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A B S T R A C T

Optical fibres normally have isotropic non-crystalline core and 
cladding materials. The thesis describes a study of the theory, 
practicability, and possible applications of fibres with crystalline, 
non-centrosymmetric core and glass cladding. The wave propagation in 
such a dielectric waveguide has been studied and dispersion 
characteristics determined for a uniaxial crystal cored fibre with 
its crystal c-axis along the fibre axis. In addition the possibility 
of second harmonic generation (SHG) in these fibres is considered. 
It is shown, using coupled mode analysis that these guides can be 
designed such that a wave at the fundamental frequency in the HE11mode can be phase matched with a SH guided mode. Alternatively, lower 
efficiencies of generation are shown to be easy to implement when the
fundamental wave is the guided HE.^ mode and the SH wave is in the 
radiation field.

The fabrication of these crystal, cored fibres is described in some 
detail. The basic technique used is to draw down capillaries of an 
appropriate glass having bore diameters <10vim, followed by growth of 
an orientated organic single crystal in the hollow region. The growth 
mechanism was crystallization from the melt by a modified vertical 
Bridgeman technique. The criteria used to select suitable organic 
crystal materials for SHG are discussed. It was found that acetamide 
and benzil were potentially suitable materials. Benzil was finally 
preferred and studied in more depth, largely because of the 
hygroscopic nature of acetamide. The above method of crystal growth 
was successfully used to fabricate single mode, void free benzil 
crystal cored fibres of lengths upto 5 0mm.

The experimental SHG has been demonstrated with a 1.06ym. fundamental 
wavelength in benzil cored fibres where the SH wave is in the 
radiation field. Possible implications of this work for guided wave 
non-linear interactions are considered.
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INTRODUCTION

The enormous bandwidth potential in the use of optical fibres, as the 
transmission media, for communication systems was recoganised soon 
after Kao and Hockam(l966) demonstrated transmission of optical 
signals in glass fibres. The research effort over the last fifteen 
years has cumilated in the installation of fully engineered graded 
index fibre systems in several European countries, Japan and USA. At 
the present time single mode fibre systems, which offer even greater 
bandwidths, are being installed. These systems are however not fully 
'optic1 as the information processing and amplification at the 
repeater stage is carried out electronically. The endevour to make 
active optical devices has resulted in the development of integrated 
optic devices for modulation, switching and other information 
processing functions. These devices are of planar geometry and in 
general make use of the electro-optic and acusto-optic effects. For 
parametric amplification it is necessary to use the material's second 
order susceptiblity. A number of researchers have been investigating 
three wave mixing in planar waveguides but the efficiency of these 
interactions has been low due to difficulties in phase matching and 
low value of the material's second order susceptibilty. In recent 
years a number of organic materials with very large second order 
susceptibilty have been realised by molecular engineering. These 
materials also tend to exhibit resistance to damage at high optical 
intensities. The prospect of realisation of efficient non-linear 
optical devices using these materials seems to be very promising. In 
this work a study of fabrication of crystal cored fibres using 
organic materials was carried out with the intention of leaking 
waveguiding structures for non-linear optical interactions. The 
waveguide fabrication method used is particularly useful as some of 
these materials lack mechanical strength and are susceptiable to 
chemical attack because the molecular sites are bound only by 
relatively weak Van der Waals forces. Also, the cyUnderical geometry 
of these fibres will make their coupling to the silica fibres, used 
for communication, relatively easy.



CHAPTER 1

SECOND HARMONIC GENERATION

1.0 Introduction:

The first non-linear optics experiment was carried out by Franken et 
al(l96l) using the then newly invented Ruhy laser to demonstrate 
optical second harmonic generation. In the last two decades the 
subject has developed extensively, both theoretically and 
experimentally, and it is now possible to generate second and third 
harmonic frequencies of intense laser beams with efficiencies 
approaching 50%. Non-linear optical techniques are now widely used to 
produce coherent light over a wide range of frequencies from the 
ultra-violet to far infra-red. Non-linear optics is a generic term 
for a number of diverse optical phenomena which arise with high 
optical intensities. In this chapter a review of second harmonic 
generation and methods of phase matching the interacting waves is 
presented.

1.1 Non-linear Phenomena:

When a dielectric medium is subjected to electromagnetic radiation it 
tends to become polarized due to distortion of its internal charge 
distribution under the influence of electric field, _E, associated 
with the radiation. The resultant electric dipole moment per unit 
volume is defined as electric polarization, P_. For weak fields the 
induced polarization is linear and proportional to the applied field 
and is given by

p = pl = "(1) e X, -E o L — (l.l.l)

where
is the permittivity of the -free space.

"(1) is the linear susceptibility tensor of second rank. 
XL

Dielectric constant of the medium is defined in terms of linear



susceptibility tensor as

£ = £o(1
"(l). 
XL >

and, hence 

D = £E

(1.1.2)

(1.1.3)

However, with intense fields the polarization is no longer linear and 
can be represented as a power series of the inducing field

P = P + P L -NL ; ( 2 ) -e  e% L -  -
'(3)
CNL E E E + --- ) (1.1.1+)

where, the first term on R.H.S. is the previously defined linear
polarization while the subsequent terms are due to the non-linear
polarization. Non-linear susceptibilities > *NL 1 ’’ **’ are
tensors of the second, third and higher ranks. A number of diverse
optical phenomena are due to the first three terms in the above
expansion, i.e.
" (1)X is responsible for the linear optical properties, such as
L

reflection and refraction.
~(2)Xni, gi-ves rise to second harmonic generation(SHG), parametric
amplification, sum and difference frequency generation, d.c. 
rectification and linear electro-optic effect.
y(3) gives rise to third harmonic generation, four wave mixing *NLprocesses, quadratic electro-optic effect, two photon absorption, and 
stimulated Raman, Brillouin and Rayleigh scattering.

The second order non-linear polarization is of particular interest as 
it affords the possibility of second harmonic generation and 
parametric amplification with modest powers in optical waveguides. 
The second order non-linear susceptibility tensor is non-zero in only 
non-centrosymmteric materials. In centrosymmetric materials 
polarization reverses the sign for reversal of the electric field and 
as a consequence the terms containing even powers of the field in the 
polarization expansion become zero. The polarization in both 
centrosymmetric and non-centrosymmetric materials as a function of 
applied field is shown in figure 1.1. The non-linearities in both the
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Figure 1.1: Response of crystalline material to incident optical field



cases have been exaggerated.
In the subsequent analysis the third and higher order terms in the 
polarization expansion have been neglected and the non-linear 
polarization -will be considered as

-NL
_ e ~(2)
- V nl E E (1.1.5)

The tensor properties of X ^  are better appericiated by writing its 
full form rather than the condensed notation used above

P. (t) 
1

E . (t)E (t) -j -k (1.1.6)

Where, instantaneous electric field and polarization can be written 
in terms of their Fourier components as

E_(_r,t) = 1/2 [E(_r,u)e^~*“  ^  + c.c.] (1.1.7)

_P(_r,t) = 1/2 [_P(r_, oj)ê  + c.c.] (1.1.8)

"(2)Susceptibility tensor (~
Fourier amplitude relation as

j , !d9, to )is then defined in terms of
j 2 1

P. (r ) —l 3
ijk

"(2)
Xijk W V E.(r ,0)o)E. (r ,ai-)-j 2 -k ’ 1

j(ki + k2 - k3).£
(1.1.9)

where, oj = uj + <d
3 1 2

(2)For SHG, to = uj , and the susceptibility tensor becomes y-t/ (- 2u),o),oj 1 2  ljk

In literature experimentalists adopt a different notation for SHG 
tensor, namely d. (-2to,w, oj). The two are same expect for a factor 
of ' 2' and their relationship is (Kaminow 197*0

X^2? (“ 2to,uj,a>) = 2d. .. (- 2aj,u),a)) ljk ijk * (1.1.10 )

Non-linear polarization for SHG can then be expressed using SH 
tensor, d, as



T) i \ , s r \ r \ j ( 2k - ^ ) . £Z.(u) ) = € 2 d (-oa , m,o)) :E . (to) .E (cij)e ^i 3 o. ljk 3 —J —k
Ljk

where, to = 2to

Or, in condensed notation as

1 ?

(1.1.11)

£.(2 to) = e d. :E (to).E (u) (1.1.12)i 0 ijk -j -k

SH tensor d has in general twenty-seven independent elements, ijk
However, as no physical significance can be attached in interchanging
E and E , it follows that d = d., , anh hhe number of 7j ~k ijk ikjindependent tensor elements reduce to eighteen. A contracted notation
dlm is used for dijk ie

(jk) = (11) (22) (33) (23) (13) (12)
m = 1 2 3 It 5 6

Using this contracted notation for the indices, equation (1.1.12) 
becomes

P d „ d d d
— x 11 12 13 14 15 16
P = £ d„, d„ „ d _ d d d-y O 21 22 23 24 25 26
p d„„ d d d d— z 31 32 33 34 35 36

E2—x
E2
- y

E2 —z

2E E -y-z
2E E —z— x

2E E —x—y

(1.1.13)

A further reduction in the number of independent elements is possible 
due to Klienman's conjecture (Klienman 19^2). That is in a lossless
medium the permutation of frequencies is irrelevant and d. i-sk
symmetric under any permutation of its indices. As a result the 
number of independent tensor elements reduce frcm eighteen to ten. 
The equation (1.1.13) therefore can be rewritten as



p d , , d , „ d „ d , d d
—x 11 12 13 14 15 16

p = £ d , „ d „ d , d d
- y O 16 22 23 24 14 12
p d,  „ d „ , d _ d d „ d
—z 15 24 33 23 13 14

E2—x

- y

E2—z

2E E -y-z
2E E —z—x

2E E —x-y

(1.1.Ik)
In practice most of the materials possess only a few non-zero tensor 
elements and the optical SH tensor forms for all the crystal classes 
are listed in standard texts on non-linear optics (Singh 1971, Yariv 
1975).

An estimate of magnitude of one dimensional non-linear SH coefficient 
is possible from the analysis of an anharmonic oscillator. This model 
representation of a crystal is similar to the Drude-Lorentz model for 
the valence electrons. It was first used by Bloembergen (1 9 6 5) and 
has since also been used other researchers (Lax 19^2, Garrett et al 
1966, Kurtz et al 1 9 6 7, Robinson 19^7, Garrett 1 9 6 8) to obtain an 
order of magnitude of the effect in various crystals. 
The equation of motion for an anharmonic oscillator is given by

2 2 x + yx + 00 x + vx o
E(w,t)

(1.1.15)

where
x(t) is the deviation of the electron from its equilbrium position.
7  is the damping constant.
a) is the linear resonance frequency, 
o
v is the anharmonic force constant.
e and m are the electronic charge and the mass respectively.
E(ai,t) is the electric field of the light wave varying with the 
frequency, <u.

The induced polarization due to this field is given by



(1 .1 .16 )p = Nex(t) = e xTE(ujt) O L

where
N, is the number of electrons per unit volume.

Solving equation (1.1.15) and using (l.l.l6) it can be shown that 
linear susceptibilities, and X ^ ^ *  011 anĉ  respectively areJ-i L
given
(u>) Ne2 1

*L : me
0 D(o))

(2co) Ne2 1
XL me D(2u>)

0

where
2 2D(to) =: 0)0 a) + iyti)

D(2a)) 2= CO • -
0

2
4(0 + 2iy(i)

It can be further shown
>7

Ne^v 1d - m2E0 2D(2a>) D (cd)

This can be expressed in
(2w)

XL as
1mv e

0 (u)2 (2u)d = -2 1 | 3 xL xL
N le l

Garrett and Robinson (19<
| S 1 = d| 0 1

(00

1

3CM1CM

V l *L
Its three dimensional
defined as
£ dijk

(1.1.IT)

(1 .1 .1 8 )

(*)( and
L

(1 .1 .1 9 )

mve ___0

2 3 N e (1.1.20)

£o^ii ^kk
(1.1.21)

Miller (l96Ua) found that the above quantity was nearly constant for a



esularge number of materials. It is approximately equal to 3x10 
-2 2(7x10 m /C). There are no known materials having <5 above
6 620x10 esu and a very few have a value below 0.2x10 esu.

However, d can vary over four orders of magnitude. Hence an order of
magnitude estimate for  ̂ of various materials can be made from their
refractive index data ie

-6

d = e x 
o l

(to) (2co) £ (n o - 1)^6 ~  s n^6 (1.1.22)

towhere, it has been assumed that n = 
have an approximate constant value of

2 (on , and <S can be assumed to 
20.07 m /C.

1.2 Optical SHG In The Bulk Media :

In the previous section it was stated that for large optical fields
in non-centrosymmetric crystals, a non-linear polarization wave is
induced whose SH component gives rise to a SH light wave. The SH
power generated in the bulk crystal in this manner can be derived
using the coupled wave formalism and is given in various texts on the
subject (Yariv (1975), Zernike and Midwinter (1973)). The expression 

2wfor SH power, P , generated by a single mode gaussian beam of 
(0power, P , incident along a principal plane of a parallel slab of 

thickness, L, of a lossless crystal is given by (Singh (1971)),

,, ? n ,  } / 2  2 , 2
.2*> 2(uo ) (e0 >

u /_o k2 2a) d. (P ) Llm
2 2oj . uk 2 ttW n (n ) o

Sin(Ak-j)

Ak| (1.2.1)

where
£ and y are the free space permittivity and permeability
° o

respectively.
to is the fundamental frequency.
Wq is the spot radius of the fundamental beam.
d is the pertinent SH tensor coefficient, im 2 to toAk = k 2k , is the phase mismatch in the propagation
constants of the fundamental and SH waves, 
w 2con and n are the bulk refractive indices at the fundamental and 

SH frequencies respectively.



The maximum SH power is obtained for Ak=0 . This requirement 
corresponds to the phase matching of fundamental and SH light wave 
velocities. It can be seen from the above equation that the SH power 
goes through a series of maxima and minima for Ak^ 0 and is maximum 
when
1 AkL = (2n + 1) £ for’ n = 0,1,2,3,...
2 2

or, when the crystal length is given by

7T 3 tT

L ” Ak J Ak *

Maker et al (1 9 6 2) were first to observe this periodic variation of
the SH intensity by tilting a thin quartz crystal plate in the path
of a Ruby laser beam. Also, when Ak ^ 0 and AkL = (2n+l)iT , the
effective SH tensor coefficient is reduced by a factor of 2/(2n+l)iT.
A plot of SH amplitude normalized to initial amplitude of the
fundamental wave as a function of distance inside the crystal for
various degrees of phase mismatch is given in figure 1.2. The
crystal length which gives the first maxima is defined as the
'Coherence Length’, L and is given in terms of crystal indices asc

_ _rr_ _  tt _  _______ X_______
C Ak , 2u> 00 r 2o) a)-. (1.2.2)k -2k 41n - n J

The variation of SH power as a function of crystal length can be 
described in terms of a simple physical effect. The SH polarization 
wave travels in the bulk material with a phase velocity which is same

b) / Cl)as that of the inducing fundamental light wave ie v = c/n . 
However, as the most materials are positively dispersive the SH light 
wave travels with a velocity, v^W = c/n^, which is different
from that of the fundamental wave. Consequently the SH light wave 
generated at any instant will be slightly out of phase with the SH 
light wave generated an instant earlier. The two waves have a phase 
difference of it after a distance equal to the coherence length. In 
order to eliminate this phase mismatch various 'methods have been 
devised to phase match the fundamental and SH light waves and are 
described below.
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Figure 1.2: Normalized SH amplitude as a function of the distance 
inside the crystal for various degrees of phase mismatch.

Figure 1.3: Angle phase matching in a negative uniaxial crystal.



1.3 Phase-Matching Techniques:

There are seven crystal classes of which those belonging to one ie 
Cubic, are isotropic while the rest are anisotropic. The refractive 
index of anisotropic crystals is not only frequency dependent but is 
also dependent upon the state of polarisation of the light wave and 
its direction of propagation relative to the crystal c-axis. 
Anisotropic crystals can be either uniaxial or biaxial depending upon 
whether they possess two or three independent refractive indices. 
This crystal property is referred to as birefringence and is 
responsible for the double refraction phenomenon. Unpolarised light 
on entering a birefringent media is resolved into two orthogonal 
components. In an uniaxial crystal the refractive index of the 
component of light rays polarised normal to the c-axis is independent 
of the direction of propagation and thqy are referred to as ordinary 
rays. However, the refractive index of the component of light rays 
polarised parallel to c-axis varies with the direction of propagation 
relative to the c-axis. These rays because of their unusual behaviour 
are referred to as extraordinary rays. In general if 'a* is the angle 
between the direction of propagation and the optic or c-axis, the 
refractive index for the e-rays is given by

2 2-1/2 n (ot) = [(Cosa/n ) + (Sina/n ) ]e o e (1.3.1)

where
n and n are the refractive indicies along the two principal o ecrystal axes.

The difference in refractive indices along the two principal
directions of an uniaxial crystal gives its birefringence. Uniaxial
crystal can be -positive or negative depending on whether n ise
greater or less than n . In some crystals it is possible to exploit

o
their natural birefringence to phase match the fundamental and SH 
waves. The other methods which can also be used to obtain phase 
matched optical SHG are
1. Quasi-phase matching methods.
2. Phase matching using guidance properties of optical waveguides.



These methods are discussed below in greater detail

1.3.1 Birefringent Phase Matching:

The use of natural crystal birefringence to overcome material
dispersion for phase matched SHG was first realised independently by
Maker et al (1 9 6 2) and Giordmaine (1 9 6 2). The principle of this
method of phase matching can be illustrated by considering phase
matching in the case of potassium-di-hydrogen phosphate (KDP)
crystal. KDP is a negative uniaxial crystal belonging to b2m point
group. In figure 1.3 index surfaces of KDP are shown for frequencies
a) and 2w. It can be seen from the figure that if the direction of
propagation is at an angle 'â * to the crystal axis, n^ = 1̂ “.
Hence, if the fundamental beam is launched at an angle ' a ' to them
crystal c-axis as an ordinary wave, the phase matched SH beam will 
exit as an extraordinary wave along the same direction. The phase 
matching angle in this case is given by

Sin am
r (  . 2u3»“2-il(n ) - (n ) Jo_________o_____
r , 2ok -2 , 2ok -21L Cn ) - (n ) Je o (1 .3 .2 )

The phase matching is only possible if the dispersion is less than
1 2d) tilt 1 2 oj 2 Cl) Ithe crystal birefringence ie |n “ tl0l < *ne “ nQ 1 • This type of 

phase matching is termed as 'collinear' as the fundamental and the SH 
propagate along the same direction. This can further be of type 1 or 
type 2 depending upon the state of polarization of the fundamental 
optical beam. In type 1 phase matching the fundamental, waves have 
parallel polarization whereas in "type 2 phase matching they have 
orthogonal polarizations. These two phase matching conditions for a
negative uniaxial crystal can be written as

a) 2 cd . a) a)typel: nQ - ne (a ) ; o +0 — e

. f w  0 ).  2 CD.type2 : l/2 [n0+n (a )] = ne (ct )m m
cu u) o +e - 2 u)e (1.3.3)

and for a positive uniaxial crystal they are
to, 2 co to a)typel: nA(a ) = n ; e +e -m

2 o)o



(1 .3 .U)type2 : l/2 [n”(a )+n^ m
(0 0) e +o o

The phase matching angles for a given crystal and phase matching type 
can be evaluated using the appropriate condition, from above, and 
equation (1 .3 . 1  )•

The SHG efficiency with birefringent phase matching is usually small 
because of the double refraction effect. This effect results in the 
fundamental and the SH waves not overlapping over the entire crystal 
length and is referred to as 'Poynting Walk Off’. This is shown in 
figure 1 .1+ for type 1 phase matching in a negative uniaxial crystal. 
The angle, p, between the SH wavevector and the direction of power 
flow for type 1 phase matching in a negative uniaxial crystal is 
given by

case there is no walk off. The phase matching is then said to be non- 
critical and very efficient conversion can be obtained. The effect of 
’Poynting Walk Off' is more serious for type 2 phase matching as in 
this case when the two fundamental waves do not overlap, non-linear 
polarization is not generated and hence no SH light wave.

For some crystal materials which have phase matching angle close to
9 0 ° it is possible to achieve non-critical phase matching by varying
the crystal temperature to change its birefringence. A temperature
dependent change in birefringence occurs as extraordinary index is in
general much more temperature dependent than the ordinary index. The
phase match temperature, T a-j- which n ^  = n&5 canm*calculated using the following equation

\ 1.1 / ^
p ~ tan p = 2 2ok 2

(n ) L e

( a)'\2 (n )o
(1.3.5)

The ray and wave normal are parallel for a - 0° or 90* and in thism

T = T +
a) 2u) n - n

m o (1.3.6)
dT dT

where
To is the ambient temperature.



2 ’

Figure l,k: 'Walk-Off' effect for SHG with type 1 phase matching in a 
negative uniaxial crystal.

Figure 1.5: Non-collinear phase matching.



This method was first used by Miller et al (19^5) to obtain non-
critical phase matching in LiNbO^ crystal at fundamental
wavelengths of 1.058ym and 1.153ym. More recently this method was
used by Useugi et al (1 9 7 6 ) to compensate phase mismatch introduced
during the fabrication of stripe guide in LiNbO^ for SHG.

Also, for efficient SHG it is necessary to have an optimum degree of 
focussing of the fundamental beam in the crystal. If the beam’s 
cross-sectional area is large, the intensity of the fundamental beam 
may not be large enough to generate SH, whereas if it is too small 
the interaction length will be limited due to excessive divergence 
and result in low SHG efficiency.

In contrast with the ’Collinear Phase Matching* described above it is 
also possible to obtain ’Non-collinear Phase Matching’. This 
technique has been demonstrated by Giordmaine (1 9 6 2) and Maker et al 
(1 9 6 2). In this method two fundamental non-collinear beams are used 
to produce phase matched SH beam. However either of the two beams on 
their own cannot generate SH beam. The principle of this method is 
illustrated in figure 1.5 for the case of KDP crystal.

The theory of birefringence phase matching is now well understood and 
all the commercially avialable SH generators exploit this form of 
phase matching.

1.3.2 Quasi-Phase Matching Methods:

The birefringence phase matching method disscussed in the previous 
section is not applicable to materials having inadequate 
birefringence e.g. quartz, or those which are isotropic e.g. GaAs. In 
these materials it is possible to correct the phase mismatch and for 
this reason phase matching in such materials is referred to as quasi­
phase matching. Armstrong and co-workers (1 9 6 2) were first to propose 
a number of methods to achieve quasi-phase matching.

One of the method’s suggested was the use of periodic variation in 
the SH tensor co-efficient. This can be achieved by using a periodic 
structure of crystal plates having the same thickness but with the



crystal axis of the adjacent plates orientated in the opposite
direction. The maximum SH intensity is obtained when the thickness of
the crystal plates is equal to the 'Coherence Length'. In which case
at the end of the first crystal, plate there is maximum transfer of
energy from the polarization wave into the SH light wave but the two
lag in phase by 180*. By having the second plate orientated in the
opposite direction, the sign of the SH tensor coefficient reverses
for the electric field directed along the original direction. This
shifts the phase of the polarization wave by 1 8 0 ° and as a result at
the end of the second crystal plate also the SH power grows instead
of diminishing as in the case of the bulk crystal. The SH power in

2this case is reduced by a factor of (U/ir ) cf bulk phase matched 
case. This method of phase matching has been studied in detail by 
Yacoby et al (1973) and Szilagyi et al (1976). Franken et al (1963) 
demonstrated enhanced SHG by this method using quartz crystal plates. 
In their experiment the thickness of the crystal plates was not equal 
to an odd multiple of the coherence length and as a consequence they 
had to orientate the stack at 2k° to the direction of the laser beam 
to observe the build up of the SH power. The SH wave in there case 
was greatly attenuated due to the Fresnel reflection losses at each 
interface between the plates. Recently, Szilagyi et al (1976) and 
Thompson et al (1976) eliminated Fresnel reflection losses by 
propagating the fundamental wave at Brewster's angle with respect to 
a stack of GaAs plates to generate SH of 10.6ym radiation. Miller 
(l9 6Ub) has shown that this type of structure can occur in polydomain 
crystals. In an another experiment Dewey(l975) obtained enhanced SHG 
in single rotationally twinned ZnSe crystal. The non-linear 
properties of a crystal containing rotational twins are equivalent to 
that of a stack of crystal plates having periodic variation of SH 
tensor coefficient and thickness equal to the twin plane spacing.

Another method to correct the phase mismatch uses phase change on 
total-internal reflection. In a slab of a crystal both the 
fundamental and the SH waves can be made to undergo multiple 
reflections at the crystal-air interface. The angle of reflection can 
be so chosen that the phase mismatch accumulated in every pass 
between the two reflecting sides is just cancelled by the 
differential phase change between the fundamental and the SH wave.



Bloembergen et al (1970) have suggested the use of periodic variation
of the refractive index to achieve quasi-phase matching. In this
technique alternate thin layers of different non-linear materials are
epitaxially grown to form a periodic laminated structure. Such a
periodic structure exhibits frequency stop band in its linear
dispersion curve and the characteristic bending of the curve near the
stop band is used to obtain phase matching. The detailed behaviour of
this type of phase matching has been analysed by Tang and Bey (1973).
Van der Ziel (1 9 7 6a) has verified this form of phase matching by
frequency doubling of 2 ym radiation using 1 7 alternating pairs of
GaAs and Al Ga^ As.0.3 0.7

1.3.3 Phase Matching Using Guidance Properties Of Optical Waveguides:

The advent of integrated optics has highlighted advantages of using 
waveguiding structures for non-linear interactions and these have 
been exploited by a number of researchers for optical SHG and mixing. 
These advantages are:
1. Phase matching can be achieved using waveguide dispersion. 
Waveguide dispersion arises because the phase velocity of a light 
wave of a given wavelength in a waveguide is determined by the 
guiding region dimensions, refractive index difference between the 
guiding region and the substrate, and the mode of propagation. In 
practice this is achieved by suitably tailoring the guiding region 
dimensions and/or the refractive index difference. Thus it is 
possible to also use materials which are isotropic or have inadequate 
birefringence for angle phase matching.
2. The dimensions of the guiding region for optical wavelengths are 
of the order of micrometers and as a result it is possible to have 
large optical intensities, required for non-linear interactions, with 
modest optical powers. Also, as the optical energy is guided it is 
possible to have long interaction lengths. An approximate comparision 
of the efficiency of the SHG process in a bulk, medium and that in a 
waveguiding structure can be made by considering the product of the 
intensity of the input beam at frequency, to, and the interaction 
length.

This technique has been implemented by Boyd et al (1966).



For "bulk material:

I L = ( P / itw ) (ttw /x) - P/X (1.3.7)
0) 0 0

where, gaussian beam diffraction has been assumed and 
beam radius at the focus.

wo is the

Whereas, for a three dimensional guide:

I L = (P/X2)L = (P/X)(L/X) (1.3.8)
0}

where, it has been assumed that the guide dimensions are comparable 
to the wavelength of the fundamental wave.

The advantages described above of using waveguiding structures can 
cancel out if the field overlap integral of the interacting modes is 
small. This arises since the SHG efficiency is proportional to it ie

n a /E .E dA (1.3.9)SH J  “to “2 a)

where,
E_ is the electric field distribution of the fundamental mode.
CD

E is the electric field distribution of the SH mode.~~2 a)A is the waveguide cross-sectional area.

The overlap integral places constraints on mode types into which SH 
can be coupled and is maximum when both the fundamental and the SH 
propagate as the fundamental waveguide modes. In practice, phase 
matching is generally achieved for SH as a higher order mode due to 
waveguide dispersion characteristic and this leads to low conversion 
efficiencies.

Planar optical waveguides can be fabricated by a number of well 
established technologies eg sputtering, in- and out-diffusion, 
epitaxial growth, ion-exchange, etc. The phase matched SHG in planar 
optical waveguides has been demonstrated by a number of researchers 
using one of the following configuratios:



1 . A non-linear guide on a linear substrate - (Anderson et al (1971), 
Zemon et al(l972), Ito et al (197*0, Van der Ziel et al (1976b))
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The phase matching between the- fundamental and SH modes is achieved 
by the correct choice of the guide thickness. In all the above 
reports, with the exception of that by Van der Ziel, phase matching 
was achieved for SH.wave propagating as a higher order mode than the 
fundamental. As a result SHG efficiencies obtained were low due to 
small value of the field overlap integral. Van der Ziel et al were 
able to demonstrate phase matching between the fundamental TE^ and 
the SH TM modes by etching a grating on one side of the guide to 
compensate for the phase mis-match. In practice there is some 
tapering in the guide thickness and this tends to give broadband SHG, 
but with lower efficiency due to reduced interaction length.

2. A non-linear guide on a non-linear substrate - (Hopkins et al 
(197*0, Van der Ziel et al (197*0, Uesugi et al (1976 and 1979)*

In this method also phase matching between the fundamental and the 
harmonic modes'is achieved by precise control of the guide thickness. 
Hopkins et al (197*0 were first to report SHG using such a structure. 
They formed optical waveguides in barium sodium niobate by 
introducing hydrogen during poling and used these guides to generate 
phase matched SH by varying the crystal temperature (to tune the 
waveguide dispersion). The use of temperature dependence of the 
refractive index to vary the waveguide dispersion relaxes the 
stringent requirements on the guide dimensions. UesugL et al (1976) 
also used temperature dependence of refractive index to achieve phase 
matching between the lowest order fundamental and SH modes in a Ti- 
indiffused LiNbO^ waveguide. More recently Uesugi et al (1979) used 
a bias electric field to achieve the same effect.In this case the 
bias electric field changes the refractive index and hence the 
waveguide dispersion via the linear electro-optic effect.

3. A linear guide on a non-linear substrate - (Tien et al (1970 ), 
Chen et al (197*+))

In this method evanescent field of the fundamental mode excites a



non-linear polarization wave in the substrate which gives rise to a 
SH light wave. E>y suitably selecting the guide thickness it is 
possible to arrange that the non-linear polarization wave travels at 
a velocity faster than that of the SH polarization wave in the 
substrate medium. Consequently the non-linear polarization wave 
radiates SH light wave an a Cerenkov radiation. The cosine of the 
Cerenkov angle at which the SH is emitted is given by the ratio of 
the phase velocities of the SH light wave to that of the non-linear 
polarization wave. In this method tolerances on the waveguide 
thickness are not severe and broadband SH can be generated. However, 
efficiency of this method is low as the overlap between the 
fundamental and the SH fields is small.

U. A linear guide on a non-linear substrate with harmonic as a guided 
mode - (Suematsu et al (1973), Burns et al (197*0 and Chen et al 
(1971*))

In this method non-linear polarization wave excited in the substrate 
generates a SH light wave which can be guided in the waveguide. The 
phase matching in this case also is critically dependent on the guide 
thickness. Burns et al (197*+) achieved non-critical phase matching in 
liquid/TiO^/quartz waveguide by varying the liquid refractive index 
by temperature tuning to give phase matching between the lowest order
fundamental TE and SH TM^ modes.

0 0

It was stated above that the efficiency for SHG is low, in thin film 
and stripe waveguides, if the coupling does not take place between 
the lowest order modes. A possible way for compensating the phase 
mismatch between the modes is by introducing some form of 
perturbation equal to the phase mismatch in the waveguide structure. 
Somekh et al (1972a and 1972b) were first to propose the use of a 
periodic modulation of the waveguide thickness or the non-linear 
coefficient to couple the fundamental into the SH wave. Van der Ziel 
et al (1 9 7 6b) were first to demonstrate coupling between the lowest 
order fundamental and the SH mode using a grating etched on the 
interface of GaAs waveguide. The periodic grating modulated both the 
linear and the non-linear susceptibilites at frequency p=2 tt/t, where 
t is the grating period. The grating period is so chosen to allow



2 82u) oj .60=p ,where 63=0 - 20 . Levine et al (1975) have used the above
concept to obtain phase matched SHG in a nitrobenzene waveguide. They 
used a periodic modulation of the sign of the non-linear
susceptibility with a spatially periodic dc electric field to align 
the dipoles. Chen et al (1976) also used the above concept to couple 
the fundamental mode into the SH radiation field which then 
propagates in the substrate.

Ito et al (1 9 7 8 ) have demonstrated phase matching between the lew- 
order fundamental and the SH mode using a four layered structure. 
This structure consists of both linear and non-linear materials such 
that guidance occurs in both the materials. The phase matching is 
obtained by the judious choice of layer thickness. However in this 
case tolerances reported sire not as severe as in the other methods 
discussed above.

It has not been possible, up to now, to realise an efficient non­
linear optical device using these structures due to a number of 
factors in addition to the constraints placed by the overlap
integral. The most stringent requirement that has been difficult to

/

achieve is the need to maintain the guide dimensions to within a few 
percent over the waveguide length to maintain phase matching. The 
best reports are of interaction lengths between 10 to 20mm. The other 
problems that have been serious are the scattering losses at the 
guide-substrate interface and the optical damage as a result of high 
optical intensities.

This problem of variation of thickness of the guiding region is 
anticipated to be less severe for crystals grown in glass capillaries 
as it is possible to draw capillaries with uniform dimensions. It 
is, therefore expected that the optical SHG in crystal cored optical 
fibres will be more efficient as compared to that in the planar 
waveguides. Also, it opens up the possibilities of performing optical 
parametric simplification for optical fibre communication systems.



CHAPTER2
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Wave Propagation in Isotropic and Anisotropic Cored Fibres

2.0 Introduction:

An optical fibre is a cylinderical waveguiding structure and consists 
of a high refractive index core surrounded by a low refractive index 
cladding. Light can be guided in these fibres by total internal 
reflection at the core-cladding interface. The exact description of 
guiding properties of such a fibre is found from the solution of its 
wave equation. In this chapter mode theory of wave propagation in 
both isotropic and anisotropic fibres is presented and is used in the 
subsequent chapter for the theoretical analysis of SHG in the crystal 
cored fibres.

2.1 Wave Propagation In Isotropic Cored Fibres:

The optical fibres used in communication systems have an isotropic 
core and cladding ie glass or silica. The theory of wave propagation 
in these fibres is well established and documented in a number of 
texts on the subject (Kapany (1 9 6 7), Kapany and Burke (1972), Marcuse 
(1972 and 197*0, Midwinter (1979))* The cross-section of a typical 
step-index optical fibre is given in figure 2.1. Here the fibre core
radius is ’a’ and the core and cladding refractive indices are n^ 
and n^ respectively. An outline of the derivation of mode solution 
for such a fibre with the kqy results is presented below:

The wave equation can be derived using Maxwell's equations ie 
3B

V x E = “ 3t

VxH = J +
—  —  a t

V.D = p

(2 .1 .0 )

(2 .1 .1 )

(2 .1 .2 )
V.B = 0

(2 .1 .3 )



3 0

Y

Figure 2.1: Cross-section of an optical fibre.
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where
_E is electric field strength.
B is the magnetic flux density.
H is the magnetic field strength. 
J_ is the current density.
D_ is the electric displacement, 
p is the charge density.

The electric displacement and magnetic flux density are related to 
electic field strength and magnetic field strength respectively by

D = e e E_ o r
B = p p H  o r~ where,

(2.1.It)

(2.1.5)

e and y are the free space permittivity and permeability 
o o
respectively.
€ and y are the relative permittivity and permeability respectively.

For a charge free, non-magnetic and uniform isotropic media ie
J=p =0 and y =1 , the Maxwell's equations become r

3H
V x E = -y —  —  Mo 3t

3E

(2 .1 .6 )

VxH = e e —— (2.1.7)o c at

V.E = 0 (2 .1 .8 )

V. H = 0 (2.1.9)

Taking curl of equation(2.1.6) 
vector wave equation ie

82E

V2E - Hoer Eo ~~2 = ° “ 3t

and, using (2 .1 .7 ) and (2 .1 .8 ) gives

(2.2.10)

Assuming the direction of propagation to be along the z-axis and the 
fields of the form

E
H K

•m »

j(wt-8z)
(2.1.11)



where, 0 and w are the propagation constant and the frequency of the 
wave respectively.

Transforming the wave equation (2.1.10) into cylinderical co-ordinate 
system, r, <£, and z, with z- along the waveguide, gives

1
r 3r

1_
2r

& = 0 (2.1.12 )

where

o
lT = 

and k
r 0

0
is

2
= e € u u r o othe free space propagation constant

(2.1.13)

The solutions for the above wave equation can be obtained in terms of 
longitudnal field components. Trying a solution of the form

£z A
Kz B

(2.1.1U)

where, A and B are the amplitude coefficients.

Gives, scalar wave equation

1 3F 
r 9r + (k‘

2 = 0

(2.1.15)

where
v , can be positive or negative, however it must be an integer as 
otherwise fields will not be periodic in <b with period 2tt.

The function F(r) has to be so chosen that it is finite at r=0 and 
tends to zero for r -* ® • For r<a, the function can be taken to
correspond to Bessel's function of he first kind, so that,

£ z
A

J (ttf e iV*

rS
~~

N 1 
_ B v a (2 .1 .1 6 )

where



u = a(k*

ii

ko n:

(2.1.IT)
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For r>a, the appropriate Bessel's function is the modified Hankel's 
function, hence

d Cz -

JC D_ z_ _  —

K (wi) e iv+
(2 .1 .1 8 )

where
C and D are the amplitude coefficients.

W =

k
2

i(B‘

k
0

n
2

(2.1.19)

The solution for propagation constant, 3, can he obtained by ensuring 
continuity of the tangential field components at the core-cladding 
interface. This condition gives four homogenous equations with four 
unknown coefficients i. e. A, B, C, D. However if the determinant of 
the coefficients is equal to zero then a solution can be found for 
wave propagation in the waveguide. The determinant is the 
transcendental equation for the 3 ie

— r n
J^U) KX(W) 2 7 1 2 2 1 k V  J (U) K (W)v v 1 v 2 v
UJ (U) WK (W) U J (U) W K (W)V v _ L v v _1

(2.1.20 )

where, primed Bessel and Hankel functions are equal to their 
derivatives with respect to their argument.

The solution to the above equation exists for discerte values of 3's
corresponding to various modes that can propagate in the fibre. For
v — o, the modes that can propagate are Transverse Magnetic (TM), and
Transverse Electric (TE). These modes are radially symmetric and for
a given v there exist y roots such that 3 > k » as the J-Besselv y ~  2
functions are oscillatory. For v >1, the modes cannot be desiganated
as pure TE or TM modes as they both have non-zero longitudnal field
components. These modes are designated as HE or EH dependingv y v y



upon whether they are more charcteristically like TM or TE modes

The mode cut-off's can be obtained using equation (2.1.20) and the 
condition W — ►O. It can be shown that

J (U ) = 0 v c
HE
EH
ly
vy

(2.1.21)

J (U ) \> c (HEvy
v = 2,3,4

(2.1.22)

J (U ) = 0 o c
1

TEoy
TMoy

(2.1.23)

For HE_^ mode there does not exist a cut-off frequency. Hence, 
single mode fibres can be fabricated if all the modes other than the 
HE have their propagation constants beyond cut-off. In
literature, V-value is used to give an estimate of the number of 
modes a guide can support. This is referred to as 'Normalised 
Frequency' and is given by

2 2 2 2  2 2 2
VZ = k“aZ(nf - n^) = U + WZ o l 2 (2.1.2U )

Mode cut-off is defined by the condition, W=0. Hence, single mode 
operation is possible for

V < 2.U05 (2.1.25)

where, 2.U05 is the first root of J (u ) = 0
0 c

The propragation characteristics of an optical fibre can be shown on 
a a>-3 diagram. In figure 2.2, a>-$ diagram for a low moded fibre is 
given. Here the core-cladding refractive index difference has been 
greatly exaggerated for clarity. The values of propagation constant 
for the various modes can be computed from the solution of the 
transcendental equation (2.1.20). A computer program was written to 
compute the propagation constants for the modes in an uniaxial



Figure 2.2: o>-B diagram for a low moded optical fibre

Figure 2.3: Radiation mode representation.



crystal cored fibre and this program can also be used, as described 
in Appendix 1, to determine propagation constants of modes of 
isotropic cored fibres.

the radiation mode region. The radiation modes are also solutions of 
the -wave equation for an optical fibre as they too satisfy the 
boundry conditions at the core-cladding interface. These modes are 
neither bound to the core and nor do they decay outside the core. 
They are equivalent to a ray incident at the core-cladding interface 
such that it exits into the cladding after refracting through the 
core, see figure 2.3. As there can be continuum of angles at which 
these rays can be incident at the core-cladding interface, 3 's of the 
radition field form a continuum. The field expressions for radiation 
modes have been derived by Marcuse (l97*+)» The expressions for 
radiation modes in a weakly guiding are given in section 2.2. In 
addition to the propagating radiation modes described above there 
exist a continuum of evanescent modes having imaginary 3's in the 
range 0 <_ 3 <. j « •

2.2 Weakly Guiding Fibre Approximations:

The optical fibres used for communications are weakly guiding 
structures as the refractive index difference between their core and 
cladding is very small. Typically 'A ’ is in the range 0 .0 0 1 to 0 .0 2 , 
and is defined as

Snyder (1 9 6 9) and Gloge(l97l) used this approximation to obtain 
linearly polarized transverse field components as solution of the 
wave equation. A consequence of this approximation is that it can be 
shown that the ratio of the magnitude of the longitudnal and

field components have been obtained in the above papers for a weakly 
guiding fibre and are discussed in a greater detail by Marcuse 
(197*0 • The transverse field components for one polarization are 
(Marcuse (197*+))

2

(2.2.1)

transverse field components is of the order of A 1/2 . The transverse



For r<a
£ = A J (U —) l cos VHy v a (sm v<|>/

XX
= . nA( _ £ V  J (If.) (c°s '>♦}

\ u / v a [ s i n  vcpJ

& — 0 x

X = 0 y

For r>a

& =:
y

(2 .2 .2 )

(2.2.3) 

(2 .2 .!*) 

(2.2.5)

A J^ U) K (*-) f cosv a Is in v<f>JK (W)V

/ e \  ̂ J (u)
/ K (W) v ao V

X  = 0

£) fcos v4>l 
a; \siti v<j> J

(2 .2 .6 )

(2 .2 .T)
where
The choice of Cos v<J> and Sin v<}> in the above expressions is arbitary 
as two degenerate sets of modes rotated at tt/ 2  from each other can 
exist.
X  = — h x a has been assumed as |& |< < |& [ and Z is the -wave—‘t Z z -t 1 —z 1 1 —t1
impedence.
n = (n + n )/2 .

1 2

The amplitude coefficient ’A’ can be evaluated in terms of the power 
carried by the modes using the following orthogonality relation 

00 00

®z*( x ?£)dxdy
(2 .2 .8 )

-00 “00

Marcuse (197*0 has shown that using the above orthogonality relation 
’A ’ is given by

A =
4(u /e )^W2P o o

e ima2V2 1J AV)J _ V v- 1 v+1

37

(2.2.9)



where
s 8

ev
2 for v = 0

1 for v ^  0

Note: P is the power normalization coefficient and is same for all
the modes. The power carried by individual modes is found from their

th. 2mode amplitudes ie power carried by v mode is P|AVI .

The transcendental equation for a weakly guiding fibre simplifies to 
UJ (U) WK (W)
J CUT = ± K (W)" (2.2.10)v± 1 v±l

Snyder (1971) has shown that the values of U evaluated using thec
above equation are accurate to within 1% for A <_ 0.2 and less than 
10% when A = 0.5. Hence the above description of linearly polarized 
waves can be used with confidence for A< 0.5. The mode solutions 
obtained from the above equation are characterized in the literature
as LP11(, modes. For v > 0, each LP mode consists of two HE ,,I'M v+1 ,U
modes and two EH modes which are doubly degenerate. The v - 0,y-l,y
modes corresponds to HE^ modes.

The description of radiation modes can also be simplified using the 
weakly guiding approximations. The radiation modes have fields which 
are transverse to their direction of propagation and as such they can 
have substaintial field component along the fibre axis. However, 
radiation modes having 0 slightly less than k^ are very nearly 
transverse. The transverse field components for one polarization are 
(Marcuse (197*0)

For r < a

(2 .2 .1 1 )

(2 .2 .1 2 )

(2.2.13)



•where

a = ( n l k 0 '  b 2 ) ^ ( 2 . 2 . 1 U )

»
and A is the amplitude coefficient.

For r > a

& = b ' (V^Cpr) + c V 2)(pr)l (cos >»♦)
y  t v  v J L s i n  vij) j

Xk = - nB' ( ^ )  2 [h (1 )(p*) + C'H(2 )(pr)1 f°?s v* ) x yo / L v  l sin v<*> J

& = k  = ox y

(2.2.15)

(2 .2 .1 6 )

(2 .2 .IT)

where

, 2, 2 2 n%
p = ( n_k -  S ) 

z  o (2 .2 .1 8 )

» i
B and C are the amplitude coefficients.
H  ̂ and are the Hankel functions of the first and second
kind respectively and are related to the modified K-Bessel functions

, x (n+l) (l)K (x) = tt j Hn (jx,n 2

(n+l) tt(2 ) 
nK (x) = TT (-j) Hn (-Jx)

(2.2.19)

(2 .2 .2 0 )

Marcuse (197^0 has derived expressions for amplitude coefficients 
using the following orthogonality relation

v (4  x 3 ^ ) d x d y  = P 6 (p  -  p ' )

- C O  -00 (2 .2 .2 1 )

where, 6(p— p*) is the Dirac-Delta function and is infinite for p=p



A, l8PQ_____
Ce n)* air *' - pl^cra) ^ 5 Cpa) |
V V (2 .2 .2 2 )

where
2 for v = 0

e =
v 1 for v =5̂ 0

The amplitude coefficient A' is given by(Marcuse(197*0)

The amplitude coefficients B' and C* can he found in terms of A* , 
Marcuse(197*+)•

2.3 Wave Propagation In Uniaxial Crystal Cored Fibres:

The propagation of modes in a uniaxial dielectric rod was first
studied by Longaker and Roberts (1963), and Rosenbaum (1 9 6 5). They
considered propagation of only the low order modes as their study was
dircted towards laser cavity design. Cozens (1976) has recently
discussed wave propagation in anisotropic crystal cored fibres. Also,
Rosenbaum and Kraus (1977) have considered wave propagation in weakly
guiding uniaxially cored fibres. However their study was restricted
to guides having small anisotropy ie in - n 1 «  1 .e o

no

The wave equation for uniaxial crystal cored fibre is given by

v(v .e ) - v2e = - uoe ” 2 C2 .3 .1 )

where
s is the permittivity tensor and for the case of principal crystal 
direction parallel to the guide co-ordinate system is given by

£X X 0 0
0 £yy 0
0 0 £ (2 .3 .2 )

An exact solution exists only when the extraordinary permittivity of
the crystal is along the fibre axis ie e =e =6n̂ e = e •xx yy 1 zz z



Therefore in this case the extraordinary crystal index, n „ isz
along the fibre axis while the ordinary index, n^» is along the 
axes transverse to the direction of propagation. The solution of the 
wave equation can then be obtained in similar manner as in the case 
of isotropic cored fibre. The longitudnal field components can be 
taken as

For r < a
§ = AJ Cue— )— ) ejw,>
z V n l a.

X  = BJ ( . i f . )  e j v *  z v a

For r > a

$ = CK (W-) z v a

'K = DK (W-) z v a

(2.3.3) 

(2.3.U)

(2.3.5)

(2 .3 .6 )

where
All the terms have same meaning as in the isotropic cored case.
Cozens(1976) has shown that the transcendental equation for this case 
is given by

, J ' (U) . K'(W)1 _v__ _1 v
U J (U) W K (W)V V

k k a21 z
U

K'(W)v
K (W)v

1.2 2 v 3 a v + 2
W -I

(2.3.7)

The mode cut-off frequencies are obtained from the above 
transcendental equation with the condition W - ^ 0 and can be shown to 
be given by

For TE modes
________2.405
2ira |n e (n? l o o  1

(2 .3 .8 )

This is same as for isotropic cored fibre



For TM modes

c,m c,E

Hence, for n^ > n , single mode operation occurs at 
lower than that for the isotropic case.

(2.3.9)

a frequency

For v = 1, the cut-off frequencies are given by
U = 0
C _ . -

J,(U ) = 0 
1 c

(2.3.10)
(2.3.11)

(2 .3 .1 2 )

= 0 , implies zero cut-off frequency and this occurs for the
HE mode. The cut-off frequencies of EH modes are given by the 

1 1 up
equation (2.3.11) and those for HE +i modes where, y=l,2,3,..,
are given by the equation (2 .3 .1 2 ).

For HE modes with v >2, cut-off frequencies can be obtained from up -the solution of the following equation.

J (u) + J ,(U) JV v - 1 V
U

(v - 1) 0

(2.3.13)

The change in the cut-off values for the TM and HE modes cf isotropic 
cored case, is to be expected as their longitudnal electric field 
component is greater than that of the TE and EH modes. A computer 
program was written to obtain the values of propagation constants of 
various modes. The computer listing along with the description of the 
computational method used is given in Appendix 1. A plot of
normalised propagation constant, 0 = 0 /kQ» as a function °f the
product of free space propagation constant and the core radius, 
k a, was computed for HE.,, HEno and HEC, modes of a negativeO H  Ld d Urnuniaxial crystal cored fibre and is given in figure 2.U. These mode 
dispersion characteristics are very similar to those of isotropic 
cored fibres. In order to compare the difference in the normalised 
propagation constants of an uniaxial crystal cored fibre with that of
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Figure 2.U: Plot of 0 as a function of k a for various modes ofn 0
a negative uniaxial crystal cored fibre.

Figure 2.5: Plot of 0 of the HE.,., mode as a function of then 1 1
fibre V-value for 1. a benzil crystal cored fibre (------) and 2. an
isotropic cored fibre, n = n , (-----).z 1



an isotropic cored fibre, values of 0 of the HE mode weren 1 1computed as a function of fibre V-value for a benzil crystal cored
fibre and an isotropic cored fibre having the same core refractive
index as the ordinary refractive index of benzil. These have been
plotted in figure 2.5» It can be seen that the values of 3 aren
virtually similar for both the fibres. The maximum percentage
variation in 3 is 0.00^7 at V = 2.1. However, it is more n
meaningful to evaluate the maximum percentage difference in 3 as a
function of the core-cladding refractive index difference, <5n, and
this has a value of 0.3. This is also small as the extraordinary
refractive index of benzil is greater than the ordinary refractive
index by only about 1.7%. In order to consider larger differences in
the transverse and longitudnal indices of the fibre, the propagation
constants were computed for HE mode in fibres with longitudnal
index greater and less than the transverse index by 1 0 % and these
have been plotted in figure 2.6. It can be seen that the normalised
propagation constant has a value greater or less than that in an
isotropic cored fibre depending upon whether the crystal core is a
positive or a negative uniaxial material. The maximum percentage
difference in 3 as a function of 6n is 1.72. These results show, n
as expected, that small crystal birefringence is unlikely to 
significantly effect the propagation constants in a weakly guiding 
uniaxial crystal cored fibres as the fields are very nearly 
transverse. This also implies that for small crystal birefringence 
the transverse fields in a weakly guiding uniaxial crystal cored 
fibre will be very similar to those in an isotropic cored fibre.

2.U Wave Propagation In Biaxial Crystal Cored Fibres:

In the case of biaxial cored fibres it is not possible to obtain an 
analytical solution of the wave equation. However, it is possible to 
obtain numerically the fields and propagation constants of various 
modes. Cozens (1976) has proposed a simple computational method for 
evaluation of the propagation constants. The biaxial guide is 
considered as a perturbed ideal guide (perturbation of dielectric 
constant) and hence the change in the propagation constant due to the 
perturbation can be evaluated using the coupled mode theory. Hence, 
the propagation constant of a mode of a biaxial cored fibre can be
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HE•11

Figure 2.6: Plot of 3 of the HE mode as a function of then 1 1fibre V-value for 1. Isotropic core 2. positive, uniaxial crystal core 
and 3 . negative uniaxial crystal core.

Figure 2.7: Plot of 3 of the HE mode in a benzil crystal coredn - 1 1 1 ,fibre as a function of X ; 1. computed using refractive index
values of the core and cladding at each wavelength and 2 . using the 
refractive index data at X=1.06Hym. Also plotted are the ordinary 
refractive index of benzil and the cladding refractive index.



given by
46

S = 6 , + AB (2 .H.1 )
V v
where

th
0  ̂ is the propagation constant of the v mode of the ideal guide. 

2 tt a
x - LUAS = —

o o

+ (e -e,. ) & a*-xu y V -y\> -yV

+ (e -e ) (Z±) a .

z f K 1 Z\) zv rdrdc{)
(2 .U.2 )

here P is the power normalization factor and &xv etc. are the known 
fields of the ideal mode. ~-

The above expression is valid provided AS<<SU • A consequence of this 
requirement is that the above method is only applicable to biaxial 
crystal cored fibres with small crystal anisotropy. The accuracy of 
the above method can be improved by using the modes of a uniaxial 
cored fibre as the ideal modes of the perturbed guide.

2.5 Wave Propagation ,In Uniaxial Cored Fibres With Crystal Axis Not 
Along The Direction Of Propagation:

It was observed in some of the benzil crystal cored fibres that the 
crystal c-axis was not along the fibre axis. The deviations were 
generally small i.e. < 5 °, however in some extreme cases deviations 
as large as 1 0 ° were also observed (Chapter 5). If the crystal, c-axis 
makes an angle 'a* to the direction of propagation i.e. z-axis, the 
permittivity tensor in the wave equation is then given by

e = T T
(2.5.1)

where
T is the transformation matrix and for this case becomes

/ l 0 0
T = I 0 cosa sina

\ 0 -sina cosa
(2 .5 .2 )



T is the transpose of T.
i* is the permittivity tensor of uniaxial crystal in its principal CO' 
ordinate system.

t

£ X X 0

° 10 £ £yy y z

0 £ e
z y z z  / (2.5.3)

and

£X X
£yy

£
z y

£zz

the matrix elements are

= e1 =f0 no

= e1 Cos2a + e2 sin2 a = e„(n2Cos2“ + n2Sin2“) i u o e
1 1 2  2 .= e = — " £2 )Sin2a = — en(n - n )Sin2a yz 2 1 2 w o e
2 2 2 2 2 2 = £zCos a + £<| Sin a ^gCn^Cos ct + nQSin a)

The wave equation in this case also has to be numerically solved as 
no analytical solution exists. For crystal cored fibres where the 
deviation of the crystal axis from the fibre axis is not large , the 
propagation constant can be calculated using the perturbation method 
discussed in the previous section. In this case ideal modes of the 
perturbed guide will be those of an uniaxial guide with its crystal 
axis along the fibre axis. Hence, the change in the propagation 
constant, A3, from that of the ideal modes is given by

2 tt a

where
e and e are components of permittivity of the crystal along the
y' z/fibre y- and z-axis.



2.6 Wave Propagation In Fibres With Dispersive Core:

The majority of organic crystals with large second order
susceptibilities also have strong absorption in the near UV region of 
the spectrum and as a result the dispersion between the fundamental 
and SH wavelengths is generally large. Therefore it is necessary to 
also take dispersion into account when determining the phase matching 
requirements for non-linear interactions in crystal cored fibres.
The effect of dispersion can be incorporated in the computer program, 
used to evaluate fibre propagation constants, by using Sellimer's 
formulae to compute the core and cladding refractive indices at the 
appropriate wavelengths. In figure 2.7, normalised propagation 
constant of the HE mode in a benzil crystal cored fibre has been 
plotted along with variation of core and cladding refractive indices 
with the wavelength. Also included is a plot of normalised 
propagation constant of the HE mode computed in absence of
dispersion and with core and cladding refractive index values at 
1.06ivym wavelength. It can be seen from the above plots that in 
crystal cored fibres it is necessary to take into account core and 
cladding dispersion as otherwise errors in evaluation of propagation 
constants of the modes can be very large. This curve also shows that 
for fundamental wavelength of 1.06Uym the SH will be in the
radiation field.



CHAPTER 3

Theoretical Analysis Of Optical Second Harmonic Generation In Crystal 
Cored Fibres

3.0 Introduction:

Optical fibres are attractive for non-linear interactions as it is 
possible to draw long lengths of fibre having constant normalised 
frequency. Stolen et al(l97M were first to demonstrate phase 
matched four wave mixing in optical fibres. These days fibres are 
used to realise fibre Raman laser in the 1.06ym to 1.7ym wavelength 
range, generation of short pulses using pulse compression in fibres 
and in the study of -soliton propagation for communication 
applications. These effects occur due to the third order non-linear 
susceptibilty of fused silica and self-focussing effect. Optical 
fibres cannot however be used for optical SHG or parametric 
amplification as the second order non-linear susceptibility in silica 
and glass is zero. The crystal cored fibres unlike optical fibres 
have a non-centrosymmetric core material and can be used for three 
wave mixing processes.

In this chapter principles of phase matched SHG in crystal cored 
fibres are presented and expressions for SH power generated are 
derived using coupled mode analysis. The analysis presented in this 
chapter could also be used for the study of other three wave 
interactions.

3.1 Qualitative Description Of SHG In Crystal Cored Fibres:

A high intensity field in the core of a crystal cored fibre generates 
a non-linear polarization wave which then gives rise to a SH light 
wave in a same way as in a bulk crystal. There is however no 
appericiable build up of the SH power if the fundamental and SH modes 
are not phase matched. The phase matching between these two modes can 
be achieved using waveguide dispersion as discussed in chapter 1. In 
crystal cored fibres it is possible to implement phase matching, as



in planar and stripe waveguiding structures, by either of the 
following two methods:
1. Coupling the fundamental mode into a SH guided mode,
2. Coupling the fundamental mode into the SH radiation field.

In both the above methods for SHG it is desirable to have monomode 
operation at the fundamental, frequency so that all the launched power 
is avialable for SHG. This is because the launched power in a 
multimode fibre is distributed among all the modes which are 
supported by the fibre and consequently power in any one mode is 
small. Also, in multimode fibres, the power in the modes varies 
continously as even small perturbations can cause mode coupling. 
These two methods are discussed below in a greater detail.

3.1.1 Coupling the fundamental mode into a SH guided mode:

This method of phase matching is preferable as it is more efficient 
of the above two methods(see section 3.2). The phase matching

., . „ . . „2 o) „ to . .0) , „2 o)condition for optical SHG is 0 = 20 , where 0 and 0 are
the propagation constants of the fundamental and the SH modes
respectively. The SH guided mode into which the coupling can take 
place is determined by the solution of the fibre’s eigenvalue 
equation ie equation (2.3.7)• The waveguide dispersion characteristic
for the HE mode does not allow phase matching between the
fundamental and the SH H E ^  modes and as a result the fundamental
mode has to be phase matched to a higher order SH mode. This- form of
phase-matching is shown on a a>~0 diagram in figure 3.1. Here the
core-cladding refractive index difference has been exaggerated to
show the principle of phase matching. It is also necessary, as
discussed in chapter 1 , to ensure that the field overlap integral is
non-zero for coupling to take place. The field overlap integral for
SHG in crystal cored fibres is given in Appendix 2. It is non-zero
for coupling the fundamental HE,, mode into SH HE, modes and has

11 lya maximum value for coupling into the SH HE_^ mode. In practice, as 
the phase matching requirement is not necessarily satisfied for a 
given waveguide dispersion it is difficult to implement this form of 
phase matching. In some cases it should be possible to use 
temperature dependent change in refractive index to optimise the
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Figure 3.1: u>-$ diagram showing phase-matching scheme for guided wave 
optical SHG.

Figure 3.2: u>-$ diagram showing phase-matching scheme for optical SHG 
in the radiation field.



waveguide dispersion to achieve phase matching.

3.1.2 Coupling the fundamental guided mode into the SH radiation 
field:

This form of phase matching is possible only if the fibre core and
cladding materials are dispersive. As this is generally the case it
is relatively easy to implement. In this case it is only necessary to

2(oarrange that the propagation constant of the SH light wave, 0 ,2 to 2 cu, 2 tolies in the continuum of radiation field ie B < n2 ^ g  • This 
form of phase matching has been shown on a u>-B diagram in figure 3 .2 . 
As for phase matching B^°= 26^, where BU is the propagation
constant of the fundamental HE mode, the condition necessary to 
couple the SH into the radiation field becomes

CO , (0 2 (D . .B < n2 (3.1.1)

2o) a)Therfore the chromatic dispersion <5n, where 6n = n2 ~ n2 ’ 
required in the cladding glass is given by

. CO # CO 0). # _ „ »<$n > [B /kg- (3.1.2)

2 co 2 co .It is also necessary to ensure that n.j > n2 • The precise value 
of chromatic dispersion required is dependent on the fibre V-value, 
at the fundamental frequency, but it will always be less than the 
core cladding refractive index, An, at the fundamental frequency. As 
in weakly guiding fibres An«0.2, the chromatic dispersion required 
can be obtained by using commercially avialable glasses. The SH 
radiation in this case will exit from the fibre core at an angle, a, 
given by

2a),. 2 (d 2 o),Cosa = B /(kfl n2 ) (3.1.3)

For values of B^U slightly less than the angle a is of
the order of few degrees and therefore the SH will be guided in the 
cladding.

3.2 Analysis Of SHG In Crystal Cored Fibres:



The process of optical SHG in crystal cored fibres can be treated as 
a coupled mode interaction in which the second order susceptibility 
of the fibre core acts as the perturbation resulting in the 
fundamental, power to couple into the SH wave. Here it is assumed that 
the fibre core is uniaxial with its crystal axis along the fibre axis 
and the SH is generated from a input fibre mode at the fundamental 
frequency o>/2 by coupling to a guided mode or radiation field at 
frequency ai. The coupled wave equations in this case can be derived 
using Maxwell’s equations. For a charge free and non-magnetic region 
these are

V x E

V x H

3B
' It
3D
T t

(3.2.1)

(3.2.2)

where
B = 
D = >*<£

CqE + P
(3.2.3)
(3.2.1*)

For optical. SHG, the polarization term, P_, consists of both the 
linear and non-linear components ie

P = P. + PATT — —u —NL £ X T ^  E  +  — Ml o L — — nl (3.2.5)

However as the permittivity, e, of the medium is related to its linear 
susceptibility by

e  =  e ( i  *  £ > >

(3.2.6)

The electric displacement vector becomes

D = £E + P _ — —NL (3.2.7)

The equations (3.2.1) and (3.2.2) can then be written as 
3H

^  = - yo 3t

VXS =  2 3t + i ^

(3.2.8)

(3.2.9)



where, permittivity tensor is given by

e„ o o

t = o e1 0

(3.2.10)
o o z

Taking curl of equation (3.2.8) gives the vector wave equation

In the subsequent analysis it is assumed that the crystal cored fibre 
is weakly guiding i e A «  1. In practice this can easily be arranged 
by selecting a suitable cladding glass for a given core material. For 
a weakly guiding fibre, as was discussed in chapter 2 , field 
components of the guided modes can be taken to be very nearly 
transverse. The same also holds for the radiation modes having 0 
values slightly less than n^k # the region of interest for SHG. 
This assumption is not however valid for! 01 values much less than
^ k  . Also, in the subsequent analysis longitudnal component of 
the non-linear polarization wave has been neglected and in general 
this may not be justifiable.
The transverse wave equation for the fibre can then be shown using 
equation (3 .2 .1 1 ) to be given by

(3.2.11)

(3.2.12)

For a charge free region
V.D = V. (§E) = 0

(3.2.13)
ie

(3.2.lU)

and as

(3.2.15)

The transverse wave equation can be re-written as
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V 2+ T—t 3z' - V e-o i
3

at- ) i t-v w (1 - r) ̂ a2 ]=

(3 .2 .1 6 )

The non-linear polarization can he regarded as a fora of perturbation
i.e. non-linear guide can be considered as a perturbation of an ideal
guide. The wave equation for an unperturbed guide ie

n 2 _lf. - l L  

^  + a*2 ' U° £’ at2' V 7t ^vt ■ V  (’

(3.2.IT)

An unpertubed uniaxial cored fibre will support a discrete number of 
guided modes and a continuum of radiation modes. The radiation modes
have propagation constant, 0 , which lies in the range -k < 0< k0 » 
where, n^k^. Also there are evanescent inodes with a
continous spectrum of imaginary values in the range -joo<0<Joo and 
the complete set of radiation modes are described by parameter, p, 
where
p = (k|- g2 ) 1 / 2  (3 .2 .1 8 )
and it lies in the range 0 <_ p< 0 0.

The transverse field distribution of the perturbed guide supporting N 
guided modes and a continuum of radiation modes can be expressed by 
the expansion

N
E j( art- 0  z) e° fi U,p) &Pt

ej (ut-ez)^

(3.2 .19)

The summation in front of the integral indicates summation over all 
types of radiation modes. However, for SHG the radiation modes of 
interest are only those with 0 «  ^ P 3,0 3-*-011 coefficients
are taken to be only z-dependent while the fields have been assumed 
to be of the form e^  ̂  The field distribution terms in the
expansion are same as those given in chapter 2 for the fibre modes. 
Substituting (3«2.19) into (3.2.16) gives
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Z
i-1

(7t2+(kH 2)V  e'
)

z j
j(ut-B z) U  .g jlwt-^z)\ (l_ _ L

^ t \ l -fIX / C 2

f aM dsfn „ j (ut-B z)

+ L i F - ^ BM d r J  V e 11

v W - a 2)) a - V ( 7 & ej C « - S * H (1_ ll)
r  1  - p x  l  \  t  — o x  j  «-ap ^

+ I [ %  - 2 j 3 ^ ]  a sj(“ - Ss)*>
d Z  — OX

= u 3% L t
o ax^

where, k, =  w*/y « = n,- 1 V  o  1 1

(3.2.20)

(3.2.21)

In an unperturbed guide, each discrete guided inode satisfies

lVt2+(k12V ,] -ut ej(“t_iV Z) - V V V  ejUt' ^ Z)) r )= 0

(3.2.22)

and the radiation modes satisfy

[Vt2+lk12'B 2)1 h z  gj (ut-Bz) _ ^  , £ ^  (u)t-Bz), u _ f l )=0

(3.2.23)
Using (3.2.22) and (3.2.23), equation (3.2.20) becomes 

d£
— I £■fit^ S V z )

■ Z
d2a
’dz

da . 3 ^MLt
“ - 2j0 I T ]  *pt e = ^ - B Z ) i o = P ° (3.2.2U)

The discrete guided modes satisfy the following orthogonality 
relationship

2 l i e .  (& X W* .) dxdy = P for m=n — z —nt —  mt
, = 0 otherwise (3 .2 .2 5 )

This is the fimilar Poynting vector used for the calculation of power 
in an e-m wave and was also used to calculate fibre mode amplitudes 
in chapter 2 .



The radiation modes satisfy the fallowing orthogonality relationship
CO CO

e— z x -*pt) dxdy = PStp-ph

—CO —CO (3 .2 .2 6 )

Where, 6(p-p’) is the Dirac-Delta function. According to this 
relation the integral becomes infinitly large if the modes are 
identical and zero if they are different. This was also used to 
calculate the mode'amplitudes of the radiation modes.

Taking the cross product of both sides of the equation (3.2.2U) with 
and then taking scalar product with a unit vector in z- 

direction, gives after integration over guide cross-section and using 
the orthogonality relation in equation (3.2.25)

r d2a
dz

da
£ - 2j 8 -T11dz

j (art-*8 z) _

“ ~2V 3t2
(3.2.27)

If the mode amplitude a changes only slowly in a distance of aywavelength, then its second derivative can be neglected ie for slow
2 pvariations, Id a /dz^ I << r I da /dz I 

v u- ythen becomes
The equat ion (3.2.27)

day j (tot—B z) _ o _ 
“to 8 U ' UjB P

e . (p.— >z —NLt —  yt) dxdy
(3.2.28)

Integrand on the R.H.S. after simplification is given by

coy
p '
—NLt. i v &*— yt 8 t — yzy .
, ' 3&* &*J- — UZ 1 — ]J2 — jj 2Now ---- ---  and ---- ---  are of the order of — -- and as 8 a is of the3m 3x Su 3y g* Bua V

1' '̂2 will be approximately equal to o a — yorder of unity for optical fibres

Also, as in weakly guiding fibres j& l<<cl^|» it is reasonable to assumeZ v

that << Hence equation (3-2.28) can be written asyz
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dau j(wt- 6  zl _ - 1 dZ
dz ^ ^  J  J 4X17 (3.2.29)

The orthogonality relation (3.2.26) can be used in the case of 
radiation modes to similarly give

dap j(mt-6z) _ - 1
dz UiojP 3t‘

00 CO/ / p .£*—NLt —  pt dxdy
— 00 — 00

(3.2.30)

For SHG non-linear polarization is given by (chapter l)

2*1 = £ U>)- eoaijk : (3.2.3!)

In the above expression for non-linear polarization, the fields are 
transverse. For single mode propagation at the fundamental frequency
we have E = s = E . Here for the sake of generality we assume J k t ththat all the power at the fundamental frequency is in the v guided• '
mode and having transverse field distribution given by

E =a (u/2 )(z) S C»/2)ei«"/2Jt-Bvz
—vt V — ot 3.2.32)

Using (3.2.31) and (3.2.32), equations (3.2.29) and (3.2.30) can be
written as
For guided mode SHG

da (w) u>£ d.

dz
O un r . U/2)[

j A8z
— OO — 00

p (u/2)^ o (w)* ,ca .(* dxdy— ut —yt J

(3.2.33)

For SHG in radiation field 
(u>) ... „ 2

00 00
da

dz

where

ooe &. f /o n

-T^r  U  U / 2 )(z)] UjP V v
jASz a tu/2) . a tu)*cbcdy

— v x -pt

— CO —00 (3 .2 . 3 1 0

Ag=B (ul) -23 (i v.P
(u/2)

(3.2.35)



and dim is the pertinent SH tensor element.

In equations (3.2.33) and (3.2.3*+) the integral on the R.H.S.
represents transverse overlap integral. It specifies the modes among
which the coupling can take place and also determines the strength of
coupling. It can he evaluated by substitution of field expressions,
given in chapter 2, for guided modes and radiation field followed by
integration over the core crossection. In appendix 2 its evaluation
and significance is discussed in greater detail. In the subsequent
analysis this integral will be designated as I an(j jg r
corresponding to equations (3.2.33) and (3 .2 .31+) respectively.

ai/2Assuming weak coupling ie a remains constant over the
interaction length, L, the SH guided mode amplitude after distance, 
L, can be found by integrating equation (3.2.33). The square of the 
amplitude of the SH guided mode is then

(w (L)

2 2 2
w £o ^im r (a)/2)-|

K  17 6 ? ^

h 2 
I

SinlABL/2)
A8L/2 (3.2.36)

Total power flow through a plane perpendicular to the fibre is equal 
to the sum of guided and radiation field power and is given by

D av l + £

V o
2

| a | dp
(3.2.37)

In the above expression power flow in the -ve z-direction has been 
neglected. P is a normalization factor and is same for all the modes. 
This was also used in chapter 2 for calculation of mode amplitudes.

Hence SH power generated by coupling the fundamental HE  ̂t hthe y SH guided mode is given by
mode into

(id) (L) = P
%

2 2 , 2  a) e d. o lm
16P3

>/2)
2 2 Sin(A8L/2 ) 

A6L/2

(3.2.38)
where, P in the denominator of L.H.S. is a normalization factor and 
has no significance in the calculation of SH power. It cancels out



with that in the field distribution expressions after substitution of 
the expression for field overlap integral.

6

Similarly, the square of the amplitude of SH radiated mode is given
"by

2 2 2 2 2 r
(u),T ,i “ £ 0 dim „ W 2 )  T , Sin(A6L/2)

ap (L)| = 16P1*' '' P Xr L A8L/2 (3.2.39)

The SH power generated by coupling to radiation field is better 
expressed in terms of the attenuation coefficient of the fundamental 
guided mode. In this case high attenuation indicates good conversion 
efficiency. The radiation field power is given by

ap = p £  f

n2k

a 1 zdp P 1

2d2im
16PJ

2

Sin(AgLJ2) 
ABL/2

J

j 2 ill dBr p

If 'L' is large (c.f.wavelength), the function 
sharply peaked near A 3=0 (phase-match case), ie

Sin(ABL/2) 
ABL/2

(3.2.U0)

is very

Lim. SinLx = 
L->°° x (3.2.Ul)

Hence, other terms in the integral in equation (3 *2 .Uo) can be 
regarded as constant and can be taken out of the integral sign i.e.

0)ZG Zd2 / . y
Ap = ^  im p (w/2)

"Up3"

n2k
2

Sin(ABL/2) 
AB dB

(3.2.U2)

The integral in equation (3.2.U2) can be approximated by
n2x

Sin (ABL/2) 
AB dB Sin2ASL/2

JsT2"
d(AB)=ir L/2

-n2k (3.2.U3)



The change in integration limits has negligable effect, since the 
integrand contributes to the integral in the immidiate vicinity of 
AB= 0.
Hence, equation (3.2.1+2) can be written as

Ap- £o'dim p (w/2)
ap" 8 p  p 2 X 2 M  „L (3.2.UU)

The attenuation coefficient can be defined as
2 2

AP * w 7T£o ^im _(oi/2 ) _ 2 j 3 1a=
p (w;/2)L

_o im d (u /2) t
8P3 P I] (3.2.1+5)

where
p( <o/2) ^  .̂jie j_n the fundamental mode at z=0 and AP/L is the
Sh power radiated power per unit length.

The major difference in the expression for SH power generated by- 
coupling to guided SH mode and to that for SH radiation field is that 
in the former case SH varies as square of interaction length instead 
of varying linearly as in the latter case.

The expression for SH power generated by coupling to radiation field
was derived by assuming coupling to be weak. However, the above
theory can be extended to long interaction lengths as the power
coupled into SH radiation is lost into the cladding. The fibre can be
considered to be composed of *nf sections of lengths f 1 » wherec ’al «  1. In this manner the above analysis can be used forccalculating SH power generated by each section of length ’1 icby using different value of the fundamental power incident on each

thsection. The fundamental power at the n subsection will be equal
"t hto the fundamental power at (n-l) subsection less power lost due

to coupling to SH radiation. The incremental power loss at each
section is same and equal to -al • Hence, the SH power radiatedc
over the length L of the fibre can be obtained by using following 
equation.

P U) (L) = P(o)

where, L = nlc

1-e-aL(w/2) (3.2.U6)



Discussion: 6 2

The above analysis can be used to make a comparision of SHG 
efficiencies for SHG by coupling the SH into the radiation field and 
to a guided mode, and to consider the effects of cladding dispersion 
on phase matching. Here it is assumed that the phase matching 
condition is satisfied and the fibre is monomode at the fundamental 
frequency ie v= 0. Also, as the field overlap integral is maximum 
for modes having similar mode field configurations it is assumed 
that y = v . The expressions for SHG efficiency per unit length for 
coupling to SH radiation field and SH guided mode can then shown to 
be given by

For SH in the radiation field
a

8 (u>e d. ) 2 (y /e ) 3 ^2  ̂ f J 2 (l£)J (ar)rdro im o o J o a o
________________________________________ o__________________________

(0)) ( 2w ) 2 U..-U | T /ttxI^I^q T / \tt \ T ( \tt \ 1̂n n tt a V |J^(U)| ipaJ^iaajH^ lPa)-aaJ^iaa)HQ (pa)|

note: In this section w - the fundamental frequency
2io - the SH frequency (3*2.Vf)

For SH as a guided mode

2w

(0P L

2 (cue d. ) 2 (y /e ) 3 / 2  w V -  ?(w \ f J 2 (uf)J (U^rdro im o o J  o a o a

.(“ ) n*2u)) i r a W  |J1 (U)|l*|J1 (U;L) | 2 (3.2.U8)

In the above expressions the mode field distributions used are of 
weakly guiding isotropic cored fibres. These expressions can however 
also be used to determine efficiency per unit length, to an order of 
magnitude, in weakly guiding uniaxial crystal cored fibres with 
crystal c-axis along the fibre axis as the effect of difference in 
the longitudnal index on transverse fields is negligable for 
birefringence of upto few percent(chapter 2, section 2.3). Consider a 
monomode benzil crystal cored fibre with following parameters

n ^  1.6313; n2= 1.625 , n2= 1 . 6 6



632w ... 2(0 r . , 2w rQn1 = 1 .6 6 9 1; n 2 = I.6H2U; nz = 1.687

-12 ,a = 2.72vim; d = 3.7x10 m/V im

The fibre V-value at the fundamental wavelength of 1.06^vim is then
2.3. The normalized propagation constant for the fundamental HE 
mode at 1.06Hym wavelength was computed (Appendix 1) to be 1.627862. 
This data can then be used to determine SHG efficiencies per unit 
length for the above two cases.

1. SHG by coupling the fundamental HE mode into the SH radiation
field: 1 1

The value for a in this case is 2.6x10  ̂ with 1W of fundamental 
power. Consequently, SHG efficiency for 10mm of fibre will be 
2.6x10 °/0 . These figures do not include propagation losses of the
fundamental and the SH signals. This form of phase matching is rather 
easy to satisfy by suitably selecting the cladding glass. In figure
3.3 variation of the normalized SHG efficiency per unit length, anin benzil crystal cored fibre as a function of cladding dispersion is
given. Also, indicated on the plot is the dispersion of SKN18 glass
used as the cladding for benzil crystal cored fibres, a is zero

2 (o a) nfor dispersion of upto n - n as the SH generated cannot couple
2w 2ujinto radiation field for 3 £  n For greater values of

2o) 2(i)dispersion as & > n it increases to a maximum value for the
optimum dispersion. The value of the optimum dispersion is determined 
by the overlap integral. The effect of variation of the core radius 
and/or core refractive index is to change the the fibre V-value and 
hence the propagation constant at the fundamental wavelength. This 
will then result in different value for the optimum dispersion. 
However the variation in the a will not be great for small changes in 
the fibre V-value in the single mode or in the region just above the 
cut-off.

2. SHG by coupling the fundamental HE mode to a SH HE modes:
1 1 In

In this case it is rather more difficult to achieve phase matching 
between the fundamental and SH HE.^ modes and in practice phase
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Figure 3.3: SHG efficiency per unit length, a, for benzil crystal 
cored fibre as a function of the cladding dispersion.

Figure 3.*+: u>-$ diagram showing phase-matching scheme for guided wave
SHG in a biaxial crystal cored fibre with both the fundamental and
the SH as HE modes.
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matching is generally satisfied for SH as a higher order mode. This, 
as discussed earlier, results in lower conversion efficiency due to 
small value of field the overlap integral. The SHG efficiency for 
coupling the SH into HE mode was computed to be 12.b°/0 for a
fundamental power of 1W and a 10mm long fibre. This represents an 
increase of about H800 as compared with the generation of SH by- 
coupling to the radiation field. This clearly demonstrates advantages 
in optimisation of the waveguide dispersion for phase-matching.

For a practical device, guided wave SHG is also preferable because of
the ease of use. It is possible to maximise the overlap integral by
phase matching the fundamental and the SH HE modes by either
using a biaxial crystal material or growing the crystal material in
glass capillaries having elliptical bore. In the case of a biaxial
core it may be possible to arrange that with the fundamental wave
launched in the fibre as HE mode, the phase matching conditiony 1 1is satisfied for coupling to the SH HE mode. This form ofx 1 1phase matching is shown in figure 3.^. In a similar manner it may be
possible to exploit shape dependent birefringence of an elliptical
cored fibre by having the fundamental and the SH modes as HE

o 11
and HE respectively, e 1 1



CHAPTER k

Materials For Growth In Glass Capillaries

H.O Introduction:

In this chapter criteria used for selection of crystal materials for 
growth in glass capillaries for non-linear interactions and in 
particular SHG, are discussed. The two materials selected for growth, 
after an extensive literature survey, for SHG were acetamide and 
benzil. Their properties, especially those of benzil, are discussed. 
Also, in this chapter growth of bulk benzil single crystals is 
described.

U.l Selection Criteria Used For Growth Of Crystals In Glass 
■ Capillaries For SHG :

There exist a number of non-linear materials which can be used for 
active device fabrication, however their suitability has to be 
considered in context of the particular device requirements. Some of 
the materials possessing large non-linear optical coefficients e.g. 
LiNbO ZnS, KDP, have been used by a number of research workers 
and their properties are well documented. However, veiy little data 
exists for majority of non-centrosymmetric materials regarding their 
point-group, refractive indices, absorption coefficients etc.. This 
is because the growth of bulk single crystals and detailed 
investigation of their physical properties is a time consuming 
buisness and not always a rewarding exercise. It is possible to make 
a semi-quantative judgement about the magnitude of non-linear 
coefficients by comparing the intensity of the SH emitted by their 
powders with that of some standard eg KDP, quartz. A number of 
research workers have compiled lists of useful materials for SHG 
using the above method, principal among them are, Kurtz and Perry 
(1 9 6 8), Gott (l9Tl), Davydov (1971), Jerphagnon (1971), and Owen and 
White (1976). Davydov (1970) and Jerphagnon (1971) have also used a 
molecular engineering approach to make compounds possessing large 
non-linear coefficients. This involves replacing some of the



molecules in a compound by those, eg benzene rings, which enhance 
non-linear effects. However, these materials are not commercially 
avialable. An extensive literature survey was carried out to find 
crystals suitable for fabrication of a SH generator in crystal cored 
fibre form. The method adopted for material selection is illustrated 
on a flow chart in figure U.l and is discussed below.

In weakly guiding fibres the field components in the transverse 
direction are much greater than those in the longitudnal direction 
(chapter 2). Hence, for efficient non-linear interactions in crystal 
cored fibres, the core material non-linear tensor coefficients, which 
are multiplicative factors with the transverse field components, 
should have non-zero magnitude. This requirement excludes all the 
crystal classes with the exception of classes, 1, 2, m, 3, 3m, 6, 
6m2, 32.

Of the materials belonging to the above classes , the next 
consideration is their refractive indices. This is necessary as in 
order to fabricate a low moded fibre the difference in the core and 
cladding refractive indices should be in the region of 0.1 . The
avialable glasses (Schott) have refractive indices in the range 1.U5 
to 1.95 (at 0.6^pm wavelength). As a result crystals having 
refractive index greater than 2.0 cannot be used to fabricate crystal 
cored fibres by their growth in glass capillaries. Because of this 
consideration some of the very best non-linear materials, e.g. Te,
Se, HgS, LiNb03 , LiTa03 , Ag^AsS^ CagNbgO^* are not 
useful.

The growth of crystals in glass capillaries is best achieved by 
crystallization of the melt. As a result materials which decompose on 
melting were also rejected e.g. hexamine. Also, as the crystal growth 
is from the melt, the melting point of the material should be less 
than the glass transformation temperature (temperature at which glass 
starts to transform from a solid state into a plastic state). This 
temperature is generally in the range 350 °C to T00°C (Schott) 
depending on the glass type. However, silica capillaries can be used 
to grow materials possessing high melting points as its softening 
temperature is l6l0°C. In this case the index matching (silica
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Figure H.l: Flow chart of the method used in selection of crystals 
for the fabrication of crystal cored fibres for SHG.



refractive index is 1.1+55 at 0.633 pm) may prevent designing of a 
useful device.

The other considerations are that the crystal should he transparent 
in the frequency region of interest and possess large non-linear 
tensor co-efficients.

The crystal materials for "which no data other than SH powder test 
results was avialable were rejected. The literature survey was 
carried out to find materials satisfying the above requirements for 
fabrication of a SH generator. All the materials were found to be 
unsuitable in at least one aspect. However, two materials, acetamide 
and benzil, were selected as they appeared to offer a best compromise 
in material properties.

b,2 Crystal Materials Used For Growth In Glass Capillaries:

Acetamide was the first material selected for growth in glass 
capillaries. Acetamide is a negative uniaxial crystal belonging to 
point group 3m. Its properties have been summarised in table l+.l.

The disadvantage of using acetamide is that it is hygroscopic. It "was 
anticipated that it will be possible to prevent water absorption by 
coating the crystal end faces of the fibre by a thin film of oil or 
some transparent adhesive. However, the experiments on prevention of 
water absorption by coating the crystal end face were not successful. 
The results of these experiments are presented in section 5*1* In 
view of this growth of acetamide crystals was not carried out in 
capillaries with bore diameters less than 10pm. Neverthless, the 
growth of acetamide crystals in large bore capillaries provided 
useful experience in understanding crystal growth phenomena in glass 
capillaries.

A search was carried out for an alternative crystal material for 
growth in capillaries to realise a SH generator. As a result of this 
exercise benzil was selected. Benzil appeared particularly attractive 
as it had earlier been successfully grown in capillaries with bore 
diameters greater than 20pm by Babai (1 9 8 0). Initially, benzil had



TABLE k.l

ACETAMIDE

: CH.CO.NH 3 2: trigonal
: 3m
: 82°C
: 222°C at 760mm and 120°C at 20mm
: n = 1.507; n - l.U6l(ref.A) at X = 0.5Hl6ym 

o e
= 1.5U = 1.1*6 (ref.B)

: hygroscopic; soluble in alchol, ether, 
choloroform, glycerol and water.

A: Int. critical tables, vol.l, ppl8, McGraw Hill, 1926.
B: Willard M.L. and C. Maresh,'Optical constants of benzamide, its 
homologs and some aliphatic amides', J. Am. Chem. Soc., 62 ,
1253(19^0).

Crystal structure 
Crystal class 
Point group 
Melting point 
Boiling point 
Refractive indices

Other

TABLE k.2

BENZIL

Crystal Structure 
Crystal class 
Point group 
Melting point 
Boiling point 
Refractive indices 
Other

C.H .C0.C0.C JI6 5 65trigonal
32
95°C
3k6°- 3^8°C at 760mm and l88°C at 12mm
n = 1.667; n = 1.68U at X = 0.5*+6lym o eyellow in colour; soluble in alchol, acetone,
benzene and ether; insoluble in water



been rejected as it is yellow in colour indicating unsuitability for 
generation of harmonics with fundamental wavelengths less than 0.8^ym 
and due to small non-linear coefficients. The properties of benzil 
have been summarised in table U.2. and some of these are further 
discussed in section k,6.

b,3 Purification Of Commercially Avialable Materials:

The commercially avialable materials in general have a high impurity 
content and as such cannot be used as a starting material for growth 
of high purity crystals. Infact the crystals grown from material
having impurities show a marked concentration gradient of impurities, 
usually the purest material will be in the bottom section of the 
boule while the top section has the largest impurity content. This 
mechanism of purification of crystal material- occurs whenever crystal 
growth is carried out and is exploited in ’zone refining'. This can
be illustrated on a phase diagram, figure U.2, where it has been 
assumed that the impurities have a lower melting point then the 
crystal. If the impurity content in the starting material is
then as the melt cools down it stays in liquidus state till it 
reaches temperature T_̂ . At this temperature the solid of
composition will crystallize and will co-exist with liquid of 
composition in equilibrium. Hence, purer material becomes lost 
to rest of the material on solidification. The remainder has high 
impurity concentration, say C . When the temperature reaches T^
further crystallization occurs and material of impurity concentration 

comes out This process goes on and will yield pure crystal
material at the bottom with impurities at the top of the crystal.

The other method commonly used for purification of crystal materials 
is 'fractional crystallization'. In this method crystal material is 
dissolved in a solvent and then crystallization is allowed to take 
place either by cooling or partial evaporation of the solvent. By 
repeated dissolution and crystallization a good seperation of 
impurities can be achieved.

U.3.1 Purification Of Benzil:
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Impurity content

Figure H.2: Phase-diagram of a crystalline material

■ \-*
f I

Liquidus

Solidus

Figure U.3: A photograph of benzil crystals obtained by evaporation 
of the super saturated benzil solution in ethyl alchol.



The commercially avialable benzil powder (suppliers: British Drug
House) was dissolved in ethyl alcohol, while being heated so as to 
increase its solubility. The hot benzil solution was filtered twice 
to remove impurities insoluble in ethyl alchol. The hot benzil 
solution was then slowly allowed to cool in order to intiate
crystallization. Benzil crystals were then seprated from the solution 
and washed in alchol. This process was repeated. The benzil crystals 
obtained in this manner were needle shaped having lengths upto 15mm., 
figure b,3» The purity of these crystals was assessed by measuring 
their melting point. The pure materials exhibit a sharp melting
point, as can be seen from the phase diagram given in figure U.2. The 
melting point of the commercially avialable benzil was measured to be 
95»5i0.1°C, while after purification it was measured to be
95.0+0.rc. The latter value agrees with that quoted in the
literature.

h.b Growth Of Bulk. Benzil Single Crystals:

The bulk benzil crystal growth was carried out in order to plot the 
transmission spectrum in the wavelength range O.Uym to 2.0pm. Also, 
bulk benzil crystals could be used as a starting material for growth 
in glass capillaries as they will have a low impurity content. The 
growth was carried out using vertical Bridgeman technique. In this 
technique crystal melt is progressively crystallized as it moves 
through a temperature gradient.

The furnace used for this purpose was similar to that used McArdle 
and Sherwood (197*0 for growth of phenanthrene. In this furnace two 
zones which provide the temperature gradient are maintained at 
constant temperature by the vapour from two boilers. For benzil 
growth, steam was-used for the hot zone while benzene vapour was used 
for the cool zone (b.p. = 80.1°C). The temperature profile of the 
furnace is given in figure k.b. The purified benzil was placed in a 
thin walled pyrex glass crucible. The tip of the crucible was tapered 
so that intially only a small volume of melt is supercooled and hence 
only one nuclei will be formed. If, however, several crystallites are 
formed then there is a high probability that as the growth interface 
moves through the taper only one will dominate giving rise to single
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Figure U.U: Temperature profile of the furnace used for bulk benzil 
growth from melt.



crystal growth

The glass crucible was lowered through the zones at the rate of 
lmm/hr. Single crystals of lengths upto UOmm and 10mm in diameter 
were obtained. The crucible was carefully cut at the both ends and 
the crystal was gently pulled out.

U.5 Assessment And Discussion Of Properties Of Benzil:

In this section properties necessary to design a SH generator and to 
estimate SHG efficiency are discussed. This requires a knowledge of 
the following:

1. Refractive indices in the wavelength region of interest.
2. Non-linear SH tensor coefficients.
3. Transmission spectrum.

U.5.1 Benzil’s Dispersion:

The refractive indices of benzil are required to be known for both 
the fundamental and SH wavelengths. The ordinary and extraordinary 
indices of benzil have been measured by Bryant (l9*+3) in the O.U21ym 
to 0.656ym wavelength range and Chandrashekar (195*0 has derived 
Sellmeir-Drude formulae to fit refractive index dispersion in this 
range. These expressions are,

n2 = 2>o8 + 0.015X
X2 - (0.2U)2 X2 - (0.398)'

n = 2.35 + 0.37X 0.0138X‘
X2 - (0.2O2 X2 - (0.395)'

(U.5.1)

(U.5.2)

where, X is in micrometers.

Measurements made by Jerphagnon (1971) on SH coherence length in bulk 
benzil crystals at 1 .0 6vim show that the above formulae could be used 
to evaluate its refractive index upto 1 .0 6pm without any significant 
error. A plot of benzil’s dispersion as computed from the above
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Figure U.5: Plot of benzil's refractive indices computed from
Sellmeir-Drude formulae as a function of wavelength. Also marked are 
the experimentally measured values.



equations is given in figure U.5. Also, indicated are reported 
experimental values of the refractive indices.

^.5*2 Benzil's Non-linear Tensor Coefficients:

Benzil is a trigonal crystal and belongs to point group 32. The SH 
tensor coefficient for this crystal point group is given by,

d11 “*11 0 dlU 0 0
0 0 0 0 " S u -d1l (U.6.3)

0 0 0 0 0 0

Point group 32 crystals generally possess only one independent SH
tensor coefficient namely, d • This is because most of the
crystals satisfy the 'Permutation* and 'Klienman's* symmetry for all
the tensor elements. However, benzil (Gott (l97l)) because of large
dispersion does not satisfy these symmetry relations for all the
tensor elements. In this case d , = d I 0, while d =  0.Ik 25 36

Gott (l97l) has measured the numerical values for d and d asH  lk2xa-quartz and 0.5xct-quartz respectively with 0.694ym. as fundamental 
wavelength. Jerphagnon (1971) has measured d and the coherence 
length for a bulk Benzil specimen using Marker fringe technique at 
1 .0 6pm to be (II.5+I .5 )xd of quartz and 7* 10+0.7ym respectively. 
Gott's values are in error as he did not take into account benzil's 
strong absorption at 0.3^7pm (SH wavelength in his case), and he also 
reports the possibility of errors upto 30% due to various measurement 
problems present in his technique. In view of this values reported by 
Jerphagnon are considered to be more accurate and have been used in 
the analysis.

b,5»3 Transmission Spectrum Of Benzil:

It is necessary to know the signal attenuation due to the crystal in 
the frequency region of interest. In order to measure the 
transmission spectrum of benzil, the bulk benzil crystal was cut 
along its cleavage plane, which in this case is perpendicular to the 
crystal c-axis. The crystal end faces were then polished using
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Figure I+.6: A photograph of polished hulk henzil crystals.
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Figure b.'J: Benzil's transmission spectrum.



diamond pastes of varying grades on a cloth lap. A photograph of some 
of the polished benzil crystals is given in figure U.6. The 
transmission spectrum for a 5«^9mm long crystal was plotted using a 
Perkin-Elmer spectrophotometer, figure U.7. It was not possible to 
plot it below O.UUym due to high signal attenuation. In order to 
investigate transmission in the range 0.2ym to O.UHym as well, the 
transmission spectrum of benzil solution in ethanol was plotted. It 
was found that there exist a major absorption peak at 0.257ym and a 
relatively weak one at 0.38ym. The absorption peak at 0.38ym is 
responsible for the charcteristic yellow colour of benzil. The signal 
attenuation in benzil at 0.633ym wavelength was measured for samples 
of varying thickness and was found to be -0.9dB/cm. The above 
measurement of attenuation of benzil in conjunction with its 
transmission spectra can be used to make an estimate of bulk benzil 
attenuation at O.U5ym and 0.9pm wavelengths. This gives attenuation 
of -8.UdB/cm and -0.26dB/cm at O.U5ym and 0.9ym respectively. Rather 
high attenuation at o.^5ym implies that benzil is not a good crystal 
for SHG with the fundamental wavelength of 0.9ym.



CHAPTER 5

Growth Of Crystal Cored Optical Fibres

5.0 Introduction:

The growth of single crystals in glass capillaries with internal 
diameters upto 50ym has been reported hy Stevenson (197^) and Babai 
(l9TT). Stevenson has grown metea-nitroaniline (mNA), while Babai has 
also grown meta-dinitrobenzene (mDNB), 2-bromo-l+-nitroaniline (BNA), 
formyl-nitrophenylhydrazine (FNPH), and benzil. Babai (1980) has also 
studied void formation in crystals grown in glass capillaries. This 
work was directed towards the assessment of the crystal growth 
mechanism of crystalline materials which are difficult to grow by 
conventional methods. They have also indicated that the crystal, cored 
fibres could be used as an alternative to ’integrated optic' devices 
but did not make efforts in that direction. The materials grown by 
them, with the exception of benzil, are not suitable for SHG device 
fabrication as they belong to wrong point groups i.e. SH tensor 
elements multiplying the transverse field components are zero. Also, 
in order to have single mode or low moded devices the core diameter 
should be less than lOym which presents crystal growth problems.

In this chapter first the work on growth of acetamide crystals in 
glass capillaries having bore diameters upto lOym is described. This 
work is used as a basis for discussion of crystal growth mechanism 
and void formation in glass capillaries. The experiments on 
prevention of water absorption by coating the end faces of acetamide 
crystals in glass capillaries are briefly discussed. The selection of 
glass material for growth of benzil crystals and subsequent capillary 
drawing from bulk glass is also discussed. Finally, . the growth of 
benzil single crystals in glass capillaries having bore diameters 
less than 10 ym is described.

5.1 Growth Of Acetamide Single Crystals In Glass Capillaries:

Stevenson (197*0, (1977), and Babai (1977), (1980), used vertical
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Figure 5»1: Cross-section of pyrex and SF10 glass capillaries used
for growth of acetamide crystals.

Figure 5*2: A photograph of polycrystalline cored fibre.



Bridgeman method for growth of crystals in glass capillaries. This 
method was also adopted for our work. In this method the crystal melt 
is progressively crystallized as it moves through a temperature 
gradient.

The growth of acetamide was carried out in pyrex (refractive index = 
1.1+75) and Schott SF10 (refractive index = 1.723) glass capillaries. 
The pyrex capillaries had bore diameters in the range 10 ym to 100pm, 
while SF10 capillaries had bore diameters in the range 20pm to 55vm. 
The cross-section of these capillaries is shown in figure 5.1*

In our laboratory zone refined acetamide was avialable and this was 
used as a starting material for the crystal growth. A number of 
samples of glass capillaries of lengths upto 80mm and varying bore 
diameters were used for crystal growth. These glass capillaries were 
filled with the acetamide crystal melt using capillaiy action in a 
resistance wire furnace. The furnace was kept at- a temperature of 
about 10°C higher than the acetamide’s melting point so as to ensure 
complete filling of the capillaries. After about 15 minutes the 
capillaries were withdrawn from the furnace and the melt in them 
crystallized randomly, figure 5*2. This polycrystalline nature of the 
core occurs as the melt crystallizes rapidly when the capillaries are 
brought from a high temperature to room temperature in relatively 
short time (few seconds).

In order to obtain uniform single crystals it is necessary to allow 
the crystal melt to traverse steadily a sharp temperature gradient 
region of the type shown in figure 5*3. It is necessary to have such 
a sharp temperature gradient as otherwise melt can supercool before 
the nucleation can take place. As a result when nucleation does take 
place the crystal growth through the rest of the material will be 
very rapid and result in polycrystaliization. The slow rate of the 
growth is necessary to permit time to allow for the latent heat of 
crystallization to be conducted away and also to help to maintain a 
planar melt-crystal interface which is necessary to prevent void or 
dislocation formation. In growth of crystals in glass capillaries 
this requirement is even more stringent as it is also necessary to 
match the reduction in the volume of the material on crystallization



Figure 5*3: Desired temperature profile for single crystal growth.
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Figure 5«^: Diagram of the furnace along with its temperature profile 
for growth of single crystals in glass capillaries.



by flow of the crystal melt to the interface

A furnace having a sharp temperature gradient was built in which 
controlled recrystallization of the crystal material in the 
polycrystalline cored fibres could be carried out. This furnace is 
essentially a resistance furnace but has a water flow arrangement to 
provide a sharp temperature gradient. The furnace and its temperature 
profile are shown in figure 5«*+- The water suply to the furnace was 
from a constant water head in order to stabilise the temperature 
profile and also to keep the hot-cold interface at a fixed position 
in the furnace. The fibres could be lowered down the furnace with 
speeds in the 10 to 50 mm/hr range by means of a pulley, having 
different radii, connected to the shaft of a motor.

As the process of recrystallization of polycrystalline core of the 
fibres is slow a number of fibres were used in each run. This was 
done by placing them in a small diameter thin walled pyrex glass 
container which was then lowered into the furnace using the motor 
with the pulley arrangement. Before, recrystallization was started it 
was always ensured that there was a short section (few mms) of 
polycrystalline cored fibres in the region having temperature below 
the melting point of the crystal. This was done to prevent the melt 
from supercooling. The yield of the void free crystals grown in this 
manner was 1 to 5% in each run. The maximum lengths of single crystal 
obtained were U to 5 mm for capillary bore diameters in the region of 
35 ym. The fibres were assessed for their core quality using a 
polarising microscope with magnification upto x500. A number or 
different types of defects/voids were observed and they can be 
categorised as follows:

1. Bubbles/Small Voids (maximum size equal to the bore diameters): 
During melting of the polycrystalline core many microbubbles are 
released and in some cases they can join together to give rise to 
bubbles, having dimensions of upto bore diameter. On subsequent 
crystallization of the melt these bubbles are ’frozen* in the core. 
In figure 5»5 a picture of a typical void of this form is given.

2. General voids and those between the crystal and the walls of the



capillary:
These can occur as on crystallization there is a decrease in the 
volume of the material and if this volume is not filled by the flow 
of melt (by gravity in this case) to the crystal face a void will be 
generated. Pictures of this type of void in the fibre core are given 
in figure 5*6* However, in a few cases a break in the crystal core 
was observed and this is shown in figure 5«T» Interesting feature of 
this defect is that the crystal alignment is preserved through the 
void. This type of void was found to be more prevalent in growth of 
crystals in small bore capillaries and possible mechanisms 
responsible for this are discussed in section

3. Non-uniform axis alignment:

In some crystal cored fibres it was observed that the direction of 
the crystal c-axis varied along the length of the fibre. This can 
occur if the melt-crystal interface is concave in which case there is 
a possibility of the growth of spurious nuclei which could maintain 
growth over short lengths. A photograph of such a fibre between the 
cross polarisers is given in figure 5*8*

It was considered that type 1 defects, above, could be eliminated by 
filling of the crystal melt and carrying out the subsequent 
crystallization in the same furnace. On implementation of the above 
scheme it was observed that the number of the voids was significantly 
reduced. The maximum length of single void free crystal obtained in 
the above manner was 20mm in a capillary of UOym bore diameter. 
During the growth at times the melt will supercool and as a result 
the crystal core will be polycrystalline for a few centimeters after 
which single crystal growth was observed. The occurence of this was 
prevented by introducing a crystal seed into the melt container, 
after it had traversed a few millimeters in the cold region, to 
initiate the crystal growth. It was also found that it was very 
important to ensure that the water level in the furnace remained 
constant during the crystal growth. If it were to suddenly rise, then 
the melt in the length of capillary now in the region of temperature 
below crystal's melting point will crystallize randomly. As a result 
there will be sections of single crystal core seperated by sections
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Figure 5.5: A photograph showing voids in a fibre due to presence of 
bubbles in the melt.

Figure 5*6: Photographs showing fibre voids generated due to the
insufficient flow of melt to the crystal face.



Figure 5.7: A photograph showing break in the crystal core due to a 
large void.

Figure 5*8: A photograph of fibre with variation in the crystal axis 
along the length.



of polycrystalline core. Also, it is necessary to prevent any thermal 
or mechanical perturbations during the growth to realise uniform 
single crystal growth.

To grow crystals in capillaries with pulling speeds of lOmm/hr it 
takes upto 6hrs for the growth to he completed. In the furnace used 
control of the water level for upto this period was found to be 
unsatisfactory. The water flow arrangement was modified and this is 
shown along with the furnace's temperature profile in figure 5»9« The 
temperature gradient of this furnace was less than that of the 
previous one ie U.T5°C/inm instead of 9*30°C/mm. However, decrease in 
the temperature gradient did not adversely effect the quality of 
crystals grown. It was possible to obtain single crystals of lengths 
upto 30mms in capillaries having bore diameters in 30 ym to UOym 
range. The optimum pulling rate for crystal growth in capillaries 
with bore diameters <U0yms was found to be l8mm/hr.

The quality of crystals grown in capillaries with bore diameter 
>50yms was poor. The maximum single crystal lengths were only a few 
millimeters. This is because for large diameter crystal growth the 
pulling speed has to be very low too allow the melt to reach crystal 
face and also to permit the latent heat of crystallization to be 
conducted away through the crystal and capillary walls. Additionally 
the requirements of stable temperature profile and isolation from 
mechanical disturbances are more stringent than for growth in small 
bore capillaries. Hence, a furnace has to be designed taking above 
considerations into account. As our interest was in growth of 
crystals in small bore capillaries, ie <U0yms, no further 
improvements were incorporated in the furnace design.

A few single crystals were also grown in capillaries with bore 
diameters down to 10ym. The quality of the growth was found to be 
satisfactory and void free single crystals of lengths upto 30mms. 
were easily obtained.

The crystals were assessed for their quality using a polarising 
microscope with magnification in the 25 to 500 range. A photograph of 
a good quality acetamide crystal cored fibre taken between cross-
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Temperature

Figure 5*9: Improved furnace along with its temperature profile for 
growth of void free single crystals in capillaries.
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Figure 5.10: A photograph of a void free single acetamide crystal
cored fibre.
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Figure 5.11: Diagram showing the influence of transverse temperature 

gradients on the direction of crystal growth in capillaries.



polarisers is given in figure 5«10. The deviations of the crystal
axis from the fibre axis was also determined. It was found that the 
crystal axis was not always along the fibre axis and deviations of 
upto 10° were measured. However, in majority of the samples deviation 
of the crystal axis from the fibre axis was less than 2°. The crystal 
axis alignment in the fibre will be along the direction which is 
favoured by the temperature gradient, which in this case is along the 
fibre axis, in absence of any mechanical or thermal perturbations 
during the growth. The crystal axis deviations could also have been 
caused by the presence of small transverse temperature gradient, see 
figure 5«H* However, for growth in capillaries having small
diameters this effect should not be significant. The major cause of 
the deviations thus seems to be that the crystal alignment in the 
fibre is determined by the direction of intial nucleation. This 
effect could then be eliminated by pulling at faster rates. In this 
case if the intial nucleation direction is not along the fibre axis, 
the crystal growth along this direction will not be able to match the 
pulling rate thereby leading to supercooling of the melt and 
subsequent nucleation of crystallite having crystal axis along the 
fibre axis. It was decided to verify the above hypothesis by
increasing the pulling speed. The fibres pulled in this manner had
crystal axis along the fibre axis but the void content was found to 
be unacceptably high. This was so as melt did not have sufficient 
time to reach the crystal face to occupy the space generated by 
reduction in volume on crystallization. As a result of this it was 
decided to select fibres with crystal axis along the fibre axis for 
SHG experimentation rather than to farther improve the furnace 
design. The birefringence fringes obtained using sodium light with 
acetamide cored fibre, indicating good optical quality of the crystal 
core, are given in figure 5*12. Their symmetrical behaviour indicates 
that the crystal axis is along the fibre axis..

The growth of acetemide crystals in capillaries having bore diameters 
<10yms was not carried out as experiments to prevent water absorption 
by the crystal end faces by coating them with a thin protective layer 
were unsuccessful. The coating of the crystal faces was attempted by 
using fine layer of quick setting adhesives e.g. cyanoacrylate, 
bostick, Lacquer adhesives etc. All the adhesives used reacted with



Ref
rac
tiv
e i
nde
x

9 5

Figure 5.12: A photograph of birefringence fringes obtained using a 

void free single acetamide crystal cored fibre.
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Figure 5.13: Plot of SKN18 glass’s dispersion.
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the lengths of upto 100ym of acetamide crystal from the end face. The 
other disadvantage was that they left a non-uniform film of adhesive 
at the fibre end and this would have significantly reduced the 
efficiency of launching light into the fibre. The other possibility 
tried was application of water blocking barrier e.g. cedarwood oil, 
vaseline, grease, and parafin oil to the crystal face. All these 
materials also reacted with the crystal face with rates varying from 
1.5vWmin to llym/min. Failure to find any suitable material to 
prevent water absorption by acetamide led to reassessment of its 
suitability for SHG experimentation. Also, as there was not 
sufficient data avialable on acetamides refractive indices in the 
near infra-red, it was decided to find an alternative crystal 
material for SHG. Benzil was then selected and its growth in 
capillaries with bore diameters less than lOyras is discussed in 
section 5*5*

5.2 Selection Of Capillary Glass For The Fabrication Of Benzil 
Crystal Cored Fibres:

In order to make an optical waveguide it is necessary that the 
cladding refractive index be less than that of the core. For single 
mode operation in a uniaxial crystal cored fibre, with crystal axis 
along the fibre axis, cladding index is given by (equation 2.3.9),

n. K -
2 .l<.05(n1 /n^) 2

k a0
(5.2.1)

It is generally preferable to have a large core diameter and to make 
the core-cladding index difference small so that the light can easily 
be launched into the fibre. For non-linear interactions to occur it 
is necessary to have high field strengths in the fibre core. In which 
case small core size can be used to exploit non-linear effects with 
low powers. In order to optimise between the two it was decided to 
select a glass which will give single mode operation with core 
diameters less than lOym. The Schott glass SKN18 was found to be best 
for fabrication of single mode benzil crystal cored fibres. Its 
dispersion has been plotted in figure 5*13. Hence for single mode 
operation at the wavelength of 0.9yni , the core diameter should be
U.U5ym.



The refractive index of the SKN13 glass supplied by the manufacturer 
was measured at 0.633pm wavelength using an Abbe refractrometer and 
was found to agree with the manufacturer’s quoted value.

5.3 Prepration Of Glass Capillaries:

The glass supplied by the manufacturer was in the form of a large
rectangular block. A glass sliver was melted and large bore capillary
formed by blowing an air bubble through it. The typical dimensions of
these preforms were,
outer diameter = 6mm
Inner diameter = 0.8mm
Length = 3^mm
These capillaries were then roughly annealed over a period of 12 
hours as otherwise they tended to crack upon heating them upto their 
glass transformation temperature. These preforms were then used by a 
glass blower to draw capillaries, having small bore diameters, by 
hand. The capillaries obtained in this manner had bore diameters down 
to 20pm and bore was uniform to upto 10mm in length. The attempted 
pulling of smaller bore diameter capillaries generally resulted in 
bore collapse.

In order to pull capillaries with bores <20pm, a hypodermic tube 
furnace was used. A brass hypodermic tube of 7 5 nun. length and 
approximately 300pm bore diameter was connected to mains via a 
current transformer and a Variac. The glass capillaries drawn by the 
glass blower having diameters in the range 
25 um < i.d. < 75 um 
90 um < o.d. <  1T5 um
were used as preforms for drawing small bore capillaries. The preform 
was threaded through the furnace with one end fixed while a weight (3 
to 5 gins) was attached to the other end. On increasing the Variac 
voltage the preform started pulling. E*y trial and error pulled down 
ratios of 1:10 could be obtained. The fibres pulled down using this 
furnace had uniform bores over lengths upto 20 to 30 mm.

During, the course of above work a resistance furnace developed by



Handerek(l9 8 2) to pull glass capillaries for fabrication of single 
mode liquid filled guides became avialable. This furnace had a short 
hot zone allowing pull down ratios of 1:20 to be obtained. The 
furnace was approximately 2 metres above the floor level, as a result 
it was possible to draw uniform bore capillaries. The pulling of 
large bore diameter preform (i.d. = 0.8mm) was done in two stages. 
This gave pulled down ratio of 1:^00 and single mode size capillaries 
having uniform bore over lengths of upto iiOmms were easily obtained. 
A picture of the cross-section of one of the capillaries pulled was 
taken using an electron microscope, figure As the bore in the
starting preform was not always circular, the final pulled down bore 
in some cases had an elliptical cross-section.

5.U Change In Glass Refractive Index On Capillary Drawing:

Glass manufacturer's do not specify the change in glass refractive 
index that occurs on heating it to temperatures above glass 
transformation temperature as this change is not a well defined 
function. In prepration of glass capillaries for crystal growth the 
glass was heated a number of times to temperatures above the
transformation temperature. Hence, it is necessary to determine the 
refractive index of the pulled down glass capillaries in order to
estimate the core diameter with which single mode operation at a 
given wavelength is possible.

The refractive index of glass capillaries was measured using 
'immersion method'. In this method liquids of known refractive 
indices are used as immersion media. The sample is placed in the 
successive immersions till the sample is indistinguishable in an
immersion. This will occur when the sample index equals that of the 
immersion. While viewing the sample in an immersion using a
microscope, on lowering the stage a bright line is seen to move into 
the region out of the two having higher refractive index. This line 
is referred to as 'Becke^ line' and can be used in conjunction with 
the 'immersion method' to determine the refractive index of the 
pulled down glass capillaries. In order to measure the refractive 
index SKN18 capillaries, mixtures of 1-bromonapthalene and
iodobenzene, were used as immersion media to give refractive indices

vG



in the range 1.612 to 1.651. The refractive index of the mixtures was
determined using the Abbe*" refractometer. The glass capillary was
placed in successive mixtures having increasing refractive index and
with the aid of Becke line- it was found that the glass index, n *

§was such that

• 1.6237 < n < 1*62^5
g

It was not found possible to mix the liquids in right proportions to 
give an index within the above range. Hence, the refractive index of 
SKU18 capillary was assumed to be given by the mean of the above 
interval i.e. 1.62U1. However, as only an estimate of the typical 
change in the refractive index was required (as no two capillary 
drawing runs are identical) no attempt was made to improve on the 
above accuracy. This value indicates reduction in the SKN18 
refractive index by 0. 78% on drawing it into capillaries by the 
method discussed in the previous section.This change in the 
refractive index is very large in comparison with the core-cladding 
index difference which was used in selection of SKN18 glass to give 
single mode operation. In view of this, for single mode operation at 
0,9ym wavelength the core diameter needs to be 2.67ym.

The glass refractive index changes whenever it is heated to its 
transformation temperature and subsequently cooled to ambient 
temperature. This change occurs as a result of residual stresses 
which . occur on cooling and can vary depending upon the thermal 
history of the glass during the cooling process from the
transformation temperature to the ambient temperature. It is however 
possible by fine annealing to prevent change in refractive index and 
glass manufacturers have developed annealing schedules to permit 
processing of glasses without introducing stress birefringence. The 
change in refractive index on annealing for borosilicate glasses has 
been shown by Lillie(195*0 to be given by

» 1

n = n - K.In(R / R) (5.^.1)

»
where, n and n are the refractive indices of glass annealed at

1

rates R and R respectively and K is a constant for a given glass



Figure 5.lU: A photograph of SKN18 capillary taken using

electron microscope.

Figure 5*15: A photograph of void free benzil single crystal 

fibre.

scanning

monomode

vD



type. 99

This problem of change in glass refractive index was encountered in 
the latter part of the research program. It was decided not to 
develop a fine annealing routine as this in itself would have been a 
detailed study and especially as SKN18 glass capillaries could be 
used despite of change in their refractive index for fabrication of 
monomode benzil crystal cored fibres.

5.5 Growth Of Benzil Crystals In Small Bore Capillaries:

The growth of benzil crystals in small bore capillaries was attempted 
using the furnace given in figure 5»9» The capillaries had bore 
diameter <10ym and were about 55nnn in length. In some of the intial 
growth attempts it was observed that at times nucleation did not take 
place even though the melt had moved into the cold zone of the 
furnace. The supercooling of the benzil in this case could be 
attributed to the- high purity of the melt. In order to initiate 
nucleation, a taper was incorporated in the boat, figure 5*9» A 
pulling speed of l8mm/hr and a temperature gradient of 5°C/mm were 
found to give optimum conditions for void free single crystal growth. 
Void free monomode benzil crystal cored fibres of lengths upto 50mm 
were obtained. The crystal length was limited by the furnace design 
and, in principle, it should be possible to obtain longer lengths of 
void free fibre. A photograph of a void-free monomode benzil crystal 
cored fibre between the cross polarisers is given in figure 5»15» The 
direction of benzil crystal axis in glass capillaries was determined 
using a polarising microscope and was found to be along the fibre 
axis. At times deviations of upto 5° vere observed and these were, as 
discussed in section 5.1, due to the presence of transverse 
temperature gradients in the furnace.

The defects observed in the growth of benzil crystals in small bore 
capillaries were of similar type as those observed in the case of 
large bore acetamide cored fibres. In figure 5«l6 photographs of 
typical voids observed are given. However, in this case break in the 
crystal core was found to occur more often than for crystals grown in 
large bore capillaries. The seperation between single crystal
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Figure 5.16: Photographs showing typical voids in benzil crystal

cored fibres.



sections varied from few microns to upto five times the bore
diameter. The intresting nature of this defect is that the crystal 
alignment is preserved through the void. The explanation for this
behaviour is that the small bore size of the capillary initiates
nucleation along the direction determined by the temperature 
gradients in the furnace and as these are constant for a given 
crystal growth run, the direction of crystal nucleation is same along 
the length of the fibre. The greater incidence of this type of defect 
in small bore capillaries cf large bore capillaries, is because of 
the reduced volume of melt there is a need of greater degree of
optimisation between the temperature gradient and the pulling speed. 
No further work was carried out on crystal growth as with the growth 
conditions discussed above it was easily possible to obtain void free 
fibres for SHG experiments.



CHAPTER 6

Optical SHG Experiments Using Benzil Crystal Cored Fibres

6.0 Introduction:

In this chapter results of optical SHG experiments using benzil 
crystal cored fibres are presented. The benzil crystal cored fibres 
were fabricated to demonstrate optical SHG by coupling SH to the
radiation field. Intially, experiments were conducted to demonstrate 
SHG using a GaAs laser, operating at 0.9ym wavelength, as the 
fundamental source. These experiments did not lead to observation of 
SHG primarily because of insufficient optical intensities at the 
fundamental wavelength, due to poor fibre end quality, and high 
attenuation of the SH wavelength in benzil. The experiments were then 
conducted using a high power Nd:YAG laser operating at 1.06ym
wavelength. In this case SHG was demonstrated by coupling the SH to 
the radiation field.

6.1 SHG Experiments Using GaAs Laser:

The GaAs laser was selected as the fundamental source, to demonstrate 
SHG in benzil crystal cored fibres, as it can be made to emit high 
peak powers in the pulsed mode and is an inexpensive laser source.
The lasing wavelength for GaAs lasers is generally between 0.8 to
0.9ym and as a result SH will be in the blue region of the spectrum. 
A demonstration of efficient SHG, in this case, could be of use for 
printing applications where there is a requirement for a cheap, 
miniature and high intensity source in the blue and near ultra-voilet 
region.

For this work a RCA high power GaAs laser, type SG2012, rated to 
deliver pulses of 20W peak power, for 36a threshold current, with 
maximum pulse width of 0.2ys and duty factor of 0.1°/Q was chosen. 
To drive this laser a circuit capable of supplying low duty cycle 
high current pulses was designed. This essentially comprised of a 
co-axial line in series with a spark gap and the laser diode, figure



Figure 6.1: Diagram of the laser drive circuit.
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6.1. On application of the switch SI, the transmission line starts
charging until a breakdown voltage, V, develops across the spark gap.
At the onset of breakdown in the spark gap., a current pulse, I, is
injected into the laser diode and its magnitude is given by

I = V/(2Z ) o
where, Z is the load impedance and for maximum power transfer it o
was made equal to the line characteristic impedeance.

The magnitude of the current pulse is dependent on the spark gap 
breakdown voltage and can therefore be set to give any desired value 
by adjusting the spark gap. The current pulse duration, fit, is 
dependent upon the transmission line length and can be shown using 
transmission line theory to be given by

fit = 21e1 2̂ /c
where,
1 is the length of the transmission line, 
c is the velocity of light in vacuum.
e is the relative permittivity of the dielectric material in the co­
axial line and for PTFE its value is 2.25.

The pulse repetation rate is determined by the charging time of the 
line and is given by

T = CR = 5tR/(2Z ) o
where, C and R are the line capacitance and the charging resistance 
respectively.

A co-axial line of 50ohm characteristic impedance and 9m length was 
used with a line charging resistance of 150Mohm to give laser drive 
current pulses of 90ns width at a reptetion rate of 22Hz.

The spark gap was generally arranged to give peak laser output power 
in 30 to U5W range. It was attempted to obtain higher peak powers 
with increased injection current but this resulted in laser facet 
damage after few hours of operation. The laser pulse width was 
measured at FWHM points to correspond to 8 0ns and the repetition rate 
was measured to be 23Hz.

The laser radiation was collimated using a xlO microscope objective



and then launched into a single mode benzil crystal cored fibre using
a xU5 microscope objective. The peak optical power at the focus of
xl5 objective was arranged, by suitably adjusting the spark gap, to
be equal to UOW. This corresponds to optical intensity of about 225MW/cm . The launch efficiency in this case for a monomode fibre 
with 5pm core diameter was only about 10% as the spot size dimensions 
at the focus of xU5 objective were approximately 2pm x 100pm. This 
large value of the spot size is as a result of the laser output
having assymetrical radiation pattern. The estimation of the launch 
efficiency is further complicated by the fact that it is dependent on 
the fibre end quality which for organic crystal cored fibres can be 
highly variable. It is however possible to estimate the launch
efficiency and the fibre attenuation by monitoring the output power. 
The fibre output power was measured for a number of fibres, having 
lengths in the 2 to Ucm range, to vary from about lmW to 1.5W. This 
measurement of the output power also includes soms of the cladding
power as it is not possible to completely strip the cladding modes 
over these small lengths. Also, power can be coupled into the 
cladding by the voids/defects in the core. This large variation in 
the measured output power indicates that the fibre ends were of 
variable quality as care was taken to use void free fibres. The fibre 
ends were prepared by scribbing the cladding glass using a diamond 
scriber and followed by gentle pressure to obtain a clean break. This 
often resulted in benzil crystal broken some distance in the 
capillary(2 to 25pm). The preferred method of end perpartion would be 
to polish the fibre ends but this is not feasible because of the 
large variation in the hardness of organic crystals and glass.
Despite of the shortcomings of the method used for making fibre ends 
it was possible, in many cases, by preparing new ends to obtain peak 
output powers in the 0.25 to 1.5W range. At these output powers the 
intensity of the fundamental in the fibre core is not high but should 
be adequate for SHG measurement using a sensitive detection 
arrangement.

To detect the SH signal, the fibre output was collimated using a 
microscope objective and monitored through 0.9ym absorbing filters 
using a cooled photomultiplier. In this case as the average 
fundamental power is low the SH would not be visible to the naked eye
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and it is necessary to ensure that SH power measurement does not give 
errorneous results due to the noise associated in detection of weak 
optical signals. The test for SH observation is that the output power 
should be proportional to the square of the fundamental power and for 
coupling of the SH to radiation field be proportional to the 
interaction length. In this case the former test was adopted as it 
would not have been possible to obtain reproducibile launch 
efficiencies on preparation of new fibre ends. Also, as the crystal 
quality can vary along the fibre length, the variation of the SH 
power with fibre length is not a reliable test for demonstration of 
SHG. The SH measurements made did not lead to demonstration of SHG 
even though this experiment was carried out using over 50 fibre 
samples. The principal reasons identified for the failure to observe 
SHG with the GaAs laser are insufficient fundamental intensity in 
the fibre core due to poor end quality, low value of benzil’s SH 
tensor coefficient and high attenuation of the SH in the fibre. The 
attenuation of the SH wavelength in the bulk benzil crystals was 
estimated from its transmission spectra to be approximately 
-8.UdB/cm. This value is high because of the close proximity of the 
SH wavelength to the benzil’s UV absorption band.

6.2 SHG Experiments Using Nd:YAG Laser

The advantages with the use of Nd:YAG laser, at 1.06Uym, for SHG with 
benzil crystal cored fibres are very high peak and average optical 
powers are avialable and the SH wavelength will not suffer 
significant attenuation as it is well away from the benzil's UV 
absorption edge.

For this work Quantronix Q-switched NdtYAG laser rated to deliver 
peak powers of 12kW with pulse duration of 0.1 ys and repetition rate 
of 500Hz was used. The laser output was attenuated using neutral 
density filters and launched into single mode benzil crystal cored 
fibres using a xlO microscope objective. The higher magnification 
objectives were not used so as to prevent optical damage in benzil at 
very high optical intensities. In a typical experiment, light was 
launched into a 3cm long fibre having approximately 3.75yni core 
diameter and 0.2 numerical aperture. The SH so generated was seen to
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Figure 6.2: Optical SHG in benzil crystal cored fibre by coupling to 
the SH radiation field.



"be guided in the cladding and could he seen on a screen to correspond 
to the far field pattern of the cladding, figure 6.2. This 
observation implies that the optical SHG is as a result of coupling 
the SH to radiation field. The SH conversion efficiency of 2x10 %  
has been estimated with fundamental power of U00W try comparing the 
intensity of SH output with that of a signal of an equivalent 
intensity. The value of SHG efficiency obtained is rather low. This 
is due to the small value of benzil's SH tensor coefficient and 
since the SH wave is guided in the cladding it may destructively 
interfere with the SH generated at later instants. This interference 
process is quite complex as the SH propagates in the cladding as a 
number of different modes, the cladding being a multimode dielectric 
waveguiding structure. This problem arises because of the long 
coherence length of the Nd:YAG laser and will not arise with high 
power semiconductor lasers.



CONCLUSION

In the thesis results of the study on fabrication of a waveguiding 
structure using organic non-linear crystal materials for phase 
matched optical SHG have been presented. There is considerable 
interest in fabrication of efficient frequency doublers, mixers and 
parametric amplifiers which also require low input optical powers. 
The use of organic materials in fabrication of these devices is 
especially attractive as they have high non-linear susceptibilties, 
high optical damage thresholds and it is possible to optimise the 
material properties using molecular engineering.

The form of waveguiding structure used involved growth of a single 
crystal from melt in glass capillaries. The use of glass cladding is 
attractive as it overcomes the disadvantages of lack of mechanical 
strength and tendency of chemical attack in organic materials. The 
other advantage is that for a given core material it is easy to find 
a suitable cladding glass as glasses are avialable having wide range 
of refractive indices. This method of crystal growth was successfully 
used to grow void free single crystals of acetamide and benzil in 
glass capillaries having bore diameter in the 10ym to 50 ym range. The 
growth of acetamide which is a hygroscopic material, was not pursued 
after attempts to find a suitable water barrier to coat the fibre 
ends were unsuccessful. The growth of benzil crystals was 
successfully extended to capillaries having bore diameter in the 2ym 
to lOym range for single mode propagation. The lengths of void free 
single crystals grown were typically in the 30 to 50mm range. The 
upper limit was essentially dependent on the furnace design and it is 
anticipated that growth of single crystals of lengths upto 100mm 
should not pose significant problems. These lengths of crystal cored 
fibres can result in very efficient non-linear devices. The major 
mechanisms for void formation were identified to be presence of 
bubbles during filling of the capillaries with the melt and on 
crystallization as a result of insufficient flow of the crystal melt 
to the crystal face. The former type of voids were eliminated by 
ensuring that the melt was free of bubbles prior to filling of the 
capillaries and the latter type of voids were minimized by 
optimisation of the furnace temperature gradient and the pulling
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The wave propagation in these fibres is very similar to that in 
silica fibres. The wave propagation in weakly guiding isotropic cored 
fibres has been discussed and developed to describe propagation in 
crystal cored waveguides. As the core material is usually anisotropic 
the effects of anisotropy on mode propagation have also been 
discussed. A computer program was written to study propagation in 
uniaxial crystal cored fibres with the crystal axis along the fibre 
axis. This program was used to show that for core birefringence of 
upto 10 percent the variation in the normalised propagation constant 
as a function of the core-cladding refractive index is less than 
1.72% . This small variation in propagation constants is due to the 
fields being very nearly transverse. The wave propagation in biaxial 
crystal cored fibres and in uniaxial crystal cored fibres with 
crystal axis not along the fibre axis, is more difficult to describe 
as analytical solutions do not exist. For these guides a perturbation 
method has been discussed which could be used to compute the 
propagation constants. It has been shown that in fibres with highly 
dispersive cores it is necessary to take material dispersion into 
account for designing waveguides in which phase matching has to be 
achieved for non-linear interactions.

The theory of optical SHG in crystal cored fibres has been developed
in some detail and it can easily be adapted to other three wave
interactions. The two important considerations for efficient guided
wave interactions are the phase-matching and the need to maximise the
overlap integral. These both are intimately related and the highest
efficiencies are only possible when the fundamental and the SH modes
are of the same type. This in practice is rather difficult to achieve
due to waveguide dispersion. A much simpler form of phase matching is
to couple the SH to the radiation field. This form of SHI is not as
efficient as the guided wave SHG as the overlap integral is small and
the conversion efficiency is guide length dependent rather than the
length square as for the guided wave SHG. For benzil crystal cored
fibres SHG efficiency ty coupling the SH to radiation field was
computed for a 10mm long fibre with V-value of 2.3 at the fundamental

c -3o/wavelength of 1 .0 6Uym and input power of 1W to be 2.6x10 /0while



that for coupling the SH into the HE guided made was 12. U%. High 
efficiencies obtainable with the guided wave SHG hold the kqy to the 
success of this type of device for three wave mixing processes. It 
should be possible to achieve even higher conversion efficiencies by 
either using an elliptical cored guide or a biaxial crystal core 
where depending upon the crystal class it should be possible to
achieve phase-matching between the fundamental and SH HE modes.11At present tims there are number of research groups trying to develop 
organic materials with even higher values of second order non­
linearity. As an example with the use of 2-metbyl-U-nitroaniline(MNA) 
(Levine et al 1979) the SHG efficiency will increase by a factor of 
1890 as compared with that for benzil crystal core due to the MNA's 
exceptionally large value of the SH tensor co-efficient.

For this study it was decided to demonstrate SHG by coupling the SH 
to the radiation field. Benzil crystal cored fibres were fabricated 
by growing single void free crystals in Schott SKN18 glass 
capillaries. These fibres were designed to be monomode at 0.9pm with 
bore diameter of about U.5pm. However, it was found that the glass 
refractive index changed upto a percent on drawing small bore 
capillaries due to residual stresses. As a result only the fibres 
with bore diameter of less than 3pm were monomode at 0.9pm 
wavelength. In order to obtain an estimate of the lower transmission 
loss limit in these fibres bulk benzil crystals were grown and their 
transmission spectra was measured along with attenuation measurements 
at 0.633pm wavelength. The transmission loss of benzil crystal cored 
fibres was measured at 0.633pm to be in the range -1.5 bo -1.9dB/cm 
while the bulk attenuation was found to be -0.9dB/cm. The SHG 
experiments were first conducted using 0.9pm GaAs laser source. These 
experiments were not successful because of the insufficient 
fundamental launch powers and high attenuation of the SH signal in 
benzil. The experiments were then conducted using a high power Nd:YAG 
laser operating at 1.06Upm wavelength. In this case SH generated was 
observed to couple into the cladding glass. This experiment clearly
demonstrates that the phase-matching condition has been satisfied._3The SH conversion efficiency was estimated to be 2x10 %  for a 30mm
fibre with U00W peak input power. Further investigation of these 
fibres was not possible due limited access to the Nd:YAG laser. The



phase matched SHG in benzil crystal cored fibres is significant as it 
demonstrates that materials which cannot be phase-matched in the bulk, 
can be exploited for three wave mixing using guiding structures. 
Also, this is believed to be the first demonstration of a phase 
matched three wave mixing process using an organic material in a 
cylinderical waveguiding stucture.



APPENDIX 1

Description and listing of the computer program used to determine 
propagation constants of modes in fibres:

The propagation constants of modes in uniaxial crystal cored fibres
with the crystal axis along the fibre axis and isotropic cored fibres
can be evaluated from their respective transcendental equations given
in chapter 2. The transcendental equation for an isotropic cored
fibre is a special case of that for the uniaxial guide with
n =n . z 1

A computer program, TRANS, was written to solve the transcendental
equation for a uniaxial crystal cored fibre with its crystal axis
along the fibre axis. To solve the transcendental equation, the
program requires an intial guess for the root which is then used to
find the exact root using a modified Newton-Raphson method. The
intial guess value for the propagation constant is chosen to be
slightly greater than the propagation constant in the cladding ie
n k 5 as otherwise overflow is generated due to very large values 2 o
of the K-Bessel's functions. The accuracy of the computer program is 
also evaluated by substituting the root back into the transcendental 
equation and evaluating its numerical value. To check the accuracy of 
the computations the results were compared with the values of 
propagation constants reported in the open literature by other 
researchers and good agreement was obtained. As an example in table 
A1 the results obtained using TRANS are compared with that reported 
by Yeh(l977 )• No comparision of results for uniaxial crystal cored 
fibres was made as this is believed to be the first such study.



TABLE A1

Method of computation k a 0 e = e/kn 0 Numerical value of 
the transcendental 
equation

Subroutine TRANS 5.13593 1.50101*2 -0.80
10.19825 1.507002 -0 . 0 0 1 8

26.13023 1.513001 -0.00032

Yeti's results 5.13593 1.501000 33.98
10.19825 1.507000 0.0073
26.13023 1.513000 0.0025
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iUBKOUTINE TRANS(HAVE,RI1»RI2*RIZ»CR* NN,MM* UC»ANS*R»ACC) 
EXTERNAv. F . _
COMMON V,A,PKi*PK2.PKZ.RZR1,N»„,_D

PURPOSE
H I T H ^ S ^ r W J c OR UHIAXlALTC O ^ RFROH£ fHEFTRAN?EEi^NVAL EQUATION

FIBER.

SIGNAL
FOR MA^E PROPAGATION IN AN OPTICAL FIDE.';.
INFUT DATA REQUIRED

WAYE- WAVELENGTH OF THE OPTICAL l 
Rll- CORE RI ALONG A- AND Y- AXEJ 
RI2- CLAOOING Rl
Riz- coke ri along z -axes
CR- CORE RADIUS
NN AND MM SPECIFYING THE NODE NUMBER
UC- St T TO 0.0, UNLESS THE ACCURACY OF U CALCULATED BY SOME 
OTME« ROUTINE aS TO 9E TESTiC
ACC- ACCURACY TO WHICH ROOT REQUIRED —  SET TO 1.0E-0L 

OUTPUT
R- COMPUTED U- VALUE FOR A PATJT 
ANS- GIVES The A£CU*A£r gF_7H„

THE TRANS ^ B?o5S?!aTUTINCw  • ni,
THE VALUE U OoTAlNEO 

METHOD
FIRST THE VALUES OF 
OF THE RUOT OF THE 
SUBROUTINE C02AAFU,
THE ROOTII.E. U), OF ir,s.
TO A SPECIFIED ACCURACY.

ERROR MESSAGE DUE TO C02AAF
IFAIl=1 FUNCTION HAS SAME SIGN AT THE INTERVAL LIMITS 
THE ABOVE Ek ROR MILL NOT OCCUR IN ROUTINE

R SIOE
_ BRARY 
CALCULATED

A = CR 
N= NN 
M = f1M
FI=L.0*ATAn (1.0I 
RZ RI = RIZ/RII 
PK=(2.;*PI)/MAVE 
PKl=PK*RI1 
PK2=PK*KI2 
P<Z=pK*RIZ

IF(UC.GT.O.O)GOTOl5**
IF(N.NE.1.0R.N.NE.1IG0T087 
IF ( V.GT .3.5) GOT091 
GLT098

67 IF(V.GT.h .75)GOTO90 as u = v 10*1 „
G0T095 

90 U = u • 1
95 ODliiOI=l, 100 

FUN=F(U)
iFd.EO.l) PF.EVFsFUN 
IF (FUN) 13,1-., 15 

13 P = U
IF(PREVF.GT.O.O»GOT017 
G0T016 

15 0 = U
IFIPREVF.LT.u.0)GOTO17 

IS IF(N.NE.1.0R.H.NE.1IG0T096 
IF (V.GT.3.5)G0T096 
G0T097

96 IF(V.GT .*♦ .75) G0T096
97 U=V-VMFLOAT (11/100.0)

M = ((V*»2)- (U**2))**0.5 
P<EVF=FUN
GGTOluO

96 M=V-V*(FLOAT(I)/100.0I 
U*((V*»2)-(W**2I»**0.5
PR£VF=FUN 

li»0 CjNTINJE
MR IT E(S,155)PiQ

155 F0RMAT(10X,Eis. 6* ltlX .E15.81 
17 EPS*ACC 

ETA=ACC 
*FAIL=0
CALL C05ACF(P,Q,EPS,ETA,F,R,IFAILJ 
iF(IFAlL.EQ.i.)iOTO70 
MRITE(S,15J)IFAlc 

153 FORMAT(//,25X,-IFAIL **MVI 
GOTO70 

IN R = U 
GOTO70 

15!* R = yc 
70 ANS*F(R) 

nETURN 
£NO



I 1 6

FUNCTION FIR)
CwHMON V, AtPKltPKZtPKZ.RZRl^.I, ID
IFd.NE.llCOTOlO
IFdD.tQ.iJGOTOll
Gofoi211 W=0.1
G0T012

10 M3(iV**2)-(U^*2))**C.512 SQA*A**2

U2*U**2
W2=M**2
UisRZRl’U
BETAs I|b k 1**2)-!IU/A)**2H**0.5
SiDE1*FLOATIN**2>*IBETA**2» *SQA*(1(1.0/U2)♦(1.0/W2))**2)
CALL o£SJIU,N,BJtO,IER)
B JNU=BJ
IFdtR.EQ. J)GOTO170 
Wk IT* !&« 21) i.£P.

21 FORMAT! //»25X,**IER 
120 NS1*N-1

CALL BESJIU.NSI,BJ1.0,IE1>
5j NS1U=BJ1 
IFdEl. £Q • 0) GUT0190 
WRITE (a,22)I El 

c2 FORMAT!//*25X,"IE1 *"»I<d 19L NAlsN»l
CALL OiSJIU,NAl«BJ2,0«IE2>
BJNA1U=BJ2 
i.F(Ic.2* &Q.OJGJT0210 
WRITEib« 23)1£2 

23 FORMAT!//,2&X,"IE2 =~.I^»
210 CALL BESK!W,N,BK,IE3) 

bKNM=e<
IFIIe.3.£Q.o)G0T0230 
WRITE(B,2U)1E3 

2« FORMAT! //,25X,"IE3 
230 CAlL BESK!W,N31,BK1«I£%)BXNSlWr3<i

IFU£«.£Q.0)GOTO253 
WRITE !a» 25) IE** 

c5 FORMAT!//,25X ."IE** *-,1<♦)
250 CALL 5ESK!W,NAl,BK2,ItSl 

3KNA1W=3K2 
IF(IE5.EQ.0)GOTO270 
W-UTE16,26)IE5 

2a F3RMAT(//,25X,"IE5 
270 CALL 0ESJIUHtN,BJ3,O,IEb>3JNUM=BJ3

IF(Ih6.cQlw)GOTO2B0 
WRITE IS,2 7)IE6 

27 FORMAT!//,25X,-IEe* “ .I*)
2o0 CALL oSSJ!UH,NSl,9Jb»0»IE7)

BJhSlU1=BJL 
IF(IE7.EQ.0iGOTO290 
WRITE!6,2S)IE7 

23 FORMAT!//,25X,"IE7« “,ILI 
290 CALL BESJ!UM,NA1,BJ5,0*IE8)

BJNAlUi=3J5 
IF!IE5,£Q,j)GOTO30Q 
Wk ITE(a,2 9)IE6 

29 FORMAT!//,25X,“lE8s ",IW>
Rl=l C8JNSlU/BJMUI-!0JNAlU/3 JNU) )*{<) ,5/U) 
R2s (foKNAlH/BKNM)*!BKNSlH/8KNW) )*U.5/W) 
R3=IIBJNS1UH/BJNUM) -I BJNA1Um/BJHXD ) * ! 0 .5/U)
SLB1*»v1-R2
juBt* !P<1*PK2*!A**2I» *R3-! !PK2*AJJl*2J*R2 
SlOEL=iw3l*SLB2
F = SIOEL-SIOER
RETURN
ENO
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SUBROUTINE 6ESJ(X.N.BJ.Q,IERI

PURPOSE
COMPUTE THE J BESSEL FUNCTION FOR A GIVEN ARGUMENT ANO OROER

USAGE
CALL BE3J(X.H.BJ .0«IER)

DESCRiPTIuN OF PARAMETERS
X -THE ARGUMENT OF THE J BESSEL FUNCTION 
N -THE ORDER OF THE J BESSEL FUNCTION 
oJ -THE RESULTANT J BESSEL FUNCTION 

0 -REQUIRED ACCURACY 
1ER -RESULTANT ERROR COOE 

iER’li NO ERROR 
i ER=1 N IS NEGATIVE
iER=2 X IS ZERO OR NEGATIVE
IER=3 REQUIRED ACCURACY HOT OBTAINED
IER*N RANGE OF N C0MPAF_X TO X NOT C(CORRECT (SEE REMARKS)

*EMARKS
N MUST BE GREATER THAN OR EQUAL TO ZERO. BUT IT NUST BE 
LESS THAN
Z. U.*X-X**2/3 FOR X LESS THAN Qh EQUAL TO 15
9Q*X/2 FOR X GECATCR THAN 15

METHOO
RECURRENCE RELATION TECHNIQUE

3 J = 0.0
IF(N)ll,2u,20 

10 i£R= 1 
RETURN

20 IF(X)30.33,31
30 IER=2 

*E TURN
33 B J= 1. u 

RE TURN
31 IFU-15.0) 32.32.3A
32 NT EST = iFlXC2c .0>lw. • X-C X**<)/3.1 )

Gj TO 36
3A NTEST=IFIX(90.0*X/2.0i 
35 IF<N-NTEST)r 0,36*38 
30 I£ft=A 

RETURN 
«.& IE R= 0

BPRE V*Q•0
CjMPUTE STARTING VAlUE OF M
IF(X-5.0)5J.60.60 

50 MA=IFIX(X*6.0)
G0T07.

60 HA=iFlX(1.N*X*6Q.&/X)
70 H? = N*IFIX(X)/<t»Z 

HZERO-MAXO(MA.HB)
S£I UP9ER LIMIT OF H
MMAX=NT£ST
D0190MafiZERO,>1MAX.3
aET FlH) ,F(M-->
Fril=l.J£-28
F1=0.0
ALPHA=0.0
IF (M- (M/2) •2)-2Q.11m .i23no jr=-i
G0TO130 

120 JI=1 
13. Mc s m-2

00 16t» K* l . H  2

BMK»2.0’FLOAT(NKI*FN1/X-FN
FM*FM1
F.11 = BMK
IF(MK-N-l)150.1NI.150 

1AO BJ«8NK 
150 JT*-JTS=1*JT
160 AL?HA=ALPHA»BHK*S 

BMK=2.0*FH1/X-FM 
IF(N).8J.170,-50

170 6J=BMK 
150 AuPHA=AlPHA*BMK 

BJ=BJ/ALPHA
IF(ABS(Bj-BPR£V)*A8S(0*Bj))203,lQQ,l90 

190 BPREV=3J 
IER=3

200 RETURN 
END



SUUnuUTlHE BECK (X ,N,BK, iC»«) 
UlMtNalON TI12I

I 1 8

SUBROUTINE besk 
PURPOSE

COMPUT £ THte K riESSEL FUNCTION TOT. A CIVCII AT.GUHINT

LL BESK(X.N,BK,IER>
USAG|

DESCRIPTION or PARAMETERS
X -THE ARGUMENT OF THE K BESSC’ FUNCTION 
N -THE ORDER OF iHE < BESSEL FONCTIOII 
BK -THE RESULTANT K BESSEL FUNCTION 
It* -RcSULTANT cRRUR CODE IER-0 NO ERROR 

IER*1 N IS NEGATIVE 
I ER*2 X IS ZERO 09 HEGATIVC 
1ER*3 X.Cl.120. MACH1NL iJuiGi. uXCEtOED lER11* bKaGFtlti**TO

REMARKS
N MUST BE GREATER THAN OR EQUAL TO ZCf;0

METHOD
COMPUTES ZERO ORDER ANO FIRST (.TiDER DESSfL FUNCTIONS USING 
SERIES APPROXIMATIONS AND TIILN COMPUTES N Til ORDER FUNCTION 
USING RECURRENCE RELATION.

BK*0.0
IF(NT lb.11,11

10 IER=1 RETURN
It IFIXI12,12,20
U  IER=2 

return20 lMX-lFu.0)22,22,21
21 IER*3 

mETURN
22 1ER = 0

Ir(X-l.wI 36,36,25
25 A = EXP(-X)

0 = 1.0/X 
C* SORT(B)
T(ll*a
03 26L=2»12

26 TIL)* I(L-1)*B 
IF(N-l)22,29,27
Compute ko using polynomial affrcxiiiatioii

27 C0=A*11.25 
£ “ ''££♦...... —
IFINI20,28,29 

21 BK«CQ

C0«A*( 1.25 33161-0.15666<i2*T (11* ,i 88*1:28*T 12)-t09l39t95*T(
♦ 0.1 JM*596*TU)-0.22998 50* T ( 5l-*C . 3792611 • T 6)-C,52*7277*T(7>
♦ 0 . 9575368*T ( 6) -U.<.2t2o33*T (9)-*u .21869l8»T(10) -0. 0668 0977*1 (
♦ . .cu9189383*T(12)l*C

<31
11)

RETURN
CONFUTE K1 USING FULYNOMIAL APrP.OXlllATIOII

161*0.6699927* Tm-0.±n3358:3*T( 2) *0.128Q627 
[61 *t. .2B67618*T I5I-. .55?L3Lw«f 6) *k .628o381 
[81*0.9050239*T (9) -0 .dr81306'*T (103*0.078600

29 C1*A* (1.25 33161*0.6699927* Tfl)-0.i.n;i3§8:T*T( 2) *0.1;
£-v•l7u6632*T(J —
E-O.ob32295*T(81 
£-r.tl.B26i*T(12))*C
1F(N-1) 20,30,31

30 BK«C1 
RETURN
FRUM K0.K1 COMPUTE KN USING RECUPJU:NCE T’XLATIOII

31 0035J=2,N
CJ = 2.(.* (FLOAT (J)-l.ul*(Ci/X) *0. 1F(CJ-1«U£7U)33,33,32

32 1ER=6 
G0T036

03 Cj=ci
35 C1=CJ36 BK=CJ 

RETURN
3b BsX/2.0

A*0.5772156669*ALOG(bl 
C = B*B
IF(N-l)37 ,63,37
COMPUTE KO USING StKltS EXPANSIUI

37 C0=-A 
X2J=l.0 
FACT*1.G 3J=C.0 
DJ**0 J=1,6 
RJ=l.O/FLOAT(J)
F^|{f=?^C?*RJ*RJ 
BJ=BJ*RJ

60 C0«C0*X2J»FACTMBJ-AI 
IF(N)6J,62,i»3

62 BK«C0 
RETURN
COMPUTE K1 USING SERIES EXPANSION

63 X2J-B 
FACT«1.0 
BJ«1.0
Cl*<l*tl/X) *X2J* (ti .5*A-BJ)
0350J*2,8 
X2J*X2J*C 
RJsl.OFFLOAI(J)
FACf«FACT*iU*RJ 
6J«»J*RJ

5 0 Cl*Cl*X2J*FACT*(0.5*(A-BJ)*FL0A7(J))
Ir(N-l)31,52,31

52 BK =Ci 
Ri TURN 
FRD

27*T(3)
•T (710001*T(11)



APPENDIX 2

Evaluation of the field overlap integral for SHG in crystal cored 
fibres:

The field overlap integral determines the modes among which coupling 
can take place and it also determines the strength of coupling. It 
was shown in chapter 2 to be given by

(A2.1)

where, it has been assumed that the fundamental v mode couples 
. thinto y SH guided mode or SH radiation field.

In cylinderical co-ordinate system it can be re-rewritten as

1  =
„ (co/2Ci—vt

 ̂ ^  ) rdrd<£
(y,p)t (A2.2)

o o
"til,In the case of coupling to the y SH guided mode the overlap

integral, I  ̂ can be rewritten using the field expressions, given gin chapter 2, for these modes, as

l

a 2tt

(U(oj/2)r-•)a J (u (“ A )  ic?si VJ Ua \sin v<J)j (
cos y<J> 
sin ycj>j- rdrdcf) 

(A2.3)
where A and A are ‘t̂ ie mode field amplitudes and are given by

5 v yequation (2.2.9).

This integral can be re-written in a simplified notation as

Ig
2

= Av A I
y ' (A2.U)

where,
a

T =“d J Z(U(“/2^v a J rdry a (A2.5)
o

and it gives the magnitude of the coupling strength for coupling the



fundamental v mode into various u modes. For v = y ie similar
mode field configurations, the coupling strength is maximum.
and

o
(A2.6)

and it gives the radial symmetry of the modes among which coupling 
can take place and only for modes which have 1̂  = 0 can the coupling 
take place.

Similarly, for coupling to the SH radiation field the expression for 
the overlap integral is obtained by using the appropriate field 
expressions, from chapter 2, for the SH radiation field ie 

a 2tt
(U(w/2)rjja/ J

V

2cos
sin icos rare* v<pf (sin pdj

o o
(A2.7)

t
where, A 'is the field amplitude of the SH radiation mode and is 
given by equation (2.2.21).

The field overlap integrals for coupling to SH guided modes and SH 
radiation field cannot be solved analytically and consequently have 
to be numerically evaluated using a computer.
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Optical Second Harmonic Generation (SHG) has been reported in planar waveguides, 

using waveguide dispersion to phase match the fundamental and Second Harmonic (SH) 

modes^ The optimum waveguide dispersion is generally achieved by the correct

choice of waveguide dimensions. In practice however the inability to maintain uniform 

guide dimensions has limited the useful interaction length for SHG to less than 2 cms.

7-8Whilst a number of authors have reported the fabrication of cylindrical 

crystalline cored optical fibers, SHG in these structures has not been previously 

demonstrated. The use of such a fiber for SHG should be more efficient than the 

conventional planar waveguide since longer lengths of this type of structure can 

readily be produced with uniform guide dimensions. In addition since this structure 

has cylindrical geometry, coupling to other optical components will be simpler.

For SHG in these fibers the core material should be a chemically stable, non- 

centrosymmetric crystal having a large transverse non-linear optical coefficient. In 

addition the crystal should have a low refractive index and low melting point to 

facilitate the use of a suitable cladding glass. The majority of inorganic materials 

having large non-linear optical coefficients eg LiNbO^. ADP etc, do not satisfy all 

the above criteria. For the purpose of this work therefore the organic material 

Benzil (C,H..CO.CO.C-H,) was selected for the core material.
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Crystal cored optical fibers were fabricated by growing single crystals in glass 

capillaries using a modified vertical Bridgeman technique. The glass capillaries 

were initially filled with the crystal melt by capillary action in the 'hot' zone 

of the furnace. The melt in the capillary was then progressively crystallized by 

slowly moving the fiber through a sharp temperature gradient. In this manner void 

free single Benzil crystal cored fibers with lengths up to 5 cm have been grown in 

glass capillaries with diameter in the range 5-10 um. However, longer lengths of 

crystal cored fiber may be fabricated since it is possible to produce capillaries 

with uniform bores using established fiber pulling techniques. In figure 1, a 

photograph of a void free Benzil single crystal cored fiber viewed between crossed 

polarisers is shown.

Optical SHG in a cylindrical single mode crystal cored fiber can take place either 

by coupling the fundamental wave in the H E ^  mode into a SH guided mode or into 

SH radiation field. In practice it is more difficult to achieve phase matched 

interaction for the former case since precise control of the waveguide dispersion is

required. The latter method is simpler to implement and was adopted for this initial
(2w)study. The cladding glass was so selected that the SH propagation constant, 6 ,

lay in the continuum of the radiation field ie < k^n^ where is the

free space propagation constant and n^ is the cladding refractive index at

the SH frequency. This form of phase matching is shown in the u-8 diagram, figure 2. 

The SH radiation will exit from the fiber core at an angle a given by

Cosa J2u). (2u>)B / kQn2

where, ■ 26^^, and B^1"̂  is the propagation constant of the fundamental

H E ^  mode. It can be shown from a theoretical analysis that the angle a in 

practice is very small and consequently the generated SH wave will be guided in the 

cladding.
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A Nd:YAG laser operating at 1.06 pm was used to demonstrate optical SHC in the Benzil 

crystal cored fiber by coupling the SR to the radiation field. The visible SH so 

generated was guided in the cladding and was observed on a screen as a ring 

corresponding to the far-field pattern, figure 3. A discussion of these theoretical 

and experimental results will be presented at the meeting.

In conclusion void free Benzil crystal cored monomode optical fibers have been 

fabricated and phase matched SHG in these structures demonstrated. The use of such 

a structure could also find application for other non-linear processes such as 

optical mixing and parametric amplification.
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FIGURE 1.

FIGURE 2.
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S fc r .

Monomode Benzil Crystal cored fiber viewed between crossed polarisers

w-B diagram showing the phase matching scheme employed

FIGURE 3. Far-field ring pattern corresponding to the visible SH in the cladding


