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ABSTRACT

One of the important tasks in link analysis is to quantify the
similarity between two objects based on hyperlink structure.
SimRank is an attractive similarity measure of this type.
Existing work mainly focuses on absolute SimRank scores,
and often harnesses an iterative paradigm to compute them.
While these iterative scores converge to exact ones with the
increasing number of iterations, it is still notoriously difficult
to determine how well the relative orders of these iterative
scores can be preserved for a given iteration. In this paper,
we propose efficient ranking criteria that can secure correct
relative orders of node-pairs with respect to SimRank scores
when they are computed in an iterative fashion. Moreover,
we show the superiority of our criteria in harvesting top-K
SimRank scores and bucket orders from a full ranking list.
Finally, viable empirical studies verify the usefulness of our
techniques for SimRank top-K ranking and bucket ordering.

1. INTRODUCTION

The problem of identifying similar objects based on graph
structure is a fundamental primitive in hyperlink analysis,
arising in numerous applications, e.g., anomaly detection,
recommendation systems, and automated image annotation.
It often demands a measure of closeness between two objects.
For instance, Shortest distance can be regarded as a simple
measure that counts only one path with minimum length to
evaluate pair-wise similarity. Recently, SimRank has been
proposed by Jeh and Widom [1] as a promising measure of
affinity between two nodes. It follows the idea that “two
nodes are similar if they are referenced by similar nodes”.
Due to its recursion, SimRank can countmultiple paths with
different lengths between two nodes to evaluate similarity,
which is a substantial improvement over shortest distance.

To serve ranking purposes, this paper focuses on SimRank
measure due to its two advantages:

1. Unlike PageRank that is query-independent, SimRank
scores between all nodes and a given query q can yield
a query-specific ranking list of all nodes imposed by q.
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Figure 1: Relative Ranking w.r.t. Iteration k

2. SimRank scores can rank both nodes and node-pairs,
in contrast to PageRank only for node ranking.

While most existing work [1–7] focuses on iterative com-
putations of absolute SimRank scores, the issue of gauging
the correctness of their relative ranking has received little at-
tention. To the best of our knowledge, the previous iterative
methods to compute SimRank often first empirically set the
total number of iterations, k, and then use the k-th iterative
SimRank score sk(a, b) to estimate the exact solution s(a, b).
For accuracy guarantee, Lizorkin et al. [5] showed an upper
bound of the gap between sk(a, b) and s(a, b):

0 ≤ s(a, b)− sk(a, b) ≤ Ck+1, ∀k, ∀a, b (1)

where 0 < C < 1 is a decay factor. However, from the
ranking perspective, it seems hard to use this (absolute) gap
to determine how well the relative ranking with respect to
k-th iterative SimRank scores can be preserved, since even
a large gap in Eq.(1) does not necessarily imply incorrect
relative ranking of objects, as illustrated in Example 1.

Example 1. Figure 1 depicts how the relative ranking of
node-pairs in graph G (with respect to their k-th iterative
SimRank scores sorted in descending order) is updated when
the number of iteration k increases. The last column of the
table (k = ∞) shows the “true” relative ranking with respect
to exact SimRank scores. The (absolute) error bounds of
SimRank for every iteration k are depicted in the last line.

From the table, it can be noticed that the relative ranking
tends to the “true” one as k increases. In fact, when k = 3,
the relative ranking with respect to s3(⋆, ⋆) has become the
same as the “true” one, but the (absolute) gap of SimRank
scores between s3(⋆, ⋆) and exact s(⋆, ⋆) is not suitably small,
which can be bounded by Ck+1 = 0.63+1 = 0.130. 1

Example 1 indicates that the correctness of relative rank-
ing of node-pairs may not be solely judged by the absolute
1As previously used in [1], we set the decay factor C = 0.6
for SimRank computation in Example 1.
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gap of SimRank scores in Eq.(1). For ranking purposes,
the correct relative orders of node-pairs are more important
than their absolute SimRank scores. Thus, it is imperative
to identify efficient ranking criteria that can guarantee the
correct relative order of node-pairs with respect to their
SimRank scores during the iterative computation.

Hence, we consider the following problem, referred to as
Relative Ranking Criterion of SimRank (RRCS).

Given the number of iterations k, for every two node-
pairs (a, b) and (c, d), our goal is to find δk such that

sk(a, b)− sk(c, d) ≥ δk implies s(a, b) ≥ s(c, d). (2)

The main challenge in RRCS is the determination of δk,
which can be used as a threshold to check whether the k-th
iterative SimRank scores sk(⋆, ⋆) of any two node-pairs are
well separated. If affirmative, we can conclude at iteration k
that their final (“true”) relative ranking with respect to the
exact SimRank scores s(⋆, ⋆) can be consistently preserved.
Another direct benefit of RRCS lies in its high effectiveness
for top-K ranking and bucket ranking.

Contributions. We make the following contributions:

1. A proposed ranking criterion to gauge the correct rela-
tive order of node-pairs with respect to their SimRank
scores. (Section 3)

2. Two induced ranking criteria for SimRank top-K rank-
ing and bucket ordering. (Section 4)

3. Viable empirical studies showing the effectiveness of
these criteria for ranking objects. (Section 5)

We contend that our techniques for RRCS yield a promis-
ing systematic method, which is also applicable to many
other metrics, such as PageRank, RandomWalk with Restart,
ObjectRank, and SimFusion.

Related Work. Ranking nodes or node-pairs based on link
structure is an important application of SimRank similarity.
Nonetheless, most existing work mainly concerns absolute
SimRank scores computation [1, 3, 5, 6, 8–10]. As for rela-
tive ranking, there is only one work by Lizorkin et al. who
made the first effort in Proposition 2 of [5] to establish the
following ranking accuracy estimate:

s(a, b)− s(a, d) ≥ Ck+1 implies sk(a, b) ≥ sk(a, d).
2 (3)

A striking difference between Eqs.(3) and (2) is the logical
order — Eq.(3) infers k-th relative ranking from exact one,
whereas Eq.(2) infers exact relative ranking from k-th iter-
ative one. In fact, in an iterative process, exact s(⋆, ⋆) are
unknown beforehand. Hence, we can only use k-th iterative
information in sk(⋆, ⋆) to infer exact s(⋆, ⋆). In this sense,
Eq.(2) is more useful in practice.

There has been work on other accuracy estimates [3,5] for
iterative SimRank computation. Lizorkin et al. [5] are the
first to propose an (absolute) error estimate for SimRank:

0 ≤ s(a, b)− sk(a, b) ≤ Ck+1, ∀k, ∀a, b

Based on this bound, it is easy to find out the total number of
iterations required to guarantee a given accuracy. However,
from the ranking perspective, the relative order of node-
pairs can be correctly preserved before Ck+1 becomes small.

2 [5] uses Rk(⋆, ⋆) to denote k-th iterative SimRank scores,
in contrast to sk(⋆, ⋆) in this paper.

Later, Zheng et al. [3] showed the gap between two consec-
utive SimRank iterations:

0 ≤ sk+1(a, b)− sk(a, b) ≤ Ck+1, ∀k, ∀a, b

with the aim to deduce an upper bound for SimRank score
of each node-pair. Although the accuracy estimates in [3,5]
can be used as stopping criteria in iterative SimRank com-
putation, they may not guarantee correct relative ranking.

Recently, SimRank top-K queries [7, 10] have witnessed
growing interests. Lee et al. [7] proposed a novel random
walk based method to identify top-K nearest neighbors with
respect to a given query q based on SimRank scores s(q, ⋆).
If our ranking criteria were incorporated into their method,
the speedup for top-K nodes would be more pronounced.
Fujiwara et al. [10] leveraged a min-heap structure as well
as a Cauchy-Schwarz inequality to prune unlikely nodes for
top-K SimRank search. However, their approach is based
on the matrix decomposition, which is different from ours.

Our RRCS criteria can also applied to iterative PageRank
computation. Most existing convergence criteria for Page-
Rank (e.g., [11, 12]) are based on the absolute difference
between 1) the k-th iterative PageRank values and the ideal
ones, or 2) the two consecutive PageRank iterations. Several
work has exploited geometric distance [13] and Kendall’s
τ distance [14] for top-K PageRank rankings. When our
RRCS criteria are integrated into these methods, the relative
rankings of PageRank can be efficiently obtained as well.

2. PRELIMINARIES

In this section, we briefly revisit the SimRank background.
For presentation ease, we use its matrix representation [4].

Notations. The following notations are used in the paper.

[X]x,y (x, y)-entry of matrix X ∈ R
n×n

‖X‖
max

max-norm matrix of X (= maxn
i,j=1 |xi,j |)

‖X‖∞ ∞-norm matrix of X (= maxn
i=1

∑n

j=1
|xi,j |)

Consider a graph G = (V,E) with node set V and edge
set E. Let S be the SimRank matrix whose entry [S]a,b
is the similarity s(a, b) between nodes a and b, and let Q
be the backward transition matrix whose entry [Q]a,b =
1/(in-degree of a) if there is an edge b → a, and 0 otherwise.
Then, S satisfies the following recursion:

S = max{C · (Q · S ·QT ), I}, (4)

where 0 < C < 1 is a decay factor, (⋆)T is matrix transpose,
and I is an identity matrix with compatible dimension, and
max{⋆} is an element-wise maximum operation.

Intuitively, [S]
a,b

depends on two terms in Eq.(4):

1) The term [Q · S ·QT ]a,b includes the average similarity

of (a, b)’s in-neighbor pairs, which implies that “two nodes
are similar if their in-neighbors are similar”.

2) max{⋆, I} guarantees that the diagonals of S are all 1s,
corresponding to “every node is maximally similar to itself”.

Let Sk be the k-th iterative SimRank matrix. Then, the
exact S in Eq.(4) can be iteratively computed as

Sk+1 = max{C · (Q · Sk ·QT ), I} with S0 = I. (5)

3. RELATIVE RANKING OF SIMRANK

We provide a ranking criterion to gauge the correct rela-
tive order of node-pairs with respect to the SimRank scores.
The main result in this section is as follows.
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Theorem 1. For every two node-pairs (a, b) and (c, d), if

[Sk]c,d − [Sk]a,b ≥
Ck

1−Ck ·max
i6=j

{[Sk]i,j}, ∀k = 1, 2, · · ·

then it necessarily follows that [S]
c,d

≥ [S]
a,b

.

(The proof will be given later after some discussion.)

Intuitively, Theorem 1 provides an efficient criterion for
SimRank relative order preservation, by finding a suitable δk
in Eq.(2), which is practically small and easy-to-compute. It
suggests that, when SimRank is iteratively computed from
Eq.(5), for any two node-pairs, if the gap of their k-th iter-

ative scores is no less than δk := Ck

1−Ck · maxx6=y{[Sk]x,y},

then we can determine, at iteration k, their correct (“true”)
relative rankings with respect to the exact SimRank scores.

Other important applications of Theorem 1 are top-K
ranking and bucket ordering, as will be seen in Section 4.

To prove Theorem 1, the following lemmas are needed.

Lemma 1. For every k = 0, 1, · · · , and each j = 0, 1, · · · , k,

‖Sk − Sk+j‖max
≤ Cj · ‖Sk−j − Sk‖max

.

Proof. One can readily derive from Eq.(5) that

Sk − Sk+j = C ·Q · (Sk−1 − Sk+j−1) ·Q
T ,

from which it follows inductively that

Sk − Sk+j = Cj ·Qj · (Sk−j − Sk) · (Q
T )

j
.

Take ‖ ⋆ ‖max norm on both sides, and apply the fact that

‖[Q]a,⋆ ·X · [QT ]⋆,b‖max
≤ ‖X‖max with X = Sk−j − Sk,

to the above equation, it follows that

‖Sk − Sk+j‖max
≤ Cj · ‖Qj · (Sk−j − Sk) · (Q

T )
j
‖
max

≤ Cj · ‖Qj−1 · (Sk−j − Sk) · (Q
T )

j−1
‖max

≤ · · · ≤ Cj · ‖Sk−j − Sk‖max
.

Intuitively, for a current iteration k, Lemma 1 provides an
accuracy estimate for predicting new SimRank in the future
j iterations, by using old SimRank in the past j iterations.

Lemma 2. For j = 1, 2, · · · , the following estimate holds:

‖(I− Cj · (Qj ⊗Qj))
−1

‖∞ ≤ 1

1−Cj .

Proof. Since
∥
∥Qj ⊗Qj

∥
∥
∞

≤ 1, by using the fact that

(I−X)−1 =
∑∞

k=0
Xk with X = Cj · (Qj ⊗Qj),

we can obtain
∥
∥
(
I− Cj · (Qj ⊗Qj)

)−1∥
∥
∞

=
∥
∥
∑∞

k=0
Cjk(Qj ⊗Qj)

k∥
∥

∞

≤
∑∞

k=0
Cjk = 1

1−Cj .

Lemma 2 gives a neat bound for ‖(I− Cj · (Qj ⊗Qj))
−1

‖∞,
which lays the foundation for the proof of Theorem 1. Such
an upper bound is tight since it can be readily shown that
“=”in Lemma 2 is attainable whenever every node in a graph
has at least one incoming edge.

Lemma 3. For every k = 1, 2, · · · , and each j = 1, 2, · · · , k,

‖Sk − S‖max ≤ Cj

1−Cj · ‖Sk−j − Sk‖max.

Proof. We can readily verify by induction that

Sk+j − S = Cj ·Qj · (Sk − S) · (QT )
j
.

Thus, we have

Sk − Sk+j = (Sk − S)− (Sk+j − S)

= (Sk − S)− Cj ·Qj · (Sk − S) · (QT )
j
.

Taking vec(⋆) operator on both sides, and then applying
the tensor product ⊗ property, we have

vec(Sk − Sk+j) = (I− Cj · (Qj ⊗Qj)) · vec(Sk − S).

On both sides, we first multiply by (I− Cj · (Qj ⊗Qj))
−1

,
and then take ‖ ⋆ ‖∞, which yields

‖Sk − S‖
max

≤ ‖(I− Cj · (Qj ⊗Qj))
−1

‖∞
︸ ︷︷ ︸

by Lemma 2

· ‖Sk − Sk+j‖max
︸ ︷︷ ︸

by Lemma 1

≤ Cj

1−Cj · ‖Sk−j − Sk‖max
.

Lemma 3 suggests that the accuracy of SimRank scores
at iteration k can be estimated by utilizing the old SimRank
in the past j iterations.

Combining Lemmas 1-3, we can prove Theorem 1.

Proof of Theorem 1. Since the iterative SimRank score
monotonically increases to the exact solution with respect to
k, it follows that [S]

x,y
≥ [Sk]x,y, for every node-pair (x, y).

Setting j = k in Lemma 3, we denote by

δk = Ck

1−Ck · ‖I− Sk‖max
= Ck

1−Ck ·max
x6=y

{[Sk]x,y}.

Then, Lemma 3 can be rewritten as ‖Sk − S‖
max

≤ δk,
which implies that, for every two node-pairs (a, b) and (c, d),

[S]
c,d

− [Sk]c,d ≤ δk and [S]
a,b

− [Sk]a,b ≥ 0.

Subtraction of the above two equations yields

[Sk]a,b − [Sk]c,d − δk ≤ [S]
a,b

− [S]
c,d

.

This implies that

if [Sk]a,b − [Sk]c,d − δk ≥ 0, then [S]a,b − [S]c,d ≥ 0,

which completes the proof.

4. APPLICATIONS

To appreciate the utility of our relative ranking criteria for
SimRank (RRCS), we next illustrate two real applications.

Notations. Let T be a permutation matrix that arranges
all the entries of a vector in decreasing order, i.e.,

ŝk := T · vec(Sk) with [̂sk]1 ≥ [̂sk]2 ≥ · · · ≥ [̂sk]n2 ,
3

Given the above T, we also define ŝ := T · vec(S). Note
that the entries in ŝ are generally not sorted in decreasing
order, as opposed to those in ŝk.

Top-K Ranking. One application of RRCS is to validate
top-K node-pairs search, based on the following corollary.

Corollary 1. For every iteration p = 1, 2, · · · , if

[̂sp]K − [̂sp]K+1
≥ Cp

1−Cp ·max
x6=y

{[Sp]x,y}, (6)

then [̂s]
1
, · · · , [̂s]

K
are the top-K highest SimRank scores.

3Recall that [̂sk]i denotes the i-th element of vector ŝk, and
vec(Sk) stacks columns of Sk on top of one another [9].
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Proof. As [̂sp]1 ≥ · · · ≥ [̂sp]K ≥ · · · ≥ [̂sp]n2 , it follows
from Eq.(6) that, for all i = 1, · · · ,K, and j = K+1, · · · , n2,

[̂sp]i − [̂sp]j ≥ Cp

1−Cp ·max
x6=y

{[Sp]x,y}.

By Theorem 1, we have [̂s]
i
≥ [̂s]

j
, for all i = 1, · · · ,K,

and j = K +1, · · · , n2, which implies that [̂s]
1
, · · · , [̂s]

K
are

the top-K highest SimRank scores.

Corollary 1 tells that the“true”top-K node-pairs w.r.t. the
exact SimRank scores are the same as the top-K node-pairs
w.r.t. the p-th iterative SimRank scores if the p-th iterative
SimRank ranking scores between positions K and K+1 are
well separated above a threshold.

Bucket Ordering. Another application is bucket ordering.
In this case, we need to assign SimRank scores of n×n node-
pairs to several “bucket” intervals, as shown in Corollary 2.

Corollary 2. Let δp := Cp

1−Cp · maxx6=y{[Sp]x,y}. For
every iteration p = 1, 2, · · · , if for u, v = 1, 2, · · · ,

[̂sp]K − [̂sp]K+u
≥ δp, [̂sp]K+u

− [̂sp]K+u+v
≥ δp,

then [̂s]K+u is ranked between (K + 1) and (K + u+ v− 1).

Proof. Analogous to the proof of Corollary 1, [̂sp]K −
[̂sp]K+u

≥ δp implies that [̂s]
i
≥ [̂s]

K+u
, for all i = 1, · · · ,K.

Thus, the rank position of [̂s]
K+u

is after K.
Besides, from [̂sp]K+u

− [̂sp]K+u+v
≥ δp and [̂sp]K+u+v

≥
· · · ≥ [̂sp]n2 follows that [̂sp]K+u − [̂sp]j ≥ δp for all j =

K + u+ v, · · · , n2. This implies that

[̂s]
K+u

≥ [̂s]
j
for all j = K + u+ v, · · · , n2.

Hence, the rank position of [̂s]
K+u

is before K + u+ v.
Taking these together, we can obtain that [̂s]

K+u
is ranked

between (K + 1) and (K + u+ v − 1).

Corollary 2 assigns SimRank score [̂sp]K+u
to a “bucket”

that represents a rank interval [K+1, K+u+v−1]. Indeed,
the top-K ranking in Corollary 1 is a special case of bucket
ranking with two (interval)“buckets”: [1, K] and [K+1, n2].

5. EXPERIMENTS

We present an empirical study on real networks to evalu-
ate the usefulness of our criteria for ranking node-pairs.

Datasets. Two real networks are used: 1) Enron, an email
communication network from Enron, with 367,662 edges
and 36,692 nodes. 2) Amazon, an Amazon product co-
purchasing graph, with 1,234,877 edges and 262,111 nodes.

We implement iterative SimRank algorithm [5] 4 in Visual
C++, and use a machine with an Intel Core(TM) 3.10GHz
CPU and 8GB RAM, running Windows 7.

Results. By tying our ranking criterion of Corollary 2 to
algorithm [5], Figure 2 shows how many distinct ranks can
be identified (i.e., the number of buckets) and how many
elements per bucket (i.e., bucket sizes) at the last iteration
(k = 10)5. To ensure better visibility for top-ranked buckets,
we omit the rightmost bucket (whose size is the largest,
yet contains node-pairs with the smallest SimRank scores).
The detailed information is depicted in Table 1, where we
see that on Enron, 8.6% of the smallest node-pairs cannot

4Our ranking criteria can also be applied to other iterative
SimRank algorithms [1,6,15], yielding the same results.
5As used in [5], the total iteration number k is set to 5–10.

Dataset
% of pairs in # of pairs in % of pairs in
exact ranking exact top-100 last bucket

Enron 41.7% 91 8.6%
Amazon 34.5% 100 58.2%

Table 1: Statistical Information of Bucket Ranking
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Figure 2: Bucket Ranking on Real Networks (k = 10)

be ranked, whereas on Amazon, this number increases to
58.2%. Among the top-100 ranking results, 91 (resp. 100)
node-pairs on Enron (resp. Amazon) are exactly ranked.
These indicate the effectiveness of our ranking criterion for
identifying SimRanks of the top-ranked node-pairs.

6. CONCLUSIONS

This paper provides several useful relative ranking crite-
ria for SimRank iterations. Important applications of our
ranking criteria include top-K ranking and bucket ordering.

As a future avenue, we will incorporate these criteria for K
nearest neighbor search and other similarity models [16,17].

Acknowledgements. This research is supported by NEC
Smart Water Network research project.

7. REFERENCES
[1] G. Jeh and J. Widom, “SimRank: a measure of

structural-context similarity,” in KDD, 2002.
[2] M. Kusumoto, T. Maehara, and K. Kawarabayashi, “Scalable

similarity search for SimRank,” in SIGMOD, 2014.
[3] W. Zheng, L. Zou, Y. Feng, L. Chen, and D. Zhao, “Efficient

SimRank-based similarity join over large graphs,” PVLDB,
vol. 6, no. 7, pp. 493–504, 2013.

[4] W. Yu and J. A. McCann, “Efficient partial-pairs SimRank
search for large networks,” PVLDB, vol. 8, no. 5, pp. 569–580,
2015.

[5] D. Lizorkin, P. Velikhov, M. N. Grinev, and D. Turdakov,
“Accuracy estimate and optimization techniques for SimRank
computation,”VLDB J., vol. 19, no. 1, pp. 45–66, 2010.

[6] W. Yu, X. Lin, W. Zhang, and J. A. McCann, “Fast all-pairs
SimRank assessment on large graphs and bipartite domains,”
IEEE Trans. Knowl. Data Eng., vol. 27, no. 7, pp. 1810–1823,
2015.

[7] P. Lee, L. V. S. Lakshmanan, and J. X. Yu, “On top-k
structural similarity search,” in ICDE, 2012.

[8] G. He, H. Feng, C. Li, and H. Chen, “Parallel SimRank
computation on large graphs with iterative aggregation,” in
KDD, 2010.

[9] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu, “Fast
computation of SimRank for static and dynamic information
networks,” in EDBT, 2010.

[10] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka,
“Efficient search algorithm for SimRank,” in ICDE,
pp. 589–600, 2013.

[11] P. Berkhin, “Survey: a survey on PageRank computing,”
Internet Mathematics, vol. 2, pp. 73–120, 2005.

[12] R. S. Wills and I. C. F. Ipsen, “Ordinal ranking for Google’s
PageRank,” SIAM J. Matrix Analysis Applications, vol. 30,
no. 4, pp. 1677–1696, 2008.

[13] A. Borodin, G. O. Roberts, J. S. Rosenthal, and P. Tsaparas,
“Link analysis ranking: algorithms, theory, and experiments,”
ACM Trans. Internet Techn., vol. 5, no. 1, pp. 231–297, 2005.

[14] R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k
lists,” in SODA, pp. 28–36, 2003.

[15] W. Yu, X. Lin, and W. Zhang, “Fast incremental SimRank on
link-evolving graphs,” in ICDE, pp. 304–315, 2014.

[16] W. Yu and X. Lin, “IRWR: Incremental random walk with
restart,” in SIGIR, pp. 1017–1020, 2013.

[17] W. Yu, X. Lin, W. Zhang, Y. Zhang, and J. Le, “SimFusion+:
Extending SimFusion towards efficient estimation on large and
dynamic networks,” in SIGIR, pp. 365–374, 2012.

1794




