
PARALLEL EXECUTION

OF

HORN CLAUSE PROGRAMS

by

George H. Pollard

A Thesis Submitted

for the Degree

of

DOCTOR OF PHILOSOPHY

of the

University of London

Imperial College of
Science & Technology

1981

1

ABSTRACT

The thesis is primarily concerned with investigating the potential
for concurrent execution inherent in Horn clause programs and how that
potential might be realised.

The early chapters give the background and introduce the concepts
which underpin the use of Horn clauses for the expression of computer
programs. A description which outlines how such programs are inter-
preted on conventional von Neumann architectures then follows. The
preliminary part of the thesis closes with a chapter that describes
the forms of parallelism intrinsic to Horn clause programs and how
such parallelism might be exploited to good effect.

Our principal research contribution then follows. This takes the
form of two schemes for the parallel execution of Horn clause
programs.

The first, the Or-parallel scheme, is an extension of the conven-
tional backtracking scheme and our coverage of it is quite comprehen-
sive, extending to the description of computer architectures which
might be used to implement it.

The second, the And-or scheme, is more ambitious insofar as it has
the potential to exploit all the parallelism implicit in Horn clause
programs. This scheme is a radical departure from conventional
approaches to Horn clause program execution and our presentation con-
centrates on its design rather than on its possible Implementation.

To My Parents

ACKNOWLEDGEMENT

I would like to place on record my gratitude to British Telecom
who, as my employers, have recognised the potential of Logic Program-
ming and have given me the opportunity to contribute towards the
research needed to fulfil that potential. Foremost amongst those at
BT to whom personal thanks are due is my colleague, Jonathan Porter,
who supported my application for the scholarship in the first place
and has taken an active interest in my researches since.

I would also like to thank my family for all their help and encour-
agement. My parents have assisted my career through many sacrifices
of their own and their interest in my recent research activities has
not gone by unappreciated. I also would like to thank Dr R.C.H.
Tanner who, as a family friend, has keenly followed my progress and
has in many ways assisted it. Her help was invaluable in establishing
the foundations of my career.

Thanks are due to my wife Lorna and children Andrew, David and
Jonathan for having put up so equably with the occasional disadvantage
dictated by the needs of intensive research.

Unquestionably, my deepest thanks go to Bob Kowalski, my
supervisor, without whose insight, assistance and guidance (not to
mention pioneering work) I would not have been able to undertake this
project. Bob possesses the all too rare quality of being able to view
an issue from many standpoints, a quality which, when coupled with his

3

ability to communicate so clearly, has been invaluable to the research
reported here. On many occasions, a discussion with him has left me
greatly enlightened and encouraged by his comments and enthusiasm. I
feel a deep sense of privilege for having had the opportunity to study
under him.

Finally, I would like to thank Frank McCabe for his valuable com-
ments on earlier drafts of this thesis and, more generally, to all my
colleagues both at Imperial College and British Telecom for the
assistance they have given me.

4

CONTENTS

1.0 CHAPTER Is Introduction 9
1.1 Background 9

1.1.1 Programming . . 9
1.1.2 Data Base Versatility 11
1.1.3 Parallelism 12

1.2 Statement of Thesis 13
1.2.1 Objectives of Research 14

1.3 Preview of Contents 14

2.0 CHAPTER 2: Horn clause Programming 16
2.1 Syntax 16
2.2 Semantics 20

2.2.1 Declarative Semantics 20
2.2.2 Operational Semantics 21

2.3 Prolog 25
2.3.1 Search Tree 26
2.3.2 Control 28
2.3.3 Negation as Failure 28
2.3.4 Built-in Predicates 30

3.0 CHAPTER 3: A Basic Horn Clause Interpreter 33
3.1 Introduction 33
3.2 Outline Requirements of the Interpreter 33
3.3 Abstract Interpreter 34

3.3.1 Search Strategy 34
3.3.2 Selection Strategy 35
3.3.3 Variable Naming 36
3.3.4 Structure-sharing 37
3.3.5 Bindings 37

3.4 Implementation 39
3.4.1 Goal List 41
3.4.2 Description of Processing 42

4.0 CHAPTER 4: Parallelism 43
4.1 Introduction 43

Contents 5

4.2 Potential for Parallelism 43
4.3 Or-parallelism . . . 45

4.3.1 Database Applications 45
4.3.2 Functional Problems 46
4.3.3 Negative Literals 48
4.3.4 Implicative Literals 48

4.4 And-parallelism 51
4.4.1 Independent Subgoals 51
4.4.2 Pipelining 52
4.4.3 Early Detection of Failure 58

4.5 Regulation of Parallelism 61
4.6 Introduction to the Schemes 63

5.0 CHAPTER 5: Or-parallel Proof Procedure 65
5.1 Introduction 65
5.2 Basic Requirement 65
5.3 Implementation Decisions 65
5.4 A Naive Model of the Implementation 68
5.5 A More Practical Model of the Implementation 69

5.5.1 Representation of Bindings 69
5.5.2 Interrelation of Activation Records 72
5.5.3 Processes and Messages 73
5.5.4 A Simple Computation 74
5.5.5 Main Processes 75
5.5.6 Registration 78
5.5.7 Solution Extraction 82
5.5.8 Branch Names 83

5.5.8.1 N-ary Branch Naming Scheme 83
5.5.8.2 Binary Branch Naming Scheme 85
5.5.8.3 Integration of N-ary and Binary Branch Naming Schemes 86
5.5.8.4 Pre-allocation of Branch Names 87

5.6 Register Structure and Manipulation . 89
5.6.1 Structure 89
5.6.2 Insertions 91
5.6.3 Deletions 95

5.7 Database Applications 96
5.8 Architecture 100

5.8.1 Requirements 100
5.8.2 Memory 100

Contents 6

5.8.3 Packets 102
5.8.4 Distribution of Work 103
5.8.5 Message Communication 104

5.8.5.1 Internal PE Structure 108
5.8.6 Processor-Memory Connection 110
5.8.7 Storage Management 113
5.8.8 Process Control 114
5.8.9 Modifications to the Basic Scheme 116

5.8.9.1 Specialist PE's 116
5.8.9.2 Search Engine 118

5.8.10 Regulation of Parallelism 118
5.9 Assessment 120

5.9.1 Level of Parallelism 120
5.9.2 Low Degree of Concurrency . . . 121
5.9.3 High Degree of Concurrency 123

6.0 CHAPTER 6: And-or Proof Procedure 126
6.1 Introduction 126
6.2 And-or Tree 127
6.3 Introductory Example 128
6.4 The Basic Scheme 135

6.4.1 Reconciliation 135
6.4.2 Solutions 137
6.4.3 Registration 139
6.4.4 Scope 140
6.4.5 Conjointness and Disjointness 141
6.4.6 Filtering and Pruning of the And-or Tree 146

6.4.6.1 Scope Subsumption 147
6.4.6.2 Promotion 148
6.4.6.3 Reduction 150
6.4.6.4 Pruning 150

6.5 Controlling the Concurrency 158
6.5.1 Dynamic Control of Activity 158
6.5.2 Suppression of Unproductive Parallelism 159

6.5.2.1 Language Modification 160
6.5.2.2 Modification to Proof Procedure 161
6.5.2.3 Relationship to Or-parallel Proof Procedure 167

6.5.3 Networks 168
6.6 Implementation Considerations 172

Contents 7

6.6.1 Structure-sharing 172
6.6.2 Unification 173

6.6.2.1 Choice of Bindings and Timing Considerations 174
6.6.2.2 Parallel Unification 177

6.6.3 Devolution of Processing 178
6.6.3.1 Ownership of Unifiers and Filters 178
6.6.3.2 Filter Subsumption Check 179
6.6.3.3 Scope Subsumption 180

6.6.4 Determination of Conjointness/Disjointness 182
6.6.5 Registers 183

6.6.5.1 Registration' , 183
6.6.5.2 Reconciliation 184

6.6.6 Filter Incorporation 185
6.6.6.1 Promote and Reduce Phase 186
6.6.6.2 Filter Implementation Phase 187
6.6.6.3 Weaknesses in Filter Manipulation 189

6.7 Assessment 193
6.7.1 Degree of Parallelism 193
6.7.2 Termination 193
6.7.3 Control • 194
6.7.4 Filter Manipulation 195
6.7.5 Architecture 195

7.0 CHAPTER 7: Conclusion 197
7.1 Related Research 197
7.2 Future Research 207

7.2.1 Or-parallel Proof Procedure 207
7.2.2 And-or Proof Procedure 208

8.0 References 209

9.0 APPENDIX: Details of Basic Interpreter 214

Contents 8

CHAPTER Is INTRODUCTION

1.1 BACKGROUND

It is , perhaps surprising that an industry which likes to surround
itself in the aura of logical thought should be taking so long to dis-
cover logic itself.

The academic world has been actively investigating Logic Program-
ming [25] since 1972 and recent years have seen a great increase in
the level of interest shown in this area of computing science.

The computing industry, on the other hand, is distinctly lagging in
this field yet as is so often the case, it is the industry itself
which has the most to gain. The evidence that Logic Programming is
of practical use has been available for some time [18] but to date
there has been no large-scale application of it. Perhaps this is not
surprising in view of the departure from convention that this for-
malism entails.

Much research effort is being applied to the development of Logic
Programming; some, such as the research reported here, being supplied
by non-academic bodies. In this context, it is worth pointing out
that the largely unpublicised Japanese Government and Computer Indus-
tries coordinated research program into fifth-generation computers
[45] is based on the use of Logic Programming and kindred formalisms.

Below, we outline some of the features of programming in logic and
the potential for improvement and advancement that this formalism
offers.

1.1.1 Programming

It is generally accepted that automatic computation is plagued by

CHAPTER 1: Introduction 9

all sorts of problems stemming from the use of procedural languages.
By 'procedural languages' we mean languages whose semantics are given
in terms of the state of some abstract (occasionally real!) machine.

The problems intended for automatic computation are expressed in
quite a different manner. As a rule, they are stated informally in a
system specification, by and large in a style oriented towards the
real world. It is then the programmer's task to take such an informal
specification and translate his interpretation of it into a form which
is not human-oriented (and consequently difficult to comprehend).

It is hardly surprising that at one and the same time, the conven-
tional approach produces programs that are difficult to understand
(and hence modify) and which are also wrong - insofar that they seldom
produjce the intended results and in any case promote little faith in
their 'correctness'.

. It is true that certain advances, notably structured programming,
have tended to mitigate the worst excesses of this approach but they
have not addressed the central question of presenting problems to the
computation process In a manner truly understandable by both man and
machine.

To overcome these shortcomings, the machine must, at some level, be
made to understand naturally expressed problems.

Prolog [41], [38], [43] is a significant advance in this respect,
for although it is by no means a, natural language, it is far closer
related to human thought and expression than procedural languages are.
The justification for this statement is that Prolog is essentially the
Horn clause subset of Standard Form Logic [24], a formalism whose
roots go back over two thousand years and whose development ever since
has been motivated by the need to assist the comprehension of human
thought. Procedural computer languages, on the other hand, exist
solely for the purposes of automated computation.

Much Logic Programming research effort is being applied to the area
of program transformation [8], [23]. The eventual aim here is to

CHAPTER 1: Introduction 10

allow the user to express the problem domain at a still higher level -
perhaps a level equivalent to the Standard Form of Logic - and then to
transform the supplied specification to a (logically equivalent) form
that also exhibits good computational behaviour.

Similar research is being undertaken for functional programming
languages (e.g. [3]) but the Logic Programming approach has the unique
characteristic that only one formalism is involved.

Clearly, significant advances are offered by the success of these
investigations.

1.1.2 Data Base Versatility

Much of the interest being shown in Prolog stems from its proper-
ties in the context of database application [19].

It is possible to interpret any relational database (as described
by Codd [9]) as a Prolog program but the converse is not true - i.e.
Prolog is more general. It is reasonable to expect therefore that
much of the interest being shown towards relational databases will
find expression as an interest in Prolog.

In Prolog, there is actually no distinction between what is conven-
tionally considered program and data. A 'program' is merely an
implicit manifestation of data insofar as its sole purpose is the com-
putation of that data (this point will be amplified later).

The capability of being able to express both 'program' and 'data'
in a single formalism is a truly remarkable one but even so, it does
not exhaust the expressive versatility of Prolog. Because Prolog is
logic, aspects of computation associated with logic may be directly
implemented in Prolog. An example appropriate to the area of data-
bases is that of integrity constraints.

CHAPTER 1: Introduction 11

Continuing this theme of Prolog's versatility, we mention its use
as a meta-language. Briefly, a meta-language is one which reasons
about another language, the object-language - i.e. the objects repres-
ented in the meta-language are statements of thexobject-language.
Both may be implemented in Prolog. An illustration of the use of
meta-language might he that concerning the modification of a database.
Here, the object being manipulated in the meta-language is the data-
base itself. The integration of object- and meta- level programming
in an elegant way is under active investigation [1], [44] and offers
the dual benefits of safer and more powerful programming.

1.1.3 Parallelism

Recent advances in micro-electronics, particularly in the area of
VLSI fabrication, have served to reduce the cost of computer hardware.
The trend is a continuing one and affects the level at which theore-
tical improvements to computation become cost-effective
practicalities.

One such area is that of parallelism [42]. Parallelism, in the
form of pipelining within instruction cycles, has for some time been a
standard feature of many conventional machines. However, such pipe-
lining depends on the identification of separate components of some
action and the execution of those sub-actions on an input stream -
neighbouring components operating on neighbouring items in the stream.
This form of parallelism is not readily extensible and so cannot take
proper advantage of the opportunities offered by incoming technology.

Parallelism at the higher level of concurrency of program instruc-
tion execution is a more recent innovation [22], [46] and holds some
promise.

However, this approach to exploiting future technology is not ideal
either. For one thing, it is the programmer who decides whether to
incorporate such concurrency or not and in this way, his influence
over the computation process is extended rather than diminished.

CHAPTER 1: Introduction 12

Of more immediate concern here is the criticism that this form of
concurrency is not sufficiently general and therefore does not hold
maximal potential for such exploitation. Concurrency in these lan-
guages tends to be rather coarse-grained because It is the program-
mer's responsibility to identify 'processes' that might run
concurrently.

Perhaps a more serious criticism of such concurrency follows on
from the earlier discussion of semantics. The semantics of fully
transparent concurrent computation has not been defined - in all prob-
ability cannot be defined - in terms of the effects of sequential
transitions on the state of a machine.

Prolog and other languages, notably functional languages, whose
semantics may be given in human terms rather than in terms of machine
state transitions, do not suffer the above limitations. So the single
step necessary to implement concurrency for such languages is to sup-
ply a mechanism that conforms to those semantics and yet is
concurrent. The concurrency thus conferred could be made transparent
(i.e. not of the programmer's concern), a significant point in its
favour.

1.2 STATEMENT OF THESIS

1. Concurrent computation is a desirable way to exploit VLSI.

2. Prolog is a suitable language for the advancement of concurrent
computation.

3. Concurrent implementations will serve to make Prolog a more
attractive and hence widespread language.

4. Increased use of Prolog will serve to improve the general standard
of programming.

CHAPTER 1: Introduction 13

The research reported in this document is primarily concerned with
item 2.

1.2.1 Objectives of Research

The major area of original research reported herein is concerned
with the investigation of alternative approaches to the implementation
of a concurrent execution mechanism for Prolog programs.

Throughout this research, the criterion of transparency has been
regarded as a most desirable property. The few departures from this
ideal that our proposals make are necessary solely in the interests of
expediency and it is confidently expected that in due course, such
expediency will not be necessary and this criterion will be fully
realised.

The schemes proposed are quite general and make no assumptions
about the nature of the programs to which they might be applied. They
contrast in this respect with other schemes (e.g. [5]) which impose
certain restrictions on the user's program.

1.3 PREVIEW OF CONTENTS

The thesis may be regarded as consisting of three parts.

The first part is concerned with well-established aspects of the
use of logic for programming.

Chapter 2 deals with the theory underlying Horn clause programming
and includes a section on the programming language Prolog. Chapter 3
continues in this vein by describing an idealised conventional imple-
mentation of a basic Prolog interpreter. This account will be of some
use in later parts of the thesis because it affords the possibility of

CHAPTER 1: Introduction 14

comparing and contrasting certain aspects of the new approaches with
those found in conventional implementations.

Chapter 4 makes precise the notion of concurrency as applied to the
execution of Horn clause programs and investigates the various ways in
which such concurrency may be used to advantage.

The second part of the thesis comprises our principal contribution
of original work. It consists of two chapters, each describing a par-
allel execution mechanism for Horn clause programs.

The first of these, Chapter 5, describes the Or-parallel Proof Pro-
cedure, a scheme which exploits just one form of parallelism. We con-
sider it feasible to implement this scheme by means of technology now
available. Because of this and the fact that the abstract model of
the proof procedure is quite simple, our exposition here has an imple-
mentation bias to it and includes, for example, a discussion on
architectures that might be used to realise the scheme.

Chapter 6 describes the And-or Proof Procedure, an execution mech-
anism with the potential to exploit, we believe, all the parallelism
implicit in Horn clause programs. The scheme, as one might expect, is
more complex and consequently our description is pitched at a higher
level.

The final part of the thesis, Chapter 7, is more general and
relates our researches to those being undertaken by others. It also,
in conjunction with chapters 5 and 6, identifies areas of further
research.

CHAPTER 1: Introduction 15

CHAPTER 2: HORN CLAUSE PROGRAMMING

There are several excellent introductions to Horn clause program-
ming, notably Kowalski's book [28]. In view of this, it is not appro-
priate to devote a great deal of space here to such an introduction,
and the interested reader is earnestly advised to refer to the above
book.

However, we do wish the thesis to be as self-contained as possible
and in view of this, and the fact that there is a certain variation in
terminology throughout the literature, we will be quite specific and
include here the background material necessary to enable the thesis as
a whole to be understood.

2.1 SYNTAX

A Horn clause logic program is a set of clauses.

The building blocks of clauses are atoms. An atom expresses a
relationship between the individuals that appear in it (or a property
of an individual if just one appears).

Examples of. atoms are

Andrew is the brother of David
0 is a number
Jonathan likes x

where the names of the relationships are underlined and the names of
the individuals are not.

We will for the most part find it convenient to use prefix repres-
entations of atoms thus

CHAPTER 2: Horn clause Programming 16

Brother(Andrew, David)
Number(0)
Likes(Jonathan, x)

There are two types of clauses in a logic program: assertions and
implications.

An assertion is comprised of a single atom. It is a statement of
fact and is read as holding unconditionally.

An Implication is a statement of the form

i
B is implied by A^ and k^ and .•. and A r

written

B <- A. & A0 & ... & A 1 z n

where A^, A2, •••, A n and B are all atoms. B is termed the consequent
atom of the implication and A^, A n its antecedent atoms.

An example of an implication is

Happy(John) <- Friend-of(John, Mary) & Friend-of(John, Jane)

No significance is attached to the ordering of the atoms in the
antecedent of an implication. Note that an assertion is simply the
special case of an implication with no antecedent atoms.

The consequent atom of a clause will sometimes be termed its head;
the conjunction of its antecedent atoms, its body.

An atom is made up of a predicate symbol and one or more terms. As
indicated above, we will tend to use the prefix representation of
atoms P(....), although occasionally we will opt for the infix form
when only two terms are involved e.g. x = A.

A term is a constant, a variable or a functor.

CHAPTER 2: Horn clause Programming 17

John and 0 are examples of constants. Each use of a constant in
the program refers to the same individual.

All variables appearing in a clause are interpreted as being uni-
versally quantified outside the clause. For example the clause

Parents-of(x, y, z) <- Mother-of(x, y) & Father-of(x, z)

is interpreted as

For all x,y,z (Parents-of(x, y, z)
<- Mother-of(x, y) & Father-of(x, z)).

For those variables which only appear in the body of a clause, an
equivalent interpretation is obtained by existentially quantifying the
variables concerned immediately outside the body.

For example,

For all x,y,z (Grandparent(x, y) <- Parent(x, z) & Parent(z, y))

is read alternatively as

For all x,y (Grandparent(x, y)
<- There exists z (Parent(x, z) & Parent(z, y))).

Variables, unlike constants, are only local to the clause in which
they appear i.e. there is no special relationship between occurrences
of the same textual variable in two different clauses. Conversely,
two clauses identical in every respect except for a one-to-one mapping
of variables are in fact read as being identical. Thus

Grandparent(x, y) <- Parent(x, z) & Parent(z, y)

and

Grandparent(u, v) <- Parent(u, w) & Parent(w, v)

CHAPTER 2: Horn clause Programming 18

are clauses with identical meaning and are termed variants of one
another.

The two above properties of variables are consequences of the 'uni-
versally quantified' interpretation placed on variables in a Horn
clauses program.

Functors consist of a function symbol and one or more terms. (An
equivalent alternative definition dispenses with constants and allows
functors with no terms in their place.)

Functors are analogous to data structures in conventional program-
ming. Examples of functors are

date(l, Jan, 82)
.(x, NIL)
x.NIL

The function symbols in the above examples are 'date', '.' and '.'
respectively. As with atoms, functors may be written in prefix or
infix form. The terms in the prefix form are separated by commas.

The third example is the infix equivalent of the second. The con-
ventional usage of the '.' functor - and that adopted throughout this
thesis - is in the representation of lists. Both examples name the
list whose first item is x and whose remainder Is the list NIL (a con-
stant conventionally representing the empty list).

Notice that the definition of term is recursive. Thus .(A, .(B,
x)) names the list whose first two items are A and B and,whose tail is
the list x. The equivalent infix form is A.(B.x). By assuming that
'.' is associative to the right, we will dispense with the brackets
altogether and use A.B.x to represent such a term.

Functors and atoms share the same syntax but are distinguished by
the context of their occurrence in the clause. We will distinguish
between variables and constants by using names beginning with a lower
case letter to represent variables.

CHAPTER 2: Horn clause Programming 19

2.2 SEMANTICS

Two principal semantics may be ascribed to Horn clause logic:- the
declarative semantics (human oriented) and the operational semantics
(machine oriented). It is the equivalence of the two that imputes to
Horn clause programs the dual aspects of being human-oriented and
machine executable.

2.2.1 Declarative Semantics

In Horn clause programs, no 'meaning' as such attaches to the sym-
bols of the program; the only 'meaning' possible is that which can be
inferred from the set of clauses that make up the program.

The semantics of Horn clause logic may be given in terms of logical
implication, which in turn is normally given in terms of the notions
of interpretation and inconsistency.

Although the declarative semantics are important in theory, their
equivalence to the operational semantics makes it possible to dispense
with their exposition here and rely instead on a detailed description
of the operational semantics. A rigorous description of the declar-
ative semantics of clausal logic and its equivalence to the opera-
tional semantics is given in [15].

We contend that people have a sufficiently intuitive idea of
'truth' and that when a user is engaged in practical programming, it
is good enough for him to write clauses which are 'true' statements
about the intended meanings of the symbols used in the program. A
choice of meaningful symbols is therefore essential in practice.

CHAPTER 2: Horn clause Programming 20

2.2.2 Operational Semantics

To be activated, a Horn clause program must be presented with a
goal statement. A goal statement is a clause of the form

G, & Go & • • • & G i Z n

where G^, G2, •••» are atoms called goals. In the declarative
reading, a goal statement is taken as the denial

"for all v^, V£, •••» v m (the variables appearing in the terms
within the atoms), it is not the case that G, & G0 & ... & G„ ' 1 z n
is logically implied by the program".

It is possible to show that if the set of clauses given by the union
of the program and the goal statement is inconsistent, the conjunction
(G^ & G2 &... & G n) is logically implied by the program, for some
instance of its variables.

Resolution

The operational semantics of Horn clauses are essentially given in
terms of resolution [39]. Although resolution is a quite general
inference mechanism for clausal form, this account of it is given in
terms of top-down (goal-directed) computation for Horn clauses, the
form in which it is almost universally used in practice.

Let the given goal statement be

<- A, & A« & ••• & A„ 1 z n

and select one of the atoms A^, whose predicate symbol is named P.

Select from the program a clause

B <C— B, & B0 & ... & B l z m

CHAPTER 2: Horn clause Programming 21

whose head B also has the predicate symbol P.

A step of resolution Is the process whereby the goal atom, A^, and
the clause head, B, are matched with most general unifier S and a new
goal statement is derived by application of S to

<— A^ & A2 & • • • & & B^ & ... & B m & & • •. & A n

- i.e. the original goal statement with the selected goal atom
replaced by the body of the selected clause. (Variables must, if nec-
essary, be renamed so that no variable appears in both the goal state-
ment and selected clause.)

Two atoms, A and B, may be matched or unified with most general
unifier S if S is a substitution whose application to A and B results
in a common instance of A and B which is most general.

A substitution S is a set of substitution components (or bindings),
{v1/t1, *•*» ^ ^ k ^ * w ^ e r e e a ch component is a 'variable/term'
pair and v^ = vj only if i=j.

The application of the substitution S to an expression A is the
process of replacing each occurrence of every variable v in A by the
term t, for each component v/t in S. The expression (A)S produced by
this means is the instance of A determined by S.

C is a common Instance of A and B if it is an instance of A and an
instance of B determined by the same substitution. C is most general
if every other common instance of A and B is an instance of C.

Derivation and Refutation

A resolution step produces a new goal statement (G') from the old
(G) or the empty clause in the special case when only one goal appears
in G and the selected clause is an assertion.

CHAPTER 2: Horn clause Programming 22

The empty clause is a special clause which has no head or body and
has the unique property of being self-contradictory.

Given a program P and initial goal statement G^, a sequence of goal
statements G^, G2, G n produced by resolution steps is a
derivation of G from S, where S is the union of P and G..

n ' 1

If G n is the empty clause, this derivation is a refutation of S.

It may be shown that if there exists a refutation of a set of
clauses S then S is inconsistent [39] • In the context of
goal-directed computation, this is equivalent 'to stating that an
instance of the conjunction making up the body of the goal statement
(the goal conjunction) is logically implied by the program. The
instance is the one determined by applying to the goal conjunction the
union of all most general unifiers produced in the course of refuta-
tion.

The exhibition of such a refutation is a proof of the goal conjunc-
tion which forms the body of G.

The Procedural Interpretation

Kowalski's procedural interpretation of Horn clause programs [25]
is a convenient way of expressing the mechanics of resolution infer-
ence in conventional computing terms.

In the procedural interpretation, the goal statement <- G^ & G2 &
... & Gn is interpreted as a request to find an instance of the vari-
ables that conjointly (simultaneously) solve the goals G^, G2,

v

Procedure Calls and Definitions

The goal statement <- G^ & G2 & ••• & Gn is interpreted as a set of
n procedure calls, the arguments of each call being the terms within
the respective atom. The calls must be solved conjointly in order to
constitute a solution of the goal statement. No significance is
attached to the order in which goals are selected for solution [20].

CHAPTER 2: Horn clause Programming 23

A clause whose head predicate symbol Is P Is called a procedure
definition for P.

The set of procedure definitions for P is called the procedure set
for P. The set of procedure sets thus partitions the program.

In the procedural interpretation, the definitions in the procedure
set for P are interpreted as alternative ways to solve calls whose
associated symbol is P. The terms of the consequent atom are inter-
preted as procedure head arguments and serve to identify the procedure
calls which the definition can be used to solve.

Activation and Invocation

In the procedural interpretation, calls are activated and procedure
definitions are invoked in response.

Activation consists of selecting as procedure call, a goal from the
set that makes up the goal statement. The rule governing which call
is chosen is known as the selection strategy.

Invocation entails the selection of a procedure definition from the
procedure set appropriate to the selected goal and the use of that
definition with a view to advancing the computation. The rule govern-
ing which definition is chosen is known as the search strategy.

Computation Steps

In the procedural interpretation, a resolution step is considered a
step of computation. Computation terminates when the empty clause is
derived.

Transmission of Data

The act of matching a procedure call with the head of a procedure
definition is viewed In the procedural interpretation as the trans-
mission of data between the call and definition. The data transmitted
is to be found In the associated most general unifier.

CHAPTER 2: Horn clause Programming 24

Let S be a most general unifier produced in a computation step.
The components of S may be classified according to the criterion of
whether the component's variable originates from the goal statement or
whether it comes from the selected procedure definition. The set S
may thus be partitioned: S = S-in U S-out, where S-in is the set of
components for procedure definition variables and S-out is the corre-
sponding set for goal variables.

Application of S-in to the atoms of the goal statement has no
effect; likewise, application of S-out to the atoms originating from
the body of the definition also has no effect. Therefore, that part
of the computational step which stipulates the application of S to

(A. & A0 & . • • & A. , & B , & . . . & B & A.,, & ... & A 1 1 2 I—1 1 m 1+1 n'

may be viewed as an application of S-in to (B^ & B2 & ••• & B m) and an
application of S-out to (A^ & & • • & ^1+1 & • • • & An).

If now this computational step forms part of a successful refuta-
tion, the procedural interpretation views the application of S-in to
(B^ & B2 & ••• & B m) as transmission of input data to the invoked pro-
cedure definition and the application of S-out to (A^ & A2 & • • &
A ^ ^ & ... & A n) as the transmission of output data from the invoked
procedure definition.

2.3 PROLOG

The computer language Prolog, first implemented in 1972 by
Colmerauer and his colleagues at Aix-Marseille [10], Is essentially
the language of Horn clause logic and its implementation is closely
based on Kowalski's procedural interpretation.

The two uncommitted aspects of the procedural interpretation, name-
ly the selection strategy and the search strategy, are usually imple-
mented In the following particularly simple ways.

CHAPTER 2: Horn clause Programming 25

The selection strategy is left-right, last-in-first-out i.e. given
the goal statement <- A, & A0 &... & A , the call A. is selected and

L Z n 1
if the clause B <- B^ & B2 & ••• & B m Is invoked in response to it,
the new goal statement (assuming successful unification) will be

<- B ' & B 0' &... & B ' & A ' & ... & A ' 1 2 m 2 n

(primes indicating modifications resulting from the application of the
most general unifier), from which the next call selected will be B^'
etc..

For the purposes of the search strategy, procedure sets are
regarded as procedure lists. The list order is that given by the tex-
tual ordering of the clauses making up the procedure set.

Initially, the clause invoked in response to some given call is the
first in the list specified for the call's predicate symbol. In the
event of a matching failure or possibly a subsequent return to this
point because of later failures, the second clause, if one exists,
will be tried etc..

In the event of there being no further procedures to invoke in
response to a call, the current derivation does not lead to a refuta-
tion and must be undone (in some sense). This aspect of computation
is normally implemented by backtracking, to be described shortly.

2.3.1 Search Tree

The combined behaviour engendered by the normally implemented
selection and search strategies is termed left-right, depth-first
(LRDF) search. The name derives from consideration of the search tree
for the given goal statement and program.

The search tree for a given goal statement and program is deter-
mined by the assumed selection strategy and describes all possible
ways of solving the goal statement under that strategy.

CHAPTER 2: Horn clause Programming 26

Nodes of the search tree represent goal statements (the root
represents the Initial goal statement). A path from the initial node
to a tip node labelled by the empty clause represents a successful
computation - i.e. a refutation.

A simple example of a search tree relates to the Fallible Greek
problem (Figure 1).

Fallible(x) <- Human(x)"

Human(Turing)

Human(Socrates)

Greek(Socrates)

<- Fallible(y) & Greek(y)

o <- Fallible(y) & Greek(y)

o <- Human(y) & Greek(y)
/ \

/ \
/ \

/ \
/ \

/ \
<-Greek(Turing) o \

0 <-Greek(Socrates)
1
I
I
o <-

Figure 1.

The underlined atom is that chosen according to the adopted selection
strategy. The search strategy normally used in Prolog
implementations, as described above, will search the leftmost branch
of such a tree as deeply as possible before searching the next left-

CHAPTER 2: Horn clause Programming 27

most branch. Thus Human(Turing) is tried before Human(Socrates) when
solving <-Human(y). Hence the name 'left-right depth-first search'
for the combined selection and search strategies.

If a derivation does not lead to a refutation, a conventional Pro-
log interpreter backtracks to the most recent choice point - i.e. it
reinstates the computation to the state it was in at the most recent
node which still has an untried child node and then selects as the
next clause the clause corresponding to that child node.

2.3.2 Control

It should be apparent that the behaviour of a logic program on exe-
cution is determined by two aspects viz. the contents of the program
and the way that procedure calls and definitions are chosen. Kowalski
has documented this feature of (logic) programming in his paper 'Algo-
rithm = Logic + Control' [27].

It should be stated that few implementations of Prolog offer any-
thing but the basic control of LRDF search and of those that do, all
control is manual - i.e. under the programmer's jurisdiction. Perhaps
the most ambitious implementation of control features is to be found
in the research version of Prolog, IC-PROLOG [6].

Anything here other than a detailed exposition would not do justice
to the subject matter and because control features do not play a large
part in the body of the thesis, we do not feel justified in giving
such an exposition here. Instead we refer the Interested reader to
the above paper.

2.3.3 Negation as Failure

There Is no facility in the language of Horn clauses of having a

CHAPTER 2: Horn clause Programming 28

goal statement that contains a negated atom. Such a facility Is a
necessary one in practice and Prolog provides it, albeit at the cost
of a weaker interpretation of negation - negation as failure to prove.

In Prolog, the literal not-P in a denial is interpreted as a chal-
lenge to show P is not provable - i.e to show that all ways of solving
the atomic denial <-P fail. (A literal is an atom or the negation of
an atom.)

Clark has shown [4] that the failure to prove P, an observation
made at the meta-level, is a semantically acceptable way of proving -<P
at the object level, provided that "if" definitions are re-expressed
in "if and only if" form.

As an example of the need for negation in practical logic program-
ming, consider the procedure set for checking that some item is not a
member of a given list:-

Not-in(u, NIL)
Not-in(u, v.w) <- Diff(u, v) & Not-in(u, w)

The Diff predicate must be defined so as to hold for every distinct
pair of variable-free terms in the universe of discourse. Although
such a definition is possible in theory, it is not generally feasible
in practice and a more convenient way of achieving the same end is by
means of the procedure set

Not-in(u, NIL)

Not-in(u, v.w) <- not-(u=v) & Not-in(u, w)

and the clause

z=z

which serves to define '='. When presented with the denial
<-Not-in(A, A.NIL), only the second procedure definition can be used
and this results in the call not-(A=A) being made. The proof of A-A
is then attempted (I.e. the main problem is held pending in favour of

CHAPTER 2: Horn clause Programming 29

the denial <-(A=A)) and succeeds with the most general unifier {z/A}.
The proof of <-Not-in(A, A.NIL) therefore fails.

/

The call Not-in(A, B.NIL) is essentially the problem of demonstrat-
ing the failure to prove <-(A=B). The proof of <-(A=B) fails and so
the original call succeeds.

Negation interpreted as failure to prove is weaker than the conven-
tional interpretation of negation. For example, the standard form
sentence

P v --(-.P)

asserting the truth of the atom P gives rise, on 'translation' into
Prolog, to the implication

P <- not-P.

Unfortunately, any attempt by a Prolog interpreter to solve <-P will
result in a loop unless the interpreter has a suitable loop detection
facility (loop detection facilities are not normally incorporated in
practice).

A second characteristic of negation interpreted as failure is that
none of the variables in the terms of the negated call are allowed to
be instantiated in the course of the nested proof attempt if those,
variables are shared with other atoms in the goal statement.

In practice, this and the former weakness do not detract from the
intuitive notion of negation. Negation as failure is consequently
much used.

2.3.4 Built-in Predicates

To be of practical use, the language of Horn clauses must further
be augmented by so-called built-in predicates.

CHAPTER 2: Horn clause Programming 30

For instance, the sum relationship, which holds between three inte-
gers a, b, c whenever c=a+b, cannot conveniently be expressed in the
user's program. Moreover, it Is unreasonable to require users to be
bothered with such standard details and so all practical Prolog inter-
preters allow the programmer to use certain calls while the interpret-
er internally implements the corresponding procedure set.

Interpreters vary as to the number and extent of. the built-in pred-
icates they supply. The sum relation is an example of an arithmetic
relation. Arithmetic built-in predicates are, as a rule, useful and
safe additions to the language.

A second major class of built-in predicates, the meta-level predi-
cates, are more contentious. Meta-level predicates allow the program
to reason about itself.

For instance, the facility of adding and deleting clauses from a
program in the course of a proof is often available. The semantics of
such operations are in themselves not well-defined - for it is obvious
that the order in which procedure calls are made might now be signif-
icant. Thus, the solution of a goal statement that contains a call to
delete a clause in P's procedure set and also a call with predicate
symbol P may well give different results depending on the order in
which the calls are taken.

A second contentious class of built-in predicates are those used to
control the execution of logic programs.

Consider the '/' predicate of most Prolog systems - e.g. [38]. Its
declarative semantics are 'true'; its operational semantics are under-
stood in the context of LRDF search, which it seeks to modify by
excluding certain backtracking options (the details are of no conse-
quence here).

For example the prototype IC-Prolog procedure set

P <- C & Q
P <- not-C & R

CHAPTER 2: Horn clause Programming 31

which, loosely speaking, states that the proof of P follows from the
proof of Q or R, depending on whether the proof of C succeeds or fails
(conventionally, P is computed by: "if C then Q else R"), Is
expressed in these systems as

P <- C & / & Q
P <- R.

The second clause is understood as a catch-all, the '/' predicate in
the first clause overriding the use of the second clause if the '/'
call is ever executed i.e. if the call C succeeds.

By removing backtracking options, '/' saves the allocation of stor-
age and this is sometimes the reason for its inclusion.

Unlike the control features of IC-PROLOG, control implemented in
this way is dangerous and can lead to complications normally associ-
ated with conventional programming languages. An example of interest
in this thesis is that the use of such a feature would severely com-
plicate the parallel invocation of alternative procedure definitions.

As a general comment, it is felt that more restraint ought to be
exerted in the provision of such 'dirty' features - for often they are
no more than simple expedients which serve to compensate for the defi-
ciencies of current machines and have the side-effect of blurring the
program's meaning. Considerable research effort, e.g. [1], is aimed
at the 'harmless' incorporation of pragmatically sufficient meta-level
facilities.

CHAPTER 2: Horn clause Programming 32

CHAPTER 3: A BASIC HORN CLAUSE INTERPRETER

3.1 INTRODUCTION

This chapter is concerned with the design of a hypothetical basic
Horn clause interpreter and the manner by which it might be imple-
mented on conventional von Neumann architecture.

One reason for including such a description is to provide a frame
of reference in which comparisons between various approaches to pro-
gram execution can be made. The second reason is that certain aspects
of the proposed designs bear close resemblances to their conventional
counterpart and so the description of a sequential Interpreter will
assist in their explanation.

The Interpreter's specification will be given principally in Prolog
although for the sake of brevity, we will content ourselves with a
narrative description of certain lower-level components.

The reader interested in the details of a conventional implementa-
tion of Prolog is referred to [38], [43].

3.2 OUTLINE REQUIREMENTS OF THE INTERPRETER

The interpreter will be presented with the user's Horn clause pro-
gram and the denial which constitutes the goal statement. It will
perform a left-right depth-first search in its attempt to find a refu-
tation.

A structure-sharing [2] implementation will be described because it
is typical of conventional Interpreters and the proposed implementa-
tions of our schemes for parallel execution intend to make use of
structure-sharing in one form or another.

CHAPTER 3: A Basic Horn Clause Interpreter 33

3.3 ABSTRACT INTERPRETER

Before describing the mechanics of the interpreter, it is convenient
here to re-state certain aspects of LRDF search which need to be borne
in mind in what follows.

3.3.1 Search Strategy

Under LRDF search, the interpreter will traverse the search tree
from left to right i.e. at every choice point in the search tree, the
leftmost branch will initially be selected and in the event of the
chosen branch not leading to a refutation, the interpreter will back-

o 1

/
/

/
o 2
/ /

o 7
\
\

o 13

\

o 3 o 6 o 8 o 9 o 12

o 4 o 5 . o 10 o 11

Figure 2

CHAPTER 3: A Basic Horn Clause Interpreter 34

track to its nearest choice point and then try the next leftmost
branch, etc.. The strategy is depicted in Figure 2, where node labels
reflect the order in which new branches of the search tree are
explored. In this way the entire search tree is explored if necessary
(assuming no infinite branch is followed).

It can be seen that backtracking implies the need to nullify (in
some sense) the effects of all computations between the most recent
node and the nearest remaining choice point whenever it is recognised
that the current branch does not lead to a refutation. Data struc-
tures must therefore be designed to allow for this eventuality.

Because just one branch of the search tree is searched at a time,
it is sufficient to represent the tree as the currently active branch
and incorporate in the representation sufficient information to allow
for the activation of alternative branches at some later time, if nec-
essary. The currently active branch is normally represented as a
stack of activation records, a record corresponding to each node in
the branch. This aspect of the implementation will be described more
fully later.

3.3.2 Selection Strategy

The selection strategy associated with LRDF search dictates that
goals are selected in left-right, last-in-first-out order.

The list of goals is initially given. Whenever an implication is
used in the course of refutation, the goals arising from the
antecedent of the Implication are added in a way which ensures that
they are selected before the other outstanding goals. Within them-
selves, the introduced goals are selected according to the order in
which the corresponding atoms appear in the antecedent of the impli-
cation used.

CHAPTER 3: A Basic Horn Clause Interpreter 35

3.3.3 Variable Naming

It is essential that variable names are chosen in such a way that
no matter how often a clause it used In the course of a proof, no con-
fusion can arise between different instances of Its variables.

Each activation record is given a unique name. By incorporating
this name in the names of those variables introduced by the clause
referred to in the activation record, all variable names are guaran-
teed unique. Moreover, in this way, variables may conveniently be
associated with activation records.

Variable names take the form

<level, static variable>

where 'level' is the name of the relevant activation record and 'stat-
ic variable' names the variable as it appears in the clause used.

Terms are usually represented in an analogous manner. Thus a term
introduced through the invocation of a clause Is represented by the
ordered pair

<level, static term>

where 'level' is again the name of the activation record corresponding
to the invocation of the clause which contains the term and 'static
term' is a data structure which describes the term as supplied in that
clause.

Interpretation of the term is carried out implicitly by reading
each static variable v occurring in 'static term' as the variable

<level, v>.

CHAPTER 3: A Basic Horn Clause Interpreter 36

3.3.4 Structure-sharing

It should be clear that the normally adopted variable naming scheme
not only guarantees unique names but also makes possible the sharing
of static term structures. The scheme may be extended to other
expressions, not just variables and terms.

For instance, the antecedent atoms of a clause may be referred to
by the ordered pair

<level, static antecedents

This device is used in the representation of goal lists (see below)
which, of course, originate from the antecedents of clauses. The var-
iables in each goal are named by the usual pair, the level component
being that of the antecedent.

In general, such structure-sharing obviates the need to copy data
structures and so significant economies may be forthcoming - at least
in a conventional implementation - from what is in any case an elegant
feature.

The conventional representation of a goal list also involves a fur-
ther, more specialised, form of structure-sharing. One must bear in
mind that at each non-terminal node, all but one goal (the selected
goal) appears in the goal list of the immediately descended node.
Copying outstanding goals is clearly wasteful and the usual approach
is to share, at each node, references to outstanding goals. We will
describe precisely how such sharing may come about once we have fixed
the representation of node structures.

3.3.5 Bindings

When a variable is bound to a term, that term is not constructed

CHAPTER 3: A Basic Horn Clause Interpreter 37

but is held implicitly. In other words, a binding may be viewed as
the data structure

<variable, <level, static term».

A later unification may need to evaluate the term part of this binding
and to be efficient, it is important that the evaluation is quickly
able to determine whether any variable in the term is bound and if so,
to what term. Such a variable will have the same level as that of the
term. Rapid access to a variable's binding is achieved by the follow-
ing means:-

When an activation record is established, binding space is reserved
for each variable introduced by the clause used in the activation.
These variables will be partly named by the level of their introducto-
ry activation record and partly by the static variable, normally
represented internally as a natural number.

The determination of a binding value for a variable then reduces to
using the two components of the variable's name for two direct
accesses. The first access locates the activation record and the sec-
ond interprets the static variable name as a displacement within the
activation record.

In the event of backtracking, one or more activation records will
need to be deleted. Such deletions will automatically remove the
bindings made to variables introduced by the activation records con-
cerned. These bindings clearly cannot have been made by earlier
unifications nor by later ones since they would have been undone by
earlier backtracking. Therefore the bindings deleted with an acti-
vation record are all part of the unification being nullified - in
fact, they constitute the input portion of the unifier. The output
portion will be distributed throughout earlier activation records and
the variable in each output component has to be reset to its previous-
ly unbound state.

The means by which this is normally achieved Is to associate with
each unification a reset list naming all earlier variables that were

CHAPTER 3: A Basic Horn Clause Interpreter 38

used to transmit output from the unification. Then In the event of
having to undo a unification (or indeed a partial unification result-
ing from a failure to unify), all that is required is to use the reset
list to access and unbind the named variables.

It will be appreciated that whenever a variable-variable binding is
to be made, if one of the variables is new (i.e. just introduced into
the computation), it is best to make the other variable the term com-
ponent of the binding and thereby place the binding within the most
recent activation record. One reason for doing this is that no entry
in the reset list is then required. Another is that doing so tends to
produce shorter variable-variable chains of bindings. (Further rea-
sons are concerned with certain optimisations which are of no interest
here.)

3 . 4 IMPLEMENTATION

The specification we give here is at a lower level than others
(e.g. in [28]) because our concern is to give a clear indication of
how a basic Horn Clause interpreter might be implemented on a tradi-
tional von Neumann machine.

We choose an implementation based on the state of such a machine,
which we represent as a list (stack) of activation records.

The top-level of the program defines the 'Demonstrate' relation
between the state of the machine and the supplied Horn clause program.

The meta-level goal statement takes the form

<-Demonstrate(program, initial-state)

where 'initial-state' is a singleton list whose activation record
describes the supplied goal statement in one of its arguments. Notice
that this relation will not return a solution. In order to do so,
Demonstrate would need to be a three place predicate, the third argu-

CHAPTER 3: A Basic Horn Clause Interpreter 39

ment representing the final state (see later). We describe the sim-
pler formulation in the interests of clarity.

Each activation record is represented by a term of the form

ar(level, goal, clause, bindings, reset)

where

'level' is the (unique) name of the activation record

'goal' names the goal which the activation sets out to solve. In
a conventional implementation this argument is a pair

<level', goal number>

where the first argument names the activation record that intro-
duced the goal. The third argument of this- earlier activation
record names the clause which was used at level'. The antecedent
of that clause-gave rise to subgoals, one of which is the goal in
the more recent activation record. Exactly which of those
subgoals is specified in the later activation record is indicated
by the 'goal number' component of Its goal argument. We will
shortly make precise how this structure implements the goal list
at any node.

'clause' names the clause being tried in order to solve the goal.
In practice, it would.be a reference pointer to a clause in the
program.

'bindings' is a data structure that indicates, for each variable
introduced into the computation by the present activation, whether
the variable is bound and if so, to what. In practice it would be
an array, one entry for each variable introduced by the clause.

'reset' is the reset list, containing an entry for each earlier
variable bound in the course of unification performed in the cur-
rent activation.

CHAPTER 3: A Basic Horn Clause Interpreter 40

3.4.1 Goal List

Before embarking on the detailed description of the backtracking
interpreter, we wish to make clear exactly how a goal list is repres-
ented. We will illustrate the description with the simple stack of
activation records outlined in Figure 3. (For the sake of clarity,
the clause argument of an activation record is not represented here as
a reference pointer to the clause; instead, just the antecedent of the
clause appears, the atoms within it being represented by numbers.
Bindings and reset lists are not illustrated. The stack is shown
grown upwards with the most recent record on top.)

level goal (rest) antecedent

I i T~5/i~"T~TTTTTT"T I I

V
i 5 r i 7 r T : : : : : n i T 2 T 3 i

4 1 2/2 |
1

3 1 2/1 |

V V
2 1 1/1 1 1 1 1 1 2

1
V V

1 I NONE | 1 .1 1 2

Figure 3.

The diagram contains six activation records whose antecedents intro-
duce respectively 2, 2, 0, 0, 3, 1 subgoals.

CHAPTER 3: A Basic Horn Clause Interpreter 41

The goal argument is shown as a pointer to the selected subgoal in
some earlier activation record and we now make clear how the
left-right, last-in-first-out selection strategy is implemented.

Essentially, if the last used clause was an implication, the goal
selected for the next level arises from the first atom in the
antecedent. Thus, for example, the clause used at level 5 was an
implication and so the goal selected for level 6 was 5/1.

If the last clause was an assertion, the next goal (if any) is
found by examining In turn the list of activation records determined
by the chain of previously selected goals, until an activation record
with an outstanding subgoal is discovered. The first such subgoal
then becomes the goal for the next activation record. For example,
the clause used at level 4 is an assertion and activation record 2
introduced that level's goal. It can be seen that no further goals
introduced at level 2 remain and so the level 2 goal, viz. 1/1, leads
to the activation record at level 1 being examined and this shows that
1/2 is the next goal to be selected - which therefore becomes the lev-
el 5 goal.

3.4.2 Description of Processing

See the appendix.

CHAPTER 3: A Basic Horn Clause Interpreter 42

CHAPTER 4: PARALLELISM

4.1 INTRODUCTION

The Resolution Theorem [39] is the general result upon which the
execution of Horn clause logic programs is based. Computation, as
stated in the Resolution Theorem, is impractical for all but the most
simple examples. The work of Loveland on Model Elimination [30],
re-discovered by Kowalski and Kuehner [29] and applied to programming
by Kowalski [25] and Colmerauer et al. [10], have made resolution a
viable computational mechanism for Horn clauses and certain
extensions.

A computational step In the procedural interpretation selects and
activates a single procedure call. A conventional implementation of
this interpretation imposes the added restriction of only invoking a
single definition in response. Jointly, the procedural interpretation
and its conventional implementation serve to suppress all the
parallelism inherent in Horn clause programs. This is hardly surpris-
ing in view of the relationship that (such an implementation of) the
interpretation bears to the classical notion of computation which, of
course, makes no allowance for parallel computation either. What is
needed is a compromise between the resolution theorem and conventional
implementations that is computationally viable and yet allows for
parallelism.

We now outline the various forms of parallelism which might be
exploited in the execution of Horn clause programs.

4.2 POTENTIAL FOR PARALLELISM

The procedural Interpretation places no constraint on independent
derivations being pursued in parallel. Consequently, one way of

CHAPTER 4: Parallelism 43

applying parallel computation to Horn clause programs is to allow dif-
ferent derivations to take place concurrently.

Because of the completeness result for top-down inference systems
proved by Hill [20] and others, there is no loss in generality in
specifying the same selection function for all such derivations. For
a given Horn clause program, goal statement and selection strategy,
there exists a well-defined search tree. Parallel exploration of this
tree's branches is the pursuit of parallel derivations and since the
branches arise from alternative ways to solve the selected goal, this
form of parallelism is termed Or-parallelism and the search strategy
parallel search.

The procedural interpretation does not commit itself to sequential
invocation of procedure definitions and so we may say that the proce-
dural interpretation will support or-parallelism if all procedure
definitions whose head potentially matches the selected subgoal are
'simultaneously' invoked in response to it. Separate derivations will
thereby be established.

The second principal way of exploiting parallelism in Horn clause
programs arises from consideration of resolution itself. Suppose the
goal statement

<- Px & P 2 & ... & P n,

is given and that call P^ is selected. After one resolution step, an
instance of all the other calls Pj will remain outstanding, the
instance being determined by the output component of the substitution
which results from the unification of P^ with the head of the chosen
procedure.

As a special case, it might happen that the particular instance
computed for the call Pj (say) is the identical instance. Such an
eventuality might arise if P^ and Pj shared no variables or resolution
of P^ binds none of the variables P^ shares with P^. In these events,
Pj could have been selected simultaneously and concurrently subjected
to a step of resolution, suitable steps being taken to compose both
substitutions.

CHAPTER 4: Parallelism 44

A general scheme for accommodating such special cases Is to allow
solutions of the calls P^, ?2* •••» P n

 t 0 proceed in parallel,
recognising that each of the calls P^, P£, • ••> P n being executed may
represent an instance of the respective goal (the instance determined
by the output components of substitutions produced in the execution of
other calls). Suitable communication has then to be provided in order
that the instances may be deduced. We will view this informal
description as the relaxation of the procedural interpretation needed
in order to support the multiple selection of procedure calls.

Because the calls in a goal statement are connected by AND (&)
operators, this form of parallelism is termed And-parallelism.

A third area in which parallel computation might be allowed is in
the unification algorithm itself. Obviously, this is parallelism at a
lower level and is applicable to any scheme, since all schemes use
unification. We will not therefore concern ourselves with it in this
chapter, where the principal aim is to describe the application poten-
tial of higher level parallelism. However, one of our schemes, the
And-or proof procedure, is designed in such a way that a parallel
unification algorithm fits in very naturally and we will take the
opportunity of describing concurrent unification there. The other
scheme, the Or-parallel proof procedure, also has a certain degree of
lower level parallelism.

Having outlined the ways in which parallel execution might be
adopted, a motivating description of how such parallelism might be
used to good effect is overdue and we now turn to such a description
for the two principal areas, Or- and And- parallelism.

4.3 OR-PARALLELISM

4.3.1 Database Applications

It is a default of many Horn clause interpreters that they stop

CHAPTER 4: Parallelism 45

when just a single solution of the user's goal is found. It might be
argued that for many applications expressed in a relational language,
a more natural requirement Is to compute the relation that solves the
user's goal - not a single member of it - and this is the default we
adopt here. The view is in concordance with database applications,
arguably the most natural for the adoption of or-parallelism, where
the user is normally interested in all solutions of his query, not
just the first one discovered. Such applications can be expected to
benefit from the adoption of or-parallelism.

4.3.2 Functional Problems

If the user's program and goal admit just a single solution, it
might well be asked what benefits accrue from the adoption of
Or-parallelism. Certainly, such a combination is common in practice
and so this question has some importance.

The nub of the answer is that even if there is only one solution of
the top-level goal, the same need not necessarily be true of any indi-
vidual subgoal. It may be that some branches of the search tree need
to be explored to a non-trivial depth before a failure is found and if
the search tree is investigated sequentially, as in a backtracking
interpreter, this process may take a significant length of time, time
which does not contribute to the discovery of the solution. If the
searches could be performed concurrently, then (ideally) no time would
be wasted in following dead-end branches, only computing effort.
Moreover, if the used computing power would not otherwise have been
employed then no real loss is entailed by this 'waste' of effort.

The naive sort, which sorts an input list by generating permuta-
tions of it and testing them for orderedness is, under LRDF control,
an example to hand.

CHAPTER 4: Parallelism 46

Sort(x, y) <- Perm(x, y) & Ord(y)

Perm(NIL, NIL)
Perm(u, v.w) <- Delete(v, u, w') & Perm(w', w)

Delete(u, u.x, x)
Delete(u, v.x, v.y) <- Delete(u, x, y)

Ord(NIL)
Ord(u.NIL)
Ord(u.v.w) <- u £ v & Ord(v.w)

Although useless as a practical program, it does illustrate that con-
siderable effort might be expended in following fruitless paths, in
this case, by generating complete permutations.

Parallel search is fairer than depth-first search in that not all
computing resources are committed to the exploration of a single
branch of the search tree. Depth-first search proves disastrous when-
ever the chosen branch is infinite (assuming the condition is not
detected).

Breadth-first search, in which computing resources are switched so
that all nodes at level N in the search tree are investigated before
any of those at level N+l, shares the property of fairness with paral-
lel search. However, it is not normally implemented because firstly
it 'dilutes' the power available from a single processor by applying
it to the exploration of all branches (it is therefore, in general,
slower to find the first solution) and secondly the act of switching
from branch to branch is, in general, a significant overhead. An
implementation of Loglisp (Logic in Lisp), essentially a breadth-first
implementation of Horn clause logic, is described in [40]. As one
might expect, the implementations of parallel and breadth-first search
share much in common. With the availability of more computing power,
or-parallelism might reasonably be expected to overcome the implemen-
tation difficulties of breadth-first search.

An alternative approach to parallel investigation of the search
tree is the TT-Representation proposed by Fishman and MInker [17].

CHAPTER 4: Parallelism 47

Briefly, they achieve parallel search through their choice of
clause representation. In this representation, a set of syntactically
similar clauses is represented by a single TT-clause and the notions
of unification and resolution are extended accordingly. The overall
effect Is that syntactically similar derivations are pursued in paral-
lel although the corresponding search tree need only be Investigated
sequentially. Their proposal is primarily aimed at practical database
applications where large ground relations, which might otherwise prove
difficult to search efficiently, are quite common.

4.3.3 Negative Literals

Although this thesis is primarily concerned with Horn clause pro-
gramming, the negation as failure inference rule Is necessary in prac-
tice and its implementation in an or-parallel environment calls for
some comment here.

The rule is 'infer -»P if all ways to prove P fail', where P is an
atom and no attempt is made in the nested proof attempt to instantiate
any variable that P shares with other goals.

The rule implies that an exhaustive search of the nested proof's
search tree should be made and, as in the top-level proof, a parallel
search seems natural (although the search may be abandoned if a sol-
ution which does not bind any shared variable is found).

4.3.4 Implicative Literals

Our interest here is In procedure calls of the form

all(Q -> R)

CHAPTER 4: Parallelism 48

where Q and R represent atoms, some of whose variables may be uni-
versally quantified in the procedure call ('all' representing those
quantifiers).

We will term such a call an 'implicative literal' (and ignore the
more general case where Q and R represent conjunctions of literals -
which in any case may be transformed into the above form). For exam-
ple,

Subset(x, y) <- All z (Member(z, x) -> Member(z, y))

"x is a subset of y if for all z, z is a member of x
implies that z is a member of y".

This construct occurs quite naturally in specifications and one would
like to execute it directly rather than transforming it into clausal
form through Skolemization [28].

We briefly show how this construct may be transformed Into Horn
clauses augmented with negation and describe the construct's semantics
and the operational behaviour of its execution if negation is inter-
preted as failure to prove.

Introduce the definition

P <-> -«all(Q -> R)

where P's predicate symbol is not used elsewhere in the program and
the terms of P are all variables, namely those variables in the formu-
la which are not quantified by 'all'.

The definition allows the implicative literal to be replaced in the
clause where it occurs by the negative literal ->P. Since P's predi-
cate symbol is not used elsewhere in the program, the only way to
solve P is by means of

P <- -iall(Q -> R)

which is readily transformed Into the clause

CHAPTER 4: Parallelism 49

P <- Q & -.R,

all quantification being universal outside the clause.

Suppose now the literal -«P is selected. For the proof of -iP to
succeed, all ways to solve P must be tried and shown to fail. The
only way to solve P is via the above clause forP. So, the task of
showing all attempts to prove P fail Is equivalent to that of showing
that all attempts to prove Q & -«R fail.

The only way in which a proof of Q & -«R could possibly succeed is
if a solution of Q gives rise to an instance of R whose proof fails.

Equivalently, to show that all proofs of Q & -iR fail, it is neces-
sary to show that for each solution of Q, the instance of R determined
by that solution itself has a solution.

Thus to show <- Subset(1.3.NIL, 1.2.3.4.NIL), the rule stipulates
that all solutions of <- Member(z, 1.3.NIL) must be found and then
used to instantiate the goal <- Member(z, 1.2.3.4.NIL) and that each
such goal admits a solution.

The 'no instantiation' rule of negation as failure requires that
none of the shared variables in P are allowed to be instantiated in
the nested proof attempt. Since the arguments of the P-goal and
P-head are variants of one another (identical save for an identity
mapping of variable names), their unification need not instantiate any
goal variable. Therefore, the restriction that none of the shared
variables in the P-goal be instantiated may equivalently be re-stated
as the restriction that none of the variables in the goal <- Q & ->R be
instantiated unless they are local to Q & ->R (i.e. those variables
originally quantified by 'all').

We may summarise the above in a way which removes all reference to
the intermediate definition of P.

The inference rule for solving goals of the form <-all(Q -> R) is

CHAPTER 4: Parallelism 50

1. Find all substitutions, S, arising from the solution of the goal
<"Q

2. For each such S, prove <-(R)S

3. The proofs of <-Q and <-(R)S are only allowed to instantiate vari-
ables quantified by 'all'.

Or-parallelism is appropriate for the direct implementation of the
implicative inference rule since the rule requires all solutions of
<-Q to be found.

4.4 AND-PARALLELISM

4.4.1 Independent Subgoals

Possibly the most obvious way to envisage the need for
and-parallelism is in computations where some subgoals are independent
in the sense that they share no variables. Certainly, it is most
inappropriate to use a sequential proof procedure in such cases as
sequential execution gives rise to poor behaviour on two counts. We
illustrate these deficiencies with the help of the example <-P(x) &
Q(y) executing under LRDF control, where all solutions are to be
found.

Firstly, and most obviously, solution of the goal <-Q(y) could pro-
ceed independently and concurrently with that of <-P(x), thereby
speeding up overall computation, assuming appropriate resources are
available.

Secondly, and in general more importantly, a backtracking inter-
preter will find a single solution of <-P(x) and then apply the sub-
stitution which represents that solution to <-Q(y), and solve the
instance of <-Q(y) thus derived. When the goals share no variables,

CHAPTER 4: Parallelism 51

the derived instance of <-Q(y) is, of course, the identical instance.
The backtracking interpreter then finds the second solution of <-P(x)
and follows this with an exactly repeated computation of <-Q(y)» If
the number of solutions of <-P(x) and <-Q(y) are m and n respectively,
then the backtracking interpreter will expend effort of the order m*n
whereas a parallel. interpreter solving those subgoals independently
will expend effort of the order m+n.

We give a simple example of how disastrous the backtracking strate-
gy can be.

P(NIL, NIL)
P(u.x, v.y) <- Q(u, v) & P(x, y)

Q(u, v) <- v = 2*u
Q(u, v) <-.v = 3*u

The example accepts an input list of integers of length n (the first
argument of P) and computes a set of output lists, all of length n,
wherein each item is either two or three times the magnitude of the
corresponding item of the input list.

It is readily verified that the parallel computation does 0(n)
units of work whereas the backtracking, computation does 0(2n) units of
work.

4.4.2 Pipelining

Another way In which parallelism might be used is in 'pipelining
mode'. Typical of such applications is the production and consumption
of lists, whose items flow one by one along the pipelines. Pipelined
parallelism is specifically addressed by Clark and Gregory in [5].
Below we give one of their examples in a simplified form.

CHAPTER 4: Parallelism 52

Compact(NIL, NIL)
Compact(u.x, u.y) <- Remove(u, x, z) & Compact(z, y)

Remove(u, NIL, NIL)
Remove(u, u.w, w') <- Remove(u, w, w')
Remove(u, v.w, v.w') <- -«(u = v) & Remove(u, w, w')

X = X

Lists u and v are in the Compact relation if list v is the same as
list u except that duplicates of earlier list u items are not present
in list v. For example Compact(3.2.3.1.1.NIL, 3.2.1.NIL) holds.

We intend that the first list is given and the second is to be com-
puted.

Suppose that the program is presented with a goal of the form

<- Compact(3.2.3.1 NIL, t).

The program for Compact causes the first item of the output list to
be bound to the first item in the input list and calls Remove to cre-
ate an intermediate list identical to the tail of the input list
except all occurrences of the first item are missing from it. It also
calls Compact to form the tail of the output list from the intermedi-
ate list. The essential behaviour of the recursive Compact clause is
depicted in Figure 4 on page 54, from which it should be readily
appreciated that expansion of the nested Compact box will result in a
string, or pipeline, of Remove computations.

CHAPTER 4: Parallelism 53

I
input list

Remove

I Compact I

output list
I

Figure 4.

Suppose that the Remove(3, 2.3.1..., z) call has been selected.
Only the head of the third Remove clause will unify with this goal and
once this has been done, the first Item In list z will be known. The
outstanding call, Compact(z, y) now has some input - it knows the
first Item (2) of list z and so can compute the second item of list t.
Moreover, as further items of list z are computed, solution of the
call Remove(2, 1..., z") can proceed and thereby the third item in
list t may be computed and used to establish a new filtering Remove
process etc..

The pipeline shown in Figure 5 on page 55 will have been estab-
lished.

CHAPTER 4: Parallelism 54

I (3.2.3.1 NIL)
I

. I
Remove-3

I
I
I (2.1 NIL)
I
I

Remove-2
I
I
I (1 NIL)
I
I

Remove-1

Figure 5.

The pipeline can be thought of as connecting the various Remove-n com-
putations in a manner that allows each to still be executing whilst
its later neighbour is busy filtering its own input, essentially the
partially known output of its predecessor.

We briefly mention a second and perhaps more practical example of
this view of computation. The example is the top-level of Hoare's
Quicksort [21], given below.

QS(NIL, NIL)
QS(item.in, out) <- Partition(item, in, low, high) &

QS(low, s-low) &
QS(high, s-high) &
Interpose(s-low, item, s-high, out)

CHAPTER 4: Parallelism 55

Assuming the first argument in the QS call is ground and the second is
a variable, the pipeline behaviour of the recursive QS clause is
summarised in Figure 6 where arcs denote the communication of list
structures.

input list

Partition
/ \

low / \ high
/ \

I QS I | QS I

\ /
s-low \ / s-high

\ /
Interpose

output list

Figure 6.

If now the nested QS boxes are expanded, the structure results in a
more complex pipeline (more accurately, network), of the form depicted
in Figure 7 on page 57.-

CHAPTER 4: Parallelism 56

Partition
/ \

/
/ \

\

/

/
Partition
/ \

/
/

Partition
/ \

/ \

\

\
\

Partition
/ \

/ \

\
Partition
/ \

/
/

Partition
/ \

/ \

\

\
\

Partition
/ \

/ \

\ /
\ /

Interpose
\
\
\
\
\

\ /
\ /

Interpose
/
/
/
/
/

Interpose
\
\

\ /
\ /

Interpose
\
\
\
\
\

\ /
\ /

Interpose
/
/
/
/
/

\ /

Interpose
/
/

Interpose

Figure 7.

CHAPTER 4: Parallelism 57

4.4.3 Early Detection of Failure

Another way in which and-parallelism may be exploited is in the
early detection of failure. This aspect is exemplified by the
Same-leaves program which seeks to show that the leaflists of two
binary trees are the same. Figure 8 illustrates two trees with the
same leaflist (B.D.A.C.NIL).

o
/ \
/ V
/ \

/ \
o o

/ \ c
/ \

/ \
/ \

o o
B / \

/ \
/ \

/ \
o o
D A

o
/ \

/ \
/ \

/ \
o o
B / \

/ \
/ \

/ \
o o
D / \

/ \
/ \

/ \
o o
A C

Figure 8.

The program for Same-leaves is given below.

Same-leaves(treel, tree2) <- Leaflist(treel, list) &
Leaflist(tree2, list)

Leaflist(l(leaf), leaf.NIL)
Leaflist(left:right, list) <- Leaflist(left, leftlist) &

Leaflist(right, rightlist) &
Append(leftlist, rightlist, list)

Append(NIL, x, x)
Append(u.x, y, u.z) <- Append(x, y, z)

CHAPTER 4: Parallelism 58

Here, a tree is either a single leaf tree - represented by l(x) where
x is the leafname - or a compound tree - represented in infix form by
the term left:right where 'left' and 'right' name the left and right
subtrees respectively. The terms representing the example trees in
Figure 8 on the previous page are

(1(B) : (1(D) : 1(A))) : 1(C) and
1(B) : (1(D) : (1(A) : 1(C)))) respectively.

Suppose now that this program is presented with a goal statement of
the form

<-Same-leaves(tree^, tree2)

where 'tree^' and 'tree2' represent fully instantiated trees.

If the program is executed using the last-in-first-out selection
rule then the Leaflist(tree^, list) call and all calls introduced by
it will be fully executed - and 'list' will be fully instantiated -
before the Leaflist(tree2» list) call is selected. The consequence of
this is that considerable effort may have been devoted to the entire
evaluation of tree^'s leaflist even though only a short investigation
into tree2's leaflist may have been sufficient to determine that the
two trees have dissimilar leaflists.

The effect is exaggerated in the extreme case where tree^ and tree2
have dissimilar single leaves - A and B respectively - on their left
branches and arbitrarily complex tree structures on their right. If
evaluation of the trees' leaflists were able to proceed in parallel,
relatively little computation would be needed to establish that the
output leaflist, named 'list', would simultaneously need to satisfy
the two subgoals

<- Append(A.NIL, r-list^ list)
and

<- Append(B.NIL, r-list2, list)

(where r-list^ and r-list2 are respectively the leaflists of the right
subtrees of tree, and tree«). If now one of these Append calls is

CHAPTER 4: Parallelism 59

scheduled - say the first - then 'list' will be bound to a term of the
form A.list' and the other Append goal,

<- Append(B.NIL, r-list2, A.list'),

will fail and thereby cause the top-level Same-leaves goal to fail.

Ideally, the evaluation of the right subtree leaflists can proceed
independently of these two Append subgoals. In the event of the fail-
ure we described above, their evaluation can be aborted. In the
absence of such failure (modifying the example so that the two left-
most leaves are the same) their evaluation can be pursued in parallel,
subject to similar communication through the shared variable list'
(which will have been bound to both r-list^ and r-list2 by the suc-
cessful solution of the two Append subgoals).

(Although somewhat out of place here, it is worth pointing out the
power of unification which this example illustrates. The top-level of
the program,

Same-leaves(treel, tree2)
<- Leaflist(treel, list) &

Leaflist(tree2, list)

hands over to unification the task of showing that the two leaflists
are identical. A lower level version of this program, one which is
list-structure dependent, might be

Same-leaves(treel, tree2)
<- Leaflist(treel, listl) &

Leaflist(tree2, list2) &
Same-items(listl, list2)

Same-items(NIL, NIL)
Same-items(u.x, v.y)

<- u = v &
Same-items(x, y)

z = z

CHAPTER 4: Parallelism 60

It will be appreciated that such power can be used to good effect by
raising the level at which the user writes his program.)

4.5 REGULATION OF PARALLELISM

The potential for parallel execution of Horn clause programs, as
described in the preceding section, is only constrained by the nature
of the problem being solved.

For example, the use of an or-parallel scheme on a deterministic
program results In essentially sequential execution.

On the other hand (and of more interest here), parallelism applied
to other problems, for example a naive formulation of the Eight Queens
problem [23], might result in a great deal of parallelism.

It is generally accepted that too much parallelism may be more
harmful than too little - for there is then the risk of overloading
the underlying execution mechanism, possibly precipitating a failure.
Hence, some means of controlling the allowable degree of parallelism
in any scheme must be devised.

The need for control can be seen from the following intuitive argu-
ment (to which no claims of rigour are attached).

Performing a computation in parallel entails the sharing of
resources - since the machine's resources need to be allocated to
'sub-computations'. As with all forms of resource sharing, whether in
a computing context or more generally, communication is necessary to
ensure proper sharing - e.g. to ensure that two users do not attempt
to use the same resource at the same time or that resources no longer
required are made available to others.

The penalty for such sharing is a communications overhead. Pro-
vided the benefits of sharing outweigh the communications cost,
resource sharing Is worthwhile.

CHAPTER 4: Parallelism 61

In an ideal world where no such communication penalty is incurred,
parallelism, by overlapping sub-computations, may be expected to
increase the speed of computation. Introduction of the mandatory com-
munication penalty, however, increases the cost of computation -
because computational power is needed to handle the necessary communi-
cation.

If insufficient computational power is available, queues of out-
standing work will build up, machine overloading will occur and the
speed of computation will decrease, thus detracting from the benefit
of adopting parallel execution. In this way, it might well happen
that the adoption of parallel execution is entirely
counter-productive.

We see the rudiments of performance as being described by a
four-place relation:-

Performance(speed, available-power, required-power, parallelism)

Normally, 'available-power' is fixed because the particular machine is ,
fixed. Provided the degree of parallelism is such that
'required-power' does not exceed 'available-power', 'speed' might be
expected to increase with increasing 'parallelism'. Once the degree
of parallelism causes 'required-power' to exceed 'available-power',
'speed' decreases with Increasing parallelism.

Maximum speed is obtained when the degree of parallelism causes the
required power to exactly match available power.

To conclude this section, we will briefly discuss the factors which
influence 'degree of parallelism' as used above.

Following Kowalski [27], we consider an algorithm (A) to depend on
two components, Logic (L) and Control (C), symbolically, A = L+C. In
this analysis, we consider control to be determined solely by the
nature of the proof procedure used.

Execution of the algorithm determines the degree of parallelism
referred to in the Performance relation above. Thus the degree of

CHAPTER 4: Parallelism 62

parallelism may be viewed as partially derived from the logic compo-
nent of the algorithm and partly from the proof procedure used to exe-
cute it.

In support of this conjecture, consider two programs, P and P .
cL O

In Pa, all procedures are deterministic - i.e. at most one definition
can be used in response to a given call. In P , this restriction does
not hold but instead, each definition has at most one call in its
antecedent and the goal statement consists of just one call. The pro-
grams PQ and P_ together with their goal statements establish logic

CL O

components L a and L Q.

A proof procedure, C , which supports and-parallelism but not
cl

or-parallelism will, in general, give rise to more parallelism in the
algorithm C +L than in the algorithm C +L . A corresponding argument

3 cL 3 0
holds for the proof procedure CQ, which supports or-parallelism but
not and-parallelism.

Thus it is evident that for good performance (if the above intui-
tive arguments are accepted) a means of controlling the degree of
parallelism must be provided and the control mechanism should be acti-
vated in response to perceived machine behaviour. Dynamic monitoring
of machine performance is therefore needed and, of course, some allow-
ance must be made for the resources needed to do such monitoring.

4.6 INTRODUCTION TO THE SCHEMES

This chapter concludes the first part of the thesis. The second
part will be concerned with two schemes, the Or-parallel proof proce-
dure and the And-or proof procedure.

As its name implies, the first of these schemes only exploits
or-parallelism, i.e. it achieves concurrency by parallel pursuit of
alternative derivations. It is put forward as a short-medium term
proposal which is realisable now through existing technology.

CHAPTER 4: Parallelism 63

The second scheme, again as its name implies, exploits both of the
major forms of parallelism inherent in Horn clause programs. Its
organisation is quite different from that of the first scheme and is
developed indepedently of It - although there is a relationship
between the two schemes which we exhibit at the appropriate point of
the exposition. The And-or proposal is put forward for implementation
in the longer term.

We have no proposal which allows for just and-parallelism. We con-
sider this to be covered by the work of Clark and Gregory [5] and view
their scheme, albeit for a different language, as a complement of
ours.

CHAPTER 4: Parallelism 64

CHAPTER 5: OR-PARALLEL PROOF PROCEDURE

5.1 INTRODUCTION

The relationship between the backtracking and Or-parallel proof
procedures .is close enough to allow us to present the latter as an
evolution of the former, described previously. Indeed, for the most
part, this chapter is concerned with possible implementation designs;
the abstract requirements of the proof procedure are summarised in the
following paragraph.

5.2 BASIC REQUIREMENT

The fundamental requirement of the Or-parallel proof procedure Is
that given a selection function, branches of the corresponding search
tree are to be explored in parallel. That said, the remainder of this
chapter is almost exclusively concerned with how this requirement may
be implemented in practice.

5.3 IMPLEMENTATION DECISIONS

The principal implementation decision to be made is to settle the
question of whether a structure-sharing approach is appropriate or
not.

Our belief is that a structure-shared implementation is desirable
for the execution of general purpose logic programs; the reasons
underlying this belief are essentially the same as those applying to
conventional implementations. In those implementations,
structure-sharing is usually applied In two principal ways (as dis-

CHAPTER 5: Or-parallel Proof Procedure 65

cussed previously) - in the representation of bindings and in the
representation of goal lists. Were structure-sharing to be rejected
in both cases, one would need to construct terms and explicitly apply
substitutions to all outstanding goals after unification, copying
those goals at each branching "node.

Our belief is that the processing required to implement the above
approach would typically be too expensive for practical application.
It is really quite common to find long and complex terms being con-
structed in the course of a derivation.

Consider, for example, the simple Append procedure set

Append(NIL, x, x)

Append(u.x, y, u.z) <- Append(x, y, z)

and a goal of the form
<-Append(A , .A A, .NIL, B . .B 0 B-.NIL, zrt) v m-1 m-2 1 ' n-1 n-2 1 ' 0

where the A's and B's represent constants. A total of m Append
subgoals will be called in the process of solving the top-level goal.
The i'th unification (1 < 1 £ m-1) will produce the unifier

{ui/Am_i, • • •AjyNIL, y . Bn_2 • • • B^ . NIL, z^/u^.z^}.

If substitutions are applied explicitly then it can be seen that the
i'th goal will have a total of mfn+l-i constants embedded in the terms
of its first two arguments. It is readily verified that refuting the
top-level goal will entail work of the order

m(m+2n)
2

in constructing the intermediate subgoals.

A structure-sharing implementation, on the other hand, will merely
record the substitutions and have them available for later access.
The process of recording the bindings will not involve the con-
struction of terms: it will merely share the relevant parts of the
supplied lists wherever necessary. The work in deriving the refuta-
tion under these circumstances is of the order m.

CHAPTER 5: Or-parallel Proof Procedure 66

The inefficiency of the first scheme may be attributed to the fact
that terms are constructed even though they may not be required. This
is vividly Illustrated in the above example by the 'fully detailed'
second argument which is passed right the way through all intermediate
calls without any demand being made on its actual contents. One might
say that structure-sharing is based on application of substitutions by
need whereas copying is based on the application of substitutions by
availability.

We only consider a fully structure-shared implementation and this
will be based on modifications of its conventional counterpart. This
is not to deny that other approaches which mix structure-sharing and
copying in certain ways are feasible - we merely do not consider them.
There might well be a strong case for a hybrid scheme which constructs
small terms and shares larger ones. (This would be analogous to many
conventional computer architectures which, although based on
instructions that reference data in store, make provision for
so-called 'immediate instructions' that carry small amounts of
read-only data explicitly.) Any proposal would have to be compared
with others and in this context, we present our scheme as one based
entirely on structure-sharing principles.

One way of Implementing the required proof procedure is to divide
the search tree into the set of branches descending from the root node
and to investigate each branch independently. The data structures
described earlier as being suitable for a backtracking interpreter
could be carried over in a simplified form - for, of course, there
would no longer be any need for information to do with backtracking.
In particular, any variable's binding could be held in the activation
record corresponding to the node at which the variable Is introduced,
rather than the one in which the variable is bound.

The difficulty of this approach is that because distinct branches
of the search tree relate to distinct derivations, binding space for
uninstantiated goal variables would have to be replicated whenever the
search tree forks. In a structure-shared environment, it is not read-
ily apparent which variables are bound and which are not.

CHAPTER 5: Or-parallel Proof Procedure 67

We reject as too inefficient, the simplistic approach which, when-
ever the search tree forks at a node, provides a copy of the environ-
ment of bindings appropriate to that node for each of its children.
Clearly, such a scheme would copy all existing bindings, with the con-
sequent waste of time and store. Even the association list approach
of Robinson and Sibert [40] implies the copying of a structure which
is proportional to the depth of the search tree on each occasion that
the tree forks and we reject this more optimised proposal on the same
grounds.

Instead, we choose an approach which exploits the tree structure of
the search space.

5.4 A NAIVE MODEL OF THE, IMPLEMENTATION

We first give a naive approximation to the model we propose.

Each activation record corresponds to a node in the search tree.
Each is a data structure of the form

ar(level, goal, clause, unifier)

where

'level' is the (unique) name of the activation record. As before,
it is Implicit in the storage address of the activation record.

'goal' names the goal which the activation sets out to solve.

'clause' indicates the clause being tried in order to solve the
goal.

'unifier' is the unifier associated with the node.

The first three terras are carried over from the corresponding struc-
ture in the backtracking scheme.

CHAPTER 5: Or-parallel Proof Procedure 68

The stratagem of holding a variable's binding in the variable's
Introductory - rather than binding - activation record is no longer
available. Hence the replacement of the bindings and reset list of
the conventional activation record by the unifier in ours.

Exploration of the branches can now be undertaken separately, for
once a node is established, it cannot subsequently be altered. The
backtracking algorithm given earlier may be adapted for exploration of
the branches. The essential differences are:-

1. If unification at node N calls for the term binding of a variable
introduced at node N' (N' must be N or a proper ancestor of N in
the search tree), a search of bindings in unifiers associated with
those nodes between N and N' inclusive is called for.

2. A unification failure terminates the branch computation.

5.5 A MORE PRACTICAL MODEL OF THE IMPLEMENTATION

The above scheme is naive because the simple ploy of searching a
set of unifiers for a binding is, in general, orders of magnitude less
efficient than the two-reference look-up described for the backtrack-
ing implementation. In a structure-shared implementation, looking up
the binding for a variable is a frequently undertaken task and such a
degree of inefficiency would result in an intolerably slow
performance.

We now describe how the simple two-reference scheme in conventional
use is adapted in the design of the Or-parallel proof procedure.

5.5.1 Representation of Bindings

Suppose a variable v is introduced into the computation at node N.

CHAPTER 5: Or-parallel Proof Procedure 69

As previously explained, whenever the search tree forks, new instances
of unbound variables come into existence, one instance per branch.

In this way, it may well happen that at a later time, some
instances of v are bound and others are not.

We consider all bindings for the various instances to v to be
registered, each binding indicating the instance of v to which it
applies. In this way, the set of bindings for v form a register which
we associate with the node at which v is introduced. Thus the acti-
vation record evolves to

ar(level, goal, clause, unifier, registers)

where 'registers' is an array of binding registers, one for each vari-
able introduced by the clause referred to in the activation record.
It will be seen that this arrangement is a generalisation of that for
the backtracking interpreter where the corresponding array determines
the unique (current) binding for each variable rather than a register
of alternative bindings. The description, as it stands, implies some
duplication because it indicates that each binding appears in one
unifier and one register. In fact, this will not be the case in prac-
tice because the unifier is not required permanently - as will be
shown in due course.

Let us now consider the evaluation of terms, an important aspect of
any implementation. It was earlier pointed out that different
branches of the search tree represent different derivations. Evalu-
ation of a term needs to take account of which instances of its con-
tained variables are involved. The instances are, of course, those
corresponding to the derivation being pursued. To be specific, sup-
pose, as in Figure 9 on page 71, that a binding for the variable 'v'
needs to be looked up during unification at node N.

CHAPTER 5: Or-parallel Proof Procedure 70

/
/

/
N'
/\

/ \

/
/

N"
/\
/ \

/
/

N

Figure 9.

Suppose also that v was introduced at node N' (an ancestor of node N).
The derivation of interest is represented by the branch of the search
tree passing through node N (and N') and extending back to the root.
Hence to determine whether v is bound in the course of evaluation at
node N, it is sufficient to determine whether v was bound by a unifi-
cation at any node N" lying on the branch between N and the root node
(in fact between N and N' inclusive) since these are the only nodes of
any relevance to the derivation in question.

Perhaps the most obvious way of associating bindings with branches
of the search tree is to associate each binding with the name of the
node (the component 'level' in the corresponding activation record)
which produced the binding and implicitly establish the tree structure
by recording in each node (other than the root node) the name of its
parent. (All ancestors of any given node may then be determined by
finding the node's parent, its parent, etc. right back to the root
node.)

We reject this approach on the grounds of inefficiency, for to test
whether one node is a descendant of the other reduces to the problem
of examining an arbitrarily long chain (the supposed descendant's

CHAPTER 5: Or-parallel Proof Procedure 71

chain of ancestral activation records) and checking whether the other
node has the same name as any one of them. The whole chain must be
examined to determine that the answer is 'no' (assuming, of course,
that this Is the case).

Our design explicitly labels branches of the search tree and asso-
ciates with each node the name of the branch on which it lies. Inclu-
sion of the branch name in this way indicates to which derivations the
node relates. It is the nature of the naming scheme itself, to be
introduced shortly, - that enables us to determine the ancestral
relationship between seeking, binding and introductory nodes (N, N"
and N' respectively) with which evaluation is concerned.

Thus the activation record structure takes on an extra term:-

ar(level, goal, clause, unifier, registers, branch)

5.5.2 Interrelation of Activation Records

If unification at a particular node N fails or is successful but
all branches passing through N sooner or later lead to failures, then
there is no point in keeping the activation record associated with N,
since it cannot contribute in any way to a solution of the user's goal
statement. Under these circumstances, we allow activation records to
be deleted.

The deletion of all activation records corresponding to N's chil-
dren is a sufficient condition for the deletion of N's activation
record. In order to take advantage of this observation, we include
two further items in the activation record data structure:-

ar(level, goal, clause, unifier, registers, branch, parent, children)

CHAPTER 5: Or-parallel Proof Procedure 72

where 'children' is the set of activation record names (levels) of the
node's children currently in existence and 'parent' is the level of
the node's parent (or some Indication of the root activation record).

We will presently describe how these arguments are used but first,
a short digression is necessary in order to introduce some concepts in
whose terms the description is given.

5.5.3 Processes and Messages

The specification of a scheme which supports parallel computation
may be effected by identifying sub-computations that might proceed
concurrently with one another and showing how those sub-computations
are interrelated.

We will refer to such sub-computations as processes.

Examples of processes might be the sub-computations associated with
nodes of the search tree. Such processes might reasonably be expected
to manipulate data structures that represent nodes of the search tree
(activation records) and we will find this to generally be the case:
processes manipulate associated data structures. We will have more to
say about this association later.

Processes communicate by means of messages. A message may be
regarded as the triple:

t

<name of destination process, name of sending process, content>.

Messages imply processing: the processing that the destination process
needs to do in order to take account of the content of the message.

In general, many messages may be sent to any given process but for
reasons which will become apparent later, we impose the constraint
that the processing required to put into effect the contents of two or

CHAPTER 5: Or-parallel Proof Procedure 73

more messages sent to the same process is not allowed to overlap in
time.

Thus at an abstract level, we see the computation being organised
as a set of processes which modify 'their' data structures and commu-
nicate with one another through messages.

5.5.4 A Simple Computation

Before returning to the main text, we take the opportunity afforded
by this interruption of giving a simple computation which will serve
to exemplify several points raised in the" immediately following
sections.

The computation is a non-deterministic Append which finds all ways
of splitting the list 1.2.NIL.

Append(NIL, x, x)

Append(z.u, v, z.w) <- Append(u, v, w)

<- Append(s, t, 1.2.NIL)

The search tree for the problem is given In Figure 10 below.

CHAPTER 5: Or-parallel Proof Procedure 74

A <- Append(s, t, 1.2.NIL)
/I
/ I
/ I

{s/NIL, x/t, t/1.2.NIL} / I {s/z.u, v/t, z/1, w/2.NIL}
/ I

/ I
/ I

B C <- Append(u, v, w)
<- /I

/ I
/ I

{u/NIL, x'/v, t/2.NIL} / | {u/z'.iT, v'/v, z'/2, w'/NIL}
/ I

/ I
/ I

D E <- Append(iT, v", w')
<- /I

/ I
/ I

{u'/NIL, x"/v', t/NIL} / FAIL
/
/
/

F <-

Figure 10.

5.5.5 Main Processes

We resume the central topic by describing here the sub-computation
associated with the or-activation record of a particular node, N.
Because such sub-computations are central to the scheme, we will term
them main processes.

As in the backtracking implementation, an activation record will
have been established and will include an indication of the goal and
clause with which it is concerned.

CHAPTER 5: Or-parallel Proof Procedure 75

The first task of the main process associated with N's activation
record is to attempt the unification. If unification fails, N's par-
ent main process is sent a termination message (the parent is known
from the child's 'parent' argument) and N's main process arranges for
the deletion of its own activation record and then terminates. On
receipt of the termination message, N's parent eliminates N from its
set of current children.

If unification is successful, a message to this effect is sent to
N's parent main process. The reason for doing this is to enable N's
parent main process to assign a branch name to N's activation record.
We choose to assign branch names after unification is successful rath-
er than before it is attempted because some restraint in the use of
branch names is desirable. We will return to branch names and the
timing aspect of their allocation presently.

Notice therefore that because the branch name along which N lies is
not known until after unification is completed successfully, it is not
possible to register bindings in the course of unification. Thus
evaluation of a goal variable in the course of unification is a two
part operation:- the unifier under construction has to be separately
examined in addition to the variable's set of registered bindings. No
constraint prevents these operations from being pursued in parallel -
although our specific proposal does not consider this possibility.

Bindings in the unifier are registered once the branch name is
known. Registration is essentially concurrent over the set of
bindings in the unifier and is implemented by processes which have a
register as their associated data structure. The description of reg-
istration is deferred.

After registration, the only information contained in the unifier
that is not readily accessible from the relevant registers is an indi-
cation of which (goal) variables were bound in the course of that
unification. This is the information carried in a conventional reset
list. Thus after the bindings in the unifier have been registered, we
may think of the unifier as a reset list which names goal variables
bound in the unification. We will not elaborate on this any further
here but will return to this use of a unifier later on.

CHAPTER 5: Or-parallel Proof Procedure 76

Computation continues along convention|l lines:- the next step is
to ascertain whether the empty clause has been derived and if not, to
apply the selection function in order to determine the next goal.

In the former case, the corresponding solution is extracted and we
will show how presently.

In the latter case, the empty clause has not been derived and so
the next goal is chosen (by the main process applying the selection
function to the set of outstanding goals). The user's program indi-
cates which clauses might be applied to the selected goal and the par-
ent establishes an activation record for each such clause and notes
the names of its children thus spawned. When it knows that registra-
tion of the bindings in the unifier just produced has been completed
(exactly how will be described in the next section), the parent acti-
vates its child main processes by sending each a 'begin computation'
message. We thus return to the starting point of this description.

Example

Consider the main process corresponding to node C in Figure 10
on page 75, which we will refer to as main[C]. Main[C] is estab-
lished by its parent process, main[A] (as is main[B] which later
fails, but we are not concerned with that here). On receipt of a
'begin computation' message, main[C] attempts the unification of
Append(s, t, 1.2.NIL) and Append(z.u, v, z.w) which succeeds with
unifier {s/z.u, v/t, z/1, w/2.NIL}.

Main[C] informs main[A] of the successful outcome and awaits
the arrival of a branch name (it frees computing resources during
this wait). Main[A] receives the notification of success and
assigns to the activation record at C, ar[C], a branch name which
we represent here as 'c'. Registrat'ion of the unifier is under-
taken and the selection function applied to choose the next goal,
trivially <-Append(u, v, w).

The program reveals that two clauses may be used to solve this
goal and so two activation records, ar[D] and ar[E], are estab-
lished by main[C]. When registration of C's unifier is complete,

CHAPTER 5: Or-parallel Proof Procedure 77

the corresponding processes main[D] and main[E] are each sent 'be-
gin computation' messages and they proceed with their processing
independently of one another, in a manner similar to the above.

We can see that main[D] derives a refutation and when the sol-
ution is extracted, main[C] is sent a termination message from
main[D] and removes the D-child from the children in ar[C]. Once
main[E] sends a termination message, the E-child is also removed
and the -children argument in ar[C] indicates no children, so
main[C] terminates by deleting ar[C] and sending main[A] a termi-
nation message.

Notice that our scheme allows unifications of the goal with the
heads of all applicable clauses to be attempted concurrently via the
independent child main processes. In this respect, it differs from
the scheme proposed by Conery & Kibler [11]. It also allows for the
concurrent registration of all bindings in a unifier and for these
processes to run concurrently with the establishment of child acti-
vation records.

5.5.6 Registration

Register data structures are manipulated by corresponding registrar
processes such that each registrar concerns itself with just one reg-
ister.

The binding v(branch)/term, where v(branch) is the instance of v
appropriate to the specified branch, is represented in v's register by
the pair

<term, branch>

("term" represents, of course, the structure-shared pair <level, stat-
ic term>). The function of v's registrar is to receive such pairs and
incorporate them with others for the variable. Both the register and
registrar are identified by the variable's name <level, static vari-

CHAPTER 5: Or-parallel Proof Procedure 78

able> - i.e. if the variable's name is known, both may be accessed
through it.

Let us suppose then that unification undertaken by some main proc-
ess has succeeded, the parent main process has been informed of this
event and has duly conferred on its child a branch name.

The sole purpose of including registration in the scheme is to make
evaluations more efficient than they would otherwise be. Obviously,

/

registration of a particular binding must be completed before an
attempt is made to read that binding from the register. This implies
that registration of those bindings produced in the course of unifica-
tion at node N must generally be completed before resolutions at any
of N's descendant nodes can begin.

Note that the registration of bindings in a unifier and the cre-
ation of child activation records are independent tasks. We exploit
the parallelism this independence makes possible by arranging for the
main process to devolve registration of Its unifier to an associated
unifier-reg process.

In fact, another related function needs to be considered at this
time: that of bringing into existence registrar processes for vari-
ables introduced by the clause just used in unification. Stated pre-
cisely, the two tasks to be considered are

1. The initiation of new registrars for new variables and

2. The registration of bindings in the unifier - by devolution to the
registrars concerned.

Some sequentiality is involved between registration of bindings and
initialisation of registrar processes (specifically, the registration
of input bindings) and we cope with this by arranging for the
unifier-reg process to organise both the above tasks.

Thus the unifier-reg operates on the data structure

<unifier, registers, branch>.

CHAPTER 5: Or-parallel Proof Procedure 79

where 'unifier' is the set of bindings of the form v/t made during the
successful unification, 'branch' is the branch name conferred by the
parent main process following the successful unification and 'regis-
ters' is the set of empty registers corresponding to the set of vari-
ables just introduced into the computation by the clause used.

In describing the implementation of the unifier-reg process, we
make the obvious simplification of combining its two functions when
dealing with input bindings. If the unifier contains the binding v/t,
where v has just been Introduced into the computation, then no other
binding can ever be made for v. A registrar for v is thus superfluous
and so rather than establishing one, the unifier-reg takes on the
responsibility of inserting the binding v/t in v's register.

The computation required of a unifier-reg process is relatively
trivial and is organised sequentially.

Each binding in the unifier is examined in turn. For input
bindings, registration of the binding is undertaken by the unifier-reg
itself. For an output binding v/term, a message, whose content is a
request to register the binding <term, branch>, is sent to v's
registrar process. Confirmation of registration will be sent by v's
registrar to the unifier-reg process in due course. In the meantime,
the unifier-reg proceeds with the next binding.

When the unifier has been fully scanned in this way, the
unifier-reg process turns to the array of registers with which it has
been provided (i.e. registers for the variables just introduced by the
clause used). Some of these registers will still be empty - those for
the variables not bound in the supplied unifier. For each such vari-
able, a registrar process is brought into existence.

Once the unifier-reg process receives notifications that all regis-
trations it delegated have indeed been made, it sends a message to
that effect to its associated main process and then terminates.

The evaluation of terms containing variables whose bindings have
just been registered will now be correct and main processes associated

CHAPTER 5: Or-parallel Proof Procedure 80

with the child activation records may therefore be sent 'begin compu-
tation' messages.

Example

We look at the registration of bindings in the unifier at C.
The unifier-reg[C] process, abbreviated here to unireg[C], is
established by main[C] and operates on the structure

< {s/z.u, v/t, z/1, w/2.NIL}, [reg(z), reg(u), reg(v), reg(w)], c>

where the second argument is an array of empty registers.

Unireg[C] calls on the s-registrar to register the binding
<z.u, c>. UniregfC] itself sequentially registers the bindings
for the variables v, z and w. It determines that u is a new vari-
able that has yet to be bound and so establishes the u-registrar
whose data structure is the empty u-register. On receipt of a
message indicating that the binding for s has been incorporated,
unireg[C] informs main[C] that all bindings have been registered
and terminates.

We now turn to a description of the registrars themselves.

Let us suppose that a message requesting the registration of a par-
ticular binding has been received by the registrar for the variable
concerned.

The binding is registered in accordance with the data structure
chosen to represent registers. This might, for example, be a set or
we may define an ordering on branch names and exploit it by using an
ordered data structure such as a list or tree to represent the regis-
ter. These considerations are left until later.

Once the binding is incorporated in the register, a message to this
effect is sent to the unifier-reg process which issued the request.

This completes the description of registration.

CHAPTER 5: Or-parallel Proof Procedure 81

Example

Suppose that the unireg[B] and uniregfC] processes are operat-
ing concurrently with one another. The s-registrar will, in due
course, receive messages,from unireg[B] and uniregfC] respectively
requesting registration of the bindings <NIL, b> and <z.u, c>.
The t-registrar will be sent a message (by uniregfB]) requesting
incorporation of the binding <t/1.2.NIL, b>. UniregfB] and
uniregfC] will be expecting 2 and 1 confirmatory messages respec-
tively and on receipt of the appropriate number, they send their
associated main process a termination message and terminate.

5.5.7 Solution Extraction

We assume that the user specifies, as part of the problem he sub-
mits, which goal variables are of interest to him. A solution is then
the set of bindings for those variables (and variables nested in the
term components of those bindings etc.) which apply at a node that
derives the empty goal statement.

Solutions are conveyed to the user through a unique answer process,
accessible from all main processes. Thus on deriving the empty
clause, a main process sends the message 'I have an answer' to the
answer process and then awaits acknowledgement that the answer has
been extracted. The answer process has available to it the source of
this message and so is able to determine the branch along which the
refutation was made. Consequently, It is able to interrogate the reg-
isters for bindings appropriate to the refutation and thereby extract
the solution.

When it has finished this extraction, the answer process sends an
'answer extracted' message back to the main process which called it.
This main process then sends a termination message to its parent main
process, deletes its activation record and terminates.

CHAPTER 5: Or-parallel Proof Procedure 82

This completes the outline description of the proposed implementa-
tion.

5.5.8 Branch Names

We have already discounted, on grounds of efficiency, the scheme
that implements branch names implicitly by means of ancestral node
chains. Instead, we choose to represent branch names explicitly by
means of bit patterns and will show that the determination of whether
one branch is an extension of another reduces to the problem of deter-
mining whether one bit pattern is an extension of another. (The
branch name on which the root node lies will, by convention, be the
empty bit string - i.e. the bit string of length zero.) Clark and
McCabe use a similar scheme to control co-routining in IC-PROLOG [7].

Having made this decision, it is important that branch names be
kept short and this is the underlying reason for waiting until unifi-
cation is complete before providing a branch name. To do otherwise,
particularly when dealing with a large relation, could prove wasteful.
We propose two branch naming schemes, the n-ary and binary schemes.

5.5.8.1 N-ary Branch Naming Scheme

Let us suppose that unification at node N succeeded and that m
activation records were spawned as a result. In the n-ary scheme,
branch naming cannot, in general, commence until unifications under-
taken in all spawned main processes are complete and the number of
successes is known.

Let us suppose that the branch name at node N is the string of bits
^ 1 ^ 2 " * " l e n g t h j) and that n of the m unifications are success-
ful.

CHAPTER 5: Or-parallel Proof Procedure 83

If n is 1, the child's branch name will be the same as the
parent's. (Note that the case of m=l - i.e. only one unification was
attempted - is an exceptional case that allows the child's branch name
to be allocated before unification. We will have more to say about
this and related cases later.)

If n is greater than 1 then the n children whose unifications were
successful may be counted, each associated integer being expressed in
k-bit binary form, where k is the smallest integer not less than
log2(n). (The order in which children are counted is immaterial.)
The branch names corresponding to the n children will then be the j+k
length bit patterns formed by appending the child's associated k-bit
number onto b^b2...bj.

For example, if the branch name at node, N is 1011 and 3 child
unifications succeeded then these may be counted by the 2-bit integers
00, 01 and 10 and the resulting branch names will be 101100, 101101
and 101110 respectively.

The scheme allocates branch names unambiguously, a conclusion which
is easily verified by an induction on the incremental lengthening of
branch names, which we give below for the sake of completeness.

Clearly, the extensions which count the successfully unified chil-
dren of some given node are all distinct from one another. Let us
assume the inductive hypothesis - that all branch names are distinct -
holds at some stage of the computation and let us consider the imme-
diately following step of allocating branch names to the successful
children of some node N.

Their branch names will be different from one another by virtue of
the differing extensions they have over N's branch name.

Their branch names will each differ from other (previously exist-
ing) branch names because by the inductive hypothesis, the initial
part of their names (N's name) differs from all previously exist-
ing branch names.

CHAPTER 5: Or-parallel Proof Procedure 84

Finally, the base case of the hypothesis holds because initially,
when the root node is grown, there is only one branch of the
search tree.

5.5.8.2 Binary Branch Naming Scheme

The binary branch naming scheme is a slight modification of the
n-ary scheme insofar as there is no longer a requirement that the out-
comes of all child unifications be notified to the parent before the
first branch name is assigned: the cost is some wastage in the length
of branch names.

We suppose again that the unification at node N succeeded and that
m main processes were spawned. As before, if m=l there is no need to
wait since the child node will lie on the same branch as N. .

Suppose then that more than one main process was spawned. Notifi-
cation of unification outcomes is awaited at N as before but now, as
soon as two successes are notified, the activation record for one of
them is given N's branch name appended with a zero bit. (The exist-
ence of two successes is the minimum necessary to determine that the
search tree forks and hence new branch names are needed.)

If there are no other successes, the second activation record is
given the branch name of N appended with 1. The net result in
this instance is the same as that for the n-ary naming scheme; the
only difference is that, generally, a shorter overall delay is
involved.

Alternatively, if a third success is notified, the waiting main
process is given N's branch name appended with the bits 10. Just
one main process is now waiting (as before) and further progress
is made in a manner analogous to that described immediately above,
the outcome depending on whether a fourth success is notified or
not (etc.).

CHAPTER 5: Or-parallel Proof Procedure 85

Thus in the binary scheme, branch names are formed by lengthening the
name of the parent's branch by adding bits 0, 10, 110, ..., 111...10,
111...11 .

Once more, the branch name extensions of children descended from
any node are distinct from one another and this is the crucial proper-
ty required to demonstrate that all branch names are unique. We do
not repeat the proof for this modified name allocation scheme.

5.5.8.3 Integration of N-ary and Binary Branch Naming Schemes

It will be seen that the n-ary and binary schemes described above
offer the familiar trade-off between space and time. For n branches
(n > 1), the n-ary scheme needs 0(log2(n)) hits for the extension to
the branch name, the binary scheme needs 0(n) bits. The penalty for
the more compact scheme is the need to wait for all unifications to be
complete; the binary scheme releases branch names at the same rate as
successful unifications are notified - albeit lagging one behind.

Under circumstances of light loading, where resources are under-
utilised, the shorter overall delay afforded by the binary scheme may
be desirable and the waste of resources it entails perfectly accepta-
ble. If, on the other hand, the machine is adequately loaded, there
is no point in reducing the delay in any isolated part of the overall
computation - for by assumption, other parts of the computation may
continue. We thus see the n-ary scheme as being of more significance
than the binary.

It should be clear that the two schemes are quite compatible: it
is possible to alternate between them at any given node.

Thus one could envisage the following situation where 6 successes
are notified to node N, the first two during a period of little activ-
ity, the remainder at a busier time. (The bit patterns shown are
extensions of N's branch name).

CHAPTER 5: Or-parallel Proof Procedure 86

1111

0

1110
1101

10.

1100

(first binary)
(second binary)
(These last four branch
names are not assigned
until all successes
have been notified).

Exclusive use of the binary scheme would result in longer branch names
(parent's branch name extended by 0, 10, 110, 1110, 11110, 11111);
exclusive use of the n-ary scheme would result in more compact branch
names (extended by 000, 001, 010, 011, 100, 101) at the cost of delay-
ing progress on the first two children.

5.5.8.4 Pre-allocation of Branch Names

We pointed out that if only one clause can be applied to a chosen
goal, the branch name may be conferred on the corresponding activation
record before unification is attempted and in this case, the name will
be the same as that included in its parent's activation record.

This modification may be extended to the case of a conditional
where it is known in advance that at most one of the clause heads will
unify with the chosen goal. All alternative activation records will
be given the parent's branch name but in this case, more than one suc-
cessful child unification is treated as an execution error.

More complex is the case of "don't know.non-determinism" [28] where
a goal is known to have no more than one solution and where determina-
cy is established not through the head but through predicates in the
body. To see why, consider the following goal and procedure set

<- P(A, z, z)

P(x, y, B) <- Q(x, y)
P(u, v, C) <- R(u, v)

CHAPTER 5: Or-parallel Proof Procedure 87

and suppose that it is known that for any given x, only one of Q(x, y)
or R(x, y) holds. The heads of both clauses will unify with the given
goal but if both child nodes are given the same branch names then the
alternative bindings for z, z/B and z/C, will be registered with the
same branch name and clearly this will lead to confusion when the exe-
cution of the Q or R subgoals needs to access a binding for z (via the
bindings y/z and v/z).

We describe below a simple modification of our scheme which will
overcome this deficiency.

The difficulty is removed if registration of bindings is delayed
until determinism is established, that is, until there remains just
one child of the main process whose selected subgoal is known to have
a single solution, all other children having been deleted through
failure. This then implies the need, when searching for a variable's
binding during a later unification, to not only seek that binding in
the unifier under construction (as well as the variable's register)
but to also look for it in past unifiers still awaiting registration.
This does, of course, detract a certain amount from the advantages of
registration - which was introduced to minimise such searching.

We will not pursue this modification any further here.

Another possibility to consider is that of "don't care
non-determinism" [28]. Here, we are presented with a goal and we know
that for this particular goal, any of the clauses in the corresponding
procedure set may be used to solve it: the result will always be the
same. In this special case, only one of those clauses need be
selected and the branch name of the resulting child node will be the
same as that of its parent. As with most forms of 'intelligent' com-
putation, considerable overheads may be involved in determining that
the special case applies and this must be offset against any savings
made through ignoring the non-selected clauses.

CHAPTER 5: Or-parallel Proof Procedure 88

5.6 REGISTER STRUCTURE AND MANIPULATION

5.6.1 Structure

We stated earlier that an entry in the register of bindings for any
given variable is a pair of the form <term, branch> and we proceeded
to fix the branch name as a bit pattern. Both n-ary and binary branch
naming schemes guarantee that node y is a descendant of node x if and
only if x's branch name, of length n bits, is identical to the first n
bits of y's branch name. In this event we say that y's branch name
descends from x's:-

Node-descends(x, y) <-> Branch-descends(branch(x), branch(y)).

This equivalence is exploited in two distinct ways.

1. When seeking a binding in a variable's register, both branch names
are known and the equivalence determines whether or not the 'seek-
ing node' descends from any of the 'binding nodes'.

2. Every node at which a given variable is bound descends from the
node at which the variable is introduced. The equivalence high-
lights the redundancy in storing In each binding the common part
of the binding node's branch name; all that is needed is to store
the extension of the longer name over the shorter. Thus if v is
introduced along the branch named 1010101, any binding for v must
be made along a descendant branch. For example, the two bindings
for v, <A, 101010100> and <B, 10101011>, may be stored as <A, 00>
and <B, 1> respectively. The resulting savings in resources
should be evident. Note that if an Input binding is being regis-
tered (by the unifier-reg process), the extension will be
represented by the empty bit string.

CHAPTER 5: Or-parallel Proof Procedure 89

Example

We give below the full set of registers arising from computa-
tion of our earlier Append example. Here, the names of the
branches associated with nodes A, B, C, D, E and F are respective-
ly (the empty bit string), 0, 1, 10,. 11 and 110. Only the
branch extensions are recorded in the bindings.

{<NIL, 0>, <z.u, 1>}
{<1.2.NIL, 0>, <2.NIL, 10>, <NIL, 110»
{<t, . >}
{<1, • >}
{<NIL, 0>, <z'.u', 1>}
{<t, . >}
{<2.NIL, . >}
{<v, . >}
{<2, . >}
{<NIL, 0>}
{<v, . >}
{<NIL, . >}
{<V, . >}

We now consider exploitation of an ordering on branch names.
Clearly, if the bindings in a register are ordered, a search for a
binding which applies at a specified branch need not, in general, be
exhaustive. The ordering is defined as follows:-

Let B^ and B2 name two branches.

B1 ^ B2 i f t h e f i r s t b i t position at which B^ and B2 differ has
B^'s bit as zero.

This ordering may be extended in the obvious way to two extensions
of the same branch name.

It is clear that for any two distinct branches, B^ and B2, one, and
only one, of the four conditions

s
t
x
z
u
V
w
x'
z'
u
v'
w'
X*

introduced at A (.))

introduced at B (0))
introduced at C (1)) •• •• <• j

n •• 11 j

•• •• it j

introduced at D (10))
introduced at E (11))

.. }

t« »• •• ^

tf n 9* j

introduced at F (110))

CHAPTER 5: Or-parallel Proof Procedure 90

2
1

holds

When concerned with the ordering of the bindings in a register, we
need not take into account the possibility that the branch name of one
binding descends from that of another because the binding applying at
the earlier branch would also apply at the later one and this would
preclude an alternative binding. Thus the above ordering may he con-
sidered a total ordering on the restricted domain of branch names in a

As regards the actual structure of the register, we put forward two
proposals, the ordered chain and the ordered binary tree. We reject
storing bindings in a mass associative memory on the grounds of
impracticability since there appears to he little prospect of such
memories being cost-effective in the short to medium term, the
timescale of primary interest in the Or-parallel proof procedure.

Chain and tree structures share the property that searching a small
register and inserting a new binding are both efficient operations. A
tree structure is more expensive on storage but only needs logarithmic
time to be searched, potentially a significant advantage for large
registers. The most obvious disadvantage of tree structure is that

*
deletion of a node in the tree is not, in general, a trivial operation
and might involve considerable processing. We will consider this dis-
advantage after the next section, which discusses the manner in which
registers might be manipulated.

5.6.2 Insertions

We need to impose the restriction of having just one registrar per
variable because otherwise the administration of the register would be

register.

CHAPTER 5: Or-parallel Proof Procedure

* in the context of a parallel implementation

91

far more complex. To appreciate this, note that data structures can
only be 'held together' (in non-associative memory) by juxtaposition
or reference pointers and the former possibility Is ruled out for a
register because the amount of storage eventually needed is not known
at the time the variable is Introduced into the computation. Modify-
ing such structures, unfortunately a necessary evil In practice, must
therefore be done by modifying the reference pointers, and this needs
to be carried out in a controlled manner.

If, for instance, registers were implemented as chained lists, some
sort of interlock would be needed to prevent any attempt to
'simultaneously' chain two new bindings between the same pair of
existing ones. Provision of such a mechanism would not be without its
overheads and in all probability would result in slower overall per-
formance than that expected from our single registrar proposal -
although to be sure, simulation or experimentation would be needed to
confirm this. At this point in the investigation, we do not regard
the inability to register more than one binding for a given variable
at a time (leaving others waiting until incorporation is complete) as
a serious problem and so we accede to the constraint of having a sin-
gle registrar per variable.

However, we would prefer not to have to impose a similar constraint
when it comes to reading registers, for reading a binding is generally
done quite frequently. Since reading a register does not alter its
structure, there is some hope that registers might be arranged in a
manner which allows any number of processes to access them at any
instant of time. Certainly, processes which read a register will not
interfere with one another, the only possible source of interference
is between such a process and the registrar process and we now consid-
er how such interference might arise.

Of course, ensuring that registration of all the bindings in a
unifier is completed before releasing 'begin computation' messages to
child main processes is a sufficient condition to guarantee that there
is never an attempt to access a binding awaiting registration. There-
fore interference can only occur if the registrar is in the process of
adding an entry and the resultant modification to the structure upsets
a process seeking an unrelated entry.

CHAPTER 5: Or-parallel Proof Procedure 92

In fact, such interference does not come about and we demonstrate
why by considering the ordered chain representation of a register. A
similar argument holds for the ordered tree representation.

Refer to Figure 11. Suppose the registrar is in the process of
inserting a binding B between the bindings A and C (N.B. a modified
argument holds if A and/or C is null, that is, B is being inserted at
the beginning and/or end of the chain). If a, b and c are the branch
names contained in the bindings, we have a < b and b < c.

BEFORE

next-ptr
I I
I I
V I

- I - —
A:|next-a| a |term-a|

B:|next-b| b |term-b|

next-ptr ..
—next-ptr— I I

II I
V V I

- I
C:|next-c| c |term-c|

AFTER

next-ptr next-ptr next-ptr •

I I
V I

A:|next-a| a |term-a|

V

C:|next-c| c |term-c|

B:|next-b| b |term-b|

Figure 11.

The entry B is prepared for insertion and the content of A's
'next-pointer', next-a, is copied to next-b. At this point in time,

CHAPTER 5: Or-parallel Proof Procedure 93

the state of the chain is as illustrated in the BEFORE part of the
figure..

Suppose now that an independent process is seeking a binding which
applies at a node whose branch name is x and it has already been
determined that a < x.

The transition of the register from the BEFORE to the AFTER state
is accomplished by a single machine instruction, "write", which
assigns B's storage address to A's reference pointer, next-a. We need
to consider what effect this transition will have on the independent
searching process and for this purpose, we suppose that the search is
just about to access the next entry, referenced in next-a, by the
instruction "read".

"write" and "read" cannot access next-a simultaneously; the hard-
ware physically prevents this. Thus whether B or C is examined next
by the searching process depends on whether next-a is accessed by
"write" or "read" first.

If B is chained in before next-a is read ("write" is first), the
next comparison done will be between the bit patterns representing x
and b. Because x is not descended from b, we have either x < b or
b < x.

Case 1. x < b. If x < b, the sought binding is absent. But if
B had not been chained in, the comparison x < c would have been
done instead and because of the transitivity of and the
well-ordering of the register, x < c would have been established
and so the same conclusion, viz. the sought binding is absent,
would have been reached.

Case 2. b < x. In this case, the next entry in the chain, C,
will be examined and the outcome will be as though B had not been
chained in, i.e. C had been examined immediately after A.

It follow8 that insertion of a new entry cannot interfere with any
search and so may be done independently.

CHAPTER 5: Or-parallel Proof Procedure 94

5.6.3 Deletions

The possibility of deleting a binding from its containing register
arises once it is determined that the node at which the binding was
made does not relate to any refutation. This corresponds to back-
tracking in the conventional implementation when bindings are
destroyed either implicitly by destruction of their containing acti-
vation record or explicitly by means of the reset list.

We have already described how deletion of an activation record may
come about: essentially when all its child activation records have
been deleted. Such deletion would automatically destroy the registers
held in the activation record (terminating any registrar processes
associated with them) and is analogous to implicit destruction of
bindings in the conventional implementation.

Analogous to explicit destruction in the conventional implementa-
tion - which destroys bindings for goal variables - Is the selective
deletion of bindings from registers. Such deletions cause difficul-
ties in our scheme and to see why, we need only consider the situation
in Figure 11 on page 93 when we wish to remove the binding B from the
chain in the AFTER state.

It is easy enough to change the pointer in next-a to point at C.
The problem arises if this is done while a searching process is look-
ing at the entry B (which of course is no longer required) and the
timing is such that the unchaining of B is done, B is
garbage-collected and its storage is re-assigned and then overwritten,
all before the searching process gets around to comparing its supplied
branch name with what it thinks is In the store previously occupied by
B. Although the above circumstances are highly unlikely, they rule
out deletion as described.

We are left with the choice of ignoring the savings in storage
utilisation which such deletions make possible or designing register
access in a way that prevents deletion of an binding from taking place
if that binding is being accessed by a searching process.

CHAPTER 5: Or-parallel Proof Procedure 95

We reject the latter option on the same grounds as we rejected the
ability to simultaneously insert more than one entry at a time into
the register - the necessary overheads in providing interlocks would
in all probability more than offset any savings made.

The possibility we leave ourselves with,,namely that of not delet-
ing unwanted output bindings, does not, of course, affect the correct-
ness of the proof procedure: it merely wastes storage and processing
time in performing redundant comparisons. On the other hand, it does
remove the need for a reset list and so we may tidy the earlier
description by stating that once bindings in a unifier are registered,
that unifier may be garbage-collected since its residual function as a
reset list is no longer needed.

Our feeling in the absence of suitable simulation is that such
waste would not typically precipitate a catastrophic failure because
each binding takes so little storage. In the ordered chain represen-
tation, a binding is made up of three references (next-in-chain point-
er and two pointers representing the term) plus the branch extension.
Each reference might be 3 bytes (24 bits), the branch extension is, of
course, variable but unless the search tree is very bushy or is less
bushy but variables are frequently bound a long way after their intro-
ductory node, it too might typically occupy no more than 3 bytes,
giving an overall typical size of 12 bytes.

Finally, we point out that our election not to delete entries from
registers removes the basic objection to tree structure and this seems
the most promising overall representation. (The tree representation
needs an extra reference pointer per entry, resulting in a typical
binding size of 15 bytes.) Thus there are compensations in choosing
not to delete redundant bindings from registers and the net effect of
opting for this approach would, as ever, need to be investigated by
means of simulation. .

i

5.7 DATABASE APPLICATIONS

In a serious database application, one may suppose that vast

CHAPTER 5: Or-parallel Proof Procedure 96

relations of ground assertions exist in the program. It may not be
suitable to treat such clauses in the same way as those for relations
more compactly expressed. For instance, one may like to take advan-
tage of the availability of special purpose associative searching
hardware - for example CAFS [31] - which is fast at searching such
ground relations.

Here, we will be content in stating how such an attached 'searching
engine' may be used to supply all solutions of a given atomic goal and
we show the modifications to our proof procedure needed to achieve
this end.

We assume the user's program contains clauses of the form

P(tlf ... , t n) <- "Consult Search Englne(P(ti, ..., tn))".

Such clauses may be additional to ordinary Horn clauses for the named
relation P.

Only main processes are modified. Assuming a goal which potential-
ly matches the head of such a clause is selected by some main process
(which we will term the grandparent main process), this distinguished
clause is seen as merely another way to solve the goal and so an acti-
vation record and main process corresponding to it are established in
the usual way.

The main process (which we will term the parent main process)
attempts, unification as normal and a failure is treated in the usual
way. In the event of a successful unification, however, the goal atom
is fully evaluated, that is all variables are explicitly substituted
by their bound terms. Note that the normal objection to applying sub-
stitutions, namely the copying of complex data structures, does not
usually hold in database applications. The instantiated query is then
sent to the searching engine.

We assume that the searching engine produces a set of solutions and
these are returned to the querying main process (i.e. the parent).

CHAPTER 5: Or-parallel Proof Procedure 97

The parent then establishes a child activation record for each sol-
ution it receives in such a way that solutions appear as unifiers -
i.e. as though it was the child that had performed the unification
with the corresponding ground clause. The child activation record
also has allocated to it a branch name at this time.

Processing of each such child is arranged to start at the point
where registration of the bindings is about to be made. 'Begin compu-
tation' messages are then sent to the child processes.

The modification may be summarised by considering what would happen
if the database clauses had been explicitly expressed.

In this event, the top-level main process (the grandparent) would
have established many children and each would have attempted Its
unification and informed their parent of the outcome. Successful
children would, after receiving their branch names, have continued by
establishing unifier-reg processes to register the bindings in their
unifiers.

In the modification, the process corresponding to the "Consult
Search Engine" clause takes on the task of performing all unifications
and it only establishes child processes for the successes - i.e. the
query solutions. Branch names are pre-allocated to these child acti-
vation records and the corresponding main processes begin at the point
where they establish unifier-reg processes to register the bindings in
the unifier.

The modification is illustrated in Figure 12 on page 99.

CHAPTER 5: Or-parallel Proof Procedure 98

EXTRACT OF SEARCH TREE (NORMALLY EXPRESSED PROGRAM)

X

EXTRACT OF SEARCH TREE (PROGRAM INCLUDES "SEARCH" CLAUSE)

(nodes corresponding to database assertions - children)

Figure 12.

CHAPTER 5: Or-parallel Proof Procedure 99

5.8 ARCHITECTURE

We now turn to the consideration of a suitable architecture for our
proof procedure. We point out once again that the Or-parallel scheme
Is seen as being essentially a short - medium term proposal and the
lowest level of our design, the architecture, is put forward with this
in mind.

5.8.1 Requirements

We take the opportunity of stating here the principal components
already fixed in the design.

1. A conventional memory in which to hold data structures.

2. A message transfer system to allow inter-process communication.

3. A means of distributing work.

Additionally we need a fully distributed system - i.e. we want no cen-
tral bottlenecks - and this requirement guides the design.

5.8.2 Memory

Our design has no place for a centralised memory such as that found
in [12] because the traditional von-Neumann processor-store bottleneck
will result on addition of sufficiently many processors. The alterna-
tive is a distributed memory, one segment of memory per processor.

A distributed memory may be implemented in one of two distinct ways
- locally or globally.

CHAPTER 5: Or-parallel Proof Procedure 100

In a local Implementation of a distributed memory, we associate
each segment with its processor in such a way that the only means of
accessing that memory is through the processor itself. A number of
architectures take this form, notable amongst them being ZMOB [36].

In a global implementation of a distributed memory, we allow any
processor access to any segment of the shared memory without involving
the processor associated with the segment and rely Instead on hardware
arbiters to cope with multiple simultaneous accesses to the same seg-
ment.

A local organisation is attractive from the implementation point of
view for it then becomes very easy to control access to any particular
part of store: all such accesses have to pass through the same
processor and this constraint can be used to prevent attempts at
simultaneous updates etc.. However, the greater the storage access
burden, the more embarrassing a local organisation becomes, for any
processor is then liable to frequent disturbance in order to satisfy
others. Unfortunately, our structure-sharing scheme, so heavily
dependent on accessing the same storage from an arbitrary number of
processes would seem to rule out this possibility and in the absence
of simulation, we will assume that this is indeed the case. Conse-
quently, our architecture will be based on a global implementation of
the shared memory. It will consist of processing elements (PE's) and
Figure 13 on page 102 illustrates the first approximation to the
structure of a PE. The precise nature of the connection between PE's
is left unspecified for the moment.

CHAPTER 5: Or-parallel Proof Procedure 101

MEMORY
SEGMENT

ARBITER

PROCESSOR I ======================

to other

processors

to other

memories

Figure 13.

Notice that a processor may access the segment of memory included with
it in the PE without placing any load on the external processor-memory
network. It is reasonable to expect that such accesses will be faster
than accesses of external segments - although by how much rather
depends on the nature of the network.

5.8.3 Packets

We introduced the concept of a process by stating that it identi-
fied a part of the overall computation which might proceed in parallel
with other processes. Implicit in this notion is that some
sequentiality in the execution of processes is involved - for other-
wise increased parallelism is trivially obtained by further subdivi-
sion of the computation.

Processes communicate through messages and these messages imply
work, the work which the receiving process needs to perform in order
to put the message into effect. The sequentiality constraint we

CHAPTER 5: Or-parallel Proof Procedure 102

impose is that only one of the outstanding messages received by a
process may be put into effect at any one instant of time.

Thus we do not care about the order in which a registrar process
adds bindings to the corresponding register. We do, however, insist
that bindings are only added one at a time - otherwise a corrupt reg-
ister would result, as was pointed out at some length earlier.

Similarly, we do not care about the order in which the unification
outcomes of sibling main processes are notified to their parent. We
do, however, insist that such notifications are handled one at a time.
Were this requirement to be violated - for instance, if two distinct
children both fail their unifications and the list of current chil-
dren, held as an argument of the parent's activation record, is not
updated sequentially - the proof procedure would be incorrect.

We may formalise the constraint of sequentiality by introducing the
notion of a packet. We envisage a process as being implemented
through a stream of packets of work, non-overlapping in time, each
packet representing the computation implied by the contents of the
message that gave rise to it. Later we will show exactly how packets
are implemented.

An example of a packet might be the computation necessary to incor-
porate a new binding in a register. A stream of such packets imple-
ments a registrar process.

5.8.4 Distribution of Work

Viewing a process as being implemented by a stream of packets
naturally raises the question of whether processes are to be run to
termination by the processing element which first took them on or
whether the processing elements are to be regarded as equal computa-
tional resources - packet processing agents in the nomenclature of
Darlington and Reeve [13] - each capable of operating on any process.

CHAPTER 5: Or-parallel Proof Procedure 103

By restricting each process to a chosen PE, it is reasonable to
expect a significant reduction in the volume of processor to
shared-memory communication - for the data structure associated with
each process would be stored in the PE's own segment of memory. This
would speed up computation, as indicated earlier. Moreover savings in
the amount of storage used to hold program clauses could be made and
we explain how in due course.

On the other hand, the alternative scheme is more flexible, for it
avoids problems of local overloading where a PE has too much work.
Furthermore, whenever the distribution of packets is uneven with
respect to PE's, a loss in the realisation of available parallelism
will result since some computing resources will lie idle whilst others
will be overloaded.

Our view is that the spirit of parallel computation is best served
through the adoption of the most flexible scheme - that of regarding
processing agents as equal computational resources - but that practi-
cal considerations may temper this view to accommodate specialist PE's
or groups of PE's and we will say how later. In this respect, our
proposed implementation differs fundamentally from the scheme put for-
ward by Conery & Kibler [11], who establish process-PE links by
insisting that each process is run to completion on the PE that first
accepted the process.

Our proposal to view PE's primarily as agents of computation has
ramifications in the way that inter-process communication might take
place and we now consider this aspect of the design.

5.8.5 Message Communication

In what follows, we will term a process active if a packet for that
process is currently undergoing computation and suspended otherwise.
Thus a suspended process is one which Is awaiting the receipt of a
message whilst an active one will have received one, possibly with
further messages outstanding and awaiting completion of the packet.

CHAPTER 5: Or-parallel Proof Procedure 104

By choosing to divorce processes from PE's, we seem to be disre-
garding the simple communication device that implements inter-process
communication as inter-PE communication. In fact, this is not the
case, as we will show later.. First though, we consider a centralised
process communications scheme, as illustrated in Figure 14.

I pool of messages for active processes I

messages
\
\

(FROM PE's)

/
/

packet-end
signals

I MATCHING UNIT | | - > — > — > packets
================ (t o PE's)

I pool of suspended proceses |

Figure 14.

Here, the matching unit maintains a pool of suspended processes and a
pool of messages for active processes. It accepts messages from PE's
and packet-end signals, also from PE's, the latter indicating that the
packet for the named process has completed computation and hence that
the next message for the process may now be formed into a packet and
released for computation.

The matching unit operates as follows:-

CHAPTER 5: Or-parallel Proof Procedure 105

An incoming message causes the unit to determine whether the proc-
ess named as the destination of the message is in the pool of sus-
pended processes. If it is, the resulting packet is dispatched.
Otherwise, the message is pooled.

An incoming packet-end signal causes the unit to seek from the
message pool a message addressed to the process named in the pack-
et-end signal. If one Is found, a new packet is formed and dis-
patched. Otherwise, the process is added to the pool of suspended
processes.

Although such an approach seems attractive, it does introduce a cen-
tral element into the architecture. Our scheme decentralises the
matching unit in the following way:-

The modification exploits the association between a process and its
data structure. Essentially, it takes account of the fact that any
data structure is accessible through a single, well-defined memory
location, its (implicit) name. Since we associate a segment of store
with each PE, it follows that any data structure, and hence process,
may be associated with that PE if its location lies within the PE's
segment of memory. In this case, we say the process is based in the
PE. We emphasise once more that we do not, in general, insist on a
process's computation being performed by the PE in. which it is based.

We see a matching unit, as depicted in Figure 14 on page 105, being
incorporated in each PE. The matching unit is concerned with proc-
esses based in its PE and with messages to those processes. It also
receives packet-end signals concerned with processes based in its PE.
Note that packet-end signals take the same route as messages insofar
as they are emitted from one PE's processor and received by another
PE's matching unit. The distinction between them is that packet-end
signals are intended for the matching unit itself whilst messages are
passed via the matching unit on to the destination process. In the
interest of brevity, however, we will refer to both as "messages" when
discussing communication, it being understood that in this context,
packet-end signals are included under the term. Whenever we wish to
talk about messages in the previous sense, we will refer to them as
"process-process messages".

CHAPTER 5: Or-parallel Proof Procedure 106

We are almost ready to present a global picture of the architecture
but first, we need to be more specific about how packets are sent out
by one PE and received by another.

The obvious medium for this communication is the same as that used
for communicating messages, provided that the medium allows this type
of message to be broadcast in a way that prevents more than one PE
accepting any given packet. We will call such messages packet-start
signals and as one might expect, we also include them in the umbrella
term "message" when using that term in the context of communication.

Following Farrell et al. [16], Darlington and Reeve [13], Rieger et
al. [36] and others, we find a ring implementation of the communi-
cations medium one well worth investigating.

Essentially, the ring may be regarded as a continuous conveyor
belt, with messages placed in circulating slots. Each PE has a single
connection to the ring, a window, through which it has access to the
ring. If the slot opposite the window is empty at any given time, the
PE is allowed to place a message in it. If it is full, the PE is
allowed to read the message*, and, on the assumption that the message
has arrived at its destination, to remove it, thereby leaving an empty
slot once more.

Provided the ring allows messages to be broadcast - as the ZMOB
ring [36] does - it will be seen that the ring communication medium
satisfies our requirements.

Figure 15 on page 108 gives an outline of the proposed global
architecture.

CHAPTER 5: Or-parallel Proof Procedure 107

Note that the connections between the processors and segments of
global memory external to their PE have yet to be specified and this
we will do shortly. We emphasise here once more that we require
direct processor-memory connections to support the volume of storage
access that our proof procedure can be expected to generate.

5.8.5.1 Internal PE Structure

Figure 16 on page 109 shows the internal PE structure we propose.

CHAPTER 5: Or-parallel Proof Procedure 108

to

ring

MATCHING UNIT

II
==========| ARBITER*! j MEMORY |====| ARBITER |==============

PROCESSOR

to other

processors

to other

memories

Figure 16.

The unit marked ARBITER* is the only part of the PE that sees the ring
and arbitrates between the processor and matching unit for access to
it.

Its connection to the processor serves to transmit packet-end
signals and process-process messages from the processor and to receive
packet-start signals after the processor has indicated that it is idle
(indirectly, through a previous packet-end signal).

Its connection to the matching unit performs converse functions:-
packet-end signals and process-process messages bound for the PE are
recognised by that component and forwarded to the matching unit; pack-
et-start signals, formed by the matching unit, are transmitted out via
the ring.

CHAPTER 5: Or-parallel Proof Procedure 109

5.8.6 Processor-Memory Connection

It is generally recognised that much research has been applied to
the investigation of alternative processor-memory inter-connection
strategies e.g. [34]. By and large, each proposal offers a trade-off
between cost and average speed of access. To be able to decide on the
best compromise calls for some investigation, both by evaluation and
simulation, of'the loading likely to be placed on the adopted scheme.

Below, we include three proposals aimed at lowering the number of
accesses to external segments of memory.

1 • Each PE will contain a local memory which includes a copy of the
computer program that implements the proof procedure.

2. Each such local memory will also contain a copy of the user's Horn
clause program. (This proposal will be modified in a later sec-
tion.)

3. To organise the proof procedure in a way that exploits the direct
link between a PE's processor and memory as fully as possible.

Item 1 above, by itself, makes at least half, probably significant-
ly more - say 55-75% - of the accesses local. This is because in most
processor architectures, the ratio of data accesses to instruction
accesses is less than one-to-one, most such processors being built
round the 0- and 1-operand instruction formats. (N.B. We are assuming
that the proof procedure will be implemented by program code. Were it
to be implemented in microcode, this percentage would be somewhat low-
er because fetching and executing the corresponding microcode would be
faster operations. We are also assuming that local memories and seg-
ments of the global memory operate at the same speed.)

Item 2 also reduces the load significantly because
structure-sharing ensures that the description of dynamic data is at
least partly In terms of the static program. Hence any use of that
dynamic data will in general involve local storage references. For

CHAPTER 5: Or-parallel Proof Procedure 110

example, when matching two functors, the test which checks whether the
two function symbols are the same will do so by making references to
the static program stored locally in each PE. It is far more diffi-
cult to quantify the degree of network loading relief made possible by
item 2 and extensive simulation would be needed.

We might make the guess that the first two items combined would
make 70-85% of all storage accesses local to the PE making the access.

Item 3 seeks to fully exploit the link between a PE's processor and
memory in order to reduce the loading on the (external)
processor-memory network. One way in which this link is used is in
the way that storage is managed and the next section will investigate
this in some detail. Suffice it to say that both storage allocation
and garbage-collection are undertaken by the processor in the PE whose

' segment of memory is the subject of the operation and hence such
transactions may be done without burdening the processor-memory net-
work.

We also point out here that ARBITER*, which interfaces the process-
or and matching unit to the ring, will be capable of diverting a newly
formed packet-start signal straight to the attached processor, should
the latter be idle. Because a matching unit is only concerned with
processes based in its PE, it follows that the processor will then be
dealing with a packet for a locally based process and this will tend
to lower the demands on the processor-memory network, as was pointed
out earlier.

Finally, we make the observation that if an implementation of the
architecture consists of n PE's, then on average, a proportion 1/n of
accesses between a processor and the segment of storage containing the
data it requires, will just happen to be local accesses (the routing
will, of course, be implemented in the ARBITER and will be transparent
to the program). For large n, this contribution can be ignored, but
may be considered significant for n less than 20.

Overall, we consider that items 1-3 above will result in no more
than 10% of all storage accesses being external to the PE making the

CHAPTER 5: Or-parallel Proof Procedure 111

access although we feel that the above analysis should be supplemented
by appropriate simulation.

A small machine, perhaps of 10-20 PE's might have the
processor-memory network implemented through a shared bus, the sim-
plest option. Such an implementation might find favour in a small
business machine or personal computer. A bus allows only one process-
or-memory access at a time and hence is a global resource. Although
this violates our principle of full•distribution, its implementation
cost makes it an attractive proposition for such machines. For a more
demanding application, a devolved interconnection strategy will be
required and we suggest that the indirect binary n-cube network [35]
or its generalisation the delta network [34] might be worthy of con-
sideration. Our feeling is that the full crossover network is more
powerful - and expensive - than the loading warrants.

For the shared bus implementation, the PE architecture may be fur-
ther simplified by arranging for the storage ARBITER to also manage
the PE's connection to the bus and this is depicted in Figure 17 on
page 113. There is no loss In performance in doing this since the
PE's processor and segment of global storage cannot both be active
simultaneously via the bus.

CHAPTER 5: Or-parallel Proof Procedure 112

to

ring

MATCHING UNIT

II

==| ARBITER*! | MEMORY |====| ARBITER |==============

I PROCESSOR |
I (including local store) |

to external

bus

Figure 17.

We make the obvious observation that such an element seems a good can-
didate for fabrication in VLSI.

5.8.7 Storage Management.

We consider a machine consisting of n PE's to have its entire
address space divided into n+1 parts. One part, copied in each PE for
speed of access, holds the code implementing the proof procedure and
also the user's program. The remaining n parts hold the n segments of
PE memory. Thus a reference to an instruction of the inference system
or to an expression in the user's program is identically understood in
all PE's.

We propose that a PE's segment of storage be managed by the local
processor. In particular, if a packet undergoing computation requires
the allocation of storage - for instance, a packet recording a binding

CHAPTER 5: Or-parallel Proof Procedure 113

in a register - the storage is taken from the pool of free store with-
in the PE that accepted the packet.

If a PE runs out of free store, it discontinues the packet on which
it was operating and turns its attention to garbage-collection. We
will show presently, exactly what 'discontinuing' a packet involves.

In our proposal, storage is only released on the termination of
processes and recovery of storage under these circumstances is amena-
ble to implementation through a 'mark and scan' garbage-collection
scheme•

In this scheme, each block of storage is marked .'no longer
required' when this is determined to be the case. Garbage-collection
need only take place when convenient and in our scheme, this would be
whenever the t processor determines that no more free store is
available. At this stage, the entire segment of shared memory associ-
ated with the processor is scanned and marked blocks are returned to
the pool of free storage. Notice that neither the allocation nor the
garbage-collection of storage places a load on the external memory
network - as was claimed earlier - (although marking, in general,
does) and that by arranging for the memory ARBITER to give lowest pri-
ority to accesses from the associated processor, garbage collection
will not materially affect the response to other demands made on the
segment being tidied.

5.8.8 Process Control

We have indicated throughout this chapter that there exists an
association between a process and "its" data structure and we will now
formalise this association.

The execution of a process is organised around a process control
record (pcr):-

CHAPTER 5: Or-parallel Proof Procedure 114

per(messages, ref(data structure), packet state).

The first argument references the set of messages received by the
process but not yet put into effect. In all probability, the set
would be implemented as a queue of messages, the order reflecting the
temporal sequence of message arrivals, and the first message in a
non-empty queue would relate to the current packet* for that process.
This component is managed by the matching unit.

The second argument associates the process - as incarnated in the
process control record - with its data structure. Notice the emphasis
on the way this relationship is viewed here. For the purposes of con-
trolling the computation, the data structure is regarded as merely an
appendage of the process; it is processes and not data structures
which are central to the implementation mechanism, ("ref(x)" names x
through its location in store.)

The third argument is of significance only when the process is
active - i.e. a packet for that process has been formed. It describes
the processing that the packet requires by specifying the processor
state that the receiving PE must establish once it accepts the
packet-start signal. This information is supplied by the matching
unit, which deduces it by examination of the message that gives rise
to the packet. The information would include, for example, the pro-
gram counter and settings for any relevant machine registers.

It can be seen that a packet is completely specified within the
framework of its underlying process control record and so a
packet-start signal may convey its information by naming the relevant
process control record.

Termination of a process - and deletion of its associated data
structure (e.g. termination of a main process after unification fail-
ure) - is effected simply by marking the storage in which the per and
data structure reside and allowing garbage-collection to recover the
store when convenient.

We are now able to show how a packet may be discontinued in one PE
and restarted in another.

CHAPTER 5: Or-parallel Proof Procedure 115

The crucial feature exploited here Is that all PE's hold identical
copies of the proof procedure and user's program and that all these
copies appear in the same address space. Therefore, any location in
local store holds identical contents In each PE and so any reference
to an item in local store has the same meaning throughout the PE's.
The same is trivially true of references to locations in global store.
But the state of a processor, as explained above, Is essentially the
state of its program counter and other machine registers and these, by
the above reasoning, will have the same significance to all processors
and hence PE's.

Thus a mid-term packet transfer is effected by storing the mid-term
state of the old processor in the packet state argument of the rele-
vant per and releasing a packet-start message for it. The new PE will
establish its processor state in the usual way from the third argument
and will thus continue the processing of.that packet.

In this way, our proposal solves the problem of a packet not being
able to continue because the PE that accepted it has run out of store
while others have not. It is seldom known in advance exactly how much
store a particular process might need and any scheme which demands
that storage be allocated from within the PE that first accepted the
process runs the real risk of complications due to later insufficiency
of free storage in that PE.

5.8.9 Modifications to the Basic Scheme

5.8.9.1 Specialist PE's

Earlier on, we said that under certain circumstances, it may be
undesirable to hold a copy of the user's program in each PE and that
specialist PE's, holding some procedure sets but not others may be a
required feature. In the extreme case, the entire machine might be
fully specialised, with no procedure set appearing in more than one

CHAPTER 5: Or-parallel Proof Procedure 116

PE. We now indicate the modifications that need to be applied in
order to cater for this requirement.

We generalise the requirement by applying specialisation to proc-
esses rather than procedure sets, that is, given a process, we will
have the ability to execute its packets on.some specified subset of
the PE's. Thus we could arrange for all main processes concerned with
a specific predicate symbol to execute on a given range of PE's or
perhaps, if we so desired, we could arrange for the packets implement-
ing a particular variable's registrar to be fully executed on a single
PE.

The first change required is that start-packet signals will no
longer be indiscriminately addressed but will instead be directed to
the appropriate subset of PE's.

If only one PE can accept the packet, the packet-start signal may
be directly addressed to it.

If more than one PE can accept it then the method described for
ZMOB [36] is applicable. Here, the packet-start signal Is
addressed to the relevant subset of PE's by means of a capability
code. Each PE also has a capability code of its own and the idea
is that if a PE's capability code matches that of the message it
sees on the ring then that message is accepted. The capability
code of each PE must be set to reflect the processes that it can
handle.

Direct addressing, capability code addressing and universal addressing
can all be accommodated by the ZMOB ring.

Unfortunately, however, certain complications arise as a conse-
quence of the PE's no longer being equal computational resources. The
local overloading of PE's is one. Another is that of a PE running out
of storage (after garbage-collecting all it can) - for if the same is
true of all PE's capable of processing the packet that caused store to
run out, computation on behalf of that packet cannot proceed. The
smaller the subset of PE's able to accept such packets, the more like-
ly this eventuality becomes.

CHAPTER 5: Or-parallel Proof Procedure 117

Moreover, there are complications in the way that such a packet
might be continued in another suitable PE, for the scheme we proposed
made the assumption that the local address space of all PE's is iden-
tical. There are ways of overcoming this last difficulty (for
instance by partitioning the PE's through an equivalence relation on
the processes they can handle) but we do not wish to explore this fur-
ther here.

5.8.9.2 Search Engine

An alternative method of avoiding repetition of large (ground)
relations in all PE's is to hold them external to the multi-processor
and access them through a search engine in the manner described earli-
er. This is the approach we favour, for we envisage a (single) paral-
lel search engine - i.e. one able to respond to more than one query at
a time - connected to all PE's. In this way, each copy of the user's
program is identical (and will include copies of the necessary 'Con-
sult Search Engine' clauses) and so an entirely distributed system,
based on equal computational resources and allowing for large ground
relations, is provided.

5.8.10 Regulation of Parallelism

The previous chapter made it clear that curtailment of parallelism
was an important function of the proof procedure. The perceived
activity of the machine should be used to decide when the degree of
concurrency needs constraint. We offer the following mechanism for
determining how and when parallelism should be restrained.

We have already indicated one way of adjusting to perceived machine
activity - that of alternating between binary and n-ary branch naming.
Perhaps a more satisfactory method of curtailing the degree of concur-
rency is by slowing down the distribution of packets that might be

CHAPTER 5: Or-parallel Proof Procedure 118

expected to extend the search tree. These are packets beginning new
main1 processes and follow from 'begin computation' messages from the
parent main process. In this way, priority is given to the completion
of processing for existing nodes. When the level of activity subsides
once more, these packets may be distributed as normal.

Because any matching unit is able to inspect the messages it
receives, it is able to identify 'begin computation' messages. Given
a mechanism that makes the matching unit in every PE aware of overall
machine activity, we can see that the matching unit is in a position
to decide whether to locally buffer packets corresponding to such mes-
sages or to release them onto the ring.

Determination of overall machine activity should be done In a dis-
tributed manner and the means we propose involves each ARBITER* (which,
interfaces its PE to the ring) in monitoring the activity of the ring.
A busy ring implies much external activity and we make use of this by
arranging for the ARBITER* to communicate the level of activity to its
attached matching unit. The matching unit then acts on this advice as
described previously. (The same information may be conveyed to the
processor, thus enabling it to switch between binary and n-ary branch
naming as appropriate.)

This regulation of concurrency may be refined by noticing that a
breadth-first exploration of the search tree is generally more concur-
rent than a depth-first one. By associating a tree depth level with
each activation record, it is possible to constrain the degree of
parallelism by giving priority to the 'deeper' main processes if the
machine is adequately loaded. Thus matching units could order their
buffers of waiting 'begin computation' packets in a way that will
finely tune machine activity.

CHAPTER 5: Or-parallel Proof Procedure 119

5.9 ASSESSMENT

5.9.1 Level of Parallelism

It is important to recognise that the principal criterion for judg-
ing the effectiveness of any proposal for concurrent computation Is
some measure of the level of useful concurrent computation and not the
time it takes for a particular process to complete. After all, if

/

every PE is fully Involved in useful work, no improvement is possible
and in particular, delays in the transmission of messages are of no
consequence.

However, the criterion of having all PE's fully employed on useful
work has to be satisfied in order to substantiate this view. In prac-
tice, the degree of achievable parallelism rather depends on the
nature of the problem being solved as well as on the proof procedure
itself (and might also depend on control advice).

It should be appreciated that a proof procedure organised around
coarse grains of parallelism may not provide sufficient concurrency to
satisfy certain machine/problem combinations, whereas one organised
around finer grains may well do so.

At the other end of the spectrum, a design which cannot control the
level of concurrency operating in the machine is liable to catastroph-
ic failure if the nature of the problem presented to it gives rise to
more parallelism than it can cope with - for instance, an unregulated
Or-parallel scheme might run out of store because it is actively
exploring too many branches simultaneously.

To characterise the behaviour of our design, we discuss two exam-
ples, each illustrating one of the above extremes and we show how our
design copes with these situations.

CHAPTER 5: Or-parallel Proof Procedure 120

5.9.2 Low Degree of Concurrency

In the Or-parallel proof procedure, the lowest degree of
parallelism is exhibited by a deterministic refutation, one in which
no more than one -clause head unifies successfully with the selected
goal. It it not particularly Instructive to consider the case where
the program only provides a single clause for each relation and we
will assume that more than one clause may be invoked, in general, in
response to a selected goal.

Typical of such examples is the deterministic use of a procedure
set which consists of a base clause and a recursive clause, e.g. solv-
ing an Append goal in which two arguments are fully instantiated lists
and the third is a variable.

Our scheme attempts to concurrently perform unifications between
the selected goal and the heads of applicable clauses. In this
respect, the Or-parallel scheme gains on the conventional backtracking
one, which performs the unifications sequentially. Conery & Kibler's
scheme is also organised around such sequentiality. In both cases, no
progress In the refutation can be made while the clause with matching
head is being sought.

However, our scheme, following unification, has to wait for
bindings to be registered and this is an overhead from which the back-
tracking scheme does not suffer (Conery and Kibler apply substitutions
explicitly). Moreover, in general, registration cannot proceed until
a branch' name has been allocated. In the earlier text, we indicated
that for such deterministic refutations, pre-allocation of branch
names is possible and we assume that this is done here. Thus the only
delay we need to consider is that due to registration.

Because registration of bindings is concurrent, some communication
and synchronisation via messages is required and this gives rise, as
always, to timing delays in individual processes. These delays may be
significant in our example because the PE's are not fully occupied: in
fact, the only activity going on apart from registration is applica-
tion of the selection function and establishment of child main
processes together with their activation records. If registration is
complete before such establishment, the registration delay is not sig-

CHAPTER 5: Or-parallel Proof Procedure 121

nifleant; otherwise it Is.

In contrast, a conventional implementation will, at the time corre-
sponding to registration, apply the selection function and repeatedly
(until a unification success or exhaustion of suitable clauses)

1. Prepare an activation record
2. Attempt unification

Given a machine constructed according to our architecture and a tradi-
tional one, the ratio of registration time to the time taken to exe-
cute the above cycle will depend (amongst other things) on the nature
of the particular program being run.

For instance, to show the Or-parallel scheme in a bad light, one
might consider the procedure set

Append(z.u, v, z.w) <- Append(u, v, w)
Append(NIL, x, x)

and the goal <-Append(1.2 NIL, NIL, y). In this case, the
backtracking scheme, using LRDF search, will choose the correct clause
every time except the last and for a long first list, the proportion
of successful first-time choices will be high. The Or-parallel scheme
will register four bindings on each recursion, one of them being an
output binding which will be devolved (y and variants of w).

To show the Or-parallel scheme in a better light, one might consid-
er the re-ordered procedure set

Append(NIL, x, x)
Append(z.u, v, z.w) <- Append(u, v, w)

and the goal <-Append(y, NIL, 1.2 NIL). In this second
example, the conventional implementation will, on each recursion
except the last, select the wrong clause and successfully unify the
first two pairs of terms before detecting that the Append atoms cannot
be unified. The longer such abortive processing takes in comparison
to registration, the more favourable the Or-parallel implementation
appears.

CHAPTER 5: Or-parallel Proof Procedure 122

As regards the reading of bindings, the two schemes are comparable,
for whereas the backtracking scheme determines a binding (or that the
variable is unbound) through two references, the Or-parallel scheme
determines, in the corresponding two references, a set of bindings -
the register.

An empty set indicates that the variable is unbound.

The only alternative in the deterministic case is a singleton set,
whose binding applies because the search tree has a single branch,
and this is indicated by an empty branch extension in the binding.
A further storage access and a zero length bit comparison are also
required in this eventuality.

In both cases, looking up a binding in the Or-parallel proof proce-
dure involves a trivial amount of extra work.

In summary, our scheme, when used in such unsuitable circumstances,
would not be capable of exploiting the resources it has available to
it. Furthermore, the very aspects of the scheme designed to cope with
more general (and favourable) cases may well delay execution. In oth-
er words, the overheads introduced to allow for parallelism - for
instance, registration and a message transfer system - may not always
be compensated for by concurrent program execution, in which case, we
are left with a net deficit. It is conjectured that the same conclu-
sion applies to all concurrent execution strategies, for the same
reason.

Nevertheless, the above examples and reasoning lead us to believe
that our scheme will provide an adequate performance under such
unfavourable circumstances. Whenever the application allows more con-
currency, more main processes can be expected to occupy the PE's and
hence more concurrently executing useful work will take place.

5.9.3 High Degree of Concurrency

Our example here is centred on a database of employees. The prob-

CHAPTER 5: Or-parallel Proof Procedure 123

lem is to find all employees, w, managed (directly or transitively) by
A and possessing property P(w). We assume that each determination of
P(w) is a significant computation in terms of the quantity of
resources demanded.

<- Manager(A, w) & P(w)

Manager(x, y)
<- Works-for(x, y)

Manager(x, y)
<- Works-for(x, z) &

Manager(z, y)

Works-for(., .)
Works-for(., .)

etc

P(t) <-
etc

(We choose to treat the Works-for relation outside the Search Engine
context so as not to needlessly complicate our description.)

If we assume that binary branch naming is taking place, solutions
of a Works-for subgoal, regardless of how that subgoal was derived,,
give rise to new branches of the search tree and such branches are
begun more or less at the same rate as solutions of the Works-for sub-
goal are found (as explained earlier in the chapter).

Thus one can envisage the overall activity of the system gradually
building up as new workers are discovered for known managers. This
build-up is detectable from activity in the ring. Switching to the
n-ary branch naming scheme will serve to delay the growing of the tree
and help to conserve resources: branch names will tend to be shorter.
(The delay does not matter in this case because we are assuming that
the PE's are busy for a high proportion of the time.)

CHAPTER 5: Or-parallel Proof Procedure 124

• We may also hold back the development of the tree by delaying all
packets seeking to begin unifications. Releasing these packets in a
'depth-first' manner will give priority to the extension of some
branches of the search tree over others: those main processes further
down the tree will receive more resources and this effect will be per-
petuated until terminal nodes are encountered. Emphasis will be given
to the deepest derivations and the example shows that once a terminal
node is encountered (and the solution extracted in case of successful
termination), storage, in the form of activation records and registers
relevant to the particular instance of the P(w) subgoal concerned, can
be released.

CHAPTER 5: Or-parallel Proof Procedure 125

CHAPTER 6: AND-OR PROOF PROCEDURE

6.1 INTRODUCTION

The And-or proof procedure, as its name implies, seeks to exploit
both forms of parallelism implicit in logic programs. It is somewhat
different in nature from other schemes; in particular, it is not based
on the producer/consumer notion of computation and so does not give
the network form of and-parallelism found, for example, in the pro-
posal put forward by Clark and Gregory [5]. In due course, we will
describe the behaviour exhibited by the And-or scheme and show how the
basic proof procedure might be adapted to display network behaviour.

Because the organisation of the And-or proof procedure is so dif-
ferent, this chapter will be primarily concerned with the design of
the abstract scheme. We believe that the proposal represents a new
direction of research and inevitably certain aspects of it will
require further investigation: there are some known weaknesses which
will be pointed out when encountered.

We have not been able to devote a great deal of effort to Investi-
gating the computational complexity of key parts of the scheme and
thereby estimating their efficiency. Nor have we been able to
formally show the proof procedure's correctness and completeness.
However important these areas of research might be, their investi-
gation must necessarily come second to the discovery and investigation
of the basic scheme, and that is what we report here.

Although there exists a relationship between the And-or and
Or-parallel proof procedures, it is not a particularly helpful one
from the point of presentation. In fact, the Or-parallel proof proce-
dure is a degeneration of the And-or scheme and the two schemes are
compatible to the extent that a partial degeneration towards the for-
mer one serves as a regulator of parallelism in the latter. However,
in the initial part of this chapter, we will concentrate on the
unbridled And-or scheme because we prefer the approach that derives

CHAPTER 5: Or-parallel Proof Procedure 126

the final proof procedure by restricting the degree of parallelism,
rather than the approach that extends the minimal (Or-parallel) scheme
by introducing new aspects to it.

The And-or proof procedure is based on the and-or tree represen-
tation of problem reduction, which is now described.

6.2 AND-OR TREE

The and-or tree model of problem reduction is well documented in
the literature e.g. [33], [28]. Kowalski points out the major weak-
ness of this model, viz. that it does not show the relationship
between subgoals which are connected through shared variables. We
will show how the And-or proof procedure overcomes this difficulty.

In the portrayal of the and-or tree given here, there are two types
of node: goal nodes and (clause) head nodes.

The children of a head node are goal nodes.

The children of a goal node are head nodes.

The arcs connecting a goal node to each of its children represent
the unifications of the goal with the respective heads. Alternative
clauses give rise to alternative unifications and so the arcs are con-
nected by v (or) operators.

A head node and its children represent a clause (more strictly, a
clause which has been applied in response to the parent goal). The
arcs connecting the head node to each of its children represent the
links between the consequent atom and the goals derived from the
antecedent atoms. The antecedents are conjoined and so the arcs are
connected by & (and) operators.

A goal node with no child nodes is a fail node.

CHAPTER 5: Or-parallel Proof Procedure 127

A head node with no child nodes is a success node.

The and-or tree for the following set of Horn clauses is illus-
trated in Figure 18 on page 129.

<-GOAL(y, z)
GOAL(u, v) <- P(u) & Q(v) & R(u, v)

P (l)
P(2)

Q (D
Q(2)

R(w, 3) <- &
R(x, x)

The or-arcs are depicted as double lines to suggest interconnection
through unification and to break up the tree into a more readily
assimilated form. Viewing the tree from top to bottom, single line
arcs lead to goal nodes, double line arcs lead to head nodes.

Notice that the and-or tree has a single root node and that there-
fore the top-level goal has to be atomic (this may always be arranged
by including an intermediate 'GOAL' procedure, as in the above
example).

6.3 INTRODUCTORY EXAMPLE

As motivation for the And-or proof procedure, we describe a very
simple computation, based on the above example. Terms which are
defined later in the main text will still be used (they will appear in
bold-face here) and it is hoped that in most cases, their meaning in
the context of this trivial example will be more or less obvious.
Where this is not the case, we will give some intuitive justification

CHAPTER 5: Or-parallel Proof Procedure 128

/
/
/
/ &
/

A <-GOAL(y, z)
I
I{u/y, v/z}
I

B GOAL(u, v)
/1 \
/ I \

\
\
\

& \
\
\
\
\
\
\
\

/
c <-P(y)
/
/
//
//
//

{y/l}// v 11{y/2}
//

//
F G

P(l) P(2)

/
/
//
//

{z/1}// | | {z/2}
// v

//
//

H I
Q d) Q(2)

\
D <-Q(z)

{w/y, z/3}|

R(w, 3) /|
/&l

E <-R(y, z)
l\

\
\\
\\
\\{x/y, y/z}

v \\
\\
\\
K

R(x, x)

• •

Figure 18.

to supplement their usage. In this way, the section may also be
regarded as an overview of the scheme.

Description of Processing

Imagine the tree is grown breadth first. Suppose the point at
which the nodes F to K appear has been reached.

The unifiers are summarised in Figure 19 on page 130 where, in
these particular instances, the scope of a unifier is the singleton

CHAPTER 5: Or-parallel Proof Procedure 129

set whose element is the name of the head node at which the unifier is
established.

| SCOPE UNIFIER
II
I | SCOPE
II

UNIFIER |

l{B} {u/y, v/z}
II
1 l{F} | t {y/l} 1

l{G} {y/2} 1 l{H} j | U/l} 1

1(1} {z/2} ll{J} 1 1
{w/y, z/3} |

l{K} {x/y, y/z}
1 1
II
II

Figure 19.

We may re-arrange the above information into the table of bindings
shown in Figure 20.

I VAR BINDING+SCOPE |
1
I VAR
1

BINDING+SCOPE |

1 u y {B} 1
1
1 y 1 {F} I
1 2 {G} I

1 v z {B} 1 1 t
z {K} |

1 w y {J} 1
i
1 z 1 {H} |
1 2 {1} 1

1 X y {K} I 1 3 {J} 1

Figure 20.

CHAPTER 5: Or-parallel Proof Procedure 130

(This re-arrangement of binding information reflects the storage
scheme adopted in the proposal. However, it will become evident in
due course that we still need the concept of 'unifier', that is, we
need to associate bindings together in a manner that relates to the
point at which they were made. In implementation terms, this means
that any binding must be accessible not only through the variable name
but also through the relevant unifier. Needless to say, any reason-
able implementation will avoid a naive duplication of the binding
information.)

Referring to the entries for z, the scopes of the various bindings
for that variable are {H}, {1} and {J}. Scopes {H} and {1} are dis-
joint whereas scopes {H} and {J} & scopes {1} and {J} are conjoint.

Therefore, two reconciliations are set in progress with scopes (H,
J} and {I, J} respectively. The first attempts to reconcile the com-
ponents z/1, z/3; the second z/2, z/3.

They both fail.

The two failures result in filters with scopes {H, J} and {I, J}
being established. The set of filters { {H, J}, {I, J} } is subse-
quently promoted to a filter with scope {B, J}, which is in turn
reduced to the singleton {J} (since B is J's ancestor) and the branch
leading to node J is pruned.

It may be useful to give the following justification for the steps
in the above paragraph. The filter {H, J} formalises the 'incompat-
ibility' between the head nodes, H and J, which appear as its
elements. It states that there can be no solution, in the and-or tree
interpretation of this term [33], which includes those two nodes.
Similarly, the nodes I and J are incompatible in the same sense.
Appealing to the structure of the and-or tree, we see that H and I
represent the only ways to solve the goal at D and because the sol-
ution of this goal is a necessary requirement for use of the clause at
B to be successful, we conclude that B and J are incompatible and
state this fact by means of the filter {B, J}. However, since B is
J's ancestor in the tree, it follows that any solution which involves
J necessarily involves B anyway and so B's presence in the filter is

CHAPTER 5: Or-parallel Proof Procedure 131

superfluous. Deletion of B from the filter leaves the singleton {J}
and we interpret this as being sufficient grounds on which to discard
that node with all its descendants and to abort all computations in
that part of the tree.

Turning to the variable y, the scopes of its alternative bindings
are {F}, {G} and {K}. Scopes {F} and {G} are disjoint but scopes {F}
and {K} & scopes {G} and {K} are conjoint.

Consequently, two reconciliations are set in motion with scopes
{F,K} and {G,K} respectively. The first one reconciles the components
y/1 and y/z; the second the components y/2 and y/z.

They both succeed and return the unifiers {z/1} and {z/2} respec-
tively.

At this stage, the set of unifiers is as in Figure 21.

I SCOPE UNIFIER
II
I| SCOPE
II

UNIFIER |

l{B} {u/y, v/z}
II
1 l{F} 1 {y/i} 1

l{G} {y/2} ll{H} {z/1} |

1(1} {z/2} ll{K}
1 1 {x/y, y/z} j

l{F,K} {z/1} ll{G,K}
II

{z/2} |

Figure 21.

The bindings for the variables are as in Figure 22 on page 133.

CHAPTER 5: Or-parallel Proof Procedure 132

j VAR BINDING+SCOPE \
1
1 VAR
1

BINDING+SCOPE |

1 u y {B} 1
1
1 y 1 {F} |
1 2 {G} I

1 v z {B} I 1
i

z {K} |

1 x y {K} |
i
1 z 1 {H} |
1 2 {1} 1
1 1 {F,K} |
1
1

2 {G,K} |

Figure 22.

With reference to z in Figure 22, the scopes of the two new
unifiers are tested for conjointness with the scopes of each of the
previous unifiers binding z, and with each other. Five (separate)
tests for conjointness are made:

{H} {F,K} CONJOINT, scope is {F,H,K}

{1} {F,K} CONJOINT, scope is {F,I,K}

{H} {G,K} CONJOINT, scope is {G,H,K}

{1} {G,K} CONJOINT, scope is {G,I,K}

{ f , k } { g , k } d i s j o i n t

Component reconciliations are invoked in the first four cases

Terms: 1, 1 Result: Success, unifier is {}

Terms: 2, 1 Result: Failure

CHAPTER 5: Or-parallel Proof Procedure 133

Terms: 1, 2 Result: Failure

Terms: 2, 2 Result: Success, unifier is {}

and the failures of cases 2 and 3 establish the. filters {F,I,K} and
{G,H,K} respectively. The sets of filters {{F, I, K}} and {{G, H, K}}
are promoted to the filters {F, I, B} and {G, H, B} respectively.
These latter filters are then reduced to the filters {F,I} and {G,H}
respectively.

The unifiers current after these reconciliations have finished are
depicted in Figure 23.

i SCOPE i UNIFIER
I I 1
I | SCOPE |
I I 1

UNIFIER 1

K b } 1 {u/y, v/z}
I I 1
l l { f } 1
1 1

{ y / U 1
K g } I {y/2} I K h } 1

11 1
{z/1} 1

K i } 1 {z/2} I K k } I
1 1

{x/y, y/z} |

K f , k } 1 {z/1} I K g , k } 1
11 i

{z/2} 1

K f , h , k } | {} 11 i
I K g , I , k } |
I I 1

{} 1

Figure 23.

Since no further reconciliations are indicated, the entire computation
is complete and the solutions (i.e. candidate solutions not eliminated
by the filters {F, 1} and {G, H}) are

1. {B, F, H, K}

2. {B, G, I, K}.

The corresponding substitutions are

CHAPTER 5: Or-parallel Proof Procedure 134

1. { {u/y, v/z}, {y/1}, {z/1}, {x/y, y/z}, {z/1}, {} }

2. { {u/y, v/z}, {y/2}, {z/2}, {x/y, y/z}, {z/2}, {} }

from which the sets of goal variable bindings, {y/1, z/1} and {y/2,
z/2}, may be extracted.

6.4 THE BASIC SCHEME

Although the preceding example is a simple one, it does give the
flavour of the And-or proof procedure. It should be clear from it
that our scheme is driven by what we have termed 'reconciliation' and
we now describe this central concept together with those to which it
is closely related.

6.4.1 Reconciliation

Growing branches of the and-or tree independently leaves open the
possibility that conflicting bindings will be made. Such conflict may
come about if two or more unifiers, whose associated nodes of the tree
contribute to the solution of different parts of the same problem,
contain components with variable position occupied by the same vari-
able.

The conventional description of a substitution stipulates that
there can be no more than one component in the substitution for any
given variable. This restriction is not, in fact, a necessary one
since the concept of substitution is defined in terms of applying the
substitution to an arbitrary expression: that is, replacing variables
appearing in the expression by the terms to which those variables are
bound in the substitution. The necessary restriction is that if more
than one component for any variable exists in the substitution then it
is immaterial which component is selected when the substitution is

CHAPTER 5: Or-parallel Proof Procedure 135

applied to an arbitrary expression: the same instance of the
expression (allowing for variants) is always computed.

We define a substitution to be a set of unifiers with the property
that when applied - in the above sense - to an arbitrary expression,
the resulting instance of that expression is independent of the
choices made in selecting alternative components for the same
variable. This unconventional meaning will be ascribed to the term
'substitution' throughout this chapter unless explicitly indicated
otherwise.

As an example, the set of unifiers {{x/A}, {x/u}, {u/A}} is a sub-
stitution in the above sense because on application to an arbitrary
expression, the end result is the same, regardless of which component
for the variable x is chosen. Similarly, {(x/f(u,A), v/w},
{x/f(g(v),w), u/g(A)}, {v/A, w/A}} is a substitution whereas {{x/A},
{x/B}} is not.

Suppose S is a set of unifiers. If, for any variable v, S contains
no more than one binding in which v occupies the variable position,
then S is a substitution.

Alternatively, if S includes, within its unifiers, the two bindings
v/t^ and v/t£ then it should be Intuitively clear that if it is possi-
ble to unify t^ and anc^ t o augment S by the unifier U so produced
(giving S'), then it is immaterial which of the above two bindings is
chosen when S' is applied to some expression involving v. We term
this process reconciliation and, assuming the unification is success-
ful, say that the bindings v/t^ and v/t2 are reconciled with
auxiliary unifier U. If now it is possible to reconcile all pairs of
alternative bindirigs stemming from S, including those introduced in
auxiliary unifiers, then the resulting set of unifiers will be a sub-
stitution.

Reconciliation is essentially the 'unification of terms in
unifiers', as Kowalski points out in chapter 4 of [28].

The following examples illustrate reconciliation

CHAPTER 5: Or-parallel Proof Procedure 136

S (Initially given) U (Auxiliary)

1. {{x/u}, {x/A}} Uu/A}}

2. {{x/f(u,A), v/w}, {x/f(g(v),w)}, {{v/A}, {w/A}}
(u/g(A)}}

For convenience, we will use the term primary unifier to refer to
non-auxiliary unifiers. A primary unifier is associated with just one
node of the and-or tree and is established during its growth.

6.4.2 Solutions

We will now describe what is meant by the term 'solution' and in
order to do so, we need the notion of 'candidate solution'.

Given a goal node G, a candidate solution of the goal at G is a set
of head nodes, S(G), defined recursively as follows.

1. Choose one child (head) node H of G and include H in S(G).

2. For each child, G^, G2, •••Gn> o f H» include S ^) , S(G2), ...,
S(Gn) in S(G)

3. Include no other nodes In S(G).

We will be primarily concerned with candidate solutions of the
top-level goal and so unless otherwise qualified, the term 'candidate
solution' will relate to that goal.

A solution is a candidate solution whose associated unifiers have
been reconciled. Consequently, the reconciled set of unifiers,
including the auxiliary ones, is a substitution.

Notice that reconciliation is never indicated if subgoals are inde-
pendent because in that case, no variables are shared between the

CHAPTER 5: Or-parallel Proof Procedure 137

atomic goals and hence alternative bindings (for the same instance of
each variable) cannot be made. In this event, every candidate sol-
ution will be a solution. In such circumstances, the And-or scheme
shares individual solutions of the independent subgoals and fulfils
the ideals described in Chapter 4 - whereby m+n (and not m*n)
sub-computations are performed.

Example

Referring to the introductory example, consider the candidate
solution {B, F, H, K} whose set of associated unifiers, S, is

{ {u/y, v/z}, {y/1}, {z/1}, {x/y, y/z} }.

For the candidate to be a solution, it is necessary to reconcile
the components <y/l, y/z>.

The reconciliation succeeds with the unifier {z/1}, which is
added to S. Inclusion of this unifier in S precipitates the need
to reconcile the two bindings for z, viz. z/1 and z/1. This
reconciliation succeeds with the empty unifier, which is also
added to S.

No further reconciliations are indicated and so the candidate
solution becomes a solution on addition of the auxiliary unifiers
{z/1} and {} to S.

The above description regards the goal of transforming a candidate
solution into a solution as the set of subgoals which seek to recon-
cile potentially conflicting components. Because reconciliations are
independent one from another, we believe that there is no constraint
on them being performed in any given sequence - or indeed in no
sequence at all - and our proof procedure exploits this observation.

Before continuing the main exposition in the next section, we
briefly digress to consider a simplistic approach to producing sol-
utions. Our reason for doing so is to motivate the description of
further aspects of the scheme.

CHAPTER 5: Or-parallel Proof Procedure 138

A naive scheme for producing solutions might grow the tree to its
limits, compute candidate solutions and then seek to reconcile alter-
native bindings in the candidates. We see two principal weaknesses in
this approach.

1. It may happen that the and-or tree is not finite but it is known
that nodes along a possibly infinite branch cannot contribute to a
solution. In our example, nodes in the subtree rooted at node J
cannot contribute to any solution but the naive scheme is unable
to recognise this because it must first wait for the tree to be
fully grown.

2. Much repetition is generally involved since the generation of can-
didate solutions is combinatorial in nature. Given two unifiers
associated with head nodes N1 and N2, reconciliations of pairs of
components (for the same variable) contained in each will be
repeated for all candidate solutions which include N1 and N2. In
particular, if N1 and N2 have many descendants, such repetition
will be extensive.

6.4.3 Registration

As one might expect, one modification to the naive scheme is that
component reconciliations will be performed eagerly, that is, as soon
as alternative bindings for the same variable are detected. This will
serve to overcome the first weakness.

We propose to conduct eager component reconciliations by carrying
over, from the Or-parallel scheme, the notion of registrars. As
before, a registrar exists for each variable and accepts alternative
bindings for it. However, now it must take on the more active role of
also initiating component reconciliations whenever these are
indicated. We will shortly discuss the registration of bindings.

CHAPTER 5: Or-parallel Proof Procedure 139

6.4.4 Scope

Registration by itself does not overcome the second weakness, that
of repetition. What we would like to do is to share the results of
component reconciliations between the relevant candidate solutions.
To achieve this end, we introduce the notion of scope.

Each unifier is associated with a set of head nodes, called its
scope. The scope of a unifier is a device that describes the substi-
tutions within which the unifier is to appear. For the sake of read-
ability, we will sometimes use the term "scope of a component" to mean
"scope of the unifier in which the component appears".

The scope of a unifier is recursively defined as follows.

The scope of a primary unifier at the node N is the singleton {N}.

The scope of an auxiliary unifier, resulting from the reconcil-
iation of components with scopes S^ and S2, is formed from the
union of S^ and S2 by deleting nodes which are ancestors of others
in the union.

The interpretation we place on the scope S of a unifier U is that
if S is a subset of any particular solution then U is a member of the
corresponding substitution.

Note that because a solution contains all ancestors of the tip
nodes in that solution, it is safe to delete ancestral nodes after
forming the union of S-̂ with S2: if S is a subset of some solution
then that solution necessarily includes the deleted ancestral nodes
anyway.

The notion of scope may be extended to the case where a component
reconciliation fails. In this case, a filter, whose scope is computed
in the same way as that for an auxiliary unifier, is produced.

CHAPTER 5: Or-parallel Proof Procedure 140

The interpretation we place on a filter with scope S is that S is
not a subset of any solution. Equivalently, no candidate solution
which Includes S as a subset is a solution.

Reference to the introductory example will serve to illustrate
these concepts.

Note that a candidate solution need not necessarily be fully com-
puted in order to determine whether a given scope is a subset of it.
This observation allows us to abandon partially complete computations
in appropriate circumstances.

6.4*5 Conjointness and Disjointness

A registrar exists for each variable and included amongst its tasks
is the determination of whether or not two bindings submitted to It
are for the same instance of the variable with which it is concerned -
i.e. whether or not the two bindings might possibly relate to the same
derivation. (An example of two bindings that do not relate to the
same derivation is provided by the introductory example where the
bindings concerned are z/1 and z/2, of scopes {H} and {1}
respectively.)

Earlier, we showed how candidate solutions are formed and we indi-
cated that within the unifiers associated with the candidate, all ref-
erences to any given variable are references to the same instance of
that variable. Consequently, reconciliations are relevant if and only
if the scope of the resulting auxiliary unifier or filter is a subset
of some candidate solution.

Below, we give a rule for determining whether or not a set of nodes
is a subset of some candidate solution.

This rule is suggested by the following examples, based on the
and-or tree extract shown in Figure 24 on page 142

CHAPTER 5: Or-parallel Proof Procedure 141

/

/
/

/ &

/

i
i

N1
\

N2
/

/ i
/ / i

/ / i
/ / i

// v |
N5 N6

N3

\
\

& \

N7

N4
\
l \
l\\
i w
i w
i v \ \

N8 N9
l \
i \
i \
i & \

Nil N10
i
i
i
i
i
i

N13 N14

\
N12

\
l \
l \ \
i \ \
i w
i v \ \

N15 N16

Figure 24.

1. The set of head nodes {N5, N7, N14, N15} is a subset of several
candidate solutions.

2. The set of head nodes {N5, N7, N13, N15} is not a subset of any
candidate solution.

The rule is that no two nodes in the submitted set of nodes - the
supposed subset of some candidate solution - lie on branches concerned
with solving some goal in alternative ways.

CHAPTER 5: Or-parallel Proof Procedure 142

Equivalently, the rule Is that for each pair of nodes in the set,
their nearest common ancestor is a head node.

Two nodes are said to be conjoint if their nearest common ancestor
is a head node.

Two nodes are said to be disjoint if their nearest common ancestor
is a goal node.

In the second example above, the nodes N13 and N15 are disjoint and
so the given set is not a subset of any candidate solution.

When presented with two components with scopes {N^, N2, •••»
Nn} and S 2 = {M^, M2, ..., h^} respectively, it is not necessary to
form the scope of the projected auxiliary unifier (or filter) and then
test each pair of nodes for conjointness. It is readily verified that
the n*m tests, with one node coming from each scope, will suffice. We
will also say that two scopes are conjoint if their contained nodes
are pairwise conjoint. The efficiency of the above tests will in
practice depend on the chosen representation of scope and Kowalski's
suggestion of a tree structure rooted in the nearest common ancestor
would seem a promising line of investigation.

Example
As an example of the basic And-or scheme, consider the Shortlist pro-
gram :-

Shortlist(in, n, out) <- Double(in, inter) &
Initial(n, inter, out)

Double(NIL, NIL)

Double(t.u, v.w) <- *(2, t, v) & Double(u, w)

lnitial(0, s, NIL)
Initial(s(n), x.y, x.z) <- Initial(n, y, z)

supplemented by an appropriate definition of the relation. The
intended usage Is for the user to supply a list of integers in the

CHAPTER 5: Or-parallel Proof Procedure 143

first argument of the Shortlist goal, an integer in the second and a
variable in the third. The computation instantiates this variable to
a list whose length is equal to the second input argument and each of
whose items is double the corresponding item in the first list. Thus

Shortlist(l.2.1.3.4.NIL, s(s(s(s(0)))), 2.4.2.6.NIL)

holds. For the purposes of this example, we will modify the program
as follows:-

<- Shortlist(r)

Shortlist(p) <- Double(1.1.NIL, q) & lnitial(s(0), q, p)

Double(NIL, NIL)

Double(t.u, v.w) <- *(2, t, v) & Double(u, w)

lnitial(0, s, NIL)

Initial(s(n), x.y, x.z) <- Initial(n, y, z)

* (2 , 1 , 2)

The and-or tree is given in Figure 25 on page 145.

CHAPTER 5: Or-parallel Proof Procedure 144

<-Double(1.1.NIL, q) C
/ /

/ /
{t/1, u/l.NIL, q/v.w}//

/ /
/ /

Double(t.u, v.w) E
/\

/ \
/ & \

/ \

A <-Shortlist(r)
i i
II {p/r}
i i
B Shortlist(p)
/\

/ \
/ \

/ & \
/ \

\
\
D <-Initial(s(0), q, r)

<-*(2, 1, v) G
i i

{v/2} ||

{n/0, q/x.y, r/x.z}

F Initial(s(n), x.y, x.z)
\
\
\
\

H <-Double(1•NIL, w) I <-Initial(0, y, z)

{s/y, z/NIL}

(2, 1, 2) J

ll{t'/l, u'/NIL,
|I w/v'.w'}
i i
K Double(t'.u', v'.w')
/\

/ \
/ & \
/ \

<-*(2, 1, v') M N <-Double(NIL, w')

L lnitial(0, s, NIL)

{v'/2} ||
i i

*(2, 1, 2) 0

II {w'/NIL}
i i
P Double(NIL, NIL)

Figure 25.

We notice that the and-or tree confirms the 'functional' nature of
this example: all or-parallelism is very shallow and amounts to a
failed unification in each case (not illustrated). Consequently, any
test for conjointness will be satisfied.

CHAPTER 5: Or-parallel Proof Procedure 145

It will be seen that the unifiers at nodes E and F have alternative
bindings for q, viz. q/v.w and q/x.y. A reconciliation is set in
motion and succeeds with auxiliary unifier {x/v, y/w}, of scope {E,
F}.

It is easily verified that no further reconciliations are called
for. Notice, however, that no solution is found until the entire com-
putation terminates, for the existence of the intermediate list q
needs to be established.

The solution is (B, E, F, J, K, L, 0, P} with corresponding substi-
tution comprising the set of unifiers at those above nodes, together
with the auxiliary unifier {x/v, y/w}. From this substitution, one is
able to determine the set of bindings relevant to the user's variable
r, namely {r/x.z, x/v, v/2, z/NIL}.

6.4.6 Filtering and Pruning of the And-or Tree

We have described an and-or tree model of computation in which each
node is tentatively assumed to be capable of contributing towards sol-
utions when the tree is grown. As component reconciliations are
attempted, failures occur and are described by appropriate filters.
We now show how filters may be manipulated to (in general) curtail the
growth of the tree.

The three operations introduced in this section - namely promotion,
reduction and pruning - will be discussed with reference to the and-or
tree extract shown in Figure 26 on page 147.

In this example, we assume the pre-existence of two filters with
scopes {N9, Nil} and {N12, N5}.

CHAPTER 5: Or-parallel Proof Procedure 146

/
N2

/

N1
/\
/ \

/ \

\

/

N4
/\

/ \
/ \

N7
/

/ i
/ / i

/ / i
/ / i

// v |
N9 N10

\
N8

N3
l \
l \ \
I l \ \
i i w
i i w
i i v \ \
N5

\
l \
l \ \
i w
i w
i v \ \

Nil N12
l \

N6
l \
i \

Figure 26

6.4.6.1 Scope Subsumption

As a prelude to considering the manipulation of filters, it Is
helpful to introduce the notion of scope subsumption.

Scope S^ subsumes scope S£ if every node in S^ is an ancestor of
some node in S2 ('ancestor', as always, is used inclusively).

CHAPTER 5: Or-parallel Proof Procedure 147

For example (with reference to the above tree), S^ = {N4} subsumes
S2 = {N10, N6}. When S^ and S2 relate to filters, the filter corre-
sponding to S2 is redundant:- for it states that no candidate solution
which includes S2 as a subset is a solution. This is already implied
by the hypothesis that the filter S^ subsumes S2 (because all the
ancestors of any node in a solution also appear in that solution).

6.4.6.2 Promotion

In this section, we consider a filter to exist if it is implied by
some subsuming filter. The definition which follows is illustrated by
Figure 27 on page 149.

A set of filters whose scopes are S^, S2, Sn, may be promoted
to form a filter with scope S = S" U {N} where

S" is the intersection of S^, S2, •••, S n and

Sj-S' (1 <_ i _< n) are singleton sets whose respective elements are
all the children of some (goal) node N' and N is the parent of N'.

CHAPTER 5: Or-parallel Proof Procedure 148

i i
i i
N

/ l \
/ i \

. i

. & | &

for example

S = {A, B, C, N }
SL2 = {A, B, C, N^}

S = {A, B, C, N } n n

/ /
/ /

/ /

B .

w
w

w
c

N' , /\
/ l l \

//WW
//WW

//WW
/ / v i i v \ \

N. N_ ... N 12 i n

allows

S , ... • , S } 1 Z n
to be promoted to
S = {A, B, C, N}

/ i

Figure 27

Promotion of filters is justified by the following reasoning, where
the names S, S", S^, N and N' are used as above.

The filter, whose scope S^ is the union of S' with the singleton
{N^} (1 i n) asserts that no candidate solution containing the
nodes in S^ is a solution.

Any candidate solution that contains the grandfather node N must
also contain a child node of N'. But if that candidate solution also
includes all the nodes in S', a filter exists (its contents specified
in one of S^, S2 , ••• or S n) to rule out the candidate.

We conclude that no solution can exist if It includes the nodes in
S' and N and we signify this conclusion by establishing a filter with
scope S = S' U {N}.

Since the scope S subsumes each of S^, S2, ... , Sn, it is seen
that the new filter is equivalent to the previous set of filters.

CHAPTER 5: Or-parallel Proof Procedure 149

As an illustration of promotion, suppose in our example that the
filter {N10, Nil} is produced and added to the pre-existing pair of
filters, {N9, Nil} and {N12, N5}.

Since N9 and N10 represent all ways to solve the goal at N7, it
follows that the set of filters {{N10, Nil}, {N9, Nil}} may be pro-
moted to the filter {N4, Nil}.

6.4.6.3 Reduction

Promotion raises the possibility that the node which replaces its
grandchildren is an ancestor of some other node(s) in the filter.

In this case, the filter may be made simpler by removal of the
ancestral node. This process is termed reduction and is justified on
the grounds that a candidate solution is precluded by the reduced fil-
ter if and only if it is precluded by the original one (since any can-
didate which contains the descendant node necessarily contains all of
its ancestors, including the one deleted through reduction).

Continuing the above example, we see that because N4 is an ancestor
of Nil, it may be deleted from the filter, i.e. {N4, Nil} may be
replaced by the reduced filter {Nil}.

6.4.6.4 Pruning

Deletion of a node from the scope of a filter raises the possibil-
ity that the resulting set is a singleton. Appealing to the defi-
nition of filter and the preservation of its semantics under promotion
and reduction, the Interpretation of a singleton scope is that the
node concerned cannot be included in any solution.

CHAPTER 5: Or-parallel Proof Procedure 150

Given a filter with singleton scope {N}, the rules of scope
subsumption indicate that all unifiers and filters whose scope
includes N or any of its descendants may be discarded. The signif-
icance of this is that the and-or tree may be modified by pruning the
branch leading to node N.

In our example, the branch of the tree leading to Nil may be
pruned.

Pruning, a computational notion, involves the following aspects:-

1. Deletion of unifiers and filters whose scopes are subsumed by {N}.

2. The curtailment of all computations whose projected unifiers or
filters are subsumed by {N}. In particular, this includes compu-
tations which seek to extend the subtree descended from node N.

3. Indicating to N's parent that its child N has been deleted.

We regard pruning as purging the and-or tree of the specified
branch, as though it had not been there in the first place.

If pruning a branch leaves the parent goal node without children,
that node becomes a node of failure and pruning can then take place at
the grandparent level. Thus in Figure 28 on page 152, pruning of the
branch leading to node F allows the branch leading to node B to also'
be pruned, since there is no longer any way to solve the goal at C.

CHAPTER 5: Or-parallel Proof Procedure 151

A
/\

/ l l \
//WW

//WW
//WW

/ / i i w
/ / v

/ /
/ /
B

/

/
/

/ &

/
\

\
& \

\
\

D E
l \
11x
IIW
i i w

w

& .

Figure 28,

The third aspect to pruning, that of informing a parent node that
its child has been deleted, revokes a formerly indicated way to solve
the goal at the parent node and raises the possibility that other pro-
motions may thereby have become possible.

This Is illustrated in our running example, where N12 is now the
only route by which solution of the goal at N8 can be effected. The
set of filters {{N12, N5}} may therefore be promoted to {N4, N5}.
This may be followed by a promotion of {{N4, N5}} to {Nl, N5}. Nl is
an ancestor of N5 and so the filter {Nl, N5} may be reduced to the

CHAPTER 5: Or-parallel Proof Procedure 152

singleton {N5}, thereby allowing the branch leading to N5 to also be
pruned.

Example

The manipulation of filters*is well illustrated by the Same-leaves
program, repeated from Chapter 4 in abbreviated form below.

S-l(a, b) <- Ll(a, c) & Ll(b, c)

Ll(1(d), d.NIL)
Ll(e:f, g) <- Ll(e, h) & Ll(f, i) & App(h, i, g)

App(NIL, j, j)
App(k.l, m, k.n) <- App(l, m, n)

We keep the example simple by supposing that the given trees differ
in their leftmost leaves and that these leaves originate from
non-compound left branches - i.e. that the supplied goal statement Is
of the form

<-S-l(l(A):subtree-1, 1(B):subtree-2)

where subtrees-1 and -2 are arbitrarily complex ground terms.

Figure 29 on page 154 shows the and-or tree In simplified form.
Lack of space obliges us to condense the right half of the diagram but
this does not matter provided it is understood that the subtree
descended from node F (concerned with the second term in the S-l goal)
directly corresponds to the subtree descended from node E (concerned
with the first terra).

CHAPTER 5: Or-parallel Proof Procedure 153

<-Ll(l(A):(...), c) C
/ /

{el/l(A), fl/(...), gl/c}//
/ /

/ /
Ll(el:fl, gl) E

A <-S-l(l(A):(...), 1(B):(...))
i i
|| {a/l(A):(...), b/l(B):(...)}

B S-l(a, b)
/\
/ \

/ & \
/ \

D < - L l (l (B) : (. . .) , c)
\\
\\{e2/l(B), f2/(...), g2/c}
\\
\\

F Ll(e2:f2, g2)

/
/

/

/
/

/
/ &

/
/

G <-Ll(l(A), hi)

\

\
\
\
\
\

& \

/
/

/ &

/ \
\

\
& \

\
K L
.. /
.. / i

/ / i
/ / i

/ / i
// v |
Q R

\
\

H <-Ll((...), il)

{dl/l(A),
hl/l(A).NIL}

I <-App(hl, il, c)
i i / 1

/ I I
//II{hl/kl.ll, ml/il,

// II c/kl.nl}
{hi/NIL, jl/il, il/c}// ||

// v ||
M Ll(dl, dl.NIL) // ||

App(NIL, jl, jl) N 0 App(kl.11, ml, kl.nl)
i

Figure 29.

CHAPTER 5: Or-parallel Proof Procedure 154

We concentrate on those parts of the and-or tree expected to give
rise to the failure, bearing in mind that other parts of the overall
computation may be proceeding concurrently. We first turn our atten-
tion to bindings for the variable hi.

It will be seen from the and-or tree that hi is bound as follows:-

hl/l(A).NIL {M}
hl/NIL {N}
hl/kl.ll {0}.

Scopes {N} and {0} are disjoint but each Is conjoint with {M} and so
reconciliations between the first and second and the first and third
bindings are required.

The first reconciliation fails and this produces the filter {M, N}.
The singleton set {{M, N}} of filters is promoted to {E, N} which in
turn is reduced to {N}.

The branch leading to N is pruned.

The second reconciliation succeeds with auxiliary unifier {kl/l(A),
11/NIL}, whose scope is {M, 0}. This binding for kl will figure prom-
inently in the eventual detection of failure.

Turning our attention to the other half of the and-or tree, we
might expect that in the same way as the above binding kl/l(A) of
scope {M, 0} was made, the binding k2/l(B) with scope {P, R} will
also, sooner or later, be made.

We now consider bindings for the variable c. It is readily seen
that the bindings c/kl.nl and c/k2.n2 for this variable (which repres-
ents the common leaflist) are contained in unifiers with scopes {0}
and {R} respectively and that these alternative bindings will need to
be reconciled. The resulting auxiliary unifier {k2/kl, n2/nl} will
have scope {0, R}. There are now two bindings for k2:

k2/l(B) {P, R}
k2/kl {0, R}

CHAPTER 5: Or-parallel Proof Procedure 155

and these too will need to be reconciled since the respective scopes
are conjoint. The resulting unifier will be {kl/l(B)}, whose scope is
{0, P,

We are almost done, for now we have two bindings for kl:

kl/l(A) {M, 0}
kl/l(B) {0, P, R}

and since the scopes are conjoint, a reconciliation will be required -
but this will fail and the filter {M, 0, P, R} established.

Manipulation of this filter leads to the failure of the top-level
goal, as is shown in Figure 30 on page 157.

CHAPTER 5: Or-parallel Proof Procedure 156

{M, 0, P, R}
i
I (promotion)
i

{E, 0, P, R}
i
I (reduction)
i

{0, P, R}
i
I (promotion - branch N assumed pruned)
i

{E, P, R}
i
I (promotion)
i

(B, P, R} .

(reduction)

(promotion)

(reduction)

(pruning - the goal at L has no solutions) *

(pruning - the goal at D has no solutions)

(pruning - the goal at A has no solutions)

* This step assumes that branch Q has already been pruned.
If this is not the case then the arrival of filter {Q} will
precipitate the failure indicated in the final steps above.

Figure 30.

(p , r }
i
i
i

{F, R}
i
i
i

{R}
i
i
i

{F}
i
i
i

{B}
i
i
i

FAIL

CHAPTER 5: Or-parallel Proof Procedure 157

Although the above example was based on one of many timing possibil-
ities, it should at least be plausible from our earlier description
that the same end result - that of failure at the highest level -
comes about under any timing realisation. We will have more to say
about timing considerations later.

6.5 CONTROLLING THE CONCURRENCY

In this section, we are concerned with ways in which the level of
parallel activity might be controlled, both dynamically through the
observation of machine activity and statically by means of program
annotations. However, it is our belief that in the long term, all
control must be carried out automatically since execution aspects such
as this should be of no concern to the user.

6.5.1 Dynamic Control of Activity

One method by which parallelism may be regulated is based on the
observation that extending the and-or tree tends to increase activity
because it introduces, in general, more bindings for any given vari-
able and may thereby promote the need for subsequent reconciliations.

On the other hand, reconciliations tend to have the opposite effect
- for ultimately, they may cause branches of the and-or tree to be
pruned.

Thus one means of control Is to increase the level of activity by
giving more priority to sub-computations that seek to extend the
and-or tree (primary unifications) and decrease it by giving higher
priority to sub-computations which seek to curtail it
(reconciliations).

CHAPTER 5: Or-parallel Proof Procedure 158

However, one needs to bear in mind that the above observation only
refers to tendencies. It may well happen in particular cases that
exploring all or-branches descended from a given goal node will turn
out to be a profitable investment insofar as some consequential prun-
ing will reduce later activity. One would need to investigate this
area more fully to produce a balanced approach.

6.5.2 Suppression of Unproductive Parallelism

Consider the simple Grandparent program

Grandparent(x, y) <- Parent(x, z) & Parent(z, y)

and suppose that the goal statement <-Grandparent(u, v) is specified,
that is, the user is interested in all pairs <u, v> in this relation.
We will assume that the Parent relation is given exclusively in terms
of ground assertions.

The basic And-or scheme, as described above, will break down the
given goal into the two subgoals <-Parent(u, z) and <-Parent(z, v) and
solve each independently. It will then reconcile alternative bindings
for the shared variable z.

For a large extensionally held Parent relation, such a strategy is
undesirable on two counts.

1. Most importantly, a gross amount of work is involved in growing
branches for each assertion in the Parent relation (twice) and
then setting up O(n^) filters, one per pair of non-reconciling
bindings for z.

2. The whole point of allowing for and-parallelism in the first place
is to permit the concurrent solution of conjoined subgoals. If a
trivial amount of work is required to solve such subgoals, it is
quite likely that the savings in elapsed time resulting from their

CHAPTER 5: Or-parallel Proof Procedure 159

concurrent solution is far outweighed by the expense of organising
the concurrency.

Sequential producer/consumer schemes do not suffer from these defi-
ciencies and the first modification of our basic proposal is to allow
concurrent and sequential execution to be mixed, in a manner we now .
describe.

6.5.2.1 Language Modification

In this modification, sequential execution is implemented through
annotations, similar to those implementing sequences in [5].

Defined as part of the language are two conjunction operators, '//'
and whose declarative semantics are identical and the same as
those normally given for "&'. Operationally, however, '//' and
respectively relate to concurrent and sequential execution.

In general, the antecedent of a clause is specified as a //-con-
junction of &-conjoined atoms. For example, we allow an antecedent of
the form

PI & P2 // P3 // P4 & P5

('&' binds tighter than '//').

Following Clark and Gregory, we will term a string of &-conjoined
atoms a sequence. Thus PI & P2, P3 and P4 & P5 are three sequences.

The previously described And-or scheme relates to programs using
the // conjunction throughout. As a first approximation to the opera-
tional behaviour of the new conjunction, we will say that goals
within a sequence are to be solved sequentially but that different
sequences may execute concurrently with one other.

CHAPTER 5: Or-parallel Proof Procedure 160

6.5.2.2 Modification to Proof Procedure

Suppose that the user's goal is given as

<- GOAL
GOAL <- PI & P2 // P3 // P4 & P5.

We require the and-or tree to display just three branches at the top,
as depicted in Figure 31

/

/
/

/
/

/ / /

/

/

o <- GOAL
i

o GOAL
\
\
\
\
\
\

/ / \
\

/
o <-Pl&P2 o <-P3

\
o <-P4&P5

Figure 31

It will be appreciated that, in general, goal nodes no longer
relate to individual goals but rather to sequences of outstanding
goals, exactly as one finds in the search tree model of computation.
To this end, we need to assume the availability of a selection func-
tion for choosing the next goal from a sequence and, for the sake of
simplicity, we will assume the familiar left-right, last-in-first-out
rule. As before, the children of a goal node are head nodes, one for
each clause whose head matches the selected goal.

CHAPTER 5: Or-parallel Proof Procedure 161

The first approximation we gave above for the operational behaviour
of the new operator is not precise enough because it does not
specify how existing goals - i.e. those not selected by the selection
function - are to be passed down the and- or tree. There is some dif-
ficulty in giving a general rule and we see this area very much as one
of future research. The difficulty arises in the following circum-
stances.

Suppose there exists a sequence at node N and that after selection
of the next goal the depleted sequence S remains. If this goal is
matched by the head of a clause whose body is

then the goals associated with nodes immediately descended from N are
those found in S^, S2, •••, S n and S. We would like the goals In S^,
S2, S n to all be solved before the next goal in S is selected but
this does not fit in well with our scheme. The weakness arises from
the absence of any mechanism for synchronising the solution of
conjoined goals and is related to another problem in the And-or
scheme. We will return to this deficiency later in the chapter.

The following example is based on the introductory example given at
the beginning of this chapter and it may be found useful to re-examine
that example now.

This time, the set of clause is specified as

sx / / s2 / / ...

Example

CHAPTER 5: Or-parallel Proof Procedure 162

<-GOAL(y, z)
GOAL(u, v) <- P(u) // Q(v) & R(u, v)

P(l)
' P(2)

Q d)
Q(2)

R(w, 3) <- &
R(x, x)

and the and-or tree is given in Figure 32 on page 164.

CHAPTER 5: Or-parallel Proof Procedure 163

A <-GOAL(y, z)

I I {u/y, v/z}
r i
B GOAL(u, v)
/\

/ \
/ \

/ \
/ // \

/ \
C <- P(y) D <- Q(z) & R(y, z)

/ i
/ I I

/ / i i
/ / i i

/ / i i
{y/1}// v I I{y/2} {z/1}

/ / i i
/ / i i

/ / i i
/ / i i

E P(l) F P(2)

\
l \
l \ \
i \ \
i \ \
I v \\{z/2}
i \ \
i \ \
i w
i w
Q(l) H Q(2)

\
\
\

<-R(y, 1) J <-R(y, 2)

{x/y, y/1}

K R(x, x)

\\
\\
\\{x'/y, y/2}
\\
\\
L R(x', x')

Figure 32.

Let us suppose that at some point in time, the unifications at nodes
E, F, G and H are all completed. The unifiers are summarised in Fig-
ure 33 on page 165.

CHAPTER 5: Or-parallel Proof Procedure 164

1 SCOPE UNIFIER
II
I| SCOPE
II

UNIFIER |

l{B} {u/y, v/z}
II
ll{E} | | { y / U 1

|{F} {y/2} I K G }
11

{z/1} I

l{H} {z/2}
11
II
II

Figure 33.

The bindings for the variables are as shown in Figure 34.

1 VAR BINDING+SCOPE |
1 1 1
I VAR | BINDING+SCOPE |
1 1 1

1 u y { B } 1
1 1 1
1 y 1 1 {E} |
1 1 2 {F} |

1 v Z {B} | 1 1 1
1 1 1

1 Z 1 {G} |
1 1 1
1 1 1

2 {H} | 1 1 1
1 1 1

Figure 34.

The two bindings for y do not give rise to a reconciliation because
the scopes {E} and {F} are disjoint. Scopes {G} and {11} are likewise
disjoint and so reconciliation is not indicated for z's two bindings
either.

CHAPTER 5: Or-parallel Proof Procedure 165

Suppose that the tree is now grown to its limit. We note that
unification of the goal <-R(y, 1) with head R(w, 3) fails and so node
I only has one child node. Similarly for node J. At this stage the
unifiers and bindings are as summarised in Figure 35 and Figure 36
respectively.

1 SCOPE UNIFIER
1
I SCOPE UNIFIER 1

l{B} {u/y, v/z}
1
l{E} {y/i} 1

l{F} {y/2} l{G} | {z/l} I

l{H} {z/2} l{K}
1

{x/y, y/1} 1

l{L} {x'/y, y/2}
1
1
1

Figure 35.

VAR BINDING+SCOPE | I VAR BINDING+SCOPE

u y {B} | 1 y 1 {E}
2 {F}
1 {K}

V z {B} | 2 {L}

1 x y {K}
z 1 {G} |

2 {H} | 1 ^ 1 x y {L}

Figure 36.

As far as the bindings for y are concerned, scopes {K} and {L} are
disjoint but each of the pairs {E} & {K}, {E} & {L}, {F} & {K} and {F}

CHAPTER 5: Or-parallel Proof Procedure 166

& {L} are conjoint and so the four corresponding reconciliations are
set in motion. These result in filters {E, L} and {F, K} being estab-
lished, both other reconciliations succeeding with empty auxiliary
unifiers.

Since no further reconciliations are indicated, solutions may be
derived by generating candidates and discarding those precluded by the
filters {E, L} and {F, K}.

The resulting solutions are {B, E, G, K} and {B, F, H, L}.

Notice that the total amount of computation in this example is less
than that for the earlier version. We cite this observation as sup-
port for the conjecture that by increasing the degree of parallelism
in an algorithm, one generally increases the total workload.

6.5.2.3 Relationship to Or-parallel Proof Procedure

Here we are concerned with establishing the relationship between
the modified And-or scheme and its Or-parallel counterpart. It is
readily verified that in the extreme case when all conjuncts are of
the sequential &-form, the resulting and-or tree is isomorphic to the
corresponding search tree. In this event, each head node in the
and-or tree has no more than one child goal node. The isomorphism
merely coalesces every goal node (which now of course represents a
sequence of outstanding goals rather than a single goal) with its par-
ent. The isomorphism is illustrated in Figure 37 on page 168.

CHAPTER 5: Or-parallel Proof Procedure 167

/ \
/ 1 1 \

//WW
//WW

/ / i i w
/ / i i w

/
/ i

/ / i
/ / i

/ / i
/ / i

/ \
/ l l \

/ / i l \ \
/ / i i w

/ / i i w
/ / i i w

o
/ i

/ i
/ / i

/ / i
/ / i

/ / i

Figure 37

More importantly, the And-or proof procedure essentially reduces to
the Or-parallel proof procedure because reconciliations are never
indicated: all nodes are pairwise disjoint.

6.5.3 Networks

The introduction of sequences into our scheme does not, in itself,
give a fine enough control over the execution of programs. Essential-
ly, the basic scheme gives us the maximum available and-parallelism
but if this is tempered by the use of sequences, we may finish up by

CHAPTER 5: Or-parallel Proof Procedure 168

losing more and-parallelism than we would wish. This is illustrated
by the Compact example given in Chapter 4, which is repeated here.

Compact(NIL, NIL)
Compact(u.x, u.y) <- Remove(u, x, z) & Compact(z, y)

Remove(u, NIL, NIL)
Remove(u, u.w, w') <- Remove(u, w, w')
Remove(u, v.w, v.w') <- -<(u = v) & Remove(u, w, w')

X = X

Remove, in the sequenced version of this program shown above, would
delete all copies of the first item in the supplied input list to
produce the intermediate list z. This list would be fully computed
before Compact(z, y) is selected and there would be no and-
parallelism.

Were the program to be modified so that the Remove and Compact
atoms become conjoined by '//' rather than '&', too much
and-parallelism would result since the Compact goal would attempt to
generate all tuples in the corresponding relation - no account of
Remove's output would be taken - and execution would run out of con-
trol.

The modification we propose below allows us to obtain execution
behaviour between these two extremes.

As in [6], [5], we would allow the user to mark producers by means
of annotations - e.g. in the above example we might mark Remove as the
producer of z. (Alternatively, annotations might be generated by
input-output mode declarations.)

The basic And-or scheme operates as previously described until such
time as some unification U attempts to bind a variable - z say - for
which it is not a producer. Up till this point, all bindings made by
U will be equally valid for all possible bindings of z. These
bindings are registered in the usual way, together with the distin-
guished binding z/?.

CHAPTER 5: Or-parallel Proof Procedure 169

Other schemes, e.g. [5], which have no real or-parallelism, would
leave the partially complete unification suspended and restart it when
a suitable binding came to hand. Our scheme needs to terminate the
partial unification and continue the residual matching at the point of
interruption for each alternative binding of z. Since the outcomes of
these continuations will, in general, depend on the particular binding
assumed for z, we must be able to describe the context in which the
unifiers or filters apply. We now indicate how this is done and as
one might suppose, the method is based on the idea of scope.

Suppose then that U represents a unification which attempts to bind
the variable z and that U is not a producer of z. Suppose further
that S is the scope of the unifier being generated by U.

On attempting to bind z, U terminates with success and the bindings
already made are registered with scope S. Let us denote these
bindings by Unifier[root]. The binding z/? is also registered (scope
S) and the register entry carries with it some indication of which
pairs of terms remain to be matched.

Suppose now that a normal binding z/t is produced. Assuming that S
and the scope of this new binding are conjoint - i.e. assuming that
both bindings z/? and z/t refer to the same instance of z - we 'recon-
cile' these two bindings by establishing a unification, U[t], that
seeks to match the pairs of terms indicated as part of the register
entry for z/? and which reads the binding z/t for z. Because this
continuation is dependant on the particular binding z/t read, we sig-
nify this fact by ascribing to U[t] the scope S[t] formed in the usual
way from S and the scope of z/t.

The above description extends the definition of reconciliation to
these circumstances.

Should an alternative binding z/t' be produced, a second unifica-
tion continuation U[t'] comes into being under scope S[t'] and this
runs independently of the first etc..

It should be evident that this application of scope is entirely
consistent with its previous usage: for example, if U[t] fails its

CHAPTER 5: Or-parallel Proof Procedure 170

unification then a filter with scope S[t] will result and this will
rule out corresponding candidate solutions; it will not, however, nec-
essarily rule out candidates which relate to the binding z/t" since
S[t] will not be a subset of those candidates.

Suppose now that S[t] is a subset of some solution. Because S (the
scope of the root unifier) subsumes S[t] - the latter scope was com-
puted from the former - it follows that the root unifier will appear
in the corresponding substitution. In this way, the root unifier is
shared amongst all relevant substitutions. Conceptually, this sharing
may be visualised in another way. If Unifier[t^], Unifier[t2],
Unifier[tn] represent the outputs of the successful continuations then
we may consider them as alternative extensions of the root unifier.
If now some of these continuations themselves are subject to similar
interruptions on account of other variables then the initial unifica-
tion could be viewed as a tree structure of alternative continuations
(Figure 38 below).

Unifier[root]
/

/
\
\

Unifier[t] Unifierftl Unifierft] 1 2 n

/

/ \
/ \

/ \

/ \
/ \

/ \

/
\
\

\ /
\ /

/ \ / \
U n i f i e r [t ^ U n i f i e r [^ , r 2] Unifier[tn,sl] Unifier[tn,s2]

Figure 38

CHAPTER 5: Or-parallel Proof Procedure 171

The above means of control is more general than that given earlier
and might be used throughout in place of the former. However, the
exact behaviour would not theq be the same, although both modifica-
tions, if used appropriately, will have a moderating effect. An eval-
uation of the two modifications would be a useful exercise and might
indicate that for practical purposes, the first is superfluous.

6.6 IMPLEMENTATION CONSIDERATIONS

As indicated earlier, we do not intend to give an implemehtation
design here but will content ourselves with indicating how certain
aspects of an implementation might be effected.

We have tried to make this section as comprehensible as possible
but some parts of it are very detailed. Our motives here are to
impart as complete a picture of our scheme as possible and some of the
difficulties we foresee can only be appreciated after a relatively
full description.

6.6.1 Structure-sharing

As one might suppose, the same reasons that led us to choose struc-
ture-sharing principles for the implementation of the Or-parallel
proof procedure lead us to choose them again here.

A principal feature of the And-or scheme is its organisation around
the idea of sharing unifiers among as many substitutions as possible.
Thus the reasons for wanting structure-sharing are even more compel-
ling here than they were for the Or-parallel scheme, where, in turn,
they were stronger than for the conventional backtracking implementa-
tion. (One might speculate that this is a consequence of more
parallelism in the proof procedure but we will not pursue this conjec-
ture any further.)

CHAPTER 5: Or-parallel Proof Procedure 172

6.6.2 Unification

The design we have in mind is based on conventional ideas of
representing expressions by means of structure-sharing. Bindings
would not be applied explicitly but would be looked up whenever
needed, exactly as In the Or—parallel proof procedure.

We carry over the idea of registering bindings but now each regis-
ter entry takes the form <term, scope>, rather than the simpler <term,
branch> of the earlier scheme.

For primary unification, that is, unification associated with a
single node of the and-or tree, the rule for looking up a binding in a
register is essentially the same as it was in the Or-parallel proof
procedure: the sought binding must have been made somewhere along the
node's ancestral branch. The scope of such a binding will be a
singleton whose element names a node which is an ancestor of the node
at which primary unification is being undertaken.

For an auxiliary unification, this rule has to be modified.

Suppose a reconciliation is indicated between two bindings and sup-
pose the bindings concerned originate from unifiers with scopes S^ and
S2* The scope, S, of the auxiliary unifier (or filter) resulting from
the reconciliation (attempt) is computed according to the rule given
earlier.

If, in the course of the auxiliary unification, a binding for some
variable v has to be looked up, then any binding for v, whose scope S'
subsumes S, will do: the final result of the overall computation, the
substitutions, will each have the same effect when applied to an arbi-
trary expression, no matter which binding for v is chosen.

Such a binding is called a candidate binding for the evaluation of
v in the context S.

The justification behind this rule, remembering that S' subsumes S
iff all the nodes in S' are ancestors of nodes in S, is that if S is a

CHAPTER 5: Or-parallel Proof Procedure 173

subset of some solution then so is S'. Hence all candidate bindings
for v will appear in the corresponding substitution.

Note that the rule given above for primary unification is a special
case of this more general rule.

6.6.2.1 Choice of Bindings and Timing Considerations

The notion of candidate bindings raises the prima facie compli-
cation of possibly having more than one candidate for a given evalu-
ation.

Let us suppose that some unification is being attempted and that
the scope of the resulting unifier or filter is S. Suppose further
that the variable v is to be evaluated in the course of unification
and that candidate bindings

c]L: <t^, S1> and ĉ '* , S2>

exist for that variable.

It may be helpful to consider an example when following this argu-
ment and we provide one which refers to Figure 24 on page 142:

S: {N5, N7, N14, N15}
cL: <x.y, {N5, N7, N9}>
c2: <A.NIL, {N5, N15}>.

Since c^ and c2 are candidate bindings, S^ subsumes S; likewise, S 2

subsumes S.

We note that the nodes in S^ are pairwise conjoint with respect to
those in S2, for all nodes are ancestors of those in S. (If node N^
in S^ were to be disjoint with respect to node N2 in S2, the same
would be true of N^ and N2's descendants In S, contrary to the assump-

CHAPTER 5: Or-parallel Proof Procedure 174

tion that all nodes In S are pairwise conjoint.) Therefore, sooner or
later, a reconciliation, R, between c^ and c2 will be called for.

Consider the scope, S', of the auxiliary unifier or filter produced
by R. S' is formed by taking the union of S^ with S2 and deleting any
nodes which are ancestors of others in the union. Because S^ and S2

each subsume S, so does S'.

If the reconciliation R fails, the resulting subsuming filter will
make the original unification - the one seeking an evaluation of v -
redundant and so the choice of candidate is of no consequence.

If the reconciliation R succeeds then any solution that includes
the nodes in S necessarily includes those in S'. Although choosing c^
rather than C2 would, in general, give rise to different unifiers and
hence different substitutions, both substitutions would include the
unifier produced by the reconciliation R and this would guarantee that
the application of either substitution to the expression 'v" gives the
same instance of that expression. Since v is an arbitrary variable,
the same applies to all variables, and hence to an arbitrary
expression.

In our example, the auxiliary unifier produced by R is {x/A,
y/NIL}, whose scope is {N5, N7, N15}. If the evaluation of v were
required in order to unify v with z.NIL and c^ (whose term component
is x.y) were chosen as the binding for v, the unifier produced would
be {z/x, y/NIL}. If C2 (whose term component is A.NIL) were chosen
instead, the unifier would be {z/A}. The alternative substitutions
take the form

1. {.. {.., v/x.y, ..}, {••, v/A.NIL, ..},
{z/x, y/NIL}, {x/A, y/NIL}, ..}

2. {.. {.., v/x.y, ..}, {.., v/A.NIL, ..},
{z/A}, {x/A, y/NIL}, ..}

CHAPTER 5: Or-parallel Proof Procedure 175

respectively and it is readily verified that at least the extracts
shown produce the same instance when applied to an arbitrary
expression.

Now consider another situation, namely that no candidate binding
for v exists at the time some unification (under scope S) seeks one.
In this case, assuming the unification ends successfully, a unifier U
of scope S will be produced and will include a binding, c: <t, S> for
v, which will be registered in the normal way.

Suppose now that another binding for v, c": <t', S'> is made and
that had it appeared earlier, c' would have been a candidate binding
for v in the unification producing U. One would like to be assured
that the end result of the computation is not affected in any way
through the late appearance of c" and indeed this assurance is
present:-

Since c' would, by assumption, have been a candidate binding had it
appeared earlier, we know that S' subsumes S. Therefore, the nodes in
S and S' are pairwise conjoint and a reconciliation between c and c'
is required, the scope of the auxiliary unifier being S (because all
nodes in S' are ancestors of nodes in S).

Should this reconciliation fail, a filter of scope S will be estab-
lished and this will preclude the appearance of U in any substitution.

On the other hand, if the reconciliation of c with c' succeeds, any
substitution which includes U will also include the auxiliary unifier
resulting from the reconciliation because its scope is the same as
U's. Had the binding c' arrived earlier, the components in the auxil-
iary unifier would have been included in the first unifier and no
reconciliation would have been called for.

By way of illustration, suppose that the unifier U of scope S con-
tains the component v/A.NIL and that this is because no candidate
binding for v was found at the time unification took place. The bind-
ing c : <A.NIL, S> will appear in v's register. Suppose further that
at some later time, the component c': <x.y, S'> is registered and that

CHAPTER 5: Or-parallel Proof Procedure 176

this binding would have been a candidate binding for v in the unifica-
tion that produced U, had it appeared earlier.

Because of this candidacy, we know that S' subsumes S. Had this
later binding appeared first, U would have included the components
x/A, y/NIL. However, because of the late arrival of c', U includes
the binding v/x.y instead and a reconciliation between c and c' is
needed. This succeeds with the auxiliary unifier {x/A, y/NIL} (assum-
ing that x and y are not bound) whose scope is also S. Hence any
substitution that contains U also contains this auxiliary unifier and
so the net result is the same as in the other case, where bindings for
x and y appear as components of the original unifier.

6.6.2.2 Parallel Unification

Notice that the criterion for candidacy is satisfied if the binding
recognised as a candidate was made earlier in the same unification -
for in that case, both scopes will be the same.

The above arguments, showing the indifference of timing consider-
ations when seeking, a candidate, apply equally well in this special
case. This makes it possible to concurrently match pairs of terms in
a single unification.

For example, if f(A, u) and f(x, x) are to be unified (under some
scope S), it is possible to unify the pairs of terms <A, x> and <u, x>
concurrently.

If the binding <A, S> is (x-)registered before the other term
unification seeks a binding for x, the unifiers will be {x/A} and
{u/A}, both of scope S.

If the binding <u, S> is (x-)registered before the other term
unification seeks a binding for x, the unifiers will be {x/u} and
{u/A}, both also of scope S.

CHAPTER 5: Or-parallel Proof Procedure 177

If neither of these timings pertain, that is, the (x-)register is
empty when both term unifications seek a binding, then the
unifiers {x/A} and {x/u} will result. Since both of these have
scope S, a reconciliation between the two bindings for x will be
called for and the auxiliary unifier {u/A}, also of scope S, will
result.

In all three cases, any substitution whose corresponding solution
includes the nodes of S, will have the same effect when applied to any
expression involving x or u.

Notice that the earlier modification for producing Network
behaviour is not compatible, as stated, with parallel unification.

6.6.3 Devolution of Processing

6.6.3.1 Ownership of Unifiers and Filters

We wish to avoid centralisation of all forms and this leads us to
the concept of unifier and filter ownership. By this means we will be
able to distribute unifiers and filters throughout the and-or tree and
thereby localise certain operations on them.

Suppose S is the scope of a unifier or filter. Then the nodes of S
are pairwise conjoint and it is easily verified that there is a unique
head node which is their common ancestor but no descendant of this
node has the same property.

We will call such a node the owner of the unifier or filter and
will also refer to It as the nearest common ancestor of the nodes in
S. We intend that unifiers and filters be accessible from their own-
ing node.

CHAPTER 5: Or-parallel Proof Procedure 178

Note that the term 'owner' has the expected connotations'In the
context of a primary unifier.

6.6.3.2 Filter Subsumption Check.

In later parts of this chapter, there will be calls to determine '
whether, given a scope S, there exists a filter whose scope S'
subsumes S and we now show, in implementation terms, how such a check
might be made.

Suppose we are presented with the scope S = {N^, N2, NR} and
we wish to know whether there exists a filter whose scope S' = {M^,
M2, ..., M ^ subsumes S.

If such a filter exists, its owner, M, will be the node which is
the nearest common ancestor of M., M«, ... and M •

1 2 * m

Each of M^, M2, •••> M m would be, under the supposition that S'
subsumes S, an ancestor of at least one node in S. Define a set of
nodes S" by

S" = {nodes N in S | N descends from a node in S'}.

Then M is also the nearest common ancestor of the nodes in S".

Therefore M Is a descendant of N, the nearest common ancestor of
nodes in S.

Thus If such a filter exists, Its owner will lie on that part of
the and-or tree between the nodes of S and their nearest common ances-
tor, the node which owns the filter or unifier whose scope is S.
Since all filters will, by assumption, be accessible through their
owners, it will be possible to test whether the scope of any of these
filters subsumes S (needless to say, these tests are most appropriate-
ly carried out concurrently with one another) and thereby decide

CHAPTER 5: Or-parallel Proof Procedure 179

whether a subsuming filter exists. In this way, the search for a
subsuming filter becomes a localised operation.

The above argument is illustrated by reference to Figure 24 on page
142 with S = {N5, N7, N14, N15} and S' = {N14, N15}. The nearest com-
mon node N of S is N1 and a subsuming filter may be owned by any node
along the branches between N1 and the nodes in S. In fact, node N9
would be the owner of a filter with scope S".

We will also have to deal with the converse case, that is, given a
filter with scope S" owned by the node M, to identify those nodes of
the and-or tree which might own a filter or unifier whose scope S is
subsumed by S'.

The reasoning above indicates that such filters and unifiers would
be owned by nodes lying along M's ancestral branch and would conse-
quently be sought along that part of the and-or tree.

6.6.3.3 Scope Subsumption

In this section and the next, we will be concerned with steps
needed to test for scope subsumption and scope conjointness. We give
Prolog algorithms based on particular representations of node names
and scopes but do not mean to imply by doing so that a practical
implementation will necessarily be restricted to them. These algo-
rithms are conceptual and are presented for illustrative purposes.

We first need to fix a representation for node names.

Nodes are named by lists of integers. The root node - correspond-
ing to the initial goal - is named by the empty list, NIL. If a node
named by the list L has n child nodes, these are named by the lists
l.L, 2.L, ..., n.L (the order of naming Is arbitrary).

We may also take advantage of the natural ordering of integers and
use it to order nodes names, analogously to the ordering of branch

CHAPTER 5: Or-parallel Proof Procedure 180

names in the Or-parallel proof procedure. Given two nodes N and N',
we consider their names to be reversed, that is we represent the names
as [1^, I2,] and ^ " 9 ••••] respectively (so that
relates ' to the root node's child etc.). Integer pairs <1^ 2»

^ a r e se9uentially compared until a discrepancy, 4 arises.

Then N < N' if < and N' < N if < Ik. If neither con-
dition applies, that is, one or both of the lists becomes exhausted,
no ordering pertains.

Geometrically, if the and-or tree is depicted to reflect this
ordering, then N < N' iff N lies to the left of N'. For our purposes,
we do not need to extend the ordering to cope with the case of one
node descending from the other because in the context of a scope,
where this ordering will be exploited, this possibility does not
arise.

We consider a scope to be represented by an ordered list of node
names (integer lists), and we will term it a scope list.

To show that scope S is subsumed by scope S', it is necessary to
show that each node in S' is an ancestor of some node in S.

This ordering of nodes in scope lists allows the subsumption test
to cycle through both scope lists in a co-ordinated manner, as indi-
cated in the following program.

S is-subsumed-by NIL

N.S is-subsumed-by N'.S' <- N < N' &
S is-subsumed-by N'.S

N.S is-subsumed-by N'.S' <- N' is-an-ancestor-of N &
S is-subsumbed-by S'

where the second clause skips out unrelated nodes of the supposedly
subsumed scope.

CHAPTER 5: Or-parallel Proof Procedure 181

It is quite conceivable that a more advanced architecture will be
capable of performing these tests more efficiently, possibly by oper-
ating on a natural - e.g. geometrical - representation of the and-or
tree. For instance, the human intellect, when presented with the pic-
ture of such a tree and asked to determine whether N < N', would do so
by glancing at the two-dimensional representation of the tree. An
architecture that supported such a representation would be
correspondingly effective.

6.6.4 Determination of Conjolntness/Disjolntness

With the above node naming scheme, it is readily verified that goal
nodes have even length names and head nodes have odd length names.

Given two nodes named by the lists 11 and 12, the following algo-
rithm determines whether the two nodes are conjoint or disjoint.
(Here, the 'Reverse' relation holds if one list is the reverse of the
other)•

Node-relationship(11, 12, r) <- Reverse(ll, 11') &
Reverse(12, 12') &
Nr(ll', 12', r, DISJOINT)

Nr(NIL, 1, r, r)
Nr(l, NIL, r, r)
Nr(nl .11, n2.12, r, r) <- -.(nl = n2)
Nr(n.11, n.12, r, flip) <- Switch(flip, flop) &

Nr(ll, 12, r, flop)

Switch(CONJOINT, DISJOINT)
Switch(DISJOINT, CONJOINT)

The algorithm considers common nodes, beginning at the root node,
either until one of the two submitted nodes is encountered - in which
case it is the ancestor of the other - or until a pair of distinct

CHAPTER 5: Or-parallel Proof Procedure 182

ancestors is encountered. In the latter case, the two nodes are
conjoint/disjoint depending on whether they have an even/odd number of
common ancestors (including the root node) - i.e. depending on whether
the last clause of the Nr program was used an odd/even number of
times.

6.6.5 Registers

We mentioned earlier that a register exists for each variable
introduced into the refutation. As one might expect, its use is an
extension of that found in the Or-parallel proof procedure.

In the earlier scheme, the register was used to hold alternative
bindings made in different parts of the search tree. A corresponding
statement is true here, although, of course, the tree in this case is
an and-or tree. There are two principal consequences of this, both
resulting from the fact that the register might contain different
bindings for the same variable.

Firstly, seeking an appropriate binding from the register is no
longer deterministic; any candidate binding for the scope in question
will do.

Secondly, and more importantly here, such alternative bindings need
to be reconciled and this is most conveniently organised as part of
the registration procedure, as we now describe.

6.6.5.1 Registration

The function of reconciling alternative bindings for the same vari-
able is carried out by reconcilers. If a register already contains n
bindings and a new one arrives, then n reconcilers are established,

CHAPTER 5: Or-parallel Proof Procedure 183

each charged with the task of reconciling the new binding with one of
the older ones.

6.6.5.2 Reconciliation

The reconciler is presented with two bindings, and <t2>
s2>.

Its first task is to determine whether S^ and S2 are conjoint
scopes.

If the scopes are not conjoint, the reconciler terminates;

If the scopes are conjoint, the reconciler will initiate an attempt
to unify the terms t^ and t2 but first, for reasons which will be made
clear in due course, it needs to compute the scope of the resulting
auxiliary unifier (or filter) and Its owner. Once it has done this,
it establishes an empty auxiliary unifier and associates it - by some
unspecified means - with the owner.

It then seeks a filter which subsumes the computed scope and if it
finds one, it knows that the unification it is about to embark on is
redundant. In this case, the reconciler terminates, first discarding
the empty unifier.

Assuming that no such filter is found, the reconciler sets about
unifying t^ and t2.

If the unification fails, a filter will be produced in place of the
auxiliary unifier. The earlier text indicated that considerable com-
putation may then need to be undertaken, specifically, promotion,
reduction and pruning. Moreover, any unifier or filter whose scope is
subsumed by the new filter may safely be discounted. All these
aspects are discussed in the next section.

CHAPTER 5: Or-parallel Proof Procedure 184

If the unification is successful, the bindings will be sent for
registration as in the Or-parallel scheme. The processing described
above will then be repeated for each new binding.

In fact, as we hinted at earlier, it is logically acceptable,
although perhaps not feasible in practice, to register bindings as
unification proceeds, rather than waiting for it to terminate as in
the Or-parallel scheme. This relaxation is possible because not reg-
istering a binding in time will have the effect of inducing a new
reconciliation - as described in the section on parallel unification.

After unification ends, the reconciler terminates.

6.6.6 Filter Incorporation

Incorporation of a filter, that is, taking steps to bring the
information it carries into account, is essentially a two phase opera-
tion.

Firstly, an attempt should be made to simplify the filter in
accordance with the earlier sections on promotion and reduction. If
promotion is possible, a new filter will result - in which case an
attempt should be made to simplify that filter in a similar way and so
on until no further simplification is possible.

The result of this first phase is a filter, not necessarily the
original one, which is input to the second phase. In the previous
section on reconciliation, we pointed out that before a unification is
begun, a check is made to determine whether a subsuming filter exists
- and if it does, the reconciliation need not be done. Here, we need
to consider the other timing eventuality, namely the production of a
subsuming filter during or after such a unification. The second phase
seeks to abandon active unifications and completed unifiers and fil-
ters if their scopes are subsumed by that of the new filter.

CHAPTER 5: Or-parallel Proof Procedure 185

We now describe these two phases in the context of unifier and fil-
ter ownership.

6.6.6.1 Promote and Reduce Phase

We briefly recap the conditions under which promotion is possible.

Let F n be a new filter and suppose that N is its owning node. Pro-
motion is possible if other filters F^, F 2, either exist
explicitly or are implied by subsuming filters, providing that

1. the scopes of the n filters have all but one node in common - i.e.
their intersection has order one less than that of each of the
individual scopes - and

2. the n nodes outside this intersection are all the n children of
the same parent node.

Promotion may then take place and the resulting filter is the above
intersection augmented by the grandparent node. It is readily veri-
fied that if the filters F^, F 2, ..., F R exist explicitly they will
all be owned by the same node (N).

Notice, however, that a filter produced by reduction may be owned
by a proper descendant of the original filter's owner. An illus-
tration, based on the and-or tree in Figure 39 on page 187, is the
promotion of the filters { {B, F, G}, {C, F, G} } (both filters owned
by A) to the filter {A, F, G} (still owned by A), followed by the lat-
ter filter's reduction to the filter {F, G} (owned by D).

CHAPTER 5: Or-parallel Proof Procedure 186

A
/\

/ \
/ \

/ / / \
o o

/ i w
/ i i w

/ / I I w
/ / i i w

/ / i i w
// v II \\

B C D
/\

./ \
/ \

/ // \
o o

/ i l \
/ I I l l \

/ / I I WW
/ / i i i i w

/ / I I I I w
// V II II V \\
E F G H

Figure 39,

Complications do arise, however, in considering promotions when one
or more of the filters F^, F2, ••• F n_i is implicit - and conversely,
when the filter F n implies others (implication, in both instances
being through scope subsumption). We will discuss these complications
after the next section.

6.6.6.2 Filter Implementation Phase

Here our concern is to implement those simplifications to the over-
all computation made possible by the production of some new filter.
The status of these operations should be borne in mind. They are not

CHAPTER 5: Or-parallel Proof Procedure 187

necessary to preserve correctness (although neglecting to perform them
may affect termination). They seek to save resources by abandoning
unproductive paths but in doing so, they themselves may use signif-
icant resources. Analogous situations prevail in other areas of
intelligent computation such as intelligent backtracking and the
detection of clause subsumption.

The earlier section on the filter subsumption check indicated that
any unifiers and filters whose scopes are subsumed by the new filter

_ will be owned by nodes in a restricted part of the and-or tree and
consequently, any searching for such unifiers and filters is
restricted to that part of the tree.

In the special case of the new filter having a singleton scope, the
implementation of that filter will also take on the responsibility for
putting into effect the previously described branch pruning
operations.

We comment here on the timing considerations concerned with this
phase. Our anxiety here is the occurrence of two 'simultaneous'
events:-

1. The search for a subsuming filter, carried out by a reconciler
immediately before it makes its unification attempt and

2. The production of the subsuming filter which makes that unifica-
tion attempt superfluous.

We might be concerned that the relative timing of these two events
allows the subsumption to go by undetected.

In fact, this is not the case. The reason is that before its
check, the reconciler establishes an empty unifier. Also, before its
search for subsumed unifiers and filters, the implementation phase
exhibits the filter with which it is concerned so that searching
reconcilers may find it. It is evident therefore that if subsumption
comes about then either the reconciliation finds the subsuming filter
it seeks or the implementation phase finds the empty unifier it seeks

CHAPTER 5: Or-parallel Proof Procedure 188

(or both). There is no possibility of an excluded middle that allows
the subsumption to go by undetected.

6.6.6.3 Weaknesses in Filter Manipulation

The implementation proposal we gave for filter promotion is not
complete, for it assumes that all filters input to it are explicitly
held. In fact, not only is it incomplete, but as stated, it is not
efficient. We will show why with the assistance of an example, which
relates to Figure 39 on page 187. In the example, we assume the prior
existence of filters {B, E, G} and {B, H} (both owned by A) and the
production of the new filter {F, G} (owned by D).

Between them, these filters imply the filter {B} which in turn
allows the branch leading to node B to be pruned. The derivation is
illustrated In Figure 40 on page 190.

CHAPTER 5: Or-parallel Proof Procedure 189

{B, E, G} {B
\
\
\
\
\

{B, D, G}

{F, G}

(subsumption)

F, G}

{B, H} {B
\
\
\
\
\
{B

{B

(promotion)

(reduction)

G}

(promotion)

D}

(promotion)

A}

(reduction)

{B}

Figure 40.

It will be seen that the derivation is bottom-up. Worse, the fil-
ter promotion algorithm itself and the search for a subsuming filter
are also bottom-up operations.

What one would like are top-down, goal-directed algorithms. This
is very much an area of further research but we feel that an eventual
solution will be along the following lines.

We suggest that (raeta-level) goals should exist, one for each head
node, each goal taking the form

<- Filter({node})

CHAPTER 5: Or-parallel Proof Procedure 190

(conjecturing the non-existence of the singleton filter).

The meta-level clauses used in the sought derivations will be
assertions of the form Filter(S) together with the following Impli-
cations (augmented by suitable lower-level definitions).

Subsumption

Filter(s) <- Subsumes(s', s) &
Filter(s')

(A filter of scope s exists if s' subsumes s and a filter of scope
s' exists.)

Promotion

Filter(s) <- Split(s, n, s') &
Child(n, n') &
Children(n", nodelist) &
Filterlist(s', nodelist)

Filterlist(s, NIL)
Filterlist(s, n.rest) <- Filter(sU{n}) &

Filterlist(s, rest)

(A filter of scope s exists if s can be partitioned into a singleton
{n} and residue s' and filters with scope s'U{n"} exist for each
child, n", of n', where n" is some child of n.)

Reduction

Filter(s) <- Member(n, s) &
Ancestor(n, n') &
Filter(sU{n'})

(A filter of scope s exists if there exists a filter whose scope
comprises the nodes of s together with a (proper) ancestor of some
node of s.)

CHAPTER 5: Or-parallel Proof Procedure 191

We envisage that control over these derivations will be data
driven. In other words, we imagine these derivations to remain dor-
mant until an 'appropriate' filter is produced, this stimulating the
continuation of the proof in corresponding parts of the search tree.

Thus for example (refer to Figure 39 on page 187), we envisage the
meta-level goal <-Filter({B}) (associated with node B) to remain dor-
mant until, for instance, Filter({B, H}) is produced. This would
stimulate, by some appropriate reasoning, the development of the
search tree to the stage indicated in Figure 41.

0 <-Filter({B})

1 Using Reduction clause with assertions

I Member(B, {B}) and Ancestor(B, A).

0 <-Filter({B, A})

1 Using Promotion clause with the assertion
I Split({B, A}, A, {B}), and Child and Children

I clauses that establish D as the grandchild of A.

0 <-Filter({B, D})

1 Using the Promotion clause once more, this time
I in conjunction with Split({B, D}, D, {B})

I and the relevant grandchild data.

0 <-Filter({B, G}) & Filter({B, H})

1 Using the computed filter that stimulated
I the development of this particular path.
o <-Filter({B, G})

Figure 41.

The arrival of other filters would extend the search tree as appro
priate.

CHAPTER 5: Or-parallel Proof Procedure 192

6.7 ASSESSMENT

Because the research reported here is still in its early stages,
this assessment will necessarily be Inconclusive. Nevertheless, we
feel that such an exercise is useful because it summarises the main
features of our proposal whilst indicating areas of further research.

6.7.1 Degree of Parallelism

We believe that the scheme we propose has as much potential for
parallelism as is possible for Horn clause programs, for it allows for
both of the high-level forms of parallelism together with parallel
unification. Of course, In practice, some restraint will generally be
necessary and we have indicated ways of achieving this end. Ideally,
an automated means of control is needed and we see the provision of
such a mechanism as one aspect of future research. Adding control
advice by means of input-output mode declarations may well be a suit-
able intermediate solution. In the short term, restriction of
and-parallelism to those parts of the overall computation known to
give rise to independent subgoals seems a worthwhile first step.

6.7.2 Termination

One weakness of our scheme, inherited from the naive scheme albeit
in a modified form, is that solutions of the user's goal cannot be
extracted until the computation as a whole terminates. This Is a con-
sequence of the notion of candidacy, which we may re-forraulate here as
stating that a candidate solution is not a solution until it is known
that no filter precludes it.. Unfortunately, the scheme we have
described does not tell us when all filters which might potentially
subsume any particular solution have been computed. Instead, we must

CHAPTER 5: Or-parallel Proof Procedure 193

rely on the cessation of all activity (as in the naive scheme) and
then produce solutions by generating and filtering candidate
solutions.

The weaknesses of this approach are quite severe, for a computation
which gives rise to one or more infinite branches of the and-or tree
(after pruning is taken into account) will fail to return any sol-
utions. A crude way of overcoming this deficiency is to pre-set a
limit on the depth of nodes in the and-or tree and to treat nodes
beyond that depth as nodes of failure. This may be acceptable in cer-
tain cases, possibly database applications, although in general, we
consider this method as no more than a temporary expedient since it
disturbs the semantics of the programming language.

We do not see the provision of a scheme which extracts solutions as
they are computed as an insurmountable problem. What is required is
some mechanism to co-routine the extraction of solutions with the pri-
mary and auxiliary unifications concerned in their generation. This
indicates the need for some form of feedback from reconciliations so
that when particular reconciliations succeed, the success is made
known to the extraction mechanism.

We are unable to be more specific at this stage except to add that
comparisons between our proposal and other more familiar schemes oper-
ating under certain execution controls might supply the necessary
clues. This would in any case be a useful exercise in its own right
and we would be particularly interested in establishing the relation-
ship between our scheme and the Connection Graph model [26].

6.7.3 Control

We have already indicated the need for further general research
into the control of program execution. Here, we will just say that we
consider the weakness in control is caused by the same underlying
deficiency as that mentioned in the section above viz. the absence of
sufficient feedback. To be more specific, we are referring to the

CHAPTER 5: Or-parallel Proof Procedure 194

difficulty which arises when a clause whose body takes the form S^ //
S 2 // ••• // S^ is invoked in response to a goal and the residual
sequence S (the goals outstanding at the node less the selected one)
is non-empty.

We require some means of co-ordinating and feeding the 'results' of
the computation S^ // S 2 // ... // S n to the sequence S so that goals
in S are not selected too early.

6.7.4 Filter ManipulatIon

For the sake of completeness here, we mention once more the out-
standing problem of providing a top-down method of incorporating fil-
ters.

6.7.5 Architecture

The degree of concurrency allowed in our scheme, arguably the maxi-
mal possible for Horn clause programs, would typically require more
computational power than is available today: the Japanese research
effort into fifth-generation computers [45] might reasonably be
expected to provide suitable hardware. The timescales for carrying
out the outstanding research should therefore be viewed in this con-
text.

We have not addressed the area of architecture in the proposal
although it is worth emphasising here the need to provide a machine
sufficiently powerful to overcome the extra workload of the And-or
scheme. As an indication of this overhead, we might consider the task
of looking up a binding. In the Or-parallel scheme, this reduces in
essence to the straight-forward comparison of two bit strings; in the
And-or scheme, a test for scope subsumption is the corresponding oper-
ation. Clearly an architecture suitable for the And-or scheme would

CHAPTER 5: Or-parallel Proof Procedure 195

need to be considerably more advanced than the one we described for
its Or-parallel counterpart.

CHAPTER 5: Or-parallel Proof Procedure 196

CHAPTER 7: CONCLUSION

7.1 RELATED RESEARCH

Our research seeks to apply parallel computation to Horn clause
programs and as such attempts to bring together two major areas of
investigation, viz. Parallel Computation and Logic Programming.

Much research effort is currently being applied into ways of
exploiting the potential for parallelism that new technology makes
possible and references were made to such researches in earlier chap-
ters. The closest field of research to ours is that concerned with
the parallel execution of functional programs - after all, the
formalism of Horn clauses and those of functional programming lan-
guages share many characteristics, not the least of which being the
parallel execution potential of programs expressed in those
formalisms. However, the relationship is not as close as one might
wish, for the mechanics of actually achieving parallelism - and that
is the primary research to'pic of this thesis - are dissimilar.

Execution of a functional program may be viewed as the reduction of
a corresponding expression graph [13] whereby concurrency is achieved
through the parallel reduction of expressions. Although this concur-
rency is the equivalent of and-parallelism, expression graphs in them-
selves have no direct relevance to Logic program execution which is
based, as previously described, on resolution.

Where the two fields of research are likely to be most closely
related is on the architecture side. Our proposed architecture for
the Or-parallel scheme is, at a superficial level, very close to that
put forward by Darlington and Reeve [13]. Both proposals, for
example, distribute "packets" by means of a ring and both have access
to shared memory. Where the two schemes differ is in the nature of
the processing elements themselves - for our proposal distributes the
global memory throughout the PE's whereas theirs has shared access to
a common packet pool through a packet pool controller. It is not

CHAPTER 7: Conclusion 197

inconceivable that a common architecture might unify the two
proposals.

Whilst on the topic of architecture, we should mention here the
work of Rieger, Bane and Trigg [36]. ZMOB is not specialised to logic
but is intended as a general multi-processor for use in a variety of
applications, as described in [37]. Our belief, as discussed earlier,
is that ZMOB will not support the level of storage access that our
scheme requires and it will be interesting to note how the difficul-
ties we foresee are overcome. In this context, we believe that Minker
is planning an implementation of Prolog on ZMOB.

Conery and Kibler's AND/OR proposal [11] is in some respects simi-
lar to our Or-parallel scheme. For the main part here, we will only
concern ourselves with those parts of their scheme above the level of
the architecture.

Their model, as its name suggests, is based on the and-or tree view
of computation. They define two sorts of processes, AND and OR proc-
esses, which they associate with AND and OR nodes of the tree respec-
tively, one process per node. Thus AND processes have OR processes
for their children and vice versa. We first describe the operation of
an AND process.

An AND process is presented with a conjunction of goals to solve
and initially establishes an OR process with the task of finding sol-
utions of the first of these. It then suspends itself awaiting the
arrival of one such solution. (Thus there is no and-parallelism -
although Conery and Kibler refer to future plans for investigating the
incorporation of such parallelism whenever it is known that subgoals
share no variables.)

Assuming that a solution ('substitution') is returned by the child
OR process, the AND process becomes active once more by applying the
substitution to the remaining subgoals and creating an OR process to
solve the second goal, and so on. When no further subgoals remain,
the substitution constructed by composition of the solutions returned

CHAPTER 7: Conclusion 198

by the child OR processes is sent to the parent OR process as a sol-
ution of the conjunction.

If, however, a child OR process fails or indeed the parent of the
AND process asks for an alternative solution, the AND process requests
the preceding OR child process to compute another solution. If this
is not possible because the OR child which failed was charged with
solving the first goal in the conjunction then the AND process itself
fails.

We now describe the operation of an OR process. An OR process is
supplied with an atomic goal and has the task of finding a solution
which is acceptable to its parent AND process. It begins by attempt-
ing to locate a clause whose head matches the supplied goal. If such
a clause is found and turns out to be an assertion, the solution
returned to the parent is simply the matching substitution. On the
other hand, if the clause is an implication, the matching substitution
is applied to the body of the implication and an AND process is estab-
lished to solve the conjunction of subgoals thus formed.

The OR process continues by attempting to unify the goal with the
heads of all remaining (applicable) clauses, for it may well happen
that the parent AND process will find the first solution returned
unacceptable and request another. In this way, the AND/OR scheme
seeks to exploit all the or-parallelism implicit in the user's
program.

On receipt of a solution found by a child AND process, the OR proc-
ess composes it with the matching substitution saved from the earlier
unification and thus forms a solution of the goal it was asked to
solve. Once the first such solution has been sent to the parent AND
process, the OR process locally saves any further solutions and passes
them one by one to Its parent - but only when It is specifically
requested to do so. The scheme incorporates a degree of optimisation
Insofar as OR processes suppress solutions which are identical to
those previously sent to the parent. (Other areas of optimisation are
also described.)

CHAPTER 7: Conclusion 199

Having outlined their scheme, we summarise below the principal
similarities and differences between their approach and ours.

Similarities:-

Both schemes exploit or-parallelism only.

Both schemes are based on a multi-processor architectures. Each
processor holds a local copy of the user's program.

Differences:-

Their design is based on explicit application of substitutions to
outstanding goals. Ours is based on structure-sharing of goal
lists and of bindings (via registers).

Their PE's only communicate by means of messages. Substitutions
and fully instantiated lists of goals are examples of messages
communicated from PE to PE.

Each of their processes is entirely executed on the PE that first
accepts the process. In our scheme, PE's are considered to be
equal computational resources, each capable of continuing any
process at any ,point.

Robinson and Sibert's work on Loglisp [40] is of interest here
because its organisation is not based on the LRDF search strategy.
Loglisp is a marriage of Horn clause logic and Lisp which seeks to
exploit the control facilities of the latter whilst retaining the
"pure" characteristics of the formeri In this way, extra-logical fea-
tures, as found in most implementations of Prolog (and as criticised
in [32]; replied to in [14]), may be separated from the logic itself
and implemented instead through the Lisp component.

Although not primarily put forward as a scheme for exploiting
parallelism, the Loglisp proposal seems suitable for such application:
for the decision to abandon LRDF search means that some method of pur-
suing alternative derivations - at least in quasi-parallel - has to be
devised. The chosen approach, that of representing alternative bind-

CHAPTER 7: Conclusion 200

ing environments by means of association lists, differs from our
Or-parallel proposal of having registers of bindings (their scheme,
like ours, structure-shares bindings). We will describe our under-
standing of their mechanism to enable a comparison of the two alterna-
tives to be made.

The starting point in our description is a conventional environment
of activation records. It will be seen that the modification accommo-
dates separate derivations by arranging for environments to be copied
whenever necessary (the copying is not naive). Because derivations
are separated in this way, it is possible to store bindings uniquely
in the activation record where the variable is introduced - although a
minimal amount of searching is still required and so access is not as
direct as in a conventional implementation.

In this exposition, we will simplify matters by considering an
activation record to consist of nothing other than the contained
bindings i.e. we will drop all references to the other items of these
records. Figure 42 on page 202 illustrates the first modification
they make•

CHAPTER 7: Conclusion 201

CONVENTIONAL FIRST MODIFICATION

I bindings |
i i

/ l \

i i i i
| . > | bindings I

bindings j . > j bindings |

/ 1 \

| . j bindings j j . > j bindings I

/ l \
i
i

— i —
i i i i

I bindings |
i i

i i i i
| . > | bindings I

Figure 42.

The modification splits the bindings from the rest of each acti-
vation record by means of a "spine" of pointers. In conventional
implementations, the varying amount of storage reserved for bindings
(amongst other things) dictates the need to construct stacks by means
of pointers connecting neighbouring activation records. In Robinson
and Sibert's scheme, an environment is represented by a spine and
since each vertebra is of the same size, the spine is implemented as
an array.

CHAPTER 7: Conclusion 202

The second modification implements the bindings in each activation
as a chain, the association list, rather than by the (pre-reserved)
array of binding space found in conventional implementations. Pro-
log's classic direct access to a binding is thus lost; Instead a
search through the appropriate association list now becomes necessary.
If a variable is unbound in a particular environment, no entry exists
for it in the relevant association list. An activation record and
association list are shown in Figure 43.

>| . | binding C I

V

I . | binding B |

V

I | binding A |

Figure 43.

Having indicated the change made to a single environment, we are
now in a position to describe how structure-sharing of bindings is
brought about.

To copy an environment, one copies the array which implements the
spine. Figure 44 on page 204 illustrates sections of two environments
that share three bindings.

CHAPTER 7: Conclusion 203

> to assn. list

X | |
>1 . I binding C

- I -
i
i
V

j . I binding B |

- i

i i
binding A |

I to assn.

I list

Figure 44.

This copying of spines is typically done whenever the search tree
forks. Let us consider just one derivation, the one whose environment
is represented by the left spine in Figure 44. Suppose that a binding
D is made in that derivation and the variable thus bound was intro-
duced in the same activation as the variables appearing in the
bindings A, B and C. The new binding is then chained in at the point
X. Likewise, a new binding (possibly for the 'same' variable) made in
the environment represented by the right spine is chained at Y. It
should be evident that bindings A, B and C are thus shared between
both environments.

CHAPTER 7: Conclusion 204

This approach to holding bindings involves copying the current
spine at each forking node in the search tree. Since the number of
vertebrae is equal to the depth of the forking node in the tree, the
overhead of such copying is not bounded by any constant. Our scheme
does not have a similar overhead.

When it comes to accessing a binding, some searching is Involved in
both schemes. In our's, the variable's name directs the search to the
appropriate register, which is then examined. Robinson and Sibert
instead seek a binding in the appropriate association list. That
search is bounded by the number of variables introduced by the clause
used in the relevant activation. In our scheme, the search is
unbounded because the number of alternative bindings for the 'same'
variable is not bounded. In practice, of course, one would not expect
more than a few, usually zero, one or two, bindings - although, of
course, this is entirely dependent on the application. We feel that a
comparison of the two schemes by means of simulation would be a par-
ticularly interesting and instructive exercise.

A somewhat more established proposal, the TT-representation
formalism of Fishman and Minker [17], was mentioned in an earlier
chapter and we include a reference to it here for the sake of com-
pleteness. Unlike the other proposals discussed in this section, it
does not seek to exploit parallelism through parallel computation but
rather through the choice of program representation.

The researches of Kibler and Conery, Robinson and Sibert and
Fishman and Minker are concerned with or-parallelisra; the research of
Clark and Gregory [5], to which we now turn, seeks instead to exploit
and-parallelism.

Their proposal complements those we have put forward because we
have no And-parallel scheme as such. Clark and Gregory view the out-
put of a computation as being in a relation with the input (rather
than a function of it) and their scheme computes no more than one

CHAPTER 7: Conclusion 205

instance of that relation. The particular instance found typically
depends on the temporal behaviour of the various components that
together comprise the computation.

Their proof procedure is based on don't care non-determinism, as
found in Dijkstra's guarded commands. A clause in their language
takes the form

P <- G | S

where G is the guard and S takes the form S^ // S 2 // ••• // S n where
each S^ is a sequence (G and/or S may be null). The guard G and each
sequence S^ consists of a conjunction of atoms.

Declaratively, the clause is read as though the body were simply
comprised of the conjunction of all atoms in G and each S^. Opera-
tionally, the clause is a candidate clause for solving goals which
match the head P, provided that the guard is a true conjunction of
ground atoms. Moreover, once a candidate clause is discovered, its
acceptance precludes the selection of any other candidate clause and
computation is irrevocably committed to that choice. In this way,
backtracking and other ways of coping with non-determinism are dis-
pensed with. In turn this leaves the way open to an elegant design
which implements each sequence as a process and establishes communi-
cation between such processes through channels, each channel
corresponding to a shared variable (i.e. a variable appearing in more
than one sequence). These channels have a definite direction of flow
(under the programmer's control) and give rise to computations with a
pipeline or network flavour.

It will be appreciated that the language differs from the language
of Horn clauses both in form and semantics and so their scheme cannot
be directly compared with either of our schemes. Their approach makes
the formalism particularly suitable for applications which are func-
tional apart possibly from a degree of don't care non-determinism
whereas our proposals are quite general and in particular might be
suitable for database applications.

We know of no research related to our And-or scheme.

CHAPTER 7: Conclusion 206

7.2 FUTURE RESEARCH

7.2.1 Or-parallel Proof Procedure

At various points in our description of the Or-parallel scheme, we
were obliged to make statements of the form "...in the absence of sim-
ulation..." and rely instead on Intuitive analysis. Of course, analy-
sis of a system is a valid method of gaining insight into its
behaviour, provided that the model used accurately represents it.
However, accurate representation of a complex computer system Is a
notoriously difficult task and for critical systems is usually supple-
mented by simulation in one form or another.

We feel such simulation is important in our scheme and in partic-
ular, we would like.to investigate the relationship between the number
of PE's and overall speed of computation. We believe that this
relationship depends quite critically on the nature of the global
storage interconnection network and would like to simulate various
interconnection strategies. In particular, we would like to be
assured that given a sufficiently powerful network (and a sufficiently
"parallel" program), addition of extra PE's never increases the over-
all time of computation and, for large numbers (n) of PE's, decreases
it in a manner close to the ideal (proportional to 1/n). We would
also like to simulate the shared bus interconnection network and would
be very interested in confirming our estimate of the maximum number of
PE's that might be supported by this extremely simple and cheap
(global) resource.

Another area of further research worth pursuing is that of
optimisation. Our proposal has been kept as simple as possible but
certain economies, for instance in the utilisation of store, may be
possible. Such optimisations generally have a processing penalty and
one would have to carefully evaluate whether they are worthwhile in
the context of ever-decreasing memory costs, given that the primary
motive for providing parallel execution in the first place Is the
desire to increase the speed of computation.

CHAPTER 7: Conclusion 207

The final area of research is that of building a prototype system
and evaluating it to confirm the analysis and simulation described
above.

7.2.2 And-or Proof Procedure

The previous chapter contained an assessment that outlined areas of
further research on the And-or proof procedure. In this section, we
point out that in addition to those investigations, the further
research described above for the Or-parallel proof procedure also
applies to the more novel scheme, perhaps more so. We would also like
to investigate the computational complexity of certain key aspects.

Finally, we feel that a certain degree of more theoretical research
is called for. , Our description has been based largely on intuition
and we would like to see a more soundly based exposition of the
scheme«. In particular, we would like to see proofs of Its correctness
and completeness.

CHAPTER 7: Conclusion 208

8.0 REFERENCES

[1] Bowen, K.A., Kowalski, R.A., [1981], Amalgamating Language and
Metalanguage in Logic Programs. To appear in Logic Programming
Papers (K.L. Clark and S-A Tarnlund eds«) Academic Press, New
York.

[2] Boyer, R.S., Moore, J.S., [1972], The Sharing of Structure in
Theorem Proving Programs. Machine Intelligence Vol. 7,
Edinburgh University Press, New York, (B. Meltzer and D. Michie,
eds.), pp. 101-116.

[3] Burstall, R. M., Darlington, J., [1977], A Transformation System
for Developing Recursive Programs, J. ACM, Vol. 24 No. 1 (Janu-
ary 1977).

[4] Clark, K.L., [1978], Negation as Failure. Logic and Data Bases,
(H. Gallaire and J.Minker eds.), Plenum Press, New York, pp.
293-322.

[5] Clark, K.L., Gregory, S., [1981], A Relational Language for Par-
allel Programming. Proceedings of 1981 Conference on Functional
Languages and Computer Architecture.

[6] Clark, K.L., McCabe, F.G., [1979], The Control Facilities of
IC-PR0L0G, Research Report, Department of Computing and Control,
Imperial College, London University.

[7] Clark, K.L., McCabe, F.G., [1980], IC-PR0L0G: Aspects of its
Implementation. Research Report, Department of Computing and
Control, Imperial College, London University.

[8] Clark, K.L., Tarnlund, S-A., [1977], A First Order Theory of
Data and Programs. Proc. IFIP 77, North Holland Publishing Co.,
Amsterdam, pp. 939-944.

References 209

[9] Codd, E.F., [1970], A Relational Model for Large Shared Data
Bases. C. ACM, Vol. 13, No. 6 (June 1970), pp. 377-387.

[10] Colmerauer, A., Kanoui, H., Pasero, R., Rousell, P., [1973], Un
Systeme de Communication Homme-Machine en Francais. Rapport,
Groupe Intelligence Artificielle, Universite d'Aix-Marseille,
Luminy.

[11] Conery, J.S., Kibler, D.F., [1981], Parallel Interpretation of
Logic Programs. Proceedings of 1981 Conference on Functional
Languages and Computer Architecture.

[12] Daglass, E.L., [1977], A Multiprocessor - CYBA-M. Information
Processing 77 (B.Gilchrist ed.), IFIP.North Holland Publishing
Co., pp. 843-848.

[13] Darlington, J., Reeve, M., [1981], ALICE: A Multi-Processor
Reduction Machine for the Parallel Evaluation of Applicative
Languages. Proceedings of 1981 Conference on Functional Lan-
guages and Computer Architecture.

[14] van Emden, M.H., [1980], McDermott on PROLOG: A Rejoinder.
SIGART Newsletter 73, Oct 1980, pp. 19-20.

[15] van Emden, M.H., Kowalski, R.A., [1976], The Semantics of Predi-
cate Logic as a Programming Language. J. ACM, Vol. 23, No. 4,
pp. 733-742.

[16] Farrell, E.P., Ghani, N., Treleaven, P.C., [1979], A Concurrent
Computer Architecture and a Ring Based Implementation. Proc.
Sixth International Symposium on Computer Architecture, 1979,
pp. 1-11.

[17] Fishman, D.H., Minker, J., [1975], TT-Representation. A Clause
Representation for Parallel Search. Artificial Intelligence,
Vol. 6, No. 2, pp. 103-127.

[18] Futo, I., Darvas, F., Szeredi, P., [1978], The Application of
PROLOG to the Development of QA and DBM Systems. Logic and Data

References 210

Bases, (H. Gallaire and J.Minker eds.), Plenum Press, New York,
pp. 347-375.

[19] Gallaire, H., Minker, J., (Editors) [1978], Logic and Data
Bases. Plenum Press, New York.

[20] Hill, R., [1974], LUSH Resolution and its Completeness. DCL
Memo No. 78, University of Edinburgh, School of Artificial
Intelligence.

[21] Hoare, C.A.R., [1961], Algorithm 64. C.ACM, Vol.4, pp. 321.

[22] Hoare, C.A.R., [1978], Communicating Sequential Processes. C.
ACM, Vol. 21, No. 8 (August 1978), pp. 666-677

[23] Hogger, C.J., [1979], Derivation of Logic Programs. Ph. D. The-
sis, Imperial College, London University.

[24] Horn, A., [1951], On Sentences which are True of Direct Unions
of Algebras. Journal of Symbolic Logic, 16, pp. 14-21.

[25] Kowalski, R.A., [1974], Predicate Logic as Programming Language.
Proc. IFIP 74, North Holland Publishing Co., Amsterdam, pp.
569-574.

[26] Kowalski, R.A., [1975], A Proof Procedure using Connection
Graphs. J. ACM Vol. 22, No. 4, pp. 572-595.

[27] Kowalski, R.A., [1979], Algorithm = Logic + Control. C. ACM,
Vol. 22, No. 7 (July 1979), pp. 424-436.

[28] Kowalski, R.A., [1979], Logic for Problem Solving. North
Holland, New York.

[29] Kowalski, R.A., Kuehner, D., [1971], Linear Resolution with
Selection Function. Artificial Intelligence, Vol. 2, pp.
227-260.

References 211

[30] Loveland, D.W., [1970], A Linear Format for Resolution. Sympo-
sium on Automatic Demonstration, Ldcture Notes in Math 125,
Springer-Verlag, Berlin, pp. 147-162.

[31] Mailer, V.A.J., [1979], The Content Addressable Filestore -
CAFS. ICL Technical Journal, 1979 1(3), pp. 265-279.

[32] McDermott, D., [1980], The PROLOG Phenomenon. SIGART Newsletter
72, July 1980, pp. 16-20.

[33] Nilsson, N.J., [1971], Problem-solving Methods in Artificial
Intelligence. McGraw Hill, New York.

[34] Patel, J. H., [1979], Processor-Memory Interconnections for
Multiprocessors. Proc. Sixth International Symposium on Comput-
er Architecture, 1979, pp. 168-177.

[35] Pease, M.C., [1977], The Indirect Binary n-cube Microprocessor
Array. IEEE Transactions on Computers, vol C-26 (May 1977), pp.
458-473.

[36] Rieger, C., Bane, J., Trigg, R., [1980], ZMOB: A Highly Parallel
Multiprocessor. Department of Computer Science, University of
Maryland, College Park, MD 20742.

[37] Rieger, C., Trigg, R., Bane, B., [1981], ZMOB: A New Computing
Engine for Al. Department of Computer Science, University of
Maryland, College Park, MD 20742.

[38] Roberts, G., [1977], An Implementation of PROLOG. M.Sc. Thesis,
University of Waterloo.

[39] Robinson, J.A., [1965], A Machine Oriented Logic Based on the
Resolution Principle. J. ACM, Vol. 12, No. 1 (January 1965),
pp. 23-41.

[40] Robinson, J.A., Sibert, E.E. [1980], Logic Programming in Lisp.
School of Computer and Information Science, Syracuse University,
New York.

References 212

[41] Roussel, P., [1975], PROLOG: Manuel de Reference et
d'Utilisation. Group. d'Intelligence Artificlelle, Universite
d'Aix-Marseille, Luminy.

[42] Treleaven, P.C., [1980], Workshop Report - VLSI: Machine Archi-
tecture and Very High Level Languages. SIGARCH Computer Archi-
tecture News, Vol. 8 No. 7 (Dec 1980), pp. 27-38.

[43] Warren, D.H.D., [1977], Implementing Prolog. Res. Rep. 39, 40.
Dept. of A.I., University of Edinburgh.

[44] Weyrauch, R., [1980], Prolegomena to a Theory of Mechanized
Formal Reasoning. Artificial Intelligence, 13, pp. 133-170.

[45] [1980], Interim Report on Study and Research of Fifth-Generation
Computers. Japan Information Processing Development Center.

[46] [1980], Reference Manual for the Ada Programming Language.
United States Department of Defense.

References 213

9.0 APPENDIX: DETAILS OF BASIC INTERPRETER

Demonstrate.

The program for Demonstrate is a recursive procedure set whose base
case is given by the failure to select a goal:-

Demonstrate(program, state)
<- -"Select(goal, state)

and whose recursive case is given by the clause

Demonstrate(program, state)
<- Select(goal, state) &

New-ar(program, state, goal, ar) &
Demo(program, ar.state)

where the first call selects a goal from the current state and the
second creates a "blank" activation record, ar. The resulting (inter-
mediate) state is passed on to Demo.

The three-place Demonstrate referred to in Chapter 3 would
Instantiate the variable representing the final state to the input
state in the base case (and pass it through to the Demo call
otherwise)•

The specifications of 'Select' and 'New-ar' are deferred for the
moment.

Demo

There are two ways to solve Demo, depending on whether matching is
successful or not.

APPENDIX: Details of Basic Interpreter 214

Demo(program, state-in)
<- Match(program, state-in, state-out) &

Demonstrate(program, state-out)

Demo(program, state-in)
<- ->Match(program, state-in, state-any) &

Demo'(program, state-in)

If matching is successful, the Demonstrate step succeeds and recurses
to the next stage; if it fails, a call is made to Demo' whose outcome
depends on whether or not any further clauses are available to solve
the activation record's goal.

Note that in a conventional (destructive assignment) implementation
the effects of a partially complete match would have to be undone so
that the state could be returned to its pre-match condition. For the
sake of simplicity (in the 'Match' procedure set), we do not simulate
this aspect but instead take advantage of the assignment-free nature
of Prolog and reference the previous state, state-in, in Demo'.

Demo'

After a matching failure, subsequent computation depends on whether
or not there are further clauses which might be Invoked in response to
the selected goal:-

Demo'(program, state-in)
<- Next-clause(program, state-in, state-out) &

Demo(program, state-out)

Demo'(program, ar.state-in)
<- -iNext-clause(program, ar.state-in, state-any) &

Backtrack(program, state-in, state-out)

If no further clause can be tried, the top activation record Is simply
destroyed and 'Backtrack' is called to operate on the remainder of the
input state.

APPENDIX: Details of Basic Interpreter 215

Backtrack

Backtrack(program, state-in, state-out)
<- Un-match(state-in, state-out) &

Demo'(program, state-out)

Backtracking operates by undoing the previously successful unification
and then, calling Demo' to try again with the next clause indicated in
the top activation record. If no such clause exists, Demo' will call
Backtrack again. Notice that if Backtrack fails, so too does Demon-
strate - i.e. in effect, the underlying interpreter is being used to
implement failure to demonstrate.

The specification of 'Un-match' is deferred until after matching
has been described.

We now specify the lower levels of the program.

Select

'Select' implements the selection strategy in the context of the
shared goal list structure described in Chapter 3.

Select(goal, ar.state)
<- First-subgoal(ar, goal)

Select(goal, ar.state)
<- Assertive(ar) &

Isolate(ar, goal*) &
Select'(goal, goal*, state)

First-subgoal only succeeds if the clause referred to in the third
component of the activation record 'ar' is an implication, in which
case 'goal' is instantiated to a terra which represents the goal
derived from the first atom of the body.

APPENDIX: Details of Basic Interpreter 216

The second definition applies only if the clause referred to in the
latest activation record is an assertion, in which case, 'Isolate'
abstracts the second component of 'ar', the term which represents the
goal just unified.

The definitions of 'First-subgoal', 'Assertive' and 'Isolate' are
straightforward and detailed specifications are not given.

Select'

Select' Is presented with a state and goal (in goal*) and is to
instantiate the term 'goal' to the goal whose selection follows that
of goal* in the left-right, last-In-first-out strategy.

Select'(goal, goal*, state)
<- Find-state(goal*, state, state*) &

Select*(goal, goal*, state*)

'Find-state' (not given) derives the state whose top ar is that In
which goal* is introduced - i.e. it "strips off" intervening acti-
vation records.

Select*

Select*(goal, goal*, ar.state)
<- Next-goal(goal, goal*, ar)

Select*(goal, goal*, ar.state)
<- -"Next-goal (goal, goal*, ar) &

Isolate(ar, goal') &
Select'(goal, goal', state)

Next-goal succeeds if goal follows goal* in the calls introduced by
the antecedent referenced in 'ar'.

APPENDIX: Details of Basic Interpreter 217

The second clause applies in the event of goal* being the last goal
derived from the antecedent of the clause referred to in 'ar', in
which case the goal (goal') named In 'ar' is input to a recursive call
of Select'.

New-ar

New-ar supplies a new activation record for the given goal:-

New-ar(program, state, goal, ar(level, goal, 1, UNKNOWN, NIL))
<- Unique(state, level) &

Possible(program, goal)

In a von Neumann implementation, the name represented by 'level' would
be implicit and take the form of an address - that of the activation
record. In this program, 'Unique' has the task of generating a level
different from all those used in ar's embodied in 'state'. Levels are
represented by natural numbers and a unique level is generated by
Incrementing the level of the top-most ar in 'state' by one.

The constant '1' Indicates that the clause to be tried is the first
in the procedure set for the supplied goal. Its analogue in a realis-
tic implementation would be a reference pointer to the first clause in
the procedure set, the establishment of this pointer in effect match-
ing the goal and head predicate symbols. We simulate this matching of
predicate symbols via the 'Possible' call which merely confirms the
existence of the procedure set. The definition of 'Possible' is
straightforward, given that programs are normally organised as col-
lections of procedure sets.

The constant UNKNOWN, occupying the position of the bindings argu-
ment of the activation record, will later be replaced by a list, each
item of which corresponds to a new variable and initially signifies
that the variable is unbound. It is not known at this stage how many
such entries are to be made since the clause has not yet been
accessed.

APPENDIX: Details of Basic Interpreter 218

Next-clause

The third item in the most recent activation records indicates the
current procedure definition being tried. Initially it is 1. A call
to Next-clause serves to produce a new state whose only difference
from that supplied Is that the third argument of the most recent acti-
vation record is incremented by one - but only if 'program' indicates
that the corresponding clause exists. Note that this implicitly
implements the matching of predicate symbols. This is because the
predicate symbols of the goal and first procedure definition used were
matched in 'New-ar' and 'Next-clause' merely perpetuates this matching
by supplying clauses from the same procedure set.

The definitions are too detailed to give here.

Match

Match(program, state-in, state-out)
<- Get-goal-terms(state-in, terms-goal) &

Get-head-terms(state-in, program, terms-head, state-inter) &
Match'(terms-head, terms-goal, state-inter, state-out)

As explained above, the goal and head predicate symbols will already
have been matched but before matching (specified in Match') can con-
tinue, the appropriate goal and head terms must be isolated. In this
implementation, a list of terms is represented by the pair

terms(lev, ts)

where

'lev' is the level of the activation record which introduced the
clause that originated the terms and

'ts' is the list of terms as they appear in the program.

APPENDIX: Details of Basic Interpreter 219

Get-goal-terms uses the second argument of the top-most activation
record in state-in to obtain the goal terms.

In a similar way, Get-head-terms uses the third argument of the
same activation record (in conjunction with the goal's predicate sym-
bol and program), to isolate the head terms. It also produces a new
state by replacing the constant 'UNKNOWN', which appears in the
bindings position of the Input state's most recent activation record,
by an array (fixed length list) of entries with one entry for each new
variable, each entry being the constant 'UNBOUND'.

The detailed specifications of Get-goal-terms and Get-head-terms
are not given.

Match'

Matching proceeds incrementally, term-by-term, as follows:-

Match'(terms(lev-a, NIL), terms(lev-b, NIL), state, state)

Match'(terms(lev-a, t-a.ts-a), terms(lev-b, t-b.ts-b), state-in,
state-out)

<-Static-Dynamic(lev-a, t-a, term-a) &
Static-Dynamic(lev-b, t-b, term-b) &
Unify(term-a, term-b, state-in, state-inter) &
Match'(terms(lev-a, ts-a), terms(lev-b, ts-b), state-inter,

state-out)

Static-Dynamic

'Static-Dynamic' associates together the supplied level and static
term to produce the corresponding term (we choose, for the sake of
simplicity, to treat constants as O-ary functors).

APPENDIX: Details of Basic Interpreter 220

Static-Dynamic(level, t, var(level, t))
<- Variable(t)

Static-Dynamic(level, t, fun(level, t))
<- Functor(t)

Variable and Functor

i

A static variable is represented in the meta-language by the
functor v(k) where k is a positive integer. A static functor is
represented by the meta-level functor f(s, ts) where

"s" represents the function symbol and

'ts" represents the terms of the functor.

Thus the definitions of Variable and Functor are given by:-

Variable(v(k))

and

Functor(f(s, ts)).

Unify

In a structure-sharing implementation, any variable supplied to the
unification process may or may not be bound. If it is bound, unifica-
tion uses the term to which the variable is bound in place of the var-
iable Itself. Since a term may be a variable, this evaluation, or
de-referencing, is in general recursive and we choose to separate it
from the unification process proper (defined by Unify").

Evaluation of both terms to be unified has the effect of avoiding
variable-variable chains of bindings whenever possible. Thus if the
variables u and v are two terms to be unified and u is unbound but v
is bound to t then evaluation of both terms results in the binding u/t
rather than u/v being made. Subsequent evaluation of u is thereby
made more efficient. (Note, however, that chains of variable-variable

APPENDIX: Details of Basic Interpreter 221

bindings may still arise. For example, if u and v (both initially
unbound) are to be bound, the binding u/v (say) will be made. A later
binding v/v' will mean that a subsequent evaluation of u will involve
a non-trivial variable-variable binding chain.)

Unify(term-a, term-b, state-in, state-out)
<- Evaluate(term-a, term-a', state-in) &
. Evaluate(term-b, term-b', state-in) &
Unify'(term-a', term-b', state-in, state-out)

Evaluate

'Evaluate' follows the chain of variable-variable bindings until it
comes across a variable bound to a functor or an unbound variable:-

Evaluate(term, term, state)
<- Functor(term)

Evaluate(term-in, term-out, state)
<- Variable(term-In) &

Evaluate'(term-in, term-out, state)

Evaluate'

Evaluate'(var, term, state)
<- Bound(var, term', state) &

Evaluate(term', term, state)

Evaluate'(var, var, state)
<- ->Bound(var, term, state)

We defer the specification of 'Bound' for the moment.

Unify'

There are four self-explanatory cases to consider in the specifica-
tion of Unify':-

APPENDIX: Details of Basic Interpreter 222

Unify'(fun-a, fun-b, state-in, state-out)
<- Functor(fun-a) &

Functor(fun-b) &
Unify-functors(fun-a, fun-b, state-in, state-out)

Unify'(var-a, var-b, state-in, state-out)
<- Variable(var-a) &

Variable(var-b) &
Bind(var-a, var-b, state-in, state-out)

Unify'(var, fun, state-in, state-out)
<- Variable(var) &

Functor(fun) &
Bind(var, fun, state-in, state-out)

Unify'(fun, var, state-in, state-out)
<- Functor(fun) &

Variable(var) &

Bind(var, fun, state-in, state-out)

Unify-functors

If both terms are functors, the function symbols must be identical
and the terms of the functions must be matched successfully:-

Unify-functors(fun-a, fun-b, state-in, state-out)
<-Static-Dynamic(lev-a, f(s, ts-a), fun-a)&

Static-Dynamic(lev-b, f(s, ts-b), fun-b)&
Match'(terms(lev-a, ts-a), terms(lev-b, ts-b), state-in,

state-out)

The two 'Static-Dynamic' calls are used "in reverse" here to produce
static functors from dynamic ones.

Bind

We now turn to the question of how bindings are made and stored.

APPENDIX: Details of Basic Interpreter 223

As was mentioned in Chapter 3, bindings are associated with the
activation record at which the variable is introduced. If this acti-
vation record is not the most recent one (i.e. the one related to the
current unification), an entry must be added to the reset list belong-
ing to the most recent activation record.

Bind(var, term, state-in, state-out)
<- Find-ar-and-add-binding(var, term, state-in, state-inter) &

Parts(state-inter, ar-inter, state-rest)&
Check-reset(var, ar-inter, ar-out) &
Parts(state-out, ar-out, state-rest)

'Parts' holds if the first argument is a state whose most recent acti-
vation record is given by the second argument and the third argument
represents the state of remaining activation records. Its first use
here splits the supplied state into the top-most activation record and
the state consisting of' the remaining activation records; its second
use is in the reverse direction - i.e. as a data constructor.

Find-ar-and-add-binding

Find-ar-and-add-binding(var, term, ar-in.state, ar-out.state)
<- Local-var(var, ar-in) &

Add-binding(var, term, ar-in, ar-out)

Find-ar-and-add-binding(var, term, ar.state-in, ar.state-out)
<- ->Local-var(var, ar) &

Find-ar-and-add-binding(var, term, state-in, state-out)

The chosen representation of state means that a recursive search for
the appropriate activation record is necessary. In a practical imple-
mentation, such access would be made through a direct reference, as
previously explained. We could have simulated such direct access by
representing the state as a relation of assertions, each assertion
being, in essence, an activation record. We chose not to do this
because such a description would have involved the deletion and
insertion of clauses (to reflect destructive assignment in the ar's).

APPENDIX: Details of Basic Interpreter 224

Add-binding

To avoid unnecessary detail, Add-binding is defined informally.

If the variable to be bound is var(lev, v(k)), Add-binding locates
the k"th item in the fourth argument (bindings) of the input acti-
vation record (whose level is known to be lev). It produces an output
activation record which differs from that input only insofar as the
supplied term appears in place of the constant "UNBOUND".

Check-reset

Check-reset adds a reset entry to the list constituting the fifth
argument of the input activation record if the variable in the first
term is not local to that activation record. Otherwise, the output
activation record is the same as that input.

Check-reset(var, ar, ar)
<- Local-var(var, ar)

Check-reset(var, ar-in, ar-out)
<- -«Local-var(var, ar-in) &

Add-reset-entry(var, ar-in, ar-out)

The lower-level procedure definitions are trivial and are not given.

Bound

Now that the method of adding bindings to the state has been
described, it is easy to understand how to determine the term to which
a given variable is bound.

The Bound relation holds between a variable and a term in the given
state If the variable is bound to the term in that state. The Bound

APPENDIX: Details of Basic Interpreter 225

relation does not hold if the constant "UNBOUND" appears in place of a
term.

The two steps involved in determining whether "Bound" holds are

To find the activation record appropriate to the variable and

To succeed provided .that the entry relating to the variable is not
"UNBOUND".

Our implementation would simulate such direct accesses by two
recursive searches, although we do not give the formal definitions
here.

Again, such direct accesses could be more accurately simulated by
representing bindings as assertions in a relation rather than as terms
in a data structure.

Un-match

Now that matching has been specified, the converse, "Un-match",
called in the process of backtracking, is easily followed.

Referring to the context in which the "Un-match" call is made, the
steps required of the definition are

To once more make the fourth argument (bindings) of the most
recent activation record equal to the constant UNKNOWN and

To use the reset list In order to undo all bindings for variables
in that list. These bindings are each replaced by the constant
"UNBOUND". The reset list is then made empty once more.

The formal specification is not given here.

APPENDIX: Details of Basic Interpreter 226

