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ABSTRACT 

The thesis is primarily concerned with investigating the potential 
for concurrent execution inherent in Horn clause programs and how that 
potential might be realised. 

The early chapters give the background and introduce the concepts 
which underpin the use of Horn clauses for the expression of computer 
programs. A description which outlines how such programs are inter-
preted on conventional von Neumann architectures then follows. The 
preliminary part of the thesis closes with a chapter that describes 
the forms of parallelism intrinsic to Horn clause programs and how 
such parallelism might be exploited to good effect. 

Our principal research contribution then follows. This takes the 
form of two schemes for the parallel execution of Horn clause 
programs. 

The first, the Or-parallel scheme, is an extension of the conven-
tional backtracking scheme and our coverage of it is quite comprehen-
sive, extending to the description of computer architectures which 
might be used to implement it. 

The second, the And-or scheme, is more ambitious insofar as it has 
the potential to exploit all the parallelism implicit in Horn clause 
programs. This scheme is a radical departure from conventional 
approaches to Horn clause program execution and our presentation con-
centrates on its design rather than on its possible Implementation. 
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CHAPTER Is INTRODUCTION 

1.1 BACKGROUND 

It is , perhaps surprising that an industry which likes to surround 
itself in the aura of logical thought should be taking so long to dis-
cover logic itself. 

The academic world has been actively investigating Logic Program-
ming [25] since 1972 and recent years have seen a great increase in 
the level of interest shown in this area of computing science. 

The computing industry, on the other hand, is distinctly lagging in 
this field yet as is so often the case, it is the industry itself 
which has the most to gain. The evidence that Logic Programming is 
of practical use has been available for some time [18] but to date 
there has been no large-scale application of it. Perhaps this is not 
surprising in view of the departure from convention that this for-
malism entails. 

Much research effort is being applied to the development of Logic 
Programming; some, such as the research reported here, being supplied 
by non-academic bodies. In this context, it is worth pointing out 
that the largely unpublicised Japanese Government and Computer Indus-
tries coordinated research program into fifth-generation computers 
[45] is based on the use of Logic Programming and kindred formalisms. 

Below, we outline some of the features of programming in logic and 
the potential for improvement and advancement that this formalism 
offers. 

1.1.1 Programming 

It is generally accepted that automatic computation is plagued by 
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all sorts of problems stemming from the use of procedural languages. 
By 'procedural languages' we mean languages whose semantics are given 
in terms of the state of some abstract (occasionally real!) machine. 

The problems intended for automatic computation are expressed in 
quite a different manner. As a rule, they are stated informally in a 
system specification, by and large in a style oriented towards the 
real world. It is then the programmer's task to take such an informal 
specification and translate his interpretation of it into a form which 
is not human-oriented (and consequently difficult to comprehend). 

It is hardly surprising that at one and the same time, the conven-
tional approach produces programs that are difficult to understand 
(and hence modify) and which are also wrong - insofar that they seldom 
produjce the intended results and in any case promote little faith in 
their 'correctness'. 

. It is true that certain advances, notably structured programming, 
have tended to mitigate the worst excesses of this approach but they 
have not addressed the central question of presenting problems to the 
computation process In a manner truly understandable by both man and 
machine. 

To overcome these shortcomings, the machine must, at some level, be 
made to understand naturally expressed problems. 

Prolog [41], [38], [43] is a significant advance in this respect, 
for although it is by no means a, natural language, it is far closer 
related to human thought and expression than procedural languages are. 
The justification for this statement is that Prolog is essentially the 
Horn clause subset of Standard Form Logic [24], a formalism whose 
roots go back over two thousand years and whose development ever since 
has been motivated by the need to assist the comprehension of human 
thought. Procedural computer languages, on the other hand, exist 
solely for the purposes of automated computation. 

Much Logic Programming research effort is being applied to the area 
of program transformation [8], [23]. The eventual aim here is to 
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allow the user to express the problem domain at a still higher level -
perhaps a level equivalent to the Standard Form of Logic - and then to 
transform the supplied specification to a (logically equivalent) form 
that also exhibits good computational behaviour. 

Similar research is being undertaken for functional programming 
languages (e.g. [3]) but the Logic Programming approach has the unique 
characteristic that only one formalism is involved. 

Clearly, significant advances are offered by the success of these 
investigations. 

1.1.2 Data Base Versatility 

Much of the interest being shown in Prolog stems from its proper-
ties in the context of database application [19]. 

It is possible to interpret any relational database (as described 
by Codd [9]) as a Prolog program but the converse is not true - i.e. 
Prolog is more general. It is reasonable to expect therefore that 
much of the interest being shown towards relational databases will 
find expression as an interest in Prolog. 

In Prolog, there is actually no distinction between what is conven-
tionally considered program and data. A 'program' is merely an 
implicit manifestation of data insofar as its sole purpose is the com-
putation of that data (this point will be amplified later). 

The capability of being able to express both 'program' and 'data' 
in a single formalism is a truly remarkable one but even so, it does 
not exhaust the expressive versatility of Prolog. Because Prolog is 
logic, aspects of computation associated with logic may be directly 
implemented in Prolog. An example appropriate to the area of data-
bases is that of integrity constraints. 
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Continuing this theme of Prolog's versatility, we mention its use 
as a meta-language. Briefly, a meta-language is one which reasons 
about another language, the object-language - i.e. the objects repres-
ented in the meta-language are statements of thexobject-language. 
Both may be implemented in Prolog. An illustration of the use of 
meta-language might he that concerning the modification of a database. 
Here, the object being manipulated in the meta-language is the data-
base itself. The integration of object- and meta- level programming 
in an elegant way is under active investigation [1], [44] and offers 
the dual benefits of safer and more powerful programming. 

1.1.3 Parallelism 

Recent advances in micro-electronics, particularly in the area of 
VLSI fabrication, have served to reduce the cost of computer hardware. 
The trend is a continuing one and affects the level at which theore-
tical improvements to computation become cost-effective 
practicalities. 

One such area is that of parallelism [42]. Parallelism, in the 
form of pipelining within instruction cycles, has for some time been a 
standard feature of many conventional machines. However, such pipe-
lining depends on the identification of separate components of some 
action and the execution of those sub-actions on an input stream -
neighbouring components operating on neighbouring items in the stream. 
This form of parallelism is not readily extensible and so cannot take 
proper advantage of the opportunities offered by incoming technology. 

Parallelism at the higher level of concurrency of program instruc-
tion execution is a more recent innovation [22], [46] and holds some 
promise. 

However, this approach to exploiting future technology is not ideal 
either. For one thing, it is the programmer who decides whether to 
incorporate such concurrency or not and in this way, his influence 
over the computation process is extended rather than diminished. 
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Of more immediate concern here is the criticism that this form of 
concurrency is not sufficiently general and therefore does not hold 
maximal potential for such exploitation. Concurrency in these lan-
guages tends to be rather coarse-grained because It is the program-
mer's responsibility to identify 'processes' that might run 
concurrently. 

Perhaps a more serious criticism of such concurrency follows on 
from the earlier discussion of semantics. The semantics of fully 
transparent concurrent computation has not been defined - in all prob-
ability cannot be defined - in terms of the effects of sequential 
transitions on the state of a machine. 

Prolog and other languages, notably functional languages, whose 
semantics may be given in human terms rather than in terms of machine 
state transitions, do not suffer the above limitations. So the single 
step necessary to implement concurrency for such languages is to sup-
ply a mechanism that conforms to those semantics and yet is 
concurrent. The concurrency thus conferred could be made transparent 
(i.e. not of the programmer's concern), a significant point in its 
favour. 

1.2 STATEMENT OF THESIS 

1. Concurrent computation is a desirable way to exploit VLSI. 

2. Prolog is a suitable language for the advancement of concurrent 
computation. 

3. Concurrent implementations will serve to make Prolog a more 
attractive and hence widespread language. 

4. Increased use of Prolog will serve to improve the general standard 
of programming. 
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The research reported in this document is primarily concerned with 
item 2. 

1.2.1 Objectives of Research 

The major area of original research reported herein is concerned 
with the investigation of alternative approaches to the implementation 
of a concurrent execution mechanism for Prolog programs. 

Throughout this research, the criterion of transparency has been 
regarded as a most desirable property. The few departures from this 
ideal that our proposals make are necessary solely in the interests of 
expediency and it is confidently expected that in due course, such 
expediency will not be necessary and this criterion will be fully 
realised. 

The schemes proposed are quite general and make no assumptions 
about the nature of the programs to which they might be applied. They 
contrast in this respect with other schemes (e.g. [5]) which impose 
certain restrictions on the user's program. 

1.3 PREVIEW OF CONTENTS 

The thesis may be regarded as consisting of three parts. 

The first part is concerned with well-established aspects of the 
use of logic for programming. 

Chapter 2 deals with the theory underlying Horn clause programming 
and includes a section on the programming language Prolog. Chapter 3 
continues in this vein by describing an idealised conventional imple-
mentation of a basic Prolog interpreter. This account will be of some 
use in later parts of the thesis because it affords the possibility of 
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comparing and contrasting certain aspects of the new approaches with 
those found in conventional implementations. 

Chapter 4 makes precise the notion of concurrency as applied to the 
execution of Horn clause programs and investigates the various ways in 
which such concurrency may be used to advantage. 

The second part of the thesis comprises our principal contribution 
of original work. It consists of two chapters, each describing a par-
allel execution mechanism for Horn clause programs. 

The first of these, Chapter 5, describes the Or-parallel Proof Pro-
cedure, a scheme which exploits just one form of parallelism. We con-
sider it feasible to implement this scheme by means of technology now 
available. Because of this and the fact that the abstract model of 
the proof procedure is quite simple, our exposition here has an imple-
mentation bias to it and includes, for example, a discussion on 
architectures that might be used to realise the scheme. 

Chapter 6 describes the And-or Proof Procedure, an execution mech-
anism with the potential to exploit, we believe, all the parallelism 
implicit in Horn clause programs. The scheme, as one might expect, is 
more complex and consequently our description is pitched at a higher 
level. 

The final part of the thesis, Chapter 7, is more general and 
relates our researches to those being undertaken by others. It also, 
in conjunction with chapters 5 and 6, identifies areas of further 
research. 

CHAPTER 1: Introduction 15 



CHAPTER 2: HORN CLAUSE PROGRAMMING 

There are several excellent introductions to Horn clause program-
ming, notably Kowalski's book [28]. In view of this, it is not appro-
priate to devote a great deal of space here to such an introduction, 
and the interested reader is earnestly advised to refer to the above 
book. 

However, we do wish the thesis to be as self-contained as possible 
and in view of this, and the fact that there is a certain variation in 
terminology throughout the literature, we will be quite specific and 
include here the background material necessary to enable the thesis as 
a whole to be understood. 

2.1 SYNTAX 

A Horn clause logic program is a set of clauses. 

The building blocks of clauses are atoms. An atom expresses a 
relationship between the individuals that appear in it (or a property 
of an individual if just one appears). 

Examples of. atoms are 

Andrew is the brother of David 
0 is a number 
Jonathan likes x 

where the names of the relationships are underlined and the names of 
the individuals are not. 

We will for the most part find it convenient to use prefix repres-
entations of atoms thus 
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Brother(Andrew, David) 
Number(0) 
Likes(Jonathan, x) 

There are two types of clauses in a logic program: assertions and 
implications. 

An assertion is comprised of a single atom. It is a statement of 
fact and is read as holding unconditionally. 

An Implication is a statement of the form 

i 
B is implied by A^ and k^ and .•. and A r 

written 

B <- A. & A0 & ... & A 1 z n 

where A^, A2, •••, A n and B are all atoms. B is termed the consequent 
atom of the implication and A^, A n its antecedent atoms. 

An example of an implication is 

Happy(John) <- Friend-of(John, Mary) & Friend-of(John, Jane) 

No significance is attached to the ordering of the atoms in the 
antecedent of an implication. Note that an assertion is simply the 
special case of an implication with no antecedent atoms. 

The consequent atom of a clause will sometimes be termed its head; 
the conjunction of its antecedent atoms, its body. 

An atom is made up of a predicate symbol and one or more terms. As 
indicated above, we will tend to use the prefix representation of 
atoms P(....), although occasionally we will opt for the infix form 
when only two terms are involved e.g. x = A. 

A term is a constant, a variable or a functor. 
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John and 0 are examples of constants. Each use of a constant in 
the program refers to the same individual. 

All variables appearing in a clause are interpreted as being uni-
versally quantified outside the clause. For example the clause 

Parents-of(x, y, z) <- Mother-of(x, y) & Father-of(x, z) 

is interpreted as 

For all x,y,z (Parents-of(x, y, z) 
<- Mother-of(x, y) & Father-of(x, z) ). 

For those variables which only appear in the body of a clause, an 
equivalent interpretation is obtained by existentially quantifying the 
variables concerned immediately outside the body. 

For example, 

For all x,y,z (Grandparent(x, y) <- Parent(x, z) & Parent(z, y) ) 

is read alternatively as 

For all x,y (Grandparent(x, y) 
<- There exists z (Parent(x, z) & Parent(z, y) ) ). 

Variables, unlike constants, are only local to the clause in which 
they appear i.e. there is no special relationship between occurrences 
of the same textual variable in two different clauses. Conversely, 
two clauses identical in every respect except for a one-to-one mapping 
of variables are in fact read as being identical. Thus 

Grandparent(x, y) <- Parent(x, z) & Parent(z, y) 

and 

Grandparent(u, v) <- Parent(u, w) & Parent(w, v) 
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are clauses with identical meaning and are termed variants of one 
another. 

The two above properties of variables are consequences of the 'uni-
versally quantified' interpretation placed on variables in a Horn 
clauses program. 

Functors consist of a function symbol and one or more terms. (An 
equivalent alternative definition dispenses with constants and allows 
functors with no terms in their place.) 

Functors are analogous to data structures in conventional program-
ming. Examples of functors are 

date(l, Jan, 82) 
.(x, NIL) 
x.NIL 

The function symbols in the above examples are 'date', '.' and '.' 
respectively. As with atoms, functors may be written in prefix or 
infix form. The terms in the prefix form are separated by commas. 

The third example is the infix equivalent of the second. The con-
ventional usage of the '.' functor - and that adopted throughout this 
thesis - is in the representation of lists. Both examples name the 
list whose first item is x and whose remainder Is the list NIL (a con-
stant conventionally representing the empty list). 

Notice that the definition of term is recursive. Thus .(A, .(B, 
x)) names the list whose first two items are A and B and,whose tail is 
the list x. The equivalent infix form is A.(B.x). By assuming that 
'.' is associative to the right, we will dispense with the brackets 
altogether and use A.B.x to represent such a term. 

Functors and atoms share the same syntax but are distinguished by 
the context of their occurrence in the clause. We will distinguish 
between variables and constants by using names beginning with a lower 
case letter to represent variables. 
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2.2 SEMANTICS 

Two principal semantics may be ascribed to Horn clause logic:- the 
declarative semantics (human oriented) and the operational semantics 
(machine oriented). It is the equivalence of the two that imputes to 
Horn clause programs the dual aspects of being human-oriented and 
machine executable. 

2.2.1 Declarative Semantics 

In Horn clause programs, no 'meaning' as such attaches to the sym-
bols of the program; the only 'meaning' possible is that which can be 
inferred from the set of clauses that make up the program. 

The semantics of Horn clause logic may be given in terms of logical 
implication, which in turn is normally given in terms of the notions 
of interpretation and inconsistency. 

Although the declarative semantics are important in theory, their 
equivalence to the operational semantics makes it possible to dispense 
with their exposition here and rely instead on a detailed description 
of the operational semantics. A rigorous description of the declar-
ative semantics of clausal logic and its equivalence to the opera-
tional semantics is given in [15]. 

We contend that people have a sufficiently intuitive idea of 
'truth' and that when a user is engaged in practical programming, it 
is good enough for him to write clauses which are 'true' statements 
about the intended meanings of the symbols used in the program. A 
choice of meaningful symbols is therefore essential in practice. 
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2.2.2 Operational Semantics 

To be activated, a Horn clause program must be presented with a 
goal statement. A goal statement is a clause of the form 

G, & Go & • • • & G i Z n 

where G^, G2, •••» are atoms called goals. In the declarative 
reading, a goal statement is taken as the denial 

"for all v^, V£, •••» v m (the variables appearing in the terms 
within the atoms), it is not the case that G, & G0 & ... & G„ ' 1 z n 
is logically implied by the program". 

It is possible to show that if the set of clauses given by the union 
of the program and the goal statement is inconsistent, the conjunction 
(G^ & G2 &... & G n) is logically implied by the program, for some 
instance of its variables. 

Resolution 

The operational semantics of Horn clauses are essentially given in 
terms of resolution [39]. Although resolution is a quite general 
inference mechanism for clausal form, this account of it is given in 
terms of top-down (goal-directed) computation for Horn clauses, the 
form in which it is almost universally used in practice. 

Let the given goal statement be 

<- A, & A« & ••• & A„ 1 z n 

and select one of the atoms A^, whose predicate symbol is named P. 

Select from the program a clause 

B <C— B, & B0 & ... & B l z m 
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whose head B also has the predicate symbol P. 

A step of resolution Is the process whereby the goal atom, A^, and 
the clause head, B, are matched with most general unifier S and a new 
goal statement is derived by application of S to 

<— A^ & A2 & • • • & & B^ & ... & B m & & • •. & A n 

- i.e. the original goal statement with the selected goal atom 
replaced by the body of the selected clause. (Variables must, if nec-
essary, be renamed so that no variable appears in both the goal state-
ment and selected clause.) 

Two atoms, A and B, may be matched or unified with most general 
unifier S if S is a substitution whose application to A and B results 
in a common instance of A and B which is most general. 

A substitution S is a set of substitution components (or bindings), 
{v1/t1, *•*» ^ ^ k ^ * w ^ e r e e a ch component is a 'variable/term' 
pair and v^ = vj only if i=j. 

The application of the substitution S to an expression A is the 
process of replacing each occurrence of every variable v in A by the 
term t, for each component v/t in S. The expression (A)S produced by 
this means is the instance of A determined by S. 

C is a common Instance of A and B if it is an instance of A and an 
instance of B determined by the same substitution. C is most general 
if every other common instance of A and B is an instance of C. 

Derivation and Refutation 

A resolution step produces a new goal statement (G') from the old 
(G) or the empty clause in the special case when only one goal appears 
in G and the selected clause is an assertion. 
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The empty clause is a special clause which has no head or body and 
has the unique property of being self-contradictory. 

Given a program P and initial goal statement G^, a sequence of goal 
statements G^, G2, G n produced by resolution steps is a 
derivation of G from S, where S is the union of P and G.. 

n ' 1 

If G n is the empty clause, this derivation is a refutation of S. 

It may be shown that if there exists a refutation of a set of 
clauses S then S is inconsistent [39] • In the context of 
goal-directed computation, this is equivalent 'to stating that an 
instance of the conjunction making up the body of the goal statement 
(the goal conjunction) is logically implied by the program. The 
instance is the one determined by applying to the goal conjunction the 
union of all most general unifiers produced in the course of refuta-
tion. 

The exhibition of such a refutation is a proof of the goal conjunc-
tion which forms the body of G. 

The Procedural Interpretation 

Kowalski's procedural interpretation of Horn clause programs [25] 
is a convenient way of expressing the mechanics of resolution infer-
ence in conventional computing terms. 

In the procedural interpretation, the goal statement <- G^ & G2 & 
... & Gn is interpreted as a request to find an instance of the vari-
ables that conjointly (simultaneously) solve the goals G^, G2, 

v 

Procedure Calls and Definitions 

The goal statement <- G^ & G2 & ••• & Gn is interpreted as a set of 
n procedure calls, the arguments of each call being the terms within 
the respective atom. The calls must be solved conjointly in order to 
constitute a solution of the goal statement. No significance is 
attached to the order in which goals are selected for solution [20]. 
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A clause whose head predicate symbol Is P Is called a procedure 
definition for P. 

The set of procedure definitions for P is called the procedure set 
for P. The set of procedure sets thus partitions the program. 

In the procedural interpretation, the definitions in the procedure 
set for P are interpreted as alternative ways to solve calls whose 
associated symbol is P. The terms of the consequent atom are inter-
preted as procedure head arguments and serve to identify the procedure 
calls which the definition can be used to solve. 

Activation and Invocation 

In the procedural interpretation, calls are activated and procedure 
definitions are invoked in response. 

Activation consists of selecting as procedure call, a goal from the 
set that makes up the goal statement. The rule governing which call 
is chosen is known as the selection strategy. 

Invocation entails the selection of a procedure definition from the 
procedure set appropriate to the selected goal and the use of that 
definition with a view to advancing the computation. The rule govern-
ing which definition is chosen is known as the search strategy. 

Computation Steps 

In the procedural interpretation, a resolution step is considered a 
step of computation. Computation terminates when the empty clause is 
derived. 

Transmission of Data 

The act of matching a procedure call with the head of a procedure 
definition is viewed In the procedural interpretation as the trans-
mission of data between the call and definition. The data transmitted 
is to be found In the associated most general unifier. 
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Let S be a most general unifier produced in a computation step. 
The components of S may be classified according to the criterion of 
whether the component's variable originates from the goal statement or 
whether it comes from the selected procedure definition. The set S 
may thus be partitioned: S = S-in U S-out, where S-in is the set of 
components for procedure definition variables and S-out is the corre-
sponding set for goal variables. 

Application of S-in to the atoms of the goal statement has no 
effect; likewise, application of S-out to the atoms originating from 
the body of the definition also has no effect. Therefore, that part 
of the computational step which stipulates the application of S to 

(A. & A0 & . • • & A. , & B , & . . . & B & A.,, & ... & A 1 1 2 I—1 1 m 1+1 n' 

may be viewed as an application of S-in to (B^ & B2 & ••• & B m) and an 
application of S-out to (A^ & & • • & ^1+1 & • • • & An). 

If now this computational step forms part of a successful refuta-
tion, the procedural interpretation views the application of S-in to 
(B^ & B2 & ••• & B m) as transmission of input data to the invoked pro-
cedure definition and the application of S-out to (A^ & A2 & • • & 
A ^ ^ & ... & A n) as the transmission of output data from the invoked 
procedure definition. 

2.3 PROLOG 

The computer language Prolog, first implemented in 1972 by 
Colmerauer and his colleagues at Aix-Marseille [10], Is essentially 
the language of Horn clause logic and its implementation is closely 
based on Kowalski's procedural interpretation. 

The two uncommitted aspects of the procedural interpretation, name-
ly the selection strategy and the search strategy, are usually imple-
mented In the following particularly simple ways. 
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The selection strategy is left-right, last-in-first-out i.e. given 
the goal statement <- A, & A0 &... & A , the call A. is selected and 

L Z n 1 
if the clause B <- B^ & B2 & ••• & B m Is invoked in response to it, 
the new goal statement (assuming successful unification) will be 

<- B ' & B 0' &... & B ' & A ' & ... & A ' 1 2 m 2 n 

(primes indicating modifications resulting from the application of the 
most general unifier), from which the next call selected will be B^' 
etc.. 

For the purposes of the search strategy, procedure sets are 
regarded as procedure lists. The list order is that given by the tex-
tual ordering of the clauses making up the procedure set. 

Initially, the clause invoked in response to some given call is the 
first in the list specified for the call's predicate symbol. In the 
event of a matching failure or possibly a subsequent return to this 
point because of later failures, the second clause, if one exists, 
will be tried etc.. 

In the event of there being no further procedures to invoke in 
response to a call, the current derivation does not lead to a refuta-
tion and must be undone (in some sense). This aspect of computation 
is normally implemented by backtracking, to be described shortly. 

2.3.1 Search Tree 

The combined behaviour engendered by the normally implemented 
selection and search strategies is termed left-right, depth-first 
(LRDF) search. The name derives from consideration of the search tree 
for the given goal statement and program. 

The search tree for a given goal statement and program is deter-
mined by the assumed selection strategy and describes all possible 
ways of solving the goal statement under that strategy. 

CHAPTER 2: Horn clause Programming 26 



Nodes of the search tree represent goal statements (the root 
represents the Initial goal statement). A path from the initial node 
to a tip node labelled by the empty clause represents a successful 
computation - i.e. a refutation. 

A simple example of a search tree relates to the Fallible Greek 
problem (Figure 1). 

Fallible(x) <- Human(x)" 

Human(Turing) 

Human(Socrates) 

Greek(Socrates) 

<- Fallible(y) & Greek(y) 

o <- Fallible(y) & Greek(y) 

o <- Human(y) & Greek(y) 
/ \ 

/ \ 
/ \ 

/ \ 
/ \ 

/ \ 
<-Greek(Turing) o \ 

0 <-Greek(Socrates) 
1 
I 
I 
o <-

Figure 1. 

The underlined atom is that chosen according to the adopted selection 
strategy. The search strategy normally used in Prolog 
implementations, as described above, will search the leftmost branch 
of such a tree as deeply as possible before searching the next left-
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most branch. Thus Human(Turing) is tried before Human(Socrates) when 
solving <-Human(y). Hence the name 'left-right depth-first search' 
for the combined selection and search strategies. 

If a derivation does not lead to a refutation, a conventional Pro-
log interpreter backtracks to the most recent choice point - i.e. it 
reinstates the computation to the state it was in at the most recent 
node which still has an untried child node and then selects as the 
next clause the clause corresponding to that child node. 

2.3.2 Control 

It should be apparent that the behaviour of a logic program on exe-
cution is determined by two aspects viz. the contents of the program 
and the way that procedure calls and definitions are chosen. Kowalski 
has documented this feature of (logic) programming in his paper 'Algo-
rithm = Logic + Control' [27]. 

It should be stated that few implementations of Prolog offer any-
thing but the basic control of LRDF search and of those that do, all 
control is manual - i.e. under the programmer's jurisdiction. Perhaps 
the most ambitious implementation of control features is to be found 
in the research version of Prolog, IC-PROLOG [6]. 

Anything here other than a detailed exposition would not do justice 
to the subject matter and because control features do not play a large 
part in the body of the thesis, we do not feel justified in giving 
such an exposition here. Instead we refer the Interested reader to 
the above paper. 

2.3.3 Negation as Failure 

There Is no facility in the language of Horn clauses of having a 
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goal statement that contains a negated atom. Such a facility Is a 
necessary one in practice and Prolog provides it, albeit at the cost 
of a weaker interpretation of negation - negation as failure to prove. 

In Prolog, the literal not-P in a denial is interpreted as a chal-
lenge to show P is not provable - i.e to show that all ways of solving 
the atomic denial <-P fail. (A literal is an atom or the negation of 
an atom.) 

Clark has shown [4] that the failure to prove P, an observation 
made at the meta-level, is a semantically acceptable way of proving -<P 
at the object level, provided that "if" definitions are re-expressed 
in "if and only if" form. 

As an example of the need for negation in practical logic program-
ming, consider the procedure set for checking that some item is not a 
member of a given list:-

Not-in(u, NIL) 
Not-in(u, v.w) <- Diff(u, v) & Not-in(u, w) 

The Diff predicate must be defined so as to hold for every distinct 
pair of variable-free terms in the universe of discourse. Although 
such a definition is possible in theory, it is not generally feasible 
in practice and a more convenient way of achieving the same end is by 
means of the procedure set 

Not-in(u, NIL) 

Not-in(u, v.w) <- not-(u=v) & Not-in(u, w) 

and the clause 

z=z 

which serves to define '='. When presented with the denial 
<-Not-in(A, A.NIL), only the second procedure definition can be used 
and this results in the call not-(A=A) being made. The proof of A-A 
is then attempted (I.e. the main problem is held pending in favour of 
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the denial <-(A=A) ) and succeeds with the most general unifier {z/A}. 
The proof of <-Not-in(A, A.NIL) therefore fails. 

/ 

The call Not-in(A, B.NIL) is essentially the problem of demonstrat-
ing the failure to prove <-(A=B). The proof of <-(A=B) fails and so 
the original call succeeds. 

Negation interpreted as failure to prove is weaker than the conven-
tional interpretation of negation. For example, the standard form 
sentence 

P v --(-.P) 

asserting the truth of the atom P gives rise, on 'translation' into 
Prolog, to the implication 

P <- not-P. 

Unfortunately, any attempt by a Prolog interpreter to solve <-P will 
result in a loop unless the interpreter has a suitable loop detection 
facility (loop detection facilities are not normally incorporated in 
practice). 

A second characteristic of negation interpreted as failure is that 
none of the variables in the terms of the negated call are allowed to 
be instantiated in the course of the nested proof attempt if those, 
variables are shared with other atoms in the goal statement. 

In practice, this and the former weakness do not detract from the 
intuitive notion of negation. Negation as failure is consequently 
much used. 

2.3.4 Built-in Predicates 

To be of practical use, the language of Horn clauses must further 
be augmented by so-called built-in predicates. 
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For instance, the sum relationship, which holds between three inte-
gers a, b, c whenever c=a+b, cannot conveniently be expressed in the 
user's program. Moreover, it Is unreasonable to require users to be 
bothered with such standard details and so all practical Prolog inter-
preters allow the programmer to use certain calls while the interpret-
er internally implements the corresponding procedure set. 

Interpreters vary as to the number and extent of. the built-in pred-
icates they supply. The sum relation is an example of an arithmetic 
relation. Arithmetic built-in predicates are, as a rule, useful and 
safe additions to the language. 

A second major class of built-in predicates, the meta-level predi-
cates, are more contentious. Meta-level predicates allow the program 
to reason about itself. 

For instance, the facility of adding and deleting clauses from a 
program in the course of a proof is often available. The semantics of 
such operations are in themselves not well-defined - for it is obvious 
that the order in which procedure calls are made might now be signif-
icant. Thus, the solution of a goal statement that contains a call to 
delete a clause in P's procedure set and also a call with predicate 
symbol P may well give different results depending on the order in 
which the calls are taken. 

A second contentious class of built-in predicates are those used to 
control the execution of logic programs. 

Consider the '/' predicate of most Prolog systems - e.g. [38]. Its 
declarative semantics are 'true'; its operational semantics are under-
stood in the context of LRDF search, which it seeks to modify by 
excluding certain backtracking options (the details are of no conse-
quence here). 

For example the prototype IC-Prolog procedure set 

P <- C & Q 
P <- not-C & R 
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which, loosely speaking, states that the proof of P follows from the 
proof of Q or R, depending on whether the proof of C succeeds or fails 
(conventionally, P is computed by: "if C then Q else R"), Is 
expressed in these systems as 

P <- C & / & Q 
P <- R. 

The second clause is understood as a catch-all, the '/' predicate in 
the first clause overriding the use of the second clause if the '/' 
call is ever executed i.e. if the call C succeeds. 

By removing backtracking options, '/' saves the allocation of stor-
age and this is sometimes the reason for its inclusion. 

Unlike the control features of IC-PROLOG, control implemented in 
this way is dangerous and can lead to complications normally associ-
ated with conventional programming languages. An example of interest 
in this thesis is that the use of such a feature would severely com-
plicate the parallel invocation of alternative procedure definitions. 

As a general comment, it is felt that more restraint ought to be 
exerted in the provision of such 'dirty' features - for often they are 
no more than simple expedients which serve to compensate for the defi-
ciencies of current machines and have the side-effect of blurring the 
program's meaning. Considerable research effort, e.g. [1], is aimed 
at the 'harmless' incorporation of pragmatically sufficient meta-level 
facilities. 
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CHAPTER 3: A BASIC HORN CLAUSE INTERPRETER 

3.1 INTRODUCTION 

This chapter is concerned with the design of a hypothetical basic 
Horn clause interpreter and the manner by which it might be imple-
mented on conventional von Neumann architecture. 

One reason for including such a description is to provide a frame 
of reference in which comparisons between various approaches to pro-
gram execution can be made. The second reason is that certain aspects 
of the proposed designs bear close resemblances to their conventional 
counterpart and so the description of a sequential Interpreter will 
assist in their explanation. 

The Interpreter's specification will be given principally in Prolog 
although for the sake of brevity, we will content ourselves with a 
narrative description of certain lower-level components. 

The reader interested in the details of a conventional implementa-
tion of Prolog is referred to [38], [43]. 

3.2 OUTLINE REQUIREMENTS OF THE INTERPRETER 

The interpreter will be presented with the user's Horn clause pro-
gram and the denial which constitutes the goal statement. It will 
perform a left-right depth-first search in its attempt to find a refu-
tation. 

A structure-sharing [2] implementation will be described because it 
is typical of conventional Interpreters and the proposed implementa-
tions of our schemes for parallel execution intend to make use of 
structure-sharing in one form or another. 
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3.3 ABSTRACT INTERPRETER 

Before describing the mechanics of the interpreter, it is convenient 
here to re-state certain aspects of LRDF search which need to be borne 
in mind in what follows. 

3.3.1 Search Strategy 

Under LRDF search, the interpreter will traverse the search tree 
from left to right i.e. at every choice point in the search tree, the 
leftmost branch will initially be selected and in the event of the 
chosen branch not leading to a refutation, the interpreter will back-

o 1 

/ 
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o 2 
/ / 

o 7 
\ 
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o 13 

\ 

o 3 o 6 o 8 o 9 o 12 

o 4 o 5 . o 10 o 11 

Figure 2 
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track to its nearest choice point and then try the next leftmost 
branch, etc.. The strategy is depicted in Figure 2, where node labels 
reflect the order in which new branches of the search tree are 
explored. In this way the entire search tree is explored if necessary 
(assuming no infinite branch is followed). 

It can be seen that backtracking implies the need to nullify (in 
some sense) the effects of all computations between the most recent 
node and the nearest remaining choice point whenever it is recognised 
that the current branch does not lead to a refutation. Data struc-
tures must therefore be designed to allow for this eventuality. 

Because just one branch of the search tree is searched at a time, 
it is sufficient to represent the tree as the currently active branch 
and incorporate in the representation sufficient information to allow 
for the activation of alternative branches at some later time, if nec-
essary. The currently active branch is normally represented as a 
stack of activation records, a record corresponding to each node in 
the branch. This aspect of the implementation will be described more 
fully later. 

3.3.2 Selection Strategy 

The selection strategy associated with LRDF search dictates that 
goals are selected in left-right, last-in-first-out order. 

The list of goals is initially given. Whenever an implication is 
used in the course of refutation, the goals arising from the 
antecedent of the Implication are added in a way which ensures that 
they are selected before the other outstanding goals. Within them-
selves, the introduced goals are selected according to the order in 
which the corresponding atoms appear in the antecedent of the impli-
cation used. 
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3.3.3 Variable Naming 

It is essential that variable names are chosen in such a way that 
no matter how often a clause it used In the course of a proof, no con-
fusion can arise between different instances of Its variables. 

Each activation record is given a unique name. By incorporating 
this name in the names of those variables introduced by the clause 
referred to in the activation record, all variable names are guaran-
teed unique. Moreover, in this way, variables may conveniently be 
associated with activation records. 

Variable names take the form 

<level, static variable> 

where 'level' is the name of the relevant activation record and 'stat-
ic variable' names the variable as it appears in the clause used. 

Terms are usually represented in an analogous manner. Thus a term 
introduced through the invocation of a clause Is represented by the 
ordered pair 

<level, static term> 

where 'level' is again the name of the activation record corresponding 
to the invocation of the clause which contains the term and 'static 
term' is a data structure which describes the term as supplied in that 
clause. 

Interpretation of the term is carried out implicitly by reading 
each static variable v occurring in 'static term' as the variable 

<level, v>. 
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3.3.4 Structure-sharing 

It should be clear that the normally adopted variable naming scheme 
not only guarantees unique names but also makes possible the sharing 
of static term structures. The scheme may be extended to other 
expressions, not just variables and terms. 

For instance, the antecedent atoms of a clause may be referred to 
by the ordered pair 

<level, static antecedents 

This device is used in the representation of goal lists (see below) 
which, of course, originate from the antecedents of clauses. The var-
iables in each goal are named by the usual pair, the level component 
being that of the antecedent. 

In general, such structure-sharing obviates the need to copy data 
structures and so significant economies may be forthcoming - at least 
in a conventional implementation - from what is in any case an elegant 
feature. 

The conventional representation of a goal list also involves a fur-
ther, more specialised, form of structure-sharing. One must bear in 
mind that at each non-terminal node, all but one goal (the selected 
goal) appears in the goal list of the immediately descended node. 
Copying outstanding goals is clearly wasteful and the usual approach 
is to share, at each node, references to outstanding goals. We will 
describe precisely how such sharing may come about once we have fixed 
the representation of node structures. 

3.3.5 Bindings 

When a variable is bound to a term, that term is not constructed 
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but is held implicitly. In other words, a binding may be viewed as 
the data structure 

<variable, <level, static term». 

A later unification may need to evaluate the term part of this binding 
and to be efficient, it is important that the evaluation is quickly 
able to determine whether any variable in the term is bound and if so, 
to what term. Such a variable will have the same level as that of the 
term. Rapid access to a variable's binding is achieved by the follow-
ing means:-

When an activation record is established, binding space is reserved 
for each variable introduced by the clause used in the activation. 
These variables will be partly named by the level of their introducto-
ry activation record and partly by the static variable, normally 
represented internally as a natural number. 

The determination of a binding value for a variable then reduces to 
using the two components of the variable's name for two direct 
accesses. The first access locates the activation record and the sec-
ond interprets the static variable name as a displacement within the 
activation record. 

In the event of backtracking, one or more activation records will 
need to be deleted. Such deletions will automatically remove the 
bindings made to variables introduced by the activation records con-
cerned. These bindings clearly cannot have been made by earlier 
unifications nor by later ones since they would have been undone by 
earlier backtracking. Therefore the bindings deleted with an acti-
vation record are all part of the unification being nullified - in 
fact, they constitute the input portion of the unifier. The output 
portion will be distributed throughout earlier activation records and 
the variable in each output component has to be reset to its previous-
ly unbound state. 

The means by which this is normally achieved Is to associate with 
each unification a reset list naming all earlier variables that were 
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used to transmit output from the unification. Then In the event of 
having to undo a unification (or indeed a partial unification result-
ing from a failure to unify), all that is required is to use the reset 
list to access and unbind the named variables. 

It will be appreciated that whenever a variable-variable binding is 
to be made, if one of the variables is new (i.e. just introduced into 
the computation), it is best to make the other variable the term com-
ponent of the binding and thereby place the binding within the most 
recent activation record. One reason for doing this is that no entry 
in the reset list is then required. Another is that doing so tends to 
produce shorter variable-variable chains of bindings. (Further rea-
sons are concerned with certain optimisations which are of no interest 
here.) 

3 . 4 IMPLEMENTATION 

The specification we give here is at a lower level than others 
(e.g. in [28]) because our concern is to give a clear indication of 
how a basic Horn Clause interpreter might be implemented on a tradi-
tional von Neumann machine. 

We choose an implementation based on the state of such a machine, 
which we represent as a list (stack) of activation records. 

The top-level of the program defines the 'Demonstrate' relation 
between the state of the machine and the supplied Horn clause program. 

The meta-level goal statement takes the form 

<-Demonstrate(program, initial-state) 

where 'initial-state' is a singleton list whose activation record 
describes the supplied goal statement in one of its arguments. Notice 
that this relation will not return a solution. In order to do so, 
Demonstrate would need to be a three place predicate, the third argu-
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ment representing the final state (see later). We describe the sim-
pler formulation in the interests of clarity. 

Each activation record is represented by a term of the form 

ar(level, goal, clause, bindings, reset) 

where 

'level' is the (unique) name of the activation record 

'goal' names the goal which the activation sets out to solve. In 
a conventional implementation this argument is a pair 

<level', goal number> 

where the first argument names the activation record that intro-
duced the goal. The third argument of this- earlier activation 
record names the clause which was used at level'. The antecedent 
of that clause-gave rise to subgoals, one of which is the goal in 
the more recent activation record. Exactly which of those 
subgoals is specified in the later activation record is indicated 
by the 'goal number' component of Its goal argument. We will 
shortly make precise how this structure implements the goal list 
at any node. 

'clause' names the clause being tried in order to solve the goal. 
In practice, it would.be a reference pointer to a clause in the 
program. 

'bindings' is a data structure that indicates, for each variable 
introduced into the computation by the present activation, whether 
the variable is bound and if so, to what. In practice it would be 
an array, one entry for each variable introduced by the clause. 

'reset' is the reset list, containing an entry for each earlier 
variable bound in the course of unification performed in the cur-
rent activation. 
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3.4.1 Goal List 

Before embarking on the detailed description of the backtracking 
interpreter, we wish to make clear exactly how a goal list is repres-
ented. We will illustrate the description with the simple stack of 
activation records outlined in Figure 3. (For the sake of clarity, 
the clause argument of an activation record is not represented here as 
a reference pointer to the clause; instead, just the antecedent of the 
clause appears, the atoms within it being represented by numbers. 
Bindings and reset lists are not illustrated. The stack is shown 
grown upwards with the most recent record on top.) 

level goal (rest) antecedent 

I i T~5/i~"T~TTTTTT"T I I 

V 
i 5 r i 7 r T : : : : : n i T 2 T 3 i 

4 1 2/2 | 
1 

3 1 2/1 | 

V V 
2 1 1/1 1 .... .. 1 1 1 1 2 

1 
V V 

1 I NONE | .... .. 1 .1 1 2 

Figure 3. 

The diagram contains six activation records whose antecedents intro-
duce respectively 2, 2, 0, 0, 3, 1 subgoals. 
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The goal argument is shown as a pointer to the selected subgoal in 
some earlier activation record and we now make clear how the 
left-right, last-in-first-out selection strategy is implemented. 

Essentially, if the last used clause was an implication, the goal 
selected for the next level arises from the first atom in the 
antecedent. Thus, for example, the clause used at level 5 was an 
implication and so the goal selected for level 6 was 5/1. 

If the last clause was an assertion, the next goal (if any) is 
found by examining In turn the list of activation records determined 
by the chain of previously selected goals, until an activation record 
with an outstanding subgoal is discovered. The first such subgoal 
then becomes the goal for the next activation record. For example, 
the clause used at level 4 is an assertion and activation record 2 
introduced that level's goal. It can be seen that no further goals 
introduced at level 2 remain and so the level 2 goal, viz. 1/1, leads 
to the activation record at level 1 being examined and this shows that 
1/2 is the next goal to be selected - which therefore becomes the lev-
el 5 goal. 

3.4.2 Description of Processing 

See the appendix. 
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CHAPTER 4: PARALLELISM 

4.1 INTRODUCTION 

The Resolution Theorem [39] is the general result upon which the 
execution of Horn clause logic programs is based. Computation, as 
stated in the Resolution Theorem, is impractical for all but the most 
simple examples. The work of Loveland on Model Elimination [30], 
re-discovered by Kowalski and Kuehner [29] and applied to programming 
by Kowalski [25] and Colmerauer et al. [10], have made resolution a 
viable computational mechanism for Horn clauses and certain 
extensions. 

A computational step In the procedural interpretation selects and 
activates a single procedure call. A conventional implementation of 
this interpretation imposes the added restriction of only invoking a 
single definition in response. Jointly, the procedural interpretation 
and its conventional implementation serve to suppress all the 
parallelism inherent in Horn clause programs. This is hardly surpris-
ing in view of the relationship that (such an implementation of) the 
interpretation bears to the classical notion of computation which, of 
course, makes no allowance for parallel computation either. What is 
needed is a compromise between the resolution theorem and conventional 
implementations that is computationally viable and yet allows for 
parallelism. 

We now outline the various forms of parallelism which might be 
exploited in the execution of Horn clause programs. 

4.2 POTENTIAL FOR PARALLELISM 

The procedural Interpretation places no constraint on independent 
derivations being pursued in parallel. Consequently, one way of 
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applying parallel computation to Horn clause programs is to allow dif-
ferent derivations to take place concurrently. 

Because of the completeness result for top-down inference systems 
proved by Hill [20] and others, there is no loss in generality in 
specifying the same selection function for all such derivations. For 
a given Horn clause program, goal statement and selection strategy, 
there exists a well-defined search tree. Parallel exploration of this 
tree's branches is the pursuit of parallel derivations and since the 
branches arise from alternative ways to solve the selected goal, this 
form of parallelism is termed Or-parallelism and the search strategy 
parallel search. 

The procedural interpretation does not commit itself to sequential 
invocation of procedure definitions and so we may say that the proce-
dural interpretation will support or-parallelism if all procedure 
definitions whose head potentially matches the selected subgoal are 
'simultaneously' invoked in response to it. Separate derivations will 
thereby be established. 

The second principal way of exploiting parallelism in Horn clause 
programs arises from consideration of resolution itself. Suppose the 
goal statement 

<- Px & P 2 & ... & P n, 

is given and that call P^ is selected. After one resolution step, an 
instance of all the other calls Pj will remain outstanding, the 
instance being determined by the output component of the substitution 
which results from the unification of P^ with the head of the chosen 
procedure. 

As a special case, it might happen that the particular instance 
computed for the call Pj (say) is the identical instance. Such an 
eventuality might arise if P^ and Pj shared no variables or resolution 
of P^ binds none of the variables P^ shares with P^. In these events, 
Pj could have been selected simultaneously and concurrently subjected 
to a step of resolution, suitable steps being taken to compose both 
substitutions. 
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A general scheme for accommodating such special cases Is to allow 
solutions of the calls P^, ?2* •••» P n

 t 0 proceed in parallel, 
recognising that each of the calls P^, P£, • ••> P n being executed may 
represent an instance of the respective goal (the instance determined 
by the output components of substitutions produced in the execution of 
other calls). Suitable communication has then to be provided in order 
that the instances may be deduced. We will view this informal 
description as the relaxation of the procedural interpretation needed 
in order to support the multiple selection of procedure calls. 

Because the calls in a goal statement are connected by AND (&) 
operators, this form of parallelism is termed And-parallelism. 

A third area in which parallel computation might be allowed is in 
the unification algorithm itself. Obviously, this is parallelism at a 
lower level and is applicable to any scheme, since all schemes use 
unification. We will not therefore concern ourselves with it in this 
chapter, where the principal aim is to describe the application poten-
tial of higher level parallelism. However, one of our schemes, the 
And-or proof procedure, is designed in such a way that a parallel 
unification algorithm fits in very naturally and we will take the 
opportunity of describing concurrent unification there. The other 
scheme, the Or-parallel proof procedure, also has a certain degree of 
lower level parallelism. 

Having outlined the ways in which parallel execution might be 
adopted, a motivating description of how such parallelism might be 
used to good effect is overdue and we now turn to such a description 
for the two principal areas, Or- and And- parallelism. 

4.3 OR-PARALLELISM 

4.3.1 Database Applications 

It is a default of many Horn clause interpreters that they stop 
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when just a single solution of the user's goal is found. It might be 
argued that for many applications expressed in a relational language, 
a more natural requirement Is to compute the relation that solves the 
user's goal - not a single member of it - and this is the default we 
adopt here. The view is in concordance with database applications, 
arguably the most natural for the adoption of or-parallelism, where 
the user is normally interested in all solutions of his query, not 
just the first one discovered. Such applications can be expected to 
benefit from the adoption of or-parallelism. 

4.3.2 Functional Problems 

If the user's program and goal admit just a single solution, it 
might well be asked what benefits accrue from the adoption of 
Or-parallelism. Certainly, such a combination is common in practice 
and so this question has some importance. 

The nub of the answer is that even if there is only one solution of 
the top-level goal, the same need not necessarily be true of any indi-
vidual subgoal. It may be that some branches of the search tree need 
to be explored to a non-trivial depth before a failure is found and if 
the search tree is investigated sequentially, as in a backtracking 
interpreter, this process may take a significant length of time, time 
which does not contribute to the discovery of the solution. If the 
searches could be performed concurrently, then (ideally) no time would 
be wasted in following dead-end branches, only computing effort. 
Moreover, if the used computing power would not otherwise have been 
employed then no real loss is entailed by this 'waste' of effort. 

The naive sort, which sorts an input list by generating permuta-
tions of it and testing them for orderedness is, under LRDF control, 
an example to hand. 
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Sort(x, y) <- Perm(x, y) & Ord(y) 

Perm(NIL, NIL) 
Perm(u, v.w) <- Delete(v, u, w') & Perm(w', w) 

Delete(u, u.x, x) 
Delete(u, v.x, v.y) <- Delete(u, x, y) 

Ord(NIL) 
Ord(u.NIL) 
Ord(u.v.w) <- u £ v & Ord(v.w) 

Although useless as a practical program, it does illustrate that con-
siderable effort might be expended in following fruitless paths, in 
this case, by generating complete permutations. 

Parallel search is fairer than depth-first search in that not all 
computing resources are committed to the exploration of a single 
branch of the search tree. Depth-first search proves disastrous when-
ever the chosen branch is infinite (assuming the condition is not 
detected). 

Breadth-first search, in which computing resources are switched so 
that all nodes at level N in the search tree are investigated before 
any of those at level N+l, shares the property of fairness with paral-
lel search. However, it is not normally implemented because firstly 
it 'dilutes' the power available from a single processor by applying 
it to the exploration of all branches (it is therefore, in general, 
slower to find the first solution) and secondly the act of switching 
from branch to branch is, in general, a significant overhead. An 
implementation of Loglisp (Logic in Lisp), essentially a breadth-first 
implementation of Horn clause logic, is described in [40]. As one 
might expect, the implementations of parallel and breadth-first search 
share much in common. With the availability of more computing power, 
or-parallelism might reasonably be expected to overcome the implemen-
tation difficulties of breadth-first search. 

An alternative approach to parallel investigation of the search 
tree is the TT-Representation proposed by Fishman and MInker [17]. 
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Briefly, they achieve parallel search through their choice of 
clause representation. In this representation, a set of syntactically 
similar clauses is represented by a single TT-clause and the notions 
of unification and resolution are extended accordingly. The overall 
effect Is that syntactically similar derivations are pursued in paral-
lel although the corresponding search tree need only be Investigated 
sequentially. Their proposal is primarily aimed at practical database 
applications where large ground relations, which might otherwise prove 
difficult to search efficiently, are quite common. 

4.3.3 Negative Literals 

Although this thesis is primarily concerned with Horn clause pro-
gramming, the negation as failure inference rule Is necessary in prac-
tice and its implementation in an or-parallel environment calls for 
some comment here. 

The rule is 'infer -»P if all ways to prove P fail', where P is an 
atom and no attempt is made in the nested proof attempt to instantiate 
any variable that P shares with other goals. 

The rule implies that an exhaustive search of the nested proof's 
search tree should be made and, as in the top-level proof, a parallel 
search seems natural (although the search may be abandoned if a sol-
ution which does not bind any shared variable is found). 

4.3.4 Implicative Literals 

Our interest here is In procedure calls of the form 

all(Q -> R) 
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where Q and R represent atoms, some of whose variables may be uni-
versally quantified in the procedure call ('all' representing those 
quantifiers). 

We will term such a call an 'implicative literal' (and ignore the 
more general case where Q and R represent conjunctions of literals -
which in any case may be transformed into the above form). For exam-
ple, 

Subset(x, y) <- All z ( Member(z, x) -> Member(z, y) ) 

"x is a subset of y if for all z, z is a member of x 
implies that z is a member of y". 

This construct occurs quite naturally in specifications and one would 
like to execute it directly rather than transforming it into clausal 
form through Skolemization [28]. 

We briefly show how this construct may be transformed Into Horn 
clauses augmented with negation and describe the construct's semantics 
and the operational behaviour of its execution if negation is inter-
preted as failure to prove. 

Introduce the definition 

P <-> -«all(Q -> R) 

where P's predicate symbol is not used elsewhere in the program and 
the terms of P are all variables, namely those variables in the formu-
la which are not quantified by 'all'. 

The definition allows the implicative literal to be replaced in the 
clause where it occurs by the negative literal ->P. Since P's predi-
cate symbol is not used elsewhere in the program, the only way to 
solve P is by means of 

P <- -iall(Q -> R) 

which is readily transformed Into the clause 
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P <- Q & -.R, 

all quantification being universal outside the clause. 

Suppose now the literal -«P is selected. For the proof of -iP to 
succeed, all ways to solve P must be tried and shown to fail. The 
only way to solve P is via the above clause forP. So, the task of 
showing all attempts to prove P fail Is equivalent to that of showing 
that all attempts to prove Q & -«R fail. 

The only way in which a proof of Q & -«R could possibly succeed is 
if a solution of Q gives rise to an instance of R whose proof fails. 

Equivalently, to show that all proofs of Q & -iR fail, it is neces-
sary to show that for each solution of Q, the instance of R determined 
by that solution itself has a solution. 

Thus to show <- Subset(1.3.NIL, 1.2.3.4.NIL), the rule stipulates 
that all solutions of <- Member(z, 1.3.NIL) must be found and then 
used to instantiate the goal <- Member(z, 1.2.3.4.NIL) and that each 
such goal admits a solution. 

The 'no instantiation' rule of negation as failure requires that 
none of the shared variables in P are allowed to be instantiated in 
the nested proof attempt. Since the arguments of the P-goal and 
P-head are variants of one another (identical save for an identity 
mapping of variable names), their unification need not instantiate any 
goal variable. Therefore, the restriction that none of the shared 
variables in the P-goal be instantiated may equivalently be re-stated 
as the restriction that none of the variables in the goal <- Q & ->R be 
instantiated unless they are local to Q & ->R (i.e. those variables 
originally quantified by 'all'). 

We may summarise the above in a way which removes all reference to 
the intermediate definition of P. 

The inference rule for solving goals of the form <-all(Q -> R) is 
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1. Find all substitutions, S, arising from the solution of the goal 
<"Q 

2. For each such S, prove <-(R)S 

3. The proofs of <-Q and <-(R)S are only allowed to instantiate vari-
ables quantified by 'all'. 

Or-parallelism is appropriate for the direct implementation of the 
implicative inference rule since the rule requires all solutions of 
<-Q to be found. 

4.4 AND-PARALLELISM 

4.4.1 Independent Subgoals 

Possibly the most obvious way to envisage the need for 
and-parallelism is in computations where some subgoals are independent 
in the sense that they share no variables. Certainly, it is most 
inappropriate to use a sequential proof procedure in such cases as 
sequential execution gives rise to poor behaviour on two counts. We 
illustrate these deficiencies with the help of the example <-P(x) & 
Q(y) executing under LRDF control, where all solutions are to be 
found. 

Firstly, and most obviously, solution of the goal <-Q(y) could pro-
ceed independently and concurrently with that of <-P(x), thereby 
speeding up overall computation, assuming appropriate resources are 
available. 

Secondly, and in general more importantly, a backtracking inter-
preter will find a single solution of <-P(x) and then apply the sub-
stitution which represents that solution to <-Q(y), and solve the 
instance of <-Q(y) thus derived. When the goals share no variables, 
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the derived instance of <-Q(y) is, of course, the identical instance. 
The backtracking interpreter then finds the second solution of <-P(x) 
and follows this with an exactly repeated computation of <-Q(y)» If 
the number of solutions of <-P(x) and <-Q(y) are m and n respectively, 
then the backtracking interpreter will expend effort of the order m*n 
whereas a parallel. interpreter solving those subgoals independently 
will expend effort of the order m+n. 

We give a simple example of how disastrous the backtracking strate-
gy can be. 

P(NIL, NIL) 
P(u.x, v.y) <- Q(u, v) & P(x, y) 

Q(u, v) <- v = 2*u 
Q(u, v) <-.v = 3*u 

The example accepts an input list of integers of length n (the first 
argument of P) and computes a set of output lists, all of length n, 
wherein each item is either two or three times the magnitude of the 
corresponding item of the input list. 

It is readily verified that the parallel computation does 0(n) 
units of work whereas the backtracking, computation does 0(2n) units of 
work. 

4.4.2 Pipelining 

Another way In which parallelism might be used is in 'pipelining 
mode'. Typical of such applications is the production and consumption 
of lists, whose items flow one by one along the pipelines. Pipelined 
parallelism is specifically addressed by Clark and Gregory in [5]. 
Below we give one of their examples in a simplified form. 
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Compact(NIL, NIL) 
Compact(u.x, u.y) <- Remove(u, x, z) & Compact(z, y) 

Remove(u, NIL, NIL) 
Remove(u, u.w, w') <- Remove(u, w, w') 
Remove(u, v.w, v.w') <- -«(u = v) & Remove(u, w, w') 

X = X 

Lists u and v are in the Compact relation if list v is the same as 
list u except that duplicates of earlier list u items are not present 
in list v. For example Compact(3.2.3.1.1.NIL, 3.2.1.NIL) holds. 

We intend that the first list is given and the second is to be com-
puted. 

Suppose that the program is presented with a goal of the form 

<- Compact(3.2.3.1 NIL, t). 

The program for Compact causes the first item of the output list to 
be bound to the first item in the input list and calls Remove to cre-
ate an intermediate list identical to the tail of the input list 
except all occurrences of the first item are missing from it. It also 
calls Compact to form the tail of the output list from the intermedi-
ate list. The essential behaviour of the recursive Compact clause is 
depicted in Figure 4 on page 54, from which it should be readily 
appreciated that expansion of the nested Compact box will result in a 
string, or pipeline, of Remove computations. 
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I 
input list 

Remove 

I Compact I 

output list 
I 

Figure 4. 

Suppose that the Remove(3, 2.3.1..., z) call has been selected. 
Only the head of the third Remove clause will unify with this goal and 
once this has been done, the first Item In list z will be known. The 
outstanding call, Compact(z, y) now has some input - it knows the 
first Item (2) of list z and so can compute the second item of list t. 
Moreover, as further items of list z are computed, solution of the 
call Remove(2, 1..., z") can proceed and thereby the third item in 
list t may be computed and used to establish a new filtering Remove 
process etc.. 

The pipeline shown in Figure 5 on page 55 will have been estab-
lished. 
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I (3.2.3.1 NIL) 
I 
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Remove-3 

I 
I 
I (2.1 NIL) 
I 
I 

Remove-2 
I 
I 
I (1 NIL) 
I 
I 

Remove-1 

Figure 5. 

The pipeline can be thought of as connecting the various Remove-n com-
putations in a manner that allows each to still be executing whilst 
its later neighbour is busy filtering its own input, essentially the 
partially known output of its predecessor. 

We briefly mention a second and perhaps more practical example of 
this view of computation. The example is the top-level of Hoare's 
Quicksort [21], given below. 

QS(NIL, NIL) 
QS(item.in, out) <- Partition(item, in, low, high) & 

QS(low, s-low) & 
QS(high, s-high) & 
Interpose(s-low, item, s-high, out) 
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Assuming the first argument in the QS call is ground and the second is 
a variable, the pipeline behaviour of the recursive QS clause is 
summarised in Figure 6 where arcs denote the communication of list 
structures. 

input list 

Partition 
/ \ 

low / \ high 
/ \ 

I QS I | QS I 

\ / 
s-low \ / s-high 

\ / 
Interpose 

output list 

Figure 6. 

If now the nested QS boxes are expanded, the structure results in a 
more complex pipeline (more accurately, network), of the form depicted 
in Figure 7 on page 57.-
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Figure 7. 
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4.4.3 Early Detection of Failure 

Another way in which and-parallelism may be exploited is in the 
early detection of failure. This aspect is exemplified by the 
Same-leaves program which seeks to show that the leaflists of two 
binary trees are the same. Figure 8 illustrates two trees with the 
same leaflist (B.D.A.C.NIL). 

o 
/ \ 
/ V 
/ \ 

/ \ 
o o 

/ \ c 
/ \ 

/ \ 
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o o 
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/ \ 
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/ \ 
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/ \ 
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B / \ 

/ \ 
/ \ 

/ \ 
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/ \ 
/ \ 

/ \ 
o o 
A C 

Figure 8. 

The program for Same-leaves is given below. 

Same-leaves(treel, tree2) <- Leaflist(treel, list) & 
Leaflist(tree2, list) 

Leaflist( l(leaf), leaf.NIL) 
Leaflist( left:right, list) <- Leaflist(left, leftlist) & 

Leaflist(right, rightlist) & 
Append(leftlist, rightlist, list) 

Append(NIL, x, x) 
Append(u.x, y, u.z) <- Append(x, y, z) 
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Here, a tree is either a single leaf tree - represented by l(x) where 
x is the leafname - or a compound tree - represented in infix form by 
the term left:right where 'left' and 'right' name the left and right 
subtrees respectively. The terms representing the example trees in 
Figure 8 on the previous page are 

(1(B) : (1(D) : 1(A))) : 1(C) and 
1(B) : (1(D) : (1(A) : 1(C)))) respectively. 

Suppose now that this program is presented with a goal statement of 
the form 

<-Same-leaves(tree^, tree2) 

where 'tree^' and 'tree2' represent fully instantiated trees. 

If the program is executed using the last-in-first-out selection 
rule then the Leaflist(tree^, list) call and all calls introduced by 
it will be fully executed - and 'list' will be fully instantiated -
before the Leaflist(tree2» list) call is selected. The consequence of 
this is that considerable effort may have been devoted to the entire 
evaluation of tree^'s leaflist even though only a short investigation 
into tree2's leaflist may have been sufficient to determine that the 
two trees have dissimilar leaflists. 

The effect is exaggerated in the extreme case where tree^ and tree2 
have dissimilar single leaves - A and B respectively - on their left 
branches and arbitrarily complex tree structures on their right. If 
evaluation of the trees' leaflists were able to proceed in parallel, 
relatively little computation would be needed to establish that the 
output leaflist, named 'list', would simultaneously need to satisfy 
the two subgoals 

<- Append(A.NIL, r-list^ list) 
and 

<- Append(B.NIL, r-list2, list) 

(where r-list^ and r-list2 are respectively the leaflists of the right 
subtrees of tree, and tree«). If now one of these Append calls is 
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scheduled - say the first - then 'list' will be bound to a term of the 
form A.list' and the other Append goal, 

<- Append(B.NIL, r-list2, A.list'), 

will fail and thereby cause the top-level Same-leaves goal to fail. 

Ideally, the evaluation of the right subtree leaflists can proceed 
independently of these two Append subgoals. In the event of the fail-
ure we described above, their evaluation can be aborted. In the 
absence of such failure (modifying the example so that the two left-
most leaves are the same) their evaluation can be pursued in parallel, 
subject to similar communication through the shared variable list' 
(which will have been bound to both r-list^ and r-list2 by the suc-
cessful solution of the two Append subgoals). 

(Although somewhat out of place here, it is worth pointing out the 
power of unification which this example illustrates. The top-level of 
the program, 

Same-leaves(treel, tree2) 
<- Leaflist(treel, list) & 

Leaflist(tree2, list) 

hands over to unification the task of showing that the two leaflists 
are identical. A lower level version of this program, one which is 
list-structure dependent, might be 

Same-leaves(treel, tree2) 
<- Leaflist(treel, listl) & 

Leaflist(tree2, list2) & 
Same-items(listl, list2) 

Same-items(NIL, NIL) 
Same-items(u.x, v.y) 

<- u = v & 
Same-items(x, y) 

z = z 
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It will be appreciated that such power can be used to good effect by 
raising the level at which the user writes his program.) 

4.5 REGULATION OF PARALLELISM 

The potential for parallel execution of Horn clause programs, as 
described in the preceding section, is only constrained by the nature 
of the problem being solved. 

For example, the use of an or-parallel scheme on a deterministic 
program results In essentially sequential execution. 

On the other hand (and of more interest here), parallelism applied 
to other problems, for example a naive formulation of the Eight Queens 
problem [23], might result in a great deal of parallelism. 

It is generally accepted that too much parallelism may be more 
harmful than too little - for there is then the risk of overloading 
the underlying execution mechanism, possibly precipitating a failure. 
Hence, some means of controlling the allowable degree of parallelism 
in any scheme must be devised. 

The need for control can be seen from the following intuitive argu-
ment (to which no claims of rigour are attached). 

Performing a computation in parallel entails the sharing of 
resources - since the machine's resources need to be allocated to 
'sub-computations'. As with all forms of resource sharing, whether in 
a computing context or more generally, communication is necessary to 
ensure proper sharing - e.g. to ensure that two users do not attempt 
to use the same resource at the same time or that resources no longer 
required are made available to others. 

The penalty for such sharing is a communications overhead. Pro-
vided the benefits of sharing outweigh the communications cost, 
resource sharing Is worthwhile. 

CHAPTER 4: Parallelism 61 



In an ideal world where no such communication penalty is incurred, 
parallelism, by overlapping sub-computations, may be expected to 
increase the speed of computation. Introduction of the mandatory com-
munication penalty, however, increases the cost of computation -
because computational power is needed to handle the necessary communi-
cation. 

If insufficient computational power is available, queues of out-
standing work will build up, machine overloading will occur and the 
speed of computation will decrease, thus detracting from the benefit 
of adopting parallel execution. In this way, it might well happen 
that the adoption of parallel execution is entirely 
counter-productive. 

We see the rudiments of performance as being described by a 
four-place relation:-

Performance(speed, available-power, required-power, parallelism) 

Normally, 'available-power' is fixed because the particular machine is , 
fixed. Provided the degree of parallelism is such that 
'required-power' does not exceed 'available-power', 'speed' might be 
expected to increase with increasing 'parallelism'. Once the degree 
of parallelism causes 'required-power' to exceed 'available-power', 
'speed' decreases with Increasing parallelism. 

Maximum speed is obtained when the degree of parallelism causes the 
required power to exactly match available power. 

To conclude this section, we will briefly discuss the factors which 
influence 'degree of parallelism' as used above. 

Following Kowalski [27], we consider an algorithm (A) to depend on 
two components, Logic (L) and Control (C), symbolically, A = L+C. In 
this analysis, we consider control to be determined solely by the 
nature of the proof procedure used. 

Execution of the algorithm determines the degree of parallelism 
referred to in the Performance relation above. Thus the degree of 
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parallelism may be viewed as partially derived from the logic compo-
nent of the algorithm and partly from the proof procedure used to exe-
cute it. 

In support of this conjecture, consider two programs, P and P . 
cL O 

In Pa, all procedures are deterministic - i.e. at most one definition 
can be used in response to a given call. In P , this restriction does 
not hold but instead, each definition has at most one call in its 
antecedent and the goal statement consists of just one call. The pro-
grams PQ and P_ together with their goal statements establish logic 

CL O 

components L a and L Q. 

A proof procedure, C , which supports and-parallelism but not 
cl 

or-parallelism will, in general, give rise to more parallelism in the 
algorithm C +L than in the algorithm C +L . A corresponding argument 

3 cL 3 0 
holds for the proof procedure CQ, which supports or-parallelism but 
not and-parallelism. 

Thus it is evident that for good performance (if the above intui-
tive arguments are accepted) a means of controlling the degree of 
parallelism must be provided and the control mechanism should be acti-
vated in response to perceived machine behaviour. Dynamic monitoring 
of machine performance is therefore needed and, of course, some allow-
ance must be made for the resources needed to do such monitoring. 

4.6 INTRODUCTION TO THE SCHEMES 

This chapter concludes the first part of the thesis. The second 
part will be concerned with two schemes, the Or-parallel proof proce-
dure and the And-or proof procedure. 

As its name implies, the first of these schemes only exploits 
or-parallelism, i.e. it achieves concurrency by parallel pursuit of 
alternative derivations. It is put forward as a short-medium term 
proposal which is realisable now through existing technology. 
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The second scheme, again as its name implies, exploits both of the 
major forms of parallelism inherent in Horn clause programs. Its 
organisation is quite different from that of the first scheme and is 
developed indepedently of It - although there is a relationship 
between the two schemes which we exhibit at the appropriate point of 
the exposition. The And-or proposal is put forward for implementation 
in the longer term. 

We have no proposal which allows for just and-parallelism. We con-
sider this to be covered by the work of Clark and Gregory [5] and view 
their scheme, albeit for a different language, as a complement of 
ours. 
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CHAPTER 5: OR-PARALLEL PROOF PROCEDURE 

5.1 INTRODUCTION 

The relationship between the backtracking and Or-parallel proof 
procedures .is close enough to allow us to present the latter as an 
evolution of the former, described previously. Indeed, for the most 
part, this chapter is concerned with possible implementation designs; 
the abstract requirements of the proof procedure are summarised in the 
following paragraph. 

5.2 BASIC REQUIREMENT 

The fundamental requirement of the Or-parallel proof procedure Is 
that given a selection function, branches of the corresponding search 
tree are to be explored in parallel. That said, the remainder of this 
chapter is almost exclusively concerned with how this requirement may 
be implemented in practice. 

5.3 IMPLEMENTATION DECISIONS 

The principal implementation decision to be made is to settle the 
question of whether a structure-sharing approach is appropriate or 
not. 

Our belief is that a structure-shared implementation is desirable 
for the execution of general purpose logic programs; the reasons 
underlying this belief are essentially the same as those applying to 
conventional implementations. In those implementations, 
structure-sharing is usually applied In two principal ways (as dis-
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cussed previously) - in the representation of bindings and in the 
representation of goal lists. Were structure-sharing to be rejected 
in both cases, one would need to construct terms and explicitly apply 
substitutions to all outstanding goals after unification, copying 
those goals at each branching "node. 

Our belief is that the processing required to implement the above 
approach would typically be too expensive for practical application. 
It is really quite common to find long and complex terms being con-
structed in the course of a derivation. 

Consider, for example, the simple Append procedure set 

Append(NIL, x, x) 

Append(u.x, y, u.z) <- Append(x, y, z) 

and a goal of the form 
<-Append(A , .A A, .NIL, B . .B 0 B-.NIL, zrt) v m-1 m-2 1 ' n-1 n-2 1 ' 0 

where the A's and B's represent constants. A total of m Append 
subgoals will be called in the process of solving the top-level goal. 
The i'th unification (1 < 1 £ m-1) will produce the unifier 

{ui/Am_i, • • •AjyNIL, y . Bn_2 • • • B^ . NIL, z^/u^.z^}. 

If substitutions are applied explicitly then it can be seen that the 
i'th goal will have a total of mfn+l-i constants embedded in the terms 
of its first two arguments. It is readily verified that refuting the 
top-level goal will entail work of the order 

m(m+2n) 
2 

in constructing the intermediate subgoals. 

A structure-sharing implementation, on the other hand, will merely 
record the substitutions and have them available for later access. 
The process of recording the bindings will not involve the con-
struction of terms: it will merely share the relevant parts of the 
supplied lists wherever necessary. The work in deriving the refuta-
tion under these circumstances is of the order m. 
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The inefficiency of the first scheme may be attributed to the fact 
that terms are constructed even though they may not be required. This 
is vividly Illustrated in the above example by the 'fully detailed' 
second argument which is passed right the way through all intermediate 
calls without any demand being made on its actual contents. One might 
say that structure-sharing is based on application of substitutions by 
need whereas copying is based on the application of substitutions by 
availability. 

We only consider a fully structure-shared implementation and this 
will be based on modifications of its conventional counterpart. This 
is not to deny that other approaches which mix structure-sharing and 
copying in certain ways are feasible - we merely do not consider them. 
There might well be a strong case for a hybrid scheme which constructs 
small terms and shares larger ones. (This would be analogous to many 
conventional computer architectures which, although based on 
instructions that reference data in store, make provision for 
so-called 'immediate instructions' that carry small amounts of 
read-only data explicitly.) Any proposal would have to be compared 
with others and in this context, we present our scheme as one based 
entirely on structure-sharing principles. 

One way of Implementing the required proof procedure is to divide 
the search tree into the set of branches descending from the root node 
and to investigate each branch independently. The data structures 
described earlier as being suitable for a backtracking interpreter 
could be carried over in a simplified form - for, of course, there 
would no longer be any need for information to do with backtracking. 
In particular, any variable's binding could be held in the activation 
record corresponding to the node at which the variable Is introduced, 
rather than the one in which the variable is bound. 

The difficulty of this approach is that because distinct branches 
of the search tree relate to distinct derivations, binding space for 
uninstantiated goal variables would have to be replicated whenever the 
search tree forks. In a structure-shared environment, it is not read-
ily apparent which variables are bound and which are not. 
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We reject as too inefficient, the simplistic approach which, when-
ever the search tree forks at a node, provides a copy of the environ-
ment of bindings appropriate to that node for each of its children. 
Clearly, such a scheme would copy all existing bindings, with the con-
sequent waste of time and store. Even the association list approach 
of Robinson and Sibert [40] implies the copying of a structure which 
is proportional to the depth of the search tree on each occasion that 
the tree forks and we reject this more optimised proposal on the same 
grounds. 

Instead, we choose an approach which exploits the tree structure of 
the search space. 

5.4 A NAIVE MODEL OF THE, IMPLEMENTATION 

We first give a naive approximation to the model we propose. 

Each activation record corresponds to a node in the search tree. 
Each is a data structure of the form 

ar(level, goal, clause, unifier) 

where 

'level' is the (unique) name of the activation record. As before, 
it is Implicit in the storage address of the activation record. 

'goal' names the goal which the activation sets out to solve. 

'clause' indicates the clause being tried in order to solve the 
goal. 

'unifier' is the unifier associated with the node. 

The first three terras are carried over from the corresponding struc-
ture in the backtracking scheme. 
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The stratagem of holding a variable's binding in the variable's 
Introductory - rather than binding - activation record is no longer 
available. Hence the replacement of the bindings and reset list of 
the conventional activation record by the unifier in ours. 

Exploration of the branches can now be undertaken separately, for 
once a node is established, it cannot subsequently be altered. The 
backtracking algorithm given earlier may be adapted for exploration of 
the branches. The essential differences are:-

1. If unification at node N calls for the term binding of a variable 
introduced at node N' (N' must be N or a proper ancestor of N in 
the search tree), a search of bindings in unifiers associated with 
those nodes between N and N' inclusive is called for. 

2. A unification failure terminates the branch computation. 

5.5 A MORE PRACTICAL MODEL OF THE IMPLEMENTATION 

The above scheme is naive because the simple ploy of searching a 
set of unifiers for a binding is, in general, orders of magnitude less 
efficient than the two-reference look-up described for the backtrack-
ing implementation. In a structure-shared implementation, looking up 
the binding for a variable is a frequently undertaken task and such a 
degree of inefficiency would result in an intolerably slow 
performance. 

We now describe how the simple two-reference scheme in conventional 
use is adapted in the design of the Or-parallel proof procedure. 

5.5.1 Representation of Bindings 

Suppose a variable v is introduced into the computation at node N. 
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As previously explained, whenever the search tree forks, new instances 
of unbound variables come into existence, one instance per branch. 

In this way, it may well happen that at a later time, some 
instances of v are bound and others are not. 

We consider all bindings for the various instances to v to be 
registered, each binding indicating the instance of v to which it 
applies. In this way, the set of bindings for v form a register which 
we associate with the node at which v is introduced. Thus the acti-
vation record evolves to 

ar(level, goal, clause, unifier, registers) 

where 'registers' is an array of binding registers, one for each vari-
able introduced by the clause referred to in the activation record. 
It will be seen that this arrangement is a generalisation of that for 
the backtracking interpreter where the corresponding array determines 
the unique (current) binding for each variable rather than a register 
of alternative bindings. The description, as it stands, implies some 
duplication because it indicates that each binding appears in one 
unifier and one register. In fact, this will not be the case in prac-
tice because the unifier is not required permanently - as will be 
shown in due course. 

Let us now consider the evaluation of terms, an important aspect of 
any implementation. It was earlier pointed out that different 
branches of the search tree represent different derivations. Evalu-
ation of a term needs to take account of which instances of its con-
tained variables are involved. The instances are, of course, those 
corresponding to the derivation being pursued. To be specific, sup-
pose, as in Figure 9 on page 71, that a binding for the variable 'v' 
needs to be looked up during unification at node N. 
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Figure 9. 

Suppose also that v was introduced at node N' (an ancestor of node N). 
The derivation of interest is represented by the branch of the search 
tree passing through node N (and N') and extending back to the root. 
Hence to determine whether v is bound in the course of evaluation at 
node N, it is sufficient to determine whether v was bound by a unifi-
cation at any node N" lying on the branch between N and the root node 
(in fact between N and N' inclusive) since these are the only nodes of 
any relevance to the derivation in question. 

Perhaps the most obvious way of associating bindings with branches 
of the search tree is to associate each binding with the name of the 
node (the component 'level' in the corresponding activation record) 
which produced the binding and implicitly establish the tree structure 
by recording in each node (other than the root node) the name of its 
parent. (All ancestors of any given node may then be determined by 
finding the node's parent, its parent, etc. right back to the root 
node.) 

We reject this approach on the grounds of inefficiency, for to test 
whether one node is a descendant of the other reduces to the problem 
of examining an arbitrarily long chain (the supposed descendant's 
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chain of ancestral activation records) and checking whether the other 
node has the same name as any one of them. The whole chain must be 
examined to determine that the answer is 'no' (assuming, of course, 
that this Is the case). 

Our design explicitly labels branches of the search tree and asso-
ciates with each node the name of the branch on which it lies. Inclu-
sion of the branch name in this way indicates to which derivations the 
node relates. It is the nature of the naming scheme itself, to be 
introduced shortly, - that enables us to determine the ancestral 
relationship between seeking, binding and introductory nodes (N, N" 
and N' respectively) with which evaluation is concerned. 

Thus the activation record structure takes on an extra term:-

ar(level, goal, clause, unifier, registers, branch) 

5.5.2 Interrelation of Activation Records 

If unification at a particular node N fails or is successful but 
all branches passing through N sooner or later lead to failures, then 
there is no point in keeping the activation record associated with N, 
since it cannot contribute in any way to a solution of the user's goal 
statement. Under these circumstances, we allow activation records to 
be deleted. 

The deletion of all activation records corresponding to N's chil-
dren is a sufficient condition for the deletion of N's activation 
record. In order to take advantage of this observation, we include 
two further items in the activation record data structure:-

ar(level, goal, clause, unifier, registers, branch, parent, children) 
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where 'children' is the set of activation record names (levels) of the 
node's children currently in existence and 'parent' is the level of 
the node's parent (or some Indication of the root activation record). 

We will presently describe how these arguments are used but first, 
a short digression is necessary in order to introduce some concepts in 
whose terms the description is given. 

5.5.3 Processes and Messages 

The specification of a scheme which supports parallel computation 
may be effected by identifying sub-computations that might proceed 
concurrently with one another and showing how those sub-computations 
are interrelated. 

We will refer to such sub-computations as processes. 

Examples of processes might be the sub-computations associated with 
nodes of the search tree. Such processes might reasonably be expected 
to manipulate data structures that represent nodes of the search tree 
(activation records) and we will find this to generally be the case: 
processes manipulate associated data structures. We will have more to 
say about this association later. 

Processes communicate by means of messages. A message may be 
regarded as the triple: 

t 

<name of destination process, name of sending process, content>. 

Messages imply processing: the processing that the destination process 
needs to do in order to take account of the content of the message. 

In general, many messages may be sent to any given process but for 
reasons which will become apparent later, we impose the constraint 
that the processing required to put into effect the contents of two or 
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more messages sent to the same process is not allowed to overlap in 
time. 

Thus at an abstract level, we see the computation being organised 
as a set of processes which modify 'their' data structures and commu-
nicate with one another through messages. 

5.5.4 A Simple Computation 

Before returning to the main text, we take the opportunity afforded 
by this interruption of giving a simple computation which will serve 
to exemplify several points raised in the" immediately following 
sections. 

The computation is a non-deterministic Append which finds all ways 
of splitting the list 1.2.NIL. 

Append(NIL, x, x) 

Append(z.u, v, z.w) <- Append(u, v, w) 

<- Append(s, t, 1.2.NIL) 

The search tree for the problem is given In Figure 10 below. 
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A <- Append(s, t, 1.2.NIL) 
/I 
/ I 
/ I 

{s/NIL, x/t, t/1.2.NIL} / I {s/z.u, v/t, z/1, w/2.NIL} 
/ I 

/ I 
/ I 

B C <- Append(u, v, w) 
<- /I 

/ I 
/ I 

{u/NIL, x'/v, t/2.NIL} / | {u/z'.iT, v'/v, z'/2, w'/NIL} 
/ I 

/ I 
/ I 

D E <- Append(iT, v", w') 
<- /I 

/ I 
/ I 

{u'/NIL, x"/v', t/NIL} / FAIL 
/ 
/ 
/ 

F <-

Figure 10. 

5.5.5 Main Processes 

We resume the central topic by describing here the sub-computation 
associated with the or-activation record of a particular node, N. 
Because such sub-computations are central to the scheme, we will term 
them main processes. 

As in the backtracking implementation, an activation record will 
have been established and will include an indication of the goal and 
clause with which it is concerned. 
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The first task of the main process associated with N's activation 
record is to attempt the unification. If unification fails, N's par-
ent main process is sent a termination message (the parent is known 
from the child's 'parent' argument) and N's main process arranges for 
the deletion of its own activation record and then terminates. On 
receipt of the termination message, N's parent eliminates N from its 
set of current children. 

If unification is successful, a message to this effect is sent to 
N's parent main process. The reason for doing this is to enable N's 
parent main process to assign a branch name to N's activation record. 
We choose to assign branch names after unification is successful rath-
er than before it is attempted because some restraint in the use of 
branch names is desirable. We will return to branch names and the 
timing aspect of their allocation presently. 

Notice therefore that because the branch name along which N lies is 
not known until after unification is completed successfully, it is not 
possible to register bindings in the course of unification. Thus 
evaluation of a goal variable in the course of unification is a two 
part operation:- the unifier under construction has to be separately 
examined in addition to the variable's set of registered bindings. No 
constraint prevents these operations from being pursued in parallel -
although our specific proposal does not consider this possibility. 

Bindings in the unifier are registered once the branch name is 
known. Registration is essentially concurrent over the set of 
bindings in the unifier and is implemented by processes which have a 
register as their associated data structure. The description of reg-
istration is deferred. 

After registration, the only information contained in the unifier 
that is not readily accessible from the relevant registers is an indi-
cation of which (goal) variables were bound in the course of that 
unification. This is the information carried in a conventional reset 
list. Thus after the bindings in the unifier have been registered, we 
may think of the unifier as a reset list which names goal variables 
bound in the unification. We will not elaborate on this any further 
here but will return to this use of a unifier later on. 
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Computation continues along convention|l lines:- the next step is 
to ascertain whether the empty clause has been derived and if not, to 
apply the selection function in order to determine the next goal. 

In the former case, the corresponding solution is extracted and we 
will show how presently. 

In the latter case, the empty clause has not been derived and so 
the next goal is chosen (by the main process applying the selection 
function to the set of outstanding goals). The user's program indi-
cates which clauses might be applied to the selected goal and the par-
ent establishes an activation record for each such clause and notes 
the names of its children thus spawned. When it knows that registra-
tion of the bindings in the unifier just produced has been completed 
(exactly how will be described in the next section), the parent acti-
vates its child main processes by sending each a 'begin computation' 
message. We thus return to the starting point of this description. 

Example 

Consider the main process corresponding to node C in Figure 10 
on page 75, which we will refer to as main[C]. Main[C] is estab-
lished by its parent process, main[A] (as is main[B] which later 
fails, but we are not concerned with that here). On receipt of a 
'begin computation' message, main[C] attempts the unification of 
Append(s, t, 1.2.NIL) and Append(z.u, v, z.w) which succeeds with 
unifier {s/z.u, v/t, z/1, w/2.NIL}. 

Main[C] informs main[A] of the successful outcome and awaits 
the arrival of a branch name (it frees computing resources during 
this wait). Main[A] receives the notification of success and 
assigns to the activation record at C, ar[C], a branch name which 
we represent here as 'c'. Registrat'ion of the unifier is under-
taken and the selection function applied to choose the next goal, 
trivially <-Append(u, v, w). 

The program reveals that two clauses may be used to solve this 
goal and so two activation records, ar[D] and ar[E], are estab-
lished by main[C]. When registration of C's unifier is complete, 
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the corresponding processes main[D] and main[E] are each sent 'be-
gin computation' messages and they proceed with their processing 
independently of one another, in a manner similar to the above. 

We can see that main[D] derives a refutation and when the sol-
ution is extracted, main[C] is sent a termination message from 
main[D] and removes the D-child from the children in ar[C]. Once 
main[E] sends a termination message, the E-child is also removed 
and the -children argument in ar[C] indicates no children, so 
main[C] terminates by deleting ar[C] and sending main[A] a termi-
nation message. 

Notice that our scheme allows unifications of the goal with the 
heads of all applicable clauses to be attempted concurrently via the 
independent child main processes. In this respect, it differs from 
the scheme proposed by Conery & Kibler [11]. It also allows for the 
concurrent registration of all bindings in a unifier and for these 
processes to run concurrently with the establishment of child acti-
vation records. 

5.5.6 Registration 

Register data structures are manipulated by corresponding registrar 
processes such that each registrar concerns itself with just one reg-
ister. 

The binding v(branch)/term, where v(branch) is the instance of v 
appropriate to the specified branch, is represented in v's register by 
the pair 

<term, branch> 

("term" represents, of course, the structure-shared pair <level, stat-
ic term>). The function of v's registrar is to receive such pairs and 
incorporate them with others for the variable. Both the register and 
registrar are identified by the variable's name <level, static vari-
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able> - i.e. if the variable's name is known, both may be accessed 
through it. 

Let us suppose then that unification undertaken by some main proc-
ess has succeeded, the parent main process has been informed of this 
event and has duly conferred on its child a branch name. 

The sole purpose of including registration in the scheme is to make 
evaluations more efficient than they would otherwise be. Obviously, 

/ 

registration of a particular binding must be completed before an 
attempt is made to read that binding from the register. This implies 
that registration of those bindings produced in the course of unifica-
tion at node N must generally be completed before resolutions at any 
of N's descendant nodes can begin. 

Note that the registration of bindings in a unifier and the cre-
ation of child activation records are independent tasks. We exploit 
the parallelism this independence makes possible by arranging for the 
main process to devolve registration of Its unifier to an associated 
unifier-reg process. 

In fact, another related function needs to be considered at this 
time: that of bringing into existence registrar processes for vari-
ables introduced by the clause just used in unification. Stated pre-
cisely, the two tasks to be considered are 

1. The initiation of new registrars for new variables and 

2. The registration of bindings in the unifier - by devolution to the 
registrars concerned. 

Some sequentiality is involved between registration of bindings and 
initialisation of registrar processes (specifically, the registration 
of input bindings) and we cope with this by arranging for the 
unifier-reg process to organise both the above tasks. 

Thus the unifier-reg operates on the data structure 

<unifier, registers, branch>. 
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where 'unifier' is the set of bindings of the form v/t made during the 
successful unification, 'branch' is the branch name conferred by the 
parent main process following the successful unification and 'regis-
ters' is the set of empty registers corresponding to the set of vari-
ables just introduced into the computation by the clause used. 

In describing the implementation of the unifier-reg process, we 
make the obvious simplification of combining its two functions when 
dealing with input bindings. If the unifier contains the binding v/t, 
where v has just been Introduced into the computation, then no other 
binding can ever be made for v. A registrar for v is thus superfluous 
and so rather than establishing one, the unifier-reg takes on the 
responsibility of inserting the binding v/t in v's register. 

The computation required of a unifier-reg process is relatively 
trivial and is organised sequentially. 

Each binding in the unifier is examined in turn. For input 
bindings, registration of the binding is undertaken by the unifier-reg 
itself. For an output binding v/term, a message, whose content is a 
request to register the binding <term, branch>, is sent to v's 
registrar process. Confirmation of registration will be sent by v's 
registrar to the unifier-reg process in due course. In the meantime, 
the unifier-reg proceeds with the next binding. 

When the unifier has been fully scanned in this way, the 
unifier-reg process turns to the array of registers with which it has 
been provided (i.e. registers for the variables just introduced by the 
clause used). Some of these registers will still be empty - those for 
the variables not bound in the supplied unifier. For each such vari-
able, a registrar process is brought into existence. 

Once the unifier-reg process receives notifications that all regis-
trations it delegated have indeed been made, it sends a message to 
that effect to its associated main process and then terminates. 

The evaluation of terms containing variables whose bindings have 
just been registered will now be correct and main processes associated 
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with the child activation records may therefore be sent 'begin compu-
tation' messages. 

Example 

We look at the registration of bindings in the unifier at C. 
The unifier-reg[C] process, abbreviated here to unireg[C], is 
established by main[C] and operates on the structure 

< {s/z.u, v/t, z/1, w/2.NIL}, [reg(z), reg(u), reg(v), reg(w)], c> 

where the second argument is an array of empty registers. 

Unireg[C] calls on the s-registrar to register the binding 
<z.u, c>. UniregfC] itself sequentially registers the bindings 
for the variables v, z and w. It determines that u is a new vari-
able that has yet to be bound and so establishes the u-registrar 
whose data structure is the empty u-register. On receipt of a 
message indicating that the binding for s has been incorporated, 
unireg[C] informs main[C] that all bindings have been registered 
and terminates. 

We now turn to a description of the registrars themselves. 

Let us suppose that a message requesting the registration of a par-
ticular binding has been received by the registrar for the variable 
concerned. 

The binding is registered in accordance with the data structure 
chosen to represent registers. This might, for example, be a set or 
we may define an ordering on branch names and exploit it by using an 
ordered data structure such as a list or tree to represent the regis-
ter. These considerations are left until later. 

Once the binding is incorporated in the register, a message to this 
effect is sent to the unifier-reg process which issued the request. 

This completes the description of registration. 
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Example 

Suppose that the unireg[B] and uniregfC] processes are operat-
ing concurrently with one another. The s-registrar will, in due 
course, receive messages,from unireg[B] and uniregfC] respectively 
requesting registration of the bindings <NIL, b> and <z.u, c>. 
The t-registrar will be sent a message (by uniregfB]) requesting 
incorporation of the binding <t/1.2.NIL, b>. UniregfB] and 
uniregfC] will be expecting 2 and 1 confirmatory messages respec-
tively and on receipt of the appropriate number, they send their 
associated main process a termination message and terminate. 

5.5.7 Solution Extraction 

We assume that the user specifies, as part of the problem he sub-
mits, which goal variables are of interest to him. A solution is then 
the set of bindings for those variables (and variables nested in the 
term components of those bindings etc.) which apply at a node that 
derives the empty goal statement. 

Solutions are conveyed to the user through a unique answer process, 
accessible from all main processes. Thus on deriving the empty 
clause, a main process sends the message 'I have an answer' to the 
answer process and then awaits acknowledgement that the answer has 
been extracted. The answer process has available to it the source of 
this message and so is able to determine the branch along which the 
refutation was made. Consequently, It is able to interrogate the reg-
isters for bindings appropriate to the refutation and thereby extract 
the solution. 

When it has finished this extraction, the answer process sends an 
'answer extracted' message back to the main process which called it. 
This main process then sends a termination message to its parent main 
process, deletes its activation record and terminates. 
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This completes the outline description of the proposed implementa-
tion. 

5.5.8 Branch Names 

We have already discounted, on grounds of efficiency, the scheme 
that implements branch names implicitly by means of ancestral node 
chains. Instead, we choose to represent branch names explicitly by 
means of bit patterns and will show that the determination of whether 
one branch is an extension of another reduces to the problem of deter-
mining whether one bit pattern is an extension of another. (The 
branch name on which the root node lies will, by convention, be the 
empty bit string - i.e. the bit string of length zero.) Clark and 
McCabe use a similar scheme to control co-routining in IC-PROLOG [7]. 

Having made this decision, it is important that branch names be 
kept short and this is the underlying reason for waiting until unifi-
cation is complete before providing a branch name. To do otherwise, 
particularly when dealing with a large relation, could prove wasteful. 
We propose two branch naming schemes, the n-ary and binary schemes. 

5.5.8.1 N-ary Branch Naming Scheme 

Let us suppose that unification at node N succeeded and that m 
activation records were spawned as a result. In the n-ary scheme, 
branch naming cannot, in general, commence until unifications under-
taken in all spawned main processes are complete and the number of 
successes is known. 

Let us suppose that the branch name at node N is the string of bits 
^ 1 ^ 2 " * " l e n g t h j) and that n of the m unifications are success-
ful. 
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If n is 1, the child's branch name will be the same as the 
parent's. (Note that the case of m=l - i.e. only one unification was 
attempted - is an exceptional case that allows the child's branch name 
to be allocated before unification. We will have more to say about 
this and related cases later.) 

If n is greater than 1 then the n children whose unifications were 
successful may be counted, each associated integer being expressed in 
k-bit binary form, where k is the smallest integer not less than 
log2(n). (The order in which children are counted is immaterial.) 
The branch names corresponding to the n children will then be the j+k 
length bit patterns formed by appending the child's associated k-bit 
number onto b^b2...bj. 

For example, if the branch name at node, N is 1011 and 3 child 
unifications succeeded then these may be counted by the 2-bit integers 
00, 01 and 10 and the resulting branch names will be 101100, 101101 
and 101110 respectively. 

The scheme allocates branch names unambiguously, a conclusion which 
is easily verified by an induction on the incremental lengthening of 
branch names, which we give below for the sake of completeness. 

Clearly, the extensions which count the successfully unified chil-
dren of some given node are all distinct from one another. Let us 
assume the inductive hypothesis - that all branch names are distinct -
holds at some stage of the computation and let us consider the imme-
diately following step of allocating branch names to the successful 
children of some node N. 

Their branch names will be different from one another by virtue of 
the differing extensions they have over N's branch name. 

Their branch names will each differ from other (previously exist-
ing) branch names because by the inductive hypothesis, the initial 
part of their names (N's name) differs from all previously exist-
ing branch names. 
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Finally, the base case of the hypothesis holds because initially, 
when the root node is grown, there is only one branch of the 
search tree. 

5.5.8.2 Binary Branch Naming Scheme 

The binary branch naming scheme is a slight modification of the 
n-ary scheme insofar as there is no longer a requirement that the out-
comes of all child unifications be notified to the parent before the 
first branch name is assigned: the cost is some wastage in the length 
of branch names. 

We suppose again that the unification at node N succeeded and that 
m main processes were spawned. As before, if m=l there is no need to 
wait since the child node will lie on the same branch as N. . 

Suppose then that more than one main process was spawned. Notifi-
cation of unification outcomes is awaited at N as before but now, as 
soon as two successes are notified, the activation record for one of 
them is given N's branch name appended with a zero bit. (The exist-
ence of two successes is the minimum necessary to determine that the 
search tree forks and hence new branch names are needed.) 

If there are no other successes, the second activation record is 
given the branch name of N appended with 1. The net result in 
this instance is the same as that for the n-ary naming scheme; the 
only difference is that, generally, a shorter overall delay is 
involved. 

Alternatively, if a third success is notified, the waiting main 
process is given N's branch name appended with the bits 10. Just 
one main process is now waiting (as before) and further progress 
is made in a manner analogous to that described immediately above, 
the outcome depending on whether a fourth success is notified or 
not (etc.). 
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Thus in the binary scheme, branch names are formed by lengthening the 
name of the parent's branch by adding bits 0, 10, 110, ..., 111...10, 
111...11 . 

Once more, the branch name extensions of children descended from 
any node are distinct from one another and this is the crucial proper-
ty required to demonstrate that all branch names are unique. We do 
not repeat the proof for this modified name allocation scheme. 

5.5.8.3 Integration of N-ary and Binary Branch Naming Schemes 

It will be seen that the n-ary and binary schemes described above 
offer the familiar trade-off between space and time. For n branches 
(n > 1), the n-ary scheme needs 0(log2(n)) hits for the extension to 
the branch name, the binary scheme needs 0(n) bits. The penalty for 
the more compact scheme is the need to wait for all unifications to be 
complete; the binary scheme releases branch names at the same rate as 
successful unifications are notified - albeit lagging one behind. 

Under circumstances of light loading, where resources are under-
utilised, the shorter overall delay afforded by the binary scheme may 
be desirable and the waste of resources it entails perfectly accepta-
ble. If, on the other hand, the machine is adequately loaded, there 
is no point in reducing the delay in any isolated part of the overall 
computation - for by assumption, other parts of the computation may 
continue. We thus see the n-ary scheme as being of more significance 
than the binary. 

It should be clear that the two schemes are quite compatible: it 
is possible to alternate between them at any given node. 

Thus one could envisage the following situation where 6 successes 
are notified to node N, the first two during a period of little activ-
ity, the remainder at a busier time. (The bit patterns shown are 
extensions of N's branch name). 
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1111 

0 

1110 
1101 

10. 

1100 

(first binary) 
(second binary) 
(These last four branch 
names are not assigned 
until all successes 
have been notified). 

Exclusive use of the binary scheme would result in longer branch names 
(parent's branch name extended by 0, 10, 110, 1110, 11110, 11111); 
exclusive use of the n-ary scheme would result in more compact branch 
names (extended by 000, 001, 010, 011, 100, 101) at the cost of delay-
ing progress on the first two children. 

5.5.8.4 Pre-allocation of Branch Names 

We pointed out that if only one clause can be applied to a chosen 
goal, the branch name may be conferred on the corresponding activation 
record before unification is attempted and in this case, the name will 
be the same as that included in its parent's activation record. 

This modification may be extended to the case of a conditional 
where it is known in advance that at most one of the clause heads will 
unify with the chosen goal. All alternative activation records will 
be given the parent's branch name but in this case, more than one suc-
cessful child unification is treated as an execution error. 

More complex is the case of "don't know.non-determinism" [28] where 
a goal is known to have no more than one solution and where determina-
cy is established not through the head but through predicates in the 
body. To see why, consider the following goal and procedure set 

<- P(A, z, z) 

P(x, y, B) <- Q(x, y) 
P(u, v, C) <- R(u, v) 
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and suppose that it is known that for any given x, only one of Q(x, y) 
or R(x, y) holds. The heads of both clauses will unify with the given 
goal but if both child nodes are given the same branch names then the 
alternative bindings for z, z/B and z/C, will be registered with the 
same branch name and clearly this will lead to confusion when the exe-
cution of the Q or R subgoals needs to access a binding for z (via the 
bindings y/z and v/z). 

We describe below a simple modification of our scheme which will 
overcome this deficiency. 

The difficulty is removed if registration of bindings is delayed 
until determinism is established, that is, until there remains just 
one child of the main process whose selected subgoal is known to have 
a single solution, all other children having been deleted through 
failure. This then implies the need, when searching for a variable's 
binding during a later unification, to not only seek that binding in 
the unifier under construction (as well as the variable's register) 
but to also look for it in past unifiers still awaiting registration. 
This does, of course, detract a certain amount from the advantages of 
registration - which was introduced to minimise such searching. 

We will not pursue this modification any further here. 

Another possibility to consider is that of "don't care 
non-determinism" [28]. Here, we are presented with a goal and we know 
that for this particular goal, any of the clauses in the corresponding 
procedure set may be used to solve it: the result will always be the 
same. In this special case, only one of those clauses need be 
selected and the branch name of the resulting child node will be the 
same as that of its parent. As with most forms of 'intelligent' com-
putation, considerable overheads may be involved in determining that 
the special case applies and this must be offset against any savings 
made through ignoring the non-selected clauses. 
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5.6 REGISTER STRUCTURE AND MANIPULATION 

5.6.1 Structure 

We stated earlier that an entry in the register of bindings for any 
given variable is a pair of the form <term, branch> and we proceeded 
to fix the branch name as a bit pattern. Both n-ary and binary branch 
naming schemes guarantee that node y is a descendant of node x if and 
only if x's branch name, of length n bits, is identical to the first n 
bits of y's branch name. In this event we say that y's branch name 
descends from x's:-

Node-descends(x, y) <-> Branch-descends(branch(x), branch(y)). 

This equivalence is exploited in two distinct ways. 

1. When seeking a binding in a variable's register, both branch names 
are known and the equivalence determines whether or not the 'seek-
ing node' descends from any of the 'binding nodes'. 

2. Every node at which a given variable is bound descends from the 
node at which the variable is introduced. The equivalence high-
lights the redundancy in storing In each binding the common part 
of the binding node's branch name; all that is needed is to store 
the extension of the longer name over the shorter. Thus if v is 
introduced along the branch named 1010101, any binding for v must 
be made along a descendant branch. For example, the two bindings 
for v, <A, 101010100> and <B, 10101011>, may be stored as <A, 00> 
and <B, 1> respectively. The resulting savings in resources 
should be evident. Note that if an Input binding is being regis-
tered (by the unifier-reg process), the extension will be 
represented by the empty bit string. 
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Example 

We give below the full set of registers arising from computa-
tion of our earlier Append example. Here, the names of the 
branches associated with nodes A, B, C, D, E and F are respective-
ly (the empty bit string), 0, 1, 10,. 11 and 110. Only the 
branch extensions are recorded in the bindings. 

{<NIL, 0>, <z.u, 1>} 
{<1.2.NIL, 0>, <2.NIL, 10>, <NIL, 110» 
{<t, . >} 
{<1, • >} 
{<NIL, 0>, <z'.u', 1>} 
{<t, . >} 
{<2.NIL, . >} 
{<v, . >} 
{<2, . >} 
{<NIL, 0>} 
{<v, . >} 
{<NIL, . >} 
{<V, . >} 

We now consider exploitation of an ordering on branch names. 
Clearly, if the bindings in a register are ordered, a search for a 
binding which applies at a specified branch need not, in general, be 
exhaustive. The ordering is defined as follows:-

Let B^ and B2 name two branches. 

B1 ^ B2 i f t h e f i r s t b i t position at which B^ and B2 differ has 
B^'s bit as zero. 

This ordering may be extended in the obvious way to two extensions 
of the same branch name. 

It is clear that for any two distinct branches, B^ and B2, one, and 
only one, of the four conditions 

s 
t 
x 
z 
u 
V 
w 
x' 
z' 
u 
v' 
w' 
X* 

introduced at A (.)) 

introduced at B (0)) 
introduced at C (1)) •• •• <• j 

n •• 11 j 

•• •• it j 

introduced at D (10)) 
introduced at E (11)) 

.. } 

t« »• •• ^ 

tf n 9* j 

introduced at F (110)) 
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2 
1 

holds 

When concerned with the ordering of the bindings in a register, we 
need not take into account the possibility that the branch name of one 
binding descends from that of another because the binding applying at 
the earlier branch would also apply at the later one and this would 
preclude an alternative binding. Thus the above ordering may he con-
sidered a total ordering on the restricted domain of branch names in a 

As regards the actual structure of the register, we put forward two 
proposals, the ordered chain and the ordered binary tree. We reject 
storing bindings in a mass associative memory on the grounds of 
impracticability since there appears to he little prospect of such 
memories being cost-effective in the short to medium term, the 
timescale of primary interest in the Or-parallel proof procedure. 

Chain and tree structures share the property that searching a small 
register and inserting a new binding are both efficient operations. A 
tree structure is more expensive on storage but only needs logarithmic 
time to be searched, potentially a significant advantage for large 
registers. The most obvious disadvantage of tree structure is that 

* 
deletion of a node in the tree is not, in general, a trivial operation 
and might involve considerable processing. We will consider this dis-
advantage after the next section, which discusses the manner in which 
registers might be manipulated. 

5.6.2 Insertions 

We need to impose the restriction of having just one registrar per 
variable because otherwise the administration of the register would be 

register. 
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far more complex. To appreciate this, note that data structures can 
only be 'held together' (in non-associative memory) by juxtaposition 
or reference pointers and the former possibility Is ruled out for a 
register because the amount of storage eventually needed is not known 
at the time the variable is Introduced into the computation. Modify-
ing such structures, unfortunately a necessary evil In practice, must 
therefore be done by modifying the reference pointers, and this needs 
to be carried out in a controlled manner. 

If, for instance, registers were implemented as chained lists, some 
sort of interlock would be needed to prevent any attempt to 
'simultaneously' chain two new bindings between the same pair of 
existing ones. Provision of such a mechanism would not be without its 
overheads and in all probability would result in slower overall per-
formance than that expected from our single registrar proposal -
although to be sure, simulation or experimentation would be needed to 
confirm this. At this point in the investigation, we do not regard 
the inability to register more than one binding for a given variable 
at a time (leaving others waiting until incorporation is complete) as 
a serious problem and so we accede to the constraint of having a sin-
gle registrar per variable. 

However, we would prefer not to have to impose a similar constraint 
when it comes to reading registers, for reading a binding is generally 
done quite frequently. Since reading a register does not alter its 
structure, there is some hope that registers might be arranged in a 
manner which allows any number of processes to access them at any 
instant of time. Certainly, processes which read a register will not 
interfere with one another, the only possible source of interference 
is between such a process and the registrar process and we now consid-
er how such interference might arise. 

Of course, ensuring that registration of all the bindings in a 
unifier is completed before releasing 'begin computation' messages to 
child main processes is a sufficient condition to guarantee that there 
is never an attempt to access a binding awaiting registration. There-
fore interference can only occur if the registrar is in the process of 
adding an entry and the resultant modification to the structure upsets 
a process seeking an unrelated entry. 
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In fact, such interference does not come about and we demonstrate 
why by considering the ordered chain representation of a register. A 
similar argument holds for the ordered tree representation. 

Refer to Figure 11. Suppose the registrar is in the process of 
inserting a binding B between the bindings A and C (N.B. a modified 
argument holds if A and/or C is null, that is, B is being inserted at 
the beginning and/or end of the chain). If a, b and c are the branch 
names contained in the bindings, we have a < b and b < c. 

BEFORE 

next-ptr 
I I 
I I 
V I 

- I - — 
A:|next-a| a |term-a| 

B:|next-b| b |term-b| 

next-ptr .. 
—next-ptr— I I 

II I 
V V I 

- I 
C:|next-c| c |term-c| 

AFTER 

next-ptr next-ptr next-ptr • 

I I 
V I 

A:|next-a| a |term-a| 

V 

C:|next-c| c |term-c| 

B:|next-b| b |term-b| 

Figure 11. 

The entry B is prepared for insertion and the content of A's 
'next-pointer', next-a, is copied to next-b. At this point in time, 
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the state of the chain is as illustrated in the BEFORE part of the 
figure.. 

Suppose now that an independent process is seeking a binding which 
applies at a node whose branch name is x and it has already been 
determined that a < x. 

The transition of the register from the BEFORE to the AFTER state 
is accomplished by a single machine instruction, "write", which 
assigns B's storage address to A's reference pointer, next-a. We need 
to consider what effect this transition will have on the independent 
searching process and for this purpose, we suppose that the search is 
just about to access the next entry, referenced in next-a, by the 
instruction "read". 

"write" and "read" cannot access next-a simultaneously; the hard-
ware physically prevents this. Thus whether B or C is examined next 
by the searching process depends on whether next-a is accessed by 
"write" or "read" first. 

If B is chained in before next-a is read ("write" is first), the 
next comparison done will be between the bit patterns representing x 
and b. Because x is not descended from b, we have either x < b or 
b < x. 

Case 1. x < b. If x < b, the sought binding is absent. But if 
B had not been chained in, the comparison x < c would have been 
done instead and because of the transitivity of and the 
well-ordering of the register, x < c would have been established 
and so the same conclusion, viz. the sought binding is absent, 
would have been reached. 

Case 2. b < x. In this case, the next entry in the chain, C, 
will be examined and the outcome will be as though B had not been 
chained in, i.e. C had been examined immediately after A. 

It follow8 that insertion of a new entry cannot interfere with any 
search and so may be done independently. 
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5.6.3 Deletions 

The possibility of deleting a binding from its containing register 
arises once it is determined that the node at which the binding was 
made does not relate to any refutation. This corresponds to back-
tracking in the conventional implementation when bindings are 
destroyed either implicitly by destruction of their containing acti-
vation record or explicitly by means of the reset list. 

We have already described how deletion of an activation record may 
come about: essentially when all its child activation records have 
been deleted. Such deletion would automatically destroy the registers 
held in the activation record (terminating any registrar processes 
associated with them) and is analogous to implicit destruction of 
bindings in the conventional implementation. 

Analogous to explicit destruction in the conventional implementa-
tion - which destroys bindings for goal variables - Is the selective 
deletion of bindings from registers. Such deletions cause difficul-
ties in our scheme and to see why, we need only consider the situation 
in Figure 11 on page 93 when we wish to remove the binding B from the 
chain in the AFTER state. 

It is easy enough to change the pointer in next-a to point at C. 
The problem arises if this is done while a searching process is look-
ing at the entry B (which of course is no longer required) and the 
timing is such that the unchaining of B is done, B is 
garbage-collected and its storage is re-assigned and then overwritten, 
all before the searching process gets around to comparing its supplied 
branch name with what it thinks is In the store previously occupied by 
B. Although the above circumstances are highly unlikely, they rule 
out deletion as described. 

We are left with the choice of ignoring the savings in storage 
utilisation which such deletions make possible or designing register 
access in a way that prevents deletion of an binding from taking place 
if that binding is being accessed by a searching process. 
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We reject the latter option on the same grounds as we rejected the 
ability to simultaneously insert more than one entry at a time into 
the register - the necessary overheads in providing interlocks would 
in all probability more than offset any savings made. 

The possibility we leave ourselves with,,namely that of not delet-
ing unwanted output bindings, does not, of course, affect the correct-
ness of the proof procedure: it merely wastes storage and processing 
time in performing redundant comparisons. On the other hand, it does 
remove the need for a reset list and so we may tidy the earlier 
description by stating that once bindings in a unifier are registered, 
that unifier may be garbage-collected since its residual function as a 
reset list is no longer needed. 

Our feeling in the absence of suitable simulation is that such 
waste would not typically precipitate a catastrophic failure because 
each binding takes so little storage. In the ordered chain represen-
tation, a binding is made up of three references (next-in-chain point-
er and two pointers representing the term) plus the branch extension. 
Each reference might be 3 bytes (24 bits), the branch extension is, of 
course, variable but unless the search tree is very bushy or is less 
bushy but variables are frequently bound a long way after their intro-
ductory node, it too might typically occupy no more than 3 bytes, 
giving an overall typical size of 12 bytes. 

Finally, we point out that our election not to delete entries from 
registers removes the basic objection to tree structure and this seems 
the most promising overall representation. (The tree representation 
needs an extra reference pointer per entry, resulting in a typical 
binding size of 15 bytes.) Thus there are compensations in choosing 
not to delete redundant bindings from registers and the net effect of 
opting for this approach would, as ever, need to be investigated by 
means of simulation. . 

i 

5.7 DATABASE APPLICATIONS 

In a serious database application, one may suppose that vast 
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relations of ground assertions exist in the program. It may not be 
suitable to treat such clauses in the same way as those for relations 
more compactly expressed. For instance, one may like to take advan-
tage of the availability of special purpose associative searching 
hardware - for example CAFS [31] - which is fast at searching such 
ground relations. 

Here, we will be content in stating how such an attached 'searching 
engine' may be used to supply all solutions of a given atomic goal and 
we show the modifications to our proof procedure needed to achieve 
this end. 

We assume the user's program contains clauses of the form 

P(tlf ... , t n) <- "Consult Search Englne(P(ti, ..., tn))". 

Such clauses may be additional to ordinary Horn clauses for the named 
relation P. 

Only main processes are modified. Assuming a goal which potential-
ly matches the head of such a clause is selected by some main process 
(which we will term the grandparent main process), this distinguished 
clause is seen as merely another way to solve the goal and so an acti-
vation record and main process corresponding to it are established in 
the usual way. 

The main process (which we will term the parent main process) 
attempts, unification as normal and a failure is treated in the usual 
way. In the event of a successful unification, however, the goal atom 
is fully evaluated, that is all variables are explicitly substituted 
by their bound terms. Note that the normal objection to applying sub-
stitutions, namely the copying of complex data structures, does not 
usually hold in database applications. The instantiated query is then 
sent to the searching engine. 

We assume that the searching engine produces a set of solutions and 
these are returned to the querying main process (i.e. the parent). 
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The parent then establishes a child activation record for each sol-
ution it receives in such a way that solutions appear as unifiers -
i.e. as though it was the child that had performed the unification 
with the corresponding ground clause. The child activation record 
also has allocated to it a branch name at this time. 

Processing of each such child is arranged to start at the point 
where registration of the bindings is about to be made. 'Begin compu-
tation' messages are then sent to the child processes. 

The modification may be summarised by considering what would happen 
if the database clauses had been explicitly expressed. 

In this event, the top-level main process (the grandparent) would 
have established many children and each would have attempted Its 
unification and informed their parent of the outcome. Successful 
children would, after receiving their branch names, have continued by 
establishing unifier-reg processes to register the bindings in their 
unifiers. 

In the modification, the process corresponding to the "Consult 
Search Engine" clause takes on the task of performing all unifications 
and it only establishes child processes for the successes - i.e. the 
query solutions. Branch names are pre-allocated to these child acti-
vation records and the corresponding main processes begin at the point 
where they establish unifier-reg processes to register the bindings in 
the unifier. 

The modification is illustrated in Figure 12 on page 99. 
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EXTRACT OF SEARCH TREE (NORMALLY EXPRESSED PROGRAM) 

X 

EXTRACT OF SEARCH TREE (PROGRAM INCLUDES "SEARCH" CLAUSE) 

(nodes corresponding to database assertions - children) 

Figure 12. 
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5.8 ARCHITECTURE 

We now turn to the consideration of a suitable architecture for our 
proof procedure. We point out once again that the Or-parallel scheme 
Is seen as being essentially a short - medium term proposal and the 
lowest level of our design, the architecture, is put forward with this 
in mind. 

5.8.1 Requirements 

We take the opportunity of stating here the principal components 
already fixed in the design. 

1. A conventional memory in which to hold data structures. 

2. A message transfer system to allow inter-process communication. 

3. A means of distributing work. 

Additionally we need a fully distributed system - i.e. we want no cen-
tral bottlenecks - and this requirement guides the design. 

5.8.2 Memory 

Our design has no place for a centralised memory such as that found 
in [12] because the traditional von-Neumann processor-store bottleneck 
will result on addition of sufficiently many processors. The alterna-
tive is a distributed memory, one segment of memory per processor. 

A distributed memory may be implemented in one of two distinct ways 
- locally or globally. 
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In a local Implementation of a distributed memory, we associate 
each segment with its processor in such a way that the only means of 
accessing that memory is through the processor itself. A number of 
architectures take this form, notable amongst them being ZMOB [36]. 

In a global implementation of a distributed memory, we allow any 
processor access to any segment of the shared memory without involving 
the processor associated with the segment and rely Instead on hardware 
arbiters to cope with multiple simultaneous accesses to the same seg-
ment. 

A local organisation is attractive from the implementation point of 
view for it then becomes very easy to control access to any particular 
part of store: all such accesses have to pass through the same 
processor and this constraint can be used to prevent attempts at 
simultaneous updates etc.. However, the greater the storage access 
burden, the more embarrassing a local organisation becomes, for any 
processor is then liable to frequent disturbance in order to satisfy 
others. Unfortunately, our structure-sharing scheme, so heavily 
dependent on accessing the same storage from an arbitrary number of 
processes would seem to rule out this possibility and in the absence 
of simulation, we will assume that this is indeed the case. Conse-
quently, our architecture will be based on a global implementation of 
the shared memory. It will consist of processing elements (PE's) and 
Figure 13 on page 102 illustrates the first approximation to the 
structure of a PE. The precise nature of the connection between PE's 
is left unspecified for the moment. 
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to other 
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memories 

Figure 13. 

Notice that a processor may access the segment of memory included with 
it in the PE without placing any load on the external processor-memory 
network. It is reasonable to expect that such accesses will be faster 
than accesses of external segments - although by how much rather 
depends on the nature of the network. 

5.8.3 Packets 

We introduced the concept of a process by stating that it identi-
fied a part of the overall computation which might proceed in parallel 
with other processes. Implicit in this notion is that some 
sequentiality in the execution of processes is involved - for other-
wise increased parallelism is trivially obtained by further subdivi-
sion of the computation. 

Processes communicate through messages and these messages imply 
work, the work which the receiving process needs to perform in order 
to put the message into effect. The sequentiality constraint we 
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impose is that only one of the outstanding messages received by a 
process may be put into effect at any one instant of time. 

Thus we do not care about the order in which a registrar process 
adds bindings to the corresponding register. We do, however, insist 
that bindings are only added one at a time - otherwise a corrupt reg-
ister would result, as was pointed out at some length earlier. 

Similarly, we do not care about the order in which the unification 
outcomes of sibling main processes are notified to their parent. We 
do, however, insist that such notifications are handled one at a time. 
Were this requirement to be violated - for instance, if two distinct 
children both fail their unifications and the list of current chil-
dren, held as an argument of the parent's activation record, is not 
updated sequentially - the proof procedure would be incorrect. 

We may formalise the constraint of sequentiality by introducing the 
notion of a packet. We envisage a process as being implemented 
through a stream of packets of work, non-overlapping in time, each 
packet representing the computation implied by the contents of the 
message that gave rise to it. Later we will show exactly how packets 
are implemented. 

An example of a packet might be the computation necessary to incor-
porate a new binding in a register. A stream of such packets imple-
ments a registrar process. 

5.8.4 Distribution of Work 

Viewing a process as being implemented by a stream of packets 
naturally raises the question of whether processes are to be run to 
termination by the processing element which first took them on or 
whether the processing elements are to be regarded as equal computa-
tional resources - packet processing agents in the nomenclature of 
Darlington and Reeve [13] - each capable of operating on any process. 
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By restricting each process to a chosen PE, it is reasonable to 
expect a significant reduction in the volume of processor to 
shared-memory communication - for the data structure associated with 
each process would be stored in the PE's own segment of memory. This 
would speed up computation, as indicated earlier. Moreover savings in 
the amount of storage used to hold program clauses could be made and 
we explain how in due course. 

On the other hand, the alternative scheme is more flexible, for it 
avoids problems of local overloading where a PE has too much work. 
Furthermore, whenever the distribution of packets is uneven with 
respect to PE's, a loss in the realisation of available parallelism 
will result since some computing resources will lie idle whilst others 
will be overloaded. 

Our view is that the spirit of parallel computation is best served 
through the adoption of the most flexible scheme - that of regarding 
processing agents as equal computational resources - but that practi-
cal considerations may temper this view to accommodate specialist PE's 
or groups of PE's and we will say how later. In this respect, our 
proposed implementation differs fundamentally from the scheme put for-
ward by Conery & Kibler [11], who establish process-PE links by 
insisting that each process is run to completion on the PE that first 
accepted the process. 

Our proposal to view PE's primarily as agents of computation has 
ramifications in the way that inter-process communication might take 
place and we now consider this aspect of the design. 

5.8.5 Message Communication 

In what follows, we will term a process active if a packet for that 
process is currently undergoing computation and suspended otherwise. 
Thus a suspended process is one which Is awaiting the receipt of a 
message whilst an active one will have received one, possibly with 
further messages outstanding and awaiting completion of the packet. 
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By choosing to divorce processes from PE's, we seem to be disre-
garding the simple communication device that implements inter-process 
communication as inter-PE communication. In fact, this is not the 
case, as we will show later.. First though, we consider a centralised 
process communications scheme, as illustrated in Figure 14. 

I pool of messages for active processes I 

messages 
\ 
\ 

(FROM PE's) 

/ 
/ 

packet-end 
signals 

I MATCHING UNIT | | - > — > — > packets 
================ ( t o PE's) 

I pool of suspended proceses | 

Figure 14. 

Here, the matching unit maintains a pool of suspended processes and a 
pool of messages for active processes. It accepts messages from PE's 
and packet-end signals, also from PE's, the latter indicating that the 
packet for the named process has completed computation and hence that 
the next message for the process may now be formed into a packet and 
released for computation. 

The matching unit operates as follows:-
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An incoming message causes the unit to determine whether the proc-
ess named as the destination of the message is in the pool of sus-
pended processes. If it is, the resulting packet is dispatched. 
Otherwise, the message is pooled. 

An incoming packet-end signal causes the unit to seek from the 
message pool a message addressed to the process named in the pack-
et-end signal. If one Is found, a new packet is formed and dis-
patched. Otherwise, the process is added to the pool of suspended 
processes. 

Although such an approach seems attractive, it does introduce a cen-
tral element into the architecture. Our scheme decentralises the 
matching unit in the following way:-

The modification exploits the association between a process and its 
data structure. Essentially, it takes account of the fact that any 
data structure is accessible through a single, well-defined memory 
location, its (implicit) name. Since we associate a segment of store 
with each PE, it follows that any data structure, and hence process, 
may be associated with that PE if its location lies within the PE's 
segment of memory. In this case, we say the process is based in the 
PE. We emphasise once more that we do not, in general, insist on a 
process's computation being performed by the PE in. which it is based. 

We see a matching unit, as depicted in Figure 14 on page 105, being 
incorporated in each PE. The matching unit is concerned with proc-
esses based in its PE and with messages to those processes. It also 
receives packet-end signals concerned with processes based in its PE. 
Note that packet-end signals take the same route as messages insofar 
as they are emitted from one PE's processor and received by another 
PE's matching unit. The distinction between them is that packet-end 
signals are intended for the matching unit itself whilst messages are 
passed via the matching unit on to the destination process. In the 
interest of brevity, however, we will refer to both as "messages" when 
discussing communication, it being understood that in this context, 
packet-end signals are included under the term. Whenever we wish to 
talk about messages in the previous sense, we will refer to them as 
"process-process messages". 
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We are almost ready to present a global picture of the architecture 
but first, we need to be more specific about how packets are sent out 
by one PE and received by another. 

The obvious medium for this communication is the same as that used 
for communicating messages, provided that the medium allows this type 
of message to be broadcast in a way that prevents more than one PE 
accepting any given packet. We will call such messages packet-start 
signals and as one might expect, we also include them in the umbrella 
term "message" when using that term in the context of communication. 

Following Farrell et al. [16], Darlington and Reeve [13], Rieger et 
al. [36] and others, we find a ring implementation of the communi-
cations medium one well worth investigating. 

Essentially, the ring may be regarded as a continuous conveyor 
belt, with messages placed in circulating slots. Each PE has a single 
connection to the ring, a window, through which it has access to the 
ring. If the slot opposite the window is empty at any given time, the 
PE is allowed to place a message in it. If it is full, the PE is 
allowed to read the message*, and, on the assumption that the message 
has arrived at its destination, to remove it, thereby leaving an empty 
slot once more. 

Provided the ring allows messages to be broadcast - as the ZMOB 
ring [36] does - it will be seen that the ring communication medium 
satisfies our requirements. 

Figure 15 on page 108 gives an outline of the proposed global 
architecture. 
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Note that the connections between the processors and segments of 
global memory external to their PE have yet to be specified and this 
we will do shortly. We emphasise here once more that we require 
direct processor-memory connections to support the volume of storage 
access that our proof procedure can be expected to generate. 

5.8.5.1 Internal PE Structure 

Figure 16 on page 109 shows the internal PE structure we propose. 
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Figure 16. 

The unit marked ARBITER* is the only part of the PE that sees the ring 
and arbitrates between the processor and matching unit for access to 
it. 

Its connection to the processor serves to transmit packet-end 
signals and process-process messages from the processor and to receive 
packet-start signals after the processor has indicated that it is idle 
(indirectly, through a previous packet-end signal). 

Its connection to the matching unit performs converse functions:-
packet-end signals and process-process messages bound for the PE are 
recognised by that component and forwarded to the matching unit; pack-
et-start signals, formed by the matching unit, are transmitted out via 
the ring. 
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5.8.6 Processor-Memory Connection 

It is generally recognised that much research has been applied to 
the investigation of alternative processor-memory inter-connection 
strategies e.g. [34]. By and large, each proposal offers a trade-off 
between cost and average speed of access. To be able to decide on the 
best compromise calls for some investigation, both by evaluation and 
simulation, of'the loading likely to be placed on the adopted scheme. 

Below, we include three proposals aimed at lowering the number of 
accesses to external segments of memory. 

1 • Each PE will contain a local memory which includes a copy of the 
computer program that implements the proof procedure. 

2. Each such local memory will also contain a copy of the user's Horn 
clause program. (This proposal will be modified in a later sec-
tion.) 

3. To organise the proof procedure in a way that exploits the direct 
link between a PE's processor and memory as fully as possible. 

Item 1 above, by itself, makes at least half, probably significant-
ly more - say 55-75% - of the accesses local. This is because in most 
processor architectures, the ratio of data accesses to instruction 
accesses is less than one-to-one, most such processors being built 
round the 0- and 1-operand instruction formats. (N.B. We are assuming 
that the proof procedure will be implemented by program code. Were it 
to be implemented in microcode, this percentage would be somewhat low-
er because fetching and executing the corresponding microcode would be 
faster operations. We are also assuming that local memories and seg-
ments of the global memory operate at the same speed.) 

Item 2 also reduces the load significantly because 
structure-sharing ensures that the description of dynamic data is at 
least partly In terms of the static program. Hence any use of that 
dynamic data will in general involve local storage references. For 
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example, when matching two functors, the test which checks whether the 
two function symbols are the same will do so by making references to 
the static program stored locally in each PE. It is far more diffi-
cult to quantify the degree of network loading relief made possible by 
item 2 and extensive simulation would be needed. 

We might make the guess that the first two items combined would 
make 70-85% of all storage accesses local to the PE making the access. 

Item 3 seeks to fully exploit the link between a PE's processor and 
memory in order to reduce the loading on the (external) 
processor-memory network. One way in which this link is used is in 
the way that storage is managed and the next section will investigate 
this in some detail. Suffice it to say that both storage allocation 
and garbage-collection are undertaken by the processor in the PE whose 

' segment of memory is the subject of the operation and hence such 
transactions may be done without burdening the processor-memory net-
work. 

We also point out here that ARBITER*, which interfaces the process-
or and matching unit to the ring, will be capable of diverting a newly 
formed packet-start signal straight to the attached processor, should 
the latter be idle. Because a matching unit is only concerned with 
processes based in its PE, it follows that the processor will then be 
dealing with a packet for a locally based process and this will tend 
to lower the demands on the processor-memory network, as was pointed 
out earlier. 

Finally, we make the observation that if an implementation of the 
architecture consists of n PE's, then on average, a proportion 1/n of 
accesses between a processor and the segment of storage containing the 
data it requires, will just happen to be local accesses (the routing 
will, of course, be implemented in the ARBITER and will be transparent 
to the program). For large n, this contribution can be ignored, but 
may be considered significant for n less than 20. 

Overall, we consider that items 1-3 above will result in no more 
than 10% of all storage accesses being external to the PE making the 
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access although we feel that the above analysis should be supplemented 
by appropriate simulation. 

A small machine, perhaps of 10-20 PE's might have the 
processor-memory network implemented through a shared bus, the sim-
plest option. Such an implementation might find favour in a small 
business machine or personal computer. A bus allows only one process-
or-memory access at a time and hence is a global resource. Although 
this violates our principle of full•distribution, its implementation 
cost makes it an attractive proposition for such machines. For a more 
demanding application, a devolved interconnection strategy will be 
required and we suggest that the indirect binary n-cube network [35] 
or its generalisation the delta network [34] might be worthy of con-
sideration. Our feeling is that the full crossover network is more 
powerful - and expensive - than the loading warrants. 

For the shared bus implementation, the PE architecture may be fur-
ther simplified by arranging for the storage ARBITER to also manage 
the PE's connection to the bus and this is depicted in Figure 17 on 
page 113. There is no loss In performance in doing this since the 
PE's processor and segment of global storage cannot both be active 
simultaneously via the bus. 
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Figure 17. 

We make the obvious observation that such an element seems a good can-
didate for fabrication in VLSI. 

5.8.7 Storage Management. 

We consider a machine consisting of n PE's to have its entire 
address space divided into n+1 parts. One part, copied in each PE for 
speed of access, holds the code implementing the proof procedure and 
also the user's program. The remaining n parts hold the n segments of 
PE memory. Thus a reference to an instruction of the inference system 
or to an expression in the user's program is identically understood in 
all PE's. 

We propose that a PE's segment of storage be managed by the local 
processor. In particular, if a packet undergoing computation requires 
the allocation of storage - for instance, a packet recording a binding 
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in a register - the storage is taken from the pool of free store with-
in the PE that accepted the packet. 

If a PE runs out of free store, it discontinues the packet on which 
it was operating and turns its attention to garbage-collection. We 
will show presently, exactly what 'discontinuing' a packet involves. 

In our proposal, storage is only released on the termination of 
processes and recovery of storage under these circumstances is amena-
ble to implementation through a 'mark and scan' garbage-collection 
scheme• 

In this scheme, each block of storage is marked .'no longer 
required' when this is determined to be the case. Garbage-collection 
need only take place when convenient and in our scheme, this would be 
whenever the t processor determines that no more free store is 
available. At this stage, the entire segment of shared memory associ-
ated with the processor is scanned and marked blocks are returned to 
the pool of free storage. Notice that neither the allocation nor the 
garbage-collection of storage places a load on the external memory 
network - as was claimed earlier - (although marking, in general, 
does) and that by arranging for the memory ARBITER to give lowest pri-
ority to accesses from the associated processor, garbage collection 
will not materially affect the response to other demands made on the 
segment being tidied. 

5.8.8 Process Control 

We have indicated throughout this chapter that there exists an 
association between a process and "its" data structure and we will now 
formalise this association. 

The execution of a process is organised around a process control 
record (pcr):-
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per(messages, ref(data structure), packet state). 

The first argument references the set of messages received by the 
process but not yet put into effect. In all probability, the set 
would be implemented as a queue of messages, the order reflecting the 
temporal sequence of message arrivals, and the first message in a 
non-empty queue would relate to the current packet* for that process. 
This component is managed by the matching unit. 

The second argument associates the process - as incarnated in the 
process control record - with its data structure. Notice the emphasis 
on the way this relationship is viewed here. For the purposes of con-
trolling the computation, the data structure is regarded as merely an 
appendage of the process; it is processes and not data structures 
which are central to the implementation mechanism, ("ref(x)" names x 
through its location in store.) 

The third argument is of significance only when the process is 
active - i.e. a packet for that process has been formed. It describes 
the processing that the packet requires by specifying the processor 
state that the receiving PE must establish once it accepts the 
packet-start signal. This information is supplied by the matching 
unit, which deduces it by examination of the message that gives rise 
to the packet. The information would include, for example, the pro-
gram counter and settings for any relevant machine registers. 

It can be seen that a packet is completely specified within the 
framework of its underlying process control record and so a 
packet-start signal may convey its information by naming the relevant 
process control record. 

Termination of a process - and deletion of its associated data 
structure (e.g. termination of a main process after unification fail-
ure) - is effected simply by marking the storage in which the per and 
data structure reside and allowing garbage-collection to recover the 
store when convenient. 

We are now able to show how a packet may be discontinued in one PE 
and restarted in another. 
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The crucial feature exploited here Is that all PE's hold identical 
copies of the proof procedure and user's program and that all these 
copies appear in the same address space. Therefore, any location in 
local store holds identical contents In each PE and so any reference 
to an item in local store has the same meaning throughout the PE's. 
The same is trivially true of references to locations in global store. 
But the state of a processor, as explained above, Is essentially the 
state of its program counter and other machine registers and these, by 
the above reasoning, will have the same significance to all processors 
and hence PE's. 

Thus a mid-term packet transfer is effected by storing the mid-term 
state of the old processor in the packet state argument of the rele-
vant per and releasing a packet-start message for it. The new PE will 
establish its processor state in the usual way from the third argument 
and will thus continue the processing of.that packet. 

In this way, our proposal solves the problem of a packet not being 
able to continue because the PE that accepted it has run out of store 
while others have not. It is seldom known in advance exactly how much 
store a particular process might need and any scheme which demands 
that storage be allocated from within the PE that first accepted the 
process runs the real risk of complications due to later insufficiency 
of free storage in that PE. 

5.8.9 Modifications to the Basic Scheme 

5.8.9.1 Specialist PE's 

Earlier on, we said that under certain circumstances, it may be 
undesirable to hold a copy of the user's program in each PE and that 
specialist PE's, holding some procedure sets but not others may be a 
required feature. In the extreme case, the entire machine might be 
fully specialised, with no procedure set appearing in more than one 
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PE. We now indicate the modifications that need to be applied in 
order to cater for this requirement. 

We generalise the requirement by applying specialisation to proc-
esses rather than procedure sets, that is, given a process, we will 
have the ability to execute its packets on.some specified subset of 
the PE's. Thus we could arrange for all main processes concerned with 
a specific predicate symbol to execute on a given range of PE's or 
perhaps, if we so desired, we could arrange for the packets implement-
ing a particular variable's registrar to be fully executed on a single 
PE. 

The first change required is that start-packet signals will no 
longer be indiscriminately addressed but will instead be directed to 
the appropriate subset of PE's. 

If only one PE can accept the packet, the packet-start signal may 
be directly addressed to it. 

If more than one PE can accept it then the method described for 
ZMOB [36] is applicable. Here, the packet-start signal Is 
addressed to the relevant subset of PE's by means of a capability 
code. Each PE also has a capability code of its own and the idea 
is that if a PE's capability code matches that of the message it 
sees on the ring then that message is accepted. The capability 
code of each PE must be set to reflect the processes that it can 
handle. 

Direct addressing, capability code addressing and universal addressing 
can all be accommodated by the ZMOB ring. 

Unfortunately, however, certain complications arise as a conse-
quence of the PE's no longer being equal computational resources. The 
local overloading of PE's is one. Another is that of a PE running out 
of storage (after garbage-collecting all it can) - for if the same is 
true of all PE's capable of processing the packet that caused store to 
run out, computation on behalf of that packet cannot proceed. The 
smaller the subset of PE's able to accept such packets, the more like-
ly this eventuality becomes. 
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Moreover, there are complications in the way that such a packet 
might be continued in another suitable PE, for the scheme we proposed 
made the assumption that the local address space of all PE's is iden-
tical. There are ways of overcoming this last difficulty (for 
instance by partitioning the PE's through an equivalence relation on 
the processes they can handle) but we do not wish to explore this fur-
ther here. 

5.8.9.2 Search Engine 

An alternative method of avoiding repetition of large (ground) 
relations in all PE's is to hold them external to the multi-processor 
and access them through a search engine in the manner described earli-
er. This is the approach we favour, for we envisage a (single) paral-
lel search engine - i.e. one able to respond to more than one query at 
a time - connected to all PE's. In this way, each copy of the user's 
program is identical (and will include copies of the necessary 'Con-
sult Search Engine' clauses) and so an entirely distributed system, 
based on equal computational resources and allowing for large ground 
relations, is provided. 

5.8.10 Regulation of Parallelism 

The previous chapter made it clear that curtailment of parallelism 
was an important function of the proof procedure. The perceived 
activity of the machine should be used to decide when the degree of 
concurrency needs constraint. We offer the following mechanism for 
determining how and when parallelism should be restrained. 

We have already indicated one way of adjusting to perceived machine 
activity - that of alternating between binary and n-ary branch naming. 
Perhaps a more satisfactory method of curtailing the degree of concur-
rency is by slowing down the distribution of packets that might be 
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expected to extend the search tree. These are packets beginning new 
main1 processes and follow from 'begin computation' messages from the 
parent main process. In this way, priority is given to the completion 
of processing for existing nodes. When the level of activity subsides 
once more, these packets may be distributed as normal. 

Because any matching unit is able to inspect the messages it 
receives, it is able to identify 'begin computation' messages. Given 
a mechanism that makes the matching unit in every PE aware of overall 
machine activity, we can see that the matching unit is in a position 
to decide whether to locally buffer packets corresponding to such mes-
sages or to release them onto the ring. 

Determination of overall machine activity should be done In a dis-
tributed manner and the means we propose involves each ARBITER* (which, 
interfaces its PE to the ring) in monitoring the activity of the ring. 
A busy ring implies much external activity and we make use of this by 
arranging for the ARBITER* to communicate the level of activity to its 
attached matching unit. The matching unit then acts on this advice as 
described previously. (The same information may be conveyed to the 
processor, thus enabling it to switch between binary and n-ary branch 
naming as appropriate.) 

This regulation of concurrency may be refined by noticing that a 
breadth-first exploration of the search tree is generally more concur-
rent than a depth-first one. By associating a tree depth level with 
each activation record, it is possible to constrain the degree of 
parallelism by giving priority to the 'deeper' main processes if the 
machine is adequately loaded. Thus matching units could order their 
buffers of waiting 'begin computation' packets in a way that will 
finely tune machine activity. 
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5.9 ASSESSMENT 

5.9.1 Level of Parallelism 

It is important to recognise that the principal criterion for judg-
ing the effectiveness of any proposal for concurrent computation Is 
some measure of the level of useful concurrent computation and not the 
time it takes for a particular process to complete. After all, if 

/ 

every PE is fully Involved in useful work, no improvement is possible 
and in particular, delays in the transmission of messages are of no 
consequence. 

However, the criterion of having all PE's fully employed on useful 
work has to be satisfied in order to substantiate this view. In prac-
tice, the degree of achievable parallelism rather depends on the 
nature of the problem being solved as well as on the proof procedure 
itself (and might also depend on control advice). 

It should be appreciated that a proof procedure organised around 
coarse grains of parallelism may not provide sufficient concurrency to 
satisfy certain machine/problem combinations, whereas one organised 
around finer grains may well do so. 

At the other end of the spectrum, a design which cannot control the 
level of concurrency operating in the machine is liable to catastroph-
ic failure if the nature of the problem presented to it gives rise to 
more parallelism than it can cope with - for instance, an unregulated 
Or-parallel scheme might run out of store because it is actively 
exploring too many branches simultaneously. 

To characterise the behaviour of our design, we discuss two exam-
ples, each illustrating one of the above extremes and we show how our 
design copes with these situations. 
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5.9.2 Low Degree of Concurrency 

In the Or-parallel proof procedure, the lowest degree of 
parallelism is exhibited by a deterministic refutation, one in which 
no more than one -clause head unifies successfully with the selected 
goal. It it not particularly Instructive to consider the case where 
the program only provides a single clause for each relation and we 
will assume that more than one clause may be invoked, in general, in 
response to a selected goal. 

Typical of such examples is the deterministic use of a procedure 
set which consists of a base clause and a recursive clause, e.g. solv-
ing an Append goal in which two arguments are fully instantiated lists 
and the third is a variable. 

Our scheme attempts to concurrently perform unifications between 
the selected goal and the heads of applicable clauses. In this 
respect, the Or-parallel scheme gains on the conventional backtracking 
one, which performs the unifications sequentially. Conery & Kibler's 
scheme is also organised around such sequentiality. In both cases, no 
progress In the refutation can be made while the clause with matching 
head is being sought. 

However, our scheme, following unification, has to wait for 
bindings to be registered and this is an overhead from which the back-
tracking scheme does not suffer (Conery and Kibler apply substitutions 
explicitly). Moreover, in general, registration cannot proceed until 
a branch' name has been allocated. In the earlier text, we indicated 
that for such deterministic refutations, pre-allocation of branch 
names is possible and we assume that this is done here. Thus the only 
delay we need to consider is that due to registration. 

Because registration of bindings is concurrent, some communication 
and synchronisation via messages is required and this gives rise, as 
always, to timing delays in individual processes. These delays may be 
significant in our example because the PE's are not fully occupied: in 
fact, the only activity going on apart from registration is applica-
tion of the selection function and establishment of child main 
processes together with their activation records. If registration is 
complete before such establishment, the registration delay is not sig-
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nifleant; otherwise it Is. 

In contrast, a conventional implementation will, at the time corre-
sponding to registration, apply the selection function and repeatedly 
(until a unification success or exhaustion of suitable clauses) 

1. Prepare an activation record 
2. Attempt unification 

Given a machine constructed according to our architecture and a tradi-
tional one, the ratio of registration time to the time taken to exe-
cute the above cycle will depend (amongst other things) on the nature 
of the particular program being run. 

For instance, to show the Or-parallel scheme in a bad light, one 
might consider the procedure set 

Append(z.u, v, z.w) <- Append(u, v, w) 
Append(NIL, x, x) 

and the goal <-Append(1.2 NIL, NIL, y). In this case, the 
backtracking scheme, using LRDF search, will choose the correct clause 
every time except the last and for a long first list, the proportion 
of successful first-time choices will be high. The Or-parallel scheme 
will register four bindings on each recursion, one of them being an 
output binding which will be devolved (y and variants of w). 

To show the Or-parallel scheme in a better light, one might consid-
er the re-ordered procedure set 

Append(NIL, x, x) 
Append(z.u, v, z.w) <- Append(u, v, w) 

and the goal <-Append(y, NIL, 1.2 NIL). In this second 
example, the conventional implementation will, on each recursion 
except the last, select the wrong clause and successfully unify the 
first two pairs of terms before detecting that the Append atoms cannot 
be unified. The longer such abortive processing takes in comparison 
to registration, the more favourable the Or-parallel implementation 
appears. 
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As regards the reading of bindings, the two schemes are comparable, 
for whereas the backtracking scheme determines a binding (or that the 
variable is unbound) through two references, the Or-parallel scheme 
determines, in the corresponding two references, a set of bindings -
the register. 

An empty set indicates that the variable is unbound. 

The only alternative in the deterministic case is a singleton set, 
whose binding applies because the search tree has a single branch, 
and this is indicated by an empty branch extension in the binding. 
A further storage access and a zero length bit comparison are also 
required in this eventuality. 

In both cases, looking up a binding in the Or-parallel proof proce-
dure involves a trivial amount of extra work. 

In summary, our scheme, when used in such unsuitable circumstances, 
would not be capable of exploiting the resources it has available to 
it. Furthermore, the very aspects of the scheme designed to cope with 
more general (and favourable) cases may well delay execution. In oth-
er words, the overheads introduced to allow for parallelism - for 
instance, registration and a message transfer system - may not always 
be compensated for by concurrent program execution, in which case, we 
are left with a net deficit. It is conjectured that the same conclu-
sion applies to all concurrent execution strategies, for the same 
reason. 

Nevertheless, the above examples and reasoning lead us to believe 
that our scheme will provide an adequate performance under such 
unfavourable circumstances. Whenever the application allows more con-
currency, more main processes can be expected to occupy the PE's and 
hence more concurrently executing useful work will take place. 

5.9.3 High Degree of Concurrency 

Our example here is centred on a database of employees. The prob-
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lem is to find all employees, w, managed (directly or transitively) by 
A and possessing property P(w). We assume that each determination of 
P(w) is a significant computation in terms of the quantity of 
resources demanded. 

<- Manager(A, w) & P(w) 

Manager(x, y) 
<- Works-for(x, y) 

Manager(x, y) 
<- Works-for(x, z) & 

Manager(z, y) 

Works-for(., .) 
Works-for(., .) 

etc 

P(t) <-
etc 

(We choose to treat the Works-for relation outside the Search Engine 
context so as not to needlessly complicate our description.) 

If we assume that binary branch naming is taking place, solutions 
of a Works-for subgoal, regardless of how that subgoal was derived,, 
give rise to new branches of the search tree and such branches are 
begun more or less at the same rate as solutions of the Works-for sub-
goal are found (as explained earlier in the chapter). 

Thus one can envisage the overall activity of the system gradually 
building up as new workers are discovered for known managers. This 
build-up is detectable from activity in the ring. Switching to the 
n-ary branch naming scheme will serve to delay the growing of the tree 
and help to conserve resources: branch names will tend to be shorter. 
(The delay does not matter in this case because we are assuming that 
the PE's are busy for a high proportion of the time.) 
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• We may also hold back the development of the tree by delaying all 
packets seeking to begin unifications. Releasing these packets in a 
'depth-first' manner will give priority to the extension of some 
branches of the search tree over others: those main processes further 
down the tree will receive more resources and this effect will be per-
petuated until terminal nodes are encountered. Emphasis will be given 
to the deepest derivations and the example shows that once a terminal 
node is encountered (and the solution extracted in case of successful 
termination), storage, in the form of activation records and registers 
relevant to the particular instance of the P(w) subgoal concerned, can 
be released. 
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CHAPTER 6: AND-OR PROOF PROCEDURE 

6.1 INTRODUCTION 

The And-or proof procedure, as its name implies, seeks to exploit 
both forms of parallelism implicit in logic programs. It is somewhat 
different in nature from other schemes; in particular, it is not based 
on the producer/consumer notion of computation and so does not give 
the network form of and-parallelism found, for example, in the pro-
posal put forward by Clark and Gregory [5]. In due course, we will 
describe the behaviour exhibited by the And-or scheme and show how the 
basic proof procedure might be adapted to display network behaviour. 

Because the organisation of the And-or proof procedure is so dif-
ferent, this chapter will be primarily concerned with the design of 
the abstract scheme. We believe that the proposal represents a new 
direction of research and inevitably certain aspects of it will 
require further investigation: there are some known weaknesses which 
will be pointed out when encountered. 

We have not been able to devote a great deal of effort to Investi-
gating the computational complexity of key parts of the scheme and 
thereby estimating their efficiency. Nor have we been able to 
formally show the proof procedure's correctness and completeness. 
However important these areas of research might be, their investi-
gation must necessarily come second to the discovery and investigation 
of the basic scheme, and that is what we report here. 

Although there exists a relationship between the And-or and 
Or-parallel proof procedures, it is not a particularly helpful one 
from the point of presentation. In fact, the Or-parallel proof proce-
dure is a degeneration of the And-or scheme and the two schemes are 
compatible to the extent that a partial degeneration towards the for-
mer one serves as a regulator of parallelism in the latter. However, 
in the initial part of this chapter, we will concentrate on the 
unbridled And-or scheme because we prefer the approach that derives 
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the final proof procedure by restricting the degree of parallelism, 
rather than the approach that extends the minimal (Or-parallel) scheme 
by introducing new aspects to it. 

The And-or proof procedure is based on the and-or tree represen-
tation of problem reduction, which is now described. 

6.2 AND-OR TREE 

The and-or tree model of problem reduction is well documented in 
the literature e.g. [33], [28]. Kowalski points out the major weak-
ness of this model, viz. that it does not show the relationship 
between subgoals which are connected through shared variables. We 
will show how the And-or proof procedure overcomes this difficulty. 

In the portrayal of the and-or tree given here, there are two types 
of node: goal nodes and (clause) head nodes. 

The children of a head node are goal nodes. 

The children of a goal node are head nodes. 

The arcs connecting a goal node to each of its children represent 
the unifications of the goal with the respective heads. Alternative 
clauses give rise to alternative unifications and so the arcs are con-
nected by v (or) operators. 

A head node and its children represent a clause (more strictly, a 
clause which has been applied in response to the parent goal). The 
arcs connecting the head node to each of its children represent the 
links between the consequent atom and the goals derived from the 
antecedent atoms. The antecedents are conjoined and so the arcs are 
connected by & (and) operators. 

A goal node with no child nodes is a fail node. 
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A head node with no child nodes is a success node. 

The and-or tree for the following set of Horn clauses is illus-
trated in Figure 18 on page 129. 

<-GOAL(y, z) 
GOAL(u, v) <- P(u) & Q(v) & R(u, v) 

P ( l ) 
P(2) 

Q ( D 
Q(2) 

R(w, 3) <- .... & .... 
R(x, x) 

The or-arcs are depicted as double lines to suggest interconnection 
through unification and to break up the tree into a more readily 
assimilated form. Viewing the tree from top to bottom, single line 
arcs lead to goal nodes, double line arcs lead to head nodes. 

Notice that the and-or tree has a single root node and that there-
fore the top-level goal has to be atomic (this may always be arranged 
by including an intermediate 'GOAL' procedure, as in the above 
example). 

6.3 INTRODUCTORY EXAMPLE 

As motivation for the And-or proof procedure, we describe a very 
simple computation, based on the above example. Terms which are 
defined later in the main text will still be used (they will appear in 
bold-face here) and it is hoped that in most cases, their meaning in 
the context of this trivial example will be more or less obvious. 
Where this is not the case, we will give some intuitive justification 
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// 
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P(l) P(2) 

/ 
/ 
// 
// 

{z/1}// | | {z/2} 
// v 

// 
// 

H I 
Q d ) Q(2) 

\ 
D <-Q(z) 

{w/y, z/3}| 

R(w, 3) /| 
/&l 

E <-R(y, z) 
l\ 

\ 
\\ 
\\ 
\\{x/y, y/z} 

v \\ 
\\ 
\\ 
K 

R(x, x) 

• • 

Figure 18. 

to supplement their usage. In this way, the section may also be 
regarded as an overview of the scheme. 

Description of Processing 

Imagine the tree is grown breadth first. Suppose the point at 
which the nodes F to K appear has been reached. 

The unifiers are summarised in Figure 19 on page 130 where, in 
these particular instances, the scope of a unifier is the singleton 
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set whose element is the name of the head node at which the unifier is 
established. 

| SCOPE UNIFIER 
II 
I | SCOPE 
II 

UNIFIER | 

l{B} {u/y, v/z} 
II 
1 l{F} | t {y/l} 1 

l{G} {y/2} 1 l{H} j | U/l} 1 

1(1} {z/2} ll{J} 1 1 
{w/y, z/3} | 

l{K} {x/y, y/z} 
1 1 
II 
II 

Figure 19. 

We may re-arrange the above information into the table of bindings 
shown in Figure 20. 

I VAR BINDING+SCOPE | 
1 
I VAR 
1 

BINDING+SCOPE | 

1 u y {B} 1 
1 
1 y 1 {F} I 
1 2 {G} I 

1 v z {B} 1 1 t 
z {K} | 

1 w y {J} 1 
i 
1 z 1 {H} | 
1 2 {1} 1 

1 X y {K} I 1 3 {J} 1 

Figure 20. 
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(This re-arrangement of binding information reflects the storage 
scheme adopted in the proposal. However, it will become evident in 
due course that we still need the concept of 'unifier', that is, we 
need to associate bindings together in a manner that relates to the 
point at which they were made. In implementation terms, this means 
that any binding must be accessible not only through the variable name 
but also through the relevant unifier. Needless to say, any reason-
able implementation will avoid a naive duplication of the binding 
information.) 

Referring to the entries for z, the scopes of the various bindings 
for that variable are {H}, {1} and {J}. Scopes {H} and {1} are dis-
joint whereas scopes {H} and {J} & scopes {1} and {J} are conjoint. 

Therefore, two reconciliations are set in progress with scopes (H, 
J} and {I, J} respectively. The first attempts to reconcile the com-
ponents z/1, z/3; the second z/2, z/3. 

They both fail. 

The two failures result in filters with scopes {H, J} and {I, J} 
being established. The set of filters { {H, J}, {I, J} } is subse-
quently promoted to a filter with scope {B, J}, which is in turn 
reduced to the singleton {J} (since B is J's ancestor) and the branch 
leading to node J is pruned. 

It may be useful to give the following justification for the steps 
in the above paragraph. The filter {H, J} formalises the 'incompat-
ibility' between the head nodes, H and J, which appear as its 
elements. It states that there can be no solution, in the and-or tree 
interpretation of this term [33], which includes those two nodes. 
Similarly, the nodes I and J are incompatible in the same sense. 
Appealing to the structure of the and-or tree, we see that H and I 
represent the only ways to solve the goal at D and because the sol-
ution of this goal is a necessary requirement for use of the clause at 
B to be successful, we conclude that B and J are incompatible and 
state this fact by means of the filter {B, J}. However, since B is 
J's ancestor in the tree, it follows that any solution which involves 
J necessarily involves B anyway and so B's presence in the filter is 
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superfluous. Deletion of B from the filter leaves the singleton {J} 
and we interpret this as being sufficient grounds on which to discard 
that node with all its descendants and to abort all computations in 
that part of the tree. 

Turning to the variable y, the scopes of its alternative bindings 
are {F}, {G} and {K}. Scopes {F} and {G} are disjoint but scopes {F} 
and {K} & scopes {G} and {K} are conjoint. 

Consequently, two reconciliations are set in motion with scopes 
{F,K} and {G,K} respectively. The first one reconciles the components 
y/1 and y/z; the second the components y/2 and y/z. 

They both succeed and return the unifiers {z/1} and {z/2} respec-
tively. 

At this stage, the set of unifiers is as in Figure 21. 

I SCOPE UNIFIER 
II 
I| SCOPE 
II 

UNIFIER | 

l{B} {u/y, v/z} 
II 
1 l{F} 1 {y/i} 1 

l{G} {y/2} ll{H} {z/1} | 

1(1} {z/2} ll{K} 
1 1 {x/y, y/z} j 

l{F,K} {z/1} ll{G,K} 
II 

{z/2} | 

Figure 21. 

The bindings for the variables are as in Figure 22 on page 133. 

CHAPTER 5: Or-parallel Proof Procedure 132 



j VAR BINDING+SCOPE \ 
1 
1 VAR 
1 

BINDING+SCOPE | 

1 u y {B} 1 
1 
1 y 1 {F} | 
1 2 {G} I 

1 v z {B} I 1 
i 

z {K} | 

1 x y {K} | 
i 
1 z 1 {H} | 
1 2 {1} 1 
1 1 {F,K} | 
1 
1 

2 {G,K} | 

Figure 22. 

With reference to z in Figure 22, the scopes of the two new 
unifiers are tested for conjointness with the scopes of each of the 
previous unifiers binding z, and with each other. Five (separate) 
tests for conjointness are made: 

{H} {F,K} CONJOINT, scope is {F,H,K} 

{1} {F,K} CONJOINT, scope is {F,I,K} 

{H} {G,K} CONJOINT, scope is {G,H,K} 

{1} {G,K} CONJOINT, scope is {G,I,K} 

{ f , k } { g , k } d i s j o i n t 

Component reconciliations are invoked in the first four cases 

Terms: 1, 1 Result: Success, unifier is {} 

Terms: 2, 1 Result: Failure 
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Terms: 1, 2 Result: Failure 

Terms: 2, 2 Result: Success, unifier is {} 

and the failures of cases 2 and 3 establish the. filters {F,I,K} and 
{G,H,K} respectively. The sets of filters {{F, I, K}} and {{G, H, K}} 
are promoted to the filters {F, I, B} and {G, H, B} respectively. 
These latter filters are then reduced to the filters {F,I} and {G,H} 
respectively. 

The unifiers current after these reconciliations have finished are 
depicted in Figure 23. 

i SCOPE i UNIFIER 
I I 1 
I | SCOPE | 
I I 1 

UNIFIER 1 

K b } 1 {u/y, v/z} 
I I 1 
l l { f } 1 
1 1 

{ y / U 1 
K g } I {y/2} I K h } 1 

11 1 
{z/1} 1 

K i } 1 {z/2} I K k } I 
1 1 

{x/y, y/z} | 

K f , k } 1 {z/1} I K g , k } 1 
11 i 

{z/2} 1 

K f , h , k } | {} 11 i 
I K g , I , k } | 
I I 1 

{} 1 

Figure 23. 

Since no further reconciliations are indicated, the entire computation 
is complete and the solutions (i.e. candidate solutions not eliminated 
by the filters {F, 1} and {G, H}) are 

1. {B, F, H, K} 

2. {B, G, I, K}. 

The corresponding substitutions are 
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1. { {u/y, v/z}, {y/1}, {z/1}, {x/y, y/z}, {z/1}, {} } 

2. { {u/y, v/z}, {y/2}, {z/2}, {x/y, y/z}, {z/2}, {} } 

from which the sets of goal variable bindings, {y/1, z/1} and {y/2, 
z/2}, may be extracted. 

6.4 THE BASIC SCHEME 

Although the preceding example is a simple one, it does give the 
flavour of the And-or proof procedure. It should be clear from it 
that our scheme is driven by what we have termed 'reconciliation' and 
we now describe this central concept together with those to which it 
is closely related. 

6.4.1 Reconciliation 

Growing branches of the and-or tree independently leaves open the 
possibility that conflicting bindings will be made. Such conflict may 
come about if two or more unifiers, whose associated nodes of the tree 
contribute to the solution of different parts of the same problem, 
contain components with variable position occupied by the same vari-
able. 

The conventional description of a substitution stipulates that 
there can be no more than one component in the substitution for any 
given variable. This restriction is not, in fact, a necessary one 
since the concept of substitution is defined in terms of applying the 
substitution to an arbitrary expression: that is, replacing variables 
appearing in the expression by the terms to which those variables are 
bound in the substitution. The necessary restriction is that if more 
than one component for any variable exists in the substitution then it 
is immaterial which component is selected when the substitution is 

CHAPTER 5: Or-parallel Proof Procedure 135 



applied to an arbitrary expression: the same instance of the 
expression (allowing for variants) is always computed. 

We define a substitution to be a set of unifiers with the property 
that when applied - in the above sense - to an arbitrary expression, 
the resulting instance of that expression is independent of the 
choices made in selecting alternative components for the same 
variable. This unconventional meaning will be ascribed to the term 
'substitution' throughout this chapter unless explicitly indicated 
otherwise. 

As an example, the set of unifiers {{x/A}, {x/u}, {u/A}} is a sub-
stitution in the above sense because on application to an arbitrary 
expression, the end result is the same, regardless of which component 
for the variable x is chosen. Similarly, {(x/f(u,A), v/w}, 
{x/f(g(v),w), u/g(A)}, {v/A, w/A}} is a substitution whereas {{x/A}, 
{x/B}} is not. 

Suppose S is a set of unifiers. If, for any variable v, S contains 
no more than one binding in which v occupies the variable position, 
then S is a substitution. 

Alternatively, if S includes, within its unifiers, the two bindings 
v/t^ and v/t£ then it should be Intuitively clear that if it is possi-
ble to unify t^ and anc^ t o augment S by the unifier U so produced 
(giving S'), then it is immaterial which of the above two bindings is 
chosen when S' is applied to some expression involving v. We term 
this process reconciliation and, assuming the unification is success-
ful, say that the bindings v/t^ and v/t2 are reconciled with 
auxiliary unifier U. If now it is possible to reconcile all pairs of 
alternative bindirigs stemming from S, including those introduced in 
auxiliary unifiers, then the resulting set of unifiers will be a sub-
stitution. 

Reconciliation is essentially the 'unification of terms in 
unifiers', as Kowalski points out in chapter 4 of [28]. 

The following examples illustrate reconciliation 
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S (Initially given) U (Auxiliary) 

1. {{x/u}, {x/A}} Uu/A}} 

2. {{x/f(u,A), v/w}, {x/f(g(v),w)}, {{v/A}, {w/A}} 
(u/g(A)}} 

For convenience, we will use the term primary unifier to refer to 
non-auxiliary unifiers. A primary unifier is associated with just one 
node of the and-or tree and is established during its growth. 

6.4.2 Solutions 

We will now describe what is meant by the term 'solution' and in 
order to do so, we need the notion of 'candidate solution'. 

Given a goal node G, a candidate solution of the goal at G is a set 
of head nodes, S(G), defined recursively as follows. 

1. Choose one child (head) node H of G and include H in S(G). 

2. For each child, G^, G2, •••Gn> o f H» include S ^ ) , S(G2), ..., 
S(Gn) in S(G) 

3. Include no other nodes In S(G). 

We will be primarily concerned with candidate solutions of the 
top-level goal and so unless otherwise qualified, the term 'candidate 
solution' will relate to that goal. 

A solution is a candidate solution whose associated unifiers have 
been reconciled. Consequently, the reconciled set of unifiers, 
including the auxiliary ones, is a substitution. 

Notice that reconciliation is never indicated if subgoals are inde-
pendent because in that case, no variables are shared between the 
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atomic goals and hence alternative bindings (for the same instance of 
each variable) cannot be made. In this event, every candidate sol-
ution will be a solution. In such circumstances, the And-or scheme 
shares individual solutions of the independent subgoals and fulfils 
the ideals described in Chapter 4 - whereby m+n (and not m*n) 
sub-computations are performed. 

Example 

Referring to the introductory example, consider the candidate 
solution {B, F, H, K} whose set of associated unifiers, S, is 

{ {u/y, v/z}, {y/1}, {z/1}, {x/y, y/z} }. 

For the candidate to be a solution, it is necessary to reconcile 
the components <y/l, y/z>. 

The reconciliation succeeds with the unifier {z/1}, which is 
added to S. Inclusion of this unifier in S precipitates the need 
to reconcile the two bindings for z, viz. z/1 and z/1. This 
reconciliation succeeds with the empty unifier, which is also 
added to S. 

No further reconciliations are indicated and so the candidate 
solution becomes a solution on addition of the auxiliary unifiers 
{z/1} and {} to S. 

The above description regards the goal of transforming a candidate 
solution into a solution as the set of subgoals which seek to recon-
cile potentially conflicting components. Because reconciliations are 
independent one from another, we believe that there is no constraint 
on them being performed in any given sequence - or indeed in no 
sequence at all - and our proof procedure exploits this observation. 

Before continuing the main exposition in the next section, we 
briefly digress to consider a simplistic approach to producing sol-
utions. Our reason for doing so is to motivate the description of 
further aspects of the scheme. 
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A naive scheme for producing solutions might grow the tree to its 
limits, compute candidate solutions and then seek to reconcile alter-
native bindings in the candidates. We see two principal weaknesses in 
this approach. 

1. It may happen that the and-or tree is not finite but it is known 
that nodes along a possibly infinite branch cannot contribute to a 
solution. In our example, nodes in the subtree rooted at node J 
cannot contribute to any solution but the naive scheme is unable 
to recognise this because it must first wait for the tree to be 
fully grown. 

2. Much repetition is generally involved since the generation of can-
didate solutions is combinatorial in nature. Given two unifiers 
associated with head nodes N1 and N2, reconciliations of pairs of 
components (for the same variable) contained in each will be 
repeated for all candidate solutions which include N1 and N2. In 
particular, if N1 and N2 have many descendants, such repetition 
will be extensive. 

6.4.3 Registration 

As one might expect, one modification to the naive scheme is that 
component reconciliations will be performed eagerly, that is, as soon 
as alternative bindings for the same variable are detected. This will 
serve to overcome the first weakness. 

We propose to conduct eager component reconciliations by carrying 
over, from the Or-parallel scheme, the notion of registrars. As 
before, a registrar exists for each variable and accepts alternative 
bindings for it. However, now it must take on the more active role of 
also initiating component reconciliations whenever these are 
indicated. We will shortly discuss the registration of bindings. 
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6.4.4 Scope 

Registration by itself does not overcome the second weakness, that 
of repetition. What we would like to do is to share the results of 
component reconciliations between the relevant candidate solutions. 
To achieve this end, we introduce the notion of scope. 

Each unifier is associated with a set of head nodes, called its 
scope. The scope of a unifier is a device that describes the substi-
tutions within which the unifier is to appear. For the sake of read-
ability, we will sometimes use the term "scope of a component" to mean 
"scope of the unifier in which the component appears". 

The scope of a unifier is recursively defined as follows. 

The scope of a primary unifier at the node N is the singleton {N}. 

The scope of an auxiliary unifier, resulting from the reconcil-
iation of components with scopes S^ and S2, is formed from the 
union of S^ and S2 by deleting nodes which are ancestors of others 
in the union. 

The interpretation we place on the scope S of a unifier U is that 
if S is a subset of any particular solution then U is a member of the 
corresponding substitution. 

Note that because a solution contains all ancestors of the tip 
nodes in that solution, it is safe to delete ancestral nodes after 
forming the union of S-̂  with S2: if S is a subset of some solution 
then that solution necessarily includes the deleted ancestral nodes 
anyway. 

The notion of scope may be extended to the case where a component 
reconciliation fails. In this case, a filter, whose scope is computed 
in the same way as that for an auxiliary unifier, is produced. 
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The interpretation we place on a filter with scope S is that S is 
not a subset of any solution. Equivalently, no candidate solution 
which Includes S as a subset is a solution. 

Reference to the introductory example will serve to illustrate 
these concepts. 

Note that a candidate solution need not necessarily be fully com-
puted in order to determine whether a given scope is a subset of it. 
This observation allows us to abandon partially complete computations 
in appropriate circumstances. 

6.4*5 Conjointness and Disjointness 

A registrar exists for each variable and included amongst its tasks 
is the determination of whether or not two bindings submitted to It 
are for the same instance of the variable with which it is concerned -
i.e. whether or not the two bindings might possibly relate to the same 
derivation. (An example of two bindings that do not relate to the 
same derivation is provided by the introductory example where the 
bindings concerned are z/1 and z/2, of scopes {H} and {1} 
respectively.) 

Earlier, we showed how candidate solutions are formed and we indi-
cated that within the unifiers associated with the candidate, all ref-
erences to any given variable are references to the same instance of 
that variable. Consequently, reconciliations are relevant if and only 
if the scope of the resulting auxiliary unifier or filter is a subset 
of some candidate solution. 

Below, we give a rule for determining whether or not a set of nodes 
is a subset of some candidate solution. 

This rule is suggested by the following examples, based on the 
and-or tree extract shown in Figure 24 on page 142 

CHAPTER 5: Or-parallel Proof Procedure 141 



/ 

/ 
/ 

/ & 

/ 

i 
i 

N1 
\ 

N2 
/ 

/ i 
/ / i 

/ / i 
/ / i 

// v | 
N5 N6 

N3 

\ 
\ 

& \ 

N7 

N4 
\ 
l \ 
l\\ 
i w 
i w 
i v \ \ 

N8 N9 
l \ 
i \ 
i \ 
i & \ 

Nil N10 
i 
i 
i 
i 
i 
i 

N13 N14 

\ 
N12 

\ 
l \ 
l \ \ 
i \ \ 
i w 
i v \ \ 

N15 N16 

Figure 24. 

1. The set of head nodes {N5, N7, N14, N15} is a subset of several 
candidate solutions. 

2. The set of head nodes {N5, N7, N13, N15} is not a subset of any 
candidate solution. 

The rule is that no two nodes in the submitted set of nodes - the 
supposed subset of some candidate solution - lie on branches concerned 
with solving some goal in alternative ways. 
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Equivalently, the rule Is that for each pair of nodes in the set, 
their nearest common ancestor is a head node. 

Two nodes are said to be conjoint if their nearest common ancestor 
is a head node. 

Two nodes are said to be disjoint if their nearest common ancestor 
is a goal node. 

In the second example above, the nodes N13 and N15 are disjoint and 
so the given set is not a subset of any candidate solution. 

When presented with two components with scopes {N^, N2, •••» 
Nn} and S 2 = {M^, M2, ..., h^} respectively, it is not necessary to 
form the scope of the projected auxiliary unifier (or filter) and then 
test each pair of nodes for conjointness. It is readily verified that 
the n*m tests, with one node coming from each scope, will suffice. We 
will also say that two scopes are conjoint if their contained nodes 
are pairwise conjoint. The efficiency of the above tests will in 
practice depend on the chosen representation of scope and Kowalski's 
suggestion of a tree structure rooted in the nearest common ancestor 
would seem a promising line of investigation. 

Example 
As an example of the basic And-or scheme, consider the Shortlist pro-
gram :-

Shortlist(in, n, out) <- Double(in, inter) & 
Initial(n, inter, out) 

Double(NIL, NIL) 

Double(t.u, v.w) <- *(2, t, v) & Double(u, w) 

lnitial(0, s, NIL) 
Initial(s(n), x.y, x.z) <- Initial(n, y, z) 

supplemented by an appropriate definition of the relation. The 
intended usage Is for the user to supply a list of integers in the 
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first argument of the Shortlist goal, an integer in the second and a 
variable in the third. The computation instantiates this variable to 
a list whose length is equal to the second input argument and each of 
whose items is double the corresponding item in the first list. Thus 

Shortlist(l.2.1.3.4.NIL, s(s(s(s(0)))), 2.4.2.6.NIL) 

holds. For the purposes of this example, we will modify the program 
as follows:-

<- Shortlist(r) 

Shortlist(p) <- Double(1.1.NIL, q) & lnitial(s(0), q, p) 

Double(NIL, NIL) 

Double(t.u, v.w) <- *(2, t, v) & Double(u, w) 

lnitial(0, s, NIL) 

Initial(s(n), x.y, x.z) <- Initial(n, y, z) 

* ( 2 , 1 , 2 ) 

The and-or tree is given in Figure 25 on page 145. 
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<-Double(1.1.NIL, q) C 
/ / 

/ / 
{t/1, u/l.NIL, q/v.w}// 

/ / 
/ / 

Double(t.u, v.w) E 
/\ 

/ \ 
/ & \ 

/ \ 

A <-Shortlist(r) 
i i 
II {p/r} 
i i 
B Shortlist(p) 
/\ 

/ \ 
/ \ 

/ & \ 
/ \ 

\ 
\ 
D <-Initial(s(0), q, r) 

<-*(2, 1, v) G 
i i 

{v/2} || 

{n/0, q/x.y, r/x.z} 

F Initial(s(n), x.y, x.z) 
\ 
\ 
\ 
\ 

H <-Double(1•NIL, w) I <-Initial(0, y, z) 

{s/y, z/NIL} 

(2, 1, 2) J 

ll{t'/l, u'/NIL, 
|I w/v'.w'} 
i i 
K Double(t'.u', v'.w') 
/\ 

/ \ 
/ & \ 
/ \ 

<-*(2, 1, v') M N <-Double(NIL, w') 

L lnitial(0, s, NIL) 

{v'/2} || 
i i 

*(2, 1, 2) 0 

II {w'/NIL} 
i i 
P Double(NIL, NIL) 

Figure 25. 

We notice that the and-or tree confirms the 'functional' nature of 
this example: all or-parallelism is very shallow and amounts to a 
failed unification in each case (not illustrated). Consequently, any 
test for conjointness will be satisfied. 

CHAPTER 5: Or-parallel Proof Procedure 145 



It will be seen that the unifiers at nodes E and F have alternative 
bindings for q, viz. q/v.w and q/x.y. A reconciliation is set in 
motion and succeeds with auxiliary unifier {x/v, y/w}, of scope {E, 
F}. 

It is easily verified that no further reconciliations are called 
for. Notice, however, that no solution is found until the entire com-
putation terminates, for the existence of the intermediate list q 
needs to be established. 

The solution is (B, E, F, J, K, L, 0, P} with corresponding substi-
tution comprising the set of unifiers at those above nodes, together 
with the auxiliary unifier {x/v, y/w}. From this substitution, one is 
able to determine the set of bindings relevant to the user's variable 
r, namely {r/x.z, x/v, v/2, z/NIL}. 

6.4.6 Filtering and Pruning of the And-or Tree 

We have described an and-or tree model of computation in which each 
node is tentatively assumed to be capable of contributing towards sol-
utions when the tree is grown. As component reconciliations are 
attempted, failures occur and are described by appropriate filters. 
We now show how filters may be manipulated to (in general) curtail the 
growth of the tree. 

The three operations introduced in this section - namely promotion, 
reduction and pruning - will be discussed with reference to the and-or 
tree extract shown in Figure 26 on page 147. 

In this example, we assume the pre-existence of two filters with 
scopes {N9, Nil} and {N12, N5}. 
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/ 
N2 
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N1 
/\ 
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/ 

N4 
/\ 
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/ \ 

N7 
/ 

/ i 
/ / i 

/ / i 
/ / i 

// v | 
N9 N10 

\ 
N8 

N3 
l \ 
l \ \ 
I l \ \ 
i i w 
i i w 
i i v \ \ 
N5 

\ 
l \ 
l \ \ 
i w 
i w 
i v \ \ 

Nil N12 
l \ 

N6 
l \ 
i \ 

Figure 26 

6.4.6.1 Scope Subsumption 

As a prelude to considering the manipulation of filters, it Is 
helpful to introduce the notion of scope subsumption. 

Scope S^ subsumes scope S£ if every node in S^ is an ancestor of 
some node in S2 ('ancestor', as always, is used inclusively). 
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For example (with reference to the above tree), S^ = {N4} subsumes 
S2 = {N10, N6}. When S^ and S2 relate to filters, the filter corre-
sponding to S2 is redundant:- for it states that no candidate solution 
which includes S2 as a subset is a solution. This is already implied 
by the hypothesis that the filter S^ subsumes S2 (because all the 
ancestors of any node in a solution also appear in that solution). 

6.4.6.2 Promotion 

In this section, we consider a filter to exist if it is implied by 
some subsuming filter. The definition which follows is illustrated by 
Figure 27 on page 149. 

A set of filters whose scopes are S^, S2, Sn, may be promoted 
to form a filter with scope S = S" U {N} where 

S" is the intersection of S^, S2, •••, S n and 

Sj-S' (1 <_ i _< n) are singleton sets whose respective elements are 
all the children of some (goal) node N' and N is the parent of N'. 
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for example 

S = {A, B, C, N } 
SL2 = {A, B, C, N^} 

S = {A, B, C, N } n n 

/ / 
/ / 

/ / 

B . 

w 
w 

w 
c 

N' , /\ 
/ l l \ 

//WW 
//WW 

//WW 
/ / v i i v \ \ 

N. N_ ... N 12 i n 

allows 

S , ... • , S } 1 Z n 
to be promoted to 
S = {A, B, C, N} 

/ i 

Figure 27 

Promotion of filters is justified by the following reasoning, where 
the names S, S", S^, N and N' are used as above. 

The filter, whose scope S^ is the union of S' with the singleton 
{N^} (1 i n) asserts that no candidate solution containing the 
nodes in S^ is a solution. 

Any candidate solution that contains the grandfather node N must 
also contain a child node of N'. But if that candidate solution also 
includes all the nodes in S', a filter exists (its contents specified 
in one of S^, S2 , ••• or S n) to rule out the candidate. 

We conclude that no solution can exist if It includes the nodes in 
S' and N and we signify this conclusion by establishing a filter with 
scope S = S' U {N}. 

Since the scope S subsumes each of S^, S2, ... , Sn, it is seen 
that the new filter is equivalent to the previous set of filters. 
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As an illustration of promotion, suppose in our example that the 
filter {N10, Nil} is produced and added to the pre-existing pair of 
filters, {N9, Nil} and {N12, N5}. 

Since N9 and N10 represent all ways to solve the goal at N7, it 
follows that the set of filters {{N10, Nil}, {N9, Nil}} may be pro-
moted to the filter {N4, Nil}. 

6.4.6.3 Reduction 

Promotion raises the possibility that the node which replaces its 
grandchildren is an ancestor of some other node(s) in the filter. 

In this case, the filter may be made simpler by removal of the 
ancestral node. This process is termed reduction and is justified on 
the grounds that a candidate solution is precluded by the reduced fil-
ter if and only if it is precluded by the original one (since any can-
didate which contains the descendant node necessarily contains all of 
its ancestors, including the one deleted through reduction). 

Continuing the above example, we see that because N4 is an ancestor 
of Nil, it may be deleted from the filter, i.e. {N4, Nil} may be 
replaced by the reduced filter {Nil}. 

6.4.6.4 Pruning 

Deletion of a node from the scope of a filter raises the possibil-
ity that the resulting set is a singleton. Appealing to the defi-
nition of filter and the preservation of its semantics under promotion 
and reduction, the Interpretation of a singleton scope is that the 
node concerned cannot be included in any solution. 
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Given a filter with singleton scope {N}, the rules of scope 
subsumption indicate that all unifiers and filters whose scope 
includes N or any of its descendants may be discarded. The signif-
icance of this is that the and-or tree may be modified by pruning the 
branch leading to node N. 

In our example, the branch of the tree leading to Nil may be 
pruned. 

Pruning, a computational notion, involves the following aspects:-

1. Deletion of unifiers and filters whose scopes are subsumed by {N}. 

2. The curtailment of all computations whose projected unifiers or 
filters are subsumed by {N}. In particular, this includes compu-
tations which seek to extend the subtree descended from node N. 

3. Indicating to N's parent that its child N has been deleted. 

We regard pruning as purging the and-or tree of the specified 
branch, as though it had not been there in the first place. 

If pruning a branch leaves the parent goal node without children, 
that node becomes a node of failure and pruning can then take place at 
the grandparent level. Thus in Figure 28 on page 152, pruning of the 
branch leading to node F allows the branch leading to node B to also' 
be pruned, since there is no longer any way to solve the goal at C. 
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Figure 28, 

The third aspect to pruning, that of informing a parent node that 
its child has been deleted, revokes a formerly indicated way to solve 
the goal at the parent node and raises the possibility that other pro-
motions may thereby have become possible. 

This Is illustrated in our running example, where N12 is now the 
only route by which solution of the goal at N8 can be effected. The 
set of filters {{N12, N5}} may therefore be promoted to {N4, N5}. 
This may be followed by a promotion of {{N4, N5}} to {Nl, N5}. Nl is 
an ancestor of N5 and so the filter {Nl, N5} may be reduced to the 
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singleton {N5}, thereby allowing the branch leading to N5 to also be 
pruned. 

Example 

The manipulation of filters*is well illustrated by the Same-leaves 
program, repeated from Chapter 4 in abbreviated form below. 

S-l(a, b) <- Ll(a, c) & Ll(b, c) 

Ll( 1(d), d.NIL) 
Ll( e:f, g) <- Ll(e, h) & Ll(f, i) & App(h, i, g) 

App(NIL, j, j) 
App(k.l, m, k.n) <- App(l, m, n) 

We keep the example simple by supposing that the given trees differ 
in their leftmost leaves and that these leaves originate from 
non-compound left branches - i.e. that the supplied goal statement Is 
of the form 

<-S-l(l(A):subtree-1, 1(B):subtree-2) 

where subtrees-1 and -2 are arbitrarily complex ground terms. 

Figure 29 on page 154 shows the and-or tree In simplified form. 
Lack of space obliges us to condense the right half of the diagram but 
this does not matter provided it is understood that the subtree 
descended from node F (concerned with the second term in the S-l goal) 
directly corresponds to the subtree descended from node E (concerned 
with the first terra). 
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<-Ll(l(A):(...), c) C 
/ / 

{el/l(A), fl/(...), gl/c}// 
/ / 

/ / 
Ll(el:fl, gl) E 

A <-S-l(l(A):(...), 1(B):(...)) 
i i 
|| {a/l(A):(...), b/l(B):(...)} 

B S-l(a, b) 
/\ 
/ \ 

/ & \ 
/ \ 

D < - L l ( l ( B ) : ( . . . ) , c ) 
\\ 
\\{e2/l(B), f2/(...), g2/c} 
\\ 
\\ 

F Ll(e2:f2, g2) 

/ 
/ 

/ 

/ 
/ 

/ 
/ & 

/ 
/ 

G <-Ll(l(A), hi) 

\ 

\ 
\ 
\ 
\ 
\ 

& \ 

/ 
/ 

/ & 

/ \ 
\ 

\ 
& \ 

\ 
K L 
.. / 
.. / i 

/ / i 
/ / i 

/ / i 
// v | 
Q R 

\ 
\ 

H <-Ll((...), il) 

{dl/l(A), 
hl/l(A).NIL} 

I <-App(hl, il, c) 
i i / 1 

/ I I 
//II{hl/kl.ll, ml/il, 

// II c/kl.nl} 
{hi/NIL, jl/il, il/c}// || 

// v || 
M Ll(dl, dl.NIL) // || 

App(NIL, jl, jl) N 0 App(kl.11, ml, kl.nl) 
i 

Figure 29. 
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We concentrate on those parts of the and-or tree expected to give 
rise to the failure, bearing in mind that other parts of the overall 
computation may be proceeding concurrently. We first turn our atten-
tion to bindings for the variable hi. 

It will be seen from the and-or tree that hi is bound as follows:-

hl/l(A).NIL {M} 
hl/NIL {N} 
hl/kl.ll {0}. 

Scopes {N} and {0} are disjoint but each Is conjoint with {M} and so 
reconciliations between the first and second and the first and third 
bindings are required. 

The first reconciliation fails and this produces the filter {M, N}. 
The singleton set {{M, N}} of filters is promoted to {E, N} which in 
turn is reduced to {N}. 

The branch leading to N is pruned. 

The second reconciliation succeeds with auxiliary unifier {kl/l(A), 
11/NIL}, whose scope is {M, 0}. This binding for kl will figure prom-
inently in the eventual detection of failure. 

Turning our attention to the other half of the and-or tree, we 
might expect that in the same way as the above binding kl/l(A) of 
scope {M, 0} was made, the binding k2/l(B) with scope {P, R} will 
also, sooner or later, be made. 

We now consider bindings for the variable c. It is readily seen 
that the bindings c/kl.nl and c/k2.n2 for this variable (which repres-
ents the common leaflist) are contained in unifiers with scopes {0} 
and {R} respectively and that these alternative bindings will need to 
be reconciled. The resulting auxiliary unifier {k2/kl, n2/nl} will 
have scope {0, R}. There are now two bindings for k2: 

k2/l(B) {P, R} 
k2/kl {0, R} 
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and these too will need to be reconciled since the respective scopes 
are conjoint. The resulting unifier will be {kl/l(B)}, whose scope is 
{0, P, 

We are almost done, for now we have two bindings for kl: 

kl/l(A) {M, 0} 
kl/l(B) {0, P, R} 

and since the scopes are conjoint, a reconciliation will be required -
but this will fail and the filter {M, 0, P, R} established. 

Manipulation of this filter leads to the failure of the top-level 
goal, as is shown in Figure 30 on page 157. 
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{M, 0, P, R} 
i 
I (promotion) 
i 

{E, 0, P, R} 
i 
I (reduction) 
i 

{0, P, R} 
i 
I (promotion - branch N assumed pruned) 
i 

{E, P, R} 
i 
I (promotion) 
i 

(B, P, R} . 

(reduction) 

(promotion) 

(reduction) 

(pruning - the goal at L has no solutions) * 

(pruning - the goal at D has no solutions) 

(pruning - the goal at A has no solutions) 

* This step assumes that branch Q has already been pruned. 
If this is not the case then the arrival of filter {Q} will 
precipitate the failure indicated in the final steps above. 

Figure 30. 

( p , r } 
i 
i 
i 

{F, R} 
i 
i 
i 

{R} 
i 
i 
i 

{F} 
i 
i 
i 

{B} 
i 
i 
i 

FAIL 
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Although the above example was based on one of many timing possibil-
ities, it should at least be plausible from our earlier description 
that the same end result - that of failure at the highest level -
comes about under any timing realisation. We will have more to say 
about timing considerations later. 

6.5 CONTROLLING THE CONCURRENCY 

In this section, we are concerned with ways in which the level of 
parallel activity might be controlled, both dynamically through the 
observation of machine activity and statically by means of program 
annotations. However, it is our belief that in the long term, all 
control must be carried out automatically since execution aspects such 
as this should be of no concern to the user. 

6.5.1 Dynamic Control of Activity 

One method by which parallelism may be regulated is based on the 
observation that extending the and-or tree tends to increase activity 
because it introduces, in general, more bindings for any given vari-
able and may thereby promote the need for subsequent reconciliations. 

On the other hand, reconciliations tend to have the opposite effect 
- for ultimately, they may cause branches of the and-or tree to be 
pruned. 

Thus one means of control Is to increase the level of activity by 
giving more priority to sub-computations that seek to extend the 
and-or tree (primary unifications) and decrease it by giving higher 
priority to sub-computations which seek to curtail it 
(reconciliations). 
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However, one needs to bear in mind that the above observation only 
refers to tendencies. It may well happen in particular cases that 
exploring all or-branches descended from a given goal node will turn 
out to be a profitable investment insofar as some consequential prun-
ing will reduce later activity. One would need to investigate this 
area more fully to produce a balanced approach. 

6.5.2 Suppression of Unproductive Parallelism 

Consider the simple Grandparent program 

Grandparent(x, y) <- Parent(x, z) & Parent(z, y) 

and suppose that the goal statement <-Grandparent(u, v) is specified, 
that is, the user is interested in all pairs <u, v> in this relation. 
We will assume that the Parent relation is given exclusively in terms 
of ground assertions. 

The basic And-or scheme, as described above, will break down the 
given goal into the two subgoals <-Parent(u, z) and <-Parent(z, v) and 
solve each independently. It will then reconcile alternative bindings 
for the shared variable z. 

For a large extensionally held Parent relation, such a strategy is 
undesirable on two counts. 

1. Most importantly, a gross amount of work is involved in growing 
branches for each assertion in the Parent relation (twice) and 
then setting up O(n^) filters, one per pair of non-reconciling 
bindings for z. 

2. The whole point of allowing for and-parallelism in the first place 
is to permit the concurrent solution of conjoined subgoals. If a 
trivial amount of work is required to solve such subgoals, it is 
quite likely that the savings in elapsed time resulting from their 

CHAPTER 5: Or-parallel Proof Procedure 159 



concurrent solution is far outweighed by the expense of organising 
the concurrency. 

Sequential producer/consumer schemes do not suffer from these defi-
ciencies and the first modification of our basic proposal is to allow 
concurrent and sequential execution to be mixed, in a manner we now . 
describe. 

6.5.2.1 Language Modification 

In this modification, sequential execution is implemented through 
annotations, similar to those implementing sequences in [5]. 

Defined as part of the language are two conjunction operators, '//' 
and whose declarative semantics are identical and the same as 
those normally given for "&'. Operationally, however, '//' and 
respectively relate to concurrent and sequential execution. 

In general, the antecedent of a clause is specified as a //-con-
junction of &-conjoined atoms. For example, we allow an antecedent of 
the form 

PI & P2 // P3 // P4 & P5 

('&' binds tighter than '//'). 

Following Clark and Gregory, we will term a string of &-conjoined 
atoms a sequence. Thus PI & P2, P3 and P4 & P5 are three sequences. 

The previously described And-or scheme relates to programs using 
the // conjunction throughout. As a first approximation to the opera-
tional behaviour of the new conjunction, we will say that goals 
within a sequence are to be solved sequentially but that different 
sequences may execute concurrently with one other. 
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6.5.2.2 Modification to Proof Procedure 

Suppose that the user's goal is given as 

<- GOAL 
GOAL <- PI & P2 // P3 // P4 & P5. 

We require the and-or tree to display just three branches at the top, 
as depicted in Figure 31 

/ 

/ 
/ 

/ 
/ 

/ / / 

/ 

/ 

o <- GOAL 
i 

o GOAL 
\ 
\ 
\ 
\ 
\ 
\ 

/ / \ 
\ 

/ 
o <-Pl&P2 o <-P3 

\ 
o <-P4&P5 

Figure 31 

It will be appreciated that, in general, goal nodes no longer 
relate to individual goals but rather to sequences of outstanding 
goals, exactly as one finds in the search tree model of computation. 
To this end, we need to assume the availability of a selection func-
tion for choosing the next goal from a sequence and, for the sake of 
simplicity, we will assume the familiar left-right, last-in-first-out 
rule. As before, the children of a goal node are head nodes, one for 
each clause whose head matches the selected goal. 
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The first approximation we gave above for the operational behaviour 
of the new operator is not precise enough because it does not 
specify how existing goals - i.e. those not selected by the selection 
function - are to be passed down the and- or tree. There is some dif-
ficulty in giving a general rule and we see this area very much as one 
of future research. The difficulty arises in the following circum-
stances. 

Suppose there exists a sequence at node N and that after selection 
of the next goal the depleted sequence S remains. If this goal is 
matched by the head of a clause whose body is 

then the goals associated with nodes immediately descended from N are 
those found in S^, S2, •••, S n and S. We would like the goals In S^, 
S2, S n to all be solved before the next goal in S is selected but 
this does not fit in well with our scheme. The weakness arises from 
the absence of any mechanism for synchronising the solution of 
conjoined goals and is related to another problem in the And-or 
scheme. We will return to this deficiency later in the chapter. 

The following example is based on the introductory example given at 
the beginning of this chapter and it may be found useful to re-examine 
that example now. 

This time, the set of clause is specified as 

sx / / s2 / / ... 

Example 
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<-GOAL(y, z) 
GOAL(u, v) <- P(u) // Q(v) & R(u, v) 

P(l) 
' P(2) 

Q d ) 
Q(2) 

R(w, 3) <- .... & .... 
R(x, x) 

and the and-or tree is given in Figure 32 on page 164. 
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A <-GOAL(y, z) 

I I {u/y, v/z} 
r i 
B GOAL(u, v) 
/\ 

/ \ 
/ \ 

/ \ 
/ // \ 

/ \ 
C <- P(y) D <- Q(z) & R(y, z) 

/ i 
/ I I 

/ / i i 
/ / i i 

/ / i i 
{y/1}// v I I{y/2} {z/1} 

/ / i i 
/ / i i 

/ / i i 
/ / i i 

E P(l) F P(2) 

\ 
l \ 
l \ \ 
i \ \ 
i \ \ 
I v \\{z/2} 
i \ \ 
i \ \ 
i w 
i w 
Q(l) H Q(2) 

\ 
\ 
\ 

<-R(y, 1) J <-R(y, 2) 

{x/y, y/1} 

K R(x, x) 

\\ 
\\ 
\\{x'/y, y/2} 
\\ 
\\ 
L R(x', x') 

Figure 32. 

Let us suppose that at some point in time, the unifications at nodes 
E, F, G and H are all completed. The unifiers are summarised in Fig-
ure 33 on page 165. 
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1 SCOPE UNIFIER 
II 
I| SCOPE 
II 

UNIFIER | 

l{B} {u/y, v/z} 
II 
ll{E} | | { y / U 1 

|{F} {y/2} I K G } 
11 

{z/1} I 

l{H} {z/2} 
11 
II 
II 

Figure 33. 

The bindings for the variables are as shown in Figure 34. 

1 VAR BINDING+SCOPE | 
1 1 1 
I VAR | BINDING+SCOPE | 
1 1 1 

1 u y { B } 1 
1 1 1 
1 y 1 1 {E} | 
1 1 2 {F} | 

1 v Z {B} | 1 1 1 
1 1 1 

1 Z 1 {G} | 
1 1 1 
1 1 1 

2 {H} | 1 1 1 
1 1 1 

Figure 34. 

The two bindings for y do not give rise to a reconciliation because 
the scopes {E} and {F} are disjoint. Scopes {G} and {11} are likewise 
disjoint and so reconciliation is not indicated for z's two bindings 
either. 
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Suppose that the tree is now grown to its limit. We note that 
unification of the goal <-R(y, 1) with head R(w, 3) fails and so node 
I only has one child node. Similarly for node J. At this stage the 
unifiers and bindings are as summarised in Figure 35 and Figure 36 
respectively. 

1 SCOPE UNIFIER 
1 
I SCOPE UNIFIER 1 

l{B} {u/y, v/z} 
1 
l{E} {y/i} 1 

l{F} {y/2} l{G} | {z/l} I 

l{H} {z/2} l{K} 
1 

{x/y, y/1} 1 

l{L} {x'/y, y/2} 
1 
1 
1 

Figure 35. 

VAR BINDING+SCOPE | I VAR BINDING+SCOPE 

u y {B} | 1 y 1 {E} 
2 {F} 
1 {K} 

V z {B} | 2 {L} 

1 x y {K} 
z 1 {G} | 

2 {H} | 1 ^ 1 x y {L} 

Figure 36. 

As far as the bindings for y are concerned, scopes {K} and {L} are 
disjoint but each of the pairs {E} & {K}, {E} & {L}, {F} & {K} and {F} 
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& {L} are conjoint and so the four corresponding reconciliations are 
set in motion. These result in filters {E, L} and {F, K} being estab-
lished, both other reconciliations succeeding with empty auxiliary 
unifiers. 

Since no further reconciliations are indicated, solutions may be 
derived by generating candidates and discarding those precluded by the 
filters {E, L} and {F, K}. 

The resulting solutions are {B, E, G, K} and {B, F, H, L}. 

Notice that the total amount of computation in this example is less 
than that for the earlier version. We cite this observation as sup-
port for the conjecture that by increasing the degree of parallelism 
in an algorithm, one generally increases the total workload. 

6.5.2.3 Relationship to Or-parallel Proof Procedure 

Here we are concerned with establishing the relationship between 
the modified And-or scheme and its Or-parallel counterpart. It is 
readily verified that in the extreme case when all conjuncts are of 
the sequential &-form, the resulting and-or tree is isomorphic to the 
corresponding search tree. In this event, each head node in the 
and-or tree has no more than one child goal node. The isomorphism 
merely coalesces every goal node (which now of course represents a 
sequence of outstanding goals rather than a single goal) with its par-
ent. The isomorphism is illustrated in Figure 37 on page 168. 
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Figure 37 

More importantly, the And-or proof procedure essentially reduces to 
the Or-parallel proof procedure because reconciliations are never 
indicated: all nodes are pairwise disjoint. 

6.5.3 Networks 

The introduction of sequences into our scheme does not, in itself, 
give a fine enough control over the execution of programs. Essential-
ly, the basic scheme gives us the maximum available and-parallelism 
but if this is tempered by the use of sequences, we may finish up by 
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losing more and-parallelism than we would wish. This is illustrated 
by the Compact example given in Chapter 4, which is repeated here. 

Compact(NIL, NIL) 
Compact(u.x, u.y) <- Remove(u, x, z) & Compact(z, y) 

Remove(u, NIL, NIL) 
Remove(u, u.w, w') <- Remove(u, w, w') 
Remove(u, v.w, v.w') <- -<(u = v) & Remove(u, w, w') 

X = X 

Remove, in the sequenced version of this program shown above, would 
delete all copies of the first item in the supplied input list to 
produce the intermediate list z. This list would be fully computed 
before Compact(z, y) is selected and there would be no and-
parallelism. 

Were the program to be modified so that the Remove and Compact 
atoms become conjoined by '//' rather than '&', too much 
and-parallelism would result since the Compact goal would attempt to 
generate all tuples in the corresponding relation - no account of 
Remove's output would be taken - and execution would run out of con-
trol. 

The modification we propose below allows us to obtain execution 
behaviour between these two extremes. 

As in [6], [5], we would allow the user to mark producers by means 
of annotations - e.g. in the above example we might mark Remove as the 
producer of z. (Alternatively, annotations might be generated by 
input-output mode declarations.) 

The basic And-or scheme operates as previously described until such 
time as some unification U attempts to bind a variable - z say - for 
which it is not a producer. Up till this point, all bindings made by 
U will be equally valid for all possible bindings of z. These 
bindings are registered in the usual way, together with the distin-
guished binding z/?. 
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Other schemes, e.g. [5], which have no real or-parallelism, would 
leave the partially complete unification suspended and restart it when 
a suitable binding came to hand. Our scheme needs to terminate the 
partial unification and continue the residual matching at the point of 
interruption for each alternative binding of z. Since the outcomes of 
these continuations will, in general, depend on the particular binding 
assumed for z, we must be able to describe the context in which the 
unifiers or filters apply. We now indicate how this is done and as 
one might suppose, the method is based on the idea of scope. 

Suppose then that U represents a unification which attempts to bind 
the variable z and that U is not a producer of z. Suppose further 
that S is the scope of the unifier being generated by U. 

On attempting to bind z, U terminates with success and the bindings 
already made are registered with scope S. Let us denote these 
bindings by Unifier[root]. The binding z/? is also registered (scope 
S) and the register entry carries with it some indication of which 
pairs of terms remain to be matched. 

Suppose now that a normal binding z/t is produced. Assuming that S 
and the scope of this new binding are conjoint - i.e. assuming that 
both bindings z/? and z/t refer to the same instance of z - we 'recon-
cile' these two bindings by establishing a unification, U[t], that 
seeks to match the pairs of terms indicated as part of the register 
entry for z/? and which reads the binding z/t for z. Because this 
continuation is dependant on the particular binding z/t read, we sig-
nify this fact by ascribing to U[t] the scope S[t] formed in the usual 
way from S and the scope of z/t. 

The above description extends the definition of reconciliation to 
these circumstances. 

Should an alternative binding z/t' be produced, a second unifica-
tion continuation U[t'] comes into being under scope S[t'] and this 
runs independently of the first etc.. 

It should be evident that this application of scope is entirely 
consistent with its previous usage: for example, if U[t] fails its 
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unification then a filter with scope S[t] will result and this will 
rule out corresponding candidate solutions; it will not, however, nec-
essarily rule out candidates which relate to the binding z/t" since 
S[t] will not be a subset of those candidates. 

Suppose now that S[t] is a subset of some solution. Because S (the 
scope of the root unifier) subsumes S[t] - the latter scope was com-
puted from the former - it follows that the root unifier will appear 
in the corresponding substitution. In this way, the root unifier is 
shared amongst all relevant substitutions. Conceptually, this sharing 
may be visualised in another way. If Unifier[t^], Unifier[t2], 
Unifier[tn] represent the outputs of the successful continuations then 
we may consider them as alternative extensions of the root unifier. 
If now some of these continuations themselves are subject to similar 
interruptions on account of other variables then the initial unifica-
tion could be viewed as a tree structure of alternative continuations 
(Figure 38 below). 
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Figure 38 
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The above means of control is more general than that given earlier 
and might be used throughout in place of the former. However, the 
exact behaviour would not theq be the same, although both modifica-
tions, if used appropriately, will have a moderating effect. An eval-
uation of the two modifications would be a useful exercise and might 
indicate that for practical purposes, the first is superfluous. 

6.6 IMPLEMENTATION CONSIDERATIONS 

As indicated earlier, we do not intend to give an implemehtation 
design here but will content ourselves with indicating how certain 
aspects of an implementation might be effected. 

We have tried to make this section as comprehensible as possible 
but some parts of it are very detailed. Our motives here are to 
impart as complete a picture of our scheme as possible and some of the 
difficulties we foresee can only be appreciated after a relatively 
full description. 

6.6.1 Structure-sharing 

As one might suppose, the same reasons that led us to choose struc-
ture-sharing principles for the implementation of the Or-parallel 
proof procedure lead us to choose them again here. 

A principal feature of the And-or scheme is its organisation around 
the idea of sharing unifiers among as many substitutions as possible. 
Thus the reasons for wanting structure-sharing are even more compel-
ling here than they were for the Or-parallel scheme, where, in turn, 
they were stronger than for the conventional backtracking implementa-
tion. (One might speculate that this is a consequence of more 
parallelism in the proof procedure but we will not pursue this conjec-
ture any further.) 
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6.6.2 Unification 

The design we have in mind is based on conventional ideas of 
representing expressions by means of structure-sharing. Bindings 
would not be applied explicitly but would be looked up whenever 
needed, exactly as In the Or—parallel proof procedure. 

We carry over the idea of registering bindings but now each regis-
ter entry takes the form <term, scope>, rather than the simpler <term, 
branch> of the earlier scheme. 

For primary unification, that is, unification associated with a 
single node of the and-or tree, the rule for looking up a binding in a 
register is essentially the same as it was in the Or-parallel proof 
procedure: the sought binding must have been made somewhere along the 
node's ancestral branch. The scope of such a binding will be a 
singleton whose element names a node which is an ancestor of the node 
at which primary unification is being undertaken. 

For an auxiliary unification, this rule has to be modified. 

Suppose a reconciliation is indicated between two bindings and sup-
pose the bindings concerned originate from unifiers with scopes S^ and 
S2* The scope, S, of the auxiliary unifier (or filter) resulting from 
the reconciliation (attempt) is computed according to the rule given 
earlier. 

If, in the course of the auxiliary unification, a binding for some 
variable v has to be looked up, then any binding for v, whose scope S' 
subsumes S, will do: the final result of the overall computation, the 
substitutions, will each have the same effect when applied to an arbi-
trary expression, no matter which binding for v is chosen. 

Such a binding is called a candidate binding for the evaluation of 
v in the context S. 

The justification behind this rule, remembering that S' subsumes S 
iff all the nodes in S' are ancestors of nodes in S, is that if S is a 
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subset of some solution then so is S'. Hence all candidate bindings 
for v will appear in the corresponding substitution. 

Note that the rule given above for primary unification is a special 
case of this more general rule. 

6.6.2.1 Choice of Bindings and Timing Considerations 

The notion of candidate bindings raises the prima facie compli-
cation of possibly having more than one candidate for a given evalu-
ation. 

Let us suppose that some unification is being attempted and that 
the scope of the resulting unifier or filter is S. Suppose further 
that the variable v is to be evaluated in the course of unification 
and that candidate bindings 

c]L: <t^, S1> and ĉ '* , S2> 

exist for that variable. 

It may be helpful to consider an example when following this argu-
ment and we provide one which refers to Figure 24 on page 142: 

S: {N5, N7, N14, N15} 
cL: <x.y, {N5, N7, N9}> 
c2: <A.NIL, {N5, N15}>. 

Since c^ and c2 are candidate bindings, S^ subsumes S; likewise, S 2 

subsumes S. 

We note that the nodes in S^ are pairwise conjoint with respect to 
those in S2, for all nodes are ancestors of those in S. (If node N^ 
in S^ were to be disjoint with respect to node N2 in S2, the same 
would be true of N^ and N2's descendants In S, contrary to the assump-
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tion that all nodes In S are pairwise conjoint.) Therefore, sooner or 
later, a reconciliation, R, between c^ and c2 will be called for. 

Consider the scope, S', of the auxiliary unifier or filter produced 
by R. S' is formed by taking the union of S^ with S2 and deleting any 
nodes which are ancestors of others in the union. Because S^ and S2 

each subsume S, so does S'. 

If the reconciliation R fails, the resulting subsuming filter will 
make the original unification - the one seeking an evaluation of v -
redundant and so the choice of candidate is of no consequence. 

If the reconciliation R succeeds then any solution that includes 
the nodes in S necessarily includes those in S'. Although choosing c^ 
rather than C2 would, in general, give rise to different unifiers and 
hence different substitutions, both substitutions would include the 
unifier produced by the reconciliation R and this would guarantee that 
the application of either substitution to the expression 'v" gives the 
same instance of that expression. Since v is an arbitrary variable, 
the same applies to all variables, and hence to an arbitrary 
expression. 

In our example, the auxiliary unifier produced by R is {x/A, 
y/NIL}, whose scope is {N5, N7, N15}. If the evaluation of v were 
required in order to unify v with z.NIL and c^ (whose term component 
is x.y) were chosen as the binding for v, the unifier produced would 
be {z/x, y/NIL}. If C2 (whose term component is A.NIL) were chosen 
instead, the unifier would be {z/A}. The alternative substitutions 
take the form 

1. {.. {.., v/x.y, ..}, {••, v/A.NIL, ..}, 
{z/x, y/NIL}, {x/A, y/NIL}, ..} 

2. {.. {.., v/x.y, ..}, {.., v/A.NIL, ..}, 
{z/A}, {x/A, y/NIL}, ..} 
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respectively and it is readily verified that at least the extracts 
shown produce the same instance when applied to an arbitrary 
expression. 

Now consider another situation, namely that no candidate binding 
for v exists at the time some unification (under scope S) seeks one. 
In this case, assuming the unification ends successfully, a unifier U 
of scope S will be produced and will include a binding, c: <t, S> for 
v, which will be registered in the normal way. 

Suppose now that another binding for v, c": <t', S'> is made and 
that had it appeared earlier, c' would have been a candidate binding 
for v in the unification producing U. One would like to be assured 
that the end result of the computation is not affected in any way 
through the late appearance of c" and indeed this assurance is 
present:-

Since c' would, by assumption, have been a candidate binding had it 
appeared earlier, we know that S' subsumes S. Therefore, the nodes in 
S and S' are pairwise conjoint and a reconciliation between c and c' 
is required, the scope of the auxiliary unifier being S (because all 
nodes in S' are ancestors of nodes in S). 

Should this reconciliation fail, a filter of scope S will be estab-
lished and this will preclude the appearance of U in any substitution. 

On the other hand, if the reconciliation of c with c' succeeds, any 
substitution which includes U will also include the auxiliary unifier 
resulting from the reconciliation because its scope is the same as 
U's. Had the binding c' arrived earlier, the components in the auxil-
iary unifier would have been included in the first unifier and no 
reconciliation would have been called for. 

By way of illustration, suppose that the unifier U of scope S con-
tains the component v/A.NIL and that this is because no candidate 
binding for v was found at the time unification took place. The bind-
ing c : <A.NIL, S> will appear in v's register. Suppose further that 
at some later time, the component c': <x.y, S'> is registered and that 
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this binding would have been a candidate binding for v in the unifica-
tion that produced U, had it appeared earlier. 

Because of this candidacy, we know that S' subsumes S. Had this 
later binding appeared first, U would have included the components 
x/A, y/NIL. However, because of the late arrival of c', U includes 
the binding v/x.y instead and a reconciliation between c and c' is 
needed. This succeeds with the auxiliary unifier {x/A, y/NIL} (assum-
ing that x and y are not bound) whose scope is also S. Hence any 
substitution that contains U also contains this auxiliary unifier and 
so the net result is the same as in the other case, where bindings for 
x and y appear as components of the original unifier. 

6.6.2.2 Parallel Unification 

Notice that the criterion for candidacy is satisfied if the binding 
recognised as a candidate was made earlier in the same unification -
for in that case, both scopes will be the same. 

The above arguments, showing the indifference of timing consider-
ations when seeking, a candidate, apply equally well in this special 
case. This makes it possible to concurrently match pairs of terms in 
a single unification. 

For example, if f(A, u) and f(x, x) are to be unified (under some 
scope S), it is possible to unify the pairs of terms <A, x> and <u, x> 
concurrently. 

If the binding <A, S> is (x-)registered before the other term 
unification seeks a binding for x, the unifiers will be {x/A} and 
{u/A}, both of scope S. 

If the binding <u, S> is (x-)registered before the other term 
unification seeks a binding for x, the unifiers will be {x/u} and 
{u/A}, both also of scope S. 
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If neither of these timings pertain, that is, the (x-)register is 
empty when both term unifications seek a binding, then the 
unifiers {x/A} and {x/u} will result. Since both of these have 
scope S, a reconciliation between the two bindings for x will be 
called for and the auxiliary unifier {u/A}, also of scope S, will 
result. 

In all three cases, any substitution whose corresponding solution 
includes the nodes of S, will have the same effect when applied to any 
expression involving x or u. 

Notice that the earlier modification for producing Network 
behaviour is not compatible, as stated, with parallel unification. 

6.6.3 Devolution of Processing 

6.6.3.1 Ownership of Unifiers and Filters 

We wish to avoid centralisation of all forms and this leads us to 
the concept of unifier and filter ownership. By this means we will be 
able to distribute unifiers and filters throughout the and-or tree and 
thereby localise certain operations on them. 

Suppose S is the scope of a unifier or filter. Then the nodes of S 
are pairwise conjoint and it is easily verified that there is a unique 
head node which is their common ancestor but no descendant of this 
node has the same property. 

We will call such a node the owner of the unifier or filter and 
will also refer to It as the nearest common ancestor of the nodes in 
S. We intend that unifiers and filters be accessible from their own-
ing node. 
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Note that the term 'owner' has the expected connotations'In the 
context of a primary unifier. 

6.6.3.2 Filter Subsumption Check. 

In later parts of this chapter, there will be calls to determine ' 
whether, given a scope S, there exists a filter whose scope S' 
subsumes S and we now show, in implementation terms, how such a check 
might be made. 

Suppose we are presented with the scope S = {N^, N2, NR} and 
we wish to know whether there exists a filter whose scope S' = {M^, 
M2, ..., M ^ subsumes S. 

If such a filter exists, its owner, M, will be the node which is 
the nearest common ancestor of M., M«, ... and M • 

1 2 * m 

Each of M^, M2, •••> M m would be, under the supposition that S' 
subsumes S, an ancestor of at least one node in S. Define a set of 
nodes S" by 

S" = {nodes N in S | N descends from a node in S'}. 

Then M is also the nearest common ancestor of the nodes in S". 

Therefore M Is a descendant of N, the nearest common ancestor of 
nodes in S. 

Thus If such a filter exists, Its owner will lie on that part of 
the and-or tree between the nodes of S and their nearest common ances-
tor, the node which owns the filter or unifier whose scope is S. 
Since all filters will, by assumption, be accessible through their 
owners, it will be possible to test whether the scope of any of these 
filters subsumes S (needless to say, these tests are most appropriate-
ly carried out concurrently with one another) and thereby decide 
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whether a subsuming filter exists. In this way, the search for a 
subsuming filter becomes a localised operation. 

The above argument is illustrated by reference to Figure 24 on page 
142 with S = {N5, N7, N14, N15} and S' = {N14, N15}. The nearest com-
mon node N of S is N1 and a subsuming filter may be owned by any node 
along the branches between N1 and the nodes in S. In fact, node N9 
would be the owner of a filter with scope S". 

We will also have to deal with the converse case, that is, given a 
filter with scope S" owned by the node M, to identify those nodes of 
the and-or tree which might own a filter or unifier whose scope S is 
subsumed by S'. 

The reasoning above indicates that such filters and unifiers would 
be owned by nodes lying along M's ancestral branch and would conse-
quently be sought along that part of the and-or tree. 

6.6.3.3 Scope Subsumption 

In this section and the next, we will be concerned with steps 
needed to test for scope subsumption and scope conjointness. We give 
Prolog algorithms based on particular representations of node names 
and scopes but do not mean to imply by doing so that a practical 
implementation will necessarily be restricted to them. These algo-
rithms are conceptual and are presented for illustrative purposes. 

We first need to fix a representation for node names. 

Nodes are named by lists of integers. The root node - correspond-
ing to the initial goal - is named by the empty list, NIL. If a node 
named by the list L has n child nodes, these are named by the lists 
l.L, 2.L, ..., n.L (the order of naming Is arbitrary). 

We may also take advantage of the natural ordering of integers and 
use it to order nodes names, analogously to the ordering of branch 
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names in the Or-parallel proof procedure. Given two nodes N and N', 
we consider their names to be reversed, that is we represent the names 
as [1^, I2, ....] and ^ " 9 ••••] respectively (so that 
relates ' to the root node's child etc.). Integer pairs <1^ 2» 

^ a r e se9uentially compared until a discrepancy, 4 arises. 

Then N < N' if < and N' < N if < Ik. If neither con-
dition applies, that is, one or both of the lists becomes exhausted, 
no ordering pertains. 

Geometrically, if the and-or tree is depicted to reflect this 
ordering, then N < N' iff N lies to the left of N'. For our purposes, 
we do not need to extend the ordering to cope with the case of one 
node descending from the other because in the context of a scope, 
where this ordering will be exploited, this possibility does not 
arise. 

We consider a scope to be represented by an ordered list of node 
names (integer lists), and we will term it a scope list. 

To show that scope S is subsumed by scope S', it is necessary to 
show that each node in S' is an ancestor of some node in S. 

This ordering of nodes in scope lists allows the subsumption test 
to cycle through both scope lists in a co-ordinated manner, as indi-
cated in the following program. 

S is-subsumed-by NIL 

N.S is-subsumed-by N'.S' <- N < N' & 
S is-subsumed-by N'.S 

N.S is-subsumed-by N'.S' <- N' is-an-ancestor-of N & 
S is-subsumbed-by S' 

where the second clause skips out unrelated nodes of the supposedly 
subsumed scope. 
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It is quite conceivable that a more advanced architecture will be 
capable of performing these tests more efficiently, possibly by oper-
ating on a natural - e.g. geometrical - representation of the and-or 
tree. For instance, the human intellect, when presented with the pic-
ture of such a tree and asked to determine whether N < N', would do so 
by glancing at the two-dimensional representation of the tree. An 
architecture that supported such a representation would be 
correspondingly effective. 

6.6.4 Determination of Conjolntness/Disjolntness 

With the above node naming scheme, it is readily verified that goal 
nodes have even length names and head nodes have odd length names. 

Given two nodes named by the lists 11 and 12, the following algo-
rithm determines whether the two nodes are conjoint or disjoint. 
(Here, the 'Reverse' relation holds if one list is the reverse of the 
other)• 

Node-relationship(11, 12, r) <- Reverse(ll, 11') & 
Reverse(12, 12') & 
Nr(ll', 12', r, DISJOINT) 

Nr(NIL, 1, r, r) 
Nr(l, NIL, r, r) 
Nr(nl .11, n2.12, r, r) <- -.(nl = n2) 
Nr(n.11, n.12, r, flip) <- Switch(flip, flop) & 

Nr(ll, 12, r, flop) 

Switch(CONJOINT, DISJOINT) 
Switch(DISJOINT, CONJOINT) 

The algorithm considers common nodes, beginning at the root node, 
either until one of the two submitted nodes is encountered - in which 
case it is the ancestor of the other - or until a pair of distinct 

CHAPTER 5: Or-parallel Proof Procedure 182 



ancestors is encountered. In the latter case, the two nodes are 
conjoint/disjoint depending on whether they have an even/odd number of 
common ancestors (including the root node) - i.e. depending on whether 
the last clause of the Nr program was used an odd/even number of 
times. 

6.6.5 Registers 

We mentioned earlier that a register exists for each variable 
introduced into the refutation. As one might expect, its use is an 
extension of that found in the Or-parallel proof procedure. 

In the earlier scheme, the register was used to hold alternative 
bindings made in different parts of the search tree. A corresponding 
statement is true here, although, of course, the tree in this case is 
an and-or tree. There are two principal consequences of this, both 
resulting from the fact that the register might contain different 
bindings for the same variable. 

Firstly, seeking an appropriate binding from the register is no 
longer deterministic; any candidate binding for the scope in question 
will do. 

Secondly, and more importantly here, such alternative bindings need 
to be reconciled and this is most conveniently organised as part of 
the registration procedure, as we now describe. 

6.6.5.1 Registration 

The function of reconciling alternative bindings for the same vari-
able is carried out by reconcilers. If a register already contains n 
bindings and a new one arrives, then n reconcilers are established, 
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each charged with the task of reconciling the new binding with one of 
the older ones. 

6.6.5.2 Reconciliation 

The reconciler is presented with two bindings, and <t2> 
s2>. 

Its first task is to determine whether S^ and S2 are conjoint 
scopes. 

If the scopes are not conjoint, the reconciler terminates; 

If the scopes are conjoint, the reconciler will initiate an attempt 
to unify the terms t^ and t2 but first, for reasons which will be made 
clear in due course, it needs to compute the scope of the resulting 
auxiliary unifier (or filter) and Its owner. Once it has done this, 
it establishes an empty auxiliary unifier and associates it - by some 
unspecified means - with the owner. 

It then seeks a filter which subsumes the computed scope and if it 
finds one, it knows that the unification it is about to embark on is 
redundant. In this case, the reconciler terminates, first discarding 
the empty unifier. 

Assuming that no such filter is found, the reconciler sets about 
unifying t^ and t2. 

If the unification fails, a filter will be produced in place of the 
auxiliary unifier. The earlier text indicated that considerable com-
putation may then need to be undertaken, specifically, promotion, 
reduction and pruning. Moreover, any unifier or filter whose scope is 
subsumed by the new filter may safely be discounted. All these 
aspects are discussed in the next section. 
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If the unification is successful, the bindings will be sent for 
registration as in the Or-parallel scheme. The processing described 
above will then be repeated for each new binding. 

In fact, as we hinted at earlier, it is logically acceptable, 
although perhaps not feasible in practice, to register bindings as 
unification proceeds, rather than waiting for it to terminate as in 
the Or-parallel scheme. This relaxation is possible because not reg-
istering a binding in time will have the effect of inducing a new 
reconciliation - as described in the section on parallel unification. 

After unification ends, the reconciler terminates. 

6.6.6 Filter Incorporation 

Incorporation of a filter, that is, taking steps to bring the 
information it carries into account, is essentially a two phase opera-
tion. 

Firstly, an attempt should be made to simplify the filter in 
accordance with the earlier sections on promotion and reduction. If 
promotion is possible, a new filter will result - in which case an 
attempt should be made to simplify that filter in a similar way and so 
on until no further simplification is possible. 

The result of this first phase is a filter, not necessarily the 
original one, which is input to the second phase. In the previous 
section on reconciliation, we pointed out that before a unification is 
begun, a check is made to determine whether a subsuming filter exists 
- and if it does, the reconciliation need not be done. Here, we need 
to consider the other timing eventuality, namely the production of a 
subsuming filter during or after such a unification. The second phase 
seeks to abandon active unifications and completed unifiers and fil-
ters if their scopes are subsumed by that of the new filter. 
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We now describe these two phases in the context of unifier and fil-
ter ownership. 

6.6.6.1 Promote and Reduce Phase 

We briefly recap the conditions under which promotion is possible. 

Let F n be a new filter and suppose that N is its owning node. Pro-
motion is possible if other filters F^, F 2, either exist 
explicitly or are implied by subsuming filters, providing that 

1. the scopes of the n filters have all but one node in common - i.e. 
their intersection has order one less than that of each of the 
individual scopes - and 

2. the n nodes outside this intersection are all the n children of 
the same parent node. 

Promotion may then take place and the resulting filter is the above 
intersection augmented by the grandparent node. It is readily veri-
fied that if the filters F^, F 2, ..., F R exist explicitly they will 
all be owned by the same node (N). 

Notice, however, that a filter produced by reduction may be owned 
by a proper descendant of the original filter's owner. An illus-
tration, based on the and-or tree in Figure 39 on page 187, is the 
promotion of the filters { {B, F, G}, {C, F, G} } (both filters owned 
by A) to the filter {A, F, G} (still owned by A), followed by the lat-
ter filter's reduction to the filter {F, G} (owned by D). 
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Figure 39, 

Complications do arise, however, in considering promotions when one 
or more of the filters F^, F2, ••• F n_i is implicit - and conversely, 
when the filter F n implies others (implication, in both instances 
being through scope subsumption). We will discuss these complications 
after the next section. 

6.6.6.2 Filter Implementation Phase 

Here our concern is to implement those simplifications to the over-
all computation made possible by the production of some new filter. 
The status of these operations should be borne in mind. They are not 
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necessary to preserve correctness (although neglecting to perform them 
may affect termination). They seek to save resources by abandoning 
unproductive paths but in doing so, they themselves may use signif-
icant resources. Analogous situations prevail in other areas of 
intelligent computation such as intelligent backtracking and the 
detection of clause subsumption. 

The earlier section on the filter subsumption check indicated that 
any unifiers and filters whose scopes are subsumed by the new filter 

_ will be owned by nodes in a restricted part of the and-or tree and 
consequently, any searching for such unifiers and filters is 
restricted to that part of the tree. 

In the special case of the new filter having a singleton scope, the 
implementation of that filter will also take on the responsibility for 
putting into effect the previously described branch pruning 
operations. 

We comment here on the timing considerations concerned with this 
phase. Our anxiety here is the occurrence of two 'simultaneous' 
events:-

1. The search for a subsuming filter, carried out by a reconciler 
immediately before it makes its unification attempt and 

2. The production of the subsuming filter which makes that unifica-
tion attempt superfluous. 

We might be concerned that the relative timing of these two events 
allows the subsumption to go by undetected. 

In fact, this is not the case. The reason is that before its 
check, the reconciler establishes an empty unifier. Also, before its 
search for subsumed unifiers and filters, the implementation phase 
exhibits the filter with which it is concerned so that searching 
reconcilers may find it. It is evident therefore that if subsumption 
comes about then either the reconciliation finds the subsuming filter 
it seeks or the implementation phase finds the empty unifier it seeks 
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(or both). There is no possibility of an excluded middle that allows 
the subsumption to go by undetected. 

6.6.6.3 Weaknesses in Filter Manipulation 

The implementation proposal we gave for filter promotion is not 
complete, for it assumes that all filters input to it are explicitly 
held. In fact, not only is it incomplete, but as stated, it is not 
efficient. We will show why with the assistance of an example, which 
relates to Figure 39 on page 187. In the example, we assume the prior 
existence of filters {B, E, G} and {B, H} (both owned by A) and the 
production of the new filter {F, G} (owned by D). 

Between them, these filters imply the filter {B} which in turn 
allows the branch leading to node B to be pruned. The derivation is 
illustrated In Figure 40 on page 190. 
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Figure 40. 

It will be seen that the derivation is bottom-up. Worse, the fil-
ter promotion algorithm itself and the search for a subsuming filter 
are also bottom-up operations. 

What one would like are top-down, goal-directed algorithms. This 
is very much an area of further research but we feel that an eventual 
solution will be along the following lines. 

We suggest that (raeta-level) goals should exist, one for each head 
node, each goal taking the form 

<- Filter({node}) 
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(conjecturing the non-existence of the singleton filter). 

The meta-level clauses used in the sought derivations will be 
assertions of the form Filter(S) together with the following Impli-
cations (augmented by suitable lower-level definitions). 

Subsumption 

Filter(s) <- Subsumes(s', s) & 
Filter(s') 

(A filter of scope s exists if s' subsumes s and a filter of scope 
s' exists.) 

Promotion 

Filter(s) <- Split(s, n, s') & 
Child(n, n') & 
Children(n", nodelist) & 
Filterlist(s', nodelist) 

Filterlist(s, NIL) 
Filterlist(s, n.rest) <- Filter( sU{n} ) & 

Filterlist(s, rest) 

(A filter of scope s exists if s can be partitioned into a singleton 
{n} and residue s' and filters with scope s'U{n"} exist for each 
child, n", of n', where n" is some child of n.) 

Reduction 

Filter(s) <- Member(n, s) & 
Ancestor(n, n') & 
Filter( sU{n'} ) 

(A filter of scope s exists if there exists a filter whose scope 
comprises the nodes of s together with a (proper) ancestor of some 
node of s.) 
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We envisage that control over these derivations will be data 
driven. In other words, we imagine these derivations to remain dor-
mant until an 'appropriate' filter is produced, this stimulating the 
continuation of the proof in corresponding parts of the search tree. 

Thus for example (refer to Figure 39 on page 187), we envisage the 
meta-level goal <-Filter({B}) (associated with node B) to remain dor-
mant until, for instance, Filter({B, H}) is produced. This would 
stimulate, by some appropriate reasoning, the development of the 
search tree to the stage indicated in Figure 41. 

0 <-Filter({B}) 

1 Using Reduction clause with assertions 

I Member(B, {B}) and Ancestor(B, A). 

0 <-Filter({B, A}) 

1 Using Promotion clause with the assertion 
I Split({B, A}, A, {B}), and Child and Children 

I clauses that establish D as the grandchild of A. 

0 <-Filter({B, D}) 

1 Using the Promotion clause once more, this time 
I in conjunction with Split({B, D}, D, {B}) 

I and the relevant grandchild data. 

0 <-Filter({B, G}) & Filter({B, H}) 

1 Using the computed filter that stimulated 
I the development of this particular path. 
o <-Filter({B, G}) 

Figure 41. 

The arrival of other filters would extend the search tree as appro 
priate. 
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6.7 ASSESSMENT 

Because the research reported here is still in its early stages, 
this assessment will necessarily be Inconclusive. Nevertheless, we 
feel that such an exercise is useful because it summarises the main 
features of our proposal whilst indicating areas of further research. 

6.7.1 Degree of Parallelism 

We believe that the scheme we propose has as much potential for 
parallelism as is possible for Horn clause programs, for it allows for 
both of the high-level forms of parallelism together with parallel 
unification. Of course, In practice, some restraint will generally be 
necessary and we have indicated ways of achieving this end. Ideally, 
an automated means of control is needed and we see the provision of 
such a mechanism as one aspect of future research. Adding control 
advice by means of input-output mode declarations may well be a suit-
able intermediate solution. In the short term, restriction of 
and-parallelism to those parts of the overall computation known to 
give rise to independent subgoals seems a worthwhile first step. 

6.7.2 Termination 

One weakness of our scheme, inherited from the naive scheme albeit 
in a modified form, is that solutions of the user's goal cannot be 
extracted until the computation as a whole terminates. This Is a con-
sequence of the notion of candidacy, which we may re-forraulate here as 
stating that a candidate solution is not a solution until it is known 
that no filter precludes it.. Unfortunately, the scheme we have 
described does not tell us when all filters which might potentially 
subsume any particular solution have been computed. Instead, we must 
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rely on the cessation of all activity (as in the naive scheme) and 
then produce solutions by generating and filtering candidate 
solutions. 

The weaknesses of this approach are quite severe, for a computation 
which gives rise to one or more infinite branches of the and-or tree 
(after pruning is taken into account) will fail to return any sol-
utions. A crude way of overcoming this deficiency is to pre-set a 
limit on the depth of nodes in the and-or tree and to treat nodes 
beyond that depth as nodes of failure. This may be acceptable in cer-
tain cases, possibly database applications, although in general, we 
consider this method as no more than a temporary expedient since it 
disturbs the semantics of the programming language. 

We do not see the provision of a scheme which extracts solutions as 
they are computed as an insurmountable problem. What is required is 
some mechanism to co-routine the extraction of solutions with the pri-
mary and auxiliary unifications concerned in their generation. This 
indicates the need for some form of feedback from reconciliations so 
that when particular reconciliations succeed, the success is made 
known to the extraction mechanism. 

We are unable to be more specific at this stage except to add that 
comparisons between our proposal and other more familiar schemes oper-
ating under certain execution controls might supply the necessary 
clues. This would in any case be a useful exercise in its own right 
and we would be particularly interested in establishing the relation-
ship between our scheme and the Connection Graph model [26]. 

6.7.3 Control 

We have already indicated the need for further general research 
into the control of program execution. Here, we will just say that we 
consider the weakness in control is caused by the same underlying 
deficiency as that mentioned in the section above viz. the absence of 
sufficient feedback. To be more specific, we are referring to the 
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difficulty which arises when a clause whose body takes the form S^ // 
S 2 // ••• // S^ is invoked in response to a goal and the residual 
sequence S (the goals outstanding at the node less the selected one) 
is non-empty. 

We require some means of co-ordinating and feeding the 'results' of 
the computation S^ // S 2 // ... // S n to the sequence S so that goals 
in S are not selected too early. 

6.7.4 Filter ManipulatIon 

For the sake of completeness here, we mention once more the out-
standing problem of providing a top-down method of incorporating fil-
ters. 

6.7.5 Architecture 

The degree of concurrency allowed in our scheme, arguably the maxi-
mal possible for Horn clause programs, would typically require more 
computational power than is available today: the Japanese research 
effort into fifth-generation computers [45] might reasonably be 
expected to provide suitable hardware. The timescales for carrying 
out the outstanding research should therefore be viewed in this con-
text. 

We have not addressed the area of architecture in the proposal 
although it is worth emphasising here the need to provide a machine 
sufficiently powerful to overcome the extra workload of the And-or 
scheme. As an indication of this overhead, we might consider the task 
of looking up a binding. In the Or-parallel scheme, this reduces in 
essence to the straight-forward comparison of two bit strings; in the 
And-or scheme, a test for scope subsumption is the corresponding oper-
ation. Clearly an architecture suitable for the And-or scheme would 
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need to be considerably more advanced than the one we described for 
its Or-parallel counterpart. 
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CHAPTER 7: CONCLUSION 

7.1 RELATED RESEARCH 

Our research seeks to apply parallel computation to Horn clause 
programs and as such attempts to bring together two major areas of 
investigation, viz. Parallel Computation and Logic Programming. 

Much research effort is currently being applied into ways of 
exploiting the potential for parallelism that new technology makes 
possible and references were made to such researches in earlier chap-
ters. The closest field of research to ours is that concerned with 
the parallel execution of functional programs - after all, the 
formalism of Horn clauses and those of functional programming lan-
guages share many characteristics, not the least of which being the 
parallel execution potential of programs expressed in those 
formalisms. However, the relationship is not as close as one might 
wish, for the mechanics of actually achieving parallelism - and that 
is the primary research to'pic of this thesis - are dissimilar. 

Execution of a functional program may be viewed as the reduction of 
a corresponding expression graph [13] whereby concurrency is achieved 
through the parallel reduction of expressions. Although this concur-
rency is the equivalent of and-parallelism, expression graphs in them-
selves have no direct relevance to Logic program execution which is 
based, as previously described, on resolution. 

Where the two fields of research are likely to be most closely 
related is on the architecture side. Our proposed architecture for 
the Or-parallel scheme is, at a superficial level, very close to that 
put forward by Darlington and Reeve [13]. Both proposals, for 
example, distribute "packets" by means of a ring and both have access 
to shared memory. Where the two schemes differ is in the nature of 
the processing elements themselves - for our proposal distributes the 
global memory throughout the PE's whereas theirs has shared access to 
a common packet pool through a packet pool controller. It is not 
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inconceivable that a common architecture might unify the two 
proposals. 

Whilst on the topic of architecture, we should mention here the 
work of Rieger, Bane and Trigg [36]. ZMOB is not specialised to logic 
but is intended as a general multi-processor for use in a variety of 
applications, as described in [37]. Our belief, as discussed earlier, 
is that ZMOB will not support the level of storage access that our 
scheme requires and it will be interesting to note how the difficul-
ties we foresee are overcome. In this context, we believe that Minker 
is planning an implementation of Prolog on ZMOB. 

Conery and Kibler's AND/OR proposal [11] is in some respects simi-
lar to our Or-parallel scheme. For the main part here, we will only 
concern ourselves with those parts of their scheme above the level of 
the architecture. 

Their model, as its name suggests, is based on the and-or tree view 
of computation. They define two sorts of processes, AND and OR proc-
esses, which they associate with AND and OR nodes of the tree respec-
tively, one process per node. Thus AND processes have OR processes 
for their children and vice versa. We first describe the operation of 
an AND process. 

An AND process is presented with a conjunction of goals to solve 
and initially establishes an OR process with the task of finding sol-
utions of the first of these. It then suspends itself awaiting the 
arrival of one such solution. (Thus there is no and-parallelism -
although Conery and Kibler refer to future plans for investigating the 
incorporation of such parallelism whenever it is known that subgoals 
share no variables.) 

Assuming that a solution ('substitution') is returned by the child 
OR process, the AND process becomes active once more by applying the 
substitution to the remaining subgoals and creating an OR process to 
solve the second goal, and so on. When no further subgoals remain, 
the substitution constructed by composition of the solutions returned 
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by the child OR processes is sent to the parent OR process as a sol-
ution of the conjunction. 

If, however, a child OR process fails or indeed the parent of the 
AND process asks for an alternative solution, the AND process requests 
the preceding OR child process to compute another solution. If this 
is not possible because the OR child which failed was charged with 
solving the first goal in the conjunction then the AND process itself 
fails. 

We now describe the operation of an OR process. An OR process is 
supplied with an atomic goal and has the task of finding a solution 
which is acceptable to its parent AND process. It begins by attempt-
ing to locate a clause whose head matches the supplied goal. If such 
a clause is found and turns out to be an assertion, the solution 
returned to the parent is simply the matching substitution. On the 
other hand, if the clause is an implication, the matching substitution 
is applied to the body of the implication and an AND process is estab-
lished to solve the conjunction of subgoals thus formed. 

The OR process continues by attempting to unify the goal with the 
heads of all remaining (applicable) clauses, for it may well happen 
that the parent AND process will find the first solution returned 
unacceptable and request another. In this way, the AND/OR scheme 
seeks to exploit all the or-parallelism implicit in the user's 
program. 

On receipt of a solution found by a child AND process, the OR proc-
ess composes it with the matching substitution saved from the earlier 
unification and thus forms a solution of the goal it was asked to 
solve. Once the first such solution has been sent to the parent AND 
process, the OR process locally saves any further solutions and passes 
them one by one to Its parent - but only when It is specifically 
requested to do so. The scheme incorporates a degree of optimisation 
Insofar as OR processes suppress solutions which are identical to 
those previously sent to the parent. (Other areas of optimisation are 
also described.) 
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Having outlined their scheme, we summarise below the principal 
similarities and differences between their approach and ours. 

Similarities:-

Both schemes exploit or-parallelism only. 

Both schemes are based on a multi-processor architectures. Each 
processor holds a local copy of the user's program. 

Differences:-

Their design is based on explicit application of substitutions to 
outstanding goals. Ours is based on structure-sharing of goal 
lists and of bindings (via registers). 

Their PE's only communicate by means of messages. Substitutions 
and fully instantiated lists of goals are examples of messages 
communicated from PE to PE. 

Each of their processes is entirely executed on the PE that first 
accepts the process. In our scheme, PE's are considered to be 
equal computational resources, each capable of continuing any 
process at any ,point. 

Robinson and Sibert's work on Loglisp [40] is of interest here 
because its organisation is not based on the LRDF search strategy. 
Loglisp is a marriage of Horn clause logic and Lisp which seeks to 
exploit the control facilities of the latter whilst retaining the 
"pure" characteristics of the formeri In this way, extra-logical fea-
tures, as found in most implementations of Prolog (and as criticised 
in [32]; replied to in [14]), may be separated from the logic itself 
and implemented instead through the Lisp component. 

Although not primarily put forward as a scheme for exploiting 
parallelism, the Loglisp proposal seems suitable for such application: 
for the decision to abandon LRDF search means that some method of pur-
suing alternative derivations - at least in quasi-parallel - has to be 
devised. The chosen approach, that of representing alternative bind-
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ing environments by means of association lists, differs from our 
Or-parallel proposal of having registers of bindings (their scheme, 
like ours, structure-shares bindings). We will describe our under-
standing of their mechanism to enable a comparison of the two alterna-
tives to be made. 

The starting point in our description is a conventional environment 
of activation records. It will be seen that the modification accommo-
dates separate derivations by arranging for environments to be copied 
whenever necessary (the copying is not naive). Because derivations 
are separated in this way, it is possible to store bindings uniquely 
in the activation record where the variable is introduced - although a 
minimal amount of searching is still required and so access is not as 
direct as in a conventional implementation. 

In this exposition, we will simplify matters by considering an 
activation record to consist of nothing other than the contained 
bindings i.e. we will drop all references to the other items of these 
records. Figure 42 on page 202 illustrates the first modification 
they make• 

CHAPTER 7: Conclusion 201 



CONVENTIONAL FIRST MODIFICATION 
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Figure 42. 

The modification splits the bindings from the rest of each acti-
vation record by means of a "spine" of pointers. In conventional 
implementations, the varying amount of storage reserved for bindings 
(amongst other things) dictates the need to construct stacks by means 
of pointers connecting neighbouring activation records. In Robinson 
and Sibert's scheme, an environment is represented by a spine and 
since each vertebra is of the same size, the spine is implemented as 
an array. 
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The second modification implements the bindings in each activation 
as a chain, the association list, rather than by the (pre-reserved) 
array of binding space found in conventional implementations. Pro-
log's classic direct access to a binding is thus lost; Instead a 
search through the appropriate association list now becomes necessary. 
If a variable is unbound in a particular environment, no entry exists 
for it in the relevant association list. An activation record and 
association list are shown in Figure 43. 

>| . | binding C I 

V 

I . | binding B | 

V 

I | binding A | 

Figure 43. 

Having indicated the change made to a single environment, we are 
now in a position to describe how structure-sharing of bindings is 
brought about. 

To copy an environment, one copies the array which implements the 
spine. Figure 44 on page 204 illustrates sections of two environments 
that share three bindings. 
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Figure 44. 

This copying of spines is typically done whenever the search tree 
forks. Let us consider just one derivation, the one whose environment 
is represented by the left spine in Figure 44. Suppose that a binding 
D is made in that derivation and the variable thus bound was intro-
duced in the same activation as the variables appearing in the 
bindings A, B and C. The new binding is then chained in at the point 
X. Likewise, a new binding (possibly for the 'same' variable) made in 
the environment represented by the right spine is chained at Y. It 
should be evident that bindings A, B and C are thus shared between 
both environments. 

CHAPTER 7: Conclusion 204 



This approach to holding bindings involves copying the current 
spine at each forking node in the search tree. Since the number of 
vertebrae is equal to the depth of the forking node in the tree, the 
overhead of such copying is not bounded by any constant. Our scheme 
does not have a similar overhead. 

When it comes to accessing a binding, some searching is Involved in 
both schemes. In our's, the variable's name directs the search to the 
appropriate register, which is then examined. Robinson and Sibert 
instead seek a binding in the appropriate association list. That 
search is bounded by the number of variables introduced by the clause 
used in the relevant activation. In our scheme, the search is 
unbounded because the number of alternative bindings for the 'same' 
variable is not bounded. In practice, of course, one would not expect 
more than a few, usually zero, one or two, bindings - although, of 
course, this is entirely dependent on the application. We feel that a 
comparison of the two schemes by means of simulation would be a par-
ticularly interesting and instructive exercise. 

A somewhat more established proposal, the TT-representation 
formalism of Fishman and Minker [17], was mentioned in an earlier 
chapter and we include a reference to it here for the sake of com-
pleteness. Unlike the other proposals discussed in this section, it 
does not seek to exploit parallelism through parallel computation but 
rather through the choice of program representation. 

The researches of Kibler and Conery, Robinson and Sibert and 
Fishman and Minker are concerned with or-parallelisra; the research of 
Clark and Gregory [5], to which we now turn, seeks instead to exploit 
and-parallelism. 

Their proposal complements those we have put forward because we 
have no And-parallel scheme as such. Clark and Gregory view the out-
put of a computation as being in a relation with the input (rather 
than a function of it) and their scheme computes no more than one 

CHAPTER 7: Conclusion 205 



instance of that relation. The particular instance found typically 
depends on the temporal behaviour of the various components that 
together comprise the computation. 

Their proof procedure is based on don't care non-determinism, as 
found in Dijkstra's guarded commands. A clause in their language 
takes the form 

P <- G | S 

where G is the guard and S takes the form S^ // S 2 // ••• // S n where 
each S^ is a sequence (G and/or S may be null). The guard G and each 
sequence S^ consists of a conjunction of atoms. 

Declaratively, the clause is read as though the body were simply 
comprised of the conjunction of all atoms in G and each S^. Opera-
tionally, the clause is a candidate clause for solving goals which 
match the head P, provided that the guard is a true conjunction of 
ground atoms. Moreover, once a candidate clause is discovered, its 
acceptance precludes the selection of any other candidate clause and 
computation is irrevocably committed to that choice. In this way, 
backtracking and other ways of coping with non-determinism are dis-
pensed with. In turn this leaves the way open to an elegant design 
which implements each sequence as a process and establishes communi-
cation between such processes through channels, each channel 
corresponding to a shared variable (i.e. a variable appearing in more 
than one sequence). These channels have a definite direction of flow 
(under the programmer's control) and give rise to computations with a 
pipeline or network flavour. 

It will be appreciated that the language differs from the language 
of Horn clauses both in form and semantics and so their scheme cannot 
be directly compared with either of our schemes. Their approach makes 
the formalism particularly suitable for applications which are func-
tional apart possibly from a degree of don't care non-determinism 
whereas our proposals are quite general and in particular might be 
suitable for database applications. 

We know of no research related to our And-or scheme. 
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7.2 FUTURE RESEARCH 

7.2.1 Or-parallel Proof Procedure 

At various points in our description of the Or-parallel scheme, we 
were obliged to make statements of the form "...in the absence of sim-
ulation..." and rely instead on Intuitive analysis. Of course, analy-
sis of a system is a valid method of gaining insight into its 
behaviour, provided that the model used accurately represents it. 
However, accurate representation of a complex computer system Is a 
notoriously difficult task and for critical systems is usually supple-
mented by simulation in one form or another. 

We feel such simulation is important in our scheme and in partic-
ular, we would like.to investigate the relationship between the number 
of PE's and overall speed of computation. We believe that this 
relationship depends quite critically on the nature of the global 
storage interconnection network and would like to simulate various 
interconnection strategies. In particular, we would like to be 
assured that given a sufficiently powerful network (and a sufficiently 
"parallel" program), addition of extra PE's never increases the over-
all time of computation and, for large numbers (n) of PE's, decreases 
it in a manner close to the ideal (proportional to 1/n). We would 
also like to simulate the shared bus interconnection network and would 
be very interested in confirming our estimate of the maximum number of 
PE's that might be supported by this extremely simple and cheap 
(global) resource. 

Another area of further research worth pursuing is that of 
optimisation. Our proposal has been kept as simple as possible but 
certain economies, for instance in the utilisation of store, may be 
possible. Such optimisations generally have a processing penalty and 
one would have to carefully evaluate whether they are worthwhile in 
the context of ever-decreasing memory costs, given that the primary 
motive for providing parallel execution in the first place Is the 
desire to increase the speed of computation. 
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The final area of research is that of building a prototype system 
and evaluating it to confirm the analysis and simulation described 
above. 

7.2.2 And-or Proof Procedure 

The previous chapter contained an assessment that outlined areas of 
further research on the And-or proof procedure. In this section, we 
point out that in addition to those investigations, the further 
research described above for the Or-parallel proof procedure also 
applies to the more novel scheme, perhaps more so. We would also like 
to investigate the computational complexity of certain key aspects. 

Finally, we feel that a certain degree of more theoretical research 
is called for. , Our description has been based largely on intuition 
and we would like to see a more soundly based exposition of the 
scheme«. In particular, we would like to see proofs of Its correctness 
and completeness. 
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9.0 APPENDIX: DETAILS OF BASIC INTERPRETER 

Demonstrate. 

The program for Demonstrate is a recursive procedure set whose base 
case is given by the failure to select a goal:-

Demonstrate(program, state) 
<- -"Select(goal, state) 

and whose recursive case is given by the clause 

Demonstrate(program, state) 
<- Select(goal, state) & 

New-ar(program, state, goal, ar) & 
Demo(program, ar.state) 

where the first call selects a goal from the current state and the 
second creates a "blank" activation record, ar. The resulting (inter-
mediate) state is passed on to Demo. 

The three-place Demonstrate referred to in Chapter 3 would 
Instantiate the variable representing the final state to the input 
state in the base case (and pass it through to the Demo call 
otherwise)• 

The specifications of 'Select' and 'New-ar' are deferred for the 
moment. 

Demo 

There are two ways to solve Demo, depending on whether matching is 
successful or not. 
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Demo(program, state-in) 
<- Match(program, state-in, state-out) & 

Demonstrate(program, state-out) 

Demo(program, state-in) 
<- ->Match(program, state-in, state-any) & 

Demo'(program, state-in) 

If matching is successful, the Demonstrate step succeeds and recurses 
to the next stage; if it fails, a call is made to Demo' whose outcome 
depends on whether or not any further clauses are available to solve 
the activation record's goal. 

Note that in a conventional (destructive assignment) implementation 
the effects of a partially complete match would have to be undone so 
that the state could be returned to its pre-match condition. For the 
sake of simplicity (in the 'Match' procedure set), we do not simulate 
this aspect but instead take advantage of the assignment-free nature 
of Prolog and reference the previous state, state-in, in Demo'. 

Demo' 

After a matching failure, subsequent computation depends on whether 
or not there are further clauses which might be Invoked in response to 
the selected goal:-

Demo'(program, state-in) 
<- Next-clause(program, state-in, state-out) & 

Demo(program, state-out) 

Demo'(program, ar.state-in) 
<- -iNext-clause(program, ar.state-in, state-any) & 

Backtrack(program, state-in, state-out) 

If no further clause can be tried, the top activation record Is simply 
destroyed and 'Backtrack' is called to operate on the remainder of the 
input state. 
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Backtrack 

Backtrack(program, state-in, state-out) 
<- Un-match(state-in, state-out) & 

Demo'(program, state-out) 

Backtracking operates by undoing the previously successful unification 
and then, calling Demo' to try again with the next clause indicated in 
the top activation record. If no such clause exists, Demo' will call 
Backtrack again. Notice that if Backtrack fails, so too does Demon-
strate - i.e. in effect, the underlying interpreter is being used to 
implement failure to demonstrate. 

The specification of 'Un-match' is deferred until after matching 
has been described. 

We now specify the lower levels of the program. 

Select 

'Select' implements the selection strategy in the context of the 
shared goal list structure described in Chapter 3. 

Select(goal, ar.state) 
<- First-subgoal(ar, goal) 

Select(goal, ar.state) 
<- Assertive(ar) & 

Isolate(ar, goal*) & 
Select'(goal, goal*, state) 

First-subgoal only succeeds if the clause referred to in the third 
component of the activation record 'ar' is an implication, in which 
case 'goal' is instantiated to a terra which represents the goal 
derived from the first atom of the body. 
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The second definition applies only if the clause referred to in the 
latest activation record is an assertion, in which case, 'Isolate' 
abstracts the second component of 'ar', the term which represents the 
goal just unified. 

The definitions of 'First-subgoal', 'Assertive' and 'Isolate' are 
straightforward and detailed specifications are not given. 

Select' 

Select' Is presented with a state and goal (in goal*) and is to 
instantiate the term 'goal' to the goal whose selection follows that 
of goal* in the left-right, last-In-first-out strategy. 

Select'(goal, goal*, state) 
<- Find-state(goal*, state, state*) & 

Select*(goal, goal*, state*) 

'Find-state' (not given) derives the state whose top ar is that In 
which goal* is introduced - i.e. it "strips off" intervening acti-
vation records. 

Select* 

Select*(goal, goal*, ar.state) 
<- Next-goal(goal, goal*, ar) 

Select*(goal, goal*, ar.state) 
<- -"Next-goal (goal, goal*, ar) & 

Isolate(ar, goal') & 
Select'(goal, goal', state) 

Next-goal succeeds if goal follows goal* in the calls introduced by 
the antecedent referenced in 'ar'. 
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The second clause applies in the event of goal* being the last goal 
derived from the antecedent of the clause referred to in 'ar', in 
which case the goal (goal') named In 'ar' is input to a recursive call 
of Select'. 

New-ar 

New-ar supplies a new activation record for the given goal:-

New-ar(program, state, goal, ar(level, goal, 1, UNKNOWN, NIL)) 
<- Unique(state, level) & 

Possible(program, goal) 

In a von Neumann implementation, the name represented by 'level' would 
be implicit and take the form of an address - that of the activation 
record. In this program, 'Unique' has the task of generating a level 
different from all those used in ar's embodied in 'state'. Levels are 
represented by natural numbers and a unique level is generated by 
Incrementing the level of the top-most ar in 'state' by one. 

The constant '1' Indicates that the clause to be tried is the first 
in the procedure set for the supplied goal. Its analogue in a realis-
tic implementation would be a reference pointer to the first clause in 
the procedure set, the establishment of this pointer in effect match-
ing the goal and head predicate symbols. We simulate this matching of 
predicate symbols via the 'Possible' call which merely confirms the 
existence of the procedure set. The definition of 'Possible' is 
straightforward, given that programs are normally organised as col-
lections of procedure sets. 

The constant UNKNOWN, occupying the position of the bindings argu-
ment of the activation record, will later be replaced by a list, each 
item of which corresponds to a new variable and initially signifies 
that the variable is unbound. It is not known at this stage how many 
such entries are to be made since the clause has not yet been 
accessed. 
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Next-clause 

The third item in the most recent activation records indicates the 
current procedure definition being tried. Initially it is 1. A call 
to Next-clause serves to produce a new state whose only difference 
from that supplied Is that the third argument of the most recent acti-
vation record is incremented by one - but only if 'program' indicates 
that the corresponding clause exists. Note that this implicitly 
implements the matching of predicate symbols. This is because the 
predicate symbols of the goal and first procedure definition used were 
matched in 'New-ar' and 'Next-clause' merely perpetuates this matching 
by supplying clauses from the same procedure set. 

The definitions are too detailed to give here. 

Match 

Match(program, state-in, state-out) 
<- Get-goal-terms(state-in, terms-goal) & 

Get-head-terms(state-in, program, terms-head, state-inter) & 
Match'(terms-head, terms-goal, state-inter, state-out) 

As explained above, the goal and head predicate symbols will already 
have been matched but before matching (specified in Match') can con-
tinue, the appropriate goal and head terms must be isolated. In this 
implementation, a list of terms is represented by the pair 

terms(lev, ts) 

where 

'lev' is the level of the activation record which introduced the 
clause that originated the terms and 

'ts' is the list of terms as they appear in the program. 
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Get-goal-terms uses the second argument of the top-most activation 
record in state-in to obtain the goal terms. 

In a similar way, Get-head-terms uses the third argument of the 
same activation record (in conjunction with the goal's predicate sym-
bol and program), to isolate the head terms. It also produces a new 
state by replacing the constant 'UNKNOWN', which appears in the 
bindings position of the Input state's most recent activation record, 
by an array (fixed length list) of entries with one entry for each new 
variable, each entry being the constant 'UNBOUND'. 

The detailed specifications of Get-goal-terms and Get-head-terms 
are not given. 

Match' 

Matching proceeds incrementally, term-by-term, as follows:-

Match'(terms(lev-a, NIL), terms(lev-b, NIL), state, state) 

Match'(terms(lev-a, t-a.ts-a), terms(lev-b, t-b.ts-b), state-in, 
state-out) 

<-Static-Dynamic(lev-a, t-a, term-a) & 
Static-Dynamic(lev-b, t-b, term-b) & 
Unify(term-a, term-b, state-in, state-inter) & 
Match'(terms(lev-a, ts-a), terms(lev-b, ts-b), state-inter, 

state-out) 

Static-Dynamic 

'Static-Dynamic' associates together the supplied level and static 
term to produce the corresponding term (we choose, for the sake of 
simplicity, to treat constants as O-ary functors). 
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Static-Dynamic(level, t, var(level, t) ) 
<- Variable(t) 

Static-Dynamic(level, t, fun(level, t) ) 
<- Functor(t) 

Variable and Functor 

i 

A static variable is represented in the meta-language by the 
functor v(k) where k is a positive integer. A static functor is 
represented by the meta-level functor f(s, ts) where 

"s" represents the function symbol and 

'ts" represents the terms of the functor. 

Thus the definitions of Variable and Functor are given by:-

Variable(v(k)) 

and 

Functor(f(s, ts)). 

Unify 

In a structure-sharing implementation, any variable supplied to the 
unification process may or may not be bound. If it is bound, unifica-
tion uses the term to which the variable is bound in place of the var-
iable Itself. Since a term may be a variable, this evaluation, or 
de-referencing, is in general recursive and we choose to separate it 
from the unification process proper (defined by Unify"). 

Evaluation of both terms to be unified has the effect of avoiding 
variable-variable chains of bindings whenever possible. Thus if the 
variables u and v are two terms to be unified and u is unbound but v 
is bound to t then evaluation of both terms results in the binding u/t 
rather than u/v being made. Subsequent evaluation of u is thereby 
made more efficient. (Note, however, that chains of variable-variable 
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bindings may still arise. For example, if u and v (both initially 
unbound) are to be bound, the binding u/v (say) will be made. A later 
binding v/v' will mean that a subsequent evaluation of u will involve 
a non-trivial variable-variable binding chain.) 

Unify(term-a, term-b, state-in, state-out) 
<- Evaluate(term-a, term-a', state-in) & 
. Evaluate(term-b, term-b', state-in) & 
Unify'(term-a', term-b', state-in, state-out) 

Evaluate 

'Evaluate' follows the chain of variable-variable bindings until it 
comes across a variable bound to a functor or an unbound variable:-

Evaluate(term, term, state) 
<- Functor(term) 

Evaluate(term-in, term-out, state) 
<- Variable(term-In) & 

Evaluate'(term-in, term-out, state) 

Evaluate' 

Evaluate'(var, term, state) 
<- Bound(var, term', state) & 

Evaluate(term', term, state) 

Evaluate'(var, var, state) 
<- ->Bound(var, term, state) 

We defer the specification of 'Bound' for the moment. 

Unify' 

There are four self-explanatory cases to consider in the specifica-
tion of Unify':-
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Unify'(fun-a, fun-b, state-in, state-out) 
<- Functor(fun-a) & 

Functor(fun-b) & 
Unify-functors(fun-a, fun-b, state-in, state-out) 

Unify'(var-a, var-b, state-in, state-out) 
<- Variable(var-a) & 

Variable(var-b) & 
Bind(var-a, var-b, state-in, state-out) 

Unify'(var, fun, state-in, state-out) 
<- Variable(var) & 

Functor(fun) & 
Bind(var, fun, state-in, state-out) 

Unify'(fun, var, state-in, state-out) 
<- Functor(fun) & 

Variable(var) & 

Bind(var, fun, state-in, state-out) 

Unify-functors 

If both terms are functors, the function symbols must be identical 
and the terms of the functions must be matched successfully:-

Unify-functors(fun-a, fun-b, state-in, state-out) 
<-Static-Dynamic( lev-a, f(s, ts-a), fun-a)& 

Static-Dynamic( lev-b, f(s, ts-b), fun-b)& 
Match'(terms(lev-a, ts-a), terms(lev-b, ts-b), state-in, 

state-out) 

The two 'Static-Dynamic' calls are used "in reverse" here to produce 
static functors from dynamic ones. 

Bind 

We now turn to the question of how bindings are made and stored. 
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As was mentioned in Chapter 3, bindings are associated with the 
activation record at which the variable is introduced. If this acti-
vation record is not the most recent one (i.e. the one related to the 
current unification), an entry must be added to the reset list belong-
ing to the most recent activation record. 

Bind(var, term, state-in, state-out) 
<- Find-ar-and-add-binding(var, term, state-in, state-inter) & 

Parts(state-inter, ar-inter, state-rest)& 
Check-reset(var, ar-inter, ar-out) & 
Parts(state-out, ar-out, state-rest) 

'Parts' holds if the first argument is a state whose most recent acti-
vation record is given by the second argument and the third argument 
represents the state of remaining activation records. Its first use 
here splits the supplied state into the top-most activation record and 
the state consisting of' the remaining activation records; its second 
use is in the reverse direction - i.e. as a data constructor. 

Find-ar-and-add-binding 

Find-ar-and-add-binding(var, term, ar-in.state, ar-out.state) 
<- Local-var(var, ar-in) & 

Add-binding(var, term, ar-in, ar-out) 

Find-ar-and-add-binding(var, term, ar.state-in, ar.state-out) 
<- ->Local-var(var, ar) & 

Find-ar-and-add-binding(var, term, state-in, state-out) 

The chosen representation of state means that a recursive search for 
the appropriate activation record is necessary. In a practical imple-
mentation, such access would be made through a direct reference, as 
previously explained. We could have simulated such direct access by 
representing the state as a relation of assertions, each assertion 
being, in essence, an activation record. We chose not to do this 
because such a description would have involved the deletion and 
insertion of clauses (to reflect destructive assignment in the ar's). 
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Add-binding 

To avoid unnecessary detail, Add-binding is defined informally. 

If the variable to be bound is var(lev, v(k)), Add-binding locates 
the k"th item in the fourth argument (bindings) of the input acti-
vation record (whose level is known to be lev). It produces an output 
activation record which differs from that input only insofar as the 
supplied term appears in place of the constant "UNBOUND". 

Check-reset 

Check-reset adds a reset entry to the list constituting the fifth 
argument of the input activation record if the variable in the first 
term is not local to that activation record. Otherwise, the output 
activation record is the same as that input. 

Check-reset(var, ar, ar) 
<- Local-var(var, ar) 

Check-reset(var, ar-in, ar-out) 
<- -«Local-var(var, ar-in) & 

Add-reset-entry(var, ar-in, ar-out) 

The lower-level procedure definitions are trivial and are not given. 

Bound 

Now that the method of adding bindings to the state has been 
described, it is easy to understand how to determine the term to which 
a given variable is bound. 

The Bound relation holds between a variable and a term in the given 
state If the variable is bound to the term in that state. The Bound 
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relation does not hold if the constant "UNBOUND" appears in place of a 
term. 

The two steps involved in determining whether "Bound" holds are 

To find the activation record appropriate to the variable and 

To succeed provided .that the entry relating to the variable is not 
"UNBOUND". 

Our implementation would simulate such direct accesses by two 
recursive searches, although we do not give the formal definitions 
here. 

Again, such direct accesses could be more accurately simulated by 
representing bindings as assertions in a relation rather than as terms 
in a data structure. 

Un-match 

Now that matching has been specified, the converse, "Un-match", 
called in the process of backtracking, is easily followed. 

Referring to the context in which the "Un-match" call is made, the 
steps required of the definition are 

To once more make the fourth argument (bindings) of the most 
recent activation record equal to the constant UNKNOWN and 

To use the reset list In order to undo all bindings for variables 
in that list. These bindings are each replaced by the constant 
"UNBOUND". The reset list is then made empty once more. 

The formal specification is not given here. 
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