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ABSTRACT 

In this thesis, a method is developed for predicting the permeabilities of a core using 

only a small number of SEM images, without resorting to computationally intensive 

procedures. The pore structure is idealised as consisting of a cubic network of pore 

tubes having an arbitrary distribution of cross-sectional areas and shapes. The areas and 

perimeters of the individual pores are estimated from image analysis of scanning 

electron micrographs of thin sections, with appropriate stereological corrections 

introduced to infer the true cross sections of the pores. 

Effective medium theory is used to find the effective single-tube conductance, based 

on the measured distribution of individual conductances, thereby allowing a prediction 

of the permeability. The methodology has been applied to several reservoir sandstones 

from the North Sea, and also an outcrop sample from Cumbria, UK, yielding predictions 

that fall within a factor of two of the laboratory measurements in most cases. 

The procedure, although based on Kirkpatrick's intrinsically isotropic effective-

medium approximation, is not only capable of yielding reasonably accurate estimates of 

the permeabilities, but also gives a qualitatively correct indication of the anisotropy 

ratio. It also found that the use of an Bernasconi's anisotropic effective-medium 

approximation does not lead to a systematic improvement in the results, perhaps because 

the samples used in this study were insufficiently anisotropic for the approaches to yield 

different results. 

The validity of the effective medium approximation was also tested against exact 

pore network calculations. For the rocks examined in this study, with pore conductance 

distributions having log-variances less than 3, the effective medium approximation was 

found to be accurate to within a few percent. 
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1 INTRODUCTION 

Relating the transport properties of rocks to their pore structure has been a long-term 

goal of great interest to petroleum engineers, hydrologists and other earth scientists. This 

problem can be addressed at various levels of detail, with the resulting models requiring 

varying amounts of microstructural data. At one extreme, empirical permeability models 

such as Kozeny-Carman predict values of the permeability using knowledge only of 

porosity and a mean pore diameter or mean grain size. The Kozeny-Carman approach 

therefore requires some means of estimating the specific surface, which can be 

problematic (Berryman and Blair, 1986), and it is also known that this model, although 

fairly accurate for unconsolidated sands, tends to become unreliable for consolidated 

sandstones. 

At the other extreme of complexity lie those models that attempt to reconstruct the 

pore space of a rock, and then numerically solve the Navier-Stokes equations in the pore 

space. Adler et al. (1990) reconstructed the pore space of Fontainebleau sandstones from 

thin sections and then solved the Navier-Stokes equations using a finite-difference 

scheme to yield the permeability. Ferreol and Rothman (1995) created a virtual 

microstructure using X-ray microtomography combined with a high-intensity image 

synchrotron radiation source, and then solved the flow equations using the lattice-

Boltzmann method {Rothman and Zaleski, 1997). Such approaches are capable of 

reasonable accuracy, but at the expense of extensive data collection and computation. 

Means of generating a virtual porous medium that do not require imaging techniques 

also exist. Bentz and Martys (1994) constructed the pore space of a simulated three-

dimensional medium from two-dimensional slices selected at random, and solved the 

flow equations again using a finite-difference scheme to predict the permeability. Other 

examples of this type of approach include the simulation of artificial porous granular 

materials using sedimentation algorithms {Pilotti, 1998, 0ren and Bakke, 2000), which 

can then be used as the input for a numerical solution of the Navier-Stokes equations. 

These approaches can provide insight into the relation between permeability and pore 

space, but do not directly address the question of predicting the permeability of a specific 

rock. 
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The goal of this project has been to develop a method for predicting directionally-

dependent single-phase permeabilities of sedimentary rocks, using only a small number 

of SEM images, with a minimum of computational effort. The present scheme is a 

refinement of that developed by Schlueter (1995) for isotropic rocks, and applies image 

analysis to SEM photographs of sandstone pores. The hydraulic radius approximation is 

used to compute the individual conductivities of the pores. Stereological correction 

factors are applied to determine the true cross-sectional shapes from the images, and to 

determine the true number density of pores per unit area. A constriction factor accounts 

for the effect of the variation of the cross-sectional area along the tube length. The 

effective medium approximation of Kirkpatrick (1973), and its anisotropic extension by 

Bemasconi (1974) are used to determine an effective pore conductance from the measured 

distribution of conductances. 

This procedure is applied to several consolidated North Sea sandstones, and also a St. 

Bees sample from Cumbria, UK, with permeabilities ranging over 10-1000 mD. As a 

test, exact network calculations are also performed using the network simulation code 

NBTSIM {Jing, 1990). The permeabilities predicted using the inherently isotropic 

Kirkpatrick effective medium approximation are typically within a factor of two of the 

measured values, with an absolute average error of only 48%. Using the inherently 

anisotropic (but more computationally demanding) effective-medium approximation of 

Bemasconi fails to make a noticeable improvement to the predictions. The procedure 

outlined in this thesis seems to be the first method available that yields reasonably accurate 

estimates of permeability, with a minimum of computation. 
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2 LITERATURE REVIEW 

2.1 Darcy's Law and the Permeability Concept 

The theory of laminar flow through homogeneous porous media is based on an 

experiment performed by Darcy in 1856, who studied the vertical filtration of water and 

derived the relation 

^ = (2.1.1) 
A C 

for vertical flow through a homogeneous filter bed of height bounded by horizontal 

planes of cross sectional area A, where Q is the total volume of fluid percolating through 

the medium in unit time, and (/12 - h\)/i^ represents the manometric gradient. The ratio 

QIA is known as the filtration velocity, q, and arises when the entire measured cross-

section is considered to be open to the flow. 

This relationship, known as Darcy's law, is rather restricted in this form, its lack of 

utility being readily attributable to the amalgamation of several physical parameters into 

a single constant of proportionality. Hubbert (1956) gave a deeper interpretation of the 

physical significance of K, showing that it contained the fluid density p and viscosity r]. 

It follows then that one would like to separate the influence of the porous medium from 

that of the fluid. Nutting (1930) suggested using K = k/T], with k denoting the specific 

permeability of the medium and r\ denoting the viscosity. The dimensions of specific 

permeability are l}, that is, the same as surface area. The specific permeability is 

defined only on a macroscopic scale and relates to the porous medium, irrespective of 

the fluid characteristics. A commonly used unit for the specific permeability is the 

Darcy, defined by 

1 Darcy = 9.87 X 10"'^ m l (2.1.2) 

Darcy's law can also be expressed in terms of the pressure and the gravitational 

potential, as follows. We start with the static or piezometric head, 

h =-^ + z , (2.1.3) 
Pg 

where z refers to the vertical direction, considered positive upwards. Taking the 

derivative of h along the flow direction gives 
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dh _ d P + Pgz 
Pg 

where we assume that p is constant and independent of pressure. For horizontal flow 

dz/d^is zero, and so 

which shows that TiT in equation (2.1.1) is given by 

K = ^ . (2.1.6) 

The parameter K is therefore a composite parameter containing terms that account for 

the properties of the fluid and of the porous medium, and has dimensions LT where L 

and T are length and time, respectively. We may rewrite (2.1.1) in three-dimensional 

form as follows 

q = -KVh = [Vp + pgVz]. (2.1.7) 
T] 

where k is the permeability tensor, which is possibly anisotropic (see section 2.3). The 

minus sign indicates that fluid flows towards the region of lower potential. In the 

remainder of this dicussion we will neglect the pgVz term, for simplicity of notation 

only, in which case (2.1.7) may be written as 

q = —V/7. (2.1.8) 
ri 

The concept of permeability has within it the influences of the properties of the 

porous medium. Many attempts at establishing empirical relationships between porosity 

and rock permeability have been documented (Scheidegger, 1963). Generally speaking, 

however, no simple correlation between porosity and permeability exists; a correlation 

that might be sought is between pore structure and permeability. One may consider 

pore structure to imply a pore size distribution (PSD), and ideally then obtain PSD-0 

correlations directly from capillary pressure curves derived from mercury intrusion 

methods and so forth. 

A commonly accepted hypothesis that connects the microscopic pore velocity and the 

filter velocity is the Dupuit-Forchheimer assumption, which considers the flow through 
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a porous medium to take place along channels with a local (pore) velocity denoted Vp, 

leading to the relationship 

(2.1.9) 

where q is the volumetric flow rate per unit area. The Dupuit-Forchheimer assumption 

thus states that the pore velocity will be larger than the filter velocity, owing to the 

reduced space available for the fluid to flow in comparison with the bulk volume of the 

porous medium (with regard to which the filter velocity is calculated). It should be 

noted that the actual pore velocity of the fluid will fluctuate widely from channel to 

channel, and so equation (2.1.9) actually defines an average pore velocity. 

Yzzzzzzzzzzizzzn. 

/ / / / / / / / / / J / / / / / / - ' 
g / / / / / / / / / : 

/ / / / / . ' - / / / / / / / / / / / 7 / Z 

Figure 2.1.1 Illustration of the Dupuit-Forchheimer assumption. The total cross 
sectional area of the conduits open to the flow in the incoming direction is less than the 
total area of the side of the cube (adapted from Scheidegger, 1963). 

Darcy's law is known to be valid at low flow rates (creeping flows). Nevertheless, 

non-Darcian flow effects may well become significant in porous media at sufficently 

high filtration velocities, usually characterised by Reynolds numbers greater than one. 

The Reynolds number (Re) is a ratio of inertial to viscous forces. For slightly higher 

values of Re, it may be possible to express Darcy's law as a perturbation expansion in q 

to account for the nonlinearity in the relationship between the applied pressure gradient 

and the filter velocity vector. The most familiar form of such an expansion is known as 

Forchheimer's equation {Scheidegger, 1963): 

dQ k 
(2.1.10) 
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where P is the so-called "non-Darcy" flow coefficient. Regardless of whether the flow 

is in the Darcy or Forchheimer regime, the permeability coefficent, k, is an important 

parameter. 

Excess Pressure Loss 
Due to Inertia 

Flow Rate 
due to Inertia 

Laminar 
Darcy Flow K - A P 

,\AP^Q.JL 

Forchhefmen — v dL 

Figure 2.1.2 Darcy velocity versus pressure drop per unit length illustrating Darcy 
(linear, laminar) flow region and the Forchheimer (non-linear, laminar) flow region 
(after Boyle et ai, 2000). 

The fundamental equation governing fluid motion on the pore-scale is that of Navier-

Stokes. For incompressible, Newtonian fluids these equations take the form (de Marsily, 

1986) 

v ) - 7 7 W = p 
dx, 3 aX: 

F: -
Dv' 
Dt 

(2.1.11) 

where rj is the coefficient of dynamic viscosity, F, are the components of the body force 

vector per unit mass, and Dv/Dt is the material derivative. There are three Navier-

Stokes equations, one for each direction in space. The boundary condition used is that v 

= 0 at the pore walls. The Navier-Stokes equations must be supplemented by an 

equation that expresses the principle of conservation of mass: 

V (pv) + ^ = 0 
ot 

(2.1.12) 
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If the flow is steady, then the time rate of change of density is zero, and the continuity 

equation takes the form 

V-(pv) = 0. (2.1.13) 

Furthermore, if the fluid is incompressible, then the density p is constant, and so 

equation (2.1.12) reduces to 

V v = 0. (2.1.14) 

2.2 Tube-Bundle Models and the Kozeny-Carman Relation 

2.2.1 Introduction 

The Navier Stokes equations may be solved exactly for a straight circular tube. The 

resulting equation expresses the flow rate Q through a tube of radius r, length ^ and 

pressure drop Ap defined to be negative across the length of the tube. The result is 

known as the Hagen-Poiseuille equation, and leads to the simplest permeability model 

that incorporates some description of the structure of a porous medium (Bear, 1972): 

If we have n such pores within a region of cross-sectional area A, then 

(2.2.1.2) 

where </> is the porosity. The total flow through the bed, QTOTAL = NQ, is given by 

(2.2.1.3) 
8T7 y 

Setting equations (2.1.8) and (2.2.1.3) equal to each other establishes a relationship 

between the permeability and the number and size of tubes in the medium: 

(br^ 
k = ^ . (2.2.1.4) 

8 
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Equation (2.2.1.4) is usually modified by the inclusion of a tortuosity coefficient T, 

which is sometimes interpreted as introducing an average pathlength parameter into the 

transport model. In the context of a three-dimensional parallel tube model, only one 

third of the pore tubes are aligned in any given direction, in which case we must 

decrease the permeability given by equation (2.2.1.4) by a factor of T= 3: 

where the result is finally expressed in terms of pore diameter, d. 

Equations that have included a specific surface area term are known as Kozeny-type 

equations. In the Kozeny-Carman theory {Dullien, 1992), the porous medium is taken as 

a closed channel of highly irregular shape, but on average having a constant cross 

sectional area. The inclusion of geometrical properties into an empirical model then 

provide an extension of tube-like models {Purcell, 1949; Scheidegger, 1963) towards 

more elaborate descriptions of the influence of the pore shape and orientation on 

permeability (iS'M/Z/van, 1942; Haring and Greenkorn, 1970). 

The Kozeny-Carman generalisation of the tube model assumes that resistance to flow 

arises from viscous drag along the pore walls, and so permeability should show an 

inverse correlation with the amount of surface area per unit volume. If we define 

specific surface as the internal surface area per unit bulk volume, 

(2.2.1.6) 
^BULK 

and write porosity as 

^^Y£0RB. = ! ^ , (2.2.1.7) 
^BULK ^BULK 

then 

(2.2.1.8) 
HTtr L r 

Inserting this expression into (2.2.1.5) provides a Kozeny-Carman equation in the form 

k = - ^ . (2.2.1.9) 
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2.2.2 The Hydraulic Radius Approximation 

The basic form of Kozeny's equation, despite having been modified on numerous 

occasions, remains dependent on the correlation of the permeability with the square of 

some characteristic length scale, and thus attempts to correlate permeability with some 

characteristic pore size. This is already implicit in the definition of specific surface, 

where the representative pore structure parameter arises in the form of the hydraulic 

radius approximation and may be defined for a group of irregularly shaped but 

cylindrical type pores as 

^ p 

where Ap is the pore area and JJ, is the pore perimeter. The factor of 2 renders the 

expression exact for a circle, since 

= 2 = r . (2.2.2.2) 
2m-

(It should be noted that many authors omit the factor of 2 in their definition of the 

hydraulic radius). Using these definitions however, we can rewrite the specific surface 

in terms of the internal surface area per unit of pore volume, and so in terms of the 

hydraulic radius, as 

J = — . (2.2.2.3) 
fh 

We have thus established a connection between the hydraulic radius for a single 

representative pore and the Kozeny-Carman relation. Equation (2.2,1.9) may be then 

written in the more general form 

k = - i — , (2.2.2.4) 
cf«») 

where 'c' represents a combined shape-tortuosity factor, known as Kozeny's constant, 

(Wyllie and Spangler, 1952). In this equation, however, a porosity function /(0) is 

introduced to further reflect the effect of pore shape (Rumpfand Gupte, 1971). 

If the pores have a well-defined shape, then the relationship between n, and the mean 

pore radius, is quite straightforward. This is the case for a group of nonintersecting, 

cylindrical capillaries For a parallel-sided slit-shaped pore, r/, is given as half the slit 
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width. A list of comparative values that test the utility of the hydraulic radius 

approximation for different cross sections has been gathered by Carman (1941). 

Schlueter (1995) reformulated permeability in terms of the hydraulic radius as 

k= — = -
8 8 

' 2 A ' 2 _ 1 f A Y 
. r J ' 2 4 ' -

(2.2.2.5) 

(where the factor of 2 in equation (2.2.1) has been omitted) and the equivalence of the 

calculated permeabilities was tested for various pore shapes using known analytic 

solutions (Table 2.2.1). 

Table 2.2.1 Accuracy of the hydraulic radius approximation (after Schlueter, 1995). 

Cross section j^XACT k"' Error (%) 

Circle, radius a a^/8 a^/8 0 

Equilateral Triangle, side a a^/80 a^/96 -20 

Square, side a a^/28 a2/32 -11 

Slit, thickness h h^/n A2/8 50 

Ellipse a:b = 2:1 a^/68 a^%8 14 Ellipse 

a:b = 10:1 a^/403 fl^/324 21 

Rewriting equation (2.2.1.1) in terms of the pressure gradient, we obtain, for one pore, 

(2.2.2.6) 

Thus, we can write a generalised Hagen-Poiseuille equation in terms of (2.2.2.2) as 

(2.2.2.7) 
AR^ A ^ 

We then define hydraulic conductance as 

C. = 
h 2r^ (2.2.2.8) 

and (2.2.2.6) may be written as 
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Q = - ^ V p . (2.2.2.9) 
n 

Sisavath et al. (2000) tested the hydraulic radius approximation against the boundary 

element method for sets of pores from SEM images of Berea and Massilon sandstone. 

The overall error introduced by the hydraulic radius approximation was found to be in 

the range of 1-15%, indicating that, to some extent, the errors cancel out. 

2.2.3 Electrical Parameters in the Tube-Bundle Models 

Walsh and Brace (1984) emphasized the similarities between the flow of an electrical 

current and the flow of a fluid, since in both cases the flow characteristics are controlled 

by the pore geometry. In the former case, this is a direct consequence of the fact that 

most minerals are insulating, and so the conductivity will then arise from the current 

flowing through the natural electrolytes present in the connected void space. The 

influence of the pore geometry on the electrical resistance may be considered to be 

composed of two separate quantities, the cross-section available for conduction, and the 

topology of the pore space (Dullien, 1992). The ratio of the electrical conductance of an 

electrolyte, (7ei, to the conductance of a rock saturated with the same fluid o>o, is known 

as the Electrical Formation Factor, 

F = ^ > 1 . (2.2.3.1) 

Ohm's law may be considered to be the electrical equivalent of Darcy's law, with 

electrical conduction along a straight wire analogous to the Hagen-Poiseuelle equation 

through a uniform cylinder of constant cross-sectional area. Ohm's law states that for a 

cylindrical pore, 

r=g' (r)AV (2.2.3.2) 

where f is the current, AV is the potential difference across the length of the pore and 

g' is the electrical conductivity. If we then consider the conductance of the saturating 

solution cTg/, we may write g\r) as 

g'(r) = — ( 2 . 2 . 3 . 3 ) 
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Analogously, we can consider the water discharge/: 

/ = g ' ^ ( r ) A p , (2.2.3.4) 

and also a hydraulic conductivity g'' of a single pore relating to a pressure drop Ap which 

we obtain from (2.2.2.3) as 

g \ r ) = ^ = ^ . (2.2.3.5) 

2.2.4 The Model of Walsh and Brace 

Walsh and Brace (1984) derived a relationship between electrical formation factor 

and porosity, with the inclusion of a tortuosity factor on the basis that the pathlength 

would similarly control both the flow of current and the flow of fluid. If we take 

equation (2.2.3.2) as representing the current through each tube, then we can write for N 

identical tubes of constant cross-sectional area: 

JTOTAL = -Mg' (r)Ay. (2.2.4.1) 

We then insert expression (2.2.1.2) for the porosity into this equation, to obtain 

. (2.2.4.2) 

Therefore, the conductivity of the rock/fluid system becomes, from equations (2.2.3.1) 

and (2.2.4.2), 

C7„=0£T^,, (2.2.4.3) 

and thus the parallel tube model predicts 

F = - ^ = - . (2.2.4.4) 

If we now consider that the conductivity, g® will be affected by the path length for the 

current, we modify (2.2.4.4) as follows: 

F = - . (2.2.4.5) 
0 
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We can extend the electrical analogy to modelling fluid transport in non-circular 

channels by weighting F by some predetermined shape factor, b, that will assume 

different values for different conduit geometries. This factor takes on the values of 6 = 

0.5 for a circle and 0.562, 0.597, 0.667 for a square, an equilateral triangle, and a strip, 

respectively {Bear, 1972). Walsh and Brace (1984) adopted the shape factor, and 

furthermore related k to the formation factor F and also the specific surface area term, S, 

by combining (2.2.1.9) with b = 0.5 and (2.2.4.5) to yield 

1 d)̂  

If we now recall our definition of hydraulic radius (equation 2.2.2.3), we can write 

r = 2 ^ ^ = 2 ^ , (2.2.4.7) 
" A C ^ ' ^PORE ^ 

in which case (2.2.4.6) becomes 

k = . (2.2.4.8) 
F 

Thus, we have eliminated tortuosity to arrive at an expression for the mean hydraulic 

radius in terms of the electrical formation factor as 

^ " 1 1 " ^ - (2.2.4.9) 

2.2.5 The Model of Katz and Thompson 

Further models, based on the electrical conductivity of saturated rock, attempt to 

define a more general representative length scale than the hydraulic radius. Katz and 

Thompson (1986) proposed the relationship 

AP 
k = — , (2.2.5.1) 

where the term I refers to the characteristic length scale used to quantify the pore space 

and the parameter A is again some form of implicit shape-tortuosity factor. The 

characteristic length is obtained from mercury injection experiments. This information 

comes from the location of the inflection point in the mercury intrusion curve as this 
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feature signals the onset of the formation of a spanning network of connected pores. 

Hence, fluid transport through porous media becomes a percolation problem to which 

we must then assign a threshold conductance. This threshold parameter then defines I, 

and as such simultaneously defines a threshold in both the hydraulic and electrical 

conductivity problems. The characteristic length in this case is then a critical radius Vc, 

derived from the Washburn equation, and so we define a lower bound I for the 

connected cluster as {Sahimi, 1995): 

/ = (2.2.5.2) 
Pi 

where Pi is the pressure at the inflexion point, yis the surface tension between mercury 

and the vacuum, and 6 is the angle of contact between the mercury and the pore surface. 

From this percolation treatment emerges an analysis of the behaviour of conducting 

systems carrying a very broad distribution of conductances, from which we find 

Ar^ 
k = — ^ . (2.2.5.3) 

F 

Equation (2.2.5.3), then resembles (2.2.2.4), and if rewritten in terms of Kc becomes 

analogous to (2.2.4.9): 

r — - J — . (2.2.5.4) 

Similarly, Dullien (1992) correlated permeability with breakthrough pressure and 

porosity. The physical basis of Dullien's model is that the permeability of a tube with 

step changes in diameter, having a given length and volume, can be matched by the 

permeability of a bundle of n uniform tubes of diameter Dx of the same length and same 

total volume. For sandstone samples, Dullien found that Dx=Di/3.5, where Db is the 

"breakthrough diameter". The calculated value, kc is provided as a plot against the 

experimental value kexp, in Figure 2.2.1. Other correlations of a similar nature have been 

made. Macmullin and Muccini (1956) presented a correlation among the breakthrough 

pressure, formation factor and permeability, with a probable error in a single observation 

of about 18%. Chatzis (1980) tested this correlation for a variety of sandstones and 

found a ± 60% scatter. 
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Figure 2.2.1 Empirical permeability correlation for sandstones (after Dullien, 1992). 

The interpretation of a pore-size distribution curve ultimately depends on the validity 

of the geometrical and other assumptions involved. For example, the entry diameter, De 

is to be regarded as the size of a uniform cylindrical pore which would fill at a given 

pressure, rather than the true pore dimension. Consequently, this method fails to 

account for capillary hysteresis, and thus the drainage curve on the pre-emptying cycle 

of the intrusion experiment. A value for ycosO must also be assumed, and as we are 

dealing with a relatively non-wetting fluid, we ignore Schultze's assumption of zero 

contact angle {Didlien, 1992), and take 6 =141° for mercury intrusion experiments. 

Most importantly, the presumption that the pores are invaded in decreasing order of size 

may be invalidated by network effects (Dullien and Dhawan, 1975), implying that the 

sequential mode of pore filling is dictated primarily by their interconnectedness (that is, 

their co-ordination number). In spite of this, many pore-size distribution measurements 

are actually based on the premise that they model bundles of capillaries, or parallel tube 
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models, with a complete neglect for the interconnections that, in reality, constitute a 

network. 

Theoretical analyses of mercury intrusion curves have been reviewed by Dullien 

(1992) and much of this work is attributable to Meyer (1953) and Mayer and Stowe 

(1965, 1966), who made several attempts to account for the capillary filling and drainage 

curves using computational methods which relied on a probabilistic approach. However, 

they failed to determine the sizes of the larger pores entered via smaller pore throats. In 

addition, the problem of capillary hysteresis was tackled directly by Kruyer (1958), in 

his analysis of the retraction of mercury from a bed of glass spheres. 

The implementation of pore-size distribution data, acquired from "real" porous beds 

can be achieved by taking a volume-based pore size density Vp(D). Assuming a 

tortuosity factor of 1/3, (2.2.1.9) becomes 

jD^Vp(D)dD 
k = - ^ ^ . (2.2.5.5) 

96 7 
\vp{D)dD 
0 

The expression above thus reflects an extension of the parallel tube models to the realm 

of "realistic" permeability modeling. However, the inherent drawback remains that the 

conduits are all assumed to connect the boundary faces of the matrix, perpendicular to 

the flow. In contrast to this, we may assume that the pore space is serially aligned, and 

in doing so consider a serial type model of fluid transport whereby a single conduit is 

assumed to be comprised of segments of different diameter. It is therefore reasonable to 

assume a transport model that lies somewhere between these two extremes, and consider 

a pore space consisting of multiple conduits with some intermediate tortuosity value to 

arrive at a model representing bundles of periodically constricted tubes {Dullien, 1992). 

2.2.6 The Model of Johnson and Sen 

A further model based on the electrical conductivity of saturated rock was that of 

Johnson and Sen (1988), where the characteristic length scale and electrical formation 

factor was related to a dynamic permeability. The electrical conductivity through a 

porous medium can be attributed to a "bulk" interstitial flux and also the ionic transport 

that occurs through the electrical double layer system that rests between the pore wall 
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and fluid interface. Consequently, we may exclude pores below a certain radius, namely 

when the radius approaches the double-layer thickness. The analogy between electrical 

conductivity and fluid mass-transport in the potential flow regime can be expected to 

hold when we fully exclude such boundary layer effects. Along with the definition of a 

dynamic permeability comes another characteristic length scale, A, which provides an 

estimate of the effective radius available for bulk transport. The electrical parameter A is 

then a characteristic length that correlates approximately with the connected pore-space 

in a way which the hydraulic radius is unable to do. In place of the hydraulic radius we 

could then rewrite the Kozeny-Carman relation as 

bA} 
k= . (2.2.6.1) 

2.2.7 Image Processing Methods in Estimating the Kozeny-Carman Parameters 

Image processing methods have been extended to estimating the Kozeny-Carman 

parameters (Berryman and Blair, 1986, 1987). These methods, however, introduce 

approximations in the estimation of specific surface that arise from resolution constraints 

dictated by the image digitisation. Berryman and Blair (1987) showed that specific 

surface estimation could be derived from the tangent of the two-point correlation 

function at the origin, S2(r = 0). However, in order to extract meaningful information 

from image digitisation, a suitably prescribed magnification limit had to be imposed 

such that resolution constraints would not intrude into the analysis. The two-point 

correlation function represents the probability that two points a distance r apart are both 

in the same phase or material. For statistically isotropic materials, S„ becomes 

independent of direction and will only exhibit a dependency on the absolute value of the 

distances between the n points. If we then take the two point correlation function under 

the condition r = |r | , we note the following properties {Berryman and Blair, 1987): 

52(0) = 0 , (2.2.7.1) 

limS^{r)=(t)\ (2.2.7.2) 

^ = ,2.2.7.3) 
dr 4 
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The derivative of the two-point correlation function at the origin is related to the specific 

surface area by (2.2.7.3). This relationship was originally found by Debye et al. (1957) 

in their studies of isotropic media. This result was subsequently generalised to 

anisotropic media by noting that the angular average of the anisotropic two-point spatial 

correlation function has the same relationship to the specific surface area {Berryman, 

1987). It was concluded that an ideal correlation length estimate for a thin section 

would be approximately 100 times larger than the size of an image segment, and so the 

measurement of specific surface area (as a pore structure parameter) will become 

acceptable at a given pixel size. Berryman and Blair (1987) proposed that the pixel size, 

h, be approximately 1% of the size of an average pore radius, such that 

h = r j \ m . (2.2.7.4) 

The above criterion restricts the measurement error in the average pore radius due to 

surface roughness and pixel quantization to be of the order of 1%. The magnification 

cannot be increased to the point where an average pore diameter is larger than the width 

of the digitised image. Consequently, we may conclude that there is little advantage in 

increasing the image magnification past the point where h violates these limits. 

The effects of roughness on the validity of (2.2.1.4) were assessed by Berryman and 

Blair (1987) by means of upper and lower bounds to the Kozeny-Carman parameters. 

Consider a nominally circular rough-walled pore, as in Figure 2.2.2, the actual 

permeability of this pore is bounded as follows: 

d)^ d)^ 
= (2 2 7 5) 

where the subscript i denotes the smallest inscribed circle, and the subsc r ip t re fe r s to 

the smallest circumscribed circle. 

If we consider a mean pore radius defined as 

(2.2.7.6) 

we may write the bounds as 

^{l-ey=k^,<k<k^=^(l + ey, (2.2.7.7) 
o o 
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where e denotes the relative roughness, denoted by 

£ = (2.2.7.8) 

An error of 1 % in the estimate of r would produce an error of no more than 4% in the 

permeability. This also supports the resolution constraints dictated in (2.2.7.4). 

Figure 2.2.2 Schematic drawing of a rough-walled tube (after Berryman and Blair, 

1987). 

Table 2.2.2 Comparison of porosity and permeability values with those obtained from 
laboratory measurements {Berryman and Blair, 1986). 

Sample Magnification 
Porosity Permeability k(D) 

F Sample Magnification 
Image Laboratory Image Laboratory 

F 

Glass 

beads 

(55|im) 

50 0.0241 0.35 0.3 9.7 8.7 10.9 Glass 

beads 

(55|im) 
78 0.0281 0.43 0.3 10.7 8.7 10.9 

Berea 100 0.0281 0.17 0.15-0.18"' 0.312 0.023'°' 62'" 

Berea 200 0.0354 0.18 0.15-0.18'"' 0.197 0.023"' 62'"' 

Berea 490 0.1109 0.233 0.15-0.18''' 0.021"'' 0.023"' 62'" 

Berea 100 0.1231 0.393 0.15-0.18"' 0.016"'' 0.023'"' ezc" 

Computed using image porosity for magnification lOOX 

('')Daz/)'6WI,m(1985) 
( C ) Dullien (1992) 
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In general the Kozeny-Carman equation is fairly accurate for unconsolidated sands, 

but overpredicts the permeability for consolidated sands such as sandstones (Berryman 

and Blair, 1986). Table 2.2.2 illustrates permeability estimates of 16 and 21 mD using 

the relevant input parameters as derived from thin section measurements, in comparison 

with the laboratory measurement of 23 mD (Daily and Lin, 1985). The formula used in 

all cases was (2.2.4.6). The underestimation is due to using a value of Kozeny's 

constant, b = 0.5. If the permeability is recalculated using b = 1/15, a value of 23 mD is 

obtained. 

2.2.8 Numerical Approaches to the Kozeny-Carman Relation 

Adler (1992) also made an assessment of the Kozeny-Carman equation in his studies 

of Stokes flow through fractal capillary networks. He considered the Sierpinski carpet 

and the fractal foam, which are two and three-dimensional versions of the Cantor set 

(Mandelbrot, 1982). It was noted that the porosity of the fractal foam at the third 

iteration in the fractal generation scheme is comparable to the porosity of Sierpinski 

carpets at the first generation. However, the three-dimensional permeability is much 

smaller than the two-dimensional permeability (Lemaitre and Adler, 1990). 

C7 C7 C=7 
O /I r- . / ^ 

a C7 C3 

• n • 

CD • 

o n o 

Figure 2.2.3 In (a), a triadic foam is displayed. Figure (b) can be viewed in two 
different ways since both phases are continuous; when the liquid phase corresponds to 
LI, it is the Menger sponge of type 1 (MSI); when it corresponds to Ln, it is the Menger 
sponge of type II (MS2). The lattices shown here at the second construction stage 
(Lemaitre and Adler, 1990). 

Adler (1986) concluded that the longitudinal permeability of Sierpinski carpets was in 

agreement with the predictions of the Carman equation. For the same iteration, the order 
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of magnitude of the permeabilities are the same. They can, however, be arranged in the 

following order for a given generation N\ 

k_i<k\\<k. (2.2.8.1) 

The Kozeny constant was found to be close to 3.5, which is close to experimental 

values. The situation is less well determined for transversal flows in Sierpinski carpets. 

For the first generations, the Kozeny constant oscillates (Delannay, 1990; and Adler, 

1992). Two types of asymptotic behavior are observed as N increases for the MSI and 

MS 2 fractals (Lemaitre and Adler, 1990). In the MSI case, successively narrower pores 

are offered to the fluid when the iteration number increases, progressively hindering the 

circulation of the fluid as a whole. With MS2 however, the permeability tends towards a 

finite value when the wetted area increases since the largest pores are not modified when 

N increases, only successively smaller pores are added, and since the fluid does not 

circulate easily in these narrow pores, the overall permeability is not significantly 

altered. 

2.3 Anisotropic Permeability 

2.3.1 Introduction 

"Anisotropy" refers to the directional variability of an observable quantity at a point 

in a body. It is distinct from the statistical heterogeneity of a porous medium, since the 

latter terminology refers to the spatial variation of an observable quantity at different 

points in the sample. It may also be noted that larger scale anisotropy may result from 

heterogeneities at smaller scales. 

The form of Darcy's law that has been previously written for an isotropic medium, 

where there is flow in only one direction, was extended by Ferrandon (1948) to account 

for three different flow rates in three orthogonal directions only, as follows: 

A \ dp dp dp\ 

This leads us to consider the permeability as having tensorial properties. Hence, one 

defines a permeability tensor, k, containing nine components, this arising from the 

coupling of the two vector fields, the velocity gradient and the pressure (or potential) 

gradient. Thus, the tensor form of Darcy's equation can be expressed as 
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q = Vp , (2.3.1.2) 
1 

where k is a tensor of rank two, with components kif 

k = ^yx ^yy ^yz 
^ 

(2.3.1.3) 

2.3.2 Observation and Experimental Measurement of Permeability Anisotropy 

Anisotropy, like heterogeneity, is a scale-dependent property of naturally-occurring 

porous media {Dagan, 1986). Core-scale measurements on sandstones where bedding 

and crossbedding were quite marked typically give maximum-to-minimum permeability 

ratios no greater than about 3:1 {Rose, 1982). However, measurements of permeability 

anisotropy in field applications and on whole cores can reveal horizontal permeabilities 

as much as a factor of ten times larger than the vertical permeabilities {Prats, 1972). It 

has been conjectured that the origin of such a large directional dependence is a 

consequence of the hetrogenieties that may typically exist at scales smaller than the scale 

of the measurement {Bernabe, 1992). 

At a scale smaller than that of alternation in a sand-shale sequence, depositional 

processes may also result in preferential orientations of the grains within the bedding 

plane. This causes variations in the horizontal permeability. This azimuthal variation in 

anisotropy has been noted by Johnson and Hughes (1948) and independently by 

Dranchuk and Tait (1981). More recently, Hailwood and Bowen (1999) demonstrated 

that differences of 10-15% between horizontal and vertical permeabilities in laboratory-

scale measurements are quite common. Johnson and Hughes (1948) measured 

permeability as a function of the azimuth for an orientated, hollow core. Furthermore, 

each directional measurement was performed using a different position of the core. It 

remains uncertain, however, whether the observed variations in the measured 

permeabilities was due to a directional effect, or due to heterogeneities. Indeed, 

Hailwood and Bowen (1999) point out that a further underlying limitation of azimuthal 

permeability data is the difficulty of carrying out a full, three-dimensional permeability 

anisotropy determination owing to the potential spatial variability that arises when 
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sampling orientated cores from natural formations. In a conventional full-diameter core 

analysis however, it is common practice to determine a single vertical permeability and 

two horizontal transverse permeabilities at right angles to each other. The transverse 

measurements are obtained by inserting the core into a holder designed so that the core 

axis is vertical, permitting horizontal gas flow through a designated sector of the sirface. 

The core is then rotated through an angle of jdl and the gas-flow measurement repeated 

{Kelton, 1950; Collins, 1952). The extension of the experimental technique and 

apparatus of laboratory permeametry for the estimation of directional permeability in 

porous media has been reviewed by Rice et al. (1970). 

The use of minipermeametry on both reservoir cores in the laboratory and rock 

outcrops in field studies has proven useful in the acquisition of localised permeability 

measurements by non-destructive means {Goggin et ah, 1988). The underlying principle 

of the technique is that a localised flow of an inert gas such as nitrogen can be induced 

by injection through a small tip seal directly into a sample of porous material. For a 

given pressure differential, the flowrate will be proportional to the permeability of the 

rock at the point of injection, assuming that the flow is both laminar and steady-state. 

Young (1989) has used minipermeametry in the determination of directional 

permeability of a core plug. 

Controversy surrounds the technique due to uncertainties in the measurement arising 

from the boundary effects attributable to the samples geometry and finite size. The 

validity of the method is also the subject of ongoing debate relating to the complexity of 

the flow geometry {Tartakovsky et al, 2000). 

2.3.3 Diagonalisation of the Tensor Form of Darcy's Law 

Despite the issue of heterogeneity, an important theoretical issue that arises is 

establishing the link between the experimental permeabilities, taken in field co-

ordinates, and the co-ordinate system that gives the principal magnitudes of the 

permeability. To transform Darcy's law from field co-ordinates to a co-ordinate system 

in which k is a diagonalised matrix requires the use of a transformation that may be 

written formally in matrix notation as 

C kC = D, (2.3.3.1) 
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where C and its inverse C"' are orthogonal matrices, whose columns are the normalised 

eigenvectors of the k matrix, and represent the permeability tensor in the co-ordinate 

system in which the tensor is diagonal. 

Owing to the indistinguishability of the covariant character of the pressure gradient 

vector and covariant character of the flow rate vector in an orthogonal co-ordinate 

system, we may provide the following relations between an arbitrary co-ordinate system 

and the principal co-ordinate system, denoted by a circumflex. These relations will thus 

provide the values of the filter velocity vector and applied pressure gradient in the 

original system and in the system for which the permeability tensor is diagonal: 

q = C q , (2.3.3.2) 

Vp = CVp, (2.3.3.3) 

and conversely, 

q = C- 'q , (2.3.3.4) 

Vp = C-'Vp. (2.3.3.5) 

Note that the transformations (2.3.3.4) and (2.3.3.5) are corresponding inverses of 

(2.3.3.2) and (2.3.3.3), and that the mapping are bijective. Thus, again in matrix 

notation, we rewrite equation (2.3.1.2.), using (2.3.3.2) as 

q = _ick(C- 'V/7) , (2.3.3.6) 
n 

and so by equations (2.3.3.1), (2.3.3.2) and (2.3.3.3), Darcy's equaion in rotated co-

ordinates is 

q = - ® V p , (2.3.3.7) 

where D = CkC ' . The permeability tensor corresponding to the original field co-

ordinates, and the transformed matrix may therefore be found by evaluating the 

characteristic equation for k: 

det(k-AI) = 0. (2.3.3.8) 
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Thus, finding the roots of the resulting cubic equation defined by (2.3.3.8) provides 

the principal components of the permeability (eigenvalues) in the rotated co-ordinate 

system, and therefore the three unit eigenvectors corresponding to the C matrix in the 

diagonalised system. Consequently, we may then write Darcy's law in terms of the 

diagonalised tensor as 

1 
fk '^xx 

1 
0 0 

V 
V 0 

0 
kyy 
0 

0 ^ 
0 

'^zz J 

/ < ^ 

^ 
(2.3.3.9) 

and so the three components of the velocity are 

_ _ ^xx Hx -

-

n a r 

kyy 
V a " ' 

^ZZ 47/ 
ri 

(2.3.3.10) 

(2.3.3.11) 

(2.3.3.12) 

2.3.4 Obtaining the Experimental Permeabilities for a Cylindrical Core 

We now outline the procedure for reconstructing the components of the permeability 

tensor when one of the principal axes are assumed to be perpendicular to the bedding 

plane, and consequently restrict our attention the co-ordinate transformations that 

involve rotations about the vertical axis. 

The Mohr Circle construction allows a relationship between non-principal 

permeability measurements and the permeability parallel to the bedding plane to be 

established. Relations between these components have been previously derived by Nye 

(1957), Szaho (1968) and Bear (1972) for a two dimensional porous medium. Szabo 

derived these components by use of the following transformation law for a mixed tensor 

dx'dx (2.3.4.1) 
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where the derivatives form the components of the Jacobian matrix J, and correspond to 

the direction cosines that relate the original co-ordinate system to the new co-ordinate 

system. Expanding (2.3.4.1) in full matrix form gives 

(k k \ 

JOC — 

k k 
I yy V 

COS0 s in^Y^^ cos6 sin6 Y 
sin0 COS0 1^ Ic 

A ^ ^ A 
- s i n 0 COS0 

- s i n 6 COS0 
V 

which can be written in component form as 

cos 6 sin^Y^xi ^;t)'Ycos0 - s i n 0 ^ 

JYK'X ^) -Y |SIN0 COS0 
(2.3.4.2) 

k^^—k 
^ cos 26 + kj^ sin 26, t 2Z.+ - (2.3.4.3) 

k„+k„_(.k„ ' ^ y ^ o s 2 a - i f c „ s i n 2 e , 
2 2 V ' yy (2.3.4.4) 

— — i^xx "I" ̂ vv) 
k^ = ky^ = ky^ COS 20 ^ sin 26 , (2.3.4.5) 

where use has been made of the identities 2sin 0 = 1 - cos 26 and 2 cos 0 = 1 + cos 26. 

'^xy 

o 
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Figure 2.3.1 Mohr Circle construction showing the relation between directional 
permeabilities k̂ x and kyy measured in field co-ordinates and the principal permeabilities 
ki and &2, obtained by rotating the former through an angle of 26. 

The transformation of permeability components as given in the relations (2.3.4.3-5) 

can be geometrically interpreted by use of the Mohr Circle. In the present notation k\ 

and k2 refer to the two principal components, where k\ < by convention, kxx and kyy 

are any two orthogonal measurements of permeability that in general are not principal, 

and kjcy is an off-diagonal component of the permeability tensor that will of course vanish 

in the principal co-ordinate system. 

The distance OC, given by 

OC = —(k^ + kyy'j = —{ki + k2), (2.3.4.6) 

is invariant to any rotation. The distance r can be expressed as 

/ " = — ( 2 . 3 . 4 . 7 ) 

and can be obtained from the non-principal measurements by the following 

trigonometric expressions: 

cos20 = r = J ^ ( k y y - k „ y + ( k ^ y . (2.3.4.8) 

From the Mohr circle construction we can find expressions for the principal 

components in terms of the two non-principal orthogonal measurements: 

(2.3.4.9) 

^2 + (2.3.4.10) 

We now require an analytical expression for our third measurement. In practice, this 

measurement is taken at some intermediate angle a between kja and kyy. Denoting this as 

fc' , we have 
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If a = 45 , then 

K =^(^1 + ^ 2 ) + ^ ( ^ 2 - ^ i )cos2(0+a) . 

K =^(^1 +^2)+^(^2 -^ i )cos2(0+45°) , 

(2.3.4.11) 

(2.3.4.12) 

Since cos2(0+ 45°) = - s i n 2 0 , the expression for the intermediate permeability 

measurement becomes 

^'xx - — + ^ 2 ) " —(̂ 2 - ^ i ) s i n20 . 

In light of equations (2.3.4.6 - 2.3.4.8), we note that 

k„ + k,„, — 1k[ 

(2.3.4.13) 

tan 29 = - J Q . . . y y — (2.3.4.14) 

From the Mohr circle construction we also have 

2 t ^ 
tan 20 = 

^yy - ^xx 
(2.3.4.15) 

Thus, equating (2.3.4.14) with (2.3.4.15), gives the following relationship between the 

off-diagonal components, and the three (laboratory) measurements: 

(2.3.4.16) 

Inverting (2.3.4.14) and (2.3.4.15) yields 

20 = tan-' ^xx+^yy -^'xx 
kyy -^x 

k 
= tan ' -g 

k — Ar 
_ yy XX _ 

(2.3.4.17) 

It is now straightforward to calculate the angle 20 for which the off-diagonal terms in the 

tensor will vanish. Alternatively, we may compute the principal terms directly, since we 

can write r as 

(2.3.4.18) 

41 



and then insert this expression for r into equations (2.3.4.9) and (2.3.4.10) for the 

principal permeabilities. 

2.3.5 Experimental Methodologies for Three-Dimensional Anisotropy 

Hailwood and Bowen (1999) investigated the problem of reconstructing the full 

tensor in three dimensions from experimental measurements. The procedure in three 

dimensions involves permeability estimations across the three pairs of faces of a cubic 

sample, orientated either parallel or perpendicular to the bedding planes in the parent 

core. A smaller sample is then cut from within this cube with the required diagonal 

orientation. 

Measurements along the faces of the inner cube are then made to provide the diagonal 

measurements. An obvious disadvantage of this method is that permeability data is 

collected from cubic samples of different sizes, which can make the scaling and 

combination of the two sets of measurements problematic. 

Permeability measurement axes 

Figure 2.3.2 Diagram illustrating the diagonal orientation of a smaller cube cut to 
provide "non-principal" measurements from an original cube orientated for "principal 
measurents" relative to the bedding planes in the sediment (after Hailwood and Bowen, 
1999). 

An alternative approach, also used by Hailwood and Bowen (1999) and generally 

considered the more reliable of the two methods despite the fact that it reintroduces the 
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problem of sampling heterogeneity, is to cut three separate cubes from a single bed, all 

identical in size. 

45* rotatior , 45* rotalion 

Cube 1 Cube 2 Cube 3 

Permeability measurement axes 

Figure 2.3.3 Schematic showing three separate cubes cut at different orientations 
relative to the bedding planes (after Hailwood and Bowen, 1999). 

The first cube is used for the "principal" measurements, the second provides diagonal 

measurements within the bedding plane, and the third is used to provide diagonal 

measurements out of the bedding plane. 

dimensions 

Pore long 
dimension 

Prefered orientation 
of pore short dimensions k 

^ Prefered orientation 
of pore long dimensions 

Magnfifir. anisotropy 
Minimum 6usc«p(ibiity 

(KM ) axis 

Maximum #u&c«pbb#ty 

Figure 2.3.4 The relationship between maximum and minimum susceptibility axes and 

preferred orientations of pore long and short axes in a sample in which the pore space is 

filled with ferrofluid {a.ite,T Hailwood and Bowen, 1999). 

A method that also claims to provide the principal directions of the permeability 

tensor in three dimensions direcdy has also been investigated by Hadwood and Bowen 

(1999). This involves saturating a cubic sample with a ferrofluid and examining the 
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directionality of the magnetic susceptability {Pfleiderer and Halls, 1990). The 

assumption made is that the principal directions of magnetic susceptability coincide with 

those of permeability {Hailwood and Bowen, 1999). The technique, termed 

'MAGPORE', thus defines the pore fabric of the formation by detecting the magnetic 

response of the ferrofluid that arises from the statistical alignment of the pores (Lisle, 

1989; Jezek and Hrouda, 2000). The magnetic response can be described in three 

dimensions by an ellipsoid of magnetic susceptability. It should not, however, be 

assumed that the principal axes of this ellipsoid will coincide with the principal axes of 

the permeability ellipsoid, as these axes correspond to entirely different physical 

quantities whose directional properties are not necessarily related. 

2.3.6 The Representation of Directional Permeability 

The problem of relating measured directional permeability to the components of k 

with respect to either the flow gradient or the hydraulic head gradient was investigated 

by Scheidegger (1963), who distinguished two alternative formulations. 

Case 1. The component of the filter velocity is taken in the direction of the pressure 

gradient and used in Darcy's law. In this instance, it is the direction of the pressure 

gradient defined by n, so the then the component of the flow rate vector qn parallel to n 

is given by the inner product: 

= q • n = n^q. (2.3.6.1) 

Since V/7 lies in the n direction, we can write 

Vp = (V/7 • n)n = V/7„n. (2.3.6.2) 

Furthermore, we may write a version of Darcy's law (equation 2.3.1.2) along an 

arbitrary direction n as 

q„ = -kyp„, (2.3.6.3) 

which serves to define the permeability kn in the n direction. Equation (2.3.6.3) may be 

substituted into (2.3.1.2) to yield 

9 ̂  = n^q = -n^kVf) = -n'̂ kVp„n = -n^kn(Vp,). (2.3.6.4) 
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Equating this expression with (2.3.6.3) gives 

k„ =n^kn. (2.3.6.5) 

By means of the transformation (2.3.3.1), we can then diagonalise k to obtain (2.3.6.6) 

( k '̂ xx 0 0 
k„ = n'̂ Dn = (n^ n )̂ 0 kyy 0 

0 
V 

0 ^zz 

« v (2.3.6.6) 

where K now represents the permeability in an arbitary direction in the new co-ordinate 

system. Carrying through the algebra we eventually obtain 

NYKYY ^ 7Z 

« v 

ip-x^xx + + W2̂ ZZ )• (2.3.6.7) 

If the principal axes of the symmetric permeability tensor are chosen as co-ordinate 

axes, the tensor consequently becomes diagonal and expression (2.3.6.7) will represent 

kn. Denoting the principal permeabilities (eigenvalues) as kxx, kyy, and kzz, and denoting 

the angles between n and the principal axes (X,Y,Z) hy a, P and y respectively, then we 

may write the unit vector n in terms of the component of the three direction cosines that 

specify the direction of q/; 

= n = = (cosa)e^ + (cos + (cosy)e^. (2.3.6.8) 
|Q / | 

Substituting for n in equation (2.3.6.7) then gives the following for the directional 

permeability in an arbitary direction: 

- ^xx cos^ a + KYY cos^ P+k^Z cos^ y. (2.3.6.9) 

Case 2. The filter velocity is measured directly and the component of the pressure 

gradient in the direction of the filter velocity must be used in Darcy's law. If we let the 

direction of the filter velocity be given by the unit vector n, then the component 7p„ of 

the pressure gradient parallel to n is given by 

Vp„ = V p n = n^Vp. (2.3.6.10) 
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Rearranging Darcy's law for Vp then gives 

Vp = - k " ' q . 

But since q is in the n direction, 

q = (q n)n = ^„n, 

(2.3.6.11) 

(2.3.6.12) 

in which case 

V/7„ = = - n % = n^k ' n ( -g ' J , (2.3.6.13) 

The filter velocity lies parallel to the unit vector n, so its component along the principal 

axes may be given as 

(ln=-K^Pn' or 

Comparison of equations (2.3.6.13) and (2.3.6.14) shows that 

Again, the unit vector n with respect to Vp is given as 

(2.3.6.14) 

(2.3.6.15) 

YiPj^ = n = + riyC + = (cosa)e, + (cos )8)ey + (cosy)e,. (2.3.6.16) 
|v ,p, 

Diagonalising k as before gives 

k = 
" n^D-'n 

(2.3.6.17) 

We evaluate the denominator in (2.3.6.17) as follows 

0 0 

n^D % = {rix riy , 0 Mkyy 0 
0 0 Mk »-zz 

My 

A " Z / 
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My 
L-JY 

n. 

ẑz 

n. 
n 

- + -

n 2 \ 
(2.3.6.18) 

"XX "-IT "•TZ 

Using (2.3.6.18), equation (2.3.6.17) becomes 

1 1 1 
n^D-in n\ 

"•xx 
• + -

n n 2 ^ y 

"yy "•zz 

cos^ct cos^ j3 cos^r + — + 
(2.3.6.19) 

"•xx "•YY "•ZZ 

Finally, we obtain the following expression for the directional permeability: 

J_ 
k„ 

cos^« cos^fl cos^r • + — + • ' 

^XX ^YY ^ZZ 
(2.3.6.20) 

Recognising that the diagonal components of k are the permeabilities along the 

principal axes of this tensor, two expressions for the directional permeability kn may be 

derived for the measurement direction n. In general, these two definitions of the 

directional permeability are not equal. The fact that these two values are not equal arises 

from the fact that these two measurements consider two different orientations of the 

potential gradient and filter velocity. Taking either formulation, the direction cosines in 

equation (2.3.6.7) and (2.3.6.20) produce an ellipsoidal representation quadric of the 

diagonalised tensor, where is represented graphically as a function of the directions 

of n to produce an ellipse, whose principal axes are in the direction of the principal axes 

of the permeability tensor (Figure 2.3.5). 

Figure 2.3.5 The representation quadric for permeability corresponding to case 1. The 
tensor is represented in the rotated co-ordinate system to give the principal axes of an 
ellipse with lengths (1/V^n). 
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The permeability ellipsoid is an ellipsoid of revolution (i.e. a spheroid) if kxx = kyy-

In matrix language this corresponds to a doubly degenerate eigenvalue, in which case D 

takes the form: 

( k '^xx 0 0 ' 
D = 0 k-XX 0 (2.3.6.21) 

0 0 ^zz , 

In the case where kxx = kyy = kzz, the system is triply degenerate and the tensor may be 

written as 

f k '^xx 0 0 ' 1 0 0 ' 

D = 0 kxx 0 ~ kxx 0 1 0 

0 
V 

0 kxx ^ 0 
\ 

0 1 
/ 

- kxx^- (2.3.6.22) 

In a general permeability experiment, what is generally measured is the volumetric 

flux, Q/A. The non-equivalence of cases 1 and 2 arises from the fact that they do not 

both represent a situation in which the direction n, in which the flux is measured, lies 

parallel to the applied potential gradient. For example, when conducting a permeability 

measurement on an orientated cylindrical core plug, n would be parallel to the axis of 

the core and the volumetric flux would then be exactly the flow rate per cross sectional 

area of the plug perpendicular to n; this corresponds to case 1. However, the second 

case refers to the situation in which the applied potential gradient is projected onto some 

direction n of the filter velocity vector, and so the apparent cross-sectional area across 

which the flow rate is measured becomes greater. Consequently, the measured 

volumetric flux would in general be relatively larger, since the quotient Q/A would no 

longer be a maximum. To date, no experimental method has been developed for the 

purpose of flux measurements corresponding to case 2, that is, at some general angle to 

the applied potential gradient. Consequently, the measurement of directional 

permeability is taken to suggest an experimental scheme following case 1, where the 

filter velocity is always measured parallel to the direction of the applied pressure 

gradient. 
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2.3.7 Symmetry of the Permeability Tensor 

Much work has gone into proving that the permeability tensor is symmetric, that is, kij 

= kji (Szabo, 1968). In fact, most research articles in connection with the tensor form of 

Darcy's law assume that k is indeed symmetric (Case and Cochran, 1972; Gain et al, 

1971). If we decide to operate on the assumption that k is symmetric, then we need only 

consider the six independent ky in the matrix. Furthermore, we note that symmetry of a 

matrix is a sufficient condition for its eigenvalues to be real and the corresponding 

eigenvectors to be orthogonal. The relationship kij = kji is a consequence of Onsager's 

reciprocal relation {Nye, 1957) and is an empirical expression that is concerned only 

with a macroscopic description of the permeability tensor. Usually it is assumed that an 

anisotropic formation has three mutually orthogonal principal axes, and this assumption 

itself is sufficient to ensure the symmetry of k. Some authors, however, have tried to 

prove the symmetry of the permeability tensor on the basis of specific models 

representing the porous medium, but these are not general proofs. 

2.3.8 Scheidegger's Argument for the Symmetry of k 

The symmetry relation kij =kji states that the permeability coefficient relating a 

pressure gradient in the i direction to the flux in the j direction is the same as the 

permeability coefficient relating a pressure gradient in the j direction to the flux in the i 

direction. We can prove the validity of the above relation for a rock whose permeability 

is due to sets of parallel conduits that may be orientated in arbitrary directions, as 

follows. Imagine a single circular tube of radius r, orientated in a direction defined by 

the vector n. If the pressure gradient is Vp, then the projection of the pressure gradient 

along the axis of the tube is Vp n. The vector Vp can be written in the equivalent form 

(Vp-n)n. According to the Hagen-Poiseuille law, the flow vector through this tube can 

be expressed as 

Ttr* 
Q = _ f _ ( V p . n ) n . (2.3.8.1) 

87] 

If we now imagine that there are N tubes within an area A (measured in the plane 

perpendicular to n), the total flux vector will be 

Q ^ _ N { n ) i t r ' ^ ^ ^_v{n)7tr* ^ (2.3.8.2) 
A 8Ar] 87] 
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where v(n) - A (̂n)/A is the areal density of tubes. We may write this result in terms of 

indicial notation, with n replaced by n„ the repeated indices implying summation over 

all possible values of that index: 

VTtr'^ 
9; = (2.3.8.3) 

BT] 

We now recall the vector form of Darcy's law for an anisotropic medium, 

q = V/7, (2.3.1.2) 
n 

which in indicial form can be written as 

Q j - — ( 2 . 3 . 8 . 4 ) 

Thus, comparing (2.3.8.3) and (2.3.8.4), we obtain 

q j = — ^ i P , (2.3.8.5) 
877 77 

which shows that the permeability tensor is given by 

4 

(2.3.8.6) 
8 

If we interchange the directions of the pressure gradient and flux vector, we may 

write the similar expression 

t , = M,. (2.3.8.7) 
y g ; ' 

Due to the commutative nature of the product»/»,, expressions (2.3.8.6) and (2.3.8.7) are 

identical, and so ky = kp for a set of N conduits orientated in an arbitrary direction n. 

As the sum of two or more symmetric matrices is also symmetric, expressions (2.3.8.6) 

and (2.3.8.7) may be extended to include all possible orientations of conduits by the 

following summations 

(2.3.8.8) 

1=1 8 
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(2.3.8.9) 
1=1 O 

which then also satisfy (2.3.8.7). Scheidegger (1963) replaced these summations by 

integrating (2.3.8.6) and (2.3.8.7) over all possible orientations of conduits in a solid 

angle O to give 

kij = J — (n-Uj )vdQ. = J — (n̂ .n, )vdQ. = . (2.3.8.10) 

Inserting this expression into (2.3.6.3) gives 

W" r ^ Ttr'^ r 
= ^ J {n.n.)vdQSlp^ =—^{njn.)vdSlVp„, (2.3.8.11) 

which is Scheidegger's argument for the symmetry of k. Expression (2.3.8.11), 

however, only applies to sets of non-interacting conduits, and is therefore not general. 

2.4 Network Modelling, Percolation and Effective Medium Theories 

2.4,1 Overview 

The incorporation of the geometrical characteristics of the pore space into lattice 

representations allows network computations to incorporate both pore shape and 

orientation into the calculation. Thus, data representing the pore structure and 

interconnectivity of a porous rock can be mapped into a simplified network conforming 

to a two- or three-dimensional grid. These were known as branching type models (FaU, 

1956a,b), where the conduit system consisted of a multitude of capillaries arranged in 

the form of a regular array. Fatt initially adopted an electrical network analogy that was 

used to predict the capillary pressure characteristics of porous media [Ksenzhek, 1963; 

Harris, 1965). Application of the electrical resistor network was subsequently extended 

to permeability modelling, to establish a critical pathway analysis of fluid flow 

{Friedman and Seat on, 1998a). 

Percolation theory treats the problem of fluid flow through a network of 

interconnected capillaries, consisting of nodes and conducting bonds connecting them. 

Furthermore, the theory shows that although the distribution of conducting bonds is 

random, there exists a well-determined threshold conductivity probability for a bond, 

when the network as a whole acquires conductivity. Percolation models were first 
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studied by Broadbent and Hammersley (1957), who developed lattice network 

representations of fluid flow through a rigid medium, and showed that no fluid would 

flow if the concentration of bonds is less than some threshold value. They also 

introduced the notion of the percolation probability, which served to indicate the extent 

to which conductance could take place through the network, or specifically the 

interconnectivity of the spanning cluster. 

An alternative approach to the "exact" network model is the effective-medium 

approximation, generally valid away from the percolation threshold. In this instance an 

effective conductance (and hence effective permeability) is obtained by modelling the 

"true" heterogeneous medium by a statistically equivalent homogeneous network 

(Kirkpatrick, 1971). This approach thus derives a representative average conductance 

parameter without the extensive matrix computations required by an exact network 

model. 

2.4.2 "Exact" Network Models 

The regular network consists of periodic arrays of a unit cell, and will consequently 

possess some degree of symmetry. Indeed, several types of network geometry have 

been proposed for two- and three-dimensional networks, respectively {Nicholson and 

Petropoulos, 1971; Chatzis and Dullien, 1977; Shankland and Waff, 1974). Two-

dimensional networks have been used more often than three-dimensional networks, due 

to their simplicity and ease of computability. 

V=Vo 

V=Vi 

V=Vo 

V=Vi 

V=Vo 

V=Vi 

Figure 2.4.1 Examples of 2D lattices (hexagonal, square and triangular) used by David 
etal. (1990). 
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Among the two-dimensional arrays are the hexagonal lattice, the square lattice, and the 

triangular lattice, with co-ordination numbers of three, four, and six, respectively 

(Chatzis and Dullien, 1977). Nevertheless, it has become apparent that two-dimensional 

networks are not the most realistic representation of the pore space, and are restricted to 

modelling in single-phase flow, owing to the phase discontinuity in multiple-component 

systems. 

2.4.3 Solution of the Network Conductance Problem 

The estimation of the conductance parameters for regular networks is a well-

established problem (for example, Seeburger and Nur, 1984), and involves a procedure 

of constructing a regular network of variable elements consisting of a node set {i}, and a 

bond set \ij}, connecting nodes i and j with conductance gij. The application of an 

external potential will consequently induce a distributed set of voltages {V,.} on the node 

set and a current = g^j (V, - Vj) then flows through the bonds. Furthermore, 

Kirchhoff's law of current conservation holds locally at each node i, so that 

= 0 P.4.3.1) 
j^i 

where the sum over j—>i indicates a summation over all the bonds connected to the i"" 

node. For a regular (ordered) lattice, we may invoke a constant co-ordination number, z 

which allows us to represent the conduction problem algebraically as 

Gv = w. (2.4.3.2) 

The elements of the conductance matrix G are given as (David et al, 1990) 

Gij =^ij - g » . (2.4.3.3) 
k^i 

where a "pseudo-summation" convention has been used to describe the conductance of 

each node. 

After solving equation (2.4.3.3) for v, it is straightforward to calculate the total 

current Itot flowing out of the network by summing up the contributions of the 

conductances connected to the lower boundary of the network where V = The net 

conductance for the network is then given by 
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2.4.4 Deriving an Effective Conductance from the Exact Network Solution 

If we now consider the situation for a regular network where all the conductances 

adopt a single value go, the equivalent conductance of the homogeneous network will be 

given by (David et al., 1990) 

Geq=goG[l], (2.4.4.1) 

where G[l] represents the overall conductance of the equivalent homogeneous network 

with the same topology, with the local elements set to unity. David et al. give the 

following expression for G[l] on the square lattice, as a function of the number of 

bonds, p: 

G[\] = - ^ . (2.4.4.2) 
p + \ 

In order to obtain geff, equations (2.4.3.4) and (2.4.4.1) are set equal to each other, and 

thus , yielding 

2.4.5 The Effective-Medium Approximation 

Numerous attempts have been made to calculate the transport properties of 

heterogeneous media, specifically the resistance of binary mixtures of conducting 

materials. Initial studies used simple mixing laws that failed to adequately describe the 

behavior of insulating-conducting mixtures, a situation that represents fluid transport 

through a porous medium, where the grains act as the insulating phase. Such approaches 

were unsuccessful and were consequently superseded by the effective-medium theory 

suggested by Kirkpatrick (1973) based on the earlier work of researchers such as 

Landauer (1952). If we consider a heterogeneous continuum in which a local 

conductive property can be defined, we may approximate the conducting medium by a 

network with a regular topology, where each bond is occupied by a conductance g*. To 

54 



account for heterogeneity, the set of all gk follows some probability density function, and 

so it becomes possible to build up a network with the same topology, but in which all the 

conductances have a single effective value, geff. In doing this we effectively map all 

elements from {g^} to some single value, geff. To find a mathematical expression for the 

effective conductance geff, a classical self-consistent method can be employed in which a 

single conductance gm is inserted into the homogeneous system. The inclusion of gm in 

the effective medium locally disturbs the uniform field. If this procedure was repeated 

over all local conductances, the disturbing effects of embedding into the voltage 

distribution should eventually average out to zero. 

9m 

geff gmf 
B 

Seff 

Sej] 
AB igm 

Qm 

Figure 2.4.2 Construction used in calculating the voltage induced across one 

conductance, gm, surrounded by a uniform medium (after Kirkpatrick, 1973). 

In the self-consistent field approximation, the single conductances are calculated 

under the assumption that each bond is subject to a potential equivalent to all the others 

plus that due to an external potential; the external potential in this case is taken to be a 

continuous pressure. If we then consider one conductance orientated along the external 

pressure field surrounded by the effective medium (Figure 2.4.2), and having the value 

gm, then the self-consistent solution in the presence of g^ is constructed by adding the 

effects of a fictitious current or flow rate, qm, introduced at A and extracted at B, to the 

uniform field. Far from gm, the perturbation is small and the solution will correspond to 

the uniform field. Across A and B however, the uniform solution fails to satisfy current 

conservation, and so the magnitude of is chosen to account for this: 

Sm^ 9m' (2.4.5.1) 
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The extra pressure, fm, induced between A and B, can be calculated if we know the 

conductance GAB of the network between points A and B when the perturbation is 

absent. Then 

The total flow rate through each of the z equivalent bonds at the points where the current 

enters and leaves is partitioned as qJz, so that a total flowrate of 2qjz passes through 

the AB bond. This then determines the pressure that develops across AB, and from that 

we deduce the following relationships: 

(2.4.5.3) 

= ( z / 2 ) g ^ , (2.4.5.4) 

and so 

G j ; g = ( z / 2 - l ) g ^ . (2.4.5.5) 

Substituting (2.4.5.1) and (2.4.5.5) into (2.4.5.2) then gives 

Equation (2.4.5.6) is solved to give a new set of discrete conductances which are in turn 

used to construct new potentials. This iterative process is continued until no further 

significant changes occur, at which point the system is said to be self-consistent. The 

requirement that the average of vanishes gives 

\ = 0, (2.4.5.7) 
,[(z/2)-l]g^ +g 

where the angle brackets signify an averaging procedure with respect to the probability 

density function of the gk- The co-ordination number z represents a mean value of the 

'true' co-ordination number in the disordered material, and may be defined locally as the 

number of conducting bonds reaching a node in the network. Consequently, the relation 

above represents the minimisation of the discrepancies between gm and gk, normalised to 
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the macroscopic conductance of the homogeneous network model. Furthermore, as we 

are dealing with a random medium, we ignore any possible spatial correlation between 

the magnitude of the local conductances. 

2.4.6 The Integral Form of the EMA and Examples of Closed-form Solutions 

If the values of the gk can be represented by a continuous probability density 

function, denoted as p{g) defined within the conductance interval g e [G, , G^ ], then the 

averaging process above can be expressed as an integral of the form 

For example, if p{g) is uniform, i.e., 

P ( ^ ) = 7 r - ^ ' (2.4.6.2) 
G| G2 

then equation (2.4.6.1) can be evaluated analytically to yield the following explicit 

equation for geff {David et al, 1990): 

2 ^ 1 [(z/2)-l]g,jy +G, 
= ( G , - G , ) , (2.4.6.3) 

Schlueter (1995) solved (2.4.6.1) for a log-uniform distribution of the form /(g) = 

(2glnG)'^ for g e [ G " \ G ] , for co-ordination numbers corresponding to a series 

arrangement of conductors (z = 2), a parallel arrangement of conductors, i,z= °°) and for 

the isotropic cubic lattice, (z = 6). The results were: 

z == 2: far 0.4.6.4) 

2 = » : ^"'zGinG' 

z = 6: « « " 2 ( 0 - 0 " ' ) • 

In the case z = 6, for very large G, the effective conductance may be ^)proximated as 
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(2.4.6.7) 

2.4.7 The Discrete Form of Kirkpatrick's Equation 

In certain cases the distribution of the local conductance values may not always be 

fitted by means of a continuous distribution function, and in this situation the integral is 

replaced by a series: 

where N is the total number of conductors. As geff is a monotonic increasing function of 

z, the two cases z = 2 and z = °° provide the following bounds, which hold for all z: 

N 
- j - I 

- ^ ^ 8 i • (2.4.7.2) 

2.4.8 Anisotropic Effective-Medium Approximation 

The effective-medium formalism of Kirkpatrick (1973) was subsequently extended 

to include anisotropic lattices, irrespective of their connectivity structure. Bemasconi 

(1974) showed that the isotropic effective-medium approximation works well for square 

lattices with anisotropic binary distributions, even at percolation. Toledo et al. (1992) 

extended the work of Bemasconi (1974) to make the anisotropic effective-medium 

approximation applicable to any regular lattice, regardless of its connectivity structure. 

The theory has been used to model the permeability of anisotropic fracture networks 

{Harris, 1990, 1992; Hestir and Long, 1990). An anisotropic resistor network can be 

represented by an equivalent anisotropic effective medium in which all bonds orientated 

along a particular direction v have the same effective conductance, denoted here as . 

As in the isotropic case we require that the extra voltages induced when individual 

conductances replace in the anisotropic medium average to zero. Thus, analogously 

to equation (2.4.5.7), we write 

) = 0. (2.4.8.1) 
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The effective bond conductances for each of the lattice directions can be self-

consistently determined. We have, in accordance with equation (2.4.7.1): 

= 0, (2.4.8.2) 

where d denotes the total number of lattice directions lattice directions. The term Sy in 

the denominator of (2.4.8.2) is a function of the directionally-dependent effective 

conductances, and is used to describe the connectivity of the lattice. For homogeneously 

isotropic lattices, equation (2.4.8.2) reduces to Kirkpatrick's result, equation (2.4.7.1). In 

this case, all the gejjiy) are then equal, and so calculating Sv becomes relatively 

straightforward by virtue of the network symmetry. For anisotropic networks the task is 

more complex, and analytical expressions for Sv are found by solving the appropriate set 

of Kirchhoffs equations or by the Fourier transform techniques employed by 

Bemasconi (1974). The function has been approximated in the case of a cubic network 

as (Bemasconi, 1974) 

• sS ' I 
r V = I 

tan" •'+s:i'gf+gS'g;f 

tan" ' W ' ' i / E s ' s S ' + S . 7 « . F + M} ' 
(2.4.8.3) 

For d=3 lattice directions, the problem of finding the effective conductances evolves 

into solving three non-linear simultaneous equations that are formed from a cyclic 

permutation of {1,2,3}. For lattices other than the square or simple cubic lattice, these 

techniques prove somewhat complicated, and Toledo et al. (1992) used the operational 

methods of Van der Pol and Bremmer (1950) to calculate Sv for a number of regular 

lattices with anisotropic distributions of conductances. 
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Figure 2.4.3 Flow pattern in the effective anisotropic lattice (after Toledo et at., 1992). 
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Toledo et al. (1992) compared bond-percolation of the anisotropic medium 

permeability with that according to Monte Carlo calculations on a variety of two- and 

three-dimensional lattices, and found that the anisotropic effective-medium theory is 

accurate to within 5%, except near the percolation threshold of three-dimensional 

lattices. 

2.4.9 Percolation Theory 

Several reviews of percolation modelling exist in direct relation to fluid flow in 

porous media (AWer, 1992; Dullien, 1992-, Berkowitz and Balberg, 1993; Sahimi, 1995; 

Berkowitz and Ewing, 1998). However, these rest on a broader literature, which 

examines percolation theory in greater generality {Frisch and Hammersley, 1963; Shante 

and Kirkpatrick, 1971; and Staujfer and Aharony, 1992). Shante and Kirkpatrick 

originally examined the role of percolation effects in the metal-semiconductor phase 

transitions that were observed in some disordered systems, and also the hopping 

conductivity in amorphous materials (Ambegaokar et ai, 1971). 

The percolation threshold may be defined as the fraction of conducting sites that need 

to be present for conduction to occur across the network. A natural way of studying 

conducting networks is to remove all the bonds successively, and then reassign them to 

the network over multiple realisations until the most likely threshold cluster or critical 

path is obtained. After defining a threshold cluster, or critical subnetwork, we assume 

that flow localisation occurs on the backbone of the critical subnetwork, which is then 

designated as the "Critical Path". 

Ambegaokar et al. (1971) considered an analogy between the flow of current by the 

mechanism of electron-hopping between the localised states in semiconductors at low 

temperatures and the flow between the nodes of a random network composed of 

individual conductances. It was suggested that close to percolation (that is, at 

sufficiently low temperatures) the conductance of such a network would be controlled 

by a critical or limiting conductance, gc- This arises because current originating from 

isolated high-conductance zones or clusters inside the network has to pass through sites 

with conductances of the order gc in order to traverse the system. For a set of 

conductances distributed log-uniformly over the interval [G'\G] with density f(g) = 

(2glnGy\ the critical conductance gc takes the form (Schlueter, 1995) 
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gc=G^- (2.4.9.1) 

n 
= L 

h ~ l I I 

Figure 2.4.4 Bond percolation on the square network at bond occupancies of p=l/3 and 
p=2/3. The value of the critical occupancy, pc for the square network is exactly 0.5, 
marking the formation of a spanning network (after Sahimi, 1995). 

2.4.10 Correlation Length 

Selyakov and Kadet (1996) proposed a model of the infinite cluster in which it was 

possible to represent the conducting skeleton or backbone of the cluster by means of a 

scaling law of the form 

(2.4.10.1) 

where v is a scaling exponent and the quantity ^ is known as the connectivity (or 

correlation) length. The correlation length represents the average distance between two 

sites in a cluster near the percolation threshold in a (/-dimensional system. 

2.4.11 The Critical Exponents in Transport Phenomena 

For finite lattices, the percolation threshold depends on the specific realisation of the 

conducting bond distribution. However, in the limit of the lattice becoming infinite, the 

fluctuation of the percolation threshold vanishes, and this value converges exactly to 

what would be predicted by percolation theory. In an infinite system this threshold 

value is dependent only on the network type and the dimensionality of the problem, but 

remains independent of the specific realisation of the system. The formation of an 

infinite conducting (spanning) cluster is effectively a second-order phase transition and 

bears analogy with second order phase changes in amorphous semiconductors, as well as 
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in ferromagnets near the Curie point. Phase changes are generally characterised by a set 

of universal critical exponents that are tied to the dimensionality of the system. These 

parameters serve to quantify the behaviour of the system about its critical point, that is 

the rate at which a physical quantity diverges as the percolation threshold of the system 

is approached. 

A variety of appropriate critical exponents exist, some of these being defined by 

Stanley (1971) and Straley (1980). A relationship proposed by de Gennes (1976) gives 

an exponent r as a linear combination of the dimensionality of the system, d, a 

correlation length, ^ , and the critical parameter, v: 

t = (d-2)v+C (2.4.11.1) 

The Shklovsky-de Gennes model of conductance {Selyakov and Kadet, 1996) allows us 

to relate the dimensionality of the system to the exponent v, to give an approximation of 

the bulk conductivity of a cluster, Z, in dimension d as 

(2.4.11.2) 

where ai is the specific conductivity of a chain and (7̂  is the specific conductivity of 

the network when p = I. Alternatively, the bulk conductivity has been found to scale 

with the exponent t, so that 

Z = |p-p, | ' . (2.4.11.3) 

The exponent t has been found to be largely universal, where t{d=l)~\3 and t(d=?>)~\.l 

(Normand et al, 1988; Gingold and Lobb, 1990); the permeability ^ of a fluid in a 

hypothetical pore network scales in an identical fashion according with the critical 

exponent t {Berkowitz and Ewing, 1998): 

k ~ \ p - P c \ ' - (2.4.11.4) 

2.4.12 Effective Medium Theory and PSRG Procedures 

The effective-medium theory, on account of its reliance on a probability density 

function of network conductances, is expected to be more accurate when the conducting 

network is not sparse, that is, when the correlation between the discrete conductances is 

carried out over a relatively large population of occupied sites. Outside the critical 
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region, one can obtain a conductance with some rehability from an effective medium 

treatment. Koplik (1982) showed that effective-medium representations of 

heterogeneous materials are successful for uniform distributions, but not for networks 

fitted by broad lognormal distribution functions. 

As a consequence of the unreliability of the effective-medium approximation near the 

percolation threshold, a renormalisation procedure was developed by Sahimi et al. 

(1983) based on the combination of the effective-medium approximation and Position-

Space Renormalisation Group (PSRG) procedures. This has been reviewed by Zhang 

and Seaton (1992) in a study of effective diffusivities in porous solids with continuous 

pore size distributions. In PSRG theory {Stinchcombe and Watson, 1976), the original 

network is divided into identical unit cells with linear dimension b. Figure 2.4.5 shows 

the renormalisation procedure for the isotropic cubic lattice when b = 2. The 

renormalisation procedure involves replacing the original unit cell by three renormalised 

bonds, where the conductance distribution of the renormalised bonds is chosen such that 

they offer the same resistance to transport as the original cell. Thus, a new cell, 

topologically equivalent to the original, is created out of the renormalised bonds, but 

with linear dimension a factor of b larger. The fraction of unoccupied bonds changes on 

renormalisation, this fraction being denoted as R(p). With each successive 

renormalisation, the conductance distribution becomes increasingly narrow. As the 

number of realisations approaches infinity, the fraction of unoccupied bonds moves to 

one of three fixed points: 

b=2 1 / 
Y J 

k:: 
(i) (ii) 

Figure 2.4.5 (i) b=2 Renormalisation cell for the simple cubic lattice; (ii) Renormalised 
bonds corresponding to this cell (after Zhang and Seaton, 1992). 
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• If the initial fraction of occupied bonds satisfies Pc=Ripc), the fraction of 

renormalised bonds does not change as a result of renormalisation, and hence p i s a true 

estimate of the percolation threshold. 

• If, however p>pc, then the fraction of occupied bonds increases with each 

renormalisation step, and tends to unity. 

• If p < p c , the fraction of occupied bonds decreases with each renormalisation step. 

Thus, with each renormalisation the system moves further away from the percolation 

threshold. 

Sahimi et al. (1983), in noting that a renormalised network lies further away from the 

percolation threshold than the original network, developed the Renormalised Effective 

Medium Approximation (REMA), where a single renormalisation approach is carried 

out and the renormalised conductance distribution p'{g) is used as the input into 

Kirkpatrick's equation, (2.4.3.8). Furthermore, Sahimi applied REMA to a binary 

conductance distribution on the square and simple cubic lattices, and compared the 

results with the original EMA and also with the network Direct Solution (or DS) 

method. It was discovered that REMA was more accurate than EMA in the region of the 

percolation threshold and for the simple-cubic lattice. Estimates of pc for the EMA and 

REMA methods could be compared directly to the DS method as follows: 

Pc(EMA) = 1/3 > pc(REMA) = 0.2673 > pdDS) = 0.2493. (2.4.12.1) 

The PSRG method yielded a bond fraction of 0.2083 at pc, in accordance with the 

renormalisation procedure, moving the system further away from the percolation 

threshold, when p < p c . 

2.4.13 Percolation on Anisotropic Networks 

Toledo et al. (1992) noted that the anisotropic effective-medium approximation 

should be useful whether the lattice anisotropy is intrinsic, or introduced by a lattice 

decoration process in which conductances of bonds aligned in different directions are 

drawn from different probability density functions. In the latter case, the geometrical 

variability of pore-segment characteristics is therefore approximated by distributing 

conductances to the bonds of the representative network according to directionally 

dependent probability density functions. The work of Friedman and Seaton (1998b) 
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also included a consideration of connectivity-induced anisotropy. This was introduced 

into their network models by the application of a directionally-dependent bond deletion 

routine to the isotropic cubic lattice which was then subsequently "decorated" with 

bonds from a set of directionally-dependent pore radius distributions. 

The first research into percolation anisotropy was made by Shklovskii (1978), who 

quantified the conductivity anisotropy of a network by 

A = ^ - l . (2.4.13.1) 
S t 

The quantities gi and g, are the macroscopic conductivities of the network, parallel and 

perpendicular to the direction of the macroscopic potential gradient, respectively. Near 

the percolation threshold, the anisotropy factor begins to follow a scaling law of the 

form 

(2.4.13.2) 

where A is the critical exponent for the anisotropic system. Mukhopadhyay and Sahimi 

(1994) discovered that 1% > Ag, which shows that the anisotropy in a two-dimensional 

network vanishes faster than in the three-dimensional case. This may be understood by 

considering the structure of the subcritical network; Sarychev and Vinogradoff (\9S3) 

reasoned that the conducting backbone consists of a skeleton together with dead ends, 

the latter being less dense in the three dimensional case, thereby giving Ag > A3. 

However, it is not yet known how to relate X to the structure of these dead ends, and so it 

is difficult to build up a quantitative verification of this postulate. The fact that A 

disappears at the threshold is due to the tortuous nature of the conductance pathways. In 

close proximity to pc, the tortuosity becomes so large that the directional aspects of the 

flow channels become indistinct, and the anisotropy vanishes. This phenomenon allows 

us to explain why the critical exponent is greater in two than in three dimensions, 

since this may be interpreted as suggesting that as we approach the percolation 

threshold, the tortuosity of the three-dimensional paths will similarly increase at slower 

rates than the two-dimensional counterpart. Consequently, the anisotropy should indeed 

vanish faster in the case of the two—dimensional network. 

Much effort has been given to the estimation of percolation thresholds of infinite 

isotropic simple cubic lattices using scaling theories (Gingold and Lobb, 1990). 
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However, the percolation threshold in a given direction will depend on the occupation 

(co-ordination) number in that direction. For two-dimensional lattices, there exists an 

exact solution to the percolation problem {Sykes and Essam, 1963), that is consistent 

with other approaches, such as the expansion method of Redner and Stanley (1979), and 

also with other related Monte Carlo Renormalisation Group methods {Kim and Lee, 

1992). In a further study by Friedman and Seaton (1998c), the percolation thresholds of 

three-dimensional cubic lattices was employed. This was achieved by a repetition of 

their directionally-dependent bond deletion routine until a critical network was obtained. 

They addressed the likely trend of the anisotropy ratio as the critical bond occupation 

probability was approached, employing an isotropic bond decorating procedure together 

with an anisotropic bond deletion routine, using reasoning similar to Shklovskii (1978). 

Friedman and Seaton (1998c) have extended their work to calculating percolation 

thresholds on the infinite cubic lattice, employing the extended finite-size scaling 

equation of Wilke (1983). Related to this work is the algorithm SYMMLQ {Friedman 

and Seaton, 1998a,c) for calculation of the network conductance. The use of this 

algorithm requires relatively large lattices in order to eliminate the effect of the finite 

size of the system. In addition, many repetitions of the calculation for the differing 

random assignments of bond deletion are needed to get accurate values for the threshold 

porosity and conductivity. 
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3 ROCK SAMPLES 

3.1 Introduction 

This study involved two independent data sets. The first consisted of a collection of 

backscattered electron micrographs that were prepared from the core extractions of a 

commercial well that lies inside the UK Continental Shelf (UKCS), and was supplied by 

Enterprise Oil. 

It was thought to be worthwhile to incorporate a second, independent dataset into the 

study. The second dataset was prepared by coring a sample of St. Bees sandstone for 

laboratory permeability measurements, the end trims been taken to prepare a collection 

of backscattered electron micrographs. The St. Bees sample was provided by Core 

Magnetics as an outcrop cutting from the Birkham quarry in Cumbria, UK. 

3.2 UKCS Data Used in This Study 

A geological description of the UKCS sandstone has been provided by Hatfield 

(1999), who suggests the following petrology. The samples are mostly fine grained, 

ranging from a very fine to medium granularity with moderate to poor sorting. 

Furthermore, the samples exhibit similar grain contact and roundness characteristics 

throughout. The main detrital components are monocrystalline quartz (24-62%) and 

feldspar (2-16%). It has also been noted that the feldspars have suffered from dissolution 

processes to form secondary porosity. Lithic fragments are also present (26%) and are 

composed mainly of polycrystalline quartz, minor amounts of chert and sandstone. 

Metamorphic granitic and volcanic rock fragments are also present. The principle 

diagenetic minerals are the clays kaolinite (0-9%), and chlorite (identified by Scanning 

Electron Microscopy (SEM) and X-Ray Diffraction (XRD). Quartz overgrowths (0-

12%), ferron calcite (0-42%) and siderite (0-28%) are also present. The cementation has 

developed preferentially in thin bedded sandstone facies that are associated with 

mudstones. 

3.3 ENTERPRISE Method of Data Acquisition 

In practice, a core, approximately 4 inches in diameter, is taken parallel to the 

bedding plane in the course of drilling. A rectangular section of material, is then taken, 

parallel to the bedding laminations and a set of cubes are then cut from this slab, their 
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orientation carefully registered and retained with respect to the core. These cubes are 

utilised in pore magnetic susceptibility measurements using the MAGPORE method of 

Hailwood and Bowen (1999) to establish the mean pore orientation. To obtain the 

directional permeabilities however, a final section is then taken from the remainder of 

the core and from this material, a single cube approximately two inches across cut 

parallel with the bedding plane. The remaining end trims carefully marked to retain 

correspondence with the orientation of this cube. Permeabilities are obtained directly 

from measurements across the faces of the cube to give two measurements parallel with, 

and one measurement normal to the bedding planes of the formation. Each pair of end 

trims from any two opposing faces of the cube therefore represent one of three 

orthogonal slices, two lying parallel, and one perpendicular to the bedding plane in the 

reservoir. This set of end trims, registered with respect to the faces of the cube, are then 

mounted and polished for SEM analysis. 

k= 202.5 mD k=222.4 mD 

3-XZ 

s s frit'-' 

i i i i 
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k = 83.2 mD k= 72.4 mD k=27.8 mD 

Figure 3.3.1 Examples of Backscattered Electron micrographs (BSEIs), taken from 
Well "A", along with their directed core measurements at X30. The notation gives a 
core identifier and thin section number, where the "X, Y, Z", tagging refers to the 
direction that lies perpendicular to the slice of the thin section. 
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The Backscattered Electron micrographs used were originally acquired by Applied 

Reservoir Technologies Ltd, and supplied for each core as a set of images taken in a 

five-spot configuration over the area of each of the mounted end trims, at a 

magnification of X30. Each image contains 512x400 pixels with a vertical to horizontal 

aspect ratio of 0.78125. As each pixel occupies an area of approximately 37 |im^, the 

total field of view is 7.5 mm^. 

3.4 St. Bees Sample 

St. Bees is a lower Triassic hunter sandstone from an Aeolian desert shoreline, and is 

transversely isotropic. The grains are subrounded with poor sphericity, and do not 

exceed 0.5 mm across. There is a low mica content and the sandstone is also considered 

to be texturally and mineralogically mature. Al-Harthy (1999) gives the porosity of St. 

Bees as 26%, and estimates the quartz content at 90% and the feldspar content at 5%. 

Right-end view Reference Plane 

Figure 3.4.1 A diagram of the topside and the right hand view of the St. Bees sample 
together with the "XYZ" field co-ordinates. The mean pore long axis alignment as 
derived from the MAGPORE method is 117° clockwise from the X-axis. Close 
examination of the second figure shows the presence of cross-bedding; however, the 
angle between the Z field co-ordinate and the major bedding plane is approximately 45°. 

The sample forms part of a larger cutting from the outcrop where magnetic 

measurements of pore fabric have been made, using bold notation, in "XYZ" field co-

ordinates, referred to the reference plane as shown in Figure 3.4.1. Orientation axes 

69 



have been drawn along the sample in situ before its detachment from the outcrop; the 

orientation of this plane relative to the horizontal, and of the orientation line relative to 

North, has also been recorded. 

3.5 Heterogeneity Mapping 

An assessment of the spatial variation in the local permeability of the sample was 

made using minipermeametry. A transparent grid containing regularly spaced points on 

a square lattice was overlaid on each face of the sample, and these points were then 

marked at regular intervals as possible onto the surface of the sample. The 

minipermeameter was then applied to each of these points, and a flow rate Q them 

measured in cm^ s"'. The permeability is calculated from this flow rate in milHDarcies 

using 

/:== Ci.S.l) 

where P = 467.6 mD s"' is a composite constant that includes the factors of the 

differential gas pressure, cross-sectional area and gas viscosity, and allows the 

permeability to be calculated directly in milliDarcies from the injection rate and pressure 

differential across the probe tip. Some points have been deliberately omitted where the 

flow measurement is thought to be particularly unreliable, either due to surface 

irregularities preventing a good seal at the injection point, or because the sample 

becomes too thin and the support volume is not sufficiently large to allow boundary 

effects to remain negligible. 

Table 3.5.1 A compilation of the minipermeametry statistics for the St. Bees sample. 

Parameter Topside Bottomside Leftside Rightside Frontside Rears ide 

n 31 21 2 3 2 6 

<k> 83 208 234 284 175 119 

0'„_, (mD) 67 116 126 56 17 46 

(%) 80 56 54 20 9 39 
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The following pictures show the local permeabilities, expressed in mD, for the six 
faces of the sample. 

' v r p ' M N (WTO M.ANE) u ^ ' 
(reference plane) 

. . 261.86 233.80 I 
79.49 • ' 

163.66 9352 93.52 102.87 102.87 

177.69 6547 ^ 56.11 56 11 32.73 

126.25 42,08 28.06 18.71 
- . . 1 
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Figure 3.5.1 Topside and the corresponding bottomside of the St. Bees sandstone, 
showing the permeability mapped at designated points. 
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Figure 3.5.2 Left and right-hand sections of the St. Bees sandstone showing the relative 
orientation of the reference axes as the sample is rotated. 
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Figure 3.5.3 The final set of permeability measurements for the front and rear sides of 
the St. Bees sample again relative to the reference axes. 
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An examination of the statistics for the left and right faces, that is, along the X axis, 

shows that the average permeabilities are comparable. It should be noted, however, that 

the relatively low number of measurements may make this result somewhat fortuitous. 

Similarly, the sparseness of data makes it difficult to draw any conclusion for the 

standard deviations calculated for the permeabilities from the left and right faces of the 

sample. The results also indicate an increase in the average permeability by a factor of 

2.5 as the Z axis is traversed from the reference plane to the bottomside of the sample, 

but in addition, the standard deviation increases by over 20% indicating a moderate 

degree of heterogeneity along the Z direction. 

The differences in the average pemeability between the front and back faces are not 

significant, although the standard deviations calculated for each face vary by nearly a 

factor of four. However, such differences may be attributable to a lack of sampling 

rather than being indicative of spatial variations in lithology. 

The overall permeability parallel to the bedding plane, taken along the X axis {i.e., 

parallel with the left and right side faces), is slightly higher than the other collections of 

measurements which have been taken at some other orientation relative to the bedding 

plane. Unfortunately, however, the heterogeneity, although producing permeability 

variations that remain within an order of magnitude, makes it difficult to judge if this 

difference is indeed attributable to lithological anisotropy, or is simply an artefact of 

spatial variation in the collected permeabilities. 

3.6 Coring Details 

A first cylindrical core approximately 2.5 cm in diameter was cut from the sample at 

a right angle to the major bedding plane, and denoted as "Z", using nonbold notation. 

Magnetic susceptibility measurements showed the mean pore long axis to be aligned at 

117° degrees clockwise to the orientation arrows. To cut the second cylindrical plug, 

this axis was projected onto the bedding plane, and then a second core was cut into the 

bedding parallel to this projection and denoted as "X". Finally, a third core was 

removed from the sample, within the bedding plane, orthogonal, but at a clockwise 

orientation to the X core so as to obtain a right-handed set of plugs. The final core was 

labelled "Y" and similarly lies at 117° clockwise from the parent Y axis in the reference 

plane. The endtrims of the three cores were removed, and their registration with the 

remaining cylinders recorded. Both the endtrims and the cylinders were continuously 
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extracted in ANALAR grade methanol for 48 hours, and then allowed to dry for 24 

hours under a partial vacuum at 200°C. The endtrims were then imbibed with epoxy 

resin and mounted as thin sections approximately 3.8 cm" in area for scanning electron 

microscopy analysis. A total of seven endtrims were collected from the three orientated 

core plugs. The remaining cylinders, 5 cm in length, were then further cleaned to 

remove the fines from the end faces. This was achieved by sonication in ANALAR 

grade methanol for eight hours, replacing the methanol every two hours. The cores were 

subsequently dried under the same conditions detailed above. The final cylindrical plugs 

were then taken and used in Klinkenberg-corrected gas-permeability measurements. 

3.7 Klinkenberg Measurements 

Gas flow measurements were performed on an Ergotech fast-loading Hassler cell 

permeameter at a confining pressure of 300 psi (= 20 atm), using nitrogen as the carrier 

gas. At least twenty measurements of flow rate were recorded for each of the three 

plugs with upstream pressures ranging from 1.2 to 3.0 atm. The downstream pressure 

was maintained as approximately 1 atm. 

The calculated permeabilities were plotted against the inverse of mean flow pressure 

and extrapolated to infinite mean pressure using the equation (Scheidegger, 1963) 

1 + - (3.7.1) 

where is the gas permeability, calculated from Darcy's law, is the mean pressure 

across the length of the plug at which the measurement is made, b is the Klinkenberg 

coefficent, and is the equivalent liquid permeability. The the results are summarised 

in Table 3.2.2, and the Klinkenberg plots are shown in Figure 3.7.1. 

Table 3.2.2 Compilation of data for the three cores from the St. Bees sample. 

CORE (mD) b (atm"') 

X 648 0.1520 0.8308 

Y 1380 0.1519 0.8479 

Z 1050 0.1950 0.8690 
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Figure 3.7.1 Klinkenberg plots obtained for the directed cores X, Y and Z, 

75 



Somewhat suprising is the permeability of the X core, which although cut parallel to 

the major bedding and, more significantly, aligned with the mean pore long axis (as 

assumed from MAGPORE measurements), exhibits a lower permeability than the Z 

core, which was cut perpendicular to this bedding. The ordering of the permeabilities as 

derived from a Klinkenberg-corrected gas flow measurement is kx < kz < ky, with an 

anisotropy ratio of 2:3:4. This is counterintuitive, as it might be expected that the 

permeability in the Z direction would be the lowest. However, there is strong visual 

evidence to support the fact that in fact the sample is cross-bedded. Although the 

presence of heterogeneities and other lithological factors such as cross-bedding will 

influence the magnetic response of a sample, the ordering of the permeabilities suggests 

that the statistical alignment of the pores may not correlate that closely with the direction 

preferential for the flow of fluids. Consequently, this brings the MAGPORE method of 

determining the principal directions of permeability using mean magnetic susceptibility 

measurements of the pores into question, and raises the issue of whether or not the 

orientation of the cores had been correctly chosen to provide the components 

corresponding to the diagonalised permeability tensor. 

3.8 SEM Details for St. Bees Sample 

Five BSEI were collected for each endtrim in *.BMP format, again in the five-spot 

configuration, but at the slightly higher magnification of X35. The instrument used was 

a Jeol T200 scanning electron microscope equipped with a four quadrant semi-conductor 

backscattered detector, supplied by KE Instruments. The microscope was run at an 

accelerating voltage of 25 KeV. 

The stored images were resized to a common format of 650x500 pixels. The 

horizontal scalebar integral to each image was 205 pixels across, corresponding to 1000 

microns. Each image was then cropped to 649x450 pixels to remove the integral 

scalebar and other extraneous information. The final images, stored in uncompressed 

*.TIF format, were composed of pixels with an aspect ratio of 0.27 and an area of 88.83 

The total field of view of each stored BSEI is then approximately 26 mm^. 
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4 IMAGE ANALYSIS 

4.1 Introduction 

The purpose of using image analysis is to obtain faithful representations of the pore 

space, and therefore an estimate of the relevant pore space parameters. In this study, the 

aim is to reproduce the permeability of anisotropic rocks by collecting area and 

perimeter measurements, within imaging resolution constraints, to form the set hydraulic 

conductances corresponding to the pores in the image. This data is then input into an 

effective-medium network model that will predict permeability. 

Image analysis may be regarded as a technique for characterising and classifying 

images, and features within images, when a corresponding core analysis on a 3D sample 

is unfeasible. In the context of estimating the permeability of a reservoir rock, this 

situation may arise in field development scenarios where insufficient material is 

available for routine core analysis. 

The procedure of obtaining tractable information from thin sections will typically 

involve the use of a microscope, together with a video scanner or camera, a digital 

converter and image processing software. The successful analysis of data requires the 

development of consistent image processing methods with which regions of interest can 

be identified and segmented from the rest of the image. The following sections discuss 

these procedures in more detail. 

4.2 Electron Microscopy 

Representative images of thin sections are obtained by some form of optical or 

electron microscopy. In the present study, scanning electron microscopy is used, in 

which a scanning electron beam then replaces the incident light beam, affording greater 

resolution than other optical methods. An operational difficulty arises because electrons 

would be scattered by air, and so the beam path must operate in a vacuum. In scanning 

electron microscopy the beam sweeps the surface of the sample synchronised to the 

output from a cathode ray tube. Backscattered electrons from below the surface of the 

specimen modulate the intensity of the beam from the cathode ray tube. The interactions 

which occur between incident electrons and target atoms may be divided into elastic and 

inelastic processes. In the former case the collision between the electron and the 

relatively massive nuclei results in virtually no momentum transfer; this is because the 
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nuclear energy levels are widely spaced (MeV) compared with the electron energies 

used in the analysis (-10 KeV), and so there is little possibility of energy exchange 

between the surface and the incident electron beam. 

If the incident electrons are of a sufficiently high energy, interactions with the inner 

shell electrons of the specimen may take place, resulting in the release of X-rays, which 

can themselves be used as an analytic tool for elemental mapping {Birks, 1959; Briggs 

and Seah, 1983). Additional inelastic processes do occur, in which case the mechanism 

for collisional energy transfer becomes operative when the incident electrons interact 

with outer orbital electrons of comparable energy in the target {Scott and Love, 1983). 

For mineralogical classification of reservoir rocks, the main aspects of the analysis 

are concerned with the detection of the elastic processes that occur at the target, since 

the emission intensity of the elastically scattered electrons is a function of the 

specimen's atomic number {Petruk, 1989). Thus, the brighter the signal the heavier the 

element, with the contrasts provided by differences in electron density within the 

specimen. Often these contrasts may not be sufficient to give a great enough difference 

in scattering power to allow different material domains to be distinguished and various 

techniques are employed to enhance this contrast during sample preparation {Schlueter, 

1995). In the application of electron probe techniques for the examination of the pore 

space of a fluid-bearing porous medium, a 3D sample is subjected to vacuum and then a 

low-viscosity fluid epoxy resin is allowed to imbibe under at positive pressure, into all 

the interconnected pore space. The resin is then allowed to set under ambient pressure 

allowing its polymerisation into a material with a molecular mass that is small relative to 

the mineral phases present {Ruzyla, 1986; Tsakiroglou and Payatakes, 2000). The 3D 

specimen is then sliced into 2D sections of approximately 50 |im width, and mounted 

onto a sample holder. Finally, preparation of samples may involve polishing to 

eliminate shadowing effects, and the surface deposition of a thin conductive layer such 

as graphite to prevent charging of the surface by the scanning electron beam. This 

conductive layer masks surface features to some extent, limiting resolution to about 10 

nm. However, the contrast between the molecular weights of the resin the mineral 

phases still makes the pore phase component of the thin section discern able. 

Alternatively, impregnation with a low-melting alloy such as Wood's metal may be used 

to enhance the difference in optical brightness {Rink and Schopper, 1978). 
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Computers are unable to process a continuous spectrum of grey values, and so the 

input image must be represented by a finite range of discrete values arranged as a 

matrix. Thus, the image is treated as a set of "points", each having a value 

corresponding to the average intensity of the image about that point. The image may be 

captured directly in digitised format, or may be kept initially as a photograph to be later 

scanned/digitised and stored in some conventional digital format such as a *.BMP or 

*.TIF image file. 

4.3 An Overview of Image Processing Software 

Once stored in a permanent digital format, the image can be accessed by use of a 

suitable image processing software that will allow the editing, enhancement and 

subsequent analysis of digital images. The software used in this study was the "Scion 

Image for Windows" package - Version: Image Betala 1997. 

Scion Image is an image processing and analysis program for the IBM PC. It 

operates as a menu-driven interface that has the capacity to provide the conventional 

image processing operations such as smoothing, sharpening, edge detection, median 

filtering and two-dimension convolution with user-defined kernels. It also performs 

automated feature analysis and spatial calibration is supported to provide real-world area 

and length/perimeter measurements. Collected results may be printed or exported to a 

text file for further study. 

4.4 Image Segmentation and the Grey-level Histogram 

Segmentation is the assignment of a grey-level or energy threshold with which to 

convert the digitised image into a binary signal (Joyce-Lobel, 1985; Castleman, 1996). 

The term "thresholding" in this context then refers to the mapping of a'l "points", or 

pixels, with energy levels up to and including a certain predetermined threshold value to 

a binary output of zero, with all higher levels mapped to a binary output of 1. In the 

context of deriving fluid transport parameters, a threshold is sought that allows 

separation of the 2D representation of the pore space from the remainder of the mineral 

phases present in the 2D section. Consequently, the procedure of image analysis is 

performed only on this "meaningful" representation of the conducting phase of the 

porous material. 
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Figure 4.4.1 (a) A digitised SEM image of a single representative thin section at XI50. 
The dark regions represent the pore space and the remainder the grain area complete 
with mineralogical features (supplied by Enterprise Oil), (b) Binary representation of 
the image, with the pores distinguished as black and the remaining features mapped to a 
binary output of zero. The length of each image is 708.25 nm. 

An important visual aid in the determination of correct image segmentation and 

thresholding comes from using the histogram window in conjunction with the 

corresponding image, and forms a very central part in much image analysis. The grey-

level histogram is a display device which shows the number of pixels that are 

attributable to the various mineral phases present in the thin section, and therefore 

provides a visual summary of grey-level content of an image. 

Figure 4.4.2 shows a typical histogram for this set of data, where the abscissa is grey-

level (1-256), and the ordinate is frequency of occurrence. A complement to the 

Enterprise data set is a collection of the grey-level calibration standards supplied by 

Applied Reservoir Technologies Ltd, that is particular to the SEM instrument. These 

standards suggest limits to the regions of the grey-level histogram that are attributable to 

the minerals present in the sample. In field conditions, a service company may not 

always have access to the same SEM instrument. The criteria that have been developed 

to establish a set of mineralogical standards particular to a given microscope facility are 

not clear, and it may therefore be instructive to develop an individual set of 

segmentation criteria that remain uninfluenced by the operational characteristics of a 

particular SEM. On this basis, the present study does not rely on the suggested grey-

level standards given in Figure 4.4.2 for image segmentation purposes. 
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Figure 4.4.2 Illustration of a typical grey-level histogram for the Enterprise BSEI, 
complete with the complimentary set of suggested grey-level standards (courtesy of 
Applied Reservoir Technologies Ltd). 

Ideally, for a given a set of mineral phases the grey-level histogram would be 

composed of a set of delta-type functions with heights proportional to the relative 

proportions of the phase in the field of view of the image. However, as the pixel size is 

finite, each pixel will not necessarily contain one mineral. This will have the effect of 

broadening the signals into Gaussian- or Lorenzian-type functions. In addition, there is 

an influence from the mineral grains not subtending the surface at right angles, so that 

the electrons do not reflect at the surface but at some small but finite depth. Thus, the 

energy of the reflection will already vary at the edges. Also, the surface is not flat, 

thereby creating additional dispersion. Depending on the degree of overlap between the 

broadened signals, it becomes increasingly difficult to ascertain the appropriate 

threshold for size measurements such as area, and also perimeter measurements, which 

are dependent on the location of feature boundaries. Image transform techniques that 

attempt to circumvent this problem operate by attenuating the grey-level gradients at the 

edges between neighbouring features. The overall effect of this operation is to change 

the energy distribution of the grey values in the image and thereby reduce the degree of 

overlap between adjacent peaks in the histogram (Lw et ai, 1994). Consequently, the 
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grey-level histogram allows a direct assessment of the impact of image transform 

procedures such as convolution on the energy distribution of grey-levels. 

Weszka and Rosenfeld (1979) maintained that a reasonable methodology for choosing 

the threshold in a multimodal histogram is to locate the deepest point or valley between 

two overlapping Gaussian peaks. The idea behind this method is that in the vicinity of 

this dip, the histogram takes on relatively small values, implying that the area function 

changes slowly with threshold grey-level. Therefore, if we place the threshold grey-

level at the dip, we minimise its effect on the boundary {Castleman, 1996), because of 

the relatively low number of pixels associated with these boundary features. Figure 

4.4.3 below shows the response of the calculated porosity for three orthogonal thin 

sections to a range of thresholds where the histogram is not changing so rapidly. It can 

be seen that there is a plateau region, from 160-190 greyscale units, that corresponds 

with the local behavior of the area function of the histogram over the same region, where 

the change in calculated porosity is negligible. 
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Figure 4.4.3 Illustration of the sensitivity of porosity to threshold selection for a set of 
three orthogonal BSE images of a North Sea Sandstone. 
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4.5 Global and Adaptive Approaches to Grey-level Thresholding 

If the background grey-level is reasonably constant and the region(s) of interest has a 

consistent range of grey-levels, then the assignment of a threshold, applicable to the 

whole field of view of the image, may be applied. This method of segmentation is 

known as global thresholding, and was applied in the analysis of all BSEI used in this 

study. 

Quite often, depending on the SEM response and the level of magnification, the 

illumination of the surface arising from the electron backscattering process may be 

nonuniform, so that the contrast of objects within the image varies from point to point, 

with the consequence of broadening the peaks in the histogram. Under these 

circumstances, the ideal approach is to use a threshold that correlates with the spatial 

variation of contrast across the image. The simplest implementation involves dividing 

the image into smaller segments and applying a local threshold that will discriminate 

between object(s) of interest and the local background. The approach, termed adaptive 

thresholding, then relies on a successful approach to treating the mean-grey-level in the 

neighbourhood of individual points in an image. Weszka (1978) reviewed the use of 

image processing techniques for establishing adaptive thresholding algorithims that 

would provide a consistent means of localised thresholding. From a practical point of 

view, however, the implementation of these methods in a commercial BSEI analysis 

may not be so straightforward, with each image requiring individual treatment, as the 

operational characteristics of the SEM may vary with running conditions. 

4.6 Data Acquisition 

4.6.1 Optical Calibration 

This section is concerned with the process that allows the automated collection of the 

correspondent area and perimeter measurements. However, before any analysis can 

proceed, an assessment of the display characteristics of the software must be made, as 

this will dictate the reliability of the software to faithfully reproduce the energy 

distribution of the pixels that constitute the image and in turn, impart some effect to the 

segmentation or thresholding process. 

An important display characteristic is the degree to which brightness of the display 

image remains in proportion to the input grey-level. We may test this using a grey-scale 

test target consisting of 256 squares ranging in grey-level from white (0) to black (255). 
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We can assess the hnearity of this relation across the range of 256 grey-levels by 

examining the histogram of this test card. Noting that each square is identical in area, 

the pixels corresponding to a particular grey-level will contribute the same amount to the 

total optical density when the relationship is linear. The testcard in Figure 4.6.1 was 

created from PAINTSHOP PRO®, Version 4.10, by capturing its monochrome palette 

from the monitor display. This assessment therefore ensured the reliability of the 

software's pixel counting and greyscale identification, and introduces an initial 

robustness into the overall procedure of data gathering. 
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Figure 4.6.1 Illustration of the grey-level step card and the resulting grey-level 
histogram showing the linearity of the optical brightness with greyscale. The frame has 
a grey-level of 64 and was removed from the histogram; additionally, the histogram was 
truncated at 254 instead of 255 to exclude the contribution of the selection tool that 
resides permanently inside the palette. Note that each square contains 196 pixels. 

4,6.2 Data Collection 

The following protocol gives an outline of the stages involved in collecting the area 

and corresponding perimeter measurements commencing with image display and 

finishing with a final EXCEL file that is collected for subsequent calculation of the 

individual pore conductances. 

1. Open image. 

2. Go to Analysis menu and select "show histogram". This will display a plot showing 

the distribution of grey values within the selection. When the cursor is over the 
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histogram window, X (the grey value) and Y (the number of pixels with that grey value) 

are dynamically displayed in the information window (Figure 4,6.2). 

Ane|>ize gpedel Stoeki Whcfawt Hdp 

1 

Figure 4.6.2 Scion desktop with BSEI 4-X9 opened in *.TIF format. Display contains 
Histogram Window, Information Window and Look Up Table (see step 5). 

Both the histogram plot and the 256 data values can be copied to a Clipboard whenever 

the histogram window is active. The data values can also be saved to a text file using the 

Export command or into a graphics package such as EXCEL that is capable of 

permanently storing histogram information and the corresponding plots. 

3. Set spatial calibration, including pixel aspect ratio. 

4. Again, go to Analysis, then options and select "Area" and "Perimeter/Length". The 

maximum number of measurements should be allowed. The validity of these 

measurements in calculating the true dimensions of the pores was assessed by 

performing a feature analysis on images of regular shapes of known dimension. This 

was thought to be a necessary precaution as various image analysis programs may use 

some alternative definition of these parameters and so it is not always clear what is 

actually been measured. It was discovered however that the Scion program does return 

the true area and perimeters of these shapes. 

5. Apply threshold/density slice using Weszka's methodology depending on the region 

of interest using the Look-Up Table. During the thresholding procedure, the digitised 

signal is altered in such a way that the grey-level of a given pixel is converted to a 
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binary value. Since their are 256 possible values for the input value it is quicker to 

recalculate a table of function results and look them up as each new pixel is considered, 

rather than to carry out the computation each time, consequently, the Look-Up Table can 

be used for thresholding in real time {Joyce-Lohel, 1985). When thresholding is 

enabled, the region of interest is displayed in black and the background in white. The 

threshold is automatically set based on an analysis of the histogram of the entire image 

current selection, or of a selection. To vary the threshold, the Look-Up Table tool is 

used by clicking and dragging near the white boundary in the Look-Up Table window. 

As the threshold is varied, its value is continuously displayed in the "Info" window. 
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Figure 4.6.3 Scion desktop with 4-X9 in (a) thresholding mode (T=187), and (b) during 
a density slice operation with lower and upper bounds of 85 and 180 greyscale units, 
respectively. 

Density slicing was used on several occasions in this study, primarily to segregate the 

clay-type minerals form the rest of the mineral phases present in the 2D section (Figure 

4.6.3), and like thresholding then allows objects that constitute the interior regions of the 

histogram to be segemented on the basis of grey-level. When Density slicing is enabled, 

objects are highlighted in red (for example) and background pixels are left unchanged. 

The upper and lower limits of the density slice as well as its location are varied by 

clicking and dragging in the Look-up Table window. 

6. Return to the Analysis menu and go to analyse particles. Check only "Reset 

measurement counter", and Select "OK". At this stage the software visibly scans the 
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thresholded image and maps everything that falls below the selected threshold to a 

greyscale value of zero. 

7. Go to options, and choose "Show results". This will display the collected area and 

perimeter measurements. Check "Export" from the "File" menu and export data into 

EXCEL. 

8. Compute hydraulic radius and hence hydraulic conductivities of the individual pores. 

4.7 Segmentation of the Clay Phase by Gaussian Deconvolution 

The approximation of the histogram by least squares fitting routines has been previously 

attempted {Chow and Kaneko, 1972). According to Otsu (1979), this method involves 

laborious and unstable computations, and in many cases the peaks that emerge from 

these routines turn out to be insufficient approximations of the original histogram. 
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Figure 4.7.1 Dlustration of the model fitting of the three chief Gaussians of Figure 4.4.2 
using various weights, w, and variances, (f. 
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If the grey-level histogram is regarded as a sum of overlapping Gaussians, then an 

approximate form could be obtained by modelling the individual peaks separately and 

then adding them to obtain a representation of the original histogram. The procedure was 

successfully applied to the signals corresponding to the trace minerals, the major quartz 

peak and the pore-space (epoxy resin). 

No reasonable Gaussian fit for the clay minerals in the intermediate region of the 

histogram was obtained, raising the question of whether or not this region is actually 

Gaussian in character. Consequently, if the reconstructed Gaussians are superimposed 

on the parent histogram, summed to obtain a merged signal and then subtracted from the 

parent, we are left with a region that can be can loosely identified as an area 

corresponding to the clay mineralogical standards defined by Applied Reservoir 

Technologies. 
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Figure 4.7.2 Superimposing the sum of the modelled Gaussians onto the original 
histogram and then subtracting gives an indication of the "non-Gaussian" elements of 
the grey-level distribution. A subsequent density slice between 100 and 200 grey scale 
units reveals the presence of tangentially-deposited pore perimeter lining illite and other 
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radial pore-lining clays that have developed in some regions into a pore-filling 
meshwork. 

In studying Figure 4.7.2, it can be seen that there is a grey-level region between T = 

100 and T = 200, that we could hopefully segment from the rest of the image by 

implementing the density slice tool mentioned in the last sections. Consequently, this 

would provide a spatial distribution of clays at the pore-scale and as such provide 

qualitative indications of their possible role in influencing permeability. For example, 

smectites and vermiculites are swelling clays that are widespread in soils and 

sedimentary rocks. The micropores of swelling clays are a major source of water in the 

earth's crust, and this will subsequently influence the formation, migration and trapping 

of natural gas and oil as a consequence of clay fluid interactions {Skipper et al, 2000). 

Traditionally, this small void space has been associated with the clay content in the 2D 

section (Basan, et al., 1997), but it may be construed that some proportion of this 

microporosity actually sits under the LH tail of the pore-space Gaussian in Figure 4.7.1, 

effectively rendering the clay and microporosity inseparable. 

What remains intractable is a precise assignment of grey-level to the microporosity in 

the grey-level histogram. The present approach to threshold selection therefore remains 

inadequate in removing the microporosity component of the pore space Gaussian, since 

we cannot meaningfully allocate an absolute greyscale to this mineralogy. 

4.8 Areal Thresholding and the Elimination of Microporosity 

Despite the fact that microporosity may not be completely removed from the region 

of interest in the segmentation procedure, it is still possible to obtain a reliable estimate 

of the effective or transport porosity. If we consider that the procedure of collecting 

measurements from the pores observed in a planar section involves automated feature 

analysis over a wide range of scales, then it is conceivable that the measurements 

recorded for many of the single and small pixel cluster features corresponding to 

artefacts from the thresholding procedure will overlap with the microporosity 

component of the image. We can then define an additional thresholding procedure that 

eliminates these smaller non-conducting features, that sits on top of a visually 

determined greylevel threshold. If we then perform a "dual" thresholding procedure in 

this way, then we are effectively excluding the areal contribution of the small void 

space. The criterion used in our case was to choose an areal cutoff based on some 
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percentage of the area of the largest conducting feature, such that we do not lose more 

than 3% of the total hydraulic conductivity. 
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Figure 4.8.1 Log-log plots of hydraulic conductance against perimeter and area 
respectively. 

Table 4.8.1 Compilation of the results obtained using a pixel based areal truncation for 
several North Sea sandstones. 

Sample Threshold 

Area 
Largest 

Pore 
(|im^) 

1 % Area 
Largest 

Pore 
(|im^) 

Ch (M-m'̂ ) 
Largest pore 

% Cumulative 
Ch Lost 

1 -X9 190 3006.44 30.64 158375.82 1.45 

3-X9 195 28695.80 28&96 2505401.59 1.69 

4-X9 190 9486.27 94^6 591410.16 0.60 

A 64 190 17277.79 172.28 671.06 0.33 

The justification for using an areal cutoff comes from the fact that the hydraulic radius 

correlates most strongly with area. Figure 4.8.1 shows how a linear regression analysis 

provides a comparitive indication of the strength of correlation of hydraulic conductance 

with perimeter and area respectively. The areal cutoff procedure was applied to BSEI 

originating from four different cores of various North Sea Sandstones. It was discovered 
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that removal of any feature whose area is less than 1 % of the area of the largest feature 

accounts for the removal of not more than 3% of the total hydraulic conductance. 

4.9 Influence of Pixel-Scale Roughness on Hydraulic Conductance 

Berryman and Blair (1987) pointed out that use of too large a magnification would 

lead to the measurement of roughness on a scale too small to be of interest for laminar 

flow processes. For any method that uses the perimeter to estimate pore conductivity, 

such as the Kozeny-Carman method or the hydraulic radius approximation, Berryman 

and Blair proposed that the pixel size be approximately 1 % of the size of an average 

pore radius. In our work, the magnification was X30, the pixel size approximately 

6jim, and the mean radius of those pores used in the UKCS study found to vary 

between 12 and 33 ^m. The pixel length ranged from 3%-15% of the radii of the larger 

pores in our images, based on the calculation In . The BEM calculations of 

Sisavath et al. (2000) however, have shown that in practice, pixel sizes up to 10% of the 

effective pore diameter can be used without noticeable influence on the computed 

hydraulic conductivities, suggesting that the criterion hypothesized by Berryman and 

Blair may be too conservative for our purposes. 

4.10 Influence of Grey-level Thesholding on Hydraulic Conductance 

A plot of the variation in areal porosity with grey-level threshold was shown in 

Figure 4.4.3. The permeability model developed in this study, however, relies primarily 

on the calculation of hydraulic conductance of the individual pores, and this parameter 

will carry the influence of the grey-level threshold on the areas and perimeters of the 

pores inside the image. Furthermore, the prediction of permeability relies on the number 

of features collected by the image analyser. Figure 4.10.1 reflects the fact that 

increasing threshold grey-level will begin to segment features into isolated objects, 

reducing connectivity and hence increasing the number of objects detected. In many 

ways, thresholding reflects the properties of erosion-dilation cycles in eliminating the 

throat-like connections between features {Doyen, 1988, Ehrlich et al., 1991). 
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Figure 4.10.1 The plot shows the number of features collected by the image analyser 
truncated at 1% of the area of the largest pore as a function of grey-level, superimposed 
on the histogram. 
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Figure 4.10.2 Variation in the effective hydraulic conductance with grey-level 
threshold, using a dataset that has been truncated at 1 % of the area of the largest pore. 
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Similarly, Figure 4.10.2 serves to indicate the variation in hydraulic conductance with 

threshold grey-level. The effective conductance calculated using Kirkpatrick's equation 

exhibits a monotonic decay that is consistent with areal erosion across the entire 

threshold range. It may be hypothesised that smoother pores would be obtained upon 

raising the threshold level due to the erosion process, thereby increasing Ceff- However, 

owing to the strong correlation of hydraulic conductance with area, this hypothesis 

cannot be supported by the foregoing analysis. 
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5 STEREOLOGICAL CONSIDERATIONS 

5.1 Introduction 

An important issue in any 2D-section analysis is the determination of the true three-

dimensional properties by a data set comprised only of planar sections. In 1848 the 

French geologist Delesse showed that the volume fraction of a given mineralogical 

phase was equal to the mean area fraction of the intersections of the planar sections with 

the phase. However, this is only valid for truly random materials, and can only be 

considered to be approximately true for "real" materials. The technique of 

reconstructing the characteristics of a three dimensional object from randomly orientated 

planar slices is known as stereology, a term coined by Hans Elias in 1961. The success 

of relating the geometry of the various two-dimensional features inside a planar section 

to the three-dimensional structure {Underwood, 1970; Serra, 1982) has led to the 

development of procedures that will lead to a correct estimate of pore-structure 

parameters. Such corrections are necessary, and have been implemented to account for 

the stereological errors that are introduced in attempting to reproduce the permeability 

characteristics of a three-dimensional porous material from planar sections. 

5.2 Stereological Correction Factors for Hydraulic Conductance 

5.2.1 The Need for a Correction Factor 

The areas and perimeters of the individual pores, as measured from the BSEIs, will in 

general be larger than the actual values for the pore cross-sections. To see why this is 

true, consider a tubular pore of uniform cross-section, with radius r. If, during the 

sample preparation process, the pore so happened to be sliced perpendicularly to its axis, 

then its exposed cross-sectional image would be a circle of radius r. In general, 

however, the pore will be intersected at some arbitrary angle relative to its axis. In this 

case, it would appear in the SEM image as an ellipse, with a semi-minor axis equal to r, 

but with a semi-major axis larger than r. Both the area and the perimeter of the image 

would be therefore be overestimations of the actual area and perimeter of the pore. This 

effect must be accounted for before using the measured values of area and perimeter to 

predict the pore-tube conductances. 
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5.2.2 Derivation of an Expectation Value of the Hydraulic Conductance 

If the rock is hydrologically isotropic, it is reasonable to assume that, on average, the 

angle between the pore tube axis and the image plane is a uniformly distributed random 

variable. To simplify the calculation, we assume a circular pore of radius r, intersected 

by an image plane that makes an angle 6 with the plane perpendicular to the axis of the 

tube (Figure 5.2.1). The image of this pore would then be an ellipse whose axes are of 

lengths r and a= r/cos 6 . The apparent cross-sectional area of the pore, which is to say 

its measured area, would be Ttr^/cosd. Hence, the relation between the actual and 

measured areas is 

^actual — ^measured COS0 . (5.2.2.1) 

r /cos0 

Figure 5.2.1 Illustration showing how the area of a slice through a single pore at some 
arbitrary angle 6 will generally be larger than the true cross-sectional area. 

The expectation value of the actual pore area is obtained by taking the average of 

Aactuai over all possible angles of the slicing plane, in spherical polar coordinates: 

^ . rf''l'"\osdsmdr'drd(t)dd 

measured Jo JJJJ sin 6r^drd(l)dd 

I cos 6 sin Odd ^ 0 cos(;r)) ^ 

r ' ^ i n d d d l -cos0( ; r /2 ) 2 
Jo 

(5.2.2.2) 
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and so < >= 0 . 5 A „ ^ j 

A similar correction must be made for the perimeters of the pores. Whereas the 

actual perimeter of a circular pore of radius r is = 27Cr, the measured perimeter is 

that of the perimeter of an ellipse with semi-major axes of lengths r and a= r/cos6 : 

^n,easured = 4^ [ J l " ^ / sin^gJ0 = 4rE(k,0), (5.2.2.3) 

where the eccentricity of the ellipse is given by 

(5.2.2.4) k = l-

and E(k,6) is the elliptic integral of the second kind. As we eventually must integrate an 

expression containing the ratio it is convenient to replace the elliptic integral 

with a simpler approximation, which is accurate to within 10% (Beyer, 1987): 

m̂eas +r^) = TCu-yJ2(1 + cos^ 6 ) . (5.2.2.5) 

The expectation value of the actual perimeter is given by 

z cospsme 
./T Jo ./TTTZTa 
2 r*/2 cos0sin0 

< Kauai > _/ \ _ Vl+COS^g' 
Measured \m^2(\ + cos"6) T smOdd 

* Jo 

= ^ ^ 2 W i ± 2 _ = 0 . 5 9 . 
l-cos(7r/2) 

Therefore, <F^„„, >=0.59F„,„„„j. 

Similarly, the measured hydraulic radius can be expressed as 

(5.2.2.6) 

^Keasur.d _ lltrU 
Measured mZ^2(l + COS^e) ' 

= u , . . (5-2.2.7) 

so that the expectation value of the actual hydraulic radius is given by the following 

integration since [rh[actuai = r for a circular pore; 
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A W . / ' v r T ^ \ 
t̂ f̂î measured \ 'v2 / f gin 0 

Jo 

= —[V2+sinh- ' ( l )]=0.81, (5.2.2.8) 

and so < > = 0 . 8 1 [ r J „ , , . 

Finally, we derive an approximate expression for a stereological correction factor that 

converts the "measured" values of the hydraulic conductance, into "actual" values. To 

simplify the calculation, we again assume a circular pore where the conductance is given 

by 

C,=A-^ = — 
" 2 P 8 

2A 
4 ' -

(5.2.2.9) 

The corresponding expression for the actual conductances in terms of equation (5.2.2.9) 

is 

^ _ aclual [" 2 ] 
actual g LA Jactual 

7Cr' 2m-̂  
litr 

Ttr^ (5.2.2.10) 

Using expression (5.2.2.5), the measured conductance is given by 

A, measured 
' measured 

1 iTUr'* 
8 cos0(l + cos^0) 

(5.2.2.11) 

Thus 

= /—cos 9(1 + cos^ 0) \ , 
^ measured 

(5.2.2.12) 

and so the expectation value of the actual hydraulic conductance is given by 

< ^act ^ _ ^ 0 0 

1 ttn/2 
jcosdil + cos^0)smdd6d<l> ^ 

a rc/2 
I jsindddd<p 

= — Jcos0(l + cos^0)sin0f/0 

0 0 
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1 ^ 3 
= -\x{l + x^)dx = - . (5.2.2.13) 
2 Q 8 

We therefore multiply the conductances that are estimated from planar sections by 3/8 = 

0.375 to calculate the true hydraulic conductance of the pores, i.e. 

< > = ().375Cm,.,m«,. (5.2.2.14) 

5.3 Stereological Correction for Constrictivity 

5.3.1 Constrictivity Concept 

In general, the radius along the axis of a pore tube will be nonuniform. As a 

consequence of the continuously varying cross-sectional area, there will be an excess 

pressure drop associated with the constrictions as the fluid passes through the pore 

channel. 

To calculate the total pressure drop, note that although r may vary with x, the 

volumetric flow rate Q must be the same through all cross-sections. For a "moderate" 

constriction the pressure drop may be approximated by integrating the Hagen-Poiseulle 

equation along the axis of the pore channel: 

^ p = \ ^ d x ^ ' ^ \ - ^ ^ p = '^L<r-'>, (5.3.1.1) 

which can be arranged to give 

K<r-^ ^ (5.3.1.2) 
877 L 

Equation (5.3.1.2) can be interpreted in terms of a tube in which all of the "resistive 

elements" of radius r{x) and length dx are in series; the total resistance of a series 

connection of resistors is then found by summation {i.e., by integration, when dx-^0). 

A planar section will gives an estimate of the constrictivity based on an arithmetic 

mean of the pore radii, and so from thin sections we have 

(5.3.1.3) 
Sri L 
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In contrast, the integration shows how the flow is in fact controlled by the mean of f^. 

The hydraulic constriction factor can be defined as the ratio of these two quantities, and 

so 

where 

< >"' 
/ = — <1. (5.3.1.5) 

< r > 

Hence, if Q is estimated for a pore based on a single slice through that pore, the best 

estimate of the conductance of that pore would be found (on average, over an ensemble 

of such pores) by multiplying this conductance b y / 

5.3.2 Estimation of the Constriction Factor 

Zimmerman et al. (1991) developed a lubrication theory analysis of the permeability 

of rough walled fractures using a sinusoidal aperture variation model of the form 

d{x) = t/,„[l + (5sin(2;n:/A)], (5.3.2.1) 

where dm is the mean aperture, 5 is the magnitude of the "roughness" and X is the 

wavelength of the aperture oscillations. In order to relate / t o a parameter that may be 

relatively simple to estimate, such as the ratio of minimum to maximum pore diameter 

along a given pore, Schlueter (1995) adopted a similar model to account for the radius 

variation in a tube of non-uniform cross sectional area: 

r{x) = (r)[l + e sin(2;cc/ A)], (5.3.2.2) 

where 1 is the wavelength of the radius variations and e is the amplitude. For 

convenience, we assume that an integral number of segments of length A will fit into 

the total length L. Inserting this expression into the integral form of the Hagen-

Poiseuille equation allows the hydraulic constriction factor to be expressed as 

_L = -W_— = 1 f [1 + e sin(2;R/A)]-''dk. (5.3.2.3) 
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This integral can be evaluated by the residue theorem to yield {Schlueter, 1995) 

/(sinusoidal) = 
(l + p)'^(5p^ +3p2 + 3 p + 5 ) ' 

(5.3.2.4) 

where p = (1 - e) 7(1 + e) - . 

A similar analysis using a sawtooth variation in the radius shows that, except for very 

small values of , the constriction factor curves are insensitive to the details of 

the radius variation. For example, if the r{x) profile has a sawtooth form, which is to say 

that the radius varies piecewise-linearly with x, between and then 

= r^n + (̂ max " m̂in > L)x , and 

dx 
/ L i[r^„+(r^-r^JL)xY 

(5.3.2.5) 

r(x) 
^max 

^min 

Figure 5.3.1 Pore tube with a sawtooth variation in the pore radius. 

To evaluate the integral in (5.3.2.5), we put s = x/L, in which case dx = Lds, and so 

1 <r> 4 I Lds 

f ^ 0 ['min ('max n̂in )'̂ 1 

< r > f 
rL 1[1 + I(A; 

ds 

min 0 [1 + {('"max / ^ n ) - l}?]* 

<r>* f ds (5.3.2.7) 

where (r) = (r^ + ) / 2 and a = ( r^ / ) - 1 . Evaluation of this last integral gives 

100 



/(sawtooth) = 48a 
(a+ 2)' 

(1 + a)^ 
(l + a ) 3 - l 

The constant a may be rewritten in terms of p: 

p = - ^ - — 
m̂ax 1 + a 

in which case (5.3.2.8) can be written as 

/(sawtooth) = 
48p3 

{1+pyii+p + p^) 

(5.3.2.8) 

(5.3.2.9) 

(5.3.2.10) 

I 
I 
§ U 

sawtooth 

sinusoid 

0 . 2 -

0 . 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

f min^ ̂ I mm' 'max 

Figure 5.3.2 Constriction factor/as a function of rmin/fmax for sawtooth and sinusoidal 
profiles. 

These constriction factors are strictly correct only for circular cross-sections, and 

would be difficult to calculate in the general case of irregular pore cross-sections. 

Furthermore, the procedure of imagining the tube to be composed of an in-series array of 

small conductive elements implicitly ignores local velocity components that are 

perpendicular to the pore axis (van Dyke, 1987), which will vanish only when the 

wavelength of the radius variation is very large. This method is therefore only a first-

order perturbation approximation to the full Navier-Stokes equations, in terms of the 
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parameter A/ < r >. Bemabe and Olson (2000) showed that the higher-order 

corrections are negligible as long as X /< r > exceeds 0.15. For smaller wavelengths, 

the "integrated Hagen-Poiseuille" equation, (5.3.1.2), is no longer a good approximation 

to the more fundamental Navier-Stokes equations, and one would need to examine to 

higher-order perturbations (Sisavath et al, 2001). 

5.3.3 Choosing rmiJrmax to Calculate a Constriction Factor 

A constriction factor/can be calculated from equations (5.2.3.4) or (5.3.2.10) using 

an estimate of the ratio . In some previous network models, a parameter 

similar to has been interpreted as the "pore throat/pore body" ratio (McCreesh 

et al., 1991), but we do not attach such an interpretation to this parameter. In our model, 

the flow network consists only of "pores", which meet at (volumeless) nodes. The 

variation in pore size (between nodes) is accounted for, within the context of laminar 

flow theory, by the constriction factor. 

It is not clear if values can be estimated from two-dimensional images, so 

we appeal to other estimates of this parameter. Car gill (1984) examined the void space 

formed by a simple cubic arrangement of monodisperse spheres, and found a value of 

0.57. Bourbie et al. (1987) acknowledge the geometric complexity of a random sphere 

packing but suggest that regularly packed systems of spheres offer a preliminary view of 

the interstitial void ratio. For more compact arrangements such as the simple hexagonal 

packing, /"mm / 'max ^e as low as 0.29. Both cubic and hexagonal arrays have been 

previously used to make estimates of the constrictivity of monodisperse sphere packings 

as a function of particle size (Graton and Fraser, 1935). Haines (1930) explored the 

behavior of packed beds in a capillary suction experiment and showed that for an 

arbitrary packing the entry and re-entry pressures, as governed by the Laplace equation, 

covered a range bounded by the extreme values for the cubic and hexagonal packings. 

Estimates of / m̂ax have also been obtained from pore casts {Schlueter, 1995), 

and complete void-size distributions have been obtained by a combination of mercury 

and image data (Pittman, 1984, Basan et ai, 1997), and also from 3-D reconstructions 

(Lindquist and Venkatarangan, 1999, Lindquist et al., 2000). However, as our intention 

is to develop a permeability model that utilises no information other than from 2-D 

images, we will tentatively use the average value between the simple cubic and 
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hexagonal packings of 0.43 for all sandstones, in which case equations (5.2.3.4) and 

(5.2.3.10) give hydraulic constriction factors of 0.44 and 0.57, respectively. 

5.4 Stereological Correction Factor for Pore Number Density 

5.4.1 The Need for a Correction Factor 

A consideration must be made of the overestimation in the areal number density of 

pores that occurs as a consequence of taking an arbitrary two-dimensional slice that 

probably does not lie in a plane perpendicular to a lattice direction. If we assume a 

hypothetical cubic lattice, then a slice taken perpendicular to a given lattice direction 

will only intersect those pores that lie along that direction. If, however, the slicing plane 

is not normal to the lattice direction, it will also intersect some pores that are orthogonal 

to that first lattice direction (Figure 5.4.1) leading to an overestimation in the number 

density of pores. 

5.4.2 Derivation of an Expectation Value for Number Density 

Consider a two-dimensional slice through the square lattice at an angle 6 to the x-

axis. Without loss of generality, the lattice parameter can be taken to be unity, in which 

case a slice of length L taken perpendicular to a lattice direction would intersect L pores. 

For a slice of length L at an angle 9 to the x-axis, the number of intersected pores 

oriented in the ^-direction will be LcosO, and the number of intersected pores oriented in 

the x-direction will be Lsin0. 

Figure 5.4.1 A two-dimensional illustration showing the number of additional pores 
bisected when a slice is taken at an angle d that is not perpendicular to a lattice 
direction. 

An arbitrary slice taken through a three-dimensional lattice may also be specified by 

its outward unit normal vector. As the angle between any two planes is equivalent to 
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that between their outward normals, we can specify the orientation of a random slice 

with respect to the faces of a cubic lattice in three-dimensions by means of the direction 

cosines of the outward unit normal vector of the slicing plane. The number density of 

pore intersections made by an arbitrary slice, is similarly related to the "true" number 

density (in a lattice direction) by 

Police = (cosa + cos + cosy)p^^^,. (5.4.2.1) 

We may then specify the orientation of an arbitrary slice taken through a cube by 

considering the angles between the plane the arbitrary slice generates and each separate 

face of the cube. More simply, this is achieved by considering the normal form of the 

plane and noting that the angle between any two planes will be equivalent to that 

between their outward normals and n;. Thus, we may express the angle between any 

two planes as 

COS0 = , (5.4.2.2) 
In, lliij I 

For a slice through a cube, the angle between the plane and a lattice face is equivalent to 

the angle between the outward normal n and the axis perpendicular to the face. Thus, 

the angle between n and the z axis is given by the direction cosine 

cos 7 = (5.4.2.3) 
In He J 

Similarly, the angle between the plane and the xz face is equivalent to that between the 

outward normal n and a vector directed perpendicular to xz plane (parallel to the y axis). 

This is the angle between n and the y axis, the direction cosine being 

n e, 
cosa = . (5.4.2.4) 

InllCy I 

Finally, the angle between the plane and yz face is equivalent to that between the 

outward normal n and a vector directed perpendicular to yz plane (parallel to the z axis). 

This is the angle between n and the x axis, the direction cosine being 

cosp= " • (5.4.2.5) 
In lie. X 
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We may write the equation for the outward normal in terms of the direction cosines as 

n = e^ cosa + cy cos/3 +e^ cosy, (5.4.2.6) 

where 

cosa=—, cosp=—, cosy = - and r = . (5.4.2.7) 
r r r 

The expectation value of the measured number density, psUce is found from (5.4.2.1) by 

averaging the sum of the direction cosines over all possible angles of the slicing plane: 

< Pslice > _ + cos ^ + cos Y ) . (5.4.2.8) 
P actual 

As we wish to obtain the average values of the direction cosines over all possible angles, 

we must convert the expressions (5.4.2.7) into spherical coordinates, where (Figure 

5.4.2) 

jc = rsin0cos0 } = rsin^sin^ z = rcos9, (5.4.2.9) 

and from (5.4.2.7) and (5.4.2.9) we may write 

cosa = sin6cos0, cosj3 = sin0sin^ and cosy = cos6. (5.4.2.10) 

From the relations in (5.4.2.10), we may then write the sum of the direction cosines 

appearing in (5.4.2.1) in spherical polar co-ordinates as follows: 

- ^ ^ ^ = sin0cos0 + sin0sin0 + cos0. (5.4.2.11) 
P actual 

Figure 5.4.2 Illustration showing the relation between the angles that specify the 
outward normal n, [oc, P, and the azimuthal and polar angles d and <j>. 
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The expectation value (5.4.2.8) of this quantity is obtained by integrating over all 

possible angles of the slicing plane. Due to the symmetry of a cubic lattice, the 

integration can be taken between 0 and ;r / 4 for both 0 and 0; 

J»;r / 4 /•;r / 4 p _ 
g isin6cos(j) + smdsm(l) + cos6}smddGd(j) 

P actual sindddd(j) 

K 1 
8 4 

n 

16 1 (3 ; r -4) ^ (5.4.2.12) 
^ [ V 2 - l ] 4 ; r ( l - V l 7 2 j 

We therefore divide the number of pores that we estimate from the image by 1.47 to 

correct for the overestimation in the pore number density, and so 

P — = y ^ - (5.4.2.13) 

A similar integral can be derived in the case of two dimensions (Figure 5.4.1). In this 

case the expectation value is obtained by carrying out an integration of the direction 

cosines in plane polar co-ordinates as follows: 

lo \ r {sin0+cos0y0 4 
= k = - = 1.27. (5.4.2.14) 

It is interesting to note that the value in two dimensions is somewhat less than for the 

three-dimensional case, and suggests that in higher dimensions the expectation value 

increases since the number of lattice points becomes more "dense". Consequently, the 

probability of an arbitrary plane bisecting additional pores will increase accordingly. 
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6 NETWORK MODELLING OF PERMEABILITY 

6.1 Introduction 

This section is concerned with the methods used to estimate the overall conductance 

that is obtained by inputting a set of discretely-valued conductances into a network. 

Two approaches are employed: an effective-medium approximation that determines an 

"average" conductance based on the statistics of local conducting elements in a self-

consistent manner, and explicit network calculations that we perform using the network 

simulation code NETSIM (Jing, 1990), which solves the flow equations in a cubic 

network of conductors. 

6.2 Kirkpatrick's Effective-Medium Approximation 

The purpose of an effective-medium approximation is to allow the replacement of 

each conductor C. in a network by a conductor having some "effective value" . 

Figure 6.2.1 illustrates the transformation of a resistor network of discrete conductances 

into an equivalent, homogenous resistor network in which all the individual 

conductances have been mapped to the same effective value, while preserving the 

topology of the network. 

Figure 6.2.1 An illustration showing the replacement of a discrete network of 
conductances by a homogeneous network having the same topology. 

The self-consistent procedure of Kirkpatrick (1973) leads to the construction of an 

effective conductance by the superposition principle in which the replacement of each 

single conductor C,. by a trial conductance is applied to each bond in the network, such 

that the resulting fluctuations in the potentials at the nearby nodes are minimised. This 
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procedure is repeated until the successive updating of the trial conductance eventually 

causes the fluctuations to average out to zero. The trial conductance has then reached an 

effective value throughout the network. This leads to the following equation that 

implicitly defines as the solution of the following equation: 

Ceff C,. 
/=i [(z / 2) - 1]C^ + C,. 

= 0 , (6.2.1) 

where the co-ordination number z represents the number of conductors that meet at each 

node, and the summation is taken over each individual physical conductor in the 

network. Kirkpatrick's equation (6.2.1) can be solved by using either the bisection 

algorithm, or a one-dimensional Newton-Raphson procedure. Either root-finding 

algorithm used the geometric mean of the input conductances as an initial guess to begin 

the iterative solution. Figure 6.2.2 shows the form of the Kirkpatrick function for a set 

of 21 conductances derived from a fracture network (Priest, 1992). The root is 

bracketed from below by the harmonic mean, corresponding to the limiting case of a 

serially connected network, and from above by the arithmetic mean, corresponding to 

the network being connected in parallel. The lower bound corresponds to a co-

ordination number of z = 2, whereas the upper bound is approached as the co-ordination 

number becomes infinite. For z = 6, Kirkpatrick's equation is solved numerically for a 

given set of input conductances. 

- Lower Bound (Harmonic Mean) 

. Limit attained for " Upper Bound (Arithmetic Mean) 

^ R O O T Limit attained for Z -

U 0.00 
1.00 1.50 2.00 2.50 3.00 

- 2 . 0 0 -

s ) 
-4.00 -

Figure 6.2.2 Kirkpatrick's function for the 21 conductance values used by Priest (1992). 
Note that Priest's definition of C has the factor of r]L incorporated into it. 
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® 0.8 

Figure 6.2.3 Sensitivity of C^to co-ordination number, using Priest's data set. 

Kirkpatrick (1973) derived equation (6.2.1) under the assumption that the co-

ordination number of each node was the same, although it has been shown {Koplik, 

1982) that his result can be used for topologically irregular networks by defining z to be 

the mean co-ordination number of all the nodes in the network. In the present study we 

set z-6, and hence model the transport on a hypothetical isotropic cubic lattice. Doyen 

(1988) chose a mean co-ordination number of six for a Fontainebleau sandstone on the 

assumption that the pore-space connectivity was similar to that of a close random 

packing of grains. Koplik et al. (1984) used z = 3.49, based on a connectivity analysis 

of ten sectionals of Massilon sandstone, and more recent work by Lindquist et al. (2000) 

gave average co-ordination numbers ranging between 3.37 to 3.75 for Fontainebleau 

sandstones using three-dimensional tomographic techniques. Jerauld and Salter (1990) 

reviewed the experimental evidence on co-ordination numbers of pore networks in 

sedimentary rocks, and concluded that z typically ranged from four to eight. Schlueter 

(1995) found that Ceff varies by only ± 20% when z ranges from 5-7, providing some 

justification for using a co-ordination number of six. This value is also consistent with a 

cubic lattice, whose simple topology allows a direct relationship between the effective 

conductances of the individual pore tubes, , and the overall conductance of the 

network, C . We also note that a more accurate estimation of z would require three-

dimensional imaging of some sort, which we aim to avoid. 
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One issue that arises is whether or not Kirkpatrick's equation will have one real 

solution. The physically meaningful solution to the conductance problem requires that 

the desired root lies between the bounds dictated by the harmonic and arithmetic mean 

of the conductances, and so it only becomes necessary to consider the uniqueness of the 

solution inside this interval. Kirkpatrick's function is continuous at every point in the 

closed interval defined by the harmonic and arithmetic means of the hydraulic 

conductances. Figure 6.2.3 shows that f{Cejf) is negative at the lower bound and positive 

at the upperbound, and so by the Intermediate Value Theorem, there must exist at least 

one point where the function crosses the Cejf axis: this is the basis of the bisection 

algorithm. We also recognise that this only occurs only once inside this interval, since 

the first derivative is positive everywhere for all values of z inside this interval, i.e., 

Consequently, we can expect only one real root within this interval. 

6.3 The Anisotropic Effective-Medium Approximation 

6.3.1 Introduction 

The determination of an effective conductance by finding the bound root of 

Kirkpatrick's equation will solve the conductance problem for an isotropic network, and 

uses a root finding algorithm in one dimension. It would, however, be preferable to use 

an inherently anisotropic model such as that of Bernasconi (1974), which allows the 

calculation of the effective conductance in a given direction on an anisotropic network 

where data from three orthogonal directions is used, and so three directional 

conductances are computed in a coupled manner. 

Depending on the number of lattice directions, the procedure involves the solution of 

d dimensional Kirkpatrick-type equations, where the conductances in a given direction 

are mapped to the same value to form the effective anisotropic network. Computionally, 

a root-finding algorithm is used to find the zeros of these coupled equations in d 

dimensions. Applying the procedure in three dimensions then requires the input of three 

sets of hydraulic conductance data. 
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6.3.2 Bernasconi's Equations in Two and Three Dimensions 

Bemasconi's equations for flow on a square lattice are 

and 

/ . ( Q . Q ) = S -
C^ff Cf 

tan 
^eff tan 

= 0 (6.3.2.1) 

C/ + 

ny -ry 

t a n - ' ( C ^ / C ^ ) ' " 

tan-XCjL/C' 

= 0 (6.3.2.2) 

where and are the effective conductances in the x and y directions. 

We wish to find the simultaneous zeros of equations (6.3.2.1) and (6.3.2.2). These 

functions each have zero contour boundary lines that divide the (x,y) plane into regions 

where the respective function changes sign. The solutions to the conductance problem 

in two dimensions are those points that are common to both the zero contours of both f\ 

and/2. In order to find all common points where there may be overlap of the zero 

contour boundaries, we can plot out the contours of each function and note the regions in 

the (%,);) plane where they bisect. Again, the issue of uniqueness of solution arises, since 

in general the zero contours will generally form an unknown number of disjoint closed 

curves. 

To illustrate the form of the contour plots for Bemasconi's equation in two-

dimensions, an anisotropic lattice containing two pores for each of the x and y directions 

was constructed using the following expressions by expanding the summations (6.3.2.1) 

and (6.3.2.2) for a two-pore system: 

2A,[C^ + Q - 4 ( c r + Q ) ] - = o . (6.3.2.3) 

and 

2A,[C^f + C'^[Q + Ci-A^iC{+Cl)]-2Q'Q=0, (6.3.2.4) 

where 
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A, = 
tan- ' (C^/C^) : /2 

and A„ -
t a n - ' ( C ^ / C ^ y / : 

t a n - ' % / C ; L ) ' / ^ 
(6.3.2.5) 

The use of a two-pore system makes the calculation simple. If we then plot these two 

functions for arbitary values of and { C / . Q } , we obtain a relatively simple 

contour diagram where a single bisection of the zero contours is identified in the j 

plane (Figure 6.3.1). This crossing of the two functions occurs at values of and 

that correspond to the values obtained by running a effective-medium simulation 

using Bemasconi's equation in two dimensions for the same values o f { Q , Q } and 
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Figure 6.3.1 A contour plot for an anisotropic two-pore system. 

As we are primarily concerned with the application of anisotropic effective medium 

theory to three dimensional porous media, we use the approximate equations of 

Bemasconi for flow on an effective anisotropic cubic lattice. The three equations are 

formed by a cyclic permutation of the {v}={ 1,2,3} indices of the following expressions: 
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A ( c , 5 ' , C - = . C 5 ' ) = 2 
r*" —C 

= 0, (6.3.2.6) 

where 

. . . 2 ^ ^ , ) _ ^ - ' = ' ° - ' l Q - ' c . r + c g ' c . y + c g ' c g ' J " v c . y j 
^ ^ ^ ^ tan- ' tC- ' / |_C-'C-' j ' ^ ^ 

and so 

/,(C^.C^.C^) = Z -
C' + C' 

tan-(C,^Q +C,;C,V +C^C^)'" / C ; 
|tan-'(C^ /(C^C; +C^C^ +C;,C;)": j 

= 0 , (6.2.3.8) 

Cf + c:„ tan-'(C^C^+C^C^+C^C^)":/C, 
I ^ eff tff tff eff tff eff ̂  ' eff I 
|tan-'(C^ /(C^C^ + C ^ Q +C^C^)" i 

— 0, (6.2.3.9) 

/ , ( c ^ . c * . c ^ ) = Z - c * - c ; 

c\ 
tan-'(C^C,^ +C^C; +C.:^C^)'" /C^ 

|tan-'(C^ /(C,;,C^ +C^C^ +C,^C^)'" j 

= 0. (6.2.3.10) 

The extension of the root finding procedure to three dimensions means that we seek 

points relating to the coincident bisection of the zero contours of three surfaces defined 

by equations (6.2.3.8-10). 

The computational procedure we have used for calculating the effective conductances 

on both the square and cubic lattice is the generalised Newton-Raphson algorithm 

outlined by Press et al. (1992). The procedure for finding a root in one dimension relies 

on the fact that we can perform an iterative procedure to attain a real root based on the 

truncation of the Taylor series expansion of a function. The problem of 

multidimensional root finding is cast into a similar problem in which we have d 

equations in as many unknowns, and so we require 

Fi=i{x^x^,...,x^) = 0 

Fi=d (̂ 1.̂ 2 f-t^d ) ~ ® 

for ; =1,2, (6.3.2.11) 

113 



If we consider x to be a vector with components Xi and F to be a column vector with 

components F, , then we can expand F as a Taylor series: 

N 

f;.(x + Ax) = f;.(x) + y ^ A x . + ... (6.3.2.12) 
7=1 

Using matrix notation we may rewrite this expression in terms of the Jacobian as follows 

F(x + Ax) = F(x) + JAx. (6.3.2.13) 

Setting F(x + ds) = 0 gives the linear system of equations JAx = - F . Inversion gives 

the corrections Ax which are added to the solution vector =x„ +Ax, and the 

process is iterated as in the one dimensional procedure to some prescribed tolerance, i.e., 

F(x + Ax) « F(x) + JAx = 0 => Ax = -J~'F(x). (6.3.2.14) 

The initial guesses for the components of the solution vector were taken to be the 

geometric means of the input hydraulic conductances for the x, y and z directions. 

Consequently, the most labourious part of the procedure is the implementation of the 

Jacobean matrix into the algorithm MNEWT {Press et al., 1992). 

6.3.3 Equivalence of Bernasconi and Kirkpatrick's EMA for Isotropic Systems 

It can be shown that for an isotropic lattice the expressions given by equations 

(6.3.2.1) and (6.3.2.2) will give the same value for the effective conductance as the 

isotropic effective medium theory of Kirkpatrick. In this instance we recognise that the 

effective conductances along each lattice direction should be identical, i.e., 

y = Y • (6.3.3.1) 

+ Q 6 [ ( z / 2 ) - ] ] + Q 

For the square lattice, z = 4 and so when we have 

= = (6.3.3.2) 
" tan-'(l) 2 

For the cubic lattice, we similarly equate the dimensionless expression Ay with [(z/2)-l] 

for z = 6. Hence, for we have, from equation (6.3.2.7), 
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^ _ tan '[(3C^^)'^VC^] ^ tan'Vs ; r /3 
' tan-'EC^ /(3C,^)"^] ~ tan"' VlTs ' (6.3.3.3) 

which shows the equivalence of Bemasconi's anisotropic effective medium 

approximation with Kirkpatrick's equation when the lattice is isotropic. 
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Figure 6.3.2 A countour plot for an isotropic two-pore system. 

If we return to the two-pore system and input two identical sets of conductances for 

the X and y directions, we can verify that we also obtain a common point at which the 

zero contours bisect. Isotropy ensures that this point will lie along the line , 

as verified in Figure 6.3.3. 

6.3.4 Convergence of the Newton-Raphson Procedure in Higher Dimensions 

The one-dimensional Newton-Raphson iteration in general exhibits extremely poor 

global convergence (Finney and Thomas, 1994), and the success of locating a root of a 

function depends on the quality of the initial guess. This is also true of the Newton-

Raphson procedure in higher dimensions. Fortunately, we can again use the fact that we 
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expect the desired root to be located close to the geometric mean of the input 

conductances, and therefore rely on the local convergence characteristics of the 

algorithm. Press et al. (1992) suggest alternative methods that are designed to improve 

the global convergent characteristics of the basic algorithm. The implementation that we 

used was found to be adequate in finding the common zeros in both two and three 

dimensions, and to be the most rapidly convergent when using identical input files of 

conductances, that is when checking the output of the Bernasconi implementation 

against Kirkpatrick's isotropic effective medium approximation. The rate of 

convergence decreased when using data obtained from thin sections orientated in 

different directions, however, the effect was not sufficient for the algorithm to fail to 

converge. The use of the geometric means of the input data as initial guesses for 

iteration to the effective conductances corresponding to the different lattice directions 

was found to be sufficient in all simulations, and a consideration of the more advanced 

treatments of the Newton-Raphson technique in higher dimension was deemed to be 

unnecessary. 

6.4 "Exact" Network Solutions using NETSIM 

6.4.1 Introduction 

NETSIM is a network simulation code that models transport phenomena in porous 

media on a cubic lattice of pore tubes. Two versions of NETSIM are discussed in this 

chapter, ISONETSIM, the code listing of which may be found in Appendix G, and 

ANISONETSIM, the code listing of which may be found in Appendix H. In the former, 

an exact network calculation for the conductance is performed in three dimensions on an 

isotropic cubic lattice by using a single input file to populate the network in each of the 

three principal directions. In ANISONETSIM, a similar calculation is performed, 

however, the main feature that distinguishes this program from ISONETSIM is that 

three input files containing conductance data from three mutually orthogonal directions 

are used, each decorating the lattice in one specific direction only. Consequently, this 

allows flow simulations to be performed on an anisotropic cubic lattice. Permuting the 

order in which the three external sets of data are fed into the lattice allows the 

interchange of the flow directions so that the potential can be applied consecutively 

along each direction. The differences in the two programs are therefore attributable only 

to the method in which the data is input and their intrinsic character is essentially the 
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same. Either version of the original code NETSM {Jing, 1990) can be described as 

consisting of five major blocks: 

1. A cubic lattice is specified in terms of nodes that connect bonds, and the latter are 

subsequently decorated with conductances from an external file in a random manner. 

2. The boundary conditions are then specified, with a fixed pressure gradient in one 

direction only, and no-flow boundaries along the remaining orthogonal faces. 

3. The flowrate is calculated for the given potential using the Successive Over 

Relaxation technique of Young (1971). 

4. An output conductance is then calculated by dividing the net flow rate coming out of 

the cubic network by the total potential. 

David et al. (1990) showed that a conductance Co adopted by all bonds in a regular 

homogenised network is given by the following expression (Section 2.4.4): 

~ (6.4.1.1) 

where Ceq is the net conductance of the individual pores, and C[l] represents the overall 

conductance of the equivalent homogeneous network with the same topology, when the 

individual conductances are set to unity. The following expression for C[l] on the 

square lattice, as a function of the number of nodes, p, has been given by David et al. 

(1990) as 

(6.4.1.2) 
P + 1 

A similar expression for C[l] can be derived for a cubic network by again considering 

the topology of the three-dimensional lattice: 

C [ I U , = - ^ . (6.4.1.3) 
/7 + 1 

5. As a final step in the network calculation, the net conductance Ceq is normalised to 

C[l] using eq. 6.4.1.3 in eq. 6.4.1.1 to give the equivalent conductance of the 

homogeneous network. The values of Q calculated explicitly by this means allow 

validation of the values obtained using the effective medium technique of 
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Kirkpatrick, since we can directly assess the difference between Q and obtained 

from the two simulations. 

6.4.2 Running Isotropic Simulations with ISONETSIM 

The development of a consistent means of preprocessing input data, and the 

subsequent running of each simulation, is necessary in order to form a methodology that 

can be applied confidently to any dataset. 

The first issue that must be addressed is: at what lattice size should the network 

simulations be performed, and what number of realisations of the single input file will be 

necessary to ensure solution convergence? To investigate this, a set of 30 realisations of 

a preprocessed datafile were input into lattices ranging in size from 5 to 40 nodes, sizes 

increasing in increments of 5. The realisations were generated sequentially, using a 

library random number generator, to randomise the conductances from an external 

source, with the added modification that each conductance was selected only once for 

the outfile to ensure that it contained uniquely randomised data. To monitor the 

fluctuations in the output of the network code, an average percent difference was used, 

by comparing the effective-medium solution provided by Kirkpatrick's equation for the 

same set of conductances. 
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Figure 6.4.1 A plot of absolute difference between the outputs obtained for simulations 
on ISONETSIM and Kirkpatrick's equation as a function of lattice size at 20-30 
realisations. 
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It was found that the average levelled out to a constant value after the twentieth 

realisation for all the lattice sizes, with the overall error at this realisation being 10% on 

a 5^ lattice. This difference gradually fell with increasing lattice size, until it reached a 

consistent 2% error on the 30^ lattice, with virtually no improvement for simulations run 

on a lattice containing 40^ nodes. The processing time for this size of lattice was of the 

order of a few minutes, and in view of this it was considered reasonable to run the 

isotropic simulations of the UKCS and St. Bees data with 20 realisations for each dataset 

on a 30^ lattice, using the average at the twentieth realisation as the final value. 

Additional issues relating to the prescribed lattice size, although relatively minor, are 

the various operational factors concerning the preprocessing of the initial datafile before 

it can be inputted into the network code. In general, the external input file will not 

contain enough data to decorate a cubic lattice specified by 30^ nodes. Consequently, 

these files need to be expanded to a sufficient number of conductances. As each file 

contains a different amount of data, it was decided not to expand these input files by 

multiplying the amount of data by a constant factor, since it was uncertain if this number 

would be sufficient to account for a particularly sparse file entering the analysis. Instead 

the file was expanded by an amount equal to 

A = 3n^(n + l) 
N 

(6.4.2.1) 

where 3n^{n + 1) is the number of bonds on the lattice, as a function of n, the number of 

nodes per lattice direction, and N the number of conductances in a given file. The 'f 1" 

notation refers to the rounding up of this quotient to the next highest integer ensuring 

there are just a sufficient number of conductances to decorate the lattice. The expansion 

of the initial text file by the factor A is straightforward and entails inputting the data into 

a routine that outputs the data X times. Before this file can be input into a network 

simulation, it is randomised using a library routine to create a first realisation. 

The effect of this preprocessing was found not to generate differences greater than 

1% when the initial file was expanded by a multiplier other than the X factor. However, 

in the spirit of developing a computationally efficient procedure that avoids unnecessary 

data handling, and to develop a constant methodology, it was decided that the procedure 

of using a A factor should remain part of the preprocessing. 
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6.4.3 Isotropic Network Models and a Generalised Perturbation Ansatz 

Gelhar and Axness (1983) suggested the following expression for the isotropic 

effective permeability for a heterogeneous aquifer with a lognormal permeability 

distribution in three dimensions: 

(6.4.3.1) 

where Kgeo is the geometric mean of the permeability distribution, and (7,̂ ^ denotes the 

log permeability variance. This equation has been called the Generalised Perturbation 

Ansatz (GPA). No rigorous proof for its validity is available, although a perturbation 

expansion to the second order exists {Dagan, 1979) that agrees with the Taylor series 

expansion of (6.4.3.1) to the first term: 

K K 1 + - In/f (6.4.3.2) 

Hristopulos and Christakos (1999) also argued for the validity of (6.4.3.1), using a 

diagrammatic analysis of the permeability distribution. 
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Figure 6.4.2 A comparison of ISONETSIM and Kirkpatrick's effective-medium 
approximation against the GPA (left); comparison of GPA with the finite-difference 
simulations of Neuman et at. (1992), shown right. 
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Neuman et al. (1992) conducted f low simulations on a finite-element grid for a set of 

lognormal permeability distributions with successively increasing variance, and 

discovered that the exponential expression (6.4.3.1) agreed very well with the numerical 

results for variances up to 7.0. The second-order approximation, however, rapidly 

became inval id for variances much greater than 2.0 (Figure 6.4.2). 

I t was decided to similarly assess the accuracy of the effective conductance obtained 

for lognormal distributions of different variances using Kirkpatrick's isotropic effective 

medium equation, ISONETSM, and the GPA given by (6.4.3.1). The procedure for 

conducting the simulations has been outlined in the previous section. Lognormal 

distributions generated for variances ranging from 0 to 5.31 were made by modification 

to a library routine that outputs a normal distribution for a user-defined mean and 

variance (Press et al., 1992). Figure 6.4.2 compares the results obtained with those of 

Neuman et al. (1992). The agreement between ISONETSIM and Kirkpatrick's equation 

is reasonable for sufficiently low variances. However, the difference approaches 10% 

after a log variance of 5.0. As it is expected that ISONETSIM wi l l provide an 

essentially exact solution to the conductance problem, the "dr i f t " in the output from the 

effective medium simulations can be attributable to the increasing broadness of the 

distribution, since the self-consistent solution is valid when network perturbations are 

averaged out over a sufficiently narrow range of conductance values. The close 

proximity of the GPA with the ISONETSIM simulations is in agreement with the 

findings of Neuman et al. (1992) using finite element simulation. 

Finally, plotting the linearised version of the GPA (i.e., eq. 6.4.3.2) shows similar 

behaviour in our comparisons with ISONETSIM and Neuman's comparisons using 

finite-grid simulations, where the proximity of the linearised solution to the essentially 

exact solution becomes progressively worse as the log variance increases. 

6.5 Simulation of Anisotropic Networks using ANISONETSIM 

The f low simulations performed thus far with ISONETSIM only require successive 

realisations of a single input file to populate a cubic network of pore tubes. 

Consequently, the program has been used as a model of f low in isotropic media which 

we would l ike to extend to modelling flow which wi l l reflect the directional properties 

of the input data. In order to achieve this, we prepare three input files containing the 

data of directional hydraulic conductances for each of the lattice directions. The 
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boundary conditions specified are identical with those defined during the isotropic 

simulations. However, the order (or direction) in which the input files are assigned to 

the lattice are interchanged to provide output conductances for the %, y, and z directions, 

respectively. 

The major operational issues have already been dealt with in developing a robust 

procedure for running isotropic network simulations, but nevertheless some slight 

modifications must be made to the method to allow its application to anisotropic 

systems. Equation (6.4.2.1) defined a X factor, based on the total number of nodes on a 

cubic lattice, that allowed the appropriate expansion of an initial fi le so that it contains 

sufficient data to decorate a 30^ lattice. This factor may be reduced, since the input files 

now only have to be large enough to decorate the bonds lying along a specified 

direction. Consequently, X is then based on a third of the total number of nodes on the 

lattice, so this factor for an anisotropic simulation becomes A/3. This modification was 

applied to a single input file, in which three random realisations were generated for three 

different directions. These were then expanded according to the factor A/3 for a 30^ 

node lattice, and then 20 sequential realisations of this expanded file generated for 

output into the anisotropic network code, ANISONETSIM. For comparison against the 

solution obtained using ISONETSIM, the same set of input data was similarly pre-

processed, using an expanding factor of A/3 to generate three independent inputs. It was 

found that the final average outputs using ANISONETSIM differed by no more than 

0.5% from the isotropic simulations. Also, the outputs obtained when applying the 

pressure potential in each of the x, y and z directions in the anisotropic simulations were 

found to differ by less than 0.2%. 
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7 CALCULATIONAL PROCEDURE AND RESULTS 

7.1 Introduction 

The various stages of the permeability estimation procedure that have already been 

discussed are now collected, and applied to some thin section data. The final step in the 

analysis involves estimating the permeability of the continuous medium from the 

effective conductance of the individual conductors. 

As all the simulations are based on f low on a cubic lattice, consider a plane that slices 

the lattice perpendicular to one of the principal lattice directions, containing N pores in a 

region of cross-sectional area A. The total flowrate through this region wi l l be given by 

Q - ^ . ( 7 . U , 
T]L 

Darcy's law, on the other hand, expresses the flowrate as 

Equating (7.1.1) and (7.1.2) then gives the permeability as 

A 
total 

(7.1.3) 

7.2 Overall Procedure for Estimating the Effective Permeability 

The first step in the analysis is the estimation of the apparent area and perimeter of 

each individual pore that can be recognised in the image. The application of the 

stereological correction factor of 3/8 (eq. 5.2.2.13) yields the actual area and perimeter 

values, f rom which the pore conductivity can be determined. The sinusoidal hydraulic 

constriction factor of 0.44 (eq. 5.3.2.4) is then applied to account for variations in pore 

radius along the pore length. The resulting set of conductances is truncated to eliminate 

the contribution of features that are thought to represent either artefacts of the image 

processing, or isolated micropores. As each set of data is composed of five BSEIs, the 

f ive truncated sets of hydraulic conductance data are then combined, provided that each 

truncation does not result in the loss of more than 3% of the total hydraulic conductance 

of that individual datafile. I f this criterion is not met, the datafile is rejected. The 
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combined data is considered to form a statistically representative set of pores for each 

core, and is input into a network model to produce an effective pore conductance, Cejf-

When using an intrinsically isotropic network model, data only from that face of the 

cubic sample that is normal to the f low is used as input. When running an anisotropic 

simulation, data from three orthogonal faces are used. 

The permeability is then calculated, after using another stereological correction to 

convert the apparent number density of pores in the field of the image to the actual 

density perpendicular to the f low direction by dividing equation (7.1.3) by the factor 

1.47. The complete procedure can be summarised as follows: 

• Take BSEI photographs of polished sections 

• Digit ise pore images 

• Apply gray-level thresholding procedure to identify the "pores" 

• Compute perimeter and area of each pore with image analyser 

• Apply stereological correction and hydraulic constriction factors to estimate the 

hydraulic conductivity C, of the individual pores 

• Employ areal thresholding procedure to truncate the data set 

• Obtain using the effective-medium approximation 

• Compute the areal density of pores inside the image 

• Assuming a cubic lattice, calculate k using 

k = . (7.2.1) 
1.47A_, 

7.3 Isotropic Network Theories 

Permeabilities were estimated for each set of orientated thin sections belonging to 

each of the separate cores, using Kirkpatrick's effective-medium approximation in 

accordance with the procedure outlined above. Table 7.3.1 lists the predicted 

permeabilities of the UKCS and St. Bees data, compared with the values measured in the 

laboratory. 
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Table 7.3.1 Compilation of results for the UKCS and St. Bees cores. 

CORE 
Ceff 

(m6 
No. of 
pores 

No. of 
images 

Total area 
(m2) 

^pred 
(mD) 

^measured 
(mD) Error (%) 

IX 1.14 X 10" '̂ 3495 2 1.52 X 10-' 29 18 59 

l Y 2.42 X 1 0 " ^ ' 7397 5 3.80 X 10-' 52 18 191 

2X 41.16 X 10"̂ ' 1843 5 3.80 X 10-' 222 137 62 

2Y 34.43 X 10"̂ ' 1244 3 2.28 X 1 0 - ' 209 119 76 

2Z 57.26 X 10-̂ ' 1579 5 3.80 X 10 ' 265 109 143 

3X 29.25 X 10"̂ ' 2310 5 3.80 X lO ' 198 202 -2 

3Y 22.56 X 10'^' 2652 5 3.80 X 10 ' 175 196 -11 

3Z 23.53 X lO'Z' 2600 5 3.80 X 10 ' 179 222 -19 

4X 9.17 X 10 -2 ' 3229 5 3.80 X 10 ' 87 83 4 

4Y 5.28 X 1 0 " ^ ' 2876 4 3.04 X 10 ' 56 72 -23 

4Z 2.66 X 10-2' 1785 2 1.52 X 10 ' 35 28 25 

5X 39.43 X 10 =' 1656 4 3.04 X 10 ' 239 470 -49 

5Z 51.28 X 10"̂ ' 1829 5 3.80 X lO ' 275 500 -45 

6X 26.75 X 10"̂ ' 2394 5 3 ^ 0 x 1 0 ^ 188 275 -32 

6Z 27.77 X 10-2' 1854 4 3.04 X 10-' 189 228 -17 

7X 9.08 X 1 0 - 2 ' 3605 5 3.80 X 10 ' 96 109 -12 

7Y 10.62 X 10 2 ' 2448 4 3.04 X 1 0 ' 95 109 -13 

7Z 14.43 X 10 -2 ' 2179 4 3.04 X 10 ' 115 69 66 

XB 26.54 X 10-22 1632 4 10.38 X 10-' 507 674 -25 

XT 11 . 7 2 X 1 0 - 2 2 2726 5 12.93 X 10 ' 300 674 -56 

YB 34.12 X 10-22 1850 5 12.93 X 10 ' 593 1377 -57 

YT 16.57 X 10-22 2605 5 12.93 X 10-' 405 1377 -71 

ZT 37.50 X 10-22 1642 5 1 2 . 9 3 x 1 0 ' 576 1046 -45 

ZBl 44.97 X 10-22 1368 5 12 .93 X lO ' 576 1046 -45 

ZB2 2 0 . 3 3 x 1 0 - 2 2 2159 5 12.93 X 10"' 411 1046 - 6 1 

The first eighteen entries correspond to the UKCS samples, the notation giving a core 

identifier and thin section number, where the "X ,Y,Z" labels refer to the direction that 

lies perpendicular to the slice of the thin section. The remaining entries belong to the St. 

Bees dataset, where again the "X ,Y ,Z " notation refers to the direction that lies 
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perpendicular to the thin section. The additional "B " or "T " denotes " t o p " and 

"bo t tom" respectively, and indicates the end of the core plug from which the endtrim 

was taken with respect to the dril l ing tool. There are two ZB endtrims, because extra 

material was recovered in the dril l ing process, and it was decided to admit this into the 

analysis. Permeabilities are given in Darcy units, defined by 1 Darcy = 0.987 x 10''^ m^. 

The predictions are within a factor of two of the measured values in almost every 

case. There seems to be a slight trend of overprediction in the low permeability range, 

and underprediction in the high permeability range, although this bias may be due to the 

small number of samples. I f absolute values are considered, the average error is 48%. 

Figure 7.3.1 shows a cross-plot of the predicted permeability against the laboratory 

measurements, for both the UKCS and St. Bees data, with lines that indicate errors of a 

factor of two in either direction. 
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Figure 7.3.1 Measured permeabilities plotted against predicted values for both UKCS 
and St. Bees data. The upper and lower lines correspond to errors of a factor of two in 
either direction. 

The method, although based on an inherently isotropic model, gives qualitative 

indications of anisotropy, provided that the measured anisotropy is large enough to 

exceed the "error bars" of the measurements. I f we assume that each permeability 

measurement has an error of about 30%, two orthogonal permeability measurements 
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should differ by at least 60% in order for the core to be considered unambiguously 

anisotropic. By this criterion, the only unambiguously anisotropic core is 4-XYZ, which 

has a measured anisotropy of about {6:5:2}, and a predicted anisotropy of {5:3:2}. In 

this case, not only were each of the three principal permeabilities predicted to within 

25%, but the ordering of the permeabilities was also predicted quite accurately. The 

permeability anisotropy ratio of the St. Bees sample, based on the measured 

permeabilities, is {2:4:3}, which is probably insufficient to indicate that the sample is 

indeed anisotropic. For comparison, it should be noted that previous isotropic network 

models that utilised two-dimensional imaging, such as that of Koplik et al. (1984), 

overpredicted the permeability by about a factor of ten. 

The use of the Kirkpatrick equation to estimate the effective conductivity was tested 

against the network simulation code ISONETSIM {Jing, 1990). This test was thought to 

be necessary, because previous studies of the validity of the Kirkpatrick equation have 

all been based on idealised conductivity distributions {David et al., 1990). Reassuringly, 

we found that the effective medium predictions agreed to within a few percent wi th the 

exact network calculations. I f the permeablity predictions for the UKCS and St. Bees 

data using ISONETSIM are plotted against the predictions using Kirkpatrick's eqution, 

the agreement between them is clearly indicated (Figure 7.3.2). 

700 
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Figure 7.3.2 A cross-plot of the permeability calculated using ISONETSIM 

permeability calculated using Kirkpatrick's equation. 

against the 
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This result is somewhat surprising, in that Kirkpatrick's equation seems to be capable 

of yielding values comparable to those obtained using an exact network calculation, for 

sets of individual conductances whose values typically ranges over at least two orders of 

magnitude, whereas it is usually considered that effective-medium approximations are 

val id only for a narrow range of conductances. However, i f we recall the comparison of 

ISONETSIM, Kirkpatrick's equation and the Generalised Perturbation Ansatz (Section 

6.4.3) using idealised lognormal distributions, the agreement between ISONETSIM and 

Kirkpatr ick's equation was reasonable for logvariances approaching 5.0, beyond which a 

"dr i f t " in the effective-medium value became gradually more significant. The 

relationship between the variance in the hydraulic conductivity of mean , and the 

log hydraulic conductance variance, 0",^^ for a lognormal distribution is {Till, 1974) 

^ = (7.3.1) 
Mc 

A n examination of the statistics for UKCS datasets I X and 5Z from the low 

permeability and high permeability ranges of the entire data set show o l / values of 

18.62 and 9.59, respectively. From equation (7.3.1), these variances correspond to 

values of 2.36 and 2.98. 

A histogram of the conductances of the individual pores from one thin section is 

shown in Figure 7.3.3. This figure not only illustrates the wide range of values over 

which the effective conductance must be derived, but also indicates that the data is 

distributed approximately in a lognormal form. I f the data follows a lognormal 

distribution, it can be seen from Figure 7.3.2 that the difference between an exact 

network calculation and Kirkpatrick's equation, for values of the logvariance in the 

range 2-3, is only a few percent. Consequently, it is to be expected that the effective-

medium approximation is fairly accurate for these distributions. In fact, i f we study the 

comparison of the effective medium approximation against ISONETSIM and the 

Generealised Pertubation Ansatz {Gelhar and Axness, 1983) that was undertaken in 

Section 6.4.3, it can be considered that Kirkpatrick's equation remains valid for idealised 

distributions with log variances up to 5.0, when the difference between Kirkpatrick's 

prediction and ISONETSIM remain within 10%. This in effect quantifies the meaning 

of "sufficiently narrow distributions". 
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Figure 7.3.3 A histogram of hydraulic conductances obtained for a single thin section 
after f i l tering the data using the areal truncation described in Section 4.8. Note that the 
individual conductances C, range over two orders of magnitude. 

7.4 Anisotropic Network Approaches 

I t was thought that the use of an inherently anisotropic effective-medium model such 

as that of Bemasconi (1974) might lead to an improvement in the permeability 

predictions. The three-dimensional version of the anisotropic effective-medium theory 

was then applied to fifteen samples that had data corresponding to three orthogonal 

directions (Table 7.4.1). The results show that the permeability estimations made using 

the Bemasconi model were only slightly different from those using the Kirkpatrick 

equation. Furthermore, an "exact" anisotropic calculation using ANISONETSIM failed 

to make any substantial changes to the predictions made using Kirkpatrick's isotropic 

effective-medium approximation. 
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Table 7.4.1 Tabulation showing the permeabilities calculated using Bemasconi's E M A. 

CORE 
Ceff 

w 
No. of 
pores 

No. of 
images 

Total area ^pred 
(mD) 

^measured 
(mD) Error (%) 

2X 4 2 . 0 3 X 1 0 ' ^ ' 1 8 4 3 5 3 . 8 0 x 1 0 ^ 2 2 7 1 3 8 6 5 

2Y 3 7 . 5 1 X 1 0 - 2 ' 1 2 4 4 3 2 . 2 8 x 1 0 - ' 2 2 8 1 1 9 9 2 

2Z 5 l 0 6 x l 0 ^ 1 5 7 9 5 3 . 8 0 X 1 0 - ' 2 3 6 1 0 9 1 1 7 

3X 2 7 . 6 0 X 1 0 - 2 ' 2 3 1 0 5 3 . 8 0 x 1 0 - ' 1 8 7 2 0 3 - 8 

3Y 2 3 . 5 4 x 1 0 - 2 ' 2 6 5 2 5 3 . 8 0 X 1 0 - ' 1 8 3 1 9 6 - 7 

3Z 2 4 . 0 8 X 1 0 - 2 ' 2 6 0 0 5 3 . 8 0 X 1 0 - ' 1 8 4 2 2 2 - 1 8 

4X 7 . 4 0 X 1 0 - 2 ' 3229 5 3 . 8 0 X 1 0 ' 7 0 8 3 - 1 6 

4Y 5 . 2 8 x 1 0 - 2 ' 2W76 4 3 . 0 4 X 1 0 ' 5 6 7 2 - 2 3 

4Z 3 . 4 8 x 1 0 - 2 ' 1 7 8 5 2 1 . 5 2 X 1 0 ' 4 6 28 6 3 

7X 9 . 9 9 x 1 0 - 2 ' 3 6 0 5 5 3 . 8 0 X 1 0 ' 1 0 4 1 0 9 -4 

7Y 1 0 . 8 5 X 1 0 - 2 ' 2 4 4 8 4 3 . 0 4 X 1 0 ' 9 7 1 0 9 - 1 1 

7Z 1 3 . 1 6 X 1 0 - 2 ' 2 1 7 9 4 3 . 0 4 X 1 0 ' 1 0 5 6 9 5 1 

XB 2 9 . 0 7 X 1 0 - 2 2 1 6 3 2 4 1 0 . 3 8 X 1 0 ' 5 5 5 6 7 4 - 1 8 

YB 3 3 . 4 4 x 1 0 - 2 2 1 8 5 0 5 1 2 . 9 3 X 1 0 ' 5 8 1 1 3 7 7 - 5 8 

ZT 3 5 . 1 8 x 1 0 - 2 2 1 6 4 2 5 1 2 . 9 3 x 1 0 ' 5 4 1 1 0 4 6 -48 

1 

R" = 0.9880 
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Figure 7.4.1 A crossplot of permeability calculated using Bemasconi's equation against 

permeability obtained using Kirkpatrick's isotropic model. 
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Figure 7.4.2 A crossplot of permeability calculated using ANISONETSIM against 
permeability calculated using Bemasconi's equation. 

A comparison of the simulations using Kirkpatrick's isotropic EMA, Bernasconi's 

anisotropic E M A , and ANISONETSIM was made using the square of Pearson's R 

coefficient to assess the correlation between two sets of predictions. The average 

absolute error in the isotropic effective medium prediction for these fifteen samples is 

38%. A comparison of the absolute errors from the anisotropic effective medium 

approximation and ANISONETSIM gave errors of 39% and 38%, respectively, 

indicating that the use of more sophisticated simulation methods beyond that of 

Kirkpatrick fails to produce any systematic improvements of the predictions. 

The above analysis indicates that there is no systematic improvement in the 

predictions obtained using an anisotropic network model in place of Kirkpatrick's 

inherently isotropic effective-medium approximation, with the predictions remaining 

within a factor of two of the laboratory measurements. Furthermore, the lack of any 

systematic improvement when using an anisotropic network model is also reflected in 

the failure to improve on the indications of anisotropy that were obtained using the 

isotropic effective-medium approximation. The differences in the directional 

permeabilities amongst the cores, especially the UKCS core 4-XYZ, in fact appear to 

become smaller. This reduction of the anisotropy ratio is attributable to the fact that 
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simulations performed using either Bemasconi's effective-medium or the 

ANISONETSIM scheme couple data taken at different orientations and so the prediction 

of permeability in one direction wi l l include the influences of the pore conductances in 

the other two directions and vice-versa. 

Table 7.4.2 Permeabilities obtained using ANISONETSIM. 

CORE 
Ceff 

(m6 
No. of 
pores 

No. of 
images 

Total area 
(m") 

kpred 
(mD) 

^measured 
(mD) Error (%) 

2X 42.76 X 10"̂ ^ 1843 5 3.80 X 10"̂  231 138 68 

2Y 37.91 X 10'̂ ^ 1244 3 :2.28xlO^ 230 119 94 

2Z 52.57 X 10"^' 1579 5 3.80 X 10"̂  243 109 123 

3X 28.24 X 10'̂ ^ 2310 5 3.80 X lO'S 191 203 -6 

3Y 23.99 X 10'^' 2652 5 3.80 X icr^ 187 196 -5 

3Z 24.49 X 10'̂ ^ 2600 5 3 .80x10^ 187 222 -16 

4X 7.65 X 10"̂ ^ 3229 5 3 .80x10^ 72 83 -13 

4Y 5 3 9 x 1 0 ^ ' 2876 4 3.04 X 10'^ 57 72 -22 

4Z 3.47 X 10"^' 1785 2 1.52 X 10 ̂  45 28 63 

7X & 9 6 x l O ^ ' 3605 ^ 5 1 8 0 x 1 0 ^ 105 109 -3 

7Y 11.02 X 10"^' 2448 4 3.04 X 10'^ 99 109 -9 

7Z 13.49 X 10"^' 2179 4 3.04 X 10'^ 108 69 55 

X B 29.81 X 10'^ 1632 4 10.38 X 10"̂  569 674 -16 

Y B 34.53 X 10'^ 1850 5 12.93 X 10'^ 600 1377 -57 

Z T 36.48 X 10'^ 1642 5 12.93 X 10'^ 561 1046 -46 

The permeabilities obtained using Bernasconi's E M A and those obtained from an 

exact network calculation using ANISONETSIM are plotted in Figure 7.4.3, along with 

the predictions obtained using Kirkpatrick's equation, against the laboratory 

measurements. 
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Figure 7.4.3 A comparison of the permeability predictions using Kirkpatrick's isotropic 
E M A , Bemasconi's EMA, and exact network calculations using ANISONETSIM. 
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8 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

In this thesis, a methodology has been developed that allows predictions of the 

hydraulic permeability of consolidated sedimentary rocks such as sandstones, based on 

image analysis of polished sections of a rock core sample. For the rocks analysed in this 

study, the method sometimes overpredicts and sometimes underpredicts the measured 

permeability, vyith an (absolute value) error that is on average only 48%. To put this in 

perspective, we should compare this to the errors inherent in the measured values. 

McPhee and Arthur (1994) reported the results of a series of gas permeability 

measurements on a Clashach quarried sandstone, with an average permeability of 693 

mD, and found an "error" of 32%, based on the standard deviation of all the 

measurements. Although these values are not directly comparable, the mean (absolute) 

relative error in our measurements seems to be comparable to the error inherent in the 

laboratory measurements. 

It should be emphasized that our model is based entirely on measured attributes of the 

pore space. Although there are adjustable parameters in our algorithm, such as co-

ordination number and the ratio of minimum-to-maximum pore radius, these have been 

taken to have the same values for all cores. Likewise, the various stereological 

corrections are performed in the same manner for all cores. Hence, the numerical values 

of the permeability predictions contain no adjustable parameters whatsoever. 

The question may be raised as to why our estimates are so much more accurate than 

those made by Kopl ik et al. (1984), using a broadly similar procedure. There are, 

however, several differences between the two methods. For example, they estimated 

pore conductances using the concept of "equivalent ellipse", whereas we used the 

hydraulic radius approximation. Based on comparisons with B E M simulations {Koplik 

et al., 1984; Sisavath et al., 2000), however, it seems that this difference may account for 

at most an error of about 10-50% in their predictions. The main difference seems to be 

our inclusion of the constriction factor and the stereological correction factors for pore 

size and number density, each of which lower the estimated pore conductance by about a 

factor of two. Taken together, the absence of these corrections may explain why their 

estimates were too high by about an order of magnitude. 
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Although the estimates of k nearly always fall within a factor of two of the measured 

values, there is a tendency to overpredict permeability at the lower range, and 

underpredict for the more permeable cores. Any errors in estimating the conductivity of 

individual pores should be independent of the absolute permeability, so these factors 

cannot explain the trend. One possible explanation may involve our use of a co-

ordination number of six for all cores. The recent work by Lindquist et al. (2000) 

implies that we might expect a positive correlation between permeability and co-

ordination number. At the high permeability range, the underprediction may be 

attributable to an insufficiently high co-ordination number in our permeability model. 

Conversely, at the low permeability range of the data, the overprediction may be a result 

of using too high a co-ordination number. It is therefore possible that a more accurate 

estimation of co-ordination number would further improve the accuracy of our 

permeability model. 

The use of essentially exact isotropic network calculations fail to produce any 

systematic improvement on the predictions obtained using the isotropic effective 

medium theory of Kirkpatrick since the logvariance of the conductance distributions are 

not sufficient to produce a substantial difference in the predictions obtained by the two 

simulation methods. Furthermore, the lack of any systematic improvement when using 

an anisotropic network model, for example consider the UKCS core 4-XYZ, reflects the 

fact that the cases studied here are perhaps insufficiently anisotropic for either 

Bernasconi's equation or anisotropic NETSIM to make a notable difference in the 

predictions. 

The inability to f ind sufficiently anisotropic samples to test the inherently anisotropic 

network codes highlights the fact that anisotropy variations are not l ikely to be 

pronounced at the pore scale, but become increasingly significant as the scale of the 

measurement is increased. Permeability anisotropy wi l l become a significant issue at the 

f ield scale, where directional preferences for f luid flow are attributable to heterogeneities 

such as sand/shale sequences Bernabe (1992). The manufacture of a synthetic porous 

material with a large degree of permeability anisotropy may be possible, and allow a 

more extensive test of the anisotropic network models used in this study. Presently, 

however it would seem that a permeability model based on Kirkpatrick's isotropic 

effective-medium approximation suffices to give a permeability prediction to within a 

factor of two, with a qualitative indication of anisotropy. 
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The method developed has thus far only been applied to predictions of single-phase 

permeabilities in relatively homogeneous materials such as sandstones. An extension of 

the model to predicting the single-phase permeability characteristics in other rock types 

would be worthwhile. Carbonates, known for their heterogeneity, are of particular 

interest to the petroleum industry, as a significant amount of the world's hydrocarbon 

reserves are located in carbonate formations. To extend the present method to such rock 

types would require a reconsideration of the data acquisition and image analysis 

procedures. Owing to the relatively more complex pore structure of carbonates, with 

features extending over a wider range of scales, BSEIs would have to be collected from a 

range of magnifications in order to capture all the relevant characteristics of the pore 

space. Combining the data to obtain a valid representation of the f low characteristics 

would probably require modifications to the areal thresholding procedure that has been 

developed, and also inclusion of statistical analyses exceeding that performed in this 

study. The heterogeneity might produce hydraulic conductance distributions with 

variances large enough to introduce substantial differences between network simulations 

using the isotropic effective medium approximation and NETSIM. 

A natural extension of this work is the development of an effective medium model for 

two-phase f low through reservoir rocks, using data obtained from thin sections. Levine 

and Cuthiell (1986) developed an effective-medium model of two-phase f low on a cubic 

lattice by assuming a water-wet rock that could be described by an idealised pore-size 

distribution which was partitioned so that pores below a certain size would only allow 

the presence of a water f i lm. Above this "threshold", the pores wi l l admit the oil phase, 

f lowing on top of the pre-existing water f i lm. Hence, the work of Levine and Cuthiell 

(1986) on two-phase f low using the effective medium approximation of Kirkpatrick 

seeks to obtain two-phase relative permeabilities by separating the f low tubes according 

to a pre-defined size criterion to account for wettability. However, the method does not 

consider the simultaneous f low of oil and water through the pores. Although the theory 

was extended to include the possible dependence of the relative permeabilities on the 

ratio of the viscosity of fluids that can co-exist inside a pore tube, no numerical results 

were presented. The use of greyscale identification of the pore wall mineralogy could 

provide a direct method for determining the initial wettability state of the rock, and 

possibly lead to the development of a method that could successfully consider 

simultaneous f low of oil and water, under conditions of mixed wettability. 
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APPENDICES: CODE LISTING 

A Isotropic Effective-Medium Approximation 

B Anisotropic Effective-Medium Approximation in Two Dimensions 

C Anisotropic Effective-Medium Approximation in Three Dimensions 

D Program for Increasing the Size of Input files for NETSIM 

E Program for Random Pore Selection 

F Program for the Random Generation of Lognormal Deviates 

G ISOTROPIC NETSIM, adapted from Jing (1990) 

H ANISOTROPIC NETSIM, adapted from Jing (1990) 

A l l programs were written and compiled using D IG ITAL visual Fortran for Windows, 

version 5a. 
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A Isotropic Effective-Medium Approximation 

PROGRAM NEWTONKIRKPATRICK 

C GIVES THE ROOT TO KIRKPATRICK'S EQUATION USING THE NEWTON-
C RAPHSON PROCEDURE 

C COMPUTES THE DERIVATIVE ANALYTICALLY 

C USES DOUBLE PRECISION ARITHMETIC TO ALLOW MORE STRINGENT AND 
C CONSISTENT CONVERGENCE CRITERIA 

IMPLICIT NONE 
REAL G, L, Z, ALPHA, GMAX, RMAX, GMIN 
DOUBLE PRECISION A, B, SQ, SER, DER, FX, RATIO,SUM,GGEO, X 
DIMENSION G(10000) 
INTEGER I, J, K 
PARAMETER(L=7397 . ) 
PARAMETER(Z=6) 
K=INT(L) 

C OPEN EXTERNAL DATAFILE AND READ IN THE CONDUCTIVITIES 
OPEN(UNIT=3,FILE='lYCOMPILED.txt', STATUS='OLD') 
REWIND(3) 
DO 10 1=1, K 

READ(3,*) G(I) 
10 END DO 

C CALCULATE BOUNDS FOR GEFF, ALONG WITH THE GEOMETRIC MEAN, Ggeo 
Ggeo = 1.0 
Gmax = 0.0 
Rmax = 0.0 
DO 20 1=1, K 

Ggeo = Ggeo*(G{I))**(1/L) 
Gmax = Gmax + G(I) 

Rmax = Rmax + 1.0/G(I) 
2 0 CONTINUE 

Gmax = Gmax/L 
Rmax = Rmax/L 
Gmin = 1.0/Rmax 

PRINT*, 'NO OF INPUT CONDUCTANCES:' , K 
PRINT*,'Gmin=', Gmin 
PRINT*,'Ggeo=', Ggeo 
PRINT*,'Gmax=', Gmax 

ALPHA=(Z/2)-1 

C INITIALISE OUR GUESS FOR X 
X = GGEO 

C DO LOOP FOR N-R ITERATION 
DO 30 J=l, 200 

C INITIALISE FUNCTION VALUES 
FX = 0.0 
SUM= 0.0 

C DO LOOP FOR CALCULATING FUNCTION VALUES 
DO 40 1=1, K 

FX = FX + (X-G(I))/{ALPHA*X+G{I)) 
C COMPUTE DERIVATIVE USING QUOTIENT RULE AND SUM 
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A=(ALPHA*X+G(I)) 
B=ALPHA*(X-G(I)) 
SER=A-B 
SQ=(ALPHA*X+G(I))**2 
DER=SER/SQ 
SUM=SUM+DER 

40 CONTINUE 
RATIO=FX/SUM 

C UPDATE SOLUTION FOR ROOT 
X = X - RATIO 

C TEST TO SEE IF X HAS JUMPED OUTSIDE OF RANGE 
IF((GMIN-X)*(X-GMAX) .LT.O) THEN 
PAUSE 'X JUMPED OUT OF BRACKETS' 
ENDIF 

C TEST(S) FOR CONVERGENCE 
IF(ABS(RATIO) .LT. 0.0000001 .AND. ABS(FX) .LT. 0 . 0000001)THEN 
PRINT*,'N-R HAS CONVERGED TO', X 
STOP 
ENDIF 

3 0 CONTINUE 

END 
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B Anisotropic Effective-Medium Approximation in Two Dimensions 

PROGRAM TWO DIMENSIONAL EMA 

C COMPUTES THE EFFECTIVE CONDUCTANCE IN TWO DIMENSIONS ON THE 
C SQUARE LATTICE BASING THE INITIAL GUESS FOR THE ROOT TO 
C BERNASCONI'S EQUATION (I.E., THE SOLUTION VECTOR) ON THE 
C GEOMETRIC MEANS OF TWO SETS OF INPUT DATA 

C THE GEOMETRIC MEANS ARE CALCULATED IN THE MAIN PROGRAM BY 
C READING IN THE CONDUCTANCES FROM THE EXTERNAL DATAFILES WHILE 
C SUCCESSIVELY RECALCULATING THE 1/Nth ROOT OF THE PRODUCT; THIS 
C METHOD OF CALCULATING A GEOMETRIC MEAN ELIMINATES THE OVERFLOW 
C PROBLEMS THAT ARISES WITH THE INCREASING PRODUCT 

C THE METHOD OF COMPUTING THE ROOT TO BERNASCONI'S EQUATION USES 
C THE GENERALISED NEWTON-RAPHSON PROCEDURE BASED ON THE SUBROUTINE 
C MNEWT GIVEN BY PRESS ET AL. (1992) , AND IS WRITTEN AS A MAIN 
C BLOCK PROGRAM THAT RETURNS THE FUNCTION VALUES F AND THE 2X2 
C JACOBIAN MATRIX OF DERIVATIVES 

C THE ELEMENTS OF THE JACOBIAN ARE COMPUTED ANALYTICALLY TO 
C ELIMINATE THE POTENTIAL SENSITIVITY OF THE PROCEDURE TO 
C ARTEFACTS THAT MAY ARISE IN COMPUTING THE DERIVATIVE 
C NUMERICALLY, I.E., BY FINITE DIFFERENCES 

C NTRIAL ITERATIONS ARE PERFORMED FROM THE INITIAL GUESS TO THE 
C SOLUTION VECTOR AND THE SUCCESSIVE APPROXIMATIONS UPDATED BY 
C SOLVING THE RESULTING LINEAR EQUATIONS USING AN LU MATRIX 
C DECOMPOSITION WITH THE CONSECUTIVE SUBROUTINES LUDCMP AND 
C LUBSKB IN MNEWT AS SUGGESTED BY PRESS ET AL, (1992) . THE 
C ITERATIVE PROCESS STOPS IF EITHER THE MAGNITUDE OF THE 
C FUNCTION VECTOR F IS LESS THAN SOME TOLERANCE TOLF, 
C OR IF THE SUM OF THE ABSOLUTE VALUES OF THE CORRECTIONS TO THE 
C ROOT IS LESS THAN SOME TOLERANCE TOLX 

C DOUBLE PRECISION ARITHMETIC IS USED TO MAINTAIN NUMERICAL 
C ACCURACY WITHIN THE RANGE OF INTEREST 

IMPLICIT NONE 
INTEGER MA, DUM(2), N, M 
PARAMETER (MA=2) 
DOUBLEPRECISION XGGEO, XGMAX, XRMAX, XGMIN, YGGEO, YGMAX 
DOUBLEPRECISION YRMAX, YGMIN, CX, CY 
DOUBLEPRECISION C(2), CC(2), FVEC(2), FJAC(2,2), A, B 
INTEGER I,J, K, NTRIAL 
DOUBLEPRECISION TOLF, TOLX 
DOUBLEPRECISION D, ERRF, ERRX 
DOUBLEPRECISION P(2) 

C ENTER NUMBER OF ITERATIONS, NTRIAL 
PARAMETER (NTRIAL=100) 
DIMENSION CX(IOOOO), CY(IOOOO) 

C ENTER NUMBER OF CONDUCTANCES FOR X DIRECTION: 
PARAMETER (A=2.) 

C ENTER NUMBER OF CONDUCTANCES FOR Y DIRECTION: 
PARAMETER (B=2.) 
N=INT(A) 
M=INT(B) 
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C GIVEN AN INITIAL GUESS FOR THE ROOT IN TWO DIMENSIONS, TAKE 
C NTRIAL NEWTON-RAPHSON STEPS TO IMPROVE THE ROOT. STOP IF THE 
C ROOT CONVERGES IN EITHER SUMMED ABSOLUTE VALUE INCREMENTS, 
C TOLX OR SUMMED ABSOLUTE VALUES OF THE FUNCTION, TOLF 

T0LF=1.OE-12 
TOLX=1.0E-12 

C READ IN DATA FOR 'X' AND 'Y' DIRECTIONS 
OPEN(UNIT=11,FILE='GEOl.txt',STATUS='OLD') 
OPEN(UNIT=12,FILE='GE02.txt',STATUS='OLD') 
REWIND(11) 
REWIND(12) 

C READ IN THE CONDUCTIVITIES FOR THE 'X' DIRECTION 
XGGEO=1.0 
XGMAX=0.0 
XRMAX=0.0 
DO 5 1=1, N 

READ(11,*) CX(I) 
C CALCULATE THE GEOMETRIC MEAN, XGGEO 

XGGEO = XGGEO*(CX(I))**(1.0/A) 
C CALCULATE UPPER AND LOWER BOUNDS 

XGMAX=XGMAX+CX(I) 
XRMAX=XRMAX+ 1.0/CX(I) 

5 CONTINUE 
XGMAX=XGMAX/A 
XGMIN=1.0/XRMAX 
PRINT*, 'XGGEO=', XGGEO 

C READ IN THE CONDUTIVITIES FOR THE Y DIRECTION 
YGGE0=1.0 
YGMAX=0.0 
YRMAX=0.0 
DO 8 J=l, M 

READ(12,*) CY(J) 
C CALCULATE THE GEOMETRIC MEAN, YGGEO 

YGGEO = YGGEO*(CY(J))**(1.0/B) 
C CALCULATE UPPER AND LOWER BOUNDS 

YGMAX=YGMAX+CY(J) 
YRMAX=YRMAX+ 1.0/CY(J) 

8 CONTINUE 

YGMAX=YGMAX/B 
YGMIN=1.0/YRMAX 
PRINT*, 'YGGEO=', YGGEO 

Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

PRINT*, ' 
PRINT*, '&&&&&&&&&&&&&&&&&&&&&&&&&&&' 
PRINT*, ' 

C INITIALISATIONS TO N-R PROCEDURE 
C INPUTS X AND Y (GEOMETRIC MEANS OF RESPECTIVE INPUT DATA) 

C(1)=XGGE0 
C(2)=YGGE0 
DO 10 K=l, NTRIAL 

C CALL USRFUN; A USER-WRITTEN SUBROUTINE THAT SUPPLIES FUNCTION 
C VALUES AT X IN FVEC AND JACOBIAN MATRIX IN FJAC 
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CALL USRFUN(C, FVEC,FJAC, N,M, CX, CY) 
ERRF=0.0 

C CHECK ERROR CONVERGENCE 
DO 20 1=1, 2 

ERRF=ERRF + ABS(FVEC(I)) 
20 CONTINUE 

IF(ERRF .LE. TOLF)THEN 
PRINT*, ' 
PRINT*, 'N-R HAS CONVERGED TO ROOT' 
GO TO 24 
END IF 

DO 3 0 1=1, 2 
P(I)=-FVEC(I) 

30 CONTINUE 

C SOLVE LINEAR EQUATIONS BY LU DECOMPOSTION USING THE SUBROUTINES 
C LUDCMP AND LUBKSB (PRESS ET AL., 1992) 

CALL LUDCMP(FJAC, MA,MA,DUM, D) 
CALL LUBKSB(FJAC,MA,MA,DUM, P) 

C CHECK ROOT CONVERGENCE 
ERRX=0.0 
DO 40 1=1, 2 

C UPDATE SOLUTION 
ERRX=ERRX+ABS(P(I)) 
C(I)=C(I)+P(I) 

40 CONTINUE 

PRINT*, 'NUMBER OF ITERATIONS:', K 
IF (ERRX .LE. TOLX)THEN 
PRINT*, 'N-R HAS CONVERGED TO ROOT' 
GO TO 24 
ELSE 
PRINT*, ' OUTPUTS FOR SOLUTION VECTOR X1=',C(1) 
PRINT*, ' OUTPUTS FOR SOLUTION VECTOR X2=',C(2) 
END IF 

10 CONTINUE 

24 PRINT*, ' 
PRINT*, 'FINAL OUTPUT FOR SOLUTION VECTOR X1=',C(1) 
PRINT*, 'FINAL OUTPUT FOR SOLUTION VECTOR X2=', C(2) 
PRINT*, 
PRINT*, ' END 
PRINT*, ' 

END 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
C END OF MAIN PROGRAM 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C SUBROUTINES ARE: 
C SUBROUTINE USRFUN(L,FVEC,FJAC, N, M, CX, CY) 
C SUBROUTINE JJ(L, N, SUMXX,SUMXY, FX, CX) 
C SUBROUTINE JK(L, M, SUMYX,SUMYY, FY, CY) 
C SUBROUTINE LUDCMP(A, N,NP,INDX,D) 
C SUBROUTINE LUBKSB(A,N,NP,INDX,B) 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

SUBROUTINE USRFUN(L, FVEC,FJAC, N, M, CX, CY) 
IMPLICIT NONE 
DOUBLEPRECISION L(2),SUMXX,SUMXY,SUMYX,SUMYY 
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DOUBLE PRECISION FX,FY,FVEC,FJAC,CX,CY 
INTEGER I, J, N, M 
DIMENSION CX(N), CY(M), FJAC(2,2),FVEC(2) 

C LOOP TO CALCULATE FUNCTION FVEC(l) AND DERIVATIVES WRT X AND 
C Y, FJAC(1,1) AND FJAC(1,2) 

CALL JJ(L, N, SUMXX,SUMXY, FX, CX) 

C LOOP TO CALCULATE FUNCTION FVEC (2) AND DERIVATIVES WRT X AND 
C Y, FJAC(2,1) AND FJAC(2,2) 

CALL JK(L, M, SUMYX,SUMYY, FY, CY) 

FVEC(l) =FX 
FVEC(2) =FY 
FJAC(1, 1)=SUMXX 
FJAC(1, 2)=SUMXY 
FJAC(2, 1)=SUMYX 
FJAC(2, 2)=SUMYY 

PRINT*, 'FJAC(1, 1) ' , SUMXX 
PRINT*, 'FJAC(1, 2) ' , SUMXY 
PRINT*, 'FJAC(2, 1) ' , SUMYX 
PRINT*, 'FJAC(2, 2) ' , SUMYY 
PRINT*, 'FVEC(1) = ' , FVEC(l) 
RETURN 

•FVEC(2)=', FVEC(2) 

END 

SUBROUTINE LUDCMP(A, N,NP,INDX,D) 

INTEGER N, NP, INDX(N), NMAX 
DOUBLEPRECISION D, A(NP,NP), TINY 
PARAMETER (NMAX=500, TINY=1.OE-20) 
INTEGER I, IMAX, J,K 
DOUBLEPRECISION AAMAX,DUM,SUM,W(NMAX) 

11 

12 

13 

14 

D=1 
DO 12 1=1, N 
AAMAX=0 

DO 11 J=l, N 
IF (ABS (A(I,J)). GT. AAMAX) AAMAX=ABS(A(I,J)) 

CONTINUE 
IF (AAMAX. EQ. 0) PAUSE 'SINGULAR MATRIX IN LU 

+DECOMPOSITION SUBROUTINE' 
VV(I)=1/AAMAX 
CONTINUE 
DO 19 J=l, N 

DO 14 1=1, J-1 
SUM=A(I,J) 
DO 13 K=l, I-l 

SUM=SUM-A(I,K)*A(K,J) 
CONTINUE 
A(I,J)=SUM 

CONTINUE 
AAMAX=0 

DO 16 I=J, N 
SUM=A(I,J) 
DO 15 K=l, J-1 

SUM=SUM-A(I,K) *A(K, J) 
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15 CONTINUE 
A{I,J)=SUM 
DUM=W (I) *ABS (SUM) 

IF (DUM. GE. AAMAX) THEN 
IMAX=I 
AAMAX=DUM 

ENDIF 
16 CONTINUE 

IF (J. NE. IMAX) THEN 
DO 17 K=l, N 
DUM=A{IMAX, K) 
A(IMAX,K)=A(J,K) 
A(J,K)=DUM 

17 CONTINUE 
D=-D 
W(IMAX)=W(J) 

ENDIF 
INDX(J)=IMAX 

IF(A(I,J). EQ. 0) A(I,J)=TINY 
IF(J. NE.N)THEN 
DUM=1/A(J,J) 

DO 18 I=J+1, N 
A(I,J)=A(I,J)*DUM 

18 CONTINUE 
ENDIF 

19 CONTINUE 
RETURN 

END 
SUBROUTINE LUBKSB(A,N,NP,INDX,B) 

INTEGER N, NP, INDX(2) 
INTEGER I, II, J,LL 
DOUBLEPRECISION TOTAL 
DOUBLEPRECISION B(2), A(2,2) 

11=0 

DO 45 1=1, N 
LL=INDX(I) 
TOTAL=B(LL) 
B(LL)=B(I) 
IF (II. NE. 0) THEN 

DO 50 J=II, I-l 
TOTAL=TOTAL-A(I,J)*B(J) 

50 CONTINUE 
ELSE IF (TOTAL. NE. 0) THEN 

11=1 

ENDIF 
B(I)=TOTAL 

45 CONTINUE 
DO 55 I=N, 1,-1 

TOTAL=B(I) 
DO 60 J=I+1, N 
TOTAL =TOTAL-A{I,J)*B(J) 

60 CONTINUE 
B(I)=TOTAL/A(I,I) 

55 CONTINUE 
RETURN 
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END 
C ************************************************************** 

SUBROUTINE JJ(L, N, SUMXX,SUMXY, FX, CX) 
C OUTPUTS THE FUNCTION FX, J(1,2), AND J(1,1) 

IMPLICIT NONE 
INTEGER N, I 

C PARAMETERS REQUIRED FOR ALL THREE CALCULATIONS 
DOUBLEPRECISION CX(N),L(2) 

C PARAMETERS REQUIRED FOR THE ELEMENT J(1,1) 
DOUBLEPRECISION A,B,C,D,E,F, ANALYA, ANALYB, ANALYC, XX, SUMXX 

C PARAMETERS REQUIRED FOR THE ELEMENT J(1,2) 
DOUBLEPRECISION NUMC, NUMD, NUME, NUMF, NUMG, NUMH, DD,SUMXY 

C PARAMETERS REQUIRED FOR THE FUNCTION FX 
DOUBLEPRECISION FX,SX 

REWIND(11) 
C INITIALISATIONS 

SUMXX=0.0 
SUMXY=0.0 
FX=0.0 
DO 200 1=1, N 
F=-0.5*((L(2)**0.5)/(L(l)**1.5))*(1/(1+(L(2)/L(l)))) 
C=ATAN(SQRT(L(1)/L(2)))*F 
D=ATAN(SQRT(L(2)/L(l)))*(0.5*SQRT(1/(L(1)*L(2))))*(1/(1+(L(1)/L(2 

+ )))) 
E=(ATAN(SQRT(L(1)/L(2))))**2.0 
B=(C-D)/E 
A={ATAN(SQRT(L(2)/L(l)))/(ATAN(SQRT(L(1)/L(2))))) 

C COMPUTES THE 'A' AND 'B' PARTS OT THE DERIVATIVE J(1,1) 
ANALYA=CX(I)+L(1)*(ATAN(SQRT(L(2)/L(1)))/ATAN(SQRT(L(1)/L(2)))) 
ANALYB=(CX(I)+L(1)*(ATAN(SQRT(L(2)/L(1)))/ATAN(SQRT(L(1)/L(2))))) 

+ * * 2 

ANALYC=(L{1)-CX(I))*(A+L(l)*B) 

C COMBINE THESE THREE MAJOR COMPONENTS AS 
C XX= (ANALYA-ANALYC) /ANALYB : 

XX=(ANALYA-ANALYC)/ANALYB 
SUMXX=SUMXX+XX 

C NOW REPEAT FOR SECOND ELEMENT OF JACOBIAN 
NUMC=(ATAN(SQRT(L(1)/L(2))))*(0.5*SQRT(1.0/(L(1)*L(2)))) 
+*(1.0/(1.0+L(2)/L(1))) 
NUMD=(ATAN(SQRT(L(2)/L{1))))*(-0.5*((L(1)**0.5)/L(2)** 
+1.5))*(1.0/(1.0+(L{1)/L(2)))) 
NUME=(NUMC-NUMD) 
NUMF=(ATAN(SQRT(L(1)/L(2))))**2.0 
NUMH=(CX(I)+L(1)*(ATAN(SQRT(L(2)/L(l)))/ATAN(SQRT(L(1)/L(2)))) 

+ ) **2 

NUMG=L(1)*(L(1)-CX(I))*(NUME/NUMF) 
DD=(-NUMG)/NUMH 
SUMXY=SUMXY+DD 

C NOW PRODUCE THE FUNCTION 
SX=L(1)*((ATAN(SQRT(L(2)/L(1))))/(ATAN(SQRT(L(l)/L(2))))) 
FX= FX +(L(1)-CX(I))/(CX(I)+SX) 

200 CONTINUE 
RETURN 
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END 

SUBROUTINE JK(L, M, SUMYX,SUMYY, FY, CY) 
C OUTPUTS THE FUNCTION FY, J(2,l) AND J(2,2) 

IMPLICIT NONE 
INTEGER M, J 

C PARAMETERS REQUIRED FOR ALL THREE CALCULATIONS 
DOUBLEPRECISION CY(M), L(2) 

C PARAMETERS REQUIRED FOR THE ELEMENT J(2,2) 
DOUBLEPRECISION F,C,D,E,B,A,ANALYA,ANALYB,ANALYC,YY,SUMYY 

C PARAMETERS REQUIRED FOR THE ELEMENT J(2,1) 
DOUBLEPRECISION ALPHA,DD,EE,FF,SUMYX, ANALYD,ANALYE, J21 

C PARAMETERS REQUIRED FOR THE FUNCTION FY 
DOUBLEPRECISION SY, FY 

C OPEN(UNIT=12, FILE='YDATA.txt', STATUS='OLD') 
REWIND(12) 

C INITIALISATIONS 
SUMYY=0.0 
SUMYX=0.0 
FY=0.0 
DO 10 J=l, M 

C READ(12,*) CY(J) 
C J(2,2) 

F=-0.5*((L(l)**0.5)/(L(2)**1.5))*(1/(1+{L(1)/L(2)))) 
C=ATAN(SQRT(L(2)/L(l)) ) *F 
D=ATAN(SQRT(L(1)/L(2)))*(0.5*SQRT(1/(L(2)*L(1) ) ))+*(1/(1+(L(2)/L( 

+1)))) 

E=(ATAN(SQRT(L(2)/L(l))))**2.0 
B=(C-D)/E 
A=(ATAN(SQRT(L(l)/L(2)))/(ATAN(SQRT(L(2)/L(1))))) 

C COMPUTES THE 'A' AND 'B' PARTS OT THE DERIVATIVE J(2,2) 
ANALYA=CY(J)+L(2)*(ATAN(SQRT(L(1)/L(2)))/ATAN{SQRT(L(2)/L(l))) 

+ ) 

ANALYB=(CY(J)+L(2)*(ATAN(SQRT(L(1)/L(2))) /ATAN(SQRT(L(2)/L(1))))) 
+ * * 2 
ANALYC=(L(2)-CY(J))*(A+L(l)*B) 

C COMBINE THESE THREE MAJOR COMPONENTS AS 
C YY=(ANALYA-ANALYC)/ANALYB: 

YY=(ANALYA-ANALYC)/ANALYB 
SUMYY=SUMYY+YY 

C COMPUTE J(2,l) 
DD=(ATAN(SQRT(L(2)/L(l))))*(1/(1+(L(1)/L(2))))*(0.5*SQRT(1/(L{1)* 

+L(2)))) 
EE=(ATAN(SQRT(L(l)/L(2))))*(1/(1+(L(2)/L(1)))*(0.5*(SQRT(L(2)) 
+/(L(1)**1.5)))) 
FF=(ATAN(SQRT(L(2)/L(l))))**2 .0 

C COLLECT TERMS TO GIVE PART B 
ALPHA=L(2)*(L(2)-CY(J)) 
ANALYD=(ALPHA*(DD-EE)/FF) 

C NOW A=0 SO WE JUST NEED THE FORM OF C 
ANALYE=(CY(J)+L(2)*(ATAN{SQRT(L(1)/L(2))))/(ATAN(SQRT(L(2 ) /L( l ) ) 
+))**2.0 

J 2 1 = - A N A L Y D / A N A L Y E 
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SUMYX =SUMYX+J21 
C CALCULATE FUNCTION ^ ̂ ^, 

SY=L(2)*((ATAN(SQRT(L(1)/L(2))))/(ATAN(SQRT(L(2)/L (1))))) 
FY= FY+(L(2)-CY(J))/(CY(J)+SY) 

10 CONTINUE 

RETURN 

END 
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C Anisotropic Effective-Medium Approximation in Three Dimensions 

PROGRAM THREE DIMENSIONAL EMA 

C COMPUTES THE EFFECTIVE CONDUCTANCE IN THREE DIMENSIONS ON THE 
C CUBIC LATTICE BASING THE INITIAL GUESS FOR THE ROOT TO 
C BERNASCONI'S EQUATION (I.E., THE SOLUTION VECTOR) ON THE 
C GEOMETRIC MEANS OF THREE SETS OF INPUT DATA 

C THE GEOMETRIC MEANS ARE CALCULATED IN THE MAIN PROGRAM BY 
C READING IN THE CONDUCTANCES FROM THE EXTERNAL DATAFILES WHILE 
C SUCCESSIVELY RECALCULATING THE 1/Nth ROOT OF THE PRODUCT; THIS 
C METHOD OF CALCULATING A GEOMETRIC MEAN ELIMINATES THE OVERFLOW 
C PROBLEMS THAT ARISES WITH THE INCREASING PRODUCT 

C THE METHOD OF COMPUTING THE ROOT TO BERNASCONI'S EQUATION USES 
C THE GENERALISED NEWTON-RAPHSON PROCEDURE BASED ON THE SUBROUTINE 
C MNEWT GIVEN BY PRESS ET AL. (1992) , AND IS WRITTEN AS A MAIN 
C BLOCK PROGRAM THAT RETURNS THE FUNCTION VALUES F AND THE 3X3 
C JACOBIAN MATRIX OF DERIVATIVES 

C THE ELEMENTS OF THE JACOBIAN ARE COMPUTED ANALYTICALLY TO 
C ELIMINATE THE POTENTIAL SENSITIVITY OF THE PROCEDURE TO 
C ARTEFACTS THAT MAY ARISE IN COMPUTING THE DERIVATIVE 
C NUMERICALLY, I.E., BY FINITE DIFFERENCES 

C NTRIAL ITERATIONS ARE PERFORMED FROM THE INITIAL GUESS TO THE 
C SOLUTION VECTOR AND THE SUCCESSIVE APPROXIMATIONS UPDATED BY 
C SOLVING THE RESULTING LINEAR EQUATIONS USING AN LU MATRIX 
C DECOMPOSITION WITH THE CONSECUTIVE SUBROUTINES LUDCMP AND 
C LUBSKB IN MNEWT AS SUGGESTED BY PRESS ET AL, (1992) . THE 
C ITERATIVE PROCESS STOPS IF EITHER THE MAGNITUDE OF THE 
C FUNCTION VECTOR F IS LESS THAN SOME TOLERANCE TOLF, 
C OR IF THE SUM OF THE ABSOLUTE VALUES OF THE CORRECTIONS TO THE 
C ROOT IS LESS THAN SOME TOLERANCE TOLX 

C DOUBLE PRECISION ARITHMETIC IS USED TO MAINTAIN NUMERICAL 
C ACCURACY WITHIN THE RANGE OF INTEREST 

IMPLICIT NONE 
INTEGER MA, TUM(3), HH, II, JJ 
PARAMETER (MA=3) 
DOUBLEPRECISION XGGEO,XGMAX,XRMAX,XGMIN 
DOUBLEPRECISION YGGEO,YGMAX,YRMAX,YGMIN 
DOUBLEPRECISION ZGGEO,ZGMAX,ZRMAX,ZGMIN 
DOUBLEPRECISION CX, CY, CZ 
DOUBLEPRECISION C(3) , FVEC(3), FJAC(3,3) 
DOUBLE PRECISION AA, BB, CC 
INTEGER H, I, J, K, NTRIAL 
DOUBLEPRECISION TOLF, TOLX 
DOUBLEPRECISION D, ERRF, ERRX 
DOUBLEPRECISION P(3), G(3) 
DIMENSION CX(10000), CY(IOOOO), CZ(IOOO) 

C ENTER NUMBER OF CONDUCTANCES FOR THE X DIRECTION: 
PARAMETER {HH= 1843.) 

C ENTER NUMBER OF CONDUCTANCES FOR THE Y DIRECTION; 
PARAMETER (11= 1244.) 

C ENTER NUMBER OF CONDUCTANCES FOR THE Z DIRECTION; 
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PARAMETER (JJ= 1579.) 
AA=REAL(HH) 
BB=REAL(II) 
CC=REAL(JJ) 

PRINT*, 'ENTER NUMBER OF NEWTON-RAPHSON STEPS' 
READ*, NTRIAL 

C GIVEN AN INITIAL GUESS FOR THE ROOT IN TWO DIMENSIONS, TAKE 
C NTRIAL NEWTON-RAPHSON STEPS TO IMPROVE THE ROOT. STOP IF THE 
C ROOT CONVERGES IN EITHER SUMMED ABSOLUTE VALUE INCREMENTS, 
C TOLX OR SUMMED ABSOLUTE VALUES OF THE FUNCTION, TOLF 

TOLF=1.0E-12 
T0LX=1.OE-12 

C READ IN DATA FOR 'X', 'Y', AND 'Z' DIRECTIONS 
OPEN(UNIT=11,FILE='2XC0MPILED.txt',STATUS='OLD') 
OPEN(UNIT=12,FILE='2BC0MPILED.txt',STATUS='OLD') 
OPEN(UNIT=13,FILE='2CC0MPILED.txt',STATUS='OLD') 
REWIND(11) 
REWIND(12) 
REWIND(13) 

C READ IN THE CONDUCTIVITIES FOR THE 'X' DIRECTION 
XGGE0=1.0 
XGMAX=0.0 
XRMAX=0.0 
DO 5 H=l, HH 

READdl,*) CX(H) 
C CALCULATE THE GEOMETRIC MEAN, XGGEO 

XGGEO = XGGEO*(CX(H))**(1.0/AA) 
C CALCULATE UPPER AND LOWER BOUNDS 

XGMAX=XGMAX+CX(H) 
XRMAX=XRMAX+ 1.0/CX(H) 

5 CONTINUE 
XGMAX=XGMAX/AA 
XRMAX=XRMAX/AA 
XGMIN=1.0/XRMAX 

C READ IN THE CONDUCTIVITIES FOR THE 'Y' DIRECTION 
YGGE0=1.0 
YGMAX=0.0 
YRMAX=0.0 
DO 6 1=1, II 

READ(12,*) CY(I) 
C CALCULATE THE GEOMETRIC MEAN, YGGEO 

YGGEO = YGGEO*(CY(I))**(1.0/BB) 
C CALCULATE UPPER AND LOWER BOUNDS 

YGMAX=YGMAX+CY(I) 
YRMAX=YRMAX+ 1.0/CY(I) 

6 CONTINUE 
YGMAX=YGMAX/BB 
YRMAX=YRMAX/BB 
YGMIN=1.0/YRMAX 

C READ IN THE CONDUCTIVITIES FOR THE Z DIRECTION 
ZGGE0=1.0 
ZGMAX=0.0 
ZRMAX=0.0 
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DO 7 J=l, JJ 
READ(13,*) CZ(J) 

C CALCULATE THE GEOMETRIC MEAN, ZGGEO 
ZGGEO = ZGGEO*(CZ(J))**(1.0/CC) 

C CALCULATE UPPER AND LOWER BOUNDS 
ZGMAX=ZGMAX+CZ(J) 
ZRMAX=ZRMAX+ 1.0/CZ(J) 

7 CONTINUE 
ZGMAX=ZGMAX/CC 
ZRMAX=ZRMAX/CC 
ZGMIN=1.0/ZRMAX 

PRINT*, 'XGGEO= , XGGEO 
PRINT*, 'XGMAX= , XGMAX 
PRINT*, 'XGMIN= , XGMIN 
PRINT*, 'YGGEO= , YGGEO 
PRINT*, 'YGMAX= , YGMAX 
PRINT*, 'YGMIN= , YGMIN 
PRINT*, 'ZGGEO= , ZGGEO 
PRINT*, 'ZGMAX= , ZGMAX 
PRINT*, 'ZGMIN= , ZGMIN 
PRINT*, 
PRINT*, 
PRINT*, 

' & & & & & & & & & & & & & & & & & & & & & & & & & & & ' 

C INITIALISATIONS TO N-R PROCEDURE 

C INPUTS X, Y AND Z (GEOMETRIC MEANS OF RESPECTIVE INPUT DATA) 
C(1)=XGGE0 
C(2)=YGGE0 
C(3)=ZGGE0 
DO 10 K=l, NTRIAL 

C CALL USRFUN; A USER-WRITTEN SUBROUTINE THAT SUPPLIES FUNCTION 
C VALUES AT X IN FVEC AND JACOBIAN MATRIX IN FJAC 

CALL USRFUN(C, FVEC,FJAC, HH,II,JJ, CX, CY, CZ) 
ERRF=0.0 

C CHECK ERROR CONVERGENCE 
DO 20 1=1, 3 

ERRF=ERRF + ABS(FVEC(I)) 
20 CONTINUE 

IF(ERRF .LE. TOLF)THEN 
PRINT*, ' 
PRINT*, 'N-R HAS CONVERGED TO ROOT' 
GO TO 24 
END IF 

DO 3 0 1=1, 3 
P(I)=-FVEC(I) 

3 0 CONTINUE 

C SOLVE LINEAR EQUATIONS BY LU DECOMPOSTION USING THE SUBROUTINES 
C LUDCMP AND LUBKSB (PRESS ET AL., 1992) 

CALL LUDCMP(FJAC,MA,MA,TUM,D) 
CALL LUBKSB(FJAC,MA,MA,TUM,P) 

C CHECK ROOT CONVERGENCE 
ERRX=0.0 
DO 40 1=1, 3 

C UPDATE SOLUTION 
ERRX=ERRX+ABS(P{I)) 
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C(I)=C(1)+P(I) 

40 CONTINUE 

GG(1)= REAL (C(l)) 
GG(2)= REAL (C(2)) 
GG(3)= REAL (C(3)) 

PRINT*, ' 
PRINT*, 'NUMBER OF ITERATIONS: ' , K 
PRINT*, ' 

IF (ERRX .LE. TOLX)THEN 
PRINT*, 'N-R HAS CONVERGED TO ROOT' 
GO TO 24 
ELSE 
PRINT*, ' OUTPUTS FOR SOLUTION VECTOR X1=',C(1) 
PRINT*, ' OUTPUTS FOR SOLUTION VECTOR X2=',C(2) 
PRINT*, ' OUTPUTS FOR SOLUTION VECTOR X3=',C(3) 
END IF 

10 CONTINUE 

PRINT*, 
PRINT*, 
PRINT*, 

24 PRINT*, 
PRINT*, 
PRINT*, 
PRINT*, 
PRINT*, 
PRINT*, 
PRINT*, 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * , 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ! 

FINAL OUTPUT FOR SOLUTION VECTOR X1=',C(1) 
FINAL OUTPUT FOR SOLUTION VECTOR X2=',C(2) 
FINAL OUTPUT FOR SOLUTION VECTOR X3=',C(3) 

END 

END 
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C END OF MAIN PROGRAM 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
C SUBROUTINES ARE; 
C SUBROUTINE USRFUN(L,FVEC,FJAC, HH, II, JJ, CX, CY, CZ) 
C FIRSTROW(L, HH, SUMXX, SUMXY, SUMXZ, FX, CX, LFUN) 
C SECONDROW(L,II, SUMYX, SUMYY, SUMYZ, FY, CY, LFUN) 
C THIRDROW(L, JJ, SUMZX, SUMYZ, SUMZZ, FZ, CZ, LFUN) 
C SUBROUTINE LUDCMP(A, N,NP,INDX,D) 
C SUBROUTINE LUBKSB(A,N,NP,INDX,B) 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

SUBROUTINE USRFUN (L, FVEC, FJAC, HH, II, JJ, CX, CY, CZ) 
IMPLICIT NONE 
DOUBLE PRECISION L(3), FX, FY, FZ, FVEC, FJAC 
DOUBLE PRECISION CX, CY, CZ, LFUN 
INTEGER HH, II, JJ 
DOUBLE PRECISION SUMXX, SUMXY, SUMXZ 
DOUBLE PRECISION SUMYX, SUMYY, SUMYZ 
DOUBLE PRECISION SUMZX, SUMZY, SUMZZ 
DIMENSION CX(HH), CY(II), CZ(JJ), FVEC(3), FJAC(3,3) 

LFUN= (L{1)*L(2)+L(2)*L(3)+L(3)*L(1)) 

C LOOP TO CALCULATE THE FUNCTION FVEC(l) AND DERIVATIVES WRT X,Y 
C AND Z, FJAC(1,1), FJAC(1,2) AND FJAC(1,3): 
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CALL FIRSTROW(L, HH, SUMXX, SUMXY, SUMXZ, FX, CX, LFUN) 

C LOOP TO CALCULATE THE FUNCTION FVEC(2) AND DERIVATIVES WRT X,Y 
C AND Z, FJAC{2,1), FJAC(2,2) AND FJAC(2,3); 

CALL SECONDROW(L,II, SUMYX, SUMYY, SUMYZ, FY, CY, LFUN) 

C LOOP TO CALCULATE THE FUNCTION FVEC(3) AND DERIVATIVES WRT X, Y 
C AND Z, FJAC(3,1), FJAC(3,2) AND FJAC(3,3): 

CALL THIRDROW(L, JJ, SUMZX, SUMYZ, SUMZZ, FZ, CZ, LFUN) 

FVEC{1)=FX 
FVEC(2)=FY 
FVEC(3)=FZ 

FJAC(1,1)= SUMXX 
FJAC(1,2)= SUMXY 
FJAC(1,3)= SUMXZ 
FJAC(2,1)= SUMYX 
FJAC(2,2)= SUMYY 
FJAC(2,3)= SUMYZ 
FJAC(3,1)= SUMZX 
FJAC(3,2)= SUMZY 
FJAC(3,3)= SUMZZ 
RETURN 

END 

SUBROUTINE LUDCMP(A, N,NP,INDX,D) 

INTEGER N, NP, INDX(N), NMAX 
DOUBLEPRECISION D, A(NP,NP), TINY 
PARAMETER (NMAX=500, TINY=1.OE-20) 
INTEGER I, IMAX, J,K 
DOUBLEPRECISION AAMAX,DUM,SUM,W(NMAX) 

D=1 
DO 12 1=1, N 
AAMAX=0 

DO 11 J=l, N 
IF (ABS (A(I,J)). GT. AAMAX) AAMAX=ABS(A(I,J)) 

11 CONTINUE 
IF (AAMAX. EQ. 0) PAUSE 'SINGULAR MATRIX IN LU 

+DECOMPOSITION SUBROUTINE' 
V V ( I ) = 1 / A A M A X 

12 CONTINUE 
DO 19 J=l, N 

DO 14 1=1, J-1 
SUM=A(I,J) 
DO 13 K=l, I-l 

SUM=SUM-A(I,K)*A(K,J) 
13 CONTINUE 

A(I,J)=SUM 
14 CONTINUE 

AAMAX=0 
DO 16 I=J, N 

SUM=A(I,J) 
DO 15 K=l, J-1 

SUM=SUM-A(I,K)*A(K,J) 
15 CONTINUE 
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A(I,J)=SUM 
DUM=W (I) *ABS (SUM) 

IF (DUM. GE. AAMAX) THEN 
IMAX=I 
AAMAX=DUM 

ENDIF 
16 CONTINUE 

IF (J. NE. IMAX) THEN 
DO 17 K=l, N 
DUM=A(IMAX, K) 
A(IMAX,K)=A(J,K) 
A(J,K)=DUM 

17 CONTINUE 
D=-D 
W(IMAX)=W(J) 

ENDIF 
INDX(J)=IMAX 
IF(A(I,J). EQ. 0) A(I,J)=TINY 

IF(J. NE.N)THEN 
DUM=1/A(J,J) 

DO 18 I=J+1, N 
A(I,J)=A(I,J)*DUM 

18 CONTINUE 
ENDIF 

19 CONTINUE 
RETURN 

END 

SUBROUTINE LUBKSB(A,N,NP,INDX,B) 

INTEGER N, NP, INDX(3) 
INTEGER I, II, J,LL 
DOUBLEPRECISION TOTAL 
DOUBLEPRECISION B(3), A(3,3) 

11=0 

DO 45 1=1, N 
LL=INDX(I) 
TOTAL=B(LL) 
B{LL)=B(I) 
IF {II. NE. 0) THEN 

DO 50 J=II, I-l 
TOTAL=TOTAL-A(I,J)*B(J) 

5 0 CONTINUE 
ELSE IF (TOTAL. NE. 0) THEN 

11=1 

ENDIF 
B(I)=TOTAL 

45 CONTINUE 
DO 55 I=N, 1,-1 

TOTAL=B(I) 
DO 60 J=I+1, N 

TOTAL =TOTAL-A(I,J)*B(J) 
60 CONTINUE 

B{I)=TOTAL/A(I,I) 
55 CONTINUE 

RETURN 
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END 

SUBROUTINE FIRSTROW(L, HH, SUMXX, SUMXY, SUMXZ, FX, CX, A) 

IMPLICIT NONE 
C ARGUMENT DECLARATIONS ONLY 

DOUBLE PRECISION L(3) 
INTEGER HH 
DOUBLE PRECISION SUMXX, SUMXY, SUMXZ, FX, A 

C REMAINING DECLARATIONS 
INTEGER H 
DOUBLE PRECISION CX(HH) 
DOUBLE PRECISION SI, ALPHA, BETA, ATANALDl, ATANBEDl 
DOUBLE PRECISION SUBQUOTJll, DSIWRTLI, ATANALD2, ATANBED2 
DOUBLE PRECISION DS1WRTL2, ATANALD3, ATANBED3, DS1WRTL3 

C FIRST CALCULATE THE BOND GREEN FUNCTION FOR THE X DIRECTION: 
C SI 
C SI TAKES THE FORM: 

ALPHA= (A**0.5)/L(l) 
BETA= L(l)/(A**0.5) 
S1=L(1)*((ATAN(ALPHA))/(ATAN(BETA))) 

C WE MUST NOW PROCEED TO CALCULATE THE FIRST ROW OF DERIVATIVES 
C IN THE JACOBIAN MATRIX. IN ALL CASES THE DIFFERENTATION OF FX 
C WRT X, Y AND Z FOLLOWS THE QUOTIENT RULE BEGIN BY CALCULATING 
C THE RESPECTIVE COMPONENTS OF THE QUOTIENT: 

C COMMENCE WITH THE FIRST ELEMENT OF THE JACOBIAN. DENOTE AS SUMXX 

C FIRST NEED THE DERIVATIVE OF ARCTANALPHA WRT L(l). DENOTE BY 
C ATANALDl 

ATANALD1=(1.0/(1.0+ALPHA**2.0))*((L(2)+L(3)-2.0*A) 
+/(L(l)*2.0*A**0.5)) 

C NOW REQUIRE THE DERIVATIVE OF ARCTANBETA WRT L(1). DENOTE BY 
C TANBEDl 

ATANBED1=(1.0/(1.0+BETA**2.0))*((2.0*A-L(1)*{L(2)+L{3))) 
+/(2*A**1.5)) 

C THESE TWO DERIVATIVES FORM THE 'SUBQUOTIENT" WHICH IS THE 
C DERIVATIVE OF ARCTANALPHA/ARCTANBETA WRT L(1). DENOTE AS 
C SUBQUOTJll 

SUBQU0TJ11=((ATAN(BETA)*ATANALD1 -ATAN(ALPHA)*ATANBED1) 
+/((ATAN(BETA))**2.0)) 

C SUBQUOTJll FORMS THE DERIVATIVE OF SI WHICH FORMS PART OF THE 
C MAIN QUOTIENT 
C LET US DENOTE THE DERIVATIVE OF SI WRT L(l) AS DSIWRTLI, 
C WHICH FOLLOWS THE PRODUCT RULE 

DS1WRTL1= L(l)*SUBQU0TJ11+((ATAN(ALPHA))/(ATAN(BETA))) 

C WE NOW TAKE THESE COMPONENTS AND FORM THE MAIN QUOTIENT, SUMXX 
C INSIDE LOOP 20 

C NOW COMPUTE THE SECOND ELEMENT OF THE FIRST ROW, SUMXY. AS 
C BEFORE, WE PROCEED BY COMPUTING THE DERIVATIVE OF ARCTANALPHA 
C WRTL(2). DENOTE BY ATANALD2: 

ATANALD2=(1.0/(1.0+ALPHA**2.0))*((L{l)+L{3))/(L(l)*2.0*A**0.5) 
+ ) 
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C ... AND ALSO THE DERIVATIVE OF ARCTANBETA WRT L(2) , DENOTE AS 
C TANBED2: 

ATANBED2=(1.0/{1.0+BETA**2.0))*(L{1)*(L(1)+L(3)))/(2.0*A**1.5) 

C THESE TWO DERIVATIVES AGAIN FORM A 'SUBQUOTIENT' WHICH IS THE 
C DERIVATIVE OF ARCTANALPHA/ARCTANBETA WRT L(2) . UNLIKE THE 
C DIAGONAL ELEMENTS OF THE JACOBIAN, THE OFF-DIAGONAL ELEMENTS 
C HAVE A SLIGHTLY SIMPLER FORM FOR THE DERIVATIVES OF THE BOND 
C GREEN FUNCTIONS, SO WE CAN WRITE DIRECTLY THE DERIVATIVE OF SI 
C WRT L(2) AS DS1WRTL2 

DS1WRTL2=L(1)*((ATAN(BETA)*ATANALD2 -ATAN(ALPHA)*ATANBED2) 
+ /((ATAN(BETA) )**2 .0)) 

C WITH DS1WRTL2, WE CAN FORM A MAIN QUOTIENT AND SUM INSIDE LOOP 
C 20; THIS IS SUMXY 
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ^ 

C FINALLY, WE COMPUTE THE THIRD ELEMENT OF THE FIRST ROW, SUMXZ. 
C AS BEFORE, WE PROCEED BY COMPUTING THE DERIVATIVE OF ARCTANALPHA 
C WRT L(3). DENOTE BY ATANALD3: 

ATANALD3={1.0/(1.0+ALPHA**2.0))*((L(1)+L(2))/(L(1)*2.0*A**0.5) 
+ ) 

C SIMILARLY, THE DERIVATIVE OF ARCTANBETA WRT L{3) IS REQUIRED, 
C DENOTE AS ATANBED3 

ATANBED3=(1.0/(1.0+BETA**2.0))*(L(1)*(L(1)+L(2)))/(2.0*A**1.5) 

C AND SO NOW FORM THE DERIVATIVE OF SI WRT L(3). DENOTE AS 
C DS1WRTL3 

DS1WRTL3=L(1)*((ATAN(BETA)*ATANALD3 -ATAN(ALPHA)*ATANBED3) 
+/((ATAN(BETA))**2.0)) 

C WITH DS1WRTL3, WE CAN FORM A MAIN QUOTIENT AND SUM INSIDE LOOP 
C 20; THIS IS SUMXZ 

C AND THAT CONCLUDES THE CALCULATION OF THE DERIVATIVES THAT 
C FORM THE ELEMENTS OF THE FIRST ROW OF THE JACOBIAN, BUT WE 
C ALSO REQUIRE THE PARENT FUNCTION FX AS WELL!! 
C USING THE FORMULA FOR SI WE FORM THE SUM FX DIRECTLY INSIDE 
C LOOP 20 

ic ie ic -k -ie ie * it ******************************************************* * 

C INITALISE THE FOUR SUMMATIONS 
FX=0.0 
SUMXX = 0.0 
SUMXY =0.0 
SUMXZ = 0.0 
DO 20 H=l, HH 

C WITH SI NOW CONSTRUCT THE SUM FOR FX 
FX = FX +((L(l)-CX(H))/(CX(H)+S1)) 
SUMXX=SUMXX+((CX(H)+S1)-(L(1)CX(H))*DS1WRTL1)/((CX(H)+51**2.0) 
SUMXY=SUMXY+(-(L(l)-CX(H))*DS1WRTL2)/((CX(H)+S1)**2.0) 
SUMXZ=SUMXZ+(-(L(l)-CX(H))*DS1WRTL3)/((CX(H)+81)**2.0) 

20 CONTINUE 
RETURN 

C 
C 

END 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

SUBROUTINE SECONDROW{L, II, SUMYX, SUMYY, SUMYZ, FY, CY, A) 
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IMPLICIT NONE 
C ARGUMENT DECLARATIONS ONLY 

DOUBLE PRECISION L{3) 
INTEGER II 
DOUBLE PRECISION SUMYX, SUMYY, SUMYZ, FY, A 

C REMAINING DECLARATIONS 
INTEGER H 
DOUBLE PRECISION CY(II) 
DOUBLE PRECISION S2, GAMMA, DELTA, ATANGAMl, ATANDELl, 
DOUBLE PRECISION SUBQUOTJ22,DS2WRTL1, ATANGAM2, ATANDEL2 
DOUBLE PRECISION DS2WRTL2,ATANGAM3, ATANDEL3, DS2WRTL3 

C FIRST CALCULATE THE BOND GREEN FUNCTION FOR THE Y DIRECTION: 
C S2 
C S2 TAKES THE FORM: 

GAMMA= (A**0.5)/L(2) 
DELTA= L(2)/(A**0.5) 
S2=L(2)*{(ATAN(GAMMA))/(ATAN(DELTA))) 

C NOW COMPUTE THE FIRST ELEMENT OF THE SECOND ROW, SUMYX. AS 
C BEFORE, WE PROCEED BY COMPUTING THE DERIVATIVE OF ARCTANGAMMA 
C WRT L(1). DENOTE BY ATANGAMl 

ATANGAM1=(1.0/(1.0+GAMMA**2.0))*((L(3)+L(2))/(L(2)*2.0*A**0.5)+) 

C NOW REQUIRE THE DERIVATIVE OF ARCTANBETA WRT L(l). DENOTE BY 
C TANBEDl 

ATANDEL1=(1.0/(1.0+DELTA**2.0))*(L(2)*(L(2)+L(3)))/(2.0*A**1.5+) 

C THESE TWO DERIVATIVES AGAIN FORM A 'SUBQUOTIENT' WHICH IS THE 
C DERIVATIVE OF ARCTANALPHA/ARCTANBETA WRT L(2). UNLIKE THE 
C DIAGONAL ELEMENTS OF THE JACOBIAN, THE OFF-DIAGONAL ELEMENTS 
C HAVE A SLIGHTLY SIMPLER FORM FOR THE DERIVATIVES OF THE BOND 
C GREEN FUNCTIONS, SO WE CAN WRITE DIRECTLY THE DERIVATIVE OF S2 
C WRT L{1) AS DS2WRTL1 

DS2WRTL1=L(2)*((ATAN(DELTA)*ATANGAM1 -ATAN(GAMMA)*ATANDEL1) 
+/((ATAN(DELTA))**2.0)) 

C WITH DS2WRTL1, WE CAN FORM A MAIN QUOTIENT AND SUM INSIDE LOOP 
C 20; THIS IS SUMYX 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
C WE NOW REQUIRE THE SECOND ELEMENT OF THE SECOND ROW IN THE 
C JACOBIAN WHICH WE DENOTE AS SUMYX. AGAIN, THIS IS A DIAGONAL 
C ELEMENT AND REQUIRES A FEW MORE STEPS AS DID SUMXX. SO 
C FOLLOWING THE PROCEDURE FOR SUMXX: WE COMMENCE AS WITH THE 
C FIRST ELEMENT OF THE JACOBIAN. DENOTING THE FINAL SUM AS SUMYY 

C FIRST NEED THE DERIVATIVE OF ARCTANGAMMA WRT L{2). DENOTE BY 
C ATANGAM2 

ATANGAI42=(1.0/ (1. 0+GAMMA**2 .0) ) * ( (L (1) +L ( 3 ) -2 . 0*A) 
+/(L(2)*2.0*A**0.5)) 

C NOW REQUIRE THE DERIVATIVE OF ARCTANDELTA WRT L(2). DENOTE BY 
C TANDEL2 

ATANDEL2=(1.0/(1.0+DELTA**2.0))*((2.0*A-L(2)*(L(l)+L(3))) 
+/(2*A**1.5)) 

C THESE TWO DERIVATIVES FORM THE 'SUBQUOTIENT' WHICH IS THE 
C DERIVATIVE OF ARCTANALPHA/ARCTANBETA WRT L(2). DENOTE AS 
C SUBQUOTJ22 
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SUBQUOTJ22=((ATAN(DELTA)*ATANGAM2 -ATAN(GAMMA)*ATANDEL2) 
+/((ATAN(DELTA))**2.0)) 

C SUBQUOTJ22 FORMS THE DERIVATIVE OF S2 WHICH FORMS PART OF THE 
C MAIN QUOTIENT. 
C LET US DENOTE THE DERIVATIVE OF S2 WRT L(2) AS DS2WRTL2, WHICH 
C FOLLOWS THE PRODUCT RULE 

DS2WRTL2= L(2)*SUBQUOTJ22+((ATAN(GAMMA))/(ATAN(DELTA))) 

C WE NOW TAKE THESE COMPONENTS AN FORM THE MAIN QUOTIENT, SUMXX 
C INSIDE LOOP 20 
C ************************************************************** 
C FINALLY, WE COMPUTE THE THIRD ELEMENT OF THE SECOND ROW, 
C SUMYZ. AS BEFORE, WE PROCEED BY COMPUTING THE DERIVATIVE OF 
C ARCTANGAMMA WRT L(3). DENOTE BY ATANGAM3: 

ATANGAM3=(1.0/(1.0+GAMMA**2.0))*((L(1)+L(2))/(L(2)*2.0*A**0.5)) 

C SIMILARLY, THE DERIVATIVE OF ARCTANDELTA WRT L(3) IS REQUIRED. 
C DENOTE AS ATANDEL3 

ATANDEL3=(1.0/(1.0+DELTA**2.0))*(L(2)*(L(1)+L(2)))/(2.0*A**1.5) 

C AND SO NOW FORM THE DERIVATIVE OF S2 WRT L(3). DENOTE AS 
C DS2WRTL3 

DS2WRTL3=L(2)*((ATAN(DELTA)*ATANGAM3 -ATAN(GAMMA)*ATANDEL3) 
+ /((ATAN(DELTA) )**2 .0) ) 

C WITH DS2WRTL3, WE CAN FORM A MAIN QUOTIENT AND SUM INSIDE LOOP 
C 20; THIS IS SUMYZ 

C AND THAT CONCLUDES THE CALCULATION OF THE DERIVATIVES THAT 
C FORM THE ELEMENTS OF THE SECOND ROW OF THE JACOBIAN, BUT WE 
C ALSO REQUIRE THE PARENT FUNCTION FY AS WELL!! 
C USING THE FORMULA FOR S2 WE FORM THE SUM FY INSIDE LOOP 20 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
C WITH S2 NOW CONSTRUCT THE SUM FOR FX 

C INITALISE THE FOUR SUMMATIONS 
FY=0.0 
SUMYX =0.0 
SUMYY =0.0 
SUMYZ = 0.0 
DO 20 H=l, II 

C WITH S2 NOW CONSTRUCT THE SUM FOR FX 
FY = FY +((L(2)-CY(H))/(CY(H)+S2)) 
SUMYX=SUMYX+(-(L(2)-CY(H))*DS2WRTL1)/((CY(H)+S2)**2.0) 
SUMYY=SUMYY+((CY(H)+S2) (L{2)CY(H))*DS2WRTL2)/((CY(H)+S2)**2 . 0) 
SUMYZ=SUMYZ+(-(L(2)-CY(H))*DS2WRTL3)/((CY(H)+S2)**2.0) 

20 CONTINUE 
RETURN 

C 
C 

END 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

SUBROUTINE THIRDROW(L, JJ, SUMZX, SUMZY, SUMZZ, FZ, CZ, A) 

IMPLICIT NONE 
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C ARGUMENT DECLARATIONS ONLY 
DOUBLE PRECISION L(3) 
INTEGER JJ 
DOUBLE PRECISION SUMZX, SUMZY, SUMZZ, FZ, A 

C REMAINING DECLARATIONS 
INTEGER H 
DOUBLE PRECISION CZ(JJ) 
DOUBLE PRECISION S3, EPSILON, ZETA, ATANEPSl, ATANZETl, 
DOUBLE PRECISION SUBQUOTJ33, DS3WRTL1, ATANEPS2, ATANZET2 
DOUBLE PRECISION DS3WRTL2, ATANEPS3, ATANZET3, DS3WRTL3 

C FIRST CALCULATE THE BOND GREEN FUNCTION FOR THE Z DIRECTION: 
C S3 
C S3 TAKES THE FORM: 

EPSILON= (A**0.5)/L(3) 
ZETA= L(3)/{A**0.5) 
S3=L(3)*({ATAN(EPSILON))/(ATAN(ZETA))) 

C NOW COMPUTE THE FIRST ELEMENT OF THE THIRD ROW, SUMZX. AS BEFORE, 
C WE PROCEED BY COMPUTING THE DERIVATIVE OF ARCTANEPSILON WRT L(l) . 
C DENOTE BY ATANEPSl 

ATANEPS1=(1.0/(1.0+EPSILON**2.0))*((L(3)+L(2))/(L(3)*2.0*A**0. 
+5) ) 

C NOW REQUIRE THE DERIVATIVE OF ARCTANZETA WRT L(1). DENOTE BY 
C ATANZETl 

ATANZET1=(1.0/(1.0+ZETA**2.0))*(L(3)*(L(2)+L(3)))/(2.0*A**1.5) 

C THESE TWO DERIVATIVES AGAIN FORM A 'SUBQUOTIENT' WHICH IS THE 
C DERIVATIVE OF ARCTANEPSILON/ARCTANZETA WRT L(l). UNLIKE THE 
C DIAGONAL ELEMENTS OF THE JACOBIAN, THE OFF-DIAGONAL ELEMENTS 
C HAVE A SLIGHTLY SIMPLER FORM FOR THE DERIVATIVES OF THE BOND 
C GREEN FUNCTIONS, SO WE CAN WRITE DIRECTLY THE DERIVATIVE OF S3 
C WRT L(l) AS DS3WRTL1 

DS3WRTL1=L(3)*((ATAN(ZETA)*ATANEPS1 -ATAN(EPSILON)*ATANZET1) 
+/((ATAN(ZETA))**2.0)) 

C WITH DS2WRTL1, WE CAN FORM A MAIN QUOTIENT AND SUM INSIDE LOOP 
C 20; THIS IS SUMZX 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
C NOW COMPUTE THE SECOND ELEMENT OF THE THIRD ROW, SUMZY. AS 
C BEFORE, WE PROCEED BY COMPUTING THE DERIVATIVE OF ARCTANEPSILON 
C WRTL(2). DENOTE BY ATANEPS2: 

ATANEPS2=(1.0/(1.0+EPSILON**2.0))*((L(1)+L{3))/(L(3)*2.0*A**0.5)) 

C ... AND ALSO THE DERIVATIVE OF ARCTANZETA WRT L(2), DENOTE AS 
C TANZET2: 

ATANZET2=(1.0/{1.0+ZETA**2.0))*(-L(3)*(L(1)+L(3)))/{2.0*A**1.5) 

C THESE TWO DERIVATIVES AGAIN FORM A 'SUBQUOTIENT' WHICH IS THE 
C DERIVATIVE OF ARCTANEPSILON/ARCTANZETA WRT L(2). UNLIKE THE 
C DIAGONAL ELEMENTS OF THE JACOBIAN, THE OFF-DIAGONAL ELEMENTS 
C HAVE A SLIGHTLY SIMPLER FORM FOR THE C DERIVATIVES OF THE 
C BOND GREEN FUNCTIONS, SO WE CAN WRITE DIRECTLY THE DERIVATIVE 
C OF S3 WRT L(2)AS DS3WRTL2 

DS3WRTL2=L(3)*((ATAN(ZETA)*ATANEPS2 -ATAN(EPSILON)*ATANZET2) 
+/((ATAN(ZETA))**2.0)) 

C WITH DS3WRTL2, WE CAN FORM A MAIN QUOTIENT AND SUM INSIDE LOOP 
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C 20; THIS IS SUMZY 
C ************************************************************* 
C FINALLY, WE COMPUTE THE THIRD ELEMENT OF THE SECOND ROW ROW, 
C SUMZZ. AS BEFORE, WE PROCEED BY COMPUTING THE DERIVATIVE OF 
C ARCTANEPSILON WRT L(3). DENOTE BY ATANEPS3: 

ATANEPS3=(1.0/(1.0+EPSILON**2.0))*((L(1)+L(2)-2.0*A) 
+/(L(3)*2.0*A**0.5)) 

C NOW REQUIRE THE DERIVATIVE OF ARCTANZETA WRT L(3) . DENOTE BY 
C TANZET3 

ATANZET3=(1.0/(1.0+ZETA**2.0))*((2.0*A-L(3)*(L(1)+L(2))) 
+/{2*A**1.5)) 

C THESE TWO DERIVATIVES FORM THE 'SUBQUOTIENT' WHICH IS THE 
C DERIVATIVE OF ARCEPSILON/ARCTANZETA WRT L(3). DENOTE AS 
C SUBQUOTJ33 

SUBQUOTJ33=((ATAN(ZETA)*ATANEPS3 -ATAN(EPSILON)*ATANZET3) 
+/((ATAN(ZETA))**2.0)) 

C SUBQUOTJ33 FORMS THE DERIVATIVE OF S3 WHICH FORMS PART OF THE 
C MAIN QUOTIENT. LET US DENOTE THE DERIVATIVE OF S3 WRT L{3) AS 
C DS3WRTL3, WHICH FOLLOWS THE PRODUCT RULE 

DS3WRTL3= L(3)*SUBQUOTJ33+({ATAN(EPSILON))/(ATAN(ZETA) )) 

C WE NOW TAKE THESE COMPONENTS AN FORM THE MAIN QUOTIENT, SUMZZ 
C INSIDE LOOP 20 

C AND THAT CONCLUDES THE CALCULATION OF THE DERIVATIVES THAT 
C FORM THE ELEMENTS OF THE THIRD ROW OF THE JACOBIAN, BUT WE 
C ALSO REQUIRE THE PARENT FUNCTION FZ AS WELL!! 
C USING THE FORMULA FOR S3 WE FORM THE SUM FZ INSIDE LOOP 20 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
C INITALISE THE FOUR SUMMATIONS 

FZ=0.G 
SUMZX = 0.0 
SUMZY =0.0 
SUMZZ = 0.0 
DO 20 H=l, JJ 

C WITH S3 NOW CONSTRUCT THE SUM FOR FY 
FZ = FZ +({L(3)-CZ(H))/(CZ(H)+S3)) 
SUMZX=SUMZX+(-(L(3)-CZ(H))*DS3WRTLl)/((CZ(H)+S3)**2.0) 
SUMZY=SUMZY+(-(L(3)-CZ(H))*DS3WRTL2)/((CZ(H)+S3)**2.0) 
SUMZZ=SUMZZ+((CZ(H)+S3)-(L(3)-CZ(H))*DS3WRTL3)/((CZ(H)+S3)**2.0) 

2 0 CONTINUE 
RETURN 

END 
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D Program for Increasing the Size of InputRles for the NETSIM programs 

PROGRAM EXPAND 

C PROGRAM TO EXPAND DATA 

IMPLICIT NONE 
INTEGER I, K, J, L 
REAL CX(IOOOOOO) 

C SPECIFY NUMBER OF PORES 

L= 3495 

C SPECIFY LAMBDA FACTOR 

K= 24 

OPEN(UNIT=8, FILE='IXEXPANDED.txt', STATUS='NEW') 
DO 10 J=l, K 

OPEN(UNIT=6, FILE='RANDOMISED.txt', STATUS='OLD' ) 
REWIND{6) 
DO 20 1=1, L 

READ (5,*) CX(I) 
WRITE{8,*) CX(I) 

2 0 CONTINUE 
10 CONTINUE 

END 
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E Program for Random Pore Selection 

PROGRAM PORESELECTION 

C RANDOMISES A SET OF NUMBERS UNIFORMLY FROM AN INPUT FILE 
C WITHOUT SELECTING THE SAME NUMBER MORE THAN ONCE 

C USES THE MODULE RANVAL FROM THE DIGITAL VISUAL FORTRAN Va 
C LIBRARY 

IMPLICIT NONE 
REAL RANVAL, RAA(1000000), CX(IOOOOOO), GX(IOOOOOO) 
INTEGER I, J 
INTEGER K, IRAND 
CHARACTER *16 FILENAME 

C SPECIFY NUMBER OF PORES TO BE RANDOMISED 
C ENTER INITIAL NUMBER OF PORES 

K=3495 
C OR, ENTER INITIAL NUMBER OF PORE EXPANDED BY 'LAMBDA FACTOR' 
C K=3495*24 

FILENAMES 'lXRAND19.txt' 
C OPEN EXTERNAL DATAFILE 

OPEN(UNIT = 5, FILE=FILENAME, STATUS='OLD') 
REWIND(5) 

C PREPARE OUTFILE 
OPEN(UNIT =6, FILE='lXRAND20.txt', STATUS='NEW') 
REWIND(6) 

C READ IN THE CONDUCTIVITIES, CX 
DO 100 1=1, K 

READ(5,*) CX(I) 
100 CONTINUE 
C INITIALISE LOOP FOR RANDOMISING INPUT CONDUCTANCES 

1=0 

1000 CONTINUE 

C THIS BLOCK PREVENTS THE SAME CONDUCTANCE BEEN SELECTED MORE 
C THAN ONCE 

IF (I .LT. K) THEN 
1=1 + 1 

CALL RANDOM(RANVAL) 
RAA (I) =RANVAL 
IRAND=(INT(K*RAA(I))) 
IF (CX(IRAND) .GT. 0.0) THEN 

GX(I)=CX(IRAND) 
CX(IRAND)=-1.0 

WRITE(6, *) GX(I) 
ELSE 
I = I-l 
END IF 
END IF 

IF (I -EQ. K) THEN 
GOTO 2000 

END IF 
GO TO 1000 

2000 CONTINUE 

END 
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F Program for the Random Generation of Lognormal Deviates 

PROGRAM LOGNORMAL DEVIATES 

C GENERATES A LIST OF RANDOM NUMBERS FROM A LOGNORMAL 
C DISTRIBUTION THAT IS DERIVED FROM EXPONENTIATION OF A NORMAL 
C DISTRIBUTION. ADJUSTABLE MEAN AND STANDARD DEVIATION CAN BE 
C INPUT OR SET TO ZERO AND 1.0 RESPECTIVELY 

C THE CODE USES THE FUNCTION SUBMODULES GASDEV(IDUM) WITH 
C RANl(IDUM) AS FOUND IN NUMERICAL RECIPES, W. H. PRESS ET AL. 
C 2ND EDITON 1992, pp. 280 

C THE STANDARD DEVIATION AND MEAN OF THE LOGNORMAL DISTRIBUTION 
C ARE NOT CALCULATED IN THIS PROGRAM; THESE VALUES ARE OBTAINED 
C BY EXPORTING THE OUTPUT DEVIATES TO AN *.XLS FILE AND APPLYING 
C TILL'S EQUATIONS (1974). 

IMPLICIT NONE 

REAL GASDEV,Y, Z, LNZ 
INTEGER J, IDUM, COUNT 
REAL MEAN, SD, DENOM 
PARAMETER (MEAN= 1.0, SD= 3.0) 
PARAMETER(COUNT=10000) 
DENOM=REAL(COUNT) 

C WRITE LOGNORMAL DEVIATES TO AN OUTPUT FILE 
0PEN(UNIT=6, FILE='NORMDIST SD= 3.0.txt', STATUS='NEW') 
REWIND(6) 
SUM=0.0 
DO 10 J=l, COUNT 

Y=GASDEV(IDUM) 
Z= MEAN + SD*Y 
LNZ=EXP(Z) 
WRITE(6,*), Z 

10 CONTINUE 

END 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
C END OF MAIN PROGRAM 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

FUNCTION GASDEV(IDUM) 
C RETURNS A NORMALLY DISTRIBUTED DEVIATE WITH ZERO MEAN AND UNIT 
C VARIANCE,USING RANI(IDUM) AS THE SOURCE OF UNIFORM DEVIATES 

INTEGER IDUM 
REAL GASDEV, RANVAL 
INTEGER ISET 
REAL FAC, GSET, RSQ, VI, V2 

SAVE ISET, GSET 
DATA ISET/0/ 

1 CONTINUE 
IF{ISET .EQ. 0) THEN 
Vl=2.*RAN1(IDUM)-1. 
V2=2.*RANI(IDUM)-1. 
RSQ=V1**2+V2**2 
IF(RSQ .GE. 1. .OR. RSQ .EQ. 0)GOTO 1 
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FAC=SQRT(-2.*LOG(RSQ)/RSQ) 
GSET=V1*FAC 
GASDEV=V2 *FAC 
ISET=1 

ELSE 
GASDEV=GSET 
ISET=0 
ENDIF 

END 

FUNCTION RANI(IDUM) 

INTEGER IDUM, lA, IM, IQ, IR, NTAB,NDIV 
REAL RANI, AM, EPS, RNMAX 
PARAMETER(IA=16807,IM=2147483647,AM=1./IM, IQ=127773, IR=2836, 

+ NTAB=32, NDIV=1+(IM-1)/NTAB,EPS=1.2E-7, RNMX=1.-EPS) 
INTEGER J,K,IV(NTAB), IY 

SAVE IV, lY 
DATA IV /NTAB*0/, IY/0/ 
IF(IDUM -LE. 0 .OR. lY .EQ. 0)THEN 
IDUM=MAX(-IDUM, 1) 

DO 10 J=NTAB+8, 1, -1 
K=IDUM/IQ 
IDUM=IA*(IDUM-K*IQ)-IR*K 
IF (IDUM .LT. 0) IDUM=IDUM+IM 
IF (J .LE. NTAB) IV(J)=IDUM 

10 CONTINUE 

IY=IV(1) 
END IF 
K=IDUM/IQ 
IDUM=IA*(IDUM-K*IQ)-IR*K 
IF (IDUM .LT. 0) IDUM=IDUM+IM 
J=1+IY/NDIV 
IY=IV{J) 
IV(J)=IDUM 
RAN1=MIN(AM*IY, RNMX) 
RETURN 

END 
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G ISOTROPIC NETSIM, adapted from Jing (1990) 

PROGRAM ISONETSIM 

C THIS PROGRAM PERFORMS AN EXACT NETWORK CALCULATION FOR THE 
C CONDUCTANCE IN THREE DIMENSIONS BY SOLVING THE NETWORK PROBLEM 
C ON AN ISOTROPIC CUBIC LATTICE 

C THE ORIGINAL PROGRAM NETSIM (JING, 1990) WAS INITIALLY 
C MODIFIED ON 23rd FEBRUARY 2000 BY SOURITH SISAVATH SO THAT 
C SIMULATIONS ONLY REQUIRE THE MAIN BLOCK TO SPECIFY THE CUBIC 
C LATTICE, IMPOSE THE BOUNDARY CONDITIONS AND CALCULATE THE 
C TOTAL CONDUCTANCE AND FLOWRATE 

C THE EXISTING MODIFICATIONS ARE THAT A LIST OF CONDUCTANCES MAY 
C BE READ FROM AN EXTERNAL INPUT FILE THAT DECORATE THE NETWORK 
C IN EACH OF THE LATTICE DIRECTIONS. ALSO, AN EFFECTIVE CONDUCTANCE 
C IS CALCULATED BY DIVIDING THE TOTAL CONDUCTANCE BY THE NUMBER OF 
C NODES IN THE NETWORK (DAVID ET AL. , 1990) 

IMPLICIT NONE 
INTEGER I,J,K,NUM,MARK,NX,NY,NZ,N2,NMAX 
PARAMETER (NMAX=32770,N2=100) 

C INTRODUCED FOR SOLVING USING OVER-RELAXATION TECHNIQUE 
REAL HCONDU(N2,N2,N2),TOTALQ,POTEN(N2,N2 , N2),UP2,D0WN2,XPOTEN 
REAL COMPARE,RATE,PERM,ERR1,0UTC0N, Gl, GEFF 

C SPECIFY TOLERANCE FOR OVERRELAXATION CALCULATION 
ERR1=0.00001 

C SPECIFY LATTICE SIZE BY SPECIFYING THE NUMBER OF INTERNAL 
C NODES 

NX=3 0 
NY=NX 
NZ=NX 

C SPECIFY A CUBIC NETWORK AND DECORATE WITH CONDUCTANCES FROM A 
C SINGLE INPUT FILE 

OPEN (UNIT=18, FILE='lYRAND20.txt', STATUS='OLD') 
REWIND(18) 
DO 1114 K = l , 2 * N Z + 1 , 2 

DO 1114 I = 2, 2 * NX, 2 
DO 1114 J = 2, 2 * NY, 2 
READ(18,*) HCONDU(I,J,K) 

1114 CONTINUE 

DO 1115 1 = 1 , 2 * NX + 1, 2 
DO 1115 J = 2, 2 * NY, 2 

DO 1115 K=2,2*NZ,2 
READ(18, *) HCONDU(I,J,K) 

1115 CONTINUE 

DO 1116 J = l , 2 * N Y + 1 , 2 
DO 1116 I = 2, 2 * NX, 2 

DO 1116 K=2,2*NZ,2 
READ{18,*) HCONDUd, J,K) 

1116 CONTINUE 
CLOSE(18) 
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C BOUNDARY CONDITIONS 

150 NUM = 0 
MARK = 0 
TOTALQ =0.0 

C SPECIFY PRESSURE AT INFLOW SIDE (INPUT FACE) 
DO 155 J = 2, 2 * NY, 2 

DO 160 K = 2, 2 * NZ, 2 
POTEN(0,J,K) =10.0 

160 CONTINUE 
155 CONTINUE 
C SPECIFY PRESSURE AT OUTFLOW SIDE (OUTPUT FACE) 

DO 170 J = 2, 2 * NY, 2 
DO 180 K = 2, 2 * NZ, 2 

P0TEN(2 * NX + 2,J,K) = 0.0 
180 CONTINUE 
170 CONTINUE 
C SPECIFY PRESSURE DROP AT EACH NODE ALONG THE FLOW DIRECTION 

DO 188 I = 2, 2 * NX, 2 
DO 190 J = 2, 2 * NY, 2 

DO 200 K = 2, 2 * NZ, 2 
POTEN(I,J,K) = 10.0 -(I - 1) * 10 / (2 * NX) 

200 CONTINUE 
190 CONTINUE 
188 CONTINUE 
C SPECIFY PRESSURE AT EACH NODE PERPENDICULAR TO THE FLOW DIRECTION 
245 TOTALQ = 0.0 

DO 250 1 = 2 , 2 * NX, 2 
DO 260 K = 2, 2 * NZ, 2 

POTEN(I,0,K) = P0TEN(I,2,K) 
P0TEN(I,2 * NY + 2,K) = P0TEN(I,2 * NY,K) 

260 CONTINUE 
250 CONTINUE 

DO 270 I = 2, 2 * NX, 2 
DO 280 J = 2, 2 * NY, 2 

POTEN(I,J,0) = P0TEN(I,J,2) 
P0TEN(I,J,2 * NZ + 2) = P0TEN(I,J,2 * NZ) 

280 CONTINUE 
270 CONTINUE 

PRINT * , ' ITERATION= ' , NUM 
CIC 
cic================================================================= 
CIC// 
CIC// MAIN ITERATION STARTS HERE 
CIC// 
CIC// CALCULATION OF NEW POTENTIALS USING CONSERVATION OF MASS FOR 
CIC// HYDRAULIC CONDUCTANCE, I.E., SUMMATION OF CURRENT FLOWS TO A 
CIC// NODE IS ZERO 
CIC// 
CIC================================================================= 
CIC 

NUM = NUM + 1 
DO 300 I = 2, 2 * NX, 2 

DO 310 J = 2, 2 * NY, 2 
DO 320 K = 2, 2 * NZ, 2 

UP2 = POTENd, J-2,K) * HCONDU (I, J-1, K) 
++ P0TEN(I-2,J,K) * HCONDU(I-l,J,K) + POTEN(1+2,J,K) 
+ * HCONDU (I+l, J, K) + POTENd, J+2,K) * HCONDU (I, J+1,K) 
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++ POTEN(I,J,K-2) * HCONDU(I,J,K-1) 
+ + POTENd, J,K+2) * HCONDUd, J,K+1) 

D0WN2 = HCONDUd, J-1,K) + HCONDU (1-1, J, K) 
+ + HCONDU d + 1, J, K) + HCONDUd, J+1,K) 
++ HCONDUd, J,K-1) + HCONDUd, J, K+1) 

IF (D0WN2 .GT. 0.0001) THEN 
XPOTEN = UP2 / D0WN2 
COMPARE = (XPOTEN - P0TEN(I,J,K)) / XPOTEN 
IF (ABS(COMPARE) .GT. ERRl) THEN 
MARK = 1 
ENDIF 
POTENd, J,K) = POTENd, J,K) + 1.86 * {XPOTEN - POTEN (I, J, K) ) 

ELSE 
POTENd, J, K) = 0. 

ENDIF 
320 CONTINUE 
310 CONTINUE 
300 CONTINUE 
CIC 
CIC// CALCULATING THE TOTAL CONDUCTANCE AND THE FLOW RATE 
CIC 

DO 350 J = 2, 2 * NY, 2 
DO 400 K = 2, 2 * NZ, 2 

RATE = P0TEN(2 * NX,J,K)*HCONDU(2*NX+1,J,K) 
TOTALQ = TOTALQ + RATE 

400 CONTINUE 
350 CONTINUE 
CIC 
CIC// TESTING CONVERGENCE 
CIC 

IF (MARK .EQ. 1) THEN 
MARK = 0 
GO TO 245 

ENDIF 

C PROCEDURE TO COMPUTE THE EMT PARAMETERS AS PER DAVID ET AL., 
C (1990) TO ALLOW A DIRECT COMPARISON TO USING KIRKPATRICK'S 
C EQUATION 

C PERFORM THE CALCULATION CH= TOTALQ/GRADP, WHERE GRADP IS 
C ASSIGNED A VALUE OF 10 

OUTCON=TOTALQ/10.0 

C CALCULATE THE TOTAL CONDUCTANCE OF THE NETWORK WHEN EACH PORE 
C IS ASSIGNED A CONDUCTANCE OF 1.0 

G1=(NX**2.0)/(NX+1.0) 

C CALCULATE AN EFFECTIVE CONDUCTANCE BY DIVIDING THE TOTAL 
C CONDUCTANCE BY G[l] (DAVID ET AL., 1990) 

GEFF=0UTC0N/G1 

PRINT*, 'OUTCON', OUTCON, 'IN UNITS OF INPUT CONDUCTANCES' 
PRINT*, •G1', G1 
PRINT*, 'NUMBER OF NODES IN ID:', NX 
PRINT*, 'GEFF', GEFF 

END 
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H ANISOTROPIC NETSIM, adapted from Jing (1990) 

PROGRAM ANISONETSIM 

C THIS PROGRAM PERFORMS AN EXACT NETWORK CALCULATION FOR THE 
C CONDUCTANCE IN THREE DIMENSIONS BY SOLVING THE NETWORK PROBLEM 
C ON AN ANISOTROPIC CUBIC LATTICE 

C THE ORIGINAL PROGRAM NETSIM {JING, 1990) WAS INITIALLY 
C MODIFIED ON 23rd FEBRUARY 2000 BY SOURITH SISAVATH SO THAT 
C SIMULATIONS ONLY REQUIRE THE MAIN BLOCK TO SPECIFY THE CUBIC 
C LATTICE, IMPOSE THE BOUNDARY CONDITIONS AND CALCULATE THE TOTAL 
C CONDUCTANCE AND FLOWRATE 

C AS WITH ISONETSIM AN EFFECTIVE CONDUCTANCE IS CALCULATED BY 
C DIVIDING THE TOTAL CONDUCTANCE BY THE NUMBER OF NODES IN THE 
C NETWORK (DAVID ET AL., 1990) 

C THE MAIN FEATURE THAT DISTINGUISHES THIS PROGRAM FROM 
C ISONETSIM IS THAT THREE SETS OF EXTERNAL CONDUCTANCES ARE USED 
C AS INPUT, EACH DECORATING THE LATTICE IN ONE SPECIFIC DIRECTION 
C ONLY; THIS ALLOWS FLOW SIMULATIONS TO BE PERFORMED ON AN 
C ANISOTROPIC CUBIC LATTICE 

C PERMUTING THE ORDER IN WHICH THE THREE EXTERNAL SETS OF DATA 
C ARE FED INTO THE LATTICE ALLOWS THE INTERCHANGE OF THE FLOW 
C DIRECTIONS SO THAT THE POTENTIAL CAN BE APPLIED CONSECUTIVELY 
C ALONG EACH LATTICE DIRECTION 

IMPLICIT NONE 
INTEGER I,J,K,NUM,MARK,NX,NY,NZ,N2, NMAX 
PARAMETER (NMAX=32770,N2=100) 

C INTRODUCED FOR SOLVING USING OVER-RELAXATION TECHNIQUE 
REAL HCONDU(N2,N2,N2),TOTALQ,POTEN(N2,N2,N2),UP2,D0WN2,XPOTEN 
REAL COMPARE,RATE,PERM,ERR1,0UTC0N, G1, GEFF 

C SPECIFY TOLERANCE FOR OVERRELAXATION CALCULATION 
ERR1=0.00001 

C SPECIFY LATTICE SIZE BY SPECIFYING THE NUMBER OF INTERNAL 
C NODES 

NX=30 
NY=NX 
NZ=NX 

C SPECIFY A CUBIC NETWORK AND DECORATE WITH CONDUCTANCES FROM 
C THREE SEPARATE INPUT FILES 

OPEN (UNIT=18, FILE='3XRAND20.txt', STATUS='OLD') 
REWIND(18) 
DO 1114 K = l , 2 * N Z + 1 , 2 

DO 1114 1 = 2 , 2 * NX, 2 
DO 1114 J = 2, 2 * NY, 2 

READ(18,*) HCONDU(I,J,K) 
1114 CONTINUE 

OPEN (UNIT=19, FILE='3YRAND20.txt', STATUS='OLD') 
REWIND(19) 
DO 1115 1 = 1 , 2 * N X + 1 , 2 
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DO 1115 J = 2, 2 * NY, 2 
DO 1115 K=2,2*NZ,2 

READ (19, *) HCONDUd, J, K) 
1115 CONTINUE 

OPEN (UNIT=20, FILE='lYRAND20.txt', STATUS='OLD') 
REWIND(20) 
DO 1116 J = l , 2 * N Y + 1 , 2 

DO 1116 1 = 2 , 2 * NX, 2 
DO 1116 K=2,2*NZ,2 

READ(20,*) HCONDUd, J,K) 
1116 CONTINUE 

CLOSE(18) 
CLOSE(19) 
CLOSE(20) 

C BOUNDARY CONDITIONS 

150 NUM = 0 
MARK = 0 
TOTALQ =0.0 

C SPECIFY PRESSURE AT INFLOW SIDE (INPUT FACE) 
DO 155 J = 2, 2 * NY, 2 

DO 160 K = 2, 2 * NZ, 2 
POTEN(0,J,K) =10.0 

161 CONTINUE 
156 CONTINUE 
C SPECIFY PRESSURE AT OUTFLOW SIDE (OUTPUT FACE) 

DO 170 J = 2, 2 * NY, 2 
DO 180 K = 2, 2 * NZ, 2 

P0TEN(2 * NX + 2,J,K) = 0.0 
181 CONTINUE 
171 CONTINUE 
C SPECIFY PRESSURE DROP AT EACH NODE ALONG THE FLOW DIRECTION 

DO 188 I = 2, 2 * NX, 2 
DO 190 J = 2, 2 * NY, 2 
DO 200 K = 2, 2 * NZ, 2 

POTEN(I,J,K) = 10.0 -(I - 1) * 10 / (2 * NX) 
201 CONTINUE 
191 CONTINUE 
188 CONTINUE 
C SPECIFY PRESSURE AT EACH NODE PERPENDICULAR TO THE FLOW DIRECTION 
246 TOTALQ = 0.0 

DO 250 1 = 2 , 2 * NX, 2 
DO 260 K = 2, 2 * NZ, 2 

POTEN(I,0,K) = P0TEN(I,2,K) 
P0TEN(I,2 * NY + 2,K) = P0TEN{I,2 * NY,K) 

260 CONTINUE 
251 CONTINUE 

DO 270 I = 2, 2 * NX, 2 
DO 280 J = 2, 2 * NY, 2 

POTEN(I,J,0) = P0TEN(I,J,2) 
P0TEN(I,J,2 * NZ + 2) = P0TEN(I,J,2 * NZ) 

280 CONTINUE 
271 CONTINUE 

PRINT *,'ITERATION:',NUM 

CIC 
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CIC=== 
CIC// 
CIC// 
CIC// 
CIC// 
CIC// 
CIC// 
CIC=== 
CIC 

MAIN ITERATION STARTS HERE 

CALCULATION OF NEW POTENTIALS USING CONSERVATION OF MASS FOR 
HYDRAULIC CONDUCTANCE, I.E., SUMMATION OF CURRENT FLOWS TO A 
NODE IS ZERO 

NUM = NUM + 1 
DO 300 I = 2, 2 * NX, 2 

DO 310 J = 2, 2 * NY, 2 
DO 320 K = 2, 2 * NZ, 2 

UP2 = POTENd, J-2,K) * HCONDU (I, J-1, K) 
++ P0TEN(I-2,J,K) * HCONDU(I-l,J,K) + POTEN(1+2,J,K) 
+ * HCONDU (I + l, J, K) + POTENd, J+2,K) * HCONDU {I, J+1, K) 
++ POTENd, J, K-2) * HCONDUd, J,K-1) 
+ + POTENd, J, K+2) * HCONDUd, J, K+1) 

D0WN2 = HCONDUd, J-1, K) + HCONDU (1-1, J, K) 
+ + HCONDU (1 + 1, J, K) + HCONDUd, J+1, K) 
+ + HCONDUd, J, K-1) + HCONDUd, J, K+1) 

IF (D0WN2 .GT. 0.0001) THEN 
XPOTEN = UP2 / D0WN2 
COMPARE = (XPOTEN - POTEN(I,J,K)) / XPOTEN 
IF (ABS(COMPARE) .GT. ERRl) THEN 
MARK = 1 

320 
310 
300 
CIC 
CIC---
CIC// 
CIC---
CIC 

ENDIF 
POTENd, J, K) 

ELSE 
POTENd, J, K) 

ENDIF 
CONTINUE 

CONTINUE 
CONTINUE 

= POTENd, J,K) + 1.86 * (XPOTEN - POTENd, J,K)) 

= 0. 

400 
350 
CIC---
CIC// 
CIC---

CALCULATING THE TOTAL CONDUCTANCE AND THE PLOW RATE 

DO 350 J = 2, 2 * NY, 2 
DO 400 K = 2, 2 * NZ, 2 

RATE = POTEN(2 * NX, J, K) *HCOiaDU (2*NX+1, J, K) 
TOTALQ = TOTALQ + RATE 

CONTINUE 
CONTINUE 

TESTING CONVERGENCE 

IF (MARK -EQ. 1) THEN 
MARK = 0 
GO TO 245 

ENDIF 

C PROCEDURE TO COMPUTE THE EMT PARAMETERS AS PER DAVID ET AL., 
C (1990) TO ALLOW A DIRECT COMPARISON TO USING KIRKPATRICK'S 
C EQUATION 

C PERFORM THE CALCULATION CH= TOTALQ/GRADP, WHERE GRADP IS 
C ASSIGNED A VALUE OF 10 
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OUTCON=TOTALQ/10.0 

C CALCULATE THE TOTAL CONDUCTANCE OF THE NETWORK WHEN EACH PORE 
C IS ASSIGNED A CONDUCTANCE OF 1.0 

G1=(NX**2.0)/(NX+1.0) 

C CALCULATE AN EFFECTIVE CONDUCTANCE BY DIVIDING THE TOTAL 
C CONDUCTANCE BY G[l] (DAVID ET AL., 1990) 

GEFF=0UTC0N/G1 

PRINT*, 'OUTCON', OUTCON, 'IN UNITS OF INPUT CONDUCTANCES' 
PRINT*, 'G1', G1 
PRINT*, 'NUMBER OF NODES IN ID:', NX 
PRINT*, 'GEFF', GEFF 

END 
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