A THEORETICAL STUDY

OF THE QUADRATIC ZEEMAN EFFECT

by

BERNARD ANTHONY KELLY

A thesis presented for the Degree of
Doctor of Philosophy of the University of London

and the Diploma of Membership of Imperial College

The Blackett Laboratoery
- Imperial College

London SW7 January 1982



ACKNOWLEDGEMENTS

The work presented in this thesis was carried out bhetween September 1974
and August 1977 iﬁ the Physics Department of Imperial College, London,
under the supervision of Dr. A.R. Edmonds. I offer Dr. Edmonds my most
sincere thanks for his encouragement and guidance throughout the duration
of this research., I am grateful to Professor W.R.S. Gar?on for access

to his unpublished experimental results. My thanks are also due to

Dr. E. Ortiz of the Mathematics Department of Imperial College for advice
regardihg the-use of Chebyshev approximations. Finally, I wish to thank
the Northern Ireland Department of Education for the award of.a

Postgraduate Studentship.



ABSTRACT

Recent experimental work on the guadratic Zeeman effect has indentified
previously unobserved phenomena in certain atomic spectra. A theoretical
investigation of these phenomena in the context of the Coulomb approximation
requires the computation of large numbers of radial quadrupole integrals
involving large principal quantum numbers and non-zero quantum defects.

The well-known method of Bates and Damgaard breaks down in these circumstances,
and alternative methods become unreliable.

This thesis describes a new methed of computing the required radial
integrals, The radial wavefunctions are evaluated very efficiently by
means of recurrence relations and Chebyshev approximations:-the integrals
themselves are computed by means of Gauss-Laguerre quadrature. Although it
was developed for use in calculations associated with the guadratic Zeeman
effect, the new method has a much wider domain of applicability. It is
effective with large or small principal gquantum numbers; error bounds may
be adjusted simply by setting a few parameters, and the speed of computation
compares favourably with other methods in current use. 1In addition, the
possibility of varying the lower limit of integration allows the testing of
the validity of the Coulomb approximation itself, e.g. the effect of the
deviation of the radial functions from Coulombic form in the region of the
atomic core. In particular, the ne& computational method was used to invest-
igafe the reason for the breakdown of the Bates-Damgaard method at large
principal quantum numbers; the results of this research are presented in
this thesis.

Finally, the results of pumerical calculations of the quadratic_Zeeman
effect in the spectra of Ba 1 are compared with experimental observations
obtained by Garton and Tomkins. Very good agreement is obtained provided
inter-n mixing is not too strong. Some of the previously unexplained

features of the experimental spectra are reproduced.



CONTENTS

Acknowledgements

Abstract

List of Figures

List of Tables

CHAPTER 1 Introduction
1.1 Historical Background -
1.2 Related Studies of the Quadratic Zeeman Effect
1.3 Outline of Thesis
CHAPTER 2 Formulation of the Quadratic Zeeman Problem .
2.1 The Schrodinger Equation.
2.2 Expansion of the Radial Functions
2.3 Method of Solution
CHAPTER 3 Computation of Radial Integrals in the
Coulomb Approximation
3.1 The Coulomb Approximation
3.2 The Bates;Damgaard Method
3.3 Integrals with Large Principal Quantum Numbers
3.4 Choice of Numerical Quadrature
3.5 Integration by Gauss~Laguerre Quadrature

PAGE

12

14

17

17
20

22

24

26
29
32
34

36

7



CONTENTS PAGE
CHAPTER 4 Computation of the Whittaker Function Wi, (X) 39
4.1 Introduction 40
4,2 Relevant Properties 41
4,3 Review of Existing Methods 44
4.4 Use of Recurrence Relations 47
4.5 Computation of. the Starting Functions 49
4.6 Algorithm for Computing Wy m (x) - 66
4.7 Conclusions 67
CHAPTER 5 Numerical Accuracy of Computed Integrals 69
i
5.1 Performance of Gauss-Laguerre : Small V, v 71
5.2 Performance of Gauss-Laguerre : Large P,l)' 76
5.3 Analysis of the Bates-Damgaard Method 89
5.4 Conclusions 109
CHAPTER 6 Computation of the Principal Series of Ba I 111
6.1 The Spectra of Garton and Tomkins 111
6.2 Computation of Energy Levels and Intensities 114
6.3 Results and Discussion 123
6.4 Conclusions 137
CHAPTER 7 Review ' 13¢
7.1 Radial Integrals 140
7.2 Areas for Further Research 141
7.3 Semi-classical Methods 143

References : 145



LIST OF FIGURES
Fig. 4.1 Graphical Representation of K, s (x).
Fig. 4.2 Graphical Representatioﬁ of F“,M(X) and \«JK'M('X.),
Fig. 5.1 Graph of Jy(vf;v{'; ¥,) against (v-9y, (v+9') Fixed.
Fig. 5.2 Graphical Description of r, and r, .
Fig. 5.3 Graphical Representation of eie'j .
Fig. 6.1 Pensitometer Traces of a’+ Spectra of Ba I.
Fig. 6.2 Structure of the Truncated Hamiltonian Matrix.
Fig. 6.3 Matrix for storing <{md] f‘s'm‘b In' Ly .
Fig. 6.4 Computed Spectrum of Ba I, B = 24 kG;
{a) 1 Series, (b) o’ series. '
Fig. 6.5 Computed Spectrum of Ba I, B = 24 kG;
{(continuation of Pig. 6.4).
Fig. 6.6 Computed Spectrum of Ba I, B = 24 kG;
(continuation of Fig. 6.5).
Fig. 6.7 0" Series of Ba I, (a) B = 32 kG, (b) B = 47 kG.
Fig. 6.8 O‘+ Series of Ba I {continuation of Fig. 6.7).
FPig. 6.9 Quadratic Zeeman Shift as a function of n.
Fig. 6,10 Variation of Energy Levels with Magnetic Field.

PAGE

57

58

84

88

93

113

120

122

128

129

130

131

132

133

136



LIST OF TABLES

Table
. Table
Table

Table
Table
Table
Table
Table
Table

Table

Table

Table

Table

Table

Table

4.1
4.2
4.3

5.1
5.2
5.3
5.4
3.5
5.6

5.7
5.8
5.9
5.10

5.11

6.1

Chebyshev Coefficients of F, .. %X),
x%»3.25, k = 6.125, m = 1.5,

Chebyshev Coefficients of Fumix),
x%0.325, k = 6,125, m = 1,5,

Chebyshev Coefficients and Computed Values of E;l

v =5.5 f=1.
ns - h'p Spontaneous Transitions for Mg II.

Results of Heckmann.

Convergence of Computed Integrals as M increases,

Variation of U (34.1, 1; 37.2, 0; r,) with r,.

aT
b3 )

Behaviour of V(r,, r‘); {a) guadrupole, (b) dipole.

Comparison of Author's Method with Bates-Damgaard.

Terms of the Bates-Damgaard Series,
v =20.25, L =2, ¥ =19.25 &= 1,
S i, z =1, T, = 10.0.

Terms of the Asymptotic Series,
Yy =5.85, £ =2, v =4.85 £=1,
$ =1, z=1, T, =1.0.

Terms of the Bates-Damgaard Series,
s [
V =5.85, £=2, ¥ =4.85 £ =1,
S =l] z'=l' f =l.0-_

-]

Terms of the Asymptotic Series,
Y = 20.25, £ =2, ¥ -=19.25 £ =1,
§ =1, 2 =1, 1T,=10.0.

Dependence of 3, oni the Truncation Criteria (a)

Effect of Matrix Truncation on Energy Levels.

().

PAGE

56

60

61

73
75
78
80
82
86

98

102

104

105

108

135



. CHAPTER 1

INTRODUCTION

The search for a theoretical explanation of the magnetic structures
of atomic spectra has been of interest to atbmic spectroscopists ever
since Zeeman's historic discovery in 1896 of the broadening of spectral
lines when a sodium light source was placed between the poles of an
electromagnet.  In an attempt to explain Zeeman's observations, Lorentz
developed the classical theory ;f the motion of a bound electron in a
magnetic field. However, this theory failed to explain later invest-
igations of the Zeeman effect carried out by Preston in_1898 and Paschen
and Back in 1902. A more accurate account came in 1905 with Lande's
development of the vecto; model of the atom. Later, when guantum mech-
anics was developed, these phenomena were treated moré rigourcusly, and
the (linear) Zeeman effect became an important tool in afomic physics.

In these early experiments the magnetic field B was sufficiently
weak so that all observed Zeeman patterns were symmetrical about the
field~free spectral lines, and the width of each pattern was pro-
portional to B. Thus, in the early theoretical studies of the Zeeman
effect, calculations were carried out to first order in B. Although it
was well known that the Hamiltonian describing an atom in the presence
of a uniform magnetic field contained a term proportional to Ba this
quadratic or diamagnetic term was usually dismissed as being of little
practical significance (Condon and Shortley 1963, pl50).

The influence of the diamagnetic term becomeé cbservable only if
very strong magnetic fields or highly excited atomic states are present.
Under these circumstances the.associated "quadratic Zeeman effect" can

be studied.
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HISTORICAL BACKGROUND

Since the introduction of Bphr‘s atomic;;heory various authors
have discussed the importance of the diamagngticrterm in the atomic
Hamiltonian. The possibility of a quadratié.zéeman effect was pointed
out by Herzfeld (1914) and discussed by Burggrs {1919) in the framework
of the o0ld quantum theory. The first calculations by the methods of
modern quantum mechanics were repbrted by Guth (192%), Halpern and
Sexl {1929), and Van Vleck (1932)., Using perturbation theory, these
calculations showed that the first order energy shift due to the dia-

magnetic term was proportional to

n [5'-n L= 31(1“)][%“0 - t+mi] s (1.1)
(2£-1)(24+3)

and would be appreciable only for highly excited states and magnetic
flelds large compared with those required to produce the Paschen-Back
effect (Van Vleck 1932, pl78).

Investigation of the quadratic Zeeman effect With reasonable fiéld
strengths thus required the development of long spectral series. Con-
sequently the most extensive experimental studies have concerned long
absorption series of alkalis and alkaline earths. The first quanti-
tative measurements were given by Jenkins and Segre (1939), who studied
the effect in the principal series of Na I and K I. In the absence 6f
a magnetic field they observed the sodium series in ébsorption up to
n = 51 and the potassium series up to n = 43. When a transverse mag-
netic field of 27 kilogauss (kG) was applied the Zeeman effects were
observed. Fér low n {n~10) each line split.into a triplet - the
Paschen~Back triplets formed by the splitting of the very narrow aS - n
doublets, with the magnetic splittiné much larger than the spin-orbit
splitting of the nzP term. For values of n from abouf 12 upwards the

quadratic Zeeman shifts became measurable.



-10-

Up to about n = 20 the observed shifts agree well with the simple
theoretical formula

-i§& -2 a
AVy (em™') = u-agxi0 Z ‘n"*(l*-mf)B, (1.2)

obtained by specializing the more general formula (l.l). For the "x

components of transitions of the type s - nzP,1n?= 11, and for the
components mp, = O . Beyond n~20 a new perturbation appeared, ascrib-
able to l-mixing, which caused broadening of the componengg and precduced
shifts which increased faster than the‘n*rbehaviour‘of (1.2).

Jenkins and Segré also reported the onset of n-mixing, that is the
overlap of the Zeeman patterns of adjacent n~values, and concluded that
both ¢ and w components merged into an apparent continuum considerably
before the free-field series limit was reached. Some of these observat-
ions were interpreted gquantum mechanically by Schiff and Snyder (1939).
They took the inter-l1 mixing between the *p and *F terms into account
using perturbation theory. This mixing allowed *s - n P transitions, and
the perturbations between the *p and *F terms lead to additional level
shifts. Beyond n = 28, however, this approach was inadequate due to the
onset of inter-n mixing. To account for n-mixing, Schiff and Snyder in-
voked the adiabatic approximation. However, this provided only a quali-
tative explanation of the observed phenomena.

The correctness of (l.1) was further tested by Harting and Klinkenberg
(1949) who observed the principal series ¢of K I, Rb I and Cs I in a mag-
netic field of 26 kG over a similar range of n~values. The agreement
with theory was excellent; the separations between the higher P and F
states are relatively larger in Rb I and Cs I than Na I, so that inter-1
perturbations are less important - in agreement with observation.

The most recent, and to date the most detailed, investigation of the

quadratic Zeeman effect was carried out by Garton and Tomkins. Aided by
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significant improvements in experimental techniques, they were able to
study the spectra of highly excited atoms of several species, including
Ba I and Sr I, in fields ranging from 10 - 47 kG. A remarkably detailed
set of absorption spectra were obtained. Moreover, transverse observ-~
ations were made, separating the ¢ and v components by means of a
Wollaston prism. Only a small part of this work has been published,
namely that on the spectra‘of Ba I; measurements of all their plates are
not yet available.

A series of cbservations on the 695“5a - Gsnp'P' principal series
of Ba I was reported in Garton and Tomkins (196%a). In the absence of
the magnetic field the series could be observed up to n = 75. When a
field of 24kG was applied the & components were clearly obsérvable in
pairs.lJP to about n = 31 inter-l mixing is negligible. Beyond that many
additional lines appear due to inter-1 mixing, their strengths rapidly
increasing as n increases.

Above about n = 37 inter-n mixing sets in, and above n = 40 there
is little trace of the free-field (Rydberg) structure. There are, how-
ever, striking regularities in the spectra in this region. In two dis-
tinct regions of the o spectrum we observe sequences of regularly spaced
lines at intervals of approximately $hw, w being the cyclotron frequency.
Another system of very broad lines extends from ﬁust below the  free-
field series limit into the continuum; the spacing is again uniférm and
roughly equal to %hw. Other regularities exist in the w é&pectrum, but
these are still under investigation.

The theory of the quadratic Zeeman effect received negligible attent-
ion from atomic spectroscopists between the important experiments of‘
Jenkins and Segré in 1939 énd those of Garton and Tomkins in 1969,

Understandably, the noveity of the'phenomena exhibited by the spectra of

.Garton and Tomkins has lead to a revival of interest in the subject. B&s
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well as conventional gquantum mechanical methods (Edmonds 1973), semi-
classical methods have also been employed (Edmonds 1970, Starace 1973,
Connerade 1974). However, the fact that the system of atom and magnetic
fiéld is inherently non-separable renders the computation of energies,
wavefunctions and intensities very difficult, and little progress has

been made to date.

RELATED STUDIES OF THE QUADRATIC ZEEMAN EFFECT

The quadratic Zeeman effect is also of interest to research workers

in solid state physics énd astrophysics.

The impdrtance of strong magnetic fields in scolid state phenomena
has been recognised f£or some time. Soén after the discovery of magneto-
optical phenomena (Haidemenakis 1%69) in the early 1950's it became
apparent that the structure of energy bands in solids could be studied
by means of resonance spectroscopy - analogous to the approach used in
the investigation of atomic structure. As in atomic spectroscopy, the
application of a magnetic field lowers the symmetry of the system and
permits the examination of resonance spectra by means of new theoretical
models of the energy bands.

Of particular interest to solid state theorists has been the effect
of very strong magnetic fields on the low spectral terms of the Balmer
series of hydrogen. The reason is that, to a good approximation, the
behaviour of excitons and impurities in semiconductors in the presence

of magnetic fields may be inferred from calculations on an isolated

hydrogen atom. In these hydrogen models the normal electron mass is re-—

placed by the effective mass of the electron in the crystal and the
normal hydrogen potential is decreased by the dielectric constant of the
solid (Kohn and Luttinger 1955). For materials in which the effective

electron mass is small and the dielectric constant is large, the effect
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of the magnetic field is greatly magnified. Consequently, the quadratic
Zeeman effect becomes appreciable, even in the_low-lying energy levels,
ané results in an increase in the ionization energy at high fields
{Yafet et al. 19586). |

In view of the very strong effective magnetic fields which may arise
in this way, most solid state theorists have concentrated on the so-
-called Landau regime, where the Coulomb interaction is small compared to
the magnetic interactions., In these circumstances oscillations in the
direction of the magnetic field are much slower than the cyclotron fre-
quenéy. Thus the adiabatic approximation, introduced by Schiff ané
Snyder (1939), is appropriate. This approach was developed by Yafet et
al, (1956) and extended by later authors, including Elliot and Loudon
{1960), Hasegawa and Howard (1961}, Zhilich and Monozon (1967), Larsen
(1968) and Baldereschi and Bassani {1970). The magnetic fields involved
in these calculations lie in the range 107 - loqu. For further details
and references to this reééa:ch gsee Haidemenakis (1969) or the review by
Garstang (1977).

In astréphysics the behaviour of atoms in magnetic fields has been
of interest ever since 1908, when Hale discovered the preésence of magnetic
fields in sunspots. However, a revival of interest in the subject has
been stimulated by the discovery (Kemp et al. 1970) of circularly ﬁolar-
ized continuum radiation from a white dwarf star. These observations
have been interpreted as being due to a magnetic field of 10* kG at
the surface of the star. Other observations {Landstreet and Angel 1971,
Angel and Landstreet 197%, 1972) have indicated fields in excess of 10?kG
in a number of white dwarfs. It is now believed that fields of the order
of 10q kG may exist in neutron stars and pulsars (Lamb and Sutherland 1974).
This follows from the suggesfion that magnetic flux is conserved during

stellar eveolution (see, for example, Preston 1970) and this suggests that
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any magnetic field in a star would vary as the square of the stellar
radius.

Because of the intense magnetic fields and the abundance of hydrogen
thought to be pregent in these stellar objects, further attention has
been devoted to the study of the Landau regime in hydrogen. As in the
so0lid state theory, the adiabatic approximation is widely used (Smith et
al. 1972, Praddaude 1972, Canutc and Kelly 1972, Sturmelian et al. 1874).
The other most commonly used approach is to express the wavefunctions of
the system in terms of the free-field states and then determine the energy
levels by diagonalizing a truncated Hamiltonian matrix. -The results of
such calculations for the low energy levels of hydrogen and helium have
been reported by Garstang and Kemic (1972, 1974) and Kemic (1974). 1In
these calculations magnetic fields in the range of 103 - 10’ kG were

assumed, Kemic (1975) has alsc studied the quadratic Zeeman effect in

Ca 11 using perturbation theory.

Further references to the astrophysical literature may be found in
the reviews by O'Connell {1974) , Lamb. and Sutherland (1974) and Garstang

(1877} .

SUMMARY OF THESIS

The research reported in this thesis began as an attempt to gaiﬁ a
theoretical understanding of the reﬁar&ably éetailed absorption spectra
obtained by Garton and Tomkins. Most of these spectra lie between the
ranges of validity of the two main types of theory previcusly used to
study the quadratic Zeeman effect, namely perturbation theorf and the
adiabatic method. The.presence of a magnetic field and such high excit-
ations makes the analysis 6f such spectra extremely difficult; the prob-
lem is inherently non-separable.

Following guidance from Dr. A.R. Edmonds the present author adopted
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the approach of Schiff and Snyder, extending it to incorporate n-mixing,
This involved the diagonalization of a Hamiltonian matrix,using basis
functions taken from the Coulomb approximation, together with experimental
quantum defects., Although this basis had the disadvantage of incomplete-
ness {since the continuum states were ignored) it did not pose such formid-
able computatiénal problems as some alternative bases. In any case, it was
interestiné to investigate when the neglect of the continuum states is
permissible. The theory associated with this approach is described in
Chapter 2.

The construction of the Hamiltonian matrix using free-field basis
functions entails the computation of large numbers of radial gquadrupole
matrix elements with large principal quantum numbers and non-zero quantum
defects. The well-known method of Bates and Damgaard (1949) breaks down
in these circumstances., ZEarlier calculations by Dr. Edmonds {unpublished)
obtained the required integrals by extrapolation from smaller principal
guantum numbers (cf.Burgess and Seaton 1960, Peach 1965, 1967). However,
the method was of doubtful validity, and the accuracy of the computed
quadratic Zeeman spectra was difficult to assess.

Thus, before the effectiveness of the free~field basis could be in-
vestigated, it was first necessary to overcome the problem of computing
the required radial integrals. A major part of the present author's
contribution to thig research area was the development of a suitable
computational method for computing these integrals. 1In this method the
radial Coulomb wavefunctions are evaluated very efficiently using re-
currence relations and Chebyshev approximations, ;nd the integrals are
computed by means of Gauss~Laguerre guadrature, The associated numerical
analysis is reported in Chapters 3 and 4.

Although the new method of com?uting radial integrals was first

devised for use in calculations associated with the quadratic Zeeman effect,
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it has a much wider domain of application. The analysis of Chapter &
demonstrates that the method iz effective with large or small principal
gquantum numbers; error bounds may be adjusted simply by setting a few
parameters, and the speed of computation compares favourably with other
methods in current use. As reported in Section 5.3, the possibility of
varying the lower limit of integration has enabled the author to investigate
'why the Bates-Damgaard method breaks down at large principal quantum numbers.
In Chapter 6 we assess the wvalidity of the theoretical approach
proposed in Chapter 2. The energy levels and associated intensities of
Ba I in the presence of magnetic fields in the range of 10 - 70 kG are
chtained by diagonalizing a truncated Hamiltonian matrix. The physical
significance of these results is discussed in the context of the experimental
spectra of the 6s* 'Sa - 65np' P, principal series of Ba I obtained by
Garton and Tomkins. The computed results are in good agreeﬁént with the
experimental spectra provided inter-n mixing is not too strong. Some

previously unexplained reqularities of the &  spectra are reproduced.
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CHAPTER 2

FORMULATION OF THE QUADRATIC ZEEMAN PROBLEM

As outlined in the previous Chapter we shall confine our attention
to the quadratic Zeeman effect on the spectra of alkali and alkaline-
earth atoms. In the range of magnetic fields to be considered here we
can ignore the effects of relativity and spin-orbit interactions, since
these will be small in comparison with ;he Zeeman shifts. Indeed, since
optical transitions occur without a c¢hange of spin, the spin angular
momentum of the electron effectively does not enter our calculations at.
all.

In the non-hydrogenic species experimental data is available only
for moderate magnetic fields, so that the quadratié Zeeman effect is
appreciable only in highly excited states of the optical electron. The
influence of the other electrons may be taken into accouht when using a
one-electron approximation by including the empirical quantum defects in
the calculation, or by modifying the radial electrostatic potential in
the region of the atomic core. The consequehces of configuration inter-
action (e.g. 5d8p interaction in Ba I) are more difficult to deal with.
In general, however, interactions between the optical and 'core' electrons
will be important only in the lower part of the energy spectrum and will

have little effect on the local behaviour of the higher regions.

THE SCHRODINGER EQUATION

We will therefore consider the Hamiltonian ¢f a spinless non-relativistic
electron of mass u and charge -& in the presence of an attractive electrostatic
potential?ﬁr)and a uniform magnetic field B . If the direction of B is

taken as the #=0 axis of the usual poiar co-ordinate system (¥V,4,¢),
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this Hamiltonian operator has the form

Pt ) eB ’ i 5 2 . 2
H = = «+ Ve + S22 ¢, + & B r*sin*s, {2.1)
24 2l o 8;&'

where £ is the operator for the component of orbital angular momentum

along the magnetic field,

Py

2ﬁ¢£zisa

Since H commutes with £z , the linear Zeeman term
constant of the motion. It may therefore be cmitted from our calculations
provided 'the associated energy shift %E-,'M[ﬁ is taken into account, -m,_‘f\
being the eigenvalue of the operator £ . Our calculations are further

simplified if atomic units are used. Thus we put
e = R = = 1, ¢ = 13717

In these units the cyclotrdn frequency, :‘-:% s takes the value

W la.w.) = #2543 x /0 B (Gauss ), (2.2)

and the unit of energy is twice the ionization energy of hydrogen.

With these simplifications the basic Hamiltonian reduces to

Hwe) = .g_: + Vir) + E_S-'-’_z-r"sl.-nlﬁ. (2.3)
We note that the effect of the quadratic or diamagnetic term -%’l*"ﬂ’“za
is to render H(w) inherently non-separable. It is this inseparability
that gives rise to the interesting and difficult theoretical problems in
the study of the guadratic Zeeman effect,.

Since the quadratic term in (2.3) commutes with neither the free-
field Hamiltonian Hee) nor the total orbital angular momentum operator
1_", it follows thatm and £, the usuval principal and orbital angular
momentum quantum numbers of the free-field states, are no longer exactly

defined; the only remaining 'good' quantum numbers in the presence of

the magnetic field are the eigenvalues of the operators £i and parity,
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namely 7; and & . The eigenstates of H may therefore be designated

LY
\Jf ¢ {(t), and the appropriate time-independent Schrodinger equation is

-

2 a my Lo m‘l‘:a
{'i‘. V + Vi + 1-_;1 -r‘si.n"ﬁ}'qf = 'E'}l/ (2.4)
For given m,and & the sclution of (2.4) may be expanded in an
infinite series of spherical harmonics. Thus we may write
"l’\-;l:'l - mlm ~
¥ o6 4) = LI ()Y, 6,4), (2.5)
£z Im)

where Z(®) indicates that the sum is to be taken over even or odd £

according as the parity @ is even or odd. The spherical harmonic

Y,.,mw,#) ig defined by the equation

Y_'_‘."‘ (a,¢) = / (21'.'.)(-!’-”)} Ptﬂ(tose)aahé, (2-6)

W (L+m)]
where Pgm denctes the associated Legendre polynomial (see Abramowitz
and Stegun 1964).
On substituting (2.5) into (2.4) we obtain an infinite set of coupled
. . , . mid
differential equations for the radial functions 4!’_ (¥), namely
'le) Hl'iatpev(*) = E¢¢H’) R £ > lm |, (2.7)
'3 iwmy

where Hy ¢ is the differential operator

= for LU+
Heye = { Zatr T TgyT + ‘Vh‘)}él,,- + Ry (2.8)
and
Que = £ Tl sin'0 [ Liam ) (2.9)

We note that the matrix elements @& are zero unless |¢-2'|= Qor2,
and may be computed easily by means of angular momentum algebra (see,
for example, Edmonds 1968).

Cabib et al. (1971) obtained an approximate solution of {2.7) for
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the ground state of hydrogen. They reduced (2.7) to a finite matrix
eigenvalue equation by first truncating the infinite summation and then
approximating the differential equations by difference equations. However,

this approach is ill-suited when highly excited states are required, since

-the wave~functions which describe highly excited_states are strongly oscili-

atory and have a large spatial extent. Thus they require large numbers of
grid points for their discrete representation, and consequently lead to

matrix equations of very high order.

EXPANSION OF THE RADIAL FUNCTIONS

An alternative approach is to reduce (2.7) to a set of algebraic
eguations by expanding 4%(f). Although, in principle, any'complete set
of functions defined on the interval (o, ® ) is valid for this purpose
we should try to choose a basis which produces the greatest simplification
of the corre5ponding matrix of H:,. In physical terms, this means that
we should seek a separable Hamiltonian which closely approximates to Hge:
the radial functions of this (separable} Hamiltonian, if they can be comp~-
uted without too much difficulty, should then be used as a basis for ¢Q(ﬂ.
We therefore try to split the effective potential V(*) + %?f‘slﬂfé
into the form Af (¥) + VT, (¥,8) , and then consider the radial

Schrodinger equation

1dt L U+ - (2.10)
{1 ot =7 VvV, (1) + e} Ri™) 0.

The complete set of solutions of this equation is the required basis.

The simplest splitting of the effective potential is to assign

V) = Vi amd ) = Zrtsinte. (2.11)

In this case (2.10) reduces to the radial Schrodinger equation describing

the atomic system in the absence of a magnetic field.
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If we assume that the energy spectrum of the free-field atom is known
from experiment, and that the corresponding radial wavefunctions can be
determined, and denote these guantities by é&,; and Rme respectively, we
may then, following Schiff and Snyder (1939), write the radial functions

s
4; (T) of equation (2.7) in the form

w = )
qb: () = Zwen R

mzl+t

{2.12)

me ()

We note immediately-that the set Rpetr?, m= €+1, L+ 2,.... does
not form a complete set; the continuous stateslof the atom (those with
positi;e enefgy)'have been ignored. However, for sufficiently weak.mag~
netic fields neglect of the continuum states is permissible; the extent to
which it is permissible when the magnetic field is strong is not known.
However, the free-field states will still be used here, since one of the
objectives of the present author's research is to establish how important
these continuum states are when the magnetic field is relatively strong.

From {2.7)} and (2.12) we-can easily derive the matrix eigenvalue

equation
né.t' FAPRTUN H‘",'n'l' Coer E Cne 5 (2.13)
2 = 0,1, - SR ; n= £+1, £+2, cereny (2.14)
where
Hat,mer = Eng 8038, + Qpe,ne’ > (2.15)
=
Boewsr = LRl >l 1 5in* 8 [ L'm > 4(2.16)
and

(-]
L1v3nd’ = -
<nlltiind'> L Rue (33 ¥ Ry ¢ty Aot (2.17)

As remarked earlier a"n-l,-h'l' 0 wumless {4-2'} = 0 ot 2.
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METHOD OF SOLUTION

In order to determine solutions to the eigenvalue equation (2.13)
the Hamiltonian matrix Huy,me' mMust be diagonalized.

Consider first for simplicity the case of a hydrogen atom. 1In the
absence of a magnetic field, the energy levels of a given principal guantum
number n are degenerate in £. This degenefacy is removed by Q. If the
maximunm energy shift produced by this term is small we may compute the
effect easily: for any given value of n we compute the eigenvalue spectrum
of the sub-matrix M,y my' s where n = n' and iml| ¢ {4, )<n. The trans-
formation which diagonalizes a given sub-matrix mixes states of different
¢- values. Thus the eigenvectors of the perturbed system are linear com-
binations of hydrogenic states, each of definite £-value.

If we are étudying the principal series of an atom Qith optical
transitions to or from the ground state (6s™ 'S,in the case of Ba) the
selection fule 1€£-2'1 =1 implies that only excited states with £ = 1
contribute to intensity. Thus, intensities are given by the square moduli
of the coefficients of 'p' states in the above eigenvectors.

In the hydrogenic spectra of atoms other than hydrogen (e.g. the
principal series of Ba I} we no longer have complete degeneracy in £ ,
even when a magnetic field is not present. Thus the computation of the
matrix elements ¥4“"~V4’ must allow for the relevant quantum defects.
In the case of Ba the quantum defects of 'p' states in the range of n
values considered in the present study may be written as 4 +o , where «
is a positive or negative quantity small compared with one; the quantum
defects of gtates of higher £ ~values are assumed to be zero (see Garton
and Tomkins 1969b). Thus we may expect to achieve satisfactory results
by relabelling 'p' states of different n and applying the procedure des-
cribed above. This approach was adopted by Schiff and Snyder (1939) in a

study of the guadratic 2eeman effect in Na I and K I,
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Clearly the sub-matrix approach described above is valid only when
the guadratic Zeeman shifts are small in comparison with the energy diff-
erences of neighbouring free-field states.
Dr. Edmonds has found that such calculations for the o spectrum of Ba I
give good agreement with the experimental results of Garton and Tomkins
for n-values between 26 and 34. The dominance of the lines of maximum
shift over their associated groups of satellite lines was well reproduced.
We note that the matrix elements of r® are roughly proportional to B* and n*
In an attempt to explain the behaviour of higher members of the
Garton-Tomkins spectra the present author adopted the natural extension
of the method of Schiff and Snyder, taking into account the sub-matrices
of the Hamiltonian matrix (2.14) linking different wvalues of n. In practice

this involved truncating the Hamiltonian matrix H,, m'¢' such that

only a finite range of n values was included, i.e. m .

4
-n& n,n < 'n'-msr

mi

However, the entry of quantum defects introduces difficulty into the
calculation of the radial integrals <mndil| T2 n'd'y when n, n' become.
large. The established method of Bates and Damgaard breaks down under
these circumstances (Oertel and Shomo 1968), and alternative methods become
unreliable or very inefficient.

Before the adopted approach (using free-field Coulomb basis functions)
could be fully evaluated a suitable method was reguired for computing

large numbers of radial gquadrupole integrals. As described in detail in

the next Chapter, the author has developed such a computational methed.

In Chapter 6 we describe in detail the methods used to compute the
thecretical energy levels and intensities of the principal series of Ba I
in magnetic fields in the range of 10 - 70 kG. The computed spectra are com-

pared with the experimental results obtained by Garton and Tomkins (1969a).
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CHAPTER 3

COMPUTATION OF RADIAL INTEGRALS IN THE COULOMB APPROXIMATION

Following the discussion of the preceding Chapter it is ¢lear how
the present study of the quadratic Zeeman effect gave rise to the problem

of computing large numbers of radial integrals of the form

’ 0
bt n'L> = j Rﬁml(f) T° R, (f)c[-f). (3.1)

i: R,ujT) being the radial wavefunction which describes the free~field

bound state lfll'h1>. In practical calculations the integrals involved
states of neutral alkali and alkaline earth atoms with very large principal
gquantum numbers. In the case of Ba I these states were given in terms of
very detailed and accurate tables of experimental quantum defects (Garton
and Tomkins 1969b) with n, n' in the range 25-75.

The large principal guantum numbers involved in these integrals,
together with the fact that the gquadrupole operator Tzemphasised the large
values of T , implied that the Coulomb approximation for the radial
functions might be appropriate. The large principal quantum numbers also
implied that the simple normalization convention of Hartree (1928) would
be adeguate.

Attention was therefore turned to the Bates-Damgaard methed (Bates and
Damgaard 194%) as a prospective means of computing the required integrals.
However, as pointed out by Oertel and Shomo (1968), the computational
scheme used in the Bates-Damgaard method breaks down for sufficiently
large n, n’ , due to the accumulation of rounding errors in the summaticn
of an alternating series. In trial calculations, which were carried out

using double precision arithmetic on a CDC 6400 computer (i.e.using about
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29 significant decimal digits), the Bates-Damgaard method gave reliable
results only for n, n' up to about 25.

Several alternative methods of computing (3.1) were evaluated
{Friedrich et al., 1970, Lindgérd and Nielsen 1976)., Although these
methods were designed to overcome limitations of the Bates-Damgaard
method they too were found to be ineffective when n, n’ became large
( » 15).

The present author therefore began a search for a new method of
computing tpe required integrals. This research led to the development
of a powerful new technigue, based upon Gauss-Laguerre quadrature; the
Coulomb wavefunctions in the integrand were evaluated by means of con-
vergent Chebyshev expansions and recurrence relations. The details of
these techniques are discussed later in this Chapter and in the follow-
ing Chapter.’ A discussion of the efficiency and accuracy of the new
method is presented in Chapter 5.

As we shall explain in the subsequent discussion, the new method
became more than just a means of computing integrals for use in calcul-
ations of the quadratic Zeeman effect; it provided a means of invest-
igating the Coulomb approximation itself, 1In particular, it enabled
the author to carry out a thorough investigation of the behaviour of
the Bates-Damgaard method when n,n' are large. Although Oertel and
Shomo (1968) had established that the Bates—Damgaard method breaks
down at large n,n' . they did not determine which part of the numerical
procedure gives rise to the numerical errors. The results of this
application of the new method are reported in Chapter 5.

The problems associated with the computation of radial integrals
involving Coulomb wavefunctions with large principal quantum numbers

did not arise in previous studies of the quadratic Zeeman effect. 1In
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previous studies either quantum defects did nct enter the calculations,
so that hydrogenic wavefunqtions and as;;ciated analytic formulas could
be used in the computation of radial integrals; or the gquadratic Zeeman
effect was only of interest in the lowfenergy states. A brief review
of these studies is given in Garstang (1977).

In recent years, interest in the calculation of Coulomb wavefunctions
and asscociated integrals inveolving large principal gquantum numbers has
arisen in another context. Recent experiments in laser spectroscopy
have required the analysis of empirical data on highly excited atomic
systems involving principal quantum numbers in the range of 20-60 (see,
for example, Andersen et al. 1975, Ducas et al. 1975, Risley and Jebule
1975, Stebbings et al. 1975, Littman et al. 1976). The new computational
schemes proposed in this and the following Chapter should also be applicable
in these circumstances.

The remainder of the present Chapter is organised as follows. In

Section 3.1 we present a summary of the Coulomb approximation and associated

equations. Sections 3.2 and 3.3 contain a brief review of the Bates~
Damgaard method, explaining why it is inappropriate in the context of large
principal quantum numbers. Alternative methods are reviewed in Section

3.4 Finally, in Section 3.5, we formulate equation (3.1} in terms of

Gauss~Laguerre guadrature.

THE COULOMB APPROXIMATION

We consider a single excited electron is an atomic system with
nuclear charge 2 and N + 1 electrons, and suppose that this electron
moves in a central potential V(r). We assume that V(r} depends on the

structure of the atomic core for r<r , and takes the Coulomb fornt-é%
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{in atomic units) for r » r,, where z = 2-N and r, is the core radius of
the atomic system (see, for example, Brooks and Ham 1958, for typical
values of r, for the alkalis). We further assume that the energy spectrum
of the system is known from spectroscopic data, but that the form of V(r)
for small r is generally not khown.

It is well known that the radial wavefunction for the above system
can be written in the form % R(t) , where R(r) satisfies the different-

ial eguation

2
{-i—%z + EUL+) 4 V) - E}RH‘) = 0, (3.2)

212

and the normalization condition

f[RmJlohr = . (3-3)

For E < 0, solutions of (3.2) which are everywhere bounded and continuous

exist only for discrete wvalues of the energy E. For E > C, however, such

soluticns exist for all values of E, forming a continuous spectrum.
Following Seaton (1966) we label the discrete eigenergies of (3.2)

- by n and ¢, the usual principal and angular quantum numgers respectively,

and express E in terms of the effective principal guantum number ¥,

mne mne

and quantum defect Mo by the equations

z
E“l = - =3z ym.t = n —/-Lﬂ‘, (3.4)

n = 1,2,3,... and €= 0,1,...,n-1.

Hartree (1928) showed that if V(r) does not differ appreciably from its
agymptotic form - —i—- , the bound state radial function R, () has

the approximate form
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R

me

2zt
P 3-5
() ot K, OW, 0o, (55 ) (3.5)

where W denotes the irregqular Whittaker function {(Abramowitz and Stegun
1964) and Ki{V,{) is a normalization factor.
By analogy with the hydrogenic radial functions Hartree {1928)

proposed the assignment

i,

., - 3
K, 8y = z [V Twetenrv-4)] . (3.6)

However, many authors have suggested ways in which this factor should be
modified., For instance, Seaton (1958) has shown that, in the context of

the quantum defect method, the appropriate normalization factor should be

Y

L) . -3
Kiv, €) = z&[vlfunrtw+t+anwy-1)], (3.7)
where
- op Z o
fwV) = U+ 35 = i+ TRyl (3.8)

Other forms of KI(v, ) have been suggested by Armstrong and Purdum
(1966), Foldy {(1958) and others, However, if the guantum defect varies
slowly with the energy, most of these normalization factors reduce to the
Hartree formula (3.6) when ¥ is large.

We note that the assumptions concerning the one-electron potential
governing the interaction between the valence (or optical) electron and
the core imply that the following interactions are neglected:

{(a) Correlations between different electrons within the cére,_
and between core electrons and the valence electron.

This leads to polarization of the core - the induction of
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a dipole moment leading to a polarization potential of the
asymptotic form « /2t" (T -» @) (see Abramowitz and
Stequn 1964).

(b) Spin-orbit interactions .

(c) Configuration interactions.

3.2 THE BATES-DAMGAARD METHOD

5
The typical radial integral involving the operator ¥ is of the form

ab

I = <mlidInd'y = JR;\L(-{)TSRMu. (r) dot, (3.9)

s
-3

The case s = 0 arises in overlap and normalization integrals; in the
dipole case (s = 1) we have |4 -4'|= 1; in the'quadrupole case (s = 2),
which arises in the quadratic Zeeman effect, we have V£ -4'l =0 or 2,
though £ = ¢’ = 0 is excluded. All values of n, n’ may arise,

Bates and Damgaard (1949) suggested a meﬁhod of calculating such
radial integrals in the congext of the Coulomb approximation. Although.
their method was developed as.a means of computing Ig4 for the case s = 1,
its principles are equally valid for s = 0,1,2,..... The main arguments
of Bates and Damgaard are suﬁmarized below.

The basic postulate of the Bates-Damgaard method is that, when cal-
culating radial dipole matrix elements, the contribution to the matrix
element arising from small radial distances can be neglected. The method
utilises the known experimental term values of the active electron to
construct an asymptotic Coulomb wavefunction (of the form (3.5)) which is
accurate at large radial distances. The radial integral is evaluated using
two such wavefunctions.

Thus the Bates-Damgaard approximation to the integrand of Is is
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The whittaker functions can now be replaced by asymptotic expansions of

the form
2z¥
mezcﬁiﬁ—;—
-zT 224 v ot :
’Hd 5 (228 (£41- V)‘( -4 - U) (3.11)
~ SETL e}

where the notation {x); refers to the Pochhammer symbol, which is defined

by the equations
(x);,, = x+i)X);, t=0,1,2,... amd (x),=1. (3.12)

Using (3.11) the Bates-Damgaard approximation to the integrand of I

becomes
EE b T g yd -t peimicd
e ‘cig, - b o aa; () (&) e r , (3.13)
3 i u !
where fo= kD RLL) (ER) (.z.v_.’f)” (3.14)
4« = z (-;; * —‘,;) , (3.15)
o = v vies e, (3.16)
a; = L+ 1-v)p -L-w)¢ ' (3.17)

]

!

- . ' ! .
and q; Q, with v, { replaced by v,l respectively.
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Bates and Damgaard ignored all terms in (3.13) containing rk (k< 2)
and performed term-byterm integration over the range {e, 0} on the

remaining terms, giving the approximation

BP
I, =
1ry €k .. . ...
1e) s Voyi ety 1y p .
)C_EO ,zo ) e al () (E) « Mp-i-3), 3.18)
where K, = Ly +Vv'] + s - 2 (3.19)

The reason given by Bates and Damgaard for choosing k__ = [v+v']+s-2
was that this truncation criterion was eguivalent to neglecting the
singularity in the Whittaker function at r = @; although (3.13) was
integrated over the entire range ( o, o }, it was argued (Bates and
Damgaard 1949, 9104) that, since the maxima of all terms in the inte-
grand having the form ‘rp-“k lie within the "core radius" if k » k_,

truncating (3.13) at k= k., was equivalent to neglecting the contrib-

ution to I, which arises from the region of ¢ ¥ ¢ 7, where

T = g vy , | < §F < 2.

3.20
z(v+p') ( )

The Bates-Damgaard method has been widely used and has achieved
considerable success, often yielding results which agree with experiment
better than those calculated by self-consistent-field methods. It is
particularly effective for non-equivalent eleétrons and for highly
excited states, since in these cases the contribution to the integral
from large radial distances is enhanced. However, as we shall discuss
later in this Section, it breaks down for numerical reasons when n,n'

become sufficiently large.
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Clearly the Bates-bamgaard approximation is equivalent to
Is(-r..l, wl') »~ T Wi, vl ;7,),
where

zzt
R Jdr. (3.21)

o
o g 2zf) s
Jswh v,y = Kw,l)mv,i)l WMH;( v )T W

We note however that the lower limit of integration, is not intro-

o
duced explicitly into the computational algorithm of the Bates-Damgaard
method.

The validity of the Coulomb approximation and the Bates-Damgaard
method have been discussed by several authors, including Layzer and

Garstang (1968), Crossley {(1969) and Sobel'man (1972). The important

question of polarization of the core has been studied by Norcross (1973)

and that of normalization by Seaton (1958). These analyses have shown

that if n and n’ exceed the principal quantum numbers of the core electrons,
we may expect, for s» 0, that the Coulomb approximation (3.21} is accept-
able. More precisely, we expect a small relative variation Bf Jg when r,
varies between the "core radius", r, , and the inner turning points of the
states |md)y and Pn'l‘} . However, as remarked by Layzer and Garstang
(1968,pp472-82), for a given species certain values of n#, n'e’ may exist
for which strong cancellation occurs in the outer part of the integral. In
such cases the relative error given by the Coulcmb approximation may be
high, though it may be perfectly adequate for neighbouring n#, n'd’ where

such cancellation does not occur.

INTEGRALS WITH LARGE PRINCIPAL QUANTUM NUMBERS

As regards the calculation of radial gquadrupole integrals in the

context of the gquadratic Zeeman effect, the assumptions of the Coulomb



-33=

approximation and the Bates-Damgaard method seemed appropriate: the

large principal quantum numbers involved and the presence of the
quadrupole operator r® both emphasised the contribution from the large
values of r. Moreover, the gquantum defects of the atomic states of Ba I
were available from the experimental results of Garton and Tomkins (1969%),
In view of the highly excited states involved it seemed reasonable to
assume that the simple normalization convention of Hartree (1928) would

be adequate, and that polarization effects could be neglected.

However, as ﬁointed out by Oertél and Shomo (1968), the Bates-
Damgaard method breaks down if the principal quantum numbers n,n' are
sufficiently large. This is due to the accumulation of rounding errors
in the summation of the series (3.18), whose terms increase in magnitude
and alternate in sign as n,n’ increase. Oertel and Shomo found that the
domain of wvalidity of the Bates-Damgaard method depends upon the word
length of the computer used to evaluate (3.18) and upon the desired
accuracy of the required integrals: when n + n £ 10 dipole transitions
integrals cculd be computed with an accuracy of four significant figures
using a computer with a precision of fourteen decimal digits. The present
author has found that when double precision arithmetic is used on a
CDC 6000 series computer {(i.e. using 29 significant decimal digits)
results which are accurate to within four significant figures can be
obtained provided n,n’% 25.

Thus the Bates-Damgaard method was of little practical value in the
present study of the quadratic Zeeman effect, where integrals involving
n,n' up to about 60 were required. An alternative method of computatieon
was essential,

We note that extrapoclation of the Bates-Damgaard results to higher

n,n is possible in principle (see, for example, Seaton 1958, Burgess and
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Seaton 1960, Peach 1965, 1967) and has been tried by Dr. A.R. Edmonds.
He found that the accuracy of the caléulations was difficult to assess

and the method seemed ill-suited to the_task of computing automatically

very large numbers of integrals.

CHOICE OF NUMERICAL QUADRATURE

In view of the numerical difficulties associated with the Bates-
Damgaard method the author began a search for a satisfactory method of
numerical quadrature for computing the required radial integrals. In

judging the numerical methods tested the following criteria were adopted:

{i) The method (assuming appropriate adjustment of such
parameters as the number of abscissae in the guadrature
formula) should.be capable oflcomputing accurately and
efficiently integrals involving n,n' up to about €0,
and should accomodate any reasonable values of guantum
defects, angular guantum numbers 2,.1' and positive
powers of r.

(ii) It should be possible to choose parameters so that the
accuracy of computation is high encugh to exclude errors
other than those due to experimental uncertainties in the
guantum defects, or inadequacies in the physical assump-
tions (for example, that of the "frozen core" approxim-
ation). In particular, it should be possible to vary the
lower cut-off point, which is inherent in the Coulomb
approximation, and study the effect on the computed
integrals.

{(iii) In the region of n,n' where the Bates-Damgaard method

ig effective the new method should; when set for comparable
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accuracy, have a similar or faster speed of execution.

In general, the computing time should not increase too

fast with increase of n,n’

{iv) The method should, if possible, give accurate results

for small as well as large n,n’ and allow for modifica-

tion of the radial functions or the operator r* due,

for example, to taking poclarization effects into account.
Previous work gimed at an accuracy of computation superior to that of
the Bates-pamgaard method failed £o meet these criteria.

Friedrich et al. (1970) computed I, by egual-interval gquadrature,
using asymptotic series of the form (3.11) to evaluate the Whittaker
functions in the integrand. But (3.1l) becomes invalid when r is small,
due to truncation errors. It also breaks down when r is large due to
the very large absclute values attained by terms of the series; the
associated numerical cancellations lead to disastrous rounding errors.
Our calculations have shown that this method of equal-interval quadrature
becomes very inefficient when n,n' 2 20, due to the large number of
abscissae required (see Section 5.2.5).

Lindgard and Nielsen (1975) had the same aim as our own, namely to
extend the computation of radial integrals to large n,n'. They used a
method of equal-interval guadrature in which the Whittaker functions were

evaluated by integrating the defining radial differential equation

i’. -E(-t"") 25 _ z?* 2zT _ (3.21
id_-:;' B +* + ra ke \’Jv,u'fz(-?;') =0 2

using the Numerov method. This approach failed to meet ocur criteria for
several reasons: many steps are needed in the integration, particularly
for large values of n,n' ; each determination of the radial function

requires a normalization computation. Furthermore, the accuracy of
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computation of the radial function at small r may be inadequate unless
great care is taken. Finally the range of integration (ro) L ax )
must increase roughly as nxn’, if n,n’ 2 10, in order to maintain a
given accuracy. Thus this method becomes very inefficient when n,n'
become large.

It should be emphasised that it was not possible to investigate
fully the numericalrbehaviour of either of the guadrature methods out-
lined above, since all existing methods become unreliable as scon as
n,n' exceed 15 or so. As we shall discuss in Chapter 5, their be-
haviou; could only be investigated fully when a method existed which
adequately satisfied the criteria outlined at the begipning of this
Section., Such a method, based upon Gauss~Laguerre gquadrature, has
been developed by the author: it is intrcduced in the following Section.

In Chapter 5 this new method is compared with those of Friedrich et al.

and Lindgard and Nielsen.

INTEGRATION BY GAUSS-LAGUERRE QUADRATURE

Because of the form of the integrand (3.10) a search for a quad-
rature formula for computing I, leads naturally to that of Gauss-Laguerre
{Stroud and Secrest 1966). To help explain why this is so it is con-
venient to ihtroduce the auxiliary function, FK'mmtxl) , defined by the
equation (cf, Miller 1966)

>

/2 -k
Fon(x) = e 2 W, . (x). (3.22)

Ky

Fu,m&(?c) has slower variation and simpler asymptotic behaviour than
LJK"“ (x). In terms of auxiliary functions (3.21) may be written in

the form
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ob
-af P-l FY 4] er
J, = u.J e T Fp'“_,‘( > )Ew',i'wg(”—;)d'r' (3.23)
fﬂ
where we have used the substitution
v oy 223 ) 22 \¥
w = ke, HRKELOI(F) (3. (3.24)

& and g have been defined by equations (3.15) and (3.16) respectively.
In order to put (3.23} into the correct form for the application of
Gauss-Laguerre we change the variable of integration to = = a {¥T-T,).

{3.23) then reduces to

o

T, = u.J e"‘g(x)dx_) (3.25)
o
where
_u'f, P I
_ e - 22 2z¥
qx) = el T Fv,.tt-'&(_—;) Fv',l'f&(_\?" ) (3.26)

Application of the Mth order of G-L quadrature formula now gives (see

Ezdélyi 1953, Xrylov 1962, or Stroud and Secrest 1966)

™M
s = “—{.Z A g Xim) + R.,.tm}. (3.27)

The zeros XM and weights A‘-nof the Laguerre polynomial L ,(x) are

defined by the eguations

\
2. = : , (3.28)
va Zim [ U (%50))

: 3.29
L. (x;) = O, 1= 1,2,..., M, (3-29)
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In equation (3.27) the term R“(Q) is a remainder term which tends to

zero as M tends to infinity: R, (g} is given by the well-known formula

2M

{ OL (
Rulg). = TR q¢8). (3.30)

In practical calculations M must be chosen sufficiently large such that

R,‘(%) is sufficiently small._']'s is then computed using the approximation

™M
J, = u.ZRLHC_ll(XLn). . (3.31)

~

Clearly any numerical evaluation of J; using (3.31) involves the comp~
utation of 2M values of the auxiliary function F or the Whittaker function
W. When ¥, v are large { 2 15) the computation of these functions leads
to numerical problems similar to those which arise in the method of Lindgard
and Nielsen {(see Section 2.4 above). However, as described in the next
Chapter, the author has developed a new method of computing these fgnctions
which is particularly effective when 0,9' are large.

In Chapter 5 we return to a discussion of the accuracy and effigiency

of the Gauss-Laguerre approximation (3.31).
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CHAPTER 4

COMPUTATION OF THE WHITTAKER FUNCTION \WJr,m {(X)

The discussion of the previbus Chapter focussed upon the choice
of quadrature formula for computing  Jg{(v{; vtlg {,) . However, in
practice, the most difficult aspect of any numerical method of inte-
gration is the evaluation of the integrand at the gquadrature points.
In the present case the integrand involves the irregular Whittaker
function bJ,ﬂn{x) which is well-known to be a difficult function to
evaluate, especially when the parameter k is large and the argument
X spang a wide range of wvalues, In these circumstances existing comp-
utational techniques become inaccurate or require excessive computing
time. Although there are many theoretical approximations of'\JK,ﬂn (x)
{Slater 1960), very few of them are of any value in practical calculations.
A considerable part of the present author's research was therefore
devoted to a search for a suitable numerical method ‘for computing
\rJ“._m\x) when X > 0 and 15 £ k £ 60. The outcome of this work
‘was the development of a very powerful numerical technique, based upon
the use of a recurrence relation involving three contiguous Whittaker
functions, together with Chebyshev expansions of the starting functions.
This technique, and the computational algorithms developed for its
implementation, are the subjecé’of this Chapter. BAs we will discuss in
the next Chapter, the existence of such an gccurate and efficient technique
for computing W&,_M(x) was of crucial importance in enabling the development
of a method of numerical quadrature which satisfied the criteria stipulated

in Section 3.4.
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INTRODUCTION

In the context of the Coulomb approximation and the quadratic
Zeeman effect the parameter k of hJ,ﬁ“(x) corresponds to the effective
principal guantum number, labelled ¥ in the previous Chapter; it may
take any value in the range 15-60. The parameter m correspoends to
2+ % , where £ is the angular momentum quantum number and takes the
intéger values 0,1,2,...... When ? is greater than 2 or 3 the guantum
defect is usuélly negligible; in this case k differs little from an
integer and the Whittaker function simplifies to arpolynomial. The
proposed algorithm takes this case into account.

Although the techniques described in this Chapter have been develop-
ed primarily for the calculation of radial wavefunctions in the Coulcmb
approximation, their use is not limited to the rénge of parameters describ-
ed above. For example, festriction of the parameter m to half-odd-integer
values is not necessary; neither is the restriction k »>15.

The importance of the wide domain of applicability of the proposed
technique arises from the fact that the Whittaker function appears in
other contexts of physical interest; for exaﬁple in line broadening theory
{(see Lisitsa and Sholin 1972, Tran-Minh et al. 1976), when k may take
negative values, although the magnitudes of k and m are not large.

W mix) also appears in calculations of multichannel electron scattering
iDourneuf and Ky Lan 1977) in which m, k and x satisfy the conditions

-4 < k < 100 , I s m s and 0< % <« $0,
The applicability of the proposed algorithms in these contexts is discussed
in Section 4.7.

The remainder of this Chapter is organised as follows. In the next
Section we present some of the background thecory and properties of the

Whittaker function Wy . {X) ; this will be used in the later discussion.
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A critigue of existing methods of computing »Ju.,,(x) is presented in
Section 4.3. Then, in Sections 4.4, 4.5 and 4.6 we present the proposed
algorithms for computing Wy m {X). Section 4.5 also contains a discuss-

ion of the accuracy and efficiency of the new algorithm.

RELEVANT PROPERTIES

Before discussing the details of the proposed computational proced-
ures we introduce some of the relevant properties of the Whittaker function.
These properties will be used in the subsequent discussion. For a discuss-
ion of the associated theory the reader should consult Erdélyi (1953),
Slater (1960), Abramowitz and Stegun (1964), or Whittaker and Watsbn {1948} .
Only a summary of useful results is presented here.

(1) Defining Equation

The functions ™

,mt%) and W, .. (X} are solutions of

Whittaker's equation (Slater 1960, p9):

eI SR R CEh /) CRL A

In the pregent discussion we shall normally be concerned
with non-negative real wvalues of k, m and x.

The turning points I N of (4.1) are given by

x,,} = zk[li (0 + (-'z;-m")/k"]'&}. (4.2)
Xa

The solutions of (4.1} are oscillatory in the region
Xp € X 4 X, and monotonic in the regions #< X & Xp ,
Ko& X < 20 . We note that if K»»m then xp ™ mP/k

and X, = k.
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{ii) Integer Case

If Kk-m-%4 is a positive integer, equal to p, say,
then Wy,m(x) and M, ., (X) are related to the

N 2m
associated Laguerre polynomial Lr (x) by the eguat-

ions (Slater 1960, p9%5):

% me'z am

W, x) = 0)fple  x e (X), (4.3)

“Mh el AT

= P e X ML, (x).
M. x) Grzm), P (4.4)

In this case only W, .\X) and H“__m (x) are

both polynomials of degree k (apart from the exponent-
. %/ . .

ial factor e . having {(k-m—%) zeros in the
range 04 X < od ., Furthermore, both functions tend

to zero as x+ ¢ and as x -» o ; they behave as

Xy K

1y, -
X"” * ag %20 and as € 4 as X = o0,

{(iii) Limiting Behaviour

If k-m~% is not an integer

-ty ¥ g

e X [1+0x0] as x> 0, (4.5

i}

M (x)

LY% .Y

N
= [U+2m) 2575 4 0] as xro,4.6)
rig+m - K) |
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while, ags x = ¢

“nt g

wu,m (x)

%y
e [r‘(zm)x

M"’& » 1
+ 0(xX7 ) , i mey,
P{s +m-R)

% \ | B |
= £ [!‘m{!-k) + 0(“031!)],1{ m=4%, (4.7)

- and as X => e

Wem(x) = e ~x° {1+ 0(x") T, (4.8)

(iv} Asymptotic Expansion

A useful asymptotic expansion of W, .(X) is

_7‘/1 ® o« . . ;_
—~ (% +m-k).{1-m-k) _ 2.9
wl‘;'"‘(x) x > € X Z - . . ( x)‘ ( )

b il

Thus

z,z

K
Wemtx) = € x  Flgrm-k, §-m-k5-2). 410

{(v) Confluent Hypergeometric Functions

The Whittaker functions may be expressed in terms of

the confluent hypergeometric functions of Kummer and

Tricomis
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X/, </,
Wem(Xx) = &€ X 1'}I/(a,-c;z), (4.11)
-x e/ (4.12)
Mo (X)) = € X z(f’(a.,c.;x).

witere a = t+m -k and ¢ = 2m + (,
The functions é and '{' are frequently written as
M(a, ¢; x) and U(a, c; x) respectively,

{vi) Recurrence Relation

Wy, m{x) satisfies the recurrence relation (Slater

1960, eg, 2.5.11)

(k-m=-"2){kem=-v2) Wi, m(x)

+ (zk-x}W, . (x) + W (x) = 0. (4.13)

KAy,

EXISTING METHODS OF COMPUTING Wi ,m (%)

Although there are many approximations and expansions of W,,.,,m (X)
in terms of simpler functions (Slater 1960), very few of these are of
any value in numerical calculations. A brief review of some of the more
useful approximations is presented below.

For small x Kummer's function é may be computed by means of the

equation

and Tricomi's function 1Ir (for integer c¢ and non-zero x) may be computed

by means of the egquation
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-
(-1) 1 .
1P' la ,n+1y x) = P A i cf{a,nﬂ) x ) log x

7

+Z (&) [W(a-&-r)-ﬂl(wr)-lptunn)] .,.,f}

(11+l), :

n-! r-n

y m-D Z-r(a.-n),- x j (4.14)
l"(a-) Y- (l"ﬂ)f ‘T.'

where the last sum should be omitted if n = 0, and where

'ez)
{ - '
V) rz)

See Erdélyi 1953, egs. 6:5(7} and 6.7(13), for further details.

BEquation {4.14) can be used to compute Nkﬁéxjto any desired accuracy
provided x is sufficiently small. However, in the context of the Coulomb'
approximation, the wvalues of x involved are not small enough to ensure
rapid conve‘rgence; we note that A > ,, where X, ==22‘r,/v,'f, being the core
radius (see Seétion 3.1Y. Thus (4.14) is of little practical value.

When x is large the asymptotiq approximation {4.9) provides a useful
computational scheme., After an initial increase, the magnitudes of the
terms decrease rapidly to a minimum term and then increase indefinitely.
In order to compute W, ., equation (4.9) should be truncated so as to
include cone half of the minimum term; subseguent terms should be neglected.

The magnitude of the minimum term provides an estimate of the truncation

error (see Qlver 1974). This methed was used by Friedrich et al. (1970)
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for computing radial Coulomb wavefunctions. Unfortunately, as regards
calculations of the quadratic Zeeman effect, it becomes inaccurate if k

is large and m is small, due to the accumulation of rounding errors in the
series summation; the individual terms of the series become large and
alternate in sign, inducing numerical cancellation. The onset of rounding
errors can be delayed by using double precision arithmetic, but at the
expense of increased computer time,

The author's experience has shown that even when k and m are relat-
ively small {£10) it is impoé.sible to evaluate W“‘mtx) with sufficient
accuracy over the entire range of wvalues of X: Xx, 4 X< 00 uging the
methods mentioned above. Although the extreme values of x can be comput-
ed effectively it is necessary to find other computaticnal schemes for
the intermediate values. This need becomes greater.as k increéses.

Lindgérd and Nielsen (1975) attempted inward integration of the
defining differential equation (4.1) using the Numerov method. They found
this approach to be effective for k<£10. However, uncertainties were
raised regarding the accuracy of the numerical procedures when x became
small. This approach has not been applied to cases involving large
values of k.

Previous tabulations of W, ,.(x)or related functions have been very

restricted in scope. For example Curtis (1%64) tabulated a function, which
is equivalent to W, ,.(X) for ©0-707 <k < 2.24, m = %, 3%, $/2,
One computer library program is known for the P1u,w‘(1)  which could,
in principle, be used to calculate VJKﬂan) {CERN'library C325 and Luke
1959). However; this preogram is valid only for a very restricted range
of values of parameters and argument.

The above analysis, together with extensive ﬁumerical calculations, .

have shown that all of the methods reviewed above give rige to numerical
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problems whenever the number of zeros in W, .. {x) , which is given

by [k=-wm-%], becomes greater than about 5. Furthermore, even

if [k-m*k] %2 & , no existing technigue can adequately represent
Wu,m(x) throughout the range of values of x and k which arise in calcul-
ations of the quadratic Zeeman effect.

In the remainder of this Chapter we describe a new numerical tech-
nigue for computing bJKﬂ“{x) when k is large. This technigque, which is
based upon the use of the recurrence relation (4.13), together with
Chebyshev expansions of the starting functions, overcomes most of the

limitations of existing technigues.

USE OF RECURRENCE RELATIONS

Luke (1959), Gautschi (1967, 1975) aﬁd Wimp (1970) have demonstrat-
ed that recurrence relations can often provide an effective means of
computing recalcitrant special functions. In particular, Gauféchi
(196N * has illustrated, using the example of the Miller algorithm for
the Bessel functions, how recursicon can be used iﬁ circumstances in which
the proportion. of the wanted sclution to the unwanted solution increases
progressively; in this case a normalization relation makes it possible
to commence the recursion with arbitrary starting values and, after a few
steps, produce a close approximation to the function required.

As we shall demonstrate presently, recurrence relations can also be
very effective in the computation of thﬂ“lx) with large k. However, the
numerical procedures are not as straightforward as those used in the case
of the Bessel function or the other functions described by Gautschi

(loc. cit.),.

* This review article provides an excellent introduction to the numerical
analysis of recurrence relations; knowledge of this introduction is assumed
in the following discussion.
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Recurrence Relation for Wu,m (X)

Several recurrence relations exist which link three Whittaker functe
ions with contiguous parameters (see Slater 1960, Chapter 2). An examin-
ation of these has shown that there is only one which is useful in the
present context, namely that in which only the parameter k varies (Slater

1960, eq. 2.5.11), i.e.

(k=m - ) k+m-=-"2)W (x)

K1,

- + tzk-x)wk_w{x-) + W (x) = 0. (4.15) -

K+ i,

We note that (4.15) is also satisfied by My am (x) /M5 -m - k).

It can be shown that whén x> 4k, WK,M(X) is the dominant soluticn
(see Gautschi loc. cit.) of (4.15) as k increases; otherwise both soluticns
oscillate. Thus, when (4.15) is usged in numerical calculations of WK'M (x)
we should use forward recursion on the parameter k, i.e. we should compute
, W

lication of (4.15), starting from WK”,\.“(X) and W

WK‘.,.,_’.MU‘J Kot 3, wn (7‘)) seenay W“,m(x) by repeated app-

Kot |, M (x).
In th;'Ls way, inaccuracies in the starting functions, or rounding errors
introduced during the recursion process, do not grow to an intolerable
level. Of course, if 2 > WK , such errors are attenuated by the recursion
process.

Thus (4.15) seems well suited to our requirements, provided we can
establish an effective means of determining the starting functions
W“”.m \x) and Wh_‘_hm {(x). Unfortunately, it is not possible to
adopt arbitrary starting wvalues, as in the cases cited by Gautschi (loc.
cit.}. There are two reasgcns why this is so. Firstly, we cannot assume
that a sufficient number of steps of the recursion will fall in the region

where W (x) is dominant (i.e. where ko+t < /4 , {=1,2,.... ).

Ko+ i,'m

Thus attenuation of the unwanted solui:ion cannot be assured. Secondly,
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there is no normalization relation of the form

a0

§ = ?o o W,y i) (X)),
where # and &; are known constants (cf. Gautschi loc. cit. pl60). Hence
at least one accurate fiduciary computation of a N,.,;,m is needed,
even if attenuation of the unwanted solution does take place, i.e. even
if % » 4k.

In view of the above remarks, which were substantiated by extensive
trial calculations, it was decided that the best approach was to start the
recursion with two accurately computed starting functions. This approach
became practical following the author's develépment of a new numerical
technique for computing the starting functions. Using this appreoach it
is necessary only to ensure that rounding errors, propagated by the recursion
formula (4.15) as components of the unwanted solution M“.m(z)/r'('s_- k-m),
should remain small in relation to W“”m (x), wn,ﬂ,m“)s —erty N“,.m {x).
Therefore, in practical caleculations, the required functicn wK,m {x)
need not be the dominant solution of (4.15)., 1Instead, it is only necessary
that My () C {5~ k- m) should not be the dominant solution.
Trial calculations over the range of parameters of interest in the present
context have shown that this condition is usually satisfied.

We shall return to a discussion of the effectiveness of the above
approach in Section 4.6, following a presentation of the method used to

compute the starting functions.

COMPUTATION OF THE STARTING FUNCTIONS

We have already remarked (Section 4.3) on the inadequacy of existing

methods of computing Wy (%), even when K~»=-% is small.
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Therefore, in the search for a numerical method of computing the starting
functions, I investiga;ed the poten;ial of several theoretical approxi-
mations involving simpler special fpﬁctions. The most important of these
were Chebyshev polynomials, Laguerfe polynomials and Bessel functions
(see Erdélyi 1953, Clenshaw 1962, Luke and Wimp 1963 and Luke 1969). Of
these three representations the Chebyshev expansion was most effective;
the Besszsel and Laguerre expansions lead to series containing many terms
and computation of the co-efficients was frequently laborious. The

Chebyshev expansion and its numerical properties are discussed below.

Chebyshev Expansion of the Auxiliary Function

Miller (1966) suggested that in numerical calculations involving the
Whittaker function Wnlﬂ(x) it is useful to introduce the auxiliary funct-

ion F"”(x) , defined by the eguation

X/ - K

Foutx) = e " x W, . (x), (4.16)

a
XY, e ), .17

il

where a =§+'m-k, c = 2m+l and ‘Q‘ is Tricomi's function (see Section 4.2(v)).
F“’,“ (X) has slower variation and simpler asymptotic bhehaviour than
\IJ“'.," (X) . 1faandb (= a+1-¢) are both negative, which is usually
the case in calculations of physical interest, the number of zeros of

FK,.,“ (x) is ent ( o+ | ) or ent ( -b+ | ), whichever is the smaller.

It follows from (4.9) and (4.10) that

Fu.m(x) ;:ml.lFO(!i{'m'k"i'm'k;"')i {4.18)

ie. Ltm F (x) = l. (q,,;q)
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A convergent Chebyshev expansion of F,“m (x) can be derived very

easily from a result due to Luke and Wimp (1963). They showed that

(A")“"I’(“'Ci’“‘) = 12:0 CGOT (%), (4.20)

where | £ x £ o© |, neither a nor a+i-¢ equals zero or a negative
>
integer, and A#0. T; represents the shifted Chebyshev polynomial of

order i and is defined by the equations (Abramowitz and Stegun 1964)

T (2)

il

cos(18), (4.21)

2z ~ | cos & . (4.22)
(For further details regarding the derivation of equation {4.20) see also
Wimp 1967 and Luke 1969, Sections 9.2, 12.4 and 12.5).

We can obtain a convergent Chebyshev expansion of F,“.m {(x) for

D¢ Xo$ X g0 simply by replacing A by x_ and x by /X, tn (4.20).

Thus, noting {4.17), we find that if 4{+wm-Kk and i-m-k# 6,-1,... then

s E
Foo 00 = 26T, (2], 0<x.¢xsw. (4.23)
’ Y-

Since (4.23) converges we may use a truncated form of it in numerical cal-

culations. Thus

et
Fooo = 2 Gxy T (5F), (4.24)

=0

P

where n is chosen large enough to ensure that F

W, m CaN be evaluated with

sufficient accuracy. As we shall discuss below, if k and m are small
{£5) and %,7 X, (see equation 4.2), (4.23) converges very rapidly indeed;
in typical cases only five or six terms are required to achieve an accuracy

of four significant figures.
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Computation of the Chebyshev Coefficients

Before (4.24) can be used in practical calculations the Chebyshev
coefficients €;(%x.), 1=0,), ..., 72 must be computed. There are sev~
eral ways in which this may be carried ocut. Some of these methods are
disdussed by Fox and j?arker {1968) and by Clenshaw (1962). However, the
most appropriate method for our present purpose has been found to be that
of Luke (1969). He has given a procedure for computing C€jl{x,), <= 0,1,...
using backward recursion on a four-term recurrence relation for which
€ (x,) is-the minimal solution. The associated computational algorithm, _
described in the notation of Luke (loc. cit., p25), is presented below,

The Chebyshev coefficients fiix,) satisfy the four-term recurrence

relation

———————

E; 2(i+2Xi{+a)(i+b)

2Ci{Xs) - 1‘i+,){‘ - (2L+3)(Lra+ ){l+b+r)

2 Xeo
_ e e . X o
{i.-t-a.)(i.i-b)} Civi (o)

+ | — 2{1+0)(21 +3 - 2%x,) . x
i (i_-l»c;](_iq-b) }CL-I'Z.( o)

Liriilet3-a)lers-b) ¢ (x,), (4.25
(1+2)(iva)(i+ b)

wheve €, =1, ¢, 22 i i>0; a=z= §+m-k, b= £-m-k.
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The algorithm for computing C;X,) is expressed as follows (Luke

12692, Section 12.5):

1. befine
tNY
(P = 0 ; ¥ =2,13,
N+T
(N
N+ - i
2. Compute
(N - .

e, , L= N,N-1\, ..., 4.

i

3

. -
by backward recursion using equation (4.25) with C; replaced by- @, .

3. Define
N+l .
2 (N)
6, = 2 (-1 .
N izo (Pi
4, Compute
(N} () .
B. = @ /ﬁ,, , 13 0,4, ..., N,

Luke {(lec, cit.) has proven that:

e - N (4.26)

N> 0 i

n
1
J“
-
b
L]
S
~
"
LO

(i} Lim

(ii) For any €&y ¢ and integer N, we can always find N such that

tN)

I8, - <Citx,yl<¢ e, 1=0,1,...,N, (4.27)
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At Step 1 qh*f , £ =1, 2, 3 are assigned arbitrary values;
they therefore contain arbitrary combinations of the three linearly
independent solutions of (4.25). However, since (;{X,) 1is the minimal
solution of (4.25) (see Gautschi 1967), the compdglnts of the unwantgd
solutions are attenuated by the recursion process. Thus N should be

chosen sufficiently large to ensure that the two unwanted solutions of

. . (N) : .
(4.25) make a negligible contribution to @, , t£N, . With an

(n) .
appropriate choice of N, therefore, q& , t & N, differ from the

corresponding Chebyshev coefficients of ﬁhw“(x) by a multiplicative
factor.

The normalization factor is determined by considering the limiting
case of {4.23) as X -» oo , together with equation (4,19). This leads

to the normalization relation

1]
™8

Cix) Tlo) = T 0'CGitx) . qa.ze)

o
1]

This relation is used to compute the normalization factor at Step 3 of

) -
the above algorithm. The normalized coefficients, B; , are computed

i
at Step 4.

There is no analytical method of determining the appropriate cheoice
of N, N, or € when us;ng the above algorithm in numerical calculations.
Neither is there any analytical method of determining an appropriate value
of n to ensure a specified accuracy in the computed values of F;n“_(x,).
In common with many other algorithms of this type (Gautchi loc. cit.),m,

N and N, can only be determined by trial calculations.

The present research therefore involved an extensive scheme of

numerical experiments, which were designed to:
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{a) determine whether the above algorithm was of practical value
in the context of the Coulomb approximation;

(b) determine the behaviour of the Chebyshev coefficients of

F

W,

{x) , and thereby develop guidelines regarding the
choice of N and n.
A discussion of these experiments, together with some typical results,

are presented below.

NMumerical Calculations

w
Chebyshev coefficients, B;  were computed for many sets of

parameters k, m and x_, . For each set BT)was computed for several
values of N, typically 4, B, 12,..... Table 4.1 illustrates the behaviocur
of B:H) when k = 6.125, ﬁ = 1.5 and x, = 3.25 for. the two cases

N = 12 and N = 20. The behaviour of the associated auxiliary function,
Fu, s LX), is illustrated in Fig. 4.1.

When using (4.24) to compute the values of F . (%) displayéd in
Fig. 4.1 the degree of truncation (i.e. the value of n) was determined by
inspection of the Chebyshev coefficients, B;N) . In order to
achieve an accuracy of four significant figures in the computed value of
ﬁh,“ (x) , n=6 was found to be the appropriate choice,.

It should be emphasised that, if the desired accuracy of F, . (%)
had never been greater than four significant figures, less accurate
Chebyshev coefficients than those displayed in Table 4.1 would have been
acceptable; numerical calculations have shown that the appropriate choice
would have been N = 8, Either set of ceefficients displayed in Table 4.1
is sufficiently accurate to enable , Fy,m (X) to be evaluated with an

accuracy of ten significant figuresl

Fig. 4.1 also shows the behaviour of F,,.(X) , k = 5,5, m = 1,5,
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z. (20) tz)

i 1
0 .184402 x 107" | .184402 x 10~
1 - .611291 x 10° |- .611291 x 10°
2 .131839 x 10”' .131839 x 10"
3 - .289970 x 10° |~ .289970 x 10°
4 .756997 x 10~ .756997 x 10"
5 | - .651061 x 10°* | - .651061 x 107>
6 | - .153971 x 10™* | - .153971 x 10~ %
7 | - .278781 x 10°% | - .278781 x 10°°
8 | - .631274 x 10™* |- .631276 x 107"
9 .104188 x 107 | .104206 x 10°"
10 | - .371801 x 107* |- .371943 x 10”"*
11 .202002 x 107'*| .188227 x 10" "
12 | - .143611 x 107
13 .129357 x 107'°
14 | - .135294 x 107'¢
15 .161529 x 10
16 | - .215407 x 107"
17 .315882 x 107"
18 | - .496455 x 107
19 .707461 x 10°%'

Table 4.1 Chebyshev Coefficients of Fn,m(x) '

% = 3,25, k = 6,125 and m= 1.5




0.8

0.6

0.2

0.0

-0.2

-0.6

-57—

300

Fum(X)s 5.0€% €300, k=55, m= 1.5
FpomiX) s 3.25¢ %300, 6.125, m = 1.5
100 _ 200

Fig.

4.1

Graphical Representation of Fu,m(x)
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This graph illustrates clearly the smooth asympteotic behaviour of the
auxiliary function as x becomes large. Of course, the highly osci}latory
behaviour of F;ﬂ“(x) which occurs when x -» ¢ , is not shown on this
graph.

Fig. 4.2 shows how F, ,.{X) compares with W, . (x) , in the
case k = 3.5, m=1.5and ©5<£ x £ 2%-5 . When x> 3.2 the smoother

variation of the auxiliary function becomes significant.

In order to illustrate the effect‘of X, on the rate of convergence

of the Chebyshev expansion of Fi,,‘(x) ; the coefficients, Bsﬂj r

corresponding to the case k = 6.125, m = 1.5, were computed with x_, = 0.325.
These coefficients, which are displayed in Table 4.2, should be compared
with those of Table 4.1, which correspond to the case x, = 3.25. These,
and similar calculations, have shown that the rate of convergence decreases
as x, approaches the auxiliary function's singularity at x = 0. Moreover,
the magnitudes of the coefficients (and hence the magnitudes of the terms
in 4.24) increase as x,-» ¢ , thereby introducing the possibiiity of round-
ing errors in the summation of (4.24).

The dependence of the Chebyshev coefficients on %, is further illus-

trated in Table 4.3(a). In this case the results are presented in terms

2zT

of the parameters » and Z r and argument v

, which arise in the context

of the Coulomb approximation (see Section 3.1). Table 4.3(a) shows the

computed Chebyshev coefficients Bsu) corresponding to Fb'lﬂﬁ (Eéj

for the case ¥= 5.5, f= 1, z = 1. Two ranges of r are considered, namely

T3 T, = 10.0 and > ¥, = 1.0 {note X, = 2z%,/Y ). Samples of values

of the associated auxiliary functions, computed using (4.24), are displayed

in Table 4.3(b). As a check of the accuracy of these values the calculations
H)

were repeated using B; with N = 20, These results showed that the

figures displayed in Table 4.3(b) for the case r, = 10 are all correct.
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:l :20) B{uz J

0 .771683 x 10" 771005 x 10"
1 .508379 x 10" .507793 x 10%
2 .276976 x 10° .273237 x 16°
3 | - .204415 x 10% | - .204586 x 10"
4| - .150126 x 10* | - .150179 x 10"
5 | - .457458 x 10> | - .457558 x 10°
6 | - .541833 x 10> | - .541942 x 10°
7] - .324902 x 10' | - .324980 x 10°
8 | - .203629 x 107 | - .203331 x 10”
9 .838365 x 10°° .824043 x 107

10| - .696275 x 1077 | - .628485 x 10”7

11 .837017 x 10°° .519213 x 10°°

12 | - .128389 x 107

13 .235142 x 10°°

14 | - .493205 x 107

15 .114925 x 10

16 | - .288301 x 107"

17 .744601 x 107"

18 | - .181283 x 107

19 .327389 x 1077

Table 4.2 Chebyshev Coefficients of Fu,om (%),

k = 6.125, m = 1.5, x = 0,325




i :m , To=z 10.0 B:-u, , Toz 10
0 .554997 x 10° .782678 x 10"
1 -.232077 x 10 .671885 x 10
2 .314654 x 10° .418384 x 10"
3 -.167650 x 10° .179641 x 10"
4 .827548 x 10" .484147 x 10°
5 .157967 x 107" .711565 x 10*
6 .352046 x 10°° .621121 x 10
7 .311426 x 107 169337 x 10°
8 -.292660 x 10 ~.429577 x 10°°
9 .838982 x 107" .299213 x 107
10 -.397774 x 107 ~.295296 x 107"
11 .225109 x 10”7 .260387 x 107

f
Table 4.3{a) Chebyshev Coefficients of Fv.uu(%’) 3 V= 5.5, d=1

T ﬁ‘,.h'f, (%)a To=t10 ’f:,u&,_ {%;'T), Yoz |
10 .200863 .200811
110 .523566 .523558
210 .728119 .728112
310 .810249 | .810243
410 .854339 .854334

Table 4.3(b) Computed Values of Fp. +in (3&'"), I =5.,5, ! - 1
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. R \ 2zY
Hence the choice of N = 12 is too small if F;dm (';’ ) r K=5,5, m= 1.5,
z =1, r» 1,0, is to be computed with an accuracy of six significant
. . . o ) 2zY
figures. On the other hand, if only four significant figures of F;",_(-,;")
7
are required, N = 12 is adequate, even if r, = I10.
We note that the truncated Chebyshev series (4.24) can be evaluated

very efficiently by means of the following procedure, develcoped by

Clenshaw (1955):

) ™) .
l- Define t = Xo/x ) Ci - B‘: ) (l - l,Z).--’ 71)
and 5““ = Sphaz = 2.
2. Compute S; = 2(26-1)s5,,, - S;:+2 1 €&¢ C;
for 1 = n, n-t,...., 0
where e; = 2 if i=0 and €& =1 i1f t>0.

Clenshaw (loc. cit.) has proved that
» ¥
:::(So— Sz.) = _Z° Ci_’:' (t)-
1= ‘
Thig algorithm avoids explicit calculation of the Chebyshev polynomials

T‘-”(f.) by making implicit use of the recurrence relation

Ti:.(t) ~ z(zt-:)T;‘(t) + Ti:.(t) = 0

(see Abramowitz and Stegun 1964).

The author's numerical experiments have shown that the value of N
required to enable the computation of. ﬁh,q(x) to a specified accuracy
increases as a (=% +m- %) and b (= ¥ ~ m - k) increase in magnitude,
and as x, decreases.  If Ko 7w Xp o the inner turning point of the assoc-

iated Whittaker function (see equation 4.2), and Jai{, {b[& $ , the



-3

Chebyshev expansion converges rapidly; in general F“m, (xX) can be computed
with an accuracy of six significant figures provided N lies in the range
10-20. However, if X,< X, or |al,[b|[x$ the series com}erges slowly;
the number of terms required increases roughly as k if m = % or--i-. These
results confirmed an intuitive belief that the Chebyshev expansion alone
would not provide an effective means of computing F,‘,.,...Lx]- when k is large.

Numerical calculations have alsc shown that the speéd of conﬁer‘gence
of the Chebyshev series increases rapidly as a or b approach zero or a
negat'ive integer. However, the‘differenge must be smaller -than about 10"3
before a substantial reduction in‘N can be achieved,

We note that many of the characteristics observed in the numerical
calculations discussed above can be explained by reference to an asymptotic

estimate of €;{(%,), which states

. i”. %,
b, T\ 3 .78 2
Citx,) = H(-1) (3'-)"exp[-3xa : o+ *4 ]
-1 < 42

o) (b)) x5 1753

x L1+ O(i-%)]- (4.29)

This result, which is due to Miller (1966), is more accurate than the
corresponding estimate given by Luke (Luke 1969, eguation 9.2(28)}).
Numerical calculations have shown that (4.29) is accurate to within
308 if 1 2 (0. The form of this equation helps to explain the way in
which the convergence of the Chebyshe§r expansion depends upon a, b and x .
Clearly, if Xx,»> | we expect rapid convergence due to the term
exp(-sx;" i ). Rapid convergence is also expected when a and b are

gmall and negative, since, in these cases the gamma functions in the
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denominator become large (see Abramowitz and Stegun 1964). The fact that
M(z) becomes infinite if z = 0, =1, =2,..... explains why the Chebyshev
series converges very rapidly when a or b are close to zero or negative

integers.

Truncation Errors

The maximum truncation error in the approximation (4.24) is
o
< . _
iz;,.‘ci(x°)] , since | T | ¢ ) . If the Chebyshev expansion

converges rapidly we expect that the truncation error is dominated by the

first neglected term. Thus we expect

a

2 1 (xa)l & R Cpu Lxa)], (4.30)

1=n+i

where R is a constant and not too large. Numerical calculations, such as
those referredrto in Sect;on 4.5.3, have illustrated that'provided X, 1is
not‘taken much smaller than unity, and provided the desired accuracy in
ﬁﬁﬂntx) is not so large that n becomes greater than about 13, then (4.30)
is true and R is about 20.

Thus n may be determined by examining successive terms of the Chebyshev
series and truncating when [C;(X,)| is less than Y%,th of the permissible
error in ﬁh,\(x) . In the context of the Coulomb approximation, in
which Fiﬂ“(X) is required with an accuracy of four significant figures,
the appropriate truncation point is usually in the range n = 6 to n = 10,
provided lal|, bl & § ; the corresponding choice of N is N = 8 to N = 12,
Iffal or |b] exceed 5 the rate of convergence of the Chebyshev series
decreases. We note that, since m usually takes the values 3, %, % in
calculations of physical interest, the céses lal, Ib]l 2 § arise when k

becomes large.
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Choice of Starting Functions

Numerical calculations, such as those presented above, have demon-
strated that the Chebyshev expansicon provides the basis of a very power-
ful algorithm for computing the auxiliary function, FK,M {x) , and hence
the Whittaker function W, .. (X) . The fact that the expansion converges
rapidiy only when |a| and |bl are small does not present a problem,
since we have already established (seeVSectio‘n 4.4) that when k is large
the required function N,"n(‘x) can be computed by recursicn from two
starting functions Wm,mut) and NKH..._,,;\ (x).

Clearly, k, should be chosen such that the conditions for rapid
convergence are achieved in the Chebyshev expansions of the auxiliary
starting functions Fl‘_"m (x), F“H_‘, - e XD . We therefore choose
k, such that Jael= j$+m-ksl is small (i.e. % 5). Since m is small
in calculations of physical interest and takes the values I, 3 » o
b, = # -m-ks, is automatically small if a, is small.

Of course k, must differ from k by an integer to facilitate the use
of the recurrence relation (4.15). The author's extensive numerical cal-
culations have indicated that the best choice is such that -1 < as% 0,
In this way _F;“,M (x) and Fn.+:,m(7‘) have no zeros and one zero
respectively. We note that if k~m-% is an integer, then a, = @; in this

case (4.9) terminates, giving the exact formulas

“n
x
L
il

(4.3!&)

Fror,mx) = 1 = ~ (#.31b)
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4.6 ALGORITHM FOR COMPUTING W ,m ¢X)

Having established the efficiency of the recurrence relation (4.15),

together with the Chebyshev expansion for the starting functions, we can

now specify the algorithm for computing Wg,m {x), k being large and

m small.
1. Define ke, = k=LKl +m + va.
2. Deffine M = K - K, u
3. Compute L = Ko, (X) = E-x/z ZKO Fm.m (x),
= wn.,n,n\m(x) = e—-x/z’xu.ﬁﬁo-n,m(x);

using the procedure described in Section 4.5 for computing

the auxiliary functions F, 4w (%) and  Fpim (%) -
4. Define A, = x - 2(koet 1),
B, = (f+m+ ko)(m- ke-'2),
5. Compute B, using the recursion formula
F:H-{ = RA;P: + B; Pi-
Risy = Ai+ 2 1z 4,2, ..., M-I

Bivi. = B; + Ri + |

Step 1 sets the value of k, such that =1 < 6, ¢ § , while Step 2 computes
the number of steps in the recursion process, used at Step 5. Step 3 involv-

es the computation of two sets of Chebyshev coefficients, one for FK.'M {x)

and one for {x) . These are computed using the backward

Fror i, m
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recurrence algorithm described in Section 4.5.2 above. This algorithm
contains a-::test for the case in which ko-wm-Y2 differs from zerc by a
small quan‘t,i‘ty {e.qg. 1(-]‘“); if this test is satisfied the starti"ng funct-
ions are ;:omputed by means of the simple formulas{4.31).

From equation (4.15) it follows that the value of B, computed at

Step 5 is equal to W %) . The subsidiary recurrence relations

kom ¢
Aivi = Ai+2 and By, = B+ AL + impréve the efficiency of
execution of (4.15).

For example, suppose we wish to evaluate wu,h'-'; ( %',%‘f) ’
y = 20.5, f£=1{, z= 1 and T2 10.0. In this case k, = 2.5
and M = 18 . Thus computation of P, and P, involves the evaluation
of the auxiliary functions FZ-‘; 1.5 (i% P Es's) g [';';',"’1;-) . The latter
function and the associated Whittaker function are illustrated in Fig. 4.2
above.

if WK,.M(X) must be evaluated for several values of x, the Chebyshev

coefficients of the starting functions can be computed once and stored

for repeated use; x, is chosen to be equal to the smallest x for which

W,

waa (X ) 1s required.

For each set of Chebyshev coefficients the appropriate truncation
point (i.e. value of n in equation 4.24) is determined using the proced-
ure described in Section 4.5; a test in the algorithm detects the case in
which no sufficiently small coefficient is found, and the algorithm

indicates an error condition.

CONCLUSION
A computational method of evaluating W.,,.MLx) which is well-suited
to the cases in which k is large, m is small and X2 x, > © has

been presented. Numerical experiments have demonstrated that the proposed
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method is accurate and efficient, and overcomes many of the limitations of
existing algorithms. The method's main drawback is that trial calculations
may be required to determine the appropriate settings of the parameters
n and N in the Chebyshev expansions of the auxiliary functions.

In this Chapter attention has been concentrated on the computation of
Wy, (X) when the parameters k, m and X, take values appropriate to the
Coulomb approximation. .In these circumstances the parameters k, , k,,m,.
and to some extent x, , are of closely bounded variation. When evaluat-
ing dipdle and quadrupole radial integrals in this context the contribut-_
ions to the integrals come mainly from the large radial distances,-and S0
there is no need to compute values of VJK,,\(x) involving very small
values of x. Thus the parameter x, can be kept relatively large with a

corresponding reduction in the number of terms in the Chebyshev series of

Fa,m (%) . In the context of the quadratic Zeeman effect {4 (= m-2)

. el ; .

is usually small ( = &2, 1, 2 y and T, ( = E;f } is approximately equal
svt . . ;

to 302 under these circumstances, if V2 5 then N = 9 is usually

adequate to enable the radial wavefunctions to be determined with an accuracy

of four significant figures.
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CHAPTER 5

NUMERICAL ACCURACY OF COMPUTED INTEGRALS

In this Chapter we discuss the procedure used to assess the accuracy
and efficiency of the Gauss-Laguerre quadrature formula (3.31). The
criteria upon which this evaluétion is based have been specified in
Section 3.4 of Chapter 3. It is therefore assumed that the following
limitations ére imposed upon the parameters: |

« 42 =0,1, 2,...

e V2 €+1, v2e'+1

We note that, in practical calculations, the condition !,lzi 3 is
usually valid since the quantum defects associated with larger £-values
are usually negligible, i.e. the associated value of ¥ is an integer.
Moreover, s normally takes the values 0, 1 or 2: in the normalization
case s = 0 and £ = &'} in the dipole case s = 1 and |2-{'l=1; in the
quadrupole case s = 2 and [2~2') = 0 or 2, though £= ¢ = 0 is excluded.
There are two sources of numerical errors in the evaluation of
equation {(3.31):
{i) errors resulting from the numerical procedures used to
compute the Whittaker functions in the integrand;
(ii) errors resulting from the use of the Gauss-Laguerre
quadrature formula.

The errors referred to in (i) are governed by the accuracy of the

Chebyshev expansions used to compute the Whittaker functions; the accuracy
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of these expansions was fully discussed in the previous Chapter. In this
Chapter, therefore, we examine the behaviour of the errors referred to in
{(ii).

During the early stages of the evaluation of the author's method of
computing radial integrals, it became apparent that this method would be
applicable across a much wider range of applications that the particular
case of the gquadratic Zeeman effect, for which it was coriginally intended.
It was important, therefore, that the performance of the associated
numerical proce@ures, in terms of accufacy and efficiency, should be thorough-._
ly understood throughout the-range of parametefs mentioned above.

The major difficulties in the evaluation arose when v,¥’ were large
( 215). At smaller values of ¥, ¥' the computed intggrals could be compared
with results obtaingd by the Bates-Damgaard method or alternative numeriecal
methods, as discussed in Section 5.1. However, at large V,V' no alternat-—
ive methods existed, and the evaluatiop had to be based upon a2 systemat—~
ically designed set of numerical experiments. These results are reported
in Section 5.2,

In addition to computing radial integrals in the quadratic Zeeman
effect, the author has used the new computational scheme in an invest-
igation of the performance of the Bates-Damgaard method at large and small

9,9' . The outcome of this investigation is discussed in Section 5.3.

Throughout this Chapter it iz assumed that the required accuracy of
the computed integrals is never greater than four significant figures._
This limitation is imposed by the accuracy of the guantum defects and the
errors inherent in the physical assumptions of the Coulomb approximation
(see Crossgley 1969). In the context of the gquadratic Zeeman effect four
significant figures is commensurate with the accuracy of the experimental

results of Garton and Tomkins ({(see Chapter 6).
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All of the author's numerical calculations were performed on a
CDC 6400 computer at Imperial College, using 14 significant decimal

digits in single precision arithmetic and 28 significant decimal digits

in double precision arithmetic.

PERFORMANCE OF GAUSS~-LAGUERRE QUADRATURE: SMALL_ 9,9'

Orie of the criteria (iv) stipulated in Section 3.4 was that the
new mgthod of computing radial integrals should be valid at small as
ﬁell as_large principal quantum numbers. An extensive series of calcul-
ations was therefore carried out to compare its performance with.that of
the methods of Bates and Damgaard (1949), Lindgérd and Nielsen (1975),

and Friedrich et al. (1970).

Results for Mg II

The method of Lindgard and Nielsen (1975) (see Section 3.4) provided
the most reliable basis for this comparison when v,v's 10. Like the new
method, it takes account of the lower limit of integfation; the integral
is evaluated by means of egual-interval quadrature, and the Whittaker
functions in the integrand are computed by inward integration of the
defining differential equation (3.2la) using the Numerov method. Lindgard
and Nielsen assessed the validity of this approach by comparing their
results with the Bates-Damgaard Tables (Bates and Damgaard 1949), and with
experimentally determined values of spontaneous transition probabilities
of Mg IT (Risberg 1955} and Be 1I (Johanson 1961}.

The present.author computed the same ns - n'p spontaneous transition
probakbilities for Mg II and Be II using two methods: (a) Gauss-Laguerre
guadrature, using the procedures described in Chapters 3 and 4 ébove; and

{b) a computer-based version of the Bates-Damgaard algorithm. Scme of the
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results for Mg II are presented in Table 5.1. This shows four values
corresponding to each ns ~ n'p spontaneous transition probability of
Mg II (3£n,n ¢ 9) obtained by:

{i} Lindgard and Nielsen's method;

(ii) Gausé-Laguerre quadrature;

(iii) Bates-Damgaard tables;

{iv) Bates-Damgaard program.
All results are expressed in atomic units of 108 ;‘, as defined by
Lindgard and Nielsen.

The results guoted for methods {i) and (iii) were taken from Table 3
of Lindgérd and Nielsen (1975, pilQl), the value for (i) corresponding to
their lower cut-off radius r, = 0.5, The results quoted for methods {ii)
and (iv) were determined using computer programs developed by the author;
in the case of (ii) r, was set to 0.5. The guantum defects of the trans-
ition states of Mg II were obtained from the experimental results of 
Risberg (1955). Whefe fine structure splitting occurred the level
corresponding to the maximum value of total angular momentum (i.e. maximum
j=value) was chosen.

All physical parameters in methods (i) and (ii) are identical, and
so the corresponding entries in Table 5.1 are directly comparable. From
a computational viewpoint thegse two methods differ: (a) in the technigue
used to determine the normalization of the radial wavefunctions; (b) in the
techniqué used to evaluate the radial functions at the quadrature points;
4nd (¢} in the choice of guadrature formula, ‘

Table 5.1 shows that the results of Gauss-Laguerre gquadrature and
those obtained by the Lindgérd—Nielsen method always agree to within
about 2% if n,n'z. 6 and within about 10% otherwise, except when the

absolute value of the transition probability is less than about 1077,
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3 4 5 6 7 8 9
2.730 | 0.003067| 0.0206 | 0.0181 0.0133 0.00956 | 0.00743
2,572 | 0.00268| 0.0194 | 0.0171 0.0126 0.00908 - 0.00664
2.52 0.0034 | 0.018 0.0212 ——— —————— ——————

2.473 0.01001} 0.0369 0.036 0.0246 0.01825 0.01365

3.423 | 0.366 | 0.00220| 0.000239| 0.000790 | 0.000866 | 0.000773
3.246 | 0.359 | 0.00215| 0.000239] 0.000770 | 0.000841 | 0.000775
3,23 | 0.358 | 0.0016 | 0.0012 [ weemwwme | mmmmmmem | e
3.333 | 0.357 | 0.00149] 0.000641| 0.00144 0.00151 0.001340

1.166 | 0.792 0.0887 | 0.00179 | 2.7 x 10°%} 2.6 x 100°] 7.7 x 1077
1.120 | 0.779 | 0.0882 | 0.00189 | 4.5 x 10°| 1.6 x 10°| 5.6 x 10°F
1.062 | 0.778 0.0872 | 0.0014 0.0001 | =—==—me—m | -- ——

1.205 | 0.786 0.0879 | 0.0017 | 1.6 x 10°] 4.9 x 16°| 11.3 x 10°°

0.559 | 0.316 | 0.255 | 0.0294 | 0.00111 0.000127 | 1.3 x 10°°
0.5334| 0.3078 | 0.253 | 0.0294 | 0.00110 0.000107 | 0.65 x 10°°
0.510 | 0.299 | 0.251 | =memoe | cemmnn | e | e
0.6063| 0.3177 | 0.254 | 0.0294 | 0.00106 0.000087 | 0.20 x 10°°
0.313 | 0.167 | 0.111 | o.101 0.0119 0.000590 | 7.6 x 10°°
0.299 | 0.164 | 0.109 [ 0.100 0.0119 0.000616 | 9.6 x 107°
0.295 | 0.164 | 0.105 | 0.100 | =—==——- -
0.353 | 0.173 | 0.111 | 0.101 0.0119 0.000603 | 8.8 x 10°°
0.194 | 0.101 [ 0.0633 | 0.0458 | 0.0461 0.00555 0.000363
0.185 | 0.099 | 0.0625 | 0.0462 | 0.0459 0.00556 0.000355
----- 0.098 | 0.065 | 0.046 0.046 —— SN
0.224 | 0.106 | 0.0642 | 0.0466 | 0.0460 0.00556 0.000350
0.128 | 0.0665 | 0.0401 | 0.0275 | 0.0225 0.0233 0.00286
0.1226| 0.0649 | 0.0398 | 0.0284 | 0.0221 | 0.0233 0.00286

0.1515] 0.0705 0.0414 0.0282 0.223 0.0234 0.00286

Table 5.1 ns - n'p Spontanecus Transition Probabilities for Mg II

Regults are expressed in atomic units of 10'3?
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¢f course, disagreement is expected when the transition is very small,
since the assumptions of the Coulomb approximation are not valid, due to
numerical cancellations in the outer part of the integral, as discussed
in Section 5.2.3. However, some of the discrepancy at small.v,v'nmy be
due to numerical erroxs resulting from Lindgard and Nielsen's use of the
Numerov method to compute the radial wavefunctions at small radial dis-
tances, although this has not been fully investigated. We note also

that whenln - n’} » 3, or either n or n 2 4, the Bates~Damgaard
results often differ from those obtained by the two methods of numerical
quadrature by more than 10%; As we shall discuss further in Section 5.3,
the Bates-Damgaard method does not provide a good basis for assessing the
accuracy of the Coulomb approximation when the effective principal quantum

numbers w,v'are either large { & 15) or small ( £ 4).

Results of Heckmann

Prof, Dr. P,.H, Heckmann of Ruhr-Universitat, Bochum, has compared
results obtained for a series of transition probabilities using a com-

puter program based upon the author's method with a corresponding set of

results obtained using a program of O. Bely. 1In Bely's program wavefunctions

of Burgess were employed which were non-divergent at r = 0, and the radial
integral was evaluated by means of equal-integral quadrature. Both sets
of results were then coﬁpared with the tabulated values of atomic trans-
ition probabilities {in atomic units) given in the NBS tables (Wiese et
al. 1969)

The results obtained by Heckmann for H I, Li I, O VII and Si XII,
together with the assocciated computer timings (in seconds of CPU time) are
displayed in Table 5.2. Clearly, the author's approach is superior to that

of Bely both in terms of accuracy and efficiency, requiring only 10-20% of

Bely's CPU time.
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Speci Transition G-L Quadrature Bely NSRDS
P es S(a.u.) Time S{a.u.} Time S{a.u.)
(sacs) {secs)
H I ls - 2p 3.33 0.45 3.29 3.1 3.33
2p - 3s 1.759 0.54 1.759 5.0 1.761
2p - 3s 17.74 0.66 17.71 5.0 18.5
Li I 2p - 6s 0.1596 | 0.63 0.1591 { 5.0 0.156
2p - 3d 77.8 0.40 75.8 5.5 80.4
3d - dp 11.54 0.54 11.37 6.0 11.7
3@ - 4f 625.0 0.47 |617.0 5.0 625.0
0 VII 2’s - 3% 0.409 | 0.48 0.413 | 3.0 0.413
2°s - 7°p 0.0085 | 0.48 0.0087 | 3.0 —————
s -3" | 9.49 | o0.47 | 9.52 | 2.0 | —=---
Si XII 33 - 4f 4.38 0.39 4.28 3.0 ————
Table 5.2 Results of Heckmann
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PERFORMANCE OF GAUSS-LAGUERRE QUADRATURE: LARGE ¥, v’

As remarked earlier, when the author's method of computing radial
integrals was being developed, there were no reliable alternative methods
available for comparison when v, ¥'2 15. The assessment of the per~-

formance of thenew method was therefore based upon numerical experiment-

_ation, as described below. We note that efficiency was pérticularly

important in this assessment, in view of the large number of radial inte-
grals required in calculations associated with the quadratic Zeeman

effect (see Chapters 2 and 6).

Integer Case

The discussion of the accuracy and efficiency of the Gauss-~Laguerre
quadrature formula (3.31) at large l?,V'iS best begun by considering the
special case in which ¥, v' are integers, equal to n,n’ , say. In this
case the function g(x) is a peolynomial of degree n + n + s (see equation
3.26). It therefore follows from the well-known properties of Gaussian
quadrature formulas (Krylov 1962, Stroud and Secrest 1968) thét {3.31)
is exact if the order of the quadrature formula, M, is chosen such that
2M~12 n+n+ s, i.e. M 2 M

» ¢+ Where M, is the smallest integef

satisfying the inequality.

Mo 2 F(m+n"+5 +1). (5.1)

In order to check the validity of the computer programs used to
implement the Gauss-Laguerre gquadrature formula, a variety of integrals

{involving integer V, v’ ) was computed using (3.31) with r, = 0, and

2

the results compared with those cobtained by evaluating the analytical

expressiong due to Gordon (1929). These tests also verified the accuracy



- 5.2.2

~77-

of the recurrence relations used in the computation of the integrand.
The associated results showed that rounding errors did not grow any fast-

er that the required Whittaker functions (see Section 4.4).

Non-Integer Case

When ¥ and v’ are not integers there is no analytical technigque
for determining the appropriate order of the guadrature formula. Unfortun-
ately, the expression for the remainder term-of (3.27), which is defined
by (3.30), is of no practical value in numerical calculations. The
appropriate choice of M can only by determined empirically.

By analogy with the integer case we define M, as the smallest integer

which satisfies the inequality

Mo 2 F(V+ v + s + 1), (5.2)

For a given inteqral, the amount by which M must exceed M, to achieve a
specified accuracy gives an indication of the effectiveness of the guad-
rature formula.

A series of calculations of Ts (ve, P'l', T, ) was performed in
which (3.31) was evaluated for a sequence of values of M. We chose M = M

v

M, + 1,... increasing until the computed value of the integral converged to

within four significant figures. These calculations were performed for a
wide range of values of the parameters v,v', Z, !',fo;s. In each case
great care was taken to ensure that errors in the integral arising from the
computation of the Whittaker functions in the integrand were minimized by
choosing unusually large wvalues of N and n {see Section 4.5). The results
of five typical cases are illustrated in Table 5.3.

The examples in Table 5.3 demonstrate that, as M increases beyond M, ,

r



Case I Case II Case III Case IV Case V
v=17.23, v'=32.27 Y = 25.4, y"= 22.5 V= 31.7, V' = 209.8 Yy = 35.5, ¥'= 35,5 V= 17.23, V' = 32,27
b=1,2=2,5=1,4,=7.42|4= 1,2 1,8= 2,7.= 25.31 |&= 1, #% 2,s=2,%= 44.4]8 = 1,¢'= 1,5= 2,% = 63.02 |e= 1,¢'= 2,8= 0, ¥, =7.42

M g, x 107 M g, x 1077 M g, x10°° mo'log x10 M 3 x10%
25 .26291 24 ~.94858 31 -.30001 35 .25564 25 .35574
26 .25897 25 -.18390 32 ~.15557 36 .38932 26 .36043
27 .25868 26 .20934 33 -.15476 37 .39674 27 .36526
28 . 25865 27 .20935 34 -.15476 42 .39674 28 .36555
29 .25863 28 .20935 36 -.15476 45 .39674 29 .36564
30 .25862 29 .20935 38 -.15476 30 .36567
32 .25862 48 .20935 41 -.15476 31 .36568
34 .25862 32 .36568
48 .25862 33 .36568
M, = 26, M, = 29 M, = 26, M, = 27 M, =33, M, = 33 M, =37, M, = 37 M, =26, M, = 30

Table 5.3. Convergence of the Computed Integral as M Increases




=79~

the value of the computed integral converges rapidly. An empirical
analysis of a large volume of similar calculations has shown that the

appropriate choice of M depends primarily on r, and v + »' . 1In general,

if we denote this choice of M by M, , and adopt the empirical rule

T, __._:‘;: (see Section 5.2.3), we find that if s = 1 or 2, the
assignment

M, = M, + 3 (5.3)

usually ensures an éccuracy of four significant figures,

Exceptions to this "rule of thumb" fgequently appear. For instance,
if v+v' Qdiffers from an integer by less than about 0.1 (see éases
II and IV of Table 5.3} we need only put M, = M, + 1 or even M, ..On the

 other hand, if s = 0 (e.g. in normalization integrals) we may need to

put M = M_ + 5 to achieve the same accuracy.

- 5.,2.3 C¢Choice of Lower Limit of Integfation

When using the approximation (3.21) to compute the radial integral
(3.9) the lower limit of integration, r_, , should be chosen such that the
contribution to the required integral, I, , arising from the interval
{0, r,) can be neglected. However, we note that even if such a value of
r, cannot be found, i.e. if the Coulomb appfoximation is not wvalid, the
proposed numerical method can still be used to compute the contribution
arising from (r,,o0), where Coulomb wavefunctions are valid, provided an
appropriate method is used to compute the contribution arising from (0, r,),.
e.g. Thomas-Fermi or self-consistent-field method.

A series of numerical calculations was performed to investigate the
stability of the radial integral J (v{;»'L; f,) with respect to variation
o + Some typical results are shown in Table 5.4. 1In the éxample

of r

illustrated here r_, was varied between 10.0 and 150.0 (a.u.) keeping
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Table 5,4

r, J, x 10 e, x 10 J, x10 e, x 10
i0 .42905 00000 .10670 .00000
20 .412903 -,00002 .10670 .00000
30 .42898 -.00007 .10670 .00000
40 .42898 -.00007 .10670 .0000¢0
50 .42878 -.00027 .10669 -.00001
60 .42911 .00006 .10670 .00000
70 .42911 .00006 10670 .00000
- 80 .43023 .00118 .10670 .00000
90 .43039 .00134 .10671 - .00001
100 .43272 .00367 .10673 .00003
110 .43319 .00414 .10673 .00003
120 .43552 .00647 .10676 .00006
130 .43808 .00903 .10679 00009
140 .43862 .00960 .10680 .00010
150 .44245 .01340 .10686 00016
Variation of Jg (34.1, 1; 37.2, 0; r.) with r.
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¥ =34.1, v =372, £{=1, £'=0 and z = 1. The variation of the
integral with respect to r, , which is represented by &;= J, (r,) = J,(10)
was computed for the two cases s = 1 and s = 2. The results show that,
provided r, is sufficiently small, J, is relatively insensitive to variation
of r, .

Other calculations involving a wide range of parametefs
v, v, L, ¢ (v,y'3 10) have confirmed this behaviour. In each
case there is a broad range of values of r, over which J (r,) is relatively
stable; any value of r, chosen from this stabie-region vields a meaningful
value for the associated radial integral J; (r,). Wherever possible this
value was verified using the Bates-Damgaard method (see Section 5.2.4)

In order to gain further insight into the behaviour of J,{r,), a
series of integrals was computed in which v-v' was fixed and ¥ and T,
varied. We chose £ = 0 and set £° = 1 in the dipole case (s = 1) and
!'= 2 in the gquadrupole case (s = 2). The relative variation of Jg with
respect to r, was then determined by computing the quantity Vg (r, L)

defined by the equation

Yto, f4) = [ 3sWe) = Tstte) || (5.4)
3.3(1.*)

The representative value of r, , lying within ;he stable region of a set

of computed integrals and denoted by r, , was chosen by inspection. The
results of two such sets of calculations, one dipole case and one guad-
rupole case, are illustrated in Tabkles 5.5. 1In this example v-v'= 6.89,

v varied between 26.2 and 43.7, and r, varied hetween 5.0 and 9%0.0. By
inspection we chose r, = 15.0 if s = 1 and r, = 40.0 if s = 2, The relative

variations, which are displayed in column 2 of Table 5.5, give an indication
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v VelTo,Te) | N M Time Totte) x 160
26,2 .100 5 27 .115 .8299
29,7 .025 5 32 .142 .1128
33.2 .020 5 35 .180 .1471
36.7 .Gl0 5 37 .219 .1858
40.25 .005 6 42 225 .2289
43,7 .005 6 45 .280 .2764
4 /

(a) Dipole Case: . § =1, £ =0, € =1, V-V ' =6.89

vy Vo, ) | 8 | Time | Tatf )x 6>
26.2 .020 4 | 28 121 .01957
29,7 .010 a4 | 31 { .138 .03555
33.2 .005 5 | 34 .169 .5959
36.7 .001 5 | 37 | .205 .9402
40.25 .001 5 | 41 | .220 .1424
43.7 .000 5 | 45 | .262 .2047

{b) Quadrupole Case: S =2, £ =0, £ =2, V-)" = 6.89

Table 5.5 Behaviour of (71'.,, Tu )
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of the conﬁribution to the integral arising from small radial distances;
thus they indicate the physical significance of ghe.computed integrals.

The third column of Table 5.5 indicates the_éméilest value of N (see
Section 4.5) which can be used in'tﬁe computation of the Whittaker functions
in the integrand without introducing errors in the fourth significant figure
of J,(r, ). The fourth column indicates the.corresponding smaliest order
of quadrature formula. The fifth column gives the time (in seconds) re-
quired to compute J,(r,), ignoring thé time required to compute the weights
and zeros of the_quadrature formula. The computed value of the integral
J, (ry,) is given in column 6.

An analysis of a large volume of numerical results describing the
behaviour of ‘U;(r, ,r*) has lead to a véry simple empirical rule for estim-
ating the appropriate choice of lower cut—off radius when c§mputing a radial
integral in the context of the Coulomb approximation: r, should be chosen

according to the rule

r

v
T, = ) (5.5)
27s
where 10 < (n,,%7,) < 20 and 6 < m, < Lo, This for-

mula usually produces a reliable value of Jg{r,) if 105 (v,»') £ 60,
(4, 2') £ 3 and s = 0, 1 or 2. However, it should be emphasised that,
before (5.5) is used in practical calculatians, it is advisable to verify
that the Coulomb approximation is actually applicable in the case under
study. In particular, it is important to ensure that "gquenching” does not
occur in the ouﬁer part of the integral (see Layzer and Garstang 1968).

The quenching phencmenon is illustrated in Fig. 5.1, which shows Jg as
a function of (v -v»') , (Vv + v')‘ "being fixed. These integrals were

computed using r, = 4.0, Vip'= 20.0, s =1, £ =0, £'=1 and z = 1. Clearly,

the validity of the Coulomb approximation is doubtful when ﬂ,ﬂ’ are such
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Fig. 5.1 Graph of J (v£; v'Z': T.) against (v - ¥°)
v+ ¥ =20.0, Yo =4.0, 2 =1land § =1
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that the resulting graph lies close to the (v - v') axis.

We note that the data presented in Table 5.5(b) gives a good indicat-
ion of the choice of parameters r, , N and M for typical integrals in the
context of the guadratic Zeeman effect. In the examples shown N never
exceeds §, confirming the effectiveness of the Chebyshev expansions for

the computation of the Whittaker functions in the integrand.

Comparison with the Bates-~Damgaard Method

For non-integer y, v ' the radial integrals obtained using the
author's method have been compared with those obtained using the Bates-
Damgaard method. Of course, these checks could only be made for a limited
range of v, v’ since the Bates-Damgaard method fails when ¥, v’ be-
come sufficiently large. Using double precision arithmetic (i.e. about
28 significant decimal digits) this limit was v, v' & 2% {see
Section 5.3).

Table 5.6 shows a set of radial integrals computed by the Bates-
Damgaard method and Gauss-Laguerre quadrature, y + P' was fixed
{(=23.7) and V¥ varied between 12.2 and 17.1, keeping ff 1, 2’22, s=1
and z = 1. Using the quadrature method J; was computed with r = 1.0, 2.0,
ssesesey 10.0, this range of r, encompassing the stable region of all the
computed integrals. r, was then chosen by inspection. We note, however ,
that in some cases there waé no clear choice of r, , since J, was very
sensitive to variations in r_ . These cases, which occurred when [¥ - P’}
wag relatively large or when the computed integral was relatively small,
are indicated by an asterisk in Table 5.6. 1In all calculations using
Gauss-Laguerre quadrature we chose M = 15, and set N = 9 if L 4.0 and

N =8 if r > 4.0.

Table 5.6 also shows the computer (CPU) time required to compute the
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Gauss- Time Bates=- Time
y 1; Laguerre (secs) Damgaard (secs)
2
12.2 4.0 9819 x 10° .059 .9824 x 10 .028
12.55 { 5.0 -.1478 x 10" 060 ~-.1478 x 10’ .025
12.9 [ 7.0 -.6733 x 10' .059 -.6701 x 10° .026
13.25 | 6.0 .9199 x 10 .057 .9243 x 10" .026
14.3 8.0 .2980 x 10' | .056 .3016 x 10' .026
14.65 | 4.0 .2376 x 10' .058 .2380 x 10" .025
15.0 2.0 .4109 .050 .4583 .022
15.35 | 6.0" .1113 x 10 .050 .1114 x 10 .016
15.7 2.0 -.1343 x 10' .053 -.1344 x 10' .028
16.05 | 2.0" .5675 .060 .6187 .027
16.4 4.0" .3882 .056 .3640 .026
16.75 | 2.0%| =-.7291 .060 ~,7240 ©,026
17.1 4.0% .4865 .060 .5314 .025

Table 5.6 Comparison of Author's Method with Bates-Damgaard Method,
Y+v¥' =23,7, 2 =1,8 =2, =1, z =1,

The time specified for Gauss-Laguerre Quadrature does not

include the time required to compute the weights and zeros.
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radial integrals. Clearly the author's method requires 2-3 times as much
computing time as the Bates-Damgaard method. It should be noted that the

time specified for Gauss-Laguerre quadrature does not include the time

required to compute the weights and zeros (see Section 5.2.6).

5.2.5 Comparison with Other Quadrature Formulas

'In order to assess Gauss-Laguerre quadrature in relation to other
methods of numerical integration, J, was evaluated using Romberg and
Clenshaw-Curtis qﬁadrature. Before applyiﬁg either of these methods. the
infinite interval of integrafion (r,, ®) must be replaced by a finite

interval cof integration (r; 4 An appropriate choice of r ...

"max ) M
was found to be

mrous <

fome = Tt R (- Ta), (5.6)

2zt ) ,

where r. is the classical turning point of LJF,?*-%( 5 Ty

. a2zt b .
is the largest zero of wi,I-W._(T'— ,; ¥ = moex (Y, V') and «
'is a constant lying in the range 1.5 -~ 3.5. 1If V,;?' are large then r

is given by (Abramowitz and Stegqun 1964)

w o= FLVE -2 P }a..l], (5.7)
where }a,| = 2.3381074, a, being the smallest zero of the Airy function

Ai(a). This choice of upper limit ensures that r_,, fies. well beyond the

outer turning points of the radial wavefunctions in the integrand.
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Fig. 5.2 Graphical Description of ., and ry

Using (5.5) to determine r,, these calculations demonstrated that,
for Vv, v’ in the range 30-40, the Romberg method usually required 512
quadrature points and about 2.4 seconds of computing time per integral.
Changing the variable of integration to Jtr did not reduce the number of
quaarature points. The Clenshaw-Curtis method, on the other hand, usually
required about 100 points and 0.8 seconds of computing time per integral.
By contrast Gauss—-Laguerre gquadrature EggéE required more than 43 points
and 0.3 seconds of computing time, assuming that the weights and zeros were
already available. The additional computing time needed to compute a set

of weights and zerxos (M = 30-40) was usually about 0.5 secs.
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Computation of the Weights and Zeros

The method emploved to compute the weights and zeros for a particular
order of Gauss-Laguerre quadrature {see equations 3.28, 3.29) was a vari-
ation of that described by Shao et al. (1963). ' Since the time needed to

compute X =1, 2,..., M was often greater that the time re~-

im ) 7\'m ) b
guired to compute the radial integral (assuming X}H',)i,| were given),
it was found mére economical to specify a value of M large enough to deal
satisfactorily with a group of radial integrals having neighbouring para-
meters. The appropriate set of weights and zexros could then bg computed

and stored for repeated use. BAll computer programs have been written to

facilitate this procedure.

ANALYSIS OF THE BATES-DAMGAARD METHOD

In view of their wide domain of applicability, the numerical methods
proposed in. this thesis provided an effective means of assessing the per~
formance of other methods of computing radial integrals in the Counlomb
appfoximation. In'particular, they enabled the author to conduct a detailed
analysis of the Bates-Damgaard method. As remarked earlier ({(Section 3.3),
the Bates-Damgaard method breaks down when v,v’ becomes sufficiently large,
and previous analyses have never given an adequate explanation of this

phenomenon. Even Oertel and Shomo only concluded that the cause

. "probably lies Iin numerical cancellations" (Qertel and Shomo 1968, pl77).

The present author's analysis of the Bates-Damgaard method falls into
two parts:
{a) an investigation of the numerical cancellations which
arise in the evaluation of the equation (3.18);
(b) an investigation of the criterion used to truncate

the infinite series {3.13}.
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We note that (b) was the subject of a limited study by Friedrich et al.

(1970), as we shall discuss in Section 5.3.2.

Numerical Cancellations

This part of the investigation was begun by repeating scme of the

.calculations of Qertel and Shomo (loc. cit.), using single and double

precision arithmetic., These calculations confirmed that numerical cancell-
ations {i.e. rounding errors) give rise to a loss of accuracy in the comp~-
uted integrals whenever V, ¥ become sufficiently large. The point at
which the method actually breaks down was found to depend.upon the number
of significaht figures used in the numerical calculations, and upon the
desired accuracy of the required integrals, e.g. in order %o ensure an
accuracy of four significént figures when using 14 significant decimal
digits, V¥, ¥’ must not exceed 12; the corresponding limit when using

28 significant decimal digits is P,Pfé 2% . However, disastrous rounding

.errors can still occur if ¥, p’ & 25 due to the "quenching phenomenon”

{see Section 5.2.3). It should of course be emphasised that the main pur-
pose of the present investigation was not to establish precise numerical
limits regarding the validity of the Bates-Damgaard methed, but to identify
the underlying causes of the errors which arise when V, ¥’ become large,
In corder to provide an adequate thecretical basis feor this analysis'

it is useful to return to equation (3.18) and express it in this form

B £4) ¢ Kum <. ‘1 ;
t+) ’ v ‘3
I, = f12 0" aa] ) (22
iz0, j=o 2V 2y
X yVv

M(p-1-7). (5.8)

;z (v +»")
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On putting

l.

-0
!

and re-arranging (5.8) we find that

8D

—
i

K=o

where

y+ y' ‘
a; ( 2y’ J e.;

ise

h = f[z%:f'"ﬁ]p

Now, on substituting

izo

K -
l: = Z €: Cu-i>

N, T
. = hZ G0 (oK) eien;,

3
we find that I, can be expressed in the simple form

3>

I

K=o

Ko
hL 0% Mip-x)b,.

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)
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It follows from eqguation {5.13) that there are two potential sources

of rounding errors in the evaluation of I:) :

(i) errors which arise during the computation of b, using (5.12});

(ii) errors which arige during the summation of (5.13).
Since a very effective asymptotic expaﬁsion for log, i (x) (x>»o0) is
available (see Abramowitz and Stegun 1964, equation 6.1.4/), there is no
practical danger of excessive rounding errors arising during the computat-
ion of the multiplying factor, h.

The extent to which errors of types (i) or (ii) arise depends upon
the existence of terms of relatively large magnitude and alternating sign
in the corresponding series (3.12) and (5.13). If either series contains
terms which are large compared with the sum of series, even the leading
digits of the computed sum may not be significant. An estimate of the

number of significant digits, p + in the computed sum is given by the ex-

pression

p - Zogw[lmax. L‘e.rm\/lsum\]’ (5.14)

o
tt

where p is the number of significant decimal digits used in the computation
{see Wiikinson 1963 for details). Unfortunately, this estimate of F can-
not be utilized in computer programs since, if rounding errors are present,
the computed sum may not be an accurate estimate of the actual sﬁm of the
series.

We now consider errors of types (i) and (ii) in more detail.

{i) Errors of Type (i)

From equations (3.17) ana {5.9) it follows that &; satisfies the re-

currence relation:
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y+y l : ;
. = —_ -4d-2 + 1 -1 P -
€; = (”, ) 7 (v-L-2){v+t leio (5.15)
oo
where €, = 1. Thus the terms of the sequence {e; }i:o are positive
if 1 & [v] -4 |, negative if 1 % [Vv] + £ + | , and alternate

in sign if [v] - L <t < [v] + L + . The sequence terminates

‘only if V¥V is an integer ( > ¥4 y, in which case &; = 0 if 1 > v -4 .
In order to assess the possibiiity of rounding errors in the computat—
ion of bK it is necessary to investigate the signs and relative magnitudes
of the individual terms of equation (5.12). This invest_igation is simplified
if these terms, e;e;- . are repregented by points on a two-dimensional
plane whose axes are labelled by 7 and 3 , as illustrated in Fig. 5.3. The
products &; e’j which arise in (5.12) are then represented by those points

{1, 9 ) which lie along the line % +J = k.

It follows from the above remarks that the signs of the terms of

’ K
{ei i }‘1:0 are governed by the following rules:
k »
(a) {eie-u.-i}. s Posztzve.
1=z 0

if e wl-4 and j ¢ v]-4£,

or 1f 1 > [vl+ £+ and j>,Lv']+1'+|.
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{ é; E;-;_ }k 1s neqalive
t= o

(b) ~
1 1> vlI+d+ei and js[u']—l'
or if 1> [PI+L+1 and jf-.. (vl - L.
-
(c) [ei e}, alternate in sign
if i< vl-4 and v1-L<cj<VI+Lrd
or if 1> [vl+ed+r and [v'I-L'<jclyvI+l+1
or if j-‘: [v]-£ a.nd.{V]-l-:i<[V]+£+l
ov if { » WI+L'+1 and v1-Lecrclviel v,
. s K : .
(d) feieu.il). have the same sign

if vi-L<icvlelst and pr-LejeyI+L+i

the sign allernating as k (= i+j) varies

between 1vl+ivi-L-L and [(vie[v]+l+L'+ 2
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The four regions of the | i, 3 ) plane defined by (a), (b), (c} and

{d} are illustrated in Fig. 5.3.

i

(b) {e) (a)

[\;J * -tli'i I R A S

cmmmmr drrer - —

) (d) ()

tvi1-¢

- — ——— " —

()

o e ot e G

[v}-¢ (vle l+1 i

Py
Fig. 5.3° Graphical Representation of £;€&;

It is ¢lear from the above discussion that there is no possibility
of numerical cancellations arising in the computation of bK " until
K » min( tvi -4, v’ -4"),
For smaller values of K all of the terms of (5.12) are positive. At larger
values of Kk numerical canéellation is possible in principle. However, in

pract_ice, it is only when K lies close to K., that negative terms £;84
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arising from (b), (c) or (d) (see Fig. 5.3} are large enough to cancel
the large positive terms which arise from region (a).

Numerical calculations have shown that, in the context of the quad-
ratic Zeeman effect, b“ is normally positive except when k,n- k £ 4.
These calculations have also shown that not more than 2 er 3 significant
figures of by are lost due to numerical cancellation. These rounding
errors are negligible when compared with the severe errors which arise
during the summatipn of the main series (5.13), as we shall discuss below.

Further confirmation of the above conclusions was provided by the
observation that the values of V,» at which the breakdown of the Bafes—
Damgaard method occurs does not depend upon whether V or v’ are integers:
in the integer case ail terms of (5.12) are positive, and so there is no

possibility of cancellation errors arising in the computation of b, .

Errors of Type (ii)

« )
Let us denote the term (-1)y r (p-k) of (5.13) by q, -
From the properties of the Gamma function (Abramowitz and Stequn 1964)

it follows that 9« satisfies the recurrence relation

‘3“-1 = - (P'k>ﬂn ) k>,l,. {5.16)
where
Q, = T,
Since p-k is positive if ¢ & K & K, {see equations 3.16 and

3.19), and therefore r'(p-k) is always positive, the terms of the
Kown
sequence [ Qx }K,o alternate in sign and decrease in magnitude
as k increases. Therefore the individual terms, gK bK ;, of (5.13) alter-

nate in sign if all b, , (0 ¢ k ¢ K, ), are of the same sign.
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The behaviour of a typical sequence [q..,b,;} is illustrated in

Tabhle 5.7. The seguence {qﬂb,‘ lqo b,} s together with the partial sums

1.3

Cu = '.Zo g;b; f q.b, _ are given for the case V = 20.25, 4 =2,
: Re;

V' = 19.25, ! = 1, s =1, Z =1, cClearly, the signs of

j1acbe /9.5, F and ¢, alternate until Kk = 35. We note also that
Cx increases in absolute value until k = 12, and then decreases as k in-
creases further. 1In view of the alternation in sign of g, b« , and the
existence of terms of very large magnitude (in relation to the total

sum, Cx,. ), it is clear that numerical cancellation would give rise to
iﬁtolerable rounding errors unless a sufficient number of digits is used in
the computation. In this example the calculations were performed using

28 significant decimal digits, 16 of which were lost due to cancellations.
Only the most significant eight digits are displayed in Table 5.7.

Calculations similar to those of Table 5.7,' involving V,V' in the
range 20 - 35 and 2, l' = 0, 1, 2 or 3, have shown that the magnitudes of
the terms g, bu , and hence the severity of nrumeric':al cancellations,
increases rapidly as ¥, ¥' increase. When v, }-" lie in the‘range 25 ~ 30
only 2 or 3 figures of the computed value of ck;"may be significant.

This investigation has not produced any rules, either empirical or
analytical, which might give practical guidance to users of the Bates-
Damgaard methed regarding onset of numerical errors as V, V’ increase,

The only advice which can be given is that if one is in any doubt about the
domain of validity of the Bates-Damgaard method, then one should examine the
behaviour of the sequence f Ax b« } for a few typical sets of parameters
vV, y' P £,4, Equation (5.14} can then be applied manually to give an

estimate of the severity of the numerical cancellation.



k 9, bw/9, b, Gy k 9 ba/9, bs c, k 9,be/9,b, .

0 1.0000000 1.0000000 | 13 | -322109.62 - | -150564.27 | 26 4,9588979 .78620611

1 | -18.135040 | -17.135040 | 14 268021.58 117457.30 | 27 | ~.91359362 -.12738752

2 159.95078 142.81574 | 15 | -199141.41 | -81684.103 | 28 .14487591 .17488388 x 107
3 | -914.08031 | -771.26457 | 16 132429,50 50745.393 | 20 | -.19481330 x 10° 2.19929419 x 107"
4 3804.3975 3033.1329 | 17 | -78943.069 | -28197.676 | 30 .21759444 x 107" .18300255 x 107
5 { -12289.015 | ~9255.8817 | 18 42219.935 14022.259 | 31 | -.19593331 x 107 ~.12930757 x 10
6 32061.090 22805.208 | 19 | -20261.359 | -6239,0999 [ 32 | .13579971 x 10 .64921452 x 107
7 | -69414.016 | -44608.808 | 20 8720.5796 2481.4797 | 33 | -.66878636 x 10°° | -.19571842 x 107
8 127171.64 80562.834 | 21 | ~-3362.1706 | -880.69086 | 34 | = .19779826 x 10 .20798339 x 107"
9 | -200043.17 | -119480.34 | 22 1158.8643 278.17339 | 35 | -.19645580 x 10 ' .11527610 x 10
10 273199.72 | 153719.38 | 23 | -356.08460 | -77.911212 | 36 | -.19718997 x 107 .95557102 x 107"
11 | -326752.28 | -173032.90 | 24 97.166918 19.255706 | 37 | -.60792006 % 107" .94949182 x 107"
12 344578.25 171545.35 | 25 | -23.428398 | -4.1726918 | 38 | -.45200129 x 10 .94903982 x 107"

Terms of the Bates-Damgaard Series (5.13)

Table 5.7

v

20,25,

4 =2,

v' =19.25,

.g‘ =1,

s .

i, =z

I, T, = te-o

Y o F =y
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5.3.2 Truncation Criterion

The second major aspect of the Bates-Damgaard metpod which was invest-
igated was the criterion used to truncate the infinite series (3.13). 1In
- the following discussion we examine the validity of this criterion by develop-
ing an asymptotic expansion of the radial integral (3.21) which takes account

of the lower cut-off radius, r,.

~{i) Asymptotic Expansion of the Radial Integral
| For a general intrdduction to asymptotic series and their properties
see Qlver (1974) or Jeffreys (1961).. A detailed discussion of the asymp-
totic properties of Whittaker functions is given in Slater (1960).

An asymptotic expansion of Jg(v{;¥¢;T,) can be obtained from (3.21)
by invoking asymptotic expansions of the form (3.11l) for the two Whittaker
functiens in the integrand. These two asymptotic expansions can be multi-
plied to produce an asymptotic expansion of the integrand in terms of %-

Thus we have

R (TIT? Rope )

A K -af  pek- -LT  peN-
e {RZ“ -1) e v c, + 0[2 T l, (5.17)
where
L3 1 ' K-i‘
d v y
Cw = go A; Qi (";) (5‘;) . (5.18)
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On integrating (5.17) over the range (7,, w ) with respect to r we find

[ -]
T vl vd'st,) = J Rt T2 Ry (1) A (s.19)

To

o0 . -

M=
Se L 0" f {6 ¢, + ole™ " I} dr, (520
- 1

Nl

Pl 'Fg'_o (-1"C, d.'p-n Cp-x,ate) + O[T (p-n,a%)], (s.21)
N—
30 h KZ; G0 b Cip-kat) + 0[M(p-n,at)], (5.22)

where

-
f = hb, " / € . (5.23)
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The terms h and b,,. have been defined earlier (see equations 5.11 and
5.12) and I (%,Y4) is the complementary incomplete Gamma function,

defined by the equation (Abramowitz and Stegun 1964)
. %=1
Mx,y) = J e t dt . ($.24)
Y

Equation (5.22) is the desired asymptotic expansion of J4 . We note
tﬁat its form closely resembles that of the Bates:-Damgaard expansion
{5.13). We also note that, althoqgh {5.22) suggests that r, should be
large, in practical calculations quite accurate results can be obtained
when r, is relatively small, as illustrated by the following example,

Let us denote 0"y -k, at,) by d Table 5.8

K *
illustrates the behaviour of the terms d.b, of (5.22) for the typical
case v =5.85, v =4.85, £ =2, £ =1, s =1, T, = 1.0 and z = 1.
In this example the terms d.K b.._ ; together with th'e partial sums
S = Li; d.; bi ,kgi, are displayed. These results show that the sequence
[dubn} exhibits the classical asymptotic behaviour, i.e. after an
initial increase, the terms of the sequence [lol“ b“” decrease to a min-
imum ( at K = 12) and thereafter increase indefinitely.
Thus, when using (5.22) to compute J, (5.85, 2; 4.85, 1; 1.0), the

asymptotic expansion should be truncated at the smallest term, K = 12;

hs,l is then the appropriate approximation to J,, involving a minimum
truncation error (Jeffreys 1962). Numerical evaluation of {5.22) in this

- .
case gives J,= hs,, = 0.9044 x 10 . Computation of the same integral
1 ER

’ -1
using the author's Gauss-Laguerre quadrature method gives J, = 0.9048 x 10 ,

whereas the Bates-Damgaard method gives J, = 0.9015 x 10“.
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=

dw by

5,‘ = :L; d-ib,'

LY-TN - I R« S N " S R R )

T T ™ R Ry S
~ o U bk W N O

225322480.396

-768916686.366 "

1100321279.19
-844577391.739
364069952.757
~81552760.5209
6450159.36979
189347.852920
22601.0374188
6521.59202385
3953.40153991
2270.70338740
-14.9108708443
531.876981730
-1719.08623687
11280.9589680
-104231.623763
1254220.06652

225322480.396
~543594206.571
556727072.622
~287850319.116
76219633.6411
-5333126.87978
1117032.49001
1306380.34293
1328981.38035
1335502.97237
1339456.37391
. 1341727,07730
1341712.16643
1342244.,04341
1340524.95717
1351805.91614
1247574,29238
2501794.35890

Table 5.8 Terms of the Asymptotic Series {5.22)

d

i

)

£ =1,

$ =1,

5.85, £ =2, V = 4.85,
2 =1, T =1.0.
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(ii) Comparison with Bateg-~Damgaard Results
| In order to appreciate the relationship between the Bates-Damgaard
method and the asymptotic approximaﬁion (5.22), the individual terms of
each approximation were computed for a range of values of v, 1,y 2’
(v,v ¢ 20, £ 4 =0,1lo0r2, 2z =1and $ =1). The terms
b { q,bo  of (5.13) for the case Vv =15.85, £ =2, yv' = 4,85,
4’ =1, $ =1, T, =1.0, Z =1 are displayed in Table 5.9.

The corresponding (but unscaled) terms d.bx of (5.22) have already

been displayed in Table 5.8. Another example of the terms of (5.22) for

the case ¥ 20,25, f =2, v’ = 19.25, 4L =1, 71, =10.0,

s =1, Z 1 is given in'Table 5.10. The corresponding Bates-
Damgaard terms are displayed in Table 5.7.

It should be emphasised that it is the overall gualitative behaviour
of the two pairs of series in Tables 5.7 - 5.10 that should be compared.
We note that the individual terms of the series are not directly numerically
comparable, since different scaling factors have been used.

This series of calculations lead to the following obsgervations:

(a) with an appropriate choice of r, and scaling factor,
the corresponding terms of {(5.13) and (5.22) generally
agree to within about 0.03%;
(b) the minimum term of (5.22) generally cccurs 3 -4 terms
beyond the term k = K_, the Bates~Damgaard truncation
point, .
It follows from (a) that when V,V' become large, the asymptotic expansion

{5.22) suffers from rounding errors, similar to those of the Bates-~Damgaard

method.
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.
K g, be/g,b, Cu= L Aubilg.bo
0 | -1.0000000 1.0000000
1 | -3.4125165 ~2.4125165
2 4.8833178 2.4708013
3 | -3.7483051 ~1.2775038
4 1.6157729 .33826911
5 | -.36193797 -.23668868 x 10~
6 .28626357 x 10”7 .49574889 x 1077
7 .84034729 x 107> .57978362 x 107"
8 .10031567 x 10°3 .58981518 x 10" "
9 .28981276 x 107" .59271331 x 107"
10 .17778882 x 10°" .59449120 x 107

Table 5.9 Terms of the Bates-Damgaard Series {5.13)
vy =5.85, f =2, y'=4.85 £L'=1,
5 l, 2z =1, 4, = 1.0,

*

I

i




~H4
Table 5.10 Terms of the Asymptotic Series (5.22) (scaled by 10 )

y

20.25,

{ =2,

v

4

=19.25, 4'=1,

)

1,

L = 1, 'fa

= 10.0

® " .

k OLK b,; 5. godibi Kk d-,,, b 5. * ‘énd'i‘ bi k C‘-K_ by 5S¢ = gﬁ D(a b;

0 .52085035 .52085035 | 15 | -103722.82 | -42545.194 | 28 .75458667 x 10 | .91088332 x 107"

1 | -9.4456424 | -8.9247921 | 16 68975.950 26430.756 | 29 | -.10146858 x 10™' | -.10380225 x 107"
2 83.310418 74.385626 | 17 | -41117.525 | ~14686.769 | 30 .11333414 x 10 | .95316941 x 10°"

3 | -467.09905 | -401.71342 | 18 21990.268 | - 7303.4987 | 31 | -.10205193 x 10 | -.67349874 x 10~
"4 1981.5217 1579.8083 | 19 | -10553.136 | -3249.6374 | 32 .70731300 x 107 | .33814259 x 10

5 | -6400.7376 | -4820.9202 | 20 4542.117¢4 1292.4796 | 33 | -.34833628 x 10 | -.10193698 x 10”

6 16699.030 118768.101 | 21 | -1751.1877 | -458.70815 | 34 .10301996 x 1077 | .10830126 x 107

7 ~36154.315 | -24276.214 22 603.59485 144,88671 35 ~.10229912 x 107 | .60031897 x 10 "

8 66237.395 41961.181 | 23 | -185.46679 | -40.580082 | 36 | -.10254215 x 107" | .49767182 x 10"

9 | -104192.56 | -62231.376 | 24 50.609423 | 10.029341 { 37 { -.31379823 x 107 | .49453383 x 10"
10 142296.17 80064.793 | 25 | -12.202689 | -2.1733480 4 38 | =-.22562018 x 10| .49430821 x 10
11 | -170189.04 | -90124.247 | 26 2.5828437 .40949573 | 39 | -.54287413 x 16| .49425393 i
12 179473.70 89349.453 | 27 | -.47584556 | -.066349834 | 40 | -.43396562 x 10" | .49424959 x 10"
13 | -167770.91 { -78421.455 a1 .35337960 x 16" | .49425312 x 10
14 139599.13 61177.678 42 | -.38090829 x 107" | .49424931 x 107"

-S0T-
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Comparison with Gauss-Laguerre Quadrature

The accuracy of (5.22) was further assessed by computing the

gquantity*

22z T, (vd; 0L T,) (§.25)
BVJrW

[ -
I

by three methods: Gauss-Laguerre quadrature, the Bétes-Damgaard method
and the asymptotic method i.e. equation (5.22). {¥-¥‘| was fixed and
3, was computedrfor various values of ig‘ . The case |v-v'l= 0.495,

L =0, £'=1, z=1, ¥,=1.0, ¥, = 1.65 (0.25) 10.0 is
illustrated in graphical form in Fig. 5.4.

Fig. 5.4 show; that the three computed values of 3. agree very
closely except when ¥, is close to an integer. The associated numerical
values, which are given in Table 5.11, show further that the asymptotic
method and Gauss-Laguerre gquadrature always agree to within 2 x ldd* it
V¢, exceeds 3.0, However, the Bates-Damgaard results differ from the

-3
other two methods by as much as 5 x 10 when ¥ is within 0.15 of an

i
integer. This anomalous behaviour of the Bates-Damgaard method diminishes

as V¥, increases.

Variation of the Truncation Point of {5.22)

In order to gain further insight into the anomalous behaviour of the
Bates-Damgaard method at small V,»' the integrals 3.l, Y. = 2.65
{0.25) 10.0, were re-computed using (5.22) with four different truncation
criteria:

{a) truncate immediately after the term of minimum

absolute value;

* 4y =max (£,4'), f, = min (L, L")
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Fig 5.4 Graph of 3, against Vi

Bates-Damgaard Method (+)
Gauss-Laguerre Quadrature (.)
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(b} as (a), but include only half of the term of minimum
absoluﬁe value;
{c) truncate immediately before the term of minimum
absolute value;
(d} truncate according to the Bates-Damgaard criterion,
i.e. include only those terms for which ¥k & v+p'+s-2,
The results of these calculations are shown in Table 5.11. In this case
we find that if L&<2£ 6.5, all computated values of 3, agree to
within three decimal places. However, if V. % 6.5, the values of
ﬂ; obtained using criterion (b} show closest agreement with the values
cbtained using Gauss-Laguerre quadrature. On the other hand, the results
obtained using criterion (d) are in complete agreement with those of the
Bates—Démgaard method.
Calculations using other values of v~ vl have shown that the
anomalous behaviour of the Bates-Damgaard method does not always occur
at the integer jalues of v¢‘ . In general, it occurs at those values
Oflﬁ‘ such that (v+¥’) = ..., 2.5, 3.5, 4.5,.... This can be explained
as follows. When ?,V' are sufficiently large (% 6 ) the asymptotic

series (5.22) "converges" reascnably fast and can normally be truncated

before the Bates-Damgaard truncation point Kk = K., . Since the minimum
term of (5.25) usually occurs 3 or 4 terms beyond k = kmt, it is clear

that the computed value of j' given by (5.22) is not strongly influenced
by the truncation criterion.

Fof smaller values of \J,V' the asymptotic series (5.22) "converges"
slowly and the computed value of ﬂ. is sensitive to the truncaticn
criterion. The results of Table 5.11 indicate that criterion (b) preduces
a minimum truncation error. Hence truncation according to the Bates~

Damgaard criterion {d) introduces truncation errors in the third and fourth



=LUd=

Ve | GL BD Asy Loy | Asy(b) | Asyle) | Asgyd)
2.65 .5270 .5253 .5254 .5253 .5253 .5253
2.90 .5292 .5231 .5280 .5289 .5297 .5231
3.15 .5311 .5226 .5306 .5311 .5316 .5226
3.40 .5327 .5320 .5329 .5327 .5326 .5320
3.65 .5340 .5336 .5334 .5335 .5336 .5336
3.90 .5351 .5325 | ,5353 .5349 .5345 .5325
4.15 .5361 .5319 .5358 .5361 .5363 .5319
4,40 | .5370 .5366 .5369 .5370 .5371 .5366
4.65 .5377 .5377 .5378 .5377 .5377 .5377
4,90 .5384 .5372 .5386 .5383 .5381 .5372
5.15 .5391 -.5366 .5389 .5390 .5392 .5366
5.40 .5396 .5394 .5396 .5396 .5397 .5394
5.65 .5401 .5402 .5401 .5401 .5400 .5402
5.90 .5406 .5399 .5407 .5406 .5404 .5399
" 6.15 .5410 .5395 .5409 .5410 .5411 .5395
6.40 .5414 .5412  .5414 .5414 .5415 L5412
6.65 .5418 .5419 .5418 .5418 5417 © L5419
6.90 L5421 L5417 .5422 .5421 .5420 .5417
7.15 .5424 .5414 | .5424 .5424 .5425 L5414
7.40 .5427 .5426 .5426 .5425 L5424 L5426
7.65 .5430 .5431 .5430 .5430 .5430 .5431
7.90 .5432 .5430 .5433 .5433 .5432 .5430
8.15 .5434 .5428 .5435 .5435 .5435 .5428
8.40 .5437 .5436 .5436 .5436 .5435 .5436
8.65 .5440 .5440 .5439 .5439 .5439 .5440
8.90 .5441 .5439 .5442 L5441 .5441 .5439
9.15 L5442 .5438 .5443 .5443 .5444 .5438
9.40 .5445 .5444 .5444 .5444 .5444 .5444

Table 5.11 Dependence of 5. on the Truncation Criteria (a)} -~ (d),
ly - '] = 0.495, £ =0, 2'=1, +, = 0.25,

GL indicates Gauss-Laguerre quadrature, BD denotes the Bates-
Damgaard method, and Asy (a) - Asy (d) denote.the asymptotic

method using truncation criteria (a) - (d).
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decimal places of ﬂ‘. Empirical calculations have shown that
these errors are greatest when Y+ v’ lies half-way between successive
integers.

A set of calculations of 3. , Similar to those outlined above, was
performed by Friedrich et al. (1970) in an evaluation of Katterbach's
method of computing radial integrals involving Coulomb wavefunctions.

However, their calculations did not identify the anomalous behaviour of

the Bates-Damgaard method. 1Indeed, their graphical results show some

" curious sharp kinks when ¥,v' is less than about 5. These may be due to

truncation errors arising in the computation of .the radial wavefunction,

but this has not been investigated by the present author.

CONCLUSIONS

In this Chaptef we have demonstrated that the author's method of
computing radial multipole integrals in the Coulomb approximation is
well suited to both exploratory and routine calculations, and is effect-
ive at large or small principal quantum numbers, \3,P'. For V¥, ¥'§& 25
the performance of the new method has been compared with the methods of
Lindgérd and Nielsen and Bates and Damgaard. For 25 % (v,¥') % 55
the main check used has been on the smooth variation of the integrals as
functiong of V¥, »', with the values for integer V,V' as fiducial marks.
Our results have shown that the speed and accuracy of the new method com-
pares favourably with the Bates-Damgaard method in the region where the
latter is effective. .

The general conclusion regarding the new method is that, by choosing

appropriate values of r, , N, n and M, results may always be obtained in

which the computational errors are as small as desired, and thus negligible

in comparison with the errors implicit in the assumptions of the Coulomb
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agproximation. Of course, even if the Coulomb approximation is inapprop-
riatg, the new method may still be an effective means of computing that
part of the radial integral arising from large radial distances where
Coulomb wavefunctiong are valid; the remainder of the integral can then
be computed by other means, using, for instance, Thomas~Fermi or self-
consistent-field methods to determine the radial wavefunctions at small
radial distances.

The most striking outcome of the tests on the new method is the
relatively small number of abscissae needed to achieve a prescribed
accuracy with Gauss~Laguerre guadrature. This is surprising in view of
the fact that the integrands are strongly oscillatory and cannot, in
general, be expressed in terms of finite polynomials.

The new method's main disadvantage is the necessity of preliminary
setting of the parameters which control the precision of the computation.
However, this problem has recently been alleviated by Pullen (1981), who
has developed a technique for determining automatically the appropriate
number of Chebyshev terms needed to ccmpute thé radial Coulomb wavefunctions.

The new method is especially suited to the calculation of radial
quadrupole integrals in the context of the quadratic Zeeman effect, where
very large values of ¥, v’ may arise (see Chapter 6)% The guadrupole
opérator rr emphasises the contribution to theée integrals which arises

from large radial distances.
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CHAPTER 6 .

COMPUTATION OF THE PRINCIPAL SERIES OF Ba I

In this Chapter we assess the validity of the thecretical approach
proposed in Chapter 2. The energy levels and associated intensities of
Ba I in the presence of magnetic fields in the range of 10 -70 kG are ob-
tained by diagonalizing a trungcated form of the Hamiltonian matrix

H,“,,flv (see equétion 2.13). The physical significance of these

results is discussed in the context of the experimental spectra of the
65~ 'S’ - 6snp 'P' principal series of Ba I obtained by Garton and Tomkins.
The numerical methods described in Chapters 3 and 4 are used to compute
the matrix elements of H,

This éhapter is organised as follows. In Section 6.1 we present a
brief description of the Garton~-Tomkins spectra. Then in Section 6.2
we discuss the methods used to overcome the computational problems assoc-
iated with the construction and diagonalization of the tfuncated Hamiltonian
matrix. In Section 6.3 we discuss the physical significance of the comp-
uted spectra. Finally, in Section 6.4, we draw some conclusions regarding

the effectiveness of the free-field Coulombic wavefunctions as basis states.

THE SPECTRA OF GARTON AND TOMKINS

During the past twelve vears a series of experiments has been per-
formed at the Argonne National laboratory, Illinois, concerned with the
study of the absorption spectra of highly excited alkali and alkaline earth
atoms in the presence of magnetic fields in the range 10 - 50 kG. Accord-

ing to Professor Garton, one of the principal investigators, only a small

-propertion of these results has been published because of the difficulty
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of presentation in the absence of an adequate quantifative theoretical
framework.

The ﬁirst published results were of the pq%ncipal series of Ba I in
a magnetic field of 24 kG. A remarkably detaiied set of observations of
the Gsa 'Sa - 65npl Pl absorption spectrum was cobtained, with separate
measurements of the 1 and & components. Garton and Tomkins {1969a)
published a description of these results, incleding photographic prints of
the whole spectrum, with and ﬁithout the magnetic field, from n = 26 to
a short distance beyond the series limit. Densitometer traces of the
Zeeman ¢ components {n = 35 - 39) were also presente&, although the o
and o components were not separated.

During the course of the research reported in this thesis the present
author has also had access to the complete W and &" densitometer traces
of Ba I at 24 kG, made available by Professor Garton. Scme of these results,
together with other {co%) densitometer traces of Ba I and Sr I at magnetic
fields of 17, 25, 32, 40 and 47 kG, have been published recently by Lu et
.al. (1978b). The densitometer traces for Ba I, taken from Lu et al. {loc.

cit.), are reproduced in Fig. 6.1.

Characteristics of the Ba I Spectra

Both the W and & spectra may be divided into regions wiﬁh strik-
ingly different characteristics. In the lower energy region, running from
about n = 30 to n = 37, distinct groups of lines are seen which may be
identified with successive principal quantum numbers. In addition to the
quadratic shift, we have a breaking of the 2 - degeneracy characteristic
of hydrogenic spectra. The lines produced are easily distinguished and
" have, within each group, a roughly equal spacing. The members of each group

in the ¥ spectrum have roughly egual intensities, whereas in the o spectrum
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Fig, 6.1 Densitometer Traces of o spectra of Ba I; B = 47, 40, 32, 25,17, 0 kG
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intensities within a group fall off rapidly, the strongest line being
that with maximum displacement from the free-field position. Inter-{¢
mixing appears earlier {i.e. at smaller n) in the W series than in
the o series.

Towards the higher enerqy regions, both the W and ¢ spectra
become more complex. Above about n = 37 inter-n mixing sets in, and
above n = 40 there is_ little trace of the Rydberg structure remaining.
However, there are other regularities that appear. 1In two distinct
regions of the o  spectrum there are sequences of regularly spaced
lines, the spacing being close to -;_-'hw > where w 1is the cyclotron
frequency (see Section 2.1). Another system of very brcad lines
{"resonances”) extends from a little below the free-field serieg limit
inte the continuum. The spacing is again regular and approximately
equal to %&'hiu - The resonances start in the region n = 45 and
about 15 of them are visible before the series limit. Regularities also
appear in the Tr spectrum but, in this case, there is no detectable

structure beyond the free-field series limit.

COMPUTATION OF ENERGY LEVELS AND INTENSITIES

We now describe the methods used to compute the quadratic Zeeman
effect on the theoretical energy levels and intensities of the
)
6s™ %% - 6snp P‘absorption spectra of Ba I, assuming magnetic fields

in the range 10 -~ 70 kG. As outlined in Chapter 2 this involves the numer-

ical computation of the eigenvalues and eigenvectors of a truncated form

of the Hamiltonian matrix H%¢ ot . We denote the truncated matrix
by H, and assume n_.. ¢ (n,m') ¢ N .., L. ¢ L) lﬂug
ﬂmuﬂ z 5' 'lmwx < nmsx‘
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Of course, eigenvalues determined in this way are upper bounds to
the true eigenergies of the atomic 'Isystem.- This is due not only to the
truncation procedure but also to the fact that the selection of a basis of
bound free-field states does not allow for mixing with the continuum.

In the general case we must sclve the truncated form of equation. (2.13) |
for given wvalues 6f parity (&) and magnetic quantum number (m). & takes
the numerical values 0 and 1, corresponding .to even and odd parity respect=
ively. The angular mc;mentum quantum numberi (£) takes either even or odd
values- depending on the values of W and MM . The minimum value of £-,
denoted by /¢

mim ¢ 1S given by

em',_“ = l‘"“-l "‘ :J + l, if m is odd, (6.1)
or boin = Imi+ D, - if m is even. .  (6.2)

When considering the particular case of Ba I with dipole transitions
from the ground state (651 ! Sa) we shall only consider eigenvalues and
eigenvectors of H which have odd parity (® = 1) and m = 0, 1. 1In the

7 polarisation transition the magnetic quantum number does not change,

2 , , s
and hence Am = 0, whereas in the ¢ polarisation transitions Am =% 1,

The strength of the transition t —» ] (in atomic units) is given by
Sy = [ <& o1 x ju;n], (6.3)
i

where ‘lk and ‘lh represent the initial and final transition states (see
equation 2.4). In the case of Ba I }U‘_ may be taken as }6s® '5°>, i.e.

the free-field ground state with negligible quadratic Zeeman effect,
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Thus, from equations 2.5, 2.12 and 2.13, it follows that

S..

13

R

. : ’W‘!:I . L 2
|<6s* Sz iL Cop Imtm > | (6.4)
ni'
. - amod
Thus the eigenvectors of H , namely Che + can be used to compute the
approximate intensities of quadratic Zeeman spectral lines. We note that
the selection rule on £ - ¢’} implies that only the 'P ' components of

excited states contribute to intensity.

Construction of the Hamiltonian Matrix

As explained in Chapter 2, the construction of ﬁ for alkali and
alkaline earth atoms must take account of the relevant quantum defects.
Accurate experimental data are available for the 'P ' states of Ba I up to
n =75 (Garton and Tomkinsl1969b).

For the range of n-values of interest in the present study these
guantum defects can be expressed as 4 + %, whereol is a pdsitive or
negative quantity, small compared with one, although not small enough to
be neglected: As n increases from 26 to 50, oL increases monotonically
from =-0.1444 to +0.2500.

The quantum defects associated with ' ', 'h',... states are assumed
to be negligible. This may not be justified in the case of '§ ' states,
but experimental data are not yet available,

In view of the large gquantum defects of the ésnp 'P' terms of Ba I,
it follows that, for any n, the energy level of the free-field 'P' state
lies close to those of the (degenerate) 'd', '£',.... states with principal
gquantum number n -~ 4. An applied magnetic field, not large enough to cause
inter-n mixing, will therefore give rise to inter~£ interactions between a

given énsp 'PI term and '{ ', 'h',.... terms corresponding to an n value
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that is smaller by four. Therefore, when constructing H we

mL,m' e

use the free-field state |m+ 4,£» when the matrix element of H in~
volves a- 'P ' state, i.e, i-F Lot f =1 (see eguations 2.14, 2.15).
The numerical techniques used to compute the radial factors

{nl)iTr e of H,“l’ wm'2’ Wwere described in Chapters 3

and 4, and need no further discussion. The angular factors (lmisiﬁﬂlfﬁ)
are easily determined by means of angular momentum algebra {see Edmonds

1368, p76):

(Em)sin's [ 8'm)

il

a(Liv ol -t em) 0,

=L, (6.5)
(22-1) (24+3) -

[
2
2 2 ' z 2
- _ [(.l,:-l-l) -—m}[(la.i-z)“MJ (6.6)
(24e+5) (2L, +3)2 (2L +1)
if 14-¢'] =2 ,
= 0 otherwise (6.7)
In equations (6.5) and (6.6) ¢ =min (£, £).
If we denote m_ =~ £ ., M . - £ .. by a-and b respectively,
then the dimension, N, of H is given by
N = ,-4[(0._,_,)2 - b’*] (a odd, b even); (6.8)
N = -'-q_[ a + 2a - bl] (a even, b even), {6.9)
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N = 3[tasn)® = b + 1] (a 0dd, b 0dd); (6.10)

N {_*[a.z * 20 - b+ ‘] (a even, b odd}. (6.11)

Computing Resources

In the present study we are interested in computing as many as poss-
ible of the energy levels and intensities of the @ and ff series of Ba-I
from about n = 26 upwards, in magnetic fields ranging from 10 - 70 kG.

In practice this involves the diagonalization of very large Hamiltoniaq
matrices: as remarked earlier, the quadratic Zeeman energy shifts increase
roughly as n* , whereas the energy separation between successive free-field
states decreases as n's. Consequently, the number of basis states needed

in B to achieve an acceptable accuracy in the computed energy levels and

intensities increases rapidly with n. For instance, if n_;,= 19 and

n

max 38, the dimension of E is 280 x 280 (see equations 6.8 - 6,11); if

n 31 and N = 44 the corresponding dimension is 259 % 259 (demin = 1

min
in both cases).

The calculations reported in this Chapter were conducted within the
constraint of'a fixed allocation of computing units on a time~shared
CDC 6600 series computer at Imperial College. 1In addition to the restrict-
ion on the total number of units available, the processing power and memory -
available during each computer run was also limited. The appearance of
large matrices thus presented serious computational problems, because of
the large amount of computing power and memory required for their diagonal-
ization. It was therefore necessary to devise an efficient and reliable
computational scheme for diagonalizing H.

These computational issues have not been so important in previous

studies of the quadratic Zeeman effect since other investigations involving
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free-field basis functions have not been concerned with inter-n mixing

in highly excited states (see, for example, Kemic 1974}.

Computation  of Eigénvalues and Eigenvectors of H

From the selection rule 14 - t'l = 0 or 2 (see eqﬁations 6.5,
6.6; 6.7) it follows that, if the rows and columns of H are re-arranged in
sub-matrices 1abelled'by (.!,L'f, the resulting matrix, which we denote by
A, has the block diagonal structure illustrated in Fig. 6.2,  The rows and
columns of each (.l,l') sub-matrix are labelled by n and n' respectively.

n takes the values n, n + 1l,...., n__ , wheren = max (n , £+ 1);

min

. N ’
likewise n runs from max(n_.
. min

’ L+ 1) to 0o Clearly the re-ordered

matrix is symmetric and has a maximum of

w = ZT\‘M“,""_' —'max(nmlﬂ"'zmin+ min) Umi

1) = max(n, L . +3) (6.12)

non-zero elements to the right of the main diagonal (see Fig. 6.27).. Thus

Aj; = 0 i Ji-31> w (6.13)

A large number of numerical algorithme exist for the diagonalization
of band symmetric matrices} a review bf these techniques is given by Duff
({1976} . At first it seemed that one such method, that of Rutishauser and
Swartz (1963), was well-suited . for diagonalizing for our present purpose;
a FORTRAN version of their algorithm, called LRCH, was easily available.
Although LRCH could not compute eigenvectorsg, it seemed particularly
attractive for detérmining eigenvalues, since these are determined one-by-~
one, and the algorithm can be interrupted after each eigenvalue has been

computed. Thus, if the processing time available during one computer run
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N ’ 2 ¢
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g-min Imln+2 --""*"-"""'-""'_!;max
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Fig. 6.2 Structure of the Truncated Hamiltonian Matrix

4
The diagonal sub-matrices are labelled by £ ana £ .
The rows and columns of each sub-matrix are labelled by

I
n and n , where n = max (nm.“, g + 1),...., R,ax and
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14
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was not adequate to diagonalize a complete matrix, the partially diagonal-
ized matrix could be stored and the process completed during subsequent
runs.

However, practical calculations later indicated that LRCH required a
surprisingly large amount.of computer processing time, and had to be
abandoned.

By contrast, another algorithm, called SDIAG, which computes both
eigenvalues and eigenvectors of any real symmetric matrix required much
less computing time than LRCH. The SDIAG algorithm, which was acguired by
Dr. Edmonds from the Argonne Computer Library, is based upon the work of
Martin et al. (1968)*. The symmetric matrix is reduced to tridiagonal
form by Householder's method. Then, by a sequence of QR transformations,
the tridiagonal matrix is brought to almost diagconal form. Shifts are

used to give an accelerated rate of convergence. An orthogonal set of

eigenvectors is found for the original matrix A.

Application of SDIAG

The limitation of computing rescurces meant that the maximum size of
truncated Hamiltonian matrix that could be diagonalized by SDIAG was
300 x 300. Thus the gquadratic Zeeman effect on the energy levels and
intensities of Ba I could only be determined using a "window" of basis
states, including not more than 300 members. Of course, this restriction
imposed a limitation on the domain of validity of the whole approach adopted
by the author: at some point towards the higher energy region of any quad-
ratic Zeeman spectrum, the diégmagﬁetic term eventually induces mixing

between more than 300 free-field states.

* see Martin, R.S., Riensch, C.and Wilkinson, J.H. (1968),

Num. Math. 11, pp 181-195.
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The matrix elements inside the dotted lines satisfy the condition
nein$ (n,n) ¢ n (20 £ n_ . & Typay €60). Only these sub~
matrices are needed to construct a Hamiltonian matrix with given
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In order to economize on computer processing time the field-

independent parts of @, n'¢+ Were computed once, using extreme values
of n_,. and n.,., and stored for repeated use by SDIAG. USiIng N,,i,, = 20
and n, ., = 60, the values of (ndm |tis*d|n'I'm ) corresponding to

the upper triangle of A (see Fig. 6.2) were stored as a bénd matrix, having
N rows and w + 1 columns (see equation-6.13). The (i, j) element of this
band matrix, which we dencte by E, contained the <ndm |1“sln"6 Iﬂ'.f."tn,)
associated with the (i, 1 + ) element of matrix &, (i = 1, 2,...., N;
j = d,,l,....,\v). Thus, for any given vaiues.of n;ﬁ“, nwnat,and magnetic
field B, the Hamiltonian matrix A to be input to SDIAG could be constructed
easily from the matrix A and a table of quantum defects, using equations.
(2.13) - (2.16). The structure of A is illustrated diagrammatically in
Fig. 6.3.

In practice it was found that this technigue led to a 25% reduction in
computer processing time. This resulted from the fact that each matrix was

diagonalized several times in order to assess the effect of the truncatiocn

criterion.

RESULTS AND DISCUSSION

In this Section we discuss the results of numerical calculations of

the principal series of Ba I, obtained using the computational methods

described above. The ultimate objective of these calculations was to provide

relevant data that could be compared with the spectroscopic results of
Garton and Tomkins (1969a), since such a comparison would provide valuable
insight into the general validity of the theoretical framework adopted by
the present author. An important sub-objective, thefefore, was to assess
the accuracy of the energy levels and intensities obtained by diagonalizing

a truncated Hamiltonian matrix constructed using free-field bound states.
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Most of the results presented refer to the " and T spectra of Ba I in
a magnetic field of 24 kG, since the experimental densitometer traces of
these spectra were available.for comparison. . Nevertheless other magnetic
fields are considered, notably 32 kG and 47 kG.

The strategy adopted in these calculations was to begin by computing
the low-energy spectral lines, beginning at about n = 26, and moving progress-
ively towards the higher energy regions of the spéctrum. At each step of
the process, a finite set of basis states, not exceeding 300 in number, was
used to define the Hamiltonian matrix H. Approximatevenergy levels and
relative intensities were then determined, as explained earlier. The basis
set was then changed tc represent a néighbouring collection of free-~field
states, and the process repeated.

Since the above procedure yielded upper limits to the true energy
levels of the system Hamiltonian H, the accuracy of the results obtained
at each stage had to be assegsed carefully. 1In particular, it was important
to observe the variation of each computed energy level as the composition

of the basis set was changed, i.e. as Noin and N, ax Were varied (see 6.3.4

x

below) .

Labelling of States

Before presenting any computed results it is necessary tc explain the
method used to label the eigenstates of the system Hamiltonian H. The scheme
used follows that of Kemic (1974), suitably modified to take account of the
guantum defects of the 'p' states of Ba I. As remarked earlier the ‘np'
level of Ba I mixes with the '£', 'h',... states associated with n - 4 when
the magnetic field is not large enough to induce n-mixing. Therefore, before
adopting Kemic's scheme we increase the n-value of 'f', 'h',... states by 4.

The ambiguity caused by the degeneracy amongst the re-labelled free-
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field states (whose quantum defects are ignored) is overcome by invoking
equatiog'(;{l), which shows that, for fixed n and m, , the qqadratic Zeeman
shift'isna decreasing function of £ . Thus it is possible to assign values

of £ :to the states of H according to their energy ordering among other states
of the same n, m, and parity in the limit of low field, the state of highest
energy in each group being assigned the lowest possible value of £ .

We note that this labelling scheme is still-valid if the magnetic field
becomes strong enough to induce n-mixing: since m, and parity-are the only
'‘gocd' quantum numbers of the atomic system, energy levels having the same
values of m, and parity cannot be degenerate, i.e. two such levels cannot

"cross™ as the field strength is varied (see Baldereschi and Bassani, 1970).

Computed Spectrum of Ba I

The results obtained for the &* and components of 65" 'So - Gshp 'g
principal series of Ba I in the presence of a uniform magnetic field of
24 kG are presented in graphical form in Figs. 6.4, 6.5 and 6.6. Fig. 6.4
shows that in both the ¢* and W spectra the effect of the magnetic field is
to broaden the free-field lines '28p',...,'32p' to form groups of .lines,
resembling band structures. Up to n = 31 the bands of both spectra have a
similar structure. The strongest line of each group has the maximum displace-
ment froﬁ the free-field position, and the intensitiés fall off rapidly to-
wards longer wavelengths.

Beyond n = 31 the 1 and e gpectra have distinctly different character-
istics. In the T spectrum the leading line in each'group loses its domin-

ant position, and from n = 32 to n = 35 the groups consist of several compon-

. ents of comparable strength which increase in separation towards shorter wave-

lengths. Beyond n = 35 the groups of the 1T spectrum run together and no

systematic structure is detectable thereafter.
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By contrast, the bands of the o spectrum maintain an asymmetric
structure as n increases. The intensity within each group falls off rapidly
towards longer wavelengths; and the separation between component lines is
greater.that in the T spectrum. The groups of the O sbectrum begin to
run together at n = 37 (later than in the W spectrum). However, the over-—
lapping groups are still clearly discernible until n = 40. Indeed thgy do
not lose their identity completely until n = 43,

Between n = 40 and n = 43 a new regularity appears in the c* spectrum.
Thisuis illustrated on an expanded scale in Fig. 6.6. We note that the |
obgervable part of each (overlapping) group is characterised by a set of
4 or 5 strong lines of roughly equal separation, and decreasing slightly
in intensity towards longer wavelengths. The separation between thege lines
is approximately 1.1 cm", which equals t1¥u, u;beiﬁg the ¢yclotron fregquency.
About n = 43, however, additional lines appear and there are no systematic

structures beyond this peoint.

Comparison with Experimental Results

The computed ¢’ and W spectra of Ba I have been compared with the
experimental results of Garton and Tomkins.

In the spectral reéions where the adjacent groups of lines assocciated
with different n-values do not overlap.the theoretical results show excellent
qualitative agreement with the experimental values. For instance, in the

region n = 26 to n = 37 of the ot

gpectrum (see Figs. 6.4 and 6.5) the

dominance of the lines of maximum quadratic shift over their associated

groups of satellite lines, observed by Garton and Tomkins, is well reproduced.
In the spectral regions where adjacent groups overlap the large number

of lines present and the absence of obvious regularities in either the

theoretical or experimental spectra makes comparison difficult. However,
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we note that the appearance of groups of regularly spaced lines, observed
by Garton and Tomkins in the region of n = 43, have been reproduced in
the theoretical results., The theoretical spacing of the 3 or 4 principal
members of each overlapping n-group lies within 10% of %Hhw when

40 ¢ n g 43,

In order to check whether the regular spacing of iﬁu?in the vicinity
of n = 43 was due to chance coincidence, as Garton and Tomkins suggested
it might be, the overlapping region of the e’ spectrum was also computed
for magnetic fields of 32 and 47 kG. The results of these calculations,
which are described in graphical form in Figs. 6.7 and 6.8, have confirmed
the presence of regularly spaced lines of spacing 4hw in the region where
strong overlapping of groups sets in. |

Fig. 6.6 shows clearly that the lines of the N spectrum are much
more compressed than those of the o spegtrum —_in agreement with the
observations of Garton and Tomkins. We note that Jenkins and Segre (1939)
observed similar compression in the 1 spectra of Na I and K I; an explan-~
ation of this phenomenon was given by Schiff and Snyder (1939).

As a quantitative assessment of the accuracy of the thecretical energy
levels of Ba I (B = 24 kG) the quadratic Zeeman energy shift of the leading
line of each band was compared with the corresponding experimental value.
These shifts could be identified up to n = 42 in the ¢ spectrum and up
ton = 35 in the M spectrum. Comparison of these results has indicated
that agreement between theory and experiment is within 5%. In the "worst"
case, namely n = 42 of the & spectrum, the theoretical shift exceeds the
experimental value by 0.7 cm™' . The variation of gquadratic shift as a

function of n is illustrated in Fig. 6.9.
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Effect of Truncation

When computing the theoretical spectra of Ba I the effect of truncating
the Hamiltonian matrix was assessed by varying ng;, and n,., and observing
the variation of the computed energy levels, This variation gave a rough
estimate of the degree of interaction between the ffee-field states included
in Hamiltonian matrix and those excluded by the truncation criterion.

In Table 6.1 we illustrate the variation of five energy levels computed
These results indicate that,

using four pairs of values of n n

min/ max *
whed n exceeds about 35 a rapid increase in matrix size is needed in order
to maintain a given accuracy in the computéd energy levels., We alsc note
from Table 6.1 that the lines of the W spectrum are more sensitive to the
truncation criterion than those of the & spectrum, indicating that

inter-n mixing sets in at longer wavelengths in the T spectrum (see

Fig. 6.5).

Variation of Energy Levels with Magnetic Field

Once the accuracy of the author's methods were understood, a series,
of calculations was performed to assess the effect of variation of the mag-
netic field on the behavicur of the theoretical energy.levels of the &*
spectrum. Some of the results are illustrated graphically in Fig. 6.10,in
which the magnetic field varies between 25 and 70 kG. This diagram gives
a good inaication of the size of the quadratic Zeeman shifts compared with
the inter-n differences of the free~field atom. It also illustrates the
behaviour of the energy levels as £ varies. In order to simplify the
diagram only a selection of the possible £ —values is represented.

Fig. 6.10 also demonstrates the type of interaction that occurs between

states of different n-value when adjacent groups run together. We note that

for a given value of n the quadratic shift is an increasing function of L.
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D onax 34 38 40 44
D pmin 17 19 25 31
3lp 41888.072 41888.072 41888.072 | —=——————=
35p 41926.777 41926.773 41926.773 | 41926.235
38p 41950.184 41946.708 41946.708 41946.708
4lp | —r——————- 41962.010 41961.587 41961.570
42p | —m—————— 41975.906 41966.459 41966, 246
{a) U _series
Npax 38 40 44
% i 19 25 31
31p 41892,529 41892.529 | —=m—————-
35p 41930.400 41930.400 41927.629
38p 41950.230 41950.222 41948,039
41p 41969,153 - 41966.387 41962,922
42p 41992,505 41971.938 41967.658
{b) o"" Series
Table 6.1 Effect of Matrix Truncation on Energy Levelg, B = 24 kG
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Hence the energy level of the state of smallest ¢ ~value associated with n
approaches that of the state of maximum £-value associated with n + 1.
For instance, the state (n = 28, { = 1) tries to cross (n = 29, £ = 23) as
the magnetic field strength approaches 65 kG. However, because 6f the "no-
crossing rule" (see Section 6.3.1) these two stateg interact and therefore
cannot cross. This interaction results in an exchange between the states
of their characteristic eigenfunctions,
The exchange of eigenfunctions between interacting states has been in-
vestigated by Garstang and Keﬁic (1974) in the case ;f thé hydrogen atom.
We note that the apparent overlapping of groups observed in the computed
O spectra of Ba I (see Figs. 6.5, 6.6) is a consequence of eigenfunction
exchange between inte;acting states. However, it is not clear whether this

phenomenon accounts for the regularly spaced lines (¥hw) which appear in

the "overlapping” region of the o’ spectrum.

CONCLUSTIONS

The results presented in this Chapter have demonstrated that the
author's approach to determining theoretical energy levels and intensities
is a valuable means of gaining insight into the quadratic Zeeman effect.
However, it is only effective in regions where inter-n mixing is not too
strong; under these circumstances the lack of completeﬁess of the free-
field basis wavefunctions does not introduce significant errors. The comp-
uted energy levels and intensities corresponding to the ¢’ series of Ba I
in a magnetic field of 24 kG agree with the experimental resgults of Garton
and Tomkins to within 1.0 cm™' 'up to n = 43, representing agreement within
5% on the gquadratic Zeeman energy shifts. The corresponding limit for the W

series was found to be n = 35,
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Beyond these limits the present approach is inadeguate, since the
Hamiltonian matrix becomes prohibitively large and.hence the computing
resources (memory and processing power) needed to perform such large cal-
-culations are not readily available. In principle matrix diagonalization
techniques could be developed teo use the computer's backing store, bring-
ing rows/columns into the main memory only when needed. However, it is not
clear how the computed results would.be compared with the relatively
featureless experimental spectra beyond n = 43 in the ot spectrum and
n = 35 in the T spectrum.

In tﬁe author's opinion there would not be much benefit derived from
the use of more and more computing power, since this is unlikely to provide
much insight into the physical mechanisms that give rise to the gquadratic
Zeeman spectra. It would seem more appropriate to investigate alternative
approaches, as we shall outline_in the following Chapter.

Finally, we note that the author's computational methods have been
developed in the context of Ba I; they could be applied to other alkali or
alkaline earth atoms, e.g., Li I, Na I, Sr, simply by changing the tab;e of

guantum defects.
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CHAPTER 7

REVIEW

The research described in this thesis has been concerned with the
development of computational techniques for use in the investigation
of the quadratic Zeeman effect in alkali and alkaline earth spectra.
This work began as an attempt to gain a theoretical understanding of
the experimental spectra of the 6s‘('s;) - 6snp('P ) principal series
of Ba I, produced Sy Garton and Tomkihs (1969a,b). Most of the aﬁ;hor's
attention has heen devoted to the spectral regions in which configur—
ation mixing is appreciable. Hitherto this region has fallen between
the domains of validity of the two main quantum mechanical approaches,
namely perturbation theory (e.g. Schiff and Snyder, 1939), which is
appropriate if inter-n mixing is negligible, and variational or adiabatic
methods, which are wvalid if the magnetic field is large compared with
the Coulomb force.

The approach adopted in this study follows that of Schiff and Snyder,
but incorporates configuration mixing. The determination of energy
levels and intensities involves the diagonalization ¢f a truncated
Hamiltonian matrix. The basis functions are the free-field Couldmbic
states, incorporating empirical quantum defects.

During the course of this research the author has concentrated on
three main issues:

(i) computation of the radial quadrupole integrals of the
Hamiltonian matrix which-involve large principal quantum

numbers and non-zerc gquantum defects;
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(ii) computation of the eigenvalues and eigenvectors of the
large structured Hamiltonian matrices which arise when
configuration mixing 1s appreciable; ’

{iii) assessment of the effectiveness of the free-field basis

states using the experimental spectra of Ba I obtained

by Garton and Tomkins,

RADTAL INTEGRALS

In Chapters 3 and 4 a new method of computing radial multipole
ihtegrals involving Coulomb wavefunctions was presented. The development
of this method was essential in order that the freewfield.basis states
could be used to investigate the quadratic Zeeman effect in highly excited
alkali and alkaline earth atoms, since configuration mixing and quantum
defects had to be taken into account. The large principal gquantum numbers
involved in these éalculations implied that the original approach df
Bates and Damgaard would not be applicable. The author's method, which
is based upon Gauss-Laguerre guadrature and Chebyshev expansions, has
provided an efficient and reliable scheme for computing the required
integrals.

As discussed in Chapters 4 and 5, the new numerical methods for eval-
uating radial integrals in the Coulomb approximation have been of interest
to research workers in several other éreas of atomic spectroscopy. In
particular, the idea of using Chebyshev expansions for computing the
Whittaker function W.h”n(x) has been adopted by Prof. Van Regemorter's
group at the Meudon Observatory, Paris. They have been interested in

extending the numerical techniques to compute WX} and M (X}, with

large positive and negative Kk , in the context of electron-atom scattering

theory. Copies of the author's computer programs have also been distributed



7.2

-141-

to about a dozen cther research centres, including the Universities of
Readihg, Caen and Rhur-Uniﬁersitat, Bochum.

| .Iherauthor's method of computing radial integrals has recently been
usediin the develcopment of alternative methods of computing similar
integrals invoiving very high effective principai quéntum numbers. One
of these, Picart et al. (1978}, was a méthod-based upon.a series.expansion
of the integral which gives accufate results for indefinitely large
V,}?',Ialthough there are restrictions on |v¥ - ¥‘{. 1In another case
the author's method has beeﬁ used to assess the accuracy of a new tech-
nique devéloped by Van Regemorter et al. (197%). The latter technique
has, in turn, bheen used by Fonck and Tracy (1980) in.the deve}opmenf of
yet another method of calculating radial integrals involving moderately
low to very high effective principal gquantum nurnk:‘e.rs.r using the WKB

approximation to compute the radial wavefunctions.

AREAS FOR FURTHER RESEARCH

Interest in the guadratic Zeeman effect in neutral alkali and
alkaline earth atoms has increased since the research described in this
thesis was carried out. Considerable progress has been made in experiment-
al techniqués. Researchers at the Argonne Laboratory have recently pub-
lished detailed densitometer traces of the (7+ absorption spectra of
Ba I, Sr I and Li I in magnetic fields ranging from 10 - 50 kG {Lu et al.
19f8a,b).

However, the development of a satisfactory theory to explain these
complex spectra has made relatively slow progress. A number of areas in

which further research is needed are outlined below.
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7.2.1 Free- Field Basis

As remarked in Section 6.4 further work is neéded to investigate
the domain of wvalidity of the free-field basis. The author's research
has provided most of the computational methods for such an investigation,
but a practical method of computing lower bounds to eigenenergies still
needs to be developed. Although a number of ideas for doing this have
béen outlineé: implementation in the form of computer programs has vet
to be carried out,.

| We note that calculations of this large magnitude are becoming-in-
creasingly practical, due to the easy availability of cheap and powerful

mini- and micro-computers.

7.2.2 OQther Bases
Fano (1977) has suggested that sphercidal harmonics should be used
‘in the expansion of the gquantum mechanical wave.function {(cf. equation
2.5, in which spherical harmonics are used). This formulation has been
| extended by Lu et al. (1978b) but, to the author's knowledge, no numerical

calculations have been performed using this approach.

7.2.3 Study of Hydrogen-Like Systems

Being given the experimental data relating to the gquadratic¢ Zeeman
effect in alkalis and alkaline earths, one is naturally interested in the
corresponding phenomena in the simpler system of a hydrogen atom. This
guestion is also of interest to astrophysicists and students of certain
effects in the solid state. Edmonds (1973) has suggested that the so-
called Sturmian basis would be appropriate in such calculaticns. Since
this basis is complete and discrete it may be useful in describing bound

states in which the wavefunctions are grossly distorted by the magnetic

* see Bazley, N.W. and Fox, D.W., Phys. Rev. 124, pp 483-492, (1961),
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field, and in dealing with the resonances in the continuum observed

by Gross (1959) and others.

SEMI-CLASSICAL METHODS

All of the approaches outlined above are likely to give rise to
problems of theoretical interpretation when applied to the spectral
regions whefe configuration mixing is very strong. The fact that most
quantum mechanical metheds imply working with very large matrices, and
the large size of electron orbits in this spectral region (measured in
thousands of Bohr) indicate thét semi~classical methods might be approp-
riate.

A semi-classical approach to the resonénces in the region of the
series limit of the Garton-Tomkins & spectra was addpted by Edmonds

(1970) and Starace (1973). Their apprecach, which used the Bohr-

_ Sommer feld quantization condition, was first developed by sclid state

physicists to explain the exciton spectra of semi-conductors in high mag-
netic fields (see the review by Baldereschi and Bassani 1970).

Connerade (1974) developed an extended Bohr model, incorperating
Landau quantization, and used it to discuss the appearance of satellite
lines in the Ba I spectra of Garton and Tomkins.

More recently Dr. Edmonds has aéplied semi-classical methods to
the negative energy regions of the Garton-Tomkins spectra. This work
is based on the ideas of Percival (1974), and involves numerical comput-
ation of the classical orbits of an electron moving in a central electro-
static and a uniform magnetic field. This problem can be formulated as
as a dynamical system with only two degrees of freedom, and the technique

of regularization can be used to remove the theoretical and computational

difficulties raised by the central singularity. In this way the model
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reduces to a System consisting of two harmonic oscillators coupled by

a strong.non-linear term.
The two major questions raised bgﬁ;his approach are:
(1) what are the important classiéal orbits 6f the excited
electron, and what is their structure?
(ii}  how can the characte#istics_of the élassical orbits be
used to give an approximation to the cbserved quantum
mechanical spectra, in terms of energy values and
estimates of relative intensities?
Some of these issues are discussed in a receﬁt thesis by Pullen (1981),
but much more research is needed. |

A complete thecoretical explanation of the gquadratic Zeeman effect

will require a combination of quantum mechanical and semi-clagsical methods.
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