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ABSTRACT

The general problem of image reconstruction fram incamplete
information or limited data is encountered in a number of diverse
areas such as medical imaging, astronomy, geophysics, image
processing etc.

This thesis considers two problemsS. The first concerns the
reconstruction of images from the phase or magnitude of their
Discrete Fourier Transform representation.

Phase only reconstruction is motivated by the intelligibility
of the phase only image. Conditions under which an imcge may be
uniquely reconstructed fram its phase function are studied and both
non-iterative and iterative algorithms for reconstruction are
discussed. Phase only reconstruction when only noisy phase is
available is studied and it is shown that the good choice of an
initial magnitude eéti.mate improves. the reconstruction. Several
methods of choosing a satisfactory initial magnitude are presented.

In the case of magnitude only recqnstruction, theory indicates
that irreducible finite support sequences are recoverable to within
an equivalence class but satisfactory practical algorithms for
reconstruction have not always been cbtained. The amount of a
priori information available will determine the rate of convergénce
and this thesis investigates the effect of specific information such
as boundary information and its incorporation into the
reconstruction.

Two important applications arising out of the above are
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considered. A hybrid technique is developed for the restoration of
linearly degraded images with additive noise. A- magnitude only
reconstruction algorithm is found to improve on conventional Wiener
filtering.

The other is Fourier transform block coding, where techniques
which seek to exploit the relative similarity of the magnitude
functions in the blocks are investigated.

The' second problem concerns incamplete image specification in
the space domain. Specificall:- the case where an image is to be
reconstructed fram its intensities along the edge cor;tours or their
polygonal approximation.

A reconstruction method is developed which treats the problem
as a constrained minimisation to find an image campatible with the

given contour and intensity information.
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CHAPTER I

INTRODUCTION

1.1 Introduction

The problem of reconstruction from incomplete data can be said to be
present in all forms of digital image processing because any digital
image can be viewed as quantized samples of an analog image function.

For most purposes however, an image sampled above the Nyqﬁist
rate and digitized to a useful number of levels (say 256) can be
cuusidered to be a full or complete image and it 1is images
reconstructed from much less information either in the time or
frequency damain that are the subject of this thesis.

Applications abound throughout image processing and there are
also many analogous problems in other engineering disciplines. A few
of these applications are presented here.

Generally, the incamplete image information may be present in
the time damain or in a transform daomain and the reconstruction
process may use either or both of these damains.

In the time domain we may have insufficient information due to
decimation. Another application is sub-Nyquist sampling where the
image function is sampled below the Nyquist rate, but at such a
frequency that the aliasing camponents fall at predetermined
frequencies and can be extracted.

In the transform domain, we have several application where iu is

necessary to re~cnstruct an image from incamplete information. The
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Fourier phase problem, where only the Fourier transform magnitude is
available for measurement and the phase must be reconstructed. 1In
image transform coding, only a few sampleé of the transform
co efficients are transmitted. These are chosen so that a
reconstruction algorithm at the receiving end can give reasonable
reconstruction of the image.

-Another application in the transform domain, is image
reconstruction from projections - especially when the imaging fast
moving organs such as the beating heart. In this case we are
interested both in reducing the total number of projections needed
for reconstruction of static scenes as well as in producing images of
reasonable quality from the few projections that can be taken within
the very short 'static' viewing period of a fast moving object.

It is quite probable that the problem can be generalised to
cover incomplete transform information of all kinds, as well as to
consider image partial information that does not fall into either of
the two categories discussed above - for example, a ocontour or
polygonal approximation.

Many techniques, both theoretical and ad hoc, have been
presented for solving the reconstruction problem in same
applications.

A quick look at the history of image reconstruction shows that
the basic approach to the problem has been two pronged. In the first
instance, researchers have tried to establish, theoretically, the
uniqueness of the partial information present, i.e. is the partial

information uniquely linked to the original image function ?
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The second aspect has been a consideration of different algorithms to
perform the reconstruction. As we shall see in the review which
follows, many of the successful algorithmé are interactive algorithms
and hence another approach to the problem has been one of algorithm
acceleration and convergence study.

The importance of this subject may be illustrated by the breadth
of applications where it occurs, they fall into 4 general categories:
Type 1: Those applications where only partial information is

available and there is no other way of forming an image.
This includes ’.I'omographic reconstruction from limited
projections, phase only and magnitude only reconstruction,
High resolution Synthetic Aperture Radar (SAR).

Type 2: Where full information is present - but noisy or erroneous
- Current techniques for image restoration and blind
deconvolution would benefit from reconstruction methods.

Type 3: Where full information is present but some is selectively
discarded for the purpose of data compression - e.g.
Transform coding etc. and the received image from such a
system may be treated as a limited data image, and

reconstruction methods used to recover the original image.

This thesis addresses itself to several forms of this general

problem. The general problem may be put in the following manner:
Limited samples of an image are obtained and an attempt is made

to desiribe to the maximum extent possible, the image from which

these samples were obtained, subject to
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(i) Acceptance of all available data

(1i) Ensuring all ext.rapo‘lated data are consistent with a priori
knowledge.

(iii)Being neutral about data that are not measured and cannot be

extrapolated.

Even though the above problem specification is applied to an image,
it may often happen that the available incomplete information is not
in the image domairn itself but in another domain, uniquely related to
the image function. Several significant problems in a number of
diverse areas that have missing information in other domains include
phase and magnitude only reconstruction, bandlimited spectrum
extrapolation, tamographic reconstruction from projections etc.
In all these areas, the two basic problems to be addressed are
(1) Theoretical considerations of the uniqueness of the image
derived from the partial information.
(11) Practical algorithms to reconstruct images given ‘the limited
data. The main factors here are numerical camplexity of the

algorithms, rates and bounds of convergence.

1.2 Scope of the thesis:

This thesis addresses two subproblexﬁs of the image reconstruction
problem.

The first concerns the reconstruction of images fram the phase
or magnitude of the fourier transform.

Interest in this area is motivated by several factors. The

causative factor is the perceived different roles played by phase and
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magnitude of the signal. A phase-only image is often intelligible
while a magnitude-only image is not. Phase is considered more
important than magnitude and this is utilised in phase only holograms
and Fourier transform coding.

In the former, the magnitude is discarded and replaced by a
constant, wﬁile in the latter, the phase is coded using more bits
than the magnitude.

The relative importance of the phase has prompted suggestions
that perhaps the full image may be reconstructed from phase only,
with consequent reduction in the amount of information needed to
represent an image.

A second factor is the presence of a number of applications
especially in astronomy and optics, where only one or other of the
Fourier spectral camponents is available for measurement.

Scra form of reconstruction is then necessary to obtain an
estimate of the full spectrum.

Phase only reconstruction with i *“era tive algoritims has been
found to converge most <;f the time in contrast to magnitude only
reconstruction. There has however, not been a suitable analysis of
the noise sensitivity of phase only image reconstruction. An
analysis is presented in this thesis and consideration is also given
to ways of improving phase only reconstruction both for the noisy and
noise free cases.

| Fast adaptive algorithms <for both phase and magnitude
reconstruction are developed.

Magnitude only reconstruction has had a longer history than

phase only reconstruction, albeit a less successful one. Although
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reconstruction is theoretically possible if the finite sequence is
irreducible in practice the problem appears to have a very large
number of local minima and convergence to the true glcbal minimum is
virtually impossible unless the initial starting point is very close
or if stringent constraints are available. The amount and type of a
priori information available as well as the constraints used will
determine the rate of convergence of the iterative algorithms and
this thesis investigates the effect of specific information such as
extra phase information, boundary information etc.

Two important applications arising out of the above are
considered. The first is +*he restoration of linearly degraded
images with additive noise. Conventional restoration techniques use
restoration filters (e.g. Wiener) which tend to restore the magnitude
leaving the phase function unrestored. A hybrid technique is
presented where phase restoration is carried out by using the
restored magnitude and noisy phase as initial estimates in an
iterative magnitude only reconstruction. The other application is in
Fourier transform coding where techniques which seek to exploit the
relative similarity of the magnitude functions among blocks of the
image are investigated.

The second issue addressed in this thesis concerns incomplete
image specification in the space domain specifically the case where
an image is to be restored from a representation of its contours and
texture. This is motivated by the intelligibility of contour images
and the premise that tlic regions between contours have uniform
textures.

It is shown that iterative methods can be used to achieve
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reconstruction from this information and it is extended to the case

where polygonal approximations are used for representation.

1.2 Outline of the thesis

Chapter 2 is a survey of some of the results which have appeared in
the literature concerning image reconstruction from incomplete
information.. The general problem is presented and a brief historical
background of some of the more popular application is given. A
rather more extended survey is then made of the problems that have
been considered in some detail in this thesis. These are the
magnitude only and phase only reconstruction problems.

Due to the importance and wide use of iterative reconstruction
methods in solving these problems, we include a brief review of these
iterative approaches.

In chapter 3, the phase only reconstruction probliem is examjned.
in detail. The conditions under which an image can be uniq;.lely
represented by the phase of its DFT are considered and both
iterative and non-iterative reconstruction algorithms are developed
for the case where the correct phase function is available. The
sensitivity of phase only reconstruction to both additive and
quantisation noise is examined and it is shown that this sensitivity
can be reduced if an estimate of the magnitude function is available.

Several techniques are examined for faster phase only
reconstruction and in particular the effect of the initial amplitude
on the rats of converéence of the iterative is exploited. Several
ways of choosing an appropriate starting magnitude function are

developed.
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In chapter 4, a similar study to that carried out in chapter 3 is
done for the case of reconstruction from magnitude only. This
problem is generally less tractable and the uniqueness conditions are
more general. A variety of reconstruction algorithms that have been
used for this problem are discussed and compared and scme reasons
offered for their lack of success. Faster adaptive algorithms with
extra constraints are studied. Due to the importance of a priori
information on the success of the reconstruction methods, same
special study is made of reconstruction from magnitude given some
other information. In particular, it is sh.own that given the sign of
the phase, the problem becomes a lot less ill conditioned. A general
study is then made on the quality of reconstructions fram other
partitions of Fourier domain.

Chapter 5 is devoted to some frequency do@ applications of
image reconstruction. Same of the results developed in the previous
chapters are used. Magnitude only reconstruction is used to estimate
the phase of a degraded image that has been restored by a Wiener
filter. The degraded image phase is taken as the first estimate in
the iterative reconstruction. In the second part, a Fourier phase
coding technique is developed. It uses the correct phase function
and an estimate of the magnitude function as developed in chapter
three.

Chapter 6 considers a related space domain reconstruction
problem. It examines the question of whether a useful reconstruction
of a gray scale image can be made from its csatour representation. A
similar constrained iteration approach is found to yield useful

results. The reconstruction image is found as the solution to a
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constrained optimisation problem, where the maximally smooth image
consistent with the given information is sought.
Chapter 7 provides a brief summary of the results presented in

the thesis. Same open questions and areas for future research are

described.



CHAPTER TWO

BACKGROUND
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CHAPTER 2

BACKGROUND

2.1 Intrcduction

This chapter provides a review of some of the more important
application areas where the limited information problem is
encountered. As well as reviewing the background and solutions to
these problems, we also look at some generalisations of the iterative

algorithms that have been appli~d to this problem.

2.2.1 Computerised tomography

Computerised Tomography (CT) is easily the one application of image
reconstruction that has captured public imagination. The principles
of camputerised tamography apply widely. The basic . radicgraphic
problem involves the reconstruction from proj ection measurements of
the linear attenuation co efficient integrated along the path of a
collimated X-ray beam. The basic reconstruction techniques are based
on Radon's rigorous solution to the problem. This has subsequently
been further developed by others (2], [3] and reconstruction from
projections has found many new applications in such diverse fields as
geophysics, radio astronomy, structural biology, non-destructive
testing, etc. 1In its medical applications, CT has been used in a lot
of modalities other than X-rays e.g. Nuclear Magnetic Resonance
(N\MR) , Positron BEmission Tomography (PET). and in different ray

gecmetries.
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The original uniqueness results obtained by Radon are in general
valid only when scans in all directions are available even though
there are some exceptions [1] such as when the unknown function is
radially symmetric.

The incomplete information appears in several forms in CT. For
example the Fourier phase problem appears when CT systems that
measure their data in the Fourier space are unable to measure the
phase. In many practical applications, requirements for high
temporal resolution of the presence of. an X-ray opaque structure
prevent the measurement of all the lT'Lne integrals or it may be
desirable to reduce dosage by exposing the patient for a Shorter
time. Attempts to use existing algorithms in the limited data
problem result in images with severe streak artifacts [6].
Alternatively, the modality being used, such as in oceonagraphy or
electrical prospecting, the area involved may be so large that it is
impractical to collect data in 360°.

Same recent workers (7], (8] have considered ﬁtilising the
Gerchberg Papoulis  iterative frequency domain  extrapolation
algorithms (38, 391 This however is only really applicable when the
missing projections are in a continuous range and only for parallel
beam geametry. The missing projections then correspond to a segment
of the frequency spectrum and can be extrapolated. Considering the
same problem, Sezan and Stark (9] use the method of projection onto
convex sets [10] which can allow the incorporation of more a priori

constraints.

2.2.2 Synthetic aperture radar

The limited data problem also occurs in Synthetic Aperture Radar
(SAR)
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In high resolution radar imaging, the fidelity of reconstructed
images is limited by the high side lobes of the point spread
functions (psf). These sidelobes are essentially artifacts resulting
from spectral camponents missing in the measured spectral data and
are higher when the measured spectrum is very discontinuous. One of
the earliest approachés to this problem was the use of 2-D tapered
windows to suppress the sidelobes which is effective- when many
independent data samples are available. However it may lead to
severe degradation when only a few samples are available.
Alternative methods that have been used include the Gerchberg Saxton
algorithm.

2.2.3 Reconstruction from contours

The problem of reconstructing images from contours has not received
much direct interest in the gray scale case. When the image is
bilevel, this corresponds to the classical contour filling problem.
There have been several approaches to this and similar problems ([11]
(20]. As with the phase, there have been approaches to image coding
where it has been found beneficial to emphasize the contour
information and treat it separately from the other image information.

Two source modelling was first proposed by Schrieber (13] and since
'then many workers have used composite source models in transform
coding.

+ In the main, this work has considered the spatial image as a
composition of two images [edge image, difference image] or th
transform co efficients as composite sources ([low iIrequency, high
frequency] .

One recent approach +to reconstruction from contours ([17] uses
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spline interpolation to estimate intermediate texture. The basis of
this and other approaches is that one does not try to reproduce the
image intensity like traditional coders, but only tries to find a
reconstructed image that is compatible with the given information.

We consider the application of some of these reconstruction
methods to the problems of recovering gray scale images from their
contours and polygonal approximation.

Classical approaches have had the following basis. There has
been interest in coding methods that code pictorial feature rather
than pixel arrays. (Since human observers do not seem to perform
quantitative analysis on each pixel point, but rather to search for
distinguishing features such as edges or textural regions.) For
example, methods based on contours, edges and texture regions have
been studied.

If a quantized image is considered as a stack of slices or
planes each of constant gray level, the image may be represented by
the boundaries or contours of the gray levels in each slice.

These contour may then be efficiently encoded for image
transmission. The basic premise of contour coding as a means of
bandwidth compression is that an image will contain a much smaller
number of contours compared to the total number of its pixels and
that the contours can be more efficiently enccded.

While this may be true for some images and compression rates of
7:1 for black/white images and 1.5°1 for gray scale images are
obtainable, the whole process is ra+her complicated and suitable only

for rather low transmission rates (19] for gray scale images,
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higher compression rates may be obtainable if some of the information
is left out.

An approach related to contour coding as described above is edge
ocoding. Here the image is convolved with an edge detector and the
edge map obtained. This is of course camposed of contours which may
be efficiently coded as described previously. The image is also
low pass filtered. Thus its data may be reduced by taking only the
major low frequency co—efficients after applying a suitable transform
e.g. Fourier.

The image may then be reconstructed using these two campressed
representations. At rates of up to 0.25 bits)pixel have been
reported (19] on images of little detail, but the method has a high
level of system camplexity requiring transform , edge detectors, edge
linkers, followers linkers, etc.

Finally we look at texture coding which also falls within the
context of our problem. The basis here is that if the image is
segmented into disjoint regions of fairly constant texture, then the
regions (say contours) and the measured texture. Campression is
achievable because the regions boundaries may be efficiently coded
and the texture simple represented - perhaps by a simply measured
textural value.

Reconstruction of the image takes place when the regions are
reconstructed and their internal texture synthesised. This approach
is still of some research interest, with many workers looking both

into efficient analysis and synthesis of texture.
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2.2.4 Bandlimited spectrum extrapolation

The most popular reconstruction problem among research workers is
band limited signal extrapolation. Here one attempts to extrapolate
a finite segment of data, given that it is band-limited. Papoulis
[38] considered this problem for continuous signals and proposed an
algorithm for solving it which iterated between bandlimiting the
estimated signal, and then replacing-the known segment with its
correct value. Convergence was proved by exploiting the properties
of prolate spheroid wave functions.

Sabri and Stenart [25] proposed a single step closed form
solution to the problem using an "extrapolation matrix". Cadzow
(26] reconsidered the problem, and by discretising the problem
arrived at a superior closed form solution.

Gerchberg [27] considered the same problem with the. frequency
and time domains reversed. He estimated the high frequencies of a
finite length signal from the given low frequencies using a similar
itefative algorithm.

A .related problem which forms the subject matter of much of this
thesis is the reconstruction of an image fram samples of the phase or
magnitude of its Fourier transform together with some extra
information such as finite support etc.

2.2.5 Reconstruction from phase only or magnitude only.

The phase and magnitude of the Fourier transforms of images play

different roles and it is well known[ZS,lOﬂ that many of the important

features of a signal may be preserved if only the phac. is retained.
There are a number of important application areas where only one

or another of the camponents of the Fourier transform of a signal can
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be measured directly. In such situations, the need arises for the
reconstruction of the original signal from the one available
component.

Reconstruction from magnitude is a fairly well established
problem that has also been called the 'phase retrieval problem' and
the 'Fourier phase problem'.

The problem is to reconstruct the original phase function of an
image given the discrete magnitude spectrum. This is often necéssary
in socme applications where only the magnitude is available or can be
measured and the phase must be reconstructed. These include X-ray
crystallography (40], radicastronomy [42], Electron microscopy [41]
and image processing [44] in optical astronomy.

In X-ray crystallcgraphy, the molecular structure of crystals is
to be inferred from the observed diffraction of pattern of X-rays.
The diffraction pattern is related to the scattering density of the
crystal by a Fourier transformation, but only the intensity (squared
magnitude) can be measured.

To determine the crystal structure, knowledge of the phase is
indispensable and phase retrieval must be carried ocut. In optical
and electron microscopy, the index of refraction of a thin object or
the height distribution of a surface may need to be determined from
the intensity of the wave distribution in the image plane. To
determine the structure phase information is needed.

Imaging through a turbulent atmosphere may reduce the resolution
of objects well below the diffraction 1limits of the telescopes.
However the development of speckle interfercmetric technique it is
now possible to obtain diffraction limited information about the

Fourier transform intensity of the object ([43]. Because of these
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and other important applications there has been a lot of research
effort by workers in these areas on both the uniqueness formulations
and reconstruction methods. This problem is also of extreme interest
in electrical engineering because of the i.mport:ance‘ of the Fourier
transform in the subject.

There is also the dual problem which arises when dealing with
camplex sequences in the space damain. Let f£(x) be the space domain
signal in any of the applications above and F(w) it Fourier
trans form.

Camplex Valued functions.

£x) = |£(x) [exp [Jo(x)] (2.1)

F(w)

Il

| (w) |exp {Fog(w)} (2.2)

are thus defined where |f(x)| and [F(w)| are the magnitudes of the
signal and its Fourier transform, and ¢ f(x) and g (w) are their
corresponding phase function

In one dimension (1-D) the two dual problems of whether |F(w) |
uniquely defines the phase of F(w) given that f£(x) is time-limited
and whether |f(x)| uniquely defines the phase of £(x) given that F(w)
is bandlimited were considered by Hofstetter (22] and Walther ([45].
They showed that neither time nor band limitation is, in general,
sufficient to ensure a unique solution to the phase retrieval
problem.

This lack of uniqueness is attributed to the possibility of
'zero flipping'. The flipping of a zero about the jw-axis preserves
the magnitude of the Fourier transform as well as the duration of the
signal and hence allows 2P (p = numbér of zeros) different

signals having the same duration and Fourier transform magnitude as
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f(x). However a unique solution is obtained if all the zero are
imaginary.

Because of this ambiguity, as a result of zero flipping, workers
have searched for solutions based on the availability of additional
information. Such an ara is electron microscopy. For example
Greenway [46] has shown that the presence of any interval over which
the field in the object plane is known to be zero, is sufficient to
ensure a unique solution. Furthermore both the field in the exit
pupil and in the image plane are known to be entire functions due to
the finite extent of the field in the object plane and finite size of
the aperture in the exit pupil. Hoenders (47] has shown that these
constraints reduce the phase ambiguity to a single field £f(x) or
£ (%)

Another variation of this problem is the case wherz the field
intensity in two planes known - e.g. electron microscopy where the
field is measured both in the image plane as well as in the exit

pupil plane giving both |F(w)| and |f(x)

. Another example is when
the field is measured in two slightly defocussed planes in an optical
imaging system.

In the first case above, Huiser [24] showed that the solution is
unique to within a constant phase factor for analytic functions and
in the second case toco, unique solutions have been obtained [47].

Further information has been obtained by adding a known
reference signal to the unknown signal, prior to the observation or
measurement of the magni*ude [48] such a procedure is used in

holography. Knowledge of the reference signal may allow the phase
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information to be retrieved and the original complex function to be
reconstructed.

With proper choice of reference signal, one may ensure that the
observed signal is minimum phase and hence use the Hilkert transform
to retrieve the phase. The use of Hilbert transform relations for
phase retrieval has been considered by many workers e.g. (58].

Phase retrieval in the 1-D case has been widely studied as
outlined above. Generally any given |[F(w)| corresponds to an
enumerable (sometimes finite) set of f(x) satisfying some conditions
[22].

The reduced ambiguity of the two dimensional (2-D) phase
retrieval problénl was noted by several workers, but one of the
earliest detailed studies of the 2D case was by Bruck and Sodin
[23]. They considered a case of reconstruction a discrete image
function f(xX,y) from its discrete autocorrelation function. They
Fourier transform is related to the corresponding z-transform which
is a polyncmial P(z,w).

They defined an equivalence relationship between two polyncmials

P(z,w) A BAp(z,w) z° W (2.2.1)

A i1s a constant

z° represents a shift along the x axis

Wt represents a shift along the y axis
Knowing the spectrum modulus is equivalent to knowing p(z,w),

p(z—l, W) or its equivalent polyncamial

Q(z,w) = pl(z,w) p(z_l, wly 7% (2.2.2)
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They show that there is a large number of multiple solutions in the
1-D case.Their basic postulate is that the uniqueness of a function
is linked to the irreducibility of its z-transform.

In the 2D as opposed .to the 1D «case, there exist
polynominals that cannot be factored. Since the probability of
finding a non-factorisable polynominal is much higher than that of a
factorisable polynominal, multiple solutions are not as common in the
2D case as the 1D case. Any polyncmial of the form
p(z,w) = gl(z) + wk
is non-factorisable for k>1.

Bruck and Sodin further postulated that the factorisability of
any polynominal geometrically implies latent or overt repeatability
of the image elements. For example a structure may be superposed on
other elements by shifts and constants. The same autocorrelation
polynominal but with opposite shifts would lead to quite a different
image function. So only images characterised by the above
repeatability are not reconstructed uniquely. They did not provide a
procedure for determining p(z,w) from Q(z,w) but conceded that it
would be a quite complicated solution of a set of second order
equations.

Recently, Hayes [30] extended the Bruck and Sodin postulate that
the uniqueness of a 2D sequence with finite-support is related to the
irreducibility of its z-transforms. The polynominals are taken to be
unique if they have at most one irreducible non-symmetric factor.
Lawton (59] applies the Poisson summation formula in conjunction with
certain properties of fanctions which are 2D generalisations of the

prolate spheroid wave function to derive an
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algorithm for determining X(m,n) from |X(u,v)| over parallelogram
shaped regions.

Fienup (37) Quatieri [35] Hoyes 3] - used modified forms of
Gerchberg and Saxton algorithm to solve the problem. Gonzalves [60]
proposed an alternative algorithm which uses a polynamial expansion
for the phase. The phase is modelled as a sumation of Zernike
polynomials and a cost vector.

Reconstruction from phase has only recently received the sort of
attention that was given to the phase retrieval problem. This is
rather suprising because of the observed importance of phase over
magnitude in image intelligibility. The applications of phase-only
images are not as numerous. Phase only images can be used for image
alignment, taking advantage of the fact that the autocorrelation
function for phase only images is an impulse (31].

In image transform coding, an important bit rate reduction may
be obtainable if it were possible to code only the phase of the
Fourier transform of an image. Many coding techniques allow more
bits for coding the phase than the magnitude [61], [62].

Ancther area where image formation relies heavily on the
intelligibility of phase only images is in Kinoforms or phase only
holograms [21]. The quality of images reconstructed frcm Kinoforms
would be greatly improved if the magnitude function cculd ke
recovered fram the phase function.

In the area of blind deconvolution the signal of interest has
been degraded by.a blurring function about which detailed !mowledge
is not available. In some special cases, the distorting signal may

be known to have a phase function that is approximately zero and
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consequently the phase of the degraded signal is very similar to that
of the original image. In these céses the problem becomes one of
reconstruction from phase only. Examples of this situation occur in
seismic signal processing ([8] as well as in image processing
(32]. |

Phase only reconstruction may also be useful in the estimation
of the frequency response of a Linear Time Invariant (LTI), if the
symmetry of an input can be controlled [28].

In the restoration of images degraded by additive noise, phase
only reconstruction could be useful. Such systems with additive
noise are sensor noise and quantization noise in low data
transmission systems. Usually filters used for such restoration are
of zero phase and consequently only estimate the magnitude function
without modifying the phase function. Scme significant improvements
are made if both the phase and magnitude are estimated (28], [64].

An analytic solution to phase only reconstruction is possible
through the Discrete Hilbert Transform (DHT) for minimum phase
sequences (34] but this requires the unwrapped phase. Alternative
closed form solutions have been considered (63], ([65] but there are
many restrictions on the size of the matrices.

An iterative approach has also been used {35]. This is similar
to the ones used of phase retrieval and move altermately between the
space and frequency domain, imposing known constraints in each

domain.
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2.3 Iterative reconstruction algorithms

For many incomplete information problems, explicit inversion formulas
are not known or are difficult to use. Consequently iterative
reconstruction algorithms have been widely applied. Some of these
have already been ocutlined above.

The structure of these algorithms are quite similar; we simply
alternate between forcing time domain and then frequency domain
constraints on the signal. This simple idea of iterating between two
domair 5 has encouraged many others to try and apply the same concept
to more camplicated problems. For example, Malik ([66] solves a
multidimensional maximum entropy (MEM) spectral estimation problem by
iterating between the correlation domain and the convolution inverse
of the correlation domain, forcing constraints on the model power
- spectrum in both domains in an attempt to .-find the MEM power
spectrum.

Finite impulse response (FIR) filter design algorithms, such as
the Remez exchange have been deliberately designed to try to
iteratively adjust the filter co efficients in the time domain in
order to decrease the worst errors in the frequency domain. More
extreme examples are iterative autoregressive moving average (ARMA)
modelling algorithm of Eykoff (49] or the iterative inverse filtering
algorithms of Konvalinka ([50] which iterate between estimating
residuals, poles and zéros in a manner that appears to solve the
corresponding medelling problems.

Recognising the conceptual similarity of all these algoritims,
as well their resemblance to certain iterative deconvolution

algorithms, numerous authors have tried to unify the presentation
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and convergence proofs of these algorithms. For example, using the
notion of non-expansive and contraction mappings, Tom et al (67] have
shown that when the solution to the reconstruction problem is
unique, then convergence of the bandlimited and the phase-only
reconstruction algorithms could be proved by showing that each
iteration of the algorithm defined a strictly non-expansive mappings.

Fixed point theorems of Ortega [51] were then invoked to prove
convergence. Schafer et al ([52] take an identical approach to prove
convergence of deconvolution and bandlimited  extrapolation
algorithms.

Youla [54] considered the Papoulis ndlisuted extrapolation
problems as only one example of a class of iterative projection
algorithms involving two sets of constraints on projections of the
unknown signal. By considering the more general problem in an
abstract Hilbert space setting, he characterised the properties of
the algorithm in terms of the 'angle' between the constraint spaces.
Mosca (53] treated the same subject in depth analysing the various
degeneracies possible in solving ill-behaved linear problems in
infinite dimensional spaces.

Jain ([S55]interprets the bandlimited extrapolation problem as
solving a least squares problem. They derive Papoulis iterative
algorithm, discuss closed form solutions in terms of Discrete Polate
Spheroid Function and they show that Cadzow's closed form solution is
the minimum norm solution to the least squares problem. The least
squares approach leads to a conjugate gradient iterative algorithm.
Musicus ([68] adopts a similar approach but uses Minimm Cross

Entropy (MCEM) optimality criteria instead of simple leasts quares.
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It appears that a particularly rewarding approach to the formulation
of new algorithms is to define an objective function measuring the
goodness of the estimate and then to optimise this function
iteratively. When the objective function is convex, the resulting
iterations are often contraction or non-expansion mappings and hence

an algorithm is generated whose convergence can be easily verified.
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CHAPTER 3

PHASE-ONLY RECONSTRUCTION

3.1 Introduction

In the previous'chapter, we have reviewed the background work in the
general reconstruction problem. In this chapter, we re-open the
discussion in the specific case of Phase Only Reconstruction (POR).

It is possible to develbp a variety of conditions under which an
image may be recoverable from its phase or magritude or any otner
part of its Discrete Fourier Transform (DFT) representation.

In this chapter we examiiic in detail some of the conditions thac
have been developed for phase only reconstruction of signals with a
view to application both in the later parts of this chapter and in
the phase coding problem discussed in chapter five.

While a sequence gererally cannot be uniquely defined in temms
of only its DFT phase or magnitude, there are certain classes of
sequences for which this unique specification may be possible. For
example, there is a Hilbert transform relationship between phase and
log-magnitude of the DFT of a minimum phase sequence. However as we
discuss later, the minimum phase requirement is quite restrictive
and hence it is necessary to study other conditions for uniqueness
that may be satisfied by the images found in practical applications.
Since the phase function may be subject to measurement error in some
of the application areas, or to quantization noise in the coding
application, it is necessary to study the effect of noise o phase
only reconstruction.

This chapter is organised into two main parts. The first deals



- 35 -

with POR given the correct phase samples.

In section 3.2 we introduce same of the basic theory of sequence
reconstruction from phase or magnitude, right up to the minimum phase
condition. After this, we leéve consideration of magnitude
uniqueness to the next chapter and introduce several uniqueness
conditions for the phase.

In section 3.3 we examine reconstruction algorithms that have
been developed for POR and shown their suitability for
reconstruction.

The second part of the chapter deals with some special
extensions té the z2kove theory and some consideration of the effects
of noise. Section 3.4 is devoted to an experimental study of the
effect of noise and to a consideration of the effect of noise on the
iterative reconstruction.

Section 3.5 discusses the effect of the choice of the initial

amplitude estimate on the convergence of the iteration.

3.2 Phase Uniqueness

Poisson's formulas or Hilbert transform relations can be developed
formally fram the properties of analytic functions. For example,
given that the z-transforms are analytic, we have constraints such as
the Cauchy-Riemann conditions relating the partial derivatives of the
real and imaginary parts. .Another is the Cauchy integral theorem,
where the value of a camplex function is specified everywhere inside
a region of analyticity in texms of the values of the runction on the
boundaries of the region.

However, the approach developed here applies a basic causality
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principle that allows a sequence to be recovered from its even part.

3.2.1 Uniqueness of real and Imaginary parts

Any arbitrary sequence x(n) may be written as the sum of an even

sequence x_ (n) and an odd sequence X (n)

x(n) = xe(n) + xo(n) (3.2.1a)
x () =% [x(n) + x(-n)] ' (3.2.1b)
xo(n) =% [x(n) - x(-n)] (3.2.1¢c)

If x(n) is causal, then it is possible to recover x(n) from Xy (n)
‘and, except for n = 0, to recover x{n) from X, (n). This is clear
from the above equations since x(-n) = 0 for causal x(n).

The Fourier transform X(ejmt) of x(n), is generally complex and

may be written as, (t=1)

x(e) = R, X)) +3 I x(eI)]
= Xr(e]w) 3 X (eI (3.2.2)

Given that x(n) is real, X(ejm) is conjugate symmetric and its real
part is even and the imaginary part odd.

Moreover it can be proved that Xr (ejw) i1s the Fourier transform
of X, (n) and that )& (ejm) is the Fourier transform of X5 (n) - see
appendix 1.

Therefore, if Xr(ejm) is known, then provided x(n) is real,

causal ana absolutely summable (stable), then X (ejw) is also known.

I

This is because Xg (n) may be determined from Xr (€?") and hence x(n)

maybe determined using (3.2.1) from which XI e may be obtained.
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Generally the z-transform for x(n)

) w - _-
X(z) = X(red?) = Zx(n)rneJmn (3.2.3)
z=rejm n=o
2, n>o
Since x(n) = Ut(n) xe(n), where Ut(n) = {1, n=0
=, n<o
x(red = Y(ix_(].[0 () £y e en (3.2.4)

i.e. X(rel") is the z-transform of the product xe(n) and Ut(n)r—n'

The z-transform is thus a Fourier transform that is the convolution

of two Fourier transforms

R A

X(rel?) = xr(ej“’) * (3.2.5)

1l + r-le_]m

for r>1.
Using the complex convolution theorem,

1 Xy (v) @® + r Ly

- - dv (3.2.6)

z=rel" 273 C ¥ - o)

C is the unit circle
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X (z) outside the unit circle is described in terms of the known real

part on the unit circle.

If.r=ejem, (3.2.6) is rewritten as a line intégral
T o
_ je je
X(2) = 1 |X; (e°7) P(e-w) d8 + 1 | X3 (e77)Q(8-w) de
z=rel” on ‘ on (3.2.7)

- T =TT

P = Re (1 + 130 : Q=1Imll + ot ejew
L} e L

1 -1 ejeJ
Therefore ™
X (2) =1 X @3®) P(o-w) ds (3.2.8)
27
-
and
m
X @) =1 x 3% Q(e-w) ds (3.2.9)
2m

The above has now been derived starting from a representation of the
real, causal, stable sequence by its even component.
A similar analysis may be carried out starting with the sequence

represeated by its odd component.

i.e. x(n) = xo(n) Ut(n) f x(0) &§(n).
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This gives

Xy (2) = 1| %, @3®) o(6-w) do + x(0)

27

-T

m
X, (2 = 1] %, % Ple-w) a0 + x(0)
27

-T

(3.2.10)

(3.2.11)

To obtain direct relations between X. and XR on the unit circle, take

I

the limits in32.8 and3.2.Jd0as r—e 1. This is alright if the integrals

are performed first. Direct substitution is dangerous because of the

singularity at Cot(0), but using care at the
singularity and interpreting the integrals as

values, we have

% =1p (7% cot(szw) ds
X LR R 2
27
-1
and
™
XR (ej“) =x(0) -1 Pc XI(eie) Cot(Qig) de

2m

-m

vicinity of the

Cauchy principle

(3.2.12)

(3.2.13)
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where Pc denotes Cauchy principle value.
So HI (e]“’) is obtained by the periodic convolution of Cot (-w/2)
with H.R(ejw) , taking special care in the vicinity of the singularity

at 6 = w.

3.2.2 Recovery of the z-transform from the phase or magnitude on the

unit circle

Consider X(z) the z-transform of tr= sequence x(n)

X(z) = |X(z) [e32FIX(2)} (3.2.14)

Its complex logarithm is

K(z) = log {X(2)} = Log [K(2)] + j arg {X(z2)} (3.2.15)
If K(z) is also the z-transform of a sequence k(n), then as
previouslvy showm, lcg X(ejw) and arg X(ejw)' will be Hilbert
transforms of each other, provided k(n) is real, causal and stable.
In particular the above constraint of k(n) implies K(z) has a
region of convergence including the unit circle and hence is analytic
in a region including the unit circle, giving a convergent power

series representation
)
K(z) = D, ki) z (3.2.16)

K(z) is infinite at both the poles and zeros of X(z), so there can

be no poles or zeros of X(z) within the region of convergence

associated with K(z).
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The ambiguity of arg {X(z)} is resolved by the constraint that K(z)
be analytic which in turn implies arg {X(w)} rust be a continuous
function of W and a further requirement is that for x(n) real, k(n)
is also real.

If k(n) is causal then K(z) and consequently X(z) can be
recovered from XR(ejw) = Log [X(ejw)] or xi(ejm) = arg X(ejm)} and

with the previous results,

™

Log x| =k -1 P| arg (x (% Cot (2=u) a9 (3.2.17)
27
-
and
.
arg |x(e3Y) | = 17 log x, €3%) ot (g=u) 4o (3.2.18)
2m

-7

So IX(ejm) | is only specified to a constant multiplier if x (o) is not
known.

‘This requirement that log |X(e)®) | and arg (x(e3%)] be a Hilbert
transform pair is the minimum phase condition and corresponds to the
requirement that k(n) is causal and K(z) is analytic everywhere
outside the unit circle. Since K(z) = log X(z), there can be no
poles or zeros of X(z) outside the unit circle. This is an

alternative expression of the minimum phase requirement.
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Vhile real and imaginary part sufficiency relations were developed
via the z-transform, similar conditions can he developed for the DFT
of finite length sequences with a suitable definition of causality.
Specifically, it may be shown [33] that if

X(k) = Xo (k) + jXI (k) is the DFT of the finite length (or periodic

sequence x(n) then

N-1
JK (k) =1 > X m) Vg (k-m) - (3.2.19)
N =0
j2 CoT (mk/n), k odd
where VN (k) = 0O K even
and
N-1

k
jxI(m) VN(k-m) + x(0) + x(N/2) (-1)

I
™M

(3.2.20)

X (k) =1

J

Unlike the z-transform , it is not possible in general to develop
similar sufficiency relations between log magnitude and phase of the

DFT for minimum phase sequences. Previously, the log of the

z-transform
Iog {X(z)} = log |X(2) | + § arg {X(z)}

was interpreted as a legitimate z-transform of a causal, stable
sequence k(n).
However because the logarithm of a transform X(z) has

singularities corresponding to both the poles and zeros of X(z), its
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inverse is generally of infinite duration. Consequently, the inverse
transform of the logarithm of a transform can not in general be a
discrete Fourier transform. Interpreting log (X(z)} as a DFT of a

sequence of length N, corresponds to the aliased sequence

o0
Z k(n +rN) (3.2.21)
r=-o0

Xp ) ~

3.2.3 The Minimum phase condition

In the previous section, it was established that Hilbert transform
relations exist between the log-magnitude and phase of the
z-transform of minimum phase sequences. Some statements of the
minimum phase condition were then made.

In order to be able to relate these results to practical images,
it is necessary to develop equivalent statements of these conditions

and evaluate their applicability.

(I) The z-transform of a minimum phase sequence has no poles or
zeros outside the unit circle.
For a finite duration sequence, the z-transform has only zeros.
To apply this condition, one would need to locate the positions
of the zeros in the complex plane- a non-trivial matter when

dealing with the 2-D sequences that represent images.

(ITI) Rewriting X(z) in its general form as a rational function
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1 (@]
I -a 2 Y 1 (1-by z) (3.2.22)
k=1 k=
X(Z\ = AZno .
p p
1 (@]
T (1-c z-l) n(1-d, 2)
k=1 k=1

X(z) is minimum phase if it and its reciprocal are both analytic for
|z|>1]. This excludes poles or zeros on or outside the unit circle,

andwithno=0

M.
1
no-a 24 | (3.2.23)
k=1
X{Z) =
P.
1
T (- e 21
-1

Consequently the minimum phase sequence is causal and the unwrapped
phase function has no linear phase component.

The third condition of course is that the unwrapped phase and
log magnitude are related through the Hilbert transform. These are

all fairly difficult to apply to arbitrary images.

3.2.4 Other unigqueness conditions

Uniqueness conditions distinctly different from the minimum phase
condition are developed by considering that one way another sequence

with the same phase may be formed is by convolving the given sequence
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with a zero phase sequence.

In order to understand the effect of convolving arbitrary
sequences with zero phase sequences, it is necessary to study the
properties of zero phase sequences. In 1-D such a study may be done
by considering the pole-zero plots of such sequences.

The Fourier transform G(w) of a zero phase sequence g(n) is real
and non-negative, consequently g(n) is conjugate symmetric for

camplex sequences, and even for real sequences.

g(n) = g*(-n) (3.2.25)
and

G(z)

G*(1/z*).
Therefore the singularities of the z-transform G(z) occur in

conjugate reciprocal pairs.

tan [¢g(m)] =0 for all w (3.2.26)

so ¢glw) =0 or r for all w

Starting off with a finite length sequence x(n) we can develop the
constraints on its z-transform which will ensure that it cannot be
written as a convolution of another finite length sequence and a zero
phase sequence without betraying the conditions.

Consider the finite length sequence x(n) which has no zero on
the unit circle or in conjugate reciprocal pairs and the zero phase
(even) sequence g(n) which are convolved as follows:

y(@n) =x(n) * g(n) 13.2.57)
therefore

Y(z) = X(2) G(2).
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1. Y(2) contains conjugate reciprocal zeros or poles
2. Y(z) contains zeros on the unit circle
3. The zeros of X(z) are replaced with poles in Y(2Z) at conjugate

reciprocal locations.

In order for y(n) to finite in length, Y(2) must either have zeros on
the unit circle or in conjugate reciprocal pairs. If we constrain
y(n) to have no zeros on the unit circle or in conjugate reciprocal

pairs, then it cannot be written as the convolution of x(n) and g(nj.

Condition 1.

If x(n) and y(n) are real sequences of finite length, N, with
ztransforms which have no zeros in conjugate reciprocal pairs or on
the unit circle and ¢X(m) = ¢y(m) at N-1 distinct frequencies. Then

x(n) = 8y(n) for some positive real number 8.

Proof:

Consider g(n) defined as
g@n) =x(@n) * y(-n) (3.2.28)
If x(n) and y(n) satisfy the requirements of the condition, then
tan {¢g(mk)} =0 fork=1,2,....... N-1

w..w are frequencies in the interval

G(w) is real and g(n) is zero outside the interval [-N+1, N-1]
N-1
I[Gw)l = X gl sin () =0 (3.2.29)

=-N+1

N-1
e Z E(")— g(-n)]Sin(n(,L)k)z 0
n=1
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It follows that [g(n) - g(-n)] = 0 as the functions
{sin w, Sin 2W,cecees sin nw} form a Chebyshev set, and consequently
g(n) is even, and
cz) =x@ veE™ =cz™h = x@™h v@.

If X(2) has a k™ order zero at z = z, 0 <|zo]<0°. Y(l/zo) must be
finite since y(n) if finite length.

However, G(Z-1l) must also have a kthorder zero at 2 = Z_. Since
X(Z2) does not have zeros in conjugate reciprocal pairs X(l/zo) mist
be finite, consequently Y(Z) must have a kth order zero at z = z .

o
Therefore, X(Z) and Y(2) have the same zero set.

X(2) = 8 25 ¥(2) (3.2.30)

However if ¢X(m) = ¢y (w), then k must be zero and thus the condition
is proved.

O

In the 2-D case, the finite length constraint is replaced by
finite support constraint on the sequence and the Z-transform is a

polyncmial in two complex variables 2y, 2 The z-transform X (z

2
22) of the 2D sequence x(nl,n2) is defined as

1'

— -ny. N
X(21,22) —Z Z x(nl,nz) 24 z, (3.2.31)

n,
In this and the following chapters, it is assumed that all the
sequences considered have a rational z-transform with a region of
convergence which includes the unit polydisk

|zk| =1 for k=1, 2
Then the Fourier transform exists aid is given by

X(ml,mz) = X(zl’ZZ)

21,25 = eXp {jwl}, exp {jwz}
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jn,w, _Jjn,w
>3 x(ny,ny) e'1%1 e272%2

n n

1 2

or written in terms of phase and magnitude

= Ix(mllwz)l exp jcbx(wlrmz)

The region of support of x(nl,nz) is R(Nl'NZ)' This is the region
inside which the sequence is non-zero and outside which the sequence
is always zero. We assume non-negative sequences

i.e. x(nl,nz) =0, O>n1>Nl, O>r12>N2
finally, F(nl,nz) denotes the set of all 2~Dsequences having for some
Nl’NZ’ a region of support R(Nl’Nz) .

The multidimensional equivalent. of the poles and zeros of a 1-D
z-transform are the zero contours of the irreducible factors of a
multidimensional z-transform.

Consider the symmetric z-transform X(Z), where

-1 _ -1
Z

3.2.
1% ) (3.2.32)

[a'd -k -k
= + I 2
X(zl,z ) tz, Tz X(z

2 2

k - positive integers.
Since a l—D sequence which has a z-transform with all of its zeros on
the unit circle or in reciprocal pairs 1is symmetric, this notion
represents an extension of the 'zero ©phase' properties to
multidimensional sequences. Hence, the multidimensional uniqueness,

a similar statement can be made [30].
Consider x(nl,n2) and y(nl,nz) which are 2-D sequences in the set

F(nl,nz) with support R(N be their

l,N2) . let X(zl,zz) and Y(zl,zz)

respective z-transforms and let Ml > 2N, -1 and M, > 2N,-1.

1 2 2
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If X(zl,zz) has no symmetric factors and
d)x(ml,wz)M = ¢y(wl,w2)M for w = 1,000 M1
W, = 1,000enn M2
M o=,
then y(nl,nz) = Bx(nl,nz) for some number B8

3.3 Reconstruction algorithms.

The -algorithms employed to actually reconstruct an image from its
phase fall into two basic classes - non-iterative algorithms which
rely on the solution of large systems of equations and iterative
algorithmé which successively generate better estimates of the image
at each iteration by imposing well chosen constraints. Strategies
combining these two have been suggested in the literature and it is
feasible that the disadvantages of each method may be alleviated by a
hybrid method. e.g. a non-iterative approach may be used to give a
good first estimate which would enhance the convergence of the
iterative algorithm.

We shall not however examine this approach in any more detail
and we restrict ourselves to studying and comparing some alternative

methods and analysing ways of improving their performance.

3.3.1 Non-iterative algorithms

The POR problem can be formulated in several ways that allow a
non—-iterative solution. This section examines some of the algorithms
that can be developed from these formulations.

If the image is assumed to be minimum phase, a reconstruction
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algorithm can be derived based on implementing the DHT to find the
missing magnitude function. However computation of -the Hilbert
transform is quite involved and requires the unwrapped phase [33].
Phase unwrapping is itself quite difficult ([34] and an active
research problem. Alternative algorithms that avoid direct
irplementation of the DHT have been tried [35] but these involve the
use of an iterative algorithm to implement the DHT of the given
function and are mentioned again in the next section.

Another approach that is applicable to minimum phase sequences
is through the use of Cepstral co-efficients.

The DET of the finite support real sequence x(n) is a

polynominal in e and can be factored

M .
X(w) = [X( ]| e [J6W] =x(0) 1T @1-=-zel (3.3.1)
r=1
where
[zr| < 1 and |X(w)| and ¢(w) are the magnitude and phase
respectively.

Taking the complex logarithm gives

M.
]og |X(w)| + jo(w) = log(x(0)) + > log (1 - zre—jm) (3.3.2)
r=1
and using the identity log(l-t) = - i j:i for |t] <1
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M

>~ .
log |X(w)] + jé(w) = log(x(0)) - Ty z_ e Jnw
n
=1 n=1
M
. n
2
n=1
o0
—_ lOg X(O) - Z e-fjnw
=1 n
Sn
0 .
= log x(0) -~ X e~ 1
n=1 n

(3.3.3)

_ n
where S, = Z z_

n=1

The Sn/n terms are the cepstral co—efficients of x(n) and equating

real and imaginary parts

o

log [X(w)] = log’x(o)‘ - >'s, cos (nw) (3.3.4a)

n
=1



So with the kncwledge of ¢{w), the inverse sine transiorm can be usad

to compute the capsitral co-efficients winicn in turn can be ussd ©o

T s

obtain lcg{H(w)| from equation (3.34a) evcept for the term lcg’x(o) l .

Therefore from the knowledge o0f 4¢(w) alone, we can compute the

seguance x(n) up to a constant scale factor.

This has the same disadvantege of reguiring the unwraposd phease
whicn 1s usually not available. Furthermore the cepstral
co- efficients involve the powers of the zercs of the seguence and
the zeros whose magnitude is less than unity die out rapidly, leading
to numerical problems of recévering them. Conseguently this 1is not
really a practical algorithm either.

In the next apprcach, a closed form relationship is developed

f o

cetwesn the given phase ard the original segquence.

Consider the 2-D sequence x{(n,, n.) with sugport R(N.,N.)} whose

1r 72 == 1772

DFT 1is

) cces not have any syrmetric

Y “Jnpu, 0 3.5
¥ x(ryny) e Jnye sng)) (3.3.5)
n
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whera M (w) and ¢ (w) are the 2-D macnitude and phase Iunctions
rascectively
My -L N1
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N, -1 N2—l
- /. E \:(nlﬂ‘-z)ej{nlh TR, (‘J1’“L2)}
n.=0 n,=
This is equivalent to
3—1 N
g E '11,*\ ) sin (r W)L -u:(l.:)l,(z.‘z)} = -x(0,0) sin {(:"((U)I’UZ)} {3.3.7)
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So, given the phase ¢uw) for (N-1 x N-1) distinct values of w
between 0 and NI, then a system of linear equations in N-1 x N-1
unknowns is obtained if we assure x(0,0) = 1.

Nl—l N2-1

Z 2 X (nl'n2) Sin{nlml+n2m2+¢x (wl ,wZ) }= "'Sin‘bx (ml’mz) (3.3.8)

This result has been derived before by other workers for 1-D
sequences e.g. [36] using trigonometric considerations. The
derivation cutlined above for 2-D sequences appears to be better
because it shows in a convincing way the importance of the absence of
symmetric factors on phase only uniqueness. The system of equations
can be solved exactly for N-1 unkaowns using any standard_technique.
If x(0,0) is not known (3.3.8) only specifies x(nl,nz) to within
a scale factor. The potential problem of numerical instability
caused by severe round off errurs for large values of N is a limiting

factor on the utility of this approach.

3.3.2 Iterative algorithms

Due to the difficulties outlined in the previous section,
non-iterative solutions of the POR problem are not always practical.
In fact for many other related problems such as the magnitude only
reconstruction problem, such closed form relationships are very hard
to come by and the more common approach is the one that utilises

iterative algorithms.
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The iterative algorithm discussed in this section is basically
similar to the original algorithm used by Gerchberg and Saxton
[39], Papoulis [38] and subsequently described in [37], ([35] etc.

These algorithms alternately move between the space and
frequency domains at each iteration igéosing known constraints in
each domain this family of algorithms is illustrated in fig.
(3.3.1).

The basic algorithm used here is:

1° Make an initial guess of the unknown DFT magnitude lxo(ml,mz)l form
the next estimate of the DFT by combining the magnitude guess
with the known phase
X, (wy,u,) = lXo(ml,wz)] exp {jo, (wg,0,)}

Compute the inverse DFT

2° Apply the finite support and positivity constraints

(nl,nz) n1 < Nl’ nl,nézo ,N.< N

% 25 N
xp(nl,nz) _ 4 x(0,0) np=n, =0 (3.3.9)
0 Otherwise
and xp(nl,nz) = {xp(nl,nz) for xp(nl,nz) >0

0 for Xp(nl’n2) <0 (3.3.10)

Campute the M-point DFT

3° The magnitude IXP(ml,w2)| of the DFT is used as the new estimate
of IX(ml,w2)| and the next estimate is formed as
Xp—*l(ml'm2)= |Xp(m1,w2)| exp [j¢x(w1,m2)] (3.3.11)
Compute the M-point IDFT

Go to 2°.
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Fig.33.1 1Iterative reconstruction algorithms



The iteration has converged when a sequence with the correct support
and phase function is obtained

This algorithm is illustrated in the block diagram of fig. 3.3.2

xp (n)

Space Domain Constraints

xp(n) = 0 outside R(N)

x(0) = ag

yp(n)

M-point DFT
(k) = 1Y (k)| exp j(g_(k)

Fourier domain constraints

D) = O
el Q

IDFT

Fig. 3.3.2 Block diagram of itarative resconstruction algorithm
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This algorithm was implemented on the computer and used to
reconstruct the 128 x 128 pixel image shown in fig (3.3.3). (a)
shows the original image and (b) shows the phase only image formed by
taken the magnitude of the DFT to be unity. The reconstructed image
after 30 iterations is shown in (c). In order to perform M-point
DFT's for NxN images where M > 2N-1, it was found necessary to break
up the input images into smaller blocks which were treated separately
and later combined to form the image.

As a consequence of this approach, there sometimes appears a
discernible 'blocking effect' in the reconstructed image, with the
borders of the blocks imposing themselves on the image. This
familiar problem with the blocking effect could be reduced by
overlapping the blocks or filtering and serves to illustrate one of
the problems involved in using this iterative algorithm, i.e. the
necessity to perform 2N x 2N point DFT's. The other problem is the
slow convergence of the algorithm.

Fig. (3.3.4) shows a plot of the mean square error Vs the number
of iterations and it is clear that while the error decreases sharply

at the beginning, the rate of convergence socon slows down.

3.3.2.1 Adaptive acceleration

1. The Gerchberg iteration may be considered as a functional
relationship between consecutive estimates

i.e. (n) = T(Xp(n)), where x(n) is a vector representing the

L)

2-D image,this may be rewritten as

xp+l(n) = (1 - Ap)xp(n) + ApT(Xp(n)) (3.3.12)

Ap is a relaxation parameter

and T() represents the general iterative process.



fa) Original 'Man' image (b) phase only image

(c) Reconstruction after 30 iteration of POR algorithm

Fig. 3.3.3 Phase Only Reconstruction



60 -

STNCE DOrNIN ERROR FOURTER DOrAIM ERRDR

@ MO-ADATTIVE THASE Ore.Y REC, : ® NO-ADATTIVE THASE DRLY RECOMSTRUCT10M

-
e "o
£ =
by T
¢ ]
K 7]
1 E
"4 3
- 1;1

: ;
. Y

§ 7 38
v g
-1 ]
i\
2] d
! v
N -
8 s
T 7
1 ]
-
o~ -
_:i -
0 97
3 , 2|
9,00 S.90 19.90  1E.90  T0.00 5,00 39,00 35,00 '0.00  €.00 10.00 16,00  2P.0D  TE.00  30.00 35,00

HUrQER OF LTERMTIONS MUNBER OF TTERATIONS
/
(a) Space domain error (b} Fourier domain‘*error

Fig. 3.3.4 MMSE V's error behaviour of the non-adaptive algorithm



- 61 -

xp+l (n = Aprp(n) where, rp (n) =‘1‘(xp (n)) - xp (n)
If Ap= 0 trivial

0 < Ap< 1 under relaxed.

A_ may be chosen to minimise a measure of the estimates that fall outside

region %f support .

- - It is a non-trivial problem to determine what the optimum choice .
of Ap should be, particularly as it implies an as@tion about the
relative importance of the a oriori constraints. In the phase only
iteration it is fairly clear that the finite support constraint is
important and xp was chosen to minimise the Euclidean norm of the
vector of non-zero points outside the region of support.

An alternmative choice of )‘p would emphasize the non-negativity
(or positivity) constraint and could be chosen to minimise the
euclidean norm of the vector of non-negative points within the region
of support. Suppose that the elements of x(n) within R(M), (M = 2N)

are partitioned into a vector VX such that,

V}il)_1 Where VX(l) is the NxN vector of non-
VX = negative elements and VX(Z) is the vector of
LV}iZ) negative elements in the image.

Consequently, rewrite

Vp‘l"l = Vp + Xp rp
- ()] [, (1)] i (1)T
v v A
p+1| | 'p p| “p
_ . (3.3.13)
@1 |, 2)
v v
el | P "p
= L . o
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Convergence is obtained when Vg(j-) = (0, so choose J\p = /ip to minimise

(2)
the euclidean norm of VP +1

i.e ”\7(2),

The euclidean norm is defined as [106]

“x" = (x,x)l/ 2 where (x,x) is the inner product
hence:
(2) (2) (2) (2)  (2) (2)
' .—__ Elwl'vwl]_dE]P A, 0, Vo +AprP]
dx dx '
P P

using the identity

x+y, 2) = (x,i) + (v,2)

v “ (2) < ) 2) |, (2) (2) (2)
.____“ d(V )+ d(V /‘I‘ ) d(App V270
dA d
D p
d(Ar (2),,{1'(2)) = 0
— P D DD -
da
p«
Since (o X,y) = a (x,y), we have (2 ¢
(2 (2) (2) (2) (2) d/l ') 2)
“V 1J= d(v ) LTy D Sty T
da
p p
(2) (2)
n d Ap( ) =
d
p
0 + (r(2), ( )) + (r(z) ,Véz)) + 2)\p (r(z),réz)) 0
@) 4@y 5 @@ L0 _
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— (2) ,(2)
hence J\p = . (rp ,VE?Z))
rp )

(r(?‘) ’
P

= (2) ,(2)
--(rP ’Vp ) (3.3.14)

|

r

o |
The adaptive algorithm described above was implemented for the phase

only iteration and the graph in fig 3.3.5 shows the relative

performance of the three algorithms implemented so far.

3.4 Effect of noise on the phase only reconstruction

n any application setting, there will be limits to the accuracy to
which the phase can be measured or computed and thus the available
phase may have been degraded by measurement noise, quantisation noise
etc.

Consequently it 1is important to understand the sensitivity of
the reconstruction methods to errors in the phase samples. Scme
experimental results have been reported for the effect (63] of noisy
phase on the reconstruction of a l~Dsequence with the non-iterative
algorithm (3.3.8).

This section provides experiments with images for iterative
reconstruction algorithms and attempts to provide a theoretical
analysis of the errors introduced by noisy phase for images and its
effect on the iteration. Since the convergence of the phase only
iteration has been proved, it is possible to show that provided
the 1image sequence correspon’ing to the noisy phase sequence is
close to the correct sequence the iteration converges, even though
the point to which it converges may change. This is proved in

appendix III.
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Two kinds of noise effects were studied.

The first was gaussian noise added directly to the undegraded
phase and reconstruction attempted. The second investigated the
effect of various levels of quantisation noise by varying the number
of levels used to quantise the phase. Various methods have been
proposed for gquantising the phase, e.g. Andrews (69 ], Pohli:g [61].
The method used here is broadly the same as that proposed by Pohli g
and makes no assumption about the distribution of the phase. This
method is discussed in some detail in chapter five, but it can be
broadly described as allocating more levels to code the lower
frequencies. It is interesting to note that the bit allocation study
based on the phase gives broadly the same result as one based on the
magnitude. That is that the number of bits needed is inversely
proportional to frequency - this probably explains the success of
coding techniques that used bit allocation for the phase based on
magnitude considerations.

The norinalised mean square error (NMSE) given by

N.-1 N,-1

1 2
Z Z [X(nl,nz) —i(nl,nz)]?- (3.4.1)

n1=0 n2=0

N -1 N.-1

1 2

>, x(ny,ny) 2
n,=0 n.=0
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was used to compare the effect of different noise levels. The
iteration was allowed to run for 30 iterations in each case and the
NMSE computed. A graph of noiée level Vs MMSE was plotted for
various error levels and these are shown in fig. 3.4.1. It is of
interest to bbserve the error in the reconstructed sequence as a
function of the number of iteration. Although the error in the
reconstructed sequence will be the same in the limit, as that
obtained in the non-iterative algorithm, it may be possible that the
error after a finite number of iterations is less than the error of
the convergent solution.

COne possibility investigated here is the attempt to mitigate the
effects of phase noise by combining it with an estimate of the
correct magnitude. The magnitude may be estimated in any one of the
ways discussed in some detail in the next section, or may be a
measure of the noisy magnitude. The graph in fig. 3.4.2 shows that
convergence 1is faster with the magnitude estimate and the
intelligibility of the reconstructed image shows that phase coding

with a magnitude estimate is feasible.

3.5 Effect of initial magnitude on phase reconstruction

Conventionally, the phase-only image is defined as the image formed
by performing the inverse DFT on a function having the same phase as
the original image and unity or constant magnitude

. _ o1

i.e. Fp (nl,n2) =F (1 x exp [¢(m1,m2)]]

In the phase only iteration, whatever magnitude guess is used, serves

only as an initial estimate and is later allowed to change so as to
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satisfy the given space and frequency domain constraints.

We have already observed that phase only images as described
above bear a close resemblance to the original image and it has also
been observed that even when the magnitude is a random function some
intelligibility is maintained.

Obviously there are limits to the sort of wvalues that the
magnitude function can be allowed to take so as to give an
intelligible first estimate. For example zero would be illogical and
extremely large values would also be out of the question. |
It has already been established that the iteration converges much
faster if a first estimate close to the final image is obtained so it
can be argued that clever choice of the initial magnitude guess can
substantially speed up the iteration.

Clearly, it would be to some advantage if further a priori
information could be incérporated into the choice of the magnitude
function and while this may not be possible in any specific manner,
there is some information known about the magnitude function.

A case in point is the knowledge that the original sequence is
a real positive space limited sequence. The fourier transform is
conjugate symmetric.

ie. X (Y = x (e71Y | (3.

U
D

hence

Re[X(e3%)] = -Re(X(e9%)] (3.

]

.3)

wn

~Im([X (7% ]

and Im(X (e7*) ]
hence the real part of the Fourier transform is an even func:t.on and

the imaginary part is an odd function.
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Similarly, expressed in polar co-ordinates
x@3% = |x(d¥) |ed arg[X] ‘ix(e-jw) _ IXe(-jm)Ie—jarg[X]
consequently

for a real sequence x(n), the magnitude of the Fourier transform
is an even function of w and the phase arg(X (ejm)] is an odd function
of w.

The above argument suggests the projection of the space domain
constraint that a signal is real into a Fourier domain constraint on
the phase of magnitude functions. i.e. This is a constraint on the
magnitude and phase that has hitherto not been used explicitly in
reconstruction, but it means that some bad cuesses such as an odd
function for magnitude can be ruled out.

A commonly used method of obtaining a reasonable first estimate
for the magnitude function is to take an ensemble average of the
magnitudes of several images of the same class as the image we are
trying to reconstruct. This has the disadvantage of requiring that
we know the image class and of course also raises the question of how
to define the image classes.

A different method which does not require this type of knowledge
simply uses +the mathematical function that appears to best
approximate the magnitude function. It is well known that the
ordered magnitude function is 'low pass' in nature, having the larger
values at the low frequencies and smaller values” at the higher
frequencies. This is true for most images and is used a lot in
transform coding schemes where the low frequency co-efficients are
quantized using more bits than the high frequency co—efficients.

Consequently a simple low pass function will probably give better
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(a) Exponential low pas HO= ({10000, D~ 1.0

(b) Ensemble averages
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(d) Exponential lowpass D= L.O (e) Reconstruction after 30 iterations with
adaptive algotithms

Phase only images with various starting functions.



only low detail images may be intelligible without phase information
- medium-high detail images may be quite intelligible without
magnitude information and even better with an exponential Magnitude

frequency. The figures show the image after 30 iteraticons
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CHAPTER 4

MAGNITUDE ONLY RECONSTRUCTICN

4.1 Introduction

As outlined in chapter 2, Magnitude Only Reconstruction (MOR) has
been studied in the past in order to solve certain problems that
arise as result of inability to obtain measurements of the phase
function. As a result of the importance of some of these application
areas, there has been a concerted research effort to provide
solutions to the problem and consequently a large body of knowledge
is available.

In general, without any extra infonnétion it is not possible to
uniquely obtain the phase function from the magnitude function(57].
In many problems however, extra information such as known region of
support [37] or known intensity in the space domain (39] is available
and in these cases reconstructions are possible.

At the same time, as a result of the wide use of the Fourier
transform in electrical engineering and image processing, there is
interest in studying the slightly artificial ©problem of
reconstruction from partial Fourier transform information. i.e. other
partial representations such as the magnitude and the sign of the
phase.

The main motivation of the work outlined in this chapter has
been to study the MOR problem -vith a view to later appl;ing it to
estimate tne phase in an image restoration problem described in

chapter five. This problem 1is slightly different because the
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available magnitude function is only a MMSE estimate of the real
intensity and there is a noisy phase function available. This
chapter is organised as follows:

Section 4.2 considers the extent to which a 2D function may be
defined by its Fourier transform magnitude.

Section 4.3 looks at non-iterative reconstruction methods and the
effect of known boundary conditions on these reconstructions.

Section 4.4 presents a detailed study of Gerchberg-Saxon type
iterative reconstruction algorithms

Section 4.5 considers the problem when certain portions of the phase

or magnitude information are available.

4.2. Magnitude unigueness

One way to form another sequence y(n) which has the same Fourier
magnitude as x(n) 1is to convolve x(n) with an all-pass sequence g (n)

y(n) = x(n) * g(n) ' (4.2.1)

where the Fourier magnitude |[G(w)|=1
Note that

1G(w) |2 = Glw) G (w) =1

Consequently the autocorrelation rg(n) of g(n), equals the unit
sample function

$§ (n) (4.2.2)

rg(n) =g(n) * g (-n)

and its z-transform

%*

Rg(z) =G(z) G (1/z)

It
'_l

(4.2.3)

from (4.2.3) it follows

¢ lz) =¢ (/2 )
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therefore G(z) consists of conjugate reciprocal pole/zero pairs. In
addition, G{(z) may have no singularities on the unit circle..

If x(n) 1is a sequence whose z-transformX(z)has no conjugate
reciprocal ©pole/zero pairs and gf(n) is an arbitrary all-pass
sequence other than a delayed unit sample function,

Their convolution y(n) is :

y(n) = x(n) * g(n)

and

Y (z)

X(z) G(z)

The following statement can be made about X(z) and Y(z)

Y(z) contains conjugate reciprocal role/zero pairs or the poles or
zeros of X(z) are reflected about the unit circle. This gives one way
of defining conditions for x(n) and y(n) to be specified by their

Pourier transform magnitude.

Theorem

Let x(n) and y(n) be real sequences with z-transforms which have no
conjugate reciprocal pole/zero pairs and, in addition,

(a) all the poles or zeros of X(z) and Y(z) (except at z =0 or

z—l = 0) are either inside or outside the unit circle.

If

|X(w)]| = |¥(w) ]|, then x(n) = # y(n+k) for scme interger k.

This theorem is satisfied by both minimum phase as well as maximum
phase sequences. Since minimum (maximum) phase sequence havu
additionally no singularities at z_l = 0(z=0), the magnitude of the
Fourier transform uniquely specifies a minimum phase or maximum phase

sequence to within a multiplicative sign factor.
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Proof

Let x(n) and y(n) satisfy the conditions of the theorem. If the
Fourier transform magnitudes of x(n) and y(n) are equal, then their
autocorrelations are equal.

Equivalently,

X(z) X(z'}) = ¥(2) viz'h (4.2.4)
When all the zeros of X{z) and Y(z) are inside the unit circle,
suppose X(z) has a kth order zero at z = g where 0 < Z, < 1. Since
X(z) has no conjugate reciprocal pole/zero pairs, then X(z) does not
have a pole at z = l/zo and

R,(2) = Y(2) ¥(z )
must have a k' order zero at z=z_. However since IZOI-l > 1 and
since Y(z) has no zeros outside the unit circle, then Y(l/zo) #0 and
Y(z) must have at least k zeros at z = L

Finally since Y(z) has no conjugate reciprocal pole/zero pairs,
then Y(z) must have exactly k zero at z = 2, Reversing the roles of
X(z) and Y(z), it follows that X(z) and Y(z) have the same zero set
for 0 < |z| <o°. By a similar argument, the same result holds for
the case in which zeros of X(z) and Y(z) are outside the unit circle.

Repeating the argument for poles, it follows that the poles of
X(z) and Y(z) are identical for 0 < |z| <00 . Thus

Y(z) = 8 zk

X(2) ; B is complex, k is integer

Since |¥(w) | = |X(w)|, it follows |8] = 1, which implies 8 = # 1

as x(n) and y(n) are real. Therefore y(n) = * x(n + k) as desired.
There are other cliasses of sequences which are uniquely defined

by the magnitude of their Fourier transforms. When X(n) and Y (n) are

even sequences, with |X(w)| = |Y(w)],

X(z) X(z'h) = ¥(2) viz'h
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Since x(n) and y(n) are even, X(z) = X(z™h) and ¥(z)=Y(z "
It follows that
X2(z) = Y2(2) (4.2.5)
“O»
therefore X(z) = t ¥(z) and consequently, x(n) = * y(n). Therefore

an even sequence is defined to within a sign by the magnitude of its
Fourier transform. As another example, suppose x(n) is a real
finite length sequence which is zero outside [0, N-1] with

x(0) # 0.

In this case, since X(z) is a polynomial in z-l over the real
numbers, it can be .shown that if X(z) is irreducible and if Y(n) is
any finite length sequence with |Y(w)] = |X(w)|, then either
yn) = * x(n) or y(n) = ¢t x(-n). However, due to the fundamental
theorem of Algebra, no polynomial of degree greater than two is
irreducible over the real numbers. This constrains x(n) to be of
length three or less. These constraints do not encampass a very
large or useful class of 1-D sequences.

In fact in the case of the finite length sigral on {[0,N], there
are up to 2N'-1 sequences which have the same magnitude function. The
z-transform is simply a polynominal in z“l and H(z) has poles only at
z = 0. So as many as 2N“l different phase curves can be formed
simply by reflecting zeros about the unit circle.

In 1-D the z-transform is represented as a product of prime

factors;

(z - z2) where o is real and n, (4.2.6)

j=1 non-negative integers
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The autocorrelation polynomial

0(z) = X(2) Xz}
N
=1 (z-2.) (z-2) : (4.2.7)
i j

j=1

If all |zi| # 1, there are up to 2" solutions.

If all |z;| # 1, the solution is unique because among the roots of
p(z) there must be z; and zgl = z;. If there are r roots with [zi|=
1 the problem has up to 2V ! solutions. In 2-D there exist
polynomials that cannot be factored (prime polynomials). Most é—D
image functions can usually, but not invariably '  be represented
as prime polyncmials[24].

The first treatment of the 2-D uniqueness question appears to
have been by Bruck and Sodin ([23]. They postulated that the
uniqueness of a 2-D sequence will finite support is related to the
irreducibility of its z-transform. A slightly more general result
has been obtained by Hayes [30].

If the z-transform of an image corresponds to a prime polynomial
then given the autocorrelation function, one can only construct two

solutions differing by a 180° rotation.

The autocorrelation polyncmial is defined as before (4.2.7)

P

Qlzy,2,) = 21z X (z),2,) Xk(zzl, zgl) (4.2.8)

k=1

X (z,,2,) are non trivial irreducible polyncmials in 2t
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Q(z,2,) and lX(wl,wz)i contain the same information about x(n; ,n,)
as they are uniquely derivable from each other, and so ability to
recover x(nl,nz) from IX(wl,wz)] is equivalent to recovery of
X(zl,zz) from Q(zl,zz) . Clearly: such recovery cannot be achieved
unambigquously. The sign of o and the linear phase terms cannot be
determined and it is J'.mpossj_bie to establish whether Xk(zl,zz) is a
factor of X(zl,zz) .

This ambiguity is an extension of the fact that another finite
duration sequence with the same Fourier magnitude can be generated

simply by reflecting a zero of X(z about the unit polydisk.

17%2)

C in information is irretrievable when the phase is absent.
The closest equivalence that can be defined in the absence of phase
is y(nl,nz) =t x‘(nli-kl, nztkz) . This provides an equivalence class
that is related to within a delay, a sign and time reversal of the
original seguence.

Bates ([56] introduces the concept of the 'form' of an image
which is similar to the above equivalence class. Sequences in this
equivalence class share the same Fourier magnitude, but there exist
sequences outside the class that also have the same magnitude.

Using the knowledge that the only way to generate another
sequence with the same Fourier magnitude is to convolve it with an
all pass sequence, conditions have been obtained (30] under which
only one 'equivalence class' exists for a given Fourier magnitude.

To generate another sequence outside the given equivalence
class, with the same Fourier magnitude, it is necessary to replace
one or more non-trivial factors Xk(z:L’ZZ) 1722
Xk(zzl, z;l) . If the factor is symmetric however, this only changes

of X(z ) with

the sign.
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Consequently, it follows that‘the number of equivalence classes
with magnitude |X(w1,w2)| is most 2PV uhere p is the number of
non-syrmetric irreducible. factors in X(zl,zz).

Therefore to leave only one equivalence class with the given
Fourier magnitude, X(zl,zz) must have at most one irreducible

non-symmetric factor.

i.e.
P

X(zl,zz) = P(zl,zz) it Xk(zl’ 22) (4.2.9)
k=1

P(zl’22) is irreducible and non symmetric
Xk(zl, 22) is irreducible and symmetric
Note that this uniqueness is only for an equivalence class and not

for a particular sequence.

4.3 Reconstruction algorithms

A considerable number of papers on the phase problems fave proposed
schemes for phase recovery from magnitude based on the analytical
properties fields. One pos;ible method 1s to use the Hilbert
transform relations and the locations of the complex zeros of the
magnitude ([58]. Other approaches include apcdisation(103] etc.
algorithm. These methods however, have not proved very practical for
camplicated two dimensional images. ’

One of the reasons why the magnitude only reconstruction problem
is complicated, is the non-linear relationship between the image
sequence and its Fourier transform magnitude. Unlike the phase, we

can not obtain a linear closed form relationship such as (3.3.8).
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The Fourier transform magnitude of an image sequernce x{n,m) may

always be used to obtain the autocorrelation r(n,m),

N-1 M—-1

Y“"_'E ? -J(@n +w, )
rinm =/, Z,l“(wl’wz)‘ © ‘ (4.3.1)
=0 m=0

Cne possible solution to the phase retrieval problem could thus
consists of solving these non-linear equations for x(n,m)., However
such a solution would be very ccnplicated for large numbers of

equations and unkncwns.

4.3.1.2 Effect of known boundary values:

If boundary values of the sequence are known, the non-linear
equations (4.3.2) can be replaced by linear equations. These will be
easier to solve than the non-linear system.

Consider the DET of X(ml,mz) of the pixel array x(n,m)

M-1 N-1

X (o) ,0,) = Z Z x(n,m) exp (- (w,n,u,m) )

m=Q n=0 N

The autocorrelation function r(n,m)

r(n,m = x(n,ﬁ) *% x(-n,-m)
'isthe.2—{)convolution operator
N-1 M-1
r(n,m) = zz: 2{: x(n,m) x(n+k, mt+) (4.3.2)

k=1-N ¢=1-M
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When x(n,m) is a finite duration sequence with support R(M,N), the
autocorrelation sequence has support R(2M-1, 2N-1) and is symmetric.
The boundary of the autocorrelation function is formed by convolution
of the boundary sequences forming x(n,m). This can be seen be
considering the autocorrelation function borders.

r(n,M-1)

x(n 0) * x(-n,M-1)
r(N-1,m) = r(l-N,-m) = x(0,m) * x(1-N,-m)
Let the mth row of the array x(n,m) be dencted by the vector xm(n)
for n=1, 2, ...... N. Equivalently written as X
Iet the mth row of the array r(n,m) be denoted by rm(n) for n=1,

2,....,N and equivalently written as r.-

Cbserve from (4.3.2) that the M-2 row is formed as

x, ) *xy S +x ) *x(n) =x

ey @) (4.3.3)

for n=1,..,N
If the vectors of boundary wvalues {xo(—n), XM—-l(n)} ara known,
(4.3.3) represents a set of 2N-1 linear equations in the variables
Xq (n) and X2 (n).
Suppose now, that the first (k-1) rows and the last(k-1l) rows
are known, we write as before
k-z

=1

which may be written as

X)) +x ,n) *x () =1, (0 (4.3.9)
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where
k=2
Iy (M =1y, () - Zsz(-n) - xM—k+2,(n)
: 2=1

(4.3.3) shows that the M-2 row of r(n,m) can be calculated from the
boundary values in the vectors x and xo(n) and xm_l(n), xm(N—l) and

xm(o), and it can be solved for xl(n) and xMﬁz(n)’

The rows Xk and X can be calculated recursively from the values

4.4 Iterative algorithms

In this section we lcok at the basis of the iterative reconstruction
methods that are applicable to this problem. The Gerchberg-Saxton
(GS) algorithm discussed in the previous chapter for the phase only
reconstruction problems was first proposed to solve the two intensity
phase retrieval problem [39].
The basic GS algorithm for magnitude only reconstruction is as
follows:
1° Make an initial guess ¢o(m1,w2) of the unknown function
¢(m1,m2). Form the next estimate of the DFT by combining the
phase guess with the known magnitude function
Xl(ml,mz) = |X(w1,w2)| exp {j¢o(ml,w2)} (4.4.1)

compute the inverse DET

2°  Apply known space domain constraints to form the current space

domain estimate xp(nl,nz)
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xp (nl,nz) within R(Nl’NZ)
xp(nl,nz) = (4.4.2)
O elsewhere
and the non-negative constraint,
xp(nl,nz) = Xp(nl’nZ) for Xp(nl’nZ) >0
0 for Xp <0 (4.4.3)

compute the DFT

3° Use the phase of this DFT as the next estimate ¢p (ml,wz) of the

phase function and form the new DFT estimate as

xp—!-l (wl,wz) = IX(ml,wz)l exp{jcbp (wl,mz)} (4.4.4)
compute the DFT, Go to 2.

Xp (nl,nz) is the pth iterate of the image being sought. It is
expected to have support R(Nl’Nz) -~ i.e. non-zero on an leN2

grid. The DFT's calculated are (2N_x2N,) DFT's.

1 2)

While this basic algorithm was found to give reasonable but slow
reconstruction in the phase only reconstruction it is far less
successful in the case of magnitude only reconstruction. The error
behaviour of this algorithm for our magnitude only reconstruction is
shown fig. 4.1 and is in agreement with the results reported by many
other workers [37,39].

The algorithm's convergence characteristics was cbserved using

(1) only the non-negativity constraint

(2) only the finite support constraint

(3) both constraints

and the error curves corresponding to these three cases are also
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4,3.2.1 Adaptive acceleration

As in the previous chapter, we can model the iteration as a mapping

T, and form the next estimate of the space domain signal as

xp+l(n1,n2) = xp(nl,nz) + Ap[T(xp(nl,nz))- xp(nl,nz)] (4.4.5)
As before the question arises on the optimum choice of the relaxation
parameter Ap.

Furthermore, {4.4.5) represents a whole class of algorithms that
may be formed both by changing the way Ap is formed and by changing
the way that the next estimate is formed.

The difficuity of choosing kp to give maximum convergence is a

key barrier to the development of fast adaptive algorithms. Choosing

>‘p to minimise the euclidean norm of the vector of points falling
" outside R(n) has proved to be a good criterion. However it is
suboptimum because while it takes into account the known R(N), it
fails to take into account any other information that may be
available a priori. é.g. rough location of known or guessed objects
in the image.

If some information is available about the rough location of say
edges, an adaptive parameter can be chosen so as to minimise the
possible introduction of non-existent objects. Such an application
where this information is available is in a Wiener restored image,
where the main edges are present though they may not be clearly
defined.

The adaptively accelerated algorithm was applied to magnitude

only reconstruction for three choices of Ap
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(1) using non-negativity
Here Ap is chosen to mininise the euclidean norm of non-zero
points outside the region of support as in 3.3.
(ii) wusing finite support
Ap is chosen to minimise negative points as above
(iii) using an edge criterion
Ap is chosen to minimise gradients exceeding a set
threshold in an area designated as being non-edge.
and the convergence characteristics are shown in fig. 4.2.

While it is difficult to compare the relative importance of
these constraints on the basis of few iterations taken, they seem to
bear out the view put by Fienup [105] that this basic algorithn
eventually converges after thousands of iterations if the
non-negativity constraint 1s used. They also indicate why
experiments which are based on the finite support constraint are not
generally successful even after 1000 iterations. The magnitude of
reconstruction problem is very ill-conditioned and there are many
local minima so that unless a very good starting function is
obtained, it is quite easy for the algorithm to converge to a local
minimmm.

The shape of the error Vs iteration graph shows that the error
decreases at first, then slows down and remains relatively
unchanged for many iterations before falling. This suggests two ways
in which the basic algorithm may be made to converge faster.

‘ne first method involves overestimatic of the region of
support. The problems being considered in this thesis differ from

many real problems in that the region of support is known exactly.
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(a) Finite support (b) Non-negativity.

(c) Spatial constraints.
Fig. 4.2 Reconstructed images after 100 iterations of adaptive MOR algorithms

with various constraints,
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It is observed that if the region of support of the sequence is

assumed to be greater than R(NI'NZ) and the finite support constraint

is applied '
Xp (nl ,n2) O<1'11<Ml O<r12<M2
= 4
Xp(nl’n2) (4.4.6)
0 otherwise
where M1>N1, M2>N2

there is a very rapid decrease in the error components falling
outside R(Ml’Mz) , while very 1little change takes place within
R(M1 ,M2) .

Instead of applying the usual region of support ~nnstraint to
R(N), we apply it to R(M) where MN. As more iterations are
performed, R(M) is progressively brought closer to R(N). This gives
faster overall convergence to zero when an adaptive relaxation
parameter is chosen on the basis of minimising the components outside
the region of support.

The second method involves re-initialisation of the iteration.
Since the convergence of the iteration decreases afer a few
iterations, due to local minima that force it to stagnate, faster
convergence may be obtained if an adaptive parameter is calculated
over several iterations.

So far, we have considered the sequence before each iteration as
the latest estimate of the sequence we seek - consequently we have
- made it satisfy space domain constraints.

The formulation, in the previous section, of the iteration as a
mapping leads to a selection of options on how the next estimate is
to be formed. For example is it best to replace the points outside

R(N) with zero or with some other value ?
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The input - output concept is a generalisation of these types of

algorithms. The block diagram is shown in the fig. 4.3 helow

DFT
x_(n)
P
» satisfy Fourier
input domain constraimnts
IDFT
Satisfy
space domain
%utput constraints
]
x'p(n)

Fig. 4.3 input - output concept.

The input is seen as a driving force for the output and not
necessarily as the previous estimate. Ap is chosen to act on XP (n)
SO as to move X o+l (n) closer to satisfying the constraints. xp (n)
does not have to satisfy space damain constraints, which allows
greater flexibility in choosing )‘p'

The input of the iteration can be formed in a number of ways,

one of which is found to be identical to the basic GS algoritl‘nn( 4.4.8)
forp =1

Algoritim 1

Xp+l (n) = xp(n) + Bé;(n) (4.4.7)

_ Xp (n) in R(N)
xp (n) - Bxp (n) outside R(N)

where

xp+l (n) is the next input to be used

L] =T , = ! -
xp (n) (ngn) r;gn) xp (n) xp (n)

Xp (n) is the previous input
b in R
Od™M m) outside R
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This is the basic input output algorithm. An input xp(n) is chosen
in some way and put through the iteration to produce an output xé(n).

Generally xé(n) will not satisfy the finite support constraints,
so it is now necessary to go back and form a new input x

pt
the old input, but adjusting it to ensure that the next output will

1(n) from

have a smaller magnitude of components outside R(N). . The starting
input may be chosen completely freely and need not satisfy the space
domain constraints.

The adaptive parameter B is chosen on the basis that a small
change in the input results in a change of the output in the same
general direction. So since a change is required outside the region
of support to move the components to zero, such a change must be made
outside the region of support of the input sequence. The non-
negativity constraint is applied at the same time to all the
algoritims. The proofs of convergence of these algorithms are given

in appendix ([IIT].

Algorithm 2
Xp+l(n) = xé(n) + 822(n) {4.4.8)

= x!' (n) in R(N
o (N)
x!'(n) - gx'(n) outside R(N
o 8 p( ) (N)
The next input is formed from the present output in the regions of

support and the output is mcdified outside the region of support.
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Algorithm 3
Alternatively the bottom lines of (4.4.7) and (4.4.8) may be combined

to give yet another algorithm.

Xp+1 (n) = XL; (n) in R(N)

xp (n) - BXE') (n) outside R(N) (4.4.9)
Algorithm 4
Xp+l (n) = xp (n) + J\rp (n) in R(N)

xE') {n) - BXL'D (n) outside R(N) (4.4.10)

this algorithm is suggested by the adaptive acceleration discussed
earlier and the three previous algoritims.

A 1s chosen as before, and is used to modify the cocmponents
within the region of support while 8 is also chosen so as to push the
components outside the region of support to zero. The convergence
characteristics of these algorithms are shown in fig. 4.4 their

convergence is better than that of the basic algoritim.

4.5 Reconstruction given some phase information

In this section the problem is widened to one of reconstruction from
partial Fourier domain information. It is cbserved that the
magnitude only reconstruction problem is more tractable when scame
extra information about the phase is provided.

For example an image formed from the magnitude function and a

phase that is either 0 or I, with the correct sign of the phase is
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(a) Algorithm 1 (b) Algorithm 2

(c) Algorithm 3 (d) Algorithm 4
Fig. 4.4 Reconstructed images after 100 iterations of various

Magnitude only reconstruction algorithms,
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intelligible. It is much closer to the final image and the iteration
converges much faster giving a very good image after a few
iterations. Two cases are examined. In one the correct magnitude
function and the sign of the phase are available while in the other

only the sign of the phase is available.

(1) Sign and Magnitude

In the Fourier domain, the DFT of x(n,,n,) is formed as

lX‘“’lf‘*’z" ex(] 0 (wy,u,y)] for S(ug,w,) =+ 1
X(wl,wz) = (4.5.1)
[X(wl,mz)l expl3 2a - @(wl,wz)]for S(wl,wz) =-1
where S(ml,mz) =1+ 1 for « - 1 s ¢(m1,w2) g
-1 otherwise

¢(w1'w2) is the correct phase of the DFT and takes on values from -1
to 1.
a is a parameter that is used to divide up the phase function so that
the 'sign' can be set for any chosen o threshold. For example when
a = /2, then S(ml,wz) corresponds to the algebraic sign of the real
part of X(ml,mz). a takes on values between 0 and 1.

e(ml,wz) is the phase estimate that is used in the absence of

the correct phase ¢(m1,m2). The first estimate is foxmed as

Xo(wl,wz) = |X(wl,m2)| exp j Oo(ml,wz) (4.5.2)

where @o(wl,mz) = |0 for S(wl,mz) =+ 1

hif for S(wl,wz) = -1
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This image is quite intelligible and an iterative reconstruction

converges quite quickly to give a good reconstruction

(II) Sign of the real part

In the previous case, we had both the magnitude and sign functions.

However, it is evident that a sign only image is also intelligible.

S(wl,wz) =(+1 - /2 < ¢(m1,w2)'< n/2

-1 otherwise . (4.5.3)

An initial estimate of the DFT is formed as

X(wl,wz) = 1. eXp{jO(wl,wz)} (4.5.3)
where
E)o (wl,mz) = 0 S(ml,wz) =+ 1

it S(ml,wz) = -1

The image formed by taking the inverse DFT of X(w is shown in

l/wz)

fig. 4.5 afterreconstruction.

4.6 Summary

. Reconstruction of an image from the magnitude of its Fourier spectrum

is generally not possible unless extra information is available. The
available information depends very much on the application area, but
ofter non-negativity and finite support can be assumed. If the
support is known and non-negdtivity assumed, an iterative algorithm
that was both these constraints can be used, but convergence is slow.
Modifications o. the basic algorithm, using various starting images
which do not necessarily satisfy space dcmain constraints, can be
faster but the rate is still much lowe; than the phase only

iteration.



Fig. 4.5 Image reconstructed from sign information.
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When some extra phase information is present, the iteration

converges very quickly, giving good reconstruction.



CHAPTER FIVE

SCME FREQUENCY DOMAIN APPLICATIONS
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CHAPTER 5

SQME FREQUENCY DOMAIN APPLICATIONS.

5.1 General Introduction

This chapier considers some type 2 applications of image
reconstruction. It is divided into two parts. In part I results
developed in chapter four are used to improve the restoration of
noisy linearly degraded images by estimating the phase as well as the
magnitude function.

In part II, an investigation is made into the viability of phase
only coding to reduce the bit rate of the more usual magnitude/phase

ceding.

PART I : RESTORATION OF NOISY LINEARLY DEGRADED IMAGES.

5.2 Introduction

Both blind deconvolution and image restoration may be improved by
using image reconstruction techniques to estimate the phase of the
image, together with the magnitude estimation that is conventionally
performed. In blind deconvolution, the signal of interest has been
degraded by a blurring function about which complete knowledge is not
available.

In some special cases, the distorting signal may be known to have a
phase function that i1s approximately zero and consequently the phase

of the degraded image is very similar to that of the original
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image. In these cases the problem becomes one of reconstruction from
phase only e.g. wavelet reconstruction in seismic signal processing.

A problem that may be approached in a similar way, is the
restoration of images blurred by linear convolutional systems with
additive noise. Conventional restoration techniques include inverse,
wiener, Power Spectral Estimation (PSE) and Spectral Subtraction (SS)
filters (71],(72].

When Viewed in the frequency domain, it is obserwved as shown in
section 5.2.1 that whilst the Fourier Magnitude Spectrum (FMS) is a
modified or restored version of the degraded image's FMS, the Fourier
Phase Spectrum (FPS) of the filtered image is essentially unrestored
and effectively identical to the FPS of the degraded image. In this
sense, these filters may be said to be 'phaseless'.

In this part of the chapter a method is presented to
reconstruct the FPS as well as the FMS of an image and so enhance the
visual quality of the restored image. In the next section it is
shown that a combined FMP-FPS restoration can be realised by
cascading a conventional statistical filter which serves to estimate
the FMS, with a generalised deterministic Gerchberg-Saxton iterative
algorithm which serves to estimate the FPS. The experimental cascade
system is described in section 5.2.3 and results discussed in section

5.2.4.

5.2.1 Statistical Image Restoration Filters

Linear convolutional blurring systems with additive noise can be

described by the discrete formulation

(gl = (hl*=[£f] + [n] (5.2.1)
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“here [g], [f] and [n] are NxXN matrices representing the samplea
output degraded images, input image and noise fields respectively.
[h] is a dimensional matrix representation of the 2-D blurring
system. In the Fourier domain,

(G] = [H] x [F] + [N] (5.2.2)
where (G[, [H] and [N] are the corresponding DFT'S of [g], [f] and
[n]. [H] is a matrix arising from the "diagnoalisation" of [h]
in the Fourier damain. The X and / operators define elementwise
multiplication and division of two matrices (or vectors) of identical
dimensions. The image and noise processes are modelled as zero mean
stationary random fields with power spectra [Pf] and [PN].

Then the inverse and Wiener restorations are defined as:

]

inverse: [F] (G]/(H] = [Li]x[G] ‘ (5.2.3)

Wiener:  [F) P, x (=] (G] (5.2.4)

*

(H]x(H] X[Pf]+[PN]

= [Lix(G]
Similarly, estimator equations can be derived for PSE and SS filters
respectively.

Inverse filtering performs poorly in the presence of noise. It
is aimed solely at removing the effects of blur and essentially
ignores the presence of additive noise. There are many problems with
the inverse filter. For exampls the iimage blur and formation process
may not be invertable and consequently Li above may not exist. To

overcaome this problem scme methods use pseudo inverses. The other
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problems are that the frequency response H usually falls off at high
frequencies and if high frequncy noise is present, this may lead to
severe noise amplifications.

Finally, the inverse transfer function blows up at the zeros of
H which would cause severe difficulties. Improved restoration
quality is cbtained using Wiener fil%ering techniques.

Wiener filters explicitly take the presence of noise into
account and incorporate a priori statistics of the noise.

In the discrete Wiener filter formulation, it is desired to
cause the estimate f as the minimm mean square error (MMSE)

estimate.
min E[ (£-5) ", (£-5)] (5.2.5)

The transfer function of the resulting filter to give the optimal
estimate has been found [100] to be as shown in (5.2.4); and in the
limit with no noise it reduces to the inverse filter.

Several variation of the Wiener filter (72] have been proposed.
The limitations of the Wiener filter are that it is not particularly
well suited to the way the human visual system works, largely because
of its reliance on the MMSE criterion. t is overly concerned with
noise suppression, and the stationary assumptions that must be made
to make the filter computationally feasible make it insensitive to
abrupt charges. This is tends to smcoth edges and reduce contrast.

Thus the Wiener filter scarifices too much resolution in favour
of noise suppression. As mentioned above, a variety of other filters
have been proposed which alleviate some of the short comings of hte

Wiener filter, (99], (72].
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Because of the importance of phase in images, some filters have
proposed to take the phase into account for several specific types of
PSF [32] but these seem to require large amounts of a priori
information.

We shall restrict our analysis to the Wiener filter but the
other filters share the same deficiency of not estimating the phase
so the same approach-would be equally applicable. Another aspect is
that many of the restoration approaches are based on homogensous
random field models for the images and noise, and on least squares
error criteria - both of which are nt optimum or even fair
assumptons. Consequently, an image model based on segmentation of
the image would be desirable, and breaking the image into phase and
magnitude is a form of segmentation.

It is easily shown from the defining equations that the FPS of
the degraded image and the FPS of the restored image , are
apart from phase shifts introduced by the blurring system, identical.
Noisy induced phase degradations are not compensated for in the
restoration process.

This does not appear surprising since the restoration filters
are derived from statistical estimation criteria aefined in terms of
energy related quantities such as MMSE, Power Spectra and second
orcder moments. Hence they estimate the 'spectral energy' which is a
characterisation related to the FMS.

Except in cases of extreme degradation, degraded images may
generally be adequately restored by well designed restoration
filters. One is usually able to recognise the main global or gross

features and structures of an image so restored.
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Restoration quality is necessarily imperfect in the sense that
local features such as edges may be obscured or smoothed out or that
noise levels are too objectional in non-edge regions. High noise
suppression image restoration is in practice unattainable by linear
filtering techniques which are subject to the well known
resolution-vs-noise dilemma. In the absence of a valid statistical
phase estimation technique, a deterministic and iterative algorithm
is developed for phase reconstruction.

The spatial masking effect of the human visual system (HVS)
(73] is a property where the eye is able to tolerate relatively high
noise levels in edge regions of an image but not in flat or smoothly
varying regions of an image. In contrast to the rather
non-subjective  restoration = criteria implicit in filtering
techniques, such a non-linear restoration process would be more

adaptive and responsive to the HVS criteria of image intelligibility.

5.2.2 The Hybrid reconstruction technique

In section 5.2.1 it was seen that conventional filtering provides an
optimal‘estimate of the FMS of the image. Given such an estimate,
one could then attempt to estimate, the FPS via a magnitude only GS
iterative  reconstruction algorithm. This combined  FMS-FPS
restoration could in principle be realised by cascading a
conventional filter which estimates the FMS with an iterative
reconstruction algorithm which estimates the FPS. However as noted
earlier this case may fail to converge if a good first estimate of
the phase function is not available. Convergence may be enforced it
further constraints more restrictive in scope than finite support and

positivity were imposed.
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One way of specifying furtﬁer constraints is suggested by the
interrelationship between edge structure and the FPS of an image. If
information pertaining to the spatial edge activity of the image is
known, then successive spatial domain estimates, generated by the GS
algorithm, could be constrained to conform in edge structure to a
priori known edge information, and so indirectly constrain the FPS.
Such information can be obtained by an 'edge region detection' on
the output cf the statistical restoration filter. Information on

the rough location of edges is often available from the restored

image.

5.2.3 Cascade Algorithms

The block diagram illustrates the algorithm (see fig. 5.2.1). The
degraded image is first restored by a Wiener filter, this filtered
image's FMS is taken as a good estimate of the true image's FMS. The
FPS is then estimated by a modified GS reconstruction aigorithm using
the FMS estimate as its driving input. '

In the Fourier domain; the FMS is constrained to that obtained
by the restoration filter above, while the FPS is unchanged. In the
space domain, positivity, finite support constraints are applied in
addition to a 'spatial activity' constraint.

The spatial activity constraint is determined by edge detecting
the filtered image and identifying approximately its 'edge' and
'non-edge' regions. The adaptive spatial activity constraint set
then consists of bounding the current iterace's pixel amplitude to
lie within an adaptive amolitude window centered on the amplitude of

the previous iterate's corresponding pixel. For image pixeis known
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Fig. 5.2.1 Block diagram of the hybrid reconstruction method
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to be located in the non-edge regions the amplitude width is
narrow,thus minimising intensity variations in this area. But for
pixels located in edge regions, the width is extended to permit the
amplitude variability of edge pixels and so preserve edge structure.
Noise propagation is controlled as the adaptive spatial constraint
tends to restrict noise amplification to mainly the edge regions,
where by virtue of the spatial masking effect it is not tco
subjectively noticeable.

To study the effectiveness of this technique, it was applied to a
degraded image and various algorithms were tested.

The original 128x128 'man' imagé is shown in fig. 5.2.2. 1In
fig. 5.2.3, the degraded 'man' image obtained by blurring with a
gaussian point spread function and adding zero mean noise, SNR of 21
dB is shown.

The Wiener restored image is shown in fig. 5.2.4. Note that
even though noise levels in the picture are well suppressed, this is
at the expense of somewhat poor resolution and edge quality.

The final FMS-FPS restoration obtained by the hybrid cascade
system is shown in fig. 5.2.5. The 'blocking effect' present in the
restored image arises from the fact that the modified as phase
reconstruction algorithm is implemented by initially partitioning the

image into smaller blocks so as to minimize the memory requirements.

5.2.4 Further discussion

Three versions of the GS algorithm are implemented.
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Fig. 5.2.2 Original 'Man' image

Fig. 5.2.3 Degraded image, SNR = 21 d&B
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5.2.4 Wiener restored 1mage

(a) Adaptive GS with poth non-negativity (p) Spatial activity constraint

and finite support

5.2.5 Reconstructed image after 20 iterations
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A. G5 with positivity and finite support constraints.
This is the conventional GS algorithm without any acceleration
and imposing positivity and finite support constraints.

B. GS with adaptive acceleration.
The next iterate is multiplied by an adaptive factor chosen to
minimize the euclidean norm of the vector of image points

outside the region of support.

C. GS with spatial activity and reinitialisation.

The spatial activity constraint is applied as follows:

Vb+l in non-edge region (s=0)
Vb+l = vp in non edge region (s=1) (5.2.6)
vp+l in designated edge region

where V_, . is the vector of points at the (p+1)th Lteration,

p+l
S is the spatial activity and is set to 1 if the next iteration

appears to introduce wide variation in the non—edge region.

The convergence of these versions are ccompared by evaluating the
normalised error between the true FPS and the current FPS estimate.
The graphs showing these convergence characteristics are given in
fig. 5.2.6.

The graphs show that koth the phase domain (5.2.6a) and the space
domain (5.2.6b) NMSE decreases with the iterations. As before,
adaptivity using the finite support constraint leads to a
considerable improvement in convergence rate over the non-adaptive
algorithm. The spatial activity constraint is seen to reduce the
error further , but it is unsteady and may increase the error

if it is not chosen carefully. However the visual quality of the

reconstructed image using the spatial activity constraint is better.
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PART II: FOURIER TRANSFORM PHASE CODING OF IMAGES

5.: 3.1 Introduction

In chapter 3 we considered reconstruction from phase only both for
the case where the full phase function is present , and for the case
where only noisy samples of the phase are available. We also
considered several techniques for selecting good starting magnitude
functions.

We now consider an application of these results to Fourier
transform image coding. Usually both the phase and magnitude are
coded and transmitted and at the reciever an image is reconstructed
from them. Monochrome images have beencoded at bit rates of 1.0 +5
1.5 bits/pixel [19] with mean square error distortion less that 0.5%.
Successful coding schemes developed for Fourier transform coding have
been found to rely on the assignment of considerably more bits to the
phase than the magnitude [61].

For example Pearlman and Gray [62], using rate—distortion theory
in the source coding of the DFT, derive performance bounds and
encoding guidelines for the direct fixed-rate MMSE data compression
of the DFT of a stationary real seguence.

Their technique yields a theoretical measure of the relative
importance of phase over magnitude in compression, with the result
that phase must be coded with 1.37 bits more than the magnitude for
the ergodic stationary source assumed.

Since an image may be reconstructed from the phase of its
Fourier transform, ve consider coding only the phase and then using
phase only image reconstruction to reconstruct the image from the

coded phase. The other application of interest here of course is the
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Kinoform - a phase only hologram. The intelligibility of its
reconstructed image could be greatly enhanced by phase only
reconstruction. To avoid the time and ccmputational problems posed
by iterative reconstruction, interest is focussed on obtaining an
excellent first estimate which may preclude the need for iteration.

In this part of the chapter, we investigate a Fourier transform
coding technique where the phase is coded accurately for each block
of an image, but not the magnitude. The aim is to improve the
compression ratio of adaptive Fourier transform coding methods by
sending the phase of all the blocks but only the magnitude of a few
and replacing the othex blocks with magnitude functions as discussed
in chapter three.

In the absence of any specific information we may say that the
distribution of magnitude co—efficients follows a general 'low-pass'
form with larger values of the low frequencies. This ccding method
produces acceptable and even comparable images to conventional
adaptive Fourier transform ccding at lower bit rate. In effect it
may be argued that the phase only reconstruction simply suggests
another adaptivity criterion.

This part of the chapter is organised as follcws. In the next
section we look generally at unitary transforms and transform coding.
Next we lcok at the Fourier transform and the need for iﬁs efficient
coding and investigate the theoretical feasibility of phase only
coding.

In section 5.3.4 we develop a method of coding the phase for our

application and we describe the coding technique in section 5.3.5
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5.3.1 Unitarv transforms and transform ccding
image array I(n, /My

The forward unitary transform of and leN2

N.xN, transformed array defined by

F (m, ,mz) = Z Z f(nl,nz) A(nl, ny; ml,mz)

forward transform kernel. The inverse

where A(nl, n,; ml,mz) is the
ransformation from the transform domain to the space domain 1is
defined by
Nl N2
f(nl,ﬁz) = Z F(ml,mz) B(nl, n,; ml,mz) (5.3.2)
nl=l n2=1
where B is the inverse transform kernel. A and B must satisfy
orthoncmality conditions ([101].
Unitary transforms have found wide application in . image
coding. They provide a spectral
to isolate

processing particularly image
co efficients that tend

deccomposition of an image into

certain features of an image. For exénple the first spectral

component is propoi_:tional to average image brightness and the higher
The

sequency components are measures of the image edge content.
the

block diagram of a transform coding system is illustrated on
Next Page. The number of bits used to code a coefficient could be given

tne equation below which uses the maximun variance zone.
L

by
N ue) = B+ 2log, . Vo(uv) ~2 NN
.{u,v) =_B + 2log u,v) - -
b ) SO0 'f N_')_, §1 } El loglo Vf(a,b) (5.3.3)

a: ):

N2
where
Nb(u,v) bits allocated to tne cecefficient at (u,v),
total number of bits used to code the NxN image.

N
B
tne variance of a transform coeffient.

Vs(a,b)
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Fig. '5.3.1 Transform coding system.
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A transform is performed on the image producing a set 5f transform
co efficients which are quantized and coded for transmission.

Fourier transforms were the first to be used ([74,75]). Later
Pratt ([76] utilised the Hadamard transform with a considerable
decrease in camputational requirements. Other investigation have
since utilised Karhunen-lLoeve (77], Haar(78], Sine [102] and Cosine
transforms to name some of the most popular ones. The Karhunen-Loeve
transform provides minimum mean square arror performance but requires
statistical knowledge of the source and does not possers a fast
computational algorithm. The Haar has a fast algorithm bug results
in relatively large coding error.

The sine and cosine transforms have fast algorithms and have
been shown to approach the efficiency of the Karhunen-Loeve transform
for Markov process image data (102,103]. Various comparisons have
been made of the performance of these transforms under certain ccding
criteria.

The basic premise of transform coding is that the transfomm
co efficients have an energy distribution that is more suitable for
coding ﬁhan the 1image pixels. The co =fficients . are more
decorrelated and the energy in the transform domain tends to be
clustered into a relatively small number of samples at the lower
sequency .

The samples to be used are selected either using a zonal
sampling method or a threshold criterion. The co efficients that are
not selected are replaced by zero's.

The most commonly used zonal sampling technique is a bit

allocation technique, where the cc efficients are allccated a
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to (5.3.3). The phase is allowed to take twice the number of levels
as the magnitude. This and similar adaptive techniques aive better

MSE and subjective performance than non-adaptive techniques.

5.3.2 Feasibilityv of phase only coding

Assuming that an image may be satisfactorily reconstructed from its
phase only, we investigate the bit rate requirement in quantising the
phase to give the same sort of distortion as coding techniques that
code both the phase and' magnitude co-efficients. For uniform
quantisation the quantisation interval §V is given by

‘ - i 1
o 0x _ fuax Gy ~ SPected maximm value of the

L ZB phase. We expect the phase to vary

uniformly between -1 and I
B - no bits/pixel
L - the number of levels used to
quantise the phase.
Assuming that the decision thresholds are set half way between the

levels (MMSE criterion) the maximum quantization noise will be

N
e =—
2
e = §V = ¢MAX = 20
L W
e =1
2B
B = log2 (I/e) bits/pixel (5.3.4)
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To achieve NMSE of 1%, e should be less than I x 1072

and consequently from (5.3.4) this corresponds to a bit rate
requirement of B = 6.6 bits/pixel. Consequently on an NMSE basis,
both a low distortion rate and a low bit rate cannot be achieved by
trying to code only the phase and reconstructing from the coded phase
by using the phase only reconstruction algorithm.

However, ccding is feasible if a good first magnitude estimate
is obtained. The phase quantization strategy which is adopted here
makes no assumption about the nature of the prcobability distribution
of the phase and follows an approach by Pohl:.g[é;l]

The number of ~uantization levels used to code the vhase of a |
given co-efficient 1is inversely proportional to the frequency
associated with that co—efficient. To Jjustify this statement,
consider the (NxN) image of £(m,n) with DFT F(i,k). We define a
continuous periodic function p(x,y) as

N-1 N-1

('—1
p(x,y) = Z L F(i,k) exp {ix + ky} 2mj/N (5.2.5)
~i=0 i=0

The image f(m,n) 1is thus composed of samples of the periedic function
pix,y) at x = 0,..... N-1, y= 0,..... N-1. This trivially has a
Fourier series since p(x,y) above is a weighted sum of harmonic
sinusoids.

The phase is quantized with quantization interval A¢(1,k)
since the position of the (i-i-k)t'h sinusoid is deterrined by the phase
¢ (1,k) of F(i,k), there will be a corresponding quantization interval

in the position of the (i+k)t'h sinusoid. If we take the approach
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that the phase quantization interval be chosen so that the
corresponding quantization in the position of the (i+k)th sinusoid is
constant with respect to frequency (i+k)th, then

Ax,y) =86 ik # O.

N/ (i+k) 21
where N/ (i+k) is the period of the (i+k)™ sinusoid.
The number of levels is thus:
L=2I= N which is inversely proportional to frequency

ae . (irkh (x,y)
the number of bits/pixel is

N N .
b =_;_Z ZIOgZ{N/[(i+k) A(x,yﬂ} (5.3.6)
k=1 i=1

5.2.3 An adaptive Fourier phase coding technique

£(m,n) DFT (Diu,v) quantize
" -
and code
t(u,v)'
agnitude
decision
quantize
and code
~
decode q’(u.V)
phase
A
IDFT . fmn
reconstructed image
decode or |’
estimate "(U.V)I
magnitude

Fig. 5.3.2 The adaptive phase coding scheme.
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The NxN image pixel array is subdivided into nxn arrays and the DFT

of each is performed independently.

The phase of each block is quantised and coded as explained in
the previous section. The magnitude 1is handled by an adaptive
encoder which makes a decision on whether or not a magnitude or array
should be sent.

Several techniques are available for selecting the magnitude
functions to be used for reconstruction, for example
(1) The magnitude of four neighbouring blocks could be combined to

produce an ensemble aversge to be used for all four. This need

only k¢ sent once every four blocks.

(ii) A texture segmentation technique may be used to divide the
imageinto several regions. The blocks in each region are used
to provide an ensemble average magnitude function used for all
blocks in that region. consequently the block ensemble average
for each sector is sent, together with a description of the
location regions.

(1ii An exponential function may generated for the magnitude as

described in chapter 3.

At the receiver, the image is reconstructed using the quantized phase
and an estimate of the magnitude function. In our experiment the
starting amplitude function was s=lected as an ensemble average and
so iterations were performed to recover the magnitude function, using
the given phase information as discussed in chapter three. Tre

recovered images are shown for various quantization rates in Fig.

5.3.3.
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(a) phase coded at 1.0 bit/pixel, with a magnitude (b) pnase coded at 0.8 bit/pixel
contributions of 0.2 bit/pixel magnitude contribution of
0.2 bit/pixel

(c) Reconstruction after 30 iterations phase at 0.8 bit/rixel, no magnitude sent
(ensemble average used)

Fig. 5.3.3 Phase coding.
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The results show that acceptable images can be obtained by coding the
phase only but to minimise bit-rate it is essential to have a good
magnitude first estimate. The method has the major drawback of
requiring several iterations to reconstruct the image at the
receiver, but the number of iterations may be reduced if a good first
estimet can be formed at the receiver.

Consequently ceding only the phase does not appear to lead to
practical advantages over methods that code both the phase and
magnitude. Nevertheless this approach is promising because it seeks

to take full advantage of the 'segmentation' properties of the DFT.
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CHAPTER 6

IMAGE RECONSTRUCTICN FROM POLYGCNAL APPROXIMATIONS

6.1 Introduction

In the previous chapters we have been concerned with reconstructing
imares given partial specifications in the frequency domain.

In many ways the problem of reconstructing images from partial
specification in the space domain is similar. For example phase only
images are visually related to edge detected or contour images.
Consequently the problem of phase only image 'reconst_ruction is
related to the problem of reconstruction from contours.

In this chapter we investigate the problem of reconstruction
from edges or contours and extend it to reconstruction from polygonal
approximations. Data compaction may be achieved by representing an
image by 1its contours for many classes of images ([19], and
regenerating the images using contours and a texture generation rule
(17]. Further compaction may be achieved if such contours can
themselves be uniquely represented by polygonal approximations and
later reconstructed.

Relatively little work appears on the recovery of contours from
polygonal approximations (PA) mainly because most applications see
PA's as a last stage in scene recognition rather than an intermediate
stage. Some obvious improvements may be obtainable here. For

example 1f a computer vision system is being used to recognise a
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scene by obtaining polygonal approximations, better scene
descriptors may be obtained if an image synthesised from the
polygonal approximations is fed back and compared with the input
“image.

This chapter considers a simple polygonal approximation algorithm
that is particularly suitable for reconstruction of a contour, which
is then used in a second stage of texture synthesis to reconstruct a
gfray scale image.

In general, it is not possible to uniquely specify an image in
terms of regions and their properties (e.g. texture) and then recover
it without loss of information. However, it is zhown here that some
recovery within acceptable distortion can ke achieved.

The relationship ketween an image and its contours has been
treated by a number of authors especially in the bilevel case.

Pavel[1l5] defined a framework for looking at skeletons as
deformed images and hence the synthesis of images is seen as a
restoration or reconstruction process. Grenander (16] formalised a
~ concept of pure patterns where grammars were constructed to generate
images.

Schemes have been reported for recovering gray scale images from
their contours and texture information e.g. Lemay (17], Delp(l4] etc.

While the general problem is quite ambiguous and many results
are scene dependent, many useful results have been obtained. The
main thrust of this chapter is to demonstrate the feasibility of
contour reconstruction, extend it to polygonal approximations and
show that it is a possible approach to the problem of image coding at

high compression ratios.
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The chapter is organised as follows. The next section briefly
reviews the background to texture analysis and modelling aporopriate
to the reconstruction problem. Section 6.3 proposes a suitable
texture contour parametrisation scheme and reconstruction algorithm.
In section 6.4 polygonal approximations and their relationships to
contours are presented and in section 6.5 a simple algorithm for
contour recovery is discussed. The final section presents some

results of reconstruction from contours and polygonal approximations.

6.2 Image texture analysis

The nroblem of obtaining reasonable spatial models for images has
been considered by many recent workers and has led to scme good
results in image enhancement and coding. As an example, if the image
is a sample of a Markov field then cosine transform coding can be
shown to be nearly optimal in the mean square sense (81].

A Gaussian-Markov model of the image is also used by various
studies using distortion rate theory to examine ccding performance
(80].

In this section we look briefly at the different methods
available for the representation and analysis of the texture in a
region. The premise that texture can be parametrized around contours
and that consequently the regions texture can be represented by
samples of the texture at the contour is examined.

Several methods have been proposed for texture analysis and
measurement. Qualitatively, a region of uniform texture has a
characteristic repetitiveness. Hawkins [85] specifies three
ingredients upon which the notion of texture appears to depend.
These are:

(i) Some local order is repeated over a region which is large in

camparison to the orders size,
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(1i) The order consists in the non-random arrangement of elementary
parts,
(1ii) The parts are roughly uniform entities having approximately the

same dimensions everywhere within the textured region.

6.2.1 Quantitative texture measures

(@) Fourier Spectrum Textures Analysis

The degree of texture coarseness is proportional to spatial pericd,
hence a region of coarse texture should have its Fourier spectral
energy concentrated at low spatial frequencies. At the same time,
regions of fine texture should exhibit a concentration of spectral
energy at high spatial frequencies. A correspondence does exist to
some degree but difficulties often arise because of spatial changes
in the period and phase of pattern repetitions.

For example Fourier spectral analysis helps in the detection and
classification of coal miners black lung disease [19] which appear as
visual textural deviations from the norm, but the same method may
fail in analysing aerial photographs due to the considerable spectral
overlap of different natural textures such as urban and rural
regions.

A 22D transform characterises the image as a weighted sum of
brightness pattern (basis functions). The coefficients of the
transform may thus be regarded as an indication of the correlation of
a particular basis function with an image £ield. If the basis
pattern is of the same form as a feature in the image when that
feature can be known simply by monitoring the appropriate transform

co-efficient.
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Unfortunately such simple correspondence does not happen much in
practice, but many studies have been done to link or examine parts of
the Fourier spectra to the image features, e.g. Lendris and Stanley

(86].

(b) The Spatial Autocorrelation Function
This is defined as
. kW

Z Z f(m,n) fm - ¢, n = n) (6.2.1)

m=j-W n=k-W

A€ gyk) =

JHE kW
Z Z (f(m,n)]2
m=j-W n=k-W
e,n=0¢%+1, £2,...,5T
A is the autocorrelati’on function calculated over a(2&'«f+1)le_ndow at
each point of the image f(j,k) for the ofiset values ¢,n.

The expectation here is that coarsely textured regions will
exhibit a higher correlation for au fixed shift (e¢,n) than finely
textured ones so that the spread of the autocorrelation function will
reflect the texture coarseness. Consequently a suitable measure of the

spread sucn as tne second moment (6.2.2) may be used as a measure of the

texture. T

T(J,K) Z Z“ /n2 (e,n: J,K) (6.2.2)

____r 'I__

(c) Edge Activity

The number of edge points in a neighbourhccd about a point can be
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used as a texture measure. This is formed as:

W ke (6.2.3)

T(,k) = 1 Z Z e (m,n)

(2u+l)2 m=j-W n=k-W

over a (2W+l)x(2W+1) window
where ¢ (m,n) is an edge image formed by applying scme ‘form of edge

detection on the image. W is the neighbourhood window size.

(d) Joint Occurence Matrices

A number of texture measures have been proposed based on the joint
amplitude histogram of pairs of geometrically related image points
(82].

If the pair of pixels F(j,k) and F(M,n) with intensisties
0 < a, b < L-1 are separated by r radial units at an angle § with
respect to the horizontal axis, let P(a,b,i,j,k,r,8) represent the 2D
histogram measurement of the image field over scme (2W+1)x (2W+1)
window. The two dimensional histogram can ke considered as an
estimate of the joint probability distribution.

For each pair of the set {j,k,r,8} the 2D histogram may be
regarded as an ILxI, array of numbers relating the statistical
dependence of pairs of pixels. Such arrays are' joint occcurrence
matrices (also called gray level dependence matrices) and are uéeful

texture measures.

6.2.2 Texture field models

A number of texture field models have been used. These include the



Julesz model ([86], linear programming medel ([88], autorsgressive
rodel [87], etc.
As an exarple, consicder the autoregressive mcdel
a o}
+ufi,j)

@
v(i,3) = Z
=0 n

e

are the regression cceificients.

mn
The image yv(i, j) is mccelled as a 2-Ddiscrete homogensous Gaussian
- Markov field, where

Elu(i,j).y((i-m, j-n)] = 0 ; O<m<a, 0<n<b, m=no (pixel uncorrelated

with pixels in

Efu(i,j) ulk,1)] =52 6., 5j1 recursion region)

Efu(i,j)] =0 ; E[.] is the expectation cperator (zero mean)

Gik =1; if i = k and

=0; if i # k.
Yor the special case of a-=b =1,
vi(i,j) = el y(i-1,3)+ e, y(i-1,3-1) + 63 v(i,3-1) + u(i,j)

by row concanteration,

T

2.5

(@)Y

( )

v(k) =0 Z(k-1) + u(k) there, (6.2.7)
T . .
2 (k-1) = ¥(x,N),¥(k-N-1),¥(k-1)
: the past nhistory of the process.
and T
. © :%G%E%i%)
The WEan square error is
NZ
T
JN(G) = % [vik) -8 z(k-1)]2 (6.2.8)
k=1
k#[;nitlal condition se?}
To form &an estimate of the texture, select the regression
co-efficients © and o2 (variance of the zero rean gaussian roise )

<
=

o as to minimise the mean square error.
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The problem of determining perceptually sufficient texture
descriptors is as yet unsolved. In general, the mean, variance and
autocorrelation function are not sufficient texture descriptors even
though the 'Julesz conjecture' third order and higher order
density differences between texture field paires are not discernable
by human vision [87].

A texture model may be used for texture analysis by estimating
the parameters of the model that would result in a a syﬁthesised
texture that ma .ches the pertinent statistics of the texture to be
analysed.

Direct estimation of the parameters of a model is difficult.
The Julesz model is non-linear, while the linear programming model is
camplex. The autoregressive model requires the measurement of the
first order and second order moments of the texture and to estimate
the probability density of the model driving process.

Cne approach described by Faugeras{89] ;’.s ullustrated below in
fig. 6.2.1. The texture field is first decorrelated by a whitening
operator to produce a field w(j,k) that forms an estimate of the
independent, identically distributed driving process of the
autoregressive model. The histrogram of over some window is measured
to estimate the probability density p(w) of the driving process.

The whitening operator 1is derived from the measured testure
autocorrelation function (6.2.1(b)). The first four moments of the
histogram - mean, standard deviation and kurtosis are used to
represent the histogram. The autocorrelation function is represented

in a similar way by its histogram
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The result is an'eight dimensional feature vector that gives éood
classification but is limited by computational bounds on the
whitening step and the autocorrelation function measurement.

As a computational simplification, the whitening operation can
be replaced by a simple approximate decorrelation operator such as
the lLaplacian or Sobel and the characterisation of the
autocorrelation function may be totally eliminated.

The decorrelation operator produces edges of the texture field
and the sufficiency of measurements on this edge field in
characterising a natural texture field [89] suggests that testure is
uniform where there are no edges and is discontinuous at the edges.

Edges contain a lot of visual cues such as surface orientation,
3D shape etc. and consequently recovery of this information £from

edges has received a lot of attentuation (90].

6.2.3 Edge and contour extraction

The extraction of edges from an image 1is quite difficult and
unreliable. While many edge detection operators and segmentation
algorithms have been proposed and used, they do not always give all

the essential edge information that correctly characterises the
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image. Most useful techniques such as Roberts gradient technigue
[91] give a fairly good approximation to the ideal with a few
extraneous lines. A missing edge might occur for example when a
physical edge does not result in a visible brightness discontinuity.

In order to use contours for reconstruction, they must be
extracted as nearly perfectly as possible and spurious edges must be
eliminated. '

Simple linear edge detection methods involve performing a
discrete spatial differentiation. Ofter this i: achieved by
convolving the image function with a gradient mask.

A cammonly used mask is the Laplacian edge detector below

0-1 0
H=1}1 4 -1 (6.2.9)
0 -1 o

The new image intensity g(x,y) at the point (x,v) is formed from the

image f(x,y) by using the mask above to give

gix,y) = £(x-1,y) + £(x*+1,y) + f£(x,y+1)~4£(x,yHflx,v-1) (6.2.10)

Several other masks may be used, and an 'edge map' may be formed by
thresholding the resultant edge image. )

Prewitt [96] considers several discrete differentiation masks.
These compass gradient masks have maximum response +to certain

direction, producing maximum output . for luminance charges in a

preferred direction.
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Non-linear edge detection systems utilise non-linear combinations of
pixels over a limited windows area. Examples include Roberts (91]

where the edge image is formed by the cross operations given as
L
g{x,y) = ([£{x,y) - £(x+1,y+1)12 + [£(x,y+l) - £(x+1,y]3)7° (6.2.11)

Another operator attributed to Sobel ([92] uses the 3x3 window

below to describe the pixel numbering convention.

a b c
d e £
g h i
and defines
S, = (C+2f+1i) - (a+2d +q)
SV = (g+2h+1i) - (a+2b+1)

the edge detected image gives the gradient at point e as

g=/5 + SY’ . (6.2.12)

Kirsh ([94] describes another 3x3 operator. Many other techniques
have been proposed and compared - For example Rosenfeld [95]
Marr (93], Davis(97].

The approach used in this thesis starts off with an edge
detection algoritlm followed by a thinning and thresholding
operation. The Roberts edge detector is use@ to produce the Zirst
edge image. This method has been found to produce edge images that
are well suited to this application, giving both gocd luminance and

textures edges.
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For data ccmpression it is now essential to operate on the edge image
and produce an edge map that contains all the essential edge
information but which contaiﬁs edgges that are on€ pixel wide rather
than several pixels wide.

Contours are thus formed by reducing the dimensionality of the
edges. This is necessary So that polygonal approximations can be
used to act on the contours so obtained for compression. To obtain
the best contour from the edges one must seek the maximum of the edge
detection operator in each window, as this is often the point of
steepest change.

One way is to take two derivative operations. The maximum of
the first derivative operator corresponds to the zero crossings of
the second. This is the principle of the Marr-Hildreth operator [93]
which detects the zero crossings of hte output arter the application
of the ILaplician (6.2.9). The whole question of obtaining the
correct contours is fraught with difficulty because it is very easy
to miss out certain parts of the contour when you use a second
derivative operation.

The Marr-Hildreth operator is directional and will give correct
contours for horizontal and vertical directions. The horizontal and
vertical gradient operators work well for most orientations but leave
gaps when the edge deviates slightly frcm the horizontal or vertical.
An alternative is a thresholding operation where a decision is made
about the edge intensity threshold and all the edge pixels with
intensities less ihan this are removed. The dicadvantage with this
approach i1s that it assumes a global intensity over the image or

window area. This dees not work well for all the contours,
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y but works well in those cases where the
chosen thresholds correspond to a particularly dominant edge. The
best approach is a combination of an edge follower and adaptive
thresholder. Once one correct edge point is obtained the others on
the same edge are grown from it and the threshold is chosen locally.

This allows different thresholds for different areas.

6.3 Contour and texture parametrisation of images.

Given the contours and the texture information a suitable data
structure can be used to represent the image for purposes of

compression. The overal block diagram is shown in fig. 6.3.1 ,

Where F(j,k) is the image pixel array and p(c,t) is the contour and
texture representation. The block diagram of the reconstruction
system used is shown in fig. 6.3.2

Having obtained the correct contours, several options are
available for the parametrisation of the image. Cne option would be
to take measures of the texture in the regions on either side of the
cortours, and later regenerate the texture using a suitable model and
texture synthesis algorithm. This requires a fair amount of

camputation goocd closed regions are not always formed. Computing
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texture measures on an irregular grid and later regenérating this
texture over the whole image requires an inordinate amount of
processing and storage.

The appracch used here and by others(17] is to represent the
texture on either side of the contour by the pixel intensities and to
recover the image by inserting these intensities and then estimating
the intensities in the non-edge region.

The given contour information does not uniquely specify the
image and there are several images that m~y be compatible with the
contour information.

All these images siould not contain any more contours in the
areas between the given contours. This suggests that the image
intensity between the contours should be maximally smooth and a
reconstruction  constraint should minimise the probability of
introducing any new contours.

When the image being sought is bilevel, this corresponds to the
classical contour filling problem.

In the gray level case several approaches are considered.

(1) Spline interpolation.

If the contour information and the texture on either side of the

contours is given, this approach has been found to give a

reconstruction image compatible with the given information. The

intermediate texture is obtained by spline interpolation using
the given texture information.

(1i) Iterative Constraint
The missing texture may e estimated using an iterative

reconstruction algorithm, subject to the constraint that no new
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contours may be introduced. The reconstruction problem is
formulated as a constrained optimisation problem as follows:
Given a local measure of image intensity variation at pixel
(x,y) involving the derivatives of intensity with respect to the
co-ordinates; F(fx,fy,fxy ....... ), the reconstructed image

£(x,y) is obtained as the minimisation of this measure over the

images.

min

f(x,y) F(fx,fy,fxy ....... ) 4 x dy (6.3.1)
subject to known £(x,y) along the contours.

fx is the derivative with respect to the x-co-ordinate at (x,y)
fy is the derivative with respect to the y-co-ordinate at (x,y)
F(E, £, £ ..., ;) 1s a measure of image intensity variation at

Xy Xy
(x,v) and is a function of the derivatives.

If the squared magnitude, F, is used as a measure of this variation,
F=f2+ £2
X Yy
Recasting the above problem in a discrete form, with the derivatives

replaced by differences, we need to minimize

-

M N
C= zg: zg:[f(xly) - f(x,y-1)12 + [£(x,y) - £(x-1,y)]2 (6.3.2)
S y

where f(x) is the pixel intensity at (x,y)

The minimisation is carried out at all points except at the
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fo(x,y) initial estimate

fi(x,y)

T( ) fi+l(x,y) = fi(x,y) +)\Afi(x.y)

impose known
fx,y) at
contours

(x,
fi+lY)

Fig. 6.3.3 Iterative algorithm for reconstruction.
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contour where the given values of intensity are used. To minimise, a

sufficient and necessary condition is

aC
=0 (6.3.3)
Of (%,y)
defining the Laplacian
Af(x,y) = £(x-1,y) + £(x, y-1) + £(x+l,y) + £(x,y+1) - 4f(x,y)
(6.3.4)

which implies that if (6.3.3) is satisfied, Af(x,y) = 0 at all points
except the contour points.

As before, we can consider the mapping from the given fi(x,y) to
an estimate fi+l(x,y), so that to solve the above iteratively.
f{§1y) = T{fi(x,y)}where T(.) is a transformation from the ith to the
(1+1) th iteration. Linearized this beccmes

Elgy) = £ (x,y) + AL (x,y) | (6.3.5)

where \ is a relaxation parameter. .

fo(x,y), the initial estimate is obtained by using the given
values of texture at the contour points and 0 elsewhere. The
ILaplacian is the gradient of C with respect to f so the iterative
algorithm above can be considered as a steepest descent algoritim for
the minimisation of C with respect to £.

On a variation of tunis algorithm, the unknown taxturs is
initially generated using a texture model such as the autoregressive

model discussed previously.
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Af(m,n)={f(m-1,n) + f(m,n-1) + £(m*+1,n) + f(m,n+l) - 4f (m,n)
i i+1 i+l i i i

Lt is.interesting to-consider the convergence behaviour of this
algorithm.

The error between the latest estimate f&}x,y) and original
image is

ei(x,y) = fi(x,y) -f(x,y)
Where f(x,y) is the smooth reconstruction being sought.

Using this linear relationship, we obtain a similar equation to
6.3.5 for the error at the (i+l)th iteration as

ei+1(x,y) = ei(x,y) +.AAei(X,y)
Edges represent high frequency information and the iteration tries to
prevent the intraduction of edges (high frequencies) in the non-edge
region. The iteration can thus be modelled as a repeated low pass
filtering operation in the non edge region . Consequently, we may
take

Ei+1(wl,m2) = H(wl,mz) Ei(ml,wz) (6.3.6)

where E,

l+1(wl,mz) %§ the DFT of ei+1(x,y)

and H(ml,mz) is the transfer function of the low pass filter.
Since the points at the contour not affected, the filter is not
shift invariant so this analysis is not entirely rigid, but we can

evaluate

H(wl,mz) = Ei+1(“’1""2) = F{ei (x,y) +/1Aei(x,y)}

Ei(ml,mz) F{ei(X,Y)}

This reduces to (see appendix 4 )

= [1-44] + Alexp (juy) +  exn(jw,) (6.3.7]

1 - Alexp (-ju;) + exp(-Ju,)]
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6.4 Polygonal approximations

In the general polygonal approximation problem we want to find a
polygon that closely approximates a given curve while having a much

smaller number of vertices. This problem is stated as follows:

Given a curve C

C= {x;,y;) |

determine the minimum set of m (usually) straight line segments
(c1 ....... ,cm) that will approximate the curve subject to a closeness
criterion.

So the requirements are
(i) £find the minimm number of segments (m) for a given error E,

and/or
(ii) find the minimum total length of polygonal sides for a given

number of segments m and error E.

While segments are usually chosen such that the data points
along them are on straight lines, it 1is often useful to describe
other forms e.g. arcs.

The solution to this problem is generally non-unique and optimal
methods of solution such as dynamic programming (18] have a
prohibitively high camputational cost. As a result, thers have been
many proposals in the literature of algorithms that produce a
sub-optimal solution but with much lower computational cost [1Z]
ine converse problem is the reconstruction of the contour from the
polygonal approximation. This may be stated as one of finding the
best curve C to fit the given set of straight line segments and scme

constraints.



Apart from the’ different approximation methods, there are
differing estimation methods for the error between the polygonal
approximation and the curve.

We propose an algoritim that is suboptimal because. it is
constrained to have points of the original image in the polygon.
But this will be useful in reconstructing the contour. It makes
local decisions about whether to extend the segment and the advantage

of doing this is that they may be done in reverse, hence giving a

contour that would have satisified them. i.e. the same decisions can
te made when recovering the contowr «out whether the segment can e
broken any further

The general situation is illustratad in the figur= celcw

Fig. 6.4.1 Geametrical illustration of polygonal approximation

The algoritim

imput: Co—ordinates of the curve C(I), I =1,....0...... , N
Jutout: Selected co—ordinates correscanding to jth se;:,ment
Sj k), k=2,......... , M

definition: £(.) is a function which determines hcw close the segment
ith the present extsnsion is to the segment without the

extension.
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E is the allowed error for f(.) above.
j is an index of the number of segments j=1,....... m.
k is an index of the points belonging to jth segment.
T is a temporary segment.

1. initialise j=0

2. perform procedure SEGMENT until end of contour

3. If end-of-segment = time
j=3+1
k=0

Else
k=k+1
Co to 2

Prodcedure SEGMENT

n = next point along contour

THEN end-of-segment = true.

At each local point, E is defined as the maximum allowable angular
divergence which was chosen as 22° in our experiments. £(.) was
taken simply as the new angle. To assist in the detection of gradual
changes, an expected short segment length of about 5 points on the
grid was used, so thiat a comparison was also made every neighbouring
sets of 5 points in the contour and these would be merged if they
don't differ to much, otherwise they would be split. Fig. 6.6.3

shows a polygonal approximation obtained using this algorithm.
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6.5 Contour recovery

Since the polygonal approximation is so close to the contour, it may
well be that if grid points are selected at random close to the
approximating polygon side, we may obtain a reasonable contour.

A better reconstruction may be obtained by applying the
algorithm outlined above, in reverse. (See fig. 6.5.1). Given the
contour points in the polygonal approximation, we want to find a path
along the grid which satisfies the rules for oconstructing the
polygon. Even though the path joining two vertices in a connected
graph is not unique in the general case, knowing the rules for
constructing the polygon, considerably reduces the ~mbiguity and the
contour may be grouwn between the vertices. At each point the next
point is determined so as to satify these rules.

This time the algorithm starts from point B (fig. 6.4.1) and
works its way towards point A, at the same time satisfying the
constraints on angular divergence that were used to construct the
polygon segment. There is only a finite number of curves that can
satisfy these constraints and in most cases are not really going to
affect the acceptability of the reconstructed contour.

If it beccomes impossible to satisfy the rules the algorithm back
tracks to revise its decisions. A buffer store is kept of the
previous points. If a contour fails to meet the end vertex after a
large number of points (far beyond the expected number), the
algorithm backtracks. In our work this was loosely defined as
2(X+Y) where x = direction, Y is length in Y direction of polygon.
The solution can be made almost unique if the number of contour

points represented by each polygonal segment is kept as well. This
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Starting point

Estimate next
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Satisfy constraints on that point
or back track

Next segment

Satisfy constraints on segment
or back track.

Fij. €.5.1 Contour recovery.



- 159 -

has the disadvantage of increasing the number of points. But if a
parametric representation of the contour and texture has been
obtained, this information would be present anyway from the number of

texture points

6.6 Experimental results and Conclusions

The ideas outlined in the previous sections were applied to the image
of fig. 3.3.3 Fig. 6.6.2 shows the contour image of the test image
and fig.6.6.3 shows the polygonal approximations obtained using the
algorithms outlined in section 6.4 Fig. 6.6.4 shows the results of
reconstructing the contours from the polygonal approximations. Fig.
6.6.5 shows the reconstructed images using spline interpolation (a)
and the iterative approach outlined in section 6.3 (6.6.5(b)).

The results indicate that subjectively acceptable
reconstructions frcﬁ contour and texture parametrised information are
possible.The compression cbtainable depends somewhat on the nature of
the image. For example the 'script' images is represented just 3
polygonal approximation curves, or a total of 39 segments. The
parametric representation then consists of 3 1-D vectors of 42
points, encoding the x-co-ordinates, y-co-ordinates and intensity.

These have a lot of inherent redundancy and may be further
encoded among themselves. For example the first intensity along the
contour may be fully encoded and the others would only have a
residual coded so that they may be predicted from it. Using similar
methods to encode the co-ordinates, the bit rate required is obtained
by adding up all the bits needed to represent each vector and

dividing by the total needed for the original image.
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Fig. 6.6.4 Contour reconstruction
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Fig. 6.6.5 Spline interpolation

Fig. 6.6.6 Constrained iteration
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The original required 64x64x7 bits and the parametric required
42x2x4+42X5 bits

This allows up to 4 bits for encoding the differences in the
co-ordinates and 5 bits for the intensity differences. This is about
0.13 bits/pixel and may be reduced further. The 'man' image shown
however, uses about 0.4 bits/pixel.

The criteria of maximum sncothﬁess gives and acceptable image
and 30 iterations seems to be about the required number for
reconstruction. The main factor on which success depends is the
correct choice of edge image and extraction of the contours. Under
some conditions, a good starting image may be available - e.g. in
coding image sequences, the previous sequence is available and it
would give faster convergence. The quality of the reconstxructed
images 1is worse than the quality of transform coded images at the

higher bit rates, but is better at the very low bit rates.
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CHAPTER 7

CONCLUSIONS

This chapter presents the main conclusions of this thesis and some
suggestions for research areas where future research could be
useful.

Issues related to three problems of image reconstruction were
considered. These were image reconstruction from the phase or
magnitude of its Fourier transform and from information about its
contours.

The conditions under which a sequence is uniquely defined by
its magnitude or phase function have been examined. In particular,
it was shown that a finite support constraint is in most cases,
sufficient for a Zi)seéuence to be uniquely defined to within a
scale factor by its phase. The finite support constraint is
sufficient for a class of sequences which are related to within a
sign, linear shift and time reversal to be uniquely defined by the
magnitude of the Fourier transform.

Practical algorithms for reconstructing the image from its
phase were éresented. Both iterative and non-iterative algorithms
were discussed. The effect of noise on the phase only
reconstruction was investigated.

The convergence of the phase only iteration is reduced when the
available phase is noisy even though the fixed point to which it
converges will not change if the iterative mapping is a contraction

over the domain of the noisy sequence.
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It is seen that the selection of a good starting magnitude function
can speed up the phase only reconstruction from noisy phase and
several methods of selecting the starting magnitude are examined.

While the error in the final reconstructed image will be the
same for both the non-iterative and iterative reconstruction
algorithms, it is possible that the image at some point in the
iteration will be better than the one to which it converges.
Consequently it is important to study the iteration theoretically,
using error measures that can relate to the subjective quality of
the image. More work 1is also required in developing relationships
between the phase and the space domain image. Such relationships
could be useful in developing constraints for estimating the phase.
Further theoretical work is needed on uniqueness in the case where
the available phase is noisy or quantised, and on reconstruction
methcds to reduce the effect of the error.

An 1issue that 1is related to the above problem is Fourier
transform coding, which is studied in the second part of chapter
five.

A Fourier transform éodj_ng technique is examined where only the
phase is coded and transmitted and the magnitude is reconstructed
from the phase information of the receiver. The method is shown to
provide a good reconstructed image, but bit-rate and quality of the
image depend on the ability to form a good estimate of the magnitude
function at the receiver. Qur results indicate that fewer
iterations would be required if such an estimatc was available.

To develop practical ccding algorithms using only the phase
more work is required on selecting magnitude functions, and on

coding the phase function.
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Adaptive techniques that take full advantage of the apparent link
between phase and image edge structure as well as between magnitude
and average image brightness are required. One such technique could
classify an image into several regions where the same starting
magnitude function could be used.

The question of how best to code the phase is still an open
problem. When both magnitude and phase have been coded, it is
usually on the basis that more bits should be used to represent the
larger co-efficients at the lower frequency. The same approach is
used for other transforms. However, this form of lowpass filtering
will tend to destroy edge structure at high compression ratios and-
it may be better to choose co-efficients by same other technique.
As shown, a slightly different analysis based on the phase, gives
broadly the same result that lower frequencies need more bits.

Further studies of coding methods that use only the phase are
needed because of applications such as the kinoform. There is also
need for the development of solutions to the non-iterative phase
reconstruction algorithm for reasonable sizes of image arrays.

In Chapter four, the importance of a priori information for the
success of iterative algorithms for magnitude only reconstruction
was studied. Reconstruction is generally not possible without a
priori information. The type of information available depends on
the application area, but the two most ccmmonly applied constraints
are the non-negativity and finite support constraints. However, it
is seen that simply applying these constraints does not generally
lead to quick convergence, even with an accelerated algorithm.

A more powerful concept is to consider the design of starting
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images which will produce an image that satisfies the constraints
after passing through the iteration.

The convergence of the iteration improves when some information
about the phase is provided, but this kind of information may not be
available in practice.

There is considerable scope for further work on reconstruction
algorithms. Further theoretical work is needed on the relationship
between constraints in the’ frequency and space domains so that
adaptivity parameters can be designed not only to speed up the
iterations but also to éatisfy the constraints in both domains.

The uniqueness of the magnitude 1is still an open problem
especially in the case of complex valued sequences and on
reconstruction from a noisy magnitude function.

Cne application investigated in this thesis shqwed that the GS
iterative algorithm will reconstruct from a noisy (Wiener estimate)
magnitude when a noisy estimate of the phase is available.

In chapter five, a methcd is presented to estimate the phase as
well as the magnitude of the spectrum of an image that has been
degraded by linear blur and additive noise. The method consists of
a conventional statistical restoration filter which serves to
restore the magnitude function, followed by a Gerchberg Saxton type
iterative algorithm to estimate the phase function.

Using a finite support "constraint is found to reduce the phase
damain error, and the spatial activity constraint leads to visually
better images. This method provides a practical way to obtain
better resolution for images that are restored using a zero phase

filter. More work is needed on techniques to estimate the correct



- 159 -

phase from the noisy measured phase function.

In Chapter six, the reconstruction of images from polygonal
approximations is shown to give reasonable images at high
compression ratios. The 'jmage is represented by the polygonal.
approximation of its contours and the pixel intensity along the
contours. The contours are obtained by a derivative and
thresholding operation on the edge image and their correct
extraction is essential to the recovery of an image that resembles
the orig+nal.

The image pixels are recovered by an iterative algorithm that
minimizes the square of the derivatives in the non-edge region
subject to the constraint that the edge pixels maintain their known
intensities. .

This approach is found to give useful images and could
possibly be develcped further. More work is needed on algorithms
that extract the correct contours as this mekes a lot of difference
to the quality of the final image, and on developing gocod first
estimates. Since these methods are mostly concerned with
reproducing the correct relationships between the pixels, rather
than the actual intensity values, the final image quality may be
improved by some form of image enhancement. For example histogram
equalisation could be used to redistribute the intensities om the
known range. The fact that a number of iterations must be performed
1s a disadvantage as 1is slows down the response time, bu£ the
calculations are nexrghbourhood operations and could be performed
very quic}{ly in parallel. |

Extracting the correct edges from an image is still an



various classas of images. TImage reconstruction £frocm these edces
mav De used to improve the periormance of an edge detecting system,
if the image reconstructed from the contours is corparsd with the
original. This mav be important in scme applications wnere a much

comprassaed version of the imags scene neads to be stored with very
limited resources or must be transmitted clong a very narzcw
bancwidth channel.

Mzany of the reconstruction algorithms discussed in this thesis

Cifficult to provide a simple measure that would explain why a phase
only image is inteliigible and a magnitude image is not.
There 1is ‘therefore & ne=d to develop mathematical or

probebilistically based reconstruction methceds and mors work 1is

needed on developing mccdels that are aporopriate to image

‘¢

racensirucition from incoammlete information.

Three raconstructicn problems have teen considerad in scos Cetail:
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s . - - s . s~
It is shown that real image functions ares unicuely cefired to a
S S LY
R e , - I Toe e .
scale factor by thelr prase. There 1s & very clear wisual 1ink betwssn
= 3 ~= - 3 =% T ~ e - L ———— T et e e - ——
cne OE"_\'::Z_'I...l imace and the 'pnass-only' i1mage. ESCLTATSS CL Che 1MEg
ars from ithe phase only imace toth by solving linear closed
form ecuztions Detween the oricinal imace and the pnass and by using
$ = -is e -1 T =t I < | PR — v b 7 = > = - - -
iterative alcorithms, 2apolying knocwn constraints in eacn domain as we

Sy o OV T3 3 | T oy - \ £ s PRE
for an NxN imaga. It is also limited bv time as & numbar of ikerations
- 3 — S FAv -, s ey P -~ =t - —~
(around 30) are needed for reconstruction. Furthermors, the convergencs
Of the iteration 1is rscducsd when the paase functlon 1s n0isy or
s . - . . .
guentized. In this case, cccd Lerformance 1s obtained by salecting gocd

- - - 1. I~ Sy 1 - 3 M - [y 5 - L.
starting magnitude urctions nd Dby using adapihive relaxaticn

-

~ ¥ 3 Ao -~ = - P 1 .y - = - P S Iaoo -

tcechniques. Conseguently, the success of iterative phass only

reconstruction as a comprassion methcd depends on the abilitv te form

_excellent starting magnitude functions and to perform many iterations

|~

cuickly. This is possible with array prccessors and may be even faster

= ‘_YT‘II

ptical processing is used to geriomm the DET's.

[
T
v
.
~
Q

Magnitude only reconstructicn is generally not successiul withcut a
pricri information. Magnitude only images are not as intelligible as
phase only images and the relationship between mwagnitude only and

asic lterative algorithm converges extremaly

3
O
i}
1
|
or
0]
1y
o]
cr
}: .
0]
—
<
-3
o
0]
o

slewly, but reconstruction improves when further a priori information

about phase or its sign is available. Unfortunately such inforwation is
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uncbtainable in most practical situations. Freguently only the medulus

e e
2 problems. The methods however, do

)

provide a practical way to obtain ketter resolution for images that have

rom polygonel aporoximations of contours, giveas
intelligible images at very hich compression ratics. The comprassion

cbtainable is greater for imacges with significant contour content such

as scriot images and ccmparas very favcurebly with other coding methcds.

The follcwing problems, among others, remain to ke solved;

1. PDeveloping mathsmatical or probabilistically based reconsitruction
methcds. -
2. Theoretical examination o:f ralationships ketwsen the image and its
phase. -

W2

. Unigueness of the magnitude for complex valusd saguences.

S. Criteria for ccd the phase.
6. Fast algorithms for performing the iterations.

Soluticns to these problems would go a long way to improve understanding
of 1image reconstruction and contribute to the dJdevelopment of image

prccessing science.
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APPENDIX T
Proof
x(ed¥) = X, (e + 3% (e
The Fourier Transform of x (n) = er (n)emjujrl
[ 2]
=k f_ [x(n) + x(-n)]e 3"
- oD
oo co
=4 Z x(n)e—an + % E x(—n)e_]mn
n= —eco n= - co
=% | x(* + x(m) el® =y | xe + Fe
[,

»[m eJ¥) 4 3%, (e Juy X, eJY) - ij(ej‘“)__]l= Xr(ejm)
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APPENDIX II
Procof of phase uniqueness
Theorem:

let x(ni,nz), y(nl,nZ)E'F((nl,nz) with support R(Nl,Nz).

if X(zl,zz) has no symmetric factors and ¢

M —‘Ml' M2
¢X(w1, wz))M = ¢y(w1, mzhn for w; = 1,00eenn. M
w2=l, ....... M2

then y(nl,nz) = Bx(nl,nz) for some positive number 8.

If tan [¢X(wl, w,)),] = tan ¢Y[(m1, wz))Ml

y(nl,nz) =p x(nl,nz)for some number 8

Proof

let x(nl,nz), y(nl,n2) satisfy the theorem.
Consider the sequence
g@;/n,) =x(,n,), * yl-n,-n,) (A2.1)
x(nl,nz) and y(nl,nz) have support R(Nl’Nz) hence their convolution

g(nl,nz) is zero outside —Nl<n1< Nl’ —N2<n2< N2. Therefore if

M>2N-1, then the M-point DFT of <g(n1,n2) is the prcduct' of the

M-point DFT's of x(nl,n2) and y(nl,nz)

G(kl’kZ)M = X(kl’kZ)M . Y(—kl,—kz)M where M = Ml’ M2 (A2.2)
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Thus if cbx(kl,kz)M = ¢ (kl’k

by or tan [¢X (kl'kZ)M] = tan[¢y (kl,kz)M]

Z)M
Then G(kl'kZ)M must be real and since g(nl,nz) 1S non-zero in.the

region —Nl<nl< Nl' ~N2<n2< N2, it follows that g(nl,nz) must be even,
and its Fourier transform real.

-1 -1 ‘
G(zl,zz) = G(zl = ) (A2.3)

therefore from A2.2 and A2.4
. _ -1 -1 _ -1 -1
X(zl,zz) = Y(z1 125 ) = X(z1 125 ) Y(zl,zz)

Multiplying by z{Nl z;NZ, results in

X(zl,zz) Y(21,22) z1 22 = X(zl,zz) Y(zl,zz) 24 22 ,
(A2.4)
where m, ,m, > 0 and n, 0, > 0 are integres
> _ -Nl =N, -1 -1
and X(zl,zz) =2y 2, X(z1 125 )
Consider a non trivial irreducible factor Xk(zl,zz). If a polyncmial

has two differenct factorisations, the factors in each can always be
ordéred in such a way that the factors are associated - i.e. the
factors in both factorization will be equal to within a factor of
- zero degree. Therefore Xk(zl,zz) must be associated either with a

~
factor of X(zl,zz) of a factor of Y(zl’ZZ).

But, if X.k(zl,zz) 1s associated with a factor of Xk(zl,zz) then
Ar

_ s , e o1 s impli
Xk(zl,zz) aXl(zl,zz) or some 1. Tf I = k this implies

Xk(zllzz) = g2 %((21’22) and Xk is symmetric. (If d:il)
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Ifi#k
Xk(zl,zz) X(zl,zz) = a Xi(zl,zz) Xi(zl’ZZ) = aA(zl,zz)

and A(zl,zz) is a symmetric factor of x(zl,zz).

This is excluded by the theorem, so each non trivial irreducible
factor Xk(zl,zz) of X(zl,zz) must be associated with a factor of

Y(zl,z )

2

In a similar manner, each non-trivial irreducible <factor
W S J £
mk(zl,zz) of Yle,zz) be associated with a factor of X(zl,zz). If
Y(zl,zz) has no non-trivial symmetric factors, each irrecducible
factor of Y(zl,zz) must be associated with X(zl,zz). Therefore
X(zl,zz) and Y(zl,zz) have an associated set of non-trivial

irreducible factors and may only differ at most by a trivial factor.
. _ ky _ka
i.e. Y(zy,2,) =8 211 z5% X(zy,2,)

If no constraints are made on the factors of Y(zl,zz) note that each

non-trivial irreducible factor of X(zl,zz) must be associated with a

F

factor of Y(zl,zz)

Consequently X(zl,zz) and Y(zl,zz) are related by

= 7,

Y(zl,zz) z)t 2, P(zl,zz) X(zl,zz)
where
m=m,m, - integers

1

P(Zl’z2) is a polynomial in 2 .

Since Y(zl,zz) and X(zl,zz) are both polynomials in Z_l and X(zl,zz)
contains no trivial factors Q(zl,zz) = zTi zgz P(zl,zﬁ) must also ke

a polynomial in 77'.



- 165 -

This represents the Z-transform of a sequence q(nl,n which must be

2)
even in order for the phase or target phase of x(nl,nz) and y(nl,nz)
to be equal. Therefore Q(zl,zz) = 8 and the theorem follows.



- 166 -

APPENDIX III
Convergence of iterative algorithms

We state and prove convergence theorems for iterations of the form

X =X
o1 = p T AT
where rp = T(X§) - XP
T(X,) is the mapping between
consecutive iterates of the basic
(unrelaxed) iteration ie XP+l =
T(XP).

(i) A mapping T with domain D in R and range in R will be denoted

by T: DCR=»R"
(1i) A mapping T: D=R*R" is non expansive on a set D. D if
T - Ty < x-¥ for all x,y E DO

X

(iii)A fixed point x° of the iteration T is defined as any solution

of the equation

Xx - Tx = 0.
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Theorem A3..l

Suppose that under the Euclidean norm T: DCRY»R" is non expansive
on the closed convex set DOC D. Assume, further, that 'IDOC Do and
that Do contains a fixed point of T. Then for any » ¢ (0,1) and X, €
Do’ the iteration

Xorl = Axp + (1-2) ’I‘xp, p=20,1,..., (R3.1)

converges to a fixed point of T in Do

Proof

The convexity of DO ensures that the sequence (A3.1) is well A=afined
o
and remains in Do' If x 1is a fixed point of G in Do then in the

Euclidean norm

“xp+l - xoi 2 = )2 nxp - x"“ 2 4 (1-n)2 HTXP - Xo” 2 (a3.2)
+ 2w (l-w) (Txp—xo)T (xp-xo)
and
s o , o, o o
“ xp—Txpn =} (¢ )) # ]2 - 2eme T ox)

(A3.3)

after multiplying (A3.3) by A(1-1) and adding to (A3.2) we cbtain:

|

”l

%ol — x°” 2+ ) (1-)) ”xp - TXPMZ (A3.4)

xp—x°” 2 4+ (1-1) ” T - Tx°;/ 2 <nxp - xo” 2

Therefore for any m>o

m m

iy 2 Xp-Txpn2 < z [”Xp_xo}’ R

p=0 p=0
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Which proves that for m , the series on the left converges, and ,

in particular that

lim “xp - Txpn =0

p—b 0

Since

°" o ( W+ (-0 T Ix°ﬂ

- X — - - -

)xpﬂ =% p
o (o] ) [
<(xp-x)\<xj-x)\<nxo—x)i (A3.5)

for allp >0, j<p
It follows that the sequence{xp} is bounded and hence has a
convergent subsequence {xpi} which, by the closedness of Do’ mist

o
have its limit point y o Do'

Then (A3.1) shows that

(o] . 4 .
vy ) =1lm (x ., -y ) + (1-1) lim (

pit+l pi Txpi_xpi) =0

or by the continuity of T, that yo = Tyo, therefore (A3.5) holds with
yo instead of xo, and accordingly the whole sequei..e Xp must converge
to the fixed point yo.

Note that the adaptive acceleration has changed the point to

which the iteration converges.
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Aprendix 3b

Lenmma Contraction mapping theorem

Suppose that T:DC RE»R" maps a closed set beD into itself and that
“ Tx - Tyu < a.nx—y" for all x,y ¢ DO (A3b.1)

for some o < 1.

Then for any starting point X, € Do , the sequence

X = Tx =0,1,...., A3b.2

o
Converges to the unique fixed point X of T in D,

and

Note that (A3b.3 provides a computable error estimate so that if o is

X -xol
p

< [a/(l-a)i].\ x_ - xp_l” .o=1,2...., (A3b.3)

p

known, the actual error after p iterations can be bounded in terms of

the last step x_ - X .
P % T el

(b) The convergence of approximate or Noisy sequencss.

Given that the exact sequence x converges under an iteration such as
the phase only iteration, it can be shown that the. approximate
sequence such as may be formed by quantization of x also converges to
the same fixed point if it is contained in a domain under which the

lterative mapping is a contraction.

Theorem

let T:DCRn—>Rrl be a contraction on DIQD (with constant «) and DOC

Dl a closed set such that 'IDOC Do
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[By the contraction mapping theorem, the sequence in (A3b.2)

. . . . ° .
starting from xoc DO converges to the unique fixed point x of T in

DO]

Let ypc D1 be any sequence and define
(A3b.4)

then

[¢]
“ Yp+1 - % \ Yp+l - ypu + eJ (A3b.5)

< [1/(1-a)] ["1

\,p= 0,1.. (A3b.6)

D
! o - .
- E P=J. p+] -
4“2( X n + o &5 + \XO yO

Proof

the estimate (A3b.5) follows from

o of
“Ypﬂ o lényp;l Typu +lTyp B Typ+l” ¢)/ Nor ~ k//
< + - + °
“p a yp Yp_i_l} a yp+l X
and (A3b.6) is obtained from
R N R N
P
Sa \Xp - Yp] + ap \<....\<Z ap—j -:j + ap—-l ]\xo - yo”
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together with

oo - o - 7]

Suppose that lim Ep = 0 and, more specifically, that for

s

p-co

given ¢ > 0O, sp~$5&for P » P,- Then with

p
)7= ZE a_ . €, we have
~j:(‘.)

PJ P

which shows that lim ){;o
p>oco

o
thus by (A3b.6), lim Yp =X

p—F

. . o
Conversely, if lim Yo = %X then

p—»&

-

N szln v - | vl
A R

which implies that lim s = 0

p-t—oo
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Mo assumptions aremade about the noisy sequence, except that it is

contained in a domain DICD in which T is a contraction. It need not
lie in D_.
o

The relationship between the exact sequence and the approximate

sequence is given by (A3b.6).
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APPENDIX 4

Proof of equation 6,3.7,

The error between the latest estimate f (x,y) and the original image
i

f (x,y) at the i™ jteration is related to the error at the i+1'D

iteration by

e, f37) = e, (x,y) +le, (x,y) (A4.1)
where
Ae.(x,y) = e(x-1,y) + e (x,y-1) + e (x,y*1) + e (x+1,y)
t i+l i+1 * i
- 4 e (.X)..V)
i

The transfer function of the lowpass onerator modelling the iteration

is thus
E (w,,w.) F le(x,y) + Ade (x,y)

H(w,,w5) = _iili__g__ = { i i } (A4.2)
Ei(wl’ub) F {ei(x,yz}

(1-42) F e(x,y) +A|Fle ( x—l,y2}+ Fle(x,y-1)] + Fle(x,y+1)} +F fe(x+1,y)
i [}jﬁl [iﬂ [i ) {i ﬂ

F{ei(x,y?]

Using the relationships .. F{é(x+1,y) = exp( jai),F{e(x,y)
i+l i+l

and E'Sil’ab)

, E (@ ,%)
we get 1
}I(wlth = (1_ U"}l) +/1[H(w1w2)exp(—jw1)+ eXp(_ja)2) + e‘\'p(.]wl)—*-e‘\’p(njwz)]
hence

(1-42) + A exp(gwy) + exp (Gu,) |

Hw,,wy) = (A4.3)

1 —A[exp(—jwl) + exp (—JwZ)_-I
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