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Abstract 

Certain types of long, axially compressed structures have the potential to buckle 

locally in one or more regions rather than uniformly along their length. Here, the 

potential for localized buckle patterns in an elastic layer embedded in a visco-elastic 

medium is investigated using a strut-on-foundation model. Applications of this 

model include the growth of geological folds and other time-dependent instability 

processes. 

The model consists of an elastic strut of uniform flexural stiffness supported by 

a Winkler-type foundation made up of discrete Maxwell elements. Mathematically, 

this model corresponds to a nonlinear partial differential equation which is fourth

order in space and first-order in time. The nature of the buckling process is charac

terized by an initial period of elastic deformation followed by an evolutionary phase 

in which both elasticity and viscosity have a role to play. Two different formulations 

are studied: the first combines linear strut theory with a nonlinear foundation and 

is valid for small, but finite, deflections; the other incorporates the exact expression 

for curvature of the strut resulting in geometrical nonlinearities and is capable of 

modelling large deflections. The evolution of non-periodic buckle patterns in each 

system is examined under the constraint of controlled end displacement. 

Two independent methods are used to approximate the solution of the governing 

equations. Modal solutions, based on the method of weighted residuals, complement 

accurate numerical solutions obtained with a boundary-value solver. In either case, 

the results suggest that for the perfect system, localized solutions follow naturally 

from the inclusion of nonlinear elasticity with softening characteristics. Emphasis 

throughout is on the qualitative features displayed by the phenomenon of localization 

rather than specific applications. Nevertheless, the ideas and results are a step 

towards accounting for the rich variety of deformed shapes exhibited by nature. 
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Chapter 1 

Introduction 

"Nonlinear equations are much richer and more diverse than linear ones, 

so are more likely to describe real phenomena." 

— Philip Drazin (1991) 

The last thirty years or so have seen an increased awareness of nonlinear ef-

fects throughout the physical sciences. This has resulted from the enormous growth 

in computing facilities, enabling researchers to investigate nonlinear behaviour pre-

viously considered too difficult to solve manually. An associated development has 

been the application of concepts and methods from one field of endeavour to another. 

This interdisciplinary activity, not confined by traditional thoughts and boundaries, 

has resulted in a number of successful breakthroughs and offers at the very least 

alternative viewpoints. 

The growing demand for strength, and the accompanying requirement for ef-

ficiency in the use of materials, has led to the increasing possibility of instability 

failures in engineering structures. Classical methods of analysis, involving linear 

equations, are unable to account for the differences observed in the buckling of var-

ious structural members. This is because buckling, and instability in general, is an 

inherently nonlinear phenomenon. Likewise, early attempts to simulate the process 

of geological folding considered only linear behaviour. In so doing, they predicted 

purely periodic forms and were unable to explain the diverse range of folded struc-

tures found in deformed rock. 
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The following sections introduce three topics which are of central importance to 

this thesis, namely, localization, visco-elasticity and strut-on-foundation models. 

1.1 Localized phenomena 

Localization is a term used to describe deformation which is concentrated, or local, 

in nature. There are two principal forms of localization — structural and material. 

An example of the first type occurs in steel structures under compressive loading 

where it is observed that the final buckle pattern is often confined to one or more re-

gions of limited size. This phenomenon is referred to as localized buckling. Material 

localization, on the other hand, generally involves an instability at the microscopic 

level. The distinguishing feature between structural and material localization, be-

sides the scale on which they take place, is that the latter represents a yielding or 

fracturing of the material while the former may involve only elastic deformations 

and hence can be entirely reversible. 

Localization phenomena are of great importance in engineering problems since 

they govern the load carrying capacities of structures and, in many cases, the 

strength of materials. They are currently attracting a great deal of interest amongst 

the scientific and engineering community, as demonstrated by a forthcoming special 

issue of the Philosophical Transactions of the Royal Society of London (Champneys 

et a/., 1996) which is devoted to localization and solitary waves in solid mechanics. 

While structural and material localizations manifest themselves spatially, there 

are other localization phenomena which are temporal in nature. One new and ex-

citing development is wavelet theory which involves a data signal with a localized 

oscillatory form (Young, 1993). Wavelets have the potential to improve the way 

that digital data is processed, stored and transmitted, with application in sonar 

and radar. This is especially significant in today's society with a worldwide digital 

revolution taking place and the encapsulation of virtually all forms of information 

into binary format. 

A number of instances of localization are described below. These are drawn from 

the fields of structural engineering and geoscience — a reflection of the intent of this 

thesis to apply ideas from the former to shed light on aspects of the latter. 
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1 .1 .1 S t r u c t u r a l loca l i za t ion 

Structural members in compression have post-buckling responses which, like all bi-

furcation phenomena, may be classified as either supercritical or subcritical. For 

members of the first type, buckling under dead load conditions is a stable process 

and the resulting pattern is distributed along the entire length of the structure; the 

longitudinally compressed plate is a good example (Timoshenko & Gere, 1963). The 

outcome is markedly different for shell structures and struts on softening elastic foun-

dations which buckle subcritically (Potier-Ferry, 1983). Under rigid load conditions, 

localized buckling prevails with the deformation concentrated in a small part of the 

structure. This phenomenon has been studied both experimentally (Moxham, 1971) 

and theoretically (Tvergaard & Needleman, 1980; Tvergaard & Needleman, 1983). 

An example of a localized buckle profile in railway tracks is shown in Figure 1.1. 

Apparent localization may arise simply from a variation of stress within a struc-

ture, caused, for example, by the presence of a second (overall) buckling mode. 

This may be distinguished from the localized buckling which occurs in long elastic 

structures under uniform stress and which has an equal likelihood of buckling at 

any location along the length. It is the latter, pure form of localization which is of 

interest here. Although initially triggered by an imperfection, such behaviour is an 

intrinsic property of the perfect system (Hunt et a/., 1989). 

Geological structures may also display localized or quasi-periodic features. Fig-

ure 1.2 shows a photograph of folds in a specimen of sedimentary rock. Although 

the prevailing character is one of near periodicity the thickest (white) layer shows 

a definite tapering of amplitude towards the right-hand side. The governing equa-

tions for folding have traditionally been linearized so that until recently geological 

structures were analysed in terms of strictly regular or periodic forms evolving un-

der conditions of constant axial load (Biot, 1961; Ramberg, 1964). Recent analyses, 

incorporating nonlinear terms, have considered the development of folds under the 

more realistic conditions of controlled end displacement, akin to a tectonic event 

(Miihlhaus et al., 1994; Hunt et al., 1996a). 
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F i g u r e 1.1 Localized buckling in a non-operational track caused by subsidence 
due to underground mining. (Source: British Rail, Derby) 

F i g u r e 1.2 Folding in a specimen (maximum dimensions 12 cm x 4 cm) of evap-
orite from New Mexico. (Source: Dr. J. W. Cosgrove, Imperial College) 
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1 .1 .2 M a t e r i a l l oca l i za t ion 

A rod in tension arrives at the maximum load in a state of uniform strain. At this 

point, theory states that a bifurcation occurs with two equilibrium paths emerging: 

one of uniform strain and the other localized (Needleman, 1972). In practice, the 

strain continues to increase in only a small part of the rod, allowing the remainder to 

unload while at the same time maintaining uniform tension throughout. This plastic 

deformation (or "necking") is analogous in many ways to localized buckle patterns 

(Tvergaard & Needleman, 1980). The fracture mechanism of rock under constant 

stress also involves material localization (Horii & Okui, 1994). A specimen subjected 

to a sustained compressive load, less than the uniaxial compressive strength, fails 

after some time. The failure mechanism involves the growth of microcracks which 

coalesce leading to localization and, ultimately, fracture of the specimen. A simi-

lar localization phenomenon occurs in the formation of shear bands in rock where 

deformation is concentrated within narrow zones (Miihlhaus et al, 1992). 

1 .1 .3 S o l i t o n s 

The relationship between large deflections of elastic structures and solitary waves, 

or "solitons", has been discussed by several authors, for example Konno & Jeffrey 

(1983), El Naschie (1989; 1990b) and BufFoni et al. (1996). A soliton is a solution 

of a nonlinear partial differential equation which has a permanent localized shape 

and which may interact with other solitons without losing its original form. Solitons 

owe their discovery to a Scottish civil engineer by the name of Scott Russell who, in 

1834, observed a large solitary wave of water develop in a canal when a moving barge 

stopped suddenly. He watched the wave travel for a considerable distance and was 

sufficiently interested in this phenomenon to perform laboratory experiments. His 

empirical work and the subsequent mathematical studies by Boussinesq, Rayleigh, 

Korteweg and de Vries, amongst others, gave rise to the subject of solitons (Drazin, 

1991). 

Today, solitons are a fashionable topic of research for many investigators. They 

have numerous physical applications ranging from the structure of galaxies, to water 

waves and the propagation of dislocations (flaws) in a crystal (Drazin k Johnson, 
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1989). Their universality, and therefore importance, stems from the fact that they 

are solutions of many fundamental mathematical equations, including the Korteweg-

de Vries (KdV) equation of shallow water waves and the nonlinear Schrodinger equa-

tion of quantum mechanics. An eminently readable account about the applications 

of solitons is the New Scientist article by Drazin (1991). 

1.2 Visco-elasticity 

The behaviour of some materials, when subjected to an applied load, is strongly 

time-dependent and may be described as visco-elastic. For such materials, which 

include soil, concrete, polymers and metals at high temperatures, the duration and 

rate of applied load influence their response. Excellent summaries of the subject 

may be found in the articles by Lee (1962), Fliigge (1975), and Bazant & Cedolin 

(1991). 

The mechanical behaviour of a material can be assumed to be governed by a con-

stitutive relation. Customarily, this relation between the internal stress and strain 

is formulated as a differential equation. This may be accomplished by replacing the 

material with an idealized model consisting of springs and dashpots. A linear spring 

is described by the relation a = Ee and a dashpot by the relation a = 775, where a 

is the internal stress, e is the strain and a dot (') is used to denote a derivative with 

respect to time. The spring modulus E and dashpot viscosity t] are often called the 

elastic and viscous constants, respectively, although they may depend on tempera-

ture and other thermodynamic variables. A linear elastic spring is used to represent 

a Hookean solid, with the internal stress proportional to the strain of the body. 

Examples of elastic materials include metals such as steel and aluminium. A linear 

viscous dashpot is used to represent a Newtonian fluid in which the stress depends 

on the rate of deformation, typical examples being oil, water and air. The charac-

teristic property of a fluid is that it cannot support a shearing stress indefinitely, so 

that if a shearing stress is applied and maintained, the fluid will flow and continue 

to do so as long as the stress remains. 
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These fundamental mechanical models are purely phenomenological as they have 

no connection with the actual physical mechanism of visco-elastic deformation. Nev-

ertheless, the elementary units may be combined to form compound models whose 

behaviour under stress mimics that of real visco-elastic materials (Roscoe, 1950). 

The simplest compound models are the Maxwell unit, comprising a spring and dash-

pot in series, and the Kelvin-Voigt unit, comprising a spring and dashpot in parallel. 

The behaviour of these, and other, visco-elastic models is characterized by their re-

sponse to constant stress (see Figure 1.3) and constant strain (see Figure 1.4). Under 

constant stress, a visco-elastic material continues to deform (or creep) indefinitely. 

If the creep curve is bounded, the material is regarded as a solid. Thus, the elas-

tic spring and Kelvin-Voigt unit are solids. Fluids are those materials for which 

the creep curve is unbounded, such as the viscous dashpot and Maxwell unit. To 

emphasize the distinction between these types of visco-elastic behaviour, Ramsay 

(1967) referred to solids as visco-elastic materials and to fluids as elasto-viscous 

materials. In reality, the distinction between solids and fluids in visco-elasticity is 

blurred, especially for materials which deform very slowly. 

Linear visco-elastic theories combine the effects of more than one stress history 

using the principle of superposition. For example, Boltzmann (1876) proposed a 

theory in which the stress depends on the history of infinitesimal strain by means of 

an integral representation. Nonlinear time-dependent behaviour, regarded by some 

as visco-plastic (Bazant & Cedolin, 1991), is also possible. The nonlinearity may 

arise in the elastic part, the viscous part, or in a more complicated manner involving 

both components. In this case, the concept of individual rheological elements may 

no longer be suitable. 

1.3 Struts on elastic and visco-elastic foundations 

The problem of a thin elastic layer supported by a continuous foundation has been 

treated extensively in the engineering and scientific literature for more than a cen-

tury. Many of the early contributions were concerned primarily with elastic founda-

tions (Zimmerman (1888) and Hetenyi (1946), for example). More recent works gen-
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Figure 1.3 Creep response for rheological models under constant stress. 
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Figure 1.4 Stress relaxation for rheological models under constant strain. 
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eralized the problem to consider time-dependent foundation properties (Freudenthal 

&: Lorsch (1957), Hoskins & Lee (1959) and Pister & Williams (1960), for example). 

The majority of these papers relate to the deformation of a horizontal beam^ under 

a vertical load and were used to model the surface deflections of railway tracks and 

pavements under traffic loading. As a result no axial loads were applied and, typical 

of most bending theories, only the first-order response was considered. Other studies 

have focused on the problem of stability for a strut supported by either an elastic 

foundation (Kerr, 1969) or a visco-elastic foundation (Leu & Yang, 1989). 

The analysis of a strut (or plate) resting on a deformable foundation is based on 

assumptions regarding the behaviour of the constituents: the strut, the foundation, 

and the conditions of continuity at the interface between the strut and foundation. 

The strut may be described using the classical Euler-Bernoulli assumptions (that 

plane cross-sections remain plane during deformation), as a Timoshenko beam in-

corporating shear stiffness, or as an elastic solid. The behaviour of the foundation 

may be modelled as an idealized set of independent elements, as a continuum, or as 

a hybrid model incorporating features of both. Finally, the conditions of continuity 

at the interface may be adhesive (or "welded"), in which case the displacements of 

the strut and foundation are compatible, or they may be frictionless. A number of 

different assumptions are possible and the interested reader is directed to the classic 

work of Hetenyi (1946) for further details. 

Two different models of an elastic strut on a visco-elastic foundation are depicted 

in Figure 1.5. The usual approach in formulating problems represented by astrut-on-

foundation model is to include the foundation reaction in the differential equation for 

the strut. Although the medium is often rather complex, of concern is the response of 

the foundation at the contact area and not the stresses and displacements within the 

foundation material itself. A discussion of several types of visco-elastic foundation 

was given by Kerr (1964). 

'Note the distinction between a beam, which in an engineering context refers to a struc-
tural element under (lateral) loading which causes bending, and a strut (or beam-column), 
which may be subjected to axial as well as lateral loads, and which is susceptible to both 
buckling and bending. 
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F i g u r e 1.5 Models of an elastic strut on a visco-elastic foundation; (a) two-
dimensional halfspace; (b) Winkler-type foundation. 

1 .3 .1 W i n k l e r f o u n d a t i o n 

The simplest representation of an elastic foundation was proposed by Winkler (1867) 

who suggested that the supporting medium consisted of a continuously distributed 

set of linear springs. This formulation assumes the deflection at any point within the 

foundation depends only on the local pressure at that point, and is independent of 

pressures in other parts of the system. For some applications, the Winkler assump-

tion is satisfied very well, for example, railway tracks on a frictional bed of gravel, 

while for other applications where the local reaction depends also upon the deflec-

tions at adjacent points, it is not so good. This discrepancy led to the development 

of several alternative foundation models. 
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The principal criticism directed at the Winkler model is that the surface deflec-

tion is local to the point of loaxi. This argument is valid only when the foundation 

is considered in isolation rather than as an integral part of a system. In a strut-

on-foundation model, the cause of deformation is an instability of the compressed 

layer which is a continuous body so that any lateral deformation will have more than 

simply local effects. Kerr (1964) has also suggested that the Winkler model, in spite 

of its simplicity, may often more accurately represent the actual condition existing 

in certain foundations than do some of the more complicated analyses in which the 

foundation is regarded as a continuous isotropic body. 

1 .3 .2 Tw^o-dimensional ha l f space 

An alternative foundation is the semi-infinite halfspace, or continuum, which repre-

sents the case of complete continuity within the supporting medium. It is however, 

a much more difficult problem to solve, although a number of solutions for specific 

cases are available in the literature (Biot, 1937; Hetenyi, 1946; Timoshenko & Gere, 

1963). Biot (1937) analysed the bending of a beam resting on a two-dimensional 

elastic continuum by removing the beam and studying the effect of a sinusoidal load 

bearing directly on the foundation. He solved a two-dimensional elasticity problem 

to obtain the deflection of the surface and concluded that, for the special case of 

sinusoidal loading, the deflection was inversely proportional to the wavelength. This 

is in contrast to the local Winkler hypothesis. 

In order to describe materials with microstructure it is necessary to use gener-

alized continua with either additional kinematic degrees of freedom (Cosserat con-

tinua) or higher deformation gradients (higher-grade continua). Details about these 

continuum models, and their application to granular materials, are presented by 

Vardoulakis &; Sulem (1995). 
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1 .3 .3 H y b r i d m o d e l s 

Numerous attempts have been made to achieve a compromise between the mathe-

matical simplicity of the Winkler foundation and the close physical representation 

of the solid continuum. These hybrid models either assume some form of interaction 

between the independent visco-elastic elements, for those based on a Winkler hy-

pothesis, or introduce simplifying assumptions about the displacements or stresses, 

for those based on a continuum model. An example of the first type was proposed by 

Hetenyi (1950) who embedded a continuous beam in the discontinuous foundation. 

Another example is the Pasternak foundation which incorporates shear interaction 

in the foundation by connecting incompressible shear elements between the springs 

(Pasternak, 1954). Several workers have proposed foundation models of the second 

type by assuming the deflection at any point depends on foundation pressures over 

a certain length in the vicinity of the point of interest, mostly through the use of 

Fourier integrals (Wieghart, 1922; Biot, 1937; Reissner, 1937). 

1.4 Applications of strut modeLto physicaL problems 

Strut-on-foundation models have a wide range of physical applications. In the exam-

ples cited below, a distinction is made between elastic and visco-elastic foundation 

behaviour. 

1 .4 .1 E l a s t i c f o u n d a t i o n s 

Models of beams on elastic foundations were originally used for determining the 

vertical surface deflections and stresses in railway tracks beneath passing trains 

(Winkler, 1867; Hetenyi, 1946). Struts on elastic foundations are a natural extension 

of these earlier models and have application to the buckling of railway tracks and 

pipelines due to constrained thermal expansion. The strut model has also been 

used by analogy in other applications, such as the buckling of cylindrical shells and 

sandwich structures. A number of examples for the application of an elastic strut 

on an elastic foundation are presented in Figure 1.6. 
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F i g u r e 1.6 Applications for the model of an elastic strut on an elastic foundation: 
(a) railway tracks; (b) submarine pipelines; and structural analogies: (c) axisym-
inetric deflection of cylindrical shells; and (d) sandwich structures. 

Ra i lway t r acks 

Railway tracks are often welded together to form continuous tracks, supported at 

close intervals by ties. In hot weather, the increase in temperature of the track results 

in a build-up of longitudinal compressive stresses which may cause either lateral or 

vertical buckling. In the case of the vertical mode, the ties and ballast act as the 

deformable foundation, and are usually approximated with an equivalent continuous 

foundation of the Winkler type. For the lateral mode, it is the friction between the 

track and ballast which resists horizontal deflection (Tvergaard & Needleman, 1981). 

The vertical mode has attracted a great deal of attention over the years as evidenced 

by the review paper by Kerr (1974) containing nearly 50 references to the problem. 

A summary of analyses of thermal buckling in the lateral plane was also presented 

by Kerr (1975). Actual track buckling may proceed in a more complicated manner 

involving both modes of deformation. 
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Pipel ines 

The development of off-shore oil and gas fields has led to submarine pipelines being 

used to convey products between sites. The fluid is usually transported at elevated 

temperature and pressure, conditions which may induce compressive axial stresses if 

the pipe is restrained. As with track buckling, both vertical ("upheaval") and lateral 

buckling ("snaking") modes are possible (Blackmore, 1995). The vertical buckling 

mode is possible in buried pipes, while lateral buckling is more common in pipes 

which are laid unprotected on the sea bed. In practice, the lateral mode occurs at 

a lower axial load than the vertical mode and is therefore more prevalent unless the 

pipe is laid in a trench (Hobbs, 1981). 

Structural analogies 

In the buckling of cylindrical shells, axisymmetric deflections give rise to hoop 

stresses which restrain further radial displacement. A longitudinal element of the 

cylinder can therefore be regarded as a strut on an elastic foundation, the modulus 

of which is a function of the cross-sectional dimensions and material properties of 

the tube (Hetenyi, 1946; Calladine, 1983). The case of localized buckle patterns in 

cylinders has been modelled by El Naschie (1974; 1989) using a strut on a nonlinear 

foundation. 

Sandwich structures are used extensively in the aerospace industry because of 

their high strength-to-weight ratio (Allen, 1969). They are often composed of rela-

tively stilf flanges, carbon-fibre reinforced plastic for example, and a soft core mate-

rial, such as polystyrene. Each flange acts like a strut while the core plays the role of 

a supporting foundation. Like other structures which are efliicient at carrying load, 

sandwich panels have a tendency for complex, and sometimes catastrophic, failure 

modes (Hunt et ai, 1988). 

1 .4 .2 V i s c o - e l a s t i c f o u n d a t i o n s 

The strut model also has important physical applications in visco-elastic systems. It 

has been used, for example, to determine the force exerted by floating ice sheets on 

stationary objects like oil platforms and bridge piers (Hui, 1986). In this instance, 
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however, the ice is modelled as a linear visco-elastic strut and the water as an elastic 

(Winkler) medium. Similarly, Leu & Yang (1989) have investigated the stability of 

a continuously supported visco-elastic strut. 

Models of beams on visco-elastic foundations were devised as extensions of the 

earlier beam-on-elastic-foundation models with the aim of evaluating the rate ef-

fects of surface traffic loads on deformable subgrades (Freudenthal & Lorsch, 1957; 

Hoskin & Lee, 1959). Applications for an elastic strut on a visco-elastic founda-

tion include the formation of geological folds and the buckling of pavements due to 

constrained thermal expansion. Most of the examples depicted in Figure 1.6 are 

equally applicable here provided the foundation is assumed to have time-dependent 

characteristics. 

Geological folds 

Folds are a feature of deformed rock which may develop in response to compressive 

stresses induced by tectonic plate movement. A typical scenario involves a relatively 

thin layer of stronger rock, such as sandstone, embedded within a thick layer of 

weaker material, like shale. In the most general case, both layer and surrounding 

matrix are assumed to be visco-elastic, although in certain circumstances the layer 

may be considered as elastic. The process of folding has been investigated both 

theoretically (Biot, 1961) and experimentally (Biot et ai, 1961). Folding of multiple 

layers is also possible as indicated by the photograph in Figure 1.2. 

Concrete highways and airfields 

"Blowups" of concrete pavements have been a problem for highway and airport en-

gineers for many years (Kerr & Dallis, 1985). They are caused by axial compression 

induced in the pavement by a rise in temperature and ingress of moisture, and lead 

to a form of upheaval buckling. Although they usually occur at joints or cracks, 

due to the infiltration of debris at these points, they have also been observed in 

continuous reinforced pavements. 
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1.5 Objectives of thesis 

Over the past couple of decades a number of publications have explored the poten-

tial for structural localization in elastic systems (Tvergaard & Needleman (1980), 

Hunt et al. (1989), Wadee (1993) and Hunt & Blackmore (1996), for example). 

These works have gone some way towards explaining how and why localized buckle 

patterns appear in many engineering structures, such as railway tracks and subma-

rine pipelines. This thesis is an attempt to transfer some of this recently acquired 

knowledge to the visco-elastic domain in order to account, in part, for some of the 

diverse range of geological folds observed in nature. 

The implementation of these ideas involves three key steps: 

• the selection of suitable mathematical models and the derivation of their gov-

erning equations; 

• the development of solution procedures, both classical and numerical, for the 

solution of these equations; and 

• the application of these procedures to investigate the effect of various nonlin-

earities within the formulation. 

The first step involves choosing a strut-on-foundation model to simulate the 

process of folding. A simple one-dimensional model suffices as it is known to capture 

many of the phenomena common to a variety of buckling problems, most importantly 

that of localization. Classical methods of solution, while only approximate, are useful 

for revealing the underlying structure of the nonlinear problem. An accurate and 

robust numerical technique is essential for tracing localized solutions as they evolve 

in time. In tandem, these methods provide an independent check on one another. 

The final step is to make use of these procedures to investigate the variety of solutions 

displayed by the governing equations. The emphasis throughout is on the qualitative 

features of these solutions rather than trying to model specific material behaviour. 
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1.6 Outline of thesis 

This thesis is divided into seven chapters, a list of references, and four appendices. 

The early chapters deal with the subjects of geological folding and elastic buck-

ling, although they do contain elements of original work. The major contributions 

come later with the development and application of a new numerical procedure for 

isolating localized solutions. 

Chapter 2 concentrates on visco-elastic models for the time-dependent process 

of geological folding. First, the deformation process itself is described and then 

an account is given of various buckling models presented in the literature. Next, 

various forms of visco-elastic behaviour are discussed in terms of the fundamental 

rheological units of an elastic spring and a viscous dashpot. Linear Fourier analyses 

for the buckling of an elastic strut on elastic, viscous and visco-elastic foundations 

are then presented. These formulations are suitable for identifying characteristics 

of the solution when fold amplitudes are infinitesimally small. Finally, a rigid link 

model is used to introduce the concept of post-buckling in a closely related one-

degree-of-freedom system. 

Chapter 3 is devoted to the subject of elastic buckling in the strut model. This 

is important because it is the buckling instability of the purely elastic system that 

triggers the onset of a fold and which is the driving force behind its subsequent 

growth and evolution. The chapter begins with a review of methods for the analysis 

of elastic buckling, highlighting the important role that nonlinear terms have in 

determining the post-buckling behaviour of structures. The large-deflection equation 

governing the response of an elastic strut on a Winkler foundation is derived and 

the linearized form is considered to determine the behaviour of the solution for small 

deflections. Finally, a perturbation method is used to reveal the underlying structure 

of the post-buckling response of the system. 

Chapter 4 describes the numerical methods which are employed throughout this 

thesis. It begins with a review of those methods which are suitable for the solution of 

localized boundary-value problems, distinguishing between initial-value (shooting) 

methods and boundary-value approaches. The procedure for solving the governing 
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partial differential equation is outlined, including how the conditions of rigid end 

displacement are enforced. In the remainder of the chapter, the numerical methods 

are validated by comparison with an analytical solution and alternative solution 

procedures. 

Chapter 5 explores the potential of classical solution techniques for determining 

localized buckle patterns in the strut-on-foundation model. The chapter commences 

with an overview of the method of weighted residuals and variational principles, and 

a discussion of suitable trial functions for these methods. The benefits and limita-

tions of two methods, one based on collocation and the other a Galerkin procedure, 

are examined. The latter method, while generating the better results, is restricted 

to the case of a purely elastic foundation (Whiting, 1996). The collocation method 

is an improvement of the modal approach presented by Hunt et al. (1996a). The 

results of both methods are compared with independent numerical solutions. 

Chapter 6 investigates the effect of different sources of nonlinearity on the be-

haviour of the strut model. Two different models are studied. One uses linear strut 

theory together with a nonlinear foundation and is valid for small, but finite, deflec-

tions. The other uses nonlinear strut theory with a linear foundation and is capable 

of modelling arbitrarily large deflections. In either case, the evolution of non-periodic 

buckle patterns is examined under conditions of controlled end displacement. Some 

of these results are to be published shortly (Whiting k Hunt, 1996). 

In Chapter 7 conclusions are drawn from the preceding research and areas worthy 

of further investigation are noted. Pointers are given as to how other features may 

be incorporated in the model to investigate other phenomena. 



Chapter 2 

Folding of geological strata 

This chapter introduces the time-dependent process of geological folding. It begins 

with a description of the deformation process itself and an account of theoretical 

buckling models presented in the literature. Different types of visco-elastic behaviour 

are discussed in terms of combinations of springs and dashpots. A model of an 

elastic strut on a visco-elastic foundation, which will be used extensively throughout 

this thesis, is defined. Linear Fourier analyses are presented for the three separate 

cases of an elastic strut on an elastic, viscous and visco-elastic foundation. These 

formulations are suitable for identifying characteristics of the folding process when 

amplitudes are very small. Finally, a rigid link model is used to illustrate aspects of 

the nonlinear post-buckling response of a closely related system. 

2.1 Introduction 

Folds are a common feature found in deformed rock and usually develop as a result 

of a buckling instability arising from a collision between tectonic plates. They occur 

on all levels, from the microscopic to the regional, and exist in a diverse range of rock 

compositions and environmental conditions. As a result they display an incredible 

variety of shapes and sizes. Minerals and hydrocarbons are often associated with 

folds, in concentrations which are economically viable for extraction. So there are 

commercial as well as academic interests in understanding how folds develop. 
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While there is a well established bulk of work pertaining to the appearance, de-

scription and classification of folds, the mechanisms of their formation are still poorly 

understood. Specifically, it appears that results gained from mathematical models 

do not reflect the complexity of shapes and forms observed in nature (Miihlhaus 

et ai, 1994). 

2 .1 .1 T h e geo log ica l process of fo ld ing 

In the upper levels of the earth's crust the contrast between rheological properties 

of adjacent layers of rock tends to be large, providing the necessary ingredients for 

the development of folds. Although the mechanisms leading to their formation are 

complex and not well understood, structural geologists recognize four main stages in 

the progressive development of a mature fold. These are described in Chapter 15 of 

the text by Price & Cosgrove (1990), entitled "The life and times of a buckle fold." 

A typical scenario involves a competent layer of sandstone or limestone, say, 

embedded in a softer medium such as shale. A collision between tectonic plates, 

or a similar event, is followed immediately by a period of homogeneous thickening 

of the layer. This is a stable process which becomes unstable with the onset of 

fold initiation. The instability may be triggered by a geometric irregularity, such 

as local layer thickening, or by local variations in rheological properties of the layer 

or embedding medium. The transition from homogeneous thickening to folding is 

unlikely to be abrupt and is probably characterized by a progressive localization of 

deformation within the layer. The resistance to deformation falls as strain-softening 

sets in, causing the rate of deformation to increase. Fold initiation is, therefore, 

followed by a rapid growth in the amplitude of the buckle. This continues until 

some geometrical or mechanical constraint results in the onset of strain-hardening, 

causing the process of folding to slow, and eventually cease. This is known as the 

finite development stage. At this point the fold is said to have locked up and further 

shortening of the layer takes place by post-buckle flattening. 
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2 .1 .2 A p p r o a c h e s t o u n d e r s t a n d i n g t h e d e v e l o p m e n t of fo lds 

Geologists use three complementary techniques to help them understand the for-

mation of folds. These are: field work, theoretical analyses and experimental work. 

Field work provides a description and classification of various naturally occurring 

folds and is often used as a reference with which to compare the results of theoretical 

and experimental studies. The extent to which geometrical characteristics of folds 

and internal strain distribution can be used to determine the history of deformation 

is described by Hudleston & Lan (1993). Many theoretical analyses, including a 

number of buckling theories, have been proposed to account for the phenomenon of 

folding. However, the range of parameters which control the development of folds 

is so large that no single theory of buckling can completely account for all types of 

folding behaviour. Experimental work, using real rocks or analogue materials, helps 

not only in understanding fold initiation and growth, but also provides valuable in-

formation about the rheological properties of rocks. An example is the experimental 

verification presented by Biot et al. (1961) of his own folding theories for elastic and 

viscous media in compression (Biot, 1961). 

2.2 Developments in the analysis of folding 

The process of geological folding is often idealized as a thin layer of rock under axial 

compression surrounded by a thick layer of softer material. The ensuing instability 

models the evolution of a fold in a geological environment, from an initially hori-

zontal state to its final deformed shape. The rheological behaviour of the layer and 

embedding medium are typically assumed to be either elastic, viscous, plastic or a 

combination of all three. A number of reviews of theoretical buckling models are 

available in the literature (Ramsay, 1967; Hobbs et a/., 1976; Johnson, 1977; Price 

k, Cosgrove, 1990). 

2 .2 .1 Linear buck l ing theor i e s 

Beam theory was first introduced to geologists by Willis (1894) to account for the for-

mation of fold trains in mountain belts. Another pioneer was Smoluchowski (1909) 
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who modelled the deformation of the earth's crust on a soft mantle, treating it as an 

elastic layer floating on a dense fluid. In the 1940s several engineers (Gough et al, 

1940; Bijlaard, 1946) investigated the buckling of an elastic layer in a soft elastic 

medium. These analyses were based on plate theory and restricted the problem to 

one of static instability. Purely elastic theories, however, are unlikely to explain real 

geological phenomena as viscosity is required to account for their time-dependent 

nature. 

Biot (1957) considered an elastic layer of thickness A in a viscous matrix and 

found that, for a constant load P , there is a stable wavelength. 

where E is Young's modulus and v is Poisson's ratio. Disturbances of this wave-

length exhibit the maximum rate of growth in time and, because of this selective 

amplification, the shape of the deformed layer is eventually dominated by this wave-

length. Biot (1961) called this the dominant wavelength. Similarly, for a buckling 

model involving a viscous layer, of viscosity 77, embedded in a viscous matrix of 

viscosity %, Ram berg (1959) and Biot (1965) report a prevailing wavelength 

Z/(f = l n h ?l (2.2) 
V 6% 

Although these analyses were restricted to fold initiation, the principal results 

concern the relationship between the wavelength/thickness ratios and competence 

contrast between layer and matrix. The dominant wavelength theories of Biot (1957; 

1959; 1961) and Ramberg (1959; 1960) suggest that a layer with many random small 

imperfections embedded in a weaker viscous matrix will develop into a regular train 

of folds when subjected to a constant end load. The dominant wavelength in an 

elastic system depends on the magnitude of the applied load and properties of the 

layer, yet is independent of the viscosity of the surrounding medium. By contrast, 

the dominant wavelength of the viscous system depends on the ratio of layer and 

matrix viscosities and the layer thickness. 
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Maurice Biot is generally regarded as having contributed more than any other 

individual to the present understanding of folding. His pioneering studies, though 

strictly valid only for infinitesimal defections, have provided direction for all other 

studies to date. Besides the dominant wavelength expressions for a thin layer in 

a viscous medium, he also introduced the idea of wavelength selection to folding 

theory, developed general anisotropic models for layered visco-elastic media, and 

derived one of the early first-order solutions for the buckling of a deep beam (Biot, 

1965). 

The main characteristic of these early theoretical studies is their dependence 

on the critical load obtained by a linear stability analysis. They typically assume 

conditions of plane strain, small amplitudes, sinusoidal profiles, and linear Theo-

logical properties. They tend also to neglect gravitational effects and adherence 

between layers. The advantage of such linear theories is that second-order terms 

are extremely small and can be ignored. While this considerably simplifies the 

mathematics of the problem, it limits their application to the very early stages of 

deformation. Linear theories cannot be used to predict changes of layer thickness 

or changes in the shape of folds as they develop. Geologists have traditionally re-

sorted to laboratory and field work to gain insight into the amplification of buckling 

instabilities into finite structures. 

Many of the shortcomings of these early buckling models have been overcome 

with the advent of computing facilities which have enabled effects arising from non-

linear materials and large deflections to be modelled. Some of these studies are 

described in § 2 . 2 . 3 . 

2 , 2 . 2 C o r r e s p o n d e n c e pr inc iple 

Formal analogies between the rheological equations of visco-elasticity, involving rates 

of stress and strain, and those of elastic media, relating stress to strain, have been 

known for some time. Alfrey (1944) showed the analogy is applicable to prob-

lems involving incompressible and isotropic media. The complete analogy, including 

compressibility and anisotropy, was derived by Biot (1954) in the context of ther-

modynamics, and is referred to as the correspondence principle. A brief description 
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of the analogy is presented below for the case of a plate on a foundation. A more 

general and comprehensive account is provided by Biot (1957) and Fliigge (1975). 

The flexural deformation of an elastic plate, embedded in a general visco-elastic 

medium of vertical resistance F, and subjected to a compressive load P, is governed 

by the differential equation (Biot, 1965) 

w"" + Pw" + F = 0 . ( 2 . 3 ) 
12(1-1/2) 

In order to make use of the correspondence principle, the elastic coefficients E and 

V are first expressed in terms of the Lame constants G and A, where 

The Lame constants, G and A, are in turn replaced by their corresponding visco-

elastic operators R{dt) and S{dt), respectively, so that Equation (2.3) becomes 

z^Bsiw"") + P w " = Q, (2.5) 

in which = ^ , and 

The operators Bs{dt) and Bh{dt) characterize the visco-elastic properties of the strut 

and surrounding medium. For an incompressible elastic strut Bg = 4Gs, while for 

an incompressible viscous base Bh = 4 / / ^ . 

The existence of a formal correspondence between linear elastic and visco-elastic 

problems means that the large volume of work which exists for elastic materials can 

be applied to problems of visco-elasticity. The ability to transfer solutions from the 

stability of elastic systems to the visco-elastic domain stems from the preservation of 

linearity of the stress-strain relations during linear visco-elastic deformation. Con-

sequently, the solution of nonlinear visco-elastic problems cannot be derived from 

related elastic solutions using the correspondence principle. 
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2 . 2 . 3 N o n l i n e a r t h e o r i e s 

Buckling models which incorporate nonlinear rheological behaviour and which per-

mit large defections are valid beyond the initial phase of folding. They are more 

likely, therefore, to account for the variety of deformed structures observed in nature 

than are linear equations derived from first-order models. In general, the resulting 

nonlinear equations do not possess exact solutions and it is usually necessary to 

resort to approximate or numerical methods for their solution. For this reason, few 

studies of large-amplitude folding or nonlinear material behaviour were carried out 

prior to the availability of computers. 

One of the first large-amplitude buckling studies in geology was prompted by the 

close resemblance between the meandering forms of ptygmatic folds and the highly 

deformed elastica rod (Johnson, 1970). More recently, Miihlhaus (1993) investigated 

the influence of geometric nonlinearities in the finite-amplitude buckling of a deep, 

extensible elastic layer in a viscous medium. This analysis was restricted to the case 

of constant axial stress and the results suggest that nonlinearities have a destabilizing 

influence which merely amplifies the behaviour of a linear stability analysis. The 

only significant difference is that a critical time is reached at which the amplitudes 

of the nonlinear problem become infinite. 

In a subsequent paper, Miihlhaus et al. (1994) considered the influence of axial 

constraint on the buckling response of an elastic layer and a viscous layer embedded 

in a viscous medium. This model, unlike Biot-type models which have free ends, 

included a variable axial stress which was determined by the constraint of constant 

end-shortening. In the case of the elastic layer, the end-shortening was held constant 

after the application of load. During the initial stages of fold evolution the profile 

of the fold was governed by Biot's (1965) dominant wavelength. The fold then went 

through various transitional stages until, after infinite time, the appearance of the 

fold was dominated by the only stable mode — a half-sine wave over the length of 

the plate. 

The papers of Miihlhaus (1993) and Miihlhaus et al. (1994) use semi-analytical 

procedures to approximate the solution of the nonlinear problem. Finite element 

methods (Triantafyllidis k Leroy, 1994; Barnichon, 1994) and finite difference meth-
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ods (Zhang et al., 1996) have also been applied to the problem of geological folding. 

Zhang et al. (1996) used a solid modelling code to examine the influence of initial 

imperfections in the geometry of the layer on the buckling process and resultant fold 

shapes. They employed a dynamic relaxation (finite difference) technique to solve 

the discretized equations for two different systems: a visco-elastic (Maxwell) layer in 

a medium of the same material, and an elasto-plastic (Mohr-Coulomb) layer also in a 

medium of the same material. This choice of two different types of rheology reflects 

the difficulty in prescribing appropriate mechanical flow laws in complex geological 

conditions. Ord (1991) suggests that elasto-plastic models are applicable to folding 

of rocks in the upper crust while visco-elastic rheology is more appropriate for rock 

behaviour at high temperatures or deeper lithospheric levels. 

Zhang et al. (1996) found that fold growth is very small in the early stages of 

deformation, wavelength and amplitude being stabilized at the values of the initial 

perturbations. However, after a certain amount of axial displacement, a period of 

explosive growth takes place with the onset of wavelength selection. After a period 

of time, the growth of the fold slows down. This growth feature is consistent with 

the results of Miihlhaus et al. (1994) for velocity boundary conditions. Zhang et 

al. (1996) also show that fold growth is exponential if stress boundary conditions 

are used. The occurrence of constant stress is an unlikely condition for natural 

folding and is one of the major shortcomings of early linear theories. The authors 

suggested that single-layer buckling is essentially a process of selection, amplifica-

tion and propagation of initial perturbations, subject to the influence of competence 

contrast (the ratio between material properties of the layer and embedding ma-

trix). They concluded that the indeterminate number of initial imperfections and 

competence contrasts which exist in natural situations probably accounts for the 

complexity of natural folds. 

Figure 2 . 1 shows two sets of results obtained by Zhang et al. ( 1 9 9 6 ) for a single 

isolated imperfection in the centre of a layer. The evolution sequence (a) for a visco-

elastic system shows that the early stages of folding are dominated by a gradual 

amplification of the initial imperfection, with the remainder of the layer remaining 

relatively flat. As the end displacement increases, new perturbations form in the 
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(a) (b) 

Figure 2.1 Fold development from an initial imperfection in a competent layer: 
(a) visco-elastic layer and matrix; and (b) elasto-plastic layer and matrix (after 
Zhang et al. (1996)). 

layer adjacent to the initial imperfection through a sideways propagation. This 

development of folds correlates closely with the progressive fold propagation theory 

of Cobbold (1975). For the elasto-plastic model (b), a yield point develops at the 

point of maximum amplitude in the initial imperfection. The onset of plastic yielding 

means that further deformation occurs preferentially in this area, resulting in a 

localized fold train. The formation of new folds along the layer is less prominent 

than for the visco-elastic material. 

Barnichon (1994) used a finite element code (Geosim-2D) to study the growth 

of fold structures from initial periodic imperfections in purely elastic systems. The 

program he used was developed especially for simulating geological deformations, 

both faults and folds. It uses a Green-Lagrange strain tensor to model large deflec-

tions of a layer, unlike many other finite element packages which use an incremental 

deformation tensor. The report by Barnichon (1994) was a parametric study to 

identify the effect of length and thickness on the dominant wavelength of an em-

bedded layer. Like the earlier studies, controlled end-shortening was used to deform 

the layer and surrounding matrix. His numerical studies were confined to the devel-

opment of purely periodic forms in elastic structures and are, therefore, of limited 

significance to this study. 
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F i g u r e 2.2 Fundamental Theological models; (a) an elastic spring (Hookean 
model); (b) a viscous dashpot (Newtonian model); and (c) an elasto-plastic block 
(St. Venant model). 

The instability of a layer resting on a halfspace has also been discussed by Var-

doulakis &; Sulem (1995) and Johnson &: Fletcher (1994). The first authors used a 

theory based on incremental continuum mechanics to investigate folding of elastic 

and visco-elastic media as a bifurcation problem. Their analysis is particularly suit-

able for multi-layers and materials with microstructure, neither of which are dealt 

with in this thesis. The treatment by Johnson & Fletcher (1994) is confined to the 

folding of viscous layers and gives no consideration to elastic layers. 

2.3 Rheological models 

The behaviour of rock under stress is often described using the analogous mechan-

ical models shown in Figure 2.2. The fundamental models are a spring, a dashpot 

and a block, representing elastic, viscous and plastic behaviour, respectively. These 

models may be combined in various ways to form compound rheological models 

whose behaviour under stress mimics that of rock materials established by labo-

ratory experiments (Ramsay, 1967). The elements whose combination represents 

linear visco-elasticity are the linear spring, which obeys Hooke's law, F — kiu, and 

represents an ideal elastic solid, and the dashpot, which is filled with a Newtonian 

fluid obeying the relation F = rjw, where w = The spring modulus, k, and dash-
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pot viscosity, 77, are assumed to remain constant with time, in contrast to the aging 

behaviour used in models of concrete creep (Bazant & Cedolin, 1991). Plasticity is 

not considered in this thesis. 

The behaviour of deforming rock is a complex process which is affected by tem-

perature, chemical environment and numerous other factors. There are also many 

mechanisms of internal deformation, for example, grain boundary movement and de-

velopment of crystal dislocations. As none of the rheological models relates directly 

to the structure of matter, it is impossible for them to offer more than a qualitative 

description of rock behaviour under stress. Nevertheless, realistic descriptions of the 

time-dependent deformation of rock may be obtained by combining the fundamental 

models together. The main compound rheological models are described next. 

2 .3 .1 Maixwell m o d e l 

In the late 19th century J. C. Maxwell, from Britain, first described visco-elastic 

material behaviour using a spring and dashpot connected in series, as depicted in 

Figure 2.3 (a). The motion of the perforated piston inside the dashpot produces a 

resisting force in the liquid which is proportional to the velocity of the piston. With 

the spring and dashpot arranged in series, the unit exhibits an instantaneous elastic 

response when stressed. The total deformation, w, is the sum of the elastic defor-

mation, Ws, and viscous deformation, Wd- The corresponding differential equation, 

describing the time-dependent stress-strain (or force-displacement) relationship, is 

1 ^ + 1 ^ = W. ( 2 . 7 ) 
k T] 

When a Maxwell model is subjected to a sudden displacement of one end, the 

entire stress is taken by the spring, the development of viscous strain requiring fi-

nite time. If the boundary displacement then remains constant, the stress in the 

spring gradually induces viscous deformation of the dashpot and the spring stress 

diminishes asymptotically to zero. This response is known as stress relaxation (see 

Figure 1.4). Alternatively, if the model is subjected to a constant force, the de-

formation grows linearly after the instantaneous elastic response. This represents 

constant rate of strain, or creep (see Figure 1.3). 



2 FOLDING OF GEOLOGICAL STRATA 47 

/ / / / / / / / / 

Fd = •qWd 

Fs — k Ws 

Fd = r}Wd 

Wd ^ 

///////// 

Fs = kWs 

f Ws 

1 • 1 
LF+-F=W 
k rj 

(a) 

.1 
^ w 

k w + r] w = F 

(b) 

F i g u r e 2.3 Visco-elastic models: (a) Maxwell model; and (b) Kelvin-Voigt model. 

2 .3 .2 K e l v i n - V o i g t m o d e l 

Real materials rarely behave like perfect solids and it is often found that some time 

elapses after the application (or removal) of an applied stress, before the system 

responds. Lord Kelvin, from Britain, and Voigt, of Germany, used a simple model 

to describe this damping mechanism by combining a spring and dashpot in parallel, 

as shown in Figure 2.3 (b). The total stress, F, applied to a Kelvin-Voigt model 

is the sum of the elastic stress, Fg, and viscous stress, and the corresponding 

differential equation is 

F = k w + -qw. ( 2 .8 ) 

In contrast to the Maxwell model, there is no instantaneous elastic deformation 

after the application of a load. Instead, viscous movement of the dashpot is required 

before elastic strains can develop. Under constant stress the deformation increases 

asymptotically from zero to its final, elastic value, as shown in Figure 1.3. 
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Figure 2 .4 Viscoelastic chains: (a) Maxwell chain; and (b) Kelvin chain. 

2 . 3 . 3 O t h e r v i s co -e la s t i c m o d e l s 

Roscoe (1950) showed that all types of linear visco-elastic behaviour, which can be 

represented by combinations of springs and dashpots, may be described using one of 

two canonical models. His work made use of the analogy between electrical circuits 

and mechanical systems in which resistors are replaced by springs and dashpots 

by capacitors; the relation between current and potential difference in an electrical 

network is then equivalent to that between force and extension in the mechanical 

model. The two canonical models are: a Maxwell chain, comprising a sequence of 

Maxwell units coupled in parallel, and a Kelvin chain, consisting of a number of 

Kelvin-Voigt units in series. These Maxwell and Kelvin chain models, shown in 

Figure 2.4, are capable of describing all forms of linear visco-elastic behaviour, so 

there is no need for other arrangements of springs and dashpots to be considered. 
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The differential equation for both chain models has the general form 

P[F{x, t)] = Q[w{x, I)], (2.9) 

where the differential operators P and Q are defined as 

d 
P = R , + f > l g J + P 2 ^ + --- . 

d 
Q = 9o + 9i ^ + 92 ^ , (2.10) 

in which p, and g, are material constants relating to spring stiffnesses and dashpot 

viscosities. For a Maxwell model, the constitutive relation (2.7) is retrieved by set-

ting po = ^, Pi — Pi = 0 for i > 2, and qi = 1, qi — 0 for i ^ 1. For linear 

material behaviour, Laplace transformations can be used to manipulate the differ-

ential equation (2.9) into an algebraic relation between stress and strain (Fliigge, 

1975). 

Visco-elastic materials may be classified as fluids or solids. Fluids are those 

materials for which the creep curve at constant stress is unbounded, for example, the 

viscous element and Maxwell model. When the creep curve is bounded the material 

is called a solid, for example, the elastic element and Kelvin-Voigt model. The 

Maxwell chain represents a solid if at least one Maxwell unit in the chain is without 

a dashpot. The Kelvin chain represents a solid provided no Kelvin-Voigt units are 

without springs. In general, if a path exists through a chain which traverses only 

spring elements, the model represents a solid. Conversely, if a path exists traversing 

only dashpot elements, the model represents a fluid, unless there is an alternative 

path involving only springs. In reality it is often difficult to distinguish between the 

two, especially for very slow rates of deformation. 
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Figure 2.5 Model of an elastic strut on a visco-elastic (Maxwell) foundation. 

2.4 Strut-on-foundation model 

The process of folding may be modelled using an incompressible elastic s t rut , of 

flexural stiffness EI, embedded in a visco-elastic medium of vertical resistance per 

unit length F, and compressed horizontally by an axial load P. For the s t rut model 

shown in Figure 2.5, the governing equation is 

EI w ^1 — -t- Aw"'w"w' -t- w"^ -t- Zw'^^ j 

-T- Pw" ^1 - ^ + F = 0 , (2.11) 

where F obeys the Maxwell relation (2.7). The derivation of this equation is deferred 

until the next chapter. 

Inertia terms are ignored on the premise tha t geological folding is an inherently 

slow process requiring many thousands of years (Price &: Cosgrove, 1990). The effect 

of neglecting axial inertia terms is to assume that the axial wave speed far exceeds 

the bending wave speed, so the axial force along the length of the s trut is identical 

everywhere to the external load. 

2 . 4 . 1 M a x w e l l f o u n d a t i o n 

A Maxwell foundation of the Winkler-type is chosen for the strut model so tha t the 

immediate response of the system mirrors that of pure elasticity, yet in the long-

term is governed by the viscous component of the embedding medium. This choice of 
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foundation is based on the increasing acceptance by geologists of the importance of 

elasticity in the early stages of fold formation. This situation is succinctly expressed 

by Price & Cosgrove (1990): 

". . .elastic behaviour governs fold initiation in the upper levels in the 

crust . . . Geologists for the last two decades have been misleading them-

selves by ignoring this situation." 

Maxwell constitutive relations have been used extensively in buckling models 

for folds (Biot, 1959; Chappie, 1968; Zhang et ai, 1996). This is because the 

Maxwell model is well-suited to modelling the response of the earth's crust, which 

is observed to undergo short-term elastic deformation when subjected to a rapid 

loading, but which gradually flows if the load is maintained for long periods (Turcotte 

& Schubert, 1982). This idea is supported by Johnson & Fletcher (1994) who 

suggest that on short geological time scales (1-10^ seconds) rocks act as elastic 

solids, as evidenced by the fact that seismic shear waves propagate through the 

earth's mantle with relatively little attenuation, and behave as viscous fluids on 

large geological time scales (> 10** seconds). In particular, a Maxwell model can 

predict the irrecoverable deformation of rocks at high temperature, slow strain rates 

and high confining pressures (Zhang et al., 1996). 

2.5 Linear Fourier analysis 

In this section the linear equation for the strut model is examined to identify features 

of the folding process when amplitudes are very small. The small displacement 

response is governed by the equation (Biot, 1965) 

where x is measured horizontally. The vertical deflection w is expressed as an infinite 

set of Fourier components with amplitudes a ^ , 

OO 
10 

m=0 

— ^ ^ COS 3̂ * ( 2 . 1 3 ) 
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and the bedding force is similarly defined, 

00 

F = FmCOsPrnX, (2.14) 
7 7 2 = 0 

where /?„ = 27rm/Z,. Inserting these periodic forms in the differential equation (2.12) 

and collecting coefficients results in the amplitude equation 

— FPm^m + Fm = 0. (2.15) 

Now the response of the system, measured in terms of the amount of each of the 

harmonic components, can be examined for different types of foundation behaviour. 

2 .5 .1 E las t i c f o u n d a t i o n 

Consider an embedding medium which is purely elastic. The amplitudes of the 

bedding force are related to the amplitudes of the buckle pattern by the Winkler 

relation 

Fm = kam, (2.16) 

where k is the foundation stiffness. After substituting Fm into Equation (2.15) and 

rearranging, the following expression is found 

jp = 4 - C Z - 1 7 ) 
Pm 

in which each wavenumber /?„ is associated with a different critical loaxl. Differen-

tiating this expression with respect to Pm and equating the result to zero gives the 

minimum critical load 

2vv:E7, (2 18) 

and corresponding mode 

% i . = \ [ ^ - (2-19) 

Thus, for an elastic strut on an elastic foundation, a sinusoidal buckle pattern of 

wavelength L = emerges at the minimum critical load This wave-

length depends on the material properties but is independent of the length. 
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2 . 5 . 2 V i s c o u s f o u n d a t i o n 

Now suppose the supporting medium is purely viscous, so tha t the amplitudes of 

the bedding force F are 

Fm = rjCim, (2.20) 

where rj is the bedding viscosity, and Q = Substituting Fm into Equation (2.15) 

gives 

EiPm(^rn - P înOLra + = 0. (2.21) 

The variation of amplitude for each mode with time is assumed to have the form of 

the eigenmode solution a-m = leading to the dispersion relation 

U). m = i ( P g . - E l U i ) , (2.22) 

which determines the frequency for a given wavenumber Pm- Thus, a single 

buckle profile represented by a sum of modes will change its shape as time evolves 

by virtue of the different growth rates of the constituent modes, causing the profile 

to spread out or "disperse". 

For conditions of constant load, at time t all wavelengths apart from tha t for 

m = 0 have a nontrivial form. Plotting against /3m gives the curves of Figure 2.6. 

The wavelength of the most rapidly growing amplitude, which occurs when Um is a 

maximum, is found by setting dum/dPm = 0. The associated wavenumber is 

Wj = ^ Pd, where Pd = \ j ( 2 . 2 3 ) 

This corresponds to the dominant wavelength of Biot (1965) for an incompressible 

elastic plate on a viscous foundation given in Equation (2.1). The most noticeable 

feature of this expression is tha t the wavelength depends on the applied load, in con-

t ras t to the previous elastic system. A useful relation exists between the dominant 

viscous wavenumber Pd and the minimum-load elastic wavenumber /Smin-

A = (2-24) 
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Figure 2.6 Dispersion relations for an elastic strut in a purely viscous medium. 
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Figure 2.7 Dispersion relations for an elastic strut in a visco-elastic medium. 
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2 . 5 . 3 V i s c o - e l a s t i c f o u n d a t i o n 

The strain rate equation for a bedding material with a Maxwell constitutive law is 

T PM H FM = O-M- ( 2 . 2 5 ) 
K Tj 

Under conditions of constant load {P = 0), and with the same assumption of peri-

odicity in X and eigensolution as before, the visco-elastic dispersion relation is 

= " Ew} - k' 

where r = k/rj. Plotting against Pm gives the family of curves shown in Fig-

ure 2.7. As P approaches the elastic critical load the denominator of Equa-

tion (2.26) vanishes and approaches infinity. 

2.6 Rigid link models 

Mechanical models, consisting of rigid links and linear springs, have often been used 

to gain insight into the nonlinear response of more complex systems (Hayman, 1978; 

Providencia e Costa, 1 9 9 4 ) . In this section such a model is used to introduce a 

number of important concepts of stability. The model, which has a single degree of 

freedom, displays many of the features of the continuous problem of a strut on a 

foundation, yet is amenable to exact nonlinear analysis. It is particularly useful for 

demonstrating the effect of bending stiffness and foundation stiffness on the post-

buckling response of the purely elastic system and for observing the contribution of 

a time-dependent foundation. 

The simple mechanical model, shown in Figure 2.8, consists of two simply-

supported rigid bars of negligible mass connected at the centre pin by a rotational 

spring and a Maxwell unit. The rotational spring represents the bending stiffness of 

an elastic strut while the vertical spring-dash pot unit corresponds to the resistance 

provided by a visco-elastic foundation. The springs and dashpot are assumed to 

respond linearly with spring constants s and k, and dashpot viscosity i]. The gov-

erning equation for the rigid link model may be obtained by considering the forces 
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F igure 2.8 One-dimensional rigid link model supported by a Maxwell unit. 

acting on half the structure. Taking moments about one end leads to the equilibrium 

equation 

- F L cos 6 + 2s9 — PL sin 6 = 0, (2.27) 

where P is the applied load, F is the vertical resistance of the Maxwell unit acting 

on the central pin, and 0 is the angle of inclination of each link from the initially 

horizontal position. When the model is subjected to a sudden displacement of 

the end, it adopts the equilibrium position shown in the figure. For a Maxwell 

foundation, the response is characterized by two phases: an instantaneous phase of 

elastic deformation followed by a period of visco-elastic flow as the dashpot begins 

to move. 

2 .6 .1 E l a s t i c f o u n d a t i o n 

Consider first the initial response where the dashpot does not have time to respond. 

The foundation reaction is therefore purely elastic and proportional to the vertical 

displacement of the centre pin, so that F = kL sin 9. Thus, providing 0^0, the 

load for the post-buckled state is 

f + W c o s g . 
L sin 9 2 

(2.28) 
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Figure 2.9 Post-buckling behaviour for degenerate rigid link models. 

To appreciate fully this post-buckling response, observe the individual contributions 

for each linear spring shown in Figure 2.9. When the model is constrained by a 

rotational spring only, corresponding to the case of no foundation response (A: = 0), 

the post-buckling response is stable with increasing end load required to induce 

further deformation. This corresponds very closely with the post-buckling response 

of an Euler column without a supporting foundation (Allen & Bulson, 1980). In 

contrast, when the model is constrained by a vertical spring alone, the case of 

no bending stiffness (s = 0), the response is an unstable symmetric bifurcation 

with the equilibrium path falling from the critical point. The curves in the figure 

are nondimensionalized with respect to the critical loads for each model. This is 

possible only when a reduced model is considered, having either a rotational spring 

or a vertical spring but not both. 

Given that rotational and vertical spring models exhibit such contrasting post-

buckling characteristics, a natural question to ask is: what happens when both 

springs are present simultaneously? This is, after all, the model for a strut on 

an elastic foundation. The answer is that either stable or unstable post-buckling 

behaviour is possible depending on the relative magnitudes of the spring stiffnesses. 
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This point is illustrated in Figure 2.10 where the results are plotted in terms of a 

rotational spring parameter, s* = s/L, and a vertical spring parameter, k* = kL. 

The top figure shows various post-buckling solutions for a range of k* values while s* 

remains constant. These results are useful when considering the response of a strut 

of known bending stiffness resting on a foundation of unknown stiffness. The critical 

buckling load increases with k* and there is an increasing tendency for unstable post-

buckling behaviour to occur. In the lower figure, the values of s* and k* are scaled 

so the critical load is the same for each solution. This is useful when considering 

behaviour in a system where neither of the material parameters are clearly defined, 

as for example, in layers of rock. 

The figures indicate that for low k* values, in other words when the stiffness of the 

strut predominates, the equilibrium branch increases monotonically with increasing 

9. For larger values of fc*, the equilibrium branch falls at first and then rises, a 

behaviour which is initially unstable under load control. It is the relative amounts 

of s* and k* (and hence s and k) that dictate whether the post-buckling behaviour of 

the system is stable or unstable. Identical results have been obtained in connection 

with the buckling response of floating ice sheets (Kerr, 1980) and axially compressed 

embedded layers with linear (Kerr, 1986) and nonlinear (Kerr, 1989) foundation 

reactions. Unlike the results for the degenerate models with only one restraining 

spring, the results here cannot be made independent of the spring constants. A 

final point of interest is that, like the Euler strut and unlike the axially compressed 

cylinder, the post-buckling behaviour of the rigid link model is not severe and is 

therefore not highly imperfection sensitive. 

2 . 6 . 2 V i s c o - e l a s t i c f o u n d a t i o n 

Consider now the time-dependent response of the rigid link model when an initial 

angle of deformation Oq is maintained indefinitely. Recall that some of the initial 

(elastic) post-buckled states of the model are unstable under dead (constant) load 

conditions. Rigid load conditions must be used to ensure that all deformed configu-

rations of the system can be attained. The evolution response of the model for k* = 2 

and s* = 0.5 is shown in Figure 2.11. The initial response (curve A) corresponds 
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Figure 2.10 Post-buckling behaviour of rigid link model for different values of 
spring parameters k* and s*. 
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Figure 2.11 Evolution response of rigid link model supported by a Maxwell unit. 

to the top curve of Figure 2.10 (a). As time passes, the stress in the vertical spring 

is alleviated by the viscous flow of the dashpot; ultimately, the bending energy of 

the strut is the only energy remaining in the system. The response in time is one 

of exponential decay with the passage of time indicated by arrows. The final state 

(curve B) corresponds to the lowest curve in Figure 2.10 (a) and coincides with the 

case of a simply-supported strut. 

2 . 6 . 3 C h a i n m o d e l s 

The post-buckling behaviour of the rigid link model of the previous sections was 

a relatively straightforward bifurcation. The complexity is greatly increased if a 

number of these models, say n, are connected in series to form a chain. The potential 

then exists for a multiplicity of solutions as each cell has the capacity to buckle 

independently of adjacent cells. In the limit, as n oo, there are infinitely many 

possible outcomes. Ikeda et al. (1993), Wadee (1996) and Hunt et al. (1996b) have 

used initial-value techniques to investigate the myriad of eventualities for the elastic 
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system, finding periodic, quasi-periodic, localized and chaotic solutions. Although 

the system admits a range of solutions, in reality, it is the solution that emerges 

from the bifurcation point with the least stiff response that is favoured. This is the 

primary localized solution, although it is not unique as it may develop in any part 

of the chain. 

Recent applications of localized buckling patterns to the physical phenomenon 

of folding appear in unpublished works by Gattermann & Ulke (1994) and Wadee 

(1994). These authors considered the long-term behaviour of a discrete system 

subjected to a compressive load, and supported at the nodes by Kelvin-Voigt ele-

ments and Maxwell elements, respectively. They conducted a series of numerical 

experiments to determine the long-term response of rigid link models to various 

initially displaced configurations. The latter work, using springs and dashpots in 

series, is more pertinent to the work here. Wadee (1994) concluded that, under rigid 

load conditions, an initially localized buckle profile: tended toward periodicity if 

the end-shortening decreased with time; remained unchanged with time if the end-

shortening was fixed; and became more localized if the end-shortening continued to 

increase with time. 

2.7 Concluding remarks 

The number of parameters governing the process of folding is so vast that no single 

theory of buckling can possibly account for all types of behaviour exhibited in the 

field. This is because theoretical models, in spite of their mathematical sophistica-

tion, are much less complex than the real geological situations they represent. The 

difficulty in modelling this natural process was aptly described by Johnson (1970): 

"It is not easy to understand, with theory or experiment, phenomena 

which have required millions of years to create." 



Chapter 3 

Buckling of elastic structures 

The subject of this chapter is the buckling exhibited by elastic structures under con-

servative loading. This treatment is important because the underlying assumption 

for the model of a strut on a visco-elastic foundation presented in this thesis is that 

the buckling instability is triggered by the response of the purely elastic system. 

First, the major developments in methods for the analysis of elastic buckling are 

reviewed. The equation governing the response of a strut on an elastic foundation 

is then derived and the linearized form is analysed to reveal the behaviour of the 

solution when deflections are small. Finally, a perturbation method is used to reveal 

the underlying structure of the post-buckling response for the strut on an elastic 

foundation. 

3.1 Developments in the analysis of elastic buckling 

3 . 1 . 1 Hi s tor i ca l p e r s p e c t i v e 

The earliest consideration of elastic stability was by Euler (1744) who studied an 

elastic rod under axial compression. He employed his recently-developed calculus of 

variations to find minimum energy states of the rod and determined that as the load 

on the structure increased it eventually reached a critical load, where the fundamen-

tal equilibrium solution was no longer stable. This was the first bifurcation analysis 

of a structural system. It was, however, only much later that structural engineering 
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developed to the point where such a degree of mathematical sophistication became 

necessary (Hunt, 1983). 

The theory of elastic stability then remained largely undeveloped until early 

this century when increasing use was made of plate and shell structures. Linear 

eigenvalue analyses by Timoshenko (1910) and Southwell (1914) could only deter-

mine the critical buckling load of these structures. They were unable to account 

for experimental observations which revealed that plates were capable of supporting 

compressive loads well above the critical load of the perfect structure while cylindri-

cal shells collapsed catastrophically well below the critical load (Donnell, 1934). 

It was not until Koiter (1945), in Holland, devised a general theory of elastic 

stability, accounting for both post-buckling effects and imperfections, that these ob-

servations could be adequately explained. He appreciated that elastic buckling was 

a large deflection phenomenon and that the associated nonlinearity was the key fea-

ture which previous works in structural engineering had overlooked. Koiter's theory 

was based on the concept of total potential energy for continuous structures and 

was able to explain, for the first time, the fundamental differences in the structural 

behaviour of struts, plates and shells. 

Theories for discrete systems were developed independently in Great Britain 

by Thompson (1963) and Sewell (1965). These methods used a modal analysis or a 

finite element approach with localized shape functions to describe the buckle pattern 

and, like Koiter's theory, used the total potential energy as the basis for determining 

equilibrium and stability. The potential function was reduced to its simplest form by 

removing the contaminating effects of higher modes using a procedure known as the 

elimination of passive coordinates. In this way, the number of degrees of freedom of 

the system was reduced to the minimum necessary for an axiequate description of the 

behaviour. This work resulted in a general bifurcation theory for elastic structures 

(Croll & Walker, 1972; Thompson & Hunt, 1973). 

A great deal of work has been carried out on nonlinear post-buckling of elastic 

structures since the development of these independent frameworks and a number 

of general reviews are available (Hutchinson & Koiter (1970), Tvergaard (1976), 

Budiansky & Hutchinson (1979), and Hunt (1983), for example). 
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Figure 3.1 Solutions of the diflferential equation governing the response of an 
elastic strut on a nonlinear elastic foundation: (a) & (b) periodic; (c) & (d) localized. 

3 . 1 . 2 L o c a l i z e d buck l ing 

Most of the developments in the field of elastic stability have been confined to 

analysing periodic configurations. However, for long elastic structures that are un-

stable in the post-buckling range, periodic deflection patterns are rarely observed 

in practice because localized buckle patterns require the input of less mechanical 

energy (Hunt et ai, 1989). Localized buckle patterns have been observed in a va-

riety of axially compressed structures, for example in steel plates (Moxham, 1971), 

railway tracks (Kerr & El-Aini, 1978) and cylinders (Uemura, 1964). Structures 

which are susceptible to localized deformation tend to buckle at loads much lower 

than the critical load predicted by classical analyses. A complete understanding of 

the post-buckling character is, therefore, essential to enable civil engineers to design 

structures which are safe. 

Some of the possible solutions for a buckled strut on a nonlinear elastic founda-

tion are illustrated in Figure 3.1. The top two are periodic with finite amplitude; the 

first has a single wavelength while the second has two superimposed wavelengths. 

The bottom two are localized solutions, with (from left to right) one and two peaks 

respectively. The single-peak solution (or primary mode) is characterized by a profile 

which starts from the flat state {w = w' = w" = w'" = 0) at negative infinity and has 
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an oscillating nature which grows until it passes through a point of symmetry, before 

returning to the fiat state as a: —̂  oo. Passage through points of anti-symmetry are 

also possible. 

Champneys Sz Toland (1993) proved that, in addition to the primary mode, the 

governing equation admits localized solutions with two, three, and any number of 

peaks. They have also shown that for each multi-peaked solution an infinity of 

solutions exists, each corresponding to a different distance between adjacent peaks. 

In the limit, the family of solutions may be regarded as an "infinite set of infinite 

sets of solutions". 

From amongst the multitude of competing solutions the analyst must determine 

which are physically realizable. Theoretically, for a perfect system of infinite length, 

the localized configuration requires the least energy to trigger. In reality, other 

modulated or periodic states may be favoured by the system if it is of finite length 

or imperfections are present. The significance of a localized form may be appreciated 

by considering the nature of the end-shortening, that is, the amount the two ends 

of the strut move towards each other when a load is applied. For an infinitely long 

and inextensional strut, a periodic buckle pattern of finite amplitude will have an 

infinite end-shortening and therefore require an input of infinite energy. In contrast, 

the end-shortening for a localized buckle pattern is finite, so the energy required for 

this deformation process is also finite. 

An essential ingredient for localization is a softening nonlinearity (Potier-Ferry, 

1983), that is, one which causes an unstable post-buckling response. The strut-on-

elastic-foundation model has two potential sources of nonlinear behaviour: it arises 

naturally when geometric effects of large deflections are included in the formulation 

(Hunt et al, 1993), or it may be introduced into the small-deflection equation by 

considering nonlinear material behaviour in the form of a destiffening foundation 

reaction (Hunt & Wadee, 1991). Localized solutions with similar qualitative features 

have been found in both systems (Wadee, 1993). 

A strut on a piecewise linear foundation also exhibits localized buckling patterns. 

Nielsen et al. (1990) report a number of localized failures in pipelines resulting from 

vertical (upheaval) buckling. As the pipe lifts off the supporting bed, the effective 
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stiffness of the foundation is suddenly reduced to zero. The tendency for localization 

in bilinear systems has been studied theoretically by Tvergaard & Needleman (1980) 

who considered a finite length strut with sinusoidal imperfections and found there 

was a delay between the maximum load and the point of bifurcation that leaxls to 

failure. This mode of failure has also been investigated by Blackmore & Hunt (1996) 

and Blackmore (1995) using concepts from the theory of dynamical systems. 

Tvergaard & Needleman (1983) have investigated the tendency for localized 

buckling in a strut-on-foundation model subjected to dynamic loading. This is 

applicable for shock-absorbing devices where the primary concern is the amount of 

energy absorbed by the structure and the load-deflection relationship during crush-

ing. In this case, progressive collapse under constant rate of end displacement results 

in the development of localized buckle profiles in preference to an amplification of 

the pre-existing periodic imperfections. 

3 . 1 . 3 D y n a m i c a l a n a l o g y 

Concepts and techniques from the field of nonlinear dynamics have been used ex-

tensively to describe the phenomenon of localization in structural systems (Mielke 

Si Holmes, 1988; Thompson & Virgin, 1988; Hunt et al, 1989; Blackmore & Hunt, 

1996). This approach, termed the dynamical analogy (Hunt et al, 1989), replaces 

the time variable ( i n a conventional dynamical system by the spatial variable x 

of the structural problem. This is equivalent to using an initial-value approach to 

solve a boundary-value problem. An important advantage of the dynamical analogy 

is that a great deal of knowledge already exists for temporal systems which may be 

readily adapted to the structural domain. 

The relation between certain static and dynamic systems is not a new idea. 

For example, the correspondence between the swinging pendulum and elastica strut 

has been known for some time (Kirchhoff, 1859; Timoshenko & Gere, 1963) and 

is referred to as Kirchhoff's dynamical analogy. Figure 3.2 emphasizes that the 

differential equation for the deflected curve of an elastica strut and the equation for 

the large oscillations of a pendulum share the same form. The load P on the strut 

is equivalent to the weight of the pendulum multiplied by the distance of the centre 
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mL'^6 + mgL sin 0 = 0 

mg 

EI0" + Psine = O 

Figure 3.2 The analogy between the dynamical system of the swinging pendulum 
and the statical elastica strut under axial compression. 

of gravity from the axis of rotation and the bending stiffness EI is equivalent to the 

moment of inertia of the pendulum. In recent years this analogy has been revived, 

owing perhaps to advances in nonlinear dynamics — or at least their exposure to 

wider audiences — and better computational facilities. 

One of the most important concepts from dynamical systems theory is that of a 

homoclinic orbit, a solution of a system of ordinary differential equations that tends 

to the same saddle point as ( —̂  ±oo. An example of a homoclinic solution occurs 

when the pendulum bob in Figure 3.2 is released from the fully inverted position. 

An infinitesimal perturbation is sufficient to cause the pendulum to swing around 

under the influence of gravity, reaching a maximum velocity at the lowest point, 

and, in the absence of friction, continue around to the starting point; the complete 

cycle taking infinite time. In the case of static buckling, the analogy is translated 

to a single loop at the centre of an infinitely long strut. 
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Thompson & Virgin (1988) used the dynamical analogy to examine the potential 

for spatial chaos and localization phenomena in the large-deflection (elastica) prob-

lem. It is known that oscillations of a rigid pendulum become chaotic when driven 

by a periodic forcing frequency (Thompson k Stewart, 1986). This suggests that 

sinusoidal spatial imperfections may lead to randomly spaced loops in a thin rod of 

elastic material in tension. El Naschie (1990a) has considered the dynamical analogy 

in three dimensions between a spherical pendulum and an elastica strut which is no 

longer confined to planar deformations. 

3 . 1 . 4 P e r t u r b a t i o n ana lyses 

The study of post-buckling behaviour is an inherently nonlinear problem, the solu-

tion of which can rarely be obtained in closed-form. An important group of tech-

niques for obtaining asymptotic solutions to nonlinear systems is the perturbation 

method (Jordan & Smith, 1987). The basic idea of these methods is to start from 

a point where an exact solution is known and then to use a series expansion about 

that point to describe the behaviour of the solution at adjacent points. As the name 

implies, perturbation methods are useful only when the equation is close to (or "is a 

perturbation of") an exact solution. Their main advantage over numerical methods 

is that the role of different variables and parameters in the solution is more apparent. 

Conversely, numerical methods have the advantage of being applicable for a greater 

range of parameter values. 

Koiter (1945) and Thompson & Hunt (1973) used constant amplitude pertur-

bation methods to describe periodic buckling. However, for localized post-buckling 

analysis, a non-periodic method is desirable. Various multiple-scale techniques have 

been adapted from the field of fluid mechanics to incorporate the modulation of am-

plitude exhibited by localized systems (Amzizigo et al., 1970; Lange &: Newell, 1971). 

In particular, Pomeau (1981) drew an analogy between Bernard's convection and 

plate buckling. Subsequent works by Potier-Ferry (1983; 1987), although applied 

to the case of a strut on a hardening foundation, acknowledge that an extension is 

possible for localized buckling if a softening foundation is used instead. Hunt et al. 

(1989) used the differential equation for the strut on a quadratic foundation as the 



3 B U C K L I N G OF ELASTIC S T R U C T U R E S 6 9 

basis for developing periodic and localized asymptotic results. They obtained good 

agreement with numerical solutions close to the critical load. A perturbation ap-

proaxzh based on the total potential energy functional was devised by Hunt & Wadee 

(1991) and Wadee (1993). 

3.2 Strut-on-elastic-foundation model 

A simply-supported strut subjected to a compressive load will buckle in a single half-

sine wave at the Euler critical load, n'^EI/L^, as this shape minimizes the bending 

energy of the strut. Higher buckling modes, with correspondingly higher critical 

loads and shorter wavelengths, may occur if the strut is constrained in some manner. 

In a strut-on-foundation model, such a restraint is provided by the foundation. 

The nature of the buckling problem is then fundamentally changed, for although 

the elastic foundation increases the bifurcation limit, it can have a destabilizing 

effect on the post-buckling behaviour (El Naschie, 1974). The critical load and 

subsequent post-buckling behaviour are governed by the material properties of the 

strut and foundation: the stiffer the strut, the longer the wavelength and vice versa. 

The presence of the foundation also ensures that the buckling load is finite and 

independent of the length, unlike the simply-supported strut for which the buckling 

load tends to zero as the length tends to infinity. The effect of the foundation on 

the post-buckling response of a strut was demonstrated in § 2.6 using a rigid link 

model. 

3 . 2 . 1 F o r m u l a t i o n of g o v e r n i n g e q u a t i o n 

The differential equation governing the response of a compressed strut on an elastic 

foundation may be derived either: directly by equilibrating forces on an element 

of the strut; from the principle of virtual work; or by using an energy formulation. 

Problems of elastic stability are usually tackled using energy methods because, un-

like static analyses, the stability of the perfect system can be determined without 

reference to imperfections. In keeping with this tradition, the latter approach is 

used here. The formulation follows closely the method described by Thompson & 
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Figure 3 .3 An elastic strut supported by a nonlinear elastic (Winkler) foundation. 

Hunt (1984) and is completely general, retaining nonlinear terms of both geometric 

and material origin. The system is subsequently linearized to identify the character 

of the solution for small displacements. The effect on the behaviour of the system 

due to individual nonlinear components is discussed in Chapter 6. 

Consider an incompressible strut of length L (which may be infinite) and uniform 

flexural stiffness EI, resting on an elastic foundation of stiffness per unit length F, 

and subjected to a conservative axial load P. The total potential energy for this 

system, which is illustrated in Figure 3.3, may be written as 

V = U-P€, ( 3 . 1 ) 

where the first term represents the strain energy of the system, comprising the 

bending energy of the strut and the foundation energy of the deformed springs, and 

the second relates to the work done by the load P in moving a distance £ in the 

direction of P. 
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In a first-order linear theory, equilibrium equations are formulated on the basis 

of the initial undeformed shape of the structure. An analysis of stability, however, 

requires that equilibrium conditions are based on the final, deformed shape of the 

structure. This is ensured by measuring x along the length of the deflected strut 

and by using the exact expression for the curvature, 

X = w" ( l - ^ , (3.2) 

where a prime (') is used to denote differentiation with respect to x. The strain 

energy stored in the deformed strut is 

% = 
Z JO 

= ( l - w'^y^ dx. (3.3) 

The resistance of the foundation is assumed to have the general form F = kw — cw"^, 

where k and c are the linear and nonlinear components of foundation stiffness, 

respectively, and n > 2 is an integer. The energy stored in the foundation springs, 

due to the deformed shape of the strut, is 

Up = f dz. (3.4) 
Ju \ 2 7Z + 1 / 

The total strain energy of the system is the sum of the bending energy of the strut 

and the foundation energy, U = Us + Up. The second part of the total potential 

energy requires the end-shortening of the strut, 

^ " ' ' ' I 
dx 

= | l - ( l - d i . (3.5) 

The total potential energy functional can now be written as 

rL 
V= £ {w,w\w") dx, (3.6) 

Jo 
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where the integrand is 

C. = ( l - v , " Y ' - P [l - ( l - w") '"1 + 
2 \ / L ^ / J 2 n + 1 

,Tl+l (3.7) 

The governing differential equation is obtained by minimizing the total potential 

energy using the calculus of variations (Stephenson & Radmore, 1990). After some 

manipulation this leads to the Euler-Lagrange equation, 

M _ i _ f 0. 
dw dx \dw') dz^ \dw"J 

(3.8) 

Inserting the integrand C gives the so-called elastica equation for a strut on an 

elastic foundation: 

EI w ^1 — + Aw"'w"w' + w"^ ^1 + ^1 — j 

+ Pw"(l-w'^) ^'^ + F = 0, (3.9) 

which is valid for large displacements. The foundation resistance F is arbitrary and 

was specified previously for the purpose of illustration only. 

3 . 2 . 2 A n a l y s i s of l inear ized e q u a t i o n s 

Although a study of post-buckling behaviour requires a nonlinear analysis, an un-

derstanding of the linearized equations facilitates this by identifying the behaviour 

of the system for small deflections, as for example, in the tails of a localized solution 

where w -4̂  0 as z —> ±oo. The linear equation is obtained by assuming the slope 

along the deformed strut is very small, w' <C 1, and by using the approximate form 

for curvature, % % w". This reduces the integrand (3.7) to 

C=^EIw"^-^Pw'^ + ^kw^, (3.10) 

and leads, via the calculus of variations, to the linear differential equation 

EI w"" + P w" + kw = 0. (3.11) 
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Alternatively, this expression may be obtained directly from the large-deflection 

equation (3.9) by replacing the square root terms with a binomial expansion and 

truncating all nonlinear terms (those involving products of w and/or its derivatives). 

The characteristic equation corresponding to the linear form is obtained by adopting 

the general solution w = with the result 

EIX^ + PX^ + k = 0, ( 3 . 1 2 ) 

where A = a + i/3 is a complex variable. Substituting for A leads to the positive real 

and imaginary parts of the eigenvalue for the linearized system. 

a = WA+A- (3.13) 

The real part, a , controls the rate of exponential growth or decay of the solution 

and is associated with the inset and outset of the nonlinear solution, while the 

imaginary part, /3, governs the periodic component of the solution. The values of a 

and /3 depend on the load P as shown in Figure 3.4. A qualitative change occurs in 

the solution when a = 0, corresponding to the critical load 

and critical wavelength 

P^ = 2 V ^ , (3.14) 

( 3 . 1 5 ) 

When P is greater than the critical load P^ only periodic solutions exist, while for P 

less than —P^ [(3 = 0) purely exponential solutions arise. For —P^ < P < P^, both 

a and /? are non-zero, giving rise to oscillating solutions whose amplitudes grow and 

decay exponentially. A solution of this type is shown in Figure 3.4 (c). 

The linear deflection, given by the general solution of Equation (3.11), is 

w = (.4cos/3.t -|- B sin px) + (Ccos /3x + Dsin /3.t) , (3.16) 

where A, B, C and D are constants defined by the boundary conditions of the 
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Figure 3.4 The root structure of the fundamental equilibrium state of the equation 
EIw'" + Pw" + kw = 0: (a) variation of a and /3 with load; (b) phase-plane 
trajectories for various loads; and (c) linearized inset and outset for —P^ < P < P^. 
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problem. If symmetric solutions, about z = 0, are sought then the general solution 

may be simplified by requiring B and D to be zero. The end conditions for the 

infinite boundary-value problem are determined by repeated differentiation of w 

with respect to x. The constants are eliminated to give the following linearized 

outset conditions as x —> —oo: 

w" — 2aw' + w = 0, 

2aw"' - (Sa'^ — J w" + W = 0 . ( 3 . 1 7 ) 

The corresponding linearized inset conditions as z —> oo are obtained simply by 

reversing the direction of x (or replacing a by —a). These relations are valid only 

while the amplitude is very small, for as w grows the influence of nonlinear terms 

becomes increasingly important and, ultimately, the inset and outset may join to 

form a localized solution. 

3.3 Perturbation method 

Traditional periodic analyses such as the Rayleigh-Ritz procedure (Bathe, 1996) or 

the discrete bifurcation theory of Thompson & Hunt (1973; 1984) are useful for 

determining the critical buckling load and post-buckling behaviour for structures 

with a supercritical response. However, for structures with an unstable bifurcation 

point, their application is limited because periodic modes provide a poor basis for 

representing localized buckle patterns. 

In this section a perturbation method is used to generate post-buckling solu-

tions for the problem of a strut on a nonlinear elastic foundation. Variations of 

both amplitude and phase are achieved using a double-scale analysis in which the 

amplitude is defined as a function of a length scale which is in turn a function of 

the distance from the critical point. The approach is derived from the total poten-

tial energy of the system, unlike traditional perturbation schemes which are based 

on the governing differential equation (Potier-Ferry, 1983; Hunt et al, 1989). It 

has the advantage that the suppression of secular terms and elimination of passive 

coordinates are guaranteed automatically. Secular terms are those which become 
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unbounded as x ±00. When seeking localized solutions, which are by definition 

bounded for all z, it is necessary to suppress such terms. A more detailed explana-

tion of perturbation methods, including the role of secular terms and the elimination 

of passive coordinates, may be found in texts on the subject (see Murdock (1991), 

for example). 

The method presented here is an extension of the perturbation procedures pre-

sented by Wadee (1993) for a strut on a quadratic foundation. Although the formu-

lation is much the same, the method is continued to a higher order and is therefore 

capable of describing features further into the post-buckling regime. The earlier 

method was hampered by an inconsistency in the formulation which gave rise to 

anomalous mode forms in the asymptotic solution. This problem has been elimi-

nated by expanding all variables in terms of a perturbation parameter. A further 

difference between the two methods is the choice of foundation reaction. The work 

here is for a cubic foundation, having the same resistance to upward and downward 

displacement, where as the previous work involved a quadratic foundation which 

has a bias favouring upward deflections. The new perturbation procedure is to be 

published shortly (Wadee et ai, 1 9 9 6 ) . 

3 . 3 . 1 D e s c r i p t i o n of m e t h o d 

The small, but finite, amplitude response for a strut on a cubic foundatioB may be 

described by the total potential energy 

y = j w* j dz , (3.18) 

where Q = d/dx. As with traditional harmonic analyses, the defected shape 10 is 

expanded as a Fourier series in z, 

00 
+ (319) 

1 = 0 

with the diiference that the amplitudes, and are not constMit. Instead, they 

are permitted to vary m t h X , the so-called slow-space t r i a b l e (PoUe-fkny, 1983). 
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This is a linear function of x and the perturbation parameter s, and is defined as 

X = sx. (3.20) 

The choice of this particular expression is based on previous descriptions of localized 

buckling as a slowly varying phenomenon (Hunt et al, 1989). The inclusion of both 

sine and cosine modes allows a variation in the wavelength, which is important in 

the vicinity of the centre of localization (Wadee, 1993), as well as a modulation 

of the amplitude. The selection of a suitable perturbation parameter requires some 

knowledge of the nature of the solution being sought. In problems of elastic stability 

the point of bifurcation provides a convenient reference. The perturbation parameter 

is therefore defined as the distance from this point (Hunt et al., 1989), 

s = V P ^ - P . (3.21) 

When 5 = 0 the linear eigenvalue problem is retained. 

The derivatives of w are readily evaluated 

OO 
w = ^ {sAi' cosi^x — Aiif3sin ifix 

t = 0 

+ sBi sin ifix + B, 1/3cos i f ix} , (3.22) 
00 

w = ^2 cos i/3x — 2sAi'il3 sin ifix — cos ifix 

+ s^Bi" sin ifix + 2sBi'il3 cos i(3x — Bii^/3^ sin i/3x^ , (3.23) 

t=0 

where a prime (') denotes differentiation with respect to X^. The series representa-

tions for w and its derivatives are then fed into the energy expression (3.18). The 

result is 

1 OO / roo roo 
y = o E r " / V d x + V.'.'/ A f d x 

^ _̂Q \ %/—OO J — oo 

+ r AiAi"dx + Vinin r Ai"^dx 
J — OO V — OO 

'Note, in this section Q = d/dx and (') = d/dX whereas in all other parts of this thesis 
0 = d/dt and (') = d/dz. 
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/ OO fOO 
Ai"Bi'dx + Vi>in / Ai'Bi"dx 

• OO J — OO 

/

OO fOO 

Ai'Bidx + Viii / AiBi'dx 
-OO J— OO 

/

W FW _ 

Bi^dx + Vi,i, / Bi'^dx 
-OO J —OO 

+ r Bi"^dx + Vii" r BiBi"dx\ 
J— OO J — oo J 

+ 1 % R 
4 J—OO 
1 foo 

J B I B J B K B I D X , ( 3 . 2 4 ) 

where the Einstein convention is used to imply summation over repeated indices and 

the coefficients etc. are listed in Appendix A. These coefficients contain a 

constant part and an oscillatory part. The latter is neglected in order to render 

the analysis tractable. This simplification introduces an error which is negligible 

for small s (close to the critical point), but which becomes increasingly significant 

further into the post-buckling regime (Hunt & Wadee, 1991). The contribution 

of these terms is examined in Chapter 5 using other methods of solution. The 

constant coefficients in Equation (3.24) are brought outside the integral sign while 

the amplitudes, being functions of the slow-space variable X, must remain inside. 

The calculus of variations is applied to the integral (3.24), with appropriate 

boundary conditions being employed to eliminate unwanted terms. The precise 

details of the procedure are described by Wadee (1993). The important results are 

the final Euler-Lagrange equations: 

V-"," Ai"" + I - %,,,,) Bi'" + {Van - %-,,,) A . " -H I (VI.- - %-,.) 5 / 

+ A, + Aj At A, + = 0, (3.25) 

+ -H AjAtBf + = 0. (3.26) 

Note that the classical periodic analysis of Thompson & Hunt (1973) is recovered 

when the amplitudes are fixed because all coefficients and terms with primes are 
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then zero. The former analysis may, therefore, be considered a special case of this 

more general localized procedure. 

The steps required to generate approximate solutions to these Euler-Lagrange 

equations are listed in Appendix A and a summary of the results is presented next. 

3 . 3 . 2 O r d e r e d e x p a n s i o n s 

The solution of the Euler-Lagrange equations requires a great deal of algebraic ma<-

nipulation and is best performed using a package such as Mathematica (Wolfram, 

1991). The asymptotic form of the deflected shape for a compressed strut on a 

nonlinear elastic foundation is 

w = s A i j cos/3a: + s^5i,2sin/?x + s^(Ai,3Cos/3a;+ >l3,3Cos3/3x) 

+ s'^(Bi^4 sin /3x + ^3,4 sin 3/3x) + 0(s®), (3.27) 

where the amplitudes A i j and are 

Ai 1 - sech QX, 

\ /6c 
5i,2 = sech QX tanh QX, 

A i 3 = f - 3 1 7 sech 0 % + 3 0 7 sech^OX] , 
3 6 \ / 6 c f ^ \ / 

jBi 4 = ^-p= f—2389 sech Q,X tanh QX + 5524 sech^ fiX tanh ftx) , 
432\/3cf^3/^ \ / 

^3,4 = ^ sech^ nX tanh nx, ( 3 . 2 8 ) 

in which the following substitution has been made: 

^ (3.29) 

In principle, perturbation results may be extended to any level of accuracy de-

sired. However, in this instance their applicability is limited because the oscillatory 

components of the coefficients V,-,-, etc. in Equations (3.25) and (3.26) were ignored. 
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At each level of s, the solutions of the equations corresponding to 8Ai and 5Bi yield 

a non-homogeneous second-order equation with non-constant coefficients. While by 

no means obvious, it appears that a closed-form solution will exist at all levels of s 

and is likely to have a similar form to the solutions already found. Obtaining these 

solutions, however, is likely to become increasingly more difficult at each level of s. 

3 . 3 . 3 D i s c u s s i o n of resu l t s 

The perturbation analysis generates an ordered sequence of solutions which are 

expected to approximate well the shape of the deformed strut close to the point 

about which the scheme is expanded, with a progressive loss of accuracy as the 

value of s increases. The method presented here takes into account modulation of 

phase as well as amplitude and should, therefore, be valid further into the post-

buckling regime than the more restrictive schemes of Hunt et al. (1989). The 

accuracy of the perturbation analysis cannot be determined by comparison with an 

exact solution (because it does not exist), so instead a comparison is made with an 

accurate numerical solution. These numerical solutions were obtained independently 

using the methods outlined in Chapter 4. 

Three solutions for the buckled strut are shown in Figure 3.5 at different levels of 

load. Overall, the perturbation method is seen to model the localized solution well, 

especially in the vicinity of P'^. As the load decreases, the general features of the 

solution are still identified, with the maximum amplitude increasing and the profile 

becoming increasingly localized. The deflection at the centre of the localization 

{x = 0) is consistently overestimated, as recorded by Figure 3.6, with a marginal 

improvement at the level. An improvement in the peak amplitude does not occur 

at the and levels because the associated amplitudes B i j are zero at x = 0, 

although they do affect the profile elsewhere. 
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P = 0.7P^ 

1 0 1 5 
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Figure 3.5 Comparisons of perturbation solutions (thin lines) with numerical 
solutions (thick lines). 
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Figure 3.6 Load versus amplitude for perturbation solutions at various orders of 
s with a numerical solution (solid line): s, — thin solid line; s^, — dot-dashed. 

0 . 7 5 

0 . 2 5 

Figure 3.7 Load versus end-shortening for perturbation solutions at various orders 
of s with a numerical solution (solid line): s — thin solid line; — short dashed; 

— dot-dashed; — dotted. 



3 B U C K L I N G OF ELASTIC S T R U C T U R E S 8 3 

Phase modulation, where the wavelength is allowed to vary along the length of 

the strut, is successfully modelled by including sine modes in addition to cosine 

modes in the Fourier expansion of w. The effect of Bij terms is apparent in the 

end-shortening plot of Figure 3.7. The end-shortening, being an integral along the 

length of the strut, provides an average measure of the error of the solution. The 

inclusion of further terms arising at the and levels enables the turning point in 

the end-shortening (at P % 0.92F^) to be approximated. This qualitative feature of 

the solution is not evident when an approximation of order is used and illustrates 

the asymptotic nature of the perturbation results with new features of the solution 

emerging at successive levels of s. However, the s'* approximation for end-shortening 

is worse than the solution for P < 0.8P^. The reason for this discrepancy is 

not clear — it may be related to the absence of the oscillating components of the 

coefficients Va, etc. 

The results presented here are an improvement on those obtained by Wadee 

(1993). The main reason for their superior performance is the consistent formulation 

in which both load and wavelength are expanded as power series in terms of the 

perturbation parameter s. 

3.4 Concluding remarks 

The general nonlinear treatments of elastic stability (Koiter, 1945; Thompson & 

Hunt, 1973) are based on the total potential energy of the system and help to 

explain the reserve post-buckling strength of plates and the catastrophic failure 

of shell structures under conservative loading. When nonconservative loads are 

present a potential energy function does not exist and it is necessary to resort to 

the equations of equilibrium. An example of a continuous nonconservative elastic 

system is the cantilever with follower force (Plaut, 1978). The equilibrium equations, 

or equations of motion, are also important starting points for visco-elastic systems 

where energy is dissipated. 



Chapter 4 

Numerical methods 

The objective of this chapter is to describe the numerical methods employed in this 

thesis to solve the problem of localized buckling in a strut-on-foundation model. The 

chapter begins with a review of methods for solving boundary-value problems nu-

merically and goes on to discuss various theoretical aspects of these problems, and of 

procedures for their numerical solution. Two different approaches are distinguished: 

initial-value methods and boundary-value methods. The numerical procedure im-

plemented in this thesis, which is based on the latter approach, is then described in 

detail. Finally, the numerical methods are verified by comparison with an analytical 

solution and an alternative numerical procedure. 

4.1 Introduction 

The success of a numerical process depends on a combination of two factors: a well-

conditioned problem and a stable algorithm with which to solve it. These concepts 

are explored in the following sections. The treatment here is intentionally brief and 

descriptive rather than mathematically rigorous, a detailed account of the theory 

of ordinary and partial differential equations and of numerical methods is available 

elsewhere (see Ascher et al. (1995) or Ames (1992), for example). 
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4 . 1 . 1 T h e o r y of b o u n d a r y - v a l u e p r o b l e m s 

The theory of boundary-value problems involves the existence and uniqueness of 

solutions and conditioning of the problem. An existence theorem proves there is a 

solution to be found — after all, it would be pointless to spend time and effort looking 

for a solution which did not exist. Having found a solution, it would be equally futile 

to discover later that there is more than one solution to the problem and that the 

solution found was the wrong one. This is the value of uniqueness. In addition to 

being assured that a problem has a solution, it is also worth establishing whether 

or not the problem is well-conditioned (or well-posed). According to Duchateau 

(1986), a boundary-value problem is well-posed if: a solution to the problem exists; 

the solution is unique; and the solution depends continuously on the data. 

Existence and uniqueness theory for boundary-value problems is considerably 

more complicated and not as comprehensively developed as for initial-value prob-

lems. For an initial-value problem represented by an nth-order ordinary differential 

equation, a unique solution is guaranteed when n (initial) conditions are specified 

at a single point. In the case of a boundary-value problem, however, boundary con-

ditions are specified at more than one point which gives rise to the possibility that 

a differential equation may have many solutions, one solution or no solutions. This 

is illustrated by the following example. 

Example 4.1.1 Consider the linear second-order eigenvalue problem 

w" w = 0 , ( 4 . 1 ) 

with boundary conditions w{0) = 0 and w{b) = Wb. The general solution of this 

problem is w{x) = A sin z, where A is a constant determined by Wb. Thus, for 

b = UTT, where n is an integer, Equation (4-1) has no solutions if Wb ^ 0 and an 

infinite number of solutions when Wb = 0. Alternatively, i f b ^ nn, the problem has 

a unique solution. 

• The difficulty of ascertaining the existence and uniqueness of solutions for boundary-

value problems was succinctly expressed by Keller (1968) when he said: 
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"...(existence theory for boundary-value problems) is far from sufficient 

to cover most problems that arise in practice. However, solutions of 

boundary-value problems and roots of transcendental systems can exist 

without formal proofs of these facts. Thus in many of the difficult and 

important applied problems leading to boundary-value problems we may 

use the (standard numerical) techniques (for boundary-value problems) 

without the benefit of existence theorems." 

4 . 1 . 2 N u m e r i c a l p r o c e d u r e s for b o u n d a r y - v a l u e p r o b l e m s 

Methods for the numerical solution of boundary-value problems can be divided into 

two distinct classes: shooting methods (or initial-value methods) and finite differ-

ence methods (or boundary-value methods). The prime difference between these 

approaches is that shooting methods generate solutions to boundary-value problems 

by solving related initial-value problems, while finite difference methods generate 

solutions directly by an explicit treatment of the boundary-value problem. Impor-

tant properties of numerical methods for boundary-value problems (and initial-value 

problems) are accuracy, consistency, stability, and convergence. These are sum-

marised below. 

Accuracy 

The solution of a differential equation by computer requires certain approximations 

which inevitably introduce small errors. There are two main sources of error. The 

first is roundoff error which results from the computation being performed in finite 

precision on a digital computer. In this thesis 64-bit (double precision) floating-point 

variables were used for all calculations. The second is discretization or truncation 

error which arises because a numerical method is designed only to approximate the 

solution to a problem. This is the error that arises in the absence of roundoff error 

and any errors in the input data resulting, for example, from imperfect physical 

measurements. Roundoff error accumulates when an ordinary differential equation 

is integrated using discretized derivatives. Although the discretization error tends to 

zero as the integration step size is refined, the roundoff error increases. For optimum 

results there is a need to balance the effects of these two error sources. 
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Consistency 

A finite difference method is said to be consistent (or compatible) with the original 

differential equation if the local truncation error tends to zero more rapidly than the 

step size. This property ensures that the difference operator is inherently capable 

of representing the differential operator. 

Stability 

Another important property of numerical methods for the solution of boundary-

value problems is that of stability. A numerical method is unstable if small errors 

in the input data are propagated by the method to produce errors that eventually 

dominate the output data. Stability, therefore, is solely a property of the numerical 

method rather than of the problem it is used to approximate. The importance of 

stability for shooting methods is discussed further in § 4.2 in the context of localized 

buckling problems. 

Convergence 

A final concept, often related to stability, is that of convergence. Differential equa-

tions are usually solved on a mesh which is defined in terms of one or more interval 

sizes. A numerical method is said to be convergent if the discrete solution converges 

to the true solution of the differential equation as the interval size decreases to zero. 

In general, if the properties of stability and consistency are satisfied, the property 

of convergence will follow automatically (Ames, 1992). 

4.2 Initial-value methods 

Initial-value methods are a useful tool for solving boundary-value problems. These 

methods require a succession of initial-value problems to be solved, each with dif-

ferent initial conditions. The objective is to find and solve the initial-value problem 

which corresponds to the original boundary-value problem. The simple shooting 

method^ illustrated in Figure 4.1, is the simplest initial-value approach. In this 

method solutions are obtained for various initial conditions (indicated by the angle 
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w 

Figure 4.1 Schematic of shooting method. Trial solutions are integrated from 
point a to point b. The discrepancy in the boundary conditions at the end point are 
used to adjust the starting conditions until the conditions at both ends are satisfied. 

0) by integrating (shooting) over the interval [a, b]. The aim is to find the starting 

conditions (of an initial-value problem) at a: = a which cause the boundary condi-

tions (of the corresponding boundary-value problem) to be satisfied at a; = 6. The 

intuitive appeal of this approach is strengthened by the advanced state of numeri-

cal tools for initial-value problems. Efficient and flexible general-purpose codes are 

readily available for such problems in most mathematical software libraries. 

Although the simple shooting method is a relatively straightforward and practical 

method for solving boundary-value problems, its effectiveness is often hampered 

by stability restrictions. Numerical stability is particularly important in shooting 

methods for localized elastic buckling problems because the linearized eigenvalues 

of the governing differential equation indicate the presence of both exponentially 

growing and decaying solutions. This means that while integrating from specified 

initial conditions towards the linearized inset (decaying solution), a combination of 

roundoff and discretization error may cause the solution to drift onto the outset, 

making the solution diverge to infinity instead of decaying to the flat state. These 

types of stability drawbacks can be alleviated by using more complicated initial-

value techniques such as the multiple shooting method and stabilized march (Ascher 

et AZ., 1 9 9 5 ) . 
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Two different shooting strategies are reported in the literature for solving local-

ized buckling problems. Hunt & Wadee (1991) used a shooting method to reveal 

a multiplicity of localized solutions which had not been detected using traditional 

boundary-value techniques. Champneys & Spence (1993) also used an initial-value 

approach to track localized solutions in the problem of a strut on an elastic founda^ 

tion. Both of these strategies are outlined below. 

4 .2 .1 Search a lgor i thms 

In order to implement a shooting method, a search algorithm is required to determine 

initial conditions for successive initial-value problems. The procedure described here 

is that of Hunt & Wadee (1991) who investigated localized buckling in the model of 

a strut on a quadratic softening foundation. The fourth-order governing equation, 

EIw"" + Pw" -|- kw — cvP' = 0, (4.2) 

is first decomposed into a system of first-order equations: 

w' = y, 

v' = u, 

u' = t, 

t' = --^(^Pu + kiu — cw^^. (4.3) 

This system of equations is treated as an initial-value problem, requiring four initial 

conditions to determine a unique solution. In fact, Wadee (1993) has shown that two 

initial conditions are sufficient to capture the essential characteristics of the solu-

tion. Hunt & Wadee (1991) and Hunt et al. (1993) used a self-refining algorithm to 

search amongst the reduced two-dimensional space for small, non-zero, initial con-

ditions that define solutions which satisfy the symmetry conditions, w' — w'" — 0, 

at some point. The procedure minimizes the quantity yjw'^ + w'"^ until a predeter-

mined value is achieved. Blackmore (1995) used a similar approach based on energy 

conservation criteria. 
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These types of search routines may be implemented in the absence of formal ex-

istence theorems. Naturally though, it is not possible to conclude that a particular 

solution does not exist if an algorithm fails to find it. Wadee (1993) performed ex-

tensive numerical experiments using such methods and revealed the robust nature of 

various localized forms v^hich were not apparent from earlier perturbation analyses. 

These buckling solutions were obtained for specific load values. The major drawback 

of this shooting method becomes apparent when it is used to determine the com-

plete post-buckling response of a model, requiring multiple runs at different values 

of load. The problem is that the search algorithm does not make use of information 

obtained about a solution at adjacent loaxl values, nor ig there any guarantee that 

a solution will be found at all. Another drawback is that for low loads it becomes 

increasingly difficult to find localized solutions, as virtually all starting conditions 

lead to divergence. 

4 .2 .2 A u t o m a t i c cont inuat ion 

Champneys & Spence (1993) also developed a strategy for the numerical approx-

imation of localized solutions for a strut model. Their method uses continuation 

and a shooting approach, based on Newton's method, to compute the first solution. 

Continuation is the computation of solutions to a differential equation as a param-

eter is varied. This is readily implemented using a standard continuation package 

and allows a complete post-buckling response to be established in a single run. The 

method is described here in some detail because it is used in § 4.6.2 as an inde-

pendent check of the boundary-value method employed throughout this thesis. The 

principal steps of this initial-value procedure, which is illustrated in Figure 4.2, are: 

1. Investigation of linear system 

For a given load P , the eigenvalues of the linearized system are evaluated. The 

eigenvectors corresponding to the eigenvalue with the least positive real part 

are sought, these corresponding to the weakest outset conditions. The real and 

imaginary parts of this vector span the unstable eigenspace of the linearized 

system. 
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Figure 4.2 Procedure for the shooting method of Champneys & Spence (1993) 
used to locate localized solutions for the elastic buckling equation (4.17) {EI = k = 
c— 1, P = 1.5). 
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2. Initial conditions 

The two-dimensional unstable eigenspace of the origin is parameterized using 

polar coordinates {r,6). For a sufficiently small radius r the angle 0 parame-

terizes all possible solutions. 

3. Shooting method 

A variable-order variable-step size Adam's method is used to perform the in-

tegration from the initial conditions. Plotting the trajectory in w'-w'" space, 

the solution is seen to spiral outwards, much like the linear solution, until 

the nonlinear component forces the trajectory back towards the origin. In 

general, the solution will not satisfy the symmetry conditions, w' = 0 and 

w'" = 0, simultaneously. It is possible, however, to find two adjacent starting 

conditions, denoted 9i and 62, which pass close to the origin. The points on 

these trajectories where u;' = 0 is marked in Figure 4.2 by a dot (•). New-

ton's method is then used to generate successive guesses for the shooting angle 

9. Quadratic convergence is achieved towards 6' , the initial conditions which 

satisfy the symmetry conditions within a numerical tolerance. The solution of 

this initial-value problem is then the solution of the original boundary-value 

problem. 

4. Automatic continuation 

A standard continuation package, in this case AUTO (Doedel, 1981), is then 

used to compute solutions of the buckling equation (4.2) as the parameter P 

is varied between two limiting values. 

4.3 Boundary-value methods 

Boundary-value methods are conceptually different from the shooting methods of 

the previous section. Instead of solving a series of initial-value problems, an ap-

proximate solution is sought simultaneously over the whole domain, as shown in 

Figure 4.3. For this reason boundary-value methods are often referred to as global 

methods. Given an initial approximate profile w(x), a boundary-value method refines 

the approximate solution iteratively until it resembles the exact solution w(z) for all 
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Figure 4.3 Schematic of relaxation method. An initial approximation w{x) is 
refined iteratively until it agrees closely with the true solution w{x). 

X in the domain within a prescribed tolerance. Boundary-value methods are partic-

ularly useful for solving ordinary differential equations when difficulties of stability 

arise with initial-value methods (Fox, 1961). There are other circumstances when 

a boundary-value method is the only practical alternative, as for example, in the 

case of boundary-value problems in partial differential equations. The main disad-

vantage of using boundary-value methods is that a priori knowledge of the solution 

is required in order to provide a sufficiently accurate initial profile. It is unlikely 

that these methods would have been used to discover the variety of multi-peaked 

localized solutions if their presence had not already been detected using initial-value 

methods. Nevertheless, for specific solutions, like the primary localized forms in this 

thesis, boundary-value methods are a powerful tool. 

Finite difference methods are one of the most widely used boundary-value meth-

ods. Their application involves three fundamental steps: 

• The selection of a mesh of the form a = xi < 2:2 < • • • < a:„+i = 6 on the 

interval [a, 6]. An approximate solution is then sought at these mesh points. 

# Setting up a system of algebraic equations by replacing derivatives in the dif-

ferential equation by difference quotients and specifying boundary conditions. 
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• Solving the system of algebraic equations to produce an approximate solution 

at discrete mesh points. Interpolation may then be used to construct the 

solution for any point x € [a,b]. 

These steps are common to all finite difference methods. Thus, a good finite dif-

ference method must not only utilize an appropriate discretization method but also 

a suitable mesh selection procedure and algorithms for the solution of systems of 

algebraic equations. 

The main criterion for selecting a mesh is to achieve a sufficiently accurate so-

lution as inexpensively as possible. Since the computational effort for a given dis-

cretization method increases with the number of mesh points, the coarsest possible 

mesh is sought which at the same time yields an approximate solution with toler-

able error. In general, the mesh must be fine in regions where the desired solution 

changes rapidly but relatively coarse elsewhere, provided that the resulting scheme is 

sufficiently stable. A good mesh is especially important for problems with localized 

solutions which, by their very nature, involve small regions of rapid change. 

4.4 Strut on a visco-elastic foundation 

The numerical methods used to solve the equations of an elastic strut on a Maxwell 

foundation are described in this section. For convenience the method is outlined 

for the linear form of the governing equations which are common to all visco-elastic 

models in this thesis. These are: 

• the strut buckling equation, 

EIw"" + Pw" + F = Q, ( 4 . 4 ) 

• and the Maxwell relation, 

- H - F = W. ( 4 . 5 ) 
k T] 

The solution of this system of partial differential equations proceeds by first reducing 

it to a series of ordinary differential equations. These are solved at each time step 

for specified boundary conditions and load conditions. These procedures, including 

truncation from an infinite to a finite domain, are described below. 
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4 .4 .1 T e m p o r a l d i scret izat ion 

The problem of buckling of a strut on a visco-elastic foundation is represented by 

Equations (4.4) and (4.5) involving two independent variables, the spatial variable x 

and time t. A reduction of these partial differential equations to a system of ordinary 

differential equations is achieved by discretizing the problem in terms of one of the 

independent variables. Replacing the time derivative by a difference scheme results 

in a system of boundary-value problems. Alternatively, if the spatial derivative is 

replaced with a difference scheme, the outcome is a system of initial-value problems. 

These are both examples of the method of lines. The method of discretizing in 

time, and then solving a boundary-value problem, is called the transverse method 

of lines, while discretizing in i , and then solving an initial-value problem, leads to 

the longitudinal method of lines. For localized buckling the main feature of interest 

occurs in the x direction, so a temporal discretization method is implemented to 

reduce the governing equation in time. A backward difference scheme is used in 

preference to a forward difference because it is generally acknowledged as being 

more stable (Smith, 1985). The resulting ordinary differential equations have the 

form 

EIw: + P . « : + (4-6) 

where Wn{x) is the displacement of the strut at the nth time step. At is the time 

step, r = k/rj, and 

G{x) = EIw^'_i + Pn-iw'^_i + kwn-i, (4.7) 

involves quantities evaluated at the previous time step. G{x) varies with position 

along the strut and may therefore be considered as a forcing function. It is not, 

however, a forcing function in the usual sense of being a well defined function of 

X, rather it is defined in terms of data from the previous time step. The system of 

partial differential equations (4.4) and (4.5) has now been reduced to a fourth-order 

ordinary differential equation involving a free parameter P. The supplementary 

conditions required to solve this problem on a finite interval are described next. 
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4 .4 .2 B o u n d a r y condi t ions 

The fourth-order differential equation (4.6) requires four boundary conditions to 

define a solution. Two of these follow directly from the conditions of symmetry, 

w' = w'" = 0, (4.8) 

which are imposed, for convenience, at z = 0. This ensures that only half of the 

spatial domain need be considered, x e [0, oo). For a localized solution the remaining 

boundary conditions must ensure the flat state is achieved as a: —>• oo. For the 

initial elastic state these are the conditions which prohibit the positive exponential 

solutions described in § 3.2.2. Upon differentiating the general solution (3.16) and 

eliminating the trigonometric terms, the following expressions are found for the 

boundary conditions as z —> oo: 

w" + 2aw' + + (3^^ w = 0, 

2aw"' + (Za^ — j w" — w = 0. (4.9) 

As the localized solutions evolve in time the issue of boundary conditions be-

comes more complicated. Under displacement control, the end-shortening at each 

step is restrained, requiring the evaluation of a nonlinear expression. Hence, the 

starting boundary conditions (4.9), determined from the linearized equation of the 

initial elastic state, are not sufficient. To understand better this problem, numerical 

experiments are performed in § 4.6.3 using three different boundary conditions for 

evolving solutions: clamped conditions, w — w' = 0; pinned conditions, w = w" = 0; 

and the linearized elastic conditions (4.9) maintained for all time. For a sufficiently 

long strut, no significant difference was found in the profile of the localized solution. 

The semi-infinite interval is further truncated to [0, i ] , with the length L chosen to 

be suflBciently large that the amplitude of the linearized deflection at x = L is very 

small {w % 10~®). 
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4 .4 .3 R ig id loading 

The majority of buckling theories for geological folding concern the evolution of 

an instability in a layer under conditions of constant loaxi (Biot (1961), Miihlhaus 

(1993), for example). One of the principal differences between these theories and 

the work presented in this thesis is the consideration of buckling under rigid loaxi 

conditions (controlled axial displacement). In this case, the loaxi is a free parameter 

whose value is determined by the integral constraint 

^ — J | l - \ / l - dx, (4.10) 

representing the exact end-shortening of the strut (Thompson & Hunt, 1973). This 

integral may be transformed into a differential equation by introducing the function 

t)(z) = J | l - ^ / l - ds, (4.11) 

and differentiating it with respect to x to give 

- \ / l - t o ' 2 , (4.12) 

with boundary conditions u(0) = f / 2 and u(oo) — ̂  on the semi-infinite interval. 

The contribution to end-shortening beyond x = L is assumed to be negligible, so 

that v{L) ~ u(oo). Constant rate of end-shortening is achieved in a similar fashion 

with the value of end-shortening incremented by a constant value at each time step. 

4.5 General purpose software 

The solution of each visco-elastic system was performed numerically using the pro-

gram COLPAR (Ascher et al, 1995). This is a FORTRAN code for solving mixed-

order systems of boundary-value problems in ordinary differential equations. It 

belongs to a group of general-purpose codes which have been successful in solving a 

large class of problems due, in part, to the stable nature of the discretization method 

and efficient algorithms for error estimation and mesh selection. A historical review 

of the development of this group of programs is presented next. 
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(b) 

F igu re 4.4 Schematic illustrating the potential of subroutines based on COLSYS: 
(a) COLNEW for different but constant values of load; (b) COLPAR for different 
but constant values of end-shortening; and (c) COLCON for automatic continuation. 

4 .5 .1 His tor ica l d e v e l o p m e n t 

In 1980 Ascher et al. (1981) developed a program called COLSYS for systems of 

boundary-value problems in ordinary differential equations. This code uses a global 

method, based on collocation, to approximate the solution at discrete mesh points. 

A number of improvements have been made to the original code to enable a wider 

class of problems to be solved. Applications for the different versions of the code are 

illustrated in Figure 4.4 for a sequence of hypothetical buckling problems. COLNEW 

(Bader & Ascher, 1987) is capable of solving ordinary differential equations with 

constant coefficients. In a buckling context, this means the post-buckling curve 

{P versus £) may be constructed by solving the governing equation at different, 

but fixed, values of load. This is particularly valuable for buckling problems which 

exhibit "snap back". An extension of this code, known as COLPAR, was made 

by Bader & Kunkel (1989) to solve parameter-dependent boundary-value problems. 

This enables the post-buckling response to be determined by evaluating the buckle 

solutions at different, but constant, values of end-shortening. A further extension of 

the code, known as COLCON, was made by the same authors to facilitate automatic 

continuation in parameter-dependent problems. This means an entire post-buckling 

response can be evaluated from a single run. The load is free to vary between 

specified upper and lower limits. 
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Amongst the group of subroutines based on COLSYS, the extension COLPAR 

is best suited to solve the problem of buckling in a strut-on-foundation model under 

rigid load control. 

4 .5 .2 I m p l e m e n t a t i o n 

COLPAR is a general-purpose code used to solve mixed-order systems of d nonlinear 

differential equations of orders 1 < m,- < 4 with the form 

= ft (z; z{w, pa r ) ) , 1 < i < d, (4.13) 

on the interval a < x < b. The exact solution vector is 

w{x) = {Wi{x),W2{x),---,Wd{x)), (4.14) 

p a r is a vector of unknown parameters, and 

z(u>(x),par) = (tui(a;), m/(z) , • - , Wd(a;), • 

is the vector of unknowns that would result from converting Equation (4.13) to a 

first-order system. The system is subject to m* = g + J2j=i boundary conditions 

9j{Cj-, par)) = 0, 1 <j < m*, (4.15) 

where q is the number of unknown parameters and Q is the location of the j t h 

boundary condition, a = Ci < C2 < • • • < Cm* = b. 

Unlike other codes, COLSYS is designed to handle mixed-order systems with-

out explicitly converting them to a first-order system. For collocation, this direct 

treatment is more efficient both in terms of storage requirements and execution time 

(Ascher et al., 1995). 
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Figure 4.5 Schematic of collocation procedure. 

4 . 5 . 3 M e t h o d of s o l u t i o n 

COLPAR uses a collocation method to approximate the solution at Gaussian points 

as described in detail by Ascher et al. (1995). Approximate solutions are com-

puted at mesh points which are automatically redistributed and refined until the 

solution at these mesh points satisfies a set of predefined tolerances. The facility 

for automatic mesh generation is especially important for localized solutions where 

the significant deformation is concentrated over a fraction of the spatial domain. A 

damped Newton's method is used for the nonlinear iteration. 

The collocation method is depicted in Figure 4.5. An approximate solution is 

sought of the form 
N 

W7v{x)-^Cj(pj{x), a<x<b, ( 4 . 1 6 ) 

i=i 

where 4>j{x) are linearly independent functions defined on [a, 6] and Cj are unknown 

constants. Using a piecewise polynomial w,r(a:) to approximate the solution on the 

interval [a, 6] reduces to a polynomial on each subinterval [z,, z.+i]. There are k 

collocation points per subinterval. For each of the N subintervals, k + mi constants 

are needed to define uniquely the local polynomial, resulting in N{k + mi) unknowns 

for each differential equation. These unknown quantities are determined by requiring 

that satisfy: (i) m,- boundary conditions; (ii) the ordinary differential equation 

exactly at k points in each of the N subintervals of the mesh; and (iii) m,- matching 

constraints at each internal mesh point (corresponding to w and mi — 1 continuous 

derivatives). The total number of equations is {N — l)mi + m, + Nk = N{k + mi), 
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which corresponds exactly to the number of unknowns. The advantage of using 

piecewise polynomials to approximate the function is that local use of low-degree 

polynomials is usually more accurate and more efficient than using a high-degree 

polynomial globally (Ascher et ai, 1995). 

The implementation of the collocation procedure relies on a number of other 

features including error estimation, automatic mesh generation and an initial ap-

proximation. These issues are addressed below. 

Error estimation 

A standard extrapolation technique is used for the purpose of reliably estimating the 

accuracy of the collocation solution. For a given mesh and solution the subintervals 

are halved and the solution re-evaluated and compared with the original solution (on 

the undoubled mesh). This process is continued until a user-prescribed tolerance is 

satisfied at all positions along the length of interest, x G [a, 6]. 

Mesh refinement and redistribution 

A particular strength of COLPAR, and the other codes based on COLSYS, is their 

automatic mesh generation algorithm. This procedure places more mesh points in 

regions where the profile of the solution changes rapidly and less in other regions, 

thus capturing the essence of the solution with as few subintervals as possible. Mesh 

refinement, which involves both redistribution of mesh points and mesh halving, is 

illustrated in Figure 4.6 for an elastic buckling problem. The basis of the criterion 

for mesh refinement is an approximation of the local error. The reason that this error 

estimate is used for mesh selection is that it has the advantage of being cheaper to 

compute than the extrapolated error estimate. A monitor function is used to refine 

the mesh and ensure the error is approximately equal in each subinterval. Despite the 

power of automatic mesh selection, a good initial mesh can improve performance 

considerably. The nonlinear iteration may not converge for an inadequate initial 

mesh, causing repeated mesh halving without obtaining convergence until storage 

limitations are reached. 



4 N U M E R I C A L M E T H O D S 1 0 2 

# # # 

# # # # # # # # # # #—e # # 

n = 5 

n = 10 

n = 10 

n = 20 

X 

Figu re 4.6 Automatic mesh refinement, including mesh redistribution and mesh 
halving, in the solution of buckling equation (4.17) {EI = fe = c = l , P = 1.80). 

Initial approximation 

At each time step the differential equation solver COLPAR requires an initial guess 

of the nonlinear solution with which to begin its iteration process. Beyond the first 

time step this is achieved simply by using the solution from the previous time step 

as the initial guess for the next time interval. However, at the first time step a 

previous solution does not exist and a different approach is required. In this case, a 

sufficiently accurate starting solution can usually be obtained using a trial function 

with a single term. Two such methods, based on weighted residual procedures, are 

discussed in Chapter 5. The difficulty with this approach is that these methods are 

not practical for equations containing general nonlinear terms such as the elastica 

on a linear foundation given by Equation (3.9). However, Wadee (1993) has shown 

that qualitatively similar localized solutions exist in elastic buckling equations irre-

spective of the source of softening nonfinearity. In this thesis trial solutions of the 

nonlinear differential equation 

EIw"" + Pw" + kw - cw^ = 0, (4.17) 
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were found to provide an adequate starting solution for more general nonlinear 

systems. In the few instances where this procedure was insufficient for COLPAR to 

achieve convergence, simple continuation was used to start from a nearby solution. 

In this process a chain of intermediate problems is solved, with the final mesh and 

solution from the preceding problem used as the initial mesh and approximation for 

the next. 

4.6 Validation of numerical procedure 

The numerical techniques outlined in this chapter play a leading role in subsequent 

chapters for evaluating solutions to a range of nonlinear problems. It is essential, 

therefore, to investigate the accuracy of these methods. Three different approaches 

are used to confirm the suitability of COLPAR, and other aspects of the solution 

procedure, for tracing localized buckling solutions. First, the ability of the code to 

solve nonlinear differential equations is examined by considering a classic buckling 

problem for which closed-form solutions are available. Secondly, localized solutions 

obtained using the boundary-value method of the previous section are checked using 

the shooting method of Champneys & Spence (1993). Finally, a series of numerical 

experiments are carried out to examine the effect of boundary conditions, length 

and time step on the solution of the buckling problem represented by a strut on a 

Maxwell foundation. 

4 .6 .1 Elas t i ca c o l u m n 

Consider a slender column of length 2L simply-supported at each end and subjected 

to an axial force P. As a result of the symmetrical nature of the problem, only 

half of the structure need be considered, as shown in Figure 4.7. To determine the 

large-amplitude solutions which exist when the load exceeds the critical load 

the exact expression for curvature must be used. Adopting the intrinsic coordinate 

system x — 6 shown in the figure, and measuring the distance x along the column 

from the free end, the exact expression for curvature is the first derivative of 

the slope. The column is considered to be inextensible, so that the change in length 
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Figure 4.7 Elastica column. 

of the column due to compression is neglected. The resulting differential equation 

(Timoshenko & Gere, 1963) is 

d^6 
EI 3—5- + F sin 0 = 0, 

dx'' 
bl18) 

the solution of which is referred to as the elastica (Love, 1944). 

Theoretical solution 

The theoretical solution for the elastica column, involving elliptic integrals, is well 

known (Timoshenko Sz Gere, 1963). It was discovered originally by Kirchhoff (1859) 

for the analogous problem involving large oscillations of a pendulum, and is known 

as "Kirchhoff's dynamical analogy". The horizontal and vertical coordinates (%, w) 

of a point along the column are given as: 

% = 

w = 

? £ h ) - i K(y), 

2% 

P 
(1 - COS <F) , (4.19) 

where the elliptic integrals of the first and second kind are 

/{(-y) 
- r : r -•\/l — 7^sin^ (f) 

E{-y) = \Jl - 72 sin^ <?!) d^, ( 4 j o ) 

and p = y/P/EI is a load parameter, 7 = sin (a/2) is a deformation parameter, and 
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a = 25° 

a = 75° 

a = 125° 

a = 175° 

F igu re 4.8 Comparisons of large-deflection solutions for a simply-supported elas-
tica column: analytical solutions; and • numerical solutions (COLPAR). 

is a location parameter which varies O < ^ < 7 r / 2 a s O < 0 < a . The axial load P 

can be calculated from the following relationship between the deformation and load 

parameters 
d</) 

P 
_ 1 p < 

~lJo , / r : 
(4.21) 

yjl — sin^ 4) 

The deflected shape of the column can be calculated by first selecting a value of a 

(or 7), then determining p, and hence P , from Equation (4.21), and the profile from 

Equation (4.19). 

N u m e r i c a l solution 

COLPAR is used to solve the second-order differential equation (4.18) subject to 

the boundary conditions ^ = 0 at x = 0 and 0 = 0 at x = L. The deflected profile 

is found for various c values, by allowing the load to vary subject to the additional 

boundary condition ^ = a at z = 0. These profiles are shown in Figure 4.8. As with 
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Figure 4.9 Comparisons of solutions for Equation (4.17): 
lutions; and • boundary-value solutions {EI = k = c = 1). 

initial-value so-

the theoretical solution, only half of the column need be analysed, the problem being 

symmetric about x = L. A mesh comprising 10 subintervals was required to satisfy a 

prescribed tolerance of 10~® in the solution at mesh points. The numerical solution 

displays excellent agreement with analytical results evaluated at 100 equidistant 

points using Mathematica. 

4 .6 .2 C o m p a r i s o n w i t h s h o o t i n g m e t h o d 

Closed-form solutions are generally not available for localized buckling problems. 

The next best check of the ability of COLPAR to approximate localized solutions is 

by comparison with an independent method. An obvious candidate for this role is 

the shooting method presented by Champneys & Spence (1993). The potential of 

this initial-value method for revealing localized solutions has already been proven for 

strut-on-foundation problems (Champneys & Toland, 1993; Champneys, 1994). The 

details of this procedure are described in § 4.2.2 and summarised by the flow chart 

in Figure 4.2. A comparison of results obtained using this method with the results 

from COLPAR is shown in Figure 4.9. For load values P = 1.95 and P = 1.85, 

the agreement between solutions is within the tolerances prescribed for each method 

(10-1°). 
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Figure 4.10 Effect of time step on the solution for an elastica strut on a linear 
Maxwell foundation under constant end displacement {€ = 1.50, L = 50, EI = k = 
T] = I, pinned end conditions). 

4 .6 .3 N u m e r i c a l e x p e r i m e n t s 

The preceding sections have confirmed the ability of the techniques described in this 

chapter to solve specific problems. It is also desirable to investigate the effect of the 

various assumptions made in § 4.4 on the solution to the problem of a strut on a 

foundation. This includes truncation of the infinite problem to a finite domain, the 

temporal discretization procedure, and the choice of boundary conditions. These 

effects are not addressed theoretically; instead a parametric study is used. The 

penalty for this approach is that the effect of each assumption must be investigated 

separately for each problem. 

The effect of the size of time step At on the axial load of an evolving localized 

solution is shown in Figure 4.10. There is no discernible difference in the solutions 

obtained for each of the time steps shown. While this suggests that a larger time 

step could be used, difficulties were encountered with convergence of the numerical 

scheme at the first time step for At > 0.03. The need for a small time step is confined 

to the early period where the rate of change of load (and profile) is greatest. After 

this time the evolution proceeds more slowly and a larger time step would suffice. 
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Figure 4.11 Effect of length on the solution for an elastica strut on a Winkler 
foundation {P = 1.90, EI = k = 1, pinned end conditions). 

Perhaps the most efficient approach would be to incorporate a variable time step, just 

as there is a variable mesh, Ax. However, while computational efficiency is certainly 

a laudable goal it is not the principal objective here. For all time-dependent results 

presented in this thesis at least three numerical runs were performed for different 

values of At. The usual method of repeated reduction of time step was employed to 

ensure convergence of the numerical scheme. 

In the context of geological folding, the model of a strut on a foundation is re-

garded as being infinitely long. In practice, however, it is impossible to analyse 

such a structure; it must instead be transformed into a finite structure, either by 

truncation or mapping. The former method is adopted here with boundary condi-

tions imposed at the ends to ensure a good approximation to the solution of the 

corresponding infinite problem is obtained. Confirmation that the truncation length 

is adequate is provided in Figure 4.11 where no visible difference between localized 

solutions is recorded for L = 50, 100 and 200 in the buckling of an elastica strut 

supported by a linear Winkler foundation. 

Appropriate boundary conditions for the truncated problem are those that en-

sure the solution of the approximate problem converges to the actual solution of the 

"infinite" problem as the length of the finite interval tends to infinity. Rigorous meth-

ods for solving boundary-value problems posed on infinite intervals are discussed by 
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Figure 4.12 Effect of boundary conditions on the solution for an elastica strut on 
a linear Maxwell foundation under constant end displacement [S = 1.50, L — 50, 
At — 0.01, EI = k = T] = 1). 

cussed by Markowich (1982) and Lentini & Keller (1980). An alternative method, 

albeit crude, is to make the domain of the problem sufficiently large that the bound-

ary conditions have negligible impact on the solution. In Figure 4.11 this method 

was used to demonstrate that the solution is unaffected by the length of the strut for 

the same boundary conditions. In Figure 4.12 the effect of three different boundary 

conditions at a; = Z are shown for an evolving localized solution. The boundary 

conditions considered are: clamped conditions, w — w' = 0; pinned conditions, 

w - w 0; and the linearized elastic conditions (4.9) maintained for all time. 

Again there is no visible difference between each of the solutions for the end condi-

tions shown. For a strut on a Maxwell foundation under conditions of constant end 

displacement, the localized buckle profile has a tendency to become less localized 

with time. It is inevitable, therefore, that the boundaries will ultimately affect the 

solution. However, the time before the boundary conditions have a significant effect 

on the solution can be delayed by choosing a longer strut. 
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4.7 Concluding remarks 

The validity of the boundary-value method of this chapter has been confirmed using 

a three-pronged approach involving a comparison with a closed-form solution for 

the large deflections of a simply-supported column and an independent numerical 

(shooting) method. The effect of approximating the infinite boundary-value problem 

by a series of finite ordinary differential equations has also been established through 

a series of numerical experiments. In combination, these checks engender confidence 

that the behaviour reported is a genuine characteristic of the problem, rather than 

of the numerical method. Further confidence is gained in the following chapter by 

comparison with solutions obtained using the method of weighted residuals. 

Although shooting methods are perfectly adequate for solving ordinary differen-

tial equations of elastic buckling systems, they cannot be applied practically to solve 

partial differential equations of visco-elastic systems. For this reason the method 

outlined in this chapter is better suited to localized buckling of an elastic strut on a 

Maxwell foundation than are the published methods of Champneys & Spence (1993) 

and Hunt & Wadee (1991). 



Chapter 5 

Weighted residual methods 

This chapter explores the potential of classical techniques for determining localized 

buckle patterns in strut-on-foundation models. It commences with an overview 

of the method of weighted residuals and variational principles and a discussion of 

suitable trial functions. A Galerkin method is then used to approximate localized 

solutions to the equation of a linearized strut on a nonlinear Winkler foundation. 

This is followed by a collocation method which is used to study a related visco-

elastic system. In both cases, results are compared with solutions obtained using 

the numerical methods outlined in the previous chapter. 

5.1 Introduction 

Classical methods of analysis were developed originally for the manual solution of 

problems with simple geometries and material properties. More recently, the advent 

of computers has led to general numerical methods capable of solving more difficult 

problems involving complex geometry and nonlinear material behaviour. Today 

the stability of almost any structure could, at least in principle, be analysed using 

a geometrically nonlinear finite element code with incremental loading. Powerful 

though this approach may be, the value of simple analytical methods must not be 

underestimated, for these methods enhance our understanding of the solution and 

provide important checks of the more complicated numerical schemes. 
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5 .1 .1 D i scre t i za t ion of cont inuous s tructures 

Models of struts on foundations are continuous problems with an infinite number 

of degrees of freedom. For their solution, it is customary to reduce such problems 

to corresponding problems with finite degrees of freedom. This may be performed 

in one of two ways: (i) by expressing the deflected shape as the sum of specified 

displacement patterns which are referred to as generalized coordinates, as for exam-

ple in the Rayleigh-Ritz method; or (ii) by subdividing the structure into segments 

and using the displacement at nodes to represent the generalized coordinates, as for 

example in the finite element method (Bathe, 1 9 9 6 ) . In either case, a set of algebraic 

equations is derived, the solution of which approximates the deformed shape of the 

structure. Clough & Penzien ( 1 9 9 3 ) suggest that for uniform struts the first method 

provides a better approximation for the same number of degrees of freedom while 

the latter is best for discrete (lumped mass) systems. 

5.1 .2 B e n e f i t s of classical m e t h o d s of so lut ion 

Numerical methods, such as the finite difference and finite element methods, are 

applicable to broad classes of one-, two- and three-dimensional problems. In many 

cases, however, it is preferable to perform analyses using specialized approaches 

which are not burdened by rigid methods and excessive generality. These simple 

methods enable knowledge gained from previous mathematical studies to be incor-

porated in the solution and often lead to approximations which embody many of the 

essential features of the true solution using only a few modes. In contrast, numerical 

methods generally make no assumptions about the solution to a specific problem, 

hence their universal application. 

The one-dimensional nature of the strut-on-foundation model makes it an ideal 

candidate for solution by classical means. In particular, the infinite length of the 

strut model, which is the bane of many numerical schemes, is dealt with easily 

using infinite mode shapes. Initial-value methods (Champneys & Spence, 1993) and 

boundary-value methods (Whiting & Hunt, 1996) become increasingly difficult to 

use when tracking localized buckling solutions towards the critical point because the 

truncation length increases without bound. By comparison, it is in this vicinity. 
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where the amplitudes and slopes are small, that classical solution procedures are 

most accurate. 

Perhaps the most important contribution of classical methods of analysis is their 

ability to generate approximate solutions which can be used as initial approxima-

tions for numerical boundary-value solvers. These tools require an initial profile of 

a solution in much the same way that Newton's method can be used to determine a 

root of a polynomial provided a sufficiently close starting value is specified. An ap-

proximate solution with a single mode is often sufficient to enable a boundary-value 

procedure to achieve numerical convergence and, with the inclusion of axiditional 

terms, may provide an independent check of the numerical solution. 

5.2 Weighted residual and variational methods 

Methods for approximating solutions to differential equations fall into two broad 

categories: weighted residual methods and variational methods. The former operate 

directly on the differential equation while the latter use a functional related to the 

differential equation. A comprehensive description of these methods may be found 

in various books (Finlayson (1972) and Ames (1992), for example). 

5 .2 .1 W e i g h t e d residual m e t h o d s 

In the method of weighted residuals, the solution of a differential equation, 

d[w] = 0, (5.1) 

is approximated by a trial solution w{x) in the form of a series, 

n 

w = <?!>,•, (5.2) 
t=i 

where < ,̂(a:) are linearly independent trial functions (or modes) chosen to satisfy 

the boundary conditions and A,- are adjustable constants (or amplitudes). The 
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amplitudes^ are chosen to give the best solution to the differential equation (5.1) by 

substituting for the approximate form (5.2) and minimizing the residual, or error, 

R{Ai, x) = D [w]. ( 5 . 3 ) 

If the trial solution is the exact solution, the residual is zero at every point. In 

general, this will not be the case, and the residual R{Ai,x) is a function of the 

unknown amplitudes Ai and spatial variable x. The objective of the method of 

weighted residuals is to minimize the error with respect to the unknown amplitudes 

Ai. This is achieved by first multiplying the residual by a weighting function Wi{x) 

and integrating over the domain. The result is then set to zero; 

J RWidx = 0 % — 1 , 2 , . . . , 7%. ( 5 . 4 ) 

Thus, the amplitudes Ai are determined by requiring the weighted average of the 

residual to be zero, giving rise to the title of this class of solution methods. The 

choice of weighting functions Wi is unlimited and can be used to place emphasis on 

different parts of the solution. Each family of weighting functions corresponds to a 

different criterion of the method of weighted residuals, some of which are discussed 

next. 

Method of least squares 

In this technique the integral of the square of the residual is minimized with respect 

to each of the amplitudes, 

J R^dx = 2 J R-^^dx = 0 t = l ,2 , ...,n. (5.5) 

The weighting functions are, in effect, the derivatives dR/dAi. A disadvantage of 

this method is that it often leads to rather cumbersome equations making it awkward 

to apply in practice (Finlayson, 1972). 

'Note that the amplitudes Ai in Equation (5.2), and used throughout this chapter, should 
not be confused with the slowly varying amplitudes A,(%) and Bi{X) of the perturbation 
scheme in Chapter 3. 
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Galerkin method 

The Galerkin method uses trial functions as weighting functions, W,- = thus 

penalising the residual error according to the mode shape. The unknown amplitudes 

Ai are then determined from the algebraic equations 

jR(f>idx = Q i = l , 2 , . . . , n , (5.6) 

which indicate that the work done by the residual (out of balance) forces over the 

displacements <f>i{x) is zero. This method has been applied successfully to many 

well known problems, including Couette flow between rotating cylinders (Finlayson, 

1972). 

Collocation method 

The collocation method uses the Dirac delta function, Wi = S{x — xi), as the weight-

ing function. No integration is required because the approximate solution is forced 

to satisfy the differential equation at selected collocation points. The location of 

these points is arbitrary although a priori knowledge of the form of the solution can 

be used to determine a suitable distribution for them. This method forms the basis 

of the numerical procedure outlined in Chapter 4 and is used later in this chapter 

to analyse the problem of a strut on a visco-elastic foundation. 

These methods and others not described here were unified by Crandall (1956) and 

are known collectively as the method of weighted residuals. They have been applied to 

numerous problems on structural stability involving rods, plates and shells (Galerkin, 

1915; Leissa et ai, 1969; Ames, 1992; Duxbury, 1988). A first approximation, 

achieved by retaining only the first term of the series, is often sufficient to achieve 

a qualitative description of the solution, while the accuracy can often be improved 

by including additional terms. 
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5.2 .2 Variat ional principles 

Differential equations are not the only basis upon which approximate solutions can 

be founded. A functional may also be used, but only for problems with an un-

derlying variational principle, such as the total potential energy in the case of an 

elastic system. The variational method is similar in many respects to the method 

of weighted residuals with the solution expanded in terms of a set of trial functions. 

The undetermined amplitudes are found by making the variational integral station-

ary with respect to each degree of freedom. An example of a variational approach is 

the Rayleigh-Ritz method (Stephenson & Radmore, 1990), which has recently been 

applied to the problem of a strut on a nonlinear elastic foundation (Wadee et aZ., 

1996). For this problem of elastic stability the total potential energy function, 

V = U - P£, ( 5 . 7 ) 

is used as the basis of the method, where U is the potential energy and £ is the 

end displacement of the strut due to the applied load P. The amplitudes Ai of the 

approximate solution are found by solving the equations 

^ = 0. (5.8) 

Wadee et al. (1996) obtained results which agree closely with those presented in 

§ 5.4 using a Galerkin method. The equivalence between the Rayleigh-Ritz method, 

applied to the total potential energy, and the Galerkin method, applied to the dif-

ferential equation, is well known and has been proven on many occasions (Galerkin, 

1915; Finlayson, 1972). 

The principal disadvantage of variational methods is that they can be applied 

only to problems which have a variational function. In contrast, the Galerkin method 

and other weighted residual methods are always applicable because they operate 

on the differential equation and do not depend on the existence of a variational 

principle. The differential equation governing the time-dependent response of a strut 

on a visco-elastic foundation is readily derived from consideration of the equations 
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of motion while, in general, a functional does not exist because of the dissipation 

of energy within the foundation. This was the deciding factor in using weighted 

residual methods in favour of a variational approach for the problem discussed in 

this thesis. 

5 .2 .3 Cho ice of trial func t ions 

An important advantage in using weighted residual methods over more general nu-

merical methods is the ability to choose trial functions enabling information obtained 

from other sources to be incorporated in the trial solution. These trial functions 

must satisfy two criteria to ensure that the approximation converges, in the limit 

as n —)• oo, to the exact solution: they must be linearly independent and belong 

to a complete set of functions. A set of functions is complete if any function of a 

given class can be expanded in terms of that set, for example, the set of harmonic 

Fourier components. Together these conditions ensure the approximate solution 

is inherently capable of representing the exact solution provided enough terms are 

used. 

The closed-form solutions generated by the perturbation method outlined in 

Chapter 3 are used as the family of trial functions in the methods which follow. The 

trial functions are 

(j)i — sech aa: cos/?a;, 

4)2 = sechaxtanhaxsin /Jx , 

(f>3 = sech^axcos/Sx, 

4>4 — sech^ ax tanhaxsin/3x, (5.9) 

and are shown in Figure 5.1. The first function, is revealed at the level of 

the perturbation study, while the others become apparent at successively higher 

levels of s. Passive terms, such as cosSwx and sin 3wx, arising from the cubic form 

of the nonlinearity in the foundation stiffness, are ignored owing to their meagre 

contribution to the deflected shape of the strut. This is justified by comparing the 

magnitudes of the coefficients of the sech^fiX terms in Equation (3.28). The ratio 
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(j>l ^2 

(j>Z <f>4 

w v 

Figure 5.1 Trial functions (f>i{x). 

of the magnitude of the active mode to the passive mode ^3,3 is 307/3 « 100, 

while the ratio of 5i,4 to £3,4 is 2762/81 % 34. In either case, the contribution of 

the active modes far outweighs that of the passive modes. 

The trial functions (5.9) apparently belong to an infinite set which satisfy the 

conditions of linear independence and completeness as defined above. The first 

criterion is a natural consequence of the combined trigonometric and hyperbolic 

mode shapes and the second follows from the formal perturbation procedure which 

revealed the significant modes in an ordered sequence. The modes (f>i also satisfy the 

flat boundary conditions for a localized solution as x —> ±00, although this is not 

strictly necessary for weighted residual methods (Finlayson, 1972). The principal 

advantage of one set of trial functions over another is the rate of convergence to the 

exact solution. An improvement in the accuracy of an approximate solution can also 

be achieved by increasing the number of modes, though naturally at the expense of 

a corresponding increase in the number of equations to be solved. 

5.3 Strut-on-foundation model 

Localized behaviour in strut models involving geometric and material nonlinearities 

of arbitrary complexity is examined in the next chapter using numerical methods. In 

contrast, the types of differential equations amenable to analysis by weighted residual 

methods are restricted to those containing relatively simple nonlinear terms. In the 

case of a strut on an elastic foundation, for example, they are best applied to models 

with foundation reactions of the form F = kw + Ciw"^ + C2W^ + h Cn-iw^. 
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The types of partial differential equations which can be tguckled using weighted 

residual methods are even more limited. The restriction arises because of the com-

patibility relation for the Maxwell response which relates the displaicements of the 

spring and dashpot to the total displacement, w = Ws + Wd. In order to eliminate the 

internal coordinates Wg and wj, from the compatibility relation they are expressed 

in terms of the total force acting on the Maxwell element, which is common to both 

the spring and dashpot. However, functions describing spring and dashpot responses 

are usually expressed as = f{ws) and Fd = f{wd), and may not necessarily have 

corresponding inverse functions. For example, a spring which obeys the relation 

Fg = kws — cwg^ does not have a genuine inverse function of the form Ws = f{Fs), 

although it can be approximated locally by 

+ 0 ( F / ) . (5.10) 

Using a truncated form for Ws and replacing Fg with F, which involves a fourth 

derivative of w, can lead to long and unwieldy equations which negate the simplicity 

of weighted residual methods. This means that only certain types of models of struts 

on visco-elastic foundations can be practically analysed using these methods. 

In this chapter, a model proposed by Hunt et al. (1996a) is used to demonstrate 

the potential of weighted residual methods for revealing localized solutions. The 

model is based on the linearized strut equation 

EIw"" + Pw" + F = 0, (5.11) 

and visco-elastic foundation behaviour 

This foundation displays the same force-displacement characteristics as a Maxwell 

unit: an instantaneous elastic response followed by a period of viscous flow, although 

it cannot easily be described by an arrangement of springs and dashpots. 
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5 .3 .1 N o n d i m e n s i o n a l i z a t i o n 

For an elastic strut on a visco-elastic foundation there is a choice of nondimensional 

parameters; either the elastic buckle wavelength of the purely elastic system or the 

dominant wavelength of the purely viscous system may be used (Hunt et ah, 1996a). 

The latter introduces a time-dependence to the nondimensional spatial parameters, 

which effectively restricts the analysis to the case of constant load. As the intention 

here is to study the behaviour of the system under conditions of rigid load, the 

critical loaxi and wavenumber of the purely elastic foundation are used. By using 

the transformations 

l \ l / 2 
W = ( - I W, 

• = & ' 

P = {kElf'^P, (5.13) 

it is possible to simplify the governing equations (5.11) and (5.12) into a single 

nondimensional form 

d . .a ^//// _|_ Q (5.14) 
dt 

w"" + Pw" + w-w' 

From here on the tildes above each term will not be shown and the nondimensional 

form will be implicitly assumed. The effect of these transformations is to introduce 

a scaling which enables solutions to be determined without consideration of the 

values of the material constants. Solutions for specific values of EI^ k, c and rj 

may be retrieved by reversing the original transformations. For governing equations 

containing more general material or geometric nonlinearities, nondimensionalization 

may not be so straightforward and individual solutions may need to be found for 

different values of the material constants. This point was illustrated in § 2.6 for a 

rigid link model. 
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5.4 Galerkin method 

The Galerkin^ method is one of the best known weighted residual methods and 

bears the name of the Russian engineer who developed it early this century. This 

method is used here to describe solutions of the instantaneous elastic response of a 

strut on a visco-elastic foundation whose behaviour is governed by Ekjuation (5.14). 

Although problems involving buckling have been tackled in the past using Galerkin 

procedures (Ames (1992) and Duxbury (1988), for example), it appears that no such 

treatments have been made of localized deformations. 

The initial response, obtained by equating the contents of the square brackets in 

Equation (5.14) to zero, is governed by the equation 

w"" + Pw" + w — = 0, (5.15) 

which is identical to the problem of a strut on a nonlinear (cubic) elastic foundation. 

In choosing an approximate solution w for the deflected shape of the strut, the 

differential equation (5.15) will not be satisfied exactly. A residual, 

R{x,w) = w'''' + Piv'' + w-iv^, (5.16) 

remains which depends on the form of the approximate solution and varies with the 

position along the length of the strut. 

5 .4 .1 M o d a l analys is 

Single mode 

The deflected shape of the strut is approximated by the modal form w — Ai<pi, 

with the single mode = sech az cos^gz corresponding to the first term in the 

ordered perturbation analysis (3.27). The values of a and P are assumed to be the 

^Ironically, it was while he was imprisoned for his political views in 1906 that Galerkin 
published his first technical paper — on the buckling of rods and bars! 
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eigenvalues (3.13) of the linearized system which, in nondiraensional form, are 

I P I P 

° = v 2 " 4 ' " = ¥ 2 + 4 -

According to the Galerkin method, the amplitude Ai is found from the equation 

/

oo 

R{x,w) (j)idx = 0. (5.18) 
-00 

After substituting for w and integrating over the infinite domain, the result is the 

nonlinear algebraic equation 

2/1^1-^2 + 2^I^IIc22 + -f2^ils22 — — 2>j3^ + a i + I4 

— (ba^ — 3/?^ + p j a i + — 1 ^ 4 2 — 12a^/3AiIs42 ~ g^i^-^c44 

+ + 12a^ax/c62 = 0, (5.19) 

where / i and are given by the relations 

fi = 1 + - 60^/3^ + /?"* + f , 

/2 = 2a/3 (2^2 - 2/32 + p ) . (5.20) 

The integrals I j , which are denoted 

f°° 
In = sech"aa:dx, 

J — 00 

/

OO 

sech^az cos m/3x dz, 
-00 

/

OO 

8ech"az tanh a i sin d i , (5.21) 
-00 

are evaluated in Appendix B. After substituting for these integrals and reordering, 

the expression 
kiAi — = 0 (5.22) 
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is found in terms of the modal amplitude Ai, with coefficients 

ki = r^[l5 + 7a^ + S0a'^P^ + 15P'^-10P(a'^ + 3p^)] 
+ Pn 

[l5 + 7a^ + + 3/3^ - lOP (a^ + Ci, 15^2 

&111 = 2̂  + "A" ^ (5-̂ ) 2a 3 A 4 V 

in which 

Ci = cosech j , C2 = cosech . (5.24) 

For a given value of P, the nontrivial amplitude Ai is therefore 

Ai = \ (5.25) 
V Km 

The ability to derive a closed-form solution for the modal amplitude is a unique 

property of the single-mode approximation as coupled nonlinear equations result 

when the deflected shape is represented by two or more modes. 

Two modes 

A second mode, (f>2 = sech aa: tanh ax sin/?x, corresponding to the coefficient in 

the perturbation analysis of Chapter 3, is incorporated in the trial solution so that 

w = Ai (j)i + A2 4>2- The first term allows a modulation of the amplitude and the 

second an adjustment of the wavelength of the buckle profile (phase modulation) 

which is especially important around the centre of localization where the effect of 

the cubic nonlinearity is greatest (Wadee, 1993). The amplitudes Ai and A2 are 

defined by the pair of Galerkin equations: 

/

oo 

r ( x , a i , a 2 ) ^ i d x = 0, 
-00 

/

OO 

R(X,Ai,A2) </>2d̂  = 0. (5.26) 
-00 

The evaluation of these equations involves considerable algebraic manipulation which 

is performed most simply using a mathematical package capable of symbolic ma-

nipulation, in this case, Mathematica (Wolfram, 1991). After substituting for the 
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integrals (5.21), the Galerkin equations may be simplified to 

~i~ ^ijk — 0? 

h A; + lijk AiAjAk = 0, (5.27) 

where the Einstein convention is used to imply summation over repeated indices and 

the coefficients ki,kijk,li and lijk are listed in Appendix C. These expressions were 

solved iteratively using a Newton-Raphson algorithm (Press et al., 1988). 

Higher modes 

The earlier perturbation analysis is again used as a guide for selecting higher-order 

mode shapes with the third and fourth modes chosen to be 4>3 = sech^ax cos^x and 

(j)4 = sech^ax tanh aa: sin/3a:. Like the first mode, <p3 affects the amplitude of the 

approximation while <̂4 influences the wavelength. The modal approximation now 

has the form 
4 

w = ^2 4>i- (5.28) 
t = l 

The corresponding Galerkin equations are not presented because of their length but 

have the same form as Equation (5.27) and may be derived using Mathematica. 

5.4 .2 R e s u l t s 

The numerical procedure outlined in Chapter 4 provides possibly the best reference 

with which to assess the quality of the Galerkin solutions. A visual check of the 

results is offered by Figure 5.2. The amplitude of the modal solutions at the centre of 

localization is progressively overestimated as the axial load drops to zero. The single-

mode approximation provides the worst agreement, while the four-mode solution is 

indistinguishable to the naked eye from the numerical solution for all load values 

presented. The existence of a nontrivial buckled shape at P = 0 does not indicate an 

initial imperfection in the strut geometry; rather it represents an equilibrium point 

on the post-buckling curve of the perfect system, albeit far from the initial buckling 

load. 
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Figure 5.2 Comparison of numerical and Galerkin solutions for a strut on a non-
linear elastic foundation as represented by Equation (5.15); I — one mode; II — two 
modes; III — three modes; IV — four modes; N — numerical solution. The four-
mode solution is indistinguishable from the numerical solution for all load levels. 
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Figure 5.3 Comparison of load versus peak amplitude for numerical and GaJerkin 
solutions: I — one mode; II — two modes; III — three modes; IV — four modes; 
N — numerical solution. 

A closer inspection of the quality of the collocation solutions may be maxle by 

comparison with the numerical solution at specific locations or by averaging some 

quantity over the entire domain. Consider first the amplitude of the localized solu-

tion at the point of symmetry (.t = 0) which is shown in Figure 5.3. For a single trial 

function, the amplitude is predicted well in the vicinity of with a deterioration 

as P —> 0. For most load values a significant improvement is obtained following the 

introduction of a second and third mode, and when four modes are included the 

Galerkin approximation is obscured by the numerical solution. 

An alternative measure of the error is provided by the average residual, defined 

here as 
/ foo 

(5.29) R. 
1: 

R^dx. 

This quantity is plotted in Figure 5.4; the smaller the error, the better the approxi-

mate shape. The exact solution has zero error and therefore represents the vertical 

axis. Perhaps inevitably, the error of the Galerkin solutions grows as the load de-

creases from for this is the point of expansion of the perturbation scheme which 

spawned the mode shapes. Although this method quantifies the error, it does so in 

an averaged sense which is only useful when comparing one approximate form with 
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Figure 5.4 Load versus average residual for Galerkin solutions: I — one mode; 
II — two modes; III — three modes; IV — four modes. 

another. An interesting feature of the average residual shown in the figure is that 

the four-mode solution is worse than the three-mode solution in the region P a 1.6. 

This result is not supported by direct comparisons of amplitude and end-shortening 

between Galerkin and numerical solutions. 

Another measure of error is given by the end-shortening £ of the deformed strut. 

For an inextensional strut, the first-order end-shortening for the approximate form 

iv = Ai<pi is 

£ = 
1 ,2 . 

= sech^ Qri da: 

1 / \ f oo 
4- - y sech^ ax cos2/3a: dx 

1 foo 
I sech^axdx 

4 J—oo 
1 foo 

a^Ai^ / sech'* Q:scos2y5a:di 
4 J — oo 
1 o 

H—a/3Ai / sech ax tanh ax sin dx 
2 j—oo 

(5.30) 

where Ci is given by Equation (5.24). The end-shortening is plotted in Figure 5.5 
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Figure 5.5 Comparison of load versus end-shortening for numerical and Galerkin 
solutions: I — one mode; II — two modes; III — three modes; IV — four modes; 
N — numerical solution. 

and reveals that for all Galerkin approximations the qualitative behaviour of the 

numerical solution is duplicated with end-shortening initially increasing and then 

decreasing as the load falls from the critical point. Better approximations of end-

shortening are obtained when additional modes are included. The actual load versus 

end-shortening response is unusual with a turning point developing at P w 1.8. It is 

reminiscent of the classic "snap back" post-buckling curve for a cylinder (Bazant & 

Cedolin, 1991) but differs qualitatively in at least two respects. Firstly, it involves a 

smooth transition at a position some distance from the critical point and secondly 

it does not involve a cusp bifurcation. However, it is the ability of the approximate 

solution to mimic the behaviour of the accurate numerical solution and not the 

appropriateness of the nonlinear elastic foundation to model real behaviour that is 

of concern here. In any case, this figure represents the load versus end-shortening 

for a specific set of equilibrium solutions and is independent of the type of loading 

applied. Under rigid load conditions, for example, the deflected shape may change 

from a primary localized profile into an alternative localized form with two or more 

peaks as the load snaps downwards. The precise response of this system is an open 

question at this time. 
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Figure 5.6 Effect of omission of contour integrals on the load versus end-
shortening response of Galerkin solutions. 

5 .4 .3 Ef fec t of contour integrals 

The Galerkin method described here is an improvement over the perturbation method 

of Chapter 3 because of its ability to account for the so-called contour integrals, Icnm 

and Isnm of Equation (5.21). Hunt & Wadee (1991), in their perturbation analy-

sis, argued that the contribution of these integrals is negligible because they can 

be repeatedly integrated by parts to reveal terms of ever decreasing magnitude. 

Although their reasoning was not entirely correct (they neglected an increasing con-

tribution of the integrand) their conclusion that contour integrals have little effect 

on the solution is true in the vicinity of in an asymptotic sense. When seeking 

approximate solutions over the complete range 0 < P < these integrals should 

be included to ensure the solutions are consistent. The adverse effect on the load 

versus end-shortening response when these integrals are ignored is demonstrated in 

Figure 5.6. The mode IV approximation is particularly affected whereas previously 

it was virtually eclipsed by the numerical solution. Another contrasting feature is 

that the results overestimate the end-shortening for some values of P and underes-

timate it at others. When contour integrals were included in the analysis the results 

(see Figure 5.5) displayed a consistent trend to overestimate the end-shortening but 

by a progressively smaller amount as the number of trial functions increased. 
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5.5 Collocation method 

For the problem of a strut embedded in a visco-elastic medium, as represented by 

Equation (5.14), the buckled shape of the strut is expected to change with time owing 

to the viscous nature of the Maxwell foundation. One way of ensuring a solution 

method is capable of reflecting this behaviour is by using a large number of trial 

functions with fixed shape but time-varying amplitudes, Ai{t) 4>{x). Another option, 

which has the potential for generating a better solution with the same number 

of modes, is to allow both amplitude and shape of the trial functions to change 

with time, Ai{t) (f){x,t). The latter option is implemented here by using the same 

trial functions as for the elastic analysis and permitting a{t) and P{t) to vary with 

time. The Galerkin method of the previous section relied on the fixed values of a 

and /? from the linearized elastic state and apparently cannot be extended to the 

visco-elastic problem. Another possibility is the method of least squares. This has 

the capacity to allow a and 0 to vary by introducing them as extra variables and 

establishing the additional algebraic equations 

^ J dx = 0 and ^ J R^dx = 0. (5.31) 

However, the length of the resulting equations makes this method awkward to apply 

in practice. Instead, a collocation method is proposed for both the initial elastic 

state and the subsequent period of visco-elastic evolution. The method was born 

out of the publication by Hunt et al. (1996a), where the possibility for non-periodic 

forms and localization within a geological framework was discussed. 

5 .5 .1 B u c k l e in i t ia t ion 

As for the Galerkin analysis, the buckling of the initial elastic phase is governed by 

Equation (5.15). Approximate solutions with one and two modes are considered. 

Single mode 

A trial solution of the form iv = Ai(f>i is assumed, where <j>i is the same as for the 

previous Galerkin analysis. Replacing w in the differential equation (5.15) by the 
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approximate form w leaves a residual 

R{x,a,P,P,Ai) = iv"" + Pw" + w - iu'' 
6 

= -Wt tpi, (5.32) 
i=l 

in which the coefficients Mi are 

Ml = fiAi, 

Mi = - 2 a 2 ( l o a 2 - 6 ; 0 2 ^ p ) 

ms = 24a'* yli, 

m4 = / a ^ i , 

ms = —24a'^/?yli, 

Me = —— (5.33) 

the quantities fx and /g are defined in Equation (5.20), and the functions ijji are 

ipi = sech az cos/)z, 

^2 = sech^az cos 

= sech^oxcos/Jx, 

^4 = sech aa: tanh ax sin/Sx, 

^5 = sech^ ax tanh ax sin 

^6 = sech^ ax cos3/?x. (5.34) 

The collocation procedure requires that the differential equation (5.15) be sat-

isfied exactly at three distinct points: one for each of the unknown quantities a , 

13 and Ai. Although the location of these points is arbitrary, the analysis can be 

greatly simplified by selecting collocation points where some of the functions ipi are 

zero. For the purely elastic problem, solutions are found in this way for different but 

constant values of load. Consider the analysis for the points xi, xg and X3 shown 

in Figure 5.7. The first two points are chosen far from the centre of localization 

to coincide with the node and peak of the oscillating solution. The last point is 
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Figure 5.7 Location of collocation points. 

positioned at the point of maximum amplitude and symmetry, x = 0. 

A t z i , cos/3x = 0 and sin/?a: = 1 which means that ^2,^3 and ipe are all 

zero. Setting the residual (5.32) equal to zero then simplifies to 

M4 sech axi tanh axi + M5 sech^ axi tanh axi = 0. ( 5 . 3 5 ) 

For large Zi, sech^azi C sechctxi and t anhaz i % 1, so the latter term may be 

regarded as being of higher order. Neglecting this term enables the residual to be 

reduced further to M4 = 0, which has the nontrivial {Ai / 0) solution 

A = 0. ( 5 . 3 6 ) 

A similar argument at zg, where sin/3x = 0 and cos/?z = 1, gives Mi = 0, which 

has the solution 

/ I = 0 . ( 5 . 3 7 ) 

Thus, the linear relations for a and 0 given by Equation (5.17) are retained if 

collocation points Xi and X2 are used. 

The amplitude of the approximate solution is found by considering the colloca-

tion equation at the point Z3, where cos/?i = sechaz = 1 and sin/?z = 0. At this 

point the functions V'4 and V's are both zero and = •02 = V's = '06 = 1- Equating 

the residual to zero leaves 

ml + m2 + m2 + mq — 0, ( 5 . 3 8 ) 
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from which it can be determined that 

- P ) A I - = 0 . ( 5 . 3 9 ) 

After substituting for a and /? from Equation (5.17), the nontrivial amplitude for 

the single-mode solution is found to be 

A I = - 2P. ( 5 . 4 0 ) 

Two modes 

Bearing in mind that the quality of an approximate solution is expected to improve 

as the number of trial functions is increased, consider the trial solution 

W — A I ^ I + A2<I>2, ( 5 . 4 1 ) 

with amplitudes A, and modes 

(j)i = sechazcosySa;, 

(j)2 = sech az tanh sin (5.42) 

Substituting the approximate form w into the differential equation (5.15) results in 

the residual 
10 

R { X , A , P , P , A I , A 2 ) = ' ^ M I T P I , ( 5 . 4 3 ) 

i=l 

where the coefficients M,- and functions ipi are listed in Appendix D. 

In order to determine the four unknowns a, P, Ai and Ag, the governing differ-

ential equation must be satisfied exactly at four locations. The points Zi, zg and Zs 

are used again, with a final point Z4 making the foursome. As for the single-mode 

solution, the first two points lead to the linear relations 

/ i = /2 = 0, (5.44) 

in terms of a and /9. At Z3, the functions ^1, ^2, V'3, ^7 and V's are equal to one, 
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and the remaining functions are zero. The third collocation equation is therefore 

M\ + M2 4" 4" M7 + Afg = 0. (5.45) 

The final equation comes from choosing a point X4 = tztt//?, where n is an integer, 

on the peak (or trough) of the oscillating cosine solution. For even values of n, 

cos/3a: = 1 and sin /3x = 0, and the residual is 

Ml sech ax4 + M2 sech^ ax^ + M3 sech® cxx̂  

+ M7 sech^ ax4 + Mg sech® 0:0:4 = 0. (5.46) 

Using the condition Mi = 0, implied by Exjuation (5.44), the third and fourth 

collocation equations (5.45) and (5.46) may be rearranged to give 

(M2 + M7) + (Ms + Mg) = 0, 

(M2 + Mr) + (M3 + Mg) sech^ 0x4 = 0, (5.47) 

for which a solution, independent of the value of X4, is 

M2 + M j = 0 and M3 + Mg = 0. (5.48) 

This result is equivalent to equating to zero terms of the same "order" in Equa-

tion (5.46), where the order of a term is defined by the power of the accompanying 

sech 0Z4 term. After substituting for M,-, the following expressions are obtained for 

the modal amplitudes Ai and A2: 

Ai = ay^lOfS'^ — P, 

M (5.49) 
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Figure 5.8 Load versus peak amplitude for collocation solutions. 

Results 

The collocation approximations are assessed by comparison with independent nu-

merical solutions. An inspection of the peak amplitude of the primary localized 

solution, as shown in Figure 5.8, reveals the single-mode solution is closer to the 

numerical solution than the two-mode approximation in the region P > 1.5, while 

the reverse is true elsewhere. The most important feature is that the amplitude 

of the collocation solutions, like the numerical solution, increases monotonically as 

P —> 0. A comparison with the perturbation results obtained in Chapter 3 (see 

Figure 3.6) shows that the asymptotic solutions are better in the immediate vicinity 

of the critical point but that the collocation solutions are better elsewhere. 

Instead of concentrating on the amplitude of the solution at a specific point, a 

more useful comparison is that of the load versus end-shortening shown in Figure 5.9. 

Although it is possible to calculate the exact end-shortening of the approximate 

solutions by numerical means, the first-order expression (5.30) is used here in order 

to retain the analytical nature of the solution procedure. The figure shows that the 

single-mode solution is best in the region P > 1.8 and that two modes are required 

to detect the presence of the turning point in the end-shortening. A comparison with 

Figure 3.7 reveals that the collocation method generates better approximations of 

end-shortening than the perturbation method everywhere except close to P^. 
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Figure 5.9 Load versus end-shortening for collocation solutions. 

I 

— II 

Figure 5.10 Load versus average residual for collocation solutions. 
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The average residual is depicted in Figure 5.10 and shows that the quality of the 

collocation solutions decreases almost linearly as the load falls from a feature 

shared with the Galerkin solutions of the previous section. It is also apparent that 

the two-mode solution is better, albeit in an average sense, than the single-mode 

solution for all values of P. As demonstrated in the earlier analysis, the inclusion of 

additional trial functions is expected to lead to a more accurate approximation of a 

localized solution. 

5 .5 .2 T i m e evo lu t ion 

The significance of the localized form at the start of the evolutionary process is 

that, in contrast with the purely viscous foundation (Blot, 1965), solutions display 

more than just a growth of periodic amplitudes. The procedure for following the 

evolution takes much the same course with Equation (5.14) as the elastic analysis did 

with Equation (5.15). An assumed form for the deflected shape is substituted into 

the governing differential equation and equated to zero at a number of collocation 

points. In contrast to the earlier elastic analyses, the growth of the buckle pattern 

is controlled by the end displacement E. The partial differential equation is reduced 

to a system of four simultaneous first-order ordinary differential equations in terms 

of the unknown variables Q(f), /)((), P{t) and Ai(i). The following formulation is 

limited to a single mode on the basis that a qualitative description of the solution 

can be achieved in this way. 

DifFusion equations 

The first three rate equations of the visco-elastic system stem from a collocation 

method which is virtually identical to that used for the analysis of the purely elastic 

system. The difference now is that the residual not only varies with x but also 

with time t. For the evolving solution, collocation points located close to the centre 

of localization were found to yield optimum results. The following analysis is for 

collocation points at xi = 0, 2:2 = and Z3 = 
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The residual at a;i is 

A\{t), P{t)\ = ML + m2 + m3 + Mq. (5.50) 

After inserting the quantities M, and equating the residual at this point to zero, the 

resulting equation may be manipulated into the form 

K\i d + Ki2 0 + KI3 P + if 14 Ai = l i , (5.51) 

where the coefRcients K i j are 

Kn = 2 a ( l 0 a 2 + 6 / ? 2 - p ) y l i , 

jitig = 2^ (6a^ + 2 / 3 ^ - f ) a i , 

Ki3 = - ( « " + / ) " ) A I , 

Ki4 = 1 + 5O:^ + — P — 3 A I ^ , ( 5 . 5 2 ) 

and the right-hand side is 

l i = - [50* + 6o;2/?2 + 1 3 ^ - p ( ^ a ^ + ] a i . (5.53) 

Performing the same procedure at X2 and X3 generates two further rate equations: 

a21 d + -r22 /? + if23 -p + -ft 24 a i = L2, 

K31 dK32/3-j-K33 PK34 Ai = L3. (5.54) 

The coefficients K2j and Ksj are derived simply by manipulating the coefficients M,-

and functions tpi listed in Appendix D and are therefore not specified here. 

Rigid loading 

Localized buckling is unstable under conditions of constant load for the current 

system so evolution is considered under the control of end displacement. The rate 

of end-shortening is obtained by differentiating the first-order expression ( 5 . 3 0 ) with 
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respect to time t, 

Like the previous rate equations, this has an equivalent form 

K41 a + K42 + K4Z P + Kaa Ai = L4, 

(5.55) 

(5.56) 

where L4 is the rate of applied end-shortening and the coefficients K4j are found 

by evaluating the appropriate derivatives. The coefficient K^z is zero because the 

end-shortening is a geometric property of the deflected shape to and is not an explicit 

function of the axial load P. 

5.5 .3 R e s u l t s 

The process for tracing the buckled shape of the strut as it evolves in time is as 

follows. A starting value of P is chosen, from which the initial elastic profile and end-

shortening £ are determined. The equations (5.51), (5.54) and (5.56) are combined 

as a system of first-order equations which may be expressed in matrix form, 

Kn a'i2 a 13 Ki4 a ' L, ' 

K21 a 22 1^23 K24 P L2 

a31 Kz2 K33 K34 P L3 

7141 /142 1^43 a'44 _ 
. 

L4 

(5.57) 

This system is integrated forward in time using a forward difference technique with 

a small time step, typically At = 0.01. The values of a, /?, P and Ai from the initial 

time step are used to calculate the components of the matrices K and L. After 

calculating the inverse and multiplying by L, the instantaneous rates d, P 

and Ai are found. These slopes are then used to calculate the new values of a , /3, 

P and Ai using difference relations of the form cunew ~ (told + 6 At. The process is 

repeated for the desired time interval. 

The results of the collocation method are plotted in Figure 5.11 together with 

the numerical solution for the problem of constant end-shortening, ^ = 0. The two 

solutions show good agreement with one another over the interval shown, thus pro-
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Figure 5.11 Comparison of single-mode collocation solution (dashed lines) with 
numerical solution (solid lines) under rigid load conditions, -P(O) = 1.97. 

w 

Figure 5.12 Evolution of localized profile for single-mode collocation method un-
der rigid load conditions, F(0) = 1.97. 
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viding additional confidence in both methods, particularly the collocation method. 

A three-dimensional view of the evolving buckle profile is displayed in Figure 5.12 

for a longer time period. It is interesting to observe the sequence of events for this 

nondimensionalized and hence general problem. The most salient feature is that 

the load drops rapidly, apparently asymptotically to zero, as the viscous part of the 

foundation absorbs the energy stored in the system. In common with the elastic 

response (Champneys & Toland, 1993), the lower the load, the more localized the 

buckle shape. At the same time, the wavelength of the solution increases as the 

elastic bending energy of the strut is released. The combined effect is to evolve 

towards a single long half-sine wave without ever approaching a periodic form. 

5.6 Concluding remarks 

The weighted residual methods demonstrated here are valuable for the improved 

understanding and insight which they provide into the nature of localized buckling 

in the model of a strut on a foundation. For the types of elastic and visco-elastic 

behaviour studied here these methods have proven capable of predicting all of the 

qualitative features of the buckling solution, often with a single degree of freedom. 

In this chapter these methods were used to reduce a partial differential equation to 

a system of ordinary differential equations and an ordinary differential equation to 

a set of algebraic equations, some of which have closed-form solutions. There are 

also occasions when these classical methods convey information that other methods 

cannot, for example, close to the bifurcation point where numerical methods have 

difficulty tracking localized solutions. In this light, weighted residual methods may 

be said to complement numerical methods. However, unlike the applications for 

classical techniques developed earlier this century, they cannot be performed prac-

tically by hand and it has required the advent of advanced algebraic manipulation 

packages, such as Mathematica, to implement them. 

The number of problems amenable to analysis by a Galerkin method or colloca-

tion procedure is considerably less than can be solved by numerical methods. For 

example, they cannot be used to solve the geometrically nonlinear problem of the 
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elastica strut (3.9) nor problems involving general nonlinear foundation behaviour. 

In such cases, these methods require a Taylor expansion to approximate the nonlin-

ear behaviour and even then it is practical only to consider the first nonlinear term. 

Nevertheless, the solutions provided by weighted residual methods may be used as 

initial profiles for more complicated boundary-value methods. 



Chapter 6 

Numerical experiments 

In this chapter the ideas and methods of Chapter 4 are used to explore the evolution 

of localized patterns in visco-elastic buckling models. Unlike the previous chapter, 

where the types of problems amenable to analysis were restricted by the practical 

implementation of the method of weighted residuals, here the types of localized 

buckling problems which can be solved is virtually unlimited. The chapter begins 

by establishing the effects of geometric and material nonlinearities on the post-

buckling response of a strut on an elastic foundation. Numerical results are then 

presented for the initiation and subsequent development of localized buckle forms in 

two visco-elastic models. Load conditions of constant end displacement and constant 

rate of change of end displacement are used to simulate tectonic plate movement. 

The chapter ends with a brief treatment of the myriad of other buckling solutions 

which exist in such systems. 

6.1 Introduction 

A method of solution is usually developed for a specific task and generally has 

limited application to other problems. In particular, this is true of the shooting 

methods described in § 4.2. The blanket runs by Hunt & Wadee (1991), while 

ideal for detecting localized solutions with multiple peaks, are a poor means of 

generating entire post-buckling profiles for specific localized forms. This is because 

their search algorithm makes no use of information regarding the solution profile at 
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adjacent parameter values. Similarly, the automatic continuation strategy developed 

by Champneys & Spence (1993), although ideal for isolating and tracing multi-modal 

localized solutions, is applicable only to certain types of buckling problems. Their 

method cannot be applied to the elastica problem because the Hamiltonian^ cannot 

be conveniently separated into components of potential and kinetic energy. 

By comparison, the boundary-value method described in Chapter 4 was devel-

oped specifically for the study of primary localizations (those with a single peak). 

For the purely elastic problem, a solution at one value of P (or €) provides the 

boundary-value solver with an initial profile for the next value, thus enabling the 

entire family of post-buckling solutions to be generated. In a similar fashion, a so-

lution at one time step acts as an initial profile at the next time step, thus revealing 

the evolving localized form of the visco-elastic system. Using the numerical tool in 

this manner provides answers to several fundamental questions regarding the effects 

of nonlinear elasticity on the buckling of strut-on-foundation models. 

6.2 Nonlinear elasticity 

Since the pioneering work of Koiter (1945), buckling has been regarded as an in-

herently nonlinear phenomenon. This does not mean that the linearized form is 

not important; indeed, it is the solution of the linearized equation that reveals the 

potential for localization. For subcritical loads, P < P^, the characteristic equation 

gives rise to complex eigenvalues. The corresponding eigenvectors represent oscilla-

tory behaviour with exponentially varying amplitude. As the amplitude grows, so 

too does the influence of nonlinear terms and, ultimately, these terms may cause 

the amplitude to reverse and decay exponentially. This is the essential feature of 

localized buckling. 

There are three main types of nonlinearity: material (or physical), geometrical, 

and loading nonlinearity. The first type of nonlinear behaviour is due to the physical 

properties of the material being used. The second arises from the consideration of 

large deflections and the third occurs when an axial load on a structure undergoes 

'The Hamiltonian is a property which is constant for conservative systems such as a strut 
on an elastic foundation (Goldstein, 1980). 
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small lateral displacements thus inducing additional bending moments. For the 

buckling models considered in this thesis, the axial load is assumed to be applied 

at infinite boundaries where the amplitude is zero so the third type of nonlinearity 

can be discounted. The effects of the other nonlinearities are explored by including 

them in the governing equation one at a time. Only in special cases is it possible to 

reduce a buckling equation to an equivalent nondimensional form and for this reason 

solutions in this chapter are found for specific values of the material constants. 

6 .2 .1 Tay lo r ser ies a p p r o x i m a t i o n 

Researchers investigating localized strut buckling have usually based their analysis 

on the linearized equation 

EIw'" +Pw" + F = Q, (6.1) 

with a nonlinearity in the foundation, typically F = kw — cw". The cases n = 2 

(Hunt et al., 1989; Hunt & Wadee, 1991; Wadee, 1993; Champneys & Spence, 1993) 

and n = 3 (Potier-Ferry, 1983; Thompson & Virgin, 1988; Whiting, 1996) have 

received much attention. Although it is conceivable that these foundation reactions 

have practical applications in the context of buckling, they can also be seen as 

attempts by the authors to introduce a softening nonlinearity into the governing 

equation by approximating a more general nonlinear function. Consider a Winkler 

foundation with springs governed by the inverse hyperbolic sine function 

k 
F{w) = — sinh"^ nw, (6.2) 

where k is the tangent stiffness of an undeformed spring and n is a measure of 

the degree of nonlinearity whose influence is examined later in the chapter. This 

function increases monotonically with w as shown in the upper part of Figure 6.1. It 

has the essential softening ingredient necessary for localization without the negative 

stiffness of the above polynomial. In the vicinity of the origin, the Taylor series 
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Figure 6.1 Foundation behaviours (top figure) and associated post-buckling re-
sponses (bottom figure) for a linearized strut on a nonlinear elastic foundation 
(EI = k — 1, n — 2). 
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expansion of this function is 

k kn? 
— sinh"^ nw = fcti; —w^-\-0(w^). (6.3) 
n 6 ' 

A question which seems not to have been addressed in the literature is: what is 

the effect on the post-buckling response of the system arising from truncation of 

higher-order terms 0{'w^) in the foundation reaction? 

In order to answer this question, two buckling equations are solved: one incorpo-

rating the general nonlinear function (6.2) and the other its truncated form. These 

results are presented in the lower part of Figure 6.1. For the truncated foundation 

reaction, the post-buckling response is characterized by a turning point at F w 1.81, 

though naturally this position depends on the value of the material parameters. This 

behaviour is also present in the model of a strut on a quadratic foundation (Wadee 

et al., 1996). Beyond the turning point, the post-buckling response is unstable for 

conditions of both dead load and rigid load and is unlikely to be observed in practice. 

Nevertheless, such behaviour is an integral part of the response of the model and 

is, therefore, practically relevant. A qualitatively different behaviour is exhibited 

by the hyperbolic foundation relation (6.2). For the range of values presented, the 

end-shortening continues to increase with load, a behaviour which is stable under 

displacement control. 

6 .2 .2 Effect of g e o m e t r i c nonl inear i t ies 

When the deflected shape of a strut is obtained from the exact differential equation 

its configuration is called the elastica (Timoshenko & Gere, 1963). All kinemati-

cally aximissible deflections then have the potential to exist, including the looping 

behaviour (Thompson & Hunt, 1984; El Naschie, 1989) described in Chapter 4. The 

problem of an elastica strut supported by a bed of linear springs has been treated 

previously in the literature by Hunt et al. (1993) and Wadee (1993). These authors 

concluded that localized forms exist in this system which are qualitatively similar 

to those for a linearized strut on a nonlinear elastic foundation. 
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F = — sinh ^ nw 
n 

EIw"" + Pw" + F = Q 

" ^ elastica + F = 0 

Figure 6.2 Post-buckling response for a strut on a nonlinear elastic foundation 
with and without geometric (elastica) nonlinearities {EI = A; = 1, n = 2). 

One aspect of this work which has apparently not been addressed is the quan-

titative influence of geometric nonlinearities. This requires a comparison of the 

post-buckling responses for an elastica strut and a linearized strut, both supported 

by the same nonlinear foundation. Unlike the works mentioned above, which con-

sider a pure (linear) Winkler foundation, it is necessary to incorporate a nonlinear 

foundation reaction here because a linearized strut on a linear foundation is devoid 

of nonlinear terms and can, therefore, have no localized response. 

The effect of elastica terms on the buckling response of a strut on the nonlinear 

elastic foundation (6.2) is shown in Figure 6.2. The result is a less stiff post-buckling 

response when geometric nonlinearities are incorporated in the equation. The re-

moval of these nonlinear terms causes the solution to approximate more closely the 

neutral stability of the fully linearized equation. For the latter case, the amplitude 

and end-shortening are undefined and the post-buckling response is simply a hor-

izontal line emerging from P'̂  = 2. Nonlinear terms arising from large deflections 

were also considered in Chapter 4, where a simply-supported column was used as 

a benchmark for the numerical procedure. In the absence of a foundation, the geo-

metric nonlinearities had a stabilizing influence with an increasing load required to 
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induce further deformation of the column. However, the strut on a foundation is a 

fundamentally different structure from the simply-supported strut (as discussed in 

§ 3.2) and it is difficult to draw comparisons between the two. 

Analysis of the simply-supported elastica is aided by the use of an intrinsic 

coordinate system in which the length along the strut x and the angle 6, tangent 

to the original undeformed state, are used as coordinates. However, the problem of 

an elastica on a foundation requires the integral of 9 along the length of the strut 

to calculate the deflection at every point. An alternative, involving the arc length x 

and vertical displacement w, was presented in Chapter 3, following the method of 

Thompson & Hunt (1984). This description is not without difficulties. For example, 

looping solutions, which can be described easily with an intrinsic coordinate system 

by allowing 6 to vary continuously from 0 to suffer from a discontinuity at 

inflection points {w' = ±1) where the strut has vertical slope. A physically realisable 

solution exists if w" is zero at this point, but the numerical method is unable to 

interpret this possibility. In physical situations where a looping solution exists, it 

is unlikely the Winkler hypothesis remains valid. The x — w coordinate system is 

therefore regarded as satisfactory for the geological situations modelled here. 

6.2 .3 Effect of material nonlinearit ies 

In the study of a linearized strut on a nonlinear foundation, a softening foundation 

results in an overall softening response of the system (see Chapter 5). A stiffen-

ing foundation, on the other hand, leads to a stable post-buckling response which 

apparently has no localized solutions. However, in the previous section the global 

softening effect of geometrically nonlinear terms was demonstrated. It is conceiv-

able, therefore, that localized solutions may exist in a strut model with a stiffening 

foundation provided elastica nonlinearities are retained. Kerr (1989) considers a 

stiffening foundation to be a more realistic description of soil and rock behaviour 

than a softening model because of the densification these materials exhibit when 

loaded. In any case, it is likely that all types of nonlinear behaviour, including 

softening and hardening, exist in nature. 
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In Figure 6.3 various foundation reactions F are displayed with their correspond-

ing localized post-buckling responses. The curves Fi{x), F2{x) and ^3(2;) represent 

stiffening, linear and softening foundations, respectively. While the response for 

the linear foundation arises from purely geometrical nonlinearities, the other curves 

demonstrate the influence of material nonlinearity: a softening foundation leads to 

greater overall softening of the system; a stiffening foundation causes a reduction 

of the softening effect of the elastica nonlinearities by raising the post-buckling re-

sponse, making it "less unstable" with respect to load. 

The ability of a system to display localization, which involves softening, while 

the deforming material undergoes strain-hardening is also reported by Hobbs et al. 

(1990). These authors cite experimental and theoretical evidence to dispel the com-

mon misconception that material strain-softening is a prerequisite for localization in 

deforming rocks. In this context the following comment by Griggs & Handin (1960) 

is appropriate: 

"... a geologist may not infer the type of stress-strain curve from the 

nature of faults or flow." 

6.3 Nonlinear visco-elastic models 

There have been many analyses of buckling in layers of rock for conditions of constant 

load, for example, Biot (1965) and Kerr (1969). Laboratory experiments have also 

been carried out for this type of loading. Biot et al. (1961) immersed thin sheets of 

elastic material vertically in a viscous fluid and observed the deformation resulting 

from a load of constant mass. Perhaps a more realistic load condition of relevance 

to plate tectonics is the impact of an initially horizontal layer with a mass moving 

at constant velocity. For an infinite mass, a step velocity of the end of the layer is 

imposed with axial displacement increasing linearly from the moment of collision. 

Under these conditions total collapse of the structure is inevitable, and interest 

centres on the mode of collapse and the ensuing change of load with time. 
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Figure 6.3 Foundation characteristics (top figure) and associated post-buckling 
responses (bottom figure) for an elastica strut on an elastic foundation {EI = k = 
n = 1): Fi — stiffening, Fg — linear and F3 — softening. 
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The effect of constant axial displacement on the buckling of an elastic layer has 

been studied by Miihlhaus et al. (1994) and Hunt et al. (1996a). The first au-

thors considered the evolution of periodic forms in an elastic plate embedded in a 

purely viscous (Newtonian) medium. They found the initial stages of fold evolu-

tion were governed by Biot's (1965) dominant wavelength, determined from a linear 

stability analysis, and that the fold proceeded through various transitional stages 

as f GO, eventually evolving into a single half-sine wave over the full length of 

the plate. The latter authors drew attention to the possibility for non-periodic 

forms and localization within a geological framework. They focussed on the defor-

mation of an elastic layer supported by a visco-elastic (Maxwell) foundation with a 

wavelength-dependent characteristic. They concluded similarly that the axial load 

drops asymptotically to zero, while the fold pattern progresses through a series of 

localized states, ultimately adopting the same half-sine wave. 

In this chapter, evolving localized buckle patterns are examined in two different 

models. The first involves the large deflections of an elastica strut resting on a 

linear foundation (model A) while the second combines the linearized strut equation 

with a nonlinear foundation (model B). In both cases a Maxwell-type foundation 

is considered. Upon loading, the elastic component of the foundation leads to an 

instantaneous buckling of the layer, causing an end-shortening £ to occur at t = 0. 

The initial elastic phase of both models is characterized by a falling load versus 

end-shortening response, which is unstable under conditions of load control. The 

response is stabilized by considering the evolution under conditions of controlled end 

displacement. This is achieved by allowing the load P to vary subject to conditions 

on the integral 

^ — j ~ \ / l - dz, (6.4) 

representing the end-shortening of the strut, as described in Chapter 4. Two load 

cases are considered. In the first, end-shortening is held constant for all time, ^ = 0, 

and in the second end-shortening increases at a constant rate, ^ = 1. 
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6.4 Visco-elastic model A — geometric nonlinearity 

Only the large-amplitude nonlinearities are retained in this model. The governing 

equations, which were derived in Chapters 2 and 3, are reproduced here for clarity. 

They are: 

• the elastica strut buckling equation, 

EI 1̂ - -t- 4w"'w"w' 1̂ — + w"^ 1̂ -t- j 

+ Pw" ( l - w'^) + F = 0 . ( 6 . 5 ) 

• and the Maxwell foundation reaction, 

— -F H— F = w. (6.6) 
k Tj ^ 

For this model, x is measured along the length of the strut. The small-deflection 

equation (6.1) is retrieved by ignoring all nonlinear terms. Evolution of the buckled 

shape is governed by the integral constraint (6.4) and Equations (6.5) and (6.6). The 

boundary conditions and method of solution for this system of partial differential 

equations are described in Chapter 4. 

6 .4 .1 Fold in i t ia t ion 

The initial deformation of the strut occurs instantly with the viscous dashpots having 

no time to affect the deflected shape. This corresponds to the deformation of an 

elastic strut supported by a Winkler foundation of springs. Nonlinear formulations of 

this system have a wide range of spectacular variations which have only recently been 

understood (Hunt & Wadee, 1991; Champneys & Toland, 1993). It is these post-

critical equilibrium solutions of the perfect elastic system which are used to trigger 

the time-dependent deformation. This contrasts with previous studies in which 

arbitrary geometric imperfections (Zhang et ai, 1996) or initial lateral velocities 

(Leu & Yang, 1989) are used. 

The instantaneous load versus end-shortening response of the system is shown 

in Figure 6.4. Upon loading, the axial force increases from zero to the critical loctd, 
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Figure 6.4 Load versus end-shortening and deflected profiles for the initial elastic 
response of model A {EI — A; = 1). 

= 2, at which point a buckling instability takes place. Initially, node points 

develop along the strut at regular intervals corresponding to the wavelength of the 

linearized equation. The amplitude at this stage is zero. As the strut buckles, the 

amplitude and end-shortening start to grow. Further into the post-buckling regime, 

the wavelength and amplitude at the centre of the strut continue to grow while the 

deflection elsewhere decreases. The end-shortening continues to increase throughout 

the post-buckling regime with the result that the buckle profile becomes increasingly 

more localized. 

6.4.2 Fold deve lopment 

After the rapid initial phase of deformation, a further period of slow folding takes 

place under conditions of controlled end displacement. Figure 6.5 shows the response 

for the case of constant end-shortening, f = 0, corresponding to P(0) = 1.95. A sud-

den decrease in the load occurs as the dashpots alleviate the stresses in the springs, 

in much the same way that an isolated Maxwell unit exhibits stress relaxation under 

constant axial displacement (see Figure 1.4). While the end-shortening is held con-

stant, the waveforms begin to open out and the peak amplitudes, although initially 
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Figure 6.5 Evolution of fold pattern for model A with constant end-shortening, 
6 = 0, corresponding to P(0) = 1.95. 
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increasing, eventually decay; the profile becomes increasingly less localized as time 

goes on. Despite the appearance of the final profile in Figure 6.5, genuine periodicity 

is never achieved as this implies infinite end-shortening. The numerical method was 

applied to a model several times longer than the range of values presented in the 

figure. Aspects of the numerical procedure, including the length, boundary condi-

tions and time step, are discussed in Chapter 4. Ultimately, the flat state is attained 

through a succession of less localized forms. For a finite length strut, the deflected 

profile would adopt a wavelength corresponding to twice the length of the strut. 

Figure 6.6 shows the evolution response for the case of constant rate of end-

shortening, £• = 1. Although the time scale is much shorter than for the previous 

loaxl case, it displays a markedly different behaviour. The amplitude at the centre 

grows continuously and the deflected profile folds up with the wavelength becoming 

smaller as time progresses. The deformed shape displays a remarkable resemblance 

to the patterns reported by Zhang et al. (1996), especially those for the elasto-

plastic layer and matrix reproduced in Figure 2.1. Despite their use of diflferent 

materials for the layer and matrix, and the use of initial imperfections to perturb 

the instability, the features are qualitatively similar. 

The numerical solution was traced until the maximum slope was nearly vertical, 

the limit of the formulation. The analysis could be extended using an intrinsic 

coordinate system, allowing the strut to loop back on itself. However, such extreme 

deflections are likely to exceed the proportional limit of the elastic strut and are 

deemed unnecessary. 

A comparison of the evolution of load and maximum amplitude for two starting 

positions, under conditions of constant end-shortening and constant rate of end-

shortening, is shown in Figure 6.7. Two features are immediately apparent. First, 

the general behaviour of both load and amplitude with time is the same for each 

starting position; the load decays, apparently exponentially, and the amplitude in-

creases either slowly or rapidly depending on the rate of applied end-shortening. 

The second point is more intriguing. Figure 6.7 (a) shows that the initial drop in 

load is greater for the case of increasing end-shortening than for the case of constant 

end-shortening. For P{0) = 1.8, the load for f = 1 remains below that for the £ = 0 
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F igure 6.6 Evolution of fold pattern for model A with constant rate of change of 
end-shortening, £ — 1, corresponding to P(0) = 1.95. 
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Figure 6.7 Evolution of load P and amplitude w(0) for model A for starting 
conditions P(0) = 1.8 and P(0) = 1.95. 

load case until t % 1.35. This apparent paradox is a result of the softening effect 

of the nonlinear terms and may be explained with reference to the initial elastic 

state of Figure 6.4. At ( = 0 the initial end-shortening is the same for both load 

cases. However, after a small period of time the end-shortening for the £ = 1 load 

case is greater than for the S = 0 load case, which remains constant. The negative 

stiffness of the post-buckling curve means that greater end-shortening is associated 

with lower axial load. This interpretation is valid only during the very early stages 

of evolution where the elastic behaviour dominates. After this time the result is 

overshadowed by the influence of viscous deformations. 

6.5 Visco-elastic model B — material nonlinearity 

For this model, the Maxwell foundation is assumed to have nonlinear spring ele-

ments, which obey the inverse hyperbolic sine function (6.2), and Newtonian dash-

pots. The foundation nonlinearity is assumed so strong that the linear strut equation 

can be used, leaving the foundation reaction as the only nonlinear component in the 

formulation. The evolution of the system is now controlled by the following equa-

tions: 



6 NUMERICAL EXPERIMENTS 1 5 9 

• the linear strut equation 

EIw"" + Pw" + F = Q, (6.7) 

• and the nonlinear Maxwell relation 

d 
dt 

w 
R ' " " " ( I ^ ) . 

-F = Q. (6.8) 
T) 

6.5 .1 Fold init iat ion 

The differential equation governing the deformation of the initial elastic state is 

obtained by substituting for F from Equation (6.7) and setting the contents of the 

square brackets in Equation (6.8) to zero. This gives 

k 
EIw"" + Pw" H— sinh"^ nw = 0. (6.9) 

n 

If the hyperbolic function is expanded as a series and truncated after the first non-

linear term, the resulting differential equation has the same form as the equation 

for an elastic strut supported by a softening cubic foundation. That equation was 

the subject of the previous chapter and belongs to a family of equations known to 

exhibit a multiplicity of solutions which have been described as spatially-chaotic 

(Champneys, 1994). It seems reasonable to assume that many of the characteristics 

of the truncated differential equation are shared with the general nonlinear form of 

Equation (6.9). 

Figure 6.8 shows the load versus end-shortening response for the initial elastic 

state of model B and the effect of the degree of foundation nonlinearity n on the 

force-displacement response of the spring. As the degree of nonlinearity n decreases, 

the post-buckling curve becomes progressively stiffer. In the limit as n —>• 0, the 

curve tends to a horizontal line from P^. Three localized profiles are shown for 

various values of n at F = 1.95. A greater degree of material nonlinearity results in 

a localized buckle pattern with smaller amplitude and end-shortening. 
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Figure 6.8 Foundation behaviours (top figure) and load versus end-shortening 
(bottom figure) for the initial elastic response of model B {EI = k = 1). 
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6.5.2 Fold deve lopment 

As for the previous model, evolution of the buckled form is considered under load 

conditions of constant axial displacement. The case of constant rate of end-shortening 

is not considered as the formulation is not valid for the large deflections and slopes 

which are likely to occur. To consider such an event it would be more appropriate 

to solve the combined system of the nonlinear foundation (6.8) together with the 

elastica equation (6.5). 

Figure 6.9 shows the response of the model for ^ = 0, corresponding to P(0) = 

1.95. As with the geometrically nonlinear model, the load falls sharply and the 

deformed shape gradually opens out as the energy stored in the foundation springs 

and the internal bending energy are released. The eventual outcome is, again, the 

flat state through a series of less localized forms. 

6.6 Multiplicity of localized solutions 

Buckling solutions of a strut on a foundation are many and varied. In addition to 

the primary (symmetric) localized form, upside down, anti-symmetric, asymmet-

ric, multi-peaked and periodic solutions have been found. The discovery of this 

spectacular variety of buckling solutions was made by Hunt & Wadee (1991) using 

initial-value methods and concepts from the theory of dynamical systems. From 

amongst the myriad of competing solutions, the one with least stored energy is 

likely to be preferred. In general, for a perfect strut and a homogeneous foundation, 

this is the primary mode. In natural systems, however, the presence of spatial or 

material imperfections may favour a localized form other than the primary mode. 

In the following sections, numerical examples of the variety of localized solutions are 

presented for the elastica strut on a Winkler foundation. 

6.6 .1 Ant i - symmetr i c solutions 

Primary localizations have a symmetric form which stems from the reversibility 

property of the buckling equations; replacing x with —x does not affect the equa-

tion, or the solution. Anti-symmetric solutions are those with rotational symmetry 
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Figure 6.9 Evolution of fold pattern for model B with constant end-shortening, 
£ = 0, corresponding to P(0) = 1.95. 
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Figure 6.10 Load versus end-shortening and deflected profiles for anti-symmetric 
solutions of an elastica strut on a Winkler foundation [EI = A; = 1). The dashed 
line represents the post-buckling response for the symmetric solutions of Figure 6.4. 

about a point and exist only in buckling models for which upward and downward 

displacements are equally likely. The post-buckling response for the simplest anti-

symmetric form of the elastica strut is shown in Figure 6.10 along with several 

deflected profiles. A small dot is used to highlight the point of (rotational) sym-

metry in these buckle patterns, which are otherwise difficult to detect at high load 

values. The end-shortening for anti-symmetric solutions is marginally greater than 

for their symmetric counterparts, suggesting the symmetric pattern is the preferred 

mode of deformation. 

Wadee (1993) remarks on the difficulties associated finding anti-symmetric solu-

tions numerically using a shooting approach. By contrast, the solutions generated 

here were obtained relatively easily and required only a small modification to the 

method described in Chapter 4. An initial profile w — A sech ax sin fix was used 

in conjunction with boundary conditions to = w" = 0 at the assumed point of 

anti-symmetry, x = 0. 
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Figure 6.11 Bimodal solutions for an elastica strut on a Winkler foundation 
[EI = k = 1, P = 1.8). 

6.6.2 Mul t i -modal solutions 

The formal existence of multi-modal localized buckle patterns has been established 

for a strut on a nonlinear elastic foundation (Champneys & Spence, 1993; Champ-

neys & Toland, 1993). These authors classified modes according to the number of 

quarter wavelengths between adjacent peaks in amplitude and demonstrated how 

the distance between peaks increases as the load changes. They concluded that 

there is an infinite number of symmetric localized solutions with any given number 

of peaks, each of which is born at the bifurcation point —P^ and whose locus with 

respect to P forms a limit point for some P < P^. This implies that the number of 

multi-modal solutions reduces with proximity to the critical point. 

Localized solutions with multiple peaks have the appearance of a combination 

of primary modes. This is in spite of the fact that the buckling equations are 

nonlinear and are, therefore, not governed by the linear principle of superposition. 

Two bimodal solutions are depicted in Figure 6.11. The first gives the appearance 

of two primary modes offset by six wavelengths and has an end-shortening £ = 6.42. 
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The second is anti-symmetric and looks like a combination of a positive and negative 

(upside down) primary mode with end-shortening E — 6.44. The end-shortening for 

the bimodal solutions is nearly twice that for the primary localization at P = 1.8 

(Figure 6.4 indicates £ = 3.23 for the primary mode). This supports the idea 

that a bimodal solution is closely related to the sum of two primary modes. The 

interference between peaks and troughs of the localized solution suggests that as the 

distance between adjacent peaks increases, the end-shortening of a bimodal solution 

is likely to approach twice that for the corresponding primary mode. The buckling 

equations studied here are invariant under longitudinal translation which means 

that localization may occur anywhere along the strut. For convenience the point of 

(anti-)symmetry is always assumed to be z = 0. 

The interaction of localized buckle patterns to form multi-modal shapes is similar 

in many ways to solitons, or humped travelling waves, which pass through one 

another preserving their original form (Drazin, 1991). Indeed, the analogy between 

the two has been reported on several occasions (Cowell, 1986; Hunt et ai, 1989; El 

Naschie, 1989). An important difference is that while solitons can travel smoothly 

in time, localized buckling modes interact only in discrete, quarter-wave, jumps. A 

particularly interesting paper by Konno & Jeifrey (1983) combines both analogies by 

considering the interaction of two large-amplitude deflections travelling at different 

speeds along an elastic rod. 

The overall picture of localization is one of infinite variety, a feature typical of 

chaotic systems (Thompson & Stewart, 1986), leading some workers (Hunt et al., 

1993) to speculate that multi-modal solutions are a form of spatial chaos. In any 

case, it differs from earlier studies of chaos in the elastica (Thompson & Virgin, 1988; 

El Naschie, 1989) in that it is not induced by imperfections. These authors used 

sinusoidal imperfections of the strut in analogy with the periodically forced pendu-

lum. Whereas their model was a one-degree-of-freedom system which cannot exhibit 

chaotic behaviour without external excitation, the elastica-on-foundation model is 

a two-degree-of-freedom system in which chaos may exist naturally (Thompson & 

Stewart, 1986). 
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6.7 Concluding remarks 

In this chapter many of the techniques of the preceding chapters have been applied 

to the problem of a strut on a foundation. The importance of noniinearities in the 

differential equations governing the instability process of folding has been highlighted 

through a series of numerical experiments. The work has focussed on the evolution of 

primary localizations from amongst the myriad of possible starting conditions. For 

a Maxwell bedding relation, the system settles naturally at the start of evolution 

into a pattern of localized buckling, contrasting sharply with the strongly-periodic 

trend found in purely viscous formulations (Biot, 1965; Miihlhaus et ai, 1994). 

Subsequent behaviour depends on the rate of applied end-shortening; for constant 

or slowly increasing end-shortening, the initial buckle pattern gives way to the flat 

state while rapid rates of applied end-shortening cause the localization to become 

more concentrated in time. 



Chapter 7 

Conclusions and 

suggestions for future work 

The principal objective of this thesis has been the investigation of localized buckling 

in dynamic processes such as geological folding. Localized buckling in static (elas-

tic) systems has been the subject of much research in recent years with particular 

application to engineering structures such as railway tracks and submarine pipelines 

(Blackmore, 1995; Champneys et al, 1996). The inclusion of visco-elasticity in the 

same buckling model offers a plausible description for the formation of single-layer 

folds. The model is capable of a wide range of non-periodic solutions and may 

account for some of the diversity displayed by geological folds. 

In the following sections a summary of this thesis is presented, emphasizing 

original contributions and indicating areas for further research. 

7.1 Summary of research 

Most of the family of theoretical models for folding in geological strata were in-

spired by Biot's (1965) linear instability analysis which apparently holds only for 

the very early stages of fold evolution (Johnson, 1977; Price & Cosgrove, 1990). 

By incorporating large-amplitude nonlinearities and foundation nonlinearities in the 

formulation of the problem, the results in this thesis are valid beyond the initial 

phase of deformation. If it is accepted that nonlinear behaviour is the norm for 
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natural systems, then the results presented here are more likely to account for real 

phenomena than those derived from infinitesimal theories. Another distinguishing 

feature between this and many of the earlier models is that the process of folding is 

simulated using rigid load conditions. 

The model comprises an infinitely long elastic strut which is continuously sup-

ported along its length by discrete Maxwell elements. Linear Fourier analyses were 

presented in Chapter 2 for elastic, viscous and visco-elastic embedding mediums to 

demonstrate the effect of foundation rheology on the buckling response of the model. 

For the elastic foundation, a sinusoidal buckle pattern was predicted at discrete load 

values. In contrast, the viscous and visco-elastic foundations led to dispersion re-

lations and the concept of a dominant wavelength (Biot, 1965). These analyses 

were limited to small (strictly infinitesimal) deflections and the case of constant ap-

plied load. To illustrate the effect of rigid loading and large displacements on the 

post-buckling response of the strut, an analogous rigid link model was used. 

A double-scale perturbation technique was used in Chapter 3 to reveal the post-

buckling behaviour of the instantaneous, purely elastic, response of the system. 

Unlike earlier post-buckling studies (Thompson & Hunt, 1973) which revealed only 

periodic forms, this procedure allows the modulation of both amplitude and phase 

of the buckle pattern. The method described here is closely related to that proposed 

by Wadee (1993) and is the subject of a forthcoming paper (Wadee et al., 1996). In 

contrast to previous double-scale applications (Amazigo et al., 1970; Potier-Ferry, 

1983; Hunt et al., 1989) which were developed from the governing differential equa-

tions, the scheme was based on the total potential energy of the elastic system. 

Like other perturbation analyses, the procedure is confined to special types of solu-

tions, the earlier assumption of periodicity of the buckle pattern being replaced by a 

more general, localized form. Without modifications to the procedure more complex 

modes of buckling are denied. 

Theoretical results concerning the existence and uniqueness of localized solutions 

in buckling problems are beyond the scope of this thesis. As with many physical 

problems, the solution of the governing equations is attempted without the benefit 

of existence theorems (Keller, 1968). The robustness of localized phenomena is not 
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in question, however, having been established by many authors using a variety of 

shooting methods (Bolt, 1989; Hunt et al, 1989; Champneys k Spence, 1993). The 

change from a purely elastic system to a visco-elastic system results in a partial 

differential equation, which has necessitated the use of a boundary-value approach. 

The method, outlined in Chapter 4, uses solutions from adjacent parameter values 

and time steps as initial profiles to update the spatial form as time progresses. 

The potential for alternative methods of analysis involving trial functions was the 

subject of Chapter 5. They were found to be suitable only for buckling problems 

composed of the linearized strut equation and a simple nonlinear foundation. A 

Galerkin method was used to generate modal solutions for the initial elastic state of 

a strut on a foundation with a cubic nonlinearity. This work has been accepted for 

publication and is to appear shortly (Whiting, 1996). Another procedure, based on 

a collocation method and resulting from the work of Hunt et al. (1996a), was found 

to be capable of providing solutions for both the elastic and visco-elastic phase 

of deformation. Despite the limitations of these weighted residual methods, they 

proved to be useful tools for generating initial profiles, with which to trigger the 

boundary-value solver COLSYS, and for determining solutions close to the critical 

point where numerical methods encounter problems. 

In all of the visco-elastic strut models presented in this thesis a Maxwell fluid 

was used for the bedding material. While it is an exaggeration to suggest that 

any event of geological folding would happen instantly, the model does emphasize 

that two quite different time scales may be involved; one in which the response is 

predominantly elastic, enabling the initiation of a localization or non-periodic profile; 

and one in which visco-elasticity is the governing effect. It may be be more realistic 

to see both effects in the same geological time frame. This may be achieved by 

considering a Newton-Kelvin fluid, which exhibits delayed elasticity and flow. For 

this, and other types of visco-elastic behaviour, the work here may be extended 

simply by replacing the Maxwell unit with an alternative spring-dashpot model 

(Roscoe, 1950). 

The numerical methods were finally unleashed in Chapter 6 to investigate the 

effects of geometric and material nonlinearities on the evolution of localized buckle 
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patterns. Controlled axial displacement was used to simulate tectonic plate move-

ment. Under constant end-shortening, the instantaneous buckle of the strut was 

followed by progression through a succession of less localized forms, ultimately re-

sulting in the flat state. For increasing end-shortening, at a constant rate, the 

buckled shape continued to fold up until it reached the limit of the formulation. 

These numerical results have recently been accepted for publication (Whiting & 

Hunt, 1996). Some of the variety of solutions arising from the assumption of nonlin-

ear elasticity were also displayed. These higher modes of localization are apparently 

the spatial equivalent of the interaction of solitons (Drazin & Johnson, 1989). 

Perhaps the main conclusion of this thesis is that a strut-on-foundation model 

with softening qualities, induced either through the foundation or by the inclusion 

of nonlinear curvature and end-shortening terms, is susceptible to localized buckle 

patterns. This work is only the beginning in the application of recent developments 

from the field of nonlinear dynamics (via structural engineering) to geological for-

mations. It is hoped that much of the spatial variety evident in the elastic system 

can be transported to the visco-elastic domain to account for the incredible diversity 

of folded structures observed in the field. A review of this subject is currently in 

preparation (Hunt et al.^ 1997). 

7.2 Recommendations for future work 

In spite of the large number of theoretical analyses of folding, there remain plenty 

of opportunities for researchers interested in nonlinear phenomena. The following 

areas are identified as natural extensions of the work in this thesis. 

7.2.1 Visco-elast ic cont inuum 

A Winkler-type foundation, like the one used here, is essentially discontinuous with 

adjacent foundation elements acting independently of one another. Complete con-

tinuity, enabling non-local effects and shear, may be achieved using a continuum 

(Vardoulakis & Sulem, 1995). A hybrid foundation with partial continuity was 

investigated by Hunt et al. (1996a). They assumed the foundation reaction was 
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wavelength-dependent so that harmonic displacements with shorter wavelengths en-

counter greater resistance than displacements with longer wavelengths. Modelling 

of the supporting medium is one of the primary goals in the continuing work on lo-

calized buckling to be supported by the Engineering and Physical Sciences Research 

Council (EPSRC) at the University of Bath. 

7.2 .2 Format ion of plast ic h inges 

For large deflections, folding of real geological structures inevitably involves visco-

elasto-plastic behaviour. Plasticity may be regarded as a type of localization since 

it occurs in isolated regions where strains are sufficiently large. Once plasticity 

develops in the system, it can influence the location of maximum amplitude of 

the buckle pattern because no extra load is required to cause further deformation. 

Besides yielding of the strut, plasticity may also arise within the foundation. This 

case was studied by Blackmore (1995) and Hunt & Blackmore (1996) in relation to 

upheaval buckling in submarine pipelines where the foundation resistance suddenly 

becomes zero as the pipe lifts off its support. 

7 .2 .3 Mul t i - layer s trata 

Attention in this thesis has focussed on models for the evolution of single-layer 

folds. Though such forms exist in nature, folding of multi-layers is more common 

and for this reason a great deal of literature exists about them (Ramsay, 1967; 

Price & Cosgrove, 1990). There are two distinct approaches to analysing folding in 

multi-layer strata and both depend on single-layer buckling theories. In the first, 

plate theory is used to describe the bending resistance of individual layers within 

the multi-layer (Ramberg, 1964). Compatibility of displacements is then used to 

match the solutions at the interface between adjacent layers, thereby obtaining a 

solution for the response of the layered media. In a quite different approach, the 

response of the layered material is analysed in terms of an equivalent thick plate with 

anisotropic (smeared) mechanical properties (Biot, 1961). In either case, single-layer 

theories are of fundamental importance in the formulation of a multi-layer theory. 

The effect of bending resistance and nonlinear material properties on the instability 

of multi-layered media has already received some attention by Latham (1985). 



Appendix A 

Perturbation equations 

In this appendix the complete procedure required to obtain the perturbation solu-

tions summarized in § 3.3.2 is presented. The method closely resembles that out-

lined by Wadee (1993). Recall that approximate solutions for the deflected shape 

of a strut on a nonlinear elastic foundation are obtained by solving the two sets of 

Euler-Lagrange equations (3.25) and (3.26), which are repeated here for convenience: 

+ Ki + gKjW AjBkBi = 0, 

1 1, 
+ Vii Bi + AjAkBi + BjBkBi — 0. 

(/LI) 

( A . 2 ) 

The coefficients of the linear terms in these equations are 

Vii = 
for t = 0 

i + ^ for i ^ 0 

Vii" 

Vimn 

—s^P, for i = 0 

is2 (4£7i2/32 _ p ) , for * ^ 0 

s'^EI, for i = 0 

f o r i Y O 
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Viiiii = —2s^il3EI 

Vi'i = 2si^f3^EI — sipP 

Vii> = -2si^/3^EI + si0P (A.3) 

and the coefficients associated with the cubic nonlinear terms are 

% 

% 

—6c, for i = j = k — 1 = 0 

— | c , i = j z = k = l ^ O 

—3c, for i = j = 0 and k = I ^ 0, etc. 

— | c , for i = 0 and j = k + I, etc. 

-|c, 

0, 

0, 

| c , 

0, 

for i = j + k + I, etc. 

— | c , {ov i + j = k + l and i = k, j = I, etc. 

c, ioT i + j = k + l and i ^ k, j ^ I, etc. 

otherwise. 

for k = 0, etc. 

i=j=k=l^O 

—3c, for i = J — 0 and k = I 

for z = 0 and j = k + l, etc. 

— f c, for 1 = 0 and k = j + 1, etc. 

- |c , 

- | c , 

0, 

0, 

ioT i = j + k + l, etc. 

for k = i + j + 1, etc. 

ioT i + k = j + l and i = I, j = k, etc. 

for i + k = j + I and i ^ I, j k, etc. 

for i + fc = j + / and i = j, k = I, etc. 

for I' + J = A: + / and i = k, j = I, etc. 

for i + j = A: + i and i ^ k^ j ^ etc. 

otherwise. 
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% 

0, for i = 0, etc. 

- f c , i — j = k = l^Q 

4C, for i = J + A: + /, etc. 

— |c , for i + J = A: + Z and i = k, j = I, etc. 

- | c , ioT i + j = k + l and i ^ k, j ^ I, etc. 

0, otherwise, 

(A.4) 

where etc. indicates that cyclic permutations of and I are to be taken in the 

case of and while for i and j are cycled separately from k and I. 

The modal amplitudes, Ai and Bi, are expanded as power series in the pertur-

bation parameter s to give 

Ai — A, J (X) s + A,'_2 (-^) + • • •, 

g , = g^,i(X)g + B,,2(X)a^ + . . . . ( A . 5 ) 

Modes Ai and Bi are assumed to be associated with the lowest critical load, P^, 

and as a result all other modes, being of higher order, must start at least one power 

of s higher. In other words, A;,i and are both zero for i ^ 1. The load P and 

frequency /3 are also expanded as series in s. 

F = F^ + FiS + P2S^ + 

13 = fi" + fii s + 02 s'^ + - ( A . 6 ) 

where the quantities at the critical point are 

= 2 V ^ , (3" = ( A . 7 ) 

The coefficients Pi and /?,• are fixed by the choice of the perturbation parameter, 

s = y/P^ — P. This forces P2 = — 1 and Pi = 0 for all i ^ 2. Likewise, the co-

efficients Pi are specified by choosing /? to be the linearized wavelength defined in 

Equation (3.13). The parameter s corresponds to a in the same equation, repre-
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senting the real part of the linear solution. 

All of the series expansions are fed into the Euler-Lagrange equations (A.l) and 

(A.2). To be satisfied in a well-ordered manner, terms of the same power of s are 

collected and their coefficients equated to zero. The coefficients of ascending levels 

of s are now considered in turn. 

s level 

No information is obtained at this level because the linearized values are an explicit 

part of the formulation. 

level 

At this level contributions arise from terms in i = 1,2. Although no useful informa-

tion can be obtained about the active terms A i j and B i j , all of the passive terms 

are found to be zero. That is, = ^2,2 = 0. 

level 

At this level contributions arise from terms in i = 1,2,3. By considering the equa-

tions associated with hA^ and 6B2, the coefficients ^2,3 and ^2,3 are found to be zero. 

A relationship between the active terms A i j and Bi^i is obtained by considering 

the Euler-Lagrange equations associated with 5Ai and 5Bi: 

8Ai : 

2 P ^ V 4 I , I " — (3^^AI^I 4- — 0 , ( A . 8 ) 

5Bx : 

2 - P ^ B I , I " - — 0 . ( A . 9 ) 

The solution of these simultaneous differential equations proceeds by utilizing the 

conditions of symmetry (ti; = iii = 0) and by making use of coefficients which have 

already been determined. Writing these conditions in terms of the expanded modes 
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gives the following relations: 

w = [ A , i ' s + v4,-,2'ŝ  H ) cosi/3x 
i=0 

- H ) i/Jsin i/3x 

+ H ^ sin ifix 

+ (fii.is + H )i/3cosi/3x| = 0, (A. 10) 

and 

OO 
W = ^ H ) COS i^x 

i=0 

- 3s^^Ai,i"s + Ai^z's^ H ^itwsinif3x 

- 3s^Ai,i's + A,,2's^ 4 ^ i^/3^ cos iySx 

- ( A j j s + A,-,25^ 4 )i^/3^ sin ifix 

+ 4" • • sin ifSx 

+ 3s^ (Bt-,i"s + Si,2"s^ H ) iw cos i^x 

- Ssl^Bi^s + Bi^2's^ H sin il3x 

- + B,-,2S^ H c o s = 0. (A.l l) 

The conditions of symmetry are imposed at x = X = 0. By setting the coefficients at 

the s and levels to zero the following equations are obtained in terms of quantities 

determined previously: 

Coefficient of s: 

Bi,i(0) = 0. (A.12) 

Coefficients of s^: 

AI,I'(0) + /3'=SI,2(0) = 0, 

3AI,:'(0) + /3<=5I,2(0) = 0. (A.13) 
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The only solution of the two equations at the level is the trivial one. Thus, the 

symmetry conditions provide the following information about Ai^i and Bi,i 

= 5i,i(0) = 0. (A. 14) 

The solution of the simultaneous equations proceeds with a transformation using 

polar coordinates (Wadee, 1993): 

A i j = r COS0, Bi^i = -r s in^. (A. 15) 

Equations (A.8) and (A.9) become 

2P^r" - + 2P^<i>'^) r + = 0, (A.16) 

2r'(j>' + r(f)" = 0. (A.17) 

The second equation can be rewritten as 

= 0, (A. 18) 

and after integrating becomes 

r'^(f>' = ci, (A. 19) 

where ci is a constant. The asymptotically flat boundary conditions require that 

r(%) —>• 0 as X —> ±oo, which implies ci = 0. Now, for Equation (A.19) to hold, 

either r (X) = 0 or <f>'{X) = 0. The nontrivial solution is 

4) = C2, (A.20) 

where cg is another constant. From Equations (A. 14) and (A. 15) it is apparent that 

either 

r(0) = 0 or r'(0) = </>(0) = 0. (A.21) 

The first case is the trivial state and is of no interest here. The second condition 

indicates that C2 = 0, so that (f>[X) = 0. Therefore, the amplitude of the first sine 
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mode is 

B I , I { X ) = Q. ( A . 2 2 ) 

The pair of simultaneous equations (A.8) and (A.9) are thus reduced to the single 

equation 

= 0- ( A . 2 3 ) 

This new form is similar to equations which arise in many fields, for example, the 

nonlinear Schrodinger equations of quantum mechanics (Thompson & Stewart, 1986) 

and the simplest form of Buffing's equation for the nonlinear oscillator (Stephenson 

& Radmore, 1990). The solution may be found by observing that 

Inserting this into the differential equation and rearranging yields 

A I , I ' D A I , I ' = ( A . 2 5 ) 

and after integrating both sides 

( A . 2 6 ) 

For a localized solution, the boundary conditions require that Ai_i(.Y) -¥ 0 and 

—>• 0 as X -> ±oo, so the constant of integration C3 must be zero. This 

leads to 

D X = ( A . 2 7 ) 

in which 
3c 

C4 o Ttc ' ^5 2pc' ^ IQpc' 

The closed-form solution is then obtained as 

Ai,i = -^ /3 ' ^ sechJ2X. (A.28) 
v6c 
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The first passive mode appears at this level of s and may be expressed as a 

function of the active mode Ai,i. 

SAz : 

32A: As,3 — - = 0 

SBs-. 

^3,3 = 0. (A.30) 

level 

At this level contributions arise from terms in i = 1,2,3,4. By considering SA2, 

SB2, SA4, and 6B4, the quantities ^2,4, ^2,4, ^4,4, £4,4 are all found to be zero. 

5Ai : 

5Bi : 

2P^AI^2" — ^1,2 + 1 -̂̂ 1,2 = 0- (A.31) 

2F=Bi,2" -

= P' A1.1' - 2 ^ A i / " 

/Ta/JCS 
= — Y - - y = sech^ QX tanh Q.X. (A.32) 

These equations form a pair of second-order linear equations in Aî 2 and 5i,2 with 

non-constant coefficients. The presence of the terms on the right-hand side of the 

second equation means that, unlike for the previous level of s, these equations cannot 

be solved by a simple change of variables. The symmetry conditions (A.10) and 

(A.ll) at the and levels indicate 

AI,2'(0) = SI,2(0) = 0, (A.33) 



A P E R T U R B A T I O N EQUATIONS 1 8 0 

and may be used to show, by inspection, that 

A I , 2 = 0 , ( A . 3 4 ) 

f3 0'^ 

B\^2 = Y - sech Q.X tanh QX. ( A . 3 5 ) 

Once again the passive modes are expressed in terms of the active modes. 
5A. 

SB. : 

s® level 

AS,4 = 0 . ( A . 3 6 ) 

At this level contributions arise from terms in i — 1 , 2 , 3 , 4 , 5 . Immediately j42,5, 

•62,5, ^4,5 and ^4,5 are found to be zero. 

SAi : 

SBi : 

QR 
2 r = y l i y -

= ^Ai4^A3,3+ EIAi^i"" + 2^1.1" ~ "^^1,1 ̂ 1,2^ 

, JD in ac D ' ^ A 

+ - ^ B i , 2 - / 3 5I,2 

= (l98sech^QX - 307sech® fiz) . (A.38) 

2 P ^ B I / - /)'="BI.3 + = 0 . ( A . 3 9 ) 

Using the symmetry conditions at the and levels the solutions are found as 

Ai,3 = ^ ^ ^ ^ ( - 3 1 7 sech + 3 0 7 s e c h ^ N X ) , ( A . 4 0 ) 

B I , 3 = 0 . ( A . 4 1 ) 
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Again the passive modes are expressed in terms of the active modes. 

4^3 : 
A 3c 3c 2x „ 

^ (A.42) 

SB. : 

<5̂ 5 : 

SB, : 

s® level 

2566 ' 2/3'' 64k 

-63,5 = 0. (A.43) 

^5,5 = 0. (A.45) 

Contributions arise from terms in i = 1,2,3,4,5,6. In order to determine the co-

efficients A14 and Bi,4 it suffices to solve the equations arising from SAi and SBi 

only. 

SAi : 

SBi : 

2 P ^ A I , 4 " — + — A I ^ I ^ A I ^ 4 — 0 . ( A . 4 6 ) 

2P^Bi^4" — + —AI^I^Si,4 

3c 3c 3c 

- ^^1,1^-83,4 + EIBI^2""+ 2^1-2" — 

+ ^ ' ^ 1 / + ^ ^ 1 . 1 " ' - ^ ^ 1 . 1 ' -

1 Ac3 
= •=—57- (1493 sech^ 0% tanh 0% 

— 2762 sech® QX tanh fix) . (A.47) 
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The symmetry conditions at the and s® levels reveal that 

Ai,4 = 0, (A.48) 

^1.4 = 432^33 p l / 2 (-2389 sech QX tanh QX 

+ 5524 sech^ QX tanh 0 % ] . (A.49) 



Appendix B 

Standard integrals 

The weighted residual methods of Chapter 5 require the evaluation of a number of 

integrals, some of which are listed in the definitive text by Gradshteyn & Rhyzik 

(1994). These integrals are of three basic types: 

/

OO 

sech"aa;dx, (B.l) 
-OO 

/

OO 

sech"az cos dz, (B.2) 
-OO 

/ OO 

sech^az tanh ax sin mPx dz, (B.3) 
-OO 

in which the quantities a and (3 are positive real numbers, n is an even integer and 

m is an integer which may be odd or even. 
Integrals of type 

Integrals of the form (B.l) may be integrated by parts to give 

, _n-2 
" " M - 1 

with the first integral in the series evaluated directly as 

/: 
2 

a-

sech^Qx da; 
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Integrals of type Icnm, 

The evaluation of integrals of the form (B.2) is complicated by the combined trigono-

metric and hyperbolic nature of their integrands. A useful tool in this instance is 

contour integration^ in which the integration is performed over the complex domain 

using the Cauchy Residue Theorem (Stephenson & Radmore, 1990). Alternatively, 

these integrals are listed by Gradshteyn & Rhyzik (1994) as 

/ OO 
sech"az cos m^x dz, 

-00 

I ] , n > 4 , 
(n-l) 

with the first integral in the series at ra = 2 as 

m/?7r f mPn\ 
h2m = —5- cosech 

a 2 ^ 2a j ' 

Integrals of type Ignm 

Integrals involving the product sech" ax tanh ax may be integrated by parts to give 

an integral of type Icnm as follows: 

/

OO 

sech" ax tanh ax sin m/3a; dz 
"OO 

1 1°° 
4 I sech" ax cos mPx dx = sech" ax sin mdx 

L na 
_ m/3 
— ^ cnm • 

nor 

nor V-00 



Appendix C 

Galerkin coefficients 

The coefficients ki, kijk, h and Ujk for the two mode Galerkin approximation de-

scribed in § 5.4.1 are 

ki = ^ [ l 5 + 7a'' + 30a2/32 + 1 5 / ? ^ - 1 0 P ( a 2 + 3/32)] 

+ 
15a^ 

15 + 7a^ + l O a ^ f + 3/3^ - lOP (a^ + j 

ko = • f ( 7 « ' + 5 / 3 ^ - 5 F ) 

+ 
/3̂ 7r 

15a^ 
15 + 7a^ + lOa^P^ + 3/?^ - lOP (a^ + (3^)] C i , 

km 

kl22 

k2ii 

A222 

/3̂ 7r 

/3̂ 7r 
90a? 

+ 

(a^ + /3̂  j Ci — + 4/3^^ C2, 

(70,4 + 50^/32 - 2/3'̂ ) Ci 

(70,4 + 20a2/32 _ 3 2 ^ ) Cg, 
45o^ 

( C . l ) 
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and 

h = (70.2 + 5 /32-5P) 

+ ^ [ 1 5 + + 3/3^ - L O P ( A ^ + Q , 

Z2 = [35+155a^ + 294a2^2^35 /3^-P(98a2 + 70^2j] 

- Y ^ 4 [+35a2 + 155of _ 70/3^ + 196a^;8" + - 6/9^ 

- P (gsa" + 70^2/32 - 28/3")] Q , 

fi22 = (7a^ + 50^/32 - 2/3") Q + ^ (7&^ + 2Oa^)0^ - 32)84) 

- (9a^ - 28a4/3" - 224a",94 + 128^) C2, (C.2) 

where Ci and C2 are 

Ci = cosech , C2 = cosech 



Appendix D 

Collocation coefficients 

Buckle initiation 

The coefficients M,- and associated functions tpi for the collocation approximation 

described in § 5.5.1 are 

Ml — / i — /2 A2, 

M2 = -2%: (lOa^ - + p ) + 4a/) (20a'^ - 2/3^ + p) A2 

- - Ai (^Ai^ + ^2^) , 

3 
— 24Q.'̂  Ai — 96ciiPj3 A2 + — AiA2^, 

M4 - fi A\-\- /i A2, 

iWs — —24q;^/J A\ — %oP' ^lOcv^ — 6/J^ + A2 — — A2 , 

Me — 120&^ A2 + — -42^1 

Mr = —-AI^ + -AiA2^, 

3 
Ms = - - A i A 2 ^ , 

MQ = ——AI^A2 + -A2^, 
4 4 

Mio = —-^2^, (D.l) 
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where 

and 

/ i = l + a^-Qa'^^'^ + l3^ + p{a^-0^), 

f2 = 2al3(2a'^ -213^ + p), 

ipi = sechcvxcos/Ss, 

^2 = sech^ axcos/3x, 

tj)3 — sech^ a s cos/Jx, 

^4 = secha i t anhaxs in / Jx , 

^5 = sech^ ax tanh ax sin /3a;, 

^6 = sech^axtanhofXsinySi, 

ip7 = sech^ ax cos 3/?x, 

V's = sech® ax cos3/Sa:, 

^9 = sech^ a z tanh a z sin 3/3x, 

^10 = sech® ax tanh ax sin 3/3x. (D.2) 
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Buckle evolution 

For the single mode collocation approximation of the partial differential equation (5.14) 

given in § 5.5.2 the coefficients Mi are 

ML = ( / I - l ) A I + 2 A ( 2 0 ^ - 6 / 3 2 + A I D - 2 / 3 ( 6 0 ^ - 2 / 3 2 + 

+ A 1 P + /1A1, 

M2 = -2^2 (lOa^ - 6/32 + f ) Ai - 4a {2Qa^ - 6/3^ + f ) Ai d 

M3 

M4 

Ms 

Mg 

M7 

Ms 

Mg 

Mio 

Mil 

Mi2 

M i3 

Mi4 

+ 2 4 A ^ / 3 A I /3 - 2 A 2 A I P - (LOA^ _ 6/8^ + P ) + A I , 

= 24a^Ai+ 96a^Aid + 24a' 'Ai, 

= / 2 A 1 + 2/3 (EA^ - 2/32 + P ) A I d + 2 A {2a^ - + P ) A I / 3 

+ 2aj3Ai P + /2 Ai, 

= -24a^PAi - 7 2 A ^ / 3 A I d - 2 4 A ^ A I /3 - 24A^/3 A I , 

= - ^ A i ^ A i , 

= - / 2 A 1 d - / L A I / 3 , 

= 4A/3 (20q'2 - 2/32 + P) AI d + [2^^ (lOtt^ - 60^ + P ) AI + ^AI^J /3, 

= -9Qa^PAia-24a^AiP, 

= —/i Ai d + /2A1 y5, 

6a^ (1O&2 _ 6^2 + p ) Ai + ^ A r d - 24o?PAx 13, 

= —120a''* A i d , 

= ^Ai^d , 

= /?, 

(D.3) 
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and the functions V'i are 

^1 = sech ax cos 0x, 

= sech^ ax cos /?x, 

V'3 = sech® ax cos /3x, 

^4 = sech ax tanh ax sin fix, 

^5 = sech^ ax tanh ax sin /3a:, 

= sech^ ax cos 3/3x, 

= x sech ax sin fix, 

V'S = xsech^aa; sin fix, 

V'g = a: sech® axsmfix, 

V'lO = x sech ax tanh ax cos fix. 

^11 = X sech^ ax tanh ax cos fix, 

V'12 = X sech® ax tanh ax cos fix, 

V'13 = X sech^ ax tanh ax cos 3fix, 

V'14 = x sech^ ax sin 3fix. ( D . 4 ) 
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