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ABSTRACT

A general potential field problem is cast into matrix form, using 

the finite element method. Heat conduction, as an especial case of the 

aforesaid problem, is solved for three-dimensional case with internal 

heat sources as well as all the various possible boundary conditions 

except for the radiation. A clarification is, herein this work, suggested 

for replacing any system of discrete and distributed loads (acting all over 

the solution-domain) by an equivalent system of distinct loads acting only 

at the nodes.

The formulations are rederived, in detail, for a general two- 

dimensional heat conduction problem with variable thermophysical properties. 

A computer program is developed in which functional variations for such 

properties are also incorporated. This is applied to a steady-state 

temperature field problem in an LMFBR fuel element with non-uniform boundary 

conditions and/or the cases with non-uniform gap between the eccentrically 

situated pellet and the cladding.

Transient problems are solved by a single numerical formulation, 

using a parameter which includes Galerkin and Crank-Nicholson methods but 

in a more general feature. Thus, this formulation for transient cases, for 

both heating-up and cooling-down systems, is included in a further developed 

computer code. Excellent agreement has already been reached with other 

well-established methods in this respect.

This method is also further developed to include Multi-phase problems 

with motionless as well as moving boundaries in both steady-state and 

transient cases, respectively.
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Each interface is, numerically, located so much so that its 

movement and shape can be monitored at any given time. Each interface 

is separately used to refine the existing mesh so that each element will 

always be in a single phase. Consequently, no new modelling is needed.

This formulation, together with the relevant computer coding, as 

a major part of this work, can predict the change of phase in a reactor 

core which may influence the course of accidents.
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NOMENCLATURE

A,B,C & V coefficients used in temperature modelling

a, b , & c element characteristics

£ reference (No.) to the element in question

CP
specific heat at a constant pressure

Ci > j
thermal energy capacity between nodes X. & j

F loads (heat loads)

F , G functionals

H local sink

h heat transfer coefficient

I integral notations (see equation 2.15)

"Cf y> •• • node numbers

k thermal conductivity

L latent heat

l length (of the element in question)

l *> y , z
cosine directions along x, y ,  Z axis, respectively

position functions (or area co-ordinates) of a point 

inside an element

Q. local rate of thermal energy generation (source term)

ft heat flux

^c.ond
conductive heat flux

S overall boundary surface of the solution-domain

Si boundary surface with prescribed temperatures

S 2
conductive boundary surface

S 3
convective boundary surface

S 4
radiative boundary surface
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se elemental area for integration

T temperature

T6 solidus temperature

h liquidus temperature

t time

l/e elemental volume for integration

X functional

Greek Symb o 1 s

C emissivity

6 Dirac delta function

6X change of functional X

Ae area of element £

/ & fe areas of sub-elements opposite nodes. X, j & fe, 

respectively, in triangle L j  k

X • a parameter used in the Matrix equation for 

transient heat conduction problem

p density

< p - V
thermal energy capacity

(p*cp*eM
effective thermal energy capacity

a Stefan-Boltzmann constant

T a given time over a time-step

0 temperature

-Q
C

D prescribed temperatures on boundary surface

6W prescribed temperatures on the wall facing 

radiative boundary surface (5^)

6„ * prescribed temperatures of the environment adj 

to convective boundary surface (S^)

X • functional
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Subs cripts

1,2,3 & 4 

j  > k,

l 

h 

Q.

4

x, y , z

refer to boundary surfaces S^, S2, & S^, respectively

refer to nodes x., j ,  k, . .  , respectively

liquidus

refers to convective terms 

internal heat sources 

refers to heat flux 

solidus

along x, y & z-directions, respectively

Matrices

[c ]

(« )

{ 0 }

thermal energy capacity matrix 

effective thermal energy capacity matrix 

load matrix

thermal convective matrix 

thermal conductivity matrix 

nodal temperatures matrix
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INTRODUCTION TO THE CONDUCTION OF HEAT 

AND THE OBJECTIVES OF THIS WORK

1.1 INTRODUCTION

Heat is a vital element in nature, upon which life depends heavily, 

and it plays an important part in the cycle of evolution. Man has always 

been trying to control heat in order to put it to a better use.

In nature, the sun is the greatest source of energy, but enormous 

heat can also be produced by fission. For example, reproduction by the 

division of living cells into two parts, each of which becomes a complete 

organism. Also, the splitting of an atomic nucleus, as by bombardment 

with neutrons, especially into approximately equal parts, results in the 

release of enormous quantities of energy when certain heavy elements, such 

as uranium and plutonium, are split.

It was as long ago as 1720 when Hatif of Esfahan, an Iranian 

scientist as well as philosopher, stated that "... if you cleave an atom, 

you will find a sun inside". Only in the twentieth century did Einstein 

formulate his theories of relativity, suggesting that energy can be 

released by cleaving an atom.

In recent years, both successive governments and various 

environmental groups all over the world have applied enormous pressure on 

scientists, especially those related to nuclear engineering, to build safe 

and more fuel-efficient power plants. One of the most important factors 

in the design of new equipment is, of course, the conduction of heat 

through materials. The objective of this work is to propose a reliable 

numerical method with which to tackle the conduction of heat through 

materials in different states.

Some physical problems, such as heat conduction (steady and transient),

CHAPTER 1
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torsion of prismatic shafts, seepage through porous media (lubrication of 

pad bearings), electro-static fields, magneto-static fields, gravitation, 

hydro-static fields, diffusion, and steady electrical currents, are treated 

in the same way and they are termed the "potential field problems".

A potential field problem may be considered in two ways, namely, 

physically and mathematically. Generally, mathematically, it is governed 

by a second order partial differential equation, which may be classified 

as linear or non-linear, depending on whether the physical properties of 

the material are independent of or dependent on the potential, 

respectively. But from the physical point of view, a potential field 

might be classified as equilibrium, eigenvalue or propagation.

1.2 PHYSICAL CLASSIFICATIONS

Most problems in engineering and physics can be classified as either 

continuous or discrete. A discrete system consists of a finite number of 

inter-dependent sub-systems, whereas a continuous system involves a 

continuous domain. Continuous or discrete systems, which may be linear 

or non-linear, can each be further sub-divided into equilibrium, eigenvalue 

and propagation problems, as follows:

(a) Equilibrium problems are those in which the state of the system

remains constant with time: the problem is fully time-

independent, the system state is stationary and stable, and they 

are often known as "steady-state field problems".

(b) Eigenvalue problems can be considered as extensions of the 

equilibrium problems, in which, in addition to the corresponding 

steady-state configuration, specific critical values of certain 

other parameters must be determined as well. The system is 

sensitive to some critical conditions, and, although the system
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(c) Propagation problems include transient and unsteady-state 

phenomena, and are those in which the state of the system 

depends on the system state at some previous time, usually known 

as initial values. Hence, they are called the "initial value 

problems". They are time-dependent and the region of interest 

is open in time dimension [1].

The following table (Table 1.1) summarises some features of these 

physical classifications [1].

state is stationary, it is unstable, such as in buckling or

electro-static discharge. These are just like equilibrium

problems, while some critical conditions are not satisfied.

1.3 MATHEMATICAL CLASSIFICATIONS

In theory, one-, two- and three-dimensional potential field problems 

may be analysed in the same manner. Here, we have chosen to analyse a 

two-dimensional potential field problem in detail; such a field may be 

governed by a second order partial differential equation involving two 

independent variables, such as X  and y, and one dependent variable, such 

as 0. The general form of such an equation may be written as:

A . 9ze

ax2
+ B 9ze 

ax 9y + c afe

9 y 2
+ G = 0 (1.1)

If the coefficients A to G in equation (1.1) depend only on X  and y ,  

the equation is said to be linear. Otherwise, if any of these also 

depend on 0 or its derivatives, the equation is called non-linear. The 

values of these coefficients may be used to determine the character of the 

equation, and hence the best method of its solution. For example, when 

G = 0, the equation is called "homogeneous", otherwise it is said to be



TABLE 1.1

Physical Classification of a Problem [1]

Feature of 
the Field

Physical Classification

Equilibrium Eigenvalue Propagation

Status Stable stationary 
(steady-state)

Unstable stationary 
(sensitive)

Transient
(time-dependent rdgime)

Potentials T ime-ind ep end en t At the critical value 
(buckling) Time-dependent

Initial
Values Not essential Necessary

Boundaries Closed Open

Governing
Equations Ordinary or partial differential Partial differential

Type of 
Equations Elliptic Parabolic or hyperbolic

Equations in the 
Field Domain

u_«-r->IIr“*—»
CD [K] . {0} = X . [M] . {9}

[K] . {0} = {F} , when £  > £ Q

[B].{0 } = {F } , when £  = £0 0 0
as initial values

Equations on the 
Boundaries, as 
Prescribed

[A] . {0} = {9 } [A] . {0} = X . [8] . {0} [C] . {0} = {9 } , when £  > £

Subscript 0 refers to the initial values
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"inhomogeneous".

Equation (1.1) can be classified by a classification parameter, 

defined as:

and is said to be elliptic, parabolic or hyperbolic according to whether 

the classification parameter, A, is negative, zero or positive, 

respectively. While it is possible for the type of an equation to change 

inside the solution domain if A, 8 or C vary, this does not occur normally 
in practical problems. Classifications can also be applied to higher 

order equations, and to those involving more than two independent 

variables.

A very common and practical form of equation (1.1) is:

which is linear and is also elliptic, according to the above definition 

(since A = -4); it is termed a "harmonic equation". This equation (1.3), 

in general, is inhomogeneous, and it is called Poissonfs equation if 

ipj = C, where C is constant. Laplace1s equation is obtained as a special 

case when \pj = 0; in this case, it is homogeneous.

If any of the terms in equation (1.1) depend on time or its 

derivatives, the solution of the problem obviously changes with respect to 

time. These problems are time-dependent (unsteady) and of the 

propagation type (transient heat conduction, for example); otherwise, the 

problem is time-independent,(steady) and is of the equilibrium or 

eigenvalue type (steady-state heat conduction, for example).

Elliptic equations normally occur in equilibrium problems, whereas

A = B2 - 4 . A . C (1.2)

3x2 i y 2
(1.3)

the parabolic and hyperbolic types occur in propagation problems. A
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difference between equilibrium and propagation problems is in terms of the 

type of conditions applied at the boundaries of the solution domain. The 

domain for a propagation problem is to be open, but for an equilibrium 

problem the domain has to be closed. Also, the boundary conditions (some 

values) are to be prescribed around the entire boundary. Therefore, such 

problems are also said to be of the boundary value type [2].
The physical conditions of the particular problem will impose certain 

boundary conditions, and a boundary value problem is said to be well-posed 

if it has a unique solution which is also stable. These problems are 

governed by partial differential equations which are solved in either 

closed or open regions [3].

The types of boundary conditions of particular interest are as 

follows:

(a) Dirichlet type of boundary conditions: the values of 0 are

specified on the boundary.

(b) Neumann type of boundary conditions: the derivative of 0 with

respect to the normal to the boundary is specified at the 

boundary.

(c) Cauchy type of boundary conditions: a linear combination of 0

and its derivatives with respect to the normal to the boundary 

are specified at the boundary.

The following table (Table 1.2) summarises results which can be 

established for second-order partial differential equations and identifies 

which problems are well-posed.

1.4 GOVERNING EQUATIONS OF A POTENTIAL FIELD

In a cartesian coordinate system, in general, a potential field may



TABLE 1.2

Boundary
Condition Region

Type of Partial Differential Equation

Elliptic Parabolic Hyperbolic

Dirichlet

Open
surface Insufficient Unique, stable 

in one direction Insufficient

Closed
surface Well-posed Too restrictive Too restrictive

Neumann

Open
surface Insufficient Unique, stable 

in one direction Insufficient

Closed
surface Well-posed Too restrictive Too restrictive

Cauchy

Open
surface Unstable solution Too restrictive Well-posed

Closed
surface Too restrictive Too restrictive Too restrictive
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be described mathematically by [2]:

£ ‘Vi* +i (fez-H> +

r 30 . p / 30 30 30»
” p • Cp • 3 - t  p ‘ Cv ‘ la ' l x  ’ l y  w ’ 3 z ' (1.4)

in which the unknown physical quantity, 0, is assumed to be single valued 
and stands for the potential, and it is a function of X ,  £/, z  and £ inside 

the region of interest; other variables are all known and specified 

functions of X ,  y ,  Z ,  0 and £ . The X ,  y and z  coordinate axes must 

coincide with the principal axes of the material, and k^ 9 k and k^ are 

the potential conductivities along the X ,  y and z  directions, 

respectively. It may be noted here that the orientation of the coordinate 

axes is not so important if the material is isotropic (where k^,  k and k  ̂

are equal). Q. is the source (input) term, the local power source. H is 

the local sink, p is the density, and C is the specific energy capacity, 

and £ stands for time. U ,  V  and are the relative velocity components 

along the X ,  y and z  directions, respectively.

A solid region may be defined as a domain with all the points 

stationary relative to each other on the macroscopic scale. This also 

includes a moving system, consisting of points stationary relative to each 

other in the system, or even a liquid whose mean positions of the 

molecules are stationary relative to each other. In such a field, we may 

take u , V and W to be zero. Therefore, the potential distribution 

governing equation in a solid may be obtained from equation (1.4) as:

i E < v H > +^ < v ! ? 1+£ (fez-!!1 + (2-">
r 36

p ' Cp - i t (1.5)
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1.5 THE CONDUCTION OF HEAT

Heat can be transferred by conduction, convection or radiation. The 

phenomenon of heat conduction in solids is usually interpreted as a simple 

molecular interchange of kinetic energy. Thus, if the molecules of the 

conducting material at one point are heated, they are set into rapid 

motion and these, in communicating by elastic impact with their neighbours 

of lower kinetic energy, set the latter into more violent motion, and so on 

throughout the conducting zone. In thermal problems, the level of 

kinetic energy is measured in terms of its temperature.

Consider any two neighbouring points which are at the same temperature; 

even though there may be exchange of heat, there will be no conduction of 

heat. Heat can only be conducted between these two points only if they 

are at different temperatures, and the direction of heat flow is always 

from high to low temperatures; in other words, heat flows only when there 

is a temperature gradient, and towards the direction of lower temperatures. 

Hence, the conduction of heat in solids can be considered as a potential 

field problem and is governed by an equation of the form of (1.5), where 

0 refers to the temperature and k stands for the thermal conductivity.

Heat conduction problems are classified as linear and non-linear.

When thermal conductivities depend on temperature, which we will be

concerned with, the governing equation is non-linear (see Section 1.3).

Hence, the problem is termed non-linear heat conduction. However, in

linear heat conduction problems, thermal conductivities are independent of

temperature. For example, consider a two-dimensional case in an isotropic

material (k = k ); such a problem is then governed by a relation such as:
X  y

9ze + afe
ax' a ^

{<p-vH + «-a) (1.6)

I  lp • cp ’l l + H ' ^  " ^ x’y)where:
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Therefore, equation (1.6) is harmonic, similar to equation (1.3).

1.6 FORMULATION FOR A HEAT CONDUCTION PROBLEM

The conduction of heat in solids is generally governed by an equation

of the form of (1.5), where fê , k and kz are known functions of X ,  y , z, 0

and £ and stand for the thermal conductivities along the principal axes of

t h e  m a t e r i a l ,  r e s p e c t i v e l y .  Q. i s  a l s o  a  k n o w n  f u n c t i o n  o f  X ,  y 9 Z ,  0 a n d

£ 9 which refers to the volumetric rate of heat generation. Also, H is

known function of X, y 9 Z, 0 and £ which represents the volumetric rate of

the thermal energy sink. p is the density, and C is the specific heatP
under constant pressure. Hence, we can solve the problem for the unknown 

quantity, 0, which represents the temperature distribution all over the 
solution domain. A unique solution to this problem can, in principle, be 

obtained for any given set of sufficient boundary conditions (see Table 

1.2).

Boundary conditions for heat conduction problems may be classified, 

in general, into two basic groups, as follows.

In the first group, the temperature distribution (energy level) only 

is prescribed on the boundary (S j), which is termed as the "forced 

boundary", or the so-called "first kind of boundary condition", and it is 

shown as:

0 = 0^ on Sj (1.7)

In the literature, it is called the Dirichlet type of boundary condition.

In the second group, the heat flux (energy flow) across the boundary 

surface is prescribed; this group itself can be further sub-divided into 

three types, as follows.
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(a) Conductive Boundary

When the neighbouring region is a conductor, we will have a conductive 

boundary surface (S2), through which the heat flux may be specified as:

the so-called "second kind of boundary condition", and in the literature

(b) Convective Boundary

Heat may be transferred by a moving fluid through a boundary layer 

adjacent to the boundary surface (S^); it is termed the "convective 

boundary surface", through which the heat flux may be specified as:

where h is a prescribed heat transfer coefficient, and 0̂  is the ambient 

temperature of the moving fluid. This type is the so-called "third kind 

of boundary condition", and is called in the literature the Cauchy type of 

boundary condition. The total flow of heat by convection through the 

surface will be:

= qb on S2 (1.8)

it is also named the Neumann type of boundary condition. The total flow

of heat by conduction through the surface will be:

(1.9)

q3 = h . (0-eJ (1.10)

w3 = // ?3 • ds = ff h . (e - ej . ds (1.11)
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(c) Radiative Boundary

Heat may also be exchanged by radiation through the "radiative 

boundary surface" (S^). The flow of heat which is transferred in this 

way is, in general, too difficult to formulate, but as a crude and ideal 

estimate, heat flux may be written as:

where e and a are the emissivity and the Stefan-Boltzmann constant, 

respectively. 0 is the prescribed temperature of the radiating surfacevv

facing S^. The flow of heat by radiation through the surface will be:

This may be termed as the "fourth kind of boundary condition".

Any mixed combinations of these three latter kinds (a, b and c) are 

also possible at the same point (part) of the boundary surface.

Therefore, in general, heat flux through a boundary surface of the second 

group may be expressed as a sum of these three heat fluxes (<?£> an<* ^4) >
namely:

On the other hand, heat flux at any point of the boundary surface is a 

vector which can be written as:

(1.12)

(1.13)

Q = + q3 + q4 (1.14)

(1.15)
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boundary surface. Hence, at a boundary of the second group, where there 

is neither absorption nor liberation of heat (change of phase), the heat 

flux is given by equation (1.14) or equation (1.15); equating these two 

gives:

k —  l +
X  * 9 X  * X

k —  l y ' z y '  y + k 1 1
3z *z + q 2 + q 3 + q 4 =  0 (1.16)

All these boundary conditions may be tabulated, as shown in Table 1.3.

A set of boundary conditions is said to be sufficient if the union of 

all the surfaces (5j, Sg, .., S^), where the boundary conditions are 

imposed, form a closed surface (S) which completely surrounds the region 

of interest. Hence:

S = Sj U S£ .... U 5 n (1.17)

Note: Overlapping parts, as explained for equation (1.14), must be

considered.

1.7 INCENTIVE OF THIS WORK

Almost all physical phenomena in solid mechanics are non-linear 

(including potential field problems). However, in general, the non

linearity may be due to material properties, solution domain geometry, or 

both. The material non-linearities (temperature-dependent properties, 

for example) are the easiest to visualise, especially for a fixed geometry. 

The geometric non-linearities refer to large deformations (body 

expansions, for example).

In steady-state heat conduction problems, no geometric changes take 

place, whereas they do exist in transient problems, although in very small 

proportions. For the present analysis here, only the material property



TABLE 1.3

The Boundary Condition Classifications in Heat Conduction Problems

to
VO
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non-linearities are considered, and the geometric variations are neglected 

(fixed geometry).

As for non-linearities, any kind of irregularity makes the problem 

complicated. Their analytical solutions are often restricted to specific 

problems only and generalisations are either too cumbersome to handle, or 

are in very impractical forms to be of any use for practical applications. 

Hence, other methods have to be investigated, at least to have an 

acceptable solution in such a form which can be of more practical use. 

Therefore, a numerical approach is proposed in the following chapter.

1.8 OBJECTIVES OF THIS WORK

The objectives of this work is to numerically solve and develop a 

solution to heat conduction problems in multi-zones, involving temperature- 

dependent properties for both the steady-state case and the transient case. 

Moreover, change of phase is also considered, and interfaces (between any 

two neighbouring phases) are located at any time. Therefore, free 

boundary problems are also solved here.

An application of this work can be mentioned as the conduction of 

heat (temperature distribution) through a nuclear reactor core (or its 

components), even for accidental cases which have a low probability of

occurrence.
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CHAPTER 2

NUMERICAL ANALYSIS:

GENERAL FINITE ELEMENT FORMULATIONS FOR 

A POTENTIAL FIELD PROBLEM

ABSTRACT

A general finite element method is derived, in this chapter, for 

three-dimensional potential field problems with multiple boundary 

conditions. The method is then applied to a general heat conduction 

problem with all kinds of boundary conditions, except radiation.

2.1 INTRODUCTION

As discussed in the previous chapter, a potential field may be 

generally governed by a quasi-harmonic partial differential equation of 

the type of (1.5). A particular problem is then specified in a unique 

manner by its prescribed boundary conditions.

Analytically, one way of solving such potential field problems is by 

minimising the total energy of the system. This is done by defining a

functional which involves both the governing equation and the boundary 

conditions. The integrated functional is then minimised all over the 

whole solution domain. The resulting solution also satisfies the 

governing equation and the boundary conditions. Therefore, it is the 

solution of the original problem. Although not many analytical solutions 

can be obtained by this method which are useful, this idea is used to form 

the basis of some numerical method, such as the finite element method.

A general potential field problem is analysed in the following 

sections of this chapter, and the method is then applied to a general heat 

conduction problem as a guideline. Although the generality of the 

treatment is mathematically acceptable, it has become too abstract for an
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average engineering application. Therefore, to assist in the 

understanding of the method, similar analysis is also carried out in 

detail for (i) a two-dimensional case in Chapter 3 for a steady-state case, 

and for (ii) a transient case in Chapter 4 (iii) Change of phase: phase

change is separately considered in the following chapters.

Heat conduction equations, in general, may be extracted from Section 

1.6. They are rewritten here for convenience as:

9 (l, _99
dx 1 X * dx + (* - H1

„ r  36 
p ' Cp ‘ s t (2.1)

subject to the set of prescribed boundary conditions as:

0 = Qb it) on S (2.2a)

and: l  . [fe . |i) + l  . (fe,.|i) + l  . (k . |i) + q
x x dx y y dy z z dz ^ cond

+ h . (e - e ) + e . a . (e4 - e M  = o on (s - s , )00 HJ I (2.2b)

Equation (2.2b) refers to the heat flux through the portion of the 

boundary on which the temperatures are not prescribed ( S - S j ) , and where 

ky and k^ were equal (isotropic material), and ^ an<i E were

zero. The well-known adiabatic (non-conducting)boundary condition is 

obtained as:

i i  = 0
dn

in which n is the normal to the boundary surface.

A particular problem is specified in a unique manner by the coupled 

equations (2.1) and (2.2), and a solution has to satisfy equation (2.1) 

all over the solution domain, together with the prescribed boundary
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conditions (2.2) on the boundaries. If the analytical form of the 

solution for a particular problem was difficult or impractical, an 

alternative formulation would be possible with the aid of the calculus of 

variations, as follows.

2.2 VARIATIONAL FORM OF THE HEAT CONDUCTION EQUATION

The set of coupled equations (2.1) and (2.2) has been solved by 

different methods (for instance, Gurtin and Galerkin [4,5]). Here, we 

have chosen to use the calculus of variations. In essence, we look for a 

variational functional, whose minimum is also a solution of equation (2.1), 

together with the boundary conditions (2.2). This is known as the 

EulerTs theorem of variational calculus [4], which is applied as follows.

Consider a variational functional (function of other functions) of the

form:

variables distinct from 0. F is some functional defined all over the 

region of interest, l/, which is surrounded by the boundary surface, S, on 

which the functional G is defined.

Let 60 be an arbitrary small variation of 0 and its derivatives. 

Therefore, the change, 6X, of X in equation (2.3) may be equated as:

X Iff FU>£/>z,0,0' 0' 0',£) . dV + f/G(e).dSx' y ’ z (2.3)
1/ S

(2.4)

where we may write:
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«(e;i 5 < H > '  £ ' 5 e l
etc,

Hence, equation (2.4) becomes:

6X = III
1/

8F x *  *  9F 9 fjtni x 3F 8 A 3F 8 , _al'
80 9 80' * 8X ^9 80' * 8i/ ^9 80' * 8zx y v z

. dl/

+ // 
S £ • » . dS

The second term on the right hand side inside the volume integral can 

be integrated by parts, with respect to X, as follows:

/ / /v
9F JLffifl]

l 8 0 ^  * 8 X  ^ 9
. dV

IS
S 36.' ' 66 ' ZK • d S -  HI

V
9 f 9F j 50
8X 80 ’ * 66

X

. dV

Because, if we take U = 8F/80^ and W = 60, we can write:

/ U . . dx.J 8x U . w  -  f  W . ~  . dx

A similar relation may be written only along the X-direction as:

Iff U . . dx . dy . dz = ff  U . W . dy . dz - /// W . . dx . dy . dz
\j dx S 1/ dX

where d x . d y . d z = dl/ and d y . d z = t  . d S , and Z  is the direction cosine of/C

the normal to the surface surrounding the volume \J with the X axis.

Similar terms are obtained for others and, finally, we will have:
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«  - - 1  
V

r 3 ( 3F ]
T3X 30'

X
+ V F,) +

y y
3 ( 3F,
3z 30' 

z
- (— if130' ‘ . 60 . d V

+ // 
s

l  (
_ X * 30^

+ 1  ( 
y  M y

+ i z . ( 9Ff ) + 
30^

(— )1 3 © ; J . 60 . d S (2.5)

On the other hand, since 60 is taken as an arbitrary variation and cannot 

always be zero, then, if in equation (2.5) we had:

3 i 3F i 3 / 3F » 3 # 3F
3xli0rJ 3y [W rt ‘3zl3?Tx J y z

- (
3F
30 0 (2 .6)

everywhere inside the region (/, which is generally called the Euler- 

Lagrange equation3 and, also, if we had:

3F 3F 3F
30' 30'y 30'z
(^fr) + l.. . (^r) + . ( ^ t ) + (|f) = 0 (2.7)

for any value of 0, then the value of SX in equation (2.5) would be zero. 

These two conditions, (2.6) and (2.7), are required for the functional X, 

defined in (2.3), to be an extremum functional. Thus, we need to find a 

functional such that the conditions (2.6) and (2.7) are equivalent to the 

set of coupled equations (2.1) and (2.2), respectively.

Consider an expression for F, in equation (2.3), of the form:

F <lf> +v<S> +fe l i - H - p r !£
p * 31

0

in which (0-H-p.C .30/3£) is assumed to be independent of 0. And
P

another expression for G of the form:

- w e * i - h - le- 0~ )2 + E - ° -  ( - r -  C - el
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where 9^* e and 9^ are also assumed to be independent of 6.

Now, 6X from relation (2.5) can be evaluated as:

86

+ e-cr-te** - e  *») .de.cfs (2.8)

Consequently, an associated extremum functional of the form of (2.3), 

corresponding to the set of coupled equations (2.1) and (2.2), may be 

written as:

X ( a - H - p . c p .|i).e}.di/

+ e 5
+  E  .  O  .  ( — p  0VT U) .0 ) .dS (2.9)

whose value is stationary for any value of 0, which is satisfying the 

coupled equations (2.1) and (2.2).

Hence, when this functional (2.9) is stationary, it is said to be 

equivalent to the set of heat conduction equations (2.1) and (2.2). 

Therefore, the problem is now changed to determining the minimum of the 

above functional X, (2.9), that is to solve for:

8X
80 0 (2.10)

This equation, (2.10), is always automatically satisfied on the boundary 

surface Sj, since the temperatures are prescribed over that surface (see 

equation (2.2a)). Therefore, the surface integral in the functional
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applies only on the rest of the boundary surface (S-Sj), where the 

boundary conditions (2.2b) are prescribed.

The finite element method is used here to numerically solve the above 

equation (2.10).

2.3 THE FINITE ELEMENT METHOD

2.3.1 The Finite Element Ideas

Consider a closed region which obeys the relation (2.10).

Let the domain be subdivided into a number of small parts called elements. 

Since the relation (2.10) holds for all the domain, it also holds for each 

element. In order to simplify further, we characterise each element by a 

number of points called nodes. These nodes are of special interest, as 

will be shown later, but here we note that the relation (2.10) must also 

hold at these nodes. In other words, the behaviour of the whole domain 

may be studied by looking at the behaviour of only the nodes.

These ideas formed a basis for a new method, in which each 

element was finite; hence, it was called the "Finite Element Method", 

which has now become a very standard technique. Therefore, we shall not 

expand on it. Further detailed proof may be obtained in many numerical 

method text books (for example [4,5,6]).

2.3.2 Features of the Finite Element Method

The finite element method is based on the extremum method, 

when a functional representing an integrated quantity (the energy, for 

example) over the region of interest is defined. It has been shown that 

the minimising of such a functional is equivalent to solving the original 

quasi-harmonic partial differential equation of the type (1.5). This 

method is summarised in the following steps.

Firstly, the region of interest has to be finite; therefore,
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it must be confined by a closed surface. The domain is subdivided into 

a number of elements by a number of imaginary surfaces. Reversely, the 

union of all the elements in a certain order should be the domain itself, 

and their intersections must be a null set. Now, each element is 

enclosed by some parts of these imaginary surfaces, each of which is 

called a "face". Moreover, each intersection between any pair of faces 

is called a "side". A "boundary element" is any element which has at 

least one face on the approximation surface that forms (replaces) the 

boundary surface of the solution domain; the face is hence called the 

"boundary face". A "corner element" is any element which has more than 

one boundary face adjacent to each other. Each element which is finite 

and closed can also be considered individually and as a separate region.

It may be characterised by knowing and calculating values at a finite 

number of points, the so-called "nodes" which are usually at the vertices 

of the element in question. The boundaries (sides) of all the elements 

in assemblage look like the skeleton of the domain, where the joints are 

at the vertices; it is traditionally called a "mesh". Hence, the whole 

solution domain may be replaced by a mesh interlinking the vertices of the 

elements and, consisting of a number of nodes, the domain will be studied 

only at those nodes. Nodes and elements are then numbered simply for 

reference. Thus, a typical element of the domain (element £, for example) 

with nodes ' i 9j 9k will be governed by equation (2.10), including at its 

nodes, this can be expressed in a matrix form as:

3 X / 3 0 . \'C

3 X / 3 0 • = 0

3X/36fe

(2.11)

If the relation (2.11) showed the contribution of the typical
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e l e m e n t  G. t o  t h e  c a l c u l a t i o n s ,  w e  m a y  a s s e m b l e  t h e m  f o r  t h e  e n t i r e  d o m a i n  

a s :

where V  refers to the whole solution domain, and N E L  is the number of all 

the elements [4]. This assemblage (2.12) can also be written in terms of 

the nodal values of 0 as:

where n = 1, ..., N, and W is the number of all the nodes. Therefore, 

any potential field (temperature distribution field, for example) can be 

analysed by relations (2.11) and (2.13) by examining it at the nodes.

points inside the region of interest, whereas equation (2.13) is at least 

satisfied at the nodes. Moreover, equation (2.13) can be analysed if 

equation (2.11) is satisfied within each element individually.

For demonstration purposes, the method is applied to a 

particular heat conduction problem in the next section.

2.4 A HEAT CONDUCTION PROBLEM

Although this method has been fully generalised, only for mathematical 

convenience, it is developed herein for a case study having neither sink 

nor radiation. Therefore, the typical element G. will be governed by 

equation (2.11), where:

(2.12)

(2.13)

In other words, equation (2.10) is to be satisfied at all the

(2.14)
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£
in which V represents the volume of element 2, S2 refers to any 
conductive boundary face of the element with (prescribed) heat flux q, and 

is the convective boundary face of the element if applicable (see 

equation (2.9)). Hence, equation (2.11) can be written at node i. of the 

element 2 as:

ax
39-C

=  0 -

{/Z

- i a - p - cp - | | ) - e i . d v

+ 3el  i  (<?-6)-dS+ 39 ff f ( i . ( e - 0J 2 ■ rfs

where d 1/ and dS are independent of 0^, since the geometry is assumed to be

fixed. Moreover, we assume that each of the quantities Q., p, C , q, h 9
P

0 and 80/9* are independent of 0 (and thus of 0-)* Therefore, we may 

rewrite the previous equation as:

ax

3e.t
m  {

V

3 190
e 3X

3 136 . k .  (|i)}.dl/
39 • 3f/ J 1/ 3y

+ JOET {
3 ,38

e ^  32
Iff

_/ J 'V

1 ;

a-
80

_ , 90; ,2 J
.dl/

■ V --------

X
+ ///

,l/e

P 30 , 80
p'at* ‘80^'_

.dl/ + //
s„

- f J £ j  
5* 30/

.dS

_/ N_

2-

/ /

d i

[fi.e.f 30 )1 .ds - ff CD i 
ĈD

__
__

1

.dSL 3 0 /  J J J

S3____/ \_2 _
00 30;

A*
/

(2.15)
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The integrals are labelled in this particular notation simply for 

convenience later.

Similar equations to (2.15) can be written for other nodes of the 

same element d to make up the set of equations (2.11), in which we require
g.

a relationship among 0 , the temperature at a point inside the element £, 

and X, y and z, its coordinates, and 0^, 0y and 0^, the nodal temperatures 

of the element in question. In general, it may be shown that:

0e = e ( x , y , z , e ^ , Q j , e k , . . . , t )  (2 .1 6)

which is equal to the exact solution to the governing equations (2.1) and

(2.2).

Hence, we now need to model 0 by a trial function such that it 

satisfies the equation (2.15). This procedure may be repeated for all 

the elements. Here, this trial function is termed as the "temperature 

model", and is chosen as follows.

2.4.1 The Temperature Model

The temperature distribution is always continuous throughout a 

region, but the temperature gradient is not always continuous all over 

that region. For instance, at a separating interface between two 

different parts having different properties, the temperatures are equal 

(conforming), whereas the temperature gradients are usually different, 

since they depend on the properties. Therefore, the trial function chosen 

for 0, which approximates the temperature distribution within the typical 

element £, must have continuity all over the element in question, and also 

the temperatures must be compatible at the boundaries (sides) between 

adjacent elements to hold the continuity all over the solution domain.

The temperature at any point inside the element d surely
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depends on its position relative to the nodes (vertices), as well as on 

the nodal temperatures of the element in question (equation (2.16)). 

Therefore, the exact solution (2.16) can be approximated by a trial

function, chosen piecewise to define uniquely the state of the temperature

2,
0 within the typical element £ in terms of its nodal temperatures 

expressed as:

0e

where Z refers to the nodal numbers of the element in question, and are 

the "position functions" referring to the position of the point in question 

whose temperature is 0 . These functions are geometrical (depending on 

space and time) and are usually called "shape functions". Here, they 

are independent of time, since the geometry is fixed and, in such cases, 

the nodal temperatures only depend on time. Then we may write:

0
£ (2.17)

where W,
L

is a row matrix as:

M, ,
_

L L.
N.
A, x , y , z ) ’ M. Mk [ x , y , z \

x i £and {0̂ -j is a column matrix, listing only the nodal temperatures of the 

element £ as:

dU t )

9yi-t)

‘6feU)

A general three-dimensional linear model can have the

following form:
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0 = A + B*x + C * t/ + V'Z (2.18)

where A, 8, C and t? are constants. In order to evaluate these constants, 

we need to know the temperatures at least at four nodes. The most 

suitable three-dimensional element is a tetrahedron, since it has only 

four vertices. Hence, the four constant coefficients (A, 8, C and V) in 

relation (2.18) can uniquely be determined in terms of the temperatures at 

the four vertices of the tetrahedral element. The two-dimensional 

equivalent in the X-y plane is a triangular element (Section 3.2) where V 

is zero, and the one-dimensional equivalent in the X-direction is simply a 

straight line joining two nodes, here C and V are both zero.

For a tetrahedral element with the nodes at the vertices -t, /, 

k and £, we can obtain:

ee = [N] . {e}e (2.19)

where 0^ is the temperature at a point P, \ inside the element, and:
i y $ ̂  i

[W] = [N. N. Mfe Nz ] (2.20)

in which W. = \) >/V , etc., where l/. is the volume of the tetrahedron 
jl x  2. 9 A.

pjkZ (sub-element), and V is the volume of the tetrahedron X jkt (the main 

element). Obviously, since:

V. + \J . + 
* J vk +

V
e

we will have: I ^  = + W . + = 1
1

(2.21)
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where A. is the summation over all the nodes of the element.

For a two-dimensional triangular element A-jk, the detailed 

proof is given in the next chapter, where we can obtain:

6Z = [N] . {0}e

where 0 is the temperature at a point P, inside the element, and:

m  = Ny Nfe] (2.22)

in which W. = A./A , etc., where A- is the area of the triangle pjk (sub-
JL ^  0.

element), and A^ is the area of the triangle A.jk (the main element) . 

Obviously:

Y N . = W. + W. + W, = 1
L. A, A, i k
A. J

(2.23)

since; I a.£ = A,t + A/ + Afe = Ae

Finally, for a one-dimensional element <£/, we can obtain:

ee = [W] . { 8 }a

2. T>where 0 is the temperature at a point P(x) on the element, and:

[W] = [N- W;] (2.24)
J

in which W- = £*/£ , etc., where t *  is the length of p j (sub-element), and 

£ is the length of the element Zj (the main element). Obviously:
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Y N. = W. + W . = 7/C x. y

(2.25)

since: J = Z -  + Z -  = Z4 x. A. j  e
x. J

2.4.2 Finite Element Formulations

The problem can be solved if equations (2.13) are satisfied; 

consequently, equations (2.11) must be satisfied over each element, and, 

therefore, equation (2.15) must also be satisfied at all the nodes of each 

element. Hence, the chosen temperature model (2.17) must satisfy 

equation (2.15) within the typical element £. To do so, some derivatives 

of 0 and its gradients with respect to 0 * are required as follows:

ec = [N] . {e}e

and: 80
8x

h  ■ + •

aw. 80.
+ — i.0. + N . . —

8x ^ ^ 8x

8W, 80.• — * V— *

.  .  N ;  .  0 ;  + . . .  W. .  0
J J fc i

8W. 80 .

+ . . .  — 0 • + W.. J
8x ^ J 8x

(2.26)

8x 8X

where 80^/8x = 80 */8x = 80^/8X = 0, since the mesh is fixed. Hence:

8 W.
80
8X

8W.__x.

8x
. 0 . +A.

8W .

8X
. 0 . +

J
k

8x • efe + (2.27)

Similar relations to (2.27) can be written with respect to y 

and z. They also can be expressed in matrix form as:

80
8X

8 N 
8x . ( 0 > (2.28)
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Likewise:

and:

96
9 y

9 0
9 2

'3M

9W"
9z

. {0}‘

. {0}

(2.29)

(2.30)

where: 9W
r 9 W .

3 M fe i

[ B x j L 9 x 9 x 9 X
, etc (2.31)

Moreover, from relation (2.27), we may write:

Similarly:

and:

9 1
. 9 0 e

9 0 . 1 
X

1 9 X

3  ir 9 0 e
C

D
C

D ‘ 9 y

9  1
r 9 0 e

9 0 *
' C

' 9 z

9 N

9 X

9W,
__x

9 y

9 M.
__-L

9 z

(2.32)

(2.33)

(2.34)

Also, from equation (2.26), we may derive:

M -  = w.
38.- -L (2.35)

Finally, from the relation (2.17) for a fixed geometry, we will have:

■  -  w - { H } e  { 2 - 3 6 )

Now, the equation (2.15) can be developed by using the 

relations (2.17) to (2.36). The integrals in equation (2.15) are then 

considered individually as follows.

The first volume integral in relation (2.15), which corresponds 

to the first term of equation (2.1), represents the conduction of heat 

along the X-direction, and it can be written as:
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*x. ■ /// I
3 ,30.

„ ,30 * 3Xe *- x. • fex • « & > } • M

By using relations (2.28), (2.31) and (2.32), we may write:

X
3

Iff { ( —
3x

3 N 
3x . {6>e} . dV

in which the nodal temperatures, {0} , may come out of the integral, since 

the geometry is fixed and the nodal temperatures are independent of the 

geometry. Therefore:

I x.
3 N.

Iff f
3x

•. fe
3W
3x } . ctt/) . {0}e (2.37)

The second and third volume integrals in relation (2.15) 

correspond to the second and third terms in equation (2.1) and represent 

the conduction of heat along the t/-and Z-directions, respectively. 

Similar relations to (2.37) can be obtained for them as follows:

II

(///
l/e

3W.
{
3t/

k& .y
3W
W

} . dV) {0}e (2.38)

£ 
z . (///

3 N. 
{— • fee .Z

'3 hi 
3z } . dl/) (0}e (2.39)

l/e 3z

The fourth volume integral in the relation (2.15), which 

corresponds to the fourth term in equation (2.1), represents the generation 

of heat (sources term) within the element in question, £, and by using the 

relation (2.35) it can be written as:

F /// cae • N.) . dv
p
V

(2.40)
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The fifth volume integral in the relation (2.15), which 

corresponds to the last term of equation (2.1), represents the time effect 

in transient phenomena and, by using relation (2.35), it can be expressed 

as:

Fc. ■ Iff
A, y<L

where, from the relation (2.36), we will have:

. d V

Again, since the geometry (mesh) is fixed, all the time 

derivatives of the nodal temperatures can be moved outside the volume 

integral, and therefore we can write:

i f f !  (pe • C p  . [N]} . d V )  . { | | } e

l/e

(2.41)

The sixth integral in the relation (2.15), which represents 

the contribution of node in the conduction of heat through the 

conductive boundary surface (Sy) > may be written by using relation (2.35) 

as:

F? = // (q£ .W.).dS (2.42)
S„

where S ^ is only the conductive boundary face of the boundary elements.

The seventh integral in the relation (2.15), which represents 

the convection of heat passed out of element 2. through the convective 

boundary surface (S^), may be written by using relations (2.17) and (2.35) 

as follows:

Xa

hi
as,

. ([Ml . (e)e ) . ds
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When the geometry (mesh) is fixed, the nodal temperatures {S}2- are 

independent of geometry, and we may write:

“ (// {N. . fee . [N]} . (iS) . {0}e (2.43)
1  s 3

Finally, the last integral of relation (2.15), which represents 

the contribution of node A. in the convective heat gained by the element £ 

through the convective boundary surface (S^), may be written by using 

relation (2.35) as:

Fh . = ff [fie . . N^) . ds (2.44)
-c S 3

where Sj, in both relations (2.43) and (2.44), is only the convective 

boundary face of the boundary elements.

Therefore, equation (2.15) is the sum of all the equations 

(2.37) to (2.44) as:

3X*
30.

= Ie + Ie
* /  y.

+ 1 + K  -
Zz  hi  k

+ F + F - F = 0
A.

in which all the terms have already been discussed. Similar relations 

can be written for other nodes of the same element £, and they can then 

be arranged in matrix form as:

3* 1 
36-t fTx 11 I \h (Fo If If \Vkxl

9 i
Zl jL 1 A.

3X
39 j

. =  . K + + 1z ► + h.
i

. - ro + Fc > + F0 -

\xi zi y Ci V
3X
3®fe K \ \ \

F
ck %

which is identical to the equation (2.11) and can be expressed as:
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© e = { l x le + < V e ♦ t1/ > W  - f V e + ^Fe>e+ {V e - K ^ - °  ^

where the first term on the right hand side (see equation (2.37)) may be 

factorised as follows:

t y e = [Kx]e .{e}e (2.46)

where, by using relations (2.29) and (2.37), we will have:

£ _3N
T

W
_3x • X • _3x. } . dV (2.47)

This matrix is usually termed as the "thermal conductivity matrix along 

the X-direction". It is always a symmetric matrix of size ftx n for an 

element with n nodes. A general term of this matrix can be shown as:

3W. 3N.
»£ -  JFJ {(— ) . *£ . M - ) } . d V (2.48)

U , j ) y£ 3x 3X

which is the thermal energy conducted between the two nodes L and j  

through the element £ only along the X-direction. Likewise, for the same 

element £, the thermal conductivity matrices along the t/-and z-directions 

may be defined, which are also symmetric matrices of size RXKl. They can 

be shown as:

where:

t y e = [ y e - < e>e

// /
i/e

'3 N T fc* 'dN
_dlj * V _3 ym

} . dV

(2.49)

(2.50)

whose general term is:
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'y U,j)

3 N . 3N .
= JJJ {(— ) • kf. (— i] } . dt/

,<i By y by
(2.51)

along the {/-direction. Similarly, along the z-direction:

{12 } = [Kz f . { e } ' (2.52)

where: Vzf  = III {
l/e

rdSJlT
Bz * kz *

3 W
3z } . d\J (2.53)

whose general term is:

„ BSJ. 3W.
= /// {(— l • feS M -)} .rfK

U,/) 3z 3z
(2.54)

Similarly, {1^}^ in relation (2.45), by using the relation

(2.43), can be written as:

{lfc}e = [H]e . {6}e (2.55)

where: [H]e = JJ {[N]T .fie . [W]} . dS (2.56)

This matrix is also symmetric, of size nxn, and it is called the 

"convective matrix", whose general term is:

H f .
U,ji

- JJ (N. . hz . N.) . dS
O  ^  J
^3

(2.57)

This only accounts for the loss of heat (by convection) through a boundary 

face (side <Lj) of the element £. The gain of heat through the same face 

is described by the integral , defined in equation (2.15), which is 

analysed later in Section 2.4.3.
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The next matrix in relation (2.45), {^}^» may be considered 

together with relation (2.40) and leads to:

{ F ^  - JJJ {ae • tW]T} . dv (2.58)
l/0

which is a column matrix with n terms and lists the contribution of the 

internal sources distributed over the element 2, lumped at the nodes of 

the element 2, whose general term is as (2.40), which is rewritten as:

FS = /// O f . H j . d V  (2.40)
l l/e

r 12.Another matrix in equation (2.45), {F } , is developed by 

using relation (2.41) in the following way:

{Fc}e = [C]e .{||}e (2.59)

where: [C]e = JJJ {[W]T . [ p Z  . C*") . [N]} . dV (2.60)

v* P

This matrix is also symmetric, of size n x n , which can be named the 

"thermal capacity matrix". Its general term can be written as:

L U,jl
- JJI {(NJ • (pe . C p  . CWy)> .d v (2.61)

I/'

which is the thermal energy capacity, due to the material, between nodes 

JL and j within the element 2 only. Obviously, this matrix is considered 

only in the transient problems.

The next matrix in equation (2.45), { ^, is developed by

using relation (2.42) as:
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{FJ e = // {?* • [W1T > • dS (2.62)
*1 c

z

This is a column matrix with n terms, each of which represents the 

contribution of the corresponding node in conduction of heat through the 

conductive boundary face of the element in question on the conductive 

boundary surface, S A l l  the terms corresponding to the nodes not on 

(off) the conductive boundary surface S2 are zero in this matrix. It is 

a boundary load matrix and may be called the "conductive (boundary) load 

matrix", and it is only considered in the boundary elements with at least 

one face on the conductive boundary surface, Its general term can be

shown as relation (2.42), which is rewritten as:

Fn “ JJ (Qe - Wy) - rfS (2.42)
q-i S 2 't

r n Q.Finally, the last term in equation (2.45), , is considered

together with relation (2.44). We may then write:

= // {fie . e . . [M]T } . dS (2.63)

S3

which is also a column matrix with n terms, each term representing the 

contribution of the corresponding node in the convection of heat gained by 

the element £ through the boundary face of the element £ on the convective 

boundary surface, S^. All terms corresponding to the nodes off (not on) 

the convective boundary surface are zero in this matrix. This is, 

again, a boundary load matrix and may be called the "convective (boundary) 

load matrix". Its general term can be shown as relation (2.44), which is

// (fce • e„ • V  • dS 
s3

rewritten as:

(2.44)
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Consequently, equation (2.45) for the typical element 0, with Yl 

nodes may be re-arranged as:

[K]e . {0}e + [C]e . {||} + {F}e = 0 (2.64)

where: [K]e = [Kx f  * [K ]e *  l<z f  + W f  (2.65)

which is usually termed the "thermal conductivity matrix" of the element £.
£

Since each matrix on the right hand side is symmetric, of size n * n, [K] 

is also symmetric, of size n * n ,  and [C]2- is described as before by the 

relation (2.60). Finally, in relation (2.64):

< B e - - {F^}e + {F?}e - {FjJe (2.66)

This is a column matrix with Yl terms and is usually called the "load 

matrix" (see equations (2.58), (2.62) and (2.63)). These matrices are 

explained thoroughly and in detail in Section 2.4.3.

Each element may be governed by the equation (2.11), which is 

equivalent to the equation (2.64), and which is called the "elemental 

matrix equation".

Using a similar procedure used to obtain equation (2.13) from 

the relation (2.11), we may take the ensemble of all the elemental 

equations (2.64) and write them in the following form:

[K] . (0) + [C] . {||} + (F) = 0 (2.67)

where each matrix is directly formed by assembling all the corresponding 

matrices in the elemental matrix equation (2.64). The above equation 

(2.67) has been derived for an arbitrary number of elements with arbitrary
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number of nodes. Also, the solution domain as well as each element can 

be of arbitrary shape.

For the entire solution domain with N nodes, the relation 

(2.67) is called the "system matrix equation", in which [K] and [C] are 

both symmetric matrices of size NxW. They are also named similar to the 

corresponding matrix in the elemental equation (2.64) as the thermal 

conductivity matrix and the thermal capacity matrix of the system, 

respectively. Moreover, {F} can be called the load matrix of the system 

which is a column matrix with N nodal loads.

2.4.3 Discretisation of the Loads

In the finite element method, a continuous solution domain is 

replaced by a mesh with a number of nodes. The problem is then 

numerically analysed only at the nodes. Therefore, the system of all the 

loads acting on the solution-domain also has to be replaced by an 

equivalent system of distinct loads acting only at those nodes (the nodal 

loads) in such a way that the overall balance of the system is conserved. 

The nature of loads can occur in many forms, such as weights, forces or 

even thermal loads. The analysis is very general and applicable to all 

types, but our primary concern here is to deal with the thermal loads. 

These loads are formulated here only for a typical element, as in equation

(2.66). Then the system of loads on the whole solution-domain is just 

the sum of all the loads on each individual element (assemblage). In 

general, the loads acting on the solution-domain can be classified into 

two types as follows: (a) the loads that act at a point (point-loads),

and (b) the loads that are distributed (distributive loads). Point-loads 

can easily be replaced by an equivalent system of distinct loads acting at 

the nodes, which is described later, but the distributed loads have to be 

dealt with more carefully.
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Each term on the right hand side of equation (2.66) represents 

a particular type of load which may act on the typical element. Any 

system of scattered or distributed loads of each type acting on the element 

must be replaced by an equivalent system of distinct loads acting only at 

the nodes of that element. This can be achieved in two steps. Firstly,

all the similar loads can be replaced by a single point-load ( f  , their
r

resultant) acting at a unique point (P, the load-centre), where the net 

moment due to that type of load is zero (conservation). Next, this is 

then treated as a point load which can be replaced by an equivalent system 

of distinct loads acting just at the nodes of the element (segmentation). 

Of course, great care has to be taken so that the basic laws of 

conservation and moment are not violated. This is explained in detail in 

Appendix A.

In the thermal problems, the distributed heat loads can either 

be internally generated inside the solution-domain, or can be externally 

applied to the solution-domain (imposed as the boundary conditions), 

namely, the body forces due to the potential flow passing through the 

boundary. These loads can be dealt with as before and may be combined by 

a relation similar to the relation (2.66), in which each vector matrix on 

the right hand side involves a particular distributed load, acting on the 

typical element. Hence, they are individually transformed to vectors 

that involve an equivalent system of nodal loads.

The first vector matrix on the right hand side of the relation

(2.66), namely, {Pq }^» involves only the internally generated heat loads 

that are due to the production of heat by the distributed (or point) 

sources within the element. Consider a typical element with a general
n

load distribution with a local density <2. Per unit volume. All this 

distributed load can be replaced by a point-load as described for the 

relations (A.la) and (A.lb). This load is taken to act at a unique point
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(the load-centre) located by the relation (A.2). Next, this point-load 

has to be replaced by an equivalent system of distinct loads acting at the 

nodes of the same element, £, such that the relations (A.7) and (A.8) are 

both satisfied. This must lead to the same results as given by the 

relation (A.16). If the element is a tetrahedron and the load is 

uniformly distributed, then equation (A.24) has to be used, which is:

<f . l/e 
?

1
1
1

i

(2 .68)

The second vector matrix on the right hand side of the relation

(2.66), namely, {F^}^, which is a boundary load matrix and involves some 

of the externally applied body forces. It consists of only the nodal 

loads due to the conduction of heat through a boundary face (S^) of a 

boundary element, associated with the approximated surface representing 

the conductive boundary surface ($2), referred to as the Neumann type of 
boundary condition. Consider a typical boundary face, S^, of a boundary 

element Q, with a continuous heat flux distribution, q"*" , across the face
s e

S^. The total heat load due to this heat flux is equivalent to a point

load determined by the relations (A.3a), (A.3b) and (A.4). Next, this 

point-load has to be replaced by an equivalent system of distinct loads 

acting at the nodes of the same element, £, preferably at the nodes on the 

same boundary face, S . Again, the relations (A.7) and (A.8) both have 

to be satisfied. This must lead to the same results as given by the

relation (A.17). If the face S i s  triangular and the heat flux is

uniform through it, then equation (A.29) has to be used, which is:

3

1
1
7

(2.69)
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Finally, the third vector matrix on the right hand side of the 

relation (2.66), namely, {F^}^, which is also a boundary load matrix and 

involves only some of the body forces externally applied to the solution- 

domain across the boundary surface It consists of the nodal loads

which represent only the influx of the potential flow through a boundary 

face. In the thermal problems, they are due to the heat flow by 

convection from the ambient to the solution domain, and they refer to the 

second term in relation (1.10), termed as the Cauchy type of boundary 

condition. Of course, the flow of heat transferred from the solution- 

domain to the ambient through the same boundary face, 5^, which refers to 

the first term on the right hand side of the relation (1.10), was accounted 

for in the thermal conductivity matrix as the H matrix given by the 

relation (2.56).

The matrix {F^}^ can be analysed similarly to the previous one, 

namely, {F^}2-, where the local heat flux is taken to be:

->

S2,
GO

t £in which fi is the prescribed heat transfer coefficient on the boundary

c. ° c.face 5 of the element £, and 0^ is the prescribed ambient temperature 

effective on S . This must lead to the same results as given by the 

relation (A.18), or, in the case of uniformity, the relation (A.29) can 

be used.

2.5 CALCULATIONS

After the solution domain has been replaced by a mesh and a known 

distribution of loads has been replaced by an equivalent system of 

distinct loads acting only at some selected (or all of the) nodes of the 

mesh, the unknown potentials, 0, can be calculated at the nodes. Finite
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element equations in the form of (2.64) are then derived for each element, 

involving its nodal potentials (temperatures, for example) as the unknowns. 

For a solution domain with W nodes, the ensemble (2.67) yields N linear 

algebraic simultaneous equations (involving N known nodal loads and W 

unknown nodal potentials), which can then be solved by well-established 

matrix solving methods. A typical .̂th equation of such a set may be 

written as:

N
l U , j  1

N

I U , j !

30

dt
F . =A, (2.70)

This set of equations is solved here by a computationally very economic, 

hybrid, Gauss-Seidel iteration method, which also automatically optimises 

an over-relaxation factor within each iteration. The technique is similar 

to the one proposed by Carrd,B.A.[ 8].

2.6 THE PERFORMANCE OF THE METHOD

The actual generation of numerical results can depend on many factors. 

However, the system matrix equation (2.67) is stable and has a unique 

solution. The accuracy of the method depends on the number of elements, 

number of nodes, order of the mathematical model, etc. The speed of 

convergence of the solution is related to the actual method used to solve 

the matrix equation (2.67). In this respect, a lot of research has been 

carried out by mathematical analysts. The hybrid Gauss-Seidel iteration 

method has many advantages over other methods.

Some factors which affect the method are sometimes conflicting, and 

therefore particular attention has to be paid to optimise the achievement 

of a satisfactory result in each case. For instance, the number of 

elements is essentially a compromise between two conflicting demands.

On one hand, the solution-domain has to be discretised into a number of
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elements small enough to ensure that the mathematical modelling adequately 

approximates the exact solution. On the other hand, the number of

elements, as well as the number of nodes, will be limited by the storage 

capacity of the available computer used. Moreover, any increase in the 

number of elements increases the computational time and effort, and hence 

makes it more expensive. In a scalar potential (temperature, for example) 

field, each node carries only one scalar quantity, whereas in a vector 

potential field each node carries a vector whose two or three components 

(in two or three-dimensional cases, respectively) have to be stored.

Thus, the requirements (or limitations of the capacity) of the computer 

storage depends on the nature of the problem. Further, the number of 

equations in (2.67) is doubled or tripled in two-or three-dimensional 

vector potential field problems.

Although the method is fully independent of the grid, the careful 

choice of the mesh can enable us to produce better results, often at less 

computer expense. For example, in the directions with higher rates of 

change in the potentials (temperatures), closer nodes (smaller dimensions 

of the elements) give better quality of the solution, and in other 

directions farther nodes (larger dimensions of the elements) give smaller 

numbers of elements. Thus, each problem may have its own special recipe 

of optimal parameters for computational effort. Hence, it is very 

difficult to generalise for every situation. On the shape of the 

elements, many authors have considered a generally accepted idea of 

"aspect-ratio", which is a characteristic of discretisation that affects 

the finite element solution. It describes the shape of the element in 

the assemblage, it implies the sharpness or narrowness of the element, and 

it can be defined as the ratio of the length of its largest dimension to 

the length of its smallest dimension. The optimum aspect-ratio of an 

element at any location within the grid depends largely on the difference
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in the rate of change of the potentials (temperature) in different 

directions. If the potentials (temperature) vary at about the same rate 

in each direction, then the closer the aspect-ratio to unity, the better 

the quality of the solution. Moreover, sharp and narrow elements, as 

well as concave elemtns, should be avoided since their volumes may not be 

calculated accurately enough and it may take a longer computational time to 

converge to a good solution, or even fail to converge.

The system matrix equation (2.67), which governs all the solution- 

domain, is the ensemble of all the elemental equations (2.64), which is 

employed piecewise over each element individually and is also fully 

independent of the physical and geometrical properties of other elements. 

This makes the method so useful and so powerful for solving almost any 

type of potential field problem. It can be applied to most physical 

problems with non-linearities involving inhomogeneous situations, 

anisotropic materials, and irregular geometries of the solution-domain, as 

well as arbitrary boundary conditions ( see Table 1.3 ) . This is 

especially helpful in multi-phase (transient) problems, since the 

interfaces (between any two neighbouring phases) can be very irregular and 

also shift with respect to time. The same method can be used to solve 

both steady-state and transient problems, as well as for single or multi

phase problems.

Although the finite element method has been applied to a vast range 

of problems, there are still many problems for which this method has to be 

developed. In conclusion, however, we may say in brief that the quality 

of the (finite element) solution depends mostly on the following criteria.

(a) Smallness of the elements, refinements are needed in zones of 

steep potential (temperature) gradients, or abrupt changes in 

the geometry or source distributions, as well as in the physical
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(b) The order of the mathematical model (the trial function); the 

higher the order we choose, the more accurate the solution we 

achieve, but the more difficult the formulations.

(c) The shape of the elements; for a typical element, the closer 

the aspect-ratio is to its optimal, the more accurate the 

solution will be.

(d) The number of nodes and elements; the more nodes and elements 

we look at, the more accurate the representations of the 

solution-domain we obtain and the better quality of the solution. 

However, the more equations (in (2.67)) to be solved, the more 

expensive the solution.

A two-dimensional version of this method is explained in the following 

chapters for steady-state and transient problems, as well as for the 

moving boundary problems.

properties. Refinements are also recommended where more

accuracy is demanded.
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CHAPTER 3

TWO-DIMENSIONAL FORMULATIONS

The finite element method, proposed in Chapter 2, is applied to a 

general two-dimensional heat conduction problem, with temperature-dependent 

thermal conductivity, for the time-independent (steady-state) case. The 

first, second and third kinds of boundary conditions are included.

3.1 INTRODUCTION

The finite element method, as described in the previous chapter, may 

be applied to any type of potential field problem, including vector 

potential field problems, although more attention has to be paid to that 

type of problem. A general heat conduction problem, as considered in 

Section 2.4, requires only the calculation of the temperature distribution, 

which is a scalar potential field problem. The analysis for the vector 

potential field problems has not been included.

In this chapter, a general two-dimensional steady-state heat 

conduction problem is analysed by the same method as introduced in Chapter 

2. The method is formulated for a very general case, involving an 

arbitrary shape of the solution-domain, as well as physical material non- 

linearities (temperature-dependent properties, or different materials, for 

example).

Moreover, the formulations are arranged such that they are applicable 

to both cartesian and axi-symmetric systems with minimal changes. In a 

cartesian system, any arbitrary element (e.) with the cross-section sketched 

in the (x,t/) plane (Figure 3.1(a)) will represent a vertical prism of 

height along the z-direction (perpendicular to the (x,t/) plane). The 

volume of such a prism is:
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(a) A two-dimensional element in X.-V Plane, cartesian system.

(b) A two-dimensional element in X-r Plane, axi-symmetrical system

Figure 3.1:
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l/e = l & . Jf dS = Jf dx dy (3.1)

where S is the area of the cross-section of the element £ on the (x,i/) 

plane. The area of a lateral face (on side x/, for example) on the

boundary surface of the prism is:

2

.  j  dc
1}

(3.2)

while, in an axi-symmetric system, any arbitrary element £ with the cross-

section sketched in the (x ,/l) plane (Figure 3.1(b)) will represent a

2.
toroidal section of mean radius generated by rotating it around the X- 

axis. The volume of such a toroidal section is:

= \p . si • ff dS = i|) . . ff dx dft. (3.3)
m JJn Y m JJn

s e s e

where \Jj is the angle subtended by the toroidal section at the axis of 

gyration in radians. The area of a lateral face (on side X./, for example) 

on the boundary surface of this toroidal section is:

S . . = . f i 2, . / d c
x-f y m i .

(3.4)

2 ,
where H. is, here, the mean radius of the axi-symmetric surface generated 

by rotation of the side x/ around the axis of gyration.

From the similarities between Figures 3.1(a) and 3.1(b), relations 

(3.1) and (3.3), as well as relations (3.2) and (3.4), the (x,f/) plane of 

a cartesian system may be replaced (in the formulations) by the (x,^) 

plane in the axi-symmetric system, where the X-axis is the axis of

£ 2,
revolution. Namely, X must simply be replaced by and the y
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coordinate has to be replaced by the ft coordinate in order to change the 

formulations from the cartesian system to the axi-symmetric system. Thus, 

it suffices to explain the formulations only in the cartesian system.

For plotting purposes, the solution domain is represented by a finite 

area, which is the cross-section of the actual solution-domain in the 

( x , y ) plane. This is termed the "solution plane". Since the temperature 

of any point within the solution-domain is a scalar quantity, it can be 

plotted along the third direction, perpendicular to the solution plane, 

which is called the "solution direction". Plotting the actual temperature 

distribution at all the points on the solution-domain will form a 

continuous surface. This surface is termed the "exact solution surface".

A similar surface obtained by the analytical solution to the differential 

equation (2.1) for the same problem should also coincide with the first 

surface. Theoretically, it is possible to obtain a numerical solution 

surface, which is also close enough to the same surface by taking a 

sufficiently small refinement of the solution-domain. When the solution- 

domain is discretised into a finite number of smaller elements, similar 

subdivisions can also be obtained on the exact solution surface, such that 

each section is projected entirely on one element. Thus, the number of 

these sections on the solution surface is the same as the number of 

elements in the solution-domain. For instance, this discretisation is 

shown in Figure 3.2 for a special case of triangular elements for a 

particular solution-domain. This is only for the ease of understanding 

later. The problem is now able to obtain a solution surface as close as 

possible to the exact solution surface using a finite number of sections. 

Hence, each of these sections needs to be approximated as accurately as 

possible by temperature modelling.
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Exact Solution Surface

Figure 3,2: The Solution Space
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3.2.1 Temperature Model for an Element with Three Nodes

Let the solution-domain be replaced by a triangular mesh with 

nodes at its joints (vertices); then, by the same method described in the 

previous section, the exact solution surface can be subdivided into the 

same number of triangular sections as the number of elements of the mesh 

(see Figure 3.2). Each section of the exact solution surface, which can 

also be projected on a unique element, can be replaced by an approximate 

solution surface, defined by the exact temperatures at the nodes of that 

element. This can be done only by defining a (polynomial type) relation 

to express an approximate solution surface close enough to the exact 

solution surface. The mathematical form of this relation is called the 

"trial function", which is also termed the "temperature model".

Obviously, the accuracy of the approximation depends on the form of this 

trial function. Each element has to be dealt with individually, and 

independently.

Consider a typical triangular element £ (of the solution- 

domain), as shown in Figure 3.3, with nodes 4., j and k at its vertices.

The exact temperature distribution over that element can be plotted as 

shown by a curved triangle (6^ 0 • 0^), the "exact solution surface" (curved 

lines). A plane triangle (0^ 0 • 0^) is fitted passing through the exact 

temperatures at the vertices as defined in Figure 3.3, the "approximate 

solution surface" (straight lines). Both of these curved and plane 

triangles must project on the same element, £. The latter, which is also 

unique, is taken to be an approximate temperature distribution over the 

element £. Therefore, the exact solution surface over the typical element 

(the curved triangle) can be replaced by this approximate solution surface 

(the plane triangle). Of course, any point P within the element £ has an 

exact temperature, P8, as shown in Figure 3.3, and an approximate 

temperature as PA, where the error at that point P is defined as e.
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Figure 3.3: A typical triangular Element with three Nodes at its

vertices and using a Linear Temperature Model.



Approximate Solution Surface

Figure 3.4: Approximate Solution

Surface to replace the

Exact Solution Surface shown

in Figure 3.2, using Linear Temperature Model and triangular 
Elements.
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For example, Figure 3.4 may show the assemblage of such approximations 

over each element for the same case as shown in Figure 3.2. This is a 

"crystal-like" surface imagination of the replacement to the exact 

solution surface.

Mathematically, the exact solution surface over the element £ 

may be expressed by some relation, say:

ee = Q U , y ) (3.5)

and the approximate solution surface (the plane triangle, 0^ 0 . 0^) over 

the same element £ can be expressed by a linear relation of the form:

0 = A + B . x  + C.i/ (3.6)

where A, B and C are constant, which can uniquely be determined in terms 

of the exact values of the nodal temperatures (0^, 0 • and 0^ at nodes X., 

/ and k , respectively) by solving the following simultaneous equations:

0 . = A + 8 . x ;  + C . y ;A# 'C. ^

0 . = A + B . x . + C . y  -
J j j

(3.7)

0fe = A ♦ B . x k *  C . y k

This can be solved to yield:

A = T T T -  M  • { e >e

8 = Y 7 E ~ -  lb] • {0}£ (3.8)

c  =
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where A^ is the area of the element £, and:

[a ]  =
lai

a .
5 ' 0 . ' 

A,

[b ] « b.
J

and (6}e =
6/

(3.9)

[c] =
CJ

\

These are termed as the element characteristic matrices, where &, 6 and C 

are called the "element characteristics" and may be tabulated as follows:

TABLE 3.1

The Characteristics of the Typical Triangular Element 

X/fe in Figure 3.3 [9]

Corresponding to a b C

Node A.
al  “ lxj ' 9 k - xk-V j]

ii i c ^ =  lxk - x . )

Node j ay - [xk - v r xv \ ] 6j - tefe-Sk1

*iIIO

Node k
% = lx^ r xr y^

fafe= Cfe = lx . - xz )

Substituting relations (3.8) in equation (3.6) and re-arranging 

the terms, we obtain:

ee =
r  a . +  b +  c. '*y c l . +  b ; * x  +  e. -•y a, +  b , * x  +  ch-y

2 . A.
. 0 . + M --- ------1— ) . 0 ;

2 . A.

k uk ^

2 . A.
-) .01

This can finally be written in matrix form as:

e e = [N] . {e}e (3.10)
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where:

[W] = N . Wfe]

and: h  = [a- l  + bl - X  + c_ . . i f ) / t z .  Ae

i J i S a e

\  =  l a k + b k - x  + c fe . jfJ/12 . i e

(3.11)

These are the position functions or the interpolation functions to be used 

for locating the unique point P ( x , y ) . Equation (3.10) is now similar to 

equation (2.19) described in Section 2.4.1 for a general case.

Consider a point P(x,£/] within the typical triangular element 

with vertices 4,jk (Figure 3.3); then the area of the triangle jpk (A») is 

determined as follows:

A.
x.

X y

x . y ;
5

= * y . U k- x j.) *  (x

By referring to Table 3.1, it can be shown that:

A; = \ • U /  + b; • X + c. . y)

From the definition of W. in relation (3.11), we will have:

w .
J Ae

W - = -T-“x, A£

and W, = -—

(3.12)

Similarly: and



coordinates. From relations (3.12), we may write:

Due to the above results, W., W. and W, are also referred to as the area
X. j  fe

N . + W . + N.
a. j  k

Li * A i + \ = ? (3.13)

Given the unique coordinates of V [ x , y )  , we can use any two of

the equations of (3.11) to determine the N fs, since the third is a

function of the other two, determined by relation (3.13). Conversely, if

any two of the W fs were known (N. and W *, for example), then the third
x. j

(W^) is also known by relation (3.13). Thus, we can solve the system to 

determine X  and y uniquely as follows:

= N x. +X. W x . + 
i wii • \

(3.1A)

y = w.X, y • + U •
yj +

N
fe •

Since we are only interested in the solution within each 

element, the point P must be confined inside the element. This implies 

that the above-mentioned areas shall never be negative, and, consequently, 

none of the W ’s can be negative or greater than unity. Hence, equation

(3.10) is only valid for the points on the plane triangle (0. 0 . 0r)'L j tc

projecting on the element x./k in Figure 3.3, and the excess plane defined

by equation (3.6) is automatically neglected. Namely, equations (3.6)

and (3.10) are equivalent only and only over the element in question.

T h e r e f o r e ,  i t  s u f f i c e s  t o  s t o r e  e i t h e r  o n l y  t h e  X  a n d  y f o r  a n y  p o i n t  P,

or any two of W. and N», and the others can be obtained by using X- j ”

relations (3.11) or (3.14). In the finite element method, the latter are 

more useful.

At this stage, some special relations are introduced which
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will be used later, between the position of the point P and the 

corresponding M fs. If the point P coincides with the element centroid, 

then by the properties of a triangle:

Ll Afe

l
3

Ae

Hence: N; = bl • = N, -  \  (3.15)
A. j  tz 3

If the point P lies on the mid-point of any side (side A.J, for example),

then A# = 0 and A- = A- = |.Art. Thus: 
tl A, j  1 2.

= \ , Wy = | and = 0 (3.16)

In brief, the temperature distribution over each triangular 

element can be approximated by a linear relation of the form (3.6), which 

is uniquely defined over the element, and can be expressed in matrix form 

as (3.10). The complete approximate solution surface then obtained 

globally over the solution-domain looks similar to the one plotted in 

Figure 3.4. This is an approximation to the exact solution surface, 

similar to the one plotted in Figure 3.2. At this stage, it may be noted 

that the temperatures obtained at the "seams" (boundaries) of the 

adjoining elements are equal. This makes the approximated solution 

surface to be piecewise continuous (and compatible between adjacent 

elements), which is the necessary condition as explained in Section 2.4.1 

for the formulation to be valid.

3.2.2 Basic Outline

Next, we introduce this temperature model into our finite 

element formulations described in the previous chapter. The conductivity
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matrix ([K]) is a sum of three matrices, two of them dealing with the 

conduction of heat inside the domain along the X and y directions (see 

relations (2.47) and (2.50), respectively), and the third dealing with the 

convection at the boundaries of the domain (see equation (2.56)). The 

load matrix ((F)) is also composed of three parts, namely: (i) the

internally distributed loads (see relation (2.58)), (ii) the conductive 

loads through the boundaries of the domain (see relation (2.62)), and 

(iii) the convective loads through the boundaries of the domain (see 

relation (2.63)). After constructing each of these matrices, we shall 

end up with a system of simultaneous linear equations, in which 0 (the 

nodal temperatures) are the only unknowns. Thus, the system can then be 

solved.

3.3 FINITE ELEMENT FORMULATIONS

3.3.1 The Elemental Formulations in Two Dimensions

A general steady-state heat conduction problem in the frame of 

the finite element method is considered, for which the elemental equation 

(2.64) becomes:

[K]e . {0}£ + {F}£ = 0 (3.17)

where, for the two-dimensional case (X and y, for example), the thermal 

conductivity matrix (relation (2.65)) can be written as:

[K]2 - [Kx]e + [K ]e + [H]e (3.18)

Using the definitions (2.47), (2.50) and (2.56) for K^t K and 

H, respectively, they can be written as follows:

(3.19a)
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and:

* . $  {
„e

'dN T ’ dN
.3 ym * V dym} . dS

[H]e = l& . f {[N]T . fie . [N]} . dc
c3

(3.19b)

(3.19c)

2- 2- where, here, the volume 1/ is now replaced by the surface S (the

integration limits over the surface of the element 0.), and the elemental

volume dU becomes Z ^ . d S , where dS is the elemental area for the two-

dimensional case (see equation (3.1)). Similarly, the surface has to

be replaced by a curve C.̂  (the only integration limits of the convective

boundary of the solution domain), and the elemental area dS now becomes

l ^ . d c , where dc is the elemental curve.

For the heat load vector, relation (2.66) is rewritten as:

tne = - {Fn}e + {F„}e - {F,}e (3.20)

where F^, F^ and F^ are the same as those defined by the expressions 

(2.58), (2.62) and (2.63), respectively. For two-dimensional cases, by 

introducing similar notation as before, they can be written as follows:

{ F ^  = £e . // • [W]T} • dS (3.21a)

{F }e = lZ . f (qe . EN]T} . dc (3.21b)
c 2

and: {F,}e = . / {fce . . [N]T } . dc (3.21c)

c3

where the surface 5^ is now replaced by the curve C^ (the conductive 

boundary of the solution-domain). Starting from equation (3.18), these 

matrices can be explained individually as follows.
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3.3.2 The Thermal Conductivity Matrix, [K]

In order to formulate the thermal conductivity matrix of a 

typical element £ (relation (3.18)), we must be able to establish relations 

(3.19). To do so, we need to study the thermal conductivity properties 

(fl^ and f l y ) of the material within the element, and also the effective 

heat transfer coefficient, k , on the convective boundary face of the 

element has to be prescribed. In general, these can depend on various 

interior factors, such as the temperature, the direction, the radiation, 

the position (X,t/), and also on the external factors (pressure, for 

example). Ideally, we would like to use a method which incorporates all 

these factors, but this is almost impossible because of the vast number 

of experiments that would have to be studied in detail for each material. 

However, the variation of thermal conductivity of some materials with 

respect to temeprature has been studied. Once the variation of the 

thermal conductivity with temperature is established, then for any given 

temperature the corresponding value of thermal conductivity can be 

determined. We can then incorporate this value into our solution 

procedure by modelling the temperature for each element. For instance, 

one can use the nodal temperatures of the element, which are already known. 

One obvious method is to determine the centroid temperature of the element 

by using its nodal temperatures. When the temperature model is linear 

(as explained in Section 3.2.1), the centroid temperature is just the 

average of the nodal temperatures. This value is then used to determine 

the temperature related to the physical properties of the element. This
, £ , g , g

type of modelling makes the method isotropic (f l^ = f ly  =  fl , see Section

1.4), and also homogeneous, over each element. Hence, for any particular
, £

temperature, the corresponding value of the thermal conductivity, fl , for 

each element can now be used in the matrices (3.19) as follows.

By substituting relation (2.31) into relation (3.19a), we will
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have:

i*1*]

9 M./3X
r9W. 9W . 3Wfci

9W ./3x — i IZ

J -9x 9x 9x -
S H k / B X

>

. dS

From equations (3.11), this can be rewritten as:

b.X.

- ? - B
i

- f - T T T l h
b .
J

. dS

This relation can be re-arranged as:

b .
a fce »e 1 "tl

[K 3e = ■ b.
4 . (a j 2 J 31 *■  J

b,

fafe] . JJ dS 

S e

since all the variables involved do not vary with respect to dS over each 

element. Substituting A£ for Jf dS9 we finally obtain a matrix for [K 

of the form:

[K ] 1 xJ
£ . £ e

s e

6? b . b . b. b.x. x. i x. fe.

b . b . b2 b . bi
J *  i j  k

-bfe bfe by fafe -1

(3.22)

and, similarly, for K :
y

[K ]' 
1 r

fee . £ e
T 7 J 7

cl

c . c .
i *

LCk Cl

c. c . 
*  j

c. c ;i

cl ck 

c ;
J k (3.23)



80

The K̂  and matrices are volumetric integrals (relations 

(2.47) and (2.50), respectively), and they involve all the elements 

throughout the solution-domain (see also relations (3.19a) and (3.19b)), 

whereas the H matrix (relations (2.56) or (3.19c)) is applied only to the 

boundary elements with convective boundary face. This matrix is a surface 

integral, in contrast to the K and K matrices, which are volumetric 

integrals. It is integrated simply over the convective boundary faces 

(the approximated surface, S^) of the boundary elements.

Let us consider a boundary face, Z j, of a typical triangular 

boundary element £ with nodes 4,jk  at its vertices, as defined in Figure 

3.5, for example, which is part of the approximated surface, S^. For 

such an element, the H matrix (relation (3.19c)) is written as:

[H]e = £e . / {[N]T  . h j-  . [N]} . dc (3.24)

t \L # ,where h.. stands for the heat transfer coefficient on the face which 

has to be prescribed. If this coefficient is considered to be uniform on 

the face Xj, then this relation can be rewritten as follows:

[H]e = l' .h\r  f {[W] . [N]} -dc 
J d-i

(3.25)

where: [N] = [N. N. N.]

and, from Figure 3.5:

N. = 1 -  ~r~~ , W; = -j—— and bl, = 0 (3.26)4, L • • j L * • fe
4-1 3 4-j

in which L. . is the length of the lateral side 4.J of the element in

question (£). Hence, it can be rewritten as:





82

Multiplying the vectors and integrating them term by term on the face i . j, 

we finally obtain:

[H]
e
On hCLC.0. <Lj

1 0
2 0

0 0
(3.28)

Here, it is noted that any node (K, for example) off the convective 

boundary, S^, has no contribution in the H matrices (3.27) and (3.28) as 

must be the case.

The H matrix of the type (3.28) is obtained for each 

convective boundary face. For the remaining faces (non-convecting), this 

matrix would be equal to zero. Therefore, in general, for each trianglar 

element £ with nodes A~jk, the elemental H matrix will be the sum of the H  

matrices of each of its faces:

[H]e [ H r  , -  + [H]1 on £ac,z L J
e

on £ace. j k + [H]
£

on £ace, k l (3.29)

Consequently, the thermal conductivity matrix of the typical element 

(equation (3.18)) can finally be obtained by summing the relations (3.22), 

(3.23) and (3.29).

3.3.3 The Heat Load Matrix, {F}6-

Next, we need to evaluate the heat load matrix {F}^ in
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equation (3.17). {F} consists of three vector matrices and is described

by the relation (3.20), in which each vector matrix represents the system 

of the nodal loads equivalent to a particular type of load acting on a 

typical element. All the loads acting off the nodes of the respective 

element must be replaced by an equivalent system of nodal loads acting at 

the nodes of the same element. This can be achieved, for each type of 

load, by the same method as explained in Section 2.4.3 with the usual 

changes for converting it to a two-dimensional problem, as was described 

in Section 3.1.

The first vector matrix on the right hand side of the relation 

(3.20), namely, {Fq }6', consists of the system of the nodal loads equivalent 

to the internally generated heat loads, due to the distributed heat 

sources within the element £. This vector matrix, in general, can be 

evaluated by the relation (A.16), where the total heat load is given by 

relations of the form (A.la) or (A.lb), and the load-centre is located by 

the relation (A.2). In two-dimensional problems, the total heat load can 

be expressed by:

F0 = ■ !! £e • (3.30)
•4 Q

Se

If the heat sources are uniformly distributed:

(3.31)

where is the area of the element, and the load-centre coincides with 

the centroid of the element (c). By substituting the relation (3.31) 

into the relation (A.16), we obtain:

{F0}e = (0e . . A ) . [Ni i ] (3.32)
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where the f s are the values of the position functions evaluated at the

centroid of the element.

For a triangular element with three nodes at its vertices ( Z ,  

j and fe, for example), as shown in Figure 3.3, with a uniform heat source 

(thermal load) distribution, Q.̂ , per unit volume, the values of the 1 s 

are given by the relation (3.15). Hence, relation (3.32) can be written 

for such an element as:

. Ae 

3

1

J (3.33)

We can obtain a similar generalised result for a uniform load 

distribution acting upon a two-dimensional multi-sided polygonal element, 

but, by a different approach, it can also be proved that the conservation 

law and the moment law are satisfied. For this, we first require the 

following mathematical theorem as explained in Appendix B.

The second vector matrix on the right hand side of the 

relation (3.20), namely, {F }^, which is a boundary load matrix and 

represents the system of the nodal loads equivalent to the thermal loads 

due to the conduction of heat through the boundary face(s) S of a 

boundary element £, which is a member of the approximated surface for the 

conductive boundary surface S C o n s i d e r  a typical boundary element <L of 

height Z with a polygonal cross-section and a lateral boundary face S . For 

example, a triangular element Z j k  with a rectangular boundary face based 

on a side (Zj 9 for example) as defined in Figure 3.5. Let this face be 

a member of the approximation surface of the conductive boundary surface 

S2 of the solution-domain. The system of nodal loads equivalent to the 

thermal loads due to the conduction of heat through this face 5^ (side Z j )  

can be calculated by the relation (3.21b) as:
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L ..

{ F j e .. = l z . l q * . . [M]T } . dc.1 q } on 4.j J  L J J (3.34)

where L . • is the length of the boundary side Xy, which is the interval of 'tj

integration, where = 0 everywhere on side Xj. For a uniform heat
0 ,

flux, qj •, distribution passing through that face (side 9 by using 

similar reasoning as before, we can finally obtain:

{F } ••1 q* on a, j Fi

q . . . r  . L ..
7

7

10

(3.35)

(see relation (A.32)). The node fe off the boundary face -t/ has no direct

contribution in the conduction of heat through that face («£/), and thus its 

corresponding term, is zero in relation (3.35).

This nodal load vector matrix is obtained for all the faces of 

the element on the approximation surface of the conductive boundary surface 

52* For all the rest of the faces, and hence for all the nodes not on 

this boundary surface, this vector is zero. Thus, for each triangular 

element, vectors of the form (3.35) or zero vectors are added for each side, 

depending on whether the side is a member of the approximation surface 

or not, respectively. Therefore:

e
on X/ + £

on j k + £
on k i (3.36)

For a two-dimensional multi-sided polygonal element (X/feX ... ft,

for example), the relation (3.35) can be written as:
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e
on Z j

' 1

F . 1
J

_ ■t<L ■ Li j 0t k 1

F 0n

(3.37)

and the relation (3.36) can be written as:

1F/  -  Ij + ^ a n  Jk + + ’ ’ ' <3 ‘ 38>

such that, in each component, we have only two non-zero terms.

These nodal loads can also be obtained by the relations (A.19),

(A.30) and (A.32), when only the boundary faces (the boundary sides) on

the conductive boundary surface S2 are concerned.
Some of the terms of relations (3.36) or (3.38) corresponding

to faces on S2 may also be zero if they represent an adiabatic boundary
face (q - • = 0 on side Z j, for example).

'tj

Finally, the third vector matrix on the right hand side of the 

relation (3.20), namely, {F^}^, which is a boundary load matrix. This 

represents the system of the nodal loads equivalent to the thermal loads 

only due to the influx of heat from the ambient to the element Q, through 

the convective boundary surface of the solution-domain. Consider a 

boundary polygonal element with a boundary face 5 being on the 

approximation surface S^. For example, a triangular element as defined 

in Figure 3.5. The thermal loads due to the heat flow from the ambient 

to this element, passing through that face (S2-), can be represented by a 

similar procedure as that described for the relation (3.34), where the

heat flux is:
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*Lj °° (3.39)

/ 2. r,2 „ .where fi - * is the heat transfer coefficient on the face S (side -tj), and

0 ^  is the ambient temperature adjacent to the same face (side Z j).

Hence, for a uniform case, a similar relation to (3.35) is obtained as:

e
on A.j (3.40)

As before, for each element, vectors of the form (3.40) or zero vectors 

are added for each face (side), depending on whether it is a member of the 

approximation surface (convective boundary) or not, respectively.

Hence, for the triangular element, it can be written:

= W o n  ij + W o n  jk + W o n  U  ( 3 ‘ 41)

For a two-dimensional multi-sided polygonal element (<LjkZ ... ft, 

for example), the relation (3.40) is written as:

e
on

<L
/ MJL
F.J
f

h * : .  . e ^ '  .  l & . L .  ■ 
- *-S *■}

^k 2

Fn)

(3.42)

and the relation (3.41) becomes
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<F/ J e ■ ^ h ^ o n  Ij + ^ h ^ o n  Jk + W o n  kl + " *  W ok » i  ( 3 ‘ 43>

such that, in each component, we have only two non-zero terms.

Relations (3.37) and (3.42) show, as expected, that the nodes 

off the boundaries do not contribute to the boundary conditions. Hence, 

the vectors representing the loads at the nodes not on the boundaries, in 

the boundary load matrices, are taken to be zero.

Finally, therefore, the heat load matrix for each element, as 

given by the relation (3.20), will be the sum of relations (3.32), (3.38) 

and (3.43). In particular, for a triangular element, they are relations 

(3.33), (3.36) and (3.41), respectively.

3.3.4 Assemblage

So far, in this chapter, we have established some property 

matrices for a typical element such as the thermal conductivity matrix 

[K]^, which is a sum of three component matrices (relation (3.18)) and the 

heat load vector matrix {F}2", which is also a sum of three component vector 

matrices (relation (3.20)). Both together incorporate all kinds of the 

boundary conditions, except radiation.

The elemental matrix equation (3.17) yields a set of n linear 

algebraic simultaneous equations for an element, £, with n nodes, involving 

n unknown nodal temperatures. In particular, a set of three linear 

algebraic simultaneous equations for each triangular element («t/k, for 

example), with only three unknown nodal temperatures (0^, 0y and 0^, for 

example). For such an element, the relation (3.17) can be written as:
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(3.44)

There are as many sets of these equations as there are elements 

in a particular region or in the whole solution-domain, but, since the 

union of these elements forms the solution-domain itself (Section 2.3.2), 

there are many nodes that are common among several elements. Therefore, 

for a domain with W nodes, there would be many common nodes that exist in 

more than one set of those equations. Each set (relation (3.44), for 

example) can be incorporated into a system of N linear algebraic 

simultaneous equations by including all the W unknown nodal temperatures 

in the 0 vector matrix in equations (3.17) or (3.44). This requires an 

expansion of the [K]^ matrix into an W x W  matrix, and also the {F}^ matrix 

into a vector matrix with W components. All the nodes not featured in 

the elemental equations are obviously taken to be zero to complete the 

matrix. This does not affect each individual elemental equation ((3.44), 

for example), and hence it can be shown as:
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1 2  3 - .. / •* ... n
N

01
•

02
•

•

• • • ♦ • •

:
• K. . 
. Kl k 0l F.

I \ . ! •
• * . . • 1 ► + < •
I \ • • *

•

^  : : k j j
K.. 0

i
F.
i

* * l •
•

Kk i ; : % ■ Kkk 0k Ffe

. . . •

. . . •

N J 0N • /

This set of M equations (3.45) is equivalent to the set of n equations in 

(3.44), and the solution for each set is unique only for the n nodes that 

it originally described. Finally, we combine all these expanded 

elemental systems, which are all of the same size, to obtain a unique set 

of W linear algebraic simultaneous equations involving N unknown nodal 

temperatures. This is the system equation, obviously, since the solution 

domain can be dealt with as a single element with W nodes; the final 

assemblage thus obtained has to be also of-the form (3.17) with a unique 

solution. Therefore, the system equation can be written as:

[K] . {0} + {F> = 0 (3.46)

where [K] is the sum of all the expanded [K] fs for all the elements, and 

{F} is the sum of all the expanded (F}2',s for all the nodes. This method
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is usually called the "direct assembling" and the expansive description 

of this method may be found in reference [9] by Eysink^B.J.

3.4 VALIDATION STUDY

3.4.1 Outline for Validation Study

Heat conduction phenomena are very important in engineering, 

particularly in nuclear engineering, which is a very sensitive subject 

both from civil and military viewpoints. On one hand, due to safety, the 

nuclear reactor components have to be carefully studied, but on the other 

hand, because of commercial security reasons, some information is not made 

freely available. Hence, it is hard to get access to real data. Often 

published results can be mis-interpreted and also may cause unnecessary 

concern. Therefore, reliable sets of data for more realistic situations 

are almost impossible to come by in the normal literature. Simplified 

problems of steady-state heat conduction have been studied and validated 

using a similar method by Eysink. His overall conclusions showed that 

the finite element method had performed very well [9]. The solutions 

obtained have been for highly idealised situations and thus in most cases, 

for real life, they have limited usefulness.

The formulations presented in this chapter are very generalised 

for non-linear steady-state problems. The method is applicable to the 

problems with any shape of geometry, physical non-linearities and all 

kinds of boundary conditions except radiation. Like most non-linear 

problems, exact solutions are either non-existent or too complicated to be 

of any practical use. Throughout this work, we have tried to use the 

LMFBR fuel element to demonstrate the capabilities of the proposed method 

in various stages. We have started with the fuel pellet to establish the 

validity of the method, because it was possible to derive an analytical 

solution for it, as will be shown in the next section (3.4.2). This was
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then extended to include the cladding with a uniform gap. All these 

geometrical configurations have been subjected to various non-axisymmetric 

boundary conditions and different internal rates of thermal energy 

generation. Finally, in this chapter, the gap is made non-uniform.

When we come to consider the multi-phase problems, we shall continue to 

use the LMFBR fuel element for uniformity.

3.4.2 Analytical Solution for an Axisymmetric Non-Linear Problem

with Internal Sources and Validation of the Proposed Numerical 

Method

A similar method has been tested thoroughly for steady-state 

linear problems (for example, [9,10]). Since the proposed method is 

applicable to non-linear problems, we need to verify its validity and to 

check its accuracy against a non-linear problem for which an analytical 

solution can be established. Harwell, UK, have recently released some 

relationships regarding the properties of the LMFBR fuel element components. 

We can incorporate these relationships into our formulations. We can 

also obtain analytical solutions to calculate the temperature distribution 

inside the fuel pellet subject to axisymmetric conditions.

The geometry of the fuel pellet is considered as a long hollow 

circular cylinder. Half of its cross-section is as shown in Figure 3.6, 

where Sij and are the inner and the outer radii, respectively. The 

thermal conductivity (k) variations of the .fuel pellet with respect to 

temperature (T) is given by a relation of the form:

k = (a + b . T)"1 + c . T3 (3.47)

where k is measured in W.m”^.°K“ ,̂ and T is measured in °K [11]. The 

(constant) values of a, b and C are given in Table 3.2, and k in relation
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TABLE 3.2

Properties of the LMFBR Fuel Pellet, Recently Released 

by Harwell, UK [11]

Thermal Conductivity; Defined by a relation of the form of (3.47), 

where the constants are:

a = 0.042

b = 2.71xlO-4

c = 69.0 x10"12

The maximum (volumetric) rate of thermal energy generation is:

= °.27*10l° W.m-3 .

Geometry: Tubular with half cross-section as shown in Figure 3.6,

where:

the inner radius is : Aj = 0.00114 m

the outer radius is : Az = 0.00254 m
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(3.47) is plotted against T in Figure 3.7. The thermal energy source 

distribution is assumed to be uniform throughout the fuel pellet. The 

boundary conditions are prescribed temperature distribution (T̂ ) on the 

outer surface ( defined as the first kind of boundary conditions ) and 

prescribed heat flux (q j ) passing through the inner surface (defined as 

the second kind of boundary conditions). Since the problem is 

axisymmetric, the boundary conditions are also axisymmetric, namely, 

uniform temperature distribution on the outer surface and uniform heat 

flux passing through the inner surface.

The boundary conditions are assumed to be such that all the 

inner surface is adiabatic, q-j = 0, and all the outer surface is kept at 

T2 = 1073°K.

The governing equation for this case may be written as follows

(3-48>

where ti is the radius. Integrating this relation leads to a relation of 

the form:

fe- £ = - f - *  + cr 4  (3'49)

Since the inner surface is assumed to be adiabatic:

C 1
2 (3.50)

Further integration of relation (3.49), using relations (3.47) 

and (3.50), gives:

1
I n  [cl +  b . T )

S
4

I n U)
ft

fl2

0 (3.51)
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where and T^ are the radius and temperature of the outer surface, 

respectively. Finally, relation (3.51) can be written as:

1
~E.In

a + b . T
a + b.T ̂

+ £  it- - r 2 :̂ + p  u 2 - ^ 2 : +  f . A . 2 . l n  ( - i )

n.
0 (3.52)

This is the exact solution to the problem, but the explicit relationship 

for T (as a function of h.) is too difficult. Hence, the left hand side 

of relation (3.52) is equated to £, and then for each value of h., the 

respective value for T is computed by iteration until z is small enough. 

This value of T is then taken to be the solution at the given radius h.. 

Figure 3.8 shows the radial temperature distributions for some selected 

percentages of the maximum rate of thermal energy generation, namely, 0%, 

25%, 50%, 75% and 100%, of .

This problem is also solved by the (finite element) 

formulations proposed in this chapter. Since the problem is axisymmetric, 

it can be solved only for a small sector of the cross-section of the fuel 

pellet (see Figure 3.9), thus saving on computing time while maintaining 

the two-dimensionality of the problem. Of course, both sides of this 

sector are to be considered as adiabatic boundaries. The radial 

temperature distributions (profiles) for the same values of the rate of 

thermal energy generation as used before are plotted again in the same 

figure (Figure 3.8).

The results (of the proposed method) were in excellent 

agreement with the exact solution (relation (3.52)), where as few as eight 

(8) nodes in the radial direction were used (Figure 3.9). The solutions 

were achieved after about five (5) iterations. The method is capable of 

solving more complex non-linear problems and, as the above example has 

shown, it is very accurate, stable and economical.
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3.5 APPLICATION OF THE METHOD TO SOME MORE GENERAL EXAMPLES

The performance and capabilities of the proposed method is illustrated 

here by its application to some selected examples of the actual LMFBR fuel 

element components, as follows.

3.5.1 The Temperature Distribution within a Fuel Pellet Situated in 

a Linearly Varying Temperature Environment and with Adiabatic 

Inner Surface

The same sample as that defined in Section 3.4.2 is considered 

here again. The method is valid for any prescribed boundary condition.

For example, the fuel pellet may be assumed to be situated in a linearly 

varying temperature environment. Thus, there would be a unique diameter 

(AB), the "symmetry diameter", joining the hottest point (A) and the 

coldest point (B), both on the outer surface of the pellet (Figure 3.10). 

The temperature (T ) at any point (p) on the outer surface of the pellet
r

may be determined by projecting it onto this diameter and interpolating 

between and Tg, the temperatures at A and B, respectively (see Figure 

3.10). The problem, in general, is only symmetric about the unique 

symmetry diameter (AB). Hence, we have to calculate for at least half of 

the cross-section of the fuel pellet. Of course, such a symmetry diameter 

is now considered as an adiabatic boundary.

Four different examples of this type are selected with the 

environmental temperature distributions along the symmetry diameter 

prescribed as shown in Figure 3.11, while the inner surface is always 

assumed to be an adiabatic boundary surface as before. The temperature 

distribution inside the fuel pellet is then calculated for each case (at 

its maximum rate of thermal energy generation), but only the temperature 

profiles along the unique symmetry diameter are plotted in Figure 3.12. 

Corresponding curves in Figures 3.11 and 3.12 are labelled with the same
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Figure 3.11: Environmental Temperature Distributions on the Outer Surface.
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symbols (A), where the curves labelled Aj both refer to an axisymmetric 

problem.

3.5.2 The Temperature Distribution within a Fuel Element Situated in 

a Linearly Varying Temperature Environment and with Adiabatic 

Inner Surface

Let us consider a concentrically-mounted conventional fuel 

element of an LMFBR with the same fuel pellet as that defined in Section 

3.4.2, whose geometry is defined in Figure 3.13 where half of its cross- 

section is shown. The inner and outer radii as well as the thermal 

conductivity of the clad, according to the data released by Harwell, UK 

[11], are tabulated in Table 3.3. Moreover, the existing (uniform) gap

TABLE 3.3

Properties of the Clad of an LMFBR Fuel Element [11]

Thermal Conductivity:

20.0 W.m-1.°K-1

Geometry: Tubular with:

the inner radius : ' = 0.00260 m

the outer radius : *c2 = 0.00298 m

(of 0.00006 m) between the cladding and the fuel pellet is assumed to have 

an effective thermal conductivity, in which the effects of conduction and
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Fuel Clad

Figure 3.13: Fuel element Geometry (half cross-section is shown).

Figure 3.15: Environmental Temperature Distributions around the Fuel Element.
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Figure 3.14: Gap Thermal Conductivity variations of an LMFBR Fuel Element.
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radiation across the gap are included. The effective gap thermal 

conductivity depends heavily on many factors, including the gas composition 

and the nature of the surface, both of which vary with burn-up. Figure 

3.14 shows representative curves of the effective gap thermal conductivity 

as a function of gap width and gas temperature [11].

The boundary conditions are assumed to be similar to the case 

explained in Section 3.5.1, namely, the inner surface (of the fuel pellet) 

is adiabatic, while the fuel element is situated in a linearly varying 

temperature environment. Thus, the temperature at any point on the outer 

surface (of the clad) is linearly interpolated on the unique symmetry 

diameter, joining the hottest point and the coldest point, both on the 

outer surface of the clad (see Section 3.5.1). The problem, in general, 

is only symmetric about the unique symmetry diameter, and hence at least 

half of the cross-section of the fuel element has to be considered in the 

calculations. Of course, as before, such symmetry diameter is considered 

as an adiabatic boundary.

Three different examples of this type are selected with the 

environmental temperature distributions along the symmetry diameter 

prescribed as shown in Figure 3.15, while the inner surface of the pellet 

is always assumed to be adiabatic as before. The temperature 

distribution inside the fuel element is then calculated for each case (at 

its maximum rate of thermal energy generation), but only the temperature 

profiles along the unique symmetry diameter are plotted in Figure 3.16. 

Corresponding curves in Figures 3.15 and 3.16 are again labelled with the 

same symbols (B), where the curves labelled Bj both refer to an axisymmetric 

example. The mesh used here was similar to the one shown in Figure 3.19 

with 615 nodes and 1120 triangular elements. Each example converged after 

eight (8) iterations.
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3.5.3 The Temperature Distribution within a Fuel Element with

Uniform Temperatures on the Outer Surface and with Adiabatic 

Inner Surface, when the Pellet is Eccentrically Situated (Non- 

Uniform Gap^

Let us consider the same fuel element as explained in Section 

3.5.2, in which the fuel pellet has been eccentrically situated. Figure 

3.17 shows half of its cross-section. The outer surface of the cladding 

is assumed to be kept at a uniform temperature of 800°K, while the inner 

surface of the pellet is assumed to be adiabatic. Moreover, its rate of 

thermal energy generation is maximum. The problem, in general, is only 

symmetric about a unique diameter (AB), the "symmetry diameter", passing 

through the narrowest and the widest gaps. Therefore, at least half of 

the cross-section must be considered in the calculations. Of course, as 

before, such a symmetry diameter is considered as an adiabatic boundary.

The temperature distribution inside the fuel element can then be calculated 

for any value of eccentricity. For instance, these temperatures are 

calculated here for six selected values of eccentricity. The temperature 

profiles along only the unique symmetry diameter, for each case, are shown 

in Figure 3.18, in which curves no. 1 refer to an axisymmetric example. 

Figure 3.19 shows the mesh used for these examples, consisting of 615 

nodes and 1120 triangular elements. The solutions were achieved after 

about nine (9) iterations.



Figure 3.17: Schematical Diagram of an LMFBR Fuel Element when the Pellet is eccentrically situated. Half
cross-section, along the symmetry diameter, is shown ( non-uniform Gap ).
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Key:

Curve No. Eccentricity

1 0.0 xlO'
2 5.0 //
3 10.0 //
4 15.0 //

5 20.0 //
6 25.0 //

7 30.0 //

Figure 3.18: Temperature Distributions along the Symmetry Diameter, inside the Fuel Element, due to various eccentricities.
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CHAPTER 4

TIME-DEPENDENT PROBLEMS:

FINITE ELEMENT FORMULATIONS FOR GENERAL 

TWO-DIMENSIONAL TRANSIENT HEAT CONDUCTION PROBLEMS

ABSTRACT

The finite element formulations, proposed in the previous chapters, 

are applied to very general two-dimensional transient heat conduction 

problems, involving single-phase media. Multi-phase problems (both 

steady-state and transient) are dealt with in the following chapter. 

Various material properties (temperature dependence, for example) can be 

handled by the proposed method, except for the geometrical variations, 

which are considered to be negligible.

4.1 INTRODUCTION

Transient field problems have been formulated in Chapter 2 within the 

framework of the finite element method, where it was shown that the 

solution to a transient heat conduction problem is governed by a system of 

first order linear differential equations of the form:

I K]  . {8} + [C] . {||} + { T } = 0 (4.1)

(see equation (2.67)). In Chapter 3, a general steady-state heat 

conduction problem was solved by simply setting all the terms of the matrix 

{dQ/dt}, in equation (2.67), equal to zero.

As was the case in Chapter 2, the geometry was assumed to be time- 

independent. If, of course, the geometry were to be time-dependent (which, 

in fact, is due to thermal expansion in transient problems), then the 

analytical (and also numerical) solution would be even more complicated.
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A lot of work has been done involving transient field problems and 

many methods have been developed using special features of each individual 

problem. For example, Mazumdar [12] derived a two-dimensional method 

based on the concept of isothermal contours. Another formulation was 

proposed by Nijsing and Eifler [13] for axi-symmetric problems, but even 

in this case the method is highly complicated and involved. Extension to 

non-axisymmetric problems becomes a formidable task. The two most tried 

and tested methods are (a) the Crank-Nicholson method, and (b) the 

Galerkin method. The Crank-Nicholson method has been successfully used 

by Wilson and Nickell [14], and the Galerkin method has been used with 

equal success by Zienkiewicz and Parekh [15] using the mid-interval values.

A study to compare both of these methods was carried out by Donea [16] 

and his overall conclusion was that, for short-time steps, the Galerkin 

method produces more accurate results, but it is more expensive than the 

Crank-Nicholson method. We would like to derive a procedure here which 

combines the efficiency, accuracy, stability and economy of both methods.

Although the methods of Crank-Nicholson and Galerkin look distinctly 

different, it was found (as will be shown later) that the two methods can 

easily be generalised by one formulation. Using a parameter in the 

general formulation, one can then easily interchange between one method 

and the other, or produce a mixture of both. We have tried to derive a 

very general formulation capable of handling non-linear physical properties 

as well. In this method, time is regarded as one of the dimensions of 

the problem. For the numerical solution, as before, the time-dimension 

has to be discretised into a number of time-elements, which need not 

necessarily be equal. The so-called "time-step’' and the end-points (the 

initial and final ends of each time-step) are called "time-nodes". The 

solution is then manipulated at these distinct time-nodes. If the 

solution at any intermediate instant is required, then the variable can be
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interpolated in the usual way (relation (4.2), for example). A flat 

model, which assumes any variable to have a constant value over each time- 

step, by taking either the initial or the final value, or even a mid

interval value, is too simple and has a disadvantage that it will be 

discontinuous at the time-nodes, for the variables that are not constant. 

For spatial dimensions (see Section 2.4), since the level of approximations 

for other variables is assumed to be linear, the model for the temperature 

variation with respect to time is also assumed to be linear (Figure 4.1). 

This has an added advantage that the other variables will be piecewise 

continuous with respect to the time-dimension as well. Associated with 

this extra time derivative, there are the usual problems of convergence, 

stability and the magnitude of the time-step which have to be carefully 

monitored (more carefully than as has been described in detail in Chapter 

3 for the spatial variables). The accuracy and the stability of the 

method will, of course, clearly depend on the size of the time-step 

chosen, and it is essential to test it. On the other hand, in transient 

problems, especially in phase-change problems (Chapter 5), where the field 

problem is governed by a non-linear quasi-harmonic equation, we must bear 

in mind that (in non-linear problems):

(a) non-uniqueness of the solution may arise;

(b) convergence can never be, a. p/bLOSbi, guaranteed;

(c) the cost of computation time for the solution is considerably 

greater than for linear problems, due to the many iterations in 

almost all parts of the program; and

(d) the time-steps have to be sufficiently small in order to obtain 

significant results, but too small time-steps can lead to 

wasteful computational effort, machine rounding off errors and 

occasionally even to unstable solution.
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Figure 4.1: k and (P*C ) represent the thermal conductivity and thermal
energy capacity, respectively; 0^ is the temperature at 
node £ and £ is time.
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A general recurrence formula is therefore derived using a parameter 

X, which for X equals unity yields the Crank-Nicholson formula, and for X 

equals two yields the Galerkin formula. Both are discussed in detail 

later in this chapter, where for both cases the thermal properties are 

taken to be constant over each time-step and usually the mid-time step 

values are used.

4.2 FORMULATIONS

4.2.1 A General Case

At any time, the problem is governed by equation (4.1), which 

is parabolic or hyperbolic (see Section 1.3) in the time-dimension. 

Therefore, the state of any particular problem at a given time-node is 

sufficient to determine the state of the problem at the next time-node. 

Since in this method we shall be marching forward by time-steps, the 

method may be called a step-by-step method, or a time-stepping method.

The time region is from to and will be discretised into a number of 

time-steps. Then the initial time-node is t -  and the final time-node is

V
For a typical time-step, At , for instance, between time-nodesn

and , the exact temperature (0) at an arbitrary point (node t)

inside the solution-domain may typically vary as the curve shown in the

first quadrant in Figure 4.1. This is modelled to vary linearly as shown

by the straight line in the same quadrant. Simultaneously, the second

quadrant of the same graph (Figure 4.1) shows schematically how the

thermal properties (for example, thermal conductivity (k) and thermal

energy capacity (p.C )) also vary with temperature 0 during the same time-
P

step. From Figure 4.1, it can be seen that at a particular time, t , 

there is a unique value for 0. Likewise, for a particular temperature, 0, 

there is a unique value for k and a unique value for p.C^.
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In this formulation, the physical properties ( k and p.C , for
P

example), loads, F ,  and temperature, 0,  are considered to vary continuously. 

Hence, for any time-step, A^, between two time-nodes and -t ^, these 

variables will attain their nodal values as time, t ,  approaches i. or 

£ , either from the left or right hand side limits, respectively (see

Table 4.1).

TABLE 4.1

Values of the Field Variables at

the Time-Nodes t , and t  ,,----------------- n ------ n+1

T t n ^n+1

0 0n 0 n+1

k kn kn+1

p. C
p

(p.c )v p n (p' Cp^n+1

F Fn ^ n+1

Since 0 does not actually vary linearly with respect to time, 

the values of the gradient at these limits are different, depending on 

whether the limit is approached from the left or right hand side.

However, for a given time-step, we may assume that the temperature varies 

linearly with respect to time and the right hand limit for the gradient of 

0 is then given by:
0 , .  -  0 n+1 n

*n+J
(4.2)

(the Euler approximation). This is also the same for the left hand limit



Therefore, for the whole system, using the forward difference

approach at time-node equation (4.1) becomes:

(4.3)

and by using the backward difference approach at time-node over the

same time-step, equation (4.1) becomes:

(4.4)

Since both of these equations (4.3) and (4.4) are satisfied over this 

time-step, we can choose to add any multiple of the second equation (4.4) 

to the first equation (4.3).

The Crank-Nicholson method is obtained when these two 

equations are added together equally, that is:

and the Galerkin method is obtained by adding twice equation (4.4) to 

equation (4.3), giving:

(4.5)
n

(* - t ' W +I T  + .{en+J} +
n

i m c b + ,] + [c b ] »  . { e n } * ( 2 .{F*+ I } M g >  - o
Yl

(4.6)

More generally, by adding a parameter \ times of equation
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(4.4) to equation (4.3), we obtain:

- { < W  +
n

(tKnl - A ^ ' U -tc„+ j] + tcn ]}) - {en> + (X.{Fn+r} + {Fn }) = 0 (4.7)
n

In this equation (4.7), X equal to unity yields the Crank-Nicholson method

(4.5) , and X equal to two yields the Galerkin method (4.6). Hence, the

nodal temperatures, at the time-node -£ +y can be expressed in

terms of K K^+j, C^, C^+j, and F ^ j  and the nodal temperatures, {©n}, 

at the time-node £ (the initial values). These are all assumed to be 

known. Therefore, if the temperature distribution is prescribed at any 

time-node, then it can be evaluated at the next time-node. Thus, at 

every subsequent time-node, namely, relation (4.7), is to be applied 

successively for all the time-steps; hence, it is then a recurrence 

relation.

Since the problem can be solved only if the initial values are 

prescribed, these problems are therefore called the "initial value" 

problems.

4.2.2 Special Cases

If the thermal properties remain constant over the time-step, 

then we can write:

1
K = K and

n Cn+1
C = C n

Hence, for such idealised cases, equation (4.7) can be written as:
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U.[K]+^ . [ C ] )  .{en+J} +
n

( [ K ] [ C ] )  . {en}+ (X.{F ,} + {fK}) = 0 W.8)
n

For X equal to unity, we obtain the Crank-Nicholson formulation 

in the form shown by Donea [16], and for X equal to two we obtain the 

Galerkin formulation in the form as that used by the same author [16].

In this paper, Donea showed that when short time-steps are used, the 

Galerkin formula gives better accuracy than the Crank-Nicholson formula. 

Thus, for example, the Galerkin method (X = 2) would be more suitable than 

the Crank-Nicholson method around the time regions when a change of phase 

takes place. At other times, however, reasonable results can be obtained 

by the Crank-Nicholson method (X = 1) using coarser time-steps, with a 

consequent saving in computation cost. Ideally, one would like to change 

the value of X as a particular solution progresses and as various phase 

changes take place. This is in itself a major subject of investigation, 

which will divert us from the objectives of the present study. However, 

preliminary investigations for the test case of Section 4.4 revealed that 

X = 1.5 gave better results. Therefore, the value of X = 1.5 is used for 

the present calculations.

r -.e4.3 EVALUATION OF THE THERMAL ENERGY CAPACITY MATRIX. [c]

All the aforementioned relations in this chapter hold for the entire 

domain throughout the time region and, in particular, for each element. 

Therefore, for a typical element (e), each relation may be written with 

superscript (or subscript) £ throughout. The definitions and descriptions 

of all the components of these relations as described earlier in Chapter 2 

are still valid for the general case. In Chapter 3, the K and F  matrices
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were described in detail for a general two-dimensional case and those 

formulations still hold for the transient case. We now have an additional

matrix [C]^ to evaluate. This matrix is treated as follows.

Consider relation (2.60) which is rewritten here for convenience:

i c f  - If! {[N]T . (pe .C*) . [N]}.dl/ 

l/e P

(4.9)

Each individual element may be assumed to be homogeneous and, consequently,

the value of (p .C^) or [p.C^J will be uniform throughout the element. 

Hence, relation (4.9) can be written as:

[C]e = (p.c )e . /// {[N]T . [N]} . d v  (4.10)
r q

IT

For a two-dimensional case, as explained in Section 3.1, dU may be 

replaced by Z^.dS, as described for relation (3.1), where Z^ is the length 

of the element in question. Also, the volume integral becomes a surface 

integral on the mid-cross section of the element. Hence, relation (4.10) 

can be written as:

[C]e = ( p . c J e .-ee . // {[N]r . [ N ] } . d s (4.ii)
r a

A general term of this relation (4.11) can be written as:

C; • = (p.C )e . £e . JJ N j . N . . d x d y  (4.12)
/t-> J r p ^ J

S e-

which is the thermal energy capacity, due to the material, between the two 

nodes Z and j within the element Q. only.

When the two-dimensional solution-domain is discretised solely into 

triangular elements, relations (4.11) and (4.12) can be easily calculated



and the final results will be the same as those found by Zienkiewicz [4] 

and by Wilson and Nickell [14], that is:

// • Wy • dx. dy
o J

if l  = j

where is the area of the element <L. Hence, the thermal energy capacity 

matrix (relation (4.11)) of a two-dimensional element with triangular

Sometimes, the uniform distributive values can be equally lumped 

at the vertices (or nodes) of the element, in which case the matrix on the 

right hand side of relation (4.13) may be approximated by a unit matrix 

simply for reasons of economy. Of course, this would not be correct for 

any general type of temperature field.
o

For any two-dimensional element where Z and A are constant, relatione
(4.13) (or a similar one, depending on the shape of the element) depends

only on the value of (p.C Therefore, the matrices [C ] and [C in
j p  n n+1

equation (4.7) will depend simply on the values of (p.C )^ at the time
ly

nodes and ^ respectively, which also vary with temperature. Thus, 

the value of (p. ^ must be calculated by simultaneous iterations with 

temperature and other variables, as has been done for the value of thermal 

conductivity (k). This introduces further oscillations (although of a 

smaller order) and therefore uses more computer time. One method of

(4.13)
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reducing such oscillations is to approximate the value of (p.C j by a
P

Oth order approximation. Hence, the value of (p.C )^ would then be
P

assumed to be constant over each time-step and equal to its value at the 

initial time-node or its mid-interval value. This method has been 

used by Wilson and Nickell [14], and also by Zienkiewicz and Parekh [15]. 

Although this technique is widely used, it is sometimes assumed by the 

authors to be standard and is therefore totally omitted from their 

descriptions. As a result of this, a great deal of time and computation 

effort was necessary in order to duplicate some of their results.

There are other approximations, but certainly the safest and the most 

accurate one is simply to iterate as was described earlier.

4.4 TRANSIENT PROBLEMS APPROCHING A STEADY-STATE CASE

The proposed method is an iterative procedure, by which a problem can 

be solved over each time-step, using the values which are prescribed at 

the beginning of that time-step. Upon the convergence of the solution 

at the end of a time-step, the temperature distribution thus obtained is 

used as initial values for the following time-step.

The field is usually judged on its mean temperature value (the 

average of the nodal temperatures), which can be denoted by MTj and MT^ at 

the beginning and the end of a time-step, respectively. Furthermore, the 

relative change in the mean temperature value of the field over each time- 

step, T can be found by:

Tch

MT2 - MTj 

MTj
(4.14)

A positive value of T ^ represents a "heating-up system", whereas a 

negative value of T ^ represents a "cooling-down system". In both cases, 

the system is said to be in a transient state. However, the system is
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said to be in steady-state when the value of T ^ is zero.

The computer program, written for the proposed method, terminates 

execution when the absolute value of T ^ tends to zero. A criterion 

sufficiently close to zero can be specified for a given problem so that 

computer time can be saved. When T ^ approaches this criterion, a 

message, "Steady-state case approached", is issued and the results thus 

obtained can be printed out.

Of course, a system will approach steady-state if all activities of 

the internal sources within the solution-domain (for example, thermal 

energy generation) and also all the boundary conditions of the system 

remain steady.

4.5 VALIDATION STUDY

In the previous chapter, it was shown that the proposed method was 

stable and resulted in excellent agreement with exact solutions for steady 

state (temperature) field problems. In this chapter, the method, 

proposed in the previous chapters, is developed so that it can be used to 

solve the transient field problems, which finally approaches a steady- 

state case if the thermal load and the boundary conditions did so. The 

method is shown here to be stable, accurate and capable of handling both 

the steady-state and the transient cases.

In order to validate this method, namely, to check its authenticity 

and its accuracy, a test case has been chosen for which an analytical and 

a numerical solution have already been given by Lewis [19] and Samiei [20] 

respectively. The problem is to solve the transient temperature field 

inside an LWR fuel pin subjected to axi-symmetric conditions and using the 

information given in Table 4.2 (as was used in [19] and [20]). In this 

case, the properties were taken to be constant and, also, the gap between 

the fuel and the cladding was regarded as negligible.
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TABLE 4.2

Data of the Fuel Pin Used in Section 4.4, Given in [20]

The geometrical dimensions of:

The fuel { 

The clad {

inner radius 
outer radius 
inner radius 
outer radius

Used in 
[19] and 

[20]
Used Here

0.0 m
0.0062484 m 
0.0062484 m 
0.0070104 m

0.0 m
0.0062250 m 
0.0062750 m 
0.0070104 m

The thermal conductivity of: W.m-1.°K-1

The fuel 2.0
The clad 1000.0

The specific heat of: J.kg”1.°K”1

The fuel 330.0
The clad 340.0

The density of: kg.m”

The fuel 10,000.0
The clad 6,500.0

The thermal expansion coefficient of: °K-1

The fuel 0.0
The clad 0.0

The coolant heat transfer coefficient

W.m”2.°K_1 

13627.8

The coolant bulk temperature

°K

273.0
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This idealised test case was first chosen by Lewis because of the 

nature of his solution method which was one-dimensional with non-variable 

properties. Samiei chose this test case because his numerical method was 

one-dimensional. Samiei!s method, which is based on the finite 

differencing scheme, could tackle variable properties and showed good 

agreement with Lewis's results, whereas the proposed method, which is 

based on the finite element method, is two-dimensional (also extendable to 

three dimensions) and can handle variable physical properties and non- 

axisymmetrical problems. The fact that the new method is applicable to 

almost any general two-dimensional transient heat conduction problem, in 

real life the test case adopted cannot, of course, be a rigid test for its 

validation. Nevertheless, this method is applied to the test case in its 

general manner (as a general case) and the results obtained have shown 

very good agreement with those given by Samiei [20].

To apply the proposed method to the test case, the same data as those 

used in [19] and [20] (given in Table 4.2) were obviously used. Besides, 

for numerical reasons, a very narrow gap (of 50 x10”6 m) was, necessarily, 

assumed between the fuel and the cladding. This entailed some small 

alterations on the fuel outer radius and the clad inner radius (see Table 

4.2), namely, they were both taken to be 0.0062484 m in [19] and [20], but 

the values taken here are 0.0062250 m for the fuel outer radius and 

0.0062750 m for the clad inner radius. The fuel inner radius and the clad 

outer radius are, of course, unchanged (0.0 and 0.0070104 m, respectively). 

The gap thermal conductivity was calculated (using the temperature drop 

across the assumed gap) and was taken to be 0.281 W.m""1.°K”‘1 to match the 

same gap conductance as used by Samiei [20]. Also, the gap thermal energy 

capacity (p.C ) was taken to be 150.0 J.m“3.°K-1. Boundary conditions on
r

the outer surface were also chosen to be the same as those of Samie^s on

match his results.
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As the problem is axi-symmetric, a small sector of the fuel pin 

cross-section can be considered to reduce the computation time (see 

Section 3.4.2). The mesh used here is as shown in Figure 4.2. As 

explained in Section 4.2.2, this particular problem can be easily solved 

by equation (4.8); nevertheless, it is solved here using the more general 

equation (4.7).

The fuel pin is assumed to be initially at equilibrium conditions 

such that the radial temperature distribution can be shown by the curve 

labelled t  = 0 in Figure 4.3. At time zero ( t  = 0), the reactor 

suddenly scrams (the heat source term suddenly becomes zero), while the 

coolant (outside the fuel pin) remains at a constant temperature of 

273.0°K. This idealised situation was solved here using X = 1.0, 1.5 and

2.0. The three sets of results obtained were found to be always 

considerably close to each other. Also, the results obtained for X = 1.5 

were found to be always lying between those obtained for X = 1.0 and 2.0, 

as expected. Although the results obtained were all in perfect agreement 

with those given in [20], in this case X = 1.5 yielded the best solution. 

The radial temperature profiles are then plotted for X = 1.5 at some 

selected time nodes in Figure 4.3. The results given in [20] are also 

plotted in the same figure; the extreme closeness between the results 

obtained from the proposed method and those given in [20] can be seen.

In this test case, the number of radial divisions across the clad, 

gap and fuel are as few as two, one and nineteen, respectively (see Figure 

4.2). Despite the very high aspect-ratio (about 15) in the elements 

within the gap region (very sharp elements), the proposed method still 

showed stability and produced excellent results.

As explained in Sections 4.2.1 and 4.2.2, two apparently different 

forms of equation (4.7) are found in the literature, which appear to be 

quite distinct. These two forms are known as:



Figure 4.2:
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Figure A.3:



129

(i) The Crank-Nicholson formula (which can be obtained from equation 

(4.7) by letting X = 1.0 {see equation (4.5)})

(ii) The Galerkin formula (which can be obtained from equation (4.7) 

by setting X = 2.0 {see equation (4.6)})

Furthermore, this approach opens up a wide range of new formulations for 

different values of X. This generalisation now replaces the choice 

between the two aforementioned methods by the choice of the best value of 

the parameter X. This latter choice would inevitably depend on the 

particular problem being considered and also on the requirements. In 

view of this, no attempt has been made to give a universal recommendation.

4.6 APPLICATION OF THE METHOD TO SOME MORE GENERAL EXAMPLES 

4.6.1 Application of the Method to a Heating-Up System

A general transient heat conduction problem has been chosen 

here to investigate the numerical behaviour and the performance of the 

proposed method using the more general equation (4.7). The geometry of 

the solution^domain, the distribution of the initial values, the variation 

of the field variables, and the boundary conditions can also be of a very 

general nature.

The problem which is considered here is to solve transient 

temperature fields within an LMFBR fuel pellet as defined in Section 3.4.1 

and in Figure 3.6. The properties of the pellet (which were used in the 

steady-state calculations) were partially given in Section 3.4.2; the 

remaining properties (which were used in the transient calculations) are 

given in Table 4.3. These values are temperature-dependent and can be 

found in [11].

Figure 4.4 shows the values of (p.C ) versus temperature.
P

The initial temperature distribution is assumed to be uniform and equal to
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TABLE 4.3

Temperature-Dependent Properties of an 

LMFBR Fuel Pellet [11] in Solid State
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Figure 4.4: Thermal Energy Capacity of Solid UO2 versus Temperature.

131



132

1000.0°K. The boundary conditions are prescribed as:

(i) The outer surface is always kept at a constant temperature of

1000.0°K (for £ ; 4 £  4 t ,).
a, fi

(ii) The inner surface is assumed to be adiabatic at all times.

The rate of thermal energy generation of the pellet is assumed 

to vary linearly with respect to time (from an initial value of to a 

certain value of RATE, for example) over a certain period of time (TIMSTD) 

and remains constant thereafter.

Although the method is applicable to unequal time-steps, 

nevertheless, for reasons of economy, the time-steps are chosen to be 

equal in each individual example (this policy is pursued throughout this 

chapter).

A problem of this kind is solved here using the following

settings:

X = 1.5

= 0.0 W.m"3

RATE = 0.27 x 1010 W*m“3

TIMSTD = 10 seconds

Time-step = 0.25 seconds

For economical reasons, and due to the nature of the problem, which is 

axi-symmetrical, a small sector (9.6°) of the solution-domain is 

considered (Figure 4.5). A finite element triangular mesh is adopted for 

this sector, in which only 15 nodes are considered in the radial direction 

(see Figure 4.5).

The variations of the pellet’s internal rate of thermal energy 

generation (rate-history or load-history) are shown by curve 2 in Figure



Figure 4.5:
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Key to curve numbers:
1. Outer Surface Temperature history
2. Rate of Thermal Energy Generation
3. Inner Surface Temperature history

Figure 4.6:
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Figure 4.7:
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4.6. In the same figure, the temperature histories of the inner and outer 

surfaces of the pellet are shown by curves 3 and 1, respectively. The 

steady-state case was approached after 12.75 seconds. The radial 

temperature distributions inside the fuel pellet, at some selected time- 

nodes, as labelled, are plotted in Figure 4.7. The CPU time used on the 

Imperial College CDC 6500 computer to solve this problem was reported to 

be 2.126 seconds. The inner surface temperature finally approached 

1924.23°K.

4.6.2 Application of the Method to a Cooling-down System

The same fuel pellet as that described in Section 4.6.1 is 

again considered here. All the conditions are assumed to be axi-symmetric 

for all times, therefore, a small sector of the cross-section of the 

pellet can be considered for economical reasons (Figure 4.5). The 

boundary conditions are prescribed as:

(i) The outer surface is always (for < t  < t ^ )  kept uniformly at 

a constant temperature of 1600.0°K.

(ii) The inner surface is always adiabatic.

The pellet is assumed to be initially at equilibrium conditions with the 

internal temperature distributions (radial profile), as shown by the curve 

labelled t  = 0 in Figure 4.8. Suddenly, the reactor scrams (the heat 

source term suddenly becomes zero), while the boundary conditions remain 

unchanged. Time-steps were chosen to be 0.025 seconds and the steady- 

state case was approached, in this case, after 4.0 seconds. The radial 

temperature profiles at some selected time-nodes, as labelled, are also 

plotted in Figure 4.8. The temperature histories of the inner and outer 

surfaces are presented in Figure 4.9 by curves labelled 3 and 1,
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respectively. In Figure 4.9, the curve labelled 2 represents the 

volumetric bulk temperature history of the pellet. The volumetric bulk 

temperature is defined as:

BT = ( l  T* l/e)/( l l/£) (4.15)
e=I,NEL c e=J,NEL

where NEL is the number of elements, is the centroid temperature of the 
2_

element £, and 1/ is the volume of the element £.
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Figure 4.9: Temperature histories just after sudden loss of Thermal
Energy Supplies.
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CHAPTER 5

THE STEADY-STATE AND THE TRANSIENT (PHASE-CHANGING) HEAT 

CONDUCTION IN A MULTI-PHASE MEDIUM

ABSTRACT

In this chapter, steady-state and transient multi-phase problems 

(change of phase) are considered. The problem is generally formulated 

such that the latent heat effect is also included. The original mesh is 

retained intact and the free boundaries are located using linear 

approximation. The original mesh is then refined using the free 

boundaries. Due to the lack of reliable data, the method is applied to 

some examples for which well-established theoretical ideas are known.

These out-coming are finally compared to show how they are interlinked for 

a single case, as must be the case.

5.1 INTRODUCTION

5.1.1 The Steady-state and Transient Multi-phase Problems

A multi-phase medium is defined here as a given confined region 

in which the material is in two or more phases (with different physical 

and thermal properties) and may co-exist in such a way that any two 

neighbouring phases meet at an interface. The conduction of heat in such 

regions is considered as in the coupled problems (as defined in [4] and 

[5]), where:

(i) The material at any point does not change phase in steady- 

state problems, hence all the boundaries (interfaces) are 

fixed.

(ii) The material, at some points, may change phase in transient 

problems, hence the shape and the position of the boundaries
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(interfaces) may change with respect to time.

The heat transfer problem is evident in many of today's 

practical problems in which a change of phase occurs. For example, in 

the freezing of foodstuffs, in the ablation of missle skins under 

aerodynamic heating, in welding, and in studies of Nuclear Reactor 

Accidents.

The serious scientific study of phase-change problems was 

undertaken as early as 1891 by Stefan, from which the title "Stefan's 

problem" originated [21]. He started with the investigation of water,

but his method has gradually been extended to most other industrial 

materials. Despite the importance of the topic, very few solutions which 

may be extended to practical problems have so far been established due to 

the difficulties.

5.1.2 A Brief Review of Previous Studies in Phase-Change Problems

Several disciplines (engineering, physics and metallurgy) are 

concerned with heat conduction in materials and substances, especially 

during a change of phase. The prime concern is to evaluate the transient 

temperature distribution and modes of deforming or transforming the 

material, while the transformation is taking place. To achieve these 

objectives, many attempts have been made.

Analytical solutions to the melting of a one-dimensional semi

infinite solid body have been introduced by different investigators; for 

example, Sadd and Didlake [21] introduced a method which was successfully 

tested for aluminium. In the same paper, they also made a comparison 

between various Fourier and non-Fourier type methods in this field.

Another analytical solution to the same problem was given by Murray and 

Huang [22] for the case when the body was initially at its melting point
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and the physical and thermal properties in both the solid and liquid states 

were constant. Muehlbauer and Sunderland [23] also give an analytical 

solution to the same problem. An important observation they make is that 

alloys solidify with two jagged phase fronts, which do not necessarily move 

at the same speed. In this paper, some of the previous work in this field 

has been reviewed and a useful list of references relevant to this subject 

was given.

Further analytical solutions to one-dimensional problems 

concerning fuel plates and rods of reactors have been studied by Lahoud 

and Boley [24] and some others.

Most of the analytical solutions deal only with the one

dimensional geometry and very special boundary and initial conditions, and 

also with constant physical properties. Unfortunately, these solutions 

cannot easily be extended to the more realistic conditions usually 

applicable to practical problems. Numerical methods have therefore been 

tried in order to solve some specific problems of this kind. For example, 

Wellford and Ayer [25] used a numerical method to solve a one-space

dimensional problem with fixed mesh. Another one-space-dimensional 

variation to the above numerical approach has been studied by Murray [26], 

in which some of the existing relative solutions have been briefly 

reviewed, followed by two alternatives to the fixed mesh: "variable space

network" and "fixed space network". In both versions, the physical and 

geometrical changes, and also the change of properties due to the change 

in temperatures, are ignored while the fusion front progresses. Also, 

the internal thermal energy sources are not considered.

Hence, a lot of numerical investigation has still to be done, 

especially with more space-dimensions, with more general initial and 

boundary conditions, with temperature-dependent properties, and with 

internal thermal energy sources.
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In this chapter, such a general problem in two space-dimensions 

with any shape of geometry, with any type of initial and boundary 

conditions, with internal thermal energy sources, and with temperature- 

dependent properties are formulated. Thermal expansions are assumed to 

be small, although it must be accounted for in the formulations. The 

method is applicable to a change of phase in any multi-phase problem and 

is extendable to a three-space-dimensional method. Finally, a particular 

application to reactor materials has been chosen as a test case.

5.1.3 The Present Work

Heat may be conducted between any two neighbouring phases 

across their interface. All the points on such an interface have the 

same temperature (or in the general case, the same potential). Hence, in 

temperature field problems, each of these interfaces is considered as an 

"isothermal surface". These problems are, therefore, considered as 

coupled problems (as mentioned in Section 5.1.1), in which each interface 

between any two neighbouring phases is an isothermal surface (or a contour).

In transient problems, the temperature may change with respect 

to time at any point with fixed position, whereas the temperature at any 

point on an interface (between any two phases) is fixed but its position 

may then change with respect to time. Thus, the shape and the position of 

the interface will change with respect to time; in other words, the 

interface can be considered as a boundary which is free to move. Hence, 

these types of problems have traditionally been called "free boundary 

problems" or "moving boundary problems". Accordingly, the interface will 

be called the "free boundary".

In the proposed method, all free boundaries are located at any 

time-node and only the elements which are crossed by at least a free 

boundary are refined (subdivided) such that each element throughout the
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mesh is in a single state.

In a pure substance, a phase-change takes place at a precise 

temperature (for example, solid changes to liquid at a specific temperature 

which is termed the melting point), whereas in most substances, such as 

metal alloys, foodstuffs, compositions or impure materials, the 

transformation takes place over a finite range of temperature. The 

highest temperature at which a stubstance can be termed solid (the solidus 

temperature) and the lowest temperature at which a substance can be termed 

liquid (the liquidus temperature) are usually different. If the 

temperature of a substance at any point lies between (and including) its 

solidus and liquidus temperatures, then the substance is said to be in the 

transition state at that point. Therefore, there are, in general, two 

free boundaries separating the distinct solid phase and the distinct 

liquid phase with the transition state in between. . The same analysis 

also applies to liquid to vapour phase-changes, or the reverse 

transformation.

5.2 FORMULATIONS AND TREATMENT OF FIELD VARIABLES OF A MULTI-PHASE PROBLEM 

5.2.1 A Steady-State Multi-Phase Problem

In general, multi-phase problems would involve a region which, 

at any time, can be divided into distinct phases. For a medium in the 

steady-state with solid, transition and liquid states, the system of 

equations developed in Chapter 3 can be applied using the appropriate 

physical properties for each element, provided that each element is in a 

unique state.

In order to solve such a system, the field variables have to 

be carefully studied. The physical and mechanical properties (for 

example, the thermal conductivity, fe) of the substance in different phases 

vary depending on many parameters, especially on temperature. Each of
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these properties is uniformly continuous throughout each phase; 

nevertheless, they are, in general, not uniformly continuous at each free 

boundary where their derivatives are usually discontinuous. Furthermore, 

the temperature distribution is continuous throughout the region of 

interest, because any of the two neighbouring phases are assumed to be in 

perfect contact with each other. Although the temperature gradient (or 

heat flux) is continuous throughout each phase, but is discontinuous at 

each free boundary. Therefore, to solve the problem for temperature, 

each free boundary has to be located carefully and the values of the field 

variables (k, 0, etc.) have to be specified everywhere within each phase.

Much research has been done on the properties of materials in 

both the solid and liquid states, but experimental work regarding these 

properties in the transition state has lagged behind. Whilst these 

properties are not well-established, in order to keep the continuity a 

simple continuity hypothesis may be applied to a linear approximation in 

the transition region as follows.

Let <J) be a scalar property of a material. Then, in the 

transition state, it may be approximated by <f)j at temperature T  (between 

the solidus and the liquidus temperatures), which can be expressed as:

h  = ^  + (t „ -r.
. (T-T. (5.1)

where subscripts 6 and Z refer to the values at the solidus and the liquidus 

temperatures, respectively.

For example, the thermal conductivity of a material may obey 

such an approximation, over the transition state, which can be shown 

schematically as the curve labelled k in Figure 5.1. Therefore, the 

thermal conductivity of a material can be shown as a continuous function 

of temperature throughout the solid, transition and liquid states, as
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Figure 5.1: Schematical Variations of Thermal Conductivity (k) and

Thermal Energy Capacity (P*Cp) of UC^, over Solid, 

Transition and Liquid states versus Temperature. See 

also Table 5.1.
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shown in the same figure. If, of course, convection within the liquid 

region is not negligible, then an effective thermal conductivity in the 

liquid region may be defined, which accounts for both convection and 

conduction of heat.

5.2.2 A Transient Multi-Phase Problem

In a transient multi-phase problem, the free boundaries would 

move with respect to time, but at any instant the whole region of interest 

can be divided into distinct zones of unique states. Thus, for example, 

for a medium with solid, transition and liquid states, all the governing 

equations would be similar to those developed in Chapter 4, except for the 

regions (elements) which are in the transition state, where the equations 

would have an additional term representing the latent heat effect. This 

can be denoted by a generalised matrix functional [L] whose actual form 

will be discussed later (see Section 5.2.3). Therefore, the governing 

equation can be written as:

[K] . {9} + ([C] + [L]) . {||} + { B  = 0 (5.2)

This equation can be shown as:

w  •{6} + • {||}+ <F} ■ 0 (5.3)

where [C^.^] is defined as the "effective heat capacity matrix", such that

[ce«i ■ [C] + rL1

Now, all the analysis developed in Chapter 4 can be applied 

using the new effective heat capacity matrix. Hence, the final system of
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equations will look like equation (4.7), in which the matrix [C] is 

replaced by (see equation (4.10)). This can be shown as:

[(W e - (p- V ^ r  !!l [W]T- IN]-dl/ (5.4)

where the effective heat capacity of an element £ can be written as:

(p.CJ
P H i

(p .cp ) e + (p.Lj)e (5.5)

where L^is a scalar elemental functional which is explained later (see 

Section 5.2.3).

For the field variables, all the analysis of Section 5.2.1 for 

the steady-state case can still be applied here. For instance, the real 

heat capacity (p.C also obeys the same approximation as equation (5.1) 

over the region of the transition state, as can be shown schematically by 

the curve labelled (p.C^)^ in Figure 5.1. Thus, the real heat capacity 

will vary continuously with respect to temperature throughout the solid, 

transition and liquid states. In order to obtain a similar formulation 

using the effective heat capacity, the latent heat effect needs to be 

studied first.

5.2.3 The Study of the Latent Heat Effect

In a phase-change process, any transformation is accompanied 

by either absorption or liberation of latent heat (for example, melting or 

solidification, respectively). For a given amount of heat (liberated or 

absorbed), when the temperature reaches a phase-change temperature, a 

transformation begins and some of the exchanged heat will effectively 

change the internal thermal energy (the enthalpy) of the system, while the 

transformation is in progress. In a pure substance at a specified
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temperature, a transformation takes place when all the exchanged heat is 

used up for the latent heat and there is no change in temperature. In an 

impure substance (alloys, for example) over a range of temperature 

(Tj to Ty), a transformation takes place when part of the exchanged heat 

is used up for the change of temperature and the rest is for the latent 

heat. The latter can be approximated by spreading the latent heat effect 

uniformly over the range of temperature (transition temperature interval). 

Hence, the elemental functional in equation (5.5) may be written as:

0 for T < T 1

L< r

1 L

I V T I
for Tj < T < T2

1 0 for T2 4 T

latent heat.

(5.6)

In the problems which involve pure substances, is almost 

equal to Tj which makes this functional very large. For numerical 

purposes, a very small range of temperature can be introduced. This 

approach has already been successfully employed by Comini and Del Guidice 

[7], and Bonacina and Comini [27].

Therefore, using equations (5.5) and (5.6), the effective heat 

capacity can be written as:

( p. C ) = (p . C )u + 0 out of the transition state
P 2-66 P K

(5.7a)

and

(p.C )„ +P P *  T 2 - T j
over the transition state (5.7b)
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where the real heat capacity ( p v a r i e s  continuously with respect to 

temperature throughout the subsequent states. Of course, in general, if 

the real heat capacity is not well-established over the transition state, 

it can be approximated by a relation like (5.1), for example (see Figure 

5.1). Whereas the effective heat capacity varies in a discontinuous 

manner such that the effective heat capacity over the transition state 

only becomes as a combination of the real heat capacity (equation (5.1)) 

and a component which represents the latent heat effect. Hence, equation 

(5.7b) can be written as:

m  -- <p-y*+ ( pv  r /  1 • «T- V  + r p r j <5-8>

where L is the latent heat for melting or solidification.

5.3 LOCATION AND APPLICATION OF FREE BOUNDARIES 

5.3.1 The Mesh and its Refinement

A normal finite element mesh used for a one-phase problem is 

termed here as an original mesh. The conditions which a given mesh must 

obey were discussed in Sections 1.7, 2.3.2 and 4.1. Those conditions 

were very general and are applicable to most problems solved by the finite 

element method. Thus, for convenience and uniformity, the original mesh 

is retained intact throughout the analysis and is used effectively for 

multi-phase problems within the same framework of the finite element 

method as used for the one-phase problems. Hence, the same formulations 

can be generalised for all kinds of heat conduction problems (including 

transient multi-phase (phase-change) problems).

Previously, some different methods were proposed to deal with 

the multi-phase elements, although those methods were mostly restricted 

and too difficult to implement in practice. However, a one-dimensional



151

numerical method was proposed in which a free boundary was located and 

then the whole mesh was regenerated effectively as two separate solution 

domains (like coupled problems) on either side of the free boundary with a 

previously prescribed number of nodes on each side [26]. This method has 

an advantage that no new mathematical modelling is needed since each 

element is in a unique phase, whose properties can be clearly defined. 

However, if the free boundary is too close to any outer boundary, one 

could have too many points close together on one side of the free boundary, 

thus storing some unnecessary details, while having few points on the other 

side of the free boundary, hence possibly losing some essential details.

In this work, this problem with any number of free boundaries 

has been tackled very effectively by using the original mesh, which is 

refined only over the elements that are crossed by the free boundaries, 

such that each portion of a free boundary is then replaced by a boundary 

of an element (a party boundary common between two elements) and, therefore, 

each element is now entirely in a single phase. The physical properties 

of each element can thus be clearly defined or approximated as explained 

in Section 5.2. Therefore, the whole formulation developed here so far 

is applicable hereinafter just as before.

5.3.2 A General Numerical Method for Location of Free Boundaries

Here, a general method is proposed to locate the positions of 

each free boundary. The method can be applied to most numerical 

algorithms. This is done simply by identifying the state of each point 

of the solution-domain by its temperature. Then each point (B) is 

examined in turn within a small neighbourhood of a given point (A). If 

the neighbourhood point B is in the same phase as point A, then, since we 

are considering a small neighbourhood, it can safely be assumed that all 

the points on the line joining A and B are also in the same phase. Hence,
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no free boundary crosses this line AB. Further, if all such B points in 

the neighbourhood are in the same phase as point A, then it may be said 

that the whole neighbourhood is also in that phase.

different but neighbouring phases, then there is only one free boundary 

passing between these two points. Thus, the free boundary crosses the 

line joining points A and B at a point I, which is termed here as the 

"interface point" or the "interface-node". This point has to be located 

by some interpolation.

Let us consider two such points (A and B) that are in two 

neighbouring phases. Let them be distance t  apart (see Figure 5.2) and 

their temperatures be some known values, and Tg, respectively. For 

this pair of points, the interface point (I) may be located by a linear 

interpolation as:

Whereas, if any two such points (A and B) lie in any two

X (5.9)

where Tj is the temperature of the free boundary passing point I, and X is 

measured from point A.

I BA
<

X
l

Figure 5.2
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This is repeated for all points B in the neighbourhood of 

point A. The free boundary in the neighbourhood of A is then the locus 

of all such interface points (I). This is therefore applied to all the 

neighbourhoods of points A in the solution domain. Then, since the union 

of these finite number of neighbourhoods should be the whole solution- 

domain, each free boundary is obtained by the union of all the 

corresponding free boundaries of each neighbourhood. Depending on the 

method used, one can select convenient points on each free boundary that 

are most useful in the calculations. A more accurate free boundary is, of 

course, obtained for smaller neighbourhoods.

If the problem is solved over a large region using relatively 

few points (nodes), then the neighbourhoods also have to be correspondingly 

larger. Therefore, there is also a possibility that more than one free 

boundary may pass through a neighbourhood. If any pair of such points 

(A and B) lie in any two different but not neighbouring phases, then there 

are two or more free boundaries passing between these two points. Hence, 

the line joining them (AB) is crossed by more than one interface. To 

locate these interfaces (free boundaries) between these two points (A and 

B), a similar procedure to that explained for equation (5.9) may be used 

again. This is formulated as follows.

Let us consider such a pair of points (A and B), a distance L 

apart. Let A and B be n phases apart on an ascending temperature scale. 

Then there will be n distinct free boundaries passing in between these two 

points. The line joining A and B is then crossed at n distinct interface

points (K = 1, ..., n) by these free boundaries. The distance X^ from

A on line AB of the interface point 1^ can be calculated by a linear 

interpolation formula as:

(5.10)
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where is the prescribed temperature of the particular Kth free 

boundary (see Figure 5.3). As before, the Kth free boundary passes 

through the locus of all the interface points 1^.

For example, let point A be in the solid state and point B be

in the liquid state of a material, where a transition state exists in

between. The line joining A and B will be crossed by the solidus

interface at the solidus interface point, I., and by the liquidus-5
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interface at the liquidus interface point, I^. These points (1^ and I^) 

can be located by using equation (5.10) as:

and:

(5.11a)

(5.11b)

Figure 5.4
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5.3.3 Location of Free Boundaries in the Finite Element Framework

In the finite element framework, the solution domain is 

replaced by a number of finite elements. For the nodes that are entirely 

in any particular element, the neighbourhood is taken to be the element 

itself. For the nodes that are at the vertices, the neighbourhood is 

subdivided by the boundaries of the elements. Each portion is taken to 

overlap the entire element, for which the node is a vertex. Hence, each 

element can be considered as whole or part of a neighbourhood for the nodes 

and vertices of itself. All the neighbourhoods will therefore be 

accounted for as the nodes and vertices of each element are examined.

Thus, the ideas discussed in Section 5.3.2 can now be applied here. We 

can look at all the possible different pairs of nodes (vertices) for each 

element and obtain the interface-nodes wherever applicable for each pair. 

However, realistically, we do not need all these interface-nodes because 

of the modelling used to formulate the governing equations and the 

information will not improve the accuracy. The interface-nodes inside 

the element are not very useful (unless an individual problem requires 

otherwise). We only need to consider the intersections of a free boundary 

with the boundaries (sides) of the element in question. This yields only 

the interface-nodes on the boundaries of the element which are later used 

to subdivide the element (refinement).

Therefore, in brief, we simply need to examine the boundaries 

of each element of the original mesh and locate the position of the 

interface-nodes on the element boundaries. The analysis described in 

Section 5.3.2 can now be applied easily to each boundary of each element. 

Each element boundary links two vertices whose states are examined by 

their temperatures. If they are both in the same phase, then no free 

boundary crosses this element boundary. This is not detected only in an

exceptional case when a U-shaped interface crosses one element boundary at
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two points, in which case either finer elements or longer time-steps are 

advised. If one vertex (node) is in one phase and the other (at the 

other end of an element boundary) is in a neighbouring phase, then there 

is only one free boundary which crosses this element boundary. Hence, 

there is only one interface-node on the element boundary which may be 

located using equation (5.9). If one vertex (node) is in one phase and 

the other is in another phase, but not the neighbouring phase, then there 

is more than one free boundary crossing the element boundary. In such 

cases, of course, there is more than one interface-node on the element 

boundary which may be located using equation (5.10). In the case of just 

two interfaces, equations (5.11) can be used.

An element may be classified according to the number of free 

boundaries (interfaces) that cross it, or by the number of phases that 

occupy it. Single-phase, two-phase or multi-phase elements are said to 

be the elements occupied by one, two or several phases, respectively.

5.3.4 Application of the Free Boundaries to Refine the Original Mesh

A refined mesh is obtained using the original mesh (as a base) 

and all the interface-nodes obtained by using the method explained in 

Section 5.3.3. Any set of interface-nodes (free boundary) from the 

previous iteration can be discarded (except in the first iteration) and 

can be replaced by the new set. The new interface-nodes of equal 

temperature may be joined by straight lines (linear approximation) to 

represent a new set of approximate free boundaries. These are used to 

generate a new refined mesh.

A one-phase element, which is entirely in a single-phase, is 

obviously not refined at all. The finite element formulations for such 

an element are applicable as before. A two-phase element, which is 

crossed by one interface, has two interface-nodes at the same temperature
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on the element boundaries. These are joined to subdivide the element 

into two parts (Figure 5.5). Each sub-element is now in a single phase 

and the same finite element formulations are applicable in principle as 

before.

A multi-phase element, which is crossed by more than one 

interface, has a number of equal temperature pairs of interface-nodes.

These are jointed to subdivide the element into a number of. sub-elements, 

each of which is now in a single phase, to which the same finite element 

formulations are applicable as before (Figure 5.6). If, in an element, 

there were more than one pair of equal temperature interface-nodes, then 

these points have to be joined carefully, such that none of the free 

boundaries cross each other. Each sub-element is now, again, in a 

single phase and, as before, the finite element formulations are applicable 

in principle.

In practice, however, there may be some additional restrictions 

due to the computer code. For example, the code may restrict the mesh to
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triangular elements only, as was the case in this work.

For a two-phase triangular element, the above description 

yields a triangular sub-element and a quadrilateral sub-element. The 

latter has to be further subdivided into two triangular sub-elements to 

satisfy the computer code, namely, the element is finally subdivided into 

three triangular sub-elements. Similarly, for a three-phase triangular 

element, the method yields:

(i) A triangular sub-element and two quadrilateral sub-elements if 

only two sides of the element are crossed by the two free 

boundaries.

(ii) Two triangular sub-elements and one pentagonal (five-sided)

sub-element if all the three sides of the element are crossed 

by the two free boundaries.

Generally, the element is finally, in both cases, subdivided into five
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triangular sub-elements. This further subdivision is easier to include 

into well-tested codes (for triangular elements) than to write correct or 

alternative codes to incorporate a multi-sided element.

The problem can now be solved over the new refined mesh and 

new temperatures are obtained at all the nodes of the original mesh and 

also at the interface-nodes. If the temperatures thus obtained at the 

interface-nodes do not coincide with the corresponding free boundary 

temperature(s), the process is repeated (from Section 5.3.3 onwards) until 

they coincide (correspondingly). Then this is the required solution for 

a steady-state problem. In order to reduce the computing time, a 

criterion (tolerance) may be introduced to check the proximity of the 

calculated temperatures at the interface-nodes and the corresponding 

interface temperature(s). If the absolute differences are less than the 

tolerance, the solution is acceptable and the execution is terminated.

For a transient problem, this is a solution to the problem at a particular 

instant, usually at a time-node, and then we move on to the next time-node 

in the usual manner. The whole process is repeated at all the time-nodes.

In this way, no extraordinary or new models are needed. The 

storage is also used very economically and the overall accuracy is kept 

nearly uniform by the use of the same formulations. Moreover, by this 

method, the same computer code is used for the transient multi-phase 

problems just as efficiently as for the steady-state single-phase problems.

In the solutions to the transient problems, particularly when a 

change of phase takes place, large gradients in the properties of the 

material may emerge. Therefore, large steps (intervals) both in time and 

space dimensions can lead to oscillatory solutions.
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5.4 APPLICATION OF THE PROPOSED METHOD TO SOME MULTI-PHASE EXAMPLES 

5.4.1 Application of the Method to a Transient Two-Phase Example

The method described in this chapter is, in general, applicable 

to a wide range of both steady-state and transient multi-phase problems 

(Sections 5.2.1 and 5.2.2, respectively). In order to validate this 

method, much effort had been made but without success because reliable 

data (experimental or otherwise) were not available. Nevertheless, the 

method is applied here to a selected example and its performance is thus 

examined over three different viewpoints for which well-established 

theoretical ideas exist. These are:

(i) The variation of temperature with respect to time (temperature 

history) at any fixed point within the solution-domain.

(ii) The variation of the shape and position of each free boundary 

with respect to time (position history).

(iii) The temperature distribution at any time within the solution- 

domain .

The curves representative to these aspects are then plotted. Finally, a 

comparison is made among these curves to show how they are interlinked.

Let us assume that the same fuel pellet of an LMFBR as the one 

chosen in Chapters 3 and 4 is so overheated that its cross-section (the 

solution-domain) has attained two different phases (solid and transition, 

in this case). The geometry of the pellet is still tubular (axi-symmetric) 

with internal and external radii being 0.00114 and 0.00254 m, respectively, 

as before. All the physical, geometrical and thermal properties in the 

solid state are as used in Chapters 3 and 4; these are given in Table 5.1. 

In the same table, these properties are given in the liquid state as well 

as the ways of their approximation used here.



TABLE 5.1

The Physical Properties of UO  ̂Used In This Section ([11], [28], [291, [30] and [31]) (see also Figure 5.1)

State

Property
Units Solid Transition Liquid

Density, p = kg/m3 10970.0 Approximated by 
equation (5.1)

8740.0

(1 + 9 x 10“6 x T  + 6 x 10"9 x T  2 + 3 x 10"12 x T  3)c c. c. [1.0 + 1.045 x 10“  ̂x (Tk - T^j ]

Specific 
Heat, Cp = J/kg°K 47.445 + 0.1985 x TV, + 1‘153-* A 0.7

K T 2
' k

Approximated by 
equation (5.7b) 520.0 *

Thermal
Conductivity, k =

W/m°K 6.9 x 1011 x T  9 + ----------- ------------
(0.042 + 2.71 x 10"1* x Tk)

Approximated by 
equation (5.1)

0.625 + 1.38 x 1011 x Tk 3 +

0,2 ** 
(0.042 + 2.71 x 10"4 xT ^)

Solidus temperature = 3060.0°K * 
Liquidus temperature = 3065.0°K *

Latent heat, L = 2.75 x105 J/kg * 
Expansion coefficient = 0.0 *

* Different values are given in the literature, but these values are used here. 
** The value adopted here is due to lack of data.
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The pellet is assumed to be initially at equilibrium 

conditions, such that the rate of thermal energy generation is 

0.27 x 1010 W/m3. The outer surface is always kept at a uniform 

temperature (T^ = 1600°K), while the inner surface is assumed to be always 

adiabatic, as before. The initial radial temperature distribution within 

the pellet is shown by curves labelled £^ in Figures 5.7 and 5.8, where 

the inner surface temperature (3058.85°K) is just under the melting point 

(3060°K).

Suddenly, due to misoperation of course, the rate of thermal 

energy generation is assumed to increase to 0.594 xlO10 W/m3, while the 

boundary conditions are assumed to be unchanged.

The problem is now entirely axi-symmetric and just a sector 

of the cross-section is enough to be considered, thus saving in the 

computation time. A mesh with 10 nodes in the radial direction, as shown 

in Figure 5.9, is used. Although this particular (axi-symmetric) example 

can be solved as a one-dimensional problem, but more general problems are 

not always axi-symmetric. Therefore, the proposed two-dimensional method 

has been used here just to demonstrate its behaviour and performance, but 

it must be noted that this method is very general and is capable of 

dealing with many problems of this nature.

The problem is solved here using the general equation (4.7)

for X = 1.5. Figure 5.10 shows the temperature history of (a fixed point

on) the inner surface of the pellet; there is shown that the inner

surface temperature rises while the whole pellet remains in the solid

state. As the temperature of the point in question exceeds the material

solidus temperature (just after time £ in the same figure), the rate of
CL

temperature rise drops sharply but without any oscillation (see Figure 

5.10 about point (A) of discontinuity). This is expected because, for 

the point which is going to melt, the governing equation now changes to
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Figure 5.11: Solidus Interface Position history.
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equation (5.3) using relations (5.4) and (5.7b). This equation is 

incorporated with the latent heat effect included in the specific heat, 

which causes damping in the temperature variations with respect to time. 

Further, there are also sharp changes in the material properties (see 

Figure 5.1) which must be taken into account.

The position history of the free boundary (the solidus 

interface) along the radius (radial movement with respect to time) is 

plotted in Figure 5.11. A comparison between Figures 5.10 and 5.11 can 

be made such that, from times to the whole body is in the solid 

state and there is, of course, no free boundary. At time -t , the 

temperature of the inner surface approaches the solidus temperature (see 

Figure 5.10). At the same time, the free boundary (solidus interface) 

begins to develop and moves gradually towards the outer surface of the 

pellet (see Figure 5.11), although it never reaches that surface because 

the outer surface is assumed to be always kept at a fixed temperature 

(1600°K) which is lower than the solidus temperature.

The radial temperature profiles at some selected time-nodes 

are plotted in Figure 5.7, in which the curve labelled t  represents the 

initial radial temperature distribution (at time t Q) when the whole 

solution domain is in the solid state. Other curves in the same figure 

each show a discontinuity at the solidus temperature where the position 

of the free boundary at the respective time is accordingly located. The 

curve labelled represents the steady-state solution.

The steady-state case is approached (after time when the 

free boundary becomes stationary and also the temperatures intend to be 

steady, including the inner surface temperature (3063.005°K). This 

temperature is lower than the liquidus temperature of the material. 

Therefore, the solution-domain remains in two phases (solid and transition) 

which are separated by a free boundary (solidus interface).
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Figures 5.8 and 5.10 show that there is not any oscillation 

at the discontinuity points (both in the temperature profiles and 

temperature history). Also, Figure 5.11 shows that the free boundary 

develops and moves very smoothly, and without any oscillation. However, 

since the method is numerical, short time-steps are advised to obtain 

better solution at the discontinuities. In order to verify the stability 

of the method, it was applied to seven different examples of this type.

The method performed very well, in each case, and it never introduced any 

oscillation throughout.

Correlation among Figures 5.7, 5.10 and 5.11 is always 

guaranteed because they are solution representatives of a single problem. 

Figure 5.12 shows schematically how they are interlinked, where there are 

three parameters (-£, T and X. for time, temperature and the free boundary 

position, respectively), given that any one of them should lead to the 

determination of the other two.

5.4.2 Application of the Method to a Transient Three-Phase Example

In order to verify the behaviour and to check the stability of 

the proposed method in the cases involving three-phases, it must be 

validated at least for some aspects. However, due to the lack of 

reliable data, the same viewpoints as those explained in Section 5.4.1 are 

again studied here. Therefore, the same example as considered in that 

section is assumed to be extended to a three-phase case. The same fuel 

pellet as that chosen in Section 5.4.1 is assumed to be so overheated that 

its cross-section (the solution-domain) has simultaneously attained three 

distinct phases (solid, transition and liquid states).

The physical, geometrical and thermal properties, as well as 

all boundary conditions, are assumed to be the same as those used for the 

example studied in Section 5.4.1. Since the example which is going to be
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▼

a. - Radial Temperature Profiles, see Figure 5.7 

b = Inner Surface Temperature history, see Figure 5.10 

C. = Geometry of the Solution-domain, see Figure 5.9 

d - Solidus Interface Position history, see Figure 5.11

Figure 5.12: Correlations among Solution Curves of a Two-phase Problem.
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considered here is an extension of the same example studied in Section 

5.4.1, the final conditions in that example will be the initial conditions 

for the example considered here. Hence, the initial radial temperature 

distribution within the pellet is the same as shown by the curve labelled 

£^ in Figure 5.7. This is represented by the curve labelled t Q in Figure 

5.13.

The rate of thermal energy generation is assumed to suddenly 

increase up to 0.725 * 1010 W/m3. Then the radial temperature profiles at 

some selected time-nodes, the position history of both interfaces and, 

finally, the temperature history of the pellet inner surface are discussed 

here.

The problem is solved here using the same mesh as shown in 

Figure 5.9. This mesh is always refined, using the free boundary(ies), 

such that each element lies in a single phase. The governing equation 

for the elements in the solid and liquid states is, in general, equation 

(4.7) using X = 1.5, whereas for the elements in the transition state due 

to the latent heat effect, the solution is based on equation (5.3) using 

equations (5.4) and (5.7b).

The radial temperature profiles at some selected time-nodes, 

as labelled, are shown in Figure 5.13, in which the curve labelled t  

represents the initial radial temperature profile in the example 

considered here (these temperatures are exactly the same as shown by the 

curve labelled £^ in Figure 5.7). The curve labelled £^ in Figure 5.13 

implies that at time £ ^ 9 the inner surface temperature has reached the 

liquidus temperature and, thereafter, the solution domain will be in three 

phases. In the same figure, the curve labelled £ represents the steady-
a

state solution, which means from time £■ the whole solution domain will 

steadily remain in three phases (solid, transition and liquid) separated 

by two motionless interfaces.
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Figure 5.13: Radial Temperature Profiles.



Figure 5.14: See Figure 5.13.
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Figure 5.16: See also Figure 5.10.
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At any time after £ ^ , the radial temperature profile has two 

discontinuities, one at the solidus temperature and one at the liquidus 

temperature (see Figure 5.13); each locates the position of the respective 

interface along that radius at that particular time. Therefore, the 

radial position history of the two free boundaries may be as shown in 

Figure 5.15. In this figure, the steady-state case is approached after 

time £g , from when both interfaces become motionless.

The temperature history of the pellet inner surface can be 

shown as in Figure 5.16. As the temperature (of the inner surface) 

passes the liquidus temperature (T^), just after time £ ^ 9 the state of the 

material at the inner surface changes from transition to liquid. At the 

same time, the rate of temperature-rise increases sharply (see Figure 5.16).

The discontinuities (in Figures 5.13 and 5.16) are all 

expected due to the latent heat effect, as explained earlier. Within the 

transition state, the latent heat effect causes very slow temperature 

changes with respect to time, whereas in the solid and liquid states, the 

latent heat is not effective at all. Hence, at the interfaces, sharp 

changes will appear in the temperature gradients both with respect to time 

and to radius. Moreover, the physical and thermal properties of the 

material will also change sharply at these (discontinuity) points (see 

Figure 5.1). The proposed method never introduced any oscillation at 

these critical points (see Figures 5.14, 5.15 and 5.16).

A comparison between the time dimensions in Figures 5.15 and 

5.16 can be made such that, from time £j^ = £ ^ to time £ ^ , the body is in 

two phases (solid and transition), with only one interface. At time £ ^ ,  

the temperature of the pellet inner surface approaches the liquidus

temperature (see Figure 5.16). At the same time, another free boundary 

(the liquidus interface) begins to develop and moves towards the pellet 

outer surface. This interface, of course, can never reach the solidus
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interface or the pellet outer surface, as explained in Section 5.4.1.

The steady-state case, in general, is approached after time t
9

when both free boundaries become motionless and also all the temperatures 

tend to remain steady. The temperature of the pellet inner surface 

(3076.2°K) is now higher than the liquidus temperature of the material. 

Therefore, the solution domain will steadily remain in three phases (solid, 

transition and liquid).

The proposed method performed very well throughout this 

application and never introduced any oscillation, particularly at the 

interfaces, where discontinuities occur for all the field variables (see 

Figures 5.1, 5.14 and 5.16). The free boundaries develop and move very 

smoothly and without any oscillation (see Figure 5.15) as must be the case. 

The method showed to be stable throughout these applications. Its 

behaviour conformed with the theoretical ideas in all aspects.

Correlation among Figures 5.13, 5.15 and 5.16 is always 

guaranteed, as explained for Figure 5.12, because they are solution curves 

representative to a single problem.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

In recent years, the numerical methods have been improved tremendously 

from some very simple idealised cases to highly sophisticated and 

generalised systems. Nowadays, because of the increasing need for safety 

in industries (particularly in the nuclear industry), reliable and 

economical predictive numerical methods have clearly become indispensable 

tools for design engineers. In many cases, one of the most important 

factors in a new design is, of course, the conduction of heat through the 

materials. This has been the prime consideration of this work.

The technology of harvesting nuclear energy has now been well- 

established. The most crucial hurdle a design engineer faces today is 

the safety aspects of each component he proposes to use, particularly 

inside a reactor core where the operating temperatures are very high.

In the event of an accident, these temperatures may rise even further and 

may even exceed the material melting point and have to be considered by the 

designer. Some of these possible events can be simulated with the help 

of numerical techniques.

On the other hand, in addition to the safety of a nuclear reactor, its 

efficiency must also be as high as possible. The best performance of a 

set-up would ideally be when the fuel zone temperature is uniformly just 

under its melting point. In practice, however, peak fuel temperatures 

are, for various reasons, well below the melting point. Therefore, the 

highest efficiency of a reactor is obtained when the temperatures are at 

the highest possible level. Moreover, the most critical conditions 

inside a reactor, whilst being operated, are usually around the core centre, 

where a minor accident or over-heat might introduce phase-change. This
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is considered in Chapter 5.

In the present work, three-dimensional numerical formulations for a 

very general potential field problem have initially been derived (in 

Chapter 2) for any shape of geometry using all possible kinds of boundary 

conditions (see Table 1.2). In the same chapter, a procedure for replacing 

all kinds of loads acting on the solution-domain by a set of distinct loads 

acting only at the nodes is proposed (see Section 2.A.3). This technique 

is established both physically and mathematically. This is explained 

well for any shape of element including two- and one-dimensional (see also 

Section 3.3.3).

The method has particularly been applied to a general heat conduction 

problem (see Section 2.4) with all four different kinds of boundary 

conditions (as given in Table 1.3). The first three kinds of boundary 

conditions are used throughout this work. Although some work was done on 

the radiative boundary conditions, the modelling was not satisfactory 

enough and it has not been reported here.

This work was primarily concerned with the conductive heat transfer 

through nuclear reactor components, which can be regarded as a two- 

dimensional problem. We have, therefore, re-derived the method for this 

type of problem for steady-state situations in Chapter 3.

Throughout this work, in the derivation of the formulations, all the 

thermophysical properties are considered to be variable (temperature- 

dependent, for example). Moreover, the proposed method is also very 

general and can deal with a heat conduction problem (including coupled - 

problems) in any geometrical shape of the solution-domain, involving any 

kind of boundary conditions. This can prove to be of an enormous 

advantage.

In Chapter 3, the formulations are re-derived for a two-dimensional 

steady-state problem. These can be applied either in a cartesian system



179

or in an axisymmetric system using the same computer code with minimal 

changes (see Section 3.1). In the same chapter, a linear temperature 

model has been proposed, for which the temperature has to be prescribed 

at at least three nodes. Therefore, for a triangular element, it is very 

simple and suitable, but for any other shaped elements, three well- 

distributed nodes are most suitable. Further, the construction of the 

thermal conductivity matrix and the load matrix for a typical element is 

also discussed here (in Sections 3.3.2 and 3.3.3, respectively).

Finally, the method (so far for steady-state problems) is compared 

with an analytical solution (in Section 3.4) and the method showed very 

good accuracy and stability. Furthermore, to demonstrate some of the 

features of the method, it is applied to more axisymmetric and non- 

axisymmetric geometrical configurations with various boundary conditions 

(see Section 3.5) that can exist in a typical real life LMFBR fuel element. 

For example, an LMFBR fuel element with the pellet eccentrically mounted 

in the cladding, namely, with a non-uniform gap in between.

Next, the time derivative term is formulated and added to the 

existing formulations in order to solve transient problems in a single

phase medium. A generalised formulation is derived using a parameter X. 

The well-known Crank-Nicholson and Galerkin methods are regenerated when 

X takes values of one and two, respectively. The variations of the 

thermophysical properties are also considered here (in Section 4.2).

The status of the solution-domain (the system), whether it is cooling 

down, heating up or being steady, is verified by comparing the (nodal) 

temperatures at the beginning and end of each time-step (equation (4.14)). 

For a sufficient time lag, some transient solutions can approach steady- 

state solutions.

The proposed formulations are tested against the only available one

dimensional exact solutions (Section 4.5). The solutions were in very
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good agreement and were stable. Some of the examples used in Chapter 3 

were re-calculated to include tKe transient stage. Some of these examples 

were solved for an extended time period to achieve steady-state conditions. 

These compared very well with the solutions given in Chapter 3.

As the temperatures rise and there is persistent over-heat loading, 

the temperatures of some components (or some parts) may exceed their 

melting points. This would change the conductive problems studied so far 

to phase-change (or multi-phase) problems. These are studied in Chapter 5. 

A typical interface (free boundary) is well-defined and a very general 

method has been proposed to locate each interface (see Section 5.3.2) for 

a wide range of possibilities. Then this method has been applied here in 

the frame of the finite element method (see Section 5.3.3). These 

located interfaces are then used for refining the mesh to produce elements, 

each in a single phase (see Section 5.3.4). Only the elements crossed by 

interface(s) need be refined. In steady-state multi-phase problems, each 

interface remains steady, but in transient problems (of this type), the 

shape and the position of each interface changes with respect to time.

Hence, the problem has to be solved more cautiously.

Unless the components are made up of pure materials, there is always 

a finite difference between the solidus and liquidus temperatures. If 

the temperature of any node lies between these two temperatures, the node 

is then in a transition state. This state is treated here as an 

independent state. In this state, the field variables, obviously, have 

to keep continuity and thus, if a variable is not known, a continuity 

hypothesis may be applied to approximate it over the transition temperature 

range (for instance, see equation (5.1)).

Change of phase takes place only in transient multi-phase problems 

and latent heat will affect only in the transition state. This is well 

explained and is formulated in Section 5.2.3. For these problems, no
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analytical solutions, against which the method and the code could be 

validated, were found in the literature. Nevertheless, the solutions are 

found to be stable and are seen in all respects to be very reasonable.

This formulation is first applied to an LMFBR fuel pellet in two 

phases, namely, solid and transition. The qualitative agreement is very 

good. Next, it is applied to the same pellet with heat loading such that 

the pellet attains three phases simultaneously. Again, qualitative 

agreement is very good.

The method is very general and flexible, and it can deal with an 

geometrical shape and with any type of boundary condition (except 

radiative). It can be applied to a wide range of multi-phase problems as 

well as single-phase problems in both steady-state and transient cases.

In this method, there is not any restriction either on geometrical or on 

thermophysical properties. Each of the thermophysical properties of each 

element is entirely independent of neighbouring elements, which means that 

they may vary from element to element. These degrees of freedom can 

prove the method to be of enormous advantage. A two-dimensional computer 

code has been developed, based on this method, such that it can be applied 

to either cartesian systems or axisymmetric systems.

In conclusion, briefly, the finite element formulations of the 

conductive heat transfer process have been fully discussed here in three 

dimensions with all possible boundary conditions. The two-dimensional 

computer coding can deal with any geometrical system. None of the 

thermophysical properties of each element is restricted by neighbouring 

elements. The code can be applied to problems both in steady-state and 

transient cases. The system can be in the single-phase or multi-phase, and 

also to systems which are in the transient state approaching a steady-state 

case. The method and the solutions have always been stable for the 

problems and applications considered here. The computer coding has been
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arranged such that any new application can easily be incorporated. It can 

handle problem with the following properties:

(1) Any two-dimensional geometrical shape.

(2) All possible boundary conditions (except radiative).

(3) Variable thermophysical properties.

(4) Steady-state cases in single-phase and multi-phase problems.

(5) Transient cases in single-phase and multi-phase problems.

(6) Each free boundary in transient multi-phase problems can 

carefully be located at any time.

(7) The code is simple to adapt to new applications and has been 

stable for all the problems considered throughout this work.

It is worth noting that the formulations presented here for the 

temperature field analysis are compatible with the finite element solution 

for the stress distribution analysis, and hence both problems can be 

solved simultaneously and jointly, even by the same code. A lot of 

effort has already been made to make it as economical as possible. This 

code can be employed to calculate the temperature distribution in the 

reactor components at any conditions needed as input to the thermal and 

irradiation stress analysis computer code developed by the Nuclear Power 

Section at Imperial College.

6.2 FUTURE WORK AND RECOMMENDATIONS

The two-dimensional computer code has reached a stage of development 

where it can be of real benefit to industry. For many applications and 

restrictions of finance and computer facilities, the two-dimensional code 

is very adequate. The next step in its development, which a typical 

industry may require , is to be able to solve three-dimensional problems.
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The formulations have been presented in Chapter 2. The treatment of each 

of the matrices (heat load matrix, thermal conductivity matrix and thermal 

energy capacity matrix) for any type of problem (steady-state or transient 

in single-phase or multi-phase medium) would remain virtually the same.

No doubt these classes of problem would require an enormous amount of 

computational effort.

As regards the two-dimensional problems, the expansion of the elements 

has still to be taken into account, even though it may be a very small 

fraction of its dimensions. This would, of course, be useful only in 

transient problems. The other major area of development is to include 

thermal radiation. This is not a very simple task and requires further 

modelling to tackle it successfully.

The most important thing is to be able to obtain more experimental 

data for both phase-change problems and problems involving the radiative 

boundary so that this method can systematically be validated.
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APPENDIX A

To replace a distributed load by a point load, we consider a typical 

(three-dimensional) element (£) which is under a continuously distributed

load with a local density of Q. per unit volume. All this distributed
-+

load is equivalent to a point—load (Fq ) which is:

Iff • dV
l/e

(A. la)

acting at a load-centre (G) whose coordinate vector (t ig ) is given by:

- *  -> 
* £  #iit / ,  rrr= ( /// er.i.dVI/lg t.dv ) (A.2)

IT l/'

where the net moment due to the distributed load (Q/) over the entire 

element is zero. For a uniform load distribution, the load-centre (G) 

coincides with the gravity centre of the element, and:

= <f . Vz (A. lb)

where v is the volume of the element.

Similarly, the distributive loads acting on a surface (boundary 

loads), or the loads due to the potential flow passing through a finite 

surface (boundary face), can be replaced by a point-load. For a typical 

boundary face (S^) of a typical boundary element (e.), which is under a

continuously distributed load with a local density of q * per unit area,
S +£

all this distributed load is equivalent to a point-load (F ) as:

= a  e 0 .
,£ S'

(A.3a)
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acting at a load-centre (C.) whose coordinate vector (4. ) is given by:

= (// q * . d S } (A.4),e S .a S

where the net moment due to the distributed load ( q ) on the face S is 

zero. For a uniform load distribution, the load-centre ( C .)  coincides

£ r»C.with the centroid of the face S , if the face 5 is flat, and:

Fe = q* . Ae
q Y (A.3b)

where AQ. is the area of the boundary face, S .

Finally, the loads distributed over a line can also be replaced by a 

point-load. For a typical side (edge) (' i j , for example) under a 

continuous distributed load with a local density of per unit length, 

all this distributed load is equivalent to a point-load (F* •) which is:

F*. = / <f!\. dc (A.5a)

acting at a load-centre (W) whose coordinate vector (A. ) is given by:

m = ( /  q j ; . % . d c ) / [ f  q'Jj .dc] (A. 6)

where the net moment due to the distributed load q. • on the side -t/ is
*-j

zero. For a uniform load distribution, the load-centre (m) coincides 

with the mid-point of the side <Lj 9 if the side Zj is not curved, and:

F?. = q ? . . L . .

where L . > is the length of the side <£/.

(A. 5b)
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To replace a point-load (F  ) acting on an element (£) at a point p by
P

an equivalent system of distinct loads acting at some distinct points (for 

example, some selected nodes of that element), we need to obey both the 

conservation law and the moment law. The conservation law states that the 

total load (resultant) at any instant must be equal to the point-load, 

namely, for the typical element:

Fe = l &
p L. A. (A. 7)

where 4 is the summation over all the selected nodes of the element (e.) ,
->
T-C.and r j is the load acting at a typical node A, of the element due to the 
* +£

point-load (F ). Moreover, the moment law states that the sum of the
P

moments o f a l l  the loads (ag ain  due to  F o r F  4 )  a c tin g  on the element a tp

any instant about any point must remain unchanged. Hence, since the net

moment about the point of action of F (point p) is zero, we can write:
P

l * \  = °
A.

(A.8)

where m . is the moment of the nodal load F. about point p. The typical 
-> ->
r-2. t-2.nodal load F * is then the component of F at the respective node (A.) .

-+ ->■ P
Such systems (F and F^4) are then said to be equivalent.

On the other hand, the formulations derived in equations (2.58), 

(2.62) and (2.63) using the finite element method can also be used for 

replacing any distribution of loads acting on a typical element by another 

system of distinct loads acting only at the nodes of that element. 

Obviously, the resultant load must always be the same. In order to

evaluate those integrals, firstly, we need to introduce some special 

mathematical functions to ease their understanding and then relate them to 

the relations (A.l) to (A.8).
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A point-load can be considered as a continuous distributive load such 

that its local density is zero everywhere, except at its point of action 

where it is infinite. We can construct a mathematical function which 

behaves in this fashion by introducing here a special generalised function 

usually used in electromagnetic problems [32].

For a point P at Xp, let us define a function (a Dirac delta function), 

denoted by the symbol 6(x-Xp), such that it is everywhere zero except at 

the point P where it is infinite, namely:

6(x-Xp) = 0 if x ^ Xp

6 (x - Xp) = « if X = Xp
(A.9)

and for P outside the interval a b , we can write:

b
/ 6 (x - Xp) . d x = 0 if Xp i  [a,b] (A.10a)
a

but for P inside the interval ab, we can write:

b
f  6 (x - Xp) . d x  =  1 if Xp e [a, b] (A.10b)
a

It can then be proved that for a point P at h.p for any constant A and the 

interval of integration containing the point P, we can write:

b
J A . 6 (A. - >ip) . dV  -  A (A.11)
a

This can be written in the cartesian system as:

JIf
V

A (A. 12)
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A l s o ,  f o r  a n y  f u n c t i o n  o f  N ( / l ] d e p e n d i n g  o n  A  ( f o r  e x a m p l e ,  X ,  y  a n d  z )  

a n d  t h e  i n t e r v a l  o f  i n t e g r a t i o n  c o n t a i n i n g  A p  ( f o r  e x a m p l e ,  X p ,  i / p  a n d  Z p ) ,  

i t  c a n  b e  p r o v e d  t h a t :

Iff A . N(a ] . S(A-Ap) . dV = A . N(a J  (A.13)
1/ K K

where W(Ap) is the value of the function W at point P ( X p ,  £ /p  and Z p )  ([32] 

and [33]).
-v-eHence, for a point-load of strength F^ acting at a point P inside an 

element (2.), we can define a local load density function as:

(A.14)

such that this is zero everywhere but infinite at P, and by the relation 

(A.11) we can write:

Iff f*. m - y  . m  = f£
l/e

(A.15)

Using the relation (A.14) as a special local load density function 

instead of the local load density O2' in equation (2.58) and using relations 

(A.13) and (A.15), we finally obtain:

-e{FqP  = /// F£. [N(a )]T . 6U-4.pl . dv = F®.[Nkp)]T
l/e

(A. 16)

->
■e .where F^ is the point-load equivalent to the total of the distributed load 

over the element, given by relations (A.la) and (A.lb), and the N(Ap)1s

are the values of the position functions (N*s) evaluated at the point P
-► ->
2. _g.

(the point of action of Fq  ̂or the load-centre of the distributed load Q. ), 

located by the relation (A.2).
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Similarly, the relation (2.62) can be written as:

{F?} e = / /  f£ .  [W(/i ) ] T . 6 U - A p ) . dS = ^ . [ N U p l ]

s e

(A.17)

-+-ewhere F^ is the point—load equivalent to the total of the distributed load 
£

on the face 5 (the boundary face of the element £ associated with the
->

approximated surface of 52), F^ can be calculated from relations (A.3a) 
and (A.3b), and the W(/Lp) *s are the values of the position functions (W?s)

4*

evaluated at the point P (the point of action of F^ or the load-centre of 

the distributed load q ), located by the relation (A.4).
s e

Also, the relation (2.63) can be written as:

{ > y e = f l  * 1 -  W U ) ] T . . dS  = f£ .  [W Up))T (A .18)

->
-£where F^ is the point—load equivalent to the total of the distributed load

on the face S (the boundary face of the element £ associated with the 

approximated surface of F^ can be calculated from relations (A.3a)

and (A.3b) using q = to6' .0 , and the W ?s are the values of the 

position functions (W1s) evaluated at the point P (the point of action of
-4
1-0- / 0-
r , or the load-centre of the distributed load due to ft .0 ), located by 
n 5^

the relation (A.4).

Finally, for a distributed load acting on a one-dimensional element 

/C/, we can write:

{ F . - } e  =  /  F | .  .  [ N U ) ] r  . 6 ( A - A p )  . d c  =  F * .  .  [ N ( A p ) ] T (A. 19)

->
-£where F . - is the point-load equivalent to the total of the distributed 
^J

load on the line -tj, given by relations (A.5a) and (A.5b), and the Nl'ipl’s 

are the values of the position functions (Wfs) evaluated at the point P
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q..), located by the relation (A.6).
■**j

Hence, any distributed load acting on a typical element can be first 

replaced by a point—load. Next, this point—load can be broken up into

some distinct loads, acting only at the nodes of the element, in such a 

way that the total load is divided proportionally to the values of the 

position functions (Nfs) at the respective load-centre (or at the point of 

action of the point—load).

Let us verify the result (A.16) for a point-load acting on a three- 

dimensional tetrahedral element. Consider a typical tetrahedral element 

as described in Section 2.4.1, and as shown in Figure A.l. If a point

(the point of action of F*T. or the load-centre of the distributed load

load (F«) acts at a point V[x,y,z) inside the element, it can be replaced
*4 -y -y -y -y

by a system of four distinct loads (F^, F^, F^ and F^) acting at the 

vertices of the element Ct, /, k and t ,  respectively), all parallel to FjL
-y ^

Let Xp intersect the face jkJL at the point T. Now, F^ can be replaced by

two loads acting at points X and T, so that both are parallel to F^, and
-y

the load acting at X. (F^) can be written as:
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-y -*■
F* = .
* Q.

P T 

X T
(A.20)

such that: P T 

I T

where is the volume of the tetrahedron (sub-element) p/fe£, and 1/ is 

the volume of the tetrahedron (main element) X/fe£. Therefore, by using 

relations (2.20), we can write:

Similarly:

-y

A.

-y
Fe

J

= F
► 1/.£
a - T r

i/
-£

- Fn - /  "

Fe W .
V  *

Fe N .
V i

etc,

(A.21)

This can be expressed in matrix form as:

{Fa}e = F|.[N(P)1 (A.22)

where the W(P)' s are the values of the N fs given by relations (2.20) 

evaluated at the point P. Hence, the relation (A.22) confirms the result 

(A.16).

For a uniform load distribution, the load-centre (P) coincides with 

the gravity centre (G) of the element, where:
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I  V -L-‘ A. 
A,

l/. + l/.+ l/, +l/„ = 1/
a , j k l  e

and: iia
* + N . + N ,  

j fe + w£ - i

Also: V.
A.

iiii

^  -
7

" 7*

Hence: w.A.
= N. =

5 \  '
7
4

Then:
->-
f*
A.

n

. 
4- 

II II Fe 7
4 *

-£
Q.

(A. 23)

where the total uniform load distributed over the element is equivalent to
-V

a point-load ( F q ) acting at G, which is given by relation (A.lb) as:

-+ -> ->
e „ef£ = Iff e.dv =

Therefore, relations (2.58) or (A.16) for such an element can finally be 

written in the matrix notation as:

->

4

7 7
7 a e . ue 7
7 ..? * 7
7 7

(A.24)

where is the density of the uniform load (volumetric).

In order to verify the results (A.17) and (A.18) for a two-dimensional 

case, we consider a typical triangular element as described in Section

2.4.1 and shown in Figure A.2. If a point-load (F ) acts at a point

P(x,f/) inside the element, it can be replaced by a system of three distinct 

loads (F^, F^ and Fl) acting at its vertices Cc, j and k), all parallel to
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F*T. Let Xp  intersect the side jk  at a point T. Now, F^ can be replaced 
Q Q -y

by two loads acting at points X and T, and that both are parallel to F , 

such that the load F^ acting at point X can be expressed as:

£  P T

^  T
(A.25)

where:
P T

r r

in which A^ is the area of the triangle (sub-element) p/fc, and A^ is the 

area of the triangle (main element) Xjk. Therefore, by using relations 

(2.22), we obtain:

F f  = - F ^ . N ,  (A. 26)A, q Ae q ^

Similarly:
A .

F^ = F^.-jJ- = F<:.N; ,q A Q J
etc.

This can be written in matrix form as:

-e
{Fq} = F *  . [M{PJ] (A.27)
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where the W(P)Ts are the values of the W fs given by the relations (2.22) 

evaluated at the point P. Hence, the relation (A.27) confirms the result 

(A.17).

For a uniform load distribution, the load-centre (p) coincides with 

the centroid of the element (c.) , where:

A,

= A . + A . + A/ 
A. j k ‘ Ae

and: l h
A.

- " l  + " j  + hik
= I

Also: = Aj A k  m T ' ae
(A.28)

Hence: N. = N. = 
* j Wfe -

1

3

Then: =
-t j 3 -

1
3 * q

By using relations (A.3b), (2.62), (2.63), (A.17) and (A.18) for such an

element, it can finally be expressed in matrix notation as:

V v * . (A.29)

where q I s the density of the uniform load.

In order to verify the result (A.19) for a one-dimensional case, we

consider a straight line joining two typical nodes A, and /, as described

in Section 2.4.1 and shown in Figure A.3. If a point-load (Fy •) acts at

a point P(x) on the element, it can be replaced by a system of two distinct

loads (F- and F^) acting at its ends (A, and /), both parallel to F . •, such 
't j -tj

that:
->
F^ «

->
P 7 and Tt

 X
 

II

* J
J A-j *  J
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Using the relation (2.24) , we can obtain:

-*■ -► l .

A  -
V <L A.

■ * l r Hi

-
* >- ■

and: 1 = I r - t
= Fe W

This can be expressed in matrix form as:

{F^y}e * F?y . [W(P]]^ (A.30)

in which the N(P)*s are the values of the W*s given by relations (2.24) 

evaluated at the point P. Hence, the relation (A.30) confirms the results 

(A.19).

For a uniform load distribution, the load-centre (p) coincides with 

the mid-point of the element (m), where:

and: 

Also: 

Hence: 

Then:

n .  - + 1. = £
A. J

J N .  - N. + N. = 11 *
A. 4

l.A,
1
1

N.
A.

w.
i

A.j

(A.31)
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By using the relation (A.5b), the relation (A.19) for such an element can 

finally be written in matrix form as:

F * . 1 ;

II

r

<-k
.

2 1 2 1
(A.32)

where o • • is the density of the uniform load. 
j

Since the sum of the N's is always equal to one, the conservation laws 

are always satisfied, but it is difficult to prove for general W ’s that 

the moment is conserved. However, for all the examples considered above, 

the moment was conserved. Further, another method is also described in 

Section 3.3.3, where the same results are derived using a different method 

for a general two-dimensional element, and the moment is also conserved. 

Very often, the standard text books only deal with the discretisation of 

uniform load distributions and then divide the total load equally among the 

nodes, often the only reason being intuition. Here, we have now managed 

to prove rigorously how to discretise any general load (point—load or 

distributed load) to the nodes. During the literature survey on the 

subject, it was found that none of the authors had proved these results, 

although the usage had been almost universal.
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APPENDIX B

THEOREM

A uniformly distributed load over a flat n sided polygonal element is 

equivalent to a system of n distinct loads acting at its vertices, such 

that the load at each vertex is equal to all the loads on the quadrilateral 

whose vertices are the vertex itself, the polygon centroid and the mid

points of the two sides adjacent to that vertex.

PROOF

Consider a plane (two-dimensional) n sided polygonal element (e.) of 

height and with a uniform load distribution Q, per unit volume (Figure

B.l, for example). Let the element be sub-divided into n triangles by 

joining its centroid (C.) to its vertices (<£, /, etc.).

m

The uniform load over each triangle Ot/c, for example) is equivalent
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to a point-load F;;, as given by the relation (3.31), and will be:

F t . = £>e . l & . A . .
■Cj -  -C JC

where is the area of the triangle -ijc . This load acts at its

centroid (o. •) situated on the median labelled 06. Hence, the total load 

acting on the polygonal element is then equivalent to the system of n 

distinct loads (r- for example), acting at the centroid of each triangle 

(o. for example).

Next, draw a line parallel to the side A.j passing through O . - . Let
<Lj

it intersect the lines C-t and c j at the points A . and A ., respectively.
^ J

It can be shown that:

A . 0 . . = o . . A .
A. A,j A.j j

and: -C60 = AjAO 2 * A^j'c

where A ^ ^  is the area of a triangle Zmn. Therefore, by using these two

results, F. • can be replaced by a system of two equal loads, F, and F. ,
J * j

acting at A- and A *, respectively, such that: 
j

1  ■
Ay

-  Ft. 
2 * (B.l)

Applying the same procedure to the adjacent triangle (-ton, for

example), we obtain another load acting at A. of the magnitude:
<1.

Hence, the net load acting at point A> is equal to:'C
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A-
A.

= o r . r (a^ c  + xzct (B.2)

This is repeated for all the triangles of the polygon to yield a system of 

Yl distinct loads of the form (B.2), acting at the points A . (Figure B.l), 

which is equivalent to the point-load of the form (3.31) acting at C.. 

Therefore, we can write:

(B.3a)

and: 0 (B.3b)

where n is the summation over all the points A*.

By the properties of a triangle (ZjC., for example), it can be easily 

shown that:

cA. c A -  
_ L _  = ___1
T Z  c?

c  c.

C 4

Z j  = _2_ 
3

, etc. (B. 4)

Multiplying the moment balance equation (B.3b) by a factor of 3/2 and 

using equations (B.4), we obtain:

I (Fa A CA..I) = I A cl) = 0
n Z ^  n Z

Hence, if all the loads pT were now acting at the corresponding vertex
RZ

(JL, for example), we will have the same resultant as given by the relation 

(B.3a). Hence, we finally obtain a system of n distinct loads (F., for 

example), acting at the vertices (Z, for example), and each equal to, for

example:
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< f . r + LJlqX
or . i k

'l&ct (B.5)

which is equal to the load over the quadrilateral -tAc£, acting at the 

vertex X, (Figure B.l).

This load (B.5) corresponds with the component of the load given by 

the relation (3.31) at vertex X represented by the relation (3.32); thus:

= *e . * e .A iff. £e . Ae ) . N . (c ) (B.6)

Therefore: W^(c) L-U<U , etc. (B. 7)

COROLLARY

In particular, when the polygonal element is a triangle (X.jk9 for 

example), all the quadrilaterals constructed as before have the same area 

(because the medians pass through the centroid c) (Figure B.2). Hence,

Figure B.2: Replacement of a uniform load on a triangle by three loads at
its vertices

the load at each vertex is simply:
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->

This can be written in matrix notation as:

F . | j 7
A.

F . 1 7
J 3  ,
h 7

which is the same result as that obtained by the relation (3.33).
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