
A FAULT TOLERANT DISTRIBUTED COMPUTER CONTROL SYSTEM

by

Orlando Gomes Loques Filho

February, 1984

A thesis submitted for the degree of Doctor
of Philosophy of the University of London and for
the Diploma of Membership of the Imperial College.

Department of Computing
Imperial College London, S.W.7

Abstract

Distributed systems offer a number of potential advantages over
conventional systems in response time, availability, extensibility, and
performance. For this reason distributed computer systems are
increasingly being used for the implementation of process control
applications. Some of these applications have stringent reliability
requirements which can be met by the use of fault tolerance techniques.
In most systems fault tolerance is obtained through the use of hardware
redundancy, but software redundancy techniques are also required. This
thesis proposes techniques for the use of "hot" and "cold" standby
redundancy of software modules, based on standard stations connected by
a communication network.

The hot and cold standby redundancy are supported by a common set
of system modules, which provide for detection of failures and for
reconfiguration of the modules of the application. Cold standby modules
are created and activated by the system in order to replace failed
modules, but no state information is preserved. Hot standby modules do
preserve state information, and transparent failure recovery is
supported. In this case the application system can continue its
operation without any loss of control capability. Extra mechanisms are
needed in order to support the hot standby scheme by performing the
transfer of the application state to the back-up module(s) and, in case
of a module failure, by allowing its back-up to take over its functions.

The fault tolerance support mechanisms are intentionally simple,
and are implemented by standard modules. Their simplicity permits them
to be used in microcomputer systems. Their modularity permits a system
designer to use them selectively in order to meet the reliability
requirements of the application. Another quality of the approach is that
the support mechanisms are built using facilities provided by an
existing distributed system: CONIC, developed at Imperial College, for
distributed computer control applications. This allows applications
having mixed reliability requirements to be supported by the same
software architecture. Also, application modules need not be written
with fault tolerance in mind , but can be transformed, at a later stage,
to provide the required degree of reliability. In addition, the
mechanisms can be readily transported to any hardware system already
supporting this software architecture. The relevant features of the
fault tolerant system were implemented and tested in a working
prototype.

i i

Acknowledgements

The ideas leading to this thesis were aided greatly by discussions
with the members of the Distributed Computing Group at Imperial College.
Also, without the experience of closely following the development of the
Conic project, and the use of the Conic concepts and system to test my
ideas, much of the practical results of this thesis would be missed. In
particular I should thank: Jeff Kramer, my supervisor, who by reading
earlier drafts of this report much contributed to the structuring and
clarity of my presentation of a difficult subject; Morris Sloman, who by
insisting on simplicity of concepts and practical applicability has
instigated the refinement and crystallization of my ideas; Jeff Magee,
who by patiently interpreting my English, providing clear comments on my
proposals, and clarifying the details of the Conic implementation, has
much helped my acquaintance with a new area.

Next, I would like to thank my coleagues for their friendship and
encouragement. In particular, Sebastian Danicic for his fraternal spirit
and carefull proof-reading under a tight deadline.

Finally, I would like to thank CAPES — an agency from the
Brazilian Ministry of Education, for their financial support to my
postgraduate studies.

i i i

To Roselia, and Gabriel

1
2
4
5

7
7
9

11

16
19

21
21
29
31
33

35
35
36
37
39
40
45
49
51

CONTENTS

INTRODUCTION
1.1 Design Goals
1.2 Why use Conic for Designing a Fault Tolerant System ?
1.3 Thesis Contents

BASIC CONCEPTS
2.1 Concepts and Terminology
2.2 Reliability and Fault Tolerance........
2.3 Fault Tolerant DCCS
2.4 The Whole System
2.5 Summary of the Chapter

FAULT TOLERANCE TECHNIQUES
3.1 Massive Redundancy Techniques
3.2 Checkpointing Techniques
3.3 Error Confinement
3.4 Summary of the Chapter

THE FAULT TOLERANT SYSTEM
4.1 Assumptions
4.2 Definitions
4.3 Cold Standby
4.4 Hot Standby
4.5 Support for Reliability Services
4.6 Configuration Control............... .
4.7 Station-Module Failure Relationship
4.8 Summary of the Chapter

v

V. LANGUAGE SUPPORT for STRONG FAILURE DEPENDENCY SYSTEMS 54
5.1 Computation Model 54
5.2 Conic Application 56
5.3 Language Primitives............................... 59
5.4 When to Perform a Save 60
5.5 Exception Handling 67
5.6 Related Work..................................... 68
5.7 Summary of the Chapter............................. 72

VI. THE SUPPORT MECHANISMS................................ 74
6.1 Configuration Management 74
6.2 Hot Standby 81
6.3 Summary of the Chapter 96

VII. APPLICATION SYSTEMS................................... 98
7.1 Methodology 98
7.2 Management Interface 99
7.3 Response Time 100
7.4 Input/Output 102
7.5 Application Programming 105
7.6 Summary of the Chapter............................ 113

VIII. CONCLUSIONS and SUGGESTIONS for FURTHER WORK............. 114
8.1 Review of the Goals............................... 114
8.2 Suggestion for Further Work......................... 117
8*3 Conclusions..................................... 119

APPENDIX A: DETAILS of CONIC............................... 120
A.1 Programming Language 120
A.2 Configuration Language............................ 123
A. 3 Run-time Support................................. 125

REFERENCES................................... 127

v i

LIST of FIGURES

3.1 Classical TMR Scheme 22
3.2 Loss of Consistency in a TMR Scheme 25
3.3 Structure of a Replicated Module 27

4.1 Cold Standby Rmodule 38

4.2 Hot Standby Rmodule 40
4.3 View of the On-Line Support Mechanisms..................... 43
4.4 Typical Redundant Structures 47

5.1 General Pattern of the Request-Reply Transaction 58

5.2 Optimized Approach 61
5.3 Direct Approach.. 62
5.4 Loss of the Reply Message 63
5.5 Unreliable Communication and Consistency 65

6.1 Configuration Management Service 74
6.2 Hot Standby Implementation................................88
6.3 Support of Remote Transactions 92

7.1 The Dining Philosopher System 109
7.2 Table Module .. 110
7*3 Fork Module................ 111
7.4 Philosopher Module 112

A.1 Request-Reply Primitive 122
A.2 Notify Primitive 123
A. 3 System Specification................................... 124
A.4 Layer Model of a Conic Station 125
A.5 Local Management Layer 126

v i i

CHAPTER I

INTRODUCTION

The use of computers in control applications is increasingly
common. Combined factors such as uninterrupted control capability, small
incremental expansion cost, and enhanced modifiability and flexibility
has led to many of these systems being implemented by sets of computers.
These computers (termed stations) are physically interconnected in order
to support the application control function. The control function is
naturally divided among processing entities supported by the computers.
These processing entities are logically connected in order to cooperate
to perform the global control function. The result is a distributed
computer control system (DCCS).

There is a need for a comprehensive support environment for
building real-time process control applications. This environment should
provide the basic architecture and the tools for the development and
implementation of different applications according to their specific
requirements. Control applications inherently have strong reliability
requirements which require the provision of fault tolerance capability.
Thus the support environment has to support the development of
applications which require fault tolerance.

The aim is to design a fault tolerant distributed computer system
for providing varying degrees of reliability requirements for process
control applications. In this direction we propose the integration of
features for specification and implementation of fault tolerant systems
into a standard DCCS. In general, achieving a fault tolerance
capability is non-trivial, since all levels of the system should be
considered. In order to reduce the size of the task we have selected a
programming environment specially designed for the support of
distributed control applications — Conic, developed at Imperial College
[Kramer 8 3] • Although the design of the fault tolerance support
mechanisms was based on Conic, basic principles for the construction of
fault tolerant systems were identified; they are useful for the
construction of fault tolerant systems based on other programming
environments.

1

This approach is different to that adopted in most of the fault
tolerant system proposals that can be found in the literature, e.g
[Geitz 81, Hopkins 78, Kaiser 7 8 , Katsuki 7 8, Wensley 7 8]. In those
systems the fault tolerance capability is obtained by special purpose
designs of the whole system. This could be justified in order to supply
specific requirements of their intended application. However, there are
many applications where simplicity of design and ease of implementation
are mandatory requirements. Also, different parts of the system can have
different reliability requirements; thus fault tolerance should be made
available only where required. Our approach is intended for this class
of applications.

1.1 Design Goals

In this section the main goals we have set up for the design of the
fault tolerant system are presented and justified.

Simplicity

The computer control systems we devise are likely to be composed of
a large number of computer stations. Typically each station will be
concerned with the local control of a plant device. Because of cost
considerations most of these stations have to be implemented by a single
microcomputer which may not have very sophisticated or large local
resources. We are interested in mechanisms that can be used by any
station in a typical application. Hence these mechanisms should be
simple enough not to add any unreasonable resource demand to the
stations. A reduced number of more powerful stations can be provided in
order to support special services to be shared by a group of stations.

Also, keeping the mechanisms simple helps the achievement of
reliability: They should be easier to design and implement, and thus
design faults within the own mechanisms are less likely. They should be
easier to understand by application designers, hence the risk of misuse
is reduced.

- 2 -

Transparency

It should be possible to design and test an application system
without having fault tolerance in mind. At a second stage of design,
fault tolerance capability would be added where necessary, but without
having to redesign the application modules. This permits standard
techniques and development tools to be used for the specification,
verification, and testing of applications having different reliability
requirements. In addition transparency is required for modularity:
application modules can be independently designed and assembled together
to implement different application systems. In order to achieve this
goal the fault tolerance support mechanisms should be orthogonal to the
application functions.

Modular Design

The fault tolerance capability should be achieved through
mechanisms built upon the basic architecture provided by the base system
(e.g., standard Conic). This allows the same architecture to be used for
implementing several applications according to their particular
reliability requirements without having to redesign the basic supporting
system. It should be necessary only to include the required reliability
support modules. An additional quality of this approach is that
application modules having different reliability characteristics can
cooperate together in the same application system.

This does not means that a different mechanism is needed for
supporting each particular reliability requirement. Instead, the support
mechanisms should be structured in order to lead to a minimum number of
different modules. An approach that helps fulfil this goal is to find
structures where each level treats as uniformly as possible the objects
under its responsibility.

Hardware Independence

In addition to the redundancy necessary to provide the fault
tolerance capability the mechanisms should be as far as possible
independent of special hardware features. This would allow their use in
systems composed of available hardware components.

- 3 -

In addition to these design goals, a working prototype of the
fault tolerant system should be provided. This should ensure that all
design details have been considered. It also would provide a platform
for further refinements and extensions.

1.2 Why use Conic for Designing a Fault Tolerant System ?

Distributed control applications have a multiplicity of reliability
requirements, even within a specific application. Conic provides a
programming and configuration environment for the implementation of
distributed computer control applications, but no features particularly
aimed at fault tolerance. Thus, there is a need to extend Conic to allow
the implementation of fault tolerant systems. Conic was designed with
the goal of providing sufficient flexibility for its area of application
by the use of the modularity concept [Magee 84]. Basic support
mechanisms are provided and additional modules are used to configure the
system in order to meet the requirements of each application, these
modules are programmed in the Conic language and supported by the basic
mechanisms. In this way, a capability such as fault tolerance can be
obtainned by providing standard system modules for its support. In
addition this system provides an ideal environment for supporting
systems where fault tolerance is obtained through re-configuration. Its
interesting characteristics can be summarised as following:

Communication System Architecture. The Conic environment directly
provides a communication system. The application modules can run in
different processing stations and communicate with each other. The
physical separation of the processors is an important fault
isolation factor.

Replaceable Units. Application modules can be separately designed
and compiled. Module instances can be assigned and created in
stations at run-time, without interfering with the operation of
other modules. This matches the concept of a basic replaceable unit
and hence directly supports system reconfiguration and repair
activities.

Message Passing. Intermodule communication is performed via message
passing without using shared data objects. This is an important
factor in confining errors within a failed module.

- 4 -

Indirect Naming. The interface of a module is characterized by the
messages which can be sent and received by the module. Exitports
are used to send messages out of a module, whereas entryports are
used to receive messages into a module. Thus a message is directed
not to an entryport of a receiving module but to an exitport of
the sending module. A separate binding operation is used to link
local ports to those of another module. This helps system
reconfiguration in case of failure.

Strong Typing. Ports are strongly typed objects. This contributes
to the removal of faults at the design stage.

It should be pointed out that we aim to identify general principles
for the design of fault tolerant DCCSs. The above qualities of Conic
help the achievement of this objective, thus the language itself does
not become part of the problem, but it is a part of its solution. The
relevant details of the Conic approach are presented in appendix A. In
the remaining chapters of this thesis it is assumed that the reader is
reasonably acquainted with the Conic concepts.

I. 3 Thesis Contents

The contents of the rest of the thesis are summarized below:

Chapter II: A presentation of the basic concepts used in the thesis. It
also defines the level of the system at which fault tolerance is
provided and the two classes of application systems that are supported.

Chapter III: A discussion of fault tolerance techniques which we have
considered and adopted in the design of the system.

Chapter IV: A description of the fault tolerant system and of the the
two reliability services that it supports. These services are intended
to provide the reliability requirements of each class of application
systems which are identified in chapter II.

Chapter V: A presentation of the recovery technique we propose for the
support of one of the class of application systems identified in chapter
II. The language level mechanisms associated with this technique are
also presented.

5

Chapter VI: A presentation and discussion of the implementation details
of the fault tolerance support mechanisms.

Chapter VII: Relevant aspects of the application of the approach for the
construction of fault tolerant application systems are discussed.

Chapter VIII: Conclusions and Suggestions for Further Work.

Appendix: The relevant details of Conic are presented. Its purpose is to
provide a concise summary of the Conic concepts used in this thesis. The
appendix is structured in three sections. Section A.1 presents the Conic
programming approach, section A.2 presents the Conic configuration
language, and section A.3 presents the support mechanisms which provide
the Conic run-time environment.

- 6 -

CHAPTER II

BASIC CONCEPTS

In this chapter basic concepts for the development of the thesis
are established. In sections 2.1 and 2.2 relevant concepts and the
associated terminology required for the discussion of fault tolerance
and reliability are presented. In section 2.3 we discuss how to achieve
fault tolerance in a distributed computer system and propose a
classification of system types which simplifies the study of the related
issues, and the presentation of the thesis. Finally, in section 2.H we
discuss the whole system and introduce some of the assumptions that are
adopted in the thesis.

2.1 Concepts and Terminology

A careful reading of the literature of fault tolerant computing
indicates that several sets of conflicting basic concepts have been
used. The importance of using standardized concepts, which can be
understood in a uniform way is recognised by the researchers working in
the area. Ideally this set of concepts should be simple so that it is
easily understood, and have general applicability in that it can be used
for the discussion of all aspects of a computer system. Several
contributions in this direction were presented at the last fault
tolerant computing symposium [Avizienis 82, Kopetz 82b, Laprie 82,
Robinson 82, and Anderson 82], and a special group has been working with
the same purpose [Lee 82]. There appears to be a trend to a general
agreement on the basic concepts. Major disagreements have arisen in
relation to the terms to be employed to name these concepts, the cause
of this probably being that authors tend to allow their particular area
of interest to influence in their terminology proposals. It is not in
the scope of this work to propose a new set of concepts and terminology.
Thus we adopt the basic concepts and terminology proposed in
[Anderson 81, Anderson 82]. They are very general, and are directly
applicable to different aspects of our proposals. A more informal view
of fault tolerant computing concepts is available in [Hopkins 80].

- 7 -

2.1.1 The Concept of System

Any identifiable entity that maintains a pattern of behaviour at an
interface with its environment can be considered a system. In general
systems can be hierarchically subdivided into components. Thus the
definition: a system consists of a set of components which interact
under the control of a design. The design is itself a system, which has
special characteristics: it supports and controls the interaction of the
components. Thus the design also defines the behaviour of the system.

The interface is the place a system interacts with its environment.
The environment is itself a system, and consequently an interface is the
place of interaction between two systems. The external behaviour of a
system can be described in terms of a finite set of external states and
a function that defines transitions between states. The environment
produces inputs as stimuli, and perceives the system state transitions
at discrete instants of time. To each of the components of a system can
be attached a state, the state of a component results from its
interaction with the other components. The state of all the components
of a system defines the internal state of the system. The external
behaviour of the system can be described in terms of a function that
maps the internal state to the external state.

Unfortunately, due to several reasons, the behaviour of a system
may depart from that expected. In order to identify when this happens a
specification of the system behaviour is required. There are many
discussions about the characterization and even the possibility of
obtaining a complete and correct specification for a complex system, but
they do not seem to be very helpful and in order to make progress it is
assumed that there is an authoritative specification of behaviour. This
specification can be applied as a test in any situation to determine
whether the behaviour of a system should or should not be considered
acceptable.

2.1.2 Failure, Fault and Error
A failure of a system is said to occur when its behaviour deviates

from that required by the specification of the system. It is essentially
an event that can only be observed at the system interface with the
environment. In order to define fault and error we have to refer to the
internal state of the system.

- 8 -

An erroneous state is an internal state which could lead to a
failure, which can be attributed to some aspect of that state. An error
is that part of an erroneous state that can lead to a failure. A fault
is the mechanistic cause of an error. Thus a fault is the cause of an
error, and an error is the cause of a failure.

It should be noted that the only difference between a fault and an
error is related to the system structure: A fault in a system is an
error in a component of the system. But, the difference between error
and failure is not only related to the system structure but also
reflects the difference between a state and an event. A system is in
error when its state is erroneous, whereas a system failure is the event
of not producing behaviour as specified. The failure event occurs and
may be observed only when the erroneous state is made visible at the
system interface.

If the design of a system is assumed correct, then there is only
one way for a failure to occur: due to the failure of one of the system
components. However, this may lead to a contradiction because the
failure of the component can also be due to a design fault, in that a
component with inadequate specification was used. In the real world it
is not always feasible to control all the factors which can lead a
system component to fail and some probability of failure is inevitable.
2.2 Reliability and Fault Tolerance

Reliability is a word that has been used in the computing world
with two basic meanings: In a narrow sense as a quantitative measure
that aims to quantify the quality of service provided by a system with
respect to error occurrence and effect. In a broader sense it refers to
a wide range of approaches and techniques which are used in the
construction of a system in order to ensure that it will operate
according to its specifications, i.e., to achieve a reliable system.
2.2.1 Reliability as a Measure

A system is normally designed in order to provide a specified
service. The situation in which a system fails to provide its service is
termed a system failure. Reliability is usually characterized by a
function of time, which provides a measure of the probability that no
system failure will have occurred at a given time. In the practical
usage the reliability function is used to estimate the mean time to
failure (MTTF) of a system, or the probability that a failure of a
system will have occurred at a given time. The subject is covered in
many books and publications, e.g., [Shooman 68, Osaki 80].

- 9 -

The reliability measure is not sufficient to express the basic
facts a system designer needs to know about a system. For example,
considering that a system failure has occurred, a different measure —
maintainability(or repairability) is used to express the length of time
the service is interrupted. And, considering the alternation of service
provision and service interruption another measure can be defined
availability. Although these measures are not independent each of them
can usually quantify a desired quality for a system service.

Most systems provide a number of different services. Also, in
general within the same system, several error modes can be defined.
Hence these measures may be generalized in order to consider this fact
[Laprie 82].

2.2.2 Reliability as an Achievement
In order to achieve reliability two complementary approaches are

normally employed [Avizienis 76].
The first — Fault Prevention, attempts to ensure that no faults

will occur in a system. This approach, used in the development phase of
the system, has two basic interactive steps: (1) Fault avoidance
techniques are used in order to minimize the introduction of faults
during the system conception, e.g., specification and design
methodologies, and quality control. (2) Fault removal techniques are
used in order to eliminate faults which still exist in the system, e.g.,
validation and testing techniques. Extensive coverage of the subject is
available in [Adrion 82, Shooman 83]. The second — Fault Tolerance,
used in the operational phase of the system, uses a diversity of
techniques that attempt to intervene and prevent faults from causing
system failures.

A system in which fault tolerance techniques are employed is termed
fault tolerant. In this work we aim to design a fault tolerant
distributed computer control system. In general these systems will be
composed by a large number of computers. Thus the probability of having
failures is in some way increased. This is one of the reasons for
application of fault tolerance techniques.

2.2.3 Redundancy

All techniques for achieving fault tolerance are based on the
employment of redundancy. That is, extra elements that would not be
required in a system which could be guaranteed to be free from faults.

10 -

Redundancy has been employed to provide fault tolerance within a
computer unit. For example, extra bits are used to provide error
correction or detection capability in memory systems. Now the technology
allows whole computer units to be made at very low cost, and in very
small chips. This fact has made economically and physically feasible the
use of redundant computer units. Also our area of application has
particular characteristics which make attractive the use of redundant
computer units to achieve fault tolerance. Thus we aim to fault
tolerance techniques based on redundancy available at the computer unit
level.

2.2.4 System Specification and Reliability

The reliability of a system always involves a distinction between
acceptable and unacceptable behaviour. For this to be possible a system
specification which describes the behaviour of the system must be
available. Systems specifications have two important characteristics.
The first is exactness, without which it cannot be used as a test on the
system reliability. The second is multiplicity, which means that
different aspects of the system behaviour may be subject to different
specifications. These specifications may be related in such a way that
still permits us to define desirable behaviour of a system which has
failed according to some of its specifications. Thus there is an overall
specification that defines the standard of reliability which is demanded
of the whole system, and other specifications that are related to
specific aspects of a system. It is important to distinguish a failure
of the system according to the overall specification from a failure with
respect to each component specification. The former is obviously much
more significant. This characteristic removes any contradiction that
could result from the reading of the next sections.

2.3 Fault Tolerant Distributed Computer Control Systems

A fault tolerant system is one that includes internal mechanisms
which provide the system with the ability to recover by itself from
failures of its components. In order to design a system like this the
first decision to be made is concerned with the level where faults will
be assumed to occur. The second is concerned with the level at which
failures will be recovered. A control application is implemented by a
set of application modules which are supported by a distributed computer
system. The distributed computer system consists of microcomputer

11

stations interconnected by a communication network. These systems can be
constructed in such a way that a fault at a station does not affect the
other stations of the system. Thus a fault at a station can directly
affect only the application modules which are supported by this station.
These modules can fail and consequently threaten the reliability of the
application system.

The station failure independence can be used to achieve reliability
for the application system. On the one hand the remaining stations can
be used to provide fault tolerance for the application modules. On the
other hand the remaining stations can support the necessary fault
tolerance mechanisms. They have to detect failed application modules and
intervene in order not to allow their failure to lead to an overall
application system failure.

Our aim is to provide fault tolerance for the application system.
In order to design the fault tolerance support mechanisms it is
necessary to consider the relationship of the reliability of a module
with the reliability of the overall application system. This is done in
the next section.

2.3*1 Types of System

The systems of interest are classified in two abstract types. The
classification intends to capture the relation between the failure of
any of the constituent modules of a system and the failure of the
overall specification of the system. The system types are characterized
as follows.

Weak Failure Dependency: The system design is such that the
standard of reliability required by the application that it
implements is not broken if one or more of its constituent modules
fail. That is, the service capability provided by the system is in
some way degraded because of the failure of a module, but this is
still sufficient to meet the application reliability requirements.

Strong Failure Dependency: The system design is such that the
standard of reliability required by the application is broken if
any of its constituent modules fail. That is, the failure of a
module leads to a system failure.

12 -

In the context of the above classification the design is a result
of a system specification. The specification is a result of the
application requirements. The final product of the system development is
a set of modules which implement the system specification. Ideally this
set of modules should constitute a weak failure dependency system. In
practice the result of the development process can result in a strong
failure dependency system. The specific reasons for this fact to occur
are very dependent on the particular application, and within its context
also on design decisions.

Most existing systems fit the weak failure dependency type. However
In the literature many practical examples of architectures for the
support of strong failure dependency systems can be found, e.g.,
[Wensley 7 8, Hopkins 7 8, Sklaroff 76], and there are also works which
are concerned with particular aspects of this type of system, e.g,
[Scheneider 81, Lamport 7 8 , Hecht 76]. The support of this type of
system requires the use of special techniques and mechanisms in order to
deal with their specific requirement. Although some common mechanisms
can be used for the support of common requirements for both types of
system. This thesis proposes an architecture for the support of both
types of system. The abstract classification presented here is intended
mainly to facilitate the study of related issues and the presentation of
the support mechanisms. However, it should be pointed out that
subsystems of both types may be found within the same application
system.

2.3.2 Redundancy and System Types
In this section the motivation for using redundancy in each type of

system is discussed.

2.3.2.1 Weak Failure Dependency

Here the main reason for the use of redundancy is to re-establish
the quality of service provided by the system before a failure. This may
be required for a number of reasons. For example, the interruption of
the service provided by a failed module will not, by itself, immediately
result in any irrecoverable damage to expensive equipment or endanger
human life. While the service interruption initially does not have any
catastrophic consequence this may happen if the interruption persists.
A system like this has a dominant maintainability requirement for its
modules. The simple interruption of the service does not mean a system

13 -

failure. But a system failure can occur if the module is not repaired
within a specified time. The existence of redundant computer resources
in this system is essential to repair the application system and meet
the standard of reliability of the overall application.

Other factors, of an economic nature, can make the use of
redundancy attractive. One of them is the cost due to lost production
caused by the service stoppage. In some installations it is not possible
or it is difficult to realize on-site maintenance. Also, in general, it
is difficult to predict the time necessary to make the repair. Thus the
use of redundancy can allow the service to be re-established quickly and
reduce the cost resulting from the failure. Another factor is the cost
of the maintenance itself, which can be very high and even dominate the
cost of a system if its whole life cycle is considered. The use of
redundancy allows the system to continue working in spite of failures.
The failed modules can be taken to a centralized repair facility. This
leads to a reduction of maintenance personnel and associated test
equipment with a consequent reduction of costs. Quantitative support for
this argument is available in [Souza 80].

Finally it should be considered that systems are built to be used,
and are always expected to provide some service. The absence of this
service will normally cause problems for their users. The cost of
computing resources tends to be very low and constitutes a very small
part of the cost of a system. Hence the use of redundancy has become
attractive for a larger class of systems.

2.3.2.2 Strong Failure Dependency
In this type of system, redundancy is mandatory as a condition to

meet the overall relibility requirement. In order to illustrate the idea
we give two examples.
(1) A module can have its behaviour dependent on the history of its

interaction with the other modules of the system and/or with its
environment. The result of this interaction is represented by the
content of some state local to the module. Thus if the module
fails and its state is lost the system fails.

(2) The behaviour of the whole system can depend on a co-ordinated
cooperation of its constituent modules. This co-ordination is
essential for performing the specified service and thus obtaining
the reliability characteristic. If one of these modules fails the
necessary co-ordination is lost and the system failure occurs.

14 -

Fault prevention cannot be complete, thus in order to meet the
requirements of this type of system the modules failures must be masked
within the system itself. That is, the modules must be repaired in such
a way that the other modules in the system will not notice the failure.
Thus, in addition to the use of redundant resources some special
technique must be applied in order to achieve the capability of masking
the failure of a module.

2.3.3 Mechanisms for Fault Tolerance

From the discussion above two sets of support mechanisms which are
necessary in the fault tolerant system can be identified.

One set of mechanisms is necessary to provide the capability of
repairing individual modules in the application system. After a failure
the entity implementing this mechanism will use the remaining computing
resources and attempt to recreate the original set of modules of the
system. Considering that a module failure is caused by a fault in a
computing resource an additional entity is necessary in order to
identify faulty resources. Thus the repair entity must cooperate with
this entity in order to avoid the use of failed resources. This set of
mechanisms would suffice in the support of weak failure dependency
systems.

Another set of mechanisms is needed in order to achieve the
reliability characteristic required for strong failure dependency
systems. For reasons that will be clarified in the next chapters, the
use of replicated modules is proposed in order to obtain the transparent
recovery from failures of individual modules of a system. In this way a
module at the system level would in fact be implemented by a set of
replicas. Thus special techniques and corresponding support mechanisms
are needed in order to support the use of these replicated modules and
obtain the masking capability.

It is interesting to point out that the system repair capability is
also necessary for strong failure dependency systems. Another system of
modules can be defined if the replicated modules are considered as
individual modules. In this system each of them makes a contribution to
the achievement of reliability. The failure of a module of this system
has no direct effect on the behaviour of the fault tolerant system, but
indirectly it reduces its reliability. Thus a series of failures can
lead the system to fail. Here the repair capability is needed to re
establish the original structure of modules of the system.

15 -

2.4 The Whole System

In this section a view of the whole system is presented. In order
to simplify the discussion it is assumed that only one application
module can run at a station.

2.4.1 The Application System

The application system consists of a set of application modules.
Each application module is a distinct entity designed to perform
specific functions or services. In order to perform these services the
modules communicate through well defined interfaces. It is our
fundamental assumption that modules communicate exclusively by
exchanging messages. The interface of a module is then defined by the
messages it can accept and by the messages it can generate. Thus the
behaviour of a module can only be judged by checking the messages it
generates. It is also assumed that the application modules are correctly
designed and in consequence no erroneous messages are generated if no
other faults occur (we do not treat the thorny issue of algorithmic
faults in the software). In this case the messages generated by a module
can fail either because of faults at the station where the module is
running, or because of faults affecting the messages themselves while
they are being transported between modules. Thus it is necessary to make
assumptions about how these faults can affect messages. This is done in
the next sections.

2.4.2 The Communication System

For many reasons it is attractive to identify within a distributed
computer system a separate entity — The Communication System. This
system is in charge of transporting messages exchanged among the
application modules. It is composed of a distributed part that exists at
every station and by a global part represented by the communication
network. For now consider that the stations are reliable and messages
can fail because faults affecting the communication network, e.g.,
messages can get corrupted or be lost. But communication systems can be
also fault tolerant and recover (with a high probability of success)
from most of the errors. The design of such kind of system is itself a
subject of intensive research, e.g., [Morgan 77, Wensley 78, Wolf 79,
KLeinrock 80, Powell 82]. In order to limit the scope of this thesis we
assume mostly that the communication system reliability is an issue that
can be resolved separately. In the rest of the thesis we make more

- 16 -

specific assumptions about the qualities required for the communication
system and discuss specific points related to our design. For now, it is
assumed that the communication system reliability is enough to meet the
reliability requirements of the application system.

It should be pointed out that the distributed part of the
communication system is a part of the station. Thus faults at one
station can also affect the messages being received at or transmitted
from this station. The consideration of this fact is essential for the
achievement of the reliability of the communication system.

2.4.3 The Station

Considering the communication system as reliable, the failure of an
application module can only be caused by faults affecting the station
where the module is running. Faults at a station can occur either in the
hardware or in the design (algorithmic faults) of the base machine which
supports the application modules (see appendix a.3 for an outline of the
Conic Machine). In relation to the second type of faults we hope they do
not exist, that is, the base machine is correctly designed. This
assumption is essential, otherwise the fault tolerance support
mechanisms could not be relied upon, since they also run on stations.
Thus if a undiscovered fault exists in the basic machine design it has
to be removed by a design change, which requires external intervention.
In consequence, the only possibility of an application module failure is
due to a fault in the hardware of a station. Hardware faults can be
transient or permanent. Some errors due to transient faults may be
recovered by retry, e.g., [Ciacelli 81], some errors due to permanent
faults may be masked inside the station where they occur, e.g., by error
correcting codes in memory. The station can make use of these
techniques, but the effects of some hardware faults cannot be recovered
at the station. This can affect the application module in many different
ways. However, the module failure can only be observed by other modules
through the messages which are generated by the module at fault. This
permits the failure modes of a module to be classified into two basic
categories.

(1) Error Confinement: The fault affects the module in such a way that
it stops all its activities. Hence the module also stops generating
any message. Thus no erroneous mesages are delivered by the module
at fault, i.e, all the errors are confined within the module.

- 17 -

(2) Error Propagation: The fault affects the module in such a way that
the module may continue operating. However, the messages the module
may generate may not be according to its specification, i.e.,
errors can propagate outside the module because of erroneous
messages.

These two failure modes are sufficient to describe the possible
effects of a fault of the station hardware in the behaviour of an
application module. It should be noticed that a failure in error
propagation mode can change to a failure in error confinement; what is
important is that in the mean time some erroneous messages may have been
generated. In fact this difference is very important for the design of
the fault tolerance support mechanisms.

2.4.4 Discussion

If error confinement is assumed the first consequence of a failure
will be the interruption of the service performed by the affected
module. There is no way this failure can directly lead other application
modules to fail. But the failure can always be noticed when
communication with the module is required, which can lead other modules
to fail. If error propagation is assumed other modules can be directly
affected by the fault. This happens because it is difficult to predict
how the fault affects the module behaviour and its messages, e.g., a
failed module can generate apparently correct messages, which can cause
the system to fail. Some of the fault effects could be predicted and the
application modules could have specific programming in order to recover
from the corresponding errors. This is called forward error recovery and
requires a special design for each different application system,
[Randell 7 8]. It is also possible to use techniques that allow the fault
tolerance support mechanisms to be orthogonal to the application system,
thus being reusable. It is interesting to note that error confinement
helps failure detection: A module can surely detect the failure of
another module if it has been waiting too long time for a response.

The fault tolerance support mechanisms are implemented by modules
very similar to the application modules. Thus, in their design it
should be assumed that they have the same failure mode as the modules
of the application system. At this point it should be noted that error
propagation is more important for the design of the fault tolerance
support mechanisms for strong failure dependency systems. It is
reasonable to consider that some time after a fault the consequent

18 -

errors will propagate to other modules and be detected. For weak failure
dependency systems this could be recovered by stopping the application
modules, and restarting them without using the failed station. For
strong failure dependency systems the failures must not be noticed by
the other modules. Thus the fault tolerance support mechanisms must in
some way mask the consequences of a module failure. In the next chapter
we present a review of application independent techniques which can be
used for the support of strong failure dependency systems. There, we
also introduce the technique used in our design and discuss the failure
assumption on which it relies.

2.5 Summary of the Chapter

This chapter presents the basic concepts for the development of
the rest of the thesis. A precise set of concepts and terminology for
fault tolerant computing is summarized: A system is an entity that
mantains a pattern of behaviour at an interface with an environment. A
failure of a system is said to occur when its behaviour deviates from
that required by the specification of the system. An error is that part
of the state of the system that can lead to a failure. A fault is the
mechanistic cause of an error.

In a narrow sense reliability refers to a measure which expresses
the probability that no system failure will have occurred at a given
time, during the system operation. In a broader sense reliability refers
to a wide range of approaches and techniques which are used in order to
achieve the behaviour required by the specification. In order to
achieve high reliability two complementary approaches are used: Fault
prevention, applicable in the development phase, uses a diversity of
techniques which intend to ensure that no faults will exist in a system;
Fault tolerance, applicable in the operational phase, uses a diversity
of techniques that attempt to intervene and prevent faults from causing
system failures. A fault tolerant system is one that includes internal
mechanisms which provide the system with the capability to recover by
itself from failures. The specification of real systems has multiple
aspects, thus there is an overal specification that defines the standard
of reliability which is demanded of the whole system and other
specifications that are related to specific parts of the system.

19 -

Our aim is to provide fault tolerance for the the application
system. In order to design the fault tolerance support mechanisms it is
necessary to consider the relationship of the reliability of a module
with the reliability of the total application system. Thus two abstract
types of application systems are defined according to the way the
reliability requirement of the total system depends on the reliability
provided by each module of the system: strong failure dependency systems
and weak failure dependency systems. The motivation for using redundancy
for achieving fault tolerance and thus reliability in each type of
system is discussed. Two sets of mechanisms needed for the achievement
of fault tolerance are identified. The first set provides the capability
of repairing failed modules of the system and is required for the
support of both types of system. The second provides the capability of
masking failures of the modules and is required for the support of
strong failure dependency systems.

Finally, a view of the whole system is presented. The communication
system is assumed to be reliable, and the application modules and the
base machine, which supports them, are assumed to be correctly designed.
In consequence, application modules can only fail because of hardware
faults at the stations. Faults can be assumed to lead modules to fail in
two different modes: error confinement, and error propagation. Either
failure mode can be separately adopted as the basic assumption for the
design of fault tolerant systems. The failure mode adopted has direct
influence on the design of the fault tolerance support mechanisms,
specially those needed to support strong failure dependency systems.

In the next chapter we present a review of techniques for providing
fault tolerance for strong failure dependency systems. Its objectives
are to evaluate their use in our fault tolerant system and to provide a
means of comparison with the technique we have adopted for our design.

20 -

CHAPTER III

FAULT TOLERANCE TECHNIQUES

In this chapter, a discussion of fault tolerance techniques based
on massive redundancy and checkpointing is presented. The main objective
of the discussion is to evaluate and select an application independent
technique to be used for the support of strong failure dependency
systems. However, the results of this discussion are also relevant in
the design of the support mechanisms of the whole fault tolerant system;
this point will be clarified throughout the thesis.

3.1 Massive Redundancy Techniques

These techniques are basically extensions of the classical triple
modular redundancy scheme used in hardware, e.g., [Avizienis 71,
Wakerly 76]. Their main attraction is that they can be used to mask
failures at the module level. In order describe some issues that should
be solved in order to extend this scheme for a distributed system, we
refer to the figure 3.1. Each application module is implemented by three
replicated instances of the same module type. In addition to failure
independence of both the application and voter modules, two other
requirements are needed for the correct functioning of the scheme:

(1) The clock skew is bounded and known.

(2) All fault-free modules will process identical inputs and generate
corresponding outputs in approximately the same amount of time.

Requirement (1) ensures that a new set of inputs is available for
the modules within a known time interval. Requirements (1) and (2)
permits the calculation of the time interval after which the modules
will have stabilized their outputs, i.e., the next voter inputs. Then,
by a proper specification of the clock signal, fault tolerance can be
achieved. If either requirement is not met, it is possible for the
voters to be activated while their inputs are not compatible, because
they are not synchronized. Incompatible outputs can then be emitted by
the voters, leading the system to fail.

21

Now, consider that each module can accept input data from a number
of different sources. We assume that the modules are deterministic in
the sense that if they consume identical inputs in the same order, they
produce identical outputs in the same order. Under this asssumption, it
is obvious that if all replicas are fed with identical values of input
data, they will produce identical streams of output data. Hence, in
order to use the scheme in a distributed system, two requirements are
necessary:
(1) Synchronization of voter inputs: Each replicated set of inputs must

be voted at the right time.
(2) Ordering of the replicated modules input data streams: In order to

produce consistent inputs for the voters all the replicas must
receive identical streams of input data.
These requirements must be imposed independently at each station

which supports a replicated module. In normal operation or in the
presence of a single module failure, all remaining modules must take
identical decisions, otherwise the system fails. Reference [Fischer 82a]
gives an idea of the complexity of the problem. There, it is formally
proved that even assuming reliable communications and error confinement
for the modules, it is impossible to get consensus if a module fails at
a critical time during their interaction. The only solution for the
problem is to include some time reference in the system. In the next
sections we consider two different approaches for the consideration of
time.

ii i ii i i ii
----- » h

ii
ii

----- » m
i

i
----- » h

. >» *t i
-/ I- < \ / -* ' '\ /

y v
I \ / \ I
» f --- ----- ♦ »
! ' / ' * !\ / * / 1 “ \! '/

t\ *, \ * \
' X \• * \ x / * % *_ , * ' *

! :/ W l
» r ---------* »

v »ii
ii

V >>-,II
II

V
II
» —I II II I

» H » ----- >! !

Il

» H »■

» M » ----- >

clock
V — Majority Voter M — Application Module

Fig. 3*1 Classical Triple Modular Redundancy Scheme.

22

3.1.1 Global Time Reference

In this approach a global time reference(GTR) is available for all
stations in the system. Thus it is possible to relate all the events in
the system to this reference. The approach was first proposed by the
designers of the SIFT system [Wensley 7 6, Wensley 78, Goldeberg 80]. The
main characteristics of this system are summarized below.

3.1.1.1 The SIFT system
The design of SIFT basically implements in software the

characteristics of triple modular redundant circuits implemented in
hardware. Every application module has its activation synchronized with
the GTR, and these activations are periodically repeated. A fixed
activation period is specified for each module. Replicated modules in
the same set are activated at the same time instant, but run at
different stations.

Conceptually, the structure of SIFT based systems can be seem as
consisting of the application modules and of a special data module. This
data module contains all the state information of the application being
controlled. At each activation the application modules get from the data
module, the data needed to perform their calculations, and the result of
the calculations are also returned into the data module. In practice,
the outputs of the application modules are not directly deposited into
the data module, but each application module broadcasts, through the
communication system, the results of its calculations to all target
modules. Immediately before a module has to be activated, the results
generated by replicated modules are voted upon in order to obtain a
reliable input for processing in that activation. The synchronization of
the voter inputs is achieved provided that both the time a module takes
to process its inputs, and the transport delay of the communication
system are bounded. The sum of these times must be such that a
consistent set of replicated outputs is available for voting at the time
a module needs to use them.

The ordering of inputs is automatically set by the fixed activation
time of each module. Thus there is no need for any protocol to decide
which input will be consumed by each replica. The application designer
has to make sure that the data to be consumed at each module activation
is present at the station where the module is running at the time
immediately before the activation. This depends on the relative
allocation of the modules activation time in relation to the GTR, and on

- 23 -

the factors described in the paragraph above. It is worth noting that
the scheme does eliminate the possibility of any nondeterminism in the
choice of inputs to be consumed. This fact seems not to be a problem in
the class of applications SIFT addresses, i.e., sampled data control
applications.

3.1.1.2 Interactive Consistency

If three replicated modules are used, the success of the majority
voting scheme depends on an initial assumed condition that at least two
modules of each replicated group have produced correct and identical
results. Thereafter three replicated voters and modules, with at most
one faulty voter or module per group, are sufficient to mantain the
condition of at least two correct and identical results. The team
working in the design of SIFT has verified that this condition cannot be
always met in some cases by the use of only three channels [Pease 80].
These cases are: (1) The input of information from an unreplicated
source, e.g., an unreplicated sensor or an unreplicated module; and (2)
the case where a consensus must be reached on different values generated
by independent sources, e.g., data generated by replicated sensors,
clock readings generated by different stations used for the
(re)synchronization of their clocks, and error reports generated by each
station. In these cases a single module failing in a "malicious" mode
can defeat the TMR scheme. This is exemplified in figure 3»2, adapted
from [Frison 82]: Consider that the modules operate in a SIFT like
fashion. Each sensor module periodically produces an output which is
sent to all processing modules. The processing modules pick-up the
median value of the outputs produced by the sensor modules and use this
value as output. As a consequence of the malicious behaviour of the
faulty sensor module inconsistent outputs are produced; it can be proved
that inconsistent outputs can occur regardless of the algorithm the
processing modules can use to select their outputs. It should be pointed
out that this is a consequence of the error propagation environment. The
general solution of this problem requires at least 3f+1 modules to
tolerate up to f failures; and a special protocol is needed to ensure
the initial condition. This protocol relies on an interactive message
interchange among replicated modules, hence the name interactive
consistency. This special case will be further discussed in the next
section.

SM », 176 | ,» PM
110, 176,178

» ----------> (1 7 6)

% 0 \ *
' ' ' Iv 0 \ t \ \

1 0* 177 s *| SM »«•— 1-"----- •*» PM
k\ / \ 1 176,177,178

W ' * . /
\ * ' / W M M H M M M M M M M M M I
/ \ 0\

faulty
SI
?

»■ ■> (177)

I SM »*-
I 178 I

.*» PM
176,178,233

» ---- > (1 7 8)

SM — Sensor Module PM — Processing Module
Fig. 3.2 Loss of Consistency in a TMR Scheme

3.1.2 Local Time Reference
This approach for obtaining fault tolerance by using N-modular

redundancy is proposed in [Leung 80]. It intends to provide fault
tolerance for the hardware modules of a data-flow multiprocessor.
However, in principle, the design can be used in any system based on
message passing. The approach allows fault tolerance to be obtained by
decisions, based on time references, taken locally at each station
without using any global-time reference; and without any assumption
dependent on the other modules of the system. The principal attraction
of the approach is that it allows application modules to be
independently designed, thus meeting the modularity requirement.

3.1.2.1 The Approach

The fundamental requirements for fault tolerance: synchronization
of voter inputs, and the ordering of inputs of replicated modules, are
obtained by the use of special standard control modules. These control
modules use in their design the interactive consistency protocol
proposed by Pease et al [Pease 80], for exchanging information among
modules in a distributed system. A minimum of four replicated modules
are required in order to tolerate a single failure. Two rounds of
communication are performed. In the first round the modules exchange
their private values (messages). In the second round they exchange the
values obtained in the first round. The exchange having been completed,
majority voting can guarantee that:

- 25 -

(1) The message transmitted by a fault-free module will be known to
every fault-free module, and

(2) The fault-free modules will agree on the contents of messages
transmitted by faulty modules.

In general the algorithm requires at least 3f+1 modules to tolerate
up to f module failures among them. A negative result which states that
this fault tolerance capability cannot be achieved with less than 3f+1
modules is also provided in [Pease 80]. It was also proved that any
algorithm that assures interactive consistency in the presence of f
faulty modules requires at least f+1 rounds of communication, and that
the amount of message values that need to be interchanged and stored in
each protocol execution is aproximately (3f+1)**(f+2) [Fischer 82b].
These values quantify the cost of any protocol to establish interactive
consistency. They are valid on the assumption that communications are
reliable.

Figure 3.3 represents a general replicated module structure
proposed by [Leung 80]. A set of input control modules(ICs), and a set
of output control modules(OCs) are required to protect respectively each
input and output of the application module. In receiving an input
message an IC module executes the interactive consistency protocol with
the other ICs which are protecting that port. As a result of the
interaction, a reliable input is forwarded to each replicated module.
The protocol also guarantees that these inputs are generated within a
given time interval. The OC modules also perform a similar role.
Assuming that the application modules can process input messages within
a specified time interval it is guaranteed that the OC modules will also
generate their output messages within a specified time interval. This
permits the ICs of a target module to time-out when awaiting inputs from
failed modules, thus avoiding interference to the execution of the
algorithm, and allows the required synchronization to be kept in the
system.

- 26 -

i , >----- j - lie |-| — . , — l-IOC I- --- > 01

: I M
m i ______ | n

Ii >--- 1-lie |-|- ,— l-IOC |-|---> O-j
» /
* /' (»/*<I *I »/ *

> •
\ •\ •X •\tt\

» II

Im >---1-lie l-l— '

.1 . I .I ___ _ I
^ >--- I-IIC l-l— '■

*wli
• I• I1

I_______ 1
'— j -1 OC_ I - j-- > On

M l * • I • I •J_ I II * • I • I •

l-Soc i- |----> on

IC — Input Control OC — Output Control M — Application Module

Fig. 3.3 Structure of a Replicated Module.

In data-flow applications the application modules can, in most
cases, be designed in such a way that their outputs depend only on the
set of inputs received. However, in some cases the order in which
messages are accepted will influence the output messages (In Conic this
is the most general case). In order to cater for these cases it is
proposed to introduce another control module, called the merge module,
which has the role of ordering the input messages to be consumed. The
replicated merge modules receive messages coming from two different
ports and delivers them in the same order for consumption. If more than
two inputs need to be merged these modules can be cascaded. This
introduces overheads that can only be reduced by adopting a special
style of programming.

The same algorithm proposed by Pease et al [Pease 80] is used to
obtain the interactive consistency required in some cases for GTR based
systems. However, in SIFT, the fact that every event can be related to
the GTR simplifies the design of the control modules. In general, 3f+1
modules are also required in order to tolerate f failures. Although, if
some more restricted failure modes are assumed a reduction is possible
[Frison 82].

- 27 -

3.1.3 Discussion

Systems based on the global time approach have to meet tight
synchronization requirements. A special design for all the system
modules is required in order to meet these requirements. In addition the
modules have to use a special style of communication in order to
simplify the implementation of the system. The difficulty and resources
for obtaining interactive consistency also have to be considered. It is
possible to support a SIFT like architecture in Conic. However, it is an
open question as to whether or not the incurred programming style is
suitable for the implementation of process control applications in
general.

In relation to local time based approach, the main problems are the
large number of messages required and the amount of information that
needs to be stored. This makes its use unpractical in systems where it
is necessary to obtain interactive consistency for every message
consumption. However, the approach can be used when a lesser degree of
interaction is required, e.g., in the Space Shuttle computer system
[Sheridan 7 8] the same application system is replicated in four
computers, and is designed in such a way that they can provide
consistent outputs provided that their external inputs are consumed in
the same order. This reduces the places where the protocol needs to be
used. Another interesting example is available in [Ihara 7 8].

The study of massive redundancy approaches provides a clear view of
the problems and costs of designing fault tolerant systems under the
error propagation assumption. It is worth pointing out that the
assumption of intermediate failure modes does not simplify the problems.
It would be necessary to interchange more information, keep more state
information, and consider problems that can be caused by the view each
participating module has of this state. The potential advantage of these
approaches is that the computer modules are not required to have any
built-in error detection mechanism in the hardware, since this can be
provided by high-level mechanisms, which can be implemented in software.
However, there is a trend to incorporate built-in error checking
mechanisms at the hardware level. This allows simpler and less expensive
use of replication for obtaining fault tolerance. This is further
discussed in section 3*3.

28

3.2 Checkpointing Techniques

Checkpointing techniques aim to preserve enough information about
the state of a system so that the system can be restarted after a fault
has occurred. These techniques have been widely used to provide a degree
of fault tolerance for uniprocessor systems. In the context of
multiprocess based system checkpointed information can be used to
implement backward error recovery [Randell 75, Randell 7 8]. This type of
recovery involves abandonning work which may have been performed
erroneously due to a fault, and then repeating the work, hopefully
correctly, after the faulty component has been removed from the system.
In the next section we discuss backward error recovery in a distributed
system.

3.2.1 Checkpointing in Distributed Systems
In a distributed system checkpoints are taken for the individual

modules at relevant points of their operation. The checkpoint operation
is performed independently by each module. When an error is detected it
is necessary to obtain from the checkpointed information a set of
consistent states for the modules of the system. This is needed in order
to put the system in a consistent state which could validly have existed
at some time whilst the system was functionning correctly. Due to error
propagation, more than one module can be in an erroneous state. Also,
when a module has its state restored, all communications that it has
performed, after reaching that state, should be revoked. Consequently
these modules, with which communication has occurred, must also have
their state reset in order to impose a valid system state. A special
protocol has been proposed in order to solve the general case of
establishing a set of consistent module states [Merlin 77]. A
simplified version of this protocol has been proposed in [McDermid 80].
But, in general it cannot be guaranteed that a consistent set of states
different from the trivial initial state of the system will be reached.
This is called the "domino” effect.

One solution for this problem is to arrange that no information
will be propagated from a group of modules which need to interact in
order to perform an action. If any error occurs during the action
execution it is only needed to restablish the modules to the state they
had immediately before starting their interaction. This makes any
intermediate states invisible for the rest of the modules, i.e., the
action is atomic. A special protocol, named two phase commit protocol is

- 29 -

used in order to reliably coordinate the termination of an action
[Gray 7 8]. Another possible strategy is to restrict the communication of
the modules in order to make the system immune to the domino effect
[Kim 79t Russel 80].

Assuming that a consistent state has been reached, a second problem
arises: As a consequence of the re-execution of the modules, it is not
guaranteed that the outputs at the system interface will be repeated.
Considering that some outputs could have been generated in the first
execution, and that different outputs are generated in the second, the
coherence at the system interface can be lost. This does not allow the
use of the approach in applications where this coherence is required.
One way of dealing with this problem is to design the distributed
program in such a way that it always produces the same results when
started from the same state. Although this requires restrictions on the
structure and communication of the modules [Bernstein 79]*

A third problem is caused by the possibility of error propagation
beyond the system interface. An error detected at a later stage can
invalidate a previous output. However, an output delivered to the
environment cannot always be recovered. Thus before delivering an output
it is necessary to be sure that no errors have occurred during its
calculations. This is difficult to obtain because of error propagation
and the distributed environment. These problems limit the application
of backward error recovery in applications directly interacting whith
the environment. This was also noticed in [Kopetz 83L The only solution
for fault tolerance (under the error propagation assumption) is to
provide forward error recovery. This requires the provision of a
compensation procedure to undo the effects of outputs [Shrivastava 79],
which is complicated and does not meet the requirements of some
applications.

Two additional issues can be enumerated: First, in order to allow
the reallocation of modules to other stations in the system the
checkpointed information must be accessible to the other stations in
which the modules can run. The integrity of this information should also
be preserved. This introduces the requirement of a reliable data base.
Second, it is necessary to ensure that the set of checkpoints stored
does not grow too large. It is difficult to devise algorithms for
removing checkpoints amenable for distributed execution. Also this
requires some assumptions about error propagation to be made; because in
principle it is always possible to imagine an error for which one of the
deleted checkpoints was essential for recovery.

- 30 -

3.2.2 Discussion

Most of the complexity in supporting backward error recovery and
the related issues pointed out in the previous section is a result of
the error propagation environment. If it is assumed that the modules
fail in error confinement mode, the implementation of backward error
recovery is considerably simplified. Also its related problems can be
eliminated. Only one recovery point needs to be kept for each module.
After the detection of a module failure it is sufficient to restart the
module with the state taken at this recovery point. The module re-
execution and a simple protocol can ensure that all the communications
which were being performed by the module before the failure are
consistently completed. This allows module failures to be masked; with
the exception of some performance degradation. It is also possible to
ensure that any output generated by the system of modules is repeatable;
thus the control capability is not disrupted because module failures.
These qualities can be obtained for a system of Conic modules without
incurring any unreasonable restrictions on the style of programming.
Also they require the support of very simple mechanisms. Our approach
for providing fault tolerance will be presented in the next two
chapters. The next section discusses techniques to enforce error
confinement.
3.3 Error Confinement

The validity of the error confinement assumption is directly
dependent on the coverage of the error detection mechanisms. In the
following paragraphs we discuss available options for obtainning error
detection capability.

Executable assertions were originally added to software for proof
of correctness of a program. However they can be also used to detect
errorscaused by faults affecting the hardware [Randell 75, Andrews 79].
Recently assertions were proposed as a means to be used to confine
errors within a module in a message passing system for control
applications [Koptez 82a]. In this proposal an assertion is evaluated
just before a message is sent from a module. In detecting an error the
module stops sending messages. The advantage of this technique is that
it does not depend on hardware support. The disadvantage is that an
assertion must be explicitly programmed for each case. Another option
would be to run an application independent error checking routine in
place of the assertion. Some systems use a special error checking module
which runs periodically or whenever that the processor is idle. In

- 31

general, it can be said that these approaches validate, with some
probability, the error confinement assumption. However, more guarantees
can be provided by hardware based techniques.

Host commercial computers in use today incorporate some form of
error detection. The most common approach is to use code based
techniques, of which the most simple is parity for single error
detection. Although interface circuits for Hamming coded memories,
providing single error correction and double error detection are
currently offered by several semiconductor manufacturers. Error
detection capabilities are currently being offered at the microprocessor
chip level, e.g., the Motorola 68000 microprocessor can detect
internally invalid operation codes and ill formed addresses; its memory
management unit can detect abnormal memory accesses such as fetch of
data in program area, fetch of instructions in data area, write in ROM,
etc. These capabilities together with coding techniques can be used to
implement efficient error detection capability [Marchal 82, Schmid 82].

The most promising approach seems to be the use of totaly self
checking logic circuits; which guarantees that any internal fault is
detected and that any erroneous output is signalled at the circuit
interface. In this direction two approaches are possible. The first is
to develop specific self-checking modules which allow error detection to
be obtained by the use of standard microprocessors [Rennels 7 8, Chavade
82], The second is to incorporate it directly in processors and
components [Sedmak 80, Disparte 81], The use of these approaches allows
a near 100$ error detection capability without needing to duplicate all
the system components, e.g., a totally self checking microprocessor
requires 58$ more area in the chip [Disparte 81].

The set of error detection techniques to be used depends on the
reliability requirements of the application. Hardware based techniques
are more attractive because they are very efficient and do not require
programming effort. The current price of the hardware makes them cost
effective. In general, the capability of error confinement simplifies
the achievement of fault tolerance for both types of systems,
particularly for strong failure dependency systems. In addition it also
simplifies the programming of the software for the location of faulty
components as noticed by [Goetz 7 8]. These points will be demonstrated
by the simplicity of the fault tolerance support mechanisms which are
proposed in this thesis.

- 32 -

3.4 Summary of the Chapter

Massive redundancy techniques can be classified in global time
reference and local time reference. They can provide very high
reliability at a cost of at least three times the number of resources
needed in a normal system. The global time reference based system is
simpler than local time based reference system but the effective use of
the technique requires restrictions in the style of programming and do
not allow a system to be built out of independently designed modules:
The activation of each module has to be synchronized with the global
time reference, this is necessary for the proper functioning of the
majority voters used to mask module failures. This fact has to be taken
into account when designing the modules of a system. The local time
reference based approach requires 3f+1 modules to tolerate f module
failures. In addition it uses a large number of messages and requires
the storage of a large amount of information for each decision related
to the consumption of an input message. Its only advantage over the
global time based technique is that modules can be independently
designed. However, for both techniques the transparency goal is
difficult to achieve. Massive redundancy approaches are specially
designed to work under the error propagation assumption, if only the
error confinement assumption is considered less expensive systems can be
designed by the use of checkpointing techniques.

Checkpointing techniques aim to preserve enough information about
the state of a system so that the system can be restarted after a fault
has occurred. After a failure, the state of the modules of a system is
restored to a previous, hopefully correct, state and execution is
continued. This is called backward error recovery, a special protocol is
needed to enforce this behaviour. However, this activity is prone to a
"domino effect" by which the initial trivial state of the system is
reached, this problem cannot be eliminated for a general system
structure. In addition, as a consequence of the re-execution of
concurrent modules, different outputs can be generated at the system
interface, thus a control sequence interrupted by a failure cannot be
re-taken. Also, it is difficult to stop the propagation of errors beyond
the system interface, i.e., an erroneous output delivered to the
environment cannot be recovered. These drawbacks make backward error
recovery innappropriate for programming distributed control
applications. However, their cause is the error propagation failure mode

- 33 -

assumption. If it is assumed that modules fail in error confinement
mode, backward error recovery can be simplified and its drawbacks
eliminated.

In this thesis, we adopt the error confinement assumption and use
a checkpointing based technique. This option requires the simplest
fault-tolerance support mechanisms, uses less resources than those
required by massive redundancy techniques, and can meet the requirements
for supporting strong failure dependency systems. The approach is
presented in chapter V. It permits a system of Conic modules to tolerate
failures without any apparent interruption of the capability of
controlling the application. The degree of reliability of the approach
depends on the validity of the error confinement assumption. Available
techniques to ensure the validity of this assumption were discussed in
section 3.3.

- 34 -

CHAPTER IV

THE FAULT TOLERANT SYSTEM

In this chapter an overview of the fault tolerant system is
presented. The main goals are to present our proposal for providing
reliability requirements for the two types of application system that
were identified in chapter II: weak and strong failure dependency
systems, and to introduce the system modules which are needed to provide
the required fault tolerance. Some relevant aspects of the design are
discussed; however not all aspects are considered in this chapter:
Language level mechanisms and a recovery technique used for the support
of strong failure dependency systems are presented in the next chapter.
The design and implementation details of the fault tolerance support
mechanisms are presented in chapter VI.

4.1 Assumptions

In the following we summarize all the assumptions which were
introduced in the previous chapters. They are essential for the the
correct functioning of the fault tolerance techniques that are proposed
in this thesis.

a. Correct Design: There are no design faults (algorithmic) either in
the system provided facilities or in the application defined
modules.

b. Error Confinement Mode: This assures that the failure of a module
will be consistently seen by any other module of the system, and
that the failure of a module does not cause other modules to fail
through error propagation. The validity of this assumption is
directly dependent on the coverage provided by the error detection
mechanisms at each station. The techniques that ensure the validity
of this assumption were discussed in section 3.3.

- 35 -

Reliable Communication System:; Two explicit assumptions are
required: (1) If a message M is sent and received, then the
received message is precisely M. (2) A message issued from a
station will reach its target station within a specified time
interval. Assumption (1) can be met with high probability of
success by the use of standard error detection/correction
techniques [Hamming 50, Peterson 72]. Assumption (2) requires
redundant communication paths and special fault tolerance
techniques. By this assumption, we are excluding the possibility of
a partitioned communication system. This is fundamental for the
correct functioning of the mechanisms proposed in this thesis.

d. Bounded Response: The system can assure that some specific modules
can always respond to incoming messages within a predictable time
interval: i.e., if they are operating normally. In Conic this can
be achieved by assigning a proper priority for the module tasks and
by a proper module design. This assumption is required for failure
detection.

In addition to these essential assumptions, we make a "convenient"
assumption: any fault at a station will stop completely all . activities
in the station; i.e., all the modules in the station are stopped; the
alternative would be to consider that a fault can affect only some of
the modules of the station. This assumption simplifies the presentation
and implementation of a prototype of the fault tolerant system. The
subject is is further discussed in section 4.7.

4.2 Definitions

The following definitions intend to establish a basic vocabulary to
be used in the remaining parts of this thesis.

4.2.1 The Application System
The application system is constituted by a set of Reliable Modules,

Rmodules for short, which cooperate in order to provide the application
functions. The application system is defined at a logical level by the
application designer. It should be pointed out that the application
system for a large control application will probably be composed of
several application subsystems; each of them being associated to a
particular function. They may cooperate in order to execute an overall
control function. In this thesis we assume that the reliability
requirements of each subsystem can be met separately.

- 36 -

4.2.2 Rmodule

At the logical level, an Rmodule is similar to a normal Conic
module. In addition, one specific reliability service is associated with
the specification of an Rmodule. The particular reliability service
specified for a given Rmodule will determine the reliability requirement
met by the Rmodule, and determine how it will actually be implemented in
the running application system configuration.

4.2.3 Reliability Services

The fault tolerant system provides two reliability services, which
meet the reliability requirements of the two types of systems
identified in chapter II.

Cold Standby: Which meets the requirements of weak failure
dependency systems.

Hot Standby: Which meets the requirements of strong failure
dependency systems.

The application designer specifies for each Rmodule the type of
reliability service needed to meet the application requirements.
Standard development tools can automatically perform part of the
translations needed to implement each service, but additional run-time
support is also required. The services and their support are presented
in the next sections.

4.3 Cold Standby

Each Rmodule using this service is implemented by one Conic module
instance. The designer can specify a set of alternative stations where
the Rmodule instance can run. He can also specify a preferential order
for using these stations.

At the application system start-up, the system chooses one of the
user specified stations and performs all the actions necessary for the
normal operation of the Rmodule instance there. During the operation,
the station hosting this Rmodule instance can fail. When such a failure
is detected, a new instance of that Rmodule can be created; provided
that there is a station available in its station set. The system
performs all the.actions necessary to instantiate the new Rmodule
instance in that station. It is worth pointing out that:

- 37 -

a. No state information is preserved between two successive
activations of Rmodule instances; i.e., the service only provides a
volatile storage for the Rmodule. This is illustrated in figure
4.1.

b. A non-negligible time interval is necessary for the system to
perform all the actions required to re-integrate a standby Rmodule
instance in the application system, since the Rmodule instance has
to be created and its ports linked. This time interval can increase
if the same fault, or a concurrent one, causes the system services
which are used to re-integrate the Rmodule to fail.

c. An implicit requirement for the use of this service is that the
other Rmodules that can co-operate with a given Rmodule have
provision to continue working in the case that this Rmodule fails.
Also, after the recovery of a Rmodule, they should begin to co
operate normally.

d. A standard Conic module is equivalent to an Rmodule which has only
one station in its station set.

The points enumerated above restrict the use of this reliability
service to the class of application systems having weak failure
dependency. The service only assures the creation of a new instance of
the Rmodule; all other activities concerning recovery are left to the
application program, e.g., recovery of the instance state. However, a
mechanism that can help in the implementation of application dependent
recovery strategies is discussed in section 7.1.

>--- » » --->application : | i volatile i I : applicationentryports : !>---» S storage S I :» ---> exitports
ii

Fig. 4.1 Cold standby Rmodule

- 38 -

An Rmodule using this service is implemented by two identical
module instances. As in the cold standby case, the designer specifies a
set of stations for each Rmodule, but at least two stations are required
at a time. The system allocates each instance to run in a different
station in that set. Each of these instances is fully prepared to
perform application processing without requiring any further action from
the system modules, e.g., port linkage. However, at any one time they
will be performing different roles: One of them will be actually
processing messages and cooperating with other Rmodules of the system.
This instance is called the active instance. The another one, is called
the passive instance, and does not perform any processing. Its role is
to keep an updated copy of the application state information being
produced by the active instance. This state information is transferred
to the passive instance at relevant points in the operation of the
active instance. This transference is done atomically: either the entire
state information is completely transferred, or the passive instance
state is not changed at all. Thus a failure during the transference does
not leave the state of the passive instance inconsistent.

At the configuration start-up, the operating system creates and
starts the two instances, ensuring that one takes the active role and
the other takes the passive role. During system operation either the
active instance or the passive instance may fail. In the first case the
passive instance, after detecting the failure, changes its role to
active and continues application processing. In the second case the
active instance processing is not affected by the failure. The system
can create a new instance to replace the failed one; this instance will
automatically take the passive role. This is assured by an underlying
mechanism, which will be presented in section 6.2. It is worth noting
that:
a. The Rmodule state information is preserved when the active instance

fails and the available passive instance takes the active role;
i.e. the passive instance provides a stable storage for the
Rmodule, [Gray 78, Lampson 81]. This is illustrated in figure 4.2.

b. The passive instance is fully prepared to perform application
processing. Thus, the time interval needed to repair the subsystem
is bounded by the time taken to perform the active instance failure
detection and activate the passive instance. This repair time is an
useful measure in evaluating the real-time response of Rmodules
using this service (See section 7*2 for related discussion).

4.4 Hot Standby

- 39 -

c. An implicit assumption for the reliability of the approach is that
during any period of time at most one of the two instances has
failed. In practice, this period of vulnerability is minimized if
another instance is created to replace a failed one. In this thesis
we consider that duplication is enough to meet the reliability
requirements of most applications; however, it is possible to allow
for more than one passive instance. This requires a more
complicated protocol to keep the state of all passive instances
consistent, and a protocol to elect an active instance in case of
failures. The problem is similar to that treated in [Garcia 82].

The points enumerated above allow the support of strong failure
dependency systems. In principle, the state information preserved in
stable storage is enough for the achievement of fault tolerance.
However, this requires application dependent recovery algorithms, which
should be provided by the programmer; the subject is further discussed
in section 6.2.1. In the next chapter we present an application
independent recovery technique, for use by hot standby Rmodules, for the
programming of strong failure dependency systems. This technique allows
the transparent recovery from failures. The application of the hot
standby service in the construction of application systems is discussed
in chapter VII.

I>---»

• i i
V
 —

1
V

 1 1 1 1 1 Vapplication : ! S stable i 2 s applicationentryports : !>--- »
I

! storage 2 2 :» --->
2

exitports

Fig. 4.2 Hot standby Rmodule

4.5 Support for Reliability Services

Each reliability service needs specific support in order to be used
in a practical way in the implementation of several applications. Some
activities are performed off-line in a development system, while others
are performed on-line when the system is operating.

4.5.1 Off-line Support
Off-line support is performed in two phases:

4.5.1.1 Configuration Specification
In Conic, the system designer specifies the logical configuration

of the application system through a separate configuration language
[Kramer 8 3]; a summary and an example are also provided in appendix A.2.
In order to allow the specification of fault tolerant applications, this
basic language is extended in order to allow:

(1) The specification of the reliability service required by each
Rmodule.

(2) The specification of configuration rules which are needed to
dynamically control the instantiation of the Rmodule instances.
Capability (1) is readily acquired by associating its required

reliability service to each Rmodule name. In general, capability (2)
cannot be specified in a simple way: — it depends on the capabilities
of each station of the system and on the particular use the application
designer wants to make of them. However it can be observed that in
control applications the designer needs to allocate specific module
instances to specific stations, e.g., because of I/O interface or
communication delay requirements. Thus, a configuration rule is always
needed to specify the set of stations where instances can run. In
general, additional rules are needed to fully specify the configuration
control algorithm; this is discussed further in section 4.6. For now, we
assume that (1) and (2) are specified by a slightly modified create
declaration:

CREATE Rmodulename(parameterlist):moduletype, servicetype
AT stationset;

Servicetype specifies the required reliability service of the
Rmodule, and stationset specifies a set of station names where the
instance can run. Parameterlist defines the instance parameters as usual
for a standard Conic module. The physical address corresponding to a
given station name is assumed to be available from a data base in the
development system.

With the exceptions of the extended create declaration, and of a
special port primitive (that will be presented in the next chapter), the
application logical configuration is specified as in the standard Conic
configuration language.

- 41

4.5.1.2 Configuration Translation
The configuration specification is processed by a translator

program which performs validation of the specification and translates it
to a symbol table form, which is kept in a configuration description
file. This file also contains the addressing information required by the
run-time support mechanism to produce load images for the Rmodule
instances. Rmodules using the hot standby service require specific
support in the development system. This will be fully clarified along
the thesis.
4.5.2 On-line Support

On-line support is provided by two system modules: the
configuration manager and the status collector. They provide the
capability of controlling the instances of the application system
configuration at run-time. . For the sake of brevity, we say that they
provide the configuration management service. Fault tolerance capability
for the configuration management service modules is obtained by using
the hot standby service. This and other implementation details are
presented in section 6.1. The operation of the configuration management
service modules is described in the next subsections.
4.5.2.1 Configuration Manager

The running configuration of the system is controlled by a system
module called the configuration manager. This module has access to the
configuration description and to the configuration rules. It can start,
stop, and control the configuration in order to support the reliability
services. These activities depend on the status of the stations of the
system. The set of stations defines the physical configuration of the
system. The set of module instances corresponding to the application
system specification defines the logical configuration. In order to
start a configuration, the configuration manager acquires the status of
the physical configuration and according to the configuration rules
chooses a mapping of the logical configuration to the available
stations. Next it performs the configuration control operations to start
the logical configuration. It does so by sending messages to the
operating system at each station. During its normal operation, the
configuration manager receives station status reports from the status
collector. When a change in the status of a station is noticed
configuration operations may have to be performed; this decision is
based on the configuration rules. The approach we have adopted for
configuration control is discussed in section 4.6.

In addition to the functions described above, the configuration
manager can answer queries about the status and/or report the status
changes of Rmodules. This is further discussed in sections 6.1.3 and
7.2.

4.5.2.2 Status Collector Module

This module periodically collects the status of every station in
the physical configuration. Changes of status occur either when a
station fails or when a station joins the system, e.g., after being
repaired. Any change noticed in the status of a•station is reported to
the configuration manager. Figure 4.3 presents a view of the interaction
of the on-line support modules. The capability of station failure
detection relies on assumptions c and d (section 4.1); i.e., reliable
communication system and bounded response. The techniques used for
detection of station failures and for assuring consistency of status
reports are discussed in section 6.1.2.

Status
ii! >—

ii— > ! Configuration
Collector iiii

status
reports

iiii
Manager

/ 1 \I status
i monitoring

configuration
operations

---------------------- « ----------------------
«

Physical « LogicalConfiguration « Configuration
«

---------------------- « ----------------------

« : Modules to Stations Mapping

Fig. 4.3 View of the on-line support mechanisms

*1.5.2.3 Treatment of Rmodules

At run-time Rmodules using the cold standby service are completly
supported by the configuration management service. At the configuration
start-up time, the configuration manager creates one instance for each
Rmodule using the cold service. A station supporting one of these
instances can fail; this is noticed by the status collector. The station
failure is communicated to the configuration manager which can re
allocate the instance to another station in that Rmodule station set. If
the re-allocation is possible, the configuration manager executes the
configuration control actions needed to recreate the instance and hence
re-establish the logical configuration. Otherwise, when it is not
possible, the configuration manager marks the state of the corresponding
Rmodule as failed; however the failure can be reported to other
instances of the system.

For Rmodule instances using the hot standby service the
configuration manager gives a similar treatment to that described for
the cold standby service. However, the configuration manager cannot
assign the two instances corresponding to an Rmodule in hot standby to
the same station, since this creates a common failure point. In order to
obtain the full characteristics desired for the hot standby service
extra run-time mechanisms are necessary. They support the management of
the role performed by each instance, the transference of state
information to the passive instance, and the technique for transparent
recovery of failures. These mechanisms are presented in section 6.2.

At any time stations can be repaired and rejoin the physical
configuration. Initially, only the station operating system is
activated. A module of the station operating system informs the status
collector module that the station is in an operational state. The status
collector module informs the configuration manager about the change of
status of the station. If there is an Rmodule instance which can run in
that station the required configuration operations are then performed by
the configuration manager. The approach used to control the allocation
of Rmodule instances to the stations is discussed in the next section.

4.6 Configuration Control

The configuration manager functions can be divided into two groups:
One is in charge of the execution of the configuration control
operations, which is implemented by simple interfaces to the Conic
operating system modules (see appendix A.3). The other is in charge of
deciding which configuration control operations should be executed.
Configuration control activities may be needed when a change in the
physical configuration occurs. The configuration decisions depend on the
current status of the stations, the current logical configuration, and
the configuration rules specified by the application designer. The
enforcement of the decision-making capability is discussed below.

4.6.1 Approaches

There are two approaches to enforce the configuration rules.
The first approach is simply to pre-determine for each application

system all useful mappings of modules to stations allocation. This
information can be assembled in an allocation table, with entries for
each possible physical configuration status. When a station status
change occurs, the current logical configuration is compared with the
target configuration which can be supported in the new physical
configuration, and the corresponding configuration control operations
are determined, and performed. The main disadvantage of this approach is
that it can be expensive to keep the configuration control information
if the system has a large number of stations and modules. The problem is
aggravated if partial failures of stations are considered, since the
details and state of the resources of each station should be kept
[Loques 8 3]. However, in practical situations, the fact that modules
have to be allocated to specific stations allows the identification of
partitions (subsystems) in the logical configuration which can be
independently controlled. This allows considerable reduction of stored
information.

The second approach is to use some algorithm which can determine
the operations to execute at run-time, according to the changes in the
physical configuration, and the configuration rules. It is not the main
intention of this work to study these algorithms and configuration
rules; but we have found that for some typical redundant structures
commonly used in control systems [Brown 83, Kaiser 7 8, Tillman 82, Toy
78, Wood 80] it is possible to take the configuration decisions by the

- 45 -

use of very simple application independent rules and straightforward
algorithms. Some of these redundant structures are presented in figure
4.4: Structure A is a typical standby redundancy. It does not matter
which reliability service is used by an Rmodule; in either case the
configuration decisions can be easily taken by using the station set
specified for the Rmodule. In structure B station k can be used as
standby for Rmodules a and b. If both Rmodules use the hot standby
service, there can be one instance of each permanently allocated to
station k. In this case, the order in which the stations are specified,
in the station sets defines an ordering for the allocation of the
instances. The configuration manager can control the configuration such
that the active instances of Rmodules a and b are allocated to stations
i and j respectively; this can be useful in a situation where load
distribution is required for efficiency. In structure C, any of the
stations can accept any of the instances; up to two station failures can
be tolerated. It should be pointed out that even for structures where
the allocation of module instances to stations cannot change, e.g., as
that in fig. 4.4.a, the use of an algorithm instead of allocation tables
allows the reduction of stored configuration description data.

In general it should be considered that stations can rejoin the
physical configuration. As a consequence instances may have to be
reallocated in order to establish a more useful logical configuration.
This requires more application dependent configuration rules, storage of
information describing the resources required by each Rmodule and the
resources available at each station. This complication can be avoided
if the stations which are shared in the station sets of different
Rmodules can separately support either (1) exactly one of these Rmodule
instances, or (2) all of them. For the first case a simple rule: a
priority associated to each Rmodule, can decide conflicts if there are
more than two Rmodule instances to be allocated to a same station.
Under these constraints a simple algorithm can be used to control any
variation of the structures presented in figure 4.4.

- 46

I I/Q_a |

I mod_a | | mocLa1 I
I strui I I struJ I

mocLa: stn_i, stn .1;
A. typical standby structure

i l/0_a | I I/Q_b j
ii iii

I I I I I mocLa1
i mocLa | j mocLb I I mocLb1
j strL_i j S struj ! | stq_k

mod_a: stn_i» stn_k; mocLb: stn_J, struk;
B. shared standby structure

1 I/Q_a | 1 l/0_b | 1 l/0_c |
i i s ; i i i l lS | . . i i , _ _ ___ i i .1 1 + 1 1 1 ----|-| ■i +-•-*-— ————---- ——, — -i— — ——, — |
I 1 1

1 mocLa ! ! mod_a * ! { mocLa" j| mod__bn j I mocLb j I modjD1 j
I mocLc1 I 1 mocLc" 1 j mod_c |
1 strui 1 ! stiL_j 1 j stn_k j

mod_a: str_i, stn_J» stn_k;
mod__b: str_J, sti*_k» stiL_i;
mod_c: strL_k, str*_i, stn_j;

C. multiple shared standby structure

Fig. 4.4. Typical Redundant Structures

- 47 -

In our prototype system we have adopted the above described
simplifications, and the algorithm has been integrated in the design of
the configuration manager. This has allowed changes in the station sets
of each Rmodule to be made very easily, and has been useful for the
tests we have performed on configuration management. Although the
approach is suitable for controlling typical redundant structures it
does not offer general flexibility. More general configuration control
strategies could be implemented by separating the decision-making
functions from the executive functions in the configuration manager
design. It is also possible to perform dynamic configuration changes of
the actual application system specification in order to reconfigure the
system after failures. This is a subject of current research
[Magee 83b].

4.6.2 Discussion

The main characteristic of our configuration control approach is
that it has a centralized design. Other works available in the
literature propose distributed designs for this function.

[Kain 80] proposes various schemes for configuration control. The
most robust is based on an algorithm which distributes the configuration
control information accross all the modules in the system. Also, each of
these modules has authority for performing configuration control; this
is intended to provide fault tolerance. In order to implement the
approach all the modules have to perform a protocol to obtain the
configuration control information and the configuration control rules.
In addition they have to support the control algorithms, and have to
have interfaces with the operating system of the stations and with the
failure detection entity. This is expensive and requires special design
for each application module. [Barigazzi 82] proposes a scheme by which
every station can independently decide its logical configuration. The
configuration decisions are based on arbitrary priorities assigned to
the stations. Each station that can support a module broadcasts to all
other stations "choice” messages, which contain the priority of the
station to support that module. The station having the highest priority
supports the module. This algorithm assures the consistency of the
configuration decisions taken by all the stations, however it does not
take into consideration the allocations already made for the other
modules. In addition, because the priorities are arbitrary the resulting
mapping of the modules to stations is nondeterministic. Thus a global

- 48 -

strategy for configuration cannot be enforced. [Zielinski 8 3] studies
the configuration control problem with the objective of optimizing the
real-time performance of a system. The distributed algorithm proposed is
intended to be used at run-time. However, it requires the resolution of
complicated matrix equations, which consume computing resources. We
chose the centralized approach for the following reasons:

* Typical process control applications can have a large number of
stations. Thus in order to keep costs low, these stations should be
implemented by simple and cheap microcomputers. Adding to each
station the resources needed for configuration control would
increase the complexity and cost of each station.

* In our approach, fault tolerance is obtained by specifying the hot
standby service for the configuration manager module. This does
not require the existence of redundant resources in all stations.
Considering that failures are rare, this would be an unjustified
overhead.

1 In a centralized design, the algorithm for configuration control is
not constrained by the need to independently assure consistency of
configuration decisions as is the case in a distributed design.
Also, considering that the algorithm and corresponding resources do
not need to be replicated they could be as sophisticated as
required, e.g., algorithms as proposed by Zielinski could be used.

* Independent configuration managers can be used to control different
subsystems in a large application.

4.7 Station-Module Failure Relationship

We have adopted the "convenient" assumption that a fault at a
station will stop the activities of all module instances running in the
station. One of the reasons for adopting this assumption is the
simplification incurred for the re-configuration of the logical
configuration. This allows a simpler design for the prototype of the
fault tolerant system and is also suitable for the support of many
applications. If required this assumption can be relaxed. In the
following, we present other points related to the issue.

- 49 -

* Total station failures can always occur. Thus the convenient
assumption must be considered for fault tolerance. Also, it allows
the complete control of the logical configuration by simple
configuration rules and algorithms as discussed in the previous
section. It is worth pointing out that the convenient assumption
does not preclude transparent recovery from failures by mechanisms
internal to the station.

* In many cases a station and its module will be a unique entity in
the sense that its hardware was specially designed for the module
function, e.g., a complex sensor. If partial failures are tolerated
they are better treated inside the station.

* An error can be quickly detected by the buit-in error detection
mechanisms, but it is difficult and time consuming to identify all
the errors caused by a fault. Hence, if the station is allowed to
continue operation, other modules will probably fail. It is safer
and simpler to stop all application activity, e.g., the bounded
response assumption could be difficult to validate and implement.
After the error is detected diagnostic tests can be performed in
the station. If the fault is diagnosed as transient, the station
can be returned to service. This procedure is adopted in other
fault tolerant system proposals, e.g., [Katsuki 7 8, Geitz 81].

* In the case that partial failures of stations are assumed, the
decision making function requires explicit knowledge of the status
of the resources available at each station and of the resources
required by each module. Depending on the refinement of the station
model, and the number of stations, a large number of states could
result. For the static allocation approach, the corresponding table
will have a size proportional to the product of the number of
states of each station. Also a run-time allocation algorithm would
be complicated, because it would have to consider that stations
have variable resources. It is not clear if the benefits of the
inclusion of partial failures are worth the related effort.

It should be pointed out that Conic provides mechanisms for error
detection and reporting (see appendix A.3). In our present proposal
their use should be restricted to debugging purposes. They can be used
to extend the basic fault tolerant system if the convenient failure
assumption is relaxed.

- 50 -

Jj.8 Summary of the Chapter

In this chapter an overview of the fault tolerant system was
presented. Its main characteristic Is the provision of two reliability
services: the cold and hot standby. Modules using these services are
called Rmodules, they are logically equivalent to standard Conic modules
but satisfy specific reliability requirements.

The cold standby service is intended to support application systems
having weak failure dependency. Rmodules which use this service are
implemented by one module instance. The service provides a volatile
storage, thus if the instance fails its state information is lost. The
operating system can create another instance of the Rmodule. However
this can take a non-negligible time interval. Also activities for
recovering the Rmodule operational conditions should be explicitly
programmed. A mechanism which can help in the structuring of recovery
activities for weak failure dependency systems is discussed in section
7.2.

The hot standby service is intended to support application systems
having strong failure dependency. Rmodules which use this service are
implemented by two module instances. Only one of the instances, called
active, is performing the application processing at any one time. The
other one, called passive, is ready to to be activated but does not
perform any processing; it provides a stable storage for the Rmodule. At
appropriate moments, application state information is transferred from
the active instance to the stable storage provided by the passive
instance. Failures can occur at any moment during the instances
operation. If the active instance fails the passive instance is
automatically activated and can continue performing application
processing. In the next chapter we present a recovery technique that,
for Rmodules using the hot standby service, allows automatic recovery
from failures without any apparent interruption of the processing. The
language mechanisms for the use of this technique are integrated in
Conic.

51

The support of the reliability services is partly achieved through
activities performed off-line in a development system. A slight
extension of the Conic configuration language allows the specification
of the reliability service required by the application modules and the
set of stations where the corresponding Rmodule instance(s) can run.
The application system configuration specification is processed by a
translator program. This translator program peforms validation of the
configuration specification and produces a configuration description,
which is used at run-time by the support mechanisms, to instantiate
Rmodule instances. Rmodules using the hot standby service require
specific support in the development system, this will clarified in the
next chapters.

On-line support is partly provided by two system modules. The
configuration manager is needed to control the logical configuration of
the application system. It has access to the configuration description
and the configuration rules which specify the mapping of instances to
stations. Configuration control activity is performed at the system
start-up or when a change of the physical configuration status occurs.
At the system start-up time, the instances of the logical configuration
are activated. During the system operation, in the case that a station
fails, the configuration manager can instantiate new Rmodule instances
in order to replace those which were assigned to the failed station.
Configuration activities can also be performed when a station joins the
physical configuration. The status collector is in charge of collecting
statuses from all stations in the physical configuration. Any change in
the status of a station is reported to the configuration manager. These
two modules provide configuration management capability which is
sufficient for the support of the cold standby service. For the hot
standby service additional mechanisms are necessary for the support of
the automatic recovery capability. The relevant details of the design
and implementation of the fault tolerance support mechanisms will be
discussed in chapter VI.

- 52 -

In this chapter, the configuration manager operation and design
were also discussed. The configuration manager uses a simple algorithm
to automatically decide the configuration operations that should be
executed, thus the storage of precomputed tables containing allocation
information is not required. This configuration control algorithm
provides the needs of typical redundant structures used in control
systems. The configuration manager has a centralized design, other
proposals advocate a distributed design for this function, mainly for
providing fault tolerance. A centralized design keeps simple the rest of
the stations of the system, allows the use of more sophisticated
configuration control algorithms, and fault tolerance can be achieved by
specifying the hot standby service for the configuration manager
Rmodule.

Finally, for completeness, the station-module failure relationship
was discussed. We have assumed that any fault at a station will cause
all the activities in the station to be stopped. This is mainly
justified because this kind of failure can always occur. In addition
this assumption keeps the design of the support mechanisms simple. It is
not clear if the benefits of the consideration of partial failures of
stations are worth the associated effort. However if required they can
be treated by extending the basic fault tolerant system.

- 53 -

CHAPTER V

LANGUAGE SUPPORT for STRONG FAILURE DEPENDENCY SYSTEMS

In this chapter we present our approach for providing language
support for programming strong failure dependency systems. The related
language mechanisms are only available to Rmodules using the hot standby
service. This enables relevant application state to be kept in the
stable storage provided by the passive instance associated to Rmodules
using that service. Thus the state information can survive the active
instance failure. In addition the use of an application independent
recovery technique allows the failure to be transparently recovered
without any interruption of the activities being performed by the
application Rmodules. Language level support is provided by an extension
of the Conic port concept — reliable ports, and by a primitive — save,
which is used to invoke transference of state to stable storage.
Transactions performed through reliable ports are guaranteed to complete
even if a failure occurs during the transaction execution. This is
assured by the recovery technique and associated run-time support
mechanisms.

5•1 Computation Model

This model is presented in order to introduce the recovery
technique. For brevity of exposition it is considered that there is only
one task per module and that the port connections are one-to-one. This
will be generalized later in the thesis. Also, for simplicity consider
that any message produced is available at the consumption time in some
message queue implemented in the communication system.

The basic unit of the model is an action. An action execution can
be seen as the unit within which communication through state changes can
occur. A task is defined by a local state, a set of entryports, a set of
exitports, and a set of action execution specifications. The computation
performed by a task takes place in a series of action executions. Each
action execution specification specifies the form of a task computation
by stating:

- 54 -

An entryport for the action. The input message is received by the
task from this port.

The output local state and a set of output messages as a
deterministic function of the input local state and the message
received. To each input local state is associated one or more
action execution specifications. The action to be executed depends
on the availability of a message in an entryport and of the
entryport itself. The specific message choice is made by an
nondeterminiStic mechanism.

The execution of actions can be seen as executed by an interpreter.
This interpreter maintains a local state for each task and has access to
the queue of messages for each entryport. One cycle of this interpreter
selects a task, and from its set of entryports selects one that contains
a message to be executed, and carries out the corresponding action
execution. After the action is executed the interpreter changes the
local state of the task to the resulting output state of the action
execution. Note that one or more messages can be produced as a result of
the action execution.

5.1.1 Effects of Failures in the Model

According to the error confinment assumption when a task fails it
ceases all its activities. In this case the system may be left in an
inconsistent state. This happens because some messages might have been
generated whilst others have not, depending on the point of the
execution the failure has ocurred. This can be prevented by using the
stable storage available to Rmodules in hot standby. Before executing an
action, the task local state and the selected input message are
transferred to the stable storage. The action is also marked as
executing. This transference is atomic in the sense that either all the
information is transferred or no transference is performed if a failure
occurs before the transference is completed. When the action completes
execution, the interpreter transfers the resulting output state to
stable storage and marks the action as executed. In the case of failure
it is assumed that after some time the task and its interpreter will be
recovered (In the implementation, this occurs when the passive instance
takes the active role). On recovery, the interpreter verifies if there
is any action marked as executing, and in this case re-executes the
action, otherwise it proceeds as in the normal case.

55 -

5.1.2 Replicated Messages

Since the input message and the local input state are the same as
before the failure, and that the function corresponding to an action is
deterministic, the results produced in any re-execution will be
identical. Thus, in terms of the external interface of the task, the
only effect of re-execution is possibly to generate replicated messages.
The atomic update of the task input state and message, and the re-
execution of the action assures that the task reaches a consistent local
state, but the state consistency for all the system can be violated if
any task consumes the same input message more than once. This can happen
because replicated messages are generated on recovery.

A system of reliable communicating tasks can be obtained by
associating a sequence number to each port. Specifically, to each
exitport we associate a transmit sequence number(TSN) and to each
exitport we associate a receive sequence number(RSN). TSNs and RSNs are
stored as part of the task local state. Before transmitting a message
through a port, the interpreter increments its TSN. The value of the TSN
is used as a sequence number(SN) for the message. Considering that
addition is a deterministic function, any re-execution of an action will
produce messages with repeated TSNs. When trying to execute an action,
the interpreter compares the SNs of the available messages for a port
with the RSN associated to this port. The message is accepted only if
SN = RSN + 1. After accepting the message, the interpreter makes its
associated RSN equal to the SN of the accepted message. Before executing
the action, a stable storage update is performed; this assures the re-
execution of the action and the repeatability of any produced result
including the SNs of messages. The filtering of replicated messages
assures that no system inconsistency occurs as a result of the
consumption of replicated messages.

5.2 Conic Application

The model presented can be used for the implementation of reliable
systems; but for this it would require the use of a style of programming
where each action is explicitly defined. Also, the interpreter would
have to duplicate most of functions which are already provided by the
Conic Kernel. Fortunately, a very elegant implementation is possible for
the model. It has the following characteristics:

- 56 -

* It allows the use of the standard message and task management
functions provided by the Conic system kernel. Thus no overheads
are introduced.

* It does not introduce any unreasonable restriction in the style of
programming the application modules. In principle, it is possible
to design modules without any special consideration and afterward
perform an automatic transformation to make them fault tolerant.

* It provides more efficiency in terms of transaction execution time
than that which would be provided if the model was implemented
directly.

Conic provides two communication primitives which support different
message transactions (see appendix A.1 for summary). The first
transaction, — request-reply is specially designed for use when a
confirmation of the acceptance of the output message is required. After
sending a message,the task execution is suspended. In the normal, and
most useful case, the task execution is activated after receiving the
associated reply message. The second transaction — notify does not
provide any assurance on the fate of the output message. In fact it is
designed in order to provide maximum flexibility. Specific guarantees
can be enforced by user or system provided service modules, e.g.,
buffered virtual circuit modules [Sloman 8 3].

Our approach for supporting strong failure dependency systems hinges
on providing a special reliable request-reply transaction which is used
for communication between tasks of modules using the hot standby
service. This transaction is reliable in the sense that it always
completes and provides a uniform exactly-once semantics in a single
instance failure case (see section 5-5 for related discussion). Thus, a
system of tasks communicating purely by reliable request-reply
transactions is automatically made fault tolerant. If required, some
form of reliable notify transaction can be readily implemented by using
a service module in hot standby having its interface defined by reliable
request-reply ports.

- 57 -

Figure 5.1 shows the general pattern of the transaction for a
source-target system. There will be only one active module instance per
pair at any time. An active or passive instance can fail at any time, in
particular, during a transaction. The failure of the passive instance
does not interfere with the transaction. In the case of active instance
failure, the passive instance takes over and completes the transaction.
This can involve the re-transmission of messages. For request-reply
transactions there can be only a single pending message associated to
each pair of ports performing a transaction. This fact allows a very
efficient design for a request-reply transaction. According to the
model, the effect of failures is limited to the generation of replicated
messages. This applies both to request messages and to the reply
messages. In practice, failures can cause other subtle critical
situations which can affect the reliability of the transaction. This and
other details of the transaction implementation are discussed in section
6.2.3. For now, consider that reliable communication can be obtained
through a protocol that uses the reply message (with an RSN) as an
explicit acknowledgement to the request message, and that when needed,
an underlying mechanism can pick up a reply message already produced in
the task data space and send it back to the exitport task side. This
underlying mechanism also deals with the transport of request and reply
messages between the module instances.

In addition to a primitive to specify reliable request-reply
transactions, another primitive is required to specify transference of
state information to stable storage. They are both presented in the next
section.

1 -•1
11

1
11 —.

j request-reply I
Source >>-............ -..... r» Target

! X !

/i\
1..

/ i\

\ 1/ \l/

Source' >>-•.................. '•*•» Target1

Figure 5.1 General pattern of the request-reply transaction.

- 58 -

5.3 Language Primitives

Language support for the programming of strong failure dependency
systems is provided by adding two new primitives to Conic. The first
introduces the concept of a reliable port: A reliable port primitive is
used to specify communication performed through reliable request-reply
transactions. The second supports the concept of stable storage: A save
primitive is used to specify transference of state information to stable
storage at relevant moments of a task operation. These primitives are
only available to Rmodules using the hot standby service.

5.3*1 Reliable Port
A reliable port is logically identical to the standard request-

reply port used in Conic. Thus, it provides a local name and a message
type holder for the port, and can have its connection described by a
standard link declaration. In addition to these standard characteristics
it also provides a local recipient for the end-to-end control sequence
numbers that are required to enforce the transaction semantics; this is
further discussed in section 6.2.3.

Reliable ports can be used during the task operation to
automatically control the execution of saves. This is obtained without
any explicit declaration of actions at the application programming
level. Thus making the actions completely transparent. Consequently no
restrictions of programming style are introduced. The technique also
allows a minimum number of save operations to be performed. The save
control technique is presented in section 5.4.

5.3.2 Save

At some points in a task operation it is necessary to transfer
state information to the stable storage provided by the passive
instance. To execute a state change, the task program invokes the save
operation. The actual state transference is performed by an underlying
mechanism, which takes a copy of the current state and transfers it to
the passive instance through a message. The fact that messages are
either received or not received at all ensures that the state update is
done atomically: either the entire state information is transfered to
the passive instance or the effect is as if the save operation had not
been started. Thus a failure in the middle of a save does not leave the
state of the task in the passive instance inconsistent. If there is no
passive instance available, the control is just returned to the task

- 59 -

performing the save. For now, consider that the state information
transferred is enough to assure that the re-execution of any action that
can be interrupted by a failure will produce repeated results. The
achievement of this characteristic for a save operation, and schemes to
minimize the amount of information transfered in a save are discussed in
section 6.2.1.

5.4 When to perform a Save

In the model, it was shown how the careful use of stable storage
can be used to provide reliability for a system of tasks. Here, we
define when it is really necessary to transfer state information to
stable storage, i.e., to perform a save operation. This is achieved
using three rules which are sufficient to enforce the exactly-once
semantics specified for transactions peformed through reliable ports.

5.4.1 Rule I

It is necessary to perform a save when a request message is
accepted in a reliable entryport. Besides transfering the state
information, this save also works as an implicit lock of the task
interface, i.e., no other message can be accepted, during the
corresponding action execution, in case of failure. This makes the
execution of the action repeatable, including the generated reply
message, if no nested action execution is performed. It is also
necessary to guarantee repeatability when a nested action execution is
needed. The message requesting the nested action is repeatable. When
this message is accepted for processing in a recipient task, a save
operation is also performed. Consequently this nested action execution
is also repeatable, which also includes the generation of the reply
message. The transaction support mechanisms ensure that, on recovery,
corresponding pairs of request-reply messages will be matched, and that
any interrupted transaction will be completed. Their design takes
advantage of the reply message availability in the stable storage
provided by the entryport task (see section 6.2.3 for implementation
details). This fact permits a simple rule to be defined:

Rule I: A save must be performed after a message is accepted in a
reliable entryport and before any result of the processing of this
message is sent out of the task.

- 60 -

It is not necessary to perform a save when a reply message is
consumed in the reliable exitport side. Although the reply corresponds
to a new input; the repeatability of the action (which would be defined
by the acceptance of this reply, according a direct interpretation of
the model) execution is assured by the stable storage provided by the
entryport side, and by the additional rules.

Figure 5.2 shows the optimized approach to enforce the model.
Consider that all transactions use reliable request-reply ports. It can
be seen, that in any single failure case, the action execution started
by req__1 (or req__2, or req_3) will complete consistently without any
further saves. For example, consider that task__2 fails after performing
the save. On recovery the task will execute again and generate req_3,
which could have been already generated in the previous execution. If
req_3 is a duplicate, and has already been accepted, and has its
associated reply produced, the underlying mechanism picks up this reply
and sends it back to task_2. Otherwise req_3 has to compete at task_2*s
interface for consumption. Also, before the failure, rep__2 could have
already been generated and consumed by taskjl. In any case, duplicates
are discarded by the underlying support mechanism.

task_1
Ireq_1 | ----- >j

task_2 task_3
I I
I I
I

save S: req_2 j
:------------ >|

| = do not care
! = suspended

! save ii! •• req_3 iitime ! • m m• — >1I ! ! ••
! ! ! save
I ! !

v ; !
!<—

rep_3

rep_2
<---------

: = executing

rep_J :
<--------:

i

Fig. 5.2 Optimized Approach

The model could be enforced directly, as described in section 5.1.
Figure 5.3 extends figure 5.2 in order to show the extra saves used by
the direct approach to enforce the model. In this case, the capitals
written saves would be required, whilst in the case of the optimized
approach, only the lower written saves would be required. Thus at least
one save operation can be economized for each action. More saves are
economized depending on the exact definition of the actions, e.g., a new
action could be defined by the receiving of the reply message. Saves
take time to be performed, hence the optimized approach provides more
efficiency in an "optimistic" environment, i.e., where few failures
occur.

task__1
Ireq_1 |

------ >|
save

time

rep__1
<-•

<~

SAVE

req_4 I----->j
save

req_2

rep_2

task_2

I— >! save

!
!
!
! <«

SAVE

req__5
->
save

rep_3
<~

SAVE

task 3

req_3
->! save

rep_3
SAVE

req_6
------ >|

save
rep_6

SAVE

I = do not care
! = suspended
: = executing

Fig. 5.3 Direct Approach

It is worth noticing that in some failure cases all the execution
of the action has to be repeated, e.g., if task_2 fails after issuing
rep_2, but before a save is performed. This is true either for the
direct or the optimized approach. A partial solution is to use
intermediate saves, e.g., after the acceptance of rep_3.

5.4.2 Rule II
The rule already presented is not enough to ensure consistency in

all possible cases. In figure 5.4 consider that req__2 and req_3 are
issued through the same reliable exitport within the execution of an
action. Also consider that task_1 fails after req_3 is accepted and
saved by taskL_2, and that rep_3 is already produced, e.g., at point y.
In this situation, rep_2 cannot be recovered by taskj. This happens
because the reply message variable, in task_2, was overwritten and
contains the value of rep_3. In order to cater for this case, and to
leave open the use of this option by the programer, a new save rule is
needed, otherwise a restriction in the style of programming would have
to be introduced.

Rule II: A save must be performed before a message is sent out
through a reliable exitport if no save has been performed after a
previous message has been sent out through this exitport.

taskL.1 task__211req__1 |
----- >!i

iiiii»iisave
•• ___- req__2

iiiiiv!
i = do not care
! = suspendedtI!

time ! rep_2
save
i

: = executing
i i
! :
1 :\ ! t V r

req 3
iiii

v r •

!|
•

save
!
!
I <---
yrep_1 :<------ ;ii

rep_3
•
••i
iiiiiii\1

. 5.4 Loss of the Reply Message
I

- 63 -

In figure 5.4, a save has to be performed before point x. Rule II
can be generalized if the entryport task keeps in stable storage copies
of a number of reply messages associated to previous transactions.

5.4.3 Rule III
Up to this point, we have considered that inter-task communication

is peformed only through reliable ports. This restriction can be removed
in order to allow inter-task communication to be performed also through
standard Conic ports: activity which for brevity we call unreliable
communication. This facility increases the flexibility of our approach.

When unreliable communication is used, the production of repeated
results may not be guaranteed if a re-execution is performed because of
a failure. In consequence, inconsistency can arise in a reliable
transaction, e.g., a different request message could be generated, but
the reply message associated to the request message generated in a
previous execution can already be available and be consumed. Figure 5.5
helps to illustrate the situation, consider that the pair req_2/rep_2 is
associated to standard ports and that req__3/rep_3 is associated to
reliable ports. In this context, assume that task_J fails after issuing
req_3, which is consumed by task 3. On recovery taslO repeats the
transaction req_2/rep_2, but considering that task__2 can be in a
different state the contents of rep_2 can be different from that of the
previous transaction. In consequence the contents of req_3 can also be
different. However, the previous instance of req_3 had already been
consumed and the available rep_3 is a result of this execution. The
underlying mechanism picks up rep__3, which can cause inconsistency,
since tasK_1 will act according to the contents of rep__3, which may not
reflect the state of the system. The problem is solved by performing a
save after rep__2 is accepted and before req_3 is sent out by taskjl
solves the problem, i.e., a save must be performed up to point x.

It is difficult to characterize all the situations that can arise
when unreliable communication is performed. For example, the action
requested by req_2 could be idempotent, in which case the use of a save
might not be required. Thus, a rule which forces a save to be performed
after any use of unreliable communication would be an overkill. In order
to provide maximum flexibility, we leave to the programmer the
responsability of ensuring the repeatability of messages associated to
reliable request-reply transactions. This is done through the explicit
use of the save primitive, although this requires the save primitive to
be available at the language level.

There is another case where a save primitive can be useful: when
an action takes a long time to be executed. For instance, an action
requiring many items to be operated upon in a repetitive fashion. In
this case, the programmer can use a save to transfer partial results
after some amount of the work has been done. The effect of this save
would be to speed up recovery if a failure coincides with the action
execution. This would be effective if the time taken to perform the
"sub-action" is big in relation to the time spent in a save operation.
Arising from the above discussion, a last rule is defined:

Rule III: A save must be performed when it is explicitly invoked by
the task program.

taskJl task_2req__1 | |
------ >| |save S: req__2 S

:------------->l
! :! rep__2 :
!<------------- :
! itime : I

task 3ii
I
IiiI = do not care
IS ! = suspended
iiI : = executing

req_3
x--------------------------- >|
I save
! rep__3 :
!<rep_1 : <----- ;

Fig. 5*5 Unreliable Communication and Consistency

5.4.4 Comments

(1) The above defined rules are enough to ensure the repeatability of
any output sent out through a reliable port. This is an essential
condition to assure consistent and transparent recovery. Rules I
and II can be automatically enforced by a transparent mechanism
activated by pieces of code embedded in the task program. These
pieces of code are associated to reliable ports and can be inserted
in the task code by a simple program transformation that can be
performed by a preprocessor or compiler. Rule III is also easily
enforced because it is associated to a save explicitly defined in
the task program. However, in this case manual intervention for
editing the program is required. It is also possible to leave the
responsability of enforcing the three rules to the programmer by
using explicitly defined saves. An example of the application of
the approach is presented in section 7*5.

(2) Reliable ports can be declared in a special definition file,
associated to each Rmodule in hot standby. At the time, the system
configuration specification is processed in the development system,
this file is used to instruct the preprocessor or compiler; thus
the support for reliable ports is made available. Reliable
exitports can only be linked to reliable entryports; the standard
Conic link declarations can be used to check this constraint.

(3) A fault tolerant system is achieved if all the rules are enforced
by all its tasks; this allows the support of strong failure
dependency systems. It is interesting to note that if only pure
reliable communication is used, i.e., the interfaces of the tasks
of all modules are entirely defined by reliable ports, fault
tolerance capability can be automatically obtained.

(4) We assume that a double failure is a very rare event and that
duplication is enough to meet the reliability requirements of most
applications. However, it should be pointed out that the rules are
independent of the number of available passive instances. Thus the
rules still apply even if more than one passive instance is
supported.

- 66 -

5.5 Exception Handling

In this section we discuss issues related with exceptions that can
be associated with Conic request-reply exitports. Two exceptions are
defined: The first is activated when a transaction is attempted through
an unconnected exitport. The second is activated when an application
defined timeout interval expires. The first exception should not occur
in a correctly designed system; its use is provided for testing and
debugging of application systems. Thus we restrict our discussion to the
timeout exception.

Timeouts are generally incorporated in distributed programs for one
of two reasons: (1) to assure minimum performance — if an action takes
more than some time to be executed, it times out and the program can do
another job, (2) to detect failures. When they are used for efficiency
reasons, it may be necessary to provide a means for the exiport instance
to deal with the transaction that was timed out. Many schemes can be
conceived in order to support this facility, e.g.:

(1) A special service interface can be provided: the task may repeat
the same transaction request using the same sequence number. This
is intended to ensure exactly-once-semantics.

(2) The task may repeat the same or initiate a new logical transaction
with a new sequence number.

The problem with schemes like these is that no standard handling
procedure is defined for a timeout exception; thus all responsibility is
left to the application programmer. The ADA [USA-DOD 80] designers have
attempted to solve this problem by associating a timeout to the request
message acceptance at the target instance side. Thus before a timeout
exception is activated the system must certify that the request message
will not be accepted by the target. In a distributed system, this has to
be enforced by an protocol executed by an underlying support mechanism.

Efficiency timeouts can be useful in general resource sharing
networks that have an unpredictable number of users competing for scarce
resources. In control systems, resources are used by a controlled number
of disciplined users; this can eliminate the need of using efficiency
timeouts. For this purpose, resources would be designed in order to meet
some minimum response requirement. This could mean a quick execution of
the service or an explicit indication by the reply message about the

- 67 -

reason of service deferment. This option is a good approximation for an
"ideal" software component, as proposed by [Anderson 81, Wulf 75], and
we believe it represents a better style of programming. In addition it
does not require any extra support mechanism and keeps the underlying
system simple; however, it requires a careful choice of the timeout
value (The subject is further discussed in section 7.3)* According to
the above discussion, the use of efficiency timeouts is not recomended;
although, if required, they can be supported. In this case, a save
should be performed immediately after a timeout exception has occurred:
The treatment of the timeout splits the program path; the save
guarantees that the same path is taken when failures occur; this ensures
consistency of the task outputs.

Timeouts can be used in entryports in order to simplify the style
of programming. Considering that in this application they do not
interfere with transactions, we do not make any restriction on their
use.

5.6 Related Work
Our approach can be related to other works proposed in the

literature in some different ways.
5.6.1 Reliable Transactions

The Conic request-reply transaction is very similar to a procedure
invokation in the sense that the request message specifies the input
values and the reply message the result values of the procedure
execution. A current topic of research is the extension of the procedure
concept to distributed computer systems. In this area, the proposals of
Nelson [Nelson 81] and Liskov [Liskov 81] are particularly significant.
The main goal of them has been to specify a consistent and uniform
semantics for procedure calls. The subject is interesting because of the
distributed environment and the possibility of processor and
communication failures.

Nelson proposes to extend the procedure semantics provided in
traditional uniprocessor systems for the whole distributed system. Hence
in normal operation an exactly-once semantics is assured: The system
guarantees the computation associated to a call to be executed only
once: If any processor supporting a distributed program fails, all
partial results of computations are abandoned and the system backtracks
to a previously checkpointed state. This is called last-one semantics
and in fact is equivalent to a system reset.

- 68 -

Liskov proposes to extend the CLU language with a procedure call
primitive to support distributed programs [Liskov 79]. In normal
operation the procedure call primitive offers what is called at-most-
once semantics: If the caller receives a reply, the system guarantees
that the call was acted on exactly once, which is is in fact identical
to Nelson1 s proposal. It is also proposed the use of stable storage and
an automatic scheme to transfer relevant state to this storage; but the
intended use of stable storage is different from that in our proposal,
this being due to the class of applications to be supported: distributed
data bases. The system keeps in stable storage copies of data objects
which are changed in a procedure execution. If the procedure does not
complete, either because a failure, or because the caller lost interest,
these objects are restored to the state they had before the procedure
call. The system also supports synchronization properties for the
procedure call in order to allow concurrent changes to the objects
without leading to inconsistency. The synchronization properties are
obtained by locking the use of objects according to some fixed rules;
although this can lead to deadlock. In order to breack deadlocks and
allow progress some executing calls can be aborted and in this case the
objects* states are also restored. Another characteristic of this
proposal is that distributed computations may be held up while any node
supporting them is failed if the failure has occurred at a critical
point. It is proposed as a solution to the problem to implement
replication on top of the basic mechanism; although it could also be
solved by implementing it on top of the mechanisms we propose. A
synthesis of the approach is presented in [Moss 81].

Both approaches do not intend to provide consistency at the
interface with the environment. Nelson’s last-one semantics in the
failure case is incompatible with this goal. In the other proposal, this
would be obtained if no outputs are released until the whole transaction
completes; a restriction that is not adequate for control applications.

According to Nelson’s terminology, our reliable transaction
proposal specifies exactly-once semantics in normal operation and in
single failure cases. Thus failures will not result in interruption or
any loss of the ability to control the application process, as would
happen in a system based on his proposal. Extra resources and special,
but simple, support mechanisms are required in order to match this
specification. This is worthwhile in the DCCS context in order to meet
the reliability requirements of demanding applications. In relation to

- 69 -

Liskov's proposal, we have assumed that control applications have
different requirements, — it is more important to provide guaranteed
response than to pander to impatient users. In addition most control
programs are composed of a static set of modules which interact in a
predefined fashion through fixed communication channels; this allows the
elimination of possible deadlocks at the design stage. These two facts
allow a considerable simplification of the mechanisms needed to support
our approach. Although our approach might be generally applied we
concentrate efforts to Conic based distributed systems; this has allowed
a simple solution for providing language support for programming
reliable application systems.

5*6.2 Actions

Actions and transactions have interrelated recovery properties.
Recently Liskov has proposed to implement her procedure call as a sub
action which is defined at the language level [Liskov 83]* The concept
of action were also explored in [Lomet 77, Randell 75], although in
different contexts. Scheneider and Schilichting propose an approach
based on actions to program distributed fault tolerant control systems.
Stable storage is implemented by a number of processors and used to make
the actions restartable and produce repeated results, which in principle
is similar to our approach. However, their actions can co-operate only
through shared variables which are kept in stable storage, although an
underlying mechanism, which uses a special message protocol is proposed
to keep the consistency of replicated copies of the shared variables. In
their first proposal [Scheneider 81], actions were equivalent to a
single process and a special restartable semaphore [Dijkstra 68] was
provided to synchronize access to shared variables. A restartable
semaphore allows a process p to re-enter a critical section if p has
already entered that critical section but never done a V operation to
exit. This situation can occur in the case that p fails and recovers. In
spite of an ingenuous scheme to implement stable storage updates, and
of the restartable semaphores, their first proposal cannot guarantee
what they have intended: repeatable outputs. Although the flaw was not
mentioned, it was corrected in their second proposal [Schlichting 82],
by allowing nesting of actions within a process, which has required the
explicit definition of actions. Some comments can be made on their
approach: The use of shared variables does not allow modularity, and
makes the programming of systems and the proof of their correctnes
difficult [Zave 79]* It is also not justified in a distributed system

- 70 -

where message passing is a more natural concept and must be used at some
level in the implementation, as they did. In addition, in their
proposal, the processes are assumed to be cyclically activated, which
requires an underlying mechanism, which they do not specify, that must
also be fault tolerant. Moreover, nested actions require a careful
implementation in order to provide recovery capability. This
implementation is also not specified.

Our approach does not require explicitly defined actions, which
makes the programming easier, and conforms with Conic. Also in the same
context as theirs, this allows the use of automatic techniques to
transform modules not originally designed with fault tolerance in mind.
These modules can then be assembled together in order to achieve a fault
tolerant system. In addition, our approach is integrated in a much more
flexible software structure, which supports modularity and provides more
natural and powerful interfaces. Moreover, the implementation of the
corresponding support mechanisms is very simple and completly specified.
It is interesting to note that the same techniques that they propose to
verify fault tolerant systems [Schlichting 80] are also applicable to
our approach.

5.6.3 Fault Tolerant Systems

The Tandem system [Levy 78,Bartlet 81] uses duplicated processes to
obtain fault tolerance. However, it does not provide a standard
technique to provide recovery from failures, which should be enforced
by the programmer. Also the input interface of a process is defined by a
single message queue, which allows neither a non-deterministic choice
of input, nor the use of guards, as allowed in Conic. This lack of
flexibility can make the programming of some applications difficult. In
addition, communications are performed by referencing in the source
process the name of the target process , which does not allow
modularity. Even so, this system has been used in the implementation of
elaborate fault tolerant applications, which confirms the usefulness of
duplicated processes [Borr 81].

Another system using duplicated process is presented in [Kaiser 78,
Gaude 80]. Fault tolerance is obtained through a combination of a
special operating system, special hardware, and special style of
programming. The main quality of the approach is that it requires very
little information to be transfered from the active to the passive

- 71 -

computer, which is intended to provide efficiency. This does not seem to
be entirely justified because of the low speed of the application to
which it is directed: a welding shop of a car manufacturer, and the
peformance data provided by Gaude. In addition there are applications
were fault tolerance is more important than efficiency. Thus the
flexibility and simplicity offered by our design can be an advantage.

5.7 Summary of the Chapter

In this chapter our approach for providing language level support
for the programming of strong failure dependency systems was presented.
The presentation is based on a computation model which requires the
definition of explicit actions for task executions and makes use of the
stable storage abstraction. The actions that can be executed by a task
are made repeatable, i.e., they produce the same results if re-executed,
by transfering information identifing the action and the message that
has activated it to stable storage. When a failure occurs, during its
execution, the action is re-executed. The external effect of the re-
execution is limited to the generation of replicated messages, which can
be filtered out by the use of sequence numbers. The computation model
shows that no state inconsistency occurs when an active instance fails.
However the direct implementation of the model would lead to unnecessary
state transferences to stable storage and require the explicit
definition of actions, which changes the normal Conic programming style.
Fortunately, these drawbacks can be eliminated through a special
integration of the model in Conic.

For this purpose two special primitives are provided: The first —
save is used to specify transference of state information to stable
storage. The second introduces the concept of reliable ports, which are
used to specify communication performed through reliable request-reply
transactions. These transactions are assured to complete in spite of
failures of the instances involved. For this it is enough to enforce
three rules for using the save primitive, given in section 5.4. By
controlling the transfer of state to stable storage they assure the
repeatability of any message sent out through a reliable port, which
together with a transparent request-reply transaction support mechanism
assures consistent state recovery. In this way a system of tasks of hot
standby modules can be made fault tolerant. It should be pointed out
that this does not require any explicit definition of action(s), thus no
restriction on the style of programming is incurred. Rmodules which have

- 72 -

their interface defined exclusively through reliable request-reply ports
can be made fault tolerant through an automatic program transformation,
although manual intervention is required to deal with application
dependent situations. In addition the rules allow a reduction in the use
of stable storage with consequent efficiency improvements. Also, the
approach allows the use of the standard message and task management
functions provided by the Conic kernel, thus no overheads are
introduced. The critical points of our approach are the design of the
mechanisms which support the reliable request-reply transaction and the
save operation. They will be discussed in the next chapter.

In this chapter the issue of exception handling in reliable
request-reply transactions was also discussed. A reliable request-reply
transaction cannot complete because of an efficiency timeout or a double
failure. Efficiency timeouts are considered a bad style of programming
in control applications. We have assumed that the probability of a
double failure is very low and should not be considered for most
applications. Thus in the normal use timeout exceptions should not
occur. However, if required, they can be readily supported. In this case
explicitly programmed saves have to be used to assure repeatability of
the task outputs.

In section 5.6 our approach was related to relevant works in the
area. The discussion is already concise and is not summarized; however,
in general, it underlines the simplicity and flexibility offered by our
approach in its area of application: distributed control.

- 73 -

CHAPTER VI

THE SUPPORT MECHANISMS

In this chapter, the design and implementation details of the
support mechanisms which make the system fault tolerant are presented.
The chapter is organized in two main sections. In the first, the
Configuration Manager and Status Collector modules are presented; they
provide the capability of configuration management which is enough to
support weak failure dependency systems. In the second, the mechanisms
associated to the hot standby service are presented; they extend the
basic system in order to support strong failure dependency systems.

6.1 Configuration Management

The configuration management service has already been presented in
chapter IV; here the discussion is concerned only with the design and
implementation issues of the system modules, viz., the configuration
manager(CM) and status collector(SC), which together provide this
service (Figure 6.1).

J Station*]
I__________! \

\
\
\

! Station. >>______ »
I________ i / i

/ I.
/

/
__________ /
! ! /
j Stationn »-/

iii FileServer

Status
Collector

i

i !
! I
» — »
! !

ii

A—A
A — A - li

» — >Configuration >>_>
Manager » _>

A —
Terminal
Driver

ii

ii

ii »i

Load
Create/Start
Link

Fig. 6.1 Configuration Management Service
- 74 -

6.1.1 Configuration Manager

This module has access to a fileserver where the configuration
description file is available. The configuration description file has
been generated in the development system as discussed in section 4.5.
The CM does allocation of module instances to physical stations at run
time according to the physical configuration status and the
configuration control algorithm discussed in section 4.6.

6.1.1.1 Configuration Manager Reliability
The CM must be fault tolerant itself in order to support the

reliability services for the control subsystem modules. In this section,
we discuss some points related to this issue. The implementation can
either use the hot or cold standby service in order to make this module
fault tolerant.

If the hot option is adopted, the configuration state information
can be redundantly stored in the system. In the case of failure of the
station supporting the currrently active CM instance, the passive CM
instance automatically takes the active role (this is inherent to hot
standby Rmodules). As the configuration state information is kept, any
reconfiguration required can be quickly performed. Another atractive
point of this scheme is that the recovery capability for the
configuration manager instances is also automated. This can be obtained
if the CM Rmodule is included in the own configuration that it controls;
thus CM instances can be automatically recreated.

The hot option is useful to implement a master CM, or to provide
fault tolerance for a system having one single CM. In the master
configuration manager case, the other CMs reliability could be obtained
by having them configured in a hierarchy in which the responsibility
over a CM is placed on its superior CM.

Adopting the cold option would require that, in case of failure,
the CM recovers the dynamic part of the configuration information from
the system. This requires a query to every station in order to find its
state and the module instances that may be running there. This could
take a relatively long time if the configuration has a large number of
modules; although a backing store could be used to keep the
configuration state information. During the CM recovery time, the
reconfiguration capability would not be available; this reduces the
reliability of the approach. Also the recovery process has to be
initiated by an external agent: an operator or another CM.

75 -

The choice of one of these options depends on the particular system
requirements. We have choosen the hot option because it is useful as a
practical example of the use of this service.

6.1.1.2 Configuration Manager Operation

The CM deals with a single subsystem configuration each time. It
provides two basic functions: start-up of the configuration and shut
down of the configuration. In addition it can answer queries on the
status of the Rmodule instances and report changes of their status. In
the prototype system, these functions can be accessed through replicated
terminals. The configuration operations are performed through messages
sent to the station operating system modules; these are briefly
described in Appendix A.3. The CM operation is divided into two main
phases:

(1) Start-up: In this operation phase, the CM executes the necessary
configuration control operations to start-up the application system
module instances. The activities in this phase are performed as
follows:

Creation of module instances: Following the allocation of instances
their module type object code is loaded to the stations (only if
required; object codes could be stored in ROM at stations), and the
instances are created there. The type loading and instance creation
are performed through messages generated by the CM and sent to the
station module manager and the subsystem loader modules.

Linkage of module instances: The module interface ports connection
specification is translated to a system compatible format. This
addressing information is them passed by the CM, through standard
link messages, to each station link manager. This activity is
performed serially for every exitport of each module instance in
the configuration.

Start-up of module instances: In this step, the CM sends a module
start message to each host station module manager. The
configuration start-up phase is then finished.

- 76 -

This sequence of operations assures that the Instances are fully
prepared when started. During this phase, the CM does not try to receive
any station status report from the Status Collector. However, while
performing the operations to start up a given instance a failure of this
instance host station could happen. As a consequence, the CM detects an
error, i.e., a timeout occurs. In this case, the CM puts the instance in
failed state and avoids the command of any further operation involving
that instance. When the startup phase finishes, the CM can receive
station status reports and treat the failure. The CM could also be
designed to recover from failures concurrently with the start-up
activities. This would require a more complex configuration control
algorithm. The solution adopted is based on the assumption that station
failures are not very frequent, at least during this phase, and also
intends to simplify the CM design.

(2) Steady State: In this phase the CM activities are initiated by the
receipt of status information coming from the status collector
module. The Configuration manager checks wether the station that
had its state altered is supporting any module instance at that
time. If the station is not being used only its status is updated.
Otherwise, reconfiguration activity is required in order to replace
the failed module instance(s). This is similar to the start-up
phase; the only difference is that the exitports connected to
module instances being replaced must also be relinked.

An optimization is possible by forcing identifiers, used to address
module instances which refer to instances associated to the same
Rmodule, to be unique within the subsystem. In this case it is not
necessary to perform relinkage of exitports because the addressing
information does not change during the operation of the system. This is
also convenient for implementing reliable transactions efficiently, as
will be discussed in section 6.2.3.1*.

The CM can also shut-down a configuration being controlled. This is
obtained by stopping and deleting all the Rmodule instances. This
operation should be executed when the application system is in a
quiescent state.

- 77 -

If an active configuration manager instance fails during a
configuration activity, some uncertainty about the operations that were
already performed will happen. Even using the hot standby service It is
not possible to eliminate this problem. This is due to the impossibility
of determining whether messages corresponding to configuration
operations, have been sent out when a failure occurs.

This can be easily solved if the operating system modules implement
every configuration operation in an idempotent fashion. For example, a
linkage operation is not performed if the exitport is already connected
to the same entry port as contained in the new link request command.
Similar behaviour can be programmed for all other configuration
operation commands. Taking advantage of this feature, the CM does not
need to execute any special procedure on recovery, e.g., it does not
need to query each station to ascertain the current configuration. It
simply restarts and continues performing the configuration operations
after recovery. Idempotent configuration operations can be achieved
through very small changes in the standard operating system modules of
Conic.

6.1.2 Status Collector
This module periodically collects the status of every station in

the physical configuration. Any change noticed in the status of a
station is reported to the configuration manager module.
6.1.2.1 Implementation

The primary mechanism for status collection is implemented by an
operating system module resident at each station. This module
periodically sends a status message to the SC module. Every time a
status message is received by the SC, a bit indicating the event is set.
Periodically the SC module checks and resets these bits. A bit not set
Indicates a station failure, which is reported to the CM. The
reliability of this decision is assured by the bounded response and
communication system assumptions and by the proper specification of the
periodicity of the station operating system module and SC module. The SC
algorithm can also notice when a station joins the physical
configuration, e.g., after being repaired; this event is also reported
to the CM. The SC Rmodule uses the hot standby service; this is
required in order to provide automatic fault tolerance for the
configuration management service.

6 .1 .1 .3 Concurrent Failures

- 78 -

We have a3summed that on the first signal of station failure all
application processing is stopped. In some cases, processing capability
can still remain at the station. This remaining capability can be used
to communicate the occurrence of the failure to the SC.

The design of the SC is intended to provide the minimum
functionallity required, and is independent of the particular
communication system. If required it can have an optimized
implementation, which depends on the particular communication system.
For example: (1) In a carrier sense multiple access medium (CSMA), the
status collector can detect "on the fly" all the messages transmitted
from each station. A service module at each station can transmmit a
dummy message if no real message is generated within a given time
interval, or the SC could query the station in the absence of a real
message. This allows a reduction of the messages used for failure
detection. (2) In a communication system using token based access
control an inherent failure detection capability is available; this can
provide for status collection without need to duplicate the same
function.

6.1.2.2 Consistent Failure Detection

It is necessary to make sure that all station status changes are
consistently noticed, otherwise the CM cannot perform the required
configuration operations. This is straightforward except in a case where
stations can recover after a failure so quickly that the SC does not
notice the change. This can happen if the fault was transient and the
diagnosis algorithm performed in the station is very fast, and/or in
case of concurrent failure of the station and SC occurs. We consider
that the diagnosis of the failure will normally take a long time, which
would allow the failure to be identified. However to ensure that this
happens, the time the station stays unavailable can be artificially
extended: the operating system module in the station simply waits enough
time to allow consistent failure detection before making the station
operational again. This ensures that station failures are consistently
detected and is supported by a very simple mechanism. We found other
ways of solving the problem: (1) To use a special lock-step protocol,
based on the same principles as the two-phase commit protocol [Gray 78],
for registering the start up of the station with the status collector.
This protocol allows in any combined failure case the identification of
a station failure. (2) To use a unique identifier generator, e.g., a

- 79 -

system time. On start up a station takes a new identifier, which when
compared with its previous identifier allows the detection of a failure.
These two schemes are independent of any timing consideration but
require more complicated support mechanisms.
6.1.3 Comments

The configuration manager uses a strategy that ensures that
configuration operations are completed once started; the mechanism for
status collection assures that every station status change is
consistently communicated to the configuration manager. Thus, if
failures do not occur very quickly in sequence, a stable configuration
is reached. Other features which extend the configuration management
service capabilities are discussed below.

Management Interface. The management service keeps information
about the state of the Rmodules of the system. Thus it can answer
queries about the status of Rmodules and report changes of their status.
Queries about the status of Rmodules can be directly answered by the
configuration manager. The set of events to be communicated to a given
module can either be determined at run-time or specified through the
configuration language. The first approach requires some run-time
interaction with the configuration manager in order to specify the name
of the Rmodule to be informed, and the events this Rmodule wants to know
about. In this case special programming is required, and the identity of
the events would have to be known by the application program and sent in
messages. This is against modularity and is not directly supported by
the current Conic language proposal. An option would be to restrict the
events to the state of Rmodules to which a given Rmodule is connected;
this does not require the explicit naming of other modules. The second
approach requires a simple extension of the current Conic configuration
language, which is subject of current research [Magee 83b] • This
interface provides a general capability for implementing error recovery
strategies, which is similar to that available in other distributed
system proposals, e.g., [Lantz 80]. The use of the management interface
is discussed in section 7*3.

Distributed configuration management. We have assumed that the
reliability requirements of a sub-system can be met within this
subsystem. Thus, a system composed of many reliable subsystems is also
reliable. Each of these subsystems can be controlled by its own
configuration manager. However, modules of different systems may need to

- 80 -

communicate. In this case, the configuration manager modules need to co
operate in order to establish the connections of these modules at run
time.

Operator Interface. The configuration management activity is
automatically performed. This may be mandatory in order to meet the
requirements of some applications, e.g., real-time or unnattended
operation. However, an operator can participate in the configuration
activity, e.g., to defer a re-configuration activity to a latter stage
of the system operation.

Diagnosis Capability. Most of the failures are caused by transient
faults, which occur at least one order of magnitude more frequently than
permanent failures [McConnell 79» Ohm 79]. The reliability of the system
is directly dependent on the availability of stations. Thus, after a
failure, diagnostic tests can be performed, and if the tests reveal
transient faults, the station can be again available for service. We
consider that the configuration management activity and the diagnosis
activity are operationally independent. However they are complementary
activities for the achievement of reliability.

6.2 Hot Standby Support

Support for the hot standby service is performed at two different
stages: The first stage is performed in the development system as
explained in sections 4.5 and 5.4.4, the specific activities will be
clarified along this section. The second one is performed at run-time by
the configuration management service, as described in the previous
section, and other additional mechanisms. This section presents the
details of the additional mechanisms. The run-time support mechanisms
deal with the following basic functions:

1. Save primitive. A mechanism is needed to transfer the state
information from the active instance storage to the passive
instance storage at each invokation of the save primitive.

2. Instance Management. A mechanism is needed to manage module
instances which implement an Rmodule. This mechanism is in charge
of determining the role to be performed by each instance, and
performing the initialisation of new instances.

3. Reliable transaction. A mechanism is needed in order to support the
communications performed through reliable ports.

- 81

The first two functions are implemented by a special
management task. This task is standardized and can be automatically
included in the Rmodule code at the system development stage, without
any change in its programming. In the next section we discuss the
relevant details of the design of the save primitive. Instance
management and the reliable transaction support are discussed in
separate sections.

6.2.1 Save Primi tive

In order to implement the save primitive, it is necessary to
specify its semantics.

6.2.1.1 Save Semantics

When a save is invoked state information is transferred to the
passive instance storage. The transfer is atomic: either all the
state is transferred, or the effect is as if the save had not been
invoked. The passive instance can fail during a save operation. The
task that invokes the save is suspended until the save operation
completes or the failure of the passive instance is detected.

— If the active instance fails, the passive instance is made active.
The state information transferred is enough to assure the
repeatability of any output that may have been delivered by the
task in a previous execution.

— If no passive instance is available, the save returns immediately.

6.2.1.2 State Variables

In order to discuss the implementation of the save primitive, it
is convenient to classify the task variables in two types: state
variables and auxiliary variables (non-state variables).

State variables are those that exist and must maintain their values
across task actions.

Auxiliary variables are those whose existence and value depends on
the particular task action, e.g., the local variables of actions
within a task, and the execution control information associated to
these actions.

- 82 -

For recovery after failures, only the state variables must be
kept in stable storage. That is, by inspecting the state variables
the action the task was performing before the failure can be
retaken. This can have some drawbacks which will be discussed later
in this section.

6.2.1.3 Implementation Options

Here the discussion is concerned with the issue of assuring the
repeatability of the outputs resulting from a task execution.
Repeatability is related to the state information tranferred in each
save and can be implemented in a number of ways. We assume that the data
and control information representation in the stations where the
instances run are compatible.

Implementation I

All the task variables, state and auxiliary, are stored in the task
stack. The save is invoked through a procedure call. At this moment a
copy of all the words being used in the task stack is taken. This
information is transferred by the underlying mechanism and copied into
the corresponding task stack in the passive instance. On recovery, the
task is made ready to execute. The task continues execution from the
first instruction after the last save that has been invoked by this
task in the previously active instance, just as if it had invoked the
save (the contents of the task stack are assumed to be storage position
independent). This assures the repeatability of the execution.

This implementation allows a great deal of flexibility for the use
of a save. Saves can be introduced at any point in the task program, and
provided that the rules set up in chapter V are enforced, no
inconsistency will arise. However, redundant information will be
tranferred in each save. An optimization is considered in the next
implementation.

Implementation II

An optimization can be made if we have a closer look at the way
state and auxiliary variables are allocated. State variables can be
allocated statically in the store used for the task data. Auxiliary
variables will be allocated at run time according to the path taken by
the task program. Not all state variables need to be transfered in every
save: only those that have changed since the last save must be

- 83 -

transferee!. A run-time mechanism could identify and transfer state
variables which have changed. The fact that state variables location is
known allows a simple implementation of this mechanism. Mechanisms based
in a similar principle are proposed in [Randell 75, Kant 83], although
in a different context. The effectivennes of the approach is dependent
on both the time taken to assemble and disassemble the state transfer
messages and on the communication system delays. Thus if the size of all
the state variables is shorter than a given threshold (system dependent)
it does not result in any benefit. In this case, all state variables can
be transfered in every save. The option to be used can be taken at
compilation time.

Auxiliary variables include local variables of procedures called
within the task and associate execution control information. It would be
more difficult to select which ones must be saved at run time. It is
easier to save all of them without attempting any optimization.

Implementation III

A further optimization is possible if a particular style of
programming is adopted: The task programming is organized in a decision
table style. In this case the only control information that needs to be
saved is an identifier in the table of the action being performed. The
other auxiliary variables can be recreated when the task re-executes.
The state variables are transfered as in the previous implementation.
This implementation allows maximum efficiency at a cost of a special
style of programming. This should not be very restrictive if we realize
that any task that loops around a Select receive statment uses a
decision table style of programming (see appendix A.1).

Simpler Save

It is also possible to define a simpler save operation: the save
transfers only the state variables. This would require the application
to define the algorithms to allow the program to proceed after a
failure; the state variables must also be explicitly specified. The
problem with this approach is that it does not impose the use of
standard mechanisms to deal with failures. Thus recovery activities
would depend on the programmers discipline. The save semantics we
propose can be combined with standard mechanisms for communication and
allow an automatic provision of fault tolerance. A simpler save can be
specified and implemented if required.

- 84 -

6.2.1.4 Save Operation

The save operation is performed through a request-reply transaction
with the management task. The task invoking the save is suspended while
the operation is performed. Thus the management task can directly access
the variables to be transfered without any conflict. The transfer is
effected through a message sent to the management task of the passive
instance which assures the failure atomicity of the operation. Also,
according to the error confinement assumption, no erroneous information
will be present in this message. The tranfer operation is idempotent;
thus a simple protocol can be used. If the state variables cannot be
contained in a standard size message, a proper protocol should assure
the failure atomicity of the save operation.

6.2.2 Instance Management

The instance management functions are performed by the management
task (fig. 6.2). It is assumed that the save uses implementation I,
described in the previous section.

6.2.2.1 Active Instance Operation

(1) Transference of state — The variables to be transfered in a save
are copied from the application task stack in a message and sent to
the passive instance management task. When this message is
acknowledged the save completes. If there is no passive instance
available, the state information is only locally updated, and the
save operation completes.

(2) Detection of the passive instance failure — The passive instance
management task periodically attempts communication with its active
instance counterpart. A failure is detected when this message is
not received within the specified time interval. A failure is also
detected if the passive instance does not acknowledges the state
transference message.

(3) State initialisation — After receiving a notification of the
existence of a passive instance, the management task initialises
the state of that instance. It does so by sending its local state
to its counterpart. Thus the initialisation does not interfere with
the activities of the application tasks.

- 85 -

6 .2 .2 .2 Passive Instance Operation
(1) T ran sferen ce o f s t a t e — The management task r e c e iv e s s t a t e

transference messages, tra n sfers the contents to the task stack,
and acknow ledges th e m essage con firm in g the ex ecu tio n o f the
operation.

(2) D etection o f the a c tiv e in stan ce fa ilu r e — A fa ilu r e of the a c tiv e
in stan ce i s detected i f the message p er iod ica lly generated by the
passive instance i s not acknowledged. After the fa ilu r e i s detected
the in s ta n c e i s made a c t iv e , and i t s a p p lic a t io n ta sk s are
a ctiv a ted .

(3) State in i t i a l i s a t io n - - A new instance i s started in the passive
ro le . After sta r tin g , the management task n o t if ie s i t s counterpart.
Next the a c tiv e in stan ce management task i n i t i a l i s e s the s ta te o f
the passive instance. I f no a c t iv e instance i s available or i f the
s t a t e i n i t i a l i s a t i o n i s not com pleted a double f a i lu r e has
occurred . In t h is c a se , s t a t e in fo rm a tio n has been l o s t and the
instance i s put in an fa i le d sta te .

6 .2 .2 .3 Operation D eta ils
Figure 6.2 shows the two in stan ces which implement a hot standby

Rm odule, th e m anagem ent t a s k s , and t h e i r c o n n e c t io n s . For
s im p l i f i c a t io n , on ly one a p p lic a t io n ta sk i s rep resen ted . On system
start-up the configuration manager creates one instance as a c tiv e and
another as passive. Saves in the task programming are transformed in a
procedure which performs a req u est-rep ly transaction through the saveout
port. The management task o f the a c tiv e instance transfers the s ta te to
the p a ss iv e in s ta n c e by sen d in g a m essage through the n o t ify port
updtout. The transfer i s confirmed through an acknowledgement received
from updtin. The passive in stan ce management task p eriod ica lly sends the
message required for fa ilu r e d etection through updtout. This message i s
acknow ledged by the a c t iv e in s ta n c e ; however, fo r o p t im iz a t io n the
acknowledgement can be "piggy backed" on a s ta te transfer message.

The s ta te in i t ia l iz a t io n i s requested by a new passive instance
through a m essage sen t through the n o t ify port in i t o u t . The a c t iv e
in s t a n c e can u se one or m ore m e ssa g e s to perform th e s t a t e
in i t ia l i s a t io n . However, only a fte r a l l the sta te i s transferred, the
in i t ia l i s a t io n i s considered completed. I f the active instance f a i l s

- 86 -

before the in i t ia l i s a t io n i s completed the passive instance i s put in a
fa ile d s ta te and i t s task s are not activated . This ensures that no
in co n sisten t behaviour occurs. A module can contain m ultip le ap p lication
task s, thus the implementation can be optimised: the saves invoked by
d iffer en t tasks can be p ip elin ed or combined in a message in order to
increase the speed of the s ta te transfer operation; a lso saves can be
performed concurrently with the in i t ia l i s a t io n operation. For fa s t
execution o f s ta te tra n sfer , a sp ec ia l communication channel can be
used, e . g . , high p r io r ity m essages, or the message can be transm itted
through a separate physical channel.

The instance fa ilu r e d e tec tio n cap ab ility r e l ie s on the bounded
response and communication system assumptions (see section 4 .1) , and i s
achieved independently by the management task o f each in stan ce. This
cap ab ility could be implemented by the configuration management serv ice .
In th is case a th ird e n t ity i s required to ensure the recovery of the
configuration management ser v ic e module instances (see d iscu ssion in
sec tio n 6 .1 .1 .1) . The current implementation of fa ilu r e d etection allow s
simple hot standby con figu ration s to be implemented without a
configuration management se r v ic e . Thus we were able to simulate CM
fa ilu r e s in order to t e s t i t s automatic recovery. The in tegra tion of
fa ilu r e d etectio n ca p a b ility w ith in the communication system i s a lso
p o ssib le . This i s sim ilar to th at already discussed in section 6 .1 .2 .1
for the sta tu s c o lle c t io n fu n ction .

The management task con tro ls the execution of the ap p lication tasks
by d irec t access to the kernel ro u tin es . I t i s worth pointing out that
the s ta te o f the kernel data stru ctu res do not need to be saved. A ll
inform ation needed for recovery i s present in the stack of each task ,
and the required kernel s ta te i s recovered by re-executing the task s.
Thus the standard kernel message and task management functions can be
used and the implementation i s thereby sim p lified .

- 87 -

ap p lication >—>>------» » ——» —>*! * 1 • i • ientryports >— >>------ >>i i
APT

_
 V

 —

V

•• 1 1 I I

-
 v

—

V

.. 1 V

1 1 1 1 saveout i
1

i
1| +-----

1
l 1 i i

«
i i i i i -----»■ 11

~ ¥ ~savein

ap p lication
ex itp o rts

—>>updtin updtout>>——»1 1 MT | 1
» —— » i n i t i n in ito u t» ——»

« ~ — <<initout in itin < < ——«
1 ! MT 1 1« —— <<updtout u p d tin « ——«

1 ii savein 1 11it
1i

+ ------ i i i i
»

i i i i >———+ 11111
!ii + ------ i i j >

> i i i i

111j
!
1

ii
| saveout ii|

11!
ap p lication > - » — I v

-
V 1 1 V

: | . i • i APT 1: 1 . 1 •entryports > -
1

~ » i —
V V 1 1 1

—
V V 1 1 V

1 + ------
1 1

1
i|

ap p lication
ex itp o rts

NT - management task

APT - ap p lica tio n task

F ig , 6 .2 Hot Standby Implementation

- 88 -

6 .2 .3 Reliable Transaction
In chapter V i t was demonstrated how the e ffe c t of fa ilu r e s i s

lim ited to the generation of rep lica ted messages. Here the d iscu ssion i s
r e s tr ic te d to the support mechanisms that ensure the transaction
semantics required for s ta te con sisten cy . A r e lia b le transaction i s
performed between a r e l ia b le e x itp o r t and r e lia b le entryport. A s p e c if ic
mechanism i s needed to deal w ith the events pertaining to each port
type. In the fo llow in g d iscu ss io n we determine the requirements for the
support mechanisms.

6.2.3*1 Scenario
The pattern o f the tra n saction i s il lu s tr a te d in f ig . 5 .1 . A

transaction i s in i t ia te d when the source task sends a request message
through an e x itp o r t. Every request contains a sequence number, th is
sequence number i s always greater than the la s t one used in that port
connection. The transaction f in is h e s when a reply message with the same
sequence number i s received from the target task . I t i s worth pointing
out that the sequence numbers are s ta te variab les, hence they too are
preserved in case o f fa i lu r e s .

In the p resentation below, i t i s assumed that the communication
system provides a "best e ffo r t" se r v ic e for message delivery and does
not get p artition ed . This f a c i l i t a t e s the id e n tif ic a tio n o f the minimum
requirements for the support mechanisms. The in teg ra tion o f the
transaction support mechanisms in a particu lar communication system, and
the is su e o f addressing the transaction messages are discussed in
sec tio n 6.2.3*^ • The tra n saction support mechanisms must assure
r e l ia b i l i t y in case o f Rmodule in sta n ces or communication fa i lu r e s .
F ailures can occur a t any time during the transaction duration. The
p ossib le cases are considered below:
(1) The request or rep ly message f a i l s :

This can be recovered i f the ex itp ort mechanism keeps
transm itting the request message u n til a reply with the same
sequence number i s received . For example, i f a f i r s t request has
fa ile d a r e tr ied one can be accepted, and the corresponding reply
would be produced; i f i t was the reply that had fa ile d , the
r e tr ied request informs the entryport side that the reply i s s t i l l
not a v a ila b le . The support mechanism in the entryport side can then
pick up a copy of the rep ly message and send i t back to the
ex itp o rt s id e .

- 89 -

(2) The a c tiv e instance owning the entryport f a i l s . There are two cases:
a. The fa ilu r e occurs before the request message i s consumed and

saved. The p a s s iv e in s ta n c e tak es over, but does not know
anything about the request message. This i s equivalent to a
r eq u e st m essage f a i l u r e . This i s recovered by r e tr y in g th e
req u est; t h i s m essage has to compete norm ally w ith o th er
messages to be consumed a t the target instance in terface.

b. The fa ilu r e occurs a fter the request message has been consumed
and saved . On r e c o v e r y , th e ta sk e v e n tu a lly g en era tes th e
r ep ly m essage. T h is r e p ly can be a d u p lic a te s in c e the
previous a c tiv e in stan ce could have already produced i t . This
rep ea ted r ep ly has to be f i l t e r e d out by the e x itp o r t s id e
support mechanism. The f i l t e r in g i s p ossib le because the reply
contains the same sequence number.

(3) The a c tiv e in stan ce owning the ex itp ort f a i l s . There are two cases:
a. The fa ilu r e occurs before the request message can reach the

en tr y p o r t s id e . On r ec o v e r y , a r e p lic a te d in s ta n c e o f the
request message i s generated. This message i s equivalent to a
new request message for the entryport side.

b. The fa ilu r e occurs a fte r the request message has reached the
entryport sid e. On recovery, an id e n tica l request message i s
again generated. I t does not matter i f the entryport sid e has
accep ted th e p rev io u s r e q u e st or not; t h i s i s d e a lt by the
entryport s id e mechanism.

(4) A p assive instance f a i l s :
P a ss iv e in s ta n c e s do not r e c e iv e or send a p p lic a t io n m essages.
Thus, the f a i lu r e o f a p a s s iv e in s ta n c e does not a f f e c t the
transaction execution.

6 .2 .3«2 Requirements
The requirements for the support mechanisms can be summarized as

fo llow s:
Exitport support mechanism:

Retransmit p er io d ica lly the request message u n til a matched reply
message i s received (or the tim eout exp ires).
F i l te r s out rep lica ted rep ly messages.

90 -

Entryport support mechanism:
F ilte r s out rep lica ted request messages.
and, i f the corresp on d in g r ep ly m essage i s a lread y produced i t
ta k es a copy o f t h i s m essage and sends i t back to the e x itp o r t
s id e .
On recovery, there i s only one way for the ex itp ort instance to

know i f a request message has been accepted by the entryport instance:
Namely, to use the sequence number of th is message in order to query the
entryport instance about the fa c t. Obviously i t i s better to send the
request message again and l e t the entryport instance f i l t e r out th is
request i f necessary. The same reasoning i s applied to the entryport
instance and reply message. I t i s important to notice that transfer of
co n tr o l in fo r m a tio n to s ta b le s to r a g e does not com p letly so lv e the
problem and i s more e x p en siv e than r e tr a n sm iss io n (s p e c ia l ly in
environments where message transport i s reasonably r e lia b le , e.g., any
s ta te -o f- th e -a r t lo c a l area network).
6 .2 .3 .3 Implementation

The f i r s t attempt to meet the transaction requirements was by the
use of program stubs in serted in the task programming. This requires
each message to be always accepted in order to check i t s sequence number
and discard the d u p licates. In some cases th is i s not a problem, but
guards can be used in order to c o n tr o l the accep tan ce o f m essages
through a entryport. In th is case the guard has to be evaluated and i f
fa ls e , the message should e ith e r be discarded or stored w ith in the task
data space in order to be ava ila b le la te r on. Another problem occurs in
the case that a reply message i s lo s t . In th is case, the ex itp ort w i l l
retry the request in order to recover from the situ a tio n ; but in the
meantime th e en tr y p o r t can consume and p ro cess o th er m essages. The
retr ied request w i l l have to compete at the instance in ter fa ce and wait
for the other messages to be processed, consequently the reply w il l have
i t s recovery delayed, which a lso delays the transaction completion. In
a d d it io n t h i s im p lem en ta tio n can cause d ead lock s, in th e case o f
fa ilu r e s , i f no r e s tr ic t io n s on program structure are imposed: e.g., a
task T1 performs a (request-rep ly) transaction R1 with a task T2 and
w aits a response from T2 through a (request-reply) transaction R2. I f T1
f a i l s a fter R1 i s accepted deadlock occurs since on recovery R1 cannot
com plete and proceed b ecau se i t needs the a s so c ia te d r e p ly , and T2
cannot recover the reply a ssoc ia ted to R1, because i t i s w aiting for the
reply associa ted to R2, which cannot be recovered by T1.

91

In order to so lve the problems mentioned above, a mechanism that
works concurrently with the ap p lica tion task i s required. This mechanism
could be e a s ily implemented by a standard service module. However, i t i s
p ossib le to take advantage o f the Conic implementation and avoid th is
overhead. In Conic, remote tran saction s are supported by an in terprocess
communication serv ice which i s implemented by two service modules —
IPCIN and IPCODT, showed in f i g 6.3> taken from [Sloman 8 3] . IPCOUT
builds the message frame for the transaction and holds i t in an in tern al
buffer u n til the transm ission i s completed in order to avoid further
copy operations. IPCIN provides d estin a tion buffering for remote message
transactions. These modules can have th e ir programming e a s ily changed in
order to meet the requirements o f r e lia b le request-reply transactions.
IPCOUT i s m odified in order to retransm it request messages, w hile IPCIN
i s modified in order to check and discard rep lica ted request or reply
messages, and a lso to pick up any already ava ilab le reply message in the
ta sk data space and send i t back to the en tryp ort s id e . These
m od ification s do not introduce any overhead in the processing of the
standard Conic tr a n s a c t io n s . T h is approach a llo w s the use o f the
standard Conic kernel in ter fa ce procedures for operating on r e lia b le
ports. I t a lso avoids any in e ff ic ie n c y or problem that i s associated
w ith the the use of program stubs.

Exitport Entryport

I source >> j—» t a r g e t j

1 ------------------- 1> 1 jco m m u n ica tio n |— »IPCODT I— >1 I— > I IPCIN » —
n e tw o rk 1

F ig . 6 .3 Support o f Remote Transactions

- 92 -

Both lo c a l (in t r a - s t a t io n) and rem ote (in t e r - s t a t io n) r e l i a b l e
request-rep ly transaction s have the same semantics. Local transaction s
can can have th e ir sem antics enforced by a standard service module, as
IPCIN, in s e r te d in the m essage path, although some in e f ic ie n c y i s
in tro d u ced . In the stan d ard Conic sy stem , lo c a l tr a n s a c t io n s are
perform ed by d ir e c t ly copying the m essage from the sender to th e
d estin a tion task data space; th is i s performed by the kernel. Since the
amount of processing necessary to enforce the semantics i s very sm all,
i t can be perform ed t o t a l l y in th e k ern e l. This a llo w s e f f i c ie n c y
improvement and economy of resources a t a cost of a sm all change in the
Conic kernel.

The proposed design for the request-rep ly transaction uses a sim ple
request-response (RR) protocol, and i s intended for maximum e ff ic ie n c y
and s im p l ic i t y o f im p lem en ta tio n (see next s e c t io n) . N -to -on e
connections for r e lia b le ports can be implemented as se ts of n on e-to -
one c o n n ec tio n s; one fo r each of th e n e x itp o r ts . In t h i s case i t i s
necessary to keep a copy of each rep ly message a t the entryport side. A
r e q u e s t -r e s p o n s e -a c k n o w le d g e m e n t (RRA) can be u sed fo r th e
im p le m e n ta t io n o f N - to -o n e c o n n e c t io n s . In t h i s c a s e , th e
acknowledgement message i s generated only a fter a save i s performed a t
the ex itp ort sid e , thus ensuring that the transaction i s not repeated in
case o f f a i lu r e . T his econ o m izes s to r a g e , s in c e a copy o f th e r ep ly
message for each connection does not need to be kept at stab le storage
at the entryport side. However the RRA option slow s down the completion
of the transaction and requ ires more complicated support. This option
can be used i f the r e p ly m essage i s lo n g , s in c e i f i t i s sh o r t, the
incurred overheads do not make i t w orthw ile. An RRA protocol can a lso be
u sefu l for the im plem entation of the in terface of a server.

The use of an RRA protocol a lso makes i t possib le to transfer only
th e sequence number o f th e r eq u e st m essage to s ta b le sto ra g e a t the
entryport sid e. Thus, on recovery, the message content would have to be
recovered from the source o f th e req u est . This s tr a te g y avo id s the
i n i t i a l saving of the received message, but requires a more complicated
implementation. Typical messages in control app lications have short
length [Prince 81] and the sequence number has to be saved anyway. Thus
in a high speed communication network l i t t l e e ff ic ie n cy improvement
would be achieved.

93 -

F in a lly , i t should be noticed that the transfer of sta te , through
saves, i s not e x p l ic i t ly re la ted to the execution of actions. Thus no
e x p lic it s ta te for action s needs to be considered to perform end-to-end
control. All that i s needed to enforce the transaction semantics i s the
check in g o f sequence numbers; which are in d ep en d en tly saved. T his
s im p lif ie s the implem entation of the transaction.

6 .2 .3 .4 Communication System
The proposed support m echanism s are enough to provide th e

r e l i a b i l i t y r e q u ir e d f o r th e t r a n s a c t io n , p ro v id e d th a t th e
com m unication system does not g e t p a r t it io n e d . In a p r a c t ic a l
ap p lication th eir r e l ia b i l i t y and e ff ic ie n c y depends on a sp ec ia l design
o f the com m unication system [K le in ro ck 80 , Pow ell 8 2 , W ensley 78,
Wolf 79, Smith 75]. Redundant communication paths must be used and fa s t
fa u lt d etection and routing mechanisms are required. Also, the end-to-
end c o n tr o l req u ired fo r r e l i a b l e tr a n s a c tio n s i s e s s e n t ia l fo r
r e l ia b i l i t y and any lower le v e l end-to-end control mechanism i s not
lo g ic a lly necessary, although i t can be used for e ffic ien cy . Thus th e ir
use r eq u ir e a c a r e fu l a n a ly s i s o f each case as p oin ted out by
[S a ltzer 81]. Some examples are presented below.

Example 1: In the model, we assumed the a v a ila b ility o f large sequence
numbers. This can be relaxed i f the transport service can guarantee that
m essages are r e c e iv e d in o th er s t a t io n s in th e same order they were
generated in th eir source sta tio n . This could be inherent to particu lar
im plem entation technology, e.g., some loops or rings, or imposed by a
mechanism o f the communication system. The s iz e of sequence numbers a lso
can be bounded i f a maximum message l i fe t im e i s assured [Watson 81].

Example 2: Reference [Boyd 81] considers the use of the "token control”
access technique to allow lin k sw itch-over without lo s in g or corrupting
in tr a n s it messages. There, i t i s a lso stated that the time needed to
regenerate a lo s t tokens meets str in gen t rea l-tim e requirements. In th is
ca se , no m essage needs to be r e tr a n sm itte d to recover from m essage
fa ilu r e s . The in flu en ce of the token control technique in the sta tu s
c o lle c tio n was a lso d iscussed in section 6.1.2.1.

- 9i| -

Example 3: A number of s ta te -o f- th e -a r t lo ca l area networks o ffer a very
low fa ilu r e rate for broadcast message transm ission , e.g., [Shoch 80].
The d esig n can take advantage o f t h is f a c t in order to im plem ent
tr a n s a c t io n s e f f i c i e n t l y , as proposed in [S p ector 8 2] . A r e l i a b l e
request-rep ly transaction can be performed by two broadcast messages,
one fo r the req u est and an oth er fo r the r ep ly . This a ls o s o lv e s th e
message addressing issu e , s in ce the same physical instance of a message
(request or reply) can reach both target in stan ces (the active and the
passive); however the modules in stan ces associated to the same Rmodule
have to have unique a d d r e sse s w ith in th e network. C onsidering th a t
message and module instance fa ilu r e s are rare, th is would work in most
of the cases. In order to cater for both p ossib le fa ilu r e s the request
message can be retransm ited. The retry in terva l i s se t up to be not much
bigger than the average time in te r v a l needed to complete the transaction
in normal conditions. The scheme can cause some unnecessary delay in
case o f pure m essage f a i l u r e s . However, co n sid e r in g th a t m essage
fa ilu r e s are rare, and that d elays o f the same order can occur because
of module fa ilu r e s , th is should not be considered a flaw . The use o f
broadcasts requires the communication in terface to act on every message
transm itted , and catch only those d irected to module instances resid in g
in i t s a tta ch ed s t a t io n . T h is should be con sid ered in the in t e r f a c e
design in order not to cause wastage of processing power ava ilab le in
the sta tio n , e.g., a separate communication processor can be used. The
use o f b road cast a d d r esse s a l s o s im p l i f i e s r e c o n fig u r a tio n , as
ind icated in section 6.1.1.2.

Example 4: A r e lia b le tra n saction can a lso be implemented by unicast
message transm issions (n o tify transaction s). In th is case two unicast
transm issions are used by a source to d irect messages to each of the
p o te n t ia l ta r g e ts : the a c t iv e and the p a ss iv e in s ta n c e s ; t h is a ls o
so lves the addressing is su e . Hence for each r e lia b le transaction the
transm ission of a t le a s t two request and two reply messages i s needed.
In p r a c t ic e t h i s depends on th e p a r tic u la r im p lem en tation o f the
service: i f a sim ple datagram serv ice i s used the above i s true; i f a
more e la b o r a te tr a n sp o r t s e r v ic e i s used, e .g ., each m essage i s
acknow ledged, more m essages are needed. This scheme i s used in our
prototype implem entation o f r e l ia b le transactions. I t s main advantage i s
that i t uses serv ices gen era lly provided by ava ilab le message transport
mechanisms. The main disadvantage i s the p o ten tia lly high delays, which
can cause nhiccupsn a t the ap p lica tio n le v e l .

95 -

I t i s r ec o g n ised th a t f a u l t to le r a n t sy stem s req u ire s p e c ia l
purpose designs. In the r e l ia b le transaction case, th is can be e s se n tia l
for meeting the rea l-tim e demands of some control app lications in a co3t
e ffe c t iv e way.

6.H Summary of the Chapter

In th is chapter, the design and implementation d e ta ils of the fa u lt
tolerance support mechanisms were presented. The chapter was organized
in two main section s.

The f i r s t was r e la te d to th e c o n fig u r a tio n management s e r v ic e ,
which i s implemented by two system modules: the configuration manager
and the sta tu s co llec to r . The r e l ia b i l i t y service required for these
m odules i s a p p lic a t io n dependent. However, in order to support the
req u irem en ts o f some a p p lic a t io n s they need th em se lv es to be f a u l t
to leran t. This i s obtained by using the hot standby service for th e ir
implementation. In addition to fa u lt tolerance, they have to provide
con sisten t configuration control ca p a b ility which requires sp ecia l care
in i t s d es ig n to be a ch iev ed in an environm ent where f a i lu r e s occur
(which in clu d es fa ilu r e s o f in stan ces implementing the configuration
management serv ice). The con figu ration manager uses a strategy that
ensures that configuration op eration s are always completed once started .
The s ta tu s c o l l e c t o r a s su r e s th a t every s t a t io n s ta tu s change i s
c o n s is t e n t ly communicated to th e c o n fig u r a tio n manager. Thus, i f
fa ilu r e s do not occur very quickly in sequence, a stab le configuration
for the system i s obtained. The design of the configuration magement
s e r v ic e p ro v id es th e minimum c a p a b i l i t i e s req u ired , and has a very
sim ple implementation. However, exten sion s can be made when necessary;
t h is was considered in se c tio n s 6.1.2.1 and 6.1.3*

96 -

The second was concerned with the mechanisms which are associa ted
with the hot standby serv ice . They support the programming of strong
f a i lu r e dependency sy stem s. I s su e s r e la te d to the save p r im it iv e ,
management of in stan ces implementing hot standby Rmodules, and r e lia b le
request-rep ly transaction were presented. The save prim itive sem antics
was sp e c ifie d and im plem entation options which allow the reduction of
s ta te inform ation tranferred in save operations were proposed. The save
operation i s performed with the in terven tion of a standard management
ta sk th a t a ls o perform s th e management fu n c t io n s o f i t s own module
instance. This includes con tro ls o f the ro le (passive or active) being
performed by the instance, in s ta n t ia t io n o f sta te of new instances, and
d etection o f fa ilu r e s of i t s counterpart. The management task can be
added to ap p lica tion Rmodules in the development system without any
change in th eir programming.

The requirements for the r e l ia b le request-reply transaction were
id e n tif ie d and a sim ple design which meets them i s proposed. I t can be
im plem ented by s l i g h t changes in th e modules which provide th e
in t e r p r o c e s s c o m m u n ica tio n m ech a n ism s in th e p r e s e n t C onic
im p lem en ta tio n . The r e l i a b i l i t y and e f f ic ie n c y o f the support
m echanisms depend on the p a r t ic u la r com m unication system ; t h i s was
d isc u sse d in s e c t io n 6 .2 .3 .4 . The mechanisms which support the
transaction are orthogonal to the other mechanisms associated with the
hot standby service.

97 -

CHAPTER VII

FAULT TOLERANT APPLICATION SYSTEMS

In t h is chapter important aspects of the construction of fa u lt
to leran t ap p lication system are presented. A methodology to develop
fa u lt to lera n t ap p lica tion system s i s described, and relevant design
is su e s concerning strong and weak fa ilu re dependency systems are
d iscussed . F in a lly , based on two examples, observations about the use o f
the r e l ia b i l i t y serv ices are made.

7.1 Methodology

In t h is sec tio n , a methodology for developing fa u lt to lera n t
ap p lication systems i s b r ie f ly presented. We assume that the system i s
already defined, has i t s elem ents id e n tif ie d , and has i t s in ter a c tio n
and performance requirements sp e c if ie d . This can be obtained by using
techniques such as those presented in [Weitzman 8 0]. For s im p lic ity ,
consider that each element corresponds to a module. The methodology
c o n s is ts o f the fo llow in g step s:

Step 1. Each module i s sep arately designed, modules from a lib rary
can a lso be used. In th is step , fault-avoidance techniques for
v a lid a tio n and v e r if ic a t io n should be used at the module le v e l .

Step 2. The composition and in terconnection structure of the system
i s sp e c if ie d using the Conic configuration language. At th is stage
v a lid a tio n and v e r if ic a t io n techniques should be used at the system
le v e l , e .g . , to check the con sisten cy of connections and to assure the
absence o f deadlocks caused by the interconnection structure of modules.
Note that the system can be op eration ally tested before fa u lt tolerance
i s added.

98 -

Step 3* The r e l ia b i l i t y serv ice used by each module and the type o f
each port are sp e c ifie d in order to meet the requirements of the system.
The corresponding con figu ration sp e c if ic a tio n f i l e i s produced. The
p ossib le mappings from modules to s ta tio n s are also defined. Thus the
consistency o f the p ossib le mappings can be checked. The configuration
sp e c if ic a tio n i s processed by the translator program and the
configuration d escr ip tion f i l e i s produced. This configuration
d escr ip tion f i l e contains a l l the information needed by the
configuration management e n t i t i e s to control the configuration. Also the
support for hot standby Rmodules i s provided.

Step 4 . The fa u lt to lera n t system i s tested in the most r e a l i s t i c
operational con d ition s. The same techniques and to o ls used to t e s t
standard Conic systems can be used, e . g . , debugger module.

Hot standby Rmodules are treated in step 3« In p rin cip le , i t i s
p ossib le to perform autom atically a l l tra n sla tio n s to support these
Rmodules from th eir s p e c if ic a t io n , i . e . , provision of the management
task , in ser tio n o f saves in the program of tasks, and the provision o f
support for r e lia b le ports. In p ra ctice , th is depends on the ava ila b le
development to o ls , and on the p articu lar Rmodule, e .g . , ap p lication
defined saves can be used.

The exact order of a c t iv i t ie s performed in steps 2 and 3 depends on
the development to o ls . Also, some feedback may be necessary in order to
elim inate the problems found in any of the step s. By using th is
methodology the configuration d escr ip tion information i s produced.

The methodology presented in th is sec tio n deals with the
m echanistic aspects o f developing an app lication system. I t can be
supported by extending the standard Conic development to o ls . Other
relevant is su e s for the design of fa u lt to leran t application systems are
discussed in the next se c tio n s .
7 .2 Management In terface

The configuration manager can answer queries about the sta tu s o f
Rmodule in sta n ces, and a lso report changes of sta tu s o f Rmodule
in stan ces. This ca p a b ility i s u sefu l in the implementation of
ap p lication dependent recovery a c t iv i t i e s in weak fa ilu re dependency
systems. In th is way, s p e c i f ic Rmodules would c o lle c t or be provided
with sta tu s inform ation and can, fo r example, perform a c t iv i t ie s such as
r e - in i t i l i s a t io n o f repaired Rmodule in stan ces, or enforce a system
shut-down procedure a fter fa i lu r e s .

99 -

The concentration o f recovery a c t iv i t ie s in sp e c if ic Rraodules seems
to be a good strategy to be used for weak fa ilu re dependency systems. In
a system composed o f various modules, i t would be d i f f ic u l t to equip
each ind iv idual module with the necessary mechanisms. In addition, each
module would have to be sp e c ia lly designed for a given configuration .
The concentration requires only the sp ecia l design of the s p e c if ic
Rmodules, which provide the recovery a c t iv i t ie s for the other Rmodules.
Also, the Rmodules in charge of the recovery a c t iv i t ie s can be made
fa u lt to leran t by the use o f the hot standby serv ice , thus providing
r e l ia b i l i t y for th eir fu n ction s. Even so, some assumption should be made
about the frequency of fa u lt s , i . e . , i f fa u lts occur concurrently with a
recovery a c t iv ity sp ec ia l care in the programming i s required to allow
the operation to continue and complete.
7 .3 Response Time

An important consideration for the design of real-tim e control
ap p lica tion s i s the response time of the system. The formal ca lcu la tio n
and v a lid a tio n of the response time of a system of in teractin g modules
i s a very complex is su e , which i s subject of current research, e . g . ,
[B ernstein 8 1 , Karg 8 4] . In t h is sec tio n , we resort to informal means to
show that r e lia b le req u est-rep ly transactions performed in a system o f
hot standby modules w il l terminate w ithin a bounded time in ter v a l. This
i s considered below.

7*3.1 Normal Case
Here we are in terested in estim ating the time taken to perform a

r e lia b le a req u est-rep ly transaction in the case where no instance
fa ilu r e occurs during the tran saction execution. This time in terv a l i s
measured from the time the request message i s sent to the time the reply
message i s received .

(1) T1

^request> Trepiy are the maximum times taken to transport the
request and rep ly messages, r e sp e c tiv e ly , between both sid es performing
a transaction . Tsave i s the maximum time taken to perform a save
operation. A save i s a lso performed through messages. Thus these times
can be sp e c if ie d , although they are dependent on the particular
communication system.

1 0 0 -

■ ^acceptance i s the maximum time the request message takes to be
accepted by the ap p lication task . Taction i s the maximum time taken to
perform the action . These times depend on the processing load in the
sta tio n where the in stan ce i s running, which i s known beforehand.
A vailable techniques can be used to determine a maximum value for th is
parameter, e .g . , [Leinbaugh 8 0].

7*3.2 Failure Case
When a fa ilu r e occurs, the time taken by the active instance to

take over the a c tiv e r o le , i . e . Trecovery> should be considered.

^ ^failure ^request + ^acceptance + Motion + Mave + ^recovery
+ Meply
Thus,

^ ■''■failure <= Mormal + Mecovery
where,

^ Mecovery <= Metection + Motivation + Motion

Metection ds taken for the failure to be detected, and
Motivation *s the time taken to switch the passive instance to the
active role. Equation (4) includes Taction in order to consider the
worst case where the target instance fa ils after executing the action
and before the reply reaches the source instance. In this case the
action i s executed again on recovery. We assume that a new passive
instance w ill take some time to be created by the system. Thus, on
recovery, Mave i s not counted again.
7.3*3 Comments

Equation (1) shows th at the time to execute a r e lia b le transaction,
in the normal case, i s equal to that for execution of standard Conic
request-rep ly transaction plus the time to perform a save operation.

In equation (4) Tacti Vation i s sma11 since i t i s related only to
the activation of the application tasks. Remember that a passive
instance i s fu lly prepared to perform application processing. Thus,
equation (4) shows that the delay introduced by a module failure i s
dominated by Tdetection and Ta ction* In Process control applications,
most actions are typically short. However, i f an action takes a long
time to execute, an intermediate save can be used to minimize TreC0yery»
although this delays the action execution in the normal case. Metection

1 0 1

depends on the implementation of the d etection mechanism. As discussed
in sec tion 6 .2 , techniques to minimize th is parameter can be used. These
techniques can also be used for speeding up the save operation. The
equations are v a lid for remote and lo c a l transactions; only the message
transport tim es, — TreqUe s t and Trepi y have d ifferen t values.

So fa r , we have considered that action s are executed lo c a lly w ithin
a task, which i s the most common case in control ap p lica tion s. However
there are cases were tran saction s needs to be performed w ith in an
action , i . e . , r e l ia b le tran saction s are nested. In th is case equation
(2) can be employed su c ess iv e ly in order to ca lcu late the response time
of the top transaction . However, i f the tasks p articip atin g in the
transaction are in d iffe r e n t s ta t io n s i t i s very u n likely that a l l o f
them f a i l together. Under th is assumption i t i s s u ff ic ie n t to consider
how the fa ilu r e of each one separately a f fe c ts the to ta l response time.
The transaction response time i s then determined by the worst response
time incurred by a s in g le task fa ilu r e .

The equations presented above can be used in order to ca lcu la te the
response time of r e lia b le req u est-rep ly transactions, which i s required
to determine the mimimum timeout value to be associated with r e lia b le
transaction s. Also the cost in time o f fa u lt tolerance can be estim ated.
This i s important in s e le c t in g a communication system, or in evaluating
the s u i ta b i l i ty of the approach for a given app lication .
7 .4 Input/Output

Input/Output may w ell be the weakst lin k of fa u lt to leran t systems.
Many authors and designs simply assume that everything outside the
computer system i s r e l ia b le , and ignore the problem. However,
input/output a c t iv i t i e s are important in control ap p lication s because
they provide the in ter fa ce with the environment. In the two fo llow ing
section s we f i r s t consider input and output is su e s separately , related
comments are made in se c tio n 7 .4 .3 .
7 .4 .1 Input

In some cases in stead o f having a s in g le input, i t i s required to
have m u ltip le rep lica ted in p u ts, each one connected to a d ifferen t
sta tio n , so that no s in g le fa u lt can cause the lo s s o f incoming
inform ation. Sensors used in control ap p lication s are generally le s s
r e lia b le than the computer s ta t io n s to which they are attached. In th is
case, s e ts of rep lica ted sensors can be connected to the same sta tio n . A

1 0 2 -

module in the sta tio n can c o lle c t th eir readings and perform some
f i l t e r in g algorithm in order to obtain a r e lia b le reading. Some sensors
can be embedded in s ta t io n s . In th is case, connections are made ea sier
since they can be sp e c if ie d a t a lo g ic a l le v e l by the configuration
language. Also, repaired sensors can be autom atically reintegrated in
the system by the configuration management serv ice .

For recovery i t may be necessary to remember what information has
been fed in to the system. This can be read ily implemented by using a hot
standby Rmodule, and r e l ia b le transactions to communicate the
inform ation to the r e s t of the system. In other c la ss o f ap p lica tio n s,
information can be redundantly fed in to the system, e . g . , radar
ap p lica tio n s.

7 .4 .2 Output

An output can be modelled as the sending of a message out o f the
system. In some ap p lica tio n s, outputs cannot be repeated without harmful
e f f e c t s , e .g . , chemical mix con trol [S ch oeffler 7 9]. In th is case a
so lu tion i s to extend the boundaries of the system in order to include
the output in te r fa c e . Hot standby Rmodules can perform outputs through
r e lia b le tran saction s. The in te r fa c e would f i l t e r out repeated outputs.
In other ap p lica tio n s, outputs can be repeated without any harmful
e f f e c t , e .g . , any switch a c t iv a t io n , and w riting of information to a
magnetic d isk . In th is case, no f i l t e r in g o f repeated outputs i s needed;
the guarantee of repeatable outputs that i s provided by hot standby
Rmodules i s enough. I t should be pointed out that a system of hot
standby modules can produce con sisten t outputs in presence of s in g le
instance fa ilu r e s .

I t i s sometimes d i f f i c u l t to have the in terface rep lica ted a l l the
way to the f in a l output. Thus the output in terface should be contructed
in such a way that i t s r e l ia b i l i t y does not compromise the rest o f the
system. However, an exception i s provided in [Sklaroff 76], where
m ultip le actuators are used to drive f l ig h t control surfaces. In th is
case, i f an actuator f a i l s , the remainder have enough power to drive the
surfaces to the desired p o s itio n .

103 -

7 .4 .3 Comments

The id ea l case of considering the input/output in terface r e l ia b le
and a c cess ib le by any s ta t io n of the system i s not usually fe a s ib le . In
some ap p lica tio n s, the equipment being controlled i s p h ysica lly
d istr ib u ted , and so are the s ta t io n s . The d iv ersity of input and output
devices and the s p e c if ic way they are employed should a lso be
considered. Thus i t i s d i f f i c u l t to draw general conclusions in th is
area; some examples are g iven below:

Example 1. Some d ev ices have c h a ra cter is tic s and ap p lication s th at
make th eir rep lica tio n sim ple, e . g . , (1) a pump i s lo o se ly coupled to
i t s environment. Thus a number o f pumps can be employed and be operated
in p a ra lle l or in standby mode in order to provide fa u lt to leran ce .
Devices l ik e th is can be con tro lled by an embedded s ta tio n in which case
they do not require a common physica l in ter fa ce with two or more
sta tio n s o f the system; (2) a hot standby Rmodule can be in terfaced to a
terminal driver module. In th is case, the physical terminal can be
rep lica ted . Each rep lica ted term inal needs to be in terfaced only to each
of the s ta tio n s where the in sta n ces of the associated Rmodule can run.
The in ter a c tio n with the system can be performed through the terminal
associated with the currently a c tiv e in stan ce.

Example 2 . Other dev ices have to be connected to a t le a s t two
sta tio n s for a v a ila b i l i ty , e .g . , a magnetic d isk . In th is case each disk
unit i s a lso rep lica ted , and inform ation i s redundantly kept in the
rep lica ted d isk s . A r e l ia b le d isk server can be implemented by a hot
standby Rmodule, which can hide the rep lica ted disks from the r e s t o f
the system.

Example 3 . A weak fa ilu r e dependency system can be implemented by
cold standby Rmodules. In th is ca se , system sta te w ill be lo s t due to
fa ilu r e s . Thus on recovery, any previous input can be ignored and some
i n i t i a l s ta te i s enforced on the in te r fa c e . Information provided by
input sensors can be used to ensure that th is in i t i a l s ta te i s
compatible with the current s ta te o f the ap p lication . This requires
sp ec ia l ap p lica tion programming.

104 -

Example H. Interrupt ca p a b ility i s not usually found in fa u lt
to leran t system proposals. Inputs are sampled under program con tro l.
This i s ju s t i f ie d as a cond ition for v e r if ic a tio n and v a lid a tio n . In
strong fa ilu r e dependency system s, the treatment of in terrupts must be
synchronized for co n sisten t recovery. In our proposal, th is can be
obtainned by using standard serv ice modules to trea t the in terru p ts, and
using r e l ia b le transaction s to feed them in to the system. However the
response time to in terru pts cannot be as low as that of a non-replicated
system.

7 .5 A pplication Programming
In th is sec tio n , two examples o f ap p lication programs are

considered. F ir s t ly we d iscu ss the approach used in order to design the
support mechanisms them selves for the fa u lt to leran t system. Secondly we
show how to make a c la s s ic a l program fa u lt to lera n t: the dining
philosophers. Some observations based on the use of the techniques are
made for each example.

7 .5 .1 Support Mechanisms

The configuration management service modules make use of the
r e l ia b i l i t y serv ices (see d iscu ssion in section 6 .1 .3) . The
configuration manager uses the hot standby serv ice , and keeps s ta te
inform ation re la ted to the a llo c a t io n of instances under i t s con tro l.
This provides the c a p a b ili t ie s o f fa s t and automatic (re)con figuration
operations. For sim ilar reasons the statu s c o llec to r Rmodule a lso uses
the hot standby serv ice . A somewhat sp ecia l example of techniques that
can be used for the programming o f cold standby Rmodules i s provided by
the management task , used in the implementation of hot standby Rmodules
(see sec tio n 6 .2): This task does not keep s ta te , thus being sim ilar to
a task o f a cold standby Rmodule. The implementation of the support
mechanisms allow us to make the fo llow in g observations.

(1) I t i s not always p o ss ib le to devise a p a rtitio n o f an ap p lica tion
system fu nction s in modules in such a way that a weak fa ilu r e
dependency system i s obtained. For example, the service used by the
configuration manager i s dependent on the sp e c ifica tio n required:
I f automatic fa ilu r e recovery i s required, the hot standby service
has to be used.

105 -

(2) According to our assumptions the fa ilu re of a module instance can
be unambiguously determined by the other module in stan ces. We took
advantage of th is fa c t in the designs of the statu s c o lle c to r
module and the management task of hot standby Rmodules. I f the
structure of the ap p lica tio n under consideration i s more complex,
the configuration management serv ice c a p a b ilit ie s of reporting
events and answering queries may be required.

(3) F ailure recovery for cold standby Rmodule instances i s mostly an
ap p lication concern; the system can only create a new in stan ce . The
procedure for recovery i s ap p lica tio n dependent. In some cases i t
can be ju st the normal procedure of the Rmodule, e . g . , as in the
case of a sensor. In other ca se s , e .g . , the management task which
supports in stan ces o f hot standby Rmodules, i t can require the
recovery o f inform ation from other in stan ces, and a lso
synchronization with these in sta n ces .

7 .6 .2 Dining Philosophers
The dining philosophers i s a w e ll know problem normally used to

in v e stig a te synchronizing mechanisms in co-operating seq u en tia l
processes [D ijk stra 7 5]. However i t has a lso been used to i l lu s t r a te the
ap p lication of backward error recovery techniques for fa u lt to leran ce
[Shrivastava 78] (see se c tio n 3 .2 .1 . for rela ted d iscu ss io n). The
modules and th eir in tercon ection stru ctu re are represented in f i g . 7 . 1 ,
for a group o f four philosophers. The code of the Rmodules: tab le , fork,
and philosopher are presented in figu res 7 . 2 , 7 *3 , and 7 .4 ,
resp ec tiv e ly ; a b r ie f explanation o f the functions o f each module i s
a lso presented in the f ig u r e s . The action being performed by each
philosopher (th ink ing , s i t t in g , eatin g) and the current a llo c a tio n o f
each fork (none, l e f t , r ig h t) are displayed in a terminal (not
represented). I t i s assumed th a t the Rmodules use the hot standby
serv ice , and that a l l communications are performed through r e l ia b le
p orts. The example can have a p ra ctica l in terp retation : The ta b le
represents a database that i s constantly read and updated by ap p lica tion
modules. The philosophers represent the ap p lication modules; th e ir
action i s in some way conditioned by the database module, e .g . , a
deadlock avoidance p o licy i s enforced. The forks represent resources
which have to be used in an orderly fashion by the app lication modules;
they a lso perform input/output a c t iv i t i e s . The code of these Rmodules
are exactly id e n tic a l to the o r ig in a l (u nreliab le) Conic program, with
the exception o f the saves. The d in ing philosopher example allows us to
make the fo llow in g observations.

106 -

(1) I t shows how immediate the ap p lication of the technique i s . Two
changes in r e la tio n to the standard Conic program are required. The
f i r s t , i s required in order to in ser t the transaction control code
and saves a t proper p o in ts in the program of the tasks. In the
example only the saves were introduced in the task program (the
code associated to the end-to-end control sequence numbers i s not
shown). This was performed manually, however the saves and control
code could be autom atically introduced by a preprocessor in the
development system; the inform ation required i s defined by the type
o f the ports o f the module. The second change, i s required in order
to transform n-to-one connections to an equivalent se t of n o n e-to -
one connections. Thus the entryports o f the tab le module were
rep lica ted . However i t should be pointed out that the
transformation i s very sim ple, and e ith er can be performed
autom atically , or not be e x p lic it ly required i f a more elaborate
implementation i s a v a ila b le .

(2) I t shows the a p p lica tio n o f the save ru les . The rule enforced by
each of the saves i s in d ica ted in the f ig u r es . For the tab le module
a save i s introduced between the RECEIVE and REPLY statm ents. These
saves are necessary to enforce ru le I , and assure the r ep e a ta b ility
of the reply messages. The fork module d isp lays i t s current
a llo c a tio n by c a ll in g the procedure d isp laya lloca tion , which
performs the actual outputs through the e x it port output. Thus, a
save placed before the d isp laya lloca tion c a l l statement su rely
enforces ru le I I : a save i s always performed before a second
transaction through the output port; thus the recover o f the
matched reply i s always p o ss ib le . The other two saves enforce ru le
I , as in the tab le module. I t i s in ter e stin g to note that the save
enforcing ru le I I does not need to be performed: because the
structure o f the fork program rule II i s already enforced by the
remaining saves. In an elaborate implementation, the execution o f
each save can be autom atically decided by extra code a sso c ia te to
each save; the d ec is io n depends on the path taken by the program
during i t s execution . In some cases, i t i s a lso possib le to remove
redundant saves in an optim isation stage. For example, the saves in
the philosopher program are enough to ensure ru le II for a l l i t s
ports; th is assures the rep ea ta b ility for the transactions
performed by the philosopher in stan ces. Thus, i t i s not necessary
to place a save before each SEND statement.

107 -

(3) I t can be seen that in any s in g le fa ilu re case the system continues
working without any lo s s o f sta te and that no in co n sisten t
transactions are attempted by a module. For example, consider that
a fa ilu r e happens a t point x, in f ig . 7 .4 . On recovery a l l
statem ents fo llow in g the la s t save (marked by eating) w il l be
performed again; thus in consequence o f the fa ilu r e the
transactions w il l be repeated. The underlying mechanism ensures
that the transactions on the leavetab le , le f tfo r k , and r igh tfork
ports complete, and that the philosopher program makes progress.
The recovery does not in te r fe r e with the a c t iv i t ie s of the other
modules o f the system. There i s no need of sp ec ia l programming o f
any of the modules in order to guarantee consistency of th e ir
s ta te , e . g . , value of the s i t t in g variab le. However fa ilu r e s can
lead to a degradation o f the response time. For the philosopher
module, th is can be remedied by in ser tin g saves within the d elays,
i . e . , by using interm ediate saves. F in a lly , i t i s in ter e stin g to
note that both output ports (fork and philosopher modules) need not
be r e lia b le : The characters are w ritten in the same p osition s on
the screen of the term inal. Thus, in case o f repeated outputs the
dysplayed words are simply overw ritten, the outputs are idempotent
(th is i l lu s t r a t e s the d iscu ssion in section 7 .4 .2) .

(4) I t a lso i l lu s t r a t e s a problem with idempotent action s, i . e . , to
program the modules in a way that no inconsistency a r ise s as a
consequence o f repeated execution of the same action . This i s an
e f f ic ie n t way of so lv in g communication problems in some
ap p lica tio n s [Herbert 8 1] . In the example, th is technique can lead
to strange s itu a t io n s . For in stan ce, consider a fork module and
suppose that a philosopher puts down a fork and f a i l s before a
confirmation of th is a c tio n i s received . In the meantime, a second
philosopher picks up the same fork. On recovery the f i r s t
philosopher has to w ait u n til the second philosopher put down the
fork. Only then, can the f i r s t philosopher continue i t s
a c t iv i t i e s . A sim ilar s itu a t io n occurs for the tab le module; i f a
philosopher f a i l s and the variab le s i t t in g i s equal to n - 1. In
th is case , the tab le module would a lso have to keep more h istory
sta te and have more elaborate algorithms in order to take
con sisten t d ec is io n s, e .g . , for updating the value of s i t t in g in
case of r ep e titio n o f req u ests. Thus the use of idempotent action s
makes a p recise evalu ation o f the response time of the system more

108 - .

d i f f i c u l t , and requ ires some e ffo r t to be programmmed. In our
approach, r e l ia b le req u est-rep ly transactions and the recovery
technique provide the required r e l ia b i l i t y for the system. However,
our approach allow s idempotent action s to be used when worthwhile,
e . g . , in the design o f the configuration manager module (see
section 6 . 1 . 1 . 3 for d iscu ss io n), and in the output operations o f
the fork and philosopher modules (observation 3) .

lp « - —« r f l f » . —» r p F
rp i.A - „ J I t s t I Ip

r

11 1 1 1 1 » 1 1 1 1

A•A---- .i f s t » -
p Ir f l t » -
■ r - '

r-v—v-j
■ »S4 h S1 12« - i T |
■ »14 So lq S2 « .

V•y—i
lp !F rp<<-ii

, ~ 4• « l t rf
! P

—<<st i f
!

1A AI--A-—A—| !----V| St i t 1 } rp
« l f111l__-

P r f » ------
11

------» l p F
11

1____

I f : le f t fo r k , r f : r igh tfork
lp : le ftp h ilo so p h er , rp : rightphilosopher
s t : s i t t a b le , I t : lea v eta b le
l 1f 12 , I3 , I4 : leave

s-j, s2 , S3 , 34 : s i t
F : fork module, P : philosopher module, T : tab le module

F ig . 7«1 The Dining Philosopher System

- 109 -

MODULE dtable(n:integer);
{ — dtable permits a t most (n - 1) philosophers to s i t a t the tasblewhere there are n philosophers — n i s four in th is example.
}

ENTRYPORT* lea v e_ i : sign a ltyp e REPLY signaltype;s i t _ i : sign a ltyp e REPLY signaltype;
TASK tab le;

ENTRYPORT lea v e_ i : sign altyp e REPLY signaltype;sit__i : sign altyp e REPLY signaltype;
VAR s i t t in g : in teg er ;request, ok : sign a ltyp e;
BEGIN

s i t t in g : = 0; ok:= sign a l;
LOOP SELECTRECEIVE request FROM leave_ i;

save; { ru le I }REPLY ok TO leave_ i;
s i t t in g : = s i t t in g - 1;

OR WHEN s i t t in g < (n - 1)RECEIVE request FROM s i t _ i ;
save; { ru le I }REPLY ok TO s i t _ i ; s i t t in g : = s i t t in g - 1;

END;END;
END;

BEGINEND.

Fig 7*2 Table Module

* Only one p a ir o f p o r ts i s r ep resen ted , see d is c u ss io n in
observation (1) .

{ — fork rece iv es pickup and putdown requests from philosophers, but
can only be a llo ca ted to a t most one philosopher at a time

} USE philos.m sg, f i l e .d e f ;
ENTRYPORT r ig h tp h il : forktype REPLY signaltype;le f t p h i l : forktype REPLY signaltype;
EXITPORT output : s tr in g REPLY signaltype;
TASK sharedfork;

ENTRYPORT r ig h tp h il : forktype REPLY signaltype;le f t p h i l : forktype REPLY signaltype;
EXITPORT output : s tr in g REPLY signaltype;
TYPE a lloca tion typ e = (none, l e f t , r ig h t);
VAR a llo ca ted : a llo ca tio n ty p e; request : forktype;
PROCEDURE d isp la y a llo c a tio n ;
BEGIN{ — d is p la y s in th e ter m in a l th e a l lo c a t io n o f the fork , u sesex itp o rt output.} END;
BEGINa llo c a te d := none;

LOOP
save; { ru le II } d isp la y a llo c a t io n (a llo c a te d);
SELECTWHEN ((allocated=none)) or (a llo c a te d = le ft)) RECEIVE request FROM le f tp h il ;

save; { rule I }REPLY s ig n a l TO le f tp h il ;
CASE request OFpickup : a llo c a ted := l e f t ; putdown : a llo ca ted := none;END;

OR WHEN ((allocated= none)) or (a llo ca ted = r ig h t))
RECEIVE request FROM righ tp h il;
save; { rule I }REPLY s ig n a l TO righ tp h il;
CASE request OFpickup : a llo c a ted := r igh t; putdown : a llo ca ted := none;END;END;END;

END;BEGINEND;

MDDULE dfork;

F ig . 7*3 Fork Module

111

{ — Philosopher repeated ly th inks, s i t s down at the tab le , picks up his
l e f t and r igh t fork and e a ts . He requests permission before each of h is a ction s.

}

MODULE dphilo3opher(thinktim e, eattim e: in teg er);

USE philos.m sg, f i l e .d e f ;
EXITPORT righ tfork le f t fo r k leavetab le s i t ta b le output

forktype REPLY signaltype; forktype REPLY signaltype;
s ig n a l type REPLY signaltype; sign a ltyp e REPLY signaltype; s tr in g REPLY signaltype;

PROCEDURE d is p la y a c t iv ity (a c t iv ity : a c t iv ity ty p e);
BEGIN{ — d isp lays in the terminal a figure corresponding to the a c t iv ity

being performed, uses the ex itp ort output.
} END;

TASK philosopher;EXITPORT righ tfork
le f t fo r k lea v eta b le s i t ta b le output

forktype forktype
s ig n a l type sign altyp e s tr in g

REPLY signaltype; REPLY signaltype;
REPLY signaltype; REPLY signaltype;
REPLY signaltype;

BEGIN
req u est:= s ig n a l;pickuprequest:= pickup; putdownrequest:= putdown; LOOP

{ thinking } save; { ru le I I }d isp la y a c tiv ity (th in k in g);
DELAY thinktim e;SEND request TO s it ta b le WAIT ok;

{ s i t t in g } save { ru le I I }d is p la y a c t iv i ty (s i t t in g) ;SEND pickuprequest TO le f t fo r k WAIT ok;
SEND pickuprequest TO rightfork WAIT ok;

{ eating } save { r u le I I }
d is p la y a c t iv ity (e a t in g);DELAY eattim e;
SEND request TO leavetab le WAIT ok;
SEND putdownrequest TO le f t fo r k WAIT ok; SEND putdownrequest TO righ tfork WAIT ok;

{ x }END;END;BEGINEND.

F ig . 7*^ Philosopher Module

7.6 Summary of the Chapter

In t h is chapter, the con stru ction of fa u lt to leran t ap p lica tion
systems was d iscu ssed . A development methodology for obtaining the
s t a t ic configuration inform ation needed by the configuration management
serv ice was presented. I t can be implemented in a development system by
extending the standard Conic development to o ls . Other relevant design
is su e s were d iscussed . S p e c if ic a lly , in section 7 .2 we discussed the use
of the configuration management in terface to implement recovery
a c t iv i t i e s for weak fa ilu r e dependency systems; in section 7 .3 we
presented an informal method to ca lcu la te the response time for a
r e lia b le request-rep ly tran saction ; th is i s needed in order to ca lcu la te
the timeout value a ssoc ia ted to r e l ia b le ports, and to check i f r ea l
time ap p lica tion requirements are met; in section 7*^ we discussed the
is su e o f input/output in te r fa c in g in a fa u lt to leran t system. F in a lly ,
in sec tion 7 .5 , based on the evaluation of the design of the
configuration management serv ice modules and on an example, we make some
observations. They are u se fu l as a guidance in the development o f fa u lt
to lera n t ap p lica tion system s.

113 -

CHAPTER VIII

CONCLUSIONS and SUGGESTIONS for FURTHER WORK

T his t h e s i s has p resen ted a proposal for a f a u l t - t o l e r a n t
d istr ib u ted computer control system. This chapter review s the important
featu res o f the design and su gg ests further work which would improve the
a p p lic a b ility of the proposed system.

8.1 Review o f the goa ls

In the fo llow in g we r e la te the relevant aspects o f the design with
the goa ls that were se t up in chapter I.

S im p licity :

The system supports two r e l ia b i l i t y serv ices: hot and cold standby.
By s p e c ify in g the d e s ir e d s e r v ic e , and p rov id in g the req u ired
redundancy, module f a u l t to le r a n c e i s a u to m a tic a lly ob ta in ed . The
required support mechanisms are very simple.

On the one hand th is i s achieved by the cen tra lized configuration
management service design, and the or ig in a l configuration cap ab ility o f
Conic. The c en tra lliz e d design perm its the e f f ic ie n t implementation o f
d iffer en t reconfiguration algorithm s. Only the s ta tio n s supporting th is
serv ice need to have the necessary resources, the r e s t of the s ta t io n s
req u ire on ly the standard Conic support m echanisms. The b u i l t - i n
c o n fig u r a t io n c a p a b il i ty o f Conic s im p l i f i e s th e im p lem en tatio n o f
module in s ta n c e rep lacem en t o p e r a tio n s . The req u ired c o n fig u r a tio n
d escr ip tion inform ation i s e a s i ly obtained o f f - l in e , in a development
system. At run-tim e, configuration operations are read ily implemented by
the configuration management se r v ic e , which uses a sim ple algorithm to
control the a llo c a tio n of module in stan ces. The configuration operations
are performed through messages sen t to the standard operating system o f
each sta tio n .

114 -

On the other hand the achievement of sim p lic ity i s aided by the
error confinement assumption. This assumption s im p lif ie s the d etection
of fa ilu r e s in the system sin ce th e ir only v is ib le e ffe c t i s the
stopping of module in s ta n c e s . A m alfunctioning module cannot e x ib it
arbitrary and m alicious behaviour thereby corrupting c r i t i c a l
inform ation and/or lead in g other modules to f a i l . Since s ta te i s not
corrupted through error propagation the design of weak and strong
fa ilu r e dependency systems i s s im p lif ie d , e . g . , a simple checkpointing
technique can be employed for the support of strong fa ilu r e dependency
systems. This a lso b en e fits the design of the configuration management
serv ice: A straightforw ard stra tegy can ensure the consistency o f
configuration operations in presence o f fa ilu r e s during their execution .
Also s ta tio n and module fa ilu r e s can be unambiguously detected by
checking timing con stra in ts taken lo c a lly in a module; th is s im p lif ie s
the obtention o f fa ilu r e d e tec tio n ca p a b ility .
Transparency:

This goal should be d iscu ssed separately for weak and strong
fa ilu r e dependency systems:
Weak fa ilu r e dependency systems are implemented by modules using the
cold standby se r v ic e . Provided that resources are ava ilab le replacement
o f fa ile d cold standby in stan ces i s autom atically performed. In some
cases th is i s enough to recover the module serv ices , but in general
recovery a c t iv i t ie s should be e x p l ic i t ly programmed by the ap p lication
designer, e .g . , recovery o f s ta te for the module instance. For some
ap p lica tio n s fa ilu r e s can be d etected by the app lication modules
themselves and resolved w ith in th e ir context. However, ap p lication
independent ca p a b ility o f d etectin g ap p lication fa ilu r e s i s provided by
the configuration management se r v ic e , and these fa ilu r e s can be reported
to s p e c if ic modules o f the system. This can be used to implement
ap p lication dependent fa ilu r e recovery s tr a te g ie s in th is c la s s o f
systems.
Strong fa ilu r e dependency system s can be transparently supported. In
p rin cip le the system can be programmed without any concern for fa u lt
tolerance and afterwards autom atically transformed in order to obtain
that c a p a b ility . However, enough f l e x ib i l i t y i s available to deal with
ap p lica tion dependent s itu a t io n s , e .g . , r e lia b le and u n reliab le
transactions can be used when d esirab le . In these cases e x p l ic i t
enforcement of the recovery technique i s required. This can be obtained
by using e x p l ic i t ly programmed saves, which requires program e d itio n .
Standard Conic development to o ls can be used for both types of system.

115 -

Modular Design:
The mechanisms which provide fa u lt tolerance were implemented by

standard modules, and require for their support the standard Conic run
time mechanisms. Configuration management cap ab ility i s implemented by
two modules: The configuration manager and the sta tu s co llec to r modules.
They can be independently ta ilo r e d to meet the needs and s e le c t iv e ly
used in each ap p lica tio n . The configuration management service i s enough
to provide the requirements o f weak fa ilu r e dependency systems; extra
mechanisms are required for the support of strong fa ilu re dependency
systems. The mechanisms for the programming of strong fa ilu r e dependency
systems are orthogonal to the configuration management mechanisms:
Support for r e l ia b le tra n saction s i s obtained by simple changes in the
standard communication system modules, in order to perform end-to-end
con trols which do not introduce any unreasonable overhead and are
e sse n tia l in any fa u lt to lera n t system. Hot standby modules require a
standard management task which provides for transference of s ta te to
stab le storage and the management o f the ro le performed by a module
in stan ce . This task can be autom atically included in hot standby modules
and operates independently o f the other support mechanisms.

Hardware Independence:
The mechanisms are d ir e c t ly transportable to any hardware

supporting the basic Conic machine. Their r e l ia b i l i t y depends on the
v a lid ity o f the error confinement assumption. This can be ensured w ith in
a given p rob ab ility according to the r e l ia b i l i t y requirements o f each
ap p lica tion . In fa c t programmers have long assumed aproximations o f the
error confinement environment. Software techniques can be used to ensure
the assumption, although more e f f ic ie n c y and coverage can be given by
using ava ilab le semiconductor components which provide b u ilt in error
d etection mechanisms in the hardware. The current integrated c ir c u it
technology p rices and the advantages that r e su lt of assuming error
confinement make the option very a ttr a c t iv e .

We have designed the modules which support fa u lt to lera n t
ap p lication system s. Their relevant d e ta ils were implemented in a sm all
sc a le and tested in a prototype. They do not re ly on any ad d ition a l
feature or serv ice which may be as d i f f ic u l t to provide, e . g . , a global
time reference ava ilab le to a l l s ta t io n s . Thus we b elieve that the
c r i t i c a l is su e s were so lved . The current design supports c losed
ap p lication system s. However, due to i t s modularity the modules can be
ta ilo red to f i t the needs o f d iffe r e n t ap p lica tio n s.

116 -

8 .2 Suggestions for Further Work

Further work can be performed in d ifferen t areas. I t can improve
the a p p lic a b ility o f the approach in a variety o f ways.

(1) The c o n fig u r a t io n language e x te n s io n s we have su gg ested fo r
sp ecify in g and build ing fa u lt to lera n t application systems can be
fu lly in tegrated in the Conic development system. This would allow
the r e l ia b i l i t y support required by each module to be autom atically
ob ta in ed from th e system s p e c i f i c a t io n , e .g ., the programming
tra n sla tio n s for the support o f hot standby modules: management
task and language p rim itives. Configuration language mechanisms for
sp ecify in g more elaborated reconfiguration control s tr a te g ie s can
a lso be studied and implemented.

(2) The refin em en t and e x te n s io n o f the f a u lt to le r a n c e support
mechanisms: The con figu ration management service can be extended in
the d irec tio n s mentioned in chapter VI, e.g., i t can support more
dynamic configurations, and be d istr ib u ted in d ifferen t s ta tio n s o f
the network. The m echanism s to provide an in te r fa c e betw een
ap p lica tion e n t i t i e s and the configuration management service can
be f u l l y d e fin e d and made a v a ila b le . T his depends on th e ir
sp e c if ic a tio n a t the configuration language le v e l. Support for hot
standby modules could a lso be extended. Rmodules of th is type can
be a llo w ed to use more than one p a ss iv e in s ta n c e . This w ould
provide more r e l ia b i l i t y at some cost in e ff ic ie n cy and resources.
I t should be noted th a t the concept of r e lia b le transactions and
the associated recovery technique are independent o f the number o f
passive in stan ces, thus t h is option requires changes only in the
underlying im plem entation. For optim ised implementation of some
a p p lic a t io n s , ta sk s o f a same module can use shared v a r ia b le s ;
c a p a b il i ty fo r d y n a m ica lly l in k in g r e l ia b le p orts can a ls o be
d esirab le in some ap p lica tio n s. The support of these options for
hot standby modules could be provided.

117 -

(3) R eliable communication system. In the th e s is we have sp ec ified some
minimum properties for the communication system, which are enough
to ensure the r e l ia b i l i t y of our design. However, the properties o f
a s p e c if ic communication system can have in fluence in some p oin ts
of our design, e . g . , a communication system using a token based
access control protocol inherently provides s ta tio n fa ilu r e
d etectio n ca p a b ility . In addition th is cap ab ility can be
d istr ib u ted in a l l s ta t io n s o f the system, which allows d irect
implementation of the s ta tu s c o lle c tio n and the lo c a l d etection o f
fa ilu r e s o f hot standby in stan ces. The in fluence o f the
communication system in the implementation o f r e lia b le transaction s
were a lso d iscussed in sec tio n 6 .2 .3 .4 . The design o f a
communication system taking in consideration these in tera c tio n s can
b en efit the whole system.

(4) The examples we presented and the s im p lic ity of our approach have
shown i t s p o ten tia l a p p lic a b il ity . However, the development of
further ap p lication system s i s e s se n tia l for i t s evaluation and the
p ossib le id e n t if ic a t io n o f p o in ts for refinement and extensions of
the present support mechanisms. Also, the experience acquired w il l
allow ap p lication independent functions (and probably transaction s)
to be id e n tif ie d and thus standardized for general ap p lication .

(5) The construction of r e l ia b le systems requires the use of severa l
techniques. Tools for fu n ction s such as: the q u an tita tive
evaluation of r e l ia b i l i t y , the va lid ation of response time, and
v e r if ic a t io n o f p rop erties such as absence of deadlocks in
ap p lica tion con figu ration s, can be provided in the development
system. The stru ctu ra l inform ation needed for these function s can
be obtained from the configuration sp e c if ic a tio n of each
ap p lica tio n system. The id e n t if ic a t io n o f the other inform ation
needed, the s e le c t io n of the su itab le techniques, and th e ir
in teg ra tio n in usefu l to o ls would help the development of r e lia b le
ap p lica tion systems.

(6) F in a lly some system design questions are worthy of further
in v e s t ig a tio n . For example, — how does the p artition in g o f the
fu n ction s o f a system in flu en ce i t s r e l ia b i l i t y requirements ?

118 -

8 .3 Conclusions

We have proposed a b a s ic approach to th e p r o v is io n o f f a u l t
to leran t system s. This has included software techniques for programming
fa u lt to leran t a p p lica tio n s and the design of the mechanisms to support
the approach. The basic system i s able to support a c la ss of embedded
r e a l- t im e a p p lic a t io n s ; how ever i t s range o f a p p l ic a b i l i t y can be
extended as d iscussed in the previous section . The design was based on
an e x is t in g system, Conic, to a llow the id e n tif ic a tio n and d iscu ssion o f
the c r i t i c a l and g e n e r a l i s s u e s . This work p ro v id es a u s e fu l
c la s s i f ic a t io n o f system types: weak and strong dependency systems, an
a n a lysis o f the problems re la te d to the error assumptions which can be
adopted in the design o f fa u lt to lera n t systems, and proposes sim ple
so lu tio n s which can be used to provide fa u lt tolerance to other system s.
We b e l ie v e th a t t h i s work c o n tr ib u te s to th e understanding and
construction o f fa u lt to lera n t system s.

119 -

APPENDIX A
THE CONIC APPROACH

This appendix provides a concise ou tlin e of the Conic approach
[Kramer 8 3]• I t s purposes are to present the concepts and support
mechanisms we use in the th e s is .
A.1 Programming Language

Conic i s based in Pascal [Wirth 7 6] , which was extended with
ca p a b ility o f concurrency and message passing. The prim itive software
component i s a module, which can be seem as a lo g ic a l abstraction o f a
component in a control a p p lica tio n . Modules are are separately designed
and compiled and d iffe r e n t in sta n c e s o f a same module type can be used
in a system. Each module contains a t le a s t one task, which are the u n its
of program concurrency in Conic. The ta sk 's in terface i s defined by a
number o f e x it and entry p orts . These are o f two kinds: e x itp o r ts ,
through which messages are sent to other tasks, and entryports through
which messages are rece ived . A module in ter fa ce i s defined by the e x it
and entry ports exported by i t s ta sk s , only these ports can be used to
perform in te r module communication. A separate configuration language i s
used to sp ecify the connections between entry and e x it ports (see
section A.2), and thus d efin e the communication structure of a system of
modules. Intra module port connections are sp ec ified by a lin k statement
w ithin the module.
A. 1.1 Module & Task Structure
The general structure of a module and o f a task are presented below.
MODULE <m oduleidentifier> (parameters)USE <f i l ename>! <f i l ename><entry and e x it port d eclaration s>

<type d efin itio n s><variable declarations>
<procedure declarations><taskname>|<taskname>
< local lin k d eclarations>

BEGINi n i t i a l i s a t i o n code>END
TASK <taskname> <priority>

<entry and e x it port declaration s><type d efin itio n s><variable declarations><procedure declarations>
BEGIN<taskcode>END

120 -

Examples o f module type d e fin it io n s are shown below in o u tlin e .
They form part of a p atien t monitoring system, formely presented in
[Magee 83b], that i s used as an example throughout th is appendix.
MODULE nurseunit;USE p atien typ es;

ENTRYPORT alarm s[1 . .maxbed]:alarm stype;EXITPORT query[1 . .m axbed]isignaltype REPLY patientstatustype;
{ — The module d isp lays alarms received on falarms1 on a terminal

and in response to input at the terminal d isp lays the sta tu s of a
particu lar patien t by requesting i t on 1 query*[i]; }END.

MODULE bedmonitor (sca n ra te:in teg er);USE patienttypes;
EXITPORT alarms:alarmstype;ENTRYPORT sta tu sis ig n a lty p e REPLY p atien tsta tu styp e;{ — The module scans sensors attached to a patient every*scanrate* seconds. When the sensor readings are outside ranges
se t a t a bed-side terminal d isp lay i t d isp lays an alarm at the bedside terminal and sends alarm messages to *alanns*. Data on
sensor readings and ranges are sent to 1 status* in response to a * signal* req u est. }END.

The USE construct i s used to sp ecify d e fin it io n f i l e s which contain s e t s o f
module rela ted data types, e .g .
CONST maxbed = 16;
TYPE sensortype = (bloodpressure, sk in resistan ce,tem perature,pulse); readingtype = record

sta tu s: ok,notok; value : in teg er; end;
alarmtype = (outofrange, se n so r fa u lt) , noalarm); readingstype = array[sensortype] of readingtype;
alarmstype = array[sensortype] o f alarmtype;p atien tsta tu styp e = recordname : array[1 ..20] of char; readings: readingstype;

alarms: alarmstype; end;
A module sp ec ify in g a p articu lar f i l e has access to the types in that
f i l e . Thus d e f in it io n f i l e s can be used in defin ing the in terface o f
each module, which allow s type consistency checks o f module in ter fa ces
to be peformed a t the com pilation time.
A .1 .2 Communication P rim itives

Two communication p rim itives are ava ila b le , they are used to
sp ec ify d iffer en t communication s t y le s required for the programming o f
control ap p lica tion s [Kramer 8 1] .

121

Request-Reply: This p r im itive sp e c if ie s a b id irection a l, synchronous,
request-rep ly transaction (figu re A.1). After sending the request
the sender task i s suspended u n til the corresponding reply message
i s r e c e iv e d back from th e r e c e iv e r s id e . At the language l e v e l
these transactions are sp e c ified through SEND-WAIT and RECEIVE-REPLY
statm ents. At the rece iver task a SELECT statment may be used in
order to a llo w a n o n d e te r m in is t ic ch o ice of one o f the m essages
sp ec ified by enclosed RECEIVES. O ptionally a WHEN statment can be
used to sp ecify a lo g ic a l condition (guard) to receive messages
through an entryport. At the sender task a TIMEOUT statm ent may be
used in order to excep tion a lly complete the transaction a fter an
user sp e c ified time period(spct) exp ires. A LINKFAIL statment (not
shown) may be used to sign a l that the ex itp ort i s not connected when
a transaction i s attempted. The port declarations associated to th is
p rim itive are a lso presented in figu re A.1.

Exitport End Entryport End

SEND reqmsg TO e x it WAIT repmsg => . . .
TIMEOUT spot => . . . END;

I request
»

I reply
»

SELECT
WHEN guardRECEIVEreqmsgFROM en try
=> . . .REPLY repmsg

OR
ORELSE TIMEOUT spot

=> . . .END;

Port declaration s for the req u est-rep ly transaction:
EXITPORT exit:request_m essage_type REPLY reply_message__type;
ENTRYPORT entry :request_message_type REPLY reply__message_type;
F ig. A.1 Request-Reply Prim itive
N otify: T his p r im it iv e s p e c i f i e s a u n id ir e t io n a l assynchronous

transaction (f ig . A.2). The sender task continues execution after
sending the n otify message. At the language le v e l th is transaction
i s sp e c ified by SEND and RECEIVE statm ents. As for the request-reply
SELECT, TIMEOUT, and guards can be used a t the entryport sid e. The
NOTIFY entryport d eclaration has an optional QUEUE part, which i s
used to s p e c ify th e maximum s i z e o f a c ir c u la r queue o f message
buffers associated with the entryport. I f th is queue g e ts f u l l the
o ld est message i s overw ritten when a new buffer i s required.

122 -

Exitport End Entryport End

SELECTWHEN guard - » RECEIVE reqmsg FROM entry => . . .
OR

•OR
ELSE TIMEOUT spot => . . .

END;

Port D eclarations for the n o tify transaction:
EXITPORT e x it :notify_jnessage_type;
ENTRYPORT entry:notify_jnessage__type QUEOE(integer constant);
F ig. A.2 N otify Prim itive
A.1.3 Other D eta ils
Link d eclaration s describe the message port interconnections between
tasks w ithin a module. Only ports o f the same transaction type may be
linked , e . g . , n o tify e x itp o r ts to n otify entryports.

LINK exitportname TO entryportname;
Two statem ents not standard in Pascal are provided:
(1) <loop> ::= LOOP <statment sequence> end

The sequence of statem ents i s repeatedly executed.
(2) <delay statement> ::= DELAY <integer expression>

The delay statement delays the execution of the next statement by
the time corresponding to the value of the in teger expression.

A f u l l d escr ip tion o f the Conic programming language i s ava ila b le
in [Magee 83a].
A.2 Configuration Language

Systems, in Conic, c o n s is t of interconnected se ts o f module
in stan ces. These are the sm allest u n its in the configuration of a system
and must resid e in a s in g le s ta t io n . I t i s p ossib le however to have more
than one module instance in a s ta t io n . A configuration language i s used
to sp ecify a system, an example i s presented in figu re A.3 . The
sp e c if ic a tio n id e n t i f ie s the module types from which the system w i l l be
constructed, declares the in stan ces o f these types which w il l e x is t in
the system and describes the in ter-conn ection of in stan ces. These three
function s are achieved by the USE, CREATE, and LINK constructs
resp ectiv e ly :

123 -

USE - This construct provides a context of the module types from which a
system i s to be constructed . I t allow s instances o f these types to
be used in the system. In the example the module types are
bedmonitor and nurseunit.

CREATE - This construct s p e c if ie s named in stan ces of module types which
w il l e x is t in the system. The name of module in stan ces must be
unique w ith in a s p e c if ic a t io n . Instances can be parameterised,
e . g . , bedmonitor, and ’fa m il ie s 1 of module instances may be a lso
sp e c if ie d , e .g . , bed.

LINK - Module in stan ces are connected together using th is construct. I t
s p e c if ie s the binding o f entryports to ex itp o r ts . The constraint o f
t h is binding i s th at an e x itp o r t must have the same type
(tran saction and message) as the entryport to which i t i s lin ked .
A ll the lin k s o f th is example are from one ex itp ort to one
entryport; i . e . , the connections are one-to-one. However,
entryports may have more than one ex itp ort linked to them; i . e . , n-
to-one connections are allow ed. The connections are sp e c ified by
instancename.portname p a irs.

I a la rm s» --------------VDU— j BED[1] |I status<<-----------\
\/
/\
/ \

/
/
/ /| a larm s»----- / /

VDU— j BED[4] I /! s t a t u s « ——— /

-------------»a larm s[1] j
: I/ ----------->>alarms[4] j
j NURSE j

-----------<<query[1] |
. i• i/ ---------<<query[4] |

» ex itp ort
I« entryport

SYSTEM ward;USE bedmonitor, nurseunit;
CONST nbed = 4;CREATE bed[1..nbed]: bedmonitor(100); <1,2,3,4> nurse : nurseunit; <5>LINK bed[1 . .nbed].alarm s TO nurse.alarm s; nurse.query[1. .nbed] TO bed[1. .nbed];END;

F ig . A .3 System S p ec ific a tio n (Ward Monitoring)

124 -

The mapping of modules to p h ysica l sta tio n s i s currently sp e c ified by
annotating the con figu ration sp e c if ic a tio n whith the address to which
each module instance should be a lloca ted (numbers between < and >).
Currently these sp e c if ic a t io n s are used to create in a development
system a load image for each s ta t io n . In th is case the configuration of
in stances and the binding inform ation are s t a t ic . Extensions o f the
configuration language, e . g . , for allowing structuring of system
sp e c if ic a tio n s , and p rov ision o f the cap ab ility of changing at run-time
the sp e c if ic a tio n o f a system (and consequently the configuration), are
currently being studied [Magee 83b].
A.3 Run-Time Support

At run-time module in stan ces are supported by the Conic machine (or
operating system), th is i s i l lu s tr a te d in figu re A.4. This base machine
i s r ep lica ted a t every s ta t io n o f the system. The kernel provides fo r ,
tasking, lo c a l message passing, in terru pt handling, time fu nction s, and
lo ca l lin k c a p a b ility . Tasks are schedulled to run according the
p r io r it ie s a ssocia ted to th e ir d e f in it io n . The communication system
[Sloman 83]» provides for remote message passing (communication among
modules a llo ca ted in d if fe r e n t s ta t io n s) . However lo c a l and remote
message passing have id e n tic a l sem antics. The lo c a l management layer i s
outlined in figu re A.5. The module manager supports the dynamic
in s ta n tia tio n o f module in sta n ces; the code of a module type i s loaded
in the s ta tio n storage by using the store access module, which a lso
provides storage reading c a p a b ility . The lin k manager provides for the
binding of entryports to e x itp o r ts . The error manager provides run-time
error reporting ca p a b ility . This and the storage reading cap ab ility are
used mainly for debugging purposes. I t i s in ter e stin g to note that with
the exception o f the kernel the base machine i s programmed in Conic.

APPLICATION MODULES (Conic) -I
I
I
I \LOCAL MANAGEMENT (Conic) I
I

i
i

COMMUNICATION (Conic) S
I

i•> Conic
I ii Machine

KERNEL (Pascal) I
I

iiii
I /

Figure A.4 Layer Model o f a Conic S tation

125 -

.-V/-V/-Imreq treq
II MODULE I MANAGER

| LOCAL MANAGEMENT |

F ig, A.5 Local Management Layer
The serv ices provided by the management layer are required for

supporting dynamic configuration (th e a b il i ty to modify a system w hile
i t i s running). They provide support for configuration operations —
load module type} and c re a te , l in k , and s ta r t module in stan ces, a t
the s ta tio n le v e l . These op eration s are used to enforce the system
sp e c if ic a tio n . Configuration operations are requested through standard
messages sent to the appropriated management modules. These messages
contain system id e n t i f ie r s o f o b jec ts in the target system (moduletype,
moduleinstance, p o rt). In general i t may be necessary to undo
configuration operations, thus the complementary operations are a lso
provided. These se r v ic es help the achievement of fa u lt-to lera n ce
ca p a b ility , other uses o f th ese se r v ic e s are discussed in [Magee 8 3 b].

Other u t i l i t y se r v ic e s can be provided by standard modules.
Examples: a f i l e server, a module type loader, a terminal driver. They
can be introduced in the s p e c if ic a t io n o f a system at the development
stage.

STORE ACCESS

-/Verror
ERRORMANAGER

126 -

REFERENCES

[Adrion 82] Adrion, W., e t a l , V alidation , V er ifica tio n , and T esting o f Computer Software, ACM Computing Surveys, V o l.14, N.2, June 82.
[Anderson 81] Anderson, T ., Lee, P ., Fault Tolerance P rin cip les and P raetiee, P ren tice/H a ll In tern ation al, 81.
[Anderson 82] Anderson, T ., Lee, P ., Fault Tolerance Terminology Proposals, 12th Symposium on Fault-Tolerant Computing, June 82 .
[Andrews 79] Andrews, D ., Using Executable A ssertions for T esting and Fault Tolerance, 9th Symposium on Fault Tolerant Computing, June 79 .
[A v iz ien is 71] A v iz ien is , A ., e t a l , The STAR (S elf-T estin g and Repairing Computer, An In vestiga tion of the Theory and

Practice of Fault-T olerant Computer Design, IEEE Tran, on Computers, V ol. C-20, November 71.
[A v iz ien is 76] A v iz ien is , A ., Fault-Tolerant Systems, IEEE

Transactions on Computers, Vol. C-25, 1976.
[A v iz ien is 82] A v iz ien is , A ., The Four-Universe Information System Model for the Study of Fault-Tolerance, 12th Symposium on Fault-T olerant Computing, June 82 .
[B arigazzi 82] B arigazzi, G ., e t a l , Reconfiguration Procedure in a D istributed M ultiprocessor System, 12th Symposium on

Fault-T olerant Computing, June 82.
[B a rtle t 81] B a rtle t, J . , A Non-Stop Kernel, Proc. of the Eight

Symposium on Operating Systems P rin cip les, December 81.
[B ernstein 79] B ernstein A ., Scheneider, F ., On R estriction s to Ensure Reproducible Behaviour in Concurrent Programs, TR79-

37^, Dept, o f Computer Science, Cornell U niversity , New York, November 80.
[B ernstein 81] B ernstein , A ., Harter, P ., Proving Real-time Properties of Programs w ith Temporal Logic, Proceedings o f the

Eighth Symposium on Operating Systems P rin cip les, December 81.
[Borr 81] Borr, A ., Transaction Monitoring in Encompass [TM]: R eliab le D istr ib u ted Transaction Processing, Proc. 7th In t. Conf. on Very Large Data Bases (VLDB), Cannes, France, September 81.
[Boyd 81] Boyd, R ., Hughes J . , High A va ila b ility Rings for Control o f Telecommunication Switching. Cambridge Ring

Modelling and Sim ulation Special In terest Group, March 81.

127 -

[Chavade 82]

[D ijkstra 68]

[D ijk stra 75]

[D isparte 81]

[F ischer 82a]

[F ischer 82b]

[Frison 82]

[Garg 84]

[Garcia 82]

[Gaude 80]

[G eitz 81]

[Goetz 7 8]

[Goldeberg 80]

[Brown 83] Brown, I ., Bosch E., The Synergism of Microcomputers and PLCs in a Network, 5th IFAC Workshop on D istributed Computer Control Systems, Transwal, South Africa, May
83.
Chavade, J ., C rouzet, Y., The P.A.D: A S elf-C h eck in g C ircuit for F au lt-D etection in Microcomputers, 12th Symposium on Fault Tolerant Computing, June 82.
D ijk s tr a , E., C ooperating S eq u en tia l P r o ce sse s , in Programming Languages, F. Genuys (Ed.), Academic Press, New York 68.
D ijk s tr a , E., H ie r a r c h ic a l Ordering o f S eq u e n tia l Processes, Acta Inform atica, 1, N. 2, 75.
D isparte, C., A Self-Checking VLSI Microprocessor for E le c tr o n ic E ngine C on tro l, 11th Symposium on F a u lt Tolerant Computing, June 81.
Fischer, M., Lynch, N., A Lower Bound for the Time to
Assure In te r a c tiv e Consistency, Information Processing L etters, Vol.1, N. 4, June 82.
F isc h e r , M., Lynch N., I m p o s s ib i l i ty o f D is tr ib u te d Consensus w ith one F au lty P rocess, MIT, MA. 02139» September 82.
Frison, S., Wensley J., In teractive Consistency and i t s Impact on the Design of TMR Systems, 12th Symposium on
Fault-T olerant Computing, June 82.
Garg, K., Design and Performance V alidation Techniques
for D istr ib u ted Systems Using Timed P etri Nets, Ph.D. T h esis (in p r e p a r a tio n), Im p eria l C o lleg e , London, England.
Garcia-M olina, H., E lection s in a D istributed Computing
System, IEEE Transactions on Computer, Vol. C—31» N. 1, January 82.
Gaude, G., e t a l , D esign and A ppraisal o f O perating Systems Matched in S e lec tiv e Active Redundancy, 10th Symposium on Fault-T oler ant Computing, October 80.
G eitz, G., S chm itter, E., BFS—R ealization of a F au lt- Tolerant A rch itecture, The 8 th Annual Symp. on Computer A rchitecture, Sigarch N ew sletter, Vol.9* N.3» May 81.
G oetz, F., P l i s c h , D., Hardware vs. Softw are D esign Tradeoffs fo r Maintenance Functions in H igh -R eliab ility
Real Time System s, Proc. of the IEEE, Vol. 66, N. 10, October 78 .
G oldberg, J. e t a l , Development and E valu a tion o f a Software-Implemented Fault-T olerance(SIFT) Computer:
SIFT Operating System, Interim Technical Report 2, SRI In tern ation a l, A p ril 80.

1 2 8 -

[Gray 7 8] Gray, J . , Notes on Data Base Operating Systems, in
Operating Systems: An Advanced Course, Spring Verlag
78.

[Hamming 50] Hamming, R ., Error D etecting and Error Correcting Codes, B e ll System Technical Journal, Vol. 26, N.2, April 50.
[Herbert 81] Herbert, A ., Needhan, R ., Sequencing Computation Steps in a Network, Proceedings of the Eighth Symposium on

Operating Systems P rin cip les, December 81 .
[Hetch 7 6] Hecht, H., Fault Tolerant Software for Real-Time A p p lications, Computing Surveys, 8 , December 76.
[Hopkins 80] Hopkins, A. L ., Fault-Tolerant System Design: Broad Brush and Fine P rin t, Computer, IEEE, March 80 .
[Hopkins 7 8] Hopkins, e t a l , FTMP—A High R eliable Fault-Tolerant M ultiprocessor for A ircraft, Proc. of the IEEE, Vol. 66, N. 10, October 7 8 .
[Ihara 7 8] Ihara, H ., e t a l , Fault-Toler ant System With Three Symmetric Computers, Proc. of the IEEE, Vol. 66, N. 10,

October 7 8 .
[Kain 80] Kain, R ., Franta, W., Interprocess Communication

Schemes Supporting System Reconfiguration, Compsac - Proc. Computer Software and Applications Conference, October 80.
[Kaiser 7 8] K aiser, C ., e t a l , Design of a Continuously A vailable D istributed Real-Time System, 8th Symposium on Fault-

Tolerant Computing, June 7 8 .
[Kant 83] Kant, K., E ff ic ie n t Local Checkpointing for Software

Fault Tolerance, Operating Systems Review, ACM, Vol. 17, N.2, A pril 83 .
[Katsuki 7 8] Katzuki, D. e t a l , Pluribus— An Operational F au lt- Tolerant M ultiprocessor, Proc. of the IEEE, Vol. 66, N. 10, October 7 8 .
[Kim 79] Kim, K ., Error D etection , Reconfiguration and Recovery in D istrib u ted Computing Systems, The 1st In t. Conf. on

D istributed Computing Systems, H untsville, Alabama, October 7 9 .
[Kleinrock 80] K leinrock, K ., e t a l , A Highly R eliable D istributed Loop A rch itectu re, 10th Symposium on Fault-Tolerant

Computing, October 80 .
[Kopetz 82a] Kopetz, H ., e t a l , An Architecture for a Maintainable

Real Time System (MARS), Report MA 8 2 /2 , Technische U n iversita t B er lin , April 82.
[Kopetz 82b] Kopetz, H ., The Failure Fault Model, 12th Symposium on Fault-T olerant Computing, June 82.

129 -

[Kramer 81]

[Kramer 8 3]

[Lamport 7 8]

[Lampson 81]

[Lantz 80]

[Laprie 82]

[Lee 82]

[Leinbaugh 80]

[Leung 80]

[Levy 7 8]

[Liskov 79]

[Liskov 81]

[Liskov 8 3]

[Lomet 7 7]

[Kopetz 8 3] Kopetz, H., Real Time in D istributed Systems, 5th IFAC
Workshop on D istributed Computer Control Systems, Transwal, South A frica, May 83.
Kramer, J . , e t a l , Intertask Communication Prim itives for D istributed Computer Control Systems, 2nd Conf. D istributed Computer Control Systems, Paris, April 81 .
Kramer, J . , e t a l , Conic: An Integrated Approach toD istrib u ted Control Systems, IEE Proc., Vol. 130, Pt. E, N. 1, January 83.
Lamport, L ., The Implementation of R eliable D istributed M ultiprocess Systems, Computer Networks 2, 7 8 .
Lampson, B ., Atomic Transactions, in D istributed Systems A rchitecture and Implementation, an Advanced
Course, Spring Verlag, 81 .
Lantz, K., Uniform In terfaces for D istributed Systems,
PhD th e s is , Computer Science Dept., Univ. of Rochester, May 80.
Laprie, J . , Costes A ., Dependability: A Unifying
Comcept for R eliab le Computing, 10th Symposium on Fault-T olerant Computing, June 82 .
Lee, P. A., Morgan D. E ., Fundamental Concepts Of Fault
Tolerant Computing - Progress Report, 12th Symposium on Fault-T olerant Computing, June 82.
Leinbaugh, D ., Guaranteed Response Times in a Hard
Real-Time Environment, IEEE Trans, on Software Eng., March 80 .
Leung C ., Fault Tolerance in Packet Communication
Computer A rch itectures, PhD Thesis, MIT, September 80.
Levy J . , A M ultiple Computer System for R eliab le Transaction Processing, Sigsm all Newsletter, October
78.
Liskov, B ., e t a l , CLU Reference Manual, in Lecture notes in Computer Science, Vol. 114, Springer-Verlag,
New York 81 .
Liskov, B ., On L in g u istic Support for D istributed
Programs, Proceedings IEEE Symp. on R e lia b ility in D istributed Software and Data Base Systems, P ittisb u rgh , July 81.
Liskov, B ., S c h e if le r , R ., Guardians and Actions: L in gu istic Support fo r Robust D istributed Programs, ACM
Trans, on Programming Languages and Systems, Vol. 5 , N. 3, July 83.
Lomet,D., Process Structuring, Synchronization, and
Recovery Using Atomic Actions, in Proc. of an ACM Conference on Language Design for R eliable Software,
Raleigh North, Carolina, March 77.

130 -

A

[Loques 8 3]

[Magee 83a]

[Magee 8 3 b]

[Magee 84]

[Marchal 82]

[McConnel 7 9]

[McDermid 80]

[Merlin 77]

[Morgan 7 7]

[Moss 81]

[Nelson 81]

[Ohm 79]

[Osaki 80]

[Pease 80]

[Peterson 72]

[Powell 82]

Loques, 0 . , Configuration Control, Conic Group Internal
Report, Imperial C ollege, January 8 3 .
Magee, J . , e t a l , The Conic Programming Language, Version 1 .1 , Research Report DOC 82/11 , Dept, of Computing, Imperial College, London, March 83.
Magee, J . , Kramer, J . , Dynamic System Configuration for D istributed Real-tim e Systems, Real-time Systems
Symposium, IEEE, Arlingnton, V irginia, December 8 3 .
Magee, J . , Provision of F le x ib ility in D istributed
Systems, PhD th e s is (in preparation), Imperial C ollege,84.
Marchal, P . , Courtois, B ., On d etectin g the Hardware F ailu res D isrupting Programs in M icroprocessors, 12th
Symposium on Fault Tolerant Computing, June 82 .
McConnel, S . , e t a l . , The Measurement and Analysis o f
Transient Errors in D ig ita l Computing Systems, 9th Symposium on Fault-Tolerant Computing, IEEE, 79.
McDermid J . , Checkpointing and Error Recovery in
D istributed Systems, Royal S ignals & Radar Establishm ent, Memorandum N. 3271, September 80.
M erlin, P ., Randell, B ., Consistent S tate Restoration
in D istrib u ted Systems, Report N. TR113, Computer
Laboratory, Univ. o f New Castle upon Tyne, 77.
Morgan, D ., e t a l , A Survey of Methods for Improving
Computer Network R e lia b ility and A v a ila b ility , IEEE Computer Magazine, November 7 7 .
Moss, E ., Nested Transactions: An Approach to R eliable
D istrib u ted Computing. PhD th e s is , MIT-Lab. for Comp. Science, A pril 81.
Nelson, B ., Remote Procedure C all, Xerox Research Report, CSL-81-9, a lso PhD th es is report, Carnegie
Mellon U n iversity , CMU-CS-81-119.
Ohm, V., R e lia b il ity Considerations for Semiconductor
Memories, COMPCON Spring 79, IEEE 79.
Osaki, S ., N ish io , T ., Evaluation of Some Fault
Tolerant Computer A rchitectures, in Lecture Notes in Computer Science 97, Springer Verlag, B erlin , 80.
Pease, M. e t a l , Reaching Agreement in Presence o f F aults, Journal o f the ACM, April 80.
Peterson W., Weldon E ., Error-correcting Codes, Cambridge, MA, MIT Press, 72.
Powell, R ., Dependability Evaluation o f Communication Support Systems for Local Area D istributed Computing, 12th Symposium on Fault Tolerant Computing, June 82 .

- 131 -

[Randell 75]

[Randell 7 8]

[Rennels 7 8]

[Robinson 82]

[Russel 80]

[S a ltzer 81]

[Scheneider 81]

[S ch lich tin g 80]

[S ch lich tin g 82]

[Schmid 82]

[S ch oeffler 7 9]

[Sedmak 80]

[Sheridan 7 8]

[Shoch 80]

[Prince 81] Prince, S ., Sloman, M., Communication Requirements of a
D istributed Computer Control System, IEE p roc., Vol. 128, Pt. E, N. 1, January 81.
Randell, B . , System Structure for Software Fault Tolerance, IEEE Trans, on Software Enginnering, Vol. SE-1, N. 2 , June 75.
Randell, B . , e t a l , R e lia b ility Issues in Computing
System Design, ACM Computing Surveys, June 7 8 .
Rennels, D ., e t a l , A Study of Standard Building Blocks
for the Design o f Fault Tolerant D istributed Computing Control Systems, 8th Symposium on Fault Tolerant
Computing, June 79•
Robinson, A. S. , A User Oriented Perpective of Fault- Tolerant System Models and Terminologies, 12th
Symposium on Fault-T oler ant Computing, June 82 .
Russel, D ., S ta te Restoration in Systems of
Communicating Processes, IEEE Trans. on Software Engineering, March 80.
S a ltzer , J . , e t a l , End-To-End Arguments in System Design, Proc. o f the 2nd I n t ' l Conf. on D istributed
Computing (IEEE), Paris, France, April 81.
Scheneider, F. B ., S ch lich tin g , R., Towards Fault- Tolerant Process Control Software, 11th Symposium on Fault-T olerant Computing, June 81.
S ch lich tin g 80, R ., Scheneider F ., V er ifica tio n o f
Fault-T olerant Software, TR. 80-446, Dept, o f Comp. Science, Cornell U niversity , New York, November 8 0 .
S ch lich tin g 81, R., Scheneider F ., F ail-S topProcessors: An Approach to Designing Fault-Tolerant
Computing Systems, TR. 81—479» Dept, of Comp. Science, Cornell U n iversity , New York, November 81.
Schmid, M., e t a l , Upset Exposure by Means o f
Abstraction V e r ific a tio n , 12th Symposium on Fault Tolerant Computing, June 82.
S ch o effler , J . , Software Data Architecture for D istributed Data A cquisition and Control Systems, IFAC
79.
Sedmak, R ., L iebergot, H ., Fault Tolerance of a General Purpose Computer Implemented by Very Large Scale
In tegra tion , IEEE Trans, on Computers, Vol c-29, N. 6 , June 80.
Sheridan, C., Space Sh u ttle Software, Datamation 24, July 7 8 .
Shoch, J . , Hupp, J . , Measured Performance o f an Ethernet Local Area Network, Comm, of ACM, Dec. 80.

132 -

[Shooman 68]

[Shooman 8 3]

[Shrivastava 79]

[S k laroff 76]

[SIOman 8 3]

[Smith 75]

[Souza 80]

[Spector 82]

[Tillman 82]

[Toy 7 8]

[USA-DOD 80]

[Wakerly 7 6]

[Watson 81]

[Wensley 7 6]

[Wensley 7 8]

[Wirth 7 6]

Shooman, M., P rob ab listic R e lia b ility : An Engineering
Approach, McGraw-Hill, New York, 68.
Shooman, M., Software Engineering, Mcgraw-Hill, New York, 8 3 .
Shrivastava, S. , Concurrent Pascal with Backward Error Recovery: Language Features and Examples, Software-
Practice and Experience, Vol. 9» 79.
S k laroff, J . , Redundancy Management Techniques for
Space S h u ttle Computers, IBM J. o f Research and Development, January 7 6 .
Sloman, M., e t a l , A F lex ib le Communication System for
D istributed Computer Control, 5th IFAC Workshop on D istributed Computer Control Systems, Transwal, South
A frica, May 83.
Smith, B ., A Damage and Fault Tolerant Input/Output Network, IEEE Trans, on Computers, Vol. C-24, n. 5, May
75.
Souza, J . , A U nified Method for the B enefit Analysis o f Fault-T olerance, 10th Symposium on Fault-Tolerant Computing, October 8 0 .
Spector, A ., Performing Remote Operations E ff ic ie n t ly on a Local Computer Network, Comm, of ACM, April 82 .
Tilman P ., ADDAM - The ASWE D istributed Data Base Management, D istributed Data Bases, North Holland
Publishing Company, 82.
Toy, W., Fault-T olerant Design of Local ESS Processors,
Proc. of the IEEE, V ol. 66, N.10, October 7 8 .
USA Dept, o f Defence. Reference Manual for the ADA
Programming Language, July 80.
Wakerly J . , Microcomputer R e lia b ility Improvement Using Triple Modular Redundancy, Proc. of the IEEE,Vol. 64,
N. 6 , June 76.
Watson, R ., Timer-Based Mechanisms in R eliab leTransport Protocol Connection Management, ComputerNetworks, Vol. 5> North-Holland Publishing Company,
1981.

Wensley, H ., e t a l , The Design, Analysis, and
V e r ifica tio n o f The SIFT Fault Tolerant System, Proc.of the 2sd I n t ' l Conf. on Software Enginnering, October
82.

Wensley, H ., e t a l , SIFT: Design and Analysis o f aFault Tolerant Computer for A ircraft Control.Proceedings o f the IEEE, October 7 8 .
Wirth, N., Jensen, K., Pascal User Manual and Report,
Second E dition , Springer Verlag, 1976.

133 -

[Wolf 79] Wolf, J . , Design of a D istributed Fault-Tolerant Loop
Network, 9th Symposium on Fault Tolerant Computing,
June 79.

[Wood 80] Wood, G. G ., Review of Common Practice and Accepted Hardware Standards in Process Control, Real-time Data Handling and Process Control: Common P ractices, Status and Future Trends, Proceedings of the F irst European Symposium, B er lin , October 79.
[Wulf 75] Wulf, W., R eliab le Hardware/Software Architecture, IEEE

Transactions on Software Engineering, June 75.
[Zave 76] Zave, P ., On the Formal D efin ition of Processes, Proc.

of In t. Conf. on P ara lle l Processing, IEEE, August 76.
[Z ie lin sk i 8 3] Z ie lin sk y , K., Dynamic Module A llocation Algorithm for

Fault-T oler ant D istributed Computer Control Systems, Working paper, Cambridge Computer Laboratory, June 8 3 .

- 134 -

