
Imperial College of Science and Technology

(University of London)

Department of Management Science

Interactive Computer Methods

for

Plant Layout Scheduling and Group Technology

by

Vizes Nakornchai B.Sc. (Eng), A.C.G.I., M.Sc.

A thesis submitted for the degree of
Doctor of Philosophy of the University of London

and for the
Diploma of Imperial College

August 1982

I would like to dedicate this thesis to my father, my mother , my aunt Apa and my

former teacher Kru Aketritra Kokongka. In their own ways, they have made this

study possible.

Colorless green ideas sieep furiously.
N.Chomsky.

Acknowledgements

i would like to thank Mr-John King, my supervisor, for his constant encouragement
and guidance during the course of my work. My wife, Chooehh, has bean
supportive m many ways during these difficult years. Many of my eottegues have
made my tasks easier: Mark Thornton has made my venture into Pascal an
enjoyable experience. Nick Bate has helped in the earlier stage of my attempt to
solve the maxima! planar graph problem. Patrick Collins has been helpful in more
ways than one. Finally, I would like to thank the Thai Govsrment who have
supported me all through this period.

Abstract

Many combinatorial problems encountered in industry are NP-complete, and it is

generally accepted that most of these problems cannot be solved optimally for any

practical size. The aims of this thesis are two-fold; firstly to investigate various

heuristic techniques that may be applied to certain of these problems; and secondly

to investigate the possibility of combining human judgement with the heuristics in

order to take into account unquantifiable factors or to overcome certain practical

difficulties.

Three classes of problems are selected for the study: plant layout, scheduling and

group technology. Two sub-problems of the plant layout problem, namely the

quadratic assignment problem (QAP) and the maximal planar graph problem (MPG),

are studied. For the QAP, the main emphasis is on an interactive partitioning

method. As no computer implementation of a heuristic for the MPG has previously

been published, the main effort is concentrated on the development of algorithms

and data structures which would lead to efficient implementation of the heuristics.

Various construction and improvement heuristics are implemented obviating the need

for a planarity testing procedure. The sub-class of the scheduling problem selected

for study is the one which can be formulated as an asymmetric travelling salesman

problem (ATSP). Such a problem arises whenever the setting up time is sequence

dependent. Various tour construction and improvement procedures are considered. In

the case of group technology, a comprehensive survey of the literature on group

formation is given as no such survey has previously been published. A new

improved version of the ROC algorithm is devised. The new algorithm (ROC2) has a

linear order of complexity and hence can be used to solve very large practical

problems. A new relaxation procedure for bottleneck machines, together with the

interactions allowed by the program, are used in conjunction with the ROC2

algorithm to provide solutions of published problems comparable to or better than

those produced by existing algorithms, and with less effort.

vi

Contents

Abstract IV

Acknowledgements V

Contents VI

List of tables IX

List of figures X

1 Introduction 1

1.1 The aim of the thesis 1

1.2 Computational complexity of algorithms 1

1.3 An outline of the thesis 2

1.4 A note to the reader 2

2 Plant layout: literature survey 3

2.1 Introduction 3

2 .2 Qualitative approaches 4

2 .3 Quantitative approaches 5

2.3.1 Quadratic assignment problem 5

2.3.2 Improvement techniques 8

2.3.3 Construction techniques 12

2.3.4 Empirical complexity and test problems 13

2.3.5 Comparative results 14

2.3.6 Human interactions 14

2 .4 Maximal planar graph 15

3 An interactive approach to the QAP 17

3.1 Introduction 17

3 .2 Some theoretical considerations 17

3 .3 An experiment in interacitve layout using the ROC2 algorithm 17

3 .4 Conclusions 19

MANAGEMENT SCIENCE IMPERIAL COLLEGE

vii

4 Maximal planar graph heuristics 24

4.1 Introduction 24

4.1.1 Some properties of a maximal planar graph 24

4.1.2 Design and implementation considerations 25

4 .2 Programming language selection and data structures 25

4 .3 Construction heuristics 27

4 .4 Improvement heuristics 28

4.4.1 Arc oriented operations 29

4 .5 The design of the improvement heuristics 29

4 .6 Implementation and comparisons of the heuristics 39

4.6.1 Design of the experiment 39

4.6.2 Analysis of the experimental results 4 8

4 .7 Interactive aspects 52

4 .8 Conclusions 52

5 Group technology: literature survey 53

5.1 Introduction 53

5 .2 Similarity coefficient methods 53

5.3 Set-theoretic methods 55

5 .4 Evaluative methods 56

5.5 Other analytical methods 58

6 The design and applications of the ROC2 algorithm 64

6.1 Introduction 64

6 .2 Design of the ROC2 algorithm 65

6.3 Illustration of the ROC2 algorithm in use 69

6.4 A new relaxation procedure 70

6.5 Interactive ROC2 algorithm 76

6.6 Other applications of the ROC2 algorithm 86

6.7 Conclusions 87

7 Sequence-dependent setup time scheduling problems 89

7.1 Introduction 89

7.2 The travelling salesman problem 89

7.3 Some theoretical considerations for the travelling salesman problem 90

MANAGEMENT SCIENCE IMPERIAL COLLEGE

viii

7.4 Literature survey 90

7.5 A framework for empirical studies of some heuristics 92

7.5.1 Shadow 1 heuristic for the asymmetric travelling salesman problem 93

7.5.2 Shadow2 heuristic for the asymmetric travelling salesman problem 95

7.5.3 Implementations of 3-opt and 4-opt improvement heuristics 97

7.6 Shadow cost heuristics in comparisons 101

7.7 Comparative results for various heuristics for the ATSP 102

7.7.1 Comparisons of the construction heuristics 102

7.7.2 Improvement strategies and their consequences 102

7.7.3 Implementation implications 103

7.8 Interactive aspects 104

7.9 Conclusions 104

8 Conclusions and recommendations 111

References 113

Appendix A Distance and load matrices for the 24 location configuration 119

Appendix B Solutions and random initial layouts for the 16 location configuration 120

Appendix C Listing of the program for the QAP 121

Appendix D Listing of the program for the MPG 130

Appendix E Listing of the program for the ROC2 algorithm 156

Appendix F Listing of the program for the ATSP 184

MANAGEMENT SCIENCE IMPERIAL COLLEGE

ix

List of Tables

2.1 Runtime comparison of 3 QAP heuristics 11

3.1 Solutions to the 24 location configuration 22

3.2 Random starting layouts for the 24 location configuration 22

3.3 Solutions to the 21 location configuration 23

3.4 Random starting layouts for the 21 location configuration 23

4.1 Construction solutions of MPG heuristics 44

4.2 Final solutions of MPG heuristics 45

4.3 Total runtimes of MPG heuristics 46

4.4 Total runtimes of MPG heuristics 47

4.5 Construction cost sign tests of MPG heuristics 49

4.6 Final cost sign tests of MPG heuristics 50

4.7 Construction time sign tests of MPG heuristics 51

4.8 Total time sign tests of MPG heuristics 51

6.1 An illustration of Radix sort 65

6.2 Matrix sorting using the R0C2 algorithm 70

7.1 Construction solutions of the shadow 1 and shadow2 heuristics 101

7.2 Construction costs of ATSP heuristics 105

7.3 Construction times of ATSP heuristics 106

7.4 Final costs of ATSP heuristics (Greedy) 107

7.5 Final costs of ATSP heuristics (Steepest) 108

7.6 Total runtimes of ATSP heuristics (Greedy) 109

7.7 Total runtimes of ATSP heuristics (Steepest) 110

MANAGEMENT SCIENCE IMPERIAL COLLEGE

X

List of Figures

2.1 Complexity of combinatorial problems

3.1 Layouts for the 24 location configuration

3.2 The plan for the 16 location configuration

3.3 Layouts for the 21 location configuration

4.1 A maximal planar graph

4.2 An alternative realisation of Figure 4.1

4.3 Part of a maximal planar graph

4.4 Figure 4.3 after a C arc exchange

4.5 Figure 4.3 after another C arc exchange

4.6 An alternative labelling scheme for Figure 4.3

4.7 Figure 4.6 after a C arc exchange

4.8 A solution to Foulds & Robinson 10 vertex problem

4.9 Average construction solutions of HWHG heuristic for the

4.10 Average final solutions of HWHG heuristic for the MPG

4.11 Average construction times of heuristics for the MPG

4.12 Average final runtimes of heuristics for the MPG

5.1 Matrix sorting using the ROC algorithm

5.2 Figure 5.1.1 with an additional element

5.3 Sorting a matrix with exceptional elements

6.1 A diagram of a storage scheme for the R0C2 algorithm

6.2 Row sorting of a matrix using the R0C2 algorithm

6.3 Illustration of the use of the new relaxation procedure

6.4 de Witte's problem and an alternative solution

6.5 Burbidge's problem and an alternative solution

6.6 An airport design problem

7.1 Cases of active nodes under consideration

7.2 3-opt arc exchange

7.3 4-opt arc exchange

7

20
21

21

26

26

30

32

33

34

35

36

MPG 4 0

41

42

43

62

63

63

66

67

72

76

79

81

94

98

99

MANAGEMENT SCIENCE IMPERIAL COLLEGE

1 Introduction

1.1 THE AIM OF THE THESIS

The works on computational complexity by Cook (1971) and Karp (1972) and subsequent authors

have given us some understanding and insight into the difficulties encountered in attempts to find

solutions to certain problems. There is also a growing acceptance that one class of problems, the

NP-complete problem, may never be solved efficiently. Many real-life industrial problems belong to

this class. Common problems such as scheduling and plant layout, even in their simpler forms, are

very likely to be NP-complete and hence cannot be solved within an acceptable time scale. This

applies even to moderately sized problems.

The primary purpose of this thesis is to investigate methods of achieving approximate solutions to

some of these problems. The secondary objective is to investigate the possibility of combining

human judgement with heuristics to take into account some of the factors that might have been left

out during the formulation stage, or in order to take into account certain difficulties that may arise

in practice.

1.2 COMPUTATIONAL COMPLEXITIES OF ALGORITHMS

According to computational complexity theory, there are at least two major classes of problems, P

and NP. A problem in the P (polynomial) class is defined as a problem that can be solved in

polynomially bounded time by a deterministic Turing machine. A deterministic Turing machine is a

conceptual model which provides lower bounds on space and time required to solve a problem with

a von Neumann computer; most of the computers in use today are of this type. A von Neumann

computer, as far as the complexity issue is concerned, is one which executes the instructions

sequentially. Hence, a P problem is in essence a problem which has a known polynomial algorithm

for the present type of computer. An NP (nondeterministic polynomial) problem is one which can be

solved on a nondeterministic Turing machine in polynomially bounded time. A nondeterministic Turing

machine is in essence a machine which can carry out unlimited parallel computation. Therefore an

NP problem, in practical terms, is a problem that can only be solved by an exponentially bounded

algorithm on today's computers.

Another important concept in the complexity theory is the concept of reducibility. Two problems are

said to be reducible to each other if there exists a polynomial algorithm to transform one problem

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 2

to the other. Using this idea, a problem can be shown to be an NP problem if it can be shown to

be reducible to another NP problem. Within the NP class, there is a large group of problems which

are reducible to each other; the problems are called NP-complete problems. Some of these are the

satisfiability, travelling salesman, set covering and language recognition problems. The implication of

the existence of such a group is that if there is an efficient algorithm for any NP-complete problem,

then there is an efficient algorithm for all the NP-complete problems.

1.3 AN OUTLINE OF THE THESIS

Three sets of problems in the NP-complete class are selected for study in this thesis; plant layout,

scheduling and group technology. In chapter 2, a review of the two main analytical models, the

quadratic assignment problem (QAP) and the maximal planar graph (MPG) which are normally used

to solve the plant layout problem. In chapter 3, an interactive decomposition method is used in

conjunction with a heuristic procedure to solve the QAP. Chapter 4 provides the detailed description

of a set of heuristics for the MPG, implemented on a computer. Data structures for efficient

implementations of these heuristics are also given. The heuristics, construction and improvement, are

carried out in such a way that the need for a planarity testing procedure is avoided. It is believed

that this is the first report of computer-implemented heuristics for the MPG. For group technology, it

was felt that there was a need for a critical and comprehensive survey of the various methods that

have been suggested during the last decade. Chapter 5 is the result of an attempt to fill this gap.

In chapter 6, the main effort is concerned with an extension of a previously published algorithm, the

Rank Order Clustering (ROC) algorithm. The new algorithm (ROC2) has a linear order of complexity

and hence can be used to solve very large and realistic problems. A new relaxation procedure for

bottleneck machines is also proposed. The new algorithm was implemented interactively and the

tests that were carried out have shown that such an approach provides comparable or better

solutions to published problems, with less effort, than those provided by existing methods. The

sequence-dependent setup time scheduling problem (SDSTSP) is the subject of chapter 7. The

SDSTSP is a problem which can be transformed into the well known travelling salesman problem

(TSP). Various construction and improvement heuristics are discussed.

1.4 A NOTE TO THE READER

A brief explanation of the style of the presentation in this thesis is needed. The reader will find that

formalized definitions, theorems and proofs are generally avoided, except where essential to

subsequent discussions. The underlying concepts and ideas are explained in full, replacing the more

familiar style of presentation. It is the author's belief that formalization, though necessary in many

situations, is not always the best approach. The hope is that this method will provide a satisfactory

explanation of the work carried out in this thesis in a more agreeable manner.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

2 Plant Layout: Literature Survey

2.1 INTRODUCTION

Plant layout covers a wider range of activities than the simple process of laying out machinery. It

involves many interrelated activities and items such as the products, operating equipment, storage

space, material handling equipment, safety, personnel and all other supporting services. As Apple

(1977, p7) suggests, the major objectives of plant layout are to

1 Facilitate the manufacturing process

2 Minimize material handling

3 Maintain flexibility of arrangement and operations

4 Maintain high turnover of work-in-progress

5 Hold down investment in equiptment

6 Make economical use of building cube

7 Promote effective utilization of manpower

8 Provide for employees' convenience, safety and comfort in doing the work.

Francis & White (1974, p34) suggest that "facilitate the organizational structure" should be included

to the above list.

It is obvious from the list of objectives that plant layout is a highly complex problem. Many of the

factors would be very difficult to measure in quantitative terms. It is unlikely that the plant layout

problem can be described adequately by a mathematical model. This is one of the main reasons

why, in spite of the efforts in the last few decades to develop mathematical models for the plant

layout problem, practical approaches to tackling the problem are still largely qualitative in nature.

For the purpose of this survey, the approaches to the plant layout problem are divided into two

categories: qualitative and quantitative. However, there is a considerable degree of overlap between

the two. The qualitative approach is used in a method which relies primarily on visualising

techniques to arrive at a solution, and only a limited number of solutions will be considered, due to

the difficulties in arriving at a solution. The quantitative approach usually implies that explicit

mathematical relationships between limited numbers of variables are formulated. Large numbers of

alternative solutions are generated and evaluated to find the best layout, acccording to one or more

objective functions. In most cases, the objective is usually a single materials handling cost function.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 4

2.2 QUALITATIVE APPROACHES

Moore (1962, p 114) suggests that the first major improvement in plant layout technique is to adopt

the Time and Motion Study approach. The content of Hiscox's (1948) book tends to support this

idea. El-Rayah & Hollier (1970) characterize the techniques of the earlier period as "one of

developing flow diagrams and process charts for the orders judged to be dominant, and, with the

aid of two dimensional templates and three dimensional scale models, alternative layout proposals

were developed. It should be noted that the development and evaluation of these alternative layouts

depended primarily on the judgement, intuition and experience of the layout analyst".

Cameron (1952) and Smith (1955) introduced the use of the Travel Chart in plant layout. The first

step in this method is to make simplifying assumptions regarding the nature of the distance-volume

matrix. By reallocation of machines, a new distance-volume matrix can be constructed and compared

to the previous one. Reallocation is carried out until there is no obvious improvement. This approach

can be seen as a simplified version of the quadratic assignment problem (QAP), with the distance

as the number of rows (or columns) away from the main diagonal of the distance-volume matrix. It

was the first attempt to use the large quantity of the material handling data in a concise way. As

the number of calculations is large, a very limited number of alternatives can be considered in this

way.

Sequence analysis (Buffa, 1955), as the name implies, is based on the analysis of the sequence of

operations to be carried out on components. From this analysis, a "sequence summary" of how

material flows between various work centres is developed. Other data, such as area requirements,

are also collected. From inspection of these data an improved layout may be derived. The main

advantage of this technique is that the data are handled subjectively, and hence alternative solutions

can be proposed and evaluated quickly. The main drawback is that there is no obvious way that

the data collected can be transformed into solutions; they depend entirely upon individual insights

and manipulations.

There are other extensions to the sequencing method (Lundy (1955), Noy (1957), Llewellyn (1958)

and Schnieder (1960)). In general, it is reckoned that they are not as useful as the Travel Chart

method (El-Rayah & Hollier, 1970).

Muther (1961, 1962) introduces the concept of the "closeness-desired" rating and relationship chart.

Closeness rating is a systematic method of taking into account various factors including material

flow considerations. The closeness rating between two machines starts at the highly desirable A,

progressively reduces to E, /, 0 and U and ends at X which is considered totally undesirable. By

assigning values to all the machine pairs, a relationship chart (REL chart) is constructed. A

relationship diagram (REL diagram) is drawn by shifting around various machines until the proper

relationships, as indicated by the REL chart, can be obtained. The REL diagram together with the

space requirement consideration will be the basis for the new layout.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 5

The advantage of this method is that in the case where the flow of the material is not the only

major factor, a meaningful layout could still be constructed. The two main disadvantages are the

need to resort to subjective ratings and the lack of clear cut criteria for choosing among

alternatives.

The major difficulty that is found in all the methods using the qualitative approach to plant layout is

that the objective is rarely stated explicitly. Even when it is stated, the computational effort is

usually too large to be carried out effectively by manual methods. This state of affairs was not

satisfactorily resolved until the computer became more accessible in the early sixties.

2.3 QUANTITATIVE APPROACHES

There are two major mathematical models used in the study of plant layout, namely the quadratic

assignment problem (QAP) and the maximal planar graph (MPG). In spite of intensive research in the

past couple of decades, there has been very little progress made in the attempt to solve the QAP

(Lawler 1975). To a lesser extent, the same can be said about the MPG. The major difficulty with

the models is the combinatorial nature of the feasible solutions.

2.3.1 Quadratic Assignment Problem

The QAP, formulated as a generalized case of the linear assignment problem (Lawler, 1962), is

defined as follows:

Minimize S/j>p#Qt N c ^ (2.1)

subject to € N Xjj — 1 (2.2)

2 , e N *u = 1

Xjj = [0, 1] (2.4)

For a problem of n facilities, the problem is to determine values of n2 variables x̂ , given the cost

coefficient such that (2.1) is minimized. CjJpq is the cost of handling material to be moved

between the machine /', located at position p, and machine j located at position q. The equation

(2.2) ensures that a machine is located only once, and the equation (2.3) requires that only one

machine can be assigned to a particular location. The objective of the QAP is hence minimization of

the material handling cost function only.

However in this form, the amount of storage for the cost matrix C alone will exceed 50/C words for

a modest 15 machine problem. Such a prohibitive memory requirement makes the earlier formulation

by Koopmans & Beckmann (1957) more attractive as far as the use of computers is concerned. As

the computer is absolutely indispensible in an attempt to solve QAP problems of any meaningful

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 6

size, it is proposed that the Koopmans-Beckmann formulation is the subject of the discussion rather

than Lawler's alternative. The Koopmans-Beckmann formulation is:

Wjj is the material handling cost between machines i and j per unit distance, and is referred to

below as the weight, following Francis & White (1974). d^^ is the distance between machine /

and machine j. a(/), the assignment function, gives the present location of machine /'. It can be seen

from (2.5) that the evaluation of the objective function is more involved than that of the earlier

formulation. The memory requirement of the coefficients is reduced from n4 + I n 1 locations to

only lii2 + 2n locations. It can also be deduced that

It should be noted that the original Koopmans-Beckmann formulation also includes a setup cost. This

is to take into account the initial cost of having a facility at a particular location. This setup cost is

usually ignored because, even in the simpler form, the QAP is intractably difficult.

The intractability of the QAP is well known. Tests on optimal procedures show that the QAP can

be solved in "reasonable time" up to a 15 facility problem (Burkard & Shalman, 1978). In fact,

there is no report of optimal solutions for a problem of over 15 facilities. The degree of

intractability of the QAP is summarized in Figure 2.1 (after Christofides, 1977).

Minimize S w ^ d ^

subject to (2.2) — (2.4)

(2.5)

cijpq ~ WfdMM

where a(/) = p

and a(/) = q

(2.6)

MANAGEMENT SCIENCE IMPERIAL COLLEGE

CHAPTER 2 7

D C

X
U i
—J
Q .
S
O
o

4
1 0 - a

10

2
1 0 H

10

10 i

K P S C P T S P G C P QAP

TYPE OF PROBLEM

Empirical Complexity R is defined as follows:

R - A/E (2.7)

A is the size of a problem that can be solved using the best known optimal procedure and E is the

size of the same problem that can be solved by complete enumeration, for the same number of

"evaluations". For one million function evaluations:

KP Knapsack Prob lem .20000/20
SCP Set C o v e r i n g Prob lem 2000/20
TSP T r a v e l l i n g Sa le sman Prob lem 300/10
GCP Graph C o l o u r i n g Problem 80/4
0AP Q u a d r a t i c A s s i g n m e n t Problem 15/10

R
1000
100

30
4

1. 5

F i g u r e 2 .1
C o m p l e x i t y of C o m b i n a t o r i a l Prob lems

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 8

Land (1963) shows that the n facility QAP can be transformed into a TSP for a complete graph of

n(n-1)/2 cities, subject to extra constraints. Hence, a 15 facility problem is equivalent to a 105 city

TSP. Another major difficulty of this type of transformation is that the distance matrix generated is

likely to be non-Euclidean.

Approaches to solving the QAP can be divided into two major groups: optimal procedures and

heuristic procedures. Most of the optimal procedures use the branch and bound method. Gilmore

(1962) and Lawler (1963) use linear assignment approximation in the bound calculations. Edwards

(1977, 1980) extends the procedure further, but no computational results are reported. Christofides

et al (1980), also using a linear assignment approximation, suggest a two stage lower bound

calculation. Land (1963) and Gavett & Plyter (1966) suggest a TSP-like transformation in the bound

calculation. Kaufman & Broeckx (1978) suggest the use of Bender's decomposition, however,

apparently without a great deal of success. Christofides & Gerrard (1976) suggest a dynamic

programming formulation for a specially structured graph.

It is generally recognized that the calculations of the lower bounds as suggested above have not

proved successful (Christofides et al, 1980). These bounds are on average about 5 % from the

optimal solution, a gap far greater than for other combinatorial problems.

2.3.2 Improvement techniques

Heuristic procedures have been developed in response to the recognition of the difficulty in

obtaining an optimal solution to the QAP. Most of them are based on a pairwise exchange

algorithm of some kind, or alternatively use a method which is now called the construction

technique.

The first hill climbing improvement heuristic for the QAP, named CRAFT, was suggested by

Armour & Buffa (1963) and was subsequently expanded by Buffa et al (1964). In essence, CRAFT

is a steepest pairwise interchange algorithm. Starting from a given layout it will consider the cost

or benefit of switching locations of a pair of machines, which is given by the equation:

DTCJa) = 2, (N (wiu — wiv)(ddi)a{u) ~ d*^)

— 2 w u v d M t A a { ^ (2.8)

w and d are the weight and distance matrices respectively.

CRAFT will consider all the possible n{n-1)/2 pairs of interchanges and then select the pair of

highest benefit. Once the interchange is carried out, the whole process is then repeated until no

further improvement is possible. The updating part of the algorithm has an CH/73) complexity. A

three way interchange was also proposed by Buffa et al (1964). The number of possible three way

interchanges is n(n-1)(n-2)/6, and the complexity of the updating part of the algorithm is C^n4).

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 9

Even though three way interchange has resulted in a better final solution, the computing time could

become a serious problem. For a twenty facility problem, the two way interchange algorithm will

require about 5 % of the time needed by the three way one. Los (1978), using fast updating of the

three way interchange, concludes that because of the time and storage requirements, the method is

not applicable to problems of size n greater than twenty-four. The quality of the solution using the

three way interchange is usually only marginally better than those using the pairwise interchange.

However, the combination of the two, using them in tandem, produces even better results.

The main difficulty with CRAFT is that the amount of time required to find the largest possible gain

between each iteration is quite expensive, of the order Oiri3). As the number of iterations required

is (Xn) (Los, 1978), the original pairwise interchange algorithm of CRAFT has a time complexity of

Otn4). For the three way interchange algorithm, the complexity becomes Ofn5). In an effort to

overcome this difficulty, various modifications of CRAFT have been introduced.

Vollman et al (1968) suggest a heuristic to overcome some of the difficulties in using CRAFT.

Instead of calculating the possible benefits of all the interchanges, it concentrates during the first

phase on the two machines which have the highest cost P,(a):

From these two preselected facilities, two lists of the remaining machines are constructed.

Interchanges between the preselected facilities and the ones in the lists, are carried out only if they

lead to a cost reduction. In phase two, all possible interchanges are considered. The difference

between this procedure and CRAFT is that the procedure will exchange two facilites and update the

assignment vector as soon as the interchange is beneficial, whereas CRAFT will only exchange the

pair which give the highest benefit. Only two complete cycles of phase two will be considered.

This heuristic is undoubtedly faster than CRAFT, however there are many points which need further

clarification. Firstly, the question of selection of the constant in the equation (2.10) is left

unanswered. Secondly, there is no adequate explanation of why there are only two iterations during

phase 2. The claim that the heuristic provides solutions which are comparable to those produced by

CRAFT is largely unsubstantiated.

FRAT (Khalil, 1973) can be seen as an attempt to systematically improve the idea suggested in the

previous heuristic. Firstly, only movements over a limiting distance are considered. This limiting

distance is initially set to be the difference between the maximum and the minimum distances

travelled. The limiting value is successively decreased during the iteration process. Secondly, only

limited combinations of all the possible n(n-1)/2 interchanges are considered. The main candidates,

two are suggested by Khalil, are then considered for interchange with all remaining facilities in the

same manner as that of CRAFT. The number of possible interchanges reduces to 2n-4.

P{a) = 2j(N Wjjdtfijaij) ~ K WjjdMa(k)

d^Mk) < a "constant (2.10)

(2.9)

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 10

The Terminal Sampling Procedure (Hitchings, 1973; Hitchings & Cottam, 1976) adopts a slightly

different strategy to that of FRAT. Two facilities are again preselected according to the criterion of

Vollman et al (1968), and the 2n-4 interchanges between these and the remaining facilities are

considered in the same way as those of CRAFT. Once no further improvement can be made on the

basis of exchanging the two primary candidates alone, the full CRAFT procedure is then augmented.

Both approaches claim to provide better final solutions that those provided by CRAFT. These claims

are based on the solutions to the test problems first suggested by Nugent et al (1968). Leaving

aside the issue of time complexity, it is difficult to see, at least from a theoretical point of view,

why FRAT or the Terminal Sampling Procedure should in general provide better solutions as has

been claimed. Both approaches search only small portions of the solution space searched by CRAFT,

and both utilize the same maximum pairwise interchange principle as CRAFT does.

The Terminal Sampling Procedure also backtracks to consider all the tie values. This is equivalent to

having many more starting solutions than those indicated.

S-ZAKY (Abdel Barr & 0 Brien, 1976; Abdel Barr, 1978) adopts a slightly different line of attack.

Unlike CRAFT, which only considers one interchange out of all the possible pairs in every iteration,

S-ZAKY will consider the exchange of the 3 pairs of facilities which provide the highest overall

benefit. By carrying out a multi pairwise interchange, it is hoped that the number of iterations

required will be reduced. However, the overall complexity is still the same order as CRAFT.

Comparison of algorithms of similar speeds of execution made by converting run times on different

computers via the use of constant factors is very unreliable. The speed of a code, as compared to

the speed of an algorithm, depends on the compiler used, the operating system enviroment and

programming style, as well as the computer in use. Only when these main factors are very similar,

can the speeds of the codes be used for useful comparison of algorithms.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 11

P r o b l e m C R A F T T S P S - Z A K Y

(s e e s) (s e e s) (% o f (s e e s) (% o f

C R A F T) C R A F T)

1
2
3

4

5

6

7

8

0 . 7 0 . 7 1 0 0 0 . 6 8 6

0 . 7 0 . 8 1 1 4 0 . 6 8 6

1 . 0 0 . 8 8 0 0 . 9 9 0

1 . 2 1 . 0 8 3 1 . 1 9 2

2 . 6 2 . 2 8 5 2 . 3 8 8

4 . 6 3 . 8 8 3 5 . 0 1 0 9

1 1 . 3 8 . 2 7 3 9 . 8 8 8

5 3 . 9 3 5 . 5 6 6 4 2 . 3 7 8

Time in PRI Me 400 cpu
T h e p r o b l e m s a r e s u g g e s t e d b y N u g e n t et al

T S P - T e r m i n a l S a m p l i n g P r o c e d u r e .

A d o p t e d f r o m A b d e l B a r r (1 9 7 8)

T a b l e 2 . 1

R u n t i m e c o m p a r i s o n o f t h r e e a l g o r i t h m s

Table 2.1 shows a comparison under which these conditions are fulfilled (Abdel Barr, 1978). It compares

the run times used by CRAFT, the Terminal Sampling Procedure and S-ZAKY to solve the eight

problems suggested by Nugent et al (1968). The table tends to confirm the idea that all three are

of the same order of complexity. It also confirms that 'the Terminal Sampling Procedure is the

fastest of the three.

There are many other variations to the same basic idea of pairwise interchanges (Ritzman 1972;

Parker 1976; Burkard & Shatman 1978; Lewis & Block 1980; Liggett 1981). Most of these carry

out a limited number of searches as in the Terminal Sampling Procedure, hence they are usually

faster than CRAFT. The qualities of the solutions, however, are very much more difficult to interpret.

Los (1978) shows a set of recurrent relationships which exist in the updating part of the CRAFT

algorithm. These relationships show that the updating part of the algorithm has the complexity of

CXn2) for a pairwise interchange routine, and of Oiri3) for a three way interchange routine. The

overall complexity of the pairwise interchange algorithm is reduced to OirP], the same as FRAT and

the first phase of the Terminal Sampling Procedure. However Los does not compare the new codes

with other approaches.

Hiliier (1963) and Hillier & Connors (1966) suggest the concept of a Move Desirability Table (MDT).

The MDT of a machine, with respect to a particular layout, is the potential saving in the material

handling cost of making one facility occupy the same location as another. Locations under

consideration are restricted to the ones along the same row or the same column or along the

diagonals. This presupposes that the layout is on a rectangular grid system. In spite of this rather

unusual concept, MDT has proved surprisingly robust in many situations (Ritzman, 1972).

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 12

All the pairwise interchange or improvement techniques described previously are deterministic in

character: given an initial layout, the algorithm will always generate the same answer to a particular

problem. Nugent et al (1968) introduced a sampling scheme which will select at random, an

interchange from all the beneficial pairs. In spite of the increase in the complexity of the algorithm,

the solutions to the test problems do not significantly differ from solutions obtained by deterministic

algorithms. There is also very little theoretical justification that such a sampling scheme would

produce better solutions than comparable deterministic algorithms.

2.3.3 Construction Techniques

All improvement heuristics have one feature in common, they assume the availability of an initial

layout. If there is none, a randomly generated one is often used. Construction techniques, as the

name implies, generate a layout in a systematic attempt to keep the objective, as specified by the

equation (2.5), as low as possible.

Modular Allocation Technique (MAT) (Edwards et al, 1970) is one such algorithm. The underlying

idea of MAT is that two facilities should be placed as close together as possible, so long as there

is no conflict with previous allocations. This is carried out with the help of two vectors generated

by sorting the distances in an ascending order and the weights in a descending order. The

complexity of MAT is Oih2), and hence it can be used to generate a useful starting solution for

large problems.

Lewis & Block (1980) extend the MAT approach further by multiplying both distance and weight

vectors by a function which accounts for the overall movements and distances. The remainder of

the procedure is identical to that of MAT. The complexity is still of the CXri2), though it is expected

to be slower than MAT. Performance of both algorithms is very similar, but there are some

indications that the new procedure has a slight edge in large problems.

Graves & Whinston (1970) suggest a construction approach which attempts to take into account all

the global interactions in a way similar to the branch and bound method. As exact bound

calculations are expensive, they suggest the use of expected values. An assignment will be chosen

in such a way that the expected value of the remaining assignment is minimised. The complexity of

the algorithm, to be called the GW algorithm, is Oiri3). As the algorithm is a one pass heuristic, the

procedure is adequately fast for very large problems. Liggett (1981) extends the procedure slightly

in order to generate more than one final solution. This is usually carried out at the earlier stage of

the heuristic when the expected value of the remaining assignment is very close to the best choice

(0.5% is used).

Parker (1976) suggests a Best Match heuristic which is based on the idea that the facilities which

have higher load movement should be placed towards the centre. The method is slightly revised by

Burkard & Stratmann (1978) who apply the idea to restricted subproblems. Starting from a seed,

facilities are added on in such a way that the objective function is minimised, taking into account

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 13

interaction between assigned facilities only.

2.3.4 Empirical Complexity and Test Problems

One of the major problems in the use of heuristic approaches to the QAP is the complete lack of

any worst case analysis of the published algorithms. Hence, comparison between various heuristics

is based on their performances on artificially constructed problems. The most frequently used test

problems are the eight problems suggested by Nugent et al (1968). The problems range from five

to thirty facilities. The layout assumes a rectangular shape whenever possible. The material

movements or flows between the facilities range from 0-10. These flow patterns are kept roughly

to the same flow dominance (/) figure:

f = 100/72 y/(SUtN w,j - ((2 y e W e)*/rfi)nrfi - 1))/ (2UtMw) (2.11)

Block (1979) derived the theoretical lower and upper limits of the flow dominance. A lower bound

is reached when the flow pattern is of the flowshop type.

flb = 100/7 yj (/T2 - n) (2.12)

The maximum limit is reached when all the flows are in the same direction.

fub = 100/7(/t2 - n +])/ ((n - 1H/72 - 1)) (2.13)

Vollmann & Buffa (1966) suggest that layout problems with flow dominance over 2 0 0 % can

probably be solved by inspection, with results comparable to those achieved by CRAFT. This

guideline is an oversimplification. The effect of the size of the problem on the complexity of the

problem is not of a quadratic order, as indicated by the equation (2.11). Block (1979), in an effort

to overcome some of the shortcomings, defines the Complexity Rating Cf as:

Cf = 100(fub - f)/(fub - f,b) (2.14)

This definition of complexity rating is unsatisfactory and misleading, as it suggests the complexity of

the problem to be of an order less than 0(ri). Results from computational complexity theory and the

failure to achieve optimal solutions for problems with more than fifteen facilities, in spite of the

vastly improved computer speeds of the last decade, firmly indicate that the complexity of the QAP

is far more than that suggested by Block.

In spite of this weakness, flow dominance is still a useful measure, provided that it is used to

compare problems which have the same number of facilities. Attempts to infer that Nugent's

problems have roughly the same degree of difficulty, as they have roughly the same flow

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 14

dominances, are inaccurate.

2.3.5 Comparative Results

Claims that various heuristics provide better solutions than CRAFT must be treated with caution. The

implementational aspects can be very important as was indicated earlier. This is compounded by the

characteristics of the test problems used. Most of the claims are based on the results of Nugent's

test problems which are too small and have fairly uniform flow patterns, as measured by the low

flow dominances. Liggett (1981) points out that for the Nugent's as well as Steinburg's problems, it

does not matter very much what kind of strategy is used in the pairwise exchange procedure, the

final results are of similar quality.

More extensive tests were carried out by Ritzman (1972) and Parker (1976). Ritzman uses a total

of 26 problems, whereas Parker employs 75 problems. Parker varies the flow dominances

considerably. Both conclude that on average, using random starting layouts, CRAFT produces better

solutions than other improvement methods they have tested.

For construction techniques, it is generally agreed that the GW heuristic is better than all the others

tested (Parker, 1976; Liggett, 1981). The GW heuristic also saves considerable computing time

when it is used in tandem with an improvement heuristic as compared with the use of random

starting layouts. Liggett (1981) reports savings ranging from 4 0 % to 1 0 0 % for larger problems.

More substantial savings are reported by Parker (1976).

2.3.6 Human Interactions

Vollmann & Buffa (1966) suggest that problems with flow dominance of over 2 0 0 % can be solved

by inspection, and results comparable to those achieved by CRAFT can be obtained. Scriabin &

Vergin (1975) suggest that the traditional qualitative aids used by industrial engineers would enable

the planner to produce better layouts than computer generated solutions such as those produced by

CRAFT. However, their experiment has been subject to many criticisms (Buffa, 1976; Block, 1977;

Trybus & Hopkins, 1980). One of these is that the flow dominances, around 250%, are high and

hence would favour manual techniques. A more serious charge is that the subjects were given the

results generated by the computer in advance, and hence targets to beat. As there are no records

of the number of attempts each subject made, a fair comparison is difficult. Ironically, the numerical

evaluations were carried out by a computer.

Block (1977) shows that in solving Nugent's problems, the average flow dominance of which is

around 115%, the subjects perform as well as CRAFT up to the 8 department problem. When the

size becomes larger, CRAFT's performances are far superior to those of the subjects. Trybus &

Hopkins (1980) produce similar results when the flow dominance is around 150%. The differences

become smaller as the flow dominance increases to 2 5 0 % or reduces to around 4 0 % .

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 15

From these results, there is little doubt that man alone, without the aid of a computer, would be

unlikely to outperform heuristics, like CRAFT, for large problems, due to the sheer number of

possible solutions as reported by Scriabin & Vergin (1975). However, if we reinterpret the results as

the combined effort of man and machine, there are indications that this might produce a more

useful result than the one generated by the heuristic alone.

2.4 MAXIMAL PLANAR GRAPH

The maximal planar graph (MPG) problem is formulated as an extension of the use of the REL chart

(Muther, 1961, 1962). The MPG is defined as: Given a complete graph G(V, A) with no negative

arc weight c,y, find a planar partial graph with maximum total arc weight (Christofides et al, 1980).

A graph GP(V, Ap) is a partial graph of the graph G(V, A) if Ap is a subset of A. A graph is said

to be planar if it can be drawn in a plane so that its edges intersect only at their ends. A maximal

planar graph is a graph to which an arc cannot be added to without it losing planarity. The MPG

can be formalized as:

Maximize 2 CjjXy (2.15)

subject to Xy = 1 if a,y e Ap

= 0 otherwise (2.16)

GP(V, Ap) is planar. (2.17)

In the use of the REL chart, the relationships are considered to be ordinal. An ordinal scale of

measurement is a ranking scale and hence further manipulations, such as addition, on these

relationships are not appropriate. In order that the MPG could be used in this context, the

relationships must be at least of the interval type. Non-negativity of the arcs is necessary in the

case where the optimal solution is required.

The underlying idea of the MPG can be traced back to the development of the REL chart. However,

the explicit recognition and the use of the MPG model is due to Krejcirik(1968, 1969). Seppanen &

Moore (1970) investigated the underlying structure in some detail. A heuristic was proposed based

on the use of a maximal spanning tree as a starting point (Seppanen & Moore, 1975; Moore,

1976). Arcs are then systematically added until the graph becomes maximal planar. Foulds &

Robinson (1976) suggest a branch and bound scheme to solve the MPG optimally. The major

drawback is that the only bounding procedure enforced is the planarity condition. It is unlikely that

the bounding scheme is effective enough for large problems. Recognizing the computational difficulty

in checking the planarity of a graph, Foulds & Robinson (1978) suggest two construction heuristics

which avoid the planarity testing altogether, based on the idea first suggested by Hopcroft & Tarjan

(1974). By utilizing the property of a maximal planar graph that every face of the graph is

triangular, the graph is built up by constructing only triangular faces. Both heuristics use a

tetrahedron as a starting point. Geometrically, a tetrahedron is made up with three triangles. In the

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 16

S construct, vertices are inserted in the descending order of the sums of weights of the arcs

incidence to the vertices, so that the increase in the total weight is maximized. In the R construct,

a vertex is added to a triangular face if the difference between the highest and second highest

benefits is maximum. Both heuristics have the computational complexity of the same order, CXn2).

Improvement techniques were also suggested by Foulds & Robinsons (1976). They are essentially a

greedy algorithm. The procedures were implemented manually, and depended heavily on the ability

to visualise the intermediate results. There are no suggestions as to the coding aspect of the

algorithms to overcome the topological problem, which must be solved if the techniques are to be

implemented via a computer.

Baybars (1979) formulated the MPG as an integer programming problem. The formulation is,

however, so complex that it is unlikely to lead to a reasonable computational scheme (Christofides

et al, 1980). A branch and bound procedure is suggested by Christofides et al (1980). The bound

is calculated by a Lagrangean relaxation procedure. The average computing time to achieve an

optimal solution for a randomly generated problem of fifteen vertices is about thirty five CDC 7600

seconds.

In addition to the attempt to solve the MPG as formulated by equations (2.15-2.17), there are other

published heuristics for solving the MPG with additional constraints. These usually include the space

and shape requirements. The heuristics are primarily construction procedures, with additional ad hoc

rules for handling the extra constraints. They are aimed primarily at achieving sensible solutions

quickly rather than attempting to optimise the results as such (Muther & McPhearson, 1970; Moore,

1973). A survey (Moore, 1977) of the usage of these heuristics suggests that they are primarily

used for scoring and providing alternative layouts. Even then, there were criticisms expressing

dissatisfaction with the quality of the generated solutions.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

3 Ari Interactive Approach to the QAP

3.1 INTRODUCTION

There are two major features of the QAP which are not treated explicitly by the approaches

reviewed in the previous chapter: namely, the sparsity of problems, and the duplication of machines.

These features are common in most real life problems: the material flow to and from a particular

machine is restricted to a small subset of the other machines. It is also common to find several

centre lathes or vertical milling machines in the same shop. These practical aspects indicate that a

partitioning approach to the QAP may be beneficial. This chapter provides an account of how an

initial layout of the QAP may be generated effectively by the use of a partitioning algorithm.

The improvement algorithm used in this chapter is CRAFT, which is the most general pairwise

exchange algorithm, with the updating procedure suggested by Los (1978). This combination has

proved to be sufficiently fast for experimental purposes: the 20 vertex problem suggested by Nugent

et a/ (1968) was solved, on average, in less than one second on a CDC Cyber 174.

3.2 SOME THEORETICAL CONSIDERATIONS

Pairwise exchange heuristics have empirical complexities of CXn3) or more. Hence, a partition into

smaller subproblems might be anticipated to lead to a substantial saving in the computing time

required to solve a problem. It should be noted that such a saving could only be achieved without

sacrificing the quality of the final solution if the problem could be partitioned into groups with few

material movements between them. An algorithm that may be used for partitioning the problem is

the R0C2 algorithm, which is discussed in detail in chapter 6. The R0C2 algorithm is an interactive

clustering method for grouping machines and associated components, which can be extended to

solve similar problems where group membership is required. It also contains features for dealing

with the duplication of machines, and for exploiting the sparsity of a problem. Consequently, it can

be used to investigate the partitioning of the QAP.

3.3 AN EXPERIMENT IN INTERACTIVE LAYOUT USING THE R0C2 ALGORITHM

The objective of the experiment is to determine whether a sparse QAP that has underlying group

structure can be solved more efficiently with the use of partitioning or without. To construct a test

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 18

problem, a weight matrix is generated from the machine-component matrix first used by Burbidge

(1973). This is illustrated in Figure 6.3.1 (page 72): the numbers between brackets represent the

row numbers; the numbers next to the row numbers are the machine numbers. The weight (as

defined on page 6) between any two machines is represented by the number of components which

visit both of them; for instance, the weight between machines 1 and 2 is two, comprising the

components in locations 37 and 42. A partitioning solution to the problem of Figure 6.3.1 using the

ROC2 algorithm is represented in Figure 6.3.4 (page 75). The solution is achieved interactively and

is based on the assumption that duplication of some machines is possible. In this chapter, the

emphasis is on the grouping of machines and hence adjacency of rows is of primary interest.

It can be seen that machines in rows 1 to 4 of Figure 6.3.4 form a distinct group and are

independent of the rest, since all the machines required for the making of the components in

locations 1 to 7 can be found within this group. In fact only component 9 (location 29) requires

machining in two groups (as represented by an asterisk). A weight value of 10 units was arbitrarily

assigned to the inter-group movement between machine 5 in row 13 and machine 11 in row 18,

which is considerably higher than the weight value for an intra-group movement. A higher value is

chosen for two reasons: firstly to reflect an additional cost associated with inter-group movement,

as is likely in practice; and secondly to provide an additional incentive for the two machines, and

their associated groups, to be located near each other.

For identification purposes in this chapter, some of the duplicated machines in Figure 6.3.4 were

renumbered, since each machine has a different pattern of material movements. Machines 6 in rows

8 and 17 were renumbered as machines 17 and 18 respectively. Similarly, machines 8 in rows 9,

16 and 19 were called 19, 20 and 21 respectively. The four machine groups in Figure 6.3.4 can

now be identified as follows: machines 10, 7, 6 and 8; machines 9, 2, 16, 17, 19, 14, 1, and 3;

machines 5, 4, 15, 20 and 18; machines 11, 21, 13 and 12.

Three alternative configurations for the layouts are used, and are illustrated in Figures 3.1-3.3. (The

number at the top right hand corner of each square is the location number. The number in the

centre of the square is the machine that has been assigned to that location. The dotted lines

indicate group boundaries). The first configuration, shown in Figure 3.1.1, consists of 24 locations

arranged in 4 rows-. Three dummy machines are required, machines 22, 23 and 24; there is no

flow to or from these machines. This configuration allows all machine groups to be situated in a

blocklike fashion. It can be seen as an extension of the second configuration, the 16 location layout,

shown in Figure 3.2, which represents the original problem in which no duplication of machines is

allowed. The third configuration, a 21 location layout shown in Figure 3.3, is used to investigate

the potential benefit of partitioning when a blocklike layout cannot be readily achieved. A distance

matrix for each of the three configurations was generated by calculating the rectilinear distance

between any pair of locations, as suggested by Nugent et al (1968). For example, in Figure 3.1.1,

the distance between locations 1 and 4 is three, and the distance between locations 1 and 10 is

four. Similarly, the distance between locations 1 and 16 is five. The distance and weight matrices

of the 24 location problem are shown in Appendix A (page 119).

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 19

To construct the initial layout, the partitions generated by the ROC2 algorithm (Figure 6.3.4) are

used. There are four groups, two of which are independent. The initial layout is then constructed

manually. The first stage of the construction is to consider the relative spatial arrangement of the

groups. It is preferable to assign larger groups early on, as it becomes progressively more difficult

to assign them later. For example, the two larger groups in the lower half of Figure 3.1.1 were

assigned first. The second stage is to decide on the layout of machines within each group, taking

into account any external flow required. The initial layouts of the 24 and 21 location problems

constructed manually in this way are shown in Figures 3.1.1 and 3.3.1 respectively. These initial

layouts are then solved in two steps. Firstly, each group of machines within the same boundary

(shown as a dotted line) is solved as a separate sub-problem using CRAFT. In the second step, the

solutions to the sub-problems are combined to provide a new starting layout for the whole problem

and this is then solved, again using CRAFT, as a single problem.

Ten random layouts are also generated for each configuration for comparison. These are used as

starting layouts and are solved using CRAFT without any reference to any group membership.

The result of using the manual layout of Figure 3.1.1 as the starting condition for the 24 location

configuration is shown in Figure 3.1.2 with a total material handling cost (as defined by equation

2.5) of 238. The execution time was 0.41 seconds. (The same solution is achieved if the first step

in the solution method described previously is ignored, at the expense of a 2 0 % increase in the

computational time.) This result compares favourably with the results obtained using random starting

layouts; the best of these has a total material handling cost of 240, and the average cost is

248.5. The average execution time in the random layout cases is 1.46 seconds, the minimum value

being 1.1 seconds. The difference between these results indicates that CRAFT cannot be relied on

to detect the underlying structure of the problem. The results for the 21 location configurations are

slightly more encouraging as far as the pairwise exchange procedure is concerned: out of the ten

random starting conditions CRAFT produces two solutions equal to the ones achieved by the use of

the manual layout starting plan, with a cost of 244. However, the execution times required using

the random starting layouts are about three to four times that required using the manual solution.

The solutions and execution times of the 21 and 24 location configurations are shown in Tables 3.1

and 3.2. The cost of the best solution for the 16 location configuration using random starting

layouts is 266, which is more than 12% higher than the cost of the best solution obtained in the

24 location configuration, demonstrating the potential savings to be made in material handling costs

if duplication of machines is allowed.

3.4 CONCLUSIONS

The results from this short experiment seem to indicate that in the case where an underlying group

pattern exists, pairwise exchange routines such as CRAFT very often fail to detect the underlying

relationships, and human interactions are useful in such cases. The benefits of human interaction are

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 20

twofold; firstly, superior final layouts are usually obtained, and aecondty, the computing time required

is considerably reduced. This is not to say that human performance is generally better than that of

heuristics as claimed by some authors. Both man and heuristics perform different but complementary

roles, and the resutts obtained using both should be superior to those achieved by one or the other

alone. It is also notable that the benefit of obtaining prior solutions to sub-problems is not as great

in this example as was anticipated. This is probably due in part to the fact that in the problem

considered here the manual solutions sre dose to the local optima, and hence the iteration times

are artificially lower than in a general case. The effect of this would be accentuated by the fact

that CRAFT is relatively more expensive in the setting up stage than in the iteration stage.

fi *

•13
i

2 1
* i

21 !

!3

i 10
i

4 •

7 i

5

2 3
6

2 4

'7
i '
i 12 «

6 S
11 :

i

•9

i 6
i

10 !

8 i
i11

; u i
i

12 ;

1 i
i

13

1 2 0 •

14

5
15

4 i

s i —

i 19 i

17

9
18 • !

2 i
1

so
: 18 •

20 »

1 5 i

21

2 2

|22

! 3

23

16

2i ;

1 7 ;

Figure 3.1.1

rr

113
i

2 !
21 :

i
i 10
»

T 1

7 j

5

2 3
6
2 4

'7
t'
\ 12
*

e :
11 : i

is
1 6 1 w
1

10 ;

8 !
J

s r " 1

i 1 9 t

12 :
1 s i

13

i 2 0 •

14

5 4 :

Si
•14. «

17
2

15
9 ;

SB

i 18 • 1 - v

20

1 5 ;

21

2 2
t22

3

23

1.7

24 J

16 ;

Figure 3.1
Layouts tor the 24 location configuration

MANAGEMENT SCIENCE IMPERIAL COLLEGE

21

1 2 3 4

5 6 7 6

5 10 n 12

13 14 15 16

Figure 3.2
The plan for the 16 location configuration

i 1 2)
I 1

. «

•2
? 7 »

3
6 N o

5 I
8 j

•6
| 14
i

7 i
1 |

•

: 21 i

s :
11 i <

JO
: 5 •

n :

4 : i

?2
: 1 9 <

13
9

14 |
2 ;

!15 ;

h 3 j

re
I 18

17
2 0

i s :

15 i

>19

! 3

20
15

2! I
17 i

5 ;
i 1 2 j • *

•

i2
i 7 «
A . —-- - - -

3
5

4
10

5 :
8 j

•6
1.19
t

7 i
1 i

I
i 1

: 21
i

9 !
11 i

»

JO

: 5 •

11 :
4 :

i

?2
: 1 4
i

13
2

U r v 1

9 i

•is •

j 13 j I 18

17 .

2 0

is ;
1 5 i

>19

: 3

20
17

21 !

16 ;

Figure 3.3
Layouts for the 21 location configuration

-CHAPTER 3 2 2

P R O B L E M F I N A L N O . O F E X E C T I M E

I D E N . C O S T I T E R A T I O N (S) (C Y B E R 1 7 4 S E C)

m a n u a l 2 3 8 0 0 4 1 2 (w i t h s u b p r o b l e m s)

m a n u a l 2 3 8 3 0 5 2 1 (w i t h o u t s u b p r o b l e m s)

1 2 6 2 1 5 1 4 5 0

2 2 4 0 1 7 1 5 9 5

3 2 4 9 1 5 1 4 8 0

4 2 4 3 1 7 1 6 5 4

5 2 5 3 1 1 1 1 3 7

6 2 4 3 1 7 1 6 0 3

7 2 4 4 1 5 1 4 4 3

8 2 4 9 1 6 1 5 2 3

9 2 5 9 1 2 1 2 2 8

1 0 2 4 3 1 6 1 5 0 9

T a b l e 3 . 1

T h e s o l u t i o n s t o t h e 2 4 l o c a t i o n c o n f i g u r a t i o n

P R O B L E M I N I T I A L L A Y O U T S

I D E N T .

1 2 1 4 1 3 3 .9 4 1 8 2 0 1 5 1 6 7 5

1 0 8 6 1 2 2 2 1 1 2 1 7 2 3 2 4 1 1 1 9

2 1 8 3 7 1 2 2 2 8 1 3 2 0 9 2 3 1 1 2 4

2 1 1 6 6 4 1 2 1 4 1 9 1 0 1 7 5 1 5

3 2 3 8 2 1 1 0 1 8 2 4 9 1 5 4 3 2 2 2

6 1 6 1 3 1 2 1 7 1 4 7 5 1 9 1 1 1 2 0

4 8 2 0 4 9 1 7 3 2 2 1 6 2 4 1 2 1 1 5

1 0 1 8 2 3 1 1 1 9 7 1 4 1 3 2 1 2 5 6

5 1 3 1 6 2 1 1 4 2 2 2 1 5 5 1 0 8 9 2 4

3 1 9 1 8 7 1 1 1 2 3 1 2 4 1 7 6 2 0

6 9 1 2 7 1 6 6 2 2 3 1 4 1 8 2 3 1 1 2 0

1 3 8 1 5 2 1 1 2 4 1 9 1 0 4 1 7 2 5

7 6 2 1 2 0 9 1 9 1 2 4 1 6 14 1 1 5 1 7

2 3 1 8 2 2 2 4 1 3 8 1 5 1 3 1 0 2 7

8 1 8 6 2 2 0 2 4 9 2 2 8 1 3 17 2 1 5

1 9 7 1 2 2 3 1 6 1 1 5 3 4 1 0 1 4 1 1

9 1 6 1 2 • 9 2 0 1 3 5 1 7 1 9 8 1 5 2 1 6

1 2 2 4 2 2 7 2 3 1 8 1 4 4 1 1 3 1 0

1 0 2 3 14- 1 5 1 8 9 1 9 2 2 1 6 6 13 7 4

1 7 2 1 1 1 2 1 1 0 5 2 0 2 4 3 1 2 8

T a b l e 3 . 2

R a n d o m s t a r t i n g l a y o u t s f o r t h e 2 4 l o c a t i o n c o n f i g u r a t i o n

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 2 3

P R O B L E M F I N A L N O . O F E X E C . . T I M E

I D E N . C O S T I T E R A T I O N (S) (C Y B E R 1 7 4 S E C)

m a n u a l 2 4 4 2 0 . . 4 0 0 (w i t h s u b p r o b l e m s)

m a n u a l 2 4 4 3 0 , . 3 7 2 (w i t h o u t s u b p r o b l e m s)

1 2 5 2 1 2 0 . . 9 2 9

2 2 5 9 1 4 1 , . 0 2 7

3 2 5 2 1 3 0 . . 9 7 7

4 2 4 4 1 3 0 , . 9 8 0

5 2 4 4 1 4 1 . . 0 0 8

6 2 4 9 1 4 1 , . 0 2 9

7 2 6 7 1 7 1, . 2 0 2

8 2 5 2 1 0 0 . 7 8 4

9 2 4 8 1 3 0 . 9 7 6

1 0 2 4 9 1 2 0 . 8 9 7

T a b l e 3 . 3

T h e s o l u t i o n s t o t h e 2 1 l o c a t i o n c o n f i g u r a t i o n

P R O B L E M I N I T I A L L A Y O U T S

I D E N T .

1 2 1 3 1 1 3 8 4 1 6 1 8 1 2 1 7 1 4

6 5 9 7 1 2 0 1 9 1 0 1 5 2 1

2 7 6 1 6 2 0 1 4 1 1 1 1 8 1 3 9 5

1 9 1 0 1 5 2 1 1 2 1 7 2 4 3 8

3 3 7 9 4 1 5 1 2 1 3 1 4 2 1 6 1 6

1 0 1 9 5 1 2 0 8 1 7 1 1 1 8 2

4 1 3 8 1 4 1 8 2 1 6 1 5 1 6 1 7 1 2 1 9

3 1 1 0 9 1 1 2 4 7 5 2 0

5 6 8 1 3 1 1 2 0 1 6 1 1 2 1 5 1 0 3

2 1 1 8 1 4 7 4 2 1 9 9 1 7 5

6 1 9 1 7 3 1 2 1 8 2 1 1 0 4 6 1 5

1 1 8 1 6 5 2 1 9 7 1 4 1 3 2 0

7 1 9 1 1 1 5 1 2 1 8 7 1 3 1 5 6 2 1

2 0 1 4 1 6 1 7 2 8 4 -9 1 0 3

8 2 1 9 1 2 1 5 8 6 1 0 4 7 1 3 1 9

2 1 8 1 6 2 0 5 3 1 1 1 1 4 1 7

9 9 1 2 1 6 1 1 1 0 2 1 3 1 7 5 8 1 8

1 9 2 1 7 1 1 5 3 6 2 0 1 4 4

1 0 2 0 9 1 6 1 1 4 1 5 3 2 1 3 5 6

1 1 2 1 0 1 7 2 1 1 4 7 1 8 1 9 8

T a b l e 3 . 4

R a n d o m s t a r t i n g l a y o u t s f o r t h e 2 1 l o c a t i o n c o n f i g u r a t i o n

MANAGEMENT SCIENCE IMPERIAL COLLEGE

4 Maximal Planar Graph Heuristics

4.1 INTRODUCTION

Heuristic approaches to the MPG problem, like their counterparts for the QAP, can be divided into

two classes; namely, construction and improvement heuristics. Whereas the construction procedures

of the QAP can often be disregarded, this is generally not an option in the case of the MPG

problem. As the graph required has to be both planar and maximal, a certain procedure must be

adopted to ensure that these two constraints are met. During the improvement phase, any exchange

of the arcs or vertices must also ensure that the constraints are not violated. It is relatively simple

to ensure that the planar and maximal conditions are maintained if the graph can be visualized on a

sheet of paper. To implement the scheme using a computer, a way must be found to store the

topological information of the graph. As far as can be ascertained, there is no previously published

heuristic implementation of the MPG problem using a computer.

4.1.1 Some Properties of a Maximal Planar Graph

It can be shown that for all maximal planar graphs if v, a and f are the numbers of the vertices,

arcs and faces respectively, then:

A face is the region enclosed by arcs and there are no arcs or vertices in its interior.

Consider the maximal planar graph in Figure 4.1. There are four vertices and hence there should be

six arcs and four faces. The number of arcs can be easily verified. The four faces are ABD, ACD,

BCD and ABC. ABC refers to the outer triangular face, which surrounds the tetrahedron. The

triangularity of the faces is also confirmed. Hence, it can be concluded that the graph in Figure 4.1

is a maximal planar graph.

In a computer implementation, these properties, represented by equations (4.1) to (4.3), can be used

to ensure that the graph is maximal and planar.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

a = 3(v-2)

f = 2(v-2)

All faces are triangular.

(4.1)

(4.2)

(4.3)

-CHAPTER 3 25

4.1.2 Design and implementation Considerations

The speed and storage requirements of a computer program often require a careful trade-off. The

approach suggested by Seppanen & Moore (1970) requires a comparatively small amount of

topological data. The likely penalty is an excessive computational requirement. If a lot of redundant

information is kept, it would result in unacceptable storage requirements for larger problems.

Apart from classifying heuristics according to purpose, as described earlier, heuristics for the MPG

problem can also be classified by strategy. The first group relies on the use of a planarity testing

procedure and hence only adjacency of nodes is required. This is generally used by optimal

procedures. Seppanen & Moore (1970) favour such an approach. Alternatively, by keeping extra

information regarding the arcs and the faces, the planarity testing can be disregarded. One such

approach was suggested by Hopcroft & Tarjan (1974), in a slightly different context, and adopted

for the MPG problem by Foulds & Robinson (1978). However Foulds & Robinson implement the

heuristic manually and do not attempt to work out the data required for a computer implemented

heuristic.

4.2 PROGRAMMING LANGUAGE SELECTION AND DATA STRUCTURES

In order that the orientation of the graph can be easily recognised by a computer implementation,

the following data fields are needed:

Node information: all the adjacent nodes.

Arc information: two end nodes, adjacent faces.

Face information: the three vertices.

An adjacent face of an arc is a face which has the arc as part of its boundary. There are two

adjacent faces for every arc.

These requirements suggest that the use of a language with data structuring facilities would be an

advantage, for it is usually the case that most of the data fields of a particular group of information

are accessed together. Pascal is one such language. It also has a facility to define data types, and

as such it is ideally suited for this purpose. We can define nodes, arcs and faces in a way similar

to their representations on a sheet of paper. These facilities allow a program to be developed that

is analogous to the manual implementation on a sheet of paper. For reasons of computational

efficiency, extra fields of data are added and the following data types used:

ANodeTable = PACKED RECORD

CASE active: BOOLEAN OF

TRUE: (pointer to insertion information);

FALSE: (valence; pointer to the node list);

END;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

26

A

B C

Figure 4.1
A maximal pianar graph

D

B

Figure 4.2
An alternative realisation of figure 4.1

-CHAPTER 3 27

NodeList = PACKED RECORD

pointer to the next node in the list;

pointer to the arc in the arc list {ArclnUse};

END;

ArclnUse = PACKED RECORD

the two end nodes;

pointer to the two adjacent faces;

pointer to the next arc;

END;

Faces = PACKED RECORD

the three corner nodes;

pointer to the next faces;

END;

ANodeTable is used for monitoring the availability of a node for a possible assignment. If a node is

not assigned, it is classified as active, and there is a pointer to some further information regarding

probable assignments and associated benefits. The calculation of the probable assignments depends

upon the construction heuristic used. When a node is assigned, it is classified as nonactive.

Information stored in this case consists of the number of connecting nodes, or valence, the pointer

to the next node in the list, and the pointer to the arc list. The pointer to the arc list (ArclnUse)

provides a convenient access to the arc information, and also ensures that the arc data fields are

stored only once. As will be seen, a major part of the proposed improvement procedure involves

.arc-oriented operations. Data fields in the arc list (ArclnUse) are aimed at facilitating an efficient

implementation of this procedure. The data fields consist of the two end nodes, and the pointers to

the two adjacent faces, as well as to the next arc. Similarly, the data fields of a face are aimed at

facilitating efficient implementations of construction heuristics.

4.3 CONSTRUCTION HEURISTICS

The strategy adopted here for the construction of a maximal planar graph is of the second kind,

namely the exclusion of a planarity test. The required graph is constructed by building up from a

smaller subgraph, ensuring that the subgraph is maximal and planar at all times. Thus the expensive

overhead of the planarity test can be avoided.

The first stage of the construction heuristics is to build an initial planar subgraph. As three vertices

are needed to generate the first pair of faces, it is possible to start with a three vertex

configuration. In fact a four vertex configuration, a tetrahedron, is used in the hope that a certain

initial global search for these four vertices might prove profitable. There are many strategies that

can be adopted to find the initial tetrahedron. Three have been selected; the four highest weight

vertices (HW), the heaviest tetrahedron (HT), and randomly generated vertices (RD). The HW

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 28

strategy has a time complexity of 0(n), and the HT strategy has an CXn4) complexity. The

complexity of the RD heuristic is not directly dependent on the size of the problem.

Insertions of the remaining nodes are carried out one by one. Each time a node is inserted into a

face, by joining that node to the three corners of the face, that face is removed from the face list

and three new ones are generated. By this device, the subgraph always maintains its maximal and

planar properties.

Three strategies are adopted for the insertion procedure: the weight order (WO) strategy, the

highest gain (HG) strategy, and the highest shadow cost (HC) strategy. For the WO strategy, all the

nodes are sorted into the descending order of their weights (the weight of a node is defined as the

sum of the weights of all the arcs connecting that node to the other nodes). The nodes are then

inserted successively in that order into whichever face yields the highest benefit. In the HG strategy,

a node is inserted into a face when its insertion maximizes the increase in the total weight of the

subgraph. In the HC strategy, the node selected is the node with the largest difference between the

benefits resulting from its two best insertions. The node is then inserted to the face that provides

the most benefit.

Six combinations of the three starting tetrahedron strategies and the last two insertion strategies are

used. 'HTHG' is used to signify the heuristic that uses the heaviest tretrahedron (HT) as the starting

point, and the highest gain (HG) as the insertion strategy. In section 4.6.2, it will be shown that

the weight order (WO) insertion strategy is too restrictive and will not provide useful results. It is

used, however, in conjunction with the highest weight (HW) strategy as an implementation of the

'S ' heuristic, suggested by Foulds & Robinson (1978). They also suggest the 'R' heuristic which is

not implemented here, as the starting tetrahedron used by the heuristic is selected on the basis that

it could be implemented efficiently by hand. There seems to be no sufficient justification for the

restriction from the computational point of view alone.

As the insertions strategy are of Oini2) complexity, the overall complexity of the heuristics starting

with the heaviest tetrahedron (HT) is CXrr4). The remaining heuristics are of CXn2) complexity. It

should be noted that the 'R' heuristic is of complexity CXrfi).

4.4 IMPROVEMENT HEURISTICS

An improvement heuristic in the MPG problem must ensure that equations (4.1) to (4.3) are

satisfied at all times. The problem is exacerbated by the fact that the graph can be realized in more

than one form. Graphs in Figures 4.1 and 4.2 are identical as far as the faces, edges, nodes, and

their adjacencies are concerned. In fact, they are two of the four identical graphs which can be

realized from this very simple case. To imply that D is inside the triangle ABC, as seems to be the

case in Figure 4.1, is not meaningful or obvious if Figure 4.2 is referred to. The technique to get

around this topological uncertainty will be discussed later.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 29

4.4.1 Arc Oriented Operations

As with the construction heuristic, the improvement heuristic can only be carried out efficiently if it

does not entail planarity testing. This requirement tends to restrict the number of arcs or nodes

considered for interchange during each stage. If each stage consists of removing one arc and

inserting a replacement arc, it is possible to keep track of the topology of the graph without

requiring excessive computing time.

An exception to the application of the pairwise exchange of arcs occurs when one or more of the

nodes have minimum valence. The minimum valence is a direct consequence of the triangularity

property of the face. For a graph with more than three vertices, the minimum valence is three. In

the case of a node having minimum valence, other strategies (discussed later) must be applied.

4.5 THE DESIGN OF THE IMPROVEMENT HEURISTICS

In considering a pairwise arc interchange improvement procedure, the topological nature of the graph

must be taken into account. When an arc is picked for consideration, it can be classified into three

categories, according to the topology of the arc. Firstly A, one or both of the end nodes have the

minimum valence. Pairwise exchange of the arcs is not applicable in such cases. Secondly B, no

end nodes have the minimum valence and the third vertices of the adjacent faces of the arc are not

connected. A possible exchange is between the arc selected and the arc joining the third vertex

pair. Figure 4.3 shows a part of a maximal planar graph, from which nonessential details have been

removed. An arc which is classified in this second category (B) is, for example, CD. The adjacent

faces of the arc are bCD and BCD. B and b are the third vertices of the faces BCD and bCD with

respect to the arc CD, and the vertices are not connected. If arc bB has higher weight than arc

CD, the interchange between them would lead to a higher overall weight of the graph. The faces

bCD and BCD would be replaced by the faces bBC and bBD. The adjacent faces of the arcs bC,

bD, BC and BD would require updating.

Arcs in the third category C, are the ones in which neither of the end vertices have the minimum

valence, and the third vertices of the adjacent faces are connected. An example of such an arc is

Aa in Figure 4.3. The adjacent faces of Aa are F1 and F2. The third vertex pair is connected. In

such a case, there are three possible options. However, all of these options are based on the

assumption that the third vertex pair of the original third vertex pair CD, namely Bb is not

connected. This assumption can be proved to be justified in all cases.

Start with the fact that the third vertex pair, namely C and D, of arc Aa are connected; so are AC

and AD. ACD is, then, a closed circuit. One of the faces adjacent to arc CD must lie on one side

of this circuit, and the other is on the opposite side. B and b must lie on the opposite side of the

MANAGEMENT SCIENCE IMPERIAL COLLEGE

30

A

B

Figure 4.3
Part of a maximal planar graph

-CHAPTER 3 31

circuit ACD and hence cannot be connected, because the only way that the two can be joined

together is to have an arc drawn across this closed circuit, thus violating the planarity constraint.

The first possible exchange in category C of Aa is with bB. The face changes involved in this

operation are faces bCD, BCD, aAc and aAD removed; faces bBC, bBD, aCD and ACD inserted. The

exchange was first suggested by Foulds & Robinson (1978). The result of the exchange is illustrated

in Figure 4.4. However, to avoid unnecessary operations, this process is implemented as two

exchanges of arcs in category B. The first exchange involves replacing CD by bB. The second

involves replacing Aa by CD. As these exchanges can be carried out very quickly, the two stage

implementation provides an acceptable alternative.

The second possible exchange of arc Aa is with bA. This can be visualized with reference to

Figure 4.3. Firstly, Aa is removed, and then faces F4-F7 are rotated 180 degrees, about CoD.

Insert arc Ab. The result of this exchange is shown in Figure 4.5. The third possible exchange of

Aa, can be illustrated with the help of Figures 4.6-4.7. Notice the changes in the positions of nodes

a, A, b and B from the previous set of figures, (the reason for which will become apparent later).

In this case, arc Aa is to be replaced by Ab. This can be visualized as having Aa removed, then

faces F4-F8 are rotated 180 degrees about arc CD, such that the faces F4-F8 are inside the closed

circuit CbD. Insert arc Ab.

In both the second and third kinds of exchange of arc Aa in category C, to be refered to as Long

Switch, we require the topological knowledge that node b and faces F3-F7 are inside the closed

circuits ACD and aCD, as shown in Figure 4.3; or node B and faces F4-.F8 are inside the closed

circuits ACD and aCD, as shown in Figure 4.6. As discussed earlier, the meaning of the word inside

is only in reference to a certain realization of the graph, and there can be many realisations. Since

not every combination of the vertices a, A, b and B will satisfy the constraints in equations (4.1) to

(4.3), (eg AB and ab are not acceptable), the orientation problem must be overcome or

circumvented.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

32

A

B

Figure 4.4
Figure 4.3 after a C arc exchange

33

A

Figure 4.5
Figure 4.3 after another C arc exchange

34

a

b

Figure 4.6
An alternative labelling scheme for figure 4.3

35

a

b

Figure 4.7
Figure 4.6 after a C arc exchange

36

Figure 4.8
A solution to Fould &. Robinson's 10 vertex problem

-CHAPTER 3 37

This orientation problem can be avoided by adopting the labeling and transformation schemes,

suggested in the following Long Switch algorithm:

(Given an arc which is in category C}

(Labelling phase)

Label the third vertex pair of the given arc as C and D;

Pick the third node from one of the faces adjacent to CD,

label this node b;

Label the third node from the other adjacent face of CD as 6;

Using C (or D) as the pivoting point and bC (or bp} as datum;

REPEAT

Locate the next node adjacent to C (or p) by moving in

the opposite direction to the one towards CB (or P5J;

UNTIL the located node is one end of the given arc;

Label that found node a, and the other end node as A;

Label faces aAC, aAD and bCD as F1, F2 and F3 respectively;

(End of labelling phase)

(Transformation Phase)

Remove arc Aa and associated information;

Insert arc Ab and associated information;

Replace vertices in face F1 by A, b and C;

Replace vertices in face F2 by A, b and P;

Replace vertices in face F3 by a, C and P;

Replace pointer to face F"\ of arc aC by pointer to F3;

Replace pointer to face F2 of arc aP by pointer to F3;

Replace pointer to face F3 of arc bC by pointer to F1;

Replace pointer to face F3 of arc bD by pointer to F2;

(End of the transformation phase)

To illustrate the use of the Long Switch algorithm, consider the graph in Figure 4.3. In this case,

the arc Aa is chosen for examination. At this stage it is neither possible nor neccesary to state

which end of the arc is node A and which is node a. The third vertex pair of arc Aa are nodes C

and P, which are connected. The third vertex pair of arc CP are B and b. Assume that the node

selected is inside the circuits ACD and aCD, and hence labelled b as shown. The other vertex of

the pair is then labelled B. Using bC as the reference line and C as the pivoting point, locate the

next node, node o, by moving in the opposite direction to the one towards BC. Repeat the process

again, this time the node found is one end of the given arc. The node is then labelled a. The other

end of the arc is labelled A. The exchange is carried out, if so desired, by the transformation

suggested in the algorithm. The result can easily be verified by inspection of the graph in

Figure 4.5.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 38

Figure 4.6 represents the case when the third node of the face adjacent to arc CD is not inside the

faces ACD or aCD. It can be seen that by adopting the same labelling scheme, the transformation

phase will also provide the correct outcome. Figure 4.7 can be used to verify the result. Note that

faces F4-F8 and some of the arcs are not directly involved with the transformation process. They

are included in order to indicate the orientations of the various components of the graph before and

after the transformation.

It should be emphasised that arc exchanges involving the two types of the Long Switch are not

mutually exclusive; it is possible to consider exchange of either type. Hence, for an arc in category

C, there are three possible candidates for exchange, and there is only one candidate for the arc in

category B.

The complete arc exchange procedure can be summarised as follows:

IF the third vertex pair of the selected arc not connected

THEN

{category B}

IF type B switch beneficial

THEN exchange arcs of type B;

{ENDIF beneficial}

ELSE

{category C}

select appropriate swithcing type;

CASE

First type: exchange category B twice;

Second and third types: LongSwitch algorithm;

END CASE;

{ENDIF not connected}

{END of the algorithm}

This procedure can be more efficiently implemented than the procedure suggested by Foulds &

Robinson, as well as being more comprehensive: the Foulds & Robinson procedure does not include

the Long Switch type of exchanges. The first type of the category C exchange is also inefficiently

carried out, involving the search for cliques of size four.

In the case mentioned earlier where pairwise arc exchange is not possible due to the triangularity

constraint, the improvement procedure is a node oriented operation. This is carried out by

considering the possible benefit of moving a node of minimum valence and its associated arcs from

their present location to another face. This process is parallel to the one carried out during the

construction phase. Implementation of this procedure is summarised as follows:

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 39

WHILE the NodeTable is not exhausted DO

BEGIN

IF valence of the node = 3

THEN

BEGIN

find the best new location if removed;

IF beneficial THEN switch to new location;

ENDIF;

move to the next node in the table;

ENDWHILE;

4.6 IMPLEMENTATION AND COMPARISONS OF THE HEURISTICS

All the heuristics and supporting procedures are written in Pascal. It was decided that, in order to

overcome the usual criticisms levelled against tests of heuristics of comparable complexity, the

heuristics would be loaded together and executed immediately one after the other, hence reducing

the influence of the operating conditions on the final results. The entire program consists of

approximately 1500 lines of source code. The compiled code requires less than 8K words for 30

vertex problems and less than 12/C words for 100 vertex problems when run on a CDC Cyber 174

using the Pascal 6000 compiler with runtime checking suppressed. The compactness of the code

suggests many possible elaborations. Firstly, it can be made to run faster either by having more

data fields in the packed format, or by using the data in the normal mode, one word per field, in

place of the packed version currently implemented, without running into storage problems for

relatively large classes of problems. Secondly, using the present storage scheme, the program can

handle problems with 300 or 4 0 0 vertices without any practical difficulty. It is estimated that the

300 vertex problem executed by an Oiri1) heuristic would require approximately 200 Cyber 174

seconds. Finally, if so desired, further data compaction would allow problems of much larger size,

perhaps 800 vertices, to be solved at the expense of a higher runtime overhead. It is interesting to

note that the program produces a solution to the Foulds & Robinson 10 vertex problem with a total

weight of 1103 (Figure 4.8). This result is higher than the optimum of 1096 suggested in their

paper.

4.6.1 Design of the experiment

The main aims of the experiment are to assess the relative merits, the comparative speeds of

execution and the effects of the problem size on various strategies. To achieve these objectives,

eight classes of problems, ranging from 10 to 100 vertices, are used. In each class, five random

symmetrical and completed graphs are generated. The arc costs are limited to the range of one to

one hundred. Ail the forty test problems are solved by ail the OirP) heuristics. As the expected

runtimes of the CXn4) heuristics for the larger problems become excessive with respect to the

resources available, it was decided that only 25 smaller problems were to be tested on this class of

MANAGEMENT SCIENCE IMPERIAL COLLEGE

40

"Cr ©

o

o o •
o
CO.
CO

HWHG ALGORITHM

t
M
o
IK

© O

o
CM.
CO

o o •
o
CD.
CM

O

© O

CM

O
CO o o ©

o .
CM

O 3

cr
CO

o o

o
u

cr
U J >

c c

i

o o
o
CMJ

O
O

o _ |
CO

o o
O J

o o

^ . 0 0 20.00 40.00 60.00 80.00
PROBLEM SIZE

100.00 120.00 140

Figure 4.9
Average construction solutions of HWHG heuristic for the MPG

41

o
O H

o
o «
o
(OH
<n

HWHG ALGORITHM

o
o •
o
cmJ
er̂

t
M

o

x

o
o
ft

O
CD*
CM

O
o ft
o
CM

o
C O

- J
G C

o
o
a

o
O H
CM

O
O

o
CDJ

C £

W O
> o
0 1 o

CMJ

A

o
o «
g - l
GO

o
o

o
o

^ • 0 0 20.00 4 0 . 0 0 60.00
PROBLEM SIZE

8 0 . 0 0 1 0 0 - 0 0 1 2 0 . 0 0 1 4 0 . o q 1

Average final
Figure 4.10

solutions of HWHG heuristic for the MPG

4 2

o ©

Figure 4.11
Average construction times of heuristics for the MPG

43

o
o

Figure 4.12
Average final runtimes of heuristics for the MPG

-CHAPTER 3 4 4

P R O B L E M H E U R I S T I C S

IIZE N O . H W W O H W H G HWHC R D H G RDHC HTHG HTHC MAX MIN

1 1585 1 6 3 1 1620 1493 1 5 5 1 1617 1578 1 6 3 1 1493

2 1647 1 6 2 1 1647 1 5 9 5 1 5 6 9 1621 1647 1647 1569

10 3 1 5 6 6 1648 1648 1643 1 6 5 2 1694 1660 1694 1566

4 1747 1 7 3 0 1726 1 6 9 1 1 5 7 0 1749 1677 1749 1570

S 1 7 0 8 1 7 1 8 1685 1 5 8 8 1503 1627 1700 1718 1503

A V E R . 1 6 5 1 1 6 7 0 1665 1 6 0 2 1 5 6 9 1662 1652

6 2 8 9 9 2 9 2 7 2847 2 7 9 7 2 7 6 0 2927 2834 2 9 2 7 2760

7 2 9 0 5 2 9 0 9 2924 2 7 9 2 2 8 6 8 2918 2848 2 9 2 4 2792

15 8 2 8 5 0 2 8 6 4 2 9 0 6 2 8 3 4 2 7 8 5 2 9 1 9 2914 2 9 1 9 2785

9 2 9 6 7 3 0 7 6 2 9 9 6 2 7 6 2 2 8 1 9 3 0 7 6 2967 3 0 7 6 2762

10 2 7 7 8 2 7 9 2 2 8 4 6 2 7 8 8 2 6 1 4 2 8 6 7 2 8 6 1 2867 2614

A V E R . 2 8 8 0 2 9 1 4 2904 2 7 9 5 2 7 6 9 2 9 4 1 2885

11 3 9 2 3 3 9 9 6 3943 3 9 1 9 3 8 9 1 4 0 1 5 3 9 3 5 4 0 1 5 3 8 9 1

12 4 0 5 3 4 0 9 7 4 0 1 8 4 1 1 3 3 8 4 3 4 1 4 3 3952 4 1 4 3 3843

20 13 4 0 0 3 4 0 8 1 4 0 6 3 4 0 0 7 4 0 9 1 4 0 9 2 3993 4 0 9 2 3993

14 4 0 0 4 4 0 7 5 4 1 7 6 4 0 4 3 3 8 6 0 4047 4 0 6 0 4 1 7 6 3860

15 4 0 5 7 4 1 6 7 4 0 9 0 3 9 4 1 3 8 8 4 4 0 6 2 4 1 3 3 4 1 6 7 3884

A V E R . 4 0 0 8 4 0 8 3 4 0 5 8 4 0 0 5 3 9 1 4 4 0 7 2 4 0 1 5

16 5 3 0 5 5 4 0 9 5357 5 1 3 2 4 9 2 2 5 1 9 1 5362 5 4 0 9 4922

17 5 2 0 7 5 2 7 4 5222 5 3 9 5 5 0 4 1 5447 5182 5447 5 0 4 1

25 18 5 3 3 2 5 3 4 5 5 3 6 5 5 3 0 3 5 0 8 3 5462 5 2 7 6 5 4 6 2 5083

19 5 4 3 4 5 4 3 6 5 5 4 9 5 3 3 2 5 4 9 5 5557 5552 5557 5332

20 5 1 8 0 5 4 7 4 5 4 5 1 5 3 6 5 5 1 2 9 5 5 2 1 5 4 5 1 5 5 2 1 5129

A V E R . 5 2 9 2 5 3 8 8 5 3 8 9 5 3 0 5 5 1 3 4 5 4 3 6 5365

21 6 6 8 9 6 8 5 5 6 6 8 1 6 6 6 7 6 4 5 7 6 8 7 8 6 6 9 1 6 8 7 8 6457

22 6 7 5 3 6 8 9 2 6 6 3 9 6 6 9 7 6 3 5 3 6 8 8 9 6 6 0 2 6 8 9 2 6353

30 23 6 5 5 1 6 7 7 9 6634 6 7 6 0 6 4 8 4 6763 6663 6 7 7 9 6484

24 6 5 2 3 6 8 3 3 6 5 6 1 6 5 9 0 6 6 0 1 6 8 0 2 6648 6 8 3 3 6 5 2 3

25 6 6 6 0 6 6 9 2 6 5 8 2 6 5 2 8 6 3 7 8 6 7 5 7 6 7 3 9 6 7 5 7 6 3 7 8

A V E R . 6 6 3 5 6 8 1 0 6 6 1 9 6 6 4 8 6 4 5 5 6818 6 6 6 9

26 1 1 6 6 3 1 2 0 7 4 1 1 6 9 5 1 2 1 1 3 1 1 6 8 9 1 2 1 1 3 1 1 6 6 3

27 1 1 6 5 6 1 2 0 4 3 1 1 8 2 2 1 1 8 2 5 1 1 8 6 1 1 2 0 4 3 1 1 6 5 6

50 28 1 1 8 5 6 1 2 0 7 5 1 2 0 3 6 1 2 0 3 4 1 1 5 3 4 1 2 0 7 5 11534

29 1 1 6 5 9 1 1 8 2 6 11674 1 1 9 7 5 1 1 6 1 9 1 1 9 7 5 1 1 6 1 9

30 1 1 7 8 1 1 2 2 2 5 1 1 7 8 8 1 2 0 4 2 1 1 7 8 7 1 2 2 2 5 1 1 7 8 1

A V E R . 1 1 7 2 3 1 2 0 4 9 1 1 8 0 3 1 1 9 9 8 1 1 6 9 8

31 1 8 3 8 8 1 8 7 9 4 1 8 2 7 0 1 8 6 0 1 1 8 3 2 8 1 8 7 9 4 1 8 2 7 0

32 1 8 3 8 8 1 9 1 0 7 1 8 5 4 0 1 8 9 5 0 1 8 4 7 2 1 9 1 0 7 1 8 3 8 8

75 33 1 8 5 9 1 1 8 8 8 4 1 8 5 1 7 1 8 8 4 2 1 8 3 2 8 1 8 8 8 4 1 8 3 2 8

34 1 8 4 4 8 1 8 8 0 1 1 8 3 8 2 1 8 6 5 8 1 8 2 0 7 1 8 8 0 1 1 8 2 0 7

35 1 8 4 9 5 1 8 8 7 3 1 8 5 9 6 1 8 9 0 8 1 8 7 2 6 1 8 9 0 8 1 8 4 9 5

A V E R . 1 8 4 6 2 1 8 8 9 2 1 8 4 6 1 1 8 7 9 2 1 8 4 1 2

36 2 5 1 7 1 2 5 5 2 6 2 5 1 2 6 2 5 6 0 0 2 5 1 8 6 2 5 6 0 0 2 5 1 2 6

37 2 5 4 5 3 2 6 2 2 2 2 5 5 7 6 2 5 9 4 6 2 5 4 3 6 2 6 2 2 2 2 5 4 3 6

100 38 2 5 2 9 6 2 5 8 7 2 2 5 1 7 5 2 5 8 4 4 2 4 9 8 5 2 5 8 7 2 2 4 9 8 5

39 2 5 0 5 3 2 5 8 2 0 2 5 3 7 2 2 5 6 7 4 2 5 0 5 5 2 5 8 2 0 2 5 0 5 3

40 2 5 0 6 6 2 5 7 5 4 2 5 3 8 2 2 5 7 3 6 2 5 3 3 4 2 5 7 5 4 2 5 0 6 6

A V E R . 2 5 2 0 8 2 5 8 3 9 2 5 3 2 6 2 5 7 6 0 2 5 1 9 9

T a b l e 4 . 1

C o n s t r u c t i o n S o l u t i o n s of MPG H e u r i s t i c s

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 4 5

P R O B L E M

SIZE N O . HWWO

1 1627

2 1679

10 3 1710

4 1766

5 1719

A V E R . 1700

6 2 9 6 0

7 2 9 7 5

15 8 2977

9 2 9 9 1

10 2 8 7 0

A V E R . 2 9 5 5

11 4 0 3 7

12 4 2 0 8

20 13 4 0 2 8

14 4 0 6 1

15 4 2 0 3

A V E R . 4 1 0 7

18 5427

17 5 3 8 9

25 18 5 3 7 5

19 5484

20 5427

A V E R . 5420

21 6 9 3 6

22 6 9 1 0

30 23 6774

24 6714

25 6 8 3 3

A V E R . 6 8 3 3

26 1 1 9 9 1

27 1 2 0 7 8

50 28 1 2 3 2 5

29 1 1 9 2 3

30 1 2 2 9 5

AVER . 1 2 1 2 2

31 1 8 8 3 9

32 1 8 8 5 2

75 33 1 8 8 6 8

34 1 8 7 4 6

35 1 8 8 4 6

A V E R . 1 8 8 3 0

36 2 5 5 3 1

37 2 5 7 9 3

100 38 2 5 8 0 4

39 2 5 8 0 4

40 2 5 7 3 8

A V E R . 2 5 7 3 4

MANAGEMENT SCIENCE

H E U R I S T I C S

HWHG HWHC RDHG RDHC H T H 6 HTHC MAX MIN

1 6 3 1 1627 1627 1 6 1 7 1617 1619 1 6 3 1 1617

1679 1 6 7 9 1679 1 6 2 6 1 6 7 9 1679 1 6 7 9 1 6 2 6

1712 1712 1705 1 7 1 7 1 7 1 5 1660 1 7 1 7 1660

1749 1737 1717 1724 1 7 4 9 1754 1766 1717

1720 1 7 1 9 1637 1 5 9 3 1647 1700 1720 1593

1 6 9 8 1 6 9 5 1673 1 6 5 5 1 6 8 1 1682

2 9 6 0 2 9 4 3 2 8 8 8 2 8 0 1 2 9 6 0 2869 2 9 6 0 2 8 0 1

2 9 7 5 2 9 3 9 2 8 9 0 2 9 1 0 2 9 2 5 2927 2 9 7 5 2 8 9 0

2 9 5 1 2 9 4 3 2887 2 9 3 3 2 9 4 5 2935 2 9 7 7 2 8 8 7

3 0 8 2 3 0 5 2 3 0 2 9 2 9 5 2 3 0 8 2 3012 3 0 8 2 2 9 5 2

2934 2 9 5 6 2 8 7 8 2 8 1 5 2 9 1 5 2930 2 9 5 6 2 8 1 5

2 9 8 0 2 9 6 7 2914 2 8 8 2 2 9 6 5 2935

4 0 5 6 4 0 1 6 3 9 8 9 3 9 9 0 4 0 1 9 4002 4 0 5 6 3 9 8 9

4 1 6 1 4 1 1 4 4 1 9 2 4 0 2 7 4 1 6 7 4136 4 2 0 8 4 0 2 7

4 1 5 9 4 1 1 3 4 2 1 3 4 1 0 2 4 1 9 3 4046 4 2 1 3 4 0 2 8

4 1 4 0 4194 4 0 9 4 4 1 0 6 4 1 0 7 4157 4 1 9 4 4 0 6 1

4 2 8 2 4 2 5 9 4012 3 9 6 2 4 1 5 6 4174 4 2 8 2 3 9 6 2

4 1 6 0 4 1 3 9 4 1 0 0 4 0 3 7 4 1 2 8 4103

5 4 2 4 5 4 3 0 5390 5 2 0 3 5 2 7 0 5416 5 4 3 0 5203

5 3 6 1 5 3 0 3 5 3 9 5 5 1 5 1 5 4 6 6 5248 5 4 6 6 5 1 5 1

5 3 9 5 5 4 1 8 5 4 7 7 5 3 4 5 5 4 7 3 5354 5 4 7 7 5 3 4 5

5 5 0 4 5 6 0 9 5517 5 5 0 9 5 5 8 9 5552 5 6 0 9 5 4 8 4

5 5 6 8 5 4 8 1 5472 5 4 1 0 5544 5528 5 5 6 8 5410

5 4 5 0 5 4 4 8 5450 5 3 2 4 5 4 6 8 5420

6 9 2 8 6 9 8 0 6847 6 7 7 7 7 0 1 7 6707 7 0 1 7 6 7 0 7

6 9 5 0 6 8 2 2 6 8 3 3 6 7 3 1 6 9 7 5 6880 6 9 7 5 6 7 3 1

6 9 4 8 6 8 1 8 6834 6 6 0 9 6 8 7 6 6793 6 9 4 8 6 6 0 9

7 0 1 0 6 7 9 5 6876 6 7 3 3 6 8 3 8 6806 7 0 1 0 6 7 1 4

6 8 0 7 6 7 9 1 6834 6 6 6 5 6 8 3 8 6823 6 8 3 8 6 6 6 5

6 9 2 9 6 8 4 1 6 8 4 5 6 7 0 3 6 9 0 9 6802

1 2 2 7 4 1 1 9 8 2 1 2 2 9 1 1 2 0 8 5 1 2 2 9 1 1 1 9 8 2

1 2 2 1 8 1 1 9 8 4 1 2 0 8 2 1 2 1 0 4 1 2 2 1 8 1 1 9 8 4

1 2 1 9 1 1 2 2 2 4 1 2 3 1 5 1 1 9 0 4 1 2 3 2 5 1 1 9 0 4

1 1 9 7 1 1 1 9 2 9 1 2 2 2 0 1 2 0 7 0 1 2 2 2 0 1 1 9 2 3

1 2 2 4 5 1 2 0 3 5 1 2 1 5 8 1 2 0 3 7 1 2 2 9 5 1 2 0 3 5

1 2 1 8 0 1 2 0 3 1 1 2 2 1 3 1 2 0 4 0

1 8 9 7 8 1 8 6 8 8 1 9 0 0 0 1 8 5 4 9 1 9 0 0 0 1 8 5 4 9

1 9 3 2 2 1 8 8 6 8 1 9 1 2 2 1 8 7 3 5 1 9 3 2 2 1 8 7 3 5

1 9 0 7 3 1 8 8 7 5 1 9 1 9 5 1 8 7 3 1 1 9 1 9 5 1 8 7 3 1

1 8 9 7 2 1 8 7 0 7 1 8 7 8 9 1 8 6 5 9 1 8 9 7 2 1 8 6 5 9

1 9 0 1 3 1 9 0 5 4 1 9 1 4 9 1 9 0 7 0 1 9 1 4 9 1 8 8 4 6

1 9 0 7 2 1 8 8 3 8 1 9 0 5 1 1 8 7 4 9

2 5 8 4 2 2 5 5 6 6 2 6 0 8 2 2 5 6 6 1 2 6 0 8 2 2 5 5 3 1

2 6 4 7 0 2 6 0 6 2 2 6 2 8 1 2 5 7 2 8 2 6 4 7 0 2 5 7 2 8

2 6 1 4 1 2 5 8 0 3 2 5 9 3 1 2 5 5 4 5 2 6 1 4 1 2 5 5 4 5

2 6 0 0 2 2 5 5 5 0 2 5 9 6 1 2 5 6 0 5 2 6 0 0 2 2 5 5 5 0

2 6 1 8 4 2 5 9 9 0 2 5 9 9 7 2 5 8 9 5 2 6 1 8 4 2 5 7 3 8

2 6 1 2 8 2 5 7 9 4 2 6 0 5 0 2 5 6 8 7

T a b l e 4.2

F i n a l S o l u t ions ot MPG H e u r i s t i c s

IMPERIAL COLLEGE

3 4

EM

NO

1
2
3

4

5

ER

6

7

8

9

10
ER

11
12

13

14

15

ER

16
17

18
19

20
ER

21
2 2
23

24

25

ER

26

27

28
29

30

ER

31

32

33

34

35

ER

36

37

38

39

40

ER

46

H E U R I S T I C S

H W W O H W H G H W H C R D H G R D H C H T H G HTHC MAX MIN

94 101 106 •95 86 2 5 8 255 2 5 8 86

98 99 100 83 96 2 4 9 255 2 5 5 83

99 94 95 74 73 2 5 7 249 2 5 7 73

98 90 103 91 87 2 5 0 257 2 5 7 87

90 104 97 78 91 2 5 0 260 2 6 0 78

96 98 100 84 87 2 5 3 255

2 3 9 235 2 4 5 2 5 3 2 3 1 1 2 9 1 1 3 1 4 1 3 1 4 2 3 1

2 3 9 2 5 1 2 4 2 2 2 8 2 3 0 1 3 0 9 1 2 8 4 1 3 0 9 2 2 8

2 3 1 242 2 4 9 2 1 2 2 1 0 1 3 0 1 1 3 1 2 1 3 1 2 2 1 0

2 5 5 259 2 8 5 2 3 5 2 2 1 1 3 1 6 1 2 8 5 1 3 1 6 2 2 1

2 4 2 256 2 7 2 2 5 2 2 1 3 1 2 9 4 1 3 0 7 1 3 0 7 2 1 3

2 4 1 249 2 5 9 2 3 6 2 2 1 1 3 0 2 1 3 0 2

5 0 6 4 4 6 4 4 5 4 2 5 4 1 7 4 2 7 6 4 2 3 0 4 2 7 6 4 1 7

4 5 2 522 4 6 2 4 5 6 4 1 7 4 2 8 5 4 2 2 8 4 2 8 5 4 1 7

4 6 2 4 8 9 4 8 4 4 1 7 4 2 3 4 2 2 7 4 2 5 3 4 2 5 3 4 1 7

4 9 0 498 5 3 1 4 5 3 3 9 3 4 2 4 7 4 2 4 8 4 2 4 8 3 9 3

4 4 8 4 7 2 5 5 1 4 2 2 4 3 7 4 2 8 0 4 2 4 2 4 2 8 0 4 2 2

4 7 1 4 8 5 4 9 5 4 3 5 4 1 7 4 2 6 3 4 2 4 0

7 6 0 789 7 9 8 7 3 5 6 8 8 1 0 6 8 5 1 0 7 5 4 1 0 7 5 4 6 8 8

7 6 6 824 8 1 9 7 7 4 6 1 8 1 0 7 4 2 1 0 6 3 7 1 0 7 4 2 6 1 8

6 9 5 7 6 1 7 4 9 7 4 7 6 9 8 1 0 7 2 2 1 0 6 6 3 1 0 7 2 2 6 9 5

8 5 8 7 1 6 7 9 8 7 2 6 7 0 0 1 0 7 6 5 1 0 6 7 6 1 0 7 6 5 7 0 0

7 0 7 8 2 1 7 9 1 6 5 3 6 9 5 1 0 7 2 1 1 0 7 8 5 1 0 7 8 5 6 5 3

7 5 7 7 8 2 7 9 1 7 2 7 6 7 9 1 0 7 2 7 1 0 7 0 3

1 0 8 5 1 1 0 3 1 0 8 8 1 0 2 9 1 1 7 0 2 2 5 6 3 2 2 6 2 2 2 2 6 2 2 1 0 2 9

1 0 7 2 1 2 6 1 1 1 6 8 1 1 6 5 1 0 3 7 2 2 7 8 3 2 2 7 9 9 2 2 7 9 9 1 0 3 7

1 1 8 4 1 1 4 2 1 1 9 0 1 0 8 6 1 0 3 4 2 2 7 0 2 2 2 7 1 4 2 2 7 1 4 1 0 3 4

1 2 5 3 1 1 1 9 1 1 6 5 1 1 4 5 1 1 7 0 2 2 6 3 6 2 2 6 0 0 2 2 6 3 6 1 1 1 9

1 1 4 7 1 1 2 2 1 1 1 1 1 0 4 5 1 0 5 4 2 2 7 5 8 2 2 6 2 5 2 2 7 5 8 1 0 4 5

1 1 4 8 1 1 4 9 1 1 4 4 1 0 9 4 1 0 9 3 2 2 6 8 8 226.72

3 2 5 7 3 4 6 0 3 2 6 4 3 5 2 9 3 0 1 1 3 5 2 9 3 0 1 1

3 2 6 3 3 1 4 5 3 3 0 3 2 9 5 4 3 0 9 2 3 3 0 3 2 9 5 4

3 1 6 9 3 3 8 0 3 0 9 1 3 3 5 4 3 0 1 2 3 3 8 0 3 0 1 2

3 3 5 7 3 3 1 2 3 3 0 4 3 0 7 7 3 1 7 5 3 3 5 7 3 0 7 7

3 1 6 0 3 3 8 4 3 3 2 8 3 2 4 6 3 0 3 8 3 3 8 4 3 0 3 8

3 2 4 1 3 3 3 6 3 2 5 8 3 2 3 2 3 0 6 6

7 6 2 4 7 2 4 5 7 6 9 2 7 2 5 1 6 8 5 2 7 6 9 2 6 8 5 2

7 8 4 7 7 4 5 2 7 6 7 2 7 1 5 1 7 2 4 8 7 8 4 7 7 1 5 1

7 7 9 8 7 3 9 4 7 5 4 1 7 2 9 9 6 6 9 3 7 7 9 8 6 6 9 3

7 5 7 9 7 7 9 0 8 3 7 2 7 2 6 3 7 4 0 1 8 3 7 2 7 2 6 3

7 5 6 8 7 8 9 2 7 7 4 3 7 4 7 0 6 5 7 4 7 8 9 2 6 5 7 4

7 6 8 3 7 5 5 5 7 8 0 4 7 2 8 7 6 9 5 4

1 0 6 9 5 1 1 2 5 1 1 0 9 8 9 1 1 1 9 5 1 0 3 5 5 1 1 2 5 1 1 0 3 5 5

1 1 7 8 1 1 2 3 6 8 1 1 2 9 5 1 0 7 4 7 1 0 3 1 7 1 2 3 6 8 1 0 3 1 7

1 1 2 9 1 1 2 3 0 6 1 1 3 4 9 1 0 6 3 5 1 0 2 4 5 1 2 3 0 6 1 0 2 4 5

1 0 8 6 4 1 2 0 5 7 1 1 4 9 6 1 1 2 5 3 1 0 4 2 2 1 2 0 5 7 1 0 4 2 2

1 1 2 2 1 1 1 1 1 6 1 1 0 1 8 1 1 1 9 1 1 0 0 6 5 1 1 2 2 1 1 0 0 6 5

1 1 1 7 0 1 1 8 2 0 1 1 2 2 9 1 1 0 0 4 1 0 2 8 1

T a b l e 4 . 3

C o n s t r u c t i o n T i m e s (m i l . s e c) of MPG H e u r i s t i c s

SCIENCE IMPERIAL COLLEGE

^ 4

EM

NO

1
2
3

4

5

ER

6
7

8
9

10
ER

11
12
13

14

15

ER

16
17

18
19

20

ER

2 1
22
23

24

25

ER

26

27

28
29

30

ER

31

32

33

34

35

ER

36

37

38

39

40

ER

47

H E U R I S T I C S

HWWO HWHG HWHC R D H G R D H C HTHG HTHC MAX

161 141 168 191

242 253 244 194

190 146 148 162

166 158 219 153

151 . 167 178 148

182 173 191 170

476 4 6 1 599 450

452 396 376 494

496 444 392 357

463 383 4 1 1 447

344 456 430 365

446 428 442 423

808 809 693 706

693 928 859 743

650 793 6 7 1 736

912 775 715 8 2 1

946 785 1155 855

8 0 1 818 818 772

1 6 0 6 1104 1928 2 1 0 5

1517 1 3 2 6 1110 1 0 0 6

973 1635 1253 1278

1 6 4 9 1 6 1 1 1053 1300

1224 1444 1183 1072

1394 1424 1305 1305

2 4 8 1 1 7 7 1 1967 2 2 2 2

1 6 3 2 1 9 7 8 2 2 1 6 1 7 3 9

2 6 5 2 2 2 5 9 2084 1 8 3 5

2 1 2 1 2 0 4 3 1 8 6 1 2 0 8 2

2 9 2 6 1 6 9 1 1975 1 7 0 1

2 3 6 2 1948 2 0 2 1 1 9 1 6

5 9 1 5 5 4 9 0 4 7 6 1 4 9 8 9

6 6 4 3 4 6 2 3 5 4 6 6 4 6 9 6

6 7 3 9 4 8 8 2 4 6 0 8 5 5 6 9

5 5 6 2 5 1 2 2 4 8 6 2 5454

7 6 3 3 5 1 1 9 5 4 8 9 4 8 7 9

6 4 9 8 5047 5037 5 1 1 7

1 4 6 4 8 1 2 6 5 7 1 3 3 1 7 1 3 6 7 5

1 4 2 9 9 1 2 3 8 6 1 3 8 9 3 1 2 2 0 5

1 5 3 5 4 1 2 3 2 2 1 3 1 8 5 1 4 6 1 1

1 0 7 9 7 1 5 4 2 6 1 4 9 2 7 1 2 4 0 2

1 2 8 3 0 1 3 0 8 9 13184 1 2 1 5 1

1 3 5 8 6 1 3 1 7 6 1 3 7 0 1 1 3 0 0 9

1 7 5 9 9 2 0 6 3 2 2 0 2 3 7 2 2 9 2 5

2 7 0 4 1 2 0 4 3 5 1 9 4 9 4 2 0 2 5 6

2 2 4 1 1 1 7 3 7 1 1 9 8 1 1 1 6 3 2 7

1 9 1 6 7 1 7 4 1 3 17097 1 8 5 8 4

2 3 7 9 8 2 0 5 7 8 1 9 4 3 2 2 0 7 2 1

2 2 0 0 3 1 9 2 8 6 1 9 2 1 4 1 9 7 6 3

186 299 406 406

164 402 399 402

172 362 286 362

220 290 329 329

206 346 298 346

190 340 344

3 4 1 1516 1435 1 5 1 6

4 1 0 1434 1569 1 5 6 9

4 3 1 1480 1440 1 4 8 0

544 1442 1459 1 4 5 9

490 1 5 1 1 1560 1560

4 4 3 1477 1493

714 4 4 7 9 4537 4 5 3 7

8 5 2 4 5 7 9 4 7 0 5 4 7 0 5

548 4 6 9 3 4693 4 6 9 3

779 4 5 8 5 4 5 5 9 4 5 8 5

748 4 6 0 3 4 5 5 3 4 6 0 3

728 4 5 8 8 4 6 0 9

1 6 6 2 1 0 9 6 4 11307 1 1 3 0 7

1 0 6 7 11413 11136 1 1 4 1 3

1 0 8 9 1 1 2 2 0 11083 1 1 2 2 0

1 1 2 1 11004 10907 1 1 0 0 4

1 2 7 6 1 1 1 1 6 11274 1 1 2 7 4

1 2 4 3 1 1 1 4 3 1 1 1 4 1

1 8 2 3 2 3 6 6 6 2 3 1 9 9 2 3 6 6 6

2 4 9 1 2 3 4 1 6 2 4 0 4 0 2 4 0 4 0

1 5 7 2 2 3 3 6 9 2 3 3 0 3 2 3 3 6 9

1 8 0 9 2 3 4 5 8 2 3 3 7 4 2 3 4 5 8

2 1 0 2 2 3 9 9 0 2 3 4 3 6 2 3 9 9 0

1 9 5 9 2 3 5 8 0 2 3 4 7 0

7 5 3 2 7 5 3 2

6 9 0 0 6 9 0 0

4 9 2 5 6 7 3 9

5 3 3 5 5 5 6 2

5 5 5 6 7 6 3 3

6 0 5 0

1 1 5 2 4 1 4 6 4 8

1 4 4 5 5 1 4 4 5 5

1 4 7 1 3 1 5 3 5 4

1 6 3 3 9 1 6 3 3 9

1 2 0 9 8 1 3 1 8 4

1 3 8 2 6

1 7 5 6 4 2 2 9 2 5

1 9 4 3 6 2 7 0 4 1

1 8 1 4 3 2 2 4 1 1

1 6 5 4 4 1 9 1 6 7

2 4 7 1 5 2 4 7 1 5

1 9 2 8 0

T a b l e 4.4

T o t a l R u n t i m e s (m i l . s e c) of MPG H e u r i s t i c s

SCIENCE

-CHAPTER 3 48

heuristics.

4.6.2 Analysis of the Experimental Results

The task of analysing the empirical results of various heuristics raises an important theoretical issue,

namely the nature of the scale of measurement of the results. One school of thought treats the

results as metric data, hence the use of elaborate statistical techniques are justified (Golden &

Stewart, 1981; Golden & Assad, 1982; King & Spachis, 1980; Spachis, 1978). This approach is

acceptable only when the problems tested are of similar complexities, ie roughly of the same sizes.

When the problem size varies greatly, the metric property of the results is required to be justified

explicitly. This is due to a well known general phenomenon of combinatorial problems: that it is far

more difficult to get within a certain range of an optimun solution in a larger problem than it is for

a smaller one. The larger the difference in size, the greater the difference in computation efforts; to

obtain a solution within one percent of the optimal solution for a 30 vertex problem does not imply

the same effectiveness as obtaining a solution within the same percentage range for a 100 vertex

problem.

The second school of thought, and it is the one adopted here, is that the data are only ordinal and

performance analyses should rely on nonparametric tests (Parker, 1976; Abdel Barr, 1978). The

average values of the results in the Tables 4.1-4.4 are used only as rough guides, and play no part

in the analysis of performance as such. The sign test and the run test are the two main procedures

used.

The performances of various heuristics on the test problems are tabulated in the Tables 4.1-4.4.

The results of the sign tests for the solutions of the construction procedures are summarised in

Table 4.5. The first figure of each pair is the number of times the row-label heuristic provided

higher (in this case better) solutions than the column-label heuristic. The second figure is the number

of times the reverse occurred. The number of ties can be deduced from the difference of the

numbers of test problems and the sum of the two figures in the table. If the HWWO heuristic is

omitted from the table, it would represent a two level factorial design, and hence the effect of a

class of strategies (level) can be studied by comparing the results of the heuristics while keeping the

other level constant.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 4 9

H E U R I S T I C S

H W H C R D H G R D H C H T H G H T H C

1 2 , 2 7 1 6 , , 2 4 2 8 , 1 2 3 , 2 2 1 0 , 1 3 H W W O

3 2 , 7 3 4 , 6 3 7 , 3 8 , 1 4 1 9 , 6 H W H G

2 1 , , 1 9 3 3 , 7 7 , 1 8 1 2 , 1 1 H W H C

3 2 , 8 0 , 2 5 7 , 1 8 R D H G

0 , 2 5 2 , 2 3 R D H C

2 0 , 5 H T H G

T a b l e 4 . 5

C o n s t r u c t i o n C o s t S i g n T e s t s

The effect of the initial tetrahedron strategies is considered by comparing the results of the HWHG,

RDHG, and HTHG heuristics, and then comparing the results of the HWHC, RDHC and HTHC

heuristics. There are some indications that the heaviest tetrehedron (HT) strategy produces better

solutions at the end of the construction phase than the highest weight order (HW) strategy although

the result is not statistically significant. Both strategies perform better (statistically significant at 5 %

or less) than the random strategy, which is to be expected. Similar analysis for the insertion

strategies shows that the weight order (WO) insertion is significantly poorer (at 5 % or less level)

than the other two insertion methods, thus justifing the decision to test this strategy in a less

comprehensive manner. The highest gain (HG) strategy performs statistically better (at 5 % or less

level) than the highest cost (HC) strategy. This is an unexpected outcome, as it is usually the case

that the highest cost strategy gives better results, as in the case of the transportation problem or

the travelling salesman problem. The run tests on the results in Table 4.6 show two significant

results; between RDHG and HWWO test (less than 4 % level) and between RDHG and HWHC test

(less than 0 .1% level). The RDHG heuristic shows significantly poorer results for the smaller

problems, and significantly better results for the larger problems than the results produced by the

HWWO and HWHC heuristics. It should be noted that the straight-forward sign tests on both sets

of results are not statistically significant. A possible explanation is that the RD strategy provides a

poorer starting condition than the one produced by the HW strategy. However, if the HG insertion

strategy is allowed to take its full effect, by using it in larger problems, the initial disadvantage will

in most cases be overcome. This interpretation is consistent with the earlier conclusion regarding the

performance of various strategies during the construction phase.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 5 0

H E U R I S T I C S

H W H G H W H C R D H G R D H C H T H G H T H C

1 7 , 2 0 14 , 2 4 2 9 , 1 1 9 . 14 1 6 , 8 H W W O

3 0 , 8 2 6 , 1 3 3 6 , 4 1 2 , 9 2 0 , 4 H W H G

1 5 , 2 3 3 2 , 8 8 , 1 6 1 8 , 6 H W H C

3 3 , 7 6 , 1 8 1 2 , 1 2 R D H G

1 , 2 3 3 , 2 2 R D H C

1 6 , 8 H T H G

T a b l e 4 . 6

F i n a l C o s t S i g n T e s t s

The final solution sign tests (Table 4.6) provide a similar picture to the Table 4.5, in spite of the

higher benefit during the improvement phase by the poorer construction solutions. The run test also

detects the previous pairs found during the construction phase with even more pronounced patterns.

An additional pair between the HTHG and HWHG heuristics (less than 3 % level) is also detected;

the HWHG produces better results for smaller problems. This is also consistent with the earlier

results which suggest that the HW Strategy produces a good starting condition for smaller problems,

and the highest gain provides a good insertion strategy in general.

Taking the overall effect into account, the heuristics can be ranked according to the quality of the

final solutions as follows:

1 HWHG, HTHG

2 RDHG, HTHC

3 HWWO, HWHC

4 RDHC

Figures 4.9-4.10 show the average construction and final solutions achieved by the HWHG heuristic

for all the test problems.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 51

H E U R I S T I C S

H W H G H W H C R D H G R D H C H T H G H T H C

1 1 , 2 9 2 8 , 1 2 3 7 , 3 0 , 2 5 0 , 2 5 H W W O

2 1 , 1 9 3 3 , 7 3 8 . 2 0 , 2 5 0 , 2 5 H W H G

3 5 , 5 3 8 , 2 0 , 2 5 0 , 2 5 H W H C

2 7 , 1 3 0 , 2 5 0 , 2 5 R D H G

0 , 2 5 0 , 2 5 R D H C

1 4 , 1 1 H T H G

T a b l e 4 . 7

C o n s t r u c t i o n T i m e S i g n T e s t s

H E U R I S T I C S

H W H G H W H C R D H G R D H C H T H G H T H C

2 5 , 1 5 3 0 , 1 0 2 5 , 1 5 0 , 2 5 0 , 2 5 H W W O

2 2 , 1 8 2 2 , 1 8 1 8 , 2 2 0 , 2 5 0 , 2 5 H W H G

1 9 \ 2 1 1 7 , 2 3 0 , 2 5 0 , 2 5 H W H C

1 9 , 2 1 0 , 2 5 0 , 2 5 R D H G

0 , 2 5 0 , 2 5 R D H C

1 0 , 1 4 H T H G

T a b l e 4 . 8

F i n a l T i m e S i g n T e s t s

The runtime sign test analyses are shown in Tables 4.7-4.8 and the average run times for the

construction phase and the average total run times are shown in Figures 4.11-4.12. The

construction results conform to the theoretical prediction. The algorithms split into two groups,

namely the 0(n4) and CKn2) groups, eg the empirical complexities of the HTHG and HWHG

heuristics during the construction phase are 0.02/7409 and 0.87/t209 respectively. The

improvement time, roughly the same as the construction time of the (Xri2) heuristic of the same

problem size, has Oin2) time complexity as expected, consequently the total runtime is 0.40n 3 8 7

for the HTHG heuristic and 1.63/7206 for the HWHG heuristics. The difference in time

performances of the two CXn4) heuristics is negligible. In the other group, the random tetrahedron

strategy runs slightly faster than the highest weight strategy during the construction phase. The

weight order insertion strategy, although producing a relatively fast solution during the construction

phase, requires considerably more execution time during the improvement phase than the rest in the

group, and overall runtime of the WO strategy is the highest among the Oin2) group. The remaining

heuristics have very similar runtime performances. There is no significant result for the run tests

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 52

carried out on the results in Table 4.7-4.8.

4.7 INTERACTIVE ASPECTS

Interactions with the heuristics can be done in two ways; firstly, by artificially manipulating the input

data to ensure that certain effects are obtained; and secondly, by imposing additional rules of

manipulation. As the input for the MPG is likely to contain certain subjective evaluations, the use of

additional rules may be more desirable. One such additional rule, that can be implemented readily, is

the restriction of maximum valences of particular nodes to correspond to the physical limitations of

the objects being represented. Alternative solutions can be quickly generated by varying the

maximum permitted valences.

4.8 CONCLUSIONS

It has been demonstrated that construction and improvement heuristics for the MPG can be

implemented effectively using an algorithmic language. Pascal was chosen because the language has

data structuring facilities that allow adequate data abstractions. The codes are fast and compact,

and they can be used to solve problems with several hundred vertices.

The comparative test results indicate that the use of the heaviest tetrahedron as a starting point

does not provide the expected benefit. Moreover with hindsight, it becomes clear why the highest

gain insertion strategy during the insertion phase provides better results than those achieved by the

highest shadow cost strategy: in other similar combinatorial problems, the assignment of an arc

usually results in the total exclusion of the other competing candidates, but this is not usually the

case in the MPG.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

5 Group Technology: Literature survey

5.1 INTRODUCTION

In the past decade, the emphasis in the literature on Group Technology has slowly shifted away

from classification schemes per se to the problem of developing methods for grouping components

and associated machines. This has led to a variety of approaches which may, for the purposes of

this survey, be classified as (i) similarity coefficient (ii) set theoretic (iii) evaluative and (iv) other

analytical methods, although it should be pointed out that there is a considerable overlap and

interrelationship between these methods.

5.2 SIMILARITY COEFFICIENT METHODS

The similarity coefficient approach is drawn directly from the field of numerical taxonomy and was

first suggested by McAuley (1972). The basis of this method is to measure the similarity between

each pair of machines and then to group the machines into families based on their similarity

measurements. In most cases, the similarity measurement used is the coefficient of Jaccard

(Sneath & Sokal 1973, p131) which is defined for any pair of machines as: the number of

components which visit both machines, divided by the number of components which visit at least

one of the machines.

The consequence of defining the similarity coefficient in this way is that equal weightings are given

to the requirements and nonrequirements of a particular component insofar as the machines are

concerned. As de Beer & de Witte (1978) point out, this may lead to very low values of the

coefficient even in cases where a large number of components may require both machines. Another

situation where the Jaccard similarity coefficient may not perform satisfactorily is when some

machines are required by a large number of components and duplications of these machines are

needed. This can, depending on the treatment, result in multiple values of the coefficients. None of

the papers reviewed discuss this problem explicitly.

The second problem associated with the similarity coefficient approach is the use of a threshold

value such that if a coefficient is less than this limiting value the coefficient will be ignored in the

next stage of the algorithm. There is however, a large degree of arbitrariness involved in this.

Rajagopalan & Batra (1975) suggest a more systematic way of finding the threshold value, but in

spite of this, the arbitrary nature of the selection still persists, as evidenced by the final choice of

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 54

the threshold value in their paper.

In grouping machines, McAuley (1972) uses Single Linkage Cluster Analysis (SLCA). "This method

first clusters together those machines mutually related with the highest possible similarity coefficient,

then it successively lowers the level of admission by steps of predetermined equal magnitude. The

admission of a machine or groups of machines into another group is by a criterion of single

linkage." However, as McAuley points out "the main disadvantage of this method is that while two

clusters may be linked by this technique on the basis of a single bond, many of the members of

the two clusters may be quite far removed from each other in terms of similarity." To overcome

this problem, various methods have been suggested by McAuley and Sneath & Sokal, but at the

cost of having to define more limiting values.

Carrie (1974) has used McAuley's method in an actual case involving additional problem constraints,

such as, for example, a requirement of a minimum number of machines per group. However, no

detailed results of the implementation are reported.

Rajagopalan & Batra (1975) developed a graph-theoretic method which uses cliques of the machine-

graph as a means of classification. The vertices of this graph are the machines, the arcs are the

Jaccard similarity coefficients and a clique is a maximal collection of vertices, every pair of which is

connected by an edge of the graph. The main disadvantage of this approach is that because of the

high density of the graph, a very large number of cliques is usually involved and many of the

cliques are not vertex disjointed. To reduce the number of groups and to incorporate the machines

which are not included in the cliques, graph partitioning is used, and it is at this stage that the

allocation of components, in accordance with a number of heuristic rules, is also carried out.

As the number of cliques varies exponentially with the number of vertices (Moon & Moser 1965),

the clique approach may be acceptable for a few machine types, however the complicated and time

consuming nature of the allocation procedure means that application to a large problem would be

very difficult.

de Beer et al (1976) and (1978) describe a modified form of Burbidge's Production Flow Analysis.

An important aspect of this approach is the development of a method of cell formation based on an

analysis of operation routings and the divisibility of operations between machines, and hence

between cells. This divisibility is governed by the numbers of machines of the required types that

are available for undertaking specific operations. Three categories of machine types are defined:

primary or key, where only one such machine is available; secondary, where several machines are

available; and tertiary, where there are sufficient machines available to be able to assign to each

cell if required, de Witte (1979), in a further extension of this approach, suggested the use of three

similarity coefficients which are different from Jaccard's and are specifically designed to indicate the

interdependence of machine types within the three categories mentioned above. The subsequent

clustering of machine types into cells is carried out using the SLCA method, not the clique method

as suggested in the paper. In addition, it is not clear how de Witte's method could cope with the

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 55

situation where not ail the machines available are required, or alternatively, where additional

machines may economically be justified. Lastly, it is arguable whether there is any need to include

the tertiary machines in the process, since by definition they are available for inclusion in every cell.

Capacity considerations alone should be adequate for determining how these machines should be

allocated.

None of the above papers considers the sensitivity of the solution in relation to the procedure used

in the formation of the cells and, in particular, the form of the similarity coefficients used. By their

very nature, similarity coefficients are aggregate measures and hence during their manipulation

information losses are inevitable, and the significance of these losses ought to be clearly established

before the procedures described can be used with confidence.

5.3 SET-THEORETIC METHODS

In spite of various titles given to his papers, Purcheck(1974, 1975a, 1975b) has adopted

throughout a common set-theoretic approach to the problem. The earliest paper describes a

systematic way of using union operation on the sets of machines required for various components,

in order to arrive at the supersets (termed hosts and superhosts) which progressively include more

and more components. The process of building up these supersets can be represented as a path

along the edge of a lattice diagram. This method significantly reduces the total number of possible

solutions. The process is fundamentally similar to those described by Burbidge (1971, 1973) and El-

Essawy (1972), but is specified in a much more explicit manner.

The lattice diagram is at best only useful as a general illustrative device. The lattice diagrams

actually drawn by Purcheck (1974, 1975a), complicated as they are, represent the combinations of

only 6 machines. It is true that not all the possible points in the lattice need to be represented in

practice. However, the exponential growth in the number of lattice points with increasing number of

machines means that a stage is soon reached where the lattice diagram becomes virtually

unintelligible.

Purcheck (1975a) also develops a classification scheme which combines machine requirements and

sequences by codifying them respectively in the form of long strings of letters and digits. In the

example given in which 19 machines are involved, code lengths of 15 or more are not uncommon.

The code length requirement is a crucial limitation and dashes any real hope of applying the scheme

to problems with large numbers of machines. It is also difficult to see why such packing of

information would improve the efficiency of grouping the machines. Mathematical programming

(linear, combinatoric) is suggested as a means of carrying out the grouping process. There is,

however, insufficient description in the paper to show how the constraint matrices could actually be

constructed and there is no specification of the objective function to be used.

The use of a set partitioning technique to solve an LP formulation of the problem is advocated by

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 56

Purcheck (1975£>). The cost function however, is not, in general, stated explicitly. In the worked

example, the cost function is the total capital costs of the machines involved. In actual practical

application, most of the machines, if not all, would already be available. The main benefits of group

production, shorter throughput time, and hence reduced work-in-progress etc., are not included. As

in the previous paper (1975a), the constraint matrices are not explicitly given. How various cells

would constrain the problem is not at all clear, and the problems of machine utilization and

duplicated machines are not defined. It is difficult to see how the LP problem as formulated could

represent any real group layout problem.

It is not clear how optimisation methods in general, and mathematical programming in particular,

can be applied successfully to this problem; at least in the near future. A satisfactory definition of

the objective function to include only quantifiable aspects of the problem would be lengthy, complex

and unlikely to be linear. The constraint matrices would necessarily be large in order to define the

whole problem adequately. Even the much simpler quadratic assignment problem (QAP) is notoriously

difficult to solve, as discussed in the previous chapters. The QAP considers only the material

handling costs, whereas the group layout problem involves a large number of interacting factors,

many of which are highly dynamic. Fifteen machines is the present limit of most optimization

procedures for the QAP, though sub-optimal procedures are able to solve somewhat larger problems.

5.4 EVALUATIVE METHODS

The concept of Production Flow Analysis (PFA) was first introduced by Burbidge (1963). The aim of

the technique was stated by Burbidge (1971) as that of "finding the families of components and

associated groups of machines for group layout... by a progressive analysis of the information

contained in route cards...". PFA has since been developed, extended and given various names. The

main feature of the evaluative approach to PFA is that it involves the systematic listing of the

components in various ways, in the expectation that groups of machines and components may be

found by careful inspection. As de Beer & de Witte (1978) point out, the procedure requires "a

series of evaluations to be made by (the) designer, more or less calling upon his ability to recognize

patterns". Burbidge's approach to PFA consists of three levels of analysis. Factory Flow Analysis,

the first stage, makes use of Process Route Numbers (PRNs), in order to get an overall picture of

the present state of material flows. Machines are divided into departments, and each department is

given a number (in the example quoted, one digit figures are used). The PRN of a component is

defined as the sequence of the numbers of the departments visited. A flow chart showing the

interaction of various departments based on PRNs is then drawn. Burbidge gives various suggestions

as to how this chart can be simplified and once this is done, each department is analysed in turn.

This constitutes the second step, called Group Analysis. With the information obtained by sorting

components into packs, according to the machines required, the designer then proceeds to form

families of machines and components mainly by reordering the rows and columns of the

Component-Machine Chart to create as near a block diagonal form as possible (the significance of

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 57

this block diagonal structure is considered in more detail later in this chapter). Burbidge (1971) does

not explain explicitly how the outcomes were achieved. The difficulty was discussed in Burbidge

(1973), in which the author states: "Fifteen different methods were tried before a reliable solution

was obtained." The "best" method, called Nuclear Synthesis, is based on selecting machines used

by few components as starting points for various cells, or nuclei, as Burbidge terms them. The next

machine is allocated on the basis that it has the smallest number of components left unassigned to

a group. Once Nuclear Synthesis is completed, these nuclei are modified and subject to certain

special reservations, combined in a manner similar to that of Purcheck's superset approach, until the

required number of groups is formed. Burbidge (1977) describes how the process can be carried

out manually. The third stage, Line Analysis, is a procedure to find a layout in each group which

will give the nearest approximation to line flow.

Burbidge's approach consists of a series of subjective evaluations, which require substantial local

knowledge in order to make any well-informed judgements. It is not surprising, as has been

discussed by Edwards (1972) and El-Essawy (1972), that most of the attempts to apply the

procedures have not been entirely satisfactory. Admittedly, most of the critical comment had been

made before Burbidge introduced the method of Nuclear Synthesis, but it is not clear how well this

works in practice and whether it has overcome the earlier criticism. The process of modification and

combination of nuclei is artificially restricted by the predefined number of groups. The number of

groups is in part determined by what is deemed to be a "sociologically acceptable size" which

Burbidge considers to be from 6 to 12 workers; in his example Burbidge uses the mean value of 9.

However, the number of groups would have changed by as much as 5 0 % either way, if instead of

choosing the mean value, Burbidge had chosen the lower limit of 6 or the upper limit of 12 for the

"sociologically acceptable size".

In spite of various difficulties, Burbidge's approach highlights the importance of partitioning the

problem into subproblems of manageable size. Without partitioning, the effort required to solve

larger problems would be excessive. Perhaps the most important conclusion that can be drawn from

Burbidge's work is that there is a large number of factors which cannot, at least for the time

being, be formulated explicitly but which could crucially affect the final outcome.

Component Flow Analysis (CFA) was first used in 1971 and distinguished as being different to PFA

(El-Essawy, 1971; El-Essawy & Torrance, 1972), and in spite of various claims and counter claims,

the similarity of the two approaches is apparent. CFA is made up of 3 stages of analyses. The

objective of the first stage is "to consider the total component mix of the company and to identify

and sort components into categories according to their manufacturing requirements". In essence, this

stage consists primarily of sorting the components in the order of machine requirements and printing

out the sorted list in two ways, firstly in the order of the number of machines required and

secondly in the order of the smallest machine numbers involved, ready to be manually analysed in

the second stage. The aim of the second stage is to obtain groupings of the machines using the

lists of sorted components and taking into account various local constraints. Rough groups are

formed by using the combinations with the highest number of machines as the cores (cf Burbidge's

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 58

nucleus, Purcheck's host), to which other machines and components are successively added. The

third stage involves a detailed analysis of the loadings and flow pattern of the cells with appropriate

adjustments to ensure that an acceptable design is achieved.

In some respects, the methodology of CFA does differ from that of PFA. For example, PFA first

partitions the problem, whereas CFA does not. The manner in which the cells are built up is also

different in the two methods. CFA also relies less on the subjective evaluation, since the way in

which problems can be tackled is described more precisely. Both methods, however, stress the

importance of local factors which it is not easy to formulate explicitly, and the need for careful

analysis of data both before and after group formation.

An attempt has been made by de Beer & de Witte (1978) to extend the basic approach of PFA to

explicitly consider both the question of machine duplication and different characteristics of the

machines. This method has been termed Production Flow Synthesis (PFS). One major difference

between PFS and the other methods discussed in this section is that the number of components

that require more than one cell is quite substantial. In the case study described, only 4 6 % of

components could be accommodated in single cells. There is also no detailed account of how

various cells are formed, a process which is crucial to both PFA and CFA.

5.5 OTHER ANALYTICAL METHODS

As Gallagher & Knight (1973) have pointed out: "The crux of the problem of introducing group

technology is the identification, from the large variety and total number of components, of the

families requiring similar manufacturing operations on similar machine tools". Unfortunately, as

Burbidge (1973, p7) states "It has proven to be surprisingly difficult to find a method suitable for

the computer". El-Essawy & Torrance (1972, p167) came to a similar conclusion: "... the use of a

computerised method to decide on these 'rough' groupings requires an unjustifiably sophisticated

procedure".

The processing requirements of components on machines can be represented in graph theoretic

terminology as a bipartite graph G(Vm, Vc, A) where Vm and Vc are the two sets of vertices of

the graph which correspond respectively to the machines and components. A is a set of arcs of the

graph such that:

1 If an arc exists between machine vertex / and component vertex j (a,y= 1) then

component j requires processing on machine /

2 If an arc does not exist between machine vertex i and component vertex j (a,y=0) then

component j does not require processing on machine /'.

Each vertex of the graph can be viewed as a compound element if so desired and components

which require exactly the same set of machines may be depicted as a single vertex. Similarly

machines of the same type can, if required, be represented as a single vertex. Such devices can be

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 59

used to reduce the overall size of the graph.

The processing requirements of the components on the machines are also specified by the incidence

matrix representation of the bipartite graph. It is easy to see that in this form the problem of

allocating machines to groups and components to associated families reduces to that of finding a

block diagonal form of the ay— 1 entries in the incidence matrix by appropriately rearranging the

order of rows and columns. An example of a machine component incidence matrix is shown in

Figure 5.1.1 (where it should be noted that all ay— 0 values are shown as blank entries). Figure

5.1.3 shows a block diagonal arrangement achieved by row and column changes that produces a

solution of the two machine groups with two associated component families.

There are many algorithms which would readily identify a block diagonal form, if one exists. With

the exception of the ROC algorithm, the methods to be outlined have not been specifically tailored

or designed for the group formation problem in Group Technology. Iri (1968) suggests one of the

simplest methods, using a masking technique. This may be described briefly as follows: Starting

from any row, mask all the columns which have an entry in this row, then proceed to mask all

rows which have entries in these columns. Repeat the process until the numbers of masked rows

and columns stop increasing. The masked rows and columns constitute a block. If none exists, the

entire matrix is masked as one group. It is not, however, possible to modify this procedure to take

account of the case where there might be, say, a few non-conforming elements in what would

otherwise be a pure block diagonal problem.

McCormick et al (1972) have developed a matrix clustering technique which they call the Bond

Energy Algorithm (BEA). The BEA is applicable to any matrix in which non-negative integer values of

an element in the matrix express a measure of the degree of association of the corresponding row

and column entities. What the BEA seeks to determine is a permutation of the rows and columns in

which the sum of the products of adjacent elements is maximized. This is a restricted form of the

quadratic assignment problem. The BEA is a sub-optimising procedure which uses a single pass

heuristic applied to both rows and columns. The algorithm will reveal a block diagonal form if one

exists. However, it is more difficult to predict the behaviour of the algorithm in cases where there

exist a few exceptional elements that cannot be fitted into such an arrangement.

King (1979) shows that if the patterns of row entries are read as binary words they can be ranked

in reducing binary value order. This then permits the rows to be rearranged in accordance with this

rank order. The same procedure can be repeated on the columns. This process may be repeated for

rows and columns alternately until no further rearranging of rows and columns is possible, at which

point a block diagonal form will be produced if one exists.

This process is illustrated in relation to an example problem with the machine-component incidence

matrix shown in Figure 5.1.1. Binary ranking by row leads to the rearrangement of rows to form

the matrix shown in Figure 5.1.2. Binary ranking of the columns of Figure 5.1.2 leads in turn to a

rearrangement of columns to form the matrix of Figure 5.1.3. The latter cannot be rearranged

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 60

further and, as will be seen, constitutes a block diagonal form.

This particular procedure of reading the entries as binary words presents some computational

difficulties. Since the largest integer representation in most computers is 248-1 or less, the

maximum number of rows or columns that could be dealt with in this way would be 47. To

overcome this limitation, element by element comparisons for carrying out row or column ranking

are used. For example, row 1 (0101110) and row 4 (0101010) of the matrix in Figure 5.1.1 are

compared successively digit by digit from left to right. Five comparisons are needed to conclude that

the index of row 1 is larger than that of row 4, as the first four pairs of digits are the same. The

process is repeated for the other rows until the complete row ranking is obtained. The procedure is

applicable to column ranking as well and it is the basis of the iterative Rank Order Clustering (ROC)

algorithm developed by King (1979, 1980). This procedure has a computational complexity of cubic

order, namely 0(mn(m+ril), where m and n are the numbers of rows and columns respectively.

The block diagonal structure illustrated in Figure 5.1.3 is the exception rather than the rule. If it

exists then the ROC algorithm will generate it. More commonly the elements in the matrix are such

that they cannot be divided into mutually exclusive diagonal groups. This case presents no real

problem since the ROC algorithm can still be used to generate a diagonal structure which may

contain one or more elements that do not conform to the block form. These elements can be

considered as exceptional elements comprising machine-component combinations that would not form

part of the the machine-component groups represented by the remaining pure diagonal blocks. As a

simple illustration, if the matrix of Figure 5.1.1 had contained an additional 1 element, say (3,6),

then the ROC algorithm would have produced, after two iterations, the final result shown in Figure

5.2. It will be seen that this contains exactly the same groupings as the result shown in

Figure 5.1.3, except that now (3,6) is an exceptional element.

The formal procedure for dealing with the exceptional elements adopted by King may be described

as follows: (i) Use the ROC algorithm to generate a diagonal structure (with probably one or more

overlapping groups), (ii) Identify the exceptional elements (those elements in overlapping groups

whose removal would allow a separation of the group to be achieved), (iii) Temporarily ignore the

exceptional elements so that the ROC algorithm can be continued to enable a block diagonal form to

be produced, (iv) Reinstate in this final matrix the previously ignored exceptional elements

designating them by asterisks instead of 1's.

The explicit identification of exceptional elements in this way allows us to concentrate on only a

small part of a matrix at a time; namely the potential overlap between any two groups.

Consequently, even in cases where there are a large number of exceptional elements, this procedure

can still be used to deal step by step with the exceptional elements in all the potential overlaps.

By way of illustration the original matrix in Figure 5.1.1 is modified to include additional elements

(3,6) and (5,5): In this case stage (i) of the procedure would generate the matrix shown in Figure

5.3.1. Stage(ii) would identify (3,6) and (5,5) as exceptional elements. Stage(iii) would generate the

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 61

block diagonal groups of 7's shown in Figure 5.3.2 and stage(iv) would insert the asterisks

indicating that (3,6) and (5,5) are the exceptional elements.

Where particular types of machines are required by a large number of components, King(1980)

suggests a relaxation procedure which determines the number of duplicated machines required to

eliminate the bottleneck, as well as their disposition in the block diagonal structure produced. This

procedure, however, greatly increases the dimension of the matrix because it begins by assuming a

relaxation of one machine to one component. As the computational complexity of the ROC algorithm

is of cubic order, this is a severe practical limitation on the use of this procedure for problems of

anything other than modest size.

There is another approach similar to the ROC algorithm for clustering data where, instead of

weighting the positions of the rows or columns in an exponential manner, the weights are increased

linearly (Graham et al, 1976). In the specific archaeological application described by Graham et al

the Ith row is given a weighting of m-H-1, where m is the total number of rows, and the priority

ranking value is determined as the mean of the weightings of the non-zero entries. Ranking values

calculated this way can be found and sorted very quickly and the requirement of a very large

integer representation does not arise. In practice, the clustering algorithm is used to compress the

entries into a band along the major diagonal of the matrix. If a block diagonal form exists the

procedure will determine it. If this occurs then the attempt to determine a time seriatlon of

archaeological evidence has failed: thus, in complete contrast to machine and component grouping,

the hoped for result in any archaeological application is that the data will not break down into a

block diagonal form. The major disadvantages of this linear weighting algorithm are the complicated

and very confusing patterns of the intermediate results together with the difficulty in predicting the

behaviour of the procedure.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

62

B I N A R Y W E I G H T S 2® 26 2 4 23 22 2 1 2o

C O M P O N E N T S B I N A R Y

1 2 3 4 5 6 7 R A N K I N G

1 1 1 1 1 4

2 1 1 2

M A C H I N E S 3 1 1 1 1

4 1 1 1 5

5 1 1 3

F i g u r e 5 . 1 . 1

B I N A R Y W E I G H T S 1 2

C O M P O N E N T S

3 4 5 6 7

24 3 1 1 1

23 2 1 1

22 M A C H I N E S 5 1 1

2i 1 1 1 1 1

2o 4 1 1 1

B I N A R Y R A N K I N G

F i g u r e 5 . 1 . 2

3

2

M A C H I N E S 5

1

4

C O M P O N E N T S

1 3 7 2 4 6 5

1 1 1
1 1
1 1

1 1 1 1
1 1 1

B I N A R Y

R A N K I N G

1
2

3

4

5

B I N A R Y R A N K I N G

F i g u r e 5 . 1 . 3

F i g u r e 5 . 1

M a t r i x s o r t i n g u s i n g the ROC a l g o r i t h m

63

C O M P O N E N T S

1 3 7 6 2

3

2

M A C H I N E S 5

1
4

1 1 1
1 1
1 1

1

1 1 1 1
1 1 1

F i g u r e 5.2

F i g u r e 5 . 1 . 1 w i t h an a d d i t i o n a l eleaient

C O M P O N E N T S

1 3 6 7 2 5 4

f i g u r e 5 . 3 . 1

C O M P O N E N T S

1 3 7 6 2 5 4

3

2

M A C H I N E S 5

1
4

F i g u r e 5 . 3 . 2

F i g u r e 5.3

S o r t i n g m a t r i x w i t h e x c e p t i o n a l e l e m e n t s

1 1 1
1 1
1 1

*

*

1 1 1 1
1 1 1

6 The Design and Applications of the ROC2 Algorithm

6.1 INTRODUCTION

Of the papers reviewed in the last chapter, most tend to favour either similarity coefficient or

evaluative methods. As has been discussed in chapter 5, these approaches exhibit certain

weaknesses: the more important ones being firstly, the fact that the clustering techniques used in

the similarity coefficient methods are either too weak (in the case of SLCA) or too rigorous (in the

case of cliques), and secondly, the limitation on the size of problem that can be handled by

evaluative methods. The explicitness of the similarity coefficient and the flexibility associated with

evaluative methods are highly desirable characteristics. It is perhaps worth noting that explicitness

and flexibility are combined features of the improved and extended ROC procedure to be described

later.

The ROC algorithm at its previous stage of development by King (1980) has a number of major

limitations. Firstly, the storage of the incidence matrix as a two dimensional array puts a severe

limit on the size of the problem that can be tackled. A moderate problem with 50 machines and

2 0 0 0 components, together with the program, would require core storage in excess of 120 K

words. Secondly, because the sorting procedure has a complexity of cubic order, efficient

implementation is not possible for very large problems. The situation is exacerbated if the relaxation

procedure mentioned in the last chapter is included, since this significantly increases the

dimensionality of the problem.

By sorting with several rows or columns at the same time, instead of element by element, the

efficiency of the sorting procedure can be improved, even though this requires additional calculation

to find the priority ranking values for these rows and columns. By this device, and in conjunction

with an efficient computer sorting procedure, such as Quicksort or Mergesort, the overall complexity

may be reduced to 0(mn\og(mn)), compared with Oimrim+n)) achieved previously. Considerable

improvement in the computational efficiency can thus be achieved by this process, which has

particular relevance where problems involving large machine-component incidence matrices are

concerned.

An even faster sorting procedure that can be used in conjunction with a linked data structure to be

described is Least Significant Digit Radix Sort. Radix Sort does not incur the overhead of ranking

value calculations and the way in which the data are stored also means that part of the radix

procedure is already carried out, so that the overall effect is to provide an algorithm with a

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 65

complexity of 0(k), where k is the number of non-zero entries. The whole sorting procedure is thus

reduced to that of shifting the order of rows and columns which is designated ROC2, to distinguish

it from the earlier ROC algorithm described by King (1979, 1980).

6.2 DESIGN OF THE R0C2 ALGORITHM

The first major restriction that needs to be overcome by the new algorithm is the storage

requirement of the original implementation. Without a better storage scheme, only moderate sized

problems can be solved in this way. Since Incidence matrices of the kind involved in Group

Technology problems are usually very sparse, with densities unlikely to be higher than 5 - 10% , an

elaborate system of linked list structures would in general be economical. Various structures can be

found in the literature (Pooch & Nieder 1973; Berztiss 1975; Horowitz & Sahni 1976). The use of a

list structure brings two kinds of advantage. Firstly, by storing only the non-zero elements the

algorithm would only operate on the non-zero elements, which form a very small proportion of all

the elements of the matrix. Secondly, in appropriate cases, list structure can be treated as

analogous to the grouping together of numbers with the same radix in the Least Significant Radix

Sorting procedure. The operation of Radix Sort can be illustrated by the following example. Consider

the sequence of numbers 11, 32, 13 and 21. This sequence may be divided Into three groups, as

there are three radices 1, 2 and 3 involved, according to the last (i.e. least significant) digit. As 21

has 1 as the last digit, it is entered into radix band 1, 13 has 3 as the last digit and is therefore

put into radix band 3 and so on, as illustrated in Table 6.1.1. At the end of this process the

intermediate sequence is 13, 32, 11 and 21. If the process is repeated on this sequence but with

the division being made in accordance with the next significant digit (i.e. so that 21 is entered into

radix band 2 and 11 into radix band 7, and so on) then the final sequence, as illustrated in Table

6.1.2, will be 32, 21, 13 and 11.

R A D I X BAND

I N T E R M E D I A T E

S E Q U E N C E

. 2 1 . .11

. 13 . . 32 . . 11 . . 32 . . 21 . .13

. 3. . 2. . 7. . 3 . .2 . . 7

13 32 11 21

FINAL

S E Q U E N C E 32 21 13 11

T a b l e 6 . 1 . 1 T a b l e 6 . 1 . 2

In the case of binary numbers the number of the radix bands is essentially reduced to one, as any

number not assigned to the band of digit one, is assumed to have digit zero for that particular

MANAGEMENT SCIENCE IMPERIAL COLLEGE

HASH TABLE (COLUMN)

H A S H

T A B L E

(R O W)

ROW

N U M B E R

C O L U M N

N U M B E R

C O L U M N

P O I N T E R

R O W

P O I W r E R

Figure 6.1
A diagram of a storage scheme for the R0C2 algorithm

-CHAPTER 3 67

band. In the case of sorting a binary matrix the radix bands are, in effect, the rows or columns of

the matrix. List structure thus readily divides the entries into appropriate subgroups. In order that

both the rows and the columns may be easily accessed, a double list structure is required. Circular

lists may be appropriate in some applications. An example of such a structure with two hash tables

is represented diagramatically in Figure 6.1. Two hash tables are used to allow convenient random

access of any row or column.

Figures 6.2.1 - 6.2.5 illustrate how the radix sorting procedure can be applied to the sorting of a

matrix. In the case of row sorting, columns become radix bands, and in column sorting rows

become radix bands. As rows 2 and 3 have 1's in the fourth column, row 2 and 3 are moved to

the first and second positions respectively in front of row 7. The process is repeated with all the

remaining columns. The process can be reproduced using the list structure. The non-zero elements

in the fourth column can be found by accessing the data structure via the hash table (column). In

this case, rows 2 and 3 could be identified readily as shown in Figure 6.2.1. To indicate this fact,

2 and 3 in Figure 6.2.1 in the row order are underlined. The identified rows are moved to the

head of the queue to form an intermediate sequence, to be sorted again according to the next

radix. As can be seen, the matrix can be sorted by manipulating the row or the column order,

without having actually to move parts of the matrix around.

R A D I X S T A R T I N G

ROW ORDER

(1) 1 1 0 0
(2) 0 1 1 1

(3) 1 0 0 1

1 2 3

I n i t i a l m a t r i x

F i g u r e 6 . 2 . 1

RADIX I N T E R M E D I A T E

ROW ORDER

(2) 0 1 1 1

(3) 1 0 0 1

(1) 1 1 0 0

2 3 1

M a t r i x after the first pass

F i g u r e 6 . 2 . 2

RADIX I N T E R M E D I A T E

ROW ORDER

(2) 0 1 1 1

(3) 1 0 0 1

(1) 1 1 0 0

2 3 1

M a t r i x after the second pass

F i g u r e 6 . 2 . 3

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 68

R A D I X I N T E R M E D I A T E

ROW ORDER

"(2) 0 1 1 1
(1) 1 1 0 0
(3) 1 0 0 1

2 1 3

M a t r i x after the third pass

F i g u r e 6 . 2 . 4

ROW ORDER

(1) 1 1 0 0

(3) 1 0 0 1

(2) 0 1 1 1

1 3 2

M a t r i x after the f i r s t i t e r a t i o n .

F i g u r e 6 . 2 . 5

In order that the removal of exceptional elements, assignments of components to duplicated

machines, and the transfer of components between machines of the same types may be carried out

quickly in the ROC algorithm without a major disruption of the entire structure, the data structure of

the incidence matrix may be rearranged so that it comprises four main cells for each entry and two

hash tables. The two hash tables, one for the rows and one for the columns, are simply efficient

programming devices that allow the computer quick access to any row or column. The four cells

represent the row and the column of the entry, together with pointers to the next elements along

the same row and column. These pointers are part of the circular, double-linked list structure.

Circular lists are chosen because they allow better access in the removal or reassignment of an

entry.

The algorithm can be summarized as follows:

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 69

R0C2 Algorithm:

REPEAT

FROM the last column TO the first column

DO{row reordering)

locate the rows {machines) with entries;

move the rows with entries to the head of the row list,

maintaining the previous order of the entries

END DO{row reordering);

FROM the last row TO the first row

DO{column reordering)

locate the columns {components} with entries;

move the columns with entries to the head of the column list,

maintaining the previous order of the entries

END DO{cblumn reordering)

UNTIL (no change OR inspection required)

6.3 ILLUSTRATION OF THE ROC2 ALGORITHM IN USE

Consider again the example problem represented by the matrix shown in Figure 5.1.1 but this time

using the ROC2 algorithm. The stages involved in row reordering of the matrix are shown as

successive lines in Table 6.2.1. The first line shows the initial row list in which, for the last

column, column 7, the underlined entries 3 and 5 are the machines in this column and are moved

in this order to the front of the list, as indicated in line 2 of Table 6.2.1. For the next column of

the matrix, column 6, the machine entries are 1 and 4 and are indicated by underlining in line 2 of

Table 6.2.1. These entries are moved to the front of the list to form line 3 of Table 6.2.1 where,

in the next column, column 5, of the matrix, machine 1 is the only entry and is already at the head

of the list so that no change is necessary in this case. This process is repeated for each of the

remaining columns of the matrix of Figure 5.1.1, and finally results, as indicated in the last line of

of Table 6.2.1, in the new row order of 3,2,5,1,4 being determined.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 70

Row list

For c o l u m n n o .

New row o r d e r

T a b l e 6 . 2 . 1

S t a g e s in row r e o r d e r i n g using the R0C2 a l g o r i t h m

Column reordering is carried out in a similar way but starting with the current column order 1, 2, 3,

4, 5, 6, 7 and the current row order 3, 2, 5, 1, 4 (this is equivalent to Figure 5.1.2), and the

stages involved are shown as the successive lines of Table 6.2.2, where the new column order is

determined as 1, 3, 7, 2, 4, 6 and 5.

C o l u m n list

5 1 2. 3 4 5 6 7

4 2_ 4_ 6_ 1 3 5_ 7

For row n o . 3 2 4 6 5 1 3 1

2 1 7 2 4 6 5 1

1 1 1 1 2 4 6 5

New c o l u m n o r d e r 1 3 7 2 4 6 5

T a b l e 6 . 2 . 2

S t a g e s in c o l u m n r e o r d e r i n g using the R0C2 a l g o r i t h m .

It will be seen that the final row and column orders are the same as those in Figure 5.1.3.

6.4 A NEW RELAXATION PROCEDURE

One of the most difficult problems in using the algorithms to group machines and components is

that some machines are required by a large number of components. Most algorithms discussed have

not contained any effective means of dealing with this problem at all. Yet, if there is to be any

hope of applying such an algorithm in practice, this problem must be overcome.

If these machines are treated in the normal way, they will dominate the results in such a way that

no effective grouping could be deduced. By giving them a high priority as in King's (1980)

relaxation procedure, the side effect, namely the very large increase in the dimensionality of the

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 71

problem, becomes unacceptable.

The method proposed here is to give these machines less emphasis. By their nature, they tend to

be either simple machines or highly sophisticated ones. In cases where they are fairly simple, like

centre lathes, they tend to exist in large numbers and hence will be available in more than one cell.

If they are highly complicated machines which are capable of a large range of operations, they

would need to be treated separately. In either case, by disregarding them during certain stages of

grouping in order to remove their dominant effects, and reinstating them at a later stage, it is

possible to find the underlying pattern which otherwise might not be found.

Hence, a new relaxation procedure for the bottleneck machines is simply to ignore those machines

(rows) during the shifting process. This has the effect of slightly reducing the size of the,problem

instead of greatly increasing it as was the case in King's relaxation method mentioned earlier. The

operation of this new procedure can be best illustrated by considering the example shown in Figures

6.3.1 to 6.3.4. The ROC2 algorithm was applied to the original incidence matrix of Figure 6.3.1, in

the manner already described. It is clear, as shown in Figure 6.3.2 (the result generated after the

two iterations of the algorithm), that machines 8 and 6 are required by a large proportion of the

components and may thus be considered to be bottleneck machines. Two further iterations of the

ROC2 were therefore carried out, but ignoring the bottleneck machines 8 and 6. The result, as

shown in Figure 6.3.3, is that a general but incomplete pattern of a block diagonal form begins to

take shape. At this stage, various block diagonal combinations are possible, depending upon the

numbers of machines 8 and 6 that can be provided. For example, if there are two of each of these

machines available, then only two distinct machine-component blocks are feasible. Reference to

Figure 6.3.3, however, shows that there are three possible alternative band mergings, namely (i) 7

and 2, 3 and 4, (ii) 7 and 3, 2 and 4, (iii) 7 and 4, 2 and 3. After merging, the ROC2 algorithm

must be applied again to carry out the required regrouping. Figure 6.3.4 shows a combination which

requires four machines 8 and three machines 6, with one exceptional element. This was achieved

by simply allowing each band (except band 4) naturally to form a block with the machines 8 and 6,

and since there was only one component (no. 3,4) requiring machine 6, it was decided to assign

this component to machine 6 in band 2. The result compares favourably with King's (1980) previous

solution (four 8"s, four 6's and two exceptional elements) and Burbidge's (1973) solution (four 8"s,

four 6's and three exceptional elements).

MANAGEMENT SCIENCE IMPERIAL COLLEGE

FLOW MATRIX AFTER 0 I T E R A T I O N S

LOCATIONS
O O O O O O O O O I 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 1 3 3 3 3 U 3 1 1 1 'I
1 2 3 5 6 ? 8 9 0 1 2 3 ^ 5 6 7 8 9 0 1 2 3 1 5 6 7 8 9 0 1 2 3 ^ 5 6 ? 8 9 0 1 2 3
COMPONENTS
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 ^ ^ ^ ^
1 2 3 1 5 6 7 8 9 0 1 2 3 'I 5 8 7 8 9 0 1 2 3 1 5 6 7 8 9 0 1 2 3 8 5 6 7 8 9 0 1 2 3

1) 1 1 1
2) 2 1 1 1 1 1 1 1 1
3> 3 1 1 1 1 1
*1) *J 1 1 1 1 1 1 1
5) S 1 1 1 1 1 1 1 1 1 1 1 1 1
6) 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7) 7 1 1 1
8) 8 1
9) 9 1 1 1 1 1 1 1 1 1 1

10) 10 1 1 1 1 1 1 1 1
11) 1 1 1 1 1 1 1 1
12) 12 1 1 1 1 1
13> 13 1 1
1*0 1*1 1 1 1 1
15) 15 1 1 .1 1 1 1 1
16) 16 1 1 1 1 1 1 1 1

Figure 6.3.1

FLOW MATRIX AFTER 2 TTERATTON(S)

LOCATIONS
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
COMPONENTS
0 1 0 3 1 2 4 0 3 3 2 2 0 0 2 2 2 4 1 1 1 3 4 3 4 1 0 0 1 3 3 2 2 1 1 0
1 2 2 7 9 3 3 8 1 B 8 II 3 9 7 0 1 1 5 1 3 9 2 2 0 7 6 7 4 3 4 5 6 0 8 4
1 1 1 1 1 1 1 1 1 1 1 ! 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1
1

1 1
1

1 1 1
1

1 1 1 1 I
1

1 1 1
1

1 1 1
1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1
1 1 1

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1

3 3 3 i| l| H
7 8 9 0 1 2 3

3 3 0 2 1 3 2
5 0 5 9 6 6 2

1) 8
2) 6
3) 10
4) 7
5) 9
6) 1*1
7) 16
8) 2
9) 11

10) 1 3
11) 5 1 1 1 1 1 1 1 1 1 1 1 1
12) 4 1 1 1 1 1 1 1
13) 15
14) 3
15) 12
16) 1

1

Figure 6.3.2

FLOW MATRIX AFTER R ITERAT ION!S)

1) 0
2) 6
3> 10
' I) 7
r>) 9
6) 2
7) 16
0) 1R
9) 1

1 0) 5
I D R
1 2) 15
1 3) 11
1R) 13
1 5) 12
1 6) 3

LOCATIONS
0 0 0 0 0 0 0 0 0 1 1 1 1
1 2 3 R 5 6 7 8 9 0 1 2 3
COMPONENTS
0 1 2 1 3 3 2 «0 3 R 3 3 1
1 3 5 2 1 9 6 »2 7 2 8 2 0
1 1 1 !1 1 1
1 1 1 1 !1 1 1 1
1 1 1 1 1 1 i ;
1 1 1 •

I i 1 1 1 1 1
H 1 1 1 1 1

11
1 1 1 1 1

1 1

2 R 1 0 0
R 7

1 1 1

1 1

2
0

3
5

1 1 1

2 2
1 2

1 1 1

1 1

1 1

2 2
5 6

0 0
5 9

1

2 2
8 9

2 2
3 9
1
1

1 1 1
1 1 1

3

3
0

R
1
1

3 3 3 3 3 3 3 3 3 R R R R
1 2 3 R 5 6 7 0 9 0 1 2 3

3 0 1 1 12 0 2 3 2 1 2 3 3
3 8 5 6 «R 3 7 0 0 1 2 R 6

1 n 1 1 1 1
1 1 *

• 1

1 1 1

1 1 1 1 1 1 !

1 1 1

L

1 1

Figure 6.3.3

FLOW MATRIX AFTER 6 I T E R A T I O N (S)

(1) 10
2) 7
3) 6
H) 8
5) 9
6) 2
7) 16
0) 6
9) 8

10) 1*1
11) 1
12) 3
13) 5
1 *0 M
1 5) 15
16) 8
17) 6
18) 11
1 9) 8

(2 0) 13
(2 1) 12

LOCATIONS
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 2 3 ** 5 6 7 8 9 0 1 2 3 *l 5 6 7 8 9
COMPONENTS
0 1 2 1 3 3 2 0 3 3 *t 3 1 2 *l 1 0 0 1
1 3 5 2 9 1 6 2 7 8 2 2 0 8 0 8 *4 7 7
1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 1 4 M
0 1 2 3 1 5 6 7 8 9 0 1 2 3 5 6 7 B 9 0 1 2 3

3 0 3 3 1 1 2 0 2 0 2 1 3 * 1 0 1 1 2 0 2 2 3 1 2
5 6 1 6 9 1 1 5 3 9 9 3 3 1 8 5 6 1 3 7 0 0 1 2

1 1 1
1 1 1
1 1

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1
1 1 1 1

1 1
1 1 1 1 1

1 1 1 1 1. 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1

c n

1 1 1 1 1
1 1 1 1 1
1 1
1 1 1 1 1

Figure 6.3.4

Figure 6.3
Illustration of the use of the new relaxation procedure

-CHAPTER 3 76

6.5 INTERACTIVE R0C2 ALGORITHM

In order that the new relaxation procedure could be implemented efficiently, an interactive program

is extremely useful, though not absolutely vital. However, an interactive algorithm would allow the

analyst to use more information which has largely been left out or cannot be handled directly by

any algorithm. The analyst would be able to use his insight and local knowledge to ensure that the

suggested groupings are meaningful in the local context.

By implementing ROC2 as an interactive routine, it is possible to utilise our sophisticated visual

perception in helping to find a pattern. (It is well known that the human brain has extensive

capabilities in searching for and processing even very complicated visual patterns.) By way of an

illustration, consider the problem stated by de Witte (1979). The original matrix is shown in Figure

6.4.1. It can be seen that the components could be divided into two groups if machines F, G and

J can be duplicated, which is the case in this instance. Figure 6.4.2 shows the grouping after the

duplications are carried out. This solution is almost identical to the one derived by de Witte after a

labourious process.

M/Cs A B C D E F 6 H I J K L
M/Cs 2 1 1 2 1 4 5 1 2 7 3 1

1 1 1 1 • 1
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1
5 1 1 1 1 1

C 6 1 1 1 1 1
0 7 1 1 1 1
M 8 1 1 1 1 1 1 1
P 9 1 1 1 1 1 1
0 10 1 1 1 1
N 11 1 1
E 12 1 1 1
N 13 1 1 1 1
T 14 1 1 1
S 15 1 1

16 1 1
17 1 1 1
18 1 1 1
19 1 1

F i g ure 6 . 4 . 1
de Wi t te s o r i g i n a l machine compo nent ma

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 7 7

M / C s A B C D E F G H I J F G J K L

1

2

3
4

5

1
1 1 1
1 1

1
1
1

1 1
1 1 1 1 1

1 1 1 1
1 1 1

1 1
1
1 1

1
1 1

1 1 1 C 6

0 7

M 8

P 9

0 10
N 11

E 12

N 13

T 14

S 15

1 1
1 1
1 1
1

1
1 1 1
1 1 1 1
1 1 1

1

1

16
17

18
19

1
1 1 1

1 1

1
1

F i g u r e 6 . 4 . 2

de W i t t e ' s m a t r i x after d u p l i c a t i o n p r o c e s s .

The extended ROC2 procedure is implemented as an interactive program with various facilities to

rearrange the data in the manner required. It is this mechanism that makes possible the

experimentation of alternative mergings and groupings of the kind outlined above, as well as taking

account of the various practical constraints in determining an appropriate feasible solution to the

problem. The main program can be summarised by the following procedure.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 7 8

IF(start afresh)

THEN read data from original file

ELSE read data from continuation file

END IF;

REPEAT {the whole loop}

IF(information about machines and components required)

THEN print as much as requested

END IF;

REPEAT {interaction}

CASE

1: zoom a selected part of the matrix for detailed inspection;

2: specify exceptional elements;

3: return exceptional elements to normal status;

4: specify or remove bottleneck status of machines;

5: increase the number of machines of specific type;

6: merge machines of the same type;

END CASE

UNTIL(no further action required);

{end of interaction}

implement ROC2;

print current matrix and other data as requested

UNTIL(block diagonal form OR time off to consider next move);

{end of the whole loop}

IF(a final answer)

THEN print the final matrix and lists of machines and components

ELSE copy all the data to continuation file

END IF

Figure 6.5.1 shows the initial machine-component incidence matrix reported by Burbidge (1973) and

resulting from a practical study at Black and Decker Ltd. The extended ROC2 procedure just

outlined was applied to this data and the matrix in Figure 6.5.2 was obtained in the ninth iteration

of the second trial. The first trial, reaching 23 iterations before being terminated, arrived at a similar

result with a higher number of exceptional elements. The objective of these trials was to show that

even with a fairly complex matrix such as that shown in Figure 6.5.1, block diagonal structure can

still be achieved within moderate limits of computing (approximately 0.25 CDC Cyber 174 sec per

iteration and 20K of memory) and human resources. The computations were carried out without

specific data about the numbers of the various machine types available, since information of this

kind was not published in Burbidge's paper. (Had it been available, it could have been readily

incorporated into the analysis.)

The R0C2 algorithm will provide a pure block diagonal form if one exists, in just two iterations.

This means that in a very complicated matrix, various trial assignments of the exceptional elements

MANAGEMENT SCIENCE IMPERIAL COLLEGE

FLOW MATH IX AFTER 0 ITERATION(S)

LOCATIONS
O O O O O O O O O 1 1 1 1 1 1 1 1 1

123''Sfi7n90 123»l«}fi7n90123'»967fl901?3,IS67fl90123'l567890123'l967fl90123*1567090123*1567090123*1567090
COMPONENTS
oooooooooi 111111111????.?2Z?Z?333!313:«:l:<'l'i'i'l'l,l,l'i,HlSr>5r»555SS5r.ri66fir,6G667777777777noOOflOfl0009
1?3MSf»7090123,15670901?3,»S670901?3,lfifi70oni?3iisf>70001?3nsr»7n90123ns67no0i23Hs67n90l?Ti|5G7fl90

2) 1
3)
MY M
5) s 1 1 1 i i i 1 i i t 1 1 1 1 t i 1 1 1 1
6) 6 1 1 1 1 i t i i i l i i
7) 7 i i
0) 0 *

i
9) 9 1 i

101 10
1 1). 1 1 1 1 i i 1
1?)
13) 1.3 i i
1") 1*1 1 i i 1 i i
IS Y 19 1 1
16) 16 1 1 11 1 i 1 1 t i l 1 1 1 i i
17) 17 i i
1H) in 1 i

i

19) 19 i i i i i i 1
1

m i
20) 20 i i 1 i i i
?1) 2 1 i 1 i i l l i
22) 22 1 11 i 1 i 11 i i 1 11 1 i i i
23> 2 7 1
2*1) 2*1
29) 29 11 1 11 1 1 1 i t i i i 111
26) 26 1 1 1 1 1 i i i n i 1 1 1
27) 27 1 11 1 1 1 i i 1 1 11 i i m
20) 29 11 1 i n i t i i i i
20) 29 1 i
30) 30 1 1 11 1 1 n i i i i i
3D 31 11 i « 1 i 1 t i f
32) 32 111111 1 1 1 1 1 1 1 11 i n I i t i t i I i i i i i 11 i i
33) 33 1 111 i i i 1 i t i 1 i
)'•) 3'1 1 1 1 1 1 i i i t i 1 1 i t i 1 1 1 1 1 1 1 1 i
ISl 39 1 1 1 i 1 1

i
1 i i 1

16) 36 11 i i i i
1 1

i
1 i

i i i 1 11 i

Figure 6.3.1

ri.ow I'Atiiix afteii o iteratiouCs)

1) 3 9

2) 2 6

3) 3 2

9) 2 1

5) 9

5) 3 6

7) 2 2

0) 2 7

0) 1 0

1 0) 1 7

I t) 1 0

1 2) 5

1 3) 2 5

1 9) 1 0

1 5) 3 2

1 6) 2 0

1 7) 3 5

1 0) 2

» 9) 1 6

2 0) 1 9

2 1) 1 0

2 2) 1

2 1) 3 9

2 9) 3 ?

2 0) 3 3

2 6) 1 1

2 7) I I

2 0) 1 3

2 0) 3 9

3 0) 1 2

3 ') 6

1 2) 2 7

3 3) 1 9

3 9) 2 0

3 5) 3 6

3 6) 5

3 7) 2 5

3 0) 2 1

3 9) 2 0

9 0) 3 1

9 1) 2 6

9 2) 1 6

9 3) 2 2

9 9) 3 0

9 5) 1 9
or, 1 0

9 7) 7

9 0 } 2 3

9 9) 3

5 0) 9

5 1) 0

5 2 } 1 0

5 3) 1 2

5 9) 2 9

I . O C A T W N . O

0 0 0 0 0 0 0 0 0 1 1 l i m i t 1 2 2 2 2 2 2 2 2 ? 2 3 1 1 1 7 3 3 n 3 9 9 9 9 9 9 9 9 9 9 5 5 5 O 5 5 5 5 5 5 6 r » 6 6 r , f i 6 6 G 6 7 7 7 7 7 7 7 7 7 7 0 0 B 0 n n 0 0 ') 0 9

l 2 l 0 5 6 7 0 o o m 0 5 r » 7 0 0 0 1 2 3 0 5 6 7 0 n o i 2 3 9 5 6 7 0 9 0 1 Z 3 0 5 6 7 0 9 0 l 2 3 0 5 6 7 0 0 0 t 2 3 0 5 6 7 0 9 n I ? 3 9 5 6 7 0 9 0 1 2 J O 5 6 7 O 9 O

C I M i r O H E M T . 5

0 7 G 7 7 2 6 2 5 0 0 ' » 7 5 0 9 3 7 1 5 6 5 0 5 ^ 0 1 5 1 1 2 9 0 0 0 0 3 5 9 < 5 3 1 1 3 5 7 3 9 0 9 1 7 2 6 1 1 3 ' » 2 9 0 0 7 3 0 5 0 , i 2 3 l 5 f) 7 2 ? 0 0 0 0 7 n (» 1 3 2 9 1 2

9 9 M 0 7 0 5 7 I O 3 O 5 2 2 5 7 7 9 2 7 2 1 0 6 7 0 N 7 9 9 O 1 5 7 2 3 ' 6 0 9 1 3 1 9 2 6 9 5 6 9 5 0 1 2 0 < l 9 9 3 9 « 9 3 9 2 3 0 3 0 o r » 9 6 l 2 0 9 7 0 3 1 5 5 0 0 5 0 6

1 1 1 1 1 1 1 1 1 1

I I • 1 1 1 m m

1 1 m m

1 1 1 1

1 1

1 1 1 i t

1 1 1 1 1 n

1 e 1

1
a

1

0

m s- | 1 1 1

1 1 1 1 1 1 1 m t

t 1 I 1 1 1

1 I

1 1 1

I I

« I

III III
I I I I I I I

I I I

I I

1 1 1

1 l i l t !

t 1 m m 1 1 1 1

m m m 1 1 1

t n i n e

1 1 i t

1 t

m m

i n !
1 1 1 1 m m

1 1 n m m m

m i
1 1 1 1 m n m

1 1 1 m 1 1 «

1 1 m 1 1 n

1 1 n m 1 1 f

i 1 1

t i 1 i t

1 8 1

1 i t

m i n i n m

m m i n t

« m n 1

i n

1 1

1 »

1

F i g u r e 6 . 5 . 2

-Figure 6.5
Burbidge's problem end an alternative solution

MATRIX AFTER 0 I T E R A T I O N (S)

I)
1!)
3)
4)
r, >
A)
7)
U>
y \ y
' 7 C O '

1 0) ^ 1 0
i r >gi i
17 > 5 1 7
I A) 2 » 3
I 4)_i ! 4

I A) g t A
I 7) S , 7
10) I 0
1 V) 1 V
20) 20
21) 7 1 ;»';») •»

2 A) 2 A
7 4) 7 4
2 li) 73
7 A) 7 A
7 7) 7 7

LOCATIONS)
0 0 0 0 0
1 7 A 4 3
CONTROL VARIABLES
0 0 0 0 0
1 7 A 4 5
A A 7 7
A A A

A A 1
A A A

1 3

1 J.

A

A

A

A

0 0 0 1 1 1 I
7 0 V 0 I 7 •3

0 0 0 1 1 1 1
7 0 9 0 1 7 3
I t 2
1 1 7
t t

1
7 1 I

7 1
3 7 3 1 1
7 3 o
i» 7 3 A
3 9 3 A 1 1

r» ...

1 3 3
1 3 3 1

1 7 1 3
1 1 A

Figure 6.6.1

I 1 1 ! 1 2 7 7 7
5 A 7 II 9 0 1 7 3 4 5 A 7

1- 1 1 1 1 7 7 7 7 7 7 2
5 A 7 II 9 0 1 7 3 4 3 A 7

1 3
1 i 3
1 1

1
3 1 3 1

1 1 3 I 7
1 1
1

t
1 •1

t
1 1 7
1 i

3 1 1 1 3 t 1
1 3 1 1 l 3 7
1 1 3 1 1 1 3
1 1 3 1 7

1 3 I
1 3 7 3 t

3 3 1 7 3 1 t t
1 7 1 1 A

1 • 3 I
3 i 3 1

A

r<l.)N NUMBER 1

MATRIX AFTER 4 I T E R A T I O N S)

1) 21
2) 16
3) 5
4) 1 5
5) 26
6) 2
7) 2 2
0 > B *
V) ^ 4

10)2 3
11)2c14
1 2) ^ 1 0
1 3) o 9
1 4) £ 7
1 5) o l 3
1 6) ° II
1 7) 1 ?
I l l) 11
1 9) 1 2
2 0) 2 3
21) 6
2 2) 2 7
2 3) 17
2 4) 2 5
2 5) 2 4
26) 20
2 7) 1 0

LOCATIONS
0 0 0 0 0 0
1 2 3 4 5 6
CONTROL VARIABLES

1

0
7

2
9

9

1
0

0
3

1
2

1
0

3 3 3 3 1
3 3 3 1
3 3 3
3 1 3
1 3

1 2 1 1
1 2 1
1

1
2 1 1

9

1 1
1

3 3 3 3
3 3 3
3 3 3 2
3 2 3 3 1

3 3 3
1 3 3

1
4

0
7

1
1 2

9 1

2 1

0

3 6

9
4*1 . i

1
1

1 l
1 1

3 3 3 2 2 i 1 1
3 3 9 2
3 2 3 i ' 2 i
2 1 3 i 1
2 9 9 3
1 1 i 3 1
1 2 3 3
1 1 t 3 3

1 "8
al.

2 3

0 2

3 3 1 1
3 3 9 1
1 2 3 3 3
1 1 3

3
3

3

Figure 6.6.2

M A T H T V / v f t r p 4 T'l'FUA'i'l ON (9)

l.rV'ATfOM s
0 0 0 0 0 0 0 0 0 } 1 i I
1 7 i 4 s o 7 n 9 0 1 7 i
CONTROL VARIABLES
0 0 7 0 0 i n I I 7 0 n * 0
1 7 7 1 4 4 s 5 0 1 n 7 9

1) 1 9 n 0 n a a
7) ' 7 0 0 0 n a a
1) 7 -) 0 <> 0 a a a
4) 1 fi n n 0 0 o
SI 4 n n n 0 0 9
M 1 4 fi R n 0 9 9
7
I\
a

1 0
I I
I 7
1 1
I 4
I S
i r«
1 7
i n
I o
7 0
? i
7 >
7 1

(7 4

{ 7 S
1 7 0

{ 7 7)

1 S

i r>

y II
CO / < ' n

i o
_ j ! 9
o
cxl 1
§ n

<->) 7
0

7 1
1 7
77
7 S
7 0
7 0
74
1 0

9 4 4 4
4 9 9 9
4 9 9 9
4 9 9 9

4 4 A

3 3 3 3
3 3 1
3 3 3

Figure 6.3.1

1 1
7 n

7 ?
7 1

3
4 3 3 1
4 3 3 3
4 3 1 3
9 3
3 9

9 9
Q 9

9 9 4 4 3
O 9 4 4 3
4 4 9 9 n 3
4 4 9 9 n 3
3 3 a a 9 3

3 3 3 9
1 0 o
1 o 0

MATRIX AFTER 0 I T E R A T I O N S)

fi
7
n
0

I 0
I I
12
1 3
1 4
i s
1 fi
I 7
i n
I A
20
21
27
7 3
74)
?S
2fi
77

)
7

7 7
1
4

I 4
r>

I r>
1 fi
71

ui „
iii H

5> 7

lY
't \ 0

>
S 1 1

y •
° l 7
o

fi
7 3
1 7
77
7 r>
7fi
70
74
i n

l o c a t i o n <5
0 0 0 0 0 0 0 0 0 1 1 1 \
1 7 3 4 S fi 7 B n 0 I 7 3
CONTROL VARIABLES
0 0 7 0 0 1 0 I i 7 0 0 0
1 2 7 3 4 4 S 6 1 n 7 9
3 3 3 7 2 1 1
3 3 3 3 i 1 1
3 3 3 1 1 2 1

3 3 3 1 1 1 1
2 3 3 3 1

3 1 3 1 1
7 1 1 3 3 3 2 7. 1

1 3 1 3
1 7 1 1 3 1 3 3 I 1

3 3 3 3
1 I 1 2 1 3 2 2
1 I 1 1 1 2 1 2 3 2

1 2 2 3
2 I 2 3 3

1 1 1 1 I 1
7 7. 2 1 1 I

'>

1

Figure 6.3.1

1 1 1 1 7 7 2 2 7 7 2 7
fi 7 fl 9 0 1. 2 1 4 5 fi 7

1 1
3 1
2
2
2

1

1 1

1 1
1
I

3 3
3 3

3 3 I 2 1 1
3 3 1 1
1 1 3 3 1
7 1 3 3 3

1
1

3 3
3 1

I 1 1 1 3

MATIHX AFTKI l

LOCATIONS
0 0 0 0 0 0
1 7 1 4 5 0
CONTROL VARIABLES
0
7

0
\

2 ? 0
4

0
1

1
4

1 7 1 1 1 1
• 7 1 . 1 1 1 2

1 7 7 1 .1 1
4 4 1 2 1 1 1
r> 1 1 1 1
0 I 4 1 3 1
7 7 1
n r> ? I I
9 I 0 I 2 1 1

1 0 1 s I
11
1 7

l«l 1 1 I
2

1 1 5 . > I I 1 1 1
1 4
1 r>

ac n <C '
> 1 9 1 V 1 I

1 0
I 7

d » 1 7 7 7 I

i n
1 9

o l 7
C J 0

I

2 0 7 1
21 7 7
2 2 1 7 1
2 1 7 0
24 70
7 S 7 0
70 7 4
7 7 1 0 1 1

T T T r . n A T f O N (S)

0 0 0 I 1 1 1 I 1 1
7 h 9 0 V 7 3 4 S 0

2 0 1 V 0 1 0 0 1 1
1 r> 0 r> n 0 7 9 9 3

I I 1 1 7
7 1 I 2
1 2 1 1 1. 2

1
1 1 L I 1

1 2 1 1
3 3 3 3
3 3 3 2 1 2 I 1
3 3 3 1 I 1 1 1
3 I 3

2 I 3 2 2 ?
I 7 3 1 3 1 2
7 I 7 3 3 2 1
1 2 1 2 3
1 1 I 3 1

1 2 I \ 3
1 2
1 1 1
I 2

I 1
1 1 I

1 •
7
I

1 I

Figure 6.6.5

Figure 6.6
An airport design problem

I. 1 I 7 2 2 2 7 2 7 ?
7 0 9 0 1 ? .1 4 S r, /

1 1 0 2 7 1 7 7 7 7 1
I 2 0 1 7 7 5 6 0 4 0

1 1

3 3 2 I 1 1
3 1 1 1
7 1 3 3 I 1
I V 3 3 1

i

I
I i

3 I 7
1 1. 1. 3 3

oo
e n

2 1

-CHAPTER 3 86

and transfers of components between machines of the same type can be made and the results of

the effects can be quickly determined within two iterations. If the outcome is not as expected or

desired, a quick return to the previous stage can be achieved, followed by another trial run. This

interactive approach, and the ability of the ROC algorithm quickly to pick out any emerging pattern,

allows the designer to experiment with various alternatives. It also allows the designer to take

account, during the process of interaction, of other factors, some of which may be neither

quantifiable nor easy to formulate in a very precise manner.

6.6 OTHER APPLICATIONS OF THE ROC2 ALGORITHM

There are many other situations in which the use of the ROC2 algorithm is also appropriate. In

loading components for a highly sophisticated numerically controlled machine, where the changing

time of the tools for various operations become significant, the ROC2 algorithm has been used to

group the tools and the components appropriately. By loading the components of the same group in

sequence, the amount of tool changing time can be significantly reduced, without having to resort to

more complicated techniques. This problem is solved in less than 2 Cyber 174 seconds. An earlier

attempt to solve it using the SLCA required so much computing time that the job could only be run

at the weekend, and even then failed to provide any clear grouping. The use of SLCA also requires

access to a graph plotter.

The ROC2 algorithm can be used in the case of non 0-1 matrices by sorting the entries in

accordance with their values during the shifting process of the radix procedure. The airport design

problem of McCormick et al (1972) is used as an example to illustrate the procedure. The initial

matrix is shown in Figure 6.6.1 in which the machines and components of the production problem

are replaced by airport design variables that are under the control of the designers. The degree of

dependency between the variables is designated as nil, weak, moderate or strong and represented

in the matrix by the value 0, 1, 2 and 3 respectively. The problem as outlined by McCormick et al

reduces to that of determining a decomposition of the matrix elements into groups with minimal

interdependency. This is equivalent to the creation of a block diagonal clustering if possible.

A straightforward application of the R0C2 algorithm does not highlight the relationships between the

control variables adequately. However if the matrix is further processed using only entries higher

than 1, clearer relationships begin to emerge. It is also possible to experiment further by considering

only the strong elements of value 3 (Figure 6.6.2). As the grouping of the control variables may be

affected by the starting condition, nine random starting solutions were generated. The R0C2

algorithm was applied to the 3 entries. Figure 6.6.3 shows the numbers of times particular pairs of

variables were found within the same group. (Frequencies less than three out of nine are deleted for

clarity). In most cases, stable relationships emerge. The few elements that are unstable may be

assigned to the block in which they most frequently appear.

Although the final matrix using the R0C2 algorithm (Figure 6.6.4) may not look as neat as the

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 87

solution generated by McCormick et al (Figure 6.6.5), the final groupings are very similar. The ROC2

algorithm does not require the data to be metric, (they obviously are not in the case of the airport

design problem); it provides an approach for grouping ordinal data as no objective function is

required.

Grigoriadis (1980) suggests that most large scale LP problems can be formulated or permuted into

a block diagonal structure with a few connecting rows and columns. The bottleneck machines

example shows how such connecting rows can be identified. The same procedure applied to the

columns will identify the connecting columns. The R0C2 algorithm can also be used to investigate

the possible partitioning of the set covering problem (Hey 1980). The preliminary result of an

investigation into the use of the R0C2 algorithm in conjunction with the State Space Relaxation

method to solve the Set Covering Problem was encouraging. A problem which could not be solved

in less than 35 Cyber 174 seconds, was solved in less than 5 seconds using the partition

generated by the R0C2 algorithm. The lower bounds generated by partitionings using the R0C2

algorithm also appear to have higher values than those generated by random partitioning (Paixao

1982).

6.7 CONCLUSIONS

A practical solution to the problem of machine-component group formation requires a compromise

between an objective, explicit and repeatable algorithm on the one hand, and the flexibility of ad hoc

facilities to cater for specific considerations or constraints on the other hand. Similarity coefficient

methods are perhaps more explicit and hence more repeatable than most, but there is still much

more work to be done both on the sensitivity aspects of the various weightings that have been

advocated, and on the development of an efficient method for selecting one specific set of clusters

out of all the possible ones which can be generated. Evaluation methods per se are useful in smaller

problems. The method advocated in this chapter has an explicit and repeatable algorithm (R0C2)

and provides interactive procedures for ad hoc treatments. As described here, the method does not

explicitly include other considerations such as machine capacity constraints; these can however, be

incorporated quite easily within the existing data structure.

It would be unrealistic to hope that procedures such as the R0C2 algorithm will overcome all the

difficulties associated with machine-component group formation. This problem can be relaxed into a

well known Graph Theory problem called minimum k-connected, with extra constraints. The basic

minimum /c-connected problem alone is NP-complete (Garey & Johnson 1979, GT31), which implies

that it has no known polynomial-time algorithm. The determination of a grouping of machines and

components that would minimise the total material handling costs between cells would constitute an

even harder problem. For the moment, therefore, we must be content with procedures which

provide us with a good feasible solution and allow us to concentrate on more complicated and not

easily quantifiable issues in an ad hoc and interactive manner.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 88

As far as using the R0C2 algorithm as a clustering method is concerned, the main advantages are

that very few assumptions are made concerning the nature of the data. Another feature is that

there is no necessity for a prior specification of the number of clusters required. The ROC2

algorithm is also neither a hierarchical nor an optimizing procedure. As the algorithm is very fast

and no loss of information of any kind results from the processing, it is ideally suited to exploratory

data analysis or data reduction on a large set of input, where other methods (such as the Bond

Energy Method of McCormick et ah may necessitate an unacceptable amount of computing time.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

7 Sequence-Dependent Setup Time Scheduling Problems

7.1 INTRODUCTION

Sequence-dependent setup time scheduling problems (SDSTSPs) are commonly found among the

cases where single facilities are used in the manufacture of several products. This is more

pronounced in the process industry where some amount of cleaning may be required between the

production of various batches, such as in the making of paints and detergents. Other examples can

be found among the usages of automated multi-purpose machinery, where the setup time between

various jobs can be very expensive, or in certain assembly lines where retooling and rearrangement

of work stations represent the setup activity. In practice, even though many scheduling problems are

strictly sequence dependent in their setup times, it is only beneficial to consider the problems as

such if the setup constraints are a predominant factor, either in absolute terms or relative to the

operational cost (time).

7.2 THE TRAVELLING SALESMAN PROBLEM

The SDSTSP can be formulated as an asymmetric travelling salesman problem (ATSP). The travelling

salesman problem (TSP) is one of the most studied combinatorial problems, since many problems

that arise in practical situations involving sequencing and routing can be formulated as TSPs. The

TSP can be described as: given an n by n distance matrix between n cities, find a minimum length

circuit that passes through each city once and only once. The problem can be formalized as:

Minimize 2 , t a/ 2/ t n c,^ (7.1)

subject to N Xij — 1 (7.2)

2 , e N *ij = 1 <7.3)

Xjj = 1 if arc// is in the tour; x,j — 0 otherwise (7.4)

Xjj must form a tour (7.5)

There are various ways to express the constraint (7.5) explicitly (Gavish & Graves 1979). It is,

however, easy to implement a subtour elimination procedure in a heuristic and hence constraint (7.5)

will not be elaborated.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 90

7.3 SOME THEORETICAL CONSIDERATIONS FOR THE TRAVELLING SALESMAN PROBLEM

The TSP, like certain problems investigated in this thesis, is an NP-complete problem (Garey et al,

1976). It is, however, easier than the problems considered in earlier chapters, as the size of TSP

problems that can be solved in a reasonable time is considerably larger. This is achieved by

imposing certain restrictions on the distance matrix. The two main restrictions are that the matrix is

symmetric and that the distances are Euclidean. The symmetric property reduces the solution spaces

by half. The Euclidean constraint, also known as the triangularity constraint, implies that for any /' j

and k the following condition holds true:

cik + ckj > Cy (7.6)

This constraint provides many useful properties which can be used in the search for the solution.

One of the more important ones is that the order of vertices in the convex hull of the distance

matrix is the same order in which these vertices appear in the optimal tour (Gonzales, 1962).

In the case of the SDSTSP, the distance matrix is usually not symmetric and more importantly the

distances are quite often non-Euclidean. The asymmetric matrix increases the solution spaces by

100% over the symmetric case. The non-Euclidean property implies that no heuristic can be

guaranteed to provide a solution within a fixed bound. It is generally recognised that the non-

Euclidean TSPs are significantly more difficult than their Euclidean cousins (Papadimitriou & Steiglitz,

1978).

7.4 LITERATURE SURVEY

The majority of the papers dealing with the TSP are confined to symmetric Euclidean distances.

Some of the techniques described in these papers can be applied directly or with minor

modifications to the asymmetric and non-Euclidean cases. The approach of using various Linear

Programming relaxations (eg Crowder & Padberg, 1980; Miliotis, 1976) will not be discussed as this

necessitates access to an efficient LP package. Furthermore, the approach is not competitive with

other branch and bound methods for the asymmetric case (Christofides, 1979).

An optimal procedure for TSPs is generally based on a relaxation of the original TSP problem either

into a shortest spanning tree (SST) problem or into an assignment problem (AP). The examples of

the earlier approach were suggested by Held & Karp (1970, 1971) and Hansen & Krarup (1974).

The underlying idea of the SST relaxation is that, if a vertex and its two associated arcs are

removed from a tour, the remaining arcs form a spanning tree. Hence the cost of the shortest

spanning tree together with the two shortest arcs associated with the removed vertex provides a

lower bound for the TSP. By using the Lagrangean relaxation technique, the bounds can be updated

until all but two of the vertices of the spanning tree have degree 2. At this stage a feasible

solution is found. The AP relaxation is intuitively related to the TSP since the AP is the TSP without

the constraint (7.5). The solution is obtained by successively solving the problem as an AP witN

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 91

penalty functions associated with the violations of the constraint (7.5). Recent results suggest that

the AP relaxations are more useful in the asymmetric case than other forms of relaxation

(Carpaneto & Toth, 1980; Balas & Christofides, 1981).

Heuristic approaches to the asymmetric TSP can be divided into two classes; construction heuristics

and improvement heuristics. The construction heuristics can be divided further into two subclasses;

tour building and tour patching methods. A tour building method iteratively selects a small number

of arcs, usually one, by a certain set of criteria until a tour is formed. A typical example is the

nearest unvisited city heuristic (Eilon et al, 1971). In this heuristic, an arc is selected if it forms the

shortest arc to an assigned city without creating a subtour. Van Der Cryssen-Rijckaert (1978)

heuristic is based on a concept of shadow cost, namely a potential loss, if an arc is not assigned at

a particular stage of the iteration. A shadow cost heuristic will select the arc with the highest

associated shadow cost for an assignment. Both heuristics have the time complexity of Oin2), and

in both cases when an arc is assigned it remains part of the tour permanently. In a tour insertion

heuristic, an assigned arc can be removed in a subsequent iteration. Given a starting point, a

subtour is created by iteratively inserting a node into the subtour according to a set of criteria, until

all the nodes are included and a feasible tour is formed. The time complexity of a tour insertion

procedure is CHn3). The criterion often used in the tour insertion heuristic is the minimization of the

increase in the subtour cost.

A tour patching heuristic solves a relaxed problem in the same manner as the optimum procedures.

The difference is that the relaxed problem is solved only once in a patching heuristic. If the solution

is a feasible tour, then the optimum solution is achieved. More often, the solution is not feasible,

and ways have to be found to change the solution into a feasible one. Alk (1980) suggested a

heuristic based on the SST relaxation where the patching algorithm is carried out by solving an

associated transportation problem. Karp's (1979) heuristic is based on the AP relaxation, and the

subtour elimination is also formulated as another assignment problem.

Improvement heuristics for the asymmetric case are largely extensions of the approaches adopted for

the symmetric case (Kanelakis & Papadimitriou, 1980). These include the variable depth search and

n-opt heuristics.

The only paper found on the interactive approach to TSP problem is by Krolak et al (1971). It is a

cumbersome manual implementation involving intensive human effort in the interpretation of the

intermediate solutions in a graphical manner. The visual aspect of the implementation limits the sizes

of the problems to relatively small ones. The non-Euclidean distances would reduce the potential

benefit of visual interaction even further. It is unlikely that interaction with the TSP in this manner

would be beneficial.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 92

7.5 A FRAMEWORK FOR EMPIRICAL STUDIES OF SOME HEURISTICS

One of the results of the Euclidean restriction is that the worst case behaviours of many heuristics

can be analysed in advance. For example, the nearest neighbour heuristic is guaranteed to produce

a tour within a factor of log(n) of the optimal value in the symmetric case (Rosenkantz et al, 1977)

and within a factor of n/2 in the asymmetric case (Frieze et al, 1982). In the non-Euclidean case, it

cannot be so analysed. To illustrate the difficulty, consider a transformation of a non-Euclidean

distance matrix to satisfy the triangularity constraint by adding a number M, which may be arbitarily

large, to all distances. This would lead to the overall increase of the final tour length by nM.

Hence, the bound guaranteed by the nearest neighbour routine is log(n)(nM + previous optimum).

Since M may be arbitarily large, there can be no effective guarantee of the bound. Performances of

various heuristics can only be compared empirically.

Four construction heuristics are studied. The first is based on the bounding calculations suggested

by Little et al (1963). Although the bounds calculated are not as tight as the ones generated by the

use of AP or SST relaxation, Little's method always considers only feasible solutions and hence

does not require further patching procedure, as is the case of AP or SST relaxation. The heuristic

can be summarised as follows:

REPEAT

for every row /', reduce cost c,y by c, ,

where c, is the minimum of row /';

for every column j, reduce cost Cy by Cy,

where is the minimum of column j-,

for every c,y = 0, calculate the increase in the

lower bound by — p(/) + q(j),

where

p(i) — min c,k k ^ /',

q(i) — min ckJ k j:

assign arc ay to the solution for the maximum by,

update the matrix to prevent subtour formation;

UNTIL a tour is assigned

The value of by is the potential increase of the lower bound of the TSP if the arc ay is excluded

from the tour (Little et al, 1963). At any stage of the iteration, an arc is included if its exclusion

results in the highest increase of the lower bound, by. The second heuristic tested is the standard

nearest unvisited city adapted for the asymmetric case. The third heuristic is based on a shadow

cost method and the final one is the nearest tour insertion heuristic.

A shadow cost of an arc can be defined in many different ways. In this chapter, two definitions of

shadow costs are studied. The more comprehensive one, to be called shadow 1, is similar to the

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 93

one suggested by Van Der Cryssen & Rijckaert (1978). The second definition, shadow2, takes a

simplistic approach. In the shadow 1 definition, the shadow cost of an arc is defined as the

difference between the cost of the best local assignment if the arc is excluded from consideration,

and the best local assignment if the arc is included. A local assignment is an allocation of an arc

entering or leaving a node if the node has already been assigned as leaving or entering the node

respectively. In the case where no arc has been assigned to the node, the combined cost of arc

entering and leaving the node will be considered in the calculation of the shadow cost. In the Van

Der Cryssen-Rijckaert heuristic, the shadow cost is not used in a consistent manner. This leads to

some different assignment criteria to the ones used in the shadow 1 heuristic. Some of these

differences will be indicated in the next section.

7.5.1 Shadowl Heuristic for the Asymmetric Travelling Salesman Problem

A shadow cost heuristic essentially considers assigning an arc if a penalty associated with the

alternative assignment is highest, in order that the discussion regarding a local arrangement can be

conveniently carried out, the following notations are adopted:

/': node under consideration;

x v x2, x3: the shortest, the second shortest

and the third shortest arcs into node i respectively;

yv y2, y3: the shortest, the second shortest

and the third shortest arcs leaving node i respectively;

TX1, TX2, TX3: the nodes associated with the three shortest

arcs into node /' such that c(TX 1, i) — xv

(ATX2, /) = x2, and ciTX3, i) = x3;

7Y1, TY2, TY3: the nodes associated with the three shortest

arcs leaving node /' such that c(i, TV1) = yv

c(i, TY2) = y2, and di, TY3) = y3;

A representation of the above description is shown in Figure 7.1.3. It should be noted that x3 and

yz are not represented in the following diagrams as their relative locations do not affect the

shadow cost consideration.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 4

Figure 7.1.1

Case 1 of an active node under consideration

in a shadow cost heuristic, an arc is assigned at each iteration by considering all the nodes. A
node can be in one of the following states: A node is nonactive when an arc entering and an arc
leaving the node have already been assigned. A node is partially active if an arc entering or leaving
the node is assigned. Finally, a node is active is there is no assigned arc entering or leaving the
node, if a node is nonactive, it is not processed, if the node is partially active and the arc leaving
the node has already been assigned, the shadow cost of the arc (7X1, /) is x2 - xv Similarly the
shadow cost of the arc(/, 7Y1) is y2 - y, when the arc entering node / has already been assigned,
in the case of a fuliy active node, there are seven possible configurations regarding the locations of
nodes 7X1, 7X2, 7Y1 and TY2. The first and second configurations are shown in Figures 7.1.1-
7.1.2.

Figure 7.1.2
Case 2 of an active node under consideration

It will be seen that in cases 1 to 5 the cheapest pair of incident arcs of a node are 8rcs (7X1, ii

and (/, 7Y1), for a cost of x1 - f yv in both cases 1 and 2 the least cost combination excluding
the arc (7X1, /) is arc (TX2, ii and (/', 771) at the cost of x2 + yv Hence the shadow cost of arc
(7X1, ii is x2 - x v Similarly it can be shown that the shadow cost of arc (/', 7X1) is y2 - yv The

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 95

shadow cost with respect to node / is

Max(x2 - x v y2 ~ Yi) (7.7)

Figure 7.1.3

Case 3 of an active node under consideration

in case 3, if the arc (7X1, /) is excluded, there are two possible candidates for the least cost

combinations; arc (7X2, t) together with arc (/, TY2), or arc (7X3, i) together with arc (/, 7Y1). (It

should be noted that Van Der Cryssen-Rijckaert heuristic only considers the latter combination). The

shadow cost of the arc (7X1, /) is
Min {(x2 + y2) - (x, + y,), Xg - x,]

The shadow cost of the arc (/, 7Y1) is the same as in cases 1 and 2. The shadow cost with

respect to node / in case 3 is

Max { Min((x2 - f y2) - (x, + y,), Xg - x,), y2 - y,] (7.8)

Similarly, it can be shown that the shadow cost in case 4 is

Max [x2 - x v Min((x2 + y2) - (x, + y,), y3 - y,)] (7.9)

and the shadow cost in case 5 is

Max [Min((x2 -I- y2) - (x, + y,), xs - x,), Min((x2 + y2) - (x, + y,), y3 - y,)] (7.10)

In cases 6 and 7, Figures 7.1.6-7.1.7, there are two main candidates, namely arc (7X1, r) together

with arc (/, 7"Y2) or arc(7X2, /) together with arc (/, 7Y1). The shadow cost is

Abs[(x1 + y2) - (x2 + y,)] (7.11)

7.S.2 Shadow2 Heuristic for the Asymmetric Travelling Salesman Problem

The shadow2 heuristic is a simplified version of the shadow 1 procedure. In the case of the partially

active nodes, the shadow cost calculations are exactly the same. In the case of the active nodes

the shadow cost function is the same as the cases 1 and 2 of the shadow 1 heuristic. Both shadow

MANAGEMENT SCIENCE IMPERIAL COLLEGE

9 6

TX1=TY2
Figure 7.1.4

-CHAPTER 3 9 7

cost heuristics can be summarised as:

REPEAT

FOR i — 1 TO n DO calculate the shadow cost;

select the arc with the highest shadow cost;

assign the arc and update the matrix;

UNTIL a tour is formed;

7.5.3 Implementations of 3-Opt and 4-0pt Improvement Heuristics

improvement heuristics considered in this chapter are limited to the 3-opt and 4-opt versions for the

asymmetric case only. An n-opt improvement heuristic considers removing n existing arcs, to be

replaced by n new ones. The 3-opt heuristic for the symmetric case involves seven extra

alternatives (Eilon et al, 1971). In the asymmetric case, there is only one extra option as shown in

Figure 7.2. In the other six cases, the asymmetric counterparts require parts of the original tour to

have the direction of traversal reversed. Although this may lead to alternative tours, it is considered

unlikely that such changes in the tour would result in the lowering of the tour length. The 3-opt

implementation will consider the case 1 in Figure 7.2 as the only alternative. The runtime complexity

of the 3-opt heuristic is CXn3).

The 4-opt heuristic generates 5 extra alternatives as shown in Figures 7.3.1-7.3.2. (In the

symmetric case, there are 46 extra alternatives). Closer inspection of these alternatives reveals that

only case 4 in Figure 7.10 involves four new arcs. The remaining three cases involve only three

new arcs, and as such, the implementation of the 4-opt in a straightforward manner involves many

repeated calculations of these four cases. The four cases can be efficiently implemented as 3-opt

exchanges. Kanellakis & Papadimitriou (1980) suggest a fast implementation of the 4-opt exchange

of case 4. This implementation, even though it still has a worst case behaviour of Otn4), should run

somewhat faster than the direct implementation.

As the improvement heuristics are likely to be much slower than their construction counterparts, the

steepest descent strategy may not always be appropriate. The steepest descent requires a complete

search of all possible improvements, followed by the selection of the one with the largest reduction.

The search procedure is then repeated until there is no further improvement. In order to study the

effects of the selection strategies, two implementations of the 3-opt and 4-opt heuristics are tested.

The first set, greedy strategy, exchanges arcs as soon as a beneficial exchange is found. Once the

exchange has taken place, the search is restarted at the last unchanged condition. The second set

implements the steepest descent strategy. In the greedy strategy, the solutions of the 3-opt heuristic

are used as starting solutions for the 4-opt searches. Improvement strategies are implemented

independently in the implementation of the steepest descent strategy. There are some other

exchange strategies, all of which will be faster than the steepest descent strategy and most will be

slower than the greedy strategy. The results from the two selected implementations provide bench

marks for other 3-opt and 4-opt exchange strategies.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

9 8

4 * '

x *

Case 0

\> t2

»

f1

1 2

f 3

Casel

Figure 7.2
3-opt arc exchange

99

V -

o-
f 4

CASE 0

11 2"

i -
f4 CASE 1

t l C ^

\

u
CASE 2

Figure 7.3.1

1 0 0

f4 t3
CASE 3

t1 f 2

f1 f .

y

P t2

t4
•»- • ' * • ;
/ \ f3

f4
CASE 4 t3

t1 f2

t l c^

t4

t2

r - '

f 3

f 4 t 3
CASE 5

Figure 7.3.2

Figure 7.3
4-oot am avRhanne

-CHAPTER 3 101

SDW1 SDW2 SDW1 SDW2 SDW1 SDW2 SWD1 SDW2

1 84 69 21 67 55 1 177 146 21 165 161

2 91 99 22 71 63 2 150 150 22 171 172

3 87 87 23 56 51 3 185 185 23 119 134

4 91 91 24 65 64 4 189 189 24 168 152

5 115 117 25 70 112 5 285 247 25 169 200

6 88 88 26 81 79 6 208 173 26 203 183

7 84 69 27 75 65 7 187 187 27 140 192

8 88 89 28 81 85 8 192 192 28 151 179

9 91 87 29 69 73 9 189 241 29 181 170

10 99 103 30 59 50 10 237 232 30 152 160

11 82 91 31 63 69 11 216 216 31 219 178

12 79 89 32 76 61 12 175 224 32 163 160

13 97 102 33 84 62 13 169 163 -33 239 162

14 85 73 34 54 73 14 151 167 34 160 157

15 97 103 35 68 61 15 197 199 35 203 186

16 79 73 36 103 62 16 166 164 36 157 169

17 80 74 37 49 57 17 171 197 37 126 123

18 75 76 38 54 51 18 193 181 38 125 125

19 86 103 39 45 53 19 204 189 39 218 137

20 114 80 40 53 72 20 164 197 40 151 143

Cost range 0- 50 Cost range 0-99

Construction solutions of Shadowl and Shadow2 heurisics

Table 7.1

7.6 SHADOW COST HEURISTICS IN COMPARISONS

The two versions of the shadow cost heuristics, shadow 1 and shadow2, are tested by comparing

their solutions to randomly generated problems. The sizes of the test problems vary from 20 to 90

cities and the distances between cities vary from 0 to 50 in the first set of 4 0 problems, and 0 to

99 in the second set of 4 0 problems. The results of the tests are shown in Table 7.1. In the first

set of problems (cost range 0-50) the two heuristics performed equally well; the shadow 1 heuristic

provides better construction solutions for 18 problems and the shadow2 heuristic provide better

solutions on 19 occasions. However, when the cost ranges from 0 to 99, there are some

indications, though not statistically significant, that the shadow2 heuristic performed better than the

more elaborate shadow 1 (shadow2 was better on 20 occasions and shadow 1 was better on 13

occasions). As the shadow2 heuristic seems to be more robust than the shadow 1 heuristic, the

implementations of the shadow cost heuristic in subsequent tests are restricted to the shadow2

formulation only. In addition, any further reference to the shadow cost heuristic refers to the

shadow2 heuristic, unless stated otherwise.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 1 0 2

7.7 COMPARATIVE RESULTS FOR VARIOUS HEURISTICS FOR THE ATSP

In the testing of the heuristics for the ATSP, various practices adopted earlier in the testing of the

MPG are also observed. A notable one is that the codes are designed primarily to be both efficient

and compact; faster execution times can be achieved if less compact data structures are used. The

program, approximately 1600 lines long, is written in Pascal and run on a Cyber 174 using the

Pascal 6000 compiler, with runtime checking suppressed. The forty test problems are randomly

generated with the size ranging from 20 to 90 cities and the cost ranging from 0 to 99.

7.7.1 Comparisons of the Construction Heuristics

Construction solutions by various heuristics are shown in Table 7.2. It is obvious that the Little

heuristic is distinctly better than others being tested; the lowest level for the significant tests is

96%. The shadow cost heuristic performs better than the nearest unvisited city heuristic, which in

turn is better than the nearest tour insertion routine. A general impression that the nearest tour

insertion heuristic performs poorly in larger problems is confirmed by the run test.

Table 7.3 shows the runtime of construction heuristics. The empirical complexity of the Little

heuristic is

The empirical complexities of both heuristics are less than the theoretical values, CKri3) and Otn2);

the faster executions were achieved by the use of fast matrix updating procedures which only

recalculate the affected elements and employ efficient use of flags. The empirical complexity of the

nearest unvisited city heuristic is marginally less than that of the shadow cost heuristic. The

empirical complexity of the shortest tour insertion heuristic (0.16 n2-88) is close to the theoretical

bound, CXn3), which is due to the lack of suitable features for fast updating in the algorithm.

7.7.2 Improvement Strategies and Their Consequences

The final results of the combined effort of the construction and improvement heuristics are shown in

Tables 7.4-7.7. It is clear from the tables that the relative merits of the construction heuristics are

not affected by the use of the improvement heuristics. The only exception is that the shadow cost

and 4-opt heuristics combined to produce results of roughly the same merit as the results produced

by the Little and 3-opt heuristics. The dominant role of the construction heuristics in the ATSP is

similar to that found in the MPG.

As mentioned earlier in Section 7.5.2, the overall theoretical time complexities of both improvement

heuristics and their possible interactions necessitate some experimentation. Tables 7.4 and 7.5 show

the costs and execution times of the final solutions of the greedy strategy, which exchanges arcs as

soon as beneficial ones are found. Similarly, Tables 7.6 and 7.7 show the costs and times of the

f = 0.37 n2-29

and the complexity of the shadow cost heuristic is

t = 0.41 n1-85

(7.12)

(7.13)

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 103

steepest descent strategy. Only 25 smaller problems were examined in the second test as times

required for the larger problems were deemed to be excessive.

The effects of the improvement strategies on the Little construction heuristic seem to be minor.

They are no obvious gains in applying the steepest descent strategy as far as the 3-opt heuristic is

concerned. For the 4-opt heuristic, there are some indications, though statistically not significant,

that the steepest descent strategy provided better solutions. The relatively small impact may be due

to the fact that the Little heuristic provides solutions close to local optimal values, and hence more

extensive searches are not always more productive. The expected benefit of the more extensive

searches in the improvement strategies is confirmed in the cases where poorer construction

heuristics are used. The solutions are significantly poorer in the case where the greedy strategy is

used compared to the ones achieved by the use of the steepest descent strategy. The poorer the

construction solutions, the larger are the benefits.

The combined performances of the construction and improvement heuristics can be ranked as

follows:

Little + 4-opt

Little + 3-opt, shadow cost + 4-opt

shadow cost + 3-opt

nearest unvisited city + 4-opt

nearest unvisited city + 3-opt

shortest tour insertion + 4-opt

shortest tour insertion + 3-opt

The complexity implication of the combined heuristics is clear: the steepest descent strategy is very

time consuming to execute. For the Little and 3-opt methods, the empirical complexity of the total

runtime is 0.13 n2-74 and 0.05 n3 04 in the cases of the greedy and steepest descent methods

respectively. The time requirement is exacerbated in the case of the 4-opt heuristic, rising from

0.16 n2-71 in the case of greedy strategy to 0.05 n3-20 in the case of the steepest descent

method. The poorer the initial construction heuristic is, the larger the difference in the two methods.

7.7.3 implementation Implications

From all the tests carried out, it is evident that the Little construction heuristic provides a cost

effective method for obtaining a "good" solution for the ATSP. Approximately 3 0 % of the solutions

provided by the Little heuristic cannot be improved by the uses of 3-opt and 4-opt heuristics. In the

cases where improvements are possible, only one or two iterations are usually needed to reach the

local optima. The use of the steepest descent strategy may not be suitable in many cases; it can

be argued that for very large problems, say 300 vertices, the difference between the execution

times required is too large (27 minutes against 14 minutes). It may be more beneficial to try to

obtain additional solutions using alternative construction heuristics. The shadow cost heuristic is a

possible alternative, as it has an approximately 3 0 % chance of providing better solutions than those

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 1 0 4

achieved by the Little heuristic. The nearest unvisited city and the shortest tour insertion heuristics

generally provide poorer results.

7.8 INTERACTIVE ASPECTS

It is unlikely that an interactive, graphical representation of the results of a large problem will be

more useful than a more conventional representation. A possible method of interaction is the

manipulation of the distance matrix. As the selection of an arc results in the total exclusion of other

contending candidates, it is relatively easy, by changing some elements of the distance matrix, to

represent certain operating requirements such as priority jobs and precedence requirements.

7.9 CONCLUSIONS

The comparative solutions and runtimes on the randomly generated problems indicate the clear

advantage of the Little construction heuristic over other construction strategies tested. The solutions

from the Little construction procedure are usually near or at local optima. The dominance of the

construction technique over the improvement procedure is also clear and hence the use of an

effective construction heuristic is crucial in obtaining a good result. The excecution times of the

steepest descent strategy during the improvement phase for larger problems are found to be

prohibitive, and consequently this strategy is not suitable for general use.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

CHAPTER 7 105

P R O B L E M H E U R I S T I C S

SIZE NO LIT NUC SDN NTU MAX MIN

1 123 197 146 247 247 123

2 145 255 150 2 5 1 255 145

20 3 195 291 185 248 2 9 1 185

4 171 304 189 188 304 171

5 193 293 247 373 373 193

6 156 227 173 252 252 156

7 153 278 187 382 382 153

8 194 303 192 3 1 1 3 1 1 192

9 162 3 7 1 241 300 3 7 1 162

10 185 331 232 334 334 185

11 179 402 216 373 402 179

12 179 434 224 369 434 179

13 167 363 163 341 363 163

14 153 347 167 328 347 153

.15 198 372 199 373 373 198

16 175 365 164 393 393 164

17 194 338 197 343 343 194

18 188 386 181 439 439 181

19 157 399 189 299 399 157

20 170 376 197 483 483 170

21 233 3 0 9 161 358 358 161

22 140 3 8 1 172 443 443 140

23 185 294 134 453 453 134

24 198 389 152 457 457 152

25 150 365 200 4 8 1 4 8 1 150

26 177 362 183 445 445 177

27 225 310 192 525 525 192

28 273 368 179 418 418 179

29 152 418 170 473 473 152

30 129 3 6 1 160 465 465 129

31 134 3 5 1 178 4 8 1 4 8 1 134

32 165 347 162 552 552 162

33 155 363 162 514 514 155

34 143 309 157 557 557 143

35 143 387 186 460 460 143

36 131 404 169 513 513 131

37 125 336 123 525 525 123

38 133 355 125 496 496 125

39 141 3 3 1 137 486 486 137

40 130 348 143 526 526 130

T a b l e 7.2

C o n s t r u c t i o n c o s t s of ATSP h e u r i s t i c s

MANAGEMENT SCIENCE IMPERIAL COLLEGE

-CHAPTER 3 106

P R O B L E M H E U R I S T I C S

SIZE NO LIT NUC SHW STI MAX MIN

1 332 48 105 99 332 48

2 317 54 101 95 317 54

20 3 302 50 100 95 302 50

4 318 55 104 91 318 55

5 325 54 118 93 325 54

6 692 99 218 293 692 99

7 709 110 229 279 709 110

8 727 102 229 294 727 102

9 742 111 225 290 742 111

10 744 105 229 292 744 105

11 1220 180 384 653 1220 180

12 1337 181 381 655 1337 181

13 1303 177 375 662 1303 177

14 1317 176 373 677 1317 176

15 1303 176 389 636 1303 176

16 2290 267 532 1247 2 2 9 0 267

17 2223 268 585 1246 2 2 2 3 268

18 2 3 5 1 278 559 1222 2 3 5 1 278

19 2228 282 553 1260 2 2 2 8 282

20 2261 295 557 1272 2 2 6 1 295

21 3198 338 742 2 1 1 9 3 1 9 8 338

22 3520 378 778 2 1 3 1 3 5 2 0 378

23 3 1 9 1 373 785 2 1 0 1 3 1 9 1 373

24 3376 380 786 2158 3376 380

25 3332 383 763 2 1 0 8 3332 383

26 5358 516 1106 3442 5 3 5 8 516

27 5290 477 1 0 6 5 3412 5 2 9 0 477

28 5203 514 1 0 7 1 3450 5 2 0 3 514

29 5087 539 1066 3 4 1 1 5087 539

30 5075 495 1095 3409 5 0 7 5 495

31 7318 652 1398 5064 7 3 1 8 652

32 7 3 8 1 6 3 9 1387 5043 7 3 8 1 639

33 7248 665 1418 5047 7 2 4 8 665

34 7568 615 1393 5085 7 5 6 8 615

35 7 2 2 1 684 1412 5087 7 2 2 1 684

36 9614 804 1748 7133 9614 804

37 9986 810 1626 7 0 4 5 9 9 8 6 810

38 8909 819 1734 7076 8 9 0 9 819

39 9304 770 1704 7 1 0 6 9304 770

40 10449 806 1728 7182 10449 806

T a b l e 7.3

C o n s t r u c t i o n t i m e (m i l - s e c) of ATSP h e u r i s t i c s

MANAGEMENT SCIENCE IMPERIAL COLLEGE

CHAPTER 7 1 0 7

H E U R I S T I C S

P R O B L E M LIT NUC SHW STI

N O . 30PT 40PT 30PT 40PT 30PT 4 0 P T 30PT 4 0 P T MAX MIN

1 123 123 163 163 117 117 170 170 170 117

2 145 145 174 174 150 145 182 176 182 145

3 193 193 230 189 180 169 233 224 233 169

4 171 171 189 183 171 171 175 175 189 171

5 193 193 227 227 2 1 1 2 1 1 244 244 244 193

6 153 153 156 156 157 152 200 169 200 152

7 145 145 193 176 181 155 2 0 9 197 209 145

8 189 189 204 190 170 167 247 214 247 167

9 162 162 212 211 193 188 279 254 279 162

10 185 185 237 237 204 204 226 214 237 185

11 173 173 234 223 206 187 217 206 234 173

12 1 7 1 161 195 195 189 167 243 243 243 161

13 167 141 200 193 1 6 1 161 205 192 205 1 4 1

14 149 149 191 154 160 160 182 158 191 149

15 194 188 240 224 187 186 295 277 295 186

16 152 152 203 203 164 164 228 197 228 152

17 184 168 191 191 166 164 255 240 255 164

18 162 162 222 209 174 174 208 208 222 162

19 157 157 190 186 157 155 2 0 1 199 201 155

20 167 167 236 233 173 173 215 206 236 167

21 163 163 185 181 158 158 2 0 1 186 201 158

22 140 140 206 192 161 159 258 225 258 140

23 135 135 175 167 133 131 218 196 218 131

24 160 151 218 208 152 150 243 240 243 150

25 150 150 200 196 159 159 237 218 237 150

26 167 165 2 1 1 194 168 168 2 1 1 198 211 165

27 140 127 198 182 136 136 233 197 233 127

28 147 147 208 199 165 162 242 233 242 147

29 152 152 231 208 166 166 245 210 245 152

30 129 127 190 174 155 155 252 2 2 1 252 127

31 131 131 209 206 143 143 265 231 265 131

32 157 154 222 212 154 153 238 225 238 153

33 140 140 210 210 160 160 215 202 215 140

34 142 142 179 178 150 150 290 258 290 142

35 139 139 205 204 159 159 212 212 212 139

36 131 131 207 194 153 153 2 4 1 230 2 4 1 131

37 125 121 188 188 123 120 240 237 240 120

38 125 119 165 160 121 121 233 2 1 1 233 119

39 127 126 179 179 137 136 273 246 273 126

40 130 130 221 202 143 143 224 219 224 130

T a b l e 7.4

F i n a l s o l u t i o n s of ATSP h e u r i s t i c s

(G r e e d y e x c h a n g e s t r a t e g y)

MANAGEMENT SCIENCE IMPERIAL COLLEGE

CHAPTER 7 1 0 8

H E U R I S T I C S

P R O B L E M LIT NUC SDN STI

N O . 30PT 40PT 30PT 4 0 P T 30PT 40PT 30PT 40PT MAX MIN

1 123 123 163 148 117 117 140 123 163 117

2 145 145 167 158 150 145 209 145 209 145

3 193 184 170 170 165 165 165 165 193 165

4 171 171 194 178 171 171 175 175 194 171

5 193 193 227 227 205 205 235 236 236 193

6 153 153 156 165 157 152 187 177 187 152

7 145 145 161 145 181 149 151 219 219 145

8 182 182 186 186 170 164 189 179 189 164

9 162 162 203 173 188 167 168 165 203 162

10 185 185 211 201 200 188 200 193 211 185

11 173 173 201 164 206 177 • 208 208 208 164

12 171 161 180 193 185 181 243 184 243 161

13 167 153 165 180 140 140 171 186 186 140

14 147 147 140 140 152 152 146 129 152 129

15 194 185 217 204 187 186 257 242 257 185

16 152 155 173 187 164 164 206 202 206 152

17 187 168 199 185 166 177 223 217 223 166

18 162 162 185 210 172 172 216 195 216 162

19 157 157 171 167 157 154 186 186 186 154

20 167 167 175 201 173 184 198 182 201 167

21 145 145 194 176 158 153 196 216 216 145

22 140 140 175 156 161 149 178 186 186 140

23 137 131 158 132 133 131 185 145 185 131

24 144 149 189 175 152 150 188 217 217 144

25 150 150 184 183 148 148 221 192 221 148

T a b l e 7 5

Final s o l u t i o n s of ATSP h e u r i s t i c s

(S t e e p e s t d e s c e n t s t r a t e g y)

MANAGEMENT SCIENCE IMPERIAL COLLEGE

CHAPTER 7 109

H E U R I S T I C S

P R O B L E M LIT NUC SDN STI

SIZE N O . 30PT 40PT 30PT 40PT 30PT 40PT 30PT 40PT MAX MIN

1 520 569 252 295 338 383 355 397 569 252

2 517 559 260 300 300 369 335 390 559 260

20 3 492 543 283 389 324 389 299 346 543 283

4 517 569 269 332 301 351 285 324 56.9 269

5 524 566 280 323 348 390 343 385 566 280

6 1407 1 5 0 1 933 1033 944 1067 1052 1252 1 5 0 1 933

7 1536 1662 950 1035 918 1 0 6 6 1393 1534 1662 918

30 8 1496 1 6 2 1 846 990 966 1092 1276 1548 1 6 2 1 846

9 1438 1 5 4 1

10 1433 1533

1159 1297 1016 1152 1048 1185 1 5 4 1

8 2 1 919 1008 1 1 2 6 1082 1226 1533

1 0 1 6
821

40

11 2963 3144 2463 2 7 9 1 2 0 2 1 2 4 2 6 3070 3293 3 2 9 3 2 0 2 1

12 3106 3364 2639 2 8 6 1 2 3 2 5 2 5 9 9 2828 3 0 9 6 3364 2325

13 2923 3185 2388 2 6 2 8 2 0 5 8 2 2 6 8 2889 3 3 4 1 3 3 4 1 2058

14 3 0 6 2 3238 2108 2 3 7 5 2 1 2 2 2 3 0 6 2722 3 0 3 2 3 2 3 8 2108

15 3078 3284 2333 2 6 1 9 2 1 9 9 2 4 5 1 2826 3 1 0 8 3284 2199

16 6 3 1 5 6 7 2 5 4 2 3 2 4 5 0 1 3870 4 1 8 6 5752 6 2 8 0 6 7 2 5 3870

17 5 6 3 6 6 0 8 3 4044 4 4 2 5 3 9 8 9 4 3 7 1 5057 5 6 8 4 6 0 8 ? 3989

18 5 9 8 1 6 2 6 6 4 3 3 3 4 6 7 8 4 1 6 0 4 4 3 1 6582 6 8 6 7 6 8 6 7 4160

19 5 5 9 0 5 8 7 5 4 9 7 9 5332 4 2 2 1 4 6 3 4 518 0 5 6 1 8 5 8 7 5 4 2 2 1

20 5660 6 0 1 5 4 5 3 6 4 8 6 2 4 2 8 2 4 6 4 0 6430 6 8 2 2 6 8 2 2 4282

60

21 9 9 2 0 10384 6944 7 6 3 9 6 7 0 3 7 1 8 8 1 0 3 4 5 1 0 8 5 8 1 0 8 5 8 6703

22 9 3 1 2 9 7 4 2 8472 9 0 5 5 7 0 7 7 7 7 9 1 10503 1 1 4 7 2 1 1 4 7 2 7077

23 9 5 7 7 1 0 0 8 2 7357 7 9 5 2 6 5 7 9 7 2 7 6 11048 1 2 0 1 5 1 2 0 1 5 6579

24 9 4 6 0 9944 7539 8 1 2 5 6 6 2 5 7 1 0 0 10259 1 0 8 0 1 1 0 8 0 1 6625

25 9 2 0 8 9 6 5 2 7609 812 6 6 9 4 7 7 3 3 8 11157 1 1 7 1 8 1 1 7 1 8 6947

70

26 1 5 5 9 5 1 6 2 8 6 12246 13650 1 0 9 9 3 1 1 5 6 5 1 8847 2 0 2 2 5 2 0 2 2 5 10993

27 1 6 4 0 3 17 1 7 2 1 1 5 8 5 1 2 3 8 8 1 1 9 3 6 1 2 5 0 9 1 8 0 6 2 1 9 1 8 6 1 9 1 8 6 11585

28 1 6 0 3 8 1 6 6 3 3 12689 1 3 5 6 8 1 1 3 6 8 1 2 0 4 9 17757 18827 1 8 8 2 7 11368

29 1 4 8 7 5 1 5 5 0 4 13339 1 4 4 4 3 11204 1 1 7 7 6 16817 1 7 9 5 9 1 7 9 5 9 11204

30 1 4 8 4 5 1 5 4 3 8 12297 1 3 0 2 1 1 1 2 3 8 1 1 8 0 7 1 7 7 3 9 1 9 1 0 0 1 9 1 0 0 11238

31 2 2 4 0 6 2 3 2 7 9 19303 2 0 5 9 2 1 7 3 1 0 1 8 0 6 0 2 4 494 2 6 3 6 7 2 6 3 6 7 17310

32 2 2 2 5 9 2 3 0 1 0 1 8 4 5 5 1 9 5 3 6 1 7 1 2 8 1 8 1 6 7 2 6 8 7 3 2 7 9 9 6 2 7 9 9 6 17128

80 33 2 2 3 1 9 2 3 0 6 9 1 7 4 0 5 1 8 3 5 8 1 6 4 0 6 17157 2 7 8 7 3 2 8 9 0 6 2 8 9 0 6 16406

34 2 2 1 9 4 2 2 9 0 4 17937 1 9 1 5 1 1 6 5 3 5 1 7 2 8 8 2 6 2 8 2 2 7 7 4 6 2 7 7 4 6 1 6 5 3 5

35 2 2 1 0 3 2 2 8 4 9 1 8 2 9 3 1 9 1 8 2 1 6 7 1 0 1 7 4 6 2 2 6 3 1 8 2 7 1 1 6 2 7 1 1 6 16710

36 3 0 6 1 3 3 1 6 1 8 2 7 2 8 1 2 8 6 3 7 2 4 0 2 7 2 5 1 9 7 3 5 2 9 5 3 6 9 5 6 3 6 9 5 6 24027

37 3 0 8 9 7 3 2 3 5 7 2 3 7 3 9 2 4 6 4 5 2 2 6 7 1 2 3 6 6 9 3 5 7 3 3 3 7 4 2 1 3 7 4 2 1 2 2 6 7 1

90 38 3 0 9 1 8 3 2 1 1 7 2 6 9 8 6 2 7 8 7 8 2 2 8 3 2 2 3 8 0 3 3 9 4 7 1 4 1 0 0 7 4 1 0 0 7 2 2 8 3 2

39 3 1 2 1 6 3 2 9 1 8 2 5 6 9 8 2 6 8 3 4 2 2 5 9 3 2 3 7 2 3 3 6 7 4 3 3 8 2 8 0 3 8 2 8 0 2 2 5 9 3

40 3 1 2 5 0 3 2 2 0 4 2 6 0 2 8 2 7 6 0 7 2 2 8 2 5 2 3 7 6 8 43044 4 4 5 0 1 4 4 5 0 1 2 2 8 2 5

T a b l e 7.6

T o t a l runtimes (m i l - s e c) of ATSP h e u r i s t i c s

(G r e e d y e x c h a n g e s t r a t e g y)

MANAGEMENT SCIENCE IMPERIAL COLLEGE

CHAPTER 7 110

H E U R I S T I C S

P R O B L E M LIT NUC SDN STI

N O . 30PT 40PT 30PT 40PT 30PT 40PT 30PT 40PT MAX MIN

1 391 572 326 1036 365 720 792 1895 1895 326

2 390 572 473 1065 218 574 358 1642 1642 218

3 530 1282 1056 2 4 0 1 371 729 789 1704 2 4 0 1 371

4 387 572 477 1463 364 722 506 1 0 4 1 1463 364

5 384 560 483 1043 375 737 1078 2 0 1 6 2016 375

6 1582 2 7 7 0 3158 4 9 9 0 2 2 0 0 5204 3782 6 8 5 0 6850 1582

7 1 6 0 5 2 8 4 1 2644 5 2 7 9 1198 3672 7 8 7 0 1 2 5 2 7 12527 1 1 9 8

8 1598 2817 1615 3 5 4 5 1719 4716 5348 1 1 4 7 6 11476 1 5 9 8

9 1107 1712 4 6 9 9 9 2 6 8 1718 4878 5 3 5 6 1 1 9 3 2 1 1 9 3 2 1107

10 1095 1682 2637 7 6 6 6 2 2 2 0 6 3 8 5 3793 8 2 5 6 8256 1 0 9 5

11 4 7 6 5 8 9 9 0 7613 2 4 2 2 3 2 7 5 9 11199 1 1 6 3 1 2 4 5 9 2 2 4 5 9 2 2 7 5 9

12 4 8 7 9 9273 13782 2 4 6 7 8 5314 10990 12888 3 1 4 2 8 31428 4 8 7 9

13 2 3 0 7 5180 12577 2 5 6 0 0 3 9 9 6 8139 2 1 5 2 8 3 4 7 0 4 34704 2 3 0 7

14 4 7 8 8 8968 1 8 7 7 1 3 6 6 0 0 4 0 2 2 8219 1 6 5 9 2 3 5 9 3 2 3 6 6 0 0 4 0 2 2

15 3665 6 5 6 2 1 0 1 0 1 2 0 5 1 6 4 0 4 0 8297 1 2 9 6 6 2 3 1 8 4 23184 3 6 6 5

16 1 1 8 1 3 2 5 8 7 5 2 9 9 9 6 5 5 9 4 7 2 8 7 2 5600 3 5 6 8 2 7 5 2 9 0 7 5 2 9 0 2 8 7 2

17 6 8 9 7 1 8 3 7 6 22714 3 4 8 8 9 1 0 4 4 0 16058 2 8 0 9 5 4 4 9 3 3 4 4 9 3 3 6 8 9 7

18 9 2 4 9 1 7 3 9 0 3 9 8 6 3 6 6 0 4 1 5 3 9 1 10828 4 0 6 4 0 8 9 1 5 4 89154 5 3 9 1

19 4 1 4 9 6 8 3 3 22586 5 2 1 8 6 5 3 2 5 13592 2 3 1 5 6 4 7 8 6 8 5 2 1 8 6 4 1 4 9

20 6 6 5 4 1 2 0 7 3 4 2 4 7 1 7 6 9 3 4 1 7 7 6 5 2 8 7 3 5 4 3 3 4 4 9 2 3 8 0 92380 6 6 5 4

21 1 5 4 2 4 3 0 0 8 0 2 1 7 6 5 5 1 1 4 8 1 3 4 1 7 31822 7 0 0 5 8 1 3 1 8 9 6 1 3 1 8 9 6 13417

22 6 9 5 6 1 1 6 4 5 34489 7 9 3 5 7 17674 4 9 9 7 6 1 0 8 3 6 3 2 0 1 3 6 3 2 0 1 3 6 3 6 9 5 6

23 1 1 2 0 8 2 0 8 3 6 38726 9 0 9 0 0 9 1 5 1 2 3 2 8 3 8 7 4 9 3 2 0 8 6 1 3 2 0 8 6 1 3 9 1 5 1

24 1 5 4 8 4 2 9 8 3 9 5 1 8 4 7 1 1 0 1 0 9 4 8 8 3 14104 1 0 4 6 2 0 1 8 3 9 1 3 1 8 3 9 1 3 4 8 8 3

25 7 1 4 3 119 8 4 4 3 2 9 4 9 1 6 5 9 1 7 7 9 8 32040 8 3 4 7 8 1 8 8 7 1 2 1 8 8 7 1 2 7 1 4 3

T a b l e 7.7

T o t a l runtimes (m i l - s e c) of ATSP h e u r i s t i c s

(S t e e p e s t d e s c e n t s t r a t e g y)

MANAGEMENT SCIENCE IMPERIAL COLLEGE

8 Conclusions and recommendations

The three classes of mathematically-related problems selected are the principal ones that need to be

solved if effective decentralisation of decision making within a factory is to take place. The

continuing reduction in the cost of microprocessors and the advances made in the area of computer

networking have greatly reduced the difficulties imposed by hardware on the realisation of this

objective. The main aim of the thesis has been to solve some of the software problems that may

arise in the decentralisation process.

One of the more obvious routes to decentralisation is to have group layout instead of the more

usual functional layout. The rank order clustering algorithm, (ROC), has been adapted and developed

into a fast and compact interactive scheme, called the ROC2 algorithm, for the purpose of grouping

components and machines. Problems which require weeks of manual effort or which cannot be

solved by other methods are solved by the ROC2 algorithm with modest human and computing

resources, and solutions produced for known test problems are as good as or better than, those

generated by other methods. As a general clustering technique, the R0C2 algorithm has been

shown to be an effective partitioning scheme for the set covering problem.

Following the grouping of machines, the question of their layout must be solved. Two models for

layout, the quadratic assignment problem, (QAP), and the maximal planar graph problem, (MPG), are

investigated. A short experiment on the QAP model has highlighted the potential benefit of using the

ROC2 algorithm in generating an initial layout. For the MPG, various construction and improvement

heuristics, which do not require planarity testing procedures, are studied. This is believed to be the

first report on computer implemented heuristics for the MPG. The final part of the thesis is

concerned with scheduling, which can be made more effective in many environments if properly

decentralised. A class of scheduling problem, the sequence-dependent setup time scheduling

problem, (SDSTSP), is selected for study, and various construction and improvement heuristics were

tested.

A general conclusion that can be drawn from the various heuristics tested is the dominant role of

the construction over the improvement heuristics. On the interactive aspect, it seems clear that

where a problem can only be partially defined quantitatively, and the solution provided by the

algorithm alone may therefore not be satisfactory, interaction can play a useful complementary role

to the algorithm. In cases where the problem is well defined, such as some scheduling problems,

interaction is less important, although it can still be useful in dealing with exceptional circumstances.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

CHAPTER 8

Two further pieces of work could usefully be carried out in the future; firstly a data collection

routine could be developed as an interface between the ROC2 algorithm and real life problems;

secondly the ROC2 algorithm and plant layout routines could be combined into one package. These

steps could help to reduce further the practical difficulties in implementing group layout.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

REFERENCES 1 1 3

Abdel Barr,S.E.Z. (1978) A Computerised Approach to Facility Layout, PhD Thesis, University of

Nottingham.

Abdel Barr,S.E.Z. & O'Brien,C. (1976) A Procedure for Solving the Facility Layout Problem Using a

Multi-Pairwise Exchange, 2nd Annual Operations Research Conference, 2/2, Egypt, 1976.

Alk,S.G. (1980) The Minimum Directed Spanning Graph for Combinatorial Optimization, The

Australian Computer Journal, 12/4(132-136).

Apple,J.M. (1977) Plant Layout and Material Handling, 3rd ed., John Wiley & Sons, New York.

Armour,G.C. & Buffa,E.S. (1963) A Heuristic Algorithm and Simulation Approach to Relative Location

of Facilities, Man.Sc., 9/1(294-303).

Baias,E. & Christofides,N. (1981) A Restricted Lagrangean Approach to the Travelling Salesman

Problem, Math.Prog, 21(19-46).

Baybars!. (1979) Characterization of Maximal Planar Graphs, Generating Planar Graphs and 0-1

Program for Determining the Optimal Spanning Subgraph of a Weighted Graph, Carnegie-

Mellon University, Pittsburg.

-de Beer,C. & de Witte,J. (1978) Production Flow Synthesis, Annals of the CIRP, 27/1(389-392).

de Beer,C., van Gerwen,R. & de Witte,J. (1976) Analysis of Engineering Production Systems as a

Base for Production-Oriented Reconstruction, Annals of the CIRP, 25/1(439-441).

Berztiss,A.T. (1975) Data Structure Theory and Practice, 2nd. ed, Academic Press, New York.

Block,T.E. (1977) A Note on 'Comparison of Computer Algorithms and Visual Based Methods for

Plant Layout' by M. Scriabin and R.C. Vergin, Man.Sc., 24/2(235-237).

(1979) On the Complexity of Facilities Layout Problems, Man.Sc., 25/3(280-285).

Buffa,E.S. (1955) Sequencing Analysis for Functional Layout, J.lnd.Eng., 6/2(12-16).

(1976) On a Paper by Scriabin and Vergin, Man.Sc., 32/1(104).

Buffa,E.S.,- Ammour,C.G. & Vollmann,T.E. (1964) Allocating Facilities with CRAFT, Harvard Business

Review, 42/2(136-158).

Burbidge,J.L. (1963) Production Flow Analysis, Prod.Engnr., 42(742-752), Dec 63.

(1971) Production Flow Analysis, Prod.Engnr., 50(139-152), Apr/May 71.

(1973) Production Flow Analysis on the Computer, 3rd. Annual Conf., Inst, of Prod. Eng.,

Nov 73.

(1977) A Manual Method of Production Flow Analysis, Prod.Engnr., 56(34-38), Oct 77.

Burkard,R.E. & Stratmann,K-H. (1978) Numerical Investigation on Quadratic Assignment Problems,

Naval Research Logistics Quarterly, 25/1(129-148), March 78.

Cameron,D.C. (1952) Travel Charts- A Tool for Analyzing Material Movement Problem, Modern

Material Handling, 8/1.

Carpaneto,G. & Toth,P. (1980) Some New Branching and Bounding Criteria for the Asymmetric

Travelling Salesman Problem, Man.Sc., 26/7(736-743).

Carrie,A.S. (1974) Numerical Taxonomy Applied to Group Technology and Plant Layout, Proc. 2nd.

Int. Conf. on Prod. Res., Copenhagen, Aug 73, 337-354.

Christofides,N. (1977) Lecture Notes.

(1979) The Travelling Salesman Problems, in Combinatorial Optimization, edited by

Christofides et al, 131-149, John Wiley, Chichester.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

REFERENCES 1 1 4

Christofides,N., Gailiani,G. & Stefanini,L. (1980) An Algorithm for the Maximal Planar Graph Problem

Based on Lagrangean Relaxation, Department of Management Science, Imperial College,

Research Paper IC.0R.80-21.

Christofides,N. & Gerrard,M (1976) Special Cases of the Quadratic Assignment Problems,

Management Science Research Report No 391, Graduate School of Industrial

Administration, Carnegie-Mellon University.

Christofides,N., Mingozzi,A. & Toth,P. (1980) Contributions to the Quadratic Assignment Problem,

Euro.J.Ops.Res., 4(243-247).

Cook,S.A. (1971) The Complexity of Theorem-Proving Procedures, Proc. 3rd ACM Symposium on

Theory of Computing (151-158).

Crowder,H & Padberg,M.W. (1980) Large-Scale Symmetrical Travelling Salesman Problems. Man.Sc.,

26/5(495-509).

Edwards,C.S. (1977) The Derivation of a Greedy Approximation for the Koopmans-Beckmann

Quadratic Assignment Problem, Proc. Combinatorial Programming 77, University of

Liverpool, 13-15 Sept 77.

(1980) A Branch and Bound Algorithm for Koopmans-Beckmann Quadratic Assignment

Problem, in Combinatorial Optimization II, edited by Rayward-Smith,V.J., North Holland.

Edwards,G.A.B. (1972) Correspondence, Prod.Engnr., 51(278), Jul/Aug 72.

Edwards,H.K., Gil!et,B.E. & Hale,M.E. (1970) Modular Allocation Technique, Man.Sc., 17/3(161-

169).

Eilon,S., Watson-Gandy,C.D.T. & Christofides,N. (1971) Distribution Management, Griffin, London.

El-Essawy,I.F.K. (1971) The Development of Component Flow Analysis in Production Systems'

Design for Multi-Product Engineering Companies, PhD Thesis, UMIST.

(1972) Correspondence, Prod.Engnr., 51(278), Jul/Aug 72.

El-Essawy,I.F.K. & Torrance,J. (1972) Component Flow Analysis an Effective Approach to Production

Systems' Design, Prod.Engnr., 51(165-170), May 72.

El-Rayah,T.E. & Hollier,R.H. (1970) A Review of Plant Design Techniques, Int.J.Prod.Res., 8/3(263-

279).

Foulds,L.R. & Robinson,D.E. (1976) A Strategy for Solving the Plant Layout Problem, Opi.Res.Q.,

27 / 4,i(845-855).

(1978) Graph Theorectical Heuristics for the Plant Layout Problem,

Int.J.Prod.Res., 16/1 (27-37).

Francis,R.L. & White,J.A. (1974) Facility Layout and Location, Prentice-Hall, New Jersey.

Frieze,A.M., Galbiati,G. & Maffioili,F. (1982) On the Worst-Case Performance of Some Algorithms for

the Asymmetrical Travelling Salesman Problem, Network, 12/1(23-39).

Gallagher,C.C. & Knight,W.A. (1973) Group Technology, Butterworths, London.

Garey,M.R., Graham,R.L. & Johnson,D.S. (1976) Some NP-complete Geometric Problems, Proc 8th

ACM Sym. on Theory of Computing 1976.

Garey,M.R. & Johnson,D.S. (1979) Computers and Intractability, W.H. Freeman, San Francisco.

Gavett,J.W. & Plyter,N.V. (1966) The Optimal Assignment of Facilities to Locations by Branch and

Bound, Ops.Res., 14/2(210-232).

Gavish,B & Graves,S.C. (1979) The Travelling Salesman Problem and Related Problems, Working

MANAGEMENT SCIENCE IMPERIAL COLLEGE

REFERENCES 115

Paper 7906, Graduate School of Management, U. of Rochester.

Giimore,P.C. (1962) Optimal and Sub-optimal Algorithms for the Quadratic Assignment Problem,

J. SIAM, 10/2(305-313).

Golden,B.E. & Assad,A.A. (1982) An Analytical Framework for Comparing Heuristics, Working Paper

MS/S 82-002, College of Business and Management, U. of Maryland.

Golden,B.L. & Stewart,W.R. (1981) The Empirical Analysis of TSP Heuristics, Working Paper

MS/S 81-040, College of Business and Management, U. of Maryland.

Gonzales,R.H. (1962) Solutions to the Travelling Salesman Problem by Dynamic Programming on the

Hypercube, Technical Report No. 18, OR Centre, MIT.

Graham,!., Galloway,P. & Scollar,!. (1976) Model Studies in Computer Seriation, J.Archeological Sc.,

3/1(1-30).

Graves,G.W. & Whinston,A.B. (1970) An Algorithm for the Quadratic Assignment Problem, Mari.Sc.,

17/7(453-471).

Grigorriadis,M.D. (1980) Partitioning Methods for Block-Diagonal Linear Systems and Programs, A

paper presented at the International Workshop on Advances in Linear Optimization

Algorithms and Software, Pisa, Italy, July 1980.

Hansen,K.H. & Krarup,J. (1974) Improvements of the Held and Karp Algorithm for the Symmetrical

Travelling Salesman Problem, Math.Prog., 4(87-98).

Harary,F. (1971) Sparse Matrices and Graph Theory, in Large Sparse Set of Linear Equations,

Reid,J.K.(ed) (1971), 139-167, Academic Press, London.

Held,M. & Karp,R. (1970) The Travelling Salesman Problem and Minimum Spanning Trees, Ops.Res.

26/6(1138-1162).

(1971) The Travelling Salesman Problem and Minimum Spanning Trees II, Math.Prog.,

1(6-25).

Hey,A.M. (1980) Algorithms for the Set Covering Problems, PhD Thesis, Department of Management

Science, Imperial College, London.

Hillier,F.S. (1963) Quantitative Tools for Plant Layout Analysis, J.lnd.Eng., 14/1(34-40).

Hillier.F.S. & Michael,M.C. (1966) Quadratic Assignment Problem Algorithms and the Location of

Indivisible Facilities, Man.Sc., 13/1(42-57).

Hiscox,W.J. (1948) Factory Lay-out Planning and Progress, 4th.ed., Pitman, London.

Hitchings,G.C. (1973) Analysis and Development of Techniques for Improving the Layout of Plant

and Equipment, PhD Thesis, University of Wales, Cardiff.

Hitchings,G.C. & Cottam,M. (1976) An Effective Heuristic Procedure for Solving the Layout Design

Problem, Omega, 4/2(205-214).

Hopcroft,J. & Tarjan,R. (1974) Efficient Planarity Testing, Journal ACM, 21/4(549-568).

Horowitz,E. & Sanhi,S. (1976) Fundamentals of Data Structures, 134-140, Pitman, London.

lri,M. (1968) On the Synthesis of Loop and Cutset Matrices and the Related Problems,

SAAG Memoirs, 4(376-410), A-XIII.

Kaneliakis,P-C. & Papadimitriou,C.H. (1980) Local Search for the Asymmetric Travelling Salesman

Problem, Ops.Res., 28/5(1086-1099).

Karp,R. (1972) Reduciblitiy among Combinatorial Problems, from Complexity of Computer

Computation, edited Miller,R.E. & Thatcher,J.W. (85-103) Plenum Press, New York.

MANAGEMENT SCIENCE IMPERIAL COLLEGE

REFERENCES 116

(1979) A Patching Algorithm for the Nonsymmetric Travelling Salesman Problem, SIAM

J.Computing, 8/4(561-573).

Kaufman,L. & Broeckx,F. (1978) An Algorithm for Quadratic Assignment Problem Using Bender's

Decomposition, Euro.J.Ops.Res, 2/3(207-211).

Krolak,P., Felts,W. & Marble,G. (1971) A Man-Machine Approach Towards Solving the Travelling

Salesman Problem, Comm. of the ACM, 14/5(327-334).

King,J.R. (1979) Machine-Component Group Formation in Group Technology, Proc. Vth Int. Conf. on

Prod. Res., Aug 79, 40-44, also Omega, 8/2(193-199).

— — (1980) Machine-Component Grouping in Production Flow Analysis: An Approach Using A

Rank Order Clustering Algorithm, Int.J.Prod.Res, 18/2(213-232).

King,J.R. & Spachis,A.S. (1980) Heuristics for Flow Shop Scheduling, Int.J.Prod.Res., 18/3(345-

357).

Koopmans,T.C. & Beckmann,MJ. (1957) Assignment Problems and Location of Economic Activities,

Econometrica, 25(52-76).

Krejcirik,M. (1968) Computer Aided Building Layout, Booklet I, 1968 IFIP Congress, Edinburgh.

(1969) Computer Aided Plant Layout, Computer Aided Design, Autumn 1969,(7-19).

Land.A.H. (1963) A Problem of Assignment with Inter-related Costs, OpI.Res.Q., 14(185-199).

Lawler,E.L. (1963) The Quadratic Assignment Problems, Man.Sc., 9/4(586-599).

(1975) The Quadratic Assignment Problem: A Brief Review, in Combinatorial Programming:

Methods and Applications, edited by Roy, 351-360, D.Reidel Publishing, Dordrecht-

Holland.

Liggett,R.S. (1981) The Quadratic Assignment Problem: An Experimental Evaluation of Solution

Strategies, Man.Sc., 27/4(442-458).

Lin,S. (1965) Computer Solutions to the Travelling Salesman Problem, Bell System Technical Journal,

44/10(2245-2269).

Little,J.D.C., Sweeny, D.W. & Karel,C. (1963) An Algorithm for the Travelling Salesman Problem,

Ops. Res., 11 /6(972-989).

Llewellyn,R.W. (1958) Travel Charting with Realistic Criteria, J.lnd.Eng., 9/3(217-220).

Los,M (1978) Comparison of Several Heuristic Algorithms to Solve Quadratic Assignment Problems

of the Koopmans-Beckmann Type, a paper presented at the Int. Sym. on Locational

Decision at Bann, Alberta. 24th-28th April 1978.

Lundy.J.L. (1955) A Reply to W.P. Smith's Article, J.lnd.Eng., 6/3(9).

McAuley,J. (1972) Machine Grouping for Efficient Production, Prod.Engnr., 51(53-57), Feb 72.

McCormick, W.T., Schweitzer,P. J & White,T.W. (1972) Problem Decomposition and Data

Reorganization by a Clustering Technique, Ops.Res., 20(993-1009).

Miliotis,P. (1976) Integer Programming Approaches to the Travelling Salesman Problem, Math.Prog.,

10(367-378).

Mojena,R., Vollmann,T.E. & Okamoto,V. (1976) On Predicting Computational Time of a Branch and

Bound Algorithm for the Assignment of Facilities, Decision Sc., 7(856-867).

Moon,J.W. & Morse,L. (1965) On Cliques in Graphs, Israel J.Maths., 3/1(23-28).

Moore,J.M. (1962) Plant Layout and Design, Macmillan, New York.

(1973) Computer Aided Facilities Design: An International Survey, Proc 2nd Int. Conf. on

MANAGEMENT SCIENCE IMPERIAL COLLEGE

REFERENCES 117

Prod. Res., edited by Gudnason,C.H. & Corlett,E.N. (1974), (479-502), Taylor Francis,

London.

(1976) Facilities Design with Graph Theory and Strings, Omega, 4/3(193-202).

(1977) Who Uses the Computer for Layout Planning, Proc 4th Int. Conf. on Prod. Res.,

edited by Muramats,R. & Dudley,N.A. (1978), (829-844), Taylor Francis, London.

(1979) The Zone of Compromise for Evaluating Layout Arrangement, Proc Vth Int. Conf. on

Prod. Res., Aug. 1979(24-27).

Muther,R. (1961) Systematic Layout Planning, Industrial Education Institute.

Muther,R. & Wheeler,J.D. (1962) Simplified Systematic Layout Planning, Factory, 120/8(68-77),

120/9(111-119), 120/10(101-113).

Muther,R. & McPherson,R. (1970) Four Approaches to Computerized Layout Planning, Indstrl. Engnr

2/2(39-42)

Noy,P.C. (1957) Make the Right Plant Layout... Mathematically, AmerMechanist, 101/19(121-125).

Nugent,C.E., Vollman,T.E. & Ruim,J. (1968) An Experimental Comparison of Techniques for the

Assignment of Facilities to Locations, Ops.Res., 16/1(150-173).

Paixao,J.M.P. (1982) Private Communication.

Papadimitriou,C.H. & Steiglitz,K. (1978) Some Examples of Difficult Travelling Salesman Problem,

Ops.Res., 26/3(434-443).

Parker,C.S. (1976) An Experimental Investigation of Some Heuristic Strategies for Component

Placement, OpI.Res.Q., 27/1,i(71-81).

Pemberton,A.W. (1974) Plant Layout and Material Handling, Macmillan, London.

Pierce,J.F. & Crowston.W.E. (1971) Tree Search Algorithms for Quadratic Assignment Problems,

Naval Research Logistics Quarterly, 18/1(1-36).

Pooch,U.W. & Nieder,A. (1973) A Survey of Indexing Techniques for Sparse Matrices, Computing

Survey, 5/2(109-133), Jun 73.

Purcheck,G.F.K. (1974) Combinatorial Grouping - A Lattice-Theoretic Method for the Design of

Manufacturing Systems, J.Cybernatics, 4/3(27-60).

(1975a) A Mathematical Classification as a Basis for the Design of Group Technology

Production Cells, Prod.Engnr., 54(35-48).

(1975b) A Linear Programming Method for the Combinatoric Grouping of an Incomplete

Power Set, J.Cybernatics, 5/4(51-76).

Rajagopalan,R. & Batra,J.L. (1975) Design of Cellular Production Systems. A Graph Theoretic

Approach, Int.J.Prod.Res., 13/6(567-579).

Ritzman,L.P. (1972) The Effieciency of Computer Algorithms for Plant Layout, Man.Sc., 18/5(240-

247).

Rosenkrantz,D.J., Stearns,E.S. fk Lewis,P.M. (1977) An Analysis of Several Heuristics for the

Travelling Salesman Problem, SIAM J.Computing, 6/3(563-581).

Schneider,M. (1960) Cross Charting Techniques as a Basis for Plant Layout, J.lnd.Eng., 11/6(478-

483).

Scriabin,M. & Vergin,R.C. (1975) Comparison of Computer Algorithms and Visual Based Methods for

Plant Layout, Man.Sc., 22/2(172-181).

Seppanen,J.J. & Moore,J.M. (1970) Facilities Planning with Graph Theory, Man.Sc., 17/4(B242-

MANAGEMENT SCIENCE IMPERIAL COLLEGE

REFERENCES 118

B253).

— (1975) String Processing Algorithms for Plant Layout Problems, Int.J.Prod.Res.,

13/3(239-245).

Smith,W.P. (1955) Travel Charting- Firt Aid for Plant Layout, J.lnd.Eng., 6/1(13-15).

Sneath,P.H.A. & Sokal,R.R. (1973) Numerical Taxonomy, W.H.Freeman & Co., San Francisco.

Spachis,A.S (1979) Job-Shop Scheduling with Approximate Methods, PhD thesis, Department of

Management Science, imperial College.

Tewason,R.P. (1973) Sparse Matrices, Academic Press, New York.

Trybus,T.W. & Hopkins,L.D. (1980) Human vs Computer Algorithms for the Plant Layout Problem,

Man.Sc., 26/6(570-574).

Van Der Cruysen,P. & Rijckaert,M.J. (1978) Heuristic for the Asymmetric Travelling Salesman

Problem, J.Opl.Res.Soc., 29/7(687-701).

Vollmann,T.E. (1964) An Investigation of the Bases for Relative Location of Facilities, Doctoral

Thesis, University of California, Los Angeles.

Vollmann,T.E. & Buffa,E. (1966) The Facilities Layout Problem in Perspective, Man.Sc.,

12/10(B450-B468).

VoIlmann,T.E., Nugent,C.E. & Zartlet,R. (1968) A Computerized Model for Office Layout, J.lnd.Eng,

19/7(321-327).

de Witte,J. (1979) The Use of Similarity Coefficients in Production Flow Analysis, Proc. Vth Int.

Conf. on Prod. Res., Aug 79, (36-39).

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX A

L o c a t i o n s

1 10
1 2 3 4 5 6 7 8 9 0 1 2 3

2 3 4 5 1 2 3 4 5 6 2

1 2 3 4 2 1 2 3 4 5 3

0 1 2 3 3 2 1 2 3 4 4

0 1 2 4 3 2 1 2 3 5

0 1 5 4 3 2 1 2 6

0 6 5 4 3 2 1 7

0 1 2 3 4 5 1

0 1 2 3 4 2

0 1 2 3 3

0 1 2 4

0 1 5

0 6

0

D i s t a n c e m a t r i x

119

20 24

4 5 6 7 8 9 0 1 2 3 4

3 4 5 6 7 3 4 5 6 7 8 1

2 3 4 5 6 4 3 4 5 6 7 2

3 2 3 4 5 5 4 3 4 5 6 3

4 3 2 3 4 6 5 4 3 4 5 4

5 4 3 2 3 7 6 5 4 3 4 5

6 5 4 3 2 8 7 6 5 4 3 6

2 3 4 5 6 2 3 4 5 6 7 7

1 2 3 4 5 3 2 3 4 5 6 8

2 1 2 3 4 4 3 2 3 4 5 9 L

3 2 1 2 3 5 4 3 2 3 4 10 o

4 3 2 1 2 6 5 4 3 2 3 11 c

5 4 3 2 1 7 6 5 4 3 2 12 a

1 2 3 4 5 1 2 3 4 5 6 13 t

0 1 2 3 4 2 1 2 3 4 5 14 i

0 1 2 3 3 2 1 2 3 4 15 o

0 1 2 4 3 2 1 2 3 16 n

0 1 5 4 3 2 1 2 17 s

0 6 5 4 3 2 1 18

0 1 2 3 4 5 19

0 1 2 3 4 2 0

0 1 2 3 21

0 1 2 22

0 1 23

0 24

for t h e Q A P

M a c h i n e s

1 10

1 2 3 4 5 6 7 8 9 0 1 2 3 4

0 2 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 8 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 2

0 7 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 10 0 0 0

0 2 2 0 4 0 0 0 0

0 1 0 3 0 0 0 0

0 0 3 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0

0 3 2 0

0 1 0

0 0

0

W e i g h t m a t r i x for

20 24

5 6 7 8 9 0 1 2 3 4

0 2 2 0 1 0 0 0 0 0 1

0 6 5 0 4 0 0 0 0 0 2

0 1 4 0 0 0 0 0 0 0 3

4 0 0 3 0 4 0 0 0 0 4

7 0 0 6 0 8 0 0 0 0 5

0 0 0 0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 0 0 0 7

0 0 0 0 0 0 0 0 0 0 8

0 8 5 0 4 0 0 0 0 0 9 M

0 0 0 0 0 0 0 0 0 0 10 a

0 0 0 0 0 0 4 0 0 0 11 c

0 0 0 0 0 0 3 0 0 0 12 h

0 0 0 0 0 0 2 0 0 0 13 i

0 1 3 0 1 0 0 0 0 0 14 n

0 0 0 4 0 4 0 0 0 0 15 e

0 6 0 3 0 0 0 0 0 16 s

0 0 2 0 0 0 0 0 17

0 0 4 0 0 0 0 18

0 0 0 0 0 0 19

0 0 0 0 0 2 0

0 0 0 0 21

0 0 0 22

0 0 23

0 24

Q A P

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX A 120

PROBLEM FINAL NO. OF EXEC. . TIME
IDEN. COST ITERATION(S) (CYBER174 SEC)

1 273 12 0. ,484
2 276 13 0. ,516
3 276 11 0, ,467
4 266 10 0. .434
5 280 8 0. ,360
6 281 10 0. ,431
7 277 9 0. ,391
8 279 9 0. .393
9 268 8 0. .350

10 288 8 0. ,352

The solutions to the 16 location configuration

PROBLEM INITIAL LAYOUTS
IDEN.

1 2 10 9 6 3 12 13 11 5 4 7 14 1 15 8 16
2 6 5 12 15 11 1 8 14 13 10 7 4 16 3 2 9
3 11 15 2 16 14 9 8 7 10 12 6 1 3 13 4 5
4 6 14 9 4 7 2 13 1 5 8 15 12 10 16 3 11
5 16 14 13 4 6 8 3 12 2 10 15 11 5 7 9 1
6 4 8 12 1 14 13 6 3 15 2 7 5 9 11 10 16
7 13 4 6 3 5 1 15 12 8 9 16 11 7 14 2 10
8 9 1 15 10 4 8 3 14 16 5 2 13 12 6 7 11
9 3 15 12 10 8 11 16 6 14 1 5 2 9 13 7 4

10 9 10 6 5 1 12 16 15 2 3 14 7 8 11 4 13

Random starting layouts for the 16 location configuration

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 1 2 1

1 P R O G R A M l a y o u t 3 (d a t a , o u t p u t , i n p u t /);

2

3 CONST
4 maxactivity = 30;
5 maxlocation = 30;
6 maxdistance * 100;
7 raaxweight = 100;
8 infinity = 9999999;
9

10 TYPE
11 activity = 1..maxactivity;
12 location = 1..maxlocation;
13 distance = 0..maxdistance;
14 weight •= 0. .maxweight;
15 arrayweight * ARRAY
16 [activity, activity] OF weight;
17 arraydistance » ARRAY
18 [location, location] OF distance;
19 arrayswitchcost = ARRAY
20 [location, location] OF integer;
21 arrayactinloc = ARRAY
22 [location] OF activity;
23 arraylacofact = ARRAY
24 [activity] OF location;
25 setoffixedlocations = SET OF location;
26
27 VAR
28 data: text;
29 w, weightsubprob: arrayweight;
30 d, dsubprob: arraydistance;
31 costofswitchmacinloc: arrayswitchcost;
32 macinloc, tempmacinloc, oldmacinloc: arrayactinloc;
33 locationsfixed: setoffixedlocations;
34 locofmac, templocofmac: arraylacofact;
35 oldmacname: ARRAY
36 [activity] OF activity;
37 oldlocname: ARRAY
38 [location] OF location;
39 initlayoutgiven, fixedlocgiven: boolean;
40 n, iteration: integer;
41 starttime, timeelapsed, timeused, costoflayout: integer;
42 noofpartitions, sizeofsubproblem: integer;
43
44
45 PROCEDURE readcostanddistancematrices;
46
47 VAR
48 i, j: location;
49 1, m: activity;
50 nolocfixed: integer;
51
52 BEGIN
53 reset(data);
54 read(data, n);
55 FOR i :- 1 TO n DO
56 FOR j i TO n DO
57 read(data, d[i, j]);
58 FOR 1 1 TO n DO
59 FOR m 1 TO n DO
60 read(data, w[l, m]);
61 {[complete the lower half of the matrices!
62 FOR i 1 TO n - 1 DO
63 FOR j := i + 1 TO n DO

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX a 1 2 2

64 d[j, i] := d[i, j];
65 FOR 1 := 1 TO n - 1 DO
66 FOR m 1 + 1 TO n DO
67 w[m, 1] := w[1, m];
68 read(data, noofpartitions);
69 IF noofpartitions = 1
70 THEN
71 BEGIN
72 FOR i := 1 TO n DO
73 read(data, macinloc[i]);
74 FOR i '.* 1 TO n DO
75 locofmac[macinloc[i]] i;
76 read(data, nolocfixed);
77 IF nolocfixed > 0
78 THEN
79 BEGIN
80 fixedlocgiven true;
81 locationsfixed [];
82 FOR i : = 1 TO nolocfixed DO
83 BEGIN
84 read(data, j);
85 locationsfixed := locationsfixed + [j];
86 END;
87 END
88 ELSE
89 BEGIN
90 fixedlocgiven :«= false;
91 locationsfixed := [];
92 END;
93 END;
94 END freadcostanddistancematricesj ;
95
96
97 PROCEDURE writeoutput;
98
99 VAR

100 i: location;
101 j: integer;
102
103 BEGIN
104 writelnC FINAL LAYOUT COST ', costoflayout: 8);
105 writelnC NO OF ITERATION(S) iteration: 5);
106 writelnC EXECUTION TIME \ timeused: 6, ' MIL-SEC);
107 writelnC THE LAYOUT C) ;
108 FOR i 1 TO 4 DO
109 writeC LOC MAC ');
110 writeln;
111 j 0;
112 FOR i := 1 TO n DO
113 BEGIN
114 write(i: 5, macinlocf i]: 5, ' ');
115 j j + 1;
116 IF j - 4 THEN
117 BEGIN
118 writeln;
119 j 0;
120 END;
121 END;
122 writeln;
123 END fwriteoutputj ;
124
125
126 PROCEDURE craft(n: integer; w: arrayweight; d: arraydistance;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX a 1 2 3

127 locationsfixed: setoffixedlocations; VAR macinloc: arrayactinloc; VAR
128 locofmac: arraylacofact; VAR iteration, timeused, costoflayout:
129 integer);
130
131 VAR
132 starttime, timeelapsed: integer;
133 costofswitchmacinloc: arrayswitchcost;
134 oldmacinloc: arrayactinloc;
135
136
137 PROCEDURE dumpinformation;
138
139 VAR
140 i, j; location;
141 k: activity;
142
143 BEGIN
144 writeln(' EXCHANGE INFORMATION');
145 writeln!' ITERATION!S)', iteration: 4, ' LAYOUT COST
146 costoflayout: 6);
147 FOR i 1 TO n DO
148 write!i: 4);
149 writeln;
150 FOR i 1 TO n DO
151 write!macinloc[i]: 4);
152 writeln;
153 FOR k 1 TO n DO
154 write!locofmac[k]: 4);
155 writeln;
156 writeln!' LOC LOC COST');
157 FOR i :« 1 TO n - 1 DO
158 FOR j i + 1 TO n DO

.159- writeln!i: 5, j: 5, costofswitchmacinlocfi, j]: 7);
160 END fdumpinformation! ;
161
162
163 FUNCTION overal1layoutcost: integer;
164
165 VAR
166 i, j: activity;
167 cost: integer;
168 locofi: location;
169
170 BEGIN
171 cost : = 0;
172 FOR i 1 TO n - 1 DO
173 BEGIN
174 locofi := locofmac[i];
175 FOR j i + 1 TO n DO
176 cost := cost + w[i, j] * d[locofi, locofmac[j]];
177 END;
178 overalllayoutcost := cost;
179 END Coveralllayoutcost! ;
180
181
182 FUNCTION xchangecostforloc!1, m: location): integer;
183
184 VAR
185 macinl, macinm, macink: activity;
186 k: location;
187 cost: integer;
188
189 BEGIN

MANAGEMENT SCIENCE IMPERIAL COLLEGE

PENC

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

1 2 4

nsacinl : «= macinlocf 1] ;
macinm macinloc[m];
cost := 0;
FOR k := 1 TO n DO

BEGIN
macink := macinlocfk];
cost : = cost + (d[1, k] - d[m, k]) * (wfmacink, macinm] -

w[macink, macinl]);
END;

xchangecostforloc := cost + 2 * wfmacinl, macinm] * d[l, m];
END fxchangeeostforlocj ;

PROCEDURE keepoldmacinloc;

VAR
i: location;

BEGIN
FOR i : * 1 TO n DO

oldmacinlocfi] :* macinlocfi];
END fkeepoldmacinloc} ;

PROCEDURE initpairwiseexchangecosts;

VAR

1, m: location;

BEGIN

FOR 1 1 TO n - 1 DO
FOR m 1 + 1 TO n DO

costofswitchingmacinloc[1, m] :«= xchangecostforloc(1, m);
END finitpairwiseexchangecosts> ;

PROCEDURE bestpair(VAR bestl, bestm: location; VAR largegain: integer

);

VAR
1, m: location;
gain: integer;

BEGIN
gain := - infinity;
FOR 1 1 TO n • 1 DO

IF NOT (1 IN locationsfixed)
THEN

FOR m :« 1 + 1 TO n DO
IF NOT (m IN locationsfixed) THEN

IF - costofswitchmacinlocf1, m] > gain THEN
BEGIN

gain - costofswitchmacinloc[1, m];
bestl :• 1;
bestm := m;

END;
largegain gain;

END fbestpairj ;

PROCEDURE updatelocation(bestl, bestm: location);

VAR

SCIENCE IMPERIAL COLLEGE

APPENDIX C 125

253 previousmaci.nl: activity;
254
255 BEGIN
256 previousmacinl := macinloc[bestl];
257 macinloc[bestl] : = macinloc[bestm];
258 macinlocfbestm] : = previousmacinl;
259 locofmac[macinloc[bestl]] := bestl;
260 locofmac[macinloc[bestm]] := bestm;
261 END {[updatelocation! ;
262
263
264 PROCEDURE updatemarclos(i, j: location);
265
266 VAR
267 1, m: location;
268 updatecost: integer;
269 macini, macinj, macinl, macinm: activity;
270
271 BEGIN
272 macini := oldmacinloc[i];
273 macinj : = oldmacinloc[j];
274 FOR 1 1 TO n - 1 DO
275 IF NOT (1 IN locationsfixed)
276 THEN
277 FOR m 1 + 1 TO n DO
278 IF NOT (m IN locationsfixed)
279 THEN
280 IF (1 *= i) AND (m « j)
281 THEN
282 costofswitchmacinloc[1, m] :» -
283 costofswitchmacinloc[1, m]
284 ELSE
285 IF ((1 » i) OR (1 - j)) OR <(m - i) OR <m - j))
286 THEN
287 costofswitchmacinloc[1, m] :-
288 xchangecostforloc(1, m)
289 ELSE
290 BEGIN
291 macini := oldmacinloc[1];
292 macinm := oldmacinloc[m];
293 updatecost := (d[j, 1] - d[i, 1] + d[i, m]
294 - d[j, m]) * (w[macini, macinm] + w[
295 macinj, macini] - w[macinj, macinm] - w
296 [macini, roacinl]);
297 costof switchmacinloc[1, m] : «=
298 costofswitchmacinloc[1, m] + updatecost
299 ;
300 END;
301 END fupdatemarclos! ;
302
303
304 PROCEDURE pairwiseinterchange;
305
306 VAR
307 bestl, bestm: location;
308 exchange: boolean;
309 largegain: integer;
310
311 BEGIN
312 initpairwiseexchangecost;
313 REPEAT
314 bestpair(bestl, bestm, largegain);
315 IF largegain > 0

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 126

316 THEN
317 BEGIN
318 exchange : = true;
319 keepoldmacinloc;
320 updatelocation(bestl, bestm);
.321 updatemarclos(bestl, bestm);
322 costoflayout costoflayout - largegain;
323 iteration iteration + 1;
324 END
325 ELSE
326 exchange :« false;
327 UNTIL NOT exchange;
328 END fpairwiseinterchangej ;
329
330
331 BEGIN fcraftj
332 iteration : = 0;
333 starttime : = clock;
334 costoflayout := overalllayoutcost;
335 pairwiseinterchange;
336 timeelapsed : = clock - starttime;
337 timeused := timeelapsed;
338 END fcraftj ;
339
340
341 PROCEDURE readsubproblem;
342
343 VAR
344 i, j, 1: location;
345 k, nolocfixed: integer;
346 found: boolean;
347
348 BEGIN
349 read(data, sizeofsubproblem);
350 FOR k := 1 TO sizeofsubproblem DO
351 read(data, oldlocname[k], oldmacname[k]);
352 read(data, nolocfixed);
353 locationsfixed := [];
354 IF nolocfixed > 0
355 THEN
356 BEGIN
357 fixedlocgiven := true;
358 FOR i := 1 TO nolocfixed DO
359 BEGIN
360 read(data, j);
361 1 := 1;
362 found := false;
363 WHILE NOT (found OR (1 > nolocfixed)) DO
364 BEGIN
365 IF j = oldlocname[l]
366 THEN
367 BEGIN
368 locationsfixed := locationsfixed + [1];
369 found := true;
370 END
371 ELSE
372 1 1 + 1;
373 END;
374 END;
375 END
376 ELSE
377 fixedlocgiven := false;
378 END freadsubproblemj ;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 127

379
380
381 PROCEDURE constructsubproblem;
382
383 VAR
384 i, j, oldloci, oldlocj: location;
385 1, m, oldmacl, oldmacm: activity;
386 k: integer;
387
388 BEGIN
389 FOR i := 1 TO sizeofsubproblem DO
390 BEGIN
391 oldloci :» oldlocname[i];
392 FOR j :» 1 TO sizeofsubproblem DO
393 BEGIN
394 oldlocj : = oldlocname[j];
395 dsubprob[i, j] d[oldloci, oldlocj];
396 END;
397 END;
398 FOR 1 := 1 TO sizeofsubproblem DO
399 BEGIN
400 oldmacl :*= oldmacname[1];
401 FOR m := 1 TO sizeofsubproblem DO
402 BEGIN
403 oldmacm : = oldmacnamefm];
404 weightsubprob[1, m] := wfoldmacl, oldmacm];
405 END;
406 END;
407 FOR k :*= 1 TO sizeofsubproblem DO
408 tempmacinloc[k] : = k;
409 FOR k := 1 TO sizeofsubproblem DO
410 templocofmac[tempmacinloc[k]] := k;
411 END Cconstructsubproblem} ;
412
413
414 PROCEDURE partialreconstructofsubsolution;
415
416 VAR
417 k, oldnameoftempactk: activity;
418 tempnameoflocofk: location;
419
420 BEGIN
421 FOR k := 1 TO sizeofsubproblem DO
422 BEGIN
423 oldnameoftempactk := oldmacname[k];
424 tempnameoflocofk := templocofmac[k];
425 locofmac[oldnameoftempactk] : = oldlocnameftempnameoflocofk];
426 END;
427 END Cpartialreconstructofsubsolutionj ;
428
429
430 PROCEDURE reconstructionofsubsolutions;
431
432 VAR
433 i: activity;
434
435 BEGIN
436 FOR i 1 TO n DO
437 macinloc[locofmac[i]] : = i;
438 locationsfixed : = [];
439 END freconstructionofsubsolutions} ;
440
441

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 128

442 PROCEDURE reportonsubproblem;
443
444 VAR
445 i, j: integer;
446
447 BEGIN
448 writeln!' DISTANCE MATRIX');
449 write!' ': 8);
450 FOR i := 1 TO sizeofsubproblem DO
451 write(i: 4);
452 writeln;
453 write!' ': 8);
454 FOR i 1 TO sizeofsubproblem DO
455 write!oldlocname[i]: 4);
456 writeln;
457 FOR i :* 1 TO sizeofsubproblem DO
458 BEGIN
459 write!i: 4, oldlocnamefi]: 4);
460 FOR j := 1 TO sizeofsubproblem DO
461 write!dsubprob[i, j]: 4);
462 writeln;
463 END;
464 writeln;
465 writeln!' WEIGHT MATRIX');
466 write!' ': 8);
467 FOR i :» 1 TO sizeofsubproblem DO
468 write(i: 4);
469 writeln;
470 write!' ': 8);
471 FOR i := 1 TO sizeofsubproblem DO
472 write!oldmacname[i]: 4);
473 writeln;
474 FOR i := 1 TO sizeofsubproblem DO
475 BEGIN
476 write(i: 4, oldmacname[i]: 4);
477 FOR j 1 TO sizeofsubproblem DO
478 write(weightsubproblem[i, j]: 4);
479 writeln;
480 END;
481 writeln;
482 writeln!' SUB-PROBLEM ASSIGNMENT LOC-MAC: ');
483 FOR i := 1 TO sizeofsubproblem DO
484 write(oldlocname[i]: 4, oldmacname[tempmacinloc[i]]: 4, ' ');
485 writeln;
486 writeln!' GLOBAL ASSIGNMENT MAC-LOC:');
487 FOR i := 1 TO n DO
488 write!i: 4, l'ocofmac[i]: 4, ' ');
489 writeln;
490 writeln;
491 END freportonsubproblemj ;
492
493
494 PROCEDURE solvedbypartitioning;
495
496 VAR
497 i, tempiterno, temptime, tempcost: integer;
498
499 BEGIN
500 IF noofpartitions > 1
501 THEN
502 BEGIN
503 FOR i := 1 TO noofpartitions DO
504 BEGIN

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 129

505 readsubproblem;
506 constructsubproblem;
507 craft(sizeofsubproblem, weightsubprob, dsubprob,
508 locationsfixed, tempmacinloc, templocofmac,
509 tempiterno, temptime, tempcost);
510 partialreconstructofsubsolution;
511 freportonsubproblem;J
512 END;
513 reconstructionofsubsolutions;
514 END;
515 craft(n, w, d, locationsfixed, macinloc, locofmac, iteration,
516 timeused, costoflayout);
517 END fsolvedbypartitioningj ;
518
519
520 BEGIN Clayout3J
521 readcostanddistancematrices;
522 starttime := clock;
523 solvedbypartitioning;
524 timeelapsed : = clock - starttime;
525 writeoutput;
526 writelnc PARTITIONING OVERHEADS ', timeelapsed - timeused);
527 writeln(' TOTAL TIME timeelapsed: 4);
528 writeln;
529 END flayoutSJ . 5

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 1 3 0

1 PROGRAM maxplanar(tetra, output, seed, input /);
2 (*$I'RANDOM' random number generator declarations. *)
3
4 CONST
5 maxn = 100;
6 f number of vertices J
7 maxm = 294;
8 f number of arcs 3*n - 6 J
9 maxf = 196;

10 £ number of aces 2*n -4 J
11 maxvalence = 99;
12 £ n-1 J
13 maxnocoef - 4950;
14 £ n*(n-1)div2 J
15 big = 9999;
16
17 TYPE
18 noderange = l..maxn;
19 arcrange = l..maxm;
20 facerange ® l..maxf;
21 small - 0..127;
22 nodeptr = A nodelist;
23 arcptr = A arcinuse;
24 feceptr * A faces;
25 nodelist * PACKED RECORD
26 arcloc: arcptr;
27 nextnode: nodeptr;
28 END;
29 verticesinuse = PACKED RECORD
30 valuel, value2: integer;
31 facel, face2: faceptr;
32 END;
33 activevertex ® A verticesinuse;
34 anodetable - PACKED RECORD
35 CASE active: boolean OF
36 true: (vactive: activevertex);
37 false: (valence: 0..maxvalence;
38 nextvertex: nodeptr)
39 END;
40 arcinuse = PACKED RECORD
41 nl, n2: noderange;
42 fl, f2: faceptr;
43 arcadj: arcptr;
44 END;
45 faces = PACKED RECORD
46 vl, v2, v3: noderange;
47 faceadj: faceptr;
48 END;
49 start =
50 (maxweight, maxtetra, randomized);
51 entry =
52 (ordered, largest, delta);
53
54 VAR
55 seed, tetra: text;
56 nodetable: ARRAY
57 [l..maxn] OF anodetable;
58 newarc, firstarc, lastarc: arcptr;
59 re1chart: ARRAY
60 [1..maxnocoef] OF small;
61 newface, firstface, fnxtolast, lastface: faceptr;
62 activenode, firstactivenode: activevertex;
63 nextvertex, nodestore: nodeptr;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 1 3 1

64 shape: ARRAY
65 [1..24] OF 1..6;
66 sumw: ARRAY
67 [0..maxn] OF PACKED RECORD
68 v: 0..maxn;
69 g: integer;
70 END;
71 n, nv: 0..maxn;
72 m, na: 0..maxm;
73 f, nf: 0..maxf;
74 nocoef: 1..maxnocoef;
75 fremoved: faceptr;
76 i, problem, timet, timec, timei: integer;
77 anode: noderange;
78 starting: start;
79 enter: entry;
80 firstround, arcswap, yswap: boolean;
81

82
83 PROCEDURE order2(VAR x, y: noderange);
84
85 VAR
86 z: noderange;
87
88 BEGIN
89 IF y < x THEN
90 BEGIN
91 z := x;
92 x := y;
93 y := z
94 END
95 END £order2> ;
96
97
98 PROCEDURE order3(VAR x, y, z: noderange);
99

100 BEGIN
101 order2(x, y);
102 order2(y, z);
103 order2(x, y)
104 END forder3J ;
105
106
107 FUNCTION c(i, j: noderange): small;
108
109 VAR
110 k: 0..maxnocoef;
111 il, jl: noderange;
112
113 BEGIN
114 IF i • j
115 THEN
116 c := 0
117 ELSE
118 BEGIN
119 il := i;
120 jl j;
121 order2(i1, jl);
122 k (il - 1) * n - (il - 1) * il DIV 2;
123 c := relchart[k + jl - il]
124 END
125 END fcj ;
126

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 132

127
128 FUNCTION assigncost: integer;
129
130 VAR
131 ptr: arcptr;
132 cost: integer;
133 i, j: noderange;
134
135 BEGIN
136 ptr : = firstarc;
137 cost 0;
138 WHILE ptr <> NIL DO
139 BEGIN
140 WITH ptr A DO
141 BEGIN
142 i nl;
143 j : = n2;
144 END;
145 cost := cost + c(i, j);
146 ptr := ptr A.arcadj
147 END;
148 assigncost : = cost
149 END CassigncostJ ;
150
151
152 FUNCTION starweight(vl, v2, v3, v4: noderange): integer;
153
154 BEGIN
155 starweight c(vl, v2) + c(vl, v3) + c(vl, v4) + c(v2, v3) + c(v2
156 , v4) + c(v3, v4)
157 END fstarweight> ;
158
159
160 FUNCTION yweight(vl, v2, v3, v4: noderange): integer;
161
162 BEGIN
163 yweight := c(vl, v2) + c(vl, v3) + c(vl, v4)
164 END fyweightl ;
165
166
167 FUNCTION pickorder: noderange;
168
169 BEGIN
170 pickorder := sumw[nv + l].v
171 END CpickorderJ ;
172
173
174 PROCEDURE readinput;
175
176 VAR
177 i: integer;
178
179 BEGIN
180 read(tetra, n, problem);
181 FOR i 1 TO n * (n - 1) DIV 2 DO
182 read(tetra, relchart[i]);
183 FOR i :» 1 TO 24 DO
184 read(tetra, shape[i]);
185 END freadinputj ;
186
187
188 PROCEDURE initrandom;
189

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 1 3 3

190 VAR
191 si, s2: integer;
192
193 BEGIN
194 reset(seed);
195 read(seed, si, s2);
196 setrandom(si, s2);
197 writelnC SEEDS USED: ', si: 20, s2: 20);
198 END finitrandomj ;
199
200
201 PROCEDURE replaceseeds;
202
203 VAR
204 si, s2: integer;
205
206 BEGIN
207 rewrite(seed);
208 getrandom(sl, s2);
209 write(seed, si, ' ', s2);
210 END freplaceseedsj ;
211
2 1 2
213 PROCEDURE initialization;
214
215 VAR
216 i: integer;
217 p: activevertex;
218
219 BEGIN
220 m := 3 * n - 6;
221 f := 2 * n - 4;
222 nocoef n * (n - 1) DIV 2;
223 FOR i := 1 TO n DO
224 WITH nodetable[i] DO
225 BEGIN
226 active := true;
227 new(p);
228 vactive := p;
229 WITH vactive A DO
230 BEGIN
231 valuel := 0;
232 value2 :« 0;
233 facel := NIL;
234 face2 := NIL;
235 END;
236 END;
237 IF enter = ordered THEN
238 BEGIN
239 FOR i := 1 TO n DO
240 WITH sumw[i] DO
241 BEGIN
242 v := 0;
243 g :« 0;
244 END;
245 sumw[0].g := big;
246 END;
247 nextvertex := NIL;
248 nodestore := NIL;
249 firstface := NIL;
250 lastface := NIL;
251 fnxtolast := NIL;
252 nv := 0;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 1 3 4

253 na := 0;
254 nf := 0;
255 END finitializationj ;
256
257
258 PROCEDURE garbagecollection;
259
260 VAR
261 pi, p2: faceptr;
262 p3, p4: arcptr;
263 p5, p6: nodeptr;
264 i: integer;
265
266 BEGIN
267 pi := firstface;
268 WHILE pi <> NIL DO
269 BEGIN
270 p2 := pi A.faceadj;
271 dispose(pl);
272 pi := p2
273 END;
274 p3 := firstarc;
275 WHILE p3 <> NIL DO
276 BEGIN
277 p4 := p3 A.arcadj;
278 dispose(p3);
279 p3 := p4
280 END;
281 FOR i := 1 TO n DO
282 BEGIN
283 p5 := nodetable[i].nextvertex;
284 WHILE p5 <> NIL DO
285 BEGIN
286 p6 := p5 A.nextnode;
287 dispose(p5);
288 p5 := p6;
289 END;
290 END;
291 END CgarbagecollectionJ ;
292
293
294 PROCEDURE deactivate(v: noderange);
295
296 VAR
297 p: activevertex;
298
299 BEGIN
300 WITH nodetable[v] DO
301 BEGIN
302 p := vactive;
303 dispose(p);
304 active := false;
305 valence := 0;
306 nextvertex := NIL;
307 END;
308 END fdeactivatej ;
309
310
311 PROCEDURE intermediateresults;
312
313 VAR
314 i: integer;
315 ptr: nodeptr;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 1 3 5

316
317 BEGIN
318 FOR i := 1 TO n DO
319 WITH nodetable[i] DO
320 BEGIN
321 IF active
322 THEN
323 BEGIN
324 writeln(* NODE i: 3);
325 WITH vactive A DO
326 BEGIN
327 IF value1 <> 0 THEN
328 WITH facel A DO
329 writelnC VALUE', valuel: 5, vl: 3, v2:
330 3, v3: 3);
331 IF value2 <> 0 THEN
332 WITH face2 A DO
333 writeln(' VALUE', value2: 5, vl: 3, v2:
334 3, v3: 3)
335 END;
336 END
337 ELSE
338 BEGIN
339 writelnC NODE', i: 4, ' VALENCE ', valence: 4);
340 ptr := nextvertex;
341 WHILE ptr <> NIL DO
342 BEGIN
343 WITH ptr A, arcloc A DO
344 writelnC ARC ', nl: 3, n2: 3, ' FACE1 ',
345 fl A.vl: 3, fl A.v2: 3, fl A.v3: 3,
346 .' FACE2 ', f2 A.vl: 3, f2 A.v2: 3, f2 A
347 •v3: 3);
348 ptr ptr A.nextnode;
349 END;
350 END;
351 writeln;
352 END;
353 END fintermediateresultsj ;
354
355
356 PROCEDURE insertinformation(k: noderange);
357
358 VAR
359 nl, n2, n3: noderange;
360
361 BEGIN
362 WITH nodetable[k].vactive A.facel A DO
363 BEGIN
364 nl vl;
365 n2 :» v2;
366 n3 := v3
367 END;
368 writelnC PUT NODE ', k: 3, ' INTO FACE ', nl: 3, n2: 3, n3: 3);
369 END finsertinformationj ;
370
371
372 PROCEDURE statusreport;
373
374 BEGIN
375 writelnC NUMBER OF VERTICES ', n: 5);
376 writelnC PROBLEM NUMBER ', problem: 5);
377 CASE starting OF
378 maxweight:

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 1 3 6

379 writeln(' FOUR HEIGHEST WEIGHT VERTICES AS',
380 ' STARTING TETRAHEDRON');
381 maxtetra:
382 writeln(' HEAVIEST TETRAHEDRON AS STARTING POINT');
383 randomized:
384 writeln(' RANDOM STARTING TETRAHEDRON')
385 END;
386 write(' NODE SELECTION ACCORDING TO ');
387 CASE enter OF
388 ordered:
389 writelnC WEIGHT ORDER') ;
390 largest:
391 writelnC HIGHEST GAIN') ;
392 delta:
393 writelnC HIGHEST COST')
394 END;
395 END CstatusreportJ ;
396
397
398 PROCEDURE bigtetra(VAR vl, v2, v3, v4: noderange);
399
400 VAR
401 i, j, k, 1: noderange;
402 base, weight: integer;
403
404 BEGIN
405 base 0;
406 FOR i 1 TO n - 3 DO
407 FOR j :•= i + 1 TO n • 2 DO
408 FOR k : s j + 1 TO n • 1 DO
409 FOR 1 := k + 1 TO n DO
410 BEGIN
411 weight starweight(i, j, k, 1);
412 IF base o weight THEN
413 BEGIN
414 base := weight;
415 vl : = i;
416 v2 := j;
417 v3 :« k;
418 v4 := 1;
419 END;
420 END
421 END fbigtetra! ;
422
423
424 PROCEDURE random4nodes(VAR nl, n2, n3, n4: noderange);
425
426 VAR
427 anode: ARRAY
428 [1.,4j OF noderange;
429 k: noderange;
430 i, j: integer;
431 same: boolean;
432
433 BEGIN
434 anode[l] :» trunc(random * n) + 1;
435 FOR i 2 TO 4 DO
436 BEGIN
437 REPEAT
438 same := false;
439 k := trunc(random * n) + 1;
440 FOR j ;= 1 TO i - 1 DO
441 IF anode[j] - k THEN

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 137

442 same := true;
443 UNTIL NOT same;
444 anode[i] : = k;
445 END;
446 FOR i := 2 TO 4 DO
447 FOR j := 4 DOWNTO i DO
448 IF anode[j] < anode[j - 1] THEN
449 BEGIN
450 k := anode[j - 1];
451 anode[j - 1] := anode[j];
452 anode[j] := k;
453 END;
454 nl := anode[1];
455 n2 := anode[2];
456 n3 anode[3];
457 n4 := anode[4];
458 END frandom4nodesJ ;
459
460
461 PROCEDURE longtable(i: noderange; val: integer);
462
463 VAR
464 j, k: integer;
465
466 BEGIN
467 j i - 1;
468 WHILE sumw[j] . g < val DO
469 BEGIN
470 sumw[j + 1] :* sumw[j];
471 j :« 3 - l:
472 END;
473 WITH sumw[j + 1] DO
474 BEGIN
475 v :» i;
476 g := val
477 END;
478 IF i = n
479 THEN
480 FOR j := 4 DOWNTO 2 DO
481 FOR k := j - 1 DOWNTO 1 DO
482 IF sumw[j].v < sumw[k].v THEN
483 BEGIN
484 sumw[0] sumw[j];
485 sumw[j] := sumw[k];
486 sumw[k] := sumw[0];
487 END;
488 END Clongtablel ;
489
490
491 PROCEDURE select4nodes(VAR vl, v2, v3, v4: noderange);
492
493 VAR
494 a: ARRAY
495 [0..4] OF RECORD
496 v: 0..maxn;
497 g: integer
498 END;
499 attractive, i, j: integer;
500
501
502 PROCEDURE sorttable;
503
504 VAR

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 138

505 i, j: integer;
506
507 BEGIN
508 FOR i := 4 DOWNTO 2 DO
509 FOR j := i - 1 DOWNTO 1 DO
510 IF a[i].v < a[j].v THEN
511 BEGIN
512 a[0] := a[i];
513 a[i] := a[j];
514 a[j] := a[0];
515 END;
516 END fsorttablej ;
517
518
519 PROCEDURE upthetable(i: noderange; val: integer);
520
521 VAR
522 j: 0..4;
523
524 BEGIN
525 j 4;
526 WHILE a[j).g < val DO
527 BEGIN
528 a[j] := a[j - 1];
529 j := j • 1;
530 END;
531 IF j <> 4 THEN
532 WITH a[j + 1] DO
533 BEGIN
534 v := i;
535 g := val;
536 END;
537 IF i s n THEN
538 sorttable;
539 END {[upthetable* ;
540
541
542 BEGIN £select4nodesJ
543 IF starting = maxweight
544 THEN
545 BEGIN
546 FOR i := 0 TO 4 DO
547 WITH a[i] DO
548 BEGIN
549 v := 0;
550 g 0;
551 END;
552 a[0].g := big;
553 FOR i 1 TO n DO
554 BEGIN
555 attractive := 0;
556 FOR j 1 TO n DO
557 IF i <> j THEN
558 attractive := attractive + c(i, j);
559 IF enter = ordered
560 THEN
561 longtable(i, attractive)
562 ELSE
563 upthetable(i, attractive)
564 END;
565 IF enter = ordered
566 THEN
567 BEGIN

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 139

568 vl := sumw[l].v;
569 v2 := sumw[2].v;
570 v3 := sumw[3].v;
571 v4 := sumw[4].v
572 END
573 ELSE
574 BEGIN
575 vl := a[1].v;
576 v2 := a[2].v;
577 v3 a[3].v;
578 v4 := a[4].v;
579 END;
580 END
581 ELSE
582 IF starting = maxtetra
583 THEN
584 bigtetra(vl, v2, v3, v4)
585 ELSE
586 random4nodes(vl, v2, v3, v4);
587 END £select4nodes> ;
588
589
590 PROCEDURE tetrahedron;
591
592 VAR
593 v: ARRAY
594 [1..4] OF noderange;
595 i: 1..4;
596 j: integer;
597
598
599 PROCEDURE maketetrahedron;
600
601 VAR
602 i , j , k: 0..maxn;
603 1, p: integer;
604 newnode, nptr: nodeptr;
605 e: ARRAY
606 [1..6] OF arcptr;
607 s: ARRAY
608 [1..4] OF faceptr;
609
610 BEGIN
611 p := 0;
612 FOR 1 := 1 TO 6 DO
613 new(e[1]);
614 FOR 1 := 1 TO 4 DO
615 new(s[l]);
616 f construct the node list!
617 FOR i 1 TO 4 DO
618 BEGIN
619 nptr := NIL;
620 deactivate(v[i]);
621 FOR j := 3 DOWNTO 1 DO
622 BEGIN
623 new(newnode);
624 newnode A.nextnode := nptr;
625 newnode A.arcloc := e[shape[p + j]];
626 nptr := newnode;
627 END;
628 nodetable[v[i]].valence := 3;
629 nodetable[v[i]].nextvertex nptr;
630 p := p + 3

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 140

631 END;
632 Cconstruct nodetablej
633 1 :» 1;
634 FOR i := 1 TO 3 DO
635 FOR j :• i + 1 TO 4 DO
636 BEGIN
637 WITH e[1] A DO
638 BEGIN
639 nl := v[i];
640 n2 v[j];
641 fl s[shape[p + 1]];
642 f2 := s[shape[p + 2]];
643 END;
644 1 1 + 1;
645 p p + 2;
646 END;
647 firstarc := e[l];
648 e[6] A.arcadj := NIL;
649 lastarc := e[6];
650 FOR i 1 TO 5 DO
651 e[i] A.arcadj := e[i + 1];
652 Cconstruct facej
653 1 := 1;
654 FOR i 1 TO 2 DO
655 FOR j :« i + 1 TO 3 DO
656 FOR k := j + 1 TO 4 DO
657 BEGIN
658 WITH s[l] A DO
659 BEGIN
660 vl := v[i] ;
661 v2 v[j);
662 v3 v[k];
663 END;
664 1 :- 1 + 1;
665 END;
666 firstface := s[l];
667 lastface s[4];
668 FOR i 1 TO 3 DO
669 s[i] A.faceadj s[i + 1];
670 s[4] A.faceadj := NIL;
671 nv := 4;
672 na := 6;
673 nf := 4;
674 END fmaketetrahedron} ;
675
676
677 BEGIN ftetrahedronj
678 select4nodes(v[1] , v[2], v[3], v[4]);
679 writelnC INITIAL TETRAHEDRON v[l]: 4, v[2]: 4, v[3]: 4, v[4]:
680 4);
681 maketetrahedron;
682 END ftetrahedronj ;
683
684
685 FUNCTION facevalue(v: noderange; f: faces): integer;
686
687 BEGIN
688 WITH f DO
689 facevalue := c(v, vl) + c(v, v2) + c(v, v3);
690 END ffacevaluej ;
691
692
693 PROCEDURE savebig2(i: noderange; f: faceptr; valueO: integer);

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 1 4 1

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715 PROCEDURE nodegain(v: noderange);
716
717 VAR
718 ptr: faceptr;
719 i: facerange;
720
721 BEGIN
722 IF nodetable[v].active
723 THEN
724 WITH nodetable[v].vactive A DO
725 BEGIN
726 ptr := firstface;
727 FOR i 1 TO nf DO
728 BEGIN
729 savebig2(v, ptr, facevalue(v, ptr A));
730 ptr := ptr A.faceadj
731 END;
732 END
733 END fnodegainj ;
734
735
736 PROCEDURE gainupdate(v: noderange);
737
738 VAR
739 ptr: faceptr;
740 i: facerange;
741
742 BEGIN
743 IF nodetable[v].active
744 THEN
745 WITH nodetable[v].vactive A DO
746 BEGIN
747 IF ((facel = fremoved) OR (face2 = fremoved))
748 THEN
749 BEGIN
750 valuel := 0;
751 value2 := 0;
752 nodegain(v)
753 END
754 ELSE
755 BEGIN
756 savebig2(v, fremoved, facevalue(v, freraoved A));

BEGIN
WITH nodetable[i].vactive A DO

IF value2 < valueO
THEN

IF valuel < valueO
THEN

BEGIN
value2 := valuel;
face2 := facel;
valuel := valueO;
facel := f;

END
ELSE

BEGIN
value2 := valueO;
face2 := f;

END;
END fsavebig2J ;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 1 4 2

757 savebig2(v, fnxtolast, facevalue(v, fnxtolast A));
758 savebig2(v, lastface, facevalue(v, lastface A));
759 END;
760 END;
761 END CgainupdateJ ;
762
763
764 FUNCTION pickl: noderange;
765
766 VAR
767 a, i: noderange;
768 base: integer;
769
770 BEGIN
771 base 0;
772 FOR i := 1 TO n DO
773 WITH nodetable[i] DO
774 IF active THEN
775 IF vactive A.valuel >= base THEN
776 BEGIN
777 base := vactive A.valuel;
778 a i;
779 END;
780 pickl := a
781 END CpicklJ ;
782
783
784 FUNCTION pick2: noderange;
785
786 VAR
787 a, i: noderange;
788 base: integer;
789
790 BEGIN
791 base :«= 0;
792 FOR i := 1 TO n DO
793 WITH nodetable[i] DO
794 IF active THEN
795 WITH vactive A DO
796 IF valuel - value2 >= base THEN
797 BEGIN
798 base := valuel - value2;
799 a := i ;
800 END;
801 pick2 := a
802 END £pick2J ;
803
804
805 PROCEDURE addaface(ndl, nd2, nd3: noderange; location; faceptr);
806
807 VAR
808 nl, n2, n3: noderange;
809
810 BEGIN
811 nl := ndl;
812 n2 := nd2;
813 n3 ;= nd3;
814 order3(nl, n2, n3);
815 WITH location A DO
816 BEGIN
817 vl := nl;
818 v2 := n2;
819 v3 := n3;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 1 4 3

820 END;
821 END faddafacej ;
822
823
824 PROCEDURE addanarc(ndl, nd2: noderange; a: arcptr; 11, 12: faceptr);
825
826 VAR
827 vl, v2: noderange;
828
829 BEGIN
830 vl := ndl;
831 v2 := nd2;
832 order2(vl, v2);
833 WITH a A DO
834 BEGIN

• 835 nl := vl;
836 n2 := v2;
837 fl := 11;
838 f2 := 12;
839 END;
840 END Caddanarc} ;
841
842
843 PROCEDURE addavertex(ndl, nd2: noderange; al: arcptr);
844
845 VAR
846 this, next, ptr: nodeptr;
847 a2: arcptr;
848 nd: noderange;
849 found: boolean;
850
851 BEGIN
852 new(ptr);
853 WITH nodetable[ndl] DO
854 BEGIN
855 IF active
856 THEN
857 BEGIN
858 deactivate(ndl);
859 valence := 1;
860 nextvertex := ptr;
861 ptr A.arcloc := al;
862 ptr A.nextnode := NIL;
863 END
864 ELSE
865 BEGIN
866 this := NIL;
867 next := nextvertex;
868 found := false;
869 WHILE ((NOT found) AND (next <> NIL)) DO
870 BEGIN
871 a2 :•= next A.arcloc;
872 IF ndl - a2 A.nl
873 THEN
874 nd := a2 A.n2
875 ELSE
876 nd := a2 A.nl;
877 IF nd > nd2
878 THEN
879 BEGIN
880 found := true;
881 IF this = NIL
882 THEN

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 1 4 4

883 BEGIN
884 Ptr A.nextnode := nextvertex;
885 nextvertex := ptr;
886 END
887 ELSE
888 this A.nextnode : = ptr
889 END
890 ELSE
891 BEGIN
892 this : = next;
893 next := next A.nextnode;
894 END;
895 END;
896 IF next = NIL
897 THEN
898 BEGIN
899 IF this = NIL
900 THEN
901 nextvertex : = ptr
902 ELSE
903 this A.nextnode : = ptr;
904 ptr A.nextnode := NIL
905 END
906 ELSE
907 ptr A.nextnode := next;
908 ptr A.arcloc : = al;
909 valence : m valence + 1;
910 END
911 END
912 END CaddavertexJ ;
913
914
915 PROCEDURE changefaces(ndl, nd2, nd3: noderange; nfl, nf2: faceptr);
916
917
918 PROCEDURE findarc(ndl, nd2: noderange; fl: faceptr);
919
920 VAR
921 vl, v2: noderange;
922 1*. arcptr;
923
924 BEGIN
925 vl := ndl;
926 v2 := nd2;
927 order2(vl, v2);
928 1 := firstarc;
929 WHILE ((1 A.nl <> vl) OR (1 A.n2 <> v2)) DO
930 1 := 1 A.arcadj;
931 IF 1 A.fl = f removed
932 THEN
933 1 A.fl fl
934 ELSE
935 1 A.f2 fl
936 END ffindarcj ;
937
938
939 BEGIN fchangefaces>
940 findarc(ndl, nd3, nfl);
941 findarc(nd2, nd3, nf2)
942 END fchangefacesj ;
943
944
945 PROCEDURE adjface(vl, v2: noderange; fptr: faceptr);

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 145

946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008

VAR

anode: nodeptr;

BEGIN

anode := nodetable[v2].nextvertext;
WHILE ((anode A.arcloc A.nl <> vl) OR (anode A.arcloc A.n2 <> v2))

DO
anode := anode A.nextnode;

WITH anode A.arcloc A DO
IF fl = fremoved
THEN

fl := fptr
ELSE

f2 := fptr
END fadjfacej ;

PROCEDURE addanode(stick: noderange; reject: faceptr)

VAR

i: integer;
newnode, ptr: nodeptr;
nfl, nf2: faceptr;
nO, nl, n2, n3: noderange; '
al, a2, a3: arcptr;

BEGIN
fremoved := reject;
nO := stick;
WITH fremoved A DO

BEGIN
nl := vl
n2 := v2
n3 := v3

END;
f enter new faces J
addaface(nO, nl, n2, fremoved);
new(nf1);
addaface(nO, nl, n3, nfl);
new(nf2);
addaface(nO, n2, n3, nf2);
adjface(nl, n3, nfl);
adjface(n2, n3, nf2);
lastface A.faceadj := nfl;
nf2 A.faceadj := NIL;
nfl A.faceadj := nf2;
fnxtolast := nfl;
lastface := nf2;
f enter new arcs >
new(al);
new(a2);
new(a3);
addanarc(nO, nl, al,
addanarc(nO, n2, a2,
addanarc(nO, n3, a3
lastarc A.arcadj :=
al A.arcadj := a2;
a2 A.arcadj := a3;
a3 A.arcadj :« NIL;
lastarc := a3;
f enter new vertex J
addavertex(nl, nO, al);

fremoved, nfl);
fremoved, nf2);
nfl, nf2);

al;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 146

1009 addavertex(n2, nO, a2)
1010 addavertex(n3, nO, a3)
1011 addavertex(nO, nl, al)
1012 addavertex(nO, n2, a2)
1013 addavertex(nO, n3, a3)
1014 f update indicies J
1015 nf := nf + 2;
1016 na na + 3;
1017 nv : = nv + 1;
1018 END faddanodej ;
1019
1020
1021 FUNCTION switchable(anarc: arcptr): boolean;
1022
1023 BEGIN
1024 WITH anarc A DO
1025 IF ((nodetable[nl].valence « 3) OR (nodetable[n2].valence = 3))
1026 THEN
1027 switchable := false
1028 ELSE
1029 switchable := true
1030 END fswitchablej ;
1031
1032
1033 FUNCTION thirdnode(anarc: arcptr; aface: faceptr): noderange;
1034
1035 BEGIN
1036 WITH anarc A, aface A DO
1037 IF ((vl <> nl) AND (vl <> n2))
1038 THEN
1039 thirdnode := vl
1040 ELSE
1041 IF ((v2 <> nl) AND (v2 <> n2))
1042 THEN
1043 thirdnode v2
1044 ELSE
1045 thirdnode := v3
1046 END fthirdnodel ;
1047
1048
1049 FUNCTION connected(al, a2: noderange): arcptr;
1050
1051 VAR
1052 vl, v2: noderange;
1053 vptr: nodeptr;
1054 found: boolean;
1055
1056 BEGIN
1057 vl := al;
1058 v2 := a2;
1059 order2(vl, v2);
1060 found := false;
1061 vptr := nodetable[v2].nextvertex;
1062 WHILE ((NOT found) AND (vptr <> NIL)) DO
1063 WITH vptr A.arcloc A DO
1064 IF vl <> nl
1065 THEN
1066 vptr := vptr A.nextnode
1067 ELSE
1068 found := true;
1069 IF found
1070 THEN
1071 connected := vptr A.arcloc

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 1 4 7

1072 ELSE
1073 connected := NIL;
1074 c IF found THEN writeln(vl, v2, * connected')
1075 ELSE writeln(vl, v2, ' not connected'); J
1076 END {[connected! ;
1077
1078
1079 PROCEDURE removearc(p, q: noderange; anarc: arcptr);
1080
1081
1082 PROCEDURE removenode(nl: noderange; anarc: arcptr);
1083
1084 VAR
1085 last, this: nodeptr;
1086
1087 BEGIN
1088 this :- nodetable[nl].nextvertex;
1089 last := NIL;
1090 WHILE this A.arcloc <> anarc DO
1091 BEGIN
1092 last := this;
1093 this this A.nextnode;
1094 END;
1095 IF last = NIL
1096 THEN
1097 nodetable[nl].nextvertex := this A.nextnode
1098 ELSE
1099 last A.nextnode :« this A.nextnode;
1100 dispose(this);
1101 nodetable[nl].valence := nodetable[nl].valence - 1;
1102 END fremovenodej ;
1103
1104
1105 BEGIN fremovearcj
1106 removenode(p, anarc);
1107 removenode(q, anarc);
1108 END fremovearcj ;
1109
1110
1111 PROCEDURE diagonalswitch(al, a2, p, q: noderange; anarc: arcptr; fptrl,
1112 fptr2: faceptr);
1113
1114 VAR
1115 dumarcl, dumarc2: arcptr;
1 1 1 6
1117 BEGIN
1118 dumarcl := connected(al, q);
1119 dumarc2 := connected(a2, p);
1120 addaface(al, a2, p, fptrl);
1121 addaface(al, a2, q, fptr2);
1122 addanarc(al, a2, anarc, fptrl, fptr2);
1123 addavertex(al, a2, anarc);
1124 addavertex(a2, al, anarc);
1125 WITH dumarcl A DO
1126 IF fl = fptrl
1127 THEN
1128 fl fptr2
1129 ELSE
1130 f2 := fptr2;
1131 WITH dumarc2 A DO
1132 IF fl = fptr2
1133 THEN
1134 fl := fptrl

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 1 4 8

1135 ELSE
1136 f2 := fptrl;
1137 removearc(p, q, anarc);
1138 END fdiagonalswitch! ;
1139
1140
1141 PROCEDURE redirectface(dl, d2: noderange; oldface, newface: faceptr);
1142
1143 VAR
1144 dumarc: arcptr;
1145
1146 BEGIN
1147 dumarc := connected(dl, d2);
1148 WITH dumarc A DO
1149 IF fl « oldface
1150 THEN
1151 fl := newface
1152 ELSE
1153 f2 := newface
1154 END fredirectface! ;
1155
1156
1157 FUNCTION locatearc(dl, d2: noderange): arcptr;
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174 FUNCTION locateface(dl, d2, d3: noderange): faceptr;
1175
1176 VAR
1177 anarc: arcptr;
1178 ndl, nd2, nd3: noderange;
1179
1180 BEGIN
1181 ndl :« dl;
1182 nd2 := d2;
1183 nd3 := d3;
1184 order3(ndl» nd2, nd3);
1185 anarc : «= locatearc(ndl, nd3);
1186 WITH anarc A DO
1187 IF fl A.v2 - nd2
1188 THEN
1189 locateface := fl
1190 ELSE
1191 locateface := f2;
1192 END flocateface! ;
1193
1194
1195 FUNCTION nonchangeablepair(nc, nd, nb, nal, na2: noderange): noderange;
1196
1197 VAR

VAR
anode: nodeptr;
ndl, nd2: noderange;

BEGIN
ndl := dl;
nd2 := d2;
order2(ndl, nd2);
anode nodetable[nd2].nextvertex;
WHILE NOT (anode A.arcloc A.nl = ndl) DO

anode := anode A.nextnode;
locatearc := anode A.arcloc;

END flocatearc! ;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 149

1198 aface: faceptr;
1199 anarc: arcptr;
1200 anode: noderange;
1201
1202 BEGIN
1203 aface := locateface(nc, nd, nb);
1204 anarc := locatearc(nc, nb);
1205 REPEAT
1206 WITH anarc A DO
1207 IF fl <> aface
1208 THEN
1209 aface :« fl
1210 ELSE
1211 aface := f2;
1212 anode :« thirdnode(anarc, aface);
1213 anarc := locatearc(nc, anode);
1214 UNTIL (anode = nal) OR (anode = na2);
1215 IF anode = nal
1216 THEN
1217 nonchangeablepair := nal
1218 ELSE
1219 nonchangeablepair := na2;
1220 END fnonchangeablepairj ;
1221
1222
1223 PROCEDURE mediumswitch(na2, nbl, nal, nb2, nc, nd: noderange);
1224 C replace nal-na2 by na2-nbl
1225 nc-nd are the other pair of vertices in the
1226 switching quadrilateral nal-nc-na2-nd
1227 nc is used as the anchor for searching J
1228
1229 VAR
1230 rl, r2, r3: faceptr;
1231 anarc: arcptr;
1232
1233 BEGIN
1234 rl := locateface(nal, na2, nc);
1235 r2 := locateface(nal, na2, nd);
1236 r3 := locateface(nbl, nc, nd);
1237 addaface(na2, nbl, nc, rl);
1238 addaface(na2, nbl, nd, r2);
1239 addaface(nal, nc, nd, r3);
1240 redirectface(nal, nc, rl, r3);
1241 redirectface(nal, nd, r2, r3);
1242 redirectface(nbl, nc, r3, rl);
1243 redirectface(nbl, nd, r3, r2);
1244 anarc := locatearc(nal, na2);
1245 removearc(nal, na2, anarc);
1246 addanarc(na2, nbl, anarc, rl, r2);
1247 addavertex(nbl, na2, anarc);
1248 addavertex(na2, nbl, anarc);
1249 writelnC MEDIUM SWITCH :', nal: 3, na2: 3, ' TO ', na2: 3, nbl: 3
1250);
1251 END tfmediumswitchj ;
1252
1253
1254 PROCEDURE switch(anarc: arcptr; VAR arcswap: boolean);
1255
1256 TYPE
1257 replacetype =
1258 (noswitch, switcha2bl, switchalb2, longleg);
1259
1260 VAR

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 1 5 0

1261 al, a2, bl, b2, cl, c2, anode: noderange;
1262 fptrl, f ptr2 , f ptr3 , fp'tr4: faceptr;
1263 joinedbase: arcptr;
1264 bestmove: replacetype;
1265
1266
1267 FUNCTION findswitch(wl, w2, w3, w4: integer): replacetype;
1268
1269 VAR
1270 a: ARRAY
1271 [replacetype] OF integer;
1272 max: integer;
1273 i, kind: replacetype;
1274
1275 BEGIN
1276 a[noswitch] :- wl;
1277 a[switcha2bl] := w2;
1278 a[switchalb2] := w3;
1279 a[longleg] : = w4;
1280 max : = wl;
1281 kind := noswitch;
1282 FOR i := switcha2bl TO longleg DO
1283 IF a[i] > max THEN
1284 BEGIN
1285 max := a[i];
1286 kind i;
1287 END;
1288 findswitch := kind;
1289 END CfindswitchJ ;
1290
1291
1292 BEGIN fswitchj
1293 IF switchable(anarc)
1294 THEN
1295 BEGIN
1296 WITH anarc A DO
1297 BEGIN
1298 fptrl := fl;
1299 fptr2 := f2;
1300 al := nl;
1301 a2 := n2;
1302 cl := thirdnode(anarc, fptrl);
1303 c2 :« thirdnode(anarc, fptr2);
1304 END;
1305 joinedbase := connected(cl, c2);
1306 IF joinedbase = NIL
1307 THEN
1308 BEGIN
1309 IF c(c1, c2) > c(al, a2)
1310 THEN
1311 BEGIN
1312 writelnC SWITCH al: 3, a2: 3, ' TO cl: 3,
1313 c2: 3);
1314 diagonalswitch(cl, c2, al, a2, anarc, fptrl,
1315 fptr2);
1316 arcswap := true;
1317 END
1318 END
1319 ELSE
1320 BEGIN
1321 fptr3 := joinedbase A.fl;
1322 fptr4 := joinedbase A.f2;
1323 bl := thirdnode(joinedbased, fptr3);

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 151

1324 b2 := thirdnode(joinedbase, fptr4);
1325 anode := nonchangeablepair(cl, c2, bl, al, a2);
1326 IF anode <> al THEN
1327 BEGIN
1328 a2 := al;
1329 al := anode;
1330 END;
1331 bestmove := findswitch(c(al, a2), c(a2, bl), c(al , b2)
1332 , c(bl, b2));
1333 CASE bestmove OF
1334 noswitch:
1335 BEGIN
1336 END;
1337 switcha2bl:
1338 mediumswitch(a2, bl, al, b2, cl, c2);
1339 switchalb2:
1340 mediumswitch(al, b2, a2, bl, cl, c2);
1341 longleg:
1342 BEGIN
1343 writeln(' LONGSWITCH \ al: 3, a2: 3, ' TO
1344 bl: 3, b2: 3);
1345 diagonalswitch(bl, b2, cl, c2, joinedbase,
1346 fptr3, fptr4);
1347 diagonalswitch(cl, c2, al, a2, anarc, fptrl,
1348 fptr2);
1349 END
1350 END;
1351 IF bestmove <> noswitch THEN
1352 arcswap :• true;
1353 END;
1354 END;
1355 END fswitch! ;
1356
1357
1358 PROCEDURE get3faces(anode: noderange; VAR facel, face2, face3: faceptr);
1359
1360 VAR
1361 nptr: nodeptr;
1362
1363 BEGIN
1364 nptr :» nodetable[anode].nextvertex;
1365 WITH nptr A.arcloc A DO
1366 BEGIN
1367 facel := fl;
1368 face2 :« f2;
1369 END;
1370 nptr := nptr A.nextnode;
1371 WITH nptr A.arcloc A DO
1372 IF ((fl « facel) OR (fl - face2))
1373 THEN
1374 face3 f2
1375 ELSE
1376 face3 ;= fl;
1377 END fget3faces! ;
1378
1379
1380 FUNCTION otherend(k: noderange; anarc: arcptr): noderange;
1381
1382 BEGIN
1383 WITH anarc A DO
1384 IF (k - nl)
1385 THEN
1386 otherend := n2

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 152

1387 ELSE
1388 otherend := nl
1389 END CotherendJ ;
1390
1391
1392 PROCEDURE ychange(anode: noderange; rl, r2, r3, inface: faceptr);
1393
1394 VAR
1395 bl, b2, b3, dl, d2, d3: noderange;
1396 al, a2, a3: arcptr;
1397 nptr: nodeptr;
1398
1399 BEGIN
1400 WITH inface A DO
1401 BEGIN
1402 dl vl;
1403 d2 v2;
1404 d3 := v3;
1405 END;
1406 nptr := nodetable[anode].nextvertex;
1407 al nptr A.arcloc;
1408 nptr := nptr A.nextnode;
1409 a2 := nptr A.arcloc;
1410 nptr := nptr A.nextnode;
1411 a3 := nptr A.arcloc;
1412 bl := otherend(anode, al);
1413 b2 otherend(anode, a2);
1414 b3 := otherend(anode, a3);
1415 WITH al A DO
1416 IF b2 - thirdnode(al, fl)
1417 THEN
1418 BEGIN
1419 rl := f1;
1420 r2 f2;
1421 END
1422 ELSE
1423 BEGIN
1424 rl := f2;
1425 r2 := fl;
1426 END;
1427 WITH a2 A DO
1428 IF b3 = thirdnode(a2, fl)
1429 THEN
1430 r3 := fl
1431 ELSE
1432 r3 := f2;
1433 redirectface(bl, b2, rl, inface);
1434 redirectface(bl, b3, r2, inface);
1435 redirectface(b2, b3, r3, inface);
1436 redirectface(dl, d2, inface, rl);
1437 redirectface(dl, d3, inface, r2);
1438 redirectface(d2, d3, inface, r3);
1439 removearc(anode, bl, al);
1440 removearc(anode, b2, a2);
1441 removearc(anode, b3, a3);
1442 addaface(bl, b2, b3, inface);
1443 addaface(anode, dl, d2, rl);
1444 addaface(anode, dl, d3, r2);
1445 addaface(anode, d2, d3, r3);
1446 addanarc(anode, dl, al, rl, r2);
1447 addanarc(anode, d2, a2, rl, r3);
1448 addanarc(anode, d3, a3, r2, r3);
1449 addavertex(anode, dl, al);

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 153

1450 addavertex(anode, d2, a2)
1451 addavertex(anode, d3, a3)
1452 addavertex(dl, anode, al)
1453 addavertex(d2, anode, a2)
1454 addavertex(d3, anode, a3)
1455 END £ychange> ;

1456
1457
1458 PROCEDURE yswitch(anode: noderange; VAR yswap: boolean);
1459
1460 VAR
1461 nl, n2, n3: noderange;
1462 rl, r2, r3, this: faceptr;
1463 highface: RECORD
1464 f: faceptr;
1465 v: integer;
1466 END;
1467 vptr: nodeptr;
1468 benefit: integer;
1469
1470 BEGIN
1471 IF nodetable[anode] .valence *= 3
1472 THEN
1473 BEGIN
1474 get3faces(anode, rl, r2, r3);
1475 highface.f := NIL;
1476 highface.v := 0;
1477 this := firstface;
1478 WHILE this <> NIL DO
1479 BEGIN
1480 IF ((this <> rl) AND ((this <> r2) AND (this <> r3)))
1481 THEN
1482 BEGIN
1483 WITH this A DO
1484 BEGIN
1485 nl := vl;
1486 n2 := v2;
1487 n3 := v3;
1488 END;
1489 benefit := yweight(anode, nl, n2, n3);
1490 IF benefit > highface.v THEN
1491 WITH highface DO
1492 BEGIN
1493 f := this;
1494 v := benefit;
1495 END;
1496 END;
1497 this := this A.faceadj;
1498 END;
1499 vptr := nodetable[anode].nextvertex;
1500 nl := otherend(anode, vptr A.arcloc);
1501 vptr := vptr A.nextnode;
1502 n2 := otherend(anode, vptr A.arcloc);
1503 vptr := vptr A.nextnode;
1504 n3 := otherend(anode, vptr A.arcloc);
1505 IF highface.v > yweight(anode, nl, n2, n3)
1506 THEN
1507 BEGIN
1508 writelnC CHANGE ', anode: 3, ' IN FACE nl: 3, n2:
1509 3, n3: 3);
1510 WITH highface.f A DO
1511 BEGIN
1512 nl := vl;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 1 5 4

1513 n2 := v2;
1514 n3 := v3
1515 END;
1516 writeln(' INTO anode: 3, ' IN FACE nl: 3, n2:
1517 3, n3: 3);
1518 ychange(anode, rl, r2, r3, highface.f);
1519 yswap := true
1520 END;
1521 END;
1522 END fyswitchj ;
1523
1524
1525 BEGIN fmaxplanarj
1526 initrandom;
1527 FOR starting := maxweight TO randomized DO
1528 FOR enter := ordered TO delta DO
1529 IF NOT ((starting * maxtetra) OR ((starting = randomized) AND (
1530 enter = ordered)))
1531 THEN
1532 BEGIN
1533 reset(tetra);
1534 readinput;
1535 statusreport;
1536 timec := clock;
1537 initialization;
1538 tetrahedron;
1539 FOR i 1 TO n DO
1540 nodegain(i);
1541 REPEAT
1542 CASE enter OF
1543 ordered:
1544 anode := pickorder;
1545 largest:
1546 anode := pickl;
1547 delta:
1548 anode := pick2
1549 END;
1550 finsertinformation(anode);J
1551 addanode(anode, nodetable[anode].vactive A.facel);
1552 FOR i :« 1 TO n DO
1553 gainupdate(i);
1554 UNTIL nv = n;
1555 timec := clock - timec;
1556 writelnC RUNTIME FOR CONSTRUCTION \ timec: 6,
1557 ' MIL-SEC');
1558 writelnC TOTAL ASSIGNMENT COST », assigncost: 6);
1559 timei := clock;
1560 firstround := true;
1561 yswap := false;
1562 REPEAT
1563 newarc := firstarc;
1564 arcswap := false;
1565 WHILE newarc <> NIL DO
1566 BEGIN
1567 switch(newarc, arcswap);
1568 newarc := newarc A.arcadj;
1569 END;
1570 IF firstround OR ((arcswap = true) OR (yswap = true))
1571 THEN
1572 BEGIN
1573 yswap := false;
1574 FOR i 1 TO n DO
1575 yswitch(i, yswap);

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX C 155

1576 END;
1577 firstround := false;
1578 UNTIL ((arcswap = false) AND (yswap = false));
1579 timei : = clock - timei;
1580 timet : = timec + timei;
1581 writelnC ITERATION TIME timei: 6, ' MIL-SEC');
1582 writelnC FINAL ASSIGNMENT COST assigncost: 6, ' IN ',
1583 timet: 6, ' MIL-SEC');
1584 writeln('l');
1585 garbagecollection;
1586 END;
1587 replaceseeds;
1588 END fmaxplanarj .

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 1 5 6

PROGRAM ROC15 (INPUT,OUTPUT,ROCD,ROCDC,TAPE5=INPUT,

1 TAPE6'OUTPUT,TAPE4=ROCD,TAPE3=ROCDC)

IMPLICIT INTEGER (A-Z)

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97),

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313),

2 DUM(9 7),ORGROW,ORGCOL,NROW,NCOL,NOP

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97),

1 BOTMAC(97)

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD,NHEAD,

1 DUK1(177),DUK2(177),DUP1(177),DUP2(177),

2 DUP3(177)

DIMENSION NOWR(97),NOWC(97)

C

C THIS PROGRAM IS SET UP TO REARRANGE ROWS AND COLUMN

C OF A MATRIX ACCORDING TO RANKED ORDER CLUSTER ALGORITHM

C ROC13 USE RADIX SORT (SHIFF SUBROUTINE) AS MAIN SORTING

C ALGORITHM

C INSERTING SORT IS USED AS SECONDARY SORTING PROCEDURE

C DATA TO BE GENERATED BY PROGRAM....ROCDAT......

C ROC1 FIRST PROGRAMMED IN DECEMBER 1979

C THIS IS AN INTERACTIVE VERSION OF ROC1

C ROC15 FIRST PROGRAMMED IN JANUARY 1980

C THIS VERSION UPDATED JULY 1981

C WRITTEN BY V. NAKORNCHAI

C COPYRIGHTED BY V. NAKORNCHAI JULY 1981

C MAINS VARIABLES

THE DATA ARE IN THE FORM OF 5 COLUMN REPRESENTATION

OROW

OCOL

NEXSR

NEXSC

CAP

ORIGINAL ROW LOCATION

ORIGINAL COLUMN LOCATION

ADDRESS TO THE NEXT DATA OF THE SAME ORIGINAL ROW

ADDRESS TO THE NEXT DATA OF THE SAME ORIGIAL COL

DATA VALUE

C INROW ACCESS TO THE ORIGINAL ROW

C INCOL ACCESS TO THE ORIGINAL COL

C ROWE NUMBER OF NON ZERO ELEMENTS IN A ROW

C COLE NUMBER OF NON ZERO ELEMENTS IN A COL

C ORGROW ORIGINAL NUMBER OF ROW IN THE MATRIX

C ORGCOL ORIGINAL NUMBER OF COL IN THE MATRIX

C NROW CURRENT NUMBER OF ROW IN THE MATRIX

C NCOL CURRENT NUMBER OF COL IN THE MATRIX

C DUM DUMMY MATRIX

C LOCC(I) CURRENT COLUMN OF COMPONENT I

C LOCM(I) CURRENT ROW OF MACHINE I

C CCONT(I) CURRENT COMPONENT IN COLUMN I

C RCONT(I) CURRENT MACHINE IN ROW I

C NOP TOTAL NUMBER OF NON ZERO ELEMENTS IN THE MATRIX

WRITE(6,9530)

9530 FORMAT(' TO READ DATA FROM THE ORIGINAL FILE ENTER ANY NO.',/,

1 ' TO CONTINUE FROM PREVIOULY STORED STATE (CR)')

READ(5,*,END=130) ID

C

C READ DATA FROM FILE ROCD

C

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 157

9000 FORMAT(2015)

50 READ(4,9000)

READ(4,9000)

READ(4,9000)

READ(4,9000)

READ(4,9000)

READ(4,9000)

READ(4,9000)

READ(4,9000)

READ(4,9000)

READ(4,9000)

NCOL, NROW, NOP

(INCOL(I),1=1 ,

(COLE(I), 1=1,

(INROW(I),1=1,

(ROWE(I), 1=1,

(OROW(I), 1=1,

(OCOL(I), 1=1,

(NEXSR(I),1=1,

(NEXSC(I),1=1,

(CAP(I), 1=1,

NCOL)

NCOL)

NROW)

NROW)

NOP)

NOP)

NOP)

NOP)

NOP)

C INITIALIZATION

C

ITERA=0

IDEL=1

DO 100 1=1,NROW

LOCM(I)=1

NOWR(I)=1

RCONT(I)=1

BOTMAC(I)=0

100 CONTINUE

DO 120 1=1,NCOL

LOCC(I)=1

NOWC(I)=I

CCONT(I)=I

120 CONTINUE

ORGROW=NROW

ORGCOL=NCOL

WRITE(6,9620)

9620 FORMAT(' IN REPEATING THE SAME OPERATION CONSECUTIVELY ONLY',

1 ' ONE INSTRUCTION GIVEN',/,' TO LIST INSTRUCTION (CR)')

CALL INIDUM

GO TO 145

READ DATA FROM FILE ROCDC

I.E. CONTINUE FROM PREVIOUS STORED STATE

130 READ

READ

READ

READ

READ

READ

READ

READ

READ

READ

READ

READ

READ

READ

READ

READ

READ

READ

READ

READ

READ

READ

READ

3,9000,END=140) ORGCOL,ORGROW,NCOL,NROW,NOP

3,9000

3,9000

3,9000

3,9000

3,9000

3,9000

3,9000

3,9000

3,9000

3,9000

3,9000

9000

9000

9000

9000

9000

9000

9000

9000

9000

3,9000

3,9000

ITERA,IDEL,NMOD,NHEAD,DUMP

INCOL(I)

COLE(I),

INROW(I)

ROWE(I),

OROW(I),

OCOL(I),

NEXSR(I)

NEXSC(I)

CAP(I),

NOWR(I),

NOWC(I),

LOCM(I),

LOCC(I),

RCONT(I)

CCONT(I)

1=1,NCOL

1=1,NCOL

1=1,NROW

1=1,NROW

1=1,NOP

1=1,NOP

1=1,NOP

1=1,NOP

1=1,NOP

1=1,NROW

1=1,NCOL

1=1,NROW

1=1,NCOL

1=1,NROW

1=1,NCOL

BOTMAC(I),1=1,NROW

DUK1(I)

DUK2(I)

DUP1(1)

DUP2(I)

DUP3(I)

1 = 1
1 = 1
1 = 1
1 = 1
1 = 1

177

177

177

177

177

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 158

READ(3
READ(3
READ(3

,9000)
,9000)
,9000)

(DUM1(I
(DUM2(I
(DUM3(I

). 1=1

), 1=1

), 1=1

,313)

,313)

,313)

GO TO 145
140 WRITE(6,9540)

9540 FORMAT(' NO PREVIOUS STATE DATA... READ FROM ORIGINAL SET')
GO TO 50

C REQUEST FOR INTERACTION IF REQUIRED
145 WRITE(6,9630)

9630 FORMAT (' IF INTERACTION IS REQUIRED ENTER 1 ELSE (CR)')
READ(5,*,END=150) ID
IF(ID.EQ.l) CALL SETIN(ITERA)

C
C SORT THE MACHINE ORDER
C

150 DO 200 11=1,NCOL
I=CCONT(NCOL-II+l)

C IF NO OPERATION EXISTS SKIP
IF(COLE(I).EQ.0) GO TO 200

CALL CONSORT(I,-1)
CALL SHIFF(COLE(I), - 1)

200 CONTINUE
C
C CHECK FOR ANY REALLOCATION
C

INERT=0
DO 210 1=1,NROW
IF(NOWR(I).NE.RCONT(I))THEN

NOWR(I)=RCONT(I)
INERT®1

ENDIF
210 CONTINUE

IF(INERT.EQ.O)
1 THEN

C NO CHANGE SORTING MAY BE COMPLETED
IF(IDEL.EQ.l)

1 THEN
IDEL=0
GO TO 205

ELSE
GO TO 2000

ENDIF
ELSE

C SORTING NOT COMPLETED
ITERA=ITERA+1

C REQUEST FOR MATRIX IF REQUIRED
WRITE(6,9610) ITERA
READ(5,*,END=205) ID
IF(ID.EQ.l) CALL MATRIX (ITERA,1,0,0,0,0)

ENDIF
C
C SORT COMPONENT ORDER
C

205 DO 220 11=1,NROW
I=RCONT(NROW-11 +1)

C IF NO OPERATION EXISTS SKIP
IF(ROWE(I).EQ.O) GO TO 220
IF(BOTMAC(I).EQ.O)

1 THEN

MANAGEMENT SCIENCE

APPENEIX E 159

CALL CONSORT(1,1)

CALL SHIFF(ROWE(I),1)

ENDIF

C WRITE(6,9520) ITERA.II

220 CONTINUE

C CHECK FOR CHANGE IN REALLOCATION

INERT'O

DO 240 1=1,NCOL

IF(NOWC(I).NE.CCONT(I)) THEN

NOWC(I)=CCONT(I)

INERT'1

ENDIF

240 CONTINUE

IF(INERT.EQ.O)

1 THEN

C NO CHANGE SORTING MAY BE COMPLETED

IF(IDEL.EQ.1)

1 THEN

IDEL'O

GO TO 150

ELSE

GO TO 2000

ENDIF

ELSE

C SORTING NOT COMPLETED

ITERA'ITERA+1

CALL MATRIX (ITERA,1,0,0,0,0)

WRITE(6,9590)

READ(5,*,END'150)IDEL

IF(IDEL.EQ.-1)

1 THEN

GO TO 2100

ELSEIF(IDEL.EQ.1)

1 THEN

CALL SETIN(ITERA)

ENDIF

GO TO 150

ENDIF

2000 CONTINUE

WRITE(6,9600)

9600 FORMAT(/,' STABLE ARRANGEMENT........',/,

1 ' FURTHER INTERVENTION MAY BE REQUIRED»)

9590 FORMAT(' IF INTERVENTIONS ARE REQUIRED ENTER 1 ' , / ,

1 ' TO TERMINATE THE PROBLEM ENTER - 1 ' , / ,

2 ' TO CONTINUE WITHOUT INTERVETION (CR)')

9610 FORMAT(' IF MATRIX OUTPUT AT ITERATION NO ',13,2XREQUIRED',

1 ' ENTER 1 ELSE (CR)')

WRITE(6,9590)

READ(5,*,END»2100)IDEL

IF(IDEL.EQ.l)

1 THEN

CALL SETIN(ITERA)

GO TO 150

ENDIF

C OUTPUT THE RESULTS

2100 CALL MATRIX(ITERA,0,0,0,0,0)

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 160

WRITE(6

9500 FORMAT(

WRITE(6

WRITE(6

9510 FORMAT(

WRITE(6

REWIND i

WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

• WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

WRITE(3

IX

9500)

ORDER OF THE MACHINES',//)

9000

9510

,//

9000

(DUP2(RCONT(I)),1=1,NROW)

' ORDER OF COMPONENTS',//)

(CCONT(I),I=1,NCOL)

9000) ORGCOL,ORGROW,NCOL, 1

9000) ITERA,IDEL NMOD, NHE>

9000) (INCOL(I), 1= 1,NCOL

9000) (COLE(I), 1= 1,NCOL

9000) (INROW(I), 1 = 1,NROW

9000) (ROWE(I), 1= 1,NROW

9000) (OROW(I), 1= 1 , NOP

9000) (OCOL(I), 1= 1 , NOP

9000) (NEXSR(I), 1= 1 , NOP

9000) (NEXSC(I), 1= 1 ,NOP

9000) (CAP(I), 1 = 1 ,NOP

9000) (NOWR(I), 1 = 1,NROW

9000) (NOWC(I), 1 = 1,NCOL

9000) (LOCM(I), 1= 1,NROW

9000) (LOCC(I), 1= 1,NCOL

9000) (RCONT(I), 1 = 1,NROW

9000) (CCONT(I), 1 = 1,NCOL

9000) (BOTMAC(I) 1= 1,NROW

9000) (DUKl(I), 1 = 1,177

9000) (DUK2(I), 1 = 1,177

9000) (DUPl(I), 1= 1 , 177

9000) (DUP2(I), 1= 1,177

9000) (DUP3(I), 1 = 1 , 177

9000) (DUMl(I), 1 = 1 ,313

9000) (DUM2(I), 1 = 1,313

9000) (DUM3(I), 1 = 1,313

END

SUBROUTINE CONSORT (M.IDD)

IMPLICIT INTEGER (A-Z)

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97),

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313)

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97),

1 B0TMAC(97)

DIMENSION NOWR(97),NOWC(97)

DATA IR(1,1)/- 999999/,IR(1,2)/- 999999/

C

C THE SUBROUTINE WILL CONSTRUCT A MATRIX TO BE CONTINUALLY

C RADIX SORTED

C

C MAIN VARIABLES

C M DIGIT TO BE RADIX SORTED

C IDD =-1 SORTED ALONG THE COLUMN I.E. REGROUP MACHINES

C = 1 SORTED ALONG THE ROW I.E. REGROUP COMPONENTS

C IR(,1) VALUE TO BE SORTED

C IR(,2) M/C OR COMPONENT NUMBER

KK=0

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 161

IF(IDD.EQ.-1)

1 THEN

IN=INCOL(M)

REGROUPING MACHINE

DO 10 1=2,COLE(M)+1

I2=OROW(IN)

IF(BOTMAC(I2).EQ.1)

1 THEN

K=LOCM(12)

KK=1

ELSE

K=LOCM(12)

ENDIF

CALL INSERT(I-1,K,12)

IN=NEXSC(IN)

10 CONTINUE

IF(KK.EQ.l)

1 THEN

DO 15 1=2,COLE(M)+l

IR(I,1)=LOCM(IR(I,2))

15 CONTINUE

ENDIF

ELSE

IN=INROW(M)

REGROUPING COMPONENTS

DO 20 1=2,ROWE(M)+1

I2=OCOL(IN)

CALL INSERT(I-1,LOCC(12),12)

IN=NEXSR(IN)

20 CONTINUE

ENDIF

RETURN

END

SUBROUTINE SHIFF(M.IDD)

IMPLICIT INTEGER (A-Z)

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97),

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313),

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97),

1 B0TMAC(97)

C THE SUBROUTINE IS RADIX SORTING IN ESSENCE

C IN PRACTICE THE ALGORITHM IS PURELY SHIFTING

C DIGITS AROUND

C M NUMBER OF ITEMS TO BE SHIFTED

MM=M

I=IR(M+1,1)

J = I-1

IF(IDD.EQ.-1)

1 THEN

C SORTING M/C ORDER

WHILE(J.GE.1) DO

IF(J.EQ.IR(MM,1))

1 THEN

MM=MM-1

J = J-1

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 162

ELSE

RCONT(I)=RCONT(J)

1 = 1-1
J-J-l

ENDIF

ENDWHILE

DO 10 JJ=1,M

RCONT(JJ)=IR(JJ+1,2)

10 CONTINUE

DO 20 J J = 1,NROW

LOCM(RCONT(JJ))=JJ

20 CONTINUE

ELSE

C SORTING COMPONENT ORDER

WHILE(J.GE.1) DO

IF(J.EQ.IR(MM,1))

1 THEN

MM'MM -1

J=J- 1

ELSE

CCONT(I)=CCONT(J)

1 = 1 - 1
J=J-1

ENDIF

ENDWHILE

DO 30 JJ=1,M

CCONT(JJ)=IR(JJ+1,2)

30 CONTINUE

DO 40 J J = 1 ? NCOL

LOCC(CCONT(JJ))=JJ

40 CONTINUE

ENDIF

RETURN

END

SUBROUTINE INSERT (M,J1,J2)

IMPLICIT INTEGER (A-Z)

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97)

1 BOTMAC(97)

C THE SUBROUTINE IS CALLED BY CONSORT

C FOR REFERNCE SEE HOROWITZ AND SAHNI(1976)

C 'FUNDAMENTALS OF DATA STRUCTURES'

C SORTED IN »«*•»•»•*•*NON-DECREASING ORDER*••*•*«*»••*

C

C MAIN VARIABLES

C

C . IR RECORD TO BE INSERTED (SORTED)

C M SIZE OF THE ORIGINAL MATRIX NOT INCLUDING IR(1,1)

C Jl INDEX TO BE SORTED

C J2 THE DATA TO BE INSERTED ACCORDING TO Jl

C

C NOTE IR(l.l) ASSUME TO BE VERY LARGE NEGATIVE.

K=J1

KK=J2

N=M

WHILE(K.LT.IR(N,1)) DO

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 163

IR(N+1,1)=IR(N,1)

IR(N+1,2)=IR(N,2)

N-N-1

ENDWHILE

IR(N+1,1)=K

IR(N+1,2)=KK

RETURN

END

SUBROUTINE SETIN(ITERA)

IMPLICIT INTEGER (A-Z)

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97),

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313),

2 DUM(9 7),ORGROW,ORGCOL,NROW,NCOL,NOP

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97),

1 BOTMAC(97)

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233).DUMP,NMOD,NHEAD,

1 DUK1(177),DUK2(177),DUP1(177),DUP2(177),

2 DUP3(177)

DIMENSION NOWR (9 7) ,NOWC(97)
C

C THE ROUTINE VARIOUS DATA THAT MIGHT BE REQUIRED

C DURING INTERACTIVE INTERVENTION

C

9000 FORMAT(2015)

9530 FORMAT(' IF MATRIX PRINT OUT IS REQUIRED ENTER 1 ELSE (CR)*)

9540 FORMAT(' IF THE PRESENT STATUS OF MACHINES REQUIRED',

1 ' ENTER 1 ELSE (CR) ')

9550 FORMAT(IX,///,' LIST OF THE BOTTLE-NECK MACHINE(S)')

9560 FORMAT(IX,///,' LIST OF DUPLICATED MACHINE(S)')

9570 FORMAT(' EMPTY')

9580 FORMAT(' MACHINE ',I5,2X,'IS A DUPLICATION OF',15)

IP=0

100 WRITE(6,9530)

READ(5,*,END=110)ID

IF(ID.EQ.l) CALL MATRIX(ITERA,0,0,0,0,0)

110 WRITE(6,9540)

READ(5,*,END®140) ID

IF(ID.EQ.1)

1 THEN

WRITE(6,9550)

IDD=0

DO 120 1=1,NROW

IF(BOTMAC(I).EQ.1)

1 THEN

WRITE(6,9000) I

IDD= 1

ENDIF

120 CONTINUE

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 1 6 4

IF(IDD.EQ.O) WRITE(6,9570)

WRITE(6,9560)

IF(NROW.GT.ORGROW)

1 THEN

DO 125 I=ORGROW+1,NROW

WRITE(6,9580) I,DUP2(I)

125 CONTINUE

ELSE

WRITE(6,9570)

ENDIF

ENDIF

140 IF(IP.EQ.l) GO TO 200

CALL EXCEPT(ITERA)

IP=1

GO TO 100

200 CONTINUE

END

SUBROUTINE EXCEPT(ITERA)

IMPLICIT INTEGER (A-Z)

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),C0LE(97),

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313),

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97),

1 BOTMAC(97)

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD,NHEAD,

1 DUK1(177),DUK2(177),DUP1(177),DUP2(177),

2 DUP3(177)

C

C THE SUBROUTINE WILL ALLOW INTERACTION WITH

C THE MACHINE-COMPONENT MATRIX

C

9500 FORMAT(* INPUT ERROR PLEASE'RE-ENTER ')

9510 FORMAT(' ENTER 0 TO

1 1 TO

2 2 TO

3 3 TO

4 4 TO

5 5 TO

6 6 TO

7 7 TO

TERMINATE THE EXCEPTION ROUTINES' , / ,

INSPECT LOCAL GROUPING OF OPERATIONS

DELETE AN OPERATION ' , / ,

RE-ENTER AN OPERATION',/,

DEFINE OR RELAX BOTTLE-NECK MACHINES

INCREASE NUMBER OF A TYPE OF M/C',/,

MERGE TWO M/CS OF A CERTAIN TYPE',/,

REORDER ROWS OR COLUMNS')

9520 FORMAT (' 0-TERMINATE 1-ZOOM 2-DELETE 3-ENTER 4-BOTTLENECK',/

1 ' 5-DUPLICATE 6-MERGE 7-REORDER FOR DETAILS (CR) ')

IF (ITERA.GT.1) GO TO 110

100 WRITE(6,9510)

GO TO 120

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 165

110 WRITE(6,9520)

120 READ(5 , * ,END=100) ID

IF (ID.EQ.0) THEN

ELSEIF(ID.EQ.1) THEN

ELSEIF(ID.EQ.2) THEN

ELSEIF(ID.EQ.3) THEN

ELSEIF(ID.EQ.4) THEN

ELSEIF(ID.EQ.5) THEN

ELSEIF(ID.EQ.6) THEN

ELSEIF(ID.EQ.7) THEN

ELSE

ENDIF

GO TO 110

END

RETURN

CALL ZOOM(ITERA)

CALL DELETE

CALL PUTBAK

CALL BOTNECK

CALL ENLARGE

CALL MERGE

CALL PATCH

WRITE(6,9500)

SUBROUTINE DELETE

IMPLICIT INTEGER (A-Z)

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97),

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313)

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97),

1 B0TMAC(97)

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD.NHEAD,

1 DUK1(177),DUK2(177),DUP1(177),DUP2(177),

2 DUP3(177)

THE SUBROUTINE WILL ALLOW INTERACTIVELY THE

REMOVAL OF AN OPERATION IN THE MACHINE-COMPONENT MATRIX

9500 FORMAT(' INPUT ERROR PLEASE RE-ENTER ')

9510 FORMAT(' TO TERMINATE DELETE ROUTINE ENTER 0 0 ELSE',/,

1 ' INPUT THE REQUIRED MACHINE AND COMPONENT *)

9520 FORMAT(' NO OPERATION LEFT ON M/C OR COMPONENT',//)

100 WRITE(6,9510)

110 READ(5,*,END=100) IM,IC

BOUND=TESTB(IM,IC,NROW,NCOL)

IF (BOUND.EQ.O) THEN

ELSEIF(BOUND.LE.1)

ENDIF

THEN

GO TO 1000

WRITE(6,9500)

GO TO 110

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 1 6 6

IF(COLE(IC).EQ.0.OR.ROWE(IM).EQ.0)

1 THEN

C NO OPERATION LEFT

WRITE(6,9520)

GO TO 110

ENDIF

CALL TESTC (IM,IC,BOUND,LOCO,LOCI)

IF (BOUND.EQ.3)

1 THEN

CALL REMOVE(IM,IC,LOCO,LOC1,0)

ELSEIF(BOUND.EQ.4)

1 THEN

WRITE(6,9530)

9530 FORMAT(' ALREADY REMOVED OR NONEXISTANT')

ELSE

WRITE(6,9500)

ENDIF

GO TO 110

1000 CONTINUE

RETURN

END

INTEGER FUNCTION TESTB(IMM, ICC,NROW,NCOL)

C TO TEST THE BOUNDS OF THE INPUT

C

IF(IMM.EQ.0.OR.ICC.EQ.0)

1 THEN

TERMINATE THE PROCEDURE

TESTB=0

ELSEIF(IMM.EQ.-1.OR.ICC.EQ.-1)

1 THEN

TESTB=-1

ELSEIF(IMM.EQ.- 99.OR.ICC.EQ.-99)

1 THEN

TESTB=- 99

ELSEIF(IMM.LT.1.OR.IMM.GT.NROW.OR.

1 ICC.LT.1.OR.ICC.GT.NCOL)

2 THEN

OUT OF BOUND

TESTB=1

ELSE

WITHIN BOUNDS

TESTB=2

ENDIF

RETURN

END

SUBROUTINE TESTC(IMM,ICC,BOUND,LOCO,LOCI)

IMPLICIT INTEGER (A-Z)

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97),

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313),

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 167

C TO TEST WHETHER THE OPRATION CAN BE 'COVERED UP'

ROWEI=ROWE(IMM)

INR=INROW(IMM)

L000=0

WHILE(ROWEI.GT.O) DO

IF(OCOL(INR).EQ. ICC)

1 THEN

C CAN BE REMOVED

BOUND=3

LOCl=INR

RETURN

ENDIF

ROWEI=ROWEI-1

LOCO=INR

INR=NEXSR(INR)

ENDWHILE

C EITHER COVERED OR NONEXISTANT

B0UND=4

RETURN

END

SUBROUTINE TESTD (Bl,B2,B3,BO)

IMPLICIT INTEGER(A-Z)

C TEST OF BOUNDS FOR MATRIX PRINTING

IF(Bl.EQ.O)

1 THEN

Bl = 1

B2=B0

B3 = l

RETURN

ENDIF

IF(B1.LT.0.OR.Bl.GT.BO.OR.

1 B2.LE.O.OR.B2.GT.BO)

2 THEN

B3=0

ELSEIF(B1.GT.B2)

1 THEN

B3-B2
B2=B1

B1=B3

B3=l

ENDIF

RETURN

END

SUBROUTINE REMOVE (MAC,COM,LOCO,LOC1,ENG)

IMPLICIT INTEGER (A-Z)

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97),

1 OROW (313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313),

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 1 6 8

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD,NHEAD,
1 DUK1(177),DUK2(177),DUP1(177),DUP2(177),
2 DUP3(177)

C TO REMOVE THE OPERATIONS FROM THE PRESENT CONSIDERATION
C DUMP THE INFORMATION INTO MATRICES IN DUMSET
C SUBROUTINE INIDUM MUST BE CALLED FIRST
C ENG=0 NORMAL REMOVAL OF AN OPERATION
C ENG=1 CREATING AN EXTRA MACHINE

C IF CREATING A NEW MACHINE SKIP
IF(ENG.EQ.l) GO TO 10

C COPY PART OF THE CONTENTS IN TO DUM MATRICES
C

IC=DUK1(MAC)
IF(IC.EQ.O)

1 THEN
C FIRST ENTRY

DUK2(MAC)=DUMP
ELSE

ICC=DUK2(MAC)
WHILE(IC.GT.1) DO
ICC=DUM3(ICC)
IC=IC-1
ENDWHILE
DUM3(ICC)=DUMP

ENDIF
DUM1(DUMP)=COM
DUM2(DUMP)=LOC1
DD=DUM3(DUMP)
DUM3(DUMP)=0
DUMP=DD
DUK1(MAC)=DUK1(MAC)+1

C REARRANGE INDICES TO BYPASS THE ELEMENT
C
C ALONG THE ROW

C CHECK FOR ONE OPERATION ONLY

10 IF(ROWE(MAC).EQ.1) GO TO" 50

C RESET ROW ENTRY INDEX IF NECCESSARY
IF(LOCO.EQ.0)

1 THEN
INROW(MAC)=NEXSR(LOC1)
IE=ROWE(MAC)
ID=INROW(MAC)

WHILE (IE.GT.2) DO
ID=NEXSR(ID)
IE=IE-1

ENDWHILE

NEXSR(ID)=INROW(MAC)
ELSE

NEXSR(LOCO)=NEXSR(LOC1)
ENDIF

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 169

50 ROWE(MAC)=ROWE(MAC)-1

C ALONG THE COLUMN

C IF CREATING A NEW MACHINE SKIP
IF(ENG.EQ.l) GO TO 150

C CHECK FOR ONE OPERATION ONLY IF FOUND SKIP

IF(COLE(COM).EQ.1) GO TO 100

C RESET COLUMN ENTRY INDEX IF NECESSARY
IF(INCOL(COM).EQ.LOC1) INCOL(COM)=NEXSC(LOC1)

C BY PASS
IE=COLE(COM)
IDD=INCOL(COM)
IF(IE.EQ.2)

1 THEN
NEXSC(INCOL(COM))=INCOL(COM)
GO TO 100

ENDIF

WHILE(IE.GT.2) DO
ID=IDD
IDN=NEXSC(ID)
IE=IE-1
IF(OROW(IDN).EQ.MAC)

1 THEN
C JUMP OUT OF LOOP

NEXSC(ID)=NEXSC(NEXSC(ID))
GO TO 100

ELSE
IDD=IDN

ENDIF
ENDWHILE
NEXSC(IDN)=NEXSC(NEXSC(IDN))

100 COLE(COM)=COLE(COM)-1

150 CONTINUE
RETURN
END

SUBROUTINE PUTBAK

IMPLICIT INTEGER (A-Z)
COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97),
1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313),
2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP
COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97),
1 B0TMAC(97)
COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD,NHEAD,
1 DUK1(177),DUK2(177),DUP1(177),DUP2(177),
2 DUP3(177)

C THE ROUTINE WILL ENABLE A PARTICULAR OPERATION TO BE RETURNED
C INTO THE ORIGINAL MACHINE-COMPONENT MATRIX

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 1 7 0

9500 FORMAT(' INPUT ERROR PLEASE RE-ENTRY')

9510 FORMAT(' TO TERMINATE PUTBAK ROUTINE ENTER 0 0',/,

1 ' ELSE ENTER THE MACHINE AND COMPONENT NUMBERS')

9520 FORMAT(' THE OPERATION WAS NOT REMOVED ')

9530 FORMAT(' IF THE OPERATION IS TO BE PUT BACK IN THE SAME M / C ,

1 ' (CR)',/,' ELSE ENTER ALTENATIVE OF THE SAME TYPE')

9540 FORMAT(' THE TWO M/CS IS NOT OF THE SAME TYPE')

100 WRITE(6,9510)

110 READ(5,*,END=100) IM,IC

BOUND=TESTB(IM,IC,NROW,NCOL)

IF (BOUND.EQ.O) THEN

ELSEIF(BOUND.LE.1)

ENDIF

THEN

RETURN

WRITE(6,9500)

GO TO 110

IF(DUK1(IM).EQ.O)

1 THEN

WRITE(6,9520)

GO TO 110

ENDIF

PK=0

K =DUK2(IM)

WHILE(K.GT.0) DO

IF(DUM1(K).EQ.IC)

1 THEN

IF(PK.EQ.O)

1 THEN

DUK2(IM)=DUM3(K)

ELSE

DUM3(PK)=DUM3(K)

ENDIF

KK=DUM2(K)

DUK1(IM)=DUK1(IM) -1

DUM3(K)=DUMP

DUMP=K

GO TO 200

ELSE

PK=K

K =DUM3(K)

ENDIF

ENDWHILE

C OPERATION NOT FOUND

WRITE(6,9520)

GO TO 100

C OPERATION FOUND

200 WRITE(6,9530)

READ(5,*,END=300) IM1

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 1 7 1

BOUND=TESTB(IM1,1,NROW,1)

IF (BOUND.LE.1) THEN

WRITE(6,9500)

GO TO 200

ELSEIF(DUP2(IM1).NE.DUP2(IM)) THEN

WRITE(6,9540)

GO TO 200

ELSE

IM=IM1

ENDIF

C INSERT THE OPERATION INTO THE ORIGINAL DATA STRUCTURE

C ALONG THE COLUMN

300 IF(COLE(IC).EQ.0)

1 THEN

INCOL(IC)=KK

NEXSC(KK)=KK

ELSE

I=NEXSC(INCOL(IC))

NEXSC(INCOL(IC))=KK

NEXSC(KK)=I

ENDIF

COLE(IC)=COLE(IC)+1

C ALONG THE ROW

IF(ROWE(IM).EQ.0)

1 THEN

ELSE

I=NEXSR(INROW(IM))

NEXSR(INROW(IM))=KK

NEXSR(KK)=I

ENDIF

OROW(KK)=IM

ROWE(IM)=ROWE(IM)+1

GO TO 100

END

SUBROUTINE BOTNECK

IMPLICIT INTEGER (A-Z)

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97) ,

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313),

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97),

1 B0TMAC(97)

9500 FORMAT(' TO TERMINATE BOTTLE-NECK ROUTINE ENTER 0 0',/,

1 ' TO SPECIFY A BOTTLE-NECK MACHINE ENTER 1 & M/C NUMBER',/,

2 ' TO RELEASE A BOTTLE-NECK MACHINE ENTER 0 & M/C NUMBER')

9510 FORMAT(' INPUT ERROR PLEASE RE-ENTER')

50 WRITE(6,9500)

INROW(IM)=KK

NEXSR(KK)=KK

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 172

100 READ(5,*,END=50) IDUM,IMAC

IF((IDUM.NE.0.OR.IDUM.NE.1).AND.(IMAC.LT.0.OR.IMAC.GT.NROW))

1 THEN

WRITE(6,9510)

GO TO 100

ENDIF

IF(IMAC.EQ.0) RETURN

IF(IDUM.EQ.1)

1 THEN

BOTMAC(IMAC)=1

ELSE

BOTMAC(IMAC)=0

ENDIF

GO TO 100

END

SUBROUTINE PATCH

IMPLICIT INTEGER (A-Z)

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97),

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313),

2 DUM(9 7),ORGROW,ORGCOL,NROW,NCOL,NOP

COMMON /SORTl/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97),

1 BOTMAC(97)

9500 FORMAT (' ENTER 0 TO RETURN',/,

1 ' 1 TO REORDER ROWS',/,

2 ' 2 TO REORDER COLUMNS')

9510 FORMAT (' REORDERING THE ROW ')

9520 FORMAT (' REORDERING THE COLUMN *)

100 WRITE(6,9500)

READ (5,*,END=100)I

IF(I.EQ.l)

1 THEN

WRITE(6,9510)

CALL JUGGLE (LOCM,RCONT,NROW)

ELSEIF(I.EQ.2)

1 THEN

WRITE(6,9520)

CALL JUGGLE (LOCC,CCONT,NCOL)

ENDIF

RETURN

END

SUBROUTINE JUGGLE (LOC, CONT, N)

IMPLICIT INTEGER (A-Z)

DIMENSION LOC(N), CONT(N), DUMMY(97)

LOGICAL REPEAT

C THIS ROUTINE IS CALLED BY PATCH WHICH INTURN

C CALLED BY EXCEPT

9000 FORMAT (1015)

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 1 7 3

9010

9020

9500

FORMAT

FORMAT

FORMAT

9510

9520

FORMAT

FORMAT

9530 FORMAT (

9540

9550

FORMAT

FORMAT

(15, ' IS OUT OF BOUND')

(15, ' IS ENTERED PREVIOUSLY')

ENTER 0 TO EXIT' , / ,

1 MOVE ELEMENTS TO THE FRONT'

2 REENTRY THE WHOLE LIST',/,

3 SWAP ANY TWO ELEMENTS')

(' TO LIST THE PRESENT ORDER ENTER 1 ELSE

(' ENTER THE ELEMENTS ONE BY ONE',/,

0 TO TERMINATE THE ENTRY')

REENTRY THE WHOLE LIST?',/,

YES ENTER 1 ELSE ANY NO.')

(' ENTER THE NEW ORDER ONE BY ONE')

(' ENTER THE PAIR REQUIRED TO BE SWAPPED',/

TO TERMINATE ENTER 0 0')

(CR)')

10 WRITE (6,9500)

READ (5,*, END =10) I

IF(I.EQ.O)

1 THEN

RETURN

C MOVE ELEMENTS TO THE HEAD OF THE LIST

ELSEIF(I.EQ.1)

1 THEN

ENTRY = 0

WRITE (6, 9510)

READ (5,*,END=20)D

IF(D.EQ.1.) WRITE (6,9000) (CONT(J),J=1,N)

20 WRITE (6,9520)

30 READ(5,*) ELEMENT

IF(ELEMENT.EQ.O.AND.ENTRY.EQ.O) GO TO 10

IF(ELEMENT.EQ.O) GO TO 100

IF(ELEMENT.LE.0.OR.ELEMENT.GT.N)

1 THEN

WRITE(6,9010)ELEMENT

GO TO 30

ELSEIF(ENTRY.EQ.O)

1 THEN

ENTRY=1

DUMMY(I)=ELEMENT

GO TO 30

ELSE

REPEAT = .FALSE.

E = ENTRY

40 IF (.NOT.REPEAT)

1 THEN

IF (DUMMY(E).EQ.ELEMENT) REPEAT-.TRUE.

E = E-l

IF(E.LE.O) GO TO 50

GO TO 40

ENDIF

50 IF (REPEAT)

1 THEN

WRITE (6,9020) ELEMENT

ELSE

ENTRY = ENTRY +1

DUMMY(ENTRY)= ELEMENT

ENDIF

GO TO 30

ENDIF

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 1 7 4

C ENTRY SUCCESFUL

C REMOVE THE PREVIOUS ENTRY

100 DO 110 J-l, ENTRY

CONT(LOC(DUMMY(J))) = 0

110 CONTINUE

E1=ENTRY + 1

DO 120 J=1, N

IF (CONT(J).NE.0)

1 THEN

DUMMY(El)= CONT(J)

E1=E1+ 1

ENDIF

120 CONTINUE

DO 130 J=1,N

CONT(J) = DUMMY (J)

130 CONTINUE

DO 140 J=1,N

LOC(CONT(J))=J

140 CONTINUE

ENTER THE WHOLE LIST

ELSEIF(I.EQ.2)

1 THEN

WRITE(6,9530)

READ (5,*) J

IF NOT PROCESS GO BACK TO BEGINNING

IF (J.NE.l) GO TO 10

TO GO AHEAD

WRITE(6,9540)

DO 300 J-l.N

200 READ(5,*) ELEMENT

IF (ELEMENT.LE.O .OR. ELEMENT.GT. N)

1 THEN

WRITE(5,9010) ELEMENT

GO TO 200

ENDIF

REPEAT = .FALSE.

J1 =J -1

IF (J1.EQ.0)

1 THEN

DUMMY(J)"ELEMENT

GO TO 300

ENDIF

210 IF (.NOT.REPEAT)

1 THEN

IF (DUMMY(J1).EQ.ELEMENT) REPEAT".TRUE.

J1=J1-1

IF (J1.EQ.0) GO TO 220

GO TO 210

ENDIF

220 IF (REPEAT)

1 THEN

WRITE (6,9020) ELEMENT

GO TO 200

ELSE

DUMMY(J) - ELEMENT

ENDIF

300 CONTINUE

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 1 7 5

C ENTRY SUCCESSFUL

DO 310 J =1,N

CONT (J) =DUMMY (J)

310 CONTINUE

DO 320 J=1,N

LOC(CONT(J))= J

320 CONTINUE

C SWAPPING ARRANGEMENT

ELSEIF (I.EQ. 3)

1 THEN

400 WRITE (6,9550)

410 READ (5,*) E1,E2

IF (El.EQ.O .OR. E2.EQ. 0) RETURN

IF (El.LT.0 .OR. El.GT. N)

1 THEN

WRITE(5,9010) El

GO TO 400

ENDIF

IF (E2.LT.0 .OR. E2. GT. N)

1 THEN

WRITE(5,9010)E2

GO TO 400

ENDIF

IF (E1.EQ.E2) GO TO 400

C SWAPPING

ROW1 - LOC(El)

ROW2 = LOC(E2)

LOC(El) - LOC (E2)

LOC(E2) = ROW1

DUMP - CONT (ROW 1)

CONT(ROW1) = CONT(ROW2)

CONT(ROW2) « DUMP

GO TO 410

ENDIF

RETURN

END

SUBROUTINE INIDUM

IMPLICIT INTEGER (A-Z)

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97),

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313),

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD,NHEAD,

1 DUK1(177),DUK2(177),DUP1(177),DUP2(177),

2 DUP3(177)

C

C VARIABLES IN DUMSET

C

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 1 7 6

C DUK1 NO OF ELEMENTS REMOVED FROM THE M/C

c DUK2 POINTER TO CELLS WHERE THE REMOVED SET IS STORED

c DUP1 NO OF DUPLICATED M/CS OF THIS TYPE

c DUP2 TYPE OF M/C

c DUP3 POINTER TO CELLS WHERE DUPLICATED SET IS STORED

c DUM1 COLUMN NO. OR DUPLICATED M/C NO.

c DUM2 POINTER IN SET1 OR M/C TYPE

c DUM 3 POINTER TO CELLS OF THE SAME SET

C TO INITIALIZE DUMSET MATRICES

DO 10 1=1,177

DUK1(I)=0

DUK2(I)=0

DUP1(I)=0

DUP2(I)=1

DUP3(I)=0

10 CONTINUE

DO 20 1=1,233

DUM1(I)=0

DUM2(I)=0

DUM3(I)=I+1

20 CONTINUE

DUM3(233)=1

DUMP=1

C

C CALCULATE VARIABLE FOR MATRIX HEADING

C

IF(NROW.GE.10000)

1 THEN

NMOD=10000

NHEAD=5

ELSEIF(NROW.GE.1000)

1 THEN

NMOD=1000

NHEAD=4

ELSEIF(NROW.GE.100)

1 THEN

NMOD=100

NHEAD=3

ELSEIF(NROW.GE.10)

1 THEN

NMOD=10

NHEAD=2

ELSE

NMOD=l

NHEAD=1

ENDIF

RETURN

END

SUBROUTINE ZOOM(ITERA)

IMPLICIT INTEGER(A-Z)

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),C0LE(97),

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313),

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 1 7 7

C TO ALLOW INSPECTION OF LOCAL GROUPING

9510 FORMAT(' DATA INPUT ERROR PLEASE RE-ENTER')

100 WRITE(6,9500)

9500 FORMAT(' ENTER THE RANGE OF LOCATIONS OF COMPONENTS')

READ(5,*) IA,IB

CALL TESTD (IA,IB,IC.NCOL)

IF(IC.EQ.O)

1 THEN

WRITE(6,9510)

GO TO 100

ENDIF

200 WRITE(6,9520)

9520 FORMAT(' ENTER THE RANGE OF LOCATIONS OF MACHINES')

READ(5,*) JA,JB

CALL TESTD (JA,JB,JC,NROW)

IF(JC.EQ.O)

1 THEN

WRITE(6,9510)

GO TO 200

ENDIF

CALL MATRIX (ITERA,1,JA,JB,IA,IB)

RETURN

END

SUBROUTINE ENLARGE

IMPLICIT INTEGER (A-Z)

COMMON / SET1 / INROW(97), INCOL (97) ,ROWE(97) , COLE (97) ,

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313),

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97),

1 BOTMAC(97)

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD,NHEAD,

1 DUK1(177),DUK2(177),DUP1(177),DUP2(177),

2 DUP3(177)

9500 FORMAT(' INPUT ERROR PLEASE RE-ENTRY')

9510 FORMAT(' ENTER 0 TO TERMINATE ENLARGE M/CS PROCEDURE',/,

1 ' ELSE ENTER THE MACHINE TO BE INCREASED')

9520 FORMAT(' NO OPERATION LEFT NO NEED TO DUPLICATE')

9530 FORMAT(' ENTER 0 TO INDICATE THAT NO MORE COMPONENT',

1 ' TO BE ENTERED FOR THIS DUPLICATION',/,

2 ' ELSE ENTER THE COMPONENT NUMBER')

9540 FORMAT(' THE OPERATION IS ALREADY COVERED OR NONEXISTANT')

100 WRITE(6,9510)

110 READ(5,*,END=100) OMAC

BOUND=TE S TB(OMAC,1,NROW,1)

IF (BOUND.EQ.O) THEN

RETURN

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 1 7 8

ELSEIF(BOUND.NE.2) THEN

WRITE(6,9500)

GO TO 110

ENDIF

C CHECK FOR NO OPERATION

IF(ROWE(OMAC).EQ.0)

1 THEN

WRITE(6,9520)

GO TO 110

ENDIF

LOCATE AND INSERT THE NEW M/C INTO DUP LISTS

IF(DUP1(OMAC).EQ.0)

L THEN

NO PREVIOUS DUPLICATION

DUP3(OMAC)=DUMP

DUM1(DUMP)=NROW+l

ELSE

PREVIOUSLY DUPLICATED

J =DUP3(OMAC)

WHILE(DUM3(J).NE.0) DO

J=DUM3(J)

ENDWHILE

DUM3(J)=DUMP

DUM1(DUMP)=NROW+1

ENDIF

C RESET THE INDICIES

II=DUM3(DUMP)

DUM2(DUMP)=DUP2(OMAC)

DUM3(DUMP)=0

DUMP=II

NROW=NROW+l

ROWE(NROW)=0

LOCM(NROW)=NROW

RCONT(NROW)=NROW

DUP2(NROW)=DUP2(OMAC)

BOTMAC(NROW)=0

ENTER THE LIST OF COMPONENTS

JJ=0

200 WRITE(6,9530)

210 READ(5,*,END=200) IC

BOUND=TESTB(1,IC,1,NCOL)

IF (BOUND.EQ.O)

ELSEIF(BOUND.NE.2)

THEN

THEN

IF(JJ.EQ.O)

THEN

NO ENTRY RESET INDICIES

DUM3(DUP3(OMAC))=DUMP

DUMP=DUP3(OMAC)

NROW=NROW-1

ENDIF

GO TO 100

WRITE(6,9500)

GO TO 210

ENDIF

C LOCATE THE OPERATION REQUIRED

CALL TESTC(OMAC,IC,BOUND,LOCO,LOCI)

IF(BOUND.EQ.4)

1 THEN

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 179

C NON-EXISTANCE

WRITE(6,9540)

GO TO 210

ELSE

C FOUND RESET INDICIES

JJ = 1

CALL REMOVE(OMAC,IC,LOCO,LOC1,1)

ROWE(NROW)=ROWE(NROW)+1

OROW(LOC1)=NROW

IF(ROWE(NROW).EQ.1)

1 THEN

INROW(NROW)=LOC1

NEXSR(LOC1)=L0G1

ELSE

NEXSR(LOC1)=NEXSR(INROW(NROW))

NEXSR(INROW(NROW))=LOC1

INROW(NROW)=L0C1

ENDIF

GO TO 210

ENDIF

END

SUBROUTINE MERGE
I

IMPLICIT INTEGER (A-Z)

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97),

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313)

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97),

1 BOTMAC(97)

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD,NHEAD,

1 DUK1(177),DUK2(177),DUP1(177),DUP2(177) ,

2 DUP3(177)

9500 FORMAT(' INPUT ERROR PLEASE RE-ENTRY")

9510 FORMAT(' ONLY MACHINES OF THE SAME TYPE CAN BE MERGED")

9520 FORMAT(' TO TERMINATE THE MERGE PROCEDURE ENTER 0 0',/

1 ' ELSE ENTER THE TWO MACHINES TO BE MERGED',/,

2 ' ENTER THE REMANING MACHINE FIRST")

9530 FORMAT(' THE TWO MACHINES ARE NOT OF THE SAME TYPE")

9540 FORMAT(" NO ELEMENT LEFT IN THE SECOND MACHINE")

TEST THE COMPATIBILITY OF DATA

WRITE(6,9510)

100 WRITE(6,9520)

110 READ(5,*,END=100) IM1,IM2

BOUND=TESTB(IM1,IM2,NROW,NROW)

IF (BOUND.EQ.O)

ELSEIF(BOUND.NE.2.OR.

1 IM1.EQ.IM2)

THEN

RETURN

THEN

NONCOMPATIBLE DATA

WRITE(6,9500)

GO TO 110

ELSEIF(DUP2(IM1).NE.DUP2(IM2)) THEN

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 180

ELSEIF(ROWE(IM2).LE.O)

ENDIF

C MERGE THE MACHINES

C CHANGE ROW NUMBER

J=INROW(IM2)

K=ROWE(IM2)-1

WHILE(K.GT.0) DO

OROW(J)=IM1

J =NEXSR(J)

K=K-1

ENDWHILE

OROW(J)=IM1

C JOIN THE LISTS

L=INROW(IM2)

K=ROWE(IM2)

NEXSR(J)=NEXSR(INROW(IM1))

NEXSR(INROW(IM1))=L

INROW(IM1)=L

ROWE(IM1)=ROWE(IM1)+ROWE(IM2

ROWE(IM2)=0

GO TO 110

END

NOT THE SAME TYPE

WRITE(6,9530)

GO TO 110

THEN

NO ELEMENT LEFTIN 2ND M/C

WRITE(6,9540)

GO TO 110

SUBROUTINE MATRIX (ITERA,SUP,BBR,EER,BBC,EEC)

IMPLICIT INTEGER (A-Z)

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97),

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313),

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97),

1 B0TMAC(97)

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD,NHEAD,

1 DUK1(177),DUK2(177),DUP1(177),DUP2(177),

2 DUP3(177)

DIMENSION ISPOT(130),ISIGN(4),IHEAD(130),NUM(9)

C TO GENERATE GRAPHICALLY THE MACHINE-COMPONENT MATRIX

C

DATA ISIGN(1)/1H1/,ISIGN(2)/1H /,ISIGN(3)/1H*/,ISIGN(4)/1H0/

DATA ISPOT/130*(1H)/

DATA NUM(1)/1H1/,NUM(2)/1H2/,NUM(3)/1H3/,NUM(4)/1H4/,NUM(5)/1H5/,

1 NUM(6)/1H6/,NUM(7)/1H7/,NUM(8)/1H8/,NUM(9)/1H9/

9500 FORMAT(X,///,7X,' MATRIX AFTER ',15,' ITERATION(S)',/)

9510 FORMAT(1OX,' COMPONENTS')

9550 FORMAT(1OX,' LOCATIONS')

9010 FORMAT(IX,'(',13,')', 13,40(2X,Al))

9020 FORMAT(9X,40(2X,Al))

9030 FORMAT(IX,'(',13,')',13,IX,61(IX,Al))

9040 FORMAT(10X,61(IX,Al))

9050 FORMAT(IX, '(' ,13, ')' ,13,2X,120A1)

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 1 8 1

9060 FORMAT(1IX,120A1)

9070 F0RMAT(1X,'(',13,')',13)

BR=BBR

ER=EER

BC=BBC

EC=EEC

MHEAD=NHEAD

ILOC=0

IF(BR.EQ.0)

1 THEN

BR=1

ER=NROW

BC=1

EC=NCOL

ENDIF

WIDTH=EC-BC

C HEADING

WRITE(6,9500) ITERA

1000 MMOD=NMOD

IF(ILOC.EQ.O)

1 THEN

ILOC=l

DO 140 K=BC,EC

140 DUM(K)=K

WRITE(6,9550)

ELSE

ILOC=2

DO 150 K=BC,EC

150 DUM(K)=CCONT(K)

WRITE(6,9510)

ENDIF

DO 210 K=1,MHEAD

DO 200 KK=BC,EC

FIG=DUM(KK)/MMOD

IF(FIG.LE.0)

1 THEN

IHEAD(KK)=ISIGN(4)

ELSE

IHEAD(KK)=NUM(FIG)

ENDIF

DUM(KK)=MOD(DUM(KK),MMOD)

200 CONTINUE

IF(WIDTH.LE.40)

1 THEN

WRITE(6,9020) (IHEAD(I),I=BC,EC)

ELSEIF(WIDTH.LE.61)

1 THEN

WRITE(6,9040) (IHEAD(I),I=BC,EC)

ELSE

WRITE(6,9060) (IHEAD(I),I=BC,EC)

ENDIF

MMOD=MMOD/10

210 CONTINUE

C PRINT LOCATION IF NOT DONE SO

IF(ILOC.EQ.1) GO TO 1000

DO 130 II=BR,ER

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 182

MAORCONT(II)

I=ROWE(MAC)

KK=INROW(MAC)

IF(KK.EQ.O)

1 THEN

C NO OPERATIONS TO BE PRINTED SKIP

WRITE(6,9070) II,MAC

GO TO 130

ENDIF

DD=DUK1(MAC)

IF(I,GT.0)

1 THEN

DO 10 J=1,I

K=LOCC(OCOL(KK))

ISPOT(K)=ISIGN(1)

KK=NEXSR(KK)

10 CONTINUE

ENDIF

IF(SUP.EQ.O)

1 THEN

KK=DUK2(MAC)

MAK=DUP2(MAC)

IF(DD.GT.O)

1 THEN

DO 15 J = 1 , DD

K=L0CC(DUM1(KK))

ISPOT(K)=ISIGN(3)

KK=DUM3(KK)

15 CONTINUE

ENDIF

ELSE

MAK=MAC

ENDIF

IF(WIDTH.LE.40)

1 THEN

WRITE(6,9010) II.MAK, (ISPOT(L),L=BC,EC)

ELSEIF(WIDTH.LE.61)

1 THEN

WRITE(6,9030) II.MAK, (ISPOT(L),L=BC,EC)

ELSE

WRITE(6,9050) II.MAK, (ISPOT(L),L=BC,EC)

ENDIF

C CLEAR THE MATRIX READY TO BE USED AGAIN

KK=INROW(MAC)

DO 20 J=1,1

K=LOCC(OCOL(KK))

ISPOT(K)=ISIGN(2)

KK=NEXSR(KK)

20 CONTINUE

DD=DUK1(MAC)

IF(SUP.EQ.O.AND.DD.GT.O)

1 THEN

KK=DUK2(MAC)

DO 25 J=1,DD

K=L0CC(DUM1(KK))

ISPOT(K)=ISIGN(2)

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENEIX E 183

KK=DUM3(KK)

25 CONTINUE

ENDIF

130 CONTINUE

WRITE(6,9530)

9530 FORMAT(IX, I I I)

RETURN

END

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 1 8 4

1 PROGRAM salesv02(tourdata, output, maketm, totltm, makecs, totlcs, input

2 /) ;

3
4 CONST
5 maxcity = 60;
6 infinity = 9999;
7
8 TYPE
9 city = 0 .. maxcity;

10 distance = 0 .. infinity;
11 nodeptr = A anode;
12 anode = PACKED RECORD
13 town: city;
14 nextnode: nodeptr;
15 linkfixed: boolean;
16 END;
17 opmode =
18 (alongrow, alongcol);
19 printmode =
20 (partial, infull);
21 improvement =
22 (threearc, fourarc);
23 construction =
24 (dolittle, shortlink, shadowlink, acircuit);
25 xchangemode =
26 (caseO, easel, case2, case3, case4, case5);
27 headptr = A headofchain;
28 headofchain - PACKED RECORD
29 firstlink, sentinel: nodeptr;
30 nexthead: headptr;
31 END;
32
33 VAR
34 tourdata, maketm, totltm, makecs, totlcs: text;
35 n, ntownchange: city;
36 tourlength, reducedfactor, problemno, starttime, timeelapsed,
37 iteration, areduction, breduction: integer;
38 c: ARRAY
39 [1..maxcity, 1..maxcity] OF distance;
40 rowgain: ARRAY
41 [1..maxcity] OF PACKED RECORD
42 rowreduced: distance;
43 mincol, nextsmcol: city;
44 getoutok: boolean;
45 END;
46 colgain: ARRAY
47 [1..maxcity] OF PACKED RECORD
48 colreduced: distance;
49 minrow, nextsmrow: city;
50 getinok: boolean;
51 END;
52 finaltime, finalcost: ARRAY
53 [construction, improvement] OF integer;
54 contime, concost: ARRAY
55 [construction] OF integer;
56 firsthead, sparehead: headptr;
57 atownl, atown2, atown3, btownl, btown2, btown3, btown4, townchfirst,
58 townchlast: nodeptr;
59 change: boolean;
60 optimising: improvement;
61 starting: construction;
62
63

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 1 8 5

64 PROCEDURE readinput;
65
66 VAR
67 i, j: city;
68
69 BEGIN
70 reset(tourdata);
71 read(tourdata, n, problemno);
72 FOR i :« 1 TO n DO
73 FOR j := 1 TO n DO
74 read(tourdata, c[i, j]);
75 FOR i := 1 TO n DO
76 c[i, i] := infinity;
7 7 E N D tfreadinputj ;

78
7 9

80 PROCEDURE initialisation;
81

82 VAR
83 i : city;
84
85 BEGIN
86 FOR i 1 TO n DO
87 BEGIN
88 rowgain[i].getoutok := true;
89 colgain[i].getinok := true;
90 END;
91 firsthead : = NIL;
92 sparehead := NIL;
93 townchfirst :« NIL;
94 townchlast := NIL;
95 ntownchange := 0;
96 END finitialisation! ;
97
98
99 PROCEDURE garbagecollection(VAR tourhead: headptr);

1 0 0

101 VAR
102 headnode: nodeptr;
103
104
105 PROCEDURE collectgarbage(headnode: nodeptr);
106
107 VAR
108 thisone, nextone: nodeptr;
109
110 BEGIN
111 thisone : = headnode;
112 WHILE thisone <> NIL DO
113 BEGIN
114 nextone : = thisone A.nextnode;
115 dispose(thisone);
116 thisone := nextone;
117 END;
118 END fcollectgarbage! ;
119
120
121 BEGIN Cgarbagecollection!
122 IF tourhead <> NIL THEN
123 BEGIN
124 headnode := tourhead A.firstlink;
125 collectgarbage(headnode);
126 dispose(tourhead);

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 1 8 6

127 tourhead := NIL;
128 END;
129 IF townchfirst <> NIL THEN
130 BEGIN
131 headnode :- townchfirst;
132 collectgarbage(headnode);
133 townchfirst := NIL;
134 townchlast := NIL;
135 ntownchange := 0;
136 END;
137 END tgarbagecollectionj ;
138
139
140 PROCEDURE tourlists(printing: printmode);
141
142 VAR
143 thischain: headptr;
144 thisnode: nodeptr;
145 acity: city;
146 i: integer;
147
148 BEGIN
149 thischain := firsthead;
150 IF thischain = NIL
151 THEN
152 w r i t e l n C NO TOUR ')
153 ELSE
154 w r i t e l n C THE TOUR ');
155 WHILE thischain <> NIL DO
156 BEGIN
157 i := 0;
158 thisnode := thischain A.firstlink;
159 WHILE thisnode <> NIL DO
160 BEGIN
161 acity := thisnode A.town;
162 write(acity: 4);
163 thisnode : = thisnode A.nextnode;
164 i := i + 1;
165 IF i = 15 THEN
166 BEGIN
167 writeln;
168 i := 0;
169 END;
170 END;
171 IF (printing = infull) OR (starting = acircuit) THEN
172 BEGIN
173 acity := thischain A.firstlink A.town;
174 write(acity: 4);
175 END;
176 writeln;
177 thischain := thischain A.nexthead;
178 END;
179 END ftourlists} ;
180
181
182 PROCEDURE writematrix;
183
184 VAR
185 i, j, k: city;
186 cost: distance;
187
188 BEGIN
189 write(' ': 4);

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 1 8 7

190 FOR i := 1 TO n DO
191 IF colgain[i].getinok THEN
192 write(i: 4);
193 writeln;
194 writeln;
195 FOR i := 1 TO n DO
196 IF rowgain[i].getoutok
197 THEN
198 BEGIN
199 write(i: 4);
200 FOR j 1 TO n DO
201 IF co!gain[j].getinok THEN
202 write(c[i, j]: 4);
203 WITH rowgain[i] DO
204 BEGIN
205 k := mincol;
206 cost := rowreduced
207 END;
208 writeln(cost: 4, k: 3);
209 END;
210 writeln;
211 IF (starting = dolittle) OR (starting = shadowlink)
212 THEN
213 BEGIN
214 write(' ': 4);
215 FOR i :« 1 TO n DO
216 WITH colgain[i] DO
217 IF getinok THEN
218 BEGIN
219 cost := colreduced;
220 write(cost: 4);
221 END;
222 writeln;
223 write(* 4);
224 FOR i := 1 TO n DO
225 WITH colgain[i] DO
226 IF getinok THEN
227 BEGIN
228 k := minrow;
229 write(k: 4);
230 END;
231 writeln;
232 END;
233 END fwritematrixj ;
234
235
236 PROCEDURE findsmallest(fromcity: city);
237
238 VAR
239 tiny: integer;
240 smallcity, tocity: integer;
241
242 BEGIN
243 tiny := infinity + 1;
244 smallcity := 0;
245 FOR tocity := 1 TO n DO
246 IF colgain[tocity].getinok THEN
247 IF c[fromcity, tocity] < tiny THEN
248 BEGIN
249 tiny := c[fromcity, tocity];
250 smallcity := tocity;
251 END;
252 WITH rowgain[fromcity] DO

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 188

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

BEGIN
mincol := smallcity;
rowreduced := c[fromcity, mincol];

END;
END ffindsmallestj ;

PROCEDURE findtwosmallest(acity: city; roworcol: opmode);

VAR
tinyl, tiny2: integer;
cityl, city2, fromcity, tocity: integer;

BEGIN
tinyl
tiny2
cityl
city2

= infinity + 1;
= infinity + 2;
= 0 ;

= 0 ;

IF roworcol = alongrow
THEN

BEGIN
fromcity := acity;
FOR tocity 1 TO n DO

IF colgain[tocity].getinok
THEN

IF c[fromcity, tocity] < tiny2
THEN

IF c[fromcity, tocity] < tinyl
THEN

BEGIN
tiny 2
city2
tinyl
cityl

END
ELSE

BEGIN
tiny2
city2

END;
WITH rowgain[fromcity] DO

BEGIN
mincol := cityl;
nextsmcol := city2;
rowreduced := c[fromcity, city2]

END;
END

ELSE
BEGIN

tocity := acity;
FOR fromcity := 1 TO n DO

IF rowgainffromcity].getoutok
THEN

IF cffromcity, tocity] < tiny2
THEN

IF c [f r o m c i t y t o c i t y] < tinyl
THEN

BEGIN
tiny2
city2
tinyl
cityl

END

tinyl;
cityl;
cffromcity, tocity];
tocity;

c[fromcity, tocity];
tocity;

c[fromcity, cityl]

tinyl;
cityl;
c[fromcity, tocity];
fromcity;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 1 8 9

316 ELSE
317 BEGIN
318 tiny2 := c[fromcity, tocity];
319 city2 : = fromcity;
320 END;
321 WITH colgain[tocity] DO
322 BEGIN
323 minrow := cityl;
324 nextsmrow city2;
325 colreduced := c[city2, tocity] - c[cityl, tocity];
326 END;
327 END;
328 END £findtwosmallestj ;
329
330
331 PROCEDURE updatematrix(addfrom, addto: city);
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352 PROCEDURE updatecolumn(totown: city);
353
354 VAR
355 thisrow: nodeptr;
356 i, chrow, aminrow, anextsmrow, cityl, city2: city;
357 tinyl, tiny2: integer;
358
359
360 PROCEDURE twoup(chrow: city);
361
362 BEGIN
363 IF c[chrow, totown] < tiny2
364 THEN
365 IF c[chrow, totown] < tinyl
366 THEN
367 BEGIN
368 tiny2 := tinyl;
369 city2 := cityl;
370 tinyl := c[chrow, totown];
371 cityl := chrow;
372 END
373 ELSE
374 BEGIN
375 tiny2 := c[chrow, totown];
376 city2 := chrow;
377 END;
378 END ftwoup> ;

BEGIN
IF (starting = dolittle) OR (starting = shadowlink)
THEN

BEGIN
WITH rowgain[addfrom] DO

IF (mincol « addto) OR (nextsmcol = addto) THEN
f indtwosmallest(addfrom, along;row);

WITH colgainfaddto] DO
IF (minrow = addfrom) OR (nextsmrow = addfrom) THEN

findtwosmallest(addto, alongcol);
END

ELSE
IF starting = shortlink THEN

WITH rowgain[addfrom] DO
IF mincol = addto THEN

findsmall€St(addfrom);
END fupdatematrixj ;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 190

379
380
381 BEGIN {[update column!
382 WITH colgainftotown] DO
383 BEGIN
384 thisrow := townchfirst;
385 cityl := minrow;
386 city2 := nextsmrow;
387 tinyl := infinity;
388 tiny2 :- infinity;
389 aminrow := minrow;
390 anextsmrow := nextsmrow;
391 twoup(aminrow);
392 twoup(anextsmrow);
393 FOR i := 1 TO ntownchange DO
394 BEGIN
395 chrow := thisrow A.town;
396 twoup(chrow);
397 thisrow := thisrow A.nextnode;
398 END;
399 minrow := cityl;
400 nextsmrow city2;
401 colreduced := c[city2, totown] - c[cityl, totown];
402 END;
403 END {[update column! ;
404
405
406 PROCEDURE updaterows;
407
408 VAR
409 thiscol: nodeptr;
410 fromtown, i, chcol, amincol, anextsmcol, cityl, city2: city;
411 tinyl, tiny2: integer;
412
413
414 PROCEDURE twouprow(chcol: city);
415
416 BEGIN
417 IF c[fromtown, chcol] < tiny2
418 THEN
419 IF c[fromtown, chcol] < tinyl
420 THEN
421 BEGIN
422 tiny2 :• tinyl;
423 city2 cityl;
424 tinyl :» c[fromtown, chcol];
425 cityl := chcol;
426 END
427 ELSE
428 BEGIN
429 tiny2 := c[fromtown, chcol];
430 city2 := chcol;
431 END;
432 END ftwouprowj ;
433
434
435 BEGIN fupdaterowsj
436 FOR fromtown := 1 TO n DO
437 WITH rowgain[fromtown] DO
438 IF getoutok
439 THEN
440 BEGIN
441 thiscol := townchfirst;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 1 9 1

442 cityl := mincol;
443 city2 := nextsmcol;
444 tinyl := infinity;
445 tiny2 := infinity;
446 amincol mincol;
447 anextsmcol := nextsmcol;
448 twouprow(amincol);
449 twouprow(anextsmcol);
450 FOR i 1 TO ntownchange DO
451 BEGIN
452 chcol := thiscol A.town;
453 twouprow(chcol);
454 thiscol := thiscol A.nextnode;
455 END;
456 mincol := cityl;
457 nextsmcol := city2;
458 rowreduced := c[fromtown, city2] - c[fromtown, cityl];
459 END;
460 END fupdaterowsj ;
461
462
463 PROCEDURE addtotownlist(atown: city);
464
465 VAR
466 anewnode: nodeptr;
467
468 BEGIN
469 IF townchfirst = NIL
470 THEN
471 BEGIN
472 new(anewnode);
473 townchfirst := anewnode;
474 townchlast := townchfirst;
475 WITH anewnode A DO
476 BEGIN
477 nextnode := NIL;
478 town := atown;
479 END;
480 END
481 ELSE
482 IF townchlast A.nextnode = NIL
483 THEN
484 BEGIN
485 new(anewnode);
486 townchlast A.nextnode := anewnode;
487 townchlast := anewnode;
488 WITH anewnode A DO
489 BEGIN
490 nextnode := NIL;
491 town := atown;
492 END;
493 END
494 ELSE
495 BEGIN
496 townchlast :« townchlast A.nextnode;
497 townchlast A.town := atown;
498 END;
499 ntownchange := ntownchange + 1 ;
500 END faddtotownlistj ;
501
502
503 PROCEDURE reduceable(1inksassigned: integer; VAR fromcity, tocity: city;
504 roworcol: opmode);

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 192

505
506 VAR
507 i: city;
508
509 BEGIN
510 IF linksassigned = 0
511 THEN
512 FOR i := 1 TO n DO
513 BEGIN
514 findtwosmallest(i, roworcol);
515 END
516 ELSE
517 IF roworcol = alongrow
518 THEN
519 BEGIN
520 FOR i := 1 TO n DO
521 WITH rowgain[i] DO
522 IF getoutok AND ((mincol = tocity) OR (nextsmcol =
523 tocity))
524 THEN
525 findtwosmallest(i, alongrow);
526 END
527 ELSE
528 FOR i 1 TO n DO
529 WITH colgainfi] DO
530 IF getinok THEN
531 IF (minrow = fromcity) OR (nextsmrow = fromcity)
532 THEN
533 findtwosmallest(i, alongcol)
534 ELSE
535 updatecolumn(i);
536 END freduceablej ;
537
538
539 FUNCTION sumoffactors: integer;
540
541 VAR
542 i: city;
543 sum: integer;
544
545 BEGIN
546 sum := 0;
547 FOR i := 1 TO n DO
548 WITH rowgain[i] DO
549 IF getoutok THEN
550 sum : = sum + c[i, mincol];
551 FOR i := 1 TO n DO
552 WITH colgain[i] DO
553 IF getinok THEN
554 sum := sum + c[minrow, i];
555 sumoffactors := sum;
556 END fsumoffactors! ;
557
558
559 PROCEDURE reducecost(VAR row, col: city; along: opmode);
560
561 VAR
562 reduce: distance;
563 i: city;
564
565 BEGIN
566 reduce := c[row, col];
567 IF reduce <> 0

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 1 9 3

568 THEN
569 BEGIN
570 IF along = alongrow
571 THEN
572 BEGIN
573 FOR i :« 1 TO n DO
574 IF colgain[i].getinok THEN
575 c[row, i] : = c[row, i] - reduce;
576 addtotownlist(row);
577 END
578 ELSE
579 BEGIN
580 FOR i := 1 TO n DO
581 IF rowgain[i].getoutok THEN
582 c[i, col] c[i, col] - reduce;
583 addtotownlist(col);
584 END;
585 END;
586 END freducecostj ;
587
588
589 PROCEDURE reducematrix(along: opmode);
590
591 VAR
592 i, j: city;
593
594 BEGIN
595 IF along = alongrow
596 THEN
597 BEGIN
598 FOR i 1 TO n DO
599 WITH rowgainf i] DO
600 IF getoutok THEN
601 BEGIN
602 j := mincol;
603 reducecost(i, j, alongrow);
604 reducedfactor := reducedfactor + c[i, j];
605 END;
606 END
607 ELSE
608 BEGIN
609 FOR i := 1 TO n DO
610 WITH colgain[i] DO
611 IF getinok THEN
612 BEGIN
613 j := minrow;
614 reducecost(j, i, alongcol);
615 reducedfactor := reducedfactor + c[j, i];
616 END;
617 END;
618 END freducematrixj ;
619
620
621 PROCEDURE nextlittlelink(VAR fromcity, tocity: city);
622
623 VAR
624 i, j: city;
625 shadowcost, smallofrow: integer;
626
627 BEGIN
628 shadowcost : = - 1;
629 FOR i := 1 TO n DO
630 WITH rowgain[i] DO

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 194

631 IF getoutok
632 THEN
633 IF rowreduced <> 0
634 THEN
635 BEGIN
636 IF (rowreduced + colgain[mincol].colreduced) >
637 shadowcost
638 THEN
639 BEGIN
640 fromcity := i;
641 tocity := mincol;
642 shadowcost := rowreduced + colgain[mincol].
643 colreduced;
644 END;
645 END
646 ELSE
647 BEGIN
648 smallofrow : = c[i, mincol];
649 FOR j := 1 TO n DO
650 WITH colgainf j] DO
651 IF getinok
652 THEN
653 IF c[i, j] » smallofrow THEN
654 IF (rowreduced + colreduced) >
655 shadowcost
656 THEN
657 BEGIN
658 fromcity i;
659 tocity : = j;
660 shadowcost : = rowreduced +
661 colreduced;
662 END;
663 END;
664 END fnextlittlelinkj ;
665
666
667 FUNCTION lastinalink(fromcity: city; VAR thechain: headptr): boolean;
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
6 8 6
687 FUNCTION firstinalink(tocity: city; VAR lasthead: headptr): boolean;
688
689 VAR
690 found: boolean;
691 thishead, afterthis: headptr;
692 link: nodeptr;
693

VAR
thischain: headptr;
found: boolean;

BEGIN
found := false;
thischain := f-irsthead;
WHILE ((thischain <> NIL) AND (NOT found)) DO

IF thischain A.sentinel A.town = fromcity
THEN

found := true
ELSE

thischain := thischain A.nexthead;
thechain := thischain;
lastinalink := found;

END flastinalinkj ;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 195

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712 PROCEDURE joinhead(fromcity: city; lasthead: headptr);
713
714 VAR
715 thishead: headptr;
716 newnode: nodeptr;
717
718 BEGIN
719 IF lasthead « NIL
720 THEN
721 thishead :* firsthead
722 ELSE
723 thishead := lasthead A.nexthead;
724 new(newnode);
725 WITH thishead A, newnode A DO
726 BEGIN
727 nextnode : = firstlink;
728 linkfixed : = false;
729 town := fromcity;
730 firstlink := newnode;
731 END;
732 END CjoinheadJ ;
733
734
735 PROCEDURE jointai1(tocity: city; thischain: headptr);
736
737 VAR
738 newnode: nodeptr;
739
740 BEGIN
741 new(newnode);
742 thischain A.sentinel A.nextnode := newnode;
743 thischain A.sentinel := newnode;
744 WITH newnode A DO
745 BEGIN
746 town := tocity;
747 nextnode := NIL;
748 linkfixed := false;
749 END;
750 END CjointailJ ;
751
752
753 PROCEDURE makenewchain(fromcity, tocity: city; lasthead: headptr);
754
755 VAR
756 newhead: headptr;

BEGIN
found := false;
thishead := NIL;
afterthis := firsthead;
WHILE ((afterthis <> NIL) AND (NOT found)) DO

IF afterthis A.firstlink A.town = tocity
THEN

found := true
ELSE

BEGIN
thishead := afterthis;
afterthis := afterthis A.nexthead;

END;
lasthead := thishead;
firstinalink := found;

END ffirstinalinkj ;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 1 9 6

757 nodefrom, nodeto: nodeptr;
758
759 BEGIN
760 new(newhead);
761 new(nodefrom);
762 new(nodeto);
763 IF lasthead = NIL
764 THEN
765 firsthead := newhead
766 ELSE
767 lasthead A.nexthead := newhead;
768 WITH newhead A DO
769 BEGIN
770 firstlink := nodefrom;
771 sentinel := nodeto;
772 nexthead NIL;
773 END;
774 WITH nodefrom A DO
775 BEGIN
776 town fromcity;
777 nextnode : = nodeto;
778 linkfixed : = false;
779 END;
780 WITH nodeto A DO
781 BEGIN
782 town := tocity;
783 nextnode : = NIL;
784 linkfixed := false;
785 END;
786 END fmakenewchainj ;
787
788
789 PROCEDURE jointwochains(lasthead, secondchain: headptr);
790
791 VAR
792 thishead: headptr;
793 lastnode: nodeptr;
794
795 BEGIN
796 lastnode := secondchain A.sentinel;
797 IF lasthead = NIL
798 THEN
799 thishead := firsthead
800 ELSE
801 thishead := lasthead A.nexthead;
802 lastnode A.nextnode := thishead A.firstlink;
803 IF lasthead = NIL
804 THEN
805 firsthead : = thishead A.nexthead
806 ELSE
807 lasthead A.nexthead :• thishead A.nexthead;
808 secondchain A.sentinel := thishead A.sentinel;
809 dispose(thishead);
810 END fjointwochains} ;
8 1 1
812
813 PROCEDURE addanother1 ink(1 inks: integer; fromcity, tocity: city);
814
815 VAR
816 first, last: boolean;
817 headbeforefirst, secondchain: headptr;
818 firstcity, lastcity: city;
819

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 197

820 BEGIN
821 first := firstinalink(tocity, headbeforefirst);
822 last := lastinalink(fromcity, secondchain);
823 IF first THEN
824 IF headbeforefirst « NIL
825 THEN
826 lastcity := firsthead A.sentinel A.town
827 ELSE
828 lastcity : = headbeforefirst A.nexthead A.sentinel A.town;
829 IF last THEN
830 firstcity := secondchain A.firstlink A.town;
831 IF first
832 THEN
833 IF last
834 THEN
835 BEGIN
836 jointwochains(headbeforefirst, secondchain);
837 c[lastcity, firstcity] : = infinity;
838 IF links <> (n - 1) THEN
839 updatematrix(lastcity, firstcity);
840 END
841 ELSE
842 BEGIN
843 joinhead(fromcity, headbeforefirst);
844 c[lastcity, fromcity] := infinity;
845 IF links <> (n - 1) THEN
846 updatematrix(lastcity, fromcity);
847 END
848 ELSE
849 IF last
850 THEN
851 BEGIN
852 jointail(tocity, secondchain);
853 c[tocity, firstcity] := infinity;
854 IF links <> (n - 1) THEN
855 updatematrix(tocity, firstcity);
856 END
857 ELSE
858 BEGIN
859 makenewchain(fromcity, tocity, headbeforefirst);
860 c[tocity, fromcity] : = infinity;
861 updatematrix(tocity, fromcity);
862 END;
863 END faddanotherlinkj ;
864
865
866 PROCEDURE contractmatrix(fromcity, tocity: city);
867
868 VAR
869 i: city;
870
871 BEGIN
872 rowgain[froracity].getoutok := false;
873 colgainftocity].getinok := false;
874 END CcontractmatrixJ ;
875
876
877 PROCEDURE littletsp;
878
879 VAR
880 1inksassigned: integer;
881 fromcity, tocity: city;
882

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 1 9 8

883 BEGIN
1inksassigned := 0;
REPEAT

ntownchange 0;
reduceable(1inksassigned, fromcity, tocity, alongrow);
reducematrix(alongrow);
reduceable(linksassigned, fromcity, tocity, alongcol);
ntownchange := 0;
townchlast := townchfirst;
reducematrix(alongcol);
updaterows;
nextlittlelink(fromcity, tocity);
IF problemno > 400 THEN

BEGIN
writelnC EXIT NEXTLITTLELINK fromcity: 4, tocity: 4);
writeln;
writematrix;

END;
contractmatrix(fromcity, tocity);
linksassigned linksassigned + 1;
addanotherlink(linksassigned, fromcity, tocity);
IF problemno > 300 THEN

tourlists(partial);
UNTIL linksassigned = (n - 1);

907 END flitfletspj ;
908
909
910 PROCEDURE neighbourmatrix(1inksassigned: integer; VAR tocity: city);
911
912 VAR
913 i: city;
914
915 BEGIN
916 IF linksassigned = 0
917 THEN
918 FOR i := 1 TO n DO
919 findsmallest(i)
920 ELSE
921 BEGIN
922 FOR i := 1 TO n DO
923 WITH rowgain[i] DO
924 IF getoutok AND (mincol = tocity) THEN
925 findsmallest(i);
926 END;
927 END CneighbourmatrixJ ;
928
929
930 PROCEDURE nextneighbour(VAR fromcity, tocity: city);
931
932 VAR
933 i: city;
934 tiny: integer;
935
936 BEGIN
937 tiny : = infinity + 1;
938 FOR i := 1 TO n DO
939 WITH rowgain[i] DO
940 IF getoutok THEN
941 IF rowreduced < tiny THEN
942 BEGIN
943 tiny := rowreduced;
944 fromcity := i;
945 tocity := mincol;

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 199

946 END;
947 END fnextneighbourj ;
948
949
950 PROCEDURE nearestneighbour;
951
952 VAR
953 linksassigned: integer;
954 fromcity, tocity: city;
955
956 BEGIN
957 linksassigned := 0;
958 REPEAT
959 neighbourmatrix(linksassigned, tocity);
960 IF problemno > 400 THEN
961 writematrix;
962 nextneighbour(fromcity, tocity);
963 contractmatrix(fromcity, tocity);
964 linksassigned := linksassigned + 1;
965 addanotherlink(linksassigned, fromcity, tocity);
966 IF problemno > 400 THEN
967 BEGIN
968 writelnC EXIT NEXTNEIGHBOUR fromcity: 4, tocity: 4);
969 tourlists(partial);
970 END;
971 UNTIL linksassigned = (n - 1);
972 END fnearestneighbourJ ;
973
974
975 PROCEDURE shadowmatrix(linksassigned: integer; VAR fromcity, tocity:
976 city);
977
978 VAR
979 i; city;
980
981 BEGIN
982 IF linksassigned = 0
983 THEN
984 FOR i :« 1 TO n DO
985 BEGIN
986 findtwosmallest(i, alongrow);
987 findtwosmallest(i, alongcol);
988 END
989 ELSE
990 BEGIN
991 FOR i 1 TO n DO
992 WITH rowgain[i] DO
993 IF getoutok AND ((mincol = tocity) OR (nextsmcol =
994 tocity))
995 THEN
996 findtwosmallest(i, alongrow);
997 FOR i := 1 TO n DO
998 WITH colgainf i] DO
999 IF getinok AND ((minrow = fromcity) OR (nextsmrow =

1000 fromcity))
1001 THEN
1002 findtwosmallest(i, alongcol);
1003 END;
1004 END fshadowmatrixj ;
1005
1006
1007 PROCEDURE nextshadow(VAR fromcity, tocity: city);
1008

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 2 0 0

1009 VAR
1010 i, afromcity, atocity: city;
1011 large: integer;
1012
1013 BEGIN
1014 large := - infinity;
1015 FOR i := 1 TO n DO
1016 WITH rowgain[i] DO
1017 IF getoutok THEN
1018 IF rowreduced > large THEN
1019 BEGIN
1020 large := rowreduced;
1021 afromcity := i;
1022 atocity := mincol;
1023 END;
1024 FOR i := 1 TO n DO
1025 WITH colgain[i] DO
1026 IF getinok THEN
1027 IF colreduced > large THEN
1028 BEGIN
1029 large :« colreduced;
1030 afromcity := minrow;
1031 atocity := i;
1032 END;
1033 fromcity := afromcity;
1034 tocity := atocity;
1035 END fnextshadowj ;
1036
1037
1038 PROCEDURE shadowneighbour;
1039
1040 VAR
1041 linksassigned: integer;
1042 fromcity, tocity: city;
1043 roworcol: opmode;
1044
1045 BEGIN
1046 linksassigned := 0;
1047 REPEAT
1048 shadowmatrix(linksassigned, fromcity, tocity);
1049 IF problemno > 300 THEN
1050 writematrix;
1051 nextshadow(fromcity, tocity);
1052 IF problemno > 300 THEN
1053 BEGIN
1054 writelnC EXIT NEXTSHADOW *, fromcity: 4, tocity: 4);
1055 tourlists(partial);
1056 END;
1057 contractmatrix(fromcity, tocity);
1058 linksassigned := linksassigned + 1;
1059 addanotherlink(linksassigned, fromcity, tocity);
1060 IF problemno > 400 THEN
1061 tour lists(partial);
1062 UNTIL linksassigned = (n - 1);
1063 END fshadowneighbour> ;
1064
1065
1066 PROCEDURE tourstarter(VAR fromcity, tocity: city);
1067
1068 VAR
1069 i, j: city;
1070 fromtown, totown, small: integer;
1071 ahead: headptr;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 2 0 1

1072 townptrl, townptr2: nodeptr;
1073
1074 BEGIN
1075 small := infinity;
1076 fromtown := 0;
1077 totown := 0;
1078 FOR i 1 TO n - 1 DO
1079 FOR j := i TO n DO
1080 IF (c[i, j] + c[j, i]) < small THEN
1081 BEGIN
1082 fromtown := i;
1083 totown := j;
1084 small := c[i, j] + c[j, i];
1085 END;
1086 new(ahead);
1087 new(townptrl);
1088 new(townptr2);
1089 firsthead := ahead;
1090 WITH firsthead A DO
1091 BEGIN
1092 firstlink := townptrl;
1093 sentinel := townptr2;
1094 nexthead := NIL;
1095 END;
1096 WITH townptrl A DO
1097 BEGIN
1098 town fromtown;
1099 nextnode := townptr2;
1100 END;
1101 WITH townptr2 A DO
1102 BEGIN
1103 town := totown;
1104 nextnode := NIL;
1105 END;
1106 fromcity := fromtown;
1107 tocity := totown;
1108 END ftourstarterj ;
1109
1110

1111 PROCEDURE inserttown(fromtown, newtown, totown: city);
1112
1113 VAR
1114 townptr, newcity: nodeptr;
1115
1116 BEGIN
1117 new(newcity);
1118 townptr := firsthead A.firstlink;
1119 WHILE fromtown <> townptr A.town DO
1120 townptr := townptr A.nextnode;
1121 WITH newcity A DO
1122 BEGIN
1123 nextnode := townptr A.nextnode;
1124 town : «= newtown;
1125 END;
1126 townptr A.nextnode := newcity;
1127 IF fromtown = firsthead A.sentinel A.town THEN
1128 firsthead A.sentinel := newcity;
1129 END finserttownj ;
1130
1131
1132 PROCEDURE tourinsertion(VAR tourlength: integer);
1133
1134 VAR

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 2 0 2

1135 assigned: PACKED ARRAY
1136 [1..maxcity] OF boolean;
1137 i, fromcity, tocity, newcity: city;
1138 currentcost, citiesassigned: integer;
1139
1140
1141 PROCEDURE towntoinsert(VAR fromtown, newtown, totown: city);
1142
1143 VAR
1144 i, lasttown, nexttown, before, this, after: city;
1145 townptr: nodeptr;
1146 small: integer;
1147
1148 BEGIN
1149 small := infinity;
1150 FOR i 1 TO n DO
1151 IF NOT assigned[i]
1152 THEN
1153 BEGIN
1154 townptr := firsthead A.firstlink;
1155 WHILE townptr <> NIL DO
1156 BEGIN
1157 lasttown := townptr A.town;
1158 IF townptr = firsthead A.sentinel
1159 THEN
1160 nexttown := firsthead A.firstlink A.town
1161 ELSE
1162 nexttown := townptr A.nextnode A.town;
1163 IF (c[lasttown, i] + c[i, nexttown] - c[lasttown
1164 , nexttown]) < small
1165 THEN
1166 BEGIN
1167 small := c[lasttown, i] + c[i, nexttown] -
1168 c[lasttown, nexttown];
1169 before := lasttown;
1170 this :» i;
1171 after := nexttown;
1172 END;
1173 townptr := townptr A.nextnode;
1174 END;
1175 END;
1176 fromtown := before;
1177 newtown := this;
1178 totown := after;
1179 END ftowntoinsertj ;
1180
1181
1182 BEGIN ftourinsertionj
1183 FOR i := 1 TO n DO
1184 assigned[i] := false;
1185 tourstarter(fromcity, tocity);
1186 IF problemno > 400 THEN
1187 tourlists(infull);
1188 assignedffromcity] := true;
1189 assigned[tocity] := true;
1190 currentcost := c[fromcity, tocity] + c[tocity, fromcity];
1191 citiesassigned := 2;
1192 REPEAT
1193 towntoinsert(fromcity, newcity, tocity);
1194 inserttown(fromcity, newcity, tocity);
1195 assignedfnewcity] := true;
1196 IF problemno > 400 THEN
1197 BEGIN

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 203

1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260

tourlists(infull);
writelnC EXIT TOWNTOINSERT: INSERT newcity: 4,

' BETWEEN fronicity: 4, tocity: 4);
END;

citiesassigned := citiesassigned + 1;
currentcost := currentcost + c[from.city, newcity] + c[newcity,

tocity] - c[fromcity, tocity];
UNTIL citiesassigned = n;
tourlength := currentcost;

END £tourinsertionj ;

PROCEDURE copytour;

VAR

anewhead: headptr;
lastnode, thisnode, oldone: nodeptr;
firstround: boolean;

BEGIN
firstround := true;
IF sparehead <> NIL THEN

garbagecollection(sparehead);
IF firsthead <> NIL
THEN r

BEGIN
new(anewhead);
sparehead anewhead;
oldone := firsthead A.firstlink;
WHILE oldone <> NIL DO

WITH oldone A DO
BEGIN

new(thisnode);
IF firstround
THEN

BEGIN
sparehead A.firstlink := thisnode;
firstround := false;

END
ELSE

lastnode A.nextnode := thisnode;
thisnode A.town := town;
thisnode A.linkfixed := linkfixed;
lastnode := thisnode;
oldone := nextnode;

END;
sparehead A.sentinel := lastnode;
sparehead A.nexthead := NIL;

END;
lastnode A.nextnode := NIL;

END fcopytourj ;

PROCEDURE tourcost(VAR finalcost: integer);

VAR

cost: integer;
this, last: nodeptr;

BEGIN
cost := 0;
IF firsthead <> NIL
THEN

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 2 0 4

1261 BEGIN
1262 last := firsthead A.sentinel;
1263 this : = firsthead A.firstlink;
1264 WHILE this <> NIL DO
1265 BEGIN
1266 cost := cost + c[last A.town, this A.town];
1267 last := this;
1268 this : = this A.nextnode;
1269 END;
1270 END;
1271 finalcost : = cost;
1272 END ftourcostj ;
1273
1274
1275 PROCEDURE last2but1(VAR lastbut2, lastbutl: nodeptr);
1276
1277 VAR
1278 k: city;
1279 townptr: nodeptr;
1280
1281 BEGIN
1282 townptr := firsthead A.firstlink;
1283 FOR k := 1 TO n - 3 DO
1284 townptr := townptr A.nextnode;
1285 lastbut2 := townptr;
1286 lastbutl := lastbut2 A.nextnode;
1287 IF lastbutl A.nextnode <> firsthead A.sentinel THEN
1288 w r i t e l n C TOUR ERROR FOUND BY LAST2BUT1');
1289 END flast2butlJ ;
1290
1291
1292 FUNCTION good3opt(townptr1, townptr2, townptr3: nodeptr; VAR benefit:
1293 integer): boolean;
1294
1295 VAR
1296 fl, f2, f3, f4, tl, t2, t3: city;
1297
1298 BEGIN
1299 fl := townptrl A.town;
1300 tl := townptrl A.nextnode A.town;
1301 f2 := townptr2 A.town;
1302 t2 := townptr2 A.nextnode A.town;
1303 f3 := townptr3 A.town;
1304 IF townptr3 * firsthead A.sentinel
1305 THEN
1306 t3 := firsthead A.firstlink A.town
1307 ELSE
1308 t3 := townptr3 A.nextnode A.town;
1309 benefit := c[fl, tl] + c[f2, t2] + c[f3, t3] - (c[fl, t2] + c[f3,
1310 tl] + c[f2, t3]);
1311 IF benefit > 0
1312 THEN
1313 good3opt := true
1314 ELSE
1315 good3opt := false;
1316 END £good3optJ ;
1317
1318
1319 PROCEDURE change3opt(townptr1, townptr2, townptr3: nodeptr);
1320
1321 VAR
1322 nexttol, nextto2, nextto3: nodeptr;
1323

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 2 0 5

1324 BEGIN
1325 nexttol := townptr1 A.nextnode;
1326 nextto2 := townptr2 A.nextnode;
1327 nextto3 := townptr3 A.nextnode;
1328 townptrl A.nextnode := nextto2;
1329 townptr2 A\ nextnode := nextto3;
1330 townptr3 A.nextnode := nexttol;
1331 IF nextto3 = NIL THEN
1332 firsthead A.sentinel := townptr2;
1333 END £change3optJ ;
1334
1335
1336 PROCEDURE threeopta(VAR townl, town2, town3: nodeptr; VAR reduce:
1337 integer);
1338
1339 VAR
1340 lastbut2, lastbutl, lastone, bestptrl, bestptr2, bestptr3,
1341 townptrl, townptr2, townptr3: nodeptr;
1342 reduction, bestreduction; integer;
1343 beneficial: boolean;
1344
1345 BEGIN
1346 bestreduction := - infinity;
1347 WITH firsthead A DO
1348 BEGIN
1349 lastone := sentinel;
1350 townptrl := firstlink;
1351 END;
1352 last2butl(lastbut2, lastbutl);
1353 WHILE townptrl <> lastbutl DO
1354 BEGIN
1355 townptr2 := townptrl A.nextnode;
1356 WHILE townptr2 <> lastone DO
1357 BEGIN
1358 townptr3 := townptr2 A.nextnode;
1359 WHILE townptr3 <> NIL DO
1360 BEGIN
1361 beneficial := good3opt(townptrl, townptr2,
1362 townptr3, reduction);
1363 IF beneficial AND (reduction > bestreduction)
1364 THEN
1365 BEGIN
1366 bestptrl := townptrl;
1367 bestptr2 := townptr2;
1368 bestptr3 := townptr3;
1369 bestreduction := reduction;
1370 END;
1371 townptr3 := townptr3 A.nextnode;
1372 END;
1373 townptr2 townptr2 A.nextnode;
1374 END;
1375 townptrl := townptrl A.nextnode;
1376 END;
1377 townl := bestptrl;
1378 town2 := bestptr2;
1379 town3 := bestptr3;
1380 reduce := bestreduction;
1381 END fthreeoptaj ;
1382
1383
1384 FUNCTION paralbefore2(ptrone, ptrtwo: nodeptr): boolean;
1385
1386 VAR

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 206

1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404

1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434

1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449

this: nodeptr;

BEGIN
this := ptrone;
WHILE (this <> ptrtwo) AND (this <> NIL) DO

this := this A.nextnode;
IF this = ptrtwo
THEN

paralbefore2 := true
ELSE

paralbefore2 := false;
END fparalbefore2> ;

FUNCTION nextinthetour(i: nodeptr): nodeptr;

VAR
j: nodeptr;

BEGIN
j := i A.nextnode;
IF j = NIL THEN

j firsthead A.firstlink;
nextinthetour j;

END fnextinthetourj ;

FUNCTION partial4opt(townptr1, townptr2: nodeptr): integer;

VAR

afterl, after2: nodeptr;
fl, tl, f2, t2: city;

BEGIN
fl := townptr1 A.town;
afterl := nextinthetour(townptrl);

tl := afterl A.town;
f2 := townptr2 A.town;
after2 := nextinthetour(townptr2);
t2 := after2 A.town;
partial4opt := c[fl, tl] + c[f2, t2] - c[f1, t2] - c[f2, tl];

END £partial4opt> ;

PROCEDURE best4opta(townptrl, townptr2: nodeptr; VAR townptr3, townptr4:

nodeptr; VAR gain2: integer);

VAR
bestptr3, bestptr4, i, j, k: nodeptr;
bestgain, again, costf3t3: integer;
f3, f4, t3, t4: city;

BEGIN
bestgain := - infinity;
i := townptr1 A.nextnode;
WHILE i <> townptr2 DO

BEGIN
WITH i A DO

BEGIN
f3 := town;
t3 := nextnode A.town;

END;
costf3t3 c[f3, t3];

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 2 0 7

1450 j : = nextinthetour(townptr2);
1451 WHILE j <> townptrl DO
1452 BEGIN
1453 f 4 : = j A.town;
1454 k := nextinthetour(j);
1455 t4 := k A.town;
1456 again := costf3t3 + c[f4, t4] - c[f3, t4] - c[f4, t3];
1457 IF again > bestgain THEN
1458 BEGIN
1459 bestgain : = again;
1460 bestptr3 := i;
1461 bestptr4 := j;
1462 END;
1463 j :« k;
1464 END;
1465 i := i A.nextnode;
1466 END;
1467 townptr3 : = bestptrS;
1468 townptr4 := bestptr4;
1469 gain2 := bestgain;
1470 END £best4opta! ;
1471
1472 .
1473 PROCEDURE change4a(townptr1, townptr2, townptr3, townptr4: nodeptr);
1474 f

1475 VAR
1476 nexttol, nextto2, nextto3, nextto4: nodeptr;
1477
1478 BEGIN
1479 nexttol : = townptrl A.nextnode;
1480 nextto2 := townptr2 A.nextnode;
1481 nextto3 := townptr3 A.nextnode;
1482 nextto4 := townptr4 A.nextnode;
1483 townptrl A.nextnode : = nextto2;
1484 townptr2 A.nextnode := nexttol;
1485 townptr3 A.nextnode := nextto4;
1486 townptr4 A.nextnode := nextto3;
1487 IF nextto2 - NIL THEN
1488 BEGIN
1489 firsthead A.sentinel : = townptrl;
1490 townptrl A.nextnode := NIL;
1491 END;
1492 IF nextto4 - NIL THEN
1493 BEGIN
1494 firsthead A.sentinel := townptrS;
1495 townptr3 A.nextnode := NIL;
1496 END;
1497 END fchange4aj ;

1498
1499
1500 PROCEDURE fouroptb(VAR townl, town2, town3, town4: nodeptr; VAR reduce:
1501 integer);
1502

1503 VAR
1504 lastbut2, lastbutl, lastone, lastptrl, limitptrl, lastlmtptr1,
1505 bestptrl, bestptr2, bestptr3, bestptr4, townptrl, townptr2,
1506 townptr3, townptr4: nodeptr;
1507 partgain, gain2, bestgain: integer;
1508 beneficial: boolean;
1509
1510 BEGIN
1511 bestgain := - infinity;
1512 last2but1(lastbut2, lastbutl);

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 2 0 8

1 5 1 3

1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554

townptrl := firsthead A.firstlink;
limitptrl := lastbutl;
WHILE townptrl <> limitptrl DO

BEGIN
townptr2 := townptrl A.nextnode A.nextnode;
WHILE townptr2 <> NIL DO

BEGIN
partgain := partial4opt(townptrl, townptr2);
IF partgain > 0
THEN

BEGIN
best4opta(townptr1, townptr2, townptr3, townptr4

, gain2);
partgain := partgain + gain2;
IF partgain > bestgain THEN

BEGIN
bestptrl : = townptrl;
bestptr2 :• townptr2;
bestptr3 := townptrS;
bestptr4 := townptr4;
bestgain := partgain;

END;

END;
townptr2 townptr2 A.nextnode;

END;
townptrl := townptrl A.nextnode;

END;
bestptrl;
bestptr2;
bestptr3;
bestptr4;
bestgain;

townl
town2
town3
town4
reduce

END ffouroptbj

PROCEDURE writetofiles;

VAR
i :
j :

BEGIN

construction;
improvement;

1555 write(maketm, problemno: 4, '
1556 write(makecs, problemno: 4, '
1557 write(totltm, problemno: 4, ' ')

1558 write(totlcs, problemno: 4, '
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575

FOR i dolittle TO acircuit DO
BEGIN

write(maketm, contime[i]: 7, ' ');
write(makecs, concost[i]: 7, ' ');
FOR j := threearc TO fourarc DO

BEGIN
write(totltm, finaltime[i, j]
write(totlcs, finalcost[i, j]

END;
END;

writeln(maketm);
writeln(makecs);
wr iteln(totltm);
writeln(totlcs);

END fwritetofilesj ;

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 209

1576 BEGIN £salesv02J
1577 readinput;
1578 FOR starting := dolittle TO acircuit DO
1579 BEGIN
1580 initialisation;
1581 starttime := clock;
1582 CASE starting OF
1583 dolittle:
1584 littletsp;
1585 shortlink:
1586 nearestneighbour;
1587 shadowlink:
1588 shadowneighbour;
1589 acircuit:
1590 tourinsertion(tourlength);
1591 END;
1592 timeelapsed := clock - starttime;
1593 readinput;
1594 IF starting <> acircuit THEN
1595 tourcost(tourlength);
1596 copytour;
1597 contime[starting] := timeelapsed;
1598 concost[starting] :« tourlength;
1599 writeln(' PROBLEM NO problemno: 6, ' ': 2, starting: 2 oct,
1600 ' CONSTRUCTION LENGTH tourlength: 7,
1601 ' CONSTRUCTION TIME timeelapsed: 7);
1602 tourlists(infull);
1603 writeln;
1604 FOR optimising := threearc TO fourarc DO
1605 BEGIN
1606 IF optimising = threearc
1607 THEN
1608 BEGIN
1609 iteration := 0;
1610 change := false;
1611 starttime := clock;
1612 REPEAT
1613 threeopta(atownl, atown2, atown3, areduction);
1614 IF areduction > 0
1615 THEN
1616 BEGIN
1617 change3opt(atownl, atown2, atown3);
1618 tourlength := tourlength - areduction;
1619 iteration := iteration + 1;
1620 change := true;.
1621 END
1622 ELSE
1623 change := false;
1624 UNTIL NOT change;
1625 timeelapsed := clock - starttime;
1626 finaltime[starting, optimising] :* contimefstarting
1627] + timeelapsed;
1628 END
1629 ELSE
1630 BEGIN
1631 iteration := 0;
1632 change := false;
1633 garbagecollection(firsthead);
1634 firsthead := sparehead;
1635 sparehead := NIL;
1636 tourcost(tourlength);
1637 starttime := clock;
1638 REPEAT

MANAGEMENT SCIENCE IMPERIAL COLLEGE

APPENDIX F 2 1 0

1639 threeopta(atownl, atown2, atown3, areduction);
1640 fouroptb(btownl, btown2, btown3, btown4,
1641 breduction);
1642 IF (areduction > 0) OR (breduction > 0)
1643 THEN
1644 BEGIN
1645 IF areduction > breduction
1646 THEN
1647 BEGIN
1648 change3opt(atownl, atown2, atown3);
1649 tour length := tourlength -
1650 areduction;
1651 END
1652 ELSE
1653 BEGIN
1654 change4a(btownl, btown2, btown3,
1655 btown4);
1656 tourlength := tourlength -
1657 breduction;
1658 END;
1659 iteration := iteration + 1;
1660 change := true;
1661 END
1662 ELSE
1663 change := false;
1664 UNTIL NOT change;
1665 timeelapsed : = clock - starttime;
1666 finaltime[starting, optimising] := finaltime[
1667 starting, threearc] + timeelapsed;
1668 END;
1669 f inalcost[starting, optimising] :== tourlength;
1670 writeln(' PROBLEM NUMBER problemno: 4, ' ', starting:
1671 2 oct, ' optimising: 2 oct, ' NO OF ITERATION(S) '
1672 , iteration: 3, ' FINAL TOURLENGTH ', tourlength: 7,
1673 ' FINAL TIME finaltime[starting, optimising]: 7);
1674 tour1ists(inful1);
1675 writeln;
1676 END;
1677 garbagecollection(firsthead);
1678 writeln;
1679 writeln;
1680 END;
1681 writetofiles;
1682 END £salesv02J .

MANAGEMENT SCIENCE IMPERIAL COLLEGE

