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A scheme is proposed and analysed for a fault-tolerant multiple 

microprocessor processing module suitable for use by a functionally 

modular multi-processor system, which is based on a loosely coupled 

approach. The module has been organized as a gracefully degrading 

system and makes use of redundancy in the multiple-resources to gain 

increased performance and reliability. A control scheme for the 

operation of the module has been devised which (X) takes into account 

the operational states of the modules; (b) achieves module parallel job 

processing; (c) preserves module file consistency and integrity; and 

(d) implements the automatic reconfiguration of the module in the 

event of a fault. Queueing and Markovian models have been developed 

for the performance and reliability analysis of the module under the 

control of the scheme. Comparisons have been performed with several 

other module structures. Simulation has been used to evaluate the 

analytical model.

The problem of correct diagnosis of a fault situation existing 

within and among modules has been studied. Diagnostic procedures in 

relation to internal module and system fault-diagnosis have been developed.

A reliability model for fault-tolerant multi-microprocessor 

systems has been developed based on Markov modelling techniques. In 

this method, the system has been treated as a set of non-homogeneous 

sub-systems where each suo-system can consist of multi-state modules.



General analytical expressions associated with this modelling technique 

have been developed which when given the system parameters allow

(a) the structure of the model to be defined, (b) all 

transitions within the structure to be defined and (c)

the possible 

the reliability

of the system to be estimated.
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CHAPTER 1

m
INTRODUCTION

1.1 The Real Time Multiple-Process System Problem and General

* Consideration

*

*

«

Nowadays very complex circuits are being produced using the 

techniques of VSLI. When these circuits can be used in many situations, 

they become economic due to their mass production. The microprocessor 

is one such device and is having a profound influence upon the design 

of real time multiprocess systems, such as in telephone exchanges.

By employing microprocessors distributed control and circuit duplication, 

becomes a reality.

The advantages of distributed control include the possib

ility of moving the activity from the central processor, it allows 

for modularization and permits parallel processing. System reliability 

can be achieved by partitioning into functions and these units can be 

duplicated to enhance the system security.

One critical characteristic of telephone exchange is that 

they should be fault-tolerant. For example, when an exchange depends

upon one essential unit, this unit must be secure. Security 

is frequently obtained by having multiple resources. This is parti

cularly the situation in central processor systems, where the control 

is concentrated in one processing unit.

In a system which employes a central processor, the processor 

has to have a large capacity and be a fast machine. Such machines
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are generally prone to security problems. To duplicate machines 

at this level is complex and expensive. Telephone exchanges have to 

be designed so that a total failure of the exchange should not exceed 

a down time of more than 2 hours in 40 years and individual calls 

lost by the system should not exceed more than 2 calls in 10.000.

». These figures are very difficult to achieve with central processing.

If the operation and switching of an exchange is not dependent upon 

praticular units being available then the overall reliability is 

enhanced and there is less likelihood of individual subscriber’s calls
V

being lost due to a fault. This type of arrangement is referred to 

as being fault - tolerant. Faults may occur in units, but they can 

be automatically by-passed, alternative paths being available. A.s

microprocessors, pluse code modulation (PCM) and multiprocessing are 

t being introduced into switching systems, designers of systems are

enabled to use these new techniques and completely new architectures 

r in order to achieve the reliability goals.
i When the tasks of an exchange are seperated and performed 

by dedicated units this is referred to as functionalization. Each 

t  function can be subdivided and duplicated. The control for the

functional units can then be localised and, communication with other 

functional units is only when information has to be passed to and fro. 

Units can now operate relatively independently of each other. This
K

system is now a distributed system where processing can be carried out 

in parallel. The microprocessor is ideal for the localised processing 

j unit and has enabled this approach to be considered.
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1.2 Aims of the Project

The purpose of this work is to investigate an approach that 

could be adopted for using microprocessors, or groups of micro

processors and which would be suitable for telephone exchange control.

* The approach is based on the following aims:

a) To partition the control functions into a number of distinct

tasks. This results in a functionally distributed (i.e. decentralized )

control. With the processing tasks being partitioned it should be 

possible to distribute the processing facilties near to the functional 

units. Dedicated microprocessors, or groups of microprocessors,
%

can then be assigned to perform the processing aspects of the functional

4 units. Ideally this technique should increase the processing

throughput as it will constitute distributed and parallel processing.

• This type of distributed and parallel processing for telephone exchanges 

also enables parts of an exchange to be distributed over a wide area.

• b) To limit the field of activity of each microprocessor, or
•j*processing module , so that should it become unreliable only certain 

aspects, or parts of the exchange functions, will be affected.

*

c) To use more than one microprocessor per module, with each

microprocessor being capable of carrying out all the tasks. This 

is with the view to enhance the overall system reliability and 

performance. 

i* By processing module we mean a processing unit consisting of a 
group of microprocessors, dedicated to execute several specified 
tasks.
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1.3 Background and General Considerations

K

*

♦

*

In general there are two ways of organizing multimicroprocessor 

systems. One approach, called 'tightly coupled' Cl], consists of 

a group of processors, each processor being capable of executing all the 

tasks and they share a common memory block. When a task comes along 

it is allocated to a free processor. Each processor therefore has 

to be able to access all the data and programs. The block diagram 

representation of this approach is illustrated in Fig 1.1(a). A 

second approach, called 'loosely coupled' [23, consists of a group 

of processors, each processor being dedicated to a particular group 

of tasks and has its own local memory. The block diagram representation 

of this approach is illustrated in Fig 1.1(b).

Although, both approaches can be adopted to implement a 

functionally distributed control system, the loosely coupled approach 

is the one which permits localized and independent processing. As a 

result, the processing facilities of the exchange can be distributed 

over a wide area and also near to the tasks. Nissen and Geiger [33 

have demonstrated the application of one fault-tolerant multimicro

processor system, based on the loosely coupled approach. The loosely 

coupled approach was adopted by Nissen and Geiger in contrast to tightly 

coupled approach for the following reasons :

1 A distributed control system can be achieved with independent

processing modules.
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2. Errors introduced by a processing module can be confined 

more easily to the task of the module. Shared resource systems 

are particularly vulnerable to faults that can contaminate the 

shared resources (j^g*, common memory) and can result eventually 

in complete system failure.

3. As processors are added to tightly coupled systems, with the 

aim to increase the working capacity, competition for access to 

shared memory blocks can eventually reduce the effective processing 

power. Loosely coupled systems do not have this 'store contention' 

problem, but may suffer from bus contention problems.

4. Modularity in loosely coupled systems is generally easier 

to achieve.

5. The operating system can be distributed between processing 

modules.

6. System update, due to processing modules being independent, 

can be easier.

Nissen and Geiger state that there are three main problems with the 

loosely coupled approach :

1. A larger amount of memory is required.

2. Software must be partitioned to avoid common memory.' This 

can be achieved by dividing the software into processes which do not
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have a common variable. Avoidance of common variables is also 

desirable for reliability.

3. Communication between different modules can be relatively slow.

1.4 Scope and Outline of the Project

The work carried out under this research project has been

to investigate a scheme for a fault-tolerant multiple-microprocessor
+processing module suitable for use by a functionally modular multi

processor system, based on the loosely coupled approach. The block 

diagram of one such processing module is given in Fig 3.1. The 

module consists of a group of microprocessors, each having several 

local memories under its control. The module is intended to execute the 

jobs associated with a number of processes. The jobs arrive through 

a local common queue configuration which is employed by the module.

The microprocessors store in their local memories copies of the files 

associated with the different processes which are executable on the 

same module. That is, the module stores replicated copies of its 

files within itself. Under these conditions the processing module 

becomes a distributed data-base system, with the need for module file 

consistency and integrity. By employing the above approach the 

following two advantages can be gained.

a) Within the module itself a certain amount of parallel processing

t Functionally modular implies a system where individual modules, 
or groups of modules, are given certain functions to perform; 
these functions are executed in parallel.
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can take place. This is because the individual microprocessors 

within the module have access to the data-bases of the particular 

processes which are assigned to the module. This approach is referred 

to as ’module parallel job processing’.

b) The module can be organized to make use of its multiple 

resources (i.e., microprocessors and memories) to give gracefully 

degrading performance, which increases its reliability. That is, 

the resources already available in the module can be reconfigured 

to give a graceful degradation of service when portions of it fail.

Under this research project a control scheme for the operation of 

the processing module has been devised. The scheme allows for 

concurrent execution of tasks within the module and achieves module 

file consistency and integrity.

The distributed exchange control system produced as a result . 

of employing this type of processing module has, in addition to 

those already mentioned in Section 1.3, the following features:

1. The system can have its own internal module organization, 

which can be independent of the exchange configuration, and which 

allows;

(a) internal module parallel job processing to be achieved, 

and (b) module file consistency and integrity to be preserved.

2. This modular approach localizes and eases the concurrency 

problems. For example, in a two-processor module, when two tasks



are started by the module, then there is a danger of a task on 

one processor modifying the file being used by the second task on 

the other processor. This can cause errors as the data in the 

files is not stable. This is referred to as file violation.

In the proposed scheme the queue organizer and the control procedure 

can allow concurrent execution of module tasks and prevent module file 

violation.

3. The system provides an easily managed and secure distributed 

data-base. The data and its replicated copy required by a trans

action are located at one site (i.e., in the processing module). 

Consequently, the execution of tasks on the files and the updating of 

the replicated copies are performed (locally) within the modules.

4. A modular system can be organized so that replicated copies 

of files appear within the module and not in a separate location. 

Other modules requiring information from these files would have to 

request the data, but would receive the latest, updated version.

This request forms one of the tasks of the module whose file is 

being requested, and will have to be queued with the other tasks 

being performed upon that module. This could cause some delay in 

response.

5. In this system, when replicated copies o± files are contained 

within a module, updating is internal and does not involve the 

communication highways. Another module wanting information 

requests a limited amount of information only when it is required,
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and thus should therefore reduce the traffic on the highways.

6. This type of modular system leads to a reduction in the directory 

and status information required on the conditions of individual

files.

7. This type of modular processing system, which employs more

than one processor per module, each being capable of carrying out 

all the module's tasks, is more reliable than when one alone is used. 

This makes the module fault-tolerant. Provided one processor is

functional, the module is capable of performing its functions, although 

the processing power may be reduced. When a fault is detected 

within the module, the control scheme reconfigures the module so that 

the faulty aspect is isolated. The rest of the module then is enabled 

to execute the full repertoire of tasks that it normally can perform, 

in the fault-free condition. Subsequent component failures either 

degrades the processing power further, after reconfiguration, or 

makes the module non-operative, i.e., a complete failure.

8. This type of modular processing system, where individual 

modules, or groups of modules, are given certain exchange functions 

to perform, and where these functions are being performed in 

parallel and in relative isolation by the appropriate modules, can 

lead to an increased system throughput. However, there is a 

need for some information transfer between modules. This can be 

achieved via a communication network. The network could be a message 

type network. The advantage of using a message network is that the
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9. In this system, fault-diagnosis can be localized, i.e., can 

be applied to the individual processing modules. This is because 

when several microprocessors are included within a module some self

testing can be performed. When a fault is indicated test routines 

can be carried out, and when confirmed, either reconfigure the 

module or transfer its functions to other modules. This can be 

achieved whilst other modules are performing their normal routines and 

without deleterious effects.

10. This type of modular hardware system, which allows functions 

to be carried out in semi-isolation from each other and the main 

control, eases the workload of the operating system. This can be 

achieved by partitioning the software of the system.into small 

packets, or modules. Each hardware module will have its own 

software, and in general these functions will be executed at the 

same time and independently. As a result, the overall system soft

ware is smaller and has fewer tasks to perform and supervise.

1.5 Summary of the Work. Done and Outline of the Present Thesis

A scheme is proposed for a fault-tolerant multi-microprocessor
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processing module suitable for use by a functionally modular multi

processor system, which is based on the loosely coupled approach 

and this has been investigated. The system is considered to be

suitable for control of telephone exchanges and allows for modular

ization as well as decentralization of exchange control functions.

The scheme permits distributed and parallel processing.

The module consists of a group of microprocessors each having 

several local memories under its control (see Chapter 3). The 

module is expected to execute the jobs associated with a number of 

processes. The jobs arrive through a local common queue configuration 

employed by the module. In addition, the microprocessors store 

in their local memories copies of the files associated with the 

different processes executable on the same module. Under these conditions 

the processing module becomes a distributed data-base system, with 

the need for module file consistency and integrity. Under this 

scheme (i.e. due to the multiple resource environment of the module) 

it is possible to execute jobs in parallel within the module.

Moreover, due to the multiple resources (i.e., microprocessors and 

memories) of the module, when internal faults occur, it is possible to 

reconfigure the module in order to achieve reliability.

Without loss of generality the descriptions and the analysis 

have been based on a two-microprocessor module, with each micro

processor having a pair of local memories under its control.

By employing the above approach the scheme for the module has 

been organized to give gracefully degrading performance to enchance 

its overall reliability. In the gracefully degrading module (see 

Chapters 3 and 4) when a fault is detected the module is internally
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reconfigured to a new operational state, which may have a different 

computation capacity. For the module under investigation the 

operational states, under the different possible combinations of 

module component failures have been defined. There are operational 

states in which the module operates at full capacity (i.e., executes 

the tasks associated with all its processes); others in which it 

operates partially (i.e., losses the processing power associated 

with one of its processes); and a state in which the module fails 

completely.

A control scheme for the operation of the gracefully degrading 

module has been devised (see Chapters 3 and 4) which :

a) Takes into account the operational states of the module and 

co-ordinates the activities of the module according to its new state.

b) Achieves module parallel job processing in each state (if 

applicable).

c) Preserves module file consistency and integrity in each 

state (if applicable).

d) Implements the automatic reconfiguration of the module as a 

result of detected faults, and causes the module to transfer to a 

new state, after having reconfigured the module and its control 

procedure to that new state.

The control scheme incorporates a diagnostic state which is
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entered whenever a fault is indicated. As appropriate, when in this 

state the scheme allows the module to be tested either internally 

by the module’s microprocessors, or externally by a diagnostic sub

system. The diagnostic state employs an algorithm which uses the 

diagnostic test results to determine the new operational state of the 

module.

The problem of correct diagnosis of a fault situation existing 

within and among modules has been studied (see Chapter 4). The 

studies, which are based on the availability of diagnostic test 

results, are made on the feasibility and the organization of (a) 

internal module fault-diagnosis, and (b) system fault-diagnosis. 

Diagnostic procedures in relation to internal module and system fault- 

diagnosis have been developed.. These employ the Algorithms presented 

by Masson and Meyer L 4].

A queueing model has been developed (see Chapters 3 and 4) 

for the performance analysis of the module under the control of the 

scheme. The performance index is the average service time of the 

module. From average service time a variety of other performance 

parameters have been derived as dictated by the queueing model. The 

analysis involves appl ication of probability and queueing theories 

to the module under the control of the scheme. Using the queueing 

model, performance parameters have been defined and analytical 

expressions have been derived which can be used to estimate the 

performance characteristics of the module.

Markovian models have been developed for the performance- 

related reliability analysis of the module (see Chapter 5). The 

analysis involves application of reliability block diagram and time 

and computation domain transition rate diagram techniques to the
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module under the control of the scheme. The need for such models 

is especially clear when processing systems are used in applications 

where both reliability and performance are important. The performance- 

related reliability indices are the mean computation before a failure, 

the computation reliability, and the computation availability of the 

module. These measures (a) reflect the interaction between the 

reliability and the performance characteristics of the module, (b) 

give an insight into the expected response of the system to a 

computational demand, taking into account various module characteristics, 

and (c) give some basis for the evaluation and comparison with other 

systems.

The module structure has been compared with several other 

structures (see Chapter 6). The module under investigation is 

found to be the most promising of all the systems when considered 

overall the defined performance variables. The analysis involves 

definition of appropriate performance measures (e.g., response and 

waiting time-related reliability indices) and development of 

Markovian and queueing models for the performance analysis of the 

systems. Simulation has been used to evaluate the analytic models.

In Chapter 7, a reliability model has been developed which 

is based on Markov modelling techniques.

The model can be used to analyse fault-tolerant multi-micro

processor systems consisting of an active configuration of 3-operational 

state and 2-operational state modules. The model assumes that the 

system is supported by two banks of different types of space modules.

The model takes into account both the located and unlocated modes of 

failures, whether in an active module, a spare module in active status,



or a spare module in spare status. General analytical expressions 

associated with this modelling technique have been developed which 

when given the system parameters allow (a) the structure of the 

model to be defined, (b) all the possible transitions within the 

structure to be evaluated and defined, and (c) the reliability of 

the system to be estimated.

Much work remains to he done in (a) extending this modelling 

to repairable systems and to systems which allow a degree of system 

graceful degradation, and (b) developing an efficient, interactive 

software package in order to perform the automated reliability 

analysis.

The final chapter is concerned with conclusions and comments 

regarding further research.
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CHAPTER 2

A REVIEW' OF MULTIPROCESSOR SYSTEMS, INTERCONNECTION 

NETWORKS, AND RELIABILITY MODELS

2.1 Itroduction

The aim in this chapter is to review previous work on dis

tributed multi-microprocessor systems in order to give an idea of 

the current state-of-the-art of the distributed systems. To start 

with, some basic strategies by which a distributed multi-microprocessor 

system can be structured will be stated. This will be followed by 

a review of some representative systems. Following this a brief 

review of some theoretical studies for the reliability and performance 

analysis of distributed multiprocessor systems will be presented.

Finally, a review of some recent design trends towards the implementation 

of a distributed microprocessor-controlled digital switching system 

will be presented.

2.2 Some Basic Multi-Microprocessor Architecture Strategies

The development of low-cost VLSI hardware has made it possible 

to realize highly parallel and distributed multiprocessor systems.

The reasons for designing such systems are manifold, the principal 

among these being throughput improvements and reliability or fault 

tolerance.

The architecture of a distributed multiprocessor system
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consisting of a number of processors is characterized by its 

coupling and control schemes, these include

a) the Bus - time-shared common bus; switch-controlled multibus.

b) The Memory - large common memory with or without private 

memory; large private memory with small common 

memory.

c) The Interconnenction Control - Centralized interconnection

control; distributed interconnection control.

Each of these features carries certain advantages but also 

have a number of drawbakcs. Just to mention some briefly.

The time-shared common bus requires the least hardware complexity and 

system cost, but it is likely to provide the lowest system efficiency 

and a limited expandability. Switch-controlled multibus provides 

the best chance for high system efficiency and data-transfer rate,

but the switch matrix is often complex and costly. Centralized inters 
connection control achieves higher control efficiency, but its modularity

and survivability are poorer than those of distributed control 

which in turn can allow the designer to configure symmetrical systems 

using identical modules.

In general, multiprocessor architectures have been characterized 

by two complementary strategies. These are determined by the choice 

of the adopted coupling and control schemes. One case is the multi

processor system, where the processors are "tightly coupled".
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The term tightly-coupled is used as the processors share a high 

preformance memory [51* [61* [71. Interprocess communication 

is very effective in such systems. In addition, large common memory 

seems ideal for the sharing of information and for the co-ordination 

of the execution of different tasks. However, interconnection com

plexity and memory contention have limited such systems to a few 

known processors C8l» [91* ClOl. Other complications arise from 

(a) the need to prevent contamination of private data in the common 

memory. This imposes stringent requirements on the hardware and the 

software design; and (b) the use of local (private) cache memories 

and hence the subsequent loss of performance. Cache memories are 

needed to ensure the close coupling of processors and memories [111.

On the software side, concurrent access to shared memory introduces 

’’system contention” [121 and hence the need for synchronizing control. 

’’Loosely coupled” multiprocessor systems are where processors and 

dedicated memories are interconnected through a message passing 

local network [131* [141. In this situation the absense of complete 

interconnection makes it possible to consider using many processors. 

However, multistep message .passing introduces a communication overhead.

The presence of private memory, with a small common memory, alleviates 

the contention and contamination problems, but the data-transfer rate 

may suffer [153.

The evolution of distributed multiprocessor architectures 

has recently shifted from an emphasis concerning hardware utilization 

to such issues as fault-tolerant computing, flexibility and expandability, 

processor networking, and also system performance.
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Novel architectures have been developed and even reconfigurable 

architectures have been considered. The latter can be achieved 

by allowing reconfigurable topology of connections between processors, 

this approach provides more flexibility and a better performance.

Although in Computer systems a formal definition of recon

figurability does not exist, one author has referred to it as ’’the 

partially software-controlled variations in a module’s interconnections”

C163 - In this type of system, under software control t the architecture 

allows some features to vary, such as connections of processors with 

memory modules, I/O devices etc. . Lipovski and Tripathi [17] use 

the term ’configure’ to mean ’to connect resources to the processor in 

order to use it more effectively’. According to Miller and Cocke [183 

in configurable computers, ’the machine structure should attain 

the natural structure of the algorithm being performed’. Mehra and 

Majithia [193 have defined reconfigurability based on the proper 

matching of program parallelism with machine parallelism. They have

argued that since there are two types of parallelism in programs,
1*i.e., data and instruction parallelism , and that, in general, programs 

have varying degrees of data and instruction parallelism in them, then 

a more useful definition of reconfigurability is ’the dynamic 

partitioning of resources to execute more effectively programs with 

varying degrees and types of parallelism’.

data parallelism, is where a single instruction operates on multiple 
data times.

Instruction parallelism, is where the computation can be divided into
several independent tasks that can be 
executed in parallel.
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2.2.1 Dynamic reconfigurability, to give high performance

To a certain degree, some of the features mentioned in the 

preceeding section can be seen to be present in existing architectures 

which use topological reconfiguration techniques in order to achieve 

high performance (i*e. flexibility in application and generality 

of utilization). For example, shared memory multiprocessors, such as 

the C.mmp [201, make use of a reconfigurable switch to connect 

various functional units, (e.g., processors, memories, etc.). The 

common switch tries to minimize the delay of communication between 

these units. Examples of switches used are the time-shared bus, 

the crosspoint switch, and the multiport memory.

Another reference to the variable-structure problem-oriented 

concept appears in a paper by Paker and Bozyigit [21]. Here they 

describe a multicomputer system that may assume a star connection 

for real-time computations, an array structure for the solution of 

differential equations and an irregular structure for system simulation.

Another example of reconfigurable processor is 

the array computers, such as the ILLIAC(IV) C22), which used interconnection

networks with limited connectivity. However, these are only suitable 

for one class of applications. Due to the absence of multiple instruction 

streams, the preformance degrades owing to the problem of processing

element idleness [231.
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Reconfigurable architectures have been used to provide re

liability and fault tolerance. Here the topology is used to 

give alternative processing facilities and hardware so that in the 

event of a failure the topology can be reconfigured in order to 

provide continuity of operation.

There are two extremes in the ways in which a reconfigurable 

distributed system can adapt to overcome failures. The first method 

is to temporarily stop processing in order to assess the situation 

and then to restructure the architecture, after which the processing 

can be resumed. The other method, which provides continuous operation, 

is through the automatic bypass of faulty units. Which

strategy is best adopted depends upon the requirements of the application, 

the expected failure rates, and the costs of implementation. For 

systems where continuous operation is required, a break in service 

not being acceptable, then the second approach is necessary. The 

cost of implementation in such systems is much increased due to 

the fact that more hardware, and software, are necessary and more 

complex procedures have to be employed.

The concept of fault-tolerance is an important component 

of a crash resistant distributed multiprocessor, and thus there is 

a considerable amount of reported work C243 - [25] etc.

In the following a review of some representative multiprocessor 

systems which have been based on the above strategies will be presented.



2.3 Review of Previous Work on Distributed Multiprocessor Systems

In this section we review some multiprocessor system proposals 

which have been based on ’tightly coupled’,’loosely coupled’,

’fault-tolerant’, and ’reconfigurable’ concepts. We begin by de

fining and describing some multiprocessor structures and interconn

ection schemes.

2.3.1 Definition of multi - microprocessor reconfigurable architectural 

structures

A SIMD (single instruction stream-multiple data stream) 

organized machine C263 , is a machine which consists of a control 

unit, N processors, N memory modules, and an interconnection 

network. The control unit broadcasts instructions to all of the 

processors, and all active processors execute the same instruction 

at the same time. Thus, there is a single instruction stream.

Each active processor executes the instruction on data in its 

own associated memory module. Thus, there are multiple data streams. 

The interconnection network provides a communications facility for the 

processors and memory modules C273 . The Massively Parallel Processor 

(MPP) [29] is an example of an SIMD.

A MIMD (multiple instruction stream-multiple data stream) 

organized machine [29] , is a machine which consists of N processors 

and N memories, where each processor can follow an independent 

instruction stream. As with the SIMD architectures, there are 

multiple data streams and an interconnection network. Thus, there
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are N independent processors which can communicate among themselves.
*

Cm C303 is an example of an MIMD organize machine,

A MSIMD (nulltiple-SISD) organized machine is a machine which 

consists of a parallel processing system which can be structured as 

one or more independent SIMD machines (e.g., the MAP [311).

A partitionable SIMD/MIMD (PASM C321), is a machine which 

can be configured as one or more independent SIMD and/or MIMD machines 

(e.g., the Divide and Conquer (DAC) C333 which is a multicomputer into 

a tree interconnection network).

2.3.2 Review of some interconnection networks for multi-micro

processor systems

An important component of parallel and distributed multi

processor systems is the mechansim (i.e., the interconnection 

network) for information transfer among the computation nodes and memories.

Although, interconnection schemes have not been examined during 

the present work, it was felt that a brief review of some of these should 

be presented.

There are many connection methods, or topologies, for linking 

networks of processors. Each topology consists of active computing 

nodes connected by communication links. Because of the complexities 

of such systems assuring high reliability is a significant task. The re

liability of multiprocessor systems is a function of system structure 

and the fault tolerance of system components. Here, fault-tolerant 

interconnection networks can aid in achieving satisfactory reliability.

Thus an interconnection network used to meet system communication
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needs to be fault-tolerant. Reliability can be enhanced by the

provision of alternative paths for the routing of massages in order 

to overcome the situation of a fault in either a node, or a comm

unication link ,

Interconnection schemes which have been proposed for use in 

parallel and distributed multiprocessor system can be categorized 

as in the following subsections.

2.3.2.1 'Passive-link* interconnection networks

%

*

Passive-link interconnection networks such as ring [34], 

star [35], tree [36]C37][383,completely.connected mesh [39J, 

global bus [40][41], and hypercube [42] network (see Fig 2.1) have 

all been proposed for linking networks of processors.

There is a considerable amount of literature describing 

the above network interconnection schemes [43] - [47]. Wittie [9] 

has examined and compared the reliability in recovery from single 

node failures of several 'passive-link' network interconnection 

schemes. In conjunction with several other performance evaluation 

criteria (such as average message delay, ease of routing messages 

between nodes, total connection costs, etc). Wittie has concluded 

that the highest valued topologies among those considered are the 

dual-bus hypercube [48] and the cube-connected cycle [49] . The 

dual-bus hypercube connection scheme has several possible advantages, 

these are:

CD the connection scheme is modular, and flexible, it can be easily



extended to a large number of nodes by adding buses with new nodes 

on them.

2) the connection pattern is highly redundant so

alternative routes can be used to bypass failed components.

2.3.2.2 Reconfigurable cube-type networks

Reconfigurable multistage switching, or cube type networks, 

such as the Banyan [50], Omega [51], suffle-exchange [5’J, indirect 

binary N-cube [6], base-line [52], deta [53], and Generalized Cube 

[54] have been proposed for use in parallel/distributed processing 

systems. These have been extensively examined and compared in the 

literature [55] - [58].

The Generalized Cube (see Fig 2.2(a)) is representative of the 

above networks in that they are all topologically derivatives to it 

[59] , [54], [52]. These networks have frequently been suggested 

for data routing in SIMD machines, although some could be used to 

interconnect MIMD nodes. The problem with Generalized Cube topology 

is that there is only one path from a given network input to a given 

output. Thus, if there is a fault on that path, no communication 

is possible.

The Generalized Cube network is a multi-stage cube-type 

network topology which was presented in [54]. This network has 

N input ports and N output ports, where N = 2n , and n is the 

number of stages. Input and output ports are network interfaces

to external devices called sources and destinations, respectively,



50

*

A

%

%

these have addresses corresponding to their port numbers. The net

work ports are numbered from 0 to N-l. The Generalized Cube

topology has n = log N stages, where each stage consists of a set
N/of N lines connected to 2 interchange boxes. Each interchange 

box is a two-input, two-output device and is individually controlled. 

The interconnection network is described by a set of interconnection 

functions, where each is a permutation on the set of interchange box 

input/output line lables [54 ]. When an interconnection function is 

applied, input S is connected to output f(S) = D for all S,

0 _< S _< N, this can be performed simultaneously. Hence, the inter

connection maps the source address S to the destination address D.

Adams and Siegel [603 have proposed the Extra Stage Cube (ESC) 

network (see Fig 2.2(b)), a derivative of the Generalized Cube net

work which has fault tolerance and the capability of operating in 

both SIMD and MIMD (293 environments. The ESC consists of a 

Generalized Cube with an additional stage to allow for the bypassing 

of either the extra stage or the output stage. The extra stage 

provides an additional path from each source to each destination.

Multistage networks have been proposed for many systems.

These include PASM [323, PUMPS [613, the Ballistic Missile Defence 

Agency distributed processing test bed [623, [633. Ultra computer 

[643, the Flow Model Processor of the Numerical Aerdynamic Simulator 

[653, and also data flow machines [663. The ESC, as indicated by 

Adams and Siegel, can be used in any of these systems to provide 

fault-tolerance in addition to the usual cube-type network comm

unication capability.
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Cluster structure interconnection networks, such as the 

generalized cluster structure C673, hypercube structure similar to 

the one proposed by IVittie [683, hierarchical structures similar to 

the one proposed by Harris C693, and tree structures similar to the one 

proposed by Keller [703 have been suggested for interconnecting 

numbers of microcomputers. These structures have been discussed 

in the literature and are representatives of suitable structures for 

interconnecting processors. The above structures do not provide 

alternative paths for communication. However, additional paths can 

be added to allow fault tolerance. This has been demonstrated 

in structures such as dense snowflake [433, multiple hierarchy 

organization [693, and Binary and X-tree [153[713.

In general, a cluster structure is an interconnection scheme 

in which system components are grouped into levels of subclusters.

A  system component can be a processor, a memory, a processing element 

(PE), or a microcomputer system [723, [733. Such an interconnection 

with a cluster organization can be seen as follows: 

several system components are grouped into a level-1 sub- cluster; 

several level-1 sub-clusters are grouped into a level-2 structure ; 

and so on. Thus, a cluster structure can be described as a hierarchial 

organization with levels of subclusters. Wu and Liu [133 have proposed 

a cluster structure using shared buses for interconnecting large 

numbers of processors for parallel and distributed processing. The 

structure proposed by Wu and Liu is a loosely coupled machine (i.e., 

no shared memory) which can also be viewed as a functionally distributed



system in which system resources are distributed over system nodes, 

each of which may be dedicated to provide a specific function. Wu 

and Liu have argued.that their cluster structure is among the best 

of all existing and proposed structures for interconnecting a large 

number of processors.. This claim has been supported by analytical 

results for the following observations, as indicated by Wu and Liu.

These are :

1) A cluster structure can have low interconnection cost and 

complexity. The cost of a cluster structure increases linearly 

with the number of system nodes.

2) Nodes in a cluster structure have a low degree of connectivity. 

Only in such a case, is it possible to interconnect a large number of 

processors under pin constraints and physical space limitations.

3) Due to the pin constraints and physical space limitations

of individual processors, direct interconnection between large numbers 

is limited. However, when connected in a cluster structure the desired 

connectivity can be achieved by a suitable network design.

4) A cluster structure can easily be extendable. The system 

size can be arbitrarily increased because of low interconnection 

complexity and modularity.

5) Control and routing in a cluster structure can be handled 

easily. In general, they can be handled level by level. The strategy
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and decision involved in control and routing within a subcluster 

is transparent to other subclusters. Therefore, control and message 

routing within a subcluster can be handled locally and easily.

6) Message delay in a cluster can be short. It increases only

with the algorithm of the number of system nodes.

Clearly, there are many interconnection structures that can be 

used for constructing large multiprocessor systems, each with their 

advantages and disadvantages.

It is difficult to analyze and compare the use of different 

structures due to the problems of defining and modelling them, and 

also due to the difficulties of assessing their affects upon system 

performance.

2.3.3 Review of some multi-microprocessor system proposals

In this section, the current state-of-the-art of the dis

tributed microprocessor systems is illustrated by a brief review of 

some representative systems. To start with, DATAPAC SL-10 [741, 

is an example using time shared interconnection bus and large common memory. 

SL-10 is a special purpose system for servicing telephone subscribers. 

Several sets of control, trunk, and line modules are linked by a 

common bus to common memory module of primary and secondary stores.

Each processing module has its own private bus and memory, which are 

not accessible by others. SL-10 is an asymmetrical system, as different 

modules are designed for different functions.
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C.mmp C2Q] is a distributed computing system using switch-

controlled interconnection buses and large common memory. It consists

of a maximum of 16 mini-computers (POP ll/20s and ll/40s), each with

a 4k private memory. These processors are linked to a centralized

crossbar switch through address translators. The crossbar

switch allows sharing of a large memory system of up to 16 modules
*

under centralized control. A version of this is the Cm [753, [30],

which uses mixed coupling and control schemes. A cluster of

DEC LSI-11 microcomputers are coupled by a time-shared map bus, and

then the map bus is linked to other clusters through a K.map, which

is itself a high performance processor. Each K.map can be connected

to two intercluster buses which are communication paths between different

clusters. A microcomputer is connected to a map bus through local

switches. Data interchange between microcomputers of different

clusters is centrally controlled by the K.map and local switches.

The memory of each microcomputer can be accessed by others. Thus 
*

Cm is a system with a large shared memory implemented distributively.

The interconnection control is distributed in the cluster level. So, 

a cluster fails whenever the K.map fails, and the cluster becomes 

logically detached from the rest of the system.

MIDSS [76] , is a system employing a small shared memory, 

called the mail-box. The microprocessor-controlled data preprocessor 

SPACE PIPE passes data to the host computer (PDP 11/40) via the mail

box. To allow sharing, the mail-box is implemented by multiport 

memory modules.

PRIME [77] is a prototype of a fault-tolerant multiprocessor 

system. The PRIME system of University of California, as illustrated
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in Fig 2.3, consists of the following resources:

intelligent modules (IMs) consisting of one processor 

unit and its associated input-output controller and memory map,

primary memory modules (MMs),

*

external access networks,

external devices, such as disk drivers etc. .

♦

4

#

PRIME was configured as five distinct subsystems each one 

consisting of one IM and up to three MM. The assignment of resources 

to subsystems is dynamically reconfigurable. PRIME has been designed 

for graceful degradation. The resources can be taken off-line while 

they are subject to tests and diagnostic routines independent of 

the main processing system. For the computer system to be operable 

a minimum number of subsystems have to operable.

Arnold and Page C781 have proposed a hierarchical restructurable 

multiprocessor architecture that consists of a large number of 

byte-slice processors interconnected through a system of buses. All 

interprocessor communication takes place on the various buses which 

are of two types :

time-shared buses, and circulating loops. In general, there is 

one processor responsible for designating subordinates, establishing 

the chain of commands and directing the subordinates in the tasks
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they perform, The system has a high degree of restructuring which 

allows it to appear as a parallel-array processor, an associative 

processor etc., as required. The system in the active state can be 

divided into a collection of groups of processors in a hierarchy of 

responsibility and control. Reliability is also enhanced through 

availability and restructuring in case of failure. The amount of 

interprocessor communication is quite significant because of the 

centralized control. The other disadvantages with this system are 

(a) the overall reliability is seriously affected by the presence of 

circulating loop, and (b) the data bus, which is a circulating loop, 

represents a bottleneck.

Lipovski and Tripathi [17] have proposed a banyan network 

for a reconfigurable partitioning multiarray processor. In this 

structure, as shown in Fig. 2.4, n-sliced microprocessors are 

connected to the apexes of the banyan network, and the memory 

modules, or I/o devices, are connected to the bases. The set of 

devices is partitioned, and a bus-like interconnection for each 

block of the partition is set up. Each bus-like interconnection is 

a bidirectional tree, such that any device on any leaf of the tree 

can broadcast data to all the other leaves of the tree. For

task execution, data and instruction trees, as shown in Fig. 2.4, 

are set up, which are respectively used for connecting memory and 

I/O units to a processor and for connecting processors through a 

memory or I/O module. It is claimed that the proposed design is 

suitable for large problems as well as concurrent execution of many 

small problems.
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Arnold and Nutt [31] have proposed a reconfigurable multi- 

associative processor (MAP), shown in Fig. 2.5, which allows each 

process to be decomposed into tasks which can be classed as SIMD. 

Depending upon the task, each control unit may be assigned a number 

of processing elements (PEs). The organization has eight control 

units (CUs), 1024 processing elements (PEs) and eight main memory 

modules (MMs). Each CU has a preferred module, meaning that 

a CU can access that module without using a shared memory bus; the 

CU can access any other module via the shared memory bus. A 

broadcast switch is used to route information from each CU to the 

PEs currently allocated to it, and between PEs sharing a common CU.

In order for a job to be executed, all instructions must be loaded 

in MM; PEs must be allocated to the CU on which the job is scheduled; 

and the PE memories (PEMs) must be loaded with the multiple-data 

streams. Comparison of various operating system strategies for 

this scheme, known as MSIMD, is given by Nutt [79],

Siegel C32] has proposed a dynamically reconfigurable system.

The multiprocessor system, called PArtitionable SIMD/MIMD system 

(PASM), can perform image-processing tasks for such applications as 

robot vision, automatic aircraft and air traffic control. The block 

diagram of the PASM is shown in Fig. 2.6. A SIMD set up can be 

used for the ’local' processing of segments of images in parallel, 

and an MIMD set up can be used to perform different 'global' image 

processing tasks in parallel. The 'heart' of the system is the 

parallel computation unit (_PCU), which contains N processors, N 

memory modules and an interconnection network. The PCU processors 

are micro processors that perform the actual SIMD and MIMD computations.
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The system uses a set of microprocessors which broadcast instructions 

to the PCU processors in the SIMD mode and co-ordinate activities of 

the PCU processors in the MIND mode. Two alternative interprocessor 

communication techniques have been considered : a recirculating

network where data travels through only one ’link1 at a time, and 

a multistage network where data travels through log^ N links.

Kartashev and Kartashev C163 have proposed the design of 

computer architectures assembled from a small number of LSI module 

types. Here ’each module’ may be equiped with simple circuits for 

software-controlled activation and deactivation of module interconn

ection. They classify architectures on the basis of ’software-controlled 

interconnections', as static, reconfigurable and dynamic. In a second 

paper C803 , they suggest a dynamic multicomputer system assembled 

from a building element called a 'dynamic computer (DC) group’. Each 

DC group, as shown in Fig. 2.7, consists of n computer elements, 

n-1 connecting units and a monitor. Each computer element includes 

a processing element, memory element and an I/O element. A ’DC’ that 

has n computer elements may assume 2n * architectural states, N^, 

Ni,...,N ^  ̂ each differing from the others by the number and sizes 

of independently operating computers. It is claimed that such a 

dynamic architecture improves a system's performance and lowers its 

costs.

Mehra and Majithia [19] have proposed a Pooled-Resource 

Reconfigurable Microprocessor (PRPMP) system. The proposed system 

is flexible enough (a) to handle programs efficiently with varying 

degrees and types of parallelism, and (b) to partition resources 

resoirces dynamically, so as to execute several programs simulataneously 

and obtain high throughputs. The structure of the proposed PRRMP
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system, as illustrated in Fig. 2.8, consists of an SIMD !pool' which 

caters for SIMD program, and an MIMD pool which handles all other 

programs. As shown in Fig. 2.8, the processing power is distributed 

over two types of computing modules, namely control units (CUs) and 

processing elements (PEs). The CUs have the full facilities 

of a minicomputer CPU, together with some form of local memory (CUM), 

and the PEs are arithmatic units operating on low-level instructions 

provided by the CUs. Each CU can reference the memory modules 

(MMs) and its own private memory and can produce for the PEs, instructions, 

operands and proper PE register addresses for those operands. The 

main memory, which is organized as several memory modules (MMs), 

stores the instructions for the programs executing in both pools, 

and data for programs executing in the MIMD pool. An interconnection 

network provides the path between CUs and MMs. Each CU has a direct 

link to a preferred MM such that most of the memory references for 

that CU are localized in that module. Each CU can be dynamically 

connected to any number out of a proof of PEs through the ’broadcast’ 

interconnection network. The communication between CUs for task 

co-ordination takes place through the CU-PE network instead of through 

shared memory as in conventional tightly-coupled multiprocessor systems.

The authors have also suggested that the organization of the 

operating-system for such a system would consist of two separate 

executives, one for each pool and an overall supervisor for managing 

the interaction between the pools. Each pool executive in itself 

is considered to have the minimum capability of :

1) Scheduling of programs,

2) allocation of resources (CUs, PEs and MMs) within the pool.



In constrast to the two pool executives, the system supervisor is 

considered to monitor sharing of resources between the two pools.

Mehre. and Majithia have indicated a number of issues which are 

yet to be resolved. These included :

1) The problem of data communications between the various 

resources. The authors have investigated a modified Ethernet [813, [823 

for this purpose, and have carried out simulation and analytical studies 

which demonstrate that the PRRMP system is feasible.

2) The software issues relevant to reconfigurable systems.

That is, the development of an operating system which can recognize 

and specify parallelism and can schedule and dispatch programs 

appropriately.

Arden and Ginosar [833 have proposed a Multi-Processor/

Computer Architecture (PM/C) for concurrent computing. The proposed 

architecture has the shared memory aspect of tightly coupled multi

processor systems [843 , [853 , [553 and also the connection simplicity 

associated with message-connected, loosely-coupled multicomputer systems 

[863, [873,[143. The MP/C is a dynamically partitionable system 

which has been proposed for the effective execution of process-structured 

algorithms. The structure allows many processors to be connected 

and effectively run concurrently, thus achieving a high combined throughput 

This is achieved by the MP/C architecture which provides a dynamic 

partitioning of a large address space into adjacent segments such 

that one processor at a time can have access to any memory partition.
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The partitioning is accomplished by switching the system bus.

The MP/C architecture, as illustrated in Fig 2.9 can be viewed as a 

system bus with many processor and memory-module pairs connected 

to it. The bus can be opened between any two adjacent pairs. The 

MP/C employs bus switching as a means of partitioning and recombination. 

The control is distributed; the sequence of connected identical 

switching elements (as shown in Fig 2.9) handle processor activation 

and deactivation and maintain address bounds for executing processors. 

The overall system switch comprises of a number of switching elements 

(Sq to S^) which control the system reconfiguration. The MP/C 

switch elements share a special MP/C- control bus, consisting of 

two unidirectional buses R and L. Both are switched by the 

switch elements (together with the system bus). The MP/C-control 

bus is used exclusively for MP/C reconfiguration operations and is 

distinct from the system bus.

In the MP/C, only one processor is active in each connected 

bus segment or partition; it is the leftmost- processor in the 

partition. The active processor can access all the memory modules 

on its partitions. A mechanism is available for an active processor 

A to activate an inactive processor B in its partition. The 

partition is subdivided into two parts by opening the bus to the 

left of B. Conversely, processor B may deactivate itself and 

reconnect its partition to the one on the left. Fig 2.10 demonstrates 

the operation of the MP/C for a 3-n.ode tree structure multicomputer, 

as shown in Figure 2.10(a). A typical tree algorithm will first 

run on the root node, then concurrently, on the two leaves, and finally 

on the root again.
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The activation and deactivation operations of the MP/C can 

be summarized as follows;

1) activiation operation - if processors P^, i < k, are

executing or active and processors P , i < j < k are idle, processor

can split its partitions (i,k) and activiate any processor P

by using the R-bus of the MP/C control-bus to designate the processor

to be activiated. The resulting partitions would be (i,j) and

(j.,k). When the processor P is activated the switch element

opens the buses connecting P^ and P^. Then broadcasts the

prefix j to the left on the L bus of the MP/C control bus.

The effect of this broadcast is that all switch elements S ,m
i <_ m _< j connected to the bus partition (i,j) on the left of the

activated processor receive and store j as a strict upper bound on

the address prefixes that can be generated by the one active processor

in that partition. Thus, the MP/C uses levels of autorization,

i.e., M^ can be accessed only by Pq , P^,...,P^, and is protected

from P. P . The overall effect of the activation sequencel+l n
is that the buses (system bus and the MP/C constant bus) can be broken 

into contiguous addressed sequences having only one active processor 

(the leftmost) on the bus partition.

2) deactivation operation - this operation accomplishes the re

connection of the buses and the appropriate adjustment of the address 

prefix bounds that are stored in the switch elements. When an 

active processor P , which has a partition (j,k), completes its 

task, it enters an idle state. This action causes S. to reconnect
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the buses and broadcast its prefix upper bound on the MP/C control- 

bus to the left (i.e, on the L-bus, into partition (i,j)). All 

switching units S^, m < j in the (i,j) partition then consider k 

as the new prefix upper bound on the address space.

The leftmost processor in the MP/C is the most poweful 

processor. This is because, it supervises MP/C, it has access to 

the entire address space, it is always active, it can pre-empt all 

the other processors, and no other processor can pre-empt P^. As a 

result, the MP/C is not tolerant to (a) a failure of or PQ (the two 

constituting system supervisor) and (b) switch element faults, since 

if a switch fails in open state, it partitions the MP/C into two 

non-communicating parts.

As indicated by Arden and Ginosar, the MP/C exhibits the 

following features, these are :

The architecture is.MIMD with a dedicated path network.

Reconfiguration control is distributed (the advantage of using 

distributed control is the parallelism gained, as many controllers 

can be involved in reconfiguration activities simultaneously).

*
Communications are of the processors-to-memory class, there 

being no direct processor-to-processor communications.

The partition method is by hardware, using physical switches.

The network is modular, there being only three types of building
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blocks, processors, memories and switches.

- The network is extensible, there being no hardware or 

software changes required.

Similar related designs to MP/C, as indicated by Arden and 

Ginosar are :

4

4

*
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The Columbia Homogeneous Parallel Processor (CHOPP) [881.

The CHOPP is another proposed MIMD, dedicated path network with 

distributed control. It maintains processor-to-memory communication 

using messages tagged with addresses. A Cube interconnected network 

of message-handlers route the messages.

- The Minerva C891. This is a single bus MIMD, similar to

the MP/C. This system is partitioned by software. In this machine 

each group of processors, which constitute a partition, communicate 

via a common memory.

- The Dynamic Computer [80] (as previously mentioned). Of the 

above systems, the DC is topologically the most similar organization 

to the MP/C. One difference is that reconfiguration is centralized 

rather than distributed. Another difference is that each DC partition 

is a multiprocessor (many processors, exchanging messages), rather 

than a uniprocessor, as in the MP/C.
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Almost all the systems mentioned above have one common 

factor. They consist of processors which require additional central

ized hardware and/or software specially designed for configuring 

a distributed system. Recently, there has been a significant 

interest in designing configurations for distributed system with 

completely decentralized control. The reasons being (a) the att

raction of modular VLSI construction, (b) the reduction of the 

limitations on the number of processors, and (c) the simplification 

of the interconnection complexities.

Lau and Li C903 have proposed one such loosely-coupled 

multiprocessor system. The system consists of multiple-microprocessor 

modules. The modules have been employed by Lau and Li as the basic 

elements in configuring a distributed system with completely decentral

ized control. The authors have stated that several problems have to 

be solved in such a design. These are :

the internal structure of each module, 

the handshaking between modules,

the design of a distributed mailbox for interchange of

information

the synchronization of distributed timing and control 

the effects of distributed priority resolving and deadlock

detection.

Lau and Li in their paper C903 discuss the above problems 

and propose a number of solutions. Interconnection facilities such 

as mailbox, interconnection buses, switch matrix as well as timing
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and control have been , resolved in each module. The architecture 

of Lau and Li?s modules are illustrated in Fig 2.11, they consist 

of a number of microprocessors linked to a single port common memory 

through a time-shared common bus. The time-shared common bus inside

each module is a private bus (PB). In addition to this, each module 

has an interconnection bus (IB) to each of its neighbours. The 

number of interconnection buses is determined by the number of neigh

bouring modules in the desired configuration. Lau and Li have designed 

the PB and IBs of each module to be controlled by a distributed bus 

switch which in turn is controlled by the timing and control unit 

in its associate parent module.

In the proposed system of Lau and Li :

the microprocessors in each module are timed by inter

laced clocks. This timing.is determined by the speed of the common 

memory of each module which should be several times higher than the 

cycle time of microprocessors, depending on the multiplicity of micro

processors in each modules.

the major port of the common memory in each module is 

private to each of the microprocessors in the same module, except 

a small portion representing the mailbox for neighbouring modules 

to access. The mailbox is the only portion of memory that a neighbour

ing module can access directly, thus reducing the chance of data 

contamination.

the bus switch in each module is classified into two
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groups, one for the selection of the microprocessors (i.e., the 

processor switches PS) and the other for the selection of memory 

(PBS for local and IBS for neighbour). The private and inter

connection buses are connected to memory and microprocessor through 

private bus switches (PBS) and interconnection bus switches (IBS), 

respectively. Fig 2.12 shows a simple example of this inter

connection scheme in which each module has two interconnection buses.

 ̂ - the timing and control unit in each module performs

the functions of clocking the microprocessors, managing memory and 

I/O interfaces within the module, supervising the handshake between 

neighbouring modules, and controlling the switch matrix.

• It is claimed that :

*

*

a) a distributed system consisting of such computing modules 

and cables can allow a large variety of interconnection configurations, 

depending on the suitability to particular applications. This is 

because, the modular design of the distributed bus switch in each 

module allows an increase in the number of interconnection buses,

as appropriate.

b) the asynchronous operation of the modules facilitates 

both local computation and mutual coupling, as wastage due to 

synchronous design can be avoided. The microprocessors in the 

system can be programmed to execute dependently or independently.
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For example, if a real-time task, can be partitioned into individual 
sub -tasks, then the sub-tasks can be executed on the distributed 
modules and be synchronized whenever necessary via memory handshake.

m

*

c) a distributed system consisting of such computing 
modules can operate without address translation, memory management, 
bus arbitration and DMA control etc. . Furthermore, the dis
tributed mailbox in the proposed system and its simple address 
translation allows fast memory access across adjacent modules.

The preceding review of a representative number of multi
processor systems indicates the diversity of the various alternative 
approaches, each with its advantages and disadvantages, which can be 
taken when designing a multiprocessor system. It is difficult 
to analyze and compare the use of different approaches. The reason 
is not only a lack of tools to make it easy to define (model) different 
structures, but also a lack of knowledge about how structures affect 
system performance. For this purpose extensive simulation and 
analytic studies are required. Recently there has been a great deal 
of interest in the modelling and analysis of the different approaches. 
In the following section, a brief review of some theoretical studies 
on the reliability and performance analysis of distributed multi
processor systems will be presented.
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2.4 Review of some work on the reliability and performance
analysis of multiprocessor systems

At present there is a great deal of interest in the modelling, 
reliability, and performance studies of multiprocessor systems. The 
diversified nature of the multiprocessor structures has led to the 
development of a multiplicity of reliability and performance models 
which are seemingly unrelated to each other. As a result, it 
becomes difficult to develop automated tools for reliability and 
performance analysis of multiprocessor systems which are both general 
and practical. Thus, the potential of theoretical studies as a 
practical and useful tool in the design process of multiprocessor 
systems has not been fully realized.

The aim in this section is to review some recent theoretical 
work which has been developed for a variety of multiprocessor structures. 
To start with, Patel [91] has proposed an approximate analytical 
model for the performance of multiprocessors with private cache 
memories and a single shared main memory. The memory organization 
examined by Patel was a two-level memory hierarchy of the type shown 
in Fig 2.13. The first level of memory is a private cache and the 
second is the main memory shared by all processors. The two levels 
are connected through a switch. In the paper, the author has given 
results of studies which were restricted to switches of full crossbars 
or delta type networks. The performance of crossbar multiprocessors 
have been widely analyzed in recent years [92] , [93], [94], [95], [96].

Patel’s intention was to analyze the performance of cache-based 
multiprocessor systems. In the analytical method of performance
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evaluation, the processor utilization and the average number of busy 
main memory modules were used as the primary measures of the system 
performance. These performance measures were defined to be a function 
of the parameters of the performance model. The parameters of 
the model include the size of the multiprocessor, the size and the 
type of the interconnection network, the cache capacity, the cache 
miss-ratio, the cache block transfer time, the block size, the read 
and write policies, the probability that a cache makes a request to 
main memory in a given time unit, and the average wait encountered 
at each cache request.

In the idealized performance model Patel took no account of 
an environment in which data consistency is a problem. That is, the 
possibility of creation of several copies of a single variable, where 
a copy is manipulated in private memory independent of other copies, 
thus producing inconsistent values among the copies of the same 
variable. The environment considered was one in which data con
sistency is not a problem. Other assumptions made were that :

* 1 cache requests to main memory were random and uniformly
distributed over all main memory modules

2 a processor in the system was in one of two states (either
busy doing useful work, or idle waiting for a cache-fault service 
to be completed)

3 a cache fault generated a request to a main memory module
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which was accepted after some wvait due to network conflicts.

4 Each cache-main memory transaction took a constant time.

5 The system throughput of a multiprocessor with cache-main 
memory could be computed directly from the total time spent in 
doing block transfers if the processor execution was not overlapped 
with a block transfer, etc.

Results from Patel’s model were compared with simulation 
results and they were found to be consistant over a broad range of 
prameters. Patel claims that the analytical technique presented is 
also applicable to the performance of other interconnection networks.

Many of the theoretical studies of the performance analysis 
of early multiprocessor systems were developed for systems employing 
crossbar networks to connect processors and memories [92], [93],[943 , [95], 
More recently, bus-oriented networks are being used for interconnection 
purposes. These interconnection networks are generally called ’multiple- 
bus' networks [963. Some papers addressing the analysis of bus 
systems have recently appeared in the literature [973# [983# [993»
11003. One such analysis was presented by Marsan and Gerla [1013.
Marsan and Gerla have proposed exact and approximate Markovian models 
for the analysis of multiprocessor systems intercommunicating via a set 
of buses. The class of multiprocessor systems modelled by Marsan and 
Gerla is illustrated in Fig 2.14. As shown, processors and memory 
modules are connected by a set of 'global buses’. Each global bus can 
connect any processor to any memory module. Every processor is also
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connected to a private memory. The exchange of information is
»

through the common memory which consists of several modules.
The intention of the work of Marsan and Gerla was to analyze 

the performance of multiple-bus multiprocessor systems, using as the 
primary performance index the processing power. This was defined 
to be the average number of active processors. Studies were also 
carried out of (a) derivation of a variety of other performance measures 
based on the processing power and the specific processo : application, 
and (b) computation complexity of the exact models. The latter was 
shown to increase very rapidly with system size, thus demonstrating 
that the exact analysis was impractical even for medium size systems.
The paper gives several approximate Markovian models which were 
introduced so as to overcome the complexity of computation. The results 
from the approximate models were compared with the exact ones and were 
found to be accurate for a wide range of configurations. Simulation 
was also used to validate the analytic models.

In the idealized performance models of Marsan and Gerla, the 
exchange of information was assumed to be as follows. The originating 
processor writes into a predetermined common memory module, and after 
some time the destination processor reads out the data. No account 
was taken of the case for which the exchnage of information between 
a given origin - destination pair takes place through an arbitrary (say, 
the first available) memory module. The models were developed for 
multiple bus multiprocessor systems for which the number of buses b, 
the number of processors P, and the number of memories m hold the 
inequality P > m > b. Under this assumption, a processor cannot always 
find a free bus to access a free common memory. That is, a processor
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may be forced to wait for a memory which is currently free because no 
bus is available. In contrast, multiprocessor systems for which 
the relation between P, m, and b are governed by the inequality 
b > min(m,P) are called crossbar architectures. In such systems, the 
contention is only caused by the sharing of memory modules, i.e. a 
processor can always find a free bus to access a free common memory.
Only the multiple bus case was considered by Marsan and Gerla. It 
is claimed that the case where m > P > b can also be analyzed using 
the same techniques and the resulting models should generally be . 
simpler than those presented in their paper.

Other assumptions made regarding the operation of the system 
were that :

1) Processors executed in their private memories.

2) Processors exchanged data with other co-operating processors, 
by reading from, or writing into the common memory modules.

3) The duration of the access to the common memory was an 
independent, exponentially distributed random variable with mean

f Ll/]i_. for the j n memory module.

4) When a processor required access to a common memory module,
a path was immediately established (with zero delay) between the processor 
and the referenced memory module, provided that a bus was available 

and the memory was not being accessed by another processor
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5) Upon memory access completion, memory and bus were immediately 
released (with zero delay) and the processor resumed its background 
activity. The interval between subsequent access requests was an 
independent, exponentially distributed random variable with mean 1/X^ 

for the i*^ processor.

6) An access request from processor i was directed to memory
j with probability . Thus, the access rate from processor i
to memory j was defined as X .. = X. P.

ij i i J

The above assumptions guaranteed that a Markovian model could 
be constructed to model the system. However, this did not guarantee 
that a solution (closed form or numerical) could then be easily obtained. 
The reason being that such models show an explosion in the number of 
states when the number of system components is increased; thus making 
the analysis very tedious even for moderately complex systems.

In order to reduce the number of states in the model Marsan and 
Gerla introduced four further assumptions. These were :

1) Processors were assumed to have uniform common memory access 
rates X and all memories were assumed to be equal, so the average 
memory access time was the same for all memories and all processors

Cl/U)•

2) A uniform reference model was assumed; this implied that 
access requests from each processor was directed to all memories with 
equal probability 1/m, where m was the number of common memory

modules.
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3) When a bus goes idle, the next processor to use the bus was 
selected at random from among those heading the queues referencing 
memories which have become free.

4) No distinction was made between the READ and WRITE operations 
of the processors accessing the common memory modules.

With the additional assumptions given above Marsan and 
Gerla succeeded in performing a close analysis of some moderately 
complex systems. The goal of the analysis was to determine the 
percentage of time for which a processor was active, averaged over 
all processors. This was defined to be equal to the average 
number of active processors divided by the total number of processors.
As the number of processors was a known and constant Marsan and 
Gerla simply evaluated the average number of active processors, they 
called this the processing power of the system. This was used as the main 
performance index in the analysis.

Using the above assumptions, two exact Markov chains were initially 
constructed in order to (a) model the behaviour of the system, and (b) 
evaluate the processing power of the system. In the first exa c t model, 
the state of the Markov chain was defined by the 2p-tuple:

° V  slf m2, s2,..,mp,sp)

iik was the memory referenced by processor i

s^ was the state of processor i.

where



The above state definition, however, was found not to be convenient 
from the computational point of view. As a result, Marsan and Gerla 
defined a second Markov chain of substantially smaller size. This 
was achieved by using the theory of "lumpable" Markov chains. The state 
definition for the second (i.e, lumped) exact chain was

cv  qi* V '^ ’V1
where

n^ was the number of processors currently accessing a 
common memory,

q^,...q^ were the numbers of processors queueing for the 
memories currently accessed,

% + l ,'*‘,Ĉ m were numt>ers processors queueing for 
a free memory, not accessible because no bus was available.

Marsan and Gerla found that an increase in the number of 
processors and/or memories complicated the Markov chains, whereas 
an increase in the number of buses tended to simplify the Markovian 
representations. This was explained as being due to the fact that the 
presence of a higher number of buses made the system similar to a 
crossbar system, and thus reduced the number of possible queueing 
situations.

To further reduce the size of the Markov chain, Marsan and Gerla 
also introduced several approximate Markov models. For these simplified 
models a combination of three different state discriptions (named A,B, and C)
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and two methods for the evaluation of the transition rates (named 
1 and 2) were considered. These were specified as follows:

# In model A, the state of the system was represented by the total
number of processors waiting either for a busy memory or for a busy bus, 
and by the number of processors currently accessing a common memory
module.* Namely, the state was defined by the tuplet

where
(n > nJm q

n was the number of processors in service m

n^ was the number of processors queued

»
triplet

In model B, the state of the system was represented by the

* (nm» n » £)m q
where

♦

n^ was the number of processors accessing a common memory 
module,

*

n^ was the total number of processors waiting either for 
a busy memory or for a busy bus,

f a flag which was set to zero when no processor was queued 
for a bus and was set to one when one or more processors were 
queued for a bus in order to access a free common memory
module.
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In a model C, the system state was simply the number of active 
processors. No account was kept of the state of internal queues.

For method 1, the transition rates were evaluated by assuming 
that each active processor can request any memory module with the same 
probability.

For method 2, the transition rates were evaluated using an 
1 averaging’ te chnique.

In their paper the authors give the results for the approximate 
models. These were compared with the exact ones and were found to be 
accurate for a wide range of configurations. Simulation was also 
used to validate the analytical models.

In the studies, Marsan and Gerla also give a queueing network 
model for the analysis of P > m > b systems. The models, as 
illustrated in Fig 2.15, was a closed queueing network in which process
ors joined memory queues, and before proceeding to service (i.e. access
ing memory) were granted a permit (bus) . The permit was returned 
upon completion of service. From the processing power and using the 
queueing network model in conjunction with the assumptions, Marsan and 
Gerla also derived a variety of other performance measures, as dictated 
by the specific processor application. These measures were defined to 
be a function of processing power as well as other parameters such as 
P, X, y, and m. It is claimed that performance indices for other 
applications can be constructed using a similar technique.

Some recent theoretical studies addressing the performance and 
reliability modelling of multiprocessor systems have been presented by 
Cin C1023, Chou and Abraham [1033, Beuadry [1043 , and Ng and



Aviziens [105-1093. The goal of the remainder of this sub-section 
is to review the work presented by the above authors. To start with,
Cin [1023 has applied queueing network theory* to determine the 
availability of a fault-tolerant multiprocessor system. The intention 
of the work of Cin was to demonstrate the usefulness of recent theories 
of queueing network [1103 for analyzing fault-tolerant computer systems.
The fault-tolerant multiprocessor system modelled by Cin was the PRIME 
system [773, as previously reviewed in section 2.3.3. In the idealized 
model of Cin, the system was considered to consist of S+r intelligent 
modules (IM), n memory modules (MM), one control module (CM), and one 
repair unit (RU). Other assumptions made were that:

1) The system was S-out-of-(S+r) : G with regard to the IM.
The remaining r modules were cold-standly (i.e. could not fail) spare 
units.

2) The IM modules were self-testing. That is, they were capable 
of detecting internal faults during normal operation.

3) One additional IM, denoted by CM, was used for the recovery
procedure of the system. This unit was capable of initiating self
testing of an IM, isolating faulty units, activating spare units, providing 
rollback-restart capability for recovering from transient faults, and turning 
the faulty IM over to a repair unit RU.

4) CM and RU never failed. That is, they belonged to the hardcore
of the system.
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5 ) Ru was capable of detailed fault-diagnosis, RU repaired or
replaced the faulty units. Repair was to like-new.

6) The system was (S+l) -out-of.-n : G with regard to the MM.
At least one MM was available for CM and each active IM.

7) Failure behaviour of all modules was S-independent.

8) The times between failures of the IM and MM were exponentially
distributed.

9) The service discipline of CM and RU were the processor sharing
C1113. With processor sharing each module receives immediately 

th(1/m) of the service (repair) capacity of CM or RU, where m is the 
number of modules to be served. Processor sharing is an approximation 
to round-robin scheduling which is time-sharing.

10) The service times of CM and RU were exponentially distributed.

With the above assumptions Cin succeeded in constructing a 
queueing network, as illustrated in Fig 2.16, for the fault recovery
process of the model. The goal of the analysis of Cin was to determine
the performance of the model, using the availability as the primary
performance measure. Availability was defined to be a function of the
steady-state probabilities of the model. The solution for the steady- 
state probabilities was obtained by using the queueing network theory of 
references [112] , [113], In his paper Cin also studied the derivation



81

*

♦

*

*

*

of (a) mean repair times and utilization of system units, and 
(b) subsystem availabilities.

Several authors have attempted to model multiprocessor systems 
operating under a graceful degradation policy. Borgerson and Freitas 
[1141 developed a probability model to find the reliability of the PRIME 
system. Losq [1151 proposed a general Markov model to calculate the 
availability of a graceful degradable system. In the models of 
both Losq and Borgerson and Freitas, no account was taken of the exist- 
ance of a shared-resource, the failure of which will cause the entire 
system to fail. Losq, for example, assumed that if a fault remained 
undetected by the system diagnosis, then total system failure occured 
after some time. In other research, Costes [1163 used the semi-Markov 
process [1173 to model the availability of a system under different 
repair time distributions. As in references [114, 1153, Costes did 
not consider the effects of shared - resources on the system per
formance .

The disadvantage of the availability and reliability measures 
is that they do not take into account how much of the resources of the 
system exist at a given time, i.e. the different levels of the per
formance of the system. The different levels are necessary for 
calculating the performance of the system. This problem was invest
igated by Beaudry [1043. In her paper, several performance-related 
reliability measures, such as the computation reliability of a system, 
were defined. These measures took into account the computation cap
acity of a system in each operational state, Beaudry used a Markov 
model in order to (a) describe a gracefully degrading multiprocessor,
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and (b) demonstrate the performance-related reliability measures.
As in refemces C114, 115, 1163 the effect of faults in a shared-resource 
system was not considered by Beaudry. Furthermore, the work of 
reference C1043, was not easily generalizable to a gracefully 
degradable n-processor system with r e p a i r I n  other research, Chou 
and Abraham C1033 used the semi-Markov process C1173 in order to 
develop a model for a general n-processor shared-resource system, 
operating under a graceful degradation policy.

In the studies of Chou and Abraham, three possible types of 
faults (local faults, detected global faults, and undetected global 
faults) were considered in order to take into account the effects of 
shared-resources on the system performance. Other assumptions made 
regarding the operation of the system were that :

1) After a global fault, all processors were guaranteed fault-free 
(and like-new) before the system was restarted.

2) The global repair time was proportional to the number of 
processors in the system.

3) Once an undetected fault was detected, the entire system was 
checked and repaired before being restarted.

4) A processor was repaired by a single repairman.

5) The times between failures were exponentially distributed.
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The intention of the work of Chou and Abraham was:

a) To delay a model for the n-processor system that accounts for 
both an availability and a performance measure of the system,

b) to define a measure of performance for the n-prc. cessor system 
that incorporates an availability measure into a measure of system 
performance.

With the above assumptions and using semi-Markov techniques,
Chou and Abraham succeeded in constructing an imbedded Markov model 
for the shared-resource system. Fig 2.17 shows the model of Chou 
and Abraham for an n-processor system. Every state in the model 
corresponds to some subset of processors; state -0 through n represent 
the number of processors that are operational; and states n+1 and n+2 
are those corresponding to detected and undetected global faults. In 
the model the availability and performance measures are taken into 
account by;

1) the steady-state probabilities of the states in the model; 
which were used as the basis for an availability measure of the over
all system performance,

2) the performance of the system, given that it is in state i; 
which was used as the basis for a performance measure of the overall

6) The s e r v i c e  t i m e s  h a d  a r b i t r a r y  d i s t r i b u t i o n s .

system.



84

*

*

♦

+

*

Chou and Abraham have defined the overall system performance 
to be a function of both the performance of each working processor 
in each state along with a measure of the percentage of time that 
the system spends in that state under a gracefully degradation policy.

Other reported studies were (a) the derivation of performance/ 
cost ratio for a particular system, and (b) the investigation of 
changes to various parameters and their effects on the overall system 
performance.

In references [105, 1093 Ng and Aviziens have presented the 
results of an extended effort to develop a unified approach to reli
ability modelling of fault-tolerant computer systems. In their studies, 
a fault-tolerant computer system has been treated as a set of homo
geneous subsystems (such as memories, buses, processes, etc) where 
each subsystem consists of a set of identical modules that are either 
in 'active' or in 'spare' status. The authors have assumed that every
subsystem must survive in order for the system to survive. With this 
assumption, the system reliability has been considered to be the 
product of the individual reliability figures of each subsystem.

In their paper, the authors report on a study of a single Markov 
reliability model for a subsystem of identical modules.

The model describes a wide range of repairable and non-repair- 
able subsystems and models both permanent and transient fault recovery. 
Based on the modelling results, Ng and Aniziens have also developed 
a general, flexible and efficient computational procedure for reliability 
estimation.

Ng and Aviziens took no account of (a) the performance character
istics of the system, (b) non-homogeneous subsystems, and (c) gracefully-
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degradable modules.
In Chapter 7, a fault-tolerant computer system will be treated 

as a set of non-homogeneous subsystems, where each subsystem can consist 
of a set of non-identical . gracefully-degradable modules. A rel
iability Markov model for such a system will be developed in Chapter 7.
The model to be developed is a very general model and in one of its 
special cases it reduces to the model of Ng and Aviziens.

The preceding review of some recent theoretical studies on the 
modelling, reliability, and performance analysis of multiprocessor 
systems indicates the diversity and multiplicity of the reliability and 
performance models which have been developed to date. The reason for 
this number is not only the diversified nature of multiprocessor systems, 
but also a lack of mathematical tools which ease the definition (i.e., 
modelling) of the systems. Clearly, much work remains to be done in 
the modelling field. The most difficult task is to create models which 
accurately reflect the real-life complexities and operation of the various 
systems, and yet are sufficiently concise for efficient computing of the 
various reliability/performance measures. To progress in this field, 
the use of the most sophisticated mathematical tools and the selection 
of realistic and measurable parameters are critical.

2.5 Review of Some Work on Distributed Microprocessor-Controlled 
Digital Switching Systems

The aim in this section is to review recent papers dealing 
with the implementation of distributed microprocessor-controlled 
digital switching systems.
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Since the introduction of jnicroptqcessors (providing low 

cost processing power) pulse-code-modulation transmission, 
distributed control, and distributed processing methods system 
architects have had to re-think system implementations in order 
to fully exploit the potentials of the above new means and concepts.
In general, the basic philosophy for most switching systems of 
recent design have been the implementation of a functionally modular 
structure with distributed microprocessor control. This implies the 
use of microprocessors in control modules for the achievement of dis
tributed control functions.

The remainder of this section will review some representative 
switching systems which employ distributed microprocessor-control.

To start with Boute C1733 has proposed an exchange which consists 
of compatiable modules and is piecewise extensible in steps. The 
modules can work separately, or in conjunction as one single exchange. 
They are interconnected through an internal standard interface bus.
In the structure of Boute the distribution of control is on a per 
module basis and is complete, in the sense that no common processor or 
other common active devices are required. In addition, adaptation when 
extending the system with additional modules requires no software or 
hardware modification in the already existing modules. Similarly, 
modules of new types or different techniques can be integrated into 
the system through the standard bus.

The emphasis of the design of Boute was on the following 
obj ectives:

To design a system built of self-contained microcomputer-



controlled modules, that are easily interconnected,

- To develop a scheme for module interaction in a fully dis
tributed system without a common processor,

- To define an internal module organization which is independent 
of the exchange configuration.

Fig 2.18 shows the exchange concept of Boute which resulted from 
the above objectives. All modules are connected to a standard internal 
bus. A typical exchange of Boute may contain the following types of 
modules :

- Subscriber modules with (individual) lines to traditional 
telephone sets,

- Subscriber modules, aimed at fully electronic sets,

- Subscriber modules, digital-loop oriented,

- Analog trunk modules,

- PCM trunk modules.

etc., all are compatible through the internal bus interface and associated 
protocal.

Another reference to distributed microprocessor-controlled 
switching systems appears in a paper by Montemurro C1743 where he



proposed a system consisting of a number of completely independent 
modules, each containing both control and switching. In Montemurro's 
design (as illustrated in Fig 2.19) the modules are linked together 
through a set of digital highways and intermodule communication is 
made through a number of dedicated time slots in the digital TDM 
highways. Additionally, in the design of Montemurro, each module - 
characterized at the system level as a fully stand alone "black box" - 
is also realized with a functional mooularity design. In the paper, 
Montemurro has argued that because the proposed control units are 
completely independent - each of them performing all the call processing 
functions - no other module connection is required when putting together 
a given size network.

Another distributed microprocessor-controlled switching system 
has recently been put forward by Casalino and Zaffignani C1753 , in 
which the structural approach of the distributed switching exchange is 
based on a set of networks controlled by microprocessors which are 
in their turn controlled by a central microcomputer unit using a 
subsystem bus. In the design of Casalino and Zaffignani, the peri
pheral processing capability enables the network to handle certain phases 
of the connection and the flow of data from user to user without the 
intervention of the central unit.

Another attempt, by Lorenzini, Pema, Springolo [1763, used 
dedicated microprocessors as signalling preprocessors in PROTEO Tandem 
exchanges.

De and Krakau C1773 have proposed a system in which the tasks 
are distributed among six microprocessors in a multiprocessor configuration 
(see Fig 2.20). The six microprocessors are processing units for special
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and dedicated tasks,. In the design of De and Krakau, each microprocessor 
subsystem controls its own memory units and does not share memory or 
input/output devices with other subsystems. Their integration as a 
whole to perform system functions is done via communication inter- 
processor buffers. There is no synchronization among the processing 
units as such. They are driven by individual clocks.

Nowadays, the concepts of distributed microprocessor-controlled 
switching systems are being employed by many major manufacturing companies 
and thus there is a considerable amount of related work C178 - 1793.
Typical examples being system 1240C1913 and system XC178-1871. Most 
of these papers have been descriptive and authors have not reported 
analytical modelling, reliability and availability analysis.

2.6 Conclusions

4

t

The review contained in this chapter has dealt with many 
aspects of distributed multimicroprocessor systems in order to give an 
idea of the current state-of-the-art of the distributed multiprocessor 
systems.

The review contained in section 2.2. has dealt with the fundamental 
strategies by which a distributed multimicroprocessor system can be 
designed. It has been observed, in general, that there are a number 
of relevant parameters, each with their advantages and disadvantages, 
which characterize the system architecture. These include coupling scheme, 
control scheme, etc, .

The review contained in section 2,3 has dealt with some recent 
multiprocessor system proposals. It has been observed that, in general,



these systems have been . based upon concepts such as tightly coupled, 
loosely coupled, fault-tolerant, and reconfigurability,

The review contained in section 2.4 has dealt with the problem 
of modelling reliability and performance analysis of distributed 
multiprocessor systems. It has been observed that a multiplicity of 
reliability and performance models have been developed which are 
seemingly unrelated to each other. This is due to the diversified 
nature of the developed multimicroprocessor structures. Clearly, 
much work remains to be done in this field and the most difficult 
task is to create models which accurately reflect the real-life complex
ities and operation of the various systems.

The review contained in section 2.5 has dealt with some recent 
design trends towards the implementation of distributed microprocessor- 
controlled switching systems.



91

(a )  r ing

*
0 0 0 0

(d) completely connected

( e) global bus ( f) d u a l -  bus hypercube
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FIG 2.2: The General ized Cub and Ex t ra  Stage 

Cube Ne tw o rks . [Re f .60]
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D = E x t e r n a l  device 

P = P ro ce sso r  

M M = Memory module 

M = Memory map 

1 - 0  = Input ou tpu t  c o n t r o l l e r

FIG 2.3: Diagram o f  P R I M E  [ R e f . 77]
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Diagram of Reconf igurable  A r r a y  

P rocesso r  [Ref. 17].
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FIG 2.5: Diagram of m u l f ia s so c ia t i  ve p roce sso r  
(MAP) [Ref. 31],
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FIG 2.6: Diagram of P a r t i t i o n a b l e  S I M D / M I M D

S y s tem  ( P A S M )  [ R e f .  32].
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PE  = P r o c e s s in g  E lement CE = Computer E lement
ME = Memory E lement GE = Group E lement

MS= Memory Switch

FIG 2.7: D ia g ra m  o f D y n a m ic  C o m p u te r  

(DC )  [ R e f . 801.
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FIG 2.8: Diagram of PRRMP System [Ref. 19].
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P= P r o c e s s o r  M = M e m o r y  S =  S w i t c h

FIG 2.9: D iag ram  of MP/C  S y s t e m  [ R e f . 83]
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( c )

P= p r o c e s s o r  

M = M emory 

S = S w i t c h

(d )

"l
(e)

FIG2.10: (a) T h re e -n ode  b inary t ree^ ( b )MP/C f o r
the  f r e e  im p le m e n ta t io n ,  ( c) Roo t  a c t i v e ,

(d) Leaves  a c t i v e  ,and ( e ) R o o t  ac t ive  [R e f .83].
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FIG 2.11: T h e  M u l t i p l e - M i c r o p r o c e s s o r  A r c h i t e c t u r e  o f  L au  and L i  

[ R e f .  90].
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P= P r o c e s s o r

PM = P r o c e s s o r  M em ory

P S  = P r o c e s s o r  S w i t c h

PB= P r i v a t e  Bus 

P B S =  P r i v a t e  Bus S w i t c h  

MB = M a i l  Box

FIG 2.12: Interconnection Structure of Lau and Li [Ref.90].
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P= Processor C = Cache Memory 
S =  Shared Main Memory

FIG 2.13: Multiprocessor Organization With 
Private Cache Memories [Ref. 91].

*

P= Processor PM = Private Memory

MM = Common Memory Module

FIG  2.14: Block Diagram of a Mult iple-Bus
Multiprocessor System [Ref.101].
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FIG 2.15: Closed Queueing Network Model of
Marson and Gerla [Ref. 101].

FIG 2.16: Queueing Network Model of Cin; Q queue 
of Cold Sfandby I Ms [Ref. 102].
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FIG  2.17 ] Imbeded Markov Model of Chou and
Abraham for Shared-resource  Mult i
processor Systems [Ref.103].

Connection to Subscribers,  Trunks, etc.

Internal Bus System

F IG  2.18: Exchange Configuration of Boute 
[ Ref. 173 ].
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MOD.  1

% FIG  2.19: Switching System of Moutemurro 
[Ref. 174],



CHAPTER 3

A SCHEME FOR A FAULT-TOLERANT PROCESSING MODULE

3.1 Introduction

In this chapter, a scheme for a fault-tolerant multiple- 

microprocessor processing module suitable for use by a functionally 

modular multi-microprocessor system will be presented. We will begin 

by describing the architecture of this fault-tolerant processing module. 

After that, we will present a control scheme for the operation of this 

module. The control scheme allows for concurrent execution of tasks 

within the module, achieves module file consistency and integrity, and 

performs module reconfiguration. The scheme will be represented by a 

control flow diagram which illustrates the possible phases and the 

transitions associated with the scheme. We will next, summerize the 

parameters and the basic assumptions of this scheme. Finally, we will 

apply probability and queueing theories to the scheme in order to analyze 

the performance characteristics of the module under the control of the 

scheme. A queueing model will be developed for the performance analysis 

of the module. The performance index will be the average service time

of the module. From the average service time a variety of other per

formance measures will be derived as dictated by the queueing model.

Using the queueing model, performance parameters will be defined and 

analytical expressions will be derived which can be used to estimate the 

performance characteristics of the module under the control of the scheme.

Without loss of generity the description and the analysis will be 

based on a two microprocessor module.



3 . 2 R e a l i z a t i o n  o f  t h e  F a u l t - T o l e r a n t  M u l t i p l e - M i c r o p r o c e s s o r

Processor Processing Module

Fig 3.1(a) shows the block diagram representation of the 

multiple-microprocessor processing module. It consists of a group 

of microprocessors, each having several local memories under its control. 

The module is intended to execute the jobs associated with a number of 

processes. The jobs arrive through a local common queue configuration 

employed by the module. The queue is assumed to be organized on 

a first-come first-serve basis. The micro processors store in their 

local memories copies of the files associated with the different processes 

which are executable on the same module. Under these conditions the 

module becomes a distributed data-base system, with the need for 

module file consistency and integrity. By employing the above approach 

the following advantages can be gained :

a) Within the module itself a certain amount of parallel processing 

can take place. This is because the individual microprocessors in the 

module have access to the data-bases of the particular processes which 

are assigned to the module. Each microprocessor can execute a portion

of the module’s task, or it can carry out a full task whilst other micro

processors perform other tasks. This is referred to as "module parallel 

job processing" and is in addition to the parallel processing capability 

of the system which is achieved by the employment of such modules to do 

limited tasks within the exchange control activities.

b) The module can be organized to make use of its multiple resources 

(i.e., microprocessors and memories) to give gracefully degrading



performance, which increases its reliability. That is, the resources 

already available in the module can be reconfigured to give a gracefully 

degradation of service when portions of it fail.

Under this research project a control scheme for the operation 

of the module has been devised. The scheme allows for concurrent execu

tion of tasks within the module, achieves module file consistency and 

integrity, and performs module reconfiguration (see Chapter 4). The 

goal of the remainder of this chapter is to present this scheme. Without 

loss of generality the description and the analysis will be based on a 

two-microprocessor module, as illustrated in Fig 3.1(b). iMoreover, the 

present chapter endeavors to summarize and report the results for that 

state of the module which corresponds to a situation where no micro

processor or memory failures have occured. Subsequent chapter, describe 

the effect of various component failures on the module and the control 

scheme.

3.3 The Con.trol Scheme

Fig 3.2 shows the control flow diagram of the scheme in rel

ation with the two-microprocessor module (as illustrated in Fig 3.1(b)). 

The scheme can be considered as a local file manager (LFM) installed 

on the module. This co-ordinates the activities of the microprocessors

of the module on the local files. The desired function is to achieve:

a) module parallel job processing,

b) m o d u le  f i l e  c o n s i s t e n c y  a n d  i n t e g r i t y ,
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The activities of the scheme can be divided into two alternating 

phases, the scanning phase and the service phase, as shown in Fig 3.2.

The transition conditions and the acitvities of the scheme can be summarized 

as follows.

At the completion of a service phase the scheme passes into the 

first stage of the scanning phase (i.e. the repetition scanning 

routine [RSR]). Depending upon whether there are (i) no tasks 

waiting for service, (ii) one task waiting for service, or (iii) two 

or more tasks waiting in the queue the procedure is as follows.

(i) No tasks waiting for service

Here the LFM will go into a repetition loop, scanning the queue 

until a job arrives, when a job arrives it is acknowledged and the LFM 

moves into the second stage of the scanning phase (i.e. the limited period 

scanning routine CLPSR3). In the (PSR a second task is looked for as 

it is desireable to pass into the service phase with 2 tasks. If a 

second task arrives the LPSR routine is terminated and the procedure moves 

immediately into the service phase. However, if a second task has not 

arrived within a specified period the service phase is entered with 

only one task after a limited time.

(ii) One task waiting for service

Here the LFM immediately acknowledges the task and moves 

directly into the LPSR. It waits for a second task for a limited period 

as explained above.
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(iii) Two or more tasks 'waiting for service
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In this case the LFM accepts one of the tasks in each of the two 

stages RSR and LPSR and immediately proceeds to the service phase.

In future the scanning tasks will be referred to as "queue 

tasks" in order to distinguish them from "copy tasks" which are gen

erated in the service phase of the scheme. Copy tasks will be defined 

in more detail in Section 3.2.2.

3,3.1 The scanning phase

The scanning period, S, associated with the RSR procedure is a 

predetermined repetitive period, based on the length of time required to 

scan the queue and acknowledge a task arrival, or a task present in the 

queue. In practice these periods are very short and are insignificant 

compared with the normal service period for the execution of tasks.

Hence, the following assumptions have been made in relation to the 

scanning period. There are :

Assumption 3.1: The probability of two, or more tasks arriving during

the same scanning period is negligible.

Assmuption 3.2: During each scanning period, one and only one queue

task is acknowledged by the microprocessor. This task may be present 

in the queue, or may arrive during the current scanning period. The 

rest of the tasks which may be present in the queue, remain in the queue 

to be considered by succeeding scanning periods.
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Assumption 3..3; The amount of delay1 associated with the RSR-

procedure, i.,e,, the scanning period, as compared with the normal service 

priod for execution of tasks, is insignificant.

4

4

»

4

4

4

The waiting period of the LPSR routine, S , can be varied by 

setting it to a length equal to a predetermined number N of the 

scanning periods to suit the control scheme envisaged. In practice these 

periods can be made short compared with the normal service period for 

task execution, but although they are normally assumed to be short, they 

are not insignificant compared to scanning period. The following 

assumptions have been made in relation to the waiting period of the 

LPSR procedure, these are:

Assumption 3.4: The probability of two or more tasks arriving during the

same waiting period is negligible.

Assumption 3.5: During each waiting period one and only one queue task

is acknowledged by the microprocessors. This task may be present in 

the queue, or may arrive during the current waiting period. The re

maining tasks which may be present in the queue, stay in the queue to be 

considered by the subsequent scanning periods.

Assumption 3.6: The amount of delay due to the waiting period of the 

LPSR procedure, as compared with the normal service period for execution 

of tasks, are considered to be :

(i) Significant for LPSR procedures where a task is not present
when the LPSR routine is entered.
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(ii) Insiginificant for LPSR procedures when a task is 

waiting entry to the LPSR routine..

The RSR and LPRS routines, as described above, determine the way in 

which the local common queue is scanned for the different conditions 

imposed upon the module.

3.3.1.1 Definition of the delays in the scanning phase

When in the scanning phase, the amount of delay before 

service can commence is dependent upon the status of the queue, and the 

resulting scanning procedures which will be adopted by the RSR and 

LPSR stages. Following the assumptions made in relation to the 

scanning and waiting periods, the scanning delays can be categorized 

as in Fig 3,3.

Cases and The situation where there is no task in service and

no task in the local common queue. When a task T^ arrives, the RSR 

procedure acknowledges the task and the scheme moves into the LPSR 

stage to look for a second task T^. If T2 arrives during the waiting 

period associated with the LPSR-procedure, i.e. case A^, the LPSR procedure 

acknowledges T^ and cuts short the waiting period, as illustrated in 

Fig 3.3(a). At the completion of the LPSR procedure the scheme 

moves into the service phase with two tasks and processes them in 

parallel, as will be explained in Section 3.3.2, In this situation, 

following the assumptions given in Section 3.3.1, the amount of delay 

for T^ before service can commence is given by the waiting period S^ 

with the deduction of its residual life associated with the arrival of T^-



If a second task. does not arrive by the end of the waiting period 

Sw (i,e,, Case ̂ 3  then at the completion of the LPSR procedure the 

scheme moves into the service phase with only one task (i,e. task T^).

This is illustrated in Fig 3.3(b),

Cases and The situation where there is no task in service and

a task T^ is waiting in the common queue. In this situation, the

task T^ present in the queue is instantly acknowledged by the RSR procedure

and the scheme moves into the LPSR stage to look for a second task T .
2

When in this stage, the scheme goes through similar scanning procedures 

to look for a second task as described in relation to the Cases 

and These are represented by the Cases B^ and B^, as illustrated

in Figs3,3(c) and (d), respectively. The amount of scanning delay 

before service can commence in Cases B^ and B^ are the same as those for 

A^ and A^, respectively. However, in Cases B^ and B^ these delays 

are in addition to the queue waiting time associated with T^.

Case C The situation where there is no task in service (i.e. service 

just completed) and two, or more tasks are waiting in the common queue.

In this situation, a task T^ present in the queue is instantly acknowledged 

by the RSR procedure and the scheme moves immediately into the LPSR stage 

and a second task, T̂ , is then instantly acknowledged. At the completion 

of the LPSR procedure, the scheme moves into the service phase with two 

tasks T^ and T^ this is illistrated in Figure 3.3(e). In this case, 

following the assumptions given in section 3.3.1, the scanning delay is 

insignificant, the only delay before the service of T^ and T^ is that of 

their queue waiting times.
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3.3.2 The service phase of the control scheme

We define a transaction, consisting of one or two tasks, as a 

unit of processing which has the capability of executing the tasks 

and then updating the files where necessary. That is, it is a process 

which perforins one or more operations on the locally distributed data

base and it satisfies the consistency and integrity constraints of the 

files. These transactions may include write or read operations on 

the files, as will be explained later.

The service phase is the phase where the transactions are ful

filled. Microprocessors which have been granted queue tasks, start 

executing these tasks during this phase and then, depending upon the type 

of queue task, perform an update of the files. The service phase has 

been devised to employ the technique of 'localized partial locking' on 

the module's files. This is to prevent files being changed by the other 

processors during the assigned tasks. Partial-locking of files effect

ively synchronizes the multiple updates of the multicopy environment 

of the module^ Locking [118 -1283 allows exclusive access for one 

processor to the files. That is, a portion of the data-base is changed 

to a 'locked state' whenever a process performs operations upon it.

After the completion of the operations, the region is restored back to 

the unlocked state and the next procedure waiting to use the same file 

region can then be started.

The employment of the technique of partial-locking imposes 

serialization upon the operations of the module, but allows other 

microprocessors to operate on other regions of the data-base con

currently, This system leads to an increase in the performance of the
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module over straight serial operation, but is not as fast as true parallel 

operation. The service phase can be divided into three stages :

Task identification and microprocessor assignment, task execution, and 

file updating. These stages will be discussed in more detail in 

the following paragraphs.

Stage 1 Task identification and microprocessor assignment (TIMA)

*

#

When the service phase is entered one or two tasks have 

been acknowledged by the module in the scanning phase. The first 

step in the service phase is to identify the tasks and to assign 

microprocessors and files to the tasks. The operations of this stage can 

be specified by the following procedures.

Procedure 1 The identification of the queue tasks

During this procedure the operating system identifies the 

tasks and calls up the appropriate routines. Provided the tasks are 

not of the same type, or require to access identical files, then the 

operating system can progress to the next procedure. However, if 

the tasks are identical, or they require to access the same files, then 

the last task to arrive has to be turned into a "Special Queue Task".

This term will be explained in Section 3.3.2.1.

Procedure 2 Microprocessor and file assignment

During this procedure the microprocessors are allocated one of
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the tasks and each processor is granted access rights to appropriate 

files. At the completion of this operation the scheme moves into 

the second stage of the service phase. Both processors can be

given access rights to Identical files at the same time, provided that

they are only going to read from that file. If one of them is

going to write into the file then the second task to arrive has to be

locked out. This locking is to prevent the data being changed by 

one of the routines during processing and so affecting the other 

process. To achieve this security of data the module employs partial 

file locking.
Let us identify these module file which have the "access right" 

condition imposed upon them during the stage 1 as "master files".

This is to distinguish them from the remaining files in the module 

which may require an updating after the completion of stage 2. We 

will refer to files which are to be updated as "slave files".

To update slave files local tasks, called "copy tasks", are 

generated. We define a copy task as a task which is issued by one 

microprocessor to another in order to update an appropriate slave file.

Stage 2 Execution of queue tasks (EQT)

The purpose of this stage is to perform the routines required 

by the tasks. If only one task had been acknowledged then the 

processor assigned in stage 1 of the service phase will carry out the 

required routines and if required at its completion will instigate a ’file 

copy task' to be carried out in the third stage, A file copy task is 

required when a file on one processor has been modified and in order to
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achieve file consistency the slave file associated with the other 

processor has to be updated.

If two tasks had been acknowledged originally they would have 

been identified and assigned to microprocessors in stage 1 of the 

service phase. These two tasks will perform the required routines sim

ultaneously provided the same file areas are not to be written to or 

written and read during the task. At the completion of the routine 

a copy task for the other microprocessor’s files will be generated.

The copy tasks will take place in the third stage of the service phase.

The execution of the copy tasks will not take place until both 

microprocessors have completed their tasks, the process constitutes the 

third stage of the service routine.

Stage 3 Updating of slave files QJSF)

In this stage each microprocessor which has generated a copy 

task in stage 2 will indicate this fact to other processor. The 

second processor has to gain access rights to its slave file before 

data is transferred from the master file area on the first to the 

slave file area on the second processor. A similar transaction 

has to take place in the opposite direction for the second task's 

copy file transaction. The tasks may have been carried out in 

parallel in stage 2, but in stage 3 the copying of files may be in 

parallel, or may have to be in series, depending upon the interface 

hardware provided.
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A special case exist when file confliction could occur and so 

the second and third stages of the service phase change. This is 

the situation when two queue tasks are acknowledged during the scanning 

phase and are identified as tasks of the WRITE type and are destined 

for operations on identical files. Under these conditions the first 

stage of the service phase proceeds to change the la.est task to 

arrive into a "special queue task". The tasks are assigned together to 

the same microprocessor and will subsequently be performed in sequence 

during the second stage of the service phase. On completion of the 

first task in stage 2 a copy task will be issued and the copy file has 

to be updated. This update taking place before the execution of the 

special queue task. At the end of the special queue task in stage 2 

a further update of the copy file will be necessary, this is indicated 

by a special copy task instructions.

In this work we define a "special queue task" as a task whose 

process is activated after the completion of a copy task in stage 3 of 

the service phase. We define a "speical copy task" as a task which 

is issued, after the completion of the special queue task. This special 

task procedure allows the scheme to enter the thrid stage for a second 

time, in order to update the slave file.

Fig 3.4 shows a general block diagram representation of the act

ivities of the scheme.



3.4 The Analysis of the Control Scheme

In the following sections an analysis of the scheme is 

carried out, using probability and queueing theories. The aim is 

to obtain information about the scheme’s performance characteristics.

3.4.1 A queueing model for the control scheme

An M/G/l queueing system [111] has been employed as a framework 

to model the activities of the module when used under the control scheme, 

as described in Section 3.3. In a normal M/G/l system, when no tasks is 

in service, the next incoming task will be served immediately. In the 

scheme, when no task is in service, the scheme is in scanning phase.

A new task arriving at the module, has to experience a delay due to 

the scanning procedures. The amount of delay before service can 

commence is dependent upon the status of the queue, and the different 

scanning procedures which are adopted (as previously described in Section 

3.3.1.1). Due to this scanning phase delay, a scanning waiting stage 

has to be included in the service facility of the queueing models.

Fig 3.5 shows one such queueing model which represents the situation 

where the scheme has to experience a scanning procedure delay in 

addition to the service. As shown, the service facility consists of two 

waiting stages in tandem which takes into account the waiting times 

associated with both the scanning and the service phases of the scheme.

To represent the complete control scheme in its various 

modes of operation a number of different queueing models have to be 

employed. In this work we will refer to the assembly of the queueing



models as the "queue structure" of the scheme * The constituent 

queueing models to represent the different control steps adopted 

have to take into account the following :

a) The status of the queue after the completion of the 

previous service time.

b) The scanning procedure of the common queue.

c) The number of tasks acknowledged during the scanning phase.

d) The manner in which tasks are handled in the service phase.

As a result, queueing models will have different expressions for their 

service times.

Fig 3.6 shows the queue structure of the two-microprocessor 

module which employs the suggested control scheme. As shown, the 

structure consists of an assembly of queueing models, denoted by 

QMj-;j = l,...,s, which represent all the control steps associated 

within the scheme. The structure also takes into account the probabil

ities of occurances of each of the queueing models. The queueing models 

QM^, QM^, and QM$ (as shown in Fig 3.8) represent the

modes A^, A^, A^, B^, B^, and C of the operation of the scheme, as 

described in section 3.3.1.2 and as illustrated in Fig 3.5.

The queue structure is employed in order to evaluate the average 

and variance of the service time of the module. These parameters are 

given by expressions in terms of the set of all possible queueing model
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average service times associated with the different queueing models, 

taking into account the probabilities of their occurrances.

The average and variance of the module service time are 

important because they give information about the computation capacity 

of the module. That is, the amount of useful computation per unit 

time available on the module.

Analytical expressions for the different queueing models have 

been derived which describe the characteristics of the following parameters :

1) the averages and variances of the queueing model service times,

#

*

2) the averages and variances of scanning procedure service times,

3) the average and variances of the service phase service times. 

Here there are two possible cases, which correspond to the situations 

where:

a) the service phase is entered with two tasks at a time,

b) the service phase is entered with one task.

4) The probabilities of having zero, one or two or more tasks present

in the common queue after the completion of previous service time.

5) The common queue waiting times.
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6) The common queue waiting time of the module *

In the following section, the main analytical expressions for 

the above parameters are presented. These give an estimation of the 

performance characteristics of the module in its all working state.

3.4.1.1 The queueing model service times'

*
The mean of service times associated with the different queueing 

models for the network, as indicated in Fig 3.6 and as described in 

Section 3.3, can be written as:

x = x + x a. p . s . 
J J

s . 
J

fxu.

u.

where,

x = 0
pj

th

, for j = 1,...,5

, for j = 1,3,5

, for j =2,4

, for j = 5

(3.1)

j = refers to the j queueing model for the network as indicated in 

Fig 3.6.
thx = the average of queueing model service time associated with jcL .

i
model.

x = the average of service phase service time associated with the
Sj

model.

x = the average of scanning procedure service time associated with the
Pj

model.
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x = the average of service phase service time associated with theu

processing of two tasks at a time

'll = the average of service phase service time associated with the

processing of one task at a time.

The variance of x is given by: a.
3

2 2 2
a = a + o a. p . s .

3 *3 3

s .
3

u„
2

'°u.

p .  =  0

* for j = 1,...,5

, for j = 1,3,5

, for j =2,4

, for j = 0

(3.2)

where,

a = the variance of queueing model service time associated with the
aj

model.

Op = the variance of scanning procedure service time associated with 

model.
2a = the variance of service phase service time associated with
Sj

j'1'*1 model.

a = the variance of service time associated with processing of two 
U2

tasks at a time.
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au = the variance of service phase service time associated with processing 

of one task, at a time.

3.4.1,2 The scanning procedure service times

As shown in Fig 3.6, the service facilities of QM^, QN^, QM^ 

and QM^ incorporates appropriate scanning delays in order to com

pensate for the appropriate scanning procedure waiting times.

The mean and variance of the scanning procedure service times 

associated with the queueing models, as described in Section 3.3.1.2 

and as illustrated in Fig 3.3, can be written as follows :

pj

S - R w w

w

, for j =1,3

, for j =2,4
(3.3)

and x = 0
pj

, for j = 5

w -aR , for j = 1,3, 

, for j =2,4 (3.4)

a = 0
p j

, for j = 5

where. S and a are the mean and variance of the waiting time S w w w
2associated with the LPS procedure. R and aD are the mean and

T.f ftw
variance of the residual of the waiting period S associated with thew
arrival of task in this period.
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The first and second moments of the residual of the waiting

period, S are [111]: r w

R = w
s 2w
2Sw

and (3.5)
, s3

R2 = -2-
W 3S w

- -2 -3where, S , S and S are the first, second and third moments of the w w w
waiting period S^, respectively. The variance of and can

be written in the following form:

and

a = w

cr =

s 2w

R2w

s 2
W

R2w

(3.6)

3.4.1.3 The service phase service times

The analytical expressions for average service phase service

times x and x associated with processing of one, or two, tasks at 
U1 u2

a time can be defined as:

and

10 _c r P. X,
U9 = Lk=l z z

x = l P, x 
ui k=i k ’ui k-ui •

(3.7)
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The above expressions incorporated the service times of the possible

different types of tasks that can be encountered and the probabilities

of their occurrence. These are represented by P. , P. ,r 7 k,u2 k,ux

x, , and x, where : k,u2 k ,u 1

k = refers to the types of one, or two, tasks entering the service phase.

thP = the probability associated with the k possible combination of
k ,u2

two types of tasks entering the service phase.

P = the probability associated with the k possible types of one 
k , u^

task entering the service phase.

x, = the average of service phase service time associated with two k,u2
thtasks of the k type..

x, = the average of service phase service time associated with a task
k,ux

of the kt 1̂ type.

The variance of the service phase service times can be written as:

a2 = x2 - x2 , for t 1,2 (3.8)
uf ul  ul

where, a is the variance of the appropriate service phase service times.
u£

The derivation and evaluation of the above expressions appear in

Appendix A.
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3.4.1,4 The probabilities of haying zero, one and two or more 

tasks present in the queue

For the module under the control of the scheme, as represented 

by the queue structure in Fig 3.6, the probabilities of having zero, 

one and two or more tasks present in the queue can be derived as :

P = En , for n > 0 (3.9)n 0
where,

n = refers to the number of times the module has processed tasks

*

P^ = column vector of dimension 3, whose elements represent the

probabilities of having zero, one and two or more tasks present in
ththe queue, after the completion of the service for the n time.

E = A Matrix of dimension 3><3 , whose elements represent the 

probabilities of task arrivals at various instants during the operation 

of the module.'

The column vector P^ is given by:

Pn , for n > 0 (3.10)

where, ndg , nd^ and nd>;̂ are the probabilities of having zero, one and

two or more tasks present in the queue, respectively, after the com-
thpletion of the service for the n time.

It is assumed that there are no tasks present in the queue, prior
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to the first processing of taskst That is °d^ = 1, and °d^ =

= 0, or Pq = Cl 0 03 With the aid of Figures 3.3, 3.6 and

B.l, the matrix E is given by :

' ^ o W o 3 (aobo+aico3 co '

E = (a0bl+alcP ta0bl+al6p C1

.Cao W 2) C2 -

♦
where, a's, b s and c's are defined as :

(3.11)

a o = ProbCno task arrivals in S 3w

al = ProbCone task arrival in S 3w

b o = ProbCno task arrivals in x 3
Ui

ProbCone task arrival in x 3
U1

b„ = ProbCtwo or more task arrivals in x 3 
2 ui

CL = ProbCno task arrivals in x 3 
0 u2

CL = ProbCone task arrival in x 3 
1 u2

CL = ProbCtwo or more task arrivals in x 3 
2 U2

In addition, from the laws of proability, the following expressions can

be written in relation with the d's, a's, b's and c's
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n . n , n. 1 
d0 + dl + d>l = 1 for all n > 0

a - i _ a 
1 0

b2 = 1 - Cb0*b ]

S  ■ 1 - c w

1

( 3 . 1 2 )

The derivation and evaluation of the above expressions appear in 

Appendix B.

3.4.1.5 The processing module service time

For the network in Fig 3.6, the mean of the service time ass

ociated with the module can be written as:

— n—1 , r — — -| n-1, r — — -ix = dn{a x +a x } + d^la^x + a x- } n 0 1 a.. 0 a,, 1 1 a_ 0 a.1 2  3 4
n-lj+ d. , x>1 a„

(3.13)

where, x is the mean of the module service time associated with the n
*thn time for which the module has processed tasks. Substituting for

x ' s into the above expression and after some mathematical manipulation,

the mean of x can be written as : n

x ( " ' V  + n'ld1) {s -(1-a )R - a (x -x )} + x . (3.14) n 0 1 w 0 w 0 u2 u2

The second moment and variance of x are the following:n

2 rn-l n-1, 2 r ■ 2 >>2,-2 2, 2 -2.-,x = (. dn + dj IS - (1-a ) R - a_(x - x )} + 2n 0 1 w 0 w 0 u» u- x2 1 u„
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and

2 2 2a = x - x n n n ( 3 . 1 5 )

-2 2where, x and a are the second moment and variance of the module n n
tilservice time associated with the n time for which the module has 

processed tasks.

The above expressions can be used to estimate the performance 

characteristics of the module under the control of the scheme.

3.4.1,6 The queue waiting times associated with the queueing models

For the queueing models, as indicated in Fig 3.6, it is

possible to predict their average queueing times from the first and

second moments of their respective queueing model service times. From

the Pollaczek-Khinchin (PK) mean value formula for average queueing time
"til[111] , the average queueing time W_. associated with the j queueing 

model is :

W. = 
3

p. x (1+C )l a. a.
- :~J________ 2—

2(i-p.)
, for j = 1,...,5 (3.16)

where,
thVL = the average queueing time associated with the j model.

tilp_. = the facility utilization associated with the j model.
2C = the coefficient of variation of the queueing model service time
aj

associated with the j model,
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(b) Let

R„ =
j. i
I  x i I  y iji=0 1 \j=0 ±iJJ

(4.3)

i.e. Rx = xQ(y0)0 ♦ y0>1) ♦ X j C y ^  ♦ y1#1)

For appropriate values of x^'s and y^ j’s» R^ specifies the new oper
ational state of the module as state 6, as described in section 4.2,

(c) Let
1 1

R0 = u x. n y. . 
2 i=0 1 j=0

(4.4)

i.e. R2 = x0 CyQj0 a  y0>1) u Xjty^,, a y )

For appropriate values of x^'s and y^ j ' s > ^ 2 sPeci ^ es the new oper
ational state of the module as state 4, as described in section 4 .2,

(d) Let

R3

1 1
u n y. . 

j =0 i=0 1,3 (4.5)

i.e. R3 = Cy0,0 A u Cy0,l A ^l.P

For appropriate values of x^’s and y^ Ps, R^ specifies the new operat

ional state of the module as state 3, as described in section 4,2.

(e) Let T* be a vector of l's, whose dimension is equal to that of 

T. Define a matrix, devoted by D as :

('j> 'lD =
j' ,

= Cd„ ] dimension (2x6)Z, m (4.6)
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The coefficient of yari.ation C2a

for j

is 11113;

( 3 . 1 7 )

"tilIn this scheme, the facility utilization p_. associated with the j 

model in [111] :

p . A X. x , for j = 1,...,5J =  3 (3.18)

thwhere, X_. is the task arrival rate associated with the j model. 

The arrival rate X_. for the network in Fig 3.6 is the following

X. = 
3

X/2 , for j = 1,3,5

X , for j =2,4
(3.19)

where, X is the common queue arrival rate

3.4.1.7 The, processing module queue waiting time

For the module under the control of the scheme, as modelled 

in Fig 3.6, the average queue waiting time can be written as :

Wn = + + 'n'1d>l W5 (3.20)

*thwhere, is the average queue waiting time associated with the n 

time for which the module has processed tasks.
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3.5 A Processing Module with, a greater Processing Power

The principles described so far can be applied to processing 

modules which have greater processing power than the two-microprocessor 

module.

Fig 3.7 shows one such processing module. It consists of 

m microprocessors, each having km memories under its control. The 

processing module is expected to execute the jobs, arriving through 

a local common queue, associated with n processes. Each micro

processor stores km different files out of n files associated
i

with the n processes of the module.

Fig 3.7 shows one control scheme for the operation of this

type of module. As shown, the scanning procedure of this scheme

consists of a configuration of m repetitive scanning and (m-£) limited

scanning procedures (as described in Section 3.3.1) in tandem.

The values of n, m, k , £, (and therefore m-f) and them

organization of the scanning phase can be chosen in accordance with 

the particular design criterion.

3.6 Conclusions

In this chapter, a scheme for a fault-tolerant multiple- 

microprocessor processing module suitable for use by a functionally 

modular multimicroprocessor system and based on loosely coupled 

approach has been proposed. Although, primarily intended for the 

telecommunications, the principles described can easily be applied 

to many applications and industries.
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The processing module consists of a group of microprocessors, 

each having several local memories under its control. The module 

is intended to execute the jobs associated with a number of processes . 

The microprocessors store in their local memories copies of the files 

associated with the different processes which are executable on the 

same module. Under this architecture, the module becomes a distributed 

data-base system with the need for module file consistency and integrity.

By employing the above approach the following advantages 

have been demonstrated.

a) Within the module itself a certain amount of parallel 

processing can take place,

b) The module can be organized to make use of its multiple 

resources to give a gracefully degrading performance (see Chapter 4).

This leads to an increased module reliability and performance.

t

In this research project, a control scheme for the operation 

of the module has been devised. The scheme allows for concurrent 

execution of tasks within the module, achieves module file consistency 

and integrity, and performs module reconfiguration (see Chapter 4).

A queueing model for the performance analysis of the module 

has been developed. The analysis has involved application of prob

ability and queueing theories to the module under the control of 

the scheme. The performance index has been the average service time 

of the module. From an average service time a variety of other 

performance measures have been derived as dictated by the queueing
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model. Using the queueing model, performance parameters have been 

defined and analytical expressions have been derived which can be 

used to estimate the performance characteristics of the module under 

the control of the scheme.

*

♦
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Task  A r r i v a l s  A s s o c i a t e d  W i t h  n p r o c e s s e s

P= P r o c e s s o r  
p = p r o c e s s

F = F i l e

I.M.C = I n t e r - m o d u l e  

C o m m u n i c a t i o n

( b )

F IG  3.1: B l o c k  Diagram R e p r e s e n t a t i o n  of The
M u l t i p l e - m i c r o p r o c e s s o r  Modu le ;  (a) 
n -  m i c r o p r o c e s s o r  M od u le ,  ( b) T w o -  
m i c rop roce sso r  Modu le .
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F IG  3.2: C o n t r o l  F l ow  D i a g r a m  R e p r e s e n t a t i o n
of  The C o n t r o l  S cheme .
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FIG 3.3: The D i f f e r e n t  Types of  De l a ys  in The 
Scann ing  Phase .
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CHAPTER 4

FAULT-TOLERANT PROCESSING MODULE AS A GRACEFULLY DEGRADING SYSTEM 

4.1 Introduction

The concepts of a fault-tolerant multiple-microprocessor 

processing module suitable for use by a functionally modular multi

microprocessor system have been presented in previous chapters.

In Chapter 3, a control scheme for the operation of the module has been 

developed. The scheme has been considered and analyzed for that state 

of the module which corresponds to a situation where no microprocessor 

or memory failures have occurred, i.e., the 'all working' state of the 

module. Without loss of generality, the studies have been based on a 

two-microprocessor module with each microprocessor having a pair of 

local memories under its control.

Due to the multiple resource environment of the module, when 

internal faults occur it is possible to reconfigure the module to carry 

on its functions, thus improving its reliability. This can be achieved 

by employing more than one microprocessor per module, each microprocessor 

being capable of executing some, or all, of the tasks associated with 

the particular processes assigned to the module.

In general, there are four ways of configuring multiple re

sources in order to achieve reliability [1293, [1333, [1343, [1353,[1363 

[1373, [1383. These are :

a) The massive redundant [1303.



b) The standly redundant C1323.

c) The hybrid redundant C1313.

d) The gracefully degrading [114].

As regards (a), the modules can be organized to execute the same task 

on each microprocessor and vote is taken at the output.

As regards (b), the module can be organized to execute tasks on 

its active1 microprocessors. Upon the detection of a failure of 

an active microprocessor the module attempts to replace the faulty 

unit with a space one.

As regards (c), the module can be organized to be composed of a massive 

redundant core with spares to replace the failed units.

As regards (d), the module can be organized to use all its active 

components (i.e., microprocessors and memories) to execute tasks.

When a failure is detected, the module attempts to reconfigure to 

a new operational state (if possible) with one less component participatin

The gracefully degrading approach, is the one which we have 

chosen, it makes use of the multiple resources of the module in order 

to achieve reliability.

In the other three cases, duplication of the module is required 

in order to achieve this reliability. In the multi-processor case, 

the resources already available can be reconfigured to give a grace

ful degradation of service when portions of it fail. This is achieved 

by reconfiguration and so this enhances the overall reliability of 

the module.

The other configuration techniques can be employed within the 
•j*Active here means participating in the computing process.



Gracefully degrading modules can have a reliability which 

lies between that of the ultra - reliable systems (which employ 

massive, standly, or hybrid approaches) and that of a single basic 

module. In addition, gracefully degrading modules can retain the 

performance characteristics of parallel processing.

The organization of the module to give gracefully degrading 

performance requires the ability of the module to internally recon

figure to a new operational state when a fault is detected. The 

operational states, however, may be different computation capacities.

The computation capacity of the module in any state can be defined 

as the amount of useful computation available per unit time [1043.

We define module reconfigurability as the partially software - 

controlled variation of the module's interconnections so that it 

produces a dynamic restructing of the module's resources. The 

restructing should be in such a way as to achieve the execution of 

the module's tasks, all be it with varying degrees of efficiency, 

however leading to the continuation of the functioning of the module 

as a reliable unit.

In this chapter, the organization of the module as a gracefully 

degarading system is presented. We begin by defining the various 

operational states for the gracefully degrading module. After that, we 

present a control scheme for the operation of the module which :

i) takes into account the operational states of the module 

and co-ordinates the activities of the module according to its new state.

module, or mutiple modules can be used to give even greater system

reliability.



1 4 3

*

♦

ii) achieves module parallel job processing in each state 

(if applicable);

iii) preserves module file consistency and integrity in 

each state (if applicable);

iv) implements the automatic reconfiguration of the module 

as a result of detected faults, and causes the module to transfer to 

a new state, after having reconfigured the module and its control 

procedure to that new state.

The scheme presented by control flow diagrams which illustrate the 

possible phases and the transitions associated with the scheme. We 

next study the problem of the correct diagnosis of a fault situation 

existing within and among modules. The scheme, assumes the avail

ability of diagnostic test results. Diagnostic procedures in relation 

to internal module and system fault-diagnosis have been developed.

These employ algorithms which use the diagnostic test results to 

determine the new operational state of the module. Finally, we apply 

probability and queueing theories to the scheme in order to analyze the 

performance characteristics of the gracefully degrading module under 

the control of the scheme. Queueing models have been developed for 

the performance analysis of the gracefully degrading module. The 

performance index used is the average service time of the module.

From the average service time a variety of other performance measures have 

been derived as dictated by the queueing models. Using queueing 

models, performance parameters have been defined and analytical
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expressions are derived which can be used to estimate the performance 

characteristics of the module operating under the control of the scheme.

Without loss of generality the descriptions and the analysis 

is based on a two-microprocessor module.
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4.2 The Operational States of the Gracefully Degrading Module

Fig 3.1(b) shows the block diagram representation of the 

module under investigation. It consists of a number pair of microproce- 

ors, each having a pair of local memories under their control. The 

module is intended to execute the jobs associated with two sets of 

processes and respectively. In addition^the microprocessors 

store in their local memories copies of the files f and f^ 

associated with the two processes , respectively.

In the gracefully degrading module, when a fault is detected 

within the module it is reconfigured to a new operational state 

so that the faulty aspect is isolated. The rest of the module is 

then enabled.to execute the full repertoire of tasks that it can 

normally perform in the fault free condition. Subsequent component 

failures may either degrade the processing power further, after 

reconfiguration, or make the module non-operative, i.e., a complete 

failure. The different operational states which can be defined for 

the module, under the possible combinations of module component fail

ures, are illustrated in Fig 4.1. Each operational state indicates 

a different configuration of the module which, in conjunction with 

other states, characterize the gracefully degrading behaviour of

the module.
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For the module, as shown in Fig 4.1, there are operational 

states in which the module operates at full capacity (i.e., executes 

the tasks associated with all its processes); others in which it 

operates partially (i.e. it looses the processing power associated 

with one of its processes); and a state in which the module fails 

completely. Hence, the module has three modes of operation, 

full, partial, and failed.
States 1, 2, 3 and 4 are the fully operational states of the 

module. Each fully operational state, except state 1, represents 

a different configuration of the module as a result of failure of 

particular module components. State 1, is the "all working" state 

of the module which corresponds to a situation where no failure has 

occurred. When in these fully operational states the module 

retains the ability to execute the tasks associated with its 

two processes, but with different levels of computation capacity.

States 5 and 6 correspond to the partial operation of the 

module. When in these partially operational states the module 

losses its capability to execute the tasks associated with one of 

its two processes, as a result of the failure of module components 

concerned with that particualr process. Again, these states re

present different configurations of the module with different levels 

of computational capacity.

State F represents a state in which the module fails com

pletely. When in this state the module is unable to execute any

task.



4.3 The Overall Control Scheme for the Operation of the

Gracefully Degrading Module

In Chapter 3, a control scheme has been developed for the 

operation of the module. This scheme has been studied for the all 

working situation. The control scheme allows:

a) parallel processing to be achieved within the module,

b) file consistency and integrity to be preserved within 

the module.

In this section, the organization of the operation of the scheme will 

be extended to cater for the different states of the gracefully degrad

ing module. The resulting scheme called "overall control scheme" 

will be developed to:

a) take into account all the possible operational states

of the module and co-ordinate the acitvities of the module according 

to its new state.

b) Achieve module parallel job processing in each state (if 

applicable).

c) Preserve module file consistency and integrity in each state 

(if applicable).
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d) Implement the automatic reconfiguration of the module 

as a result of detected faults, and cause the module to transfer 

to a new state after having reconfigured the module and its control 

procedure to that new state.

The overall control scheme has been organized to achieve (a),

(b) and (c) by:

i) employing the concepts associated with the proposed control 

scheme for the operation of the module in its all working state, as 

described in Chapter 3;

ii) modifying the procedures associated with the control 

scheme, as appropriate, in order to co-ordinate the activities of the 

module according to its new operational state.

The control scheme has also been organized to achieve (d), which is 

to incorporate a diagnostic state which is entered wherever.a fault 

is indicated. As appropriate, when in this state the control scheme 

allows the module to be tested either internally by the microprocessors 

of the module, or externally by a diagnostic subsystem. The problem 

of testing and correct diagnosis of an existing fault situation, within 

the modules has been studied in Section 4.3.4. The diagnostic state 

has been organized to employ algorithms which use the test results 

to determine the new operational state of the module. As a result 

of the diagnostic state, the overall control scheme transfers from 

this state to the new operational state, after having reconfigured the



1 4 8

module and its control procedure to that new state.

The overall control scheme implements all the possible conditions 

imposed upon the module and also takes into account the effect of 

various component failures and the control procedures. Associated 

with the overall control scheme there are different control procedures 

which co-ordinate the activities of the gracefully degrading module.

In the following sections, using control flow diagram repres

entations, a brief explanation is given of the activities of the over

all control scheme as it brings into operation different control 

procedures for reconfiguation. Without loss of generality the descri

ptions and the analysis have been based on a two-microprocessor 

module, as illustrated in Fig 3.1[b).

4.3.1 The control procedures associated with the different

aspects of operation associated with the overall control 

scheme

Fig 4.2 illustrates the control flow diagrams of the different 

operational procedures of the overall control scheme. The control 

flow diagrams represent the control activities of the different 

operational states of the gracefully degrading module, as described 

in Section 4.2. Each control flow diagram, representing the control 

activities of a particular operational state, is a modified version of 

the control scheme for the operation of the module in its "all 

working" state, as described in Section 3.3. The modifications takes 

place in either the scanning phase, service phase, or both, depending 

on the new operational state of the module.
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In the following sections, a brief explanation of the control procedures 

associated with the individual operational states are given. These 

are based on the principles described in Section 3.3.

4.3.1,1 Control procedure of state 1

Fig 4.2(a) illustrates the control procedure of the overall 

control scheme for the "all working" state of operation of the grace

fully degrading module. The transition conditions and the operations 

associated with both the scanning and service phases of this control 

flow diagram have been described as in Section 3.3.

4.3.1.2 Control procedures of spates 2 and 3

Figs 4.2(b) and 4.2(c) illustrate the control procedures of 

the overall control scheme for operational states 2 and 3 when one 

or two files have failed. The transition conditions and the oper

ations associated with the scanning phase are similar to those of 

Fig 4.2(a) and are described in Section 3.3. The differences occur 

in the service phases of their operation.

Considering operational state 2 and its corresponding service 

phase. This is the situation where a file under one microprocessor 

has failed. During the second and third stages of the service phase

(i.e,, of master, and updating of slave files) no copy tasks, or 

special copy tasks associated with the failed file will be issued. 

However, the operation of the service phase for the queue tasks 

associated with the other process, where the module has two copies



of its file, are similar to those described in Section 3.3.2.

Considering operational state 3 and its corresponding service 

phase of operation, this is the state where two files have failed, 

leaving a single copy of the two types of files, and where the re

maining files are associated with different microprocessors.

During the second and third stages of the service phase (i.e., ex

ecution of master files) no copy tasks, or special copy tasks 

associated with the two processes will be issued.

4.3,1.3 Control procedure of state 4

Fig 4.2(d) illustrates the control procedure of the overall 

control scheme for the module in its fourth operational state. In 

this state, the module has degraded to such a level that it has only 

one microprocessor with copies of both files associated with the 

two different processes under its control.

The transition conditions and the operations associated with 

both the scanning and the service phases are reconfigured to adopt 

to this new module environment. The scanning phase consists of 

the RSR procedure as shown in Fig 4.2(d) and as described in Section 

3,3. Here the LPSR procedure is skipped. This allows the service 

phase to be entered with one task at a time. Consequently, during the 

first and second stages of the service phase no copy tasks, or special 

queue tasks, associated with the two processors will be issued. As 

a result, the third stage of operation of the service phase will be 

skipped.

The transition conditions and activities of the overall control



scheme for this operational state can be summarized as follows:

(The number of the paragraphs correspond to the flow lines indicated 

in Fig 4.2(d)) •

1) The scheme will transfer into the RSR procedure as described

in Section 3.3 of the scanning phase and instigates the RSR procedure, 

after the completion of the previous service time.

2) The scheme will transfer into the service stage with one task, 

after the completion of the previous RSR procedure.

4.3.1.4 Control procedures of states 5 and 6

Figures 4.2(e) and 4.2(f) illustrate the control procedures 

of the overall control scheme for operational states 5 and 6 of the 

gracefully degrading module.

Considering operational state 5 and its corresponding control 

activities. The module here, has degraded to such a level that each 

microprocessor has only a copy of one type of the files associated 

with the two processes executable on the module. The control 

procedures for the process still executable are similar to those 

of Fig 4.2(a), as described in Section 3.3.

The final operational state is state 6, in this state the module 

has degraded to such a level that one microprocessor only and 

one copy of a file associated with a process are still operational.

The control activities for that process is similar to those of state 

4, as described in Section 4.3.1.3.



For the above states (5 and 6) the module has lost its pro

cessing power associated with one of its processes. To be able to 

recover from this loss, the system must be designed to either transfer 

these functions to other modules, or to switch in an appropriate spare 

module C.see Chapter 7),

4.4 The Reconfiguration of the Overall Control Scheme

The organization of the module to give gracefully degrading 

performance requires the automatic reconfiguration of the module and its 

control activities. That is, when a fault is detected, the module 

should be able to transfer to a new operational state after having re

configured itself and its control activities to that new state. To 

implement these, the overall control scheme has been devised to incor

porate a diagnostic state which is entered whenever a fault is indicated. 

When in this state the overall control scheme allows the module to be 

tested either internally by the module’s microprocessors, or externally 

by a diagnostic system. The problem of testing and correcting diagnosis 

of a fault situation within and among the modules has been studied in 

section 4.5.

The diagnostic state has been organized to employ an algorithm 

which uses the diagnostic results to determine the new operational state 

of the module. As a result, the overall control scheme transfers from 

this state to the new operational state after having reconfigured the 

module and its control procedure to that state. Fig. 4.3 shows the 

general block diagram representation of the activities of the overall 

control scheme which implements all the possible conditions imposed upon 

the gracefully degrading module , and takes into account the effect of
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various component failures on the module and its control activities. 

These have been described in sections 4.2 and 4.3.

The relevant algorithm which is employed by the diagnostic state 

to determine the new operational state of the module may be implemented 

on either of the microprocessors of the module, or on the processors 

of the diagnostic subsystem. The algorithm is presented in the foll

owing section in order to describe :

a) The procedure by which the algorithm uses the diagnostic test

results to determine the new operational state of the two microprocessor 

module, as described in section 4.2.

b) The reconfiguration procedure of the overall control scheme from

one procedure of its operation to another.

4.4.1 An algorithm to determine the new operational state of the 

module

As was described in the previous section, the diagnostic state 

has been organized to employ an algorithm which uses the diagnostic test 

results to determine the new operational state of the module. In the 

next section the general algorithm will be developed and this is foll

owed by its application to the two microprocessor module situation.

4.4.2 Preliminaries of the algorithm

Consider a general module (see Fig. 3.1(a)) consisting of n 

microprocessors, denoted by P ...,Pn each P^, for i = 0,...,n-l
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having a number of memory blocks k., denoted by M. ,..,M, . underi ijo ljK^-l
its control, as described in section 3.2. In addition, assume that each

set of memory blocks M ,...M 1, denoted by M., stores copies ofi,o i>K^“J- i
different files associated with the N processes executable on the 

module.

Given the module, we will associate a test table T with the

module, where T represents the conclusion regarding the states of all

module components. The test table T is a row-vector of dimension 
n-1

Cn + £ k.], given by; 
i=0 1

where

and

T CA{ B ’‘‘’’̂ n-l k -1^u,kQ i»Ki n 1,K(n-l)

A = Cx0 ’---’Xn-l]

(4.1)

Bi,k. = Cyi,o’‘‘” yi,k.-l3, £or 1 = O'-"-"-1 1 * 1

I «« *  '***«
1,3

The test table T has components x^, i = 0,. 

n-1, j = 0,...,k^-l. Each x^ represents the conclusion regarding the 

state of microprocessor P^, where

x. =l

1, if P. is fault-free
i

0, otherwise\ 7

Each y^ . represents the conclusion regarding the state of memory block , 3
M. ., where i,3

yu  =

1, if M. . is fault-free i,3
0, otherwise.
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For the two-microprocessor module where i and j each take on values 

of 0 and 1, respectively (i.e. i = 0,1 and j = 0,1) the test table 

reduces to :

T = Cx, 0,0 70,1 yi,i]

Given the respective diagnostic test results of the test table associated 

with the two-microprocessor module, and assuming the the results to 

be correct, we have the problem of determining the new operational state 

of the module based on the available daignostic test results. At this 

point, one needs a procedure to determine the new operational state of 

the module. Such an algorithm is presented in the following section, 

which computes the new operational state, as appropriate.

4.4.3 The algorithm, as associated with the two-microprocessor 

module

The following expressions are defined in relation to the two- 

microprocessor module, as shown in Fig 3.1(b) and will be used in 

conjunction with the algorithm.

(a) Let

x =  l
i=0

X.1

and
1 1

= I l y i ,i=0 i=0 1,J

(4.2)

(4,3)
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(b) Let

*• R. = I x - 1 y. .
i‘=Q H j t o  X’J I

i  ±

i.e, Ri = ^ ^ 0 , 0 + y o , i > + * 1 ^ 1 , 0 + yi,i]

(4.4)

♦
For appropriate values of x^’s and Js, R^ sPeci ^ es the new operational 

state of the module as state 6, as described in section 4.2.

♦  (c) Let

R_ = u x. n y. .
2 i-0 1 j=0 1*3

(4.5)

•
i.e. R2 = x0Cy0 , 0 A u

For appropriate values of x.'s and i
state of the module as state 4, as

•
(d) Let

1 1
R, = u n y . .3 j=0 H* II O H

• i.e. R3 = (yo,o A yi,o} u

1 ^ 1 , 0  7i , r

(4.6)

0,1 y l , V

For appropriate values of x^fs and y^ ^'s, R^ specifies the new operational

state of the module as state 3, or described in section 4.2.
(e) Let T’ be a vector of l!s, whose dimension is equal to that of T.
Define a matrix, devoted by D as :

T iD = [-"] = Cd^ ml dimension (2 6)
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where d^,m represents the element (£,m) of matrix D, for l = 1,2, 

m = 1,...,6. Moreover, the first and second columns of D correspond 

to Pg x p , respectively, and the 3r ,̂ 4^, 5 ^  and 6t*1 columns 

corresponds to M M. n, and M- -, respectively. For each
0 , 0 o 1 1 >1

2
For each m = 1,...,6, let D = £ d„ also let, ID = {m' e Cl,...,63m f,-1 t., m
|Dm = 2} . For appropriate values of x^’s and y^ *s, ID identifies 

the module’s fault-free components. The quantities presented in this

section are used in the algorithm as follows:

ALGORITHM : Let T be given 

Step 0: Compute the quantities

X =
1
Ii=0

X.1

and

ll l /i ji=0 j =0

Step 1: If X = 2 go to step 3; else, go to step 2.

Step 2: If X = 1 go to step 9; else, go to step 18.

Step 3: If Y = 4 go to step 12; else, go to step 4.

Step 4: If Y = 3 go to step 13; else, go to step 5.

Step 5: If Y = 2, compute the quantities and R^

and go to step 6; else, go to step 8.

Step 6: If R^ = 1 go to step 14; else, go to step 7.

Step 7: If R^ = 1 go to step 15; else, go to step 17.

Step 8: If Y = 1 go to step 17; else, go to step 18.

Step 9: If 2 <_ Y <_ 4, compute the quantity R^ and go to step 10;

else, compute the quantity R^ and go to step 11.
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Step 10:

Step 11:

Step 12:

Step 13:

Step 14:

Step 15:

Step 16:

Step 17:

Step 18

Step 19:

Step 20:

If R2 = 1 go to step 15; else, go to step 18.

If R^ = 1 go to step 17; else, go to step 18.

Set new operational state S to state 1, module fully 

operational, stop.

Set S = state 2, module full operational, go to step 19.

Set S = state 3, module fully operational, go to step 19.

Set S = state 4, module fully operational, go to step 19.

Set S = state 5, module partially operational, go to step 19.

Set S = state 6, module partially operational, go to step 19.

: Set S = failed state, a complete failure of the module, stop.

Form matrix D, containing the elements of T and T' as its 

first and second row, respectively, go to step 20.

Compute the quantities

D = l d, m £ £,m

and

ID = {m £l 1,...,63|D = 2} , go to step 21m

Step 21: Stop.

Fig 4.4 illustrates the flow that of-the above algorithm.

The approach adopted for the development of the algorithm for 

the two-microprocessor module can be used to derive similar algorithms 

for modules with three or more microprocessors. Moreover, the simpli

city of the algorithm when considered for modules with two, or more 

microprocessors gives a large amount of flexibility to its implementation. 

For example, one could apply the algorithm to individual modules' as 

appropriate, and implement part, or all, of the relevant algorithms
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associated with individual modules on their constituent microprocessors. 

In this case, each module could to a certain degree use its diagnostic 

test results to determine for itself, its new operational state, provided 

it has not completely failed. The problem of correct diagnosis of 

an existing fault situation among the components of individual modules 

may be performed either internally, or externally and is to be considered 

in section 4.5.

Alternatively, it would be possible to implement a generalized 

version of the algorithm on the processors of an external diagnostic 
subsystem which would perform diagnosis of existing faults on all 

modules. With the apporpriate diagnostic test results the system would 

then apply the algorithm to determine the new operational states of the 

faulty modules provided the module has not failed completely. Clearly 

many other approaches are possible.

4.5 Module and System Fault Diagnosis

In the gracefully degrading module, when a fault is detected 

within the module, it is reconfigured to a new operational state (as 

described in sections 4.2 and 4.3) so that the faulty aspect is isolated. 

In order to achieve this reconfiguration, hardware and software faults 

within the module are required to be diagnosed either internally or 

externally.

To date, microprocessors do not have hardware or software checking 

facilities. A malfunctioning within the microprocessor can only be 

detected by errors it generates. Error detection has to be performed 

externally to the microprocessors. However, when several microprocess

ors are included within a module some self testing can be performed
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As common to all other systems of this nature, module testing can be 

performed externally at periodic intervals by diagnostic system programs. 

When a fault is indicated by a module, the module or the diagnostic sub

system can perform test routines and after a fault has been confirmed, 

either modify the module or transfer its functions to other modules.

This can be achieved whilst other modules are carrying out their normal 

routines and without deleterious effects.

Module software security can be achieved by employing software 

error detection techniques, such as test routines, flag checks, and 

watch dog timers. In addition, a module can check the validity of 

messages to and fro, and the addressing of such messages.

As regards module fault - detection and recovery, the control 

scheme for the operation of the module (as described in sections 4.2 - 

4.4) is organized to achieve this by :

a) incorporating a diagnostic state which is entered whenever a 

fault is indicated;

b) allowing the module, while in the diagnostic state, to be tested 

either internally by the modules' microprocessors, or externally by a 

diagnostic sybsystem,

c) employing an algorithm which, while in the diagnostic state, 

uses the diagnostic test results to determine the new operational state 

of the module.

As mentioned above, in the multiple-microprocessor module the 

problem of determining an existing fault situation can be localized.



That is, the modules can be organized to perform their own fault 

diagnosis, but only to a certain degree. This is only possible when 

more than one microprocessor is included within a module. In addition, 

a diagnostic subsystem can perform test routines, either at periodic 

intervals, or at the request of individual modules. Under susbsystem 

fault diagnosis, the faulty modules in their diagnostic modes of oper

ation can then respond to the fault condition information being received 

from the subsystem.

. The problem of fault-diagnosis in multiple processor systems in 

not new and has been examined in the literature [139-154]. These 

studies have been made on :

(i) The problem of determining an existing fault situation among the 

processors of a multiple processor system, given the processors respective 

diagnostic test results.

(ii) The feasibility of correct diagnosis. This depends on the number 

of faults that can be tolerated and the system interconnection design.

(iii) The development of efficient fault diagnostic algorithms.

In the following subsections, the problem of determining an 

existing fault situation within modules either internally (i,e. by the 

module microprocessors), or externally (i.e., by a diagnostic subsystem) 

will be studied. The studies are based upon the availability of diag

nostic test results. Diagnostic procedure in relation to internal module 

and system fault-diagnosis will be presented. These procedures are
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based on the algorithms developed by Meyer and Masson C155-156], which 

have been shown to be sufficiently straightforward to be easily impl

emented on a simple processor (e,g., a microprocessor) and which, with 

a suitable interconnection design, will always yield the correct 

diagnosis of an existing fault situation.

4.5.1 Internal module fault diagnosis

In this section the problem of determining an existing fault 

situation within the multiple-microprocessor module, as achieved 

by the module's microprocessors is studied. The module under invest

igation consists of n microprocessors, denoted by Pq ,...,P 1*

where each P^, for i = 0, .... , n-1, has a number of memory blocks

k. , denoted by M. ,..., M. , 1 under its control, and where each set
1 1 jU 1 , K ̂  — i

of memory blocks M. ,. .., M. denoted by M. , stores replicated
1 % U 1 . K . “ J* 1

* 1
copies of different files associated with the N processes executable 

on the module.

We will assume that the interconnection design between the 

modules' microprocessors is the so-called D1 design [140]. In this 

design, there is a testing interconnection from to P if and only if 

j-i = r (mod n) and r assumes the values form 1 to t (for i = 0,

l, ...,n-l), i.e., there are testing interconnections from microprocessor 

P^ to the microprocessors P^+^,•••,Pi+t ^ or i = 0,1,...,n-l). We 
will also assume that :

a) each P^ is capable of testing the other P_.'s to which it is

directly connected, as governed by the D interconnection design, for
J. • U
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some specified class of faults;

b) each is capable of testing the set of memory blocks q ,...,

M. ̂  i under its control. Given the testing capability of P., (for 

i = 0,...,n-l) we will associate a test table, denoted by T\, with micro

processor P^, where T\ represents the conclusion regarding the outcome 

of the rests of microprocessors P^+r (for r = l,...,t) and that of 

the set of memory blocks ^ (for h = 0,...,k^-l) by the micro

processor P . The test table (for i = 0,...,n-l) is a row-vector 

of dimension (t+k^), given by;

= Ca(i,i+1).. .a(i,i *-t) Jb(.i,0),.. .,b(i,k^-l)] (4.7)

where, each a(.i,i+r) (for r = l,...,t) represents the conclusion of 

microprocessor P^ regarding the state of microprocessor P^+r, and each 

b(i,h) (for h = 0,...,k^-l) represents the conclusion of P^ regarding the 

state of memory block NL The a's and b's are given by:

a(i,i+r)

and

b(i,h)

0, if P. concludes that P. is fault free i l+r
kl, otherwise;

0, if P. concludes that M. , is fault freei i,h

1, otherwise.

It should be noted that the conclusion of, say, P^ regarding the state 

(whether faulty or fault free) of the microprocessors to which it is 

connected and the memory blocks under its control is only reliable if



indeed P i s  fa u lt - f r e e .  In con trast , we w i l l  assume th a t i f  i s  f a u lt -  

free  then i t s  corresponding t e s t  ta b le  T co rrec tly  d escr ib es the 

s ta te s  ( fa u lty  or fa u lt  free) o f  the corresponding m icroprocessors  

and the memory b lock s.

Suppose that Tq, T ^ , . . . , T  1 are comP^etec  ̂ i-n sence th at

every m icroprocessor has a conclusion  regarding the s ta te  o f  (a) each 

o f  the m icroprocessors to  which i t  i s  connected, and (b) the memory 

blocks under i t s  co n tro l. We have then the problem o f  determ ining the  

e x is t in g  fa u lt  s itu a t io n s  based upon the a v a ila b le  d ia g n o stic  t e s t  

r e s u lt s  in  the ta b les  T\ . Whether or not th is  i s  f e a s ib le  c le a r ly  

depends on the number o f  f a u l t s .  We w i l l  assume in  the fo llo w in g  th a t;

( i )  a t most t  m icroprocessors can be sim ultaneously  fa u lty  ( i . e . ,  

the number o f  m icroprocessors which t e s t  every other m icrop rocessor),

( i i )  any number o f  memory b locks can be sim ultaneously  fa u lty .

The d ia g n o stic  procedure to  be developed to  determine the e x is t in g  fa u lt  

s itu a t io n s  w ith in  the module i s  f i r s t  to  determine the fa u lty  micro

processors and then the fa u lt - f r e e  memory b locks under the control o f  

those m icroprocessors which are f a u lt - f r e e .  In order to  id e n t ify  the  

fa u lty  m icroprocessors we use the conclusion  o f  m icroprocessor (fo r  

i  = 0, . . . , n - l )  regarding the s ta te s  o f  the m icroprocessors P^+^* • • • •  

That i s  by using the a ( i , i + r ) ' s  (fo r  i  = C , . . . , n - 1 ,  and r = l , . . . , t ) .  

Having id e n t if ie d  the fa u lt - f r e e  m icroprocessors, we then proceed to  

determine the fa u lt - f r e e  memory blocks under th e ir  co n tro l. This i s  

obtained by in sp ec tio n  o f  the corresponding t e s t  r e s u lt s  o f  the fa u lt -
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free  m icroprocessors P_. (fo r  i  e £ o , , . .  ,n - l ] )  regarding the s ta te s  o f  

the r e sp e c tiv e  memory blocks under th e ir  co n tro l. This i s  so , because 

we assume th a t i f  a m icroprocessor i s  fa u lt - f r e e  then i t s  corresponding  

ta b le  T* i s  co rrect. For the fa u lt - f r e e  m icroprocessors P^, correspond

ing memory block t e s t  r e s u lt s  are given by b ( i , h ) ( f o r  h = 0, . . . , k ^ - l ) .

As mentioned in  the preceding d ic u ss io n s , the f i r s t  part o f  in tern a l  

module fa u lt  d ia g n o stic  procedure c o n s is ts  o f  determ ining the fa u lty  

m icroprocessors w ith in  the module. In order to  ach ieve t h i s ,  we employ 

the two algorithm s developed by Masson and Meyer C1553, which fo r  a 

D1 in tercon n ection  design  have shown to  y ie ld  the co rrect d iagn osis  

o f  an e x is t in g  fa u lt  s itu a t io n . The a p p lica tio n  o f  the re lev a n t algorithm s 

to  the module requires t e s t  ta b le s  R^, for  i  = 0, . , . , n - l ,  to  be a s so c ia 

ted  with m icroprocessors P^, where rep resen ts the conclusion  o f  P̂  

regarding the s ta te s  o f  a l l  the m icroprocessors. Each has components

B. n , B. . , . . . , B. , where B. . rep resen ts the conclusion  o f  micro- 1,0 i , l *  i , n - l  i , j  r

processor P  ̂ regarding the s ta te  o f  m icroprocessor P_.. I f  m icroprocessor P̂  

’ concludes" th a t m icroprocessor P i s  fa u lt - f r e e  ( i . e .  i f  a ( i , j )  = 0) 

then B. . i s  s e t  to  the value o f  0: otherw ise i t  i s  s e t  to  the value 1.

Masson and Meyer assume th a t i f  a m icroprocessor i s  f a u l t - f r e e ,  then i t s  

corresponding ta b le  B̂  i s  correct and can be used to determine the e x i s t 

ing fa u lt  s itu a t io n s  w ith in  a m u ltip le -p ro cesso r  a rch ite c tu r e .

The f i r s t  o f  the two algorithm s developed by Masson and 

Meyer i s  an e f f i c i e n t  procedure to  compute the ta b les  Bq, B ^ , . . . , B  ^

such th at i f  m icroprocessor P̂  i s  f a u l t - f r e e ,  then the ta b le  B̂  r e f le c t s  

accu rately  the fa u lt  s itu a t io n s  w ith in  a m u ltip le -p ro cesso r  a r ch ite c tu r e .

The other algorithm  i s  an e f f i c i e n t  procedure to  diagnose the s e t  o f  

fa u lty  processors based on the r e s u lt s  o f  the ta b les  Bq , B ^ , . . . , B
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This la t t e r  algorithm  avoids the comparison o f  the ta b les  B^, which i s  

a time consuming p ro cess . In stead , the re levan t algorithm  employs a 

votin g  procedure which a c ce le ra te s  th is  p rocess.

The algorithm s when app lied  to  the m ultip le-m icrop rocessor module 

to  diagnose the s e t  o f  fa u lty  m icroprocessors are as fo llo w s .

Algorithm 1 To compute the ta b le s  B^, 1* ^et ^

[0#1#. . . #n-lD, t  in [1, 2, . . . , n - l 3 , and a ( . i , i+ r ) ,  for  i  = 0, . . . , n - l ,  

r = 1, . . . , t ,  be given .

Step 0: Set B. =0, for m = 0,1,...,n-l, set j = i , set k = i+1,r i,m
and s e t  N_ = 0.F

Step 1: I f  Nc > t ,  stop ; e l s e ,  go to  step  2.
r  —

Step 2: I f  k = i ,  stop; e l s e ,  go to  step  3.

Step 3: I f  a ( i , k )  = 1, s e t  Bi   ̂ = 1, s e t  Np = Np+1, and go to  

step  4; e l s e ,  s e t  j = k and go to  step  4.

Step 4: Set k = k+1 and go to  step  1.

(Note: A ll ad d ition  are performed in  module n ) .

As regards Algorithm 1, Masson and Meyer have demonstrated th a t i f  aDp t in ter

connection design  i s  used, i f  the maximum number o f  fa u lts  which may 

occur i s  t ,  and i f  m icroprocessor i s  f a u l t - f r e e ,  then the ta b le  

B̂  constructed  by the above algorithm  accu rately  r e f le c t s  the e x is t in g  

fa u lt  s itu a t io n .

Algorithm 2 To Diagnose . the fa u lty  m icroprocessors. Let t  in  

[ 1, . . . , n - l ]  be g iven .

Step 0: Compute the ta b le s  Bq, B ^ , . . . , B n  ̂ by using Algorithm 1.
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Step 1: Compute the q u a n tit ie s  y ^ , . * . ,  y^ , given by

y . c a r d in a lity  o f  { i  £ [ 0 , 1 , . . . , n - l ] | B .  . = 1}
J > J

Step 3: Let V = {j eCO,1, < . . sn - l 3 |  y  ̂ >_ t + l } .

(Note: I f  the ta b les  B̂  are arranged to  form an nxn array, where B̂
tili s  the i  row, then y . i s  ju s t  the number o f  l ' s  in  column j)

As regards Algorithm 2, Masson and Meyer have demonstrated th at i f  a 

D in tercon n ection  design  i s  used , i f  the maximum number o f  fa u lts1 j  U

which may occur i s  t ,  and i f  n 2t  +1, then i s  fa u lty  i f  and only  

i f  j i s  in  the s e t  V.

Having diagnosed the fa u lt - f r e e  m icroprocessors, as d escribed  

above, we then proceed to the second part o f  the module fa u lt -d ia g n o s t ic  

procedure. As mentioned in  the preceding d isc u ss io n s , th is  c o n s is ts  

o f  determ ining the fa u lt - f r e e  memory blocks under the control o f  those  

m icroprocessors. This i s  sim ply obtained by in sp ec tio n  o f  the co rres

ponding t e s t  r e s u lt s  o f  the fa u lt - f r e e  m icroprocessors P^, for  i  ft V, 

regarding the s ta te s  o f  the r e sp e c tiv e  memory b locks under th e ir  

control as given by th e ir  corresponding T ^'s. This i s  so , because we 

assume th at i f  m icroprocessor P̂  i s  f a u lt - f r e e ,  then i t s  corresponding  

T̂  i s  co rrect. That i s  the s ta te  (whether faulty or fa u lt - f r e e )  o f  the 

memory blocks under the control o f  the fa u lt - f r e e  m icroprocessor, P. 

are as given by the t e s t  r e s u lt s  b ( i , 0 ) , . . . , b ( i , k ^ - l ) . As regards 

memory blocks under the control o f  the fa u lty  m icroprocessors, we w i l l  

assume th at they are fa u lty  ir r e sp e c t iv e  o f  th e ir  ’ true' s ta te  ( i . e . ,  

whether fa u lty  or f a u l t - f r e e ) .  This i s  so , because once a m icroprocessor  

w ith in  the module f a i l s  then the memory blocks under i t s  con tro l can no 

longer take part in  the computing p rocess.



Having id e n t if ie d  the s ta te s  o f  the modules’ m icroprocessors 

and memories, and using the above d ia g n o stic  procedure, an algorithm  

s im ila r  to  th a t described in  s e c t io n s  4 . 4 . 1  - 4 . 4 . 3  can then be developed  

for  the module in  order to  determine i t s  new op eration a l s t a t e .  The 

la t t e r  Algorithm completes the cy c le  o f  op era tion s, as required by the  

module in  i t s  d ia g n o stic  mode o f  op eration , in  order to diagnose fa u lts  

w ith in  the module and to  reconfigure i t s e l f  accord in gly .

4 . 5 . 2  System fa u lt  d iagn osis

In th is  s e c t io n , the problem o f  determ ining a fa u lt  s itu a t io n  

among S p rocessin g  modules, denoted by PM ,̂ PM^,. . . ,PMs by an ex tern a l 

d ia g n o stic  subsystem i s  stu d ied .

We w i l l  assume th at the d ia g n o stic  subsystem c o n s is ts  o f  D 

m icroprocessors, denoted by Uq, u ^ , . . . , i i p  w ith a  ̂ in tercon n ection  

design  (as d escribed  in  se c t io n  4 , 5 . 1 ) .  We w i l l  a lso  assume th at:

a) each .u , (for  i  = 0 , . . . , D - 1 )  i s  capable o f  t e s t in g  other u^'s

to  which i t  i s  d ir e c t ly  connected as governed by the D in tercon n ection1 , L

d esign ,

b) each u  ̂ i s  capable o f  t e s t in g  the p rocessin g  modules PM_., for  

j = 0, . . . , s - l  fo r  some s p e c if ie d  c la ss  o f  f a u lt s ,

c) each u  ̂ t e s t s  only those p rocessin g  modules which in d ica te  to  

the d ia g n o stic  subsystem the need for  i t s  s e r v ic e .

Under th is  arrangement, the p rocessin g  modules them selves do not take
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part in  d iagn osis o f  an e x is t in g  fa u lt  s itu a t io n . The modules with

fa u lty  asp ects in d ica te  to  the d ia g n o stic  subsystem the need for  i t s

s e r v ic e . The d ia g n o stic  subsystem then performs i t s  t e s t s  and fa u lt

d iagn osis accord in gly . As a r e s u lt ,  the fa u lty  modules reconfigure

( i f  not fa i le d  com pletely) as appropriate, upon r e c e ip t  o f  th e ir  own

fa u lt  con d ition  inform ation from the d ia g n o stic  subsystem.

Given the te s t in g  c a p a b ility  o f  u^, we w i l l  a s so c ia te  a t e s t

ta b le  denoted by T with m icroprocessor u . , where T rep resen ts the
1 ui

conclusion  regarding the outcome o f  the t e s t s  o f  m icroprocessors

ui+ r ^ or r = as g °verned by the t  in tercon n ection  design

between the subsystem m icroprocessors) and the outcome o f  the t e s t s  o f

the s e t  o f  fa u lty  p rocessin g  modules PM ,̂ for t  e [0, s - l  J,  by the

m icroprocessor u^. Assuming th at the s e t  o f  fa u lty  p rocessin g  modules

PM̂ , which have in d ica ted  to  the d ia g n o stic  subsystem the need for  i t s

s e r v ic e , to  be PM. , PNL , and PM„ , where A , B , and C e [ 0 , s - l ] ,  
A d L s  S S

S S s
then the t e s t  ta b le  T (fo r  i  = 0 , . . . , D - 1 )  i s  a row -vector given by:

i

Tu = Cd(i , i+1)  , .  . .  ,d ( i , i+ .t )  ;C(i ,As ) C( i ,Bs )C( i ,Cs )]  
i

(4.8)

where each d ( i , i + r )  (fo r  r = l , . . . , t )  rep resen ts the conclusion  o f  

m icroprocessor u  ̂ regarding the s ta te  o f  m icroprocessor u^+r> and each

C( i , e )  for e e[As ,Bs ,Cs ] i s  a row -vector which rep resen ts the con

c lu sio n  o f  u  ̂ regarding the s ta te  o f  the m icroprocessors and the 

memory blocks o f  the p rocessin g  module PM̂ . For a general module
g g 0

PM , c o n s is t in g  o f  n m icroprocessors, denoted by Pn , P . , . . . , P  e e 0 1 n -1
e e eeach P. (fo r  j = 0 , . . . ,  n -1) having a number o f  memory b locks k •,J e j
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denoted by M. n , , . . ,M7 1 under i t s  co n tro l, then the C( i , e )  i sj ,0 j >kj-i

given by ;

where

C( i , e )  = C A ^  !b ^  
e ’ e ,0,0

.. . B ^  ,. .. , B ^  ]
e,j,k. e,n -l,k .-1

3 e n -1J e

(4.9)

( i ) = Cx ( i ) .(i>
e ,0 , * e , j x ( i )  e,n -1e

and

B ^  = [ y ^ .  , . , . , y ^ .  , y ^ .  , , for  j=0, . . . , n  -1„ , v 7e ,  j ,0 ,7e , j , g  7e , j , k  .-1 e
c * J > «■ j J

The components o f  T are given by ;
i

d ( i , i+ r )  =
0, i f  u. concludes th a t u. i s  fa u lt - f r e e  ' i  l+ r

1, otherw ise ,

c<«.e , 3

0. i f  u. concludes th a t P? i s  fa lu t - f r e e  
i 3

1, otherw ise ,

and

y [i>e , j , g

f 0, i f  u. concludes th at M? i s  fa u lt - f r e e  
i J jg

1, o th erw ise.

I t  should be noted th at the conclusion  o f ,  say , u  ̂ regarding the s ta te  

(fa u lty  or fa u lt - f r e e )  o f  the subsystem m icroprocessors to which i t  i s  

connected, and regarding the s ta te  o f  components o f  the p rocessin g  

modules which require i t s  d ia g n o sis , i s  only r e l ia b le  i f  indeed u  ̂ i s
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f a u l t - f r e e .  In co n tra st, we w i l l  assume th at i f  u. i s  fa u lt - f r e e  then

i t s  corresponding t e s t  ta b le  T c o rr e c tly  d escrib es the s ta te s  o f  the
ui

corresponding subsystem m icroprocessors, and the s ta te  o f  the components 

o f  the p rocessin g  modules.

Suppose th a t T , T , . . , , T  are complete in  the sense th a t  
u0 U1 UD-1

every subsystem m icroprocessor has a conclusion  regarding the s ta te  o f

(a) each o f  the subsystem m icroprocessors to which i t  i s  connected, and

(b) the module components o f  th ese  p rocessin g  modules which have in d ica ted

to  the d ia g n o stic  subsystem the need for  i t s  s e r v ic e . We have then the

problem o f  determ ining the e x is t in g  fa u lt  s itu a t io n s  w ith in  the fa u lty

p rocessin g  modules based upon the a v a ila b le  d ia g n o stic  t e s t  r e s u lt s  in

the ta b le s  T . Whether or not th is  i s  fe a s ib le  c le a r ly  depends on 
i

the number o f  fa u lty  subsystem m icroprocessors. We w i l l  assume in  the  

fo llo w in g  th at :

( i )  at the most t  subsystem m icroprocessors can be sim ultaneously  

fa u lty  ( i . e ,  the number o f  subsystem m icroprocessors which t e s t  every  

other subsystem m icrop rocessor),

( i i )  any number o f  p rocessin g  modules can be sim ultaneously  fa u lty .

The d ia g n o stic  procedure to  be developed to determine the e x is t in g  fa u lt  

s itu a t io n s  w ith in  the fa u lty  modules by the d ia g n o stic  subsystem is  

s im ila r  to  th at described  i s  s e c t io n  4 . 5 . 1  in connection with the in t e r 

n a l  module fa u lt  d ia g n o sis . That i s ,  we f i r s t  s e t  out to  determine the  

fa u lty  subsystem m icroprocessors and then diagnose the fa u lt  s itu a t io n s  

w ith in  the fa u lty  modules based upon the d ia g n o stic  t e s t  r e s u lt s  o f  those
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fa u lt - f r e e  sybsystem  m icroprocessors. In order to  id e n t ify  the fa u lty  

subsystem  m icroprocessors we use the conclusion  o f  subsystem m icroprocessor  

u^ (fo r  i  = 0,...,D-1) regarding the s ta te s  o f  the subsystem m icroproce

sso rs  u .+^, • * • jUi+ t  ^ , e '* we 1156 d ( i , i . + r ) fs for i  = 0,...,D-1, 
and r = l , . . . , t )  and then employ the two Algorithms developed by Masson 

and Meyer in  a s im ila r  way to  th a t described  in  s e c t io n  4.5.1 in  

r e la t io n  to  the in tern a l module fa u lt  d ia g n o sis . Having id e n t if ie d  

the fa u lt - f r e e  subsystem m icroprocessors, we then proceed to determine 

fa u lt  s itu a t io n s  w ith in  the p rocessin g  modules which have in d ica ted  to  

the d ia g n o stic  subsystem the need for  i t s  s e r v ic e . This i s  sim ply 

achieved by in sp ec tio n  o f  the corresponding t e s t  r e s u lt s  o f  the 

fa u lt - f r e e  subsystem m icroprocessors (fo r  i  e[0,1,...,D-1]) regrading  

the s ta te  (fa u lty  or fa u lt - f r e e )  o f  the m icriprocessors and the memory 

blocks o f  the resp e c tiv e  fa u lty  p rocessin g  modules. This i s  so , because  

we assume th at i f  a subsystem m icroprocessor u. i s  fa u lt - f r e e  then i t s

corresponding T is  co rrect. For the fa u lt - f r e e  subsystem m icroproce- 
i

s so r  u^, the corresponding s ta te s  o f  the m icroprocessor and memory 

blocks o f  the fa u lty  p rocessin g  modules are as given by the t e s t  r e s u lt s  

C ( i , e ) ,  for  e in  the s e t  which contains the id e n t ity  o f  the fa u lty  

p rocessin g  modules.

Under the above d ia g n o stic  subsystem procedure, a l l  the p ro cessin g  

modules may be fa u lty , but at most t  subsystem m icroprocessors may be 

fa u lty  for  correct d iagn osis o f  the e x is t in g  fa u lt  s itu a t io n s  among the 

p rocessin g  modules.

Having diagnosed the s ta te s  o f  the m icroprocessors and the 

memory blocks o f  the fa u lty  p rocessin g  modules, using the above subsystem  

d ia g n o stic  procedure, a gen era lized  version  o f  the Algorithm , s im ila r  to  

th at described in  se c t io n s  4.4.1 - 4.4.3, can then be developed and



be implemented on the microprocessors of the diagnostic subsystem to 

determine the corresponding new operational 3tates of the faulty proce

ssing modules. The latter Algorithm completes the cycle of operations 

as required by the diagnostic subsystem when its service is requested 

by the faulty processing modules. The faulty processing modules in their 

diagnostic modes of operation can then reconfigure (if not failed 

completely) accordingly upon receipt of information from the diagnostic 

subsystem relating to their new operational states.

The s im p lic ity  o f  the d ia g n o stic  procedures, as described  in  

the preceding d iscuss’io n s , g ives a large amount o f  f l e x i b i l i t y  to  

th e ir  im plem entation. For example, one could implement p a rt, or a l l ,  

o f  the relevan t Algorithms a sso c ia ted  with e ith e r  the in tern a l module 

or the subsystem d ia g n o stic  procedures, as the case may be, in  

p a r a lle l  on th e ir  resp ec tiv e  m icroprocessors. C learly  many other  

v a r ia tio n s  for  implementation are p o s s ib le .

4 .6 The A nalysis Of The O verall Control Scheme

In the fo llo w in g  s e c t io n s , an a n a ly s is  o f  the o v e ra ll con tro l 

scheme is  performed. The main a n a ly t ic a l expressions which describ e  

the behaviour o f  the module's parameters (as considered in  se c t io n  

3.4 .1 )  fo r  a l l  the operational s ta te s  o f  the tw o-m icroprocessor module 

are presented . These give an estim ation  o f the performance ch aract

e r i s t i c s  o f  the module in  each o f  i t s  operational s t a t e s .  The ex 

p ression s have been derived by adopting the same procedure as employed 

in  sec tio n  3 . 4 .1  in  order to derive the relevan t exp ression s for  the 

' a l l  working' s ta te  o f  the module. As regards to  the d if fe r e n t  oper
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a tio n a l s ta te s  o f  the module, p r o b a b ility  and queueing th eo r ie s  have 

been app lied  to the con tro l flow diagrams o f th e ir  con tro l procedures- 

(as described in  s e c t io n  4 . 3 . 1 ) .  As a r e s u lt ,  the r e sp e c tiv e  queue 

stru ctu res denoted by QS^, each c o n s is t in g  o f an assembly o f  d if fe r e n t  

queueing m odels, denoted by QM(i,j) have been d ev ised . F ig . 4 .5  

i l lu s t r a t e s  the re lev a n t queue s tr u c tu r es . Each queue stru ctu re  a sso 

c ia te d  w ith an op eration al s ta te  implements a l l  p o s s ib le  con d ition s  

imposed upon the module in  th at s t a t e .  The queue stru ctu res  have 

then been employed (as in  se c t io n  3 . 4 . 1 )  in  order to derive the an a l

y t ic a l  expressions in  the fo llo w in g  s e c t io n s .

4 . 6 . 1  The M/G/l queueing model se r v ic e  times

The mean ser v ic e  tim es o f  the queueing models a sso c ia ted  w ith  

the queue stru ctu res  (as in d ica ted  in  Fig 4 .5  and as considered in  

sec tio n s  3 . 4 . 1  and 4 . 3 . 1 )  are given by:

y i ' j )
xa(i,j) for i = 1,2,3,5, j = 1.....5 ’

yaCi.j) for 1 = 4,6, _ j = 1.
( 4 .10)

where
th thi  = r e fer s  to  the i  queue stru ctu re  a sso c ia ted  w ith the i  op eration al

s ta te .
thj = r e fer s  to  the j queueing model o f  a queue stru ctu re  

X ( i , j )  = The Average o f  queueing model stru ctu re  time a sso c ia ted  with
c l

QM(i . j) .

x ( i , j )  = The Average o f  queueing model ser v ic e  time a sso c ia ted  withcL

QM(i , j) ,  for i  = 1, 2, 3 , 5 ,  j = 1 , . . . , 5 .
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(1 , j)  = Average o f  queueing model ser v ic e  time a sso c ia te d  with  

QM(i , j ) , for  i  = 4 , 6 ,  j = 1.

by :

As regards queue stru ctu re  QŜ ., i  = 1 , 2 , 3 , 5 ;  xa ( i , j ) i s  given

:p (iJ) + xsCi,j) for j = 1, • • • j 5

x (i)
V

for j = 1 ,3 ,5

x (i)L Uj J
for j = 2,4

>p(i> j ) = 0 for j = 5
4

(4 .11)

where

Xp(i,j)

X (i) u„2

x ( i )  u 1

= The Average o f  ser v ic e  phase ser v ic e  time a sso c ia ted  with

QM(.i, j) •

= The Average o f  scanning procedure s e r v ic e  time a sso c ia ted  

with QM(i , j ) ,  for  i  = 1 , 2 , 3 , 5 ;  j = 1 , . . . , 4

= The Average o f  ser v ic e  phase serv ice  time a sso c ia ted  w ith pro

cess in g  two tasks at a tim e, given th at the module i s  in  s ta te  

i ,  i  = 1 , 2 , 3 , 5 ;  for  queueing model j ,  j = 1 , 3 , 5 .

: The Average o f  ser v ic e  phase serv ice  time a sso c ia ted  with  

p rocessin g  one task  at a tim e, given th a t the module i s  in  

s ta te  i ,  i  = 1 , 2 , 3 , 5 ;  for  queueing model j ,  j = 2 ,4 .

As regards queue stru ctu re  QS., i  = 4 ,6;  y ( i , j )  i s  given byi  a

ya ( i , j )  = x ( i )  for  j = 1,
d. (4.12)

where
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( i )  = The Average o f  ser v ic e  phase se r v ic e  time a sso c ia ted  with  

p rocessin g  one task, at a tim e, given th a t the module i s  in  

s ta te  i ,  i  = 4 ,6;  for  queueing model j ,  j = 1.

The variance o f X ( i , j )  can be w ritten  as : a J

2 , .  . .
S_(i,j) for i = 1,2,3,5, j = 1,...,5 )

Or 

2n C.i,j) for i = 4,6 , j = 1
(4.13)

where
2

( i , J )  = The Variance o f  queueing model ser v ic e  time a sso c ia ted  w ithd

QM(i , j ) •
2

£ ( i , j )  = The Variance o f  queueing model ser v ic e  time a sso c ia ted  withcL

QM(i , j ) , for i  = 1,2,3,5, j = 1,...,5.
2

q ( i , j )  = The Variance o f  queueing model serv ice  time a sso c ia ted  with
SL

QM(i , j ) ,  for  i  = 4 , 6 ,  j = 1.

2
As regards queue stru ctu re  QS., i  = 1 , 2 , 3 , 5  ; £ ( i , j )  i s  given byX cL

for j = 1 , • • •>5

;2s a , j ) = C2 ( i ) for j = 1 ,3 ,5
U2

s 2 Ci) for j = 2,4

U1
= 0 for j = 5 j

(4.14)

where
2

£s ( i , j )  = The Variance o f  ser v ic e  phase serv ice  time a sso c ia ted  with
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SpCi’j)

< 2 u,

( i )

= The Variance o f  scanning procedure serv ice  time a sso c ia ted  

w ith QM(.i,j),  fo r  i  = 1,2,3,5, j = 1,...,4 

= The Variance o f  serv ice  phase ser v ic e  time a sso c ia te d  with  

p rocessin g  two tasks at a tim e, given th a t the module i s  in  

s ta te  i ,  i  = 1,2,3,5; for  queueing model j, j = 1,3,5.

= The Variance o f  serv ice  phase ser v ic e  time a sso c ia te d  with  

p rocessin g  one task  a t a tim e, given th at the module i s  in  

s ta te  i ,  i  = 1,2,3,5; for queueing model j, j = 2,4.

2\.s regardsqueue stru ctu re  QS., i  = 4 ,6;  ria ( i , j )  i s  given  by:

where 

J2
u. (i)

n?Ci,j) = £.2. (i}> for j = 1d (4 .15)

= The Variance o f  ser v ic e  phase ser v ic e  time a sso c ia ted  with  

p rocessin g  one task a t a tim e, given th at the module i s  in  

s ta te  i ,  i  = 4 , 6 ,  for  queueing model j ,  j = 1.

4 . 6 . 2  The scanning procedure ser v ic e  tim es a sso c ia ted  w ith queue 

stru ctu res

Shown in  Fig.  4 .5  are the r e sp e c tiv e  queueing models which represent 

the o v e ra ll scheme in  i t s  various modes o f  operation . Following the 

same arguments as in  se c t io n  3 . 4 . 1 . 2 ,  the mean and the variance o f  the 

scanning procedure ser v ic e  tim es a sso c ia ted  w ith the queueing models 

can be w ritten  as fo llow s:

a) As regards queue stru ctu re  QS., i  = 1 , 2 , 3 , 5 ;
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and

C i , j)

f s  - R , for  j = 1,3w w

Sw , for  j = 2,4

0V. , for  j = 5

, 2  2 
-  °R , for j = 1,3

a2
W , for j = 1,4

' 0 , for j = 5

(4.16)

where, the exp ression s S
W‘

R w and cr̂  are as described  in  se c t io n

3 . 4 . 1 . 2 .

b) As regards queue s tru c tu re , QS., i  = 2,4.

In th ese modes o f op eration , fo llow in g  the assumptions given  

in  s e c t io n  3 . 3 . 1 . 1 ,  the amounts o f  scanning delay b efore ser v ic e  can 

commence are in s ig n if ic a n t .  That i s  when no task i s  in  s e r v ic e , the  

next incoming ta sk , or a task present in  the queue i s  served im m ediately. 

Hence, the corresponding queueing models incorporate no scanning procedure 

w aitin g  tim es.

4 . 6 . 3  The ser v ic e  phase serv ice  tim es a sso c ia ted  w ith queue stru ctu res

Following the same arguments as in  sec tio n  3 . 4 . 1 . 3  and Appendix

A, the a n a ly t ic a l exp ression s for the average serv ice  phase ser v ic e  tim es

x ( i)  and x ( i )  a sso c ia ted  with p rocessin g  one, or two tasks resp ec t-  
U1 u2

iv e ly ,  given th at the module i s  in  s ta te  i  can be derived as fo llo w s:
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a) As regards, s ta te  i ,  i  = 1 , 2 , 3 , 5 ;  x ( i )  and x ( i )  a sso c ia ted
U2 U1

with the p rocesses which are s t i l l  executab le  in  s ta te  i  are given by:

ft*

x ( i)  
U2

k 2 (i)

l
k-1

(4.17)

k2 a)

l  P ( i )  = 1 , fo r  i  = 1, 2, 3 , 5 .
K ,.U„

k=l 2

%
k2( i )  = 10 , for  i  = 1 ,2 ,3 ; where two p rocesses are s t i l l  

executable on the module

3 , for  i  = 5; where one process i s  s t i l l  exe
cutable on the module.

x ( i)  
U1

k 1 Ci)

Ci)

l
k=l

Ci)
1

k
(4.18)

Pk , u ( i > ■ for  i  = 1, 2, 3 , 5 .

k=l

' 4 , for i  = 1, 2, 3; where two p rocesses are s t i l l  
executable on the module

2 , for  i  = 5; where one process i s  s t i l l
executable on the module

where

k = r e fer s  to  the types o f  one, or two tasks en ter in g  the se r v ic e  phase, 

k^Ci) = re feres  to  a l l  the p o ss ib le  combinations o f  two types o f  tasks

which are s t i l l  executable on the module, given th at the module i s  

in  s ta te  i ,  i = l , 2 , 3 , 5 .

k^(i )  = re fer s  to  a l l  the p o ss ib le  types o f  one task which are s t i l l
executable on the module, given that the module i s  in  s ta te  i ,  

i  = 1, 2, 3 , 5 .
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the p r o b a b ility  a sso c ia ted  w ith k 1 p o ss ib le  combination  

o f  two types o f  ta sk s , k 1^ 2(1) whi ch are s t i l l  

executable on the module, given th at the module i s  in  

s ta te  i ,  i  = 1, 2, 3 , 5 .
ththe p r o b a b ility  a sso c ia ted  w ith the k p o s s ib le  type o f  one

ta sk , k e [ l , k ^ ( i ) ] ,  which are s t i l l  executable on the

module, given th at the module i s  in  s ta te  i ,  i  = 1, 2, 3 , 5 .

'the Average o f  ser v ic e  phase ser v ic e  time a sso c ia te d  with
thtwo task s o f  the k typ e, k l^k^Ci)^» given th a t the module 

i s  in  s ta te  i ,  i  = 1, 2, 3 , 5 .

the Average o f  ser v ic e  phase serv ice  time a sso c ia te d  with  

one task o f  the k*^ typ e, k e [ i , k j ^ i ) ] ,  g iven th a t the 

module i s  in  s ta te  i ,  i  = 1 , 2 , 3 , 5 .

The5 expressions for k. (i), k0(i), P. (i), P. (i), x, fi) r 1 2^ k*u2 k,u^ J k,u^
and x, ( i ) , i  = 1 , 2 , 3 , 5  can be derived by applying a s im ila r  procedure 

k ,u 2

to  th a t in  Appendix A, used to d erive  the exp ression s for  the a l l  

working s ta te  ( i . e .  s ta te  1) .

b) As regards s ta te  i ,  i  = 4 ,6;  x ( i )  a sso c ia ted  with the processes
U1

which are s t i l l  executab le in  s ta te  i  i s  given by

( i)

k 1 (i)

kx(i)
l Pk,u (i) x.—1 II 1

k (i)1
I Pk,u1(i) =

7T II h-1

4 , for i .ri-ii

2 for i = 6;

(4.19)

1 , for i  = 4 , 6

where two processes are s t i l l  executable  
on the module

where one process i s  s t i l l  executable  
on the module.
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where,

k^(.i) = r e fer s  to  a l l  the p o ss ib le  types o f  one task  which are s t i l l  

executable on the module, given th at the module i s  in  

s ta te  i ,  i  = 4,6;
"thP ( i )  = the p r o b a b ility  ■ a sso c ia ted  w ith the k p o ss ib le  type 

k
o f  one ta sk , k e [ l , k ^ ( i ) ] ,  which i s  s t i l l  executab le on the

module, given th a t the module i s  in  s ta te  i ,  i  = 4,6;

x (1) = the average o f  ser v ic e  phase se r v ic e  time a sso c ia ted  with one 
k,u_

I th
task o f  the k typ e, k e [ l , k ^ ( . i ) ] ,  given th a t the module i s  

in  s ta te  i ,  i  = 4 , 6 .

The exp ression s for k1( i ) > P». ( i ) , and x, ( i ) , i  = 4 ,6  can beJ. K., U^ K f U^

derived by applying the same procedure as in  Appendix A.

The variances o f  serv ice  phase tim es can be w r itten  as fo llo w s:

a)

by:

2 2As regards s ta te  i ,  i  = 1 , 2 , 3 , 5 ;  £ ( i )  and £ ( i )  are given
u2 u„

and

S2 ( i )  = x2 ( i )  - x2 ( i )  
u2 2 2

S2 ( i )  = x2 ( i )  - x2 ( i )  
U1 U1 U1

(4.20)

where

and

V i )

■ l
z k=l z z

k 1 (.i)

\ a )  = l  pk.u a)
1 k.= l  1 1

(4 .21)
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b)
2

As regards s ta te  i ,  i  = 4 ,6;  £ ( i )  i s  given by
U1

52 ( i )  -  x2 ( i )  - x2 ( i )  
u U1 U1

(4.22)

where V i )

u. = l  pl.u *1 > U U)
1=1

(4.23)

4 . 6 . 4  The p r o b a b ility  o f  having zero , one and two or more tasks  

present in  the queue, given th a t the module i s  in  s ta te  i , 

fo r  i  = 1 , 2 , 3 , 5

Following the same arguments as in  se c t io n  3 . 4 . 1 . 4  and 

Appendix B, the p r o b a b ilit ie s  o f  having zero , one and two or more tasks  

present in  the queue, given th at the module i s  in  s ta te  i ,  fo r  i  = 1,

2 , 3 , 5  can be derived as fo llow s:

n(i)
,n( i )i fo(i) for n ( i )  > 0 (4.24)

where,

n ( i )  = the number o f  tim es the module when in  s ta te  i ,  i  = 1 , 2 , 3 , 5  has 

processed ta sk s;

P = the colum n-vector o f  dimension 3, whose elem ents rep resen t the  
n( i )

p r o b a b ilit ie s  o f  having zero , one and two or more tasks present 

in  the queue, a f te r  the com pletion o f  the s e r v ic e , when in  s ta te  

i  for the n ( i)t̂1 tim e;

= the matrix o f  dimension 3x3, whose elem ents rep resen t the

p r o b a b ilit ie s  o f  task a r r iv a ls  at various in s ta n ts  during the

operation  o f  the module, given th at the module i s  in  s ta te  i ,  

i  = 1 , 2 , 3 , 5 ;
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0 (1 )
the colum n-vector o f  dimension 3, whose elem ents represent the 

p r o b a b ilit ie s  o f  having zero, one and two or more tasks present 

in  the queue, p r io r  to  the f i r s t  p rocessin g  o f  tasks when in  s ta te  

i ,  i  = 1, 2, 3 , 5 .

The column v ectors P . . .  and Prt. . .  are given by :n(i) 0(i)

and

, = I
n ( i )  L

fn (i)  n ( i )  n ( i )

d0 dl d> ; , fo r  nCi) > 0
(4.25)

Cr, f •

P0(.i)
0( i )  0( i )  0( i )

d0 di d>i

where, n ^ d g ,  n ^ d ^  and n ^'^d>  ̂ are the p r o b a b ilit ie s  o f  having zero , 

one and two or more task s present in  the queue, r e s p e c t iv e ly , a fte r  

the com pletion o f  the s e r v ic e , when in  s ta te  i ,  i  = 1 , 2 , 3 , 5 ,  for  the 

n ( i )  tim e.

Regarding ^ ^ d ' s  th ese are the p r o b a b ilit ie s  o f  having zero , one and 

two or more tasks present in  the queue, p r ior  to the f i r s t  p rocessin g  

o f  task s when in  s ta te  i ,  i  = 1, 2, 3 , 5 .

The m atrix E^, fo r  i  = 1 , 2 , 3 , 5  i s  given by:

E. = 
i

’tao V i + aico,i) (ao V i + “iV P  V i '

(a0 bl,i + V l V  (a0 bl,i  + al V i 5 Cl,i 

(a0 b2,i + al=2,i3 (a0 b2,i + alC2,p C2,i ,

(4.26)
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where, a<s are as defin ed  in  se c t io n  3.4*1-.4 and h*s and C*s are 

as fo llo w s;

bn . = P Cno ta sk  a r r iv a ls  in  x ( i )  ] u , i  r u  ̂ '

b1 „ = P Cone ta sk  a rr iv a l in  x f i l 31.1 r u  ̂ J

b0 . = P [two or more task  a r r iv a ls  in  x ( i )32.1 r U1

Cn „ = P Cno.task a r r iv a ls  in  x ( i )3  0,1 r u2
CL . = P Cone task  a rr iv a l in  x ( i ) 3

1.1 r u2
. = P Ctwo or more task  a r r iv a ls  in  x„ ( i ) 3

2 .1 r u2

T herefore, from the laws o f  p r o b a b ility , the fo llo w in g  expressions can 

be w ritten  in  r e la t io n  with the b ’s ,  C’s and d’s .

,fo r  i  = 1, 2, 3 , 5 .  (4.27)

The above exp ression s can be evaluated  by applying a s im ila r  procedure 

to  th at in  Appendix B, used to derive the expressions for  the a l l  working 

s ta te  ( i . e .  s ta te  1) .

n a ) ^  + nti)^ + n(i)d>i = 1 

° W d 0 ♦ ° ( « dl ♦ 0(« d >1 - 1

b2,i = 1 - <b0,i + bl.P

C2 , i  = 1 Ĉ0 , i  + Cl , i >



4*6.5 The p rocessin g  module se r v ic e  time

For the module when in  s ta te  i ,  i  = 1 , . . . , 6  as in d ica ted  in  

Fig.  4 . 5 ,  the mean o f  the ser v ic e  time x ( i )  a sso c ia ted  w ith s ta te  i  

can be w ritten  as

xCi)

where,

xn ( i )

kx ( i )  u^ „

, fo r  i  = 1 , 2 , 3 , 5  

, for  i  = 4 ,6
(4.28)

x ... = C 
n ( i )

n(i)-l n(i) -1 
d0 + dl ] (g„ -  (1- aO) V aO(iiu2( i ) - ;iu | i ) ) )

+ x ( i )  (4.29)u

2 2The second moment x ( i )  and variance a ( i )  o f  x ( i )  are as fo llo w s:

x2( i)  =

t 2 
Xn ( i) , for  i  = 1 , 2 , 3 , 5

x2 ( i )  , for  i  = 4 .6

(4.30)

where

2 ft ( i )  ” i  n ( i)  -1 2 ' 22x . n ( i ) = [ do + V
2„2S - ( 1 - a )  R - a w 0 w 0

.2

and

2 . . .
0 (1 )

2 _ - 2  
Xn ( i)  Xn ( i )

2 _ -2

lXul(i) " XuiCi)

, for  i  = 1, 2, 3 , 5  

, for  i  = 4 , 6 .

 ̂ 2
+ V  CD

J! 2
(4.31)

(4.32)

The above exp ression s can be used to  estim ate the performance ch aracter

i s t i c s  o f  the module in  i t s  various modes o f  operator.

4 . 6 . 6  The queue w aitin g  tim es a sso c ia ted  with queue stru ctu res

For the module under the control o f  the scheme as in d ica ted  in  

Fig.  4 . 5 ,  the average queueing time W(i , j )  a sso c ia ted  w ith QM(i,j)

[ 1 1 1 ] :
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P i C i J ) x  C l , j ) C l + C ^  (l , j ) 3
W 1 (i,j) = ---------------------------2--------  , f o r  i = 1 , 2 , 3 , 5 ,  j

2 C1

and

P 2 C i , j ) y  C i , j ) C 1 + C 2 Ci , j ) 3
W 2 U J )  = — 1------------------------ 2-----------  > f o r  i = 4 , 6 ,  j

2(l-P2Ci,j))

1 , • • •  ,5

1

(4.33)

where, p’s and C’ s are the corresponding f a c i l i t y  u t i l iz a t io n s  and the  

c o e f f ic ie n t s  o f  v a r ia tio n  a sso c ia ted  w ith the queueing models, p ’s 

and C’s are [111]:

P1U , j )

x2 U)

P2( i » j )

X2Cj) xa ( i , j )  > for  i  = 1 , 2 , 3  , j = 1 , . . . , 5

k A1(j )  xa ( i , j )  , for  i  = 5 - , j = 1 , . . . , 5

X2 , for  1 ,3 ,5

k A1 , for  j = 2,4

X2 * for i  = 4

Ah y ( i , j )  , f or  i  = 6
1 a

(4.34)

J

where Â  and A2 are the corresponding input queue a rr iv a l ra tes  a s s 

o c ia ted  w ith one and two p rocesses which are s t i l l  executab le on the  

module, r e s p e c t iv e ly .

2C ( i , j )  = -5----------  , for  i  = 1,2,3,5 , j = 1,...,5 1

and 2
2 j )C (ij) = --------  > for i = 4,6 , j = 1Z , a  o

y

(4.35)

J
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4 . 6 . 7  The p rocessin g  module queue w aitin g  time

For the module when in  s ta te  i ,  i  = 1 , . . . , 6  as in d ica ted  in  F i g . 4 . 5 ,  

the average queue w aitin g  time W(i) can be w ritten  as :

W(i) =

W
n ( i)

W.l

, for  i  = 1 , 2 , 3 , 5  

, for  i  = 4 .6
(4.36)

where

W ,,, = (nC:L:)"i:)d0{ a1W1Ci,l) + +
_n£i) ?1

nCi) “O'1 “1 " 1 ^ ^  ■ • d1{a1W1( i ,3 )

+ aQW^(i,4)} + Cn(i)-l)d^  W1(i,5) , for  1 = 1,2,3,5

and
. . .  (4.37)

Wi  = > for i  = 4 ,6  , j = 1

The above expressions can be used to  estim ate the performance character

i s t i c s  o f  the module in  i t s  various modes o f  op eration .

4 .7  CONCLUSIONS

In th is  chapter, the organ ization  o f  the module as a g ra ce fu lly  

degrading system  has been pxesented . In the g r a ce fu lly  degrading 

module when a fa u lt  i s  d etected  the module i s  reconfigured  to  a new 

op eration a l s ta te  which may have a d if fe r e n t  computation cap acity .

For the module under in v e s t ig a t io n , the operational s ta te s  under the 

d if fe r e n t  combinations o f  module component fa i lu r e s  have been d efin ed . 

There are op eration a l s ta te s  in  which the module operates at f u l l  

capacity  ( i . e . ,  executes the tasks a sso c ia ted  w ith a l l  i t s  p r o c esse s );  

others in  which i t  operates p a r t ia l ly  ( i . e ,  lo o ses  the p rocessin g  power
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a sso c ia ted  w ith one o f  i t s  p r o c e s s e s ) ; and a s ta te  in  which the module 

f a i l s  com pletely ,

A con tro l scheme fo r  the operation  o f  the g r a ce fu lly  degrading 

module has been developed which :

a) takes in to  account the op eration a l s ta te  o f  the module and co o r

d in ates the a c t iv i t i e s  o f  the module according to  i t s  new s t a t e .

b) Achieves module p a r a lle l  job p rocessin g  in  each s ta te  ( i f  ap p licab le)

c) Preserves module f i l e  con sisten cy  and in te g r ity  in  each s ta te  

( i f  a p p lic a b le ) .

d) Implements the autom atic recon figu ra tion  o f  the module as a 

r e s u lt  o f  d etected  f a u lt s ,  and causes the module to  tr a n sfe r  to  a

new state.- a fte r  having reconfigured  the module and i t s  con tro l procedure 

to  th at new s ta te .

The scheme has been organized to  achieve (a) ,  ( b ) , and (c) by:

( i )  employing the concepts a sso c ia ted  with the con tro l scheme fo r  the 

operation  o f  the module in  i t s  ’ a l l  working’ s ta te  (as described  in  

Chapter 3 );

( i i )  m odifying the procedures a sso c ia ted  with the scheme for  the ' a l l  

working' s t a t e ,  as appropriate, in  order to co -ord in ate  the a c t iv i t i e s  

o f  the module according to  i t s  new s ta te .
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As regards (jd) 9 the scheme has been devised  to  incorporate a d ia g n o stic  

s ta te  which i s  entered whenever a fa u lt  i s  in d ica ted . As app rop riate, 

when in  th is  s ta te  the scheme allow s the module to  be te s te d  e ith e r  

in te r n a lly  or e x te r n a lly . The d ia g n o stic  s ta te  has been organized  

to employ an algorithm  which uses the d ia g n o stic  t e s t  r e s u lt s  to  d eter 

mine the new s ta te  o f  the module. As a r e s u lt ,  the scheme tra n sfers  

from th is  s ta te  to  the new op eration a l s t a t e ,  a f te r  having reconfigured  

the module and i t s  control procedure to  the new s t a t e .

The problem o f  correct d iagn osis o f  a fa u lt  s itu a t io n  e x is t in g  

w ith in  and among modules has been in v e s t ig a te d . The s tu d ie s , which 

have been based on the a v a ila b lity  o f  d ia g n o stic  t e s t  r e s u l t s ,  have 

been made on the f e a s ib i l i t y  and the organ ization  o f  in tern a l module 

fa u lt  -  d iagn osis and system  fa u lt -d ia g n o s is . D iagn ostic  procedures

in  r e la t io n  to  in tern a l module and system  fa u lt-d ia g n o s is  have been 

developed. These employ algorithm s which use the d ia g n o stic  t e s t  

r e s u lt s  to  determine the new op eration a l s ta te  o f  the module.

Queueing modules for  the performance a n a ly s is  o f  the g r a ce fu lly  

degrading module have been developed. The a n a ly s is  has in volved  a p p li

cation  o f  p r o b a b ility  and queueing th eo r ie s  to  the fa u lt - to le r a n t  

module under the control scheme. The performance index has been the 

average s e r v ic e  time o f  the module. From average se r v ic e  time a 

v a r ie ty  o f  other performance measures have been derived  as d ic ta ted  by the  

queueing models. Using queueing m odels, performance parameters have 

been defin ed  and a n a ly t ic a l expressions have been derived which can 

be used to  estim ate the performance o f  the fa u lt - to le r a n t  module.
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State 1

2 P, 4 F

S t a t e  2

2 P, 3 F

State 3

2P,2Fd

State  4

1 P, 2 F

Fully
Operational

S t a te  5

2 P ,2 F S

Sta te  6

1 P, 1F

Failed

Par t ia l ly  Failed
Operational S ta te

P = Processor F = File F= D i f fe re n t  Files 
d

F = Same Fi les s

FIG 4.1: Different Operational States for The
2 - miroprocessor Gracefully Degrading 
Module.
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Sj = Service Stage of S t a te ( i )  fo r  i= 1,2,3,5  

♦  ( a )

*

i

S = Service Stage of S ta te d )  for i = 4 , 6

(b)

RSP= Repetative Scanning Procedure 
LPSP = Limited Period Scanning Procedure

FIG  4.2: Control Flow Diagram Represetations 
of The Different Operational Procedures 
of The Scheme; ( a ) States (1 ),( 2 ), (3 ),( 5 )
( b) States ( 4 ), ( 6 ).
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Service Phase Scanning Phase

i
H-*
K)
I

FIG 4.3 Block Diagram Representation of the Overall  Activit ies of the 
Control Scheme.
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F IG  4.4: Flowchart of the Diagnostic Algorithm Associated with the 

two-microprocessor Module.
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State ( j ) ; for j= 1,2,3,5

S t a t e ( i ) ; for i = 4 ,  6

FIG 4.5: Queue Structures Associated With the 
Operational States of the Two- 
microprocessor Module;(a)States (1 ),(2 ), 
(3 ) , ( 5 M b )  States (4) , (6)



CHAPTER 5

PERFORMANCE - RELATED RELIABILITY ANALYSIS OF THE FAULT-TOLERANT

PROCESSING MODULE

5 .1  Introduction

In th is  chapter, Markovian models for the performance -r e la te d  

r e l i a b i l i t y  a n a ly s is  o f  the fa u lt - to le r a n t  m u ltip le-m icrop rocessor  

module w i l l  be developed. The a n a ly s is  in v o lves a p p lica tio n  o f  r e 

l i a b i l i t y  block diagram and time and computation domain tr a n s it io n  

ra te  diagram techniques to  the module fo r  the con tro l o f  the scheme.

The need for  such models i s  e s p e c ia l ly  c lea r  when p rocessin g  systems 

are used in  a p p lica tio n s where both the r e l i a b i l i t y  and performance 

are im portant.

We w i l l  begin by rep resen tin g  the module by a r e l i a b i l i t y  

block diagram. A fter th a t , we w i l l  apply time and computation domain 

tr a n s it io n  rate  diagram techniques to  the re levan t r e l i a b i l i t y  block  

diagram in  order to describe the g ra ce fu lly  degrading c h a r a c te r is t ic s  

o f  the module as a Markov p ro cess . As a r e s u lt ,  Markovian models 

rep resen tin g  the g ra ce fu lly  degrading behaviour o f  the module w i l l  be 

produced. In the Markovian m odels, each s ta te  corresponds to  an oper

a tio n a l s ta te  o f  the module which in d ic a te s  a d if fe r e n t  module c o n fi

guration . We w i l l  n ex t, use the Markovian models to (a) d efin e  perform

a n ce -re la ted  r e l i a b i l i t y  measures (This work w i l l  be developed from 

the approach adopted by Beaudry [104]) and (b) derive a n a ly t ic a l express 

ions which can be used to  evaluate the module in  terms o f  both the r e l 

i a b i l i t y  and performance. The perform ance-related r e l i a b i l i t y  in d ices  

w i l l  be mean computation before a fa ilu r e  (MCBF), the computation
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reliability, a n d  t h e  computation availabitity  o f  t h e  n o d u l e  ( t h e  d e f i n 

i t i o n s  f o r  t h e  a b o v e  t e r m s  w i l l  b e  g i v e n  i n  s e c t i o n  5 , 4 ) .  T h e s e  

m e a s u r e s  w i l l  ( a )  r e f l e c t  t h e  i n t e r a c t i o n  b e t w e e n  t h e  r e l i a b i l i t y  a n d  

t h e  p e r f o r m a n c e  c h a r a c t e r i s t i c s  o f  t h e  m o d u l e ,  ( b )  g i v e  a n  i n s i g h t  i n t o  

t h e  e x p e c t e d  r e s p o n s e  o f  t h e  m o d u l e  t o  a  c o m p u t a t i o n a l  d e m a n d ,  t a k i n g  

i n t o  a c c o u n t  v a r i o u s  m o d u l e  c h a r a c t e r i s t i c s  ( e . g . ,  s t r u c t u r e  a n d  r e d u n 

d a n c y )  ( c )  t a k e  i n t o  a c c o u n t  t h e  d i f f e r e n t  l e v e l s  o f  c o m p u t a t i o n a l  

c a p a c i t y  a n d  t h e  v a r y i n g  c a p a b i l i t y  t o  e x e c u t e  s o m e ,  o r  a l l ,  o f  t h e  

t a s k s  w h i c h  a r e  e x e c u t a b l e  o n  t h e  m o d u l e ,  a n d  ( d )  g i v e  s o m e  b a s i s  f o r  

t h e  e v a l u a t i o n  o f  t h e  m o d u l e  a n d  c o m p a r i s o n  w i t h  o t h e r  s y s t e m s .

F i n a l l y ,  a  f r e q u e n c y  a n d  d u r a t i o n  m e t h o d  w i l l  b e  a p p l i e d  

t o  t h e  M a r k o v i a n  m o d e l s  i n  o r d e r  t o  m e r g e  s u b s e t s  o f  s t a t e s  w h i c h  a r e  

o f  i n t e r e s t .  A s  a  r e s u l t ,  a n  e q u i v a l e n t  M a r k o v i a n  m o d e l  w i t h  a  s m a l l e r  

n u m b e r  o f  l u m p e d  s t a t e s ,  b u t  o f  p a r t i c u l a r  i n t e r e s t  w i l l  b e  p r o d u c e d .

W i t h o u t  l o s s  o f  g e n e r a l i t y  t h e  d e s c r i p t i o n s  a n d  t h e  a n a l y s i s  

w i l l  b e  b a s e d  o n  a  t w o - m i c r o p r o c e s s o r  m o d u l e .

5 . 2  T h e  R e l i a b i l i t y  B l o c k  D i a g r a m  o f  t h e  M o d u l e

F i g .  5 . 1  s h o w s  t h e  r e l i a b i l i t y  b l o c k  d i a g r a m  C 1 5 7 3  d e s c r i b i n g  

t h e  " a l l  w o r k i n g "  o p e r a t i o n a l  s t a t e  o f  t h e  t w o - m i c r o p r o c e s s o r  m o d u l e  

( a s  g i v e n  i n  s e c t i o n  3 . 2  a n d  a s  i l l u s t r a t e d  i n  F i g .  3 . 1 ( b ) ) .  T h e  

r e l i a b i l i t y  b l o c k  d i a g r a m  i s  s u b d i v i d e d  i n t o  t w o  b l o c k s ,  1  a n d  2 .

E a c h  b l o c k  i n d e p e n d e n t l y  d e s c r i b e s  t h e  r e l i a b i l i t y  o f  a  m i c r o p r o c e s s o r  

a n d  t h e  f i l e s  u n d e r  i t s  c o n t r o l .  F o r  e x a m p l e  b l o c k  1 ,  a s  s h o w n  i n  

F i g .  5 . 1 ,  r e p r e s e n t s  m i c r o p r o c e s s o r  1 a n d  t h e  f i l e s  f 1 1 a n d  f -  ?J. • 1 1 m A
u n d e r  c o n t r o l .



W i t h i n  a  b l o c k ,  i f  n o  c o m p o n e n t  f a i l u r e  i s  i n d i c a t e d ,  t h e n  t h e  c o r r 

e s p o n d i n g  m i c r o p r o c e s s o r  a n d  t h e  f i l e s  u n d e r  i t s  c o n t r o l  a r e  c o n 

s i d e r e d  t o  b e  a b l e  t o  t a k e  p a r t  i n  t h e  c o m p u t i n g  p r o c e s s .  B u t ,  i f  

a  f i l e  f a i l u r e  i s  i n d i c a t e d  t h e n  o n l y  t h e  m i c r o p r o c e s s o r  a n d  t h e  

r e m a i n i n g  f i l e  w i t h i n  t h e  b l o c k  a r e  c o n s i d e r e d  t o  b e  a b l e  t o  t a k e  p a r t  

i n  t h e  c o m p u t i n g  p r o c e s s .  H o w e v e r ,  i f  f a i l u r e  o f  e i t h e r  t h e  m i c r o 

p r o c e s s o r ,  o r  b o t h  o f  t h e  f i l e s  w i t h i n  a  b l o c k  a r e  i n d i c a t e d ,  t h e n  t h e  

c o r r e s p o n d i n g  c o m p o n e n t s  w i t h i n  t h e  b l o c k  a r e  n o  l o n g e r  c o n s i d e r e d  a s  

b e i n g  a b l e  t o  t a k e  p a r t  i n  t h e  c o m p u t i n g  p r o c e s s .

I n  t h e  g r a c e f u l l y  d e g r a d i n g  m o d u l e  w h e n  a  m o d u l e  c o m p o n e n t  

f a i l u r e  o c c u r s ,  t h e  m o d u l e  i s  r e c o n f i g u r e d  t o  a  n e w  o p e r a t i o n a l  s t a t e  

w i t h  o n e  f e w e r  c o m p o n e n t .  T h e  o p e r a t i o n a l  s t a t e s  o f  t h e  m o d u l e  

( a s  d e s c r i b e d  i n  s e c t i o n  4 . 2 )  c a n  b e  r e p r e s e n t e d  a s  i n  F i g .  5 . 1  b y  

c o r r e s p o n d i n g  r e l i a b i l i t y  b l o c k  d i a g r a m s .  T h i s  i s  a c h i e v e d  b y  c o n 

s i d e r i n g  t h e  e f f e c t s  o f  t h e  f a i l e d  m o d u l e  c o m p o n e n t s  u p o n  b l o c k s  1  a n d  

2 .  T h e  r e l i a b i l i t y  b l o c k  d i a g r a m s  d e s c r i b i n g  s o m e  o f  t h e  a b o v e  

s i t u a t i o n s ,  w h e r e  p a r t i c u l a r  m o d u l e  c o m p o n e n t s  h a v e  f a i l e d ,  a r e  d e m 

o n s t r a t e d  i n  F i g .  5 . 2 .  H e r e ,  e a c h  r e l i a b i l i t y  b l o c k  d i a g r a m  r e p r e s 

e n t s  a  d i f f e r e n t  m o d u l e  c o n f i g u r a t i o n ,  w h i c h  i n  c o n j u n c t i o n  w i t h  o t h e r  

d i a g r a m s ,  c h a r a c t e r i s t i z e  t h e  g r a c e f u l l y  d e g r a d i n g  m o d u l e .

5 . 3  T r a d i t i o n a l  R e l i a b i l i t y  M e a s u r e s

T h e  r e l i a b i l i t y  m e a s u r e s  u s e d  t o  e v a l u a t e  t r a d i t i o n a l  a r c h i t 

e c t u r e s ,  s u c h  a s  m a s s i v e  r e d u n d a n t ,  s t a n d b y  r e d u n d a n t ,  a n d  h y b r i d  

r e d u n d a n t  s y s t e m s  a r e  t y p i c a l l y  C 1 5 7 ]  :
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1 )  t h e  c u m u l a t i v e  d i s t r i b u t i o n  o f  t h e  r a n d o m  v a r i a b l e  t c , t h e  

t i m e  a t  w h i c h  t h e  s y s t e m  f i r s t  f a i l s  g i v e n  t h a t  t h e  s y s t e m  w a s  i n  

s o m e  i n i t i a l  s t a t e  a t  t i m e  0 ;  o r  e q u i v a l e n t l y ,  t h e  s y s t e m  r e l i a b 

i l i t y ,  R ( t )  =  P r C t p  >  t  | i n i t i a l  s t a t e ]  .

2 )  t h e  m e a n  t i m e  t o  f a i l u r e  ( M T T F )  w h i c h  i s  t h e  e x p e c t e d  v a l u e  o f

V

M T T F  =  E C T  3 =  f°  R ( t ) d t ,  t 5 * 1 )
h 0

3 )  t h e  s y s t e m  a v a i l a b i l i t y ,  t h e  s t e a d y - s t a t e  p r o b a b i l i t y  t h a t  t h e  

s y s t e m  i s  o p e r a t i o n a l .

T h e s e  m e a s u r e s  a r e  a p p r o p r i a t e  f o r  r e d u n d a n t  s y s t e m s ,  h o w e v e r ,  t h e y  

m a y  n o t  b e  s u f f i c i e n t  f o r  e v a l u a t i n g  t h e  g r a c e f u l l y  d e g r a d i n g  m o d u l e .  

T h i s  i s  b e c a u s e  :

1 )  t h e  m o d u l e  r e a c t s  t o  a  d e t e c t e d  f a i l u r e  b y  r e c o n f i g u r i n g  t o  

a  n e w  o p e r a t i o n a l  s t a t e  w i t h  o n e  f e w e r  c o m p o n e n t  ( a s  d e s c r i b e d  i n  

s e c t i o n  4 . 2 )  w h i c h  m a y  d i f f e r  i n  c a p a b i l i t y  a s  w e l l  a s  c a p a c i t y  t o  

e x e c u t e  s o m e ,  o r  a l l ,  o f  t h e  t a s k s  w h i c h  a r e  e x e c u t a b l e  o n  t h e  m o d u l e .

2 )  t h e  m o d u l e  h a s  d i f f e r e n t  m o d e s  o f  f a i l u r e ( a s  d e s c r i b e d  i n  s e c t i o n  

4 . 2 )  w h i c h  o c c u r  i n  s i t u a t i o n s  w h e r e  e i t h e r  t h e  m o d u l e  c a p a c i t y  a s s o 

c i a t e d  w i t h  t h e  e x e c u t i o n  o f  s o m e ,  o r  a l l ,  o f  t h e  t a s k s  f a l l s  b e l o w  

s o m e  v a l u e ;  o r  t h e  l o s s  o f  m o d u l e  c a p a b i l i t y  t o  e x e c u t e  s o m e ,  o r  a l l ,  

o f  t h e  t a s k s  r e a c h e s  a  c r i t i c a l  l e v e l .

I t  i s  c l e a r  t h a t  s u c h  a  m o d u l e  c a n n o t  b e  e v a l u a t e d  s i m p l y  b y
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a p p l y i n g  t h e  r e l i a b i l i t y  m e a s u r e s  ( d e s c r i b e d  a b o y e )  t o  t h e  m o d u l e  a s  

r e p r e s e n t e d  b y  t h e  r e l i a b i l i t y  b l o c k  d i a g r a m  i n  F i g .  5 . 1 ,  T h i s  i s  

b e c a u s e  s u c h  a  p r o c e d u r e  t a k e s  n o  a c c o u n t  o f  t h e  g r a c e f u l l y  d e g r a d i n g  

c h a r a c t e r i s t i c s  o f  t h e  m o d u l e  a n d  d o e s  n o t  r e f l e c t  t h e  i n t e r a c t i o n  

b e t w e e n  t h e  r e l a i a b i l i t y  a n d  t h e  p e r f o r m a n c e  c h a r a c t e r i s t i c s  o f  t h e  

m o d u l e .  T h e s e  d i f f i c u l t i e s  c a n  b e  o v e r c o m e  b y  :

a )  D e f i n i n g  a p p r o p r i a t e  p e r f o r m a n c e - r e l a t e d  r e l i a b i l i t y  m e a s u r e s  

[ 1 0 4 3 w h i c h  c h a r a c t e r i z e  t h e  p e r f o r m a n c e  o f  t h e  g r a c e f u l l y  d e g r a d i n g  

m o d u l e ,  ( i . e . ,  t h e  d i f f e r e n t  l e v e l s  o f  c a p a c i t y  o f  t h e  m o d u l e  a s  w e l l  

a s  i t s  v a r y i n g  c a p a b i l i t y  t o  e x e c u t e  s o m e ,  o r  a l l ,  o f  t h e  t a s k s  w h i c h  

a r e  e x e c u t a b l e  o n  t h e  m o d u l e ) .

b )  U s i n g  t i m e  a n d  c o m p u t a t i o n  d o m a i n  t r a n s i t i o n  r a t e  d i a g r a m  

t e c h n i q u e s  C 1 5 8  -  1 6 8 ]  t o  m o d e l  t h e  g r a c e f u l l y  d e g r a d i n g  m o d u l e .

T h i s  d e m o n s t r a t e s  t h e  o p e r a t i o n a l  s t a t e s  - ( i . e . ,  t h e  d i f f e r e n t  c o n f i g 

u r a t i o n s )  o f  t h e  m o d u l e  a n d  t h e  p o s s i b l e  t r a n s i t i o n s  w h i c h  c a n  o c c u r  

b e t w e e n  t h e m .  T h e  t i m e  a n d  c o m p u t a t i o n  d o m a i n  t r a n s i t i o n  r a t e  

d i a g r a m  r e p r e s e n t a t i o n s  o f  t h e  m o d u l e  a l l o w  t h e  d i f f e r e n t  l e v e l s  o f  

c a p a c i t y  o f  t h e  m o d u l e ,  a s  w e l l  a s  i t s  v a r y i n g  c a p a b i l i t y  t o  e x e c u t e  

s o m e ,  o r  a l l ,  o f  t h e  t a s k s ,  t o  b e  t a k e n  i n t o  a c c o u n t .  T h a t  i s ,  t h e  

m o d e l s  c a n  b e  u s e d  a s  a  f r a m e w o r k  i n  w h i c h  t h e  d e v e l o p m e n t  o f  t h e  

p e r f o r m a n c e - r e l a t e d  r e l i a b i l i t y  m e a s u r e s  o f  t h e  m o d u l e  ( w h i c h  a r e  t o  

b e  d e f i n e d  s h o r t l y )  c a n  t a k e  p l a c e .

I n  t h e  f o l l o w i n g  s e c t i o n s ,  t h e  p e r f o r a m n c e - r e l a t e d r e l i a b i l i t y  

m e a s u r e s  o f  t h e  g r a c e f u l l y  d e g r a d i n g  m o d u l e  w i l l  b e  d e f i n e d  a n d  t h e  

t i m e  a n d  c o m p u t a t i o n  d o m a i n  t r a n s i t i o n  r a t e  d i a g r a m s  w h i c h  d e s c r i b e  t h e  

m o d u l e  ( w i t h  a n d  w i t h o u t  r e p a i r )  w i l l  b e  p r e s e n t e d .
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5 . 4  T h e  p e r f o r m a n c e - r e l a t e d  r e l i a b i l i t y  m e a s u r e s

I n  o r d e r  t o  r e c o g n i z e  t h a t  t h e  v a r i o u s  o p e r a t i o n a l  s t a t e s  

o f  t h e  m o d u l e  ( a s  d e s c r i b e d  i n  s e c t i o n  4 . 2 )  h a v e  d i f f e r e n t  c o m p u t a t i o n  

c a p a c i t i e s  a s  w e l l  a s  v a r y i n g  c a p a b i l i t i e s  t o  e x e c u t e  s o m e ,  o r  a l l ,  

o f  t h e  t a s k s  w h i c h  a r e  e x e c u t a b l e  o n  t h e  m o d u l e ,  t h e  f o l l o w i n g  p e r 

f o r m a n c e - r e l a t e d  r e l i a b i l i t y  m e a s u r e s  a r e  d e f i n e d  :

4

i

1 )  T h e  c o m p u t a t i o n  c a p a c i t y  i n  s t a t e  i ,  d e n o t e d  b y  o l  i s  t h e  

a v a i l a b l e  a m o u n t  o f  c o m p u t a t i o n  p e r  u n i t  t i m e  a s s o c i a t e d  w i t h  t h e  p r o 

c e s s e s  w h i c h  a r e  e x e c u t a b l e  o n  t h e  m o d u l e  i n  s t a t e  i .

S t a t e s  1 , 2 , 3  a n d  4  ( a s  d e s c r i b e d  i n  s e c t i o n  4 . 2 )  a r e  t h e  f u l l y  

o p e r a t i o n a l  s t a t e s  i n  w h i c h  t h e  m o d u l e  i s  a b l e  t o  e x e c u t e  t h e  t a s k s  

a s s o c i a t e d  w i t h  i t s  t w o  p r o c e s s e s  a n d  s t a t e s  5  a n d  6  ( a s  d e s c r i b e d  

i n  s e c t i o n  4 . 2 )  a r e  t h e  p a r t i a l l y  o p e r a t i o n a l  s t a t e s  i n  w h i c h  t h e  

m o d u l e  l o o s e s  t h e  p r o c e s s i n g  p o w e r  a s s o c i a t e d  w i t h  o n e  o f  i t s  

t w o  p r o c e s s e s .

2 )  T h e  a v a i l a b l e  c o m p u t a t i o n  i n  s t a t e  i ,  d e n o t e d  b y  T : -

i s  t h e  a v a i l a b l e  l e n g t h  o f  a  c o m p u t a t i o n a l  t a s k  a s s o c i a t e d  w i t h  t h e  

p r o c e s s e s  w h i c h  a r e  e x e c u t a b l e  o n  t h e  m o d u l e  i n  s t a t e  i .

3 )  T h e  c o m p u t a t i o n  f u n c t i o n  C h  ( T )  : -  i s  t h e  p r o b a b i l i t y  t h a t  t h e  

m o d u l e  e x e c u t e s  a  c o m p u t a t i o n a l  t a s k  o f  d u r a t i o n  T ,  g i v e n  t h a t  t h e  

s t a t e  w a s  i  a t  t h e  b e g i n n i n g  o f  t h e  c o m p u t a t i o n .

4 )  T h e  c o m p u t a t i o n  r e l i a b i l i t y  R ( . t , T )  i s  t h e  p r o b a b i l i t y  t h a t

a t  t i m e  t  t h e  m o d u l e  i n  e i t h e r  a  f u l l y ,  o r  a  p a r t i a l l y ,  o p e r a t i o n a l
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s t a t e  e x e c u t e s  a  c o m p u t a t i o n a l  t a s k  o f  d u r a t i o n  T  s t a r t e d  a t  t i m e  t ,  

g i v e n  t h a t  s t a t e  w a s  i  a t  t i m e  t  =  0 .

5 )  T h e  mean computation before a complete failure  C M C B C F )  : -

i s  t h e  e x p e c t e d  a m o u n t  o f  c o m p u t a t i o n  a v a i l a b l e  o n  t h e  m o d u l e  b e f o r e  

i t s  f i r s t  c o m p l e t e  f a i l u r e ,  g i v e n  a n  i n i t i a l  m o d u l e  s t a t e .

6 )  T h e  computation availability  : -  i s  t h e  e x p e c t e d  v a l u e  o f  

c o m p u t a t i o n  c a p a c i t y  o f  t h e  m o d u l e  a t  t i m e  t  o r  i n  s t e a d y - s t a t e  

o p e r a t i o n .

I n  ( 3 ) ,  ( 4 ) ,  ( 5 )  a n d  ( 6 ) ,  t h e  i n d i v i d u a l  c o m p u t a t i o n a l  l e n g t h s ,  

t h e  e x p e c t e d  a m o u n t s  o f  c o m p u t a t i o n  a v a i l a b l e  o n  t h e  m o d u l e ,  a n d  t h e  

d i f f e r e n t  c o m p u t a t i o n  c a p a c i t i e s  a s s o c i a t e d  w i t h  v a r i o u s  c o m b i n e d  

f u l l y ,  a n d  p a r t i a l l y ,  o p e r a t i o n a l  s t a t e s ,  a s  a p p r o p r i a t e ,  a r e  c o n s i 

d e r e d .  T h e  a b o v e  p e r f o r m a n c e - r e l a t e d  r e l i a b i l i t y  m e a s u r e s  t a k e  i n t o  

a c c o u n t  t h e  v a r i o u s  m o d e s  o f  o p e r a t i o n  a n d  f a i l u r e  o f  t h e  m o d u l e  a n d  

t h e  m o d u l e ' s  v a r y i n g  c a p a c i t y  a n d  c a p a b i l i t y  t o  e x e c u t e  s o m e ,  o r  a l l ,  

o f  t h e  t a s k s  a s s o c i a t e d  w i t h  t h e  p r o c e s s e s '  w h i c h  a r e  e x e c u t a b l e  o n  

t h e  m o d u l e .

I n  t h e  f o l l o w i n g  s e c t i o n s ,  t h e  g r a c e f u l l y  d e g r a d i n g  m o d u l e  w i l l  

b e  d e s c r i b e d  b y  t h e  t i m e  a n d  c o m p u t a t i o n  d o m a i n  t r a n s i t i o n  r a t e  d i a g 

r a m s  i n  o r d e r  t o  d e m o n s t r a t e  t h e  a b o v e  m e a s u r e s .

5 . 5  T i m e  a n d  C o m p u t a t i o n  D o m a i n  T r a n s i t i o n  R a t e  D i a g r a m  R e p r e s e n t 

a t i o n s  ( M a r k o v i a n  M o d e l s )  o f  t h e  G r a c e f u l l y  D e g r a d i n g  M o d u l e

F i g .  5 . 3  a n d  5 . 4  i l l u s t r a t e  t h e  t i m e  a n d  c o m p u t a t i o n  d o m a i n
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t r a n s i t i o n  r a t e  d i a g r a m  r e p r e s e n t a t i o n s  o f  t h e  g r a c e f u l l y  d e g r a d i n g  

m o d u l e ,  r e s p e c t i v e l y .  T h e s e  d i a g r a m s  d e m o n s t r a t e  t h e  o p e r a t i o n a l  

s t a t e s  ( a s  d e s c r i b e d  i n  s e c t i o n  4 . 2 )  a n d  t h e  p o s s i b l e  s t a t e  t r a n s 

i t i o n s  o f  t h e  m o d u l e ,  t h u s ,  a l l o w i n g  t h e  p e r f o r m a n c e  c h a r a c t e r i s t i c s  

o f  t h e  i n d i v i d u a l  s t a t e s ,  a n d  h e n c e  t h a t  o f  t h e  m o d u l e ,  t o  b e  c o n 

s i d e r e d .  T h e  t r a n s i t i o n  r a t e  d i a g r a m s  a r e  u s e d  a s  a  f r a m e w o r k  t o  

d e v e l o p  t h e  p e r f o r m a n c e - r e l a t e d  r e l i a b i l i t y  m e a s u r e s  d e f i n e d  i n  t h e  

p r e v i o u s  s e c t i o n .

5 . 5 . 1  B a s i c  a s s u m p t i o n s

T h e  M a r k o v i a n  m o d e l s  i l l u s t r a t e d  i n  F i g s  5 . 3  a n d  5 . 4  d e s c r i b e  

t h e  m o d u l e  w i t h ,  o r  w i t h o u t ,  r e p a i r  a s  M a r k o v  p r o c e s s e s  [ 1 6 7 ]  , [ 1 6 9 ] .  

T h e  m o d u l e  w i t h o u t  r e p a i r ,  a s  i l l u s t r a t e d  i n  F i g  5 . 3 ,  i s  a s s u m e d  

t o  b e  c o m p o s e d  o f  m i c r o p r o c e s s o r s  a n d  m e m o r i e s  w h i c h  h a v e  e x p o n e n t i a l l y  

d i s t r i b u t e d  t i m e  t o  f a i l u r e s ; ,  i . e . , t h e  p r o b a b i l i t i e s  t h a t  a  m i c r o 

p r o c e s s o r  a n d  a  m e m o r y  h a v e  n o t  f a i l e d  b e f o r e  t i m e  t ,  g i v e n  t h a t  

t h e y  w e r e  i n i t i a l l y  f u n c t i o n a l ,  a r e  e  ^  a n d  e  r e s p e c t i v e l y ;  w h e r e  

X a n d  y  a r e  t h e  f a i l u r e  r a t e s  a s s o c i a t e d  w i t h  t h e  m i c r o p r o c e s s o r s  

a n d  m e m o r i e s ,  r e s p e c t i v e l y .  H o w e v e r ,  i n  t h e  c a s e  o f  m o d u l e  w i t h  

r e p a i r ,  a s  i l l u s t r a t e d  i n  F i g ,  5 . 3 ,  t h e  m o d u l e  r e p a i r  i s  a s s u m e d  t o  

c o m m e n c e  o n l y  u p o n  o c c u r r a n c e  o f  a  ' c o m p l e t e  f a i l u r e '  o f  t h e  m o d u l e .

T h e  r e p a i r  f a c i l i t y  i s  a s s u m e d  t o  b e  a b l e  t o  r e s t o r e  t h e  s t a t e  o f  

o p e r a t i o n  o f  t h e  m o d u l e  f r o m  t h e  ' c o m p l e t e  f a i l u r e ' s t a t e  t o  t h a t  o f  

t h e  ’ a l l  w o r k i n g ’ s t a t e .  I n  a d d i t i o n ,  t h e  t i m e  t o  r e p a i r  i s  a s s u m e d  

t o  b e  e x p o n e n t i a l l y  d i s t r i b u t e d  w i t h  a  c o n s t a n t  r e p a i r  r a t e  o f  y .
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5 , 5 . 2  S t a t e s  a n d  S t a t e  T r a n s i t i o n s  i n  t h e  M a r k o y i a n  M o d e l s  o f  t h e  

M o d u l e

I n  t h e  M a r k o v i a n  m o d e l s ,  e a c h  s t a t e  r e p r e s e n t s  a  d i f f e r e n t  

m o d u l e  o p e r a t i o n a l  s t a t e  ( i . e .  m o d u l e  c o n f i g u r a t i o n  a s  d e f i n e d  i n  

s e c t i o n  4 . 2 )  w h i c h  c a n  b e  m o d e l l e d  ( a s  d e s c r i b e d  i n  s e c t i o n  5 . 2 )  b y  

a  r e l i a b i l i t y  b l o c k  d i a g r a m .  T h e  t r a n s i t i o n s  b e t w e e n  m o d u l e  o p e r 

a t i o n a l  s t a t e s  a r e  c h a r a c t e r i z e d  b y  ( a )  t h e  s t a t e  r e l i a b i l i t y  b l o c k  

d i a g r a m s  w h i c h  d e m o n s t r a t e  t h e  m m b e r  o f  m o d u l e  c o m p o n e n t s ,  t h e  s t a t e  

o f  t h e  m o d u l e ’ s  c o m p o n e n t s ,  a n d  t h e  m o d u l e  c o n f i g u r a t i o n  i n  e a c h  o f  

t h e  c o r r e s p o n d i n g  o p e r a t i o n a l  s t a t e s  o f  t h e  m o d u l e ;  ( b )  t h e  m o d u l e  

c o m p o n e n t  f a i l u r e  r a t e ;  a n d  ( c )  t h e  m o d u l e  r e p a i r  r a t e ,  a n d  b y  t h e  

c o v e r a g e  p a r a m e t e r s  o f  t h e  m o d u l e  c o m p o n e n t s .  T h e  c o v e r a g e  p a r a m e t e r  

( 0  <  C  <  1 )  [ 1 7 0 ]  i s  t h e  c o n d i t i o n a l  p r o b a b i l i t y  o f  r e c o v e r y  ( i . e . ,  

c o r r e c t  r e c o n f i g u r a t i o n  t o  a  n e w  o p e r a t i o n a l  s t a t e ) , g i v e n  t h a t  a  

f a u l t  h a s  o c c u r r e d .  T h e  f o l l o w i n g  s e t  i f  c o v e r a g e  p a r a m e t e r s  a r e  

a s s u m e d  w i t h  r e s p e c t  t o  p e r m a n e n t  f a u l t s  i n  v a r i o u s  c o m p o n e n t s  o f  t h e  

m o d u l e .

C . =  c o v e r a g e  f o r  r e c o v e r y  ( i . e .  c o r r e c t  r e c o n f i g u r a t i o n  

t o  a  n e w  s t a t e )  f r o m  a  p e r m a n e n t  f a u l t  i n  a  m i c r o 

p r o c e s s o r  w h i l e  i n  s t a t e  i ,  f o r  i  =  1 , . . . , 5 .

^  =  c o v e r a g e  f o r  r e c o v e r y  ( i . e .  c o r r e c t  r e c o n f i g u r a t i o n  

t o  a  n e w  s t a t e )  f r o m  a  p e r m a n e n t  f a u l t  i n  a  m e m o r y  

w h i l e  i n  s t a t e  i ,  f o r  i  =  1 , . . . , 5 .
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T h e  m o d u l e s \ s  a b i l i t y  t o  r e c o y e r  f r o m  f a u l t s  ( i . e . ,  t o  r e c o n 

f i g u r e  c o r r e c t l y  t o  a  n e w  o p e r a t i o n a l  s t a t e )  w h i l e  i n  a n  o p e r a t i o n a l  

s t a t e ,  a s  g o v e r n e d  b y  t h e  c o v e r a g e  p a r a m e t e r s ,  i s  d e m o n s t r a t e d  i n

F i g  5 . 3 ;  w h e r e  i t  i s  a s s u m e d  t h a t  C  =  C , ,  a n d  C .  . .  =  C  , f o r  i  =  1 ,
i , p  X* 1  , M  y ? ’

•••,5.

T h e  t r a n s i t i o n  r a t e  d i a g r a m s  i n  F i g s  5 . 3  a n d  5 . 4  c a n  b e  d e s 

c r i b e d  a s  f o l l o w s :

State 1 i s  t h e  ’ a l l  w o r k i n g ’ s t a t e  ( a s  d e s c r i b e d  i n  s e c t i o n  

4 . 2 )  w h e r e  n o  f a i l u r e  h a s  o c c u r r e d .  T h e  e x i t  f r o m  t h i s  s t a t e  c a n  

o n l y  b e  v i a  a  d e t e c t e d  m i c r o p r o c e s s o r  f a u l t ,  a  d e t e c t e d  m e m o r y  f a u l t ,  

o r  a n  u n d e t e c t e d  f a u l t  i n  e i t h e r  a  m i c r o p r o c e s s o r  o r  a  m e m o r y .  R e 

c o v e r a b l e  ( i . e .  d e t e c t e d )  f a i l u r e s  i n  a  m i c r o p r o c e s s o r  o r  m e m o r y ,  

w h i l e  i n  s t a t e  1 ,  c a u s e  t r a n s i t i o n s  f r o m  s t a t e  1  t o  t h e  f u l l y  o p e r a t i o n a l  

s t a t e s  4  a n d  2 ,  r e s p e c t i v e l y .  S u c h  f a u l t s  d o  n o t  c a u s e  a  c o m p l e t e  

m o d u l e  f a i l u r e ,  b u t  l e a d  t o  n e w  m o d u l e  c o n f i g u r a t i o n s  w h i c h  h a v e  

d i f f e r e n t  c o m p u t a t i o n  c a p a c i t i e s  a s  c o m p a r e d  w i t h  t h a t  o f  s t a t e  1 .

T h e r e  a r e  t w o  s o u r c e s  f r o m  w h i c h  a  d e t e c t e d  m i c r o p r o c e s s o r  f a u l t  m a y  

a r i s e  ( a s  i l l u s t r a t e d  i n  F i g  5 . 1 )  a n d  t h i s  a c c o u n t s  f o r  t h e  2 X C ^  t r a n s 

i t i o n  r a t e  t o  s t a t e  4 .  L i k e w i s e ,  t h e r e  a r e  f o u r  s o u r c e s  f r o m  w h i c h  

a  d e t e c t e d  m e m o r y  f a u l t  m a y  a r i s e  ( a s  i l l u s t r a t e d  i n  F i g .  5 . 1 ) ,  b u t  

t h e  s t a t e  t o  w h i c h  t h e s e  l e a d  i s  s t a t e  2 .  T h i s  i s  i n d i c a t e d  i n  

F i g .  5 . 3  b y  t h e  e n t r a n t  l i n k  t o  s t a t e  2  a t  a  r a t e  r a t e  o f  4 y C ^ .

A n  u n r e c o v e r a b l e  ( i . e . ,  u n i d e n t i f i e d )  f a i l u r e  w h i l e  i n  s t a t e  1 ,  

w h e t h e r  i n  a  m i c r o p r o c e s s o r  o r  a  m e m o r y ,  l e a d s  i m m e d i a t e l y  i n t o  a  

c o m p l e t e  m o d u l e  f a i l u r e .  T h i s  i s  r e p r e s e n t e d  b y  t h e  t r a n s i t i o n  t o

t h e  f a i l e d  s t a t e  ( F ) , a t  a  r a t e  o f  [ 2 X ( 1 - C . )  +  4 y ( l - C  ) 3 .a y

State 2 i s  a  ’ f u l l y  o p e r a t i o n a l ’ s t a t e  ( a s  d e s c r i b e d  i n  s e c t i o n  4 . 2
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a n d  a s  i l l u s t r a t e d  i n  a n  e x a m p l e  i n  F i g  5 . 2 ( a ) )  w h e r e  a  d e t e c t e d  f i l e  

( i . e . ,  m e m o r y )  f a u l t  u n d e r  a  m i c r o p r o c e s s o r  h a s  o c c u r r e d .  T h e r e  a r e  

f i v e  m e a n s  o f  e x c a p e  f r o m  t h i s  s t a t e .  T h e  f i r s t  o f  t h e s e  i s  b y  t h e

o c c u r r a n c e  o f  a  d e t e c t e d  m i c r o p r o c e s s o r  f a u l t  i n  t h e  b l o c k  ( a s  d e s c r i b e d  

i n  s e c t i o n  5 . 2 )  w h i c h  i s  d i f f e r e n t  f r o m  t h a t  c o n t a i n i n g  a  d e t e c t e d  

m e m o r y  f a u l t .  T h i s  l e a d s  t o  s t a t e  6 .  T h e  r a t e  o f  t r a n s i t i o n  f r o m  

s t a t e  2  t o  t h i s  ’ n e w '  p a r t i a l l y  o p e r a t i o n a l ’ s t a t e  i s  A C ^ ,  s i n c e ,  

t h e r e  i s  o n l y  o n e  p o s s i b l e  s o u r c e  ( a s  i l l u s t r a t e d ,  a s  a n  e x a m p l e ,  i n  

F i g .  5 . 2 ( a ) )  f r o m  w h i c h  t h i s  t r a n s i t i o n  c a n  a r i s e .

T h e  s e c o n d  a n d  t h i r d  e x i t s  f r o m  s t a t e  2  a r e  b y  t h e  o c c u r r a n c e  

o f  a  s e c o n d  d e t e c t e d  m e m o r y  f a u l t  i n  t h e  b l o c k  ( a s  d e s c r i b e d  i n  

s e c t i o n  5 . 2 )  w h i c h  i s  d i f f e r e n t  f r o m  t h a t  c o n t a i n i n g  t h e  f i r s t  d e t e c t e d  

m e m o r y  f a u l t .  T h e r e  a r e  t w o  p o s s i b l e  s o u r c e s  i n  t h e  r e l e v a n t  b l o c k  

f r o m  w h i c h  t h i s  c a n  a r i s e .  T h e  f i r s t  o f  t h e s e ,  w h i c h  l e a d s  t o  a  

t r a n s i t i o n  f r o m  s t a t e  2  t o  s t ^ t e 5 ,  i s  w h e n  t h e  o c c u r r a n c e  o f  t h e  s e c o n d  

d e t e c t e d  m e m o r y  f a u l t  l e a v e s  t h e  m o d u l e  w i t h  a  c o p y  o f  o n e  t y p e  o f  t h e  

f i l e s  u n d e r  e a c h  m i c r o p r o c e s s o r .  T h e  r a t e  o f  t r a n s i t i o n  f r o m  s t a t e  2  

t o  t h i s  n e w  ' p a r t i a l l y  o p e r a t i o n a l '  s t a t e ,  s t a t e  ( 5 ) ,  i s  y C ^ ;  a s  

i n d i c a t e d  i n  F i g  5 . 3 .  T h e  o t h e r  s o u r c e ,  w h i c h  l e a d s  t o  a  t r a n s i t i o n  

f r o m  s t a t e  2  t o  s t a t e  3 ,  i s  w h e n  t h e  o c c u r r a n c e  o f  t h e  s e c o n d  d e t e c t e d  

m e m o r y  f a u l t  l e a v e s  t h e  m o d u l e  w i t h  a  s i n g l e  c o p y  o f  t h e  t w o  t y p e s  o f  

f i l e s ,  e a c h  u n d e r  a  d i f f e r e n t  m i c r o p r o c e s s o r .  S i m i l a r l y ,  b e c a u s e  

t h e r e  i s  o n l y  o n e  p o s s i b l e  s o u r c e  ( a s  i l l u s t r a t e d  a s  a n  e x a m p l e  i n  

F i g .  5 . 2 ( a ) )  f r o m  w h i c h  t h i s  t r a n s i t i o n  c a n  a r i s e ,  s o  t h e  r a t e  o f  

t r a n s i t i o n  f r o m  s t a t e  2  t o  t h i s  n e w  ' f u l l y  o p e r a t i o n a l '  s t a t e  ( 3 )  i s

y C  .
y

T h e  f o u r t h  e x i s t  f r o m  s t a t e  2  i s  b y  t h e  o c c u r r a n c e  o f  e i t h e r
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a  d e t e c t e d  m i c r o p r o c e s s p r  f a u l t ,  o r  a  s e c o n d  d e t e c t e d  m e m o r y  f a u l t  

i n  t h e  b l o c k  ( a s  d e s c r i b e d  i n  s e c t i o n  5 . 2 )  w h i c h  c o n t a i n s  t h e  f i r s t  

d e t e c t e d  m e m o r y  f a u l t .  T h e s e  c a n  a r i s e  f r o m  o n e  o f  t w o  d i f f e r e n t  

p o s s i b l e  s o u r c e s  ( a s  i l l u s t r a t e d ,  a s  a n  e x a m p l e ,  i n  F i g .  5 . 2 ( a ) ) ,  

b u t  t h e  s t a t e  t o  w h i c h  t h e y  l e a d  i s  s t a t e  4 ,  a n d  t h e r e f o r e  t h e  e n 

t r a n t  l i n k  a t  t h i s  n e w  ' f u l l y  o p e r a t i o n a l '  s t a t e  i s  l a b e l l e d  w i t h  a

r a t e  o f  ( A C h + y C  ) .
a y

T h e  d e t e c t e d  f a u l t s  w h i l e  i n  s t a t e  2 ,  a s  d e s c r i b e d  a b o v e ,  d o  

n o t  c a u s e  a  c o m p l e t e  m o d e u l e  f a i l u r e ,  b u t  l e a d  t o  n e w  m o d u l e  c o n f i g 

u r a t i o n s  w h i c h  h a v e  d i f f e r e n t  c o m o u t a t i o n a l  c a p a c i t i e s ,  a s  w e l l  a s  

v a r y i n g  c a p a c i t i e s ,  a s  c o m p a r e d  w i t h  t h a t  o f  s t a t e  2 .

T h e  f i f t h  e x i t  f r o m  s t a t e  2  i s  b y  t h e  o c c u r r a n c e  o f  a n  u n r e 

c o v e r a b l e  ( i . e .  a n  u n i d e n t i f i e d )  f a i l u r e ,  w h e t h e r  i n  a  m i c r o p r o c e s s o r ,  

o r  a  m e m o r y .  T h i s  l e a d s  t o  t h e  f a i l e d  s t a t e  ( F ) . A n  u n r e c o v e r a b l e  

m i c r o p r o c e s s o r  a n d  m e m o r y  f a i l u r e ,  w h i l e  i n  s t a t e  2 ,  c a n  a r i s e  f r o m  t w o  

a n d  t h r e e  p o s s i b l e  s o u r c e s ,  r e s p e c t i v e l y ,  t h e r e f o r e  t h e  t r a n s i t i o n

r a t e  f r o m  s t a t e  2  t o  r a t e  ( F ) , i s  C 2 A ( 1 - C , ) + 3 y ( l - C  ) ]  a s  i n d i c a t e dA y

i n  F i g .  5 . 3 .

State 3  i s  a  ' f u l l y  o p e r a t i o n a l '  s t a t e  ( a s  d e s c r i b e d  i n  s e c t i o n

4 . 2  a n d  a s  i l l u s t r a t e d  a s  a n  e x a m p l e  i n  F i g  5 . 2 ( b ) )  w h e r e  t w o  d e t e c t e d

f i l e  f a u l t s  h a v e  o c c u r r e d ,  l e a v i n g  a  s i n g l e  c o p y  o f  t h e  t w o  t y p e s  o f

f i l e s ,  a n d  w h e r e  t h e  r e m a i n i n g  f i l e s  a r e  a s s o c i a t e d  w i t h  d i f f e r e n t

m i c r o p r o c e s s o r s .  T h e r e  a r e  t w o  m e a n s  o f  e s c a p e  f r o m  t h i s  s t a t e .  T h e

f i r s t  o f  t h e s e  i s  b y  t h e  o c c u r r a n c e  o f  e i t h e r  a  d e t e c t e d  m i c r o p r o c e s s o r

f a u l t ,  o r  a  d e t e c t e d  m e m o r y  f a u l t ,  b u t  t h e  s t a t e  t o  w h i c h  t h e y  l e a d

i s  s t a t e  6 .  T h e  r a t e  o f  t r a n s i t i o n  f r o m  s t a t e  3  t o  t h i s  n e w  ' p a r t i a l l y

o p e r a t i o n a l '  s t a t e  i s  ( 2 A C h + 2 y C  ) .  T h e  o t h e r  e x i t  f r o m  s t a t e  3  i sA y
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b y  t h e  o c c u r r a n c e  o f  e i t h e r  a n  u n i d e n t i f i e d  m i c r o p r o c e s s o r  f a u l t  o r

a n  u n i d e n t i f i e d  m e m o r y  f a u l t .  T h e  s t a t e  t o  w h i c h  t h e s e  l e a d  i s

t h e  f a i l e d  s t a t e  C P ) -  L i k e w i s e ,  t h e  r a t e  o f  t r a n s i t i o n  f r o m  s t a t e  3

t o  t h i s  n e w  ’ m o d u l e  f a i l e d ’ s t a t e  i s  C 2 A ( 1 - C , ) + 2 y ( 1 - C  ) 3 .
A  y

State 4 i s  a  ’ f u l l y  o p e r a t i o n a l ’ s t a t e  ( a s  d e s c r i b e d  i n  s e c t i o n

4 . 2  a n d  a s  i l l u s t r a t e d ,  a s  a n  e x a m p l e ,  i n  F i g .  5 . 2 ( c ) )  w h e r e  t h e  m o d u l e

h a s  d e g r a d e d  t o  s u c h  a  l e v e l  t h a t  o n l y  o n e  m i c r o p r o c e s s o r ,  w i t h  c o p i e s

o f  b o t h  f i l e s  u n d e r  i t s  c o n t r o l ,  a r e  o p e r a t i o n a l .  T h e r e  a r e  t w o

m e a n s  o f  e s c a p e  f r o m  t h i s  s t a t e .  T h e  f i r s t  o f  t h e s e  i s  b y  t h e

o c c u r r a n c e  o f  a  d e t e c t e d  m e m o r y  f a u l t  w h i c h  c a n  a r i s e  f r o m  o n e  o f  t w o

s o u r c e s  a n d  s o  i s  l a b e l l e d  w i t h  a  r a t e  2 y C  . T h i s  l e a d s  t o  s t a t e  6 .
U

T h e  o t h e r  e x i t  f r o m  s t a t e  4  i s  b y  t h e  o c c u r r a n c e  o f  e i t h e r  a  m i c r o 

p r o c e s s o r  f a u l t ,  o r  a n  u n d e t e c t e d  m e m o r y  f a u l t .  S u c h  f a u l t s  b o t h  

l e a d  t o  a  ’ m o d u l e  f a i l e d '  s t a t e  a n d  s o  c o u l d  b e  c o m b i n e d  i n t o  o n e  

s t a t e .  T h e  r a t e  o f  t r a n s i t i o n  f r o m  s t a t e  4  t o  t h i s  n e w  f a i l e d  s t a t e  

( F )  i s  [ A + 2 y ( 1 - C ^ ) 3 .

State 5 i s  a  ' p a r t i a l l y  o p e r a t i o n a l '  s t a t e  ( a s  d e s c r i b e d  i n  

s e c t i o n  4 . 2  a n d  a s  i l l u s t r a t e d ,  a s  a n  e x a m p l e  i n  F i g .  5 . 2 ( d ) )  w h e r e  

t w o  f i l e s  h a v e  f a i l e d ,  l e a v i n g  a  c o p y  o f  o n e  t y p e  o f  t h e  f i l e s  u n d e r  

e a c h  m i c r o p r o c e s s o r .  T h e r e  a r e  t w o  m e a n s  o f  e s c a p e  f r o m  t h i s  s t a t e .  

T h e  f i r s t  o f  t h e s e  i s  b y  t h e  o c c u r r a n c e  o f  e i t h e r  a  d e t e c t e d  m i c r o 

p r o c e s s o r  f a u l t ,  o r  a  d e t e c t e d  m e m o r y  f a u l t .  T h i s  l e a d s  t o  s t a t e  6 .

T h e  r a t e  o f  t r a n s i t i o n  f o r m  s t a t e  5  t o  t h i s  n e w  ’ p a r t i a l l y  o p e r a t i o n a l '

s t a t e  ( 6 )  i s  ( 2 A C , + 2 y C  ) .  T h e  o t h e r  i s  b y  t h e  o c c u r r a n c e  - . o f  a n  u n -
A  y

i d e n t i f i e d  f a u l t  i n  t w o  d i f f e r e n t  s o u r c e s .  T h i s  l e a d s  t o  s t a t e ( F )  

a t  a  r a t e  o f  C 2 A ( 1 - C ^ ) + 2 y ( 1 - C  ) 3 .



State 6 i s  a  ’ p a r t i a l l y  o p e r a t i o n a l ’ s t a t e  ( a s  d e s c r i b e d  i n  

s e c t i o n  4 . 2  a n d  a s  i l l u s t r a t e d  a s  a n  e x a m p l e  i n  F i g ,  5 . 2 ( e ) )  w h e r e  t h e  

m o d u l e  h a s  d e g r a d e d  t o  s u c h  a  l e v e l  t h a t  o n l y  o n e  m i c r o p r o c e s s o r  a n d  

o n e  c o p y  o f  a  f i l e  u n d e r  i t s  c o n t r o l  a r e  o p e r a t i o n a l .  T h e  e x i t  f r o m  

s t a t e  6  c a n  o n l y  b e  v i a  a  d e t e c t e d ,  o r  u n i d e n t i f i e d  f a u l t  i n  e i t h e r  

o f  t h e  t w o  d i f f e r e n t  p o s s i b l e  s o u r c e s .  T h e s e  l e a d  t o  t h e  f a i l e d  

s t a t e  ( F )  a t  a  r a t e  o f  ( A + y ) .

State F  i s  a  ' c o m p l e t e  f a i l u r e '  s t a t e  ( a s  d e s c r i b e d  i n  s e c t i o n  

4 . 2 )  w h e r e  a  t o t a l  f a i l u r e  o f  t h e  m o d u l e  h a s  o c c u r r e d .  T h e  o n l y  

e x i t  f r o m  t h i s  s t a t e  c a n  o c c u r  i n  t h e  c a s e  o f  m o d u l e  w i t h  r e p a i r  

( a s  i l l u s t r a t e d  i n  F i g .  5 . 3 )  a n d  c a n  o n l y  b e  v i a  m o d u l e  r e p a i r  t o  

s t a t e  1 ,  a t  a  r a t e  o f  y .

5 . 5 . 3  T i m e  t o  c o m p u t a t i o n  d o m a i n  t r a n s f o r m a t i o n  o f  t h e  M a r k o v i a n  

m o d e l s

5 . 5 . 3 . 1  B a c k g r o u n d  a n d  g e n e r a l  c o n s i d e r a t i o n s

I n  g e n e r a l  i f  F  i s  t h e  s e t  o f  s y s t e m  f a i l u r e  s t a t e s  a n d  t h e  

i n i t i a l  s t a t e  o f  t h e  s y s t e m  i s  I ,  t h e n  t h e  s y s t e m  i s  i n  a  u n f a i l e d  

s t a t e  w i t h  p r o b a b i l i t y :

l  PjCt) • (5.2)

i$F

w h e r e  P ^ ( t )  i s  t h e  p r o b a b i l i t y  t h a t  s y s t e m  i s  i n  s t a t e  i  a t  t i m e  

t  , g i v e n  t h a t  i t  w a s  i n i t i a l l y  i n  s t a t e  I .  S t a n d a r d  t e c h n i q u e s  

[ 1 7 1 1  c a n  b e  u s e d  t o  d e t e r m i n e  t h e  v a l u e s  o f  P ^ ( t )  f o r  M a r k o v  p r o c e s s e s .  

B r i e f l y ,  t h e  t r a n s i t i o n  p r o b a b i l i t i e s  a r e  u s e d  t o  s e t  u p  a  s y s t e m  o f  

d i f f e r e n t i a l  e q u a t i o n s  o f  t h e  f o r m  :
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*

#

♦

d P i ( i )

d t
( P . . P . C t )  -  P .  . P .  ( t ) } ,ji J ij i ( 5 . 3 )

w h e r e  P . ^  d t  i s  t h e  p r o b a b i l i t y  t h a t  a  t r a n s i t i o n  o c c u r s  f r o m  s t a t e  i  t o  

s t a t e  j  i n  a n  i n f i n i t e s i m a l  t i m e  i n t e r v a l  d t .  T h e s e  e q u a t i o n s  c a n  

b e  s o l v e d  f o r  P ^ ( t )  g i v e n  I ,  t h e  i n i t i a l  s t a t e  o f  t h e  s y s t e m ,  b y  

s e t t i n g  t h e  i n i t i a l  c o n d i t i o n  P ^  C O )  =  1  a n d  P ^ ( 0 )  =  0  f o r  i  f I .

W e  c a n  a l s o  u s e  t h i s  m e t h o d  t o  d e t e r m i n e  t h e  r e l i a b i l i t y  a n d  t h e  

M T T F  f o r  t h e  s y s t e m  b e i n g  m o d e l l e d  b y  m a k i n g  t h e  s t a t e s  i n  F  

a b s o r b i n g .  T h i s  i s  a c c o m p l i s h e d  b y  e f f e c t i v e l y  r e m o v i n g  t h e  t r a n s 

i t i o n s  o u t  o f  t h e  f a i l e d  s t a t e s  w h i c h  c o r r e s p o n d  t o  s e t t i n g  :

♦

♦

%

P - .  =  0  f o r  a l l  f  e  F  a n d  f o r  a l l  s t a t e s j  •

I f  t h e  c o m p u t i n g  s y s t e m  c a n  r e c o v e r  f r o m  a  f a i l e d  s t a t e  b y  r e p a i r  o f  

i t s  c o m p o n e n t s , t h e n  w e  c a n  e x a m i n e  t h e  s t e a d y - s t a t e  b e h a v i o u r  o f  t h e  

s y s t e m  t o  o b t a i n  P ^ ( ° ° ) ,  t h e  s t e a d y - s t a t e  o r  l i m i t i n g  p r o b a b i l i t i e s .  

A s s u m i n g  ' t h a t  t h e s e  l i m i t i n g  e x i s t  t h i s  i s  a c c o m p l i s h e d  b y  s e t t i n g  :

d P  ( t )
----!- = 0

d t

i n  t h e  s y s t e m  o f  d i f f e r e n t i a l  e q u a t i o n s  s h o w n  a b o v e  a n d  t h e n  s o l v i n g  

t h e  r e s u l t i n g  l i n e a r  s y s t e m  o f  e q u a t i o n s  f o r  P ^ ( ° ° ) .  T h e  a v a i l a b i l i t y  

o f  t h e  r e p a i r a b l e  s y s t e m  i s  t h e n

a
( 5 . 4 )
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T h i s  s u m m a r i z e s  t h e  u s e  o f  M a r k o v  m o d e l s  t o  d e t e r m i n e  t h e  t r a d i t i o n a l  

r e l i a b i l i t y  m e a s u r e s ,  a s  d e s c r i b e d  i n  s e c t i o n  5 , 3 .

H o w e v e r ,  w h e n  w e  c o n s i d e r  t h e  a m o u n t  o f  c o m p u t a t i o n a l  c a p a c i t y  a v a i l 

a b l e  o n  t h e  m o d u l e ,  w e  m u s t  r e c o g n i z e  t h a t  t h e  v a r i o u s  o p e r a t i o n a l  

s t a t e s  h a v e  d i f f e r e n t  c o m p u t a t i o n a l  c a p a c i t i e s  a s  w e l l  a s  c a p a b i l i t i e s  

t o  e x e c u t e  s o m e ,  o r  a l l ,  o f  t h e  t a s k s  w h i c h  a r e  e x e c u t a b l e  o n  t h e  

m o d u l e .  T h e r e f o r e ,  w e  r e q u i r e  t o  e x a m i n e  t h e  t r a n s i t i o n  r a t e  d i a g r a m  

i n  F i g  5 . 3  i n  t e r m s  o f  t h e  a v a i l a b l e  c o m p u t a t i o n  T  ( a s  d e f i n e d  i n  

s e c t i o n  5 . 4 )  i n s t e a d  o f  t h e  t i m e  v a r i a b l e  t .  T h e  c o m p u t a t i o n

a v a i l a b l e  T  i n  s t a t e  i ,  f o r  i  =  1 ,  . . .  ,6  i s  C 1 0 4 3  :

♦

T  =  a . t  
i

( 5 . 5 )

w h e r e  o l  i s  t h e  c o m p u t a t i o n a l  c a p a c i t y  i n  s t a t e  i ,  a s  d e f i n e d  i n  

s e c t i o n  5 . 4  a n d  a s  e v a l u a t e d  i n  C h a p t e r s  3  a n d  4 .

5 . 5 . 3 . 2  T i m e  t o  c o m p u t a t i o n  d o m a i n  t r a n s f o r m a t i o n

T h e  t i m e  t o  c o m p u t a t i o n  d o m a i n  r e p r e s e n t a t i o n  o f  t h e  m o d u l e  i n  

F i g .  3 . 1 ( b ) ,  a s  m e n t i o n e d  a b o v e ,  i s  a c h i e v e d  b y  m a k i n g  t h e  s u b s t i t u t i o n  :

( 5 . 6 )

i n  t h e  c o r r e s p o n d i n g  s t a t e  t r a n s i t i o n  p r o b a b i l i t i e s ,  a s  . i l l u s t r a t e d  

i n  F i g .  5 . 4 .

T h e  c o m p u t a t i o n  d o m a i n  r e p r e s e n t a t i o n  o f  t h e  m o d u l e ,  a s  i l l u s t r a t e d  

i n  F i g .  5 . 4 ,  i n  c o n j u n c t i o n  w i t h  t h e  t i m e  d o m a i n  r e p r e s e n t a t i o n  i n  F i g .  5 . 3



c a n  b e  u s e d  t o  d e t e r m i n e  t h e  p e r f o r m a n c e - r e l a t e d  r e l i a b i l i t y  m e a s u r e s  

o f  t h e  m o d u l e ,  a s  d e f i n e d  i n  s e c t i o n  5 . 4 .

5 . 6  D e r i v a t i o n  o f  t h e  P e r f o r m a n c e - R e l a t e d  R e l i a b i l i t y  M e a s u r e s

T h e  c o m p u t a t i o n  d o m a i n  M a r k o v i a n  m o d e l  i n  F i g .  5 . 4  c a n  n o w  

b e  u s e d  t o  d e t e r m i n e  t h e  c a p a c i t y  f u n c t i o n  o f  t h e  v a r i o u s  m o d u l e  s t a t e s :  

T h e  c a p a c i t y  f u n c t i o n  i s  g i v e n  b y :

C .  ( T )  =  0  f o r  a l l  i  e  F  ( 5 . 7 )l

C h ( T )  =  P  [  m o d u l e  e x e c u t e s  a  c o m p u t a t i o n a l  t a s k  o f  l e n g t h  T ,  t a k i n g  

i n t o  a c c o u n t  t h e  i n d i v i d u a l  c o m p u t a t i o n a l  l e n g t h s  a s s o c i a t e d  

w i t h  t h e  v a r i o u s  c o m b i n e d  f u l l y - a n d - p a r t i a l l y  o p e r a t i o n a l  s t a t e s ,  

o r  p a r t i a l l y  o p e r a t i o n a l  s t a t e s l  s t a t e  w a s  i  a t  t h e  b e g i n n i n g  

o f  t h e  c o m p u t a t i o n ]  f o r  a l l  i  p- F .

T h i s  f u n c t i o n  i s  t h e  a n a l o g  o f  t h e  t i m e  d o m a i n  r e l i a b i l i t y  a n d  c a n  b e  c o m 

p u t e d  b y  u s i n g  t h e  c o m p u t a t i o n  d o m a i n  r e p r e s e n t a t i o n  i n  F i g .  5 . 4  t o  

s e t  u p  t h e  d i f f e r e n t i a l  e q u a t i o n s  f o r  p t ( T ) . ( t h e  p r o b a b i l i t y  t h a t  t h e  

m o d u l e  i s  i n  s t a t e  j  a f t e r  a n  a c c o u n t  T  o f  c o m p u t a t i o n ) .  p t ( T )  

i s  t h e  c o m p u t a t i o n  d o m a i n  a n a l o g  t o  ( t )  i n  t h e  t i m e  d o m a i n  r e p r e s e n t 

a t i o n .  S o l v i n g  t h i s  s y s t e m  o f  e q u a t i o n s ,  a s s u m i n g  t h a t  t h e  i n i t i a l  

s t a t e  o f  t h e  m o d u l e  w a s  i  ( i . e . ,  P ? ( 0 )  =  1  a n d  p t ( 0 )  =  0  f o r  

j  j i )  C h  ( T )  i s  t h e n  g i v e n  b y  :



T h e  c a p a c i t y  f u n c t i o n  c a n  b e  u s e d  t o  d e t e r m i n e  t h e  m o d u l e ’ s  m e a n  c o m 

p u t a t i o n  b e f o r e  a  ’ c o m p l e t e ’ f a i l u r e  ( a s  d e f i n e d  i n  s e c t i o n  5 . 4 )  a s  

f o l l o w s  [ 1 0 4 ] :

M C B C F  =  f°  C  ( T ) d T ,  

0 1
( 5 . 9 )

w h e r e  I  i s  t h e  s t a t e  o f  t h e  s y s t e m  a t  t  =  0 .  T h e  M C B C F  i s  t h u s  

a  m e a s u r e  o f  t h e  m o d u l e ’ s  a b i l i t y  t o  e x e c u t e  c o m p u t i n g  t a s k s .

T h e  c a p a c i t y  f u n c t i o n  c a n  a l s o  b e  u s e d  t o  d e f i n e  t h e  c o m p u t 

a t i o n  r e l i a b i l i t y  o f  t h e  m o d u l e  ( a s  d e f i n e d  i n  s e c t i o n  5 . 4 )  [ 1 0 4 ]  

a s  f o l l o w s :

=  [ m o d u l e  e x e c u t e s  a  t a s k  o f  l e n g t h  T  s t a r t e d  a t  t i m e  t ,  

t a k i n g  i n t o  a c c o u n t  t h e  i n d i v i d u a l  c o m p u t a t i o n a l  l e n g t h s  w i t h  

v a r i o u s  c o m b i n e d  f u l l y - a n d - p a r t i a l l y  o p e r a t i o n a l  s t a t e s ,  

o r  p a r t i a l l y  o p e r a t i o n a l  s t a t e s | s t a t e  =  i  a t  t i m e  t ]  x  P ^ [ s t a t e  

=  I  a t  t  =  0 ] .

T h e  c o m p u t a t i o n  a v a i l a b i l i t y ,  a c ( t ) ,  o f  t h e  m o d u l e  ( a s  d e f i n e d  i n  

s e c t i o n  5 . 4 )  [ 1 0 4 ]  i s :

R(t,T) = l ci CT)PiCt) 

i # F
( 5 . 1 0 )

( 5 . 1 1 )

I n  t h e  c a s e  o f  a  m o d u l e  w i t h  r e p a i r ,  a s  i l l u s t r a t e d  i n  F i g .  5 . 3 ,  t h e  

s t e a d y - s t a t e - c o m p u t a t i o n  a v a i l a b i l i t y  i s  :



- - 2 1 3  -

*

*

#

a  =  T- a .  P . ( ° ° )  . ( 5 . 1 2 )
c u x x

i^F

T h e  e x p r e s s i o n  f o r  a c  c a n  a l s o  b e  w r i t t e n  a s  :

a
c

+  a.PO ( 5 . 1 3 )

c  c
w h e r e  a p ^  a n d  a p ^  a r e  t h e  e x p e c t e d  v a l u e s  o f  c o m p u t a t i o n  c a p a c i t y

o f  t h e  m o d u l e  i n  s t e a d y - s t a t e  o p e r a t i o n  a s s o c i a t e d  w i t h  f u l l y  o p e r a t i o n -

c  c
a l  a n d  p a r t i a l l y  o p e r a t i o n a l  s t a t e s ,  r e s p e c t i v e l y .  a  a n d  a  a r erU r (J
g i v e n  b y :

*

«

( 5 . 1 4 )

I n  t h e  f o l l o w i n g  s e c t i o n s ,  s o m e  o f  t h e  a b o v e  p e r f o r m a n c e - r e l a t e d  

r e l i a b i l i t y  m e a s u r e s  f o r  t h e  m o d u l e  w i t h  a n d  w i t h o u t  r e p a i r  a r e  

e v a l u a t e d .

5 . 6 . 1  T h e  m o d u l e  w i t h o u t  r e p a i r

I n  t h i s  s e c t i o n ,  t h e  m e a n  t i m e  t o  c o m p l e t e  f a i l u r e  M T T C F  ( a s  

g o v e r n e d  b y  t h e  t i m e  d o m a i n  r e p r e s e n t a t i o n  i n  F i g .  4 . 3 )  a n d  t h e  m e a n  

c o m p u t a t i o n  b e f o r e  c o m p l e t e  f a i l u r e  M C B C F  ( a s  g o v e r n e d  b y  t h e  c o m p u t 

a t i o n  d o m a i n  r e p r e s e n t a t i o n  i n  F i g .  5 . 4 )  o f  t h e  m o d u l e  a r e  e v a l u a t e d .

F o l l o w i n g  t h e  p r e v i o u s  a r g u m e n t s ,  t h e  t i m e  d o m a i n  a n d  c o m p u t 

a t i o n  d o m a i n  t r a n s i t i o n s  b e t w e e n  t h e  v a r i o u s  s t a t e s  o f  t h e  m o d u l e  c a n
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b e  d e s c r i b e d  b y  t h e  f o l l o w i n g  s e t s  o f  d i f f e r e n t i a l  e q u a t i o n s  w h i c h  c a n  

b e  w r i t t e n  d o w n  b y  i n s p e c t i o n  o f  F i g u r e s  5 . 3  a n d  5 . 4 .

A s  r e g a r d s  t o  t i m e  d o m a i n  r e p r e s e n t a t i o n  i n  F i g  5 . 3 ,  t h e  s e t  o f  d i f f 

e r e n t i a l  e q u a t i o n s  d e s c r i b i n g  t h e  m o d u l e  a r e :

*

*

*

d p l
( t )

d t

d P 2
( t )

d t

d P 3
C - t )

d t

d P 4 ( t )

d t

d P 5
( t )

d t

d P 6
( t )

d t

-  ( 2 A + 4 y )  P 1 C t )

-C2X+3y)P2 (t)+4yCliP1 (t)

- ( 2 A + 2 y ) P 3 ( t ) + y C y P 2 ( t )

- (A + 2 y )P 4 ( t ) + 2 XCa P 1 ( t ) + CACx +yC ) P 2 ( t )  

-(2A+2y)P5 (t)+yCuP2(t)

-a+P)P6(t) +XCxP2 (t) + (2Xcx+2ycvl)P3(t) 

+ 2pCyP4(t) + (2XCx+2yCiJ)P5 (t)

( 5 . 1 5 3

d P £ ( t )

d t

2 X ( 1 - C X )  { P x ( t )  + P 2  ( t )  + P 3 ( . t )  + P 5  ( t ) }

+  H O C  }  { 4 P 1 C t 3  + 3 P 2 ( t )  + 2 P 3 ( . t )  + 2 P 4  ( t )  + 2 P 5  ( t )  }  

X { P 4 ( t ) + P 6 ( t ) } n i P 6 ( t ) .+
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*

m

+

♦

O n  i n t e g r a t i n g  t h e  a b o v e  e q u a t i o n s  f r o m  t  =  0  t o  t  =  00, a n d  p u t t i n g

j° ° P  ( t ) d t  =  T  , f°  P  C t ) d t  =  T  , P  P _ ( t ) d t  =  T  a n d  s o  o n .  

0 1 1 0 z 0 ^ 5

T h e  a b o v e  s e t  o f  d i f f e r e n t i a l  e q u a t i o n s  l e a d  t o  t h e  f o l l o w i n g  s e t  o f  

s i m u l t a n e o u s  e q u a t i o n s  i n  T ^ ,  T ^ ,  T ^ ,  T ^ ,  T ^ ,  a n d  T ^ :

-1 = -C2X+4y)T1

0 = -(2X+3y)T2 +4yCyT 1

0 = -(2X+2y)T3+yC^T2

0 = -CX+2y)T4+2XCxT 1 +(XCx+yCy)T2

0 = -f2X+2u)T + PC.T.
5 |i 2

0 = -(X+y)T6+XCxT2+C2XCx+2yC )T3+2yC T4 + (2XCX+ 2pCy)T5

1 = 2X(1-Cx){T1+T2+T3+T5) +p(l-C ){4T1+3T2+2Tj+2T4 }

+ X{T +T } pT 
4  6  6

w h e r e

Ti = — -—2 (X+2y)

( 5 . 1 6 )

=

T_ =

4yC
y

2X+3.y

2CX+y)

1 *

2 *

T. = 2XCXT1+CXCX+1JV T2

X+2y
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%

*

a n d

2 (A+y)

T
2. f

^ C A T 2 + 2  ^ C X~l‘y C y “) T 3 + 2 y C y T 4 + 2  ^ C X + y C y ' ) T 5

A + y

F r o m  t h e  a b o v e  t h e  m e a n  t i m e  t o  ' c o m p l e t e ’ f a i l u r e  ( M T T C F )  o f  t h e  

m o d u l e ,

*

t

6
M T T C F  =  7  T .  ,

i=i 1

( 5 . 1 7 )

c a n  b e  o b t a i n e d .

A s  r e g a r d s  t o  c o m p u t a t i o n a l  d o m a i n  r e p r e s e n t a t i o n  i n  F i g .  5 . 4 ,  t h e  

3 e t  o f  d i f f e r e n t i a l  e q u a t i o n s  d e s c r i b i n g  t h e  m o d u l e  a r e

=  ( 2 A + 4 y )  P * ( T )

d T

dP^CT)

d T

C 2 A + 3 y )

a .

P^CT)
4 y C

+ ___H. P^CT)

dP3(T)

d T

C 2 A + 2 y )_ p + ^ T )  + yc
y

a . a. P2 CT)

( 5 . 1 8 )

f i t ? .  p* +
d T  a 4  4  a

A  p * ( j )  +  ------ £ ------ +  P o ( T )

a .
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d P * ( T )

d T

u C
-  ^-2A t 2.U L - p ^ ( T )  +  — y . P * ( T )  

a5 a 2

dP^(T) o...-, • AC, (2AC, +2yC )
------------------ c.x y) P ( T )  +  — *  P  ( T )  +  ------------ - ------- y —  P * ( T )

dT a6 6 “2 “ 3

2 y C +  ( 2 A C  + 2 y C  )  +
■ D  r r r "  -  ----------------- H -  P  ( T )

a .
P^CT)

aP

d P t ( T )  1 1 -

dT -  2XC1-CX){  * P^T) + a 2 p^  + a: P3 (T) + 5T P5CT)}1 2 3 5

+ ^ - V { 57 + f- p+2m  + 1- p ; m  + §- pJ(T)}

A{ —  pt (T) + i- P*(T)} + P*(T) .+ a4 4 v J a6 6K J a6 6 K J

O n  i n t e g r a t i n g  t h e  a b o v e  e q u a t i o n s  f r o m  T  =  0  t o  T  =  °°, a n d  p u t t i n g

f ° (T) dT = t !t , J°°P*(T)dT = T^ , /°°P*(T)dT = T^ and so on, 
0 1 1 0 z 0 ^ .

t h e  a b o v e  s e t  o f  d i f f e r e n t i a l  e q u a t i o n s  l e a d  t o  t h e  f o l l o w i n g  s e t  o f

c c  c  c  c  c
s i m u l t a n e o u s  e q u a t i o n s  i n  T ^ ' , T ^  , T ^  > T ^  ,  T ^  , a n d  T ^  :

- 1  = - ( 2 A + 4 y )  T c
a, 1

( 2 A + 3 y )  4 y C

0 ----------- T̂ r +------ T,
ou 2 a, 1

( 5 . 1 9 )

yc
0  =  -  ( 2 X + 2 y )  t C  +  V T C

a . a 2 2



21*8 -

r\ oui 2AC-> ~ (AC.+yC )
o = - 1 V M  + _ i -  T? + ___ l___ H i t!t

oty, 4 a-- 1 a~ 2

o  =  ( 2 A + 2 y )  T c  +  p C y  T c

« 5  5  a 2  2

0 = -
CA+lO Tc + ^ X  ?c + (2XCX+2^Cy) tC 

a 6 6 “2 2 a3 3

2 y C  ( 2 X C  + 2 U C  J
+ -— H_ + ---- i----H_

“4 “s

0 = 2X^ { I -  + ^  t 2 + k ;  I + k ;  Ts}

+  p ( l - C  )  {  —  t '  +  —  +  —  T ®  +  —  T ^ >
v y' 1 a 2 2 a3 3 a 4 4

where

+  X {  —  T ?  +  —  T * T }  +  —  T *  a4 4 a6 6 a6 6

0L
TC = ^

1 2X+4U

4yC a„
c  u  2  c

2  2 A + 3 y  a 1 1

yC a_
x c  =  _ J L  .  _ 3  .  T C  ,
3 2A+2y a 2 2 ’

2XCX

r a

h t  j ^  +(XW
r*i
a 0

TC - L 1 J \ 2
T4

A + 2  y

yC

T ?  =
5  2 A + 2 y  o 2̂ 2  *



2 1 8  -

a n d

*CA
t; -

T 2. +  ^ C x + 2 U V  ( S - f  T 3  +  2 l J C y  1 ^ . 1  T 4C + C 2 A C A + 2 ^

A + y

F r o m  t h e  a b o v e  t h e  m e a n  c o m p u t a t i o n  b e f o r e  ’ c o m p l e t e ’ f a i l u r e  ( M C B C F )  

o f  t h e  m o d u l e

M C B C F  =  l T C ( 5 . 2 0 )

i = l

c a n  b e  o b t a i n e d .

5 . 6 . 2  T h e  m o d u l e  w i t h  r e p a i r

I n  t h i s  s e c t i o n ,  t h e  a v a i l a b i l i t i e s  a n d  t h e  c o m p u t a t i o n a l  

a v a i l a b i l i t i e s  o f  t h e  m o d u l e  a s s o c i a t e d  w i t h  f u l l y ,  p a r t i a l l y ,  a n d  

c o m b i n e d  f u l l y - a n d - p a r t i a l l y  m o d e s o f  o p e r a t i o n  o f  t h e  m o d u l e  a r e  

e v a l u a t e d -

T h e  d i f f e r e n t i a l  e q u a t i o n s  f o r  t h e  t i m e  d o m a i n  r e p r e s e n t a t i o n ,  

a s  i l l u s t r a t e d  i n  F i g .  5 . 3 ,  a r e

dPjOO

=  - c a A + ^ P j C t )  +  Y P f ( t )

dP^to

d t

=  - ( 2 A + 3 y ) P 2 ( t )  +  4 U C y P 1 ( t ) ( 5 . 2 1 )

dPjCW

d t
=  - ( 2 A + 2 u ) P 3 ( t )  +  p C y P 2 ( . t )
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*

%

* P 4 C t )

— -- ------  =  - C A + 2 v i 1 P 4 C J 0  +  2 A C x P l C t }  +  (-A V y C u ) P 2 C t ; i*

d P . ( t )
— ------  =  - C 2 X + 2 p ) P . ( . t )  +  p C  P , ( j t )

d t  b  v

d P , C t )
—  ----  -(X+p)P6 (tO + XC P2 Ct) +(2XCx+2pC )P 3 Ct) + 2pC P4 (t )

d t  m m

+ (2XCX+ 2pC )Ps (.t)

d P  ( t )

—   - =  -  Y  P £ ( t )  +  2 X ( l . C x ) { P 1 ( t )  +  P 2 C t )  +  P 3 ( t )  +  P s ( t ) }
d t

+  y C l - C y ) { 4 P 1 C t )  +  3 P 2 ( t )  +  2 P 3 ( t )  +  2 P 4 ( t )  +  2 P 5 ( t ) }

+  X { P 4 ( t )  +  P 6 ( t ) } +  y P 6 ( t ) .

T h i s  s y s t e m  o f  e q u a t i o n s  c a n  b e  s o l v e d  [ 1 6 9 ]  f o r  t h e  s t e a d y - s t a t e  

p r o b a b i l i t i e s  P  , i  =  1 , . . . , 6 , f  b e  s e t t i n g

d P ,  ( t )

— —  = o,
d t

i n  t h e  s y s t e m  o f  d i f f e r e n t i a l  e q u a t i o n s  s h o w n  a b o v e .  T h i s  l e a d s  t o  

t h e  f o l l o w i n g  s e t  o f  l i n e a r  e q u a t i o n s  i n  P  , P  , P  , P ^ ,  P  , P ^  a n d  P ^ :

0  =  - C 2 A + 4 y ) P 1  +  y P f  ( 5 . 2 2 )

0  =  - C 2 A + 3 y ) P 2  +  4 y C ^ P 1
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*

m

%

*

0. = -C2A+2y)P3 + yCyP2

0 = ^CA+2p)P4 + 2ACXP1 + (ACX+ yCy)P2

0  =  - C 2 A + 2 u ) P 5  +  p C  P 2  

0  =  - O p ) P 6  +  A C a P 2  +  C 2 X C A + 2 p C  ) P 3

+  2 p C  P .  +  ( 2 A C  + 2 p C  ) P _  
y  4  A  p  5

0 = - y pf + 2X(l-Cx){Pl + p 2 + p 3 ♦ ps>

+  y C l - C  ) { 4 P 1  +  3 P 2  +  : 2 P 3  +  2 P 4  +  2 P j

+  A < P 4  +  V  +  y P 6

w h e r e

P. =

P „  =

P „  =

Y

2 A +  4 y  

4 y C

pf*

2 A +  3  y

5 i _
2  A + 2 y

^ • pi >

P2 '

a n d

P 4  ’

P. =

2 A C , P 1 + ( A C  + y C  )P0 
A  l  A  y  z  >

A + 2 y

P C

5  2 A +  2 y  2

n  A c A P2 +  C 2 X C A + 2 t j C u ) P 3  +  2 y C y P 4  +  C 2 X C A +  2 y C y ) P 5  
P6 "

A + y
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*

a l s o

r 6
l  P." 1

i = l

V

+ pf " 1

f r o m  w h i c h  t h e  f o l l o w i n g  a v a i l a b i l i t i e s  a n d  c o m p u t a t i o n a l  a v a i l a b i l i t i e s  

o f  t h e  m o d u l e  a s s o c i a t e d  w i t h  f u l l y ,  p a r t i a l l y ,  a n d  c o m b i n e d  f u l l y -  

a n d - p a r t i a l l y  m o d e s  o f  o p e r a t i o n  c a n  b e  o b t a i n e d .

A s  r e g a r d s  t o  a v a i l a b i l i t y ,  w e  h a v e  :

*

♦

%

»

+

a  =
a F 0  +  a P 0

^ 0  = I pi
i = l

P 0 = l  ^
i = 5

( 5 . 2 3 )

w h e r e ,  a c n  a n d  a n n  a r e  t h e  s t e a d y - s t a t e  p r o b a b i l i t i e s  t h a t  t h e  m o d u l erU rU

i s  f u l l y  a n d  p a r t i a l l y  o p e r a t i o n a l ,  r e s p e c t i v e l y .  A s  r e g a r d s  c o m 

p u t a t i o n a l  a v a i l a b i l i t y  w e  h a v e  :

w h e r e ,

a n d

a c  =  a F 0  +  a P 0

4 ,  -  I a . P.F 0  . t l  l  1 =1

• pV  K pi
i = 5

( 5 . 2 4 )



5 , 7 T h e  E q u i v a l e n t  M a r k o v i a n  M o d e l  o f  t h e  M o d u l e  U n d e r  S t e a d y - S t a t e

C o n d i t i o n

I n  t h i s  s e c t i o n ,  t h e  f r e q u e n c y  a n d  d u r a t i o n  a p p r o a c h  p r o p o s e d  

b y  S i n g h  a n d  B i l l i n t o n  [ 1 7 2 3  i s  u s e d  t o  r e d u c e  t h e  s t a t e - s p a c e  o f  

t h e  M a r k o v  m o d e l  i n  F i g . . 5 . 3 .  T h i s  i s  i n t e n d e d  t o  p r o d u c e  a n  e q u i 

v a l e n t  t r a n s i t i o n  r a t e  d i a g r a m ,  i n  p l a c e  o f  F i g .  5 . 3 ,  w i t h  a  s m a l l e r  

n u m b e r  o f  l u m p e d  s t a t e s  w h i c h  a r e  o f  p a r t i c u l a r  i n t e r e s t .  I n  t h e  

e q u i v a l e n t  M a r k o v  m o d e l  a s  i l l u s t r a t e d  i n  F i g .  5 . 5 ,  t h e s e  c o r r e s p o n d  

t o  l u m p e d  f u l l y  o p e r a t i o n a l  s t a t e s ,  l u m p e d  p a r t i a l l y  o p e r a t i o n a l  s t a t e s ,  

a n d  t h e  f a i l e d  s t a t e  o f  t h e  m o d u l e .  I n  o r d e r  t o  a c h i e v e  t h i s  m e r g i n g ,  

t h e  e q u i v a l e n t  t r a n s i t i o n  r a t e s  a m o n g s t  t h e  s u b s e t s  o f  l u m p e d  s t a t e s  

a r e  r e q u i r e d .

I n  t h e  f o l l o w i n g ,  t h e  e x p r e s s i o n s  f o r  t h e  c o r r e s p o n d i n g  e q u i 

v a l e n t  t r a n s i t i o n  r a t e s  s h o w n  o n  F i g .  5 . 5  a r e  d e t e r m i n e d .

5 . 7 . 1  P r e l i m i n a r i e s  a n d  n o t a t i o n s

L e t  t h e  e n t i r e  s t a t e - s p a c e ,  S  ,  o f  t h e  m o d u l e ,  a s  d e m o n s t r a t e d  

i n  F i g .  5 . 3 ,  b e  p a r t i t i o n e d  i n t o  t h e  f o l l o w i n g  d i s j o i n t  s u b s e t s  :

=  t h e  s u b s e t  o f  f u l l y  o p e r a t i o n a l  s t a t e s

S p  =  t h e  s u b s e t  o f  p a r t i a l l y  o p e r a t i o n a l  s t a t e s

S „  =  t h e  f a i l e d  s t a t e  
F

a l s o ,  l e t

Ce)
A  =  e q u i v a l e n t  t r a n s i t i o n  r a t e  f r o m  s u b s e t  S UT t o  S  

WP W P
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♦

*

ACe)
W F  =  e q u i v a l e n t  t r a n s i t i o n  r a t e  f r o m  s u b s e t  t o  S p

x Ce)
D C  =  e q u i v a l e n t  t r a n s i t i o n  r a t e  f r o m  s u b s e t  S _  t o  S , ,r r r F

A(e)
=  e q u i v a l e n t  t r a n s i t i o n  r a t e  f r o m  s u b s e t  S p  t o  S ^ .

5 . 7 . 2  T h e  e q u i v a l e n t  t r a n s i t i o n  r a t e s

U n d e r  s t e a d y - s t a t e  c o n d i t i o n s ,  t h e  e q u i v a l e n t  t r a n s i t i o n

r a t e  f r o m  s u b s e t  X  t o  X  E 1 7 2 3  i s  :
P q

( i )  t i m e  i n v a r i a n t

♦ ( i i )  i n d e p e n d e n t  o f  t h e  i n i t i a l  c o n d i t i o n s  a s s o c i a t e d  w i t h  t h e  

s t a t e  p r o b a b i l i t i e s  ; 

a n d  i s  g i v e n  b y  :

A(e) =
pq

p .
i x . .

ij ( 5 . 2 5 )

w h e r e ,  i s  s t e a d y - s t a t e  p r o b a b i l i t y  t h a t  t h e  s y s t e m  i s  i n  s t a t e  i ,

a n d  X . . i s  t h e  c o n s t a n t  t r a n s i t i o n  r a t e  f r o m  s t a t e  i  t o  s t a t e  j .  
ij

T h e  a b o v e  e x p r e s s i o n  c a n  b e  u s e d  t o  d e t e r m i n e  t h e  c o r r e s p o n d i n g  

e x p r e s s i o n s  f o r  X ^ ' ^ , X ^ p ^  , X ^  , a n d  X p ^ a s  f o l l o w s  :

,  ( e )  P 2 ( -A C A + l V + P 3 C 2 A C A +  +  2 ^ C u P 4
a w f

r p  + p  + p  + p  ■)
L  1  2  3  4 J
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%

m

ACe) ^P4+2^CI-Ca}CPjl+P2+P3)+TJU-C1J(4P1+3P2+2P3+2P4) 

W F  =  “ “

^ W W

A (e) .P5[2^Cl-Cxl+2pa -C )] + CA+y)P6 

P F

Ce) _
F W =  Y

w h e r e ,  t h e  s t e a d y - s t a t e  p r o b a b i l i t i e s  P ^  , i  =  a r e  a s  g i v e n

i n  s e c t i o n  5 . 6 . 2 .

T h e  e q u i v a l e n t  t r a n s i t i o n  r a t e  d i a g r a m  i n  F i g .  5 . 5  w h i c h  d e s 

c r i b e s  t h e  m o d u l e  i n  t e r m s  o f  i t s  f u l l y ,  p a r t i a l l y ,  a n d  f a i l e d  m o d e s  

o f  o p e r a t i o n  i s  u s e d  ( s e e  c h a p t e r s  7 )  a s  a  m o d e l  o f  t h e  m o d u l e  i n  o r d e r  

t o  a n a l y z e  a  s y s t e m  c o m p r i s i n g  o f  a  n u m b e r  o f  s u c h  m o d u l e s .

5 . 8  C o n c l u s i o n s

I n  t h i s  c h a p t e r ,  M a r k o v i a n  m o d e l s  f o r  t h e  p e r f o r m a n c e - r e l a t e d  

r e l i a b i l i t y  a n a l y s i s  o f  t h e  f a u l t - t o l e r a n t  m u l t i p l e - m i c r o p r o c e s s o r

*  m o d u l e  h a v e  b e e n  d e v e l o p e d .  T h e  a n a l y s i s  h a s  i n v o l v e d  a p p l i c a t i o n  

o f  r e l i a b i l i t y  b l o c k  d i a g r a m  a n d  t i m e  a n d  c o m p u t a t i o n  d o m a i n  t r a n s 

i t i o n  r a t e  d i a g r a m  t e c h n i q u e s  t o  t h e  m o d u l e  a s  g i v e n  u n d e r  t h e

•  c o n t r o l  s c h e m e .  M a r k o v i a n  m o d e l s  f o r  t h e  p e r f o r m a n c e  e v a l u a t i o n

o f  t h e  m o d u l e  ( w i t h  a n d  w i t h o u t  r e p a i r )  i n  b o t h  t i m e  a n d  c o m p u t a t i o n  

d o m a i n s  h a v e  b e e n  d e v e l o p e d  w h i c h  d e m o n s t r a t e  t h e  g r a c e f u l l y  d e g r a d i n g  

c h a r a c t e r i s t i c s  o f  t h e  m o d u l e .  U s i n g  t h e  M a r k o v i a n  m o d e l s  ( a )  

p e r f o r m a n c e - r e l a t e d  r e l i a b i l i t y  m e a s u r e s  h a v e  b e e n  d e f i n e d ,  a n d  ( b )  

a n a l y t i c a l  e x p r e s s i o n s  h a v e  b e e n  d e r i v e d .  T h e s e  a l l o w  u s  t o  e v a l u a t e  

t h e  m o d u l e  i n  t e r m s  o f  b o t h  t h e  r e a l i b i l i t y  a n d  p e r f o r m a n c e .



T h e  n e e d  f o r  s u c h  m o d e l s  i s  e s p e c i a l l y  c l e a r  w h e n  p r o c e s s i n g  

s y s t e m s  a r e  u s e d  i n  a p p l i c a t i o n s  w h e r e  b o t h  t h e  r e l i a b i l i t y  a n d  

p e r f o r m a n c e  a r e  i m p o r t a n t .

T h e  p e r f o r m a n c e - r e l a t e d  r e l i a b i l i t y  i n d i c e s  u s e d  h a v e  b e e n  t h e  

m e a n  c o m p u t a t i o n  b e f o r e  a  f a i l u r e ,  t h e  c o m p u t a t i o n  r e l i a b i l i t y ,  a n d  

t h e  c o m p u t a t i o n a l  a v a i l a b i l i t y  o f  t h e  m o d u l e .  T h e s e  m e a s u r e s  w i l l  

a l l o w  u s  ( a )  t o  r e f l e c t  t h e  i n t e r a c t i o n  b e t w e e n  t h e  r e l i a b i l i t y  a n d  

t h e  p e r f o r m a n c e  c h a r a c t e r i s t i c s  o f  t h e  m o d u l e ,  ( b )  t o  g a i n  a n  i n s i g h t  

i n t o  t h e  e x p e c t e d  r e s p o n s e  o f  t h e  m o d u l e  t o  a  c o m p u t a t i o n a l  d e m a n d ,  

t a k i n g  i n t o  a c c o u n t  v a r i o u s  m o d u l e  c h a r a c t e r i s t i c s  ( e . g . ,  s t r u c t u r e  

a n d  r e d u n d a n c y )  ( c )  t o  t a k e  i n t o  a c c o u n t  t h e  d i f f e r e n t  l e v e l s  o f  

c o m p u t a t i o n  c a p a c i t y  a n d  t h e  v a r y i n g  c a p a b i l i t y  t o  e x e c u t e  s o m e ,  o r  

a l l ,  o f  t h e  t a s k s  w h i c h  a r e  e x e c u t a b l e  o n  t h e  m o d u l e ,  a n d  ( d )  t o  

h a v e  s o m e  b a s i s  f o r  t h e  e v a l u a t i o n  o f  t h e  m o d u l e  a n d  c o m p a r i s o n  

w i t h  o t h e r  s y s t e m s .  F i n a l l y ,  a n  e q u i v a l e n t  M a r k o v i a n  m o d e l  w i t h  a  

s m a l l e r  n u m b e r  o f  l u m p e d  s t a t e s ,  b u t  o f  p a r t i c u l a r  i n t e r e s t  h a s  b e e n  

p r o d u c e d  w h i c h  d e s c r i b e s  t h e  m o d u l e  u n d e r  s t e a d y - s t a t e  c o n d i t i o n s .
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P= P r o c e s s o r  

F=  F i l e

i

i

FIG 5.1: R e l i a b i l i t y  B l o c k  D iagram o f  t h e  ' a l l  w o r k i n g '  s t a t e  f o r  t h e  T w o -

m i c r o p r o c e s s o r  M o d u l e .
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(a) State (1) (b) State (2)

(c ) State (3 ) (d ) State (4)

(e) State(5) (f ) State (6)

FIG  5.2: Reliability Block Diagrams of the
Different Operational States for the 
Two -miroprocessor Module.
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F IG  5.4: Computation Domain Transition Rate Diagram Representation 
of the Gracefully Degrading Module Without Repair.
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S = Subset of fully operational states W
Sp= Subset of partially operational states 
S = Failed state

eA = Equivalent transition rate

FIG  5.5: The Equivalent Time Domain Transition 
Rate Diagram Representation of the 
Gracefully Degrading Module With 
Repair.
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CHAPTER 6.

EVALUATION AND COMPARISON OF DIFFERENT PROCESSING MODULES

6.1 Introduction

In this chapter, we will consider four different processing 

system structures, as illustrated in Fig. 6.1, and investigate their 

performance characteristics. The analysis involves definition of 
appropriate performance measures and the development of Markovian 

and queueing models for the performance analysis of the systems.

System (1) is the single microprocessor module and is taken as 

a reference system. Systems (2) and (3), are the two-microprocessor 

standby redundant system [131-138] and the two-microprocessor parallel 

system [131-1383. System (4), is the proposed two-microprocessor 

gracefully degrading module as described in the previous chapters.

We will begin by summarizing the parameters and the basic 

assumptions for the four systems. After that, we will develop Marko

vian and queueing models for the performance analysis of the systems. 

The Markovian and queueing models describe the systems in terms of 

their operational states (i.e., the different configurations of the 

systems) which may have differing computational capacities as well as 

performance characteristics. We will next use the system Markov 

models, in conjunction with the system queueing models, in order to 

develop traditional and performance-related reliability measures; and 

to develop response time-related, and waiting time-related reliability 
measures.

The definitions for the traditional and performance related
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reliability measures were given in section 5.4 and those for the 

response time-related and the waiting time-related reliability 

measures will be given in section 6.2. Finally, we will conclude 

this chapter by using the above measures to evaluate the systems. 

All the systems are considered to be without repair.

6.2 Description of the System Queue Models

In the following for a system (where i = 1,2,3,4) com

posed of a number of operational states, denoted by  ̂ (for 

j ^ [S.]) we assume that there is a stream of job requests accessing

the system resource in state S. ., denoted by R(i,j), and each job
1 > 3

requires some number of operations from the corresponding system

resource. Let C(i,j) denote the total capacity (in operations per

second as defined in section 5.4) of the system resource R(i,j). The

system resource R(i,j) may consist of a collection of m. . separate
i > 1

resource facilities. We also let —  be the average number of operations
y

required by a job. Thus, the average number of seconds a job requires

from the system source and the total service time offered by the
m. .

system resource, are simply -1-̂ —  and — ■—
yc(i,j) yc(i,j)

, respectively.

In addition, we (a) let A^  ̂ denote the average number of jobs 

per second accessing at the resource R(i,j), (b) assume a first-come- 

first-serve queueing discipline associated with each of the operational 

states of the four systems, and (c) assume throughout that A. . and
1  3 3

y are constant.

From the above, the activities of system S., in state S. .
i  1 , 3
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can be modelled into an M/M/m. . queueing system ElllJ denoted by
i, 1

Q[m. ., A. ., C(i,j)iK For such a system the utilization of the 

resource, denoted by p(i,j), is given by ClllJ:

X. .
p(i,j) = ----LlI

yc(i.,j)
(6.1)

The response time of the system when in state is

denoted by T(.i,j) and is simply the time from when a job arrives until

that time when its complete request has been satisfied. Thus, the

average waiting time of system S. in state S. ., denoted by W(i,j),
i i,l

for a job (i.e,, response time minus processing time) is given by [111]

T(i,j) = W(i,j) +
yC(i,j) (6.2)

To explore the parameters of the response time and waiting time asso

ciated with system S. in state S. ., we will sometimes write :
i i,l

T(i,j) = T • (">• X C(i,j)),
1 , J 1 , J  1 »  J

(6.3)

and

W(i,j) = W (m X , C(i,j)), i,J i,J i*l (6.4)

where, once again C(i,j) denotes the total capacity of m. . resource
i,l

system, whose input job rate is y
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6,2.1 Definition of the performance measures

For a system S^, we will now define two other performance- 

related reliability measures (see section 5,4), as follows :

a) The response time-related reliability Tg (t).- this is the
i

expected value of the response time of the system at time t,

b) The waiting time-related reliability Wg (t) - this is the
i

expected value of the waiting time of the system at time t.

For a system composed of a number of operational states, denoted by 

j (for j e CS^]), whose state-response times and state-waiting times 

are given by T(i,j) and W(i,j), respectively, then the response time,

T (t), and the waiting time, W (t), related reliabilities are defined
u  • J  •
i i

as follows:

Tg (t) = l T(i,j)P (t), (6.5)
i jeF J

and

w_ (t) = l W(i,j)P (t) (6.6)
l j#F J

where, P_. Ct:) is the probability that system is in

t, gfven that it was initially in state S. , and F
i

system failure states. Note that :

state S. .at time 

is the set of

/t
2
S.l

(t)dt > (6.7)



235

m

#

*

%

♦

«

and
t 2

/ Wg (t)dt (6.8)
t 1 

1

are the expected amounts of response time ,and waiting time available 

on system during the time interval . Additionaly, if the

Markov chairs converge, we can define the steady-state response time, 

Tg and waiting time Wg , availabilities as follows:

T_ = l T(i,j)P.(~) , (6.9)
1 j-tF J

and
w. = I W(i,j)p (CO) , (6.10)
Si j * F  J

As regards system performance evaluation we are interested in 

(a) the trading relations among the response times T(i,j), the through

puts X. ., the resource utilizations p(i,j), and the capacities 1 > 3
C(i,j) associated with the four systems; (b) the overall performance 

characteristics of the four systems (as defined by the traditional, 

and performance-related reliability measures and as defined by the 

response time, and waiting time availability measures); and (c) the 

effect of the trading relations stated in (a) on the performance 

variables stated in (b). The system structures affect the relation

ship among the above performance parameters in a significant way.

It is our purpose to demonstrate this effect.

We begin by describing and modelling the four systems.



6.3 Systeji) (1) - The Single Microprocessor Module

Fig 6.1(a) shows the block diagram representation of the single 

microprocessor module which is taken as a reference system in the 

evaluation of the system. As shown, it consists of a microprocessor 

with a pair of local memory blocks under its control. The module is 

intended to execute the jobs associated with two processes and 

The jobs arrive through a local common task queue which is employed 

by the module.

The data-base associated with each process is stored in one 

memory block under the control of the microprocessor.

The time and computation domain Markov chain representations 

(as described in Chapter 5) for this system are shown in Figs. 6.2(a) 

and 6.2(b), where it is considered that (a) the failure rate of the 

microprocessor, denoted by X^, is much greater than that of a memory 

block, and (b) the resource (i.e. the microprocessor) capacity C(l,l) 

of the system in the 'all working' state S1 . is C (i.e., C(l,l) = C). 

We can now use these Markov models to determine measures for this 

system. Table 6.1 summarizes these performance measures for system 

(1).

As regards system queue modelling, system (1) in the "all 

working" state (i.e. state S 1) is a single resource (i.e. m = 1)
1 j X X y X

system of capacity C which can be modelled into an M/M/l queue, 

denoted by Q (1, X1 1,C), as illustrated in Figure 6.2(c).
X y X X y X

If we denote the constant job input rcte X of the system when
x y X

in the "all working" state by X, then for the M/M/l queue shown in 
Fig. 6.2(c) the resource utilization p(l,l), hereafter referred to as
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the reference utilization (denoted by p ), the state-response time 

T(_l,l), and the state-waiting time W(.l,l) are given by :

p (.M1 = p , = --
yc

(6 .1 1 )

T(l,l) = 1 ^ ( 1 , X,C)
and

W(l,l) =

l 1-PV

ycci-p^

(6.1 2)

(6.13)

We can now use the above expressions to determine the response time,

T (t), and the waiting time, W (t) - related reliabilities (as defined 
S 1 S 1
in section 6.2.1) for the single microprocessor system. Table 6.1 

summarizes these performance measures for system (1).

6.4 System (2) - The Two-Microprocessor Stanby Redundant System

Fig. 6.1(b) shows the block diagram representation of the two- 

microprocessor standby redundant system. For the standby redundant 

system, we assume that the failure rate of the spare module is the same 

as that of the active module, and (b) the structure of both ,the active 

and the spare modules are similar to that of the system (1).

The time and computation domain Markov chain representations 

for this system are shown in Figs 6.3(a) and 6.3(b), where once again 

the failure rate of the microprocessor is assumed to be much greater 

than that of a memory block. As shown, the Markov chain for this system 

consists of three-operational states, i.e., states 2 > an^ ^  3*



Table 6.1

Reliability measures for system (1) - the single microprocessor module

Measure Analytical expression

Reliability

MTTF

Capacity function 

MCBF

Computation availability

-X t 
e P

1_
XP X

— R
•ce

T

C_
XP

-X t
C.e P

_Vt+ l  3Computation reliability e P

Resource utilization 

PCI, l) = P1

X_
yc

Response time-related reliabi ity

Tq (t) 
bl

V

1
X

-X t 
e P

Waiting time-related reliability 

w. (t)
bl

-A t

(1-p^yC
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State ^ is the ^11 working* st^te where no failure has occurred,

State S is the state where a detected failure in either the active z, z

or the spare module has occurred. Finally, state S^  ̂ the state 

where an undetected failure in the spare module has occurred. The 

way in which the standby redundant system recovers from faults while 

in an operational state is governed by the coverage parameter C&

(defined in section 5.5.2) as demonstrated in Fig. 6.3 . Here, the 

coverage parameter Ca is the conditional probability that system (2) 

reconfigures to a new operational state, given that a failure in either 

the active or the spare modules has occurred while in state SZ y 1

Considering system resource capacity, we assume that the re

source capacity of the standby redundant system, when in an operational 

state is constant and we denote this capacity by C, i.e.,

C(2,1) = C(2,2) = C(2,3) = C.

We can now use the Markov models, as illustrated in Figs.

6.3(a) and 6.3(b), to determine the traditional and performance-related 

reliability measures for the standby redundant system. Table 6.2 

summarizes these performance measures for system (2).

As regard the system queue modelling, system (2) in each

of its operational states (i.e. in states 2 > anc* )̂ i-s a

single resource (i.e. m^  ̂~ m2 2 = m2 3 = ^  system capacity C 
which can be modelled into an M/M/l queue denoted by Q . (1,X .,C) ̂y 1  ̂f J
for j = 1,2,3, as illustrated in Fig. 6.3(c). If we denote the system's 

constant job input rate X? . (for j = 1,2,3) of the system by X then 

once again for the M/M/l queues shown in Fig. 6.3(c), the resource

utilizations p(2,j), the state-response times T(2,j), and the state

waiting times W(2,j) are given by :



240

*

t

♦

P(-2,j). = ?x ' f fOT j - 1,2,3 (6.14)

and

T(2,jl = T, ,(1,X,C) =
^ » J

W(2,j3 = W .(1,X, C) =
^ » J

*~Qb

. 1 , for j = 1,2,3 (6.15)
X

, for j = 1,2,3 (6.16)
yc(i-Pl)

We can now use the above expressions to determine the response

time T (t), and the waiting time W (t) - related reliability 
b2 S 2

(as defined in section 6.2.1) for the standby redundant system•
.Table 6.2 summarizes these performance measures for system (2).

6.5 System (3) - The Two-Microprocessor Parallel System

At Fig. 6.1(c) shows the block diagram representation of the

two-microprocessor parallel module. As shown, it consists of a 

pair of microprocessors and a pair of local memory blocks which are 

accessed via a switch by the microprocessors. The operation of the 

switch controlled by the microprocessors thus enables each micro- 

* processor to have exclusive access to each memory block, as desired.

The module is intended to execute the jobs associated with two processes 

and P^. Once again, the jobs arrive through a local common task 

41 queue which is employed by the module. The data-base associated with

each process is stored in one memory block under the control of the 

microprocessors.

The time and computation domain Markov chain representations 

for this system are shown in Figs. 6.4(a) and 6.4(b), where the failure
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Reliability measures for system (2) - the two microprocessor standby 

redundant system

Table 6.2

Measure Analytical expression

Reliability
-A t -2X t

P - ca' a(1+C )e p - C e p

MTTF
2+C

2A

Capacity function

X 2X
_ _E 7  ___R xr 1 CCl+C D e L - C e a a

MCBF

r ̂   ̂ \2+C

2A 
l P

Computation availability
-X t -2A t

C(l+C )e p - CC e p a a

Computation reliability
T-A (1:4) 

(1+Ca)e p L C e a
-2A (t+£) P c

Resource utilizati ,n 
P(2,l)=p(2,2)=p(2,3)= p.

A_
yc

Resource time-related reliability

Tq (t) 
b2

tH
CL

1 r

l1- ^
A

-A t -2A t
(1+C )e p - C e p

Waiting time-related reliability

WQ (t) 
b2

. yc(i-p1)

 ̂  ̂ - A t  - 2 A t
(1+C )e p -C e P a a

J
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rates of the microprocessor, denoted by A , and the switch, denoted by 

A , are assumed to be much greater than that of a memory block. As 

shown, the Markov chain for this system consists of two operational states,

i.e., states S_ 1 and S State S , is the ’all working' state

where no failure has occurred (i.e.., when both microprocessors and the 

switch are functioning correctly) and state 2 t îe state where a 

detected failure in one microprocessor has occurred (i.e, when only one 

microprocessor and the switch are operating). The way in which the 

parallel system recovers from microprocessor faults, while in an 

operational state, is once again considered to be governed by the 

coverage parameter C , as demonstrated in Fig. 6.4. Here, the
3 .

coverage parameter C is the conditional probability that system (3)

reconfigures to a new operational state, given that a microprocessor

failure has occurred while in state S . A switch failure in this0 ,1

system is assumed to lead to the failure state.

Considering system resource capacity, we assume that the re

source capacity of the parallel system is 2C when both microprocessors 

are functioning and C when only one is operating. That is 

C(.3,1) = 2C and C(.3,2) = C.

We can now use the Markov models, as illustrated in Figs.

6.4(a) and 6.4(b), to determine the traditional and performance-

related reliability measures for the parallel system. Table 6.3

summarizes these performance measures for system (3).

As regards system queue modelling for system (3), when both

microprocessors are functioning (i.e., when in state S ) the system
0 , 1

is a two-resource (i.e., m 1 = 2) system of capacity 2C which can be0,1
modelled into an M/M/2 queue denoted by ^(2,A^ ^,2C), as illustrated
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in Fig.. 6..4(c) ̂ if we denote the constant job input rate X by
o

X, then for the M/M/2 queue (_denoted by- Q (2,A,2C)) shown in Fig. 

6-.4(c), the resource utilization p(3,l), the state-response time 

T(.3,l), and the state-waiting time W(3,l) are given by [1113:

and

p ( 3 , l )  P2 2yC ,

1 [P2]2T ( 3 , l )  = T3>1(2,X,2C) -  ^  ?--------- ---

2yCCl-(p2r ]

CpJ
W(3,l) = W. . (2,X,2C) = ------ ----=-

2UCCl-(p y i

(6.17)

For system (3) when only one microprocessor is functioning

(i.e., when in state S ) the system is a single resource (i.e.,o, ̂

m^  ̂= 1) system of capacity C which can be modelled into an 

M/M/l queue, denoted by 2 * ^ ’ aS i H ustustrate<i in Fig* 6.4(c).
If we denote the constant job input rate A 9 by A, then for the M/M/l 

queue (denoted by Q 9(1,A,C)) shown in Figure 6.4(c), the response 

utilization p(3,2), the state-response time T(3,2), and the state

waiting time W(3,2) are once again given by :

and

P ( 3 , 2 )  =  P l  

T(.3,2) = T (1,A,C)

W(.3,2) = W U.A.C)

P1 '

1 -P 1 > 

Pi
uc(i-p1)

(6.18)



we can now. use T(3,l)_? T(_3;21, W(_3,l) f and W(_3,2) in order to det

ermine the response time T (t), and the waiting time WQ (t) related-
b3 b3

reliabilities (.as defined in section 6.2.1) for the parallel system. 

Table 6.3 summarizes these performance measures for system (3).

6.6 System (4) - The Two Microprocessor Gracefully Degrading

System

Fig. 6.1(d) shows the block diagram representation of the two- 

microprocessor gracefully degrading module described in the previous 

chapters.

The time and computation domain Markov chain representations

for this system are illustrated in Figs 5.3 and 5.4. However, if

once again the failure rate of a microprocessor is considered to be

much greater than that of a memory block, then the Markov chains (as

illustrated in Figs. 5.3 and 5.4) can be simplified, as illustrated in

Figs. 6.5(a) and 6.5(b). As shown, the simplified Markov chains for

this system consists of two operational states, i.e., states  ̂and

2 * State  ̂is the 'all working' state where no failure has

occurred (i.e., when both microprocessors are functioning) and state

2 i-s the state where a detected failure in one microprocessor has

occurred (i.e., when only one microprocessor is operating). As pre-

visouly, the way in which system (4) recovers from microprocessor

faults while in an operational state is considered to be governed by

the coverage parameter C , as demonstrated in Figure 6.5. Here, thea
coverage parameter C is the conditional probability that system (4)cl
reconfigures to a new operational state, given that a microprocessor

4,rfailure has occurred while in state S
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Table 6.3

Reliability measures for system (3) - the two microprocessor parallel 

system

Measures Analytical expression

Reliability

MTTF

Capacity function

MCBF

Computation availability

Computation reliability
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For system (4) when in st^te  ̂ and working as under the 

control of the scheme (as described in the previous chapters) if we 

assume that ;

a) the system resource RC4,1) has capacity C(_4,l), under demand 

by jobs whose input rate is X per second, each of which requires

-jj operations on the average,

b) each microprocessor has capacity C,

c) the input rate X is such that the service phase of the 

scheme (as described in the previous chapters) is always entered with 

two tasks at a time,

d) the amount of delay associated with the scanning, and the 

updating procedures, as compared with the normal service period for 

execution of the tasks, are insignificant,

then, system (4) in this state is a single resource system of capacity C, 

under demand by jobs whose input rate is y  per second, each of which 

requires —  operations on the average. That is m 1 = 1, X = — 

and C(.4,l) = C. This is because, under the operation of the scheme 

the two acknowledged tasks, each of which requires i  operations on the 

average, are executed in parallel, i.e, each task is simultaneously 

executed by one microprocessor of capacity C.

However, system (.4) when in state S (i.e., when one micro- 

processor is operating), is a single resource system of capacity C,
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under demand by jobs whose input rate A per second, each of which 

requires —  operations on the average. That is m. 9 = 1, A = A, and 

C(4,2) = c.

We can now use the Markov models, as illustrated in Figs.

6.5(a) and 6.5(b), to determine the traditional and performance-related 

reliability measures for the two-microprocessor gracefully degrading 

system. Table 6.4 summarizes these performance measures for system (4).

As regards system queue modelling, for system (4) when both 

microprocessors are functioning (i.e., when in state S 1) the system 

is a single resource (i.e., m^  ̂= 1) system of capacity C, which 

can be modelled into an M/M/l queue denoted by ^(1, C), as ill

ustrated in Fig. 6.5(c). The resource utilization p(4,l), the state- 

response time T(4,l), and the state-waiting time W(4,l) for this queue 

are given by :

P(4,l) A= p = ---
z 2yC

T(4,1) ■ t4 , i ( 1 ' 7  ' c)
pi

c i - p 2)

and
X PiW(4,l) = w4 ,(1. 2 ’ c) 2yC[l-p 3

where
A

z

P1 " yc *

(6.19)

For system (4), when only one microprocessor is functioning 

(i.e., when in state S ), the system is a single resource (i.e., m =1)
4  > Z  4  y Z
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T a b l e  6 . 4

R e l i a b i l i t y  m e a s u r e s  f o r  s y s t e m  ( 4 )  -  t h e  tw o  m i c r o p r o c e s s o r  g r a c e f u l l y  

d e g r a d i n g  s y s t e m
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where p = —  .
yc

For system C.4), when only one microprocessor is functioning 

(i.e., when in state , the system is a single resource (i.e.,

m^  ̂= 1) system of capacity C, which can be modelled into an 

M/M/l queue denoted by 2(1>X,C), as illustrated in Fig. 6.5(c). The 

resource utilization p(4,2), the state-response time T(4,2), and the 
state-waiting time are given by:

p(4,2) = p = —  
1 yC

T(4,2) = T 7(1,X,C) = ---—  • ^
4 ,2 1-PX *

and
PiW(4,2) = W ?(1,A,C) = ---- ±---

yC(i-p )

(6 .20)

We can now use T(4,l), T(4,2), W(4,l), and W(4,2) in order to determine

the response time T (t), and the waiting time W (t) related-reliabilites
b 4 4

(as defined in section 6.2,1), Table 6.4 summarizes these performance 

measures for system (4). In the following, we use the analytical 

results in Tables 6.1 - 6.4 to evaluate the four systems.

6.7 The Evaluation and Comparison of the Four Systems

The studies in this section give some basis for the comparison 

of the four systems and give an idea of the contribution of the individual 

system structures to their overall performance characteristics.



6.7.1 The traditional and performance-related reliability measures

The traditional reliability measures of the four systems are 

given in tables 6.1 - 6.4. Figs. 6.6 and 6.7 illustrate the graphs 

of the reliability against time and MTTF against variations in micro

processor failure rate for the four systems. These indicate that, 

for the parameter values , the most reliable systems are systems

(2) and (4).

If we examine the performance related reliability measures 

of the four systems (as given in tables 6.1 - 6.4) then :

(a) The system capacity functions, as illustrated in Fig 6.8, 

indicate that for a given time the two-microprocessor gracefully de

grading system (i.e., system (4)) has the highest probability of performing 

at a given proportion of its full capacity.

(b) The system mean computation before failures (MCBF), as given 

in Fig. 6.9, indicates that the two-microprocessor gracefully degrading 

system has the greatest computation power, i.e. its MCBF is greater than 

those of all the other systems.

(c) The system computation availabilities, as illustrated in Fig.

6.10, indicate that for a given time the two-microprocessor parallel 

system (i.e., system (3)) has the greatest expected amount of avail

able computation, i.e., its computation availability is greater than 

those of all the other systems. The computation availability of system 

(4) is comparable to system (2) computation capacity to a far better



extent than system (3) .

(d) The system computation reliabilities as illustrated in

Fig. 6.11, show that at a given time the two-microprocessor systems 

have the highest probability of executing a longer computing mission.

As with most of the other assessments the gracefully degrading module 

has one of the best characteristics.

Fig. 6.12 shows a graph of the various values of time A t  

and computation A^T such that the computation reliability of each of 

the four systems is equal to 0.99. We see that during initial system 

operation, the two-microprocessor gracefully degrading system (i.e., 

system (4)) has the highest expected available computational . capacity.

All the two-processor systems start to deteriorate rapidly 

in the same region of the plot indicating that none is really better 

than the other when this time is exceeded. However, their duration of 

computation and time at a specific reliability is much better than that 

for the single processor version.

The traditional and performance-related reliability measures 

have enabled us (a) to compare the four system structures in terms of 

their reliability and ability to execute computing tasks, and(b) to 

demonstrate that the most promising of all the systems from the reli
ability and the computation capability point of view is the two-micro- 

processor gracefully degrading structure of system (4)•
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6.7.2 The response and waiting time-related reliability measures

In the following, we investigate the four systems by consider

ing their analytic queueing models (as described in sections 6.2 - 6.6) 

in conjunction with their Markov models. We are interested in :

(a) The effects of varying the various basic queueing parameters

of the four systems, which include the state-response times T(i,j),

the state-waiting times W(i,j), the state-throughputs X. ., the state-
1  3 3

resource utilizations p(i,j), and the state-capacities C(i,j). These 

have been developed in sections 6.2 - 6.6.

(b) The overall performance characteristics of the four systems, 

as defined by the response time, and waiting time-related reliability 

measures.

(c) The effect of the parameter relations stated in (a) on the

perforamnce variables mentioned in (b).

The system structures affect the relationship among the per

formance parameters significantly, and it is the purpose of this 

section to demonstrate this .behaviour.

For all systems, we assume that the rate at which the users 

demand work from a corresponding system resource is on the average less 

than its resource capacity for performing work.



6.7.2.1 State response and waiting times

In Figs, 6.13 and 6.14 we show that state-response times 

T(i,j) and the state-waiting times W(i,j) of the four systems (as 

derived in sections 6.3 - 6.6) plotted against p2 and for y = 1 

and C = 1. In Figs. 6.15 and 6.16 A has been held constant at 

0.8 and the response times and waiting times for variations in p^ and 

P2 have been plotted. The change in p^ and p2 is achieved by allowing 

the yC product to vary .

It should be noted that both systems (3) and (4), when in their

"all working" configurations, (i.e., states  ̂ and p  have the same

utilization factor p = — . This factor for a given A,y, and C
1 2yC

combination is one-half of the reference utilization p^, where

p = — is the resource utilization of systems 1-4 in the states 
yc

S4 2* S3 2 ’ S2 1 " S2 2 " S2 3J and S1 l’ ThiS reduction in system 
utilization p2 compared with p^ is brought about by the structures

of systems (3) and (4) when in their initial configurations. These 

produce, as appropriate, either a scaled down system throughput (by 

a factor of two), or a scaled up system capacity (by a factor of two).

If we consider the state-response and waiting times of the four 

systems, as illustrated in Figs. 6.13-6.16, in their "all working" 

configurations. Then we observe that for a given load p2 and hence 

p^ the two-microprocessor parallel system (i.e., system (3)) is superior 

(in the sense of having the smallest "all working" response time) to 

the other three systems. However, the gracefully degrading system 

(4) follows closely the performance characteristic of system (3).



If we consider the systems in their degraded configurations,

i.e., systems (4), (3), and (2) in states ^» ^ 3 2 an(* S2 2 ~ ^2 3’
We see that for a given load p^, these systems all have the same 

response and waiting times as those of the single microprocessor, and 

the standby redundant systems when i n .their"all working” configurations.

The significantly improved (decreased) response and waiting 

times of systems (3) and (4) when in their initial configurations 

compared with those of systems (4), (3), (.2), and (1) when in states S. 9 

S ,  S ,  S . - S  , and S 1, respectively, are due to the particular 

structures, and consequently the corresponding queue models of systems.

The relevant structures give rise, as appropriate, to scaling of either 

the system input, the system capacity, or the number of system servers 

associated with systems (4), (3), (2) and (1) when in states 2,

S 3 2* S 2 1 " S 2 2 " S 2 3 * and S 1 V  resPectively • In fact, this 
scaling of the system parameters obtained by the structures of systems

(3) and (4) when in their all working configurations is achieved an

increase in the number of system servers such that either the system

capacity is increased (as in the case of system (3) in state ^)> or

the system throughput is reduced (as in the case of system (4) in state

S A „). This in turn reduces the system utilizations and hence corr- 4,1
esponding system response times.

Let us now quantify the above graphical observations analytically. 

From sections 6.3 - 6.5 we recall that :

a) Systems (4), (3), (2) and (1) when in states y  2 * ^2 l >

S2 y  and  ̂are all single resource systems of capacity C which can
S



be modelled into an M/M/l queue with descriptive parameters Cl,X,C ] 

whose response and waiting times are here denoted by T(1,A,C) and W(1,A,C) 

are given by :

where

TC1 ,X,C) 

W(1,A, C)
ycci-p1)

p ,(= — ) < i .
yc

(6.2 1)

b) System (4) when in state S is a single resource system of
4 , J-

capacity C(as described in section 6.6) which can be modelled into an 

M/M/l queue with descriptive parameters Cl,A/2, C3 whose reponse and 

waiting times when expressed as a function of p^, here denoted by 

T(l, A/2,C) and W(l, A/2,C), are given by :

TCI, A/2,C) =
1- —

2

W(l, A/2,C) =
2yC(i— j)

(6.22)

c) System (3) when in state S_ 1 is a two-resource system of

capacity 2C which can be modelled into an M/M/2 queue with descriptive 

parameters L2,A,2C3 whose response and waiting times, when expressed 

as a function of p^, here denoted by T(2,A,2C) and W(2,A,2C) are given by
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m

t \ 2P-
T(.2,A,2C) = —  +

yc
2yC

t 'i2l
Pi1-

2 .

W(2,A,2C) =
[ Pl]

z

2j

2yC 1 -
'P 'l 2 
_ 1

l 2,

(6.23)

From the above expressions we can now quantify the relationship 

among T(1,A,C), T(l, A/2,C), T(2,A,2C) and W(1,A,C), W(l, A/2,C), and 

W(2,A,2C), respectively, in order to demonstrate the improvement in 

response and waiting times associated with the system structures. To 

achieve this we express (a) T(l, A/2,C) and T(2,A,2C) in terms of 

T(1,A,C) and T(l, A/2,C) and (c) W(l, A/2,c) and W(2,A,2C) in terms of 

W(1,A,C) and W(l, A/2,C). These give us the result :

T(l, A/2,C)

T(2,A,2C)

'l
T(1,A,C)

T(l, A/2,C)

and ' a - p j
W(l, X/2.C) =

o

l

r/ i '
• W(l.X.C)

z 1 2l J
,

(6.24)

(6.25)
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W(2,x,2C) f P1 • W(l ,  X / 2 . Q .

2 (1+P , )
1 J

J

(6.26)

From these last four equations, and given that £  1, we have

the relations we were seeking, namely :

T(2,X,2C) £  T(l, X/2,C) £  T(1,X, ^J

and

W (2,X,2C) £  W(l, X/2,C) £W(1,X,C).

(6.27)

The results demonstrated the superiority of (a) the multiple resource 

structure of system (3), when in state S 1, as opposed to the single 

resource structures of systems (4), (3), (2), and (1) when in states

Cs4,l ' S4,23’ [S3,23 ’CS2,1 • s2,l - S2,33 and S1,1J and (b3 the
single resource structure of system (4) when in state S as opposed

to those of system (4), (3), (2), and (1) when in states S , S ,
» ,  ^  O ) m

CS2 , r S2,2’ S2,33, and si,l*

6.7.2.2 Response^ and waiting time-related reliabilities

Let us now examine the systems by considering their response time, 

and waiting time-related reliabilities (as defined in sections 6.2 - 

6.6 and as given in tables 6.1 - 6.4 )•

In Figs. 6.17 - 6.24 we show the response and waiting time- 

related reliabilities of the individual systems at constant values of 

p^, and hence as a function of time with yC = 1. Since yC was
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held constant in Figures 6.17-6.24, we obviously were varying 

and hence by changing X. We need not have held yC constant but 

rather could have held A constant as illustrated in Figures 6.25- 

6.32. In Figures 6.25 - 6.32 we choose A = 0.8 and let p^ and hence 

p^ change through a variation of yC. From Figures 6.16 - 6.32 we 

observe that for all systems, at a given time, the expected amount of 

available response and waiting times degrade as p^ and hence increase. 

The degradations in response and waiting time-related availabilities 

of the individual systems are due to degradations in their corresponding 

state-response and state-waiting times which are in turn caused by the 

variations p^ and p^. The above Figures, however, do not allow us 
to observe collectively the four system structures form their response 

or waiting time-related reliability of views, but rather demonstrate the 

effect of variations of p^ and hence p  ̂on these performance measures 

as applied to each system separately. The collective comparison is seen

in Figures 6.33 and 6.34, where we show response and waiting time 

availabilities of the systems at constant values of p^ and hance p^ 

as a function of time with yC = 1. Once again, we need not have held 

yC constant but could have held A constant as illustrated in Figures

6.35 and 6.36. In Figs. 6.35 and 6.36 we again choose A = 0.8 and let 

p^ and hence p  ̂ change through a variation of yC. From Figs. 6.33-

6.36 we can once again observe the effect of increasing p^ and hence

p^ on the response and waiting time-related reliabilities of the systems. 

In addition, we observe that during initial system operation, the two- 

microprocessor parallel system (i.e. system (3)) is superior to the 

other three systems. That is, it has the smallest expected response 

and waiting times available compared with the other three systems.
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System (3) is next followed by the two-microprocessor gracefully 

degrading system (i.e. system (4)) which has a higher response and 

waiting time availabilities than those of system (3). The worst per

formance is achieved by the standby redundant system (i.e. system (2)). 

However, later in time we see that system (1) has the smallest expected 

response and waiting times available, followed by systems (3), (4), 

and (2).

The overall performance characteristics of the four systems, 

as defined by the response time, and waiting time-related-reliability 

measures, have therefore enabled us (a) to compare the four system 

structures in terms of their expected response and waiting times, and 

(b) to demonstrate that the most promising of all the systems from the 

response time, and waiting time availability points of view are the two- 

microprocessor parallel and gracefully degrading systems.

The two-microprocessor parallel structure of system (3) has 

a better response time and waiting time availabilities than those of 

the gracefully degrading structure of system (4).

6.8 Conclusions

In this chapter, we have considered four different processing 

module structures and have investigated their performance characteristics 

The analysis has involved definition of appropriate performance measures 

(i.e., response and waiting time-related reliability measures) and the 

development of Markovian and queueing models for the performance analysis 

of the systems.
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The performance measures presented and developed in this chapter 

have included :

a) Traditional reliability measures.

b) Performance-related reliability measures. These allow us to

evaluate the different module structures in terms of their ability

to execute computing tasks, taking into account various system character

istics, e.g., redundancy.

c) Response and waiting time-related reliability measures.

These allow us to evaluate the different module structures in terms 

of their expected response and waiting times, taking into account 

various system characteristics, e.g., redundancy.

The need for such performance-related reliability measures 

is especially clear when processing systems are used in applications 

where both the reliability and performance are important.

In order to demonstrate the above measures, Markovian and 

queueing models for performance evaluation of the systems have been 

developed. The system Markov models in conjunction with system 

queueing models allow us

(a) to obtain quanti.ative estimates of the overall performance

of the individual system structures, (b) to analyze the effect of

to analyze the effect of individual system parameters on 

the performance characteristics,

(c) to evaluate the systems

and performance, and

in terms of both the reliability

(d) to have some basis for the evaluation and comparison of the

systems.



From the analysis performed in this chapter, the most promising 

of all the systems, when considered over all the performance variables, 

was found to be the two-microprocessor gracefully degrading system.
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T w o - m i c r o p r o c e s s o r
S i n g l e  -  m i c r o p r o c e s s o r  M o d u l e  S t a n d b y  R e d u n d a n t  S y s t e m

( a ) (b)

(c)

T w o - m i c r o p r o c e s s o r  P a r a l l e l  

S y s t e m .

G r a c e f u l l y  D e g r a d i n g  

S y s t e m

F IG  6.1: D i f f e r e n t  P r o c e s s i n g  M o d u l e  

S t r u c t u r e s .
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( a )  T ime  d o m a i n  r e p r e s e n t a t i o n  o f  s y s t e m M )

( b ) C o m p u t a t i o n  d om a in  r e p r e s e n t a t i o n  of 

s y s t e m  (1 )

*

+

( c )  Queue  M o d e l  f o r  s y s t e m (1 )

F IG  6.2: M a r k o v i a n  and Queue ing  M o d e l s  

f o r  S y s t em  (1 ).
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a = 2 C a Ap 

b = A p ( 1  -  C a )

t
( a )  T ime d om a in  r e p r e s e n t a t i o n  of s y s t e m !  2 )

«

( b )  C o m p u t a t i o n  d om a in  r e p r e s e n t a t i o n  o f  
s y s t e m  (2 )

( c )  Queue  Mode l  f o r  s y s t e m  ( 2 )

FIG  6.3: M a r k o v i a n  and Queue ing Mode l s
f o r  Sys tem  ( 2 ).
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CHAPTER 7

A RELIABILITY MODEL FOR FAULT-TOLERANT MULTIMICROPROCESSOR 

SYSTEMS

7.1_____ Introduction
In the preceding chapters, various aspects of a scheme for a

fault-tolerant multiple-microprocessor module suitable for use by a

functionally modular multi-microprocessor system were investigated.

This was based on ..the loosely coupled approach. As was described,

the module has three modes of operation, namely, the fully operational

mode, the partially operational mode, and the failed mode.

Fig 7.1(a) illustrates the operational modes of such a 3-operational

state module and indicates the possible tranistions between these modes.

In this chapter, a reliability model will be developed for

fault-tolerant multi-microprocessor systems which cansist of 3-operational

state and 2-operational state modules. The model will be developed

by applying Markov modelling techniques C1013.
Reliability modelling is important in the design and evaluation

of complex systems. Only with a computer can reliability estimates

be obtained from models at low cost and with a degree of flexibility.

Recently, Ng and Aviziens [105-109] have presented a unified

approach to relaibailty modelling of fault-tolerant computer systems.

In their studies, a fault-tolerant computer system has been treated

as a set homogeneous subsystems (such as memories, processors, buses,

etc.) where each subsystem consists of a set of identical 2-operational

state modules of the type shown in Fig 7.1(b). The authors have

assumed that every subsystem must survive in order for the system

to survive. With this assumption, the system reliability has been



considered as the product of the reliability functions of its homogeneous

subsystems. In their papers, Ng and Avirdens report on a study of
. *{• a single Markov reliability model for a ’’closed" homogeneous subsystem

[1053 consisting of 2-operational state modules.

In this chapter we will

(a) treat a fault-tolerant computer system as a set of non-homogenous 

subsystems, where each subsystem can consist of a set of non-identical 

gracefully-degradable modules.

(b) assume that every subsystem must survive in order for the system 

to survive. With this assumption, the system reliability is the 

product of the individual reliability of each non-homogeneous subsystem

(c) develop a reliability model for a ’closed' non-homogeneous 

subsystem consisting of 2-operational state and 3-operational state 

modules.

Owing to the flexibility of the reliability model to be proposed

closed systems consisting of 2-operational state and 3-operational

state modules, which employ different redundancy techniques, can now

be modelled. The model not only allows for the reliability estimation

of a wide spectrum of closed systems with permanent fault recovery.

capabilities, but can do so efficiently.

This chapter presents the various aspects of this modelling

approach. It begins by summerizing the parameters and the basic

assumptions of the modelling technique as applied to a closed system
*consisting of 3-operational state and 2-operational state modules of 

the type illustated in Fig 7.1. The structure of this modelling 

technique is then demonstrated by applying it to a closed system. This 
•j*A closed system means a system which, once put into operation, must 
maintain operation on its own without external intervention, i.e. 
without external manual repair
*Hereafter we will refer to these as 3-state and 2-state modules rather than 
3-operational state and 2-operational state modules.



is followed by a presentation of the general analytical expressions 

associated with the structure of the reliability model. The modelling 

problem is then solved for the closed system. Finally, in this 

chapter it is demonstrated that many different types of closed systems 

can be modelled using this technique.

7.2 The Description of the Closed System to be Modelled

The block diagram representation of the self-repairing system 

being modelled is illustrated in Fig 7.2. As shown, it consists 

of an active configuration of 3-state and 2-state modules of the 

type illustrated in Fig 7.1. The system is supported by two banks 

of spare modules, denoted by Sp and Sp.

On the occurrance of failures, the spare modules are switched 

into the system in a predetermined manner (the manner to be described later) 

in order to restore the lost processing power caused by the failures.

Two different types of spare modules, Sp and Sp are used to restore the 

loss of processing power. The S modules replace faulty 3-state modulesr
and the Sp modules replace faulty 2-state modules.

Spare modules when switched into the system will be referred to 

as "spare modules in active status", the others of the bank (i.e., those 

waiting to be switched into the system) are referred to as "spare modules 

in spare status". The states and the possible state transitions of 

both the Sp and Sp-type spare modules in their corresponding active and 

spare modes of operation are illustrated in Fig 7.3. It will be 

assumed that:

TActive here means participating in the computing process, e.g., a powered 
spare is not active.
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(a) The Sp-type spare modules, when in active status, will function 

as an active 3-state module, as illustrated in Fig 7.3(a).

(b) The Sp-type spare modules, when in spare status, will function 

as a 2-state device, as illustrated in Fig 7.3(b).

(c) The Sp-type spare modules, when in active status, will function

in a similar way to the active 3-state modules of the original configuration 
when in their partial modes of operational.e. an active 3-state module which 

has degraded to its 2-state configuration) module as illustrated in 

Fig 7.3(c).

(d) The Sp-type spare module, when in spare status, will function 

as a 2-state device, as illustrated in Fig 7.3(d).

Hereafter, we will refer to both the active 3-state modules 

in the original configuration and the S -type modules when in activer
status as "active 3-state modules". Similarly, we will refer to the 

active 3-state modules when in partial modes of operation (i.e., state(2) 

as illustrated in Fig 7.1(a)), and the Sp-type spare modules when in 

active status as "active 2-state modules".

7.2.1 Systems recovery from located and unlocated faults

Detected and located failures

In the self-repairing system, the manner in which the system 

will attempt to recover from a detected failure is considered to be as

follows:



1. On a recoverable (e.g,, detected) 'complete* failure in an 

active 3-state module (i.e., on a transition from state (3) to state (1), 

as illustrated in Fig 7.1(a)), the system will attempt recover from the 

failure and will switch in using a predetermined order, one of the Sp- 

type spare modules to replace the failed module.

2. On a recoverable (e.g., detected) ’partial’ failure in an active 

3-state module (i.e., on a transition from state (3) to state (2)

as illustrated in Fig 7.1(a)), the system will attempt to recover 

from the failure and will switch in a Sp-type spare module (using a 

predetermined selection sequence) to restore the loss of processing 

power due to the ’partial’ failure of the relevant active module.

3. On a revoverable (e.g, detected) failure in an active 2-state 

module, the system will attempt to recover from the failure and switch

in a Sp-type spare module (again using a predetermined selection sequence) 

to restore the loss of processing power due to the relevant failure.

4. On a recoverable (e.g., detected) failure in either the Sp-

or the Sp-type spare modules in spare status, the system will attempt to 

remove the faulty spare from its corresponding spare bank.

In addition, we will assume that the active configuration of 

the self-repairing system is not degradable. That is, when either, or 

both of the spare types of modules ̂ are exhausted (i.e. all of a type 

have been incorporated into the system) and when one more failure 

occurs which requires the replacement by the exhausted type, then the 

system is considered to have failed.



However, in some applications, as long as the failed modules can be 

successfully isolated or their effect masked so that they will not 

interfere with the useful processing, the system can still be con

sidered to be operational; although it is "degraded", i.e. it has a 

reduced set of active modules.

Detected but unlocated failures

As regards unrecoverable (e.g. unlocated)failures, we will 

assume the following in connection with the self-repairing system.

1. On an unrecoverable (e.g., unlocated) failure in an active

module, the system will fail immediately as it is unable to j

to locate and recover from the faulty aspect.

2. On an unrecoverable failure in a spare module in the spare 

status, the system will fail only when it attempts to switch the 

relevant faulty spare into service. This is so, because we assume 

that the failure associated with either type of spare module blocks

the use of that type of spares that follow it in the selection sequence.

7.3 Parameter of the Reliability Model

The parameters that characterize the self-repairing system 

described in the preceding section can be divided into the following 

classes.

a) Parameters describing the static properties of the closed system.



These include the physical properties and the structural properties.

b) Parameters describing the dynamic properties of the closed

system, that is, the quality of fault-detection and fault-recovery 

techniques.

The goal of the remainder of this section is to define and 

briefly explain the above parameters in connection with the self

repairing system.

7.3.1 Physical parameters

The physical parameters characterize the physical reliability 

properties of the modules, as illustrated in Figs 7.1. and 7.3. For 

permanent faults they are :

X^ = failure rate of one active 3-state module from state(3) to state (1).

X^ = failure rate of one active 3-state module from state (3) to state (2).

X^ = failure rate of one active 3-state module, or one active 2-state

module, from state (2) to state(l).

= failure rate of one Sp-type spare module in the spare status.

y2 = failure rate of one Sp-type spare module in the spare status.

Constant failure rates are assumed in accordance with this modelling technique.



7,3.. 2 Structural parameters

The structural parameters are chosen by the designer to satisfy 

the computing performance requirements and to meet the reliability 

goals. The structural parameters are :

= initial number of 3-state modules in the active configuration

= initial number of 2-state modules in the active configuration

Np = initial number of Sp-type spare modules

Np = initial number of Sp-type spare modules.

The choices of and are determined by the computing requirements

of the system, while the choices of N and N determine the extentr r
of 'self-repairing1 capability.

7.3.3 Detection and recovery parameters : permanent faults

The coverage parameter (0 < C <_ 1) is defined as the conditional 

probability of revovery, given that a fault has occurred. It was first 

intriduced by Bouricius et al [135]. Coverage quantitatively characterizes 

the adequancy of fault-detection and recovery methods. We will assume 

the following set of coverage parameters in connection with the closed 

system and hence the model.



= coyer^ge for recovery from a permanent ' complete failurer 

Ci.e., transition from State (.3) to state (1)) in an active 3-state 

module.

= coverage for recovery from a permanent ’partial failure1 (i.e., 

transition from state (.3) to state (2)) in an active 3-state module.

= coverage for recovery from a permanent failure in an active 2-state 

module

d^ = coverage for recovery from a permanent fault in a Sp-type spare 

module in spare status.

d^ = coverage for recovery from a permanent fault in a Sp-type spare 

module in spare status.

The estimation of coverage is, in practice, a difficult problem because 

it is a complex parameter dependent upon both fault mechanisms and the 

recovery capability of the system.

The above set of parameters will be represented by the notation 

(N3, N2, Np,Np, X y  X2, X3, u1, U2, c c2, c3, d^  d2) . In the following 
work, the Markov reliability model will be developed for the closed system 

characterized by the above set of parameters.

7.4 Reliability Model for the Closed System

Fig 7.4 illustrates the block-state matrix diagram representation 

of the structure of the Markov model for the closed system (as described 

in the preceding section) characterized by the set of parameters
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model, each state-block, denoted by B[i,£(i),j], represents a different

active configuration of the system having a particular number of

accessible Sp-type and Sp-type spare modules in the spare status.

The indices i, £(i), and j which define the block-state matrix
are given by;

i = 0,1,...,Np

£(i) =-0,1,.,.,i , for i e[0,Np] (7.1)

j = 0,1,...,Np

where, i (for'i e[0,Npj) and j (for j e[0,N ] refer to the number ofr
S -type and S -type spare modules, respectively, which have either beenr r
switched into the system (in the event of corresponding detected failures 

in the active 3-state and 2-state modules) or been removed for the system 

(in the event of corresponding detected failures in the accessible Sp- 

type and S -type spare modules in the spare status).
r

The state-blocks BCi,£(i),j3, thus represent an active con

figuration of the system having a number (Np-i) of Sp-type and a number 

(Np-j) of Sp-type accessible spare modules in the spare status, respectively.

The variable £(i) refers to the number of Sp-type spare modules 

which have been switched into the system in the event of detected 

’partial' failures in the active 3-state modules, given that a number 

i (for i eilO,Np]) of Sp-type spare module have been either switched 

into the system(in the event of corresponding detected failures in the 

active 3-state and 2-state modules) or removed from the system (in the 

event of corresponding detected failures in the



accessible Sp-type spare modules in the spare status).

£(i) also indicates the number of original 3-state modules in the active 

configuration which are in the state (.2) of their operation, given 

that a number i of Sp-type spare modules have been either switched 

into the system, or removed from the system. The dimension of 

the block-state matrix is thus determined by the number of spare 

modules Np and Np which are employed by the system and is given by

NP
[( £ (l+i)x(l+N ) 3 . In the model, each state-block, e.g., BCi,£(i),j] 
i=0 b

as illistrated in Fig 7.5, is in turn composed of a matrix of system states,

with each system state being denoted by . The states within
n(i).,m(j)

a state-block represent the same active configuration of the system

having a particular number of accessible Sp-type and Sp-type spare modules

in the spare states, but each state, except one, indicates the presence

of a particular detected but unlocated failure in one, or both, of its

two different types of accessible spare modules in the spare status.

The system states, e.g., the states within the state-
n(i)>m(j)

block B[i, £(i),j] as illustrated in Fig 7.5, are defined by the indices 

n(i) and m(j) which specify the number of inaccessible Sp-type and 

S -type spare modules in the spare status, respectively, given that 

(a) a number i (for i eCO.Np]) of Sp-type and a number j (for 

j e C0,NpJ) of Sp-type spare modules have been either switched into 

the system, or removed from the system, and (b) a particular unlocate.d 

failure in one, or both, of the two different types of accessible spare 

modules in the spare status has accurred. The dimension of individual



state-blocks a^e thus determined by the numher of accessible Sp-type 

and Sp-type spare modules in the spare status and for example in the 

case of state-block B[i, £(i),jj, as illustrated in Fig 7.5, is given 

by [ (Np-i+l) x- CNp-j + 1)] .

7.4.1 State labelling for the model

The state labelling which will be adapted to represent a system

state, say , is illustrated in Fig 7.6, where i, £(i),j,
n(i) .m(j)

nCi), and m(j) are as defined in the preceding discussions, and where

[Ng-£(i)] = The number of original 3-state modules in the active

configuration which are in the state(3) of their operation, 

given that a number i of Sp-type spare modules have been 

either switched into the system, or removed from the system.

^(i) =_The number which refers to a particular accessible Sp-type spare 

module in the spare status which has failed, but has not 

been detected, given that a number i of Sp-type spare modules 

have been either switched into the system, or removed from the 

system.

n^(i) = The number of accessible Sp-type spare modules in the system,

given that (a) a number i of Sp-type spare modules have 

been either switched into the system, or removed from the system, 

and (b) an unlocated failure in a particular accessible Sp-type 

spare modules in the spare status has occurred.



m^Cj) = The number-/ which refers to a particular accessible

Sc-type spare module in the spare status which has failed, 

but has not been located, given that a number j of Sp-type 

spare modules have been either switched into the system, or 

removed from the system,

nhCj) = The number of accessible Sc-type spare modules in the system,1 r
given that (a) a number j of S -type spare modules have 

been either switched into the system, or removed form the 

system, and (b) an unlocated failure in a particular accessible 

Sp-type spare module in the spare status has occurred.

7.4.2 General expressions for the model variables

Given that i e[0,Np], £(i) € L0,i] and j e [0,NpJ, the 

indices ^(i), n^(i), n(i) > n^Cj), m^(j), and m(j) (as illustrated 

in Fig 7.7 and as demonstrated in connection with state-block 

B[i, £(i),j] in Table 7.1 and in Fig 7.8) are given by:
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Table 7.1 The values of n ( i ) ,... ,m(j) given i e C0,Np ], £(i) £ [0,i],

j e [0,Np]

*

n2(i) i np (Np-1) .  . . (i+2) i+1

nx(i) L(Np-i)] [Np-(i+l)] CNp-Ci+2)] .  .  . 1 0

n(i) 0 1 2 .  . . Np-(i+l) Np-i

4

#

*

m2Cj) j n f Np-l .  .  . j + 2 j+l

^(j) NF-j Np-Cj + 1) NF-(j + 2) .  .  . 1 0

m(j) 0 1 2 .  . . NF-(j + l) Np-j

«
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and

n2(i) € [i?Np]

nx (.i) =
Np-i , for n2Ci.) = i
n2Ci)-Ci+l) > for n2(i) > i 

Ci.e., n1Ci) eC0,Np-i]

nCi) = Np - Ln1(i) + i]

[i.e., n(i) € C0,Np-i]

m2(j) e Cj.Npl

V 35 =
Np-J , for m2(j) = j

. m2Cj) -  ( j  + l )  , fo r  m2 ( j )  > j 

Ci.e., m1(j) e [0,Np-j]

m(j) ="Np - Cm1Cj) + j]

[i.e., m(j) e C0,Np-j]

(7.2)

(7.3)

The above expressions, when given the model (i.e, the system) parameters

(N_,N0,N„,N ), allow the following to be defined:
3 L r P

a) The block-state matrix diagram representation of the structure

of the model,

b) The system states within each state-block.

Figures 7.9 and 7.10 illustrate the block-state matrix diagram representation 

of the structure of this modelling technique for the closed system whose



pasameteys CN3, N 2 ,Np, Np) = (4,3,2,1).

In the following, the system state teansitions associated with 

the model are described,

7.4.3 State transitions for the model

In section 7.2.1, the manner in which the self-repairing system 

attempts to recover from corresponding detected and unlocated failures 

in both active and spare modules were considered. In this section, 

the transitions between the system states of the model, caused by either 

the detected or unlocated failures in the active and spare modules, are 

described.

7.4.3.1 State transitions due to detected failures

In the model, detected and located failures, whether in the 

active 3-state modules, the active 2-state modules, or the accessible 

spare modules in the spare status give rise to transitions between 

corresponding states in appropriate state-blocks. This is caused by 

either switching into the system a spare module, or removing from the 

system a faulty spare module. Such transitions can take place, 

between the corresponding states in the appropriate state-blocks, 

along the j and the [i,£(i)] - axis associated with the model, as

illustrated in Fig 7.4.

7.4.3.1(a) State transitions along the j-axis

The j-axis corresponds to the accessible Sp-type spare modules
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%

♦

being either switched into the system (.in the event of detected 

’complete’ failures in the active 3-state modules), or removed from the 

system (in the event of detected failures in the accessible Sp-type 

spare modules in the spare status), Such events cause horizontal 

(right) transitions to occur Cal°ng the j-axis) between the corresponding 

segments of rows of states to the neighbouring state-blocks. For 

example, from the corresponding segments of rows of states in an 

initial state-block B[i,£(i),0] to the corresponding segments of 

rows of states in the state-block BCi,f.(i),l3 and eventually through 
other state-blocks to the state block B[i,£(i),N ] . This, final

r

state-block represents a system that has exhausted all its S^-type 

spare modules, but still operates at full capacity. Fig 7.11 illustrates 

the above type of transitions between the state blocks BCi,f-(i),jl 

B[i, £(i),j+l] and B[i,£(i), j+2].

7.4.3.1(b) State transitions along the Ci,l(i)] - axis

The Ci,£(i)]- axis (as illustrated in Fig 7.4) corresponds 

to the accessible Sp-type spare modules being either switched into 

the system (in the event of either detected 'partial’ failures in the 

active 3-state modules, or detected failures in the active 2-state 

modules), or removed from the system (in the event detected failures 

in the accessible Sp-type spare modules in the spare status). Such 

events cause vertical (downwards) transitions to occur (along the 

[i,£(i)] - axis) between the corresponding segments of columns of 

states to neighbouring sub-block-state matrices. Each sub-block-state 

matrix is denoted by SB[i,j], as illustrated in Fig 7.12. For example, 

from the corresponding segment of columns of states in an initial sub-



blQck-sta,te matrix SB£Q,ji transition takes place to the corresponding 

segments of columns of states in the sub-block-state matrix 

SBl 1, j 11 and eventually through other sub-block-state matrices to 

the sub-b1ock-state matrix SBCNp,j3. This final sub-block-state matrix 

represents a system that has exhausted all its Sp-type spare modules, 

but still operates at fiill capacity. Figs 7,13 and 7,14 illustrate 

the above type of transitions between the sub-block-state matrices 

SBCi,jl and SBCi+1,j:3.

In the verticle neighbouring sub-block state matrices 

SBCi+13 and SBCi+l,j3, as illustrated in Fig 7.13 there are 

two means of escape from each state -block in the sub-block- 

state matrix SBCi,j], each means of escape transition to an 

appropriate state-block in the sub-block-state matrix SBCi+1,jl.

The first of these is by the occurance of the detected 'partial1 failures 

in the active 3-state modules in a system configuration being described 

by a particular state-block in the sub-block-state matrix SBCi,j3.

For example, the state-block BCi,£,j3, for l e [£(i)] as illustrated 

in Figs 7.13 and 7.14, which represents a system having active

3-state modules. Such failures in the active 3-state modules of , 

say, the system configuration being described by the state-block 

BCi,£,j3, causes transitions from the corresponding segments of columns 

of states in the state-block B[i,£,j3 to the corresponding segments 

of columns of states is the state-block BC(i+1),(l+l),j3. This situation

is illustrated in Fig 7.14 and represents a system which has switched 

a further accessible Sp-type spare module into the system and so has 

one less 3-state module in the active configuration, however, it still 
operates at full capacity.

The second means of escape from each state-block in the sub-



block-state ma.tfi:x SB[i,j] is by the occurance of the detected failures 

in either the active 2-state modules , or the accessible Sp-type spare 

modules in the spare status,of a system configuration being described 

by a particular state-block in the sub-block-state matrix SBCi,j].

For example, the state-block B[i,£,j3, for t e L£(i)], as illustrated in 

Figs 7.13 and 7.14, represents a system having active 2-state

modules and (Np-i) accessible Sp-type spare modules in the spare status. 

Such failures in either the active 2-state modules, or the accessible 

Sp-type spare modules in the spare status of, say, the system con

figuration being described by.the state-block BCi,£,j3, causes transitions 

from the corresponding segments of columns of states in the state-block 

BCi,£jj] to the corresponding segments of columns of states in the state- 

block B[i+l,£,.j3 , (as illustrated in Fig 7.14) this represents a system 

that has switched a further accessible Sp-type spare module into the 

system, but still operates at full capacity.

7.4.3.2 State transitions due to detected but unlocated failures

In the model, each state-block, e.g., BCi,£(i),j3 (as described

in settion 7.4 and as illustrated in Fig 7.5) is composed of a matrix

of system states. The states within a state-block represent the

same active configuration of the system having a particular number of

accessible Sp-type and Sp-type spare modules in the. spare status,

but erch state, except one, indicates the presence of a particular

undetected failure in one, or both, of its two different types of

accessible spare modules in the spare status. In the model, unlocated

failures, whether in the accessible S -type, or S -type, spare modules
r  r

in the spare status give rise to transitions between corresponding states



in the same state-block, This is caused hy the occurrance of an un

located failure in either a particular accessible Sp-type, or Sp-type, 

spare module in the spare status. Such transitions can take palce, 

between correspondong states in a state-block, along the n(i) and 

m(j)-axis, as illustrated in Figs 7.5,and 7.8.

7.4.3.2(a) State transitions along the n(i) - axis

The n(i) -axis corresponds to the occurrance of undetected 

failures in particular accessible Sp-type spare modules in the spare 

status. Such events, cause transitionsbetween the corresponding

states in the same columns in a state-block, say, from an initial

state to the states ,... . These are
0,m(j) l,m(j) Np-l,m(j)

states of a corresponding system which (a) has particular numbers of

inaccessible Sp-type spare modules in the spare status, given that a 

number i(for i e[0,Np]) of Sp-type spare modules have been either 

switched into the system, or removed from the system, and (b) operates

at full capacity. Fig 7.15 illustrates the above type of transitions

between the corresponding states in the same columns in the state- 

block BCi,£(i),j].

7.4.3.2(b) State transitions along the m(j)-axis

The m(j) - axis (as illustrated in Fig 7.8) corresponds to the

occurrance of undetected failures in particular accessible Sp-type 

spare modules in the spare status. Such events, cause transitions

between the corresponding stated in the same rows in a state-block,

say, from an initial state
n(i) ,0

to the states ,...
n(i) , 1 n(i),N



These aye states of a corresponding system which (a) has particular 

numbers of inaccessible Sp-type spare modules in the spare status given 

that a number j (_for j £ CO,N^H) of Sp-type spare modules have been 

either switched into the system, or removed from the system,, and (b) 

operates at full, capacity. Fig 7.16 illustrates the above type of 

transitions between the corresponding states in the same 'Zows in the 

state-block B[i,£(i)>j3'

7.4.3. 2 G'c) State transitions to the failed state (F).

Finally, unlocated failures, whether in an active 3-state, or

2-state, module leads to system failure immediately. In the model, 

this is represented by the transition from each system state to the 

’failed* state (F) which is not explicitly shown.

7.4.3.3 General expressions for transition rates of this modelling 

technique

Fig 7.17 illustrates the system state-transitions of this

modelling technique Cas described in the preceding discussions) for
i Z j * .a particular system state S 9 (where i e[0,N ], j e [0,10,n, m p f

t e C£(i)'}> n e [n(i)J, and m e Cm(j)] ) which represents a closed
system characterized by the set of parameters X^, X^

]̂2 * c , c2, c , d^, d^) . The transition rates from a particular
i f. isystem state, say, the state S ’ , where i e [0,10 , j e [0,10,J J n,m P F

£(i)  ̂ [0,i] , n(i) e [0,Np-i], m(j) £ [0,Np-j], n e [n(i)], and 
m e [m(j)], to its associated system states, as illustrated in Fig 7.17, 

are given by the following :
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«

(m _rn CAh,m u 3 ja2 2

i,£,j i+l,£+l,j (2&-N )
Tn,m = X3C3 + ^ Np"1̂ “n^ 2  d2

and

i,^,j i,£,j + l
K .n,m

q 1 j •
n,m

n,m
pi»^j j 
n,a

= CN3-^)X1 C1 + CCNp-j) -m'Ju1 d1

= u2(l-d2) , for 3 = (n+1),...,(Np-i)

= y1(l-d1) , for a = (m+1),...,(Np-j)

Fi’'e,j = (N -£)[X Cl-cp + X2(l-c )3 + (Zt+N )L(1- c 3) .
n,m

... (7.4)
The other system states in the model have similar expressions for their 

transition rates, but are subjected to the following boundary conditions:

i,£,j i+l,£j 
Tn,m 0> for or

n= (Np-i)

i,£,j i+l,£+l,j
T =0, forn,m

i ■ Np 
or
n = (Np-i)

f f > •£* j +1
Kn,m or

{ m  = CNF-j)

(7.5)

(7.6)

= ~ for (7.7)
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i j
r.1 = np

Q = 0 , for or (7.8)
n,m $,m .n = Np-i

(where 8 5= n+1,...,(Np-i))

i,£,j j = nf

P = : 0 , for or (7.9)
n,m n,a m = Np-j

(where a = m+1,...,(Np-j))

*
Fig 7.18 illustrates the transitions between the system states of this 

modelling technique for the closed system whose parameters (N^,

NF,Np) = (4,3,1,2).

The model as described above is very general. For example,

4  in a particular special case where = 0 and Np = 0 is reduces to the

model proposed by Y. W.-Ng and A.A.Aviziens [1051. In fact, it covers not 

only all the non-degradable closed systems consisting of 2-state modules, 

but many other (not previously analyzed) non-degradable closed systems 

consisting of 2-state and 3-state modules.

%  In the following, the procedure for the reliability estimation

associated with this miodelling technique is presented.

4  7.5 Reliability Estimatation for the Closed System

7.5.1 Background and general considerations

+As shown in [1983, the reliability function R(t) ' of all closed 

systems has a certain regular form, as follows :
+Reliability R(t) at time t is defined as the probability that the system 
has remained operational throughout the period of time (o,t).
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Theorem 1; /\ closed fa,ult-tolerant computer system has a reliability

function of the form

-a.t
R(.t) = l A e 1 (7.10)

i.
where i indexes through all the good (i.e., nonfailed) states i 

of the. Markov reliability model of the system and where is the 

failure rate of the system configuration in state ,i.

Corollary Mean time to first occurrance of system failure is

A.
MTTF = l (7.11)

i i

while the are always simple arithmatic.functions of the modelling 

patameters, the coefficients A^, when expressed as a function of the 

parameters, can be quite complicated (e.g., the TMR/S model in 

C1373).

7.5.2 Reliability estimation for the.model

In this section, the reliability function associated with the

modelling technique, characterized by the set of parameters (N^, N2,

Np, Np, A1, X2, u1, u2, c^, c2, c^, d^y d2), will be developed.

Consider the transitions to and from a particular system state

to its associated system states, say, the state , (for
n(i) ,m(j)

i e L0,Npj, j e [0,Np] , £(i) € [0,i] , n(i) e [0,Np-i], and

m(j) e [0,Np-j]), as illustrated in Fig 7.19. Concentrating on

system state , we observe that the probability flow rate
n(i),m(j)
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d i,£(i)J
[111], denoted by -r- P , into this system state is given by:

, i,£(i),j
4r P(t) = K P(t)

nCi),m(j) n(i) ,m(j) n(i),m(j)

♦

s

w

*

i-l,£Ci)flJ i-l,£Ci)-l,j i-l,£(i) ,j :i^(i) JPft") + T
ThCi^mCiO n(i),XIi),j

i-l,^Ci)»j râ ^ " 1 i,£(i),j i,£(i), j
P (t) + l I PCtD-
n(i),m(j) Y(j)=0 n(i),y(j) n(i),m(j) n(i) ,y(j)

n(i) -1 i,£(i),j i,£(i),j
+ l Q PC-t)

0Ci)=O 9(i) ,m(j) n(i),m(j) 0(i),m(j)

i,Z (i), j i+l,£(i),j i,^(i),j i+l,£(i)+l,j i,^(i),j i,£(i),j+l
- T + T + K

n(i-) >m (j) n(i),m(j)
*

n(i) ,m( j)

N_-i
i,£(.i) J P i*£(i) J

+ F ♦ l Q
%

n(i),m(j) 3(i)=n(i) +1 n(i),m(j) 0(i),m(j)

N_-jF i,£(i) J i^(i) J .
+ I I P(t) (7^12)

% a(j) ,m(j)+l n(i) ,m(j) ,0t̂ ^ - n(i),m(j)

(for i 6 [0,Np], j e [0,Np], £(i) e [0,i], n(i) e [0,Np-ij, m(j) e [0,Np-j^
i,£(i), jsubject to the boundary conditions) where py-n are the probabilities
n(i) ,m(j)



that the system is in states >  ̂ at time t. The state
n(i) ,m(j)

transitions rates in (7.12) (as illustrated in Fig 7.19) are as follows:

i,£CiOJ i,£(i),j+l
K = CN3-f(i)]X1c1 + C(NF-j) - mCj)]u1d1,
n Ci) ,m(j)

i,^Ci)J i+l,£(i)+l,j
T
nCi) ,m(j)

i,^(i),j i+l,£(i),j

n(i),m(j)

J
I

n Ci) >m (j) n(i),a(j)

i,£(i) ,j
Q

n(.i) ,m(j) 3(i) ,m(j)

i,£(i),j-l i»£(i),j
K
n(i),mCj)

i,^(i),j
F = CN3^ ( i ) K X 1(l-c1) + X2(l-c2)] +
n(i),m(j)

C2£(i) + N2]X3(1-c3) ,

i,£Ci)J
K = CN -£(i)3X c + [{NF-(j-l)} - m(j)3u1 d1
nCi),mCj)

= C2t(i) + N23X3 c3 + [(Np-i) - n(i)3]i2 d2

= CN3 - £(i)3X2 c2 ,

= y1(l-d1) , for a(j) = (m(j)+l (N.

= u2(l-d2) , for $(i) = Cn(i)+10,... ,

= CN3-£(i)]X1c1 + [{Np-(j-l)} - m(j)3yj d± ,

(7.13)

(7.14)

(7.15)

-j) ,
(7.16)

'p-i)>
(7.17)

(7.18)

(7.19) 

, (7.20)



309 -

i.-l,£(i)L-l,j
T
'n(i) ,m(j)

= C2(£Cil-ll + N2]\3 c3 * [{Np-(i-l)} - n(i). ]

* --- (7.21)

i-l,£(£),j i*£(i),j 
T
nCi),m(j)

= [Nj - £(i)]X2c2 . (7.22)

w

i,^Ci) J
I

n Ci)' 3. VU) n(i) ,m(j) 

^ and

= U1(l-d1) ,  for y(j) = 0,..., (m(j)-l) (7.23)

(i) > j 
Q

9Ci),m(j) n(i) ,m(j)
= u2(l-d2) , for 9(i) = 0,...,(n(i)-l), (7.24)

(for i € [0,NpJ, j e [0,Np], £(i) £ [0,i], n(i) € [0,Np-i]

m(j) e (0,N -j] , and subject to the boundary conditions)
r

Let

i,£(i) ,j+l 
b =

%  0 n(i) ,m(j)

i,£(i),j i,£(i), j+1
K , (7.25) 
n(i) ,m(j)

i+l,£(i)+l,j
C

0 n(i),m(j)

i,£(i),j i+l,£(i)+l,j
T , (7.26) 
n(i),m(j)

* i+l,£Ci)J
d

0 n(i) ,m(j)

i,£(i),j i+l,£(i),j
T , (7.27) 
n(i) ,m(j)

i^Ci),} i^Ci) ,j
g = I (7.28)

0 n(i)ct(j) n(i),m(j) n(i),a(j)
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*

%

¥

m

¥

i,£(i)0
a £Ci),m0 )
h (j^Ci) fj

nCi),m(j) B(i),in0)

b
1 nCi),m(j)

u,£(i),j-l i,£(i),j 
K

n (i) ,m (j)

i-l,£(i)-l,j
c

1 nC±) ,m(j)

i-l,£(i)-l,j
T.
n(i),m(j)

i-l,£Ci) J  
d
1 n(i),m(j)

i-l,£(i),j
T
n(i) ,m(j)

y

i,£(i) ,j 
g

1 n(.i>,Y(j)
I

n(i),Y0) n(i),m(j)
y

h ' = Q
1 9(i) ,m(j) 0(.i),mCj) n(i),m(j)

(7.29)

(7.30)

(7.31)

(7.32)

(7.32)

(7.33)

and
i,£Ci) J
n(i),m(j)

i+l,£(i),j i+l,£(i)+l,j
d + C

> 0 n(i),m(j) 0 n(i),m(j)

i,^(i) ,j+l i,£(i) ,j 
* b + F

0 n(i) ,m(j) n(i),m(j)

(7.34)

(Np-i)

- ' l
3(i) = (n(i) +1)

i,£Ci) J
h
0 8(i)>m(j)

(Np-j)

* I
i,£(i),j

g
ot(j) = (m0:).+l)0 n(i) ,a(j) j

(7.35)
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Then equation (7,12)fn terms of h , -C ,
lnCi),mCj) lnCi),mG) 

i-l,£Ci),j i>£(i),j i,W-),3
d , g , h and E is :

1 n(i),m(j) 1 n(i),Y(j) l 0 Ci),m(j) nCi) ,m(j)

*
d_
dt PCt)

nCi) *ni(j)
i,^Ci) J-l i,£(i) ,j-l

b PCt)
1 nCi),mCj) nCi),m(j)

4

♦

i-l,£Ci)-l J* C
l-n(i),mCj)

i-l,£Ci)-l J
PCt)

nCi) ,mCj)

i-l,£Ci) >3
+ d

1 nCi),m(j)
i-l,^Ci)J

-PCt)
nCi),m(j)

m ^ ~ 1 i,£(i), j i,£(i),j
l g PCt)

1 nCi) ,YCj) nCi) ,Y(j)
Y(j)=0

n(i)-l
i,£(i)J i,f.(i)J

I h P(t)
0 Ci) =0 1 0Ci)^Cj) 0(i),a(j)

i,£Ci)>j i,^Ci)J
- e P

nCi) ,m(j) n(j) ,m(j)
(7,36)

Cfor i € [0,Np] , j £ [0,Np], £( i) £ [0,iJ, n(i) £ [0,Np-i], m(j) £ [0,Np-j] 

and subjsect to the boundary conditions)
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*

*

♦

*

The other system states in the model have similar expressions for their 

transition rates and their probability flow rates, but are subjected 

to the following boundary conditions;

b = 0
0 n(i) ,m(j)

, for
3
or

= NF

®(j) = CNF-j)

i+l,f.Ci)+l,j
C = i , for

0 n(i),ro(j)

i+1 (i ) , j
d = 0 , for

0 n(i),m(j)

i,£(i) ,j
g = 0 , for

0 n(i),a(j)

i = Np 
or
n(i) =(Np-i)

i = N p 
or
n(i) = (Np'i)

j = nf
or
m(j) = (Np-j)

[for a(j). = (m(j)+l),...,(NF-j)3

i,£(i) ,j
h = 0

0 3(.i),mCj)
for

i = N
or
n(i) = N -i

[for $(i) = (n(.i) + D , •.., (Np-i) 3 

i,£(i),j-l
b = 0 , for j = 0

1 n(i) ,m(j)

i-l,£(i)-l, j 
C = 0

1 n(i) ,m(j)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

(7.42)

for i = £(i) = 0 (7.43)
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#

4

d - a
1 nCihroQj)

g = Q
1 nCi) ,Y(j)

Cfor y CD = 0,,,,,Cm(j)-l)3 

and

i,£(i),j
l h0Ci),m(j) " 0

Cfor 0CD = 0,...,(n(l)-l)3

, f o r  i - Q

, for
,m Cj) = o

, for or
nCi) = 0

(7.44)

(7.45)

(7.46)

Let us now consider the transitions to and from the system states

which are within a particular state-block to their associated system

states in the model, say, the state-block BCi,£(i),j3 for i e [0,Np],

j £ [0,Np3, and £(.i) € [0,i]) as illustrated in Fig 7.20. By applying

equation (7.36), the probability flow rate, denoted by ~-CP(t) ]:*
into the state-block BCi,£(i),j3can be expressed as follows :

, i,^Ci),j
]

i,£Ci),j-l i,£(i),j-l
C B 3*CP 3
1

i-l,£(i)-l,j i-l,£(i)-l,j
+ C C 3-CP(t) 3

i-l,£(i),j i-l,£(i),j
+ C D 3-CPCt) 3

1

i,£(.i),j t,'̂ ,(.f)
+ C G 3 • CP Ct) 3

1

i,£(i),j i,£(i),j
+ C H 3 • CP (t) 3

1
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- C F '  3*CP(t) 3 (7.47)

(for i e LQ,N ], j £ L0,N ], £(i) £ [0,ill and subject to the boundary r r
conditions)

-- i,£Ci),j i,f.Ci),j-l i-l,f.(.i),j
where P(t) , P CtD , P(t) , and

P(t)
i-l,£(i)-l,j

are columns of dimension C(N -i+1) x (N -j+l)3 whose
r  r

coefficients, as appropriate, represent the probabilities that the system 

(at time t) is in a corresponding system state associated with the state 

blocks B[i,£(i),j] , BCi,£(i),j-13, BCi-l,£(i),j], and BCi-l,£(i)-1,j3.
The-columns P(t) J   ̂ PCt)1'1’-̂ 1) , and PCt)1'1’̂ 15'1

are given by :

P(t)
J

P(t)
i,£(i) ,j
0,0

i,£(i) ,j 
PCt) 

n(i),0

i,£(i) ,j
.. P(t) ...P(t)

0,m(j)
. (i)J 

O.NF-j

i,£(i),j i,X(i),j
P(t) ... P(t)

n(i),m(j) n(i),Np-j

t i,£(i)> j
l PCt)
; nd-i ,o

i,£(i),j i,^(i),j
P(t) ... P

Np-i,m(j) Np-i,Np-j (7.48)

PCt)
i*£(i) J - 1 i,£(i)J-l i,£(i),j-l i,£(i),j-l

P(t) ... P(t) ... P(t)
0,0 0,m(j) °,Np-j

i,£(i),j-l i,£(i) , j -1 i,f.(i),j-l |
PCt) ... PCt) ... P(t)

nCi),0 n(i),m(j) n(i),Np-j

P(t)
i,£(i),j-1

... P(t)
Np-i,0

i,^(i),j-l 

Np-i,m(j)
... P(t)

i^(i) ,j-l
N-i,N_-j P F J J

(7.49)
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PCt).
i-l,£Ci) ,} i.-l,£(i) .,j

- ,-P-Cti
0,0.

P(-t)
1-1,CCi) ,j
Q,m(j)

,<• PCt)
i-l,£(.i),j ,*

°»vj
* . i-l,£(i), j i-l,£(i),j i-l,£(i),j
PCt) ... PCt) ... P(t)

nCi),0 n(i),m(j) nCi),Np-j

and

i-l,£Ci),j i-l,£Ci)J i-l,£(i),j
...* PCt) ... PCt) ... PCt)

o T

I np-m Np-i,mCj) Np-i>Np-j

PCt)

i-l,£(i)-l,j i-l,£(i)-l,j
i-1, C(i)-l,j = PCt) PCt) ... P(t)

... (7.50)

i-l,£(i)-1,j
0,0 0,m(j) °,NF-j

i-l,C(i)-l,j i-l,£(i)-l,j
! P(t) ... P(t)
J nCi),0 n(i),m(j)

•• P(t)
i-l,£(i)-l,j

n(i),Np-j

i-l,£(i) -l,j i-l,£(i)-l,j i-l,£(i)-l,j '|T
PCt) ... PCt) ... P(t)

Np-1,0 Np-i.m(j) Np-i,Np-j
...(7.51)

i,-C(i),j_l i-l,^Ci)-lJ i-l,C(i),j i,£(i),j
In equation (7.47) B , C , D , G ,

1 1  1 1

i,£(i) ,j i,£(i) ,j
H , and E and diagonalized and lower triangular matrices of
1
dimension C(Np-i+1)(Np-j+1)] x [(Np-i+1)(Np-j+1)3 whose coefficients represent 

the transition rates between corresponding system states associated with 

the state-blocks BCi,£(i),j], BCi,C(i),j-13, BCi-l,£(i),j)3, and
B[i-l,£(i)-l,j3. The matrices B1>-C(1), j-1 ci-l,C(i)-1, j  ̂ Di-l,C(i),j

1 1 1

i,£(i),j i,CCi)J i,£(i),j
-G , H , and E are defined as follows:
1 1 1
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Let

CL 3 = C G 3 + l H 3 - CE 3 C7.58)
1 1

Then equation (7,47)can be rewritten as :

j »j > j”3. pri^ • 1
^-CP(t) 3 = C B 3CPCt)1^ Cl)>;)'1]

i-l,£(i)-l,j i-l,£(i)-l,j
+ C C 3CP(t) 3

1

+ C1D
i-l,£(i),j • i-l,£(i),j

3CP(t) 3

i>£(.i)J i,£(i),j
+ CL 3 CP(t) 3 . (7.59)

Let us now consider the transitions to and from the system states within a 

particular row of state-blocks to their associated system states in the 

model, say, the row of state-blocks {BCi,f.(i) ,03 *... #BCi,£(i) , j3 «... 

BCi,£(i),N 3} of the model (for i e [0,ND3, and t(i) e [0,i]). By
r  r

applying equations (.7.59) , the probability flow rate, denoted by

d t ^ )
, into the row of the state-blocks BCi,£(i),03,...

BCi,£(i), j3 ,. .. ,BEi,-£(i) ,N 3} can be expressed as follows

i,£(i)| i,£(i)
= CM 3 CP(t) 3dt w
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+ Cs

i.,£(i)
+ [N U  PQt) 3 (7.60)

(for i  e CO,Np], £(.i) e [0»i] and subject to the boundary conditions)
i*£(.i) i-3.,£(i) / m -i

where P(t) , P(t) > andP(tj *  ̂ ' are columns of

dimensions (N +1) whose coefficients, as appropriate, represent the
r

probabilities-that the system (at time t) is  in a corresponding system 

state associated with the rows of state-blocks {B [ i,£ ( i) ,03, . . . ,

BCi,£(i),Np3} , { B [ i- l ,£ ( i) ,01, . . .  B C i-l,£(i),N p3}, an d {B C i-l,£(i)-l,0l , . . .
. •; p ft'l. . . ,  B ( i-l,^ ( i) -l,N  3}. The columns P(t) *  ̂ J and

p^ i - l , £ ( i ) - l  are given by:

i,£ ( i)  i , £ ( i),0 i ,^ ( i) , j  i,£ ( i) ,N  .T
PCt) = CP(t) , . . .  ,PCt) ,...,P (t)  *3

. . . (7.61)
? i - l , £ ( i),0 i - l , ^ ( i ) , j  i- l ,£ ( i) ,N  T

PCt)1 ' ^  = CP(t) F-, . . . ,  P(t)

and

,...,P (t)  *3
. . . (7.62)

P(t)
i - l , £ ( i ) - l i - l , £ ( i),0 i - l , £ ( i ) , j

= CP(t) , . . . ,P  ,...,P (t)
i- l,£ ( i) ,N F,T

. . .17.63)
i,£ ( i)  i - l , £ ( i)  -1 i - l , £ ( i)

In equation (7.60) M , R , S , and
i>£(i)

N are block diagonalized matrices of dimension. C(N„+l)(N+l)3 whose
r r

coefficients represent the transition rates between corresponding system 

states within fhe rows erf the state-blocks .{ BCi,£(i) ,03,. .. ,B[.'i,£(i) ,N 3} . . .
r

. . . ,  B ]!i-l,£(i) ,Np3}, and { B [ i- l,£ ( i) - 1,0 3 B [ i-l,£ ( i) ,N p3}. The

matrices M ’ ^  , r1- 1 * ^ ) - ^  and are defined as

follows;
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i , £ ( i),0
B

i,£ ( i)  ,1 
B 0

i ,£ ( i)
M (7.64)

i ,£ ( i)  ,3
B

i,£ ( i),N  -1 
B F 0

i - l , £ ( i ) - l,0

i - l , £ ( i ) - l , l

i - l , £ ( i ) - l
R i - l , £ ( i ) - l , j

C
1

(7.65)

* i - l ,£ ( i) - l ,N
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i - l , £ ( i)  ,0 
D
1 i - l , £ ( i ) , 1

D
1

si-l,£U)
i - l , £ ( i ) , j  

D
1

(7.66)

and

i,£ ( i)
N

i-l,£ (.i) ,N t
D

i,£ ( i)  ,0 
L

i , £ ( i ) , l
L

i , £ ( i) , j
L

(7.67.)

i,-U i),N p
i

i,£(i) i,£(i) i,£(i)
CA ] = CM ] + CN 3

then equation (7.60) can be rewritten as :
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*

*

*

%

/

i.,£(i) i ,£ ( i)
^  IjPCt) 3 = .CA ]*qp(t) 1

+ ..CS ]«[ PCt) 3 , (7.68)

Let us now consider the transitions to and from the system states 

within a particular row of suo-rblock-rstate.matrices to their associated 

system states in the model, say, the row of sub-block-state matrices 

{SBCi,03, . . . ,  SBCi,j3, . . . ,  SBCi,Np3} (for i  6 [0,Np] ) .

By applying equation (7.68) the probability flow rate, denoted

by ^ £P i (t)], into the row of sub-rblock-state matrices {SBCi,03, . . . ,  

SBCi,j] , . . . ,  SB[i,Np]} can be expressed as follows:

—C P1 ^ )] = Ca1 }- CP1(t) ] + CK1”1] • CP(t) 
dt '

1_1] + CJ1- 1]-CP(t) i - 1. (7.69)

for i  e [0,Np] , subject to the boundary conditions) where P1(t), and 

PCt)1  ̂ are columns of dimension (i+1) whose coefficients, as appropriate, 

represent the probabilities that the system (at time t) is  in a corresponding 

system state associated with the rows of the sub-block-state matrices 

{SBCi,03, . . . , S B C i,j] ,.. . ,SBCi,Nc3} and {SBCi-1,03, . . . ,S B C i-l, j3, . . . ,
r

SBCi-l,N 3}. The columns P1 ^ ) ,  and PCt)1 * are given by:F — —

, i ,0 i ,£ ( i)  i , i  .
P Ct) = CP(t) ,...,P(t) ,.,,,PCt) 3 (7.70)

and
i  ̂ * 1  ̂  ̂̂ i 1 ^

P(.t) = [PCt)1"1’0, PCt)1 ’ PCtj ■ . 0] (7.71)
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*

%

In equation (7.69), a1 , \  and J1 - * are blocked-diagonalized

matrices of dimension £(i+1) *( i+l)3 whose coefficients represent the 

transition rates between corresponding system states within the rows 

of the sub-block-state matrices {SB£i,03, . . . ,SB £i,j3 SBCi,N ]} ,
r

and {SBCi-1,03 , . . . ,S B C i-l,j3 , . . . ,SB£i-l,Nc3}.r

The matrices c*1 , K1 \  and J1  ̂ are defined as follows :

(7.72)

(7.73)
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and

♦

♦

Let

Eft1”1] = CK1"1] + CJ1"1] • (7.74)
then equation (7.69) can be rewritten as :

i -c  P^t)] = [ax][ P(t)] + C81' 1np(t)1' 1] . • (7.75)

Finally, by applying equation (7,75) to a ll the rows of sub-block-state 

matrices in the model, denoted by RSBCi](for i  = 0,...,N p ), the probability 

flow rate of the re lia b ility  model, denoted by [P(t)3, can be expressed 

As:

d_[P (t)] = Cy 3-[P(t)3 + [y 3-CP(t)3 
dt ' 1

(7.76)
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m

♦

where P(t) is  a column of dimension (Np+1) whose coefficients represent 

the probabilities that the system (at time t) is in a corresponding 

system state.associated with a particular row of the sub-block-state 

matrices associated with the model. The column P(t) is  given by:

N
PCt) = Cp'YtO.pV) ... P1 ^) ...p^ft)] (7.77)

In equation (7. 76) y  ̂ and y  ̂ are blo*k-diagonalized matrices of 

dimension [CNp+l)x(Np+l)] whose coefficients represent the transitions 

rates between corresponding system states within appropriate rows of 

the sub-block-state matrices associated with the model. The matrices 

y  ̂ and are defined as follows:

1
a _

'i

y
i

' ia (7.78)

and

Y2
(7.79)
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#

Let

Cy3 = Cy ] + £y J l7 ' g0)

then equation (7.76) which describes the probability flow rate of the 

re lia b ility  model can be expressed as :

l^-CPCt)] = CyKPCt)'] (7.81)

where the probability vector P(t) when expressed in terms of a ll the system
..Np Np

state probabilities is  a column of dimensionC J ][ (i+1) (N - j +1) (Np-i+ l)  ]
i=0 j =0 b F

whose coefficients represent the probabilities that the system (at time t) 

is in a good ( i.e ., nonfailed) state of the Markov re lia b ility  model 

of the system. The column vector P(t) is  given by:

P(t) = CP°(t)P1(t)...P1(t)...P  H(t)31 ,
NP ,T

where

Ptt) = CP1,0(t)f...fP?;,^ ^ ( t ) . . - . f P 1,:LCt)]T

(7.82)

(7.83)

for i  = 0, . . . ,Np,

i,£ ( i)  i , £ ( i),0 i , £ ( i) , j  i,£(i),N p
P(t) = CP(t) ,...,P (t)  ,.. .,P (t)  ] ,

. . . (7.84)
for j = 0, . . . ,Np,
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and

P(t)
i,£(i) J i^Ci) J

P(t) /...,P (t)  «..,P(t)0,0 0,m(j) 0,Np- j

t i,^Ci),j

j " .n(i),0

i,£(i) J
i
n(i) ^mCj)

i , £ ( i) , j  J

nCi),Np- j  '

i,£ ( i)> j
... POO ,...,P(t) ,...,p

N p - i ^ p - j  JNp- i ,0 Np-i,m (j)
* (7.85)

The block-diagonalized transition rate matrix [y] in (7.81) when expressed 

in terms of a ll the system state transitions of the Markov re lia b ility  

model is a lower triangular matrix of dimension (DxD), where

D =
Np NF
I l  (i+iHNp-j+DCN -i+ i)  

i=0 j =0 J
, and defined as follows:

Y =
Y. •. • 1 l, li , i - l  '

Y Y
N ,N -1 N ,N 

v *  P P

(7.86)
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♦

♦

♦

where

Y1 * =: a1 , , for i  = 0, , , , ,N p (7.87)
and

Yi.̂i_1 « 01"1 , for i  = l , , , . ,N p. (7.88)

The coefficients a ^ ’s and 31_^’s, in matrix y  (as defined previously) are 

in turn block-diagonalized matrices of the form:

i
a (7.89)
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#

(7 .90 )

where

i  i,£ ( i)
a = A , for £(i) = 0, . . . , i
£ ( i) j£ ( i)

(7 .91 )

and

31"1 = s1"1 ’^ 1) , for £(i) = 0,... , i - l
£(i),£Ci)

3
i -1
l (  i ) ,£ ( i ) - l

= Ri - l , £ ( i ) - l
, for £(i) = 1, . . . , i

(7 .92)

(7 .93)

The coefficients , and R* * i n matrices ^ , 3̂  ^

(as defined previously) are in turn block-diaginalized matrices of the

the form ;



334 -

Ai,£C.i) =
A. .

N^Np-i Np,Np

(7.94)

(7.95)
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and

* Ri-l,£(i)-l

0,Q

Ri - l , £ ( i ) - l

Ri - l , £ ( i ) - l
j J

i - l , £ ( i ) - l
R
NF ,NF

*

*

♦

where

.  Li , - e ( i ) , j  , £or j = o , . . . , N F

j >Y.

Ai^Ci) 

j J-l

Bi , £ ( i ) , j - l for j = 1, . . . ,Np

si-l,£(i) _ J  > for j = 0,...,N
J ,J 1 F

and
i-l,£Ci)“ l i-l,£(.i),j 

R = C , for j = 0,. .. ,N

j.j i F

The coefficients
i,£(i)J i-l,f-(i),j

L f ^ and

i - l , £ ( i ) - l , j
C in matrices A

1
and Ri - l , £ ( i ) - l

(7.96)

(7.97)

(7.98)

(7.99)

(7.100)
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(as defined previously) are diaginalized and lower triangular matrices.

Therefore, the transition rate matrix y is a lower triangular
Np Np

matrix of dimension (DxD) (where D = £ £ (i+1)(Np- i  + l)(Np-j+l)
i =0 j =0

where diagonal elements are given by:

i , f  (i) , j
e , for
n(i),m(j)

i  e [0,N̂ ] 

j e CO.Npl
(7.101)

£(i) e [0, i]  

n(i) £ [0,Np-iJ

m(j) £ COjNp-j]

The diagonal elements ^ , are also the eigenvalues of the
n(i),m(j)

matrix, y. Hence, the transition matrix y w ill have distinct eigenvalues

(for d = 1, __,D). Using the general theory of Markov processes,

it  has been shown that [198], the probability vector P(t) in (7.81) 

can be expressed as :

P(t) = eYtP(0) (7.102)

ytThe evaluation of e by means of the power series for the exponential 

function is excessively costly, since too many matrix multiplications are 

needed in order to obtain reasonable accuracy. However, in this special 

case, where the transition rate matrix y has distinct eigenvalues 

c?d (for d = 1, . . . ,D ) , an interpolation formula exists following Theorem (2) 
in C1093 which gives a better method of computing P(t) than equation 

(7 .102).
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Theorem 2; I f  A is  an n*n matrix with, n distinct eigenvalues

X then we have;1 n,

eAT 5 ' M 1)
I e k L(A) 

k=l
(7.103)

where L (̂A) is  a polynomial in A o'f degree (n-1) given by:

n A-X.I
L (A) = II ----- i -  . / fo rk  = l ,2, . . . ,n  . (7.104)

j« l  X,-X. k j
• j A

Indexing the working states from 1 to D and letting P(t) =CP^(t),...
TP^(t), . . .  ,P^(t) ] , then using Theorem (2) equation (7.1CL2)can be 

expressed as :

*

P(t)
D a ,t
I e

M =1

D
n

q=l
q^d

y-a I 
___9^
a

P(0)
J

(7.105)

where I is  a unit matrix of dimension (DxD). Since the re lia b ility  of 

a given system at any time t is precisely the summation of a ll the 

probabilities P^(t), then using (7,105)the re lia b ility  function of this 

modelling technique assumes the standard form:

D a ,t 
R Ct) = I A, e.

d=l d d (7*106)



where

' P(0).

(7.1Q7)

Equations(7.106) and(7.107) allow us to separate the re lia b ility  analysis 

computations into three phases:

a) To construct the Markov state diagram to model the given 

system and to set up the transition rate matrix y. This is  the phase

in which decisions on the complexity of the model, the choice of modelling 

parameters, estimates of their actual values, etc., are made. A ll these 

are system dependent decisions.

b) To determine the eigenvalues of the matrix y. Equation 

(7.107) is then used to compute the coefficients A .̂ This phase is system 

independent since the algorithm used is  the same for a ll systems.

c) To perform the re lia b ility  computation based on the standard 

form of the re lia b ility  function in equation (7.106). This is the 

simplest computing phase, since the evaluation of re lia b ility  measures 

requires only elementary arithmatic operations on the eigenvalues and 

the computed coefficients Â .

The above three steps represent the procedure which can be 

used to perform re lia b ility  estimation for systems that can be modelled

A-, = sum of elements in vector a

d ^ - y
n

* q^d

q=l .cr,-a n d q



using this re lia b ility  modelling technique *

7,6 Conclusions

In this chapter, a re lia b ility  model for fault-tolerant multi- 

microprocessor systems has been developed. In the analysis, a fault- 

tolerant multimicroprocessor system has been treated as a set of 

nrl-homogeneous subsystems, where each subsystem can consist of a set 

of non-identical gracefully-degradable multi-state modules.

The model presented is a re lia b ility  model for a closed non- 

homogeneous system-consisting of 3-operational state and 2-operational 

state modules which are supported by two banks of different types of 

spare modules.

The model takes into account both the located and unlocated 

modes of failure, whether in an active or a spare module.

General analytical expressions associated with this modelling 

technique have been developed which when given the system parameters 

allow us :

a) to define the structure of the re lia b ility  model,

b) to define and evaluate a ll the possible transitions within 

the model

c) to estimate the re lia b ility  of the system.

We have also demonstrated that many types of closed systems can 

be modelled using this modelling technique.



Much work remains to be done in

a) extending this modelling technique to repairable systems and 

to systems which allow a degree of graceful degradation

b) developing an efficient, interactive software package to perform 

automated re lia b ility  analysis. Such a program would allow the designer 

to enter new sets of paramerters at a computer terminal and so generate 

re lia b ility  estimates and thus explore the sensitivity of the proposed 

designs with respect to changes in various designer-controlled structural

parameters.



341 -

(a) 3-operational state 
Module

(b) 2-operational state 
Module

FIG  7.1 Module state transition rate 
diagrams.
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FIG 7.2: Block diagram representation of the 
closed system to be modelled*



(a) Sp-type spare
module in active 
status.

( b) Sp-type spare
module in spare 
status.

(c) Sp-type spare 
module in active 
status.

(d) Sp-type spare 
module in spare 
status.

FIG  7.3: Module state transition rate 
diagrams.
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FIG 7.6: Stafe labelling for fhe model.
, e.g, stafe: i, l (i ),jSn(i),m(j)
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FIG 7.10: State labelling representation of a closed system 
whose parameters (N^.N^.N^.Np) = (4, 3,2 #1) .
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FIG 7.11: State transitions along the j-axis between the corresponding
segments of rows of states in the horizontal neigh
bouring state blocks B[i,l(i),j] , B[i ,l(i), j+1] ,and 
Bli,l(i), j + 2 J.
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FIG 7.15: State transitions along the n(i) -axis between the 
corresponding states in the same columns within 
state - block B[i, l(i), j ] .
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F IG  7.16: State transitions along the m(j)-axis between the 
corresponding states in the same rows within 
stafe - block B[ i, l (i) J ] .
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FIG 7 .1 8 : State transitions between system states for the closed system whose 
parameters ( N3, ̂  N^.Np )= ( 4,3,1, 2) •
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FIG 7.1 9: State transitions to and from a particular system state to its
associate system states.
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FIG 7.20 ! S t a t e  t r a n s i t i o n s  to and  f r o m  a

p a r t i c u l a r  s t a t e - b l o c k  to i t s  

a s s o c i a t e d  s y s t e m  s t a t e - b l o c k s .
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CHAPTER 8

CONCLUSIONS

8.1 Summary of the Present Thesis *

Chapter 1 gives a general introduction and outline of the work contained 

in the thesis.

m

*

Chapter 2 gives a review of the previous work on distributed multi

processor systems. The review deals with many aspects of distributed multi

microprocessor systems in order to give an outline of the current state-of- 

the-art of distributed multiprocessor philosophy.

Section 2.2. considers the fundamental strategies by which a distributed 

multiprocessor system can be organised. It has been observed that, 

in general, there are a number of schemes, each with their own advantages 

and disadvantages, which characterize the system architecture. These 

include the coupling scheme, the control scheme and the interconnection 

scheme.

Section 2.3 reviews some recent multiprocessor system proposals. It 

has been observed that these systems have been implemented using concepts 

such as tightly coupled, loosely coupled, fault-tolerant, and recon

figurability.

The review contained in section 2.4 deals with the problem of 

modelling, reliability and performance analysis of distributed multi

processor systems. It has been observed that a multiplicity of reliability 

and performance models have been developed which are seemingly unrelated 

to each other, each being devised for a particular system. This is
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due to the diversified nature of the multiprocessor structures.employed. 

Clearly, much work has to be done in this field, the most difficult task 

being to create models which accurately reflect the real-life complexities 

and operations of the various systems. Chapter 7 contains a modelling 

technique which has been devised to be applied universally to a large 

number of structures.

Section 2,5 reviews some recent design trends towards the implementation 

of distributed microprocessor-controlled switching systems.

In Chpater 3 a proposed fault-tolerant processing module scheme 

is introduced and it is upon this module that the remaining work is based.

Section 3.2 describes in detail the scheme for the fault-tolerant 

multiple-microprocessor processing module which is suitable for use by 

a functionally modular, loosely-coupled, multi-microprocessor system. 

Although, primarily intended for telecommunications, the module described 

in section 3.2 can easily be applied to many other applications and 

industries.

The processing module presented consists of a group of micro

processors, each having several local memories under this control. The 

intention of the system is that each module should execute the jobs 

associated with a number of processes. In Section 3.2 it is indicated 

how the module’s microprocessors can be organized in order to store in 

their local memories copies of the files associated with the other processes 

which are executable on the module. For the particular architecture 

under consideration, it has been illustrated that each module becomes 

a distributed data-base system - which depends upon module file consistency 

and integrity. It has been pointed out that by employing this scheme 

the following advantages can be gained ;
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«

a,) Within the module itself a certain amount of parallel processing

can take place *

b) The module can be organized to make use of its multiple resources

to give a gracefully degrading system performance. This leads to an 

increased module reliability and performance.

In section 3,3 a control scheme for the operation of the multiple- 

microprocessor multiple-file copy processing module has been given.

In this section, it is demonstrated that the control scheme allows for 

concurrent execution of tasks within the module, achieves module file 

consistency and integrity, and performs module reconfiguration.

The work contained in section 3.4 has developed a queueing 

model for the performance analysis of the multiple-microprocessor 

module. In this analysis method, probability and queueing theories 

have been applied to the module under the control scheme. The performance 

index used has been the average service time of the module. From the 

average service time a variety of other performance measures have been 

derived as dictated by the queueing model. Using the queueing model, 

performance parameters have been defined and analytical expressions have 

been derived which can be used to estimate the performance of the 

module,
In Chapter 4, the organization of the processing module as a 

gracefully degrading (fault-tolerant) system is introduced.

The work contained in section 4.2 has been to define the 

operational states of the module under the different possible combinations 

of module component failures. For the module under investigation, 

it has been shown that there are operational states in which the module
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operates at full capaity (i.,e,, executes the tasks associated with all 

its processes); others in which it operates partially (i.e, looses the 

processing power associated with one of its processes); and a state in 

which the module fails completely.

The organization of the module as a gracefully degrading system 

has been presented in section 4.3. It has been pointed out that 

in the gracefully degrading module, when a fault is detected, the module 

is reconfigured to a nevr operational state which may have a different 

computation capacity and capability to execute tasks.

The work contained in section 4.3 has been to develop a 

control scheme for the operation . of the gracefully degrading (fault- 

tolerant) module which;

«
a) tasks into account the operational states of the module and 

co-ordinates the activities of the module according to its new state,

b) achieves module parallel job processing in each state (if 

applicable),

c) preserves module file consistency and integrity in each state 

(if applicable),

d) Implements the automatic reconfiguration of the module as a 

result of detected faults, and causes the module to transfer to a new 

state, .after having reconfigured the module and its control procedure 

to that new state.

The scheme has been organized to achieve (a), (b), and (c) by:
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Ci)_ employing the concepts associated with the control scheme for 

the operation of the module in its ’all working’ state,

(ii) modifying the procedures associated with the scheme for the

’all working’ state, as appropriate, in order to co-ordinate the activities

of the module according to its new state.

As regards (d), the scheme has been devised to incorporate a diagnostic 

state which is entered whenever a fault is indicated.

The work contained in section 4.4 deals with the organization 

of the diagnostic state. It has been shown how, as appropriate, 

when in the diagnostic state the scheme allows the module to be tested 

either internally or externally. An algorithm has been developed 

in section 4.4 which uses the diagnostic test results to determine the 

new state of the module.

Section 4.5 deals with the problem of correct diagnosis of a 

fault situation within and among modules. Studies, which assume the 

availability of diagnostic test results, have been made on the feasibility, 

the organization of internal module fault-diagnosis and system fault- 

diagnosis. Diagnostic procedures in relation to internal module and 

system fault-diagnosis have been developed in section 4.5. Also in 

this section, the way in which the procedures employ" the algorithms to 

determine the new state of the module is illustrated.

The work of section 4.6 has been to develop queueing models 

for the performance analysis of the gracefully degrading (fault-tolerant) 

multiple-microprocessor module. In this analysis method, probability 

and queueing theories have been applied to the module under the control 

scheme. The performance index used has been the average service time
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of the modufex From the average service time a variety of other 

performance< measures have been derived. These performance parameters 

have been used to estimate the performance of the module. These are 

reported in Chpater 6,
In Chapter 5, Markovian models for the performance-related relia

bility analysis of the fault-tolerant multiple-microprocessor module 

have been developed. In this analysis, reliability block diagram and 

time and computf- tion domain transition rate diagram techniques have 

been applied to the module operating under the control scheme.

In section 5.2, reliability block diagrams of the gracefully degrading 

module have been developed. Each reliability block diagram represents 

a different module configuration. It has been shown how the diagrams 

in conjunction with each other characterize the gracefully degrading 

module.

Section 5.3 has considered the traditional reliability measures 

for evaluating a redundant system. This has indicated that such reli

ability measures are not sufficient for evaluating the gracefully degrading 

module. In consequence, measures have to be defined which take into 

account the gracefully degrading characteristics of the module and reflect 

the interaction between the reliability and the performance characteristics 

of the module. In section 5.3, one such approach has been presented 

which suggests we require, first, to define appropriate performance- 

related reliability measures, and secondly to use time and computation 

domain Markov models in order to describe the gracefully degrading module.

In section 5.4, performance-related reliability measures for the 

gracefull degrading module have been defined. The perforamnce-related 

reliability indices used have been the msan computation before a failure, 

the computation reliability, and the computation availability of the
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module. It has been shown that these measures allow us ;

a) To reflect the interaction between the reliability and the 

performance characteristics of the module.

b) To gain an insight into the expected response of the module 

to a computational demand, taking into account various module 

characteristics *

c) To take into account the different levels of computation capacity 

and the varying capability to execute some, or all, of the tasks which 

are executable on the module.

d) To have some basis for the evaluation of the module and comparison 

with other systems.

In section 5.5,.Markovian models for the performance evaluation 

of the module (with and without repair) in both time and computational 

domains have been developed. It has been shown how these models 

demonstrated the gracefully degrading characteristics of the module.

In section 5.6, using the Markovian models and the performance- 

related reliability measures analytical expressions have been derived. 

These allow us to evaluate the module in terms of both >the reliability 

and performance.
In section 5.7, an equivalent Markovian model with a smaller 

number of lumped states, but of particular interest has been produced. 

This describes the module under steady-state conditions.



The need for this modelling technique and perforance-related 

reliability measures are especially clear when, processing systems are 

used in applications where both the reliability and performance are 

important,

In chapter 6, four different processing module structures have 

been modelled and their performance characteristics have been investigated 

Using this analysis method, appropriate performance measures have been 

defined and Markovian and queueing models for the performance analysis 

of the modules have been developed. The four examined module structures 

have been :

a) the single microprocessor module,

b) the two-microprocessor standby module,

c) the two-microprocessor parallel module,

and

d) the two-microprocessor gracefully degrading module.

In section 6.2, the type and the parameters of the queueing 

models used in order to describe the various operational states of the 

different modules have been considered. In this section, two performance 

related reliability measures have been defined. These are the response 

time and the waiting time-related reliabilities of the modules. It has 

been shown the these measures reflect the interaction between the 

performance parameters associated with the queueing models and the 

reliability parameters associated with the module's Markov model.
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The work contained in sections 6*3, 6,4, 6.5, and 6,6 has developed 

queueing and Markovian models for the four systems, These allows us:

a) to obtain quantitative estimates of the overall performance 

of the individual system structures,

b) to analyze the effect of individual system parameters on the 

performance characteristic >,

c) to evaluate the systems in terms of both the reliability and 

performance,
and

d) to have some basis for the evaluation and comparison of the 

systems.

The performance measures presented and developed have included:

a) Traditional reliability measures,

b) Performance-related reliability measures. These allow us to 

evaluate the different module structures in terms of their ability

to execute computing tasks, taking into account various system characteristics,

e.g., redundancy

and

c) Reponse time and waiting time-related reliability measures.

These allow us to evaluate the different module structures in terms of 

their expected response and waiting times, taking into account various 

system characteristics, e,g., redundancy.
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The KorK contained in section 6,7 has evaluated and compared 

the four modules. From the analysis performed in this section, 

the most promising of all the systems when considered over all the 

performance variables has been found to be the two-microprocessor 

gracefully degrading system.

The work, contained in Chapter 7 has developed a reliability 

model for fault-tolerant multi-microprocessor systems. In this 

analysis method, a fault-tolerant multi-microprocessor system has 

been treated as a set of non-homogeneous sybsystems, where each sub

system can consist of a set of non-identical gracefully degrading modules.

The model presented in this chapter is a reliability model for 

a closed non-homogeneous system consisting of 3-operational state and 2 - 

operational state modules which are supported by two banks of different 

types of spare modules. The model takes into account both the located 

and unlocated modes of failure, whether in an active or a spare module.

In section 7.2, the description of the closed system to be modelled 

has been given. Here, the 3-state and 2-state modules in both the 

active and the spare status have been described and the system recovery 

from located and unlocated failures within these modules has been discussed.

The work contained in section 7.3 has dealt with the parameters 

of the model. In this section, the physical, structural and the 

detection and recovery parameters of the model have been presented.

In section 7.4, the-structure of the Markov model, the state 

labelling for the model, the general expressions for the model variables, 

and the state transitions for the model have been developed. In this 

section, general analytical expressions have been developed which when 
given the system parameters allow us :
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a) to define the structure of the reliability model, 

and

b) to define and evaluate all the possible transitions within the 

model,

It has been demonstrated that many typesof closed systems can be modelled 

using this modelling technique.

The work contained in section 7.5 has been concerned with a 

mathematical investigation of the model. This investigation has 

dealt with the estabilshment of the reliability functions for this modelling 

technique. Analytical expressions for the reliability estimation of 

the closed systems consisting of 3-state and 2-state modules have been 

developed.

Hence, the new work presented in this thesis can be summarized 

as follows:

a) The development of a novel fault-tolerant modular multi

microprocessor structure intended for use in a multiple process environment 

(see Chapter 1, 3, and 4).

b) The development of the structure, internal organization and a 

control scheme for a fault- tolerant gracefully degradable multiple- 

microprocessor processing module intended for use as the basic processing 

element in the above system (see Chapters 3 and 4).

c) The definition and development of queueing models and derivation 

of performance parameters for performance analysis of the module (see 

Chapters 3 and 4).



d) The development of diagnostic procedures for (i) internal module 

fault diagnosis and Cii) system fault diagnosis (see Chapter 4).

e) The development and definition of performance-related reliability 

measures and Markovian models for the reliability and performance 

characteristic analysis of the module (see Chapter 5)«

f) The development and definition of (i) a new technique for comparison 

of different module structures, taking into account state-queueing and 

state-Markovian models of the modules, and (ii ) new performance-

related reliability measures based upon (i) (see Chapter 6)..

g) The comparison of the structrue and performance of the nodule

with three other common modal structure using the above technique(see 
Chapter 6).

h) The development of a new reliability modelling technique for 

the analysis of multi-microprocessor systems, where the system can be 

treated as a set of homogeneous and non-homogeneous subsystems, each 

subsystem consisting of a set of non-identical multi-state modules.

8.2 Suggestions for Further Work

In Chapter 1 to 6 we have seen a relatively complete design 

proposal for a novel fault-tolerant multiple-microprocessor processing 

module. It is, however, a proposed scheme, so many of the aspects of 

its performance and usability have only been characterized qualitatively. 

Constructing a prototype for the purpose of evaluation of its implement- 

ability , performance, and usability seems to be the obvious next step.
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Without loss of generality the present modelling and analysis 

have been based on a two-microprocessor module. An extension along 

this direction would be to model and analyze modules with N (for N>3) 

microprocessors and to develop an efficient interactive software package 

in order to perform automated performance and reliability analysis for a 

module with a given set of parameters.

In Chapter 7 we developed a reliability model for closed systems 

consisting of a set of non-homogeneous subsystems. An extension along

this line would be to extend the methods proposed for this modelling/
i

technique to repairable systems and to systems which allow a degree of 

graceful degradation. Another direction for exploring the issues 

surrounding this modelling technique is to develop an interactive soft

ware package in order to perform automated reliability estimations.

*
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APPENDIX A

DERIVATION OF SERVICE PHASE SERVICE TIMES

*

4

The following assumptions are made for the derivation and

evaluation of the analytical expressions for average phase service

times x and x , as given in section 3.4.1.3. n u &2 1
Assumptions:

A.1 - The tasks consist of a "write", or "read" operation 

on the files. These can be issued either locally by the module 

microprocessors, or externally by other processing modules.

A.2 - A "write" operation on a file requires execution of 

the file and the updating of its slave counterpart. Whereas, a 

"read" operation on a file is just transferring data from the file.

A.3 - The task arrivals to the common queue are independent 

distributions of poisson type and have an overall arrival rate X.

It can be shown that for such arrivals the overall arrival distribution 

is also a poisson process, with an arrival rate which is the sum of 

the arrival rates of the constituent processes. Table A.l shows 

the relevant arrival rates.
A. 4 - Each microprocessor is able to execute the "write" or 

"read" operations associated with its different files

A.5 - The service times for the execution of all tasks are 

exponentially distributed. Table A.2 shows the relevant service

rates.



Table A.l - Arrival rates associated with different tasks

Type of request Symbol arrival rate per 
second

"WRITE” on f^, associated wi xi
with process

"WRITE" on f^, associated W2 X2

with process

"READ" on f^, associated Ri X3

with process P^

"READ" on associated R2 X4

with process P^

4
Overall arrival rate A = Y A.

i=i L
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Table A.2 - Service rates associated with different operations on 

the files

Type of service performed by any 

one of the microprocessors

Service rate requests 

per second

Executing of f^, as a master file

Executing of f^, as a master file y2

Updating of f^, as a slave file W 1
Updating of f^, as a slave file “2

"Read" operation on f^ 9i

"Read" operation on f^ CMCD

Stage 1 q id
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To obtain analytical expressions for the average service phase

service times x and x , it is necessary to consider service times 
U1 U2

related to different possible types of tasks that can be encountered

and the probabilities of their occurance. Let P, , P. andk,ur k,u2
*k u* *k u rePresent t îe probabilities of occurance and service times 

tnfor the k n possible type of tasks, associated with processing one,

or two, tasks at' a time, respectively. Hence, the average service

phase service times x and x are obtained as a result of the
U1 u2

summation of the product of the appropriate values of these probabili

ties and their corresponding service times, for all possible cases 

that may arise. That is

u„ - I  pk k,u2 ’ \ , u 2

where,

l pk u = 1 k K,u2

and

u1 kI Pk u \  u k K,ul * 1

where

I Pk u ■ 1 •k K,ul

The second moments of x and x are
U2 U1

and

x_ = y p" x 
U2 k k ’U2 U2

x = I Pi, X 
U1 k K’U1 U1

(A.l)

(A. 2)

(A. 3)
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Figures A.l and A.2 show the different possible types, or combination of

types of tasks, that can occur for processing one or two tasks at a

time, respectively. Tables A.3 and A.4 show the expressions

obtained for the probabilities of occurrance and the service times

associated with P , P. , x and x
k,u2 k>ui u2 ui

Example A.l shows how the expressions for different possible

types, or combination of types, of tasks for P , , P
k,u2 ^,U2

and x^ are obtained by deriving it for one particular case,k, Uj
P„ and x„
1»u2 1 * u2

Example A.l
wi RiA. 1(a) - The probabilities of occurrance P1 of 11 T or

From Fig A.l, for k = 1 the probability of occurrance of
W R R W

CT2x T11 or 12 T1x ] is given by

■Pl,u.
2X1X3
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Table A.3 Expressions for P, and x
1C y  11^ K  y

k Pk,u2 ^k,u2

1 2W ^ 1 i' 1 1 1 1 1 1 
91 V  “l q id V 9]}

2 2\2\ n 2 1 ! 1 1 1 1 1 1
02 y2 W2 ^ID ^ 2 +02̂

3 -k2/\2 2 i 2 h 11
yi “l q id

4 x\ix2 2 + 2__ +
U2 W2 ^ID

5 X23/X2 1 1 
9i+ Qid

6 X2/X2 _1 1_ 
02 QID

7 2 X p  /X2 1 i 1 i 1 i 1 1
yi °2 wi q id c.y_1+02^

8 2X2X3/X2 1 i 1 i 1 i 1 l
y2 + 9i + “ 2 + q id cv ep

9 2X.X./X2 3 4
1 1 1  1 
9l + 92 + Q ID' (W

ia
»

2X1X2/X2 1 + 1 1 1 1 
ui h2 + “i + a)2 + Qid
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Table A,4 - Expressions for P, and x^K.,11̂  k.,Û

k Pk,ux *k*u^

1 1 1 1  

U1 “ l + qi d

1 1 1
2 \2/\ ---  + —-  + TT—u u) 0 m2 2 ^ID

3 v x
1_ 1__
91 q id

4 x4/x i i 
92 + ^iD

A. 1(b) - The service time, x1l,u2

* Fig. A. 3 shows the service procedure associated with 
W R R W

the two tasks CT. T. or T T . .2 1 2 1
Assume that y1 and y are the service times of the 

microprocessors for execution of a "WRITE" and a "READ" on f^, 

respectively. Then the time x1 ? is the following

x = max(y , y ) .

The probability distribution function is
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Fx = probCmaxCyi,r *1,3) i  xl,23 (A-4)

Since, the service times for the execution of all tasks are (a)

exponentially distributed and (b) independent processes,

F (x. can be written as
Xl,2

F (x. = P uCy. . < x. _3 • P .Cy. _ < x„ '] . (A.5)
X1 2 1,2 r0b 1>1 ~  l,2 rob lf2 “  1>2

Therefore,

-U X -9 x
F (x 2) = (1-e 1 n a - e  1>Z)
Xl,2

1 -01X1,2 - V l , 2  t - < V 01)X1,2 •= l -  e - e + e *

The probability density function is then the following :

(A.6)

dF (x1 0) Q
x  ' 1,2J - e x  - V  x

fCx1;2) A — 1’2 *vf 1 1 ’2
dx1,2

+ eje 1 1 .cv  0,) (A. 7)

The Laplace Transform, X*(s), of f(x ) isl, z

e. y-
(S) A L fCx1>2)

th „nn moment, X
(n) (s) of f(xlj2

Ui ♦ e

Cs+ep Cs+vp s+Cu1+91)

., th , . „ , _

(A. 8)
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»

*

thn moment
X" A  / *i,2 ft-xl,2)dXl,2

and
*thn derivative of Laplace Transform

,*(n)Cs) dVls.). . c. „ n  j ~ n  ^ * 1 , 2  

ds11 0

Therefore,

xn = c - i ) n X * ^  (0)

Applying the above formula gives the first and second moments of 

x as follows:
1 j 1

and

However, from Fig.

1

A. 3

ui C v e p

+ 4  ’ W 2 ,

the mean value of x1 is given by
1,u2

x1 = x. + x1 _ + x. l,u2 1,1 1,2 1,3

Therefore

xl,u.

and
2x

1 i 1 1 i
V 1 h “l ^ID Cyi+9i]

2 1 2 2 2
2

^2
+ 2 
“ l ' < 4 (V < V 2

The above method is applied to obtain the different expressions

for P. P. , x. and x. , given in tables A.3 and A.4. k,u2 k,u1 k,u2 k , ^

(A. 9)

(A. 10) 

(A.11)

CA.12)

(A. 13)
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o r

W2= W R I T E  on f i l e  2

o r

T W 1 I R 1 ] 
2 1

2 1

W. R-
1 T ' 

2 1

Wo R.

Ri R'

TW 1 A  
2 1

FIG A.1 [ D i f f e re n t - c o m b i n a f i o n s  of  tw o

t y p e s  o f  t a s k .
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Wo
K = 2 ,  [ T 2 ] 

K = 3 , [ I R l  ] 

K = 4 ,  [ T R2 ]

W = W R I T E  on f i l e  1 
1

W = W R IT E  on f i l e  2 
2

R = R E A D  on f i l e  1 
1

R R E A D  on  f i l e  2

FIG A.2: D i f f e r e n t  t y p e s  of  o n e  t a s k .

X 1,U2

FIG A.3: B l o c k  

t h e  

two  t a s k s

d i a g r a m  r e p r e s e n t a t i o n  of 

s e r v i c e  p r o c e d u r e  f o r  t h e  

TW 1 I R1 or T W1 
2 1

T R 1
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APPENDIX B

THE PROBABILITIES OF HAVING ZERO, ONE AND TWO OR MORE TASKS 

PRESENT IN THE QUEUE, AFTER COMPLETION OF THE SERVICE TIME

Fig B.l shows the probabilities of task arrivals 
at various instants during the operation of the processing 
module, for values of n = 1,2. With the aid of this 
structure and those of Figs. 3.3 and 3.5, it is possible to obtain

the queue status probabilities related to P^. Here, states 

the probabilities of having zero, one and two or more tasks present 

in the queue, after completion of the service routine for a second 

time. This example illustrates the steps undertaken in the develop

ment of the general analytical expressions presented in section

3.4.1.4. As was mentioned, it is assumed that there are zeros

tasks present in the queue for n = 0. That is °ag = 1 and °a^ = =
T=0, i.e. Pq = [ 1 0 03. Resulting from the scanning procedures

(as described in section 3.3.1 and as illustrated in Fig. 3.3) a’s 

are given by

-AS
a. = P , [ no task arrival in S 1 = e w
0 r0b W CB.l)

a. = P .Cone task arrival in S ] = 1 - a.1 rob w 0

Also, from the scanning procedures (as described in section 3.3.2) 

b' s and c's are given by ;
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-Ax
bn - P - [ no task arrival in x 3 = e U10 rob u^

-Ax
b„ = P , Cone task arrival in x 3 = Ax e ul1 rob

b„ =

c„ =

c. =

c„ =

P , [two or more task arrivals in x 3 = 1-fb +b„) rob 0 1
-Ax

P , [no task arrival in x 3 = erob U2
u2

-Axu.
P , Cone task arrival in x 3 = Ax e z
r°b “2 u2

P . [two or more task arrivals in x i3=l-(c >c„) rob u2 0 1

(B. 2)

Since, queue arrival is assumed to have possion distribution with 

an arrival of A.

Considering stage n = 1 in Fig. B.l, the d's can be written as :

'do “ ao bo + aico

'di = ao bl + ai C1

'd> l  = a0 b2 + a l  c2

(B.3)

Similarly, fox n = 2 in Fig. B.l, the d's can be written as :

2<io = Cao V aic<P 1<do + Caobo+aico)ldi + cold>i '

\  = l d o + (a o Y al 0/ d l  + Cl l d > l

2d> l = (a0b2+al C2)ld0 + Ca0b2+al c23 l d l  + c2ld > l

CB.4)
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The above set of equations can be written as :

( 2 ] 
d0

La b +a 'c )li  o r o J CaQb0+alC05 ao
2dl

= Ca^b^+a^c1) Caobi+aici-* ci ldo

2d>!
V. J Ca0b2+alC2] (a0b2+alC2) °2.

1.
>1 J

(B.5)

Letting,

and

P2 = [2d0 '"I

pi = [ldo S  ld> i 3t

E =

a b + a_ c„ a„brt + a... crt c«0 0 1 0 0 0 1 0 0

artb„ + a., c„ a^b. + a. c. c.0 1 1 1 0 1 1 1 1

artb_ + a. c a.b. + a. c ck 0 2 1 2 0 2 1 2 >1

then, equation (B.5) in terras of P^, and E is

P2 ’ EP1 ' (B.6)

Similarly, is given by :

Px = EPQ (B.7)

where, P = Cl 0 03̂ .

Substituting equation (B.6) into (B.7) gives:

P = E^P*2 b V
The above procedure has been used to develop the general expressions 

presented in section 3.4.1.4.



* *

FIG B.1: P r o b a b i l i t i e s  o f  t a s k  a r r i v a l s  a t  v a r i o u s  

i n s t a n t s  d u r i n g  t h e  o p e r a t i o n  o f  t h e  

p r o c e s s i n g  m o d u l e  ; f o r  n= 1 & 2 .
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