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ABSTRACT

Optical fibres normally have isotropic non-crystalline core and
cladding materials. The thesis describes a study of the theory,
practicability, and possible applications of fibres with crystalline,
non-centrosymmetric core and glass cladding. The wave propagation in
such a dielectric waveguide has %been studied and dispersion
characteristics determined for a uniaxial crystal cored fibre with
its crystal c-axis along the fibre axis. In addition the possibility
of second harmonic generation (SHG) in these fibres is considered.
It is shown, using coupled mode analysis that theée guides can be
designed such that a wave at the fundamental frequency in the HEll
mode can be phase matched with a SH guided mode. Alternatively, lower
efficiencies of generation are shown to be easy to impiement when the

fundamental wave is the guided HEll mode and the SH wave is in the
radiation field.

The fabrication of these crystal cored fibres is described in some
detail., The basic technique used is to draw down capillaries of an
appropriate glass having bore diameters <10um, followed by growth of
an orientated organic single crystal in the hollow region. The growth
mechanism was crystallization from the melt by a modified vertica;
Bridgeman technique. The criteria used to select suitable organic
crystal materials for SHG are discussed. It was found that acetamide
and benzil were potentially suitable materials. Benzil was finally
preferred and studied in more depth, largely because of the
hygroscopic nature of acetamide. The above method of crystal growth
was successfully used to fabricate single mode, void free benzil

crystal cored fibres of lengths upto 50mm.

The experimental SHG has been demonstrated with a 1.06um. fundamental
wavelength in benzil cored fibres where the SH wave 1is in the
radiation field. Possible implications of this work for guided wave

non-linear interactions are considered.
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INTRODUCTION

The enormous bandwidth potential in the use of optical fibres, as the
transmission media, for communication systems was recoganised soon
after Kao and Hockam(1966) demonstrated transmission of optical
signals in glass fibres. The research effort over the last fifteen
years has cumilated in the installation of fully engineered graded
index fibre systems in several European countries, Japan and USA. At
the present time single mode fibre systems, which offer even greater
bandwidths, are being installed. These systems are however not fully
'optic' as the information processing and amplification at the
repeater stage is carried out electronically. The endevour to mke
active optical devices has resulted in the development of integrated
optic devices for modulation, switbhing and other information
processing functions. These devices are of planar geometry and in
general make use of the electro-optic and acusto-optic effects. For
parametric amplification it is necessary to use the material's second
order susceptiblity. A rmumber of researchers have been investigating
three wave mixing in planar waveguides but the efficiency of these
interactions has been low due to difficulties in phase matching and
low value of the material's second order susceptibilty. In recent
years a mumber of organic mterials with very large second order
susceptibilty have been realised by molecular engineering. These
materials also tend to exhibit resistance to damage at high optical
intensities. The prospect of realisation of efficient non-linear
optical devices using these materials seems to be very promising. In
this work a study of fabrication of crystal cored fibres using
organic materials was carried out with the intention of mking:
waveguiding structures for non-linear optical interactions. The
waveguide fabrication method used is particularly useful as some of
these materials lack mechanical strength and are susceptiable to
chemical attack because +the molecular sites are bound only by
relatively weak Van der Waals forces. Also, the cylinderical geometry
of these fibres will make their coupling to the silica fibres, used

for communication, relatively easy.



CHAPTER 1

SECOND HARMONIC GENERATION

1.0 Introduction:

The first non-linear optics experiment was carried out by Franken et
al(1961) using the then newly invented Ruby laser to demonstrate
optical second harmonic generation. In the last two decades the
subject has developed extensively, both  theoretically and
experimentally, and it is now possible to generate second and third
harmonic frequencies of intense 1laser beams with efficiencies
approaching SO%. Non-linear optical techniques are now widely used to
produce coherent light over a wide range of frequencies from the
ultra-violet to far infra-red. Non-linear optics is a generic term
for a number of diverse optical phenomena which arise with high
optical intensities. In this chapter a review of second harmonic
generation and methods of phase matching the interacting waves is

presented.
1.1 Non-linear Phenomena:

When a dielectric medium is subjected to electromagnet_ic radiation it
tends to become polarized due to distortion of its internal charge
distribution under the influence of electric field, E, associated
with the radiation. The resultant electric dipole moment per unit
volume is defined as electric polarization, P. For weak fields the
induced polarization is linear and proportional to the applied field
and is given by -

= . o)
P = =
B=P = ey E

(1.1.1)
where

EO is the permittivity of the free space,

;((l) is the linear susceptibility tensor of second rank.
L

Dielectric constant of the medium is defined in terms of linear



~ susceptibility tensor as

R o1

g = eo(l * X )) (1.1.2)
and, hence

D = EE

- - (1.1.3)

However, with intense fields the polarization is no longer linear and

can be represented as a power series of the inducing field

- = (1) °(2). °(3) . ‘
2 _I_’_E+£NL = e (x".E + Xg. -E E + XISL) -EEE + ....) (1.1.h)

| =

where, the first term on R.H.S. is the préviously defined linear
polarization while the subsequent terms are due to the non-linear
polarization. Non-linear susceptibilities ;;i), ;éi), .. «es are
tensors of the second, third and higher ranks. A rmumber of diverse
optical phenomena are due to the first three terms in the above

expansion, i.e.

Xil) is responsible for the linear optical properties, such as
reflection and refraction.
Xéi) gives rise to second harmonic generation(SHG), parametric

amplification, sum and difference frequency generation, d.c.
rectification and linear electro-optic effect.

;éi) gives rise to third harmonic generation, four wave mixing
processes, quadratic electro-optic effect, two photon absorption, and

stimulated Raman, Brillouin and Rayleigh scattering.

The second order non-linear polarization is of particular interest as
it affords +the possibility of second harmonic generation and
parametric amplification with modest powers in optical waveguides.
The second order non-linear susceptibility tensor is non-zero in only
non-centrosymmteric materials. In centrosymmetric materials
polarization reverses the sign for reversal of the electric field and
as a consequence the terms containing even powers of the field in the
polarization expansion Ybecome zero., The polarization in Tboth
centrosymmetric and non-centrosymmetric materials as a function of

applied field is shown in figure 1.1l. The non-linearities in both the
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cases have been exaggerated.

In the subsequent analysis the third and higher order terms in the
polarization expansion have been neglected and the non-linear
polarization will be considered as

o =, @

Pap T %% cEE

(1.1.5)
: (2 . e
The tensor properties of Xyj  are better appericiated by writing its
full form rather than the condensed notation used above

© £ (OE (1)
B ERCE (1.1.6)

Where, instantaneous electric field and polarization can be written

in terms of their Fourier components as

E(r,t) o (e z-ut)

r 1/2(E(r,w) + c.c.] (1.1.7)

3k r-ut)
e

Plr,t) = 1/2(P(r,w) + c.c.] (1.1.8)

(2)
ijk
Fourier amplitude relation as

Susceptibility tensor X (- Was wy, wl)is then defined in terms of

1 ~(2)
P.(r,w) == ¢ Z  x.00 (- w,,w,,w,) : E.(T,0,)E (T,0,)
i 3 2 o 13k ijk 3772°71 =] 2=k 1 (1.1.9)
J(El + Ez - 53)'.‘.‘.
e
wh s =
ere m3 w o,
“(2)

For SHG, ml = ub’ and the susceptibility tensor becomes

Xijk (- 2w,w,w)

In literature experimentalists adopt a different notation for SHG

tensor, namely di k(—2m,w,m). The two are same expect for a factor
of '2' and their relationship is (Kaminow 19T4)

(2)

ik (- 2w,w,w) = 2d.

X 1yl 2wsw,0) (1.1.10)

Non-linear polarization for SHG can then be expressed using SH

tensor, d, as

11



jlek-k ).r

P = - . . - =3
._i(m3) Eo.; dijk( m3,m,w).§ﬁ(w) Ek(m)e

ijk (1.1.11)
where, m3 = 2u
Or, in condensed notation as
P (2uw) = €d, :E (w).E (w) (1.1.12)
E (2u) = < ijk *j(m)'—k
SH tensor d"k has in general twenty-seven independent elements.

1J

However, as no physical significance can be attached in interchanging
E. and E , it follows that d, _ = d, and the number of
=, ~k ijk ikJ

independent tensor elements reduce to eighteen. A contracted notation
d. 1is used for 4. .  1ie

im ijk
(11) (22) (33) (23) (13) (12)

1 2 3 b 5 6

(Jk)

m

Using this contracted notation for the indices, equation (1.1.12)

becomes
| p d.. d._d..d. d._d g2
s 11 %12 13 %14 Y5 416 | Eg
2
P = ¢ d d
=y o | 921 %22 923 4 Y95 Y6 | E
2
p
2 d3) d3p d3q 4y, dgg dag| | E)
2E E
2E E
—-—2Z—X
2E E
EE,

(1.1.13)

A further reduction in the number of independent elements is possible

due to Klienman's conjecture (Klienman 1962). That is in a lossless

medium the permutation of frequencies 1is irrelevant and dijk is
symmetric under any permutation of its indices. As a result the
number of 1independent tensor elements reduce fram eighteen to ten.

The equation (1.1.13) therefore can be rewritten as



2
2 diy 499 493 434 915 die] | Eg
22
2y

2y o | 916 %22 923 94 414 942

B, dis5 dgy d95 dp5 dy3 4y, 1 | E,

(1.1.14)
In practice most of the materials possess only a few non-zero tensor

elements and the optical SH tensor forms for all the crystal classes
are listed in standard texts on non-linear optics (Singh 1971, Yariv
1975).

An estimate of magnitude of one diménsional non-linear SH coefficient
is possible from the analysis of an anharmonic oscillator. This model
representation of a crystal is similar to the Drude-Lorentz model for
the valence electrons. It was first used by Bloembergen (1965) and
has since also been used other researchers (Lax 1962, Garrett et al
1966, Kurtz et al 1967, Robinson 1967, Garrett 1968) to obtain an
order of magnitude of the effect in various crystals.

The equation of motion for an anharmonic oscillator is giwven by

2 2 e
33 ; = - E(w,t)
X + yx + wo X + VX (rn) w, (1.1.15)

where

x(t) is the deviation of the electron from its equilbrium position.

Y is the damping constant.

w 1iIs the linear resonance frequency.

Vo is the anharmonic force constant.

e and m are the electronic charge and the mass respectively.

E(w,t) is the electric field of the light wave varying with the

frequency, w.

The induced polarization due to this field is given by

(]



P = Nex(t) = eoxLE(m,t) (1.1.16)

where

N, is the mumber of electrons per unit volume.

Solving equation (1.1.15) and using (1.1.16) it can be shown that

linear susceptibilities,xiw) and x£2w), at w and 2w respectively are
given by
(w) _ Ne2 1
AL me _ D(w)
o
(2w) _ Ne2 1
L me D(2w)
(1.1.17)
where

2 .
D(w) = w, = w2 + iyw

D(2w) = wi‘- 4w2 + 2ivyw

It can be further shown that the SH non-linear coefficient is given

by
3
Ne v 1
d = === 5 (1.1.18)
° p(2w) D (w)
T%is)can be expressed in terms of linear susceptibilities Xiw) and
2w
XL as
2 2
mve
d = 2 (W)™, (20) (1.1.19)

5= X X

Garrett and Robinson (1966) have defined a coefficient '$§', such that

mve
d _ 0

0?2 () Ne (1.1.20)

E.:c))(l. XL

ls| =

Its three dimensional analog is known as 'Millers-Delta' and is

defined as

N 4 51

Lk goxﬁ?w>xﬁe>x<w> (1.1.21)
11 jj “kk

Miller (196ha)found that the above quantity was nearly constant for a

14



large mumber of materials. It is approximately equal %o 3xlO- esu
(7x10—2 m2/C). There are no Xknown materials having § above
20x10 esu and a very few have a vwvalue below 0.2x10 esu.
However, d can vary over four orders of magnitude. Hence an order of
magnitude estimate for d of various materials can be made from their
refractive index data ie

2
_ (W (Qw)_ 2 3. o 6
SEX, X, 8% eo(n - 1)7s = e n 0 (1.1.22)

2w
where, it has been assumed that n's n , and & can be assumed to

2
have an approximate constant value of 0.07 m /C.

1.2 Optical SHG In The Bulk Media :

In the previous section it was stated that for large optical fields
in non-centrosymmetric crystals, a non-linear polarization wave 1is
induced whose SH component gives rise to a SH light wave. The SH
power generated in the bulk crystal in this manner can be derived
using the coupled wave formalism and is given in various texts on the
subject (Yariv (1975), Zernike and Midwinter (1973)). The expression
for SH power, Pgm, generated by a single mode gaussian beam of
power, Pw, incident along a principal plane of a parallel slab of

thickness, L, of a lossless crystal is given by (Singh (1971)),

3 1 2
/2 /2 2.2 wy2_2 ) L
sz ) 2(uo) (so) w dim(P )L Sln(AkE)
- 2 2w, w2 L - (1.2.1)
ﬂwo n (n) Ak T

where

50 and u are the free space permittivity and permeability
o
respectively.

w is the fundamental frequency.

WO is the spot radius of the fundamental beam.

d. 1is the pertinent SH tensor coefficient.
i? = k2m - 2km, is the phase mismatch in the propagation
constants of the fundamental and SH waves.
n" and gw are the bulk refractive indices at the fundamental and

SH frequencies respectively.



The maximum SH power 1is obtained for Ak=0 . This requirement
corresponds to the phase matching of fundamental and SH light wave
velocities. It can be seen from the above equation that the SH power
goes through a series of maxim and minim for Ak# O and is maximum

when

%AkL = (2n + 1) g , for, n = 0,1,2,3,...

or, when the crystal length is given by

s 37
L—E,Ak, se

Maker et al (1962) were first to observe this periodic variation of
the SH intensity by tilting a thin quartz crystal plate in the pgth
of a Ruby laser beam. Also, when Ak # O and AkL = (2n+l)w , the
effective SH tensor coefficient is reduced by a factor of 2/(2n+l1)m.
A plot of SH amplitude normalized to initial amplitude of the
fundamental wave as a function of distance inside the crystal for
various degrees of phase mismatch is given in figure 1.2. The
crystal length which gives the first maxima is defined as the

'Coherence Length', L and is given in terms of crystal indices as
c

L S m - A
= — =
C Ak Ko _ka 4[n

(1.2.2)

The variation of SH power as a function of crystal length can be
described in terms of a simple physical effect. The SH polarization

wave travels in the bulk material with a phase velocity which is same

as that of the inducing fundamental 1light wave ie Vm = c/nm.

However, as the most materials are positively dispersive the SH light
2 . . .

wave travels with a velocity, vgm = c¢/n w, which is different

from that of the fundamental wave. Consequently the SH light wave
generated at any instant will be slightly out of phase with the SH
light wave generated an instant earlier. The two waves have a phase
difference of w after a distance equal to the coherence length. In
order to eliminate this phase mismatch various methods have been
devised to phase match the fundamental and SH light waves and are

described below.

16
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1.3 Phase-Matching Techniques:

There are seven crystal classes of which those belonging to one ie
Cubic, are isotropic while the rest are anisotropic. The refractive
index of anisotropic crystals is not only frequency dependent but is
also dependent upon the state of polarisation of the light wave and
its direction of propagation relative to the crystal c-axis.
Anisotropic crystals can be either uniaxial or biaxial depending upon
whether they possess two or three independent refractive indices.
This crystal property is referred to as birefringence and is
responsible for the double refraction phenomenon. Unpolarised light
on entering a birefringent media 1is resolved into two orthogonal
components. In an uniaxial crystal the refractive index of the
component of light rays polarised normal to the c-axis is independent
of the direction of propagation and they are referred to as ordinary
rays. However, the refractive index of the component of light rays
polarised parallel to c-axis varies with the direction of propagation

relative to the c-axis. These rays because of their unusual behaviour

141

are referred to as extraordinary rays. In general if 'a' is the angle

between the direction of propagation and the optic or c-axis, the
refractive index for the e-rays is given by
2.-1/2

n (a) = [(Cosa/n )2 + (Sina/n )]
e o e

(1.3.1)

where

n and n are the refractive dindicies along the two principal
o] e
crystal axes.

The difference in refractive indices along the +two principal
directions of an uniaxial crystal gives its birefringence. Uniaxial
crystal can be positive or negative depending on whether n is
greater or less than n . In some crystals it is possible to exgaoit
their natural birefriggence to phase match the fundamental and SH
waves. The other methods which can also be used to obtain phase
.matched optical SHG are

1. Quasi-phase matching methods.

2. Phase matching using guidance properties of optical waveguides.

18



These methods are discussed below in greater detail.
1.3.1 Birefringent Phase Matching:

The wuse of natural crystal birefringence to overcome mterial
dispersion for phase matched SHG was first realised independently by
Maker et al (1962) and Giordmaine .(1962). The principle of this
method of phase matching can be illustrated by considering phase
matching in the case of potassium-di-hydrogen phosphate (KDP)
crystal. KDP is a negative uniaxial crystal belonging to -ﬂ2m point
group. In figure 1.3 index surfaces of KDP are shown for frequencies

w and 2w. It can be seen from the figure that if the direction of
w 2w

am' to the crystal axis, n, ¥ Dg -

propagation is at an angle '

Hence, if the fundamental beam is launched at an angle 'am' to the
crystal c-axis as an ordinary wave, the phase matched SH beam will
exit as an extraordinary wave along the same direction. The phase

matching angle in this case is given by

- 2w -2
(™ - @27
e o) 20.-2

2w
(D - (1.3.2)

The phase matching is only possible if the dispersion is less than
the crystal birefringence ie !nZOw - n:l < lniw - nzwl . This type of
phase matching is termed as 'collinear' as the fundamental and the SH
propagate along the same direction. This can further be of type 1 or
type 2 depending upon the state of polarization of the fundamental
optical beam. In type 1 phase matching the fundamental waves have
parallel polarization whereas in type 2 phase matching they have
orthogonal polarizations. These two phase matching conditions for a

negative uniaxial crystal can be written as

. w 2w w w 2w
typel: n, = ng (a) ; 0 o —e
m
w W 2w 2
type2: 1/2[np+ng(a )] = n, (a ) . oreme™ (1.3.3)
m m

and for a positive uniaxial crystal they are

2w w W 2w

@
typel: ne(am) = n, ; e te =0

19



type2: 1/2[n (o )4ns] = s . %o = %Y (1.3.4)
m

The phase matching angles for a given crystal and phase matching type
can be evaluated using the appropriate condition, from above, and

equation (1.3.1).

The SHG efficiency with birefringent phase matching is usually small
because of the double refraction effect. This effect results in the
fundamental and the SH waves not overlapping over the entire crystal
length and is referred to as 'Poynting Walk Off'. This is shown in
figure 1.4 for type 1 phase matching in a negative uniaxial crystal.
The angle, p, between the SH wavevector and the direction of power
flow for type 1 phase matching‘ in a negative uniaxial crystal is
given by

(“3)2 1 1 )
pFtan p = —73 o7 T T u7 | Sim 2@ '
(ne ) (no ) (1.3.5)

The ray and wave normal are parallel for @ = 0° or 90° and in this

case there is no walk off. The phase matching is then said to be non-

critical and very efficient conversion can be obtained. The effect of
'"Poynting Walk Off' is more serious for type 2 phase matching as in
this case when the two fundamental waves do not overlap, non-linear

polarization is not generated and hence no SH light wave.

For some crystal materials which have phase matching angle close to
90° it is possible to achieve non-critical phase matching by varying
the crystal temperature to change its birefringence. A temperature
dependent change in birefringence occurs as extraordinary index is in

general much more temperature dependent than the ordinary index. The
2w o

phase match temperature, Tm’ at which n = n can be
calculated using the following equation
nm _ nZw
A (1.3.6)
w0 gt gt
dT dT

where

To’ is the ambient temperature.

20
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This method was first used by Miller et al (1965) to obtain non-
critical phase matching in LiNb03 crystal at fundamental
wavelengths of 1.058ym and 1.153um. More recently this method was
used by Useugi et al (1976) to compensate phase mismatch introduced
during the fabrication of stripe guide in LiNbO3 for SHG.

Also, for efficient SHG it is necessary to have an optimum degree of
focussing of the fundamental beam in the crystal. If the beam's
cross-sectional area is large, the intensity of the fundamental beam
may not be large enough to génerate SH, whereas if it is too small
the interaction length will be limited due to excessive divergence

and result in low SHG efficiency.

In contrast with the 'Collinear Phase Matchihg' described above it is

also possible +to obtain 'Non-collinear Phase Matching'. This

technique has been demonstrated by Giordmaine (1962) and Maker et al .

(1962). In this method two fundamental non-collinear beams are used
to produce phase matched SH beam. However either of the two beams on
their own cannot generate SH beam. The principle of this method is

illustrated in figure 1.5 for the case of KDP crystal.

The theory of birefringence phase matching is now well understood and
all the commercially avialable SH generators exploit this form of

phase matching.

1.3.2 Quasi-Phase Matching Methods:

The birefringence phase matching method disscussed in the previous
section is not applicable to materials having inadequate
birefringence e.g. quartz, or those which are isotropic e.g. GaAs. In
these materials it is possible to correct the phase mismatch and for
this reason phase matching in such materials is referred to as quasi-
phase matching. Armstrong and co-workers (1962) were first to propose

a number of methods to achieve quasi-phase matching.

One of the method's suggested was the use of periodic variatien in
the SH tensor co-efficient. This can be achieved by using a periodic

structure of crystal plates having the same thickness but with the

22



crystal axis of the adjacent plates orientated in the opposite
direction. The maximum SH intensity is obtained when the thickness of
the crystal plates is equal to the 'Coherence Length'. In which case
at the end of the first crystal plate there is maximum transfer of
energy from the polarization wave into the SH light wave but the two
lag in phase by 180°., By having the second plate orientated in the
opposite direction, the sign of the SH tensor coefficient reverses
for the electric field directed along the original direction. This
shifts the phase of the polarization wave by 180° and as a result at
the end of the second crystal plate also the SH power grows instead
of diminishing as in the case of the bulk crystal. The SH power in
this case is reduced by a factor of (h/n‘z) cf bulk phase matched
case., This method of phase matching has been studied in detail by
Yacoby et al (1973) and Szilagyi et al (1976). Franken et al (1963)
demonstrafed enhanced SHG by this method using quartz crystal plates.
In their experiment the thickness of the crystal plates was not equal
to an odd multiple of the coherence length and as a consequence they
had to orientate the stack at 24L° to the direction of the laser beam
to observe the build up 6f the SH power. The SH wave in there case
was greatly attenuated due to the Fresnel reflection losses at each
interface between the plates. Recently, Szilagyi et al (1976) and
Thompson et al (1976) eliminated Fresnel reflection losses by
propagating the fundamental wave at Brewster's angle with respect to
a stack of GaAs plates to generate SH of 10.6um radiation. Miller
(196L4b) has shown that this type of structure can occur in polydomain
crystals. In an another experiment Dewey(1975) obtained enhanced SHG
in single rotationally +4winned ZnSe crystal. The non-linear
properties of a crystal containing rotational twins are equivalent to
that of a stack of crystal plates having periodic variation of SH

tensor coefficient and thickness equal to the twin plane spacing.

Another method to correct the phase mismatch uses phase change on
total-internal reflection. In a slab of a crystal Dboth the
fundamental and +the SH waves can be made to wundergo multiple
reflections at the crystal-air interface. The angle of reflection can
be so chosen that the phase mismatch accumulated in every pass
between the two reflecting sides 1s Just cancelled by the

differential phase change between the fundamental and the SH wave.



This technique has been implemented by Boyd et al (1966 ).

Bloembergen et al (1970) have suggested the use of periodic variation
of the refractive index to achieve quasi-phase matching. In this
technique alternate thin layers of different non-linear materials are
epitaxially grown to form a periodic laminated structure. Such a
periodic structure exhibits frequency stop band in its linear
dispersion curve and the characteristic bending of the curve near the
stop band is used to obtain phase matching. The detailed behaviour of
this type of phase matching has been analysed by Tang and Bey (1973).
Van der Ziel (1976a) has verified this form of phase matching by
frequency doubling of 2um radiation using 17 alternating pairs of

GaAs and Al S.

A
0.3Ga0'7

1.3.3 Phase Matching Using Guidance Properties Of Optical Waveguides:

The advent of integrated optics has highlighted advantages of using
waveguiding structures for non-linear interactions and these have
been exploited by a number of researchers for optical SHG and mixing.
These advantages are: '

1. Phase matching can be achieved using waveguide dispersion.
Waveguide dispersion arises because the phase velocity of a light
wave of a given wavelength in a waveguide 1is determined by the
guiding region dimensions, refractive index difference between the
guiding region and the substrate, and the mode of propagation. In
practice this is achieved by suitably tailoring the guiding region
dimensions and/or the refractive index difference. Thus it is
possible to also use materials which are isotropic or have inadequate
birefringence for angle phase matching.

2. The dimensions of the guiding region for optical wavelengths are
of the order of micrometers and as a result it is possible to have
large optical intensities, required for non-linear interactions, with
modest optical powers. Also, as the optical energy is guided it is
possible to have long interaction lengths. An approximate comparision
of the efficiency of the SHG process in a bulk medium and that in a
waveguiding structure can be made by considering the product of the
intensity of the input beam at frequency, w, and the interaction
length.
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For bulk material:

IL=(P/mw )(mw /) = P/A (1.3.7)
w o] (o]

where, gaussian beam diffraction has been assumed and w is the
o)
beam radius at the focus.

Whereas, for a three dimensional guide:

2
IL=(P/A7)L = (P/2)(L/2) (1.3.8)
w
where, it has been assumed that the guide dimensions are comparable

to the wavelength of the fundamental wave.

The advantages described above of using waveguiding structures can
cancel out if the field overlap integral of the interacting modes is

small. This arises since the SHG efficiency is proportional to it ie

n E.E dA (1.3.9)
su * J/:m,—zm
Wheré,
E is the electric field distribution of the fundamental mode.
W
E? is the electric field distribution of the SH mode.
w
A is the waveguide cross-sectional area.

The overlap integral places constraints on mode types into which SH
can be coupled and is maximum when both the fundamental and the SH
propagate as the fundamental waveguide modes. In practice, phase
matching is generally achieved for SH as a higher order mode due to
wavegulide dispersion characteristic and this leads to low conversion

efficiencies.

Planar optical waveguides can be fabricated by a mumber of well

established +technologies eg sputtering, in- and out-diffusion,
epitaxial growth, ion-exchange, etc. The phase matched SHG in planar
optical waveguides has been demonstrated by a number of researchers

‘using one of the following configuratios:



1. A non-linear guide on a linear substrate - (Anderson et al (1971),
Zemon et al(1972), Ito et al (19T7L4), Van der Ziel et al (1976b))

The phase matching between the- fundamental and SH modes is achieved
by the correct choice of the guide thickness. In all the above
reports, with the exception of that by Van der Ziel, phase matching
was achieved for SH.wave propagating as a higher order mode than the
fundamental. As a result SHG efficiencies obtained were low due to
small value of the field overlap integral. Van der Ziel et al were
able to demonstrate phase matching between the fundamental TEO and
the SH TMO modes by etching a grating on one side of the guide to
compensate for the phase mis-match. In practice there 1is some
tapering in the guide thickness and this tends to give broadband SHG,

but with lower efficiency due to reduced interaction length.

2. A non-linear guide on a non-linear substrate - (Hopkins et al
(1974), Van der Ziel et al (19T4), Uesugi et al (1976 and 1979).

In this method also phase ina.tching between the fundamental and the
harmonic modes is achieved by precise control of the guide thickness.
Hopkins et al (19Th) were first to report SHG using such a structure.
They formed optical waveguides in Dbarium sodium niobate by
introducing hydrogen during poling and used these guides to generate
phase matched SH by varying the crystal temperature (to tune the
waveguide dispersion). The use of temperature dependence of the
refractive 1index +to vary the waveguide dispersion relaxes the
stringent' requirements on the guide dimensions. Uesugi et al (1976)
also used temperature dependence of refractive index to achieve phase
matching between the lowest order fundamental and SH modes in a Ti-
indiffused LiNb03 waveguide. More recently Uesugi et al (1979) used
a bias electric field to achieve the same effect.In this case the
bias electric field changes the refractive 1index and hence the

waveguide dispersion via the linear electro-optic effect.

3. A linear guide on a non-linear substrate — (Tien et al (1970),
Chen et al (197L4))

In this method evanescent field of the fundamental mode excites a
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non-linear polarization wave in the substrate which gives rise to a
SH light wave. By suitably selecting the guide thickness it is
possible to arrange that the non-linear polarization wave travels at
a velocity faster than that of the SH polarization wave in the
substrate medium. Consequently the non-linear polarization wave
radiates SH light wave as a Cerenkov radiation. The cosine of the
Cerenkov angle at which the SH is emitted is given by the ratio of
the phase velocities of the SH light wave to that of the non-linear
polarization wave. In this method tolerances on the waveguide
thickness are not severe and broadband SH can be generated. However,
efficiency of +this method is low as the overlap between the

fundamental and the SH fields is small.

4., A linear guide on a non-linear substrate with harmonic as a guided
mode - (Suematsu et al (1973), Burns et al (19T4) and Chen et al
(1974))

In this method non-linear polarization wave excited in the substrate
generates a SH light wave which can be guided in the waveguide. The
phase matching in this case also is critically dependent on the guide
thickness. Burns et al (1974) achieved non-critical phase matching in
liquid/TiO2/quartz waveguide by varying the liquid refractive index
by temperature tuning to give phase matching between the lowest order

fundamental TEO and SH TMO modes.

It was stated above that the efficiency for SHG is low, in thin film

and stripe waveguides, if the coupling does not take place between

the lowest order modes. A possible way for compensating the phase
mismatch between the modes 1is by introducing some form of
perturbation equal to the phase mismatch in the waveguide structure.
Somekh et al (1972a and 1972b) were first to propose the use of a
periodic modulation of the waveguide thickness or the non-linear
coefficient to couple the fundamental into the SH wave. Van der Ziel
et al (1976b) were first to demonstrate coupling between the lowest
order fundamental and the SH mbde using a grating etched on the
interface of GaAs waveguide. The periodic grating modulated both the
linear and the non-linear susceptibilites at frequency p=27/t, where

T is the grating period. The grating period is so chosen to allow
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§8=p ,where 63=82w— 28?. Levine et al (1975) have used the above
concept to obtain phase matched SHG in a nitrobenzene waveguide. They
used a periodic modulation of the sign of the non-linear
susceptibility with a spatially periodic dc electric field to align
the dipoles. Chen et al (1976) also used the above concept to couple
the fundamental mode into the SH radiation field which then

propagates in the substrate.

Ito et al (1978) have demonstrated phase matching between the low
order fundamental and the SH mode using a four layered structure.
This structure consists of both linear and non-linear materials such
that guidance occurs in both the mterials. The phase matching is
obtained by the judious choice of layer thickness. However in this
case tolerances reported are not as severe as in the other methods

discussed above.

It has not been possible, up to now, to realise an efficient non-
linear optical device using these structures due to a number of
factors 1in addition ¢to the constraints placed by the overlap
integral. The most stringent requirement that has been difficult to
achieve 1is the nee;d to maintain the guide dimensions to within a few
percent over the waveguide length to maintain phase matching. The
best reports are of interaction lengths between 10 to 20mm. The other
problems that have been serious are the scattering losses at the
guide-substrate interface and the optical damage as a result of high

optical intensities.

This problem of variation of thickness of the guiding region is
anticipated to be less severe for crystals grown in glass capillaries
as it is possible to draw capillaries with uniform dimensions. It
is, therefore expected that the optical SHG in crystal cored optical
fibres will be more efficient as compared to that in the’plana.r
waveguides., Also, it opens up the possibilities of performing optical

parametric amplification for optical fibre communication systems.
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CHAPTER2

Wave Propagation in Isotropic and Anisotropic Cored Fibres

2.0 Introduction:

An optical fibre is a cylinderical waveguiding structure and consists
of a high refractive index core surrounded by a low refractive index
cladding. Light can be guided in these fibres by total internal
reflection at the core-cladding interface. The exact description of
guiding properties of such a fibre is found from the solution of its
wave equation. In this chapter mode theonf of wave propagation in
both isotropic and anisotropic fibres is presented and is used in the
subsequent chapter for the theoretical analysis of SHG in the crystal

cored fibres.
2.1 Wave Propagation In Isotropic Cored Fibres:

The optical fibres used in communication systems have an isotropic
core and cladding ie glass or silica. The theory of wave propagation
in these fibres is well established and documented in a number of
texts on the subject (Kapany (1967), Kapany and Burke (1972), Marcuse
(1972 and 197L4), Midwinter (1979)). The cross-section of a typical

step-index optical fibre is given in figure 2.1l. Here the fibre core

1

radius is 'a' and the core and cladding refractive indices are n

1
and n2 respectively. An outline of the derivation of mode solution

for such a fibre with the key results is presented below:

The wave equation can be derived using Maxwell's equations ie

3B
VxE = - 3% (2.1.0)
3D N
UxH = J + = ‘
- - 8t ‘ (2.1.1)
V.D =p .
(2.1.2)
V.B =0

(2.1.3)
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Figure 2.1: Cross-section of an optical fibre.




where

is electric field strength.

is the magnetic flux density.
is the magnetic field strength.

is the current density.

9 v |0 |jw |

is the electric displacement.

is the charge density.

©

The electric displacement and magnetic flux density are related to

electic field strength and magnetic field strength respectively by

D=¢€¢eck (2.1.4)
or
or

where,

annd i are the free'space permittivity and permeability
o
respectively.

Era_nd urare the relative permittivity and permeability respectively.

For a charge free, non-magnetic and uniform isotropic media ie

J=p =0 and u =1, the Maxwell's equations become
r

E):
VxE = M, 3% (2.1.6)
3E
UxH = € ¢ — (2.1.7)
- o r at
V.E=0 (2.1.8)
V.E =0 (2.1.9)

Taking curl of equation(2.1.6) and, using (2.1.7) and (2.1.8) gives

vector wave equation ie

BZE

VZE - BEr €, ;4% =0 (2.2.10)
- t

Assuming the direction of propagation to be along the z-axis and the

fields of the form

% ej(wt—Bz)

=1 ]

(2.1.11)
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where, B and w are the propagation constant and the frequency of the

wave respectively.

Transforming the wave equation (2.1.10) into cylinderical co-ordinate

system, r, ¢, and z, with z- along the waveguide, gives

2 2
[_3_§+l_a§_+i2-3_2] & + [kz_sz] & =0 (2.1.12)
- rar 36 -
where
2 2
K = ek = cep o (2.1.13)
ro r oo

and kO is the free space propagation constant.

The solutions for the above wave equation can be obtained in terms of

longitudnal field components. Trying a solution of the form

8 .
z A Fir) er¢
K 1B
z (2.1.14)
where, A and B are the amplitude coefficients.
Gives, scalar wave equation
2 2
3 F 1 oF 2 2 v _
y T * T3t (k 8 —5)F =0
r r (2.1.15)

where
v , can be positive or negative, however it must be an integer as

otherwise fields will not be periodic in ¢ with period 2m.

The function F(r) has to be so chosen that it is finite at r=0 and
tends to zero for r -+ . For r<a, the function can be taken to

correspond to Bessel's function of -“he first kind, so that,

A .
J (05 elv¢

% B v o a (2.1.16)
9tz



U = a(ki - 82)% (2.1.17)
=k
R Rt

For r>a, the appropriate Bessel's function is the modified Hankel's

function, hence

g c .
z2 1 = K (WD) e ivé
¥ D (2,1.18)
where

C and D are the amplitude coefficients.

)% (2.1.19)

The solution for propagation constant, 8, can be obtained by ensuring
continuity of the ﬁéngential field components at the core-cladding
interface. This condition gives four homogenous equations with four
unknown coefficients i.e. A, B, C, D. However if the determinant of
the coefficients is equal to zero then a solution can be found for
wave propagation in the waveguide. The determinant 1is the

transcendental equation for the 2 ie

1 1, . 22 .1 22 1
JV(U) . Kv(W) kla Jv(U) . kja KV(W) ) vzsza 1, 1]
uJ (U) WK (W) U J () W K (W) v 2 2
Vv v v v U W

(2.1.20)
where, primed Bessel and Hankel functions are equal to their

derivatives with respect to their argument.

The solution to the above equation exists for discerte values of 8's
corresponding to various modes that can propagate in the fibre. For

v= 0, the modes that can propagate are Transverse Magnetic (T™M), and
Transverse Electric (TE). These modes are radially symmetric and for
a given v there exist u roots such that BVu > kg’ as the J-Bessel
functions are oscillatory. For ¥ > 1, the modes cannot be desiganated
as pure TE or T modes as they both have non-zero longitudnal field

components. These modes are designated as HE or EH depending
7T vy

)
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upon whether they are more charcteristically like ™ or TE modes.

The mode cut-off's can be obtained using equation (2.1.20) and the

condition W=—=0. It can be shown that

HElu
JV(UC) =0 - (2.1.21)
vu '
2
nl U
= 1) 3, = ——== T (U) {‘{E
2 c v-1l ve vu (2.1.22)
v =234
TE
[} [o4
™
ou

For HEll mode there does not exist a cut-off frequency. Hence,

single mode fibres can be fabricated if all the modes other than the
HEll ' have their propagation constants beyond cut-off. In
literature, V-value is used to give an estimate of the number of

modes a guide can support. This 1is referred to as 'Normalised
Frequency' and is given by

v2 =k az(n - nz) =y +W (2.1.24)

0 ™

2 2 2 2
1

Mode cut-off is defined by the condition, W=0., Hence, single mode

operation is possible for
vV < 2.h05 (2.1.25)

where, 2.405 is the first root of JO(UC) =0

The propragation characteristics of an optical fibre can be shown on
a w-f diagram. In figure 2.2, -8 diagram for a low moded fibre is
given. Here the core-cladding refractive index difference has been
greatly exaggerated for clarity. The values of propagation constant
for the various modes can be computed from the solution of the
transcendental equation (2.1.20). A computer program was written to

compute the propagation constants for the modes in an uniaxial

54



W A Radiation mode
region

Guided mode
region
Slope « l 1
o —
kK M

Higher order
modes

Figure 2.2: w-8 diagram for a low moded optical fibre.

Core

o N\
Cladding

AN

Figure 2.3: Radiation mode representation.



crystal cored fibre and this program can also be used, as described

in Appendix 1, to determine propagation constants of modes of

isotropic cored fibres.

The region given by 0 < B 5-k2 has been indicated in figure 2.2 as
the radiation mode region. The radiation modes are also solutions of
the wave equation for an optical fibre as they too satisfy the
boundry conditions at the core-cladding interface. These modes are
neither bound to the core and nor do they decay outside the core.
They are equivalent to a ray incident at the core-cladding interface
such that it exits into the ¢ladding after refracting through the
core, see figure 2.3. As there can be continuum of angles at which
these rays can be incident at the core-cladding interface, 8's of the
radition field form a continuum. The field expressions for radiation
.modes have been derived by Marcuse (19T4). The expressions for
radiation modes in a weakly guiding are given in section 2.2. In
addition to the propagating radiation modes described above there
exist a continuum of evanescent modes having imaginary B8's in the

range 0 < B < Jw.
2.2 Weakly Guiding Fibre Approximations:

The optical fibres used for communications are weakly guiding
structures as the refractive index difference between their core and
cladding is very small. Typically 'A ' is in the range 0.001 to 0.02,
and is defined as

a 2
b=1-(2) (2.2.1)

7

Snyder (1969) and Gloge(1971) wused this approximation to obtain
linearly polarized transverse field components as solution of the
wave equation. A consequence of this approximation is that it can be
shown that the ratio of the magnitude of the longitudnal and
transverse field components is of the order of Al/z. The transverse
field comp'onents have been obtained in the above papers for a weakly
guiding fibre and are discussed in a greater detail by Marcuse
(1974). The transverse field components for one polarization are

(Marcuse (1974))
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For r<a
_ r cos Vo
& = aJ (U a) {sin v¢}
R (2.2.2)
€ \ 3
= aa(2) gy {20 0)
M V' Ta sin v¢
' (2.2.3)
Sx =0
X =0 (2.2.4)
=
(2.2.5)
For r>a
J (U)
- v . cos v
y A K (W) Kv(wi) sin v¢}
. (2.2.6)
€ J ()
- . _o v gy [ cos Vv
ﬁ; - nA( uo) Kv(W) Kv(wa) {sin v¢}
&x = ny =9 , (2.2.7)

where
The choice of Cos v¢and Sin v¢ in the above expressions is arbitgry
as two degenerate sets of modes rotated at w/2 from each other can
exist.

1 e

X =z éz x & has been assumed as l§¢[< < [§%! and Z is the wave

impedence.

<

n = (nl + n2)/°

The amplitude coefficient 'A' can be evaluated in terms of the power

carried by the modes using the following orthogonality relation

1 . *
P=3 \X k& ez'(ﬁi X g&)dxdy
) (2.2.8)

Marcuse (1974) has shown that using the above orthogonality relation
'A' is given by

b
AOWIRE -
[o] (o]

7.2
e ma v 3, (@3, (@] (2.2.9)
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where,
2 for v=20

v 1 for v¥0

Note: P is the power normalization coefficient and is same for all
the modes. The power carried by individual modes is found from their

mode amplitudes ie power carried by vth mode is PlAVlg.

The transcendental equation for a weakly guiding fibre simplifies %o

uJ (u) WK (W)
v = + .—“—-
J (v ~ K (W (2.2.10)

vl vl

Snyder (1971) has shown that the values of U evaluated using the
above equation are accurate to within 1% forAc < 0.2 and less than
10% when A = 0.5. Hence the above description of linearly polarized
waves can be used with confidence for A< 0.5. The mode solutions

obtained from the above equation are characterized in the literature

as LPU# modes. For v > 0, each LPuu mode consists of two HEV+l,u‘

modes and two EH modes which are doubly degenerate. The v = 0,

v=L,Hu

modes corresponds to HElu modes.

The description of radiation modes can also be simplified using the
weakly guiding approximations. The radiation modes have fields which
are transverse to their direction of propagation and as such they can
have substaintial field component along the fibre axis. However,
radiation modes having 8 slightly less than ké are very nearly
transverse. The transverse field components for one polarization are

(Marcuse (197k4))

For r < a
& = A'J (or) {C‘.’s "4.’}
y v\ Sim Vo (2.2.11)
5
(5 { Cos v¢}-
Jg = - o4 ;; JV(GE) Sin v (2.2.12)
8 = ]f = O

X ¥ (2.2.13)
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where

22 2.%
(n1 o~ 8 ) (2.2.1h)

1
and A 1is the amplitude coefficient.

For r > a
& =3 [ (1) (2) ] {cos Vo
y (p5) + ¢ By en)] \sin vo (2.2.15)
€ L
X = - nB'(—c-’-) [ (l)(pr) + 0 H(2)( r_.)]{cos voé
My sin vé
(2.2.16)
& =% =0
X y
(2.2.17)
where
2 2 2.5
(n2 5 " B ) (2.2.18)
] ]
B( ?nd C are the amplitude coefficients.
dvl and HU ) are the Hankel functions of +the first and second

kind respectively and are related to the modified K-Bessel functions

=1 sy Hﬁl)(jx) | (2.2.19)
(n+1) (2)

K (x) =1 (-4) (-3x) (2.2.20)

Marcuse (1974) has derived expressions for amplitude coefficients

using the following orthogonality relation

[IFs

ez.(§t X ﬂ:)dxdy =PS(p - p')

-0 -0

(2.2.21)

where, 8(p-p') is the Dirac-Delta function and is infinite for e=p'.



The amplitude coefficient A' is. given by(Marcuse(197Tk))

5 5
(ule )" {807}

Al = T/ §))
(evn)2 am ﬁaJv_l(oa)Hil)(pa) - pJv(ca)Hv_1(oa)|
(2.2.22)
where
2 for v=20
e -
v 1 for v #0

The amplitude coefficients B' and C' can be found in terms of A',

Marcuse(197h4).

2.3 Wave Propagation In Uniaxial Crystal Cored Fibres:

The propagation of modes in a uniaxial dielectric rod was first
studied by Longaker and Roberts (1963), and Rosenbaum (1965). They
considered propagation of only the low order modes as their study was
dircted towards laser cavity design. Cozens (1976) has recently
discussed wave propagation in anisotropic crystal cored fibres. Also,
Rosenbaum and Kraus (1977) have considered wave propagation in weakly
guiding uniaxially cored fibres. However their study was restricted

to guides having small anisotropy ie |n -n | << 1.
e o

"o

The wave equation for uniaxial crystal cored fibre is given by

E

V(V.E) - VZE =-qu € =
- - o

3t

(2.3.1)

where
€ is the permittivity tensor and for the case of principal crystal

direction parallel to the guide co-ordinate system is given by

£ 0 0
XX
g = 0 € 0
yy
0 0 €0 (2.3.2)

An exact solution exists only when the extraordinary permittivity of

=e.fe_ Te_°

th tal i . . . -
e crysta is along the fibre axis ie € x eyy 17, %2
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Therefore in this case the extraordinary crystal index, n , is
Z

along the fibre axis while the ordinary index, n,> is along the
axes transverse to the direction of propagation. The solution of the
wave equation can then be obtained in similar manner as in the case
of isotropic cored fibre. The longitudnal field components can be

taken as

For r < a

n .
& = AJ (U(2)E) IV¢
Z v, mpa (2.3.3)

= y Jve
H o= BJ ()

(2.3.4)
For r > a
& = cx (WE) edV?
z v a (2.3.5)
H = pg (wE) ejv¢
z v o a (2.3.6)

where
All the terms have same meaning as in the isotropic cored case.
Cozens(1976) has shown that the transcendental equation for this case

is given by

n
. . 2 J'( —Eu) 22,
1 J\)(U) 1 K\)(W) klk a n.l . kza I\\)(W) - \)78232 —1;. . —1_
TN a9 C) i (“z) WOR W S .
7\ &
A\ n
1 (2.3.7)

The mode cut-off frequencies are obtained from the above
transcendental equation with the condition W—=0 and can be shown to

be given by

For TE modes

e = 2.405
1 %
©E ora [u e (a? - nz)] : (2.3.8)
oo 1 2

This is same as for isotropic cored fibre.
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For TM modes

n

£ =L
c,m n
Z

¢,E ' (2.3.9)

Hence, for no> n,, single mode operation occurs at a frequency
lower than that for the lsotroplc case.

For v = 1, the cut-off frequencies are given by

Uc = 0”
E-—‘ . - (203-10)
J U -
) = (2.3.11)
"z
e ) o
A (2.3.12)
Uc = 0, implies gzero cut-off frequency and +this occurs for the
HEll mode. The cut-off frequencies of EHUu modes are given by -the
equation (2- 3-11 ) and those for HE modes where . u:l ’2 ’3 se e

l,ptl
are given by the equation (2.3.12).

For HE modes with v >2, cut-off frequencies can be obtained from
the solutlon of the following egquation.

n.n n n n
l z ._z. )- U _Z ) =
3 JV l(_l ) Jv(U) + Jv_l(U) J\)(n OS] J\)(U)J\J(n U % 0

2 1
k)
(2.3.13)

-

The change in the cut~off values for the ™ and HE modes cf isotropic
cored case, is to be expected as their longitudnal electric field
component 1s greater than that of the TE and EH modes. A computer
program was written to obtain the values of propagation constants of
various modes. The computer listing along with the description of the
computational method used is given 1in Appendix 1. A plot of

normalised propagation constant, 8 = B/kov as a function of the

product of free space propagation constant and the core radius,

k &> Was computed for HE ., HE 12 and HE,, modes of a negative
un1ax1al crystal cored fibre and is given in figure 2.4, These mode
dispersion characteristics are very similar to those of isotropic
cored fibres. In order to compare the difference in the normalised

propagation constants of an uniaxial crystal cored fibre with that of
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an isotropic cored fibre, values of Bn of the HEll mode were
computed as a function of fibre V-value for a benzil crystal cored
fibre and an isotropic cored fibre having the same core refractive
index as the ordinary refractive index of benzil. These have been
plotted in figure 2.5. It can be seen that the values of 8 are
virtually similar for both the fibres. The maximum perceriltage
variation in Bn is 0.0047 at V = 2.,1. However, it 1is rore

meaningful to evaluate the maximum percentage difference in Bn as a
function of the core-cladding refractive index difference, én, and
this has a value of 0.3. This is also small as the extraordinary
refractive index of benzil is greater than the ordinary refractive
index by only about 1.77. In order to consider larger differences in
the transverse and longitudnal indices of the fibre, the propagation
constants were computed for HEll mode in fibres with longitudnal
index greater and less than the transverse index by 10°/0 and these
have been plotted in figure 2.6. It can be seen that the normalised
propagation constant has a value greater or less than that in an
isotropic cored fibre depending upon whether the crystal core is a
positive or a negative uniaxial material. The maximum percentage
difference in R as a function of én is 1.72. These results show,
as expected, tnhat smll crystal birefringence is unlikely to
significantly effect the propagation constants in a weakly guiding
uniaxial crystal cored fibres as the fields are very nearly
transverse. This also implies that for small crystal birefringence
the transverse fields in a weakly guiding uniaxial crystal cored

fibre will be very similar to those in an isotropic cored fibre.
2.4 Wave Propagation In Biaxial Crystal Cored Fibres:

In the case of biaxial cored fibres it is not possible to obtain an
analytical solution of the wave equation. However, it is possible to
obtain numerically the fields and propagation constants of various
modes. Cozens (1976) has proposed a simple computational method for
evaluation of +the propagation constants. The biaxial guide is
considered as a perturbed ideal guide (perturbation of dielectric
constant) and hence the change in the propagation constant due to the
perturbation can be evaluated using the coupled mode theory. Hence,

the propagation constant of a mode of a biaxial cored fibre can be
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given by

B =8 +A8 (2.4.1)

where

. . th
Bv is the propagation constant of the v mode of the ideal guide.

2T a
= 4 - s
48 = 3 %ex %;)§xv-§;v'+(€y—51) §yu ' é;v
.o o e
* (ez-ef) Et: 81zv' &*zv rdrds
' z (2.4.2)

here P is the power normalization factor and §xv etc. are the known

fields of the ideal mode. =

The above expression is valid providedAB«BU . A consequence of this
requirement is that the above method is only applicable to biaxial
crystal cored fibres with small crystal anisotropy. The accuracy of
the above method can be improved by using the modes of a uniaxial

cored fibre as the ideal modes of the perturbed guide.

2.5 Wave Propagation In Uniaxial Cored Fibres With Crystal Axis Not
Along The Direction Of Propagation:

It was observed in some of the benzil crystal cored fibres that the

erystal c-axis was not along the fibre axis. The deviations were
generally small i.e. < 5°, however in some extreme cases deviations

as large as 10° were also observed (Chapter 5). If the crystal c-axis

makes an angle 'a' to the direction of propagation i.e. z-axis, the

permittivity tensor in the wave equation is then given by

~

e’ T

|
=]

(2.5.1)

where

T is the transformation matrix and for this case becomes

1 0 0
T = 0 cosa sina
0 -sina COSQ

(2.5.2)
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T is the transpecse of T.

[e

g’ is the permittivity tensor of uniaxial crystal in its principal co-

ordinate system.

€ 0 0
XX
€= 0 ®yy  Fyz
0 € €
Zy Y44 ) (2-5-3)

and the matrix elements are

£ = g, Z€nn
X% 1 0o

- 2 .2 2. 2., 2.2
© oy ggCos”a + €38in® « —eo(noCos @ + n Sin @)
= = .l'. - 1 = .]_'. 2 - 2 1
ezy = Eyz 2(31 €2)Sin2a = 2eo(no ne)SLnZQ
€ = ezCosza + e1Sin2a = O(nZCosza + nzsinza)
2z e o

The wave equation in this case also has to be numerically solved as
no analytical solution exists. For crystal cored fibres where the
deviation of the crystal axis from the fibre axis is not large , the
propagation constant can be calculated using the perturbation method
discussed in the previous section. In this case ideal modes of the
perturbed guide will be those of an uniaxial guide with its crystal
axis along the fibre axis. Hence, the change in the propagation

constant, A8, from that of the ideal modes is given by

21T a
8 = B\ fe,-e) &, .8+ (e “z
- F O S S =7 "¢z e

- o O

ézv : g‘;v ] rdrd¢

(2.5.4)

where

¢ and e , @re components of permittivity of the crystal along the
! z

f{bre y- and z-axise.



2.6 Wave Propagation In Fibres With Dispersive Core:

The majority of organic crystals with large second order
susceptibilities also have strong absorption in the near UV region of
the spectrum and as a result the dispersion between the fundamental
and SH wavelengths is generally large. Therefore it is necessary to
also take dispersion into account when determining the phase matching
requirements for non-linear interactions in crystal cored fibres.
The effect of dispersion can be incorporated in the computer programn,
used to evaluate fibre propagation constants, by using Sellimer's
formulae to compute the core and cladding refractive indices at the
appropriate wavelengths., In figure 2.7, normalised propagation
constant of the HEll mode in a benzil crystal cored fibre has been
plotted along with variation of core and cladding refractive indices
with the wavelength. Also included is a plot of normalised
propagation constant of the HEll mode computed in absence of
dispersion and with core and cladding refractive index values at
1.064bpym wavelength. It can be seen from the above plots that in
crystal cored fibres it is necessary to take into account core and
cladding dispersion as otherwise errors in evaluation of propagation
constants of the modes can be very large. This curve also shows that
for fundamental wavelength of 1,06buym the SH will be in the

radiation field.

48



CHAPTER 3

Theoretical Analysis Of Optical Second Harmonic Generation In Crystal

Cored Fibres

3.0 Introduction:

Optical fibres are attractive for non-linear interactions as it is
possible to draw long lengths of fibre having constant normalised
frequency. Stolen et al(19T4) were first to demonstrate phase
matched four wave mixing in optical fibres. These days fibres are
used to realise fibre Raman laser in the 1.06um to 1.Tum wavelength
range, generation of short pulses using pulse compression in fibres
and in the study of .solitén propagation for communication
applications. These effects occur due to the third order non-linear
susceptibilty of fused silica and self-focussing effect. Optical
fibres cannot however bYe used for optical SHG or parametric
amplification as the second order non-linear susceptibility in silica
and glass 1s zero. The crystal cored fibres wunlike optical fibres
have a non-centrosymmetric core material and can be used for three

wave mixing processes.

In this chapter principles of phase matched SHG in crystal cored
fibres are presented and expressions for SH power generated are
derived using coupled mode analysis. The analysis presented in this
chapter could also be used for the study of other three wave

interactions.
3.1 Qualitative Description Of SHG In Crystal Cored Fibres:

A high intensity field in the core of a crystal cored fibre generates
a non-linear polarization wave which then gives rise to a SH 1light
wave in a same way as in a bulk crystal. There is however no
appericiable build up of the SH power.if the fundamental and SH modes
are not phase matched. The phase matching between these two modes can
be achieved using waveguide dispersion as discussed in chapter 1. In

crystal cored fibres it is possible to implement phase matching, as
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in planar and stripe waveguiding structures, by either of the
following two methods:

1. Coupling the fundamental mode into a SH guided mode.

2. Coupling the fundamental mode into the SH radiation field.

In both the above methods for SHG it is desirable to have monomode
operation at the fundamental frequency so that all the launched power
is avialable for SHG. This 1is because the launched power in a
multimode fibre is distributed among all the modes which are
supported by the fibre and consequently power in any one mode is
small. Also, in multimode fibres, the power in the modes varies
continously as even small perturbations can cause mode coupling.

These two methods are discussed below in a greater detail.
3.1.1 Coupling the fundamental mode into a SH guided mode:

This method of phase matching is preferable as it is more efficient
of the above two methods(see section 3.2). The phase matching
condition for optical SHG is 8203 = 28“, where Bw and Bgm are
the propagation constants of the fundamental and the SH modes
respectively. The SH guided mode into which the coupling can take
place 1is determined by the solution of the fibre's eigenvalue
equation ie equation (2.3.7). The waveguide dispersion characteristic
for the HEll mode does not allow phase matching between the
fundamental and the SH HEll modes and as a result the fundamental
mode has to be phase matched to a higher order SH mode. This' form of
phase-matching is shown on a o-f diagram in figure 3.1. Here the
core-cladding refractive index difference has been exaggerated to
show the oprinciple of phase matching. It 1is also necessary, as
discussed in chapter 1, to ensure that the field overlap integral is
non-zero for coupling to take place. The field overlap integral for

SHG in crystal cored fibres is given in Appendix 2. It is non-zero

for coupling the fundamental HEll mode into SH HElu modes and has

a maximum value for coupling into the SH HEll mode. In practice, as
the phase matching requirement is not necessarily satisfied for a
given waveguide dispersion it is difficult to implement this form of
phase matching. In some cases it shduld be possible to wuse

temperature dependent change in refractive index to optimise the
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waveguide dispersion to achieve phase matching.

3.1.2 Coupling the fundamental guided mode into the SH radiation
field:

This form of phase matching is possible only if the fibre core and
cladding materials are dispersive. As this is generally the case it
is relatively easy to implement. In this case it is only necessary to
arrange that the propagation constant of the SH light wave, Bzm,
lies in the continuum of radiation field ie B2w< n%mkﬁw. This
form of phase matching has been shown on a w-f diagram in figure 3.2.
As for .phase matching BQQ= 28w, where Bw is the propagation
constant of the fundamental HEll mode, the condition necessary to

couple the SH into the radiation field becomes

W, W 2w
Therfore the chromatic dispersion Gn,d where d&n = n%m- ng,
required in the cladding glass 1is given by
w W,
én > (8" /kg- ny) (3.1.2)

It 1is also necessary to ensure that n§w> gzm. The precise value
of chromatic dispersion required is dependent on the fibre V-value,
at the fundamental frequency, but it will always be less than the
core cladding refractive index, An, at the fundamental frequency. As
in weakly guiding fibres An<<0.2, the chromatic dispersion required
can be obtained by using commercially avialable glasses. The SH
radiation in this case will exit from the fibre core at an angle, «,

given by

2w 2wy (3.1.3)

Cosa = Bgm/(k0 ng

2
For wvalues of Bzu) slightly less than kgwnzm, the angle o 1is of
the order of few degrees and therefore the SH will be guided in the
cladding.

3.2 Analysis Of SHG In Crystal Cored Fibres:



The process of optical SHG in crystal cored fibres can be treated as
a coupled mode interaction in which the second order susceptibility
of the fibre core acts as the perturbation resulting in the
fundamental power to couple into the SH wave. Here it is assumed that
the fibre core is uniaxial with its crystal axis along the fibre axis
and the SH is generated from a input fibre mode at the fundamental
frequency /2 by coupling to a guided mode or radiation field at
frequency uw. fhe coupled wave equations in this case can be derived

using Maxwell's equations. For a charge free and non-magnetic region

these are
3B
VxE = -3
= et (3.2.1)
2D
VxH = - ’
- ot (3.2.2)
where
2 = uog_ ~ . : (3'2.3)
D=cg+p (3.2.%)

For optical SHG, the polarization term, P, consists of both the

linear and non-linear components ie

P =P +Pyp = e X, E*Ey (3.2.5)

' ¥

However as the permittivity,e, of the medium is related to its linear
susceptibility by
(1)
L )

A .
g eo(l X

(3.2.6)

The electric displacement vector becomes

D=eE+ Ry | (3.2.7)

The equations (3.2.1) and (3.2.2) can then be written as
it
E=-qu_ o
VE = 7 Mg 5% (3.2.8)
SE 3y
VKL = € 3Tt 3
9 t (3.2.9)




where, permittivity tensor is given by

61 ] o
g = [o) 51 (@]
o o . (3.2.10)

Taking curl of equation (3.2.8) gives the vector wave equation

9

2. - _ — (vH) -
V(V.E) - VE=-u_ 33--°=

(3.2.11)

In the subsequent analysis it is assumed that the crystal cored fibre
is weakly guiding ie A<< 1. In practice this can évé,us_i—l_y ,ﬁé . arranged
by selecting a suitable cladding glass for a given core material. For
a weakly guiding fibre, as was discussed in chapter 2, field
components of the guided modes can Dbe takeﬁ to be very nearly
transverse. The same also holds for the radiation modes having 8
values Slishtly less than Roky, the region of interest for SHG.
This assumption is not however valid for |8l values much less than

n2k0' Also, in the subsequent analysis 1longitudnal component of
the non-linear polarization wave has been neglected and in general
this may not be justifiable.

The transverse wave equation for the fibre can then be shown using

equation (3.2.11) to be given by

-9, 2 3 2 (yen)
For a charge free region
v.D=V. (8E) = 0
(3.2.13)
ie
°E, €q
5z =~ T (V.E) (3.2.14)
2 =t
and as
(vx), = e x5 + 2P (3.2.15)
=t 1 o3t =t ot —Lt cc.

The transverse wave equation can be re-written as

u



(Ox}
N}

- 2 e, 32.p
_ ) (-5,
(Vt * 327 "W gy ’5?’) -7, (9, -E;) ( e o B (3.2.16)

The non-linear polarization can be regarded as a form of perturbation

i.e. non-linear guide can be considered as a perturbation of an ideal

guide. The wave equation for an unperturbed guide ie BNL =0, is
2 32 a2 €,
(Vt T2 %5 —_75) Eg-7y (94 -E) (1 B E_) =0
3z 3t Z
(3.2.17)

An unpertubed uniaxial cored fibre will support a discrete number of

guided modes and a continuum of radiation modes. The radiation modes

have propagation constant, 8, which lies in the range ‘kéi 8< kz’
where, R2= neko. Also there are evanescent modes with a
continous spectrum of imaginary values in the range -joo<B<joo and

the complete set of radiation modes are described by perameter, o,
where

2
p = (kp- 8

and it lies in the range 0 < o< oO.

2)l/2 (3.2.18)

The transverse field distribution of the perturbed guide supporting N
guided modes and a continuum of radiation modes can be expressed by

the expansion

-~}

N
jlwt- j(wt-8z)
gt = Z=| aIJ (Z)§pt eJ<w sz) .,_Z/ 8 (z’o,) _&}Ot JORC do
H o)
(3.2.19)

The summation in front of the integral indicates summation over all
types of radiation modes. However, for SHG the radiation modes of
interest are only those with 8= Ak . The expansion coefficients
are taken to be only z-dependent while the fields have been assumed
to be of the form ej(mt-ﬁz)

expansion are same as those given in chapter 2 for the fibre modes.

. The field distribution terms in the

Substituting (3.2.19) into (3.2.16) gives



2 j{wt-8 2z) jlwe-8 z) _ 1
[(v *“‘1 L DE e TR - v (Vt-é}m e £ ) (1= =)

a2a de (wt-8 2)
B H e J(wt g 2
[—Z'Zdez] Zpe a

m

jlwt-3z) jlwt-32) €1
+Z§fa dp (v +(x -8< )) _;.33 - v (vt.§m__e )(1-?-)]

Z
(wz-32) *2irs
e .. d=s jluz-32 - — Lt
- t%%%-ZJB:;"“’émeJ T e T
. (2.2.20)
. o - ~ (3.2.21)
~here, kl = w\{uoel— nlko

In an unperturbed guide, each discrete guided mode satisfies

[ 2 2‘5 2)] 8 ej(wt-BpZ) -v (v .8 ej(mt—B}JZ)) (1- _E_‘_)=O
vt +(k1 K —ut t ot -ut gZ

(3.2.22)
and the radiation modes satisfy

2 2_, 2 j(wt-8z) _ j(wt-Bz) €1
[vt +(k, -8 1 §pte V(v .& e ) 1= E;’=O

t o t'-pt
(3.2.23)
Using (3.2.22) and (3.2.23), equation (3.2.20) becomes
dgap dﬂ.p j((.\.\t—s Z\
Z[dz’- gk E—z_] fe @ g
B 2
= p) 3 P
d a da . =NLt
0 _ s ol & Jlut-Bz), =W, T3Z
+Zf[ dz 208 3 ] -t © % (3.2.24)
o

The discrete guided modes satisfy +the following orthogonality

relationship
-] ©
1 - o - ' ’
{]' e,- (gnt X J&* ) dxdy = P for m=n
. (3.2.25)
— — = 0 otherwise

This is the fimilar Poynting vector used for the calculation of power

in an e-m wave and was also used to calculate fibre mde amplitudes

in chapter 2.
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The radiation modes satisfy the following orthogonality relationship,

1 Q
2[[22. (Ebt X ?-{*ot) axdy = PS(p=p')
Yoo (3.2.26)

Where, &8(p-p') 1is the Dirac-Delta function. According to this
relation the integral becomes infinitly large if the modes are
identical and zero if they are different. This was also used +to

calculate the mode 'amplitudes of the radiation modes.

Taking the cross product of both sides of the equation (3.2.24) with

“Z?zrt and then taking scalar product with a unit vector in z-

direction, gives after integration over guide cross-section and using

the orthogonality relation in equation (3.2.25)

d2a ) da (mt -8 z)
—_Jz{dz - 2J3u .—Edz e’ u / ! )dxdy
(3.2.27)

If the mode amplitude a changes only slowly in a distance of a
wavelength, then its second derivative can be neglected ie for slow
2 .
variations, Id a /dz?1 << 8 | da /dz| . The equation (3.2.27)
u u- u

then becomes

da .
w o _jlwe-sz) o Po [ X3¢
e H Z P ut) axa
iz 1‘33 s / R AN CTY

Integrand on the R.H.S. after simplification is given by

£ El\th.‘_&i* -l oy g ]

muo Bu t — uz

1 3@_* ' 1 3§* 8
Now — B2 ong = EZ are of the order of ——4% and as 8 a is of the
crder of unity for optical fibres :é%f will be approximately equal to §*u"

u
Also, as in weakly guiding fibres !§z|<<l§t|’ it is reasonable to assume

that‘jL 7, & << & . Hence equation (3.2.28) can be written as
Bu t — uz ut



o~ [e2]
3y, o dlwt=gz) _ <1 3% '
dz LjwP 23t? Pyre- 8%, xdy (3.2.29)

The orthogonality relation (3.2.26) can be used in the case of

radiation modes to similarly give

B ilws-gz) _ -1 92 o g
dz © T LjeP  3t? Lt — pt dxdy
-0 -0

(3.2.30)
For SHG non-linear polarization is given by (chapter 1)
= plo)_ e (@/2), (w/2) _jut
Barn = 2% 595k ¢ Ej B e (3.2.31)

In the above expression for non-linear polarization, the fields are

transverse., For single mode propagation at the fundamental frequency

we have E = Ek= E . Here for the sake of generality we assume

J th
that all the power at the fundamental frequency is in they  guided
mode and having transverse field distribution given by

Evt=av(w/2)<z) §vt(w/2)ej((w/2)t—8vz)

(3.2.32)

Using (3.2.31) and (3.2.32), equations (3.2.29) and (3.2.30) can be
written as

For guided mode SHG

(w) 2 2
da 7 wedyy [av(w/Z)(z)] _ b8z J[']{ g (/2" o (el 0

az = )-LJ.P -t —ut
Zo Yoo (3.2.33)

For SHG in radiation field

(w)

2 2
da we d. ) (w/2) (w)*
gz - gj;m [av(w/2)(z)] . Jﬁsszﬁw . §pt @dy
' ‘o Lo (3.2.34)
where
o (@) _og (w/2)
28=8, 28

(3.2.35)



and dim is the pertinent SH tensor element.

In equations (3.2.33) and (3.2.34) the integral on the R.H.S.
represents transverse overlap integral. It specifies the modes among
which the coupling can take place and also determines the strength of
coupling. It can be evaluated by substitution of field expressions,
given in chapter 2, for guided modes and radiation field followed by
integration over the core crossection. In appendix 2 its evaluation

and significance is discussed in greater detail. In the subsequent

analysis this integral will be designated as I and I
g r
corresponding to equations (3.2.33) and (3.2.34) respectively.
3/ 2
Assuming weak coupling Iie am/ remains constant over the

interaction length, L, the SH guided mode amplitude after distance,
L, can be found by integrating equation (3.2.33). The square of the
amplitude of the SH guided mode is then

2 2.2
) ) 2 g, d:n (a (w/g)]h 12 L2 Sin{ABL/2)"
{au (L)} = 16p2 v g ABL/2 (3.2.36)

Total power flow through a plane perpendicular to the fibre is equal

to the sum of guided and radiation field power and is given by

ngko

2 2
PT=P{Z\)|8.V[ + 3 flaol dp}

In the above expression power flow in the -ve z-direction has been

(3.2.37)

neglected. P is a normalization factor and is same for all the modes.

This was also used in chapter 2 for calculation of mode amplitudes.

HencetSH power generated by coupling the fundamental HEll mode into
the yu SH guided mode is given by

2 2.2 2
2 w e d. 22 2 .
2) sin(asr/2)
Pu(‘“) (L) = Pla| s —=r ple/ I, L O
(3.2.38)

where, P in the denominator of L.H.S. is a normalization factor and

has no significance in the calculation of SH power. It cancels out
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with that in the field distribution expressions after substitution of

ﬁhe expression for field overlap integral.

Similarly, the square of the amplitude of SH radiated mode is given

by
2
2 2 22 2
‘ (w)(L)l Y& 4im olw/2) o 2L2 Sin(agL/2)
%o = Ti6e" r ABL/2 (3.2.39)

The SH power generated by coupling to radiation field 1is Dbetter
expressed in terms of the attenuation coefficient of the fundamental

guided mode. In this case high attenuation indicates good conversion

k

efficiency. The radiation field power is given by
2
a |“d
D\ °
n k o

oo
AP = E)EZJ{ l
(o]
2

2. 2.2

“Eo Yin le2)® | jz|sintsn/e) | ;2 8l g

= —53 F ABL /2 r p
(3.2.40)

—ngk
Sin(ABL/2)
If 'L' is large (c.f.wavelength), the function ARL/2 is very
sharply peaked near AB=0 (phase-match case), ie

Lim. Sinlx _
Lo T = m8(x) (3.2.41)

Hence, other %terms in the integral in equation (3.2.40) can be

regarded as constant and can be taken out of the integral sign i.e.

n-.k
2 2 2
wée 24< 2 .
. o im P(m/2) 12 |g] [Sln(ABL/E)J as
Lp
k

r o) AB
s (3.2.42)

The integral in equation (3.2.42) can be approximated by

X 2y -

. , Iy
~/’[Sln£28L/2)} g = Fﬂ%ﬁ%%%ng d(a8)=m L/2

(3.2.43)



6 1
The change in integration limits has negligable effect, since the
integrand contributes to the integral in the immidiate vicinity of
Ag= 0,
Hence, equation (3.2.42) can be written as
wle ng

2
AP= __gi;s._lm P(u)/?) Ir2 -L%L L (3.2.44)

The attenuation coefficient can be defined as

2.2 .2
AP - TR din (w)2) 2 8]
- = = 3.2.1"
@ P(w/Q)L 8p3d P Ir 0 ( 5)
where
(w/2) . .
P s the power in the fundamental mode at 2z=0 and AP/L is the

Sh power radiated power per unit length.

The major difference in the expression for SH power generated by
coupling to guided SH mode and to that for SH radiation field is that
in the former case SH varies as square of interaction length instead

of varying linearly as in the latter case.

The expression for SH power generated by coupling to radiation field
was derived by assuming coupling to be weak. However, the above
theory can be extended to long interaction lengths as the power

coupled into SH radiation is lost into the cladding. The fibre can be

H 1

considered to be composed of 'n' sections of lengths 'l ' yhere,
al << 1. In this manner +the above analysis can Dbe %sed for
caiculating‘SH power generated by each section of length 'l ut
by using different value of the fundamental power incident og each
section. The fundamental power at the nth subsection will be equal

)th

to the fundamental power at (n-1 subsection less power lost due

to coupling to SH radiation. The incremental power loss at each
section is same and equal to —alc- Hence, the SH power radiated
over the length L of the fibre can be obtained by usihg following

equation.

(w/2) -aL (3.2.46)

() (1) = p(o) 1-e



Discussion:

The above analysis can be used to make a comparision of SHG
efficiencies for SHG by coupling the SH into the radiation field and
to a guided mode, and to consider the effects of cladding dispersion
on phase matching. Here it is assumed that the phase matching
condition is satisfied and the fibre is monomode at the fundamental
frequency ie Vv= 0. Also, as the field overlap integral is maximum
for modes having similar mode field configurations it is assumed
that y =v . The expressions for SHG efficiency per unit length for
coupling to SH radiation field and SH guided mode can then shown to
be given by

For SH in the radiation field

a A
B(weodim)? (u0/€0)3/2 th(w ) J. (UE)J (or)rdr

= o)
- 2
n(m) n(2w) 2 h l‘lJ (U)IthaJ (ca)H (l)(Da)-oaJl(ca)Ho(l)(oa)|2
note: In this section ® - the fundamental frequency

2w - the SH frequency ' (3.2.47)

For SH as a guided mode
2(we a, )2 (u_fe )32 whwt 5w )y F g 2(E)g (UHE)rar
2w Yeolim/  ‘Holfo j; o ‘"a'“o' a
P ()2 (20) __6.b 1 1,12
w w L
n ' n ma V'V |J (U) { |7, (U™ (3.2.148)

In the above expressions the mode field distributions used are of
weakly guiding isotropic cored fibres. These expressions can however
also be used to determine efficiency per unit length, to an order of
magnitude, in weakly guiding uniaxial crystal cored fibres with
crystal c-axis along the fibre axis as the effect of difference in
the longitudnal index on transverse fields 1s negligable for
birefringence of upto few percent(chapter 2, section 2.3). Consider a

monomode benzil crystal cored fibre with following parameters

= 1.6313; n,= 1.625; ny= 1.66

n,

N



w

2
a2t 1.6691; n, = 1.642k; n2Y= 1.687

1

-12
im

The fibre V-value at the fundamental wavelength of 1.064um is then

2.3+ The normalized propagation constant for the fundamental HE
mode at 1.064um wavelength was computed(Appendix 1) to be 1.627862.
This data can then be used to determine SHG efficiencies per unit

length for the above two cases.

1. SHG by coupling the fundamental HEll mode into the SH radiation
field:

The value for o in this case is 2.6x10_3 with 1W of fundamental
power. Consequently, ©SHG efficiency for 10mm of fibre will be
2.6x10_3°/o +« These figures do not include propagation losses of the
fundamental and the SH signals. This form of phase matching is rather
easy to satisfy by suitably selecting the cladding glass. In figure
3.3 variation of the normalized SHG efficiency per unit length, o |
in benzil crystal cored fibre as a function of cladding dispe‘rsion is
given. Also, indicated on the plot is the dispersion of SKN18 glass
used as the cladding for2(‘lr)>enzil;,l crystal cored fibres. an is zero
for dispersion of upto n - newas tkgli SH generated cannot couple
< n

into radiation field for B8

2w 2w )
dispersion as B > n it increases to a maximum value for the

. For greater values of

optimum dispersion. The value of the optimum dispersion is determined
by the overlap integral. The effect of variation of the core radius
and/or core refractive index is to change the the fibre V-value and
hence the propagation constant at the fundamental wavelength. This
will then result in different value for the optimum dispersion.
However the variation in the a will not be great for small changes in
the fibre V-value in the single mode or in the region just above the
cut-off.

2. SHG by coupling the fundamental HEll mode to a SH HEln modes:

In this case it is rather more difficult to achieve phase matching

between the fundamental and SH HEll modes and in practice phase
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Figure 3.3: SHG efficiency per unit length, a, for benzil crystal
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matching is generally satisfied for SH as a higher order mode. This,
as discussed earlier, results in lower conversion efficiency due to
small value of field the overlap integral. The SHG efficiency for
coupling the SH into HE12 mode was computed to be 12.1&70 for a
fundamental power of 1W and a 10mm long fibre. This represents an
increase of about U4B00 as compared with the generation of SH by
coupling to the radiation field. This clearly demonstrates advantages

in optimisation of the waveguide dispersion for phase-matching.

For a practical device, guided wave SHG is also preferable because of
the ease of use. It is possible to maximise the overlap integral by
phase matching +the fundamental and the SH HEll modes by either
using a biaxial crystal material or growing the crystal material in
glass capillaries having elliptical bore. In the case of a biaxial
core it may be possible to arrange that with the fundamental wave
launched in the fibre as HE mode, the phase matching condition

J A
is satisfied for coupling to the SH HE'.ll mode. This form of

X
phase matching is shown in figure 3.4. In a similar manner it may be

possible to exploit shape dependent birefringence of an elliptical
cored fibre by having the fundamental and the SH modes as HE
o

11
and HE respectively.
e 11

(



CHAPTER L

Materials For Growth In Glass Capillaries

4.0 Introduction:

In this chapter criteria used for selection of crystal materials for
growth in glass capillaries for non-linear interactions and in
particular SHG, are discussed. The two materials selected for growth,
after an extensive literature survey, for SHG were acetamide and
benzil. Their properties, especially those of benzil, are discussed.
Also, in this chapter growth of bulk benzil single crystals is

described.

4.1 Selection Criteria Used For Growth Of Crystals In Glass
Capillaries For SHG :

There exist a number of non-linear mterials which can be used for
active device fabrication, however their suitability has to be
considered in context of the particular device requirements. Some of
the materials possessing large non-linear optical coefficients e.g.
LiNbOB, ZnS, KDP, have been used by a mumber of research workers
and their properties are well documented. However, very little data
exists for mjority of non-centrosymmetric materials regarding their
point-group, refractive indices, absorption coefficients etc.. This
is Dbecause the growth of ©bulk single crysté,ls and detailed
investigation of their physical properties is a time consuming
buisness and not always a rewarding exercise. It is possible to meke
a semi-quantative Jjudgement about the magnitude of non-linear
coefficients by comparing the intensity of the SH emitted by their
powders with that of some standard eg KDP, quartz. A number of
research workers have compiled Ilists of useful mterials for SHG
using the above method, principal among them are, Kurtz apd Perry
(1968), Gott (1971), Davydov (1971), Jerphagnon (1971), and Owen and
White (1976). Davydov (1970) and Jerphagnon (1971) have also used a
molecular engineering approach to make compounds possessing large

non-linear coefficients. This involves replacing some of the
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molecules in a compound by those, eg benzene rings, which enhance
non-linear effects. However, these materials are not commercially
avialable. An extensive literature survey was carried ocut to find
crystals suitable for fabrication of a SH generator in crystal cored
fibre form. The method adopted for mterial selection is illustrated

on a flow chart in figure 4.1 and is discussed below.

In weakly guiding fibres the fileld components in the. transverse
direction are much greater than those in the longitudnal direction
(chapter 2). Hence, for efficient non-linear interactions in crystal
cored fibres, the core material non-linear tensor coefficients, which
are mltiplicative factors with the transverse field components,
should have non-zero magnitude. This requirement excludes all the

crystal classes with the exception of classes, 1, 2, m, 3, 3m, 6,
6m2, 32.

Of the materials belonging to the above classes , the next
consideration is their refractive indices. This 'is necessary as in
order to fabricate a low moded fibre the difference in the core and
cladding refractive indices should be in the region of 0.1 . The
avialable glasses (Schott) have refractive indices in the range 1.45
to 1.95 (at 0.6L4kym wavelength). As a result crystals having
refractive index greater than 2.0 cannot be used to fabricate crystal
cored fibres by their growth in glass capillaries. Because of this
consideration some of the very best non-linear materials, e.g. Te,

Se, HgS, LiNDO
useful.

LiTal Ag AsS Ca_Nb OT, are not

3° 3’ 3773 2" 2

The growth of crystals in glass capillaries is best achieved by
crystallization of the melt. As a result materials which decompose on
melting were also rejected e.g. hexamine. Also, as the crystal growth
is from the melt, the melting point of the mterial should be less
than the glass transformation temperature (temperature at which glass
starts to transform from a solid state into a plastic state). This
temperature is generally in the range 350°C to 700°C (Schott)
depending on the glass type. However, silica capillaries can be used
to grow materials possessing high melting points as its softening

temperature is 1610°C. In this case the index matching (silica

6
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Figure 4.1: Flow chart of the method used in selection of crystals

for the fabrication of crystal cored fibres for SHG.



refractive index is 1.455 at 0.633um) may prevent designing of a

useful device.

The other considerations are that the crystal should be transparent
in the frequency region of interest and possess large non-linear

tensor co-efficients.

The crystal materials for which no data other than SH powder test
results was avialable were rejected. The 1literature survey was
carried out to find materials satisfying the above requirements for
fabrication of a SH generator. All the materials were found to be
unsuitable in at least one aspect. However, two materials, acetamide
and benzil, were selected as they appeared to offer a best compromise

in material properties.
4.2 Crystal Materials Used For Growth In Glass Capillaries:

Acetamide was the first material selected for growth in glass
capillaries. Acetamide is a negative uniaxial crystal belonging to

point group 3m. Its properties have been summarised in table h.1.

The disadvantage of using acetamide is that it is hygroscopic. It was
anticipated that it will be possible to prevent water absorption by
coating the crystal end faces of the fibre by a thin film of oil or
some transparent adhesive. However, the experiments on prevention of
water absorption by coating the crystal end face were not successful.
The results of these experiments are presented in section 5.1. In
view of this growth of acetamide crystals was not carried ot in
capillaries with bore diameters less than 10Oum. Neverthless, the
growth of acetamide crystals in large Dbore capillaries provided
useful experience in understanding crystal growth phenomena in glass

capillaries.

A search was carried out for an alternative crystal material for
growth in capillaries to realise a SH generator. As a'result of this
exercise benzil was selected. Benzil appeared particularly attractive
as it had earlier been successfully grown in capillaries with bore

diameters greater than 20um by Babai (1980). Initially, benzil had
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TABLE b.1
ACETAMIDE

Crystal structure : CH3,CO.NH2

Crystal class : trigonal

Point group : 3m

Melting point : 82°C

Boiling point : 222°C at T60mm and 120°C at 20mm

Refractive indices : n = 1.507T; n = 1.461(ref.A) at A = 0.5416um
® < 1.5 = 1.46(ref.B)

Other : hygroscopic; soluble in alchol, ether,

choloroform, glycerol and water.
A: Int. critical tables, vol.l, ppl8, McGraw Hill, 1926.
B: Willard M.L. and C. Maresh,'Optical constants of benzamide, its

homologs and some aliphatic amides', J. Ame Chem. Soc., ég,

1253(19%0).

TABLE 4.2
BENZIL

Crystal Structure : C.H_.C0.CO.C_H

65 65
Crystal class : trigonal
Point group : 32
Melting point : 95°C
Boiling point : 346°- 348°C at 760mm and 188°C at 12mm
Refractive indices : n = 1.667; n = 1.684 at A = 0.5461yum
Other : ygllcw in coiour; soluble in alchol, acetone,

benzene and ether; insoluble in water.



been rejected as it is yellow in colour indicating unsuitability for
generation of harmonics with fundamental wavelengths less than 0.8bym
and due to small non-linear coefficients. The properties of benzil
have been summarised in table 4.2. and some of these are further

discussed in section 4.6.
4.3 Purification Of Commercially Avialable Materials:

The commercially avialable materials in general have a high impurity
content and as such cannct be used as a starting material for growth
of high purity crystals. Infact the crystals grown from mterial
having impurities show a marked concentration gradient of‘impurities,
usually the purest material will be in the bottom section of the
boule while the top section has the largest impurity content. This
mechanism of purification of crystal material occurs whenever crystal
growth is carried out and is exploited in 'zone refining'. This can
be illustrated on a phase diagram, figure 4.2, where it has been
assumed that the impurities have a lower melting point then the
crystal. If the impurity content in the starting mterial 1is C

then as the melt cools down it stays in liquidus state till it
reaches temperature Tl' At this +temperature the solid of
composition 02 will crystallize and will co-exist with 1liquid of
composition C. in equilibrium. Hence, purer mterial becomes lost
to rest of the material on solidification. The remainder has high

impurity concentration, say C3. When the temperature reaches T

3

further crystallization occurs and material of impurity concentraticn

C), comes out . This process goes on and will yield pure crystal

material at the bottom with impurities at the top of the crystal.

The other method commonly used for purification of crystal materials
is 'fractional crystallization'. In this method crystal material is
dissolved in a solvent and then crystallization is allowed to take
place either by cooling or partial evaporation of the solvent. By
repeated dissolution and crystallization a good seperation of

impurities can be achieved.

4,3.1 Purification Of Benzil:
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— Liquidus

Solidus
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Figure L4.2: Phase-diagram of a crystalline material.

Figure 4.3: A photograph of benzil crystals obtained by evaporation
of the super saturated benzil solution in ethyl alchol.



The commercially avialable benzil powder (suppliers: British Drug
House) was dissolved in ethyl alcohol, while being heated so as to
increase its solubility. The hot benzil solution was filtered twice
to remove impurities insoluble in ethyl alchol. The hot benzil
solution was then slowly allowed to cool in order +to intiate
crystallization. Benzil crystals were then seprated from the solution
and washed in alchol. This process was repeated. The benzil crystals
obtained in this manner were needle shaped having lengths upto 15mm.,
figure 4.3. The purity of these crystals was assessed by measuring
their melting point. The pure materials exhibit a sharp melting
point, as can be seen from the phase- diagram given in figure 4.2. The
melting point of the commercially avialable benzil was measured to be
95.5+0.1°C, while after purification it was measured to be
95.0+0.1°C. The latter value agrees with that quoted in the

literature.

4.4 Growth Of Bulk Benzil Single Crystals:

The bulk benzil crystal growth was carried out in order to plot the
transmission spectrum in the wavelength range O.Lum to 2.0um. Also,
bulk benzil crystals could be used as a starting material for growth
in glass capillaries as they will have a low impurity content. The
growth was carried out wusing wvertical Bridgeman technique. In this
technique crystal melt is progressively crystallized as it moves

through a temperature gradient.

The furnace used for this purpose was similar to that used McArdle
and Sherwood (19TL4) for growth of phenanthrene. In this furnace two
zones which provide the temperature gradient are maintained at
constant temperature by the wvapour from two boilers. For benzil
growth, steam was used for the hot zone while benzene vapour was used
for the cool zone (b.p. = 80.1°C). The ﬁemperature profile of the
furnace is given in figure 4.4, The purified benzil was placed in a
thin walled pyrex glass crucible. The tip of the crucible was tapered
so that intially only a small volume of melt is supercooled and hence
only one muclei will be formed. If, however, several crystallites are
formed then there is a high probability that as the growth interface

moves through the taper only one will dominate giving rise to single
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crystal growth.

The glass crucible was lowered through the zones at the rate of

1mm/hr. Single crystals of lengths upto 4Omm and 10mm in diameter
were obtained. The crucible was carefully cut at the both ends and

the crystal was gently pulled out.

4,5 Assessment And Discussion Of Properties Of Benzil:

In this section properties necessary to design a SH generator and to
estimate SHG efficiency are discussed. This requires a knowledge of
the following:

l. Refractive indices in the wavelength region of interest.

2. Non-linear SH tensor coefficients.

3. Transmission spectrum.

4.5.1 Benzil's Dispersion:

The refractive indices of benzil are required to be known for both

the fundamental and SH wavelengths. The ordinary and extraordinary

indices of benzil have been measured by Bryant (1943) in the 0.421lum

to 0.656um wavelength range and Chandrashekar (1954) has derived
Sellmeir-Drude formulae to fit refractive index dispersion in this

range. These expressions are,

2 2
2 0.535X\ 0.015X
= 2,08 + : + 5 b5t
Yo 22 - (0.24)2 A% - (0.398) (4.5.1)
2 2
2 0.37TA 0.0138X
= 2,35 + + 5
Y A2 - (o.eh)2 xz - (0.395) (k.5.2)

where, X is in micrometers.

Measurements made by Jerphagnon (1971) on SH coherence length in bulk
benzil crystals at 1.06um show that the above formulae could be used
to evaluate its refractive index upto 1.06um without any significant

error. A plot of benzil's dispersion as computed from the above
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equations is given in figure Uu4.5. Also, indicated are reported

experimental values of the refractive indices.
4.5.2 Benzil's Non-linear Tensor Coefficients:

Benzil is a trigonal crystal and belongs to point group 32. The SH
tensor coefficient for this crystal point group is given by, 5

dyp 44y 0 dyy 0 0
0 0 0 0 -4, "44q) (4.6.3)
0 0 0 0 0 0

Point group 32 crystals generally possess only one independent SH
tensor coefficient namely, dll. This 1is Dbecause most of the
crystals satisfy the 'Permutation' and 'Klienman's' symmetry for all
the tensor elements. However, benzil (Gott (1971)) because of large
dispersion does not satisfy these symmetry relations for all the
tensor elements. In this case dlh= dzs# 0, while d36= 0.

Gott (1971) has measured the mmerical values for d11 and dlh as
2xa-quartz and O0.5xa-quartz respectively with 0.694um as fundamental
wavelength. Jerphagnon (1971) has measured dll and the coherence
length for a bulk Benzil specimen using Marker fringe technigue at
1.06um to be (11.51}-5)xdll of quartz and T.10+0.Tum respectively.
Gott's values are in error as he did not take into account benzil's
strong absorption at 0.347um (SH wavelength in his case), and he also
reports the possibility of errors upto 33% due to various measurement
problems present in his technique. In view of this values reported by
Jerphagnon are considered to be more accurate and have been used in

the analysis.
4.5.3 Transmission Spectrum Of Benzil:

It is necessary to know the signal attenuation due to the crystal in
the frequency region of interest. In order to measure the
transmission spectrum of benzil, the bulk benzil crystal was cut
along its cleavage plane, which in this case is perpendicular to the

crystal c-axis. The crystal end faces were then polished using



Figure 4.6: A photograph of polished bulk benzil crystals.
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diamond pastes of varying grades on a cloth lap. A photograph of some
of the polished benzil crystals is given in figure UuL.6. The
transmission spectrum for a 5.49mm long crystal was plotted using a
Perkin-Elmer spectrophotometer, figure 4.7. It was not possible to
plot it below O.4lym due to high signal attenuation. In order to
investigate transmission in the range 0.2um to O.4hum as well, the
transmission spectrum of benzil solution in ethanol was plotted. It
was found that there exist a major absorption peak at 0.25Tum and a
relatively weak one at 0.38um. The absorption peak at 0.38um is
responsible for the charcteristic yellow colour of benzil. The signal
attenuation in benzil at 0.633um wavelength was measured for samples
of varying thickness and was found to be -0.9dB/cm. The above
measurement of attenuation of ‘benzil in conjunction with its
transmission spectra can be used to make an estimate of bulk benzil
attenuation at 0.45um and 0.9um wavelengths. This gives attenuation
of -8.4dB/em and -0.26dB/cm at 0.45um and 0.9um respectively. Rather
high attenuation at o.45um implies that benzil is not a good crystal
for SHG with the fundamental wavelength of 0.9um.

9



CHAPTER 5

Growth Of Crystal Cored Optical Fibres

5.0 Introduction:

The growth of single crystals in glass capillaries with internal
diameters upto 50um has been reported by Stevenson (1974) and Babai
(1977). Stevenson has grown metea-nitroaniline (mNA), while Babai has
also grown meta-dinitrobenzene (mDNB), 2-bromo-L-nitroaniline (BNA),
formyl-nitrophenylhydrazine (FNPH), and benzil. Babai (1980) has also
studied void formation in crystals grown in glass capillaries. This
work was directed towards the assessment of +the crystal growth
mechanism of crystalline materials which are difficult to grow by
conventional methods. They have also indicated that the crystal cored
fibres could be used as an alternative to 'integrated optic' devices
but did not make efforts in that direction. The materials grown by
them, with the exception of benzil, are not suitable for SHG device
fabrication as they belong to wrong point groups i.e. SH tensor
elements multiplying the transverse field components are zero. Also,
in order to have single mode or low moded devices the core diameter

should be less than 10um which presents crystal growth problems.

In this chapter first the work on growth of acetamide crystals in
glass capillaries having bore diameters upto 10um is described. This
work is used as a basis for discussion of crystal growth mechanism
and void formation in 'glass capillaries. The experiments on
prevention of water absorption by coating the end faces of acetamide
crystals in glass capillaries are briefly discussed. The selection of
glass material for growth of benzil crystals and subsequent capillary
drawing from bulk glass is also discussed. Finally, .the growth of
benzil single crystals in glass capillaries having bore diameters

less than 10um is described.
5.1 Growth Of Acetamide Single Crystals In Glass Capillaries:

Stevenson (1974), (1977), and Babai (1977), (1980), used vertical

8
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Figure 5.1: Cross-section of pyrex and SF10 glass capillaries used

for growth of acetamide crystals.

Figure 5.2: A photograph of polycrystalline cored fibre.
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Bridgeman method for growth of crystals in glass capillaries. This
method was also adopted for our work. In this method the crystal melt

is progressively crystallized as it moves through a temperature

gradient.

The growth of acetamide was carried out in pyrex (refractive index =
1.475) and Schott SF10 (refractive index = 1.723) glass capillaries.
The pyrex capillaries had bore diameters in the range 10um to 100um,
while SF10 capillaries had bore diameters in the range 20um to 55um.

The cross~section of these capillaries is shown in figure 5.1.

In our laboratory zone refined acetamide was avialable and this was
used as a starting mterial for the crystal growthe A mmber of
samples of glass capillaries of lengths upto 80mm and varying bore
diameters were used for crystal growth. These glass capillaries were
filled with the acetamide c¢rystal melt using capillary action in a
resistance wire furnace. The furnace was kept at a temperature of
about 10°C higher than the acetamide's melting point so as to ensure
complete filling of +the capillaries. After about 15 minutes the
capillaries were withdrawn from the furnace and the melt in them
crystallized randomly, figure 5.2. This polycrystalline nature of the
core occurs as the melt crystallizes rapidly when .the capillaries are
brought from a high temperature to room temperature in relatively

short time {few seconds).

In order to obtain uniform single crystals it is necessary to allow
the crystal melt to traverse steadily a sharp temperature gradient
region of the type shown in figure 5.3. It is necessary to have such
a sharp temperature gradient as otherwise melt can supercool before
the mucleation can take place. As a result when mucleation does take
place the crystal growth through the rest of the material will Dbe
very rapid and result in polycrystaliization. The slow rate of the
growth is necessary to permit time to allow for the latent heat of
crystallization to be conducted away and also to help to maintain a
planar melt-crystal. interface which is necessary to prevent void or
dislocation formation. In growth of crystals in glass capillaries
this requirement is even more stringent as it is also necessary to

match the reduction in the volume of the material on crystallization
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by flow of the crystal melt to the interface.

A furnace having a sharp temperature gradient was built in which
controlled recrystallization of the crystal material in the
polycrystalline cored fibres could be carried out. This furnace 1is
essentially a resistance furnace but has a water flow arrangement to
provide a sharp temperature gradient. The furnace and its temperature
profile are shown in figure S.4. The water suply to the 'furnace wa.s
from a constant water head in order to stabilise the temperature
profile and also to keep the hot-cold interface at a fixed position
in the furnace. The fibres could be lowered down the furnace with
speeds in the 10 to 50 mm/hr range by means of a pulley, having

different radii, connected to the shaft of a motor.

As the process of recrystallization of polycrystalline core of the
fibres is slow a number of fibres were used in each run. This was
done by placing them in a small diameter thin walled pyrex glass
container which was then lowered into the furnace using the motor
with the pulley arrangement. Before, recrystallization was started it
was always ensured that there was a short section (few mms) of
polycrystalline cored fibres in the region having temperature below
the melting point of the crystal. This was done to prevent the melt
from supercooling. The yield of the void free crystals grown in this
manner was 1 to 5% in each run. The maximum lengths of single crystal
obtained were 4 to 5 mm for capillary bore diameters in the region of
35um. The fibres were assessed for their core quality using a
polarising microscope with magnification upto x500. A mmber or
different types of defects/voids were observed and they can be

categorised as follows:

1. Bubbles/Small Voids (maximum size equal to the bore diameters):

During melting of the polycrystalline core many microbubbles are
released and in some cases they can Jjoin together to give rise to
bubbles. having dimensions of upto bore diameter. On subsequent
crystallization of the melt these bubbles are 'rfrozen' in the core.

In figure 5.5 a picture of a typical void of this form is given.

2. General voids and those between the crystal and the walls of the
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capillary:

These can occur as on crystallization there is a decrease in the
volume of the material and if this volume is not filled by the flow
of melt (by gravity in this case) to the crystal face a void will be
generated. Pictures of this type of woid in the fibre core are given
in figure 5.6. However, in a few Eases a break in the crystal core
was observed and this is shown in figure 5.7. Interesting feature of
this defect is that the crystal alignment is preserved through the
void. This type of void was found to be more prevalent in growth of
crystals in small Ybore capillaries and possible mechanisms

responsible for this are discussed in section 5.5.
3. Non-uniform axis alignment:

In some crystal cored fibres it was observed that the direction of
the crystal c-axis varied along the length of the fibre. This can
occur if the melt-crystal interface is concave in which case there is
a possibility 6f the growth of spurious nuclei which could maintain
growth over short lengths. A photograph of such a fibre between the

cross polarisers is given in figure 5.8.

It was considered that type 1 defects, above, could be eliminated by
filling of the crystal melt and carrying out the subsequent
crystallization in the same furnace. On implementation of the above
scheme it was observed that the number of the voids was significantly
reduced. The maximum length of single void free crystal obtained in
the above manner was 20mm in a capillary of 4Oum bore diameter.
During the growth at times the melt will supercool and as a result
the crystal core will be polycrystalline for a few centimeters after
which single crystal growth was observed. The occurence of this was
prevented by introducing a crystal seed into the melt container,
after it had traversed a few millimeters in the cold region, to
initiate the crystal growth. It was also found that it was very
important to ensure that the water level in the furnace remained
constant during the crystal growth., If it were to suddenly rise, then
the melt in the length of capillary now in the region of temperature
below crystal's melting point will crystallize randomly. As a result

there will be sections of single crystal core seperated by sections
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Figure 5.5: A photograph showing voids in a fibre due t¢ presence of

bubbles in the melt.

N

Figure 5.6: Photographs showing fibre voids generated due to the

insufficient flow of melt to the crystal face.
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A photograph showing break in the crystal core due to

Figure 5.8: A photograph of fibre with variation 1in the crystal axis
along the length.
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of polycrystalline core. Also, it is necessary to prevent any thermal
or mechanical perturbations during the growth to realise uniform

single crystal growth.

To grow crystals in capillaries with pulling speeds of 10mm/hr it
takes upto 6bhrs for the growth to be completed. In the furnace used
control of the water level for upto this period was found to be
unsatisfactory. The water flow arrangement was modified and this is
shown along with the furnace's temperature profile in figure 5.9. The
temperature gradient of this furnace was less than that of the
previous one ie 4.75°C/mm instead of $.30°C/mm. However, decrease in
the temperature gradient did not adversely effect the quality of
crystals grown. It was possible to obtain single crystals of lengths
upto 30mms in capillaries having bore diameters in 30um to LOum
range. The optimum pulling rate for crystal growth in capillaries

with bore diameters <4Oums was found to be 18mm/hr.

The quality of crystals grown in capillaries with bore diameter
>50ums was poor. The maximum single crystal lengths were only a few
millimeters. This is because for large diameter crystal growth the
pulling speed has to be very low too allow the melt to reach crystal
face and also to permit the latent heat of crystallization to be
conducted away through the crystal and capillary walls. Additionally
- the requirements of stable temperature profile and isolation from
mechanical disturbances are more stringent than for growth in small
bore capillaries. Hence, a furnace has to be designed taking above
considerations into account. As our interest was in growth of
crystals in small TDbore capillaries, ie <4Oums, no further

improvements were incorporated in the furnace design.

A few single crystals were also grown in capillaries with Dbore
diameters down to 1O0um. The quality of the growth was found to be
satisfactory and void free single crystals of lengths upto 30mms.

were easily obtained.

The crystals were assessed for their quality using a polarising
microscope with magnification in the 25 to 500 range. A photograph of

a good quality acetamide crystal cored fibre taken between cross-
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polarisers is given in figure 5.10. The deviations of the crystal
axis from the fibre axis was also determined. It was found that the
crystal axis was not always along the fibre axis and deviations of
upto 10° were measured. However, in majority of the samples deviation
of the crystal axis from the fibre axis was less than 2°. The crystal
axis alignment in the fibre will be along the direction which is
favoured by the temperature gradient, which in this case is along the
fibre axis, in absence of any mechanical or thermal perturbations
during the growth. The crystal axis deviations could also have been
caused by the presence of small transverse temperature gradient, see
figure 5.11. However, for growth in capillaries having small
diameters this effect should not be significant. The major cause of
the deviations thus seems to be that the crystal alignment in the
fibre is determined by the direction of intial nucleation. This
effect could then be eliminated by pulling at faster rates. In this
case if the intial nucleation direction is not along the fibre axis,
the crystal growth along this direction will not be able to match the
pulling rate thereby leading to supercooling of the melt and
subsequent mucleation of crystallite having crystal axis along the
fibre axis. It was decided to verify the above hypothesis by
increasing the pulling speed. The fibres pulled in this manner had
crystal axis along the fibre axis but the void content was found to
be unacceptably high. This was so as melt did not have sufficient
time to reach the crystal face to occupy the space generated by
reduction in volume on crystallization. As a result of this it was
decided to select fibres with crystal axis along the fibre axis for
SHG experimentation rather than to further improve the furnace
design. The birefringence fringes obtained using sodium light with
acetamide cored fibre, indicating good optical quality of the crystal
core, are given in figure 5.12. Their symmetrical behaviour indicates

that the crystal axis is along the fibre axis.

The growth of acetemide crystals in capillaries having bore diameters
<10ums was not carried out as experiments to prevent water absorption
by the crystal end faces by coating them with a thin protective layer
were unsuccessful. The coating of the crystal faces was attempted by
using fine layer of quick setting adhesives e.g. cyanoacrylate,

bostick, Lacquer adhesives etc. All the adhesives used reacted with
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igure 5.12: A photograph of birefringence fringes obtained using a

void free single acetamide crystal cored fibre.
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the lengths of upto 100um of acetamide crystal from the end face. The
other disadvantage was that they left a non-uniform film of adhesive
at the fibre end and this would have significantly reduced the
efficiency of launching light into the fibre. The other possibility
tried was application of water blocking barrier e.g. cedarwood oil,
vaseline, grease, and parafin oil to the crystal face. All thesé
materials also reacted with the crystal face with rates varying from
1.5um/min to 1lum/min. Failure to find any suitable material to
prevent water absorption by acetamide led to reassessment of its
suitability for SHG experimentation. Also, as there was not
sufficient data avialable on acetamides refractive indices in the
near infra-red, it was decided +to find an alternative crystal
material for SHG. Benzil was then selected and its growth in
capillaries with bore diameters 1less than 1Oums is discussed in

section 5.5.

5.2 Selection Of Capillary Glass For The Fabrication Of Benzil
Crystal Cored Fibres:

In order to make an optical waveguide it 1is necessary that the
cladding refractive index be less than that of the core. For single
mode operation in a uniaxial crystal cored fibre, with crystal axis

along the fibre axis, cladding index is given by (equation 2.3.9),
b

2 é
2.hOS(n1/nZ)

<[2_
n. S |n
2 1 , koa

It is generally preferable to have a large core diameter and to make

(5.2.1)

the core-cladding index difference small so that the light can easily
be launched into the fibre. For non-linear interactions to occur it
is necessary to have high field strengths in the fibre core. In which
case small core size can be used to exploit non-linear effects with
low powers. In order to optimise between the two it was decided to
select a glass which will give single mode operation with core
diameters less than 10um. The Schott glass SKN18 was found to be best
for fabrication of single mode benzil crystal cored fibres. Its
dispersion has been plotted in figure 5.13. Hence for single mode
operation at the wavelength of 0.9um , the core diameter should be
4. 4S5y,
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The refractive index of the SKN18 glass supplied by the manufacturer
was measured at 0.633um wavelength using an Abbe refractrometer and

was found to agree with the manufacturer's quoted wvalue.
5.3 Prepration Of Glass Capillaries:

The glass supplied by the manufacturer was in the form of a large
rectangular block. A glass sliver was melted and large bore capillary
formed by blowing an air bubble through it. The typical dimensions of
these preforms were,

outer diameter = 6mm

0.8mm

"

Inner diameter
Length = 34mm
These capillaries were then roughly annealed over a period of 12
hours as otherwise they tended to crack upon heating them upto their
glass transformation temperature. These preforms were then used by a
glass blower to draw capillaries, having small bore diameters, by
hand. The capillaries obtained in this manner had bore diameters down
to 20um and bore was uniform to upto 10mm in length. The attempted
pulling of smaller bore diameter capillaries generally resulted in

bore collapse.

In order to pull capillaries with bores <20um, a hypodermic tube
furnace was used. A brass hypodermic tube of 7T5mm length and
approximately 300um bore diameter was connected to mains via a
current transformer and a Variac. The glass capillaries drawn by the

glass blower having diameters in the range

90 um <o.d. <175 um

were used as preforms for drawing small bore capillaries. The preform
was threaded through the furnace with one end fixed while a weight (3
to 5 gms) was attached to the other end. On increasing the Variac
voltage the preform started pulling. By trial and error pulled down
ratios of 1:10 could be obtained. The fibres pulled down using this

furnace had uniform bores over lengths upto 20 to 30 mm.

During, the course of above work a resistance furnace developed by



Handerek(1982) to pull glass capillaries for fabrication of single
mode liquid filled guides became avialable. This furnace had a short
hot zone allowing pull down ratios of 1:20 to be obtained. The
furnace was approximately 2 metres above the floor level, as a result
it was possible to draw uniform bore capillaries. The pulling of
large bore diameter preform (i.d. = 0.8mm) was done in two stages.
This gave pulled down ratio of 1:400 and single mode size capillaries
having uniform bore over lengths of upto 40mms were easily obtained.
A picture of the cross-section of one of the capillaries pulled was
taken using an electron microscope, figure 5.14b. As the bore in the
starting preform was not always circular, the final pulled down bore

in some cases had an elliptical cross-—-section.
5.4 Change In Glass Refractive Index On Capillary Drawing:

Glass manufacturer's do not specify the change in glass refractive
index that occurs on heating it to temperatures above glass
transformation temperature as this change is not a well defined
function. In prepration of glass capillaries for crystal growth the
glass was heated a number of times to temperatures above the
transformation temperature. Hence, it 1is necessary to determine the
refractive index of the pulled down glass capillaries in order to
estimate the core diameter with which single mode operation at a

given wavelength is possible.

The refractive 1index of glass capillaries was measured using
'immersion method'. In this method 1liquids of known refractive
indices are used as immersion media. The sample is placed in the
successive immersions till the sample is indistinguishable in an
immersion.. This will occur when the sample index equals that of the
immersion. While viewing the sample in an immersion wusing a
microscope, on lowering the stage a bright line is seen to move into
the region out of the two having higher refractive index. This line
is referred to as 'Becke” line' and can be used in conjunction with
the 'immersion method' to determine the refractive index of the
pulled down glass capillaries. In order to measure the refractive
index SKN18 capillaries, mixtures of l-bromonapthalene and

iodobenzene, were used as iImmersion media to give refractive indices



in the range 1.612 to 1.651. The refractive index of the mixtures was
determined using the Abbe’ refractometer. The glass capillary was
placed in successive mixtures having increasing refractive index and

with the aid of Becke line it was found that the glass index, ng’

was such that

. 1.6237 < ng < 1.62h45

It was not found possible to mix the liquids in right proportions to
give an index within the above range. Hence, the refractive index of
SKN18 capillary was assumed to be given by the mean of the above
interval i.e. 1.6241. However, as only an estimate of the typical
change in the refractive index was required (as no two capillary
drawing runs are identical) no attempt was made to improve on the
above accuracy. This value indicates reduction in the SKN18
refractive index by 0.78% on drawing it into capillaries by the
method discussed in the‘ previous section.This change in the
refractive index is very large in comparison with the core-cladding
index difference which was used in selection of SKN18 glass to give
single mode. operation. In view of this, for single mode operation at

0.9um wavelength the core diameter needs to be 2.6Tum.

The glass refractive index changes whenever it is heated to its
transformation temperature and subsequently cooled to ambient
temperature. This change occurs as a result of residual stresses
which  occur on cooling and can vary depending upon the thermal
history of the glass during the cooling ©process from the
transformation temperature to the ambient temperature. It is however
possible by fine annealing to prevent change in refractive index and
glass manufacturers have developed annealing schedules %to permit
processing of glasses without introducing stress birefringence. The
change in refractive index on annealing for borosilicate glasses has
been shown by Lillie(1954) to be given by

! t

n =n - K.1n(R / R) (5.4.1)

]

where, n and n are the refractive indices of glass annealed at
1

rates R and R respectively and K is a constant for a given glass
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Figure 5.1k: A photograph of SKN18 capillary taken using scanning

¢lectron microscope.

Figure 5.15: A photograph of void free benzil single crystal monomode
fibre.

Nl
0]



type.

This problem of change in glass refractive index was encountered in
the latter part of the research program. It was decided not to
develop a fine annealing routine as this in itself would have been a
detailed study and especially as SKN18 glass capillaries could be
used despite of change in their refractive index for fabrication of

monomode benzil crystal cored fibres.
5.5 Growth Of Benzil Crystals In Small Bore Capillaries:

The growth of benzil crystals in small bore capillaries was attempted
using the furnace given in figure 5.9. The capillaries had Dbore
diameter <10um and were about 55mm in length. In some of the intial
growth attempts it was observed that at times nucleation did not take
place even though the melt had moved into the cold zone of the
furnace. The supercooling of the benzil in this case could be
attributed to the - high purity of the melt. In order to initiate
nucleation, a taper was incorporated in the boat, figure 5.9. A
pulling speed of 18mm/hr and a temperature gradient of 5°C/mm were
found to give optimum conditions for void free single crystal growth.
Void free monomode benzil crystal cored fibres of lengths upto 50mm
were obtained. The crystal length was limited by the furnace design
and, in principle, it should be possible to obtain longer lengths of
void free fibre. A photograph of a void-free monomode benzil crystal
cored fibre between the cross polarisers is given in figure 5.15. The
direction of benzil crystal axis in glass capillaries was determined
using a polarising microscope and was found to be along the fibre
axis. At times deviations of upto 5° were observed and these were, as
discussed 1in section 5.1, due to the presence of <{transverse

temperature gradients in the furnace.

The defects observed in the growth of benzil crystals in small bore
capillaries wefe of similar type as those observed in the case of
large bore acetamide cored fibres. In figure 5.16 photographs of
typical voids observed are given. However, in this case break in the
crystal core was found to occur more often than for crystals grown in

large Dbore capillaries. The seperation Dbetween single crystal
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sections varied from few microns ¢to wupto five times <the bore
diameter. The intresting nature of this defect is that the crystal
alignment is preserved through the void. The explanation for this
behaviour is that the small bore size of the capillary initiates
nucleation along the direction determined by the temperature
gradients in the furnace and as these are constant for a given
crystal growth run, the direction of crystal mucleation is same along
the length of the fibre. The greater incidence of this type of defect
in small bore capillaries cf large bore capillaries, is because of
the reduced volume of melt there is a need of greater degree of
optimisation between the temperature gradient and the pulling speed.
No further work was carried out on crystal growth as with the growth
conditions discussed above it was easily possible to obtain void free

fibres for SHG experiments.



CHAPTER 6

Optical SHG Experiments Using Benzil Crystal Cored Fibres

6.0 Introduction:

In this chapter results of optical SHG experiments using benzil
crystal cored fibres are presented. The benzil crystal cored fibres
were fabricated to demonstrate optical SHG by coupling SH to the
radiation field. Intially, experiments were conducﬁed to demonstrate
SHG using a GaAs laser, operating at 0.9um wavelength, as the
fundamental source. These experiments did not lead to observation of
SHG primarily because of insufficient optical intensities at the
fundamental wavelength, due to poor fibre end quality, and high
attenuation of the SH wavelength in benzil. The experiments were then
conducted using a high power Nd:YAG laser operating at 1.06um
wavelength. In this case SHG was demonstrated by coupling the SH to

the radiation field.

6.1 SHG Experiments Using GaAs Laser:

The GaAs laser was selected as the fundamental source, to demonstrate
SHG in benzil crystal cored fibres, as it can be made to emit high
peak powers in the pulsed mode and is an inexpensive laser source.
The lasing wavelength for GaAs lasers is generally between 0.8 to
0.9um and as a result SH will be in the blue region of the spectrum.
A demonstration of efficient SHG, in this case, could be of use for
printing applications where there is a requirement for a cheap,
miniature and high intensity source in the blue and near ultra-voilet

region.

For this work a RCA high power GaAs laser, type SG2012, rated to
deliver pulses of 20W peak power, for 36A threshold current, with
maximum pulse width of 0.2us and duty factor of O.l% was chosen.
To drive this laser a circuit capable of supplying low duty cycle
high current pulses was designed. This essentially comprised of a

co-axial line in series with a spark gap and the laser diode, figure
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6.1. On application of the switch Sl1, the transmission line starts
charging until a breakdown voltage, V, develops across the spark gap.
At the onset of breakdown in the spark gap, a current pulse, I, is
injected into the laser diode and its magnitude is given by

I=v/(2z )
where, Zo is the load imped;;ce and for maximum power transfer it

was made equal to the line characteristic impedeance.

The magnitude of the current pulse is dependent on the spark gap
breakdown voltage and can therefore be set to give any desired value
by adjusting the spark gap. The current pulse duration, &t, is
dependent upon the transmission line length and can be shown using
transmission line theory to be given by

st = 2182 )¢
where,
1 is the length of the transmission line.
¢ is the velocity of light in vacuum.
€ is the relative permittivity of the dielectric material in the co-

axial line and for PTFE its value is 2.25.

The pulse repetation rate is determined by the charging time of the
line and is given by

T = CR

stR/(2z )
o
where, C and R are the line capacitance and the charging resistance

respectively.

A co-axial line of 50chm characteristic impedance and 9m length was
used with a line charging resistance of 150Mohm to give laser drive

current pulses of 90ns width at a reptetion rate of 22Hz.

The spark gap was generally arranged to give peak laser output power
in 30 to U4SW range. It was attempted to obtain higher peak powers
with increased injection current but this resulted in laser facet
damage after few hours of operation. The laser pulse width was
measured at FWHM points to correspond to 80ns and the repetition rate

was measured to be 23Hz.

The laser radiation was collimated using a x10 microscope objective
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and then launched into a single mode benzil crystal cored fibre using
a x45 microscope objective. The peak optical power at the focus of
x5 objective was arranged, by suitably adjusting the spark gp, to
be equal to L4OW. This corresponds to optical intensity of about
25MW/cm . The launch efficiency in this case for a monomode fibre
with Suym core diameter was only about lO}Zas the spot size dimensions
at the focus of x45 objective were approximately 2um x 100um. This
large value of the spot size is as a result of the laser output
having assymetrical radiation pattern. The estimation of the launch
efficiency is further complicated by the fact that it is dependent on
the fibre end quality which for organic crystal cored fibres can be
highly variable. It is however possible to estimate the launch
efficiency and the fibre attenuation by monitoring the output power.
The fibre output power was measured for a number of fibres, having
lengths in the 2 to 4em range, to vary from about lmW to 1.5W. This
measurement of the output power also includes some of the cladding
power as it 1is not possible to completely strip the cladding modes
over these smell lengths. Also, power can be coupled into the
cladding by the voids/defects in the core. This large variation in
the measured output power indicates that the fibre ends were of
variable quality as care was taken to use vold free fibres. The fibre
ends were prepared by scribbing the cladding glass using a diamond
scriber and followed by gentle pressure to obtain a clean break. This
often resulted in benzil crystal Dbroken some distance in <the
capillary(2 to 25um). The preferred method of end perpartion would be
to polish the fibre ends but this is not feasible because of the
large variation in the hardness of organic crystals and glass.
Despite of the shortcomings of the method used for making fibre ends
it was possible, in many cases, by preparing new ends to obtain peak
output powers in the 0.25 to 1.5W range. At these output powers the
intensity of the fundamental in the fibre core is not high but should
be adequate for SHG measurement using a sensitive detection

arrangement.

To detect the SH signal, the fibre output was collimated using a
microscope objective and monitored through 0.9um absorbing filters
using a cooled photomultiplier. In this case as the average

fundamental power is low the SH would not be visible to the naked eye
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and it is necessary to ensure that SH power measurement does not give
errorneous results due to the noise associated in detection of weak
optical signals. The test for SH observation is that the ocutput power
should be proportional to the square of the fundamental power and for
coupling of the SH to radiation field be proportional to the
interaction length. In this case the former test was adopted as it
would not have Dbeen possible +to obtain reproducibile launch
efficiencies on preparation of new fibre ends. Also, as the crystal
quality can vary along the fibre length, the wvariation of the SH
power with fibre length is not a reliable test for demonstration of
SHG. The SH measurements made did not lead to demonstration of SHG
even though this experiment was carried out using over 50 fibre
samples. The principal reasons identified for the failure to observe
SHG with the GaAs laser are insufficient fundamental intensity in
the fibre core due to poor end quality, low wvalue of benzil's SH
tensor coefficient and high attenuation of the SH in the fibre. The
attenuation of the SH wavelength in the bulk benzil crystals was
estimated from its transmission spectra to be approximately
~-8.4dB/cm. This value is high because of the close proximity of the
SH wavelength to the benzil's UV absorption band.

6.2 SHG Experiments Using Nd:YAG Laser

The advantages with the use of Nd:YAG laser, at 1.06Lum, for SHG with
benzil crystal cored fibres are very high peak and average optical
powers are avialable and the ©SH wavelength will not suffer
significant attenuation as it is well away from the benzil's W

absorption edge.

For this work Quantronix Q-switched Nd:YAG laser rated to deliver
peak powers of 12kW with pulse duration of O.lps and repetition rate
of 500Hz was used. The laser output was attenuated using neutral
density filters and launched into single mode benzil crystal cored
fibres using a x10 microscope objective. The higher mgnification
objectives were not used so as to prevent optical damage in benzil at
very high optical intensities. In a typical experiment, light was
launched into a 3cm long fibre having approximately 3.75um core

diameter and 0.2 numerical aperture. The SH so generated was seen to



Figure 6.2: Optical SHG in benzil crystal cored fibre by coupling to

the SH radiation field.
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be guided in the cladding and could be seen on a screen to correspond
to the far field pattern of +the cladding, figure 6.2. This
observation implies that the optical SHG is as a result of couplin
the SH to radiation field. The SH conversion efficiency of 2x10-96
has been estimated with fundamental power of LOOW by comparing the
intensity of SH output with that of a signal of an equivalent
intensity. The value of SHG efficiency obtained is rather low. This
is due to the small value of benzil's SH tensor coefficient and
since the SH wave is guided in the cladding it mmy destructively
interfere with the SH generated at later instants. This interference
process 1is quite complex as the SH propagates in the cladding as a
number of different modes, the cladding being a multimode dielectric
waveguiding structure. This problem arises Dbecause of the long
coherence length of the Nd:YAG laser and will not arise with high

power semiconductor lasers.



CONCLUSION

In the thesis results of the study on fabrication of a waveguiding
structure wusing organic non-linear crystal materials for phase
matched optical SHG have been presented. There 1is considerable

interest in fabrication of efficient frequency doublers, mixers and

parametric amplifiers which also require low input optical powers.

The use of organic materials in fabrication of these devices is

especially attractive as they have high non-linear susceptibilties,
high optical damage thresholds and it is possible to optimise the

material properties using molecular engineering.

The form of waveguiding structure used involved growth of a single
crystal from melt in glass capillaries. The use of glass cladding is
attractive as it overcomes the disadvantages of lack of mechanical
strength and tendency of chemical attack in organic materials. The
other advantage is that for a given core rmaterial it is easy to find
a suitable cladding glass as glasses are avialable having wide range
of refractive indices. This method of crystal growth was successfully
used to grow void free single crystals of acetamide and benzil in
glass capillaries having bore diameter in the 10um to 50um range. The
growth of acetamide which is a hygroscopic material was not pursued
after attempts to find a suitable water barrier to coat the fibre
ends were unsuccessful. The growth of Dbenzil crystals was
successfully extended to capillaries having bore diameter in the 2um
to 10um range for single mode propagation. The lengths of void free
single crystals grown were typically in the 30 to 50mm range. The
upper limit was essentially dependent on the furnace design and it is
anticipated that growth of single crystals of lengths upto 100mm
should not pose significant problems. These lengths of crystal cored
fibres can result in very efficient non-linear devices. The mjor
mechanisms for void formation were identified to be presence of
bubbles during filling of the capillaries with the melt and on
crystallization as a result of insufficient flow of the crystal melt
to the crystal face. The former type of voids were eliminated by
ensuring that the melt was free of bubbles prior to filling of the
capillaries and the latter +type of voids were minimized by

optimisation of the furnace temperature gradient and the pulling



speed.

The wave propagation in these fibres is very similar to that in
silica fibres. The wave propagation in weakly guiding isotropic cored
fibres has been discussed and developed to describe propagation in
crystal cored waveguides. As the core material is usually anisotropic
the effects of anisotropy on mode propagation have also Dbeen
discussed. A computer program was written to study propagation in
uniaxial crystal cored fibres with the crystal axis along the fibre
axis. This program was used to show that for core birefringence of
upto 10 percent the variation in the normalised propagation constant
as a function of the core-cladding refractive index 1is less than
1.727, « This .small variation in propagation constants is due to the
fields being very nearly transverse. The wave propagation in biaxial
crystal cored fibres and in wuniaxial crystal cored fibres with
crystal axis not along the fibre axis, is more difficult to describe
as analytical solutions do not exist. For these guides a perturbation
method has been discussed which could be wused to compute the
propagation constants. It has been shown that in fibres with highly
dispersive cores it is necessary to take mterial dispersion into
account for designing waveguides in which phase matching has to be

achieved for non-linear interactions.

The theory of optical SHG in crystal cored fibres has been developed
in some detail and it can easily be adapted to other three wave
interactions. The two important considerations for efficient guided
wave interactions are the phase-matching and the need to maximise the
overlap integral, These both are intimately related and the highest
efficiencies are only possible when the fundamental and the SH modes
are of the same type. This in practice is rather difficult to achieve
due to waveguide dispersion. A much simpler form of phase matching is
to couple the SH to the radiation field. This form of SHG is not as
efficient as the guided wave SHG as the overlap integral is small and
the conversion efficiency is guide length dependent rather than the
length square as for the guided wave SHG. For benzil crystal cored
fibres SHG efficiency by coupling the SH to radiation field was
computed for a 10mm long fibre with V-value of 2.3 at the fundamental

-3
wavelength of 1.06kum and input power of 1W to be 2.6x10 Jwhile



that for coupling the SH into the HE12 guided mde was 12.1%. High
efficiencies obtainable with the guided wave SHG hold the key to the
success of this type of device for three wave mixing processes. It
should be possible to achieve even higher conversion efficiencies by
either using an elliptical cored guide or a biaxial crystal core
where depending upon the crystal class it should be possible to
achieve phase-matching between the fundamental and SH HE modes.
At present time there are number of research groups trying gg—develop
organic materials with even higher values of second order non-
linearity. As an example with the use of 2-methyl-4-nitroaniline (MNA)
(Levine et al 1979) the SHG efficiency will increase by a factor of
1890 as compared with that for benzil crystal core due to the MNA's

exceptionally large value of the SH tensor co-efficient.

For this study it was decided to demonstrate SHG by coupling the SH
to the radiation field. Benzil crystal cored fibres were fabricated
by growing single void free crystals in Schott SKN18 glass
capillaries. These fibres were designed to be monomode at 0.9um with
bore diameter of about 4.5um. However, it was found that the glass
refractive index changed upto a percent on drawing small Dbore
capillaries due to residual stresses. As a result only the fibres
with Dbore diameter of 1less than 3um were monomode at 0.9um
wavelength. In order to obtain an estimate of the lower transmission
loss limit in these fibres bulk benzil crystals were grown and their
transmission spectra was measured along with attenuation measurements
at 0.633um wavelength. The transmission loss of benzil crystal cored
fibres was measured at 0.633um to be in the range -1.5 to -1.9dB/cm
while the bulk attenuation was found to be -0.9dB/cm. The SHG
experiments were first conducted using 0.9um GaAs laser source. These
experiments were not successful Ybecause of the insufficient
fundamental launch powers and high attenuation of the SH signal in
benzil. The experiments were then conducted using a high power Nd:YAG
laser operating at 1.06hkum wavelength. In this case SH generated was
observed to couple into the cladding glass. This experiment clearly
demonstrates that the phase-matching condition has been satisfied.
The SH conversion efficiency was estimated to be 2x10_396f0r a 30mm
fibre with U4OOW peak input power. Further investigation of these

fibres was not possible due limited access to the Nd:YAG laser. The

[N



phase matched SHG in benzil crystal cored fibres is significant as itl ! 2
demonstrates that materials which cannot be phase-matched in the bulk
can be exploited for three wave mixing using guiding structures.
Also, this is believed to be the first demonstration of a phase
matched three wave mixing process using an organic material in a

cylinderical waveguiding stucture.



APPENDIX 1

Description and listing of the computer program used to determine

propagation constants of modes in fibres:

The propagation constants of modes in uniaxial crystal cored fibres
with the crystal axis along the fibre axis and isotropic cored fibres
can be evaluated from their respective transcendental equations given
in chapter 2. The transcendental eguation for an isotropic cored
fibre 1is a special case of that for the wuniaxial guide with
nZ=nl.

A computer program, TRANS, was written to solve the transcendental
equation for a uniaxial crystal cored fibre with its crystal axis
along the fibre axis. To solve the transcendental equation, the
program requires an intial guess for the root which is then used to
. find the exact root using a modified Newton-Raphson method. The
intial guess value for the propagation constant is chosen to be
slightly greater than the propagation constant in the cladding ie
n2ko’ as otherwise overflow 1is generated due to very large values
of the K-Bessel's functions. The accuracy of the computer program is
also evaluated by substituting the rcot back into the transcendental
equation and evaluating its numerical value. To check the accuracy of
the computations the results were compared with the wvalues of
propagation constants reported in the open literature by other
researchers and good agreement was obtained. As an example in table
Al the results obtained using TRANS are compared with that reported
by Yeh(1977). No comparision of results for uniaxial crystal cored

fibres was made as this is believed to be the first such study.

(@GN



TABLE Al
Method of computation kOa B = B/ko Numerical value of
n
the transcendental
equation
Subroutine TRANS 5.13593 1.50104k2 -0.80
10.19825 | 1.507002 -0.0018
26.13023 | 1.513001 -0.00032
Yeh's results 5.13593 | 1.501000 33.98
10.19825 | 1.507000 0.0073
26.13023 | 1.513000 0.0025
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APPENDIX 2

Evaluation of the field overlap integral for SHG in crystal cored

fibres:

The field overlap integral determines the modes among which coupling
can take place and it also determines the strength of coupling. It

was shown in chapter 2 to be given by
©

_ ” (m/2)2 ¥ ((ﬂ)
I= & &
j/—vt "o Y (a2.1)

- 00

th
where, it has been assumed that the fundamental V mode couples

. th .
into 4 SH guided mode or SH radiation field.

In cylinderical co-ordinate system it can be re-rewritten as

a 2T 2 (
_ (0/2)° o* W) rdrde

o O

h
In the case of coupling to the ut SH guided mode the overlap

integral, Ig’ can be rewritten using the field expressions, given
in chapter 2, for these modes, as

a 2ar
2
2 2 (w/2)r (w)r cos. Vo cos u¢
I = =. = - X drd
l% A\) Au/ f J\) (U a) Ju (U a) {51n2 \)¢}{Sln uq}} r ¢
o o)

(A2.3)
where, A and A are the mode field amplitudes and are given by
v

u
equation (2.2.9).

This integral can be re-written in a simplified notation as

2
I = '
2 Av AIJ I(p I . (A2.4)
where,
a
_ 2 (w/2)r (w)r
1, = / g, (u® g) I, (U Z) rar (A2.5)
o]

and it gives the magnitude of the coupling strength for coupling the



th . . th . ..
fundamental Vv mode 1into wvarious u modes. For V = py ie similar

mode field configurations, the coupling strength is maximum.

and

2 2

_ COS, vo cos u¢

I = . 2 .
o} / {sn.n \)@} {51n u(p} do

o

(A2.6)

and it gives the radial symmetry of the modes among which coupling
can take place and only for modes which have I¢> = 0 can the coupling

take place.

Similarly, for coupling to the SH radiation field the expression for
the overlap integral is obtained by using the appropriate field

expressions, from chapter 2, for the SH radiation field ie

a 2am ) ’
2 1 2 (w/2)r. coss v {cgs uqb} rdrdo
L= AT, A /va (U g) Ju (ox) s:'Ln2 Vo sin uo
o Yo

(42.7)
1
where, A 'is the field amplitude of the SH radiation mcde and is

given by equation (2.2.21).

The field overlap integrals for coupling to SH guided modes and SH
radiation field cannot be solved analytically and conseguently have

to be numerically evaluated using a computer.
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OPTICAL SECOND HARMONIC GENERATION IN CRYSTAL CORED FIBERS

B K NAYAR

British Telecom Research Laboratories
Martlesham Heath

Ipswich, Suffolk IP5 7RE

UK

Optical Second Harmonic Generation (SHG) has been reported in planar waveguides,
using waveguide dispersion to phase match the fundamental and Second Harmonic (SH)
modesl-ﬁ. The optimum waveguide dispersion is generally achieved by the correct

choice of waveguide dimensions. In practice however the inability to maintain uniform

guide dimensions has limited the useful interaction length for SHG to less than 2 cms.

Whilst a number of luthots7-8 have-reported the fabrication of cylindrical
crystalline cored optical fibers, SHG in these structures has not been previously
demonstrated. The use of such a fiber for SHG should be more efficient than the
conventional planar waveguide since longer lengths of this type of structure can
readily be produced with uniform guide dimensions. In addition since this structure

has cylindrical geometry, coupling to other optical components will be simpler.
!

For SHG in these fibers the core material should be a chemically stable, non-
centrosymmetric crystal having a large transverse non-linear optical coefficient. In
addition the crystal should have a low refractive index and low melting point to
facilitate the use of a suitable cladding glass. The majority of inorganic materials

having large non-linear optical coefficients eg LiNb0,, ADP etc, do not satisfy all

3

the above criteria. For the purpose of this work therefore the organic material

Benzil (CGHS'CO'CO'CGHS) wvas selected for the core material.

—

Ul
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ThA2-2

Crystal cored optical fibers were fabricated by growing single crystals in glass
capillaries using a modified vertical Bridgeman technique. The glass capillaries
were initially filled with the crystal melt by capillary action in the 'hot' zone
of the furnace. The melt iQ the capillary was then progressively crystallized by
slowly moving the fiber through a sharp temperature grndient: In this wmanner void
free single Benzil crystal cored fibers with lengths up to 5 cm have been grown in
glass caspillaries with diameter in the range 5-10 um. However, longer lengths of
crystal cored fiber may be fabricated since it is possible to produce capillaries
with uniform bores using established fiber pulling techniques. In figure 1, a
photograph of a void free Benzil single crystal cored fiber viewed between crossed

polarisers is shown.

Optical SHG in a cylindrical single mode crystal cored fiber can take place either

by coupling the fundamental wgve in the HE ., wmode into a SH guided mode or into

11

SH radiation field.. In practice it is more difficult to achieve phase matched
interaction for the former case since precise control of the waveguide dispersion is

required. The latter method is simpler to implement and was adopted for this initial

study. The cladding glass was so selected that the SH propagation constant, 8(2w),

lay in the continuum of the radiation field ie B(2w) < kon2 (2w), vhere k_ is the

0
(2w) .
2

free space propagation constant and n is the cladding refractive index at

the SH frequency. This form of phase matching is shown in the w-8 diagram, figure 2.

The SH radiation will exit from the fiber core at an angle a given by

Cosa = 8(24»)/ konz (2w)

B(2m) P C) (w)

vhere, 8", and B is the propagation constant of the fundamental

RE[I mode. It can be shown from a theoretical analysis that the angle a in
practice is very small and consequently the generated SH wave will be guided in the

cladding.



ThA2-3

A Nd:YAG laser operating at 1.06 um was used to demonstrate optical SHG in the Benzil
crystal cored fiber by coupling the SH to the radiation field. The visible SH so
generated was guided in the cladding and was observed on a screen as a ring
corresponding to the far-field pattern, figure 3. A discussion of these theoretical

and experimental results will be presented at the meeting.

In conclusion void free Benzil crystal cored monomode optical fibers have been
fabricated and phase matched SHG in these structures demoustrated. The use of such
a structure could also find application for other non-linear processes such as

optical mixing and parametric amplification.
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FIGURE 1. Monomode Benzil Crystal cored fiber viewed between crossed polarisers
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FIGURE 2. w-8 diagram showing the phase matching scheme employed

FIGURE 3. Far-field ring pattern corresponding to the visible SH in the cladding



