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Abstract
Some neural circuits operate with simple dynamics characterized by one or a few well-defined spatiotemporal scales (e.g.
central pattern generators). In contrast, cortical neuronal networks often exhibit richer activity patterns in which all
spatiotemporal scales are represented. Such “scale-free” cortical dynamics manifest as cascades of activity with cascade
sizes that are distributed according to a power-law. Theory and in vitro experiments suggest that information transmission
among cortical circuits is optimized by scale-free dynamics. In vivo tests of this hypothesis have been limited by
experimental techniques with insufficient spatial coverage and resolution, i.e., restricted access to a wide range of scales.
We overcame these limitations by using genetically encoded voltage imaging to track neural activity in layer 2/3 pyramidal
cells across the cortex in mice. As mice recovered from anesthesia, we observed three changes: (a) cortical information
capacity increased, (b) information transmission among cortical regions increased and (c) neural activity became scale-free.
Our results demonstrate that both information capacity and information transmission are maximized in the awake state in
cortical regions with scale-free network dynamics.
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Introduction
The exchange of information among distant regions of cortex is
essential to cortical function. What determines the efficacy of
information flow between a pair of connected cortical regions?
A fundamental constraint on such information exchange is

imposed by the dynamical regime in which each of the two
regions operates. Certain dynamical regimes allow a neural cir-
cuit to generate a large and varied repertoire of activity patterns,
while other dynamical regimes result in a smaller activity reper-
toire (Shew et al. 2011). A high degree of information exchange
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between two cortical regions requires that both have large
repertoires of activity patterns to encode the exchanged infor-
mation. What kind of dynamical regime facilitates such large
activity repertoires and information exchange?

Here we adopt information theory as a framework for study-
ing how much information is represented and transmitted by
neural circuits (Shannon 1948; Rieke 1997). In this framework,
the repertoire of activity patterns that a cortical network can
produce is quantified by its entropy (H) (Shew et al. 2011),
sometimes referred to as “information capacity.” The transmis-
sion of information between pairs of cortical regions can be
quantified by mutual information (MI).

We investigate a wide range of cortical dynamical regimes
as mice recover from anesthesia. Previous studies have found
that loss of consciousness is associated with a collapse in the
repertoire of cortical activity patterns (H), as well as a break-
down in cortical interactions (MI) (Alkire et al. 2008). In our pre-
vious work, we observed a shift from predominantly large-scale
activity patterns to scale-free patterns of activity during recov-
ery from anesthesia (Scott et al. 2014). Previous in vitro studies
and computational model work suggest that the diversity and
complexity of scale-free dynamics may be optimal for achiev-
ing high information capacity (entropy) and transmission
(mutual information) (Shew et al. 2011). However, this hypoth-
esis has not been tested in vivo, nor at scales large enough to
determine the relevance to inter-regional cortical information
flow. Here we address this question using genetically encoded
voltage indicator (GEVI) optical imaging, to directly measure
activity pattern repertoires and information exchange across a
large part of mouse cortex with high resolution. We examine
changes in the activity repertoire and information transmission
during changes in the cortical dynamical regime as the mouse
recovers from anesthesia.

Materials and Methods
Animals

Two groups of mice were used.
Group 1 consisted of three wild typemice, which were electro-

porated three times in utero (E14.5–E15.5) with the pCAG-voltage-
sensitive fluorescent protein (VSFP) Butterfly 1.2 plasmid
(Akemann et al. 2012, 2013), resulting in the expression of the
Butterfly 1.2 VSFP in layer 2/3 pyramidal cells in one hemisphere.
Experimental procedures for Group 1 were approved by the
Institutional Animal Care and Use Committee of the RIKENWako
Research Centre (Japan) and were conducted according to the US
National Institutes of Health guidelines for animal research.

Group 2 consisted of two triple transgenic (Ai78(TITL-
VSFPB)-D; Camk2a-tTA; Rasgrf2-2A-dCre) mice that selectively
expressed the Butterfly 1.2 VSFP in pyramidal neurons of cor-
tical layer 2/3 in both hemispheres (Madisen et al. 2015).

All mice in Groups 1 and 2 (aged 2–6 months, either sex)
were under surgical anesthesia for the entire cranial window
implantation surgery as described previously (Akemann et al.
2012, 2013). In brief, a head post was implanted onto the
thinned mouse skull and secured using a self-cure adhesive
resin cement (Super-Bond C&B, Sun Medical, Japan). The
thinned skull was reinforced by a cover glass using a cyano-
acrylate adhesive (group 1) (Drew et al. 2010) or a layer of Super-
Bond C&B topped by a thin layer of clear nail polish (group 2)
(Sofroniew et al. 2015). The mice underwent voltage imaging
after at least 48 hours recovery from surgery, being head-fixed
via implanted head post in a custom-made stereotaxic frame,

with body temperature controlled and maintained at 37 °C by
means of a feedback-controlled heat pad (Fine Science Tools).
Experimental procedures for Group 2 were performed in accord-
ance with the UK Animal Scientific Procedures Act (1986) at
Imperial College London under Home Office Personal and
Project licenses following appropriate ethical review.

Animals were experienced in recovering from anesthesia
under the scope. At some point during this recovery, the ani-
mals went from a resting awake state to an active state, in
which they have a drive to explore and walk. In the active state
movement artifacts can occur, but these are easily recognized
as positively correlated changes in the fluorescence recorded
by the two cameras, as opposed to the negatively correlated
optical signals that represent membrane voltage transients.
However, in the present study only data obtained in the
anesthetized and resting awake states were included in the
analysis, minimizing the chance of movement artifacts.

Voltage Imaging

Group 1 was imaged after being re-anesthetized with pentobar-
bital sodium (40mg/kg i.p.). Group 2 was imaged in a fully
awake state, at least 48 hours after sedation. Image acquisition
for both groups of mice was performed with a dual emission
wide-field epifluorescence microscope equipped with two syn-
chronized CCD cameras (Sensicam, PCO), using high-power
halogen lamps (Moritex, BrainVision) and optics (Semrock). The
voltage imaging signal was calculated as the ratio of mKate2 to
mCitrine fluorescence, taken after offset subtraction and equal-
ization of heartbeat-related modulation of fluorescence. Image
sequences of 60s duration followed by 60s pauses were acquired
at 50Hz, with 320 × 240 pixel resolution (Akemann et al. 2012).

Data Preprocessing

All data were baseline normalized on a pixel-wise level, i.e.,
each pixel’s baseline is the average over its values, for each 60s
image sequence. Each 60s dataset was temporally smoothed
using a sliding window to average pixel activity across 4 con-
secutive time points and then spatially smoothed using an
8 × 8 pixel averaging filter. Data were then high-pass filtered at
0.5Hz in order to reduce the effect of slow trends in the baseline
signal that may cause artificial (i.e., non-neural) correlations
(Akemann et al. 2012). The first 10s of each image sequence were
discarded to remove possible contribution from environmental
cues present at the start of each imaging sequence (e.g., shutter
noise and excitation light). Subsequent analyses were con-
strained to pixels within masks, drawn by hand for each mouse,
which defined the extents of the bone window. We refined these
masks by excluding regions with poor signal-to-noise ratios,
defined as those pixels in which the protein expression (esti-
mated as time-averaged absolute fluorescence intensity) was
less than 50% of the maximum level across the field of view for
each mouse. Imaging data were analyzed with Matlab using
the Image and Signal Processing Toolboxes (Mathworks) and
ImagePro 6.2 image processing software.

Noise Datasets

We generated noise on a pixel-wise level with the same power
spectrum as the ratio image data. These noise datasets were
then passed through the same preprocessing pipeline as the
experimental data. By showing null results for these noise data,
we eliminate the possibility that the preprocessing pipeline
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and/or changes in the power spectrum are responsible for the
relationships observed.

Cascade Detection and Statistics

Cascades were detected as spatiotemporally contiguous clus-
ters of active pixels (Tagliazucchi et al. 2012; Scott et al. 2014).
Cascade detection was performed both across the entire image
and also for regional subdivisions of the image. A pixel was
defined as “active” at times when the voltage signal crossed
above a threshold of +1 S.D. from below. A positive threshold
was chosen as positive deflections of our optical signals indi-
cate population depolarization (Akemann et al. 2012). Cascade
detection results were previously tested for robustness between
+0.5 and +1.5 S.D. (Scott et al. 2014). The cumulative event
count at +1 S.D. for the entire recording area across all mice
was 240 ± 12 per mouse per second.

Clusters of active pixels were identified based on detection
of connected pixels in a coactive first neighbors graph.
Cascades were then defined as starting with the activation of a
previously inactive cluster and continuing while at least one
contiguous cluster was active in the next time point. We
defined the size of a cascade (z) as the number of active pixels
comprising the cascade. The shape of the cascade size distribu-
tion changed systematically as animals awoke from anesthesia.
In the awake resting state, the distribution was close to a
power-law with exponent −1.5. To parameterize these changes,
cascade size probability distributions were compared to a
power law with exponent −1.5 using a measure κ (Shew et al.
2009; Yang et al. 2012). Thus, we do not interpret κ as a statis-
tical test confirming a power-law distribution. Rather, κ is a
measure of deviation from a power-law. In brief, to compute κ
for one dataset, one first obtains a cumulative probability distri-
bution function (CDF) of cascade sizes. Second, the distance
between the observed CDF and a reference CDF is calculated at
10 equally spaced points, where the reference is a perfect
power law with exponent −1.5 and κ is defined as 1 plus the
average of the 10 differences. Our choice to use a reference
power-law with an exponent of −1.5 in the calculation of κ was
based both on theory (Larremore et al. 2012) as well as our pre-
vious work (Scott et al. 2014). However, one potential limitation
of the κ metric is that cascade sizes could be distributed accord-
ing to a power-law with an exponent other than −1.5, which
would result in κ deviating from unity.

k-means Clustering

In order to assess the repertoire of cortical brain states we
applied a k-means clustering algorithm to the point-process
data from the entire imaged area to produce a time course of
cortical states. Prior to clustering, image sequences were spa-
tially downsampled by a factor of 2 using interpolation with a
box-shaped kernel, in order to reduce computational demands.
We performed clustering separately on each 50s image
sequence in order to eliminate bias in the clustering algorithm
due to varying proportions of data from different brain states.
The analyses were repeated with k = 10,50,200 clusters. For
each resulting state time course, we quantified the repertoire of
states by calculating the state visitation entropy (Hstate) of the
probability distribution pi as follows:

= − ∑ ( )
=

H p log p 1
i

k

i istate
1

2

where pi is the probability of the system being observed in state
i, for i = 1,2,…,k. The probabilities used to calculate state visit-
ation entropy are calculated separately for each 50s window.
Using the state time courses, a first-order Markov model was
used to create a state transition probability distribution of mov-
ing from state i to state j, where i,j = 1,2,…,k. The state transi-
tion entropy Htrans was then calculated using [1].

Regional Entropy and Mutual Information

The point-process image sequences were divided into 8 × 8 pixel
regions. An event was defined at each time point for each region
with 1 bit per pixel. A bit was set to 1 if the corresponding pixel
was active during the event and 0 otherwise. The entropy of
this set of patterns was calculated for each region using [1].

The information transmission for a given region was defined
as the sum of its mutual information (MI) with all other regions
(Cover and Thomas 2012). The presence of mutual information
between disparate regions of the cortex should be regarded as a
somewhat generalized form of “correlation”, indicating encod-
ing overlapping information content without shedding light on
the neuronal code or the mechanism of information transport.
MI is by definition a nonnegative quantity. As such, for finite
size samples, even independent random variables will have
positive MI, rendering interpretation difficult. To account for
this, we adopt an approach similar to that used for “adjusted
mutual information” and subtract from our MI measurements
a control value of MI (Vinh et al. 2010). We calculate the control
MI as above, but with a randomized order of states for one of
the variables (Margolin et al. 2006). The control MI has values
near zero (and can take negative values) for insignificant levels
of MI and is positive for significant levels of MI. We exclude
values of MI calculated between pairs of regions that are closer
to one another than 10% of the maximum extent of the imaged
cortex. This is to reduce the possibility of spurious correlations
arising due to spatial smoothing operations in the preproces-
sing pipeline.

Regional information capacity and transmission were also
calculated for different spatial extents, spatial resolutions and
time steps: (a) 5 × 5 square regions, (b) 8 × 8 square regions, (c)
half spatial resolution data and (d) half temporal resolution
data. We use these different spatiotemporal definitions in order
to demonstrate that the results are not dependent on a particu-
lar combination of analysis parameters.

Results
Voltage Imaging and Cascade Detection

In order to gain insight into information transmission among
multiscale cortical circuits, we performed trans-cranial voltage
imaging using a voltage-sensitive fluorescent protein (VSFP) in
intact head-fixed mice (Fig. 1a) (Akemann et al. 2010, 2012).
This wide-field epifluorescence imaging approach captures the
membrane voltage averaged over tissue volumes that are
projected onto each pixel, allowing neural activity to be
recorded across the cortex with high spatiotemporal resolution
(<100 μm, spatially oversampled at 33 × 33 μm2; limited by light
scattering, 20ms). We imaged mice recovering from pentobar-
bital anesthesia (40mg/kg i.p., labels A1, A2, A3), as well as fully
awake mice, imaged at least 48 hours after sedation (labels R1,
R2) (Materials and Methods).

Our data analysis begins with the creation of a point-
process from the voltage imaging data. We labeled all pixels in
sequences of normalized voltage maps (240 × 320 pixels, 2500
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frames per sequence, recorded at 50 Hz) as active when the
voltage signal crossed a threshold of +1 S.D. from below, thus
creating a point-process (Fig. 1b). This point-process transform-
ation results in a given pixel being labeled as active only at the
time point in which it first crosses the threshold. As such, a
region that shows high activity in the normalized voltage map
snapshot will not necessarily correspond to activity in the
point-process image at the corresponding time point.

We used this point-process data in two different ways. First,
we assessed changes in the cortical dynamics in the context of
scale-free dynamics. Second, we used the point-process data to
assess changes in information processing within and among
different cortical regions. By combining these two types of data
analysis, we ultimately identify which cortical states are opti-
mized for information processing.

To assess changes in cortical state, we analyzed cascades of
active pixels in the point-process data, similar to previous stud-
ies (Tagliazucchi et al. 2012; Scott et al. 2014). A cascade was
defined as spatiotemporally contiguous clusters of active pix-
els, i.e., two active pixels that are immediate neighbors in space
and time are defined as belonging to the same cascade. For
comparison, we also explored an alternative definition of cas-
cades based only on temporal contiguity of active pixels as in
traditional studies of neuronal avalanches (Beggs and Plenz
2003), which may account for long-range communication in
cortex-wide analyses. The cascade size (z) is the total number
of active pixels in a given cascade. Next, we examined probabil-
ity distributions of cascade sizes. A well-studied signature of
scale-free dynamics is a cascade size distribution with power-
law form. Motivated by previous studies and theory, we used a
previously developed (Shew et al. 2009) metric to quantify how
closely our measured cascade size distributions resembled

power law with exponent −1.5 (Figs. 1c,d). A cascade size distri-
bution that is a power law with exponent −1.5 results in κ = 1
(Shew et al. 2009). In contrast, κ > 1 indicates that large cas-
cades are more prevalent, which is expected for certain regimes
of dynamics that are not scale-free.

Scale-Free Activity Patterns Emerge with Wakefulness

We first performed cascade detection across the cortex, without
any restriction on the area a cascade is able to cover. We found
that the cascade size probability distributions approached
power law form P(z)~z−1.5 as mice recovered from anesthesia
(Fig. 1a & Supplementary Fig. 1a), with a change in κ from κ > 1
toward κ ≈ 1, (Fig. 1b & Supplementary Fig. 1b), as shown previ-
ously (Scott et al. 2014). Cascade detection is always performed
for each 50s image sequence independently, with the κ values
in Fig. 2b calculated from each 50s sequence and the distribu-
tions in Fig. 2a created from pooled 10 × 50s sequences.

There is an inversely proportional relationship between κ
and time since drug delivery (r < −0.68, P < 0.001, mice A1, A2,
A3). Note that r < −0.68 refers to the fact that the absolute value
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of r is minimally 0.68 over all animals assessed. This notation
is used in the remainder of the study. There is no such relation-
ship for surrogate data (in the following referred to as “noise”)
in which each pixel is a random variable with the same power
spectrum as the real data and therefore the same rate of active
pixels (Supplementary Fig. 2b). Importantly, the absence of rela-
tionships in the noise control data indicates that the relation-
ships depend on interactions among pixels and cannot be
explained by how fluctuations change at the single-pixel level
(Materials and Methods). Moreover, κ was close to 1 and did not
change over observation time in fully awake, resting mice
(Fig. 2b & Supplementary Fig. 1b).

State Repertoire Increases with Wakefulness

We next examined the repertoire (information capacity) of cor-
tical states, defined from patterns of active pixels. To this end,
we applied a k-means algorithm to cluster the 2500 activity pat-
terns of each dataset into representative state maps (Fig. 3a)
(Materials and Methods). We then quantified the state reper-
toire by calculating the state visitation entropy (Hstate) of the
probability distributions P(sx) derived from one-dimensional
time courses (sequences of state indices) of cortical states,
where P(sx) is the probability of observing the system in state
sx, where x = 1,2,…We illustrate an example of such a state
sequence in a toy model consisting of 3 pixels evolving over 5
time points (Fig. 3b). We found that Hstate increased as mice
recovered from anesthesia (r > 0.65, P < 0.001, mice A1, A2, A3)
(Fig. 2c), a relationship not observed either for noise
(Supplementary Fig. 2c), or for fully awake mice (Fig. 2c &
Supplementary Fig. 1c). These findings are robust with respect
to different numbers of clusters in the k-means algorithm
(Supplementary Fig. 1c).

Diversity of State Transitions Increases with
Wakefulness

Hstate reflects only the number of states visited without taking
the order of state visitations into account. This means that
Hstate is identical for the example state sequences A,A,A,B,B,B
and A,B,A,B,A,B. Therefore, we also developed a measure of
state transition entropy (Htrans), defined in the context of a first-
order Markov model. This means that we considered the

conditional probabilities of observing states A,B,… in the next
time point, given that we are currently in states A,B,… (Fig. 3c).
We found that Htrans increased as mice recovered from anes-
thesia (r > 0.49, P < 0.001, mice A1, A2, A3) (Fig. 2d and
Supplementary Fig. 1d). There is no such relationship either for
noise (Supplementary Fig. 2d), or for fully awake mice (Fig. 2d
and Supplementary Fig. 1d). These findings are robust with
respect to different numbers of clusters in the k-means algo-
rithm (Supplementary Fig. 1d).

State Repertoire and Diversity of State Transitions are
Maximized for Scale-Free Dynamics

We next investigated Hstate and Htrans in the context of cortical
dynamics. We found that Hstate is maximized when cortical
dynamics are scale-free, with an inversely proportional rela-
tionship between Hstate and κ for κ > 1 (r < −0.67, P < 0.01, mice
A1, A2, A3, R1, R2) (Fig. 2e and Supplementary Fig. 3a). These
findings are robust with respect to the number of clusters used
(Supplementary Fig. 3a), and are not observed for noise
(Supplementary Fig. 2e). Similarly, Htrans is maximized at κ ≈ 1,
with an inversely proportional relationship between Htrans and
κ for κ > 1 (r < −0.78, P < 0.001, mice A1, A2, A3, R1, R2) (Fig. 2f
and Supplementary Fig. 3b). These findings are robust with
respect to the number of clusters in the k-means algorithm
(Supplementary Fig. 3b) and are not observed for noise
(Supplementary Fig. 2f).

Qualitatively similar results were found when cascades
were defined based only on timing of active pixels as in trad-
itional analyses of neuronal avalanches (Beggs and Plenz 2003)
(Supplementary Fig. 4).

Regional State Repertoire Increases with Wakefulness

Above we used k-means clustering of activity over the imaged
cortex to show that state repertoire increases with recovery
from anesthesia. We proceeded by calculating the information
capacity of small regions of cortex, as quantified by their
entropy (H), as well as their information transmission, as quan-
tified by the sum of their mutual information (MI) with all other
regions.

We divided the imaged cortex into 8 × 8 pixel regions and
calculated the regional information capacity (Hreg) separately
for each region (Fig. 3b). We observed a positive relationship
between Hreg (averaged across all regions) and time since drug
delivery (r > 0.63, P < 0.001, mice A1, A2, A3) (Fig. 4a). These
results are robust across various combinations of spatio-
temporal resolutions (Supplementary Fig. 3c) and no relation-
ship was observed for noise (Supplementary Fig. 5a) or for fully
awake mice (Fig. 4a & Supplementary Fig. 3c).

The results in Fig. 4 are averaged over several cortical areas
(motor, somatosensory, visual, retrosplenial). However,
changes in entropy were not uniform over these different
areas. For instance, the somatosensory cortex exhibited a larger
increase in H than the motor cortex (Supplementary Fig. 6).

Information Transmission Increases with Wakefulness

We next analyzed the way in which interactions between pairs
of cortical regions change as the mice recover from anesthesia.
Mutual information (MI) is a measure of the information shared
by two regions (x,y), as described by the reduction in uncer-
tainty about events in region x due to knowledge about events
in region y, shown for a toy model consisting of a pair of state

50% 50%
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κ

Hstate

S1

S1 S1

S1

S2

S2

{

(a) (b)

(c) (d)

Figure 3. State analysis, κ, entropy and mutual information. (a) Three voltage

images are assigned state labels S1 and S2 according to a k-means clustering

algorithm. (b) Toy model showing a sequence of state indices for an image that

consists of 3 pixels evolving over 5 time points. Activity within a single region

(red square within the cortex), from which both κ and entropy (Hstate) are calcu-

lated. (c) Setting up a first-order Markov model for the three-image example in

(a), state S1 has a 50/50 chance of transitioning to either state S1 or S2. (d) Toy

model showing state sequences for a pair of images that each consist of 3 pixels

evolving over 5 time points. Activity within two regions (red and blue squares

within the cortex) from which their mutual information (MI) is calculated.
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sequences with 3 pixels evolving over 5 time points each
(Fig. 3d) (Rieke 1997). We corrected for potential subsampling
bias and discounted the MI between regions within close prox-
imity to one another (Materials and Methods). We calculate the
information transmission (I.T.) for region x as the sum of its MI
with all other regions ITx = Σy≠xMI(x,y). We found that I.T.
(summed across all regions) increases with time since drug
delivery (r > 0.49, P < 0.001, mice A1, A2, A3) (Fig. 4b and
Supplementary Fig. 3d). There is no such relationship for noise
(Supplementary Fig. 5b) or for fully awake mice (Fig. 4b and
Supplementary Fig. 3d).

As with entropy, MI also showed some area-dependent
changes (Supplementary Fig. 6).

Information Transmission Increases with Regional
State Repertoire

We next investigated the relationship between regional entropy
(Hreg) and information transmission (I.T.) (Fig. 4c and
Supplementary Fig. 7a). Interpreting the relationship between
Hreg and I.T. as expressed in Fig. 4c is complicated by the fact
that multiple points are re-plotted across different brain states
(time since drug delivery) and cortical regions (8 × 8 pixel
squares). To resolve this issue we constructed a linear mixed
effects model and found that there is a positive relationship

between I.T. and Hreg, while accounting for time and region
(t(dof > 390) > 11.24, P < 0.001, mice A1, A2, A3, R1, R2), with
no such relationship observed for noise.

Regional State Repertoire and Information
Transmission are Maximized for Scale-Free Dynamics

We next investigated how Hreg and I.T. are related to how close
to scale-free the regional cortical dynamics were, as quantified
by κ. We predicted that Hreg and I.T. should be maximized for
scale-free dynamics (Shew et al. 2011), i.e. when κ ≈ 1. κreg was
calculated from cascade statistics within each 8 × 8 pixel region
(Fig. 3b). As with the cortex-wide analysis, κreg (averaged across
all regions) is > 1 under anesthesia and decreases toward ≈ 1
as mice recover from anesthesia (r < −0.96, P < 0.001, mice A1,
A2, A3) (Fig. 4d and Supplementary Fig. 7b). There is no such
relationship for noise (Supplementary Fig. 5d) or for fully awake
mice (Fig. 4d and Supplementary Fig. 7b).

The relationship between κreg and Hreg is complicated by
multiple measurements across different brain states and cor-
tical regions. A linear mixed effects model shows an inversely
proportional relationship between κreg and Hreg, while account-
ing for time and region (t(dof > 386) < 10.83, P < 0.001, mice A1,
A2, A3, R1, R2) (Fig. 4e and Supplementary Fig. 7c), with no such
relationship observed for noise (Supplementary Fig. 5e).

Finally, a linear mixed effects model shows an inversely
proportional relationship between κreg and I.T., while acco-
unting for time and region (Fig. 4f and Supplementary Fig. 7d)
(t(dof > 386) < −3.43, P < 0.001, mice A1, A2, A3, R2), with no
such relationship observed for noise (Supplementary Fig. 5f).

Discussion
In summary, we measured information capacity and informa-
tion transmission across the cortex in mice recovering from
anesthesia, using GEVI optical imaging with < 100 μm spatial
resolution. We found that both information capacity and infor-
mation transmission increased steadily as the mice awoke,
reaching their highest levels in the awake state, in line with
previous findings in primates (Fekete et al. 2009). We also found
that levels of information capacity and information transmis-
sion were not uniformly distributed across the cortex. Some
regions had higher information capacity and information trans-
mission, while others were lower. We next sought aspects of
cortical dynamics that could explain this regional variability
and found that information capacity and information transmis-
sion were highest for regions with scale-free dynamics (κ~1).
The “scale-free-ness” of the dynamics (i.e. κ) accounted both for
the cortex-wide rise over time, as well as for the region-to-
region variability in these measures of information processing,
during recovery from anesthesia. Our results constitute the first
in vivo confirmation of predictions that information capacity
and information transmission are maximized for scale-free
dynamics.

Our results here and our other recent work (Scott et al. 2014)
support the hypothesis that the awake cortex operates near a
dynamical regime called “criticality”. The criticality hypothesis
states that the awake brain operates close to a second-order
phase transition, poised at the boundary between ordered and
chaotic neural dynamics (Plenz and Thiagarajan 2007; Chialvo
2010; Beggs and Timme 2012). Previous studies suggest that
maintaining a network of neurons at criticality requires a bal-
ance of excitatory and inhibitory synaptic interactions (Shew
et al. 2011; Wang et al. 2011; Gautam et al. 2015) and can
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Figure 4. Regional information transmission with recovery from anesthesia.

(a) Regional entropy Hreg (bits) vs. time (minutes) since drug delivery. Shaded

region represents standard deviation. Color coding and mice as in Figure 2.

(b) Time (minutes) since drug delivery vs. information transmission (bits). Color

coding and mice as in Figure 2. (c) Information transmission (bits), as a function

of regional entropy Hreg (bits). Color coding and mice as in Figure 2. (d) κreg as a

function of time (minutes) since drug delivery. Shaded region represents stand-

ard deviation. Color coding and mice as in Figure 2. (e) Regional entropy Hreg

(bits) as a function of κreg. Color coding and mice as in Figure 2. (f) Information

transmission (bits), as a function of κreg. Color coding and mice as in Figure 2.
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depend on network structure (Larremore et al. 2011; Wang and
Zhou 2012). One of the implications of this hypothesis is that,
at criticality, network dynamics should be scale-free. Thus, one
may interpret our measure κ as indicating proximity to critical-
ity. However, caution is called for with such interpretations; a
scale-free cascade size distribution is a necessary, but insuffi-
cient condition to prove the system is at criticality. Indeed,
scale-free statistics can arise from mechanisms other than crit-
icality (Beggs and Timme 2012; Stumpf and Porter 2012).
Nonetheless, a second implication of the criticality hypothesis
is that, at criticality, information transmission should be opti-
mized across multiple scales—from individual neurons, to local
circuits and entire cortical regions. Our observation of high
information transmission near κ = 1 is in line with this
possibility.

Previous investigations of the criticality hypothesis have uti-
lized techniques that either have wide cortical coverage and
low spatial resolution, such as electroencephalography (EEG)
(Meisel et al. 2013) and functional magnetic resonance imaging
(fMRI) (Tagliazucchi et al. 2012), or low cortical coverage with
high spatial resolution, such as multi-electrode arrays (Shew
et al. 2009) and calcium imaging (Bellay et al. 2015). However, to
gain insight into information transmission among multi-scale
cortical circuits, one must first be able to perform measure-
ments with both wide coverage and high spatial resolution. We
met this criterion using genetically encoded voltage indicator
(GEVI) optical imaging. In this context, our findings are the first
supporting evidence for the hypothesis that information trans-
mission among cortical regions is maximized near criticality.

Other recent in vivo studies of the transition from anesthe-
tized to awake states found an emergence of scale-free activity
(Bellay et al. 2015; Solovey et al. 2015). These studies showed
that this transition is accompanied by increasing irregularity in
firing patterns, consistent with higher information capacity.
However, unlike these previous studies, the high coverage and
spatiotemporal resolution of our voltage imaging data enabled
us to simultaneously probe the states of different cortical
regions. We found that different regions of cortex do not oper-
ate in the same dynamical regime, i.e. with different κ values,
which we interpret as different degrees of proximity to critical-
ity. As we showed in previous work (Scott et al. 2014), the
motor cortex exhibits systematically higher κ values compared
with the somatosensory cortex, although both areas shift from
κ > 1 toward κ = 1 during recovery from anesthesia. Here we
found that the motor cortex had systematically lower entropy
compared to the somatosensory cortex, in line with the idea
that the highest entropy is found near κ = 1 (Supplementary
Fig. 6). This is consistent with another recent study (Shew et al.
2015), which showed that sensory input can cause changes in
cortical state in a region specific manner. Such regional vari-
ability may explain why other studies that tested single small
areas of human, monkey and cat cortex did not observe scale-
free spike activity (Dehghani et al. 2012). Nonetheless, we
found that all cortical regions shift toward scale-free activity
during recovery from anesthesia, in line with a previous study
showing signatures of criticality emerging in the cortical
dynamics of rats recovering from anesthesia (Ribeiro et al.
2010). The cortical dynamical regime can also vary significantly
depending on arousal, attention, body motility and other
behavioral parameters (Fontanini and Katz 2008; Harris and
Thiele 2011; Renart and Machens 2014). An open challenge for
future work is to determine how such behaviorally driven state
changes are related to information capacity and information
transmission.

We emphasize that our metrics of information capacity
(entropy) and transmission (mutual information) are mean-
ingful only as relative measures. The absolute values depend
on a range of factors, including the volume of neurons sub-
tended by each pixel and the area of the imaged cortex. As
such, we are not deriving an absolute measure of the infor-
mation that a cortical region can represent or transmit and it
is therefore not appropriate to directly compare values
among mice, or to values reported in other studies (Shew
et al. 2011).

Our results complement previous work that relates the
action of general anesthetics to measures of information pro-
cessing (Tononi et al. 1998; Alkire et al. 2008). For example, sev-
eral general anesthetics produce deep unconsciousness with
stereotypic, global on–off patterns of neural activity that tra-
verse the cortex. This effect appears to cause a loss of distin-
guishable firing patterns (loss of information capacity), limiting
the brain’s ability to effectively integrate information (Alkire
et al. 2008). Indeed, integrated information theory argues that
the maintenance of consciousness is directly dependent on the
integration of information in the brain (Tononi and Koch 2015).
Our results support this view, in that our mice recovered
from anesthesia while showing increased levels of information
capacity and information transmission. Moreover, our results
demonstrate that raising the information capacity and trans-
mission among different cortical regions is associated with
mechanisms that tune the regions toward scale-free dynamics.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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