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ABSTRACT

The thesis consists of an investigation of the
stability, stabilization and design of multidimensional

recursive digital filters.

The stability conditions as well as tests for
checking them are studied. A novel stability test for
two-dimensional recursive filters is proposed. A
recently introduced testing method is then extended to
multidimensions, The extension of Lyapunov's test to
higher dimensions is critically examined. The Lyapunov
technique is shown not to be extendable to multidimensional

systems,

New stabilization techniques are proposed for two-
dimensional recursive filters, An algorithm is given for

stabilization of digital filters in the cepstrum domain.

Design techniques in the frequency domain are
studied with particular reference to techniques involving
spectral transformation methods. A two-variable reactance
function is given for designing filters with circular
Symmetry. Complex transformations are developed for the
design of fan and quadrant fan filters having guaranteed

stability.
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CHAPTER 1

INTRODUCTION

Digital signal processing has been a growing and
dynamic field for more than a decade. Depending on the
type of the input and output sequences, digital signal
processing can be classified into two broad groups: one-
dimensional signal processing and multidimensional signal
processing. In the first case, the data is given as a
function of a single integer variable, such as that
obtained by sampling a time function. In the latter case,
the data is a function of several integer variables such
as that obtained by sampling a two-dimensional picture.
There has been a c;nsiderable amount of research and
development concerning theory and design of one-dimensional
signal processors. Most of the theory of multidimensional
systemsis similar to one-dimensional systems. However,
some important concepts and design techniques can not be
routinely extended to deal with multidimensional problems.
As.a result, digital processing of multidimensional data has
required separate treatment leading to the development of
its separate theory and design technique.

In the following Section, we will briefly mention
some of the most important applications of multidimensional
digital filters., We also review preliminaries related to
the mathematical representation of such signals. Then, a

comprehensive survey of multidimensional recursive digital
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filters is presented. Finally, the outline of the thesis

is given in the last Section.

1.1 APPLICATIONS OF MULTIDIMENSIONAL DIGITAL FILTERS

Certain signals are inherently two- or multi-
dimensional, and it appears advantagous to develop two-
and multidimensional techniques for the processing of such
signals, Major emphasis in this effort has been directed
to the processing of two-dimensional data because of its

widespread applications in the following areas;

a) Biomedicine [ﬂ ¢ Biomedicine is an application

area, in which the use of digital signal processing
techniques has had great impact. The most important

reason for this, is from the clinical viewpoint to have
better quality images, from which a better diognosis can be
carried out. For example, Two- dimensional digital filters
are used to reduce spatial low frequency components in an
X-ray image making features with large high frequency

components such as fracture easier to identify,

b) Nuclear Physics [2]: Digital filtering of

radiographs is used in nondestructive testing, such as for
the measurement of the internal dimensions of nuclear fuel

rods.

c) Space Imagery[3]: Digital processing of

satellite images has been used in monitoring enviromental

effects, earth resources, and urban land use. In these
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applications two-dimensional digital filters have been used
to enhance, or reduce boundaries, remove low-frequency
shading effects, reduce noise, and correct for distortion

in the imaging system.

d) Seismic Prospecting [4] ¢ 1In order to gather

data about subsurface structure, a number of selsmic
detectors are placed at stations along a line passing through
a shallow bore hole. The digitized outputs of the detectors
after an explosion form a two-dimensional array with time
along one axis and distance along the other. Reflected
energy at the detectors provides information about the depth
and nature of subsurface features.

A two-dimensional processing reduces the noise

and separates signals from different sources for evaluation.

e) Geophysics[5]: Atmosperic temperature and

pressure data may be smoothed by digital means before
plotting on weather maps. Similarly, magneti¢ and gravity
measurements can be processed to reduce the effect of surface

anomalies in order to identify large subsurface features.

1.2 REPRESENTATION OF MULTIDIMENSIONAL SIGNALS

A multidimensional system ¢an be characterized
by an operator transforming an N-dimensional input sequence
{x(ml,mz,...,mn)} to an N-dimensional output sequence

{y(ml,mz,...,mn)}. We can indiecate this fact notationzlly as
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{y(ml,mz,...,mn)}=de[{x(ml,m2,...,mn)}} (1.1)

where de is an operator.

Like other signal processing systems, multi-
dimensional digital filters can be classified as time
invariant or time dependent, casual or noncasual, linear
or nonlinear [63. A linear time invariant and casual

filter can be defined with the following three properties.

A, Space Tnyariance:

A multidimensional filter is said to be space
invariant if its internal parameters do not change with
spaces This means that a specific excitation will always
produce the same response independently of the 85pace of
application. This means that the output is independent
of the position of input.

A multidimensional systeuldeis spac® invariant if
and only if an input array {x(ml,mz,...,mn)} produces amn
output array {y(ml,mz,...,mn)} then {x(ml-mlo,mz-mzo,...,mn—mno)}
produces an output array {y(ml-mlo,mz—mZO,...,mn—m Y} for

no

all (mlo,mzo,...,mno).

B. Linearity:

A multidimensional system is linear if and only 1if

it satisfies the following conditions;

de [a{x(ml,mz,...,mn)}] = adel:{x(ml,mz,...,mn)}] (1.2)
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and

{x,(m,,m,,...,m )} + {x,(m,,m,,...,m )1}
1*71*2 n 227172 n

- oe[{xl(ml,mz,...,mn)}] + ge[{xz(ml,mz,...,mn)}:l (1.3)

for all possible values of a and all possible values of

exitation {xl(ml,mz,...,mn)} and {xz(ml,mz,...,mn)}.

C. Causality:

A causal digital multidimensional filter is one
whose response at a specific instant is independent of
subsequent values of the exitation. More precisely, a
multidimensional digital filter is causal if and only if
the impulse response, {h(ml,mz,...,mn)} has nonzero values

n

only for r]{mi}>07

i=1

The definition of causality as above, when
considered in one-dimension, is identical with the definition
of a causal array in time.

Multidimensional arrays having this property are
sometimes termed 'first quadrant array' because causality 1is
meaningless outside the time dimension,

A linear, time-invariant, causal recursive multi-
dimensional filter is represented by the following differemnce

equation;
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Kl KZ Kn

y(ml,m ,...,mn)= E E s E : a(kl’k2’""kn)x(ml_kl’m2—k2""mn_kn)

kl=0 k2=0 kn=0
L L Ly
- E E eee b(ll,lz,...,ln)y(ml-ll,mz—lz,...,mh—ln) (1.4)
1.=0 1,=0 1 =0
1 2 n

with »(0,0,...,0)=1, x(ml,mz,...,mn) and y(ml,mz,...,mn)

denote the input and output signals. The corresponding

z-transfer function is

K K K
1 2 n kl kz kn
. J...Sla(kl’kZ""’kn)zl Zy eeeZy
k1=0 k2=0 kn=0
H(Z,,20400052_) =
1°°2 n I L L
1 2 n
11 l2 ln
- b(ll,l2 ’1n)zl Zy eeez)
ll=0 12=0 1n=0
(1.5)
1.3 SURVEY OF THE PREVIOUS WORK ON MULTIDIMENSTONAL RECURSIVE FILTERS

Phenomenal advances in digital integrated circuit
technology during the last decade have made the digital

signal processing approach economically practical and often a
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more convenient method of signal processing. As a
consequence of this development, most of the work on multi-
dimensional digital filters have been reported in the last
ten years, with more than three-fourths of these appearing
in the last five years.

Historically, the inital work on multidimensional
digital filtering was performed by researchers in geophysical
industries for processing of seismic, gravitational, and
magnetic data. Shanks et al [7] in 1972 published the
first technique for designing two-dimensional recursive
filters. Here, they consider a one-dimensional recursive
filter as a special case of two-dimensional filter, By
rotating the frequency axes of the resultant filter, they
arrived at a two-dimensional transfer function. There are
two problems associated with this technique. First, in
general, the rotated two-dimensional filter may not be
stable even though its one-dimensional anology prototype
is stable. Second, the frequency characteristies of the
rotated version is not simply related to that its parent
one-dimensional filter, This makes it difficult to design
two-dimensional filters with prescribed frequency response
characteristics.

In 1974, Costa and Venetsanopoulos [8] used the
Shanks rotated filters to design two-dimensional low-pass
filters. In this method, it i1s shown that the rotated
filters can be used in designing circularly symmetric two-

dimensional recursive filters. A stability criterion was
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developed which showed that angles of rotation of the
designed filter from 0° t0-90° resulted in stable filters.
Therefore, the design technique could not achieve the
required total angular span and the cutoff boundary was
not circular.
Ahmadi et al [9] in 1976 suggested a simple
first order two-dimensional reactance funcfion to transform
a one-dimensional continuous low-pass filter function to a
two-dimensional continupus low-pass function. Later, in a
review paper, Chakrabarti and Mitra ﬁﬂ] in 1977 generalized
Ahmadi's approach as a unified qualitative theory of
designing two-dimensional filters via spectral transformations.
In the computer aided optimization approaches, a
nonlinear optimization procedure is used to adjust iteratively
the filter coefficients to minimize the error criterion.
A major difficulty is ensuring the stability of the resultant
two—-dimensional transfer function. In 1974, Maria and
Fahmy [11] useg¢ a lp—optimization technique and avoided this
problem by constraining the filters they designed to have
transfer functions which are products of simple first and
second order terms. This facilitates testing stability
of the approximation at each step of the optimization as
these low order terms can be tested using a set of
inequalities associated with the filter coefficients.
However, Pendergrass ﬁ2] in 1975 pointed out that lp-

algorithm may converge to an unstable solution.
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Alternative optimization approaches are studied by
Bedner hS] and Ramamoorthy and Bruton h4] . In the first
case, the differential correction optimization algorithm is
used to approximate a given frequency response of desired
two-dimensional recursive filter. Stability is checked
after each iteration of the optimization using a stability
testing algorithm. In the latter case, the den&ﬁ;mtor
of the two-variable anolog transfer function is algebrically
expressed in a suitable form which is always guaranteed to
be realizable by a passive network thus ensuring stability.

The stability testing problem can also be avoided
by designing a separable two-dimensional recursive filter
approximating the frequenecy response characteristics. In
this case, the stability testing reduces to that of checking
the stability of one-dimensional filters. Moreover, a
separable filter is alsoc more economical to implement. In
1975, Twogood and Mitra Dj] described a computer-aided
method for designing separable filters.

In the spatial domain design problem, a filter
transfer function is chosen to approximate a finite extent
of the two-dimensional impulse response. Shanks et al [ 7]
suggested the first technique in addressing this problem.
They developed a least-squares approach with the spatial
error criterion used to arrive at a best approximation of
the spatial response. Unfortunately, their recursive
filter design techniqué, in general, does not lead to stable

filters. To overcome this problem, the authors suggested
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using a planar least squares inverse (PLSI) stabilizatioen
technique to arrive at a stable approximation. However,

Genin and Kamp [16] showed that the PLSI technique for
two-dimensional filter functions is not valid in general.
Therefore, this approach may not lead to a stable approximation.

In order to avoid the stability problem in the
spatial design procedure Abramatic et al [17] have presented
a design technique for filters with separable denominator
functions from the impulse response of the prototype
filter. Another notable contribution in spatial domain
designs is due to Parker and Souchon {18] .

From the above discussion, it is c¢lear that a
major concern in the design of multidimensional recursive
digital filters is ensuring the stability of the filter.
The earliest statement of a theorem for the BIBO stability
of such filters was presented by Shanks [7] . However,
this theorem requires an infinite algorithm to test the
stability. An alternative stability criterion which
offers a finite algorithm was stated by Huang [19] .

A number of authors attempted to implement
Huang's criterion. To this end, notable contributions
have been made by Anderson and Jury [20] , and Maria and
Fahmy [21] . These contributions are essentially based
on a generalization of Schur-Cohn test [22] developed for
checking stability of one-dimensional filter functions.

Recently, Strintzis [23] , DeCarlo et al [24]

and, O0'Connor [25] obtained several equivalent conditions
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for stability. These conditions were also implemented
in the form of a Nyquist-like stability test PG] , the
phase unwrapping technique [27] and, the complex cepstrum
test [28] .

In 1977, in a prize winning paper, Goodman [29]
showed that the Shanks theorem [7] is only sufficient
(necessity does not hold). This is due to the effect of
the numerator on stability.

Some of the design methods for two-dimensional
recursive filters produce inherently unstable filters.
Bernabo et al [}0] used the well-known McClellan's trans-
formation to design approximate circular symmetry frequency
responses. The resulting filter is unstable. They used
the Pistor [31] decomposition technique in order to obtain
four one-quadrant recursive digital filters each recursing
in a different direction. The obtained filter is zero
phase and stable, A similar apprcach was also used by

King ﬁZ] for fan filter design with complex transformations.

1.4 QUTLINE OF THE THESIS

In this thesis the problems of stability,
stabilization, and design of multidimensional recursive
digital filters are considered.

In Chapter 2, the concept of stability is defined
for two-dimensional recursive filters. Stability criteria
for these filters are discussed and tests for determining

the stability are reviewed. A novel stability test
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is developed. This test is based on the properties of

the two-variable inner determinants. The problem of the
extension of Lyapunov's test into two-dimensional cases are
discussed. Some difficulties relating to this extension
are pointed out.

Stability problems of polynomials of dimensions
higher than two are discussed in Chapter 3. In the main
part of this chapter, a cepstral stability test for multi-
dimensional digital filters is introduced.

Three stabilization techniques are reviewed in
Chapter 3. One of these methods is then modified to
include a more general class of two-dimensional recursive
filters. Next, a new spectral factorization method 1is
suggested as an alternmative procedure. An algorithm is
also developed for the stabilization of digital filters by
Pistor Method.

In Chapter 5, frequency domain design techniques
for two-dimensional digital filters are considered. A new
two-dimensional reactance function is proposed for the design
of recursive filters with circular symmetry. Two
different design techniques are also presented in this
chapter. The first of them is obtained by using the well-
known Ahmadi transformation and the second with complex
transformations. It is shown that the latter method gives
the complete solution for the fan filter and quadrant fan
filter design.

The final chapter summarizes the work of the
thesis and a number of problems are suggested in which

further research may be conducted.
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CHAPTER 2

STABILITY OF TWO-DIMENSIONAL DISCRETE SYSTEMS

We will begin this chapter with a brief review
of the stability property of quarter~plane (causal) filters,
The stability conditions as well as the tests for checking
them will be thoroughly discussed. These various stability
criteria are well developed in the literature; consequently
in order to keep within the limits of the thesis, most of
the known proofs are not repeated and only new ones will
be considered.

In the main part of this chapter, a novel stability
test will be introduced. This test is based omn properties
of two-variable inner determinants. In the last section,
the extension of Lyapunov's test for two-dimensional digital
filters will be examined. It is shown that the direct
extension of the Lyapunov test to higher dimensions is not

valid in general.

2.1 STABILITY PROPERTY OF QUARTER PLANE DIGITAL FILTERS

A difference equation which describes the input-
output relationships of a spatially causal (first quadrant)

digital filter is presented as:
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K L I J
y(mm) = D P p@k,Dxlmk,n-D- X, D qi,Dylm-i,n-3)  (2.1)
k=0 1=0 i=0 =0

(1,3)#(0,0}

where {x{(m,n)} and {y(m,n)} denote the input and output
sequences, respectively. The two-dimensional z-transform

of the above linear equation leads to the transfer function:

P(zl,zz)
H(Zl,22)= 6TZ—TZ—) (2.2)
1272
where
K L
k1
P(zl’ZZ) = E p(k,1) z12,
k=0 1=0

I J ..
§ : .. 13
Q(zl’zz) = Z Q(l,J) 2122

i=0 §=0

In the first quadrant case, since q(0,0)=1 1is assumed,

Q(zl,z2)¥0 in some open neighbourhood Uz of (0,0) ;
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where
v? = (2 ,2.): lzol< e, lz.] < e}
£ 1*727° 1 = 2

. 2 . . .
Hence in U8 the transfer function H(zl,zz) is analytic

and has the power series expansion [ﬁZ] - [44]:
m I
H(zl,zz) = h{m,n) z,24 (2.3)
m=0 n=0

h{m,n) is the unit sample response of the causal filter,

A widely used stability criterion is bounded

input, bounded output (BIBO) stability.

Definition 2.1: Just as in the one-dimensional case, we

will say that the system with the transfer function H(zl,zz)
is BIBO stable if any bounded input sequences produce a
bounded output sequence, that is, if there exists a finite
real‘number A such that for any bounded input sequehce
{x(m,n)}:,n=o the zero state response of the system as

given by (2.1) satisfies

[Tyl _< alT=ll, (2.4)

where the norm, || ||m, over the space of bounded sequences

is defined as:
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||u|[w g{max sup suplu(m,n)‘, sup sup Iu(m,n)§
m n n m

It readily follows that the ensuring theorem is

valid.

A two-dimensional linear system described by
(2.2) is BIBO stable if and only if there exists a real

A such that for all positive integers m,n

Y | hm,n) | g A< (2.5)
0 n=0

70l

Note:

h(m,n)= —-—1--—-2— ¢ gﬁ H(zl,zz)zl-m"'lzz-rw1 dz,dz,
(2r3) c. ¢

1 72

where C1 and C2 are boundaries of the unit bidisc.

Consider equation (2.2) where P(zl,zz) and Q(zl,zz) are
mutually prime (i.e. the polynomials have no irreducible

facteors in common):
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i) A 2-tuple (zl,zz) such that Q(zl,z2)=0 but P(zl,zz)# 0
will be called a pole or a nonessential singularity of
the first kind (such singularities are not isolated
points and they are analogous to a pole in the one-

dimensional case).

ii) A 2-tuple (zl,zz) such that Q(zl,22)= P(zl’ZZ) = 0
will be called a nonessential singularity of the second

kind (such points have no one-dimensional analogs).
Clearly, if (21’22) is a pole, H(zl’22)= w, If (zl,zz) is

a nonessential singularity of the second kind, the value of

H(ZI’ZZ) is undefined.

2,2 STABILITY CONDITIONS

A stability theorem due to Shanks BS] states:

Theorem 2.2:

The transfer function H(zl’ZZ) is BIBO stable if

and only if

Q(zl,zz)# 0 for all (zl,zz)e {(21’22): |zlls 1, |22| < 1} (2.6)

provided P(zl,zz) and Q(zl’ZZ) are mutually prime.
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Since the theorem requires the primeness of P
and Q, all irreducible factors common to P(zl,zz) and Q(zl,zz)
should first be cancelled (mutually prime polynomials). A
test for the existence of common factors 1is given in [76],
and an algorithm for the extraction of the greatest common
factor is given in [77]. A similar theorem with some
generalization for the case when P(zl,zz) = 1 was given

by Farmer and Badner [75] .

Shanks' theorem was used by many authors as the
necessary and sufficient condition for stability. However,
Goodman &9] has shown that Shanks' theorem is only
sufficient (necessity does not hold). This 1s due to the
effect of the numerator on stability (which has no analog in

the one-dimensional case).

2.2.1 Effect of Numerator on Stability

In some cases H(zl’ZZ) has nonessential singularities
of the second kind on the distinguished boundary
(i.e. {(zl,zz); |21|= 1 and |22| =1 1) but {h(m,n)} is
absolutely summable [2ﬂ . The following two examples

illustrate this point;

8 8
(1-z,) (1-z,) P.{(z,,z,)
Hi(z),2,)= 1 z .1 12 (2.7)
172 Q(zys2y)

(l1-z,)(1l-z,) P,(z,,2,)
By (5,,2,) 1 2’ 242122,
2-21-22 Q(zl,zz)

(2.8)
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The above transfer functions have mutually prime numerator

and denominator,. The denominator Q(zl,zz)% 0 on

{ (zl,zz):!zl| <1, ] zzls 1} except at |21| = l22]= 1.

Both Hl(zl,zz) and HZ(zl’ZZ) have nonessential singularities
of the second kind at z2,= 2, = 1. Goodman showed that
Hz(zl,zz) is BIBO unstable; and Hl(zl,zz) is BIBO stable.

Hence, Shanks' theorem is sufficient for BIBO stability.

A mention of such type of singularities was also
noted by Humes and Jury [59] , and Bose and Newcomb [7ﬂ .
The test for the presence or absence of nonessential
singularities of the second kind on the unit bidisc was studied
by Anderson, Bose and Jury [&ﬂ , and Rajan et al [81].
Later, it has been shown by Goodman [68], that a double
bilinear transformation approach, for designing a two-
dimensional recursive digital filter from a predetermined
two-dimensional anolog transfer function, may in certain

cases lead to unstable solutions.

2.2.,2 Remarks

For effective design of two-dimensional digital
filters nonessential singularities of the second kind must
be avoided. Hence, for consideration of design which
avoids such singularities, the BIBO stability is refered
to as "structural stability"™. Therefore, equation (2.6)
gives the necessary and sufficient condition for structural

stability.



By assuming that P(zl,zz) and Q(zl,zz) are

mutually prime and Q(0,0) # 0. Then the following

relationships hold:

a)

b)

c)

d)

e)

f)

BIBO Stability & z E |[h(m,n) | < @

Q(21)ZZ) ?"' 0

Q(zl,zz) # 0

“ZGZ lh(m,n)]? < =

m=0 n=o
Lim {him,n)}
m, n->w

m=0 10n=0

2
—

in U +L BIBO Stability

2
in U i: BIBO Stability

except at |21|=]22|=l

i+

BIBO Stability

- +

E E ]h(m,n)|<ﬂ= or ZZ |h(m,n)|2< ©

m=0 n=o

m=0 n=90

2 A

Q(zy,2z,) # 0 in U — [a(m,n) [« M < =

for all m,n

39



40

2 " — 2
g) IH(zl,zz)is N <= in 4] — E E [h(m,n)[ <
m=0 Nn=0
7’ 2 «°
h) Q(z,,0) #0 in U —_ E |h(m,n) | < =
m=0 for all n
_2
where U denotes the closed unit bidisc:
-2
U = {(zl,zz): Izll <1 |22| <1}
2
and U is the open unit bidisc.
2.3 CRITERTA FOR STABILITY TEST
Given,
A(zl,zz)
H(z,,2,} = ————— (2.9)
1°°2 B ( )
21222

We assume that A(zl,zz) and B(zl,zz) are coprime (no common
factor). Furthermore, we also assume that H(zl’ZZ) has no
nonessential singularity of the second kind on the unit
bidisec. Hence the stability condition (which is called

structural stability) is both necessary and sufficient.

According to Shanks' thecorem [7] the condition

for stability 1is:
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B(z,2) #0 if Iz 1 ; fz2,1 <1 (2.10)

All the zeroes of B(zl,zz) are outside the unit bidisc.

The test of that requires infinite mapping from alllvalues
]zlfg 1 on B(zl,zz) =0, If the image of the map lies
completely outside ]zzl = 1, the filter is stable, otherwise
it is not. This test is computationa"?involved and does

not lead to a finite algorithm.

In a later work, Huang [19] has obtained another

criterion which simplifies the stability test.

Theorem 2.3:

A causal filter with a z-transform function

H(zl,zz) is stable if:

(1) The map of d, = (zl;|z1| = 1) 1in the z, - plane
according to B(zl,zz)= 0 1lies outside d25(22;|22] £1)

and,

(2) No point in d1 = (zl;]zlls 1) maps into zZ,= 0, by the

relationship B(z 0.

1,22)

Huang's theorem is based on the earlier work of
Ansell ES] on the stability of two-dimensional Hurwitz
polynomials. Its rigorous proof has been supplied by

Goodman [33], Davis [34], and Murray [35].
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The conditions are equivalent to;

i) B(z,,z,) # 0 lzll= 1 lzzl <1

(2.11)
ii) B(z,0) #0 [z,]<21

The testing of conditions in eqn. (2.11) can be performed
by a finite algorithm. Various forms of such an algorithm
will be presented later in this chapter.

In recent years, it has been shown by several
investigators that the conditions (2.11) can be replaced

by new ones,

a) Strintzis PB] showed that the second condition of
(2.11) can be replaced by B(z ,a) # 0 for all la|< 1

and |zlfS]d Hence the equivalent criterion will be

iA
=

B(zl,a) # 0 [al <1, lzl|

(2.12)

A
'—l

B(zy,2,) #0 |21| =1 |22|

b) DeCarlo et al [24] and Strintzis [23] showed another
criterion which is equvalent to (2.11). This is given

as follows.
B(a, z,) # 0 for some a, [|a[£1 when [z,[£1
B(zl,b ) # 0 for some b, |b[é 1 when lzllg 1

B(z,,2,) # 0 lzl| = |z2| =1 (2.13)
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In particular with the choice of a=b=1, the above

condition becomes

B(l ,z,) # 0 |z2|5 1
B(z,,1 ) # 0 |zl 1
B(z,,2,) # 0 |zl|= |zz|= 1 (2.14)

c) Another criterion was developed by deCarlo et al [Aﬂ

and it i1s presented as follows:

B(z ,z2 ) # 0 | z]s 1

B(zl’ZZ) £ 0 |z1|= |zz| =1 (2.15)

d) The following criterion was obtained by Jury [45].

B(z%,2") # 0 |z |s1
B(z;,2,) # 0 |zl|= |22| =1 (2.16)

s,t integers

s t stable )
g) B(zl’ZZ) = B(ZI’ZZ) s,t integers (2.17)
uns table

ble

k. k., k, k., °t2

h) B(zllz22,zlhzz3) & B(zl,zz) (2.18)
unstable

. ' .
provided klka#kBkZ and ki s 1ntegers
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2.4 VARIOUS STABILITY TESTS

The object of this section is to review procedures
for checking the stability conditions discussed in preceding
sections. We will be mainly concerned with wvarious
implementations which have been developed for stability

testing of causal two-dimensional recursive filters,

2,4,1 Symmetric Matrix Form

Anderson and Jury [20] used the Schur- Cohn matrix
to test the conditons of Huang's theorem [13]. I1f we

recall the conditions of this criterion;

1) B(z1,2z3) # 0 when |z1[ =1, ]2215 1
B(z,,2,) should have all its zeroes (when ]zll = 1)
outside the unit circle in the z, plane,

2) B(z,,0) # 0 for all values lz ls 1

A one-dimensional polynomial having all its zeroes

cutside the unit cirecle in the z, - plane,

Condition (2) reduces to the stability test of one—~dimensional

polynomial.

To test condition (1), we write B(zl,zz) as a

polynomial in z, but with coefficients in z Since

l‘
Izll = 1, these coefficients are complex. Hence the problem
reduces to determining the Routh distribution of a polynomial

with complex coefficients,
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The theorem of Schur-Cohn [45] deals with the
root distribution with respect to unit circle of a polynomial

with complex coefficients.

Let
N
F(z) = D a(i)z’ (2.19)
i=o
The matrix C = {y(i,j)} is a "Hermitian Matrix"
in which
1
y(i,5) = D [at=i+p)F(n-j+p)-2(i-p)a(i-p)] , i< j
p=1
(2.20)
where

Y(jsi) = ;(isj) ’ i >j H i’j = 1’2!"'$N

The Schur—-Cohn matrix is positive definite and symmetric
if, and only if, all the roots of F(z) = 0, are inside the unit cizcle;
it is negative definite if, and only if, all roots are outside the
unit circle. When lzll = 1, the minors of the Schur-Cohn matrix are

of the following form:

N
£,(2)) = > cj(zi + 2,79 (2.21)

j=o

and have to be positive for all |zll = 1.
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These polynomials are reciprocal ones, they
have the same number of roots inside the unit circle as
outside the unit circle. The condition for a reciprocal
polynomial to be positive for all |z1| = 1, is that it is
positive at one point, such as zl=1, and has no roots omn

the unit ecirele, This reduces to the root distribution of

a real polynomial,

2.4,2 Resultant Method

A recently introduced new stability test [8@
for one-dimensional digital filters is extended to apply
to two-dimensional case. The method is based on the

following theorem,

Theorem 2.4 [86] :

Let D(z) be polynomial of degree n, having real

coefficients, and let
D(z) =[D1(z) + D, (2)]
where

1] o2y + 2"p(z"hH] (2.22)

Dl(z)

D,(z) = § [Dp(2) - 2"p(a™ ] (2.23)
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Then D(z) # O in ]z[; 1 1if and only if all zeroces of
Dl(z) and Dz(z) are simple, are located on the unit circle
|z| = 1, and also separate each other on the unit circle.
The two~dimensional filter function is assumed to have
no non-essential singularities of the second kind on
the unit bidisc, Then the denominator polynomial B(zl,zz)
can be rewritten as:

g

-1
Bl(zl,zz) =z, B(zl,z2

) ' (2.24)

n, is the degree of z, in B(zl,zz). Let

M2
k
Bl(zl’ZZ) = E bk(zl)z2 (2,25)
k=0
T2
. S
By(z,,2,) = z b, (z,)z, (2.26)
k=0
on [z [ =1 z, = z-1 and let
1 ? 1 1
0 *
D (z,,2z,) = Bl(zl,zz)Bl(zl,zz) (2.27)
|zll=1
2n

2
= { ch(zi+ ZIE)}ZS (2.28)

k=0 L
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where the cg's in (2,28) are constant. Substituting
z;= eJe in (2,28), we obtain:
2n2
o k
D (zys2,) = E 2cgcosle ¢z, (2,29)

'3

|z [=1

Using the trigonometric identity,

‘'m n
Cosnd = E (-1)S Cos(n-zs)esinzse (2,30)
=0 2k
where m=n/2 for n even and (n-1)/2 for n odd. Equation

(2,28) can be written as

D(x,2,) = n°(z1,z2)

121I=1
2n2
- D a0k (2.31)
= kxzz .
k=0
where dk(x) are polynomials in x = Cos8, Then Dl(x,zz)
and Dz(x,zz) are defined as
2n

2
Dl(x,zz) = g[ D(x,22)+ z D(x,zgl)] (2.32)
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2 -1
Dz(x,zz) = | [D(x,zz) -z, D(x,z2 )] (2.33)

Finally, the second condition in (2,11) can be tested by

using the following theorem which is based on theorem 2,4.

Theorem 2.5 L:iBJ :

B(z,,z,) # 0 for |z ;[= 1, and [z,{> 1 if and
only if:
1) the zeroes of Dl(O,zz) and DZ(O’ZZ) are located on the
unit circle |z2|=1,
2) the zerces of Dl(O,zz) and D2(0,z2) are simple and
alternate on the unit circle [z,[, and
3) the resultant [22] R(x) of Dl(x) and Dz(x) has no real

roots in the interval -1 g x < 1.

Example 2.1:

We will use the resultant technique to test the

criterion in equation (2,11); Given

2
B(zl’ZZ) = (12 + 10z, + 221) + (6 + S5z

1 1

from the second condition in equation (2,11)

B(z

1’ 1 1

Then the first condition will determine the stability.

2
+ 21)22 (2.34)

0) = 12 + 10z,+ 2z in EMEE (2.35)
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The resultant R(x) can be obtained from the resultant matrix
(appendix-4) ,R(x) 1is the resultant

of Dy(x,z,) and D,(x,z,).

7 6 5

R(x) = ~1296(20736x°+ 241920x '+ 1231200x°+3570000x

+ 7437500%°+ 53433750x2+ 2187500x + 398625) (2.36)
Since R(x)# O in -1s x 1, B(z;,z,)# 0 in |21|=1’ ]22[; 1.

This with the other result in equation (2.35), imply

that B(z1,zz)# 0 in [zllf ., [zzls 1.,

2.4,3 Nyquist-Like Test

An extension of Nyquist stability test to two-
dimensions has been provided by DeCarlo, Murray, and Seaks
in a series of papers [24], [26], [49].

Let a polydisc Da in 02 be defined by

D, = {(eJ“, z,) |z, 1} (2.,37)

where a is real and such that 0 £ ¢ ¢ 27, and let a disc

D be defined by

D = {(21,0) tolzg s 1} (2.38)

D and D correspond to the region of analyticity in equation
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(2.11). Then DeCarlo, Murray, and Seaks established the

following results:

Theorem 2.6 [49l:

A causal recursive digital filterischaracterized

by the rational two-dimensional transfer function

P(zl,zz)

G(z (2.39)

sZ,)
1772 Q(zl,zz)

where any irreducible common factorsof P(zl,zz) and
Q(zl,zz) have been cancelled and where G(zl,zz) has no
nonessential singularities of the second kind on the boundary
of the unit bidisec.

G(zl,zz) is stable in BIBO sense if and only if

the Nyquist plots of the one-dimensional functions

Q(ed®, z,) , 0s a s 2r (2.40)
and

Q(zy, 0) (2.41)
do not equal or encirecle zero in the complex plane. We can

obtain other graphical tests by involving the equivalent
criteria of (2.,12) - (2.14). This leads to the following

theorems. -
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Theorem 2.7 [49]:

The two-dimensional digital filter described in

theorem 2.6 is BIBO stable if and only if

i) Q(zl’ZZ) has no zeroes on |zl|= |22|=1;

ii) The Nyquist plots for the one~dimensional function

Q(l,zz) and Q(zl,O) do not encircle zero,

Theorem 2.8 [49] :

The two-dimensional digital filter described in

theorem 2.6 is BIBO stable if and only if
i) Q(z;,z,) has no zeroes on |zl|=|z2|=1,

ii) The Nyquist plots for one-dimensional functions Q(l,zz)

and Q(zl,l) do not encircle zero.

Theorem 2,9 B&]:

The two-dimensional filter described in theorem 2.6

is BIBO stable if and only if
i) Q(zy,z,) has no zeroes on |z1|=|22|= 1.

ii) The Nyquist plot of the single variable function 0(z,z)

does not encirecle zero.

Example 2,2:

Let the transfer function of a digital filter be

P(z,,2,)
1 122

G(zl,22)= = (2-42)
1+ 0.2521 + 0.2522 Q(zl,zz)
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Step 1l: Draw the Nyquist plot for B(zl,O). This curve is
shown in Fig.2.1; as it does not encircle zero we proceed

to the next step as outlined in theorem 2,6,
Step 2: Now consider the family of Nyquist plots for the

function

B(el?®, z,) 3 27 (2.,43)

o
A
Q

n

This family of curves does not encircle "O0" as indicated

in Fig. 2.2, Hence the filter is stable,

2.4.4 Table Method

Routh, in 1877 in his Adams prize paper (at
Cambridge) has suggested a stability test or table. The
Routh table checks the root-distributions of a one-dimensional
polynomial with respect to the imaginary axis in the s-plane,
A similar table form exists for the root-distribution of
real or complex polynomials with respect to unit circle,
In 1961, Jury [89] suggested a table to check the stability
of one—-dimensional digital filters. Later, Maria and Fahmy
[2£1 modified the Jury table and used it to check the second
condition of Huang's theorem [}Q].

A computer program for stability testing, based

on Mariaand Fahmy method is given in [90].
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Jw)
r=0-25

A

-

Fig. 21 Nyquist plot of B(z,,0) in (2-41)

jw i
Z1 =j

TO4] 21 =071+jO-71

Z4 =1
] . —4of
@] 0-5 1 1-5

Fig.2-2 Nyquist plot of B(e®,z,}in (2-41)
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2,4.5 Impulse Response Test

Application of the stability test based on the
one-dimensional polynomials was proposed by Kirshnamurthy [87].
Recently, impluse response test for two-dimensional digital
filters was studied by Strintzis [23], [93], and Vidyasagar
and Bose [92]. The stability test for two-dimensional

filters is based on the following theorem:

Theorem 2.10 [93]:

Let H be the upper limit of the double sequence

{ oy | /040

H = lim |h(m,n)|l/m+n (2.44)
m and/or n

If H(zl,zz) is rational in zq and Zos

(i) H < 1 is necessary and sufficient for convergence of

o [re]

H(z,,2,) = :E: }E: h(m,n)szzn (2.45)

m=0 n=0

in {[z;] ¢ 1, |z,] § 1} and for BIBO stability of the filter.

(ii) The following condition is also necessary and sufficient

for the convergence of (2.45) in {|zl| s 1, |22|5 1}
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and for BIBO stability of the filter:

Ih(m,n) < k™™ 0 s K<e, |ul<1 (2.46)

It is clear that if H »>1, the filter is unstable,

The case where H=1, is discussed in the following lemma.

Lemma 2.1 [93]:

If H(zl,zz) is ratiomal and H=1, then the unstable
singularities may only occur in one of the following three
regions:

1) |z1|=1 »  Zg arbitrary

2) =z arbitrary, |zz|=1

1

3) along the perimeter (but not the interior) of the

set {|zl| <1, |z2| < 1}, i.e. when
H(zl,zz) = » for some |21] = |22] =1 (2.47)
H(z,,2,) # » if either |zl| <1 or |z2| <1 (2.48)

As a direct consequence of the lemma 2.1 and

the theorem 2,10, we have the following theorem.

Theorem 2.11 [.9_3]:

If H(zl,zz) is rational and not in the class of

functions described by (2.47) and (2.48), the following
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conditions are all equivalent; each is necessary and

sufficient for BIBO stability of the filter.

(iii) h(m,n) >~ O when m + + =, or n - + « or both (2.49)
o0 o0
b
(iv) ). D Ih(mum)| <+ = p o> (2.50)
m=0 n=0

Conditions (i)-(iv) of theorem 2,10 and 2.11
are different from the one-dimensional case. In particular
(iii) and (iv) are not equal to (i) and (ii) because of
Lemma 2.1, In order to illustrate this point, the following

example is given by Goodman [913;

2

H(zl’ZZ) = (2.51)

2-21-22

The above filter is BIBO unstable, but the unit

sample response g(m,n) is such that

lim {[h(m,n)|} = 0 (2.52)

m,n->e

However, following corresponding conditions for the one-

dimensional case are emﬁﬁalam,
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lim  (|h) DY? <1
Ih(n)| s xu” 0 K<+, Jul<1
|n(n) | < B _ iiE P =0

oo

h(n)|P < + » for any p > 1
PIREYCH
n=0

2.4,.6 Cepstral Test

Complex cepstrum was used for stabilization of
two-dimensional recursive filters by Pistor [31]. He did
not present any algorithm for testing the stability.

Such a test was later obtained by Ekstrom and Woods [94],

as an application of two-dimensional spectral factorization.
It is based on a two-dimensional factorization operation
involving the autocorrelation function of the filter which
covers both quarter - and half-planes,. However, recently,
the existence of a two-dimensional complex cepstrum has

been shown by Dudgeon [39]. Based on such existence,
Ekstrom and Twogood [28] have obtained an alternate test
which removes the earlier complexity and is computationally
attractive,

Dudgeon [3{1 has shown that essential singularities
and zeroes of a transfer function H(zl,zz) map into essential

singularities of
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ﬁkzl,zz) = En [H(zl,zz)] ‘ (2.53)

Now if H(zl,zz) is stable filter, it can be written in a

power series wiﬂlm,nEZZ(where ]Zis the region of support of

the filter). Hence ﬁkzl,zz) can be similarly expanded
as
® o
/H\(zl,zz) = Z Z /h\(m,n) zt;zz (2.54)
m=0 n=0

From this fact the following theorem can be derived;

Theorem 2.12 [28]:

The asymmetric half-plane recursive filter,
H(zl’ZZ) = I/Q(zl,zz) is stable if and only if its cepstrum
~
h{m,n) has support on.?z.

The implementation of this theorem into a stability

test is as follows:

Step 1) Form Q(zl,zz) for q(m,n) of the filter to be tested.
Step 2) Calculate /a(zl,zz) and its inverse z-transform to
obtain the cepstrum’@(m,n).
-~ . .
Step 3) ‘q(m,n)=0 for m,n(]z then the filter is stable. If

A
q{(m,n)#0 for m,nfgz then the filter is unstable.

However, there are some difficulties in performing the second
step. Indeed, in order to ensure the analyticity of

al . .
Q(WI’WZ) which is equal to:
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/a(wl,wz) = [In [Q(Wl""z)]

It

En [Q(Wl’WZ)] + jarg [Q(Wl’WZ)] (2.55)

The phase, arg [ Q(wl,wz)] must be periocdic and continuous
[39]. To ensure the continuity, one can use phase
unwrapping [28] , and to ensure the periodicity (with period
2w), one uses the method of linear phase removal.

The cepstral method is mainly applicable for
numerical testing. Therefore, it is not possible to obtain

stability inequality conditions,

2.5 COMPARISON OF STABILITY TESTS

Since the size of the Schur-Cohn matrix is equal
to the degree of the denominator polynomial, the calculation
of principal minors becomes rather tedious with increasing
size of the matrix. Hence, it is difficult to show the
positive definiteness of the symmetric matrix of Schur-Cohn
for higher orders.

Resultant method reduces the stability testing
problem to checking polynomials for positivity over the local
repgion, The presence or absence of real zeroes in this
region can be determined by Sturm's theorem. However, the

real zero determination might be computationally complicated
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for higher orders, The table method of Maria and Fahmy

is more practical than the symmetric matrix method of
Anderson and Jury and the resultant method of Bose., All
matrices involved are second order only. The Nyquist-like
test is a graphical approach to test the stability. Because
the Nyquist plot is related to the frequency response, it
appears that graphical tésts are useful not only for checking
the stability but also for design purposes where certain
changes in the frequency response are required.

The computational comparison between the cepstral
test of Ekstrom and Woods with table form of Maria and Fahmy
showed that the cepstral method to be more efficient.
However, a drawback of the cepstral method is the assumption
that, to avoid problems in carrying out the logarithm, the
transfer function should not have any singularities on the
distinguished boundary. Therefore, it is less reliable than
the other tests when the zeroes of the polynomial are near

the unit polydisc.

2,6 TESTING THE STABILITY WITH INNER DETERMINANTS

—

In this section a new method is proposed to check
the stability of two-dimensional filters, In this test
two-variable inner determinants are used to examine the
roots of polynomials with real coefficients,. The amount of
computation needed for this method is comparable to that
needed when using the other procedures discussed in the

previous section,
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2.6,1 Introduction to Inners

The term "inners" is given to certain square
submatrices that arise within a square NxN matrix. This
term as well as other definitions connected with it, was
first proposed by Jury [95] in 1970, Since that time
many artiecles on the theory and applications of this concept
have been published [83] , [84]. Most of this work is also
discussed in a recently published book [22].

The importance of inner approcach lies mainly in
the theoretical unification of both continuous time and
discrete time theories (especially stability theory), as
well as in the computational unification obtained by utilizing

only one algorithm for a number of different applicatiomns.

2.6.2 Definitiocns of Inners

Definition 2.2: Let A be an N x N matrix,. Form the

matrix AN~2’ of dimension N-2 x N-2, by deleting the first

and last rows and first and last columns of A ; then A

N-2
is called inner. Now repeat this process on AN—Z to form
LIS Continue this process until it ends thus forming

Al' 63, AS,..., AN—Z for N odd and Az, 64,..., AN~2 for
N even. The appropriate set is called the inners of the

matrix [221.

Remark:
If N is even (larger than or equal to four), the
number of inners is (N-2)/2. The inners Az, 64"" are

designated as first, second, ... inners,respectively. If
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N is odd, the number of inners is (N-1)/2, The first,
second, ..., inners are Al, AB’ ... g Tespectively. Note
that in this case the first inner, ﬁl’ is a one element matrix,

that is, a scalar.

Example 2,3:

Let N=6, the inners of a 6 x 6 matrix are formed

as follows:

r —
411 412 413 814 415 416
471 292 293 424 4rsg 226
[A5]= a3 837 833 A34 435 236 (2.56)
341 342 243 244 845 246
A
2
251 852 453 854 855 256
361 862 863 %64 265 36

The inners are A2 and A
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Definition 2.3: If the determinants of all the inners,

as well as that of the matrix itself, are positive, we
designate the matrix as positive innerwise. If all the
.determinants are negative, we designate the matrix as

negative innerwise.

Definition 2,4: If the determinants of the inners of AN

as well as that of AN are zero, we designate AN as null

innerwise, If none of the determinants is zero, we

designate it as nonnull innerwise.

2.6.1 The Main Result

The sufficient conditions for the filter function

1/3(21,22) to be stable are

B(l,z,) # O |z2| < 1 (2.57)
B(z,,1) # 0 |21[ g 1 (2.58)
B(z,,2,) # 0 [zll = lz,] =1 (2.59)

The proof of the above stability criterion can be found in
[23] . The first two conditions (2.57)=-(2.59) reduce

to a one~dimensional stability test, and are computationally
trivial to implement, However, the last comndition (2.59)
is rather diffieult to test, In order to test the third

condition, we transfer the zeros of a complex variable
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polynomial on the unit polydisec to zeros of the real
variable polynomial in a region.
B(zl,zz) can be written in recursive canonical

form as a polynomial in z, with coefficients which are

2
polynomials in zy
: j
B(zl,zz) = Z: bj(zl)z2 (2.60)
j=0
-1
Let D(zl,zz) = B(zl,zz)B(zl,zz). (2.61)

D(zl,zz) can be rewritten as:

2q p : -i
D(zl,zz) = 2: 2: ci(z1+ zq )z2 (2.62)
j=0 i=0

i -1
The following substitutions for (zl + 2y ) may now be made

=1 _
(z1 + oz ) = 2x
(25 % 2]°) = 4x" - 2
(zi + 223) = 8x3 - 6x (2,63)

I



On |zl| = i, x is real and D(zl,zz) becomes

D(x,z = D(z

2) 1222

2] 1

1

2q

E: d.(x)zJ.
ki 2

j=0

Let G(x,z

2) = D(x,zz)D(x,zzl)

G(x,zz) can be rewritten as:

4q .
G(x,zz) = 2: hj(x)(z% + z;J)
i=0

Then by substitution of (2.63) for (z% + z,)

can be written as:

4q

G(x,y) = G(x,z,) = z: qj(x)yj

j=0

66

(2.64)

(2.65)

(2.66)

(2.67)
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Theorem 2,13:

B(zl,zz) # 0 for |z Izzl =1 if and only

ik
if G(x,y) # 0 for x e [-1,+1] and ye [-1,+1]

The proof of this theorem can be found in

Appendix B, the following lemma is obtained from theorem 2,13,
Lemma 2,2:
B(zl,zz) # 0 for Iz

a) G(x,y) # 0 for xe [~1,+1] and ye [~=,+ ©]
b) G(x,y) # 0 for ye [-1,+1] and xe [-w,+ =]

The proof of this lemma is simple and based on
theorem 2.13. After obtaining the above results, the one-

variable inner determinants [Aﬁ], [50] can be used to test

the third condition (2.59).

Theorem 2.14:

The number of real roots, N, of

F(x) a x + a X + ...ayx +a,a >0 is

1 n

- ~1al L ;
N—Var[l’ IAll’ +IA3|’.....,(-1)n|A2n_1|]

1 1 1
- var [1, ]A1| , |A3|"""’|62n~1| ] (2.68)

Where 'var' denotes the number of variations of signs, and
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1 . . . .
|Ai|, i=1, 2, ..,2n~1 are the 1nner determinants in

the matrix [A'] in (2.69),

a, a 1 8,9 *++ 2, ses 0 ‘o vee O

N
\ an an-l .. al . aD . .. 0

AN
AN
N\
AN

\ an ann—.l an_z L 3 3 LI B a

7 Ve
[A] by ,9/ nan (n_l)an " .o a-l
s
/
[:IIIII'..IIII.I.I.IIIIII.I...II....Q..II
s
7
7
7
Vs -
0 ,7 na {n-1)a 1t a;  eee eee O
Ve
/
/
s, @-Da_, @2) 0 0
nan n anl n a 2 ll.al L B L B
L -
(2,69)

The proof of theorem 2,14 can be found in [22].

In our case, the coefficients, a_, are functions of x.
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2.6.4 Examples:

The purpose of the following examples is to
illustrate the procedure described above, step by step.
In particular, Example 2.5 is also used by Bose [3é]and
Anderson and Jury [20] to illustrate the resultant technigque
and symmetri¢ matrix form, respectively. It is found that

the proposed test is much simpler than both techniques.

Example 2.4:

2 + 2z, + z,. Clearly first

Given B(zl,zz) = 1 2

and second conditions (2.57), (2.58) are satisfied.
Therefore, the third condition (2.59) will determine whether
or not the filter is structurally stable, We obtain

G(x,y) as:

G(x,y) = 16(5 + 4y)x2 + 8(18 + 17y + 4y2)x + (65 + 72y + 32y2)

and one-variable inner determinants [46] are found.

21(y) = 32(5 + 4y)

1
A3(y) = 1024 (5 + 4y) (1654 + 8y -15y2-8y-1)

Table 2,1 shows zeros and sign distribution of inner

determinants in the region of ye [-1, +11].

Due to theorem 2,14, we find
Neot gy = varle,-,=1 - varl+,+,-1= 0
N = var[+,-,-] - wvarl[+,+,-1= 0

("-’a’:"‘l)



where N and N( denotes the number of real

(“1’“%) "#,"'l)
zeros in x of G(x,y) for any fixed value of y in (-1,-%)
and (-%,+1), respectively, However, we can show that
N_% = 2, where N_% is the number of real zeros of G(x,-%¥).

Taking vy = -%, G(x,-%) = 64x2

+ 112x + 49, which has a
real root in -1 € x ¢ 1. From theorem 2.13 we conclude

that B(zl,zz) has zerc(s) on the unit polydisc, Hence

the filter function is unstable,

Example 2.5:

Given B(zl,zz) = (12 + 1021

The first and second conditions are satisfied, the third

condition (2.59) will determine the stability, We obtain

G(x,y) as:

2

G(x,y) = (4y + 5)2(24x>+ 70x + 50)°2

one-variable inner determinants are:

A%(x) = 32(24x2+ 70x + 50)2

A;(X)E 0

Both A% and A; do not have any real root in the interval

1=[-1,+1]1, N_= 0. Since the number of real roots, N

T 1s

I’

equal to zero, the lemma 2.2 guarantees that B(zl,zz) has

no zero on the distinguished boundary, 1i.e.,

70

+ 22§)+(6 + 521+ zz)zz.



Table 2-1

Sign of Innersin Example 2-4

-1 -0:25 +1
I4 I2
A (y) + + + + + + + +
f
AY) |1 Q= == Q- = — —==0
Table 2-II
Sign of Inners in Example 2:5
-1 +1

A'1 (x)

A’3(X)

71
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jw,g Ju,
B(e , € Y # 0. The filter function is stable,

Since this is an example of a separable system simpler

techniques for assessing stability are available,

2.6.5 Remarks:
In the second example above, A;(x)EO implies the
presence of a common facter in G(x,y) and G'(x,y)= 8G(x,y) /8y,

and this can be extracted via rational operations [46], [76].

2.7 DIFFICULTIES WITH THE EXTENSION OF LYAPUNOV'S

TEST FOR TWO-DIMENSIONAL FILTER FUNCTIONS

2.7.1 Introduction

The extension of Lyapunov's function to two-
dimensional digital recursive filters has been studied by
several investigators [97] - [99]. Algizi and Fahmy [97]
derived a criterion which sufficiently guarantees the
absence of overflow oscillations. Most recently,
Agathoklis [99] used the two-dimensional Lyapunov's test
for estimation of the stability margin.

The two-dimensional Lyapunov's test is given as

follows [97} - [99]; det[I—zlA -z

2 2A1] # 0 in the domain

U2 if and only if there exists a block diagonal matrix P

such that
qQ = [a;+ a1 p[a+ 4] - @ (2.70)

Q is negative definite,
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where A; and A, matrices are obtained from the following

state-space model given by Fornasini and Marchesini [96];

x{m+1l, n+l) = Alx(m+1, n) + Azx(m,n+1) (2.71)
and

=2

T = {(zy,2,) : ]zll s 1, ]zzl < 11} (2,72)

The system in equation (2,71) represents the zero-input
condition of the state behaviour. The z-transform of

this system is given by

X(zl,zz) [I-zzAl— zlA2]= 0 (2.73)

It can be shown that the system (2.71) is bounded-
input bounded-output (BIBO) stable if and only if

, =2
det [I—zzAl— z1A2] # 0 in U (2.74)

Since eigenvalues of two—dimensional digital
filter functions are not singular points but two-dimensional
manifolds, one should expect that finite order Lyapunov's
functions should not carry all the information for the
singularities of the given system. The following counter
example shows that the extension of Lyapunov's test to the

two-dimensional case is not valid in general,
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2,7.2 A Counter Example for the Extension

Consider the following state-space system
xl(m+1, n+l) = 0.5x1(m+1, n) + 2x2(m+1, n)
xz(m+1, n+l) = O.5x1(m,n+l) (2.75)

From this model, Al and A2 can be obtained as:

and det[I—zzAl-zlAZ] can be written as

det [I-z,A,-2z,4,1 = 1 - 0.5z, - 2,2z, (2.77)
It can be shown that the determined function in equation
(2.77) has a zeroc at (21,22) = (0.5 + jo.5, 0.8 + jO.4).
Hence the system given by (2,76) is unstable B7] .

However, if one considers the Lyapunov's test with

P = (2,78)



as a positive definite matrix. Then, by applying

equation (2,70), we obtain:

— T -
Q = [A1+ A2] PLa+ A2] P
T

0.5 2 1 0 0.5 2 1 0
0.5 0 0 1 0.5 Y] Y] 1
-0.5 1

= (2.79)

1 3
where Q is negative definite, Therefore, the above

criterion guarantees that the det [I_ZZAI—ZIAZJ has no
zeroces in the closed unit polydisc (ﬁz). However, it has

been shown that this determinant function has a zero at

(2,2,) = (0.5 + j0.5, 0.8 + jO0.4).

2.7.3 Remarks

The above counter example shows that the direct
extension of Lyapunov's test to the two-dimensional case 1is
not true in general. However, one may show the validity
of the extension for separable systems (i.e. H(zl’ZZ)
Hl(zl)HZ(ZZ))' Hence the extended test is necessary but

not sufficient.

75
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2.8 EXTENSION OF LYAPUNOV'S METHOD FOR TESTING THE

STABILITY OF ROESER'S MODEL

All the stability tests reviewed in Section 2.4, are
concerned with BIBO stability., However, recently Fornasini and
Marchesini [101] introduced a frequency dependent Lyapunov equation
for their models [103]. The application of Lyapunov tests to
Roesser's model [57] has not yet been developed. In the following
section, a similar approach is used to generalize Lyapunov's method
for testing Roesser's model which is a more general model than that

of Fornasini and Marchesini.

2.8.1 Formulation of Roesser's Meodel

In the following formulation, i,j are integer valued
71 2
vertical and horizontal coordinates, and {R} ¢ R ~,{S} ¢ R are
sets which convey information vertically and horizontally, respectively.
. P n
The input and output of the system are {u} € ]2 , {vle ]2 .
The system to be considered is discrete, causal, and its state and

output functions are described by

R(i+1,j) = AJR(i,J) + A,8(1,3) + Bju(i,j)
S(i,j+1) = AJR(i,3) + A,5(i,§) + Byu(i,i)
v(i,3) = CiR{,J) + C,8(i,) + Dyu(d,]) (2.80)

For zero input conditions, the state behaviour of the system is given by



R(i+1,3) = AJR(L,J) + A;8(1,3)

5(i,3+1) = AR(i,i) + 4,5(1,1) (2.81)

If we define the z-transform of x(i,j) to be

mn
X(zl,zz) = :E: x(m,n)zlz2 ,

m=0 n=0

equations (2.81) can be written in the matrix z-transformed form,

R(zlgzz) R(zl,zz)

= [élozl * A2y ]

8(zy,2,) 5(zy,2y) (2.82)
where
A 4, 0 0
n, lat)
Ao ~ 3 App <
0 A
9 84 4

(2.83)

where O is a null matrix of appropriate dimensions.

Then the following theorem can be derived

77
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Theorem 2,15:

A 2-dimensional discrete system which is described
by (2,.80) is intermnally stable [101] if and only if the

polynomial

A(zy,2,) = det [1 -4 (2.84)

1021 = 40172 |
has no zeroces in the closed unit polydisc.
The proof of theorem 2,15 can be found in Llon. The

following corollary can be obtained from Huang's theorem [19].

Corollary 2.1:

A 2-dimensional discrete system which is described
by (2.80) is internally stable 1f and only if the complex

matrix

A ’ (2.85)

is stable (i.e. magnitudes of its eigenvalues are less

than 1) for real w.

2.8.2 Lyapunov Equation for Roesser's Model

From the above corollary, it can be shown that
the system (2.80) is internally stable if and only if the

Lyapunov equation
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= -jw T jw ]
P(w) = I + [Alo + e Aol] P (w) [Alo + el A, (2.86)

admits a positive definite Hermitian solution P(w) for
every real w. The positive definite character of P(w)
can be checked by applying Sturm's test to the principal

minors of P(w) [101] . If we assume that system (2.80) is

internally stable,

P(w) = E pkejWk (2.87)

is the solution of the frequency dependent Lyapunov
equation (2,86). It can be shown that the Fourier

coefficients Pk satisfy following properties [101] :

1) For any integer k, P =Py and

T
P, - E: [Ar+1,s] ATs8+1

T
Pk - E [Ar+k,s] Ar,s+k (2.88)

and so on.



Where
A1
A =
A
3
and
AO’O -1,
A—r,s= R
r,8 _
A AlOA

2) The doubly infinite block Teoplitz matrix

induces positive definite scalar product in the

space Rz(Cn)

N ~
N
N Py
hY
~
\
N
J§;27= \\\ P_1
\
N
N

.
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(2.89)

(2.90)

(2.91)
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It is interesting to note that the Toeplitz matrix LE;2§

satisfies the equation,

- *
P G A P (2.5
*
whereL/527is the (infinite) identity matrix andclgy?fgndLjagff

are the doubly infinite block Toeplitz matrices:

— ~
~ \\ N ]
\\ \\ ~
\ ~
NN N h
0 Alg Ayp 0
VQ/= 0 A, Ayy 0 (2.93)
N ALQ Agq 0\
\\ ~ \\ A
~ ™~ ~ |
B ~ \\ \\ 7
\\\ \\\ \\
~ T T ~
~ ~
0 801 Ao1 0
*
_ T T
Lﬁaéff = 0 Aoy Ao 0 (2.94)
T T
0 A A 0
0
N 01\\ 1 N ~
~ ~ .
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Equations (2.,92)-(2.94) are the generalization
of one~dimensional Lyapunov's equation for Roesser's model.
Equation (2,86) depends on the parameter w, so that the
check of the positive definitness of its solution requires
to test the variations in sign of the polynomial principal
minors of P(w). On the other hand, (2.92) is infinite
dimensional, and does not give any finite procedure for

checking the stability,
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CHAPTER 3

STABILITY OF MULTIDIMENSIONAL DESCRETE SYSTEMS

Stability problems of polynomials of dimensions
higher than two arise in several applications of system
theory—including, but not restricted to, multidimensional
digital filtering and automatic control, The mathematical
basis of multidimensional stability problems lies in the
theory of complex function of several wvariables [421- [44].

Conditions for stability have recently been
formulated for discrete systems characterized by multi-
variable rational functions. All these conditions as well
as tests for checking them will be discussed.

In the main part of this chapter, a cepstral
stability test for multidimensiomnal digital filters will
be introduced. The test is based on the properties of
N-dimensional complex cepstrum of filters with rational

transfer functions.

3.1 STABILITY OF MULTIDIMENSIONAL DIGITAL FILTERS

Let the z-transform of an N-dimensiomnal first

quadrant filter function be:

A(Z,,2Z0,000,2_)
H(z),2y,000,2 ) = ———s z (3.1)
B(zl’ZZ’.."zn)_
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where

E : z : n
B(zl,zz,...,z ) = § : b(nl,nz,...,n )z ...znn

-0 11-0

with b(0,0,...,0) # 0. Without loss of generality, we
assume b{(0,0,...,0) = 1, the coefficients a(ml,mz,...,mn)
and b(nl,nz,...,nn) are real constants, not necessarily all
non—-zero, The transfer function H(zl,z

2,...,zn) can be

expanded in a power series of z as:

12222000932y

Z Z E: kp ky Ry
H(zl’zz’uo.’z) = h(kl,kz’onl, ) 1 Zz on-zn

1—0 k =0

(3.2)

1ﬁwretﬂkl,2,.",k ) is the uynit sample response of the transfer

functien in equation (3.1),
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In Chapter 2, it has been shown that a two-
dimensional system is BIBO stable if the output sequence
is bounded for any bounded input sequemnce. Therefore, for
a multidimensional system, the input function {x(ml,mz,...mn)}

is bounded if:

Ix(ml,mz,...,mn)l s M <o Nm,my,...,m) (3.3)

The output sequence, {y(ml,mz,...,mn)} must, for a stable

system,also be bounded,

Iy(ml,mz,...,mn)| < N < = \%(ml,mz,...,mn) (3.4)

One may directly obtain the following theorem for a

N-dimensional discrete system to be BIBO stable.

Theorem 3.1 [75]:

A N-dimensional system described by (3.1) is BIBO
stable if and only if there exist a real %ﬁ< = such that

for all positive integers (ml’mZ""’mn)

Z Z eee Z: lh(ml,mz,...,mn)l < A‘f @ (3.5)
m1=0 m2=0

m_=0
n
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3.2 CONDITIONS FOR STABILITY

The first stability theorem for N-dimemsional

digital transfer functions is given by Justice and Shanks [48]:

Theorem 3.2:

The transfer function described by (3.1) is BIBO

stable if aﬁd only if
n
B(2),2y,000,2) # 0 -(31 Uzgl s 13 (3.6)

provided A(ZI’ZZ""’zn) and B(zl,zz,...,zn) are mutually

prime.

However, due to the effect of numerator on the
stability, the above condition (3.6) is sufficient but not
necessary [29] . If we consider the nonessential
singulaties of the second kind on the distinguished boundary

the following theorem can be proven,

Theorem 3.3:

If H(zl,zz,...,zn) represents a BIBO stable
filter then H(zl’ZZ""’zn) has no nonessential singularities
of the first kind in the unit polydise and no nonessential
singularities of the second kind in the unit polydisec except
possibly on the distinguished boundary.

From the above theorems, we conclude that when A and
B are mutually prime and no nonessential singularities of

the second kind on the distinguished boundary of the unit
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polydisc exist, the condition (3.,6) is necessary and

sufficient for structural stability,

3.3 CRITERIA FOR STABILITY TESTS

In the preceding section, it has been shown that
the necessary and sufficient condition for structural

stability of N-dimensional digital transfer function is:

n
B(z,,25,000,2 ) # 0 N |zi| 21 (3.7)
=0

i
Recently, various criteria have been suggested to simplify
the stability test by several investigators,
Equation (3.1) can be tested using any one of the following

criteria;

a) Criterion of Anderson and Jury [52]:

B(2,0,.04,0) # 0 lz ] s1 (3.8)
B(ZI’ZZ’O""’O) # 0 ﬂzl|=1'}rw { |zﬂ5 1} (3.9)
| n-2
B(Z)52p 500052 _150) #0 M | 2| =1 } M {Izn_ll.s 1} (3.10)
i=1
n-1
B(2),2g50 000052 152 )% O { Nz d=1 ¢ N {Izn < 1} (3.11)
i=1

This criterion is the generalization of Huang's condition [1?].
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b) Criterion of Strintzis [23]:

i) For some bl""’bn such that Ibr|=1, r=1,2,...,n and

for all i, 1i=1,2,...,n

B(zl,zz,...,zn) # 0 when =z =b r#i and [zilsl

ii) Bz 429500052, ) # 0 when [zl|=|zzl = e =lzn|= 1

(3.12)
For simplicity one can choose br=1;

Example: Let mn=3, stability condition:

i) B(zl,l,l) # 0 |zl|$ 1
B(l,zz,l) # 0 [2215 1
B(1,1,2,) # 0 lzyf< 1
B(2)y2y,24) # 0 Izl|=[22|=|23|= 1 (3.13)

¢) Criterion of DeCarlo et al [49], [88]:

i) B(z,2,4..52) # O [z Isl

ii) B(Zl,22'-|.,zn) # 0 |21|=l22| = ) = Iznl =l (3.14)
3.4 STABILITY TESTS

3.4.1 Nyquist—-Like Test

DeCarle, Murray, and Seaks [49],[88] generalized
the theorems (2.6)-(2.9) which are given for two-dimensional

digital systems to the multidimensional case,



Theorem 3.4 [49]:

The multidimensional filter in (3,1) is

structurally stable if and only if:

i) B(zl’ZZ"°°’Zn) has no zeroes on r1|2-|=1

ii) the Nyquist plots for the one-dimensional function
B(l’-.o’l’zk,o,oon’o) ’ k=l,2,oo-’n

do not encircle zero,

Theorem 3.5 [49]:

Let B be as in (3.1). The filter 1is structurally

stable if and only if:

n
i) B(ZI’ZZ""'zn) has no zeroes on r\[z.l =1

*

ii) the Nyquist plots for the one-dimensional function
B(l,l,...,l,zk,l,...,l), k=l,2,.-.,n

do not encircle zero.

Theorem 3.6 E&Q]:

Let B be described as in (3.1). The filter 1is

structurally stable if and only if

: n
»2,) # 0 for r)’zi|= 1

i=1

i) B(zl’ZZ""

89
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ii) the Nyquist plot for the one dimensional function

B(zl,zz,.--,zn) Z = Zzutl = 2 = 2

does not encircle zero.

3.4.2 Table Form

The generalization of the table form from two-
dimensional digital filters to the multidimensional case has
been studied by Anderson, Bose and Jury [80] and Bose and
Kamat [54]. In the former work, the use of the table form
for the discrete case for N=4 was introduced. Bose and
Kamat [54] suggested an algorithm for the computer
implementation, The algorithm is based on the generation
of a number of multidimensional polynomials, reduction ;f
each of these into several single dimensional polynomials
by a finite dimensional rational operations. A detailed
discussion of the table form for multidimensional digital

filters can be found in [95].

3.4.3 Impulse Response Test

Strintzis [?3] generilazed the impulse respomnse
test from two-dimensional to multidimensional digital filters.,
It can be shown that the following condition is necessary

and sufficient for BIBO stability of H(zl, 22""’zn)'

1/(k1+k2
)| (3.15)

+...+kn)

lim [h(ky,kyyees,k
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for all but a finite number of values of (kl’kZ""’kn) [93].

Where h(kl’kz""’kn) is the impulse response of the filter.
All the other theorems of Section 2.4.5 can be

readily generalized from two-dimensional to multidimensional

case,

3.4.4 Symetrix Matrix Form

Bose and Jury [55] applied the Schur-Cohn matrix
to test the stability of 3-dimensional digital filters,

We write the 3-dimensional polynomials as follows:

n

i
B(ZI’ZZ’ZB) = 2: bi(zl,zz) Zq (3.16)
i=0

Using the same procedure as for the 2-dimensional case, we
obtain an innerwise hermitian matrix as function of
Izl|=|22|=1. This matrix has to be positive innerwise for

all |zy[=[z,[= 1.

Since it is innerwise Hermitian, we require that
it be positive innerwise at one point on the bidisc, usually
z,=2,=1 and the determinant of the matrix, which is real
function of two-variables, z, and Z,, be positive for all
|zl|=|zz[=‘}. This can be carried out in terms of root

distribution with respect to unit circle as shown by Bose

and Jury [55].
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3.5 CEPSTRAL STABILITY TEST FOR N-DIMENSIORAL

RATIONAL POLYNOMTALS

All stability tests for multidimensional digital
filters summarized in Section 3.4 are applicable for only
causal N-D digital filters. Our aim in this section, is
to introduce an alternative stability test for a general
class of N-dimensional digital filters. | The test is based
on the existance of the cepstra for N-dimensional rational
polynomials (N>2), Another objective of this work is to
demonstrate the extension of the Ekstrom—-Twogood [28]

cepstral method of testing to the multidimensional case.

3.5.1 The Existence of Cepstra for N-Dimensional

Rational Polynomials

Oppehneim et al [38] showed that one class of
signals for which cepstra are defined are those whose
z-transforms are rational polynomials and non-zero on the
unit cirele, L;ter, Dudgeon [39] extended this result to
2-D signals. He [39] has shown that any 2-D signals s{m,n)

whose z~transform is a ratio of 2-D polynomials, that is,

m n
E:E‘::a(m,n)zlz2
§(zy,2,)= LR (3.17)
m n
T (m,m) 27,
m n
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will have a well defined 2-D complex cepstrum provided that

S{e , e Y # 0 for -~ mg Wy aWy$ T (3.18)

and provided that the origin of the signal has been adjusted
to ensure that the phase is continuous and periodic in both
frequency variables.

In an exactly analogous manner, we can demonstrate
that any N-D array having a rational z-transform will also
have a well-defined N-D complex cepstrum provided, 1) the
transfer function does not have any singularity or zero on
the N-D unit polydisc; 2) we are careful to eliminate any
linear phase components by an appropriate shift of the
original array.

Consider a N-D signal whose z-transform is a

ratio of N-D polynomials, that is,

Py Py Pn
S(zl,zz,...,zn)= z: > ... Z:S(pl,pz,...,pn)z1 Zy eve2Z
Py Py Pn
e n
z: z:... 2: a(ml,mz,...,mn)zl Zo eesZ
m; m, m
= M, m m
: 1 ™2 n
P ITEY z:b(ml,mz,...,mn)z1 Zy eesZ
s "
A(Z.,25500032_)
e il Z n (3.19)

B(zl,zz,...,zn)
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Where sums on Mgyl yees M have a finite number of terms.
The filter functien (3,19) has a Fourier transform which

is an N-D polynomial in exp(jwl),...,exp(jwn). We shall
now show that if a signal of finite extent, S(ml’mZ""’mn)’
has a Fourier transform S(ml,wz,...,mn), this will be the
sum of a linear component plus a continuous, centrosymmetric
(odd), and periodic component,

1=exp(jwn_1) and

Let zy= exp(jwl); z,= exp(jwz);...;zn_

consider

S(wl,wz,...,mn_l,zn) = > [E: 2:... z: s(ml,mz,...,mn_l,mn)
e B "n-1

m
.exp{—j(m1m1+m2m2+...+mn_1mn_1)}]z n
(3.20)

as a 1-D polynomial in 2 with parameters Wyglggesesty oo
Since s(ml,mz,...,mn_l,mn) is of finite extent
will have poles inside the unit circle

S(wlgmz, ooo’wn_ljwn)

only at z = 0. The phase function is defined as:
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S'(wl,mz,...,mn_l,zn)

cp(ml,mz,...,wn_l,wn)= Im ¢ dzn +

_ S(wl,mz,...,wn_l,zn)
lznl—l

@(ml,wz,...,mn_l,O) (3.21)

where the prime denotes differentiation with respect to z .
The contour of integration starts at zn=l and proceeds
around the unit circle to z = exp(jmn). It is necessary
to define a constant @(wl,mz,...,wn_l,o) to be the phase as

a function of w_ for w_ = 0,
n n

By constructing the phase ®(w1,w2,...,mn_1,mn)
in this manner, we are assured that @(wl,wz,...,wn_l,mh)

is continuous and odd, that is,

@(ml,wz,...,wn_l,wn)=‘3(-m1,—m2,...,-wn_l,-mn) (3.22)

When w == 2n, the contour integration in (3.,21) is a closed

curve., Using Cauchy's residue theorem we can write
@(ml,wz,...,wn_l,Zﬂ) = 2wr_= ZwNn (3.23)

where r is the number of roots of B(ml,wz,...,wn_l,zn)
inside the unit circle and Nn is the number of poles at

z_=0. If we let k = r - N_, then it is clear that:
n n n n
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@(ml,mz,...,mn_l,wn+2ﬂ) = @(ml,mz,...,mn_l,mn)+ 21rkn (3.24)

Similarly, we can write:

@(wl,wz,...,wi+2ﬁ,...,mn)=<$(m1,w2,...,mi,...,mn)+ 21rki (3.25)

Now we will show that kn is not a function of
W) pWoyene s g Indeed, if we examine the roots of
S(wl,mz,...,mn_l,zn) as we continuously vary parameters
WysWgyesssn _, from zero to 27, we discover that the roots
move about in continuous manner. Therefore, for a root to
move from inside to outside the unit circle (or vice versa),

it must lie on the unit ecircle for some values of WysWgyeee,y

n-1
This however violates our assumption, that
S(wl,mz,...,mn_l,wn) £ 0. Hence the number of roots inside
the unit circle (zn=l) is not a function of Wy aWoyers sl osW g+

similar argument can be made to show that ko is not a

function of Wyalogeesyly 1,0y qresesW for

n-1*%n
i=1,2,3,...,0-2, n-1.
Then the given phase function, ¢Km1,m2,...,wn_l,mn)

which is continuous and odd, can be written as the sum of

linear and periodic phase components;
@(ml,wz,...,mn)= @p(ml,mz,...,mn)+-@L(ml,wz,...,mn) (3.26)
where

@L(ml,mz,...,wn)= kjwy + k2m2+ L (3.27)
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and the term ¢$(wl’w2""’mn) is continuous, odd, and

periodic, In order to eliminate the linear phase terms
and leave only the periodic part, ¢$(Nl’w2""’wn) we

can define a new signal by shifting the origin, defining
Sp(ml,mz,.-.,mn)= S(ml_kl,mz_kz,ono,mn—kn) (3.28)

The signal Sp(ml’mZ""’mn) will have a continuous, odd,
and periodic phase function @p(ml,wz,...,wn). We may then

form the function

S
Sp(ml,wz,...,wn)=£n [Isp(ml,wz,...,mn)]]+ j¢%(m1,m2,...,mn)

(3.29)
which has a real inverse Fourier transform denoted by

Fas R
sp(ml,mz,...mn) and is called the cepstrum of sp(ml,mz,...,mn)

Remark 3.1:

If the phase is computed using the complex
logarithm or arctangent function, only the principle value
of ¢p will be obtained, The principle value is a number
between T and -7, which can still exhibit discontinuities of
27 in some cases, despite the subtraction of the linear
phase compeonent, To ensure continuity, an algorithm is
required, which examines the phase at each point in the
transform array and removes the jumps of 2¢ which are present
in the principle wvalue. This removal of the discontinuities

is achieved by adding an appropriate multiple of 27 and is
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called 'phase unwrapping'. Both elimination of the linear
phase and N-D phase unwrapping technique will be discussed

in Section 3.5.5 and Section 3,5.4,respectively,

3.5.2 Stability of Weakly-Causal N-Dimensional

Recursive Filters

A causal N-D recursive filter funection
1/B(zl,22,...,zn) is defined as one in whieh
n
b(ml,mz,...,mn) = 0 \J my < 0 (3.30)
i=1
This is also a definition of a first quadrant function.
We may, however, define a weakly-causal filter
over a sector of N-D space, An example of such a filter

is given by the following recursive form

oM N
Y(PysPgsees,p )=x(my ymy,0.om )= YZ y; “‘y: bmyymyyeeeym )y (p;-m ,p,=m,,
m=0 m,=0 m =0

.n,pnﬂﬂg

mytmy et Wy #0

"Ml M2 Mh
- E .o-.z b(ml,mz,...,mn)y(pl-m2,p2-m2,...,pn-mn) (3.31)
m.,=0 m, =0 m_=0

1 2 n
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We define the weakly-causal region, Rw to be of the form

where Rc={(m1,m2,...,mn) : M, > m., >0, \%i = 1,2,...n}
and Rs={(m]!m2,...,mn) "M, §$ m; <0 and

M, 2m, >0 ¥i = 2,3,...,n} (3.32)

In general we can say that for the weakly-causal functions
some of the subscripts of the N-D sequence have negative
values and the remaining subsecripts have positive wvalues.

Using the defined notation we have

y(pl,pz,...,pn)=x(m1,m2,...,mn)-égﬁ:-='§:b(m1,m2,...,mn)y(pl—ml,pz-mz,...,
W
pr;nh) (3.33)

— 1
where R_ = RZ U (0,0,...0) (3.34)

and the filter function

1

H(zl’ZZ"."zn) =
B(zl,zz,...,zn)

(3.35)
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Then the stability of the causal and the weakly-causal
N-D recursive filter is defined by the location of the
essential singularities of H(zl,zz,...,zn) in the complex

zl,zz,..-,zn space,

Thecrem 3.7:

The causal recursive filter H(zl,zz,...,zn) =
1/B(zl,z2,...,zn) is stable if and only if:

B(zl'ZZ""’zn) # 0 for all (zi, i=1,2,.,..,0)eD (3.36)

1

n
where D, = {(zi,i = 1,2,...,0)¢ r]lzi|§1 }

i=1

The proof of theorem 3.7 1is in [48] . This theorem can be
applied to weakly-causal filters by transformations.

Theorem 3.7 is difficult to implement numerically
and requires an infinite algorithm [45] . In [52], it
was shown that this criterion can be replaced by a more

flexible and considerably simpler stability test.

Theorem 3.8:

Let B(21'22’°"'zn) be a polynomial in nrvariables.

Then condition ( 3.36) is equivalent to:

n-1
B(zl,zz,...zn) # 0 r]lzi|=1 N {]znl < 1} (3.37)

1i=1
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n-2
B(zl,zz,...,zn_lﬂn¥ 0 ‘1 |zi| =1 r‘{lzn~llé’1} (3.38)
i=1
n-3
B(zl,zz,...,zn_2,0,0)¥ 0 r\lzi|= 1 r]{|zn_2| = 1} (3.39)
i=1
B(zl,zz,o,...,o) # 0 {lzll = 1} N {|22|é=1} (3.40)
B(Z],0,05404,0) # 0 {|zl|ﬁﬁl} (3.41)

Theorem 3,8 will be used to develop an N-D stability

criterion using the complex cepstrum.

Remark 3.2:

In the definition (3.31), given for the weakly
causal systems, only one of the subscripts of the N-D
sequence has negative values and others have positive values,
The stability test presented in this paper is applicable to
the more general class of non-causal N-D recursive filters,
in which the number of negative subscripts may be up to N-1

for an N-D digital recursive filter.
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Remark 3.3:

The unit sample response of a stable, weakly-
causal filter is non zero not only over the first quadrant,
R., but also over some other section of the N-D sphere, in
our case, R_. In order to implement the stability criterion
(theorem 3.8), we must find the location of the zeroces of
B(zl’ZZ""’zn)' However, this is not possible with
available practical testing procedures [23], [26],[54],

[55], [62]. Therefore, one of the unique advantages of
the given stability test is that the non-causal N-D
recursive filters can be tested using the complex cepstrum

properties,

Remark 3.4:

The above classification subdivides n-dimensional

recursive filters into the following categories

(a) Causal filters comprising one member in which

n
h(ml,mz,....mn) =0 L) m; < 0
i=1

(b) Non causal filters comprising one member in which the

support of h(ml’mZ"°"'mn) is unrestricted.

(¢) Weakly causal filters comprising (2%~ 2) members in
which the support of h(ml’mZ""'mn) is constrained to

be positive for at least one element of my.
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3.5.3 Cepstral Stability Test for Causual and Weakly-

Causal N-Dimenensional Recursive Filters

In Section 3.5.1, it was shown that the essential
singularities and zeroes of H(zl,zz,...,zn) map into
essential singularities of its cepstrum, ﬁkzl,zz,...,zn).
OQur stability criterion is based on the simple property
of the N-D cepstral transformation. From theorem 3.7,
recall that if H(zl,zz,...,zn) is stable, it can be written

in power series for M, ,M,,ec¢,M E R .
P 1*72? *“n ¢

Since the regions of analyticity of H(ZI’ZZ"°"Zn)

N , .
and H(z ,...,zn) are identical, it must also follow that

1°%2

~
H(z 2,...,zn) can be similarly expanded as:

1*2

A A m; m m
H(zl’zzgcoo’zn)= EZ...Eh(ml,mz,...,mn)Zl 22 ...Zn

(3.42)

Theorem 3.9 summarizes the previous results.

Theorem 3.9:

The causal N-D recursive filter H(zl’ZZ"“’zn)

~
is stable if and only if its cepstrum h(ml,mz,...,mn) has a

support on the first quadrant, Rc.

Proof

'If' part. By the existence of N-D cepstra: because
~
H(z;,255044,2 ) 1is analytic on {[zll=|22|=...=|zn_1|=1, and

~
lznl <1 }, h(ml,mz,...,mn) takes support on the entire
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{ml'mZ""’mn—l} subscripts, The additional region of
. . N
analyticity for H(zl'ZZ""’zn—l’o) on {|zl|=]zz|=,,,=|zn_2|=1,

and |z | < 1} ensures that
n-1
A
h(ml,mz,...,mn) = 0 for m <O

And by continuing this argument, for the n sets of variables

we obtain

n
~
h(ml,mz,...,mn) = 0 for N m <o

This shows that the cepstrum of a causal N-D stable recursive

filter function has only support in the first quadrant,

n
Rc = r] m, = 0
i=1
'Only if" part. By contradiction, suppose
H(zl,zz,...,zn) is unstable, In Section 3.5.1, it was

proved that the region of analyticity is identical for both
the cepstrum and the original N-D signal. However, from

theorem 3.8, it can be seen that at least, one of the

stability conditions must be violated. For example, if the
first condition is not satisfied; H(zl,zz,...,zn) =0 on
{]zll=|z2|="'=|zn—l| = 1 and |zn|§ l} ensures that

s
h(ml,mz,...,mh) # 0 for m 0 (3.43)

1 <
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This contradicts the assumption that the cepstrum has
support only on the first quadrant. Hence, the causal N-D
recursive filter function is stable if and only if its

cepstrum has support on the first quadrant,

Theorem 3.10:

The weakly-causal N-D recursive filter
H(zl,zz,...,zn) is stable if and only if its cepstrum

N
h(ml’mZ""’mn) has support on Rw where

R, is the support of h(ml,mz,.....mn).

Proof
The proof of this theorem is similar to theorem
3.9. 'If' part can be proved by the existence of the N-D

cepstra and theorem 3,8, 'Only if' part is proved by

contradiction.

3.5.4 Phase Unwrapping Theory for N-Dimensional

Recursive Filters:

The computation of the complex cepstrum is
complicated by the fact that the complex logarithm is
multivalued. Indeed, the complex logarithm can be expmxmed

as:
N y .
S(Nl:mzri"9mn)= ﬂn[ls(‘ﬂ]_"*)zs'":mn)]]"' Jq:"(wl,mzs"':wn)

(3.44)
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where
Ml_l M2—1 Mn—l
S(ml,mz,...,mn)= Z E s Z s(ml,mz,...,mn).
m,.=0 m,=0 m_ =0
1 2 n

2ﬂm1m1 2ﬂw2m2 2wmnmn
exp|-j|l ———}lexp|-j|{ —— sssexp|—-jl —m
M M2 M

1 n

O\S ml,mz,onu,wné N (3145)

The standard computer complex logarithm function uses the
principle value for the phase, and consequently 'jumps' of

2r in the value of the phase may be seen.

Various phase unwrapping algorithms have been
discussed by several investigators [28],{69],[70],[138].
Tribolet [70] proposed a phase unwrapping algorithm which
combines the information contained in both phase derivative
and the principle value of the phase. Later, Dudgeon [73]
used Tribolet's method for computation of the 2-D complex
cepstrum. And recently, Bhanu and McClellan [69] have
suggested a new phase unwrapping technique which is based
on fitting splines to the phase derivative curve.

However, we have found that the phase unwrapping
technique used by Ekstrom and Twogood [28] is the most
successful one for the N-D application. This algorithm

proceeds as follows; first Arg[B(wl,O,...,Oﬂ,Arg[B(O,mz,O...,OH..,
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and Arg[B(0,0,...,wn)] are calculated by simply taking
Wyslosesnsld respectively, and adding or subtracting 2%
whenever a phase discontinuity is encountered. Following
these 1-D unwrapping on the axis, 2-D unwrapping is required
for checking the discontinuities between the present phase
value and previously unwrapped neighbouring phase values.
This algorithm will continue until the phase of the N-D

signal is unwrapped.

3.5.5 Linear Phase Removel of N~Dimensional Signal

After the phase unwrapping of the N-D signal, the
removal of the linear phase component is the final step of
computation of the complex cepstrum. In Section 3.5.1, it

was shown that we can write the phase function as
@(ml,mz,...,mn)= ¢P(ml,m2’o.-,mn) + k1m1+k2w2+...+knmn (3-46)

To eliminate the linear-phase terms leaving only
the periodic part ¢$(w1,w2,...,mn) we can define a new
signal by shifting the origin of the original signal, to

generate
sp(ml,mz,...,mn) = s(mlhkl,m2~k2,...,mn-kn) (3.47)

The signal sp(ml,mz,...,mn) will have continuous, odd,
and periodic phase.
It is interesting to note that the determination

of the coefficients of the linear-phase component,(kl,kz,...,kn)
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is N separate 1-D problems,
The linear portions of Arg[B(O,...,u&,O,...,OH
of the unwrapped phase can be obtained from the original

phase curve as:
$(0,..0,0;+27,0...0) =<1>(o,..o,mi,o...0) + 27k, (3.48)

for all i = 1,2,.,.n

It can be shown that this problem is identical

to determining the coefficient of the linear-phase component,

Xi(mi) =z .o Z Z ...Zs(ml,mz,...mn) (3.49)
m
n

M. m.-1 m.+1
1 1 1

Hence, the parameter ki can be determined by observing the
degree of the phase linearity of the 1-D signal in

equation (3.49).

Remark 3.5:

From the above analysis, we conclude that any
methods which are developed to facilitate the determination
of the coefficients of the linear-phase component of 1-D

signal can be used for an N-D signal.
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%6546 IMPLEMENTATION OF THE CEPSTRAL TEST

A block diagram for the numerical implementation
of the stability test is shown in Fig.3.1. First, we
obtain the discrete Fourier transform (DFT) of the given
array in the spatial time domain. Then, by taking the

complex logarithm of Ba(wl,wz,...,mn), we get
~
Ba(wl,wz,...,wn)¥ ﬂn [Ba(ml,mz,...,wn)] (3.50)

N N\
where Ba(wl,wz,...,wn) is the aliased version of B(wl,wz,...,wn).

: ”~
The cepstrum of b(ml,mz,...,mn) is dentoted by B(ZI’ZZ""’Zn)'

A
The third step 1is used to obtain ba(ml,mz,...,mn).

The error in this approximation is given by:

AN FaN
ba(ml’mZ""’mn)_b(ml’mz""’mn)= IZ....L b(ml+1lql,m2+12Q2,...,mn+1nqn)
RW
(3.51)
for the DFT size Ql x szc...x Qn'
n
where R = r] (- =< m, < =),
=) . 1
1=1
Clearly, the approximation
N FaN
ba(ml,mz,...,mn)==b(m1,m2,...,mn) (3.52)

is a good one only if b(ml,mz,...mn) decays rapidly. A good
approximation can be obtained by using moderate sized FFT's.
Finally, the support of the cepstrum is determined

and checked that it coincides with the support of b(mlmb,.“.mn).
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b(m1.mz,---mn)’

DFT

Ba(wl.wan o wn)

. Log

Ba(whw}!n”' wn)’

IDFT

Ba(m1-m2."'

mp)

Fig. 3-1 Block diagram of the stability test using N-D DFT
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CHAPTER 4

STABILIZATION TECHNIQUES

In Chapters II and III, several methods for
testing the stability of 2-D and N-D digital filters were
discussed. Since many design =  procedures available
for designing 2-D recursive filters [32], [33], [40] fail
to produce stable ones, a stabilization technique is used
to process the unstable transfer function in order to
obtaln a new and stable function which has approximately
the same amplitude response,

Three stabilization techniques are now reviewed.
Two of them rely on varying the phase of the filter without
affecting its amplitude. The third method is applicable
to zero-phase functions.

One of these methods is then modified to include
a more useful class of 2-D recursive digital filters which
has great practical importance in the area of image
enhancement, Next, a new spectral factorization technique
is suggested as an alternative stabilization procedure.
After that, an algorithm is developed for the stabilization

of digital filters by the Pistor method [26)].

111
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4,1 PLANAR LEAST SQUARE INVERSE TECHNIQUE (PLSY):

It is known in the literature that the least
square inverse of a 1-D polynomial which represents the
denominator of a discrete function is always stable,
Because of this, synthesis of one dimensional digital
filter can be designed with guaranteed stability.

Shanks et al [7] proposed an extension of this technique
to the two-dimensional case, Before reviewing the method
in detail, some useful definitions and preliminary theorems

to its understanding are given,

Definition 4,1: A sequence, {b(n)}, is a minimum phase

sequence when its z-transform B(z) has no zeroes inside

the unit circle in the z-plane.

If the roots of B(z) are available, we can simply
replace a pole inside the unit circle with polar coordinates
(r,8) by a pole outside the unit ecircle with polar
coordinates (l/r,0) [36]. The amplitude response of the
filter is left unchanged by this procedure, since a root is
replaced by its mirror image. However, if the roots are

not available, we can use the following theorem.

Theorem 4,1: Given a real finite polynomial B(z), any least

squares inverse of B(z) is the z-transform of a minimum

phase sequence.
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The polynomial P(z) is the least square inverse
of B(z) 1f the convolution of the corresponding sequence
{p(n)} and {b(n)} approximate the unit impulse sequence
with the least square error criterion, Thus, an unstable
filter with denominator B(z} can be approximated by a stable
filter with the same numerator, and denominator P(z).

The least square inverse stabilisation technique
for 2-D functions is based on the following definition and
the conjecture nowadays known as "Shanks' Conjecture" which

extends the 1-D procedure to the 2-D case,.

Definition 4.2: A 2-D sequence {b(m,n)} is a mininum

phase sequence when its z-transform B(zl,zz) has no zeroes

in the unit polydisc.

4,1,1 Shanks' Conjecture [73]:

Given a 2~D real finite polynomial B(zl,zz),
any least square inverse of B(zl,zz) is the z-transform of

a minimum phase sequence,

This is a very important conjecture because it
implies that the filter F(zl’ZZ) = l/P(zl,zz) must be stable
if P(zl’ZZ) is PLSI. However, Genin and Kamp [16]
found the following counter example for disproving Shanks'

conjecture,



Counterexample 4.1 Elﬁ]:

Let

m n
1’22)= Z Z P(m,n)zlzz (4.1)

K L
B(z,,2,) = :E: :E: b(k,1)z,z, (4.2)

in the sense that the coefficients p(m,n) minimize the

quadratic error norm

I J

Q = (1-p(o,0)b(o,0)) 2+ :E: :Z: g2 (i, ) (4.3)

i=0 j=0

Where{g(i,i)}={b(k,l)}*{p(m,n)L # denotes the convolution.

The polynomial B(zl,zz) of the degree K=L=3 and

with the coefficients

b(0,0) = b(3,3) =1
b(0,1) = b(1,0) = b(2,3) = b(3,2) = - 1.15
b(0,2) = b(2,0) = b(1,3§ = b(3,1) = - 0.902

114
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b(0,3) = b(3,0) = 1,75
b(1,1) = b(2,2) = 3,72
b(1,2) = b(2,1) = -2,23 (4.4)
admits the following PLSI of the degree M=N=1:
-2
P(ZI’ZZ) = (4,13 + 2.12z1+ 2.12z2-0.606zlzz)10 (4.5)

It can readily be seen that the first condition of
theorem 2.3 in Chapter II is satisfied, but the second one
is not, because for z,= -1, the PLSI has a zero at Z,= -0.736,

1

i.e. 1inside the unit circle.

4.1.2 Jury's Conjecture:

The counterexample of Genin and Kamp relates to

an inverse polynomial of lower degree than the original

polynomial. They did not present a counterexample for the
same degree. However, all the examples of Shanks' are

related to the same degree 1inverse as the original

polynomial Jury [112] therefore, introduced a new conjecture
with additional constraints,

Jury's Conjecture ﬁlZ]: If the original 2-dimensional

polynomial and inverse are of the same degree, then the
reciprocal of the PLSI is a stable filter.
This conjecture [lli] has been verified for low

degree poynomials,
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Jury-Anderson Verification [113] : In this work, the

verification of Jury's conjecture for special low order
polynomials was presented. The key to the verification
lies in utilizing the centro-symmetric properties of a
particular Toeplitz matrix, which arises in the equations

of the approximate inverse. The prescribed poynomial is:

A(zl,zz) = a(0,0) + a(1,0)21+ a(O,l)z2+ a(l,l)zlz2 (4,6)
and its inverse
B(zl,zz)= b(0,0) + b(1,0)z + b(0,1)22+ b(1,1)z,z, (4.7)
L 1
A(z,,2,) & ——— (4.8)
1?72 " B(z )
12%2
Using the 2-D convolution;
C(zl,zz) = A(zl,zz) B(zl,zz)
= ¢(0,0) + c(O,l)z1 + c(O,l)z2 + c(1,1)2122
+ c(2,0)zi + c(0,2)z§ + c(2,l)ziz2
+e(1,2)z 25+ c(2,2) 2525 (4.9)

c(i,j)'s are computed from the given polynomial a(i,j)'s

and b(i,j)'s to obtain the approximate inverse form
s ] p s



~
1]

(1-e(0,00)2 + 25 (1,1

(1-a(0,00b(0,00)% + 2, c2(i,3)

i,]
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(4.10)

and we seek to minimize the quantity Q with respect to

b(i,j'

B

00

10

Ol

11

where

S .

This can be expressed in the matrix form

Ibl
F’
00 11
'
111 IbD
01 Iio
a(0,0)

a(l,l)

a(0,0)

a(l,1) a(1,0)

a(0,1)

a(l,0)

b(0,0)

b(1,0)

b(0,1)

b(1l,1)

a(0,0) + a(l,1) a(l,0)

a(0,0) + a(l,1) a(0,1)

a(0,0;

+ a(l1,0) + a(0,1) + a(l,1)

(4.11)

(4.12)



or more compactly as:

PR=§, (4.13)

y

matrices appears often in 2-D problems. Utilizing the

is the block Toeplitz matrix. This kind of

centrosymmetry of the above equation yields,

-foo + r11 Ibl + Ilo 0 ] “-b(0,0)-b(l,l)- -;(o,o;
Lo * To1 Lo * 1‘1’1 0 b(1,0)+b(0,1) 0
o To- T 'Tbl—‘Tlo ~b(0,0) +b (1, 1) i-a(0,0)
0 10~ 1 Toom lel— — -b(1,0)+b(1,1)- ] 0 4

(4.14)

Denoting the top left 2%x2 submatrix by A, and lower right
submatrix by C. Iif 4= det [A], Ay,= det [C], and
A22, A21, C22, C21 are the corresponding cofactors, then

it can be shown that:

Ao, < Tag,l s €511 < 5, - (415

A >0 A > 0 (4.16)

118
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Conditions in (4,16) imply that Toeplitz matrix is positive

definite, In order to test the stability of B(zl,z
it is sufficient to check the following conditions

(Huang Theorem [19] ).

b(1,0)
b(0,0) {

b(1,0) > b(1,1) = b(0,1)
b(0,0) b(0,0)

1 +

By solving the matrix equation (4,14), we get:

A c
b(0,0) = } a(0,0)} 22 22
Ay b,y
A C
b(1,1) = } a(0,0) | =22 - 22
_Al A2 N
A C
b(o’]_) = % a(O’O) —--2.2—+—.%-2-
|8 8y ]
A c
2 2
b(1,0) = } a(0,0) |- 2=- 2L
A A

2)’

(4.17)

(4.18)

(4.19)
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Using the above identities one can show that
the PLSI is indeed stable, Let us check the first

condition which requires:

bL,Ol <« 1 (4,20)
b(0,0)

b(1,0) Co4, + A, A
' _|-2171 2172 < 1 (4.21)

b(0,0)| [Chydy + A,,l

Similarly the second condition (4.18) can be satisfied,.

From equations (4.6) and (4,7), it is evident
that the polynomial and its inverse are of the same degree,
Jury—-Anderson verification has been extended for

the following polynomials and their inverses;

a) Jury, Kolavannu and Anderson Extension [116]: In this

work, the conjecture has been verified for the following

polynomial and its inverse,

(4.22)

A (21,2,)= a(0,0)+ a(0,1)z,+ a(k,O)z? + alk,1)z,2;

(4.23)

k k
Bk(zl,zz)= b(0,0)+ b(0,1)z,+ b(k,o)z1 + b(k,1)2221
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b) Delsarte, Genin and Kamp Extension Elll;] : The conjecture

has been verified for the following polynomial and its

inverse,

K K
Ay (2),2))= a(0,0) + a(0,8)z, + alk,0)z; + alk,s)z;z, (4.24)

k k s
B (2,,2,)= b(0,0) + b(O,s)z; +b(k,0)z; + blk,s)zz, (4,25)

where s,k are integers larger than omne.

¢) Jury and Choppora Extension ﬁlﬁ}: The conjecture has

been verified for the following polynomial and its

inverse,

m t n s min_ s+t
Am+n,s+t(zl’22)_ a(o,0)+ ,-si(m,t)zlz2 + a(n,s)zlz2 + a(m+n,s+t)zl z,

(4.26)
t + +t
Bm+n’s+t(zl,zz)= b(0,0) + b(m,t)szz + b(n,s)z?zg + b(m+n,s+t)zT n zg
(4.27)

with {(mt - ns) # 0.

Despite the fact that Jury's conjecture has been
verified for low degree polynomials, it has not been proved
in general, The difficulty lies on the condition of the

positivity of polynomials with literal coefficients which
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can be obtained up to fourth degree [22]. Further work

on this problem was published by Bednar [120]. In this
work, Bednar commented on the mathematical difficulties

in verifying the conjecture (If it is possible) in general,
In a later survey by Merserau and Dudgeon [1311 further

numerical verification of the conjecture is mentioned.

Recent investigations [104] , however, led to
the following simple counterexample to disprove the

Jury's conjecture.

Counterexample 4.2:

Let,

3 3
C(zl,zz) = Z Zc(m,n)z]]l.lz;1 (4.28)
n=0

where {c(m,n)} = (4.29)

The planar-least squares inverse of the same degree of(Kzl,zz)

3 3
P(zl,zz) = :E: :z:p(k,ﬂ)zgzé (4.30)

k=0 &=0
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1.0 -0.66150676 0.43829224 -0.24508737-1
-0.66150676 0,11920286 -0,11038349 0.24198055
P(k,L) =
’ 0.43829224  -0,11038349 -0,02373516 -0.12054714
-0.24508737 0.24198055 -0.12054714 0.0850445§J
(4.3
The above PLSI form was obtained in the sense
that p(k,2) minimizes the quadratic error norm,
L 2 2., .
o = (1-g(0,0) + 2 g1,
1,3
2 2., .
= (.1—0'(0,0)p(0,0)) + Z g (1,3) (4.32)
i,]
Where

3 3
g(i,j) = Z z c(m,m)p{(i~m, j-n) (4.33)
m=0 n=0

According to Huang's theorem [19], the obtained
PLSI of the same depree polynomial, P(zl,zz) is unstable,
This can readily be seen from the failure of the second
condition of Huang'stheorem. Fig.4.l shows the mapping of

zq- unit circle onto z, plane,
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Z,-plane v

Yc

A
R

Z, unit circle

Fig. 4.1 Mapping of 2, unit circle onto z, plane
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Comments on Jury's Conjecture: The above counterexample

shows that Jury's conjecture is not valid in general,
However, it is still desirable to exhaust all possible

cases where the conjecture is valid, Generally, this
problem is similar to the well-known "Aizerman's Conjecture"

[132] in control literature.

4,2 DISCRETE HILBERT TRANSFORMATION TECHNIQUE

For 1-D causal sequences the stabilization technique
via discrete Hilbert transform is based on the definition

4,1 and the following theorem [71].

Theorem 4,2: A.sequence {b(n)} is a minimum phase sequence

if and only if the logarithm of its amplitude spectrum
log [B(er)| and its phase spectrum(ﬁ(w) are related by
the Hilbert transform:
L2
v = -1—“ f log [B(e?™) |cot (%57 du (4.34)
0
The theorem suggests a stabilization procedure for
an unstable filter with the denominator B(z) corresponding

to a non-minimum phase sequence {b(n)} as follows:

Step 1, Calculate the amplitude spectrum |B(ed¥)]

Step 2. Replace the original phase spectrum by the phase

spectrum evaluated by (4.34).
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Step 3. From IB(er)l and the new phase spectrum evaluate
the corresponding sequence {b(n)} which is

minimum phase according to theorem 4.2,

To implement the above procedure on a digital
computer, an approximate discrete version of equation (4.35)

can be used.

N
Gy = & D toglu(i)| [1-(-1* ] cot T(k-i) (4.35)
i=0

The expression (4.,35) can be further simplified to:

N-1
qu = -123 log|B(i)|cot g-(k-i), k odd (4.36)
i=0,2,4,.
N-1
Qb(k) = % log|B(i)]|cot %(k—i), k even (4.37)
i=1,3,5,.

Similarly, DFT and IDFT relations are used to evaluate the
amplitude spectrum at discrete values of w and corresponding

sequences, The relation (4.35) is equivalent to:

qb(k) =—jDFT {sgn(k)IDFT [10g|a(k)|]} (4.38)

The relation (4.38) is called the discrete Hilbert transform

(DHT).
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Itimﬁ been shown that the approximation involved in
using the DHT form, rather than the exact one, namely
relation (4.34), is the same as that which results when
the continuous integral is replaced by trapezoidal rule of

numerical integration [121].

2-D Discrete Hilbert Transform Technique ﬁilj:

Read and Treitel [121] extended 1-D DHT techniques
to two-dimensions. Before applying the procedure for the
2-D case some new functions are defined.

A finite discrete impulse response is causal if;
> il » Ry > EE (4.39). .

2 2

b(nl,nz) = 0 for n,y

Where n, varies on the discrete set {0,1,2,...,N1-l} and

n, varies over the set {0,1,2,...,N2-1} . The even and

odd parts of a such sequence are defined as:

1
be(nl'nZ) = 5 [ b(nl,nz) + b(Nl—nl,Nz—nz)] (4.40)
- 1
bo(nl’nZ) =5 [b(nl,nz) - b(Nl_nl’NZ n2)] (4.41)
respectively, The odd and even parts of a causal periodic

sequence is related by:

bo(nl’nZ) = [sgn(nl,nz) + bdy(nl,nz)] be(nl’nZ) (4.42)



Where the sgn function is a finite (2-D) version of the

(1-D) signum function and it is defined by:

1 0 < n, < N1/2 and 0 < n, < N2
sgn(nl,nz) = 1 N1/2 < n;, <N, and N2/2 < m, < N,
0 elsewhere
The bdy function makes boundary adjustments and is
defined by:
1 n2=0 and 0 < ny < N1/2
-1 n2=0 and N1/2< 0, < Nl
bdy(nl,nz) = —
1 n,= and 0 < n, < N2/2
-1 n1=0 and N2/2<‘n2 < N2
0 elsewhere
The causal periodic sequence b(nl,nz) is the
of its odd and even parts:
b(nr,nz) =[ée(n1,n2)]+‘}o(nl,n2)]
Taking the DFT of both sides yields:
DFT [b(nl,nz)] = DFT [be(nl,nz)} + DFT [bo(nl,nz)]

128
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(4.43)

(4.44)

sum

(4.45)

(4.46)
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using the well-known properties of the DFT for even and

odd functions results 1in:

Br(nl,nz) = DFT :be(nl,nz): | (4.47)
Bi(nl,nz) = DFT :bo(nl,nz)i (4.48)
Where
B(nl,n2)= Br(nl,n2)+ jBi(nl,n2)= DFT [b(nl,nz)] (4.49)

Taking the IDFT of both sides of (4.47) and substituting

into (4.42) and using equation (4.48) results inj

Bi(nl,nz) = —jDFT{l:sgn(nl,n2)+ bdy(nl,nz)]oIDFT[Br(nl,nz)]}
(4.50)

This last relation defines the (2-D) discrete Hilbert
transform. It clearly corresponds to the contihuous transform
given in equation (4.34).

If the sequence b(nl,nz) is a minimum phase

sequence than (4.50) becomes:

¢Knl,n2)= -j{\[sgn(nl,n2)+ bdy(nl,nz)}-IDFT[long(nl,nz)f]}

(4,51)

The expression (4.51) gives an approximate minimum phase

for a (2-D) ampli tude response B(nl,nz). Forming a
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minimum-phase version of an array by using the equation

(4.51) can be summarized by the following steps below.

Step (1): Given a finite discrete (2-D) array, the
coefficient array should be aﬁgmented with zeroes to satisfy
the condition for causality, The added zerces increase

the size of the array, so that it becomes amenable to Fast

Fourier Transform analysis,.

Step (2): The natural length of the amplitude spectrum

of the augmented (2-D) array should be calculated.

Step (3): The (2-D) discrete Hilbert transform must
be applied to this (2-D) array. Thus the log of the
magnitude is treated as the real and the discrete Hilbert

transform then yields the imaginary part.

Step (4): The imaginary part is used as the phase spectrum
corresponding to the given amplitude spectrum. These

two spectral characteristics completely describe the transform

of the minimum=-phase array.

Step (5): After conversion from amplitude and phase to
real and imaginary parts, the inverse transform is determined
and truncated to obtain the same dimensions as the original
array., This yields the minimum-phase version of the

original array.
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Fig. 4.2 shows the block diagram of stabilizing a filter
function by discrete Hilbert transform.

Although the discrete Hilbert transform procedure
works for most examples, it has been shown in [122J that

there exist some cases where it proves to be of no wvalue.

Counterexample 4.3:

Woods ﬁZi] pointed out that it was not in
general possible to achieve the stabilization and at the

same time require the amplitudes to be same.

Consider the following causal, first-quadrant filter function

F(zy,2,) = —r = L (4.52)
A(ZI'ZZ) 1 1 o n
Z Za(m,n)zlz2
m=0 n=0
where
a(0,0) = 1/4 a(1,0) =1
a(0,1) =0 a(l,l) = 1/4 (4,53)

It can be shown that the filter funetion F(zl,zz) is
unstable, The denominator function, A(zl,zz) becomes zero
in the unit polydisc. Letting A(u,v) be the DFT of{a(m,nﬁ,

we obtain for the magnitude,
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h(k,1), non-minimum phase sequence

!

Append zeroes to make h(k,l) causal

i

Take DFT

!

Caiculate Amplitude Spectrum ]H(k.l)l

!

Calculate 1n [H{k,1)]

Y

Take IDFT

!

Multiply by (sgn + bdy)

At this point the imaginary
part of array contains
Take DFT Sk, D

Calculate the new H(k,l) by using equation
Hk, ) = HK, D] ‘exp(i9(k.1)

Y

Take IDFT

!

Truncate to or'iginal dimension |

'

h{k,1}, minimum phase version of h(k, )

Fig. 4-2 Procedure for obtaining a minimum phase
version of a (2-D) sequence.
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[A|2= 9/8 + 1/2 (cos2mu + cos2tv) + 1/8 cos2n(u+v)

(4.54)
on  [-4,+ 4] x [-4,+ 4]

Now, we assume that there exists a 2x2 array
b(k,l) corresponding toc a recursive filter stable in the

first quadrant, Its magnitude is given by:

8] = 1%(0,0) + b2(0,1) + b2(1,0) + b>(1,1)

+

2{b(0,0)b(1,0) + b(0,1)b(1,1)}cos(2mu)

+

2{b(0,0)b(0,1) + b(1,0)b(1,1)}cos(2mv)

+

2b(0,0)b(1,1)cos27(u+v) + 2b(1,0)b(0,1l)cos2w(u~v)

(4.55)

Equating coefficients of [A|2 and |B}2 to match

the amplitude and obtain either

{b(x,1)}

I
|+

fatk,1)} (4.56)

or

T

{bx, 1} fa(k,1)} (4.57)

i
i+

where the suprscript T refers to matrix transposition about
k=1 diagonal. In both cases {b(k,1)} is unstable.

The above counterexample shows that it is not
always possible to stabilize a 2-D unstable filter by using
DHT. The main difficulty is due to the truncation of

infinite series and approximation of integral by finite
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summations. In a separate and independent work, Bose [124]
gave other counterexamples for the continuous Hilbert
transform and explained why stabilization via Hilbert
transformation without appreciable change in the frequency
response cannot, in general, be implemented in multi-
dimensional filters. In a recent work by Murray [135],
further elaboration of this method of stabilization is

discussed,

4,3 PISTOR STABILIZATION METHOD

The two stabilization techniques mentioned above,
PLSI and DHT, cause a modification of the unstable transfer
function of the filter in such a manner the amplitude
response is kept approximately unchanged, while the phase
response is adjusted to ensure the stability of the
modified transfer function. Therefore, these procedures
[7], [121], are not applicable to zero-phase functions which
do not permit phase modifications in any manner which will
improve the stability,

A zero-phase filter has the particular property
that its unit sample response is symmetriec about (m,n)
origin along any radius through the origin. Because of
this symmetry, the unit sample response of a zero-phase
filter is not a one-quadrant function. By the way, the
filter function can be transformed by translation to one of

the single quadrant functions, Hence, the z-transform of
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this filter could be associated with four different filters.
However, none of them would be stable [31].

Pigtor [31], [126] showed that unstable two-
dimensional recursive filters having zero-phase can be
decomposed into four stable filters that recurse in four
different directions. This decomposition 1s based on the
relationship of stability of recursive filters to the
absolute summability of certain operators called cepstra [138].
We consider a real-valued discrete function ¢ with a limited

number of sample points, in which

e = {c(m,n)} |m| < M, = =
(4.58)

In| < ZNC = g

z—transform of this array is of zero phase and non-negative

for all (zl,zz)eR

Im {C(u,v)} = 0 (4,59)
Re {C(u,v)} > 0 (4.60)
where
= ] -j2w{um+vn)
C(u,v) = & Z e(m,n)e (4.61)
m=~<« n:o—B
R = {(zl,zz): [zl| = ]zzl = 1}} (4.62)

Equations (4.59) and (4.61) imply central symmetry of ¢,



¢(m,n) = c(-m,~n)

Pistor showed that an unstable filter I/C(zl,zz) can be

be decomposed into stable filters that recurse in four

different directions shown in Fig. 4.3.
4
1 S - 1
C(zl,zz) =1 K2 (zl’ZZ)
or, in the cepstrum domain
o 4 -
e = I Y%
=1
where ¢ is the cepstrum of ¢,
4,3.1 Determination of Approximate Cepstrum
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(4.63)

(4.64)

(4.65)

The cepstrum of a given array can be determined

by DFT techniques as indicated in Fig.4.4.
done by using the fast Fourier transform.

is not a casual function, some shifting operations will

be necessary.

This can be

c(m,n)

(4.66)
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+n —n
+Mm NW NE +M
(A1) - (,N)
input array
(M,1) - eeoeee o (M, N)
_m / SW SE \ o
+0 -n

Fig.4-3 Pistor's decomposed single-quadrant
filters convolved recursively with an
input array,



b (m,n) B(m,n)
> DFT - Ln
Y
B(m,n) B (m.n)
~¢ IDFT

Fig 4-4 Block diagram of determination of
the approximate cepstrum transform
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where
M = 2+l R N = 28 +1
- Zm - 2=
_ M _ N
WM = e ' WN = e

In order to use FFT algorithms, equation (4.66) can be

transformed

2 2
Clk ==, ky=8) = ¢ (aa,n-g)w, ) K17 g (n=B) (iepm6) (4.67)
=0 T=
ke [0,2<]
kze[O,ZB]

However, FFT algorithms are applicable for one-dimensional
arrays.
Therefore, it would be necessary to modify the two-dimensional

DFT equation.

2a kym 2 kon

C(k,-=,k,-8)= K K_W Eﬁ c(m-=,n-B)K_W

1 2 k1k2 ety [ M bty n N

k,e[0,2<]
45,68
where:
e -Bn —w(k;==) = (k,~8)
Kp = ¥y » K= Wy ’ Kk1k2= Wy Wy

Since we use logarithm in the process, it is essential that

FFT values must be real positive. Hence, the symmetry



property must be considered at each step. Inverse FFT of
logarithm array can be obtained similarly. Due to the

aliasing error, it is helpful to insert zeros around the

original array. The degree of aliasing can be controlled
by sampling rate. Adding more zeros will result in less
aliased wversions in the frequency domain, It has been

found that the aliasing greatly affected the value of the

decomposed arrays, if FFT is used on a matrix less than
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32x%32 points. This number 1is the minimum acceptable size
of FFT,
3,2 DECOMPOSITION BY QUADRANTS IN THE CEPSTRUM DOMAIN

Because {c{(m,n)} is centrally symmetric, so is
A
its spectrum C(u,v), and consequently its cepstrum C(u,v)
must be also of central symmetry. Due to this symmetry

in the cepstrum domain the following relations must hold:

Y(,0) = 2b(k,0) = % e (k,0) (4.639)
1b(0,2) = 3b(o,2) = 3 cx,0) (4.70)
*b(k,0) = *b(k,0) = 3 e(k,o) (4.71)
“b(o,2) = 'b(o,8) = £ c(k,2) (4.72)
50,00 = *b(0,0) = b(0,0)= “b(0,0)= F ¢ (0,0) (4.73)
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Thus, four one-quadrant sequences {Qb(m,n)},z =1,2,3,4,

will satisfy the equation (4.74).

~

c¢c (m,n) = 1‘;J(m,n) +26(m,n) + 3I;(m,n) +4£(m,n) (4.74)

4,3,3 Determination of Decomposed Arrays in Time Domain

First, we calculate the first gquadrant arrays in
spatial (time) domain. Next, the fourth quadrant array
will be obtained. Then, we get the third and second
quadrant arrays by rotating through 180° the first and
fourth quadrants respectively,

In the calculation process, the first entry

1b(o,o) can be obtained by definition of cepstrum; indeed,

ﬁl(zl,zz) = Rn[Bl(zl,zz)] (4.75)

for (zl,zz) - (0,0) :

18 ¢o,0)

n [lb(o,o)] (4.76)

1b(o,o)

exp[lg(o,o)] (4.77)
Form equation (4.75)

P
B (z,,2,) = exp [B(zl,zz)] ‘ (4.78)

In order to find other coefficients of the array, we

differentiate equation (4.78) with respect to z; and Zye



21 327 B1(2102))

3
2 3z, B1(zys25)

Equations (4.77)
{m 1b(m,n)}
{n lb(m,n)}

i

These identifies

a ~
Bl(zl,zz) z, 3;; Bl(zl,zz)

]

B -~
Bl(zl’z2) z, EE; Bl(zl'ZZ)

and (4.78) correspond to:

(Y5 (m,n)} * {m Yb(m,n))

15 (m,n)} * {n “b(m,n)}

yield following relations

P ~
lb(P,q) = I (E) 1b(m,n)lb(p-m,q-n) p#0
m=1 n=0 P
1 P ny1l” 1
b(p,q) = x ~ ] “b(m,n) "b(p-m,q-n) q#0
m=0 n=1 \1
4,3,4 Problem of Truncation:

142

(4.79)

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

Pistor's stabilization theorem [31] guarantees

that the power series Bl(zl'ZZ) is absolutely convergent for

1
all (zl,zz)eR
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Bl(zl,zz) = exp[%l(zl,zz)]

= I I b(m,n)z1 z, (4.85)
m=0 n=0
RY = ((zy,2,) : |2,] <1 J|z,| < 1}
1*%2 * 1V 2 -
where 1b is defined in equations (4.77),(4.83),(4.84).
However, in practice, it is not possible to
consider an infinite number of coefficients. If we want

to implement numerically, some truncation becomes mandatory.
This truncation means not only that decomposition becomes
approximate, but also that recursive stability of the
decomposed one quadrant functions may be affected.

In the next section, a recursive computational
algorithm is presented for the computation of spectral factors
of unstable digital filter functions having prescribed bound
on the error in the amplititude response and with assured

stability,

4,4 AN ALGORITHM FOR STABILIZATION OF 2-D

RECURSIVE FILTERS

4,4,1 Introduction

In Section 4.3, we showed Pistor's technique to
decompose unstable two-dimensional recursive filters having
non-zero, non-imaginary frequency response into four stable

filters, each of whieh recurses in a different direction.
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It is shown that an unstable filter 1/C(zl’22) can be

decomposed into four stable filters,

4
1 1
- TI 4,86
c(z1,25) 4o B (2,2, ( )

where
= oo Eb mn
Bg(zl,zz) = E E (m,n)zlz2 (4.87)
m: n:
£=1,2,3,4
Equation (4.87) shows that for exact factorizatiomn
an infinite number of coefficients are needed. However,

in practice this is not possible and some form of truncation
is mandatory. Recent investigations [90], [109] have shown
that when the factors are truncated, the decomposed filters

do not preserve the original amplitude response,

4eb.2 Determination of stability in cepstrum domain:

The existence of a two-dimensional complex
cepstrum has been proved by Dudgeon [39]. He has shown
that essential singularities of a transfer function H(zl,zz)
map into essential singularities of ﬁ(zl,zz) = En.@(zl,zzﬂ .
From this Ekstrom and Twogood [28] derived the theorem

2.12, stated in Chapter 2, for half-plane recursive filters.
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However, in the following we shall consider the stability
of decomposed, one-quadrant, recursive filter functions
and for this purpose we shall re-state theorem 2.12 as

follows.

Theorem 4.3

A causal recursive filter funetion H(zl,zz) is
~
stable if and only if its cepstrum h(m,n) has support on

the first quadrant.

Since Pistor's method is based on the spectral
factorization in the cepstrum domain, it is simple to
incorporate the above stability condition in the computation

process without additional cost,

4.4,3 Determination of frequency performance:

Let Fm be the desired magnitude response at a
1

frequency (mé6, nsg) where

F__ = L (4.88)
C(eJmGB,eJnﬁﬂ)

and D the approximated magnitude response of the

m,n’

cascade decomposed arrays where

4
p = JI L (4.89)
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and 8p is the frequency increment between samples. We

may define the error index

A Y | P
E{(A,y) = L X F - |D (4.90)
a m=1 n=1 L ™" Pa,n
where p 1is a positive integer. In our design we consider
the least square error in which p = 2. For a given error

Eo’ the proposed method will find the minimum number of
coefficients in the trumcated frequency array needed to

meet the frequency specification. If the error

E{A,y) > Eo’ the number of coefficients will be increased
until the desired first truncation is reached when

E(r,y) <€ Eo' Subsequently the stability is tested and
further increase of array size is implemented until stability

is achieved or the process is terminated.

Lob .4 Algorithm
Step 1 : Given the denominator of the zero phase filter,
Set the truncation parameters M=M_, , N=N_. .
min min

Set a parameter 8=0 to index the decomposition

part of the program.
. ~ i
Step 2 Find the complex cepstrum ¢ (m,n) from the relation
~
{GYm,n)}¢$C(Zl,22) = En[c(zl,zz)]

Step 3 : If 85=1 go to step 9.



Step

Step

Step

Step

Step

Step

Step

o

10:
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Decompose the cepstrum into four quadrants [31].

Calculate the spatial domain arrays up to a

size M x N.
Calculate the error index from equation (4.90).

If EC(h,y) > Eo’ set N = N+1, M = M+l and go to

step 5.

Set S=1 to initiate the stability test and go to

step 2.

If the complex cepstrum has support in the first

quadrant, exit .

Set M = M+l, N = N+1, and go to step 2.

The implementation of the algorithm is shown by the flow

chart of Fig. 4.5.

4.4.5

Example

The application of the above technique was

illustrated using the second example of reference [31].

The transfer function of the filter is:

Fo(z,42,) = T oy (4.91)
227172 C2 Zy529

where

2
Cz(zlgzz) = mE > C(m,n)zlzz (4.92)
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Given 1/C(z4,22) Eq Mmin Mmax

!

M.N‘Mmin
S=0

il

Y

Calculate the complex cepstrum

YE .
Q S Determine the support

NO
NO

Decompose into four quadrants

M-=M+1
-
Calculate the time domain arrays
M-+=M4+1] YES
N—»N-+1 53 >
NO

Calculate the error performance

Fig. 4-5 Algorithm for stabilization of 2-D recursive
digital filters.
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0.68850 2,7639  4,15082 2.7639  0,68850
2.7639 11,0930 16.65830 11.0930 2.76390
{e(m,n)} = 4,15082 16.6580 25.2903 16.6583  4,15082 -—

(4.93)
2.7639 11,0930 16.65830 11.0930 2.76390

0.68850 2.7639 4,15082 2,7639 (0.68850

!

The amplitude response of the given zero-phase filter is
shown in Fig. 4.6. Fig, 4.7 shows the amplitude response
of the cascaded decomposed filter functions. The
stabilized filter has 64 coefficients in each quadrant and

the error index E{(A,y) = 3,21320.

L.,4,6 General Remarks:

The use of Pistor's stability criterion for the
design of stable two-dimensional recursive digital filters has
been critically examined. A novel algorithm has been
proposed in order to control the effect of truncation and
frequency response. The stability of the decomposed filters
has been tested in the cepstrum domain without introducing

additional computational effort.

4.5 A MODIFIED STABILIZATION TECHNIQUE FOR 2-D

RECURSIVE FILTERS

Although the two-stabilization techniques, namely
the planar least—~squares inverse of Shanks [7] and discrete
Hilbert transform of Read and Treitel [121] both work in

most practical situations, there are some cases where these



v

Fig.4-5 Fr‘equency response of a Zero-phase
filter 1/C(2;, 2, )
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methods fail to produce stable results. Counterexample
3.1 - 3.3. In this Section, we will present a new
stabilization procedure based on the spectral factorization
in the cepstrum domain,

Pistor's stability criterion [31] will be used
for the stability of the resulting filter. It is shown
that any causal 2-dimensional filter function can be
decomposed into stable filters that recurse in the half-plane.

The new procedure is then compared with the
planar least-squares inverse technique and discrete Hilbert
transform method. It is found that the present
stabilization technique has a better frequency response
approximation than the existing ones, The method is
therefore an attractive alternative to the least-square

procedure and the discrete Hilbert transform method.

4,5.1 Decomposition of Unstable Filters into Half-Plane

A technique for the stabilization of two-
dimensional (2-D) zero phase recursive digital filters
has been propounded by Pistor [31]. It is here shown how
this technique may be applied to non zero-phase systems.

A 2-D causal first quadrant recursive filter
having transfer function

1 1
F(z),2,) = = (4.94)

Bl(z +Z,) o B o
1772 T ) 1b(m,n)sz2
m=0 n=0

can not have a zero phase response.
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However, by a suitable combination of two such
recursive filters we can produce the zero phase filter

having transfer function:

1

F(zl,zz) = — (4,95)
C(zl’ZZ)
where
3 -1 -1, _ % B m n o6
C(zl,zz)— Bl(zl’ZZ)Bl(zl » 2y y = I ) c(m,n)2122 (4.96)
m=-a n=-8
The amplitude response of F(zl,zz) will be:
juw juw
rie 1702y L 1
jwy  jw
C{e 1,e 2)
- 1 (4.97)
jw jw 2
1 2
Bl(e ;€ )|

-1

1 ,zgl) is obviously the denominator of a third quadrant

B Z

1 ¢

filter and may be written:

-1 -1

0 0
Bl(zl » 2o y= Bs(zl,zz) = mE i b(m,n)z z, (4.98)
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Again from (4.94) and (4.96) c(m,n) may be written as the

convolution of 1b and 3b

as:
o By 3 1 3

c(m,n) = I z b(k,2} b(k-m,2-n)="b(m,n)* b{(m,n) (4.99)
k=0 £=0

Since C(z 2) is the denominator function of a

1°%
zero phase system we may apply Pistor's stabilization
technique to c(m,n). As a first step we obtain the

cepstrum as:
E(m,n) = IDFT {1n [DFT[c(m,n)]]} (4.100)

Réhfgr than use (4,99) for obtaining c¢(m,n) it is simpler

to evaluate the DFT of c¢(m,n) directly from

DFT [c(m,n)]= DFT[Ig(m,n)] . DFT [3%'(m,n)] (4.101)
where 0 0 3 0
n Y { b(msn)} u

QY

y
{lb(m,n)} and {Bb(m,n)} =

{1 (m,n)?

SO
o
=]

the size of both these augmented matrices being (2a-1) x (28-1).
On completion of the Pistor procedure we are able

to decompose C(zl,zz) into four stable filters each recursing

in a different direction as:

C(zl,zz) Cp(271,22) (4.102)

@
=
'—l



Since C(zl,zz) is zero phase

_ -1 -1
CB(ZI’ZZ) = Cl(z1 124 )
_ -1 -1
and C4(zl,22) = 02(z1 22 ).

Hence

-1 -1 -1 -1
C(zl,zz)= Cl(zl,zz)cz(zl,zz)cl(z1 129 )02(21 ’ 25 )}

and the frequency response is:

juy  Ju, juy  Ju, g
C(e y € ) = ]C].(e ’e )I

Comparison of (4.106) with (4.97) shows that:

juy  Ju, Juy  Ju, Juy  Ju,
[B,¢e e Y| o= [Cl(e e NC,(e e D

155

(4.103)

(4.104)

(4.105)

(4.106)

(4.107)

Equation (4.107) shows that the given unstable arbitrary

phase filter Bl(zl’ZZ) can be stabilized using only two of

the decomposed filters which recurse in only the first two

quadrants,

The proposed methods can be compared with other

stabilization techniques [7], [97],[121]. Except for

filters with only a few samples these methods are difficult

to apply and the first method has been shown in general to

be based on a fallacy. Finally the proposed method had

the advantage of being constructive,
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The outlined method may be extended in a straight

forward manner to multidimensional filters having arbitrary

phase,

4.5,2 Example

The unstable denominator array is:

The root map of this array, Fig.4.8

system is unstable,

Application of the outlined method results in

_0.75 0.9
-].-2 1.3
0.9 0.5

the two quadrant filters

1.54345
1 = 0.360485

0,220596
2, = 0.458488

0.175024

-0,151975

0.,298473

-0.151975
-0.381673

-0,053412

shows that the

0.220596

0.364880

0.076050

1.54345
0.360485

-0.002245

-

(4.108)

(4.109)

(4.110)

These filters are stable in the first and second

quadrants respectivel

Y. The frequency response of the

original filter is shown in Fig.4.9 and of the cascade of

the two decomposed filters in Fig.

4.10.
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This may be compared with the filter as stabilized
by the Hilbert Transform technique and the planar least
squares method. The frequency responses after stabilization
are shown in Fig.4.11 for the Hilbert method and Fig.4.12

for the PLSI.

The error between the frequency response of the

original and stabilized network is measured by:

Nl N

e(B,D) = Z:

i=0 =0

AV

[HB(i,j) - HD(i,j)]2

[N}

where H, and Hj are the magnitude of the original unstable

frequency array and of the stabilized array respectively.
Considering N,= N, = 59 the errors for the

three methods denoted by subscripts H (Hilbert), PLSI

(Planar Least Square Inverse), MP (New Modified Pistor)

are
eprgp(BsD) = 0.79541 x 107
e, (B,D) - 0.10463 x 10°
& yp (B D) = 0.35887 x 10° (4,112)

The new technique thus shows a slight reduction
of error over the Hilbert technique and an enormous advantage
over the PLSI method. In addition the frequency responses
of the filter stabilized by the new technique is closer to

that of the original unstable filter.
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2, plane 3
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Fig. 48 Mapping of z> unit circleonto z4 plane for

unstable filter
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Fig. 4-10(a) Amplitude response of the stabilized filter by spectral factorization.
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4.5.3 Remarks:

The Pistor technigue has been shown to be capable
of extension to the stabilization of any two dimensional
digital filter. It has the advantage over other methods
in that it is always valid and provides a constructive
technique compared with the methoeds of references [7] and
[121]. Furthermore no counter examples as in Llﬁ] and

[122] have yet been found.

4,6 A NEW TWO-DIMENSTONAT SPECTRAL FACTORIZATION

TECHNIQUE WITH APPLICATION IN RECURSIVE FILTERING

This section indicates an alternative stabilization
technique for 2-dimensional recursive filters. The method
involves the spectral factorization of the unstable arrays
in the cepstrum domain. It is shown that if the
factorization is made row by row or column by column in each
quadrant, then the stability of the resulting 2-D recursive
filter can be examined with ease.

The stability is determined by an assessment of
the number of zeroes within the unit circle of non-reciprocal
one dimensional polynomials, Since the stability testing
is computationally straight forward a large number of
coefficients can be considered for better approximation of
the given frequency characteristics using this decomposition
technique,

Details of the computation required in the
implementation of the procedure is presented. An example

is given to show the effectiveness of the procedure.
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4.6.1 Problem Introduction:

We consider in this section, linear shift-
invariant digital filters for which the input-output
sequences are related by a linear constant coefficient

difference equation of the form

3.3 b(k,2)y(mk,n~2) =2.Y. a(k,2)x(mk,n-2) (4.113)
X L k %

.4

or equivalently, in the frequency domain by the digital

transfer function H(ZI’ZZ) defined as

k 2
22a (k,2)z 2, A(zl,zz)

H(ZI’ZZ) -k 2 = Bz (4.114)

)
k & 1*%2
2.2.b (k,2)z 25

k2

Pistor's stabilization technique [31] decomposes
an unstable filter 1/B(zl,zz) which is zero phase and is
nonnegative for all values of zq and z, into stable filters

that recurse into four directions such that
oy
B(zl’ZZ) = H B(zl,zz) (4,115)

where lB, i=1,2,3,4 denotes the denominators of the

decomposed filters that recurse in one-quadrant,
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Each of the decomposed one-gquadrant filters is
stable if it has an infinite number of coefficients [31].
However, in practice, in order to implement numerically,
some truncation becomes mandatory [10?]. This truncatiomn
means not only that the decomposition becomes approximate,
but also that the recursive stability of the decomposed
one-quadrant functions may be affected. Hence, the
stability of truncated one-quadrant filters must be tested,
It has recently been shown that the Pistor stabilization
technique requires a large number of coefficients in order
to obtain a satisfactory frequency characteristic, Thus
considerable computation time is necessary for testing
the stability of the truncated one-quadrant array.

However, it can be shown that the redecomposition
of one-quadrant filters in the cepstrum domain will reduce
the two-dimensional stability problem to a one-~dimensional
one. It is shown that the decomposition can be done row

by row or column by column.

4.6,2 Two Dimensional Spectral Factorization

The two—dimensional cepstrum of B(zl,zz) is

simply defined as:
B(z,,2,) = £ [B(zl,zz)] (4.116)

where In denotes the natural logarithm. The cepstrum
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b(m,n), i.e. b(m,n) is a function whose z-transform is

given by:

M N ~ mn
I

B(zl,zz)= mi (4,117)

Let C(zl,zz) be the first quadrant filter function in the

cepstrum domain defined as

R MoON _—
C(z;,2,) = I I e(mn)z z, (4.118)
m=0 n=0

where

b(myn) m > 0 and = > O

5b(m,n) m=0 and n > 0 or m> 0 and n = 0
c(m’n)= -

%b(m,n) m=0 and n = 0

0 elsewhere (4.119)

e

The redecomposition can be stated as follows:

”~ N 2 A
— ]
C(zl’ZZ) = 2: zlcj(zz) (4.120)
J=0
or
A M ia
C(zl’ZZ) = .2: ZZRi(zl) (4.121)

1=0
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AN N
where Cj(zz)'s and Ri(zl)'s are the z-transform of the
decomposed column and row vectors respectively,
In order to find the spatial domain transfer

function of C(zl,zz), we can apply the inverse transform:
C = ¢ (4.122
(zl,zz) = exp C(zl,zz) . )

From equations (4.120) and (4.121),

N ja
C(zl,zz) = exp[.z zlcj(ZZ) =
1=0 J

I =a=

jA
Oexp[zlcj(zz)] (4.123)

or

exp[zéﬁﬁzlil (4.124)

It can be shown that if all terms in the multiplication are
absolutely convergent in the unit bidisc, then C(zl,zz)

is absolutely convergent, i.e. the first quadrant

filter function is recursively stable [31].

In Section 4,3, it was shown that from any unstable
filter function (non-zero, non-imaginary), it is always
possible to obtain recursively stable functiomns. We shall
use equations (4.77), (4.83), and (4,.,84) derived in
Chapter 1V, to calculate the spatial domain function of

the filter.
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. o .
For this purpose, C(zl,zz) can be written

as:

1=

~
c(z

M N A~ S
1,22) o z I cj(m,n)z Zy (4,125)

j= m=0 n=0 1

where the suffix j identifies the row or column of the
decomposition and <y 1s the number of columns or rows

(y=M or y=N). From equation (4.122)

=

& B m n N
o b z cj(m,n)zlzz:= .E Cj(zl,zz)

C(z,,2z,)=
1*72 n=0 m=0 0

j

where a and B are truncation limits. The spatial (time)
domain coefficients {cj(m,n)} can be found by using

equations (4.77), (4.83), and (4.84).

Indeed, from equation (4,77),

il
=]

exp[e(0,0)] ;
c;(0,0) = (4.127)
1 540

and all the other cocefficients can be found from equations

(4.83), (4.84). Then, it can be shown that:

L} —
Cj(zl'ZZ) =1 + szjl(21)+ zzsz(zl)+ zzij(Z) + teeres

i = 1,2,3,...,N (4.128)
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By considering only the first two terms,

Eé(zl,zz) =1+ zyf.(z) (4.129)
f\l - [ -
wvhere Cg(zl,zz) is the approximation to 03(31’22)‘ And

finally E(zl,zz), the approximation to C(zl,zz) becomes:

n, n n Ay

C(zl,zz) = C'(zl)C'(Zl,Zz)Ci(Zl,Z2)---- (40130)
orT

" N

C(zl,zz) = fo(zl)ljzl[ 1 + zzfjl(zl)] (4.131)

whexre fo(zl) = exp [2(0,0)].

4,6.3 Testing the Stability of Stabilized Filter Function

The first term in equation (4,131) is a function
of zZq- Hence a one-dimensional stability test can be used.
The second terms in the multiplication can be tested by
using the Jury-Anderson Method [22] . The stability
testing problem of these terms can be reduced into finding
the number of roots in the unit circle of a nonreciprocal

polynomial (Cohn's theorem).

It is only necessary to show that

.132
£, <1 (6.132)
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-1 .
and fjl(zl)fjl(zl ) > 1 all Jz,| =1 j= 1,2,...,N (4.133)

2|
Equations (4.132) and (4.133) satisfy the first and the

second conditions of the Huang theorem [19].

3.6.4 Example:

We consider Pistor's second example in reference [3ﬂ
r0.68850 2,7639 4,15082 2.7639 0.68850
2,76390 11,0930 16.65830 11.0930 2.76390
b = 4,15082 16,6583  25.29030 2,7639 4,15082 - (4,134)

2,763%90 11.0930 16.65830 11.0930 2.76390

0.68850 2,7639 4.15082 2.7639 0.68850

!

where the vertical and the horizontal arrows indicate m=0
and n=0, respectively, The filter function in (4.134) is
zero-phase and non-imaginary for all values of z, and Z,.
Fig.1l3(a) shows the magnitude response of the
original filter. Fig.1l4(b) are the magnitude response of
the stabilized filter. The stabilized filter function in

the first quadrant is:

N
C(zl,22)= [1.40365 + 0.70904222] [l + 21(0.50514 + 0.3087822)] (4.135)

From a comparison of Fig.13 and Fig.l4, we can conclude that the
approximation is reasonably sufficient. This can in particular
be seen from the contours of the frequency magnitude of the

original and stabilized filters.
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CHAPTER 5

DESIGN OF TWO-DIMENSIONAL RECURSIVE DIGITAL FILTERS

5.1 INTRODUCTION

Design of IIR or recursive two-dimensional
filters can be divided inte two categories; frequency
domain approaches, and spatial domain techniques,

Because of the inherent difficulties of the
multidimensional problem, namely the fact that the
"fundamental theorem of algebra'" does not apply, most basic
questions of_stability remain to be answered. At the
present stage, it is not possible to use stability as a
constraint in design procedures,

In the spatial domain approach, a filter transfer
function is chosen to approximate a finite extent two-
dimensional impulse response, The main drawback to this
method is that there areno means of ensuring the stability
of the output array when the true error is used as the
criterion and that techniques for stabilization of a filter
in the spatial domain are not available, However, it is
still desirable to look briefly at spatial domain design
techniques in order to appreciate the advantages of the
frequency domailn techniques.

The frequency domain design problem is based on
an approximation to a frequency response characteristic at

a discrete number of frequencies and use of an optimization
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technique to minimize the error between the desired
multidimensional frequency response and the specified
response, This is a problem of rational approximation.
Most of these design methods can be grouped into two
categories; those involving spectral transformations and
those involving computer-aided optimization,

After discussing all existing design methods both
in time and frequency domain, a new two-variable reactance
function is proposed for designing two-~dimensional recursive
filters having circular symmetry and zero-phase, Next, a
group of linear transformations is presented. It is shown
that it is possible to obtain stable fan filters via the
suggested transformations, Finally, a design technique
for the fan and quadrant-fan filters with complex

transformations is introduced.

5.2 SPATIAL DOMAIN DESIGN TECHNIQUES

The earliest work presented on this problem is
due to Shanks et al [7]. They proposed a solution to
the design problem by minimizing a false error function in
order to obtain a recursive filter, Unfortunately, their
recursive filter design technique, in general, does not
lead to stable filters. To overcome this problem, the
authors suggest using planar least square inverse (PLSI)
approach to grriveatastable approximation. In Section 4,4,
we showed th;t Shanks' conjecture [7] is not valid under

the new conditions introduced by Jury [;12]. Furthermore,
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such an approach may lead to a filter whose impulse
response does not adegquately approximate the prescribed
specifications.

Parker and Souchon [lé] have used the Taylor
series expansion to express the impulse response of a
multidimensional filter in terms of the transfer function
coefficients. Based upon these rules, by inverting the
process, a synthesis procedure for cbtaining a low-order
recursive transfer function to approximate a given impulse
response was presented. The stability of the filter after
each successive approximation must be checked. However,
this can not be done easily except for low-order two-
dimensional sections where stability conditions are known.

Another notable contribution in spatial time
domain designs is due to Nowrouzian et al [135]. They
have reviewed and generalized four well-known design
techniques proposed by Kalman [140], Shanks [i&l], Bertran
[142], and Bodner [143]. All these methods are primarily
least-square methods, with the first three techniques
using an appfoximate measure of the error. It is also shown
that the Bordner technique appears most desirable in that it
is guaranteed to be stable whereas the other techniques
require a concluding stability test,

Recently, Shaw and Mersereau have presented several
modifications to the techniques suggested by Nowrouzian [144].
These modifications permit ineclusion of an arbitrary error
weighting function, design of filters with separable

denominators, and improved convergence of the algortithm,
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Lal [145] proposed a technique to remove the
difficulty of Shanks' method [7]. Instead of attempting
to obtain a transfer function which approximates to the
complete specified impulse response and hence to optimize
to a very high order transfer function, Lal partiomned the
desired impulse response into a number of smaller arrays.
Each of these groups may be approximated to a relatively
close degree such that simple constraints on the
denominator will ensure stability.

Aly and Fahmy [}46] proposed an lp—optimization
technique to design first quadrant and half-plane filters
with specified impulse response. The filter is represented
by its local state space model [96], rather than by its
transfer function., The matrix derivative linear operator

is used to calculate the performance measure gradient-vector.

5.3 FREQUENCY DOMAIN DESIGN TECHNIQUES

The problem of designing filters in the frequency
domain involves determining a stable IIR transfer function
which satisfactorily approximates a frequency domain
specification. The required specification is usually given
in the form of a two-dimensional magnitude spectrum. The
approximating design is determined by using either any of
spectral transformation approaches or computer—aided

optimization techniques.
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5.3.1 Spectral Transformations

In the spectral transformation approach, a two-
dimensional digital filter is designed by using a trans-
formation of complex variables from a one-dimensional or
a two-dimensional prototype filter with known frequency
response characteristics. In general, spectral trans-
formations are complex maps which carry a stable transfer
function into ancther stable transfer function and can be
used to obtain two-dimensional filters with desirable
characteristics,

The first technique for designing such filters
was first advanced by Shanks et al [7] . The method
consists of mapping one-dimensional filters imnto two-
dimensional ones with arbitrary directivity in a two-
dimensional frequency response. These filters are called
rotated filters because they are obtained by rotating one-
dimensional filters. There are two basic problems associated
with this technique. First, the rotated two-dimensional
filter may not be stable even though its one-dimensiomnal
prototype is stable. Second, the frequency response of the
rotated version is not simply related to that of its parent
filter because of the warping effects of the bilinear
transformation on the frequency response. Thérefore, it is
difficult to design two-dimensional filter with prescribed

frequency response characteristics.

A modification to the technique of Shanks has been

introduced by Costa and Veﬂtsanopoulos Dﬂ. They attempted
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to design a near-circular symmetric filter by cascading
a number of "Shanks' filters" having different angles of
rotation. These angles of rotation are uniformly
distributed over 180°. A stability criterion was developed
which showed that angles of rotation of the designed filter
from 0° to -90° resulted in stable filters. Hence the
design technique could not achieve the required total span
and the cut-off boundary was inevitably far from circular.
An alternative design procedure also involving
the rotation of frequency responses has been presented by
Chang and Aggarwal DA?],[l&{]. The resulting filters are
separable to the rotated frequency axes whereas Shanks'
rotated filters are not, The transfer functiom is
essentially a product of one-dimensional functiomns. The
only difficulty with this technique is that filters are
implemented by employing interpolated filter systems.
Ahmadi, Constantinides, and King [9] suggested a
second order two-variable reactance function [15{1 for the
design of circularly symmetric low-pass filters. The
transformation is applied to a one-dimensional low-pass
filter. The cut-off boundary of the filter depends on the
choice of the cut-off frequency of the one-dimensional
filter and the coefficients of the two-variable reactance
function. Ahmadi's design approach has been used by
several investigators [10] ,[32], [l4ﬂ for the design of

two —dimensional recursive filters.
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The spectral transformation approach has also
been used by Bernabo et al [30], [128]. This technique
is based on the use of the transformation method of
MeClellan [150] followed by the decomposion method of
Pistor [31] in order to obtain stable single quadrant filters

which recurse in different directions.

5.3.2 Computer—-Aided Optimization Methods

In the computer—aided optimization approaches, a
nonlinear optimization procedure is used to adjust
iteractively” the filter coefficients to minimize a specified
error criterion, A major cumbersome problem is ensuring
the stability of the resultant two-dimensional tramnsfer
funetion.

Maria and Fahmy [li] developed an optimization
algorithm to minimize the p-error criterion. In order to
avoid the stability problem they designed the filters having
transfer functions which are products of simple first and/or
second-order terms. This facilitates testing stability
of the approximate function at each step of the approximation
as these low order terms can be tested using a simple set of
inequalities associates with filter coefficients,

A differential correction optimization algorithm
is used by Badner [lBJ for the approximation of a given
frequency response, Stability is checked after each

iteration of the optimization of a given frequenecy response
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using a stability testing algorithm similar to that outlined
in Section 2.4.1. Because of the computational complexity
of the stability test, this technique appears to be most
appropriate for the design of low order filters. A

similar approach was also used by Dudgeon [151]. Dudgeon
used the discrete Hilbert transform to calculate the
analytic phase function from the magnitude squared frequency
response,

Alternative optimization approaches involve the
design of a two-variable analog transfer function and the
use of bilinear transformations to obtain the digital
transfer function. Dubeis and Blostein [152] have presented
such an approach, They first design a two-variable
passive analoge filter via computer—aided optimization
technique, then obtain a two-dimensional recursive transfer
function by applying a double bilinear transformation on
the transfer function of the analog filter, The passivity
(stability) is ensured by constraining the passive components
always to have nonnegative values, A somewhat similar
approach has been taken by Ramamoorthy and Bruton [14],
[153],[154]. They express the denominator polynomial of a
two-variable, analog transfer function in a suitable
algebraic form which is always guaranteed to be realizable

by a passive network thus ensuring stability. The design



approach of Ramamoorthy and Bruton was later modified by

Prasad and Reddy [155].

Recently, Ahmadi and Ramachandran [156] have
presented a new method for the design of two-dimensional
analog filters and recursive digital filters with
guaranteed stability,. Their method is based on the
properties of positive definite matrices and their
applications in generating very strictly Hurwitz poly-
nomials. An unconstrained optimization technique 1is
utilized to minimize some error function of the filter's

magnitude response.

The two-dimensionmal stability testing problem
can also be avoided by designing a sepagable two-
dimensional recursive filter approximating the frequency
response characteristic. For a separable filter,

the two—-dimensional transfer function can be expressed

as the product of two one—-dimensional transfer functions:

H(z,,z,) = H (z )H,(z,) (5.1)

In this case, the stability testing reduces to that of

checking the stability of one~dimensional filters, which

187



188

is considerably simpler. Moreover, a separable filter is
also more economical to implement. Twogood and Mitra
ElS], Abramatic et al [li],[lSﬂ , and Antoniou and others
[15@] describe methods of designing separable filters.

The approach of Twogood and Mitra makes use of the singular
value decomposition of a matrix obtained by sampling the
two-dimensional magnitude response matrix. The second
method [17] is based on minimization of the mean—square
error between the synthesized filter and a given prototype.
The last technique develops the design technique of one-
dimensional recursive filters due to Antoniou [175] to the

design of separable two-dimensional filters.

5.4 A NEW TRANSFORMATION TECHNIQUE FOR THE DESIGN

OF TWO-DIMENSIONAL STABLE RECURSIVE DIGITAL FILTERS.

5.4,1 Introduction

A two-variable reactance function (2-RF) is a
complex map that carries a one dimensional stable transfer
function into another transfer function preserving some
desirable characteristics in the two-dimensional frequency
domain; 1if the 2-RF is also a st;ble function, the trans-
formed two-dimensional function is also assured of stability.
The design of two-dimensional recursive digital filters
via 2-RF has been investigated in references [7],[8]—[10],
[32], anda [160].

We present a novel 2-RF transformation for the

design of two-dimensional stable digital filters having
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zero phase. By optimising the parameters of the proposed
2-RF, it is possible to obtain circular symmetry over a
wide range of cut-off frequencies., The 2-RF will also

maintain some of the characteristics of the one~dimensional

analogue prototype.,

5.4,2 The two-variable reactance function

The most general form of two-variable reactance

function is of the form

=0 (5.2)

T(SI,SZ) =

where M=N or N + 1

It may be noted that the simplest member of the
transformation is the MeClellan transformation, whose
stability is simply determined. The Ahmadi transformation
is a degenerate form of the second member of the general
transformation (5.2) in which the stability is again assured

if the coefficients are all positive.
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The next higher member is of a second order

namely:

a. s + a,s

_ 1°1 2%2

T,(s,,8,) = (5.3)
2, 2
1t 82

1 + bl(s ) + bzs s

172

The constraints on the parameters ays a5, bl’ b2 to ensure

stability of T2 are (see Appendix C).

(5.4)
b2>0
b, 2
b, > ’ - bl >0 (5.5)
5.4.3 Design Procedure

The design procedure involves choosing a one
dimensional prototype, Butterworth, Chebyshev, etec. and
applying the transformation s = Tz(sl,sz) to obtain a
two-dimensional recursive filter. Each filter must now
be cascaded with a guard filter as the transformation
function (5.3) does not preserve the filter response in all
radial directions. The resulting one quadrant filter is
finally cascaded with four similar single quadrant filtex

recursing in the remaining three cardinal directions.
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The final transfer function H(zl,zz) is thus

given by:
H{(z_ ,z.,) = F(z,,z,)F(z z_]')F(z_l z )F(z'-l z_l) (5.6)
1*72 1272 172 1 *72 1 *72 "
where
F(zl,zz) = FOB(ZI’ZZ)G(ZI’ZZ) (5.7)

B(ZI’ZZ) is a two-dimensional function obtained from the
one-dimensional prototype B(s) via the transformation
s = Tz(sl,sz) and converted to the digital domain by

means of the bilinear transformation:

s, =k, —— : z, = exp(—siTi) sy 1=1,2 (5.8)

G(zl,zz) is the transfer function of a guard filter which
is used to eliminate the high pass regions along all radii
except the coordinate axes. In its simplest, and adequate

form it may be written

(1+z,) (1+z,)

G(z,2,) = TN (5.9)

9)
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with real coefficients d1 and d2 so chosen as to attenuate
the amplitude characteristics at high frequencies [lﬁd].
FO is a design parameter to correct the amplitude

at the origin.

Optimisation

Although the optimisation technique is constrained
by conditions (5.4) it may be rendered an unconstrained
problem by modification of the variables. The unconstrained

optimization algorithm due to Gill and Murray [16i] was

used to optimize the parameters ays 3y, bl’ b2, kl, k2’ dl’d
53.4.4 Example
As an example we design a circularly symmetric
filter based on a third order Butterworth filter
1
B(s) = (5.10)

s3+ 252+ 2s+1

The parameters obtained after optimization are:

a, = 0.96572
= 1.00363
bl = 0.1089
b2 = 0,29020
kl = 0.80112
k2 = 0.77385
d1 =11. 27362
d2 = 11,25402
F = 35.2600

2:Fq-
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The frequency response and contour plot are
shown in Figs. 5.1 and 5.2. The cut-off, 3dB, frequency

is at f_, = 0.95 radians and the stop frequency of 60dB is

3

at £f_,, = 1.885 radians.

The error at the end of the optimization is of
the order 10-5. The resulting two-dimensional recursive
function is inherently quadrantally stable and has

approximately the same amplitude performance as the one

dimensional prototype.

5.3 A SIMPLE DESIGN TECHNIQUE FOR STABLE FAN FILTERS

In this section, a group of linear transformations
is presented. It is shown that it is possible to obtain
stable fan filters via suggested transformations, The
Ahmadi filter [13i], is found to be useful in the design of

fan filters due to the diamond shaped profile.

5.5.1 Single Variable Transformations

We considered the lowpass to highpass transformations

developed by Constantinides [173],

- . L 1 - -
Z, = , z, = (5.11)

where a; and a, are real parameters.

When a; and a, are both zero, Z1 and 22 becomes:

z, = -z, (5.12)
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However, both Z1 and 22 may not be equal to their negatives
simultaneously. Hence three different types of single

variable transformations can be defined as:

Transformation Type-I : Z, = - z

1 1 2
Transformation Type-II : Z1 = + Z, ’ 22 = -z,
Transformation Type-III : Z1 =Tz, 22 = -z,

The effect of these transformations can be seen in Fig.5.3.

a) H(wl,wz) Identity
b) H(ml-w,wz) Type-1
c) H{w,w,-m) Type-11

d) H(ml—w,wz-n) Type-III

One may say that the type-I transformation and Type-II
transformation replace the right half-plane with the left
half-plane and the upper half-plane with the lower half-plane,
respectively. The transformation type-III replaces the

first quadrant and the second quadrant with the third and

fourth ones, respectively.

5.5.2 Design of Fan Filters via Ahmadi Transformation h33]

In 1976, Ahmadi et al [9] proposed a simple two-

variable reactance function,
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ldentity Type 1

Type II Type 1

Fig 53 Single variable transformations



5 = (5.13)

This was used to transform a given one-dimensional lowpass
filter funetion to a two-dimensional continmus’lowpass
function, The parameters ay and a, are frequency scaling
factors, and the parameter b controls the shape of the
cutoff boundary.

Since the Ahmadi transformation is not globally
type preserving [1@], a guard filter was used to remove
highpass regions [160]. The parameters a; and a, will
provide flexibility to obtaining a cutoff profile which is
diamond shaped. After obtaining this diamond shaped
filter, we may apply the transformation type-I or type-II
to obtain fan filters, Since these transformations do not
change the location of singularities, the resulting fan

filters are stable.

5.5.3 Example

The fifth order Butterworth analog filter was
used with transformation parameters a; = 0.1, a, = 2,0, and
b = 0.6. The magnitude response and its contour pleots can
be seen in Fig, 5.4 and 5.5 , respectively.

After designing the above filter, one may apply
the transformation type-I to obtain the fan filter, Fig.5 .6
and 5.7 show the magnitude response and contour plots of

the obtained fan filter.

198



s
Wao

&). SN
- Z o
S
3 “ﬂﬂ X
SRR
ESIS RO
SRR
A
. Y
i X
e O
B\ :..."..".....................“...... =
e
T e e )
T e T R
==
e

\\l.lll‘l == G
\u\\\&\“\t (OOOOOOCROKXKN
=

e e

.3“\1“‘1‘?-“‘\\““\\ XK
OE000000000 04
LUAXXKRXED
- AKX XA RN )
. AN

AR XXX A e e T AT AT
S S s S T X AKX
=)
s 05 o A 2SN
O O Y K e e S A N OO OO
e T U S e,
R .ooﬁnlk“&.......«%"l&%

=

~
o~

-

!H(w1:w2)|

X
OO0

2 et as /’l".ﬂ.
SOSEEN0 >
AN
AN '

OUOUOCCOX0)
¢ .::::::...‘\0.

GO
Y
...““.‘......................‘t”'0
..:.:...:.i Q
e
AT
NS
PSS
(4 I”
s
QIS

W

199

Fig. 54 Amplitude response of the filter obtained from a third
order Butterworth filter
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5.6 DESIGN OF RECURSIVE AND NON-RECURSIVE FILTERS

WITH COMPLEX TRANSFORMATTIONS

5.6.1 Introduction

A simple design technique for fan filters is
presented using complex transformgtions. The only require-
ment of the present technique is to select a one-dimensional
digital filter with a suitable cut-off frequency. The
unique advantage of this method is that it is applicable for
both FIR and IIR filters. As the resulting IIR fan filters
are inherently stable, the proposed method requires neither
any stabilization procedure nor a stability test. On the
other hand, since one-dimensional prototype characteristics
are preserved, an optimization is not needed for optimality.

The design complexity is less than all existing omnes [117],

[150], and [162]-[169] . :

5.6,2 Complex Transformations

The frequency transformation techniques have been
extended to two-dimensional filters by Pendergrass et al
[172]. They consider only those that generate real two-

dimensional network functions from real one-~-dimensional

functions. The problem is to find the transformation
G: C2 -+ 02

with
G: zl-—+G1(zl,zz)

(5.14)



204

H(zlszz) > H(Gl(zl,zz), Gz(zlszz))

A(z.,z,)
_ 172
= ET?ITEZT (5.15)

The frequency transformation should satisfy the
following conditioms. The transformation (5.14) must

(1) Produce stable first quadrant (causal) transfer functions
from stable first quadrant functions (the original has
to be stable).

(2) Transform real rational functions; Gl and G2 are real
rational functiomns.

(3) Preserve some important basic characteristics of the
amplitude response (such as ripple magnitude in the pass
and stop regions) while altering other characteristics
(such as cut-off frequencies or the number and shape of
stop and pass regions).

Now we will consider a transformation which
represents a complex function of the two-dimensional wvariables

with rational powers and show that the limitations imposed

by Pendergrass et al [172] on useful transformation functions

are by no means mandatory.

For a causal and stable two-dimensional filter,

described as in (2.1) by:

Hy(2,,2,) - H;(z]) ' (5.16)
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consider the following transformation

. o, /B a.,/B
e B1/Fy %2/PF,
zl——>e 2, z, (5.17)
The corresponding frequency transformation is:
*1 “2
exp[jwlj-—+exp[j¢].exp[j B ml}.exp[} B mz]
1 2
o a
. 1
= eKP[J(‘# *ogoup t .é.i wz)]
1 2
or
, ay %y
ml ——P¢+-B—1w1+gw2 (5.18)

The amplitude and contour plots of the frequency response
after transformations a1/81 = |, a2/82 =}, and ¢ = 90°

are shown in ¥Fig. 5.9(a) and 5.9(b), respectively. The
original filter (5.16) represents a low-pass filter with

w, = 47 as shown in Fig. 5.8,

There are three effects of transformation (5.17)

on the resulting filter

al/Bl az/BZ

id
H(e z, Z,

) = H (z)) (5.19)
i aI/Bl 02/82
1 1 Z9
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|H (wq,w2)l

Fig.5-8 Original low-pass amplitude response
(tenth order Butterworth)
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Fig.5-9 (a) Frequency response of the filter after the complex transformation
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Fig. 5:9(b) Contours of the frequency response of the
filter shown in Fig. 5-9()
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(a) Frequency shifting along w,-axis: the frequency response

1

of the resulting filter will be shifted by ¢ along w,-axis.

The choice of ¢ = + % will lead to a symmetric fan
filter.
(b) Rotation of the frequency response} the angle of
rotation is:
2
& = arc tan (——-) (5.20)
By

Since the original filter (5.16) is one-dimensional and

function of =z the angle of rotation will be defined

1’
by the rational power of Z,. More detailed discussion
of the rotation in (zl,zz) -plane can be foumnd in [148].

(e) Scaling the frequency response along wl—axis: the

rational power of z, will scale the frequency response

1

by a factor Bl/ul. However, the periodicity of the
)

frequency response will be El 2% instead of 2w.
1
. *1 1 .
The choice of el will lead to a fan symmetry. This
L 1

will be discussed in the following section.
The other effects of the transformation on the

resulting filter may be specified as follows:
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o]

Q
(1) When El > 0 and EE > 0, the transformation is causal,
1 2

otherwise it is non-causal. However, the transformation
%1 “2
T < 0 or {(and) E—-< 0 may be implemented in the
1 2
spatial time domain. In Section II(c), it is shown

that for a finite array, one can choose a causal recursion

direction by reorientating the input signal array.

(2) When ¢ # 0, the resulting filter cannot be implemented in
the spatial time domain. On the other hand, it will be
shown that transformed filters may be combined in
appropriate ways so that complex values do not exist in

the final transfer function.

(3) Both rotation and frequency scaling are equivalent to the
rotation of recursion direction with a new sampling
interval, However, for the design of fan symmetric
filters, it is found that their transfer functions have
complex variables with integer powers. Hence the
sampling interval will not change. In the following
section this fact is proved.

(4) The stability of the resulting filter is not affected

a o a o

with El > 0 and Eg > 0. For El < 0 or EE < 0 the
1 2 1 2

transformed filter will be unstable for the causal
recursion direction. However, 1f the orientation of the
finite area array (input) is changed, there is always a
non-causal recursion direction where the filter function
is stable. During the implementation step, this fact

will be explained in greater detail.
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Remark 5.1:

The terms rotation and frequency scaling for the

two~dimensional case can be used interchangeably. If one

o
considers 6 = arc tan(gl) as the rotation of the frequency
a 1
response, then o will determine the scaling of frequency
2
on the mz—axis. In this work, the causal, stable prototype

funection (5.16) 1is H(zl,zz) = Hl(zl).

5.6.3 Design of Fan Filters with Complex Transformations

A. Symmetric Fan Filters

In this section, a design procedure for fan filters
is outlined by using the proposed complex transformation (5.17).

For this design, the ideal fan filter specification is shown

in Fig. 5.10. The specification is:
jwl jwz 1 |m1| > |m2]
Hf(e ,e ) = (5.21)
0 otherwise

Consider the ideal prototype filter shown in
Fig. 5.8. It is a low-pass filter with a cut-off frequency

at o = Tf2.
H(zl’ZZ) = ngzl)

on replacing
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Fig 510 Pass and stop region of an ideal symmetrical
fan filter in the (wy,w2)-plane.
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in H(zl,zz),one obtains the shifted, scaled and rotated
characteristics in the frequency domain. Let us denote

the transformed filter by

n Gl 32
H(z.,,2,, =— » — 4+ ¢), where
17727 By 7 By
" o o
1 2 =
H(ZI’ZZ’ EI’ —; »$) = Hl(zl)

(5.22)

In general, the filter coefficients in H will be complex
and the variables z, and z, have rational non-integral
pPOWETS ., However, appropriate combinations of transformed

filters will remove both these difficulties.

Let

~

_ o~ L 1 7
Hl(zl’zz) = H(zl’ZZ’ fs 5: f )

1 < F -1 17
Hz(zl:zz) = h(zlyzza 2! 2, 2 )
Hy(zp2p) = B(zq.2y, 307 303)

o = _1 1
HA(ZI’ZZ) -H(lezz, 57 5 5 ) (5.23)
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The frequency responses of transformed filters, ﬁi(zl,zz),
i=1,2,3,4, can be found in Table 5.1. The original
prototype filter is an ideal low-pass filter as shown in
Fig. 5.8.

In this design procedure, filters in Table I
will be used as main building blocks for fan filter with a
specification in (5.21). One can construct the following

filter characteristics:

A ny LA ok
Hip(29,2,5) = Hy(2),2,)0,(2,,2,)H,(2;,2,)H,(z,,2,)

TR g 7] "]
+ Hl(zl’ZZ)HZ(zl’ZZ)HB(ZI’ZZ)HA(ZI’ZZ) {(5.24a)

and

oy ny "J* '\J*
Hyy(29,25) = Hi(2),2,)H,(2,,2,)0,(2,,2,)H,(z,,2,)

+ Hl(zl’ZZ)H3(zl’22)H2(zl’ZZ)Hé(zl’zz) (5.24b)

where ET denotes the filter with coefficients which are
the complex conjugate of those of ﬁl’ and so omn.
The frequency characteristics of the obtained

filter, corresponds to the fan filter shown in Fig.5.10.

H11
H22 has a frequency characteristic which is a clockwise 90°
rotated version of Hll'

The first and second terms in the right hand side

of (5.24a) and(5.24b) individually represent zero-phase

filters with complex coefficients. However, the coefficients
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of resulting filters Hll(zl,zz) and HZZ(ZI’ZZ) are real
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because each term is the complex conjugate of the other.

During the implementation step, it will be shown that
filter functions Hll and H22 are functions of complex

variables z, and z, with integer powers (terms with

1

rational powers of 2, and z, will be cancelled).

Remark 5.2:

The equations (5.24a) and (5.24b) create an

overlap in the frequency domain. In the ideal case, this

overlap will exist at one point, at the origin, In order

to remove the overlap in (5.24a) and (5.24b) one may

consider the following technique [176].

~

t

_ _ e
Hip1(z1525) = Hyi(zy,2y) = Hy (2,208, (z,,2,)

and

~ ~

1 *
Hyy(z 525) = Hyn(20,29) = Hy,y(2y,25)H,,(2,,2,)

where

»

_ > o~ ~ ~ e
Hy(20,29) = Hylz,2,)H,(z,2,)H5(z,2,)H,(z,,2,)
and

~ ~ ~k ~&
Hpp(2y,2p) = Hy(zy,2,)8,(z,, 2,00, (z,,2,)H,(2),2))

{(5.25a)

(5.25b)
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However, in practice, pass and stop regions do not have
sharp cut-off boundaries. There always exists a transition
region between pass and stop bands. Therefore, this overlap
problem at the origin may be neglected in most practical
cases. In Section 5.65, it will be shown that this overlap
depends on the prototype specifications of the original

filter.

B. Quadrant Fan Filters

The frequency characteristic of a quadrant fan

filter is shown in Fig,5.11. The specification is:
jw,  Jw, 1 wywy 20
Hq(e e ) = (5.26)
0 wyw, < 0
Consider the same ideal prototype filter in Fig.5.8. Then,

the following transformed filters are obtained,

N n; 1
le(zl’ZZ) = H(zl,zz,l,o, 5 m)

)

P =

n

H14(zl,22) = H(z ,z ,0,1,

n, o 1

H34(zl’22) = H(zl’ZZ’_l’o’f m

B - i 0,-1 5.2
23(21522) = (21,22’ s = 9? H) ( . 7)

y
where the subscripts on H refers to quadrants to which the
low-pass characteristics has been shifted. Table II shows the

amplitude response of transformed filters in (5.27).
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Table 5-I1 Basic building blocks for quadrant fan filterdesign.

Prototype Filter
H (21,22) -

roj
roja

1| B(z,.2,,1.0.%)

2 H(Z1-22:O'1'%)

3 F"I(Z1,22,-1.O»%)

4 H(Z1,22.O:_1-%)
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Next, one can construct the following filter
characteristics,

4" Ny ’\J* "\.r*
Hyq(zy,29) = By,(2y,2,)8,,(2),2))H0,,(2,,2,)H,4(2,,2,)

'\J* Vg Y ny
*H (22900, ,(2),2)) g, (2),2,) 0, 4(2,,2,)
(5.28a)

Y ") MY

* Vg
By, (21525) = Hyy(2y,29)Hq, (2,250, ,(2),2,)0y4(2,,2,)

n

% f\.}* v Ay
* Hy,(z,25)0y, (2 ,2,08, (2, ,2,)0,4(z,,2,)

(5.28b)

U
where le denotes the filter with coefficients which are

BTl
the complex conjugate of those of le, and so on.

The frequency characteristics of the resulting

filters H13 correspond to quadrantal fan filter as shown

in Fig. 5.11. i1 has a frequency characteristic which 1is

24

a 90° clockwise rotated version of H13.

Both H13 and H24 are zero phase. Comments in

Remarks 5.2 are also valid for this case.



221

5.6.4 Implementation of Fan Filters

In Section 5.6.3, a design technique has been
described for fan filters using the complex transformation
of (5.17). Since the transformation is complex, each
transformed filter cannot be implemented in a real time
process. On the other hand, the transformation introduces
complex wvariables zq and Z, with rational powers. Hence
the resulting filter functions of (5.24) and (5.28) are not
applicable to rectangular arrays. Interpolated filter
systems must be used to evaluate the undefined new grid

a [+
points (assuming |§l| < 1, |§g|< 1). However, it can be
1 2

shown that the obtained fan filter functions (5.24) and
(5.28) do not have complex coefficients and the complex
variables zq and z, have integral exponents. This is the
result of the structure used in the design equations.

The prototype low—pass filter can be either
recursive or non-recursive with a cut-off frequency at

w_ = lﬂ . In this section, both cases will be studied.

c 2

A. Non-Recursive (FIR)

Consider one-dimensional non-recursive digital

filter function as:

a(i)zi (5.29)

H,(z.)
171 0

N o=

i
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Apply the complex transformation (5.17) to give

ay /By oy /8,

E(z z,)= H (ej¢z z )] (5.30)
1272 1 1 2 "

From (5.28a) one can construct the fan filter function as:

~

~ ok
Hll(zl’ZZ) = Hll(zl’ZZ)+ Hll(zl’ZZ) {(5.3L1)
where:

“ R TR IR TR ik -3 (5.32)
Hll(zl,zz)—Hl(szzé)Hz(le 22)H3( jz;%z, )HA( izjz, )

o o
1 2 1
for¢= 1,__=—=_,
28, 8, 2
~ %
and H11 denotes the filter with coefficients which are

complex conjugate of those of ﬁll' Next, ﬁll(zl,zz) can
be written as:

A

_ar a1
Hi1(2952) = By (2y,2)) + jHp(2),2,) (5.33)
then the filter function of (21) 1is:

_ ahT
Hll(zl’zz) = 2H11(zl,22) (5.34)

ﬁ;l has only real coefficients. Now, 1t can be readily

shown that H.., is a function of integral powers of the

11

complex variables zq and z, .
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The prototype transfer function can be factorized
as:

N
H,(z,) = igl(pi+ zl) (5.35)

where Pi» i=1,2,.,..,8 are zeroes of Hl'

From (5.35) H11 becomes:

N -1 - - -
S | SRR R R PR

(03 vrycaled + spted stede o)

+

(5.36)

From the above equation (5.36), it can be observed that the

terms with rational powers of z, and z, will exist only in

the imaginary part in each factorized section. If the
multiplication is carried on, the form will not be changed
(i.e., complex variables with rational powers exist only in
the imaginary part). Finally, the resulting transfer

. 2N .
function of Hll may be rewritten as:

N N p
% % J

5 * j[terms with rational powers}

~ O |
Hll(zl,zz)- h(l,J)ZlZ

i=-N j=-N
(5.37)
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From equation (5.37), the filter function will be:

N N

P |
H,.{(z.,,z,) 2 I I h(i,j)zlz (5.38)
11*71°72 i=-N j=-N 172
N +
where {h(i,j)!} are real numbers and obtained from
i,j=-N

the coefficients of the prototype filter as explained above.

Since Hll(zl,zz) is zero-phase filter, it can

be written as [7]

~ ~ =1 -1, o~ -1 ~ -1
Hll(zl,zz)= Hl(zl,zz)+ Hl(z1 »Z )+ HZ(Zl ,zz)+ HZ(ZI’ZZ )
where (5.39)

- N N i3
H (z;,2,) = 1(0,00 + T % 2h(i,i)z)z) (5. 40)
i=0 j=0

(i,3) # (0,0)

and
- N N i 4
H,(z;,2,) = I I 2h(-i,j)z;z) (5.41)
24%1272 , . 172
i=1l j=1
The direct implementation of the final transfer
function is in Fig.5.12, However, the complexity can be

reduced by half if one considers the input as a finite area

array. It can be shown (Appendix D) that all recursion
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—— |:l1(Z1, Zg)

2ot
t—» Hq(2z2¢,25)

—» A, (2712,)

= (2, 23)

Fig. 5:-12 Direct implementation of Hy(z,2,)in (5-39)
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directions may be obtained with the difference, equation (2.1) by reorientating

the input. Fig.5.13 shows the implementation with the

finite area array {(input) reorientation.

B. Recursive (IIR) Prototype

Consider the one-dimensional recursive filter

function as:

Ny

i
Z:oa(l)zl ACz))
1y (5.42)

H(zl’ZZ) = Hl(zl)

1=
N2 5
2. b(i)e]
j=o

After applying the complex transformation (5.17), one can

construct a recursive fan filter having transfer function

AR(z

z,)
_ 1222
Hp(z,,2z,) = B

1922)

* x
Ap (z1,25)Bp (z7,2,) + Ap (2,,2,)By (2,2,)

_ 1 1 1 1
¥
B, (z.,z,)B_ (z,,z,)
R1 1*72 R1 1272
(5.43)
where
I . o—4 4 ..~ -1 . b -3
ARl(zl,zz) = A(lezz)A(le zz)A(—le z, )A(-lez2 ) (5.44)
B, (2.,z.,) = B('z%z%)B('z'éz%)3(~'z'%z'*)n(-'z%z'i) (5.45)
R, ‘%1222 12725028129 725 12,2, J21%, : .
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! Hy(z122) !
|
Row and : i [Row and
Column | , Column
Reversal i ! Reversal
r=—=—====== =
[ |
Row [ I Row |
Reversal ! : Reversal
: .
t b~ IR
1 | Halzq 22) :
I |
Column } ! Column
Reversal : I |Reversal
I J

Fig. 513 Implementation of a zero-phase filter involving only causal recursion.
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where AR and BR denotes the function with coefficients
1 1
which are complex conjugates of theose of AR and BR s
1 1

respectively.

It has been shown that the resulting transfer

function of fan filter has only real coefficients as well
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as only integer powers of the complex wvariables of z, and Zo-

The proof of this fact is omitted because it is similar to

the non-recursive one. The final form of the transfer

function (5.43) will be:

M M
m n
Elz:a(m,n)zz
- 4 T 172
H (z7,25) = mETM A= (5.46)
R “12°2 .
n Wy -1 Ly -1 -1 -1
BR(ZIZ2)BR(21 zz)BR(zlz2 )BR(zl zZy )
where M = N1 + N2 and
U BN NPT B
BR(ZIZZ) = B(lezz)B( 32122) (5.47)
By factorizing the denominator of (5.42) as:
N2
B(zl) = I (pi + zl) (5.48)
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we may write

n 2
Balzyz,) = in;l[(Pi s jedady o= jzdzh]
N
2
. 2
= 511 [Pl * z1"‘2] (5.49)

From (5.49),we conclude that Bp can simply be obtained by
replacing the roots of B(zl), P with p%. This property
will increase the speed of the design procedure. Clearly,
LY
BR(ZIZZ) is stable, since poles of z, within the unit
circle map directly into two dimensional poles within the
unit bidise.

It can readily be seen that B (z_lz ), B_(z z_l)

R*"1 "27? R Y172

~ -1
and BR(zl

zgl) are also stable in second, fourth and
third quadrants, respectively.
Due to its zero phase, AR(zl’ZZ) can be written

as:

~ -1 S B N -1
(z1,2,)% Apg (27 7,29) + Ap (2,7,2,7)+ Ap (2,,2,7)

A {(z_ ,z.)= A
R™1%72 1 1 2 2

R

(5.50)

where

M M
K« - a_(0,0) + (m,n) 2725
R z_1,2,2) = a_(0, 2) 2:6 a {m,n)z,z,
1 mn=0 0=

(m,n) ¢ (0,0)
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and

(5.52)

M M m
lz

A (z ,zz) = I I a {(m,n)z
R," m=1 n=1 °

[RC ]

The direct implementation of HR is in Fig.5.14; the final
configuration of HR(zl’ZZ) involving only causal recursion

in Fig. 5.15.

An Example for Implementation

Consider the recursive prototype filter to be

of the form

H(zl) B(z

(5.53)

For fan filter design, from (5.43)

A_(z.,,2z,)
H(zq,2q) = ———tte (5.56)
BR(zl’ZZ)

where

[ad N*
AR(zl’ZZ) = AR(ZI’ZZ) + AR(ZI’ZZ) (5.55)



Ar, (24, 22)

Ag, (27123)

+ Br(z,2,) Br(z"2,) B(z, Z}) Be(z] Z3)
.,

t— Ar,(z3'22)

Ar,(z1,23)

Fig. 514 Direct implementation of the fan filter function Hg (z,,2,) involving non-causal recusion
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§R(Z1 22)

Row
Reversal

éR(‘z'l Zn )

Fig.515 Final configuration of H, (z,2,) involving only causal recursion.
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For the transfer function (5.53) K£ can be written as:

A (z.,z.)=| A( 7i i)B( 1z%z A(j z )B(- z-é é) A(—] z )B( z%z i)
Ap(Z1:2, J 2) ] jzy°2) ] 1212y

Ciohemhypeiamhyoh
‘[A( iz, %z, )B(le z, ) (5.56)
The terms on the right hand side are obtained as:

1 1 1 1 i1
Z,2y = - _ 2.2 2.3
A(JZ z )B( lezz) [(a2 zlzz) ja;z 1z, ] Eb 2) + jb 121%2 ]

. 44 - -

+ jztz (b1 al)ZIZZ + (alb2 azbl) (5.57)
14
H,(z 2.425) + le ZHB(ZI’ZZ) (5.60a)
where
(20,%,) b 2225 = (a, + by = ajb)z 2z, + ab (5.58)
12727 = "172 2 2 11 2 22

HB(ZI’ZZ) A (b1 - al) 2,2, * alb2 - a2b1 (5.59)
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and similarly,

jzy22)B(-iz; zz) = Hy (2] ,2,) + jz ‘220 (z1 1Z,) (5.60Db)
AC-jzda HGelh) = 1,62 ,2 Y - seda gz ,20h 5.60
lez 2 lez2 = 1, lez2 B zl, {(5.60c)
a-iTighaGetagh = n,GTheph - e tey gl h (5.604)
From (5.55) it is immediately seen that
Ap(z,2,) = 2Re {KR(zl,zz)} (5.61)

Pl

where Re denotes the real part. Now from (5.56) and (5.60) we have
N _ I -% 3 -1 -1
Ap(zy,2)) = [HA(zlzZ) * 3zzoHp(Zz) [ | H (21 2, h - 2172, By (27257

[H (z]'2,) + lei %n (z; 22)] I:Hz(zlz;]') - % Z*H (2,2 1)]

(5.62)



and hence from (5.61)

AR(ZI’ZZ) =2Re {E%ﬁzl, } [H (z zz)HA(zzlzgl) + HB(zlzZ)HB(lezgl)]

'[%A(ZIIZZ)HA(ZIZE y - HB(zzlzz)HB(zlzgli]

— [HA(zzlz;]')HB(zlzz)z - H,(z,2,)Hy (z1 21) Il]

.[?Z(ZI’ZEI)HB(ZII’ZZ) - HA(ZIIZZ)H (z 22 )z } (5.63)

The denominator function B (z 2) can be found as:

_ P s NS B -1
B = BR(ZIZZ)BR(ZI z, )BR(z1 ZZ)BR(ZI’ZZ ) {5.64)

r(21527)
where

B, r(%12p) = B(JZ% Q)B(—le% 2£)

=z.z, + (b (5.65)

122 - 2b2)zlz2 + b

1 2

The final configuration of the fan filter is given in Fig.5.16.
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2HA(Z1 22)

H Al 21'12';3 )

2 HB(Z1 Z2 )

He(Z1 23)

2HA(Z:|'1 Z-gj_

‘HB(Z1 22)22

2H(2) 2,)

Ha(Z'2;)Z]

1

HA( Z1 Z;;)

HB(Z1 2-21 )

L

| Brlz7zd)

éR (Z1 2_21 )

Ha(z; 23) Hg(zi'25)

HA(Z'2,) Hg (2, 2))z,
1 1

éR(Z_‘E Zo) éR(Z1 22)

Fig 516 Final configuration of the fan filter function in (5-59)
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Remark 5.3:

It is interesting to note that the building

blocks HA and HB in the final configuration (Fig.5.16)

can be implemented as a one—dimensional filtering process.
Fig.5.17 shows the recursion directions of HA(ZIZZ) and
This consideration will reduce both storage

HB(zlz2 .

and computational time.

5.6.5 Numerical Examples:

Example 1

Consider the low-pass one—dimensional filter

function obtained by Charalambous [27].

3 22 + akz + bk
H(z) = (0.03112) ] (5.66)
k=1 z2 + ¢,z + d
k k

The coefficients of the filter function (5.66) are given
in Table 5.ITII. This filter function has the following

specifications for the magnitude characteristics;

1 + & for w e Y
H(ed")
(5.67)

) for w e P

[0,0.3333333ﬂ] is the pass band.

=2
1]

[0.3761llﬂ,ﬂ ] is the stop band.

-
w
[}
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Zs

Fig. 5:17 Recursion direction of the filter blocks in Fig.5:16




TABLE 5.IIT

Coefficient Values of the Filter in Example 2.

1 a. b. c. d.

i i i i
1 -0.72968 1.0 =0.94645 0.93267
2 1.17818 1.0 -1.09725 0.38569
3 -0.38510 1.0 -0.99086 0.71690

239
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and

& = 0,01 , § = 0.001
P 5

Since the filter function does not have a cut-off frequency
at w, = %n , a low-pass to low-pass frequency trans-

formation [173] is used to obtain a filter with a cut—-off

frequency at w, = %ﬂ . Then, it is readily applied to
equation (5.24a) to get a symmetric fan filter. Fig.5.18(a)
and 5.18(b) show the magnitude and contour plots of the

resulting fan filter.

Similarly, a quadrant filter can be obtained
from (5.28a). The magnitude and contour plots of the
designed quadrant fan filter are shown in Fig.l9(a)-(b).
From Figs.l18-19, we conclude that the one dimensional
prototype characteristics are clearly preserved in both
the symmetric and quadrantal fan filters, This can be
observed from the ripples in the pass band and stop band

as well as the transition region.

Remark 5.4:

For this particular example, since the pass and
stop band regions are very ¢lode -to each other, the cut-off
frequency was considered as w.= 0.34333371 instead of
w, = 0.3333333m. This modification enabled us to remove
the overlap. Otherwise, there will be overlap at one
point at the origin due to the sharpness of the transition

region.
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Fig. 518(a) Magnitude characteristics of the fan filter
in Example 1
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A W2

Fig. 518(b) Contour plot of the fan filter in Example 1
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A |Hz4(w1:w2)|

Fig. 519(a) Magnitude characteristics of the quadrant

fan filter in Example 1.
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Fig. 519(b) Contour plot of the quadrant fan filter in Example 1.

\
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Example 2

As a second example, we select as prototype a
tenth order Butterworth filter ﬂ75J. The transfer

function 1s of the form

F(s) = ———— (5.68)

To enter the digital domain, substitute the well-known

bilinear transformation

5 = (5.69)

-
+
N

giving as the digital transfer function H(z)

10
H(z) = F(s) o L1+2) — (5.70)
10 )
E: biz
i=0
g = 1-2
1+2
110 . . .
where {bi} are real coefficients and can be obtained
1=0

from {bi} 10
i

0
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The cut-off frequency of H{(z), w,, can be found

from (5.69).

w, = 2arctan(9c)
= Zarctan(l)
= 2r -1
= 2!+ > T (5.71)
where ec = 1 rad. 1is the cut-off frequency of the proto-

type filter function (5.68).

Finally, equation {(5.24a) is used to obtain
symmetric fan filter, Fig.20(a) and Fig.20(b) show the
magnitude and contour plots of the resulting filter.  For
the quadrant fan filter design, the cut-off frequency W,
is changed to w, = 1.15 rad. This alteration will change
the cut-off frequency of the H(z) to W, =(L55ﬁn The
magnitude and contour plots of the designed quadrant fan

filter can be seen in Fig.21(a) and Fig.21(b), respectively.

Example 3
To illustrate the FIR fan filter design with
complex transformations, we consider the following linear

phase filter,

%]
(=)

H(z) = h(27) + [h(i)zi-l + zi+26)] (5.72)
1

[
I}

The coefficients of H(z) are obtained using Remez Method
[?4]. The order of the filter is N = 53. The specifications

of this low-pass filter are GP = 0.01175, 63 = 0.,00588,
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A |H11(w1s we)l

G

Fig. 20(a) Magnitude characteristics of the fan filter
in Example 2.

S
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Fig. 5-21(a) Magnitude characteristics of the quadrant fan
filter in Example 2.
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A Wy

Fig. 5:21(b) Contour plot of the quadrant fan filter

in Example 2.
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and w_ = 0.54. The coefficients can be found in
Table 2.1IV.

Fig.22{a) and Fig.22(b) show the magnitude and
contour plots of the frequency characteristicecs of the
designed fan filter, respectively. From the ripples in
the pass band and the shape of the transition region, it
can be seen that one-dimensjional characteristics of the
prototype are completely preserved,. If one compares this
FIR fan filter with filters designed using McClellen's
transformation ESQ], the superiority of the complex
transformation method can be seen. It is interesting
to note that the sharpness of the transition band of the
fan filter in Fig.5.21(a) is also comparable with the
other FIR fan filter techniques [164], [167].

The obtained gquadrant fan filter is given in
Fig.23(a) and Fig.23(b). It is possible to compare this
filter with the one designed by using the generalised
McClellen's transformation given by Mersereau BGZ].

Both filters have the same length (53 x 53). However, it
can be shown that the approximation of the ideal response
(5.26) of the designed filter is much better than the one
suggested in [}62]. The comparison can be done using
both amplitude and contour plots of the filters.

Similarly, designed IIR fan and quadrant fan
filters in Examples 1 and 2 can be compared with the
filters obtained using previous IIR methods [ISQ], Eﬁ4],

Déf]. It is found that the suggested design technique



Coefficient Values of the Filter in Example 3.

TABLE 5.1V

h(
h(
h(
h(
h(
h(
h(
h(
h(

1)
2)
3)
4)
5)
6)
7)
8)
9)

h(10)
h(ll)
h(12)
h(13)
h(1l4)
h(1l5)
h(16)
h(17)
h(18)
h(19)
h(20)
h(21)
h(22)
h(23)
h(24)
h(25)

h{26)
h(27)

0.22112579E-02
0.61455960E-02
-0.10175120E-02
-0.43941110E-02
0.78730746E-03
0.61650464E-02
-0.10972550E-02
-0.812306408E-02
0.12600113E-02
0.10617225E-01
-0.14219410E-02
-0.13755620E-01
0.15621832E-02
0.17762213E-01
-0.16950150E-02
-0.23061480E-01
0.18116964E-02
0.30431992E-01
-0.19070420E-02
-0,.41552210E-01
0.19880677E-02
0.60814066E-01
-0.20455840E-02
-0.10437360E+00
0.20808409E-02

0.31773067E+00
0.49790402E+00
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A [Hip (Wy, )|

Fig. 5-22(a) Magnitude characteristics of the fan
filter in Example 3
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A W2

Fig. 522(b} Contour plot of the fan filter in Example 3.
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Fig. 523(b) Contour plot of the quadrant fan filter
in Example 3.
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is not only simpler than the existing ones but also its

performance is superior.

Example 4

As a final example a specification was based on
that proposed by McClellan [}7{]. Here the cut-off
boundary for the fan filter extends from wy = % s wy = 0
at an angle of 45°, The design was based on the trans-

formation of equation in which the cut-off frequency is

m

and the value of ¢ set at + 15 *

at w =
c

NE
TE

- I
10

The resulting response and contour plots are shown in
Figs. 24(a) and 24(b)}. The design is based on a 3rd

order Chebyshev prototype [175].

5.6.6 Conclusions:

In this chapter we have introduced a more
general class of two-dimensional spectral transformation,
called complex transformations and we have developed a
design procedure for designing zero-phase fan filters énd
quadrant fan filters.

The method offers a complete solution to the
design problem of fan filters and is based on the use of a
set of transformed filters obtained from the one-dimensional
prototype with complex transformations. The superiority
of the technique can be summarized as follows:

(1) the designed filters amd the prototype both either FIR or IIR.

(2) The procedure does not introduce any stability problem.

The resulting IIR filters are inherently stable.
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(3) Due to the fact that the original one-dimensional
filter characteristies are preserved, solutions are
optimal. Hence no optimization is needed.
(4) The performance of the designed filters in the
frequency domain is better than all the existing designst
(5) The designed zero-phase two-~dimensional filter functions
can be implemented as a one-dimensional filtering
process.

* This comparison has been made with the technique of McClellan, Mersereau,
and Marzetta, based on the error criteria defined in example h.5;2, the -
simplicity of computation and complexity of design. This comparison has
been made with the published results in references [150] , [162] - [1661.

This technique also has the advantage of achieving any given specification.
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(3) Due to the fact that the original one-dimensional
filter characteristics are preserved, solutions are
optimal. Hence no optimization is needed.
(4) The performance of the designed filters in the
frequency domain is better than all the existing designst
(5) The designed zero-phase two-dimensional filter functions
can be implemented as a one-dimensional filtering
process,
*
This comparison has been made with the technique of McClellan, Mersereau,
and Marzetta, based on the error criteria defined in example h.5;2, the
simplicity of computation and complexity of design. This comparison has
been made with the published results in references [150] , [162] - [166].

This technique also has the advantage of achieving any given specification.
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Fig. 5-24(a) Magnitude plot of filter of Example 4
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Fig. 5.24(b) Contour plot of filter of Example 4
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CHAPTER .6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

6.1 CONCLUSIONS

The aim of this thesis is the investigation
of the stability, stabilization and design of multi-
dimensional recursive digital filters. The following

problems have been considered in detail:

- Development of test for stability of two-dimensional
systems.

- Investigation of the problem of the extension of
Lyapunov's test into multidimensional case and, an
extension of this test for the stability of Roesser's

model.

A simple test has been derived for two-dimemnsiomal filters
using the properties of inner determinants. The proposed
test takes the form of a local positivity test applied

to a two~variable polynomial with real coefficients.
Furthermore, the extension of Lyapunov's stability test

to Roesser's model has been developed. Some difficulties

with this problem have been also shown.

- The existence of N-dimensional complex cepstrum.
- Development of a cepstral test for N-dimensional digital

filters.
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It has been shown that an N-dimensional complex cepstrum
exists for N-dimensional rational polynomials, A method
of testing the stability of N-dimensional recursive

filters has been presented.

- Investigation of the two-dimensional planar least
squares inverse stabilization technique and a counter-
example for Jury's conjecture,

- Methods to stabilize multidimensional filters and their
relation with stability.

-~ Development of an algorithm for Pistor's stabilization

me thod.

Two stabilization methods, based on the Pistor decomposition
have been developed. It has been shown that the Pistor
technique is applicable to a more general class of

recursive filters. An algorithm has been presented for
computation of the spectral factors of unstable digital

filter functions.

~ Design of circularly symmetric filters with spectral
transformations.
- Design of fan filters with Ahmadi transformation and

complex transformations.

A design technique for circularly symmetric filters has
been developed. A novel two-dimensional reactance function
has been used to transform a one—-dimensional continuocus low-

pass filter function to a two—-dimensional continous low-pass
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function. Two design techniques for design of stable fan
filters have been suggested. The first of them has been
obtained by using the Ahmadi transformation and the second

one with complex transformations.

6.2 SUGGESTIONS FOR FUTURE WORK

The following topics seem to be of interest for

further research:

(1) 1In view of the complexity of multidimensional systems,

the need for obtaining sufficiency <conditions for

structural stability (avoiding non-essential singular-
ities of the second kind on the unit bidisec) is

warranted.,

Simple sufficiency conditions are needed for design of

two-dimensional recursive digital filters.

(2) Most of the known stability tests developed so far
apply to linear time invariant systems. In practice,
the nonlinear effects of quantization round-off error,
finite arithmetiec, etc., should be taken into account
for stable design. Hence, the extension of the known
methods for stability analysis to nonlinear and time-

varying systems is a major task.

(3) The validity of the use of the double bilinear trans-
formation is needed for establishing the stability of

two-dimensional digital filters. If we let
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G(s,,8,) = = , this is a stable function
1>2 l+s,+s B(s,,s,)
1 72 1*72
) 1-z1 1—22
Using 5, = 8 9=
1+z1 1+z2
we get
_ (1 + zl)(l + z2)
H(Zl,22) =
3 + z1 + zz + zlz2

Nonessential singularities of the second kind
(zl= -1, z,= -1) now exist, H(zl’ZZ) is shown to be
unstable, Under what conditions does isomorphism

hold? Fig. 6.1 shows the isomorphism.

(4) The extension of the Nyquist-like stability test for
testing - the sign of the multidimensional polynomial

on the distinguished boundary of the unit polydisc.

(5) 1If nonessential singularities exist on the unit bidisc
how does one determine the stability of the two-
dimensional filter function. In Section 2.2.1, it

was shown that:

- 8 8
(1 z1) (1 - Zz) is stable
H.(z,,2z,) =
1*71*"2 2 = 7z = o
1 2
(L - 2z)(1 - z,)
but Hz(zl,zz) = is unstable
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Fig. 6-1 Bilinear transformation



(6)

(7)
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Also, a method is needed for testing nonessential

singularities of the second kind.

How does the distance from the boundary of the unit
bidisec (termed as marginal stability) influence the
system response and quantization error. Fig.6.2

shows the marginal stability of a stable system.

Shanks' conjecture (1972) is false in general, Genin

and Kamp (1975) gave a counterexample to disprove the
conjecture, Later, in 1976 Jury imposed an additional
constraint that i1f the least squares inverse are of

the same degree them Shank's conjecture might be wvalid,
However, recently, Kayran and King (1980) came up with
another counterexample for Jury's conjecture. Therefore,
it is of interest for effective design either to verify

or refute this conjecture and in the same vein to obtain
whatever additional constraints are needed to be

imposed to verify the conjecture,

It is well known that the one-dimensional discrete
Hilbert transform can be used for the stabilisation of
recursive filters, Furthermore, the magnitude function
of the filter is unimpaired. In extending this method
to the two-dimensional case one encounters many
difficulties and, indeed, stabilisation cannot always

be achieved and in addition the frequency magnitude is
changed. Wood had shown in a counterexample that

stability can not be achieved by a finite order filter.
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Hence it is conjectured that stability can be obtained
by using infinite order recursive two-dimensional
filters. The verification of this conjecture is

needed,



Z,-piane Z,-plane

Fig.6-:2 Marginal stability
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APPENDIX - A

Let A(z) and B(z) be the following polynomials:

A(z) = 2z + a _1% +oaee +oal (A-1)
_ m m=1

B(Z) - bmz + bm_lz T e + bo (A—Z)

Where

z is a complex variable and a, and bi are real or

284

complex, We assume that m £ n. A basic classical result
is that the determinant of the (m+n) - order Sylvester
matrix [22].
1 an_l an_z LI B ] ao 0 * ¢ 0
0 1 a . _1 .o a; a, s 0
[Am+n]= 0 0 ‘e 1 a1 e .o a,
. ot bn Pa-1 Pa-2 v s
0 bm bm—l * ® a9 bl LN B 0
bm bm_1 bm_2 . - bo . 0

is nongero if and only if A(z)

{(that is, no common zeroes exist between A(z) and B{(z)).

-

and B(z) are relatively prime

This determinant is called the resultant R[A,B] of A and B.
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APPENDIX - B

'If' part. Suppose that |z1|= |22|=1 is a root of
B(zl,zz). Recall
= D(x,2z,) D(x,z,") (8-1)
G(x,y) = X,22 Xy2,
where
-1
D(x,zz) = B(zl,zz) B(zl,zz) (B-2)

The complex variables z, and z, are replaced by the

corresponding real variables x and y defined by:

zl + zll
X = on |21|=1 (B-3)
2
22 + Z;l
y = — on |22|=1 (B~-4)
2

From equations (3) and (4), it can easily be seen that

x€[-1,1] and y€[-1,11 1is also a root of G(x,y).

"Only if' part. Necessity can be shown by contradiction.

Consider G(x,y) has a real root (x,y) such that x,y€[-1,1]1,
and suppose that B(z;,z,)# 0 for |z1|=|z2|=1. Since

B(zl,zz)% 0 on the distinguished boundary, from equation

(1) and (2):



D(x,2,) # O x €[-1,1] , |22|= 1 (B~5)

D(x,zz) 0 vyel-1,1] , |22[= 1 (B-6)

From equations (5) and (6)

G(x,y) # 0 for x,yE[-1,11] (B-7)

However, this contradicts our assumption. Hence when
G(x,y)# 0 for x,y€ [-1, 1], there exists some z, and

z, such that B(zl,zz) =0 for [zll=]zz|=1.
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APPENDIX~C

A two dimensional analogue function

A(s, ,s8,)
- 1252
T(sy,8,) = B(s,,5,)

is stable if B(jwl,sz) £ 0 Re(sz) 2 0

B(sl,l) # 0 Re(sl) 2 0

alsl + 3252

Considering T(51’52)=

2 2
1 + b1(51+ 52) + bZSlsZ

First condition

. . 2
B(Jml,sz) = bls2 + Jmlbzs2 + (l—mlbl)

Equating B(jml,sz) = 0 gives roots:

. 2 2 2
Jmlbz :‘/m1(4b1 b2) - 4b1

2b1

(C1l)

(c2)

(c3)
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To satisfy Re(sz) < 0

2 2 2
m1(4b1 b2) 4b1 < 0 for all Wy
2 2
+b, >0 , 4b] - b, <O (c4)
Second condition
2
B(s;,1) = 1 + b;(sj+ 1) + b,s, (C5)

Equating B(sl,l) to zero gives:

5, = (C6)

To satisfy Re(sl) < 0

2
b, > 0 and b2 - hbl(b1+ 1) < 0

2
oT b2 > 0 and - 4b1(b1+ 1) < O (C?)

Conditions (C4) and (C7) may be combined with

b
1>Z_-b > 0 (CS)
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APPENDIX -D

Recurse Directions of Finite Area Array:

A causal filter recurses in the (+m,+n) direction.
The causal recursion starts at the NW corner of an input

array as indicated in Fig.4.3.

Finite Area Array: A two—dimensional array that is nonzero

for only a finite area in the spatial domain is referred to
as a finite area array E47].

For a finite area array I(MxN), the following array

operations are used for different recurse directions:

1) 180° rotation M/2 -axis (row " reyersal)
Il(m,n) = I{M-m+1,n) {D1)
© rotation about N/2 -axis (column reversal)

2) 180

Iz(m,n) = T(m,N-n+l) (D2)
3) Clockwise 1807 rotation (row-column reversal)
I3(m,n) = I(M-m+l,N-n+1) {D3)
One can obtain from equation (2.1) recursive filters recursing

in the (-m,n), (m,-n), and (-m,-n) directions with Il(m,n),

Iz(m,n), IB(m,n), respectively.



