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ABSTRACT

The disruptive instability in tokamak devices is investigated. 

The experimental features of disruptions are briefly discussed and 
they support the currently held consensus that disruptions are 

caused by resistive magnetohydrodynamic activity.
We briefly summarise the theory of resistive tearing modes in 

both the linear and non-linear regimes before reviewing applications 

of this theory to disruptions.
Certain problems arising from the standard 'mode coupling' 

disruption model advanced by the Oak-Ridge group are discussed. The 
Oak-Ridge calculations are repeated using an alternative quasi-linear 

model, which explains disruptions in terms of evolution towards a 
bifurcation catastrophe. The results show no evidence of a 
disruption having occurred. *

The change in the stability properties of the plasma caused by 

removing a conducting wall from the plasma boundary are discussed 
and shown to be crucial. When placed at the boundary, the wall 

suppresses tearing mode activity in the outer regions.
An investigation into the numerical properties of the Oak-Ridge 

computer code RSF shows that the previously published results have 

been performed close to a numerically unstable regime, where the 
accuracy of the results is uncertain. A new numerical stability 
criterion is described and used in a multi-helicity calculation at 
moderate magnetic Reynolds' number (S ^ 10^). The results conform
to those obtained from the quasi-linear calculation. The effects of
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increased magnetic Reynolds number are discussed. We conclude 
that mode-coupling has a role in the dynamics of the disruption, 
however, the salient features of how the disruption is triggered 
and its subsequent evolution may be adequately described by quasi­

linear theory.

Time-dependent calculations are performed for a plasma under­
going an increasing current phase. A model explaining the resulting 
sequence of soft disruptions is explained and compared with 

experiment. The conditions under which major and minor disruptions 
occur in the model are delineated.

The concept of current restriction on axis being instrumental 
in triggering the disruption is broadened to the case when there is 
no q=l surface in the plasma.
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CHAPTER I

1.1 DISRUPTIONS IN THE TOKAMAK

If nuclear fusion reactors, based upon the principle of 
magnetically confining a hot plasma, are to become a viable 

future source of power, many outstanding problems must be tackled 
and solved. These questions are quite distinct from the 

engineering difficulties allied to reactor design and maintenance 
which must ultimately be considered. Indeed it is the limitations 
of engineering that will govern whether or not a fusion reactor is 
economically competitive, even if the outstanding physics problems 

are eventually solved. The various physical processes experienced 
by a plasma in the tokamak are particularly rich and in this thesis 
we address a problem which plagues most modern devices; the . 
disruption. It will become apparent that a thorough understanding 

of this particular instability is required considering both the 
magnitude and violence of its effect. Ihis is especially true at 
the present stage of the world fusion effort, when large and expensive 
machines are just coming into operation.

We shall have cause to refer to two types of disruption which 
have been variously labelled major and minor or hard and soft. A 
certain degree of confusion may result over this terminology which 
is primarily of historical origin. Many experimentalists refer to 
sawtooth relaxation oscillations^ as being minor disruptions or 
'internal' disruptions. So as to avoid any misunderstanding, we 
shall ascribe these oscillations to be 'sawteeth' throughout.
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The major disruption is a sudden, dramatic loss of plasma

confinement, always preceded by a violent burst of magnetic
activity. Such activity is often observed after a lengthy period

of quiescence and is apparently triggered without perceptible
change to the global plasma parameters. The conditions under which
disruptions occur are therefore poorly understood. However,
experiment shows that disruptions repeatedly occur if a current or

2number density threshold is exceeded. This provides a vital clue 
in discovering one of the basic causes of the disruption.

During the disruptive phase, the plasma is lost either to 
the limiter or directly to the wall of the containing vessel.
This causes the plasma current (of order 10^A in the new generation 
of machine) to collapse on a timescale of milli-seconds. The rate 

at which the current falls appears to be constant for a particular 
device.^ The potential for a vast amount of damage to the torus 
and its constituent parts is self evident.

The soft disruption is a less vigorous version of the major 
disruption from which the plasma is able to recover. Often a 
sequence of soft disruptions precedes the terminating major 

disruption.
Figure (1.1) shows an oscillogram of the total plasma current 

during a TFR tokamak discharge. The machine runs in a steady state 
for a lengthy period before the disruption causes the current to 
fall abruptly.

Figure (1.2) shows an expanded view of the current, soft 

X-ray emission from the centre of the plasma and signals from the 
Mirnov oscillation pickup coils prior to the disruption. The Mirnov 
coils measure a component of the perturbed radial magnetic field.
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Fig, (1,1) The current in the TFR tokamak showing 
the collapse at the time of the disruption (scale 
is 20 ms/division).

Total
Current

X - Rays

Magnetic 
Fluctuations 

(m = 2)

Fig, (1,2) Expanded view of the current, X-ray
emission and m=2 Mirnov oscillations up to the 
time of the disruption,
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The X-ray emission is a measure of the axial temperature, which 

undergoes repeated sawtooth relaxation oscillations. The timescale 
for an individual sawtooth is ^ 1 ms, the relaxation time a fraction 
of this. Note that the fall of the temperature precedes the fall 
of the current. It is clear that the first precursor of the 

disruption is the sudden increase in the amplitude of the m = 2 
Mirnov oscillations.

That m = 2 oscillations act as first precursor to the 
disruption appears to be common to all tokamaks but they are not 
the only oscillations present at any time. A whole spectrum of modes 
appears during the disruption itself, indicating that the plasma is 
probably turbulent.

Another characteristic signature of disruptions is the negative 
pulse observed in the toroidal electric field as measured by the loop 
volts. It is likely that the rapid expansion of the plasma column 
forces the inductance to change, thereby producing the voltage spike.
A more dramatic observation is the rise of the toroidal electric field 
close to the minor axis of the device; the amplitude increasing to 

some ten times greater than the quiescent valuew This indicates 
that the current is being strongly inhibited close to the axis, a 
concept which will prove to be of great importance in the following 
work.

We have given a brief account of the effects of disruptions 
and listed the precursors and signatures that usually accompany 
them. The first precursor is always the growth of activity measured 
by the Mirnov coils. Since in tokamaks, m *v- 0(1), the perturbations 

causing the oscillations on the coils are gross structures within 
the plasma. This indicates that the macroscopic theory of magneto­
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hydrodynamics (MHD) is adequate to explain the oscillations.

Since disruptions manifestly affect the plasma interior and 
the precursors may be interpreted as gross perturbations of the 

plasma it is obvious to concentrate upon resistive MHD in the hope 
of shedding light on the basic causes.

For the remainder of this chapter, we shall review the 
theory of resistive MHD in both linear and non-linear regimes before 
seeing, in Chapter II, how this theory has been applied to model 

disruptions in tokamaks.

1.2 INTRODUCTION TO RESISTIVE MHD

The inclusion of a finite but small amount of resistivity 
in the equations of MHD relaxes the constraints imposed upon the 

plasma by Alfven's theorem^ and allows the otherwise 'frozen in' 
magnetic field and fluid to decouple. In such circumstances it is 

possible, depending upon the initial configuration, for the fluid 
to relax to a state of lower magnetic energy. Such a state is 
topologically inaccessible in the ideal case. The release of this 
free energy drives certain instabilities.

There are three main types of resistive instability. The 
first, the g-mode, is the resistive analogue of the classical 
Rayleigh-Taylor interchange instability.^ The driving force of the 
latter is an inverted mass density gradient in a gravitational 
field. The g-mode analogue of this is a large pressure gradient in 
the presence of a magnetic field with strong curvature. The effect 
of the instability is to exchange regions of high pressure with 
regions of low pressure thereby reducing the destabilising force. 
This instability occurs at short wavelengths^ and £S stabilised by
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good field curvature and the effects of shear. It is known that
g

tokamaks are stable to g-modes and therefore require no further 
consideration.

Ihe second, the rippling mode is also interchange in 

character. Ihe instability is driven by a gradient in the 

resistivity profile, along which the fluid is convected. Perturbed 
currents flow preferentially along channels or 'ripples' where 
the conductivity is higher. These currents cross with the zero- 
order magnetic field and generate a motor force which increases the 
convection, hence the instability grows. Like the g-mode, the 
rippling mode is short wavelength^ and normally located near the 

plasma edge where the temperature is low (the threshold for the 
instability to grow is that the temperature T ^ 30 eV^). Since 
the temperature in tokamaks is much greater than the threshold, we 
may discount the rippling mode as a candidate to explain the 
disruption.

The third instability, the tearing mode differs from the 
previous instabilities since it is long wavelength in nature and causes 

a gross deformation to the magnetic field topology. The mode is 
driven by the global properties of the configuration and in particular 
by the presence of a gradient in the zero-order toroidal current 
density. Hence in a tokamak, the potential energy reservoir which 
the instability taps derives from the poloidal magnetic field. The 
instability is able to appear anywhere across the minor axis of the 
device, though the size of the perturbation and precisely where a 

given mode grows depends upon the distribution of the current. 
Therefore, within the context of resistive MHD, the tearing mode is 
the only candidate able to explain the disruption and discussion shall
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henceforth be limited exclusively to this mode.

That the topology of an initial configuration may change due
to the inclusion of resistivity may initially seem puzzling. A
wave equation containing irreversible viscous or resistive terms

has dissipative solutions, the diffusion being most rapid where

spatial gradients are steepest. After sufficient time has elapsed,
the wave like solutions become broadened and smoothed. It may,
at first sight, appear that the only effect resistivity has, is to

cause the magnetic field to decay. This was shown not to be the
9case in a seminal paper on resistive MHD , where the concept of 

magnetic field line reconnection was introduced. A full and 
rigorous analysis of sheet pinch was performed t h e r e a f t e r I t  was 

shown^ that though the field does diffuse across the entire plasma 

cross-section, the diffusion has a dominant effect at only a finite 
number of surface within the plasma. The surfaces are located where 
the helicity of the zero order field matches the wavelength of the 
instability. At these surfaces the plasma is able to move without 
causing the field lines to bend. These surfaces are known as 

resonant surfaces, though the term mode-rational surface is often 
used for reasons which shall become apparent later. At the resonant 
surfaces, the resistive diffusion changing the field, is of 
comparable magnitude to the changes caused by advection. Therefore, 
the field and fluid may decouple, i.e. diffuse with respect to each 
other, thereby altering the topology of the field.

To see quantitatively how this arises, we examine the 
incompressible resistive MHD equations^, which are as follows :

dv
par = j_ A B - Vp + (1 .2 .1 )
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3B
at 7AE

u 1 * 7 A Bo“- —

1J = nj. ■ v A B

V.B = 0

together with

(1 . 2 . 2 )

(1.2.3)

(1.2.4)

(1.2.5)

V.v = 0 . (1.2.6)

p is the mass density which is taken to be constant, v the fluid 
velocity, p the fluid pressure, £ the gravitational force, B̂ the 

magnetic field, E the electric field, the current density and n 
the resistivity of the fluid. The last equation, expressing the 

incompressibility of the fluid is chosen for simplicity and as a 
convenient closure to the set. We could, instead include as 

energy equation, giving the temperature of the fluid as a function 
of space and time, but would then require an equation of state in 
order to obtain closure. The equations of resistive MHD are simply 
the equations of fluid mechanics and electromagnetism joined 
together through Ohms Law (1.2.4).

Combining (1.2.2) and (1.2.3) with (1.2.4) and using (1.2.5) 
gives the well known full induction equation

= V A (v A B) + V*B (1.2.7)
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The first term of the right hand side of (1.2.7) represents 
the coupling of the field to the plasma, the second term gives the 

diffusion of the field. The diffusion has a characteristic 

timescale associated with it

tR - V * * 1

known as the diffusion time. Ideal MHD instabilities have growth 

times characterised by the Alfven speed, as may be seen from (1.2.1),

'A - *'VA

where V* = B 2 /y p. The ratio of these timescales,
A  O O

s - V ta

is traditionally called the magnetic Reynolds' number. Inserting

values of the parameters found in contemporary tokamaks gives 
4 8S ^ 10 - 10 , the latter figure being appropriate to a reactor

plasma. Hence the diffusion time is many orders of magnitude greater 
than the inertial time.

Let us consider a simple case in slab geometry, of a plasma 
embedded in a magnetic field B^. The field is perpendicular to the 
direction across the slab (the y-direction) but varies with y such 
that is has a null at y = 0. Hence = bQy/Lx where L is a suitable
scale length and x a unit vector along the line y = 0, as in Fig.(1.3).



Fig♦(1.3) Magnetic field configuration for
the tearing mode in slab geometry.

Consider perturbations to the magnetic field and velocity 

flow across the slab of the form

ry(x,y,z,t) = ry(y) exp(ikxx + ikyy + -yt)

and insert this into the linearised form of (1.2.7); then

By
d2 B

(k.B )C + -3- (-t-£ - k2 B ) ---o ~ U0Y dy2 y (1 . 2 . 8 )

t
where E - f v dt1 is the fluid displacement and k2 = k 2 + k 2 .J y x z

The second term on the RHS of (1.2.8) is generally of the 
order 1/S times the first and may therefore be neglected, since S 
is large. Note however, when k_ is perpendicular to B^, the first term 
vanishes and the equation becomes purely diffusive. Away from those 
surfaces where k.B =0, the plasma may be thought as being a perfectly
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conducting fluid and the ideal MHD equations can be employed.
However, near the resonant surfaces, diffusion of the field with
respect to the fluid occurs and therefore within a diffusive or
'tearing layer', the full equation (1.2.8) must be solved.

To summarise, we have seen that even though t.. »  t a, the
field diffusion must be included due to the fact that the scalelength
appearing in t _ is different from the scalelength appearing in x .K A
Rather, it is the length over which (k.B )£ £ — V2B .-- o M Y  y

In the next section we estimate the width of the diffusive 
or tearing layer.

1.3 SIZE OF THE TEARING LAYER

In order to obtain a solution to equation (1.2.8), another 

relationship between the linear variables B^ and £ is required. The 
linearised version of the momentum equation (1.2.1) provides such a 
relationship. .

By substituting for fusing Ampere’s Law and then taking the 

curl of the resulting momentum equation in order to eliminate the 
pressure gives

k.B ---o d2 B
dyf  - k*B - B,

(k.B ) ---o
d2 (k.B ) ---o

dy2
(1.3.1)

In obtaining (1.3.1) the density was assumed constant and the 
gravitational force neglected.

Equations (1.2.8) and (1.3.1) are a pair of second order 
differential equations in two unknowns and may therefore be solved,
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subject to a suitable choice of boundary conditions.
Using (1..2.8) and (1.3.1), it is possible to estimate the 

size of the tearhing layer 6, over which the resistive diffusion 
term in (1.2.8) is of comparable magnitude to the ideal MHD term,
i.e.

(k.B )5— —O
d2B

•v jn-----LU Y dy* (1.3.2)

Equating the inertial force with the magnetic force terms in (1.3.1) 

gives another estimate for d* B /dy* :

Y*P
k.B — —o
Uo

(1.3.3)

Combining (1.3.2) and (1.3.3) gives

d. e q - v c
w  ~~™

Putting d^/dy2 ^ 5/6* , expanding (k.B^) about the resonant surface 
so that (k_.Î ) ^ d(k.BQ)6/dy gives on solving for 6,

6 -  f e s v } *---o

where the prime denotes differentiation with respect to y.
Note that the tearing layer width is a function of the growth 

rate y of the instability. In the next section a description of how
y is calculated is given.
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1.4 GROWTH RATE OF THE TEARING MODE

We have seen that outside the tearing layer, the ideal 
equations of MHD are valid so that the governing equations are

(1.2.8) and (1.3.1) with n = 0. Within the layer, resistivity is 
important and so the full versions of (1.2.8) and (1.3.1) must be 
solved.

Hence, inside the layer, the magnetic field is found by 
solving a fourth order differential equation and matching the 

solution at the layer boundary to the solution calculated from the 

second order ideal equation.
The eigenvalue for the growth rate is found by calculating 

from the outer solution, the jump in the logarithmic derivative of 

13̂ across the layer. This is equated to the logarithmic derivative 

of B as calculated from the inner solution.y
Let A' and A '̂  denote the jump of the logarithmic derivative

of By in the outer and inner regions respectively. A'^ is a function 
of y , and so the required eigenvalue is found by solving the 

dispersion equation

A ' = A 1 ̂ (y ) (1.4.1)

Thus, the eigenvalue is affected by the global field structure outside 

the layer.
The growth of a mode will occur if A' >0, marginal stability 

occurs if A' = 0  and linear stability for A' < 0. This result will 
be verified in section 1.6, by consideration of the energy.

For the slab configuration shown in Fig.(1.3), the dispersion 
equation has an analytical^ solution
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T 'V* (A'a)4/5 (ka)2/5 
_ 3/5 2/5
R A

(1.4.2)

Using (1.4.2) to substitute for y into (1.3.4) gives the size of
-2/5the tearing layer. It can be seen that the layer scales with S

2/5or equivalently, with n •
Equation (1.4.2) shows that the inverse linear growth-rate 

is between the resistive and ideal MHD timescales and typically of 

order milliseconds. Hence the linear growth time is a fraction of 
the total discharge time. For this reason it will be necessary to 
see how the growth of the tearing mode changes, once the non-linear 
regime is entered.

Before proceeding however, we shall pause to derive the 
stability equation in a geometry suited to modelling a tokamak.
We have already seen this equation ((1.3.1) evaluated at marginal 
stability) but it is considered a worthy effort to re-derive it 
since it is this form of the equation that will be subsequently used.

1.5 DERIVATION OF THE STABILITY EQUATION IN THE CYLINDER
The tearing mode has been considered only in simple slab 

geometry so far. The geometry plays a crucial role in determining 

both the strength of the instability and its location within the 
plasma. Consideration will be given to the class of tokamak which 

can be approximated by a circular cross-section and small inverse 
aspect ratio e (ratio of the minor radius a to the major radius R 
of the torus). This approximation enables the torus to be modelled 
as a straight but periodic cylinder with coordinates (r,0,z). Here 
r is the radial coordinate, 0 the poloidal angle and z the length
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along the cylinder, with periodicity length 2*R. This approximation 

rules out direct.applicability to machines like JET which has a 
large inverse aspect ratio and D-shaped cross-section, though the 

basic principles still apply.
g

We shall assume standard tokamak ordering throughout. The 

toroidal magnetic field is constant both in space and time. The 
magnitudes of the field components are such that

Bi ^ e Bzo

J denoting perpendicularity to the z-axis, i.e. the (r,0) plane.

Ihe total field may be expressed in the form

Mr,0,z,t) = B^CrjQjZjt) + Bzq z_

Since the divergence of B^ is zero, the field can be derived from a 

stream function, or flux function tj» such that

Br = - H e  (r'e ’z’°

Be “ if

Note that <J» is equivalent to the z-component of the magnetic vector 

potential,

», = z A 74, (1.5.1)
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From Ampere ' s Law :

(1.5.2)

and

Consider an axisymmetric equilibrium state, derived from an 

equilibrium flux function = <|»o (r), to which is added a perturbation 
of the form

<p(r,0,z,t) = $(r)exp(im9 - inC + ft)

where C is the 'toroidal' angle z/R. The perturbed perpendicular 
magnetic field has the form

and the perturbed toroidal current density is

, 1 6 r m2 .
^o^z ” r dr dr * r*~ ̂

Linearising the momentum equation (1.2.1) about the equilibrium, and 
taking the curl to remove the pressure gives an equation for the

vorticity



29

which on projecting into the z-direction gives

p TF (VAv), = - - (B .V)3, (1.5.3).dt — z —1 zo —o Jz

We assume that the flow is incompressible, a reasonable 

assumption on the timescales of interest. This assumption enables 
the velicity to be written in terms of a potential 9

v = z A V9 (1.5.4)

then, the z-component of the vorticity becomes

(VAv) a 7 .s 9 — z T

Assuming that 9 varies like 9 (r,0, z)e^C, (1.5.3) becomes on writing 
out each component explicitly

d j iB
ypv*v = - “df2 , --- r̂a " nĉ  Jz ( 1 . 5 . 5 )

where q(r) = rB /RBQ (r) is the inverse rotational transform or
z o  DO

safety factor. Evaluating (1.5.5) at the point of marginal stability 
gives

Br
dj zo
dr (m - nq)j Jz 0

Now, ¥(r), so on writing j z explicitly in terms of the flux

1 d 
r cTr 0  ^£3 - njdr r

/ujn d Jzo/dr ¥¥ Pe^m-nq) 0 (1.5.6)



30

This is the stability equation from which the amplitude of 
the perturbed radial field = m$/r may be calculated. This 
equation is the cylindrical version of the RHS of (1.3.1). Note 

that (1.5.6) has a singularity whenever q(r) = m/n, i.e. when 
k.E^ = 0 which is the condition for the helicity of the zero-order 
magnetic field to match the wavelength of the perturbed field. It 
is at these surfaces where the fluid and field decouple, and about 

these surfaces that the instability grows.
The safety factor measures the pitch of a field line, so that 

a field line with q = m/n winds n times in the poloidal direction 
for each m transits in the toroidal direction before joining upon 

itself. A surface at which q is an irrational number has a field 
line at that surface which covers the surface densely.

Equation (1.5.6) is valid everywhere, excepting those surfaces 
where the flow is decoupled. At these surfaces, a fourth order 
equation must be solved within the tearing layer in order to resolve 
the singularity.

The solution of (1.5.6) requires solving the equation as a
boundary value problem from the external boundary at r = a inwards

to the singularity at r = rg+6 and from the origin outwards from
r = 0 to r -6. Clearly, B (r ) must be continuous for the solution 8 r s
to be physical. Such a stipulation will, in general, force the

first derivative of B to be discontinuous. Hencer

A' = £im 
6-*o

will in general be non-zero.
The 'driving term’ of (1.5.6) is that involving dj /dr, hencezo

f-r- B (r +5) - i—  B (r -6)] /B (r ) '•dr r s  dr r s J r s (1.5.7)
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A* is determined by the global plasma profiles, away from the 

tearing layer.

1.6 RELATION BETWEEN A' AND ENERGY

It was stated in section 1.2 that the tearing mode draws

energy from that stored in the poloidal magnetic field. In this

section it is shown how A' is related to energy available to drive

the instability by the method used in ref.(12).

Using the energy principle for a low 0-tokamak, the potential 
13energy of the plasma is

rdr

where a is the plasma boundary.

Since the first two terms on the RHS are positive definite, 

only the last term is able to provide a destabilising effect.

Since d^/dr is usually negative, the last term is destabilising if 

q < m/n. Tokamaks generally have q-profiles that increase radially 

with r, so the destabilising region lies within the resonant surface. 

A negative current gradient outside the resonant surface has a 

stabilising effect on the mode.

Writing

enables the energy equation to be cast into the form
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6W
a mdj /dr$ Jzo

B e o ( m - n q )

+

+ 12R o [ r ^ ]
a

o

where square brackets denote the difference of the variable evaluated

at the two limits. Divide the range of integration into two

0 < r < r - 6 and r + 6 < r < a, where r is the resonant surface, s» s s
then

6W = -*2R ,/ { F (ri') - Beo(m-nq) } *rdr +

f  l i d  mdjzo/dr* ) , .
” 1 o / { r dr rdr ** r7^ ” BQo(m-nq) | r +

J r +6

,aRo ^  C r g H 1o dr r +6s

The integral appearing in the first two terms of 6W is 

precisely the stability equation (1.5.6), which is identically zero 

for tearing mode eigenfunctions <p, hence the energy reduces to

aw = ,.R# Ir&l*'6 ♦  [ r g u *
o r -6s

Let us assume a perfectly conducting wall placed at the

plasma boundary r = a, then <J>(a) = 0 and

6W i (r +6)$(r +6) ^  (r +6) - s s dr s (r -6)(p(r -6) (r -6) s s dr s
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So,

£im 6W 
6-0

«*R r $̂ [r )4'O S  8 (1.6.1)

For the potential energy to decrease, A' > 0 which again gives

the condition for instability. The contribution to the energy from

the inner range of integrations [r -e, r +e] is negligible fors s
12antisymmetric displacement £ which characterise the tearing mode.

In ref.(8 ), the effect of removing a conducting wall at r - a 

is illustrated. The perturbed flux <J»(a) is no longer zero and the 
solution must be matched on to a vacuum solution for $. The removal 
of the wall allows surface tearing modes, which are the resistive 
analogue of ideal kink modes driven by a large value of A' at the 
plasma surface. The wall on plasma case is therefore more stable 
than if the wall is removed from the plasma edge.

In this section, we have seen from energy considerations, 
that the tearing mode will be unstable, provided the criterion 
A' > 0 is satisfied. So far, consideration has been given to states 
of marginal stability. Having discovered what determines the linear 
marginal stability properties, we proceed to investigate how the 

tearing mode behaves in the non-linear regime.

1.7 NON-LINEAR BEHAVIOUR OF THE TEARING MODE
We have established that tearing modes grow as a consequence

of the plasma lowering its magnetic potential energy. This is
achieved by the field altering its topology about the resonant surface
where q(r ) = m/n. The topology change manifests itself by the s
formation of magnetic islands. Islands are regions within the plasma 
having a separate magnetic axis from the axisymmetric component of
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the field.

Consider a uniform poloidal field B_(r) to which is addedC7
a perturbed radial field Br (r)cos(m9+n5). The perturbed field 
is the solution to equation (1.5.6). Figure (1.4) shows the 
magnetic surfaces before and after the radial field perturbation 

has been applied; the helicity of the mode m/n a 2/1. The m a 2 

islands are clearly visible and the 'torn' state has three distinct 
magnetic axes.

The magnetic islands cover an appreciable fraction of the 

minor radius and therefore significantly perturb the system. It 
is the aim of non-linear theory to calculate the perturbation and 
see how the subsequent growth of the island changes.

In section 1.5, the stability equation for the tearing mode 
was derived by consideration of the linearised vorticity equation.
In deriving this equation, the inertia in the outer region was 
neglected. At first sight this could appear to be a rather drastic 
measure, however we shall see that once the size of a magnetic island 
exceeds the tearing layer width, the inertia is indeed negligible.

The approximations used are the same as in section 1*5; these 
approximations allow the magnetic and velocity fields to be derived 
in terms of flux and stream functions respectively. Integration of 
Faraday's Law, and the subsequent projection into the z-direction 
gives

+ (ttpAV40.£ = nj - S- - e °t — z °z zo (1.7.1)

where the gauge potential X can be identified with the velocity 

stream function The constant of integration E is the toroidal
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Fig. (1.4) Helical magnetic flux function showing the
change in topology due to tearing modes.
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electric field, which maintains the initial resistive equilibrium 

in the absence of a perturbation to 4>, i.e. Ezq = rjjZQ» where

Taking the curl of the momentum equation and projecting 

into the z-direction gives the vorticity equation,

a V*>p — + p(V<pAW/<p).z = (V*AVjz).z (1.7.2)

The linear terms on the RHS of (1.7.2) reduce to the stability 
equation (1.5.6). The full term on the RHS of (1.7.2) represents the 
non-linear destabilising torque on the plasma.

Equations (1.7.1) and (1.7.2), together with Ampere’s Law

(1.5.2),

(1.7.3)

form the basis of Rutherford's analysis of the non-linear tearing
. 15mode.

The crux of Rutherford's analysis is in calculating the 

quasi-linear change in the current due to the presence of an island 

of finite width W. The quasi-linear toroidal currents cross with 

the radial perturbation magnetic field (which cause the island to 

grow in the first place). The resulting motor force opposes the 

vortex flow of plasma within the island, making the effect of inertia 

negligible. The exponential growth of the linear phase (which is a 

function of the MHD timescale -i ) is halted. Subsequent algebraic 

growth occurs on the slower resistive timescale.

We shall now give a simple derivation for the condition that
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the non-linear jAB force be of comparable magnitude with the 

inertial force within the tearing layer.
We shall assume a simple sheet pinch configuration, as in 

section 1 .2 , though the analysis is similar for cylindrical 
geometry.^ A sheared equilibrium field has the structure »
B^'y near the singularity at y = 0. For a perfectly conducting and 
incompressible plasma, the area within a surface of constant flux 

^  i Bx 'y is invariant. The addition of a perturbation to the 
flux gives a total flux <|> where

4»(x,y,t) = 4'0 (y) + $(y,t)coskx,

the perturbed velocity stream function is

q>(x,y,t) = $(y,t)sinkx

The perturbed magnetic flux gives rise to a x-independent component 
of the current 6jzQ within the tearing layer.^ Hence, the current 
is given by

j(x,y,t) = J2Q(y) + j(y,t)coskx + 6jzo

where the second order zero-harmonic of the current 61 is calculatedzo
from the second-order zero-harmonic of eqn(1.7.1)

364,
i ° + (Vq>AV$).z = r|6j (1.7.4)
O L ™  ZO

Within the tearing layer of width 6 , the characteristic resistive time
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L 2/5Xr  ̂  6*/n. From section 1.4, the layer width scales with q and

hence

L -1/5xR ^ n
•n;

Contrasting xLR with the linear growth time y -3/5 we see that

- 1Y » xLR

Hence, the current distribution resistively relaxes within a linear 
growth time; consequently the term 36<|»o /9t in (1.7.1) can be neglected

so that :

n<5 jzo = <(V$a V$).z> (1.7.5)

where

Zx /k
<f>

5  /  ^
f dx

Inserting 9 and $ into (1.7.5) gives :

n6jzo = (1.7.6)

Substituting (1.7.6) in (1.7.3) and approximating V^ 2 « d2 /dy2 , we 

obtain

■ >&<£*> -
dd*

k(d T  3
_ -d^ZO.

z ” ^ dy
d6 j

*
zo

dy (1.7.7)
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or klL2) 2n ;
dtp

k(d f  3, - ^
djzo. 
dy (1.7.7)

Now, assuming that the island width w  (w= 4($/Bo ')^) is of comparable 
size with the tearing layer width 6 , we can proceed to estimate the 

terms on the LHS of (1.7.7). So,

W  'v 6

B ~ ^ Ypn
k 2Bo

7T

i.e. that

TP * kfJL
n

Hence, when the island is of the same size as the tearing layer width, 

the quasi-linear current 6jzo gives rise to a force of comparable 

magnitude to the inertia. The tearing instability therefore changes 

its character at a small amplitude W'V' 6. Rutherford calculates that 

for islands with width w^. 6, the growth of the perturbed flux scales 

with (t/x ) i.e. the growth is algebraic rather than the exponential 

growth of the linear regime. Specifically, the non-linear growth of 

an island is given b y ^

3w
at

1 .6 6  n(r )
S (1.7.8)

where n is evaluated at the resonant surface r , and t is measured ins’
units of Thus a magnetic island grows linearly with time in the
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non-linear regime.
The work of Rutherford was extended in ref. (16). By 

considering the self-consistent change in the resistivity due to 
the island, the equation for island growth becomes

3v
at

1 .6 6  q(r )
--------—  (A'(w) - aW) (1.7.9)

Here, A' is written explicitly as a function of W, i.e.

A ' (v) = ( ^  (r + iw) - (r - iw))/$(r )ay s ay s s

The island will attain its saturation width when

A ' (w) = a W

In practice, a is small and so the approximation

A ’ (w) = 0

is usually sufficiently accurate to calculate the saturation width.
The main stabilising effect of the non-linear tearing mode 

arises from the decrease in A' with growing island width. This 
represents the decrease in the free magnetic energy which drives 
the instability. For typical current profiles, the saturation width 
is attained in a fraction of the resistive time.^ After saturation, 
the evolution adiabatically follows the changing current profile.
As the current profile alters (for whatever reason one chooses), the 

value of A' will change, and consequently W will change in order to
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maintain A'Cw) ~ 0. Therefore the non-linear evolution of the 
tearing mode is a sequence of equilibrium states characterised by 

a diffusive growth (or decay) of magnetic islands.

1.8 SUMMARY
In this chapter, the experimental effects of disruptions 

together with the signatures associated with them, have been briefly 

described. The experimental evidence supports the view that 

disruptions occur as a consequence of MHD activity.
A brief introduction to resistive MHD has been given and we 

have found that the tearing mode is unstable to sheared equilibrium 

field structures, such as those found in tokamaks. The linear 
growth of the tearing mode occurs on a timescale between the 

resistive and ideal MHD times, but is short compared with the 
overall duration of a typical experiment. For this reason it is 
necessary to consider the behaviour of the tearing mode once the 
non-linear regime has been entered.

The non-linear evolution of the mode is radically different 
from the linear growth phase, the growth being algebraic rather 
than exponential in time. A mode will reach its saturated amplitude 
in a fraction of the resistive time, and thereafter the evolution 
will be characterised by a resistive decay, or growth, of magnetic 

islands.
In the next chapter we shall see how the ideas described in 

this chapter, have been applied to model disruptions in the tokamak.



CHAPTER II

2.1 INTRODUCTION

We have considered the resistive tearing mode in the linear
and non-linear regimes. In this chapter we shall see how this
theory has been extended and applied to explaining disruptions.

An extension to the theory is required since, as was stated in
section 1.7, the non-linear tearing mode is self-stabilising for
a wide class of conditions. Much of the work done in this area
had been directed to finding conditions for which the growth of
tearing modes is destabilising.

We shall describe two theories which purport to explain
disruptions as a consequence of tearing mode activity. This

17 18 19does not exhaust all the currently available models ’ ’ , one
of which (Ref.19) does not resort to an MHD description at all!
The model described in Ref.17 is, however, a variation on the 
'Oak-Ridge Model', which is currently favoured by the plasma 

physics community as being the most likely model for the disruption. 
We shall describe the Oak-Ridge model in section 2.2, and then 

progress to describe the 'catastrophe' model of Wesson et al in 
section 2.3. In section 2.4 we conclude the chapter with a critical 
review of both models. In particular, certain details of the Oak- 
Ridge model appear to be at variance with physical intuition. We 

list three (what we consider to be) major criticisms of the model 
and it is the resolution of these criticisms that forms the bulk of

the work in this thesis.
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2.2 DISRUPTIONS CAUSED BY THE NON-LINEAR INTERACTION OF TEARING 

MODES OF DIFFERENT HELICITY ; THE OAK-RIDGE MODEL

In this section, we describe the currently held consensus 
view of the cause of tokamak disruptions, the Oak-Ridge Model.

The theory outlined in the previous chapter described the 

consequences of the non-linear growth of a single tearing mode. In 
general, a plasma can be unstable to more than one tearing mode at 

any time. Magnetic islands of different helicity (pitch) will 

grow about their respective resonant surfaces. If the surfaces are 

close or if the islands are large, the islands will be able to 
overlap each other. Magnetic flux surfaces are destroyed in the 
overlap region and hence field lines can wander stochastically or 
ergodically within a volume. This provides an efficient thermal 
short circuit across the minor radius of the plasma, connecting the 
hot core with the cold exterior. There then follows an energy 
quench, i.e. a disruption.

The model is inferred from numerically solving the reduced 
14MHD equations. The geometry is cylindrical and therefore applicable 

to small inverse aspect ratio (e = a/RQ«  1) tokamaks, with standard
gtokamak ordering. The reduced formalism is particularly suited to 

modelling tokamaks by virtue of the strength of the toroidal 

component of magnetic field (Bzq ^ eBu ). The consequence of this is 
that the fastest timescale within the full set of MHD equations does 
not occur within the reduced set. The fastest timescale within the 
reduced formalism is the 'slow' Alfven time, the time for Alfven 
waves to propagate in the toroidal direction, along the magnetic 
field lines. Since the fastest characteristic time is longer for the 
reduced equations than for the full set, the reduced equations afford
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20

an easier numerical solution.
Originally, the reduced equations were solved in helical

geometry, suitable for modelling a single helicity perturbation
The results of these calculations verified Rutherford's theory;

clearly illustrating that a magnetic island grew linearly in time,
attaining its saturation width when A'(W) = 0 .

A larger computer code, RS3, was able to solve the reduced
equations in 3-D, thereby affording the possibility for studying

21the interaction of modes with different helicity. The results

were radically different from the single helicity calculations; the
conclusion being that the m » 2 , n = 1  tearing mode non-linearly
destablisied the m = 3, n » 2 mode, thereby initiating a cascade to
other modes. The work in this area culminated in the development

22and use of a sophisticated 3-D spectral computer code RSF. This
was capable of solving the reduced equations at very large values of

6 23S 10 ), the magnetic Reynolds number. The results obtained
23 21with RSF were similar to those obtained with RS3 , although the

22computational efficiency and accuracy was claimed to be much 

improved.
The reduced MHD equations, when cast into a dimensionless

* 2 1 form, are :

dt
09
dz C2 .2 .1 )

dU
dt S2 (VYAVj^.z (2.2.1)

= (e z s^V V + z) B— — zoB (2.2.3)
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j = V *  V (2.2.4)
Z 1

v, - V*Az (2.2.5)

u - 7aa« (2 .2 .6 )

where the radial length is normalised to the minor radius a, q to its 

value on axis (q(o) = 1 ), time to the resistive diffusion time rD , 

a*u /n, V to a* B , ® to a2B /x , j to B /<uR ) and v to a/x .
O ZO ZO K  Z ZO O O *  K

The toroidal Alfven time t . is R (|i p)^/B and S =A o o zo R A
Equations (2.2.1) - (2.2.6) are similar to the equations of 

section 1.5 and section 1.7. Equation (2.2.1) is derived by 
integrating the combined Faraday's and Ohm's Laws (1.2.2) and (1.2.4) 
and projecting the equation into the z-direction. Equation (2.2.2) 
is the curl of the momentum equation, projected into the z-direction 

where the assumption of constant density is used. The form of the 
magnetic field (2.2.3) is a result of tokamak ordering and div B^ =
0. Equation (2.2.4) is Ampere's Law and (2.2.5) a consequence of 
incompressible flow. Equation (2.2.6) expresses the vorticity u in 
terms of the stream function #. As usual, the convective derivative

_d_
dt

a
at + v.7

The reduced equations possess non-trivial, velocity free 

solutions so that initially

$(r, 0, z,t = 0) 0
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can be assumed without loss of generality.
_ The field and velocity potentials are expanded in terms of 

a Fourier series in the angle-like variables 0 and C * z /Rq :

Y(r,0 ,C,t) = ^  ̂ (r,t)cos(mQ + nC) 
mn '

and

#(r,0,C,t) = 7 <p (r,t)sin(m9 + nC)Z—  ̂ mn mn

The equilibrium, axisymmetric component of the flux is determined 

from the initial current distribution, or alternatively by defining 

the q-profile, then :

1

*
r

and the initial q-profile is parametrised by

q(r )  = q(o) ( l  + -  D r * X] 1A (2 .2 .7 )

where q(o) is the value of q on axis, q(l) the value at the wall and 

X a shaping parameter. The larger X, the flatter the current becomes 

close to the axis.

The resistivity is a specified function of space which does 

not evolve in time :

n(r) = EW /j (r, t = 0 ) zo J z

oo (r,t = 0)
f  r'dr 1 

“ J  q(r')
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This choice of resistivity profile ensures that, in the absence of 

tearing mode activity, the flux is constant in time.
22The reduced equations are numerically advanced in time , 

subject to the boundary conditions

= o

and

V ' w . o  -

consistent with an impervious and perfectly conducting boundary at 

r = 1. Both potentials are regular at the origin.
The calculation is initiated by choosing an equilibrium 

profile unstable to the m/n = 2/1 and m/n = 3/2 tearing modes. The 
system is perturbed and magnetic islands subsequently grow about 
their respective resonant surfaces. Figure (2.1) shows the 2/1,
3/2 and 5/3 islands as functions of time, plotted at their respective 
positions within the plasma.

Initially the islands grow as for single-helicity calculations, 
the growth being entrenched in the Rutherford regime. When the 
islands overlap, the growth of the islands rapidly increases. The
timescale for the evolution is no longer characterised by t ,̂ but

- 1  23by where y ^  is the growth-rate of the 2/1 mode. This
scaling is apparently independent of S.

The destabilisation results from the non-linear interaction as 
can be seen from Fig.(2.2) which shows the growth-rate for a non­
linearly coupled and a single helicity calculation. Clearly no peak
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occurs in when it is the only mode present.

Fig. (2,1) Time evolution of magnetic islands. Note the 
increased growth when the 3/2 island touches the 2/1. (Taken 
from Phys. Fluids, 23, 1811, (1980)).

Fig.(2.2) Growth rates of the 2/1, 3/2 and 5/3 modes for 
coupled and uncoupled systems. The behaviour is independent 
of S. (Taken from Phys. Fluids, £2, 896, (1979)).



49

During the overlap phase, many modes of different helicity 
are non-linearly generated; the origin of these modes being the 

quadratic terms in (2.2.1) and (2.2.2). The presenceof these 
modes destroys the flux surfaces in the overlap region, causing 

the magnetic field to become ergodic. Figure (2.3) shows the 
intersection of a single field line with the poloidal plane at the 
times marked by arrows in fig. (2 .1 ). Ihe field at time 2.06 x 10 /

Tĵ  is ergodic within the overlap region suggesting that the core is 
connected to the outer regions.

One of the most remarkable features of the calculation is the 

behaviour of the toroidal current density at the time of island 

overlap. The current profile is severely distorted by the islands 
and exhibits finescale filaments as may be seen in fig.(2.4).

It is assumed by Oak-Ridge that the gross distortion of the 
current density, together with •*> 45% of the minor radius being 

threaded with ergodic lines are conditions similar to those 
experienced by a plasma during a disruption; ergo the results describe 
a disruption.

To summarise, the main feature of the model is the non-linear
ldestabilisation of the 3/2 tearing mode by the 2/1. This interaction 

initiates a cascade to higher mode numbers m and n. The islands 

associated with these modes destroy the nested flux surfaces, and 
severely distort the toroidal current profile, thereby providing 
a thermal short circuit across the plasma minor radius. It is then 
assumed that the energy of the plasma would quench, hence a 

disruption.
The calculations performed with S = 10^ (ref.21) showed 

similar behaviour as those performed with S = 10^ (ref.22). Furthermore
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Fig.(2.3) Intersection of a single magnetic field line with 
the poloidal plane £ = 0. (Taken from Phys. Fluids, 23, 1811, 
(1980)).
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r/a

Fig.(2.4) Toroidal current density illustrating the finescale 
current filamentation caused by the non-linearly generated 
modes. (Taken from Phys. Fluids, 23, 1811, (1980)).
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calculations where the resistivity was self-consistently evolved 

by virtue of solving an energy equation were no different from 
those where n = n(r) only. *

2.3 DISRUPTIONS CAUSED BY THE CATASTROPHIC GROWTH OF A SINGLE 
MODE : THE CATASTROPHE MODEL
The model described in this section has yet to become fully 

accepted by the community at large and its detailed exposition has 

yet to appear in the literature. For this reason, we shall discuss 
the model in greater detail than was the case for the Oak-Ridge 
model.

The model attempts to explain why a disruption occurs without 
perceptible change to the pre-existing conditions in the plasma 

rather than the fine details of how it proceeds. Strictly speaking, 
the catastrophe model and the Oak-Ridge model are not at variance 
since they are describing different aspects of the disruption.

In ref. (24), the magneto-static equations were solved in
g

helical geometry, using standard tokamak ordering. It was found
that the equations admit no equilibrium solutions once a critical
value of current was exceeded. In particular, by removing the
conducting wall from the plasma edge, the width of the m = 2 island
grew to large amplitude as q(l) approached 2 .

Further calculations were made in which the plasma profiles
were self-consistently obtained, i.e. the evolution was time 

25dependent. Explicit throughout the model is the assumption that 
the system evolves at the resistive timescale. Once a state with 

a saturated magnetic island is attained, subsequent evolution will 
occur only in response to a change in the plasma profiles. Hence
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the state of the plasma evolves through a series of diffuse 

equilibrium states- The evolution continues until a state is 

reached which is no longer arbitrarily close to a neighbouring 

equilibrium. A catastrophe occurs, characterised by rapid 

evolution of the profiles, which change in response to the explosive 

growth in the width of a single island (the ra = 2). If this island 

can connect with the limiter and with an m = 1 island at the plasma 

core, thermal connection is made across the entire minor radius and 

hence confinement is lost.

The philosophy behind the model is to understand the parametric 

variation of the plasma behaviour rather than achieving completeness. 

For this reason, the model is particularly simple and 1-dimensional. 

The instabilities in the plasma affect the transport and in turn 

the transport affects the instabilities. The model calculates the 

interaction of transport and instability by solving the following 

set of equations : ■

(2.3.1)

(2.3.2)

Ez(r,t) = n(T(r,t))j z(r,t) (2.3.3)

(2.3.4)

which are Faraday's Law, Ampere's Law, Ohm's Law and a simple energy 

equation. Note that Ohm's Law neglects fluid flow. This approximation
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is questionable during the actual disruptive phase when the 

current is falling and when the effects of plasma inertia are 

likely to be important. The model is therefore unable to accurately 

describe the detailed dynamical interactions occurring during the 

turbulent phase of the disruption. The resistivity

n = a /T3 2̂ + n-i s 1

where a is the Spitzer constant (a = 2.8 x 10 when T is measured s s
in keV) and the effective impedance due to the presence of the 

m = 1 instability.
26The m =1 mode is unstable when q(o) < 1. Stability is

restored whenever modification of the current density on axis causes
2 7 26q(o) >1 .  A simple description of this process is given by

assuming the poloidal flux before the instability,

0i
zo
R 1 / 1 . ( 1 . 1 )(JL)')yq(o; qCo; r^ /

is transformed by the instability to

0f
B r zo
R H r o r - ‘ )<sfr>')

where r^ is the radius of the q = 1 surface. Assuming the field 

redistributes in a time t ,

3E
(Bef - V /r = - T T -

effwhere E is the effective electric field caused by the enhanced
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resistivity :

J  r  r  3 H1 1eff

 ̂ 2
Assuming that = 0 for r2 > y r^ ,

Hi J
B r, zo 1

lJz " 3R

Averaging over the sawtooth time t yields

= A (1 - q(o)) {1 - for r2 <

where A is chosen to keep q(o) sufficiently close to unity. This 
simple model of the m = 1  instability has the effect of flattening 
the current profile in the region where q = 1. Since q(o) is 
maintained at a value close to 1 , the current will be restricted on 

axis.
The thermal conductivity in the energy equation (2.3.4) is 

assumed to have a constant background value except in the regions 

of instability where

k * k + xT ( 1 - (2x/w)2) o i

where x is the distance from the magnetic island centre, w the width 

of the island and »  kq. Hence the temperature profile is 
flattened across the island region, consistent with the assumption 
that magnetic field lines are isothermal.
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difference scheme. A new value of the current is calculated from
(2.2.3) and used in the stability equation

The combination of (2.3.1), (2.3.2) and (2.3.3) gives a

parabolic equation for B_(r,t) which is solved by a fully implicitU

1  d_ 
r Qr

9tji 2t mn< m .(r-=— ) ---ror r mn
m Bj^/Sr 4> 

BQ (m-nq)
mn 0 (2.3.5)

which is solved to calculate the perturbed field 4»̂ ̂  for each mode 
individually. Hence, a non-linear A', denoted by A* can be calculated

A* d£a ^mn
rs 3r

r +£ws

r -iw8

which is used to calculate the island growth rate

3wmn
3t 1 .6 6  n(r ) s

A*(w ) mn
p r o s

(2.3.6).

A* differs from the previously described A ' for two reasons :

a) The position at which 4* * Is calculated is at the island 
separatrix rather than in the limit as w — 0.

b) The driving term (the third term of (2.3.5)) implicitly contains 
the effects that all the other unstable modes have on the 
axisymmetric profiles.

So,

J (w)
m 3jz/3r 
B0 (m-nq)
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and transport have on the j and B profiles.z 0
It was stated in section 1.7 that A' was a decreasing function 

of w. In ref.(28) it was shown that the form of A* is different 

from that of A ’, as can be seen by comparing figures (2.5) and (2.6).

is a function of w by virtue of the effect that the instability

Fig.(2.5) &'(w) vw. As an island grows, A*(w) decreases
u n t i l  (w  J = 0 ,  g i v in g  t h e  s a t u r a t e d  i s l a n d  w id th  w .s s

Figure (2.6) shows that A * ( w )  = 0 has two solutions, w^ and 
We shall see how the solutions of a simple analytic model for the form 
of A* gives the catastrophic growth of a single mode as the plasma
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Fig.(2. 6) A*(w) vw. Two saturated island widths exist
w^ and w^.

Suppose, for the purpose of illustration

A*(w) = (w-w^Hw-*^)

Equation (2.3.6) becomes

1_ Qw
A at (w - B)2 - C2 (2.3.6)
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where

A = 1.66n/u ro s

B = i(w^ + W£)
and

C = - w^)

We have neglected the aw term in Rutherford's equation for island 

growth since a is small. Assuming that n = constant gives the 
simple solution

w(t) ±(w1 +W2 ) + i^-w^) ( 1 + 8  exp yt) 
( 1 - 8  exp Yt) (2.3.7)

where

8
(w - w, )O____L
(wo - V  ’ T

1.66n
U r o s

and w = w(t = o). o

Assume that w < w. < w„, then 8 > 1 and (2.3.7) is bounded o 1 2*
above by w^V yt > 0. Hence,

£im w(t) = w^ 
yt-®

Consider now the case w. < w < w_ for which 8 < 0 and (2.3.7) is1 o 2
bounded by w^ V  yt > 0. Hence,
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£im w(t) = w^ 
yt-®

The final case to consider is w. < w0 < w for which o < 3 < 1l / o
and (2.3.7) is unbounded, the island attains an infinite width in 

a finite time, the time being

t =

Ihe evolution of the island in each of the three regimes is illustrated 
in fig. (2.7) clearly the state with ŵ. is a stable equilibrium, 

whilst is unstable.
Now suppose that the global plasma conditions are slowly 

altered, causing the curve A*(w) to move in the direction of increasing 
A*. The stable solution w^ will migrate towards the right in the 
diagram (2.6) and the unstable solution will migrate to the left.
When A*(w) touches the w-axis, the nature of the solution w(t) changes. 
Let

A*(w) = (w - w )2 + e2 (2.3.8)c

as illustrated in Fig.(2.8); w^ is the critical island width and e a 
small parameter.

For the form of A*(w) given by (2.3.8), the solution of (2.3.6) 

is

w(t) = w + ( e  tan vt - w )/(l + w /e tan yt) c c c

Hence for e > 0, w(t) is unbounded. Indeed, the growth is explosive in 
the sense that the island width becomes infinite in a finite time, the
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Fig,(2. 7) Magnetic island width 
for a non-disruptive case.

Fig.(2.8) A*(w) v w for a disruptive
case.
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time being

tD — {* - tan  ̂e /w } y c

The island width as a function of time is shown in Fig.(2.9).

Fig. (2.9) Island width as a function time resulting 
from the form of A* shown in Fig.(2.8).
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The transition from the form of A* shown in Fig.(2.6) to 
that in Fig.(2.8) forces the nature of the solution of (2.3.6) to 
change. The form of A* allows the island to grow without bound; 
the subsequent interaction of the island with the profile and the 
constraints imposed on the plasma will govern precisely how the 
disruption will proceed. Typical constraints could be the 

restriction of the current on axis and a cold limiter at the plasma 

edge.

What the catastrophe model does not explain is how the 
disruption will proceed once triggered. What it does explain is 

why a small magnetic island can grow explosively after a lengthy 
period of quiescence. In this sense, it is able to describe why the 
m = 2 Mirnov oscillations undergo the transition from small to large 

amplitude as depicted in Fig.(1.2).

2.4 DISCUSSION
In sections 2.2 and 2.3, two models for disruptions were 

presented. In this section we discuss and criticise the models.
The catastrophe model shows how disruptions can occur 

without perceptible change to the global conditions within the plasma 
whilst the Oak-Ridge model describes the detailed dynamics of the 
disruption. Therefore the Oak-Ridge model does not describe why 
disruptions occur, but rather how they occur.

On one issue the two models are in conflict. Oak-Ridge demand 
that two tearing modes of different helicity be present in order 
to initiate a cascade to higher modes and thereby cause the field 
to become ergodic. The catastrophe model requires only one mode to 
be unstable, and a means of restricting (by sawtoothing) the amount
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of current able to flow on axis. These conditions appear to be 

sufficient to cause A*(w) to be concave upwards . The catastrophe 
model does not exclude the existence of modes other than the m = 2, 

rather it claims that the presence of other modes is not crucial 
in causing the disruption.

One of the most striking features of the Oak Ridge calculations
23is the finescale filaments on the current profile. It is claimed 

that the filaments are not of numerical origin and tests have been 

performed using a different timestep and size of radial mesh. Each 
filament can be resolved over several mesh points, showing no 
evidence of the 'plus-minus' oscillations that characterise numerical 
instability.

From Fig.(2.3), it is clear that the filaments initially appear 
-3 -3at time t ~ 1.6 x 10 t^. At time t ~ 2.06 x 10 when the

magnetic field is entirely ergodic within the overlap region, a 
typical current filament has grown such that Aj/j ^ 1.6. The spatial 
extent of a typical filament ^ l/22a. Hence, estimating the time 

Tp in which such a filament would resistively diffuse

^ (nk2)'1 ~ (22a)2/S 'v- 0.48 x 10-3 t_D • K

Note that is almost the same time as that for the growth of the
-3 -3filament, t  ^ (2.06-1.6) x  10 t  «  0.46 x  10 rD. Therefore we

g  K  K

c o u l d  e x p e c t  t h e  f i l a m e n t  t o  d e c a y  i n  t h e  s a m e  t i m e  a s  i t  g r e w ,

assuming that the driving mechanism saturated at a finite amplitude
after a finite time. Hence, if the calculation were to proceed for
a similar length of time, the filaments could decay and the profile
become smoothed. Assuming that the structures are not numerical in
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Fig.(2.10) Expanded region showing the finescale 
current density oscillations.
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Unfortunately this hypothesis has not been tested by the Oak-Ridge
group because RSF encounters numerical difficulties during the

29island overlap phase.

It is not seriously doubted that overlapping magnetic islands
destroy the flux surfaces within the overlap region, however, the
fraction of the minor radius over which the field must be ergodic
in order to cause a disruption is a moot point.

The Oak-Ridge calculations suggest that 'v* 457. of the minor

radius covered with ergodic field is sufficient to cause the disruption.
The catastrophe model has connection of the m = 1 and m = 2 islands
across the entire minor radius, hence causing the central temperature
to collapse. The temperature dependent calculations performed by 

23Oak-Ridge , exhibit no such collapse of temperature on axis, indeed 

the flux surfaces within the central core (containing ^ 707. of the 
total thermal energy) remain intact.

In section 1.6, it was stated that a perfectly conducting wall 

on the plasma suppresses the growth of islands in the outer regions.
All the Oak-Ridge calculations have been performed with a conducting 

wall boundary condition <p(l,6 ,€,t) = 0. It is considered more 
realistic if the conducting wall were moved from the plasma edge, as 
in experiment.

We consider there to be three basic criticisms of the Oak-Ridge
model :

origin, this argument suggests that filaments could be transient.

1 ) the possible trans ience of the current filaments
2 ) the necessary degree of ergodic field line cover to 

constitute a disruption
3) the effect on stability of removing the conducting
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wall from the plasma edge.

We shall examine each of these questions in subsequent chapters.

The catastrophe model requires two conditions appertaining 
to the nature of A*, in order to cause a disruption :

1) A* should be concave upwards
2) A*(w) s* 0 has no solutions for real, positive values 

of w.

28Numerical calculations have vindicated both conjectures for all 
cases that have disrupted. Until a formal (analytical) proof is 
found, the model remains necessarily heuristic in nature.



CHAPTER III

3.1 INTRODUCTION

In this chapter we investigate two of the questions 
criticising the Oak-Ridge model in section 2.4. Specifically we 

shall examine points ) and 3) in that discussion.
These points will be examined using the catastrophe model 

equations of section 2.3, thereby providing an independent test of 
the Oak-Ridge results. The results we present in this chapter will 

therefore be for a plasma where the effects of direct mode-coupling 

have been eliminated. The calculations should not be confused with 

the single-helicity calculations described in ref.(20) which have 

been compared with the directly coupled interaction results of 

ref.(23) (see Fig.(2.2)). Though the catastrophe model excludes 

direct coupling effects, a mode is able to interact with another via 

the deformation to the axisymmetric profiles. We shall therefore 

refer to the catastrophe interaction mechanism to be quasi-linear and 

the Oak-Ridge mechanism to be non-linear in order to differentiate 

between the two.

We show that many of the features ascribed to non-linear 

interaction are equally well explained by the quasi-linear interaction. 

Indeed we are able to retrieve most of the Oak-Ridge results barring 

one important feature; the quasi-linear calculations show none of the 

characteristic disruption signatures.
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3.2 QUASI-LINEAR CALCULATION OF THE OAK-RIDGE DISRUPTION CASE
The calculation is initialised from a resistive equilibrium

with q-profile parametrised according to (2.2.7) with q(0) = 1.34,

q(l) = 4.2 and X = 3.24. The q and current profiles are illustrated
in Fig.(3.1). This profile is rather special since it is chosen by

Oak-Ridge to be linearly unstable to both the 2/1 and 3/2 instabilities.

Also, the resonant surfaces are close to each other, so the magnetic
islands overlap after a short period of time has elapsed. Finally

the current profile is flat close to the axis, even though q(0 ) > 1 .
The steep current gradient at the resonant surfaces implies that the
free energy associated with the profile will be rapidly shed by the

vigorous growth of magnetic islands.
The choice of such a profile is justified by fitting to an

experimentally inferred profile in the PDX tokamak, prior to a 
23disruption. This does not imply that the particular profile is a 

necessary prerequisite for a disruption to ensue. Indeed, the 
evolution to a given profile is a function of the plasma current, 
transport and the degree of previous tearing mode activity. It is 
possible that the instability and transport processes required to 
evolve to the profile are untypical of usual plasma behaviour, and 
therefore the profile is pathological!

30The calculation is performed using the TRINIO* computer code ,

which solves the equations of section 2.3. The values used for the
31various constants are typical of the DITE tokamak and are listed 

below.

* TRansport and INstability Interaction in One dimension
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Fig.(3.1) Equilibrium current and safety-factor profiles 
used to initialise the calculation.
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B 1.34 Tzo
a 0.26 m

Ro 1.17 m
n i ml? -3 3 x 10 m

Ko
7 .n19 -1 -1 7 x 10 m s

Kl
7 in 2 1 - 1  - 1  7 x 10 m s

T(a) 10 eV

The initial resistivity profile satisfies n(r) = const./j^Cr) 
and the initial temperature profile is calculated from

— —  i 2t3/2 J
d , dTx -j— (r̂ — ) dr dr 0

The boundary conditions used throughout the calculation are :

Bg(r=0,t) = 0 , BQ(r=a,t) = const. (3.2.1)

§(R=0,t) = o, T(r=a,t) = const. (3.2.2)

f(r=0 ,t) = 0 (3.2.3)

The condition Bg(:r=a,t) = const, implies that the total plasma current

is constant. The boundary conditions on the perturbed flux (radial

component of magnetic field) are

+mn(raa*t) = 0 (3.2.4)
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and

4> (r,t) = const. rm~^, m > l  (3.2.5)r-U mn

Boundary condition (3.2.A) implies a conducting wall on the plasma 

boundary, (3.2.5) is a consequence of the regularity of 4* at the 
magnetic axis.

The tearing modes monitored during the calculation are chosen 
in a rather ad hoc way, following the ordering method of ref.(2 2 ).
A mode is characterised by the degree 6 which it perturbs the 
axisymmetric component of the flux; choosing the 2 / 1 to be of order 
6 , and the 3/2 to be of order 6* gives the following ordering :

0 (0 ) 0/0

0 (6 ) 2 / 1

0 (62) 3/2, 4/2
0 (6 s ) 5/3, 6/3, 1 / 1

0 (6*) 6/4, 8/4, 7/4, 4/3

In general, the larger the poloidal mode number m, the more 

stable the mode will be. This is because the stabilising line 
bending term -m*<|</r2 in (2.3.5) dominates at large values of m.

The 2/1 and 3/2 modes are linearly unstable and the 5/3 
destabilised quasi-linearly. All other modes to order 6* inclusive 

are close to marginal stability/instability and do not affect the 

result significantly.

Fig.(3.2) shows the magnetic island widths of the 2/1, 3/2 and
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5/3 modes plotted as functions of time at their respective positions 

within the plasma.

Note that the magnetic island evolution is remarkably 

similar to the RSF result (Fig.(2.1)). The rapid growth of the 

5/3 mode at t ~  0.1 ms and the increased growth of the 3/2 mode at 

t ~  0.2 ms should be compared with similar events at times t = 1.3 x 

10  ̂ t_ and t = 1.9 x 10 ^ t in Fig.(2.1).K K
The final result of the two calculations is however, very

different. The RSF calculation stops soon after the 5/3 and 3/2

islands touch. At this instant, the current profile exhibits the

finescale filamentary structures described in section 2 .2 , and the
complex numerics of the code prevent the calculation continuing at 

29a realistic rate. The fraction of the minor radius covered by 
islands is ^ 467. centred about r = 0.5a. Therefore, within the 
annular region 0.3 £ r/a £ 0.76, the magnetic field is expected to 

be ergodic. The TRINIO calculation continues after the 5/3 and 3/2 
modes have touched. Indeed, the 5/3 island decays, leaving the 2/1 
and 3/2 islands spanning ^ 36% of the minor radius, centred about 

r = 0.55a. No characteristic disruption signatures occur and 
confinement within the central core is maintained. As for the

23temperature dependent calculations performed with a version of RSF , 
the core contains ^ 707. of the total thermal energy of the plasma.
Only a fraction G£ 57.) of the original energy within the core is 
transported out by the islands, indeed the central temperature increases 

slightly during the period of overlap!

Fig.(3.3) shows the temperature and current profiles at the 
time of maximum magnetic island cover (t = 0.42 ms). The overlap 
region is clearly visible by the plateau on the temperature profile.
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Fig.(3.2) Magnetic island widths for the 2/1, 
3/2 and 5/3 modes plotted as functions of time.
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oh-

Fig.(3.3) Quasi-linear current and temperature profiles 
at t = 0. (t- 2 ms. Island overlap region is clearly visible.
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The evolution continues further, with the 3/2 island 
decaying completely, leaving a small saturated 2 / 1 island spanning 
117. of the minor radius. This state is shown in Fig. (3*4) and is 

an equilibrium state with Ohmic heating balanced by thermal 

conduction losses.

Fig.(3.4) Saturated state with Ohmic heating balanced 
by thermal conduction. The saturated 2/1 island covers 
11% of the minor radius.
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Fig.(3.5) shows the growth rates of the 5/3, 3/2 and 2/1 

modes as calculated from Rutherford's work :

9wmn
at 1.66

V(T(r ) )A*(w  )___ mn mn
U r o mn

(3.2.6)

where r is the resonant surface of the mode m/n. Note the mn
similarity of this figure with the full, non-linear result illustrated 

in Fig.(2.2). Ihe 5/3 growth rate, y,-̂  shows the same characteristic 

increase and the peak in y ^  follows that of y,^* 7 £ 1 decreases 
monotonically in each calculation.

Clearly it is necessary to understand how the features in 

Fig.(3.5) can be understood in terms of quasi-linear theory alone 
and the functional dependence in (3.2.6) affords a valuable clue.
Ihe growth rate can change due to the complicated dependence of A* on 
w, and thereby on the shape of the current profile. It can also 
change due to the dependence of q on T and by implication, w. Finally, 

y can change due to the movement of the resonant surfaces r , 
however, this effect can be neglected by comparing the positions 

of each surface in Fig.(3.1).
When the 5/3 and 2/1 islands touch at t = 0.13 ms, the 

temperature across the combined width equalises, cooling r,-̂  and 

therefore making the plasma locally more resistive. Hence the 

growth rate y ^  rises sharply.
The peak in y ^  *-s triggered by the large 2/1 island reducing 

the stabilising current gradient in r ^  < r < 1. Consequently A*^ 
increases causing y ^  to rise. Ihe discontinuity in y ^  and 721 at 
t = 0.15 ms is due to the combined 2/1, 5/3 island touching the 3/2.
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Fig.(3.5) Growth rates of the 2/1, 3/2 and 5/3 
modes as calculated from Rutherford.
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This lowers the temperature at r ^  and hence amplifies Y3 2 * but 
the temperature at and r ^  increases slightly, thereby slowing 

rate at which and Y53 fall. The final temperature of the 
combined island is a suitably weighted mean of the temperatures 

before they touched, i.e.

Tf ~ ŵ32 T32 + W2 1 T2 1 ^ w32 + w2 1 *

Hence, by simple analysis of the interaction of magnetic 
islands with the temperature and current profiles, it has proved 
possible to explain the details of the island overlap process 
without appealing to the direct mode-coupling mechanism.

3.3 THE EFFECT OF REMOVING THE CONDUCTING WALL
The calculations of refs.(21) and (23) have used a plasma on 

wall boundary condition. In order to follow these calculations as 
closely as possible, the same boundary condition was used in the 
calculation described in section 3.2. However, from the discussion 
of section 1.6 and refs. (8 ) and (24), the position of the wall with 

respect to the plasma edge affects the stability.
The boundary condition on 4» for a free boundary plasma can be 

found by investigating the nature of the solutions to (2.3.5) in a 
vacuum or cold plasma region where j ' ~ 0. Assuming that the wall 
is removed to infinity so that does not match onto the fields 
produced by wall currents, (2.3.5) becomes

I i_r 3r v 0r'
m
r"5 4» = 0
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in the vacuum region.
For bounded solutions <J>, we find

♦'(»> = (3.3.1)

or

B (a)
B '(a) = - (m+1) -----r a

which can be used to solve (2.3.5) for r£[o,a].
Another calculation with identical initial conditions as for 

those described in section 3.2 was performed with the wall radius 
b = 40a. The result was insignificantly different from the previous 
wall on plasma case. This is chiefly because r^  is embedded deep 
within the plasma = 0 .66a) and consequently the magnitude of
the perturbed field at the plasma surface is small. As the resonant 
surface moves toward the edge, the effect of the free boundary 
becomes more pronounced and the resulting magnetic island will be 

larger.
In order to access the importance of the wall, another case 

was considered using TRINIO. The initial profile used identical 

parametrisation, but with values :

X = 4.0
q(0 ) = 1.08

q (1) = 3.0

for which = 0.81a and r ^ 0 .68a. It is claimed 23 that this
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profile also disrupts, though the effects of mode coupling are 
weaker. First, a conducting boundary test case was performed in 
order to compare with the RSF result. The behaviour is similar 
to that described in section 3.2. The wall saturates the 2/1 island 

width at a smaller amplitude than before (w^*” = 0.15a). The 5/3 
mode is close to marginal stability and plays an insignificant role. 
Again, no evidence of disruption characteristics are observed to 
occur.

The removal of the wall leads to a dramatically different 

result. The 2/1 island is able to intersect the limiter (at r = a), 
thereby cooling the outer region of the plasma. The overlapping 
island region spans 'v 407. of the minor radius, though confinement 
within the core is maintained. Again, the calculation could not be 
construed as being a disruption, since the central temperature did 
not fall, however, the results were significantly different from the 

wall on plasma case. For this reason, all subsequent calculations 
performed with TRINIO will employ the boundary condition (3.3.1).

3.4 SUMMARY AND DISCUSSION
In this chapter, results from a simple 1-D recalculation of 

the Oak-Ridge disruption case have been presented. Many of the 
features of the non-linear calculation have been retrieved by the use 
of quasi-linear theory alone. The two calculations differ on one 
crucial aspect, namely, the quasi-linear calculation shows none of 
the signatures of a disruption. Furthermore, the position of the 
conducting wall in relation to the plasma periphery is crucial. The 
wall on plasma boundary condition 4»(r=a,t) = 0 is inappropriate, not 
only because it is an unrealistic approximation to what occurs in 
experiment, but also because removal of the wall significantly
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destabilises the plasma.
At the beginning of this chapter, the stated aim was to 

investigate two specific questions. The first was apropos the 

degree of ergodic field line cover necessary to constitute a 
disruption. Our calculation failed to disrupt, even though many 
of the features in the calculation were common to those obtained 
with RSF. Hence, we conclude that overlapping islands covering 367. 

of the minor radius is insufficient island cover to constitute a 
disruption. Increasing the island width to 467. of the minor radius 
decreases the thermal energy content within the core by £ 87. which 
again is insufficient to cause an energy quench.

The second question concerned the position of the conducting 
wall. A recalculation of the case considered in section 3.2 with the 
wall at (effectively) infinity gave a similar result. However, as 
the resonant surface of the 2 / 1 mode moves closer to the edge of the 
plasma, the island grew to a larger amplitude. We therefore conclude 
that a wall off plasma boundary condition serves as a useful upper 

bound of the stability in the outer regions.
Ihe results of this chapter suggest that many of the effects 

previously ascribed as being due to direct mode-coupling mechanisms 

can be interpreted by quasi-linear theory alone. This does not imply 

that mode-coupling can be entirely discounted, rather that the 

effects which were exclusively attributed to mode coupling can be 

explained otherwise. The results also suggest that the overlap phase 

need not be a physical barrier, and that the evolution can continue 

thereafter.

One further question regarding the RSF calculations must be 

considered, namely the permanence of the current filaments at large
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times. No solution of the reduced equations, using RSF, has been

found at large times because the code encounters numerical
29difficulties. We therefore consider it a necessary and instructive 

exercise to investigate the numerical stability properties of the 

RSF difference scheme. The results from this analysis are described 

in Chapter IV.
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CHAPTER IV

4.1 INTRODUCTION
In this chapter, the numerical stability properties of the 

RSF difference scheme is analysed. We show that the numerical 
stability behaves in a rather subtle way once the non-linear regime 

has been entered. This casts doubt on the accuracy of the published 
solutions of the reduced equations, especially during the island 
overlap phase of the evolution. A new stability criterion is 
derived heuristically and comparisons are made between runs where 
this criterion has been implemented and runs where the Oak-Ridge 
criterion has been used.

4.2 DISCUSSION OF THE NUMERICAL STABILITY OF RSF
Before proceeding we should make clear that the finite

difference algorithm used in RSF is not the algorithm that appears
22in the published literature. However, since the alterations only 

affect the streaming properties of the system, and our stability 
analysis assumes no first order flows to be present, the final 
stability criterion remains unchanged from the published one! The 
analysis for the published algorithm is given in ref.(35).

RSF is a spectral code using direct convolution methods to 
represent toroidal and poloidal derivatives. A second order accurate 
finite difference scheme is used to represent the radial derivatives. 

The algebraic equations to be solved in advancing the system
from time t to t + At are as follows :
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ut+*At

4,t+*At

t+At tu

+ i At S11 u

+ i At 4»

+ At S t+*At u

and

(J»t+At = (J.11 + At t+iAtS

(4.2.1)

(4.2.2)

(4.2.3)

(4.2.4)

where

9jzsu = - v.Vu + S2{(V<J./Nyjz).£ - (4.2.5)

and

S -v.7(j» + njz dtp
dz (4.2.6)

Note that in (4.2.2), the current and advection terms are treated
implicitly, while in (4.2.4) the same terms are treated explicitly.
The vorticity equation is treated explicitly at each half-timestep.

22The published numerical stability criterion demands that

At < 2/Smax|m - nq(r) (4.2.7)

if the scheme is to be stable. The denominator is calculated over 
all m/n pairs and for all values of q(r). This criterion is remarkable 
since it is independent of the radial mesh size and therefore is far
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that a particularly fine radial mesh combined with a comparatively 
large timestep may be used, enabling calculations with large

Due to the unique nature of the stability criterion (4.2.7), 

it was considered both necessary and instructive to repeat the analysis. 
However, we find that the criterion is valid for axisymmetric, untorn 

conf igurations i-e. for the first timestep only!

4.3 NUMERICAL STABILITY ANALYSIS OF RSF
We perform the analysis in simple slab geometry and assume 

that the y-direction corresponds to the radial direction, and that x 
and z correspond to the poloidal and toroidal directions respectively. 

The equilibrium magnetic flux function cjj = 4'Q(y) only, to which is 
added a perturbation so that :

the effects of shear, but making the analysis tractable. Finally we 
assume that there is no zero-order flow, so the stream function is

values of S ^ 10**, to be economically performed.

<J;(x,y,z,t) = 4>0 (y) + $(y,t) exp i (k^x + kzz) (4.3.1)

where |$| «  |<|j |. We assume <|/̂ (y) = constant, thereby eliminating

<p (x,y, z, t ) = <p(y, t) exp i (k^x + kzz) (4.3.2).

Linearising the reduced equations (2.2.1) and (2.2.2) about the
equilibrium gives
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3u
at s2(4»o (4.3.4)

where primes denote differentiation w.r.t. y.
The first term of the RHS of (4.3.3) is the advection of the 

first-order axisymmetric component of the flux and the second term 

gives the resistive damping. The term on the RHS of (4.3.4) is the 

first order tern, the advection of vorticity first appears to 
second order.

Writing the finite-difference approximations of 3/3y and
92/dy2 as^

3y 2
4
Ay s m

k Ay

and noting that v = $ ’, (4.3.3) and (4.3.4) become

and

(4.3.5)

|| = - i(S2a)^

where we have dropped the tildes and

v
a = ——  sin k Ay = (K.B )Ay y J — —o

4n . ,,kyAy 
w sin (-i~) K/n

C4.3.6)

8
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We now time difference (4.3.5) and (4.3.6) according to the 
scheme (4.2.1) - (4.2.4) :

^t+iAt „ +t _ £At(i0l(pt+*At + g* ^ )

Ihe qualities K  and K ^ 2 are the Fourier transforms of the finite

differenced V  and 7 2 operators. Equation (4.3.4) integrates

trivially to give (4.3.6) for the zero flow initial conditions.

t+iAt9

, t+At

t+At<P

<pt - iAt (iS2a)̂

<|»t - At(ia<pt+*At + B* ^

- At(iS2a)^
t+iAt

)

which after a little algebra reduces to the matrix equation

V V
= A(K,k12)

9 9

where A is the amplification matrix, and is given by :

AOC.k/) 1
(1+iBAt)

l-iBAt-i(aSAt)2 
-iccS2At(l-i(aSAt)2)

-iaAt 
l+iBAt-i-(aSAt) 2

A B

C D (4.3.7)
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defining the functions A, B, C and D.
Information regarding the dispersion of the system can be 

found by solving the equation

det(A - XI) = 0 (4.3.8)

where A = exp(-iftAt) is the eigenvalue of A. From this, the numerical 

stability criterion can be calculated by demanding that

AA* < 1 (4.3.9)

where A* is the complex conjugate of A. The eigenvalues of A are the 

solutions of the simple quadratic equation

A * + b A + c = 0  (4.3.10)

where

b = - ( A  + D)

and

c = (AD -  B C ) .

In solving (4.3.10) we need to consider two cases, depending
on whether the discriminant is positive or negative.
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Case I : b2 - 4c < 0

For this case X £ C  and the criterion (4.3.9) reduces to 

XX* = c < 1

for stability. Hence

1 - i n  K^2 At2 
1 + i n K^2 At2 —  ^

which is trivially satisfied for all and At£E.

Case II ; b2 - 4c > 0
For this case, X £  R and the criterion (4.3.9) becomes 

1 + c < | b |

or

2 > |2 - (SK.B At)2 I 1 ---o 1

hence the result

At < 2/S(K.B ) (4.3.11)— —o

which is instantly recognisable as the slab analogue of the published 
stability criterion (4.2.7).

Since B^ is the axisynmetric component of the magnetic field, 
the criterion (4.3.11) when applied to the cylinder is valid for
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circularly symmetric field structures only, i.e. for untorn 
configurations. As soon as the flux surfaces tear apart, the 

denominator of (4.3.11) should include the full magnetic field 

B = ^  This introduces a radial component into the equation
which is dependent on the number of radial mesh points through the 

term. Separating the axisymmetric components of the field from 
the non-linear components caused by the growth of the magnetic island

K. 13 = ~ %  + (m - nq(r)) .

Now,

Br -  4-r mn (r)

and

Be
3<Jj A(J»mn ^ mn
9r Ar 44< N /a mn m

where 
is a 

So,

N is the number of mesh points in the radial direction. Since m r

smooth and continuous function, 4<J»(r) <<: ‘K r ) so that >;> Bq .

K.B ~ K B  + (m - nq(r)) --- r r

"u + (r)mn + m nq(r )j (4.3.12)

Since (m - nq) ^ 0(1), equation (4.3.12) is dominated by the first 
term which is dependent on the number of radial mesh points (the Oak-
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Ridge calculations have used 'v* 200-300).
The effect of the Br term can be interpreted as an effective 

tilting of the magnetic flux surfaces with respect to the radial 
mesh. Initially, the untorn axisymmetric equilibrium has flux 

surfaces level with concentric surfaces of constant radius (i.e. y). 
As magnetic islands grow, the flux surfaces no longer remain aligned 
with the mesh, but tilt with respect to each other, see Fig.(4.1).

If the angle 6 measures the inclination of the flux surfaces 
with respect to the (invariant) mesh and B is the strength of the 
perturbed field perpendicular to the z-direction, then

(B , Bq , B ) * (B sin 6, B cos 6, B )r z z

and so

K.B (K sin 6 + k cos 6)/q - n x M

sin k Ay
(--t— —̂  sin 6 + m cos 6)/q - n

hence

(K.B) (N sin 20 sin 6 + m cos 6)/q - nm (4.3.13)

20 = k /N = Kp/Ny m * m

where p is an integer. Note, if 6 = 0 the unperturbed value of K..B 

is retrieved.
By similar argument,
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F i g . (4.1) I l l u s t r a t i n g  the effect o f  the f l u x  s u r faces  
(dotted l i n e s ) i n itially level with the m e s h  (h a t c h e d  
lines), t i l t i n g  with r e s p e c t  to each o t h e r  as the i s l a n d  
forms.

pK 2 = p(4 N 2 s in20 + m2 )1 m (4 .3 .14 )

Thereby, the parametrisation of and riK̂2 by k^ is by virtue of

the parameter 0.

Def ine

g S(K.B)/2At
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and

a = nKa2

where g is a measure of the normalised inverse Alfven time and a is a 

measure of the inverse resistive damping time. Clearly

g = g(S, 6, At, Nm , 6)

and

a = a(S, N , 0) m

so by plotting g against a for fixed values of S, N^, and At whilst 
varying 6 and 0 gives a sequence of operating curves. If, for any 
value of 0, the curve in the g-a plane exceeds the stability limit 
g = 1, then the wave numbers characterised by those values of 0 will 

be numerically unstable. See Fig.(4.2).
The first mode to exceed the stability boundary can be found 

by calculating the first mode to touch the curve g = 1, i.e. when

dg _ 3g 9K 
dcr 9K 9a (4.3.15).

Equation (4.3.15) is satisfied when

1) sin 6 = 0  i.e. when there are no magnetic islands

i.e. when k = .c m2 ) cot 20 0
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F i g . (4.2) O p e r a t i n g  c u r v e s  in the g-<x p l a n e , curves 1, 
2 and 3 a r e  f o r  s u c c e s s i v e l y  lar g e r  values o f 6. F o r  a 
critical angle, the c u r v e  touches the s t a b i l i t y  b o u n d a r y  
g = 1, A l l  K  f o r  w h ich  the c u rve e x c e e d s  g = 1 will be 
n u m e r i c a l l y  unstable.

Therefore, an upper bound for the full stability criterion is

(r) v
---1 + max (m - nq(r))> < 1 (4.3.16),

Figure (4.3) shows how the stable values of At, normalised to 

the previously published result varies with magnetic island width,

iitNm max

i.e. 6.
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Fig.(4.3) Variation of stable zimestep with island
size for N = 300. m

By plotting g as a function of r, the local stability 

properties can be deduced. If g > 1 in an interval (r^, then

the radial inodes for which g(k) >  1 will be numerically unstable in

The numerical instability is unique for two reasons.

1) Only a finite number of modes are potentially susceptible 

to the instability.

2) The region where the modes are unstable is localised 

spatially to where g(r) > 1.
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STEP* Il*,TIfl£* 2.1762E-02

g

I

Fig.(4,4) Showing the stability parameter g(r). 
Note the instability grows roughly where g(r) > 1.
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STEP* 750,TIME= 2.4190E-02

Fig.(4,5) Current density and stability parameter
after a further 450 timesteps, g < 1 throughout.
Note that the current filaments have been damped away.
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can infer that the numerical instabilities will grow within the 

rational surfaces. Furthermore, the instability would show initially 

on the current profile since j is the second derivative of 4** Figure 
(4.4) shows the current profile in the presence of a single tearing 
mode of helicity 2/1. This profile was obtained by running RSF for 

114 timesteps with At = 4/5 AtpujjusHED' ®®^ow plotted the stability 
parameter g(r). Note that the region where the current filaments grow 

is roughly where g(r) > 1. The filaments are most certainly of numerical 

origin since a single mode is only able to interact with the 0/0 

component of the flux.
Continuing RSF from the state depicted in Fig.(4.4), but with 

the criterion g < 1 imposed by reducing At gives, after a further 636 
timesteps, the state shown in Fig.(4.5). Clearly the current filaments 
have been dissipated away. The timescale for the dissipation is the 

resistive time of the system.

Since <|» (r)/r peaks inside the resonant surface of the mode, wemn

4.4 CONCLUSIONS
In this chapter, the numerical stability properties of the RSF 

computer code have been briefly presented. The full details^ have 
not been given since they are largely of computational interest and 
add nothing to the argument pursued in this thesis. We have given 
sufficient evidence to suggest that many of the current filaments 
could be produced by numerical instability rather than a real physical 
instability. Indeed the numerical instabilities occur in regions 
where physical instabilities might be expected to grow and therefore 
there is doubt concerning the validity of the Oak-Ridge calculations.

We saw in Chapter III that the quasi-linear calculation
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suggested that the Island overlap phase need not be a physical 
barrier and that the evolution can continue thereafter. The 
results of this chapter show that RSF is prone to numerical 
instability, albeit rather different from that usually encountered. 

Clearly, there is a need to re-examine the calculations performed 
with RSF. In the next chapter, we repeat the calculation of 
Chapter III, using RSF instead of TRINIO, and with the new stability 

criterion (4.3.16), i.e.

I ^
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CHAPTER V

5.1 INTRODUCTION

In this chapter, the results of a full non-linear calculation

using RSF are presented. The new stability criterion (4.3.16)

forces the code to be run under for more stringent conditions than

hitherto. This naturally makes the calculations more expensive.

Therefore we are unable to include all the modes used in ref.(23),
neither are we able to use the same value of magnetic Reynolds

number. It must be emphasised however, that the 'non-linear*
4destabilisation mechanism was illustrated at S = 10 , and it was 

23claimed that the time for the destabilisation was independent of 

S.

The results presented must therefore be treated as suggesting 

a trend rather than being a definitive answer to the problem.

We show that the results conform to those obtained by the 

quasi-linear theory calculation of Chapter III. The implciations 

of this are discussion in the conclusion.

5.2 RESULTS
The initial equilibrium profiles are the same as used in

Chapter III, though no temperature profile is required since the

version of RSF without an energy equation was the only one available
c 36for use.

The parameters used for the calculation are as follows :
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q-profile parametrisation 

X = 3.24

q (1) = 4.2

q (0) = 1.34.

Number of radial mesh points

N = 100 .m

Magnetic Reynolds number

S =

Helicities present

2/1, 3/2, 5/3, 1/1, 0/0 .

The initial perturbation to the system is primed from an analytic 

representation of the tearing mode eigenfunctions

(r ) =mn 1+exp (10(-l+r /r )T mn
rmn^ ' (r_)
<l(r

mn2T
mn^ 
(5.2.1)

the free parameter being the initial island width Wmn The values

used for W and the position of the resonant surfaces r are listed mn ^ mn

2

below.
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m /n w 1mn r /a mn

2 / 1 0.05 0.66

3/2 0.05 0.50

5/3 0 . 0 1 0.57

1 / 1 - -

The size of the initial perturbation is not critical. Runs 

with different initial perturbations yielded similar results.

The boundary conditions used are the same as those of 
section 3.2 and ref.(23).

Figure (5.1) shows the initial current profile below which is

plotted the perturbation to the current in the 0 = 0 , £ = 0 plane.
Figure (5.2) shows the time evolution of the magnetic islands

plotted at their respective positions within the plasma. ’
The similarity between Fig.(5.2) and Fig.(5.3) is quite

remarkable. Mare importantly though, Fig.(5.2) should be compared

with Fig.(2.1). Ihe implementation of the stringent stability
criterion g < 1  enables the code to continue past the strong coupling
phase with none of the numerical difficulties that have been 

29reported , nor any of the curious current filaments growing (apart
from those which can be expected to grow).

Figure (5.3) illustrates the current density and perturbed
_2current density at time t ^ 2.7 x 10 when the islands cover 367.

of the minor radius. The structures at r = - 0.54a are caused by 
the 2 / 1 component of the flux, and is symmetric about the minor axis. 
The asymmetric structure, at r = 0.4a is due to the 3/2 component of
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Fig.(5.1) Total current density and the 
perturbed current used to initialise the 
calculation.



D
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Fig.(5.2) Magnetic island widths of the 2/1, 2/2 
and 5/3 helicities plotted as functions of time.
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0.5 

rIa 

-0.5 

-1.0 

Fig.(S.3) Current density and perturbed current 
.. -2 

dens~ ty at t~me t = 2. 7 x 10 "tR when the islands 
cover 36% of the minor radius. 
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the flux. No other features on the current profile are apparent.
Many of the features in Fig.(2.1) can be seen in Fig.(5.2) 

despite the difference in magnetic Reynolds number and despite the 
difference in the number of modes used in the calculation. One slight 

difference is that the 5/3 mode grows once the 2/1 mode has touched 

the q = 5/3 surface. This does not necessarily imply that the 5/3 

mode is driven unstable by non-linear effects alone. The stability 

equation (2.3.5) is 'contained' within the (V(J*̂ Vj).£ term in equation 
(2 .2 .2 ); hence the quasi-linear effect of the modification to the 

jQo component of the current by the other modes is still present.
The destabilisation of the 5/3 is likely to be caused by an amalgam 

of quasi-linear and non-linear effects. Note that the 5/3 persists 
once the islands have overlapped. The driving of this mode must be 
of non-linear origin.

The 'destabilisation' of the 3/2 mode is also present, though
to a lesser degree than in ref.(23). This is illustrated in Fig.(5.4)
which shows the growth rates as calculated from the magnetic energy

E ^ of each mode, where : mn

7 ( 0mn
9ln
at (EM (t)) mn (5.2.2)

and

Emn( t )  = * f  l V0 2 dV *mn J mn ■v

The destabilisation of the 3/2 mode occurs when the island 
touches the 2/1 island. Since no equation for the temperature is 
used in the version of RSF at our disposal, the peak in cann°t
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F i g . (5.4) G r o w t h  r a t e  y c a l c u l a t e d  f r o m  the 
m a g n e t i c  ener g y  o f  each /no2e.

partially be attributed to the cooling of the island, as described in 

section 3.2. However, the quasi-linear effect, i.e. the deformation 

of the axisymmetric component of the current influencing the 

evolution, is still present. Again, the ’destabilisation1 cannot be
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exclusively ascribed to mode-coupling.
_2Ihe state shown in Fig.(5.2) at time t = 3 x 10 t 

persists to long times since

J£im
t-*® Ymn(t)mn 0

The final state has overlapping magnetic islands covering 357. of 
the minor radius centred about r = 0.57a; a result almost identical 

with the TRINIO result!

Ihe axisymmetric component of the current joQ(r) Is shown in 
Fig.(5.5) at the time when the islands have saturated and a steady 

state exists (the final state is one with non-zero flow, the 

maximum velocity within the 2 / 1 vortex is 'v 1 / 1 0  V^). Ihis component 
of the current is equivalent to that calculated by TRINIO. In 

section 1 .6 , it was shown that a torn plasma has a lower energy than 
an untorn plasma. Ihe excess energy is shed by reduction of the 

destabilising j3.Vjz couple. This is achieved by reducing the 
magnitude of Vj^ at the rational surface. This effect is clearly 
visible in Fig.(5.5), where the 2/1 island creates a plateau in 
0.55a < r < 0.68a. A less pronounced reduction of Vj^ can be 
observed at r ^ 0.45a and is due to the 3/2 island.

The convergence of the solution was tested by re-running the 
calculation with the first harmonic of each of the fundamentals 
inserted, i.e. the modes 2/1, 3/2, 5/3, 1/1, 4/2, 6/4, 10/6, 2/2, and 
0/0. The evolution followed as before and the final island widths 

differed by < 37..
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F i g . (5.5) A x i s y i m e t r i c  c o m p o n e n t  o f  the cur r e n t  
in the steady state.

5.3 DISCUSSION
In this chapter, the results of a non-linear calculations of 

the previously studied unstable equilibrium have been presented.

Ihe results exhibit almost identical behaviour to the quasi-linear 

results of Chapter I II .  Again, there is no evidence to suggest 

that a disruption has occurred. Indeed, the final steady, saturated 

island widths are identical.

Ihere is clearly a need to repeat this calculation with more 

modes and at a higher value of S. However, tests examining the
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stability of the initial and final equilibrium states show that 

the only modes which grow are the modes that have been used!

The implication of this is that the only modes which are able to 
affect the dynamics are the non-linearly generated ones.

Ihe non-linear interaction of a mode with helicity m^/n^ 

with another of helicity n^/i^ generates two modes with helicities

(m̂  + m2) / (n  ̂ + nj)

and

lml - m2 l ! Ini - n2 l •

This cascade mechanism necessarily restricts non-linear 
generated modes to be between the helicities of those modes 
initiating the cascade. Ihis is illustrated in Fig.(5.6) which 
shows the position in m-n space of the modes generated by the 

ordering scheme of section 3.2.
Note that the modes lie between the 2/1 helicity and the 3/2 

helicity. Hence, most of the non-linearly destabilised modes will 
be driven unstable in the spatial range

_  , IN OUTvw £  (w^2 » w2i )

where 'IN' and 'OUT' refer to the inner and outer separatrix of each 
island.

We conjecture that the inclusion of more modes will not 
necessarily lead to a greater covering of overlapping magnetic islands
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Fig.(5.6) Cascade of modes in m-n space. Note the 
modes lie between the m/n = 2/1 and 3/2 lines.

and that the final state will not be radically different to that 

shown in Fig.(5.2). Ihe evolution to that final state may be quite 

different however, since there will be an exchange of energy between 

the different modes.

The other disparity between the calculation in this chapter 

and that in ref. (23) was the choice of S; our calculations being 

performed in a more resistive regime.

It is not entirely implausible that the plasma undergoes a
4 6phase transition between S = 10 and S = 10 . If such a phase 

transition exists, it could be calculated by estimating when the 

anomalous diffusion time of magnetic field lines is less than the 

characteristic thermal diffusion time across the field lines. Such
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a calculation would require detailed knowledge of the transport 

properties of the plasma, a subject which is poorly understood 
by contemporary theory.

Since the results of Chapter III are so similar to the 

results of this chapter and the model of Chapter III makes no
4assumptions about the size of S, we consider that S = 10 is an 

adequate value to assume. However, there is clearly a need to 
verify this, and such a calculation is planned for the future.
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CHAPTER VI

6.1 INTRODUCTION
In this chapter we present the results of a calculation, in 

which the total plasma current is slowly increased in time. Hie 
motivation for performing such a calculation is to investigate how 
the changing profiles evolve the plasma from a saturated, 

equilibrium state to one which is disruptively unstable. It is 
envisaged that the current 'ramp' begins once the flat-top phase 
of the total current has been reached. In practice, such a ramp 
would be achieved by discharging the capacitor banks into the 
primary windings. Hence the current would not rise smoothly, but 
in a series of discrete jumps. However, for simplicity, we shall 
assume that the poloidal flux at the plasma edge increases linearly 
in time and therefore refrain from considering the plasma-circuit 

coupling.
We show that the current ramp triggers a sequence of minor 

disruptions of increasing severity and that the discharge is 

terminated by a major disruption. The major disruption is triggered 

by two separate events which delineates it from the minor disruptions. 
Finally, we compare these results with an experiment in which the 

current was ramped in time.

6.2 DISRUPTIONS DURING A CURRENT RAMP PHASE
Throughout this chapter we use the 1-D TRINIO computer code to
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simulate the plasma behaviour. Though this will not Include the 
coupling of modes, It will provide a broad Indication of how the 
plasma state Is changing, so the results and Interpretations 

drawn must be treated accordingly.
As previously stated, the aim of this calculation is to see 

how the plasma evolves from an equilibrium state to a disruptively 
unstable one by means of slowly increasing the total current.

Previous calculations have all been performed using a constant 
current boundary condition

B0 (a,t) = constant .

The boundary condition which will give a simple, linear current 

ramp is

BQ(a,t+At) = BQ(a,t) + At (6.2.1)

with 3b/9t = constant.
The current must rise at a slow enough rate to allow the 

plasma profile to adjust. If the current increases by AL in-time t 

and an island grows by Aw in time t  , then

T »  T 
W

which fixes the magnitude of 3b/3t.
Let the increase in poloidal field in time t be Ab, then the 

change in the safety factor Aq(a) is
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Aq(a) a - Ab (6.2.2).
z

Ihus, q(a) decreases In time and so the resonant surfaces move towards 

the plasma edge.
The calculation is initiated from a non-linear equilibrium 

depicted in Figs.(6.1) and (6.2). A saturated m/n = 2/1 island 

of width 0.09a is situated about * 0.75a. Also a m = 1 island
of width 0.2a is-present. Ihe state is one in which Ohmic heating 
is balanced by thermal conduction losses; radiation losses are not 
considered.

The total plasma current is 

2*aaBr ______*
p R pQ q(a)

which for the DITE parameters used gives a value of 123.9 kA for 

q(a) = 3.125. . .

Ihe current is increased at a rate

91 „ , . n5 -1—  'u 7 x 10 A s  .ot

Applying the ramp for a period ^ 50 ms, the fractional increase in 

the current is

AI/I ^ 0.25

however, such a moderate increase of current causes the plasma to 

eventually disrupt.
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Fig.(6.1) Saturated equilibrium current profile 
used to initialise the calculation.

Fig.(6.2) Equilibrium temperature profile, with 
Ohmic heating balanced by thermal conduction.
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Figure (6.3) shows the magnetic Island widths of the 2/1,

3/2 and 1/1 modes, plotted at their respective radial positions 
as time progresses. Other modes, though present throughout remain 

close to marginal stability/instability and do not play a major 

role in the evolution. Plotted above is the central temperature 

as a function of time.
There are four distinct pulses of 2/1 and 3/2 activity and 

also four distinct pulses of enhanced m = 1  activity.
The time lag between the 2/1, 3/2 and 1/1 activity suggests 

an adaxial propagation of current density.
The following sequence of events describes the evolution from 

each burst of 2/1 activ ity  to the fa ll  in the axial temperature.

a) The Poynting flux directed into the plasma causes a 
rise in the plasma current density, which propagates 
inwards, steepening the current density gradient 
within the q = 2 surface.

b) The increased current gradient within the q = 2/1 surface 
destabilises the 2 / 1 island which grows and 'pumps' the 
current inwards on a timescale faster than the resistive 

diffusion time.
c) The current density gradient within the q = 3/2 surface 

increases and destabilises the 3/2 island which again 
pumps the current towards the axis.

d) The rise  in current on the axis, together with the 

re stric tio n  of current due to the m = 1 island pushes 

the q = 1 surface outwards, transporting energy from 

the central core and causing the temperature to drop.
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Fig.(6.3) Island widths and central temperature 
plotted as functions of time.
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Fig.(6.4) Sequence of events explained
in points a) - e) in the text.
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e) The cooling of the central region lowers the current 
around the axis and thereby causes the q = 1  surface 

to contract, though its average position is at a 

greater radius than that prior to the disruption.

The sequence a) - e) is depicted schematically in Fig.(6.4).

Figure (6.5) shows the total plasma current and the current 
within the q = 2 and q = 3/2 surfaces. This clearly shows the 

pumping effect of the islands. The peak in the current at the q = 2 
surface l(q=2) at time t = 18.75 ms is coincident with the minimum 

in the width of the 2/1 island. As the current gradient rises 
within the q = 2 surface, the island grows and pumps the current 
inwards on a timescale faster than the resistive diffusion time.
The current l(q = 3/2) peaks at t = 2.5 ms after the peak in l(q=2). 
Hence, the 3/2 island grows for the same reason as before and pumps 

the current further inwards. At this time, l(q=2) begins to rise, 
and the process repeates. Note that the fluctuations of I(q=2) and 
l(q=3/2) are quite pronounced when compared with the monotonically 

increasing total plasma current.
The current is pumped towards the magnetic axis on a timescale 

faster than the characteristic resistive diffusion time. The time 
between subsequent peaks in l(q=2) and l(q=3/2) is n, 2.5 ms, whilst 

the resistive diffusion time is

_1  n(q=*) |Bq (q=2) - 2B0 (q=*) + BQ(q=3/2)|
TR ~ M BQ (q=*) Ar2o y

where represents a surface between the q=2 and q=3/2 surfaces and 

Ar = r£^ - *22' Inserting values
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B (q=2) = 0.1297 Ty
B_(q=*) = 0.1360 T 'a
B (q=3/2) = 0.1372 Tu
Ar = 0.18a

and
T(q=*) = 0.138 keV

gives

“V 125 ms .

The current penetrates some fifty times faster than if it were to 
diffuse resistively inwards.

The sequence a) - e) illustrates how the soft disruptions 
at times t = 15, 25 and 36 ms, occur. The circumstances causing 

the major disruption at t = 44 ms are however, different.
The major disruption is triggered by the 2/1 island intersecting 

the cold limiter at r = a. This occurs because the resonant surfaces 
move outwards due to the current rise.

Once the island touches the limiter, the island is rapidly 
cooled due to the enhanced thermal conductivity within the island 
region. Indeed, the cooling may, in reality, be even more rapid 
due to the influx of impurities from the limiter. Moreover, since 
the 3/2 island overlaps the 2/1, the temperature is flattened across 

the entire overlap region, of the order 357. of the minor radius. This 
has the effect of rapidly reducing the width of the current channel.

The inward displacement of the current, and the restriction of 
the current on axis due to the m = 1 instability forces the q = 1  

surface outwards, and so the m = 1 island grows explosively. The 
m = 1 and m = 2 islands touch, thereby connecting field lines from
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Fig.(6.5) Total plasma current I, I(q-2) and
I(q=3/2) plotted as functions of time.
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centre of the plasma to the edge. Thus a thermal 'short circuit' 

is created and confinement is lost across the entire minor radius.

6.3 DISCUSSION AND COMPARISON WITH EXPERIMENT

Results have been presented purporting to explain a sequence 

of minor disruptions during the slow current rise of a tokamak 
plasma. Ihe events preceding the terminating major disruption are 
quite distinct from those events triggering the sequence of minor 

disruptions. As stated previously, all modes other than those shown 

in Figs.(6.3) and (6.5) remain close to marginal stability, being 
momentarily driven unstable as the current is pumped through the 
respective resonant surfaces.

The variation of the central temperature as a function of time 
is somewhat reminiscent of sawtooth oscillations. However, no 

confusion can be made between these variations and sawteeth, since 
the period between successive troughs is of order ten time a typical 
sawtooth time. Also the fractional change in the temperature, AT/T 
is greater than for a typical sawtooth oscillation.

An experiment in which the to ta l plasma current was increased 

in a similar way to that described was performed in the PULSATOR 

tokamak.

Though the dimensions and plasma parameters of the PULSATOR 

tokamak are quite different from DITE, many of the salient features 
observed in the experiment can be ascribed to the model.

In the experiment, it was implied that the current profile for 
low-q discharges was flat in the central region, due to continued 
sawtooth activity (a modulation of m = 2 Mirnov oscillations by the 
m = 1 mode was seen). Also, measurements of impurities showed an
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accumulation close to the magnetic axis. This aspect will be 
considered in Chapter VII. It was noted that during the slow 

current increase, many minor disruptions occur, especially in low-q 
discharges.

Once the disruption sequence begins, the central temperature 

falls continuously, unlike our simulation. However, this could be 
explained by an influx of impurities released from the limiter by 

the outward propagating heat pulse. This conjecture is supported 

by the observed rise in the electron number density.

Finally, the authors of ref.(37) describe a reasonably 

reliable method of controlling disruptions, known as the 'hammer 
method'. The fast growing m = 2 Mirnov oscillations were used as a 
precursor of the disruption. When observed, a high pulse was applied 
to the vertical magnetic field which displaced the plasma inwards. 
After a few milli-seconds, the plasma was allowed to expand freely to 

its original position, the disruption having been averted.
This could be interpreted in terms of the m = 2 island - 

lim iter interaction triggering the disruption. If, when the 'hammer' 

is applied, the m = 2 island decays as in the minor disruption 

sequence, then when the plasma is allowed to expand freely, the island 

could be sufficiently  small so as not to come into contact with the 

lim iter. Clearly, the precise position of the lim iters and the 

direction in which the plasma is shifted during the hammer are

crucial factors.
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CHAPTER VII

7.1 INTRODUCTION
The calculations which have categorically resulted in a

24 25major disruption, described both in this thesis and elsewhere * ,

all have a common feature. The mutual feature is the presence of 

the m = 1 mode both prior to and during a disruption. However, it 
is stated in ref.(37) that disruptions have occurred without m = 1, 
Mirnov oscillations or soft X-ray sawtooth emissions having been 
detected.

In this chapter, it is shown by means of a calculation 
similar to that described in Chapter VI, that such disruptions can 
be explained within the context of the plasma current restriction 
model. Indeed the results broaden the scope of the model. .

7.2 RESULTS
In ref.(37) it is stated that a disruption occurs without 

the m = 1 mode being present, however, high-Z impurity ions residing 
close to the magnetic axis were detected. We shall see that inserting 
a distribution of ions, strongly peaked about r = 0 causes the 
plasma to become more resistive, thereby restricting the amount of 

current able to flow close to the axis. Hence the impurities 
perform precisely the same function as does the m = 1 island.

The results of this chapter must be treated as illustrating 

rather than proving a point in a rigorous and self consistent fashion.
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A full calculation would require modelling the radiative processes 

of the ion species and a full transport calculation. To perform 

this would probably involve making many ad hoc assumptions regarding 
the transport coefficients. We therefore will not consider the 

details of how the ions cross magnetic surfaces to get to the 

magnetic axis, but rather assume a distribution a priori.
We assume that the number density of the impurity ions is a 

simple Gaussian, centred about r = 0 :

n(r) = n exp(-r2/ca) o r (7.2.1)

though the exact functional form is unimportant. Ihe experimental 
evidence requires the distribution to be strongly peaked on axis, 
and (7.2.1) suffices in this respect for a sufficiently small choice 

of the parameter c. Furthermore, we assume the radiation loss 

function is given by

^/(T,r,n) = C n(r) (7.2.2!

It is considered that this is a particularly neutral choice of loss 
function, containing no dependence on temperature and depending 

linearly on the number density only.
The calculation is initialised from the profiles shown in 

Fig.(7.1). This is a saturated, radiative, resistive equilibrium 
with Ohmic heating, thermal conduction and radiation losses in 

balance, i.e. :
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EASLi. Non-linear equilibrium temperature and
current density profiles. The form of the radiation 
loss function is also shown.
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j (r)E (r) + - (rK -dir) = 0 (7.2.3)J z z r or or

where E (r) = constant, z
The values of q(o) and q(a) at the start of the calculation 

are 1.336 and 3.782 respectively. The 2/1 and 3/2 rational surfaces 

are located at 0.55a and 0.27a respectively. The initial value of 

the temperature on axis is 0.265 keV.
In order to evolve the plasma from the equilibrium depicted 

in Fig.(7.1) to a disrupted state, we apply the boundary condition 

(6.2 .1 ) and ramp the current in time.
The stability properties of the 2/1 and 3/2 modes are calculated, 

all other modes being close to marginal stability throughout. A 

constant monitor of the 1 / 1  mode is maintained.
Fig.(7.2) shows the resulting magnetic island widths plotted 

as functions of time, together with the central temperature.
Similar behaviour to that depicted in Fig.(6.3) is evident, though 
the 3/2 mode is marginally stable for 35 ms from the start. This 
is chiefly because the q = 3/2 surface is comparatively close to 
the minor axis, therefore the stabilising current gradient in the 

interval (r^ja] dominates the destabilising current gradient in

(°,r32 )*
Many of the features in Fig.(7.2) are similar to those in 

Fig.(6.3). Again, the magnetic islands act as 'pumps', pushing 
the current adaxially, faster than if it were to diffuse inwards.
The 3/2 island is significantly destabilised by the action of the 
2/1 island at time t ~ 31 ms. At the same instant there is a 
slight rise in the central temperature due to the current increasing
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Fig.(7.2) Magnetic island widths, central temperature 
and l/q(a) as functions of time during the current ramp.
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and therefore raising the rate of Ohmic heating.

Since the rate at which the impurities radiate is a constant, 
a period of time must elapse in order to restore the energy balance 

condition (7.2.3). For this reason, the impurities restrict the 
current less severely than the m = 1 mode. The restriction of 

current by the m = 1  gives a particularly hard upper limit on the 
amount of current able to flow.

-fhe destabilisation of the 3/2 island at time t ~ 43 ms is 

caused for two reasons :

a) The intersection of the 2/1 island with the limiter 

contracts the current channel and removes the 

stabilising effect of the current gradients in (r^i^]*
b) The flattening of the current profile on axis due to the 

impurities steepens the destabilising current gradient 
in (o,r32).

The combination of these two effects rapidly destabilises the 
3/2 mode. The connection of the two islands removes the insulating 
magnetic surfaces from 557. of the minor radius. The central 
temperature falls from time t ~ 43 ms onwards.

During the entire calculation, q(o) is a monotonically 
decreasing function of time, though the rate of fall is less than 

if the impurities were absent. At the time of the disruption, the 
value of q(o) is 1.07 and q > q(o) everywhere, hence both sawteeth 
and m = 1 Mirnov oscillations would not be detected experimentally.

The plasma actually recovers from this disruption, the central 
temperature recovering to a value close to that governed by the 
requirement of energy balance. It must therefore be interpreted as a
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minor disruption.
In the following cycle (not shown), q(o) < 1 and so the 

m = 1 mode is destabilised. Since the current profile is flat at 
the axis and the shear is small, the m = 1  island can rapidly grow 
and connect with the other islands across the entire minor radius.
This causes a major disruption similar to that described in Chapter VI, 
though clearly the events prior to the disruption are rather different.

Ihe current and temperature profiles at the time of the minor 
disruption (t « 45 ms) are illustrated in Fig.(7.3).

7.3 SUMMARY

In this chapter, the results of a calculation, where the effects 
of impurities residing close to the magnetic axis, have been presented. 
As previously stated, the calculation illustrates a principle rather 

than describes the details of a particular experiment and must 
therefore be treated within that context. %

Applying a Poynting flux at the wall and thereby ramping 

the total current, the plasma state is evolved. Behaviour similar to 
that described in Chapter VI is observed.

Ihe important result of the calculation is that a disruption 

is able to occur without the presence of an m = 1  island within the 
plasma. Ihe impurities serve the same function as the m = 1  island, 
restricting the amount of current able to flow and thereby 
steepening the current gradient within the 2 / 1 resonant surface.
Ihis broadens the conditions under which disruptions can be explained 

within the scope of the quasi-linear model.
The common feature of all the calculations which have resulted 

in a major disruption is the connection across the entire minor radius
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Fig.(7.3) Current and temperature profiles at the 
time of the soft disruption, t ^ 45 ms.
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of magnetic islands. The disruption illustrated in Fig.(7.2) at 
t ~ 45 ms was described as being 'minor' albeit a particularly 
severe minor disruption. The classification 'minor' was used 
purely because the plasma was able to recover. It is debatable 

whether, under experimental conditions, the plasma would be able to 
recover. The influx of edge impurities could contract the current 
channel and drive a hard disruption similar to that described in

section 6 .2 .
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CHAPTER VIII

8.1 SUMMARY AND CONCLUSIONS
In this thesis, we have considered various aspects 

appertaining to disruptions in tokamaks.
In Chapter I, by way of an introduction, the experimental 

signatures, precursors and effects of disruptions were briefly 
discussed. Experiment indicates that the theory of resistive MHD 
is an adequate tool to explain the main features of the disruption.
A brief review of resistive MHD theory was given and it was shown 

that the most important resistive mode in tokamaks, the tearing mode, 
must be treated non-linearly.

In Chapter II, a review of two theories of the disruption was 

given. Ihe two models were discussed and contrasted. Ihree 
criticisms of the mode-coupling model were raised and the line of 
argument subsequently pursued in this thesis was in investigating, 

clarifying and hopefully resolving some or all of those criticisms.
In Chapter III, the results of a quasi-linear calculation 

using the TRINIO computer code were presented. The motivation for 
such a calculation was to assess the importance of mode-coupling 
effects. It was found that the quasi-linear evolution was very 
similar to the fully coupled evolution with the important proviso 
that there was no evidence of a disruption having occurred. Ihe 
effects of a free boundary was discussed. The wall on the plasma 
has a stabilising effect and it was argued that future calculations
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should be performed with a free boundary.
In Chapter IV the numerical stability of RSF was examined.

It was shown that the code is prone to a novel numerical instability 

on account of its hybrid spectral/finite-difference formulation. In 
particular it was shown that the instability manifests itself by 

the growth of finescale oscillations on the toroidal current density 
profile. Since similar oscillations were seen in the published RSF 
results, it was considered that there was a need to perform a 
recalculation with a more stringent stability condition employed.

In Chapter V, the result of this calculation was presented, 
albeit with a smaller value of S and fewer modes. The details showed 
very similar behaviour to the quasi-linear calculation of Chapter III. 
Again no evidence of a disruption was seen to occur which supports 
the view that the evolution is quasi-linear rather than non-linear.

We conclude by recognising the need for a calculation with more 
modes, performed at higher S.

In Chapter VI, a calculation showing how the plasma evolves 

from a marginal state to a disruptive one was described. A sequence 

of minor disruptions terminated by a major disruption are observed 
to occur. It was shown that the magnetic islands act like 'pumps', 
forcing the current towards the axis on a timescale faster than if 

it were to diffuse inwards. Ihe conditions occurring prior to major 

and minor disruptions were delinated and the results compared with 
those observed in experiment.

In Chapter VII, the concept of the m = 1 mode restricting the 
current flow on axis being instrumental in triggering the disruption 
was broadened to when there was no q = 1 surface in the plasma. It 
was suggested that the results could explain those disruptions where
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neither sawteeth or m = 1 Mirnov oscillations are observed.

All our results support the conjecture that the following 

elements are required in order to cause a major disruption.

1 ) A large magnetic island intersecting the limiter or 

cold plasma mantle

Present tokamaks operate at high currents, implying 
that q(a) is low, q(a) ^ 3. The obvious candidate for 
this mode is the m/n = 2 /1 .

2) An intermediate large magnetic island in the central 

region

The presence of such an island, resonant between the q = 1 
and q = 2 surfaces, ensures a thermal short circuit across 

the entire minor radius, though this condition is not 
strictly necessary.

3) A method of restricting the amount of current flowing about 

the magnetic axis

It has been shown that the m = 1 island and impurities 

have equivalent effects.

The three elements above are able to explain disruptions 

without appealing to the effects of mode-coupling.

8.2 OUTSTANDING PROBLEMS IN THE STUDY OF TOKAMAK DISRUPTIONS

In this thesis we have examined a few aspects of a large and 
particularly rich field in plasma physics research. We have concentrated 
upon two theories of the disruption (one admittedly being the 
'consensus view') and our findings must be contrasted with other
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theories and with experiment.
The immediate future work must resolve the questions raised 

at the end of Chapter V, namely, does the inclusion of many other 
modes and a larger value of magnetic Reynolds number substantially 
affect the previous results? The boundary conditions must also be 

changed to relax the constraint of the plasma surface also being 

a flux surface.
It would be desirable to find an analytical explanation for 

the form of A*(w) close to disruptive conditions. At present, the 
form of A* can be inferred from numerical calculations alone.

All the calculations described have been performed in periodic 

cylindrical geometry with ordering appropriate for small aspect-ratio 
tokamaks. This precludes direct applicability of the results to the 
new generation machines. In machines like JET and the 'BIG-DEE' 
(DOUBLET III upgrade), the shaped cross-sections and tight aspect- 
ratio allow toroidal coupling effects to become important. This 
may have important effects on the confinement properties of the 
plasma. Furthermore, the new machines are designed to operate at 

large values of &. The Shafranov shift associated with high-B 
effects introduces an important asymmetry into the system which we 

have neglected. All of these effects must be investigated in the 

future if the disruptive instability is to be avoided in tokamak
fusion devices.
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