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Abstract

Antibiotic treatment of tuberculosis has a duration of several months. There is 

significant variability of the host immune response and the pharmacokinetic-

pharmacodynamic properties of Mycobacterium tuberculosis sub-populations at 

the site of disease. A limitation of sputum-based measures of treatment response 

may be sub-optimal detection and monitoring of Mycobacterium tuberculosis sub-

populations. Potential biomarkers and surrogate endpoints should be 

benchmarked against hard clinical outcomes (failure/relapse/death) and may 

need tailoring to specific patient populations. Here, we assess the evidence 

supporting currently utilized and future potential host and pathogen-based

models and biomarkers for monitoring treatment response in active and latent 

tuberculosis. Biomarkers for monitoring treatment response in extrapulmonary, 

pediatric and drug resistant tuberculosis are research priorities.
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Mycobacterium tuberculosis (MTB) causes a wide spectrum of disease in 

different patient groups. Up to one third of the world’s population are assumed

infected with latent tuberculosis infection (LTBI), a proportion of which will 

progress to active infection. Patients with LTBI are asymptomatic with evidence 

of persistent immunological sensitization against MTB antigens as evidenced by 

a positive mantoux tuberculin skin test or positive interferon gamma release 

assay (IGRA). Reactivation of LTBI can be averted by currently advocated 

regimens with efficacy ranging from 60-90% [1]. The global human 

immunodeficiency virus (HIV) pandemic increases both tuberculosis (TB)

incidence and TB related deaths, particularly in Africa. In 2014, the World Health 

Organization (WHO) estimated there were 9.6 million incident TB cases (12% 

HIV co-infected) and 1.5 million TB deaths (27% HIV co-infected) [2]. In 2014

there was an estimated 480,000 cases resistant to key first line drug rifampicin 

(RIF) and isoniazid (INH) (multi drug resistant (MDR) TB), of whom 

approximately 9.7% had additional resistance to fluoroquinolones and 

aminoglycosides (extensively drug resistant (XDR) TB) [2]. TB treatment is 

believed to follow a biphasic response to chemotherapy with the majority of bacilli 

being rapidly killed early on in the bactericidal phase whilst the sterilising phase 

slowly results in eradication of persisting MTB to reduce risk of relapse. These 

subpopulations may be anatomically sequestrated and thereby escape immune 

surveillance and drug penetration. Currently endorsed treatment regimens vary in 

duration between 6 months in drug susceptible (DS)-TB to 24 months in drug 
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resistant (DR)-TB. Although treatment success rates in DS TB are generally 

close to 90% [2], in drug resistant TB they are below 50% [3].

Standardized definitions of treatment response and outcomes enable optimal 

surveillance and valid comparisons across settings (Table 1).

Priorities in assessment of response to treatment include both identification and 

prediction of treatment induced adverse events such as drug side effects and

paradoxical reactions, temporary and permanent disability secondary to disease, 

treatment failure and subsequent relapse. Assessment of treatment response on 

an individualized and programmatic basis in both adults and children is 

predominantly based on clinical, radiological and bacteriological measures. 

Clinical assessments include overall performance status, weight gain during 

treatment and resolution of systemic and organ based symptoms. Radiological

assessments include use of plain film radiograph to assess resolution of

pathology and to diagnosis of paradoxical reactions. Computed tomography (CT) 

and/or magnetic resonance imaging are also utilized in certain cases if clinically

indicated and within available resource. Bacteriological assessment includes

smear and or culture conversion at various intervals depending on whether 

treating DS- or DR-TB [4]. Blood tests such as C-reactive protein (CRP) can be 

done at baseline and during treatment to monitor clinical improvement. 

Monitoring of liver enzymes pre-treatment is indicated in those with risk of 

premorbid liver disorder and should be monitored, along with all patients 

symptomatic of drug induced liver injury [5]. In some settings, therapeutic drug 

monitoring is used [6]. 
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When conducting research, priorities in assessment of treatment response are

to identify predictors of long-term outcomes, quantify efficacy of agents in the 

context of multidrug therapy, and to ascertain non-inferiority of treatment-

shortening regimens. In TB, adequate powering of studies, and lengthy follow up 

times are required to reliably predict long term unfavourable outcomes, which is

expensive and logistically challenging. For this reason, biomarkers and correlate 

endpoints predicting long-term outcomes are desirable [7]. Changes induced by 

a therapy on a correlate should reliably reflect changes in the long-term

treatment outcome [8]. We will review evidence of host and pathogen based 

biomarkers of long-term treatment response in latent and active TB and outline 

key considerations for future research.
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PATHOGEN BASED MODELS AND BIOMARKERS 

Hollow fiber system model

The hollow fiber bioreactor system can be used as an in vitro pharmacokinetic-

pharmacodynamic (PK-PD) model of TB [9]. It has been used to assess early

bactericidal activity and recreate realistic PK patterns of single and multi-drug 

exposure. It can predict PK/PD exposures associated with development of drug 

resistance. In tandem with Monte Carlo simulations, it can also predict impact of 

dose titration and dosing schedules. It can be adapted to reproduce 

environmental conditions of persistence models to study pharmacodynamics of 

sterilizing activity [9]. However, it does not model the host immune response, 

differential spatial distribution in diseased tissue nor the impact of clinical strain 

variation. Results need to be validated in adequately powered, appropriately 

controlled clinical studies.

Sputum based assays (summarized in table 2)

1) Early bactericidal activity studies

Early bactericidal activity (EBA) refers to the fall in log10 colony forming units 

(CFUs) of MTB per millilitre sputum per day. This can also be measured by time 

to culture positivity (TTP) in liquid media which inversely relates to the number of 

viable MTB in sputum. Serial measurement of decrease in number of CFU/ 

increase in time to culture positivity in sputum samples over 2-14 days is used to 

assess EBA of single drugs or combinations. This chiefly predicts activity against 

rapidly multiplying extracellular MTB in the wall of cavities. Studies can be 

performed relatively quickly, results are reproducible and provide data on 
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bactericidal efficacy of a drug or regimen and its relationship to PK. Hence, 

appropriate doses and combinations can be taken forward to clinical studies [10].

Unfortunately, EBA studies do not accurately predict activity against non-

replicating persisters, sterilization of tuberculosis lesions and risk of relapse. 

Also, as EBA studies are carried out during the first 2-14 days of treatment, they 

cannot predict important drug-drug antagonism during sterilization phase. For 

example, although INH has been shown to contribute most to EBA in 

combination therapy, studies have shown that INH may have an antagonistic 

effect on the sterilizing action of PZA, particularly after the first 2 weeks [11].

Limitations in methodology include variability between different centers and intra-

individual variation pre-treatment [12]. Patients must be able to expectorate good 

volumes of sputum. There may be loss of viable CFUs cultured if sputum is 

decontaminated with sodium hydroxide treatment. There is some evidence to 

suggest type of culture media and growth factors/inhibitors [13] influence growth 

of different populations of MTB during chemotherapy [14].

2) 2-month sputum culture conversion and time to culture conversion as 

intermediate bacteriological endpoints

In a meta-analysis Wallis et al found a relationship between 2-month culture 

status on solid media and relapse rate that was consistent across regions [15]. 

There was significant correlation between 2-month (Hong Kong) and 3-month 

(Africa) culture status and combined rate of failure, relapse and death [16].

Johnson et al showed that treatment shortening from 6 months to 4 months in 

patients with both non-cavitatory pulmonary disease and culture negative status 
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at 2 months was associated with a significantly increased risk of relapse 

compared with a standard 6 month regimen [17]. These findings were also 

supported by another retrospective analysis [18]. Despite Phase 2 studies 

demonstrating higher rates of negative 2-month sputum cultures and earlier time 

to culture conversion when compared to standard 6-month control regimens

[19,20], four phase 3 treatment shortening trials involving fluoroquinolones [21-

24] failed to show non-inferiority of treatment shortening. This apparent lack of 

correlation between sputum conversion and treatment outcome is thought to be 

due bacterial persistence and incomplete sterilization by 4-month fluoroquinolone 

regimens. Using meta-regression modeling, Wallis et al showed that 2-month 

sputum conversion and treatment duration could independently predict relapse 

[25]. This model also predicted that, given the treatment duration of 

aforementioned trials, there would be unacceptable relapse rates as clinical 

outcome [25]. The predictive value of 2-month sputum conversion was

maintained despite incorporation of data from the fluoroquinolone trials [26]. 

Time to culture conversion over 8 weeks, in solid (serial CFU counts) or liquid 

cultures can be modeled to predict bacillary elimination rates (BER) [27]. Sloan et 

al showed BER in the sterilizing phase (after 7 days) was non-linear with high 

inter-individual variability. A significant negative correlation was seen between 

sterilization phase BER and treatment failure or relapse [28]. However, no 

threshold was identified to predict failure or relapse.

Kurbatova et al used data from 2 cohort studies to develop models assessing the 

utility of culture conversion at 2 and 6 months as proxy markers of end of 
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treatment response in MDR-TB. Culture conversion at 6 months had a significant 

association with treatment success in MDR TB compared with failure or death 

(adjusted OR 14.07) with a predicted sensitivity of 92% and specificity of 58%. 

Culture conversion at 2 months was significantly associated with successful 

outcome in HIV uninfected patients (adjusted OR 4.12) but had less utility in HIV 

infected patients and low overall sensitivity [29].

3) Polymerase chain reaction-based methods for quantification of viable 

mycobacteria in sputum 

Polymerase chain reaction (PCR) based methods with real time detection of MTB 

deoxyribonucleic acid (DNA) have had a significant impact on programmatic

diagnosis of MTB and baseline drug resistance. The utility of using tests such as 

GeneXpert® MTB/RIF (Cepheid Sunnyvale, CA, USA) and GenoType 

MTBDRplus/MTBDRsl (Hain Lifescience Nehren, Germany) to ascertain sputum 

sterilization at any point during treatment is limited by DNA amplification from 

dead bacteria in clinical samples [30]. There is ongoing research to improve 

specificity of DNA amplification from live bacteria through treatment of sputa with 

agents such as propidium monazide, a DNA-binding dye that penetrates through 

damaged cell walls and inhibits PCR amplification via DNA modification [31]. An 

alternative approach includes quantification of abundant ribonucleic acid (RNA)

species extracted from sputum as surrogate markers of bacterial clearance

[32,33]. Honeyborne et al showed a high correlation between 16S ribosomal

RNA (rRNA) with TTP in liquid media and CFUs on solid media over the first 14 

days of treatment [34]. Although the half-life of messenger RNA (mRNA) and 
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rRNA is significantly shorter than DNA in sputum, in the context of ongoing 

chemotherapy, it is unclear what proportion of m- and rRNA in expectorated 

sputum originates from dying bacteria. Although results suggested by 

biexponential modeling are promising, further studies are required to verify if 

measurements of 16s rRNA earlier on in treatment can predict failure and 

relapse [35]. Clinical studies are required to ascertain if detection of rRNA and/or 

mRNA in the sputum of clinically asymptomatic culture negative patients at the 

latter stages of treatment i.e. potentially viable but non-culturable MTB, correlates

with relapse. Clearance of 85B mRNA by Day 2 was also associated with early 

culture conversion by 1 month [32]. 

4) Staining of sputum (viability and lipid bodies)

Assessment of MTB viability early during treatment may expedite detection of 

true (culture proven) treatment failure [36]. This may be appropriate in settings 

with limited laboratory capacity, and infrastructure to carry out culture based 

techniques and drug susceptibility testing. Fluorescein diacetate, used to stain 

clinical samples, is hydrolyzed by acetylesterase by live metabolically active MTB 

and resulting fluorescent bacilli quantified using a light emitting diode

fluorescence microscope. Datta et al. showed quantitative viability microscopy 

accurately predicted the concentration of culturable MTB in sputum and was able 

to differentiate DS and DR TB patients within 9 days of treatment [37]. This 

technique is not applicable in smear negative patients. Further potential utility of 

this viability staining technique includes monitoring efficacy of treatment 

response to both novel and MDR TB treatment regimens. 
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MTB stores and utilizes lipids as an energy source. In vitro models of dormancy 

have shown accumulation of host triacylglycerol as lipid bodies under control of 

triacyl glycerol synthase 1 [38]. These lipid bodies can be detected in sputum via 

staining with auramine-labelled Nile-Red stain both pre- and during treatment.

Change in detectable lipid bodies during the first 2 weeks of treatment, is

hypothesized to reflect an increase in viable but non-culturable persisters, and 

significantly varies with different drugs [39]. In a preliminary study, Sloan et al.

showed that at week 3-4 of treatment, there was 21% increased odds of 

unfavourable outcome (failure/relapse) for each percentage rise in % lipid body 

positive acid-fast bacilli (AFB). Baseline counts of % lipid body positive AFB did 

not predict treatment response [28]. 

5) Whole blood bactericidal assay

Growth of clinical MTB isolates in ex vivo whole blood culture taken at selected 

time points during therapy is a potential biomarker of sterilizing activity, 

encompassing both strain variation and host effector immune mechanisms. In 

one study, whole blood bactericidal activity correlated with rate of fall in sputum

CFUs over the first 4 weeks of antituberculosis treatment (ATT) and inferior 

bactericidal activity was seen in whole blood culture of patients with delayed 

sputum sterilization [40]. Whole blood culture of H37Rv at different doses and in 

combination with novel regimens for DR-TB has been used to rapidly assess 

bactericidal potential and drug-drug antagonism/synergy [41].

6) Mycobacterial products (non-nucleic acid)
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Wallis et al. showed that levels of Antigen 85 (Ag 85) in sputum, as quantified by 

ELISA, with levels > 60pg/ml at 2 weeks were predictive of liquid cultures 

becoming positive within 20 days beyond day 90 of therapy. This microbiological 

feature identified both of the patients that failed treatment in this study. 

Conversely, Ag 85 < 60pg/mL at 2 weeks was predictive of rapid cure in 26 of 26 

cases [42]. The accuracy and reliability of Ag 85 measurement by this method 

and its ability to reflect initial bactericidal activity was confirmed in a further study 

[43]. 

Non-sputum based mycobacterial products

The other antigen-body fluid combination that has been studied during treatment 

is lipoarabinomannan (LAM) in urine. Wood et al. measured urine LAM by ELISA 

in 200 adults with active TB pre-treatment, daily during week 1, then weekly at 

weeks 2, 8, 16 and 24 [44]. LAM positivity was almost entirely restricted to 

individuals co-infected with HIV-1 co-infection and with low CD4+ counts 

(especially < 50 cells/ul). Average LAM levels throughout the LAM-positive cohort 

remained the same for the first 2 weeks of treatment but then dropped by around 

1 log10 by 8 weeks, disappearing altogether by 24 weeks. Use of this marker for 

clinical trials would require further validation, however, as levels of LAM in urine 

may largely reflect bacterial load in the kidney rather than systemically or in the 

lung. Further verification has been provided to some extent by a pilot study by 

Drain et al., in which 29 urine LAM-positive adult patients in Durban, South 

Africa, had repeat assays performed at 2 and 6 months [45]. LAM levels 

decreased significantly from 0 to 2 months and again through 6 months, but the 
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sample size was not adequate to correlate LAM levels with clinical improvement.

LAM was measured using the Alere DetermineTM TB LAM Ag test that is semi-

quantitative, offering a choice between one of 4 categories of positivity. A LAM 

grade of 2 or more at 2 months was associated with a hazard risk (HR) of death 

from any cause of 5.58; and any positivity at 6 months with a HR of 42.1, 

however, although cause of death was not known in every case. 

In latent TB, Young et al. found 6 mycobacterial proteins that were present in 

urine of HIV uninfected patients which suggests that products other than LAM 

may be useful for measuring bacterial load over a wide dynamic range, but these 

require verification in longitudinal studies [46]. 
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HOST BASED BIOMARKERS

Lung function testing

Most active pulmonary TB patients exhibit a combined obstructive/restrictive 

pattern of lung function impairment, however the restrictive impairment pattern 

seems to be more responsive to successful ATT with the residual loss in lung 

function being predominantly obstructive in nature [47,48]. A South African study 

evaluating the influence of ATT on spirometry, radiographic score and 

inflammatory markers in hospitalised pulmonary TB patients found that 

impairment in lung function did improve with ATT in most (54%), but that a 

substantial proportion of pulmonaryTB patients developed residual impairment 

(26%) or worsened outcome (20%) in lung function in comparison to pulmonary 

function at treatment initiation [48]. Interestingly participants who were HIV-1 

infected failed to demonstrate significant improvement in lung function at 

treatment completion. This was independent of smoking status and adherence to 

treatment. Furthermore the extent of loss in lung function, correlated with number 

of TB episodes [49]. It can therefore be inferred that resolution of a restrictive 

lung function pattern may be the most useful spirometric correlate of treatment 

response in the acute setting, whereas the degree of airflow obstruction at 

treatment completion and thereafter has value in determining the degree of 

residual impairment that may lead to chronic airflow obstruction and disability. 

Radiological markers (summarized in table 3)

1) Chest radiography
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Chest radiography (CXR) is widely utilized in patients with TB symptoms 

although it lacks specificity as diagnostic test. Problematic factors in the 

application of chest radiographs as both a diagnostic and monitoring modality 

include inter-observer variability, atypical radiographic appearance of TB in the 

setting of HIV-1 co-infection and lack of a universally reading tool/scoring system 

for either. The Timika score that comprises a simple numerical score that grades

radiographic severity in the setting of smear positive TB, has found application 

particularly in the clinical trials setting as predictive of 2-month sputum 

conversion status. The score comprises the proportion of visible pulmonary 

involvement (%) with the number 40 added should one or more cavity be present 

[50]. Although it is well established that there is an inverse association between 

cavity number and volume on chest radiograph and TTP in liquid culture media 

[51], it was still found that the Timika score out-performed its individual 

components in predicting 2 month sputum status. At a cut-off of 71 the score 

could predict a positive sputum smear at 2 months with a sensitivity of 80% (95% 

CI 61.4 to 92.3) and a specificity of 67.7% (95% CI 57.3 to 77.1). There was 

positive correlation between the score and smear grade at diagnosis (p<0.001) 

and quality of life assessment by St George’s Respiratory Questionnaire (higher 

scores indicative of greater impairment) and a negative correlation with body 

mass index, forced expiratory volume in one second or FEV1 (% of predicted), 

haemoglobin, and exercise tolerance as measured by the 6-minute walk test 

(p<0.02 for all correlates other than smear grade). The score had initially been 

developed and validated in an Indonesian population that was mostly HIV-1 
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uninfected, however in an unrelated cohort from Cameroon with 30% HIV-1 co-

infection the score also predicted sputum non-conversion at two months with 

similar specificity and sensitivity, albeit by using a lower cut-off value [52]. 

Although there was poor inter-reader agreement in the initial study by Ralph et al.

(prevalence and bias adjusted kappa: 0.37 for cavitation, 0.31 for patchy 

consolidation and 0.7 for confluent consolidation), a recent publication from 

South Africa showed greater agreement (kappa value for cavitation: 0.66, overall 

inter-reader correlation: r=0.86, p<0.001) in using the Timika score [53]. The 

latter study however found an optimal score cut-off of 61.3, which could only 

predict 2 month sputum smear status with a sensitivity of 74.1% (95%CI 65.0 to 

81.9) and a specificity of 57.7% (95%CI 51.7 to 63.6). Utility in predicting long 

term outcomes of failure and relapse by month 30 was limited by suboptimal 

sensitivity and specificity of 67% and 57% respectively. The persistance of one or 

more cavity on chest radiograph after treatment completion may have prognostic 

value. Indeed it was found that patients with a persistent cavity on their end of 

treatment CXR had more than twice the risk for TB relapse when compared to 

those with resolved cavities [54]. 

2) Ultrasound

Particularly in the context of asymptomatic disease, ultrasound (US) represents 

an imaging modality with reliable detection capabilities that may be utilized by the 

clinician and researcher alike. The commonest radiographic finding in pulmonary 

TB in children is mediastinal lymphadenopathy, which may be readily detected by 

US. US detection of mediastinal lymphadenopathy was comparable to CT and 
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had superior sensitivity to chest x-ray [55]. Bosch-Marcet et al. performed a 

retrospective study of 21 children who had been treated for active TB on the 

basis of a positive tuberculin skin test and mediastinal lymphadenopathy 

following suprasternal or left parasternal ultrasound scanning [56]. Only 11 (52%) 

were symptomatic. US was repeated at 3 months, and in 17 (81%) cases, the 

extent of lymphadenopathy decreased by at least one category (5 ad hoc

categories had been established by the authors purely for the purposes of this 

study) with 2 participants responding later. The importance of these findings is 

slightly blunted by the fact that the cut-offs used to define a response may have 

been fitted to the results. Also, US is non-invasive with low running costs. Further 

studies, including both HIV infected and uninfected children and earlier time 

points, are warranted.

Sharma et al. employed US as part of a monitoring package to assess the 

efficacy of thrice-weekly ATT for 351 patients with definitive or probable 

tuberculous pleural effusions in India. All cases were HIV uninfected with 

uncomplicated small (<1.5 l) unilateral pleural effusions [57]. Clinical and 

sonographic assessments were performed at 0, 2, 4 and 6 months and clinical 

follow-up was also performed post-treatment at 9, 12, 18 and 24 months. Of the 

308 patients that completed follow-up to 6 months, 89% had "complete 

resolution" as defined by clinical and sonographic recovery. A negative US at 6 

months was therefore specific for cure but not 100% sensitive, as of the 26 

patients that still had residual fluid at 6 months, only 2 relapsed. Ultrasound also 

allowed differentiation of residual fluid from pleural thickening. The majority of 
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cases did not require drainage and so comparison with pre-treatment effusion 

volume is relevant. Follow up data were not shown in this study. Studies 

informing the utility of US in monitoring TB treatment response in HIV co-infection 

are scarce.

With regard to peritoneal TB, US may be useful for follow-up, having confirmed 

the diagnosis by more specific means, but there are currently relatively few 

studies supporting this [58,59]. Further studies at earlier time points, with larger 

numbers and in different age groups and degrees of immunosuppression are 

warranted.

3) Combined 18Fluorodeoxyglucose positron emission- and computerized 

axial- tomography (PET/CT)

PET/CT is an established method for monitoring response to cancer treatment 

and has recently been incorporated into clinical studies of TB. Chen et al.

performed PET/CT imaging (high resolution CT) as a sub-study of 35 adults with 

MDR-TB who had been enrolled into a trial of adjunctive metronidazole vs. 

placebo in South Korea [60]. The results showed that, in comparison to sputum 

culture status or CT alone at 2 months, PET/CT performed better with a 

sensitivity of 0.96 and specificity of 0.75 to predict durable cure. This was on the 

basis of change from baseline activity/score. This study provided proof of 

concept that PET/CT may provide a valuable early outcome measure for use in 

clinical trials. PET and CT appeared highly complementary in that whilst cavities 

(highly predictive of outcome) are cold on PET, other lesions such as nodules or 
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consolidations are better quantified by metabolic activity (C.E. Barry III, private 

communication).

Coleman et al. studied PET/CT to monitor of XDR-TB infected macaques at 0, 1 

and 2 months after commencement of treatment with linezolid (LZD) 

monotherapy [61]. The treatment group showed a significant reduction in disease 

activity by PET as early as 1 month. The authors also analysed PET/CT results 

from a previously published human study in which LZD was added (successfully) 

to the regimen of 41 patients with XDR-TB who were failing treatment. The 

majority of patients who received repeat imaging within 3 months post-LZD had 

decreases in their PET activity scores of magnitude similar to that seen in 

macaques. This provided validation of the macaque model for assessing LZD 

potency. In addition, 1 participant who had an initial response by PET at 1 month 

had a subsequent increase in FDG uptake at 6 months, correlating with the 

emergence of LZD resistance. PET/CT therefore appears to be a promising 

technique for predicting outcome of TB treatment, possibly as early as 1 month. 

Further studies in humans employing PET/CT at 1 month and 2 weeks are in 

progress. A limitation to repeated use of this imaging modality is the high level of 

radiation exposure when combined with CT. Also, the assay measures total 

metabolic activity at the disease site thought mainly to reflect host neutrophil 

response.

Ghessani et al. performed PET/CT before and after treatment of "latent TB" in 5 

adult close contacts with positive IGRAs [62]. 3 of the 4 participants who had 

detectable FDG uptake in hilar lymph nodes showed a decrease or resolution of 
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uptake post-treatment, whilst the 5th only showed calcification on CT initially. 

Whether or not these changes occurred as a result of drug therapy or merely

reflect the natural history of LTBI, this small study indicates that PET/CT does 

have the resolution to enable this area to be explored in greater detail. PET/CT 

may have potential to become a gold standard for monitoring response to LTBI 

treatment in clinical trials and for assessing the performance of other, simpler 

methods of judging position of individual patients on the spectrum of LTBI. 

Immune markers (summarized in table 4)

1) Acute phase proteins

The acute-phase response can be triggered by inflammation, infection or tissue 

injury and is characterised by cytokine induced release of predominantly hepatic 

synthesised proteins into the circulation. Although not specific to TB, a number of

the acute-phase proteins have been proposed as useful in monitoring the decline 

in inflammation typically observed in response to antimicrobials. Most notably, 

CRP concentration rapidly decreases within the first month of ATT in tandem with 

the reduction in sputum bacillary load observed in treatment responsive patients 

[63] and return to normal of initially elevated CRP concentrations may correlate 

with therapeutic response [64]. Conversely, pre-treatment concentrations above 

20mg/l which persisted during treatment was associated with adverse treatment 

outcomes in one small study [65].  Procalcitonin (PCT) levels are rarely 

significantly elevated in tuberculosis, so much so that it is often used to 

differentiate acutely between pulmonary TB and pneumonia, where the latter 

often exhibit elevated levels of PCT. The exception being in cases of severe and 
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disseminated TB, where PCT levels equal or in excess of 0.5 ng/ml is indicative 

of poor prognosis and increased mortality risk [66].

2) Cytokines and T lymphocyte subsets

Despite the wide variability and often contrasting findings observed in the review 

by Clifford et al. [67], it was found that the majority of studies evaluating both TB-

antigen stimulated and unstimulated cytokine responses found decreasing 

concentrations of tumour necrosis factor-α (TNFα) over the course of successful 

ATT. There are contrasting results in the literature regarding the change in IL-10 

production during treatment [67]. Sahiratmadja et al measured IL-10 and IFNγ 

response to ex vivo stimulation of peripheral blood mononuclear cells with MTB 

and found evidence of an increasing IFNγ/IL-10 during chemotherapy [68]. Mihret 

et al, also showed an increase in IFNγ/IL-10 in plasma from HIV-1 uninfected 

(but not HIV-1 co-infected) participants during chemotherapy [69]. Initial data by 

Harari et al, showed that by the end of successful treatment, individuals exhibited 

a shift from MTB-specific CD4 T cells of single positive TNFα expressing 

phenotype towards a polyfunctional MTB-specific T cell profile (expressing IFN-

γ⁺ , TNFα⁺ and interleukin-2⁺ (IL-2⁺ )) [70]. It has been suggested that 

mycobacterial load influences phenotypic expression of MTB-specific CD4 T 

cells, as single positive TNFα producing T cells are associated with high 

mycobacterial load. Successful ATT decreases mycobacterial load and restores 

peripheral T cell proliferation capacity and some studies have shown that 

polyfunctional T cells and MTB-specific cells T cells with single expression of IL-2 

predominate [71]. Some subsequent studies have failed to conclusively 
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demonstrate that polyfunctional MTB-specific T cells are definitively associated 

with successfully treated TB, whilst others assert that IL-2⁺ single producing 

and/or IL-2⁺ and IFN-γ⁺ double producing MTB-specific T cell frequency is 

associated with successful treatment [72-74]. Multiple studies have shown a 

decline during therapy in the proportion of unstimulated and MTB antigen-

stimulated regulatory T cell subsets (CD4+CD25highCD127low , CD4+CD25+FoxP3+

,CD4+CD25highCD147++ and CD4+CD25highCD127lowCD161+ Tregs) in both 

pulmonary and extrapulmonary TB [75]. This is a potential biomarker in sputum-

sparse and smear negative individuals [75]. However, there is variation in Treg 

responses during chemotherapy in different studies. Differential human leukocyte 

antigen (HLA) expression in different populations may explain this variation [75].

A recent study also showed that MTB-specific T cell expression of activation 

status as measured by HLA-DR and CD38, along with the intracellular 

proliferation marker Ki-67 correlates with both bacillary burden and subsequent 

sputum conversion [76], but these findings need to be validated in larger 

prospective studies. 

Urokinase-type plasminogen activator receptor is expressed by immune cells in 

response to bacterial phospholipases and pro-inflammatory cytokines. Rabna et 

al.  showed that high  plasma levels of soluble urokinase plasminogen activator 

receptor (suPAR) at inclusion, or at any point during treatment was associated 

with increased mortality. An increase in suPAR after 1 month, compared with 

diagnosis, was associated with a Mortality Rate Ratio (MRR) of 4.5 (95%CI: 

1.45–14.1) during the remaining 7 month treatment period. However, this study 
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did not identify a threshold to define ‘high suPAR’ levels but specified that levels 

below 3.5ng/ml were associated with low mortality [77]. 

3) Tissue destruction and remodeling markers

There is interest in the matrix metalloproteinases (MMPs) in the setting of TB 

biomarker research. The MMPs constitute a group of endopeptidases secreted 

by a variety of host cells in response to TB-related MMP upregulation and in so 

doing affects enzymatic degradation of extra-cellular matrix proteins which may 

play a crucial role in cavity formation [78]. Numerous MMPs, most notably MMP-

1 and MMP-3, have been found to be increased in patients with active pulmonary 

TB [79], independently associated with higher TB severity scores [80] and 

undergo rapid decline during treatment [78]. MMP-1, -3 and -8 concentrations in 

sputum has also been found to decline in response to successful ATT [81]. 

Delayed sputum culture conversion was associated with increased MMP-1 levels 

[82]. Elevated MMP-9 levels have been associated with TB meningitis, with 

treatment related decline in concentrations being apparent in one small study

[83]. Thus, MMPs represent an attractive possibility as TB biomarkers, given the 

potential of recognition of phenotypically distinct clinical presentations of TB 

perhaps in conjunction with other TB biomarkers such as heme-oxygenase 1 

[84].

Transcriptomic profiling

TB is characterized by an interferon-inducible neutrophil-driven peripheral blood 

transcriptional signature [85]. Several studies have documented this signature 

relates to disease extent and shows reversion during successful therapy towards 
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that of latently infected control participants, with the most profound changes 

occurring within the first weeks of treatment [85], [86]. Cliff et al. showed down-

regulation of complement and interferon- related genes involved in the 

inflammatory response after 1 week. There was a slower up-regulation of 

lymphocyte components, including B- and T-lymphocyte- related genes between 

weeks 4 and 26 of ATT [87]. Participants experiencing subsequent relapse 

showed significant up-regulation of cytotoxic cell-mediated killing in response to

MTB in vitro both at baseline and up to 4 weeks of ATT [88]. Thus, there is the 

potential of transcriptomic profiling to aide both research on novel tuberculosis 

treatments and to monitor therapy. However studies of greater power and with 

adverse outcomes are required to benchmark this promising technique better.

Interferon-gamma release assays (IGRA)   

The antigen specific release of interferon-gamma in response to MTB antigens in 

vitro has become an accepted alternative to the tuberculin skin test when 

determining immune sensitization. It is also well recognised that change in the 

response to tuberculosis antigens in vitro occurs during ATT [89]. However a 

recent systematic review on the use of IGRA for treatment monitoring concluded 

that whilst the response tended to fall during treatment, there was a large degree 

of individual variation and thus IGRA were not felt useful in this respect [90]. A 

number of experimental studies have also documented clear changes in antigen 

specific interferon-gamma release during the course of treatment for latent 

tuberculosis [91], [92], [93]. However the absence of a ‘gold standard’ for the 
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diagnosis of latent tuberculosis confounds interpretation and large-scale studies 

with clinical endpoints have not been performed.

EXPERT COMMENTARY

Nahid et al. suggested recommendations for a TB specimen and data repository

associated with clinical studies that have been adopted in part by some agencies 

funding tuberculosis cohorts. These include formation of multi-site consortia with

appropriate field site and laboratory equipment, infrastructure and storage 

facilities. Samples should be taken pre-treatment and longitudinally during an 

adequate length of follow up [8]. Suggested samples for biobanking including

serum, plasma, DNA, RNA, sputum, urine, peripheral blood mononuclear cells 

(PBMC) and, where appropriate, ‘site of disease’ samples such as pleural, 

pericardial, bronchoalveolar and cerebrospinal fluid. Sequential culture isolates 

should be stored for strain typing and DNA fingerprinting. Detailed clinical 

metadata should be accrued concurrently, along with adherence assessment.

Cohorts from diverse epidemiological settings and representing the full spectrum 

of paediatric TB should be followed up longitudinally in a standardized manner to 

create biorepositories enabling development of biomarkers for treatment 

monitoring in paediatric TB [94].

To date, there is a deficit of studies addressing potential biomarkers to predict

treatment failure and relapse in DR-TB. This is a research priority to be 

addressed in both prospective cohorts and randomised controlled trials 

assessing efficacy of new DR-TB regimens. Such biomarkers/surrogate 

endpoints will hopefully expedite regulatory approval of new drugs [95].
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An optimized composite disease severity score could be developed to screen 

individuals at high risk of unsuccessful outcome at baseline or relatively early 

during treatment. These individuals can then be prioritized for intensive treatment 

monitoring and potential treatment intensification. This should be ideally based 

upon multiple minimally invasive modalities that are cost effective, of high 

sensitivity and have a relatively rapid turn around time. In light of significant inter-

reader variability, computer-assisted algorithms of radiographic images may hold 

promise and deserve further attention.

There is considerable heterogeneity observed in the immune response to 

tuberculosis with a myriad of host and microbial related factors playing a role in 

inter-individual and geographic variation in the measured immune response to 

MTB [96]. Whilst biomarkers should ideally be generalizable across ethnically 

diverse populations, there is evidence that they need to be tailor-made to specific 

sub-groups. At this time there is little evidence for any single or combination of 

cytokines, chemokines or TB-specific cells that can serve as reliable surrogate 

marker of TB treatment response.

In pulmonary TB, there is the possible limitation of - detection and monitoring of 

viable MTB sub-populations including minority drug resistant variants and non-

replicating persisters. Expectorated sputum is a stochastic sampling of the 

disease site of varying inoculum size. In the laboratory, variability in 

decontamination practices, use of media and supplements and MIC breakpoints

can significantly affect surrogate endpoints. Where possible, universal standard 

operating procedures should be prepared when planning large multi-site studies. 
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The PanBiome Study by the PanACEA and PreDiCT-TB consortia

(http://www.predict-tb.eu/panbiome-project) will report novel molecular and 

culture approaches as biomarkers of treatment response, as compared with 

traditional solid and liquid culture techniques. The availability of high coverage 

genome sequencing directly from clinical samples may assist optimal 

characterization of minority bacterial subpopulations. Novel methods of 

characterizing the time-kill effect of chemotherapy on bacterial sub-populations

over the dosing interval could be developed through pharmacodynamic 

modeling.

Transcriptomic profiling could contribute significantly to the research evaluation 

of novel or repurposed antimicrobial and host-directed drugs. However the 

methods are not standardised and studies that benchmark against sufficient hard 

clinical outcomes are necessary. Ongoing work of promise revolves around the 

definition of a transcriptomic signature of risk of progression in latently infected 

persons.

Presently available commercial interferon-gamma release assays have little role 

in monitoring the treatment of active TB. Whether experimental assays 

incorporating new antigens and cytokine combinations could contribute to 

monitoring the treatment of active or LTBI is unknown. The latter would be very 

helpful as there is no way to infer the likely efficacy of a treatment for LTBI other 

than by a very large trial with the clinical endpoint of active TB. Ongoing studies 

of PET/CT in LTBI also have the potential to contribute to research evaluation of 

new treatment regimes.
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FIVE YEAR VIEW

Ultimately, establishing reliable evidence-based measures of monitoring 

treatment of TB will require a deeper understanding of pathogenesis, including 

both host and mycobacterial factors.

Novel technologies and integrated use of transcriptomic/proteomic/metabolomic 

approaches may enhance treatment monitoring, particularly of special treatment 

groups such as paediatric and extrapulmonary TB. Developing mass 

spectrometry-based technologies as well as novel biosensors and “antigen 

capture” techniques such as aptamers are also likely to be investigated. 

A preliminary study by Nahid et al used a multiplexed aptamer-based proteomic 

technology to define a non-culture based 5-marker signature predictive of 2-

month culture status. This approach shows promise and should be validated in 

larger cohorts [97]. The diversity of the MTB secretome and the distinctive MTB-

associated cell wall lipids provide an attractive option for future sputum antigen 

based tests. A limitation of these respiratory assays is that they are restricted to 

populations of bacilli that are able to access the airways. Rapid clearance of 

bacteria from the sputum is highly desirable and essential, but achievement of 

this status does not guarantee avoidance of relapse.

An objective of future research is to enhance understanding of post-

transcriptional and post-translational regulation of cytokines/chemokines and 

their role in host-pathogen immune response.

Future research objectives also include advancing knowledge of how lung and 

sputum microbiome affects MTB response during chemotherapy. Genetic [98]
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and epigenetic [99] mechanisms are likely to contribute to treatment response 

through numerous pathways such as plasticity of the immune response and 

pharmacogenomic variability. As demonstrated by Prideaux et al, differential 

spatial distribution and kinetics of accumulation in diseased tissue can help 

predict sterilizing activity of existing and new drugs [100]. Enhanced 

understanding of the tissue micro-environment will guide rationale for

individualized dosing and duration of specific drugs based upon the kinetics of 

drug action. A multi-systems approach has been used by Pienaar et al. to 

integrate spatio-temporal dynamics of granuloma formation and immune function, 

PK in plasma and tissue and time to sterilization of intracellular, extracellular 

replicating and extracellular non-replication MTB populations [101]. 
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KEY ISSUES

 Biomarker research may be enhanced by the standardized collection and 

preservation of samples longitudinally during treatment. Potential 

biomarkers should be benchmarked against hard clinical outcomes.

 Some biomarkers may need to be tailored to specific population sub-

groups. Biomarkers for monitoring treatment response in paediatric TB and 

drug resistant TB are a research priority.

 A limitation of sputum-based measures of treatment response may be 

suboptimal detection and monitoring of viable MTB sub-populations 

including minority drug resistant variants and non-replicating persisters.

 PET/CT may provide a valuable early outcome measure for use in clinical 

trials of drug sensitive, drug resistant and latent TB. Ultrasound scanning

may be useful in monitoring mediastinal lymphadenophathy in children 

and treatment response in extrapulmonary TB. A validated chest x-ray 

score of disease severity at baseline show promise for predicting interim 

treatment outcomes.

 Currently there is no single or combination of cytokines, chemokines or 

TB-specific cells which is a reliable surrogate marker of treatment 

outcomes.

 Presently available interferon-gamma release assays have little role in 

monitoring the treatment of active TB. 

 The blood transcriptomic signature in active TB may predict host response 

to treatment and correlates with disease severity. Standardization of 



31

methodology is important.

 Interplay between the spatio-temporal distribution of drugs at the disease 

site, bacillary sub-populations of varying levels of drug susceptiblity and 

interactions with the host immune microenvironment may be studied via a 

multi-systems approach.
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 A computational tool comprising numerous factors including 
immunological factors, drug penetration at the level of the granuloma and 
host pharmacokinetics and –dynamics to assist in the evaluation of 
treatment response.
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Table 1 Treatment response and outcomes in active TB (adapted from [4])

Treatment 
response/outcome

Drug susceptible TB Drug resistant TB

Interim 
Paradoxical reaction Paradoxical worsening or recurring of tuberculous lesions or development of new lesions 

despite successful anti-TB treatment in response to an exaggerated and dyregulated 
immune response in the context of rapidly recovering immunity and presence of abundant 
infective antigen

Culture conversion Two month culture conversion: Having shown 
baseline culture positivity, at least 1 negative 
culture by 2 months

Having shown baseline culture 
positivity, 2 consecutive cultures, taken 
at least 30 days apart are found to be 
negative

Culture reversion After initial conversion, 2 consecutive 
cultures, taken at least 30 days apart, 
are found to be positive. 

Long term 
Treatment cure A patient with bacteriologically confirmed TB at 

the beginning of treatment who was smear- or 
culture-negative in the last month of treatment 
and on at least one previous occasion

A patient with bacteriologically 
confirmed TB who has completed 
treatment as recommended by the 
national policy without evidence of 
failure and 3 or more consecutive 
negative cultures taken at least 30 days 
apart post completion of the intensive 
phase

Treatment completer A TB patient who completed treatment without 
evidence of failure but with no record to show 
that sputum smear or culture results in the last 
month of treatment and on at least one previous 
occasion were negative

Treatment completed as recommended 
by the national policy without evidence 
of failure but no record of 3 or more 
negative consecutive cultures taken at 
least 30 days apart post completion of 
the intensive phase

Treatment success The sum of cured and treatment completed
Treatment failure A TB patient whose sputum smear or culture is 

positive at month 5 or later during treatment. 
Treatment terminated or need for 
permanent regimen change of at least 2 
anti-TB drugs because any of:
− lack of conversion by the end of the 
intensive phase
− bacteriological reversion in the 
continuation phase after conversion to 
negative
− evidence of acquired drug resistance 
− adverse drug reactions/paradoxical 
reaction 

Treatment relapse Patients who were declared cured or treatment completed at the end of their most recent 
course of TB treatment, and are now diagnosed with a recurrent episode of TB.  This can be 
either a true relapse or a new episode of TB caused by reinfection*

Lost to follow up A TB patient who did not start treatment or whose treatment was interrupted for 2 
consecutive months or more

Died A TB patient who dies for any reason before starting or during the course of treatment



Table 2 Sputum (direct specimen or cultured isolate) based methodology for treatment monitoring

Methodology Utiliity Limitations Ref
Early bactericidal 
activity as measured 
by rate of fall in 
CFUs/increased time 
to positivity in liquid 
culture over first 2-14 
days of treatment

Bactericidal efficacy (including 
synergism/antagonism) of single drug or 
regimen and its/their relationship to PK 
can be ascertained. Results can be 
ascertained relatively quickly and 
therefore guide progression to phase 2 
clinical trials

There can be variability between 
different centers and intra-individual 
variation pre-treatment. Results can 
be affected by media and growth 
factors used. Sterilizing activity 
against non-replicating persisters is 
not accurately predicted

[12,14]

2 month sputum 
culture conversion 
and time to culture 
conversion.

Significant correlation with combined 
rate of failure, relapse and death and 
provides an intermediate bacteriological 
endpoint. Mixed effects modeling of time 
to culture conversion data in solid and 
liquid media can better characterize 
pharmacodynamics of treatment

In both DS and DR TB, neither 2-
month culture conversion as a binary 
outcome nor time to culture 
conversion is a perfect surrogate end-
point when considering long term 
outcomes in the individual and as a 
trial efficacy endpoint. Inter-laboratory 
variation in SOPs can also affect 
comparability results.

[15-
18,25,26,28,29]

Polymerase chain 
reaction based 
methods

Provides real time quantification of 
bacterial load pre-treatment and to a 
degree, during drug treatment. 

DNA/RNA amplification from dead 
bacteria can confound ascertainment 
of sputum sterilization during 
treatment. The clinical significance of 
detection of DNA/RNA, in the context 
of non-culturability at different time 
points during treatment is unclear.

[30,32-35]

Viability and lipid body 
staining of sputum

Assessment of viability via staining with 
fluorescein diacetate may expedite 
diagnosis of poor response to treatment 
and quantify early response to 
treatment. Change in percentage rise in 
% lipid body positive AFB over the first 4 
weeks may predict failure/relapse.

These assays are not applicable to 
AFB negative sputa. Serial samples 
taken longitudinally during treatment 
are required for assessment and a 
single sample e.g. pre-treatment has 
limited utility.

[28,36,37]

Whole blood 
bactericidal activity

Inferior bactericidal activity seen in 
whole blood cultures of sputa taken from 
patients at an interim time point in 
treatment may predict delayed sputum 
sterilization/subsequent relapse

The assay may be influenced by 
factors unrelated to outcome e.g. 
sputum volume and viscosity. This is 
a culture based technique and can 
take several weeks.

[40,41]

Abbreviations: AFB acid fast bacilli, CFU colony forming unit, DNA deoxyribonucleic acid, RNA ribonucleic acid, DS drug sensitive, DR drug 
resistant, TB tuberculosis, PK pharmacokinetics,  SOP standard operating procedure.



Table 3 Radiological based methodology for treatment monitoring
Methodology Utility Limitations Ref

Chest 
radiograph

The Timika score has been validated in 3 geographical 
populations (1 cohort 30% HIV co-infected) and has moderate 
sensitivity and specificity for predicting smear non-conversion 
at 2 months.
Persistent cavity after 6 months of TB treatment was 
independently associated with disease relapse

Inter-observer variability 
Not proven to accurately predict  
failure/relapse

[50-54]

Ultrasound Paediatric:
High sensitivity for diagnosis of active intrathoracic TB and 
can detect response to treatment inside 3 months.

Paediatric:
Cannot distinguish active TB from other 
causes of mediastinal lymphadenopathy.  
No evidence for utility in HIV co-infection.

[55,56]

Pleural:
Can provide confirmation of cure at 6 months in around 90% 
of cases of small, unilateral effusion.
May also confirm response by 2 months.

Misses approximately 10% of those who 
are truly cured at 6 months.
No evidence for utility in HIV co-infection

[57,59]

Peritoneal:
Can provide confirmation of cure at 6 months in cases with 
initial mesenteric thickness >15mm. 
May also confirm response by 2 months.

Peritoneal:
Less reliable in cases without significant 
mesenteric thickening. 
No evidence for utility in HIV co-infection.

[58,59]

PET/CT Active TB:
Appears promising as early outcome measure (greater 
accuracy at predicting durable cure than sputum culture or CT 
alone)
Appears promising for comparative drug trials
Applicable to macaque studies

Latent TB:
Has potential for monitoring treatment response 
May be applicable to HIV co-infection

Active TB:
Highly expensive purchase and running 
costs
High level radiation exposure
Larger numbers required for statistically 
significant benefit

Latent TB:
Larger numbers required to distinguish 
treatment response from natural history.

[60-62]



Table 4 Immune markers for treatment monitoring
Immune marker Utility Limitations Ref

Acute phase proteins:
C-reactive protein (CRP)

Procalcitonin (PCT)

-Fall in CRP (to within normal range) in response to treatment 
correlates with therapeutic response. A threshold of 20mg/l at 
baseline, which persisted during treatment has been 
associated with adverse outcome.
- PCT levels ≥0.5 ng/ml⁻ ¹ maybe indicative of poor prognosis 
and increased mortality risk

-Not specific to tuberculosis

- Not specific to tuberculosis and 
mostly applicable only to 
disseminated tuberculosis

[63-65]

[66]

Cytokines and immune 
activation markers :
Tumour necrosis factor 
(TNF) α, interleukin-2 
(IL-2) and interferon 
(IFN) Υ

Soluble urokinase 
plasminogen activator 
receptor (suPAR)

-Decreased TNFα during treatment has been seen in both TB-
antigen stimulated and un-stimulated cytokine response. 
During successful treatment M. tuberculosis (MTB) specific T 
cells change from single positive TNFα expressing phenotype 
(related to bacterial load)  to either poly-functional MTB-
specific T cell profile (expressing IFN-γ⁺ , TNFα⁺ and IL-2⁺ ) 
or IL-2⁺ single producing and/or IL-2⁺ and IFN-γ⁺ double 
producing MTB-specific T cell profile.

-High plasma levels of suPAR at inclusion or at any point 
during treatment was associated with increased mortality.

-No specific thresholds specified

-No specific thresholds specified and 
not specific to tuberculosis

[70-74,76]

[77]

matrix 
metalloproteinases 
(MMPs)

MMP-1, -3 and -8 concentrations in sputum decline in 
response to successful ATT and delayed culture conversion is 
positively correlated with MMP-1. 

Variation in production, regulation and 
biological activity of MMPs in relation 
to different points in disease 
pathogenesis. Significant ethnic 
heterogeneity in MMP profile during 
anti-tuberculosis therapy 

[78,80-84]
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