algorithm yielded a stable controller as-
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sessed by 500 initial states in B(x), randomely chosen (uni-
formely distributed in B(x)). The vectors of the design

parameters are computed as

zL = [5.62, -16.024, 41.943, 4.9031, 0.9736, 5.926]

2.8358

N
Il

and the characteristic roots of the linearized stable system

are found to be

Ajihy = =6.8179 = 6.92743
A3ihg = -1.506 = 6.4837
Ag = -88.2258

Ag = -3.9214

A, = -0.61237x10" .

Figure 6.3 shows the simulation results for ten initial
states in B(x). Since the system is only considered to
behave linearly when the angle of first pendulum 81 is 1less
than 3% (Ix,| ¢ 0.05) and 8, - 8, is less than 0.3°
(lx2 - x3l § 0.005) [6], results of Fig. 6.3 clearly show

that the controller designed by our algorithm can stabilize

the pendulum for much larger values of 91 and 91 - 82. Fig-
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ures 6.4 and 6.5 show the response of the system, where the
reference value (rd) and disturbance (incline of the rail d)

are changed stepwise (rd = 0.1m, a = 15°).

6.4 - DESIGN OF OBSERVER

In the design of feedback controller for the double inverted
pendulum we assumed that all the six states are observable,
but in practice, only three of the states, namely r, 81, and

] are directly measurable, the rest must be construct-

17 8y
ed using an observer. It is well known that a minimal order

observer (third order) can be designed to construct the unob-
servable states [4]. We shall employ the Gopinath method [7]
for the design of minimal order observer. Since the position

of the cart, the angle 91 and the difference of angles

(6, - 86 are measured by potentiometers, their wvalues are

2 1)

taken as output y:

y = Cx = [Hy, Olx (6.4.1)
wherxre
[1 0 o]
H.=l0 1 O
0 0o -1 1

For the design of the observer, instead of the system
represented by eqn. (6.2.10), the following equivalent system

is used:
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Aw + bu + hd

£ .
1

~
I

Cw = [13 Olw (6.4.2)

where WER6, yER3 and ueR are the new states, output and input

to the system,

w = HX

A = HAH |

b = Hb

c=c¢cu!

h = Hh (6.4.3)

The minimal order observer designed for eqn. (6.4.2) is
given by

X = AX + By + Ju (6.4.4)
X = Cx + Dy
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where x is the estimate of w,

>

A=2,, -L
B =AL + A,

c = (9] (6.4.5)
i - 3

J = b,

I. is an arbitrary matrix to make A stable. In this study L

is chosen as

101 (6.4.6)

=
I\

The observer matrices are then given by

- -14.6313 0.00472 -.00925

A = [ 13.459 -9.312 1.0647 ] (6.4.7)
-15.0236 -3.7326 -14.7784

R -146.313 -2.2185 -0.0249

B = [ 134.59 -58.051 -2.625 ] (6.4.8)
-150.236 -76.475 -85.344

The eigenvalues of A are:

A, = -14.727, AN, = -13.851, A3 = -10.1418

To make the studies more realistic, we have to include the
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measurement and observation noises. A full study of different
noises in the system is outside the scope of +this work. We
shall, however, assume that a single white noise is affecting
the controller system. A standard deviation of 0.05 (high
noise) is assﬁggé. Figures 6.6 and 6.7 éhbw the response of
the double pendulum system with a minimal order observer to a
step reference (£ = 0.1 m) input, and to step-reference input

with step disturbance (r = 0.1 m, a = 150), respectively.

6.5 - DESIGN OF FUNCTIONAL OBSERVER

In the previous section we designed a minimal (third) order
observer, but +to reconstruct a linear combination of the
states (sz), a lower order observer (functional observer)
can be used. This has the advantage of reducing the computa-
tion time, which allows a shorter sampling period. We employ
an algorithm by Inoue [5] (also see Ref. 6) to design a func-

tional observer (Fig. 6.2). The observer is given by
X = AX + by + ju

cx + dy (6.5.1)

<
It

where v is an estimate of sz and

>

(-10.0) b = (-301.85, -517.78, -103.65)7

>
]

94.0732 c =1
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d = (35.805, 77.583, 80.188)T

A similar noise to the one used with the minimal order ob-
server is added +to the control signal. Figures 6.8 and 6.9
show response of the double pendulum system with the func-
tional observer to a step reference input (éd = 0.1 m) and to
a step reference input with step disturbance (;d = 0.1 m,
a = 150), respectively. A sampling time of 4 mili-seconds was
assumed (compared with a sampling time of 10 mili-seconds for

the minimal order observer).

6.6 - DISCUSSION

An alternative approach to feedback design of nonlinear sys-
tem (presented in Chapter 2) is successfully applied to a
double inverted pendulum system. A feedback controller 1is
designed using an optimization algorithm which is based on
multiple simulation of the nonlinear system in a finite in-
terval. The results of this study clearly show the advan-
tages of this method compared with other methods where a con-
troller is designed for a linearized model of the system. A
minimal order observer and a functional order observer are
designed and the response of the system to step reference in-
put and step constant disturbance is simulated. The function-
al order observer appears to be favourable in practice,
although the minimal order observer produces better results

when severe constant disturbance exists.
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|
0.1
0.8 A
0.6 |
0.4 |
0.2 |
0.0 4
o. 2.5 5. 7.5 time (sec) 10
1
0.0075
—0.w75 \/\/—f ~
o 2.5 5. 7.5 time (sec) 10
.92
0.0075
1/\/—
-0.0075 :
o. 2.5 5. 7.5 time (sec) 10 -
Control signal )
0.015
1\/—\
-0.015

o. i oa.s 5.

Fig.6.4 Response of the system to step input.

M ]

7.5 time (sec) 10

0.125
0.1
0.075 -
0.05 1
0.025 |
0.0 p
1
w0028 0. ’ 2.5 N 5. T 7.5 time (sec) -0
el
0.01 1
oot ) 2.5 ¥ B - 775 tige (sec) 10
62
0.0075 1
-0.0075
o. R j 5. N 7.5 time (sec] IO
Control signal
0.15 4
4
-0.15 - , i
o. o 2.5 J 5. 7.5 time (sec) 10
Fig.6.5 Response of the system to step input and step disturbance.

Cart position on the rail

139



Cart position on the rail

]

0.1

0.8

0.6

0.4

0.2

0.0

o. ) 2 ) 4.. 0 6. time (sec] B.

0.1

-o.l v nd v v
0. ) 2. 4. 6. time (sec) 8.
162 -6

0.0075 .

-u.w75 . — .
0. N 2. 4. © 6. time (sec) 8.
Control signal

0.3 . | .

o L .

0. 2. 4. ) 6.. time (sec) 8.

Fig. 6.6 Response of the system with minimal order observer to
step input.

qCart position on the rail

0.075 4

-0.075

"

-0.15

-0.225 ¢

0.125

-0.125 |

— ]

time (sec) 8.

O‘
N
.

FN
.

()]

0.04

-0.04 '

T r

o. 2. 4. 6. time (sec) 3.
Control signal

-0.3

[o]
.
Nq
'S
4
o

time (sec) 8.

Fig.6.7 Response of the system with minimal order observer
to step input and step disturbance.

0. 2. 4. 6. time (sec) B

140



|

1C.art: pbsitiori on the rail-

A
0.1 i e
0.08
0.06
0.04
0.02
0.0
o. 2. A 6. time (sec) 8.
e].
o-ot ""f\\-\—ww
-0.01 . . — . v - v .
0. 2. 4, 6. time (sec) 8.
0.C075
-0.0075 | . v — . v v v
o. 2. 4. 6. time (sec) 8.
Control signal
0.3
-0.3 . - \

- Y

o. 2, 4. 6.. time (sec) 8.

Fig. 6.9 Response of the system with functional observer to step input.
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CHAPTER 7

COMPUTER AIDED DESIGN OF NONLINEAR CONTROLLERS
FOR TORQUE CONTROLLED ROBOT ARMS

7.1 - INTRODUCTION

It has been shown that many design objectives, including
stability, of nonlinear systems may be expressed as infinite
dimensional inequalities [1-3]. A range of algorithms, with
established convergence, have also been developed to solve
the associated problems of computing the parameters of a con-
troller which satisfies these complex constraints or minim-
izes an objective function subject to these constraints. How-
ever, applying these procedures automatically without emply-
ing the insight yielded by control theory to specify the
structure of the controller is naive and likely to be compu-
tationally expensive. On the other hand, control synthesis
techniques (such as linear optimal controllers, pole alloca-
tion, etc.) are inadequate as a practical design methodology
because they are unable (without much manipulation, for exam-
ple, of quadratic cost coefficient) to meet design con-
straints. An 1ideal design methodology would combine control
theoretical results to choose the structure of the controller
with sophisticated mathematical programming techniques to ad-

just parameters to satisfy the complex design constraints.

Such a methodology has already been proposed [4] for the

design of linear multivariable systems. The design parameters
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specify a family of achievable (exponentially) stable

closed-loop transfer functions H(s, z) where z 4 (z1,..., zk)
denote the vector of design parameters. (Vectors such as
zZ = (z1,..., zk), x = (8,08), etc are column vectors in all

the equations). The same approach cannot, in general, be
utilized for nonlinear system design. However, there exists a
class of nonlinear systems which <can be transformed into
(equivalent) 1linear systems using nonlinear transformations
[5]1. 1f i = f(x, u) is a member of this class of systems then
there exists a nonlinear transformation
(x, u) » (w, v) = T(x, u) such that the transformed system
satisfies é = Aw + Bv, i.e. is linear having a transfer func-
tion P(s). Using the procedure described above, the desired
closed 1loop transfer function H(s, z) uniquely determines a
(linear) controller C(s, z) for the transformed 1linear sys-
tem. This can be transformed back into a nonlinear controller
for the original system. The parameter z can then be chosen

to satisfy design constraints.

The rich literature on the control of robot arms shows that
the controllers for these systems can be designed in this
way. Indeed torque controlled robot arms can be transformed
into equivalent 1linear systems by a particularly simple

transformation of the control u (and not the state x).
Dynamic models of robot arms have been obtained in Refer-

ences 6, 7 and 8. It is shown there that the models of a

wide variety of robot arms have the form:
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H(8)e = j(8,8) + Du (7.1.1)

where 8 is a vector of angles, the dimension n/2 of B8 being
the number of degrees of freedom, H(8) is a n/2xn/2 matrix
valued function of 8 (representing inertia defined by the
masses and dimensions of each arm) and j(B,é) is a n/2 vector
including torques due to gravitational, coriolis and cen-
tripetal forces as well as friction. Finally, D is a n/2xn/2
real matrix which can be set equal to the identity matrix by
suitable redefinition of u, the n/2-vector of applied
torques. Several control techniques have been developed.
Yaun [6] linearizes the system and applies linear decoupling
theory to obtain a system of n/2 equivalent single joint sys-
tems. Freund [9] has shown how nonlinear systems of the form
i = A(x, t)x + B(x, t)u, v = C(x, t) + D(x, t)u may be decou-
pled and this has been applied, for example in [9,10], to ob-
tain an equivalent set of decoupled linear systems (one forxr
each degree of freedom) to which standard control techniques
can be applied. Ali and Taylor [11] have studied a similar
model. They propose the nonlinear control t-nsformation
(u, x) + v defined by u=B(x, t) (Ax - A(x, t) + AB_v)
(where B* denotes the pseudo inverse  of ‘ B). I¢-
Amx - A(x, t) + ABmv lies in the range of B(x, t) for all x,
t, v (fhis is not generally the case but is true for thése
robot arm models) then §'= A(x, t)x + B(x, t)u is transformed
to i = Amx + ABmv by +this transformation; with suitable
choice of Am and Bm these equations correspond to a set of
decoupled 1linear systems for which suitable controllers can

be designed, These transformations for torque controlled
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robot arms all reduce to a simple transformation (see [12,

13]) which can be obtained by inspection from (7.1.1).

In Section 7.2 we present the control strategy. In Section
7.3 we discuss controller parametrization. In Section 7.4 the
design constraints are discussed. Finally, in Section 7.5 we

illustrate +the procedure by designing a controller for a

robot arm with two degrees of freedom.

7.2 - CONTROL STRATEGY

Rewriting (7.1.1) with D = I (redefining u) gives

H(8)8 = (8, 8) + u (7.2.1)

If we define (implicitly) a nonlinear trasformation

(x, u) » v by:

u = H(8)[v - j(8, 8)] (7.2.2)

then (7.2.1) is transformed into the equivalent system:

H(8)8 = H(8)v (7.2.3)

which, if H(8) 1is invertible for all (relevant) 68, 1is

équivalent to the decoupled linear system:

8 = v (7.2.4)
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This transformation, which is implicit in [12], is wused in
this chapter to obtain a controller which satisfies design
constraints (such as hard constraints on u, which from
(7.2.2), 4is a nonlinear function of state x 4 (8, é) for the
nominal system (i.e. assuming H and j are exactly known)).
However, as Hewit [13] has shown, model errors (e.g. in H and
j due to unknown system parameters) may cause instability.
Hence, practical design constraints include robust stability
and performance. To cope with unknown friction (and, hence,
unknown 3j) Hewit [13] proposes the use of accelerometers so
that é. is known. From egn. (7.2.1), j(B,é) can then be de-
duced by calculating H(e)é. - u (provided that H(8) is exact-

ly known). In this work knowledge of 8 is wused to obtain

1
the unknown load mass and optimization techniques are em-
ployed to ensure stability and performance for all 3j3(8, 8) in

a given region of uncertainty.

So far we have considered the problem of controlling 8, the
arm coordinate vector. However, our main concern is control
of the world coordinate vector q which is a nonlinear func-

tion of 8:
q = ¢p(8) (7.2.5)

Since the dimension of q will be generally less than the di-
mension of 8, g may be augmented by the addition of addition-
al elements. This enables control of g and, furthermore, sa-
tisfaction of additional constraints (such as maintaining the

angle of one link). It is undesirable to solve (7.2.5), 1i.e.
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e -

to compute 8 for given g. This can be avoided, as shown by
Hewit [13], by substituting (7.2.5) (and its derivatives) in
(7.2.1) to yield:

P

i, (8, 8) + u (7.2.6)

o
= N
=
Q
I

where H, 8 437" ana 3, 8 5 4+ ug”

L 4 ®gg- With the nonlinear transformation (x, u) -+ v defined

1L where, in turn, J 4 ®g and

(implicitly) by

u = H(8)v - 3,(8, 8) (7.2.7)
(7.2.6) is transformed into:

&- =V (7.2.8)

provided that H, is everywhere invertible. Hence, the problem

1
of controlling g is essentially the same as that of control-

ling 8 (although more computation is involved).

7.3 - CONTROL PARAMETRIZATION

In any design procedure a control structure must be pro-
posed, and then the parameters of the controller chosen to
satisfy design constraints. Here the controller structure is
nonlinear being defined by the nonlinear +transformation

presented above.

The robot arm is described by
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H(8)8 = (8, 8) + u (7.3.1)
The nonlinear transformation (x, u) -+ v defined by:
u = H(8)v - j(8, 8) (7.3.2)

(see Fig. 7.1) yields the equivalent systenm

if H(8) is invertible. If v is defined by:

v, = -xWa. - x(2)g 4 k(1)r3 (7.3.4)

J Jj J 3 J J

for 3 =1, ..., n/2, where rg is the desired angle of the jth
link, then the closed loop transfer function from rs to Bj
is:

' (s) = k;1)/[sz + kgz)s + k§1)] (7.3.5)

z!.
]3]

If we choose k§1) and kgz) to satisfy:

k(1) 2,2 (7.3.6)
J J
(2) _
kj = 2ijj (7.3.7)
then
' _ .2 2 2
zjj(s) = wj/[s + Zijj + wj] (7.3.8)
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which is a damped linear system with damping factor Zj and
natural frequency wj' If the system is subjected to sudden
changes in demanded position, it might be advantageous to in-
troduce further compensators 1/[1 + sTj], j =1, ..., n/2,

outside the feedback loop (see Fig. 7.2) in order to reduce

peak torque. The controller parameters (T1, k§1), k§2)’ .
(1) (2) . o .
Tn/2' kn/2' kn/z) are completely specified, via (7.3.6) and
(7.3.7) by the design parameter z defined by:
z 8 (1., 2., w T 4 w. )T (7.3.9)
1" =1 719" ' “n/2' *n/2' "n/2 T

These variables are chosen to satisfy the design constraints
which are discussed next. Note that the (nonlinear) controll-
er for the original system is defined by (7.3.2), (7.3.4),

(7.3.6) and (7.3.7).

7.4 - DESIGN CONSTRAINTS

7.4.1 STABILITY OF THE NOMINAL SYSTEM

The most important constraint is that of stability. Since
the total system 1is constrained +to behave like a set of
decoupled linear systems, with transfer functions
zjj(s) = w?/[1 + sTj](s2 + 2ijj + w?], j =1, ..., n/2, sta-
bility (of the nominal system) is achieved by the simple con-
straints Tj > 0, Zj > 0, wj >0, =1, ..., n/2 on the
design variables. Relative stability can be ensured by speci-
fying . (e.g. ¢. =0.7), 3 =1, ..., n/f2 and choosing

J J
(Tj, wj), j =1, ,..., n/2 to satisfy other constraints (sub-
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ject, of course, to the constraints Tj >0, w. > 0,

j =1, ..., n/2).

7.4.2 - CONTROL CONSTRAINTS

Let (the column vector) w a (8, 8, r') denote the state of

the complete system (robot arm plus controller, where

>

r' (x! . rﬁ/z). The dimension of w is 3n/2. Assembling

1'
(7.3.2)-(7.3.4) yields:

W= F(z)w + G(z)r (7.4.1)
Yy = Mw (7.4.2)
u = p(w, z) (7.4.3)
where
A (0] I 0
F(z) = —K1(z) —K2(z) K1(z) (7.4.4)
Y 0 —T(z)~1
(0]
G(z) & 0 (7.4.5)
(T(z) ]
A .. (1) (1)
K1(z) = dlag{k1 e e kn/2} (7.4.6)
A .. (2) (2)
Kz(z) = dlag(k1 ‘ ' kn/2} (7.4.7)
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T(z) & diag(Ty, ..., T, ) (7.4.8)

and p(w, z) is defined by:

O A .-

o (W, z) & h (8)[-K, (2) -K,(2) K, (z)Iw - 3,(8, 8)  (7.4.9)

where ®y and jk are the kth elements of ¢ and j respectively

and hk(e) is the kth row of H(8). As' before

n>

z (T1. 31, Wer oenys Tn/2’ Zn/2' wn/Z) is +the vector of

design parameters. Suppose the hard control constraint is

u(t)eQ (7.4.10)
for all t where Q is typically the set
(uERn/2 lujl < aj,...}. Let R denote the set of test inputs r

and % the set of initial states w for which the system must
satisfy the control constraints. As a simple example ﬁ may
consist of separate step functions applied to each input and
& may be the set (0}. Let w(t; z, r, wo) and u(t; z, r, wo)
denote the values of the state and control at time t if r is

applied and w5 is the initial (t = 0) state. Then the control

constraint (to be satisfied by z) is:
u(t; z, r, wo) € Q (7.4.11)

for all t6[0,t1], all reR and all wOeW. This is an infinite

dimensional constraint.
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7.4.3 - PERFORMANCE CONSTRAINTS

Typical performance constraints are concerned with tracking
and disturbance errors. The former can be specified as

W eer e e - el e e e,

y(t; z, r, wo) € Y(t; r, wo) (7.4.12)

for all teTp, all reRP and all w swp, where Tp, RP ana wP

o
denote, respectively, a set of time intervals, a set of test
inputs and a set of initial states for which good tracking is
required. The set Y(t; r, wo) denotes an appropriate "en-
velope" surrounding the input r to be tracked. This is also
an infinite dimensional constraints. However, in our case
adequate tracking performance can be achieved by constraints
on 2. (e.g. setting Zj = 0.7 for j =1, ..., n/2) to ensure

J

damping and constraints on wj and Tj' j=1, ..., n/2 to en-

sure speed of response.

7.4.4 - ROBUST STABILITY

The above constrains, if satisfied, ensure that the nominal
system satisfies our design objectives. However, the dynamics
of the actual system differ from those of +the nominal due,
inter alia, to lack of knowledge of the true system parame-
ters. Let vector p denote those actual parameters which may
differ (appreciably) from the nominal parameter po. For exam-
ple, p may include the load mass and the coefficients of
friction of +the Jjoints of the robot. Then the actual robot

dynamics are described by:
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H(e, p)8 = j(8, 8, p) + u (7.4.13)
whereas the nonlinear transformation:
u = H(e, po)v - j(e, 8, po) (7.4.14)

uses the minimal parameter. Hence, the equivalent system is

now described by:

8 = H(s, p) 'rH(s, p%)v + j(8, 8, ,p) - (8, 8, p)]1  (7.4.

c e

8 =v + n(x, v, p) (7.4.15)

where n is defined by

A

nix, v, p) & [Hes, p)7]

H(S, po) - Ijv
-1 . . . (0]
+H(8, p) '[j(e, 8, p) - 3(8, 8, P )] (7.4.16)
where x denotes the vector (8, 8). It is easily seen that
n(x, v, po) = 0 in which <case (7.4.15) reduces to 8 = v.
Suppose we know that p always lies inside +the set P. Then
robust stability is ensured provided that the nonlinear sys-

tem described by (7.4.15) with

v = —K1(z)9 - Kz(z)é + K1(z)r' (7.4.17)
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is stable for all peP. Assembling (7.3.2), (7.3.3) and

(7.4.15) yields:

W= F(z)Ww + G(z)T + ni(z, W, P) (7.4.18)
y = Mw (7.4.19)
u = p(w, 2) (7.4.20)

- -

where n1(w, z, p) is defined by
n1(w, z, p) a [0, (x, -K1(z)8-K2(z)é+K1(z)r', p), O] (7.4.21)

Hence, robust stability is ensured if (7.4.18) is stable for
all p in P. To turn this statement into a standard con-
straint consider the case when r'(0) = O and r(t) = O for all
t » 0. Then stability of (7.4.18) is equivalent'to stability

of
x = F(x)x + n2(x, z, p) (7.4.22)

where n2(x, z, p) consists of the first n elements of

n'(w, z, p) defined in (7.4.21) and

ne>

F,(z) [ 0 I ] (7.4.23)

—K1(z) —Kz(z)

Unless nz(o, z, p) = 0 for all z, p (this will be the case

if p represents an error in terms depending on 8 (e.g. fric-
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tion) but will not be the case if p represents errors in load
mass) then the equilibrium point of (7.4.22) is no longer the
origin and will depend on z and p. Let x(t; z, p) denote the

deviation of x from the equilibrium point. Then x satisfies:
X = F1(z)x + n3(x, Z, pP) (7.4.24)
where n3(0, z, p) = O for all z and p.

Let V(x, 2z) A (1/2)xT5x be a Liapunov function for

i = F1(z)x so that
A T
Q(z) = -[F1(Z) S + SF,(z)] (7.4.25)

is positive definite. Along trajectories of (7.4.24),

T

Q(x, Z, p) = —xTQ(z)x + X Sna(x, Z, pP) (7.4.26)

Hence, (7.4.24) will be stable if, for some 5>0,

Tsnd(x, z, p) + suxn? (7.4.27)

xTQ(Z)x » X
for all x and all p in P. This again is an infinite dimen-
sional inequality. Note that (7.4.27) is sufficient but not
necessary for stability; it may be necessary to relax the

condition as in [3].
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7.4.5 - ROBUST PERFORMANCE

Let y(t; z, r, Wor p) denote the output of the system at
time +t in response to input r and initial state W5 when the
uncertain parameters have the value p. The performance con-

straint can be specified as
Y(t3 z, x, wor P) € Y(t, r, Wo) (7.4.28)

for all teTp, all reRp, all w.eWwP and all pPEP.

0

7.5 - DESIGN STUDY

We consider a two degree of freedom robot arm (Fig. 7.3)

with n = 4, m, = 25kg, m, = 20kg, m, = 5kg, 11 = 1.2m,
l2 = 1.0m, |u1| ¢ 1500N.m and |u2| ¢ 400N.m where m, and 1i
are +the mass and length of link, i = 1, 2, my is the mass of

the first join and mBE[O, 20]kg is the load mass. The resul-

tant expression for H and j are

Hg) = [C1C+c:§:osizc+ C3 CZCOSZZ + C3 (7.5.1)
2 2 3
) C2é2(2é1 + éz)sine2 - C4cos(81 + 82) - Cgcos8,
j(8, 8) = T
—C4cos(81 + 62) - C28151n82
(7.5.2)

where
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= et e e e g o tn s

2
+ (J2 + J.,. o

C, = J1/3 + J B)

A

c, = (J2/2 + JB)/u

C e v e ——— e’ ¢ e—e—n

C, = J1/3 + JB

C, = glz(m2/2 + mB)

05 = gl1(m1/2 + my + mB)

and where

A 2 A 2
Iy = mly Iy = myl,
A .2 A 2
Ja = mplyy Jg = mpl,
A
o = 11/12.

The designs were carried out using SIMNON (an interactive
simulator for nonlinear systems [14]) with an added outer ap-
proximation algorithm to satisfy infinite dimensional con-
straints. Derivatives of the various constraint functions

were estimated by finite differences.

7.5.1 - NOMINAL DESIGN

The state x and load m are assumed known. We set

B
21 = 22 = 0.7, wy = w, = wy and T1 = T2 =T S0 that
z = (T, wn). Stability of the nominal system is ensured by
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the constraints w, > 0 and T > O. The interactive simulator
(with optimization) was employed to determine a T > O and a

w > 0 satisfying the control constraint for all

ne>

reR {r]jr ¢ O0.1rad} and w(0O) = O for each of the following

e U - —— - A s E

loads: m_, =0, 2, 4, ...,20kg. It was found that T = O.2secs

B
and w, = 47.54exp(v0.091mB) satisfied the design constraints.
Note +that bandwidth (speed of response) decreases as my in-

creases. Simulation results for w(0) = 0,

r1(t) = rz(t) = 0.1H(t) are shown in Fig. 7.4.

7.5.2 - UNKNOWN LOAD

In the system equations both H and j are functions of my -
Hence in principle the load can be determined by finding the

value of my that satisfies the equation

H(8, p)8 = 5(8, 8, p) + u. (7.5.3)

Solving the first component of this equation yields the es-

timate

" o— 2 2 2 . 2 -
mB = {u1 (m1l1/3 + mAl1 + m211 + m21211cosB + m212/3)8

2 .. .. -
[(m21211/2)cosﬂ + m212/3]8 + (m21211/2)8(28 + B)sing
(glzm2/2)COS(9 + 8) - gl1(m1/2 +om, + m2)cose)

/1208 (13713 + 2(1,/1,,cosp + 1) + 8 [(1,/1,)cos8 + 1]
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(11/12)é(2é + é)sinﬂ] + glzcos(a + B) + g1l1cosB).
(7.5.4)

Since this estimate is noisy it is further processed to ob-

tain

my = 20 + F[sat(mé) - 20] (7.5.5)
where the operation F is a linear filter whose transfer func-

tion is 1/[1 + s/100] and

a if ae[0, 20]
o if a <O (7.5.6)
20 if a > 20

n>

sat(a)

This ensures that my € [0, 20]. To implement this estimator

knowledge of 8 is required.

1

-~

Since my is not necessarily equal to mé the resultant system

is nonlinear and is described by ((7.4.18). However, the es-
timate of the load is good so that the system behaviour is
close to that of system in which the load mass is known.
0= O and mg = 10
for three sets of inputs (r1(t) = r,(t) = 0.1H(t); r, (%)

Simulation responses of the system when x

0,
r2(t) = 0.1H(t), and r1(t) = 0.1H(t), rz(t) = Q) are shown in
Fig. 7.5. It can be seen that my, converges to mg

that thus ensures low interaction between the two arms (less

rapidly and

that 0.25% for the first and less that 2.5% for the second).
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7.5.3 - LOAD AND STATE UNKNOWN

In this case we assume that the angular position (81, 92)
but not the angular velocities are measured. To design the
observer it was assumed that my was known so that 61, for ex-

ample, satisfies the linear equations

(7.5.7)

]
@ .

(d/dt)e1

2 . 2
—wnB - 1.4wn8 + w T (7.5.8)

(a/dt)e. ] ]

]

L
1.

Given 8, it is possible to design a nominal observer of the

form:
n, = an, + bB1 (7.5.9)
61 = cn1 + de1. (7.5.10)

The same observer was designed for each arm, and a, b, c,

and d were chosen so that the estimate errors

eé - 1 eé — 1]
61 = 81 81, 62 = g2 82
satisfied
e _ e
91 = (1.4wn + 10)81 (7.5.11)
e _ e
92 = (1.4wn + 10)82 (7.5.12)
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so that the observer time constant (for each arm) is 1less
than 0.05 sec which is small compared with the system

response.

To estimate the mass, (7.5.4) was again used with 81 and 82

replaced by the estimate 8% and Bé obtained from the ob-

servers, 8 2 assumed known (provided by an accelerometer),
and 6 1 replaced by v, (from Fig. 7.5, it is clear that \L is

an estimate of 8 1 provided that m_. approximates mB), the ac-

B

celeration 6 can also be computed from (7.4.1), yielding

1

8 . = [H(x, r;\B)"1

1 ]1*[u + j(x, mB)] (7.5.13)

where [.] , denotes the first row of the matrix [.] and the
1

notation has been altered to show that both H and j are func-

tions of load mass.

In simulating the complete system (robot arm, nonlinear con-
troller, linear feedback controller, external compensator and
the mass estimator) process noise and measurement noise hav-
ing standard deviation of 0.05 and 0.001, respectively, were
added. Simulated responses for the case Xy = 0,
r1(t) = r2(t) = 0.1H(t), my = 10kg, é.2 assumed known and é.1

replaced by v are shown in Figure 7.6. In this simulation

1 L}

the cross couplings were less than 3%.
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7.5.4 - ROBUSTNESS

It is possible to include the robustness constraints (for
stability and performance) given above in the design stage.
We have not done so because of the limitations in our current
computer aided design system. However, we have checked the
robustness of the (nominal) design with the load mass estima-
tor by checking performance and stability over the following

set of (plant) variations:

(a) FRICTION: to account for dynamic friction, 3j(8, 8) in

(7.3.1) we replaced (as in (7.4.13)) by:

189 * £5(8, - 849

. . -f
j(er 8, p) = j(B: 8) + [ _ _
f2(82 91)

where f1 and f2 could +take any value in the range

[0, O.1](N.m.s/rad).

(b) LOAD MASS: to allow for error in estimating mass we re-

place my in (7.3.1) with my = mgp + m, where m may have

any value in the range [-2, 2]kg.

Thus, in this case p = (f1, f2, ;) and
P = [0, .1]x[0, .11x[-2, 2]. To check performance and stabil-
ity the trajectory of the actual system was computed for a
100 initial states, randomely chosen in the set
(0,,0,,0 ,8,mlo,, 8,6[0, 2r1,0,, 8,6[0, 0.5],me[-10,10]},
with r(t) = 0 and p = (f n

£ m) chosen randomely in the set

11 2’
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P. Process noise (standard deviation 0.05) and measurement
noise (0.001) were added. The filter constant (for the load
mass esimator) was increased to 0.1 sec to increase transient
errors. The simulation results (for 20 of the starting

points) are shown in Figure 7.7.

7.6 - DISCUSSION

It appears that the most successful approaches to computer
aided design will employ a combination of structural results
from control theory and numerical techniques for obtimizing
and satisfying design constraints, both employed in a flexi-
ble interactive system. For linear systems and a selected
class of nonlinear systems it is possible to choose the
structure of the controllers so that the controller is
parametrized by parameters of a pre-specified closed loop
system. These parameters (in our case damping factor and na-
tural frequency of a second order system) can then be chosen
to ensure stability and satisfaction of design constraints
(on control magnitudes and performance). In the design of a
torque controlled robot, the consequence of this methodology
is that the design problem reduces to the design of a set of
linear, decoupled second order systems with nonlinear state
constraints (corresponding to the control magnitude con-
straints). Standard outer approximation algorithms have been
employed to satisfy the design constraints. It is also shown
how to modify the controller when the state is not completely
accessible and when the 1load mass is unknown. Simulation

results show that the resultant system performs well in the
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range of test constraints. Although robustness constraints
were not included at the design stage, repeated simulation
shows that the nominal design copes well with a (wide) range

of errors in load mass and friction coefficients.
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CHAPTER 8

OPTIMAL CONTROL OF POWER SYSTEM GENERATORS
INCORPORATING NONLINEAR STATE FEEDBACK

8.1 - INTRODUCTION

Two types of stability of power systems are defined: steady
state stability and transient stability. The steady state
stability of the system is the capability of +the system to
withstand small disturbances (normal fluctuations), whereas
the transient stability is the ability of the generators to
regain and maintain synchronism after a large and sudden dis-
turbance (faults, switchings). In a power system the mechani-
cal power delivered from the turbine to the generator is con-
verted to electrical power and transformed to the 1load.
After a disturbance the balance between the mechanical and
electrical power is changed, causing the generator speed to
vary. There are three ways of controlling such a generator to
maintain synchronism with the rest of the system and to pr-

ovide good damping [1]:

(a) A signal may be sent to the governor system to change the
mechanical input power.

(b) The voltage regulator setting may be varied to change the
terminal voltage and consequently electrical power output
of the generator.

(c) The shape of the network (load) may be changed.
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The improvement obtained by voltage regulators (AVR) on sys-
tem steady state and transient stability has been well esta-
blished [2 - 8]. Various feedback signals in addition to ter-
minal voltage, have been proposed and used [4 - 8]. The use
of stabilizing signals in both the voltage regulator and the
turbine governor has been studied [9, 10]. Frequency response
methods (classical or modern multivariable techniques),
modern linear multivariable state space technigques, and op-
timal control based techniques have been employed for the
design of additional controllers for the excitation and
governor loops. Several papers have been devoted +to the
first two techniques [4, 9, 11]. Most of the work on optimal
performance of a power system has mainly employed linearized
models of the system. An optimal controller for such a system
consists of a linear feedback for all the state variables and
is obtained through solving the matrix Riccati equation. Some
work has also been done to obtain sub-optimal control employ-
ing feedbacks of output variables by an indirect method using
the Liapunov equation. A few authors have considered non-
linear feedback controllers [1, 12]. The optimization tech-
niques used, so far, are generally unable to satisfy design
constraints. More elaborate techniques have been recently
developed [15 - 19] (also chapters 1 to 5); these can be used
as a practical tool to optimize a cost function (by adjusting
a set of parameters) to satisfy all the constraints. In this
Chapter feedback controllers (linear and nonlinear) are
designed for a seventh order nonlinear model under a severe
disturbance to satisfy stability and performance constraints;

sensitivity analysis is then used to eliminate unnecessary
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feedback signals. The closed loop system is then subjected to

disturbances and its behaviour is assessed.

8.2 - SYSTEM REPRESENTATION AND STATE EQUATIONS

This study has been performed on a single machine model of a
power system using the parameters of a typical generator
described in Reference 1. The generator is coupled through a
transformer and a double circuit transmission line to a large
system as shown in Fig. 8.1. The state equations for this

system are given below:

6 =w

w = ~(k/T)w - (1/IIM_ + M_/J

if = D4If + D,‘Vf + Vmb(Dzw sin & + D3w cos &)

ée = —(1/t )V - GV [t + G_/t (V_ + u,) (8.2.1)
Ve = =(G/t IV, - (1/£ )V,

A= (G i/t duw = (1/E)A + (1/t ) (Y + uy)
M, o= (/€A - (1/£ )M

t

where
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and

_ 2 2 1/2
Vt = [(vd + vq)/2]
where
vd = 1151n 5 + lzcos 5 + 131f

vq =7f151n 5 + fzcos 5 + f31f
1, = V__(x_x + r r )/Z2
1 mb' g de a ae
l, = v . (x.r - r x )/Z2
2 mb'“q ae a“qe
1, = (x.x_.r - r x_ x )/Z2
3 g md ae a““'ge"md
f, = v_ . (-x,.r + r r )/Z2
1 mb d ae a ae
£, = v (x,x + r.r )/z2
2 mb'“dTqe a ae
f, = (x.,x_x + Y X_.r )/Z2
3 d"ge"md a’md ae
rae = ra + rt * re
xae = X + X, + Xg
xde = X4 + X, + Xg
xqe = xq + X, + Xg-

- 174

md

(8.2.3)



The system parameters together with the base values are

given in Table 1. The parameters are those of a 588 MVA CEGB

generator.

Ga Voltage regulator amplifier gain 0.001
Ge Exciter gain 5.56

Gg Governor speed gain 0.0709
ta AVR amplifier time constant (sec) 0.05

te Exciter time constant (sec) 0.05

tg Entrained steam time constant (sec) 0.3

t, Turbine valve time constant 0.05

r, Armature resistance 0.00115
r, Transmission line resistance 0.0209
re Field resistance 0.00114
ry Transformer resistance 0.0044
X3 Direct axis synchronous reactance 2.98

X Transmission time reactance 0.3333
xq quadratic axis synchronous reactance 2.83

Xy Transformer reactance 0.157
X3 Magnetising reactance 2.82

ng Magnetising reactance 2.67

Table 1: System Parameters

In the steady state all the derivatives of the state vari-
able are =zero and a set of algebraic equations is solved to

give the initial steady state conditions.

& Rotor angle (& = -1.442)
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w Rotor speed (w = 0.0)

If Field current (if = -1.4855)

V., Exciter voltage (V_ = 3.04x10™%)

V. Field voltage (V. = -1.69x107°)

A Valve position (A = 0.86087)

M, Mechanical torque (M_ = 0.86087)

V, Terminal voltage (Vt = 1.0)

P Active power at the generator (P = -0.847)

Q Reactive power at the generator (Q = -0.276)

Table 2: Steady state values with & in rad,

5 in rad/sec, and other variables in p.u.

8.3 - OPTIMIZATION OF SYSTEM PERFORMANCE WITH LINEAR
CONTROLLER

The controller u = (u1, u2)T is introduced as shown in

Fig. 8.1. A linear controller is employed i.e.
u = 2x (8.3.1)

where Z is a matrix of design parameters and

A-A M - M) (8.3.2)

The general quadratic performance index I, defined as
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T
I = [(xT0x + uTHu)dt (8.3.3)
0

where X = Xx(t) is the solution of egn. (8.2.1) with initial
state X given in Table 2 and control u 2 u(t) = Zx(t). This

reduces to

T
I = [xY(Q + zTHZ)xdt (8.3.4)
0

The major objectives in design of controllers for power sys-

tems are

(a) the reduction of the first rotor excursion in response to
a large disturbance (improvement of transient stability).

(b) the rapid recovery of the terminal voltage.

To satisfy the above objectives, the choice of weighting ma-
trices Q and H is important (some guidelines which help the
choice of these weighting matrices are given in Reference 1).

In this study H and Q are chosen to be diagonal and are given

by
Q = diag [10.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
H = diag [0.001, 0.01] (8.3.5)

In general, the synchronous machine field voltage Vf and ex-
citation voltage Ve are limited. The <ceiling values are

chosen as *3 times the rated load value [1, 14]. On the other
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hand the steam valve position cannot be greater than 1 (fully
open) ox less than O (fully closed). The performance of the
system when subjected to a large disturbance in the form of a
three-phase short circuit of 100 ms at high voltage busbar is
to be optimized so that all the constraints are satisfied.
The system performance is, often, optimized for a particular
set of operating (steady state) conditions. It is, however,
important that the final system with optimal controllers
should not be sensitive to changes in initial system operat-
ing conditions. We shall, therefore, optimize the system per-
formance over a range of initial systems operating condi-

tions.

8.4 - ALGORITHM

The design problem can be expressed as either

(a) Determine a z such that ¢(z, a) ¢ O for all aeB, or

(b) Minimize {c(z)]¢p(z, a) ¢ O, aeB}

where B is an infinite dimensional set (in this study 2z is
vector of elements of the control matrix Z, ¢(z, a) ¢ O sum-
marizes the design constraints and B is the set of all ini-
tial system operating conditions). Algorithms for these prob-
lems, with proven convergence, have been fully described in
Chapters 1, 3, 4 and 5.(also [15 - 19]). Here we have used
the algorithm presented in Chapter 4 to solve problem (i).
The problem can be reformulated as: to find a pair (z, a)

which minimizes a subject to
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T q
I(z) = [x"(Q + ZHZ)xdt ¢ «
0]

IVf(t, z)l ¢ 0.006 for O ¢ t ¢ T
IVe(t, z)] ¢ 0.001 for 0 ¢ £t ¢ T
O ¢ A(t; z) ¢ 1 for O ¢ t (T

SIMNON, a command driven interactive simulation program for
nonlinear systems [20], which is implemented on a Perkin El-
mexr 8/32 computer and includes the algorithm of Chapter 4,
has been used for the above optimization problem. We approx-
imate this by choosing a, forcing z to satisfy the above set
of constraints and then reducing a interactively. Fig. 8.2
shows the response of the system with a conventional con-
troller [1]. and Fig. 8.3 shows the response of the system,
starting from the steady state values, with the optimal
linear controller. It may be possible to choose the parame-
ters of the conventional controller to give a more acceptable
response. The effect on the optimal feedback gains of small
changes (less than 10%) in the operating conditions (initial

values) is negligible. Controller matrix Z is given by

7 = [0.008, -0.571, -0.371, -0.0014, 0.0023, -0.179, -0.073 ]
- (-0.222, -0.333, 0.296, -0.0042, 0.00179, 0.3199, 0.2319
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8.5 - NONLINEAR CONTROLLER DESIGN

It is desired to design a controllexr which provides the sys-
tem with good damping for small disturbances and a high loop
gain during large disturbances. A nonlinear controller is
suggested which has these advantages; the linear part pro-
vides high damping for small disturbances and the nonlinear
component dominates the performance during large distur-
bances. It is obvious that such a controller (F) must be a
function of state variables and the optimal controller (u)
can be expanded into a Taylor series about a nominal point

(uo) to give [12]:

- [9F
Y7 Y% = [8x]u=uoax * [ 2]u=uoax T (8.5.1)

The linear optimal controller designed in the previous sec-
tion accounts only for the first order term in (8.5.1), the

second ordexr terms will now be added to the control signals

u, and u, to give
T T
u1 = z1x + X R1x
_ 7T T
u2 = Z,X + x sz (8.5.2)

where R1 and R2 are upper triangular matrices of the design

?, zg are the first and second rows of 2.

Fig. 8.4 shows the response of the system with an optimal

parameters and =z

nonlinear controller. This figure clearly shows the improve-
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ment in both rotor angle and terminal voltage. The perfor-
mance index, however, may not be sensitive to all 70 terms in
the controllers (7 linear and 28 nonlinear terms in each con-
troller). Hence, we now eliminate some of the feedback sig-

nals (i.e. replace elements of z5y R., i = 1,2 by zero), sub-

it
ject +to the condition that the change in the performance in-
dex is less than 5%. The system with simplified nonlinear
controller (total of 22 linear and nonlinear terms) has been
reoptimized and the results are illustrated in Fig. 8.5. 1In
this Figure variations of rotor angle, terminal voltage,

mechanical torgque, AVR setting and governoxr setting (control

signals) are shown. The controllers are given by

o . ) 2
u, = -.049x, - 0.57x, - 0.76x3 + 0.39xx,
+0.563x.%x. + 0.07x2 - 1.567x° - 1.69%.X, - 2.0%X.%X. + 1.7x2
' 1%7 -07x, : 3 -69x3x, 0% 3%, - Txg
2
u, = -0.154x, - 0.524x, + 0.524x, - 1.47x3 - 0.634x x,
2
+ 2.63x1x3 + 1.675x1x6 + O.864x1x7 - O.1x2 + O.184x2x7
- 138.68x4x6 + 0.822x6x7.

In a further study, any term in the controller which did not
change the performance index more than 10% was eliminated.
The total number of linear and nonlinear terms in +the con-
troller is now reduced to 9. The system has been reoptimized
and the results are shown in Fig. 8.6. The controllers are

given by
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2
1 0.0508x2 - 1.4523x3 - 0.604x3 - 0.1005x3x7

=
Il

- 0.8065x2 + X, x, + 0.215x_.x

-0.6536x 1 1%3 1%

2 6

e
I

- O.149x1x6
Figures 8.7 and 8.8 compare the variations of rotor angle
and terminal voltage of the system controlled by conventional
controllers with system controlled by optimal linear, optimal
nonlinear, optimal reduced 22-term nonlinear controllers and
optimal reduced 9-term nonlinear controllers. These figures
show that the (full and reduced) nonlinear controller has de-
creased the first swing while the system damping is as good
as (or even better than) that of the linear optimal controll-

er.

8.6 - SYSTEM PERFORMANCE UNDER SMALL DISTURBANCES

In this section, system performance with reduced nonlinear
controllers under small disturbances is studied. The distur-
bance chosen is a 10% variation of the system voltage (infin-
ite Dbusbar) for a 100 ms. Fig. 8.9 shows the performance of
the system under such a disturbance. This figure compares the
performance of the system with the 22-term controller with
the 9-term controller. It is clear that the 22-term controll-

er performs much better under small disturbances.

8.7 - DISCUSSION

The use of linear and nonlinear state feedbacks in the AVR

and governor settings of the nonlinear model of a power sys-
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tem generator has been investigated. The optimization algo-
rithm of Chapter 4 has been employed to minimize a perfor-
mance index subjected to a set of constraints. The design 1is
based on satisfaction of performance constraints by analysing
the nonlinear system equations. Most other designs are based
on linearized models of the system. An attempt to improve the
damping in rotor oscillations and to achieve fast recovery of
the +terminal voltage following a large system disturbance
with a combination of linear and nonlinear state feedbacks
was successful. It is shown that a good performance can be
obtained using reduced nonlinear feedbacks. The optimal re-
duced 22-term controller performs very well under small dis-
turbances. In the nonlinear controller (F) only first and
second order terms are considered; higher order terms may
permit better reponse. A more comprehensive study must con-
sider the performance of the system under a wide range of
operating conditions. The effect of fault detection time on
the system performance must also be considered. The designs
were carried out interactively. It is, therefore, not possi-
ble to give a good estimate of the computing time required

for each design.
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Fig. 8.3 System performance with optimal linear controllers following
large disturbance.
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Fig. 8.4 system performance with optimal nonlinear controllers following
a large disturbance.
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Fig. 8.5 System performance with optimal reduced (total of 22 terms) nonlinear
controllers following a large disturbance.
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CHAPTER 9

CONCLUSIONS

This thesis has shown how optimization techniques can be
used along with system theory to design robust controllers
which satisfy time domain performance and stability objec-
tives. It has been argued that an ideal design methodology
should combine control theoretic results (to choose the
structure of the controller) with sophisticated mathematical
techniques (to adjust controller parameters to satisfy design
constraints). Since frequency response design methods can be
used only in special cases and since most design constraints
are formulated in the time domain, a design methodology is
proposed which is based on multiple simulations. To test sta-
bility by simulation it would appear necessary to compute the
system trajectory for all initial states and for all
t € [0, »). However, it has been shown that the duration of
the simulation may be reduced to a finite interval [O, T],
where T may be very small. It has been shown that the stabil-
ity constraints may be expressed as functional (infinite di-
mensional) constraints, and it has also been shown how exist-
ing outer approximation algorithms can be employed to replace
the functional constraints with a collection of simple ine-

quality constraints.

In Chapter 3, an alternative Newton type algorithm for solv-
ing inequalities has been proposed and analysed. The algo-

rithm always employs a Newton step directed to the interior
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of the linearized feasible set to ensure rapid convergence in
a finite number of iterations. The linearized feasible set is
expanded, when necessary, to ensure the existence of a search
direction. The algorithm is thus particularly efficient in
high order problems where the linearized set is often empty.
when the stopping condition 1is removed the algorithm

possesses a quadratic rate of convergence.

In Chapter 4, two derivative free versions of the above al-
gorithm have been presented. One algorithm uses only finite
difference approximations for the gradient, while in the
second algorithm a mixture of finite difference and Broyden
type approximations of the gradient matrix are employed. The
algorithms have been analysed and proven to find a solution

in a finite number of iterations.

In Chapter 5, an algorithm for constrained minimization is
presented. This algorithm, under mild assumptions, is global-
ly convergent. In this algorithm several features are em-
ployed which are not present in the previous algorithms. 2all
the algorithms known (by the author) assume, at best, that
the columns of +the gradient matrix of the most active con-
straints are linearly independent. This assumption has been
further relaxed +to positive linear independence of the most
active constraints and by employing a linear program, a
feasible solution to the Newton step has been ensured. A new
feature of the algorithm is the rule for choosing the penalty
parameter c¢, which allows ¢ to decrease. Numerical results

show good performance.
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In Chapter 6, the design methodology developed in previous
chapters has been successfully applied to a double inverted
pendulum system. The results of this chapter clearly show the
advantages of our alternative approach to feedback design of
nonlinear systems. A minimal order observer and a functional
order observer have been designed and the response of the
system to a reference step input and a step input disturbance

has been simulated.

In Chapter 7, the design of a nonlinear controllexr for
torque controlled robot arms has been investigated. It has
been shown that the system belongs to the class of systems
that can be transformed into (equivalent) linear systems by
means of a bijective transformation of state and control. The
design methodology presented in this chapter utilizes this
transformation to make the input-output map linear and then
employs linear feedback (for the transformed system). The
controller has been parametrized and designed to satisfy
design constraints. The resultant (linear) controller is then
transformed yielding a nonlinear controller for the original
system. With this approach, stability of nominal closed loop
system 1s ensured by the controller structure and its
parametrization. It has also been shown how to modify the
controller when the state is not completely accessible and
when the load mass is unknown. Simulation results show that
the resultant system performs well under a range of test con-
ditions. Although robustness constraints were not included at
the design stage, repeated simulation showed that the nominal

design copes well with a wide range of errors in load mass
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and friction coefficients.

In Chapter 8, The use of linear and nonlinear state feed-
backs in the AVR and governor settings of the nonlinear model
of a power system generator has been investigated. While most
other designs are based on the linearized model of the sys-
tem, our design method is based on satisfaction of perfor-
mance constraints by analysing +the nonlinear system equa-
tions. The system with a controller, consisting of linear and
nonlinear state feedbacks, has achieved rapid recovery of the
terminal voltage and has improved the damping in rotor oscil-
lations following a large system disturbance. It has been
shown that a good performance can be obtained using a reduced

nonlinear feedback controller.

A important requirement in the above design procedure has
been an interactive design system. The Lund nonlinear simula-
tor package SIMNON was chosen as an interactive simulation
base. SIMNON was implemented on a PERKIN ELMER 8/32 computer
and further developed to include new commands and algorithms.
A compiler was written +to translate the code generated by
SIMNON into machine code. This improved +the speed of the

package by a factor of five.
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APPENDIX I

A COMPILER FOR SIMNON

I.1 - INTRODUCTION

SIMNON is an interactive simulation program written in FOR-
TRAN. It contains a processor for the simulation language
that produces a pseudocode which is interpreted and executed
by a FORTRAN subroutine (CALCUL) at simulation time. This
makes the execution of the code slow compared with a compiler
which produces machine code. It is possible to add a new
stage to SIMNON to generate machine code from the pseudocode
[3]. The code is then executed directly by the machine rath-
er than interpreted by a program. The cost of generating
machine code from the pseudocode is negligible compared with

reduction in the running cost.

Section I.2 describes SIMNON compiler output which is in Re-
verse Polish Notation (RPN). The information is mostly taken
from Reference 2. Section I.3 describes the code generation
in general [3], and finally Section I.4 describes the code

generation for PERKIN ELMER Model 8/32.

I.2 - SIMNON COMPILER

SIMNON has a compiler which reads in the system description
from +the input files (every subsystem is kept in a file) and

generates pseudocode. This section describes the pseudocode
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format(or output from the compiler).

The pseudocode is stored 1in an integer array 1in common
block/PSCODE/. It is organized as linked lists. Every node in
the pseudocode may contain one or more equations or a call to
a section in an external FORTRAN subsystem(via subroutine
SYSTS). The pseudocode area contains five different 1lists,
each 1list for a specified range of computations in the simu-
lation part such as: initial computations, derivative compu-
tations or computation of discrete states. It is irrelevant
to the code generator which list is to be used, but starting
point of each list must be known to the system. Common block
/ENTRYS/ is used to keep the pointers to these lists in the
pseudocode area. Table 1 shows the description of a node

head.

FP Forward pointer (points to the next node)
__;;—_ Backward pointer
——;;;— Length of data in the node
;;;;;; Index to subsystem at generation time
—;;;;- Compiler node at generation time
—;;;__ Number of equations in this node
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pseudocode of the equations

LEN words

Table 1 Node organization

Each list in the pseudocode consists of a list head and zero

or more nodes. A list head is an empty node (LEN=0).

The pseudocode consists of operators (integer 1 - 22) fol-

lowed by zero or more operands. See Table 2.

OPERATION MNEMONIC CODE
Logical or OR 1
Logical and AND 2
Logical not NOT 3
Test less than TLT 4
Test greater than TGT 5
Add ADD 6
Subtract SUB 7
Multiply MUL 8
Divide DIV 9
Negate NEG 10
Raise RAT 11
Jump if false JMPF 12
Jump JMP 13
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Stack FETCH 14

pointer
Unstack DEPOS 15

pointer
Apply function FUNC 16

function No

Call FORTRAN system CALL 20
isyst
ipart

Skip if not sampling SCOND 21

system No

No operation NOP 22

Table 2: Operation set

EXAMPLE

Let us consider the pseudocode generated by SIMNON for a

node containing only one equation:

A =B+ C
PSEUDOCODE DESCRIPTION
5 FP - Forward Pointer
5 BP - Backward Pointer
7 LEN - Length of data in the node
1 IASYST - Index to subsystem at generation time
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5 NODE - Compiler Node at generation time

1 LEQ - Number of equations in the node
14 FETCH

2 Pointer to the variable table (i.e. B )
14 FETCH

3 Pointer to the variable table (i.e. C )
6 ADD

15 DEPOS

1 Pointer to the variable table (i.e. A )

The SIMNON compiler produces RPN (Reverse Polish Notation)
code operating on a stack. A detailed description of the

operations 1s given below.

P(n) is the top stack element

n is the stack pointer.

k is the index in the pseudocode (=pc, program counter).

Logical variable types are given values 0.0 (false) and 1.0
(txrue). A value is thus true if it is greater than or equal

to 0.5

The pointer used in FETCH and DEPOS has the following mean-
ing: if pnt> 10000 it points to a literal stored in common
block/VALUES/V(pnt-10000) otherwise it points to a variable

whose address is stored in common block /VARTB2/IPNTS(pnt).
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OP. DESCRIPTION

OR P(n-1):=(P(n-1)>=0.5) or (P(n)>=0.5); n:=n-1;
AND P(n-1):=(p(n-1)>=0.5) and (P(n)>=0.5); n:=n-1;
NOT P(n):= not (P(n)>=0.5); k:=k+1

TLT P(n-1):=P(n-1)<P(n); n:=n-1;k:=k+1

TGT P(n-1):=P(n-1)>P(n); n:=n-1;k:=k+1

ADD P(n-1):=P(n-1)+P(n); n:=n-1;k:=k+1

SUB P(n-1):=P(n-1)-P(n); n:=n-1;k:=k+1

MUL P(n-1):=P(n-1)*P(n); n:=n-1;k:=k+1

DIV P(n-1):=P(n-1)/P(n); n:=n-1;k:=k+1

NEG P(n):=-P(n); k:=k+1

RAI P(n-1):=P(n-1)**P(n); n:=n-1; k:=k+1

JMP nr Xk:=k+nr+1 {nx>0)

FETCH pnt n:=n+1; P(n)=var k:=k+2

pnt;

DEPOS pnt var :=P(n); n:=n-1; k:=k+2

pnt
FUNC nr for one-argument functions:
P(n):=funcnr(P(n)); k:i=k+2
for two-argument functions:
P(n—1):=funcnr(P(n—1), P(n)); n:=n-1;k:=k+2
CALL ISYST:=isyst; IPART:=ipart; CALL SYSTS;
if ISTOP is true then exit from CALCUL;
k:=k+3
SCOND nr if LCOND(nr) is true then k:=next code;

else k:=k+2

NOP k:=k+1

The following functions are used in FUNC:
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NO NAME DESCRIPTION

1. SQRT(x) square root of x, x » O.

2. EXP(X) expotential function of x

3. LN(X) natural logarithm of x, x > O.
4. LOG(X) logarithm base 10 of x, x > O.
5. SIN(X) sine of x (x in radins)

6. COS (X) cosine of x (x in radians)

7. TAN(X) tangent of x (x in radians)

8. ATAN(X) arctangent of x

result in radians [-w/2, w/2]
9. ABS (X) absolute value of x
10. SIGN(X) sign of x
+1. if x > O.
0.0 if x = O.
-1. if x < O.
11. INT(X) integer part of x
12. ATAN2(X, Y) arctangent of x/y

result in radians [-w, w]

13. MOD(X, Y) X module y (x-int(x/y)*y)
14. MIN(X, Y) minimum of x and y

15. MAX(X, Y) maximum of x and y

16. ARCSIN(X) arcsine of x [-1, 1]

17. ARCCQS(X) arccosine of x [-1, 1]
18. SINH(X) hyperbolic sine of x

19. COSH(X) hyperbolic cosine of x
20. TANH(X) hyperbolic tangent of x

A few examples of the SIMNON pseudocode are as follows:
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Y1 = IF A<B THEN C ELSE 2

FETCH A
FETCH B
TLT

JMPF 5
FETCH c
JMP 3
FETCH 2.0
DEPOS Y1

Y2 = IF A AND B>C THEN C ELSE IF NOT C THEN A ELSE B

FETCH A
FETCH B
FETCH C
TGT

AND e
JMPF 5
FETCH c
JMP 12
FETCH c
NOT

JMPF 5
FETCH A
JMP 3
FETCH B
DEPOS Y2
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Y3 = (-B)/(A+B-2)*(-C)

FETCH B
NEG

FETCH A
FETCH B
ADD

FETCH 2.0
SUB

DIV

FETCH C
NEG

MUL

DEPOS Y3

Y4 = IF A>B AND C THEN TAN(A) ELSE B"(0.2*A)+LN(B)

FETCH A
FETCH B
TGT

FETCH Cc
AND

JMPF 7
FETCH A
FUNC TAN
JMP 14
FETCH B
FETCH 0.2
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FETCH A

MUL

RAI

FETCH B

FUNC LN
ADD

DEPOS Y4

I.3 - CODE GENERATOR

The code generator scans through the pseudocode and gen-
erates machine instructions for each pseudocode instruction.
The pseudocode contains forward jumps only, and it is, there-
fore, necessary to go back to the generated code and insert
the jump addresses when the target of jump is processed. The
RPN pseudocode 1is stack oriented which corresponds to the
operand address stack used by the code generator but there is
no explicit stack or stack instructions in the generated
code. The code generator uses eight floating point registers
for arithmetic computations (PERKIN ELMER computer has eight
floating point registers and sixteen general purpose regis-
ters). General purpose registers are also used, whenever
possible, to make maximum use of the available registers and
reduce the execution time (code instructions using dgeneral
purpose registers are usually faster). The intermediate
results of the computation are stored in the registers which
are allocated from a stack of free registers. Since the

number of available registers are generally smaller than the
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worst case expression in SIMNON the code generator automati-

cally allocates temporary memory cells when the register

stack 1s exhausted.

THE OPERAND STACK AND REGISTER ALLOCATION

Let us consider the following equation:

Y= (A + 2) *B

SIMNON compiler generates the following pseudocode:

1 FETCH A

3 FETCH 2
5 ADD
6 FETCH B
8 MUL
9 DEPOS Y

The code generator performs the following actions:

(1) Push addr(A) onto the operand stack

(2) Push addr(2) onto the operand stack

(3) Pop stack twice. If the operands are registers, xreturn
the registers to register stack. If both operands are
registers; then issue an add register instruction, the

result will be stored in the first register
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(4)
(5)

AER R1, R2 (adds A to 2, result in R1)

Else if one of the operands is a register issue an add

instruction, the result will be stored in the register.

AE R1, 2 (adds A to 2, result in R1)

Else get a register from register stack; issue a 1load

instruction to load A into a register.

LE R1, A

Issue an add instruction, the result will be stored in

the register.

AE R1, 2 (adds A to 2, result in R1)

Push the register onto the operand stack.

Push addr(B) onto operand stack

Pop the stack twice. If the operands are registers, re-
turn the registers +to the register stack. If both
operands are registers, then, issue a multiply register
instruction, the result will be stored in the first re-

gister.

MER R1, R2 (multiplies(A+2) by B, result in R1)

Else if one of the operands is a register, issue a mul-
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(6)

tiply instruction, the result will be stored in the re-

gister.

ME R1, B (multiplies (A+2) by B, result in R1)

Else get a register from register stack. 1Issue a 1load

instruction to load the first operand into a register.

LE R1, OP1

Issue a multipy instruction, the result will be stored in

the register.

ME R1, B (multiplies (A+2) by B, result in R1)

Push the register onto the operand stack.
Pop the stack, release the register. 1Issue a store in-

struction to store the register in Y.

STE R1, Y

As a result of the above operations, the address stack
will contain a mixture of(addresses of) the variables and
registers. The registers represent results from already
issued instructions. Note the difference between this
stack and the stack used by the interpreter for the pseu-
docode that contains only values of the variables or in-

termediate computations.
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THE REGISTER STACK

Addresses of free registers are stored in a stack called re-
gister stack. The only variable associated with this stack
is the stackpointer with increment or decrement of 2. The
reason for this is that the registers are considered to be an
ordered set and allocation of registers are always made in
order. This makes it possible to compute the addresses of the
registers on top of +the stack directly from +the stack
pointer. This allocation principle is important in the code

generation for conditional branches.

JUMPS

The SIMNON compiler produces three branch or Jjump instruc-
tions, all of which are forward Jjumps. JMPF and JMP are
resulted from IF-THEN-ELSE expressions and the given dis-
placement is a relative pseudocode address. SCOND is used
for execution of equations only when specified conditions are
met (i.e. time sampling). The displacement is always to the
end of the current node. The corresponding pseudocode ad-
dress 1is easily found, using the information in the node
head. When a jump instruction is encountered in the pseu-
docode the code generator issues a branch instruction with
zero displacement and stores the following information in a

special jump address table:

a) the target pseudocode code address

b) the current absolute code address
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c) the type of jump instruction

For each pseudocode instruction processed, a check 1is made
if the current pseudocode address is in column (a) of the
jump>tab1e. If the jump destination 1is found the absolute
code address is inserted in the absolute code at the address

indicated by (b) and the entry is removed from the table.

CONDITIONAL BRANCHES

The equation

Y = IF cond THEN expr1 ELSE expr?2

generates the following pseudocode sequence:

cond-code

JMPF L1

expr1-code BLOCK A

L1:expr2-code BLOCK B

L2:DEPOS Y

The interpreter evaluates the condition and then one of the

blocks A or B. The code generator proceeds through both A and
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B and generates code for both cases. Since both blocks in an
IF-THEN-ELSE construction consist of expressions the result
at the end of the block will be on top of the operand stack
either 1in a register or in a variable (only when the expres-
sion is a simple variable). Furthermore, the operand stack
has increased by one element from the beginning of the block
to the end. A necessary condition for correct code after the
two branches is that at the end of both blocks the result is
at the same address, i.e. the +top element on the operand
stack must be exactly the same. The code generator solves

this in the following way:

At the end of each block it checks if the top stack element
is a variable, in which case a register is popped from the
register stack and an instruction to load the variable into
the register is issued. The register operand is pushed on the
operand stack. It is also necessary to restore both the
operand stack and the register stack to the initial status of
the block at the end of block A to ensure that the status is
the same at the end of both blocks. This is easily done by
popping the operand stack and releasing the register. The end
of block A 1is always followed by a JMP instruction and the
end of block B is followed by the target of the JMP instruc-

tion.

TEMPORARY VARIABLES:

The temporary variables are allocated linearly from an array

and are dellocated only at the end of an equation (DEPOS).
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Temporary variables are needed when the register stack is ex-
hausted. In +this case the operand stack is scanned from the
top and when a register is found it is released and a 1load
instruction to a temporary variable is issued. The address of
the variable will then replace the register address 1in the
operand stack. The released register is always the last re-

gister in the register stack.

CALCUL- The Interface between SIMNON and ABS. CODE:

To execute code in one of the five lists, SIMNON takes one
of the wvalues from common block /ENTRYS/ and stores it in
common block /ENTRY/, then calls subroutine CALCUL (without
any arguments). The code generator replaces the pseudocode
entrypoints in /ENTRYS/ with absolute code start addresses
and, therefore, /ENTRY/ carries the asbsolute starting ad-
dress in the generated code. CALCUL is written in assembler,

it makes a subroutine jump to the address in /ENTRY/.

DEBUGGING

Information concerning the code generation is required both
for debugging and for checking of the generated code. The

code generator prints information in four levels:

a) the source equations
b) the input pseudocode
c) the generated code in symbolic assembler format

d) the generated machine code in hexadecimal format
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The printout is governed by flags in common block /VXCLOG/
and the values are taken from global variables which can be

changed by command LET in SIMNON.

a) is turned on if LOGSRC.PE is non-zero
b) is turned on if LOGPSE.PE is non-zero
c) is turned on if LOGINS.PE is non-zero

d) is turned on if LOGHEX.PE is non-zero

The logical unit number for the output can be given using

command LET as follows:

LET LUN.PE = 3

I.4 - CODE GENERATION FOR PERKIN ELMER MODEL 8/32

Assembly language programming 1is very close to actual
machine operation, therefore, it is essential for the assem-
bly language programmer have a good understanding of the sys-
tem architecture. All assemblers have one basic purpose,
which is to simplify the direct control of the processor by
providing the programmer with a way of representing actual
machine operations in symbolic form that is easy to read and
understand. In performing +this function, +the assembler
translates symbolic representation of machine instructions
into a binary form that can be executed by the processor.
The code generator is a small compiler which generates binary
form for the processor. The architecture of the PERKIN ELMER

includes four types of machine instructions. These are Regis-
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ter to Register (RR format), Register to indexed storage (RX
format), Register and Immediate (RI format), and Short
Form(SF format). Instructions used in the code generator re-
guire two operands except branching instructions which need
only one operand. The first operand instruction is contained
in a register. The result usually replaces the content of the
first operand register. RR and SF are sixteen bit, RI and RX2
are thirty two bit, and RX3 is fourty eight bit instructions.
There are sixteen general registers numbered RO R1 ... R15,
and eight floating registers numbered RO R2 ... R14. The
floating registers are used for arithmetic calculation. Con-
stants 0.0, 0.5, and 1.0, which are frequently used for logi-
cal calculations are stored in floating registers RO, R8, and
R10. Detailed description of the instructions and addressing
modes are given in +the PERKIN ELMER Reference Manual No.

S$29-640R02.

The code generated for each pseudocode operation will be
briefly described. The PERKIN ELMER code is represented in
assembler mnemonics. Constants 0.0, 0.5, and 1.0 are used as
literals in registers RO, R8, and R10. Rx means a register
from register stack (R2, R4, or R6). A list of the assembler

code used in the code generator is given in Table 3.

INSTRUCTION MNEMONIC OP-CODE
Add floating point AE 6A
Add floating point register AER 2A
Branch unconditional B 430
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Branch and Link
Branch Equal forward Short
Branch on Low

Branch on Low forward Shor

Branch Not Plus forward Short

Branch Not Equal Short
Branch on Plus

Branch on Plus forward Sho

Branch unconditional via Register

Branch unconditional forward Short

Compare floating point
Compare floating Register
Compare Logical Immediate
Divide floating point
Divide floating Register
Fix Register

Float Register

Load

Load floating point

Load floating Register
Load immediate Short
Multiply floating point
Multiply floating Register
Store

Store floating point
Subtract floating point
Subtract floating Register

Test byte

Table 3.

t

rt

215

BAL

BES

BL

BLS

BNPS

BNES

BP

BPS

BR

BS

CE

CER

LI

DE

DER

FXR

FLR

LE

LER

LIS

ME

MER

ST

STE

SE

SER

TBT

41

233

428

218

232

213

422

212

300

230

69

29

F5

6D

2D

2E

2F

58

68

28

24

6C

2C

50

60

6B

2B

74



LOGICAL OPERATOR: OR, AND, NOT, TLT, TGT

The logical operators give

(txue) as a result of logical operations.

IF-construction.

L1:

L2:

L1:

A OR B
CE 0.5, a
BL L1
CE 0.5, B
BL L1

LER Rx, 0.0

BS L2

LER Rx, 1.

IF A OR B THEN

CE 0.5, a
BL L1
CE 0.5, B
BL L1
B J1
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constants

A few examples follow:

0.0

(false)

or

1

.0

This is used in the



L1

L2:

L1:

L2:

L1

L2:

A AND B

CE 0.5, A
BNL L1
CE 0.5, B
BNL L1

LER Rx, 1.0

BS L2

:LER Rx, 0.0

IF A AND B THEN

CE 0.5, A
BNL L1
CE 0.5, B
BNL L1
BS L2
B J1
NOT A
CE 0.5, a
BP L1

LER Rx, 1.0

BS L2

:LER Rx, 0.0
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IF NOT A THEN

CE 0.5, a
BPS L1

B J1

L1:

A <CB

LE Rx, A

CE Rx, B

BLS L1

LER Rx, 0.0
BS L2

L1:LER Rx, 1.0

L2:
IF A<B THEN
LE Rx, A
CE A, B
BLS L1
B J1

L1:

The code for TGT ( > ) is the same as TLT exept that BLS

will be BGS.

- 218 -



ARITHMETIC BINARY CALCULATIONS: ADD, MUL, SUB, DIV

ADD and SUB are symmetric (commutative) and are grouped to-
gether. If both operands are in registers AER or MER instruc-
tiohs are used else, if one of the operands is in a register
AE or ME instructions are used, else one of the operands is

loaded in register then AE or ME instructions are used.

R1 + R2 AER R1, R2
A + R1 AE R1, A
A+ B LE Rx, A

AE Rx, B

SUB and DIV are also grouped together. If both operands are
registers SER or DER instructions are used, else if the first
operand is not in a register, it is loaded in a register and

SE or DE instructions are then used.

R1 - R2 SER R1, R2
R1 - B SE R1, B
A -B LE Rx, A SE Rx, B
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RAI - RAISE A NUMBER

The mathematical procedure from the runtime library for rais-
ing a real base to a real number is used. The two operands

are loaded in floating registers R14 and R12 respectively.

A" B LE R14, A
LE R12, B
BAL R15, IPOWR

LER Rx, R14

JUMP INSTRUCTIONS: JMPF, JMP

Since the displacement may exceed 15 (halfword) a B instruc-
tion 1is used instead of the shorter instruction BS. JMPF is
the conditional branch of an IF-THEN-ELSE expression. If the
condition is not the result of a logical operation, the fol-

lowing code is generated:

IF A THEN
CE 0.5, A
BL L1
B J1

L1:

Since JMP marks the end of the first branch block in an IF-
THEN-ELSE an instruction to load the operand on the top of

the stack in a register is issued when it is in a variable.
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FETCH and DEPOS

FETCH does not generate any code. DEPOS generates instruc-

tions to store the operand in a memory cell.

A =B L Rx, B

ST Rx, A

FUNC -library function call

Some of the functions are computed directly in code (ABS,
SIGN, MIN, MAX, MOD), the rest are calls to runtime library
routines, in which case the operands are locaded into regis-
ters R14 and R12 respectively. The result is returned in re-

gister R14.

SIN(A) one argument function call

LE R14, A
BAL R15, .SIN

LER Rx, R14

ATAN2 (Rx, A) two argument function call

LER R14, Rx
LE R12, A
BAL R15, .ATAN2

LER Rx, R14
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Inline coded functions:

L1:

L2:

L1:

L2:

L3:

MAX (A, B)
LE Rx, A
CE Rx, B
BLS 11

LE Rx, B
BS L2

LE Rx, A
SIGN(A)

LE Rx, A
CER 0.0, Rx
BLS L1

BPS L2

LER Rx, 0.0
BS L3

LER Rx, 1.0
BS L3

LER Rx, 0.0
SER Rx, 1.0

(BLS is changed to BPS in MIN)
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ABS(A)

CE 0.0, A
BLS L1

LER Rx, 0.0

SE Rx, A
MOD (A, B)
LE Rx1, A

LER Rx2, Rx1
DE Rx2, B
FXR Rx, Rx2
FLR Rx2, Rx
ME Rx2, B

SER Rx1, Rx2

CALL -calling external routines(SYSTS)

Integer values ISYST and IPART are known at compile time.

LIS Rx, ISYST
ST Rx, ISYSAD
LIS Rx, IPART
ST Rx, IPARAD
BAL R15, .SYSTS
TBT 0.0, ISTOP
BES 11

BR R2

L1:
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CODE EXAMPLES:

The examples listed earlier will generate the following

sembler and absolute codes.

1

L2

ASSEMBLER CODE

Y1 =

LE

CE

BLS

LE

:LE

:STE

Y2 =

LE

CE

BPS

LER

BS

LER

CER

BP

IF

R2,

R2,

L1
R2,
L2
R2,

R2'

R2,

R2'

R2,

RZ2,

-5|

L1

IF A<B THEN C ELSE 2

Y1

ABS.

6020

6920

2184

4300

6840

4300

6820

6020

CODE

4002

4002

4003

4002

4003

4002

4002

9C68

9C70

OoDCA

9C74

ODDO

A10C

9C78

AND B>C THEN C ELSE IF NOT C THEN A

R2
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6820 4002 9C70

6920 4002 9C74

2123
2820
2302
282A

2982

4220 4003 OEOO

ELSE B

as-



L1:

L2:

L4:

L3:

CE

BP

BS

LE

CE

BPS

LE

LE

STE

Y3 =

LER

SE

LE

AE

SE

DER

LER

SE

MER

STE

L1

L2
R2,
L3

.5,

L4

R2,

R2,

R2,

R2,
R2,
R4,
R4,
R4,
R2,
R4,
R4,
R2,

R2Z,

Y2

o

» o

R4

Y3

(-B)/(A + B - 2)*(-C)
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6880
4220
2304
4300
6820
4300
6980
2124
4300
6820
4300
6820

6020

2820
6B20
6840
6A40
6B40
2D24
2840
6B40
2C24

6020

4002

4003

4003
4002
4003

4002

4003
4002
4003
4002

4002

4002
4002
4002

4002

4002

4002

9C68

OEOO

OE12
9C74
OE32

9C74

OE23
9C68
OE32
9¢c70

9C7cC

9C70
9C70
9C68

A10C

9C74

9C84



Y4 = IF A>B AND C THEN TAN(A) ELSE B&(0.2*A) + LN(B)

LE R2, A 6820 4002 9C68
CE R2, B 6920 4002 9C70
BPS 3 2123
LER R2, O 2820
BS 2 2302
LER R2, 1. 282A
CE .5, C 6980 4002 9C74
BP L1 4220 4003 OF44
CER .5, R2 2982
BP L1 4220 4003 OF44
BS 4 2304
L1:B L2 4300 4003 OF5E
LE R14, A 68EO0 4002 9C68
BAL R15, .TAN 41F0 4002 2A8E
LER R2, R14 282E
B L3 4300 4003 OF8A
L2:LE R2, A 6820 4002 9C68
ME R2, 0.2 6C20 4002 A100
LE R14, B 68EO 4002 9C70
LER R12, R2 28C2
BAL R15, .IPOWER 41F0 4002 2160
LER R2, R14 282E
LE R14, B 68EO0 4002 9C70
BAL R15, .LN 41F0 4002 2D60
LER R4, R14 284E
AER R2, R4 2224
L3:STE R2, Y4 6020 4002 9C94
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