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Abstract

Distributed systems offer a number of potential advantages over 
conventional systems in response time, availability, extensibility, and 
performance. For this reason distributed computer systems are 
increasingly being used for the implementation of process control 
applications. Some of these applications have stringent reliability 
requirements which can be met by the use of fault tolerance techniques. 
In most systems fault tolerance is obtained through the use of hardware 
redundancy, but software redundancy techniques are also required. This 
thesis proposes techniques for the use of "hot" and "cold" standby 
redundancy of software modules, based on standard stations connected by 
a communication network.

The hot and cold standby redundancy are supported by a common set 
of system modules, which provide for detection of failures and for 
reconfiguration of the modules of the application. Cold standby modules 
are created and activated by the system in order to replace failed 
modules, but no state information is preserved. Hot standby modules do 
preserve state information, and transparent failure recovery is 
supported. In this case the application system can continue its 
operation without any loss of control capability. Extra mechanisms are 
needed in order to support the hot standby scheme by performing the 
transfer of the application state to the back-up module(s) and, in case 
of a module failure, by allowing its back-up to take over its functions.

The fault tolerance support mechanisms are intentionally simple, 
and are implemented by standard modules. Their simplicity permits them 
to be used in microcomputer systems. Their modularity permits a system 
designer to use them selectively in order to meet the reliability 
requirements of the application. Another quality of the approach is that 
the support mechanisms are built using facilities provided by an 
existing distributed system: CONIC, developed at Imperial College, for
distributed computer control applications. This allows applications 
having mixed reliability requirements to be supported by the same 
software architecture. Also, application modules need not be written 
with fault tolerance in mind , but can be transformed, at a later stage, 
to provide the required degree of reliability. In addition, the 
mechanisms can be readily transported to any hardware system already 
supporting this software architecture. The relevant features of the 
fault tolerant system were implemented and tested in a working 
prototype.
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CHAPTER I

INTRODUCTION

The use of computers in control applications is increasingly 
common. Combined factors such as uninterrupted control capability, small 
incremental expansion cost, and enhanced modifiability and flexibility 
has led to many of these systems being implemented by sets of computers. 
These computers (termed stations) are physically interconnected in order 
to support the application control function. The control function is 
naturally divided among processing entities supported by the computers. 
These processing entities are logically connected in order to cooperate 
to perform the global control function. The result is a distributed 
computer control system (DCCS).

There is a need for a comprehensive support environment for 
building real-time process control applications. This environment should 
provide the basic architecture and the tools for the development and 
implementation of different applications according to their specific 
requirements. Control applications inherently have strong reliability 
requirements which require the provision of fault tolerance capability. 
Thus the support environment has to support the development of 
applications which require fault tolerance.

The aim is to design a fault tolerant distributed computer system 
for providing varying degrees of reliability requirements for process 
control applications. In this direction we propose the integration of 
features for specification and implementation of fault tolerant systems 
into a standard DCCS. In general, achieving a fault tolerance
capability is non-trivial, since all levels of the system should be 
considered. In order to reduce the size of the task we have selected a 
programming environment specially designed for the support of 
distributed control applications —  Conic, developed at Imperial College 
[Kramer 8 3] • Although the design of the fault tolerance support 
mechanisms was based on Conic, basic principles for the construction of 
fault tolerant systems were identified; they are useful for the 
construction of fault tolerant systems based on other programming 
environments.
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This approach is different to that adopted in most of the fault 
tolerant system proposals that can be found in the literature, e.g 
[Geitz 81, Hopkins 78, Kaiser 7 8 , Katsuki 7 8, Wensley 7 8]. In those 
systems the fault tolerance capability is obtained by special purpose 
designs of the whole system. This could be justified in order to supply 
specific requirements of their intended application. However, there are 
many applications where simplicity of design and ease of implementation 
are mandatory requirements. Also, different parts of the system can have 
different reliability requirements; thus fault tolerance should be made 
available only where required. Our approach is intended for this class 
of applications.

1.1 Design Goals

In this section the main goals we have set up for the design of the 
fault tolerant system are presented and justified.

Simplicity

The computer control systems we devise are likely to be composed of 
a large number of computer stations. Typically each station will be 
concerned with the local control of a plant device. Because of cost 
considerations most of these stations have to be implemented by a single 
microcomputer which may not have very sophisticated or large local 
resources. We are interested in mechanisms that can be used by any 
station in a typical application. Hence these mechanisms should be 
simple enough not to add any unreasonable resource demand to the 
stations. A reduced number of more powerful stations can be provided in 
order to support special services to be shared by a group of stations.

Also, keeping the mechanisms simple helps the achievement of 
reliability: They should be easier to design and implement, and thus
design faults within the own mechanisms are less likely. They should be 
easier to understand by application designers, hence the risk of misuse 
is reduced.
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Transparency

It should be possible to design and test an application system 
without having fault tolerance in mind. At a second stage of design, 
fault tolerance capability would be added where necessary, but without 
having to redesign the application modules. This permits standard 
techniques and development tools to be used for the specification, 
verification, and testing of applications having different reliability 
requirements. In addition transparency is required for modularity: 
application modules can be independently designed and assembled together 
to implement different application systems. In order to achieve this 
goal the fault tolerance support mechanisms should be orthogonal to the 
application functions.

Modular Design

The fault tolerance capability should be achieved through 
mechanisms built upon the basic architecture provided by the base system 
(e.g., standard Conic). This allows the same architecture to be used for 
implementing several applications according to their particular 
reliability requirements without having to redesign the basic supporting 
system. It should be necessary only to include the required reliability 
support modules. An additional quality of this approach is that 
application modules having different reliability characteristics can 
cooperate together in the same application system.

This does not means that a different mechanism is needed for 
supporting each particular reliability requirement. Instead, the support 
mechanisms should be structured in order to lead to a minimum number of 
different modules. An approach that helps fulfil this goal is to find 
structures where each level treats as uniformly as possible the objects 
under its responsibility.

Hardware Independence

In addition to the redundancy necessary to provide the fault 
tolerance capability the mechanisms should be as far as possible 
independent of special hardware features. This would allow their use in 
systems composed of available hardware components.
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In addition to these design goals, a working prototype of the 
fault tolerant system should be provided. This should ensure that all 
design details have been considered. It also would provide a platform 
for further refinements and extensions.

1.2 Why use Conic for Designing a Fault Tolerant System ?

Distributed control applications have a multiplicity of reliability 
requirements, even within a specific application. Conic provides a 
programming and configuration environment for the implementation of 
distributed computer control applications, but no features particularly 
aimed at fault tolerance. Thus, there is a need to extend Conic to allow 
the implementation of fault tolerant systems. Conic was designed with 
the goal of providing sufficient flexibility for its area of application 
by the use of the modularity concept [Magee 84]. Basic support 
mechanisms are provided and additional modules are used to configure the 
system in order to meet the requirements of each application, these 
modules are programmed in the Conic language and supported by the basic 
mechanisms. In this way, a capability such as fault tolerance can be 
obtainned by providing standard system modules for its support. In 
addition this system provides an ideal environment for supporting 
systems where fault tolerance is obtained through re-configuration. Its 
interesting characteristics can be summarised as following:

Communication System Architecture. The Conic environment directly 
provides a communication system. The application modules can run in 
different processing stations and communicate with each other. The 
physical separation of the processors is an important fault 
isolation factor.

Replaceable Units. Application modules can be separately designed 
and compiled. Module instances can be assigned and created in 
stations at run-time, without interfering with the operation of 
other modules. This matches the concept of a basic replaceable unit 
and hence directly supports system reconfiguration and repair 
activities.

Message Passing. Intermodule communication is performed via message 
passing without using shared data objects. This is an important 
factor in confining errors within a failed module.
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Indirect Naming. The interface of a module is characterized by the 
messages which can be sent and received by the module. Exitports 
are used to send messages out of a module, whereas entryports are 
used to receive messages into a module. Thus a message is directed 
not to an entryport of a receiving module but to an exitport of 
the sending module. A separate binding operation is used to link 
local ports to those of another module. This helps system 
reconfiguration in case of failure.

Strong Typing. Ports are strongly typed objects. This contributes 
to the removal of faults at the design stage.

It should be pointed out that we aim to identify general principles 
for the design of fault tolerant DCCSs. The above qualities of Conic 
help the achievement of this objective, thus the language itself does 
not become part of the problem, but it is a part of its solution. The 
relevant details of the Conic approach are presented in appendix A. In 
the remaining chapters of this thesis it is assumed that the reader is 
reasonably acquainted with the Conic concepts.

I. 3 Thesis Contents

The contents of the rest of the thesis are summarized below:

Chapter II: A presentation of the basic concepts used in the thesis. It 
also defines the level of the system at which fault tolerance is 
provided and the two classes of application systems that are supported.

Chapter III: A discussion of fault tolerance techniques which we have 
considered and adopted in the design of the system.

Chapter IV: A description of the fault tolerant system and of the the 
two reliability services that it supports. These services are intended 
to provide the reliability requirements of each class of application 
systems which are identified in chapter II.

Chapter V: A presentation of the recovery technique we propose for the 
support of one of the class of application systems identified in chapter
II. The language level mechanisms associated with this technique are 
also presented.
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Chapter VI: A presentation and discussion of the implementation details 
of the fault tolerance support mechanisms.

Chapter VII: Relevant aspects of the application of the approach for the 
construction of fault tolerant application systems are discussed.

Chapter VIII: Conclusions and Suggestions for Further Work.

Appendix: The relevant details of Conic are presented. Its purpose is to 
provide a concise summary of the Conic concepts used in this thesis. The 
appendix is structured in three sections. Section A.1 presents the Conic 
programming approach, section A.2 presents the Conic configuration 
language, and section A.3 presents the support mechanisms which provide 
the Conic run-time environment.
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CHAPTER II

BASIC CONCEPTS

In this chapter basic concepts for the development of the thesis 
are established. In sections 2.1 and 2.2 relevant concepts and the 
associated terminology required for the discussion of fault tolerance 
and reliability are presented. In section 2.3 we discuss how to achieve 
fault tolerance in a distributed computer system and propose a 
classification of system types which simplifies the study of the related 
issues, and the presentation of the thesis. Finally, in section 2.H we 
discuss the whole system and introduce some of the assumptions that are 
adopted in the thesis.

2.1 Concepts and Terminology

A careful reading of the literature of fault tolerant computing 
indicates that several sets of conflicting basic concepts have been 
used. The importance of using standardized concepts, which can be 
understood in a uniform way is recognised by the researchers working in 
the area. Ideally this set of concepts should be simple so that it is 
easily understood, and have general applicability in that it can be used 
for the discussion of all aspects of a computer system. Several 
contributions in this direction were presented at the last fault 
tolerant computing symposium [Avizienis 82, Kopetz 82b, Laprie 82, 
Robinson 82, and Anderson 82], and a special group has been working with 
the same purpose [Lee 82]. There appears to be a trend to a general 
agreement on the basic concepts. Major disagreements have arisen in 
relation to the terms to be employed to name these concepts, the cause 
of this probably being that authors tend to allow their particular area 
of interest to influence in their terminology proposals. It is not in 
the scope of this work to propose a new set of concepts and terminology. 
Thus we adopt the basic concepts and terminology proposed in 
[Anderson 81, Anderson 82]. They are very general, and are directly 
applicable to different aspects of our proposals. A more informal view 
of fault tolerant computing concepts is available in [Hopkins 80].
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2.1.1 The Concept of System

Any identifiable entity that maintains a pattern of behaviour at an 
interface with its environment can be considered a system. In general 
systems can be hierarchically subdivided into components. Thus the 
definition: a system consists of a set of components which interact 
under the control of a design. The design is itself a system, which has 
special characteristics: it supports and controls the interaction of the 
components. Thus the design also defines the behaviour of the system.

The interface is the place a system interacts with its environment. 
The environment is itself a system, and consequently an interface is the 
place of interaction between two systems. The external behaviour of a 
system can be described in terms of a finite set of external states and 
a function that defines transitions between states. The environment 
produces inputs as stimuli, and perceives the system state transitions 
at discrete instants of time. To each of the components of a system can 
be attached a state, the state of a component results from its 
interaction with the other components. The state of all the components 
of a system defines the internal state of the system. The external 
behaviour of the system can be described in terms of a function that 
maps the internal state to the external state.

Unfortunately, due to several reasons, the behaviour of a system 
may depart from that expected. In order to identify when this happens a 
specification of the system behaviour is required. There are many 
discussions about the characterization and even the possibility of 
obtaining a complete and correct specification for a complex system, but 
they do not seem to be very helpful and in order to make progress it is 
assumed that there is an authoritative specification of behaviour. This 
specification can be applied as a test in any situation to determine 
whether the behaviour of a system should or should not be considered 
acceptable.

2.1.2 Failure, Fault and Error
A failure of a system is said to occur when its behaviour deviates 

from that required by the specification of the system. It is essentially 
an event that can only be observed at the system interface with the 
environment. In order to define fault and error we have to refer to the 
internal state of the system.
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An erroneous state is an internal state which could lead to a 
failure, which can be attributed to some aspect of that state. An error 
is that part of an erroneous state that can lead to a failure. A fault 
is the mechanistic cause of an error. Thus a fault is the cause of an 
error, and an error is the cause of a failure.

It should be noted that the only difference between a fault and an 
error is related to the system structure: A fault in a system is an
error in a component of the system. But, the difference between error 
and failure is not only related to the system structure but also 
reflects the difference between a state and an event. A system is in 
error when its state is erroneous, whereas a system failure is the event 
of not producing behaviour as specified. The failure event occurs and 
may be observed only when the erroneous state is made visible at the 
system interface.

If the design of a system is assumed correct, then there is only 
one way for a failure to occur: due to the failure of one of the system
components. However, this may lead to a contradiction because the 
failure of the component can also be due to a design fault, in that a 
component with inadequate specification was used. In the real world it 
is not always feasible to control all the factors which can lead a 
system component to fail and some probability of failure is inevitable.
2.2 Reliability and Fault Tolerance

Reliability is a word that has been used in the computing world 
with two basic meanings: In a narrow sense as a quantitative measure 
that aims to quantify the quality of service provided by a system with 
respect to error occurrence and effect. In a broader sense it refers to 
a wide range of approaches and techniques which are used in the 
construction of a system in order to ensure that it will operate 
according to its specifications, i.e., to achieve a reliable system.
2.2.1 Reliability as a Measure

A system is normally designed in order to provide a specified
service. The situation in which a system fails to provide its service is
termed a system failure. Reliability is usually characterized by a
function of time, which provides a measure of the probability that no 
system failure will have occurred at a given time. In the practical
usage the reliability function is used to estimate the mean time to 
failure (MTTF) of a system, or the probability that a failure of a 
system will have occurred at a given time. The subject is covered in 
many books and publications, e.g., [Shooman 68, Osaki 80].
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The reliability measure is not sufficient to express the basic 
facts a system designer needs to know about a system. For example, 
considering that a system failure has occurred, a different measure —  
maintainability(or repairability) is used to express the length of time 
the service is interrupted. And, considering the alternation of service 
provision and service interruption another measure can be defined 
availability. Although these measures are not independent each of them 
can usually quantify a desired quality for a system service.

Most systems provide a number of different services. Also, in 
general within the same system, several error modes can be defined. 
Hence these measures may be generalized in order to consider this fact 
[Laprie 82].

2.2.2 Reliability as an Achievement
In order to achieve reliability two complementary approaches are 

normally employed [Avizienis 76].
The first —  Fault Prevention, attempts to ensure that no faults 

will occur in a system. This approach, used in the development phase of 
the system, has two basic interactive steps: (1) Fault avoidance 
techniques are used in order to minimize the introduction of faults 
during the system conception, e.g., specification and design
methodologies, and quality control. (2) Fault removal techniques are 
used in order to eliminate faults which still exist in the system, e.g., 
validation and testing techniques. Extensive coverage of the subject is 
available in [Adrion 82, Shooman 83]. The second —  Fault Tolerance, 
used in the operational phase of the system, uses a diversity of 
techniques that attempt to intervene and prevent faults from causing 
system failures.

A system in which fault tolerance techniques are employed is termed 
fault tolerant. In this work we aim to design a fault tolerant 
distributed computer control system. In general these systems will be 
composed by a large number of computers. Thus the probability of having 
failures is in some way increased. This is one of the reasons for 
application of fault tolerance techniques.

2.2.3 Redundancy

All techniques for achieving fault tolerance are based on the 
employment of redundancy. That is, extra elements that would not be 
required in a system which could be guaranteed to be free from faults.
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Redundancy has been employed to provide fault tolerance within a 
computer unit. For example, extra bits are used to provide error 
correction or detection capability in memory systems. Now the technology 
allows whole computer units to be made at very low cost, and in very 
small chips. This fact has made economically and physically feasible the 
use of redundant computer units. Also our area of application has 
particular characteristics which make attractive the use of redundant 
computer units to achieve fault tolerance. Thus we aim to fault 
tolerance techniques based on redundancy available at the computer unit 
level.

2.2.4 System Specification and Reliability

The reliability of a system always involves a distinction between 
acceptable and unacceptable behaviour. For this to be possible a system 
specification which describes the behaviour of the system must be 
available. Systems specifications have two important characteristics. 
The first is exactness, without which it cannot be used as a test on the 
system reliability. The second is multiplicity, which means that 
different aspects of the system behaviour may be subject to different 
specifications. These specifications may be related in such a way that 
still permits us to define desirable behaviour of a system which has 
failed according to some of its specifications. Thus there is an overall 
specification that defines the standard of reliability which is demanded 
of the whole system, and other specifications that are related to 
specific aspects of a system. It is important to distinguish a failure 
of the system according to the overall specification from a failure with 
respect to each component specification. The former is obviously much 
more significant. This characteristic removes any contradiction that 
could result from the reading of the next sections.

2.3 Fault Tolerant Distributed Computer Control Systems

A fault tolerant system is one that includes internal mechanisms 
which provide the system with the ability to recover by itself from 
failures of its components. In order to design a system like this the 
first decision to be made is concerned with the level where faults will 
be assumed to occur. The second is concerned with the level at which 
failures will be recovered. A control application is implemented by a 
set of application modules which are supported by a distributed computer 
system. The distributed computer system consists of microcomputer
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stations interconnected by a communication network. These systems can be 
constructed in such a way that a fault at a station does not affect the 
other stations of the system. Thus a fault at a station can directly 
affect only the application modules which are supported by this station. 
These modules can fail and consequently threaten the reliability of the 
application system.

The station failure independence can be used to achieve reliability 
for the application system. On the one hand the remaining stations can 
be used to provide fault tolerance for the application modules. On the 
other hand the remaining stations can support the necessary fault 
tolerance mechanisms. They have to detect failed application modules and 
intervene in order not to allow their failure to lead to an overall 
application system failure.

Our aim is to provide fault tolerance for the application system. 
In order to design the fault tolerance support mechanisms it is 
necessary to consider the relationship of the reliability of a module 
with the reliability of the overall application system. This is done in 
the next section.

2.3*1 Types of System

The systems of interest are classified in two abstract types. The 
classification intends to capture the relation between the failure of 
any of the constituent modules of a system and the failure of the 
overall specification of the system. The system types are characterized 
as follows.

Weak Failure Dependency: The system design is such that the 
standard of reliability required by the application that it 
implements is not broken if one or more of its constituent modules 
fail. That is, the service capability provided by the system is in 
some way degraded because of the failure of a module, but this is 
still sufficient to meet the application reliability requirements.

Strong Failure Dependency: The system design is such that the 
standard of reliability required by the application is broken if 
any of its constituent modules fail. That is, the failure of a 
module leads to a system failure.
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In the context of the above classification the design is a result 
of a system specification. The specification is a result of the 
application requirements. The final product of the system development is 
a set of modules which implement the system specification. Ideally this 
set of modules should constitute a weak failure dependency system. In 
practice the result of the development process can result in a strong 
failure dependency system. The specific reasons for this fact to occur 
are very dependent on the particular application, and within its context 
also on design decisions.

Most existing systems fit the weak failure dependency type. However 
In the literature many practical examples of architectures for the 
support of strong failure dependency systems can be found, e.g., 
[Wensley 7 8, Hopkins 7 8, Sklaroff 76], and there are also works which 
are concerned with particular aspects of this type of system, e.g, 
[Scheneider 81, Lamport 7 8 , Hecht 76]. The support of this type of 
system requires the use of special techniques and mechanisms in order to 
deal with their specific requirement. Although some common mechanisms 
can be used for the support of common requirements for both types of 
system. This thesis proposes an architecture for the support of both 
types of system. The abstract classification presented here is intended 
mainly to facilitate the study of related issues and the presentation of 
the support mechanisms. However, it should be pointed out that 
subsystems of both types may be found within the same application 
system.

2.3.2 Redundancy and System Types
In this section the motivation for using redundancy in each type of 

system is discussed.

2.3.2.1 Weak Failure Dependency

Here the main reason for the use of redundancy is to re-establish 
the quality of service provided by the system before a failure. This may 
be required for a number of reasons. For example, the interruption of 
the service provided by a failed module will not, by itself, immediately 
result in any irrecoverable damage to expensive equipment or endanger 
human life. While the service interruption initially does not have any 
catastrophic consequence this may happen if the interruption persists. 
A system like this has a dominant maintainability requirement for its 
modules. The simple interruption of the service does not mean a system
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failure. But a system failure can occur if the module is not repaired 
within a specified time. The existence of redundant computer resources 
in this system is essential to repair the application system and meet 
the standard of reliability of the overall application.

Other factors, of an economic nature, can make the use of 
redundancy attractive. One of them is the cost due to lost production 
caused by the service stoppage. In some installations it is not possible 
or it is difficult to realize on-site maintenance. Also, in general, it 
is difficult to predict the time necessary to make the repair. Thus the 
use of redundancy can allow the service to be re-established quickly and 
reduce the cost resulting from the failure. Another factor is the cost 
of the maintenance itself, which can be very high and even dominate the 
cost of a system if its whole life cycle is considered. The use of 
redundancy allows the system to continue working in spite of failures. 
The failed modules can be taken to a centralized repair facility. This 
leads to a reduction of maintenance personnel and associated test 
equipment with a consequent reduction of costs. Quantitative support for 
this argument is available in [Souza 80].

Finally it should be considered that systems are built to be used, 
and are always expected to provide some service. The absence of this 
service will normally cause problems for their users. The cost of 
computing resources tends to be very low and constitutes a very small 
part of the cost of a system. Hence the use of redundancy has become 
attractive for a larger class of systems.

2.3.2.2 Strong Failure Dependency
In this type of system, redundancy is mandatory as a condition to 

meet the overall relibility requirement. In order to illustrate the idea 
we give two examples.
(1) A module can have its behaviour dependent on the history of its 

interaction with the other modules of the system and/or with its 
environment. The result of this interaction is represented by the 
content of some state local to the module. Thus if the module 
fails and its state is lost the system fails.

(2) The behaviour of the whole system can depend on a co-ordinated 
cooperation of its constituent modules. This co-ordination is 
essential for performing the specified service and thus obtaining 
the reliability characteristic. If one of these modules fails the 
necessary co-ordination is lost and the system failure occurs.
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Fault prevention cannot be complete, thus in order to meet the 
requirements of this type of system the modules failures must be masked 
within the system itself. That is, the modules must be repaired in such 
a way that the other modules in the system will not notice the failure. 
Thus, in addition to the use of redundant resources some special 
technique must be applied in order to achieve the capability of masking 
the failure of a module.

2.3.3 Mechanisms for Fault Tolerance

From the discussion above two sets of support mechanisms which are 
necessary in the fault tolerant system can be identified.

One set of mechanisms is necessary to provide the capability of 
repairing individual modules in the application system. After a failure 
the entity implementing this mechanism will use the remaining computing 
resources and attempt to recreate the original set of modules of the 
system. Considering that a module failure is caused by a fault in a 
computing resource an additional entity is necessary in order to 
identify faulty resources. Thus the repair entity must cooperate with 
this entity in order to avoid the use of failed resources. This set of 
mechanisms would suffice in the support of weak failure dependency 
systems.

Another set of mechanisms is needed in order to achieve the 
reliability characteristic required for strong failure dependency 
systems. For reasons that will be clarified in the next chapters, the 
use of replicated modules is proposed in order to obtain the transparent 
recovery from failures of individual modules of a system. In this way a 
module at the system level would in fact be implemented by a set of 
replicas. Thus special techniques and corresponding support mechanisms 
are needed in order to support the use of these replicated modules and 
obtain the masking capability.

It is interesting to point out that the system repair capability is 
also necessary for strong failure dependency systems. Another system of 
modules can be defined if the replicated modules are considered as 
individual modules. In this system each of them makes a contribution to 
the achievement of reliability. The failure of a module of this system 
has no direct effect on the behaviour of the fault tolerant system, but 
indirectly it reduces its reliability. Thus a series of failures can 
lead the system to fail. Here the repair capability is needed to re
establish the original structure of modules of the system.
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2.4 The Whole System

In this section a view of the whole system is presented. In order 
to simplify the discussion it is assumed that only one application 
module can run at a station.

2.4.1 The Application System

The application system consists of a set of application modules. 
Each application module is a distinct entity designed to perform 
specific functions or services. In order to perform these services the 
modules communicate through well defined interfaces. It is our 
fundamental assumption that modules communicate exclusively by 
exchanging messages. The interface of a module is then defined by the 
messages it can accept and by the messages it can generate. Thus the 
behaviour of a module can only be judged by checking the messages it 
generates. It is also assumed that the application modules are correctly 
designed and in consequence no erroneous messages are generated if no 
other faults occur (we do not treat the thorny issue of algorithmic 
faults in the software). In this case the messages generated by a module 
can fail either because of faults at the station where the module is 
running, or because of faults affecting the messages themselves while 
they are being transported between modules. Thus it is necessary to make 
assumptions about how these faults can affect messages. This is done in 
the next sections.

2.4.2 The Communication System

For many reasons it is attractive to identify within a distributed 
computer system a separate entity —  The Communication System. This 
system is in charge of transporting messages exchanged among the 
application modules. It is composed of a distributed part that exists at 
every station and by a global part represented by the communication 
network. For now consider that the stations are reliable and messages 
can fail because faults affecting the communication network, e.g., 
messages can get corrupted or be lost. But communication systems can be 
also fault tolerant and recover (with a high probability of success) 
from most of the errors. The design of such kind of system is itself a 
subject of intensive research, e.g., [Morgan 77, Wensley 78, Wolf 79, 
KLeinrock 80, Powell 82]. In order to limit the scope of this thesis we 
assume mostly that the communication system reliability is an issue that 
can be resolved separately. In the rest of the thesis we make more
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specific assumptions about the qualities required for the communication 
system and discuss specific points related to our design. For now, it is 
assumed that the communication system reliability is enough to meet the 
reliability requirements of the application system.

It should be pointed out that the distributed part of the 
communication system is a part of the station. Thus faults at one 
station can also affect the messages being received at or transmitted 
from this station. The consideration of this fact is essential for the 
achievement of the reliability of the communication system.

2.4.3 The Station

Considering the communication system as reliable, the failure of an 
application module can only be caused by faults affecting the station 
where the module is running. Faults at a station can occur either in the 
hardware or in the design (algorithmic faults) of the base machine which 
supports the application modules (see appendix a.3 for an outline of the 
Conic Machine). In relation to the second type of faults we hope they do 
not exist, that is, the base machine is correctly designed. This 
assumption is essential, otherwise the fault tolerance support 
mechanisms could not be relied upon, since they also run on stations. 
Thus if a undiscovered fault exists in the basic machine design it has 
to be removed by a design change, which requires external intervention. 
In consequence, the only possibility of an application module failure is 
due to a fault in the hardware of a station. Hardware faults can be 
transient or permanent. Some errors due to transient faults may be 
recovered by retry, e.g., [Ciacelli 81], some errors due to permanent 
faults may be masked inside the station where they occur, e.g., by error 
correcting codes in memory. The station can make use of these 
techniques, but the effects of some hardware faults cannot be recovered 
at the station. This can affect the application module in many different 
ways. However, the module failure can only be observed by other modules 
through the messages which are generated by the module at fault. This 
permits the failure modes of a module to be classified into two basic 
categories.

(1) Error Confinement: The fault affects the module in such a way that
it stops all its activities. Hence the module also stops generating
any message. Thus no erroneous mesages are delivered by the module
at fault, i.e, all the errors are confined within the module.
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(2) Error Propagation: The fault affects the module in such a way that 
the module may continue operating. However, the messages the module 
may generate may not be according to its specification, i.e., 
errors can propagate outside the module because of erroneous 
messages.

These two failure modes are sufficient to describe the possible 
effects of a fault of the station hardware in the behaviour of an 
application module. It should be noticed that a failure in error 
propagation mode can change to a failure in error confinement; what is 
important is that in the mean time some erroneous messages may have been 
generated. In fact this difference is very important for the design of 
the fault tolerance support mechanisms.

2.4.4 Discussion

If error confinement is assumed the first consequence of a failure 
will be the interruption of the service performed by the affected 
module. There is no way this failure can directly lead other application 
modules to fail. But the failure can always be noticed when 
communication with the module is required, which can lead other modules 
to fail. If error propagation is assumed other modules can be directly 
affected by the fault. This happens because it is difficult to predict 
how the fault affects the module behaviour and its messages, e.g., a 
failed module can generate apparently correct messages, which can cause 
the system to fail. Some of the fault effects could be predicted and the 
application modules could have specific programming in order to recover 
from the corresponding errors. This is called forward error recovery and 
requires a special design for each different application system, 
[Randell 7 8]. It is also possible to use techniques that allow the fault 
tolerance support mechanisms to be orthogonal to the application system, 
thus being reusable. It is interesting to note that error confinement 
helps failure detection: A module can surely detect the failure of 
another module if it has been waiting too long time for a response.

The fault tolerance support mechanisms are implemented by modules 
very similar to the application modules. Thus, in their design it 
should be assumed that they have the same failure mode as the modules 
of the application system. At this point it should be noted that error 
propagation is more important for the design of the fault tolerance 
support mechanisms for strong failure dependency systems. It is 
reasonable to consider that some time after a fault the consequent
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errors will propagate to other modules and be detected. For weak failure 
dependency systems this could be recovered by stopping the application 
modules, and restarting them without using the failed station. For 
strong failure dependency systems the failures must not be noticed by 
the other modules. Thus the fault tolerance support mechanisms must in 
some way mask the consequences of a module failure. In the next chapter 
we present a review of application independent techniques which can be 
used for the support of strong failure dependency systems. There, we 
also introduce the technique used in our design and discuss the failure 
assumption on which it relies.

2.5 Summary of the Chapter

This chapter presents the basic concepts for the development of 
the rest of the thesis. A precise set of concepts and terminology for 
fault tolerant computing is summarized: A system is an entity that 
mantains a pattern of behaviour at an interface with an environment. A 
failure of a system is said to occur when its behaviour deviates from 
that required by the specification of the system. An error is that part 
of the state of the system that can lead to a failure. A fault is the 
mechanistic cause of an error.

In a narrow sense reliability refers to a measure which expresses 
the probability that no system failure will have occurred at a given 
time, during the system operation. In a broader sense reliability refers 
to a wide range of approaches and techniques which are used in order to 
achieve the behaviour required by the specification. In order to 
achieve high reliability two complementary approaches are used: Fault 
prevention, applicable in the development phase, uses a diversity of 
techniques which intend to ensure that no faults will exist in a system; 
Fault tolerance, applicable in the operational phase, uses a diversity 
of techniques that attempt to intervene and prevent faults from causing 
system failures. A fault tolerant system is one that includes internal 
mechanisms which provide the system with the capability to recover by 
itself from failures. The specification of real systems has multiple 
aspects, thus there is an overal specification that defines the standard 
of reliability which is demanded of the whole system and other 
specifications that are related to specific parts of the system.
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Our aim is to provide fault tolerance for the the application 
system. In order to design the fault tolerance support mechanisms it is 
necessary to consider the relationship of the reliability of a module 
with the reliability of the total application system. Thus two abstract 
types of application systems are defined according to the way the 
reliability requirement of the total system depends on the reliability 
provided by each module of the system: strong failure dependency systems 
and weak failure dependency systems. The motivation for using redundancy 
for achieving fault tolerance and thus reliability in each type of 
system is discussed. Two sets of mechanisms needed for the achievement 
of fault tolerance are identified. The first set provides the capability 
of repairing failed modules of the system and is required for the 
support of both types of system. The second provides the capability of 
masking failures of the modules and is required for the support of 
strong failure dependency systems.

Finally, a view of the whole system is presented. The communication 
system is assumed to be reliable, and the application modules and the 
base machine, which supports them, are assumed to be correctly designed. 
In consequence, application modules can only fail because of hardware 
faults at the stations. Faults can be assumed to lead modules to fail in 
two different modes: error confinement, and error propagation. Either 
failure mode can be separately adopted as the basic assumption for the 
design of fault tolerant systems. The failure mode adopted has direct 
influence on the design of the fault tolerance support mechanisms, 
specially those needed to support strong failure dependency systems.

In the next chapter we present a review of techniques for providing 
fault tolerance for strong failure dependency systems. Its objectives 
are to evaluate their use in our fault tolerant system and to provide a 
means of comparison with the technique we have adopted for our design.
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CHAPTER III

FAULT TOLERANCE TECHNIQUES

In this chapter, a discussion of fault tolerance techniques based 
on massive redundancy and checkpointing is presented. The main objective 
of the discussion is to evaluate and select an application independent 
technique to be used for the support of strong failure dependency 
systems. However, the results of this discussion are also relevant in 
the design of the support mechanisms of the whole fault tolerant system; 
this point will be clarified throughout the thesis.

3.1 Massive Redundancy Techniques

These techniques are basically extensions of the classical triple 
modular redundancy scheme used in hardware, e.g., [Avizienis 71, 
Wakerly 76]. Their main attraction is that they can be used to mask 
failures at the module level. In order describe some issues that should 
be solved in order to extend this scheme for a distributed system, we 
refer to the figure 3.1. Each application module is implemented by three 
replicated instances of the same module type. In addition to failure 
independence of both the application and voter modules, two other 
requirements are needed for the correct functioning of the scheme:

(1) The clock skew is bounded and known.

(2) All fault-free modules will process identical inputs and generate 
corresponding outputs in approximately the same amount of time.

Requirement (1) ensures that a new set of inputs is available for 
the modules within a known time interval. Requirements (1) and (2) 
permits the calculation of the time interval after which the modules 
will have stabilized their outputs, i.e., the next voter inputs. Then, 
by a proper specification of the clock signal, fault tolerance can be 
achieved. If either requirement is not met, it is possible for the 
voters to be activated while their inputs are not compatible, because 
they are not synchronized. Incompatible outputs can then be emitted by 
the voters, leading the system to fail.
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Now, consider that each module can accept input data from a number 
of different sources. We assume that the modules are deterministic in
the sense that if they consume identical inputs in the same order, they
produce identical outputs in the same order. Under this asssumption, it 
is obvious that if all replicas are fed with identical values of input 
data, they will produce identical streams of output data. Hence, in
order to use the scheme in a distributed system, two requirements are
necessary:
(1) Synchronization of voter inputs: Each replicated set of inputs must 

be voted at the right time.
(2) Ordering of the replicated modules input data streams: In order to 

produce consistent inputs for the voters all the replicas must 
receive identical streams of input data.
These requirements must be imposed independently at each station 

which supports a replicated module. In normal operation or in the 
presence of a single module failure, all remaining modules must take 
identical decisions, otherwise the system fails. Reference [Fischer 82a] 
gives an idea of the complexity of the problem. There, it is formally 
proved that even assuming reliable communications and error confinement 
for the modules, it is impossible to get consensus if a module fails at 
a critical time during their interaction. The only solution for the 
problem is to include some time reference in the system. In the next 
sections we consider two different approaches for the consideration of 
time.
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3.1.1 Global Time Reference

In this approach a global time reference(GTR) is available for all 
stations in the system. Thus it is possible to relate all the events in 
the system to this reference. The approach was first proposed by the 
designers of the SIFT system [Wensley 7 6, Wensley 78, Goldeberg 80]. The 
main characteristics of this system are summarized below.

3.1.1.1 The SIFT system
The design of SIFT basically implements in software the 

characteristics of triple modular redundant circuits implemented in 
hardware. Every application module has its activation synchronized with 
the GTR, and these activations are periodically repeated. A fixed 
activation period is specified for each module. Replicated modules in 
the same set are activated at the same time instant, but run at 
different stations.

Conceptually, the structure of SIFT based systems can be seem as 
consisting of the application modules and of a special data module. This 
data module contains all the state information of the application being 
controlled. At each activation the application modules get from the data 
module, the data needed to perform their calculations, and the result of 
the calculations are also returned into the data module. In practice, 
the outputs of the application modules are not directly deposited into 
the data module, but each application module broadcasts, through the 
communication system, the results of its calculations to all target 
modules. Immediately before a module has to be activated, the results 
generated by replicated modules are voted upon in order to obtain a 
reliable input for processing in that activation. The synchronization of 
the voter inputs is achieved provided that both the time a module takes 
to process its inputs, and the transport delay of the communication 
system are bounded. The sum of these times must be such that a 
consistent set of replicated outputs is available for voting at the time 
a module needs to use them.

The ordering of inputs is automatically set by the fixed activation 
time of each module. Thus there is no need for any protocol to decide 
which input will be consumed by each replica. The application designer 
has to make sure that the data to be consumed at each module activation 
is present at the station where the module is running at the time 
immediately before the activation. This depends on the relative 
allocation of the modules activation time in relation to the GTR, and on
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the factors described in the paragraph above. It is worth noting that 
the scheme does eliminate the possibility of any nondeterminism in the 
choice of inputs to be consumed. This fact seems not to be a problem in 
the class of applications SIFT addresses, i.e., sampled data control 
applications.

3.1.1.2 Interactive Consistency

If three replicated modules are used, the success of the majority 
voting scheme depends on an initial assumed condition that at least two 
modules of each replicated group have produced correct and identical 
results. Thereafter three replicated voters and modules, with at most 
one faulty voter or module per group, are sufficient to mantain the 
condition of at least two correct and identical results. The team 
working in the design of SIFT has verified that this condition cannot be 
always met in some cases by the use of only three channels [Pease 80]. 
These cases are: (1) The input of information from an unreplicated 
source, e.g., an unreplicated sensor or an unreplicated module; and (2) 
the case where a consensus must be reached on different values generated 
by independent sources, e.g., data generated by replicated sensors, 
clock readings generated by different stations used for the 
(re)synchronization of their clocks, and error reports generated by each 
station. In these cases a single module failing in a "malicious" mode 
can defeat the TMR scheme. This is exemplified in figure 3»2, adapted 
from [Frison 82]: Consider that the modules operate in a SIFT like 
fashion. Each sensor module periodically produces an output which is 
sent to all processing modules. The processing modules pick-up the 
median value of the outputs produced by the sensor modules and use this 
value as output. As a consequence of the malicious behaviour of the 
faulty sensor module inconsistent outputs are produced; it can be proved 
that inconsistent outputs can occur regardless of the algorithm the 
processing modules can use to select their outputs. It should be pointed 
out that this is a consequence of the error propagation environment. The 
general solution of this problem requires at least 3f+1 modules to 
tolerate up to f failures; and a special protocol is needed to ensure 
the initial condition. This protocol relies on an interactive message 
interchange among replicated modules, hence the name interactive 
consistency. This special case will be further discussed in the next 
section.
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3.1.2 Local Time Reference
This approach for obtaining fault tolerance by using N-modular 

redundancy is proposed in [Leung 80]. It intends to provide fault 
tolerance for the hardware modules of a data-flow multiprocessor. 
However, in principle, the design can be used in any system based on 
message passing. The approach allows fault tolerance to be obtained by 
decisions, based on time references, taken locally at each station 
without using any global-time reference; and without any assumption 
dependent on the other modules of the system. The principal attraction 
of the approach is that it allows application modules to be 
independently designed, thus meeting the modularity requirement.

3.1.2.1 The Approach

The fundamental requirements for fault tolerance: synchronization 
of voter inputs, and the ordering of inputs of replicated modules, are 
obtained by the use of special standard control modules. These control 
modules use in their design the interactive consistency protocol 
proposed by Pease et al [Pease 80], for exchanging information among 
modules in a distributed system. A minimum of four replicated modules 
are required in order to tolerate a single failure. Two rounds of 
communication are performed. In the first round the modules exchange 
their private values (messages). In the second round they exchange the 
values obtained in the first round. The exchange having been completed, 
majority voting can guarantee that:
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(1) The message transmitted by a fault-free module will be known to
every fault-free module, and

(2) The fault-free modules will agree on the contents of messages
transmitted by faulty modules.

In general the algorithm requires at least 3f+1 modules to tolerate 
up to f module failures among them. A negative result which states that 
this fault tolerance capability cannot be achieved with less than 3f+1 
modules is also provided in [Pease 80]. It was also proved that any 
algorithm that assures interactive consistency in the presence of f 
faulty modules requires at least f+1 rounds of communication, and that 
the amount of message values that need to be interchanged and stored in 
each protocol execution is aproximately (3f+1 )**(f+2) [Fischer 82b]. 
These values quantify the cost of any protocol to establish interactive 
consistency. They are valid on the assumption that communications are 
reliable.

Figure 3.3 represents a general replicated module structure 
proposed by [Leung 80]. A set of input control modules(ICs), and a set 
of output control modules(OCs) are required to protect respectively each 
input and output of the application module. In receiving an input 
message an IC module executes the interactive consistency protocol with 
the other ICs which are protecting that port. As a result of the 
interaction, a reliable input is forwarded to each replicated module. 
The protocol also guarantees that these inputs are generated within a 
given time interval. The OC modules also perform a similar role. 
Assuming that the application modules can process input messages within 
a specified time interval it is guaranteed that the OC modules will also 
generate their output messages within a specified time interval. This 
permits the ICs of a target module to time-out when awaiting inputs from 
failed modules, thus avoiding interference to the execution of the 
algorithm, and allows the required synchronization to be kept in the 
system.
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In data-flow applications the application modules can, in most 
cases, be designed in such a way that their outputs depend only on the 
set of inputs received. However, in some cases the order in which 
messages are accepted will influence the output messages (In Conic this 
is the most general case). In order to cater for these cases it is 
proposed to introduce another control module, called the merge module, 
which has the role of ordering the input messages to be consumed. The 
replicated merge modules receive messages coming from two different 
ports and delivers them in the same order for consumption. If more than 
two inputs need to be merged these modules can be cascaded. This 
introduces overheads that can only be reduced by adopting a special 
style of programming.

The same algorithm proposed by Pease et al [Pease 80] is used to 
obtain the interactive consistency required in some cases for GTR based 
systems. However, in SIFT, the fact that every event can be related to 
the GTR simplifies the design of the control modules. In general, 3f+1 
modules are also required in order to tolerate f failures. Although, if 
some more restricted failure modes are assumed a reduction is possible 
[Frison 82].
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3.1.3 Discussion

Systems based on the global time approach have to meet tight 
synchronization requirements. A special design for all the system 
modules is required in order to meet these requirements. In addition the 
modules have to use a special style of communication in order to 
simplify the implementation of the system. The difficulty and resources 
for obtaining interactive consistency also have to be considered. It is 
possible to support a SIFT like architecture in Conic. However, it is an 
open question as to whether or not the incurred programming style is 
suitable for the implementation of process control applications in 
general.

In relation to local time based approach, the main problems are the 
large number of messages required and the amount of information that 
needs to be stored. This makes its use unpractical in systems where it 
is necessary to obtain interactive consistency for every message 
consumption. However, the approach can be used when a lesser degree of 
interaction is required, e.g., in the Space Shuttle computer system 
[Sheridan 7 8 ] the same application system is replicated in four 
computers, and is designed in such a way that they can provide 
consistent outputs provided that their external inputs are consumed in 
the same order. This reduces the places where the protocol needs to be 
used. Another interesting example is available in [Ihara 7 8].

The study of massive redundancy approaches provides a clear view of 
the problems and costs of designing fault tolerant systems under the 
error propagation assumption. It is worth pointing out that the 
assumption of intermediate failure modes does not simplify the problems. 
It would be necessary to interchange more information, keep more state 
information, and consider problems that can be caused by the view each 
participating module has of this state. The potential advantage of these 
approaches is that the computer modules are not required to have any 
built-in error detection mechanism in the hardware, since this can be 
provided by high-level mechanisms, which can be implemented in software. 
However, there is a trend to incorporate built-in error checking 
mechanisms at the hardware level. This allows simpler and less expensive 
use of replication for obtaining fault tolerance. This is further 
discussed in section 3*3.
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3.2 Checkpointing Techniques

Checkpointing techniques aim to preserve enough information about 
the state of a system so that the system can be restarted after a fault 
has occurred. These techniques have been widely used to provide a degree 
of fault tolerance for uniprocessor systems. In the context of 
multiprocess based system checkpointed information can be used to 
implement backward error recovery [Randell 75, Randell 7 8]. This type of 
recovery involves abandonning work which may have been performed 
erroneously due to a fault, and then repeating the work, hopefully 
correctly, after the faulty component has been removed from the system. 
In the next section we discuss backward error recovery in a distributed 
system.

3.2.1 Checkpointing in Distributed Systems
In a distributed system checkpoints are taken for the individual 

modules at relevant points of their operation. The checkpoint operation 
is performed independently by each module. When an error is detected it 
is necessary to obtain from the checkpointed information a set of 
consistent states for the modules of the system. This is needed in order 
to put the system in a consistent state which could validly have existed 
at some time whilst the system was functionning correctly. Due to error 
propagation, more than one module can be in an erroneous state. Also, 
when a module has its state restored, all communications that it has 
performed, after reaching that state, should be revoked. Consequently 
these modules, with which communication has occurred, must also have 
their state reset in order to impose a valid system state. A special 
protocol has been proposed in order to solve the general case of 
establishing a set of consistent module states [Merlin 77]. A 
simplified version of this protocol has been proposed in [McDermid 80]. 
But, in general it cannot be guaranteed that a consistent set of states 
different from the trivial initial state of the system will be reached. 
This is called the "domino” effect.

One solution for this problem is to arrange that no information 
will be propagated from a group of modules which need to interact in 
order to perform an action. If any error occurs during the action 
execution it is only needed to restablish the modules to the state they 
had immediately before starting their interaction. This makes any 
intermediate states invisible for the rest of the modules, i.e., the 
action is atomic. A special protocol, named two phase commit protocol is
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used in order to reliably coordinate the termination of an action 
[Gray 7 8]. Another possible strategy is to restrict the communication of 
the modules in order to make the system immune to the domino effect 
[Kim 79t Russel 80].

Assuming that a consistent state has been reached, a second problem 
arises: As a consequence of the re-execution of the modules, it is not 
guaranteed that the outputs at the system interface will be repeated. 
Considering that some outputs could have been generated in the first 
execution, and that different outputs are generated in the second, the 
coherence at the system interface can be lost. This does not allow the 
use of the approach in applications where this coherence is required. 
One way of dealing with this problem is to design the distributed 
program in such a way that it always produces the same results when 
started from the same state. Although this requires restrictions on the 
structure and communication of the modules [Bernstein 79]*

A third problem is caused by the possibility of error propagation 
beyond the system interface. An error detected at a later stage can 
invalidate a previous output. However, an output delivered to the 
environment cannot always be recovered. Thus before delivering an output 
it is necessary to be sure that no errors have occurred during its 
calculations. This is difficult to obtain because of error propagation 
and the distributed environment. These problems limit the application 
of backward error recovery in applications directly interacting whith 
the environment. This was also noticed in [Kopetz 83L The only solution 
for fault tolerance (under the error propagation assumption) is to 
provide forward error recovery. This requires the provision of a 
compensation procedure to undo the effects of outputs [Shrivastava 79], 
which is complicated and does not meet the requirements of some 
applications.

Two additional issues can be enumerated: First, in order to allow 
the reallocation of modules to other stations in the system the 
checkpointed information must be accessible to the other stations in 
which the modules can run. The integrity of this information should also 
be preserved. This introduces the requirement of a reliable data base. 
Second, it is necessary to ensure that the set of checkpoints stored 
does not grow too large. It is difficult to devise algorithms for 
removing checkpoints amenable for distributed execution. Also this 
requires some assumptions about error propagation to be made; because in 
principle it is always possible to imagine an error for which one of the 
deleted checkpoints was essential for recovery.
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3.2.2 Discussion

Most of the complexity in supporting backward error recovery and 
the related issues pointed out in the previous section is a result of 
the error propagation environment. If it is assumed that the modules 
fail in error confinement mode, the implementation of backward error 
recovery is considerably simplified. Also its related problems can be 
eliminated. Only one recovery point needs to be kept for each module. 
After the detection of a module failure it is sufficient to restart the 
module with the state taken at this recovery point. The module re- 
execution and a simple protocol can ensure that all the communications 
which were being performed by the module before the failure are 
consistently completed. This allows module failures to be masked; with 
the exception of some performance degradation. It is also possible to 
ensure that any output generated by the system of modules is repeatable; 
thus the control capability is not disrupted because module failures. 
These qualities can be obtained for a system of Conic modules without 
incurring any unreasonable restrictions on the style of programming. 
Also they require the support of very simple mechanisms. Our approach 
for providing fault tolerance will be presented in the next two 
chapters. The next section discusses techniques to enforce error 
confinement.
3.3 Error Confinement

The validity of the error confinement assumption is directly 
dependent on the coverage of the error detection mechanisms. In the 
following paragraphs we discuss available options for obtainning error 
detection capability.

Executable assertions were originally added to software for proof 
of correctness of a program. However they can be also used to detect 
errorscaused by faults affecting the hardware [Randell 75, Andrews 79]. 
Recently assertions were proposed as a means to be used to confine 
errors within a module in a message passing system for control 
applications [Koptez 82a]. In this proposal an assertion is evaluated 
just before a message is sent from a module. In detecting an error the 
module stops sending messages. The advantage of this technique is that 
it does not depend on hardware support. The disadvantage is that an 
assertion must be explicitly programmed for each case. Another option 
would be to run an application independent error checking routine in 
place of the assertion. Some systems use a special error checking module 
which runs periodically or whenever that the processor is idle. In
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general, it can be said that these approaches validate, with some 
probability, the error confinement assumption. However, more guarantees 
can be provided by hardware based techniques.

Host commercial computers in use today incorporate some form of 
error detection. The most common approach is to use code based 
techniques, of which the most simple is parity for single error 
detection. Although interface circuits for Hamming coded memories, 
providing single error correction and double error detection are 
currently offered by several semiconductor manufacturers. Error 
detection capabilities are currently being offered at the microprocessor 
chip level, e.g., the Motorola 68000 microprocessor can detect 
internally invalid operation codes and ill formed addresses; its memory 
management unit can detect abnormal memory accesses such as fetch of 
data in program area, fetch of instructions in data area, write in ROM, 
etc. These capabilities together with coding techniques can be used to 
implement efficient error detection capability [Marchal 82, Schmid 82].

The most promising approach seems to be the use of totaly self
checking logic circuits; which guarantees that any internal fault is 
detected and that any erroneous output is signalled at the circuit 
interface. In this direction two approaches are possible. The first is 
to develop specific self-checking modules which allow error detection to 
be obtained by the use of standard microprocessors [Rennels 7 8, Chavade 
82], The second is to incorporate it directly in processors and 
components [Sedmak 80, Disparte 81], The use of these approaches allows 
a near 100$ error detection capability without needing to duplicate all 
the system components, e.g., a totally self checking microprocessor 
requires 58$ more area in the chip [Disparte 81].

The set of error detection techniques to be used depends on the 
reliability requirements of the application. Hardware based techniques 
are more attractive because they are very efficient and do not require 
programming effort. The current price of the hardware makes them cost 
effective. In general, the capability of error confinement simplifies 
the achievement of fault tolerance for both types of systems, 
particularly for strong failure dependency systems. In addition it also 
simplifies the programming of the software for the location of faulty 
components as noticed by [Goetz 7 8 ]. These points will be demonstrated 
by the simplicity of the fault tolerance support mechanisms which are 
proposed in this thesis.
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3.4 Summary of the Chapter

Massive redundancy techniques can be classified in global time 
reference and local time reference. They can provide very high 
reliability at a cost of at least three times the number of resources 
needed in a normal system. The global time reference based system is 
simpler than local time based reference system but the effective use of 
the technique requires restrictions in the style of programming and do 
not allow a system to be built out of independently designed modules: 
The activation of each module has to be synchronized with the global 
time reference, this is necessary for the proper functioning of the 
majority voters used to mask module failures. This fact has to be taken 
into account when designing the modules of a system. The local time 
reference based approach requires 3f+1 modules to tolerate f module 
failures. In addition it uses a large number of messages and requires 
the storage of a large amount of information for each decision related 
to the consumption of an input message. Its only advantage over the 
global time based technique is that modules can be independently 
designed. However, for both techniques the transparency goal is 
difficult to achieve. Massive redundancy approaches are specially 
designed to work under the error propagation assumption, if only the 
error confinement assumption is considered less expensive systems can be 
designed by the use of checkpointing techniques.

Checkpointing techniques aim to preserve enough information about 
the state of a system so that the system can be restarted after a fault 
has occurred. After a failure, the state of the modules of a system is 
restored to a previous, hopefully correct, state and execution is 
continued. This is called backward error recovery, a special protocol is 
needed to enforce this behaviour. However, this activity is prone to a 
"domino effect" by which the initial trivial state of the system is 
reached, this problem cannot be eliminated for a general system 
structure. In addition, as a consequence of the re-execution of 
concurrent modules, different outputs can be generated at the system 
interface, thus a control sequence interrupted by a failure cannot be 
re-taken. Also, it is difficult to stop the propagation of errors beyond 
the system interface, i.e., an erroneous output delivered to the 
environment cannot be recovered. These drawbacks make backward error 
recovery innappropriate for programming distributed control 
applications. However, their cause is the error propagation failure mode
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assumption. If it is assumed that modules fail in error confinement 
mode, backward error recovery can be simplified and its drawbacks 
eliminated.

In this thesis, we adopt the error confinement assumption and use 
a checkpointing based technique. This option requires the simplest 
fault-tolerance support mechanisms, uses less resources than those 
required by massive redundancy techniques, and can meet the requirements 
for supporting strong failure dependency systems. The approach is 
presented in chapter V. It permits a system of Conic modules to tolerate 
failures without any apparent interruption of the capability of 
controlling the application. The degree of reliability of the approach 
depends on the validity of the error confinement assumption. Available 
techniques to ensure the validity of this assumption were discussed in 
section 3.3.
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CHAPTER IV

THE FAULT TOLERANT SYSTEM

In this chapter an overview of the fault tolerant system is 
presented. The main goals are to present our proposal for providing 
reliability requirements for the two types of application system that 
were identified in chapter II: weak and strong failure dependency 
systems, and to introduce the system modules which are needed to provide 
the required fault tolerance. Some relevant aspects of the design are 
discussed; however not all aspects are considered in this chapter: 
Language level mechanisms and a recovery technique used for the support 
of strong failure dependency systems are presented in the next chapter. 
The design and implementation details of the fault tolerance support 
mechanisms are presented in chapter VI.

4.1 Assumptions

In the following we summarize all the assumptions which were 
introduced in the previous chapters. They are essential for the the 
correct functioning of the fault tolerance techniques that are proposed 
in this thesis.

a. Correct Design: There are no design faults (algorithmic) either in 
the system provided facilities or in the application defined 
modules.

b. Error Confinement Mode: This assures that the failure of a module 
will be consistently seen by any other module of the system, and 
that the failure of a module does not cause other modules to fail 
through error propagation. The validity of this assumption is 
directly dependent on the coverage provided by the error detection 
mechanisms at each station. The techniques that ensure the validity 
of this assumption were discussed in section 3.3.
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Reliable Communication System:; Two explicit assumptions are
required: (1) If a message M is sent and received, then the
received message is precisely M. (2) A message issued from a
station will reach its target station within a specified time
interval. Assumption (1) can be met with high probability of
success by the use of standard error detection/correction 
techniques [Hamming 50, Peterson 72]. Assumption (2) requires 
redundant communication paths and special fault tolerance 
techniques. By this assumption, we are excluding the possibility of 
a partitioned communication system. This is fundamental for the 
correct functioning of the mechanisms proposed in this thesis.

d. Bounded Response: The system can assure that some specific modules 
can always respond to incoming messages within a predictable time 
interval: i.e., if they are operating normally. In Conic this can
be achieved by assigning a proper priority for the module tasks and 
by a proper module design. This assumption is required for failure 
detection.

In addition to these essential assumptions, we make a "convenient" 
assumption: any fault at a station will stop completely all . activities
in the station; i.e., all the modules in the station are stopped; the 
alternative would be to consider that a fault can affect only some of 
the modules of the station. This assumption simplifies the presentation 
and implementation of a prototype of the fault tolerant system. The 
subject is is further discussed in section 4.7.

4.2 Definitions

The following definitions intend to establish a basic vocabulary to 
be used in the remaining parts of this thesis.

4.2.1 The Application System
The application system is constituted by a set of Reliable Modules, 

Rmodules for short, which cooperate in order to provide the application 
functions. The application system is defined at a logical level by the 
application designer. It should be pointed out that the application 
system for a large control application will probably be composed of 
several application subsystems; each of them being associated to a 
particular function. They may cooperate in order to execute an overall 
control function. In this thesis we assume that the reliability 
requirements of each subsystem can be met separately.
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4.2.2 Rmodule

At the logical level, an Rmodule is similar to a normal Conic 
module. In addition, one specific reliability service is associated with 
the specification of an Rmodule. The particular reliability service 
specified for a given Rmodule will determine the reliability requirement 
met by the Rmodule, and determine how it will actually be implemented in 
the running application system configuration.

4.2.3 Reliability Services

The fault tolerant system provides two reliability services, which 
meet the reliability requirements of the two types of systems 
identified in chapter II.

Cold Standby: Which meets the requirements of weak failure
dependency systems.

Hot Standby: Which meets the requirements of strong failure
dependency systems.

The application designer specifies for each Rmodule the type of 
reliability service needed to meet the application requirements. 
Standard development tools can automatically perform part of the 
translations needed to implement each service, but additional run-time 
support is also required. The services and their support are presented 
in the next sections.

4.3 Cold Standby

Each Rmodule using this service is implemented by one Conic module 
instance. The designer can specify a set of alternative stations where 
the Rmodule instance can run. He can also specify a preferential order 
for using these stations.

At the application system start-up, the system chooses one of the 
user specified stations and performs all the actions necessary for the 
normal operation of the Rmodule instance there. During the operation, 
the station hosting this Rmodule instance can fail. When such a failure 
is detected, a new instance of that Rmodule can be created; provided 
that there is a station available in its station set. The system 
performs all the.actions necessary to instantiate the new Rmodule 
instance in that station. It is worth pointing out that:
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a. No state information is preserved between two successive 
activations of Rmodule instances; i.e., the service only provides a 
volatile storage for the Rmodule. This is illustrated in figure
4.1.

b. A non-negligible time interval is necessary for the system to 
perform all the actions required to re-integrate a standby Rmodule 
instance in the application system, since the Rmodule instance has 
to be created and its ports linked. This time interval can increase 
if the same fault, or a concurrent one, causes the system services 
which are used to re-integrate the Rmodule to fail.

c. An implicit requirement for the use of this service is that the 
other Rmodules that can co-operate with a given Rmodule have 
provision to continue working in the case that this Rmodule fails. 
Also, after the recovery of a Rmodule, they should begin to co
operate normally.

d. A standard Conic module is equivalent to an Rmodule which has only 
one station in its station set.

The points enumerated above restrict the use of this reliability 
service to the class of application systems having weak failure 
dependency. The service only assures the creation of a new instance of 
the Rmodule; all other activities concerning recovery are left to the 
application program, e.g., recovery of the instance state. However, a 
mechanism that can help in the implementation of application dependent 
recovery strategies is discussed in section 7.1.

>--- » » --->application : | i volatile i I : applicationentryports : !>---» S storage S I :» ---> exitports
ii

Fig. 4.1 Cold standby Rmodule
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An Rmodule using this service is implemented by two identical 
module instances. As in the cold standby case, the designer specifies a 
set of stations for each Rmodule, but at least two stations are required 
at a time. The system allocates each instance to run in a different 
station in that set. Each of these instances is fully prepared to 
perform application processing without requiring any further action from 
the system modules, e.g., port linkage. However, at any one time they 
will be performing different roles: One of them will be actually 
processing messages and cooperating with other Rmodules of the system. 
This instance is called the active instance. The another one, is called 
the passive instance, and does not perform any processing. Its role is 
to keep an updated copy of the application state information being 
produced by the active instance. This state information is transferred 
to the passive instance at relevant points in the operation of the 
active instance. This transference is done atomically: either the entire 
state information is completely transferred, or the passive instance 
state is not changed at all. Thus a failure during the transference does 
not leave the state of the passive instance inconsistent.

At the configuration start-up, the operating system creates and 
starts the two instances, ensuring that one takes the active role and 
the other takes the passive role. During system operation either the 
active instance or the passive instance may fail. In the first case the 
passive instance, after detecting the failure, changes its role to 
active and continues application processing. In the second case the 
active instance processing is not affected by the failure. The system 
can create a new instance to replace the failed one; this instance will 
automatically take the passive role. This is assured by an underlying 
mechanism, which will be presented in section 6.2. It is worth noting 
that:
a. The Rmodule state information is preserved when the active instance 

fails and the available passive instance takes the active role;
i.e. the passive instance provides a stable storage for the 
Rmodule, [Gray 78, Lampson 81]. This is illustrated in figure 4.2.

b. The passive instance is fully prepared to perform application 
processing. Thus, the time interval needed to repair the subsystem 
is bounded by the time taken to perform the active instance failure 
detection and activate the passive instance. This repair time is an 
useful measure in evaluating the real-time response of Rmodules 
using this service (See section 7*2 for related discussion).

4.4 Hot Standby
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c. An implicit assumption for the reliability of the approach is that 
during any period of time at most one of the two instances has 
failed. In practice, this period of vulnerability is minimized if 
another instance is created to replace a failed one. In this thesis 
we consider that duplication is enough to meet the reliability 
requirements of most applications; however, it is possible to allow 
for more than one passive instance. This requires a more 
complicated protocol to keep the state of all passive instances 
consistent, and a protocol to elect an active instance in case of 
failures. The problem is similar to that treated in [Garcia 82].

The points enumerated above allow the support of strong failure 
dependency systems. In principle, the state information preserved in 
stable storage is enough for the achievement of fault tolerance. 
However, this requires application dependent recovery algorithms, which 
should be provided by the programmer; the subject is further discussed 
in section 6.2.1. In the next chapter we present an application 
independent recovery technique, for use by hot standby Rmodules, for the 
programming of strong failure dependency systems. This technique allows 
the transparent recovery from failures. The application of the hot 
standby service in the construction of application systems is discussed 
in chapter VII.

I>---»

• i i
V
 — 

1
V

 1 1 1 1 1 Vapplication : ! S stable i 2 s applicationentryports : !>--- »
I

! storage 2 2 :» --->
2

exitports

Fig. 4.2 Hot standby Rmodule

4.5 Support for Reliability Services

Each reliability service needs specific support in order to be used 
in a practical way in the implementation of several applications. Some 
activities are performed off-line in a development system, while others 
are performed on-line when the system is operating.



4.5.1 Off-line Support
Off-line support is performed in two phases:

4.5.1.1 Configuration Specification
In Conic, the system designer specifies the logical configuration 

of the application system through a separate configuration language 
[Kramer 8 3]; a summary and an example are also provided in appendix A.2. 
In order to allow the specification of fault tolerant applications, this 
basic language is extended in order to allow:

(1) The specification of the reliability service required by each
Rmodule.

(2) The specification of configuration rules which are needed to
dynamically control the instantiation of the Rmodule instances.
Capability (1) is readily acquired by associating its required 

reliability service to each Rmodule name. In general, capability (2) 
cannot be specified in a simple way: —  it depends on the capabilities 
of each station of the system and on the particular use the application 
designer wants to make of them. However it can be observed that in 
control applications the designer needs to allocate specific module 
instances to specific stations, e.g., because of I/O interface or 
communication delay requirements. Thus, a configuration rule is always 
needed to specify the set of stations where instances can run. In 
general, additional rules are needed to fully specify the configuration 
control algorithm; this is discussed further in section 4.6. For now, we 
assume that (1) and (2) are specified by a slightly modified create 
declaration:

CREATE Rmodulename(parameterlist):moduletype, servicetype 
AT stationset;

Servicetype specifies the required reliability service of the 
Rmodule, and stationset specifies a set of station names where the 
instance can run. Parameterlist defines the instance parameters as usual 
for a standard Conic module. The physical address corresponding to a 
given station name is assumed to be available from a data base in the 
development system.

With the exceptions of the extended create declaration, and of a 
special port primitive (that will be presented in the next chapter), the 
application logical configuration is specified as in the standard Conic 
configuration language.
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4.5.1.2 Configuration Translation
The configuration specification is processed by a translator 

program which performs validation of the specification and translates it 
to a symbol table form, which is kept in a configuration description 
file. This file also contains the addressing information required by the 
run-time support mechanism to produce load images for the Rmodule 
instances. Rmodules using the hot standby service require specific 
support in the development system. This will be fully clarified along 
the thesis.
4.5.2 On-line Support

On-line support is provided by two system modules: the
configuration manager and the status collector. They provide the 
capability of controlling the instances of the application system 
configuration at run-time. . For the sake of brevity, we say that they 
provide the configuration management service. Fault tolerance capability 
for the configuration management service modules is obtained by using 
the hot standby service. This and other implementation details are 
presented in section 6.1. The operation of the configuration management 
service modules is described in the next subsections.
4.5.2.1 Configuration Manager

The running configuration of the system is controlled by a system 
module called the configuration manager. This module has access to the 
configuration description and to the configuration rules. It can start, 
stop, and control the configuration in order to support the reliability 
services. These activities depend on the status of the stations of the 
system. The set of stations defines the physical configuration of the 
system. The set of module instances corresponding to the application 
system specification defines the logical configuration. In order to 
start a configuration, the configuration manager acquires the status of 
the physical configuration and according to the configuration rules 
chooses a mapping of the logical configuration to the available 
stations. Next it performs the configuration control operations to start 
the logical configuration. It does so by sending messages to the 
operating system at each station. During its normal operation, the 
configuration manager receives station status reports from the status 
collector. When a change in the status of a station is noticed 
configuration operations may have to be performed; this decision is 
based on the configuration rules. The approach we have adopted for 
configuration control is discussed in section 4.6.



In addition to the functions described above, the configuration 
manager can answer queries about the status and/or report the status 
changes of Rmodules. This is further discussed in sections 6.1.3 and
7.2.

4.5.2.2 Status Collector Module

This module periodically collects the status of every station in 
the physical configuration. Changes of status occur either when a 
station fails or when a station joins the system, e.g., after being 
repaired. Any change noticed in the status of a•station is reported to 
the configuration manager. Figure 4.3 presents a view of the interaction 
of the on-line support modules. The capability of station failure 
detection relies on assumptions c and d (section 4.1); i.e., reliable 
communication system and bounded response. The techniques used for 
detection of station failures and for assuring consistency of status 
reports are discussed in section 6.1.2.

Status
ii! >—

ii— > ! Configuration
Collector iiii

status
reports

iiii
Manager

/ 1 \I status 
i monitoring

configuration
operations

---------------------- « ----------------------
«

Physical «  LogicalConfiguration «  Configuration
«

---------------------- « ----------------------

«  : Modules to Stations Mapping

Fig. 4.3 View of the on-line support mechanisms



*1.5.2.3 Treatment of Rmodules

At run-time Rmodules using the cold standby service are completly 
supported by the configuration management service. At the configuration 
start-up time, the configuration manager creates one instance for each 
Rmodule using the cold service. A station supporting one of these 
instances can fail; this is noticed by the status collector. The station 
failure is communicated to the configuration manager which can re
allocate the instance to another station in that Rmodule station set. If 
the re-allocation is possible, the configuration manager executes the 
configuration control actions needed to recreate the instance and hence 
re-establish the logical configuration. Otherwise, when it is not 
possible, the configuration manager marks the state of the corresponding 
Rmodule as failed; however the failure can be reported to other 
instances of the system.

For Rmodule instances using the hot standby service the 
configuration manager gives a similar treatment to that described for 
the cold standby service. However, the configuration manager cannot 
assign the two instances corresponding to an Rmodule in hot standby to 
the same station, since this creates a common failure point. In order to 
obtain the full characteristics desired for the hot standby service 
extra run-time mechanisms are necessary. They support the management of 
the role performed by each instance, the transference of state 
information to the passive instance, and the technique for transparent 
recovery of failures. These mechanisms are presented in section 6.2.

At any time stations can be repaired and rejoin the physical 
configuration. Initially, only the station operating system is 
activated. A module of the station operating system informs the status 
collector module that the station is in an operational state. The status 
collector module informs the configuration manager about the change of 
status of the station. If there is an Rmodule instance which can run in 
that station the required configuration operations are then performed by 
the configuration manager. The approach used to control the allocation 
of Rmodule instances to the stations is discussed in the next section.



4.6 Configuration Control

The configuration manager functions can be divided into two groups: 
One is in charge of the execution of the configuration control 
operations, which is implemented by simple interfaces to the Conic 
operating system modules (see appendix A.3). The other is in charge of 
deciding which configuration control operations should be executed. 
Configuration control activities may be needed when a change in the 
physical configuration occurs. The configuration decisions depend on the 
current status of the stations, the current logical configuration, and 
the configuration rules specified by the application designer. The 
enforcement of the decision-making capability is discussed below.

4.6.1 Approaches

There are two approaches to enforce the configuration rules.
The first approach is simply to pre-determine for each application 

system all useful mappings of modules to stations allocation. This 
information can be assembled in an allocation table, with entries for 
each possible physical configuration status. When a station status 
change occurs, the current logical configuration is compared with the 
target configuration which can be supported in the new physical 
configuration, and the corresponding configuration control operations 
are determined, and performed. The main disadvantage of this approach is 
that it can be expensive to keep the configuration control information 
if the system has a large number of stations and modules. The problem is 
aggravated if partial failures of stations are considered, since the 
details and state of the resources of each station should be kept 
[Loques 8 3]. However, in practical situations, the fact that modules 
have to be allocated to specific stations allows the identification of 
partitions (subsystems) in the logical configuration which can be 
independently controlled. This allows considerable reduction of stored 
information.

The second approach is to use some algorithm which can determine 
the operations to execute at run-time, according to the changes in the 
physical configuration, and the configuration rules. It is not the main 
intention of this work to study these algorithms and configuration 
rules; but we have found that for some typical redundant structures 
commonly used in control systems [Brown 83, Kaiser 7 8, Tillman 82, Toy 
78, Wood 80] it is possible to take the configuration decisions by the
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use of very simple application independent rules and straightforward 
algorithms. Some of these redundant structures are presented in figure 
4.4: Structure A is a typical standby redundancy. It does not matter 
which reliability service is used by an Rmodule; in either case the 
configuration decisions can be easily taken by using the station set 
specified for the Rmodule. In structure B station k can be used as 
standby for Rmodules a and b. If both Rmodules use the hot standby 
service, there can be one instance of each permanently allocated to 
station k. In this case, the order in which the stations are specified, 
in the station sets defines an ordering for the allocation of the 
instances. The configuration manager can control the configuration such 
that the active instances of Rmodules a and b are allocated to stations 
i and j respectively; this can be useful in a situation where load 
distribution is required for efficiency. In structure C, any of the 
stations can accept any of the instances; up to two station failures can 
be tolerated. It should be pointed out that even for structures where 
the allocation of module instances to stations cannot change, e.g., as 
that in fig. 4.4.a, the use of an algorithm instead of allocation tables 
allows the reduction of stored configuration description data.

In general it should be considered that stations can rejoin the 
physical configuration. As a consequence instances may have to be 
reallocated in order to establish a more useful logical configuration. 
This requires more application dependent configuration rules, storage of 
information describing the resources required by each Rmodule and the 
resources available at each station. This complication can be avoided 
if the stations which are shared in the station sets of different 
Rmodules can separately support either (1) exactly one of these Rmodule 
instances, or (2) all of them. For the first case a simple rule: a 
priority associated to each Rmodule, can decide conflicts if there are 
more than two Rmodule instances to be allocated to a same station. 
Under these constraints a simple algorithm can be used to control any 
variation of the structures presented in figure 4.4.
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C. multiple shared standby structure

Fig. 4.4. Typical Redundant Structures

-  47 -



In our prototype system we have adopted the above described 
simplifications, and the algorithm has been integrated in the design of 
the configuration manager. This has allowed changes in the station sets 
of each Rmodule to be made very easily, and has been useful for the 
tests we have performed on configuration management. Although the 
approach is suitable for controlling typical redundant structures it 
does not offer general flexibility. More general configuration control 
strategies could be implemented by separating the decision-making 
functions from the executive functions in the configuration manager 
design. It is also possible to perform dynamic configuration changes of 
the actual application system specification in order to reconfigure the 
system after failures. This is a subject of current research 
[Magee 83b].

4.6.2 Discussion

The main characteristic of our configuration control approach is 
that it has a centralized design. Other works available in the 
literature propose distributed designs for this function.

[Kain 80] proposes various schemes for configuration control. The 
most robust is based on an algorithm which distributes the configuration 
control information accross all the modules in the system. Also, each of 
these modules has authority for performing configuration control; this 
is intended to provide fault tolerance. In order to implement the 
approach all the modules have to perform a protocol to obtain the 
configuration control information and the configuration control rules. 
In addition they have to support the control algorithms, and have to 
have interfaces with the operating system of the stations and with the 
failure detection entity. This is expensive and requires special design 
for each application module. [Barigazzi 82] proposes a scheme by which 
every station can independently decide its logical configuration. The 
configuration decisions are based on arbitrary priorities assigned to 
the stations. Each station that can support a module broadcasts to all 
other stations "choice” messages, which contain the priority of the 
station to support that module. The station having the highest priority 
supports the module. This algorithm assures the consistency of the 
configuration decisions taken by all the stations, however it does not 
take into consideration the allocations already made for the other 
modules. In addition, because the priorities are arbitrary the resulting 
mapping of the modules to stations is nondeterministic. Thus a global
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strategy for configuration cannot be enforced. [Zielinski 8 3] studies 
the configuration control problem with the objective of optimizing the 
real-time performance of a system. The distributed algorithm proposed is 
intended to be used at run-time. However, it requires the resolution of 
complicated matrix equations, which consume computing resources. We 
chose the centralized approach for the following reasons:

* Typical process control applications can have a large number of 
stations. Thus in order to keep costs low, these stations should be 
implemented by simple and cheap microcomputers. Adding to each 
station the resources needed for configuration control would 
increase the complexity and cost of each station.

* In our approach, fault tolerance is obtained by specifying the hot 
standby service for the configuration manager module. This does 
not require the existence of redundant resources in all stations. 
Considering that failures are rare, this would be an unjustified 
overhead.

1 In a centralized design, the algorithm for configuration control is 
not constrained by the need to independently assure consistency of 
configuration decisions as is the case in a distributed design. 
Also, considering that the algorithm and corresponding resources do 
not need to be replicated they could be as sophisticated as 
required, e.g., algorithms as proposed by Zielinski could be used.

* Independent configuration managers can be used to control different 
subsystems in a large application.

4.7 Station-Module Failure Relationship

We have adopted the "convenient" assumption that a fault at a 
station will stop the activities of all module instances running in the 
station. One of the reasons for adopting this assumption is the 
simplification incurred for the re-configuration of the logical 
configuration. This allows a simpler design for the prototype of the 
fault tolerant system and is also suitable for the support of many 
applications. If required this assumption can be relaxed. In the 
following, we present other points related to the issue.
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* Total station failures can always occur. Thus the convenient 
assumption must be considered for fault tolerance. Also, it allows 
the complete control of the logical configuration by simple 
configuration rules and algorithms as discussed in the previous 
section. It is worth pointing out that the convenient assumption 
does not preclude transparent recovery from failures by mechanisms 
internal to the station.

* In many cases a station and its module will be a unique entity in 
the sense that its hardware was specially designed for the module 
function, e.g., a complex sensor. If partial failures are tolerated 
they are better treated inside the station.

* An error can be quickly detected by the buit-in error detection 
mechanisms, but it is difficult and time consuming to identify all 
the errors caused by a fault. Hence, if the station is allowed to 
continue operation, other modules will probably fail. It is safer 
and simpler to stop all application activity, e.g., the bounded 
response assumption could be difficult to validate and implement. 
After the error is detected diagnostic tests can be performed in 
the station. If the fault is diagnosed as transient, the station 
can be returned to service. This procedure is adopted in other 
fault tolerant system proposals, e.g., [Katsuki 7 8, Geitz 81].

* In the case that partial failures of stations are assumed, the 
decision making function requires explicit knowledge of the status 
of the resources available at each station and of the resources 
required by each module. Depending on the refinement of the station 
model, and the number of stations, a large number of states could 
result. For the static allocation approach, the corresponding table 
will have a size proportional to the product of the number of 
states of each station. Also a run-time allocation algorithm would 
be complicated, because it would have to consider that stations 
have variable resources. It is not clear if the benefits of the 
inclusion of partial failures are worth the related effort.

It should be pointed out that Conic provides mechanisms for error 
detection and reporting (see appendix A.3). In our present proposal 
their use should be restricted to debugging purposes. They can be used 
to extend the basic fault tolerant system if the convenient failure 
assumption is relaxed.
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Jj.8 Summary of the Chapter

In this chapter an overview of the fault tolerant system was 
presented. Its main characteristic Is the provision of two reliability 
services: the cold and hot standby. Modules using these services are 
called Rmodules, they are logically equivalent to standard Conic modules 
but satisfy specific reliability requirements.

The cold standby service is intended to support application systems 
having weak failure dependency. Rmodules which use this service are 
implemented by one module instance. The service provides a volatile 
storage, thus if the instance fails its state information is lost. The 
operating system can create another instance of the Rmodule. However 
this can take a non-negligible time interval. Also activities for 
recovering the Rmodule operational conditions should be explicitly 
programmed. A mechanism which can help in the structuring of recovery 
activities for weak failure dependency systems is discussed in section
7.2.

The hot standby service is intended to support application systems 
having strong failure dependency. Rmodules which use this service are 
implemented by two module instances. Only one of the instances, called 
active, is performing the application processing at any one time. The 
other one, called passive, is ready to to be activated but does not 
perform any processing; it provides a stable storage for the Rmodule. At 
appropriate moments, application state information is transferred from 
the active instance to the stable storage provided by the passive 
instance. Failures can occur at any moment during the instances 
operation. If the active instance fails the passive instance is 
automatically activated and can continue performing application 
processing. In the next chapter we present a recovery technique that, 
for Rmodules using the hot standby service, allows automatic recovery 
from failures without any apparent interruption of the processing. The 
language mechanisms for the use of this technique are integrated in 
Conic.
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The support of the reliability services is partly achieved through 
activities performed off-line in a development system. A slight 
extension of the Conic configuration language allows the specification 
of the reliability service required by the application modules and the 
set of stations where the corresponding Rmodule instance(s) can run. 
The application system configuration specification is processed by a 
translator program. This translator program peforms validation of the 
configuration specification and produces a configuration description, 
which is used at run-time by the support mechanisms, to instantiate 
Rmodule instances. Rmodules using the hot standby service require 
specific support in the development system, this will clarified in the 
next chapters.

On-line support is partly provided by two system modules. The 
configuration manager is needed to control the logical configuration of 
the application system. It has access to the configuration description 
and the configuration rules which specify the mapping of instances to 
stations. Configuration control activity is performed at the system 
start-up or when a change of the physical configuration status occurs. 
At the system start-up time, the instances of the logical configuration 
are activated. During the system operation, in the case that a station 
fails, the configuration manager can instantiate new Rmodule instances 
in order to replace those which were assigned to the failed station. 
Configuration activities can also be performed when a station joins the 
physical configuration. The status collector is in charge of collecting 
statuses from all stations in the physical configuration. Any change in 
the status of a station is reported to the configuration manager. These 
two modules provide configuration management capability which is 
sufficient for the support of the cold standby service. For the hot 
standby service additional mechanisms are necessary for the support of 
the automatic recovery capability. The relevant details of the design 
and implementation of the fault tolerance support mechanisms will be 
discussed in chapter VI.
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In this chapter, the configuration manager operation and design 
were also discussed. The configuration manager uses a simple algorithm 
to automatically decide the configuration operations that should be 
executed, thus the storage of precomputed tables containing allocation 
information is not required. This configuration control algorithm 
provides the needs of typical redundant structures used in control 
systems. The configuration manager has a centralized design, other 
proposals advocate a distributed design for this function, mainly for 
providing fault tolerance. A centralized design keeps simple the rest of 
the stations of the system, allows the use of more sophisticated 
configuration control algorithms, and fault tolerance can be achieved by 
specifying the hot standby service for the configuration manager 
Rmodule.

Finally, for completeness, the station-module failure relationship 
was discussed. We have assumed that any fault at a station will cause 
all the activities in the station to be stopped. This is mainly 
justified because this kind of failure can always occur. In addition 
this assumption keeps the design of the support mechanisms simple. It is 
not clear if the benefits of the consideration of partial failures of 
stations are worth the associated effort. However if required they can 
be treated by extending the basic fault tolerant system.
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CHAPTER V

LANGUAGE SUPPORT for STRONG FAILURE DEPENDENCY SYSTEMS

In this chapter we present our approach for providing language 
support for programming strong failure dependency systems. The related 
language mechanisms are only available to Rmodules using the hot standby 
service. This enables relevant application state to be kept in the 
stable storage provided by the passive instance associated to Rmodules 
using that service. Thus the state information can survive the active 
instance failure. In addition the use of an application independent 
recovery technique allows the failure to be transparently recovered 
without any interruption of the activities being performed by the 
application Rmodules. Language level support is provided by an extension 
of the Conic port concept —  reliable ports, and by a primitive —  save, 
which is used to invoke transference of state to stable storage. 
Transactions performed through reliable ports are guaranteed to complete 
even if a failure occurs during the transaction execution. This is 
assured by the recovery technique and associated run-time support 
mechanisms.

5•1 Computation Model

This model is presented in order to introduce the recovery 
technique. For brevity of exposition it is considered that there is only 
one task per module and that the port connections are one-to-one. This 
will be generalized later in the thesis. Also, for simplicity consider 
that any message produced is available at the consumption time in some 
message queue implemented in the communication system.

The basic unit of the model is an action. An action execution can 
be seen as the unit within which communication through state changes can 
occur. A task is defined by a local state, a set of entryports, a set of 
exitports, and a set of action execution specifications. The computation 
performed by a task takes place in a series of action executions. Each 
action execution specification specifies the form of a task computation 
by stating:
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An entryport for the action. The input message is received by the 
task from this port.

The output local state and a set of output messages as a 
deterministic function of the input local state and the message 
received. To each input local state is associated one or more 
action execution specifications. The action to be executed depends 
on the availability of a message in an entryport and of the 
entryport itself. The specific message choice is made by an 
nondeterminiStic mechanism.

The execution of actions can be seen as executed by an interpreter. 
This interpreter maintains a local state for each task and has access to 
the queue of messages for each entryport. One cycle of this interpreter 
selects a task, and from its set of entryports selects one that contains 
a message to be executed, and carries out the corresponding action 
execution. After the action is executed the interpreter changes the 
local state of the task to the resulting output state of the action 
execution. Note that one or more messages can be produced as a result of 
the action execution.

5.1.1 Effects of Failures in the Model

According to the error confinment assumption when a task fails it 
ceases all its activities. In this case the system may be left in an 
inconsistent state. This happens because some messages might have been 
generated whilst others have not, depending on the point of the 
execution the failure has ocurred. This can be prevented by using the 
stable storage available to Rmodules in hot standby. Before executing an 
action, the task local state and the selected input message are 
transferred to the stable storage. The action is also marked as
executing. This transference is atomic in the sense that either all the
information is transferred or no transference is performed if a failure 
occurs before the transference is completed. When the action completes 
execution, the interpreter transfers the resulting output state to
stable storage and marks the action as executed. In the case of failure 
it is assumed that after some time the task and its interpreter will be 
recovered (In the implementation, this occurs when the passive instance 
takes the active role). On recovery, the interpreter verifies if there 
is any action marked as executing, and in this case re-executes the 
action, otherwise it proceeds as in the normal case.
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5.1.2 Replicated Messages

Since the input message and the local input state are the same as 
before the failure, and that the function corresponding to an action is 
deterministic, the results produced in any re-execution will be 
identical. Thus, in terms of the external interface of the task, the 
only effect of re-execution is possibly to generate replicated messages. 
The atomic update of the task input state and message, and the re- 
execution of the action assures that the task reaches a consistent local 
state, but the state consistency for all the system can be violated if 
any task consumes the same input message more than once. This can happen 
because replicated messages are generated on recovery.

A system of reliable communicating tasks can be obtained by 
associating a sequence number to each port. Specifically, to each 
exitport we associate a transmit sequence number(TSN) and to each 
exitport we associate a receive sequence number(RSN). TSNs and RSNs are 
stored as part of the task local state. Before transmitting a message 
through a port, the interpreter increments its TSN. The value of the TSN 
is used as a sequence number(SN) for the message. Considering that 
addition is a deterministic function, any re-execution of an action will 
produce messages with repeated TSNs. When trying to execute an action, 
the interpreter compares the SNs of the available messages for a port 
with the RSN associated to this port. The message is accepted only if 
SN = RSN + 1. After accepting the message, the interpreter makes its 
associated RSN equal to the SN of the accepted message. Before executing 
the action, a stable storage update is performed; this assures the re- 
execution of the action and the repeatability of any produced result 
including the SNs of messages. The filtering of replicated messages 
assures that no system inconsistency occurs as a result of the 
consumption of replicated messages.

5.2 Conic Application

The model presented can be used for the implementation of reliable 
systems; but for this it would require the use of a style of programming 
where each action is explicitly defined. Also, the interpreter would 
have to duplicate most of functions which are already provided by the 
Conic Kernel. Fortunately, a very elegant implementation is possible for 
the model. It has the following characteristics:
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* It allows the use of the standard message and task management 
functions provided by the Conic system kernel. Thus no overheads 
are introduced.

* It does not introduce any unreasonable restriction in the style of 
programming the application modules. In principle, it is possible 
to design modules without any special consideration and afterward 
perform an automatic transformation to make them fault tolerant.

* It provides more efficiency in terms of transaction execution time 
than that which would be provided if the model was implemented 
directly.

Conic provides two communication primitives which support different 
message transactions (see appendix A.1 for summary ). The first 
transaction, —  request-reply is specially designed for use when a 
confirmation of the acceptance of the output message is required. After 
sending a message,the task execution is suspended. In the normal, and 
most useful case, the task execution is activated after receiving the 
associated reply message. The second transaction —  notify does not 
provide any assurance on the fate of the output message. In fact it is 
designed in order to provide maximum flexibility. Specific guarantees 
can be enforced by user or system provided service modules, e.g., 
buffered virtual circuit modules [Sloman 8 3].

Our approach for supporting strong failure dependency systems hinges 
on providing a special reliable request-reply transaction which is used 
for communication between tasks of modules using the hot standby 
service. This transaction is reliable in the sense that it always 
completes and provides a uniform exactly-once semantics in a single 
instance failure case (see section 5-5 for related discussion). Thus, a 
system of tasks communicating purely by reliable request-reply 
transactions is automatically made fault tolerant. If required, some 
form of reliable notify transaction can be readily implemented by using 
a service module in hot standby having its interface defined by reliable 
request-reply ports.
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Figure 5.1 shows the general pattern of the transaction for a 
source-target system. There will be only one active module instance per 
pair at any time. An active or passive instance can fail at any time, in 
particular, during a transaction. The failure of the passive instance 
does not interfere with the transaction. In the case of active instance 
failure, the passive instance takes over and completes the transaction. 
This can involve the re-transmission of messages. For request-reply 
transactions there can be only a single pending message associated to 
each pair of ports performing a transaction. This fact allows a very 
efficient design for a request-reply transaction. According to the 
model, the effect of failures is limited to the generation of replicated 
messages. This applies both to request messages and to the reply 
messages. In practice, failures can cause other subtle critical 
situations which can affect the reliability of the transaction. This and 
other details of the transaction implementation are discussed in section
6.2.3. For now, consider that reliable communication can be obtained 
through a protocol that uses the reply message (with an RSN) as an 
explicit acknowledgement to the request message, and that when needed, 
an underlying mechanism can pick up a reply message already produced in 
the task data space and send it back to the exitport task side. This 
underlying mechanism also deals with the transport of request and reply 
messages between the module instances.

In addition to a primitive to specify reliable request-reply 
transactions, another primitive is required to specify transference of 
state information to stable storage. They are both presented in the next 
section.
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Figure 5.1 General pattern of the request-reply transaction.
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5.3 Language Primitives

Language support for the programming of strong failure dependency 
systems is provided by adding two new primitives to Conic. The first 
introduces the concept of a reliable port: A reliable port primitive is
used to specify communication performed through reliable request-reply 
transactions. The second supports the concept of stable storage: A save 
primitive is used to specify transference of state information to stable 
storage at relevant moments of a task operation. These primitives are 
only available to Rmodules using the hot standby service.

5.3*1 Reliable Port
A reliable port is logically identical to the standard request- 

reply port used in Conic. Thus, it provides a local name and a message 
type holder for the port, and can have its connection described by a 
standard link declaration. In addition to these standard characteristics 
it also provides a local recipient for the end-to-end control sequence 
numbers that are required to enforce the transaction semantics; this is 
further discussed in section 6.2.3.

Reliable ports can be used during the task operation to
automatically control the execution of saves. This is obtained without 
any explicit declaration of actions at the application programming 
level. Thus making the actions completely transparent. Consequently no 
restrictions of programming style are introduced. The technique also 
allows a minimum number of save operations to be performed. The save 
control technique is presented in section 5.4.

5.3.2 Save

At some points in a task operation it is necessary to transfer 
state information to the stable storage provided by the passive 
instance. To execute a state change, the task program invokes the save 
operation. The actual state transference is performed by an underlying 
mechanism, which takes a copy of the current state and transfers it to 
the passive instance through a message. The fact that messages are 
either received or not received at all ensures that the state update is 
done atomically: either the entire state information is transfered to
the passive instance or the effect is as if the save operation had not 
been started. Thus a failure in the middle of a save does not leave the 
state of the task in the passive instance inconsistent. If there is no 
passive instance available, the control is just returned to the task
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performing the save. For now, consider that the state information 
transferred is enough to assure that the re-execution of any action that 
can be interrupted by a failure will produce repeated results. The 
achievement of this characteristic for a save operation, and schemes to 
minimize the amount of information transfered in a save are discussed in 
section 6.2.1.

5.4 When to perform a Save

In the model, it was shown how the careful use of stable storage 
can be used to provide reliability for a system of tasks. Here, we 
define when it is really necessary to transfer state information to 
stable storage, i.e., to perform a save operation. This is achieved 
using three rules which are sufficient to enforce the exactly-once 
semantics specified for transactions peformed through reliable ports.

5.4.1 Rule I

It is necessary to perform a save when a request message is 
accepted in a reliable entryport. Besides transfering the state 
information, this save also works as an implicit lock of the task 
interface, i.e., no other message can be accepted, during the
corresponding action execution, in case of failure. This makes the 
execution of the action repeatable, including the generated reply 
message, if no nested action execution is performed. It is also 
necessary to guarantee repeatability when a nested action execution is 
needed. The message requesting the nested action is repeatable. When 
this message is accepted for processing in a recipient task, a save 
operation is also performed. Consequently this nested action execution 
is also repeatable, which also includes the generation of the reply 
message. The transaction support mechanisms ensure that, on recovery, 
corresponding pairs of request-reply messages will be matched, and that 
any interrupted transaction will be completed. Their design takes 
advantage of the reply message availability in the stable storage 
provided by the entryport task (see section 6.2.3 for implementation 
details). This fact permits a simple rule to be defined:

Rule I: A save must be performed after a message is accepted in a
reliable entryport and before any result of the processing of this
message is sent out of the task.
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It is not necessary to perform a save when a reply message is 
consumed in the reliable exitport side. Although the reply corresponds 
to a new input; the repeatability of the action (which would be defined 
by the acceptance of this reply, according a direct interpretation of 
the model) execution is assured by the stable storage provided by the 
entryport side, and by the additional rules.

Figure 5.2 shows the optimized approach to enforce the model. 
Consider that all transactions use reliable request-reply ports. It can 
be seen, that in any single failure case, the action execution started 
by req__1 (or req__2, or req_3) will complete consistently without any 
further saves. For example, consider that task__2 fails after performing 
the save. On recovery the task will execute again and generate req_3, 
which could have been already generated in the previous execution. If 
req_3 is a duplicate, and has already been accepted, and has its 
associated reply produced, the underlying mechanism picks up this reply 
and sends it back to task_2. Otherwise req_3 has to compete at task_2*s 
interface for consumption. Also, before the failure, rep__2 could have 
already been generated and consumed by taskjl. In any case, duplicates 
are discarded by the underlying support mechanism.
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Fig. 5.2 Optimized Approach



The model could be enforced directly, as described in section 5.1. 
Figure 5.3 extends figure 5.2 in order to show the extra saves used by 
the direct approach to enforce the model. In this case, the capitals 
written saves would be required, whilst in the case of the optimized 
approach, only the lower written saves would be required. Thus at least 
one save operation can be economized for each action. More saves are 
economized depending on the exact definition of the actions, e.g., a new 
action could be defined by the receiving of the reply message. Saves 
take time to be performed, hence the optimized approach provides more 
efficiency in an "optimistic" environment, i.e., where few failures 
occur.
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It is worth noticing that in some failure cases all the execution 
of the action has to be repeated, e.g., if task_2 fails after issuing 
rep_2, but before a save is performed. This is true either for the 
direct or the optimized approach. A partial solution is to use 
intermediate saves, e.g., after the acceptance of rep_3.

5.4.2 Rule II
The rule already presented is not enough to ensure consistency in 

all possible cases. In figure 5.4 consider that req__2 and req_3 are 
issued through the same reliable exitport within the execution of an 
action. Also consider that task_1 fails after req_3 is accepted and 
saved by taskL_2, and that rep_3 is already produced, e.g., at point y. 
In this situation, rep_2 cannot be recovered by taskj. This happens 
because the reply message variable, in task_2, was overwritten and 
contains the value of rep_3. In order to cater for this case, and to 
leave open the use of this option by the programer, a new save rule is 
needed, otherwise a restriction in the style of programming would have 
to be introduced.

Rule II: A save must be performed before a message is sent out 
through a reliable exitport if no save has been performed after a 
previous message has been sent out through this exitport.
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In figure 5.4, a save has to be performed before point x. Rule II 
can be generalized if the entryport task keeps in stable storage copies 
of a number of reply messages associated to previous transactions.

5.4.3 Rule III
Up to this point, we have considered that inter-task communication 

is peformed only through reliable ports. This restriction can be removed 
in order to allow inter-task communication to be performed also through 
standard Conic ports: activity which for brevity we call unreliable 
communication. This facility increases the flexibility of our approach.

When unreliable communication is used, the production of repeated 
results may not be guaranteed if a re-execution is performed because of 
a failure. In consequence, inconsistency can arise in a reliable 
transaction, e.g., a different request message could be generated, but 
the reply message associated to the request message generated in a 
previous execution can already be available and be consumed. Figure 5.5 
helps to illustrate the situation, consider that the pair req_2/rep_2 is 
associated to standard ports and that req__3/rep_3 is associated to 
reliable ports. In this context, assume that task_J fails after issuing 
req_3, which is consumed by task 3. On recovery taslO repeats the 
transaction req_2/rep_2, but considering that task__2 can be in a 
different state the contents of rep_2 can be different from that of the 
previous transaction. In consequence the contents of req_3 can also be 
different. However, the previous instance of req_3 had already been 
consumed and the available rep_3 is a result of this execution. The 
underlying mechanism picks up rep__3, which can cause inconsistency, 
since tasK_1 will act according to the contents of rep__3, which may not 
reflect the state of the system. The problem is solved by performing a 
save after rep__2 is accepted and before req_3 is sent out by taskjl 
solves the problem, i.e., a save must be performed up to point x.

It is difficult to characterize all the situations that can arise 
when unreliable communication is performed. For example, the action 
requested by req_2 could be idempotent, in which case the use of a save 
might not be required. Thus, a rule which forces a save to be performed 
after any use of unreliable communication would be an overkill. In order 
to provide maximum flexibility, we leave to the programmer the 
responsability of ensuring the repeatability of messages associated to 
reliable request-reply transactions. This is done through the explicit 
use of the save primitive, although this requires the save primitive to 
be available at the language level.



There is another case where a save primitive can be useful: when 
an action takes a long time to be executed. For instance, an action 
requiring many items to be operated upon in a repetitive fashion. In 
this case, the programmer can use a save to transfer partial results 
after some amount of the work has been done. The effect of this save 
would be to speed up recovery if a failure coincides with the action 
execution. This would be effective if the time taken to perform the 
"sub-action" is big in relation to the time spent in a save operation. 
Arising from the above discussion, a last rule is defined:

Rule III: A save must be performed when it is explicitly invoked by 
the task program.

taskJl task_2req__1 | |
------ >| |save S: req__2 S

:------------->l
! :! rep__2 :
!<------------- :
! itime : I

task 3ii
I
IiiI = do not care
IS ! = suspended
iiI : = executing

req_3
x--------------------------- >|
I save
! rep__3 :
!<rep_1 : <----- ;

Fig. 5*5 Unreliable Communication and Consistency



5.4.4 Comments

(1) The above defined rules are enough to ensure the repeatability of 
any output sent out through a reliable port. This is an essential 
condition to assure consistent and transparent recovery. Rules I 
and II can be automatically enforced by a transparent mechanism 
activated by pieces of code embedded in the task program. These 
pieces of code are associated to reliable ports and can be inserted 
in the task code by a simple program transformation that can be 
performed by a preprocessor or compiler. Rule III is also easily 
enforced because it is associated to a save explicitly defined in 
the task program. However, in this case manual intervention for 
editing the program is required. It is also possible to leave the 
responsability of enforcing the three rules to the programmer by 
using explicitly defined saves. An example of the application of 
the approach is presented in section 7*5.

(2) Reliable ports can be declared in a special definition file, 
associated to each Rmodule in hot standby. At the time, the system 
configuration specification is processed in the development system, 
this file is used to instruct the preprocessor or compiler; thus 
the support for reliable ports is made available. Reliable 
exitports can only be linked to reliable entryports; the standard 
Conic link declarations can be used to check this constraint.

(3) A fault tolerant system is achieved if all the rules are enforced 
by all its tasks; this allows the support of strong failure 
dependency systems. It is interesting to note that if only pure 
reliable communication is used, i.e., the interfaces of the tasks 
of all modules are entirely defined by reliable ports, fault 
tolerance capability can be automatically obtained.

(4) We assume that a double failure is a very rare event and that 
duplication is enough to meet the reliability requirements of most 
applications. However, it should be pointed out that the rules are 
independent of the number of available passive instances. Thus the 
rules still apply even if more than one passive instance is 
supported.
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5.5 Exception Handling

In this section we discuss issues related with exceptions that can 
be associated with Conic request-reply exitports. Two exceptions are 
defined: The first is activated when a transaction is attempted through
an unconnected exitport. The second is activated when an application 
defined timeout interval expires. The first exception should not occur 
in a correctly designed system; its use is provided for testing and 
debugging of application systems. Thus we restrict our discussion to the 
timeout exception.

Timeouts are generally incorporated in distributed programs for one 
of two reasons: (1) to assure minimum performance —  if an action takes
more than some time to be executed, it times out and the program can do 
another job, (2) to detect failures. When they are used for efficiency 
reasons, it may be necessary to provide a means for the exiport instance 
to deal with the transaction that was timed out. Many schemes can be 
conceived in order to support this facility, e.g.:

(1) A special service interface can be provided: the task may repeat
the same transaction request using the same sequence number. This 
is intended to ensure exactly-once-semantics.

(2) The task may repeat the same or initiate a new logical transaction 
with a new sequence number.

The problem with schemes like these is that no standard handling 
procedure is defined for a timeout exception; thus all responsibility is 
left to the application programmer. The ADA [USA-DOD 80] designers have 
attempted to solve this problem by associating a timeout to the request 
message acceptance at the target instance side. Thus before a timeout 
exception is activated the system must certify that the request message 
will not be accepted by the target. In a distributed system, this has to 
be enforced by an protocol executed by an underlying support mechanism.

Efficiency timeouts can be useful in general resource sharing 
networks that have an unpredictable number of users competing for scarce 
resources. In control systems, resources are used by a controlled number 
of disciplined users; this can eliminate the need of using efficiency 
timeouts. For this purpose, resources would be designed in order to meet 
some minimum response requirement. This could mean a quick execution of 
the service or an explicit indication by the reply message about the
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reason of service deferment. This option is a good approximation for an 
"ideal" software component, as proposed by [Anderson 81, Wulf 75], and 
we believe it represents a better style of programming. In addition it 
does not require any extra support mechanism and keeps the underlying 
system simple; however, it requires a careful choice of the timeout 
value (The subject is further discussed in section 7.3)* According to 
the above discussion, the use of efficiency timeouts is not recomended; 
although, if required, they can be supported. In this case, a save 
should be performed immediately after a timeout exception has occurred: 
The treatment of the timeout splits the program path; the save 
guarantees that the same path is taken when failures occur; this ensures 
consistency of the task outputs.

Timeouts can be used in entryports in order to simplify the style 
of programming. Considering that in this application they do not 
interfere with transactions, we do not make any restriction on their 
use.

5.6 Related Work
Our approach can be related to other works proposed in the 

literature in some different ways.
5.6.1 Reliable Transactions

The Conic request-reply transaction is very similar to a procedure 
invokation in the sense that the request message specifies the input 
values and the reply message the result values of the procedure 
execution. A current topic of research is the extension of the procedure 
concept to distributed computer systems. In this area, the proposals of 
Nelson [Nelson 81] and Liskov [Liskov 81] are particularly significant. 
The main goal of them has been to specify a consistent and uniform 
semantics for procedure calls. The subject is interesting because of the 
distributed environment and the possibility of processor and
communication failures.

Nelson proposes to extend the procedure semantics provided in 
traditional uniprocessor systems for the whole distributed system. Hence 
in normal operation an exactly-once semantics is assured: The system
guarantees the computation associated to a call to be executed only 
once: If any processor supporting a distributed program fails, all
partial results of computations are abandoned and the system backtracks 
to a previously checkpointed state. This is called last-one semantics 
and in fact is equivalent to a system reset.
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Liskov proposes to extend the CLU language with a procedure call 
primitive to support distributed programs [Liskov 79]. In normal 
operation the procedure call primitive offers what is called at-most- 
once semantics: If the caller receives a reply, the system guarantees 
that the call was acted on exactly once, which is is in fact identical 
to Nelson1 s proposal. It is also proposed the use of stable storage and 
an automatic scheme to transfer relevant state to this storage; but the 
intended use of stable storage is different from that in our proposal, 
this being due to the class of applications to be supported: distributed 
data bases. The system keeps in stable storage copies of data objects 
which are changed in a procedure execution. If the procedure does not 
complete, either because a failure, or because the caller lost interest, 
these objects are restored to the state they had before the procedure 
call. The system also supports synchronization properties for the 
procedure call in order to allow concurrent changes to the objects 
without leading to inconsistency. The synchronization properties are 
obtained by locking the use of objects according to some fixed rules; 
although this can lead to deadlock. In order to breack deadlocks and 
allow progress some executing calls can be aborted and in this case the 
objects* states are also restored. Another characteristic of this 
proposal is that distributed computations may be held up while any node 
supporting them is failed if the failure has occurred at a critical 
point. It is proposed as a solution to the problem to implement 
replication on top of the basic mechanism; although it could also be 
solved by implementing it on top of the mechanisms we propose. A 
synthesis of the approach is presented in [Moss 81].

Both approaches do not intend to provide consistency at the 
interface with the environment. Nelson’s last-one semantics in the 
failure case is incompatible with this goal. In the other proposal, this 
would be obtained if no outputs are released until the whole transaction 
completes; a restriction that is not adequate for control applications.

According to Nelson’s terminology, our reliable transaction 
proposal specifies exactly-once semantics in normal operation and in 
single failure cases. Thus failures will not result in interruption or 
any loss of the ability to control the application process, as would 
happen in a system based on his proposal. Extra resources and special, 
but simple, support mechanisms are required in order to match this 
specification. This is worthwhile in the DCCS context in order to meet 
the reliability requirements of demanding applications. In relation to
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Liskov's proposal, we have assumed that control applications have 
different requirements, —  it is more important to provide guaranteed 
response than to pander to impatient users. In addition most control 
programs are composed of a static set of modules which interact in a 
predefined fashion through fixed communication channels; this allows the 
elimination of possible deadlocks at the design stage. These two facts 
allow a considerable simplification of the mechanisms needed to support 
our approach. Although our approach might be generally applied we 
concentrate efforts to Conic based distributed systems; this has allowed 
a simple solution for providing language support for programming 
reliable application systems.

5*6.2 Actions

Actions and transactions have interrelated recovery properties. 
Recently Liskov has proposed to implement her procedure call as a sub
action which is defined at the language level [Liskov 83]* The concept 
of action were also explored in [Lomet 77, Randell 75], although in 
different contexts. Scheneider and Schilichting propose an approach 
based on actions to program distributed fault tolerant control systems. 
Stable storage is implemented by a number of processors and used to make 
the actions restartable and produce repeated results, which in principle 
is similar to our approach. However, their actions can co-operate only 
through shared variables which are kept in stable storage, although an 
underlying mechanism, which uses a special message protocol is proposed 
to keep the consistency of replicated copies of the shared variables. In 
their first proposal [Scheneider 81 ], actions were equivalent to a 
single process and a special restartable semaphore [Dijkstra 68] was 
provided to synchronize access to shared variables. A restartable 
semaphore allows a process p to re-enter a critical section if p has 
already entered that critical section but never done a V operation to 
exit. This situation can occur in the case that p fails and recovers. In 
spite of an ingenuous scheme to implement stable storage updates, and 
of the restartable semaphores, their first proposal cannot guarantee 
what they have intended: repeatable outputs. Although the flaw was not 
mentioned, it was corrected in their second proposal [Schlichting 82], 
by allowing nesting of actions within a process, which has required the 
explicit definition of actions. Some comments can be made on their 
approach: The use of shared variables does not allow modularity, and 
makes the programming of systems and the proof of their correctnes 
difficult [Zave 79]* It is also not justified in a distributed system
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where message passing is a more natural concept and must be used at some 
level in the implementation, as they did. In addition, in their 
proposal, the processes are assumed to be cyclically activated, which 
requires an underlying mechanism, which they do not specify, that must 
also be fault tolerant. Moreover, nested actions require a careful 
implementation in order to provide recovery capability. This 
implementation is also not specified.

Our approach does not require explicitly defined actions, which 
makes the programming easier, and conforms with Conic. Also in the same 
context as theirs, this allows the use of automatic techniques to 
transform modules not originally designed with fault tolerance in mind. 
These modules can then be assembled together in order to achieve a fault 
tolerant system. In addition, our approach is integrated in a much more 
flexible software structure, which supports modularity and provides more 
natural and powerful interfaces. Moreover, the implementation of the 
corresponding support mechanisms is very simple and completly specified. 
It is interesting to note that the same techniques that they propose to 
verify fault tolerant systems [Schlichting 80] are also applicable to 
our approach.

5.6.3 Fault Tolerant Systems

The Tandem system [Levy 78,Bartlet 81] uses duplicated processes to 
obtain fault tolerance. However, it does not provide a standard 
technique to provide recovery from failures, which should be enforced 
by the programmer. Also the input interface of a process is defined by a 
single message queue, which allows neither a non-deterministic choice 
of input, nor the use of guards, as allowed in Conic. This lack of 
flexibility can make the programming of some applications difficult. In 
addition, communications are performed by referencing in the source 
process the name of the target process , which does not allow 
modularity. Even so, this system has been used in the implementation of 
elaborate fault tolerant applications, which confirms the usefulness of 
duplicated processes [Borr 81].

Another system using duplicated process is presented in [Kaiser 78, 
Gaude 80]. Fault tolerance is obtained through a combination of a 
special operating system, special hardware, and special style of 
programming. The main quality of the approach is that it requires very 
little information to be transfered from the active to the passive
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computer, which is intended to provide efficiency. This does not seem to 
be entirely justified because of the low speed of the application to 
which it is directed: a welding shop of a car manufacturer, and the 
peformance data provided by Gaude. In addition there are applications 
were fault tolerance is more important than efficiency. Thus the 
flexibility and simplicity offered by our design can be an advantage.

5.7 Summary of the Chapter

In this chapter our approach for providing language level support 
for the programming of strong failure dependency systems was presented. 
The presentation is based on a computation model which requires the 
definition of explicit actions for task executions and makes use of the 
stable storage abstraction. The actions that can be executed by a task 
are made repeatable, i.e., they produce the same results if re-executed, 
by transfering information identifing the action and the message that 
has activated it to stable storage. When a failure occurs, during its 
execution, the action is re-executed. The external effect of the re- 
execution is limited to the generation of replicated messages, which can 
be filtered out by the use of sequence numbers. The computation model 
shows that no state inconsistency occurs when an active instance fails. 
However the direct implementation of the model would lead to unnecessary 
state transferences to stable storage and require the explicit 
definition of actions, which changes the normal Conic programming style. 
Fortunately, these drawbacks can be eliminated through a special 
integration of the model in Conic.

For this purpose two special primitives are provided: The first —  
save is used to specify transference of state information to stable 
storage. The second introduces the concept of reliable ports, which are 
used to specify communication performed through reliable request-reply 
transactions. These transactions are assured to complete in spite of 
failures of the instances involved. For this it is enough to enforce 
three rules for using the save primitive, given in section 5.4. By 
controlling the transfer of state to stable storage they assure the 
repeatability of any message sent out through a reliable port, which 
together with a transparent request-reply transaction support mechanism 
assures consistent state recovery. In this way a system of tasks of hot 
standby modules can be made fault tolerant. It should be pointed out 
that this does not require any explicit definition of action(s), thus no 
restriction on the style of programming is incurred. Rmodules which have
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their interface defined exclusively through reliable request-reply ports 
can be made fault tolerant through an automatic program transformation, 
although manual intervention is required to deal with application 
dependent situations. In addition the rules allow a reduction in the use 
of stable storage with consequent efficiency improvements. Also, the 
approach allows the use of the standard message and task management 
functions provided by the Conic kernel, thus no overheads are 
introduced. The critical points of our approach are the design of the 
mechanisms which support the reliable request-reply transaction and the 
save operation. They will be discussed in the next chapter.

In this chapter the issue of exception handling in reliable 
request-reply transactions was also discussed. A reliable request-reply 
transaction cannot complete because of an efficiency timeout or a double 
failure. Efficiency timeouts are considered a bad style of programming 
in control applications. We have assumed that the probability of a 
double failure is very low and should not be considered for most 
applications. Thus in the normal use timeout exceptions should not 
occur. However, if required, they can be readily supported. In this case 
explicitly programmed saves have to be used to assure repeatability of 
the task outputs.

In section 5.6 our approach was related to relevant works in the 
area. The discussion is already concise and is not summarized; however, 
in general, it underlines the simplicity and flexibility offered by our 
approach in its area of application: distributed control.
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CHAPTER VI

THE SUPPORT MECHANISMS

In this chapter, the design and implementation details of the 
support mechanisms which make the system fault tolerant are presented. 
The chapter is organized in two main sections. In the first, the 
Configuration Manager and Status Collector modules are presented; they 
provide the capability of configuration management which is enough to 
support weak failure dependency systems. In the second, the mechanisms 
associated to the hot standby service are presented; they extend the 
basic system in order to support strong failure dependency systems.

6.1 Configuration Management

The configuration management service has already been presented in 
chapter IV; here the discussion is concerned only with the design and 
implementation issues of the system modules, viz., the configuration 
manager(CM) and status collector(SC), which together provide this 
service (Figure 6.1).
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6.1.1 Configuration Manager

This module has access to a fileserver where the configuration 
description file is available. The configuration description file has 
been generated in the development system as discussed in section 4.5. 
The CM does allocation of module instances to physical stations at run
time according to the physical configuration status and the 
configuration control algorithm discussed in section 4.6.

6.1.1.1 Configuration Manager Reliability
The CM must be fault tolerant itself in order to support the 

reliability services for the control subsystem modules. In this section, 
we discuss some points related to this issue. The implementation can 
either use the hot or cold standby service in order to make this module 
fault tolerant.

If the hot option is adopted, the configuration state information 
can be redundantly stored in the system. In the case of failure of the 
station supporting the currrently active CM instance, the passive CM 
instance automatically takes the active role (this is inherent to hot 
standby Rmodules). As the configuration state information is kept, any 
reconfiguration required can be quickly performed. Another atractive 
point of this scheme is that the recovery capability for the 
configuration manager instances is also automated. This can be obtained 
if the CM Rmodule is included in the own configuration that it controls; 
thus CM instances can be automatically recreated.

The hot option is useful to implement a master CM, or to provide 
fault tolerance for a system having one single CM. In the master 
configuration manager case, the other CMs reliability could be obtained 
by having them configured in a hierarchy in which the responsibility 
over a CM is placed on its superior CM.

Adopting the cold option would require that, in case of failure, 
the CM recovers the dynamic part of the configuration information from 
the system. This requires a query to every station in order to find its 
state and the module instances that may be running there. This could 
take a relatively long time if the configuration has a large number of 
modules; although a backing store could be used to keep the 
configuration state information. During the CM recovery time, the 
reconfiguration capability would not be available; this reduces the 
reliability of the approach. Also the recovery process has to be 
initiated by an external agent: an operator or another CM.
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The choice of one of these options depends on the particular system 
requirements. We have choosen the hot option because it is useful as a 
practical example of the use of this service.

6.1.1.2 Configuration Manager Operation

The CM deals with a single subsystem configuration each time. It 
provides two basic functions: start-up of the configuration and shut
down of the configuration. In addition it can answer queries on the 
status of the Rmodule instances and report changes of their status. In 
the prototype system, these functions can be accessed through replicated 
terminals. The configuration operations are performed through messages 
sent to the station operating system modules; these are briefly 
described in Appendix A.3. The CM operation is divided into two main 
phases:

(1) Start-up: In this operation phase, the CM executes the necessary
configuration control operations to start-up the application system 
module instances. The activities in this phase are performed as 
follows:

Creation of module instances: Following the allocation of instances 
their module type object code is loaded to the stations (only if 
required; object codes could be stored in ROM at stations), and the 
instances are created there. The type loading and instance creation 
are performed through messages generated by the CM and sent to the 
station module manager and the subsystem loader modules.

Linkage of module instances: The module interface ports connection 
specification is translated to a system compatible format. This 
addressing information is them passed by the CM, through standard 
link messages, to each station link manager. This activity is 
performed serially for every exitport of each module instance in 
the configuration.

Start-up of module instances: In this step, the CM sends a module 
start message to each host station module manager. The 
configuration start-up phase is then finished.
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This sequence of operations assures that the Instances are fully 
prepared when started. During this phase, the CM does not try to receive 
any station status report from the Status Collector. However, while 
performing the operations to start up a given instance a failure of this 
instance host station could happen. As a consequence, the CM detects an 
error, i.e., a timeout occurs. In this case, the CM puts the instance in 
failed state and avoids the command of any further operation involving 
that instance. When the startup phase finishes, the CM can receive 
station status reports and treat the failure. The CM could also be 
designed to recover from failures concurrently with the start-up 
activities. This would require a more complex configuration control 
algorithm. The solution adopted is based on the assumption that station 
failures are not very frequent, at least during this phase, and also 
intends to simplify the CM design.

(2) Steady State: In this phase the CM activities are initiated by the 
receipt of status information coming from the status collector 
module. The Configuration manager checks wether the station that 
had its state altered is supporting any module instance at that 
time. If the station is not being used only its status is updated. 
Otherwise, reconfiguration activity is required in order to replace 
the failed module instance(s). This is similar to the start-up 
phase; the only difference is that the exitports connected to 
module instances being replaced must also be relinked.

An optimization is possible by forcing identifiers, used to address 
module instances which refer to instances associated to the same 
Rmodule, to be unique within the subsystem. In this case it is not 
necessary to perform relinkage of exitports because the addressing 
information does not change during the operation of the system. This is 
also convenient for implementing reliable transactions efficiently, as 
will be discussed in section 6.2.3.1*.

The CM can also shut-down a configuration being controlled. This is 
obtained by stopping and deleting all the Rmodule instances. This 
operation should be executed when the application system is in a 
quiescent state.
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If an active configuration manager instance fails during a 
configuration activity, some uncertainty about the operations that were 
already performed will happen. Even using the hot standby service It is 
not possible to eliminate this problem. This is due to the impossibility 
of determining whether messages corresponding to configuration 
operations, have been sent out when a failure occurs.

This can be easily solved if the operating system modules implement 
every configuration operation in an idempotent fashion. For example, a 
linkage operation is not performed if the exitport is already connected 
to the same entry port as contained in the new link request command. 
Similar behaviour can be programmed for all other configuration 
operation commands. Taking advantage of this feature, the CM does not 
need to execute any special procedure on recovery, e.g., it does not 
need to query each station to ascertain the current configuration. It 
simply restarts and continues performing the configuration operations 
after recovery. Idempotent configuration operations can be achieved 
through very small changes in the standard operating system modules of 
Conic.

6.1.2 Status Collector
This module periodically collects the status of every station in 

the physical configuration. Any change noticed in the status of a 
station is reported to the configuration manager module.
6.1.2.1 Implementation

The primary mechanism for status collection is implemented by an 
operating system module resident at each station. This module 
periodically sends a status message to the SC module. Every time a 
status message is received by the SC, a bit indicating the event is set. 
Periodically the SC module checks and resets these bits. A bit not set 
Indicates a station failure, which is reported to the CM. The 
reliability of this decision is assured by the bounded response and 
communication system assumptions and by the proper specification of the 
periodicity of the station operating system module and SC module. The SC 
algorithm can also notice when a station joins the physical
configuration, e.g., after being repaired; this event is also reported 
to the CM. The SC Rmodule uses the hot standby service; this is 
required in order to provide automatic fault tolerance for the 
configuration management service.

6 .1 .1 .3  Concurrent Failures
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We have a3summed that on the first signal of station failure all 
application processing is stopped. In some cases, processing capability 
can still remain at the station. This remaining capability can be used 
to communicate the occurrence of the failure to the SC.

The design of the SC is intended to provide the minimum 
functionallity required, and is independent of the particular 
communication system. If required it can have an optimized 
implementation, which depends on the particular communication system. 
For example: (1) In a carrier sense multiple access medium (CSMA), the 
status collector can detect "on the fly" all the messages transmitted 
from each station. A service module at each station can transmmit a 
dummy message if no real message is generated within a given time 
interval, or the SC could query the station in the absence of a real 
message. This allows a reduction of the messages used for failure 
detection. (2) In a communication system using token based access 
control an inherent failure detection capability is available; this can 
provide for status collection without need to duplicate the same 
function.

6.1.2.2 Consistent Failure Detection

It is necessary to make sure that all station status changes are 
consistently noticed, otherwise the CM cannot perform the required 
configuration operations. This is straightforward except in a case where 
stations can recover after a failure so quickly that the SC does not 
notice the change. This can happen if the fault was transient and the 
diagnosis algorithm performed in the station is very fast, and/or in 
case of concurrent failure of the station and SC occurs. We consider 
that the diagnosis of the failure will normally take a long time, which 
would allow the failure to be identified. However to ensure that this 
happens, the time the station stays unavailable can be artificially 
extended: the operating system module in the station simply waits enough 
time to allow consistent failure detection before making the station 
operational again. This ensures that station failures are consistently 
detected and is supported by a very simple mechanism. We found other 
ways of solving the problem: (1) To use a special lock-step protocol, 
based on the same principles as the two-phase commit protocol [Gray 78], 
for registering the start up of the station with the status collector. 
This protocol allows in any combined failure case the identification of 
a station failure. (2) To use a unique identifier generator, e.g., a
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system time. On start up a station takes a new identifier, which when 
compared with its previous identifier allows the detection of a failure. 
These two schemes are independent of any timing consideration but 
require more complicated support mechanisms.
6.1.3 Comments

The configuration manager uses a strategy that ensures that 
configuration operations are completed once started; the mechanism for 
status collection assures that every station status change is 
consistently communicated to the configuration manager. Thus, if 
failures do not occur very quickly in sequence, a stable configuration 
is reached. Other features which extend the configuration management 
service capabilities are discussed below.

Management Interface. The management service keeps information 
about the state of the Rmodules of the system. Thus it can answer 
queries about the status of Rmodules and report changes of their status. 
Queries about the status of Rmodules can be directly answered by the 
configuration manager. The set of events to be communicated to a given 
module can either be determined at run-time or specified through the 
configuration language. The first approach requires some run-time 
interaction with the configuration manager in order to specify the name 
of the Rmodule to be informed, and the events this Rmodule wants to know 
about. In this case special programming is required, and the identity of 
the events would have to be known by the application program and sent in 
messages. This is against modularity and is not directly supported by 
the current Conic language proposal. An option would be to restrict the 
events to the state of Rmodules to which a given Rmodule is connected; 
this does not require the explicit naming of other modules. The second 
approach requires a simple extension of the current Conic configuration 
language, which is subject of current research [Magee 83b] • This 
interface provides a general capability for implementing error recovery 
strategies, which is similar to that available in other distributed 
system proposals, e.g., [Lantz 80]. The use of the management interface 
is discussed in section 7*3.

Distributed configuration management. We have assumed that the 
reliability requirements of a sub-system can be met within this 
subsystem. Thus, a system composed of many reliable subsystems is also 
reliable. Each of these subsystems can be controlled by its own 
configuration manager. However, modules of different systems may need to
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communicate. In this case, the configuration manager modules need to co
operate in order to establish the connections of these modules at run
time.

Operator Interface. The configuration management activity is
automatically performed. This may be mandatory in order to meet the 
requirements of some applications, e.g., real-time or unnattended 
operation. However, an operator can participate in the configuration 
activity, e.g., to defer a re-configuration activity to a latter stage 
of the system operation.

Diagnosis Capability. Most of the failures are caused by transient 
faults, which occur at least one order of magnitude more frequently than 
permanent failures [McConnell 79» Ohm 79]. The reliability of the system 
is directly dependent on the availability of stations. Thus, after a 
failure, diagnostic tests can be performed, and if the tests reveal 
transient faults, the station can be again available for service. We 
consider that the configuration management activity and the diagnosis 
activity are operationally independent. However they are complementary 
activities for the achievement of reliability.

6.2 Hot Standby Support

Support for the hot standby service is performed at two different 
stages: The first stage is performed in the development system as
explained in sections 4.5 and 5.4.4, the specific activities will be 
clarified along this section. The second one is performed at run-time by 
the configuration management service, as described in the previous 
section, and other additional mechanisms. This section presents the 
details of the additional mechanisms. The run-time support mechanisms 
deal with the following basic functions:

1. Save primitive. A mechanism is needed to transfer the state 
information from the active instance storage to the passive 
instance storage at each invokation of the save primitive.

2. Instance Management. A mechanism is needed to manage module 
instances which implement an Rmodule. This mechanism is in charge 
of determining the role to be performed by each instance, and 
performing the initialisation of new instances.

3. Reliable transaction. A mechanism is needed in order to support the 
communications performed through reliable ports.
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The first two functions are implemented by a special
management task. This task is standardized and can be automatically 
included in the Rmodule code at the system development stage, without 
any change in its programming. In the next section we discuss the 
relevant details of the design of the save primitive. Instance
management and the reliable transaction support are discussed in 
separate sections.

6.2.1 Save Primi tive

In order to implement the save primitive, it is necessary to 
specify its semantics.

6.2.1.1 Save Semantics

When a save is invoked state information is transferred to the 
passive instance storage. The transfer is atomic: either all the 
state is transferred, or the effect is as if the save had not been 
invoked. The passive instance can fail during a save operation. The 
task that invokes the save is suspended until the save operation 
completes or the failure of the passive instance is detected.

—  If the active instance fails, the passive instance is made active. 
The state information transferred is enough to assure the 
repeatability of any output that may have been delivered by the 
task in a previous execution.

—  If no passive instance is available, the save returns immediately.

6.2.1.2 State Variables

In order to discuss the implementation of the save primitive, it 
is convenient to classify the task variables in two types: state
variables and auxiliary variables (non-state variables).

State variables are those that exist and must maintain their values 
across task actions.

Auxiliary variables are those whose existence and value depends on 
the particular task action, e.g., the local variables of actions 
within a task, and the execution control information associated to 
these actions.

-  82 -



For recovery after failures, only the state variables must be 
kept in stable storage. That is, by inspecting the state variables 
the action the task was performing before the failure can be 
retaken. This can have some drawbacks which will be discussed later 
in this section.

6.2.1.3 Implementation Options

Here the discussion is concerned with the issue of assuring the 
repeatability of the outputs resulting from a task execution. 
Repeatability is related to the state information tranferred in each 
save and can be implemented in a number of ways. We assume that the data 
and control information representation in the stations where the 
instances run are compatible.

Implementation I

All the task variables, state and auxiliary, are stored in the task 
stack. The save is invoked through a procedure call. At this moment a 
copy of all the words being used in the task stack is taken. This 
information is transferred by the underlying mechanism and copied into 
the corresponding task stack in the passive instance. On recovery, the 
task is made ready to execute. The task continues execution from the 
first instruction after the last save that has been invoked by this 
task in the previously active instance, just as if it had invoked the 
save (the contents of the task stack are assumed to be storage position 
independent). This assures the repeatability of the execution.

This implementation allows a great deal of flexibility for the use 
of a save. Saves can be introduced at any point in the task program, and 
provided that the rules set up in chapter V are enforced, no
inconsistency will arise. However, redundant information will be 
tranferred in each save. An optimization is considered in the next 
implementation.

Implementation II

An optimization can be made if we have a closer look at the way 
state and auxiliary variables are allocated. State variables can be 
allocated statically in the store used for the task data. Auxiliary 
variables will be allocated at run time according to the path taken by 
the task program. Not all state variables need to be transfered in every 
save: only those that have changed since the last save must be
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transferee!. A run-time mechanism could identify and transfer state 
variables which have changed. The fact that state variables location is 
known allows a simple implementation of this mechanism. Mechanisms based 
in a similar principle are proposed in [Randell 75, Kant 83], although 
in a different context. The effectivennes of the approach is dependent 
on both the time taken to assemble and disassemble the state transfer 
messages and on the communication system delays. Thus if the size of all 
the state variables is shorter than a given threshold (system dependent) 
it does not result in any benefit. In this case, all state variables can 
be transfered in every save. The option to be used can be taken at 
compilation time.

Auxiliary variables include local variables of procedures called 
within the task and associate execution control information. It would be 
more difficult to select which ones must be saved at run time. It is 
easier to save all of them without attempting any optimization.

Implementation III

A further optimization is possible if a particular style of 
programming is adopted: The task programming is organized in a decision
table style. In this case the only control information that needs to be 
saved is an identifier in the table of the action being performed. The 
other auxiliary variables can be recreated when the task re-executes. 
The state variables are transfered as in the previous implementation. 
This implementation allows maximum efficiency at a cost of a special 
style of programming. This should not be very restrictive if we realize 
that any task that loops around a Select receive statment uses a 
decision table style of programming (see appendix A.1).

Simpler Save

It is also possible to define a simpler save operation: the save
transfers only the state variables. This would require the application 
to define the algorithms to allow the program to proceed after a 
failure; the state variables must also be explicitly specified. The 
problem with this approach is that it does not impose the use of 
standard mechanisms to deal with failures. Thus recovery activities 
would depend on the programmers discipline. The save semantics we 
propose can be combined with standard mechanisms for communication and 
allow an automatic provision of fault tolerance. A simpler save can be 
specified and implemented if required.
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6.2.1.4 Save Operation

The save operation is performed through a request-reply transaction 
with the management task. The task invoking the save is suspended while 
the operation is performed. Thus the management task can directly access 
the variables to be transfered without any conflict. The transfer is 
effected through a message sent to the management task of the passive 
instance which assures the failure atomicity of the operation. Also, 
according to the error confinement assumption, no erroneous information 
will be present in this message. The tranfer operation is idempotent; 
thus a simple protocol can be used. If the state variables cannot be 
contained in a standard size message, a proper protocol should assure 
the failure atomicity of the save operation.

6.2.2 Instance Management

The instance management functions are performed by the management 
task (fig. 6.2). It is assumed that the save uses implementation I, 
described in the previous section.

6.2.2.1 Active Instance Operation

(1) Transference of state —  The variables to be transfered in a save 
are copied from the application task stack in a message and sent to 
the passive instance management task. When this message is 
acknowledged the save completes. If there is no passive instance 
available, the state information is only locally updated, and the 
save operation completes.

(2) Detection of the passive instance failure —  The passive instance 
management task periodically attempts communication with its active 
instance counterpart. A failure is detected when this message is 
not received within the specified time interval. A failure is also 
detected if the passive instance does not acknowledges the state 
transference message.

(3) State initialisation —  After receiving a notification of the 
existence of a passive instance, the management task initialises 
the state of that instance. It does so by sending its local state 
to its counterpart. Thus the initialisation does not interfere with 
the activities of the application tasks.
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6 .2 .2 .2  Passive Instance Operation
(1) T ran sferen ce o f  s t a t e  — The management task  r e c e iv e s  s t a t e  

transference messages, tra n sfers the contents to the task stack, 
and acknow ledges th e  m essage con firm in g  the ex ecu tio n  o f  the  
operation.

(2) D etection  o f the a c tiv e  in stan ce fa ilu r e  — A fa ilu r e  of the a c tiv e  
in stan ce i s  detected  i f  the message p er iod ica lly  generated by the 
passive instance i s  not acknowledged. After the fa ilu r e  i s  detected  
the in s ta n c e  i s  made a c t iv e ,  and i t s  a p p lic a t io n  ta sk s  are 
a ctiv a ted .

(3) State in i t i a l i s a t io n  - -  A new instance i s  started  in  the passive  
ro le . After sta r tin g , the management task n o t if ie s  i t s  counterpart. 
Next the a c tiv e  in stan ce management task i n i t i a l i s e s  the s ta te  o f  
the passive instance. I f  no a c t iv e  instance i s  available or i f  the 
s t a t e  i n i t i a l i s a t i o n  i s  not com pleted  a double f a i lu r e  has 
occurred . In t h is  c a se , s t a t e  in fo rm a tio n  has been l o s t  and the 
instance i s  put in  an fa i le d  sta te .

6 .2 .2 .3  Operation D eta ils
Figure 6.2 shows the two in stan ces which implement a hot standby 

Rm odule, th e  m anagem ent t a s k s ,  and t h e i r  c o n n e c t io n s .  For 
s im p l i f i c a t io n ,  on ly one a p p lic a t io n  ta sk  i s  rep resen ted . On system  
start-up  the configuration  manager creates one instance as a c tiv e  and 
another as passive. Saves in  the task programming are transformed in  a 
procedure which performs a req u est-rep ly  transaction  through the saveout 
port. The management task o f the a c tiv e  instance transfers the s ta te  to  
the p a ss iv e  in s ta n c e  by sen d in g  a m essage through the n o t ify  port 
updtout. The transfer  i s  confirmed through an acknowledgement received  
from updtin. The passive in stan ce management task p eriod ica lly  sends the 
message required for fa ilu r e  d etection  through updtout. This message i s  
acknow ledged by the a c t iv e  in s ta n c e ;  however, fo r  o p t im iz a t io n  the  
acknowledgement can be "piggy backed" on a s ta te  transfer message.

The s ta te  in i t ia l iz a t io n  i s  requested by a new passive instance  
through a m essage sen t through the n o t ify  port in i t o u t .  The a c t iv e  
in s t a n c e  can  u se  one or m ore m e ssa g e s  to  perform  th e  s t a t e  
in i t ia l i s a t io n .  However, only a fte r  a l l  the sta te  i s  transferred, the 
in i t ia l i s a t io n  i s  considered completed. I f  the active  instance f a i l s
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before the in i t ia l i s a t io n  i s  completed the passive instance i s  put in  a 
fa ile d  s ta te  and i t s  task s are not activated . This ensures that no 
in co n sisten t behaviour occurs. A module can contain m ultip le ap p lication  
task s, thus the implementation can be optimised: the saves invoked by 
d iffer en t tasks can be p ip elin ed  or combined in  a message in  order to  
increase the speed of the s ta te  transfer  operation; a lso  saves can be 
performed concurrently with the in i t ia l i s a t io n  operation. For fa s t  
execution o f s ta te  tra n sfer , a sp ec ia l communication channel can be 
used, e . g . , high p r io r ity  m essages, or the message can be transm itted  
through a separate physical channel.

The instance fa ilu r e  d e tec tio n  cap ab ility  r e l ie s  on the bounded 
response and communication system assumptions (see section  4 .1 ) ,  and i s  
achieved independently by the management task o f each in stan ce. This 
cap ab ility  could be implemented by the configuration management serv ice . 
In th is  case a th ird  e n t ity  i s  required to  ensure the recovery of the 
configuration management ser v ic e  module instances (see d iscu ssion  in  
sec tio n  6 .1 .1 .1 ) .  The current implementation of fa ilu r e  d etection  allow s 
simple hot standby con figu ration s to  be implemented without a 
configuration  management se r v ic e . Thus we were able to  simulate CM 
fa ilu r e s  in  order to  t e s t  i t s  automatic recovery. The in tegra tion  of  
fa ilu r e  d etectio n  ca p a b ility  w ith in  the communication system i s  a lso  
p o ssib le . This i s  sim ilar  to  th at already discussed in  section  6 .1 .2 .1  
for the sta tu s c o lle c t io n  fu n ction .

The management task con tro ls the execution of the ap p lication  tasks 
by d irec t access to  the kernel ro u tin es . I t  i s  worth pointing out that 
the s ta te  o f the kernel data stru ctu res do not need to  be saved. A ll 
inform ation needed for  recovery i s  present in  the stack of each task , 
and the required kernel s ta te  i s  recovered by re-executing the task s. 
Thus the standard kernel message and task management functions can be 
used and the implementation i s  thereby sim p lified .
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6 .2 .3  Reliable Transaction
In chapter V i t  was demonstrated how the e ffe c t  of fa ilu r e s  i s  

lim ited  to the generation of rep lica ted  messages. Here the d iscu ssion  i s  
r e s tr ic te d  to  the support mechanisms that ensure the transaction  
semantics required for  s ta te  con sisten cy . A r e lia b le  transaction  i s  
performed between a r e l ia b le  e x itp o r t and r e lia b le  entryport. A s p e c if ic  
mechanism i s  needed to  deal w ith the events pertaining to  each port 
type. In the fo llow in g  d iscu ss io n  we determine the requirements for the 
support mechanisms.

6.2.3*1 Scenario
The pattern o f the tra n saction  i s  il lu s tr a te d  in  f ig .  5 .1 . A 

transaction  i s  in i t ia te d  when the source task sends a request message 
through an e x itp o r t. Every request contains a sequence number, th is  
sequence number i s  always greater  than the la s t  one used in  that port 
connection. The transaction  f in is h e s  when a reply message with the same 
sequence number i s  received  from the target task . I t  i s  worth pointing  
out that the sequence numbers are s ta te  variab les, hence they too are 
preserved in  case o f fa i lu r e s .

In the p resentation  below, i t  i s  assumed that the communication 
system provides a "best e ffo r t"  se r v ic e  for  message delivery  and does 
not get p artition ed . This f a c i l i t a t e s  the id e n tif ic a tio n  o f the minimum 
requirements for  the support mechanisms. The in teg ra tion  o f the 
transaction  support mechanisms in  a particu lar communication system, and 
the is su e  o f addressing the transaction  messages are discussed in  
sec tio n  6.2.3*^ • The tra n saction  support mechanisms must assure  
r e l ia b i l i t y  in  case o f Rmodule in sta n ces  or communication fa i lu r e s .  
F ailures can occur a t any time during the transaction  duration. The 
p ossib le  cases are considered below:
(1) The request or rep ly message f a i l s :

This can be recovered i f  the ex itp ort mechanism keeps 
transm itting the request message u n til a reply with the same 
sequence number i s  received . For example, i f  a f i r s t  request has 
fa ile d  a r e tr ied  one can be accepted, and the corresponding reply  
would be produced; i f  i t  was the reply that had fa ile d , the 
r e tr ied  request informs the entryport side that the reply i s  s t i l l  
not a v a ila b le . The support mechanism in  the entryport side can then 
pick up a copy of the rep ly  message and send i t  back to  the 
ex itp o rt s id e .
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(2) The a c tiv e  instance owning the entryport f a i l s .  There are two cases:
a. The fa ilu r e  occurs before the request message i s  consumed and 

saved. The p a s s iv e  in s ta n c e  tak es over, but does not know 
anything about the request message. This i s  equivalent to  a 
r eq u e st m essage f a i l u r e .  This i s  recovered  by r e tr y in g  th e  
req u est;  t h i s  m essage has to  compete norm ally w ith  o th er  
messages to  be consumed a t the target instance in terface.

b. The fa ilu r e  occurs a fter  the request message has been consumed 
and saved . On r e c o v e r y , th e  ta sk  e v e n tu a lly  g en era tes  th e  
r ep ly  m essage. T h is r e p ly  can be a d u p lic a te  s in c e  the  
previous a c tiv e  in stan ce  could have already produced i t .  This 
rep ea ted  r ep ly  has to  be f i l t e r e d  out by the e x itp o r t  s id e  
support mechanism. The f i l t e r in g  i s  p ossib le  because the reply  
contains the same sequence number.

(3) The a c tiv e  in stan ce owning the ex itp ort f a i l s .  There are two cases:
a. The fa ilu r e  occurs before the request message can reach the 

en tr y p o r t s id e . On r ec o v e r y , a r e p lic a te d  in s ta n c e  o f the  
request message i s  generated. This message i s  equivalent to  a 
new request message for the entryport side.

b. The fa ilu r e  occurs a fte r  the request message has reached the 
entryport sid e. On recovery, an id e n tica l request message i s  
again generated. I t  does not matter i f  the entryport sid e  has 
accep ted  th e  p rev io u s  r e q u e st  or not; t h i s  i s  d e a lt  by the  
entryport s id e  mechanism.

(4) A p assive  instance f a i l s :
P a ss iv e  in s ta n c e s  do not r e c e iv e  or send a p p lic a t io n  m essages.
Thus, the f a i lu r e  o f a p a s s iv e  in s ta n c e  does not a f f e c t  the
transaction  execution.

6 .2 .3«2  Requirements
The requirements for the support mechanisms can be summarized as

fo llow s:
Exitport support mechanism:

Retransmit p er io d ica lly  the request message u n til a matched reply
message i s  received (or the tim eout exp ires).
F i l te r s  out rep lica ted  rep ly  messages.
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Entryport support mechanism:
F ilte r s  out rep lica ted  request messages.
and, i f  the corresp on d in g  r ep ly  m essage i s  a lread y produced i t  
ta k es a copy o f t h i s  m essage and sends i t  back to  the e x itp o r t  
s id e .
On recovery, there i s  only one way for the ex itp ort instance to  

know i f  a request message has been accepted by the entryport instance: 
Namely, to use the sequence number of th is  message in  order to query the 
entryport instance about the fa c t. Obviously i t  i s  better to  send the 
request message again and l e t  the entryport instance f i l t e r  out th is  
request i f  necessary. The same reasoning i s  applied to  the entryport 
instance and reply message. I t  i s  important to  notice that transfer  of 
co n tr o l in fo r m a tio n  to  s ta b le  s to r a g e  does not com p letly  so lv e  the  
problem and i s  more e x p en siv e  than r e tr a n sm iss io n  ( s p e c ia l ly  in  
environments where message transport i s  reasonably r e lia b le , e.g., any 
s ta te -o f- th e -a r t  lo c a l area network ).
6 .2 .3 .3  Implementation

The f i r s t  attempt to  meet the transaction  requirements was by the 
use of program stubs in serted  in  the task programming. This requires 
each message to be always accepted in  order to check i t s  sequence number 
and discard the d u p licates. In some cases th is  i s  not a problem, but 
guards can be used in  order to  c o n tr o l the accep tan ce o f m essages 
through a entryport. In th is  case the guard has to be evaluated and i f  
fa ls e , the message should e ith e r  be discarded or stored w ith in  the task 
data space in  order to be ava ila b le  la te r  on. Another problem occurs in  
the case that a reply message i s  lo s t .  In th is  case, the ex itp ort w i l l  
retry  the request in  order to  recover from the situ a tio n ; but in  the 
meantime th e en tr y p o r t can consume and p ro cess  o th er m essages. The 
retr ied  request w i l l  have to compete at the instance in ter fa ce  and wait 
for the other messages to  be processed, consequently the reply w il l  have 
i t s  recovery delayed, which a lso  delays the transaction completion. In 
a d d it io n  t h i s  im p lem en ta tio n  can cause d ead lock s, in  th e  case  o f 
fa ilu r e s , i f  no r e s tr ic t io n s  on program structure are imposed: e.g., a 
task T1 performs a (request-rep ly) transaction  R1 with a task T2 and 
w aits a response from T2 through a (request-reply) transaction R2. I f  T1 
f a i l s  a fter  R1 i s  accepted deadlock occurs since on recovery R1 cannot 
com plete and proceed b ecau se i t  needs the a s so c ia te d  r e p ly , and T2 
cannot recover the reply a ssoc ia ted  to  R1, because i t  i s  w aiting for the 
reply associa ted  to  R2, which cannot be recovered by T1.
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In order to so lve the problems mentioned above, a mechanism that 
works concurrently with the ap p lica tion  task i s  required. This mechanism 
could be e a s ily  implemented by a standard service  module. However, i t  i s  
p ossib le  to  take advantage o f  the Conic implementation and avoid th is  
overhead. In Conic, remote tran saction s are supported by an in terprocess 
communication serv ice  which i s  implemented by two service  modules — 
IPCIN and IPCODT, showed in  f i g  6.3> taken from [Sloman 8 3 ] . IPCOUT 
builds the message frame for the transaction  and holds i t  in  an in tern al 
buffer u n til the transm ission  i s  completed in  order to avoid further 
copy operations. IPCIN provides d estin a tion  buffering for remote message 
transactions. These modules can have th e ir  programming e a s ily  changed in  
order to  meet the requirements o f r e lia b le  request-reply transactions. 
IPCOUT i s  m odified in  order to  retransm it request messages, w hile IPCIN 
i s  modified in  order to check and discard rep lica ted  request or reply  
messages, and a lso  to  pick up any already ava ilab le  reply message in  the 
ta sk  data space and send i t  back to  the en tryp ort s id e . These 
m od ification s do not introduce any overhead in  the processing of the 
standard Conic tr a n s a c t io n s . T h is approach a llo w s  the use o f  the  
standard Conic kernel in ter fa ce  procedures for operating on r e lia b le  
ports. I t  a lso  avoids any in e ff ic ie n c y  or problem that i s  associated  
w ith the the use of program stubs.

Exitport Entryport

I source >> j—» t a r g e t  j

1 ------------------- 1> 1 jco m m u n ica tio n |— »IPCODT I— >1 I— > I IPCIN » —
n e tw o rk  1

F ig . 6 .3  Support o f Remote Transactions
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Both lo c a l  ( in t r a - s t a t io n )  and rem ote ( in t e r - s t a t io n )  r e l i a b l e  
request-rep ly  transaction s have the same semantics. Local transaction s  
can can have th e ir  sem antics enforced by a standard service module, as 
IPCIN, in s e r te d  in  the m essage path, although some in e f ic ie n c y  i s  
in tro d u ced . In the stan d ard  Conic sy stem , lo c a l  tr a n s a c t io n s  are  
perform ed by d ir e c t ly  copying the m essage from the sender to  th e  
d estin a tion  task data space; th is  i s  performed by the kernel. Since the 
amount of processing necessary to  enforce the semantics i s  very sm all, 
i t  can be perform ed t o t a l l y  in  th e  k ern e l. This a llo w s  e f f i c ie n c y  
improvement and economy of resources a t a cost of a sm all change in  the 
Conic kernel.

The proposed design for the request-rep ly  transaction uses a sim ple 
request-response (RR) protocol, and i s  intended for maximum e ff ic ie n c y  
and s im p l ic i t y  o f im p lem en ta tio n  (see  next s e c t io n ) .  N -to -on e  
connections for r e lia b le  ports can be implemented as se ts  of n on e-to -  
one c o n n ec tio n s; one fo r  each of th e n e x itp o r ts .  In t h i s  case  i t  i s  
necessary to keep a copy of each rep ly  message a t the entryport side. A 
r e q u e s t -r e s p o n s e -a c k n o w le d g e m e n t  ( RRA)  can be u sed  fo r  th e  
im p le m e n ta t io n  o f  N - to -o n e  c o n n e c t io n s .  In  t h i s  c a s e ,  th e  
acknowledgement message i s  generated only a fter  a save i s  performed a t  
the ex itp ort sid e , thus ensuring that the transaction  i s  not repeated in  
case  o f f a i lu r e .  T his econ o m izes s to r a g e , s in c e  a copy o f th e r ep ly  
message for each connection does not need to  be kept at stab le  storage  
at the entryport side. However the RRA option slow s down the completion  
of the transaction  and requ ires more complicated support. This option  
can be used i f  the r e p ly  m essage i s  lo n g , s in c e  i f  i t  i s  sh o r t, the  
incurred overheads do not make i t  w orthw ile. An RRA protocol can a lso  be 
u sefu l for the im plem entation of the in terface  of a server.

The use of an RRA protocol a lso  makes i t  possib le  to  transfer only 
th e  sequence number o f th e  r eq u e st m essage to  s ta b le  sto ra g e  a t the  
entryport sid e. Thus, on recovery, the message content would have to  be 
recovered  from the source o f  th e  req u est . This s tr a te g y  avo id s the  
i n i t i a l  saving of the received  message, but requires a more complicated 
implementation. Typical messages in  control app lications have short 
length  [Prince 81] and the sequence number has to  be saved anyway. Thus 
in  a high speed communication network l i t t l e  e ff ic ie n cy  improvement 
would be achieved.
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F in a lly , i t  should be noticed  that the transfer of sta te , through 
saves, i s  not e x p l ic i t ly  re la ted  to  the execution of actions. Thus no 
e x p lic it  s ta te  for action s needs to  be considered to perform end-to-end  
control. All that i s  needed to  enforce the transaction semantics i s  the 
check in g  o f  sequence numbers; which are in d ep en d en tly  saved. T his  
s im p lif ie s  the implem entation of the transaction.

6 .2 .3 .4  Communication System
The proposed support m echanism s are enough to  provide th e  

r e l i a b i l i t y  r e q u ir e d  f o r  th e  t r a n s a c t io n ,  p ro v id e d  th a t  th e  
com m unication system  does not g e t  p a r t it io n e d . In a p r a c t ic a l  
ap p lication  th eir  r e l ia b i l i t y  and e ff ic ie n c y  depends on a sp ec ia l design  
o f the com m unication system  [K le in ro ck  80 , Pow ell 8 2 , W ensley 78, 
Wolf 79, Smith 75]. Redundant communication paths must be used and fa s t  
fa u lt  d etection  and routing mechanisms are required. Also, the end-to- 
end c o n tr o l req u ired  fo r  r e l i a b l e  tr a n s a c tio n s  i s  e s s e n t ia l  fo r  
r e l ia b i l i t y  and any lower le v e l  end-to-end control mechanism i s  not 
lo g ic a lly  necessary, although i t  can be used for e ffic ien cy . Thus th e ir  
use r eq u ir e  a c a r e fu l a n a ly s i s  o f  each case  as p oin ted  out by 
[S a ltzer  81]. Some examples are presented below.

Example 1: In the model, we assumed the a v a ila b ility  o f large sequence 
numbers. This can be relaxed i f  the transport service can guarantee that 
m essages are r e c e iv e d  in  o th er  s t a t io n s  in  th e  same order they were 
generated in  th eir  source sta tio n . This could be inherent to particu lar  
im plem entation technology, e.g., some loops or rings, or imposed by a 
mechanism o f the communication system. The s iz e  of sequence numbers a lso  
can be bounded i f  a maximum message l i fe t im e  i s  assured [Watson 81].

Example 2: Reference [Boyd 81] considers the use of the "token control” 
access technique to  allow  lin k  sw itch-over without lo s in g  or corrupting 
in  tr a n s it  messages. There, i t  i s  a lso  stated  that the time needed to  
regenerate a lo s t  tokens meets str in gen t rea l-tim e requirements. In th is  
ca se , no m essage needs to  be r e tr a n sm itte d  to  recover  from m essage  
fa ilu r e s . The in flu en ce of the token control technique in  the sta tu s  
c o lle c tio n  was a lso  d iscussed  in  section  6.1.2.1.
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Example 3: A number of s ta te -o f- th e -a r t  lo ca l area networks o ffer  a very 
low fa ilu r e  rate for broadcast message transm ission , e.g., [Shoch 80]. 
The d esig n  can take advantage o f  t h is  f a c t  in  order to  im plem ent 
tr a n s a c t io n s  e f f i c i e n t l y ,  as proposed in  [S p ector  8 2 ] . A r e l i a b l e  
request-rep ly  transaction  can be performed by two broadcast messages, 
one fo r  the req u est and an oth er  fo r  the r ep ly . This a ls o  s o lv e s  th e  
message addressing issu e , s in ce  the same physical instance of a message 
(request or reply) can reach both target in stan ces (the active  and the 
passive); however the modules in stan ces associated  to  the same Rmodule 
have to  have unique a d d r e sse s  w ith in  th e network. C onsidering th a t  
message and module instance fa ilu r e s  are rare, th is  would work in  most 
of the cases. In order to  cater  for  both p ossib le  fa ilu r e s  the request 
message can be retransm ited. The retry  in terva l i s  se t up to be not much 
bigger than the average time in te r v a l needed to  complete the transaction  
in  normal conditions. The scheme can cause some unnecessary delay in  
case  o f  pure m essage f a i l u r e s .  However, co n sid e r in g  th a t m essage  
fa ilu r e s  are rare, and that d elays o f the same order can occur because 
of module fa ilu r e s , th is  should not be considered a flaw . The use o f  
broadcasts requires the communication in terface  to  act on every message 
transm itted , and catch only those d irected  to  module instances resid in g  
in  i t s  a tta ch ed  s t a t io n . T h is should  be con sid ered  in  the in t e r f a c e  
design in  order not to  cause wastage of processing power ava ilab le  in  
the sta tio n , e.g., a separate communication processor can be used. The 
use o f b road cast a d d r esse s  a l s o  s im p l i f i e s  r e c o n fig u r a tio n , as 
ind icated  in  section  6.1.1.2.

Example 4: A r e lia b le  tra n saction  can a lso  be implemented by unicast 
message transm issions (n o tify  transaction s). In th is  case two unicast 
transm issions are used by a source to d irect messages to  each of the 
p o te n t ia l  ta r g e ts :  the a c t iv e  and the p a ss iv e  in s ta n c e s ;  t h is  a ls o  
so lves the addressing is su e . Hence for each r e lia b le  transaction  the 
transm ission  of a t le a s t  two request and two reply messages i s  needed. 
In p r a c t ic e  t h i s  depends on th e  p a r tic u la r  im p lem en tation  o f the  
service: i f  a sim ple datagram serv ice  i s  used the above i s  true; i f  a 
more e la b o r a te  tr a n sp o r t s e r v ic e  i s  used, e .g ., each m essage i s  
acknow ledged, more m essages are  needed. This scheme i s  used in  our 
prototype implem entation o f r e l ia b le  transactions. I t s  main advantage i s  
that i t  uses serv ices gen era lly  provided by ava ilab le  message transport 
mechanisms. The main disadvantage i s  the p o ten tia lly  high delays, which 
can cause nhiccupsn a t the ap p lica tio n  le v e l .
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I t  i s  r ec o g n ised  th a t  f a u l t  to le r a n t  sy stem s req u ire  s p e c ia l  
purpose designs. In the r e l ia b le  transaction  case, th is  can be e s se n tia l  
for meeting the rea l-tim e demands of some control app lications in  a co3t 
e ffe c t iv e  way.

6.H Summary of the Chapter

In th is  chapter, the design and implementation d e ta ils  of the fa u lt  
tolerance support mechanisms were presented. The chapter was organized 
in  two main section s.

The f i r s t  was r e la te d  to  th e  c o n fig u r a tio n  management s e r v ic e ,  
which i s  implemented by two system modules: the configuration manager 
and the sta tu s co llec to r . The r e l ia b i l i t y  service required for these 
m odules i s  a p p lic a t io n  dependent. However, in  order to  support the  
req u irem en ts o f  some a p p lic a t io n s  they need th em se lv es  to  be f a u l t  
to leran t. This i s  obtained by using the hot standby service for th e ir  
implementation. In addition  to  fa u lt  tolerance, they have to provide 
con sisten t configuration control ca p a b ility  which requires sp ecia l care 
in  i t s  d es ig n  to  be a ch iev ed  in  an environm ent where f a i lu r e s  occur  
(which in clu d es fa ilu r e s  o f in stan ces implementing the configuration  
management serv ice). The con figu ration  manager uses a strategy that 
ensures that configuration  op eration s are always completed once started . 
The s ta tu s  c o l l e c t o r  a s su r e s  th a t  every s t a t io n  s ta tu s  change i s  
c o n s is t e n t ly  communicated to  th e c o n fig u r a tio n  manager. Thus, i f  
fa ilu r e s  do not occur very quickly in  sequence, a stab le  configuration  
for the system i s  obtained. The design of the configuration magement 
s e r v ic e  p ro v id es  th e minimum c a p a b i l i t i e s  req u ired , and has a very  
sim ple implementation. However, exten sion s can be made when necessary; 
t h is  was considered in  se c tio n s  6.1.2.1 and 6.1.3*
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The second was concerned with the mechanisms which are associa ted  
with the hot standby serv ice . They support the programming of strong  
f a i lu r e  dependency sy stem s. I s su e s  r e la te d  to  the save p r im it iv e ,  
management of in stan ces implementing hot standby Rmodules, and r e lia b le  
request-rep ly  transaction  were presented. The save prim itive sem antics 
was sp e c ifie d  and im plem entation options which allow the reduction of  
s ta te  inform ation tranferred in  save operations were proposed. The save 
operation i s  performed with the in terven tion  of a standard management 
ta sk  th a t  a ls o  perform s th e  management fu n c t io n s  o f  i t s  own module 
instance. This includes con tro ls o f the ro le  (passive or active) being 
performed by the instance, in s ta n t ia t io n  o f sta te  of new instances, and 
d etection  o f fa ilu r e s  of i t s  counterpart. The management task can be 
added to  ap p lica tion  Rmodules in  the development system without any 
change in  th eir  programming.

The requirements for the r e l ia b le  request-reply transaction  were 
id e n tif ie d  and a sim ple design  which meets them i s  proposed. I t  can be 
im plem ented by s l i g h t  changes in  th e  modules which provide th e  
in t e r p r o c e s s  c o m m u n ica tio n  m ech a n ism s in  th e  p r e s e n t  C onic  
im p lem en ta tio n . The r e l i a b i l i t y  and e f f ic ie n c y  o f  the support 
m echanisms depend on the p a r t ic u la r  com m unication system ; t h i s  was 
d isc u sse d  in  s e c t io n  6 .2 .3 .4 . The mechanisms which support the  
transaction  are orthogonal to  the other mechanisms associated  with the 
hot standby service.
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CHAPTER VII

FAULT TOLERANT APPLICATION SYSTEMS

In t h is  chapter important aspects of the construction of fa u lt  
to leran t ap p lication  system are presented. A methodology to develop  
fa u lt  to lera n t ap p lica tion  system s i s  described, and relevant design  
is su e s  concerning strong and weak fa ilu re  dependency systems are 
d iscussed . F in a lly , based on two examples, observations about the use o f  
the r e l ia b i l i t y  serv ices are made.

7.1 Methodology

In t h is  sec tio n , a methodology for developing fa u lt  to lera n t
ap p lication  systems i s  b r ie f ly  presented. We assume that the system i s  
already defined, has i t s  elem ents id e n tif ie d , and has i t s  in ter a c tio n  
and performance requirements sp e c if ie d . This can be obtained by using  
techniques such as those presented in  [Weitzman 8 0 ]. For s im p lic ity ,  
consider that each element corresponds to  a module. The methodology 
c o n s is ts  o f the fo llow in g step s:

Step 1. Each module i s  sep arately  designed, modules from a lib rary  
can a lso  be used. In th is  step , fault-avoidance techniques for
v a lid a tio n  and v e r if ic a t io n  should be used at the module le v e l .

Step 2. The composition and in terconnection  structure of the system  
i s  sp e c if ie d  using the Conic configuration  language. At th is  stage
v a lid a tio n  and v e r if ic a t io n  techniques should be used at the system  
le v e l ,  e .g . ,  to  check the con sisten cy  of connections and to  assure the
absence o f deadlocks caused by the interconnection  structure of modules. 
Note that the system can be op eration ally  tested  before fa u lt  tolerance  
i s  added.
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Step 3* The r e l ia b i l i t y  serv ice  used by each module and the type o f  
each port are sp e c ifie d  in  order to  meet the requirements of the system. 
The corresponding con figu ration  sp e c if ic a tio n  f i l e  i s  produced. The 
p ossib le  mappings from modules to s ta tio n s  are also defined. Thus the 
consistency o f the p ossib le  mappings can be checked. The configuration  
sp e c if ic a tio n  i s  processed by the translator program and the
configuration  d escr ip tion  f i l e  i s  produced. This configuration  
d escr ip tion  f i l e  contains a l l  the information needed by the
configuration  management e n t i t i e s  to  control the configuration. Also the 
support for  hot standby Rmodules i s  provided.

Step 4 . The fa u lt  to lera n t system i s  tested  in  the most r e a l i s t i c  
operational con d ition s. The same techniques and to o ls  used to  t e s t
standard Conic systems can be used, e . g . , debugger module.

Hot standby Rmodules are treated  in  step 3« In p rin cip le , i t  i s  
p ossib le  to  perform autom atically  a l l  tra n sla tio n s to  support these  
Rmodules from th eir  s p e c if ic a t io n , i . e . , provision of the management 
task , in ser tio n  o f saves in  the program of tasks, and the provision o f  
support for r e lia b le  ports. In p ra ctice , th is  depends on the ava ila b le  
development to o ls , and on the p articu lar  Rmodule, e .g . ,  ap p lication  
defined saves can be used.

The exact order of a c t iv i t ie s  performed in  steps 2 and 3 depends on 
the development to o ls .  Also, some feedback may be necessary in  order to  
elim inate the problems found in  any of the step s. By using th is  
methodology the configuration  d escr ip tion  information i s  produced.

The methodology presented in  th is  sec tio n  deals with the
m echanistic aspects o f developing an app lication  system. I t  can be 
supported by extending the standard Conic development to o ls .  Other 
relevant is su e s  for the design  of fa u lt  to leran t application  systems are 
discussed  in  the next se c tio n s .
7 .2  Management In terface

The configuration  manager can answer queries about the sta tu s o f  
Rmodule in sta n ces, and a lso  report changes of sta tu s o f Rmodule 
in stan ces. This ca p a b ility  i s  u sefu l in  the implementation of
ap p lication  dependent recovery a c t iv i t i e s  in  weak fa ilu re  dependency 
systems. In th is  way, s p e c i f ic  Rmodules would c o lle c t  or be provided 
with sta tu s inform ation and can, fo r  example, perform a c t iv i t ie s  such as 
r e - in i t i l i s a t io n  o f  repaired Rmodule in stan ces, or enforce a system 
shut-down procedure a fter  fa i lu r e s .
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The concentration o f recovery a c t iv i t ie s  in  sp e c if ic  Rraodules seems 
to be a good strategy to be used for weak fa ilu re  dependency systems. In  
a system composed o f various modules, i t  would be d i f f ic u l t  to  equip 
each ind iv idual module with the necessary mechanisms. In addition, each 
module would have to be sp e c ia lly  designed for a given configuration . 
The concentration requires only the sp ecia l design of the s p e c if ic  
Rmodules, which provide the recovery a c t iv i t ie s  for the other Rmodules. 
Also, the Rmodules in  charge of the recovery a c t iv i t ie s  can be made 
fa u lt  to leran t by the use o f the hot standby serv ice , thus providing 
r e l ia b i l i t y  for th eir  fu n ction s. Even so, some assumption should be made 
about the frequency of fa u lt s ,  i . e . ,  i f  fa u lts  occur concurrently with a 
recovery a c t iv ity  sp ec ia l care in  the programming i s  required to  allow  
the operation to  continue and complete.
7 .3  Response Time

An important consideration  for the design of real-tim e control 
ap p lica tion s i s  the response time of the system. The formal ca lcu la tio n  
and v a lid a tio n  of the response time of a system of in teractin g  modules 
i s  a very complex is su e , which i s  subject of current research, e . g . , 
[B ernstein  8 1 ,  Karg 8 4 ] .  In t h is  sec tio n , we resort to informal means to  
show that r e lia b le  req u est-rep ly  transactions performed in  a system o f  
hot standby modules w il l  terminate w ithin  a bounded time in ter v a l. This 
i s  considered below.

7*3.1 Normal Case
Here we are in terested  in  estim ating the time taken to  perform a 

r e lia b le  a req u est-rep ly  transaction  in  the case where no instance  
fa ilu r e  occurs during the tran saction  execution. This time in terv a l i s  
measured from the time the request message i s  sent to  the time the reply  
message i s  received .

( 1 )  T1

^request> Trepiy are the maximum times taken to  transport the 
request and rep ly messages, r e sp e c tiv e ly , between both sid es performing 
a transaction . Tsave i s  the maximum time taken to perform a save 
operation. A save i s  a lso  performed through messages. Thus these times 
can be sp e c if ie d , although they are dependent on the particular  
communication system.
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■ ^acceptance i s  the maximum time the request message takes to  be 
accepted by the ap p lication  task . Taction  i s  the maximum time taken to  
perform the action . These times depend on the processing load in  the  
sta tio n  where the in stan ce i s  running, which i s  known beforehand. 
A vailable techniques can be used to  determine a maximum value for th is  
parameter, e .g . ,  [Leinbaugh 8 0 ].

7*3.2 Failure Case
When a fa ilu r e  occurs, the time taken by the active  instance to  

take over the a c tiv e  r o le , i . e .  Trecovery> should be considered.

^  ^failure ^request + ^acceptance + Motion + Mave + ^recovery
+ Meply 
Thus,

^  ■''■failure <= Mormal + Mecovery 
where,

^  Mecovery <= Metection + Motivation + Motion

Metection ds taken for the failure to be detected, and
Motivation *s the time taken to switch the passive instance to the 
active role. Equation (4) includes Taction in order to consider the 
worst case where the target instance fa ils  after executing the action 
and before the reply reaches the source instance. In this case the 
action i s  executed again on recovery. We assume that a new passive 
instance w ill take some time to be created by the system. Thus, on 
recovery, Mave i s  not counted again.
7.3*3 Comments

Equation (1) shows th at the time to execute a r e lia b le  transaction, 
in  the normal case, i s  equal to  that for execution of standard Conic 
request-rep ly transaction  plus the time to perform a save operation.

In equation (4) Tacti Vation i s  sma11 since i t  i s  related only to 
the activation of the application tasks. Remember that a passive 
instance i s  fu lly  prepared to perform application processing. Thus, 
equation (4) shows that the delay introduced by a module failure i s  
dominated by Tdetection and Ta ction* In Process control applications, 
most actions are typically short. However, i f  an action takes a long 
time to execute, an intermediate save can be used to minimize TreC0yery» 
although this delays the action execution in the normal case. Metection
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depends on the implementation of the d etection  mechanism. As discussed  
in  sec tion  6 .2 , techniques to  minimize th is  parameter can be used. These 
techniques can also  be used for speeding up the save operation. The 
equations are v a lid  for remote and lo c a l transactions; only the message 
transport tim es, — TreqUe s t  and Trepi y have d ifferen t values.

So fa r , we have considered that action s are executed lo c a lly  w ithin  
a task, which i s  the most common case in  control ap p lica tion s. However 
there are cases were tran saction s needs to  be performed w ith in  an 
action , i . e . ,  r e l ia b le  tran saction s are nested. In th is  case equation  
(2) can be employed su c ess iv e ly  in  order to ca lcu late  the response time 
of the top transaction . However, i f  the tasks p articip atin g  in  the 
transaction  are in  d iffe r e n t s ta t io n s  i t  i s  very u n likely  that a l l  o f  
them f a i l  together. Under th is  assumption i t  i s  s u ff ic ie n t  to consider  
how the fa ilu r e  of each one separately  a f fe c ts  the to ta l response time. 
The transaction  response time i s  then determined by the worst response 
time incurred by a s in g le  task fa ilu r e .

The equations presented above can be used in  order to ca lcu la te  the 
response time of r e lia b le  req u est-rep ly  transactions, which i s  required  
to determine the mimimum timeout value to be associated  with r e lia b le  
transaction s. Also the cost in  time o f fa u lt  tolerance can be estim ated. 
This i s  important in  s e le c t in g  a communication system, or in  evaluating  
the s u i ta b i l i ty  of the approach for  a given app lication .
7 .4  Input/Output

Input/Output may w ell be the weakst lin k  of fa u lt  to leran t systems. 
Many authors and designs simply assume that everything outside the 
computer system i s  r e l ia b le ,  and ignore the problem. However, 
input/output a c t iv i t i e s  are important in  control ap p lication s because 
they provide the in ter fa ce  with the environment. In the two fo llow ing  
section s we f i r s t  consider input and output is su e s  separately , related  
comments are made in  se c tio n  7 .4 .3 .
7 .4 .1  Input

In some cases in stead  o f  having a s in g le  input, i t  i s  required to  
have m u ltip le  rep lica ted  in p u ts, each one connected to  a d ifferen t  
sta tio n , so that no s in g le  fa u lt  can cause the lo s s  o f incoming 
inform ation. Sensors used in  control ap p lication s are generally  le s s  
r e lia b le  than the computer s ta t io n s  to  which they are attached. In th is  
case, s e ts  of rep lica ted  sensors can be connected to  the same sta tio n . A
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module in  the sta tio n  can c o lle c t  th eir  readings and perform some 
f i l t e r in g  algorithm in  order to  obtain a r e lia b le  reading. Some sensors  
can be embedded in  s ta t io n s . In th is  case, connections are made ea sier  
since they can be sp e c if ie d  a t a lo g ic a l le v e l by the configuration  
language. Also, repaired sensors can be autom atically reintegrated  in  
the system by the configuration  management serv ice .

For recovery i t  may be necessary to remember what information has 
been fed in to  the system. This can be read ily  implemented by using a hot 
standby Rmodule, and r e l ia b le  transactions to communicate the
inform ation to  the r e s t  of the system. In other c la ss  o f ap p lica tio n s, 
information can be redundantly fed in to  the system, e . g . , radar 
ap p lica tio n s.

7 .4 .2  Output

An output can be modelled as the sending of a message out o f the 
system. In some ap p lica tio n s, outputs cannot be repeated without harmful 
e f f e c t s ,  e .g . ,  chemical mix con trol [S ch oeffler  7 9 ]. In th is  case a 
so lu tion  i s  to  extend the boundaries of the system in  order to  include  
the output in te r fa c e . Hot standby Rmodules can perform outputs through 
r e lia b le  tran saction s. The in te r fa c e  would f i l t e r  out repeated outputs. 
In other ap p lica tio n s, outputs can be repeated without any harmful 
e f f e c t ,  e .g . ,  any switch a c t iv a t io n , and w riting of information to  a 
magnetic d isk . In th is  case, no f i l t e r in g  o f repeated outputs i s  needed; 
the guarantee of repeatable outputs that i s  provided by hot standby 
Rmodules i s  enough. I t  should be pointed out that a system of hot 
standby modules can produce con sisten t outputs in  presence of s in g le  
instance fa ilu r e s .

I t  i s  sometimes d i f f i c u l t  to  have the in terface  rep lica ted  a l l  the 
way to the f in a l output. Thus the output in terface  should be contructed  
in  such a way that i t s  r e l ia b i l i t y  does not compromise the rest o f the 
system. However, an exception  i s  provided in  [Sklaroff 76], where 
m ultip le actuators are used to  drive f l ig h t  control surfaces. In th is  
case, i f  an actuator f a i l s ,  the remainder have enough power to drive the 
surfaces to  the desired p o s itio n .
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7 .4 .3  Comments

The id ea l case of considering the input/output in terface  r e l ia b le  
and a c cess ib le  by any s ta t io n  of the system i s  not usually  fe a s ib le . In  
some ap p lica tio n s, the equipment being controlled  i s  p h ysica lly  
d istr ib u ted , and so are the s ta t io n s . The d iv ersity  of input and output 
devices and the s p e c if ic  way they are employed should a lso  be 
considered. Thus i t  i s  d i f f i c u l t  to draw general conclusions in  th is  
area; some examples are g iven  below:

Example 1. Some d ev ices have c h a ra cter is tic s  and ap p lication s th at 
make th eir  rep lica tio n  sim ple, e . g . ,  ( 1 ) a pump i s  lo o se ly  coupled to
i t s  environment. Thus a number o f pumps can be employed and be operated  
in  p a ra lle l or in  standby mode in  order to provide fa u lt  to leran ce . 
Devices l ik e  th is  can be con tro lled  by an embedded s ta tio n  in  which case  
they do not require a common physica l in ter fa ce  with two or more 
sta tio n s  o f the system; (2) a hot standby Rmodule can be in terfaced  to  a 
terminal driver module. In th is  case, the physical terminal can be 
rep lica ted . Each rep lica ted  term inal needs to  be in terfaced  only to  each 
of the s ta tio n s  where the in sta n ces  of the associated  Rmodule can run. 
The in ter a c tio n  with the system can be performed through the terminal 
associated  with the currently  a c tiv e  in stan ce.

Example 2 . Other dev ices have to  be connected to  a t le a s t  two 
sta tio n s  for a v a ila b i l i ty , e .g . ,  a magnetic d isk . In th is  case each disk  
unit i s  a lso  rep lica ted , and inform ation i s  redundantly kept in  the 
rep lica ted  d isk s . A r e l ia b le  d isk  server can be implemented by a hot 
standby Rmodule, which can hide the rep lica ted  disks from the r e s t  o f  
the system.

Example 3 . A weak fa ilu r e  dependency system can be implemented by 
cold standby Rmodules. In th is  ca se , system sta te  w ill  be lo s t  due to  
fa ilu r e s . Thus on recovery, any previous input can be ignored and some 
i n i t i a l  s ta te  i s  enforced on the in te r fa c e . Information provided by 
input sensors can be used to  ensure that th is  in i t i a l  s ta te  i s  
compatible with the current s ta te  o f the ap p lication . This requires 
sp ec ia l ap p lica tion  programming.
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Example H. Interrupt ca p a b ility  i s  not usually found in  fa u lt  
to leran t system proposals. Inputs are sampled under program con tro l. 
This i s  ju s t i f ie d  as a cond ition  for v e r if ic a tio n  and v a lid a tio n . In  
strong fa ilu r e  dependency system s, the treatment of in terrupts must be 
synchronized for co n sisten t recovery. In our proposal, th is  can be 
obtainned by using standard serv ice  modules to trea t the in terru p ts, and 
using r e l ia b le  transaction s to  feed them in to  the system. However the 
response time to in terru pts cannot be as low as that of a non-replicated  
system.

7 .5  A pplication Programming
In th is  sec tio n , two examples o f ap p lication  programs are

considered. F ir s t ly  we d iscu ss the approach used in  order to design the 
support mechanisms them selves for the fa u lt  to leran t system. Secondly we 
show how to  make a c la s s ic a l  program fa u lt  to lera n t: the dining  
philosophers. Some observations based on the use of the techniques are 
made for each example.

7 .5 .1  Support Mechanisms

The configuration  management service modules make use of the 
r e l ia b i l i t y  serv ices (see  d iscu ssion  in  section  6 .1 .3 ) .  The
configuration  manager uses the hot standby serv ice , and keeps s ta te  
inform ation re la ted  to  the a llo c a t io n  of instances under i t s  con tro l. 
This provides the c a p a b ili t ie s  o f fa s t  and automatic (re)con figuration  
operations. For sim ilar reasons the statu s c o llec to r  Rmodule a lso  uses  
the hot standby serv ice . A somewhat sp ecia l example of techniques that 
can be used for the programming o f cold standby Rmodules i s  provided by 
the management task , used in  the implementation of hot standby Rmodules 
(see sec tio n  6 .2 ):  This task  does not keep s ta te , thus being sim ilar to
a task o f a cold standby Rmodule. The implementation of the support 
mechanisms allow us to  make the fo llow in g  observations.

(1) I t  i s  not always p o ss ib le  to  devise a p a rtitio n  o f an ap p lica tion  
system fu nction s in  modules in  such a way that a weak fa ilu r e  
dependency system i s  obtained. For example, the service used by the 
configuration  manager i s  dependent on the sp e c ifica tio n  required: 
I f  automatic fa ilu r e  recovery i s  required, the hot standby service  
has to be used.
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(2) According to  our assumptions the fa ilu re  of a module instance can 
be unambiguously determined by the other module in stan ces. We took 
advantage of th is  fa c t  in  the designs of the statu s c o lle c to r  
module and the management task  of hot standby Rmodules. I f  the  
structure of the ap p lica tio n  under consideration i s  more complex, 
the configuration  management serv ice  c a p a b ilit ie s  of reporting  
events and answering queries may be required.

(3) F ailure recovery for cold standby Rmodule instances i s  mostly an 
ap p lication  concern; the system can only create a new in stan ce . The 
procedure for recovery i s  ap p lica tio n  dependent. In some cases i t  
can be ju st  the normal procedure of the Rmodule, e . g . , as in  the 
case of a sensor. In other ca se s , e .g . ,  the management task which 
supports in stan ces o f hot standby Rmodules, i t  can require the 
recovery o f inform ation from other in stan ces, and a lso  
synchronization with these in sta n ces .

7 .6 .2  Dining Philosophers
The dining philosophers i s  a w e ll know problem normally used to  

in v e stig a te  synchronizing mechanisms in  co-operating seq u en tia l 
processes [D ijk stra  7 5 ]. However i t  has a lso  been used to  i l lu s t r a te  the 
ap p lication  of backward error recovery techniques for  fa u lt  to leran ce  
[Shrivastava 78] (see  se c tio n  3 .2 .1 .  for rela ted  d iscu ss io n ). The 
modules and th eir  in tercon ection  stru ctu re are represented in  f i g .  7 . 1 , 
for a group o f four philosophers. The code of the Rmodules: tab le , fork, 
and philosopher are presented in  figu res 7 . 2 , 7 *3 , and 7 .4 ,
resp ec tiv e ly ; a b r ie f explanation  o f  the functions o f each module i s  
a lso  presented in  the f ig u r e s . The action  being performed by each 
philosopher (th ink ing , s i t t in g ,  eatin g) and the current a llo c a tio n  o f  
each fork (none, l e f t ,  r ig h t) are displayed in  a terminal (not 
represented). I t  i s  assumed th a t the Rmodules use the hot standby 
serv ice , and that a l l  communications are performed through r e l ia b le  
p orts. The example can have a p ra ctica l in terp retation : The ta b le
represents a database that i s  constantly  read and updated by ap p lica tion  
modules. The philosophers represent the ap p lication  modules; th e ir  
action  i s  in  some way conditioned by the database module, e .g . ,  a 
deadlock avoidance p o licy  i s  enforced. The forks represent resources 
which have to be used in  an orderly fashion by the app lication  modules; 
they a lso  perform input/output a c t iv i t i e s .  The code of these Rmodules 
are exactly  id e n tic a l to  the o r ig in a l (u nreliab le) Conic program, with  
the exception o f the saves. The d in ing philosopher example allows us to  
make the fo llow in g  observations.
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(1) I t  shows how immediate the ap p lication  of the technique i s .  Two
changes in  r e la tio n  to  the standard Conic program are required. The 
f i r s t ,  i s  required in  order to  in ser t the transaction control code 
and saves a t proper p o in ts in  the program of the tasks. In the  
example only the saves were introduced in  the task program (the  
code associated  to  the end-to-end control sequence numbers i s  not 
shown). This was performed manually, however the saves and control 
code could be autom atically  introduced by a preprocessor in  the  
development system; the inform ation required i s  defined by the type 
o f the ports o f the module. The second change, i s  required in  order 
to  transform n-to-one connections to  an equivalent se t of n o n e-to -  
one connections. Thus the entryports o f the tab le module were 
rep lica ted . However i t  should be pointed out that the 
transformation i s  very sim ple, and e ith er  can be performed
autom atically , or not be e x p lic it ly  required i f  a more elaborate
implementation i s  a v a ila b le .

(2) I t  shows the a p p lica tio n  o f the save ru les . The rule enforced by
each of the saves i s  in d ica ted  in  the f ig u r es . For the tab le  module 
a save i s  introduced between the RECEIVE and REPLY statm ents. These 
saves are necessary to  enforce ru le  I , and assure the r ep e a ta b ility  
of the reply messages. The fork module d isp lays i t s  current 
a llo c a tio n  by c a ll in g  the procedure d isp laya lloca tion , which
performs the actual outputs through the e x it  port output. Thus, a 
save placed before the d isp laya lloca tion  c a l l  statement su rely  
enforces ru le  I I :  a save i s  always performed before a second
transaction  through the output port; thus the recover o f the 
matched reply i s  always p o ss ib le . The other two saves enforce ru le  
I , as in  the tab le  module. I t  i s  in ter e stin g  to note that the save 
enforcing ru le  I I  does not need to  be performed: because the
structure o f the fork program rule II  i s  already enforced by the 
remaining saves. In an elaborate implementation, the execution  o f  
each save can be autom atically  decided by extra code a sso c ia te  to  
each save; the d ec is io n  depends on the path taken by the program 
during i t s  execution . In some cases, i t  i s  a lso  possib le  to remove 
redundant saves in  an optim isation  stage. For example, the saves in  
the philosopher program are enough to ensure ru le  II  for a l l  i t s  
ports; th is  assures the rep ea ta b ility  for the transactions  
performed by the philosopher in stan ces. Thus, i t  i s  not necessary  
to  place a save before each SEND statement.
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(3) I t  can be seen that in  any s in g le  fa ilu re  case the system continues
working without any lo s s  o f sta te  and that no in co n sisten t  
transactions are attempted by a module. For example, consider that 
a fa ilu r e  happens a t point x, in  f ig .  7 .4 . On recovery a l l
statem ents fo llow in g the la s t  save (marked by eating) w il l  be 
performed again; thus in  consequence o f the fa ilu r e  the
transactions w il l  be repeated. The underlying mechanism ensures 
that the transactions on the leavetab le , le f tfo r k , and r igh tfork  
ports complete, and that the philosopher program makes progress. 
The recovery does not in te r fe r e  with the a c t iv i t ie s  of the other 
modules o f the system. There i s  no need of sp ec ia l programming o f  
any of the modules in  order to guarantee consistency of th e ir
s ta te , e . g . , value of the s i t t in g  variab le. However fa ilu r e s  can 
lead to  a degradation o f the response time. For the philosopher  
module, th is  can be remedied by in ser tin g  saves within the d elays, 
i . e . ,  by using interm ediate saves. F in a lly , i t  i s  in ter e stin g  to  
note that both output ports (fork  and philosopher modules) need not 
be r e lia b le :  The characters are w ritten  in  the same p osition s on
the screen of the term inal. Thus, in  case o f repeated outputs the 
dysplayed words are simply overw ritten, the outputs are idempotent 
( th is  i l lu s t r a t e s  the d iscu ssion  in  section  7 .4 .2 ) .

(4) I t  a lso  i l lu s t r a t e s  a problem with idempotent action s, i . e . ,  to
program the modules in  a way that no inconsistency a r ise s  as a
consequence o f repeated execution  of the same action . This i s  an 
e f f ic ie n t  way of so lv in g  communication problems in  some 
ap p lica tio n s [Herbert 8 1 ] . In the example, th is  technique can lead  
to strange s itu a t io n s . For in stan ce, consider a fork module and 
suppose that a philosopher puts down a fork and f a i l s  before a
confirmation of th is  a c tio n  i s  received . In the meantime, a second 
philosopher picks up the same fork. On recovery the f i r s t  
philosopher has to  w ait u n til  the second philosopher put down the 
fork. Only then, can the f i r s t  philosopher continue i t s
a c t iv i t i e s .  A sim ilar s itu a t io n  occurs for the tab le module; i f  a 
philosopher f a i l s  and the variab le  s i t t in g  i s  equal to n -  1. In 
th is  case , the tab le  module would a lso  have to keep more h istory
sta te  and have more elaborate algorithms in  order to  take
con sisten t d ec is io n s, e .g . ,  for updating the value of s i t t in g  in  
case of r ep e titio n  o f req u ests. Thus the use of idempotent action s  
makes a p recise  evalu ation  o f the response time of the system more
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d i f f i c u l t ,  and requ ires some e ffo r t  to be programmmed. In our 
approach, r e l ia b le  req u est-rep ly  transactions and the recovery 
technique provide the required r e l ia b i l i t y  for the system. However, 
our approach allow s idempotent action s to be used when worthwhile,
e . g . , in  the design o f the configuration manager module (see  
section  6 . 1 . 1 . 3  for  d iscu ss io n ), and in  the output operations o f  
the fork and philosopher modules (observation 3 ) .
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MODULE dtable(n:integer);
{ — dtable permits a t most (n -  1) philosophers to s i t  a t the tasblewhere there are n philosophers — n i s  four in  th is  example.
}

ENTRYPORT* lea v e_ i : sign a ltyp e REPLY signaltype;s i t _ i  : sign a ltyp e REPLY signaltype;
TASK tab le;

ENTRYPORT lea v e_ i : sign altyp e REPLY signaltype;sit__i : sign altyp e REPLY signaltype;
VAR s i t t in g  : in teg er ;request, ok : sign a ltyp e;
BEGIN

s i t t in g : = 0; ok:= sign a l;
LOOP SELECTRECEIVE request FROM leave_ i;

save; { ru le  I }REPLY ok TO leave_ i;  
s i t t in g : = s i t t in g  -  1;

OR WHEN s i t t in g  < (n -  1)RECEIVE request FROM s i t _ i ;
save; { ru le  I  }REPLY ok TO s i t _ i ;  s i t t in g : = s i t t in g  -  1;

END;END;
END;

BEGINEND.

Fig 7*2 Table Module

* Only one p a ir  o f p o r ts  i s  r ep resen ted , see  d is c u ss io n  in  
observation (1 ) .



{ — fork rece iv es  pickup and putdown requests from philosophers, but
can only be a llo ca ted  to a t  most one philosopher at a time

} USE philos.m sg, f i l e .d e f ;
ENTRYPORT r ig h tp h il : forktype REPLY signaltype;le f t p h i l  : forktype REPLY signaltype;
EXITPORT output : s tr in g  REPLY signaltype;
TASK sharedfork;

ENTRYPORT r ig h tp h il : forktype REPLY signaltype;le f t p h i l  : forktype REPLY signaltype;
EXITPORT output : s tr in g  REPLY signaltype;
TYPE a lloca tion typ e  = (none, l e f t ,  r ig h t);
VAR a llo ca ted  : a llo ca tio n ty p e;  request : forktype;
PROCEDURE d isp la y a llo c a tio n ;
BEGIN{ — d is p la y s  in  th e  ter m in a l th e a l lo c a t io n  o f  the fork , u sesex itp o rt output.} END;
BEGINa llo c a te d := none;

LOOP
save; { ru le  II  } d isp la y a llo c a t io n (a llo c a te d );
SELECTWHEN ( (allocated=none)) or (a llo c a te d = le ft ) ) RECEIVE request FROM le f tp h il ;

save; { rule I }REPLY s ig n a l TO le f tp h il ;
CASE request OFpickup : a llo c a ted := l e f t ;  putdown : a llo ca ted := none;END;

OR WHEN ( (allocated= none)) or (a llo ca ted = r ig h t)) 
RECEIVE request FROM righ tp h il;
save; { rule I }REPLY s ig n a l TO righ tp h il;
CASE request OFpickup : a llo c a ted := r igh t; putdown : a llo ca ted := none;END;END;END;

END;BEGINEND;

MDDULE dfork;

F ig . 7*3 Fork Module
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{ — Philosopher repeated ly  th inks, s i t s  down at the tab le , picks up his
l e f t  and r igh t fork and e a ts . He requests permission before each of h is  a ction s.

}

MODULE dphilo3opher(thinktim e, eattim e: in teg er);

USE philos.m sg, f i l e .d e f ;
EXITPORT righ tfork  le f t fo r k  leavetab le  s i t ta b le  output

forktype REPLY signaltype; forktype REPLY signaltype; 
s ig n a l type REPLY signaltype; sign a ltyp e  REPLY signaltype; s tr in g  REPLY signaltype;

PROCEDURE d is p la y a c t iv ity (a c t iv ity  : a c t iv ity ty p e );
BEGIN{ — d isp lays in  the terminal a figure corresponding to  the a c t iv ity

being performed, uses the ex itp ort output.
} END;

TASK philosopher;EXITPORT righ tfork  
le f t fo r k  lea v eta b le  s i t ta b le  output

forktype forktype  
s ig n a l type sign altyp e  s tr in g

REPLY signaltype; REPLY signaltype; 
REPLY signaltype; REPLY signaltype; 
REPLY signaltype;

BEGIN
req u est:= s ig n a l;pickuprequest:= pickup; putdownrequest:= putdown; LOOP

{ thinking } save; { ru le  I I  }d isp la y a c tiv ity (th in k in g );
DELAY thinktim e;SEND request TO s it ta b le  WAIT ok;

{ s i t t in g  } save { ru le  I I  }d is p la y a c t iv i ty ( s i t t in g ) ;SEND pickuprequest TO le f t fo r k  WAIT ok; 
SEND pickuprequest TO rightfork  WAIT ok;

{ eating } save { r u le  I I  }
d is p la y a c t iv ity (e a t in g );DELAY eattim e;
SEND request TO leavetab le  WAIT ok;
SEND putdownrequest TO le f t fo r k  WAIT ok; SEND putdownrequest TO righ tfork  WAIT ok;

{ x }END;END;BEGINEND.

F ig . 7*^ Philosopher Module



7.6 Summary of the Chapter

In t h is  chapter, the con stru ction  of fa u lt  to leran t ap p lica tion  
systems was d iscu ssed . A development methodology for obtaining the 
s t a t ic  configuration  inform ation needed by the configuration management 
serv ice  was presented. I t  can be implemented in  a development system by 
extending the standard Conic development to o ls . Other relevant design  
is su e s  were d iscussed . S p e c if ic a lly , in  section  7 .2  we discussed the use 
of the configuration  management in terface  to implement recovery
a c t iv i t i e s  for  weak fa ilu r e  dependency systems; in  section  7 .3  we 
presented an informal method to  ca lcu la te  the response time for a 
r e lia b le  request-rep ly  tran saction ; th is  i s  needed in  order to ca lcu la te  
the timeout value a ssoc ia ted  to  r e l ia b le  ports, and to  check i f  r ea l
time ap p lica tion  requirements are met; in  section  7*^ we discussed the 
is su e  o f input/output in te r fa c in g  in  a fa u lt  to leran t system. F in a lly , 
in  sec tion  7 .5 , based on the evaluation  of the design of the 
configuration  management serv ice  modules and on an example, we make some 
observations. They are u se fu l as a guidance in  the development o f fa u lt  
to lera n t ap p lica tion  system s.
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CHAPTER VIII

CONCLUSIONS and SUGGESTIONS for FURTHER WORK

T his t h e s i s  has p resen ted  a proposal for  a f a u l t - t o l e r a n t  
d istr ib u ted  computer control system. This chapter review s the important 
featu res o f the design and su gg ests  further work which would improve the 
a p p lic a b ility  of the proposed system.

8.1 Review o f the goa ls

In the fo llow in g  we r e la te  the relevant aspects o f the design with  
the goa ls that were se t up in  chapter I.

S im p licity :

The system supports two r e l ia b i l i t y  serv ices: hot and cold standby. 
By s p e c ify in g  the d e s ir e d  s e r v ic e ,  and p rov id in g  the req u ired  
redundancy, module f a u l t  to le r a n c e  i s  a u to m a tic a lly  ob ta in ed . The 
required support mechanisms are very simple.

On the one hand th is  i s  achieved by the cen tra lized  configuration  
management service  design, and the or ig in a l configuration cap ab ility  o f  
Conic. The c en tra lliz e d  design perm its the e f f ic ie n t  implementation o f  
d iffer en t reconfiguration  algorithm s. Only the s ta tio n s  supporting th is  
serv ice  need to  have the necessary resources, the r e s t  of the s ta t io n s  
req u ire  on ly  the standard Conic support m echanisms. The b u i l t - i n  
c o n fig u r a t io n  c a p a b il i ty  o f  Conic s im p l i f i e s  th e  im p lem en tatio n  o f  
module in s ta n c e  rep lacem en t o p e r a tio n s . The req u ired  c o n fig u r a tio n  
d escr ip tion  inform ation i s  e a s i ly  obtained o f f - l in e ,  in  a development 
system. At run-tim e, configuration  operations are read ily  implemented by 
the configuration  management se r v ic e , which uses a sim ple algorithm  to  
control the a llo c a tio n  of module in stan ces. The configuration operations 
are performed through messages sen t to  the standard operating system o f  
each sta tio n .
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On the other hand the achievement of sim p lic ity  i s  aided by the 
error confinement assumption. This assumption s im p lif ie s  the d etection  
of fa ilu r e s  in  the system sin ce  th e ir  only v is ib le  e ffe c t  i s  the  
stopping of module in s ta n c e s . A m alfunctioning module cannot e x ib it  
arbitrary and m alicious behaviour thereby corrupting c r i t i c a l  
inform ation and/or lead in g  other modules to f a i l .  Since s ta te  i s  not 
corrupted through error propagation the design of weak and strong  
fa ilu r e  dependency systems i s  s im p lif ie d , e . g . , a simple checkpointing  
technique can be employed for  the support of strong fa ilu r e  dependency 
systems. This a lso  b en e fits  the design  of the configuration management 
serv ice: A straightforw ard stra tegy  can ensure the consistency o f
configuration  operations in  presence o f fa ilu r e s  during their  execution . 
Also s ta tio n  and module fa ilu r e s  can be unambiguously detected by 
checking timing con stra in ts taken lo c a lly  in  a module; th is  s im p lif ie s  
the obtention o f fa ilu r e  d e tec tio n  ca p a b ility .
Transparency:

This goal should be d iscu ssed  separately for weak and strong  
fa ilu r e  dependency systems:
Weak fa ilu r e  dependency systems are implemented by modules using the  
cold standby se r v ic e . Provided that resources are ava ilab le  replacement 
o f fa ile d  cold standby in stan ces i s  autom atically performed. In some 
cases th is  i s  enough to  recover the module serv ices , but in  general 
recovery a c t iv i t ie s  should be e x p l ic i t ly  programmed by the ap p lication  
designer, e .g . ,  recovery o f s ta te  for the module instance. For some 
ap p lica tio n s fa ilu r e s  can be d etected  by the app lication  modules 
themselves and resolved  w ith in  th e ir  context. However, ap p lication  
independent ca p a b ility  o f d etectin g  ap p lication  fa ilu r e s  i s  provided by 
the configuration  management se r v ic e , and these fa ilu r e s  can be reported  
to  s p e c if ic  modules o f the system. This can be used to  implement 
ap p lication  dependent fa ilu r e  recovery s tr a te g ie s  in  th is  c la s s  o f  
systems.
Strong fa ilu r e  dependency system s can be transparently supported. In  
p rin cip le  the system can be programmed without any concern for fa u lt  
tolerance and afterwards autom atically  transformed in  order to obtain  
that c a p a b ility . However, enough f l e x ib i l i t y  i s  available to deal with 
ap p lica tion  dependent s itu a t io n s , e .g . ,  r e lia b le  and u n reliab le  
transactions can be used when d esirab le . In these cases e x p l ic i t  
enforcement of the recovery technique i s  required. This can be obtained  
by using e x p l ic i t ly  programmed saves, which requires program e d itio n . 
Standard Conic development to o ls  can be used for both types of system.
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Modular Design:
The mechanisms which provide fa u lt  tolerance were implemented by 

standard modules, and require for their support the standard Conic run
time mechanisms. Configuration management cap ab ility  i s  implemented by 
two modules: The configuration  manager and the sta tu s co llec to r  modules. 
They can be independently ta ilo r e d  to meet the needs and s e le c t iv e ly  
used in  each ap p lica tio n . The configuration  management service i s  enough 
to  provide the requirements o f  weak fa ilu r e  dependency systems; extra  
mechanisms are required for  the support of strong fa ilu re  dependency 
systems. The mechanisms for the programming of strong fa ilu r e  dependency 
systems are orthogonal to  the configuration  management mechanisms: 
Support for r e l ia b le  tra n saction s i s  obtained by simple changes in  the  
standard communication system modules, in  order to perform end-to-end  
con trols which do not introduce any unreasonable overhead and are 
e sse n tia l in  any fa u lt  to lera n t system. Hot standby modules require a 
standard management task which provides for transference of s ta te  to  
stab le  storage and the management o f the ro le  performed by a module 
in stan ce . This task can be autom atically  included in  hot standby modules 
and operates independently o f the other support mechanisms.

Hardware Independence:
The mechanisms are d ir e c t ly  transportable to  any hardware 

supporting the basic Conic machine. Their r e l ia b i l i t y  depends on the 
v a lid ity  o f the error confinement assumption. This can be ensured w ith in  
a given p rob ab ility  according to the r e l ia b i l i t y  requirements o f each 
ap p lica tion . In fa c t  programmers have long assumed aproximations o f the 
error confinement environment. Software techniques can be used to  ensure 
the assumption, although more e f f ic ie n c y  and coverage can be given by 
using ava ilab le  semiconductor components which provide b u ilt  in  error  
d etection  mechanisms in  the hardware. The current integrated  c ir c u it  
technology p rices and the advantages that r e su lt  of assuming error 
confinement make the option very a ttr a c t iv e .

We have designed the modules which support fa u lt  to lera n t
ap p lication  system s. Their relevant d e ta ils  were implemented in  a sm all 
sc a le  and tested  in  a prototype. They do not re ly  on any ad d ition a l 
feature or serv ice  which may be as d i f f ic u l t  to  provide, e . g . , a global
time reference ava ilab le  to  a l l  s ta t io n s . Thus we b elieve  that the 
c r i t i c a l  is su e s  were so lved . The current design supports c losed  
ap p lication  system s. However, due to i t s  modularity the modules can be 
ta ilo red  to  f i t  the needs o f d iffe r e n t ap p lica tio n s.

116 -



8 .2  Suggestions for Further Work

Further work can be performed in  d ifferen t areas. I t  can improve
the a p p lic a b ility  o f the approach in  a variety  o f ways.

(1) The c o n fig u r a t io n  language e x te n s io n s  we have su gg ested  fo r  
sp ecify in g  and build ing fa u lt  to lera n t application  systems can be 
fu lly  in tegrated  in  the Conic development system. This would allow  
the r e l ia b i l i t y  support required by each module to be autom atically  
ob ta in ed  from th e  system  s p e c i f i c a t io n ,  e .g ., the programming 
tra n sla tio n s for the support o f hot standby modules: management
task and language p rim itives. Configuration language mechanisms for  
sp ecify in g  more elaborated  reconfiguration  control s tr a te g ie s  can 
a lso  be studied and implemented.

(2) The refin em en t and e x te n s io n  o f  the f a u lt  to le r a n c e  support  
mechanisms: The con figu ration  management service can be extended in  
the d irec tio n s mentioned in  chapter VI, e.g., i t  can support more 
dynamic configurations, and be d istr ib u ted  in  d ifferen t s ta tio n s  o f  
the network. The m echanism s to  provide an in te r fa c e  betw een  
ap p lica tion  e n t i t i e s  and the configuration  management service can 
be f u l l y  d e fin e d  and made a v a ila b le .  T his depends on th e ir  
sp e c if ic a tio n  a t the configuration  language le v e l. Support for hot 
standby modules could a lso  be extended. Rmodules of th is  type can 
be a llo w ed  to  use more than one p a ss iv e  in s ta n c e . This w ould  
provide more r e l ia b i l i t y  at some cost in  e ff ic ie n cy  and resources. 
I t  should be noted th a t the concept of r e lia b le  transactions and 
the associated  recovery technique are independent o f the number o f  
passive in stan ces, thus t h is  option requires changes only in  the  
underlying im plem entation. For optim ised implementation of some 
a p p lic a t io n s ,  ta sk s  o f  a same module can use shared v a r ia b le s ;  
c a p a b il i ty  fo r  d y n a m ica lly  l in k in g  r e l ia b le  p orts  can a ls o  be 
d esirab le in  some ap p lica tio n s. The support of these options for  
hot standby modules could be provided.
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(3) R eliable communication system. In the th e s is  we have sp ec ified  some
minimum properties for the communication system, which are enough 
to ensure the r e l ia b i l i t y  of our design. However, the properties o f  
a s p e c if ic  communication system can have in fluence in  some p oin ts  
of our design, e . g . , a communication system using a token based 
access control protocol inherently  provides s ta tio n  fa ilu r e  
d etectio n  ca p a b ility . In addition  th is  cap ab ility  can be
d istr ib u ted  in  a l l  s ta t io n s  o f the system, which allows d irect  
implementation of the s ta tu s  c o lle c tio n  and the lo c a l d etection  o f  
fa ilu r e s  o f hot standby in stan ces. The in fluence o f the
communication system in  the implementation o f r e lia b le  transaction s  
were a lso  d iscussed in  sec tio n  6 .2 .3 .4 .  The design o f a
communication system taking in  consideration these in tera c tio n s can 
b en efit the whole system.

(4) The examples we presented and the s im p lic ity  of our approach have 
shown i t s  p o ten tia l a p p lic a b il ity . However, the development of 
further ap p lication  system s i s  e s se n tia l for i t s  evaluation and the  
p ossib le  id e n t if ic a t io n  o f p o in ts for refinement and extensions of 
the present support mechanisms. Also, the experience acquired w il l  
allow ap p lication  independent functions (and probably transaction s) 
to be id e n tif ie d  and thus standardized for general ap p lication .

(5) The construction  of r e l ia b le  systems requires the use of severa l
techniques. Tools for  fu n ction s such as: the q u an tita tive
evaluation  of r e l ia b i l i t y ,  the va lid ation  of response time, and 
v e r if ic a t io n  o f p rop erties such as absence of deadlocks in  
ap p lica tion  con figu ration s, can be provided in  the development 
system. The stru ctu ra l inform ation needed for these function s can 
be obtained from the configuration  sp e c if ic a tio n  of each
ap p lica tio n  system. The id e n t if ic a t io n  o f the other inform ation  
needed, the s e le c t io n  of the su itab le  techniques, and th e ir  
in teg ra tio n  in  usefu l to o ls  would help the development of r e lia b le  
ap p lica tion  systems.

(6) F in a lly  some system design  questions are worthy of further  
in v e s t ig a tio n . For example, — how does the p artition in g  o f  the 
fu n ction s o f a system in flu en ce  i t s  r e l ia b i l i t y  requirements ?

118 -



8 .3  Conclusions

We have proposed a b a s ic  approach to  th e p r o v is io n  o f f a u l t  
to leran t system s. This has included software techniques for programming 
fa u lt  to leran t a p p lica tio n s and the design of the mechanisms to support 
the approach. The basic  system i s  able to support a c la ss  of embedded 
r e a l- t im e  a p p lic a t io n s ;  how ever i t s  range o f a p p l ic a b i l i t y  can be 
extended as d iscussed  in  the previous section . The design was based on 
an e x is t in g  system, Conic, to a llow  the id e n tif ic a tio n  and d iscu ssion  o f  
the c r i t i c a l  and g e n e r a l i s s u e s .  This work p ro v id es a u s e fu l  
c la s s i f ic a t io n  o f system types: weak and strong dependency systems, an 
a n a lysis  o f the problems re la te d  to  the error assumptions which can be 
adopted in  the design o f fa u lt  to lera n t systems, and proposes sim ple  
so lu tio n s which can be used to  provide fa u lt  tolerance to other system s. 
We b e l ie v e  th a t  t h i s  work c o n tr ib u te s  to  th e understanding and 
construction o f fa u lt  to lera n t system s.

119 -



APPENDIX A
THE CONIC APPROACH

This appendix provides a concise  ou tlin e  of the Conic approach 
[Kramer 8 3 ]• I t s  purposes are to present the concepts and support 
mechanisms we use in  the th e s is .
A.1 Programming Language

Conic i s  based in  Pascal [Wirth 7 6 ] ,  which was extended with  
ca p a b ility  o f concurrency and message passing. The prim itive software 
component i s  a module, which can be seem as a lo g ic a l abstraction  o f a 
component in  a control a p p lica tio n . Modules are are separately designed  
and compiled and d iffe r e n t in sta n c e s  o f a same module type can be used 
in  a system. Each module contains a t le a s t  one task, which are the u n its  
of program concurrency in  Conic. The ta sk 's  in terface  i s  defined by a 
number o f e x it  and entry p orts . These are o f two kinds: e x itp o r ts , 
through which messages are sent to  other tasks, and entryports through 
which messages are rece ived . A module in ter fa ce  i s  defined by the e x it  
and entry ports exported by i t s  ta sk s , only these ports can be used to  
perform in te r  module communication. A separate configuration language i s  
used to  sp ecify  the connections between entry and e x it  ports (see  
section  A.2 ), and thus d efin e  the communication structure of a system of 
modules. Intra module port connections are sp ec ified  by a lin k  statement 
w ithin the module.
A. 1.1 Module & Task Structure
The general structure of a module and o f a task are presented below.
MODULE <m oduleidentifier> (parameters)USE <f i l  ename>! <f i l  ename><entry and e x it  port d eclaration s>

<type d efin itio n s><variable declarations>
<procedure declarations><taskname>|<taskname>
< local lin k  d eclarations>

BEGINi n i t i a l i s a t i o n  code>END
TASK <taskname> <priority>

<entry and e x it  port declaration s><type d efin itio n s><variable declarations><procedure declarations>
BEGIN<taskcode>END
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Examples o f module type d e fin it io n s  are shown below in  o u tlin e .  
They form part of a p atien t monitoring system, formely presented in  
[Magee 83b], that i s  used as an example throughout th is  appendix.
MODULE nurseunit;USE p atien typ es;

ENTRYPORT alarm s[1 . .maxbed]:alarm stype;EXITPORT query[1 . .m axbed]isignaltype REPLY patientstatustype;
{ — The module d isp lays alarms received  on falarms1 on a terminal

and in  response to  input at the terminal d isp lays the sta tu s of a 
particu lar patien t by requesting i t  on 1 query*[i]; }END.

MODULE bedmonitor ( sca n ra te:in teg er );USE patienttypes;
EXITPORT alarms:alarmstype;ENTRYPORT sta tu sis ig n a lty p e  REPLY p atien tsta tu styp e;{ — The module scans sensors attached to  a patient every*scanrate* seconds. When the sensor readings are outside ranges 
se t  a t a bed-side terminal d isp lay  i t  d isp lays an alarm at the bedside terminal and sends alarm messages to *alanns*. Data on 
sensor readings and ranges are sent to 1 status* in  response to a * signal* req u est. }END.

The USE construct i s  used to  sp ecify  d e fin it io n  f i l e s  which contain s e t s  o f  
module rela ted  data types, e .g .
CONST maxbed = 16;
TYPE sensortype = (bloodpressure, sk in resistan ce,tem perature,pulse); readingtype = record

sta tu s: ok,notok; value : in teg er;  end;
alarmtype = (outofrange, se n so r fa u lt) , noalarm); readingstype = array[sensortype] of readingtype;
alarmstype = array[sensortype] o f alarmtype;p atien tsta tu styp e  = recordname : array[1 ..20 ] of char; readings: readingstype; 

alarms: alarmstype; end;
A module sp ec ify in g  a p articu lar  f i l e  has access to  the types in  that 
f i l e .  Thus d e f in it io n  f i l e s  can be used in  defin ing the in terface  o f  
each module, which allow s type consistency checks o f module in ter fa ces  
to be peformed a t the com pilation time.
A .1 .2  Communication P rim itives

Two communication p rim itives are ava ila b le , they are used to  
sp ec ify  d iffer en t communication s t y le s  required for the programming o f  
control ap p lica tion s [Kramer 8 1 ] .
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Request-Reply: This p r im itive  sp e c if ie s  a b id irection a l, synchronous, 
request-rep ly  transaction  (figu re A.1). After sending the request 
the sender task i s  suspended u n til the corresponding reply message 
i s  r e c e iv e d  back from th e r e c e iv e r  s id e . At the language l e v e l  
these transactions are sp e c ified  through SEND-WAIT and RECEIVE-REPLY 
statm ents. At the rece iver  task a SELECT statment may be used in  
order to  a llo w  a n o n d e te r m in is t ic  ch o ice  of one o f  the m essages  
sp ec ified  by enclosed RECEIVES. O ptionally a WHEN statment can be 
used to  sp ecify  a lo g ic a l  condition  (guard) to receive messages 
through an entryport. At the sender task a TIMEOUT statm ent may be 
used in  order to  excep tion a lly  complete the transaction  a fter  an 
user sp e c ified  time period(spct) exp ires. A LINKFAIL statment (not 
shown) may be used to  sign a l that the ex itp ort i s  not connected when 
a transaction  i s  attempted. The port declarations associated  to th is  
p rim itive  are a lso  presented in  figu re  A.1.

Exitport End Entryport End

SEND reqmsg TO e x it  WAIT repmsg => . . .  
TIMEOUT spot => . . .  END;

I request
»

I reply
»

SELECT
WHEN guardRECEIVEreqmsgFROM en try  
=> . . .REPLY repmsg 

OR
ORELSE TIMEOUT spot 

=> . . .END;

Port declaration s for  the req u est-rep ly  transaction:
EXITPORT exit:request_m essage_type REPLY reply_message__type;
ENTRYPORT entry :request_message_type REPLY reply__message_type;
F ig. A.1 Request-Reply Prim itive
N otify: T his p r im it iv e  s p e c i f i e s  a u n id ir e t io n a l assynchronous  

transaction  ( f ig . A.2). The sender task continues execution after  
sending the n otify  message. At the language le v e l th is  transaction  
i s  sp e c ified  by SEND and RECEIVE statm ents. As for the request-reply  
SELECT, TIMEOUT, and guards can be used a t the entryport sid e. The 
NOTIFY entryport d eclaration  has an optional QUEUE part, which i s  
used to  s p e c ify  th e  maximum s i z e  o f a c ir c u la r  queue o f message 
buffers associated  with the entryport. I f  th is  queue g e ts  f u l l  the 
o ld est message i s  overw ritten  when a new buffer i s  required.
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Exitport End Entryport End

SELECTWHEN guard - »  RECEIVE reqmsg FROM entry => . . .
OR

•OR
ELSE TIMEOUT spot => . . .  

END;

Port D eclarations for the n o tify  transaction:
EXITPORT e x it  :notify_jnessage_type;
ENTRYPORT entry:notify_jnessage__type QUEOE(integer constant);
F ig. A.2 N otify Prim itive  
A.1.3 Other D eta ils
Link d eclaration s describe the message port interconnections between 
tasks w ithin  a module. Only ports o f the same transaction  type may be 
linked , e . g . , n o tify  e x itp o r ts  to  n otify  entryports.

LINK exitportname TO entryportname;
Two statem ents not standard in  Pascal are provided:
(1) <loop> ::= LOOP <statment sequence> end

The sequence of statem ents i s  repeatedly executed.
(2) <delay statement> ::= DELAY <integer expression>

The delay statement delays the execution of the next statement by 
the time corresponding to  the value of the in teger expression.

A f u l l  d escr ip tion  o f the Conic programming language i s  ava ila b le  
in  [Magee 83a].
A.2 Configuration Language

Systems, in  Conic, c o n s is t  of interconnected se ts  o f module 
in stan ces. These are the sm allest u n its in  the configuration of a system  
and must resid e  in  a s in g le  s ta t io n . I t  i s  p ossib le  however to have more 
than one module instance in  a s ta t io n . A configuration language i s  used 
to sp ecify  a system, an example i s  presented in  figu re  A.3 . The 
sp e c if ic a tio n  id e n t i f ie s  the module types from which the system w i l l  be 
constructed, declares the in stan ces o f these types which w il l  e x is t  in  
the system and describes the in ter-conn ection  of in stan ces. These three 
function s are achieved by the USE, CREATE, and LINK constructs 
resp ectiv e ly :
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USE -  This construct provides a context of the module types from which a 
system i s  to  be constructed . I t  allow s instances o f these types to  
be used in  the system. In the example the module types are 
bedmonitor and nurseunit.

CREATE -  This construct s p e c if ie s  named in stan ces of module types which 
w il l  e x is t  in  the system. The name of module in stan ces must be 
unique w ith in  a s p e c if ic a t io n . Instances can be parameterised,
e . g . , bedmonitor, and ’fa m il ie s 1 of module instances may be a lso  
sp e c if ie d , e .g . ,  bed.

LINK -  Module in stan ces are connected together using th is  construct. I t  
s p e c if ie s  the binding o f entryports to ex itp o r ts . The constraint o f  
t h is  binding i s  th at an e x itp o r t must have the same type 
(tran saction  and message) as the entryport to which i t  i s  lin ked . 
A ll the lin k s  o f  th is  example are from one ex itp ort to  one 
entryport; i . e . , the connections are one-to-one. However,
entryports may have more than one ex itp ort linked to  them; i . e . ,  n- 
to-one connections are allow ed. The connections are sp e c ified  by 
instancename.portname p a irs.

I a la rm s» --------------VDU— j BED[1] |I status<<-----------\
\/ 
/\
/ \

/
/
/ /| a larm s»----- /  /

VDU— j BED[4] I /! s t a t u s « ——— /

-------------»a larm s[ 1 ] j
: I/ ----------->>alarms[4] j
j NURSE j

-----------<<query[1] |
.  i• i/ ---------<<query[ 4] |

»  ex itp ort  
I«  entryport

SYSTEM ward;USE bedmonitor, nurseunit;
CONST nbed = 4;CREATE bed[1..nbed]: bedmonitor(100); <1,2,3,4>  nurse : nurseunit; <5>LINK bed[1 . .nbed].alarm s TO nurse.alarm s; nurse.query[1. .nbed] TO bed[1. .nbed];END;

F ig . A .3 System S p ec ific a tio n  (Ward Monitoring)
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The mapping of modules to p h ysica l sta tio n s  i s  currently sp e c ified  by 
annotating the con figu ration  sp e c if ic a tio n  whith the address to  which 
each module instance should be a lloca ted  (numbers between < and >). 
Currently these sp e c if ic a t io n s  are used to create in  a development 
system a load image for each s ta t io n . In th is  case the configuration of  
in stances and the binding inform ation are s t a t ic .  Extensions o f the 
configuration language, e . g . , for  allowing structuring of system  
sp e c if ic a tio n s , and p rov ision  o f the cap ab ility  of changing at run-time 
the sp e c if ic a tio n  o f a system (and consequently the configuration), are 
currently being studied [Magee 83b ].
A.3 Run-Time Support

At run-time module in stan ces are supported by the Conic machine (or 
operating system ), th is  i s  i l lu s tr a te d  in  figu re A.4. This base machine 
i s  r ep lica ted  a t every s ta t io n  o f  the system. The kernel provides fo r , 
tasking, lo c a l message passing, in terru pt handling, time fu nction s, and 
lo ca l lin k  c a p a b ility . Tasks are schedulled to  run according the  
p r io r it ie s  a ssocia ted  to  th e ir  d e f in it io n . The communication system  
[Sloman 83]» provides for remote message passing (communication among 
modules a llo ca ted  in  d if fe r e n t  s ta t io n s ) . However lo c a l and remote 
message passing have id e n tic a l sem antics. The lo c a l management layer i s  
outlined  in  figu re  A.5. The module manager supports the dynamic 
in s ta n tia tio n  o f module in sta n ces; the code of a module type i s  loaded  
in  the s ta tio n  storage by using the store access module, which a lso  
provides storage reading c a p a b ility . The lin k  manager provides for the 
binding of entryports to  e x itp o r ts . The error manager provides run-time 
error reporting ca p a b ility . This and the storage reading cap ab ility  are 
used mainly for  debugging purposes. I t  i s  in ter e stin g  to note that with 
the exception o f the kernel the base machine i s  programmed in  Conic.

APPLICATION MODULES (Conic) -I
I
I
I \LOCAL MANAGEMENT (Conic) I
I

i
i

COMMUNICATION ( Conic) S
I

i•> Conic
I ii Machine

KERNEL (Pascal) I
I

iiii
I /

Figure A.4 Layer Model o f a Conic S tation
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F ig, A.5 Local Management Layer
The serv ices  provided by the management layer are required for  

supporting dynamic configuration  (th e a b il i ty  to  modify a system w hile  
i t  i s  running). They provide support for configuration operations —  
load module type} and c re a te , l in k , and s ta r t  module in stan ces, a t  
the s ta tio n  le v e l .  These op eration s are used to  enforce the system  
sp e c if ic a tio n . Configuration operations are requested through standard 
messages sent to  the appropriated management modules. These messages 
contain system id e n t i f ie r s  o f  o b jec ts  in  the target system (moduletype, 
moduleinstance, p o rt). In general i t  may be necessary to  undo 
configuration  operations, thus the complementary operations are a lso  
provided. These se r v ic es  help  the achievement of fa u lt-to lera n ce  
ca p a b ility , other uses o f th ese se r v ic e s  are discussed in  [Magee 8 3 b].

Other u t i l i t y  se r v ic e s  can be provided by standard modules. 
Examples: a f i l e  server, a module type loader, a terminal driver. They
can be introduced in  the s p e c if ic a t io n  o f a system at the development 
stage.

STORE ACCESS

-/Verror
ERRORMANAGER
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