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ABSTRACT

The general problem of image reconstruction frcm incomplete 
information or limited data is encountered in a number of diverse 
areas such as medical imaging, astronomy, geophysics, image 
processing etc.

This thesis considers two problem5. The first concerns the 
reconstruction of images from the phase or magnitude of their 
Discrete Fourier Transform representation.

Phase only reconstruction is motivated by the intelligibility 
of the phase only image. Conditions under which an image may be 
uniquely reconstructed from its phase function are studied and both 
non-iterative and iterative algorithms for reconstruction are 
discussed. Phase only reconstruction when only noisy phase is 
available is studied and it is shown that the good choice of an 
initial magnitude estimate improves, the reconstruction. Several 
methods of choosing a satisfactory initial magnitude are presented.

In the case of magnitude only reconstruction, theory indicates 
that irreducible finite support sequences are recoverable to within 
an equivalence class but satisfactory practical algorithms for 
reconstruction have not always been obtained. The amount of a 
priori information available will determine the rate of convergence 
and this thesis investigates the effect of specific information such 
as boundary information and its incorporation into the 
reconstruction.

Two important applications arising out of the above are
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considered. A hybrid technique is developed for the restoration of 
linearly degraded images with additive noise. A- magnitude only 
reconstruction algorithm is found to improve on conventional Wiener 
filtering.

The other is Fourier transform block coding, where techniques 
which seek to exploit the relative similarity of the magnitude 
functions in the blocks are investigated.

The second problem concerns incomplete image specification in 
the space domain. Specifically the case where an image is to be 
reconstructed fron its intensities along the edge contours or their 
polygonal approximation.

A reconstruction method is developed which treats the problem 
as a constrained minimisation to find an image compatible with the 
given contour and intensity information.
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CHAPTER I

INTRODUCTION
1.1 Introduction
The problem of reconstruction from incomplete data can be said to be 
present in all forms of digital image processing because any digital 
image can be viewed as quantized samples of an analog image function.

For most purpose? however, an image sampled above the Nyquist 
rate and digitized to a useful number of levels (say 256) can be 
considered to be a full or complete image and it is images 
reconstructed from much less information either in the time or 
frequency domain that are the subject of this thesis.

Applications abound throughout image processing and there are 
also many analogous problems in other engineering disciplines. A few 
of these applications are presented here.

Generally, the incomplete image information may be present in 
the time domain or in a transform domain and the reconstruction 
process may use either or both of these domains.

In the time domain we may have insufficient information due to 
decimation. Another application is sub-Nyquist sampling where the 
image function is sampled below the Nyquist rate, but at such a 
frequency that the aliasing components fall at predetermined 
frequencies and can be extracted.

In the transform domain, we have several application where it is 
necessary to reconstruct an image from incomplete information. The
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Fourier phase problem, where only the Fourier transform magnitude is 
available for measurement and the phase must be reconstructed. In 
image transform coding, only a few samples of the transform 
co efficients are transmitted. These are chosen so that a 
reconstruction algorithm at the receiving end can give reasonable 
reconstruction of the image.

■ Another application in the transform domain, is image 
reconstruction from projections - especially when the imaging fast 
moving organs such as the beating heart. In this case we are 
interested both in reducing the total number of projections needed 
for reconstruction of static scenes as well as in producing images of 
reasonable quality from the few projections that can be taken within 
the very short 'static' viewing period of a fast moving object.

It is quite probable that the problem can be generalised to 
cover incomplete transform information of all kinds, as well as to 
consider Image partial information that does not fall into either of 
the two categories discussed above - for example, a contour or 
polygonal approximation.

Many techniques, both theoretical and ad hoc, have been 
presented for solving the reconstruction problem in seme 
applications.

A quick look at the history of image reconstruction shows that 
the basic approach to the problem has been two pronged. In the first 
instance, researchers have tried to establish, theoretically, the 
uniqueness of the partial information present, i.e. is the partial 
information uniquely linked to the original image function ?
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The second aspect has been a consideration of different algorithms to 
perform the reconstruction. As we shall see in the review which 
follows, many of the successful algorithms are interactive algorithms 
and hence another approach to the problem has been one of algorithm 
acceleration and convergence study.

The importance of this subject may be illustrated by the breadth 
of applications where it occurs, they fall into 4 general categories: 
Type 1: Those applications where only partial information is

available and there is no other way of forming an image. 
This includes Tomographic reconstruction frcm limited 
projections, phase only and magnitude only reconstruction, 
High resolution Synthetic Aperture Radar (SAR).

Type 2: Where full information is present - but noisy or erroneous
- Current techniques for image restoration and blind 
deconvolution would benefit frcm reconstruction methods. 

Type 3: Where full information is present but sane is selectively
discarded for the purpose of data compression - e.g. 
Transform coding etc. and the received image from such a 
system may be treated as a limited data image, and 
reconstruction methods used to recover the original image.

This thesis addresses itself to several forms of this general 
problem. The general problem may be put in the following manner:

Limited samples of an image are obtained and an attempt is made 
to deSv ribe to the maximum extent possible, the image frcm which 
these samples were obtained, subject to
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(i) Acceptance of all available data
(ii) Ensuring all extrapolated data are consistent with a priori 

knowledge.
(iii) Being neutral about data that are not measured and cannot be 

extrapolated.

Even though the above problem specification is applied to an image, 
it may often happen that the available incomplete information is not 
in the image domain itself but in another domain, uniquely related to 
the image function. Several significant problems in a number of 
diverse areas that have missing information in other domains include 
phase and magnitude only reconstruction, bandlimited spectrum 
extrapolation, tomographic reconstruction from projections etc.

In all these areas, the two basic problems to be addressed are
(i) Theoretical considerations of the uniqueness of the image 

derived from the partial information.
(ii) Practical algorithms to reconstruct images given the limited 

data. The main factors here are numerical complexity of the 
algorithms, rates and bounds of convergence.

1.2 Scope of the thesis:
This thesis addresses two subproblems of the image reconstruction 
problem.

The first, concerns the reconstruction of images from the phase 
or magnitude of the fourier transform.

Interest in this area is motivated by several factors. The
causative factor is the perceived different roles played by phase and
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magnitude of. the signal. A phase-only image is often intelligible 

while a magnitude-only image is not. Phase is considered more 

important than magnitude and this is utilised in phase only holograms 
and Fourier transform coding.

In the former, the magnitude is discarded and replaced by a 

constant, while in the latter, the phase is coded using more bits 

than the magnitude.

The relative importance of the phase has prompted suggestions 

that perhaps the full image may be reconstructed from phase only, 

with consequent reduction in the amount of information needed to 

represent an image.

A second factor is the presence of a number of applications 

especially in astronomy and optics, where only one or other of the 

Fourier spectral components is available for measurement.

Same form of reconstruction is then necessary to obtain an 

estimate of the full spectrum.

Phase only reconstruction with i tera tive algorithms has been 

found to converge most of the time in contrast no magnitude only 

reconstruction. There has however, not been a suitable analysis of 

the noise sensitivity of phase only image reconstruction. An 

analysis is presented in this thesis and consideration is also given 

to ways of improving phase only reconstruction both for the noisy and 

noise free cases.

Fast adaptive algorithms for both phase and magnitude 

reconstruction are developed.

Magnitude only reconstruction has had a longer history than 

phase only reconstruction, albeit a less successful one. Although
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reconstruction is theoretically possible if the finite sequence is 
irreducible in practice the problem appears to have a very large 
number of local minima and convergence to the true global minimum is 
virtually impossible unless the initial starting point is very close 
or if stringent constraints are available. The amount and type of a 
priori information available as well as the constraints used will 
determine the rate of convergence of the iterative algorithms and 
this thesis investigates the effect of specific information such as 
extra phase information, boundary information etc.

Two important applications arising out of the above are 
considered. The first is the restoration of linearly degraded 
images with additive noise. Conventional restoration techniques use 
restoration filters (e.g. Wiener) which tend to restore the magnitude 
leaving the phase function unrestored. A hybrid technique is 
presented where phase restoration is carried out by using the 
restored magnitude and noisy phase as initial estimates in an 
iterative magnitude only reconstruction. The other application is in 
Fourier transform coding where techniques which seek to exploit the 
relative similarity of the magnitude functions among blocks of the 
image are investigated.

The second issue addressed in this thesis concerns incomplete 
image specification in the space domain specifically the case where 
an image is to be restored from a representation of its contours and 
texture. This is motivated by the intelligibility of contour images 
and the premise that the regions between contours have uniform 
textures.

It is shown that iterative methods can be used to achieve
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reconstruction from this information and it is extended to the case 
where polygonal approximations are used for representation.

1.2 Outline of the thesis
Chapter 2 is a survey of seme of the results which have appeared in 
the literature concerning image reconstruction from incomplete 
information. The general problem is presented and a brief historical 
background of seme of the more popular application is given. A 
rather more extended survey is then made of the problems that have 
been considered in some detail in this thesis. These are the 
magnitude only and phase only reconstruction problems.

Due to the importance and wide use of iterative reconstruction 
methods in solving these problems, we include a brief review of these 
iterative approaches.

In chapter 3, the phase only reconstruction problem is examined 
in detail. The conditions under which an image can be uniquely 
represented by the phase of its DFT are considered and both 
iterative and non-iterative reconstruction algorithms are developed 
for the case where the correct phase function is available. The
sensitivity of phase only reconstruction to both additive and 
quantisation noise is examined and it is shown that this sensitivity 
can be reduced if an estimate of the magnitude function is available.

Several techniques are examined for faster phase only 
reconstruction and in particular the effect of the initial amplitude 
on the rate of convergence of the iterative is exploited. Several 
ways of choosing an appropriate starting magnitude function are 
developed.
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In chapter 4, a similar study to that carried out in chapter 3 is 
done for the case of reconstruction frcm magnitude only. This 
problem is generally less tractable and the uniqueness conditions are 
more general. A variety of reconstruction algorithms that have been 
used for this problem are discussed and compared and seme reasons 
offered for their lack of success. Faster adaptive algorithms with 
extra constraints are studied. Due to the importance of a priori 
information on the success of the reconstruction methods, sane 
special study is made of reconstruction from magnitude given sane 
other information. In particular, it is shown that given the sign of 
the phase, the problem becomes a lot less ill conditioned. A general 
study is then made on the quality of reconstructions frcm other 
partitions of Fourier domain.

Chapter 5 is devoted to some frequency domain applications of 
image reconstruction. Some of the results developed in the previous 
chapters are used. Magnitude only reconstruction is used to estimate 
the phase of a degraded image that has been restored by a Wiener 
filter. The degraded image phase is taken as the first estimate in 
the iterative reconstruction. In the second part, a Fourier phase 
coding technique is developed. It uses the correct phase function 
and an estimate of the magnitude function as developed in chapter 
three.

Chapter 6 considers a related space domain reconstruction 
problem. It examines the question of whether a useful reconstruction 
of a gray scale image can be made from its or itour representation. A 
similar constrained iteration approach is found to yield useful 
results. The reconstruction image is found as the solution to a
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constrained optimisation problem, where the maximally smooth image 
consistent with the given information is sought.

Chapter 7 provides a brief summary of the results presented in 
the thesis. Same open questions and areas for future research are
described.



CHAPTER TOO

BACKGROUND
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CHAPTER 2

BACKGROUND

2.1 Introduction
This chapter provides a review of sone of the more important 
application areas where the limited information problem is 
encountered. As well as reviewing, the background and solutions to 
these problems, we also look at some generalisations of the iterative 
algorithms that have been applied to this problem.

2.2.1 Computerised tonography
Computerised Tomography (CT) is easily the one application of image 
reconstruction that has captured public imagination. The principles 
of computerised tonography apply widely. The basic .radiographic 
problem involves the reconstruction frcm projection measurements of 
the linear attenuation co efficient integrated along the path of a 
collimated X-ray beam. The basic reconstruction techniques are based 
on Radon's rigorous solution to the problem. This has subsequently 
been further developed by others [2] , [3] and reconstruction from
projections has found many new applications in such diverse fields as 
geophysics, radio astronomy, structural biology, non-destructive 
testing, etc. In its medical applications, Cl has been used in a lot 
of modalities other than X-rays e.g. Nuclear Magnetic Resonance 
(NMR) , Positron Emission Tomography (PET) , and in different ray 
geometries.
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The original uniqueness results obtained by Radon are in general 
valid only when scans in all directions are available even though 
there are sane exceptions [1] such as when the unknown function is 
radially synmetric.

The incomplete information appears in several forms in CT. For 
example the Fourier phase problem appears when CT systems that 
measure their data in the Fourier space are unable to measure the 
phase. In many practical applications, requirements for high 
temporal resolution of the presence of an X-ray opaque structure 
prevent the measurement of all the line integrals or it may be 
desirable to reduce dosage by exposing the patient for a shorter 
time. Attempts to use existing algorithms in the limited data 
problem result in images with severe streak artifacts [6]. 
Alternatively, the modality being used, such as in oceonagraphy or 
electrical prospecting, the area involved may be so large that it is 
impractical to collect data in 360°.

Some recent workers [7] , [8] have considered utilising the
Gerchberg Papoulis iterative frequency domain extrapolation 
algorithms [38, 39l This however is only really applicable when the 
missing projections are in a continuous range and only for parallel 
beam geometry. The missing projections then correspond to a segment 
of the frequency spectrum and can be extrapolated. Considering the 
same problem, Sezan and Stark [9] use the method of projection onto 
convex sets [10] which can allow the incorporation of more a priori 
constraints.

2.2.2 Synthetic aperture radar
The limited data problem also occurs in Synthetic Aperture Radar 
(SAR)
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In high resolution radar imaging, the fidelity of reconstructed 
images is limited by the high side lobes of the point spread 
functions (psf). These sidelobes are essentially artifacts resulting 
from spectral canponents. missing in the measured spectral data and 
are higher when the measured spectrum is very discontinuous. One of 
the earliest approaches to this problem was the use of 2-D tapered 
windows to suppress the sidelobes which is effective- when many 
independent data samples are available. However it may lead to 
severe degradation when only a few samples are available. 
Alternative methods that have been used include the Gerchberg Saxton 
algorithm.

2.2.3 Reconstruction from contours
The problem of reconstructing images frcm contours has not received 
much direct interest in the gray scale case. When the image is 
bilevel, this corresponds to the classical contour filling problem. 
There have been several approaches to this and similar problems [11] 
[20] . As with the phase, there have been approaches to image coding 
where it has been found beneficial to emphasize the contour 
information and treat it separately frcm the other image information. 
Two source modelling was first proposed by Schrieber [13] and since 
then many workers have used composite source models in transform 
coding.

* In the main, this work has considered the spatial image as a 
composition of two images [edge image, difference image] or th 
transform co efficients as composite sources [low frequency, high 
frequency] .

One recent approach to reconstruction frcm contours [17] uses
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spline interpolation to estimate intermediate texture. The basis of 
this and other approaches is that one does not try to reproduce the 
image intensity like traditional coders, but only tries to find a 
reconstructed image that is compatible with the given information.

We consider the application of sane of these reconstruction 
methods to the problems of recovering gray scale images frcm their 
contours and polygonal approximation.

Classical approaches have had the following basis. There has 
been interest in coding methods that code pictorial feature rather 
than pixel arrays. (Since human observers do not seem to perform 
quantitative analysis on each pixel point, but rather to search for 
distinguishing features such as edges or textural regions.) For 
example, methods based on contours, edges and texture regions have 
been studied.

If a quantized image is considered as a stack of slices or 
planes each of constant gray level, the image may be represented by 
the boundaries or contours of the gray levels in each slice.

These contour may then be efficiently encoded for image 
transmission. The basic premise of contour coding as a means of 
bandwidth compression is that an image will contain a much smaller 
number of contours compared to the total number of its pixels and 
that the contours can be more efficiently encoded.

While this may be true for sane images and compression rates of 
7:1 for black/white images and 1.5*. 1 for gray scale images are 
obtainable, the whole process is rather complicated and suitable only 
for rather low transmission rates [19] for gray scale images,
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higher compression rates may be obtainable if some of the information 
is left out.

An approach related to contour coding as described above is edge 
coding. Here the image is convolved with an edge detector and the 
edge map obtained. This is of course composed of contours which may 
be efficiently coded as described previously. The image is also 
low pass filtered. Thus its data may be reduced by taking only the 
major low frequency co-efficients after applying a suitable transform 
e.g. Fourier.

The image may then be reconstructed using these two compressed 
representations. At rates of up to 0.25 bits/pixel have been 
reported [19] on images of little detail, but the method has a high 
level of system complexity requiring transform , edge detectors, edge 
linkers, followers linkers, etc.

Finally we look at texture coding which also falls within the 
context of our problem. The basis here is that if the image is 
segmented into disjoint regions of fairly constant texture, then the 
regions (say contours) and the measured texture. Compression is 
achievable because the regions boundaries may be efficiently coded 
and the texture simple represented - perhaps by a simply measured 
textural value.

Reconstruction of the image takes place when the regions are 
reconstructed and their internal texture synthesised. This approach 
is still of sane research interest, with many workers looking both 
into efficient analysis and synthesis of texture.
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2.2.4 Bandlimited spectrum extrapolation
The most popular reconstruction problem among research workers is 
band limited signal extrapolation. Here one attempts to extrapolate 
a finite segment of data, given that it is band-limited. Papoulis
[38] considered this problem for continuous signals and proposed an 
algorithm for solving it which iterated between bandlimiting the 
estimated signal, and then replacing - the known segment with its 
correct value. Convergence was proved by exploiting the properties 
of prolate spheroid wave functions.

Sabri and Stenart [25] proposed a single step closed form 
solution to the problem using an "extrapolation matrix". Cadzow 
[26] reconsidered the problem, and by discretising the problem 
arrived at a superior closed form solution.

Gerchberg [27] considered the same problem with the frequency 
and time donains reversed. He estimated the high frequencies of a 
finite length signal from the given low frequencies using a similar 
iterative algorithm.

A related problem which forms the subject matter of much of this 
thesis is the reconstruction of an image from samples of the phase or 
magnitude of its Fourier transform together with some extra 
information such as finite support etc.
2.2.5 Reconstruction from phase only or magnitude only.
The phase and magnitude of the Fourier transforms of images play 
different roles and it is well known [28,]07| that many of the important 
features of a signal may be preserved if only the phas . is retained.

There are a number of important application areas where only one 
or another of the components of the Fourier transform of a signal can
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be measured directly. In such situations, the need arises for the 
reconstruction of the original signal from the one available 
component.

Reconstruction frcm magnitude is a fairly well established 
problem that has also been called the 'phase retrieval problem' and 
the 'Fourier phase problem'.

The problem is to reconstruct the original phase function of an 
image given the discrete magnitude spectrum. This is often necessary 
in some applications where only the magnitude is available or can be 
measured and the phase must be reconstructed. These include X-ray 
crystallography [40], radioastronamy [42] , Electron microscopy [41] 
and image processing [44] in optical astronomy.

In X-ray crystallography, the molecular structure of crystals is 
to be inferred from the observed diffraction of pattern, of X-rays. 
The diffraction pattern is related to the scattering density of the 
crystal by a Fourier transformation, but only the intensity (squared 
magnitude) can be measured.

To determine the crystal structure, knowledge of the phase is 
indispensable and phase retrieval must be carried out. In optical 
and electron microscopy, the index of refraction of a thin object or 
the height distribution of a surface may need to be determined from 
the intensity of the wave distribution in the image plane. To 
determine the structure phase information is needed.

Imaging through a turbulent atmosphere may reduce the resolution 
of objects well below the diffraction limits of the telescopes. 
However the development of speckle interferometric technique it is 
now possible to obtain diffraction limited information about the 
Fourier transform intensity of the object [43] . Because of these
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and other important applications there has been a lot of research 
effort by workers in these areas on both the uniqueness formulations 
and reconstruction methods. This problem is also of extreme interest 
in electrical engineering because of the importance of the Fourier 
transform in the subject.

There is also the dual problem which arises when dealing with 
complex sequences in the space domain. Let f (x) be the space domain 
signal in any of the applications above and F(u) it Fourier 
tranr. form.
Complex Valued functions.

f(x) = |f(x) |exp [j<J>f(x)] (2.1)
F(w) = |F(<d) |exp {j$F(u>)} (2.2)

are thus defined where |f(x) | and |F(u>) | are the magnitudes of the 
signal and its Fourier transform, and <p̂ (x) and (to) are their 
corresponding phase function

In one dimension (1-D) the two dual problems of whether |F(w) | 
uniquely defines the phase of F(u) given that f (x) is time-limited 
and whether | f (x) | uniquely defines the phase of f (x) given that F (oi) 
is bandlimited were considered by Hofstetter [22] and Walther [45] . 
They showed that neither time nor band limitation is, in general, 
sufficient to ensure a unique solution to the phase retrieval 
problem.

This lack of uniqueness is attributed to the possibility of 
' zero flipping'. The flipping of a zero about the j w-axis preserves 
the magnitude of the Fourier transform as well as the duration of the 
signal and hence allows 2̂  (p -  number of zeros') different
signals having the same duration and Fourier transform magnitude as
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f (x) . However a unique solution is obtained if all the zero are 
imaginary.

Because of this ambiguity, as a result of zero flipping, workers 
have searched for solutions based on the availability of additional 
information. Such an ara is electron microscopy. For example 
Greenway [46] has shown that the presence of any interval over which 
the field in the object plane is known to be zero, is sufficient to 
ensure a unique solution. Furthermore both the field in the exit 
pupil and in the image plane are known to be entire functions due to 
the finite extent of the field in the object plane and finite size of 
the aperture in the exit pupil. Hoenders [47] has shown that these 
constraints reduce the phase ambiguity to a single field f (x) or 
f*(-x).

Another variation of this problem is the. case where the field 
intensity in two planes known - e.g. electron microscopy where the 
field is measured both in the image plane as well as in the exit 
pupil plane giving both |F(u») | and |f(x) |. Another example is when 
the field is measured in two slightly defocussed planes in an optical 
imaging system.

In the first case above, Huiser [24] showed that the solution is 
unique to within a constant phase factor for analytic functions and 
in the second case too, unique solutions have been obtained [47].

Further information has been obtained by adding a known 
reference signal to the unknown signal, prior to the observation or 
measurement of the magnitude [48] such a procedure is used in 
holography. Knowledge of the reference signal may allow the phase
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information to be retrieved and the original complex function to be 
reconstructed.

With proper choice of reference signal, one may ensure that the 
observed signal is minimum phase and hence use the Hilbert transform 
to retrieve the phase. The use of Hilbert transform relations for 
phase retrieval has been considered by many workers e.g. [58].

Phase retrieval in the 1-D case has been widely studied as 
outlined above. Generally any given |F(co) | corresponds to an 
enumerable (sometimes finite) set of f(x) satisfying sore conditions 
[22] .

The reduced ambiguity of the two dimensional (2-D) phase 
retrieval problem was noted by several workers, but one of the 
earliest detailed studies of the 2rD case was by Bruck and Sodin 
[23]. They considered a case of reconstruction a discrete image 
function f(x,y) frcm its discrete autocorrelation function. They 
Fourier transform is related to the corresponding z-transform which 
is a polynomial P(z,w).

They defined an equivalence relationship between two polynomials
P(z,w) A Ap(z,w) ZS (2.2.1)

A is a constant
sZ represents a shift along the x axis 
Wt represents a shift along the y axis 

Knowing the spectrum modulus is equivalent to knowing p(z,w) , 
p(z \  w )̂ or its equivalent polynomial

Q(z,w) = p(z,w) p(z 1, w"1) Z11̂ (2.2.2)
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They show that there is a large number of multiple solutions in the 
1-D case.Their basic postulate is that the uniqueness of a function 
is linked to the irreducibility of its z-transform.

In the 2D as opposed to the ID case, there exist 
polynaminals that cannot be factored. Since the probability of 
finding a non-factorisable polyncminal is much higher than that of a 
factorisable polyncminal, multiple solutions are not as common in the 
2D case as the ID case. Any polynomial of the form 

p(z,w) = q(z) + w 
is non-factorisable for k>l.

Bruck and Sodin further postulated that the factorisability of 
any polyncminal geometrically implies latent or overt repeatability 
of the image elements. For example a structure may be superposed on 
other elements by shifts and constants. The same autocorrelation 
polynominal but with opposite shifts would lead to quite a different 
image function. So only' images characterised by the above 
repeatability are not reconstructed uniquely. They did not provide a 
procedure for determining p (z ,w) from Q (z ,w) but conceded that it 
would be a quite complicated solution of a set of second order 
equations.

Recently, Hayes [30] extended the Bruck and Sodin postulate that 
the uniqueness of a 2D sequence with finite support is related to the 
irreducibility of its z-transforms. The polyncminals are taken to be 
unique if they have at most one irreducible non-symmetric factor. 
Lawton [59] applies the Poisson summation formula in conjunction with 
certain properties of functions which are 2D generalisations of the 
prolate spheroid wave function to derive an
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algorithm for determining X (m,n) from |X(u,v) | over parallelogram 
shaped regions.

Fienup [37] Quatieri [35] Hayes used modified forms of 
Gerchberg and Saxton algorithm to solve the problem. Gonzalves [60] 
proposed an alternative algorithm which uses a polynomial expansion 
for the phase. The phase is modelled as a summation of Zemike 
polynomials and a cost vector.

Reconstruction from phase has only recently received the sort of 
attention that was given to the phase retrieval problem. This is 
rather suprising because of the observed importance of phase over 
magnitude in image intelligibility. The applications of phase-only 
images are not as numerous. Phase only images can be used for image 
alignment, taking advantage of the fact that the autocorrelation 
function for phase only images is an impulse [31].

In image transform coding, an important bit rate reduction may 
be obtainable if it were possible to code only the phase of the 
Fourier transform of an image. Many coding techniques allow more 
bits for coding the phase than the magnitude [61] , [62] .

Another area where image formation relies heavily on the 
intelligibility of phase only images is in Kinoforms or phase only 
holograms [21] . The quality of images reconstructed from Kinoforms 
would be greatly improved if the magnitude function could be 
recovered frcm the phase function.

In the area of blind deconvolution the signal of interest has 
been degraded by. a blurring function about which detailed Imowledge 
is not available. In seme special cases, the distorting signal may 
be known to have a phase function that is approximately zero and
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consequently the phase of the degraded signal is very similar to that 
of the original image. In these cases the problem becomes one of 
reconstruction from phase only. Examples of this situation occur in 
seismic signal processing [8] as well as in image processing 
[32].

Phase only reconstruction may also be useful in the estimation 
of the frequency response of a Linear Time Invariant (LTI) , if the 
symmetry of an input can be controlled [28] .

In the restoration of images degraded by additive noise, phase 
only reconstruction could be useful. Such systems with additive 
noise are sensor noise and quantization noise in low data 
transmission systems. Usually filters used for such restoration are 
of zero phase and consequently only estimate the magnitude function 
without modifying the phase function. Some significant improvements 
are made if both the phase and magnitude are estimated [28] , [64] .

An analytic solution to phase only reconstruction is possible 
through the Discrete Hilbert Transform (DHT) for minimum phase 
sequences [34] but this requires the unwrapped phase. Alternative 
closed form solutions have been considered [63] , [65] but there are 
many restrictions on the size of the matrices.

An iterative approach has also been used [35] . This is similar 
to the ones used of phase retrieval and move alternately between the 
space and frequency domain, imposing known constraints in each
domain.
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2.3 Iterative reconstruction algorithms
For many incomplete information problems, explicit inversion formulas 
are not known or are difficult to use. Consequently iterative 
reconstruction algorithms have been widely applied. Some of these 
have already been outlined above.

The structure of these algorithms are quite similar; we simply 
alternate between forcing time domain and then frequency domain 
constraints on the signal. This simple idea of iterating between two 
domair. s has encouraged many others to try and apply the same concept 
to more complicated problems. For example, Malik [66] solves a 
multidimensional maximum entropy (MEM) spectral estimation problem by 
iterating between the correlation domain and the convolution inverse 
of the correlation domain, forcing constraints on the model power 
spectrum in both domains in an attempt to • find the MEM power 
spectrum.

Finite impulse response (FIR) filter design algorithms, such as 
the Femez exchange have been deliberately designed to try to 
iteratively adjust the filter co efficients in the time domain in 
order to decrease the worst errors in the frequency domain. More 
extreme examples are iterative autoregressive moving average (AFMA) 
modelling algorithm of Eykoff [49] or the iterative inverse filtering 
algorithms of Konvalinka [50] which iterate between estimating 
residuals, poles and zeros in a manner that appears to solve the 
corresponding modelling problems.

Recognising the conceptual similarity of all these algorithms, 
as well their resemblance to certain iterative deconvolution 
algorithms, numerous authors have tried to unify the presentation
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and convergence proofs of these algorithms. For example, using the 
notion of non-expansive and contraction mappings, Tan et al [67] have 
shown that when the solution to the reconstruction problem is 
unique, then convergence of the bandlimited and the phase-only 
reconstruction algorithms could be proved by showing that each 
iteration of the algorithm defined a strictly non-expansive mappings.

Fixed point theorems of Ortega [51] were then invoked to prove 
convergence. Schafer et al [52] take an identical approach to prove 
convergence of deconvolution and bandlimited extrapolation 
algorithms.

Youla [54] considered the Papoulis bandiiiuited extrapolation 
problems as only one example of a class of iterative projection 
algorithms involving two sets of constraints on projections of the 
unknown signal. By considering the more general problem in an 
abstract Hilbert space setting, he characterised the properties of 
the algorithm in terms of the 'angle' between the constraint spaces. 
Mosca [53] treated the same subject in depth analysing the various 
degeneracies possible in solving ill-behaved linear problems in 
infinite dimensional spaces.

Jain [55] interprets the bandlimited extrapolation problem as 
solving a least squares problem. They derive Papoulis iterative 
algorithm, discuss closed form solutions in terms of Discrete Polate 
Spheroid Function and they show that Cadzcw's closed form solution is 
the minimum norm solution to the least squares problem. The least 
squares approach leads to a conjugate gradient iterative algorithm. 
Musicus [68] adopts a similar approach but uses Minimum Cross 
Entropy (MCEM) optimality criteria instead of simple leasts quares.
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It appears that a particularly rewarding approach to the formulation 
of new algorithms is to define an objective function measuring the 
goodness of the estimate and then to optimise this function 
iteratively. When the objective function is convex, the resulting 
iterations are often contraction or non-expansion mappings and hence 
an algorithm is generated whose convergence can be easily verified.
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CHAPTER 3

PHASE-ONLY RECONSTRUCTION
3.1 Introduction
In the previous chapter, we have reviewed the background work in the 
general reconstruction problem. In this chapter, we re-open the 
discussion in the specific case of Phase Only Reconstruction (POR) .

It is possible to develop a variety of conditions under which an 
image may be recoverable frcm its phase or magritude or any other 
part of its Discrete Fourier Transform (DFT) representation.

In this chapter we examine in detail seme of the conditions tiiac. 
have been developed for phase only reconstruction of signals with a 
view to application both in the later parts of this chapter and in 
the phase coding problem discussed in chapter five.

While a sequence generally cannot be uniquely defined in terms 
of only its DFT phase or magnitude, there are certain classes of 
sequences for which this unique specification may be possible. For 
example, there is a Hilbert transform relationship between phase and 
log-magnitude of the DFT of a minimum phase sequence. However as we 
discuss later, the minimum phase requirement is quite restrictive 
and hence it is necessary to study other conditions for uniqueness 
that may be satisfied by the images found in practical applications. 
Since the phase function may be subject to measurement error in some 
of the application areas, or to quantization noise in the coding 
application, it is necessary to study the effect of noise on phase 
only reconstruction.

This chapter is organised into two main parts. The first deals
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with POR given the correct phase samples.
In section 3.2 we introduce sane of the basic theory of sequence 

reconstruction from phase or magnitude, right up to the minimum phase 
condition. After this, we leave consideration of magnitude
uniqueness to the next chapter and introduce several uniqueness 
conditions for the phase.

In section 3.3 we examine reconstruction algorithms that have 
been developed for POR and shown their suitability for 
reconstruction.

The second part of the chapter deals with some special 
extensions to the abova theory and some consideration of the effects 
of noise. Section 3.4 is devoted to an experimental study of the 
effect of noise and to a consideration of the effect of noise on the 
iterative reconstruction.

Section 3.5 discusses the effect of the choice of the initial 
amplitude estimate on the convergence of the iteration.

3.2 Phase Uniqueness
Poisson's formulas or Hilbert transform relations can be developed 
formally frcm the properties of analytic functions. For example, 
given that the z-transforms are analytic, we have constraints such as 
the Cauchy-Riemann conditions relating the partial derivatives of the 
real and imaginary parts. .Another is the Cauchy integral theorem, 
where the value of a carp lex function is specified everywhere inside 
a region of analyticity in terms of the values of the runction on the 
boundaries of the region.

However, the approach developed here applies a basic causality
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principle that allows a sequence to be recovered from its even part.

3.2.1 Uniqueness of real and Imaginary parts
Any arbitrary sequence x(n) may be written as the sum of an even 
sequence xq (n) and an odd sequence xQ (n)

x (n) = xe(n) + xo(n) (3.2.1a)
xe(n) = >5 [x (n) + x (-n) ] (3.2.1b)
xQ (n) = H [x (n) - x (-n) ] (3.2.1c)

is causal, then it is possible to recover x(n) from x (n) e
and, except for n = 0, to recover x(n) fron xQ(n). This is clear 
from the above equations since x(-n) =0 for causal x(n).

The Fourier transform X (e^*) of x(n), is generally complex and 
may be written as, C1'1)

X(ejui) = Re [X(ej“)l + j lm [X<ej“) ]
= Xr(ej‘°) + j Xj. (ejl“) (3.2.2)

Given that x (n) is real, X (e-̂u) is conjugate symmetric and its real 
part is even and the imaginary pari: odd.

Moreover it can be proved that (ê w) is the Fourier transform 
of xg (n) and that x̂  (e-̂w) is the Fourier transform of x (n) - see 
appendix 1.

Therefore, if X (ê w) is known, then provided x(n) is real, 
causal ana absolutely summable (stable), then X̂  (ê w) is also known. 
This is because x (n) may be determined frcm X (ê u) and hence x (n) 
maybe determined using (3.2.1) frcm which X̂  (ê u) nay be obtained.
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Generally the z-transfom for x(n)

X(z) = X(re^) =
z=re30)

2]x(n) r n e -̂ n (3.2.3)
n=o

Since x(n) = (n) xg(n), where (n)
’2, n>o 
• 1, n=o 
= , n<o

X(reJ“) = 2(Cxe(n)].[Ut(n) r"n]) e' 3 'm (3.2.4)

i.e. X(re-̂ a)) is the z-transfom of the product x̂  (n) and U^(n)r n* 
The z-transfom is thus a Fourier transfom that is the convolution
of two Fourier transforms

X(re^“) = Xr(e:i“) *

. , -1 -ju)1 + r e J

. , - 1  - jo )1 + r e J
for r>l.

(3.2.5)

Using the complex convolution theorem,

X(z) dv (3.2.6)

C is the unit circle
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X(z) outside the unit circle is described in terms of the known real 
part on the unit circle.

If r=e-̂ 0aj, (3.2.6) is rewritten as a line integral
77r 77/

X (z) = 1
z = re^03 2 77

*R (e3e» p(e-oj) de + 1
277

J-77 J-77

Xĵ (ê 0)Q(0-co) d9
(3.2.7)

P = Re i . “1 j0 1 + r eJ ; Q = Im i , “1 j0 1 + r eJ
i -1 je 1 - r eJ i -lie 1 - r eJ

Therefore 
X (z) = 1

2tt
J

*R (ê 9) P(9-u) d8

-7r

and

(3.2.8)

xi (z: = i

2ir

j 0\  (eJ ) Q (9—to) de

J—n

(3.2.9)

The above has now been derived starting from a representation of the 
real, causal, stable sequence by its even component.

A similar analysis may be carried out starting with the sequence 
represented by its odd component.

i.e. x(n) = x q (n) (n) + x (o) 6 (n) .
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This gives
TT
r

(3.2.10)

J
-7T

TT

(3.2.11)

J

To obtain direct relations between and on the unit circle, take 
the limits in3.2.8 and3.2.10as r— •* 1. This is alright if the integrals 
are performed first. Direct substitution is dangerous because of the 
singularity at Cot (0) , but using care at the vicinity of the 
singularity and interpreting the integrals as Cauchy principle 
values, we have

(3.2.12)

and

Xĵ (e^) - x(o) - (3.2.13)

■7T
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where ?c denotes Cauchy principle value.

So H^Ce-^) is obtained by the periodic convolution of Cot(-w/2) 

with H^e-^) , taking special care in the vicinity of the singularity 

at 0 = w.

3.2.2 Recovery of the z-transform from the phase or magnitude on the 

unit circle

Consider X(z) the z-transform of the sequence x(n)

X(z) = |X(z)|ejarg{X(z)} (3.2.14)

Its complex logarithm is

K(z) = log {X(z) } = Log |.X(z)| + j arg {X(z) } (3.2.15)

If K(z) is also the z-transform of a sequence k (n) , then as 

previously shown, leg X (e-̂ ) and arg X (e^)' will be Hilbert 

transforms of each other, provided k(n) is real, causal and stable.

In particular the above constraint of k(n) implies K(z) has a 

region of convergence including the unit circle and hence is analytic 

in a region including the unit circle, giving a convergent power 

series representation

<70
K(z) = X  k <n > z_n " (3.2.16)

n-0

K(z) is infinite at both the poles and zeros of X(z), so there can 

be no poles or zeros of X(z) within the region of convergence 
associated with K(z) .
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The ambiguity of arg {X(z)} is resolved by the constraint that K(z) 

be analytic which in turn implies arg {X (to) } must be a continuous 

function of OJ and a further requirement is that for x(n) real, k(n) 

is also real.

If k(n) is causal then K(z) and consequently X(z) can be 
recovered from X ^ e ^ )  = Log [X(e"^)] or Xi(e^) = arg X(e-^)} and 

with the previous results,

r
Log |x(e-^)| = k(o) - I P

2tt

arg [X_(e^9] Cot (8-m) d9 
1 2

J
— IT

(3.2.17)

and

arg |X(e^u) | = 1 P log

2ir
J“TT

[XT (eJ0] Cot(0rw) de 
1 2

(3.2.18)

So |x(e^w) | is only specified to a constant multiplier if x(o) is not 

known.

This requirement that log |x(e~^) | and arg [X(e-^)] be a Hilbert 

transform pair is the minimum phase condition and corresponds to the 

requirement that k(n) is causal and K(z) is analytic everywhere 

outside the unit circle. Since K(z) = log X(z), there can be no 

poles or zeros of X(z) outside the unit circle. This is an 

alternative expression of the minimum phase requirement.
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While real and imaginary part sufficiency relations were developed 

via the z-transform, similar conditions can be developed for the DFT 

of finite length sequences with a suitable definition of causality. 

Specifically, it may be shown [33] that if

X (k) = (k) + jX^ (k) is the DFT of the finite length (or periodic

sequence x(n) then

jXjOO =JL_ 
N

N-l

Z
m=o

XR (m) VN (k-m) (3.2.19)

Lj2 CoT (irk/n) , k odd
where (k) =

and
0 X even

Xr (Ic) - J .

N

N-l

Z
m=o

jXI (m) V^(k-m) + x(o) + x(N/2) (-1) ^  2 20)

Unlike the z-transform', it is not possible in general to develop 

similar sufficiency relations between log magnitude and phase of the 

DFT for minimum phase sequences. Previously, the log of the 

z-transform

Log {X(z) } = leg |X (z) | + j arg (X(z) }

was interpreted as a legitimate z-transform of a causal, stable 

sequence k(n).

However because the logarithm of a transform X (z) has 

singularities corresponding to both the poles and zeros of X(z) , its
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inverse is generally of infinite duration. Consequently, the inverse 

transform of the logarithm of a transform can not in general be a 

discrete Fourier transform. Interpreting log (X(z)} as a DFT of a 

sequence of length N, corresponds to the aliased sequence

oO
x (n) = £  k <n +rN) (3.2.21)

r - - 0 0

3.2.3 The Minimum phase condition

In the previous section, it was established that Hilbert transform 

relations exist between the log-magnitude and phase of the 

z-transform of minimum phase sequences. Some statements of the 

minimum phase condition were then made.

In order to be able to relate these results to practical images, 

it is necessary to develop equivalent statements of these conditions 

and evaluate their applicability.

(I) The z-transform of a minimum phase sequence has no poles or 

zeros outside the unit circle.

For a finite duration sequence, the z-transform has only zeros. 

To apply this condition, one would need to locate the positions 

of the zeros in the complex plane- a non-trivial matter when 

dealing with the 2-D sequences that represent images.

(II) Rewriting X(z) in its general form as a rational function
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Mo
n (1 - ay. z"1) n (l-bj^ z) (3.2.22)

n k=l X(ẑ  =  A z n° ..---- k=l

P.l Po
n (l - z"1) n (-l-d^ z)

k=l k=l

X(z) is minimum phase if it and its reciprocal are both analytic for 

|z|>1|. This excludes poles or zeros on or outside the unit circle, 

and with n = 0

Consequently the minimum phase sequence is causal and the unwrapped 

phase function has no linear phase component.

The third condition of course is that the unwrapped phase and 

log magnitude are related through the Hilbert transform. These are 

all fairly difficult to apply to arbitrary images.

3.2.4 Other uniqueness conditions

Uniqieness conditions distinctly different from the minimum phase 

condition are developed by considering that one way another sequence 

with the same phase may be formed is by convolving the given sequence

o

n (1 - ak z 1) 

k=l

(3.2.23)

X(z) =
P.l
n (l- ĉ . z_1) 

k=l
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with a zero phase sequence.

In order to understand the effect of convolving arbitrary 

sequences with zero phase sequences, it is necessary to study the 

properties of zero phase sequences. In 1-D such a study m y  be done 

by considering the pole-zero plots of such sequences.

The Fourier transform G (oj) of a zero phase sequence g(n) is real 

and non-negative, consequently g(n) is conjugate symmetric for 

complex sequences, and even for real sequences.

g(n) = g*(-n) (3.2.25)

and

G(z) = G*(l/z*) .

Therefore the singularities of the z-transform G(z) occur in 

conjugate reciprocal pairs.

tan [(f) (oj) ] = 0  for all to (3.2.26)g
so ((i))= 0 or ir for all u

g

Starting off with a finite length sequence x(n) we can develop the 

constraints on its z-transform which will ensure that it cannot be 

written as a convolution of another finite length sequence and a zero 

phase sequence without betraying the conditions.

Consider the finite length sequence x (n) which has no zero on 

the unit circle or in conjugate reciprocal pairs and the zero phase 

(even) sequence g(n) which are convolved as follows:

y (n) = x(n) * g (n) '(3.2.27)

therefore
Y(z) = X(z) G(z) .
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1. Y(z) contains conjugate reciprocal zeros or poles

2. Y(z) contains zeros on the unit circle

3. The zeros of X(z) are replaced with poles in Y(Z) at conjugate 

reciprocal locations.

In order for y(n) to finite in length, Y(Z) must either have zeros on 

the unit circle or in conjugate reciprocal pairs. If we constrain 

y(n) to have no zeros on the unit circle or in conjugate reciprocal 

pairs, then it cannot be written as the convolution of x(n) and g(n).

Condition 1.

If x(n) and y(n) are real sequences of finite length, N, with

z-transforms which have no zeros in conjugate reciprocal pairs or on

the unit circle and <j> (oj) = <f> (w) at N-l distinct frequencies. Thenx y-
x (n) = Sy (n) for some positive real number S.

Proof:

Consider g(n) defined as

g(n) = x(n) * y(-n) (3.2.28)

If x(n) and y(n) satisfy the requirements of the condition, then

tan { (cô) } = 0 for k = 1,2,...... N-l

.. ajĵ are frequencies in the interval

G(w) is real and g(n) is zero outside the interval [-N+1, N-l]

N-l

] = X  9 sin (n£\) = 0 (3.2.29)
n=-N+l

N— I
(n)— g(-n)

n-1
Sin (n — 0
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It follows that [g(n) - g (-n)] = 0 as the functions

{sin <d, sin 2oj,..... sin no)} form a Chebyshev set, and consequently

g(n) is even, and

G(Z) = X(Z) Y(Z“1) = G(Z“1) = X(Z"1) Y(Z).

If X(Z) has a k^1 order zero at z = z 0 <|z |<°°. Y(l/z ) must beo ' o 1 o
finite since y(n) if finite length.

thHowever, G(Z-l) must also have a k order zero at z = zq . Since
X(Z) does not have zeros in conjugate reciprocal pairs X(1/z ) must

thbe finite, consequently Y(Z) must have a k 1 order zero at z = z . 

Therefore, X(Z) and Y(Z) have the same zero set.

X(Z) = B Zk Y (Z) (3.2.30)

However if (oj) = (<u) , then k must be zero and thus the condition

is proved. <(>>

In the 2-D case, the finite length constraint is replaced by 

finite support constraint on the sequence and the Z-transform is a 

polynomial in two complex variables z^, z^. The z-transform X (z^, 

z o f  the 2D sequence xtn^,^) is defined as

X(z1,z2) = y  y x(nlfn2 (3.2.31)

ni n2
In this and the following chapters, it is assumed that all the 

sequences considered have a rational z-transform with a region of 

convergence which includes the unit polydisk 

IZ. I = 1  for k=l, 2

Then the Fourier transform exists and is given by 

X(a)1,a)2) = X ( z1,z2)

z1,z2 = exp {jcû }, exp {juj2}
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£  X  x(nr n2) cJnl“l ejn2w2

nl n2

or written in terms of phase and magnitude 

= |X(o)1,oj2) | exp j<f)x (ŵ ,u)2)

The region of support of x(n^,n2) is R(N^,N2). This is the region 

inside which the sequence is non-zero and outside which the sequence 

is always zero. We assume non-negative sequences

i.e. x(n^,n2) = 0, 0>n^>N^, 0>n2>N2

finally, F(n^,n2) denotes the set of all 2-Dsequences having for some 

N^,N2, a region of support R(N^,N2).

The multidimensional equivalent, of the poles and zeros of a 1-D 

z-transform are the zero contours of the irreducible factors of a 

multidimensional z-transform.

Consider the symmetric z-transform X(Z), where

i z2 X(Z1 ,z2 }X(z^,z2) = ±z., z^ 2X(z-, z. (3.2.3 2)

k - positive integers.

Since a 1-D sequence which has a z-transform with all of its zeros on 

the unit circle or in reciprocal pairs is symmetric, this notion 

represents an extension of the 'zero phase1 properties to 

multidimensional sequences. Hence, the multidimensional uniqueness, 

a similar statement can be made [30].

Consider x(n^,n2) and y(n^,n2) which are 2-D sequences in the set 

F(n^,n2) with support R(N^,N2) . Let X(z^,z2) and Y(z^,z2) be their 

respective z-transforms and let > 2N^-1 and M2 > 2N2-1.
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If Xlz^^) has no symmetric factors and

(col 't02)M *y ̂ l ' ^M for = 1 ..... •“I

u2 = l r... -M2
M =

then yfn^,^) = Bxfn^,^) for some number 0

3.3 Reconstruction algorithms.
The -algorithms employed to actually reconstruct an image from its 
phase fall into two basic classes - non-iterative algorithms which 
rely on the solution of large systems of equations and iterative 
algorithms which successively generate better estimates of the image 
at each iteration by imposing well chosen constraints. Strategies 
combining these two have been suggested in the literature and it is 
feasible that the disadvantages of each method may be alleviated by a 
hybrid method, e.g. a non-iterative approach may be used to give a 
good first estimate which would enhance the convergence of the 
iterative algorithm.

We shall not however examine this approach in any more detail 
and we restrict ourselves to studying and comparing some alternative 
methods and analysing ways of improving their performance.

3.3.1 Non-iterative algorithms
The POR problem can be formulated in several ways that allow a 
non-iterative solution. This section examines some of the algorithms 
that can be developed frcm these formulations.

If the image is assumed to be minimum phase, a reconstruction
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algorithm can be derived based on implementing the DHT to find the 
missing magnitude function. However computation of -the Hilbert 
transform is quite involved and requires the unwrapped phase [33]. 
Phase unwrapping is itself quite difficult [34] and an active 
research problem. Alternative algorithms that avoid direct 
implementation of the DHT have been tried [35] but these involve the 
use of an iterative algorithm to implement the DHT of the given 
function and are mentioned again in the next section.

Another approach that is applicable to minimum phase sequences 
is through the use of Cepstral co-efficients.

The DFT of the finite support real sequence x (n) is a 
polyncminal in e-*w and can be factored

where
| z | < 1 and |X(w) | and <{> (uj) are the magnitude and phase

respectively.
Taking the complex logarithm gives

M
X (to) = |x(cu) | exp [ j (<J> (oj) ] = x (0) IT (1 -  z^e

r=1
(3.3.1)

M-
loq |X(to) | + j$(oj) = log(x(0)) + £  log (1 - ẑ e

r=l
(3.3.2)
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M
log |X (u>) | + j<p (w) = log (x (0)) - ^  ^  zr e-jnu

n
r=l n=l

M
■ Z z

n
r

n=l
oo

= log x(0) " £ -------~  e-jnw
n=l n

= log x(0)
CO

£  ____  e-^nt0

n=l n
(3.3.3)

M
where S = Y z11 n "  r

n=l

The Ŝ /n terns are the cepstral co-efficients of x(n) and equating 
real and imaginary parts

O O

log | X (co) | = log x (0) Y  S cos (nw) 
Lu n (3.3.4a)

n
n=l
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cO
c (oj) = <p (0) -r-y S sin(noj)

n=l n
(3.3.4b)

So with the knowledge of 6 (e) , the inverse sine transform can be used
to compute the cepstral co-efficients which in turn can be used to
obtain, legJH(u) j from equation (3.34a) except for the term lcg|x(o) j . 
Therefore from the knowledge of 9 (u) alone, we can compute the
sequence x (n) up to a constant scale factor.

This has the same disadvantage of requiring the unwrapped phase
which is usually not available. Furthermore the cepstral
co- efficients involve the powers of the zeros of the sequence and
the zeros whose magnitude is less than unity die out rapidly, leading
to numerical problems of recovering them. Consequently this is not
really a practical algorithm either.

In the next approach, a closed form, relationship is developed
between the given phase and the original sequence.

Consider the 2-D sequence x(n̂ , n̂ ) with support R (1L , )  whose
DFT is

g - i g -1

X(cû ,aĵ) = y Y j  x (n-̂ p.y e-̂ nlul *2 2 

n=0 n=0

Suppose that the z-transform X(z. z_) dees not have any symmetric1 , z
factors then

X 1, og )
X (-og r co )

N -1 N, -11
v \- / \ -j (n. o) )
Y  A x(n1,n2) e J 1 1

n =̂0 n2~̂
Nr l N2-l
X  Xx(n.,p,. ) aj h V ' X Anl=° n2=0 1 “

(3.3.5)



M (u. ̂ ^)sDf?x(aJl,(iJ2) x 1 2

/ X -Jo. (a, ,tsi0.M (oj, ,w„)e .< i 2)x i 2

where H (a;) and 6_ (w) are the 2-D rracnitude and phase functions x ' X u
respective iy.

N -i m -I L 1 ‘ 9 x
,, , , -i® (w. ,ojn)M  ( o n  , o o n )  e  J  ' X  i '  2

X 1 z

n,=0 n =0l 2

x(n, ,n2) e ^ ni~r n2~2?

= NT1 (u, »,)e^x(“!'',2l5’») *(“, ,n2)ej(al<tfl'n:x 1, 2 1' n=(jn20 '

which reduces to

W1 1 N 2 1

xln^n ) e_j f r-lwi:n2"2: x(“i,c"'2^

nl=0 n2=1

Nr l M2-l

X .
n r °  n2=0

x (n1,p.2) fnl“l1 n2u2: '■ x 1 '“2* }

Tills is ecnii valent to

x (Hj r 1 2̂ ) sin } = ->:(0,0) sin {<^(oj <d )} (3.3.7)
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So, given the phase $<jj) for (N-l x N-l) distinct values of oj 
between 0 and H, then a system of linear equations in N-l x N-l 
unknowns is obtained if we assume x(0,0) = 1.

Nr l N2-l

2  ^  x(n̂ ,n̂ ) sinCn̂ â +n̂ t̂ftxCû 'û ) }= -sind^a^,^ (3.3.8)

nfl n2=1

This result has been derived before by other workers for 1-D 
sequences e.g. [36] using trigonometric considerations. The 
derivation outlined above for 2-D sequences appears to be better 
because it shows in a convincing way the importance of the absence of 
symmetric factors on phase only uniqueness. The system of equations 
can be solved exactly for N-l unknowns using any standard technique.

If x(0,0) is not known (3.3.8) only specifies xfa^,^) to within 
a scale factor. The potential problem of numerical instability 
caused by severe round off errors for large values of N is a limiting 
factor on the utility of this approach.

3.3.2 Iterative algorithms

Due to the difficulties outlined in the previous section, 
non-iterative solutions of the POR problem are not always practical. 
In fact for many other related problems such as the magnitude only 
reconstruction problem, such closed form relationships are very hard 
to come by and the more conmon approach is the one that utilises 
iterative algorithms.
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The iterative algorithm discussed in this section is basically 
similar to the original algorithm used by Gerchberg and Saxton
[39], Papoulis [38] and subsequently described in [37], [35] etc.

These algorithms alternately move between the space and 
frequency domains at each iteration imposing known constraints in 
each dcmain this family of algorithms is illustrated in fig.
(3.3.1).
The basic algorithm used here is:

1° Make an initial guess of the unknown DFT magnitude | XQ | form
the next estimate of the DFT by combining the magnitude guess 
with the known phase

= |X | exp {j(co^, to2) }
Compute the inverse DFT

Apply the finite support and positivity constraints 
Xp(n1,n2) n^n^O ,n?< N2

x (n̂ ,n2) _ - x(0,0) n n = n0 = 0 (3.3.9)
OV.

nl = n2 = 0

Otherwise

and x (n., ,n~)p 1 2 = xp(nr n2) for y v v > 0

[o for xp (ni,n2) < 0 (3.3.10)
Compute the M-point DFT

The magnitude |x (to- | of the DFT is used as the new estimate P -*■ ^

of |X (oĵ ,a)2) I the next estimate is formed as
X  . / (l). “ ' X  (CO- r  1 0 )  | ((0-/(0#-)]p+1 ( 1' 2) 1 p 1' 2 I exp [j$x 1' 2 J
Compute the M-point IDFT

(3.3.11)

Go to 2°.
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The iteration has converged when a sequence with the correct support 
and phase function is obtained

This algorithm is illustrated in the block diagram of fig. 3.3.2

r i g .  3 .3.2  B lock  d iagram  o f  i t e r a t i v e  r e c o n s t ru c t io n  a lg o r i th m
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This algorithm was implemented on the computer and used to 
reconstruct the 128 x 128 pixel image shown in fig (3.3.3) . (a) 
shows the original image and (b) shows the phase only image formed by 
taken the magnitude of the DFT to be unity. The reconstructed image 
after 30 iterations is shown in (c) . In order to perform M-point 
DFT's for NxN images where M > 2N-1, it was found necessary to break 
up the input images into smaller blocks which were treated separately 
and later combined to form the image.

As a consequence of this approach, there sometimes appears a 
discernible 'blocking effect' in the reconstructed image, with the 
borders of the blocks imposing themselves on the image. This 
familiar problem with the blocking effect could be reduced by 
overlapping the blocks or filtering and s e r v e s to illustrate one of 
the problems involved in using this iterative algorithm, i.e. the 
necessity to perform 2N x 2N point DFT's. The other problem is the 
slow convergence of the algorithm.

Fig. (3.3.4) shows a plot of the mean square error Vs the number 
of iterations and it is clear that while the error decreases sharply 
at the beginning, the rate of convergence soon slows down.

3.3.2.1 Adaptive acceleration
1. The Gerchberg iteration may be considered as a functional 
relationship between consecutive estimates

i.e. x  ̂(n) = T(Xp(n)), where x(n) is a vector representing the
2-D image,this may be rewritten as

V l (n> = (1 - Ap)xp(n) + XpT(xp(n)) (3.3.12)
Ap is a relaxation parameter

and T() represents the general iterative process.
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(c) Reconstruction after 30 iteration of POR algorithm

Fig. 3.3.3 Phase Only Reconstruction

1
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(11) = Aprp (n) where, rp (n) =T(xp (n)) - xp (n)

If Xp= 0 trivial
0 < Ap < 1 under relaxed.

A may be chosen to minimise a measure of the estimates that fall outside 
egion suppo rt.

It is a non-trivial problem to determine what the optimum choice .
of X should be, particularly as it implies an assumption about the P
relative importance of the a priori constraints. In the phase only 
iteration it is fairly clear that the finite support constraint is 
important and Â  was chosen to minimise the Euclidean norm of the 
vector of non-zero points outside the region of support.

An alternative choice of Ap would emphasize the non-negativity 
(or positivity) constraint and could be chosen to minimise the 
euclidean norm of the vector of non-negative points within the region 
of support. Suppose that the elements of x(n) within R(M) , (M = 2N) 
are partitioned into a vector such that,

V = x

V

V

( 1 )

(2)
x

Where V ^  is the NxN vector of non- x
( 2 )negative elements and V is the vector of 

negative elements in the image.
Consequently, rewrite

= V + X r P+1 P P P
and

R il lP+1 > >p Xp r(1)P
= +

p4-l
,

v <2) 
t P

(2)rP

(3.3.13)
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Convergence is obtained when V (2) _

the euclidean norm of V,(2)
P+1 0, so choose X = X to minimise P P

i.e d
dX

V (2 )

E*1

P+1

X = X P P

The euclidean norm is defined as [106]
1/2x = (x,x) where (x,x) is the inner product

hence:
d 2 d f e  - v <!>1 d V<2) + X r<2) V<2) + A r<2>lp+1 L p +i p+i_ P p P  ̂ P P P
dX dX dX

using the identity
(x + y, z) = (x,z) + fy,z)

dX
V ( 2 )
P+1

d AP
p ' p "'-f — ' p 1 p p '4 — ' p p ' pd A d

-j- A„ri2 )̂ = 0
dA P P ' P P

Since (a x,y) = a (x,y) , we have
(2) = 4 CV*:2)y 2)), d ^n(Vn2)'rn2))+-iAp(Vp2)’rn2))v
P+H

dX dA p H  —  P P dA P
x d a2 (A 2>4 2)) = o+ ---  P P P

dA

= 0 + (r[2),V(2)) + (r(2),V(2)) + 2X (r(2),r(2)) = 0P P

= 2(r*2),V(2)) + 2X (r(2),r(2)) = 0 P P P P P
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hence = P (r<2>,V<2>)D D
~rj7] (2)7
(rP <rp >

(r<2 ) ,V<2>)

7T3TT
rp 1

The adaptive algorithm described above was implemented for 
only iteration and the graph in fig 3.3.5 shows the 
performance of the three algorithms implemented so far.

(3.3.14)

the phase 
relative

3.4 Effect of noise on the phase only reconstruction 
In any application setting, there will be limits to the accuracy to 
which the phase can be measured or computed and thus the available 
phase may have been degraded by measurement noise, quantisation noise 
etc.

Consequently it is important to understand the sensitivity of 
the reconstruction methods to errors in the phase samples. Seme 
experimental results have been reported for the effect [63] of noisy 
phase on the reconstruction of a 1- D sequence with the non-iterative 
algorithm (3.3.8).

This section provides experiments with images for iterative 
reconstruction algorithms and attempts to provide a theoretical 
analysis of the errors introduced by noisy phase for images and its 
effect on the iteration. Since the convergence of the- phase only 
iteration has been proved, it is possible to show that provided 
the image sequence corresponding to the noisy phase sequence is
close to the correct sequence the iteration converges, even though 
the point to which it converges may change. This is proved in 
appendix III.
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Two kinds of noise effects were studied.
The first was gaussian noise added directly to the undegraded 

phase and reconstruction attempted. The second investigated the 
effect of various levels of quantisation noise by varying the number 
of levels used to quantise the phase. Various methods have been 
proposed for quantising the phase, e.g. Andrews [69 ] , FohlL.g [61] . 
The method used here is broadly the same as that proposed by Pohli. g 
and makes no assumption about the distribution of the phase. This 
method is discussed in some detail in chapter five, but it can be 
broadly described as allocating more levels to code the lower 
frequencies. It is interesting to note that the bit allocation study 
based on the phase gives broadly the same result as one based on the 
magnitude. That is that the number of bits needed is inversely 
proportional to frequency - this probably explains the success of 
coding techniques that used bit allocation for the phase based on 
magnitude considerations.

The normalised mean square error (NMSE) given by

Nr l N2-l

(3.4.1)
nl=0 n =̂0

N -1 N̂ -l 
1 ^

E  E  x(ni'n2)2
n =̂0 n^O
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was used to compare the effect of different noise levels. The 
iteration was allowed to run for 3 0 iterations in each case and the 
NMSE computed. A graph of noise level Vs NMSE was plotted for 
various error levels and these are shown in fig. 3.4.1. It is of 
interest to observe the error in the reconstructed sequence as a 
function of the number of iteration. Although the error in the 
reconstructed sequence will be the same in the limit, as that 
obtained in the non-iterative algorithm, it may be possible that the 
error after a finite number of iterations is less than the error of 
the convergent solution.

One possibility investigated here is the attempt to mitigate the 
effects of phase noise by combining it with an estimate of the 
correct magnitude. The magnitude may be estimated in any one of the 
ways discussed in some detail in the next section, or may be a 
measure of the noisy magnitude. The graph in fig. 3.4.2 shows that 
convergence is faster with the magnitude estimate and the 
intelligibility of the reconstructed image shows that phase coding 
with a magnitude estimate is feasible.

3.5 Effect of initial magnitude on phase reconstruction 
Conventionally, the phase-only image is defined as the image formed 
by performing the inverse DFT on a function having the same phase as 
the original image and unity or constant magnitude
i.e. Fp (n1An2) = F 1 [lx exp [<j> (a^,^) ] ]

In the phase only iteration, whatever magnitude guess is used, serves 
only as an initial estimate and is later allowed to change so as to
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satisfy the given space and frequency domain constraints.
We have already observed that phase only images as described 

above bear a close resemblance to the original image and it has also 
been observed that even when the magnitude is a random function seme 
intelligibility is maintained.

Obviously there are limits to the sort of values that the 
magnitude function can be allowed to take so as to give an 
intelligible first estimate. For example zero would be illogical and 
extremely large values would also be out of the question.
It has already been established that the iteration converges much 
faster if a first estimate close to the final image is obtained so it 
can be argued that clever choice of the initial magnitude guess can 
substantially speed up the iteration.

Clearly, it would be to seme advantage if further a priori 
information could be incorporated into the choice of the magnitude 
function and while this may not be possible in any specific manner, 
there is seme information known about the magnitude function.

A case in point is the knowledge that the original sequence is 
a real positive space limited sequence. The fourier transform is 
conjugate symmetric.
i.e. X(ejlu) = X* , “ j(d\ (e J ) (3.5.2)
hence

He[X(e^“)] = -Re[X(e"j“)] (3.5.3)
and Im[X (e-'10) ] = -Im[X (e~̂ u) ]
hence the real part of the Fourier transform is an even function and 
the imaginary part is an odd function.
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Similarly, expressed in polar co-ordinates
X(ej“) = |X(e>)|e^ arg[X1; i X ( e ^ )  = |Xe<-^> N-jargtX]
consequently

for a real sequence x(n) , the magnitude of the Fourier transform 
is an even function of oj and the phase arg[X(e-̂ )] is an odd function
Of 0).

The above argument suggests the projection of the space domain 
constraint that a signal is real into a Fourier domain constraint on 
the phase of magnitude functions, i.e. This is a constraint on the 
magnitude and phase that has hitherto not been used explicitly in 
reconstruction, but it means that some bad guesses such as an odd 
function for magnitude can be ruled out.

A commonly used method of obtaining a reasonable first estimate 
for the magnitude function is to take an ensemble average of the 
magnitudes of several images of the same class as the image we are 
trying to reconstruct. This has the disadvantage of requiring that 
we know the image class and of course also raises the question of how 
to define the image classes.

A different method which does not require this type of knowledge 
simply uses the mathematical function that appears to best 
approximate the magnitude function. It is well known that the 
ordered magnitude function is 'low pass' in nature, having the larger 
values at the low frequencies and smaller values' at the higher 
frequencies. This is true for most images and is used a lot in 
transform coding schemes where the low frequency co-efficients are 
quantized using more bits than the high frequency co-efficients. 
Consequently a simple low pass function will probably give better
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magnitude representation than either unity, constant or randan 
magnitude. Sore experimentation rrav still be required to select the 
parameters of the functions. To illustrate this, seme experiments 
were performed with scene magnitude functions.

The figures illustrate the quality of the initial estimates
using the amplitude functions. discussed previously. This is shewn 
for three test Images and considers 
(i) unite/ armlitude • (See Fig. 3,3.3a)

(‘i i ) ensemble average of the amplitudes from three images. (Fig , 3,5,1 b) 
(i i-i) exponential amplitude function - formed by defining an 

exponential lew pass filter function . (See Fig, 3.5,Id)
(iv) Butterworth amplitude function- formed as before defining a lew 

pass function as:

1
H (oĵ  r = --------------  (3.5.4)

i+ [n0/d^ , ^ } ] 2

(See Fig. 3.5,1c)
The better quality.'of the images produced using these mathematical 
functions raises the whole question of representation of the 
magnitude function. What functions are accecmabla ar.d hew do thev 
relate to che nature of the imace csê  ^

If stardard functions can be defined to model the amoiitude 
spectrum for sane images classes, • then the ccmputitucnal burden may 
be further reduced. ?3btwithstandir.g the difficulty in relating Image 
'classes' to reconstruction behaviour, results seem to indicate that
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(a) Exponential low oas H =o (10000, DQ= 1.0

(b) Ensemble avera
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(d) Exponential Lowpass Dq- 1.0 (e) Reconstruction after 30 iterations with
adaptive algotithms

Fig. 3.5.1 Phase only images with various starting functions.
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only low detail images may be intelligible without phase information 
- medium-high detail images may be quite intelligible without 
magnitude information and even better with an exponential Magnitude 
frequency. The figures shew the image after 3 0 iterations
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CHAPTER 4

MAGNITUDE ONLY RECONSTRUCTION

4.1 Introduction
As outlined in chapter 2, Magnitude Only Reconstruction (MOR) has 
been studied in the past in order to solve certain problems that 
arise as result of inability to obtain measurements of the phase 
function. As a result of the importance of some of these application 
areas, there has been a concerted research effort to provide 
solutions to the problem and consequently a large body of knowledge 
is available.

In general, without any extra information it is not possible to 
uniquely obtain the phase function from the magnitude function[57]. 
In many problems however, extra information such as known region of 
support [37] or known intensity in the space domain [39] is available 
and in these cases reconstructions are possible.

At the same time, as a result of the wide use of the Fourier 
transform in electrical engineering and image processing, there is 
interest in studying the slightly artificial problem of 
reconstruction from partial Fourier transform information, i.e. other 
partial representations such as the magnitude and the sign of the 
phase.

The main motivation of the work outlined in this chapter has 
been to study the MOR problem with a view to later appl ying it to 
estimate the phase in an image restoration problem described in 
chapter five. This problem is slightly different because the
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available mgnitude function is only a MMSE estimate of the real 
intensity and there is a noisy phase function available. This 
chapter is organised as follows:
Section 4.2 considers the extent to which a 2D function m y  be 
defined by its Fourier transform mgnitude.
Section 4.3 looks at non-iterative reconstruction methods and the 
effect of known boundary conditions on these reconstructions.
Section 4.4 presents a detailed study of Gerchberg-Saxon type 
iterative reconstruction algorithms
Section 4.5 considers the problem when certain portions of the phase 
or mgnitude information are available.

4.2. Magnitude uniqueness
One way to form another sequence y (n) which has the same Fourier 
mgnitude as x (n) is to convolve x (n) with an all-pass sequence g (n)

y(n) = x(n) * g(n) (4.2.1)

where the Fourier mgnitude | G(oj) |= 1
Note that

|G(a)) | 2 = G(tu) G (u>) = 1*

r (n) = g (n) * g (-n) = 5 (n) 9 (4.2.2)
and its z-transform

*R (z) = G(z) G (1/z ) = 1 (4.2.3)

from (4.2.3) it follows
G 1 (z) = G*(l/z )
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therefore G(z) consists of conjugate reciprocal pole/zero pairs. In 
addition, G(z) may have no singularities on the unit circle..

If x(n) is a sequence whose z-transformX(z)has no conjugate 
reciprocal pole/zero pairs and g(n) is an arbitrary all-pass 
sequence other than a delayed unit sample function,
Their convolution y(n) is : 

y (n) = x(n) * g(n)
and

Y(z) = X(z) G(z)
The following statement can be made about X(z) and Y(z)
Y(z) contains conjugate reciprocal pole/zero pairs or the poles or 
zeros of X(z) are reflected about the unit circle. This gives one way 
of defining conditions for x(n) and y(n) to be specified by their 
Fourier transform magnitude.

Theorem
Let x (n) and y (n) be real sequences with z-transforms which have no 
conjugate reciprocal pole/zero pairs and, in addition,
(a) all the poles or zeros of X(z) and Y(z) (except at z =0 or 
z  ̂= 0) are either inside or outside the unit circle.
If
|X ( oj) | = | Y ( cjj) | , then x(n) = ± y(n+k) for some interger k.

This theorem is satisfied by both minimum phase as well as maximum 
phase sequences. Since minimum (maximum) phase sequence havo 
additionally no singularities at z * = 0 (z=0) , the magnitude of the 
Fourier transform uniquely specifies a minimum phase or maximum phase 
sequence to within a multiplicative sign factor.
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Proof
Let x(n) and y(n) satisfy the conditions of the theorem. If the 
Fourier transform magnitudes of x(n) and y(n) are equal, then their 
autocorrelations are equal.
Equivalently,

X(z) X(z_1) = Y(z) Y(z_1) (4.2.4)
When all the zeros of X(z) and Y(z) are inside the unit circle,

fchsuppose X(z) has a k 1 order zero at z = zq where 0 < z < 1. Since 
X(z) has no conjugate reciprocal pole/zero pairs, then X(z) does not 
have a pole at z = 1/zq and 

R (z) = Y(z) Y (z-1)
th  Xmust have a k order zero at z=z . However since I z I > 1 ando 1 o 1

since Y(z) has no zeros outside the unit circle, then Y(1/zq)  ̂0 and
Y(z) must have at least k zeros at z = z .o

Finally since Y(z) has no conjugate reciprocal pole/zero pairs, 
then Y(z) must have exactly k zero at z = zq. Reversing the roles of 
X(z) and Y(z), it follows that X(z) and Y (z) have the same zero set 
for 0 < |z| <oo. By a similar argument, the same result holds for 
the case in which zeros of X(z) and Y(z) are outside the unit circle.

Repeating the argument for poles, it follows that the poles of 
X(z) and Y(z) are identical for 0 < |z| < oo . Thus

Y (z) = 8 z X(z) ; 8 is complex, k is integer
Since |Y(cu) | = |X(oj)|, it follows |s| = 1, which implies 8 = ± 1 
as x(n) and y(n) are real. Therefore y(n) = ± x(n + k) as desired.

There are other classes of sequences which are uniquely defined 
by the magnitude of their Fourier transforms. When X(n) and Y(n) are 
even sequences, with |x(oi) | = |y (oj) |,

X (z) X (z_1) = Y (z) Y (z_1)
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Since x(n) and y(n) are even, X(z) = X(z *) and Y(z) = Y(z ^
It follows that

X2 (z) = Y2 (z) (4.2.5)
«»

therefore X(z) = ± Y(z) and consequently, x(n) = ± y(n). Therefore 

an even sequence is defined to within a sign by the magnitude of its 

Fourier transform. As another example, suppose x(n) is a real

finite length sequence which is zero outside [0, N-l] with

x (0) ^ 0.

In this case, since X(z) is a polynomial in z  ̂ over the real

numbers, it can be .shown that if X(z) is irreducible and if Y(n) is

any finite length sequence with | Y (tu) | = |x (oj) |, then either

y(n) = ± x(n) or y(n) = t x(-n). However, due to the fundamental

theorem of Algebra, no polynomial of degree greater than two is

irreducible over the real numbers. This constrains x(n) to be of

length three or less. These constraints do not encompass a very

large or useful class of 1-D sequences.

In fact in the case of the finite length signal on [0,N] , there 
N-lare up to 2 sequences which have the same magnitude function. The

z-transform is simply a polynominal in z  ̂and H(z) has poles only at
N-lz = 0. So as many as 2 different phase curves can be formed 

simply by reflecting zeros about the unit circle.

In 1~D the z-transform is represented as a product of prime 

factors;

N

X(z) = az1̂  n (z - Zj) where a is real and n0 (4.2.6)

j=l non-negative integers
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The autocorrelation polynomial 
, -lvQ(z) = X(z)

N
= n

j=i
If all lz. 11 l 1
If all 1 Z •1 1

(4.2.7)

,N

^ 1, the solution is unique because among the roots of

j
-1 *p(z) there must be z. and z. = z .. If there are r roots with z. = r 1 1 3  1 l 1

sN-11 the problem has up to 2 solutions. In 2-D there exist 

polynonials that cannot be factored (prime polynomials) . Most 2-D 

image functions can usually, but not invariably be represented 

as prime polynomials[24].

The first treatment of the 2-D uniqueness question appears to 

have been by Bruck and Sodin [ 23 ] . They postulated that the 

uniqueness of a 2-D sequence will finite support is related to the 

irreducibility of its z-transform. A slightly more general result 

has been obtained by Hayes [30].

If the z-transform of an image corresponds to a prime polynomial 

then given the autocorrelation function, one can only construct two 

solutions differing by a 180° rotation.

The autocorrelation polynomial is defined as before (4.2.7)

Q(z 1,z2) = z 1 a2 n Xk (z1,z2) X ^ z " 1, z^) 
k=l

(4.2.8)

X^(z^,z2) are non trivial irreducible polynomials in z-1
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Q{z^,z^) and |X(co-̂ ,cĵ ) I contain the same information about x(n^,n9) 

as they are uniquely derivable from each other, and so ability to 

recover x (n^,n^) from |X (oĵ  ,oĵ ) | is equivalent to recovery of 
X (z^,z^) from Q (z^/Z^). Clearly such recovery cannot be achieved 

unambiguously. The sign of a and the linear phase terms cannot be 

determined and it is impossible to establish whether X^fz^^) a 

factor of Xiz^fZ^) .
This ambiguity is an extension of the fact that another finite 

duration sequence with the same Fourier magnitude can be generated 

simply by reflecting a zero of X(z^,Z2) about the unit polydisk.

Certain information is irretrievable when the phase is absent. 

The closest equivalence that can be defined in the absence of phase 

is y(n^,n2) = ± x(n^±k^, n2±k2). This provides an equivalence class 
that is related to within a delay, a sign and time reversal of the 

original sequence.

Bates [56] introduces the concept of the ’form' of an image 

which is similar to the above equivalence class. Sequences in this 

equivalence class share the same Fourier magnitude, but there exist 

sequences outside the class that also have the same magnitude.

Using the knowledge that the only way to generate another 

sequence with the same Fourier magnitude is to convolve it with an 

all pass sequence, conditions have been obtained [30] under which 

only one 'equivalence class' exists for a given Fourier magnitude.

To generate another sequence outside the given equivalence

class, with the same Fourier magnitude, it is necessary to replace

one or more non-trivial factors X^[z^,z^) of X{z^,z^) with 
- 1  - h

W '  Z2
the sign.

If the factor is symmetric however, this only changes
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Consequently, it follows that the number of equivalence classes 

with magnitude |X(oĵ ,a>2) I is most 2 ^ ”^  where p is the number of 
non-symmetric irreducible* factors in X(z^,z^).

Therefore to leave only one equivalence class with the given 

Fourier magnitude, X (ẑ  ,ẑ ) must have at most one irreducible 

non-symmetric factor,

i.e.

P

X(z1,z2) = P(z1,z2) n \ ( zi' z2) (4.2.9)
k=l

P(z^,z2) is irreducible and non symmetric 

(ẑ , z2) is irreducible and symmetric 

Note that this uniqueness is only for an equivalence class and not 

for a particular sequence.

4.3 Reconstruction algorithms

A considerable number of papers on the phase problems have proposed 

schemes for phase recovery from magnitude based on the analytical 

properties fields. One possible method is to use the Hilbert 

transform relations and the locations of the complex zeros of the 

magnitude [58]. Other approaches include apodisation[103] etc. 

algorithm. These methods however, have not proved very practical for 

complicated two dimensional images.

One of the reasons why the magnitude only reconstruction problem 

is complicated, is the non-linear relationship between the image 

sequence and its Fourier transform magnitude. Unlike the phase, we 

can not obtain a linear closed form relationship such as (3.3.8).
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The Fourier transform magnitude of an image sequence x(n,m) may 
always be used to obtain the autocorrelation r(n,m)}

One possible solution to the phase retrieval problem could thus 

consists of solving these non-linear equations for x (n , m). However 

such a solution would be very complicated for large numbers of 
equations and unknowns.

4.3.1.2 Effect of known boundary values:

If boundary values of the sequence are known, the non-linear 
equations (4.3.2) can be replaced by linear equations. These will be 

easier to solve than the non-linear system.
Consider the DFT of of the pixel array x(n,m)

N-1 M-1

(4.3.1)
n=0 m=o

M-1 N-l -

The autocorrelation function r(n,m)
r(n,m) = x(n,m) ** x(-n,-m)

is the.2 -D convolution operator

N-l M-1

(4.3.2)
k=l-N £=1-M

n = 0 , 1 , ...., 2N - 1
m = 0 , 1 , ........ , 2M -  1
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When x(n,m) is a finite duration sequence with support R(M,N) , the 

autocorrelation sequence has support R(2M-1, 2N-1) and is symmetric. 

The boundary of the autocorrelation function is formed by convolution 

of the boundary sequences forming x(n,m). This can be seen be 

considering the autocorrelation function borders. 

r(n,M-l) = r(-n,l-M) = x(n 0) * x(-n,M-l)

r(N-l,m) = r(l-N,-m) = x(0,m) * x(l-N,-m)
thLet the ni row of the array x(n,m) be denoted by the vector x (n)m

for n=l, 2, ..... N. Equivalently written as x .
fchLet the in row of the array r(n,m) be denoted by r^(n) for n=l,

2,___,N and equivalently written as r .

Observe from (4.3.2) that the M-2 row is formed as

If the vectors of boundary values {x (-n), x^  ̂(n) } are known,

(4.3.3) represents a set of 2N-1 linear equations in the variables 

x1 (n) and x ^ 2 (n) .

Suppose now, that the first (k-1) rows and the last(k-l) rows 

are known, we write as before

xo (-n) * V 2 (n) + V l (n) * Xl (-n) = rM-2(n) (4.3.3)

for n=l,..,N

k-z

l—l

which may be written as

Xo (~n) * V k (n) + ^ - 1 (n) * V l (-n) = rM-k(n) (4.3.5)
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where
k=2

W n >  = W " >  - S  x^('n) * w (n>
£=1

(4.3.3) shows that the M-2 row of r(n,m) can be calculated fran the 

boundary values in the vectors x and x q (n) and x^_^ (n) , x^ (N-l) and 

x^Co) , and it can be solved for x^ (n) and x^_2 (n) ’

The rows x̂ _̂ , and x̂ ._̂  can be calculated recursively from the values 

of and x^ for I = 1,2,.... k-2.

4.4 Iterative algorithms

In this section we look at the basis of the iterative reconstruction 

methods that are applicable to this problem. The Gerchberg-Saxton 

(GS) algorithm discussed in the previous chapter for the phase only 

reconstruction problems was first proposed to solve the two intensity 

phase retrieval problem [39].

The basic GS algorithm for magnitude only reconstruction is as 

follows:

1° Make an initial guess <j>Q (a^,^) of the unknown function 

(p (ol)̂  , 0̂2) • Form the next estimate of the DFT by combining the 

phase guess with the known magnitude function 

Xi (0̂1 ,o^) = |X(u)̂ ,u>2) | exp {j(j> (u^,^) } (4.4.1)
compute the inverse DFT

2° Apply known space domain constraints to form the current space
domain estimate x (n-,n~) p l z
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xp (ni,n2) =

x (n, ,nn) within R(N, ,Nn)p 1 2 1 2

O elsewhere

(4.4.2)

and the non-negative constraint,

Xp (nl'n2) = xp (nl'n2> for V W  > 0
for x < 0  P (4.4.3)

compute the DFT

3° Use the phase of this DFT as the next estimate (oĵ  , of the 

phase function and form the new DFT estimate as

Xp+l^l,co2̂ = lx(a,]/0J2^ exP( ĵ p (^x'^2^ (4.4. 'I)
compute the DFT, Go to 2.

thx (n.,,n_) is the p iterate of the image being sought. It is p j. ^
expected to have support RfN^,^) - i.e. non-zero on an 

grid. The DFT's calculated are (2N^x2N^) DFT's.

While this basic algorithm was found to give reasonable but slow 

reconstruction in the phase only reconstruction it is far less 

successful in the case of magnitude only reconstruction. The error 

behaviour of this algorithm for our magnitude only reconstruction is 

shown fig. 4.1 and is in agreement with the results reported by many 

other workers [37,

The algorithm's convergence characteristics was observed using

(1) only the non-negativity constraint

(2) only the finite support constraint

(3) both constraints

and the error curves corresponding to these three cases are also
shown.
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Fig. 4 . 1 Non adaptive magnitude only reconstruction algorithm
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4.3.2.1 Adaptive acceleration

As in the previous chapter, we can model the iteration as a mapping 

T, and form the next estimate of the space domain signal as

V l (nl'n2) = xp|nr I12) + y T(xp<nl'n2))_ xp(nl'n2H (4-4-5)
As before the question arises on the optimum choice of the relaxation

parameter A^.

Furthermore, (4.4.5) represents a whole class of algorithms that

may be formed both by changing the way A is formed and by changingP
the way that the next estimate is formed.

The difficulty of choosing A^ to give maximum convergence is a 

key barrier to the development of fast adaptive algorithms. Choosing

*p to minimise the euclidean norm of the vector of points falling 

outside R(n) has proved to be a good criterion. However it is 

suboptimum because while it takes into account the known R(N) , it 

fails to take into account any other information that may be 

available a priori, e.g. rough location of known or guessed objects 

in the image.

If some information is available about the rough location of say 

edges, an adaptive parameter can be chosen so as to minimise the 

possible introduction of non-existent objects. Such an application 

where this information is available is in a Wiener restored image, 

where the main edges are present though they may not be clearly 

defined.

The adaptively accelerated algorithm was applied to magnitude 

only reconstruction for three choices of A
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(i) using non-negativity

Here A is chosen to mininise the euclidean norm of non-zero P
points outside the region of support as in 3.3.

(ii) using finite support

Ap is chosen to minimise negative points as above

(iii) using an edge criterion

Ap is chosen to minimise gradients exceeding a set 

threshold in an area designated as being non-edge, 

and the convergence characteristics are shown in fig. 4.2.

While it is difficult to compare the relative importance of 

these constraints on the basis of few iterations taken, they seem to 

bear out the view put by Fienup [105] that this basic algorithm 

eventually converges after thousands of iterations if the

non-negativity constraint is used. They also indicate why

experiments which are based on the finite support constraint are not 

generally successful even after 1000 iterations. The magnitude of 

reconstruction problem is very ill-conditioned and there are many 

local minima so that unless a very good starting function is 

obtained, it is quite easy for the algorithm to converge to a local 

ndjiimum.

The shape of the error Vs iteration graph shows that the error 

decreases at first, then slows down and remains relatively 

unchanged for many iterations before falling. This suggests two ways 

in which the basic algorithm may be made to converge faster.

the first method involves ovarestimation of the region of 

support. The problems being considered in this thesis differ from 

many real problems in that the region of support: is known exactly.



(a) Finite support (b) Non-negativity.

(c) Spatial constraints.
Fig. 4.2 Reconstructed images after 100 iterations of adaptive MOR algorithms 

with various constraints.
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It is observed that if the region of support of the sequence is 

assumed to be greater than R(N^,N2) and the finite support constraint 

is applied

y w 0<n1<i-l1 0<n2<M2

Xp (nl'n2) (4.4.6)

0 otherwise

where M2>N2

there is a very rapid decrease in the error components falling 

outside R(M^,M2), while very little change takes place within

R(m 1,m 2) .

Instead of applying the usual region of support constraint to 

R(N) , we apply it to R(M) where M>N. As more iterations are 

performed, R(M) is progressively brought closer to R(N) . This gives 

faster overall convergence to zero when an adaptive relaxation 

parameter is chosen on the basis of minimising the components outside 

the region of support.

The second method involves re-initialisation of the iteration. 

Since the convergence of the iteration decreases afer a few 

iterations, due to local minima that force it to stagnate, faster 

convergence may be obtained if an adaptive parameter is calculated 

over several iterations.

So far, we have considered the sequence before each iteration as 

the latest estimate of the sequence we seek - consequently we have 

made it satisfy space domain constraints.

The formulation, in the previous section, of the iteration as a 

mapping leads to a selection of options on how the next estimate is 

to be formed. For example is it best to replace the points outside 

R(N) with zero or with some other value ?
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The input - output concept is a generalisation of these types of 

algorithms. The block diagram is shown in the fig. 4.3 below

xp (n) DFT

satisfy Fourier 
domain constrai

w
input

■
IDFT

i
Satisfy 
space domain 
constraintsOutput 

x'p (n)

nts

Fig. 4.3 input - output concept.

The input is seen as a driving force for the output and not

necessarily as the previous estimate. is chosen to act on x^ (n)

so as to move x . (n) closer to satisfving the constraints, x (n) p+i ' p
does not have to satisfy space domain constraints, which allows

greater flexibility in choosing A .

The input of the iteration can be formed in a number of ways,

one of which is found to be identical to the basic GS algorithm( 4.4.8) 
fop 8 = 1 
Algorithm 1

x n (n) = x (n) + qS  (n)p+l P P (4.4.7)

x (n)P
\X (n) - Bx' (n) VP P

in R(N) 

outside R(N)

x - (n) is the next input to be usedp+i
x^ (n) = T(x^n) •̂ n) = Xp(n) - x (n)

Xp(n) is the previous input

5 P(nl[ - !
0 in R
xfn) outside R

where
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This is the basic input output algorithm. An input x^(n) is chosen 

in some way and put through the iteration to produce an output x^ (n) .

Generally x'(n) will not satisfy the finite support constraints, 
P

so it is now necessary to go back and form a new input x  ̂(n) from 

the old input, but adjusting it to ensure that the next output will 

have a smaller magnitude of components outside R(N) . . The starting 

input may be chosen completely freely and need not satisfy the space 

domain constraints.

The adaptive parameter 8 is chosen on the basis that a small 

change in the input results in a change of the output in the same 

general direction. So since a change is required outside the region 

of support to move the components to zero, such a change must be made 

outside the region of support of the input sequence. The non­

negativity constraint . is applied at the same time to all the 

algorithms. The proofs of convergence of these algorithms are given 

in appendix [ I I I ] .

Algorithm 2

V i (n) x* (n) + 8.5 (n)
P P (4.4.8)

x ‘ (n) 
P

in R(N)

x' (n)8x'(n) outside R(N) 
P P

The next input is formed from the present output in the regions of 

support: and the output is modified outside the region of support.
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Algorithm 3

Alternatively the bottom lines of (4.4.7) and (4.4.8) may be combined 

to give yet another algorithm.

V i (n) x'(n) in R(N)
Px (n) - 8x'(n) I P  P outside R(N) (4.4.9)

Algorithm 4

V i {n) x (n) + Xr (n) in R(N) P P

x' (n) - 8x‘(n) outside R(N) (4.4.10)- P P
this algorithm is suggested by the adaptive acceleration discussed 

earlier and the three previous algorithms.

X is chosen as before, and is used to modify the components 

within the region of support while 8 is also chosen so as to push the 

components outside the region of support to zero. The convergence 

characteristics of these algorithms are shewn in fig. 4.4 their 

convergence is better than that of the basic algorithm.

4.5 Reconstruction given some phase information

In this section the problem is widened to one of reconstruction from 

partial Fourier demain information. It is observed that the 

magnitude only reconstruction problem is more tractable when seme 

extra information about the phase is provided.

For example an image formed from the magnitude function and a 

phase that is either 0 or n, with the correct sign of the phase is
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(a) Algorithm 1 (b) Algorithm 2

(c) Algorithm 3 (d) Algorithm 4

Fig. 4,4 Reconstructed images after 100 iterations of various 

Magnitude only reconstruction algorithms,



95

intelligible. It is much closer to the final image and the iteration 

converges much faster giving a very good image after a few 

iterations. Two cases are examined. In one the correct magnitude 

function and the sign of the phase are available while in the other 

only the sign of the phase is available.

(1) Sign and Magnitude

In the Fourier domain, the DFT of x(n^,n2) is formed as

X(o)1,o)2) = <

r| X (ou-ĵ, CO2 )| ex[j ©(u^,^)] for S (cu-ĵ ô ) = + 1 

(4.5.1)

|X(w^,u>2)| exp [ j 2a - 0 (10̂ 2) ] for Sfw^u^) = - 1

where S(û , oj2)

t :

for a - n £ 
otherwise

<P < a

<̂(aJl,aJ2) is the correct phase of the DFT and takes on values from -H 

to n.

a is a parameter that is used to divide up the phase function so that 

the 'sign* can be set for any chosen a threshold. For example when 

a = n/2, then S(u)̂ ,ui2) corresponds to the algebraic sign of the real 

part of X (co-̂,uî ) • a takes on values between 0 and n.

0(oĵ ,oj2) is the phase estimate that is used in the absence of 

the correct phase $(u)̂ ,u>2). The first estimate is formed as

X(a^,a)2) 1 exp j 0 (w1/aj2) (4.5.2)

where 0 (a>_ r )
0 1 2 = 0 for S (a). ,0)..) - + 1 2 1

n for S (iô ,u)2) = - 1
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This image is quite intelligible and an iterative reconstruction 

converges quite quickly to give a good reconstruction

(II) Sign of the real part

In the previous case, we had both the magnitude and sign functions. 

However, it is evident that a sign only image is also intelligible.

-  n/2 < (ta>1,oj2) < n/2
otherwise (4.5.3)

An initial estimate of the DFT is formed as

Xfoj^,^) = 1- exp{ j0 (oo^,^) } (4.5.3)
where

V v ^ )  = S°
S (ŵ  ,0)2) = + 1

1 “ S (cjĵ ,^) = - 1

The image formed by taking the inverse DFT of X (oĵ  ,0̂ ) is shown in 
fig. 4.5 after reconstruct ion.
4.6 Summary

Reconstruction of an image from the magnitude of its Fourier spectrum 

is generally not possible unless extra information is available. The 

available information depends very much on the application area, but 

ofter non-negativity and finite support can be assumed. If the 

support is known and non-negativity assumed, an iterative algorithm 

that was both these constraints can be used, but convergence is slow. 

Modifications of the basic algorithm, using various starting images 

which do not necessarily satisfy space domain constraints, can be 

faster but the rate is still much lower than the phase only 

iteration.

S (u)̂ ,̂ ) =(+l
1-1



Fig. 4. 5 Image reconstructed from sign information.
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When some extra phase information is present, the iteration 

converges very quickly, giving good reconstruction.
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SOME FREQUENCY DOMAIN APPLICATIONS
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CHAPTER 5

SOME FREQUENCY DOMAIN APPLICATIONS ♦

5.1 General Introduction

This chapter considers sore type 2 applications of image 

reconstruction. It is divided into two parts. In part I results 

developed in chapter four are used to improve the restoration of 

noisy linearly degraded images by estimating the phase as well as the 

magnitude function.

In part II, an investigation is made into the viability of phase 

only coding to reduce the bit rate of the more usual magnitude/phase 

coding.

PART I : RESTORATION OF NOISY LINEARLY DEGRADED IMAGES.

5.2 Introduction

Both blind deconvolution and image restoration may be improved by 

using image reconstruction techniques to estimate the phase of the 

image, together with the magnitude estimation that is conventionally 

performed. In blind deconvolution, the signal of interest has been 

degraded by a blurring function about which complete knowledge is not 
available.

In some special cases, the distorting signal may be known to have a 

phase function that is approximately zero and consequently the phase 

of the degraded image is very similar to that of the original
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image. In these cases the problem becomes one of reconstruction from 

phase only e.g. wavelet reconstruction in seismic signal processing.

A problem that may be approached in a similar way, is the 

restoration of images blurred by linear convolutional systems with 

additive noise. Conventional restoration techniques include inverse, 

Wiener, Power Spectral Estimation (PSE) and Spectral Subtraction (SS) 

filters [71],[72].

When viewed in the frequency domain, it is observed as shown in 

section 5.2.1 that whilst the Fourier Magnitude Spectrum (FMS) is a 

modified or restored version of the degraded image's FMS, the Fourier 

Phase Spectrum (FPS) of the filtered image is essentially unrestored 

and effectively identical to the FPS of the degraded image. In this 

sense, these filters may be said to be 'phaseless'.

In this part of the chapter a method is presented to 

reconstruct the FPS as well as the FMS of an image and so enhance the 

visual quality of the restored image. In the next section it is 

shown that a combined FMP-FPS restoration can be realised by 

cascading a conventional statistical filter which serves to estimate 

the FMS, with a generalised deterministic Gerchberg-Saxton iterative 

algorithm which serves to estimate the FPS. The experimental cascade 

system is described in section 5.2.3 and results discussed in section

5.2.4.

5.2.1 Statistical Image Restoration Filters

Linear convolutional blurring systems with additive noise can be
described by the discrete formulation

[g] = [h]**[f] + [n] (5.2.1)
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Where [g], [f] and [n] are NxN matrices representing the sampled 

output degraded images, input image and noise fields respectively,

[h] is a dimensional matrix representation of the 2-D blurring 

system. In the Fourier domain,

[G] = [H] x [F] + [N] (5.2.2)

where (G[, [H] and [N] are the corresponding DFT'S of [g] , (f] and

[n] . [H] is a matrix arising from the "diagnoalisation" of [h]

in the Fourier domain. The X and /  operators define elementwise 

multiplication and division of two matrices (or vectors) of identical 

dimensions. The image and noise processes are modelled as zero mean 

stationary random fields with power spectra [P̂ ] and [P^].

Then the inverse and Wiener restorations are defined as:

inverse: [F] = [G]/[H] = [L^]x(G] (5.2.3)

Wiener: [F] = [Pf] x [H]* [G] (5.2.4)

[H]x[H]*x[Pf] + [PN]

=  [1*]X[G]
Similarly, estimator equations can be derived for PSE and SS filters 

respectively.

Inverse filtering performs poorly in the presence of noise. It 

is aimed solely at removing the effects of blur and essentially 

ignores the presence of additive noise. There are many problems with 

the inverse filter. For example the linage blur and formation process 

may not be invert able and consequently Lr above may not exist. To 

overcome this problem some methods use pseudo inverses. The other
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problems are that the frequency response H usually falls off at high 

frequencies and if high frequncy noise is present, this may lead to 

severe noise amplifications.

Finally', the inverse transfer function blows up at the zeros of 

H which would cause severe difficulties. Improved restoration 

quality is obtained using Wiener filtering techniques.

Wiener filters explicitly take the presence of noise into 
account and incorporate a priori statistics of the noise.

In the discrete Wiener filter formulation, it is desired to 

cause the estimate f as the minimum mean square error (MMSE) 

estimate.

min E[ (f-f)T, (f-f) ] (5.2.5) 

f

The transfer function of the resulting filter to give the optimal 

estimate has been found [100] to be as shown in (5.2.4); and in the 

limit with no noise it reduces to the inverse filter.

Several variation of the Wiener filter [72] have been proposed. 

The limitations of the Wiener filter are that it is not particularly 

well suited to the way the human visual system works, largely because 

of its reliance on the MMSE criterion. It is overly concerned with 

noise suppression, and the stationary assumptions that must be made 

to make the filter computationally feasible make it insensitive to 

abrupt charges. This is tends to smooth edges and reduce contrast.

Thus the Wiener filter scarifices too much resolution in favour 

of noise suppression. As mentioned above, a variety of other filters 

have been proposed which alleviate some of the short comings of hte 

Wiener filter, [99], [72] .
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Because of the importance of phase in images, some filters have 

proposed to take the phase into account for several specific types of 

PSF [32] but these seem to require large amounts of a priori 
information.

We shall restrict our analysis to the Wiener filter but the 

other filters share the same deficiency of not estimating the phase 

so the same approach-would be equally applicable. Another aspect is 

that many of the restoration approaches are based on homogenous 

random field models for the images and noise, and on least squares 

error criteria - both of which are nt optimum or even fair 

assumptons. Consequently, an image model based on segmentation of 

the image would be desirable, and breaking the image into phase and 

magnitude is a form of segmentation.

It is easily shown from the defining equations that the FPS of 

the degraded image and the FPS of the restored image r are 

apart from phase shifts introduced by the blurring system, identical. 

Noisy induced phase degradations are not compensated for in the 

restoration process.

This does not appear surprising since the restoration filters 

are derived from statistical estimation criteria defined in terms of 

energy related quantities such as MMSE, Power Spectra and second 

order moments. Hence they estimate the 'spectral energy'‘which is a 

characterisation related to the FMS.

Except in cases of extreme degradation, degraded images may 

generally be adequately restored by well designed restoration 

filters. One is usually able to recognise the main global or gross 

features and structures of an image so restored.
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Restoration quality is necessarily imperfect in the sense that 

local features such as edges may be obscured or smoothed out or that 

noise levels are too objectional in non-edge regions. High noise 

suppression image restoration is in practice unattainable by linear 

filtering techniques which are subject to the well known 

resolution-vs-noise dilemma. In the absence of a valid statistical 

phase estimation technique, a deterministic and iterative, algorithm 

is developed for phase reconstruction.

The spatial masking effect of the human visual system (HVS) 

[73] is a property where the eye is able to tolerate relatively high 

noise levels in edge regions of an image but not in flat or smoothly 

varying regions of an image. In contrast to the rather 

non-subjective restoration criteria implicit in filtering 

techniques, such a non-linear restoration process would be more 

adaptive and responsive to the HVS criteria of image intelligibility.

5.2.2 The Hybrid reconstruction technique

In section 5.2.1 it was seen that conventional filtering provides an 

optimal estimate of the FMS of the image. Given such an estimate, 

one could then attempt to estimate, the FPS via a magnitude only GS 

iterative reconstruction algorithm. This combined FMS-FPS 

restoration could in principle be realised by cascading a 

conventional filter which estimates the FMS with an iterative 

reconstruction algorithm which estimates the FPS. However as noted 

earlier this case may fail to converge if a good first estimate of 

the phase function is not available. Convergence may be enforced if 

further constraints more restrictive in scope than finite support and 

positivity were imposed.
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One way of specifying further constraints is suggested by the 

interrelationship between edge structure and the FPS of an image. If 

information pertaining to the spatial edge activity of the image is 

known, then successive spatial domain estimates, generated by the GS 

algorithm, could be constrained to conform in edge structure to a 

priori known edge information, and so indirectly constrain the FPS. 

Such information can be obtained by an 'edge region detection' on 

the output of the statistical restoration filter. Information on 

the rough location of edges is often available from the restored 

image.

5.2.3 Cascade Algorithms

The block diagram illustrates the algorithm (see fig. 5.2.1). The 

degraded image is first restored by a Wiener filter, this filtered 

image's FMS is taken as a good estimate of the true image's FMS. The 

FPS is then estimated by a modified GS reconstruction algorithm using 

the FMS estimate as its driving input.

In the Fourier domain, the FMS is constrained to that obtained 

by the restoration filter above., while the FPS is unchanged. In the 

space domain, positivity, finite support constraints are applied in 

addition to a 'spatial activity' constraint.

The spatial activity constraint is determined by edge detecting 

the filtered image and identifying approximately its 'edge' and 

'non-edge' regions. The adaptive spatial activity constraint set 

then consists of bounding the current iterate's pixel amplitude to 

lie within an adaptive amplitude window centered on the amplitude of 

the previous iterate's corresponding pixel. For image pixels known
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Fig. 5.2.1 Block diagram of the hybrid reconstruction method
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to be located in the non-edge regions the amplitude width is 

narrow,thus minimising intensity variations in this area. But for 

pixels located in edge regions, the width is extended to permit the 

amplitude variability of edge pixels and so preserve edge structure. 

Noise propagation is controlled as the adaptive spatial constraint 

tends to restrict noise amplification to mainly the edge regions, 

where by virtue of the spatial masking effect it is not too 

subjectively noticeable.

To study the effectiveness of this technique, it was applied to a 

degraded image and various algorithms were tested.

The original 128x128 'mar.' image is shown in fig. 5.2.2. in 

fig. 5.2.3, the degraded 'man' image obtained by blurring with a 

gaussian point spread function and adding zero mean noise, SNR of 21 

dB is shown.

The Wiener restored image is shown in fig. 5.2.4. Note that 

even though noise levels in the picture are well suppressed, this is 

at the expense of somewhat poor resolution and edge quality.

The final FMS-FPS restoration obtained by the hybrid cascade 

system is shewn in fig. 5.2.5. The 'blocking effect' present in the 

restored image arises frem the fact that the modified as phase 

reconstruction algorithm is implemented by initially partitioning the 

image into smaller blocks so as to minimize the memory requirements.

5.2.4 Further discussion

Three versions of the GS algorithm are implemented.
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Fig. 5.2.2 Original 'Man' image

F i g . b . 2.3 Degraded image, SNR = 21 dB
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(a) Adaptive GS with both non-negativity 
and finite support

(b) Spatial activity constraint

Fig. 5.2.5 Reconstructed image after 20 iterations
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A. GS with positivity and finite support constraints.

This is the conventional GS algorithm without any acceleration 

and imposing positivity and finite support constraints.

B. GS with adaptive acceleration.

The next iterate is multiplied by an adaptive factor chosen to 

minimize the euclidean norm of the vector of image points 

outside the region of support.

C. GS with spatial activity and reinitialisation.

The spatial activity constraint is applied as follows:

Vpfl =

VP+1
Vp
V
L p+i

in non-edge region (s=0) 

in non edge region (s=l) 

in designated edge region

(5.2.6)

where is the vector of points at the (p+1) ̂  lterati°n '
S is the spatial activity and is set to 1 if the next iteration

appears to introduce wide variation in the non-edge region.

The convergence of these versions are compared by evaluating the

normalised error between the true FPS and the current FPS estimate.

The graphs showing these convergence characteristics are given in

fig. 5.2.6.

The graphs show that both the phase domain (5.2.6a) and the space 

dcmain (5.2.6b) NMSE decreases with the iterations. As before, 

adaptivity using the finite support constraint leads to a 

considerable improvement in convergence rate over the non-adaptive 

algorithm. The spatial activity constraint is seen to reduce the 

error further , but it is unsteady and may increase the error 

if it is not chosen carefully. However the visual quality of the 

reconstructed image using the spatial activity constraint is better.
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PART II: FOURIER TRANSFORM PHASE CODING OF IMAGES

5.3.1 Introduction
In chapter 3 we considered reconstruction frcm phase only both for 

the case where the full phase function is present , and for the case 

where only noisy samples of the phase are available. We also 

considered several techniques for selecting good starting magnitude 
functions.

We now consider an application of these results to Fourier 

transform image coding. Usually both the phase and magnitude are 

coded and transmitted and at the reciever an image is reconstructed 

frcm them. Monochrome images have beencoded at bit rates of 1.0 +*0

1.5 bits/pixel [19] with mean square error distortion less that 0.5%. 

Successful ceding schemes developed for Fourier transform coding have 

been found to rely on the assignment of considerably more bits to the 

phase than the magnitude [61].

For example PearJLman and Gray [62], using rate-distortion theory 

in the source ceding of the DFT, derive performance bounds and 

encoding guidelines for the direct fixed-rate MMSE data compression 

of the DFT of a stationary real sequence.

Their technique yields a theoretical measure of the relative 

importance of phase over magnitude in compression, with the result 

that phase must be coded with 1.37 bits more than the magnitude for 

the ergodic stationary source assumed.
Since an image may be reconstructed from the phase of its 

Fourier transform, v.’e consider coding only the phase and then using 

phase only image reconstruction to reconstruct the image from the 

coded phase. The other application of interest here of course is the
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Kinofom - a phase only hologram. The intelligibility of its 
reconstructed image could be greatly enhanced by phase only 

reconstruction. To avoid the time and computational problems posed 

by iterative reconstruction, interest is focussed on obtaining an 

excellent first estimate which may preclude the need for iteration.

In this part of the chapter, we investigate a Fourier transform 

coding technique where the phase is coded accurately for each block 

of an image, but not the magnitude. The aim is to improve the 

compression ratio of adaptive Fourier transform coding methods by 

sending the phase of all the blocks but only the magnitude of a few 

and replacing the oth°r blocks with magnitude functions as discussed 

in chapter three.
In the absence of any specific information we may say that the 

distribution of magnitude co-efficients follows a general 'low-pass' 

form with larger values of the low frequencies. This ceding method 

produces acceptable and even comparable images to conventional 

adaptive Fourier transform coding at lower bit rate. In effect it 

may be argued that the phase only reconstruction simply suggests 

another adaptivity criterion.

This part of the chapter is organised as follows. In the next 

section we look generally at unitary transforms and transform coding. 

Next we look at the Fourier transform and the need for its efficient 

coding and investigate the theoretical feasibility of phase only 

coding.

In section 5.3.4 we develop a method of coding the phase for our 

application and we describe the coding technique in section 5.3.5
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5.3.1 Unitary transforms and transform ceding

The forward unitary transform of and N^xN2 image array f (n] ,n?) is an 

N^xM? transformed array defined by

N, N,

£ (m1 ,m2) f(n1#n2) A(n1# n2; m ^ n ^

n^=l n2=l

(5.3.1)

where A(n1, n2; m^,m2) is the forward transform kernel. The inverse 

transformation from the transform domain to the space domain is 

defined by

N1 N2
f(n1 F(m1,m2) Bfr^,

nl=1 n2=l
where B is the inverse transform 

orthoncmality conditions [101].

n2; m1,m2) (5.3.2)

kernel. A and B must satisfy

Unitary transforms have found wide application in image 

processing particularly image coding. They provide a spectral 

decomposition of an image into co efficients that tend to isolate 

certain features of an image. For example the first spectral 

component is proportional to average image brightness and the higher 

sequency components are measures of the image edge content. The 

block diagram of a transform coding system is illustrated on the 
next P2-ge* The number of bits used to code a coefficient could be given 

by the equation below which uses the maximum variance zone.

Nb(u,v) 2lo8l0 Vf(u,v) £  X v (a,b) (5.3.3)
N“ ^ a=l b=l U

where
N^(u,v) bits allocated to tne coefficient at (u,v), 
Ng total number of bits used to code the NxN image.

\h(a,b) the variance of a transform coeffient.
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Fig. 5.3.1 Transform coding system.
i
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A transform is performed on the image producing a set of transform 

co efficients which are quantized and coded for transmission.

Fourier transforms were the first to be used [74,75]. Later 

Pratt [76] utilised the Hadamard transform with a considerable 

decrease in computational requirements. Other investigation have 

since utilised Karhunen-Loeve (77], Haar[78], Sine [102] and Cosine 

transforms to name some of the most popular ones. The Karhunen-Loeve 

transform provides minimum mean square error performance but requires 

statistical knowledge of the source and does not possers a fast 

computational algorithm. The Haar has a fast algorithm but results 

in relatively large coding error.

The sine and cosine transforms have fast algorithms and have 

been shown to approach the efficiency of the Karhunen-Loeve transform 

for Markov process image data [102,103]. Various comparisons have 

been made of the performance of these transforms under certain coding 

criteria.

The basic premise of transform coding is that the transform 

co -efficients have an energy distribution that is more suitable for 

ceding than the image pixels. The co efficients • are- more 

decorrelated and the energy in the transform domain tends to be 

clustered into a relatively small number of sanples at the lower 

sequency.

The samples to be used are selected either using a zonal 

sampling method or a threshold criterion. The cc efficients that are 
not selected are replaced by zero's.

The most canmonly used zonal sampling technique is a bit 

allocation technique, where the co efficients are allocated a
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to (5.3.3). The phase is allowed to take twice the number of levels 

as the magnitude. This and similar adaptive techniques give better 

MSE and subjective performance than non-adaptive techniques.

5.3,2 Feasibility of phase only coding

Assuming that an image may be satisfactorily reconstructed from its 

phase only, we investigate the bit rate requirement in quantising the 

phase to give the same sort of distortion as coding techniques that 

code both thr phase and magnitude co-efficients. For uniform 

quantisation the quantisation interval 6V is given by

^Max ~ exPecte<3 maximum value of the 
phase. We expect the phase to vary 

uniformly between -n and H 

B - no bits/pixel 

L - the number of levels used to 

quantise the phase.

Assuming that the decision thresholds are set half way between the 

levels (MMSE criterion) the maximum quantization noise will be

6V

2

6V - MAX KMax
_3

e = 6V
2

=  d>.MAX = 2n
2x2,B 2X2B

e = n
.B

B = log 2 (n/e) bits/pixel (5.3.4)
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To achieve NMSE of 1%, e should be less than I x 10

■ and consequently frcm (5.3.4) this corresponds to a bit rate 

requirement of B = 6.6 bits /pixel. Consequently on an NMSE basis, 

both a low distortion rate and a low bit rate cannot be achieved by 

trying to code only the phase and reconstructing from the coded phase 

by using the phase only reconstruction algorithm.

However, coding is feasible if a good first magnitude estimate 

is obtained. The phase quantization strategy which is adopted here 

makes no assumption about the nature of the probability distribution 

of the phase and follows an approach by Pohlig ̂ l].

The number of quantization levels used to code the phase of a 

given co-efficient is inversely proportional to the frequency 

associated with that co-efficient. To justify this statement, 

consider the (NxN) image of f (m,n) with DFT F(i,k). We define a 

continuous periodic function p(x,y) as

p (x,y)

N-l N—1

L
i=0 i=0

F(i,k) exp (ix + ky} 2nj/N (5.2.5)

The image f(m,n) is thus composed of samples of the periodic function

p(x,y) at x = 0,.... N-l, y= 0,.... N-l. This trivially has a

Fourier series since p(x,y) above is a weighted sum of harmonic 

sinusoids.

The phase is quantized with quantization interval Ad>(i,k)
thsince the position of the (i+k)^ sinusoid is determined by the phase

<j>(i,k) of F(i,k) , there will be a corresponding quantization interval
thin the position of the (i+k)^ sinusoid. If we take the approach
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that the phase quantization interval be chosen so that the
fchcorresponding quantization in the position of the (i+k)1111 sinusoid is

thconstant with respect to frequency ( i + k ) t h e n  

Mx,y) = A<{> , i,k ^ 0.

N/ (i+k) 2n
thwhere N/(i+k) is the period of the (i+k) ̂  sinusoid.

The number of levels is thus:

L = 2n = N_____  which is inversely proportional to frequency

A<j> . (ifkk(x,y)
the number of bits/pixel is

N N

b E  l0g2[N/[(i+k) a 'x 'V>)]

k=l 1=1

(5.3.6)

5.2.3 An adaptive Fourier phase coding technique

f (m n)
reconstructed image

Fig. 5.3.2 The adaptive phase coding scheme.
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The NxN image pixel array is subdivided into nxn arrays and the DFT 

of each is performed independently.

The phase of each block is quantised and coded as explained in 

the previous section. The magnitude is handled by an adaptive 

encoder which makes a decision on whether or not a magnitude or array 
should be sent.

Several techniques are available for selecting the magnitude 

functions to be used for reconstruction, for example

(i) The magnitude of four neighbouring blocks could be combined to 

produce an ensemble average to be used for all four. This need 

only be sent once every four blocks.

(ii) A texture segmentation technique may be used to divide the 

imageinto several regions. The blocks in each region are used 

to provide an ensemble average magnitude function used for all 

blocks in that region, consequently the block ensemble average 

for each sector is sent, together with a description of the 

location regions.

(iii An exponential function may generated for the magnitude as 

described in chapter 3.

At the receiver, the image is reconstructed using the quantized phase 

and an estimate of the magnitude function. In our experiment the 

starting amplitude function was selected as an ensemble average and 

so iterations were performed to recover the magnitude function, using 

the given phase information as discussed in chapter three. The 

recovered images are shown for various quantization rates in Fig.

5.3.3.
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(a) phase coded at 1.0 bit/pixel, with a magnitude 
contributions of 0.2 bit/pixel

(b) pnase coded at 0.8 bit/pixel 
magnitude contribution of 
0.2 bit/pixel

(c) Reconstruction after 30 iterations phase at 0.8 bit/pixel, no magnitude sent 
(ensemble average used)

Fig. 5.3.3 Phase coding.
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The results show that acceptable images can be obtained by coding the 

phase only but to minimise bit-rate it is essential to have a good 

magnitude first estimate. The method has the major drawback of 

requiring several iterations to reconstruct the image at the 

receiver, but the number of iterations may be reduced if a good first 

estimet can be formed at the receiver.

Consequently coding only the phase does not appear to lead to 

practical advantages over methods that code both the phase and 

magnitude. Nevertheless this approach is promising because it seeks 

to take full advantage of the 'segmentation' properties of the DFT.



CHAPTER SIX
IMAGE RECONSTRUCTION FRCM POLYGONAL APPROXIMATIONS
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CHAPTER 6

IMAGE RECONSTRUCTION FROM POLYGONAL APPROXIMATIONS

6.1 Introduction

In the previous chapters we have been concerned with reconstructing 

images given partial specifications in the frequency domain.

In many ways the problem of reconstructing images from partial 

specification in the space domain is similar. For example phase only 

images are visually related to edge detected or contour images. 

Consequently the problem of phase only image reconstruction is 

related to the problem of reconstruction from contours.

In this chapter we investigate the problem of reconstruction 

from edges or contours and extend it to reconstruction from polygonal 

approximations. Data compaction may be achieved by representing an 

image by its contours for many classes of images [19] , and 

regenerating the images using contours and a texture generation rule 

[17] . Further compaction may be achieved if such contours can 

themselves be uniquely represented by polygonal approximations and 

later reconstructed.

Relatively little work appears on the recovery of contours from 

polygonal approximations (PA) mainly because most applications see 

PA's as a last stage in scene recognition rather than an intermediate 

stage. Seme obvious improvements may be obtainable here. For 

example if a computer vision system is being used to recognise a
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scene by obtaining polygonal approximations, better scene 
descriptors may be obtained if an image synthesised from the 

polygonal approximations is fed back and compared with the input 

image.

This chapter considers a simple polygonal approximation algorithm 

that is particularly suitable for reconstruction of a contour, which 

is then used in a second stage of texture synthesis to reconstruct a 

gray scale image.

In general, it is not possible to uniquely specify an image in 

terms of regions and their properties (e.g. texture) and then recover 

it without loss of information. However, it is shown here that some 

recovery within acceptable distortion can be achieved.

The relationship between an image and its contours has been 

treated by a number of authors especially in the bilevel case.

Pavel [15] defined a framework for looking at skeletons as 

deformed images and hence the synthesis of images is seen as a 

restoration or reconstruction process. Grenander [16] formalised a 

concept of pure patterns where grammars were constructed to generate 

images.

Schemes have been reported for recovering gray scale images from 

their contours and texture information e.g. Lemay [17], Delp[14] etc.

While the general problem is quite ambiguous and many results 

are scene dependent, many useful results have been obtained. The 

main thrust of this chapter is to demonstrate the feasibility of 

contour reconstruction, extend it to polygonal approximations and 

show that it is a possible approach to the problem of image coding at 

high compression ratios.
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The chapter is organised as follows. The next section briefly 

reviews the background to texture analysis and rrpdelling appropriate 

to the reconstruction problem. Section 6.3 proposes a suitable 

texture contour parametri sation scheme and reconstruction algorithm. 

In section 6.4 polygonal approximations and their relationships to 

contours are presented and in section 6.5 a simple algorithm for 

contour recovery is discussed. The final section presents sore 

results of reconstruction from contours and polygonal approximations.

6.2 Image texture analysis

The problem of obtaining reasonable spatial models for images has 

been considered by many recent workers and has led to seme good 

results in image enhancement and coding. As an example, if the image 

is a sample of a Markov field then cosine transform coding can be 

shown to be nearly optimal in the mean square sense [81].

A Gaussian-Markov model of the image is also used by various 

studies using distortion rate theory to examine coding performance 

[80] .

In this section we look briefly at the different methods 

available for the representation and analysis of the texture in a 

region. The premise that texture can be parametrized around contours 

and that consequently the regions texture can be represented by 

samples of the texture at the contour is examined.

Several methods have been proposed for texture analysis and 

measurement. Qualitatively, a recion of uniform texture has a 

characteristic repetitiveness. Hawkins [85] specifies three 

ingredients upon which the notion of texture appears to depend. 
These are:

(i) Some local order is repeated over a region which is large in 

comparison to the orders size,
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(ii) The order consists in the non-random arrangement of elementary

parts,

(iii) The parts are roughly uniform entities having approximately the

same dimensions everywhere within the textured region.

6.2.1 Quantitative texture measures

(a) Fourier Spectrum Textures Analysis

The degree of texture coarseness is proportional to spatial period, 

hence a region of coarse texture should have its Fourier spectral 

energy concentrated at low spatial frequencies. At the same time, 

regions of fine texture should exhibit a concentration of spectral 

energy at high spatial frequencies. A correspondence does exist to 

seme degree but difficulties often arise because of spatial changes 

in the period and phase of pattern repetitions.

For example Fourier spectral analysis helps in the detection and 

classification of coal miners black lung disease [19] which appear as 

visual textural deviations from the norm, but the same method may 

fail in analysing aerial photographs due to the considerable spectral 

overlap of different natural textures such as urban and rural 

regions.

A 2fD transform characterises the image as a weighted sum of 

brightness pattern (basis functions) . The coefficients of the 

transform may thus be regarded as an indication of the correlation of 

a particular basis function with an image field. If the basis 

pattern is of the same form as a feature in the image when that 

feature can be known simply by monitoring the appropriate transform

co-efficient.
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Unfortunately such staple correspondence does not happen much in 

practice, but many studies have been done to link or examine parts of 

the Fourier spectra to the image features, e.g. Lendris and Stanley 

[86].

(b) The Spatial Autocorrelation Function 

This is defined as

j -fW k"H\'

1  (m,n) f (m - e, n - n)

m=j -W n=k-W
k i z . l :  j , k )  ~  ---------------------------------------------------------------------------------

j-fW k-fW

[f (m,n) ] 2

m=j-W n=k-W

(6.2.1)

e,n = 0 ± 1, ± 2,...,±T
A is the autocorrelation function calculated over a (2W +1) window at 

each point of the image f.(j,k) for the offset values e,n-

The expectation here is that coarsely textured regions will 

exhibit a higher correlation for a fixed shift U,n) than finely 

textured ones so that the spread of the autocorrelation function will 

reflect the texture coarseness. Consequently a suitable measure of the 

spread sucn as tne second moment (6.2.2) may be used as a measure of the 
texture, j j

T ( j , k ) £- 2 A (i j , k )

£=-T rj--T
(6.2.2)

(c) Edge Activity

The number of edge points in a neighbourhood about a point can be
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used as a texture measure. This is formed as:

T(j,k) = 1

j+W k+W

E E e (m,n)

(2(u+l)2 m=j-W n=k-W

(6.2.3)

over a (2Wf 1) x (2W+1) window

where £ (m,n) is an edge image formed by applying seme form of edge 

detection on the image. W is the neighbourhood window size.

(d) Joint Occurence Matrices

A number of texture measures have been proposed based on the joint 

amplitude histogram of pairs of geometrically related image points 

[82].

If the pair of pixels F(j,k) and F(M,n) with intensisties 

0 < a, b < L-l are separated by r radial units at an angle 9 with 

respect to the horizontal axis, let P(a,b,i,j,k,r,9) represent the 2D 

histogram measurement of the image field over seme (2W-1) x (2Wfl) 

window. The two dimensional histogram can be considered as an 

estimate of the joint probability distribution.

For each pair of the set {j,k,r,0} the 2D histogram may be 

regarded as an LxL array of numbers relating the statistical 

dependence of pairs of pixels. Such arrays are joint occurrence 

matrices (also called gray level dependence matrices) and are useful 
texture measures.

6.2.2 Texture field models

A number of texture field models have been used. These include the



Julesz model [86] , linear programming model [88], autoregressive 

model [37] , etc.

As an example, consider the autoregressive mcdel

a b
y(i,j) = ^  3~n-) *

ETr=0 n=0
0 are the regression coefficients, mn

The image y (i, j) is modelled as a 2-D discrete homogeneous Gaussian 
- Markov field, where

E[u(i, j) .y ((i-m, j-n)] = 0 ; CKm<a, 0<n<b, m=n=o (pixel uncorrelated
with pixels in

E[u(i,j) u(k,l)] = c2 o.v 6 ^  recursion region)

E[u(i,j)] = 0  ; E [. ] is the expectation operator (zero mean)

6., =1; if i = k and rk
=0; if i r k.

For the special case of a-= b = 1,
v(i/j) = G1 V (i-1/j) t e9 y(i-1,j—1) t ©3 y(i,j-1) a u(i,j) 

by row concanteration, (6.2.5)
y(k) = eT Z(k-l) -f- u(k) Where, (6.2.7)

ZT(k-l) = y (k,N ),5'(k-.\r-l),y(k-1)

The mean square error is

and the past History of the process.
0T =(<7,02,0j )

N2

JN (0J = ̂ My(k) - eT Z(k-1)]2 (6.2.8)

k=l
k=jinitial condition set| 

To form an estimate of the texture, select the regression 

co-efficients 0 and a2 (variance of the zero mean gaussian noise p)

so as to minimise the mean square error.
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The problem of determining perceptually sufficient texture 

descriptors is as yet unsolved. In general, the mean, variance and 

autocorrelation function are not sufficient texture descriptors even 

though the 'Julesz conjecture' third order and higher order 

density differences between texture field paires are not discemable 

by human vision [87].

A texture model may be used for texture analysis by estimating 

the parameters of the model that would result in a a synthesised 

texture that ma .ches the pertinent statistics of the texture to be 

analysed.

Direct estimation of the parameters of a model is difficult. 

The Julesz model is non-linear, while the linear programming model is 

complex. The autoregressive model requires the measurement of the 

first order and second order moments of the texture and to estimate 

the probability density of the model driving process.

One approach described by Faugeras [89] is ullustrated below in 

fig. 6.2.1. The texture field is first decorrelated by a whitening 

operator to produce a field oj (j ,k) that forms an estimate of the 

independent, identically' distributed driving process of the 

autoregressive model. The histrogram of over some window is measured 

to estimate the probability density p(w) of the driving process.

The whitening operator is derived from the measured testure 

autocorrelation function (6.2.1(b)). The first four moments of the 

histogram - mean, standard deviation and kurtosis are used to 

represent the histogram. The autocorrelation function is represented 

in a similar way by its histogram
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Fig. 6.2.1 Decorrelation method of texture feature extraction
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The result is an eight dimensional feature vector that gives good 

classification but is limited by computational bounds on the 

whitening step and the autocorrelation function measurement.

As a computational simplification, the whitening operation can 

be replaced by a simple approximate decorrelation operator such as 

the Laplacian or Sobel and the characterisation of the 

autocorrelation function may be totally eliminated.

The decorrelation operator produces edges of the texture field 

and the sufficiency of measurements on this edge field in 

characterising a natural texture field [89] suggests that testure is 

uniform where there are no edges and is discontinuous at the edges.

Edges contain a lot of visual cues such as surface orientation, 

3D shape etc. and consequently recovery of this information from 

edges has received a lot of attentuation [90].

6.2.3 Edge and contour extraction

The extraction of edges from an image is quite difficult and 

unreliable. While many edge detection operators and segmentation 

algorithms have been proposed and used, they do not always give all 

the essential edge information that correctly characterises the
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iirage. Most useful techniques such as Roberts gradient technique 

[91] give a fairly good approximation to the ideal with a few 

extraneous lines. A missing edge might occur for example when a 

physical edge does not result in a visible brightness discontinuity.

In order to use contours for reconstruction, they must be 

extracted as nearly perfectly as possible and spurious edges must be 

eliminated.

Simple linear edge detection methods involve performing a 

discrete spatial differentiation. Ofter this is achieved by 

convolving the image function with a gradient mask.

A commonly used mask is the Laplacian edge detector below

0 -1  o"
H = -1 4 -1

0 -1 o.

(6.2.9)

The new image intensity g(x,y) at the point (x,y) is formed from the 

image f(x,y) by using the mask above to give

g(x,y) = f(x-l,y) + f(x+l,y) + f (x,y+l) - 4 f (x,y)+f (x,y-0 (6.2.10)

Several other masks may be used, and an 'edge map' may be formed by 

thresholding the resultant edge image.

Prewitt [96] considers several discrete differentiation masks. 

These compass gradient masks have maximum response to certain 

direction, producing maximum output . for luminance charges in a 

preferred direction.
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Non-linear edge detection systems utilise non-linear combinations of 

pixels over a limited windows area. Examples include Roberts [91] 

where the edge image is formed by the cross operations given as

g(x,y) = ([f (x,y) - f(x+l,y+l)]2 + [f(x,y+l) - f(x+l,y]2)'2 (6.2.11)

Another operator attributed to Sobel [92] uses the 3x3 window 

below to describe the pixel numbering convention.

a b c

d e f

g h i

and defines

S = (C + 2f + i) - (a + 2d + g)

Sy = (g + 2h + i) - ( a + 2b + 1) 

the edge detected image gives the gradient at point e as

g = /s'2 + S2 (6.2.12)

Kirsh [94] describes another 3x3 operator. Many other techniques 

have been proposed and compared - For example Rosenfeld [95]

Marr [93], Davis[97].

The approach used in this thesis starts off with an edge 

detection algorithm followed by a thinning and thresholding 

operation. The Roberts edge detector is used to produce the first 

edge image. This method has been found to produce edge images that 

are well suited to this application, giving both good luminance and 

textures edges.
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For data compression it is now essential to operate on the edge image 

and produce an edge map that contains all the essential edge 

information but which contains edgges that are one pixel wide rather 

than several pixels wide.

Contours are thus formed by reducing the dimensionality of the 

edges. This is necessary So that polygonal approximations can be 

used to act on the contours so obtained for compression. To obtain 

the best contour from the edges one must seek the maximum of the edge 

detection operator in each window, as this is often the point of 

steepest change.

One way is to take two derivative operations. The maximum of 

the first derivative operator corresponds to the zero crossings of 

the second. This is the principle of the Marr-Hildreth operator [93] 

which detects the zero crossings of hte output after the application 

of the Laplician (6.2.9) . The whole question of obtaining the 

correct contours is fraught with difficulty because it is very easy 

to miss out certain parts of the contour when you use a second 

derivative operation.

The Marr-Hildreth operator is directional and will give correct 

contours for horizontal and vertical directions. The horizontal and 

vertical gradient operators work well for most orientations but leave 

gaps when the edge deviates slightly from the horizontal or vertical. 

An alternative is a thresholding operation where a decision is made 

about the edge intensity threshold and all the edge pixels with 

intensities less than this are removed. The disadvantage with this 

approach is that it assumes a global intensity over the image or 

window area. This does not work well for all the contours,
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* but works well in those cases where the 

chosen thresholds correspond to a particularly dominant edge. The 

best approach is a combination of an edge follower and adaptive 

thresholder. Once one correct edge point is obtained the others on 

the same edge are grown from it and the threshold is chosen locally. 

This allows different thresholds for different areas.

6.3 Contour and texture parametrisation of images.

Given the contours and the texture information a suitable data 

structure can be used to represent the image for purposes of 

compression. The overal block diagram is shown in fig. 6.3.1 .

Where F(j,k) is the image pixel array and p (c, t) is the contour and 

texture representation. The block diagram of the reconstruction 

system used is shown in fig. 6.3.2

Having obtained the correct contours, several options are 

available for the parametrisation of the image. One option would be 

to take measures of the texture in the regions on either side of the 

contours, and later regenerate the texture using a suitable model and 

texture synthesis algorithm. This requires a fair amount of 

computation good closed regions are not always formed. Computing



Fig. 6.3.1 Contour and texture parameterisation.

Texture p (c, t) Coding
Parameter-
isation

--------- ►



f ( x , y )f ( x , y )----------- ►
original image

contour and 
texture 
parameteri sa- 
tion

f (x; y) image
------------- reconstruction ^

Fig. 6.3.2 Block diagram of reconstruction system.
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approximation
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texture measures on an irregular grid and later regenerating this 

texture over the whole image requires an inordinate amount of 

processing and storage.

The appracch used here and by others[17J is to represent the 

texture on either side of the contour by the pixel intensities and to 

recover the image by inserting these intensities and then estimating 

the intensities in the non-edge region.

The given contour information does not uniquely specify the 

image and there are several images that m-y be compatible with the 

contour information.

All these images should not contain any more contours in the 

areas between the given contours. This suggests that the image 

intensity between the contours should be maximally smooth and a 

reconstruction constraint should minimise the probability of 

introducing any new contours.

When the image being sought is bilevel, this corresponds to the 

classical contour filling problem.

In the gray level case several approaches are considered.

(i) Spline interpolation.

If the contour information and the texture on either side of the 

contours is given, this approach has been found to give a 

reconstruction image compatible with the given information. The 

intermediate texture is obtained by spline interpolation using 

the given texture information.

(ii) Iterative Constraint

The missing texture may be estimated using an iterative 

reconstruction algorithm, subject to the constraint that no new
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contours m y  be introduced. The reconstruction problem is

formulated as a constrained optimisation problem as follows:

Given a local measure of image intensity variation at pixel

(x,y) involving the derivatives of intensity with respect to the

co-ordinates; F(f , f ,f ...... ), the reconstructed imagex y' xy ^
f (x,y) is obtained as the minimisation of this measure over the 

images.

min 

f (x,y)
J

F(f ,f ,f ...... ) d x dyx y xy 2 (6.3.1)

subject to known f(x,y) along the contours.

f is the derivative with respect to the x-co-ordinate at (x,y)X
f is the derivative with respect to the y-co-ordinate at (x,y)

F (f , f , f x y xy ....,) is a measure or image intensity variation at 

(x,y) and is a function of the derivatives.

If the squared magnitude, F, is used as a measure of this variation,

F = f2 + f2 x y
Recasting the above problem in a discrete form, with the derivatives 

replaced by differences, we need to minimize 

M N

[f(x,y) - f(x,y-l)]2 + [f(x,y) - f(x-l,y)]2 (6.3.2)

x y

where f(x) is the pixel intensity at (x,y)

The minimisation is carried out at all points except at the
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fQ (x,y) initial estimate

f±(X/

T ( )

impose 
f (x,y) 
contou

known
at

rs

fi+1(x,y) = f.(x

fi$i'y)
Fig. 6.3.3 Iterative algorithm for reconstruction.

/ y) + A Af. (x. y)i
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contour where the given values of intensity are used, 

sufficient and necessary condition is 

3C
------- = 0

'df (x,y)

defining the Laplacian

Af (x,y) = f(x-l,y) + f(x, y-1) + f(x+l,y) + f(x,y+l) - 4f(x,y)

(6.3.4)

which implies that if (6.3.3) is satisfied, Af(x,y) = 0 at all points 

except the contour points.

As before, we can consider the mapping from the given h  (x,y) to 

an estimate f^+^(x,y), so that to solve the above iteratively, 

f^^y) = T{h (x,y) }where T(.) is a transformation from the ith to the 

(i+l)th iteration. Linearized this becomes

f ^ y )  = f^(x,y) + XAfi (x,y) (6.3.5)

where X is a relaxation parameter..

fQ (x,y), the initial estimate is obtained by using the given 

values of texture at the contour points and 0 elsewhere. The 

Laplacian is the gradient of C with respect to f so the iterative 

algorithm above can be considered as a steepest descent algorithm for 

the minimisation of C with respect to f.

On a variation of this algorithm, the unknown texture is 

initially generated using a texture model such as the autoregressive 

model discussed previously.

To minimise, a

(6.3.3)
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A f (m,n)--(f (m-l,n) + f(m,n-l) + f(m+l,n) + f(m,n+l) - 4f (m,n) 
i i+l i+1 i • i i

It is.interesting to consider the convergence behaviour of this
algorithm.

The error between the latest estimate f\ (x,y) and original 
image is

ei (x,y) = (X/y) -f(x,y)
Where f (x,y) is the smooth reconstruction being sought.

Using this linear relationship, we obtain a similar equation to
th6.3.5 for the error at the (i+l; iteration as 

ei+l(x'y) = ei(x'Y) +Aziei(x,y)
Edges represent high frequency information and the iteration tries to 

prevent the intreduction of edges (high frequencies) in the non-edge 
region. The iteration can thus be modelled as a repeated low pass 
filtering operation in the non edge region . Consequently, we may 

take

Ei+l^Wl/(l52̂  = H(w1,a32) (6.3.6)

where (gô ,^) is the DFT of e^+  ̂(x,y) 
and H(u^,^) is the transfer function of the low pass filter.

Since the points at the contour not affected, the filter is not 

shift invariant so 'this analysis is not entirely rigid, but we can 
evaluate

H(u1,o)2) = Ei+1(w1,a)2) = F{ei (x,y) +A4ei (x,y)}

Ei (w1,w2) P{ei (x,y)}

This reduces to (see appendix 4 )
= [1-4A] + ^[exp (jû ) + exo(ja>2)J (6.3.7]

1 - A [exp +exp(-jw2)]
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Fig. 6.3.4 Graph of H(w1/1) V ' s
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6.4 Polygonal approximations
In the general polygonal approximation problem we want to find a 

polygon that closely approximates a given curve while having a much 

smaller number of vertices. This problem is stated as follows:

Given a curve C

c = (xi ,yi ) |

I i = l , ............. ,N}
determine the minimum set of m (usually) straight line segments

(c^...... ,c ) that will approximate the curve subject to a closeness

criterion.

So the requirements are

(i) find the minimum number of segments (m) for a given error E f 

and/or

(ii) find the minimum total length of polygonal sides for a given 

number of segments m and error E.

While segments are usually chosen such that the data points 

along them are on straight lines, it is often useful to describe 

other forms e.g. arcs.

The solution to this problem is generally non-unique and optimal 

methods of solution such as dynamic programming [ 181 have a 

prohibitively high computational cost. As a result, there have been 

many proposals in the literature of algorithms that produce a 

sub-optimal solution but with much lower computational cost [12]

The converse problem is the reconstruction of the contour from the 

polygonal approximation. This may be stated as one of finding the 

best curve C to fit the given set of straight line segments and some

constraints.



146

Apart fran the' different approximation methods, there are 

differing estimation methods for the error between the polygonal 

approximation and the curve.

We propose an algorithm that is suboptimal because it is 

constrained to have points of the original image in the polygon. 

But this will be useful in reconstructing the contour. It makes 

local decisions about whether to extend the segment and the advantage 

of doing this is that they may be done in reverse, hence giving a

contour that would have satisified them. i.e. the same decisions can 

be made when recovering the contour' doout whether the segment can be 

broken any further

The general situation is illustrated in the figure be lew

B

/

Fig. 6.4.1 Geometrical illustration of polygonal approximation

The algorithm

input: Co-ordinates of the curve C (I) , 1 = 1,

S j (k) , k = 1 .......... . M

derinrtion: f (.) is a function which determines hew close the segment 

with the present extension is to the segment without the

extension.
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E is the allowed error for f(.) above.

j is an index of the number of segments j=l,...... m.
tink is an index of the points belonging to j segment.

T is a temporary segment.

1. initialise j=0

2. perform procedure SEGMENT until end of contour

3. If end-of- segment = time

j = j + 1 

k = 0

Else

k = k + 1 

Go to 2

Prodcedure SEGMENT

n = next point along contour

T = Sj + n......... extended segment

IF f(T) - f(Sj) > E

THEN end-o f-segment = true.

Else

S . (k) = n 1
End

At each local point, E is defined as the maximum allowable angular 

divergence which was chosen as 22° in our experiments. f(.) was 

taken simply as the new angle. To assist in the detection of gradual 

changes, an expected short segment length of about 5 points on the 

grid was used, so that a comparison was also made every neighbouring 

sets of 5 points in the contour and these would be merged if they 

don't differ to much, otherwise they would be split. Fig. 6.6.3 

shows a polygonal approximation obtained using this algorithm.
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6.5 Contour recovery

Since the polygonal approximation is so close to the contour, it may 

well be that if grid points are selected at randan close to the 

approximating polygon side, we may obtain a reasonable contour.

A better reconstruction may be obtained by applying the 

algorithm outlined above, in reverse. (See fig. 6.5.1). Given the 

contour points in the polygonal approximation, we want to find a path 

along the grid which satisfies the rules for constructing the 

polygon. Even though the path joining two vertices in a connected 

graph is not unique in the general case, knowing the rules for 

constructing the polygon, considerably reduces the ambiguity and the 

contour may be grouwn between the vertices. At each point the next 

point is determined so as to satify these rules.

This time the algorithm starts from point B (fig. 6.4.1) and 

works its way towards point A, at the same time satisfying the 

constraints on angular divergence that were used to construct the 

polygon segment. There is only a finite number of curves that can 

satisfy these constraints and in most cases are not really going to 

affect the acceptability of the reconstructed contour.

If it becomes impossible to satisfy the rules the algorithm back 

tracks to revise its decisions. A buffer store is kept of the 

previous points. If a contour fails to meet the end vertex after a 

large number of points (far beyond the expected number) , the 

algorithm backtracks. In our work this was loosely defined as 

2 (X+Y) where x = direction, Y is length in Y direction of polygon. 

The solution can be made almost unique if the number of contour 

points represented by each polygonal segment is kept as well. This
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Fi'd. 6.5.1 Contour recovery.
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has the disadvantage of increasing the number of points. But if a 

parametric representation of the contour and texture has been 

obtained, this information would be present anyway from the number of 

texture points

6.6 Experimental results and Conclusions

The ideas outlined in the previous sections were applied to the image 

of fig. 3.3.3 Fig. 6.6.2 shows the contour image of the test image 

and fig. 6.6.3 shows the polygonal approximations obtained using the 

algorithms outlined in section 6.4 Fig. 6.6.4 shows the results of 

reconstructing the contours frcm the polygonal approximations. Fig.

6.6.5 shows the reconstructed images using spline interpolation (a) 

and the iterative approach outlined in section 6.3 (6.6.5(b)).

The results indicate that subjectively acceptable 

reconstructions frcm contour and texture parametrised information are 

possible.The compression obtainable depends somewhat on the nature of 

the image. For example the ’script' images is represented just 3 

polygonal approximation curves, or a total of 39 segments. The 

parametric representation then consists of 3 1-D vectors of 42 

points, encoding the x-co-ordinates, y-co-ordinates and intensity.

These have a lot of inherent redundancy and may be further 

encoded among themselves. For example the first intensity along the 

contour may be fully encoded and the others would only have a 

residual coded so that they may be predicted from it. Using similar 

methods to encode the co-ordinates, the bit rate required is obtained 

by adding up all the bits needed to represent each vector and 

dividing by the total needed for the original image.
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Fig. b . 6.1 Edge image

Fig. 6.6.2 Contour image
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Fig. 6.6.3 Polygonal approximations

Fig. 6.6.4 Contour reconstruction
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Fig. 6.6.5 Spline interpolation

Fig. 6.6.6 Constrained iteration
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The original required 64x64x7 bits and the parametric required 

42x2x4+42x5 bits
This allows up to 4 bits for encoding the differences in the 

co-ordinates and 5 bits for the intensity differences. This is about

0.13 bits/pixel and may be reduced further. The 'man' image shown 

however, uses about 0.4 bits/pixel.

The criteria of maximum smoothness gives and acceptable image 

and 30 iterations seems to be about the required number for 

reconstruction. The main factor on which success depends is the 

correct choice of edge image and extraction of the contours. Under 

seme conditions, a good starting image may be available - e.g. in 

coding image sequences, the previous sequence is available and it 

would give faster convergence. The quality of the reconstructed 

images is worse than the quality of transform coded images at the 

higher bit rates, but is better at the very low bit rates.
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CHAPTER 7

CONCLUSIONS

This chapter presents the m i n  conclusions of this thesis and sore 

suggestions for research areas where future research could be 

useful.
Issues related to three problems of image reconstruction were 

considered. These were image reconstruction frcm the phase or 

magnitude of its Fourier transform and from information about its 

contours.

The conditions under which a sequence is uniquely defined by 

its magnitude or phase function have been examined. In particular, 

it was shown that a finite support constraint is in most cases, 

sufficient for a 2-0 sequence to be uniquely defined to within a 

scale factor by its phase. The finite support constraint is 

sufficient for a class of sequences which are related to within a 

sign, linear shift and time reversal to be uniquely .defined by the 

magnitude of the Fourier transform.

Practical algorithms for reconstructing the image from its 

phase were presented. Both iterative and non-iterative algorithms 

were discussed. The effect of noise on the phase only 

reconstruction was investigated.

The convergence of the phase only iteration is reduced when the 

available phase is noisy even though the fixed point to which it 

converges will not change if the iterative mapping is a contraction 

over the domain of the noisy sequence.



156

It is seen that the selection of a good starting magnitude function 
can speed up the phase only reconstruction from noisy phase and 

several methods of selecting the starting magnitude are examined.

While the error in the final reconstructed image will be the 

same for both the non-iterative and iterative reconstruction 

algorithms, it is possible that the image at some point in the 

iteration will be better than the one to which it converges. 

Consequently it is important to study the iteration theoretically, 

using error measures that can relate to the subjective quality of 

the image. More work is also required in developing relationships 

between the ph^se and the space domain image. Such relationships 

could be useful in developing constraints for estimating the phase. 

Further theoretical work is needed on uniqueness in the case where 

the available phase is noisy or quantised, and on reconstruction 

methods to reduce the effect of the error.

An issue that is related to the above problem is Fourier 

transform coding, which is studied in the second part of chapter 

five.

A Fourier transform coding technique is examined where only the 

phase is coded and transmitted and the magnitude is reconstructed 

from the phase information of the receiver. The method is shown to 

provide a good reconstructed image, but bit-rate and quality of the 

image depend on the ability to form a good estimate of the magnitude 

function at the receiver. Our results indicate that fewer 

iterations would be required if such an estimate was available.

To develop practical coding algorithms using only the phase 

more work is required on selecting magnitude functions, and on 

coding the phase function.
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.Adaptive techniques that take full advantage of the apparent link 

between phase and image edge structure as well as between magnitude 

and average image brightness are required. One such technique could 

classify an image into several regions where the same starting 

magnitude function could be used.

The question of how best to code the phase is still an open 

problem. When both magnitude and phase have been coded, it is 

usually on the basis that more bits should be used to represent the 

larger co-efficients at the lower frequency. The same approach is 

used for other transforms. However, this form of lowpass filtering 

will tend to destroy edge structure at high compression ratios and 

it may be better to choose co-efficients by seme other technique. 

As shown, a slightly different analysis based on the phase, gives 

broadly the same result that lower frequencies need more bits.

Further studies of coding methods that use only the phase are 

needed because of applications such as the kino form. There is also 

need for the development of solutions to the non-iterative phase 

reconstruction algorithm for reasonable sizes of image arrays.

In Chapter four, the importance of a priori information for the 

success of iterative algorithms for magnitude only reconstruction 

was studied. Reconstruction is generally not possible without a 

priori information. The type of information available depends on 

the application area, but the two most ccmmonly applied constraints 

are the non-negativity and finite support constraints. However, it 

is seen that simply applying those constraints does not generally 

lead to quick convergence, even with an accelerated algorithm.

A more powerful concept is to consider the design of starting
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images which will produce an image that satisfies the constraints 

after passing through the iteration.

The convergence of the iteration improves when some information 

about the phase is provided, but this kind of information may not be 

available in practice.

There is considerable scope for further work on reconstruction 

algorithms. Further theoretical work is needed on the relationship 

between constraints in the frequency and space domains so that 

adaptivity parameters can be designed not only to speed up the 

iterations but also to satisfy the constraints in both domains.

The uniqueness of the magrn tude is still an open problem 

especially in the case of complex valued sequences and on 

reconstruction frcm a noisy magnitude function.

One application investigated in this thesis showed that the GS 

iterative algorithm will reconstruct frcm a noisy (Wiener estimate) 

magnitude when a noisy estimate of the phase is available.

In chapter five, a methcd is presented to estimate the phase as 

well as the magnitude of the spectrum of an image that has been 

degraded by linear blur and additive noise. The method consists of 

a conventional statistical restoration filter which serves to 

restore the magnitude function, followed by a Gerchberg Saxton type 

iterative algorithm to estimate the phase function.

Using a finite support 'constraint is found to reduce the phase 

domain error, and the spatial activity constraint leads to visually 

better images. This methcd provides a practical way to obtain 

better resolution for images that are restored using a zero phase 

filter, tore work is needed on techniques to estimate the correct
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phase from the noisy measured phase function.

In Chapter six, the reconstruction of images from polygonal 

approximations is shown to give reasonable images at high 

compression ratios. The image is represented by the polygonal 

approximation of its contours and the pixel intensity along the 

contours. The contours are obtained by a derivative and 

thresholding operation on the edge image and their correct 

extraction is essential to the recovery of an image that resembles 

the original.

The image pixels are recovered by an iterative algorithm that 

minimizes the square of the derivatives in the non-edge region 

subject to the constraint that the edge pixels maintain their known 

intensities.

This approach is found to give useful images and could 

possibly be developed further. More work is needed on algorithms 

that extract the correct contours as this makes a lot of difference 

to the quality of the final image, and on developing good first 

estimates. Since these methods are mostly concerned with 

reproducing the correct relationships between the pixels, rather 

than the actual intensity values, the final image quality may be 

improved by some form of image enhancement. For example histogram 

equalisation could be used to redistribute the intensities om the 

known range. The fact that a number of iterations must be performed 

is a disadvantage as is slows down the response time, but the 

calculations are neighbourhood operations and could be performed 
very quickly in parallel.

Extracting the correct edges from an image is still an
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interes finer research area witJn manv algorithms being proposed for 

various classes of images. Image reconstruction from these edges 

may be used to improve the performance of an edge detecting system, 

if the image reconstructed from the contours is compared with the 

original. This may be important in some applications where a much 

compressed version of the image scene needs to be stored with very 

limited resources or must be transmitted along a very narrow 

bandwidth channel.

Many of the reconstruction algorithms discussed in this thesis 

and in the literature are ad hcc and based on heuristic or intuitive 

arguments. In part this is because of the difficulty in properly 

quantifying the concept of image information. For example it is 

difficult to provide a simple measure that would explain why a phase 

only image is intelligible and a magnitude image is not.

There is therefore a need to develop mathematical or 

probabilistically based reconstruction methods and more work is 

needed on developing models that are appropriate to image 

reconstruction from inccmolete informat.inn.

Three reconstruction problems have been considered in some detail:

1. Reconstruction from the phase of tine Fourier transform

representation of an image

2. Reconstruction from the magnitude of the Fourier transform 

representation of an image.

3. Reconstruction from, polygonal approximations of the contours of an 

usage.
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It is shown that real image functions are uniquely defined to w'ithin a

SCcLle factor by their phase. There is a i ivery clear visual link between
t  tm l original image and the 1phase-only i imaoe . esc images or m e image

are obtained firocri trie erase oniv image both by solving linear closed

form ecuations between the original image and the chase and by usinc 

iterative algorithms, applying known constraints in each domain as we 

alternately rrove between space and frequency do-rains. The non-iterative 

method is limited by the size of the matrix as it requires inversion of 

the matrix. A sub image size of ''8x8 is reasonable. The iterative 

algorithm is also limited by size as it requires 2M-1 x 2M-1 size DFT's 

for an NxN image. It is also limited by time as a number of iterations 

(around 30) are needed for reconstruction. Furthermore, the convergence 

of the iteration is reduced when the phase function is noisy or 

quantized, in this case, gcod performance is obtained by selecting good 

starting magnitude functions and by using adaptive relaxation 

techniques. Consequently, the success of iterative phase only 

reconstruction as a comcression method detends on the abilitv to form

excellent starting magnitude functions and to perform many iterations 

quickly. This is possible writh array processors and may be even faster 

if hybrid digital/optical processing is used to perform, the DFT's.

Magnitude only reconstruction is generally not successful without a 

priori information. Magnitude only images are not as intelligible as 

phase only images and the relationship between magnitude only and 

original images is non-linear and consequently verm' difficult to solve 

non-iterativelv. The basic iterative algorithm converges extremely

slowly, but reconstruction improves when further a priori information 

about phase or its sign is available. Unfortunately such information is
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unobtainable in most practical situations. Frequently only the modulus 

is measurable so that while the algorithms are effective, they are not 

readily applicable to real life problems. The methods however, do 

provide a practical way to obtain better resolution for images that have 

been restored using a zero phase filter.

Reconstruction from polygonal approximations of contours, gives 

intelligible images at very high compression ratios. The compression 

obtainable is greater for images with significant contour content such 

as script images and compares very favourably with other ceding methods.

Future Work

The following problems, among others, remain to be solved;

1. Developing mathematical or probabilistically based reconstruction 

methods.

2. Theoretical examination of relationships between the image and its 

phase.

3. Uniqueness of the phase only representation when the available 

phase is noisy or quantized.

4. Uniqueness of the magnitude for complex valued sequences.

5. Criteria for ceding the phase.

6. Fast algorithms for performing the iterations.

Solutions to these problems would go a long way to improve understanding 

of image reconstruction and contribute to the development of image 

processing science.
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APPENDIX I

Proof

X(e^) = Xr (e^) + jXJ (eJUJ)3^

The Fourier Transform of x (n) = (nje"-^

= h [x (n) + x (—n) ] e-join

ao
= h /  x(n)e + J5 ^>x(-n)e -̂wn

n= - 00 n= -

• — —

X(e^) +
—

x (n) e^w = H X(e3“) + X* (e~3“)

[Xr (e3111) + jXj (e3“) + X_(e3<J) - jXjte jJj l  == X_(e3“)
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APPENDIX II

Proof of phase uniqueness

Theorem:

Let x(n^,n2), y f n ^ n ^ F f l n ^ n ^ )  with support R(N^,N2) . 

If X{z^,z2) has no symmetric factors and <f>

M = M 1/ IVl2

>x(“l' tlJ2) >M 1 ( to . fy 1 a2]U for = 1, . . .

“2 = 1'-’-

then y(n^,n2) = 8x(n^,n2) for some positive number 6.

If tan [^(u^, ui2))m] = tan <|> [(u^, tu2))M] 

y(n^,n2) = /J x(n^,n2)for some number S

Proof

Let x(n^,n2), y(n^,n2) satisfy the theorem.

Consider the sequence

g(nirn2) = x ( n 1,n2), *y(-n1,-n2) (A2.1)

x(n^,n2) and y(n^,n2) have support R(N^,N2) hence their convolution 

g(n^,n2) is zero outside -M^<n^< N^, -N2<n2< N2* Therefore if

M>2N-1, then the M-point DFT of g(n^,n2) is the product of the 

M-point DFT's of x(n^,n2) and y(n^,n2)

G(k1,k2)M = X(k1,k2)M • Y (-kx,-k2)M where M = (A2.2)
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Thus if *x <kl'k2}M = l(’y (kl'k2)M °r ^  (kl ' V m 5 = (kl'^' m 1

Then G(k^,k2)^ mast be real and since g(n^,n2) is non-zero in the 

region -N^<n^< N^, -N2<n2< N2, it follows that g(n^,n2) must be even, 

and its Fourier transform real.

G(z 1,z 2) (A2.3)

therefore from A2.2 and A2.4

X(z1,z2) = Y ( z “1,z 21) = Xlz"1^ " 1) Y(z 1,z 2)
-Ni' -N?Multiplying by 1 z2 , results in

X(z1,z2) Y(z1,z 2) z”m' z22 = X(z1,z2) Y(z1,z2) z~n* z~^2,

(A2.4)

where m^,m2 > 0 and ,n2 > 0 are integres 

and X(z^,z2) = z^Nl z ^ 2 X(z^,z2 )̂

Consider a non trivial irreducible factor X, (zn,z_). If a polynomial 

has two differenct factorisations, the factors in each can always be 

ordered in such a way that the factors are associated - i.e. the 

factors in both factorization will be equal to within a factor of 

zero degree. Therefore X^(z^,z2) must be associated either with a 

factor of X(z^,z2) of a factor of Y(z^,z2^

But, if X^(z1,z2) is associated with a factor
'VXk (z1,z2) = aXi (z1,z2) for some i. If i = k this

Xk (zr z2) = ct* V (z^,z2) and }̂  is synnetric.

of X^.(z^,z2) then

implies
(if « =±1)
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If i 1 k
A /

Xk (z1,z2) X(z1,z2) = a Xi (z1/z2) xi (z1,z2) 
and A(z^,z 2) is a symmetric factor of X(z^,z2).

= aA(z1,z2)

This is excluded by the theorem, so each non trivial irreducible 

factor X^(z^,z2) °f X(z^,z2) must be associated with a factor of 

Y(2r z2) . '

In a similar manner, each non-trivial irreducible factor 

■::̂ (ẑ ,z2) of Y(z^,z2) be associated with a factor of X(z^,z2). If 

Y(z^,z2) has no non-trivial symmetric factors, each irreducible 

factor of Y(z^,z2) must be associated with X(z^,z2). Therefore 

X(z^,z2) and Y(z^,z2) have an associated set of non-trivial 

irreducible factors and may only differ at most by a trivial factor.

i.e. Y(z 1,z2) = 8 z^l z22 X(z1,z2)

If no constraints are made on the factors of Y(z^,z2) note that each 

non-trivial irreducible factor of X(z^,z2) must be associated with a 

factor of Y(z ^,z2) .
Consequently X(z^,z2) and Y(z^,z2) are related by 

Y(z 1,z2) = z^l z2z P(z1,z2) X(z1,z2)

where

m = m^rr^ - integers 

P(z^,z2) is a polynomial in Z

Since Y(z^,z2) and X(z^,z2) are both polynomials in Z  ̂and X(z^,z2) 

contains no trivial factors Q(z^,z2) = z^1 z™2 P(z^,z0) must also be

a polynomial in 7~l .
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This represents the Z-transform of a sequence q(n^,n9) which must be 

even in order for the phase or target phase of xtn^,^) and yfn^,^) 

to be equal. Therefore Q(z^rẑ ) = 6 and the theorem follows.
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APPENDIX III

Convergence of iterative algorithms

We state

where

and prove convergence theorems for iterations of the form
X  =  X  4- A ( y ~ )P+1 P M  P* 

rp = T(XP}

T(Xp) is the napping between 

consecutive iterates of the basic 

(unrelaxed) iteration ie Xp+  ̂= 

T(Xp).

Definitions

(i) A mapping T with dcmain D in Rn and range in F?11 will be denoted 

by T: Do r ^ U ^

,n ji(ii) A mapping T: D ^ R  — ►R is non expansive on a set D. D if

T - T < x-y for all x,y E D x y 2 o

(iii)A fixed point x° of the iteration T is defined as any solution

of the equation

x - Tx = 0.
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Suppose that under the Euclidean norm T: D C R n->>Rn is non expansive

on the closed convex set D Cl D. Assume, farther, that TD C D  ando o o
that D contains a fixed point of T. Then for any A e (0,1) and x e o o
D , the iteration o

x ,  = Ax + (1-A) Tx , p = 0,1,..., (A3.1)p+i p p

converges to a fixed point of T in Dq 

Proof

The convexity of Dq ensures that the sequence (A3.1) is well fined
oand remains in D . If x is a fixed point of G in D then in the o r o

Euclidean norm

Theorem A3.1

o 'x .. - xP+1 2 = A2 lx - x° 2 + (1-A)2 It x - x°j1 p
O  T 0 1 p 1

2 (A3.2)

+ 2(d (1-cd) (Tx -x ) (x -x ) P P
and

x -Tx P P 2 =

0X1X 2 4- (Tx -x°)p P /
2 - 2(Tx -x°)T , -x°;p (xp

(A3.3)

after multiplying (A3.3) by A (1-A) and adding to (A3.2) we obtain:

2 + A (1-A) (A3.4)

= A ox -xp I + (1-A)
Therefore for any m>o

2

A(1-A) x - Tx P P
p=0p=0
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x - X o

x - X o

2 _ x_, . - X I 2m+1

Which proves that for m , the series on the left converges, and , 

in particular that

lim

p-— ^

x - Tx P P, = 0

Since
o 1 ir o o

X  ... -  X  1 = -ft 1 (x - X  ) + (1-1) Tx - TxP+1 Ij 1] p P

(x - x ) P >< X . - X
3

ox - X ) o (A3.5)

for all p > 0, j < p

It follows that the sequence{x^} is bounded and hence has a

convergent subsequence {x which, by the closedness of Dq , must

have its limit point y 111 Do*
Then (A3.1) shows that

f> °lim (x .,- - y ) = lim (x . - y ) + (1-1) lim (Tx .-x .) = 0 pi+1 2 pi 2 pi pi
Od i —fx#

o o
or by the continuity of T, that y = Ty , therefore (A3.5) holds with 
o oy instead of x , and accordingly the whole sequel.je must converge

oto the fixed point y .

Mote that the adaptive acceleration has changed the point to

which the iteration converges.
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Appendix 3b

Lerrma Contraction mapping theorem

Suppose that T:DCT maps a closed set D into itself

i T x - T y f .  a | x-y|| for all x,y e D

for sane a < 1.

and that 

(A3b. 1)

Then for any starting point x q e Dq/

x .. = Tx p +i p P = 0,1,..

the sequence

(A3b. 2)

Converges to the unique fixed point X of T in D

and
.

X - X ^ [a / (1-a). ] . X ~• X .p 1 1 p P-1/ {A3b. 3)

Note that (A3b.3 provides a computable error estimate so that if ct is

known, the actual error after p iterations can be bounded in terms of

the last step x - x ,.P-1

(b) The convergence of approximate or Noisy sequences.

Given that the exact sequence x converges under an iteration such as 

the phase only iteration, it can be shown that the. approximate 

sequence such as may be formed by quantization of x also converges to 

the same fixed point if it is contained in a domain under which the 

iterative mapping is a contraction.

Theorem

Let T:DCRn-^Rn be a contraction on D-.CLD (with constant ct) and D <C1 o
o.D. a closed set such that TD D 1 o <
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[By the contraction mapping theorem, the sequence in (A3b. 2)
ostarting from xqO  Dq converges to the unique fixed point x of T in 

DJ

Let y C D ^  be any sequence and define

£P = u v  v i " ' p = ° ' if (A3b.4)

then

V i "  v H  t l / ( 1 ' a)1 [a l| V i  ■ ypH + e] (A3b.5)

o !
V i " x 1K x - X + 2

j=0

x -y o Jo ,p= 0,1.. (A3b.6)

and

lim y = x *P
.c*>

IFF lim e = 0  P
p—>o°

Proof

the estimate (A3b.5) follows from

o
Y 1 - x p +i V i V + V o  - V V ' ^

< z  + aP yp - V i
and (A3b.6) is obtained from

+ a V i  " x

Vi “ Vi p V + t v ” y^i*p Tp+i

x - y P 2P + £ N<___ A * }  aP N ^  P"
j=0

. £ . + a , D J P-1 x - V o -o
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together with

V i " x ■< Vi' Vi ox ., - x P+1

Suppose that lim z = 0  .and, more specifically, that forP

given e > 0, z^ ,$£pfor p ^ pQ . Then with 

P
V~ "2. ct . z , we haveAp It: p* j  pJ-O

V  ^ a V  + ^  a . e . < a V  + £ [a ,,/(1-cc] r p  N p - p o  ' p o  X  p- j  j >» p - p o  / p o  po+l

i=p +1 - ^o

which shows that lim V  =0P
p—»oo

thus by (A3b.6) , lim y^ = x
p — ^ oO

Conversely, if lim y^ = x , then

p-*-co

0 4  £P = lTyP - yp+lH ^lTYp "" ^ } + X 7p+l
<< a |1 yp -X +\\x -  y.p+-i

which implies that lim e = 0P
D— ft
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Mo assumptions are made about the noisy sequence, except that it is

contained in a domain D^LD in which T is a contraction. It need not

lie in D . o
The relationship between the exact sequence and the approximate 

sequence is given by (A3b.6) .
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APPENDIX 4

Proof of equation 6,3.7,

The error between the latest estimate f (x,y) and the original imagei
f (x,y) at the i iteration is related to the error at the i+1 
iteration by

ei+£x,y) = ej,(x,y) +AAei(x,y) (A4.1)

where
Ae.(x,y) = e(x-l,y) + e (x,y-l) + e.(x,y+l) + e (x+l,y) 

i+1 i+1 i
- 4 e (x,y) 

i

The transfer function of the lowpass operator modelling the iteration 

is thus

E ("■, ,u}n) 
H K  ,w9) = . i+1

E .(wr w2)

(1-4A) F e(x,y) 
i

+ A e (
L i+1

:_(x,y)J
Using the relationships F^e(x+l,y)J= exp( jop ,F|e(x,y)J

and
H(w 1, W2 ) =

we get

E (to ,<*> ) 
i+1

E (w x, ̂  )
i

H(cV 6J2) = 11A ) +A [h  (oj 1 ; ) exp (- j ̂ ) + exp(-j^2) + exp( j^1)+exp(

hence
(1-4A) +A^exp(jw1) + exp (jw2)]] 

1 - A[exp(-jw1) + exp (-jw2)J
h ( ^ 2) = (A4.3)
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