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Abstract

It is well-known that the conditional distribution of a Markov-chain signal process based on obser
vations of a “signal-plus-white-noise” type obeys a vector stochastic differential equation. The usual 
Bayes estimates of functions of the signal can be found from this distribution, pointwise in time. 
Unfortunately, the differential equation mentioned above has, in general, no closed form solution, 
and so it is necessary to use some form of approximation scheme to produce a practical filter.

We consider discrete approximation schemes based on regular partitions of a finite time- 
interval and show that, under the condition that the distribution of the observations-process is 
Wiener-measure (in R d), the discrete-observations-conditional distribution of the approximation 
error (suitably normalised) can at best converge to a normal distribution with zero mean and given 
covariance matrix. For the more practical case, where the distribution of the observations-process is 
only absolutely continuous with respect to Wiener-measure (i.e. the signal-plus-white-noise case), a 
similar result holds.

We demonstrate the existence of schemes that are efficient, in that their normalised error se
quences converge to this best limit, and schemes that possess the highest possible order of conver
gence (i.e. first-order) but that are not efficient. The latter methods have limit conditional distribu
tions with non-zero means.

We investigate various practical approximation schemes, in particular a class of schemes based 
on a “Taylor-series type” expansion of the conditional distribution of the signal about the points of 
the partition.

A parallel set of conditional-distribution-limit-results apply to the normalised errors in the ap
proximation of the Bayes estimates of functions of the signal process when these approximations are 
calculated from the corresponding approximate distributions of the signal-process. It is these ap
proximate estimates that form the “output” of any practical filter.

3



Contents
Abstract .................................................................................................................................................... 3

Notation ...............................................................   6

A cknow ledgem ents.................     9

Chapter 1 Introduction
1.1 Optimal filter in g .......................................................................................................................13
1.2 Filters for Markov c h a in s ......................... . 1 4

Theorem 1.1  15
1.3 Discrete solutions of stochastic differential equations .................................................. 18
1.4 On the results of chapters 2 - 4 ................................................................................ .... . 21

Chapter 2 Some Tools for Handling Discrete Approximation Schemes
2.1 Introduction .......................................................................................................................... 23
2.2 A special notation used in Taylor expansions of the solutions of bilinear s.d.e.s . 23

Definition 2 . 1 ......................................................................................................................... 24
2.3 A Taylor expansion for representing the solutions of bilinear s.d.e.s ........................ 25

Theorem 2.1  25
2.4 A theorem for bounding the solutions of stochastic difference equations . . . .  28

Definition 2.2 . ..................................  28
Lemma 2 . 1 .................................................................................... 29
Theorem 2.2  32

2.5 A family of discrete approximation s c h e m e s ...................................................................34
Definition 2.3 ..........................................................................................................................35
Theorem 2.3  35

2.6 Generalisation of results .................................................................................................... 39

Chapter 3 The Optimal Asymptotic Behaviour of Approximation Schemes
3.1 Introduction ......................................................................................................................... 41
3.2 The equation for the “un-normalised” density .............................................................. 42
3.3 An absolutely continuous transformation of measure ..................................................43

Lemma 3 . 1 ............................................................................................................................. 44
3.4 The maximum order of convergence of discrete m eth o d s ............................................. 47

Definition 3 . 1 ......................................................................................................................... 47
Lemma 3 . 2 ............................................................................................................................. 47
Lemma 3 . 3 ............................................................................................................................. 49
Lemma 3 . 4 ..............................................................................................................................50

3.5 An optimal limit-distribution result for normalised error sequences .........................52
Theorem 3.1  53

3.6 Limit-distributions for normalised errors in approximations of Bayes estimates . 64
Theorem 3.2    65

Chapter 4 Some Approximation Schemes
4.1 Introduction ......................................................................................................................... 71
4.2 Asymptotic properties of approximation s c h e m e s .......................................................... 71

4



5

71
73
75
77
78
78
85

92
92
94

96

Definition 4 . 1 ..........................................
Lemma 4 . 1 ...............................................
A paradigmatic efficient scheme . . .
Lemma 4 . 2 ...............................................
Definition 4 . 2 ..................... .....................
Theorem 4.1 ..........................................
A comparison of approximation schemes

Further Considerations
Properties on a finite partition . . . .
Computation ..........................................
Irregular partitions..................................



Notation

Abbreviations:
a.s. almost surely
o.d.e. ordinary differential equation
s.d.e. stochastic differential equation
w.r.t. with respect to

Set theoretic symbols:
0 null set
s “belongs to”
C “is contained in”
u union
ri intersection
3 “there exists”
V “for all”

Matrix and vector symbols:
/ identity matrix
bT,(B T) transpose of a vector (matrix)

< * ,y > inner product of two vectors

11*11 ■ norm of a vector or matrix (Euclidean unless otherwise stated)
d iagU j,. . . ,xm) a diagonal matrix with elements xv . . . , x m
* /,(* (0) the i th element of a vector; the second form is used where a subscript 

has another meaning, for instance the i th element of a process

Probability theoretic symbols:
(0 ,5 fP ) a probability space
w the generic element of S2

sigma-fields of subsets of 12
<r( •) the sigma-field generated by a system of sets or a random variable
& a(X ); where A" is a random variable or process

% <j(Xs ; s < t)\ where A  is a random process

P ,P ^ P 2 probability measures
E ,E v E2 mathematical expectation with respect to P ,P {,P2
P{A \7) ^conditional probability of an event A
E {X  |5 ) ^conditional mean of a random variable Xr
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Pl «  P2
p ^ p 2 
(a .s.)(P)

Lp({Q,V,P))

N {m, V)
«(0, F)

Ia

Special notation:

measure F, is absolutely continuous with respect to P2 
F1 and P2 are mutually absolutely continuous 
almost surely with respect to F ; (F ) is omitted 
where the measure is obvious
space of random variables on whose plh powers are integrable 
weak convergence (convergence in distribution) 
the multivariate normal distribution with mean m and covariance V 
the multivariate normal density with mean m and covariance V 
the indicator function of a set A

Pn

q
q
q
O U - )

a partition sigma-field (see (3.2.4)) 
an approximation to the random variable q 
E2(q | PN) (see (3.4.23)) 
q -  E2(q I PN) (see (3.4.23)) 
an order of convergence (see definition 2.2) 
an order of convergence (see definition 2.2)

M ,a , 13,1(a), n(a), - a ,  a - ,  v , l (S ) ,B (S ) ,  Aa(F ,<?„ . . . ,Gd), I* (s ,t) , I* (X ,s ,t) ,  
I ™ (nh, {n +  \)h), I % {q,nh,(n +  \)h) —  see definition 2.1

(oo)
opC)

Other symbols:
: =  “defined equal to”
«  “approximately equal to”
R d the space of real d -vectors
fj the set of natural numbers
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Chapter 1

Introduction

1.1 Optimal filtering.

This thesis is concerned with the numerical realisation of a class of optimal filters that could, in 
principle, be programmed on a digital computer or microprocessor system. By “filter” we mean a 
recipe by which we can estimate a time-varying parameter or signal, from past and present observa
tions of some related, noise-perturbed signal. For example, we might wish to estimate the “state” of 
a dynamical system from noise-perturbed observations of the output.

The simplest example of an optimal filter is the Kalman filter (see [AR1]) for linear systems 
driven by Gaussian white noise.

Much literature exists on the more general theory of filtering. So we shall not go into the details 
here; the main tools used in that theory and in this thesis are results of probability theory and 
stochastic calculus. The reader should be familiar with such notions and results from probability 
theory as: probability spaces, probability as a normalised cr-additive set function, random variables as 
measurable functions, mathematical expectation and conditional expectation, the Radon-Nikodym 
theorem, Fubini's theorem, almost sure convergence, L-convergence, convegence in probability, 
weak convergence, the Borel-Cantelli lemmas, Holders’s inequality, distributions, moments, and 
the central limit theorem. There are many good texts in probabilty theory, for example Billingsley 
[BI1] and Kingman and Taylor [KT1].

Filtering theory for continuous-time signals draws on the theory of continuous-time stochastic 
processes and the integral calculus appropriate to such processes. The reader should be familiar with 
such concepts and results as: stochastic processes and their finite-dimensional distributions, the 
Markov property, adapted processes, martingales, Brownian motion, the Wiener integral, stochas
tic differential equations, the existence and uniqueness of their solutions, ltd ’s rule and the Girsanov 
theorem.

A good introductory text to stochastic calculus with practical motivation is Arnold [AR1]. For a 
more complete (and abstract) handling of the subject see, for example, Ikeda and Watanabe [IW1], 
Gikhman and Skorokhod [GS1] or Stroock and Varadhan [SV1].

Finally, for a thorough treatment of optimal filtering theory, the reader should consult Liptser 
and Shiryayev [LSI] or Kallianpur [KA1]. Both these books include sizeable sections on the under
lying results of stochastic calculus.

13
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Filtering theory is largely concerned with a recursive formula for the conditional a-posteriori 
statistical distribution for the signal based on prior observations; the usual Bayes estimates can be 
found from this distribution (see for example Larsen [LAI]). For a finite-state signal the “output” 
of the recursive formula would be a vector of conditional probabilities, and for a continuous-state 
signal the output might be a conditional density (assuming a density exists). For a discrete-time sys
tem the recursive formula would be a difference equation, but for a continuous-time signal it would 
be a differential or integral equation. (Since we idealise the integral of physical “wideband” noise 
by a Brownian motion process, these differential equations would be stochastic differential equa
tions (s.d.e.s) and cannot be interpreted in the usual Riemann-Stieltjes sense.)

The simplest and earliest example of an optimal filter of this type is the well-known Kalman 
filter. This is a recursive formula for the conditional mean and conditional covariance of the state 
of a linear system driven by wide-band Gaussian noise, based on observations that are a linear com
bination of the signal and independent Gaussian wide-band noise.

Versions of the Kalman filtering equations exist for discrete-time and continuous-time systems. 
The equations are directly applicable for continuous-state signals because they are finite-dimensional; 
in fact the linearity of the problem ensures that the a-posteriori distribution is Gaussian and can be 
parameterised by a finite number of statistics (the mean and the covariance).

One of the practical problems with optimal filtering for arbitrary Markov signals is that the a- 
posteriori distributions cannot always be characterised by a finite set of statistics, and so the filtering 
equations are infinite-dimensional. There is a fair amount of work on special cases for which finite
dimensional filters exist (see for example Bene5 [BE1], Brockett [BR1]), but we shall not be con
cerned with that here.

In this thesis we restrict our attention to the filtering equations appropriate to Markov-chain 

signals because Markov diffusion processes can usually be approximated with arbitrary accuracy by 
such chains (see Kushner [KU1]).

1.2 Filters for Markov chains.

Suppose we have a signal (.s’,) that we wish to estimate from observations of a “signaLplus-wide- 
band-noise” type; i.e. we observe (Yt), which is given by

Yt =  h(st) +  nt ; h{st),nt e R d. (1.2.1)

h is a bounded, nonlinear function and («,) is wide-band Gaussian noise, statistically independent of 
(st). (By “wide-band”, we mean that the bandwidth of the noise is much greater than the bandwidth 
of the signal ($,).)

The optimal filter in this case would depend in a very complicated way on the nature of (.s’,) 
and («,); so we examine first the optimal filter for the case where the signal is a finite-state Markov 
chain and the noise is idealised white noise. We note that there are versions of this optimal filter that 
represent “nearly optimal” filters for the real signal (st) and real noise process (»,), provided that 
these can be approximated by a finite-state Markov chain and idealised white noise respectively. 
These notions are made clearer below.
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Wc represent idealised white noise in its integral form; such a process is called a Brownian mo
tion (ft) [AR1]

t

o

The optimal estimates of the signal are found by a Bayes estimation technique; we use our 
knowledge of the physical nature of the signal to decide on an a-priori probability distribution, then 
at each time we use the observations up to that time to form an a-posteriori distribution for the sig
nal. We use this distribution to find estimates of the signal that optimise various error criteria, such 
as least.squares.

An optimal filter for the idealised case is given by the following theorem.

Theorem 1.1. Let {Xt , r e  [0, T]) be a homogeneous finite-state Markov-chain process defined on 
some probability space [Q,D,P{), with generator A and a-priori distribution p#

Xt e S :=  {flj, a2,.  . . , am} t e  [0 ,7 ] ,  
A e R mXm,

=  *0

Po :

P ^ O  am)

Let (Wt , r e  [0, T]) be the following “observations” process:

W. h(Xs)d s +  ft,%
o

where h is a bounded nonlinear function on S;

K
*2

(1.2.3)

h

and (ft) is a d-dimensional Brownian motion process, independent of {Xt).
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(i) The a-posteriori distribution for Xt,

~Px{Xt =  ax \ W s , s z W , T ] )

Pt' =

P f X t =  am \ Ws , s e [ 0 , T ] )

is the unique strong solution o f the following s.d.e

d t

Pt =  Po +

d t

A p sd s + y U B t - (bfp , ) I )ps( d w f - ( b f p s)ds) t e [0, T ], (1.2.4)

1 = 1 0

where
Bi =  . . ,h,(am)} i =  1 ,2 ,. . . ,d \
b j  =  [hfax) hfa2). . . h f a j ]  i =  1,2,. . . ,d.

(ii) If we define an “un-normalised" a-posteriori distribution qtfor Xt by

t m t m

qt :=  exp(J '^ p f h { a j )TdW s - ^ \ \ ^ p ^ \ a j )\\1ds)pv (1.2.5)

o j= \ o j= l

then qt is the unique strong solution o f the following bilinear ltd  s.d.e.

% Po
t d t

Aqsd s + y \ B iqsd W f  t e [ 0, r ] .
0 i = l 0

%  =  %  +

NOTE 1. The idea in (1.2.3) is that

Ysds.
0

(1.2.6)

The stochastic integral on the right-hand side of (1.2.4) is to be interpreted in the sense of Ito (see 
for example Arnold [AR1]).

NOTE 2. Clearly the a-posteriori distribution p t can be found from the unnormalised version by 
the formula

p ' = { Y J q' )y iq‘’
j -1

(1.2.7)

i.e. it is sufficient to solve the simpler s.d.e. (1.2.6) to find pt.

PROOF OF (i). See, for example, Davis and Marcus [DM1].
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PROOF OF (ii). Application of Ito’s rule to (1.2.5) yields the result (1.2.6). |

Part (i) of theorem 1.1 was first proposed by Wonham [WOl], it is a special case of the Fujisaki- 
Kallianpur-Kunita formula [FKK1]. Part (ii) gives a representation of the a-postcriori distribution 
due in its general form to Zakai [ZA1].

From the a-posteriori distribution for Xt we can calculate optimal estimates of functions of Xt; 
for instance if /  is some function on the state-space S,

f  :S  -* R n

such that

2 ,I I /W I I 2 < oo

then the optimal (in the “least-squares” sense) estimate off ( X t), based on the observations (Ws , s e 
[0, r]) is given by the conditional mean,

f i x )  :=  Ex(f(Xt) I W „ s e [ 0 , t ] )
m

y -l
m m

=  qf)~ ' d-2.8)

y - i y -i

Let us return now to the original problem; that is, the determination of an (almost) optimal 
filter for the “real” process (.?,) with physical wide-band noise (nt) in the observations, rather than 
the idealised problem of theorem 1.1. Suppose first that the signal (jf) is a Markov-chain but that 
the noise in the observations is not idealised white noise but some physical wide-band noise. We 
require a formula (hopefully a recursive formula) for calculating an a-posteriori distribution for st 
from each sample path (F5 ; s < t) (or {\sQYudu  ; s < t)), i.e. we require a functional F from the 
space of continuous R ^-valued functions into R m,

F :C ^ [0 ,r ]  »  R m

> r ;>,(*,=■ a, < t )

/ '" l P,(s, =  am | }s0 Yud u ; s < t)

j

Yud u; s < t).
o
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It is plausible that if the distribution of the integral noise process, (Jq/î j), is close in some 
sense to the distribution of the Brownian motion (/3f) (i.e. Wiener measure), then the optimal filter 
for st is close to that obtained by formula (1.2.4). Unfortunately a full analysis of this question ap
pears to be very difficult, but one problem is that the solution of (1.2.4) is only defined almost surely 
uniquely with respect to Wiener measure on C d[0, T]; in particular it prescribes no “output” (a- 
posteriori distribution) for the set of “inputs” (elements of C^[0, T]) with bounded variation, to 
which the “real” observations (Jj, Ysd .s) belong. This particular problem is overcome by replacing for
mula (1.2.4) by a statistically robust version; by this we mean a functional that defines an “output” 
for every element of C d[0,T],  that coincides with the solution of (1.2.4) almost surely (Wiener 
measure) and that is continuous in some sense. This problem of robustness in optimal filtering equa
tions is dealt with by Clark [CL1], Davis [DAI] and others.

In this thesis we shall be considering discrete approximations for equation (1.2.6); the domain of 
these approximations extends naturally to all elements of C d [0,T]  and the methods are inherently 
robust. Some of the methods considered, the Mil’shtein scheme [M il] and the paradigm (definition 
4.2) for example, are probably uniformly robust in the time discretisation parameter, which means 
that the robust approximations obtained by these methods converge to robust exact solutions 
uniformly (‘sup’ norm) on compact sets of input paths, but I have not investigated this further. An 
example of a method which is not uniformly robust is the simple Euler method (see Clark [CL1]). 
The question of uniform robustness for discrete approximation schemes has been treated in detail 
by Talay [TA1] for a class of s.d.e.s more general than those considered here.

Next, suppose that the signal we wish to estimate, (st)t is a (continuous-state) Markov diffusion 
process. Rather than using the version of the Fujisaki-Kallianpur-Kunita formula appropriate to 
diffusions, which is an infinite-dimensional (partial) differential equation, we use the results of 
Kushner in [KU1] and assume that there exists some approximating Markov chain. We solve the 
filtering equations for this chain. To solve the partial differential equation for the diffusion numeri
cally we would need to use a more complex approximation procedure involving discretisation of the 
space parameter. Bennaton, in [BE2] and [BE3], has proved results on the order of convergence of 
Galerkin methods used to solve this problem, which parallel the results of Clark [CL1].

This thesis is primarily concerned then with discrete-time methods for solving equations (1.2.4) 
to (1.2.8). Given such an approximation method, a filter could be constructed with the form shown 
in diagram 1.1.

1.3 Discrete solutions of stochastic differential equations.

Stochastic differential equations can be “solved” by finite approximation schemes in much the 
same way as ordinary differential equations. A first step is to find a “Taylor-type” expansion of the 
exact solution about each point of a discretisation mesh of the time interval, and to approximate 
terms in this expansion, thereby forming a one-step approximation scheme. Such an approach gives 
familiar schemes for ordinary differential equations, the simplest of which is the Euler scheme (see 
for example Blum [BL1]).

For stochastic differential equations the Taylor-expansions differ in form from their o.d.e. coun
terparts because of the differences between the rules of stochastic calculus and ordinary calculus 
(for instance, ItS’s rule).



Reset to zero at
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Wagner and Platen [WP1] and Platen [IJ1] have derived a general Taylor formula for mul
tidimensional s.d.e.s with time-varying drift and diffusion coefficients. They define a family of one- 
step approximation schemes based on this formula. It is their approach which is adopted in chap
ters 2 and 3 of this thesis. I refer to their schemes as the k /2 th-order Taylor schemes (see definition 
2.3).

The 1 /2 '-order Taylor scheme is the stochastic equivalent of the Cauchy-Euler scheme. Though 
first proposed for use with stochastic equations by Maruyama in [MAI]; it is analysed for time- 
varying, single-dimensional diffusions by Mil’shtein in [M il]. Mil’shtein also considered a first-order 
scheme, which is equivalent to the 1J-order Taylor scheme. He further defined a method with order 

hA for the mean-squared error in one step, (h is the step length). Applied to a bilinear equation such 
as (1.2.6), this method has a global error (root-mean-squared error over an interval) of order 1; it is 
similar to the 3 /2 '-order Taylor scheme but lacks the term in h2.

Rao, Borwankar and Ramkrishna [RBR1] develop an order 2 scheme, which is equivalent to the 
2nd-  order Taylor scheme. Riimelin [RU1] considers a general class of Runge-Kutta type schemes, 
which match terms in the Taylor expansions but are easier to implement than the Taylor schemes 
if the drift and diffusion coefficients are nonlinear, as derivatives of the coefficients are not directly 
evaluated.

The above authors are concerned mainly with simulation of the solutions of s.d.e.s. For this, in 
a scheme such as the 3 /2 th- order Taylor scheme, one would use random number generators with 
appropriate distributions and correlations to simulate the terms, required. All the above authors 
produce neat reductions of their methods that require the minimum number of generators. For the 
1/2** and 1 border Taylor schemes one clearly needs to simulate at each step the increment in the 
random driving term, AW: a. zero-mean normal random variable with variance h, if the driving term 
is a Brownian motion. For the 3 /2 '-order scheme, Wagner and Platen show that the simulation can 
be achieved by simulating an extra random variable; in the case of a Brownian driving process this 
is also normally distributed with mean zero but with variance h3/  3. Unfortunately it is correlated 
with the first random variable, the covariance being- h2/ 2.

Mil’shtein’s method with mean-square error in one step of order h4 also uses these two random 
variables as a basis for simulation. Rao, Borwankar and Ramkrishna use a further random variable

to simulate all the terms needed in their 2nd- order scheme.

We are not concerned here with simulation but with the “pathwise” solution of equations (1.2.4) 
and (1.2.6) given realisations of the driving term (FFf). More specifically, we require our approximate 
solutions to be measurable with respect to the driving term at the partition points. Because of this 
we cannot achieve arbitrary orders of convergence; the maximum order of convergence of discrete 
approximations to the solution of equation (1.2.6) is in fact 1; this is well-known but is proved here 
(lemma 3.4) for completeness.

A detailed treatment of the maximum order of convergence of “pathwise” approximate solu
tions of s.d.e.s is given in Clark and Cameron in [CC1].

L



21

1.4 On the results of chapters 2-4.

In this section we outline the results contained in the next three chapters, putting them in the con
text of the work of other authors.

Chapter 2 contains two theorems which are used extensively in chapters 3 and 4: the first, 
theorem 2.1, presents a general Taylor expansion of the solution of bilinear s.d.e.s; it is a corollary 
of theorem 1 in [WP1]. It is used as a first step in the comparison of the solutions of s.d.e.s and 
their approximations. Theorem 2.2 is a tool for bounding the Z^-norms of the solutions of stochas
tic difference equations, given the L -properties of the driving terms; it is used to bound errors 
in approximations. For example, in the proof of theorem 3.1 a process, (N qnh, n =  0 ,1 ,. . . , /V), 
which obeys a rather complicated difference equation, (3.5.10), is approximated by another process, 
(x„» n — 0 ,1 ,. . . ,iV), which obeys the simpler equation (3.5.17); theorem 2.2 is used to show that 
all the Zp-norms of the error process, {N qnh — x n, t* ~  0 ,1 ,. • • converge to zero. Theorem 
2.2 is an adaptation of part of theorem 2 in [WP1], which bounds the Z2-norm only; the reason for 
having the stronger result here is that by obtaining an order of convergence in terms of the Lp-norms 
for p  >  2 we are able to use the moment form of the Borel-Cantelli lemma to obtain almost sure 
convergence results.

I have used the notation w0^(377)" to indicate an order of convergence in terms of the Z^-norm, 
and “0(OO)(y77)” to indicate an order for all the Zp-norms (see definition 2.2). I have also borrowed 
the notation for representing the solutions of s.d.e.s in Taylor series form, devised by Wagner and 
Platen in [WP1], as this seems a natural and compact, if at first sight daunting, way of handling 
these expressions; it is explained fully in section 2.2.

Section 2.5 deals with the family of approximation schemes for s.d.e.s proposed by Wagner and 
Platen; these are the natural one-step schemes. Theorem 2.3, which is a corollary of theorems 2.1 
and 2.2, gives their L~ properties when applied to bilinear equations.

The main results of chapter 3 are the limit-distribution theorems for normalised error sequences 
(theorems 3.1 and 3.2). These give the optimal “partition-conditional” behaviour of the errors in 
“partition-measurable” approximation schemes for the bilinear equation (1.2.6) and the correspond
ing Bayes estimates found from this equation. Theorem 3.1 is essentially the same result as theorem 
2 of Clark in [CL2] but the proof is presented here in terms of the discrete approximation results 
of chapter 2 rather than Clark’s approximating o.d.e. approach. To accommodate the non-zero drift 
component in the driving term of equation (1.2.6) we use the same Girsanov transformation of 
measure as Clark; this enables a simpler analysis of Wiener-process-driven equations to be extended 
to equation (1.2.6). The transformation is dealt with in section 3.3.

The limit-distribution results of theorem 3.1 are extended from approximations of the solution of 
(1.2.6) to the corresponding approximate estimates obtained by the Bayes formula (1.2.8) in theorem 
3.2. The technique used is the production of a Taylor expansion of the non-linear estimation func
tion implicit in (1.2.8) (given explicitly, 'Fy, in (3.6.1)) about the point ^ fo llow ed  by the bounding 
of the second and higher-order terms in this expansion; it is what Billingsley in [BI1] p.340 calls the 
delta-method.

Chapter 4 begins by introducing some efficiency concepts for discrete approximate solutions of 
s.d.e.s; in particular “first-order asymptotic efficiency” (see definition 4.1). A first-order asymptoti
cally efficient scheme is one with the optimal properties discussed in chapter 3. In section 4.3 we
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introduce as a paradigm a scheme based on (but distinct from) the one-step schemes of Wagner and 
Platen. It contains the fewest terms needed for first-order asymptotic efficiency. The paradigm con
verges with order 1, of course, as does the scheme first proposed by Mil’shtein in [M il], but the 
latter is shown, in a corollary to theorem 4.1, not to be first-order asymptotically efficient. Theorem 
4.1 also demonstrates the existence of many other approximation schemes which possess the highest 
order of convergence, 1, but which are not first-order asymptotically efficient. Some of these schemes 
are shown to possess the optimal limit-distribution for normalised errors given in theorem 3.1, but 
with non-zero means; they can be thought of as being “asymptotically biased”.

Various approximation schemes are compared in section 4.4, in particular the Euler and 
Mil’shtein schemes and the paradigm, as these contain the fewest terms needed for convergence, 
first-order convergence and first-order asymptotic efficiency respectively. We also mention briefly 
the Runge-Kutta schemes of Riimelin.

As far as I am aware the work presented in chapter 4 is original.

Chapter 5 suggests some further areas for future research.



Chapter 2

Some Tools for Handling Discrete Approximation Schemes

2.1 Introduction.

Several results concerning the convergence of discrete approximate solutions of stochastic differ
ential equations are formulated in this chapter. These are the main tools to be used in chapters 3 
and 4.

Section 2.3 presents a Taylor expansion representation of the solutions of bilinear stochastic 
differential equations. Theorem 2.1 is a special case of theorem 1 in [WP1], which gives such an 
expansion for a wider class of s.d.e.s.It is formulated in terms of a special notation, which is defined 
in section 2.2. The idea behind these expansions is that truncation of the ‘‘remainder” term yields a 
family of convergent stochastic difference equations that can be used to approximate the solutions 
of the differential equations.

yV
A theorem for determining the order of cojvergence of such difference equations is presented in 

section 2.4; it is based on theorem 2 in [WP1]. In section 2.5 we use the results of the previous two 
sections to define and investigate the convergence of a class of discrete approximation schemes for 
bilinear equations, introduced by Wagner and Platen in [WP1]. We call these the Taylor schemes. 
The order of covergence is given and two counter-examples are used to disprove higher-order con
vergence in the \ j 2 lh and b order schemes.

In section 2.6 we mention briefly a generalisation of the results of sections 2.3 and 2.5 from 
time-invariant bilinear equations to a wider class of s.d.e.s.

2.2 A special notation used in Taylor expansions of the solutions of bilinear stoch
astic differential equations.

I have adopted the notation used by Wagner and Platen in [WP1] for expressing Taylor expan
sions of the solutions of stochastic differential equations. The use of a special notation has two ad
vantages: first it provides a very compact way of writing down the multi-term expressions that occur 
frequently in this type of work, and secondly it facilitates the expression of'results that are true for 
more than one type of expansion (see, for example, theorem 2.1). Its disadvantage, of course, is that 
the reader needs to become familiar with it before he can interpret the results.

23
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The notation is used in the proofs of results in chapters 3 and 4 but not in their statements. It 
is used extensively in this chapter both in the statement of results and in their proofs.

The notation introduced in [WP1] is for use with arbitrary nonlinear stochastic differential 
equations; I use here a version suitable for bilinear equations. Consider the following bilinear equa
tion, defined on some underlying probability space (Q, D, P ):

X0 =  x,
d

d X t =  FXtd t  +  ^  GiX td t e [0, T],
/ - i

(2.2.1)

where Xt e  R m\ F , Gv  . . . , Gd are real m X m matrices and

W \l>

W\d)

t  E [<0 , T ])

is a d -dimensional Wiener process.

We make the following defintions.

Definition 2.1. M  is the set of indices given by

M  :=  {vt0'i,y2»- • • Jk):Ji e {0 ,1 ,. . . , d } ; l  =  1 ,2 ,. . . , k;k  =  1 ,2 ,. . . }

(v is the empty index, containing no terms).

/ (a) is the “length” of the index a:
/ (v ) : =  0

/(0 W 2’ - • • Jk ) ) :=  k -

n(a) is the multiplicity of the term 0 in the index a:

n(v) :=  0

«((/W2» • • • ’A ) ) :=  cardinal^) =  0;/ =  1 ,2 ,. . . , k} ,

—a and a — are the following shortened indices:

- v  =  v -  =  - ( / ) )  =  (j\) ~  v,

• • • J k ) : =  U 2J 3’ • • • J k )  k  >  2,

( j \ J v  • • • J k ) ~  ( j \ J v  • • • J j t - i )  k  >  2 .

/ (S') is the supremum of the lengths of indices in a subset S  of M :

l ( S ) :=  supl{a) S Q M .
aeS



25

B(S)  is a “remainder set” (see theorem 2.1 for motivation):

B(S) :  =  { a e  M - S : - a e S } .  

Aa(F,G{, . . . ,Gd) is the indexed matrix product given by

AV(F ,G V . . . , Gd): —
Aa{F,GV. . . ,Gd) :=  A_JJF ,G V . . . ,Gd)F 
Aa{F ,G l t . . . ,Gd) : = A _ a(P, Gv . . . ,Gd)GJ:

if ct (0J2, • • • ij\t)» 
if a =  (j\,jv  . . . J k) j x *  0.

I (X , s, t) is the indexed integral given by

I*(X, s , t ) - .=  Xn
t

l ^ ( X , s , t )  :=  I l"_(X,s ,u)du  if a =  ( / ,J 2, ------ 0),

I * ( X , s , t )

S

I ^ ( X , s , u ) d W ^ if a =  (A J 2’ • • • Gk) h  *  °-

I% (s,t) is the indexed integral given by

f f C M ) —  1,

I^ { s , u ) d u
%5

if of (,W * * ’ * *

C & t )  :=  J l Z . ^ u ) d  w y  if a = OW*- • • Jk) h  *

NOTE. /  ̂ ( X , s, t) is an m-vector, I £  (j, t) is a scalar.

2.3 A Taylor expansion for representing the solutions of bilinear s.d.e.s.

To study the convergence of stochastic difference equations, defined on some partition of the time 
interval [0, T],  to a bilinear stochastic differential equation such as (2.2.1) we would like an expan
sion of the solution of the latter about the points of the partition. The following theorem, which is 
a special case of theorem 1 in [WP1], provides such a result. The proof, modified for the bilinear 
case, is relatively short;so it is included.

Theorem 2.1. For any subset S Q M  with the following properties:

(i) S  *  0 ,
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(ii) l  ( S ) <  oo ,

(iii) — a e S  V a  e  S ,

r/ze solution o f  equation (2.2.1) has the representation

II

X , =  y  A a ( F , G v . . . , G d ) I ^ s , t ) X s +  V  A a( F , G x, .  . . , G d ) I ^ ( X , s , t )
UmJ
ae S a e B ( S )

0 < s < t < T. (2.3.1)

PROOF. We prove first that for a =  (/j,^ , • • • Jjt)> & ^  1

d

I ^ ( X , s J )  =  I * ( s j ) X s +  l l j , F X , s j )  +  Y ^ I * J G tX,s, t ) ,  (2.3.2)

/ = 1
where

Now

( i , a )  :=  - . - ,7fc) / =  0 ,1 ,. . . , d ,

tlr 11

I% J-F X ,s .t)  +  £  I ^ G ^ . s . t )  =  1 1 . . F X ^ d u d W ^ .  . . d W ^ k)
1 = 1 J s s

d t h  *i

♦ i n  . . . j G ^ d W ^ d W ^ .  . . d W ^
/ = 1 -r -f 

t h  h

(X,r Xs) d W ^ \  . . d W <*>

-  l " ( X , s , t ) - l ' Z ( s , t ) X I

where “*/ means ud t”. This proves (2.3.2).

We now prove (2.3.1) by induction with repect to / (a). It is evident that 5 0(:= (vj) satisfies 
conditions (i)-(iii), and

=  {(0),(1),(2),. . . , {d)} .

Now

and

l
aeB (S0)

Y  AJ.F,Gv . . . ,Gd)I*{s, t )  =  I
ae S0

t d t

Aa(F , G j,. . . ,Gd) l f ( X , s , t )  =  j  F X J u  +  V  [ G,Xud W f
S J — 1 s

= x - x s.
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This proves (2.3.1) for all S  satisfying (i)-(iii) with l (S)  =  0. Suppose now that (2.3.1) is true for 
all S  that satisfy conditions (i)-(iii) with l ( S)  =  k > 0 .  Consider a set S k + l with l {Sk + l) =  k +  
1 that also satisfies (i)-(iii). Let

Sk :=  {a  s Sk + l :l(a) < k} .  

Clearly Sk satisfies (i)-(iii) and / (Sk) =  k ; so

X , =  y  Aa{F.Gv . . .  ,Gd)I^(s, t )Xs +  ^  Aa(F,G{, . ,Gd) /* (X, s , l )

aeSt aeB(Sk)

Now 5*. + ! ~ S k C B(Sk)* SO

T  Aa(F , G,...........2 j Aa(F,Gl, . . . , G d) l * ( X, s , t )
aeB(Sk) Si.

I+  )  AJ,F,GV . . . ,Gd)I^(X,s , t ) .
aeB{Sk)—{Sk+l—Sk)

We apply (2.3.2) to obtain

Y  Aa(F .G t.......... Gd)I^(X. s , t )  =  2 ]  . . ,Gd)I^(s, t)X,
a65fc+1 Sk a e *Si+i Sk

+  ^  (A(0,a)(F ’Gl>-
aeSk+i~Sk

d

/ =  !

■ ,Gd)l% JJC,s,tj).

So

where

x,= y Aa(F,G„.  . . ,Gd)I^{s, t )Xs +  y Aa{F,Gx,.  . . ,Gd) I* (X ,s,t), (2.3.3)
aeS  t aeB

B : = ( S ( S t ) - ( 5 t + , - 5 t )) L I  { ( / ,« ) ; /  = 0 ,1 , .  . . ,<*;<* s  (Si+ 1 - S t )} .

It is easy to show that B =  S ^  + j^so (2.3.1) is true for S'j.+ j and also, therefore, for all S  that 
fulfil (i)-(iii). |

As an example of this theorem, consider the case where

5  :=  {v,(0),(1),(2),. . . ,(<()}•,
in which case .

B(S)  =  { (0 ,0 ),(1 ,0 ),. . . ,( r f ,0 ) ,(0 ,l) ,. . . , (d,  1).......... ( d , d ) } .
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Now
II *

* , =  y  Aa(F,G„. . . ,Gd)C (s ,t)X s +  Y  Aa( F . ■ . ,Gd) l"(X, s , t )
aeS aeB(S)

d

=  ( /  + F ( t - s ) +  > G ^ w f  -  W^p))xs +  RSJ
J = 1

(2.3.4)

where Rs t is the remainder term

Z
aeB(S)

Aa( F , G . . ,Gd) I^(X <s,t)

A frequently met discrete approximation scheme for solving s.d.e.s is the “stochastic Euler 
method”, see [MAI]. In the present case this method is given, for the partition (O ./p fj,. . . , T),  
by

* o :=  x

n+1 (2.3.5)

By comparing (2.3.5) and (2.3.4) we obtain a difference equation for the approximation error:

z 0 - z 0 =  o,

-  ( '  +  -  o  +  £  -  K > y x . - s o +
1-1

(2.3.6)

The next two sections describe methods of bounding and proving convergence of solutions of 
stochastic difference equations such as (2.3.6).

2.4 A theorem for bounding the solutions of stochastic difference equations.

We consider first how to bound terms in the difference equations obtained by theorem 2.1; begin- 
ing with a definition.

Definition 2.2.

(i) We say that a sequence of discrete-parameter random processes '

P RjVe i ? m:n =  0 ,1 ,. . . , N ) : N  =  1 ,2 ,. . . )
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is of uniform L -order r.and we write

X„.N =  Op( \ / N' )  

if
sup E \\NrXnN ||p <  oo for some p >  0.

n<.N
iV

(ii) We say that a sequence of random variables ( X N  e R m : N  =  1 ,2,. . . ) is of Lp~order r, and 
we also write

if

x N =  O/I/JVO

sup/T ||iVrArAr ||p <  oo for some p >  0.

NOTE 1. We shall frequently write Op(hr) for a uniform-Lp-order-r sequence where we are con
sidering approximation schemes for solving s.d.e.s that are based on regular partitions of the time 
interval [0f T] : (0,h,2hf . . . , Nh  =  T);

NOTE 2. An indexed process of uniform Lp- order r for all p  >  0 will be called of uniform L^  
order r, written

-  < W > /A " ) (or 0 {rJ h ') )

The brackets are to distinguish T(oo)-order-r convergence from Z,OT-order-r convergence: by

x ^ ,  =  O M N ' )

we would mean
sup (lim sup(£ W 'X nJ1 n 1̂  <  00.

n<.N p-+co 
N

NOTE 3. A sequence of random variables that is of Lp-order r where rp >  1 converges to zero al
most surely since

OO 00

V  E\\Xn \\p <, K  V  ^  where K > 0
N  = l N  =• 1

<  oo;

the moment form of the Borel-Cantelli lemma shows that

XN -  0 (a.s.).

The following lemma puts bounds on the terms in the Taylor expansions of bilinear s.d.e.s 
introduced in theorem 2.1. It prepares the way for theorem 2.2, which bounds the solutions of 
stochastic difference equations of the type obeyed by the errors in discrete approximation schemes. 
It is an extension of a lemma in [WP1], which gives a similar result for second moments only.

Lemma 2.1. Let (Xt , r e  [0 ,7 ])  be the solution of the bilinear s.d.e. (2.2.1). For all multiple 
indices a e M :
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(i)
sup E ( ( t - s )  {lia)+n(a))l2\ \E(I*(X,s , t )  | f ) \ \ f  <  oo

0 £s<t<T

for all p  >  0 and all sub-a-fields f  C 17;

(W
sup’ E ( ( t -  s r il{a)+n{a))/2\E(I*(s , t )  | 0 \ Y  <  oo

0 <,s<t<,T

for all p >  0 and all sub-c-fields f  C 3,
(iii) Ifh  : =  T /N  then the indexed sequences

((£ ( /f (A T ,« * ,(« +  1)A) |$); n - 0 , 1 , .  . . ,JV-1)1V =  1,2,.  . . )

and
( ( £ ( / f (« * ,(« +  m  \ 0 ;  n =  0 , l , .  . . , N - 1 ) N  =  1,2,. . . ) 

are 0/  uniform £ (oo) orf/er (/ (a) +  n(a))/2 for all Q C !7;

£ ( / f ( ^ , ^ , / ) | 3 f )  =  0 I
f if  l (a) n(a).

E ( C ( s , t ) \ 3? )  =  0 J

(2.4.1)

(2.4.2)

(2.4.3)

PROOF. It follows by Jensen’s inequality that to prove (i) it is sufficient to prove that

sup E ( ( t - < 0 0  V m =  1,2,. . . (2.4.4)
0 < s< t< .T

We prove this by induction with respect to / (a).
Since the coefficients in (2.2.1) satisfy the conditions of an existence and uniqueness theorem 

(theorem 7.1.2 [AR1]) and since the initial condition is finite

sup E \\Xt \\2m <  oo V m =  1 , 2 , . . .
0 <>t£T

i.e. (2.4.4) is true for a with length l (a) =  0; suppose now that it is true for all a  with length / (a) =  

k >  0. Let :=  (/W * • • • Jjt + iX^hen / (£)  =  £ +  1.

iO *+ , -  o
t

I * ( X , s , u ) d u .
S

(E \\lJ (X ,s ,t) \\lm)Ulm ■ J ( £  | | / ^ , s , « ) | | 2” )1/2"rf«

S  ( t - s )  sup (E \\lJ_(X , s , u ) f m)il2m
s<u ^  /

So for s <C t
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and
£ ( ( r - j r ,'w + ""J,,/2;|/;,'(.V ,j,/)ll)2m ^  sup E ( ( t - s ) ~ m  )+"IM)l2'il'L(X,s,u)\\) 2m

s<u £  t

<. sup £ ( ( « - i r (,(M +* tf- ))/V i - ( * ^ . « ) l l ) 2m;
s<u £  l

so (2.4.4) is true for 0.
If j k + \ =  U 2 , . . . ,d

i ' h x , s , t )  = lJ S X ,s ,u )d W (JS+') ;

so, by a result on the moments of stochastic integrals (lemma 4.12 in [LSI]),

E\\lJ(X,s , t) \ \ lm ^ K(t  — s)m~l E WlJSX.s^W™ du,  where K > 012m

£  K( t  — s)m sup E \\lJ_(X ,s,u )\\im V s < t
s<u  ^  t

,2 m

and so

£ ( ( r - ^ r (/W)+nW))/2| | / f ( ^ , ^ O I ! ) 2m <> K  sup E (( t- s )~ m ~)+^ ~ ))l2\\lJSX ,s,u)\\)lm
s < u £ t

< K  sup £■ C(M — 1| m) II ) ^
s<u£t

So (2.4.4) is true for 0.
This completes the proof of (i). The proof of (ii) is identical, (in) follows directly from (i) and 

(ii) by setting s =  nh and t =  (n +  l)h. We prove (iv) by induction with respect to / (a) also.

Now / (v) =  «(v);so (2.4.3) is true for a with / (a) =  0. Suppose now that it is true for a with 
1(a) =  k > 0 .  Let 0 =  (jv j 2, .  . . ,yfc+1), then 1(0) =  k +  1.

IfA+i = 0

lJ_(X ,s, u) du.

(2.4.3) is true for 0 since it is true for 0 — and if 1(0—) =  n(0-) then 1(0) =  n(0).

U Jk  + l =  • • y d
t

l " ( X , s , t )  =  J lJ S X ,s ,u )  d
s

and since

E\ \ I*(X, s ,u) \ \ 2d u < o o

(2.4.3) is true for 0. The same argument applies to I j (s, r). |

l J { X , s , t )  =  j
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The following theorem can be thought of as a version of the Gronwall lemma suitable for use 
with stochastic difference equations. The proof is a generalisation of part of the proof of theorem 2 
in [WP1].

Theorem 2.2. Let (Yn e R mXm : n =  1,2,. . . , N ) and {dn e R m : n =  1,2,.  . . , N)  be sequences 
o f matrix-valued and vector-valued discrete-parameter processes respectively, on some underlying 
probability space (12,3,P)  (See note below). Let

3O: = { 0 , ! 2 }
3„:=cr(Yk,dk :k <. n) n -  1,2,. . . , N .

Suppose also that (Yn) and (dn) have the following properties:

a) y n =  o (00)d / i v ' /2)
(ii) Yn is independent of 3n_{ V n — 1,2,.  . . ,N  
(Hi) \\E Y J < K xl / N  Kx > 0

(iv) 4 , =  r > 0
(v) E(d„ | 3„_,) =  O ^ l / N ' ^ ' )

The sequence o f processes (Xn e R m :n =  0,1 , .  . . ,N),  defined by 

XQ :=  0
Xn + l-.= (I +  Yn+i)Xn +  d„+i « =  0,1.......... N - 1 (Z4-5)

is o f uniform L ^ j order r, i.e.

sup E \ \ N rX J p < o o  V / ? > 0 .  (2.4.6)
ntZN

N

NOTE. (Xn), (Yn) and (dn) are sequences of processes, but we write Xn for Xn~̂  etc.

PROOF. If we multiply both sides of (2.4.5) by N r we see that it is sufficient to prove the result 
for r — 0. We begin by using induction to prove the following inequality:

ll*„+1l|2i s  ( 1 +  Z„+1(/))||*„ ||2i +  2 i ( Y n+lXn, ^ „ > ||^ J |2<,- 1)
+  2/<rfn+1, * „ > | | * J 2(i- ' ) +  r„+1(0 , (2.4.7)

where (Zn(i)) and (rn(i)) are non-negative scalar sequences of processes, both of uniform L(oo)-order 
1, i.e.

Zn(i) =  Oial)( l l N )  V t - 1 . 2 . . . .
'■ » (O -0 (oo,(l/iV ) V i - 1 , 2 , . . .

In addition, Zn(i) is independent of Vn =  1,2,.  . . , N . We obtain, by squaring (2.4.5),

Mv h I!2 ^  a  +  2\\Y„+ l \\2)\\X J 2 +  2<,Yn+lXn<X„) +-2<.da+ l , X n> +  2\\d„+ l \\\ (2.4.9)

so (2.4.7) is true for i =  1. Suppose now that it is true for i; we multiply (2.4.7) by (2.4.9) to obtain
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:uy„+ i ii2i'+I) s  ( i +  2(2/ +  i ) iirn+, ii2 +  4 / iir„+ , ii3 +  z„+ ,(/)(i +  2 iir„+ , ii +  2 iir„+ , :i2) ) iuyji2(1+11 
+  2(/ +  l )< r „+KY„, .Y„> II.YJ2' +  2(1 +  l)<</„+1 , -Y„>||,Y„||2' +  2r„+1(/)||</„+ ,||2 
+  2rn+l(i) ||</„+1|| ll-YJ +  r„+ l (/)(l +  2||K„+1|| +  2|| Y„+l ||2) IUYJ2 
+  4/||</„+ l ||3p f J 2'-1 +  2\\dn+{ ||2(I +  Z„+1(i) +  2 /||r„ +1|| +  2/)||A'„||2'
+  K + ,II(2Z„+I(i) +  8 /||r„ + ,|| +  4 /||r„ + ,| |2) | |^ | | 2'.+1 (2.4.10)

Wc reduce the last five terms on the right side of (2.4.10) by using the following inequality. If 
(£n : n ~  1,2,. . . ,N )  is a non-negative scalar sequence of processes of uniform I (oo)-order 1 then

U * J ‘ ^  +  Om (1/N)  V 0 <  i  <  /. (2.4.11)

This follows directly from Young’s inequality:

where p >  1, q >  1 and l / p  +  \ / q  =  1; if a is taken as II^H5, b as N%n, p as tfs  and q as t / { t  — 
.y). For example, the seventh term on the right-hand side of (2.4.10) is bounded as follows:

4«K+Ill3iu rjl2'- 1 ^-il^ ll2('+1) + o(00)(i//v ).

The other terms are bounded in a similar way to yield

ll-Y„+1||2(' +1) s  (1 +  Z„+1(/ +  1)) ||A J|2(' +1) +  2(/ +  \ ) ( Y n+lXn, X ^W XJ21 
+  2(1 +  l)<d„+ 1 , -Y„>I|.YJ|2'' +  rn+l(i +  1),

where

Z„+1(i +  1) :=  2(2/ +  1)11 Z„+1 II2 +  4/ II r„+11|3 +  Z„+1(/)(l +  2|| Yn+l || +  2|| Yn+l ||2) +  5/JV 

and
r„+1(i +  1) =  2r„+im \ d n+ll\2 + 0 {oo)( l / N) .

This proves (2.4.7) for i 4- 1 and hence for all natural i. v
U+i

We take the mean of both sides of (2.4.7) and use properties (ii) and (iii) ofj[to obtain

E ||2/„+1 ||2i S  (1 +  Kt( i ) /N)E  ||Jf„||2i +  2IE <(KJN)X„  , -YB> ||*„||2('~1)
+  2IE <E(d„+l | 3„) , X„> HXJ2"-"  +  Ks(i ) /N.  (2.4.12)

Now
E ( ( K J N ) X „ , X r„> l|2f„||2(,- ,) < ( KJN) E  | | * J 2'

E <E(dn+l | 3„), *„> ll*„||2,,- ,> < E \\E(d„+ , | 3„)|| IIA.II2' - 1
< (K6( i ) /N)E WXJ21 +  K7( i ) / N ,

where the last step uses property (v) and inequality (2.4.11) with t =  2i .So from (2.4.12)
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E | |* „ + l l|2i £  (1 +  Ki(i)/N)E  ||A-„||2i +  K9(i)/N,

where /sT8(z) and /sf9(/) are positive constants, dependent on i but not on n or N . Gronwall’s ine
quality shows that

sup £ | | ^ 1||a < c o  ( =  1 , 2 , . . . ;
nZN

N

the remaining moments are bounded using Hdlder’s inequality. So

=  O{a>)( l / N 0).

■

In the deterministic version of theorem 2.2, we would require that Yn and dn be of order 1 and 
r +  1 respectively to obtain convergence of order r for (ATn); this case is simply Gronwail’s inequality. 
In the random case, however, we have weakened these two conditions by requiring that only the con
ditional means of Yn and dn be of orders 1 and r +  1 respectively, see conditions (iii) and (v) of the 
theorem. Conditions (i) and (iv) show that we need only reduced order for the “difference” terms, 
Yn~ E ( Y n) and d „ - E ( d ,  | 3 „_ ,).

One can think of this as follows: at time nh the next increment of the solution to equation (2.4.5) 
is determined by the “future” terms Yn+X and dn+l; we require that the means of these terms con
ditioned on the present obey the normal conditions of the Gronwall lemma; the difference terms, 
Yn+X -  E(Yn+x) and dn+x -  E (dn+l | Sn), which are “orthogonal to the present”, may be of order 
1/2 less than the terms Yn+X and dn+x themselves. This is a result of adding large numbers of uncor
related random variables, (c.f. the central limit theorem).

2.5 A family of discrete approximation schemes.

For any subset S Q M  that satisfies the conditions of theorem 2.1 we can define a one-step discrete 
approximation scheme by truncating the remainder term from (2.3.1):

/\

Ln+- 2 A £ F , G V . . . ,Gd) l "(nh, (n+  m X n
aeS

/! =  0, 1, . . . ,7V — 1.

A very useful subclass of these schemes, in that it prescribes the terms that are needed for 
different orders of convergence, was proposed by Wagner and Platen in [WP1]; it is the class of 
schemes resulting from the following definition of the sets Sk:

S k :=  {a  e M  : 1(a) +  n(a) < k OR / (a) =  n(a) =  . ^ (k  +  1)}, (2.5.1)

(i.e. sets that contain all indices shorter than k +  1 but including the “all zeros” index of length k +

U
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Such subsets of M  clearly satisfy the conditions of theorem 2.1. So

m x ,x in+m = ....... gX V > ,(«  +
txeSk

+ V Aa(F,Gx, .  . . ,Gd)I^(X,nh,(n + 1)A).
aeB {Sk)

(2.5.2)

Definition 2.3. Consider the class of discrete approximation schemes given by

X0(k) := *,

Xd+l(k) :=  y ^ , G t...........Gd)I? (n h ,(n +  l)h)$„(k) n =  0,1, .  . . , N  -  1,

aeSk

(2.5.3)

where the Sk are given in (2.5.1) for k =  1,2,. . . . These schemes will be called the k /2 th-order 
Taylor schemes. They were compared with the schemes proposed in [MAI], [Mil] and [RBR1] in 
chapter 1.

Theorem 2.3. The k / 2 l- order Taylor scheme for solving equations such as (2.2.1) converges with 
order k/2.

PROOF. We substract (2.5.3) from (2.5.2):

x0- x 0(k) =  o
x f„+l)h- x „ +l(k) =  (I +  rn+i(k))(xt,lt- x n+l(k)) +  dn+l(k\  v - 3A)

where

W * ) : =  Y  . • • ,Gd)I^(nh,{n +  1)A),
«e5k-{v}

<<„+,(*) :=  V  Aa(F , G,...........Gd)l '*(X,nh, (n+ \)h).
<xeB(Sk)

Part (iii) of lemma 2.1 shows that

U k )  =  G(00|(A,/2) 

= G(m)(A^).

Now, Yn(k) is independent of and by lemma 2.1 part (iv), bearing in mind (2.5.1),

E (Y n) =  0 (ro)(A),

*(4,1 Vi>») =
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We can now apply theorem 2.2 to equation (2.5.4) to yield the desired result,

( ^ - ^ ( * ) )  =  0 (co)(Ai/2).

This is the result given, in terms of the L2-norm, in theorem 2 of [WP1] extended to all the Lp- 
norms.

The A /2/A-order Taylor schemes are given explicitly below for k =  1,2 and means
TZf(i) — Trr(i)
”  (n+l)h w  nh'

X0(l)  =  X0{2) =  * 0(3) =  *,
d

i „ +1( l)  =  ( /  +  Fh +
1 =  1 

d (n+l)A f

J?„+1(2) =  ( /  +  Fh +  ^  +  ^T.G(G, |  j r f  W f d  W f ) x n(2),
1 =  1 

d

= 1 
d

nh nh 

(n+\)h t

^„+1(3) =  ( /  +  Fh +  )  ’ G £ W f + , +  ^  G,Gj
1 =  1

(«+ 1)A t

d w f d W f

iV=i nh nh

+ I M
1 =  1 

d

d (n+l)A t

d W f d t + ^ G f  J j d s d W ' i
i =  l nh nh

(/)

nh nh
(n+l)h t s

+  V  G,GjGk j  j  d W ^ d w f d w f +  ^F 1h1)XnO). (2.5.5)

ij,k=> 1 nh nh nh

It is fairly easy to show that the terms prescribed by the Taylor schemes (at least for k =  1 
and 2) are necessary as well as sufficient for the given orders of emergence. In fact if we perturb 
the terms in the 1/2'AT order scheme by 5F, 8GV . . . ,8Gd then we shall have convergence of order 
1 /  2 to the solution of the the wrong equation; i.e. the scheme given by

✓ N

£„+ , :=  ( i  + {F  +  SF)h +

d

^(G,. +  5G,.)A1F«1)1„> 
1 =  1

(2.5.6)

will converge with order 1 /2  to the solution of the following equation:

*o = *
d

d X t =  (F +  8F)X td t +  ^ (< 7 , +  b G ^ X ^ w f .
i = i
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Clearly the scheme given by (2.5.6) does not in general converge to the solution of (2.2.1).

The argument for the necessity of all the terms in the 1J-order scheme is not as trivial. Consider 
the scheme given by

A

X.«+i •=  ( / + F A + ^ G , A ^ l ,

/-I

d

Z'iV-i

(n+l)A

+  )  (Gfij +  SGtj ) I d W U) d w ? )x „ .
nh nh

(2.5.7)

We subtract this from the S2 expansion for the solution of (2.2.1), given in (2.5.2).

* o - £ o  =  0,
d d  («+l)A t

Xin+m- X „ +l =  { l + F h + Y j G A < h +  Y l {G<GJ +  SG'J) j  \ d w f d w f Y Xn k - h
/-I  «7 -1

+  V  A a( F , G „ .  . . , G J ) [ * ( X , n h , ( n  +

nh nh

1 )h)
ae B(S2)

(n+l)/r t

I
/ J — I nh nh

d w f d w f x * .

If we apply lemma 2.1 and theorem 2.2 to this difference equation we see that

O ^ h ' ' 2).

Now

d

^ ( - V h w - ^ + i) =  { l + F h + Y i G A ^ ) n ‘,2{ ^ - X „ )  +  rf„+1( l)  +  dn+l(2), (2.5.8)
/-I

where

< W O : - J V

(n+{)h t

1/2 \  G; +  8Gt .) I I d W™ d W{; \ x nh -  Xn)YiG,Gj + tG,j) J jdW"
1 nh nh

+  N i/2 Y  Aa(F, G,------- GJ)l'^(X,nhAn + 1 )h).

d {n+l)h t/• /♦
dn+ 1(2):

aeB(S2) 

d

- N ' ^ i G u
i J =  1 nh nh

d w f d w f x ^ .

Let the sequence (£n; n =  0 ,1 ,. . . , N ) be given by
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d
tn+ i ■■={ l +Fh +  Y i G 'A W ^ X  +  « /„+ ,(2). (2.5.9)

/ = !

We obtain by subtraction

d
N l' \ x {„+l)h- x n+l) - i „ + , =  ( /  +  Fh + 2 ^  G A W %  ,)(Jv1/2(Arn(, -X„) - y  +  4,+ ,(i).

<-1

Again we apply lemma 2.1 and theorem 2.2 to show that

N ' i \ x ^ - x , ) - i n  =

Now
E ll«„+1ll2 -  E ||*„||2 + E i ir „ +1* j i 2 +  E IK +1(2)II2 +  2£ <?„, r „ +1?„>

+  2 £  <{„, </„+ ,(2)> +  2E < r„+1f „ , d„+1(2)>,

where
</

Y„+ i : = F h + Y j G A W f+ ,.
j-1

Now
(r+1)A t (n+l)h t

EWd̂ mf-NE ^  J J |W<'W*>
i j,k , l= * l nh nh nh nh

d w y d w \

d

=  2 7  Y j E W S G A f h  +  \ Y j E I|5G' ^ » 2a- 
|=*1 /,/ = !'V=l

'*7
and

£ < £ „ , ^  -A T A £||fJ |2 £ > 0 ,
£ < £ „ , <*„+,(2)> = 0 ,

E  < Y n+ l£n , dn + l( 2 ) )  =  0.

The last equality holds because an<̂

(«+ l)A  f

n
rA nh

d W f d W W

are uncorrelated for all i , j , k  =  1 ,2 ,. . . ,d .  We have

£ il£n+1l|2 £ ( l - K h ) E U nf  + E \\dn+x(2)\\-,
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so
,Y

E U /V > V ( 1 - A r / i ) ‘V' ”£ | |^ ( 2 ) | |2

n- 1 
N

=  ^ ( 1  - K h f - \ l T  ^ £ | | S G U* J | 2 +  \ Y j E ,|iCW |J h
/t— 1
T

i - l i j - 1

f e x p C - A r C r - i ^ T y ^ l l S G ^ I ^  +  y  y  E^iGtj X f ) d .
i - l iV-l

i*j
>  0 if any 8G{ , is nonsingular and Xs £  0.

So, under these conditions,
lim infE ||N ,/2(Xt - ^ A,) ||2 >  0.

and for 8 >  0, E \\N't1+\ X T — A ^ )||2 diverges, which shows that the scheme given by (2;5.7) 
does not converge with order 1/2 +  6 for any 5 >  0 (if any 8G{j  is nonsingular and Xs ^  0).

In the next two chapters we shall be concerned with partition <r-field measurable approximate 
solutions to bilinear equations, and with this condition the order of convergence is restricted. The 
1 /2 r- order Taylor scheme uses only AWl,AW2, . . . , AWN to form an approximation to X T and is 
therefore partition-<r-field measurable. The Ist and higher-order Taylor schemes are, in general, not 
partition (r-field measurable, and so the maximum order of convergence is 1/2. An important excep
tion to this is the case when all the G{ matrices commute in the sense that Gfij =  Gj Gi V iJ  =  
1 ,2 ,. . . ,d;  in which case the lJi  order Taylor scheme is partition-<r-fieId measurable. This is in fact 
the case in equation (1.2.6).

2.6 Generalisations of results.

Sections 2.3 and 2.5 contain results on the expansion of the solutions of bilinear stochastic differential 
equations with time-invariant drift and diffusion coefficients, and the convergence of specific ap
proximation schemes to these solutions. These results can easily be generalised to cover a wider class 
of s.d.e.s, but I have not included the proofs in their most general form since that is not the purpose 
of this thesis. However, I mention here a generalisation of theorems 2.1 and 2.3.

Consider the s.d.e.

d X t =  a{t,Xt) d t  +  b(t,Xt)dW t / e [ 0 ,T ]  (2.6.1)

where Xt e  R m, (Wt e R d , t e  [0, T])  is a d-dimensional Wiener process, 
a : [0, T ] X R m R m is a continuous function and

b : [0, T ] X R m R mXd is a continuous function*

We assume that £, a and b fulfil the conditions of an existence and uniqueness theorem such as 
theorem 6.2.2 in [AR1].
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Theorem 2.1 is a special case of theorem 1 in [WP1]; the latter defines Taylor expansions of 
the solutions of equations such as (2.6.1). To achieve this a differentiability condition on a and b is 
introduced (see [WP1] theorem 1 (iv)).

Theorem 2 in [WP1] is a similar result to theorem 2.3; it gives the order of convergence of the 
Taylor schemes when applied to an equation such as (2.6.1), but only in terms of the Z,2-norm. It 
depends on a square integrability condition ([WP1] theorem 2 (iii) and (iv)). By strengthening this 
condition to p th-power integrability one can easily prove the appropriate order of convergence of the 
Taylor schemes in terms of the Z^-norm.



Chapter 3

The Optimal Asymptotic Behaviour of Approximation Schemes.

3.1 Introduction.

In this chapter we shall look at the maximum rate of convergence of discrete approximate solutions 
to the Markov-chain filtering problem, introduced in section 1.2. This will be dealt with in two parts: 
first the convergence of discrete approximate solutions to the bilinear s.d.e. (1.2.6), and secondly the 
convergence of the corresponding Bayes estimates obtained by formula (1.2.8).

The main results of this chapter are in sections 3.5 and 3.6. We show in theorem 3.1 that the 
normalised error in any partition~<r-field measurable approximate solution to (1.2.6), at best con
verges in distribution to a normal random variable with zero-mean and given covariance matrix. 
This result is modelled on, and is in part a corollary of, theorem 2 of Clark in [CL2], but the proof 
presented here is more direct in that it uses the discrete-approximation results of chapter 2 rather 
than the approximating o.d.e. approach used by Clark. A similar result is obtained in section 3.6 con
cerning the convergence of the normalised error in the corresponding approximate Bayes estimates 
of functions of the signal process.

The rate of convergence of discrete approximate solutions to (1.2.6) is limited by the require
ment that such solutions are partition-<r-field measurable. This problem is introduced by Clark and 
Cameron in [CC1]. It is fairly well-known that, in terms of the £ 2-norm of the error at the partition 
points, in general the maximum order of convergence that can be achieved under this restjiction is 
1. A lower maximum order of convergence (1/2) results if we use interpolation of the approximate 
solution between the partition points, and look at the supremum of the L2-norm of the error over the 
whole time interval.

Rootzen in [ROl] proves a weak-convergence result for approximations to stochastic integrals 
considered as processes. His results reflect the lower order of convergence of such functional ap
proximations.

The maximum order of convergence would be only 1/2 if the diffusion coefficients in (1.2.6), 
Bx,B2,. . . ,Bd, did not commute i.e. if B-Bj ¥* BjB{ for some i j  e {1 ,2 ,. . . ,d  } (see [CC1]). In 
the present case these coefficients are diagonal matrices and do commute.

In section 3.3 we introduce an absolutely continuous transformation of probability measure 
which enables us to use the tools developed in chapter 2 for the analysis of the bilinear s.d.e. (1.2.6). 
This is a standard Girsanov transformation and yields a new probability measure P2, with reject to 
which the observations process (Wt , t e [0, T]) is a Brownian motion.

41
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The best “approximation scheme” for solving (1.2.6) in terms of the I 2-norm under P2 is the 
partition-cr-field-conditional mean under P2. This scheme also yields, by si^stitution into (1.2.8), 
asymptotically optimal approximate Bayes estimates of functions of the signal-process.

Section 3.4 deals with a few preparatory lemmas, which are used in the proof of theorem 3.1. 
Lemma 3.4 derives the maximum uniform L(oo)-order of convergence of discrete approximate solu
tions to (1.2.6).

3.2 The equation for the un-normalised conditional density.

We shall start this chapter by considering discrete approximate solutions to the bilinear s.d.e. (1.2.6), 
which occurs in the optimal filtering equations for a Markov chain. I have re-written this equation 
below for convenience; all random elements are defined on the probability, space (Q,5?,P 1).

% =  A)’
d

d q t =  A q td t  +  ^ ^ B . q ^ w f  t e [0 ,7 ] ,  (3.2.1)

/ - l
d W f  =  h^ X Jdt  +  d&p i =  1,2,. . . ,d  t e  [0, 7 ] .  (3.2.2)

(Xt , t e [ 0 ,7 ] )  is the Markov-chain signal process that we are trying to estimate, (/?,, t e [0 ,7 ])  
is a d -dimensional Brownian motion process and h is an “observations” function:

h: R m -*■ R d.

As was mentioned in chapter 1, we are interested in methods of solving (3.2.1) that depend on 
the values of the driving term (Wt , t e [0, 7 ] )  at the points of regular partitions of the time inter
val. We can formalise this as follows.

Let II be the class of regular partitions of the interval [0 ,7 ]:

H :=  {*N =  (0 ,h,2h, . . . ,N h ) :N h  =  7  ; N  =  1 ,2 ,. . . }. (3.2.3)

We denote by W the class of approximation methods of interest. Any element of W is a discrete- 
parameter process on (12,3,7^:

u e W
p : (12,5,7j) X f/ -*■ R m

,N )  is an approximation to qT. \i is measurable with respect to the partition-a-jield PN, given 

by
PN :=  Wh, W2h.......... WNh} N  =  1,2..............  (3.2.4)

i.e. /x( • ,N )  is /^-measurable for /V =  1 ,2 ,. . . .

In order to compare different methods belonging to W we must use some measure of the ap
proximation error qT — /z( • ,N).  One such measure is the conditional 7 2-norm,

m

I I - m( ' .AOII^ =  • , N ))2 | PN))'/2.
i — l

(3.2.5)
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Here £ , denotes taking mathematical expectation with respect to Px.
It is natural to use the PN-conditional L -norms of the error because these yield a “measure* 

of-error” for (almost) all realisations of the observations (W*, W2A, . • • * I^VA). Loosely speaking, 
the randomness of these norms is the observed randomness, i.e. that which after observation of 
{Wh% W2h, . . . , WNh) is no longer random.

It is well-known that the scheme which (almost surely) minimises the norm given in (3.2.5) in 
W is the PN-conditional mean Ex{qT | PN). Sections 3.4 and 3.5 are devoted to analysing the conver
gence of this optimal scheme. This is achieved by first analysing the convergence of the conditional 
mean under a new probability measure, which will be introduced in the next section.

3.3 An absolutely continuous transformation of measure.

We would like to be able to use the tools developed in chapter 2 for the analysis of bilinear s.d.e.s 
driven by Wiener processes, to analyse equation (3.2.1). The problem, of course, is that the driving 
term in (3.2.1) (Wt) is a drifting Wiener process. This problem can be overcome by performing cal
culations in terms of a new probability measure P2, under which (Wt) is a Wiener process, and then 
translating the results into corresponding results under the original measure Px. The new measure is 
defined by a standard Girsanov transformation.

Consider the following, in which • ) and (a{ , i =  1 ,2 ,. . . ,m) are as given in
theorem 1.1.

sup ||/i(^f)|| ^  max ||/i(af)|| <  co?

so

and
T

B ,(cx p (i J «*(*,) ||2</l)) <  oo. 
0

We define the pair (ji,,^**) by the following:

(3.3.1)

(3.3.2)

/* ,:= exp ( -h (X sf d l 3 , - ±  ||A(*,)||J«/x),

f  t). (3.3.3)

A lemma due to Novikov (see theorem 6.1 in [LSI]) shows that is a martingale under Pv

We define the new measure P2 by,

e
P2(A ):  =

A

fiTd P x V A e 3 .  ' (3.3.4)
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P2 is a probability measure since P2(12) =  &iPt =
The multidimensional version of the Girsanov theorem (see theorem 6.4 in [LSI]) shows that 

( Wf) is a ^-dimensional Wiener process under P2; furthermore with this probability it is indepen
dent of (.Xt) (see lemma 3 in [DM1]).

Clearly
fit >  0 V r e [ 0 , r ]  (a .s .)^ )

so P{ and P2 are mutually absolutely continuous, and any property that holds almost surely under 
one measure also holds almost surely under the other. The boundedness of h(Xt) also implies that

T T

=  exp(j h{Xsf d W s - ± \  | | / i f Q ||2rf.r) (3.3.5)

0 0

has moments of all orders under P2. But

d P x =  MTd P 2 • (3.3.6)

and it follows from Holder’s inequality that if 0 <  8 < p,

H^jv llP~5 =  EjM j- \\X„j! ||p-a

^  ( E t M l n E t W X ^ W ^ .  (3.3.7)

consequently if the sequence (XntN) is of uniform L - order r under P2 then it is also of uniform Lp_i 
order r under Pv In particular the L(ĉ uniform order of (Xnjq) is the same for both Px and P2.

In sections 3.5 and 3.6 we shall be interested in the weak convergence of PN-conditional distribu
tions of suitably normalised sequences of errors, and in the convergence of their Pn -conditional mo
ments. The analysis will be done initially in terms of P2; the following lemma will be used to obtain 
corresponding results under Pv

Lemma 3.1. Let (XN e R d : N  =  1 ,2 ,. . . ) be a process on (12,50 such that XN is 3j-measurable 
for all N . Let Px and P2 be the equivalent probability measures introduced above.
(i) If, with probability one, (P{ or P2), the sequence (P2(XN e  • | pN) ; N  =  1 ,2 ,. . . ) of condi
tional distributions on (R d ,3d) converges weakly, i.e. if

e ' I ^  H( •) (a.s.), (3.3.10)
N -*■ oo

where U is some 3 j  -conditional distribution on {R d ,13d), then

P fX Nn 6 • | PN) => n ( •) (a.s.),
n —*• oo

(3.3.11)

where (NX,N 2, . . . ) is any sequence of natural numbers with the following “refining” property:
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Nn —> oo mL N J N m is a natural number if  n > m.

(The idea here is that PN D pN j.iyn *ym
(iij If for some p >  0

£,(lim sup £ 2( || ||2p \ Ps ) <  co) =  1

and

E2(\\Xn Wp \Pn ) ^  z (a.s.), 

where £ is some Dj -measurable random variable, then

Z M X N f \ P N) - *  * (*•*.),
n -► oo

where (N X,N 2,.  . . ) has the property (3.3.12).

PROOF. Let M t be defined by (3.3.5). We have already shown that all the moments of M T exist 
under both measures.

The strict positivity of Mr  allows us to define

Mn \=  E2(Mt \Pn ) for N  =  1 , 2 , . . .  , 00, (3.3.15)

with >  0 for all at e  12, where
00

It is easy to show that
p*00 -'T •

Since,for a sequence (NVN2, . . . ) with the refining property (3.3.12),

PN O p N if n > m

it follows that (MN,PN) is a martingale under P2 and a theorem of Levy (theorem 1.5 in [LSI]) 

shows that
MNu -  =  Mr (a.s.), (3.3.16)

and

£ 2((M „ -  Mnf  | PN)  =  E2( M l  | PN)  -  
-* 0 (a.s.).

To prove (i) we note that for a set S  e  PN and a vector c e R dLy n

(3.3.12)

(3.3.13)

(3.3.14)

(3.3.17)
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and so

Now

MNEx(jntficTXN ) | PN)dP2 = MTEx(exp(icT XN ) | pN)dP2n * n

Ex(txp(icTXN) | PN)d P xn * n

=  |  exp(/ cT XN)d Pl

exp (i )Mr J P2

E2(Mt exp(/ ) | PN )d P2n ' n

M^ Pj(exp(/c Xpj) | Ppj) E2{Mt exp(/c ) | p^ ).• t
n * * n

MNE2(exp(ic XN) | PN)
n * n

n n
+  E2((Mt -  Mn )exp(icTXN) I PN). 

\E2W t -  Mn ) expo'-cTXN) \ p N)\ =  IE2w « , -  Mn ) exp(icTXN ) | PN )|n * n

and since, by (3.3.16)

< £ 2 ( 1 ^ 0 0 - ^ 1 1 ^ )

^ 0  (a.s.) by (3.3.17),

P2(lim inf Mjy >  0) =  1,

n * * n

(3.3.18)

(3.3.19)

(3.3.18) and (3.3.19) show that

E{(exp(icTXN) | pN) -  E2(Qxp(icTXN) | PN) -» 0 (a.s.).

This shows that, with probability one, the pN -conditional characteristic-functions of XN under

the measure P{ converge to the -conditional characteristic function corresponding to II( • ) at 
all points c with rational co-ordinates. (3.3.11) follows by the continuity properties of characteristic - 
functions.

The proof of (ii) is similar. We note that for S e ?Nm

IEx{ ||A]N. pN)MNd P2 E2(MT \\XNy
%
s

Ppi)d P2,

and so
MNE l(\\XN \\p

1 1 it pn ) =  MNE2» x Ny  1 pn ) + E2m T -  MN) \ x N r  
' =  M „E 2<,\\x P \ p I PN‘) +  E2m * , ~  Mn )WXn ir
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We apply Holder’s inequality to the second term on the right-hand side of this expression and use

3.4 The maximum order of convergence of discrete methods.

In this section we shall look at the maximum order of convergence that can be achieved by parti- 
tion-cr-field-measurable approximate solutions to equation (3.2.1).

Under the measure P2 this equation is a Wiener-process-driven bilinear s.d.e. of the type dealt 
with in chapter 2. We noted in section 2.5 that if the diffusion coefficients in an equation of this 
type commute then the 1 border Taylor approximation scheme introduced in definition 2.3 yields a 
partition-<r-field-measurable approximate solution. Since the diffusion coefficients BVB2,.  . . ,Bd of 
equation (3.2.1) do commute the maximum L(00)-order of convergence in this case is at least I.

It is well-known that the maximum Z,2-order of convergence of approximations to this equation 
is 1 and that this order is achieved by the best (L2) scheme, the conditional mean E2{qT I PN) (see 
[CC1]). In fact the conditional means under either measure Px or P2, E f q T \ Pn ) and E2(qT I ^v) 
both achieve the maximum £p-order of convergence for all p under their respective measures; this 
maximum order being 1. This is proved in lemma 3.4.

The following two lemmas will be used in the proofs of lemma 3.4 and theorem 3.1. The first 
lists some properties of the Brownian-bridge process.

Definition 3.1. The following process (Wt) defined on the probabilty space (^D,P2) is called a 
Brownian-bridge process:

(3.3.17) to prove part (ii) of the lemma.

w t -=  w - ( w „ h + (3.4.1)

Lemma 3.2. The following properties relating to the Brownian-bridge process hold:

(i)

(3.4.2)

(ii) (Wt,t  e [0, T]) is Gaussian with zero-mean,and covariance matrix given by

0 otherwise. (3.4.3)

(iii) The following a-fields are independent:

(iv) The discrete-time process

(n+\)h

nh
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is normally-distributed with zero mean}and covariance matrix given by

(n-H)/i (m+l)A

E2(n  Wtd t) (N  Wtd i f  =  ~ T 2hI ifm  =  n,

nh mh
12

0 otherwise. (3.4.4)

PROOF OF (i). We shall denote by AJVn+l the quantity Ŵ n+l)h -  W^. By standard properties of 
the Wiener process, for t e [nh, (n +  1)A], the following (N  +  \ ) d -vector has the given distribution:

[ b W l  . . A W Tn A W T„+1. . . A W TN(Wt - W J T (W{„+l)h-  W f f  ~  JV( 0, V), 

where.

(3.4.5)

V  =  d iag{/i,. . . ,h , { t - n h ) ,.  . . , (t -  nh), ((n +  l ) h - t ) , . . . ,((n +  1 ) h - t ) } .

(hJ-i)d Gum JL tisnM
—v-------
JL \jurr̂>

Now

IPN) -
\R.xn(0, VXl&Wf.  . . AfVj  A ^J+2. . . AW TN ( x -  W J T (W(n+l)h- x ) T]T) dx
\R< n(0, V MAl Vf . . . AWZ AWT+2. . . AWJ, (x -  W J*  (W(n+^h -  * F F )  dx

(3.4.6)
where n(0, V) is the normal density with mean 0 and covariance V. Evaluating this expression we 
obtain the result (i).

PROOF OF (ii). From (3.4.1), for t e [nh,(n +  l)/t],

W, =  ((a-  j,)A— V , -  W J -  -  Wt).

The properties listed follow directly from the properties of the Wiener process.

(3.4.7)

PROOF OF (iii). Since the increments of a Wiener process are independent it is sufficient to prove
/V

that <r( Ws,s € [0,A]) and Wh are independent. For t e [0,/jj,

Ei(WhW*) =  E l w ^ J t - W . - U w ^ - w S ) )
=  0.

Since Wh and {Ws,s e [0,h]) are jointly-Gaussian they are independent. 

PROOF OF (iv). That the process

{n+l)h

(.N J W ,d t ,n  =  0 ,1 .......... J V - l )

nh

is normally-distributed with zero mean is obvious. Now

(h-H)/j (m+\)h  (n+l)/i (m-H)A

'2E2(n  J  Wtd t)(N  |  Wtd t ) r =  N 2E2 |  WtW W d td s . (3.4.8)

nh mh nh mh
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T h e  r e s u l t  f o l l o w s  f r o m  ( 3 . 4 . 3 ) . I

Lemma 3.3. Let (12, D, P) be a probability space and let -,4, B and C be independent sub-n-Jields of 
3. For any integrable random variable X e R m.

E (E (X  | J  V  B) | J  V Q  =  E (E (X  \ J  V  C) \ J  V B)
=  E (X  \J ) .  (3.4.9)

PROOF. Let PA, PB and Pc be the restrictions of P to J ,  B and C respectively. We consider the 
product space

{U,D,P) =  (S2XS2XS2, ^ 1XBXC; PA X P 3 X P C) (3.4.10)

and the mapping
T:{Sl,3,P) -> (Q,3,i>),

given by
T  (a>) : =  (co, oo, oo).

It is easy to show that T is measurable and that

P ( r ~ l(F )) =  F (F ) for all sets F  e 3.

This relies on the independence of J ,  B and C.
Consider the class of subsets of 12

r : =  {A X B  X Q : A  e J , B  eB) .  

This is a ir-system which generates the o--field

(3.4.11)

(3.4.12)

{F  =  (j XQ : ~G e J X B };

also 7 - l (r) is a ir-system which generates 4̂ V  B, and so

T~l { T  =  ' G X Q : G ' ( = ^ X B } = ^ V B .  (3.4.13)

Since T is 1-1 and measurable, any integrable random variable, X , on 12 can be represented as 
the composition with T of an integrable random variable, Y , on 12*.

X(oo) =  K ( 7 » ) .  (3.4.14)

It is easy to show, by using (3.4.12) and (3.4.13), that

E {X  \ J V  B) =  YC(T)  (a.s.) (3.4.15)

where

:= J ̂ ( a,/4»a,5 ’c0c)^^>c(a,c)* 
a
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Similar arguments show that

E(E{X \ J V E ) \ J V C )  =  {Yc)b{T)  (a.s.), (3.4.16)
E{E{X \ J I V C ) \ J \ / 8 )  =  {Yb)c{T)  (a.s.), (3.4.17)

and
Ybc{T)  (a.s.), (3.4,18)

where

and

(Yc)b := Y d Pc (o)c )d  Pb(o3b),
V

Q Q

(Ys )c : -  j j Y d P B(*B) d P c (wc )
Q Q

b c  • J  ^ d ( P B X / >c )(a>5 ,o ;c ) t

nxa

(3.4.9) follows by Fubini’s theorem. |

NOTE. This will be used for the space (12,3, Pi) with

J : = a ( W h,W2h, . . . , W J  
a(Wt ,t < nh)

C\ — o(W^n+l)h , W(n+2)h > • • • > WNf)

to show that, for an integrable random Midk. X ,

E2(E2(X I 3nh) I PN) =  E2(E2(X I PN) I DJ.  (3.4.19)

and

Next we prove the uniform-Z,(oo)-order-l convergence of the conditional mean sequences 

(GEitonh | PN) ; rt =  0,1,. . . , N ) ; N  =  1,2,. . . )

{(E2(qnh | PN) ; * =  0,1,. . . , N ) ; N  =  1,2,. . . ).

Lemma 3.4. The errors in the conditional mean sequences above are of uniform L(ooy order 1, i.e.

(3.4.21)

( ^ - ^ ( 9 » J ^ ) )  =  0 (co)(A). (3.4.22)

PROOF. We prove (3.4.22) first. All random elements are defined on the space (12,3, P2). We expand 
q about the points of the partition up to terms of order 1 using theorem 2.1. For brevity we shall use
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the following contracted notation. For an integrable random variable X:

~X denotes E2(X | /?v ),
X  denotes X  — X.

Ay -
(This is consistent with the notation W( used in lemma 3.2 as Wt is a version of Wt — Wt. 
For a e M  (see section 2.2)

Aa • Aa(A , iJj, B2, • • • *Bj), 
ta -= l™(nh,(n +  1)A),

/„(?) :=  I*(q,nh,(n  +  1)A). (3.4.24)

We obtain by theorem 2.1

.?(«+!)» “  'Y^AJ*1nh+  a JM)<  (3.4.25)
aeS2 aeB(S2)

where S2 and B(S2) are the sets introduced in section 2.5:

S2 =  {a  e M  : l(a)  +  n(a) < 2 }
=  (v, (0 ),(/) ,(/,y ) : i , j  =  1 ,2,. . . ,d  },

B (S2) =  ( a e  —ae*S'2}
=  { ( 0 , 0 ) , ( 0 , i ) , ( 0 , i J ) , ( i J , k ) : i J , k  =  1,2,. . . ,</}.

We take the /^-conditional mean of both sides of (3.4.25)

%TM)i: =  ^  AJ M • (3 .4.26)
aeS2 aeB (S2)

Here we have used the fact that the Ia are Pn -measurable if a e S2. 
Subtraction of (3.4.26) from (3.4.25) yields

Q(n+l)h =  ^  AJoflnh +  ^  A J a(q)
aeS2 aeB (S2)

=  (f ^n+\)Qnh d„+\*

where

r„+ 1 : = ^ . V a - '
asS2

and < W =  Y j A° ^ q)-
aeB (S2)

(3.4.27)

Now Yn+ j is independent of lemma 2.1 (iii) shows that it is of uniform Z,(co)-order 1 /2  and 
lemma 2.1 (iii) and (iv) show* that

|£ 2(^n+i)| — X7i, where AT >  0.
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Lemma 2.1 (iii) shows that dn+l is of uniform Z,(oa)-order 3/2; now 

Ej(4n+\ I -̂ nf) ~  I ~̂rth)
aeB (S2)

=  ^  by lemma 3.3,

aeB(S2)

=  by lemma 2.1 (iv),

aeB(S2) 
l («)=  n(a)

=  0 {oo)( h \  by lemma 2.1 (iii).

Application of theorem 2.2 to equation (3.4.27) proves (3.4.22). Now

WEMnk\PN) - H l n k \PN) f =  lE M «,-H < ln k \pN ))\P *)\\P
< Ex(.\\qnh- E z(q^ \P N)\\ \ PNf
S  E ^ - E ^ \ P N) f \ P N) V p i  i

by Jensen’s inequality. So

(£, IIqnh -£,(<?„* I PN)WP)l'P s 2(̂ 1 II<l«H - Eitink \PN)\\P)i/P V p Z  1
and

sup E{(N  1| q„A -  Ex(qnh | PN) II f  <  oo V p  >  0.
/i<SiViV

This proves (3.4.21).

3.5 An optimal limit-distribution for normalised error sequences.

In the last section we saw that the partition-<r-field*conditional mean of the solution of (3.2.1) under 
the measure P2 converges with optimal order in terms of all the Lp-norms. In fact the conditional 
mean is asymptotically optimal in a stronger sense than the order of convergence as we shall see in 
this section.

The error in the conditional mean is of uniform L(ooy order 1, which means in particular that 
the “normalised” error sequence (N (qT -  E2(qT | PN) ; N  =  1,2,. . . ) is bounded in Lp for all p. 
The question arises; does this normalised sequence converge in any sense and if so to what does it 
converge?

I mentioned in section 3.2 that it is the pN-conditional properties of the error that we are 
interested in since they provide us with a sample-wise analysis of the error; in particular we are 
interested in the /^-conditional distribution of the error. The following theorem shows that the pN- 
conditional distribution and momen ts of the normalised error converge to a normal distribution and 
moments, parameterised by the sample paths of Wv It is based on theorem 2 in [CL2] although it is 
proved using the discrete-approximation results of chapter 2. In [CL2] Clark approximates the solu
tion of a stochastic differential equation by the solution of an ordinary differential equation driven 
by a piecewise-linear approximation of a Brownian motion process in much the same way as Wong
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a n d  Z a k a i  [ W Z 1 ] :  t h e  d i f f e r e n c e  i s  t h a t  h e  i n c l u d e s  a n  e x t r a  L i e - b r a c k e t  t e r m ,  w h i c h  i n c r e a s e s  t h e  

e f f i c i e n c y  o f  t h e  a p p r o x i m a t i o n .

T h e  l i m i t - d i s t r i b u t i o n  o b t a i n e d  i n  t h e o r e m  3 . 1  h a s  t h e  s a m e  f o r m  a s  t h a t  o b t a i n e d  i n  [ C L 2 ] .  I n  

t h e  p r e s e n t  c a s e ,  b e c a u s e  o f  t h e  s i m p l i c i t y  o f  t h e  b i l i n e a r  e q u a t i o n  ( 3 . 2 . 1 ) ,  w e  a r e  a b l e  t o  s h o w  t h a t  

a l l  t h e  c o n d i t i o n a l  m o m e n t s  o f  t h e  n o r m a l i s e d  e r r o r  c o n v e r g e  t o  t h o s e  o f  t h e  l i m i t - d i s t r i b u t i o n .

vt
Theorem 3.1. Let (Vr t e [0 ,7 ] )  be a d-dimensional Wiener process on (Q,U,P), P — P, or P2, 
independent of  (Wr t e [0, 7 ] )  (see note l below).
(i) Under the measure P2, with probability one, the PN-conditional distibution of the normalised 
error N (qT — E2(qT | PN)) converges weakly to the Uj -conditional distribution of the random vari

able zT, where zT is given by:

d T

i ( s ,  T)(A B, -  B,A MO,s)q0d v f .  (3.5.1)

<£( • , * ) is the fundamental solution of equation (3.2.1), i.e.

$(s,s) =  /  V s e [0, 7 ]
d

d$(s,t)  =  A $(s, t)d t +  0 <> s < t <> T . (3.5.2)

/ - i

Furthermore, all the pN-conditional moments converge almost surely.
(ii) Let (Nv N2, . . . ) be any sequence of natural numbers with the refining property (3.3.12), that 
is:

Ali —» and i >  j  => Ni/Nj  is a natural number.

Under the measure Px, with probability 1, the Pn, -conditional distributions of the normalised errors 

Ni(qT ~ (Qt I ^v,)) and ~ E\(<1t I Pwt )) converge weakly to the -conditional distribution 

of zT. Furthermore the pN-conditional moments converge almost surely.

(Hi) zT is the final value o f  the solution o f  the following s.d.e. scaled by T:

0o =  0’
d d

ddt =  A6td t +  )  B{Qtd W f  +  —L  V  (A Bi -  BtA )qtd v f ,  t e [0, 7  ],

k  ^ l2k
zT =  TQt . . (3.5.3)

(see note 3 below)
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d can also be represented as part of the solution of the following autonomous equation:

where
a ' :=

A
0

0
A >

B ' , : -
%
0

0= 

h
for i =  1,2,. .

' 0 0"
l

Vl2
{A B({_d)A )  0

u f  :=  w f f o r i  =  1,2,. . . ,d;

,d;

for i =  d  +  1 ,d  -t- 2 , . . .  ,2d\

Vl‘~d) f o r i  =  d +  l ,d  +  2, .  . . ,2d.

(3.5.4)

(Ut, t e [0, T]) is a 2d-dimensional Wiener process under P2.

NOTE 1. (12,3), Px and P2 can be defined so as to support ( Vt, t  e [0, T]) as follows. Let (Vt,t e 
[0, T])  s  ( C d [0, r ] ,^ [ 0 ,  T ], W d) the space of ^-dimensional continuous functions on [0, T ] with

Q
the Borel-field generated by the supremum norm, and d -dimensional Wiener-measure. Set

(8,3>  j) = (8,3,P,) X (C'fO, T ] , ^ [ 0 ,  r] , Wd)
(8 'J ,P '2) =  (Q,ZP2) X ( C d[0 ,T] ,£1l 0 , T ] , Wd).

Now take as (Q,3,PX) and (Q,3,P2) the new spaces (Q,\^,P'X) and ( Q , $ , P 2).

NOTE 2. The 5^-conditional distribution of zT is the same under both measures P x and P2. It is 
normal with zero mean, and covariance matrix Dr  given by

), E — Ex or E2

4>Cs, T)(A B, -  BfA M 0,s)q(lq l m s ) T(AB!
/ = 1 0

- B ^ f ^ T f d s . (3.5.5)

NOTE 3. (6t) is a natural object to use in describing the convergence of the conditional mean se
quence for solving (3.2.1) where the equation is defined on a semi-infinite time interval [0,oo):

% : Po
d

d q ^ A q ^ t + f B ^ d W f
1 =  1

t  6  [0, OO)

d Wt =  h(Xt)d t +  d (31 t e [0, oo).
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The signal process (A',) is assumed to be defined on [0, oo). (/3f, t e [0, co)) is a d -dimensional Wiener 
process on (ft, 3, P,).

We define a regular partition -xh of the interval [0, co) by the following:

ttA :=  (0,/t ,2A,. . . ,nh, . . . }

Let a refining sequence of such partitions be one with the following property: 

hi —* 0  oaX Trh‘ C txh* if i <> j .

We also define the following er-fields:
f t  :=  <r(fVs,s 6 A

The following is an immediate consequence of theorem 3.1.

For each t e [0,oo) and each refining sequence of partitions (x*':/ =  1 , 2 , . . .  ) such that

t e 7rh‘ for some natural /,

3?) (a.s.)

i -* oo

and all the moments converge almost surely.

Ex(qt | f t  H 3^)  is the conditional mean of qt based on all the information in the discrete 
observations up to time t. 0t represents the “past-and-present-conditional” statistical behaviour, in

the limit, of the normalised error \{qt — Ex{qt | p1* fl 5j^)).

PROOF OF THEOREM 3.1. As in the proof of lemma 3.4 we shall use here the following shor
tened notation. For an integrable random variable X ,

1C denotes E2(X  | /?v ),
X  denotes X  — X . (3.5.6)

For a e M ,

Aa : - A a{ A, Bv . . . ,Bd\
Ia ~ l " { n K { n + \ ) h ) ,

Ia{q):=  I« (q ,nh, {n+l )h) .  (3-5.7)

SKETCH OF PROOF. The equation numbers used here refer to the equations in the detailed proof 
which follows. To prove (i) we start by writing down the 3/2'A-order Taylor expansion of the solution 
of (3.2.1). We then take the /^-conditional mean of both sides and subtract to obtain a difference 
equation for N q nh, (3.5.10). The terms on the right-hand side of (3.5.10) are then sorted to obtain a 
form suitable for the application of theorem 2.2, (3.5.16). All the driving terms except one, dn+x{2) 
defined in (3.5.13), are of insignificant order in that they produce components of N q nh that con
verge to zero. The component that does not converge to zero is x„» defined in (3.5.17); N q nh — x„ is 
of uniform L(oo)-order 1/2.
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•Using the properties of the Brownian-bridge process given in lemma 3.2 we see that xN has the 
same PN-conditional distribution as the variable defined in (3.5.20). Now we show that z T — %N 
is of I (oo)-order 1/2, (3.5.22)? so the moment form of the Borel-Cantelli lemma shows that all the 
^-conditional moments of N q T -  Xn and %n ~ zt converge to zero almost surely. This proves (i).

Result (ii) follows by application of lemma 3.1. To prove (iii) we show that the lower m com
ponents of the 1 /2^-order Taylor approximate solution of (3.5.4) differs from £n by an amount which 
is of uniform £ (oo)-order 1/2.

PROOF OF (i). All probabalistic operations are with respect to P2 unless otherwise stated. We 
begin by writing down the 3/2^-order Taylor expansion for q; theorem 2.1 shows that

Q(n+\)h AcJcHnh
aeS3 aeB{S3)

AJ cf ln h + '^ l A<J aqnh+ ^  C3"5’8)
aeS^ aeS3 aeB(SJ

where

$3

S (S 3)

=  {a  e M  : l(a)  +  n(a) < 3 OR / (a) =  n(a) — 2}
=  { v ,(0 ) ,( /) ,( / ,/ ) ,(0 ,/) ,( / ,0 ) ,(0 ,0 ) ,(i‘, j , k )  : i , j , k  =  1,2,. . . , d } ,
=  {a e M  — S 2 : ~ a e S 2}
=  {(0, i j ), (0,0, /), (0, /, 0), (0,0,0), (/, 0 J ) ,  ( / , / ,  0), (/, 0,0), (0, i j ,  k ), 

( i , j , k , l ) : i , j , k , l  =  1,2,.

We take the /^-conditional mean of both sides to obtain

% + l ) h  -  ^ A J  a % h + ' Y A J a 9 n h +  Y A J M ) -

aeS, aeS , asB  (S'3)

(3.5.9)

Subtraction of (3.5.9) from (3.5.8) and multiplication by N  yields a difference equation for N (qnh -  

El^rth I ^v)):

N q0 =  0

+ N 1 A‘
aeSj asSj aeB{S3)

Now

N q (n+l)h - l him, +  N 1 (3.5.10)

A J J ^ I m ,  =  a  +  r n+l)N q ^  + dn+{( 1),
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w h e r e

d

i “ 0

— A h + l
/ - 1

( 3 . 5 . 1 1 )

and

d d

: =  (  ^  A U J)h iJ )  +  ^  A {iJ,k)I (iJ ,k))N ( lnfr
I j “ 0 ij ,k*“ \

( 3 . 5 . 1 2 )

A l s o

N Ac/aQnh
aeS3

dfi+1( )̂ ^  ^n+l (3),

where

d„+{(2)-.= N ^ J J i n k
aeS3
d

=  N  +  ^(0,//(0,i)^nA»
/=*1

- ' 2/=■!

(n+l)/r

( A B , - B , A )  f  W f d tq nh,
nh

( 3 . 5 . 1 3 )

and

dn+ 1(3 ) : = N

=  N

a

l
« - l

/%/ r v

(A{i,0)hiA) n̂h A{0,i)I{0,i)Qnh) (3.5.14)

(all remaining integrals Ia with a e S3 are /^-measurable).
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We also set

W 4 ) “ JV Y j A^ q)'
aeBiSJ

We can now re-write equation (3.5.10) as follows:

=  0,

=  U +  Yn+l) N ^  +  dn+l( 1) +  </„+,( 2) +  d„+1(3) +  rf,+ 1(4).

We define the sequence (x„;fl — 0,1, .  . . ,N )  by

Xo 0,

Xn+l •=  ( /  +  Yn+\)Xn +  dn+l(2) « =  0, 1, . . . ,7V -  1.

Subtraction of (3.5.17) from (3.5.16) yields 

N % - X 0 =  0,

JV%+ iW - X n+1 -  ( '  +  +  </„+,( 1) +  </„+,(3).+ </„+,(4).

Now, lemmas 2.1, 3.3 and 3.4 show that

F„+1 =  O ^ i h 1'2) and is independent of 3nh, 
\E(Yn+l)\ ^  Kh  where K  >  0,

dn+1( )̂ == 0 M (h),
^ ( ■ W D  I 3 J  “  0 („)(A2).

d„+ ,(3) =  0 (CO)(A3/2),

^ W ,+  i(3) I 3 J  =  0,

and

S jWh-iW  I 3 * ) -  0 (oo)(^2).

So, by theorem 2.2,
n %h- x„ =  0 (co)(A1/2).

We define the sequence (£„;/* — 0,1, .  . . , N)  by

l o * = 0
a

£„+1 :=  ( /  +  r„+1)S„+
^ 2 h i

(3.5.15)

(3.5.16)

(3.5.17)

(3.5.18)

(3.5.19)

(3.5.20)

where
A y W  • =  y M  — y ( 0  

n + 1* K (/i-Hl)A Y nh'

Now, parts (iii) and (iv) of lemma 3.2 show that %N has the same /^-conditional distribution as x n -
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By solving (3.5.20), we obtain

J N

(I +  Yn ). . • a  +
i - l  rt-1

d T

f v \ N , W , q 0)(s)d V f ,

where the / (/) are the piecewise-constant functions

f \ N , W , q 0)(s) =  ( /  +  Yn ). . . ( /  +  Yn+l) ( AB , - B , A  )?<„_,,* ( n - l ) A  S  * 
=  ( /  +  YN). . . ( /  +  Yn+t)(A B, -  B,A +  0 (oo)(A) V, .

Consider the s.d.e.
Xnh =  ^(n-l)h

d

d X t =  A X td t +  ^  w f  t e [#iA, T].
i = i

This has the solution
^ 7  =  ${nh, T)(A B{ — B;A )^ n_ t)A .

The 1 /2 'a order Taylor approximation for X  is given by

* r (2 )  =  ( /  +  Yn ). . . ( /  +  Y ^ K A B - B . A X ^

/ <0( iV ,^ ,?0) ( i ) - $ ( n A ,n ( /1 5 J- B ^ ) $ ( 0 , ( » - l ) A ) 9 o  =  0 (co)(Al/2) V ( n - l ) A  £  

and
/ (i)(iV, 9o)(i) -  $(*, D W  B, -  B,A )$(0, j )9o =  0 (oo)(A,/2).

So

r

-  ZT =  -1—  )  f  ( fU\ N , W , q0)(s) -  <*(*, T XA B, -  B,A )$(0, *)?0)d V f
^ 2 k i

=  Ote)(A‘/2).

It follows by (3.5.19), (3.5.22) and the moment form of the Borel-Cantelli lemma that 

E2(\\NqT -  XN V  | PN) -  o (a.s.) V p >  2,

and

^ ( l l ^ v - M ' l ^ v )  -  0 (a-s«) V p > 2 .
Since ^  and have identical PN-conditional distibutions,(i) follows.

(3.5.21)

nh

s < nh

(3.5.22)

(3.5.23)

(3.5.24)
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PROOF OF (ii). Part (i) of this theorem and lemma 3.1 show that under the measure Px the PN- 

conditional distribution of N{(qT -  E2(qT | pN)) converges to the -conditional distribution of z T 

almost surely, and that the /^-conditional moments converge almost surely. In particular

Ex{Ni{qT ~ E2(qT \ P^J) | /̂ v() 0 (a>s*)»
i -* oo

i.e.

| PN)  -  E2{qT | PN))  -> 0 (a.s.). (3.5.25)
i -* co

This proves the convergence results for the sequence

( N ^ r - E ^ l P ^ ) ) ;  1 =  1 , 2 , . . . ) .

fhPROOF OF (iii). Equation (3.5.4) is a Wiener-process-driven bilinear s.d.e.jso we can use the 1 /2  
order Taylor approximation scheme, given in definition 2.3, to find an approximate solution. This is 
given by

where

So

%

P' i  
Qri+i
i + i

pj.
Y a j ,a ,b \ , .  .
aeS,

%

S : =  { a e  M  : 1(a) +  n(a) 1 OR / (a) =  n(a) =  1}
= (v,(0),(l),. . . ,(2d)}.

K+i

Id

( i  + A h  + ^ b ' A U ^ i)
/=* 1

%

We know from theorem 2.3 that

Qrth %
®nh K_

=  0 (oo)(Al/2).

(3.5.26)

(3.5.27)

Now

a a

«„+l =  ( /  + A h + \  B A W f ^ e n + - ^ y  { A B ^  BfA ) q A y {nlv
k  ^ 2k

(3.5.28)
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Wc multiply (3.5.28) by T and subtract from (3.5.20) to obtain

(S„+1 -  T?)n+i) =  U +  W W . -  T h  +  ^ +1(5).

where Yn+ j is as defined in (3.5.11) and

d

(A B, -  BtA )(qnlt -  qn)&V(0n+r

(3.5.29)

(3.5.30)

Lemma 3.4 and (3.5.27) show that

and

*iW ri.|(5) I =  0.

Furthermore Yn+ { =  0 (oo)(/i1/2) and is independent of !%,, and |fs2( r n+1)| ^  Kh for some K >  0, 
(Here f̂ f7 :=  a(Us : 5 ^ t)). So we can apply theorem 2.2 to obtain

o(00|(A!/2). (3.5.31)

Combining (3.5.22), (3.5.27) and (3.5.31), we have

zr -  T6t =  0 {m)(A1/2).

Since neither zT nor T dT is dependent on h

zT — T6t (a.s.) 1

There is a much more direct way of proving part (iii) of theorem 3.1 but it relies on a rather 
subtle result in stochastic differential equation theory: there is a version <£(.?,/) of the matrix fun
damental solution of (3.2.1) that is invertible for all s and t, except perhaps for co in an exceptional 
null set that does not depend on s or t. This is a corollary of a theorem on the existence of flows 
of diffeomorphisms proved in different ways by a number of authors, for example Elworthy [ELI], 
Malliavin [MA2] and Ikeda and Watanabe [IW1]. One of the simplest statements is theorem 1.2 
of Kunita [KU2]. The invertibility of t) permits the following representation of z T:

zT -7 =*(o,n
V 12

> I * - '(0 ,s)(A B, -  B,A )$(0,s)q0d V f
1 = 1 0

(3.5.32)

Now

oricL

flf$(0,T) =  A $ ( 0 , T ) d T  + z
1 = 1

5^(0 ,  T)d W (i }

d T d

1=1 0 1=1



62

By applying ltd’s rule to (3.5.32) we obtain

d d

d z T =  A z Td T  +  ' ^ B lz Td W {$  +  - ^ $ ( 0 ,  T) ^  $ _I(0, r)(y l 5,. -  5,.^ ) f  ( 0 , 7  )g0i  7 (;

i =  i 
d

/ = !

A z Td T + Btz Td W (i } +  y \ a  Bt -  BtA )qTd V^\
/= l V 12  t i

which proves (3.5.3).
dT, of course, has the physical meaning that it is the limit-in-distribution of the normalised se

quence \ {q T — E2{qT | PN))‘ If N  is sufficiently large, then for almost each sample path of the driv
ing process, the error (qT — E2(qT | PN))(Wh(o3), W2h(w) , . . . , WNh{u>)) has approximately the same 
distribution as dT(Wt(u>),t e [0, T])h.  Loosely speaking, we can think of the randomness in qT — 
E2(qT | PN) when parameterised by (Wh(a)), W2h(a) ), . . . , WNh{a;)) as being due to the fact that 
many sample paths of (Wr t e [0, T])  pass through the points Wh(u>), W2h(w) , . . . and WNh(u). The 
randomness in $T when parameterised by {Wt{oo),t e [0, T])  comes from (Vt,t  e [0, T ]) of course.

We can think of expressions (3.5.1) and (3.5.32) as being convolution integrals. Loosely speak
ing, if N  is sufficiently large then the local error in the conditional-mean scheme accrued over the 
small interval [s,s +  fa], (iqs+Ss- q s) - ( E 2(qs+Ss | PN) - E 2(qs \ PN)))(Wh(a) , . . . , WNh(<a))t has ap
proximately the same distribution as

d

(AB, -  B,A )hSVfq,(W,(<c),t s  [0, T]),
V 1 = 1

that is the vector obtained by applying the linear vector-field

d

(A B; — B;A ) h b v f
' ~~ 1 = 1

to the solution of (3.2.1) at time s. The distribution of the total error

(qT -  E2(qT | PN))(Wh{« ) ,. . . , WNh{p))

is found by summing the effects of these vectors at time T ; that is, we sum the quantities:

d

(A B, -  B,A )hi>vfqs(Wt(a ), t e [0, T ])

V 1 =  1

over all intervals fo.y +  fa] in [0, T].

If we apply Ito’s rule to equation (3.5.3) we obtain a stochastic differential equation for z T .

3>(s,T)(Wt(w),t e [0 ,7 ] ) 4 =  V
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zt =  tOi , where € >  0, 
j  =  T d 0j  +  Ojd T

d d

=  (.4 +  j r ) : Td T +  ^  B,:Td W f  +  ^ ( / l  B, -  B,A )qTd V f
1-1 1-1

7"e(0, oo). (3.5.33)

This equation does not have a unique solution if we include the point 7 = 0 .

The convergence of the conditional distribution of the normalised error can be used to inves
tigate the asymptotic behaviour of the “convergence-in-probability” of Ex{qT I PN) to qT\

P i ( N i t e r  ~~ I ^ v () )  e  P  I Pn )  P i (z t  e  P  I ~̂ t  )

for all Borel sets B , with probability 1; in particular

P\{\cT{^t ~ P M t I Pn)}\ — I Pn)  ^ i ( k  zt \ — 6 1

for all vectors c e R m and all positive numbers e, with probability 1. This can be used to estimate 
the error when N  is large.

Since all the positive moments of the normalised error converge we can make similar estimates

for large N  in terms of much stronger convergence than “in-probability”, for instance in terms of 
the Ip-norms:

E ^ N / i q r - E , ( q T \ pN) \ ” \ pN) ' lp -> E,(\cT zT\p | % ) Up (a.s.)

and so for large N

Ex(\cT(qT - E , ( q T \ pN))\p \ pN)'/p *  E,(\cT zT\p \ • (3.5.34)

Theorem 3.1 is a type of central-limit theorem. Intuitively, we might expect that the normalised 
error in any /^-measurable approximation scheme converges in distribution to a normal random 
variable if it converges at all; in fact if (qN \ N  =  1,2,. . . ) is any /^-adapted sequence of ap
proximations to qT the error can be represented as the sum of the error in the conditional mean and 
a /^-adapted sequence:

Qt ~ Qn =  — E M t I flv)) (E{{qT | PN) —

So, if the sequence N ( E {(qT \ PN) ~ q N) converges almost surely to some Immeasurable random 
variable MTf then the PN-conditional distribution and moments of the normalised error sequence 
N( qT - 3/v) wiH converge to the limit-distribution given in theorem 3.1 but with a mean of M T 
instead of zero? i.e. the normal distribution N { M T,DT). If the sequence N { E x{qT I PN) ~ qN) does 
not converge then neither will the /^-conditional distribution nor the moments of the normalised 
error N (qT — qN).
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We might expect, therefore, that the limit-distribution given in theorem 3.1 represents the 
asymptotically maximum rate of convergence in terms of all the £p-norms (p >  1); that is, the 
coefficient on the right hand side of (3.5.34) is minimal. This is certainly the case for the £ 2/n-norms 
for (m =  1,2,. . . ) as is shown in the following. The L2m-norm of the error in an approximation 
scheme qN is given by

e(hN) =  EJicT(qT - ‘q„))2m\PN).

By differentiating with respect to q, multiplying by N  and equating to zero for a minimum we obtain 
an equation for the optimal (in the L2m sense) scheme q*N:

0 =  E l(.NcT(.qT -q 'N)2m- ' \ P fl)

=  E , W c T(qT -  £ ,(? r I PN)) +  N c T(Ex(qT I PN) ~  ?w))2’"‘ 1 I ?n )
2m—\

(2m — 1 — r)!r!'^1̂ ^ C ~  I I r)(Nc (Ex(qT \ pN) ~ qN) ) •
r=0

But the odd moments of N c T(qT—Ex(qT \ PN)) converge along an appropriate subsequence (Nt ; i =  
1,2,. . . ) to zero and the even moments are bounded? so

2m- 1

(2m —  1 —  r)!/'!^'1̂ ‘̂ c ~ T  ̂ I ^nX ^ c I ^ i v ) —  Qn))  0

r-odd

and

N(c (E^(qT | Pn) ~ Q n)  ® (a.s.).

So the optimal scheme in the Llm sense has the same limit-distribution for normalised error as the 
conditional-mean scheme.

Part (ii) of theorem 3.1 shows that under the “true” measure Pl the conditional mean Ex(qT \ 
PN) has a normalised error that converges on refining partitions to the same limit as the normalised 
error in E2(qT | PN) in the Wiener measure case. This is to be expected since the increments of the 
driving term AWVAW2, . . . ,A WN are given by the sum of a deterministic integral and an incre
ment of a Brownian motion (see equation (3.2.2)). The integral is of uniform £ (oo)-order 1 and the 
increment of Brownian motion is of uniform £ (oo)- order 1/2; it seems reasonable, then, that the 
Brownian motion part of Wt dominates as h decreases.

1
r =  1

3.6 Limit-distributions for normalised errors in approximate Bayes estimates.

Hitherto we have been investigating the best convegence of discrete approximate solutions to the 
bilinear s.d.e. (3.2.1). In this section we shall carry over the main result, theorem 3.1, to the best 
convergence of approximate Bayes estimates of functions of the original signal process, obtained 
by formula (1.2.8). It is these approximate Bayes estimates that are the “solution” of the filtering 
problem. I have restated formula (1.2.8) here for convenience.



65

Let /  be a vector-valued function of the signal process:

f  . { d j, d-y, . . . , dm } —♦ .

The Bayes estimate of f ( X T) is given by

E,<J(x t ) I 3^ )

: ^^(qT). (3.6.1)

If qN is an approximate solution of (3.2.1) then by “the corresponding approximate Bayes estimate” 
we mean the quantity

:=  * / & )  if ^ i ( Y  9w =  o) =  0. (3.6.2)
J=-l

We would like to examine the convergence of such objects as (to ^ ( q T)) given the conver
gence properties of qN. Once again we shall analyse the convergence of the /^-conditional mean se
quence (Ex(f(XT) | Pn )\N  =  1,2,. . . ) as it possesses the optimal asymptotic properties described 
in the last section.

Since the function 'Ey is nonlinear the best approximate solution of (3.2.1) does not in general 

yield the best approximate Bayes estimate:

*Ex(f{XT) | PN) *  Vf ( E f q T | PN)) in general”. (3.6.3)

However, as we shall see, the conditional mean Ex(qT \ pN) and indeed E2(qT | PN) both yield ap
proximate Bayes estimates with optimal properties.

The optimal limit-distribution for the normalised error in approximate Bayes estimates can be 
found using a method which Billingsley ([BI1], P.340) refers to as the deltd method. The idea is 
that 'I'y is twice-differentiable and, with increasing Ny the error in a convergent approximate solu
tion to (3.2.1) decreases so that the corresponding error in the approximate Bayes estimate becomes 
nearly equal to the error in the approximate solution of (3.2.1) multiplied by the value of the deriva
tive of Ty- at the point qT.

The following theorem gives a limit-distibution result for the error in approximations of the 
Bayes estimate given by (3.6.1); the main difficulty in the proof lies in the fact that for small qT, 
1 / HjLi 4P can be unboundedly large.

Theorem 3.2. Let {>qN :N  =  1,2,. . . ) be d sequence of pN-meosurdble dpproximations to qT such 
thdt for some meusure P thot is equivulent to Px dnd P2 in the sense of obsolute continuity

P(N(qT - q N) e ■ \ p „ ) = > P ( ( T s -  \ % )  (a.s.)

dnd
E(\ \N(qT - q N) f \ P N) ^  E ( U t V \ ^ t ) (a.s.) V p >  0, (3.6.4)

(where is some rondom vdridble in R m) then the error in the corresponding opproximote Boyes
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estimate 'Sfj-(qN) converges as follows:

P ( N( *f (qT) -  ¥ ,($ „ ))  s  ■ \pN)=>P( i ,T e ■ \ % )  (a.s.)

and

E{\\NC*/-(qT) - * f (qNM p \PN) ^  E(\\qT\\p \ % )  (a.s.) V p > 0 ,  (3.6.5)

where

Vt • (D *f ){qT)$T

(3.6.6)

/fere, Z) 'Ey means the Jacobian derivative of  'Ey.

PROOF. We first establish the existence of the moments of In the derivation of the Zakai
2,,-î V

o-
equation (3.2.1) qT is defined in terms of the normlised conditional distribution of the signal-process

p t by
m

<?,:=
1 = 1

m t m t m

y qf  :=  exp(j" ^ p ‘i)A(a,)r < l ^ -  i  J || ^ p « > » (« ,) |l2</i)

1=1 0 1=1 0 1=1

(3.6.7)

(see equation (1.2.5)). Since

^  0 (a.s.) V i =  1,2,. . . ,m r

and
m
) p f '  =  l (a.s.) V i € [ 0 , r ]

1 = 1

it follows that
q^ >  0 (a.s.) V i =  1,2,. . . ,m t

m

o/ujt y  q f >  0 (a.s.) \ / r e  [0 ,7 ] .

i = i

Furthermore, if we apply Ito’s rule to (3.6.7) we obtain

m m m m m

=(X?',))"l|iZ/’',,A(a')i|J</,_(Z?'0)'1 Ylp')h(a‘)TdWr
i= 1 i = 1 i—l i = 1 ' / = 1

(3.6.9)
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m
supH^pJ°Mtf,)ll2 < o o  - v^ e  K c ) ~ ( ;

U£_C / = l

so the coefficients of (3.6.9) fulfil the conditions of the existence and uniqueness theorem (see theorem 
4.6 in [LSI]), and since

m

( ^ 4 ° ) “ 1 =  1 (a-S‘)
/-I

all the moments of
m

(Z,ir
Z = 1

exist for all / e [0, 7*].

We now define a set S  which contains qT almost surely and on which

Now

(£>r

is well defined. Let

S  : =  {* e R m : x{ >  0 ; / =  1,2,. . . , m

m

/ -I

(3.6.10)

S  is convex. Consider the following function, defined on S :

m
^(x) :=

i = i
(3.6.11)

clearly

* f {x) =  [f{ax) f { a 2) . . . f ( a m)M x ) .

Let v be a unit vector in R m and let a: be a positive scalar such that x, x  +  av e S . We define the 
function g(a) and produce a Taylor expansion of it about 0.

g(a) :=  # (*  +  ay), (3.6.12)
m m

dg
d |(« ) = + avj )  + av^) 2(x +

/=! /=1 /=1
m m m m

~̂ 2{a) =  +  oafi ) ' y lv +  2( ^ i/'')2( ^ ^ '  +  avS )~ 3<<x  +  0*0. (3.6.13)
/= l «=i / = l / = i
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and

V(x +  av) ~  ¥ (* ) =  g(ot) -  g(0)
d s  d^2 op

=  ^ ( 0 )a +  T - |(X a)~  d a  d a 1 2

'̂$077 '̂

/, 0 < X <  1.

Now
m m

|| ^ ^ (X a ) | |2 <  K l ( y ( x i +  Xav^ 4 +  £ 2( ^ ( * /  +  Xaz/,.))-6 II * +  W ||2
i=i i=i

and since »S is convex x +  Xav e S', so

|| x +  \a:i/|l2 =  +  Xav;)2
i = i 

m

~  +  X<XVJ )2-
i“ l

This shows that for a natural number M
m

I I ^ I M I I 2"  <  jc3( £ ( * ,  +  w () ) -4"
1=1

/w m

=  AT3((1 -  X) ^  x, +  X 2 ^ (x , +
1=1 1=1
/w m

<; (1 -X)AT3( Y x ,)-™  +  XAT3( ^ \ x ( +  m>,))‘ 4"  
1=1 1=1

■fhld prlUnvb
|  since ^  is a convex downward function.

Now, qT g S  (a.s.) and for any co in the following set

An :=  { « # *  e 5  }

we use (3.6.13), (3.6.14) and (3.6.15) to obtain

m m

Nmtr) ~ *(?*)) = ( Y IsVi1 ~ ( Y ?«• • • ?/vlh(9r ~ $w) + *at-
1 =  1 1 =  1

m m

l l ^ n 2"  < £„(( 1 - X ) ( ^ +  x ( ^ )N\ \qT - q N \\\
1=1 1=1

(3.6.14)

(3.6.15)

(3.6.16)

where
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•$ince the moments of

/ - i

E(\\RNl\2MrAJ P N) Z ^  (a.s.),
where IA is the indicator function of the set AN. Since IÂ  is PN-measurable and since for each w 

there exists an 7V0(cij) such that
N > N0(cj) => co e An

it follows that
£ (1 1 * * II2"  \PN) -  0 (a.s.). (3.6.17)

Now qN is PN-measurable and converges to qT almost surely.So it is evident from (3.6.16) and 
(3.6.17) that the /^-conditional distribution and moments of N (^(qT) — '&(qN)) converge almost 
surely to the Dj -conditional distribution and moments of the following vector:

m m

/—1 / =* i

The theorem follows because

*>(• ) =  [f{ax)f {a 2). . . / ( O W -  ). I

Corollary.

(i)

P2{N W f (qT) -  <fy(E2(qT | PN))) 6 • | PN) => P2(Xt e • | 3 ? )  (a.s.)

and

E l\\N W f (qT) - < t f (E2{qT \PNm \ p \PN) ^  (*-S-) V p >  0 }

and for any sequence (NVN2, . . . ) with the refining property (3.3.12)

P ^ N ^ t) -  <tf (E2(qT | PN))) s  • | pN)  ~  £,(xt e • | 3 f )  (a.s.)

and

El[\\Nl(<if (qT)-<f!/ (E2(qT \PN)))\\'’ \pN) ^  fi.d lxr  II" | ) (a.s.) V p > 0 ,

where x r w g/ven by

X r: ( z r „ # ) 2

(3.6.18)

(3.6.19)

(3.6.20)

T was g/ven in (3.5.1).
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(ii) The limit-distribution for the normalised error in the approximate Bayes estimate given in 
part (i) o f this corollary is optimal in the sense that it is also the limit-distribution for the nor
malised error in the best approximate Bayes estimate, i.e

P2{ N { ^ q T) -  E2(<Hf (qT) | PN)) e • K )  => P2(xr  e • | % )  (a.s.)

and

E1(\\N(<tf (qT) - E 2(<kf (qT) \P N))\\p \P!{) ^  E2(.\\Xt Wp \3 t '> (*•*•) v p >  0, (3.6.2 1 )

and for any sequence {Nl,N 2, . . . ) with the refining property (3.3.12)

~  •^i(^r/(^rr) I Pn) )  e ’ I Pn)  ^  ^ i(Xr e ' | ^7 ) (a.s.)

and

E ^ N ^ q J - E ^ q J l P u f i f l P u ) ^  Ex(\\X t \\p \ % )  (a.s.) V p > 0 .  (3.6.22)

PROOF OF COROLLARY, (i) is a direct result of the theorem and theorem 3.1; (3.6.19) follows 
by lemma 3.1.

Because of (3.6.18)

E2{N W f (qT) -  <tf (E2(qT \ PN))) | PN) 0 (a.s.),

i.e.

^ ( ^ ( ^ /( ^ r )  | Pn ) ~  I ^y))) 0 (a.s.).

which proves (3.6.21). (3.6.22) follows in the same manner from (3.6.19). |

The limit-distribution in the corollary, the ^-conditional distribution of Xr? has the optimal 
properties of the limit-distribution in theorem 3.1, discussed in the last section. It is a normal distribu
tion with zero mean}and covariance matrix D 'T given by

D j  E (X7 X7 | )
=  (2> * )(? ,-)£  (zr z£ I 3 ¥ )(D * f )T(qT) 

d T

= ^  ^  j (o 'f/ )(?T)i(i, D(/i -  i,/i )«o, j)Wor«o,5)r
i = l 0

(A Bt -  B(A )T$(s, T )r (D *f )T(qT)ds. (3.6.23)

It follows from the discussion in the last section that if (qN;N  =  1,2,. . . ) is a /^-adapted se
quence of approximations to qT with the property that N (E fq T I ^v) — $N) converges almost surely 
to a random variable M T , then the /^-conditional distribution of the normalised error in the cor
responding Bayes estimate of f { X T), N(^ff(qT) — ^j-(qN)), converges along an appropriate subse
quence to a normal distribution with mean (D ^ ){q T)MT and covariance matrix Z) r , i.e.

P^NtWfCqj.) ~ * f t f N)  e • | PN)  => N{LD*f ){qT)MT, D T){ •) (a.s.), (3.6.24)

where (Nli l=I}2, .J  Kcls tk  (3Al*).The moments also converge almost surely. If the sequence 
N (E fq T | PN) — qN) does not converge then neither does the /^-conditional distribution of the nor
malised error in the Bayes estimates nor its moments.



Chapter 4

Some Approximation Schemes.

4.1 Introduction.

This chapter considers specific finite-difference methods for solving the bilinear s.d.e. (3.2.1), with 
particular attention given to the asymptotic properties. The main difference between the approxima
tions obtained by the schemes in this chapter and the partition-conditional mean sequence, analysed 
in chapter 3, is that the former can, in principle, be calculated.

The asymptotic properties that we are mostly concerned with are; almost sure convergence, 
asymptotic efficiency, F -  order asymptotic efficiency and of course order o f convergence. The 
efficiency concepts are described in section 4.2: roughly speaking a F-order asymptotically efficient 
sequence of approximations is one with the optimal asymptotic properties of the partition-condi
tional mean sequence; the asymptotic behaviour of the corresponding approximate Bayes estimates, 
found by formula (3.6.1), is also optimal.

In section 4.3 we construct a 1-  order asymptotically efficient scheme, the “Paradigm”: theorem
4.1 shows that the removal of one or more terms from this scheme results in the loss of FI-order 
asymptotic efficiency. In particular the Euler (see Maruyama [MAI]) and Mil’shtein [Mil] schemes 
discussed in chapter 1 are not F*> order asymptotically efficient.

Various schemes are compared in section 4.4 with particular mention given to the Euler, 
Mil’shtein and Paradigm schemes since these contain the minimum number of terms needed for al
most sure convergence, F-order convergence and F-order asymptotic efficiency respectively. We 
also look at some of the Runge-Kutta schemes of Riimelin [RU1].

4.2 Asymptotic properties of approximation schemes.

The main properties used in this chapter for comparing approximation schemes for solving equa
tions of the type (3.2.1) are asymptotic properties. Asymptotic analysis of errors does not lead to 
quantitative statements about the errors of given methods on given partitions but does indicate the 
type of method that is worth implementing: complex methods with the same asymptotic properties 
as simpler schemes are probably not worth considering; it would be better to use a simpler scheme 
with a finer partition to improve accuracy.

Definition 4.1. Let X (e  R n) be a square-integrable vector-valued random variable on a probability 
space (12,3 ,P). Let (PN C 3: N  =  1,2,. . . ) be an increasing sequence of sub-sigma-fields of 3.
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(a) (XN e R n : N  =  1 , 2, .  . . ) is called asymptotically efficient in the class of /^-adapted se
quences of approximations to X  if (XN,PN) is adapted and, with probability one,

E{(cT( X - X N))2 \PN) 
var(cTX  | pN) V c e R n- {0}. (4.2.1)

Here
var( • | PN) : - £ ( ( • - £ ( •  | pN) f  \ pN).

(b) {XN e R n : N  =  1,2, . . . ) i s  called b o r d e r  asymptotically efficient in the class of PN- 
adapted sequences of approximations lo X  if {XN,PN) is adapted and, with probability one,

E( (N rcT( X - X N))2 \PN) + 1  
var{N rcTX \PN) + \

V c e R n. (4.2.2)

An asymptotically efficient sequence is one whose error has asymptotically minimal variance, i.e. 
it is asymptotically optimal in the least squares sense. An asymptotically efficient sequence certainly

has the maximum order of convergence, r^-order asymptotic efficiency is weaker than asymptotic 
efficiency; there are however special cases where it is equivalent. Suppose for instance that, with 
probability one,

v2u(N rcTX  \pN) -+i ;c < o o  V c e R n.

If the sequence {XN : N  =  1,2,.  . . ) is reorder asymptotically efficient then, with probability one,

E {(N rcr (X —XN))2 | PN) ^ H C V c e R n.

IfP(£c > 0 ) = l  V c e i ? n- { 0 }  then this is equivalent to asymptotic efficiency, but if there exists 
a set of non-zero probability on which is zero for some c ¥* 0 then asymptotic efficiency does not 
follow.

In the case of /^-adapted sequences of approximations to the solution of (3.2.1) we know that 
the maximum order of convergence is 1 . In the next section we shall demonstrate the existence of 
a first-order asymptotically efficient sequence of approximations to qT. We know from theorem 3.1 
that, with probability one,

v2lt2( N c TqT | PN) -►  ct D t c  V c e R m, 

where DT is the following conditional-covariance matrix:

d T

° T =  U? A  J $ (i’ T)(A B> ~ B‘A *(0,-s)TW B, -  B,A )r $(5, T f d s . (4.2.3)
/ = 1 0

If Dt is almost surely positive-definite then any first-order asymptotically efficient scheme will also 
be asymptotically efficient. If, however, there is a set of non-zero probability on which DT is not posi
tive-definite then asymptotic efficiency does not follow. In effect, on the set on which DT is not posi-
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tivc-dcfinitc the conditional mean sequence ( E f q T \ pN) : N  =  1,2,. . . ) converges faster than 
linearly. It is not a requirement of a first-order asymptotically efficient method that it should “keep 
up” with this increased rate of convergence over the generic maximum, it is however a requirement 
of an asymptotically efficient method.

As an example, suppose that the matrices A and B( (i =  1,2,. . . ,d) in (3.2.1) commute, i.c. 
AB-t =  BfA(Vi — 1,2,. . . ,d)(of  course B(Bj =  BjBt Vi J  =  1,2,. . . ,d).  In this case qT is PN- 
measurable for all N > 1 and there is no maximum order of convergence.

It would be interesting to find conditions under which DT is almost surely positive-definite but 
I have not looked at this problem; one would certainly require the system of vectors

{$(s ,T) (ABi - B t A m O , s ) q 0 ; i =  1 ,2 .......... d ; .ye [ 0 ,7 ] }

to span R m. The following lemma establishes a property which, under certain conditions, is equivalent 
to b o rd er  asymptotic efficiency.

Lemma 4.1. Let X  be a square-integrable vector-valued random variable on some probability space
( a  3  a

X e R n, E \\X\\2 < o o .

Let (XN,PN ; N  =  1,2,. . . ) be an adapted sequence o f approximations to X . Furthermore sup
pose that, with probability one,

limsupvar(Ar'crA' | PN) <  oo V c e i ? " ,  (4.2.4)
N

then the following two statements are equivalent:
(a) (XN ; N  =  1,2,. . . ) is an b o r d e r  asymptotically efficient sequence o f approximations to 
X ,

(b)
N \E  {X | pN) - X N) -  0 (a.s.). (4.2.5)

NOTE. Since var(N rcTX  | PN) is continuous in c, (4.2.4) is equivalent to 

P(limsupvar(iVrcrAr | PN) < o o ) = l  V c e R n
N

(consider c with rational components).

PROOF.

E({ct (X - X n ))2 | PN) =  var(cr X  | PN) +  {cT(E(X \ PN) - X N)f-, 

so (a) is equivalent to

, vv(N 'cT X  | PN) +  (N 'cHE  { X \ P N) - X N) f + \  , ^ ,
--------------------vai(N rc^X~\PN) +  \----------------------- V c a J i ) - 1*

Under condition (4.2.4) this is eqivalent to (b). I
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Corollary. I f ( qN : iV =  1 , 2, .  . . ) is first-order asymptotically efficient in the class o f pN-adapted 
sequences o f approximations to qT under the measure P2, then (fi?f(qN) '• N  =  1,2,. . . ) is first- 
order asymptotically efficient in the class o f PN-adapted sequences of approximations to 'Pf(qT) 
under the measure P2. Here Ty is the Bayes estimation function defined in (3.6.1). Furthermore if  
(Ni ; / =  1,2,.  . . ) is any sequence o f natural numbers with the refining property (3.3.12), i.e.

N i '—  ̂00  omA. i > j  => NiJNj is an integer,

then (qNi :i =  1 , 2 , .  . . ) and (^ (q N̂ ) : i =  1 , 2, . . .  ) are first-order asymptotically efficient in the 

class o f PN -adapted sequences o f approximations to qT and ^ fiqT) respectively under the measure

p v

PROOF. By theorems 3.1 and 3.2 the following all hold with probability one:

var2(iV cTqT 1 Pn  ̂  ̂ DjC V c e i ? m,
vslt2(N cTVf (qT) 1 Pn  ̂ c D jC V c e R n,

var f N ^ q j * | P^) c Dj.c V c e R m,

and
v2LXl(NicT^f (<qT) 1 Pn,) c D j C V c e R n.

Here, Dr  and D T are the conditional-covariance marices given in (3.5.5) and (3.6.23) respectively. 
This means that condition (4.2.4) of lemma 4.1 is satisfied by qT and <S'j(qT) under * 2> and under 
P{ along the subsequence (Nt ; / =  1,2,. . . ). So we need to prove that

N (E 2(*f (qT) | PN) -  * / ? „ ) )  -  0 (a.s.), (4.2.6)
(a.s.), (4.2.7)

and
JV,(£ , ( * /? , . )  | PN)  -  *,(?„_)) 0 (a.s.), (4.2.8)

given that

N{Fi(Qt 1 Pn  ̂~~ Qn ) “* ^ (a.s.). (4.2.9)

(4.2.9) shows that under the measure P2 the /^-conditional distribution and moments of the 
normalised error N( qT — qN) converge to the optimal limits given in theorem 3.1 almost surely, i.e.

P1{N(qT - q N) <=•! PN) => N(0,Dt ){-) (a.s.)

OJlti E2(\\N(qT - q N)\\1’ \ PN) -  | \ \ x f N( 0 , DT)(dx)  (a.s.). (4.2.10)

R m

Theorem 3.2 and lemma 3.1 show that similar results are true for the normalised sequence
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N('Vj(qT) -  'Py(<?/V)) under P2 and the normalised subsequences N,(qT — qN) and N^fiq-p)  ~ 

^/(?/v()) under i.e.

| P„) ~ N ( 0 , D t )( - ) (a.s.), (4.2.11)

T - $ n) s ' \ PN)  => N  (0, Dt ){ ■) (a.s.) (4.2.12)

■ \PN) ^  N ( 0 , D t ) ( - ) (a.s.), (4.2.13)

where N(0,D T) is the optimal limit-distribution for Bayes estimates given in the corollary to theorem 
3.2. The moments also converge almost surely. These expressions in turn imply the results (4.2.6), 
(4.2.7) and (4.2.8). I

The above lemma and corollary show that any sequence of approximations to qT that is first-order 
asymptotically efficient under P2 yields a corresponding sequence of approximate Bayes estimates 
that is also first-order asymptotically efficient under P2. Appropriate subsequences of approxima
tions to qT and approximate Bayes estimates are first-order asymptotically efficient under P{. The 
normalised error sequences in the approximations to qT and \1>f(qT) converge to the optimal limits 
given in theorem 3.1 and the corollary to theorem 3.2 respectively.

In the remainder of this chapter the asymptotic properties of various specific approximation 
schemes will be analysed. The analysis will be done for approximations to qT under Pv  the cor
responding results for the approximate Bayes estimates under P2 follow by the corollary to lemma 
4.1. Likewise the corresponding results for approximations to qT and the corresponding approximate 
Bayes estimates along appropriate subsequences (TV,) under Px follow.

4.3 A paradigmatic efficient scheme.

We shall now look at some specific approximation schemes for solving the differential eqaution 
(3.2.1), looking in particular at the asymptotic behaviour of the error in the approximate value of 
qT and the error in the corresponding approximate Bayes estimates. We begin by investigating one- 
step methods, i.e. methods in which the approximate value of q at one point of the partition is cal
culated from the approximate value at the previous point and the increment of the driving-process 
W .

Under the measure P2 the /^-conditional mean sequence (E2(qT I Pn ) \ N  — 1 , 2 , . . .  ) can be 
“Taylor-expanded” in a similar fashion to that given in chapter 2. In fact,if we define the sets Sk as 
in (2.5.1),

Sk :=  [ a e M  : 1(a) +  n(a) < k OR 1(a) =  n(a) =  i(Ar +  1)}, 

then theorem 2.1 shows that

V t - m  =  ■ ■ ■ ,Bd)I^(nh,(n + l )k)qnh
aeSk

+  Y  Aa(A ,B ,.......... Bd)I^(.q,nh,(.n+l)h).
aeB (Sk)

(4.3.1)
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We take the conditional means of both sides of (4.3.1) to obtain

Q(n+i)h =  ^  A M  • • • , B d ) ( l W ( n h , ( n +  1 ) h ) q ^  +

aeSk

+  Y  Aa(A , B „ . . .  ,Bd)I*(q,nh,(n + 1)A). (4.3.2)
aeB(Sk)

__ . sv  .
tJere9 for an mtc^r^blc random variable jY 9 2C denotes E^^C J /^y) and 2C denotes 2C ***“ E'^pC I Pn )• 
The “awkward” term in (4.3.2), f^{nhJ}T:f^l)h)qrth, can be eliminated by expanding the integral 
using the following formula:

(n4-l)A (/i+l)A (n+l)h

J* Ip(nh,s)d Ws =  ( A^ +1) .J Ip(nh,s)ds+ J  I^nh,s)dWs.
nh nh nh

Then we obtain

/ (a)—n(a)

/J (« A ,(n + l)A ) =  y  [„/,,(»+ D m
k=0

where the functionals f k are measurable and have zero mean,

£ 2/ * ( ^ , , f e  [/**,(«+l)/z]) =  0.

So

__________ / (a)-/i(a)

l* (n h ,(n + \)h )qnh= y  ( — ' f + f h i W e t  6 [nh,(n +  1)A])^
k = 0  

/(a)-n(a)

fc= 0

=  0, by lemmas 3.2 (iii) and 3.3.

So, from (4.3.2),

^  4 . ^  .-B.. • • • ,Bd)I^(nh ,(n+ \)h )7Q
aeSk

+  Y  Aa(A ,B v . . . ,Bd)I%(q,nh,(n+ 1)A) . (4.3.3)
aeB(Sk)
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T h i s  e x p a n s i o n  l e a d s  n a t u r a l l y  t o  t h e  f o l l o w i n g  f a m i l y  o f  o n e - s t e p  a p p r o x i m a t i o n  s c h e m e s :

%(k)  :=  qa

q ^ [ ( k ) : =  Y  Aa(A, Bx, . .  . ,Bd)l *{nh,(n +  1 )h)f„(k). (4.3.4)

aeSk

These schemes can be thought of as the smoothed k /2 ,h-order Taylor schemes since they yield ap
proximate solutions that are the PN-conditional means of the Taylor schemes given in definition 2.3; 
i.e.

lfn(k) =  E2(qn(k) | pN). (4.3.5)

The following lemma gives some asymptotic properties of the smoothed k /2 ,h- order Taylor 
schemes.

Lemma 4.2. The difference between the partition-a-field-conditional mean of the solution o f (3.2.1) 
and the approximate value obtained by the smoothed k /2 th~order Taylor scheme, defined in (4.3.4), 
is o f uniform L^-order k / 2, i.e.

sup E2UNk/\ E 2liq„h I P ^ -W n ik W  <  co V p >  0 . (4.3.6)
n<.N

N

PROOF. Because of (4.3.5)

I Âr) Qfft) Eltinh 4„(^) | Ptf)*

where qn(k) is the approximate solution of (3.2.1) obtained by the k / 2'A-order Taylor scheme, given 
in definition 2.3. Theorem 2.3 shows that

(4.3.6) follows by Jensen’s inequality. |

The \ j 2 th and l jr-order Taylor schemes (the Euler and Mil’shtein schemes respectively) yield 
/^-measurable approximate solutions;so they coincide with the smoothed 1/2'A and l jr-order Taylor 
schemes. So the latter converge with order 1/2 and 1 respectively. The question arises: is the 
smoothed H'-order Taylor scheme Fr-order asymptotically efficient? In fact it is not; this is proved 
in part (ii) of theorem 4.1 below. However, for k > 3  the smoothed k /2 ' -order Taylor schemes are 
1 •“-order asymptotically efficient; this is also shown in the theorem.

Of particular interest is the smoothed 3/2'A-order Taylor scheme, because it represents the 
minimal expansion needed for 1 border asymptotic efficiency. I use this scheme as a paradigm; it is 
given explicitly below.
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Definition 4.2. The following approximation scheme for solving bilinear s.d.e.s such as (3.2.1) will 
be called the paradigm:

<7o:

Qn+l :

<7o»
a a

=  ( i  +  A h +  Y j B A ^ x  +  \ ' Y i B ] ^ w f + l1 - h )
/ = 1 1 = 1

+

+

+

= l 
i * j

&

d

12'/ = !
^  V  +  i  > 04 * , +  ) A A ^ i ,

a

3( A ^ i , 3 - 3 A A ^ l , )  +  i  ^  S ^ . ( A ^ 12 - A ) A < 1 ,

1 = 1 ij=  1

d

|  £  W t A ^ » + iA^ + i A frS i K
i j ,k=*l

i^jj^k.k^i

(4.3.7)

For the case where the observations process is scalar (d =  1) this reduces to 

% :=

?;+, := (/ + + *A » ;+1 + i f i 2(A ^ +1 -A) + ^42A2 + j ( A B  + BA)hAW n+l

+  - 3AA^„+ ,))?;. (4.3.8)

The paradigm is the 3 f l 1'border Taylor scheme with the term

d (n+l )h

J i A  Bi -  BtA )
J =  1 nh

w y d t

missing. In the degenerate case, where the matrix A commutes with all the Bt matrices, this term 
is zero and the paradigm converges with order 3/2.

Theorem 4.1.

(i) For any k >  3, the smoothed k /2 th-order Taylor schemes defined in (4.3.4) yield lst~order 
asymptotically efficient approximate solutions to bilinear s.d.e.s o f the type (3.2.1). In particular, 
the paradigm yields a \st-order asymptotically efficient approximate solution.
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(ii) Ccnsidor the following approximation scheme for (3.2.1)

% ■ ô*
d d  d

?„+, ■ ■={ ! +Ah +  ^ \ a < + i +  I  +  i  ^

+ ( \ a  2 +  Z>0)A2 +  ^ ( ± ( .4  B, +  BtA ) +  Dt)hAW^ ,
/ - l

+  ,)
/ - I

d

+ Yj + ~ ĥ w<&(
i * j

d

+  £  f y ' B f r  +  F ^ w f ^ A W W i A w M f a  (4.3.9)

i ^ j j  ^ k . k ^ i

(This is the paradigm with perturbed 3 /2 th-order terms)

Let the process ('P,, t e [0, T] )  be defined as follows:

Then

?0 V
* 0_ 0 »

" A 0 V
_*L Dq a %

d t +
9,
%

d W (/) r e  [ 0 , 7 ] .  (4.3.10)

(a) The approximation to qT given by (4.3.9) is lst-order asymptotically efficient if  and only if  
both o f the following conditions are true:
(el)

=  0 (a.s.)

and
(e2) for each i , j , k  =  1 , 2, . . .  ,d

P£Ffl, =  F,j9, =  FIJJcq, =  0 V t e [0, T ]) =  1 .

Also
(b) If (e2) above holds then

N { E 2(q T I PN ) -  qN ) T < tT (a.s.), (4.3.11)

where '(?T is given by (4.3.10).
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NOTE. Of particular interest are the cases that represent the paradigm with any combination of 
3/2'A-order terms removed. For example, when

A> =  — A 2 ; Z>, =  ~ A B ,  ; D y . . .  ,Dd , F, , FtJ , FtJJc =  0 V i , j , k  =  1,2...........d

the scheme given in (4.3.9) is the paradigm less the terms \ A 2h2 and B ^A W ^h.

Corollary. Let (xf ; t e [0, 71]) be part o f the solution o f the following s.d.e.:

%
Xo

%
0

~ Qt~ A 0" V
xt - A 2/ 2 A X,

0

J-l
A ) / 2 Bt 

t e [0, T] .

It
Xt

d W f

(4.3.12)

The MiTshtein scheme [M il]  described in chapter 1 yields a \st-order asymptotically efficient 
approximation to qT if  and only if  both o f the following conditions are true:

XT =  0 (a-s-)

and for each i , j , k  =  1 , 2 , .  . . ,d

P2(B ]q, =  B )Bflt =  =  0 V t € [0, T]) =  1.

PROOF OF THEOREM 4.1 PART (i). It follows from lemma 4.2 and the moment form of the 
Borel-Cantelli lemma that for k > 3

N ( E2(qT \PN) - q ( k ) )  -  0 (a.s.).

(i) follows by lemma 4.1.

PROOF OF THEOREM 4.1 PART (ii). We subtract (4.3.9) from (4.3.7) to obtain a difference 
equation for N{q*n — qn). Theorem 2.2 shows that the solution of this equation differs from (£n), the 
solution of equation (4.3.14), by an amount which is of uniform L(oo)-order 1/2, i.e.

N { q n - % ) ~ t i n = (4.3.13)
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w h e r e  $ 0 : = 0 ,

d

«„+1 :=  ( /  +  A It +  ^  B,A1F«>.I)|„ + dn+l( 1) +  </„_,(2),
1 - 1

d

J„+ , ( l ) : =  - i V ( D 0/ r  +  ^  DthA | )?„( 1),
/-I

d

<*„+,(2) :=  - i V ( ^  F ,(A ^ <'i,3 -  ,) +
( - 1 2

*V — 1

d

/yjfc-i

( 4 . 3 . 1 4 )

(4.3.15)

<7n(l)  is the l /2 /A-order Taylor approximation for qnh (see defintion 2.3). We also define (t7„) by the 
following:

V  =  °»
d

V h  ••= ( '  +  A h +  £  +  </„+,(!)• (4.3.16)
/=■ 1

We prove (b) first. Let (</n+1(3)) be the following approximation to (</n+1(2));

d d

< W  3) :=  ^ ( A ^ ' i /  -  3AAJT^,) +  ^  ^ ( A ^ , 2 -  h ) W f +l
1 — 1 iy=i

i*j
d

+ z F  . A W ^” i j,k^yy rt+ 0) 4*)n+\AW n+

i J,k  =  1 
t ^ j j  =Ak,k^i

(4.3.17)

Since (e2) is true
P1{d„(3))= </„(2); V n <  N  ; IV =  1,2,. . . ) =  1.

We subtract (4.3.16) from (4.3.14) and use this approximation to obtain

d

?„+ , - u „+1 =  ( /  +  A h +  £  f l ,A ^ «  +  rf„+ 1(3) (a.s.).
1 =  1
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Now dn+l(3) =  O ^ p ^ f2) and E2(dn+l(3) | D̂ h) — O;so theorem 2.2 shows that

O(o>)(*,/2). (4.3.18)

The l /2 rA-order Taylor expansion for equation (4.3.10) is given by

d

^o(l)
%
0 ’ 

_ _

: - ( /  +
A 0

d

A +  V r s ( o"
5 ,+lu)_ V - A )  A L

i=i
\ - D ,  B,_ /l-rl J

Clearly,
Vn ~ T i j i  1) V n  =  0 ,1 .......... N ,  (4.3.19)

and by theorem 2.3
T * „ a )  ~ T * t -  0 (CO)(A1/2). (4.3.20)

We combine (4.3.13), (4.3.18), (4.3.19) and (4.3.20) and apply the moment form of the Borel- 
Cantelli lemma to show that

N{q*N ~ q N) -> T y T (a.s.).

This, together with part (i) of the present theorem and lemma 4.1, proves (b).

Part (b) of the present theorem and lemma 4.1 show that if condition (e2) is true then the 1J-  
order asymptotic efficiency of the approximation scheme given in (4.3.9) is equivalent to condition 
(el). To prove (a) it therefore remains to be shown that if (e2) is not true then the approximation 
scheme given by (4.3.9) is not 1 border asymptotically efficient.

Suppose (e2) is not true, is an approximation to N(q*N — qN); in the following we show that 
P P N 0) #  1 ; we do this by first bounding the moments of %N below by the moments of — 
ilN. We solve (4.3.16) to obtain

N

% =  ^  A 4- ^ B,A < > ) .  . . ( ! + A h +  Y i * i4 ,' i ,K (D ;
/I=l 1 =  1 1 =  1

similarly, we solve (4.3.14) and (4.3.16) and subtract to obtain

N d d

- %=Yj1+a h+Z baŵ - ■ • +a h+Yi s'â"+iK(2)-
/I=l 1 = 1 1 = 1

Now, dn{2) is uncorrelated with AfVm and dm( 1) for all m,n < N , which means that rjN and %N — 
tjn are uncorrelated.So

A  ĤJV II II
(4.3.21)
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Also, again using the orthogonality of dn{2) and

d

E2U„+ l - n „ + l \\2 =  Ev \( l + A h  +  V +  £,!W„+I(2)||2

/-I
>  (1 -  K h)E, || ij„ -  „„ ||:2 +  E2II dn+, (2) [| ■2, 

where AT is a positive constant depending on the matrices A ,3 ^ .  . . ,Bd. Now

d d

E M ^ m 1 =  r 2(6 V  £ 2| |F A ( 1)||2 +  2 y  £ 2I|F,v ?„(1)I|2

i- 1  i j - l
i * j

d

+  Y j E^ F‘̂ m 2y
ijyk** 1 

i*jj*k,k*i

(4.3.22)

(4.3.23)

From (4.3.21), (4.3.22) and (4.3.23) we have the. following:

N

£ 2 llfArll2 ^  V ( l - A : A ) " ' " £ 2ll</„(2) i r

rt- 1
T d d

-  r 2 f e x p ( r - i ) ( 6 y  £ 2||F,.9s||2 +  2 y  E2\\FtJq f
0 ;=*1 ij=  1

d

+  Y j E^ F< J . ^ 2)dS-
i j , k  — l 

i^AjĴ k'k i

Since the sample paths of q are continuous, except perhaps for a set of probability 0, condition (e2) 
is equivalent to the following: for each i j t k =  1 , .  . . ,d

(P2 X \)(F,q =  FtJq =  F ,^ q  =  0) =  T,

where X is Lebesgue measure on [0,T]. So, if (e2) is not true

liininfE2| l ^ | | 2 > 0 .  (4.3.24)

Theorem 2.2 shows that (£n) is of uniform I (co)-order 1; so that, in particular,

SUp 1| ̂  || 2 < CO.

So, by the Vailee-Poussin theorem, (£„) is uniformly integrable. It is a property of uniformly integrable
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sequences of random variables that their almost-sure convergence to some limit implies the conver
gence of their first moment to that of the limit (see the corollary to theorem 1.3 in [LSI]). Since 
the first moment of || %N ||2 does not converge to zero this implies that

^ ( I M  - o ) *  i .

It follows by (4.3.13) and the moment form of the Borel-Cantelli lemma that

P2(N(q'N - q N) 0) *  1 ;

S°  P2(N(E2(.qT \PN)-~qN) - + 0 ) * l .

This, together with lemma 4.1, shows that the approximation given by (4.3.9) is not l J,-order 
asymptotically efficient. |

The conclusion of part (ii) of theorem 4.1 looks at first-sight stronger than necessary; it seems 
reasonable to prove only that the scheme given in (4.3.9) does not generally yield l J-order asymptoti
cally efficient approximate solutions, i.e. that there exist simple, specific counter-examples for which 
the scheme does not yield a 1J-order asymptotically efficient sequence of approximations. It seems 
however that the only counter-examples that simplify the analysis are those in which the matrices 
A , Bv . . . ,Bd all commute, e.g. a scalar equation or one with A =  0 etc. These, however, are 
degenerate cases where the maximum order of convergence is infinite and l5r-order asymptotic 
efficiency is no longer an optimal property. It is not worthwhile to show that a method does not pos
sess a certain property in a case where that property is not very important.

Part (ii)(b) of theorem 4.1 shows that if the “AW 3” terms in the approximation scheme are 
“correct”, i.e. if they are the terms prescribed in the paradigm, then the normalised difference bet
ween the conditional mean E2{qT I 'Pn )~ and the approximate value qN converges almost surely to 
T ^ t . This means that the PN-conditional distribution and moments of the normalised error N( qT — 
qN) converge almost surely to the optimal distribution and moments given in theorem 3.1 but with 
the non-zero mean r ^ T, i.e.

P2{N(qT - q N) s  ■ \pN) ~  N ( T * t ,Dt ) (a.s.) (4.3.25)

and all the conditional moments converge almost surely; a similar result applies for the correspond
ing Bayes estimates.

The distribution on the right-hand side of (4.3.25) is of course that of the random variable 
TeT :=  T ( * t +  dT) where dT is given in (3.5.3). Clearly eT is given by

%
eo

d 9r

%
0

A 0
-4 ) A d W f

0 0

(A Bt -  BtA ) 0 er
d V )(0 (4.3.26)
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O n c e  a g a i n ,  b e c a u s e  t h e r e  e x i s t s  a  v e r s i o n  o f  t h e  f u n d a m e n t a l  s o l u t i o n  o f  ( 3 . 2 . 1 )  w h i c h  i s  i n v e r t i b l e ,  

< h ( j , / ) ,  eT h a s  a n  e x p l i c i t  r e p r e s e n t a t i o n .  I n  f a c t

d T

■Hr. T )D „'m s)q l>cJs +  V  j  T)Dl‘HO,s)q0d w f
1 - 1  0

d T

+  - 4 =  Y  | $(*, T)(A B, -  B,A m O ,s)q<>d V{‘\
yj 12 J V /—! 0

( 4 . 3 . 2 7 )

If one or more of the “AH'3” terms in an approximation scheme are “incorrect”, i.e. if condition 
(e2) of theorem 4.1 part (ii) does not hold, then I suspect that neither the /^-conditional distribu
tion of the normalised error nor its moments converge.

4.4 A comparison of some approximation schemes.

In this section various approximation schemes for solving equation (3.2.1) are compared, with par
ticular emphasis given to their asymptotic properties. It is natural to begin by analysing the fun
damental one-step schemes defined in (4.3.4). For k =  1 , 2 and 3 these are the Euler scheme 
(Maruyama [MAI]), the Mil’shtein scheme (Mil’shtein [M il]) and the paradigm (Definition 4.2). 
These have the minimum terms required for almost-sure convergence, 1 "-order convergence and Ist- 
order asymptotic efficiency respectively. We would like to know which of them involves the least 
amount of computation to achieve a given degree of accuracy. In such comparisons we must take 
into account the fact that the simpler methods, which require fewer calculations at each step, need 
a finer partition to achieve a given degree of accuracy than more complex methods.

For high accuracy the first-order schemes are better than the Euler scheme since, roughly 
speaking, doubling the accuracy-requirement doubles the number of steps needed in the first-order 
schemes but quadruples the number needed in the Euler scheme.

It seems worthwhile to compare the accuracy of the 1 ■"-order schemes for large N . The error 
in the paradigm is predominantly caused by the absenos of the d non-/^-measurable 3/2'A- order 
terms (A B j - B ^ ) W^dt ;  the error in the Mil’shtein scheme is predominantly caused by the 
absence of all the 3/2^-order terms: 1 +  d +  d 3 of them. Since these terms are uncorrelated we 
might expect that, if N  is large the root-mean-square error in the Mil’shtein scheme is roughly (AT X 
(1 +  d +  d l) / d y i 2 times as big as the root-mean-square error in the paradigm for a given step 
size, where K  is some constant depending on the matrices A , B X, . . . ,Bd: if the matrices “nearly 
commute” then K  is large. Since both schemes converge linearly we would require roughly (K X 
(1 +  d +  d z) / d y t 2 times as many steps in the Mil’shtein scheme as in the paradigm for a given de
gree of accuracy.

For the purposes of solving the filtering problem we would like to minimise the number of “on-



86

line” calculations, that is calcuations that must be made when the filter is operating. The numberK
of “off-line” calculations, those that can be made at the time the filter is designed, is not so impor
tant. I have estimated the number of “on-line” scalar multiplications required at each step by the 
three schemes for the two cases where A is a “full” matrix and where A is “sparse”. In both cases 
I have assumed that the B matrices are diagonal, as is the case in the filtering problem: this greatly 
simplifies the Mil’shtein and paradigm schemes.

I have based my estimates of the number of calculations required at each step on the follow
ing calculation sequences, which seem optimal if one assumes that m (the dimension of q) is much 
larger than d  (the dimension of W).  If the Markov chain that we are trying to estimate is an ap
proximation to a diffusion then it is likely that A will be sparse and that m »  d.
Euler scheme 

Off-line calculations:
E0 := I  +  Ah.

On-line calculations at each step:

Mil’shtein scheme

Off-line calculations:

d

!' = 1
qn+x{ E ) : = { E Q +  Kx)qn{E).

M0: = /  + ( ^ 4

/ =  1 ,2 .......... d.
V 2

On-line calculations at each step:

d

^ ■ = Y j M A W ^ "
/=■!

?„+ ia O  (M„ +  K ^ 2 I  +  K J X W ) .

Paradigm

Off-line calculations:

(4.4.1)

(4.4.2)

P0 : = /  + ( A - ± Y J B ')h +  \ A2h2’
/ = 1

d

7 =  1
j* i

P. :=  ——B. 
1 61/3 1

*d ,



87

On-line calculations at each step:

K* : =

d

1
i - i

P,AfV(0

K,

d

l
/ - i

p \a w (/)
n + 1>

(Pa +  K2 +  K ^ T  +  K ,( A - l  +  AT,)))?„(P). (4.4.3)

The following table lists the number of on-line scalar multiplications required at each step for 
the three schemes.

Table 4.1.

Number of scalar multiplications in one step.

Scheme A -fu ll A -tridiagonal
Euler m(m -f- d) m(d 4- 3)

Mil’shtein m(m 4- d  +  1 ) m(d 4- 4)
Paradigm m(m +  (m +  1)^ +  2) m(2d 4- 5)

Bv i?2, . . . ,Bd are assumed to be diagonal.

If m is large there seems little point in using the Euler scheme since the Mil’shtein scheme is 
similar in complexity but converges with twice the order. The paradigm is roughly d 4- 1 times as 
complicated in one step as the Mil’shtein scheme if A is a full matrix, but the Mil’shtein scheme re
quires about (A" X (1 +  d + d 2) / d ) 1/2 times as many steps for the same accuracy, where K  depends 
on A ,BV . . . ,Bd. Whether d  is large or small these two schemes seem to be roughly equivalent in 
overall complexity.

If the matrix A is “sparse” the paradigm is only twice as complicated as the Mil’shtein scheme 
in one step. It is likely in a lot of cases that the Mil’shtein scheme will require more than twice the 
number of steps to achieve the same accuracy, particularly if d  is large.

I have not had time to carry out any computer simulations of these schemes but A. Estandia 
has kindly given me a plot from some simulation work he has been doing, which gives a flavour of 
their performance. This particular example concerns the approximate solution of the following equa
tion:

where

'0.25'
0.25 
0.25 
0.25_

d(it =  A q td t  +  BqtdW t,

~—2 1 0 1 " ~1 0 0 0~
1 - 2 1 0

, B : =
0 p 0 0

0 1 - 2 1 0 0 - 1 0
1 0 1 - 2 0 0 0 0

(4.4.4)

A : =
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(4.4.4) is the equation for the un-normalised conditional distribution of a four-state Markov 
chain (.Xt , t s  [0, T]) with generator A . The initial distribution q0 is the steady-state solution of the 
Kolmogorov forward equation; so we are assuming that X0 is unknown.

£ {^i > 2̂ ’ ’ ^4} ’

f ( ^  =  j ,)  =  | K i  =  W 3 ,4 ;

t

W, =  - '{* ,-„ ,})< "  +  ft. (4.4.5)
0

Diagram 4.1 shows the mean-square error in the approximate values of qx 024 obtained by the 
Euler, Mil’shtein and paradigm schemes for 1,2,4, . . . ,2‘, . . . , 1024 partition points. This is cal
culated by averaging the squared error over 100 sample paths of simulated Wiener process W, using 
the approximate value obtained by the paradigm with N  =  1024 as the reference. More simulations 
and the justification of such simulations are needed before conclusions can be drawn, but diagram 
4.1 has the form that we would expect from the theory. The rate of convergence of the mean-square 
errors, 1 /N  in the Euler case and l / N 2 in the Mil’shtein and paradigm cases, can be clearly seen, 
as can the “asymptotic bias” of the non-1 ̂ -order-asymptotically-efficient Mil’shtein scheme.

Other schemes One problem with Taylor-expansion-type approximation schemes such as those dis
cussed above, when applied to general nonlinear s.d.e.s, is that they require the evaluation of deriva
tives of the drift and diffusion coefficients. For instance, consider the following scalar nonlinear s.d.e:

d x t =  a(xt)d t +  b(xt)d Wt. (4.4.6)

The Mil’shtein approximation is given by

* » + i :=  *n +  (<*(•*„) -  \ f y \ ) b(xn))h +  (4.4.7)

so it is necessary to evaluate the derivative The higher-order Taylor schemes defined by Wagner 
and Platen in [WP1 ] require the evaluation of higher-order derivatives. This problem is overcome in 
ordinary differential equation theory by using methods of the Runge-Kutta type, which match terms 
in Taylor expansions without the need to evaluate derivatives. Rumelin in [RU1] considers methods 
of this type applied to stochastic differential equations. He begins by giving a general explicit Runge- 
Kutta scheme and then shows that the maximum rate of convergence that can be achieved in one 
step is h3 in the sense that

E \Xh — X x\ < Kh  for some positive constant K .

sup F|A^(ZnA- i : n) |2 < o o .
n < N

' N

This corresponds to the fact that the maximum order of convergence over an interval is 0 2(h),  i.e.
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RUmelin also shows that this maximum order can only be achieved if the coefficients used in 
the Runge-Kutta scheme are those obtained from the Stratonovich form of the original differential 

equation.
It seems to me that the best way of choosing a Runge-Kutta scheme is by matching the terms 

in the Taylor expansions appropriate to stochastic differential equations (formulated by Wagner and 
Platen in [WP1] and discussed in chapter 2). For instance a minimal Runge-Kutta scheme for al
most sure convergence is the Euler scheme, a minimal Runge-Kutta scheme for 1 "-order conver
gence (the maximum order) is the following, which matches terms in the Mil’shtein scheme. I have 
given this scheme as applied to equation (4.4.6).

^ ■ = K  +  \ b ( K ) ^ n+l,

x„+, * „  +  c(xn)h +  b(x{̂ )AW „+ ,, (4.4.8)

where c is the following Stratonovich drift-coefficient:

c(x) : =  a(x) -  \^ -{x )b (x ). 
2 a x

(4.4.9)

Specific Runge-Kutta schemes designed for use with ordinary differential equations match 
the terms in Taylor expansions appropriate to ordinary differential equations rather than those ap
propriate to stochastic differential equations. For instance the following scheme, which matches the 
terms needed for 2nd-  order convergence in o.d.e.s:

4 °  : =  +  C(* n )h  +  b ( X f ) ^ W n + 1*

* „ + , * „  +  ^W*„) +  « (4 1>))* +  (4.4.10)

This scheme is sometimes referred to as the Heun scheme (as are others, see Gear [GE1]) it has the 
following equivalent Taylor expansion:

* » + 1 =  * . +  «(*»)* +  +  — a „ )c ( i„)/!2

+  +  £(A „W i„))A A  IVn+l

+  +  0 2(h2) (4.4.11)

if one assumes various differentiability conditions on b and c. (4.4.11) shows that the scheme given in 
(4.4.10) achieves the maximum order of convergence as does the simpler scheme (4.4.8) but despite 
its extra complexity does not match the order-h3/2 terms needed for 1'"-order asymptotic efficiency.

It seems, therefore, that the usual Runge-Kutta schemes designed for ordinary differential equa
tions are not ideal for use with stochastic differential equations. What one needs is a family of Runge- 
Kutta schemes designed specially for s.d.e.s such as (4.4.8), but I have not investigated this further.

To solve the Markov-chain filtering problem we wish to solve the bilinear s.d.e. (3.2.1), and the 
evaluation of the derivatives of the drift and diffusion coefficients needed for the Taylor-expansion 
methods is easy (the first derivatives are constant matrices, the second and higher-order derivatives 
are zero). So there seems little point in using Runge-Kutta methods in the present case.

It is worth mentioning the well-known Wong-Zakai scheme [WZ1] for approximating the solu
tions of s.d.e.s by the solutions of ordinary differential equations. For equation (3.2.1) this takes the
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form

% • %'
d d

k,(N) =  (A - t Y B ' : ) q l( N ) + Y B lql(N)W,  l e [ 0 , r ] .  (4.4.12)
I -  I / -  1

Here Wt :=  E2(qT | PN);SO
* A W

Wt =  — - 1 if t e [nhy{n +  l)/i].

It is distinct from the other schemes discussed in this section because it is not a finite-difference 
method. Clark in [CL2] has recently shown that this scheme is not (1J-order asymptotically) efficient 
but a similar scheme with a compensation term is; for equation (3.2.1) this is given by

% :=  %
d d

=  +  +  I s  [O.T], (4.4.13)
1 - 1  J-l

where [B, A ] is the Lie-bracket operation—

[B,A]  :=  A B  - B A .



Chapter 5

Further Considerations

5.1 Properties on a finite partition.

In chapters 3 and 4 we were considering asymptotic properties of approximation schemes for the 
Markov-chain filtering problem. These properties allow us to make such statements as, “method A 
is more accurate than method B if the number of partition points is sufficiently large; we have not 
quantified “sufficiently large”. For a practical filter design we must also consider the properties of 
methods on specific finite partitions; it may be that one scheme is asymptotically more accurate than 
another but that for any number of partition points that can be considered as practical in a given 
example, the second scheme is the more accurate.

The numerical analyst considers finite-partition properties of schemes such as their region o f  
absolute stability; that is the area in the complex plane in which the product of the step-size h and 
an eigenvalue of a simple test differential equation may be, such that the effect of the error incurred 
in one step propagates to subsequent steps in a stable (decreasing) fashion (see [GE1]).

As is the case with square-root versions of the Kalman filter ([BI2]) it may be that there are 

algorithms for solving the Markov-chain filtering problem which are algebraically equivalent to the 
scheme discussed in chapter 4 but which have better numerical properties. This requires further 
investigation.

5.2 Computation.

I mentioned in chapter 4 that the filtering problem is rather a special case of solving general stochas
tic differential equations in that we are interested in minimising the amount of “on-line” computa
tion needed to achieve a given accuracy. Minimising calculations that can be performed “off-line”, 
i.e. at the time the filter is designed, is not as important. For example it is perfectly acceptable when 
solving equation ( 1 .2 .6) to use, say, the term exp(^4/z) in expressions, as it can be calculated “off
line”.

Also, when designing specific filters we can take into account the special nature of equation 
(1.2.6) to minimise the “on-line” calculations. In particular we can exploit the fact that the B 
matrices are diagonal and the ^-matrix is sparse (possibly tri-diagonal). If A is tri-diagonal (1.2.6) 
becomes a large system of slightly-coupled equations.

92
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So far we have been considering approximation schemes that first solve the unnormalised 
bilinear equation ( 1 .2.6) and apply the normalisation at the final time T : with this technique we do 
not know in advance whether q will become large or small with time;so it would probably be neces
sary to use some form of floating point arithmetic in our calculations. This can be avoided by nor

malising at each step to find an approximate value of p, the solution of (1.2.4), which we know must 
have components that sum to unity. This approximate value can then be used as the “starting-value” 
for the next step. For instance, instead of using the paradigm to solve (1.2.6) and then normalising 
at the final time we could use the following scheme, which is the paradigm with normalisation at 
each step:

Po • Po*
a a

*„+. :=  ( '  +  A h +  Y j B‘AW »+' +  B ‘(A,VW 2 — h)n+1 n >

l - 1 i - l

+ l  J  2A2 +

a

\Y}aBi+b‘A) h^W%,

t * J
/ - l

d a

+  i  £ -  3hAW%.,) +1~YJ h)*W </)/I+l
/-I i j - 1  /

d

ij,k — 1

m

K+\  ^n+l*
/ -I
m

f(XT):=
1 - 1

(5.2.1)

(5.2.2)

This scheme is analytically identical to the paradigm with normalisation at the final time, i.e.

P n  = (5.2.3)

it is a scheme for solving the nonlinear s.d.e. (1.2.4),and because of the results on limit-distributions 
in chapters 3 and 4 and (5.2.3) it has errors that converge in distribution in the following manner:

Px{N,(Pt - P n U  ■ \PN) ~  N{0,d "t )( -)  (a.s.), (5.2.4).

where N(0,D T)( ■) is the multivariate normal distribution with zero mean,and covariance matrix
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D "t , given by

D T

m d T

~ { S ' q f ) - \ i - \ p T PT- ■ ■ J

/=1 i - 1  0

PqPq^ ^ i )̂ (-ABi B;A) ${s, T) d s(I [Pj Pt • • • Prl) • (5.2.5)

The PN(-conditional moments also converge almost surely.

The computation needed in the scheme given in (5.2.1) can be reduced if instead of evaluating

(J"Li we approximate this term by 2 —X"*=1 The idea here is that for large Nj X”L t ^ ,+  {
will be close to 1 and so the second and higher-order terms in the following expansion are small:

(* + ( ^ / l + i - 1 ))
/-I i = i

(5.2.6)

5.3 Irregular partitions.

The methods we looked at in chapter 4 are all based on regular samples of the observations 
process; i.e. filters that use these methods sample their inputs and make calculations for a new 
output at regular time-intervals. There are of course other techniques that seem worth investigat
ing: for instance, methods in which calculations are made when the change in the observations- 
process since the last sample-point first reaches a certain size. For equation (1.2.6) the sample-points 
t0, t{ , t2, .  . . might be given by the following:

V
:=  inf{t >  ^  : ||yr- y ,J | >  e} k =  0 , 1 , ------  (5.3.1)

Convergence in this case would of course be in terms of €. This technique would presumably increase 

the accuracy in the estimate of the stochastic integral in (1.2.6) relative to the deterministic integral 
as more frequent calculations would be made during large changes in the observations-process and 
vice-versa.

Similarly one might use a compromise with sample-times based on the change in some norm of 
the observations-process and time:

'o :==
tk + l : = ' m f { t >  tk : \\(yt - y tk, t - t k)[\ >  e] k =  0 , 1 , . . . .  (5.3.2)

One practical disadvantage of these techniques is that the amount of calculation at each step would 
be restricted to that which could be performed within the minimum time between two sample points; 
the latter would therefore have to be fixed at some positive value. -
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These then are a few of the areas in which further research would seem worthwhile. The “finite- 
partition” and computation questions are particularly important as they concern aspects of great 
significance to the design of practical filters.
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