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ABSTRACT

The work described in this thesis has accomplished five 
objectives. First, the problem of the contribution of radiation to the 
measurement of the thermal conductivity in a transient hot-wire 
instrument has been solved completely. Secondly, experimental results 

for the thermal conductivity of liquid hydrocarbons including n-hexane, 

n-octane, 2,3-dimethylbutane, 2,2,4-trimethylpentane, benzene, 
cyclohexane and toluene have been obtained in a temperature range from 

34 to 90°C and a pressure range from 0.1 to 700 MPa. The accuracy of 
the experimental data is estimated to be ±0.3%. Thirdly, the most 
developed theories for the transport coefficients of dense polyatomic 

fluids have been examined and tested against experimental data. In 
particular, it has been shown that the results calculated using a 
theory based on the rough hard sphere model agreed to within ±10% of 
the experimental data within the range of validity of the model. 
Fourthly, a prediction/correlation scheme has been established on the 
basis of the rough hard sphere theory. The scheme represents the 
thermal conductivity data of all the liquids studied in this work to 
within their experimental uncertainties. It has been shown that 
generalizations of this scheme allow reliable estimates of the thermal 

conductivity outside the range of direct measurements for normal 
alkanes, branched alkanes, cyclohexane and benzene to be obtained with 
an accuracy of ±4% given accurate density data. Finally, the 
possibility of measuring the thermal diffusivity and heat capacities of 
liquids together with the thermal conductivity using the present 
instrument has been investigated and recommendations have been made to 
improve the accuracy of these measurements.
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C H A P T E R  1

Introduction

In a paper presented to the American Society of Mechanical 
Engineers in 1982[l], we have shown that accurate thermophysical data 

are essential in order to produce the most cost-effective design of any 
chemical processing plant or power plant. These facilities tend to be 

large, and expensive to build and operate. The economic viability of 
these plants relies on the ability to avoid the overdesign which is 

necessary when inaccurate property data are used [1,2 ]. Indeed, errors 
in the design of a single item of a plant which are attributable 
directly to errors in thermophysical property data are substantial
[l,2]. Moreover, the deficiencies in the design of individual items of 
a plant may combine to produce an even larger effect upon the design of 
the entire system [l]. The increased capital costs and decreased 
efficiency which result from such design errors could be mitigated by a 
well-organised program of measurement for a fraction of the wasted 
resources [l].

This thesis is concerned with the study of the thermal 
conductivity of hydrocarbon liquids over a wide range of temperatures 
and pressures. A survey of the literature demonstrates the need for 
this study [3 ]. The scarcity of liquid phase thermal conductivity data 
is, principally, a result of the difficulty of its measurement, rather 
than a lack of need. The present work is a step in the process of 
overcoming this difficulty.

An absolute transient hot wire instrument has been employed for 
the measurements of the thermal conductivity of liquids. The theory of
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the transient hot-wire method is given in Chapter two. In particular, 

we have developed a new analytic solution of the contribution of 
radiation in an absorbing and emitting fluid to the measurement process 
[4 ]. As a result of this analysis, it has been possible to establish 
that a well-designed transient hot-wire instrument is capable of not 
only high precision [5 ], but also of high accuracy [4 ].

In Chapter three the apparatus itself and the experimental 
procedures are described. The entire body of experimental data 
obtained in this work is given in Chapter four. Data have been 

obtained for seven pure liquid hydrocarbons over the temperature range 
30°C to 90°C, and pressure range from atmospheric up to 700 MPa 
[4,6-8 ]. The liquids studied are: n-hexane, n-octane, 2,3-dimethyl- 
butane, 2,2,4-trimethylpentane, benzene, cyclohexane and toluene.

It is envisaged that the data obtained in this work will be used 
both to examine liquid phase thermal conductivity theories, which have 
been developed and will be developed in the future, and also for direct 
application in predicting thermal conductivities of pure liquids at 
thermodynamic states for which measurements are unavailable. In 
Chapter five, the existing theories for the thermal conductivity of 
liquids are discussed. A correlation scheme is developed in Chapter 
six which allows the prediction of the thermal conductivity of the 
liquids studied over a wider range of conditions than have been 
examined experimentally. The relationship between this correlation 
scheme, the experimental data and the theories of liquids are also 

discussed in this chapter.
Finally, in Chapter seven the conclusions of this work and



9.

suggestions for future work involving both experimental and theoretical 

developments will be discussed.
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C H A P T E R  2

THEORY OF THE TRANSIENT HOT-WIRE TECHNIQUE

2.1 Introduction
The thermal conductivity of an isotropic fluid is formally defined 

by the Fourier equation of conductive heat transfer:-

Q = - X V T (2.1)

where \  is the thermal conductivity, Q is the three-dimensional heat 
flux, and T the local fluid temperature. By convention \  is a positive 
quantity and as heat transfer through a medium occurs in the direction 
of decreasing temperature, this necessitates the -ve sign in equation 
( 2 . 1 ) .

Generally the transfer of heat through a fluid occurs by 
simultaneous conduction, convection and radiation. Conduction is the 
transmission of heat through a medium by intermolecular forces, or by 

direct molecular transport of rotational, vibrational or translational 
energy. Radiative heat transfer is the transfer of heat energy by the 
emission, absorption and scattering of electromagnetic radiation. 
Finally, convective heat transfer occurs by the bulk transfer of 
elements of a fluid due to velocity fields within the fluid medium.

If the thermal conductivity of a fluid is to be obtained 
experimentally, because the three mechanisms of heat transfer within a 
fluid are inseparable, the measurements must be performed on apparatus 
which either compensates for, or renders negligible the effects due to 
radiative and convective heat transfer.
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There are two basic approaches employed in the measurement of 

fluid phase thermal conductivity. The first is to remove the time 
dependence from the conduction equation which leads to steady state 

methods. The second approach is to make a transient measurement of the 

fluid thermal conductivity. There are advantages to each method which 
will be discussed in detail. The transient methods have only become 
reliable during the last few years owing to the development of high 

speed electronic components.
2.1.1 Steady State Methods

The steady state approach consists of designing a well defined 

heat transfer configuration consisting of a constant temperature source 
and a sink, which are operated until a steady state is obtained. Once 
steady state is achieved, the quantity of energy per unit time input to 
the source is measured. The rate of energy addition along with the 
spatial dimensions of the apparatus are sufficient to determine the 

effective thermal conductivity of the fluid. Care is taken to minimise 
convection and radiation. Corrections for convection and radiation 
contributions are often made. There are four common configurations for 

steady state thermal conductivity instruments. These consist of: hot 
wire [9], concentric cylinder [lO,ll], concentric sphere [12,13] and 
parallel plate instruments [14,15,16]. The alignment of all steady 
state instruments is crucial to the accuracy of the results because the 
dimensions of the cell as well as the imperfections in the arrangement 
of the real cell compared to the ideal model enter the working equation 
directly in first order [17]. The effect of convection cannot be 
eliminated entirely from a steady state instrument, although the
magnitude of the remaining effect can be made small and its negligible 
contribution to the measurement is confirmed by the use of different



12.

temperature gradients, since the true thermal conductivity must be 
independent of the gradient.

The major problem which is present in all steady-state instruments 
is the required prolonged stabilization times. This fact alone is 

probably responsible for the scarcity of fluid thermal conductivity 
data. Experimentalists are now able to achieve reasonably high 
accuracies with steady state instruments. The parallel plate apparatus 

is operated so that the top plate is hotter than the bottom plate. 
This ensures that in the bulk of the fluid warmer, less dense fluid is 
above cooler, more dense fluid. Near the edges this situation can no 
longer be maintained unless the plates are infinitely large. An 
experimental arrangement in the form of a guard-ring surrounding the 
top plate has been used by Sengers et. al. [ 18] which approximate most 
closely to the situation of infinite plates. A steady state instrument 
operated in this manner will have negligible convective contribution 
provided that the heating surface is perfectly uniform and homogenous.

The problem of thermal radiation contributions to conduction has 
been analysed and will be discussed in a later section (see 2.4). 
Experimentally, this contribution can be reduced through a procedure of 

decreasing the plate spacing. By changing the plate spacing, the mean 
radiation path length is varied. The radiation free thermal 
conductivity is then obtained by back extrapolation to zero plate 
spacing on a curve of effective thermal conductivity versus plate 

spacing. Thus it can be seen that a single, high quality steady state 
data point is the result of measurements at several power levels and 

plate spacing.
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2.1.2 Non-Steady State Methods

A non-steady thermal conductivity measurement is one in which a 
time-dependent perturbation, in the form of a heat flux, is applied to 
a fluid initially in equilibrium. The thermal conductivity of the 
fluid is obtained from an appropriate working equation relating the 
observed response of the temperature of the fluid to the perturbation. 

In principle, one can devise a wide variety of techniques of this kind 

differing in the geometry of the fluid sample employed and the nature 
of the time-dependent perturbation applied to it. However, the only 
geometrical arrangement which has gained general acceptance is one in 
which the perturbing heat flux is applied by means of electrical 
dissipation in a thin, cylindrical wire. The perturbing heat flux 
itself has been applied in a number of forms, including a near 
6-function, a ramp pulse or a continuously modulated voltage, as well 
as a sinusoidal function. However, most often the perturbation has 
been applied in the form of a step-function, and the technique is then 
known as the transient hot-wire method. The method has quite a long 
history and was first employed by Stalhane and Pyk in 1931 [l9] to
determine the thermal conductivity of powders. From that period until 

about 1970 the development of the theory and application of the method 
was slow though continuous; a comprehensive bibliography of this work 
is given in the review by Shpil'rain, Urmanski, and Gorshkov [20 ]. In 
the last decade the increasing availability of electronic devices has 
made it possible to take full advantage of the potential benefits of 
the technique. The foundation of the modern experimental method was 
laid by Haarman [21 ], as well as Kestin, Wakeham and their 
collaborators [22-26]. Improvement in the practical design of the 
measuring instrument and the refinement of the theory of the method
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have established the method as one of the most accurate ways of 
determining fluid thermal conductivity. The principal advantage of the 
method lies in its almost complete elimination of the effects of 
natural convection from the measurements, which is difficult to analyse 
mathematically, by virtue of its time scale {see section 2.3). For the 
same reason, much shorter experimental times are required compared with 
steady-state methods.
2.2 Principle of the Transient Hot-wire Method

The starting point for the theory of the transient hot-wire method 
is the ideal experimental arrangement shown in Figure 2.1

Q  W / m

Z

Fluid
X = const
p = const
C = const P

Figure 2.1
The idealized experimental arrangement

The ideal instrument consists of an infinitely long, vertical line 
source of a radial heat flux, q , per unit length which is applied 
stepwise at time t=0. The heat source, which is supposed to lose heat 
only by conduction, is immersed in an infinite fluid which is initially 
in an equilibrium state and which has temperature-independent
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physical properties. The line heat source is coincident with the axis 
of a cylindrical coordinate system (r, z, 0). Thus the temperature 
rise of the fluid AT, above its equilibrium value, at the radial 
position, r, is given by the solution of the non-steady conduction 
equation

(constant) thermal diffusivity k = \/p C . The solution of equationP
(2.1) is subjected to the initial and boundary conditions: 
initial condition

(2 . 2 )

together with the definition

AT(r,t) = T(r,t) - To (2.3)

Here, Tq represents the equilibrium temperature of the fluid, and k its

at t < 0 and any r , AT(r,t) = 0 (2.4)
boundary conditions
(i) at r = 0 and any t > 0, q__

2n\ (2.5)

(ii) and r = « and any t > 0, Lim AT(r,t) = 0 ( 2 . 6 )

with the additional constraint, \ = constant. The solution for AT may 
be written [23]
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(2.7)

where Ê (x) = / ■—  dx = -y - Ln x + x + 0{x2}

and y is Euler’s constant (0.5772156649 ....).
For small values of (r2/^^) the exponential integral E^ may be 

expanded to yield, at r = a,

where C = exp y.
The final step in the ideal model is to identify the temperature 

rise with that of the surface of the heat source were it of radius a, 
which is such that, for sufficiently long times, the second term in 
equation (2.8) is rendered negligible by comparison with the first. 
The resulting, ideal temperature rise is

This linear relationship between AT and Ln t indicates at once the 
principle of the experimental determination of the thermal 
conductivity, k, since it may be obtained directly from the slope of 
the wire formed by plotting measured values of these two coordinates, 

without a knowledge of either the radius of the heat source, or the 
thermal diffusivity of the fluid.

(2.9)
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Any practical realization of the principle of the transient 
hot-wire technique must, inevitably, depart from the idealized model 
described above. However, the success of the experimental method rests 
upon the fact that, by proper design, it is possible to construct an 

instrument that operates very closely in accord with equation (2.9) and 
for which the effects of the residual departures from the ideal may be 

readily calculated. It is also worthwhile noting here a further

significant feature of the experimental method which is attributable to 
its transient nature. Strictly speaking, natural convection starts at 

t = 0+ as the layers of the fluid adjacent to the heat source expand 

and develop buoyancy forces. However, it is possible to complete a 
transient conduction measurement in a time short compared with the 

characteristic time required for these forces to accelerate the fluid 
and to influence appreciably the heat loss from the source. Moreover, 
the experimental method provides a means whereby any debilitating 

effects from natural convection may be detected, since the linearity 
between AT and Ln t of equation (2.9) is only preserved so long as 
the pure conductive regime prevails. Any systematic departures from 
this linearity indicates the presence of significant convective flows.

All potential sources of systematic errors except the effects of 
radiative heat transfer are well understood [23] and hence have been 
accounted for in the apparatus design and the analysis of the 

experimental data. The radiation effect has often been considered as a 
residual systematic error in the thermal conductivity measurement [27]. 
In the present work, we have been able to resolve this remaining 
difficulty in the theory of the transient hot-wire technique (see 2.4).
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The various departures of any practical instrument from the ideal for 

fluids which are transparent to radiation will be discussed first. A 
fuller analysis of the radiation correction will be discussed 
separately in a later section (2.4).

2.3 Corrections for Transparent Fluids
The departure of a practical instrument from the ideal, which are 

potential sources of systematic error, may be classified under five 

main headings according to the assumptions of the ideal model which are 
deemed inadequate. Since each of these departures has only a small 

effect upon the measurement it may be treated independently of all the 
others, and this fact has been utilized to derive a complete set of 
corrections [23]. Each correction is discussed briefly below and those 

effects which are eliminated entirely, those which are rendered 
negligible and those for which a correction must be applied are 
identified. It has been ascertained that the required corrections to 
ideality are small [27]. The combined effect can be taken to be 
additive.

Hence:- AT. , = AT + Z 6T.id i i

where 6T^ is a temperature correction due to the physical system in one 
respect being non-ideal.

(1) Conditions at the inner boundary
The practical version of a transient hot-wire instrument employs a 

thin metallic wire (a - 3.5|-un) as both the heat source and the monitor 
of the temperature rise. The non-zero radius of such a wire, and the
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differences between its physical properties and those of the fluid 
require modification of the ideal model at the inner boundary of the 
fluid. The effect of the non-zero radius alone is readily found by 
solving equation (2.2). Subject to the new boundary condition, which 
replaces (2.5), that

5X q\ at r = a for any t > 0 (2.10)

At large values of (^Kt/^) the solution for the temperature rise of 
the fluid is

AT(r,t) = q „ r 4k t ̂ r2
4n;X. Ln (£§) + ofc)Kt ( 2 . 11)

This equation is identical with (2.8) at r = a and reveals that the 
temperature history of the fluid is independent of the radius of the 
hot-wire. It is, therefore, unnecessary in the construction of an 

instrument to secure accurate cylindricity of the hot-wire.
Owing to the non-zero heat capacity of the wire, (pC )^ Per unit 

volume, some of the heat flux generated within it is required to raise 
the temperature of the wire itself; it is therefore not conducted to 
the fluid. Moreover, because of the finite thermal conductivity of the 
wire material, X. , a radial temperature gradient exists in the wire.
By solving the two coupled, heat conduction equations for the wire, 
0<r<a, and the fluid, acrc^, it is possible to deduce the
temperature profile in both materials as a function of time [28]. 
Because the metallic heat source itself is also employed as a
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resistance thermometer in the measurements, the quantity required from 
the analysis is the average temperature rise of a cross-section of the 

infinitely long wire, AT^. For sufficiently large values of (ict/a2), 
this temperature rise is related to that of the ideal model by the 
equation [28]

ATid (a,t) = ATw(t) + 6Tl (2 . 12)

where the correction 6T^ is

6T, = ^ L n ( ^ ) [ f ^ [ ( p cp)w (pcp)]]

q r a a"0
4tc\ *-2Kt 4Kt + 2X ■ w

(2.13)

and < = / (pc)w w p w (2.14)

The last term in this correction is time-independent and therefore has 
no influence on the determination of the thermal conductivity from the 
slope of the line AT^d vs Ln t. Of the remaining, time-dependent 
terms only the first is significant in most applications. Hence:-

6Ti - 4f e Ln t(pV w  - < p y ]] <2-i5>3
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or

6Ti - ATid - (pcP)]] (2-16)

This term arises solely from the finite heat capacity of the wire, and 
causes the measured temperature rise to fall below the ideal value at 
short times as shown in Fig. 2.2. By the choice of a suitable small 

radius a, (typically 3.5pm) and long measurement times, t, (greater 
than 50ms) the magnitude of the correction may readily be limited to at 
most 0.5% of the temperature rise, and it falls rapidly with increasing 
time so that equation (2.16) is entirely adequate for its calculation.

When the diameter of the wire becomes of the same order of 
magnitude as the mean free path of a molecule of the fluid under 
observation, the temperature of the fluid at r = a becomes less than 
the temperature of the wire surface. This is known as the Knudsen 
effect and is due to a temperature jump existing at the surface of the 
wire [29,30]. Because the mean free path of a molecule of a liquid is 
never of the same order of magnitude as that of the platinum wire 
diameter (7pm) this effect does not present itself and is only 
applicable to gases at low densities, and hence the details of this 
effect is excluded from this discussion.
(2) Conditions at _the _ou_tej: Jdoundajry

A practical instrument of the transient hot-wire type must 
incorporate an outer boundary for the fluid. Simplicity dictates that 
this boundary should be cylindrical and it is located at r = b. 
During the initial phase of the transient temperature rise the thermal 
wave spreading out from the wire will be unaffected by the presence of



Fig. (2.2) Temperature rise in the wire as a function 
of time

(Scale in T exaggerated to illustrate the conditions 
at very long and very short times)
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the boundary. However, as time goes on the heat flux at r = b will 
rise to a non-negligible value and this causes the temperature rise of 
the wire to fall below that of the ideal model as shown in Figure 2.2.

The introduction of the outer boundary requires the modification 
of condition (2.6) of the basic problem to read

AT(r,t) = 0 for r = b and t > 0 (2.17)

A solution of the modified problem for the practical situation when b/a 

>> 1 and (4<t/ 2) 1 has been given by Fisher [31 ]. ThecL
temperature rise of the wire in the finite enclosure is related to that 

of the ideal model by the equation,

ATld (a,t) = ATw (a,t) + 6T2 (2.18)

Here the 1 outer-boundary correction', 6T. is given by the expression

6T2 4ti X
q2Kt— (Ln (ppO + Jo exP (bzC

) [ n y gu) n  (2.19)

in which q are the consecutive roots of the Bessel function J (q ) =
0. As would be expected intuitively the correction increases with time 
and thermal diffusivity of the fluid, and decreases as the radius of 
the outer boundary increases. By a suitable selection of the radius of 

the outer boundary and the measurement time the correction 6T2 can be 
limited to 0.5% of the fluid temperature rise even in gases at low
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density, and it is then adequately represented by equation (2.19). In 
the case of gases at elevated densities or liquids the correction is 
never significant in practice, owing to their low thermal diffusivity. 
(3) _The j}rop_er_ti_es o_f _the _fluid

In the ideal model it is supposed that the physical properties of 
the fluid, p, X, and its viscosity, t) ,  are temperature independent. 

In reality these quantities are usually mild functions of temperature 
for both gases and liquids. We consider first the effect of 
introducing a variable fluid density for the case of an infinitely long 
wire in an infinite fluid. The transient heating of the fluid now 

induces density variations in it which provide the buoyancy forces 
necessary to generate a velocity field. The convective motions has, in 
general, radial and longitudinal components; however, in the case of an 
infintely long wire only the radial component contributes to the heat 
transfer. Associated with the relative motion of the fluid there must 
of course be an irreversible generation of heat through viscous 
dissipation. In addition, some energy is expended reversibly in the 
expansion of the fluid, and finally the density variation enters the 

problem directly through the thermal diffusivity of the fluid (see 
appendix 1). In both gases and liquids an iterative solution of the 
fluid-dynamic processes [23] shows that all of these effects contribute 

only a small amount to the temperature rise of the wire. Even the 
largest of them, the density-induced variation in the thermal 
diffusivity and the viscous dissipation, contribute at most 10-I*% to 
the observed temperature rise [22,25] and so are negligible.

In a practical thermal conductivity cell, where the heat source 
must be of finite length and must be attached at both ends to
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relatively massive supports and where the fluid is bounded by a finite 

wall, the foregoing analysis does not describe all of the effects. 
First, owing to the finite length of the wire, the one-dimensional 
regime of velocity and heat transfer characteristic of the infinite 

wire will not prevail over the entire length of the wire. In 
particular, as soon as the transient heating is begun, a 
three-dimensional temperature field develops in the fluid near the ends 

of the wire. The buoyancy forces which are generated cause upward 
acceleration of the fluid near the wire and cooler fluid from the 
bottom is brought upwards, cooling the wire faster than if there were 

conduction alone. It takes some time for this effect to become 
important by extending over a significant fraction of the wire length. 
However, eventually the flow pattern will extend over enough of the 

wire that its average temperature rise becomes significantly different 
from that characteristic of the pure conduction regime. At this 
instant the observed temperature rise of the wire, suitably corrected 

for other effects, will depart from that of the ideal model. Under 
these circumstances the linearity between AT vs Ln t is not 

preserved.
The problem of transient, natural convection in a finite 

cyclindrical geometry is not amenable to rigorous analysis, although 
there have been a number of approximate studies [9,10,15,32,33]. In 
the most recent of these Goldstein and Briggs [34] obtained an estimate 
for the height of penetration, , of the cool fluid up the heated 
wire. From this it is possible to deduce an approximate upper bound to 
the time, t , in which useful thermal conductivity measurements can be 
performed. Allowing V  to be the length of wire over which the
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three-dimensional flow pattern may extend before significant effects

where G is the gravitational constant, {3 the coefficient of thermal 
expansion of the fluid and q the radial heat flux.

The transient flow pattern of natural convection in a hot-wire

Their observations confirm the unicellular flow pattern of the 
Goldstein and Brigg analysis. They suggest an alternative, heuristic 

correlation for the characterstic time at which convective motion 

exerts a significant effect on the observed temperature rise of the 
wire,

which, it should be noted, is independent of the geometry of the cell 
in accord with their observations. In equation (2.21) Pr is the 
Prandtl Number.

Neither of the criteria for t , (2.20) and (2.21), should be 
regarded as definitive; rather they can be used as rough guides for 
design of the time scale within which transient hot-wire thermal 
conductivity measurements may be performed. Typically, these limiting 

times are of the order of several seconds for gases and liquids. In

from convection are observed, we obtain [34]

(2 . 20)

cell has been visually observed in liquids by Pantaloni et al.[35].

3/2
tc (2 . 2 1 )

practice, as has already been noted, the occurence of a significant
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effect from natural convection in a measurement is easily discerned by 
a departure from linearity of the AT^ vs Ln t plot. Measurements in 
which such a curvature exists must be discarded.

A further dynamic effect arises as a result of the temperature 
dependence of the fluid density. As the heated layer of fluid near the 
wire expands it performs compression work on the remainder of the fluid 
in a container of fixed volume V, and so modifies the temperature 

history of the wire. An approximate analysis of this effect in gases 
has shown that the modification to the ideal temperature rise takes the 
form [23]

AT. = AT + 6 T id w c (2 . 22)

where
6T = c

q 1 Rt
pC C V P v

(2.23)

with R being the universal gas constant, V the volume of the containing 
vessel and £ the length of the wire. and are the heat capacities
of the fluid at constant pressure and constant volume respectively. 
The correction may be rendered negligible by employing a sufficiently 
large container for the gas [23]. In the case of liquids, this effect 
can be neglected completely because of the much lower compressibility.

Aside from the effects brought about by the variable density of 
the fluid, it is necessary to account separately for the variation of
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the thermal conductivity \ and the product pC^. Since the temperature 
rises employed in the measurements are only a few degrees Kelvin, an 
analysis based upon a linear expansion of these properties about their 
values at the equilibrium state of the fluid may be employed [23]. The 

principal result of the analysis is that the basic form of equation
(2.9) is unchanged

AT = ----------2--------id 4Tt\(Tr,pr) $§) (2.24)

However, the thermal conductivity, ^(T^), obtained from the slope of 
the line relating AT to Ln t refers to a temperature and a density 

which differ from those of the equilibrium state. In fact, for 
measurements carried out in the time interval t̂  to t^

AT (t ) + AT (t ) 
T = T + ld \ -----2r o L 2 J (2.25)

and

p = p(T ,P) (2.26)r r

since the pressure, P, is essentially unaltered during the 
measurement.
(4 ) The finite_length of_the_wirji

The wire in a practical thermal conductivity cell must be 
supported in the test fluid by relatively massive connections at either 
end. Because the heat flux is generated by electrical dissipation in
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the wire itself, there will exist a longitudinal, conductive heat flux 
in both the wire and the fluid. As a result, the longitudinal 
temperature profile in the wire at any instant will not be uniform 
along its length. The resistance of the entire wire is not then an 
accurate measure of the temperature in a central section far removed 
from its ends. It is not possible to analyse this problem rigorously, 
although approximate calculations have been performed [21,23]. These 

calculations yield the minimum length of wire necessary to ensure that 
at least a central section of the wire behaves as if it were a finite 
section of an infintely long wire within a specified tolerance. 
Typically, for wires with a radius of several microns, the minimum 
length amounts to a few centimetres. It is then necessary to remove 
from the measurement the effects at the ends of such a wire by 
experimental means, and to observe the temperature rise of only the 
central section. The methods whereby this is achieved will be
described later (see 3.4.1).
(5) jtediatj-on _(Tran.s_pajrent_Med_ium)

In deriving the working equation (2.9), it was assumed that heat 
transfer occured purely by conduction. In practice, however, 
simultaneous conductive and radiative heat transfer occurs through the 
test fluid, but, provided the fluid is transparent and the temperature 

rise is small (~ 5K) then the error induced due to radiation can be 
shown to be negligible .

Assuming the fluid to be transparent, the radiative heat flux at 
the surface can be represented as:-

where A,E refer to
<5r

the
= A E F — a A, E, F a a ab b b ba
surface area and emissive power of

(2.27) 
the surface
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of the wire (a) and the surface of the cell (b) respectively, a is the 
absorptivity of the cell.

Using reciprocity the view factor F, is found as:-ba

Fba
A
—  F 
*b ab

(2.28)

with F , = 1. ab
Hence

(2.29)
Q = A (E - aE, ) (2.30)r a a b

or q = 2ita( e a T*4 - aa T^) r a b (2.31)

where e is the emissivity of the wire, o the Stefan-Boltzman constant. 
If we assume:-

£ - a (2.32)

then:-

q = 2u a £ a ( T4 - T^) r a b (2.33)

- 8n a £ a T3 AT(a,t) o (2.34)

and from equation (2.9):-

%
AT

q_ 8 Tea £ o T3 R ____________o
q q

AT(a,t) (2.35)

The resulting correction is negligible in the present apparatus which
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employs a 7 pm diameter wire; a temperature rise of less than 5 K; a 
heat input per unit length of wire of approximately 0.7Wm’"1 and steady 
state temperature, T^, of 363K, these conditions corresponding to the 
worst encountered.

In the case of fluids which absorb and re-emit radiation, there 
has been until now no exact solution of the full integro-partial- 
differential equation governing simultaneous conduction and radiation. 

However, there have been a number of approximate treatments of the 
problem which indicate that the effects due to radiation are smaller in 
transient measurement apparati than in those operated at steady state 
[36,37,38]. Since the purpose of the present work is to perform 
thermal conductivity measurements with an accuracy of a fraction of 1%, 
it is clear that these approximate analyses are inadequate for the 
present purpose. Consequently, the problem of simultaneous conduction 
and radiation of absorbing fluids in a transient hot-wire apparatus is 
considered in detail in a separate section where a new, analytic 
solution will be given (see 2.4.3).
2.4 Radiation Effects in Absorbing Fluids
2.4.1 Historical

The treatment of radiative transfer in absorbing and emitting 
media is generally formidable. The basic difficulty arises through the 
effectively instantaneous spatial distribution of radiation which 
necessitates the use of integral equations for a precise formulation of 
the problem. In the presence of simultaneous conduction and radiation 
the integral equations are linked with the Fourier Law through the 
common temperature boundary conditions, the temperature dependence of 
the coefficient of emission of radiation and the absorption
coefficient.
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Solutions have been obtained for simplified one—dimensional 

versions of the problem, namely steady state transfer between infinite 
parallel plates at small temperature differences.

On a theoretical basis Leidenfrost using an analysis of Viskanta 

[39] concludes that in his measurements on toluene radiation can give 
rise to errors ranging up to 2 per cent, depending on wall emissivities 
and temperatures.

Poltz [36-38] has made a theoretical and experimental study of the 
case and concludes that the contribution of radiation to the effective 
conductivity can be as large as a few per cent at room temperature 

depending on the plate separation. He also suggested that errors of 
the same order of magnitude might be expected in measurements by the 
hot-wire technique.

The steady state pure radiation problem has been treated by 
Rhyming [40] who used the integral equation formulation and obtained 

numerical solutions and limiting solutions in closed form for the case 
of concentric black spheres. Concentric cylinders have been treated by 
Diessler [41 ] and Grief and Clapper [42] using the Rosseland diffusion 

approximation [43] extended by temperature jump boundary conditions.
According to the diffusion approximation the radiant heat flux at 

large optical depths is given by:

Qr
4cr
3K

2 dT 
d (2.36)

with n being the refractive index, the mean extinction coefficient 
and o the Stefan-Boltzmann constant.

Where temperature changes are small we may linearise T*4 and write



where

Xr
16 2 <*T3-—  n —— (2.38)

and forms the radiative contribution to the effective thermal 

conductivity.
However, in the present work the optical depths of fluid in the 

cell are not sufficiently large for the diffusion approximation to 
apply. And although its range of validity may be extended by the use 
of temperature jump boundary conditions the method does not seem 

suitable in the present application, where the choice of boundary 
conditions has a dominant effect because of the small wire diameter.

The concentric cylinder problem has also been studied by 
Perlmutter and Howell [44], who used the Monte Carlo method. The 

technique is however, restricted to steady state pure radiative 
transfer.

Van der Held considered the problem arising from the radiation 
contribution to the conduction of heat in thermal conductivity 
measurements for solid materials [43, 46]. His analysis covered both 
the steady state case and the non-stationary case. However, his 
solutions applied only to specific, unrealistic cases. In particular, 
boundary conditions were left out of consideration in his solution for 
non-stationary problems.

Mani, Saito and Venart [47-49] analysed the problem for the line 
source method using a modified integral method. These authors divided
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the absorbing fluid into three regions according to their optical 

density. The region next to the wire was treated as optically thin. 

The next region allowed simultaneous radiative and conductive heat 
transfer. The third region was considered as optically thick. The 
boundary between these regions were allowed to expand as the thermal 
wave spread from the line source outwards. The problem was solved with 
a combined finite-difference-integral technique. In short, this method 
is based on artificial assumption about the optical thickness of the 

medium at different radial positions. Furthermore, the necessary 
optical properties required for the solution need to be determined by 
independent methods which do not necessarily reproduce the conditions 
of measurement in a transient hot-wire instrument.
2.4.2 Numerical Solution

The most recent and most rigorous analysis of simultaneous 
radiation and conduction in a transient hot-wire instrument is provided 
by Menashe and Wakeham [50]. Their analysis is based on a numerical 
solution of the full energy equation describing the process. For a 
transient hot-wire instrument in which an isotropic grey fluid is 
bounded internally by a wire radius, r^ , area and externally by a 
surface radius r^, area the equation governing the temperature rise 
of the wire is [50],

pCp - I  = XV*T + Q-i» + O’V+dV. \A, -*dVi 1 i

(2.39)

Here, the second, third and fourth terms on the right represent
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gradients of one-way radiant heat fluxes from, respectively, the entire 

volume of the fluid to a volume element dV^, from the wire surface to 
the volume element and from the outer boundary to the volume element. 
The final term represents the gradient of the radiative heat flux 

emitted by the volume element dV^ in which is the appropriate mean 
extinction coefficient of the fluid and

E = n2 a Tu (2.40)K

where n is the refractive index of the fluid and o the Stefan-Boltzmann 

constant.
The appropriate boundary conditions for the solution of equation

(2.39) are :

_J3__
2-rcr̂ - a Qvdr'r=r, lx - A2+A1 alQV->dA1

+ a T r = r^, t > 0 (2.41)

T (r2 t) = To 0 < t < « (2.42)

together with the initial condition:

T ( r,t) = Tq t < 0 (2.43)

Here dA^ is an elemental area in A^ and the second and third terms 
represent one-way radiant heat transfer flux gradients to this element
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from the outer boundary surface and the bulk of the fluid. In 

addition, represents the absorptivity of the wire surface and its 
emissivity.

Explicit expressions for the heat fluxes and gradients Qy^y ,
i

Q* .iTT Q’ , Qa ja and Q , are given by Menashe and Wakeham
A^+dV^ ^ 2̂ * 1 V-hiÂ

[50]. Each of these terms involve integration over the entire volume
of the fluid or the entire surface of the inner or outer boundaries.
The full form of the integro-partial differential equation (2.39)
cannot be solved analytically. However, Menashe and Wakeham have
developed a technique for its numerical solution subject only to the

additional assumptions that the extinction coefficient is temperature
independent over the small temperature range involved, that the outer
bounding cylinder is black and that = ei+fCT). The method of
solution is detailed elsewhere [27]. The essential feature of the

method involves converting the multidimensional integrals in the
expressions for the radiant heat fluxes and gradients into algebraic
series by means of a suitable quadrature procedure [51 ]. The
application of the quadrature formulae reduces the energy equation
(2.39) to a single partial differential equation which has been solved

by the Method of Lines [52]. The method involves the coversion of the
partial differential equation to a set of coupled ordinary differential
equations. The coupled ordinary differential equations are integrated
using an algorithm developed by Gear [53] and Hindmarsh [54], which
allows both variable order of integration and variable step size.
Because the evaluation of each of the radiant heat fluxes and
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their gradients requires the computation of a two or three dimensional 
integral at each time step the numerical solution is both time 

consuming and expensive. Thus, although it has been possible to 
implement the numerical procedure in a number of specific cases and to 

compare its results with those in which there is no radiation effect, 
it has not been possible to apply it universally [50]. Furthermore, in 
order to apply the technique to measurements in fluids over a wide 

range of conditions, both the emissivity of the wire e^, and the 
extinction coefficient of the fluid must be known over the same range 
of conditions. In practice, this information has never been available 
and values characteristic of just one set of conditions have had to be 
employed [50].
2.4.3 Analytic Solution

An alternative and new use of the numerical solution, which is 
investigated in this work, is as a guide to the relative magnitudes of 
the various terms within the governing equation (2.39). The aim of 

such a study is the simplification of equation (2.39) to a level where 
it may be solved analytically. To this end we have employed the 
numerical procedures of Menashe and Wakeham [5 0] to simulate a 
transient hot-wire measurement on toluene using apparatus parameters 
characteristic of our equipment and representative properties of the 
pure liquid. All of the quantities employed in the simulation are set 
out in Table (2.1), including the extinction coefficient K, which was 
determined experimentally in the manner described elsewhere [50].

Figure 2.3 contains plots of the relative magnitudes of the terms
on the right-hand side of equation (2.39) as a function of time at two
different radial locations in the fluid, omitting the term Q. ,TTA0-*av .
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which is rendered zero by condition (2.41) [50]. Figure 2.3(a) refers

to a radius r=1.02r^ and figure 2.3(b) to a radius r=115r^. In each
case it is apparent that the dominant additional contribution to the
conduction heat-flux gradient arises from the emission of radiation by
the fluid and that both of these terms exceed those arising from
absorption by several orders of magnitude. The only exception to this
situation arises in figure 2.3(b) at short times, when each of the

terms is so small as to be insignificant and the numerical solution is
inaccurate. The implication of these results, which are typical of
other simulations we have carried out, is that we may neglect the term

Qv+dV an<* ->dV e9uati°n (2.3 9). Physically, this means that in 
i 1 i

the transient hot-wire experiment, the principal radiative contribution 

of the fluid to the heat transfer process arises from emission and not 
absorption as has frequently been assumed. This result may be
understood by noting that the gradient of the radiant heat flux in an 
emitting volume element is determined by the local temperature 
gradient, and that in the transient hot-wire instrument the wire is so 
thin (r^ = 3.5pm) that although the temperature rise of the fluid is 
only a few degrees Kelvin its radial temperature gradient is very large 
near the edge of the expanding temperature front arising from 
conduction. On the other hand, because the absorption terms are 
determined by the value of the extinction coefficient, which is 
temperature independent, their gradients are considerably smaller.

These observations enable equation (2.39) to be considerably 
simplified, so that writing

\
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TABLE 2.1

Parameters employed for the simulation of a measurement on toluene

Temperature, T 360K
Hot-wire radius, r̂ 3.89 pm

Cell radius, r^ 4.95 mm
Heat Flux, q 0.538 Wm"1

Thermal Conductivity, \ 113.7 mWnf1̂ 1

Density, p 802.9 kg nr3

Heat Capacity, C^ 1904.0 J kg-1K-1

Mean extinction coefficient, K 4630 m-^
Refractive index, n 1.4961
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we obtain

16Kn2oT30o (2.44)5t pC r2 LdP' "If 6RJ P 1

in which we have made use of the definition of E , equation (2.40) andK
employed the linearisation

T*+ _ t 4 = 41^0o o

which is justified for the small temperature rises employed in 
practice.

An analytic solution of equation (2.44) may now be attempted, but 

this is most easily accomplished by returning to the simplest model of 
the apparatus in which the heat source is vanishingly small and the 
outer boundary is situated at infinity. This is consistent with the 
approach adopted for other corrections to the ideal model in which all 

the departures of the real system from the ideal are treated as small, 
additive effects [23]. Using the fact that the radiation heat flux 

from the wire is negligibly small [23] the boundary conditions for 
equation (2.44) then become, following the same substitutions as 
before,
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and

ut— x feie R<ff) at R = °> t>0

9 = 0  at R » «, t > 0

0 = 0 for t < 0

(2.45)

(2.46)

(2.47)

Equation (2.44) is most easily solved by the use of Laplace transform, 
denoted by a tilde, whose application leads to the equation

,2 dfe
' dZ1 + z 4t - Z 20 = O dZ (2.48)

with the boundary conditions

q
2it\sTo

(2.49)

and Z = ^ , 0 = 0 (2.50)

Here, Z - ( M - 1 )* (2.51)

where s is the Laplace transform viable

\

p V ?
A = (2.52)
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and

B =
16Kn2aT 3 _______o_

P C
(2.53)

The solution of equation (2.48) is [55]

0 = 0 .  I (z) + C_K (z) i o 2 o (2.54)

where I and K are modified Bessel functions. By virtue of the o o J

boundary condition (2.50) and the properties of I [55] this becomeso

6 = C2 Ko(z) (2.55)

and from condition (2.49) we obtain

0 = 2ti\sT o  o
K (z) (2.56)

The inverse of the Laplace transform may be found by application of the 
convolution theorem and standard inverse transforms [55] so that

0 = -
R2/,. -BR2/,. ~ u

L  ^  e 4AU ( ^ )  du (2.57)4ti\T Joc o
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We now recognize that B is a measure of the contribution of radiant 
emission by the fluid to the heat transfer process, and that BR2/4Au 
< 0.1, even in the simulated case of toluene. Consequently, to obtain 
a first order estimate of the effect of radiation we may expand the 

first exponential in the integral of equation (2.57) and carry out the 
integrations to yield the temperature rise in the form

AT = -A- 1  4—
n-1

4n\ n=l (n-1) (Bt)n-1
En ^ (2.58)

where [55]

En J
OC -Cu

£ r - )  du (2.59)

By means of expansion of the exponential integrals [55] we finally 
obtain for the temperature rise at r = r̂

AT q4tcA. [l +
Br
4k Ln f4Kt )

Bqr^
16h;k\ _ 4nA + 0{(Bt)2 (2.60)

By comparison of this result with that of equation (2.9), it is
possible to discern a radiation correction, 6T ,, which, if added to r rad
the temperature rise which is observed in the presence of radiation
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recovers AT (r ,t) of the ideal model.

Therefore,

AT. , = AT + 6T id rad

6Trad = “ ^  Ln + 47 _tlr2C

(2.61)

(2.62)

In the absence of any radiation effect the thermal conductivity is 
derived from the slope of the experimentally observed linear 
relationship between the temperature AT and Ln t. Equation (2.60) 

makes it clear that radiant emission from the fluid yields a 
relationship which is no longer linear, but is curved, concave to the 
Ln t axis. Furthermore, the slope of the linear portion of the 
relationship is altered and a shift of AT vs Ln t line along the AT 
axis is produced. So far as the derivation of the thermal conductivity 
is concerned the shift is of no significance, however, the remaining 
two effects are potentially important.

In order to confirm that the analytic solution of the conduction - 
radiation problem is consistent with the numerical solution we have 
compared the temperature rises calculated in the two ways using the 

data given in Table (2.1). For this purpose we have added the small 
correction owing to the finite outer boundary (see 2.3 and 2.5) to the 
analytic solution in order that the two solutions refer to the same 
model of the instrument. The comparison is presented in the form of a 

plot of the deviations between the two solutions in Figure 2.4. It can
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be seen that the deviation does not exceed ±0.1%, its systematic nature 
being merely a combined result of the small terms neglected in the 
analytic solution and the limited accuracy of the numerical solution.

The advantages to be gained from an analytic solution of the
conduction-radiation problem are twofold. First, the experimental

measurements of the temperature rise of the wire may themselves be used
to ascertain whether radiation contributes significantly to the
measurement process. Thus, if the measured temperature rise of the
wire, AT , corrected for all other effects according to equation (2.9) w
does not conform to a linear equation in Ln t, it is likely that there 
is a significant radiation contribution. In such cases, if it can be 
established that there is no convective contribution to the measurement 

process, a value for the radiation parameter, B, may be estimated by 
fitting AT to the full form of equation (2.60). The derived value of B 

may then be employed to evaluate the correction 6T ^ for each data 
point, and the radiation-free thermal conductivity evaluated from the 
slope of the linear relationship between AT and Ln t.

The radiation parameter, B, evaluated in this manner is, of 
course, considerably more reliable than one deduced from independent, 
spectrophotometric measurements because it is the directly relevant 
parameter rather than one deduced from a series of assumptions about 
the optical characteristics of the fluid [50]. Moreover, the parameter 
may be determined for each set of experimental conditions.

The second advantage of the analytic solution of the problem is 

that it is also possible to discern when the radiation contributions
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to the measurement are negligible. If the experimentally observed

temperature rise, AT, defined by equation (2.9) is a linear function of 
Ln t, it is possible to assert that the term (Bqt/4u\) in equation 
(2.60) is negligibly small by comparison with the term proportional to 
Ln t. Equation (2.60) may be written in the form:-

AT » + C . Ln t + C3.t (2.63)

in which the coefficients providing the best representation of a set of 

AT versus t points obtained experimentally may be determined by a 
non-linear least squares procedure. As an example of the results
produced we have fitted the results of a measurement on toluene at 360K 
and 3.2 MPa to an equation of the form of (2.63). The coefficients 
deduced, together with their standard deviations are listed in Table
(2.2). The coefficients and C^ have a statistical uncertainty 
small by comparison with their actual value. On the other hand the 
coefficient has a statistical uncertainty almost as large as the 
value itself. On the basis of this and other similar calculations we 
may conclude that the coefficient (and hence the term with which it 
is associated) is not statistically significant. This illustrates that 

there is no significant contribution from radiation to the measurement 
of thermal conductivity in the liquid. For each measurement reported 
here a similar examination of the data was performed to confirm the 
absence of a significant radiative component in the measured heat

flux.
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Table 2.2
Coefficients of the statistical fit to equation (2.63)

Coefficients Standard deviation

C1 3.5341 ± 0.29 x 10"2

C2 0.3779 ± 0.14 x 10“2

Co -0.353xl0“2 ± 0.33 x 10"23

Also, it has been confirmed that for our instrument

Br1
2

4k < 10“ 5 (2.64)

So that the thermal conductivity deduced from the slope of the line AT 
vs Ln t is the radiation-free value. As we show in figure (2.3) for 
toluene, and as we have found for all other liquids we have studied 
there is no evidence of any curvature in the line AT vs Ln t. We 
therefore conclude that the contribution of radiation to the 
measurement of thermal conductivity in a transient hot-wire apparatus 
of the type we employ is entirely negligible for these liquids.

Finally it should be emphasised that the arguments presented here 
are restricted to the transient hot-wire appartus. In other 
experimental methods, usually of a steady state type, the temperature
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gradients involved are much smaller, so that it is not clear that a 
similar simplification of the problem of the influences of radiation in 
the fluid is possible.
2.5 Summary of Corrections

In summary, in a transient hot-wire experiment the thermal

conductivity of a fluid is obtained from measurements of the
temperature history, AT (t), of a central section of a wire of radiusw
a, which acts as a source of heat flux, q, per unit length. The

thermal conductivity at a thermodynamic state (T^, Pr> J£ ) is derived 
from such measurements by application of the working equation

AT. = AT + l  6T. = id w 1 1 L44x\(Tr ,Pr, x)

4k t
■] a2C

(2.65)

where T^ is given by equation (2.25) and the corresponding density 
at the equilibrium pressure P. In a properly designed instrument, 
operating under well chosen conditions, the corrections to be applied 
to the measured temperature rise can be reduced to just two, 6T^ for 
the heat capcity of the wire and 6T^ for the finite outer boundary of 
the cell. These two corrections may themselves be rendered small by 

design.
The combined effect can be taken as additive. Hence

ATi d  "  AT( t )  +  6 T 1 +  6T 2 ( 2 . 66)
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where from (2.16):-

6T1 2XT [(PC ) - (pC )] AT.,L p w p/J id (2.67)

and from (2.19):-

6T  ---3_2 4n\ + S e""®vlc t/b2v=o [n y , J 2}V o(gv)J J (2 . 68)

The range of thermodynamic states and the operational zone for which 
the working equation (2.65) is appropriate is illustrated schematically 
in Figure 2.6, which shows the exclusion of low densities by 
temperature jump effects, long times by the influence of natural 
convection and short times by virtue of the excessive magnitude of the 
heat-capacity correction.

In principle, according to equation (2.65), the thermal 
conductivity could be deduced from just one measurement of a pair of 
temperature versus time coordinates. However, an evaluation in this 
manner would require an accurate knowledge of the wire radius, and the 
thermal diffusivity of the fluid as well as all of the time dependent 

and time-independent corrections mentioned earlier, since they 
contribute to the absolute value of the temperature rise. Moreover, 
because equation (2.65) represents only an assymptotic form of the full 
solution for the temperature rise, the complete solution in the form of 
the exponential integral solution would have to be employed. On the 
other hand, if the thermal conductivity is determined from the slope of 
the line constructed from many pairs of temperature rise-time points 
the only additional information required to evaluate the thermal
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Fig. (2.6) The operating range of the transient hot-wire instrument.
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conductivity is the heat flux from the wire. Moreover, the observation 
of the evolution of the temperature rise of the wire provides the 

opportunity to establish that the instrument operates in accord with 
the mathematical model for it, since only in this case will the time 
dependence of the temperature rise in (2.65) be preserved. For similar 
reasons, the method is not suitable for the determination of the 

thermal diffusivity of fluids which may only be evaluated from the 
absolute value of the temperature rise. Furthermore, the thermal 
diffusivity is exponentially dependent on the measured temperature rise 
so that the precision of its determination is naturally worse than that 
of the thermal conductivity for the same precision in the temperature 
measurement. A discussion of the experimental determination of the 

thermal diffusivity and the associated difficulties are given in more 
detail in appendix 1.
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C H A P T E R  3

APPARATUS DESIGN AND USE

3.1 Introduction

This chapter describes the application of the transient hot-wire 
method to the accurate measurement of the thermal conductivity of 

electrically insulating liquids within the temperature range 300-360K 
and the pressure range 0.1-700 MPa.- The design of the equipment both 

mechanical and electrical has been such as to produce an apparatus 
which conforms as closely as possible to the mathematical model 
analysed in Chapter 2. The resulting instrument has a precision of

±0.2% in the thermal conductivity measurements. The merit of the 
present work is that the accuracy of the experimental results
obtainable is greatly improved over any other previous measurements due 
to an improved treatment of the radiation contribution to the
measurement process as discussed in 2.4. An estimated accuracy of 
±0.3% in the thermal conductivity can be obtained using the present 
instrument.

A detailed description of the design and construction of the 

apparatus is given elsewhere [27]. Therefore only the essential 
components are discussed here. In the following sections, the 
description of the cell, the pressure system, the temperature control 
system and the electronic apparatus will be given, together with the 
working equations used in analysing the data. The experimental
procedure will also be described, and finally the method of handling 
and processing the data will be discussed.
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3.2 The Hot-Wire Cells

A schematic diagram of the hot-wire cells is given in Figure 3.1. 
The cell employs two wire heat sources, differing only in length, 
mounted within two cylindrical compartments contained within a 
stainless steel cylinder (type EN 85-M), 23.5cm long and 25mm in 
diameter. The cell was made up from two hemicylindrical sections. The 
fixed half of the steel cylinder (T) carries the cell top (T) which 
connects the cell to the pressure vessel plug; and the terminal posts(TT) 
and (T̂ ), which provide mechanical support for and electrical connections 
to the two platinum wires(^)of the cell. The removable half of the 
cell^T)forms a cover and provides a cylindrical outer surface for both 
cells when fixed in position. A plan view of the complete cylinder 
assembly in figure 3.1 shows the channels (V) and (TP) used to carry 
platinum wire connectors (0.5mm diameter), insulated with glass tubing, 
from each of the terminal posts to the upper end of the cells.

The lower terminal post is fixed to the cell body through the 
stainless bushing (jP). The terminal connection is provided by the 
stainless steel pin(T^)which is insulated from the bushing(jP)by glass 
washers (To) held in place by the threaded collar (Tl). At its upper end 

the terminal carries a threaded stainless steel cone (p2) and a lock nut 
13) which secure a platinum connection lead. The upper terminal post is 
constructed in a similar fashion, but is not fixed to the cell body. 
Instead the bushing (TP) is screwed to the stainless steel cylinder (TP) 
which holds the insulating washers in position. The steel cylinder(TB) 

has a central thread which carries an adjustment screw (TP) passing 
through a central hole in the top plate of the cell. The adjusting 
screw head is held against the top plate of the cell with the locating 
plate(l7) . The cylinderflS) also has two guide holes drilled in it
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Fig. (3.1) The measurement cell
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which accomodate two cylindrical pins (18) fixed in the top plate. As a 
result of this construction, rotation of the adjustment screw^l6) causes 

a vertical movement of the terminal without its rotation and allows a 
total of 15mm vertical adjustment.

The hot wires of the cells are made from 7 pm nominal diameter 

platinum wire (purity >99.9%) supplied by the Sigmund Cohn Corp. At 
the upper terminal a platinum hook(T^) (0.75mm diameter wire) is 
soldered to the gold tipped cone and the 7 pm platinum wire attached to 
it using gold as a solder. At its lower end the 7 pm platinum wire is 

attached to a gold sphere at one end of a cylindrical platinum weight 
of 50mg, (20). The upper end of the weight is electrically connected to
the lower fixing cone by a loop of gold(^2̂  attached at either end with
a gold-tin solder. The loop(21) is manufactured by flatting a 2cm piece 
of 0.06mm diameter gold wire into a thin strip of 1mm width followed by 
annealling at 1270K. In this way, a lower electrical connection of 
small electrical resistance (0.15 - 0.20 Jl) is obtained which exerts no 
horizontal or vertical force on the lower end of the 7 pm platinum 

wire. The wire, therefore, hangs vertically and is subjected to a 
constant tension due to the weight, this tension being virtually 
independent of the thermal expansion of the elements of the cell at the 
various experimental temperatures used. In the present measurement, 

this tension in the wire amounts to approximately 10% of the yield 
stress of platinum. Furthermore, the electrical resistance of the 
various components providing electrical connection to the 7 pm platinum 
wires amounts to only 0.2 Ohm, which is small by comparison with the 
resistance of the long and short wires (« 450 Ohms and - 160 Ohms 
respectively) so that a correction for this resistance may easily be 
applied.
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After assembly of the platinum wires in the fixed half of the cell 

1, the wires are annealed by passing an electric current through the 
wires, providing a power generation of approximately 85 watts/m of 
wire, for 1 hour, followed by a slow reduction of the current. 
Subsequently the length of the two 7 pm platinum wires are measured at 
room temperature with a cathetometer. The characteristics of the two 
thermal conductivity cells employed for the present measurements are 

listed in Table 1. The wire radius was determined by electron 
microscopy.

Table 3.1
Characteristics of the thermal conductivity cells

Internal diameter of the cell 9.9 0±0.01mm
Platinum wire radius 3.89±0.01pm
Long wire length at 310.8K 150.46±0.05mm
Short wire length at 310.8K 55.98±0.05mm

Long wire resistance at 310.8K,0.1 MPa 416.0 5±0.0 5o hm
Short wire resistance at 310.8K,0.1 MPa 155.84±0.05ohm

Platinum wire emissivity 0.037

The resistance-temperature characteristics of the wires have been 
determined by calibration as described elsewhere by Assael et al [56], 
at atmospheric pressure under conditions of constant, zero stress. 
These characteristics determined were found to be insignificantly 
different from those of pure platinum recommended for the
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International Temperature Scale, of 1968 [57]. Owing to the weight 
suspended from the lower end of the platinum wires the thermal 

conductivity measurements are carried out with a constant, but 
non-zero, stress in the wire. The effect of imposed stress on the wire 

resistance amount to only 0.02% and the effect on the temperature 
coefficient is even smaller [27]. Consequently, no significant error 
is incurred by neglecting the effect of this imposed stress.

The resistance-temperature characteristic of the wires are also 

affected by the hydrostatic pressure to which they are subjected in the 
cells. This effect has been analysed [27] and the effect is 

represented by equation (3.7) in 3.4.

3.3 The High Pressure Equipment and Electronic Apparatus
A schematic diagram of the pressure vessel used is given in figure 

3.2. The vessel itself (^P)was manufactured by Pressure Products Inc. 
(U.K.) Limited from EN 25 Stainless Steel and has an internal diameter 
of 38.1 mm and internal length of 0.305 m. The vessel is sealed at its 
upper end by plug (̂ 2̂  . At its lower end this plug carries a 
phosphor-bronze sealing ring with a "V" groove machined into its 
circumference, as well as a teflon primary sealing ring^7^). The sealing 
rings are held in place by the backing washer(jT)and the retaining ring
10) screwed onto the plug. The plug is also fitted with four electrical 
feeds-through shown in the details of figure 3.1. They consist of 
Invar cones^T)lapped into ceramic cones (jT)which themselves are lapped 
into the plug body. Electrial leads from the Invar cones pass through 
holes in the plug to the exterior of the vessel. At its lower end the 
pressure vessel is connected through high-pressure piping to a 
hydraulic pressurizing system. The thermal conductivity cell assembly 
of figure 3.1 is mounted on the pressure vessel sealing plug with the
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Fig. (3.2) The autoclave (including details of 
the plug)
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aid of the threaded ring^T)shown at the top of the cells. The thermal 

conductivity cells are mounted within the cylindrical housing (^)of 

figure 3.2 which contains the liquid under test. The housing is 
sealed to the pressure vessel cap by means of a lead gasket^T^ At its 

lower end the housing carries a stainless bellows ̂ 2) The housing^), 

containing the thermal conductivity cells, is filled with the test 
liquid under vacuum before insertion into the pressure vessel.

The autoclave is pressurised by the pressurising system, a 
schematic representation of which is shown in figure 3.3. The system 
consists essentially of a high and a low pressure side. The low 
pressure side is for pressurisation of the autoclave and high pressure 
side up to 200 MPa. After this initial pressurisation, the high 
pressure side, when isolated from the low pressure side by valve(jT), 
pressurises the autoclave via an intensifier^6̂  from 200 MPa up to 700 
MPa.

The specifications of the individual components of the 
pressurising system are listed below:- 

(7) Pressure vessel (autoclave) made by Pressure Products Inc. (UK) 
limited and rated to 700 MPa working pressure
Pressure Gauge made by Coleraine Instruments, Gallway, Ireland and 

calibrated up to 700 MPa with an accuracy of ±1 MPa at 700 MPa. 
(For calibration, see appendix 2 and reference 27)
Vent valve, non rotating spindle, model no Vl-110-100, made by 
Pressure Products Inc. and rated to 100,000 psi (700 MPa approx.) 
Pressure vessel isolation valve, model no 530.0432 Nova-Werke AG, 
and rated to 700 MPa
10,000 atm pressure gauge, made by Budenburg Gauge Company, 
accurate to ±1% of full scale deflection (for calibration, see

©
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©
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reference 27)

Intensifier, model no A2.SJ, made by Harwood Engineering Co., USA, 
with intensification factor of 15 and rated to 200,000 psi (1400 
MPa approx.)

Let down valve, non-rotating, spindle type, model no. V-110-20, 

made by Pressure Products Inc. Ltd. and rated to 20,000 psi (150 
MPa approx).

Pressurising pump, hand-operated, stainless steel bodied, model 

no. HP-218, made by McCartney Manufacturing Co. USA, and rated at
60.000 psi(400 MPa approx.)

High pressure isolation valve, specification as for(^)
40.000 psi Gauge, made by Budenberg Gauge Company, accurate to ±1% 
of full scale deflection (for calibration see reference 27)
Low pressure isolation valve, non-rotating, spindle type, model no 

V-110-60, made by Pressure Products Inc. Ltd. and rated to 60,000 
psi (400 MPa approx.)
Pressurising pump, specifications as for(̂ T)
Let down valve, specifications as for (U)

The tubing used in the pressure line were and 5/16” O.D., 1/32" 
I.D. type 304 stainless steel seamless tubing supplied by Tube Sales 
Ltd.

The entire pressurising system, apart from the hand-operated pumps

^ 8̂ )and(l^, is enclosed within, but electrically insulated from, a steel 
cabinet with V  thick mild steel plate sides. The reason for the 
system being insulated from the enclosing cabinet is that the
electrical apparatus (described later, see 3.4) is sensitive to 
electrical noise induced by earth loops which would have otherwise
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occurred.

The apparatus is pressurised by initially pumping on the low 
pressure side pressurising pump (T̂ ) until about 200 MPa pressure is 

attained within the system and autoclave. The low pressure side is 

then isolated using the isolation valve (IT) and the further 
pressurisation is performed using pump^8̂ #

The entire pressure vessel is suspended from a vibration-free 

mount within a well-stirred, thermostatically controlled oil bath. In 
order to maintain a slightly increasing temperature with height in the 

pressure vessel and thereby inhibit natural convective currents in the 
test fluid, a temperature differential of about 0.25°C was maintained 
across the whole length of the pressure vessel by means of a small 
auxiliary heater. The temperature differential across the thermal 

conductivity cells was then only ±0.05°C. Observation of the
resistance fluctuations of the platinum wire immersed in the test fluid 
indicated that the variations in the temperature there amounted to no 
more than ±0.02°C in a twelve-hour period. Because an entire 
measurement cycle extends over no more than 10 minutes this stability 
is more than adequate. It was confirmed in independent measurements 

that at equilibrium the temperature of the fluid in the pressure vessel 
differed by less than ±0.1 °C from that of the outer wall of the 
pressure vessel. Consequently the temperature of the test fluid in 
equilibrium was taken to be that measured with a calibrated platinum 
resistance thermometer element supplied by Degussa (for calibration see 
reference 27), which was in good thermal contact with the pressure 

vessel.
3.3.1 Electronic Apparatus

The purpose of the electronic components in the apparatus is
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ultimately to determine the temperature rise of the platinum wires in 
the thermal conductivity cells as a function of time during their 
transient heating.

The two wires of the thermal conductivity cells are connected into 

two arms of a high precision automatic Wheatstone bridge. Figure 3.4 
shows a schematic diagram of the bridge, shown in the configuration 
prior to measurement which is such that the total resistance of the 
upper right-hand arm exceeds that necessary for balance. Upon 

initiation of a measurement cycle the mercury wetted relay is 
connected to point Y and a current flows through the platinum wires. 
This current is used to provide a signal through and the capacitor C 
to start six timers operating on a 10 MHz clock. Subsequently relay 
S£ is opened. Due to the current flow in the wires their resistances, 

and Rg , increase with R^, the resistance of the long wire, 

increasing more. This drives the bridge towards a balance, monitored 
by a high input impedance (10^ \n.), high gain (4 x 106) comparator. At 
balance the polarity reversal at the comparator is used to stop the 
first of the timers and 3 ms later to open relay and so increase the 
resistance in the right-hand arm of the bridge. This operation throws 
the bridge out of balance again, from which state it approaches a new 
balance point owing to the continued heating of the platinum wire.

At this second balance point a further timer is stopped and relay
S, opened. This process continues until six times of balance have 6
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Fig. (3.4) The bridge circuit
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been recorded when the bridge is automatically returned to its rest 

position. Figure 3.5 is a plot of the voltage across points A and B 
versus Ln (time) during a run. The regular distribution in Ln (time) 
is accomplished by suitable choice of the resistors in the bridge [58] 

and is desirable due to the form of the working equation 2.9, from 
which the known resistances of the bridge are sufficient to determine 

the resistance difference of the long and short wires at each recorded 
balance time (see 3.4.1). This cycle is repeated six to ten times for 
different bridge configuration to yield up to a hundred pairs of values 
of the resistance difference as a function of time for a particular 
thermodynamic state of a liquid sample. The total time for one single 
measurement cycle is usually maintained at one second so that, owing to 
the inertia of the fluid, convection effects have no influence on the 

heat transfer from the platinum wires (see 2.3).
The fixed resistors of the bridge are Vishay type HA412 metal-film 

resistors with a tolerance of ±0.001%. The variable resistors and 
are Vishay resistance boxes (type 1304) with a tolerance of 0.005%, 

whereas the resistors of the parallel arm R ^  - R̂ ,_, are Muirhead type 
D805 wire-wound decade resistors with a tolerance of 0.001%. The power 
supply to the bridge consists of two Hewlett-Packard type 6112A d.c. 
power supplies connected in series with a stability and accuracy of 
±0.01%. The centre point of the power supply is connected to a 
noiseless earth post embedded in the ground which provides the only 
earth for the entire system so as to eliminate electrical interference. 
The voltage resolution of the capacitor is ±20pV, which corresponds to 
a resistance resolution of ±0.002n,. The resolution of the time



Fig* (3.5) The distribution of the balance points in time
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measurements is ±0.1ps. In order to establish the absolute accuracy of 

the bridge for resistance measurements the resistance of a 50a. resistor 

was determined by operating the bridge in a manual mode. The measured 
value departed by less than 0.01% from the calibrated value.
3.4 The Working Equations

3.4.1 The temperature rise of a finite segment of an infinite wire

The transient hot wire instrument used in this work employs two 
wire heat sources used in opposite arms of the automatic bridge to 
eliminate end effects caused by axial heat transfer through the wires 
to the terminals at their ends (see 2.3). Compensation to eliminate 
this effect is achieved by measuring the difference in resistance 
between the two wires. This would yield the temperature rise of the 
middle position of the long wire, provided the wires were identical 
apart from their lengths. If the wires were long enough, this 
temperature rise would differ from that occuring in a finite segment of 
a hypothetical infinitely long wire by a negligible amount. 
Unfortunately, in practice the wires are never identical due to, among 
other things, the non-uniformities in their radii. However, if the 
resistance per unit length of the two wires differ from each other by 
less than a few percent, their dissimilarities can be accounted for 
using an analysis by Kestin and Wakeham [24].

Ignoring all the temperature corrections arising from the 
non-ideal behaviour of the wire, which after all are small (see 2.3) 
then the temperature rises of the long and short wire are adequately
described by:-
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(AT)» " T k  Ln
4lCt
a2CZ

and

( At )s 4n: X Ln 4<t
a2C

The subscripts Z and s refer to the long and short wires respectively
and the radius a. and a are suitable mean values for each wire.Z s

With the automatic Wheatstone bridge of the type described in the 
previous section, the temperature rise of the long wire acting as a 
segment of an infinitely long wire, (At )^, may be obtained from the 
equation [59]:

(4Th
AT'
1+E, (3.1)

where AT* is the experimentally measured quantity given as

- V  - (W  - V To>) 
a(To,S,P) LRa CTq) - Rs(To)j

R (T )_ s o________
£3 " R0(T ) - R (T ) £2Z o s o

(3.3)



72

e2

e[

Ln

1 + Ln(^-
a2C

)]

(AT)A - (AT)s
“ T at)^

(3.4)

(3.5)

and e = 1
as (3.6)

Here a represents the resistance per unit length under equilibrium
condition between temperatures T and T. R (T ) and R„(T ) are theo s o £ o

resistances of the wires at temperature T and R and R„ ther o s X

resistances at temperature T. a(TQ,S,P) is the temperature coefficient 
of resistance of pure platinum under an axial stress, S, and a 

hydrostatic pressure, P, between temperatures Tq and T. It can be 
shown that the effect of the constant axial stress is negligible with 
the present cell design [27], and the effect of hydrostatic pressure 
can be expressed as [27]:

a (T, P) = a (T,0) (1 + Ep P) (3.7)

e » 1.6 x 10-6 (MPa)-*Pwith (3.8)
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Hence equation (3.2) can be written in the form:

AT' = (R* " v  ■ < W  - w >
a (To,0,0) (Ra (To) - Rs(To)> ( 1 + e P ) (3.9)

The difference (R^ - Rg) in equation (3.2) is obtained from the bridge 
balance equation (59):

C„ . R„ - R, R
R X ” Rs (R

1 2 1
v v  - cr  1r s ~ j

where C, 1 - (B+l)/D 
(1+B/D)

B = P R'/R

D -  { 2 ( M )  +  1 } (1 +  f )

R' = R_ + R. + R-, + R0 5 o / o

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

R - R0 — R, — R ~ R. A 3 4 q 10

and 0 is the fraction of R’ in the circuit. RS is the total value of
the parallel resistors in the circuit in the upper right hand arm of
the bridge (see figure 3.4) at the time of polarity change.

We note that in order to calculate the required resistance
difference of the wires (Rn - R ) the ratio Rn/R should be known.X S X s
Writing the ratio of the resistance of the wires during a measurement
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in the form of a perturbation to that at the equilibrium temperature 
as

R* W
R- = FTFT(1 + f) (3-15)s s o

where f represents a small quantity which is only very weakly 

temperature dependent. To a good approximation, it may be taken to be 
zero and better approximations are obtained subsequently using an 
iterative procedure with the aid of the following relationship:

R R (T )
/  = r t f > { i + a(v  [(at)* -  (at)s]> (3-i6)s s o 

R (T )
= rW ( 1 + “(To >-<AT>* ^  <3 a 7 >s o

with given by equations (3.4) and (3.5), and a(TQ) is the effective 
temperature coefficient of resistance of the platinum wire given by 
equation (3.7). The approximate value for (AT)^ obtained from the 
zeroth order approximation can be used in equation (3.17) to generate a 
better estimate of R^/Rg which can be returned to the bridge balance 
equation (3.10) for a better estimate of (AT)^. Normally one iteration 
of this type is sufficient.
3.4.2 The heat flux equation

The bridge arrangement of Figure (3.4) ensures that equal current 
flows in both wires. However, this alone does not imply an equal rate 
of heat dissipation per unit length in the wires because the wires are



75.

extremely thin and hence it is difficult to ensure that their radii are 

exactly the same. The difficulty is overcome by treating the heat flux 
per unit length of the middle portion of the long wire, q, written in 
terms of experimental quantities as:

______ q*
q (l-e4r(l+e5) (3.18)

where

v2 < V RS)/(W
q* = t W ' W (W /(V V l J

(3.19)

e, =
9 XX s

< W (r a+V +(r a-rs)(W
(3.20)

X £
S

e5 " (A.- A ) (3.21)

where V is the applied voltage to the bridge, while and are 
bridge resistances defined previously (see fig. 3.4).

As the temperature at which measurements are performed is often 
significantly different from that at which the wires’ lengths were 
measured (-295K), it is necessary to correct for this temperature
difference. The correction used is:
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* (T  ) -  * (T  ) t 1 +  VCT0 -  T >) (3 .22 )o' m'

where y is the temperature coefficient of expansion of platinum
(-8.9 x 10”6 K”*), T is the temperature at which the wires measurement
were performed, and Jl is the length of the wire.

Because the temperature rise during a measurement is only 5K, a

further correction is not required as this causes an error of less than
0.01% in AT\^. The correction to £(Tq) in practice accounts for at
most (when (T -T ) » 70K) 0.06% change in the calculated thermal m o
conductivity.

The leads whose resistances are of importance are those connecting 
the long and short platinum wires to the bridge. In the present 

design, these leads include the golden loops^21^in figure (3.1) which 

have a resistance of 0.2n each. The design of the bridge is such that 
the effect is manifested in the calculation of the heat flux emitted 

from the wire but not in the measurement of its resistance. The 
resistance of these leads are hence included in the resistances of the 
resistance boxes and of figure (3.4).
3.5 Experimental Procedure

In this section the procedure by which the experiments are 
performed and the required measurements are obtained is briefly 
discussed.

The measurement cell is mounted in the bellows assembly and the 
latter is filled with the test liquid whose thermal conductivity is to 
be determined. The cell and bellows, which are attached to the
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pressure vessel plug, are placed inside the autoclave which is then 
pumped up to the required pressure. The autoclave, containing the 

cell, is left to attain thermal equilibrium. The time taken to reach 
equilibrium is of the order of 72 hours when the liquid in the cell has 
been changed; and 2-3 hours when only the pressure within the autoclave 
has been altered.

Once the system has reached a steady temperature the equilibrium 
bath temperature, T , is measured using the platinum reistance 
thermometer which is strapped to the side of the pressure vessel. The 
pressure is then read. The variable resistors used in the automatic 
bridge are adjusted to give an approximately linear distribution in Ln 

t while ensuring that the final balance point during a run will not 
greatly exceed 1 second. The relevant bridge resistances as well as 
the mode and selector switch positions are recorded together with the 
voltage to be supplied across the bridge during a run.

A run is then performed by firing the automatic bridge and the six 
resulting balance times are recorded. The bridge configuration is 
altered by changing the mode or selection switch or by changing the 
values of the variable resistors in the upper right hand arm of the 
bridge (see 3.3). The new bridge configuration is noted, a second run 
is initiated and the six new balance times are recorded. Subsequent 
runs (normally six runs being performed in total) are performed using 
the same routine and allowing a time lapse of 60 seconds between runs 
(the optimum time lapse being obtained from previous experience).

Finally the difference of the resistance of the wires and the 
resistance of each wire is recorded with the bridge operating at a 
steady state mode. These measurements are performed for several 
different bridge voltages and the resistance at zero voltage (i.e. at
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bath temperature) is obtained by extrapolating the measured resistances 
against input power to zero voltage. These plots were always found to 

be linear so that the extrapolation introduces negligible additional 
uncertainty.

These experimental data are all that is required from an 

experiment on the test liquid at a particular thermodynamic state. 
These data used in conjunction with the physical properties of the 
liquid, cell and platinum wires (these physical properties are given in 
appendix 2) enable the calculation of the thermal conductivity of the 
liquid.
3.6 Calculation of Liquid Thermal Conductivity

The experimental measurements yield directly the times of bridge
balances; the bridge configuration corresponding to each time; the
bridge voltage; the equilibrium resistance of the wires; the
equilibrium bath temperature and the hydrostatic pressure within the
measurement cell during the experiment. From these data we compute the
idealised temperature rise, (AT)^, of a segment of the platinum wire as
a function of time during an experiment according to equation 3.1. An
iterative procedure as discussed in 3.4.1 is carried out until the
value of (AT)^ has converged to the required accuracy (±0.01%). The
heat flux, q, is calculated from equation (3.18). The corrections for

departure from the ideal wire case as discussed in 2.5 are applied. As
a consequence of the working equation (2.9), a linear regression
analysis of the set of data (AT. ,, Ln t) yields the thermalid
conductivity directly from the gradient of the line and the value of 
the heat flux.

In practice, measurements are performed on test liquids over the
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pressure range 0-700 MPa at an approximately constant equilibrium bath
temperature, T . These measurements produced liquid thermal o
conductivity X(T^,p^) at different reference density and slightly

different reference temperature T . The difference in referencer
temperature over the pressure range being of the order of 1-5K which is 
due to the pressure dependence of the physical properties of the fluid 
measurement cell. In order to examine the density dependence of a 
liquid, the thermal conductivity measurements were corrected to a 
nominal temperautre T^ using the linear equation:-

\(Tn» pr) (3.23)

The derivative (q^t) in equation (3.23) is obtained by first assuming
^r

the thermal conductivity to be independent of temperature. This is 
done for a number of sets of measurements of thermal conductivity 

versus density at different equilibrium bath temperatures. From these
measurements one can then obtain an estimate of hr— ) which is then

v5 T ' p r
used in equation (3.23). The process is repeated and as convergence is 

rapid, usually two iterations are all that is required.
In order to examine the pressure dependence of the thermal 

conductivity one corrects the value of X(T^, P) obtained from the 
measurements to a nominal temperature T^ using:-

\(T , P) = X(T , P) + (T - T )v n’ v r» / V5T;p n r (3.24)
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9XThe value of (■̂ 7) is obtained using:-

r ^ )  = r^e.) + (SL)
l5T; p l ap;Tr  ^dT'p l dT 'pr

From data on the pressure and temperature dependence of test liquid 

density we can find (^^)p an<  ̂ from the density and temperature 
dependence of the liquid thermal conductivity, which we have measured,

we obatined (||) and (*g|) .
r *r

5\

3.7 Equipment Performance
From the theory of the transient hot wire apparatus given in 

Chapter 2, it is seen that, if the apparatus behaves in the manner 
assumed by the ideal mathematical model, then the experimentally 

determined values of A T ^  versus Ln t will lie on a perfectly straight 
line. Since the mathematical description of the apparatus neglects 
entirely any convective heat transfer from the wire, the observation of 
the predicted linearity serves to establish that the experimental 
measurements are free from such effects. The analysis of the radiation 
contribution to the measurement given in Chapter 2 also indicated that 
provided the linearity of the A T ^  vs Ln t curve is preserved, the 
effects of the radiation phenomenon contribute negligibly towards the 
measurement of the thermal conductivity. The validity of this 
conclusion has been confirmed by examination of each individual set of 
experimental AT^ vs Ln t data.

It is estimated that the small corrections discussed in Chapter 2 
introduces errors of no more than ±0.1% in the temperature rise AT.,.
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Figure (3.6) shows a plot of the corrected temperature rise AT., versusid
Ln t for an experimental run on n-hexane at 307.15K and 631.6 MPa in 

order to illustrate the straightness of the line. In this figure, the 
deviations of the points from the least-squares fitted straight line 
have been multiplied by a factor of twenty to make them visible. 

Figure (3.7) shows a deviation plot for the same results and it is seen 
that the deviations are indeed randomly distributed with a maximum 
deviation of only ±0.04%. This is taken as conclusive evidence for the 

correct operation of our equipment.
It is estimated that the random error in the measurement of the 

temperature rises and the balance times of the automatic bridge amounts 
to ±0.2% error in the experimental thermal conductivity data. The 
precision of the instrument is hence estimated as ±0.2%. Repeated 
measurements under identical thermodynamic conditions but using 
different samples of test liquid agree to within ±0.2%. Taking into 
account a possible error in the temperature coefficient of resistance 
of the platinum wires to which the reported thermal conductivities are 
proportional, the overall accuracy of the thermal conductivity is 

estimated as ±0.3%.
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(N-hexane at 307.15k and 631.6MPa)



83.

C H A P T E R  4
RESULTS

4 . 1  Pressure Dependence of the Thermal Conductivity of Liquid 
Hydrocarbons

The previous chapters have presented the theory of the transient 
hot-wire method and described an apparatus which was used to perform 
precise, accurate measurements of liquid thermal conductivities. In 
this chapter results for the thermal conductivity of seven liquid 

hydrocarbons at temperautre from 30 to 90°C and pressures from 
atmospheric up to 700 MPa will be presented.

The seven liquids studied in this work and their purity are listed 

in Table (4.1). By means of independent tests of gas chromatograph, 
the stated purities of the liquids were supported. In the case of 
2,3-dimethylbutane, the liquid was distilled repeatedly until a 

subsequent analysis indicated a purity in excess of 99.9%. All the 
liquids were degassed before use.

Table 4.1
Purity of the Studied Liquid Hydrocarbons

Hydrocarbon Purity Supplier

n-hexane 99.0% BDH
n-octane 99.5% BDH
2,3-dimethylbutane 97% (99.9% after distillation) Aldrich
2,2,4-trimethlypentane 99.9% BDH
Benzene 99.8% BDH
Cyclohexane 99.5% BDH
Toluene 99.95% BDH
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The characteristics of the measurement cell and a typical set of 
wires have been given in Table 3.1. A number of sets of wires were 

used during the measurement because during the changing of the test 
liquid, the wires often broke. The lengths of the wires used are 
included in Table 4.2. Repetition of the experiments with a new set of 

wires gives results which differed by less than ±0.2%, thus supporting 
the estimate of the apparatus design (±0.2%).

Table 4.2
Lengths of Individual Sets of Wires Employed for the Measurements

Length of Long Wire 
mm ±0.05mm

Length of Short Wire 
mm ±0.05mm

n-hexane 152.46 49.92

n-octane 150.37 49.49

2,3-d imethylbutane 149.78 48.18

2,2,4-trimethylpentane 150.70 49.69

benzene 154.91 49.50

cyclohexane 151.48 50.33

toluene
----------------------------------------------------------------------— — .

153.58 49.22

Modest extension of the pressure range for the measurements over 
previous work have been achieved by means of small modifications to the 
pressure vessel and the seals. The lower limit on the pressure range 
at approximately 50 MPa as found in reference [27] was removed. The
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upper pessure limit is also increased from 500 MPa to 650 MPa. 

However, for n-octane at the lowest isotherm and for benzene and 
cyclohexane, the upper limit on the pressure during measurements was 
determined by the freezing pressure at each temperature.

Each set of experimental results are presented in tabular form as
in Tables A.3 to 4.31. Each table contains measurements at one
nominal isotherm (as defined in 3.6) for one liquid. In the tables,

the reference temperature (see 3.6) and the experimental pressures are
given. Also listed are the values of (5X/5T) and (5X/5T) , employed

Pr P
to correct the raw data of the thermal conductivity at the reference 

temperature X(T^, Pr) to that at the nominal temperature and reference 
density. \(T , p ) (see 3.6), and the value at the nominal

temperature and the experimental pressure ^(^noni> P) • Finally, the 
density data obtained from interpolation of available experimental data 
are listed. The experimental density data are included in appendix 2. 
However, a detailed discussion of the density dependence of the thermal 

conductivity is postponed to chapter six until we have developed a 
reliable method of correlation in the next chapter. Included in 
appendix 2 are also the heat capacity data required for the application 

of small corrections to the experimental data (see 2.5).
For the purpose of correlating the experimental results with 

pressure, the results \(T , P) were fitted to polynomials. It was 
found that the commonly used least square fit to thermal conductivity, 
along an isotherm in ascending powers of pressure was inadequate for 
the representation of the pressure dependence of thermal conductivity, 

especially in cases where measurements are performed at or near the
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saturation conditions of the liquids. Instead, it was found through 

experimentation, that a polynomial in ascending powers of the square 
root of the pressure is more suitable. The correlation is expressed in 
the form:-

X = bo < 1 +iSi b.jX1) (4.1)

where

x = ( P/P' ) ^ (4.2)

In equation (4.2), P' is a scaling parameter and is approximately equal 
to the mean pressure over the isotherm along which measurements were 

performed. The coefficients of equation (4.1) are determined by 
regression analysis. These coefficients as well as the values of Pf 
used for each liquid at each isotherm are contained in Table 4.32.

A literature survey on the thermal conductivity of the liquids 
studied in this work revealed two major difficulties. Firstly, there 
are very few data available on the thermal conductivity of these 

hydrocarbons at elevated pressures and those data that are available 
are subject to large errors, more than ±5% in most cases.

Figures (4.1) and (4.2) contain plots of the deviations of the 

present results for n-hexane and n-octane from the correlation of 
equation (4.1). The same figures include the results of earlier 
measurements at elevated pressures [60, 61]. The maximum deviation of 
the present results from the correlation is one of ±1.0%, whereas the 
standard deviation is one of ±0.24% for n-hexane and ±0.30% for
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n-octane. The results of Golubev and Naziev [61 ] lie as much as 8% 

above the present data for both n-hexane and n-octane. On the other 

hand, the results of Mukhamedzyanov et al [60] for n-hexane are in much 
better agreement with the present correlations over quite a wide range 
of pressures.

Figures 4.3 and 4.4 contain similar deviation plots for the 
present experimental results for 2,3-dimethylbutane and
2.2.4- trimethylpentane. For 2,3-dimethylbutane the deviations do not 
exceed ±0.5% and the standard deviation is one of ±0.11%. For
2.2.4- trimethylpentane the maximum deviation amounts to ±0.6% whereas
the standard deviation is one of ±0.13%. These figures are

commensurate with the estimated precision of the measurements. The 
only previous measurements of the thermal conductivity of these two 
liquids have been carried out at the saturation vapour pressure. 

Because the correlation of equation 4.1 is suitable only for 
interpolation, we postpone a comparison with these earlier measurements 
until the subsequent chapters where a more secure method of 
extrapolation is established (see Chapter 6).

Figure (4.5) displays the deviations of the experimental data from
the correlation of equation (4.1) for benzene and cyclohexane. For

benzene the maximum deviation is ±0.4%, and the standard deviation is
one of ±0.1% whereas the corresponding values for cyclohexane are ±0.6%
and ±0.1%. The only previous measurements of the thermal conductivity
of benzene over a range of pressures were carried out by Rastorguev
[62]. These earlier results are included in the deviation plot in
figure (4.5) and are seen to depart from the present correlation by as

much as 7%. For cyclohexane there have been no previous measurements 
at elevated pressures and again we postpone a comparison with the
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results at the saturation vapour pressure for both liquids to a later 
chapter.

Figure 4.6 contains a plot of the deviations of the present 
experimental data for toluene from the correlation of equation 4.1. In 
no case does the deviation exceed ±0.7%. The standard deviation of the 
entire set of data being one of ±0.30%. The same figure includes the
deviation of earlier results [62] at elevated pressures from the 

present correlation. Here, the deviations rise to as much as 5%. The 

present results are to be preferred owing to their higher accuracy.
A large number of measurements of the thermal conductivity of 

toluene along the saturation line have been reported and they have 

recently been reviewed by Nagasaka and Nagashima [63]. These authors 
have proposed a correlation for the thermal conductivity of toluene 
along the saturation line, in the form

\ = 0.13772 - 2.913 x 10_l+ ( T -273.15) (4.3)

for 248 K < T < 413K.
We have extrapolated the correlation of our experimental data to 

the saturation vapour pressure in order to provide a comparison with 
this correlation, (due to a lack of density data for toluene at 
elevated pressures, the pressure correlation, equation 4.1, is 
considered more suitable for the purpose of these extrapolation of the 
present experimental data). The comparison is inlcuded in figure (4.7) 
which also includes the deviations of the experimental results of 
Nagasaka and Nagashima [64] and Castro et al. [65] from the same 
correlation (equation 4.3). These two sets of measurements were also
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performed with modern versions of the transient hot-wire instrument. 

The extrapolation of the present experimental results obviously 

degrades their accuracy somewhat, nevertheless, the three sets of 
measurements are seen to be consistent within their mutual 
uncertainty.



Table 4.3

Thermal Conductivity of n-hexane at Tn = 307.15K

Tr
(K)

P

(MPa)
< ^ > » t

(mW m“  ̂ K”2)

(— )
(mW m“ l K”^)

X(Tr > p r ) 

(mW m- -*- K- -̂) (mW m K"”-*-)
X(Tn,P)

(mW m K“ l )

P r
(Kg m“ 3 )

306.780 1.880 0.132E+00 -0.268E+00 115.582 115.631 115.483 649.06
307.390 7.900 0.135E+00 -0.267E+00 119.268 119.236 119.332 654.61
307.250 17 .800 0 .140E+00 -0.264E+00 124.046 124.032 124.072 664.00
307.190 23.610 0.143E+00 -0.260E+00 126.830 126.824 126.840 669.10
307.045 24.925 0 .144E+00 -0.259E+00 128.782 128.797 128.755 670.32
307.130 26.780 0.145E+00 -0.258E+00 128.622 128.625 128.617 671.79
306.740 29 .960 0.146E+00 -0.255E+00 130.880 130.940 130.775 674.66
306.860 67.420 0.158E+00 -0.226E+00 145.690 145.736 145.624 700.47
306.750 99.200 0.163E+00 -0.209E+00 156.680 156.745 156.597 717.76
306.950 141.560 0.165E+00 -0.198E+00 168.973 169.006 168.933 736.28
307.010 177.690 0.165E+00 -0.196E+00 178.209 178.232 178.182 749.48
306.760 212.710 0.163E+00 -0.198E+00 187.077 187.140 187.000 760.79
307.200 240.110 0.160E+00 -0.202E+00 192.926 192.918 192.936 769.50
306.830 309 .910 0.150E+00 -0.218E+00 207.374 207.437 207.282 786.63
307.400 357 .260 0.142E+00 -0.229E+00 215.855 215.820 215.912 797.19
307.120 367.280 0.140E+00 -0.232E+00 217.636 217.640 217.629 799.54
306.640 397.380 0.133E+00 -0.243E+00 223.314 223.382 223.190 806.27
306.780 449.210 0.120E+00 -0.257E+00 231.410 231.454 231.315 817.00
306.340 496.610 0.107E+00 -0.273E+00 239.018 239.103 238.796 826.84
307.350 533.110 0.957E-01 -0.230E+00 244.155 244.136 244.211 833.65
307.007 574.790 0.806E-01 -0.294E+00 249.396 249.408 249.354 842.18
307.100 599.750 0.719E-01 -0.302E+00 253.040 253.044 253.025 847.15
306.890 601.430 0.701E-01 -0.303E+00 252.846 252.864 252.767 847.60
307.050 631.580 0.575E-01 -0.312E+00 256.810 256.816 256.779 853.64
307.170 643.690 0.552E-01 -0.316E+00 258.326 258.325 258.332 865.05



Table 4.4
Thermal Conductivity of n-hexane at Tn = 321.15K

Tr
(K)

P

(MPa)
(3T  >p'r

(mW m~l K~2)
F I
(mW m~-*- K-^)

X(Tr> p r) 
(mW m--*- K”l)

H T„ # r)
(mW m K~^)

X (T n ,P ) 

(mW m K“ ^)

pr
(Kg m- 3 )

321.350 5.630 0.127E+00 -0.232E+00 112.958 112.923 112.994 639.75
321.260 16.090 0.133E+00 -0.251E+00 119.065 119.050 119.093 650.77
321.160 24.210 0.137E+00 -0.259E+00 123.539 123.538 123.542 658.58
320.750 50.700 0.149E+00 -0.263E+00 135.611 135.671 135.506 680.38
321.200 109.940 0.162E+00 -0.239E+00 156.399 156.391 156.411 714.88
321,190 144.290 0.165E+00 -0.225E+00 166.409 166.402 166.418 729.98
320.670 157.140 0.165E+00 -0.220E+00 169.276 169.355 169.170 735.27
320.650 209.890 0.164E+00 -0.207E+00 183.652 183.734 183.549 753.25320.870 258.960 0.160E+00 -0.200E+00 194.936 194.981 194.880 767.21
320.950 311.400 0.154E+00 -0.197E+00 205.456 205.487 205.417 780.40
320.630 359.940 0.146E+00 -0.198E+00 214.620 214.696 214.517 791.68
321.380 408.590 0.138E+00 -0.198E+00 222.895 222.863 222.941 801.83
321 .230 450.790 0.128E+00 -0.203E+00 229.773 229.763 229.789 810.61
321.160 501.580 0.115E+00 -0.210E+00 237.706 237.705 237.708 820.88
321.100 543.830 0.103E+00 -0.218E+00 243.315 243.320 243.304 829.31
321.160 550.800 0.101E+00 -0.219E+00 244.714 244.713 244.716 830.67
320.880 595.910 0.851E-01 -0.230E+00 250.833 250.856 250.771 839.77
321.080 631.380 0.717E-01 -0.238E+00 255.280 255.285 255.263 846.81



Table 4.5
Thermal Conductivity of n-hexane at Tn = 345.15K

Tr P (! K r
(11) dl "P X (Tr, p j.) X(Tn ,Pr) *(Tn ,P) Pr

(K) (MPa) (mW K” )̂ (mW m“l K”^) (mW m--*- K- -̂) (mW m K~l) (mW m K“l) (Kg m"3)

344.790 25.590 0.127E+00 -0.228E+00 117.864 117 .910 117.782 639.23
344.790 25.600 0.127E+00 -0.228E+00 117.864 117.910 117.782 639.24
344.950 51.700 0.139E+00 -0.233E+00 130.231 130.259 130.184 662.31
345.330 85.400 0.151E+00 -0.226E+00 142.529 142.502 142.570 685.62
345.170 104.670 0.156E+00 -0.222E+00 149.600 149.597 149.604 696.91
345.080 156.930 0.164E+00 -0.211E+00 165.369 165.380 165.354 721.71
345.720 207 .580 0.165E+00 -0.201E+00 178.149 178.055 178.264 740.20
345.140 238.800 0.165E+00 -0.194E+00 184.854 184.856 184.852 750.44
344.960 255.760 0.164E+00 -0.190E+00 189.836 189.867 189.800 755.53
345.080 307.820 0.160E+00 -0.177E+00 200.798 200.809 200.786 769.53
344.690 357.950 0.153E+00 -0.162E+00 210.231 210.302 210.157 781.83
344.770 369.550 0.152E+00 -0.158E+00 211.638 211.696 211.578 784.46
345.520 296.590 0.148E+00 -0.149E+00 216.822 216.767 216.877 790.21
345.160 452.270 0.137E+00 -0.126E+00 226.380 226.379 226.381 802.24
345.260 503.250 0.126E+00 -0.101E+00 234.510 234.496 234.521 812.63
345.580 550.580 0.114E+00 -0.724E-01 241.436 241.387 241.467 822.00
345.190 581.900 0.104E+00 -0.564E-01 245.957 245.953 245.959 828.29
345.580 598.570 0.993E-01 -0.411E-01 248.113 248.071 248.131 831.50
345.150 628.030 0.893E-01 -0.264E-01 252.397 252.397 252.397 837.39

92.



Table 4.6
Thermal Conductivity of n-hexane at Tn = 360.15K

Tr P o T ;pr (2 2 L )v3T;p X(Tr , p r )  ̂ Pr̂ X(Tn ,P) Pr
(K) (MPa) (mW m“  ̂K“2) (mW K- )̂ (mW m“  ̂K- )̂ (mW m K”1) (mW m K”l) (Kg m"3)

359.870 24.800 0.119E+00 -0.150E+00 113.958 113.991 113.916 626.37
359.410 53.500 0.135E+00 -0.173E+00 127.577 127.677 127.449 654.06
359.970 95.650 0.150E+00 -0.181E+00 143.389 143.416 143.356 683.25
359.440 153.600 0.161E+00 -0.210E+00 161.086 161.201 160.944 712.61
359.810 206.270 0.165E+00 -0.211E+00 175.477 175.533 175.405 732.51
359.850 241.520 0.165E+00 -0.212E+00 182.513 182.563 182.449 743.92
359.370 257.360 0.165E+00 -0.209E+00 187.204 187.333 187.041 748.92
360.140 307.320 0.162E+00 -0.197E+00 197.657 197.659 197.655 762.42
359.580 357.950 0.157E+00 -0.168E+00 207.722 207.811 207.626 775.51
359 .930 406.610 0.150E+00 -0.130E+00 216.334 216.367 216.305 786.94
359.700 455.730 0.141E+00 -0.792E+00 224.605 224.668 224.569 798.28
359.430 505.110 0.129E+00 -0.195E-01 232.236 232.329 232.222 809.44
359.430 526.930 0.124E+00 0.989E-02 235.159 235.248 235.166 814.30
359.540 552.280 0.116E+00 0.467E-01 239.256 239.327 239.285 819.96
359.610 583.180 0.106E+00 0.939E-01 243.620 243.677 243.671 826.91
359.460 607.640 0.977E+00 0.131E+00 247.122 247.289 247.212 832.46
359.530 628.630 0.895E+00 0.165E+00 249.779 249.835 249.881 837.29



Table 4.7
Thermal Conductivity of n-octane at Tn = 307.15K

Tr P (ZL ) vaT Jpr (|i)dip X(Tr, p r) X(Tn > Pr) X(Tn ,P) Pr
(K) (MPa) (mW m”-'- K“2) (mW m--*- K“^) (mW K” -̂) (mW m K"1) (mW m IT1) * 00 s, LO

307 .530 7 .271 0 .728E-01 -0.299E+00 126.175 126.147 126.288 697.70
306.946 9.531 0.784E-01 -0.297E+00 127.770 127.785 127.709 700.10
306.313 24.202 0.844E-01 -0.284E+00 133.900 133.916 133.662 712.24
307 .300 53.115 0.103E+00 -0.255E+00 144.274 144.258 144.312 730.75
307.264 68.131 0.113E+00 -0.242E+00 149.499 149.486 149.527 739.20
306.933 106.400 0.131E+00 -0.217E+00 160.842 160.871 160.795 757.58
307.520 129.600 0.139E+00 -0.206E+00 165.517 165.466 165.593 766.59
306.923 135.990 0.141E+00 -0.204E+00 168.135 168.167 168.089 769.30
306.209 167 .520 0.148E+00 -0.195E+00 175.002 175.141 174.818 780.60
306.190 186.240 0.150E+00 -0.191E+00 179.395 179.539 179.211 786.53
306.809 212.410 0.150E+00 -0.187E+00 184.434 184.485 184.370 793.95
306.908 254.860 0.148E+00 -0.183E+00 192.417 192.453 192.373 805.42
307 .323 283.780 0.143E+00 -0.181E+00 197.137 197.112 197.168 812.54
306.784 305.830 0.138E+00 -0.182E+00 201.550 201.600 201.483 818.16
306.563 356.260 0.121E+00 -0.183E+00 212.050 212.121 211.942 830.08
306.601 362.820 0.118E+00 -0.184E+00 212.090 212.155 211.989 831.57
306.865 425.110 0.845E-01 -0.188E+00 221.860 221.884 221.806 845.58
307.374 452.670 0.673E-01 -0.191E+00 225.373 225.358 225.416 851.63
306.457 452.760 0.661E-01 -0.192E+00 225.881 225.927 225.748 851.98

VO-P>



Table 4.8

Thermal Conductivity of n-octane at Tn = 321.15K

Tr P < § H r
(3X ) 
5T p X (Tr, p r)  ̂ >p j.) H T n ,P) p r

(K) (MPa) (mW m~l K“2) (mW K”^) (mW m--*- K~^) (mW m K- -̂) (mW m K“l) (Kg nr3)

321.152 47.115 0.904E-01 -0.240E+00 138.445 138.445 138.445 718.39
320.791 70.260 0.105E+00 -0.232E+00 146.504 146.542 146.421 732.44
321.039 93.014 0.118E+00 -0.221E+00 153.555 153.568 153.530 743.88
321.102 103.250 0.122E+00 -0.217E+00 156.263 156.269 156.253 748.55
320.487 133.250 0.135E+00 -0.205E+00 164.584 164.673 164.448 761.26
321.362 154.510 0.141E+00 -0.197E+00 169.667 169.637 169.709 768.61
320.976 204.660 0.149E+00 -0.184E+00 180.669 180.695 180.637 784.91
321 .261 228.530 0.150E+00 -0.178E+00 185.455 185.438 185.475 791.65
321.384 249.150 0.150E+00 -0.173E+00 189.773 189.738 189.814 797.23
321.306 281.880 0.147E+00 -0.167E+00 195.606 195.583 195.632 805.80
321.094 299 .930 0.145E+00 -0.164E+00 198.636 198.644 198.627 810.42
320.912 353.370 0.131E+00 -0.157E+00 207.907 207.938 207.870 823.45
320.764 402.440 0.111E+00 -0.152E+00 216.439 216.482 216.380 835.08
321.309 450.000 0.839E-01 -0.149E+00 223.211 223.198 223.235 846.12
321.087 501.100 0.435E-01 -0.153E+00 233.665 233.668 233.655 858.45
321.018 545.930 -0.320E-02 -0.163E+00 237.015 237.015 236.993 869.60
320.985 571 .830 -0.361E-01 -0.173E+00 242.458 242.452 242.429 876.26
321.160 572.130 -0.363E-01 -0.173E+00 243.067 243.067 243.069 876.30
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Table 4.9

Thermal Conductivity of n-octane at Tn = 345.15

Tr P ell)
<&>p X(Tr> Pr) X (T .P ) v n» r ' X (Tn,P) Pr

(K) (MPa) (mW K"~2) (mW K~2) (mW K--*-) (mW m K“l) (mW m K"1) (Kg nT3 )

345.258 19.765 0.657E-01 -0.235E+00 121.412 121.405 121.437 680.88
345.028 45.319 0.760E-01 -0.245E+00 132.233 132.222 132.203 702.33345.322 70.666 0.908E-01 -0.234E+00 141.668 141.652 141.708 718.78345.260 100.620 0.108E+00 -0.216E+00 151.089 151.077 151.113 734.71
345.230 130.310 0.122E+00 -0.199E+00 159.198 159.188 159.214 747.80
344.784 154.210 0.131E+00 -0.188E+00 165.259 165.307 165.190 757.19
345.080 205.160 0.144E+00 -0.167E+00 177 .232 177.242 177.220 773.98
345.531 209.490 0.145E+00 -0.165E+00 176.638 176.583 176.701 775.10
344.859 252.460 0.150E+00 -0.150E+00 186.797 186.841 186.753 787.75
344.868 305.630 0.149E+00 -0.135E+00 196.913 196.955 196.875 801.82
344.804 334.940 0.146E+00 -0.127E+00 200.808 200.858 200.764 809.28
344.929 349.660 0.143E+00 -0.124E+00 204.737 204.769 204.710 812.91
345.671 409 .980 0.125E+00 -0.112E+00 213.668 213.603 213.727 827.63
345.198 451.780 0.104E+00 -0.109E+00 222.109 222.104 222.114 838.31
345.340 499.540 0.705E-01 -0.110E+00 229.433 229.420 229.454 850.59
345.052 520.590 0.514E-01 -0.114E+00 230.881 230.886 230.870 856.28
344.785 543.720 0.271E-01 -0.120E+00 234.250 234.260 234.206 862.65
344.906 574.200 -0.107E-01 -0.134E+00 241.262 241.259 241.229 871.19
345.140 576.070 -0.130E-01 -0.135E+00 238.826 238.826 238.825 871.67



Table 4.10

Thermal Conductivity of n-octane at Tn = 362.15K

Tr P (91 )oT Jp (— ) ^ T ;p ^(Tr> p r) * (Tn ,P r) *(Tn>P) p r
(K) (MPa) (mW m“l K”2) (mW m”-*- K” )̂ (mW m“l K” -̂) (mW m K“l) (mW m K”1)

1

* 09 B, u>

361.356 19.469 0.663E-01 -0.201E+00 116.835 116.888 116.675 668.95
362.504 26.571 0.653E-01 -0.213E+00 120.100 120.077 120.175 675.30
362.205 45.818 0.696E-01 -0.230E+00 128.261 128.257 128.274 692.22
361.257 49.912 0.717E-01 -0.231E+00 129.823 129.887 129.616 695.92
361.990 75.133 0.845E-01 -0.223E+00 139.228 139.242 139.192 712.38
362.834 83.160 0.886E-01 -0.219E+00 140.906 140.845 141.056 716.61
362.076 119.980 0.108E+00 -0.199E+00 152.717 152.725 152.702 735.34
362.277 136.900 0.116E+00 -0.190E+00 156.430 156.415 156.454 742.41
361.451 151.380 0 .122E+00 -0.183E+00 161.017 161.103 160.889 748.45
362.049 176.990 0.131E+00 -0.171E+00 167.351 167.364 167.334 757.37
362.984 204.360 0.139E+00 -0.158E+00 173.386 173.270 173.518 765.91
362.800 253.260 0.148E+00 -0.140E+00 183.555 183.459 183.646 780.44
362.634 303.430 0.150E+00 -0.123E+00 193.406 193.333 193.465 794.11
362.945 365.590 0.145E+00 -0.104E+00 203.284 203.169 203.367 810.07
362.978 390.740 0.139E+00 -0 .981E-01 209.012 208.897 209.093 816.51
362.938 450.500 0.117E+00 -0.882E-01 218.219 218.127 218.289 832.04
363.429 500.900 0.857E-01 -0.873E-01 227.346 227.237 227.458 845.49
363.276 546.460 0.323E-01 -0.967E-01 232.832 232.783 232.941 858.47
363.275 591.860 -0.154E-01 -0.120E+00 239.967 239.984 240.103 872.16
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Table 4.11
Thermal Conductivity of 2,3-dimethylbutane at Tn = 309.15K

Tr
(K)

P

(MPa)
(—  )^3T 'pr

(mW m”l K“2)

/ 3X \

(mW K-^)

X(Tr, Pr) 

(mW m- -̂ K”^)

X (T ,P ) v n,Kr'
(mW m K”1)

x(Tn>P) 
(mW m K_1)

P r
(Kg m-3)

310.010 0.300 0 .344E+00 -0.606E-01 97.360 97.065 97.413 647.52
309.050 0.300 0.341E+00 -0.645E-01 97.631 97.665 97.624 648.40
310.220 0.300 0.345E+00 -0.597E-01 97.980 97.611 98.044 647.32
309.130 56.620 0.217E+00 -0.121E+00 122.093 122.097 122.090 699.95
309.040 69.250 0.207E+00 -0.119E+00 126.213 126.236 126.200 707.87
309.280 82.040 0.200E+00 -0.116E+00 130.135 130.109 130.150 715.03
309.210 189.360 0.173E+00 -0.105E+00 156.891 156.881 156.897 762.38
309.240 240.410 0.167E+00 -0.122E+00 166.514 166.499 166.525 778.77
308.950 305.630 0.159E+00 -0.130E+00 178.540 178.572 178.514 796.09
309.440 355.360 0.152E+00 -0.133E+00 186.618 186.574 186.657 807.74
309 .340 403.430 0 .143E+00 -0.136E+00 193.515 193.488 193.541 818.25
309 .350 453.360 0.133E+00 -0.143E+00 200.408 200.382 200.437 828.15

vooo



Table 4.12

Thermal Conductivity of 2,3-dimethylbutane at TR = 321.15K

Tr P ( 2 X \ (— ) A(Tr > pj.) A(Tn > p r ) X(Tn>P) Pr
(K) (MPa) (mW m“l K~2) (mW m~l K”2) (mW m- -̂ K” )̂ (mW m K_1) (mW m K“l) (Kg nT3)

321 .250 19.360 0.305E+00 -0.595E-01 105.616 105.586 105.622 658.97
321.500 21.530 0.299E+00 -0.658E-01 106.224 106.120 106.247 661.08
321.160 49 .890 0.238E+00 -0.112E+00 117.775 117.773 117.777 686.99
320.850 84.380 0.205E+00 -0.102E+00 129.078 129.139 129.047 709.44
320.580 97.380 0.198E+00 -0.973E-01 133.577 133.690 133.521 716.54
320.610 97 .480 0.198E+00 -0 .972E-01 133.032 133.139 132.980 716.57
320.690 110.150 0.193E+00 -0.943E-01 136.081 136.170 136.038 722.68
321.140 151.680 0.181E+00 -0.946E-01 146.283 146.285 146.282 741.53
320.910 205.560 0.173E+00 -0.102E+00 158.605 158.647 158.581 762.68
320.610 255.260 0.167E+00 -0.112E+00 168.391 168.481 168.330 777.91
320.550 274.960 0.165E+00 -0.114E+00 172.015 172.115 171.947 783.29
321.260 305.530 0.162E+00 -0.116E+00 177.319 177.301 177.332 790.78
321.110 355.660 0.155E+00 -0.120E+00 185.375 185.381 185.370 803.01
320.930 404.820 0.147E+00 -0.123E+00 192.732 192.764 192.705 813.99
320.760 439.990 0.140E+00 -0.126E+00 197.580 197.634 197.530 821.22
320.810 452.170 0.138E+00 -0.128E+00 199.322 199.369 199.279 823.60
320.730 471.650 0.134E+00 -0.130E+00 202.000 202.056 201.945 827.36
320.690 499.630 0.127E+00 -0.135E+00 205.527 205.586 205.465 832.48
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Table 4.13
Thermal Conductivity of 2,3-dimethylbutane at Tn = 345.15K

Tr
(K)

P

(MPa)
v 8 T ' p r  

(mW m“  ̂K”2)
(14)d 1 p

(mW m*“l K”^)
x ( T r » p r )  

(mW K”l)
 ̂̂ n*Pr^ 

(mW m K“^)
X(Tn .p) 
(mW m K-1)

Pr
(Kg m-3)

345.220 42.300 0.298E+00 -0.601E-01 112.248 112.228 112.253 661.49
344.760 84.180 0.225E+00 -0.648E-01 127.070 127.157 127.044 694.88
345.450 89.560 0.220E+00 -0.604E-01 128.630 128.564 128.648 697.98
345.050 120.580 0.199E+00 -0.577E-01 137.548 137.568 137.542 715.24
345.090 130.310 0.195E+00 -0.607E-01 139.736 139.748 139.733 720.07
344.890 171.450 0.182E+00 -0.701E-01 149.848 149.895 149.830 738.92
344.750 183.630 0 .180E+00 -0.704E-01 151.614 151.686 151.586 744.10
344.860 185.540 0.179E+00 -0.704E-01 152.586 152.638 152.566 744.82
345.310 252.660 0.171E+00 -0.772E-01 165.402 165.375 165.414 766.58
344.970 304.730 0.166E+00 -0.830E-01 174.360 174.390 174.345 780.78
344.840 357 .560 0.160E+00 -0.895E-01 182.590 182.640 182.562 794.01
344.880 397.970 0.155E+00 -0.931E-01 188.698 188.739 188.672 803.34
344.700 454.150 0.146E+00 -0.961E-01 196.407 196.473 196.364 815.24
345.200 501.190 0.137E+00 -0.976E-01 202.494 202.488 202.499 824.16
345.220 506.780 0.136E+00 -0.979E-01 202.964 202.954 202.970 825.18
345.070 535.080 0.130E+00 -0.100E+00 206.745 206.756 206.737 830.28
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Table 4.14

Thermal Conductivity of 2 ,3-dimethylbutane at Tn = 361.15K

Tr
(K)

P
(MPa)

(IX)d ̂ Pr
(mW m“l K~2)

(— )V ' p
(mW m--̂ K”^)

X(Tr, pr) 

(mW K“^)
X(Tn,Pr) 

(mW m K-1)
*(Tn .P) 
(mW m K-1)

pr
(Kg m-3)

360.990 78.590 0.251E+00 0.704E-02 125.100 125.150 125.111 680.46
361.010 88.240 0.236E+00 0.522E-03 129.081 129.114 129.081 687.88
361 .460 104.570 0.220E+00 -0.696E-02 132.642 132.574 132.644 698.12
361.400 128.390 0.204E+00 -0.257E-01 138.861 138.810 138.868 711.09
361.140 156.430 0.191E+00 -0.463E-01 145.459 145.461 145.458 724.59
361.060 202.240 0.180E+00 -0.556E-01 154.711 154.727 154.706 743.96
361.050 204.060 0.180E+00 -0.558E-01 155.331 155.349 155.325 744.60
361.070 234.170 0.175E+00 -0.591E-01 161.151 161.165 161.146 754.50
361.540 269.450 0 .172E+00 -0.620E-01 167.516 167.449 167.541 764.80
361 .320 296.720 0.169E+00 -0.657E-01 171.652 171.623 171.663 772.26
361.330 311.400 0.168E+00 -0.680E-01 174.426 174.396 174.439 776.04
361.080 357.750 0.163E+00 -0.744E-01 181.530 181.542 181.525 787.82
361.130 397.380 0.159E+00 -0.772E-01 187.043 187.046 187.041 797.13
361.110 410.080 0.157E+00 -0.774E-01 189.109 189.116 189.106 799.96
361.050 446.460 0.152E+00 -0.766E-01 194.105 194.120 194.097 807.83
361.530 496.320 0.144E+00 -0.730E-01 200.882 200.827 200.910 817.76
361.560 528.880 0.138E+00 -0.711E-01 204.367 204.311 204.397 823.86
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Table 4.15

Thermal Conductivity of 2,2,4-trimethylpentane at Tn = 313.15K

Tr
(K)

P

(MPa)

(11)^  Pr
(mW m~l K~2)

(— )1 8T;p
(mW m--*- K“"2)

X(Tr, pr) 
(mW m- -̂ K- -̂)

 ̂ > p j.)
(mW m IT1)

*(Tn ,P)
(mW m K” l )

pr
(Kg m- 3 )

313 .090 46.230 0.157E+00 -0.153E+00 109.682 109.691 109.673 716.11
312.820 66.610 0.180E+00 -0.139E+00 116.185 116.244 116.139 729.67
312.550 97.580 0.207E+00 -0.117E+00 124.438 124.562 124.367 746.80
313.290 140.450 0.231E+00 -0.913E-01 135.103 135.071 135.116 765.29
311.470 140.450 0.233E+00 -0.951E-01 135.329 135.720 135.170 766.33
314.160 140.450 0.231E+00 -0.894E-01 134.766 134.533 134.756 764.79
312.190 149 .350 0.236E+00 -0.894E-01 136.583 136.810 136.498 769.35
313.260 164.400 0.241E+00 -0.806E-01 140.370 140.344 140.379 774.27
312.100 202.550 0.252E+00 -0.694E-01 147.431 147.695 147.358 787.49
312.830 223.960 0.256E+00 -0.596E-01 152.775 152.857 152.756 796.04
312.630 250.450 0.257E+00 -0.559E-01 155.897 156.030 155.868 800.94
312.690 282.280 0.258E+00 -0.497E-01 161.081 161.200 161.058 809.13
312.450 303.430 0.257E+00 -0.468E-01 164.129 164.309 164.096 814.42
312.460 344.550 0.253E+00 -0.418E-01 170.362 170.537 170.333 823.94
312.000 350.460 0.252E+00 -0.419E-01 171.194 171.484 171.146 825.48
312.460 380.140 0.247E+00 -0.388E-01 175.454 175.625 175.428 831.77
312.900 400.060 0.243E+00 -0.369E-01 177.634 177.695 177.625 835.84
313.520 428.450 0 .236E+00 -0.350E-01 180.977 180.890 180.990 841.54
312.910 448.720 0.229E+00 -0.358E-01 184.419 184.474 184.410 846.00
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Table 4.16

Thermal Conductivity of 2,2,4-trimethyl pentane at Tn = 321.15K

Tr P
27

ax
(̂ T}p X(Tr, Pr) X (T .P ) v n* rJ X (Tn ,P) P r

(K) (MPa) (mW m“l K“2) (mW m“l K“^) (mW m--*- K“ )̂ (mW m K-1) (mW m K-1) (Kg m"3)

322.030 15.180 0.101E+00 -0.154E+00 97.759 97.669 97.894 683.70
321.770 47.570 0.148E+00 -0.147E+00 109.351 109.260 109.443 711.12
321.090 96.460 0.198E+00 -0.113E+00 123.833 123.845 123.826 741.14
320.810 150.770 0.231E+00 -0.807E-01 136.577 136.656 136.550 765.15
321.370 176.180 0.241E+00 -0.677E-01 141.498 141.445 141.513 774.06
321.110 202.750 0.248E+00 -0 .577E-01 147.105 147.115 147.103 782.88
321.240 241.120 0.255E+00 -0.451E-01 154.087 154.064 154.091 794.10
321.070 275.060 0.258E+00 -0.364E-01 159.524 159.544 159.521 803.23
320.940 304.730 0 .258E+00 -0.299E-01 164.415 164.469 164.409 810.68
320.750 353.970 0.254E+00 -0.211E-01 171.813 171.915 171.805 822.25
320.730 368.860 0.252E+00 -0.188E-01 174.156 174.262 174.149 825.59
320.630 402.140 0.246E+00 -0.144E-01 178.189 178.317 178.181 832.89
320.560 450.300 0.234E+00 -0 .971E-02 184.518 184.656 184.512 843.13
320.880 487.270 0.221E+00 -0.721E-02 188.189 188.248 188.187 850.71
320.440 498.560 0.216E+00 -0.740E-02 190.545 190.698 190.540 853.23
321.220 548.990 0.194E+00 -0.700E-02 195.605 195.591 195.605 863.42
320.930 571.530 0 .181E+00 -0 .882E-02 198.365 198.405 198.364 868.23
321.070 591.860 0.169E+00 -0.108E-01 200.459 200.473 200.458 872.47
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Table 4.17

Thermal Conductivity of 2,2,4-trimethylpentane at Tn = 337.15K

Tr P cfi)3t Pr X(Tr, p r) X (Tn ,p r) X(Tn ,P) Pr
(K) (MPa) (mW m“l- K”2) (mW m“l K~^) (mW m”-*- K- -̂) (mW m K"1) (mW m K"1) (Kg m“3)

337 .450 16.850 0.851E-01 -0.148E+00 96.092 96.067 96.137 673.43337 .160 31.260 0.108E+00 -0.148E+00 101.338 101.337 101.340 687.73336.930 51.580 0.137E+00 -0.133E+00 108.321 108.351 108.291 704.58336.550 101.020 0.189E+00 -0.895E-01 123.341 123.454 123.287 735.34
336.620 101.530 0.189E+00 -0.891E-01 123.427 123.527 123.380 735.56
337.220 136.390 0.213E+00 -0.659E-01 131.924 131.909 131.929 751.43
336.200 151.280 0.222E+00 -0.573E-01 135.419 135.630 135.364 757.95
336.270 151.580 0.222E+00 -0.572E-01 135.452 135.648 135.402 758.03
336.880 196.610 0.240E+00 -0.388E-01 144.454 144.519 144.444 773.69
336.840 221.970 0.247E+00 -0.308E-01 149.827 149.904 149.817 781.58
336.010 250.150 0.253E+00 -0.232E-01 154.799 155.088 154.773 790.00
335.840 300.330 0.258E+00 -0.132E-01 163.480 163.818 163.463 803.10
336.220 333.940 0.258E+00 -0.784E-02 168.105 168.345 168.098 811.00
336.260 345.450 0.258E+00 -0.617E-02 170.227 170.456 170.221 813.66
336.100 399.960 0.252E+00 0.205E-03 177.691 177.956 177.691 825.93
336.120 429.130 0.247E+00 0.298E-02 181.513 181.767 181.516 832.25
336.090 439.500 0.244E+00 0 .375E-02 183.071 183.330 183.075 834.48
336.130 441.260 0.244E+00 0.397E-02 183.322 183.571 183.326 834.84
336.070 496.030 0.288E+00 0.679E-02 190.347 190.594 190.355 846.50
336.310 512.430 0.223E+00 0.795E-02 192.227 192.414 192.233 849.88
335.950 541.520 0.210E+00 0.662E-02 195.673 195.925 195.681 856.18
336.460 572.520 0.196E+00 0.760E-02 199.236 199.371 199.242 862.64 104



Table 4.18

Thermal Conductivity of 2,2,4-trimethylpentane at Tn = 351.15K

Tr P (ii)S i ;pr (— ) V9T'p  ̂(Tr» Pr) X (T ,P ) v n* r' X (Tn ,P> pr
(K) (MPa) (mW m“l K“2) (mW m”l K-2) (mW m” -̂ K“ )̂ (mW m K"*1) (mW m K"1) (Kg m-3)

351.910 19.030 0.722E-01 -0.162E+00 94.163 94.108 94.286 664.64
351.960 19.340 0.727E-01 -0.162E+00 94.659 94.601 94.790 664.95
351.300 66.000 0.140E+00 -0.138E+00 112.100 112.079 112.120 706.39
350.960 106.290 0.181E+00 -0.103E+00 123.733 123.767 123.713 730.57
351.430 146.010 0.209E+00 -0.771E-01 133.298 133.239 133.320 748.49
350.450 150.370 0.212E+00 -0.740E-01 134.634 134.783 134.583 750.73
351.120 200.740 0.235E+00 -0.497E-01 144.982 144.989 144.980 768.46
350.910 245.240 0.248E+00 -0.315E-01 153.332 153.392 153.325 781.99
351.000 247.150 0.248E+00 -0 .308E-01 153.785 153.822 153.780 782.48
351.000 304.630 0.257E+00 -0.944E-02 164.188 164.227 164.187 797.66
351 .260 356.060 0.258E+00 0.927E-02 171.834 171.805 171.833 809.93
351 .230 373.100 0.257E+00 0.156E-01 173.966 173.945 173.965 813.98
351.150 379.950 0.257E+00 0.179E-01 175.003 175.003 175.003 815.49
351.050 422.850 0.252E+00 0.332E-01 180.904 180.930 180.908 825.20
350.920 459.480 0.246E+00 0.459E-01 185.429 185.486 185.440 833.37
350.800 498.760 0.235E+00 0.588E-01 190.806 190.888 190.827 842.09
350.850 517.050 0.229E+00 0.648E-01 193.104 193.173 193.124 846.13
350.750 533.110 0.223E+00 0 .692E-01 194.999 195.088 195.026 849.73
350.710 563.980 0.209E+00 0.774E-01 198.129 198.221 198.163 856.67
350.720 570.740 0 .206E+Q0 0.791E-01 199.272 199.360 199.306 858.20



Table 4.19
Thermal Conductivity of benzene at Tn = 310.15K

Tr P (iLA. \ caT)pr ^T'p X(Tr> pr) A (Tn ,p r) X(Tn,P) Pr
(K) (MPa) (mW K”2) (mW m"l K"^) (mW nT^ K"1-) (mW m K"l) (mW m ) (Kg m-3)

310.230 1.628 0.127E+00 -0.366E+00 137.657 137.647 137.687 862.10
309.865 7.936 0.128E+00 -0.346E+00 140.279 140.316 140.181 867.84
309.828 10.277 0.128E+00 -0.340E+00 141.342 141.383 141.233 869.80310.189 19.737 0.133E+00 —0 .316E+00 144.298 144.293 144.310 876.88
310.110 30.722 0.140E+00 -0.293E+00 148.030 148.036 138.019 885.01
309.968 41.703 0.148E+00 -0.279E+00 151.587 151.614 151.537 892.60
310.034 51.361 0.153E+00 -0.272E+00 154.851 154.869 154.820 898.69
309.876 61.322 0.157E+00 -0.271E+00 157.513 157.556 157.439 904.80
309.761 74.533 0.158E+00 -0.284E+00 161.594 161.655 161.484 912.36
309.745 81.846 0.156E-K)0 -0.297E+00 163.346 163.409 163.225 916.33
310.798 91.389 0.153E+00 -0.317E+00 166.500 166.401 166.706 920.50
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Table 4.20

Thermal Conductivity of benzene at Tn = 320.65K

Tr P
r

X(Tr, p r)  ̂̂  ̂n r ̂ X(Tn ,P) Pr
(K) (MPa) (mW m“l K“2) (mW K” )̂ (mW K- )̂ (mW m K’1) (mW m IC1) (Kg in"3)

320.965 4.579 0.132E+00 -0.321E+00 135.544 135.502 135.645 853.35
321.055 10.887 0.128E+00 -0.325E+00 137.449 137.398 137.581 858.77
320.840 13.430 0.127E+00 -0.325E+00 139.117 139.092 139.178 861.14
320.759 20.144 0.127E+00 -0.322E+00 141.552 141.538 141.587 866.74
320.577 40.992 0.138E+00 -0.294E+00 148.879 148.889 148.858 882.52
320.411 60.713 0.151E+00 -0.260E+00 154.911 154.947 154.849 895.61
320.411 79.409 0.157E+00 -0.235E+00 160.289 160.326 160.232 906.52
320.311 81.542 0.158E+00 -0 .234E+00 160.958 161.011 160.879 907.77
320.339 100.215 0.156E+00 -0.230E+00 165.913 165.962 165.842 917.50
320.609 122.409 0.142E+00 -0.257E+00 171.312 171.318 171.301 927.93
320.549 122.612 0 .141E+00 -0.258E+00 171.273 171.287 171.247 928.07
320.566 138.926 0.122E+00 -0.307E+00 175.314 175.324 175.288 935.45
320.534 147 .130 0.109E+00 -0.342E+00 176.866 176.879 176.826 939.11
320.430 161.172 0.800E-01 -0.422E+00 179.825 179.842 179.732 945.42
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Table A.21

Thermal Conductivity of benzene at Tn = 344.15K

Tr P (3T)pr (fr^p X(Tr, pr)  ̂̂ n X(Tn ,P) Pr
(K) (MPa) (mW m--'- K“2) (mW K-^) (mW m-  ̂K~^) (mW m K”1) (mW m K’1) (Kg nT3)

344.723 11.090 0.178E+00 -0.255E+00 130.325 130.223 130.471 834.55
345.012 20.144 0.151E+00 -0.267E+00 134.040 133.910 134.271 842.62
344.495 34.484 0.130E+00 -0.270E+00 139.750 139 .705 139.843 855.48
344.512 43.228 0.127E+00 -0.263E+00 142.958 142.912 143.053 862.51
344.304 62.136 0.133E+00 -0.239E+00 149.431 149.411 149.468 876.73
344.172 81.846 0.145E+00 -0.211E+00 154.764 154.761 154.769 889.88
344.421 102.445 0.155E+00 -0.191E+00 161.169 161.127 161.220 901.82
344.263 120.280 0.158E+00 -0.183E+00 165.611 165.593 165.632 911.32
344.205 137.912 0.154E+00 -0.188E+00 170.311 170.302 170.321 919.78
344.105 158.347 0.140E+00 -0.208E+00 174.645 174.652 174.636 928.73
344.005 178.999 0.117E+00 -0.248E+00 179.489 179.506 179.453 937.01
344.012 185.037 0.108E+00 -0.263E+00 180.946 180.961 180.910 939.30
344.203 200.936 0.820E-01 -0.311E+00 184.114 184.109 184.130 945.03
344.152 225.402 0.288E-01 -0.415E+00 189.352 189.352 189.352 953.78
344.132 242.929 -0.202E-01 -0.514E+00 192.272 192.272 192.263 960.01
344.088 261.155 -0.839E-01 -0.647E+00 195.947 195.942 195.907 966.66
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Table 4.22

Thermal Conductivity of benzene at Tn = 360.65K

Tr
(K)

P

(MPa)
(̂ T }p

(mW m”l K”2) (mW K-^)
X (Tr» p r) 

(mW m“  ̂K- -̂)
X (Tn>pr) 

(mW m K"1)
A(Tn ,P) 
(mW m K-1)

Pr
(Kg m“3)

361.139 9.463 0 .288E+00 -0.753E-01 124.588 124.447 124.625 816.08
360.920 26.145 0.183E+00 -0.178E+00 132.152 132.103 132.200 833.23
360.758 39.161 0.145E+00 -0.213E+00 136.748 136.733 136.771 845.29
360.593 59.493 0 .127E+00 -0.228E+00 144.536 144.543 144.523 862.04
360.558 81.339 0 .133E+00 -0.225E+00 151.159 151.171 151.138 877.52
360.701 101.837 0.145E+00 -0.222E+00 157.376 157.368 157.387 889.99
360.943 122.612 0.155E+00 -0.224E+00 163.169 163.124 163.235 900.96
360.838 142.775 0.158E+00 -0.232E+00 168.059 168.029 168.102 910.58
360.706 162.382 0.154E+00 -0.245E+00 172.952 172.943 172.966 918.98
360.545 183.930 0.143E+00 -0.263E+00 177.355 177.370 177.328 927.36
360.568 205.160 0.124E+00 -0.285E+00 182.448 182.459 182.425 934.85
360.456 222.882 0.101E+00 -0.307E+00 185.434 185.454 185.375 940.87
360.417 232 .962 0.862E-01 -0.321E+00 188.002 188.022 187.927 944.19
360.351 254.657 0.462E-01 -0.360E+00 192.236 192.250 192.129 951.22
360.666 274.758 0.891E-03 -0.403E+00 195.803 195.803 195.810 957.48
360.925 290.507 -0.423E-01 -0.446E+00 198.645 198.657 198.767 962.47
360.824 312.291 -0.120E+00 -0.541E+00 202.444 202.465 202.538 969.92
360.765 332.140 -0.209E+00 -0.664E+00 205.858 205.882 205.934 977.02
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Table 4.23

Thermal Conductivity of Cyclohexane at Tn = 309.15K

Tr
(K)

P

(MPa)

(li)
3T Pr

(mW K“2)

(2!)3T;p
(mW K-^)

x(Tr> pr)
(mW m--'- K~^) (mW m K“l)

A(Tn ,P) 

(mW m K~l)
Pr

(Kg m~3)

309.644 5.258 0.125E+00 -0 .303E+00 117.348 117.286 117.498 767.79
309.627 11.341 0.129E+00 -0.274E+00 119.897 119.835 120.027 772.81
309.519 14.844 0.134E+00 -0.258E+00 120.887 120.838 120.983 775.69
309.521 15.772 0.135E+00 -0.254E+00 121.321 121.271 121.415 776.41
309.447 21.435 0.145E+00 -0.231E+00 123.301 123.259 123.370 780.79
309 .378 25.243 0.152E+00 -0.216E+00 124.675 124.641 124.725 783.64
309.351 30.385 0.162E+00 -0.198E+00 126.270 126.238 126.310 787.30
309.297 38.087 0.179E+00 -0.172E+00 128.720 128.694 128.745 792.51
309.247 40.344 0 .184E+00 -0.165E+00 129.257 129.239 129.273 794.00
309 .260 44.445 0.193E+00 -0.152E+00 130.559 130.538 130.576 796.55
309.298 45.469 0.198E+00 -0.148E+00 130.948 130.897 130.948 797.15
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Table 4.24
Thermal Conductivity of Cyclohexane at Tn = 324.15K

Tr P (JA)°T pr <JA)^aT;p X(Tr, pr) uQ
.

V
-/ x(Tn.P) Pr

00 (MPa) (mW m-  ̂ K“ 2) (mW m“  ̂K~^) (mW m--*- K- -̂) (mW m K"^) (mW m K“ -̂) (Kg m"3)

324.482 12.990 0.125E+00 -0.267E+00 116.358 116.316 116.446 761.16
324.388 23.391 0.126E+00 -0.252E+00 120.173 120.143 120.233 769.94
324.268 29.048 0.132E+00 -0.236E+00 122.226 122.211 122.254 774.51324.262 31.618 0.135E+00 -0.227E+00 123.159 123.144 123.185 776.49
324.238 33.673 0.138E+00 -0.220E+00 123.713 123.701 123.732 778.06
324.199 40.139 0.150E+00 -0.194E+00 126.966 126.959 126.976 782.82
324.120 47.517 0.164E+00 -0.161E+00 128.733 128.738 128.728 788.01
324.091 52.224 0.174E+00 -0.138E+00 129.751 129.761 129.743 791.15
324.033 57.536 0.186E+00 -0.112E+00 131.502 131.523 131.488 794.58324.041 61.616 0.195E+00 -0.922E-01 132.475 132.496 132.465 797.08
324.909 70.471 0.212E+00 -0.524E-01 134.856 134.696 134.896 801.71
324.856 73.622 0.218E+00 -0.368E-01 135.845 135.691 135.871 803.50
324.774 76.773 0.225E+00 -0.208E-01 136.482 136.342 136.495 805.25



Table 4.25
Thermal Conductivity of Cyclohexane at Tn = 353.15K

Tr P (2Jl\
r ^T'p X(Tr, pr) X (Tn ,p r ) X(Tn ,P) Pr

(K) (MPa) (mW m”l K~^) (mW m- -̂ K“2) (mW m- -̂ K“^) (mW m KT1) (mW m K”l) (Kg m"3)

353.682 18.553 0.189E+00 -0.156E+00 111.458 111.358 111.541 741.13
353.469 32.029 0.136E+00 -0.183E+00 116.775 116.732 116.833 754.07
353.363 38.908 0.126E+00 -0.190E+00 119.110 119.084 119.151 760.05
353.257 51.303 0.126E+00 -0.196E+00 123.288 123.274 123.309 769.83
353.210 62.533 0.138E+00 -0.202E+00 126.963 126.955 126.975 777.70
353.116 71.691 0.152E+00 -0.209E+00 129.624 129.629 129.617 783.55
353.039 81.141 0.168E+00 -0.219E+00 132.190 132.209 132.166 789.07
353.919 84.999 0.172E+00 -0.228E+00 133.417 133.285 133.593 790.49
353.780 93.421 0.187E+00 -0.243E+00 135.716 135.598 135.869 794.91
353.765 102.848 0.203E+00 -0.264E+00 138.111 137.986 138.273 799.37
353.687 103.153 0.204E+00 -0.264E+00 138.143 138.034 138.285 799.58
353.589 112.376 0.219E+00 -0.287E+00 140.581 140.484 140.707 803.69
353.580 120.281 0.231E+00 -0.309E+00 142.459 142.360 142.592 806.94
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Table 4.26
Thermal Conductivity of Cyclohexane at TR = 361.15K

Tr
(K)

P
(MPa)

(ILL) d T "Pr
(mW m-  ̂K"~3)

(iLL\^T'p
(mW m“  ̂K“^)

X(Tr, p r) 
(mW K--*-)

X(Tn ,Pr) 

(mW m K-1)

X(Tn ,P) 

(mW m K“ X)
p r

(Kg m“3 )

361.431 24.420 0.192E+00 -0.110E+00 112.185 112.131 112.216 740.60
361.328 35.418 0.144E+00 -0.167E+00 116.298 116.272 116.328 751.02
361.357 44.752 0.128E+00 -0.200E+00 119.678 119.652 119.719 758.83
362.378 50.792 0 .124E+00 -0.215E+00 121.530 121.377 121.794 762.72
361.082 63.348 0.129E+00 -0.250E+00 125.690 125.699 125.673 772.37
361.215 75.248 0.141E+00 -0.284E+00 129.382 129.373 129.401 779.44
361.749 81.445 0.149E+00 -0.306E+00 131.296 131.207 131.479 782.36
361.571 103.659 0 .180E+00 -0.395E+00 137.428 137.352 137.594 792.84
361.460 120.281 0.203E+00 -0.476E+00 141.734 141.671 141.882 799.37
361.285 133.353 0.221E+00 -0.541E+00 144.356 144.326 144.429 804.12
361.212 144.698 0.235E+00 -0.599E+00 147.290 147.276 147.327 807.98
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Table 4.27
Thermal Conductivity of Toluene at Tn = 308.15K

Tr P 3t Pr (E2L)d T p X(Tr, p r) X(Tn,P) p r
(K) (MPa) (mW m- -̂ K~3) (mW m“l K~3) (mW m--*- K"̂ -) (mW m K~l) (mW m K”l) (Kg m“3)

307.850 0.887 0.732E-01 0.735E-01 128.880 128.901 128.902 853.61
307.840 1.476 0.746E-01 0.749E-01 129.110 129.133 129.133 854.09
308.430 3.735 0.781E-01 0.784E-01 129.670 129.648 129.648 855.33
308.230 11.399 0.969E-01 0.972E-01 132.460 132.452 132.452 861.56
307.940 16.810 0.111E+00 0.111E+00 134.620 134.643 134.643 866.04
308.120 33.396 0.153E+00 0.154E+00 139.570 139.575 139.575 878.33
308.120 51.713 0.201E+00 0.201E+00 145.530 145.536 145.536 891.41
308.010 55.924 0.212E+00 0.212E+00 146.280 146.310 146.310 894.42
307.970 64.284 0.233E+00 0.234E+00 148.630 148.672 148.672 900.11
308.000 66.307 0.238E+00 0.239E+00 149.070 149.106 149.106 901.42
307 .960 129.810 0.367E+00 0.367E+00 163.760 163.830 163.830 938.92
308.190 153.600 0.397E+00 0.398E+00 168.100 168.084 168.084 950.42
308.010 202.450 0 .435E+00 0 .435E+00 177.600 177.661 177.661 971.11
307.960 253.660 0.444E+00 0.444E+00 185.940 186.024 186.024 988.18
308.070 303.930 0.433E+00 0.434E+00 193.330 193.365 193.365 1001.48
307.890 353.970 0.410E+00 0.410E+00 200.080 200.187 200.187 1013.24
307.950 401.250 0.376E+00 0.376E+00 206.370 206.445 206.445 1023.86
307 .810 450.200 0.318E+00 0.318E+00 211.820 211.928 211.928 1036.45
308.780 463.540 0.302E+00 0.303E+00 213.590 213.400 213.399 1039.17
308.730 463.540 0.302E+00 0.302E+00 213.640 213.465 213.465 1039.23
307 .500 463.640 0.293E+00 0.294E+00 213.490 213.681 213.681 1040.69
307.940 495.250 0.228E+00 0.229E+00 217.040 217.088 217.088 1050.47
307 .910 502.370 0.208E+00 0.209E+00 217.670 217.720 217.729 1053.09
307.740 531.350 0.105E+00 0.105E+00 220.910 220.953 220.953 1065.04
308.000 531.560 0.107E+00 0.107E+00 220.940 220.956 220.956 1064.83
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Table 4.28
Thermal Conductivity of Toluene at Tn = 320.15K

Tr P (^r) aT p < !H A(Tr, pr) X(Tn ,pr) X(Tn,P) Pr
(K) (MPa) (mW m 1 K 2) (mW m”  ̂K“3) (mW m- -̂ K” -̂) (mW m IT1) (mW m IT1) (Kg m”3)

320.493 1.378 0.431E-01 0.433E-01 125.280 125.265 125.265 841.82
320.290 2.360 0.454E-01 0 .456E-01 126.640 126.634 126.634 842.79
320.679 24.100 0.892E-01 0.895E-01 133.700 133.653 133.653 859.05
320.508 32.210 0.108E+00 0.109E+00 135.640 135.601 135.601 865.18
320.675 59.140 0.173E+00 0.173E+00 143.710 143.619 143.619 883.79
320.584 84.990 0.234E+00 0.235E+00 150.630 150.528 150.528 900.41
320.465 109.540 0 .287E+00 0.288E+00 156.360 156.269 156.269 914.85
320.356 132.540 0.330E+00 0.331E+00 161.800 161.732 161.732 927.17
320.620 164.000 0.375E+00 0.375E+00 168.330 168.154 168.154 941.76
320.456 202.040 0.413E+00 0.413E+00 175.440 175.314 175.314 957.31
320.580 252.760 0.438E+00 0.438E+00 183.790 183.602 183.602 973.85
320.570 303.730 0.444E+00 0.444E+00 192.030 191.844 191.843 987.30
320.386 353.470 0.437E+00 0.437E+00 198.720 198.617 198.617 998.84
320.393 358.050 0.436E+00 0.436E+00 199.490 199.384 199.384 999.84
320.258 402.340 0.418E+00 0.419E+00 205.130 205.085 205.085 1009.89
320.562 439.010 0.395E+00 0.395E+00 209.520 209.357 209.357 1018.52
320.452 460.270 0.373E+00 0.374E+00 212.180 212.067 212.067 1024.50
320.359 501.580 0.309E+00 0.309E+00 216.840 216.775 216.775 1038.00
320.292 542.050 0.195E+00 0.195E+00 221.500 221.472 221.472 1054.79
320.342 556.020 0 .137E+00 0.137E+00 223.080 223.054 223.054 1061.57
320.318 571.730 0.547E-01 0.550E-01 224.280 224.271 224.271 1070.06



Table 4.29
Thermal Conductivity of Toluene at Tn = 330.15K

Tr P C91°pr (IK ^(Tr » r) X (T .P ) v n* ry X(Tn,P) Pr
(K) (MPa) (mW m“l K”^) (mW m-*̂  K”2) (mW K“  ̂) (mW m K"1) (mW m K"*1) (Kg m“3)

330.860 7.270 0.314E-01 0.316E-01 124.506 124.483 124.483 836.22
330.870 11.500 0.379E-01 0.382E-01 125.350 125.322 125.322 839.45
330.860 19.910 0.525E-01 0.528E-01 128.360 128.323 128.323 845.78
330.140 33.200 0.806E-01 0.810E-01 132.775 132.775 132.775 856.20
330.860 37.260 0.870E-01 0.874E-01 135.167 135.105 135.105 858.36
330.870 51.010 0.117E+00 0.118E+00 138.185 138.101 138.100 867.87
330.300 77.670 0.180E+00 0.180E+00 146.106 146.079 146.079 885.75
330.400 101.730 0.233E+00 0.233E+00 152.147 152.089 152.089 899.91
329.850 126.060 0.283E+00 0.284E+00 158.414 158.499 158.499 913.65
330.260 153.300 0.328E+00 0.328E+00 163.959 163.923 163.923 926.42
330.600 177.590 0.360E+00 0.360E+00 169.049 168.887 168.887 936.56
330.500 201.940 0.387E+00 0.387E+00 173.173 173.038 173.038 946.09
330.350 252.260 0.423E+00 0.423E+00 182.130 182.046 182.046 962.62
330.520 302.430 0.439E+00 0.440E+00 190.070 189.907 189.907 975.56
330.310 352.770 0.444E+00 0.444E+00 197.470 197.399 197.399 987.16
330.580 375.390 0.443E+00 0.443E+00 200.470 200.280 200.280 991.76
330.340 400.550 0.438E+00 0.439E+00 204.123 204.040 204.040 997.64
330.820 451.680 0.418E+00 0.419E+00 210.242 209.962 209.961 1009.74
330.450 546.040 0.271E+00 0.272E+00 220.291 220.210 220.210 1044.20
330.500 583.770 0.111E+00 0.111E+00 223.488 223.449 223.449 1064.41



Table 4.30
Thermal Conductivity of Toluene at TR = 345.15K

Tr P
r (3T')P X(Tr> Pr^ X(Tn >Pr) X(Tn,P) Pr

(K) (MPa) (mW m- -̂ K“2) (mW K” )̂ (mW m“  ̂K“ )̂ (mW m K~l) (mW m K“l) (Kg m“3)

344.400 2.330 0.703E-02 0.727E-02 118.140 118.146 118.146 818.87
344.390 2.390 0.708E-02 0.732E-02 118.502 118.508 118.508 818.93
344.400 13.270 0.161E-01 0.164E-01 121.985 121.997 121.998 827.13
345.090 23.360 0.269E-01 0.272E-01 126.464 126.466 126.466 833.83
344.290 51.310 0.746E-01 0.750E-01 135.932 135.996 135.996 854.09
343.930 101.130 0.177E+00 0.178E+00 149.945 150.162 150.162 884.98
344.580 127.580 0.227E+00 0.227E+00 155.786 155.915 155.915 898.29
344.430 153.200 0.272E+00 0.273E+00 161.283 161.479 161.479 910.64
344.410 175.680 0.307E+00 0.307E+00 165.881 166.108 166.108 920.27
344.180 203.150 0.342E+00 0.343E+00 170.901 171.234 171.234 931.00
344.390 253.060 0.388E+00 0.389E+00 179.949 180.243 180.244 946.65
344.270 306.030 0.419E+00 0.419E+00 188.623 188.991 188.991 960.31
344.040 355.360 0.435E+00 0.436E+00 196.319 196.803 196.803 971.47
343.940 402.840 0.443E+00 0.444E+00 202.209 202.746 202.746 981.89
344.130 451.970 0.441E+00 0.442E+00 208.486 208.937 208.937 993.69
344.390 455.280 0.441E+00 0.441E+00 208.762 209.097 209.097 994.27
344.370 497.590 0.424E+00 0.424E+00 213.957 214.287 214.288 1007 .30
344.320 542.990 0.370E+00 0.370E+00 219.449 219.756 219.756 1025.43
344.250 584.760 0.250E+00 0.250E+00 223.602 223.827 223.827 1047.45
344.200 585.250 0.247E+00 0.247E+00 223.806 224.040 224.041 1047.81



Table 4.31
Thermal Conductivity of Toluene at TR = 360.15K

Tr P (9T )pr (ZL\^T'p X (Tr, pr) 1 (Tn,p r) A(Tn ,P) Pr
(K) (MPa) (mW m“l K“2) (mW m-  ̂K“^) (mW m- -̂ K--*-) (mW m K- )̂ (mW m K”l) (Kg m"3 )

360.700 3.240 0.439E-02 0.467E-02 113.678 113.675 113.675 802.84
360.900 26.470 0.754E-02 0.787E-02 123.377 123.371 123.371 819.49
360.610 49.210 0.295E-01 0.299E-01 131.202 131.188 131.188 835.26
360.680 50.610 0.311E-01 0.315E-01 130.254 130.237 130.237 836.10
360.430 74.520 0.671E-01 0.676E-01 139.549 139.530 139.530 851.41
360.630 104.170 0.118E+00 0.119E+00 146.673 146.616 146.616 868.15
360.480 126.770 0.159E+00 0.160E+00 152.141 152.088 152.088 880.00
360.990 152.290 0.201E+00 0.201E+00 158.053 157.884 157.884 891.35
360.910 203.650 0.276E+00 0.276E+00 168.248 168.038 168.038 911.67
360.770 255.660 0.333E+00 0.333E+00 177.926 177.719 177.719 927.94
360.840 304.330 0.370E+00 0.370E+00 185.657 185.402 185.402 940.00
359.700 338.640 0.394E+00 0.394E+00 190.318 190.495 190.495 948.92
360.830 353.170 0.398E+00 0.398E+00 193.231 192.961 192.960 950.60
360.940 405.810 0.421E+00 0.422E+00 200.566 200.234 200.233 961.66
360.760 453.060 0.437E+00 0.438E+00 206.340 206.074 206.073 973.29
360.670 497.880 0.444E+00 0.444E+00 212.476 212.245 212.245 986.84
360.620 508.260 0.443E+00 0.444E+00 212.422 212.214 212.214 990.53
360.740 543.830 0.428E+00 0.429E+00 217.376 217.123 217.123 1004.72
360.650 577.640 0.383E+00 0.383E+00 220.544 220.352 220.352 1021.85

00
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Table 4.32

Coefficients of the Correlation of the Pressure Dependence of the 

Thermal Conductivity of Equation (4.1)

N-hexane

T

(°C)

P*
(MPa)

bo
(mWm“*K-*)

bi b2 b3

34.0 250 110.54 0.3403 0.6164 -0.1936
48.0 250 104.31 0.4347 0.6002 -0.1901
72.0 250 92.59 0.7182 0.4476 -0.1355
87.0 250 89.31 0.7302 0.4953 -0.1522

N-octane

T

C°C)

P'
(MPa)

bo
(mWm“^K“ )̂

bi b2 b3

34.0 250 118.30 0.3185 0.4136 -0.1106

48.0 250 101.39 0.8271 0.0069 0.0359

72.0 250 100.58 0.6659 0.2206 -0.0387

89.0 250 96.22 0.6710 0.2919 -0.0633
1

_______ 1________ —



1 2 0

2,3-dimethylbutane

T
(°C)

P*
(MPa)

bo
(mWnf^K-1)

bi b2 s

36.0 250 96.72 0.2705 0.7148 -0.2414
48.0 250 88.78 0.5453 0.5022 -0.1631
72.0 250 76.88 1.0841 0.0912 -0.0297
88.0 250 81.51 0.8736 0.1900 -0.0526

2,2,4-trimethylpentane

T

(°C)

P'
(MPa)

bo
(mWm-1^ 1)

bi b2 b3

40.0 250 80.03 0.7498 0.2917 -0.0955

48.0 250 85.46 0.4589 0.5284 -0.1687

64.0 250 81.24 0.5557 0.5059 -0.1589

78.0 250 77.30 0.6890 0.4497 -0.1427



1 2 1

Benzene

T
(°c>

P'
(MPa)

bo
(mWnf ̂ K-1)

bi b2 b3

37.0 50 136.55 0.0260 0.1084 -0.0058
47.5 90 133.58 -0.0010 0.3075 -0.0849
71.0 140 122.86 0.1225 0.3676 -0.1017
87.5 180 116.39 0.2063 0.4467 -0.1343

Cyclohexane

T
(°C)

P'
(MPa)

bo
(mWm-1K_1)

bi b2 b3

36.0 20 114.77 0.0185 0.0582 -0.0057

51.0 40 114.70 -0.1254 0.3188 -0.0935

80.0 60 101.72 0.0645 0.2243 -0.0489
88.0 70 103.91 -0.0712 0.4195 -0.1171



Toluene

T
(°C)

P’
(MPa) \

 
«r

►—* 
o

1

bi b2 b3

35.0 250 127.28 0.1128 0.5081 -0.1651
47.0 250 123.95 0.1131 0.5330 -0.1685
57.0 250 118.42 0.1727 0.5430 -0.1808
72.0 250 114.99 0.1968 0.5402 -0.1733
87.0 250 109.42 0.2441 0.5447 -0.1759
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Fig. (4.1) Deviations of experimental thermal
conductivity data for n-hexane from the correlation of Eq. (4.1)

Present work : •- 34°C ; ■- 48°C ; A- 72°C ; ▼- 87°C 
Mukhamedzyanov et al (60) : O- 34°C ; □- 48°C ; A -  72°C ;

V -  87°C
Golubev and Naziev (61) : o -34°C ; o - 48°C ; B - 72°C
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conductivity of benzene and cyclohexane from the 
correlation of Eot. (4.1)

Present work:
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data for toluene from the correlation of kq. (4.1)
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C H A P T E R  5

THE KINETIC THEORY OF THE TRANSPORT PROPERTIES OF DENSE FLUIDS

5.1 Introduction

The development of the kinetic theory of fluids is intended to 

relate the macroscopic properties of fluids to the motion and 
interaction of the molecules they contain. The interpretation of the 
experimental results obtained in the present work necessitates a 
kinetic theory of dense polyatomic fluids.

At present, an exact kinetic theory is available only for 

monatomic gases at low density. This is based on the work of Boltzmann 
[66,67], Enskog [68,69] and Chapman [70,7l]. They were able to relate 
the transport properties of such gases, i.e. the viscosity, thermal 
conductivity and diffusion coefficient, to the properties of their 
molecules. Provided that the intermolecular pair potential for the 
interaction of the monatomic species is known it is possible to 
calculate the transport properties of a gas consisting of such 
molecules to any desired degree of accuracy at any temperature.

The theory of dilute polyatomic gases and dense gases of monatomic 

or polyatomic species is currently far from complete and is undergoing 
extensive development. For dilute polyatomic gases a formal kinetic 
theory exists but exact evaluation of properties from it for an assumed 
intermolecular pair potential is still far from routine. For dense 
fluids even the formal kinetic theory is not fully developed. For 
these reasons, treatment of these more complex systems places a greater
reliance on approximate analyses and approximate models than is 

for the dilute monatomic system. The theories of the densenecessary
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fluid state are therefore not of comparable quality to that for the 

simplest system, and an ab initio evaluation of the transport 
properties from an assumed pair potential is not practicable. The most 
that can be expected from a theory of transport in the dense fluid 
state at the moment is therefore the provision of a suitable framework 
for the correlation of experimental data. If the theory incorporates 
the major features of the transport processes in dense fluids it may 

also be expected to allow a modest extrapolation of experimental data 
and to lead to the development of a predictive procedure.

The present chapter reviews the kinetic theory results for dilute 

and dense monatomic fluids as a precusor to the more approximate theory 
of dense polyatomic fluids. The latter is then applied to the 
interpretation of the present results for the thermal conductivity of 

polyatomic liquids in a subsequent chapter in the spirit outlined 
above.
5.2 Summary of Results for the Transport Properties of a Dilute Gas of 

hard spheres
A knowledge of the distribution of molecular velocities as a 

function of time and space allows the macroscopic properties of a gas 
to be calculated. The microscopic mechanical state of a monatomic 
particle gas at time t is defined by the specification of the position
r. . ......, rlT and of momenta P, . ......, PXT of all the N particles.1 N 1 N
For conciseness, we introduce the notations:

x. = (r., P.) (5.1)i l l



a six-dimensional vector defining the state of the particle labelled i 
(1 < i < N), and

x = (x^ (5.2)

a 6N-dimensional vector defining the state of the complete system.

The distribution function of the variables x is denoted by 
f^(x,t). The expression f^(x,t)dx represents the probability that, at 

time t, the coordinates and momenta of the particles have values within

Boltzmann derived an integrodifferential equation for the distribution 
function for a dilute gas in which only binary collisions are 
important. For a gas whose molecules are not subject to external 
forces the only means whereby the velocity of a molecule can change is 

by collision with other molecules. Boltzmann assumed that for these 
gases during collisions all possible states of motion occur with equal 
frequency. Thus each molecule is as likely to be found in one position 
as in another; furthermore, except for the simple fact that the 
molecules cannot get inside each other, there is on the average no 
correlation whatever between the positions and velocities of different 
molecules. This statistical assumption, known as "Stosszahlansatz" or 
"Molecular Chaos", makes the Boltzmann equation irreversible in time,

/ fN(x,t)dx = 1 (5.3)
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i.e. if at some instant of time, the velocities of all the particles in 
the system were reversed, then the particles would not retrace their 

trajectories in the phase space so that earlier states of the system in 
phase space would not be recovered.

The Chapman-Enskog method [72] enables the Boltzmann equation to 

be solved by a method of successive approximations. The first term is 
the Maxwellian equilibrium distribution of velocities and the higher 

order terms represent successive stages away from this equilibrium 
distribution.

The most significant feature of the Chapman-Enskog solution is 
that each of the transport coefficient of a gas or gas mixture can be 

expressed in terms of well defined collision integrals over the 
intermolecular potential for each of the possible binary encounters in 
the system [72]. If the atoms of the gas interact according to the 
rigid sphere potential

oII r > a (5.4)
U(r) = « r < o (5.5)

where or is the diameter of the rigid spheres, then the expressions for 
the self-diffusion coefficient, viscosity and thermal conductivity of 
the gas are

D° = ---- --- (rankT) ̂
8  p ° a 2 n

(5.6)

h° = ( TOnkT ) (5.7)
1 6 g 2tz
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and

(5.8)

where the superscript 0 denotes the dilute gas limit, p is the mass

density of the gas, k is Boltzmann’s constant, T is the absolute

For molecules which interact through a general form of 
intermolecular pair potential U(r), the dynamics of binary collisions 
are quite different and this has an influence upon the transport 
properties.

In place of equations (5.6) to (5.8) we find

(5.9)

0 (5.10)

and

X0 = 75_________
64R(2’2)(T) m (5.11)

collision integrals and are functionals of the intermolecular pair
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potential U(r) readily evaluated by standard quadrature techniques.
For the rigid sphere case = tca2.

5.3 The Theory of the Transport Properties of Simple (monatomic) Dense
Fluids
Rigorous theories of transport processes in dense fluids based on 

a generalised Boltzmann equation [73] have not yet progressed to the 
stage where they may be employed for reliable predictions. Although a 

formal statistical mechanical theory for the transport coefficients 

exists [74,75], its implementation for calculations for real fluids has 
only been accomplished by means of approximations whose physical basis 
is uncertain. Furthermore, calculations of transport coefficients in 
simple liquids based on these approximations are generally in poor 
agreement with experiments [74,75]. For these reasons, only a brief 
discussion of the vigorous kinetic theories of dense fluids is given in 

section 5.3.1. The remaining sections of this chapter deal with
simpler theories of transport in fluids which incorporate the major 
features of the process at a molecular level. Although such theories 

do not allow the calculation of the transport coefficients of dense 
fluids from information about their constituent molecules, they can 
serve as a useful framework for the correlation of thermophysical 

properties.
5.3.1 Rigorous statistical mechanical theory

The most complete statistical mechanical description of the 
behaviour of a fluid is given by the Liouville equation [74] which 
describes the evolution of the N-particle distribution function f (see 
5.2) in the 6N-dimensional phase space for a fluid of N-particles. The 
Boltzmann equation described in the above section is a simplified form
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of this equation and is valid only in the low density range of 
thermodynamic states.

According to the usual statistical mechanical hypothesis the value 

of any macroscopic property, a, for a fluid is given by the average of 
the corresponding microscopic quantity a(x) over the relevant phase 
space so that

a (£,t) = /a(x) fN(x;t) dx (5.12)

where x represents a point in 6N-dimensional phase space. With the aid
of the Liouville equation it is then possible to obtain the equations
of change for any quantity a(r,t), such as mass, momentum and energy in
terms of integrals over the N-particle distribution function f^. Thus
if the distribtuion function f„ were known, the equations of motionN
could be evaluated and the coefficient of the gradients of the 

macroscopic variables identified with the transport coefficients and 
expressed in terms of the microscopic properties of the molecules of 
the fluid.

There remain considerable difficulties in carrying out this 
program. First, a kinetic equation must be established for the 
function f^, which involves, in principle, the solution of a dynamical 
problem involving N particles. In other words, the solution of the 
Liouville equation requires the solution of the equations of motion of 
all the particles in the system. The development of the theory in this 
direction is far from complete. Secondly, because the Liouville 
equation is reversible, it is necessary to somehow introduce
irreversibility into the theory in order that it agrees with practical 
experience. In the case of the dilute gases the first difficulty is
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overcome by the rarity of many body events, whereas the irreversibility 
is introduced by the molecular chaos assumption (see 5.2). For dense 

fluids, neither of these difficulties has been fully resolved so that 
it has been necessary to develop approximate theories [76-85]. 

Generally, these theories employ a contracted description of the fluid 
in terms of the single particle and two-particle distribution 

functions. The introduction of irreversibility into the theory is then 

accomplished by a statistical assumption concerning a lack of 
correlation of molecular motion on some microscopic time scale. In the 

particular case of the dilute gas, the appropriate time scale is the 
duration of a single collision, t 0-q > but in a dense fluid, it may be 
much longer.

5.3.2 Time correlation functions
An alternative method of formulating the transport coefficient of 

dense fluids is based on the fluctuation-dissipation theorem [86]. 
This theorem provides a relationship between a correlation function for 

spontaneous fluctuation in a system in a stationary state to the 
dissipation (or entropy production) of the system under time dependent 
driving forces. If the time-dependent driving forces are 
concentration, flow velocity or temperature it is possible to express 
the corresponding transport coefficients in terms of auto-correlation 
functions of microscopic fluxes. Hence the self-diffusion coefficient 
of a fluid is written in terms of the velocity autocorrelation function 
as [87,88]

1
3 G, ,i(o) G, V i (t )D > dx (5.13)
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where C./r.N represents the velocity of molecule i at time t=0 and CL, N i(0) r i(t)
the velocity of the same molecule some time x later. The angular 
brackets denote an ensemble average of the quantity using an N-particle 

distribution function for the unperturbed system. Similar expressions 
may be written for the viscosity coefficients in terms of correlation 
functions of mircroscopic momentum fluxes and for thermal conductivity 
in terms of energy fluxes, both involving just molecular velocities, 
spatial coordinates and intermolecular energies [87].

In order to evaluate the correlation functions, it is necessary to 
find the time-dependence of the microscopic variables involved in the 
correlation function. In turn this requires, in principle, a solution 
of the Liouville equation, which, it has already been pointed out, is 

not yet available. Hence the expression of the transport properties in 
terms of time correlation functions does not immediately alleviate the 
problems encountered in the development of a rigorous theory of dense 
gases mentioned in 5.3.1. However, the formulation does have two 
advantages which have proved to be of great value in the understanding 
of dense fluid behaviour. First, it can provide a method for the 
description of phenomena in liquids, such as asborption and scattering 
of electromagnetic radiation, which yield information about the details 
of molecular motion [87]. Secondly, it enables the calculation of the 
transport coefficient of a hypothetical dense fluid by means of a 
molecular dynamics simulation on a computer.

Molecular dynamics simulation is a computational method whereby 
the position and velocities of N-particles contained in a cell of fixed 
volume are followed over a period of time by the numerical solution of 
Newton's Law of Motion. Knowing quantities such as the positions,
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velocities and intermolecular forces as a function of time, the 
correlation functions for these microscopic variables can be 
calculated. Using relationships similar to equation (5.13), it is 
possible to calculate equilibrium properties such as temperature and 

pressure as well as transport properties such as coefficients of 
diffusion, viscosity and thermal conductivity. Evidently, for even a 
small number of particles (N ~ 100) over even quite a short time, the 
computational effort required to carry out such a calculation is 
enormous. Consequently, it was not until the advent of fast digital 
computers that such calculations became feasible [89-91].

Since the molecular dynamics method represents the behaviour of 

the molecule of a fluid having the microscopic properties specified by 
the investigator, it is therefore possible to determine the motion of 
the molecules in the fluid essentially exactly and to calculate the 

transport coefficients of this fluid. For this reason, the technique 
is sometimes thought of as a method for carrying out an 'experimental' 
determination of the properties of a hypothetical fluid. Of course, if 

the intermolecular potentail selected were exactly that of a real fluid 
the method should yield the observable properties of the real fluid. 
Thus, in principle, the simulation method provides a means whereby 
intermolecular potentials proposed for the fluid may be examined, 
although the computational effort necessary often inhibits the 
systematic investigation required [92].

Among the earliest results from molecular dynamics studies of 
dense fluid was a clear demonstration of the breakdown of the molecular 
chaos assumption used in the dilute gas (see 5.2). It was found that
velocity correlations persisted over several collisions and that this 
has a significant effect on the transport coefficients of a dense
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fluid. Experimental evidence for this effect has been obtained 
[93-99]. The results of molecular dynamics simulations for hard 
spheres systems will be of use in a later section (5.3.3) and they are 

therefore discussed more fully there. For the present it is sufficient 
to note some general features of the motion of molecules in dense 
fluids which have cast doubt on some popular theories of the dense 

fluid state and reinforced the validity of others.

An important application of molecular dynamics results has been 
the assessment of the applicability of statistical mechanical theories 
and the models that they employ. The details of the molecular motion 
obtained from a molecular dynamics calculation enable simple models of 
it to be examined. For example, the results of this type of study 
contradict the model upon which the activation energy theory of liquid 
transport [l00] is based. In this theory, a molecule is envisaged to 
make a large number of oscillations about an equilibrium position in a 
cell formed by its immediate neighbours, with occasional, but large, 
jumps to a new equilibrium position. An examination of the mean free 
path distribution in a molecular dynamics simulation indicates that 
this is not a significant contribution to molecular motion in liquids 
[lOl]. Instead, the computer simulation indicates that the motion of 
the molecule is close to that of the van der Waals model of a fluid in 

which the molecules travel essentially unperturbed between a succession 
of hard-core collisions [102]- Indeed, the similarity of the molecular 
dynamics results to those of the van der Waals model has encouraged the 
development of a successful method of correlating the transport 
properties of fluids based upon it.
5.3.3 Van der Waals theory (Smooth Hard Sphere Theory)

This section begins with a description of the van der Waals model
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of a dense fluid. The equivalence of this model to the smooth hard 

sphere model is then established. Subsequently, the application of the 
smooth hard sphere (SHS) theory for the interpretation of transport 
properties of dense monatomic fluids is examined.

The van der Waals model of a dense fluid considers the molecules 
to have an effective intermolecular pair potential made up of a 

repulsive spherical hard core surrounded by a weak, long-ranged, 

uniform attractive potential as sketched in Figure 5.1. The model 
represents a reasonable approximation to the pair potential for real 
fluids when the temperature is sufficiently high that the attractive 
potential is weak by comparison with the molecular kinetic energy, the 
density sufficiently high that there are only small fluctuations in a 

uniform attractive potential and when it is recognized that the 
diameter of the hard core must be made temperature dependent to account 
for the finite steepness of the repulsive wall of the true 

intermolecular pair potential.

U (r)

r

Figure 5.1
The Van der Waals model of dense fluids
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From the theoretical point of view the van der Waals model has the 

considerable advantage that the molecules move in straight line 
trajectories between hard core collisions. This means that on the one 
hand the model is consistent with molecular dynamics simulations and on 
the other hand that one can make use of a kinetic theory of rigid 
spheres in describing the system. It has been found that real fluids 

do conform to the van der Waals equation of state at high densities and 
temperatures when the core size is allowed to be temperature 
dependent.

The formal restriction of the validity of the van der Waals model
to high temperatures and densities is combined with a limit imposed by
the fact that a hard sphere fluid exhibits a solid-like transition at

densities such that the molar volume is less than 1.5 V . where V iso* o
the volume of close packing of the hard spheres. Thus, formally, the 
applicability of the van der Waals model should be restricted to the 
high density gas region up to this limiting density. However, it has 
been found empirically that correlations based on this model may be 
reliably extended to higher densities and lower temperatures within the 
liquid phase. The model has also been extended to lower densities 
where perturbation theory has been used to account for the increasing 
influence of attractive forces [103-105].

A kinetic theory for transport in a dense hard sphere fluid has 
been given by Enskog [106] and as was shown above this is exactly what 
is needed for an analysis of the van der Waal's model. In the Enskog 
theory, empirical modifications to the Boltzmann theory are made to 
provide a first approximation to the behaviour of dense systems. In a
dilute gas, the mechanism for the transport of momentum across a plane 
is the movement of molecules themselves across the plane. As the
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density increases, a molecule on one side of the plane can collide with 

a molecule on the other side of the plane and transfer its momentum 
even though neither molecule itself crosses the plane. This mechanism 
of momentum and energy transfer is called the collisional transfer. In 

addition, the rate of collision is higher in a dense system because the 
interparticle distance becomes comparable to the diameter of the 
particles. The Enskog theory [l06] assumes that a hard sphere system at 

high densities behaves exactly as hard sphere system at low densities 
except that the frequency of collision is increased by a factor g, 
which may depend on density, and the difference in position between two 
colliding molecules is no longer neglected.

By making these modifications to the Boltzmann equation, and 
following essentially the same method of solution as for the dilute 

gas, expressions for the transport coefficients may be derived for a 
dense hard-sphere fluid. The results for the first order approximation 
to the diffusion coefficient, viscosity and thermal conductivity 

written in terms of the dilute gas values (superscript °) are:

nD,
(nD)

(5.14)

where g is the multiplying factor to the collision frequency in the 

Enskog theory called the radial distribution function.

nE_
0

= [- + 0.8 ~  + 0.761 g 
8 * (5.15)
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and

“T  = [ ^ + 1 -2 1 + ° - 7 5 5  8 (|)2] (5-16)X

Here we have introduced the subscript E to denote that the Enskog 
theory is employed. Furthermore, the molar volme V is used as the 
independent variable so that b represents the molar co-volume

2% N o3
b = ---^ --- = 4  7i /2 V (5.17)3 3 o

where N is the Avogadro’s constant and a is the hard sphere diameter,ii
Vq is the core volume of the rigid spheres and is defined in equation 

(5.23). The transport coefficients in the zero-density limit for the 
smooth rigid spheres may be obtained from 5.2.

In order to employ equations (5.14) to (5.16) for the calculation 

of the dense gas transport coefficients it is necessary only to find 
the radial distribution function for hard spheres at contact g and a 

suitable value for the co-volume b. In the original application of the 
method, b was obtained by fitting the PVT data for the noble gases to 
the van der Waals equation of state and g was taken from the results of 
computer simulation for hard spheres [l02]. It was found that the 

calculated high density transport coefficients differed by less than 
1 0 % from the experimental values.

However, the Enskog theory neglects all correlations of molecular 

velocities in the evaluation of the transport coefficients. Molecular
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dynamics simulations of the type describd in the previous section

(5.3.2) have been employed to deduce the corrections to the Enskog 
theory which arise from velocity correlations for smooth hard sphere. 
These corrections may be cast in the form of ratios of the exact hard 

sphere results (subscript MD) to the Enskog results (subscript E) so 
that

and

(5.18)

J]_ = r V
n° n° S

(5.19)

(5.20)

with the superscript 0 indicating the low density results. The 
corrections to the Enskog theory for each of the transport properties 
obtained have been given by Alder et al [107-108] and correlated as 
functions of molar volume by Dymond [93].

As we mentioned earlier computer simulations of a hard sphere 
system in equilibrium have also provided the pair distribution 
function. A good representation of the results has been given by 

Carnahan and Starling [l09]. It takes the form
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= * S)
(1 - 5 ) 3

(5.21)

where

l
b_
4V

uN, cr3 A
6V / 2

uVo
6 V (5.22)

with

N o 3

V = “ —  (5.23)
0 / 2

for the hard spheres.

Dymond [93,99,103,110-114] has considered a number of ways of 
applying the corrected Enskog theory to the calculation and correlation 
of the transport properties of dense gases and liquids. The results of 

his analysis for each of the transport properties are discussed briefly 
in the following paragraphs. This discussion is restricted to a 
consideration of monatomic fluids while modifications to the smooth 
hard sphere required for polyatomic fluids are discussed in the next 
section.
(i) Diffusion Coefficient
The result for g given by equation (5.21) to (5.23) may be combined
with the molecular dynamics results for (D /D ) by means of theMD E
definition



147.

+ V
D = T

1  Dmd
g D„ (5.24)

where Vq is the core volume of the smooth hard sphere. This yields an 
equation for the self-diffusion coefficient for the hard sphere:

D =D+ D° (Vo/V) (5.25)

Dymond [93,112] has given equations which represent the volume 
dependence of D+ obtained from the computer simulations of hard 
spheres

D+ = 1.27 (V/Vo - 1.384) ; 1.5 < V/V q < 2.5 (5.26)

+ r V/ 2 / 3 i V/and D = 2.379 [( ' v  ) - 1.256] ; 1.6< ' v  <6 . 6  (5.27)

The low volume (high density) limit of these correlations is imposed by 
the metastability of the rigid sphere fluid at higher densities. For a 
real fluid the high density limit corresponds to approximately 3 times 
the critical density and the low density limit to 0 . 8  times the 
critical denisty. Equations (5.26) and (5.27) may be used to represent 
the density dependence of the self-diffusion coefficient of real 
monatomic fluids under the conditions for which the van der Waals model 
is applicable (T > 0.7 T , high density) in both gaseous and liquid 
phases. Employing just equation (5.26) and the rigid sphere result
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for D (see 5.2) we find
0

D = 0.4763 T— -----1 / 3  2 / 3
(2V  Vo

[V - 1.384 V ] L o J (5.28)

for 1.5 < V/V < 2.5 o
It is therefore predicted that along an isotherm the 

self-diffusion coefficients of a real dense fluid should be a linear 
function of the molar volume V over this density range. The core 

volume itself, V , may be derived from the slope of such a plot or 
from the intercept of an extrapolation on the molar volume axis. 
Dymond [112] and Van Loef [115—117] have demonstrated that, within the 
range of its validity, equation (5.28) provides a description of the 
observed density dependence of the self-diffusion coefficient of 
liquids with an accuracy comparable with that of the measurements 

themselves. The core volume, V , displays a weak temperature 
dependence as a result of the softness of the real repulsive wall of 
the interaolecular pair potential compared with that of a rigid 

sphere.
Over the larger density range of equation (5.27), representative

of the dense gaseous region, a different technique may be employed to

confirm the theory and determine V . It is convenient to define ao
reduced diffusion coefficient D* by the equation [99,110]

n D fV ^2 / 3
(nD)° W  ' o

D* ( 5 . 2 9 )
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which is related to D . We may then write for the corrected Enskog 
theory:

D*th (5.30)

V/so that D* is a function of V alone. D* may also be calculated fromo J

experimental data along an isotherm because, using the rigid sphere 
result for D° in equation (5.29), we find

D*
exp

8D__
1 /3

3V

1/3
(2V kT

(5.31)

It follows that it should be possible to superimpose a plot of D*exp
V/against log V upon a plot of D*^ against log ( V ) merely by a shift 

along the log V axis. The amount of shift then determines Vq. It has 
been shown that the available experimental data for several fluids 
conform extremely well to equation (5.30).

(ii) Viscosity
A similar type of analysis may be carried out for the viscosity 
coefficient. In this case, too, Dymond [99] has given correlations of 
the results of molecular dynamics simulation of hard spheres. The 
correlations may be written as the ratio of the simulated viscosity to 
the Enskog result in the form
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^MD V/-=■ - 1.02 for v/V > 2.3 T}w o (5.32)

'MD y
1.02 + 15 - 0.35] 3 for 1.74 < V/V < 2.3 (5.33)

and

T) v
= 1.02 + 915 [(— ) - 0.35] 3 for 1.55 < V/V < 1.74 (5.34)T) L v y  y j  Q

hi

In addition, correlations of the hard sphere viscosity have been 
predicted on the basis of similar simulations so that in the liquid 
phase

0 V .

-2-= 0.2195 [(rr-) - 1.384] for 1.5 < XV < 2.5
T| U V  ;  J O

(5.35)

whereas in the dense gaseous region

(^0 (|~) = 0.528 [(V/Vo ) “ /3 - 2.32] for 2 < V/Vq < 7 (5.36)
o

Equation (5.35) shows that along an isotherm, the fluidity ( ^ ti) of a
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rigid sphere liquid should be a linear function of the molar volume

and, invoking the van der Waals model, the same should be true for real
liquids at sufficiently high temperatures. The core volume Vq may be
deduced from experimental data as for the diffusion coefficient. It
should also be noted that equation (5.28) and (5.35) taken together
mean that if a core volume, V , is deduced from measurements of oneo
property at a particular temperature the second property may be 
calculated.

It is also advantageous to define a quantity, T)*, analgous to D*, 
by the equation [114]

(5.37)

As before, theoretical values of may be derived from the equations 

(5.7), (5.15), (5.19) and (5.37), and experimental values from the 
equation

r\*exp
_16 2 

5 N

1 / 3
2 / 3

A

2 / 3  
n v (5.38)

r V/ >»Superposition of plots of against log ( VqJ and -p* against log V 
by shifts along the log V axis yield directly. Again, if this
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process is carried out for one datum at a particular temperature, it 
should be possible to use the theory to calculate the density 

dependence of the viscosity along an isotherm.
(iii) Thermal Conductivity

For the rigid sphere fluid, Dymond [99] has given the following 
correlations based on computer simulation results

= 0.161l[(|-) -1.217] for 1.5 < < 2 (5.39)
o o

and

(r-) (f-0 - 0.470 [ ( | - ) ‘, / 3  - 2.32] for 2 < |- < 7 (5.40)
o o o

Again, using the low density results for core volumes may be
determined from experimental data with either of these equations.

It is again useful to define a quantity, , by means of the 
equation

(5.41)

which f 
values

V/or rigid spheres, is a function of Vq only. Theoretical 
of may be obtained from the molecular dynamics simulation

results and experimental values from the equation
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X*exp 75  ̂ o ' k3T
64 mx ^  2 (5.42)

so that whenever the van der Waals model is applicable, i.e. for dense

monatomic fluids, it should be possible to superimpose plots of X*th
against logf^V ) and X* against log V. o exp
Summary of the use of the smooth hard sphere theory

In summary, the quantities D*, t}* and X* are functions of the
V /ratio Vq alone according to the smooth hard sphere theory.

Consequently it should be possible to superimpose the plots of any

property as a function of volume for all isotherms, because the
temperature dependence of D*, T|* and X* is completely contained in V .o
Furthermore, each of these curves should conform to the theoretical 
plot for the same property and superposition then leads to a value of 
Vq for each temperature. Extensive tests carried out by Dymond et al 
have confirmed the applicability of the smooth hard-sphere theory to 
the interpretation of the transport properties of dense monatomic 
fluids.

This type of interpretation of experimental results has an

immediate value in terms of property calculations since it means that
once V for a particular fluid at one temperature has been evaluated o
from data for one property, other properties may be deduced 
immediately. Furthermore, the density dependence of a particular 
property along an isotherm can in fact be generated from observations 
at just one density at the same isotherm.
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5.4 Rough Hard Sphere Theory for Dense Polyatomic Fluids
5.4.1 Introduction

The smooth hard sphere theory discussed in the previous section 
has been shown to be remarkably successful for monatomic fluids. It 

has also been applied in an ad hoc manner to polyatomic liquids [118]. 
However, as it will be shown in 6.2, it does have some deficiences for 
such systems. This is not surprising since polyatomic fluids differ 

from monatomic ones in three major respects, the non-spherical nature 
of the molecules, the fact that the molecules possess internal energy 
and the energy transfer by virtue of the coupling which occurs between 

translational and rotational motions. None of these effects can be 
accounted for by the smooth hard sphere theory. An attempt has
therefore been made to introduce a more appropriate theory, based on 
the rough hard sphere model [r h s], to describe the transport properties 
of such fluids.

In the rough hard sphere model the molecules are considered as 
rigid spheres each of diameter a and mass m. A moment of inertia I is 
associated with the spherically symmetric distribution of this mass 
about the molecular centre of gravity. Hence the molecules possess 
rotational degrees of freedom. A collision between two rough spheres 
is instaneous (i.e of zero duration). During this collision, the 
relative velocity of the points of contact of two spheres is completely 
reversed, so that one sphere can transfer not only linear momentum but 
also angular momentum (spin) to the other sphere.

Thus the model incorporates the essential characteristics of a 

polyatomic fluid in a rather simple manner. From the present point of
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view the simplicity of the model renders it attractive because the 
radial distribution function is the same as that of smooth hard spheres 

and because many of the integrals occuring in the necessary theory have 
already been evaluated. From a more fundamental point of view the 
model has deficiencies because it tends to overemphasise the role of 
inelastic collisions and lacks any account of molecular shape. 
However, these deficiencies are a price which must be paid at present 
to develop a practicable correlation scheme.

The rough hard sphere model was first suggested by Bryan [99] and 
the dilute gas theory for the transport coefficient was calculated by 
Pidduck [l20], using the nonequilibrium techniques of Enskog. Chapman 

and Cowling [26] gave a very detailed account of these techniques and 
the application of such methods to the theory of rough spheres. They 
neglected those terms in the nonequilibrium distribution function which 
were anisotropic in the angular velocity, i.e. terms which depend not 
only upon the magnitude but also upon the orientation of the molecular 
spin velocity. Afanasev [l2l] questioned the validity of this 
approximation for a gas of polyatomic molecules. Also, Waldmann [l22] 
found that anisotropic effects were significant for a Lorentz gas of 
rough spheres. As a result, Condiff, Lu, and Dahler [l23] included 

these effects in calculations performed on a dilute gas of rough 
spheres. They derived a kinetic equation which was also applicable to 
dense gases and used the Chapman-Enskog approach to develop a theory 
for the transport equations. The work of Condiff et al [l23] is used 
by McCoy, Sandler and Dahler [l24], as a basis for the development of a 
theory for a dense gas of rough spheres. This theory has subsequently
been revised by Klein, Hoffman and Dahler [l25].

At present, there are two approaches to the calculation of the
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transport coefficients of a dense fluid of polyatomic molecules by 
means of a rough sphere model. The first is due to Chandler [126-128] 
and is based on the correlation function formalism discussed in 5 .3 .2 . 
This approach has been tested extensively by Dymond and others (see 
5.4.2). The alternative approach employs a kinetic description 

involving the solution of an appropriate kinetic equation (see 
appendix 3). This latter approach is essentially a continuation of 
Dahler's work described above. Theodosopulu and Dahler [129,130] 
proposed a complete and computationally practical theory for the 
transport coefficients of polyatomic liquids. The relationship of this 
theory to the smooth hard-sphere has been investigated [131]. However, 
few comparisons with experimental results have been made for this 

kinetic model of dense fluids.
In the following section, these two theories using the rough 

hard-sphere model applied to dense polyatomic fluids are discussed in 

more detail and their essential features and numerical predictions are 
compared.
5.4.2 Chandler *s Rough Hard Sphere Model

In this model, the transport coefficients for the SHS theory are 
modified by a parameter called the "roughness" of the hard-sphere 
which is the degree of coupling between translatioal and rotational 
motion. The value of the roughness parameter is determined from 
experimental data for the transport coefficient under consideration.

Chandler has demonstrated using an approximate theory [128] that 
for a rough sphere fluid at densities greater than twice the critical 
density, the self-diffusion coefficient is proportional to the 
self-diffusion for a smooth hard-sphere so that [128]



157.

DRHS = A D SHS (5.43)

The symbol A represents a translational-rotational coupling factor, 
less than unity, which is assumed to be independent of temperature and 

density. Introducing this parameter into equation (5.24), we find that 
for the rough hard sphere model [114]

D = 0.4763A
2 / 3  1 / 3

vo <2V
v7tm' [V-1.284V ] L oJ (5.44)

so that both A and Vq may be determined from experimental data.

A plot of the experimental diffusion coefficient data against the
molar volume V at constant temperature should be linear if the model is
valid, and both V and A could then be obtained from the slope ando r
intercept. Diffusion coefficients for tetramethylsilane at 25°C obey 
equation (5.44) for pressures up to 150 MPa [ll4]. Between this 
pressure and the highest pressure investigated (450 MPa), Dymond found 
that equation (5.44) is not applicable. Similar results were found for 
benzene [114] at 160°C and 75°C. However, using a method analogous to 
that discussed in 5.3.3 for monatomic fluids, Dymond et al [114] found 
that the rough hard sphere theory can be used as the basis for a useful 
empirical correlation technique, valid over a wider range of 
experimental conditions. For the correlation of experimental diffusion 
coefficient of polyatomic molecules, they suggested a dimensionless 
diffusion coefficient, defined by the equation
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D* = 5 .030 x 108 D/y 1/3 (5 .4 5 )

for the correlation of experimental data.

In the density region where the rough hard-sphere model is

applicable, D*RHg will be proportional to (D*SHS/D°^V/̂ V ) 2 / 3 on the
o

basis of Chandler’s theory and thus will depend only on V/ and a
o

coupling constant A. Consequently, it is to be expected that the
curves of experimental values of D* may only be superimposed upon the
theoretical curves for smooth hard spheres by shifts along both axes in
a plot of log D* against log V. As before, the shift required along
the volume axis yield the ’effective’ spherical core volume of the

molecules, but in this case, the shift along the log D* axis determines
the factor A. Plots of D* versus log V for a given compound at
different temperatures should be superimposable on the curve obtained
f o r  a n y  r e f e r e n c e  t e m p e r a t u r e ,
T . The amount by which log V has to be adjusted leads to a value for R
Vo (T)/Vq (Tr) and hence gives a measure of the effect of temperature
changes on the closed-packed volume. Results are given for
tetramethylsilane and benzene [ 114], methane and ethane [131 ], carbon
disulphide [132] and acetonitrile [133].

Similarly, for viscosity at densities above twice critical, the
rough hard-sphere coefficient, r) could be given in terms of ri byRHS SHS

RHS SHS= c n (5.46)
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where C is another coupling coefficient and is assumed to be 
essentially constant and greater than or equal to unity. A combination 

of this result with that of equations (5.31) and (5.38) for smooth hard 
spheres leads to the equation

1___
^RHS

1 / 3
0.7024 C 2 (lnkT:/̂ )̂  [v_li3 8 4Vo]

2 / 3
N.

1 / 3
Vo

(5.47)

Dymond [ 114] found that a plot of the fluidity r\ against molar volume 

V for the experimental viscosity data of tetramethylsilane and n-hexane 
at 25°C conformed to a linear relationship according to equation (5.47) 
up to 150 MPa.

An analogous method to that described in 5.3.3 for monatomic 
fluids should hold for the correlation of experimental viscosity 
coefficient data for polyatomic fluids. Equation (5.34) for T)* may 

be simplified to

h*exp 9.118 X 107
2 / 3

T)V /  (M RT) (5.48)

— 9with r) in units of Nsm . Plots of T]* versus log V for a given 
compound at different temperatures should be superimposable on the 

curve obtained for any reference temperature, T , over the range for 
which the rough hard sphere theory holds. It has ben shown [114] that 
plots of T)* against log V are superimposable over the whole density
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range and not only over that range for which the rough hard sphere 
theory should hold. The method also works for aspherical molecules 
such as bicyclic hydrocarbons and perhydrochrysene where the shape is 
not expected to vary with changes in temperature [ 113] and for the 
systems n-hexane + n-hexadecane [l34], n-octane + n-dodecane [135], 
n-hexane + cyclohexane [l36] and benzene + hexafluorobenzene [137 ] at 
elevated pressures.

The contribution of the internal energy is more significant for 
the coefficients of thermal conductivity and simple expressions for 
correlating the thermal conductivities of monatomic fluids (5.3.3) 
cannot be so readily extended to polyatomic fluids. This is because of 
not only the coupling between motions which must be included but also 
because of the direct internal energy transport. For these reasons no 
comparable treatment to that for the diffusion coefficient and 
viscosity is provided by Chandler’s rough hard-sphere theory. An 
empirical correlation scheme for the thermal conductivity of dense 
polyatomic liquids has been developed by Menashe et al [118], which 
will be discussed in more detail in the next chapter (see 6.3.1).
5.4.3 Dahler’s Rough Hard Sphere Theory

Dahler et al [129,130] have developed a kinetic theory of 

polyatomic liquids for three model systems. These models - rough
spheres, rigid ellipsoids and square-well ellipsoids - have been 
selected not only because they are more tractable than other more 
complex models from a computational point of view but also because they 
mimic, with varying degrees of success, several characteristics of
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real polyatomic fluids. Formulae are derived for the transport 
coefficients and for the relaxation times which describe the 
establishment and maintainence of a steady state of transport of energy 
and of linear and angular momentum. Using the approximations of Enskog 
(see 5.3) these phenomenological coefficients can be expressed in terms 

of integrals of the same type as occured in the dilute gas theory. The 
integrals of these have been evaluated for the rough sphere case. For 

the other two cases the evaluation is complicated by the fact that 
reliable estimates are not available for the equilibrium pair 
distribution function [131].

In Dahler's Rough Hard Sphere theory, the dynamical state of a
rough hard sphere is fully specified by the location of its centre of

mass x^ , by its linear momentum, P^= mc^, and by its internal angular
momentum L = la). . The internal distribution of mass is characterised i l
by the moment of inertia I, which can be rewritten in dimensionless 
form as:

K = —  (5.49)
mo2

where m is the mass and a the diameter of the rough spheres. The 
dimensionless moment of inertia K, can vary in value from zero, when 
the mass is localized at the centre of the sphere to 2/3 when the mass 

is uniformly distributed over the surface of the sphere.
The principal shortcoming of this model is its failure to provide 

an entirely realistic description of inelastic collisions. There is
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no value of K for which the collisions are truly elastic. Even when
K+0 and no transfer between rotational and translational degrees of
freedom can occur, the mechanism for collisional exchange of spin or
angular momentum still remains. Whether this will have major effects

on the resulting bulk properties is, however, not clear.
It is possible to proceed to the results which follow by the

application of the moment method to the Enskog theory of a dense gas of
perfectly rough spheres. The algebra involved is rather complex.
Hence only an outline of the procedure used to obtain the relevant
transport properties is presented in appendix 3. Full details can be
found elsewhere [l29,130]. The viscosity coefficient for Dahler’s RHS
theory, n , where the subscript RHS,D refers to Dahler's rough hardRHS 9 D
sphere theory is given by

\ h s ,d ( 1 + (5 K+2) 
5 (K+l) bng)^ + 1

10 P a bng (7K+4)
(K+l) (5.50)

where ri(K) . is the Pidduck approximation [ 120],

(K) = , 15 fmkT^ (K+l) 2 

" 8a2g 11 (13K+6)
(5.51)

which reduces to the result for the dilute gas of rough spheres when g
in T)v J is set to unity. It is noted that n is the number density and

b /b, the molar co-volume, is given by equation (5.17) so that bn = v. 
The thermal conductivity consists of a translational contribution
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t r(X ) and a rotational contribution (X ), which are given by the
following equations:

w  = ^  + (5.52)

X = ^t „ ,1 (5K+3) , ,r 1 (3K+2)
\  ( 1 + 5 (K+l) bng) + \  3 (K+l) bng

, Q rkT^  , , rrkT^  pg (2K+i) ,
P Mcl' (K+l) bng ‘-(7rmJ T (K+l) h116-* (5.53)

and

*r - g + !  W iT  bns) + p (I )% A  bn8

+ F W T ) bns] (5'54)

where k is the Boltzmann constant, I (or K in dimensionless form) the 

moment of inertia, g the radial distribution function, a the diameter 
of the sphere, T the absolute temperature and p is given by

p = nkT (5.55)

t rand the coefficients X , X and {3 are expressed in terms of ratios ofK K
determinants of matrices as follows:
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det

1
2 m

/c,(5k+3) , \
(5+( R ? i r bn8)

2  n + 2  bn8 \2 m (K+l)'

16 pd I_
3 nR (K+l)

det

4 34K+8
1 5 (K+l) 2

- 8  A
1  d

K
(K+l)

-40 ,, K 
9 d (K+l)

8 , (2K2+2K+1) -kT , K
- bn8w r y

2 , K
3 bng (K+l)

det(a)

■1 kp 5K+3 , ,
*2 m- (5+ (K+T) bn8 >

- 2 M  n i 2 bns i  2 m ~  (K+l)''

16 pd
3 mT (K+l)

det (a)

1 6 A3“ d

.. (5.56)

-KT , K 
I bng (K+l)

16

and
(5.57)

det

4_ (34K+8)
1 5 (K+l) 2

- 8  , KT  d -----3 /„,,x2(K+l)

-40 
9“ d

K
(K+l)

8 (2K2+2K+1)
3 (K+l) 2

4 bng W1)

■1J2 . (5K+3)
2 m (K+l) b g)

' I  r i+ 2 .bng.. \2 m  ̂ T  (K+l)'

16 pd I 
3 mT (K+l)

P- -

det (a)
(5.58)
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with

a=

4 d (34K+8) 4Q . K
015 d (K+l) 2

9 d o * (K+l) 2

d K 8 (2K2+2K+1) -kT bng K
3 d (K+l) 2 3 (K+l) 2

I (K+l)

0
2 K
3 bng (K+l)

16
3 d

and

(5.59)

, 2 d = n g (-^-) (5.60)

It should be noted that equation (5.53) is different from that given in
ref (130) owing to a typographical error in the above reference.

It is shown in appendix 3 that the viscosity coefficient and the
thermal conductivity can be expressed as a funtion of just two

V/quantities, namely the reduced volume Vq and the dimensionless moment
of inertia K. Only the final results representing this functional
dependence are given here. The result for the viscosity coefficient

riniIC, is expressed in units of H° = —---
RHS>D 16a2 "

^RHS.D _ 6 (K+l) 2 12 (K+l) 2 (5K+2) b
u0 g (13K+6) 5 (13K+6) (K+l) V



(5.61)( (.( l)Zr5K+2 -|2 

 ̂(\3k + (0 L5(K+1) j + 12 (7K+4)
25n (K+l)

where g is given by equation (5.21) and b is given by equation (5.17),

b = \  % / 2 V 3 o

For K = 0, Equation (5.61) reduces to

\HS,D = r_l 
H° g

+ 0.8 (7 ) + 0.771 g(|) (5.62)

In the case of the smooth hard sphere fluid, H° represents the low 

density result for the viscosity coefficient (see equation 5.7)

The small numerical difference in the last coefficient and the 
corresponding term in equation (5.15) is due to the fact that in the 
derivation of equation (5.15), the second Chapman-Enskog approximation 
to r)® has been used, which is of the form

l°̂ 2) = 1.016 x —
16 a2 it

(it m kT) (5.63)

instead of equation (5.7). Using this second approximation as the low 
density limit for the viscosity coefficient, it is found that equation 
(5.62) is equivalent to Enskog’s result for smooth hard spheres.

Similarly for the thermal conductivity we expressed the results in
k3T

, ran 
a*■

, . 0 75 1 runits of Au = --- I It can be shown that (see appendix 3)
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[ jp  (2 K +l) +  K] (K + l)2 x

(34K+8) (2R2+2K+1) - K 2 + | j  (34K+8)

+{ (5K+3) (2K2f2K+l) 4§2. K _ + 6 ^  + |  (5K+3) K

+ -j (5K+3) (2K+1) +  K]

+ f 3_ (3 K + 2 )-i
L4n X (K+l) J

r32 (34K+8)
•-15 o(K+l) 2

+ 320 K_____
9 (K+l) 2

9 r64 c u n ' " *  64 <34K+8)
TH L45 (34K+8) ' 4 5  (K+l) K + (5K+3)k ]

+ [ §  (34K+8) + ̂ K ]  x

+ Tr h T  [— , { ^ | f  K2 ,  ^ i f s  (24K+8) (2 k2+2K+1) } (K+1) 16it2 8 1 (K+l) 2 1 3 5

~  (34K+8)K i£ K 21} x (K+1)X^  X __________________
9 llf (34K+8) (2K2+2K+1) 1 2| \ 2+||(34K+8)

+{[^-(5K+3)(2K2+2K+l) + K- 1 6 0 r 2  - 43n (K+l) 3+ T  ( 5K+3)1

l (5K+3) rr3_ f3K+2> 3 1 r64
5 (K+l) U 4ti ^K+l j 2n(K+l) JxL45

64 (34K+8) K 64 
45 (K+l) ~~9 (5K+3) K]}

2 f 8 (34K+8JK , 8 (5K+3) Tr2ll
(K+l) {l5n (K+l) ^ 3n (K+l) n
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- j f f  (34K+8)(2K^-2K+1) -  - | | ^ C 2
(K+l)

) o 32■K2 + (34K+8)

(5.64)

When K is set to 0, i.e. when the mass of the rough sphere is
considered to be concentrated at the centre

which is not identical with Enskog's results for smooth spheres because 

the RHS theory takes into account the internal energy contribution to 
the thermal conductivity coefficient even when K = 0. In order to 

recover the result for the thermal conductivity a system of smooth hard 
spheres it is also necessary to omit the internal energy terms from 
equation (5.52) before setting K = 0. In this case, A0 = X.0, and we
obtain

\ =\t

where = A0 (1 + -j bng).

Because, bn = b/V, this result may be written in the form
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which is the Enskog result for smooth hard spheres.
Equations (5.61) and (5.64) for the transport properties can be 

written in the form

\ h s , d  V/

TP---- fi( V K) (5.66)

and

XRHS,D _ V/,,

~ P  ’ f2( V K) (5.67)

5.5 Comparison between Chandler 's and Dahler's RHS Theory
Dahler's RHS theory provides relatively simple, explicit 

expressions for the numerical estimates of the transport coefficients 
of this model of dense polyatomic fluids. Consequently, it should be 
possible to use these expressions to investigate the features of the 
model appropriate for the description of the behaviour of real 

polyatomic fluids.
The first test carried out is to use equation (5.50) to calculate

q • Since Chandler’s theory suggests that the viscosity
coefficient for the rough hard sphere fluid is directly proportional to
that for the smooth hard sphere fluid (see equation 5.46), it would be
interesting to investigate whether Dahler's theory exhibits this

behaviour. Figure 5.2 contains a plot of the ratio q* as aRH.S,D brio
function of V/V at K = 0.11, 0.33 and 0.66. The superscript * o
indicates that a definition of q* consistent with that given by 
equation (5.37) is used. The range of V/Vq investigated encompasses
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Fig. (5.2) The dimensionless viscosity coefficient calculated 
using Dahler’s rough hard sphere theory, n * r hS d /t)* 
versus V/v at different values of moment ’ / l SH5 
of inertia^ K: • -K= 0.11, A -K=0.3 3, ■ -K = 0 .66
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the density range of the available experimental data. The ratio of
t)* varies by less than 2%. Hence, although it has not beenRHbyD bHS
possible to derive analytically the proportionality between n andRHS
r| it seems that numerically, at least, the two theories of theb rib 9
rough hard sphere model are consistent.

In view of the remarkable success of the rough hard sphere model 
for the interpretation of experimental diffusion and viscosity 
coefficient data by means of Chandler's analysis it is worthwhile to 
examine the application of the same model to thermal conductivity data. 
The consistency demonstrated between Chandler's treatment and that of 
Dahler and his collaborator's allows us to carry out this examination 
with the most appropriate theory. Since only the work of Dahler et al 
deals with thermal conductivity we adopt this analysis in future 
discussions.

The density dependence of the total thermal conductivity of the
rough hard sphere fluid, X , is illustrated in Figures (5.3) for aRHS y D
number of different values of K. By analogy with D* and r|* discussed 
in 5.4.2, a dimensionless thermal conductivity is defined as

2 / 3
X* = {-RHS,D ^

RHS ,D 
" A ° ~ ) ( M (5.68)

where A® is a unit of thermal conductivity as defined in the previous 

section, and V is a characteristic volume. The variation of X*
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with K amounts to less than 10% over the entire density range of the

plot whereas X* changes by a factor of 16 in the same range.KHo , D
Figure (5.4) shows the dependence upon K of the translational (X̂ ") and 

xrotational (X ) contributions to the total thermal conductivity of the 
rough hard sphere fluid at two different densities. It can be seen 
that although the variation of the total thermal conductivity with K is 
small the individual contributions vary more strongly and in opposite 

directions. In particular, the rotational contribution to the thermal 
conductivity varies by almost a factor of 2 as K varies from 0 to 2/3.

In the next chapter an attempt is made to apply the results of 
this rough hard sphere theory to the description of the present 
experimental results. In view of the relative simplicity of the model 
it is not expected that the theory will prove successful in an 
absolute, quantitative sense but rather that it can act as a guide to 

the formulation of a correlation procedure with some predictive
capability.
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Fig. (5.3) The dimensionless thermal conductivity calculated 
using Dahler's rough hard sphere theory. X*RHS q 
versus V/Vq at different values of moment of inertia, 
K:—  K = 0 ; -- K= 0.22 =o. 66
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C H A P T E R  6

DISCUSSION

6_» 1 Introduction

In the previous chapter, it was argued that theories of dense 
fluids of monatomic or polyatomic species based on relatively simple 

molecular models lead to a good description of the behaviour of the 
viscosity and diffusion coefficients for such fluids in a defined 
region of thermodynamic states. In a wider range of thermodynamic 
states, the same theories and models suggest the form of a correlation 
procedure for the properties which has some theoretical foundation and 
predictive capability, despite the fact that the original model is no 
longer strictly applicable. It follows that any fundamental interpret
ation of the experimental data in terms of the models must be confined 
to the restricted range of thermodynamic states whereas the application 
of the wider ranging correlative procedure may have a greater range of 
validity.

It is the latter element of the analysis which is of greatest 
significance in an engineering context because it frequently happens 

that process design engineers require the properties of fluids under 
conditions different from that at which measurements have been per
formed. The entirely empirical process of representing the data by 
means of arbitrary functions is usually quite successful for the 
purpose of interpolation, but for the more frequent need of extrapol
ation a similar procedure is doomed to failure. On the other hand a
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correlation procedure which incorporates at least some of the elements 
of physical reality is much more likely to succeed.

The purpose of this Chapter is to examine the extent to which a 
soundly based correlation scheme can be based on the rough hard sphere 

model. The present experimental data provide the necessary basis for 
this examination. The analysis begins with an investigation of the 

applicability of the rough hard sphere theory with respect to 

experimental data. Unfortunately the range of densities for which the 
applicability of the rough hard sphere theory and the present 
experimental data overlap turns out to be very small so that in 

subsequent sections attention is concentrated upon the development of a 
wider ranging correlation procedure based on the general form of the 
theory. In this development experimental data for liquid hydrocarbons 

from the present work as well as from earlier studies [5, 138-140] with 
the same type of equipment are examined and incorporated into a single 
universal correlation scheme. In general the thermal conductivity data 
considered are only those for which reliable density data exist so that 
the entire set of data for toluene, as well as data points for other 
fluids where extrapolation of the density was necessary have had to be 
omitted.
6.2 Applicability of the RHS Theory

In the case of viscosity and diffusion coefficient Dymond [ll4, 
134] was able to establish the validity of the rough hard sphere theory 
from the known algebraic form of the relationship between the property 
and density (see 5.4.2). In particular, one of the parameters of the 
theory entered as a simple multiplicative factor so that it could 
easily be determined by curve fitting. In the case of Dahler’s theory
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for the thermal conductivity of the rough hard sphere model no such 

simple relationship is available. Consequently it is necessary to use 
a more indirect method of examining the applicability of this rough 
hard sphere theory. At the same time, as will become apparent the 

method of assessment adopted provides a very severe test of the theory 
indeed.

6.2.1 Test of applicability of the RHS theory

In order to test the extent to which Dahler's theory of the rough
hard sphere fluid may be used to describe liquid thermal conductivity,
we must proceed in a number of steps. First, for each fluid the

experimental viscosity data are analysed in terms of Chandler’s theory
of the rough hard-sphere model to yield the values of the parameters C
and Vq for each isotherm (see 5.4.2). Secondly, we use the fact that
Dahler’s theory and Chandler’s theory are mutually consistent to derive
a value of K from the value of C. Finally with the derived values of K

and V we calculate the thermal conductivity of the same fluid using o
Dahler’s theory for the rough hard sphere model and compare it with 
experiment. As was mentioned earlier it is a severe test of the theory 
because no information about the thermal conductivity itself is 
involved in the calculation.

Dymond _et_ al̂  [ll4] have determined the values of the molecular
core volume (V ) and the coupling constant (C) from viscosity data for
n-hexane which are only applicable up to a pressure of 150 MPa because
of the limited range of validity of the RHS model. The values they
obtained were C = 1.45 and V = 78xl0-6 m^ mol- * for n-hexane at 25°C.o
Using the procedures given in [114], we have deduced the corresponding
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values for n-octane using the experimental viscosity data of Dymond
et al [1 3 5 ] as C = 1.7 and V = 105xl0“6 m3 mol” *.J o

From the values of C, it is possible to calculate the appropriate

values of K in each case using the ratios of ti* /r)* obtained inRHS,D SHo
5.5. It is found that K = 0.44 for n-hexane and K = 0.66 for n-octane.
Subsequently, values of (X /A0) are calculated using equationRHS y D

(5.64). The results are plotted in figs (6.1) and (6.2) and are

expressed in dimensionless form, X* defined in the same manner asRHS ,D
in equation (5.68) as

X* = (-
X.RHS,Da rV 2/3

) O H

The experimental X* for n-hexane and n-octane are calculated usingexp
equation (5.42) and are included in these figures.

The agreement between the experimental thermal conductivity and 
that predicted using equation (5.64) for n-hexane is within 5% over the 
thermodynamic range of the experimental data. For the few data points 

for n-octane that lies in the range of validity of the model the 
agreement is less satisfactory but the disagreement amounts to no more 
than 10%. In view of the simplicity of the RHS model, and the severity 
of the test these estimations are remarkably good. In the absence of 
any other information this procedure would allow at least a rough
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Fig. (6.1) Comparing experimental thermal conductivity data for
n hexane with the values calculated using Dahler's rough hard sphere theory
a - x *exP 
• - * *RHS,D
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*

V /  Vo

Fig. (6.2) Comparing experimental thermal conductivity data for 
n-octane with the values calculated using Dahler's 
rough hard sphere theory

T  ̂ exp 
• - a *RHS,D
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estimate of the thermal conductivity of a liquid from its measured 
viscosity.

The thermodynamic range for which this estimation procedures is 
applicable is severely restricted by the range of validity of the RHS 

model. Moreover, the accuracy of the estimate is very much worse than 
that of the experimental data obtained using modern measurement 
techniques. In order to obtain a better representation of the present 

experimental data and a correlation/prediction scheme of higher 
accuracy it is clearly advisable to make use of the available thermal 
conductivity data in its formulation.

6.3 Correlation of Experimental Thermal Conductivity Data
6.3.1 Preamble

In order to provide a useful correlation of their experimental 

thermal conductivity of dense fluids Menashe et al̂  [ll8] adopted an 
entirely empirical approach to the problem. They supposed that the 
density dependence of the internal and translational contributions to 

the thermal conductivity of the fluids were the same. Using the fact 

that to a good approximation the zero-density thermal conductivity of a 
dilute polyatomic gas can be written as [141]

Q
O  15 R f i L r v o c o  V , int O  //-- in

X = ~  M t1 + °*352 --) 11 C6-1)

where R is the universal gas constant, M the molecular weight, and
C . the internal part of the molar heat capacity at zero density. v , m t   ̂ r j j

They made the hypothesis, by analogy with the monatomic case, that the
group,



182.

*• - (-£ (/)2/3A o
(6 . 2 )

should be a function of (V/Vq). In terms of experimental quantities

f = 1.936 x 107 \V2/̂ 3 (M/RT)^
(1+0.352 C . J R) v,int

(6.3)

It is important to distinguish between the A used here, which represents 
the low density limit of the thermal conductivity of a polyatomic gas and 
A0 used previously for the definition of A* in 5.5 and 6.2.1. Thus the 
functional forms of A' and A* are different.

According to the hypothesis of Menashe et_ al_ [ 118], it should be 
possible to superimpose plots of A* against log V for one fluid at 
several different temperatures upon each other by shifts along the log V 
axis. This was indeed found to be possible for normal alkanes with an 

odd number of carbon atoms from to C^> w^t 1̂ an accuracy comparable 
with the uncertainty in the experimental data. Furthermore, it was found 
that the curves for all of these liquids could be superimposable on one 
another. This entirely empirical scheme therefore provided a useful 
correlation procedure. However, there is no firm foundation for the 
original hypothesis of their scheme and it is found that the relationship 

between A f and (V/V ) for polyatomic fluids is quite different from that 
between A* and (V/V ) for monatomic fluids. In view of the fact that the 
latter was used to provide the analogy for the development of the former 
the situation is unsatisfactory. This observation is reinforced by the 
fact that the temperature variation of Vq found by analysis of the 
thermal conductivity data was markedly different from that obtained by an
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analysis of viscosity data. A more soundly based analysis of the 

problem of thermal conductivity in dense polyatomic fluids is therefore 
desirable.

6.3.2 Correlation methods based on the RHS theory

According to the analysis of 5.4.3, the thermal conductivity of 
the RHS fluid can be represented by a simplified form of equation 
(5.64) as

XRHS,D
A°

(6.4)

where both the radial distribution function (g) and the ratio (b/V) are 
functions of (V/Vq ) alone. The coefficients C^, and are 
algebraic functions of K only.

In view of the fact that K, the dimensionless moment of inertia, 
is a parameter of the model and the mass distribution of realistic 
molecules may not be represented in such a simplistic manner, it should 
be recognised that these coefficients derived for the rough hard sphere 
theory do not necessarily reflect the exact behaviour of real fluids.

Instead the form of equations (5.64) and (6.4) suggests that even 
though the use of these equations in the direct calculation of the 
thermal conductivity may be restricted by the range of validity of the 
RHS model (see 5.4.2 and 6.2), it should, however, be possible to 
establish on the basis of this analysis that the thermal conductivity 
of a rough hard sphere fluid depends predominantly on the ratio (V/Vq), 
and the dependence on the mass distribution of the molecule enters only



184.

in the coefficients of a correlation equation relating the thermal 
conducitivity and (V/Vq) (see equation 6.4).

The underlying principle of the correlation method proposed here 
is to represent the thermal conductivity data primarily by its 
dependence on (V/Vq), and determine empirically the coefficients which 
optimize this representation.

The approach can be justified by the following reasoning. It has 

already been shown that for the rough sphere model the dependence of 
the thermal conductivity on the parameter K is weak. Furthermore, 

within the model K is a temperature independent quantity and even for a 
real molecule is likely to be a weak function of temperature. It is 

therefore entirely reasonable to expect that the quantity X* should be 

a function only of (V/Vq). Consequently, by analogy with the analysis 
of the diffusion coefficient, D*, and the viscosity coefficient, T)*, it 

should be possible to superimpose plots of X* vs log V for a number of 
different isotherms for a single fluid upon each other. The amount of 
the relative shift for any two isotherms then determines the ratio of

the V values at the two temperatures. Of course absolute values ofo
VQcannot be determined by this procedure. A further extension of this
argument which acknowledges the weak dependence of X* on K would
suggest that even among different fluids X* may be a universal function

of (V/V ). o
In the sections which follow we consider the application of these 

ideas to the present thermal conductivity data. We begin with the 
establishment of a simple and convenient method for the representation
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of the thermal conductivity of one fluid along a single isotherm. 
Subsequently we consider the proposal that the density dependence of X* 
is universal among several isotherms for each liquid. Finally, we 
consider the hypothesis that the universality of X* extends to 
different fluids. It is to be expected that the increasing generality 
of the correlation scheme implied by these steps will lead to some loss 

of accuracy. However, as will be shown the scope which is provided for 
the extension of the thermodynamic range of given set of data by the 

most general procedure makes the marginal loss of accuracy acceptable 
for many purposes.
6.4 The Correlation Schemes

6.4.1 Individual Isotherms
We first consider the representation of the density dependence of 

the thermal conductivity of a single liquid along an isotherm. The 
thermal conductivity of n-hexane at 307 K as a function of molar volume 
is plotted in Fig. 6.2, to illustrate the form of the dependence and 
the smoothness and scatter of the experimental data, which is typical 

of all systems studied. A number of forms of empirical relationship 
between the thermal conductivity and the molar volume have been 
examined in order to represent the experimental data. The most 
successful equation takes the form

log X* = a - a. log (V/V ) (6.5)o l  o

where
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*7 2/3 kX* = 1.936 x 107 XV (M/RTK (6.6)

with X in units of Wm"** K“*. V is the molar volume, M the molecular
mass, R the universal gas constant and T the absolute temperature.

In equation (6.5), Vq is an arbitrary scaling parameter. For
simplicity, and later use it is preferable to assign a value to V foro
each liquid at each temperature which is at least physically realistic. 
The values employed for each liquid at each temperature are listed in 
Table 6.1 and the manner of their selection will be described in the 
next section. The same table includes the optimum values of the 
coefficients a and a, as well as the standard deviation of the 
experimental data from the correlation of equation (6.5). Figure (6.4) 

to (6.9) contains plots of the deviations from the correlation of 
equation (6.5) for each liquid. In no case do the deviations exceed 
± 1.2%, whereas the standard deviation is less than 0.5% for the whole 
set of data. These figures are consistent with the combined 
uncertainties of the experimental density and thermal conductivity 
data. It is particularly noted that a typical error of ± 0.3% in the 

density data introduces a projected error of ± 1.5% in the thermal 
conductivity.

The correlation given by equation (6.5) and Table (6.1) provides a 
secure means of extrapolation of the present thermal conductivity data 

to the conditions of saturation at a particular isotherm given accurate
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X 1Cf<' M3MOL'1
molar volume, V

Density dependency of the thermal conductivity 
of n-hexane for the isotherm T=34°C

Fig. [6.3)
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density data. The extrapolation has been carried out for each liquid 
at each isotherm. Accounting for the uncertainty in the density and 
the thermal conductivity. The extrapolated value has an estimated 

error of ± 1.8%. Figure (6.4) and (6.9) include the departure of the 

most reliable of earlier results under these conditions [142-159] from 
the extrapolation of the present results.

The measurement of Castro _et̂  al [ 142] for n-octane and those of 

Calado et al [ 151 ] for 2,2,4-t rimethylpentane are the only data 
obtained with a high precision transient hot-wire instrument. In the 

case of these two sets of results we have consistently used for 

comparison the data 'uncorrected' for radiation. This is because, as 
we have demonstrated earlier (see 2.4) the correction applied was in 
fact unnecessary. The agreement between the data of Castro et al and 

Calado et al and the present extrapolation is within ± 1.7% and is 
within the mutual uncertainties of these sets of data. The deviations 
of the remaining measurements by the other workers from the correlation 
of equation (6.5) amounts to as much as 8% in some cases although a few 
measurements are in much better agreement with those reported here. In 
any case, the results obtained using the transient hot-wire method are 
to be preferred owing to their higher accuracy.
6.4.2 Individual liquids

An immediate generalization of the correlation scheme is to follow 
the earlier argument (see 3.2) and to consider that the density 
dependence of the thermal conductivity is the same for all isotherms. 
As expected on the basis of the RHS theory, we should be able to carry 
out the superposition of curves of X* against log V for different
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temperatures by shifts on the log V axis alone. The lowest isotherm 

for each liquid is chosen to be the reference datum. Thus the curves 

at high temperatures are superimposed onto the curve at the lowest 
isotherm.

The shift of the curve corresponding to a temperature T necessary

to superimpose it on the curve for the reference temperature, T ,R
determines the ratio V (T)/V (T„). Thus, if a value for V (T ) iso o R o R
adopted the characteristic volumes, V , for high temperatures may be
generated. The reference values of V for n-hexane, n-octane, benzene
and cyclohexane have been taken from the analysis of their viscosities
carried out by Dymond [l34—137]. For 2,3-dimethylbutane and

2,2,4-trimethylpentane the reference values have been determined by
superposition of the \* vs log V curve for the lowest isotherm on that

for the respective normal isomer. All of the values of V for theo
liquids studied here are collected in Table 6.1.

Since the graphical superposition procedures for X* and log V are
carried out on a similar basis to that of Dymond’s analysis of

viscosity data [134-137], it is interesting to examine the ratio
V (T)/V (T ) determined using the two properties. Figures (6.10) to o o R
(6.12) illustrate the temperature dependence of the ratio Vq (T)/Vq (T^)> 
deduced from these two independent analyses for n-hexane, n-octane and 
benzene. For n-hexane the two sets of results are remarkably close, 
and even though the agreement for n-octane and benzene is not as good
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the discrepancies are still not large. Further analyses of the two 
properties would be necessary to establish the full extent of the 

compatibility of these analysis on the basis of the same rough sphere 
model.

As a result of the superposition procedure, a single curve of X* 

against log V can be obtained for each liquid. Figure (6.13) to (6.18) 
contain plots of the quantity \* against V/Vq for each liquid. These 
graphs demonstrate that satisfactory superposition is indeed possible. 
The dependence of X* on temperature can hence be essentially accounted 

for by the dependence of Vq on temperature. This observation is 
consistent with the arguments based upon the RHS theory.

For the representation using the form of equation (6.5), we may 

assume that the coefficients a^ for the correlating equations are 
temperature independent. The success of the superposition process 
means that it should be possible to represent the entire body of data 
of each liquid studied in this work by a single equation of the form of 
Equation (6.5), using the values of listed in Table (6.1). The 
optimum coefficients of the correlation of this type are listed in 
table 6.2, together with the standard deviations of the fit. Figure
(6.19) to (6.24) illustrate the deviations of the experimental X* from 
the correlation of Equation (6.5) and Table (6.2). All the deviations 

are within ± 1.5% except for 1 data point for n-hexane and 1 data 
point for 2,3-dimethylbutane where they amount to as much as ± 3%. 
These deviations are somewhat larger than those which occur when 
individual isotherms are represented by seperate equations. 
Furthermore, it is possible to discern from the deviation plots some
systematic trends. However, bearing in mind the uncertainties in both 
the thermal conductivity and density it is not possible to assert with
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certainty that these trends are real. More accurate density data are 

necessary before such an assertion could be made and its consequences 
investigated.

In any event, from a practical point of view the temperature 
independent correlation scheme has distinct advantages. This is 
because it allows the prediction of the density dependence of the 
thermal conductivity of a liquid along an isotherm merely from 

measurements of the value at one density. Thus it is possible to 
generate thermal conductivity data over a wider range of thermodynamic 

states than covered by direct measurements. Judged on the basis of the 
preceding comparison the precision of these predictions should be only 
slightly inferior to that of the direct measurements.
6.4.3 The universal correlation

In view of the fact that all the systems being studied can be 
correlated satisfactory on the basis of the rough hard sphere model, it 

is also worthwhile to examine the extent to which the (V/Vq) dependence 
of \* is conformal among all the fluids. Such an examination allows us 
to include those earlier measurements of the thermal conductivity of 
liquid alkanes, including propane [l38], n-heptane [5 ], n-nonane and 
n-undecane [l39], as well as n-tridecane [l40], which have an accuracy 
commensurate with that of the present data. For n-heptane, n-nonane, 
n-undecane and n-tridecane the data lie in a similar range of 

thermodynamic states to that covered in the present work. However for 
propane the measurements extend over the wider temperature range from 
112 K to 298 K although only for pressures up to 70 MPa. Taking all 

these hydrocarbons together we have a total of eleven hydrocarbons and 
an extremely wide range of thermodynamic states.
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The curve of X* against log V for n-hexane at 307 K has been 
adopted as a reference, and we have sought to superimpose the 
corresponding plots for all the other fluids at all temperatures upon 
it, by shifts along the log V axis alone. Figure (6.25) shows the 
result of this procedure. The consistency between the curves is 
striking, particularly in view of the large temperature and density 
range now represented in the figure.

In order to quantify the agreement the entire body of data in Fig.

(6.19) has been represented by the simple equation

log X* = A - B log(V/V^) (6.7)

where A = 4.8991, and B = 2.2595, as obtained from a regression 
analysis. This equation is of the same form as those employed earlier, 
but the superscript 'u' on Vq is adopted to indicate that the basis for 
the selection of the characteristic volume is different from that which 
we employed in the previous two sections. The derived values of are 
included in Table 6.3. The quoted values are, of course, all relative 
to the assumed value for n-hexane at 307 K and for this reason, they 
should not be endowed with too much physical significance. 
Nevertheless, the characteristic volume do show the expected trend with 
increasing molecular weight of the hydrocarbons. Figure (6.26) 
illustrates this trend of for the normal alkanes with increasing
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Fig. [6.25) The thermal conductivity ratio X* for liquid 
hydrocarbons as a function of reduced molar 
volume:

n-propane(138): □ - -161°C ; 0 - -132°C ; B- -100°C ;
m - -77°C ; m - -46°C ; a - -13°C ;
B - +25°C

n-hexane: o-34°C ; • -48°C ; © -72°C ; o -87°C
n-heptane(5): 0 -35°C ; m -50°C ; 0 -75°C 
n-octane: A -34°C ; v -48°C ; a  -72°C ; ▼ -89°C 
n-nonane(139): © -35°C ; © -50°C ; © -75°C ; O -90°C 
n-undecane(139): © -3S°C ; ♦-50°C ; © -75°C 
n-tridecane(140) : + -35°C ; x -48°C ; * -73°C
2,3-dimethylbutane: © -36°C ; © -48°C ; ® -72°C 
2,2,4-trimethylpentane: □ -40°C ; ■ -48°C ; n -64°C ;

H -7 8°C
benzene: n -37°C ; a-47.5°C ; a-71°C ; a -88°C
cyclohexane: ®-36°C ; CD -51°C ; © -80°C
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uFig. (6.26) The characteristic volume (Vo) as a function of the 

number of carbon atoms of a series of normal alkanes

, , 6 3 , - L(xlO m mol )

Number of carbon atoms



Fig. (6.27) Deviation of the experimental thermal 
conductivity data from the correlation 
of eq.(6.7) and Table 6.3:

n-propane(.138) : H - -161°C ; a- -132°C ; B- -100°C
ID - -77°C ; ES - -46°C ; El'- -13°C ;

0 - +25?C
n-hexane: o-34°C ; • -48°C ; € r72°C ; o -87°C 
n-heptane(5): 0 -35°C ; B -50°C ; q -75°C 
n-octane: A -34°C ; v -48°C ; ▲ -72°C ; ▼ -89°C 
n-nonane(139) : ^ -35°C ; ❖ -50°C ; <>-75°C ; <> -90°C 
n-undecane(139): ^ -35°C ; ♦ -50°C ; O -75°C 
n-tridecane(140) : + -35°C ; x -48°C ;★ -73°C
2,3-dimethylbutane: Q -36°C ; © -48°C ; ® -72°C 
2,2,4-trimethylpentane: □ -40°C ; ■ -48°C ; h -64°C

h -78°C
benzene: c-37°C'; a-47.5°C ; n -71°C ; a -88°C 
cyclohexane: ©-36°C ; © -51°C ; e -80°C
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number of carbon atoms at one temperature (307 K).

Figure (6.27) displays the deviations of the experimental thermal 
conductivity from the correlation of Equation (6.7). The maximum 
deviation now amounts to as much as ± 4%, and the standard deviation is 

one of ± 0.68% for the entire set of experimental data, consisting of 
over 900 points.

The deviations therefore exceed the estimated uncertainty of the

thermal conductivity and density and are slightly larger than the
corresponding values when each liquid is treated independently.
Nevertheless it is remarkable that a single equation should be capable

of describing the thermal conductivity of liquids as diverse as propane
and benzene with an accuracy of ± 4% over such a wide range of
temperature and pressure. The near universality of the relationship of
X* to (V/V ) immediately suggests a reliable means of estimating the
thermal conductivity of the liquids studied here, since all that is
required is the characteristic volume VU for the prescribedo
temperature. In the best case this could be deduced from a measurement
of the thermal conductivity at one density at the temperature of
interest. Failing this the value of VU could be obtained byo
interpolation within or extrapolation outside of the range of the 

values given in Table 6.3. Figure (6.28) plots the values of for 
each liquid as a function of temperature and reveals that such an 
interpolation is relatively straight forward. With some further loss 

of accuracy estimated values of VU could also be obtained from the
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viscosity for fluids whose thermal conductivity has not been measured
in the same way as described in 6.2.1. The near universality of X* vs
V/Vq for hydrocarbons therefore provides a powerful tool for the
estimation of the thermal conductivity of such liquids. Obviously
progressively more general and increasingly empirical schemes can be

established on the basis of that employed here. An example would be to
investigate the possibility of prediciting the thermal conductivity of

members of a homologous series by making use of the regular dependence

of the characteristic volume V on the number of carbon atoms.o
However, this investigation is considered beyond the scope of the 

present work.
From a more fundamental point of view the deviation plot in Fig 

(6.27) shows that the relationship of X* to (V/V ) is not completely 
universal as indicated by the systematic trend of some of the 
deviations. Within the accuracy of the available data, particularly 
for the density these systematic deviations are only just significant. 
However, given more accurate density data, it would be interesting to 
examine these trends more closely in conjunction with a more advanced 
theory of transport in dense fluids.
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Table 6.1

Coefficients of the Correlation of Equation (6.5) for Individual 
Isotherms and the Characteristic Volumes

Liquid Temp
(K) ao al xlO6 m 3 mol 1

Standard deviation

Hexane 307 4.9318 2.3312 72.64 0.34
321 4.9427 2.3551 71.77 0.47
345 4.8880 2.2394 71.24 0.47
360 4.8619 2.1862 70.86 0.55

Octane 307 5.0665 2.2701 97.48 0.32
321 5.0643 2.2651 96.51 0.19
345 5.0764 2.2928 96.33 0.32
362 5.0524 2.2382 95.59 0.58

2,3-dimethylbutane 309 4.8988 2.2684 67.15 0.21
321 4.8687 2.2093 66.99 0.34
345 4.7847 2.0474 66.62 0.39

2,2,4-trimethylepentane 313 5.1610 2.4696 89.06 0.22
321 5.1265 2.3958 89.07 0.44
337 5.1271 2.3998 89.07 0.52
381 5.1097 2.3648 89.14 0.55

Benzene 310 4.3698 2.1753 57.67 0.17
320.5 4.3502 2.1268 57.50 0.13
344 4.3440 2.1111 57.11 0.23
360.5 4.3699 2.1757 57.00 0.42

Cyclohexane 309 4.2622 2.2205 74.14 0.07
324 4.2390 2.1579 73.84 0.23
353 4.2599 2.2151 73.40 0.30
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Coefficients of the Correlation of Equation (6»5) for 
Individual Liquids

Table 6.2

Liquid a0 ai Standard deviation

n-hexane 4.9120 2.2889 0.70

n-octane 5.0625 2.2607 0.41

2,3-dimethylbutane 4.8583 2.1899 0.79

2,2,4-trimethylpentane 5.1274 2.3995 0.50

Benzene 4.3586 2.1475 0.31

Cyclohexane 4.2556 2.2031 0.24



Table 6.3

The Characteristic Volumes, V^, for the Correlation 
of Equation (6.7)

n-hexane

T(K) 307 321 345 360
VUxl06 m 3 mol”* o 72.64 71.74 71.18 70.79

n-octane

T(K) 307 321 345 362
VUxl06 m 3 mol”* o 104.76 103.69 103.49 102.70

2,3-dimethylbutane

T(K) 309 321 345
VUxl06 m 3 mol”* o 66.99 66.83 66.90

2,2,4-trimethylpentane

T(K) 313 321 337 351
VUxl06 m 3 mol”* o 95.67 95.75 95.61 95.62
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benzene

T(K) 310 320.6 344 360.6
VUxl06 m 3 mol“* o 46.33 46.18 45.86 45.76

cyclohexane

T(K) 309 324 353
VUxlO^ m 3 mol""1 o 56.27 56.05 55.72

propane

T(K) 112 140 170 196 227 260 298
VUxl06 m 3 mol-1 o 37.47 36.56 35.47 34.70 33.84 33.57 33.32

n-heptane

T(K) 308 323 348

VUxl0^ m 3 mol-'*' o 87.88 87.52 86.84



n-nonane

T(K) 308 323 348 363
VUxlO^ m 3 mol-*- o

1______________________
122.52 122.09 121.36 120.79

n-undecane

T(K) 308 323 348
VUxlO^ m 3 mol“* o 161.57 160.96 159.71

n-tridecane

T(K) 308 321 348
VUxl06 m 3 mol-1 o 204.18 202.83 200.97
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C H A P T E R  7

SUGGESTIONS FOR FUTURE WORK

A transient hot-wire instrument for the accurate measurement of 
the thermal conductivity of liquids has been further refined. In the 

present work a complete and analytic solution to the simultaneous 
radiation and conduction problem in this instrument has been developed. 
It is believed that the measurements obtained using the present 
instrument are the most accurate available at present. Thus it is
recommended that further experimental studies of the thermal
conductivity of liquids should be undertaken to enable the

establishment of a comprehensive database for this property. In

particular, the high accuracy of the present experimental results means 
that they should be useful in the establishment of a standard for the 

calibration of other thermal conductivity instruments.
Specific recommendations concerning the possibility of using this 

type of instrument to measure the thermal diffusivity and heat capacity 

of fluids have been made in appendix 1. It is envisaged that, with the 
improvements suggested here some useful results can be obtained 

relatively easily together with high quality thermal conductivity 

data.
The theroretical studies in Chapter Six (6.4.2) revealed that 

there is a need for experimental data for the thermal conductivity over 
a wider temperature range and for more accurate density data. The 
former can be implemented most easily in the present instrument by an 
improvement of the temperature control system. Specifically, a higher
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quality oil and a better insulated oil bath can raise the upper 
temperature limit considerably. The determination of liquid phase 
densities at high pressures with an accuracy of better than 0.1% is 
however a more difficult problem.

With regard to the development of the theories of the liquid 
state, the present experimental data would provide a rigorous test for 

any models and theories of dense polyatomic fluids which are proposed 
in the future and which will supersede the rough hard sphere theory. 
On the one hand, it is certain that the increasing use of molecular 
dynamics simulations will play a major part in these developments. On 
the other hand it cannot be overemphasised that valuable information 
can be extracted from the use of appropriate models of the molecular 
transport processes. Thus it would be worthwhile to pursue further 
investigations in both of these respects along with the development of 
rigorous statistical mechanical theories.

Already it has been shown that a reliable correlation scheme can 
be established on the basis of a very simple rough hard sphere model. 
Undoubtedly more realistic models and rigorous theories will become 
available. An extension of these ideas into the treatment of a wider 
range of thermodynamic conditions and substances clearly seems 
possible. In other words we can foresee future techniques helping us 
to predict transport property data of dense polyatomic fluids for the 
design of chemical processes with the same degree of confidence which 
we now have when dealing with dilute monatomic fluids.
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A P P E N D I X  1

THE EXPERIMENTAL DETERMINATION OF THE THERMAL DIFFUSIVITY OF LIQUIDS

USING A TRANSIENT HOT-WIRE APPARATUS

Introduction

In the last decade, the transient hot-wire technique has become 
established as an accurate method for the determination of the thermal 

conductivity of liquids and gases (see Chapter 2).

Because the thermal diffusivity of the fluid also enters the 
working equation of the method, it is possible, at least in principle, 
to measure this quantity at the same time. The combination of the 

results of measurements of the two quantities with density data (p) 
then permits the heat capacity of the fluid at constant pressure (C ) 
to be evaluated. Measurements of this quantity by the transient hot
wire method have indeed already been reported [ 157 ]. It is the
purpose of this Appendix to examine the measurement more closely in 
order to establish its likely precision.

Applying an analysis similar to that described in Chapter 2, the 
working equation for the measurement of the thermal diffusivity can be 
written as:

where the subscript o denotes equilibrium condition (i.e. before initia 
tion of the heat flux). AT^ is the measured temperature rise of the 
wire, and 6T^ and 6T2 are small corrections which are discussed in 
Chapter 2. a is the radius of the wire and c = exp(y) = 1.78107.
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S is the slope of the linear regression line between and &n t

d(ATid)
S = d £n t

or from equation (2.9)

S = 4irX(Tr, pr)

(A1.2)

(A1.3)

In equation Al.l, a time t = 1 s has been chosen as the (arbitrary) 
point of evaluation of the temperature rise since at this time all but 

the corrections 6T^ and 6T2 are entirely negligible and even there the 
corrections do not amount to more than ±0.3% of the temperature rise.

Error Analysis

In a transient hot-wire instrument, the temperature rise of the 
wire is inferred from the resistance change of the wire by means of a 
suitable calibration of the resistance-temperature characteristics of 
the wire (see §3.4). The temperature rise is then calculated from the 
equation (see §3.4.1)

(Rn-R ) - (Rn, . - R , 0
AT Z s' &(o) s(o)

a(T , P) [R(w % - R , J (A1.4)
(o) s(o)

in which R^ is the resistance of the long wire in the system and Rg is 
the resistance of the short wire employed to compensate for unaccounted 
effects at the ends of the wire (see §3.4.1). The quantity (T , P) 

is a pseudo-linear temperature coefficient of resistance (see §3.4.1).
For the automatic bridge employed in our measurements, shown 

schematically in Fig. 3.4, the resistance difference R^-Rg is determined 
directly from the value of the fixed resistors in the bridge according 
to the equation (see §3.4.1)

R£ - Rs = (Cj-R^Rp Z-l
z-c.

(A1.5)
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where

and

R <A1.6)
s

is given by equation (3.11) and can be written in the form

C1
Rj-RS

R+RS+R' (1 + y -)
(A1.7)

with R p  R2, RS, R and R* denoting bridge resistors in Fig. 3.4 and 
equation (3.14). Throughout all of our measurements the values of 
R^, R and R f remain fixed. During the course of any one transient 

measurement the times at which a sequence of bridge balance occur for 

a series of preset values of or, equivalently, Rg, are determined.
The bridge is designed so that is exactly unity when measurements are 
carried out under equilibrium conditions and when the transient heating 

has proceeded for about 1 second. Consequently, neither nor Z con

tribute to the evaluation of R0-R at either of these extremes. Further-36 s
more, the value of departs very little from unity at any time [58, 59]. 
Thus if R££ denotes the value of R2 employed for a transient measure
ment of 1 s and R2  ̂denotes its value for the equilibrium measurement 
the equation for the evaluation of the temperature rise of the wire may, 
to a very good approximation, be written as

ATw
ClR2f

a(To, P)(R
"2i
2i~R

(A1.8)

which becomes exact when = 1 at the end
of a measurement. Ignoring the small difference between AT. , and ATid
for the purpose of the present error analysis we find that

K 0
2a c exp L2i

L2f
d C
d 36n t

-1
>
)4 (A1.9)
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The error in the quantity (dC^/d £n t)  ̂is made negligible in the 

design of the bridge [58] , so that the only significant error in the 
determination of the thermal diffusivity arises from errors in the 

resistance and the radius of the wire a. In particular, errors 

in the remainder of the bridge resistors and in the temperature coef
ficient of resistance a(TQ) do not propagate to the thermal diffusivity.

However, the thermal diffusivity is very sensitive to the values 
of both a and Thus differentiating equation (A1.9) and inserting
the values of the various parameters characteristic of our instrument 

we find
dX
-XT = 5 d R„ (A.10)
^ O

where 5 has unit of 1/resistance and

= 2 —  (A.11)a

The first of these results (A1.10) shows that an uncertainty of just

0.02 ohm in the value of which is typically 400 ohm (tolerance
0.005%) produces a 10% error in the measured thermal diffusivity.
Because this is strictly a random error, there is nothing that can be
done to reduce the contribution to the error in 0^ and hence C aparto P
from improving the precision of I^.

The error in the radius a is also significant because the hot-
A

wire employed in our measurements has a radius of a ^3.5 um and it 
is therefore difficult to achieve a high precision in its measurement 
and to ensure uniformity along the length of the wire. To some extent 
this latter difficulty could be overcome by means of a calibration with 
respect to a fluid of known thermal diffusivity since the effect is
systematic.
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Results
Using equation (Al.l) the thermal diffusivity has been calculated 

from experimental data on a number of liquids in the temperature range 

35 - 90°C and pressure rargp 0.1 to 650 MPa obtained with the present 

instrument. Subsequently the heat capacity of these liquids are cal

culated as explained earlier.
Figure (Al) illustrates a plot of the heat capacity of n-hexane 

as a function of pressure. It can be seen that there is a large 
scatter in the experimental data for the heat capacity determined in 

this fashion, as has been found by other workers [157]. This 
observation confirms the result of the analysis of the previous 
section, that the random error in significantly affects the accuracy 
of the thermal diffusivity. It is clear that the present instrument 
is not suitable for the determination of the thermal diffusivity of 
liquids. Furthermore, resistors of a higher precision than are nor
mally available would be necessary to design an instrument for this 

purpose. Evaluations of this type have been performed for all the 
liquids studied in this work and the results are similar to those 

shown for n-hexane. That is, the most that can be said is that the heat 
capacity of the liquids does not vary by more than ±20% over the 
range of pressure 0 - 650 MPa. The poor precision of the measure
ments makes any more definite statements impossible, so the data are
not included m  this thesis.
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A2.1 Gauge Calibration

The gauges used for measuring the pressure within the autoclave 
were calibrated against a dead weight tester. The dead weight tester 
has an accuracy of better than 1 MPa at 700 MPa [158], and has been 
calibrated by the National Physical Laboratory. This calibration 
can be found elsewhere [27],

Table A(2.1) - Gauge Calibration

Temperature
(°C)

Gauge Reading 
(Bar)

Mass
(kg)

Absolute Pressure 
(MPa)

23-3 670 22*31585 67*81088
23-3 960 31*97359 97*14940
23-3 1250 41*61469 126*43226
23-3 1536 51*28094 155*78669
23-3 1826 61*00004 185*29643
23-3 2112 70*61094 214*47269
23-3 2407 80*23314 243*67766
23*3 2701 89*89324 272*99267
23*3 2998 99*54039 302*26298
23*3 3280 109*16680 331*46666
23-3 3580 118*78980 360*65312
23*3 3896 128*45180 389*95101
23-3 4193 138*06325 419*09226
23-3 4468 147*70490 448*32294
23-3 4773 157*35160 477*55990
23-3 5070 167*08395 507*05277
23-3 5366 176*70065 536*19056
23-3 5635 186*36505 565*47059
23-3 5950 194*17085 589*09997
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The calibration of the gauge used in the pressure system is given in 
Table A(2.1) and the pressure inside the autoclave is determined 
from the gauge reading by interpolating the calibration data.

A2.2 The Physical Properties of the Liquids Investigated

The density of n-hexane, n-octane, 2,2,4-trimethylpentane and 
benzene have been taken from the measurement of Dymond et al, [137, 
159-161] and are calculated using the secant bulk modulus equation:

¥  = K + K.P + K0P2 (A2.1)o 1 2

where the constants IL are given in Table A2.2 and K is defined by

i  = pp /(p-po)

where is the density at atmospheric pressure. The density at the 
required pressures has been calculated for all the isotherms for which 
the coefficients have been given. A quadratic interpolation between 
these isotherms yields the density at the required temperature.

It is estimated that the measurements in Table A2.2 are accurate 

to within ±0.2%, and the interpolation introduces errors of no more 
than ±0.1% in density. Thus the overall uncertainty is estimated to 
be ±0.3%.

For cyclohexane the combined results of two investigations by 
Isdale and his collaborators were employed [161, 162]. The accuracy 

in the reported densities is between ±0.1% and ±0.2%. Tables A2.3 
and A2.4 list the densities obtained from those sources.
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Table A2.2 - Values of coefficients in equation (A2.1) for secant bulk 
modulus for n-hexane, n-octane, 2,2,4-trimethylpentane 
and benzene

Liquid Temperature
(°C)

k
° 9 (Pa) x 10^

ki k2-1 -9 (Pa x 10 V

n-hexane 25 0*6682 4*156 1*580

50 0*5312 4*016 1*442

75 0*4548 3*636 1*156
100 0*3324 3*731 1*636

n-octane 25 0*7847 4*846 2*448

50 0*6495 4*776 2*548

75 0*5277 4*647 2*587

2,2,4-trimethylpentane 25 0*68821 4*4989 1*7645
50 0*57396 4*3028 1*7295
75 0*45967 4*1713 1*7148
100 0*36293 4*0580 1*8363

benzene 25 1*0351 5*876 9*450

50 0*8578 5*313 5*290

75 0*6993 4*785 3*046

________________________________________________
100 0*5325 5*022 3*674
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Table A2.3 - Density of cyclohexane F1611

T
(°C)

P
(MPa) p -3 (kg m

25 0-1 773-8

10*0 781-8

20-0 789-2

75 0*1 725-9
10-0 737-6
20-0 747-8
50*0 772-0
100-0 802-0

Table A2.4 - Density of cyclohexane (1621

T Density (kg -3. m )
(°C)

P (MPa)

0-1 2.6 5-1 7-6 10-1 12-6 15-1 17-6 20-1

25 773-8 775-9 778-0 780-0 781-9 783*9 785-7 787-5 789-3
50 750-3 752-9 755-4 757-8 760-1 762-4 764 • 6 766-8 768-8
75 725-9 729-0 732-1 735-0 737-7 740-4 743-0 745-5 747-9
95 705-9 709-6 713-1 716-4 719-6 722-6 725-5 728-4 731-1
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For 2,3-dimethylbutane, the measurements by Bridgman [163] were used.
The density is estimated to have an uncertainty of ±0*3% over the pressure 

range of interest. Table A2.5 lists these data. The experimental data 
for cyclohexane and 2,3-dimethylbutane have been fitted to cubic poly
nomials in pressure for each isotherm. Quadratic interpolations between 

isotherms have been carried out to obtain densities at the required tempera

ture. The total uncertainty in the data is estimated to be ±0*4%.

Table A2.5 - Density of 2,3-dimethylbutane

Pressure
(bar)

_3Density (kg m )

0°C 50°C 95°C

0 680-8 635-0 592-2

1000 744-3 716-4 691-8
2000 783-0 759-8 740-2
3000 810-9 788-6 770-5
4000 832-3 812-1 795-1
5000 850-6 831-7 816-3
6000 866-7 848-0 834-1
7000 - 863-8 850-1

The density data for toluene at high pressure are so scarce that it 
is not possible to use them to examine the density dependence of the 
thermal conductivity. However, density data are still required for the 
application of small corrections in the reduction of the thermal conduc
tivity data. For this purpose the density has been estimated using the 

limited data available along one isotherm at 60°C [164]
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P (atm) V(P, T)/V(1
1810 •885

2930 •853

4400 •824

and the tabulated density along the saturation line [165]. Assuming that 

the pressure dependence of the density is the same at all temperatures 
and that the value at the saturation vapour pressure is the same as that 
at atmospheric pressure, this is sufficient information for the esti
mation. The errors in the density incurred by this process may be as 

large as 5%, but this is not significant to the evaluation of small cor
rections .

The specific heat capacities of the liquids are also required for 

the small corrections of the experimental data (see §2.5). For n-hexane, 
n-octane, benzene, cyclohexane and toluene, these values have been taken 
from the compilation of Vargaftik [165]. For 2,3-dimethylbutane and 
2,2,4-trimethylpentane, the tabulations of Shaw [166] have been used.
A2.3 The Physical, Electrical, and Mechanical Properties of Platinum

Table A2.6 contains the physical, electrical and mechanical proper

ties of the 7 pm platinum wire which was used as a heat source in the 
transient hot-wire measurement cell.

A = 67-05 W/m/K
P = 2137 kg nf3

CP 131-3 J kg-1 K-1

v = Poisson's ratio 0*35

e2s = I M  = 2-77 x 10“ 7 MPa-1 R 3s
1 3R r i a“6 i .t-. —1-d -r- = 1 *6 x 10 MPa K 9p

S yield stress ^ 150 MPa ^y

Table A2.6 - Physical, electrical and mechanical properties of platinum
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A P P E N D I X  3

RESULTS OF DAHLER1S ROUGH HARD SPHERE THEORY FOR 

VISCOSITY AND THERMAL CONDUCTIVITY

An outline of the moment method

An n*"*1 order moment tensor of the distribution function may be defined

S ^  = ..... f(jr,c_,t) dc
ijk ljk

where r̂ is the position vector, ĉ the velocity vector and t the time. The 

quantity

c( n )
ijk c.c .c, . 1 J k

is a tensor of order n formed from the components of the velocity ĉ  The 
zero moment is the number density. The first moment is the macroscopic 
flux ncQ. Higher moments are related to the temperature, pressure tensor 
and energy flux vector. If the Boltzmann equation(or other kinetic 
equations) is multiplied sucessively by each of the c^n  ̂ and integrated 
over the velocities, we obtained successive equation for the moments.
To solve the moment equations, a trial function is set up in which a number 
(v) of arbitrary parameters are included. These parameters may be written 
in terms of the first v moments. The remaining moments may then be 
written in terms of lower moments. The first v equations of the set of 
moment equation are thenassumed to describe the time variation of the 
parameters and consequently the behaviour of the fluid. Thus from these 
equations the transport coefficients describing the behaviour of the fluid
can be identified.



A3.2 245.

The application of this method to the derivation of kinetic theories 

can be found elsewhere [129,130]. In this appendix we concentrated on 
analyzing the results derived for the transprot properties of a dense rough 
hard sphere fluid [130]. The aim is to cast these results into a form 

which can be used directly for the interpretation and correlation of 

experimental data.

Viscosity Coefficient

From Eq. (5.50) and (5.51)

where Pidduck’s approximation is given by

(A 3 i )

By defining

( A  ) i )

we can rewrite equation A3.2 in the form

n. (A

Also
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J ___ l ±_ ( rn
1 TX V 0's'\ TU /

—  H° (A 3-5 )
\ 5" Tt V

where b is given by Eq.(5.17). Hence the ratio of PsĤ p to H is

fr- RHS,P £ (k v \ )x r
CK ' 3* * 0  ^ 1

^Vvi \-l w , Cikw^)
5 ( W O  ^ 3 )  V i5Tt\/ ^A3 6 )

Also from Eq. (5.17)

t o  c  -1- i t  -B vVc _ b
v  J v<

( ft 5 1  )

and from Equations (5.21) and (5.23)

- -  $ c * > (A 3-8 3

so that we can express Eq. A3.6 as

a PH<>,P

H' f , c  * »VC (ft 5-n)

Simplifying Eq. A3.6 by grouping powers of (b/V)

1 RHS, P
VI0

4 (V^I)
^ ( O U H )

V £ ( ' k v O x i ( ^ u )  b , 1

\3,*4-£ b' (Vvi) V lu3K-U)- *

i
iL
5jKtz V  n _  h j o m o
? ( y  + o )  + j - v t r  ( v .  v \ ) ^  * (A 1  io )
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When K = 0,

^  gw>, p —  v  o.? -i- * o . m  ( M  ov  V v y  a
(ft ).ii)

Thermal Conductivity

The thermal conductivity for a rough hard sphere fluid is given by 
Eqn's (5.52) to (5.54). To determine the coefficients and p

the determinants of the matrices given by Eqn's (5.56) to (5.59) have been 
obtained. The results are:

c v ^ ) 2- 1  (WJ l Vti }

t 4 fro

 ̂ J I \̂ 5 (y+\y s \ (*vo*

I ■ ]  • [ $ & <  )

( A  *• ii )
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i5(K*i)l( 3 J u T  <S + *5 i Y u y

V  *+l « ( *  + !)’

J5 VUS , 
( V m ) 1* 1 1

\c -\-iVvO i u _ j i 1 _ 1

Si

x. $ ( 3 4 l o g ) X 2 

45 (K.+O'’ ( u < } )  j  T

( A  5 - 1? ;

rt 5 U  C H W S K i f r S m o  
155 (K + r)s

5 l2o

S,\ (Acvi )r

-id 1 1 1 , 
l  «* J

4 ( , v 5 H ) U
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I
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In order to simplify these equations, we need to establish a number

of algebraic relationship, which are

(i) From the definition of d given by Eq. (5.60), we obtain

where

\/ N a ̂v c
X I

( A  V \ S  >

being the close-packing volume of rigid spheres. N.is the Avogadro'sA
constant and V is the molar volume. The remaining symbols are as defined 
in 5.4.3.

(ii) From the definition of K in terms of I, we obtain

K T  _ A - k T  _ 4  i f  k l \
(h \ 1 4 -)

(iii) Again using the definition for d

( ^ ) / d
k),i K«ut ^

~lb~ [ k ’ T \>X
4-q l jr rh /J V  =

_1 _  / k i r V * -
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It should be noted that A. does not represent the low density result for

the thermal conductivity of the rough hard sphere fluid. The advantage of

using this quantity as a reducing parameter is that the functional dependence

of the thermal conductivity can be represented in a convenient form, as it
will become apparent later. For example, we can write

-Al
(A )

(iv) Considering the group

O  v \ ? >
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(v) Also the group

a J u V l i \ %
*h V7X 1/

d m

(vi) and finally,

( A i _ L £

n K  <T kr
It L

‘/i

o k i ^
V rc n (T V  /

2. n K (T jf K T >
) u

y  ̂  1VtC m ')

2 n (T5 i ( k 1T '
* > (T^Tt ro ,

■ ^  V- 0
'KVi ✓ 1 5

k 3 r
TC rv\

Vi
)  n (T

(/\ ’-ll )

(A io )
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By examining Eqn’s (5.53) and (5.54), together with (A3.12) to (A3.14) 

for the occurence of the groups on the left hand side of conditions (i) to 

(vi) and substituting with the appropriate right hand side of the relations,
"t rwe have arrived at the following equations for X and X

A3.9

_A
C±
15

' r j  --
V u  ( H V 3 8 )  
>35 (V )*

( iV* *- 2 V V i) - Eli - 1 1 1 —  
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, 3z ( 3H V. ,,

-i!( s w a ) i ! i ^ ^ x )
^ lA /  4-1 \ V 7 / Aj ir. . M  q f  At . .\2V * * . '(M\\) U t | ) 1 1 {U\f 3 1< + »

( V « )  J ) 3 V. V.M

>< f I V —  L11L122 \j „n
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15 ( V H ) 4

^  f . V.
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Since

and g is a 

a function

+ - Tt 5_U l 4 ij(H)
(•Va- O 5

5 U  6 V- 

8 \ (V*\)*

* h  s *
v  v + \

t
( H O

r>

t r  Ve ( U M )  \T  ^ 2- --  ------- N V> n <\
V ( V\  )  0

( A  3 . i ,  >

b n  =  i_ 
V

—  TT rfl —3 V
(  A 3. )

function of (V/Vq) only, Eq. (A3.21) 
of (V/V ) and K only.

V"indicates that (-A__ 'N is
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The right hand side of Eq. A3.23 contains terms involving only (V/V )

r
or functions of (V/Vq) and K only, so that we can conclude that  ̂ is a 
function of(V/V ) and K only.

Combining Eqn’s A3.21 and A3.23 gives the total thermal conductivity 

for the rough hard sphere fluid, which of course is a function of (V/V ) and
K only. Thus ( _ £  ( \ j_  ^ )y J ~ 12S ^  ' '  • By collecting terms in ascending
powers of bn or (b/V), we have obtained an expression for given by

9

Eq. (5.64).
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