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Abstract 

Many combinatorial problems encountered in industry are NP-complete, and it is 

generally accepted that most of these problems cannot be solved optimally for any 

practical size. The aims of this thesis are two-fold; firstly to investigate various 

heuristic techniques that may be applied to certain of these problems; and secondly 

to investigate the possibility of combining human judgement with the heuristics in 

order to take into account unquantifiable factors or to overcome certain practical 

difficulties. 

Three classes of problems are selected for the study: plant layout, scheduling and 

group technology. Two sub-problems of the plant layout problem, namely the 

quadratic assignment problem (QAP) and the maximal planar graph problem (MPG), 

are studied. For the QAP, the main emphasis is on an interactive partitioning 

method. As no computer implementation of a heuristic for the MPG has previously 

been published, the main effort is concentrated on the development of algorithms 

and data structures which would lead to efficient implementation of the heuristics. 

Various construction and improvement heuristics are implemented obviating the need 

for a planarity testing procedure. The sub-class of the scheduling problem selected 

for study is the one which can be formulated as an asymmetric travelling salesman 

problem (ATSP). Such a problem arises whenever the setting up time is sequence 

dependent. Various tour construction and improvement procedures are considered. In 

the case of group technology, a comprehensive survey of the literature on group 

formation is given as no such survey has previously been published. A new 

improved version of the ROC algorithm is devised. The new algorithm (ROC2) has a 

linear order of complexity and hence can be used to solve very large practical 

problems. A new relaxation procedure for bottleneck machines, together with the 

interactions allowed by the program, are used in conjunction with the ROC2 

algorithm to provide solutions of published problems comparable to or better than 

those produced by existing algorithms, and with less effort. 
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1 Introduction 

1.1 THE AIM OF THE THESIS 

The works on computational complexity by Cook (1971) and Karp (1972) and subsequent authors 

have given us some understanding and insight into the difficulties encountered in attempts to find 

solutions to certain problems. There is also a growing acceptance that one class of problems, the 

NP-complete problem, may never be solved efficiently. Many real-life industrial problems belong to 

this class. Common problems such as scheduling and plant layout, even in their simpler forms, are 

very likely to be NP-complete and hence cannot be solved within an acceptable time scale. This 

applies even to moderately sized problems. 

The primary purpose of this thesis is to investigate methods of achieving approximate solutions to 

some of these problems. The secondary objective is to investigate the possibility of combining 

human judgement with heuristics to take into account some of the factors that might have been left 

out during the formulation stage, or in order to take into account certain difficulties that may arise 

in practice. 

1.2 COMPUTATIONAL COMPLEXITIES OF ALGORITHMS 

According to computational complexity theory, there are at least two major classes of problems, P 

and NP. A problem in the P (polynomial) class is defined as a problem that can be solved in 

polynomially bounded time by a deterministic Turing machine. A deterministic Turing machine is a 

conceptual model which provides lower bounds on space and time required to solve a problem with 

a von Neumann computer; most of the computers in use today are of this type. A von Neumann 

computer, as far as the complexity issue is concerned, is one which executes the instructions 

sequentially. Hence, a P problem is in essence a problem which has a known polynomial algorithm 

for the present type of computer. An NP (nondeterministic polynomial) problem is one which can be 

solved on a nondeterministic Turing machine in polynomially bounded time. A nondeterministic Turing 

machine is in essence a machine which can carry out unlimited parallel computation. Therefore an 

NP problem, in practical terms, is a problem that can only be solved by an exponentially bounded 

algorithm on today's computers. 

Another important concept in the complexity theory is the concept of reducibility. Two problems are 

said to be reducible to each other if there exists a polynomial algorithm to transform one problem 
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-CHAPTER 3 2 

to the other. Using this idea, a problem can be shown to be an NP problem if it can be shown to 

be reducible to another NP problem. Within the NP class, there is a large group of problems which 

are reducible to each other; the problems are called NP-complete problems. Some of these are the 

satisfiability, travelling salesman, set covering and language recognition problems. The implication of 

the existence of such a group is that if there is an efficient algorithm for any NP-complete problem, 

then there is an efficient algorithm for all the NP-complete problems. 

1.3 AN OUTLINE OF THE THESIS 

Three sets of problems in the NP-complete class are selected for study in this thesis; plant layout, 

scheduling and group technology. In chapter 2, a review of the two main analytical models, the 

quadratic assignment problem (QAP) and the maximal planar graph (MPG) which are normally used 

to solve the plant layout problem. In chapter 3, an interactive decomposition method is used in 

conjunction with a heuristic procedure to solve the QAP. Chapter 4 provides the detailed description 

of a set of heuristics for the MPG, implemented on a computer. Data structures for efficient 

implementations of these heuristics are also given. The heuristics, construction and improvement, are 

carried out in such a way that the need for a planarity testing procedure is avoided. It is believed 

that this is the first report of computer-implemented heuristics for the MPG. For group technology, it 

was felt that there was a need for a critical and comprehensive survey of the various methods that 

have been suggested during the last decade. Chapter 5 is the result of an attempt to fill this gap. 

In chapter 6, the main effort is concerned with an extension of a previously published algorithm, the 

Rank Order Clustering (ROC) algorithm. The new algorithm (ROC2) has a linear order of complexity 

and hence can be used to solve very large and realistic problems. A new relaxation procedure for 

bottleneck machines is also proposed. The new algorithm was implemented interactively and the 

tests that were carried out have shown that such an approach provides comparable or better 

solutions to published problems, with less effort, than those provided by existing methods. The 

sequence-dependent setup time scheduling problem (SDSTSP) is the subject of chapter 7. The 

SDSTSP is a problem which can be transformed into the well known travelling salesman problem 

(TSP). Various construction and improvement heuristics are discussed. 

1.4 A NOTE TO THE READER 

A brief explanation of the style of the presentation in this thesis is needed. The reader will find that 

formalized definitions, theorems and proofs are generally avoided, except where essential to 

subsequent discussions. The underlying concepts and ideas are explained in full, replacing the more 

familiar style of presentation. It is the author's belief that formalization, though necessary in many 

situations, is not always the best approach. The hope is that this method will provide a satisfactory 

explanation of the work carried out in this thesis in a more agreeable manner. 
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2 Plant Layout: Literature Survey 

2.1 INTRODUCTION 

Plant layout covers a wider range of activities than the simple process of laying out machinery. It 

involves many interrelated activities and items such as the products, operating equipment, storage 

space, material handling equipment, safety, personnel and all other supporting services. As Apple 

(1977, p7) suggests, the major objectives of plant layout are to 

1 Facilitate the manufacturing process 

2 Minimize material handling 

3 Maintain flexibility of arrangement and operations 

4 Maintain high turnover of work-in-progress 

5 Hold down investment in equiptment 

6 Make economical use of building cube 

7 Promote effective utilization of manpower 

8 Provide for employees' convenience, safety and comfort in doing the work. 

Francis & White (1974, p34) suggest that "facilitate the organizational structure" should be included 

to the above list. 

It is obvious from the list of objectives that plant layout is a highly complex problem. Many of the 

factors would be very difficult to measure in quantitative terms. It is unlikely that the plant layout 

problem can be described adequately by a mathematical model. This is one of the main reasons 

why, in spite of the efforts in the last few decades to develop mathematical models for the plant 

layout problem, practical approaches to tackling the problem are still largely qualitative in nature. 

For the purpose of this survey, the approaches to the plant layout problem are divided into two 

categories: qualitative and quantitative. However, there is a considerable degree of overlap between 

the two. The qualitative approach is used in a method which relies primarily on visualising 

techniques to arrive at a solution, and only a limited number of solutions will be considered, due to 

the difficulties in arriving at a solution. The quantitative approach usually implies that explicit 

mathematical relationships between limited numbers of variables are formulated. Large numbers of 

alternative solutions are generated and evaluated to find the best layout, acccording to one or more 

objective functions. In most cases, the objective is usually a single materials handling cost function. 

MANAGEMENT SCIENCE IMPERIAL COLLEGE 



-CHAPTER 3 4 

2.2 QUALITATIVE APPROACHES 

Moore (1962, p 114) suggests that the first major improvement in plant layout technique is to adopt 

the Time and Motion Study approach. The content of Hiscox's (1948) book tends to support this 

idea. El-Rayah & Hollier (1970) characterize the techniques of the earlier period as "one of 

developing flow diagrams and process charts for the orders judged to be dominant, and, with the 

aid of two dimensional templates and three dimensional scale models, alternative layout proposals 

were developed. It should be noted that the development and evaluation of these alternative layouts 

depended primarily on the judgement, intuition and experience of the layout analyst". 

Cameron (1952) and Smith (1955) introduced the use of the Travel Chart in plant layout. The first 

step in this method is to make simplifying assumptions regarding the nature of the distance-volume 

matrix. By reallocation of machines, a new distance-volume matrix can be constructed and compared 

to the previous one. Reallocation is carried out until there is no obvious improvement. This approach 

can be seen as a simplified version of the quadratic assignment problem (QAP), with the distance 

as the number of rows (or columns) away from the main diagonal of the distance-volume matrix. It 

was the first attempt to use the large quantity of the material handling data in a concise way. As 

the number of calculations is large, a very limited number of alternatives can be considered in this 

way. 

Sequence analysis (Buffa, 1955), as the name implies, is based on the analysis of the sequence of 

operations to be carried out on components. From this analysis, a "sequence summary" of how 

material flows between various work centres is developed. Other data, such as area requirements, 

are also collected. From inspection of these data an improved layout may be derived. The main 

advantage of this technique is that the data are handled subjectively, and hence alternative solutions 

can be proposed and evaluated quickly. The main drawback is that there is no obvious way that 

the data collected can be transformed into solutions; they depend entirely upon individual insights 

and manipulations. 

There are other extensions to the sequencing method (Lundy (1955), Noy (1957), Llewellyn (1958) 

and Schnieder (1960)). In general, it is reckoned that they are not as useful as the Travel Chart 

method (El-Rayah & Hollier, 1970). 

Muther (1961, 1962) introduces the concept of the "closeness-desired" rating and relationship chart. 

Closeness rating is a systematic method of taking into account various factors including material 

flow considerations. The closeness rating between two machines starts at the highly desirable A, 

progressively reduces to E, /, 0 and U and ends at X which is considered totally undesirable. By 

assigning values to all the machine pairs, a relationship chart (REL chart) is constructed. A 

relationship diagram (REL diagram) is drawn by shifting around various machines until the proper 

relationships, as indicated by the REL chart, can be obtained. The REL diagram together with the 

space requirement consideration will be the basis for the new layout. 
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-CHAPTER 3 5 

The advantage of this method is that in the case where the flow of the material is not the only 

major factor, a meaningful layout could still be constructed. The two main disadvantages are the 

need to resort to subjective ratings and the lack of clear cut criteria for choosing among 

alternatives. 

The major difficulty that is found in all the methods using the qualitative approach to plant layout is 

that the objective is rarely stated explicitly. Even when it is stated, the computational effort is 

usually too large to be carried out effectively by manual methods. This state of affairs was not 

satisfactorily resolved until the computer became more accessible in the early sixties. 

2.3 QUANTITATIVE APPROACHES 

There are two major mathematical models used in the study of plant layout, namely the quadratic 

assignment problem (QAP) and the maximal planar graph (MPG). In spite of intensive research in the 

past couple of decades, there has been very little progress made in the attempt to solve the QAP 

(Lawler 1975). To a lesser extent, the same can be said about the MPG. The major difficulty with 

the models is the combinatorial nature of the feasible solutions. 

2.3.1 Quadratic Assignment Problem 

The QAP, formulated as a generalized case of the linear assignment problem (Lawler, 1962), is 

defined as follows: 

Minimize S/j>p#Qt N c ^ (2.1) 

subject to € N Xjj — 1 (2.2) 

2 , e N *u = 1 

Xjj = [0, 1] (2.4) 

For a problem of n facilities, the problem is to determine values of n2 variables x̂ , given the cost 

coefficient such that (2.1) is minimized. CjJpq is the cost of handling material to be moved 

between the machine /', located at position p, and machine j located at position q. The equation 

(2.2) ensures that a machine is located only once, and the equation (2.3) requires that only one 

machine can be assigned to a particular location. The objective of the QAP is hence minimization of 

the material handling cost function only. 

However in this form, the amount of storage for the cost matrix C alone will exceed 50/C words for 

a modest 15 machine problem. Such a prohibitive memory requirement makes the earlier formulation 

by Koopmans & Beckmann (1957) more attractive as far as the use of computers is concerned. As 

the computer is absolutely indispensible in an attempt to solve QAP problems of any meaningful 
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-CHAPTER 3 6 

size, it is proposed that the Koopmans-Beckmann formulation is the subject of the discussion rather 

than Lawler's alternative. The Koopmans-Beckmann formulation is: 

Wjj is the material handling cost between machines i and j per unit distance, and is referred to 

below as the weight, following Francis & White (1974). d^^ is the distance between machine / 

and machine j. a(/), the assignment function, gives the present location of machine /'. It can be seen 

from (2.5) that the evaluation of the objective function is more involved than that of the earlier 

formulation. The memory requirement of the coefficients is reduced from n4 + I n 1 locations to 

only lii2 + 2n locations. It can also be deduced that 

It should be noted that the original Koopmans-Beckmann formulation also includes a setup cost. This 

is to take into account the initial cost of having a facility at a particular location. This setup cost is 

usually ignored because, even in the simpler form, the QAP is intractably difficult. 

The intractability of the QAP is well known. Tests on optimal procedures show that the QAP can 

be solved in "reasonable time" up to a 15 facility problem (Burkard & Shalman, 1978). In fact, 

there is no report of optimal solutions for a problem of over 15 facilities. The degree of 

intractability of the QAP is summarized in Figure 2.1 (after Christofides, 1977). 

Minimize S w ^ d ^ 

subject to (2.2) — (2.4) 

(2.5) 

cijpq ~ WfdMM 

where a(/) = p 

and a(/) = q 

(2.6) 
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Land (1963) shows that the n facility QAP can be transformed into a TSP for a complete graph of 

n(n-1)/2 cities, subject to extra constraints. Hence, a 15 facility problem is equivalent to a 105 city 

TSP. Another major difficulty of this type of transformation is that the distance matrix generated is 

likely to be non-Euclidean. 

Approaches to solving the QAP can be divided into two major groups: optimal procedures and 

heuristic procedures. Most of the optimal procedures use the branch and bound method. Gilmore 

(1962) and Lawler (1963) use linear assignment approximation in the bound calculations. Edwards 

(1977, 1980) extends the procedure further, but no computational results are reported. Christofides 

et al (1980), also using a linear assignment approximation, suggest a two stage lower bound 

calculation. Land (1963) and Gavett & Plyter (1966) suggest a TSP-like transformation in the bound 

calculation. Kaufman & Broeckx (1978) suggest the use of Bender's decomposition, however, 

apparently without a great deal of success. Christofides & Gerrard (1976) suggest a dynamic 

programming formulation for a specially structured graph. 

It is generally recognized that the calculations of the lower bounds as suggested above have not 

proved successful (Christofides et al, 1980). These bounds are on average about 5 % from the 

optimal solution, a gap far greater than for other combinatorial problems. 

2.3.2 Improvement techniques 

Heuristic procedures have been developed in response to the recognition of the difficulty in 

obtaining an optimal solution to the QAP. Most of them are based on a pairwise exchange 

algorithm of some kind, or alternatively use a method which is now called the construction 

technique. 

The first hill climbing improvement heuristic for the QAP, named CRAFT, was suggested by 

Armour & Buffa (1963) and was subsequently expanded by Buffa et al (1964). In essence, CRAFT 

is a steepest pairwise interchange algorithm. Starting from a given layout it will consider the cost 

or benefit of switching locations of a pair of machines, which is given by the equation: 

DTCJa) = 2, ( N (wiu — wiv)(ddi)a{u) ~ d*^) 

— 2 w u v d M t A a { ^ (2.8) 

w and d are the weight and distance matrices respectively. 

CRAFT will consider all the possible n{n-1)/2 pairs of interchanges and then select the pair of 

highest benefit. Once the interchange is carried out, the whole process is then repeated until no 

further improvement is possible. The updating part of the algorithm has an CH/73) complexity. A 

three way interchange was also proposed by Buffa et al (1964). The number of possible three way 

interchanges is n(n-1)(n-2)/6, and the complexity of the updating part of the algorithm is C^n4). 
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Even though three way interchange has resulted in a better final solution, the computing time could 

become a serious problem. For a twenty facility problem, the two way interchange algorithm will 

require about 5 % of the time needed by the three way one. Los (1978), using fast updating of the 

three way interchange, concludes that because of the time and storage requirements, the method is 

not applicable to problems of size n greater than twenty-four. The quality of the solution using the 

three way interchange is usually only marginally better than those using the pairwise interchange. 

However, the combination of the two, using them in tandem, produces even better results. 

The main difficulty with CRAFT is that the amount of time required to find the largest possible gain 

between each iteration is quite expensive, of the order Oiri3). As the number of iterations required 

is (Xn) (Los, 1978), the original pairwise interchange algorithm of CRAFT has a time complexity of 

Otn4). For the three way interchange algorithm, the complexity becomes Ofn5). In an effort to 

overcome this difficulty, various modifications of CRAFT have been introduced. 

Vollman et al (1968) suggest a heuristic to overcome some of the difficulties in using CRAFT. 

Instead of calculating the possible benefits of all the interchanges, it concentrates during the first 

phase on the two machines which have the highest cost P,(a): 

From these two preselected facilities, two lists of the remaining machines are constructed. 

Interchanges between the preselected facilities and the ones in the lists, are carried out only if they 

lead to a cost reduction. In phase two, all possible interchanges are considered. The difference 

between this procedure and CRAFT is that the procedure will exchange two facilites and update the 

assignment vector as soon as the interchange is beneficial, whereas CRAFT will only exchange the 

pair which give the highest benefit. Only two complete cycles of phase two will be considered. 

This heuristic is undoubtedly faster than CRAFT, however there are many points which need further 

clarification. Firstly, the question of selection of the constant in the equation (2.10) is left 

unanswered. Secondly, there is no adequate explanation of why there are only two iterations during 

phase 2. The claim that the heuristic provides solutions which are comparable to those produced by 

CRAFT is largely unsubstantiated. 

FRAT (Khalil, 1973) can be seen as an attempt to systematically improve the idea suggested in the 

previous heuristic. Firstly, only movements over a limiting distance are considered. This limiting 

distance is initially set to be the difference between the maximum and the minimum distances 

travelled. The limiting value is successively decreased during the iteration process. Secondly, only 

limited combinations of all the possible n(n-1)/2 interchanges are considered. The main candidates, 

two are suggested by Khalil, are then considered for interchange with all remaining facilities in the 

same manner as that of CRAFT. The number of possible interchanges reduces to 2n-4. 

P{a) = 2j( N Wjjdtfijaij) ~ K WjjdMa(k) 

d^Mk) < a "constant (2.10) 

(2.9) 
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The Terminal Sampling Procedure (Hitchings, 1973; Hitchings & Cottam, 1976) adopts a slightly 

different strategy to that of FRAT. Two facilities are again preselected according to the criterion of 

Vollman et al (1968), and the 2n-4 interchanges between these and the remaining facilities are 

considered in the same way as those of CRAFT. Once no further improvement can be made on the 

basis of exchanging the two primary candidates alone, the full CRAFT procedure is then augmented. 

Both approaches claim to provide better final solutions that those provided by CRAFT. These claims 

are based on the solutions to the test problems first suggested by Nugent et al (1968). Leaving 

aside the issue of time complexity, it is difficult to see, at least from a theoretical point of view, 

why FRAT or the Terminal Sampling Procedure should in general provide better solutions as has 

been claimed. Both approaches search only small portions of the solution space searched by CRAFT, 

and both utilize the same maximum pairwise interchange principle as CRAFT does. 

The Terminal Sampling Procedure also backtracks to consider all the tie values. This is equivalent to 

having many more starting solutions than those indicated. 

S-ZAKY (Abdel Barr & 0 Brien, 1976; Abdel Barr, 1978) adopts a slightly different line of attack. 

Unlike CRAFT, which only considers one interchange out of all the possible pairs in every iteration, 

S-ZAKY will consider the exchange of the 3 pairs of facilities which provide the highest overall 

benefit. By carrying out a multi pairwise interchange, it is hoped that the number of iterations 

required will be reduced. However, the overall complexity is still the same order as CRAFT. 

Comparison of algorithms of similar speeds of execution made by converting run times on different 

computers via the use of constant factors is very unreliable. The speed of a code, as compared to 

the speed of an algorithm, depends on the compiler used, the operating system enviroment and 

programming style, as well as the computer in use. Only when these main factors are very similar, 

can the speeds of the codes be used for useful comparison of algorithms. 
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P r o b l e m C R A F T T S P S - Z A K Y 

( s e e s ) ( s e e s ) ( % o f ( s e e s ) (% o f 

C R A F T ) C R A F T ) 

1 
2 
3 

4 

5 

6 

7 

8 

0 . 7 0 . 7 1 0 0 0 . 6 8 6 

0 . 7 0 . 8 1 1 4 0 . 6 8 6 

1 . 0 0 . 8 8 0 0 . 9 9 0 

1 . 2 1 . 0 8 3 1 . 1 9 2 

2 . 6 2 . 2 8 5 2 . 3 8 8 

4 . 6 3 . 8 8 3 5 . 0 1 0 9 

1 1 . 3 8 . 2 7 3 9 . 8 8 8 

5 3 . 9 3 5 . 5 6 6 4 2 . 3 7 8 

Time in PRI Me 400 cpu 
T h e p r o b l e m s a r e s u g g e s t e d b y N u g e n t et al 

T S P - T e r m i n a l S a m p l i n g P r o c e d u r e . 

A d o p t e d f r o m A b d e l B a r r ( 1 9 7 8 ) 

T a b l e 2 . 1 

R u n t i m e c o m p a r i s o n o f t h r e e a l g o r i t h m s 

Table 2.1 shows a comparison under which these conditions are fulfilled (Abdel Barr, 1978). It compares 

the run times used by CRAFT, the Terminal Sampling Procedure and S-ZAKY to solve the eight 

problems suggested by Nugent et al (1968). The table tends to confirm the idea that all three are 

of the same order of complexity. It also confirms that 'the Terminal Sampling Procedure is the 

fastest of the three. 

There are many other variations to the same basic idea of pairwise interchanges (Ritzman 1972; 

Parker 1976; Burkard & Shatman 1978; Lewis & Block 1980; Liggett 1981). Most of these carry 

out a limited number of searches as in the Terminal Sampling Procedure, hence they are usually 

faster than CRAFT. The qualities of the solutions, however, are very much more difficult to interpret. 

Los (1978) shows a set of recurrent relationships which exist in the updating part of the CRAFT 

algorithm. These relationships show that the updating part of the algorithm has the complexity of 

CXn2) for a pairwise interchange routine, and of Oiri3) for a three way interchange routine. The 

overall complexity of the pairwise interchange algorithm is reduced to OirP], the same as FRAT and 

the first phase of the Terminal Sampling Procedure. However Los does not compare the new codes 

with other approaches. 

Hiliier (1963) and Hillier & Connors (1966) suggest the concept of a Move Desirability Table (MDT). 

The MDT of a machine, with respect to a particular layout, is the potential saving in the material 

handling cost of making one facility occupy the same location as another. Locations under 

consideration are restricted to the ones along the same row or the same column or along the 

diagonals. This presupposes that the layout is on a rectangular grid system. In spite of this rather 

unusual concept, MDT has proved surprisingly robust in many situations (Ritzman, 1972). 
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All the pairwise interchange or improvement techniques described previously are deterministic in 

character: given an initial layout, the algorithm will always generate the same answer to a particular 

problem. Nugent et al (1968) introduced a sampling scheme which will select at random, an 

interchange from all the beneficial pairs. In spite of the increase in the complexity of the algorithm, 

the solutions to the test problems do not significantly differ from solutions obtained by deterministic 

algorithms. There is also very little theoretical justification that such a sampling scheme would 

produce better solutions than comparable deterministic algorithms. 

2.3.3 Construction Techniques 

All improvement heuristics have one feature in common, they assume the availability of an initial 

layout. If there is none, a randomly generated one is often used. Construction techniques, as the 

name implies, generate a layout in a systematic attempt to keep the objective, as specified by the 

equation (2.5), as low as possible. 

Modular Allocation Technique (MAT) (Edwards et al, 1970) is one such algorithm. The underlying 

idea of MAT is that two facilities should be placed as close together as possible, so long as there 

is no conflict with previous allocations. This is carried out with the help of two vectors generated 

by sorting the distances in an ascending order and the weights in a descending order. The 

complexity of MAT is Oih2), and hence it can be used to generate a useful starting solution for 

large problems. 

Lewis & Block (1980) extend the MAT approach further by multiplying both distance and weight 

vectors by a function which accounts for the overall movements and distances. The remainder of 

the procedure is identical to that of MAT. The complexity is still of the CXri2), though it is expected 

to be slower than MAT. Performance of both algorithms is very similar, but there are some 

indications that the new procedure has a slight edge in large problems. 

Graves & Whinston (1970) suggest a construction approach which attempts to take into account all 

the global interactions in a way similar to the branch and bound method. As exact bound 

calculations are expensive, they suggest the use of expected values. An assignment will be chosen 

in such a way that the expected value of the remaining assignment is minimised. The complexity of 

the algorithm, to be called the GW algorithm, is Oiri3). As the algorithm is a one pass heuristic, the 

procedure is adequately fast for very large problems. Liggett (1981) extends the procedure slightly 

in order to generate more than one final solution. This is usually carried out at the earlier stage of 

the heuristic when the expected value of the remaining assignment is very close to the best choice 

(0.5% is used). 

Parker (1976) suggests a Best Match heuristic which is based on the idea that the facilities which 

have higher load movement should be placed towards the centre. The method is slightly revised by 

Burkard & Stratmann (1978) who apply the idea to restricted subproblems. Starting from a seed, 

facilities are added on in such a way that the objective function is minimised, taking into account 
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interaction between assigned facilities only. 

2.3.4 Empirical Complexity and Test Problems 

One of the major problems in the use of heuristic approaches to the QAP is the complete lack of 

any worst case analysis of the published algorithms. Hence, comparison between various heuristics 

is based on their performances on artificially constructed problems. The most frequently used test 

problems are the eight problems suggested by Nugent et al (1968). The problems range from five 

to thirty facilities. The layout assumes a rectangular shape whenever possible. The material 

movements or flows between the facilities range from 0-10. These flow patterns are kept roughly 

to the same flow dominance (/) figure: 

f = 100/72 y/(SUtN w,j - ( ( 2 y e W e)*/rfi)nrfi - 1))/ (2UtMw) (2.11) 

Block (1979) derived the theoretical lower and upper limits of the flow dominance. A lower bound 

is reached when the flow pattern is of the flowshop type. 

flb = 100/7 yj (/T2 - n) (2.12) 

The maximum limit is reached when all the flows are in the same direction. 

fub = 100/7(/t2 - n + ])/ ((n - 1H/72 - 1)) (2.13) 

Vollmann & Buffa (1966) suggest that layout problems with flow dominance over 2 0 0 % can 

probably be solved by inspection, with results comparable to those achieved by CRAFT. This 

guideline is an oversimplification. The effect of the size of the problem on the complexity of the 

problem is not of a quadratic order, as indicated by the equation (2.11). Block (1979), in an effort 

to overcome some of the shortcomings, defines the Complexity Rating Cf as: 

Cf = 100(fub - f)/(fub - f,b) (2.14) 

This definition of complexity rating is unsatisfactory and misleading, as it suggests the complexity of 

the problem to be of an order less than 0(ri). Results from computational complexity theory and the 

failure to achieve optimal solutions for problems with more than fifteen facilities, in spite of the 

vastly improved computer speeds of the last decade, firmly indicate that the complexity of the QAP 

is far more than that suggested by Block. 

In spite of this weakness, flow dominance is still a useful measure, provided that it is used to 

compare problems which have the same number of facilities. Attempts to infer that Nugent's 

problems have roughly the same degree of difficulty, as they have roughly the same flow 
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dominances, are inaccurate. 

2.3.5 Comparative Results 

Claims that various heuristics provide better solutions than CRAFT must be treated with caution. The 

implementational aspects can be very important as was indicated earlier. This is compounded by the 

characteristics of the test problems used. Most of the claims are based on the results of Nugent's 

test problems which are too small and have fairly uniform flow patterns, as measured by the low 

flow dominances. Liggett (1981) points out that for the Nugent's as well as Steinburg's problems, it 

does not matter very much what kind of strategy is used in the pairwise exchange procedure, the 

final results are of similar quality. 

More extensive tests were carried out by Ritzman (1972) and Parker (1976). Ritzman uses a total 

of 26 problems, whereas Parker employs 75 problems. Parker varies the flow dominances 

considerably. Both conclude that on average, using random starting layouts, CRAFT produces better 

solutions than other improvement methods they have tested. 

For construction techniques, it is generally agreed that the GW heuristic is better than all the others 

tested (Parker, 1976; Liggett, 1981). The GW heuristic also saves considerable computing time 

when it is used in tandem with an improvement heuristic as compared with the use of random 

starting layouts. Liggett (1981) reports savings ranging from 4 0 % to 1 0 0 % for larger problems. 

More substantial savings are reported by Parker (1976). 

2.3.6 Human Interactions 

Vollmann & Buffa (1966) suggest that problems with flow dominance of over 2 0 0 % can be solved 

by inspection, and results comparable to those achieved by CRAFT can be obtained. Scriabin & 

Vergin (1975) suggest that the traditional qualitative aids used by industrial engineers would enable 

the planner to produce better layouts than computer generated solutions such as those produced by 

CRAFT. However, their experiment has been subject to many criticisms (Buffa, 1976; Block, 1977; 

Trybus & Hopkins, 1980). One of these is that the flow dominances, around 250%, are high and 

hence would favour manual techniques. A more serious charge is that the subjects were given the 

results generated by the computer in advance, and hence targets to beat. As there are no records 

of the number of attempts each subject made, a fair comparison is difficult. Ironically, the numerical 

evaluations were carried out by a computer. 

Block (1977) shows that in solving Nugent's problems, the average flow dominance of which is 

around 115%, the subjects perform as well as CRAFT up to the 8 department problem. When the 

size becomes larger, CRAFT's performances are far superior to those of the subjects. Trybus & 

Hopkins (1980) produce similar results when the flow dominance is around 150%. The differences 

become smaller as the flow dominance increases to 2 5 0 % or reduces to around 4 0 % . 
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From these results, there is little doubt that man alone, without the aid of a computer, would be 

unlikely to outperform heuristics, like CRAFT, for large problems, due to the sheer number of 

possible solutions as reported by Scriabin & Vergin (1975). However, if we reinterpret the results as 

the combined effort of man and machine, there are indications that this might produce a more 

useful result than the one generated by the heuristic alone. 

2.4 MAXIMAL PLANAR GRAPH 

The maximal planar graph (MPG) problem is formulated as an extension of the use of the REL chart 

(Muther, 1961, 1962). The MPG is defined as: Given a complete graph G(V, A) with no negative 

arc weight c,y, find a planar partial graph with maximum total arc weight (Christofides et al, 1980). 

A graph GP(V, Ap) is a partial graph of the graph G(V, A) if Ap is a subset of A. A graph is said 

to be planar if it can be drawn in a plane so that its edges intersect only at their ends. A maximal 

planar graph is a graph to which an arc cannot be added to without it losing planarity. The MPG 

can be formalized as: 

Maximize 2 CjjXy (2.15) 

subject to Xy = 1 if a,y e Ap 

= 0 otherwise (2.16) 

GP(V, Ap) is planar. (2.17) 

In the use of the REL chart, the relationships are considered to be ordinal. An ordinal scale of 

measurement is a ranking scale and hence further manipulations, such as addition, on these 

relationships are not appropriate. In order that the MPG could be used in this context, the 

relationships must be at least of the interval type. Non-negativity of the arcs is necessary in the 

case where the optimal solution is required. 

The underlying idea of the MPG can be traced back to the development of the REL chart. However, 

the explicit recognition and the use of the MPG model is due to Krejcirik(1968, 1969). Seppanen & 

Moore (1970) investigated the underlying structure in some detail. A heuristic was proposed based 

on the use of a maximal spanning tree as a starting point (Seppanen & Moore, 1975; Moore, 

1976). Arcs are then systematically added until the graph becomes maximal planar. Foulds & 

Robinson (1976) suggest a branch and bound scheme to solve the MPG optimally. The major 

drawback is that the only bounding procedure enforced is the planarity condition. It is unlikely that 

the bounding scheme is effective enough for large problems. Recognizing the computational difficulty 

in checking the planarity of a graph, Foulds & Robinson (1978) suggest two construction heuristics 

which avoid the planarity testing altogether, based on the idea first suggested by Hopcroft & Tarjan 

(1974). By utilizing the property of a maximal planar graph that every face of the graph is 

triangular, the graph is built up by constructing only triangular faces. Both heuristics use a 

tetrahedron as a starting point. Geometrically, a tetrahedron is made up with three triangles. In the 
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S construct, vertices are inserted in the descending order of the sums of weights of the arcs 

incidence to the vertices, so that the increase in the total weight is maximized. In the R construct, 

a vertex is added to a triangular face if the difference between the highest and second highest 

benefits is maximum. Both heuristics have the computational complexity of the same order, CXn2). 

Improvement techniques were also suggested by Foulds & Robinsons (1976). They are essentially a 

greedy algorithm. The procedures were implemented manually, and depended heavily on the ability 

to visualise the intermediate results. There are no suggestions as to the coding aspect of the 

algorithms to overcome the topological problem, which must be solved if the techniques are to be 

implemented via a computer. 

Baybars (1979) formulated the MPG as an integer programming problem. The formulation is, 

however, so complex that it is unlikely to lead to a reasonable computational scheme (Christofides 

et al, 1980). A branch and bound procedure is suggested by Christofides et al (1980). The bound 

is calculated by a Lagrangean relaxation procedure. The average computing time to achieve an 

optimal solution for a randomly generated problem of fifteen vertices is about thirty five CDC 7600 

seconds. 

In addition to the attempt to solve the MPG as formulated by equations (2.15-2.17), there are other 

published heuristics for solving the MPG with additional constraints. These usually include the space 

and shape requirements. The heuristics are primarily construction procedures, with additional ad hoc 

rules for handling the extra constraints. They are aimed primarily at achieving sensible solutions 

quickly rather than attempting to optimise the results as such (Muther & McPhearson, 1970; Moore, 

1973). A survey (Moore, 1977) of the usage of these heuristics suggests that they are primarily 

used for scoring and providing alternative layouts. Even then, there were criticisms expressing 

dissatisfaction with the quality of the generated solutions. 
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3 Ari Interactive Approach to the QAP 

3.1 INTRODUCTION 

There are two major features of the QAP which are not treated explicitly by the approaches 

reviewed in the previous chapter: namely, the sparsity of problems, and the duplication of machines. 

These features are common in most real life problems: the material flow to and from a particular 

machine is restricted to a small subset of the other machines. It is also common to find several 

centre lathes or vertical milling machines in the same shop. These practical aspects indicate that a 

partitioning approach to the QAP may be beneficial. This chapter provides an account of how an 

initial layout of the QAP may be generated effectively by the use of a partitioning algorithm. 

The improvement algorithm used in this chapter is CRAFT, which is the most general pairwise 

exchange algorithm, with the updating procedure suggested by Los (1978). This combination has 

proved to be sufficiently fast for experimental purposes: the 20 vertex problem suggested by Nugent 

et a/ (1968) was solved, on average, in less than one second on a CDC Cyber 174. 

3.2 SOME THEORETICAL CONSIDERATIONS 

Pairwise exchange heuristics have empirical complexities of CXn3) or more. Hence, a partition into 

smaller subproblems might be anticipated to lead to a substantial saving in the computing time 

required to solve a problem. It should be noted that such a saving could only be achieved without 

sacrificing the quality of the final solution if the problem could be partitioned into groups with few 

material movements between them. An algorithm that may be used for partitioning the problem is 

the R0C2 algorithm, which is discussed in detail in chapter 6. The R0C2 algorithm is an interactive 

clustering method for grouping machines and associated components, which can be extended to 

solve similar problems where group membership is required. It also contains features for dealing 

with the duplication of machines, and for exploiting the sparsity of a problem. Consequently, it can 

be used to investigate the partitioning of the QAP. 

3.3 AN EXPERIMENT IN INTERACTIVE LAYOUT USING THE R0C2 ALGORITHM 

The objective of the experiment is to determine whether a sparse QAP that has underlying group 

structure can be solved more efficiently with the use of partitioning or without. To construct a test 
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problem, a weight matrix is generated from the machine-component matrix first used by Burbidge 

(1973). This is illustrated in Figure 6.3.1 (page 72): the numbers between brackets represent the 

row numbers; the numbers next to the row numbers are the machine numbers. The weight (as 

defined on page 6) between any two machines is represented by the number of components which 

visit both of them; for instance, the weight between machines 1 and 2 is two, comprising the 

components in locations 37 and 42. A partitioning solution to the problem of Figure 6.3.1 using the 

ROC2 algorithm is represented in Figure 6.3.4 (page 75). The solution is achieved interactively and 

is based on the assumption that duplication of some machines is possible. In this chapter, the 

emphasis is on the grouping of machines and hence adjacency of rows is of primary interest. 

It can be seen that machines in rows 1 to 4 of Figure 6.3.4 form a distinct group and are 

independent of the rest, since all the machines required for the making of the components in 

locations 1 to 7 can be found within this group. In fact only component 9 (location 29) requires 

machining in two groups (as represented by an asterisk). A weight value of 10 units was arbitrarily 

assigned to the inter-group movement between machine 5 in row 13 and machine 11 in row 18, 

which is considerably higher than the weight value for an intra-group movement. A higher value is 

chosen for two reasons: firstly to reflect an additional cost associated with inter-group movement, 

as is likely in practice; and secondly to provide an additional incentive for the two machines, and 

their associated groups, to be located near each other. 

For identification purposes in this chapter, some of the duplicated machines in Figure 6.3.4 were 

renumbered, since each machine has a different pattern of material movements. Machines 6 in rows 

8 and 17 were renumbered as machines 17 and 18 respectively. Similarly, machines 8 in rows 9, 

16 and 19 were called 19, 20 and 21 respectively. The four machine groups in Figure 6.3.4 can 

now be identified as follows: machines 10, 7, 6 and 8; machines 9, 2, 16, 17, 19, 14, 1, and 3; 

machines 5, 4, 15, 20 and 18; machines 11, 21, 13 and 12. 

Three alternative configurations for the layouts are used, and are illustrated in Figures 3.1-3.3. (The 

number at the top right hand corner of each square is the location number. The number in the 

centre of the square is the machine that has been assigned to that location. The dotted lines 

indicate group boundaries). The first configuration, shown in Figure 3.1.1, consists of 24 locations 

arranged in 4 rows-. Three dummy machines are required, machines 22, 23 and 24; there is no 

flow to or from these machines. This configuration allows all machine groups to be situated in a 

blocklike fashion. It can be seen as an extension of the second configuration, the 16 location layout, 

shown in Figure 3.2, which represents the original problem in which no duplication of machines is 

allowed. The third configuration, a 21 location layout shown in Figure 3.3, is used to investigate 

the potential benefit of partitioning when a blocklike layout cannot be readily achieved. A distance 

matrix for each of the three configurations was generated by calculating the rectilinear distance 

between any pair of locations, as suggested by Nugent et al (1968). For example, in Figure 3.1.1, 

the distance between locations 1 and 4 is three, and the distance between locations 1 and 10 is 

four. Similarly, the distance between locations 1 and 16 is five. The distance and weight matrices 

of the 24 location problem are shown in Appendix A (page 119). 
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To construct the initial layout, the partitions generated by the ROC2 algorithm (Figure 6.3.4) are 

used. There are four groups, two of which are independent. The initial layout is then constructed 

manually. The first stage of the construction is to consider the relative spatial arrangement of the 

groups. It is preferable to assign larger groups early on, as it becomes progressively more difficult 

to assign them later. For example, the two larger groups in the lower half of Figure 3.1.1 were 

assigned first. The second stage is to decide on the layout of machines within each group, taking 

into account any external flow required. The initial layouts of the 24 and 21 location problems 

constructed manually in this way are shown in Figures 3.1.1 and 3.3.1 respectively. These initial 

layouts are then solved in two steps. Firstly, each group of machines within the same boundary 

(shown as a dotted line) is solved as a separate sub-problem using CRAFT. In the second step, the 

solutions to the sub-problems are combined to provide a new starting layout for the whole problem 

and this is then solved, again using CRAFT, as a single problem. 

Ten random layouts are also generated for each configuration for comparison. These are used as 

starting layouts and are solved using CRAFT without any reference to any group membership. 

The result of using the manual layout of Figure 3.1.1 as the starting condition for the 24 location 

configuration is shown in Figure 3.1.2 with a total material handling cost (as defined by equation 

2.5) of 238. The execution time was 0.41 seconds. (The same solution is achieved if the first step 

in the solution method described previously is ignored, at the expense of a 2 0 % increase in the 

computational time.) This result compares favourably with the results obtained using random starting 

layouts; the best of these has a total material handling cost of 240, and the average cost is 

248.5. The average execution time in the random layout cases is 1.46 seconds, the minimum value 

being 1.1 seconds. The difference between these results indicates that CRAFT cannot be relied on 

to detect the underlying structure of the problem. The results for the 21 location configurations are 

slightly more encouraging as far as the pairwise exchange procedure is concerned: out of the ten 

random starting conditions CRAFT produces two solutions equal to the ones achieved by the use of 

the manual layout starting plan, with a cost of 244. However, the execution times required using 

the random starting layouts are about three to four times that required using the manual solution. 

The solutions and execution times of the 21 and 24 location configurations are shown in Tables 3.1 

and 3.2. The cost of the best solution for the 16 location configuration using random starting 

layouts is 266, which is more than 12% higher than the cost of the best solution obtained in the 

24 location configuration, demonstrating the potential savings to be made in material handling costs 

if duplication of machines is allowed. 

3.4 CONCLUSIONS 

The results from this short experiment seem to indicate that in the case where an underlying group 

pattern exists, pairwise exchange routines such as CRAFT very often fail to detect the underlying 

relationships, and human interactions are useful in such cases. The benefits of human interaction are 
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twofold; firstly, superior final layouts are usually obtained, and aecondty, the computing time required 

is considerably reduced. This is not to say that human performance is generally better than that of 

heuristics as claimed by some authors. Both man and heuristics perform different but complementary 

roles, and the resutts obtained using both should be superior to those achieved by one or the other 

alone. It is also notable that the benefit of obtaining prior solutions to sub-problems is not as great 

in this example as was anticipated. This is probably due in part to the fact that in the problem 

considered here the manual solutions sre dose to the local optima, and hence the iteration times 

are artificially lower than in a general case. The effect of this would be accentuated by the fact 

that CRAFT is relatively more expensive in the setting up stage than in the iteration stage. 
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P R O B L E M F I N A L N O . O F E X E C T I M E 

I D E N . C O S T I T E R A T I O N ( S ) ( C Y B E R 1 7 4 S E C ) 

m a n u a l 2 3 8 0 0 4 1 2 ( w i t h s u b p r o b l e m s ) 

m a n u a l 2 3 8 3 0 5 2 1 ( w i t h o u t s u b p r o b l e m s ) 

1 2 6 2 1 5 1 4 5 0 

2 2 4 0 1 7 1 5 9 5 

3 2 4 9 1 5 1 4 8 0 

4 2 4 3 1 7 1 6 5 4 

5 2 5 3 1 1 1 1 3 7 

6 2 4 3 1 7 1 6 0 3 

7 2 4 4 1 5 1 4 4 3 

8 2 4 9 1 6 1 5 2 3 

9 2 5 9 1 2 1 2 2 8 

1 0 2 4 3 1 6 1 5 0 9 

T a b l e 3 . 1 

T h e s o l u t i o n s t o t h e 2 4 l o c a t i o n c o n f i g u r a t i o n 

P R O B L E M I N I T I A L L A Y O U T S 

I D E N T . 

1 2 1 4 1 3 3 .9 4 1 8 2 0 1 5 1 6 7 5 

1 0 8 6 1 2 2 2 1 1 2 1 7 2 3 2 4 1 1 1 9 

2 1 8 3 7 1 2 2 2 8 1 3 2 0 9 2 3 1 1 2 4 

2 1 1 6 6 4 1 2 1 4 1 9 1 0 1 7 5 1 5 

3 2 3 8 2 1 1 0 1 8 2 4 9 1 5 4 3 2 2 2 

6 1 6 1 3 1 2 1 7 1 4 7 5 1 9 1 1 1 2 0 

4 8 2 0 4 9 1 7 3 2 2 1 6 2 4 1 2 1 1 5 

1 0 1 8 2 3 1 1 1 9 7 1 4 1 3 2 1 2 5 6 

5 1 3 1 6 2 1 1 4 2 2 2 1 5 5 1 0 8 9 2 4 

3 1 9 1 8 7 1 1 1 2 3 1 2 4 1 7 6 2 0 

6 9 1 2 7 1 6 6 2 2 3 1 4 1 8 2 3 1 1 2 0 

1 3 8 1 5 2 1 1 2 4 1 9 1 0 4 1 7 2 5 

7 6 2 1 2 0 9 1 9 1 2 4 1 6 14 1 1 5 1 7 

2 3 1 8 2 2 2 4 1 3 8 1 5 1 3 1 0 2 7 

8 1 8 6 2 2 0 2 4 9 2 2 8 1 3 17 2 1 5 

1 9 7 1 2 2 3 1 6 1 1 5 3 4 1 0 1 4 1 1 

9 1 6 1 2 • 9 2 0 1 3 5 1 7 1 9 8 1 5 2 1 6 

1 2 2 4 2 2 7 2 3 1 8 1 4 4 1 1 3 1 0 

1 0 2 3 14- 1 5 1 8 9 1 9 2 2 1 6 6 13 7 4 

1 7 2 1 1 1 2 1 1 0 5 2 0 2 4 3 1 2 8 

T a b l e 3 . 2 

R a n d o m s t a r t i n g l a y o u t s f o r t h e 2 4 l o c a t i o n c o n f i g u r a t i o n 
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P R O B L E M F I N A L N O . O F E X E C . . T I M E 

I D E N . C O S T I T E R A T I O N ( S ) ( C Y B E R 1 7 4 S E C ) 

m a n u a l 2 4 4 2 0 . . 4 0 0 ( w i t h s u b p r o b l e m s ) 

m a n u a l 2 4 4 3 0 , . 3 7 2 ( w i t h o u t s u b p r o b l e m s ) 

1 2 5 2 1 2 0 . . 9 2 9 

2 2 5 9 1 4 1 , . 0 2 7 

3 2 5 2 1 3 0 . . 9 7 7 

4 2 4 4 1 3 0 , . 9 8 0 

5 2 4 4 1 4 1 . . 0 0 8 

6 2 4 9 1 4 1 , . 0 2 9 

7 2 6 7 1 7 1, . 2 0 2 

8 2 5 2 1 0 0 . 7 8 4 

9 2 4 8 1 3 0 . 9 7 6 

1 0 2 4 9 1 2 0 . 8 9 7 

T a b l e 3 . 3 

T h e s o l u t i o n s t o t h e 2 1 l o c a t i o n c o n f i g u r a t i o n 

P R O B L E M I N I T I A L L A Y O U T S 

I D E N T . 

1 2 1 3 1 1 3 8 4 1 6 1 8 1 2 1 7 1 4 

6 5 9 7 1 2 0 1 9 1 0 1 5 2 1 

2 7 6 1 6 2 0 1 4 1 1 1 1 8 1 3 9 5 

1 9 1 0 1 5 2 1 1 2 1 7 2 4 3 8 

3 3 7 9 4 1 5 1 2 1 3 1 4 2 1 6 1 6 

1 0 1 9 5 1 2 0 8 1 7 1 1 1 8 2 

4 1 3 8 1 4 1 8 2 1 6 1 5 1 6 1 7 1 2 1 9 

3 1 1 0 9 1 1 2 4 7 5 2 0 

5 6 8 1 3 1 1 2 0 1 6 1 1 2 1 5 1 0 3 

2 1 1 8 1 4 7 4 2 1 9 9 1 7 5 

6 1 9 1 7 3 1 2 1 8 2 1 1 0 4 6 1 5 

1 1 8 1 6 5 2 1 9 7 1 4 1 3 2 0 

7 1 9 1 1 1 5 1 2 1 8 7 1 3 1 5 6 2 1 

2 0 1 4 1 6 1 7 2 8 4 -9 1 0 3 

8 2 1 9 1 2 1 5 8 6 1 0 4 7 1 3 1 9 

2 1 8 1 6 2 0 5 3 1 1 1 1 4 1 7 

9 9 1 2 1 6 1 1 1 0 2 1 3 1 7 5 8 1 8 

1 9 2 1 7 1 1 5 3 6 2 0 1 4 4 

1 0 2 0 9 1 6 1 1 4 1 5 3 2 1 3 5 6 

1 1 2 1 0 1 7 2 1 1 4 7 1 8 1 9 8 

T a b l e 3 . 4 

R a n d o m s t a r t i n g l a y o u t s f o r t h e 2 1 l o c a t i o n c o n f i g u r a t i o n 
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4 Maximal Planar Graph Heuristics 

4.1 INTRODUCTION 

Heuristic approaches to the MPG problem, like their counterparts for the QAP, can be divided into 

two classes; namely, construction and improvement heuristics. Whereas the construction procedures 

of the QAP can often be disregarded, this is generally not an option in the case of the MPG 

problem. As the graph required has to be both planar and maximal, a certain procedure must be 

adopted to ensure that these two constraints are met. During the improvement phase, any exchange 

of the arcs or vertices must also ensure that the constraints are not violated. It is relatively simple 

to ensure that the planar and maximal conditions are maintained if the graph can be visualized on a 

sheet of paper. To implement the scheme using a computer, a way must be found to store the 

topological information of the graph. As far as can be ascertained, there is no previously published 

heuristic implementation of the MPG problem using a computer. 

4.1.1 Some Properties of a Maximal Planar Graph 

It can be shown that for all maximal planar graphs if v, a and f are the numbers of the vertices, 

arcs and faces respectively, then: 

A face is the region enclosed by arcs and there are no arcs or vertices in its interior. 

Consider the maximal planar graph in Figure 4.1. There are four vertices and hence there should be 

six arcs and four faces. The number of arcs can be easily verified. The four faces are ABD, ACD, 

BCD and ABC. ABC refers to the outer triangular face, which surrounds the tetrahedron. The 

triangularity of the faces is also confirmed. Hence, it can be concluded that the graph in Figure 4.1 

is a maximal planar graph. 

In a computer implementation, these properties, represented by equations (4.1) to (4.3), can be used 

to ensure that the graph is maximal and planar. 
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a = 3(v-2) 

f = 2(v-2) 

All faces are triangular. 

(4.1) 

(4.2) 

(4.3) 
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4.1.2 Design and implementation Considerations 

The speed and storage requirements of a computer program often require a careful trade-off. The 

approach suggested by Seppanen & Moore (1970) requires a comparatively small amount of 

topological data. The likely penalty is an excessive computational requirement. If a lot of redundant 

information is kept, it would result in unacceptable storage requirements for larger problems. 

Apart from classifying heuristics according to purpose, as described earlier, heuristics for the MPG 

problem can also be classified by strategy. The first group relies on the use of a planarity testing 

procedure and hence only adjacency of nodes is required. This is generally used by optimal 

procedures. Seppanen & Moore (1970) favour such an approach. Alternatively, by keeping extra 

information regarding the arcs and the faces, the planarity testing can be disregarded. One such 

approach was suggested by Hopcroft & Tarjan (1974), in a slightly different context, and adopted 

for the MPG problem by Foulds & Robinson (1978). However Foulds & Robinson implement the 

heuristic manually and do not attempt to work out the data required for a computer implemented 

heuristic. 

4.2 PROGRAMMING LANGUAGE SELECTION AND DATA STRUCTURES 

In order that the orientation of the graph can be easily recognised by a computer implementation, 

the following data fields are needed: 

Node information: all the adjacent nodes. 

Arc information: two end nodes, adjacent faces. 

Face information: the three vertices. 

An adjacent face of an arc is a face which has the arc as part of its boundary. There are two 

adjacent faces for every arc. 

These requirements suggest that the use of a language with data structuring facilities would be an 

advantage, for it is usually the case that most of the data fields of a particular group of information 

are accessed together. Pascal is one such language. It also has a facility to define data types, and 

as such it is ideally suited for this purpose. We can define nodes, arcs and faces in a way similar 

to their representations on a sheet of paper. These facilities allow a program to be developed that 

is analogous to the manual implementation on a sheet of paper. For reasons of computational 

efficiency, extra fields of data are added and the following data types used: 

ANodeTable = PACKED RECORD 

CASE active: BOOLEAN OF 

TRUE: (pointer to insertion information); 

FALSE: (valence; pointer to the node list); 

END; 
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A 

B C 

Figure 4.1 
A maximal pianar graph 

D 

B 

Figure 4.2 
An alternative realisation of figure 4.1 
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NodeList = PACKED RECORD 

pointer to the next node in the list; 

pointer to the arc in the arc list {ArclnUse}; 

END; 

ArclnUse = PACKED RECORD 

the two end nodes; 

pointer to the two adjacent faces; 

pointer to the next arc; 

END; 

Faces = PACKED RECORD 

the three corner nodes; 

pointer to the next faces; 

END; 

ANodeTable is used for monitoring the availability of a node for a possible assignment. If a node is 

not assigned, it is classified as active, and there is a pointer to some further information regarding 

probable assignments and associated benefits. The calculation of the probable assignments depends 

upon the construction heuristic used. When a node is assigned, it is classified as nonactive. 

Information stored in this case consists of the number of connecting nodes, or valence, the pointer 

to the next node in the list, and the pointer to the arc list. The pointer to the arc list (ArclnUse) 

provides a convenient access to the arc information, and also ensures that the arc data fields are 

stored only once. As will be seen, a major part of the proposed improvement procedure involves 

.arc-oriented operations. Data fields in the arc list (ArclnUse) are aimed at facilitating an efficient 

implementation of this procedure. The data fields consist of the two end nodes, and the pointers to 

the two adjacent faces, as well as to the next arc. Similarly, the data fields of a face are aimed at 

facilitating efficient implementations of construction heuristics. 

4.3 CONSTRUCTION HEURISTICS 

The strategy adopted here for the construction of a maximal planar graph is of the second kind, 

namely the exclusion of a planarity test. The required graph is constructed by building up from a 

smaller subgraph, ensuring that the subgraph is maximal and planar at all times. Thus the expensive 

overhead of the planarity test can be avoided. 

The first stage of the construction heuristics is to build an initial planar subgraph. As three vertices 

are needed to generate the first pair of faces, it is possible to start with a three vertex 

configuration. In fact a four vertex configuration, a tetrahedron, is used in the hope that a certain 

initial global search for these four vertices might prove profitable. There are many strategies that 

can be adopted to find the initial tetrahedron. Three have been selected; the four highest weight 

vertices (HW), the heaviest tetrahedron (HT), and randomly generated vertices (RD). The HW 
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strategy has a time complexity of 0(n), and the HT strategy has an CXn4) complexity. The 

complexity of the RD heuristic is not directly dependent on the size of the problem. 

Insertions of the remaining nodes are carried out one by one. Each time a node is inserted into a 

face, by joining that node to the three corners of the face, that face is removed from the face list 

and three new ones are generated. By this device, the subgraph always maintains its maximal and 

planar properties. 

Three strategies are adopted for the insertion procedure: the weight order (WO) strategy, the 

highest gain (HG) strategy, and the highest shadow cost (HC) strategy. For the WO strategy, all the 

nodes are sorted into the descending order of their weights (the weight of a node is defined as the 

sum of the weights of all the arcs connecting that node to the other nodes). The nodes are then 

inserted successively in that order into whichever face yields the highest benefit. In the HG strategy, 

a node is inserted into a face when its insertion maximizes the increase in the total weight of the 

subgraph. In the HC strategy, the node selected is the node with the largest difference between the 

benefits resulting from its two best insertions. The node is then inserted to the face that provides 

the most benefit. 

Six combinations of the three starting tetrahedron strategies and the last two insertion strategies are 

used. 'HTHG' is used to signify the heuristic that uses the heaviest tretrahedron (HT) as the starting 

point, and the highest gain (HG) as the insertion strategy. In section 4.6.2, it will be shown that 

the weight order (WO) insertion strategy is too restrictive and will not provide useful results. It is 

used, however, in conjunction with the highest weight (HW) strategy as an implementation of the 

'S ' heuristic, suggested by Foulds & Robinson (1978). They also suggest the 'R' heuristic which is 

not implemented here, as the starting tetrahedron used by the heuristic is selected on the basis that 

it could be implemented efficiently by hand. There seems to be no sufficient justification for the 

restriction from the computational point of view alone. 

As the insertions strategy are of Oini2) complexity, the overall complexity of the heuristics starting 

with the heaviest tetrahedron (HT) is CXrr4). The remaining heuristics are of CXn2) complexity. It 

should be noted that the 'R' heuristic is of complexity CXrfi). 

4.4 IMPROVEMENT HEURISTICS 

An improvement heuristic in the MPG problem must ensure that equations (4.1) to (4.3) are 

satisfied at all times. The problem is exacerbated by the fact that the graph can be realized in more 

than one form. Graphs in Figures 4.1 and 4.2 are identical as far as the faces, edges, nodes, and 

their adjacencies are concerned. In fact, they are two of the four identical graphs which can be 

realized from this very simple case. To imply that D is inside the triangle ABC, as seems to be the 

case in Figure 4.1, is not meaningful or obvious if Figure 4.2 is referred to. The technique to get 

around this topological uncertainty will be discussed later. 
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4.4.1 Arc Oriented Operations 

As with the construction heuristic, the improvement heuristic can only be carried out efficiently if it 

does not entail planarity testing. This requirement tends to restrict the number of arcs or nodes 

considered for interchange during each stage. If each stage consists of removing one arc and 

inserting a replacement arc, it is possible to keep track of the topology of the graph without 

requiring excessive computing time. 

An exception to the application of the pairwise exchange of arcs occurs when one or more of the 

nodes have minimum valence. The minimum valence is a direct consequence of the triangularity 

property of the face. For a graph with more than three vertices, the minimum valence is three. In 

the case of a node having minimum valence, other strategies (discussed later) must be applied. 

4.5 THE DESIGN OF THE IMPROVEMENT HEURISTICS 

In considering a pairwise arc interchange improvement procedure, the topological nature of the graph 

must be taken into account. When an arc is picked for consideration, it can be classified into three 

categories, according to the topology of the arc. Firstly A, one or both of the end nodes have the 

minimum valence. Pairwise exchange of the arcs is not applicable in such cases. Secondly B, no 

end nodes have the minimum valence and the third vertices of the adjacent faces of the arc are not 

connected. A possible exchange is between the arc selected and the arc joining the third vertex 

pair. Figure 4.3 shows a part of a maximal planar graph, from which nonessential details have been 

removed. An arc which is classified in this second category (B) is, for example, CD. The adjacent 

faces of the arc are bCD and BCD. B and b are the third vertices of the faces BCD and bCD with 

respect to the arc CD, and the vertices are not connected. If arc bB has higher weight than arc 

CD, the interchange between them would lead to a higher overall weight of the graph. The faces 

bCD and BCD would be replaced by the faces bBC and bBD. The adjacent faces of the arcs bC, 

bD, BC and BD would require updating. 

Arcs in the third category C, are the ones in which neither of the end vertices have the minimum 

valence, and the third vertices of the adjacent faces are connected. An example of such an arc is 

Aa in Figure 4.3. The adjacent faces of Aa are F1 and F2. The third vertex pair is connected. In 

such a case, there are three possible options. However, all of these options are based on the 

assumption that the third vertex pair of the original third vertex pair CD, namely Bb is not 

connected. This assumption can be proved to be justified in all cases. 

Start with the fact that the third vertex pair, namely C and D, of arc Aa are connected; so are AC 

and AD. ACD is, then, a closed circuit. One of the faces adjacent to arc CD must lie on one side 

of this circuit, and the other is on the opposite side. B and b must lie on the opposite side of the 
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A 

B 

Figure 4.3 
Part of a maximal planar graph 
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circuit ACD and hence cannot be connected, because the only way that the two can be joined 

together is to have an arc drawn across this closed circuit, thus violating the planarity constraint. 

The first possible exchange in category C of Aa is with bB. The face changes involved in this 

operation are faces bCD, BCD, aAc and aAD removed; faces bBC, bBD, aCD and ACD inserted. The 

exchange was first suggested by Foulds & Robinson (1978). The result of the exchange is illustrated 

in Figure 4.4. However, to avoid unnecessary operations, this process is implemented as two 

exchanges of arcs in category B. The first exchange involves replacing CD by bB. The second 

involves replacing Aa by CD. As these exchanges can be carried out very quickly, the two stage 

implementation provides an acceptable alternative. 

The second possible exchange of arc Aa is with bA. This can be visualized with reference to 

Figure 4.3. Firstly, Aa is removed, and then faces F4-F7 are rotated 180 degrees, about CoD. 

Insert arc Ab. The result of this exchange is shown in Figure 4.5. The third possible exchange of 

Aa, can be illustrated with the help of Figures 4.6-4.7. Notice the changes in the positions of nodes 

a, A, b and B from the previous set of figures, (the reason for which will become apparent later). 

In this case, arc Aa is to be replaced by Ab. This can be visualized as having Aa removed, then 

faces F4-F8 are rotated 180 degrees about arc CD, such that the faces F4-F8 are inside the closed 

circuit CbD. Insert arc Ab. 

In both the second and third kinds of exchange of arc Aa in category C, to be refered to as Long 

Switch, we require the topological knowledge that node b and faces F3-F7 are inside the closed 

circuits ACD and aCD, as shown in Figure 4.3; or node B and faces F4-.F8 are inside the closed 

circuits ACD and aCD, as shown in Figure 4.6. As discussed earlier, the meaning of the word inside 

is only in reference to a certain realization of the graph, and there can be many realisations. Since 

not every combination of the vertices a, A, b and B will satisfy the constraints in equations (4.1) to 

(4.3), (eg AB and ab are not acceptable), the orientation problem must be overcome or 

circumvented. 
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A 

B 

Figure 4.4 
Figure 4.3 after a C arc exchange 
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A 

Figure 4.5 
Figure 4.3 after another C arc exchange 
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a 
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Figure 4.6 
An alternative labelling scheme for figure 4.3 
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a 
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Figure 4.7 
Figure 4.6 after a C arc exchange 
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Figure 4.8 
A solution to Fould &. Robinson's 10 vertex problem 
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This orientation problem can be avoided by adopting the labeling and transformation schemes, 

suggested in the following Long Switch algorithm: 

(Given an arc which is in category C} 

(Labelling phase) 

Label the third vertex pair of the given arc as C and D; 

Pick the third node from one of the faces adjacent to CD, 

label this node b; 

Label the third node from the other adjacent face of CD as 6; 

Using C (or D) as the pivoting point and bC (or bp} as datum; 

REPEAT 

Locate the next node adjacent to C (or p) by moving in 

the opposite direction to the one towards CB (or P5J; 

UNTIL the located node is one end of the given arc; 

Label that found node a, and the other end node as A; 

Label faces aAC, aAD and bCD as F1, F2 and F3 respectively; 

(End of labelling phase) 

(Transformation Phase) 

Remove arc Aa and associated information; 

Insert arc Ab and associated information; 

Replace vertices in face F1 by A, b and C; 

Replace vertices in face F2 by A, b and P; 

Replace vertices in face F3 by a, C and P; 

Replace pointer to face F"\ of arc aC by pointer to F3; 

Replace pointer to face F2 of arc aP by pointer to F3; 

Replace pointer to face F3 of arc bC by pointer to F1; 

Replace pointer to face F3 of arc bD by pointer to F2; 

(End of the transformation phase) 

To illustrate the use of the Long Switch algorithm, consider the graph in Figure 4.3. In this case, 

the arc Aa is chosen for examination. At this stage it is neither possible nor neccesary to state 

which end of the arc is node A and which is node a. The third vertex pair of arc Aa are nodes C 

and P, which are connected. The third vertex pair of arc CP are B and b. Assume that the node 

selected is inside the circuits ACD and aCD, and hence labelled b as shown. The other vertex of 

the pair is then labelled B. Using bC as the reference line and C as the pivoting point, locate the 

next node, node o, by moving in the opposite direction to the one towards BC. Repeat the process 

again, this time the node found is one end of the given arc. The node is then labelled a. The other 

end of the arc is labelled A. The exchange is carried out, if so desired, by the transformation 

suggested in the algorithm. The result can easily be verified by inspection of the graph in 

Figure 4.5. 
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Figure 4.6 represents the case when the third node of the face adjacent to arc CD is not inside the 

faces ACD or aCD. It can be seen that by adopting the same labelling scheme, the transformation 

phase will also provide the correct outcome. Figure 4.7 can be used to verify the result. Note that 

faces F4-F8 and some of the arcs are not directly involved with the transformation process. They 

are included in order to indicate the orientations of the various components of the graph before and 

after the transformation. 

It should be emphasised that arc exchanges involving the two types of the Long Switch are not 

mutually exclusive; it is possible to consider exchange of either type. Hence, for an arc in category 

C, there are three possible candidates for exchange, and there is only one candidate for the arc in 

category B. 

The complete arc exchange procedure can be summarised as follows: 

IF the third vertex pair of the selected arc not connected 

THEN 

{category B} 

IF type B switch beneficial 

THEN exchange arcs of type B; 

{ENDIF beneficial} 

ELSE 

{category C} 

select appropriate swithcing type; 

CASE 

First type: exchange category B twice; 

Second and third types: LongSwitch algorithm; 

END CASE; 

{ENDIF not connected} 

{END of the algorithm} 

This procedure can be more efficiently implemented than the procedure suggested by Foulds & 

Robinson, as well as being more comprehensive: the Foulds & Robinson procedure does not include 

the Long Switch type of exchanges. The first type of the category C exchange is also inefficiently 

carried out, involving the search for cliques of size four. 

In the case mentioned earlier where pairwise arc exchange is not possible due to the triangularity 

constraint, the improvement procedure is a node oriented operation. This is carried out by 

considering the possible benefit of moving a node of minimum valence and its associated arcs from 

their present location to another face. This process is parallel to the one carried out during the 

construction phase. Implementation of this procedure is summarised as follows: 
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WHILE the NodeTable is not exhausted DO 

BEGIN 

IF valence of the node = 3 

THEN 

BEGIN 

find the best new location if removed; 

IF beneficial THEN switch to new location; 

ENDIF; 

move to the next node in the table; 

ENDWHILE; 

4.6 IMPLEMENTATION AND COMPARISONS OF THE HEURISTICS 

All the heuristics and supporting procedures are written in Pascal. It was decided that, in order to 

overcome the usual criticisms levelled against tests of heuristics of comparable complexity, the 

heuristics would be loaded together and executed immediately one after the other, hence reducing 

the influence of the operating conditions on the final results. The entire program consists of 

approximately 1500 lines of source code. The compiled code requires less than 8K words for 30 

vertex problems and less than 12/C words for 100 vertex problems when run on a CDC Cyber 174 

using the Pascal 6000 compiler with runtime checking suppressed. The compactness of the code 

suggests many possible elaborations. Firstly, it can be made to run faster either by having more 

data fields in the packed format, or by using the data in the normal mode, one word per field, in 

place of the packed version currently implemented, without running into storage problems for 

relatively large classes of problems. Secondly, using the present storage scheme, the program can 

handle problems with 300 or 4 0 0 vertices without any practical difficulty. It is estimated that the 

300 vertex problem executed by an Oiri1) heuristic would require approximately 200 Cyber 174 

seconds. Finally, if so desired, further data compaction would allow problems of much larger size, 

perhaps 800 vertices, to be solved at the expense of a higher runtime overhead. It is interesting to 

note that the program produces a solution to the Foulds & Robinson 10 vertex problem with a total 

weight of 1103 (Figure 4.8). This result is higher than the optimum of 1096 suggested in their 

paper. 

4.6.1 Design of the experiment 

The main aims of the experiment are to assess the relative merits, the comparative speeds of 

execution and the effects of the problem size on various strategies. To achieve these objectives, 

eight classes of problems, ranging from 10 to 100 vertices, are used. In each class, five random 

symmetrical and completed graphs are generated. The arc costs are limited to the range of one to 

one hundred. Ail the forty test problems are solved by ail the OirP) heuristics. As the expected 

runtimes of the CXn4) heuristics for the larger problems become excessive with respect to the 

resources available, it was decided that only 25 smaller problems were to be tested on this class of 
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P R O B L E M H E U R I S T I C S 

IIZE N O . H W W O H W H G HWHC R D H G RDHC HTHG HTHC MAX MIN 

1 1585 1 6 3 1 1620 1493 1 5 5 1 1617 1578 1 6 3 1 1493 

2 1647 1 6 2 1 1647 1 5 9 5 1 5 6 9 1621 1647 1647 1569 

10 3 1 5 6 6 1648 1648 1643 1 6 5 2 1694 1660 1694 1566 

4 1747 1 7 3 0 1726 1 6 9 1 1 5 7 0 1749 1677 1749 1570 

S 1 7 0 8 1 7 1 8 1685 1 5 8 8 1503 1627 1700 1718 1503 

A V E R . 1 6 5 1 1 6 7 0 1665 1 6 0 2 1 5 6 9 1662 1652 

6 2 8 9 9 2 9 2 7 2847 2 7 9 7 2 7 6 0 2927 2834 2 9 2 7 2760 

7 2 9 0 5 2 9 0 9 2924 2 7 9 2 2 8 6 8 2918 2848 2 9 2 4 2792 

15 8 2 8 5 0 2 8 6 4 2 9 0 6 2 8 3 4 2 7 8 5 2 9 1 9 2914 2 9 1 9 2785 

9 2 9 6 7 3 0 7 6 2 9 9 6 2 7 6 2 2 8 1 9 3 0 7 6 2967 3 0 7 6 2762 

10 2 7 7 8 2 7 9 2 2 8 4 6 2 7 8 8 2 6 1 4 2 8 6 7 2 8 6 1 2867 2614 

A V E R . 2 8 8 0 2 9 1 4 2904 2 7 9 5 2 7 6 9 2 9 4 1 2885 

11 3 9 2 3 3 9 9 6 3943 3 9 1 9 3 8 9 1 4 0 1 5 3 9 3 5 4 0 1 5 3 8 9 1 

12 4 0 5 3 4 0 9 7 4 0 1 8 4 1 1 3 3 8 4 3 4 1 4 3 3952 4 1 4 3 3843 

20 13 4 0 0 3 4 0 8 1 4 0 6 3 4 0 0 7 4 0 9 1 4 0 9 2 3993 4 0 9 2 3993 

14 4 0 0 4 4 0 7 5 4 1 7 6 4 0 4 3 3 8 6 0 4047 4 0 6 0 4 1 7 6 3860 

15 4 0 5 7 4 1 6 7 4 0 9 0 3 9 4 1 3 8 8 4 4 0 6 2 4 1 3 3 4 1 6 7 3884 

A V E R . 4 0 0 8 4 0 8 3 4 0 5 8 4 0 0 5 3 9 1 4 4 0 7 2 4 0 1 5 

16 5 3 0 5 5 4 0 9 5357 5 1 3 2 4 9 2 2 5 1 9 1 5362 5 4 0 9 4922 

17 5 2 0 7 5 2 7 4 5222 5 3 9 5 5 0 4 1 5447 5182 5447 5 0 4 1 

25 18 5 3 3 2 5 3 4 5 5 3 6 5 5 3 0 3 5 0 8 3 5462 5 2 7 6 5 4 6 2 5083 

19 5 4 3 4 5 4 3 6 5 5 4 9 5 3 3 2 5 4 9 5 5557 5552 5557 5332 

20 5 1 8 0 5 4 7 4 5 4 5 1 5 3 6 5 5 1 2 9 5 5 2 1 5 4 5 1 5 5 2 1 5129 

A V E R . 5 2 9 2 5 3 8 8 5 3 8 9 5 3 0 5 5 1 3 4 5 4 3 6 5365 

21 6 6 8 9 6 8 5 5 6 6 8 1 6 6 6 7 6 4 5 7 6 8 7 8 6 6 9 1 6 8 7 8 6457 

22 6 7 5 3 6 8 9 2 6 6 3 9 6 6 9 7 6 3 5 3 6 8 8 9 6 6 0 2 6 8 9 2 6353 

30 23 6 5 5 1 6 7 7 9 6634 6 7 6 0 6 4 8 4 6763 6663 6 7 7 9 6484 

24 6 5 2 3 6 8 3 3 6 5 6 1 6 5 9 0 6 6 0 1 6 8 0 2 6648 6 8 3 3 6 5 2 3 

25 6 6 6 0 6 6 9 2 6 5 8 2 6 5 2 8 6 3 7 8 6 7 5 7 6 7 3 9 6 7 5 7 6 3 7 8 

A V E R . 6 6 3 5 6 8 1 0 6 6 1 9 6 6 4 8 6 4 5 5 6818 6 6 6 9 

26 1 1 6 6 3 1 2 0 7 4 1 1 6 9 5 1 2 1 1 3 1 1 6 8 9 1 2 1 1 3 1 1 6 6 3 

27 1 1 6 5 6 1 2 0 4 3 1 1 8 2 2 1 1 8 2 5 1 1 8 6 1 1 2 0 4 3 1 1 6 5 6 

50 28 1 1 8 5 6 1 2 0 7 5 1 2 0 3 6 1 2 0 3 4 1 1 5 3 4 1 2 0 7 5 11534 

29 1 1 6 5 9 1 1 8 2 6 11674 1 1 9 7 5 1 1 6 1 9 1 1 9 7 5 1 1 6 1 9 

30 1 1 7 8 1 1 2 2 2 5 1 1 7 8 8 1 2 0 4 2 1 1 7 8 7 1 2 2 2 5 1 1 7 8 1 

A V E R . 1 1 7 2 3 1 2 0 4 9 1 1 8 0 3 1 1 9 9 8 1 1 6 9 8 

31 1 8 3 8 8 1 8 7 9 4 1 8 2 7 0 1 8 6 0 1 1 8 3 2 8 1 8 7 9 4 1 8 2 7 0 

32 1 8 3 8 8 1 9 1 0 7 1 8 5 4 0 1 8 9 5 0 1 8 4 7 2 1 9 1 0 7 1 8 3 8 8 

75 33 1 8 5 9 1 1 8 8 8 4 1 8 5 1 7 1 8 8 4 2 1 8 3 2 8 1 8 8 8 4 1 8 3 2 8 

34 1 8 4 4 8 1 8 8 0 1 1 8 3 8 2 1 8 6 5 8 1 8 2 0 7 1 8 8 0 1 1 8 2 0 7 

35 1 8 4 9 5 1 8 8 7 3 1 8 5 9 6 1 8 9 0 8 1 8 7 2 6 1 8 9 0 8 1 8 4 9 5 

A V E R . 1 8 4 6 2 1 8 8 9 2 1 8 4 6 1 1 8 7 9 2 1 8 4 1 2 

36 2 5 1 7 1 2 5 5 2 6 2 5 1 2 6 2 5 6 0 0 2 5 1 8 6 2 5 6 0 0 2 5 1 2 6 

37 2 5 4 5 3 2 6 2 2 2 2 5 5 7 6 2 5 9 4 6 2 5 4 3 6 2 6 2 2 2 2 5 4 3 6 

100 38 2 5 2 9 6 2 5 8 7 2 2 5 1 7 5 2 5 8 4 4 2 4 9 8 5 2 5 8 7 2 2 4 9 8 5 

39 2 5 0 5 3 2 5 8 2 0 2 5 3 7 2 2 5 6 7 4 2 5 0 5 5 2 5 8 2 0 2 5 0 5 3 

40 2 5 0 6 6 2 5 7 5 4 2 5 3 8 2 2 5 7 3 6 2 5 3 3 4 2 5 7 5 4 2 5 0 6 6 

A V E R . 2 5 2 0 8 2 5 8 3 9 2 5 3 2 6 2 5 7 6 0 2 5 1 9 9 

T a b l e 4 . 1 

C o n s t r u c t i o n S o l u t i o n s of MPG H e u r i s t i c s 
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P R O B L E M 

SIZE N O . HWWO 

1 1627 

2 1679 

10 3 1710 

4 1766 

5 1719 

A V E R . 1700 

6 2 9 6 0 

7 2 9 7 5 

15 8 2977 

9 2 9 9 1 

10 2 8 7 0 

A V E R . 2 9 5 5 

11 4 0 3 7 

12 4 2 0 8 

20 13 4 0 2 8 

14 4 0 6 1 

15 4 2 0 3 

A V E R . 4 1 0 7 

18 5427 

17 5 3 8 9 

25 18 5 3 7 5 

19 5484 

20 5427 

A V E R . 5420 

21 6 9 3 6 

22 6 9 1 0 

30 23 6774 

24 6714 

25 6 8 3 3 

A V E R . 6 8 3 3 

26 1 1 9 9 1 

27 1 2 0 7 8 

50 28 1 2 3 2 5 

29 1 1 9 2 3 

30 1 2 2 9 5 

AVER . 1 2 1 2 2 

31 1 8 8 3 9 

32 1 8 8 5 2 

75 33 1 8 8 6 8 

34 1 8 7 4 6 

35 1 8 8 4 6 

A V E R . 1 8 8 3 0 

36 2 5 5 3 1 

37 2 5 7 9 3 

100 38 2 5 8 0 4 

39 2 5 8 0 4 

40 2 5 7 3 8 

A V E R . 2 5 7 3 4 

MANAGEMENT SCIENCE 

H E U R I S T I C S 

HWHG HWHC RDHG RDHC H T H 6 HTHC MAX MIN 

1 6 3 1 1627 1627 1 6 1 7 1617 1619 1 6 3 1 1617 

1679 1 6 7 9 1679 1 6 2 6 1 6 7 9 1679 1 6 7 9 1 6 2 6 

1712 1712 1705 1 7 1 7 1 7 1 5 1660 1 7 1 7 1660 

1749 1737 1717 1724 1 7 4 9 1754 1766 1717 

1720 1 7 1 9 1637 1 5 9 3 1647 1700 1720 1593 

1 6 9 8 1 6 9 5 1673 1 6 5 5 1 6 8 1 1682 

2 9 6 0 2 9 4 3 2 8 8 8 2 8 0 1 2 9 6 0 2869 2 9 6 0 2 8 0 1 

2 9 7 5 2 9 3 9 2 8 9 0 2 9 1 0 2 9 2 5 2927 2 9 7 5 2 8 9 0 

2 9 5 1 2 9 4 3 2887 2 9 3 3 2 9 4 5 2935 2 9 7 7 2 8 8 7 

3 0 8 2 3 0 5 2 3 0 2 9 2 9 5 2 3 0 8 2 3012 3 0 8 2 2 9 5 2 

2934 2 9 5 6 2 8 7 8 2 8 1 5 2 9 1 5 2930 2 9 5 6 2 8 1 5 

2 9 8 0 2 9 6 7 2914 2 8 8 2 2 9 6 5 2935 

4 0 5 6 4 0 1 6 3 9 8 9 3 9 9 0 4 0 1 9 4002 4 0 5 6 3 9 8 9 

4 1 6 1 4 1 1 4 4 1 9 2 4 0 2 7 4 1 6 7 4136 4 2 0 8 4 0 2 7 

4 1 5 9 4 1 1 3 4 2 1 3 4 1 0 2 4 1 9 3 4046 4 2 1 3 4 0 2 8 

4 1 4 0 4194 4 0 9 4 4 1 0 6 4 1 0 7 4157 4 1 9 4 4 0 6 1 

4 2 8 2 4 2 5 9 4012 3 9 6 2 4 1 5 6 4174 4 2 8 2 3 9 6 2 

4 1 6 0 4 1 3 9 4 1 0 0 4 0 3 7 4 1 2 8 4103 

5 4 2 4 5 4 3 0 5390 5 2 0 3 5 2 7 0 5416 5 4 3 0 5203 

5 3 6 1 5 3 0 3 5 3 9 5 5 1 5 1 5 4 6 6 5248 5 4 6 6 5 1 5 1 

5 3 9 5 5 4 1 8 5 4 7 7 5 3 4 5 5 4 7 3 5354 5 4 7 7 5 3 4 5 

5 5 0 4 5 6 0 9 5517 5 5 0 9 5 5 8 9 5552 5 6 0 9 5 4 8 4 

5 5 6 8 5 4 8 1 5472 5 4 1 0 5544 5528 5 5 6 8 5410 

5 4 5 0 5 4 4 8 5450 5 3 2 4 5 4 6 8 5420 

6 9 2 8 6 9 8 0 6847 6 7 7 7 7 0 1 7 6707 7 0 1 7 6 7 0 7 

6 9 5 0 6 8 2 2 6 8 3 3 6 7 3 1 6 9 7 5 6880 6 9 7 5 6 7 3 1 

6 9 4 8 6 8 1 8 6834 6 6 0 9 6 8 7 6 6793 6 9 4 8 6 6 0 9 

7 0 1 0 6 7 9 5 6876 6 7 3 3 6 8 3 8 6806 7 0 1 0 6 7 1 4 

6 8 0 7 6 7 9 1 6834 6 6 6 5 6 8 3 8 6823 6 8 3 8 6 6 6 5 

6 9 2 9 6 8 4 1 6 8 4 5 6 7 0 3 6 9 0 9 6802 

1 2 2 7 4 1 1 9 8 2 1 2 2 9 1 1 2 0 8 5 1 2 2 9 1 1 1 9 8 2 

1 2 2 1 8 1 1 9 8 4 1 2 0 8 2 1 2 1 0 4 1 2 2 1 8 1 1 9 8 4 

1 2 1 9 1 1 2 2 2 4 1 2 3 1 5 1 1 9 0 4 1 2 3 2 5 1 1 9 0 4 

1 1 9 7 1 1 1 9 2 9 1 2 2 2 0 1 2 0 7 0 1 2 2 2 0 1 1 9 2 3 

1 2 2 4 5 1 2 0 3 5 1 2 1 5 8 1 2 0 3 7 1 2 2 9 5 1 2 0 3 5 

1 2 1 8 0 1 2 0 3 1 1 2 2 1 3 1 2 0 4 0 

1 8 9 7 8 1 8 6 8 8 1 9 0 0 0 1 8 5 4 9 1 9 0 0 0 1 8 5 4 9 

1 9 3 2 2 1 8 8 6 8 1 9 1 2 2 1 8 7 3 5 1 9 3 2 2 1 8 7 3 5 

1 9 0 7 3 1 8 8 7 5 1 9 1 9 5 1 8 7 3 1 1 9 1 9 5 1 8 7 3 1 

1 8 9 7 2 1 8 7 0 7 1 8 7 8 9 1 8 6 5 9 1 8 9 7 2 1 8 6 5 9 

1 9 0 1 3 1 9 0 5 4 1 9 1 4 9 1 9 0 7 0 1 9 1 4 9 1 8 8 4 6 

1 9 0 7 2 1 8 8 3 8 1 9 0 5 1 1 8 7 4 9 

2 5 8 4 2 2 5 5 6 6 2 6 0 8 2 2 5 6 6 1 2 6 0 8 2 2 5 5 3 1 

2 6 4 7 0 2 6 0 6 2 2 6 2 8 1 2 5 7 2 8 2 6 4 7 0 2 5 7 2 8 

2 6 1 4 1 2 5 8 0 3 2 5 9 3 1 2 5 5 4 5 2 6 1 4 1 2 5 5 4 5 

2 6 0 0 2 2 5 5 5 0 2 5 9 6 1 2 5 6 0 5 2 6 0 0 2 2 5 5 5 0 

2 6 1 8 4 2 5 9 9 0 2 5 9 9 7 2 5 8 9 5 2 6 1 8 4 2 5 7 3 8 

2 6 1 2 8 2 5 7 9 4 2 6 0 5 0 2 5 6 8 7 

T a b l e 4.2 
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H E U R I S T I C S 

H W W O H W H G H W H C R D H G R D H C H T H G HTHC MAX MIN 

94 101 106 •95 86 2 5 8 255 2 5 8 86 

98 99 100 83 96 2 4 9 255 2 5 5 83 

99 94 95 74 73 2 5 7 249 2 5 7 73 

98 90 103 91 87 2 5 0 257 2 5 7 87 

90 104 97 78 91 2 5 0 260 2 6 0 78 

96 98 100 84 87 2 5 3 255 

2 3 9 235 2 4 5 2 5 3 2 3 1 1 2 9 1 1 3 1 4 1 3 1 4 2 3 1 

2 3 9 2 5 1 2 4 2 2 2 8 2 3 0 1 3 0 9 1 2 8 4 1 3 0 9 2 2 8 

2 3 1 242 2 4 9 2 1 2 2 1 0 1 3 0 1 1 3 1 2 1 3 1 2 2 1 0 

2 5 5 259 2 8 5 2 3 5 2 2 1 1 3 1 6 1 2 8 5 1 3 1 6 2 2 1 

2 4 2 256 2 7 2 2 5 2 2 1 3 1 2 9 4 1 3 0 7 1 3 0 7 2 1 3 

2 4 1 249 2 5 9 2 3 6 2 2 1 1 3 0 2 1 3 0 2 

5 0 6 4 4 6 4 4 5 4 2 5 4 1 7 4 2 7 6 4 2 3 0 4 2 7 6 4 1 7 

4 5 2 522 4 6 2 4 5 6 4 1 7 4 2 8 5 4 2 2 8 4 2 8 5 4 1 7 

4 6 2 4 8 9 4 8 4 4 1 7 4 2 3 4 2 2 7 4 2 5 3 4 2 5 3 4 1 7 

4 9 0 498 5 3 1 4 5 3 3 9 3 4 2 4 7 4 2 4 8 4 2 4 8 3 9 3 

4 4 8 4 7 2 5 5 1 4 2 2 4 3 7 4 2 8 0 4 2 4 2 4 2 8 0 4 2 2 

4 7 1 4 8 5 4 9 5 4 3 5 4 1 7 4 2 6 3 4 2 4 0 

7 6 0 789 7 9 8 7 3 5 6 8 8 1 0 6 8 5 1 0 7 5 4 1 0 7 5 4 6 8 8 

7 6 6 824 8 1 9 7 7 4 6 1 8 1 0 7 4 2 1 0 6 3 7 1 0 7 4 2 6 1 8 

6 9 5 7 6 1 7 4 9 7 4 7 6 9 8 1 0 7 2 2 1 0 6 6 3 1 0 7 2 2 6 9 5 

8 5 8 7 1 6 7 9 8 7 2 6 7 0 0 1 0 7 6 5 1 0 6 7 6 1 0 7 6 5 7 0 0 

7 0 7 8 2 1 7 9 1 6 5 3 6 9 5 1 0 7 2 1 1 0 7 8 5 1 0 7 8 5 6 5 3 

7 5 7 7 8 2 7 9 1 7 2 7 6 7 9 1 0 7 2 7 1 0 7 0 3 

1 0 8 5 1 1 0 3 1 0 8 8 1 0 2 9 1 1 7 0 2 2 5 6 3 2 2 6 2 2 2 2 6 2 2 1 0 2 9 

1 0 7 2 1 2 6 1 1 1 6 8 1 1 6 5 1 0 3 7 2 2 7 8 3 2 2 7 9 9 2 2 7 9 9 1 0 3 7 

1 1 8 4 1 1 4 2 1 1 9 0 1 0 8 6 1 0 3 4 2 2 7 0 2 2 2 7 1 4 2 2 7 1 4 1 0 3 4 

1 2 5 3 1 1 1 9 1 1 6 5 1 1 4 5 1 1 7 0 2 2 6 3 6 2 2 6 0 0 2 2 6 3 6 1 1 1 9 

1 1 4 7 1 1 2 2 1 1 1 1 1 0 4 5 1 0 5 4 2 2 7 5 8 2 2 6 2 5 2 2 7 5 8 1 0 4 5 

1 1 4 8 1 1 4 9 1 1 4 4 1 0 9 4 1 0 9 3 2 2 6 8 8 226.72 

3 2 5 7 3 4 6 0 3 2 6 4 3 5 2 9 3 0 1 1 3 5 2 9 3 0 1 1 

3 2 6 3 3 1 4 5 3 3 0 3 2 9 5 4 3 0 9 2 3 3 0 3 2 9 5 4 

3 1 6 9 3 3 8 0 3 0 9 1 3 3 5 4 3 0 1 2 3 3 8 0 3 0 1 2 

3 3 5 7 3 3 1 2 3 3 0 4 3 0 7 7 3 1 7 5 3 3 5 7 3 0 7 7 

3 1 6 0 3 3 8 4 3 3 2 8 3 2 4 6 3 0 3 8 3 3 8 4 3 0 3 8 

3 2 4 1 3 3 3 6 3 2 5 8 3 2 3 2 3 0 6 6 

7 6 2 4 7 2 4 5 7 6 9 2 7 2 5 1 6 8 5 2 7 6 9 2 6 8 5 2 

7 8 4 7 7 4 5 2 7 6 7 2 7 1 5 1 7 2 4 8 7 8 4 7 7 1 5 1 

7 7 9 8 7 3 9 4 7 5 4 1 7 2 9 9 6 6 9 3 7 7 9 8 6 6 9 3 

7 5 7 9 7 7 9 0 8 3 7 2 7 2 6 3 7 4 0 1 8 3 7 2 7 2 6 3 

7 5 6 8 7 8 9 2 7 7 4 3 7 4 7 0 6 5 7 4 7 8 9 2 6 5 7 4 

7 6 8 3 7 5 5 5 7 8 0 4 7 2 8 7 6 9 5 4 

1 0 6 9 5 1 1 2 5 1 1 0 9 8 9 1 1 1 9 5 1 0 3 5 5 1 1 2 5 1 1 0 3 5 5 

1 1 7 8 1 1 2 3 6 8 1 1 2 9 5 1 0 7 4 7 1 0 3 1 7 1 2 3 6 8 1 0 3 1 7 

1 1 2 9 1 1 2 3 0 6 1 1 3 4 9 1 0 6 3 5 1 0 2 4 5 1 2 3 0 6 1 0 2 4 5 

1 0 8 6 4 1 2 0 5 7 1 1 4 9 6 1 1 2 5 3 1 0 4 2 2 1 2 0 5 7 1 0 4 2 2 

1 1 2 2 1 1 1 1 1 6 1 1 0 1 8 1 1 1 9 1 1 0 0 6 5 1 1 2 2 1 1 0 0 6 5 

1 1 1 7 0 1 1 8 2 0 1 1 2 2 9 1 1 0 0 4 1 0 2 8 1 

T a b l e 4 . 3 
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H E U R I S T I C S 

HWWO HWHG HWHC R D H G R D H C HTHG HTHC MAX 

161 141 168 191 

242 253 244 194 

190 146 148 162 

166 158 219 153 

151 . 167 178 148 

182 173 191 170 

476 4 6 1 599 450 

452 396 376 494 

496 444 392 357 

463 383 4 1 1 447 

344 456 430 365 

446 428 442 423 

808 809 693 706 

693 928 859 743 

650 793 6 7 1 736 

912 775 715 8 2 1 

946 785 1155 855 

8 0 1 818 818 772 

1 6 0 6 1104 1928 2 1 0 5 

1517 1 3 2 6 1110 1 0 0 6 

973 1635 1253 1278 

1 6 4 9 1 6 1 1 1053 1300 

1224 1444 1183 1072 

1394 1424 1305 1305 

2 4 8 1 1 7 7 1 1967 2 2 2 2 

1 6 3 2 1 9 7 8 2 2 1 6 1 7 3 9 

2 6 5 2 2 2 5 9 2084 1 8 3 5 

2 1 2 1 2 0 4 3 1 8 6 1 2 0 8 2 

2 9 2 6 1 6 9 1 1975 1 7 0 1 

2 3 6 2 1948 2 0 2 1 1 9 1 6 

5 9 1 5 5 4 9 0 4 7 6 1 4 9 8 9 

6 6 4 3 4 6 2 3 5 4 6 6 4 6 9 6 

6 7 3 9 4 8 8 2 4 6 0 8 5 5 6 9 

5 5 6 2 5 1 2 2 4 8 6 2 5454 

7 6 3 3 5 1 1 9 5 4 8 9 4 8 7 9 

6 4 9 8 5047 5037 5 1 1 7 

1 4 6 4 8 1 2 6 5 7 1 3 3 1 7 1 3 6 7 5 

1 4 2 9 9 1 2 3 8 6 1 3 8 9 3 1 2 2 0 5 

1 5 3 5 4 1 2 3 2 2 1 3 1 8 5 1 4 6 1 1 

1 0 7 9 7 1 5 4 2 6 1 4 9 2 7 1 2 4 0 2 

1 2 8 3 0 1 3 0 8 9 13184 1 2 1 5 1 

1 3 5 8 6 1 3 1 7 6 1 3 7 0 1 1 3 0 0 9 

1 7 5 9 9 2 0 6 3 2 2 0 2 3 7 2 2 9 2 5 

2 7 0 4 1 2 0 4 3 5 1 9 4 9 4 2 0 2 5 6 

2 2 4 1 1 1 7 3 7 1 1 9 8 1 1 1 6 3 2 7 

1 9 1 6 7 1 7 4 1 3 17097 1 8 5 8 4 

2 3 7 9 8 2 0 5 7 8 1 9 4 3 2 2 0 7 2 1 

2 2 0 0 3 1 9 2 8 6 1 9 2 1 4 1 9 7 6 3 

186 299 406 406 

164 402 399 402 

172 362 286 362 

220 290 329 329 

206 346 298 346 

190 340 344 

3 4 1 1516 1435 1 5 1 6 

4 1 0 1434 1569 1 5 6 9 

4 3 1 1480 1440 1 4 8 0 

544 1442 1459 1 4 5 9 

490 1 5 1 1 1560 1560 

4 4 3 1477 1493 

714 4 4 7 9 4537 4 5 3 7 

8 5 2 4 5 7 9 4 7 0 5 4 7 0 5 

548 4 6 9 3 4693 4 6 9 3 

779 4 5 8 5 4 5 5 9 4 5 8 5 

748 4 6 0 3 4 5 5 3 4 6 0 3 

728 4 5 8 8 4 6 0 9 

1 6 6 2 1 0 9 6 4 11307 1 1 3 0 7 

1 0 6 7 11413 11136 1 1 4 1 3 

1 0 8 9 1 1 2 2 0 11083 1 1 2 2 0 

1 1 2 1 11004 10907 1 1 0 0 4 

1 2 7 6 1 1 1 1 6 11274 1 1 2 7 4 

1 2 4 3 1 1 1 4 3 1 1 1 4 1 

1 8 2 3 2 3 6 6 6 2 3 1 9 9 2 3 6 6 6 

2 4 9 1 2 3 4 1 6 2 4 0 4 0 2 4 0 4 0 

1 5 7 2 2 3 3 6 9 2 3 3 0 3 2 3 3 6 9 

1 8 0 9 2 3 4 5 8 2 3 3 7 4 2 3 4 5 8 

2 1 0 2 2 3 9 9 0 2 3 4 3 6 2 3 9 9 0 

1 9 5 9 2 3 5 8 0 2 3 4 7 0 

7 5 3 2 7 5 3 2 

6 9 0 0 6 9 0 0 

4 9 2 5 6 7 3 9 

5 3 3 5 5 5 6 2 

5 5 5 6 7 6 3 3 

6 0 5 0 

1 1 5 2 4 1 4 6 4 8 

1 4 4 5 5 1 4 4 5 5 

1 4 7 1 3 1 5 3 5 4 

1 6 3 3 9 1 6 3 3 9 

1 2 0 9 8 1 3 1 8 4 

1 3 8 2 6 

1 7 5 6 4 2 2 9 2 5 

1 9 4 3 6 2 7 0 4 1 

1 8 1 4 3 2 2 4 1 1 

1 6 5 4 4 1 9 1 6 7 

2 4 7 1 5 2 4 7 1 5 

1 9 2 8 0 

T a b l e 4.4 

T o t a l R u n t i m e s ( m i l . s e c ) of MPG H e u r i s t i c s 
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heuristics. 

4.6.2 Analysis of the Experimental Results 

The task of analysing the empirical results of various heuristics raises an important theoretical issue, 

namely the nature of the scale of measurement of the results. One school of thought treats the 

results as metric data, hence the use of elaborate statistical techniques are justified (Golden & 

Stewart, 1981; Golden & Assad, 1982; King & Spachis, 1980; Spachis, 1978). This approach is 

acceptable only when the problems tested are of similar complexities, ie roughly of the same sizes. 

When the problem size varies greatly, the metric property of the results is required to be justified 

explicitly. This is due to a well known general phenomenon of combinatorial problems: that it is far 

more difficult to get within a certain range of an optimun solution in a larger problem than it is for 

a smaller one. The larger the difference in size, the greater the difference in computation efforts; to 

obtain a solution within one percent of the optimal solution for a 30 vertex problem does not imply 

the same effectiveness as obtaining a solution within the same percentage range for a 100 vertex 

problem. 

The second school of thought, and it is the one adopted here, is that the data are only ordinal and 

performance analyses should rely on nonparametric tests (Parker, 1976; Abdel Barr, 1978). The 

average values of the results in the Tables 4.1-4.4 are used only as rough guides, and play no part 

in the analysis of performance as such. The sign test and the run test are the two main procedures 

used. 

The performances of various heuristics on the test problems are tabulated in the Tables 4.1-4.4. 

The results of the sign tests for the solutions of the construction procedures are summarised in 

Table 4.5. The first figure of each pair is the number of times the row-label heuristic provided 

higher (in this case better) solutions than the column-label heuristic. The second figure is the number 

of times the reverse occurred. The number of ties can be deduced from the difference of the 

numbers of test problems and the sum of the two figures in the table. If the HWWO heuristic is 

omitted from the table, it would represent a two level factorial design, and hence the effect of a 

class of strategies (level) can be studied by comparing the results of the heuristics while keeping the 

other level constant. 

MANAGEMENT SCIENCE IMPERIAL COLLEGE 
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H E U R I S T I C S 

H W H C R D H G R D H C H T H G H T H C 

1 2 , 2 7 1 6 , , 2 4 2 8 , 1 2 3 , 2 2 1 0 , 1 3 H W W O 

3 2 , 7 3 4 , 6 3 7 , 3 8 , 1 4 1 9 , 6 H W H G 

2 1 , , 1 9 3 3 , 7 7 , 1 8 1 2 , 1 1 H W H C 

3 2 , 8 0 , 2 5 7 , 1 8 R D H G 

0 , 2 5 2 , 2 3 R D H C 

2 0 , 5 H T H G 

T a b l e 4 . 5 

C o n s t r u c t i o n C o s t S i g n T e s t s 

The effect of the initial tetrahedron strategies is considered by comparing the results of the HWHG, 

RDHG, and HTHG heuristics, and then comparing the results of the HWHC, RDHC and HTHC 

heuristics. There are some indications that the heaviest tetrehedron (HT) strategy produces better 

solutions at the end of the construction phase than the highest weight order (HW) strategy although 

the result is not statistically significant. Both strategies perform better (statistically significant at 5 % 

or less) than the random strategy, which is to be expected. Similar analysis for the insertion 

strategies shows that the weight order (WO) insertion is significantly poorer (at 5 % or less level) 

than the other two insertion methods, thus justifing the decision to test this strategy in a less 

comprehensive manner. The highest gain (HG) strategy performs statistically better (at 5 % or less 

level) than the highest cost (HC) strategy. This is an unexpected outcome, as it is usually the case 

that the highest cost strategy gives better results, as in the case of the transportation problem or 

the travelling salesman problem. The run tests on the results in Table 4.6 show two significant 

results; between RDHG and HWWO test (less than 4 % level) and between RDHG and HWHC test 

(less than 0 .1% level). The RDHG heuristic shows significantly poorer results for the smaller 

problems, and significantly better results for the larger problems than the results produced by the 

HWWO and HWHC heuristics. It should be noted that the straight-forward sign tests on both sets 

of results are not statistically significant. A possible explanation is that the RD strategy provides a 

poorer starting condition than the one produced by the HW strategy. However, if the HG insertion 

strategy is allowed to take its full effect, by using it in larger problems, the initial disadvantage will 

in most cases be overcome. This interpretation is consistent with the earlier conclusion regarding the 

performance of various strategies during the construction phase. 
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H E U R I S T I C S 

H W H G H W H C R D H G R D H C H T H G H T H C 

1 7 , 2 0 14 , 2 4 2 9 , 1 1 9 . 14 1 6 , 8 H W W O 

3 0 , 8 2 6 , 1 3 3 6 , 4 1 2 , 9 2 0 , 4 H W H G 

1 5 , 2 3 3 2 , 8 8 , 1 6 1 8 , 6 H W H C 

3 3 , 7 6 , 1 8 1 2 , 1 2 R D H G 

1 , 2 3 3 , 2 2 R D H C 

1 6 , 8 H T H G 

T a b l e 4 . 6 

F i n a l C o s t S i g n T e s t s 

The final solution sign tests (Table 4.6) provide a similar picture to the Table 4.5, in spite of the 

higher benefit during the improvement phase by the poorer construction solutions. The run test also 

detects the previous pairs found during the construction phase with even more pronounced patterns. 

An additional pair between the HTHG and HWHG heuristics (less than 3 % level) is also detected; 

the HWHG produces better results for smaller problems. This is also consistent with the earlier 

results which suggest that the HW Strategy produces a good starting condition for smaller problems, 

and the highest gain provides a good insertion strategy in general. 

Taking the overall effect into account, the heuristics can be ranked according to the quality of the 

final solutions as follows: 

1 HWHG, HTHG 

2 RDHG, HTHC 

3 HWWO, HWHC 

4 RDHC 

Figures 4.9-4.10 show the average construction and final solutions achieved by the HWHG heuristic 

for all the test problems. 
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H E U R I S T I C S 

H W H G H W H C R D H G R D H C H T H G H T H C 

1 1 , 2 9 2 8 , 1 2 3 7 , 3 0 , 2 5 0 , 2 5 H W W O 

2 1 , 1 9 3 3 , 7 3 8 . 2 0 , 2 5 0 , 2 5 H W H G 

3 5 , 5 3 8 , 2 0 , 2 5 0 , 2 5 H W H C 

2 7 , 1 3 0 , 2 5 0 , 2 5 R D H G 

0 , 2 5 0 , 2 5 R D H C 

1 4 , 1 1 H T H G 

T a b l e 4 . 7 

C o n s t r u c t i o n T i m e S i g n T e s t s 

H E U R I S T I C S 

H W H G H W H C R D H G R D H C H T H G H T H C 

2 5 , 1 5 3 0 , 1 0 2 5 , 1 5 0 , 2 5 0 , 2 5 H W W O 

2 2 , 1 8 2 2 , 1 8 1 8 , 2 2 0 , 2 5 0 , 2 5 H W H G 

1 9 \ 2 1 1 7 , 2 3 0 , 2 5 0 , 2 5 H W H C 

1 9 , 2 1 0 , 2 5 0 , 2 5 R D H G 

0 , 2 5 0 , 2 5 R D H C 

1 0 , 1 4 H T H G 

T a b l e 4 . 8 

F i n a l T i m e S i g n T e s t s 

The runtime sign test analyses are shown in Tables 4.7-4.8 and the average run times for the 

construction phase and the average total run times are shown in Figures 4.11-4.12. The 

construction results conform to the theoretical prediction. The algorithms split into two groups, 

namely the 0(n4) and CKn2) groups, eg the empirical complexities of the HTHG and HWHG 

heuristics during the construction phase are 0.02/7409 and 0.87/t209 respectively. The 

improvement time, roughly the same as the construction time of the (Xri2) heuristic of the same 

problem size, has Oin2) time complexity as expected, consequently the total runtime is 0.40n 3 8 7 

for the HTHG heuristic and 1.63/7206 for the HWHG heuristics. The difference in time 

performances of the two CXn4) heuristics is negligible. In the other group, the random tetrahedron 

strategy runs slightly faster than the highest weight strategy during the construction phase. The 

weight order insertion strategy, although producing a relatively fast solution during the construction 

phase, requires considerably more execution time during the improvement phase than the rest in the 

group, and overall runtime of the WO strategy is the highest among the Oin2) group. The remaining 

heuristics have very similar runtime performances. There is no significant result for the run tests 
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carried out on the results in Table 4.7-4.8. 

4.7 INTERACTIVE ASPECTS 

Interactions with the heuristics can be done in two ways; firstly, by artificially manipulating the input 

data to ensure that certain effects are obtained; and secondly, by imposing additional rules of 

manipulation. As the input for the MPG is likely to contain certain subjective evaluations, the use of 

additional rules may be more desirable. One such additional rule, that can be implemented readily, is 

the restriction of maximum valences of particular nodes to correspond to the physical limitations of 

the objects being represented. Alternative solutions can be quickly generated by varying the 

maximum permitted valences. 

4.8 CONCLUSIONS 

It has been demonstrated that construction and improvement heuristics for the MPG can be 

implemented effectively using an algorithmic language. Pascal was chosen because the language has 

data structuring facilities that allow adequate data abstractions. The codes are fast and compact, 

and they can be used to solve problems with several hundred vertices. 

The comparative test results indicate that the use of the heaviest tetrahedron as a starting point 

does not provide the expected benefit. Moreover with hindsight, it becomes clear why the highest 

gain insertion strategy during the insertion phase provides better results than those achieved by the 

highest shadow cost strategy: in other similar combinatorial problems, the assignment of an arc 

usually results in the total exclusion of the other competing candidates, but this is not usually the 

case in the MPG. 
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5 Group Technology: Literature survey 

5.1 INTRODUCTION 

In the past decade, the emphasis in the literature on Group Technology has slowly shifted away 

from classification schemes per se to the problem of developing methods for grouping components 

and associated machines. This has led to a variety of approaches which may, for the purposes of 

this survey, be classified as (i) similarity coefficient (ii) set theoretic (iii) evaluative and (iv) other 

analytical methods, although it should be pointed out that there is a considerable overlap and 

interrelationship between these methods. 

5.2 SIMILARITY COEFFICIENT METHODS 

The similarity coefficient approach is drawn directly from the field of numerical taxonomy and was 

first suggested by McAuley (1972). The basis of this method is to measure the similarity between 

each pair of machines and then to group the machines into families based on their similarity 

measurements. In most cases, the similarity measurement used is the coefficient of Jaccard 

(Sneath & Sokal 1973, p131) which is defined for any pair of machines as: the number of 

components which visit both machines, divided by the number of components which visit at least 

one of the machines. 

The consequence of defining the similarity coefficient in this way is that equal weightings are given 

to the requirements and nonrequirements of a particular component insofar as the machines are 

concerned. As de Beer & de Witte (1978) point out, this may lead to very low values of the 

coefficient even in cases where a large number of components may require both machines. Another 

situation where the Jaccard similarity coefficient may not perform satisfactorily is when some 

machines are required by a large number of components and duplications of these machines are 

needed. This can, depending on the treatment, result in multiple values of the coefficients. None of 

the papers reviewed discuss this problem explicitly. 

The second problem associated with the similarity coefficient approach is the use of a threshold 

value such that if a coefficient is less than this limiting value the coefficient will be ignored in the 

next stage of the algorithm. There is however, a large degree of arbitrariness involved in this. 

Rajagopalan & Batra (1975) suggest a more systematic way of finding the threshold value, but in 

spite of this, the arbitrary nature of the selection still persists, as evidenced by the final choice of 
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the threshold value in their paper. 

In grouping machines, McAuley (1972) uses Single Linkage Cluster Analysis (SLCA). "This method 

first clusters together those machines mutually related with the highest possible similarity coefficient, 

then it successively lowers the level of admission by steps of predetermined equal magnitude. The 

admission of a machine or groups of machines into another group is by a criterion of single 

linkage." However, as McAuley points out "the main disadvantage of this method is that while two 

clusters may be linked by this technique on the basis of a single bond, many of the members of 

the two clusters may be quite far removed from each other in terms of similarity." To overcome 

this problem, various methods have been suggested by McAuley and Sneath & Sokal, but at the 

cost of having to define more limiting values. 

Carrie (1974) has used McAuley's method in an actual case involving additional problem constraints, 

such as, for example, a requirement of a minimum number of machines per group. However, no 

detailed results of the implementation are reported. 

Rajagopalan & Batra (1975) developed a graph-theoretic method which uses cliques of the machine-

graph as a means of classification. The vertices of this graph are the machines, the arcs are the 

Jaccard similarity coefficients and a clique is a maximal collection of vertices, every pair of which is 

connected by an edge of the graph. The main disadvantage of this approach is that because of the 

high density of the graph, a very large number of cliques is usually involved and many of the 

cliques are not vertex disjointed. To reduce the number of groups and to incorporate the machines 

which are not included in the cliques, graph partitioning is used, and it is at this stage that the 

allocation of components, in accordance with a number of heuristic rules, is also carried out. 

As the number of cliques varies exponentially with the number of vertices (Moon & Moser 1965), 

the clique approach may be acceptable for a few machine types, however the complicated and time 

consuming nature of the allocation procedure means that application to a large problem would be 

very difficult. 

de Beer et al (1976) and (1978) describe a modified form of Burbidge's Production Flow Analysis. 

An important aspect of this approach is the development of a method of cell formation based on an 

analysis of operation routings and the divisibility of operations between machines, and hence 

between cells. This divisibility is governed by the numbers of machines of the required types that 

are available for undertaking specific operations. Three categories of machine types are defined: 

primary or key, where only one such machine is available; secondary, where several machines are 

available; and tertiary, where there are sufficient machines available to be able to assign to each 

cell if required, de Witte (1979), in a further extension of this approach, suggested the use of three 

similarity coefficients which are different from Jaccard's and are specifically designed to indicate the 

interdependence of machine types within the three categories mentioned above. The subsequent 

clustering of machine types into cells is carried out using the SLCA method, not the clique method 

as suggested in the paper. In addition, it is not clear how de Witte's method could cope with the 
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situation where not ail the machines available are required, or alternatively, where additional 

machines may economically be justified. Lastly, it is arguable whether there is any need to include 

the tertiary machines in the process, since by definition they are available for inclusion in every cell. 

Capacity considerations alone should be adequate for determining how these machines should be 

allocated. 

None of the above papers considers the sensitivity of the solution in relation to the procedure used 

in the formation of the cells and, in particular, the form of the similarity coefficients used. By their 

very nature, similarity coefficients are aggregate measures and hence during their manipulation 

information losses are inevitable, and the significance of these losses ought to be clearly established 

before the procedures described can be used with confidence. 

5.3 SET-THEORETIC METHODS 

In spite of various titles given to his papers, Purcheck(1974, 1975a, 1975b) has adopted 

throughout a common set-theoretic approach to the problem. The earliest paper describes a 

systematic way of using union operation on the sets of machines required for various components, 

in order to arrive at the supersets (termed hosts and superhosts) which progressively include more 

and more components. The process of building up these supersets can be represented as a path 

along the edge of a lattice diagram. This method significantly reduces the total number of possible 

solutions. The process is fundamentally similar to those described by Burbidge (1971, 1973) and El-

Essawy (1972), but is specified in a much more explicit manner. 

The lattice diagram is at best only useful as a general illustrative device. The lattice diagrams 

actually drawn by Purcheck (1974, 1975a), complicated as they are, represent the combinations of 

only 6 machines. It is true that not all the possible points in the lattice need to be represented in 

practice. However, the exponential growth in the number of lattice points with increasing number of 

machines means that a stage is soon reached where the lattice diagram becomes virtually 

unintelligible. 

Purcheck (1975a) also develops a classification scheme which combines machine requirements and 

sequences by codifying them respectively in the form of long strings of letters and digits. In the 

example given in which 19 machines are involved, code lengths of 15 or more are not uncommon. 

The code length requirement is a crucial limitation and dashes any real hope of applying the scheme 

to problems with large numbers of machines. It is also difficult to see why such packing of 

information would improve the efficiency of grouping the machines. Mathematical programming 

(linear, combinatoric) is suggested as a means of carrying out the grouping process. There is, 

however, insufficient description in the paper to show how the constraint matrices could actually be 

constructed and there is no specification of the objective function to be used. 

The use of a set partitioning technique to solve an LP formulation of the problem is advocated by 
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Purcheck (1975£>). The cost function however, is not, in general, stated explicitly. In the worked 

example, the cost function is the total capital costs of the machines involved. In actual practical 

application, most of the machines, if not all, would already be available. The main benefits of group 

production, shorter throughput time, and hence reduced work-in-progress etc., are not included. As 

in the previous paper (1975a), the constraint matrices are not explicitly given. How various cells 

would constrain the problem is not at all clear, and the problems of machine utilization and 

duplicated machines are not defined. It is difficult to see how the LP problem as formulated could 

represent any real group layout problem. 

It is not clear how optimisation methods in general, and mathematical programming in particular, 

can be applied successfully to this problem; at least in the near future. A satisfactory definition of 

the objective function to include only quantifiable aspects of the problem would be lengthy, complex 

and unlikely to be linear. The constraint matrices would necessarily be large in order to define the 

whole problem adequately. Even the much simpler quadratic assignment problem (QAP) is notoriously 

difficult to solve, as discussed in the previous chapters. The QAP considers only the material 

handling costs, whereas the group layout problem involves a large number of interacting factors, 

many of which are highly dynamic. Fifteen machines is the present limit of most optimization 

procedures for the QAP, though sub-optimal procedures are able to solve somewhat larger problems. 

5.4 EVALUATIVE METHODS 

The concept of Production Flow Analysis (PFA) was first introduced by Burbidge (1963). The aim of 

the technique was stated by Burbidge (1971) as that of "finding the families of components and 

associated groups of machines for group layout... by a progressive analysis of the information 

contained in route cards...". PFA has since been developed, extended and given various names. The 

main feature of the evaluative approach to PFA is that it involves the systematic listing of the 

components in various ways, in the expectation that groups of machines and components may be 

found by careful inspection. As de Beer & de Witte (1978) point out, the procedure requires "a 

series of evaluations to be made by (the) designer, more or less calling upon his ability to recognize 

patterns". Burbidge's approach to PFA consists of three levels of analysis. Factory Flow Analysis, 

the first stage, makes use of Process Route Numbers (PRNs), in order to get an overall picture of 

the present state of material flows. Machines are divided into departments, and each department is 

given a number (in the example quoted, one digit figures are used). The PRN of a component is 

defined as the sequence of the numbers of the departments visited. A flow chart showing the 

interaction of various departments based on PRNs is then drawn. Burbidge gives various suggestions 

as to how this chart can be simplified and once this is done, each department is analysed in turn. 

This constitutes the second step, called Group Analysis. With the information obtained by sorting 

components into packs, according to the machines required, the designer then proceeds to form 

families of machines and components mainly by reordering the rows and columns of the 

Component-Machine Chart to create as near a block diagonal form as possible (the significance of 
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this block diagonal structure is considered in more detail later in this chapter). Burbidge (1971) does 

not explain explicitly how the outcomes were achieved. The difficulty was discussed in Burbidge 

(1973), in which the author states: "Fifteen different methods were tried before a reliable solution 

was obtained." The "best" method, called Nuclear Synthesis, is based on selecting machines used 

by few components as starting points for various cells, or nuclei, as Burbidge terms them. The next 

machine is allocated on the basis that it has the smallest number of components left unassigned to 

a group. Once Nuclear Synthesis is completed, these nuclei are modified and subject to certain 

special reservations, combined in a manner similar to that of Purcheck's superset approach, until the 

required number of groups is formed. Burbidge (1977) describes how the process can be carried 

out manually. The third stage, Line Analysis, is a procedure to find a layout in each group which 

will give the nearest approximation to line flow. 

Burbidge's approach consists of a series of subjective evaluations, which require substantial local 

knowledge in order to make any well-informed judgements. It is not surprising, as has been 

discussed by Edwards (1972) and El-Essawy (1972), that most of the attempts to apply the 

procedures have not been entirely satisfactory. Admittedly, most of the critical comment had been 

made before Burbidge introduced the method of Nuclear Synthesis, but it is not clear how well this 

works in practice and whether it has overcome the earlier criticism. The process of modification and 

combination of nuclei is artificially restricted by the predefined number of groups. The number of 

groups is in part determined by what is deemed to be a "sociologically acceptable size" which 

Burbidge considers to be from 6 to 12 workers; in his example Burbidge uses the mean value of 9. 

However, the number of groups would have changed by as much as 5 0 % either way, if instead of 

choosing the mean value, Burbidge had chosen the lower limit of 6 or the upper limit of 12 for the 

"sociologically acceptable size". 

In spite of various difficulties, Burbidge's approach highlights the importance of partitioning the 

problem into subproblems of manageable size. Without partitioning, the effort required to solve 

larger problems would be excessive. Perhaps the most important conclusion that can be drawn from 

Burbidge's work is that there is a large number of factors which cannot, at least for the time 

being, be formulated explicitly but which could crucially affect the final outcome. 

Component Flow Analysis (CFA) was first used in 1971 and distinguished as being different to PFA 

(El-Essawy, 1971; El-Essawy & Torrance, 1972), and in spite of various claims and counter claims, 

the similarity of the two approaches is apparent. CFA is made up of 3 stages of analyses. The 

objective of the first stage is "to consider the total component mix of the company and to identify 

and sort components into categories according to their manufacturing requirements". In essence, this 

stage consists primarily of sorting the components in the order of machine requirements and printing 

out the sorted list in two ways, firstly in the order of the number of machines required and 

secondly in the order of the smallest machine numbers involved, ready to be manually analysed in 

the second stage. The aim of the second stage is to obtain groupings of the machines using the 

lists of sorted components and taking into account various local constraints. Rough groups are 

formed by using the combinations with the highest number of machines as the cores (cf Burbidge's 
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nucleus, Purcheck's host), to which other machines and components are successively added. The 

third stage involves a detailed analysis of the loadings and flow pattern of the cells with appropriate 

adjustments to ensure that an acceptable design is achieved. 

In some respects, the methodology of CFA does differ from that of PFA. For example, PFA first 

partitions the problem, whereas CFA does not. The manner in which the cells are built up is also 

different in the two methods. CFA also relies less on the subjective evaluation, since the way in 

which problems can be tackled is described more precisely. Both methods, however, stress the 

importance of local factors which it is not easy to formulate explicitly, and the need for careful 

analysis of data both before and after group formation. 

An attempt has been made by de Beer & de Witte (1978) to extend the basic approach of PFA to 

explicitly consider both the question of machine duplication and different characteristics of the 

machines. This method has been termed Production Flow Synthesis (PFS). One major difference 

between PFS and the other methods discussed in this section is that the number of components 

that require more than one cell is quite substantial. In the case study described, only 4 6 % of 

components could be accommodated in single cells. There is also no detailed account of how 

various cells are formed, a process which is crucial to both PFA and CFA. 

5.5 OTHER ANALYTICAL METHODS 

As Gallagher & Knight (1973) have pointed out: "The crux of the problem of introducing group 

technology is the identification, from the large variety and total number of components, of the 

families requiring similar manufacturing operations on similar machine tools". Unfortunately, as 

Burbidge (1973, p7) states "It has proven to be surprisingly difficult to find a method suitable for 

the computer". El-Essawy & Torrance (1972, p167) came to a similar conclusion: "... the use of a 

computerised method to decide on these 'rough' groupings requires an unjustifiably sophisticated 

procedure". 

The processing requirements of components on machines can be represented in graph theoretic 

terminology as a bipartite graph G(Vm, Vc, A) where Vm and Vc are the two sets of vertices of 

the graph which correspond respectively to the machines and components. A is a set of arcs of the 

graph such that: 

1 If an arc exists between machine vertex / and component vertex j (a,y= 1) then 

component j requires processing on machine / 

2 If an arc does not exist between machine vertex i and component vertex j (a,y=0) then 

component j does not require processing on machine /'. 

Each vertex of the graph can be viewed as a compound element if so desired and components 

which require exactly the same set of machines may be depicted as a single vertex. Similarly 

machines of the same type can, if required, be represented as a single vertex. Such devices can be 
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used to reduce the overall size of the graph. 

The processing requirements of the components on the machines are also specified by the incidence 

matrix representation of the bipartite graph. It is easy to see that in this form the problem of 

allocating machines to groups and components to associated families reduces to that of finding a 

block diagonal form of the ay— 1 entries in the incidence matrix by appropriately rearranging the 

order of rows and columns. An example of a machine component incidence matrix is shown in 

Figure 5.1.1 (where it should be noted that all ay— 0 values are shown as blank entries). Figure 

5.1.3 shows a block diagonal arrangement achieved by row and column changes that produces a 

solution of the two machine groups with two associated component families. 

There are many algorithms which would readily identify a block diagonal form, if one exists. With 

the exception of the ROC algorithm, the methods to be outlined have not been specifically tailored 

or designed for the group formation problem in Group Technology. Iri (1968) suggests one of the 

simplest methods, using a masking technique. This may be described briefly as follows: Starting 

from any row, mask all the columns which have an entry in this row, then proceed to mask all 

rows which have entries in these columns. Repeat the process until the numbers of masked rows 

and columns stop increasing. The masked rows and columns constitute a block. If none exists, the 

entire matrix is masked as one group. It is not, however, possible to modify this procedure to take 

account of the case where there might be, say, a few non-conforming elements in what would 

otherwise be a pure block diagonal problem. 

McCormick et al (1972) have developed a matrix clustering technique which they call the Bond 

Energy Algorithm (BEA). The BEA is applicable to any matrix in which non-negative integer values of 

an element in the matrix express a measure of the degree of association of the corresponding row 

and column entities. What the BEA seeks to determine is a permutation of the rows and columns in 

which the sum of the products of adjacent elements is maximized. This is a restricted form of the 

quadratic assignment problem. The BEA is a sub-optimising procedure which uses a single pass 

heuristic applied to both rows and columns. The algorithm will reveal a block diagonal form if one 

exists. However, it is more difficult to predict the behaviour of the algorithm in cases where there 

exist a few exceptional elements that cannot be fitted into such an arrangement. 

King (1979) shows that if the patterns of row entries are read as binary words they can be ranked 

in reducing binary value order. This then permits the rows to be rearranged in accordance with this 

rank order. The same procedure can be repeated on the columns. This process may be repeated for 

rows and columns alternately until no further rearranging of rows and columns is possible, at which 

point a block diagonal form will be produced if one exists. 

This process is illustrated in relation to an example problem with the machine-component incidence 

matrix shown in Figure 5.1.1. Binary ranking by row leads to the rearrangement of rows to form 

the matrix shown in Figure 5.1.2. Binary ranking of the columns of Figure 5.1.2 leads in turn to a 

rearrangement of columns to form the matrix of Figure 5.1.3. The latter cannot be rearranged 
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further and, as will be seen, constitutes a block diagonal form. 

This particular procedure of reading the entries as binary words presents some computational 

difficulties. Since the largest integer representation in most computers is 248-1 or less, the 

maximum number of rows or columns that could be dealt with in this way would be 47. To 

overcome this limitation, element by element comparisons for carrying out row or column ranking 

are used. For example, row 1 (0101110) and row 4 (0101010) of the matrix in Figure 5.1.1 are 

compared successively digit by digit from left to right. Five comparisons are needed to conclude that 

the index of row 1 is larger than that of row 4, as the first four pairs of digits are the same. The 

process is repeated for the other rows until the complete row ranking is obtained. The procedure is 

applicable to column ranking as well and it is the basis of the iterative Rank Order Clustering (ROC) 

algorithm developed by King (1979, 1980). This procedure has a computational complexity of cubic 

order, namely 0(mn(m+ril), where m and n are the numbers of rows and columns respectively. 

The block diagonal structure illustrated in Figure 5.1.3 is the exception rather than the rule. If it 

exists then the ROC algorithm will generate it. More commonly the elements in the matrix are such 

that they cannot be divided into mutually exclusive diagonal groups. This case presents no real 

problem since the ROC algorithm can still be used to generate a diagonal structure which may 

contain one or more elements that do not conform to the block form. These elements can be 

considered as exceptional elements comprising machine-component combinations that would not form 

part of the the machine-component groups represented by the remaining pure diagonal blocks. As a 

simple illustration, if the matrix of Figure 5.1.1 had contained an additional 1 element, say (3,6), 

then the ROC algorithm would have produced, after two iterations, the final result shown in Figure 

5.2. It will be seen that this contains exactly the same groupings as the result shown in 

Figure 5.1.3, except that now (3,6) is an exceptional element. 

The formal procedure for dealing with the exceptional elements adopted by King may be described 

as follows: (i) Use the ROC algorithm to generate a diagonal structure (with probably one or more 

overlapping groups), (ii) Identify the exceptional elements (those elements in overlapping groups 

whose removal would allow a separation of the group to be achieved), (iii) Temporarily ignore the 

exceptional elements so that the ROC algorithm can be continued to enable a block diagonal form to 

be produced, (iv) Reinstate in this final matrix the previously ignored exceptional elements 

designating them by asterisks instead of 1's. 

The explicit identification of exceptional elements in this way allows us to concentrate on only a 

small part of a matrix at a time; namely the potential overlap between any two groups. 

Consequently, even in cases where there are a large number of exceptional elements, this procedure 

can still be used to deal step by step with the exceptional elements in all the potential overlaps. 

By way of illustration the original matrix in Figure 5.1.1 is modified to include additional elements 

(3,6) and (5,5): In this case stage (i) of the procedure would generate the matrix shown in Figure 

5.3.1. Stage(ii) would identify (3,6) and (5,5) as exceptional elements. Stage(iii) would generate the 
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block diagonal groups of 7's shown in Figure 5.3.2 and stage(iv) would insert the asterisks 

indicating that (3,6) and (5,5) are the exceptional elements. 

Where particular types of machines are required by a large number of components, King(1980) 

suggests a relaxation procedure which determines the number of duplicated machines required to 

eliminate the bottleneck, as well as their disposition in the block diagonal structure produced. This 

procedure, however, greatly increases the dimension of the matrix because it begins by assuming a 

relaxation of one machine to one component. As the computational complexity of the ROC algorithm 

is of cubic order, this is a severe practical limitation on the use of this procedure for problems of 

anything other than modest size. 

There is another approach similar to the ROC algorithm for clustering data where, instead of 

weighting the positions of the rows or columns in an exponential manner, the weights are increased 

linearly (Graham et al, 1976 ). In the specific archaeological application described by Graham et al 

the Ith row is given a weighting of m-H-1, where m is the total number of rows, and the priority 

ranking value is determined as the mean of the weightings of the non-zero entries. Ranking values 

calculated this way can be found and sorted very quickly and the requirement of a very large 

integer representation does not arise. In practice, the clustering algorithm is used to compress the 

entries into a band along the major diagonal of the matrix. If a block diagonal form exists the 

procedure will determine it. If this occurs then the attempt to determine a time seriatlon of 

archaeological evidence has failed: thus, in complete contrast to machine and component grouping, 

the hoped for result in any archaeological application is that the data will not break down into a 

block diagonal form. The major disadvantages of this linear weighting algorithm are the complicated 

and very confusing patterns of the intermediate results together with the difficulty in predicting the 

behaviour of the procedure. 
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B I N A R Y W E I G H T S 2® 26 2 4 23 22 2 1 2o 

C O M P O N E N T S B I N A R Y 

1 2 3 4 5 6 7 R A N K I N G 

1 1 1 1 1 4 

2 1 1 2 

M A C H I N E S 3 1 1 1 1 

4 1 1 1 5 

5 1 1 3 

F i g u r e 5 . 1 . 1 

B I N A R Y W E I G H T S 1 2 

C O M P O N E N T S 

3 4 5 6 7 

24 3 1 1 1 

23 2 1 1 

22 M A C H I N E S 5 1 1 

2i 1 1 1 1 1 

2o 4 1 1 1 

B I N A R Y R A N K I N G 

F i g u r e 5 . 1 . 2 

3 

2 

M A C H I N E S 5 

1 

4 

C O M P O N E N T S 

1 3 7 2 4 6 5 

1 1 1 
1 1 
1 1 

1 1 1 1 
1 1 1 

B I N A R Y 

R A N K I N G 

1 
2 

3 

4 

5 

B I N A R Y R A N K I N G 

F i g u r e 5 . 1 . 3 

F i g u r e 5 . 1 

M a t r i x s o r t i n g u s i n g the ROC a l g o r i t h m 
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C O M P O N E N T S 

1 3 7 6 2 

3 

2 

M A C H I N E S 5 

1 
4 

1 1 1 
1 1 
1 1 

1 

1 1 1 1 
1 1 1 

F i g u r e 5.2 

F i g u r e 5 . 1 . 1 w i t h an a d d i t i o n a l eleaient 

C O M P O N E N T S 

1 3 6 7 2 5 4 

f i g u r e 5 . 3 . 1 

C O M P O N E N T S 

1 3 7 6 2 5 4 

3 

2 

M A C H I N E S 5 

1 
4 

F i g u r e 5 . 3 . 2 

F i g u r e 5.3 

S o r t i n g m a t r i x w i t h e x c e p t i o n a l e l e m e n t s 

1 1 1 
1 1 
1 1 

* 

* 

1 1 1 1 
1 1 1 



6 The Design and Applications of the ROC2 Algorithm 

6.1 INTRODUCTION 

Of the papers reviewed in the last chapter, most tend to favour either similarity coefficient or 

evaluative methods. As has been discussed in chapter 5, these approaches exhibit certain 

weaknesses: the more important ones being firstly, the fact that the clustering techniques used in 

the similarity coefficient methods are either too weak (in the case of SLCA) or too rigorous (in the 

case of cliques), and secondly, the limitation on the size of problem that can be handled by 

evaluative methods. The explicitness of the similarity coefficient and the flexibility associated with 

evaluative methods are highly desirable characteristics. It is perhaps worth noting that explicitness 

and flexibility are combined features of the improved and extended ROC procedure to be described 

later. 

The ROC algorithm at its previous stage of development by King (1980) has a number of major 

limitations. Firstly, the storage of the incidence matrix as a two dimensional array puts a severe 

limit on the size of the problem that can be tackled. A moderate problem with 50 machines and 

2 0 0 0 components, together with the program, would require core storage in excess of 120 K 

words. Secondly, because the sorting procedure has a complexity of cubic order, efficient 

implementation is not possible for very large problems. The situation is exacerbated if the relaxation 

procedure mentioned in the last chapter is included, since this significantly increases the 

dimensionality of the problem. 

By sorting with several rows or columns at the same time, instead of element by element, the 

efficiency of the sorting procedure can be improved, even though this requires additional calculation 

to find the priority ranking values for these rows and columns. By this device, and in conjunction 

with an efficient computer sorting procedure, such as Quicksort or Mergesort, the overall complexity 

may be reduced to 0(mn\og(mn)), compared with Oimrim+n)) achieved previously. Considerable 

improvement in the computational efficiency can thus be achieved by this process, which has 

particular relevance where problems involving large machine-component incidence matrices are 

concerned. 

An even faster sorting procedure that can be used in conjunction with a linked data structure to be 

described is Least Significant Digit Radix Sort. Radix Sort does not incur the overhead of ranking 

value calculations and the way in which the data are stored also means that part of the radix 

procedure is already carried out, so that the overall effect is to provide an algorithm with a 
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complexity of 0(k), where k is the number of non-zero entries. The whole sorting procedure is thus 

reduced to that of shifting the order of rows and columns which is designated ROC2, to distinguish 

it from the earlier ROC algorithm described by King (1979, 1980). 

6.2 DESIGN OF THE R0C2 ALGORITHM 

The first major restriction that needs to be overcome by the new algorithm is the storage 

requirement of the original implementation. Without a better storage scheme, only moderate sized 

problems can be solved in this way. Since Incidence matrices of the kind involved in Group 

Technology problems are usually very sparse, with densities unlikely to be higher than 5 - 10% , an 

elaborate system of linked list structures would in general be economical. Various structures can be 

found in the literature (Pooch & Nieder 1973; Berztiss 1975; Horowitz & Sahni 1976). The use of a 

list structure brings two kinds of advantage. Firstly, by storing only the non-zero elements the 

algorithm would only operate on the non-zero elements, which form a very small proportion of all 

the elements of the matrix. Secondly, in appropriate cases, list structure can be treated as 

analogous to the grouping together of numbers with the same radix in the Least Significant Radix 

Sorting procedure. The operation of Radix Sort can be illustrated by the following example. Consider 

the sequence of numbers 11, 32, 13 and 21. This sequence may be divided Into three groups, as 

there are three radices 1, 2 and 3 involved, according to the last (i.e. least significant) digit. As 21 

has 1 as the last digit, it is entered into radix band 1, 13 has 3 as the last digit and is therefore 

put into radix band 3 and so on, as illustrated in Table 6.1.1. At the end of this process the 

intermediate sequence is 13, 32, 11 and 21. If the process is repeated on this sequence but with 

the division being made in accordance with the next significant digit (i.e. so that 21 is entered into 

radix band 2 and 11 into radix band 7, and so on) then the final sequence, as illustrated in Table 

6.1.2, will be 32, 21, 13 and 11. 

R A D I X BAND 

I N T E R M E D I A T E 

S E Q U E N C E 

. 2 1 . .11 

. 13 . . 32 . . 11 . . 32 . . 21 . .13 

. 3. . 2. . 7. . 3 . .2 . . 7 

13 32 11 21 

FINAL 

S E Q U E N C E 32 21 13 11 

T a b l e 6 . 1 . 1 T a b l e 6 . 1 . 2 

In the case of binary numbers the number of the radix bands is essentially reduced to one, as any 

number not assigned to the band of digit one, is assumed to have digit zero for that particular 

MANAGEMENT SCIENCE IMPERIAL COLLEGE 



HASH TABLE (COLUMN) 

H A S H 

T A B L E 

( R O W ) 

ROW 

N U M B E R 

C O L U M N 

N U M B E R 

C O L U M N 

P O I N T E R 

R O W 

P O I W r E R 

Figure 6.1 
A diagram of a storage scheme for the R0C2 algorithm 
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band. In the case of sorting a binary matrix the radix bands are, in effect, the rows or columns of 

the matrix. List structure thus readily divides the entries into appropriate subgroups. In order that 

both the rows and the columns may be easily accessed, a double list structure is required. Circular 

lists may be appropriate in some applications. An example of such a structure with two hash tables 

is represented diagramatically in Figure 6.1. Two hash tables are used to allow convenient random 

access of any row or column. 

Figures 6.2.1 - 6.2.5 illustrate how the radix sorting procedure can be applied to the sorting of a 

matrix. In the case of row sorting, columns become radix bands, and in column sorting rows 

become radix bands. As rows 2 and 3 have 1's in the fourth column, row 2 and 3 are moved to 

the first and second positions respectively in front of row 7. The process is repeated with all the 

remaining columns. The process can be reproduced using the list structure. The non-zero elements 

in the fourth column can be found by accessing the data structure via the hash table (column). In 

this case, rows 2 and 3 could be identified readily as shown in Figure 6.2.1. To indicate this fact, 

2 and 3 in Figure 6.2.1 in the row order are underlined. The identified rows are moved to the 

head of the queue to form an intermediate sequence, to be sorted again according to the next 

radix. As can be seen, the matrix can be sorted by manipulating the row or the column order, 

without having actually to move parts of the matrix around. 

R A D I X S T A R T I N G 

ROW ORDER 

(1) 1 1 0 0 
(2) 0 1 1 1 

(3) 1 0 0 1 

1 2 3 

I n i t i a l m a t r i x 

F i g u r e 6 . 2 . 1 

RADIX I N T E R M E D I A T E 

ROW ORDER 

(2) 0 1 1 1 

(3) 1 0 0 1 

(1) 1 1 0 0 

2 3 1 

M a t r i x after the first pass 

F i g u r e 6 . 2 . 2 

RADIX I N T E R M E D I A T E 

ROW ORDER 

(2) 0 1 1 1 

(3) 1 0 0 1 

(1) 1 1 0 0 

2 3 1 

M a t r i x after the second pass 

F i g u r e 6 . 2 . 3 
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R A D I X I N T E R M E D I A T E 

ROW ORDER 

"(2) 0 1 1 1 
(1) 1 1 0 0 
(3) 1 0 0 1 

2 1 3 

M a t r i x after the third pass 

F i g u r e 6 . 2 . 4 

ROW ORDER 

(1) 1 1 0 0 

(3) 1 0 0 1 

(2) 0 1 1 1 

1 3 2 

M a t r i x after the f i r s t i t e r a t i o n . 

F i g u r e 6 . 2 . 5 

In order that the removal of exceptional elements, assignments of components to duplicated 

machines, and the transfer of components between machines of the same types may be carried out 

quickly in the ROC algorithm without a major disruption of the entire structure, the data structure of 

the incidence matrix may be rearranged so that it comprises four main cells for each entry and two 

hash tables. The two hash tables, one for the rows and one for the columns, are simply efficient 

programming devices that allow the computer quick access to any row or column. The four cells 

represent the row and the column of the entry, together with pointers to the next elements along 

the same row and column. These pointers are part of the circular, double-linked list structure. 

Circular lists are chosen because they allow better access in the removal or reassignment of an 

entry. 

The algorithm can be summarized as follows: 
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R0C2 Algorithm: 

REPEAT 

FROM the last column TO the first column 

DO{row reordering) 

locate the rows {machines) with entries; 

move the rows with entries to the head of the row list, 

maintaining the previous order of the entries 

END DO{row reordering); 

FROM the last row TO the first row 

DO{column reordering) 

locate the columns {components} with entries; 

move the columns with entries to the head of the column list, 

maintaining the previous order of the entries 

END DO{cblumn reordering) 

UNTIL (no change OR inspection required) 

6.3 ILLUSTRATION OF THE ROC2 ALGORITHM IN USE 

Consider again the example problem represented by the matrix shown in Figure 5.1.1 but this time 

using the ROC2 algorithm. The stages involved in row reordering of the matrix are shown as 

successive lines in Table 6.2.1. The first line shows the initial row list in which, for the last 

column, column 7, the underlined entries 3 and 5 are the machines in this column and are moved 

in this order to the front of the list, as indicated in line 2 of Table 6.2.1. For the next column of 

the matrix, column 6, the machine entries are 1 and 4 and are indicated by underlining in line 2 of 

Table 6.2.1. These entries are moved to the front of the list to form line 3 of Table 6.2.1 where, 

in the next column, column 5, of the matrix, machine 1 is the only entry and is already at the head 

of the list so that no change is necessary in this case. This process is repeated for each of the 

remaining columns of the matrix of Figure 5.1.1, and finally results, as indicated in the last line of 

of Table 6.2.1, in the new row order of 3,2,5,1,4 being determined. 
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Row list 

For c o l u m n n o . 

New row o r d e r 

T a b l e 6 . 2 . 1 

S t a g e s in row r e o r d e r i n g using the R0C2 a l g o r i t h m 

Column reordering is carried out in a similar way but starting with the current column order 1, 2, 3, 

4, 5, 6, 7 and the current row order 3, 2, 5, 1, 4 (this is equivalent to Figure 5.1.2), and the 

stages involved are shown as the successive lines of Table 6.2.2, where the new column order is 

determined as 1, 3, 7, 2, 4, 6 and 5. 

C o l u m n list 

5 1 2. 3 4 5 6 7 

4 2_ 4_ 6_ 1 3 5_ 7 

For row n o . 3 2 4 6 5 1 3 1 

2 1 7 2 4 6 5 1 

1 1 1 1 2 4 6 5 

New c o l u m n o r d e r 1 3 7 2 4 6 5 

T a b l e 6 . 2 . 2 

S t a g e s in c o l u m n r e o r d e r i n g using the R0C2 a l g o r i t h m . 

It will be seen that the final row and column orders are the same as those in Figure 5.1.3. 

6.4 A NEW RELAXATION PROCEDURE 

One of the most difficult problems in using the algorithms to group machines and components is 

that some machines are required by a large number of components. Most algorithms discussed have 

not contained any effective means of dealing with this problem at all. Yet, if there is to be any 

hope of applying such an algorithm in practice, this problem must be overcome. 

If these machines are treated in the normal way, they will dominate the results in such a way that 

no effective grouping could be deduced. By giving them a high priority as in King's (1980) 

relaxation procedure, the side effect, namely the very large increase in the dimensionality of the 
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problem, becomes unacceptable. 

The method proposed here is to give these machines less emphasis. By their nature, they tend to 

be either simple machines or highly sophisticated ones. In cases where they are fairly simple, like 

centre lathes, they tend to exist in large numbers and hence will be available in more than one cell. 

If they are highly complicated machines which are capable of a large range of operations, they 

would need to be treated separately. In either case, by disregarding them during certain stages of 

grouping in order to remove their dominant effects, and reinstating them at a later stage, it is 

possible to find the underlying pattern which otherwise might not be found. 

Hence, a new relaxation procedure for the bottleneck machines is simply to ignore those machines 

(rows) during the shifting process. This has the effect of slightly reducing the size of the,problem 

instead of greatly increasing it as was the case in King's relaxation method mentioned earlier. The 

operation of this new procedure can be best illustrated by considering the example shown in Figures 

6.3.1 to 6.3.4. The ROC2 algorithm was applied to the original incidence matrix of Figure 6.3.1, in 

the manner already described. It is clear, as shown in Figure 6.3.2 (the result generated after the 

two iterations of the algorithm), that machines 8 and 6 are required by a large proportion of the 

components and may thus be considered to be bottleneck machines. Two further iterations of the 

ROC2 were therefore carried out, but ignoring the bottleneck machines 8 and 6. The result, as 

shown in Figure 6.3.3, is that a general but incomplete pattern of a block diagonal form begins to 

take shape. At this stage, various block diagonal combinations are possible, depending upon the 

numbers of machines 8 and 6 that can be provided. For example, if there are two of each of these 

machines available, then only two distinct machine-component blocks are feasible. Reference to 

Figure 6.3.3, however, shows that there are three possible alternative band mergings, namely (i) 7 

and 2, 3 and 4, (ii) 7 and 3, 2 and 4, (iii) 7 and 4, 2 and 3. After merging, the ROC2 algorithm 

must be applied again to carry out the required regrouping. Figure 6.3.4 shows a combination which 

requires four machines 8 and three machines 6, with one exceptional element. This was achieved 

by simply allowing each band (except band 4) naturally to form a block with the machines 8 and 6, 

and since there was only one component (no. 3,4) requiring machine 6, it was decided to assign 

this component to machine 6 in band 2. The result compares favourably with King's (1980) previous 

solution (four 8"s, four 6's and two exceptional elements) and Burbidge's (1973) solution (four 8"s, 

four 6's and three exceptional elements). 
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FLOW MATRIX AFTER 0 I T E R A T I O N S 

LOCATIONS 
O O O O O O O O O I 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 1 3 3 3 3 U 3 1 1 1 'I 
1 2 3 5 6 ? 8 9 0 1 2 3 ^ 5 6 7 8 9 0 1 2 3 1 5 6 7 8 9 0 1 2 3 ^ 5 6 ? 8 9 0 1 2 3 
COMPONENTS 
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 ^ ^ ^ ^ 
1 2 3 1 5 6 7 8 9 0 1 2 3 'I 5 8 7 8 9 0 1 2 3 1 5 6 7 8 9 0 1 2 3 8 5 6 7 8 9 0 1 2 3 

1) 1 1 1 
2) 2 1 1 1 1 1 1 1 1 
3> 3 1 1 1 1 1 
*1) *J 1 1 1 1 1 1 1 
5 ) S 1 1 1 1 1 1 1 1 1 1 1 1 1 
6 ) 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
7 ) 7 1 1 1 
8 ) 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
9 ) 9 1 1 1 1 1 1 1 1 1 1 

10) 10 1 1 1 1 1 1 1 1 
11) 1 1 1 1 1 1 1 1 
12) 12 1 1 1 1 1 
13> 13 1 1 
1*0 1*1 1 1 1 1 
15) 15 1 1 .1 1 1 1 1 
16) 16 1 1 1 1 1 1 1 1 

Figure 6.3.1 



FLOW MATRIX AFTER 2 TTERATTON(S) 

LOCATIONS 
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 
COMPONENTS 
0 1 0 3 1 2 4 0 3 3 2 2 0 0 2 2 2 4 1 1 1 3 4 3 4 1 0 0 1 3 3 2 2 1 1 0 
1 2 2 7 9 3 3 8 1 B 8 II 3 9 7 0 1 1 5 1 3 9 2 2 0 7 6 7 4 3 4 5 6 0 8 4 
1 1 1 1 1 1 1 1 1 1 1 ! 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 
1 

1 1 
1 

1 1 1 
1 

1 1 1 1 I 
1 

1 1 1 
1 

1 1 1 
1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 1 1 1 
1 1 1 

1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 1 

3 3 3 i| l| H 
7 8 9 0 1 2 3 

3 3 0 2 1 3 2 
5 0 5 9 6 6 2 

1) 8 
2) 6 
3 ) 10 
4 ) 7 
5 ) 9 
6 ) 1*1 
7) 16 
8) 2 
9 ) 11 

10) 1 3 
11) 5 1 1 1 1 1 1 1 1 1 1 1 1 
12) 4 1 1 1 1 1 1 1 
13) 15 
14) 3 
15) 12 
16) 1 

1 

Figure 6.3.2 



FLOW MATRIX AFTER R ITERAT ION!S ) 

1) 0 
2 ) 6 
3> 10 
' I ) 7 
r>) 9 
6 ) 2 
7 ) 16 
0 ) 1R 
9 ) 1 

1 0 ) 5 
I D R 
1 2 ) 15 
1 3 ) 11 
1R) 13 
1 5 ) 12 
1 6 ) 3 

LOCATIONS 
0 0 0 0 0 0 0 0 0 1 1 1 1 
1 2 3 R 5 6 7 8 9 0 1 2 3 
COMPONENTS 
0 1 2 1 3 3 2 «0 3 R 3 3 1 
1 3 5 2 1 9 6 »2 7 2 8 2 0 
1 1 1 !1 1 1 
1 1 1 1 !1 1 1 1 
1 1 1 1 1 1 i ; 
1 1 1 • 

I i 1 1 1 1 1 
H 1 1 1 1 1 

11 
1 1 1 1 1 

1 1 

2 R 1 0 0 
R 7 

1 1 1 

1 1 

2 
0 

3 
5 

1 1 1 

2 2 
1 2 

1 1 1 

1 1 

1 1 

2 2 
5 6 

0 0 
5 9 

1 

2 2 
8 9 

2 2 
3 9 
1 
1 

1 1 1 
1 1 1 

3 

3 
0 

R 
1 
1 

3 3 3 3 3 3 3 3 3 R R R R 
1 2 3 R 5 6 7 0 9 0 1 2 3 

3 0 1 1 12 0 2 3 2 1 2 3 3 
3 8 5 6 «R 3 7 0 0 1 2 R 6 

1 n 1 1 1 1 
1 1 * 

• 1 

1 1 1 

1 1 1 1 1 1 ! 

1 1 1 

L 

1 1 

Figure 6.3.3 



FLOW MATRIX AFTER 6 I T E R A T I O N ( S ) 

( 1) 10 
2 ) 7 
3 ) 6 
H) 8 
5 ) 9 
6 ) 2 
7 ) 16 
0 ) 6 
9 ) 8 

10 ) 1*1 
11 ) 1 
12 ) 3 
13 ) 5 
1 *0 M 
1 5 ) 15 
16 ) 8 
17 ) 6 
18 ) 11 
1 9 ) 8 

( 2 0 ) 13 
( 2 1 ) 12 

LOCATIONS 
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 
1 2 3 ** 5 6 7 8 9 0 1 2 3 *l 5 6 7 8 9 
COMPONENTS 
0 1 2 1 3 3 2 0 3 3 *t 3 1 2 *l 1 0 0 1 
1 3 5 2 9 1 6 2 7 8 2 2 0 8 0 8 *4 7 7 
1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 1 4 M 
0 1 2 3 1 5 6 7 8 9 0 1 2 3 5 6 7 B 9 0 1 2 3 

3 0 3 3 1 1 2 0 2 0 2 1 3 * 1 0 1 1 2 0 2 2 3 1 2 
5 6 1 6 9 1 1 5 3 9 9 3 3 1 8 5 6 1 3 7 0 0 1 2 

1 1 1 
1 1 1 
1 1 

1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 
1 1 1 1 
1 1 1 1 

1 1 
1 1 1 1 1 

1 1 1 1 1. 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 

c n 

1 1 1 1 1 
1 1 1 1 1 
1 1 
1 1 1 1 1 

Figure 6.3.4 

Figure 6.3 
Illustration of the use of the new relaxation procedure 
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6.5 INTERACTIVE R0C2 ALGORITHM 

In order that the new relaxation procedure could be implemented efficiently, an interactive program 

is extremely useful, though not absolutely vital. However, an interactive algorithm would allow the 

analyst to use more information which has largely been left out or cannot be handled directly by 

any algorithm. The analyst would be able to use his insight and local knowledge to ensure that the 

suggested groupings are meaningful in the local context. 

By implementing ROC2 as an interactive routine, it is possible to utilise our sophisticated visual 

perception in helping to find a pattern. (It is well known that the human brain has extensive 

capabilities in searching for and processing even very complicated visual patterns.) By way of an 

illustration, consider the problem stated by de Witte (1979). The original matrix is shown in Figure 

6.4.1. It can be seen that the components could be divided into two groups if machines F, G and 

J can be duplicated, which is the case in this instance. Figure 6.4.2 shows the grouping after the 

duplications are carried out. This solution is almost identical to the one derived by de Witte after a 

labourious process. 

M/Cs A B C D E F 6 H I J K L 
M/Cs 2 1 1 2 1 4 5 1 2 7 3 1 

1 1 1 1 • 1 
2 1 1 1 1 1 1 
3 1 1 1 1 1 1 
4 1 1 1 1 
5 1 1 1 1 1 

C 6 1 1 1 1 1 
0 7 1 1 1 1 
M 8 1 1 1 1 1 1 1 
P 9 1 1 1 1 1 1 
0 10 1 1 1 1 
N 11 1 1 
E 12 1 1 1 
N 13 1 1 1 1 
T 14 1 1 1 
S 15 1 1 

16 1 1 
17 1 1 1 
18 1 1 1 
19 1 1 

F i g ure 6 . 4 . 1 
de Wi t te s o r i g i n a l machine compo nent ma 
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M / C s A B C D E F G H I J F G J K L 

1 

2 

3 
4 

5 

1 
1 1 1 
1 1 

1 
1 
1 

1 1 
1 1 1 1 1 

1 1 1 1 
1 1 1 

1 1 
1 
1 1 

1 
1 1 

1 1 1 C 6 

0 7 

M 8 

P 9 

0 10 
N 11 

E 12 

N 13 

T 14 

S 15 

1 1 
1 1 
1 1 
1 

1 
1 1 1 
1 1 1 1 
1 1 1 

1 

1 

16 
17 

18 
19 

1 
1 1 1 

1 1 

1 
1 

F i g u r e 6 . 4 . 2 

de W i t t e ' s m a t r i x after d u p l i c a t i o n p r o c e s s . 

The extended ROC2 procedure is implemented as an interactive program with various facilities to 

rearrange the data in the manner required. It is this mechanism that makes possible the 

experimentation of alternative mergings and groupings of the kind outlined above, as well as taking 

account of the various practical constraints in determining an appropriate feasible solution to the 

problem. The main program can be summarised by the following procedure. 
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IF(start afresh) 

THEN read data from original file 

ELSE read data from continuation file 

END IF; 

REPEAT {the whole loop} 

IF(information about machines and components required) 

THEN print as much as requested 

END IF; 

REPEAT {interaction} 

CASE 

1: zoom a selected part of the matrix for detailed inspection; 

2: specify exceptional elements; 

3: return exceptional elements to normal status; 

4: specify or remove bottleneck status of machines; 

5: increase the number of machines of specific type; 

6: merge machines of the same type; 

END CASE 

UNTIL(no further action required); 

{end of interaction} 

implement ROC2; 

print current matrix and other data as requested 

UNTIL(block diagonal form OR time off to consider next move); 

{end of the whole loop} 

IF(a final answer) 

THEN print the final matrix and lists of machines and components 

ELSE copy all the data to continuation file 

END IF 

Figure 6.5.1 shows the initial machine-component incidence matrix reported by Burbidge (1973) and 

resulting from a practical study at Black and Decker Ltd. The extended ROC2 procedure just 

outlined was applied to this data and the matrix in Figure 6.5.2 was obtained in the ninth iteration 

of the second trial. The first trial, reaching 23 iterations before being terminated, arrived at a similar 

result with a higher number of exceptional elements. The objective of these trials was to show that 

even with a fairly complex matrix such as that shown in Figure 6.5.1, block diagonal structure can 

still be achieved within moderate limits of computing (approximately 0.25 CDC Cyber 174 sec per 

iteration and 20K of memory) and human resources. The computations were carried out without 

specific data about the numbers of the various machine types available, since information of this 

kind was not published in Burbidge's paper. (Had it been available, it could have been readily 

incorporated into the analysis.) 

The R0C2 algorithm will provide a pure block diagonal form if one exists, in just two iterations. 

This means that in a very complicated matrix, various trial assignments of the exceptional elements 
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and transfers of components between machines of the same type can be made and the results of 

the effects can be quickly determined within two iterations. If the outcome is not as expected or 

desired, a quick return to the previous stage can be achieved, followed by another trial run. This 

interactive approach, and the ability of the ROC algorithm quickly to pick out any emerging pattern, 

allows the designer to experiment with various alternatives. It also allows the designer to take 

account, during the process of interaction, of other factors, some of which may be neither 

quantifiable nor easy to formulate in a very precise manner. 

6.6 OTHER APPLICATIONS OF THE ROC2 ALGORITHM 

There are many other situations in which the use of the ROC2 algorithm is also appropriate. In 

loading components for a highly sophisticated numerically controlled machine, where the changing 

time of the tools for various operations become significant, the ROC2 algorithm has been used to 

group the tools and the components appropriately. By loading the components of the same group in 

sequence, the amount of tool changing time can be significantly reduced, without having to resort to 

more complicated techniques. This problem is solved in less than 2 Cyber 174 seconds. An earlier 

attempt to solve it using the SLCA required so much computing time that the job could only be run 

at the weekend, and even then failed to provide any clear grouping. The use of SLCA also requires 

access to a graph plotter. 

The ROC2 algorithm can be used in the case of non 0-1 matrices by sorting the entries in 

accordance with their values during the shifting process of the radix procedure. The airport design 

problem of McCormick et al (1972) is used as an example to illustrate the procedure. The initial 

matrix is shown in Figure 6.6.1 in which the machines and components of the production problem 

are replaced by airport design variables that are under the control of the designers. The degree of 

dependency between the variables is designated as nil, weak, moderate or strong and represented 

in the matrix by the value 0, 1, 2 and 3 respectively. The problem as outlined by McCormick et al 

reduces to that of determining a decomposition of the matrix elements into groups with minimal 

interdependency. This is equivalent to the creation of a block diagonal clustering if possible. 

A straightforward application of the R0C2 algorithm does not highlight the relationships between the 

control variables adequately. However if the matrix is further processed using only entries higher 

than 1, clearer relationships begin to emerge. It is also possible to experiment further by considering 

only the strong elements of value 3 (Figure 6.6.2). As the grouping of the control variables may be 

affected by the starting condition, nine random starting solutions were generated. The R0C2 

algorithm was applied to the 3 entries. Figure 6.6.3 shows the numbers of times particular pairs of 

variables were found within the same group. (Frequencies less than three out of nine are deleted for 

clarity). In most cases, stable relationships emerge. The few elements that are unstable may be 

assigned to the block in which they most frequently appear. 

Although the final matrix using the R0C2 algorithm (Figure 6.6.4) may not look as neat as the 
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solution generated by McCormick et al (Figure 6.6.5), the final groupings are very similar. The ROC2 

algorithm does not require the data to be metric, (they obviously are not in the case of the airport 

design problem); it provides an approach for grouping ordinal data as no objective function is 

required. 

Grigoriadis (1980) suggests that most large scale LP problems can be formulated or permuted into 

a block diagonal structure with a few connecting rows and columns. The bottleneck machines 

example shows how such connecting rows can be identified. The same procedure applied to the 

columns will identify the connecting columns. The R0C2 algorithm can also be used to investigate 

the possible partitioning of the set covering problem (Hey 1980). The preliminary result of an 

investigation into the use of the R0C2 algorithm in conjunction with the State Space Relaxation 

method to solve the Set Covering Problem was encouraging. A problem which could not be solved 

in less than 35 Cyber 174 seconds, was solved in less than 5 seconds using the partition 

generated by the R0C2 algorithm. The lower bounds generated by partitionings using the R0C2 

algorithm also appear to have higher values than those generated by random partitioning (Paixao 

1982). 

6.7 CONCLUSIONS 

A practical solution to the problem of machine-component group formation requires a compromise 

between an objective, explicit and repeatable algorithm on the one hand, and the flexibility of ad hoc 

facilities to cater for specific considerations or constraints on the other hand. Similarity coefficient 

methods are perhaps more explicit and hence more repeatable than most, but there is still much 

more work to be done both on the sensitivity aspects of the various weightings that have been 

advocated, and on the development of an efficient method for selecting one specific set of clusters 

out of all the possible ones which can be generated. Evaluation methods per se are useful in smaller 

problems. The method advocated in this chapter has an explicit and repeatable algorithm (R0C2) 

and provides interactive procedures for ad hoc treatments. As described here, the method does not 

explicitly include other considerations such as machine capacity constraints; these can however, be 

incorporated quite easily within the existing data structure. 

It would be unrealistic to hope that procedures such as the R0C2 algorithm will overcome all the 

difficulties associated with machine-component group formation. This problem can be relaxed into a 

well known Graph Theory problem called minimum k-connected, with extra constraints. The basic 

minimum /c-connected problem alone is NP-complete (Garey & Johnson 1979, GT31), which implies 

that it has no known polynomial-time algorithm. The determination of a grouping of machines and 

components that would minimise the total material handling costs between cells would constitute an 

even harder problem. For the moment, therefore, we must be content with procedures which 

provide us with a good feasible solution and allow us to concentrate on more complicated and not 

easily quantifiable issues in an ad hoc and interactive manner. 
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As far as using the R0C2 algorithm as a clustering method is concerned, the main advantages are 

that very few assumptions are made concerning the nature of the data. Another feature is that 

there is no necessity for a prior specification of the number of clusters required. The ROC2 

algorithm is also neither a hierarchical nor an optimizing procedure. As the algorithm is very fast 

and no loss of information of any kind results from the processing, it is ideally suited to exploratory 

data analysis or data reduction on a large set of input, where other methods (such as the Bond 

Energy Method of McCormick et ah may necessitate an unacceptable amount of computing time. 
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7 Sequence-Dependent Setup Time Scheduling Problems 

7.1 INTRODUCTION 

Sequence-dependent setup time scheduling problems (SDSTSPs) are commonly found among the 

cases where single facilities are used in the manufacture of several products. This is more 

pronounced in the process industry where some amount of cleaning may be required between the 

production of various batches, such as in the making of paints and detergents. Other examples can 

be found among the usages of automated multi-purpose machinery, where the setup time between 

various jobs can be very expensive, or in certain assembly lines where retooling and rearrangement 

of work stations represent the setup activity. In practice, even though many scheduling problems are 

strictly sequence dependent in their setup times, it is only beneficial to consider the problems as 

such if the setup constraints are a predominant factor, either in absolute terms or relative to the 

operational cost (time). 

7.2 THE TRAVELLING SALESMAN PROBLEM 

The SDSTSP can be formulated as an asymmetric travelling salesman problem (ATSP). The travelling 

salesman problem (TSP) is one of the most studied combinatorial problems, since many problems 

that arise in practical situations involving sequencing and routing can be formulated as TSPs. The 

TSP can be described as: given an n by n distance matrix between n cities, find a minimum length 

circuit that passes through each city once and only once. The problem can be formalized as: 

Minimize 2 , t a/ 2/ t n c,^ (7.1) 

subject to N Xij — 1 (7.2) 

2 , e N *ij = 1 <7.3) 

Xjj = 1 if arc// is in the tour; x,j — 0 otherwise (7.4) 

Xjj must form a tour (7.5) 

There are various ways to express the constraint (7.5) explicitly (Gavish & Graves 1979). It is, 

however, easy to implement a subtour elimination procedure in a heuristic and hence constraint (7.5) 

will not be elaborated. 

MANAGEMENT SCIENCE IMPERIAL COLLEGE 



-CHAPTER 3 90 

7.3 SOME THEORETICAL CONSIDERATIONS FOR THE TRAVELLING SALESMAN PROBLEM 

The TSP, like certain problems investigated in this thesis, is an NP-complete problem (Garey et al, 

1976). It is, however, easier than the problems considered in earlier chapters, as the size of TSP 

problems that can be solved in a reasonable time is considerably larger. This is achieved by 

imposing certain restrictions on the distance matrix. The two main restrictions are that the matrix is 

symmetric and that the distances are Euclidean. The symmetric property reduces the solution spaces 

by half. The Euclidean constraint, also known as the triangularity constraint, implies that for any /' j 

and k the following condition holds true: 

cik + ckj > Cy (7.6) 

This constraint provides many useful properties which can be used in the search for the solution. 

One of the more important ones is that the order of vertices in the convex hull of the distance 

matrix is the same order in which these vertices appear in the optimal tour (Gonzales, 1962). 

In the case of the SDSTSP, the distance matrix is usually not symmetric and more importantly the 

distances are quite often non-Euclidean. The asymmetric matrix increases the solution spaces by 

100% over the symmetric case. The non-Euclidean property implies that no heuristic can be 

guaranteed to provide a solution within a fixed bound. It is generally recognised that the non-

Euclidean TSPs are significantly more difficult than their Euclidean cousins (Papadimitriou & Steiglitz, 

1978). 

7.4 LITERATURE SURVEY 

The majority of the papers dealing with the TSP are confined to symmetric Euclidean distances. 

Some of the techniques described in these papers can be applied directly or with minor 

modifications to the asymmetric and non-Euclidean cases. The approach of using various Linear 

Programming relaxations (eg Crowder & Padberg, 1980; Miliotis, 1976) will not be discussed as this 

necessitates access to an efficient LP package. Furthermore, the approach is not competitive with 

other branch and bound methods for the asymmetric case (Christofides, 1979). 

An optimal procedure for TSPs is generally based on a relaxation of the original TSP problem either 

into a shortest spanning tree (SST) problem or into an assignment problem (AP). The examples of 

the earlier approach were suggested by Held & Karp (1970, 1971) and Hansen & Krarup (1974). 

The underlying idea of the SST relaxation is that, if a vertex and its two associated arcs are 

removed from a tour, the remaining arcs form a spanning tree. Hence the cost of the shortest 

spanning tree together with the two shortest arcs associated with the removed vertex provides a 

lower bound for the TSP. By using the Lagrangean relaxation technique, the bounds can be updated 

until all but two of the vertices of the spanning tree have degree 2. At this stage a feasible 

solution is found. The AP relaxation is intuitively related to the TSP since the AP is the TSP without 

the constraint (7.5). The solution is obtained by successively solving the problem as an AP witN 
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penalty functions associated with the violations of the constraint (7.5). Recent results suggest that 

the AP relaxations are more useful in the asymmetric case than other forms of relaxation 

(Carpaneto & Toth, 1980; Balas & Christofides, 1981). 

Heuristic approaches to the asymmetric TSP can be divided into two classes; construction heuristics 

and improvement heuristics. The construction heuristics can be divided further into two subclasses; 

tour building and tour patching methods. A tour building method iteratively selects a small number 

of arcs, usually one, by a certain set of criteria until a tour is formed. A typical example is the 

nearest unvisited city heuristic (Eilon et al, 1971). In this heuristic, an arc is selected if it forms the 

shortest arc to an assigned city without creating a subtour. Van Der Cryssen-Rijckaert (1978) 

heuristic is based on a concept of shadow cost, namely a potential loss, if an arc is not assigned at 

a particular stage of the iteration. A shadow cost heuristic will select the arc with the highest 

associated shadow cost for an assignment. Both heuristics have the time complexity of Oin2), and 

in both cases when an arc is assigned it remains part of the tour permanently. In a tour insertion 

heuristic, an assigned arc can be removed in a subsequent iteration. Given a starting point, a 

subtour is created by iteratively inserting a node into the subtour according to a set of criteria, until 

all the nodes are included and a feasible tour is formed. The time complexity of a tour insertion 

procedure is CHn3). The criterion often used in the tour insertion heuristic is the minimization of the 

increase in the subtour cost. 

A tour patching heuristic solves a relaxed problem in the same manner as the optimum procedures. 

The difference is that the relaxed problem is solved only once in a patching heuristic. If the solution 

is a feasible tour, then the optimum solution is achieved. More often, the solution is not feasible, 

and ways have to be found to change the solution into a feasible one. Alk (1980) suggested a 

heuristic based on the SST relaxation where the patching algorithm is carried out by solving an 

associated transportation problem. Karp's (1979) heuristic is based on the AP relaxation, and the 

subtour elimination is also formulated as another assignment problem. 

Improvement heuristics for the asymmetric case are largely extensions of the approaches adopted for 

the symmetric case (Kanelakis & Papadimitriou, 1980). These include the variable depth search and 

n-opt heuristics. 

The only paper found on the interactive approach to TSP problem is by Krolak et al (1971). It is a 

cumbersome manual implementation involving intensive human effort in the interpretation of the 

intermediate solutions in a graphical manner. The visual aspect of the implementation limits the sizes 

of the problems to relatively small ones. The non-Euclidean distances would reduce the potential 

benefit of visual interaction even further. It is unlikely that interaction with the TSP in this manner 

would be beneficial. 
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7.5 A FRAMEWORK FOR EMPIRICAL STUDIES OF SOME HEURISTICS 

One of the results of the Euclidean restriction is that the worst case behaviours of many heuristics 

can be analysed in advance. For example, the nearest neighbour heuristic is guaranteed to produce 

a tour within a factor of log(n) of the optimal value in the symmetric case (Rosenkantz et al, 1977) 

and within a factor of n/2 in the asymmetric case (Frieze et al, 1982). In the non-Euclidean case, it 

cannot be so analysed. To illustrate the difficulty, consider a transformation of a non-Euclidean 

distance matrix to satisfy the triangularity constraint by adding a number M, which may be arbitarily 

large, to all distances. This would lead to the overall increase of the final tour length by nM. 

Hence, the bound guaranteed by the nearest neighbour routine is log(n)(nM + previous optimum). 

Since M may be arbitarily large, there can be no effective guarantee of the bound. Performances of 

various heuristics can only be compared empirically. 

Four construction heuristics are studied. The first is based on the bounding calculations suggested 

by Little et al (1963). Although the bounds calculated are not as tight as the ones generated by the 

use of AP or SST relaxation, Little's method always considers only feasible solutions and hence 

does not require further patching procedure, as is the case of AP or SST relaxation. The heuristic 

can be summarised as follows: 

REPEAT 

for every row /', reduce cost c,y by c, , 

where c, is the minimum of row /'; 

for every column j, reduce cost Cy by Cy, 

where is the minimum of column j-, 

for every c,y = 0, calculate the increase in the 

lower bound by — p(/) + q(j), 

where 

p(i) — min c,k k ^ /', 

q(i) — min ckJ k j: 

assign arc ay to the solution for the maximum by, 

update the matrix to prevent subtour formation; 

UNTIL a tour is assigned 

The value of by is the potential increase of the lower bound of the TSP if the arc ay is excluded 

from the tour (Little et al, 1963). At any stage of the iteration, an arc is included if its exclusion 

results in the highest increase of the lower bound, by. The second heuristic tested is the standard 

nearest unvisited city adapted for the asymmetric case. The third heuristic is based on a shadow 

cost method and the final one is the nearest tour insertion heuristic. 

A shadow cost of an arc can be defined in many different ways. In this chapter, two definitions of 

shadow costs are studied. The more comprehensive one, to be called shadow 1, is similar to the 
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one suggested by Van Der Cryssen & Rijckaert (1978). The second definition, shadow2, takes a 

simplistic approach. In the shadow 1 definition, the shadow cost of an arc is defined as the 

difference between the cost of the best local assignment if the arc is excluded from consideration, 

and the best local assignment if the arc is included. A local assignment is an allocation of an arc 

entering or leaving a node if the node has already been assigned as leaving or entering the node 

respectively. In the case where no arc has been assigned to the node, the combined cost of arc 

entering and leaving the node will be considered in the calculation of the shadow cost. In the Van 

Der Cryssen-Rijckaert heuristic, the shadow cost is not used in a consistent manner. This leads to 

some different assignment criteria to the ones used in the shadow 1 heuristic. Some of these 

differences will be indicated in the next section. 

7.5.1 Shadowl Heuristic for the Asymmetric Travelling Salesman Problem 

A shadow cost heuristic essentially considers assigning an arc if a penalty associated with the 

alternative assignment is highest, in order that the discussion regarding a local arrangement can be 

conveniently carried out, the following notations are adopted: 

/': node under consideration; 

x v x2, x3: the shortest, the second shortest 

and the third shortest arcs into node i respectively; 

yv y2, y3: the shortest, the second shortest 

and the third shortest arcs leaving node i respectively; 

TX1, TX2, TX3: the nodes associated with the three shortest 

arcs into node /' such that c(TX 1, i) — xv 

(ATX2, /) = x2, and ciTX3, i) = x3; 

7Y1, TY2, TY3: the nodes associated with the three shortest 

arcs leaving node /' such that c(i, TV1) = yv 

c(i, TY2) = y2, and di, TY3) = y3; 

A representation of the above description is shown in Figure 7.1.3. It should be noted that x3 and 

yz are not represented in the following diagrams as their relative locations do not affect the 

shadow cost consideration. 
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Figure 7.1.1 

Case 1 of an active node under consideration 

in a shadow cost heuristic, an arc is assigned at each iteration by considering all the nodes. A 
node can be in one of the following states: A node is nonactive when an arc entering and an arc 
leaving the node have already been assigned. A node is partially active if an arc entering or leaving 
the node is assigned. Finally, a node is active is there is no assigned arc entering or leaving the 
node, if a node is nonactive, it is not processed, if the node is partially active and the arc leaving 
the node has already been assigned, the shadow cost of the arc (7X1, /) is x2 - xv Similarly the 
shadow cost of the arc(/, 7Y1) is y2 - y, when the arc entering node / has already been assigned, 
in the case of a fuliy active node, there are seven possible configurations regarding the locations of 
nodes 7X1, 7X2, 7Y1 and TY2. The first and second configurations are shown in Figures 7.1.1-
7.1.2. 

Figure 7.1.2 
Case 2 of an active node under consideration 

It will be seen that in cases 1 to 5 the cheapest pair of incident arcs of a node are 8rcs (7X1, ii 

and (/, 7Y1), for a cost of x1 - f yv in both cases 1 and 2 the least cost combination excluding 
the arc (7X1, /) is arc (TX2, ii and (/', 771) at the cost of x2 + yv Hence the shadow cost of arc 
(7X1, ii is x2 - x v Similarly it can be shown that the shadow cost of arc (/', 7X1) is y2 - yv The 
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shadow cost with respect to node / is 

Max(x2 - x v y2 ~ Yi) (7.7) 

Figure 7.1.3 

Case 3 of an active node under consideration 

in case 3, if the arc (7X1, /) is excluded, there are two possible candidates for the least cost 

combinations; arc (7X2, t) together with arc (/, TY2), or arc (7X3, i) together with arc (/, 7Y1). (It 

should be noted that Van Der Cryssen-Rijckaert heuristic only considers the latter combination). The 

shadow cost of the arc (7X1, /) is 
Min {(x2 + y2) - (x, + y,), Xg - x,] 

The shadow cost of the arc (/, 7Y1) is the same as in cases 1 and 2. The shadow cost with 

respect to node / in case 3 is 

Max { Min((x2 - f y2) - (x, + y,), Xg - x,), y2 - y,] (7.8) 

Similarly, it can be shown that the shadow cost in case 4 is 

Max [ x2 - x v Min((x2 + y2) - (x, + y,), y3 - y,)] (7.9) 

and the shadow cost in case 5 is 

Max [ Min((x2 -I- y2) - (x, + y,), xs - x,), Min((x2 + y2) - (x, + y,), y3 - y,)] (7.10) 

In cases 6 and 7, Figures 7.1.6-7.1.7, there are two main candidates, namely arc (7X1, r) together 

with arc (/, 7"Y2) or arc(7X2, /) together with arc (/, 7Y1). The shadow cost is 

Abs[(x1 + y2) - (x2 + y,)] (7.11) 

7.S.2 Shadow2 Heuristic for the Asymmetric Travelling Salesman Problem 

The shadow2 heuristic is a simplified version of the shadow 1 procedure. In the case of the partially 

active nodes, the shadow cost calculations are exactly the same. In the case of the active nodes 

the shadow cost function is the same as the cases 1 and 2 of the shadow 1 heuristic. Both shadow 
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cost heuristics can be summarised as: 

REPEAT 

FOR i — 1 TO n DO calculate the shadow cost; 

select the arc with the highest shadow cost; 

assign the arc and update the matrix; 

UNTIL a tour is formed; 

7.5.3 Implementations of 3-Opt and 4-0pt Improvement Heuristics 

improvement heuristics considered in this chapter are limited to the 3-opt and 4-opt versions for the 

asymmetric case only. An n-opt improvement heuristic considers removing n existing arcs, to be 

replaced by n new ones. The 3-opt heuristic for the symmetric case involves seven extra 

alternatives (Eilon et al, 1971). In the asymmetric case, there is only one extra option as shown in 

Figure 7.2. In the other six cases, the asymmetric counterparts require parts of the original tour to 

have the direction of traversal reversed. Although this may lead to alternative tours, it is considered 

unlikely that such changes in the tour would result in the lowering of the tour length. The 3-opt 

implementation will consider the case 1 in Figure 7.2 as the only alternative. The runtime complexity 

of the 3-opt heuristic is CXn3). 

The 4-opt heuristic generates 5 extra alternatives as shown in Figures 7.3.1-7.3.2. (In the 

symmetric case, there are 46 extra alternatives). Closer inspection of these alternatives reveals that 

only case 4 in Figure 7.10 involves four new arcs. The remaining three cases involve only three 

new arcs, and as such, the implementation of the 4-opt in a straightforward manner involves many 

repeated calculations of these four cases. The four cases can be efficiently implemented as 3-opt 

exchanges. Kanellakis & Papadimitriou (1980) suggest a fast implementation of the 4-opt exchange 

of case 4. This implementation, even though it still has a worst case behaviour of Otn4), should run 

somewhat faster than the direct implementation. 

As the improvement heuristics are likely to be much slower than their construction counterparts, the 

steepest descent strategy may not always be appropriate. The steepest descent requires a complete 

search of all possible improvements, followed by the selection of the one with the largest reduction. 

The search procedure is then repeated until there is no further improvement. In order to study the 

effects of the selection strategies, two implementations of the 3-opt and 4-opt heuristics are tested. 

The first set, greedy strategy, exchanges arcs as soon as a beneficial exchange is found. Once the 

exchange has taken place, the search is restarted at the last unchanged condition. The second set 

implements the steepest descent strategy. In the greedy strategy, the solutions of the 3-opt heuristic 

are used as starting solutions for the 4-opt searches. Improvement strategies are implemented 

independently in the implementation of the steepest descent strategy. There are some other 

exchange strategies, all of which will be faster than the steepest descent strategy and most will be 

slower than the greedy strategy. The results from the two selected implementations provide bench 

marks for other 3-opt and 4-opt exchange strategies. 
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SDW1 SDW2 SDW1 SDW2 SDW1 SDW2 SWD1 SDW2 

1 84 69 21 67 55 1 177 146 21 165 161 

2 91 99 22 71 63 2 150 150 22 171 172 

3 87 87 23 56 51 3 185 185 23 119 134 

4 91 91 24 65 64 4 189 189 24 168 152 

5 115 117 25 70 112 5 285 247 25 169 200 

6 88 88 26 81 79 6 208 173 26 203 183 

7 84 69 27 75 65 7 187 187 27 140 192 

8 88 89 28 81 85 8 192 192 28 151 179 

9 91 87 29 69 73 9 189 241 29 181 170 

10 99 103 30 59 50 10 237 232 30 152 160 

11 82 91 31 63 69 11 216 216 31 219 178 

12 79 89 32 76 61 12 175 224 32 163 160 

13 97 102 33 84 62 13 169 163 -33 239 162 

14 85 73 34 54 73 14 151 167 34 160 157 

15 97 103 35 68 61 15 197 199 35 203 186 

16 79 73 36 103 62 16 166 164 36 157 169 

17 80 74 37 49 57 17 171 197 37 126 123 

18 75 76 38 54 51 18 193 181 38 125 125 

19 86 103 39 45 53 19 204 189 39 218 137 

20 114 80 40 53 72 20 164 197 40 151 143 

Cost range 0- 50 Cost range 0-99 

Construction solutions of Shadowl and Shadow2 heurisics 

Table 7.1 

7.6 SHADOW COST HEURISTICS IN COMPARISONS 

The two versions of the shadow cost heuristics, shadow 1 and shadow2, are tested by comparing 

their solutions to randomly generated problems. The sizes of the test problems vary from 20 to 90 

cities and the distances between cities vary from 0 to 50 in the first set of 4 0 problems, and 0 to 

99 in the second set of 4 0 problems. The results of the tests are shown in Table 7.1. In the first 

set of problems (cost range 0-50) the two heuristics performed equally well; the shadow 1 heuristic 

provides better construction solutions for 18 problems and the shadow2 heuristic provide better 

solutions on 19 occasions. However, when the cost ranges from 0 to 99, there are some 

indications, though not statistically significant, that the shadow2 heuristic performed better than the 

more elaborate shadow 1 (shadow2 was better on 20 occasions and shadow 1 was better on 13 

occasions). As the shadow2 heuristic seems to be more robust than the shadow 1 heuristic, the 

implementations of the shadow cost heuristic in subsequent tests are restricted to the shadow2 

formulation only. In addition, any further reference to the shadow cost heuristic refers to the 

shadow2 heuristic, unless stated otherwise. 
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7.7 COMPARATIVE RESULTS FOR VARIOUS HEURISTICS FOR THE ATSP 

In the testing of the heuristics for the ATSP, various practices adopted earlier in the testing of the 

MPG are also observed. A notable one is that the codes are designed primarily to be both efficient 

and compact; faster execution times can be achieved if less compact data structures are used. The 

program, approximately 1600 lines long, is written in Pascal and run on a Cyber 174 using the 

Pascal 6000 compiler, with runtime checking suppressed. The forty test problems are randomly 

generated with the size ranging from 20 to 90 cities and the cost ranging from 0 to 99. 

7.7.1 Comparisons of the Construction Heuristics 

Construction solutions by various heuristics are shown in Table 7.2. It is obvious that the Little 

heuristic is distinctly better than others being tested; the lowest level for the significant tests is 

96%. The shadow cost heuristic performs better than the nearest unvisited city heuristic, which in 

turn is better than the nearest tour insertion routine. A general impression that the nearest tour 

insertion heuristic performs poorly in larger problems is confirmed by the run test. 

Table 7.3 shows the runtime of construction heuristics. The empirical complexity of the Little 

heuristic is 

The empirical complexities of both heuristics are less than the theoretical values, CKri3) and Otn2); 

the faster executions were achieved by the use of fast matrix updating procedures which only 

recalculate the affected elements and employ efficient use of flags. The empirical complexity of the 

nearest unvisited city heuristic is marginally less than that of the shadow cost heuristic. The 

empirical complexity of the shortest tour insertion heuristic (0.16 n2-88) is close to the theoretical 

bound, CXn3), which is due to the lack of suitable features for fast updating in the algorithm. 

7.7.2 Improvement Strategies and Their Consequences 

The final results of the combined effort of the construction and improvement heuristics are shown in 

Tables 7.4-7.7. It is clear from the tables that the relative merits of the construction heuristics are 

not affected by the use of the improvement heuristics. The only exception is that the shadow cost 

and 4-opt heuristics combined to produce results of roughly the same merit as the results produced 

by the Little and 3-opt heuristics. The dominant role of the construction heuristics in the ATSP is 

similar to that found in the MPG. 

As mentioned earlier in Section 7.5.2, the overall theoretical time complexities of both improvement 

heuristics and their possible interactions necessitate some experimentation. Tables 7.4 and 7.5 show 

the costs and execution times of the final solutions of the greedy strategy, which exchanges arcs as 

soon as beneficial ones are found. Similarly, Tables 7.6 and 7.7 show the costs and times of the 

f = 0.37 n2-29 

and the complexity of the shadow cost heuristic is 

t = 0.41 n1-85 

(7.12) 

(7.13) 
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steepest descent strategy. Only 25 smaller problems were examined in the second test as times 

required for the larger problems were deemed to be excessive. 

The effects of the improvement strategies on the Little construction heuristic seem to be minor. 

They are no obvious gains in applying the steepest descent strategy as far as the 3-opt heuristic is 

concerned. For the 4-opt heuristic, there are some indications, though statistically not significant, 

that the steepest descent strategy provided better solutions. The relatively small impact may be due 

to the fact that the Little heuristic provides solutions close to local optimal values, and hence more 

extensive searches are not always more productive. The expected benefit of the more extensive 

searches in the improvement strategies is confirmed in the cases where poorer construction 

heuristics are used. The solutions are significantly poorer in the case where the greedy strategy is 

used compared to the ones achieved by the use of the steepest descent strategy. The poorer the 

construction solutions, the larger are the benefits. 

The combined performances of the construction and improvement heuristics can be ranked as 

follows: 

Little + 4-opt 

Little + 3-opt, shadow cost + 4-opt 

shadow cost + 3-opt 

nearest unvisited city + 4-opt 

nearest unvisited city + 3-opt 

shortest tour insertion + 4-opt 

shortest tour insertion + 3-opt 

The complexity implication of the combined heuristics is clear: the steepest descent strategy is very 

time consuming to execute. For the Little and 3-opt methods, the empirical complexity of the total 

runtime is 0.13 n2-74 and 0.05 n3 04 in the cases of the greedy and steepest descent methods 

respectively. The time requirement is exacerbated in the case of the 4-opt heuristic, rising from 

0.16 n2-71 in the case of greedy strategy to 0.05 n3-20 in the case of the steepest descent 

method. The poorer the initial construction heuristic is, the larger the difference in the two methods. 

7.7.3 implementation Implications 

From all the tests carried out, it is evident that the Little construction heuristic provides a cost 

effective method for obtaining a "good" solution for the ATSP. Approximately 3 0 % of the solutions 

provided by the Little heuristic cannot be improved by the uses of 3-opt and 4-opt heuristics. In the 

cases where improvements are possible, only one or two iterations are usually needed to reach the 

local optima. The use of the steepest descent strategy may not be suitable in many cases; it can 

be argued that for very large problems, say 300 vertices, the difference between the execution 

times required is too large (27 minutes against 14 minutes). It may be more beneficial to try to 

obtain additional solutions using alternative construction heuristics. The shadow cost heuristic is a 

possible alternative, as it has an approximately 3 0 % chance of providing better solutions than those 
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achieved by the Little heuristic. The nearest unvisited city and the shortest tour insertion heuristics 

generally provide poorer results. 

7.8 INTERACTIVE ASPECTS 

It is unlikely that an interactive, graphical representation of the results of a large problem will be 

more useful than a more conventional representation. A possible method of interaction is the 

manipulation of the distance matrix. As the selection of an arc results in the total exclusion of other 

contending candidates, it is relatively easy, by changing some elements of the distance matrix, to 

represent certain operating requirements such as priority jobs and precedence requirements. 

7.9 CONCLUSIONS 

The comparative solutions and runtimes on the randomly generated problems indicate the clear 

advantage of the Little construction heuristic over other construction strategies tested. The solutions 

from the Little construction procedure are usually near or at local optima. The dominance of the 

construction technique over the improvement procedure is also clear and hence the use of an 

effective construction heuristic is crucial in obtaining a good result. The excecution times of the 

steepest descent strategy during the improvement phase for larger problems are found to be 

prohibitive, and consequently this strategy is not suitable for general use. 
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P R O B L E M H E U R I S T I C S 

SIZE NO LIT NUC SDN NTU MAX MIN 

1 123 197 146 247 247 123 

2 145 255 150 2 5 1 255 145 

20 3 195 291 185 248 2 9 1 185 

4 171 304 189 188 304 171 

5 193 293 247 373 373 193 

6 156 227 173 252 252 156 

7 153 278 187 382 382 153 

8 194 303 192 3 1 1 3 1 1 192 

9 162 3 7 1 241 300 3 7 1 162 

10 185 331 232 334 334 185 

11 179 402 216 373 402 179 

12 179 434 224 369 434 179 

13 167 363 163 341 363 163 

14 153 347 167 328 347 153 

.15 198 372 199 373 373 198 

16 175 365 164 393 393 164 

17 194 338 197 343 343 194 

18 188 386 181 439 439 181 

19 157 399 189 299 399 157 

20 170 376 197 483 483 170 

21 233 3 0 9 161 358 358 161 

22 140 3 8 1 172 443 443 140 

23 185 294 134 453 453 134 

24 198 389 152 457 457 152 

25 150 365 200 4 8 1 4 8 1 150 

26 177 362 183 445 445 177 

27 225 310 192 525 525 192 

28 273 368 179 418 418 179 

29 152 418 170 473 473 152 

30 129 3 6 1 160 465 465 129 

31 134 3 5 1 178 4 8 1 4 8 1 134 

32 165 347 162 552 552 162 

33 155 363 162 514 514 155 

34 143 309 157 557 557 143 

35 143 387 186 460 460 143 

36 131 404 169 513 513 131 

37 125 336 123 525 525 123 

38 133 355 125 496 496 125 

39 141 3 3 1 137 486 486 137 

40 130 348 143 526 526 130 

T a b l e 7.2 

C o n s t r u c t i o n c o s t s of ATSP h e u r i s t i c s 
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P R O B L E M H E U R I S T I C S 

SIZE NO LIT NUC SHW STI MAX MIN 

1 332 48 105 99 332 48 

2 317 54 101 95 317 54 

20 3 302 50 100 95 302 50 

4 318 55 104 91 318 55 

5 325 54 118 93 325 54 

6 692 99 218 293 692 99 

7 709 110 229 279 709 110 

8 727 102 229 294 727 102 

9 742 111 225 290 742 111 

10 744 105 229 292 744 105 

11 1220 180 384 653 1220 180 

12 1337 181 381 655 1337 181 

13 1303 177 375 662 1303 177 

14 1317 176 373 677 1317 176 

15 1303 176 389 636 1303 176 

16 2290 267 532 1247 2 2 9 0 267 

17 2223 268 585 1246 2 2 2 3 268 

18 2 3 5 1 278 559 1222 2 3 5 1 278 

19 2228 282 553 1260 2 2 2 8 282 

20 2261 295 557 1272 2 2 6 1 295 

21 3198 338 742 2 1 1 9 3 1 9 8 338 

22 3520 378 778 2 1 3 1 3 5 2 0 378 

23 3 1 9 1 373 785 2 1 0 1 3 1 9 1 373 

24 3376 380 786 2158 3376 380 

25 3332 383 763 2 1 0 8 3332 383 

26 5358 516 1106 3442 5 3 5 8 516 

27 5290 477 1 0 6 5 3412 5 2 9 0 477 

28 5203 514 1 0 7 1 3450 5 2 0 3 514 

29 5087 539 1066 3 4 1 1 5087 539 

30 5075 495 1095 3409 5 0 7 5 495 

31 7318 652 1398 5064 7 3 1 8 652 

32 7 3 8 1 6 3 9 1387 5043 7 3 8 1 639 

33 7248 665 1418 5047 7 2 4 8 665 

34 7568 615 1393 5085 7 5 6 8 615 

35 7 2 2 1 684 1412 5087 7 2 2 1 684 

36 9614 804 1748 7133 9614 804 

37 9986 810 1626 7 0 4 5 9 9 8 6 810 

38 8909 819 1734 7076 8 9 0 9 819 

39 9304 770 1704 7 1 0 6 9304 770 

40 10449 806 1728 7182 10449 806 

T a b l e 7.3 

C o n s t r u c t i o n t i m e ( m i l - s e c ) of ATSP h e u r i s t i c s 
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H E U R I S T I C S 

P R O B L E M LIT NUC SHW STI 

N O . 30PT 40PT 30PT 40PT 30PT 4 0 P T 30PT 4 0 P T MAX MIN 

1 123 123 163 163 117 117 170 170 170 117 

2 145 145 174 174 150 145 182 176 182 145 

3 193 193 230 189 180 169 233 224 233 169 

4 171 171 189 183 171 171 175 175 189 171 

5 193 193 227 227 2 1 1 2 1 1 244 244 244 193 

6 153 153 156 156 157 152 200 169 200 152 

7 145 145 193 176 181 155 2 0 9 197 209 145 

8 189 189 204 190 170 167 247 214 247 167 

9 162 162 212 211 193 188 279 254 279 162 

10 185 185 237 237 204 204 226 214 237 185 

11 173 173 234 223 206 187 217 206 234 173 

12 1 7 1 161 195 195 189 167 243 243 243 161 

13 167 141 200 193 1 6 1 161 205 192 205 1 4 1 

14 149 149 191 154 160 160 182 158 191 149 

15 194 188 240 224 187 186 295 277 295 186 

16 152 152 203 203 164 164 228 197 228 152 

17 184 168 191 191 166 164 255 240 255 164 

18 162 162 222 209 174 174 208 208 222 162 

19 157 157 190 186 157 155 2 0 1 199 201 155 

20 167 167 236 233 173 173 215 206 236 167 

21 163 163 185 181 158 158 2 0 1 186 201 158 

22 140 140 206 192 161 159 258 225 258 140 

23 135 135 175 167 133 131 218 196 218 131 

24 160 151 218 208 152 150 243 240 243 150 

25 150 150 200 196 159 159 237 218 237 150 

26 167 165 2 1 1 194 168 168 2 1 1 198 211 165 

27 140 127 198 182 136 136 233 197 233 127 

28 147 147 208 199 165 162 242 233 242 147 

29 152 152 231 208 166 166 245 210 245 152 

30 129 127 190 174 155 155 252 2 2 1 252 127 

31 131 131 209 206 143 143 265 231 265 131 

32 157 154 222 212 154 153 238 225 238 153 

33 140 140 210 210 160 160 215 202 215 140 

34 142 142 179 178 150 150 290 258 290 142 

35 139 139 205 204 159 159 212 212 212 139 

36 131 131 207 194 153 153 2 4 1 230 2 4 1 131 

37 125 121 188 188 123 120 240 237 240 120 

38 125 119 165 160 121 121 233 2 1 1 233 119 

39 127 126 179 179 137 136 273 246 273 126 

40 130 130 221 202 143 143 224 219 224 130 

T a b l e 7.4 

F i n a l s o l u t i o n s of ATSP h e u r i s t i c s 

( G r e e d y e x c h a n g e s t r a t e g y ) 
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H E U R I S T I C S 

P R O B L E M LIT NUC SDN STI 

N O . 30PT 40PT 30PT 4 0 P T 30PT 40PT 30PT 40PT MAX MIN 

1 123 123 163 148 117 117 140 123 163 117 

2 145 145 167 158 150 145 209 145 209 145 

3 193 184 170 170 165 165 165 165 193 165 

4 171 171 194 178 171 171 175 175 194 171 

5 193 193 227 227 205 205 235 236 236 193 

6 153 153 156 165 157 152 187 177 187 152 

7 145 145 161 145 181 149 151 219 219 145 

8 182 182 186 186 170 164 189 179 189 164 

9 162 162 203 173 188 167 168 165 203 162 

10 185 185 211 201 200 188 200 193 211 185 

11 173 173 201 164 206 177 • 208 208 208 164 

12 171 161 180 193 185 181 243 184 243 161 

13 167 153 165 180 140 140 171 186 186 140 

14 147 147 140 140 152 152 146 129 152 129 

15 194 185 217 204 187 186 257 242 257 185 

16 152 155 173 187 164 164 206 202 206 152 

17 187 168 199 185 166 177 223 217 223 166 

18 162 162 185 210 172 172 216 195 216 162 

19 157 157 171 167 157 154 186 186 186 154 

20 167 167 175 201 173 184 198 182 201 167 

21 145 145 194 176 158 153 196 216 216 145 

22 140 140 175 156 161 149 178 186 186 140 

23 137 131 158 132 133 131 185 145 185 131 

24 144 149 189 175 152 150 188 217 217 144 

25 150 150 184 183 148 148 221 192 221 148 

T a b l e 7 5 

Final s o l u t i o n s of ATSP h e u r i s t i c s 

( S t e e p e s t d e s c e n t s t r a t e g y ) 
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CHAPTER 7 109 

H E U R I S T I C S 

P R O B L E M LIT NUC SDN STI 

SIZE N O . 30PT 40PT 30PT 40PT 30PT 40PT 30PT 40PT MAX MIN 

1 520 569 252 295 338 383 355 397 569 252 

2 517 559 260 300 300 369 335 390 559 260 

20 3 492 543 283 389 324 389 299 346 543 283 

4 517 569 269 332 301 351 285 324 56.9 269 

5 524 566 280 323 348 390 343 385 566 280 

6 1407 1 5 0 1 933 1033 944 1067 1052 1252 1 5 0 1 933 

7 1536 1662 950 1035 918 1 0 6 6 1393 1534 1662 918 

30 8 1496 1 6 2 1 846 990 966 1092 1276 1548 1 6 2 1 846 

9 1438 1 5 4 1 

10 1433 1533 

1159 1297 1016 1152 1048 1185 1 5 4 1 

8 2 1 919 1008 1 1 2 6 1082 1226 1533 

1 0 1 6 
821 

40 

11 2963 3144 2463 2 7 9 1 2 0 2 1 2 4 2 6 3070 3293 3 2 9 3 2 0 2 1 

12 3106 3364 2639 2 8 6 1 2 3 2 5 2 5 9 9 2828 3 0 9 6 3364 2325 

13 2923 3185 2388 2 6 2 8 2 0 5 8 2 2 6 8 2889 3 3 4 1 3 3 4 1 2058 

14 3 0 6 2 3238 2108 2 3 7 5 2 1 2 2 2 3 0 6 2722 3 0 3 2 3 2 3 8 2108 

15 3078 3284 2333 2 6 1 9 2 1 9 9 2 4 5 1 2826 3 1 0 8 3284 2199 

16 6 3 1 5 6 7 2 5 4 2 3 2 4 5 0 1 3870 4 1 8 6 5752 6 2 8 0 6 7 2 5 3870 

17 5 6 3 6 6 0 8 3 4044 4 4 2 5 3 9 8 9 4 3 7 1 5057 5 6 8 4 6 0 8 ? 3989 

18 5 9 8 1 6 2 6 6 4 3 3 3 4 6 7 8 4 1 6 0 4 4 3 1 6582 6 8 6 7 6 8 6 7 4160 

19 5 5 9 0 5 8 7 5 4 9 7 9 5332 4 2 2 1 4 6 3 4 518 0 5 6 1 8 5 8 7 5 4 2 2 1 

20 5660 6 0 1 5 4 5 3 6 4 8 6 2 4 2 8 2 4 6 4 0 6430 6 8 2 2 6 8 2 2 4282 

60 

21 9 9 2 0 10384 6944 7 6 3 9 6 7 0 3 7 1 8 8 1 0 3 4 5 1 0 8 5 8 1 0 8 5 8 6703 

22 9 3 1 2 9 7 4 2 8472 9 0 5 5 7 0 7 7 7 7 9 1 10503 1 1 4 7 2 1 1 4 7 2 7077 

23 9 5 7 7 1 0 0 8 2 7357 7 9 5 2 6 5 7 9 7 2 7 6 11048 1 2 0 1 5 1 2 0 1 5 6579 

24 9 4 6 0 9944 7539 8 1 2 5 6 6 2 5 7 1 0 0 10259 1 0 8 0 1 1 0 8 0 1 6625 

25 9 2 0 8 9 6 5 2 7609 812 6 6 9 4 7 7 3 3 8 11157 1 1 7 1 8 1 1 7 1 8 6947 

70 

26 1 5 5 9 5 1 6 2 8 6 12246 13650 1 0 9 9 3 1 1 5 6 5 1 8847 2 0 2 2 5 2 0 2 2 5 10993 

27 1 6 4 0 3 17 1 7 2 1 1 5 8 5 1 2 3 8 8 1 1 9 3 6 1 2 5 0 9 1 8 0 6 2 1 9 1 8 6 1 9 1 8 6 11585 

28 1 6 0 3 8 1 6 6 3 3 12689 1 3 5 6 8 1 1 3 6 8 1 2 0 4 9 17757 18827 1 8 8 2 7 11368 

29 1 4 8 7 5 1 5 5 0 4 13339 1 4 4 4 3 11204 1 1 7 7 6 16817 1 7 9 5 9 1 7 9 5 9 11204 

30 1 4 8 4 5 1 5 4 3 8 12297 1 3 0 2 1 1 1 2 3 8 1 1 8 0 7 1 7 7 3 9 1 9 1 0 0 1 9 1 0 0 11238 

31 2 2 4 0 6 2 3 2 7 9 19303 2 0 5 9 2 1 7 3 1 0 1 8 0 6 0 2 4 494 2 6 3 6 7 2 6 3 6 7 17310 

32 2 2 2 5 9 2 3 0 1 0 1 8 4 5 5 1 9 5 3 6 1 7 1 2 8 1 8 1 6 7 2 6 8 7 3 2 7 9 9 6 2 7 9 9 6 17128 

80 33 2 2 3 1 9 2 3 0 6 9 1 7 4 0 5 1 8 3 5 8 1 6 4 0 6 17157 2 7 8 7 3 2 8 9 0 6 2 8 9 0 6 16406 

34 2 2 1 9 4 2 2 9 0 4 17937 1 9 1 5 1 1 6 5 3 5 1 7 2 8 8 2 6 2 8 2 2 7 7 4 6 2 7 7 4 6 1 6 5 3 5 

35 2 2 1 0 3 2 2 8 4 9 1 8 2 9 3 1 9 1 8 2 1 6 7 1 0 1 7 4 6 2 2 6 3 1 8 2 7 1 1 6 2 7 1 1 6 16710 

36 3 0 6 1 3 3 1 6 1 8 2 7 2 8 1 2 8 6 3 7 2 4 0 2 7 2 5 1 9 7 3 5 2 9 5 3 6 9 5 6 3 6 9 5 6 24027 

37 3 0 8 9 7 3 2 3 5 7 2 3 7 3 9 2 4 6 4 5 2 2 6 7 1 2 3 6 6 9 3 5 7 3 3 3 7 4 2 1 3 7 4 2 1 2 2 6 7 1 

90 38 3 0 9 1 8 3 2 1 1 7 2 6 9 8 6 2 7 8 7 8 2 2 8 3 2 2 3 8 0 3 3 9 4 7 1 4 1 0 0 7 4 1 0 0 7 2 2 8 3 2 

39 3 1 2 1 6 3 2 9 1 8 2 5 6 9 8 2 6 8 3 4 2 2 5 9 3 2 3 7 2 3 3 6 7 4 3 3 8 2 8 0 3 8 2 8 0 2 2 5 9 3 

40 3 1 2 5 0 3 2 2 0 4 2 6 0 2 8 2 7 6 0 7 2 2 8 2 5 2 3 7 6 8 43044 4 4 5 0 1 4 4 5 0 1 2 2 8 2 5 

T a b l e 7.6 

T o t a l runtimes ( m i l - s e c ) of ATSP h e u r i s t i c s 

( G r e e d y e x c h a n g e s t r a t e g y ) 
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CHAPTER 7 110 

H E U R I S T I C S 

P R O B L E M LIT NUC SDN STI 

N O . 30PT 40PT 30PT 40PT 30PT 40PT 30PT 40PT MAX MIN 

1 391 572 326 1036 365 720 792 1895 1895 326 

2 390 572 473 1065 218 574 358 1642 1642 218 

3 530 1282 1056 2 4 0 1 371 729 789 1704 2 4 0 1 371 

4 387 572 477 1463 364 722 506 1 0 4 1 1463 364 

5 384 560 483 1043 375 737 1078 2 0 1 6 2016 375 

6 1582 2 7 7 0 3158 4 9 9 0 2 2 0 0 5204 3782 6 8 5 0 6850 1582 

7 1 6 0 5 2 8 4 1 2644 5 2 7 9 1198 3672 7 8 7 0 1 2 5 2 7 12527 1 1 9 8 

8 1598 2817 1615 3 5 4 5 1719 4716 5348 1 1 4 7 6 11476 1 5 9 8 

9 1107 1712 4 6 9 9 9 2 6 8 1718 4878 5 3 5 6 1 1 9 3 2 1 1 9 3 2 1107 

10 1095 1682 2637 7 6 6 6 2 2 2 0 6 3 8 5 3793 8 2 5 6 8256 1 0 9 5 

11 4 7 6 5 8 9 9 0 7613 2 4 2 2 3 2 7 5 9 11199 1 1 6 3 1 2 4 5 9 2 2 4 5 9 2 2 7 5 9 

12 4 8 7 9 9273 13782 2 4 6 7 8 5314 10990 12888 3 1 4 2 8 31428 4 8 7 9 

13 2 3 0 7 5180 12577 2 5 6 0 0 3 9 9 6 8139 2 1 5 2 8 3 4 7 0 4 34704 2 3 0 7 

14 4 7 8 8 8968 1 8 7 7 1 3 6 6 0 0 4 0 2 2 8219 1 6 5 9 2 3 5 9 3 2 3 6 6 0 0 4 0 2 2 

15 3665 6 5 6 2 1 0 1 0 1 2 0 5 1 6 4 0 4 0 8297 1 2 9 6 6 2 3 1 8 4 23184 3 6 6 5 

16 1 1 8 1 3 2 5 8 7 5 2 9 9 9 6 5 5 9 4 7 2 8 7 2 5600 3 5 6 8 2 7 5 2 9 0 7 5 2 9 0 2 8 7 2 

17 6 8 9 7 1 8 3 7 6 22714 3 4 8 8 9 1 0 4 4 0 16058 2 8 0 9 5 4 4 9 3 3 4 4 9 3 3 6 8 9 7 

18 9 2 4 9 1 7 3 9 0 3 9 8 6 3 6 6 0 4 1 5 3 9 1 10828 4 0 6 4 0 8 9 1 5 4 89154 5 3 9 1 

19 4 1 4 9 6 8 3 3 22586 5 2 1 8 6 5 3 2 5 13592 2 3 1 5 6 4 7 8 6 8 5 2 1 8 6 4 1 4 9 

20 6 6 5 4 1 2 0 7 3 4 2 4 7 1 7 6 9 3 4 1 7 7 6 5 2 8 7 3 5 4 3 3 4 4 9 2 3 8 0 92380 6 6 5 4 

21 1 5 4 2 4 3 0 0 8 0 2 1 7 6 5 5 1 1 4 8 1 3 4 1 7 31822 7 0 0 5 8 1 3 1 8 9 6 1 3 1 8 9 6 13417 

22 6 9 5 6 1 1 6 4 5 34489 7 9 3 5 7 17674 4 9 9 7 6 1 0 8 3 6 3 2 0 1 3 6 3 2 0 1 3 6 3 6 9 5 6 

23 1 1 2 0 8 2 0 8 3 6 38726 9 0 9 0 0 9 1 5 1 2 3 2 8 3 8 7 4 9 3 2 0 8 6 1 3 2 0 8 6 1 3 9 1 5 1 

24 1 5 4 8 4 2 9 8 3 9 5 1 8 4 7 1 1 0 1 0 9 4 8 8 3 14104 1 0 4 6 2 0 1 8 3 9 1 3 1 8 3 9 1 3 4 8 8 3 

25 7 1 4 3 119 8 4 4 3 2 9 4 9 1 6 5 9 1 7 7 9 8 32040 8 3 4 7 8 1 8 8 7 1 2 1 8 8 7 1 2 7 1 4 3 

T a b l e 7.7 

T o t a l runtimes ( m i l - s e c ) of ATSP h e u r i s t i c s 

( S t e e p e s t d e s c e n t s t r a t e g y ) 

MANAGEMENT SCIENCE IMPERIAL COLLEGE 



8 Conclusions and recommendations 

The three classes of mathematically-related problems selected are the principal ones that need to be 

solved if effective decentralisation of decision making within a factory is to take place. The 

continuing reduction in the cost of microprocessors and the advances made in the area of computer 

networking have greatly reduced the difficulties imposed by hardware on the realisation of this 

objective. The main aim of the thesis has been to solve some of the software problems that may 

arise in the decentralisation process. 

One of the more obvious routes to decentralisation is to have group layout instead of the more 

usual functional layout. The rank order clustering algorithm, (ROC), has been adapted and developed 

into a fast and compact interactive scheme, called the ROC2 algorithm, for the purpose of grouping 

components and machines. Problems which require weeks of manual effort or which cannot be 

solved by other methods are solved by the ROC2 algorithm with modest human and computing 

resources, and solutions produced for known test problems are as good as or better than, those 

generated by other methods. As a general clustering technique, the R0C2 algorithm has been 

shown to be an effective partitioning scheme for the set covering problem. 

Following the grouping of machines, the question of their layout must be solved. Two models for 

layout, the quadratic assignment problem, (QAP), and the maximal planar graph problem, (MPG), are 

investigated. A short experiment on the QAP model has highlighted the potential benefit of using the 

ROC2 algorithm in generating an initial layout. For the MPG, various construction and improvement 

heuristics, which do not require planarity testing procedures, are studied. This is believed to be the 

first report on computer implemented heuristics for the MPG. The final part of the thesis is 

concerned with scheduling, which can be made more effective in many environments if properly 

decentralised. A class of scheduling problem, the sequence-dependent setup time scheduling 

problem, (SDSTSP), is selected for study, and various construction and improvement heuristics were 

tested. 

A general conclusion that can be drawn from the various heuristics tested is the dominant role of 

the construction over the improvement heuristics. On the interactive aspect, it seems clear that 

where a problem can only be partially defined quantitatively, and the solution provided by the 

algorithm alone may therefore not be satisfactory, interaction can play a useful complementary role 

to the algorithm. In cases where the problem is well defined, such as some scheduling problems, 

interaction is less important, although it can still be useful in dealing with exceptional circumstances. 
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CHAPTER 8 

Two further pieces of work could usefully be carried out in the future; firstly a data collection 

routine could be developed as an interface between the ROC2 algorithm and real life problems; 

secondly the ROC2 algorithm and plant layout routines could be combined into one package. These 

steps could help to reduce further the practical difficulties in implementing group layout. 
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L o c a t i o n s 

1 10 
1 2 3 4 5 6 7 8 9 0 1 2 3 

2 3 4 5 1 2 3 4 5 6 2 

1 2 3 4 2 1 2 3 4 5 3 

0 1 2 3 3 2 1 2 3 4 4 

0 1 2 4 3 2 1 2 3 5 

0 1 5 4 3 2 1 2 6 

0 6 5 4 3 2 1 7 

0 1 2 3 4 5 1 

0 1 2 3 4 2 

0 1 2 3 3 

0 1 2 4 

0 1 5 

0 6 

0 

D i s t a n c e m a t r i x 
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20 24 

4 5 6 7 8 9 0 1 2 3 4 

3 4 5 6 7 3 4 5 6 7 8 1 

2 3 4 5 6 4 3 4 5 6 7 2 

3 2 3 4 5 5 4 3 4 5 6 3 

4 3 2 3 4 6 5 4 3 4 5 4 

5 4 3 2 3 7 6 5 4 3 4 5 

6 5 4 3 2 8 7 6 5 4 3 6 

2 3 4 5 6 2 3 4 5 6 7 7 

1 2 3 4 5 3 2 3 4 5 6 8 

2 1 2 3 4 4 3 2 3 4 5 9 L 

3 2 1 2 3 5 4 3 2 3 4 10 o 

4 3 2 1 2 6 5 4 3 2 3 11 c 

5 4 3 2 1 7 6 5 4 3 2 12 a 

1 2 3 4 5 1 2 3 4 5 6 13 t 

0 1 2 3 4 2 1 2 3 4 5 14 i 

0 1 2 3 3 2 1 2 3 4 15 o 

0 1 2 4 3 2 1 2 3 16 n 

0 1 5 4 3 2 1 2 17 s 

0 6 5 4 3 2 1 18 

0 1 2 3 4 5 19 

0 1 2 3 4 2 0 

0 1 2 3 21 

0 1 2 22 

0 1 23 

0 24 

for t h e Q A P 

M a c h i n e s 

1 10 

1 2 3 4 5 6 7 8 9 0 1 2 3 4 

0 2 0 0 0 0 0 0 2 0 0 0 0 0 

0 0 0 0 0 0 0 8 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 2 

0 7 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 10 0 0 0 

0 2 2 0 4 0 0 0 0 

0 1 0 3 0 0 0 0 

0 0 3 0 0 0 0 

0 0 0 0 0 1 

0 0 0 0 0 

0 3 2 0 

0 1 0 

0 0 

0 

W e i g h t m a t r i x for 

20 24 

5 6 7 8 9 0 1 2 3 4 

0 2 2 0 1 0 0 0 0 0 1 

0 6 5 0 4 0 0 0 0 0 2 

0 1 4 0 0 0 0 0 0 0 3 

4 0 0 3 0 4 0 0 0 0 4 

7 0 0 6 0 8 0 0 0 0 5 

0 0 0 0 0 0 0 0 0 0 6 

0 0 0 0 0 0 0 0 0 0 7 

0 0 0 0 0 0 0 0 0 0 8 

0 8 5 0 4 0 0 0 0 0 9 M 

0 0 0 0 0 0 0 0 0 0 10 a 

0 0 0 0 0 0 4 0 0 0 11 c 

0 0 0 0 0 0 3 0 0 0 12 h 

0 0 0 0 0 0 2 0 0 0 13 i 

0 1 3 0 1 0 0 0 0 0 14 n 

0 0 0 4 0 4 0 0 0 0 15 e 

0 6 0 3 0 0 0 0 0 16 s 

0 0 2 0 0 0 0 0 17 

0 0 4 0 0 0 0 18 

0 0 0 0 0 0 19 

0 0 0 0 0 2 0 

0 0 0 0 21 

0 0 0 22 

0 0 23 

0 24 

Q A P 

MANAGEMENT SCIENCE IMPERIAL COLLEGE 



APPENDIX A 120 

PROBLEM FINAL NO. OF EXEC. . TIME 
IDEN. COST ITERATION(S) (CYBER174 SEC) 

1 273 12 0. ,484 
2 276 13 0. ,516 
3 276 11 0, ,467 
4 266 10 0. .434 
5 280 8 0. ,360 
6 281 10 0. ,431 
7 277 9 0. ,391 
8 279 9 0. .393 
9 268 8 0. .350 

10 288 8 0. ,352 

The solutions to the 16 location configuration 

PROBLEM INITIAL LAYOUTS 
IDEN. 

1 2 10 9 6 3 12 13 11 5 4 7 14 1 15 8 16 
2 6 5 12 15 11 1 8 14 13 10 7 4 16 3 2 9 
3 11 15 2 16 14 9 8 7 10 12 6 1 3 13 4 5 
4 6 14 9 4 7 2 13 1 5 8 15 12 10 16 3 11 
5 16 14 13 4 6 8 3 12 2 10 15 11 5 7 9 1 
6 4 8 12 1 14 13 6 3 15 2 7 5 9 11 10 16 
7 13 4 6 3 5 1 15 12 8 9 16 11 7 14 2 10 
8 9 1 15 10 4 8 3 14 16 5 2 13 12 6 7 11 
9 3 15 12 10 8 11 16 6 14 1 5 2 9 13 7 4 

10 9 10 6 5 1 12 16 15 2 3 14 7 8 11 4 13 

Random starting layouts for the 16 location configuration 
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1 P R O G R A M l a y o u t 3 ( d a t a , o u t p u t , i n p u t /); 

2 

3 CONST 
4 maxactivity = 30; 
5 maxlocation = 30; 
6 maxdistance * 100; 
7 raaxweight = 100; 
8 infinity = 9999999; 
9 

10 TYPE 
11 activity = 1..maxactivity; 
12 location = 1..maxlocation; 
13 distance = 0..maxdistance; 
14 weight •= 0. .maxweight; 
15 arrayweight * ARRAY 
16 [activity, activity] OF weight; 
17 arraydistance » ARRAY 
18 [location, location] OF distance; 
19 arrayswitchcost = ARRAY 
20 [location, location] OF integer; 
21 arrayactinloc = ARRAY 
22 [location] OF activity; 
23 arraylacofact = ARRAY 
24 [activity] OF location; 
25 setoffixedlocations = SET OF location; 
26 
27 VAR 
28 data: text; 
29 w, weightsubprob: arrayweight; 
30 d, dsubprob: arraydistance; 
31 costofswitchmacinloc: arrayswitchcost; 
32 macinloc, tempmacinloc, oldmacinloc: arrayactinloc; 
33 locationsfixed: setoffixedlocations; 
34 locofmac, templocofmac: arraylacofact; 
35 oldmacname: ARRAY 
36 [activity] OF activity; 
37 oldlocname: ARRAY 
38 [location] OF location; 
39 initlayoutgiven, fixedlocgiven: boolean; 
40 n, iteration: integer; 
41 starttime, timeelapsed, timeused, costoflayout: integer; 
42 noofpartitions, sizeofsubproblem: integer; 
43 
44 
45 PROCEDURE readcostanddistancematrices; 
46 
47 VAR 
48 i, j: location; 
49 1, m: activity; 
50 nolocfixed: integer; 
51 
52 BEGIN 
53 reset(data); 
54 read(data, n); 
55 FOR i :- 1 TO n DO 
56 FOR j i TO n DO 
57 read(data, d[i, j]); 
58 FOR 1 1 TO n DO 
59 FOR m 1 TO n DO 
60 read(data, w[l, m]); 
61 {[complete the lower half of the matrices! 
62 FOR i 1 TO n - 1 DO 
63 FOR j := i + 1 TO n DO 
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64 d[j, i] := d[i, j]; 
65 FOR 1 := 1 TO n - 1 DO 
66 FOR m 1 + 1 TO n DO 
67 w[m, 1] := w[1, m]; 
68 read(data, noofpartitions); 
69 IF noofpartitions = 1 
70 THEN 
71 BEGIN 
72 FOR i := 1 TO n DO 
73 read(data, macinloc[i]); 
74 FOR i '.* 1 TO n DO 
75 locofmac[macinloc[i]] i; 
76 read(data, nolocfixed); 
77 IF nolocfixed > 0 
78 THEN 
79 BEGIN 
80 fixedlocgiven true; 
81 locationsfixed []; 
82 FOR i : = 1 TO nolocfixed DO 
83 BEGIN 
84 read(data, j); 
85 locationsfixed := locationsfixed + [j]; 
86 END; 
87 END 
88 ELSE 
89 BEGIN 
90 fixedlocgiven :«= false; 
91 locationsfixed := []; 
92 END; 
93 END; 
94 END freadcostanddistancematricesj ; 
95 
96 
97 PROCEDURE writeoutput; 
98 
99 VAR 

100 i: location; 
101 j: integer; 
102 
103 BEGIN 
104 writelnC FINAL LAYOUT COST ', costoflayout: 8); 
105 writelnC NO OF ITERATION(S) iteration: 5); 
106 writelnC EXECUTION TIME \ timeused: 6, ' MIL-SEC); 
107 writelnC THE LAYOUT C ) ; 
108 FOR i 1 TO 4 DO 
109 writeC LOC MAC '); 
110 writeln; 
111 j 0; 
112 FOR i := 1 TO n DO 
113 BEGIN 
114 write(i: 5, macinlocf i]: 5, ' '); 
115 j j + 1; 
116 IF j - 4 THEN 
117 BEGIN 
118 writeln; 
119 j 0; 
120 END; 
121 END; 
122 writeln; 
123 END fwriteoutputj ; 
124 
125 
126 PROCEDURE craft(n: integer; w: arrayweight; d: arraydistance; 
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127 locationsfixed: setoffixedlocations; VAR macinloc: arrayactinloc; VAR 
128 locofmac: arraylacofact; VAR iteration, timeused, costoflayout: 
129 integer); 
130 
131 VAR 
132 starttime, timeelapsed: integer; 
133 costofswitchmacinloc: arrayswitchcost; 
134 oldmacinloc: arrayactinloc; 
135 
136 
137 PROCEDURE dumpinformation; 
138 
139 VAR 
140 i, j; location; 
141 k: activity; 
142 
143 BEGIN 
144 writeln(' EXCHANGE INFORMATION'); 
145 writeln!' ITERATION!S)', iteration: 4, ' LAYOUT COST 
146 costoflayout: 6); 
147 FOR i 1 TO n DO 
148 write!i: 4); 
149 writeln; 
150 FOR i 1 TO n DO 
151 write!macinloc[i]: 4); 
152 writeln; 
153 FOR k 1 TO n DO 
154 write!locofmac[k]: 4); 
155 writeln; 
156 writeln!' LOC LOC COST'); 
157 FOR i :« 1 TO n - 1 DO 
158 FOR j i + 1 TO n DO 

.159- writeln!i: 5, j: 5, costofswitchmacinlocfi, j]: 7); 
160 END fdumpinformation! ; 
161 
162 
163 FUNCTION overal1layoutcost: integer; 
164 
165 VAR 
166 i, j: activity; 
167 cost: integer; 
168 locofi: location; 
169 
170 BEGIN 
171 cost : = 0; 
172 FOR i 1 TO n - 1 DO 
173 BEGIN 
174 locofi := locofmac[i]; 
175 FOR j i + 1 TO n DO 
176 cost := cost + w[i, j] * d[locofi, locofmac[j]]; 
177 END; 
178 overalllayoutcost := cost; 
179 END Coveralllayoutcost! ; 
180 
181 
182 FUNCTION xchangecostforloc!1, m: location): integer; 
183 
184 VAR 
185 macinl, macinm, macink: activity; 
186 k: location; 
187 cost: integer; 
188 
189 BEGIN 
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190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 

1 2 4 

nsacinl : «= macinlocf 1 ] ; 
macinm macinloc[m]; 
cost := 0; 
FOR k := 1 TO n DO 

BEGIN 
macink := macinlocfk]; 
cost : = cost + (d[1, k] - d[m, k]) * (wfmacink, macinm] -

w[macink, macinl]); 
END; 

xchangecostforloc := cost + 2 * wfmacinl, macinm] * d[l, m]; 
END fxchangeeostforlocj ; 

PROCEDURE keepoldmacinloc; 

VAR 
i: location; 

BEGIN 
FOR i : * 1 TO n DO 

oldmacinlocfi] :* macinlocfi]; 
END fkeepoldmacinloc} ; 

PROCEDURE initpairwiseexchangecosts; 

VAR 

1, m: location; 

BEGIN 

FOR 1 1 TO n - 1 DO 
FOR m 1 + 1 TO n DO 

costofswitchingmacinloc[1, m] :«= xchangecostforloc(1, m); 
END finitpairwiseexchangecosts> ; 

PROCEDURE bestpair(VAR bestl, bestm: location; VAR largegain: integer 

); 

VAR 
1, m: location; 
gain: integer; 

BEGIN 
gain := - infinity; 
FOR 1 1 TO n • 1 DO 

IF NOT (1 IN locationsfixed) 
THEN 

FOR m :« 1 + 1 TO n DO 
IF NOT (m IN locationsfixed) THEN 

IF - costofswitchmacinlocf1, m] > gain THEN 
BEGIN 

gain - costofswitchmacinloc[1, m]; 
bestl :• 1; 
bestm := m; 

END; 
largegain gain; 

END fbestpairj ; 

PROCEDURE updatelocation(bestl, bestm: location); 

VAR 
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253 previousmaci.nl: activity; 
254 
255 BEGIN 
256 previousmacinl := macinloc[bestl]; 
257 macinloc[bestl] : = macinloc[bestm]; 
258 macinlocfbestm] : = previousmacinl; 
259 locofmac[macinloc[bestl]] := bestl; 
260 locofmac[macinloc[bestm]] := bestm; 
261 END {[updatelocation! ; 
262 
263 
264 PROCEDURE updatemarclos(i, j: location); 
265 
266 VAR 
267 1, m: location; 
268 updatecost: integer; 
269 macini, macinj, macinl, macinm: activity; 
270 
271 BEGIN 
272 macini := oldmacinloc[i]; 
273 macinj : = oldmacinloc[j]; 
274 FOR 1 1 TO n - 1 DO 
275 IF NOT (1 IN locationsfixed) 
276 THEN 
277 FOR m 1 + 1 TO n DO 
278 IF NOT (m IN locationsfixed) 
279 THEN 
280 IF (1 *= i) AND (m « j) 
281 THEN 
282 costofswitchmacinloc[1, m] :» -
283 costofswitchmacinloc[1, m] 
284 ELSE 
285 IF ((1 » i) OR (1 - j)) OR <(m - i) OR <m - j)) 
286 THEN 
287 costofswitchmacinloc[1, m] :-
288 xchangecostforloc(1, m) 
289 ELSE 
290 BEGIN 
291 macini := oldmacinloc[1]; 
292 macinm := oldmacinloc[m]; 
293 updatecost := (d[j, 1] - d[i, 1] + d[i, m] 
294 - d[j, m]) * (w[macini, macinm] + w[ 
295 macinj, macini] - w[macinj, macinm] - w 
296 [macini, roacinl]); 
297 costof switchmacinloc[ 1, m] : «= 
298 costofswitchmacinloc[1, m] + updatecost 
299 ; 
300 END; 
301 END fupdatemarclos! ; 
302 
303 
304 PROCEDURE pairwiseinterchange; 
305 
306 VAR 
307 bestl, bestm: location; 
308 exchange: boolean; 
309 largegain: integer; 
310 
311 BEGIN 
312 initpairwiseexchangecost; 
313 REPEAT 
314 bestpair(bestl, bestm, largegain); 
315 IF largegain > 0 
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316 THEN 
317 BEGIN 
318 exchange : = true; 
319 keepoldmacinloc; 
320 updatelocation(bestl, bestm); 
.321 updatemarclos(bestl, bestm); 
322 costoflayout costoflayout - largegain; 
323 iteration iteration + 1; 
324 END 
325 ELSE 
326 exchange :« false; 
327 UNTIL NOT exchange; 
328 END fpairwiseinterchangej ; 
329 
330 
331 BEGIN fcraftj 
332 iteration : = 0; 
333 starttime : = clock; 
334 costoflayout := overalllayoutcost; 
335 pairwiseinterchange; 
336 timeelapsed : = clock - starttime; 
337 timeused := timeelapsed; 
338 END fcraftj ; 
339 
340 
341 PROCEDURE readsubproblem; 
342 
343 VAR 
344 i, j, 1: location; 
345 k, nolocfixed: integer; 
346 found: boolean; 
347 
348 BEGIN 
349 read(data, sizeofsubproblem); 
350 FOR k := 1 TO sizeofsubproblem DO 
351 read(data, oldlocname[k], oldmacname[k]); 
352 read(data, nolocfixed); 
353 locationsfixed := []; 
354 IF nolocfixed > 0 
355 THEN 
356 BEGIN 
357 fixedlocgiven := true; 
358 FOR i := 1 TO nolocfixed DO 
359 BEGIN 
360 read(data, j); 
361 1 := 1; 
362 found := false; 
363 WHILE NOT (found OR (1 > nolocfixed)) DO 
364 BEGIN 
365 IF j = oldlocname[l] 
366 THEN 
367 BEGIN 
368 locationsfixed := locationsfixed + [1]; 
369 found := true; 
370 END 
371 ELSE 
372 1 1 + 1; 
373 END; 
374 END; 
375 END 
376 ELSE 
377 fixedlocgiven := false; 
378 END freadsubproblemj ; 
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379 
380 
381 PROCEDURE constructsubproblem; 
382 
383 VAR 
384 i, j, oldloci, oldlocj: location; 
385 1, m, oldmacl, oldmacm: activity; 
386 k: integer; 
387 
388 BEGIN 
389 FOR i := 1 TO sizeofsubproblem DO 
390 BEGIN 
391 oldloci :» oldlocname[i]; 
392 FOR j :» 1 TO sizeofsubproblem DO 
393 BEGIN 
394 oldlocj : = oldlocname[j]; 
395 dsubprob[i, j] d[oldloci, oldlocj]; 
396 END; 
397 END; 
398 FOR 1 := 1 TO sizeofsubproblem DO 
399 BEGIN 
400 oldmacl :*= oldmacname[1]; 
401 FOR m := 1 TO sizeofsubproblem DO 
402 BEGIN 
403 oldmacm : = oldmacnamefm]; 
404 weightsubprob[1, m] := wfoldmacl, oldmacm]; 
405 END; 
406 END; 
407 FOR k :*= 1 TO sizeofsubproblem DO 
408 tempmacinloc[k] : = k; 
409 FOR k := 1 TO sizeofsubproblem DO 
410 templocofmac[tempmacinloc[k]] := k; 
411 END Cconstructsubproblem} ; 
412 
413 
414 PROCEDURE partialreconstructofsubsolution; 
415 
416 VAR 
417 k, oldnameoftempactk: activity; 
418 tempnameoflocofk: location; 
419 
420 BEGIN 
421 FOR k := 1 TO sizeofsubproblem DO 
422 BEGIN 
423 oldnameoftempactk := oldmacname[k]; 
424 tempnameoflocofk := templocofmac[k]; 
425 locofmac[oldnameoftempactk] : = oldlocnameftempnameoflocofk]; 
426 END; 
427 END Cpartialreconstructofsubsolutionj ; 
428 
429 
430 PROCEDURE reconstructionofsubsolutions; 
431 
432 VAR 
433 i: activity; 
434 
435 BEGIN 
436 FOR i 1 TO n DO 
437 macinloc[locofmac[i]] : = i; 
438 locationsfixed : = []; 
439 END freconstructionofsubsolutions} ; 
440 
441 
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442 PROCEDURE reportonsubproblem; 
443 
444 VAR 
445 i, j: integer; 
446 
447 BEGIN 
448 writeln!' DISTANCE MATRIX'); 
449 write!' ': 8); 
450 FOR i := 1 TO sizeofsubproblem DO 
451 write(i: 4); 
452 writeln; 
453 write!' ': 8); 
454 FOR i 1 TO sizeofsubproblem DO 
455 write!oldlocname[i]: 4); 
456 writeln; 
457 FOR i :* 1 TO sizeofsubproblem DO 
458 BEGIN 
459 write!i: 4, oldlocnamefi]: 4); 
460 FOR j := 1 TO sizeofsubproblem DO 
461 write!dsubprob[i, j]: 4); 
462 writeln; 
463 END; 
464 writeln; 
465 writeln!' WEIGHT MATRIX'); 
466 write!' ': 8); 
467 FOR i :» 1 TO sizeofsubproblem DO 
468 write(i: 4); 
469 writeln; 
470 write!' ': 8); 
471 FOR i := 1 TO sizeofsubproblem DO 
472 write!oldmacname[i]: 4); 
473 writeln; 
474 FOR i := 1 TO sizeofsubproblem DO 
475 BEGIN 
476 write(i: 4, oldmacname[i]: 4); 
477 FOR j 1 TO sizeofsubproblem DO 
478 write(weightsubproblem[i, j]: 4); 
479 writeln; 
480 END; 
481 writeln; 
482 writeln!' SUB-PROBLEM ASSIGNMENT LOC-MAC: '); 
483 FOR i := 1 TO sizeofsubproblem DO 
484 write(oldlocname[i]: 4, oldmacname[tempmacinloc[i]]: 4, ' '); 
485 writeln; 
486 writeln!' GLOBAL ASSIGNMENT MAC-LOC:'); 
487 FOR i := 1 TO n DO 
488 write!i: 4, l'ocofmac[ i ]: 4, ' '); 
489 writeln; 
490 writeln; 
491 END freportonsubproblemj ; 
492 
493 
494 PROCEDURE solvedbypartitioning; 
495 
496 VAR 
497 i, tempiterno, temptime, tempcost: integer; 
498 
499 BEGIN 
500 IF noofpartitions > 1 
501 THEN 
502 BEGIN 
503 FOR i := 1 TO noofpartitions DO 
504 BEGIN 
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505 readsubproblem; 
506 constructsubproblem; 
507 craft(sizeofsubproblem, weightsubprob, dsubprob, 
508 locationsfixed, tempmacinloc, templocofmac, 
509 tempiterno, temptime, tempcost); 
510 partialreconstructofsubsolution; 
511 freportonsubproblem;J 
512 END; 
513 reconstructionofsubsolutions; 
514 END; 
515 craft(n, w, d, locationsfixed, macinloc, locofmac, iteration, 
516 timeused, costoflayout); 
517 END fsolvedbypartitioningj ; 
518 
519 
520 BEGIN Clayout3J 
521 readcostanddistancematrices; 
522 starttime := clock; 
523 solvedbypartitioning; 
524 timeelapsed : = clock - starttime; 
525 writeoutput; 
526 writelnc PARTITIONING OVERHEADS ', timeelapsed - timeused); 
527 writeln(' TOTAL TIME timeelapsed: 4); 
528 writeln; 
529 END flayoutSJ . 5 
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1 PROGRAM maxplanar(tetra, output, seed, input /); 
2 (*$I'RANDOM' random number generator declarations. *) 
3 
4 CONST 
5 maxn = 100; 
6 f number of vertices J 
7 maxm = 294; 
8 f number of arcs 3*n - 6 J 
9 maxf = 196; 

10 £ number of aces 2*n -4 J 
11 maxvalence = 99; 
12 £ n-1 J 
13 maxnocoef - 4950; 
14 £ n*(n-1)div2 J 
15 big = 9999; 
16 
17 TYPE 
18 noderange = l..maxn; 
19 arcrange = l..maxm; 
20 facerange ® l..maxf; 
21 small - 0..127; 
22 nodeptr = A nodelist; 
23 arcptr = A arcinuse; 
24 feceptr * A faces; 
25 nodelist * PACKED RECORD 
26 arcloc: arcptr; 
27 nextnode: nodeptr; 
28 END; 
29 verticesinuse = PACKED RECORD 
30 valuel, value2: integer; 
31 facel, face2: faceptr; 
32 END; 
33 activevertex ® A verticesinuse; 
34 anodetable - PACKED RECORD 
35 CASE active: boolean OF 
36 true: (vactive: activevertex); 
37 false: (valence: 0..maxvalence; 
38 nextvertex: nodeptr) 
39 END; 
40 arcinuse = PACKED RECORD 
41 nl, n2: noderange; 
42 fl, f2: faceptr; 
43 arcadj: arcptr; 
44 END; 
45 faces = PACKED RECORD 
46 vl, v2, v3: noderange; 
47 faceadj: faceptr; 
48 END; 
49 start = 
50 (maxweight, maxtetra, randomized); 
51 entry = 
52 (ordered, largest, delta); 
53 
54 VAR 
55 seed, tetra: text; 
56 nodetable: ARRAY 
57 [l..maxn] OF anodetable; 
58 newarc, firstarc, lastarc: arcptr; 
59 re1chart: ARRAY 
60 [1..maxnocoef] OF small; 
61 newface, firstface, fnxtolast, lastface: faceptr; 
62 activenode, firstactivenode: activevertex; 
63 nextvertex, nodestore: nodeptr; 
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64 shape: ARRAY 
65 [1..24] OF 1..6; 
66 sumw: ARRAY 
67 [0..maxn] OF PACKED RECORD 
68 v: 0..maxn; 
69 g: integer; 
70 END; 
71 n, nv: 0..maxn; 
72 m, na: 0..maxm; 
73 f, nf: 0..maxf; 
74 nocoef: 1..maxnocoef; 
75 fremoved: faceptr; 
76 i, problem, timet, timec, timei: integer; 
77 anode: noderange; 
78 starting: start; 
79 enter: entry; 
80 firstround, arcswap, yswap: boolean; 
81 

82 
83 PROCEDURE order2(VAR x, y: noderange); 
84 
85 VAR 
86 z: noderange; 
87 
88 BEGIN 
89 IF y < x THEN 
90 BEGIN 
91 z := x; 
92 x := y; 
93 y := z 
94 END 
95 END £order2> ; 
96 
97 
98 PROCEDURE order3(VAR x, y, z: noderange); 
99 

100 BEGIN 
101 order2(x, y); 
102 order2(y, z); 
103 order2(x, y) 
104 END forder3J ; 
105 
106 
107 FUNCTION c(i, j: noderange): small; 
108 
109 VAR 
110 k: 0..maxnocoef; 
111 il, jl: noderange; 
112 
113 BEGIN 
114 IF i • j 
115 THEN 
116 c := 0 
117 ELSE 
118 BEGIN 
119 il := i; 
120 jl j; 
121 order2(i1, jl); 
122 k (il - 1) * n - (il - 1) * il DIV 2; 
123 c := relchart[k + jl - il] 
124 END 
125 END fcj ; 
126 
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127 
128 FUNCTION assigncost: integer; 
129 
130 VAR 
131 ptr: arcptr; 
132 cost: integer; 
133 i, j: noderange; 
134 
135 BEGIN 
136 ptr : = firstarc; 
137 cost 0; 
138 WHILE ptr <> NIL DO 
139 BEGIN 
140 WITH ptr A DO 
141 BEGIN 
142 i nl; 
143 j : = n2; 
144 END; 
145 cost := cost + c(i, j); 
146 ptr := ptr A.arcadj 
147 END; 
148 assigncost : = cost 
149 END CassigncostJ ; 
150 
151 
152 FUNCTION starweight(vl, v2, v3, v4: noderange): integer; 
153 
154 BEGIN 
155 starweight c(vl, v2) + c(vl, v3) + c(vl, v4) + c(v2, v3) + c(v2 
156 , v4) + c(v3, v4) 
157 END fstarweight> ; 
158 
159 
160 FUNCTION yweight(vl, v2, v3, v4: noderange): integer; 
161 
162 BEGIN 
163 yweight := c(vl, v2) + c(vl, v3) + c(vl, v4) 
164 END fyweightl ; 
165 
166 
167 FUNCTION pickorder: noderange; 
168 
169 BEGIN 
170 pickorder := sumw[nv + l].v 
171 END CpickorderJ ; 
172 
173 
174 PROCEDURE readinput; 
175 
176 VAR 
177 i: integer; 
178 
179 BEGIN 
180 read(tetra, n, problem); 
181 FOR i 1 TO n * (n - 1) DIV 2 DO 
182 read(tetra, relchart[i]); 
183 FOR i :» 1 TO 24 DO 
184 read(tetra, shape[i]); 
185 END freadinputj ; 
186 
187 
188 PROCEDURE initrandom; 
189 
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190 VAR 
191 si, s2: integer; 
192 
193 BEGIN 
194 reset(seed); 
195 read(seed, si, s2); 
196 setrandom(si, s2); 
197 writelnC SEEDS USED: ', si: 20, s2: 20); 
198 END finitrandomj ; 
199 
200 
201 PROCEDURE replaceseeds; 
202 
203 VAR 
204 si, s2: integer; 
205 
206 BEGIN 
207 rewrite(seed); 
208 getrandom(sl, s2); 
209 write(seed, si, ' ', s2); 
210 END freplaceseedsj ; 
211 
2 1 2 
213 PROCEDURE initialization; 
214 
215 VAR 
216 i: integer; 
217 p: activevertex; 
218 
219 BEGIN 
220 m := 3 * n - 6; 
221 f := 2 * n - 4; 
222 nocoef n * (n - 1) DIV 2; 
223 FOR i := 1 TO n DO 
224 WITH nodetable[i] DO 
225 BEGIN 
226 active := true; 
227 new(p); 
228 vactive := p; 
229 WITH vactive A DO 
230 BEGIN 
231 valuel := 0; 
232 value2 :« 0; 
233 facel := NIL; 
234 face2 := NIL; 
235 END; 
236 END; 
237 IF enter = ordered THEN 
238 BEGIN 
239 FOR i := 1 TO n DO 
240 WITH sumw[i] DO 
241 BEGIN 
242 v := 0; 
243 g :« 0; 
244 END; 
245 sumw[0].g := big; 
246 END; 
247 nextvertex := NIL; 
248 nodestore := NIL; 
249 firstface := NIL; 
250 lastface := NIL; 
251 fnxtolast := NIL; 
252 nv := 0; 
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253 na := 0; 
254 nf := 0; 
255 END finitializationj ; 
256 
257 
258 PROCEDURE garbagecollection; 
259 
260 VAR 
261 pi, p2: faceptr; 
262 p3, p4: arcptr; 
263 p5, p6: nodeptr; 
264 i: integer; 
265 
266 BEGIN 
267 pi := firstface; 
268 WHILE pi <> NIL DO 
269 BEGIN 
270 p2 := pi A.faceadj; 
271 dispose(pl); 
272 pi := p2 
273 END; 
274 p3 := firstarc; 
275 WHILE p3 <> NIL DO 
276 BEGIN 
277 p4 := p3 A.arcadj; 
278 dispose(p3); 
279 p3 := p4 
280 END; 
281 FOR i := 1 TO n DO 
282 BEGIN 
283 p5 := nodetable[i].nextvertex; 
284 WHILE p5 <> NIL DO 
285 BEGIN 
286 p6 := p5 A.nextnode; 
287 dispose(p5); 
288 p5 := p6; 
289 END; 
290 END; 
291 END CgarbagecollectionJ ; 
292 
293 
294 PROCEDURE deactivate(v: noderange); 
295 
296 VAR 
297 p: activevertex; 
298 
299 BEGIN 
300 WITH nodetable[v] DO 
301 BEGIN 
302 p := vactive; 
303 dispose(p); 
304 active := false; 
305 valence := 0; 
306 nextvertex := NIL; 
307 END; 
308 END fdeactivatej ; 
309 
310 
311 PROCEDURE intermediateresults; 
312 
313 VAR 
314 i: integer; 
315 ptr: nodeptr; 
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316 
317 BEGIN 
318 FOR i := 1 TO n DO 
319 WITH nodetable[i] DO 
320 BEGIN 
321 IF active 
322 THEN 
323 BEGIN 
324 writeln(* NODE i: 3); 
325 WITH vactive A DO 
326 BEGIN 
327 IF value1 <> 0 THEN 
328 WITH facel A DO 
329 writelnC VALUE', valuel: 5, vl: 3, v2: 
330 3, v3: 3); 
331 IF value2 <> 0 THEN 
332 WITH face2 A DO 
333 writeln(' VALUE', value2: 5, vl: 3, v2: 
334 3, v3: 3) 
335 END; 
336 END 
337 ELSE 
338 BEGIN 
339 writelnC NODE', i: 4, ' VALENCE ', valence: 4); 
340 ptr := nextvertex; 
341 WHILE ptr <> NIL DO 
342 BEGIN 
343 WITH ptr A, arcloc A DO 
344 writelnC ARC ', nl: 3, n2: 3, ' FACE1 ', 
345 fl A.vl: 3, fl A.v2: 3, fl A.v3: 3, 
346 .' FACE2 ', f2 A.vl: 3, f2 A.v2: 3, f2 A 
347 •v3: 3); 
348 ptr ptr A.nextnode; 
349 END; 
350 END; 
351 writeln; 
352 END; 
353 END fintermediateresultsj ; 
354 
355 
356 PROCEDURE insertinformation(k: noderange); 
357 
358 VAR 
359 nl, n2, n3: noderange; 
360 
361 BEGIN 
362 WITH nodetable[k].vactive A.facel A DO 
363 BEGIN 
364 nl vl; 
365 n2 :» v2; 
366 n3 := v3 
367 END; 
368 writelnC PUT NODE ', k: 3, ' INTO FACE ', nl: 3, n2: 3, n3: 3); 
369 END finsertinformationj ; 
370 
371 
372 PROCEDURE statusreport; 
373 
374 BEGIN 
375 writelnC NUMBER OF VERTICES ', n: 5); 
376 writelnC PROBLEM NUMBER ', problem: 5); 
377 CASE starting OF 
378 maxweight: 
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379 writeln(' FOUR HEIGHEST WEIGHT VERTICES AS', 
380 ' STARTING TETRAHEDRON'); 
381 maxtetra: 
382 writeln(' HEAVIEST TETRAHEDRON AS STARTING POINT'); 
383 randomized: 
384 writeln(' RANDOM STARTING TETRAHEDRON') 
385 END; 
386 write(' NODE SELECTION ACCORDING TO '); 
387 CASE enter OF 
388 ordered: 
389 writelnC WEIGHT ORDER') ; 
390 largest: 
391 writelnC HIGHEST GAIN') ; 
392 delta: 
393 writelnC HIGHEST COST' ) 
394 END; 
395 END CstatusreportJ ; 
396 
397 
398 PROCEDURE bigtetra(VAR vl, v2, v3, v4: noderange); 
399 
400 VAR 
401 i, j, k, 1: noderange; 
402 base, weight: integer; 
403 
404 BEGIN 
405 base 0; 
406 FOR i 1 TO n - 3 DO 
407 FOR j :•= i + 1 TO n • 2 DO 
408 FOR k : s j + 1 TO n • 1 DO 
409 FOR 1 := k + 1 TO n DO 
410 BEGIN 
411 weight starweight(i, j, k, 1); 
412 IF base o weight THEN 
413 BEGIN 
414 base := weight; 
415 vl : = i; 
416 v2 := j; 
417 v3 :« k; 
418 v4 := 1; 
419 END; 
420 END 
421 END fbigtetra! ; 
422 
423 
424 PROCEDURE random4nodes(VAR nl, n2, n3, n4: noderange); 
425 
426 VAR 
427 anode: ARRAY 
428 [1.,4j OF noderange; 
429 k: noderange; 
430 i, j: integer; 
431 same: boolean; 
432 
433 BEGIN 
434 anode[l] :» trunc(random * n) + 1; 
435 FOR i 2 TO 4 DO 
436 BEGIN 
437 REPEAT 
438 same := false; 
439 k := trunc(random * n) + 1; 
440 FOR j ;= 1 TO i - 1 DO 
441 IF anode[j] - k THEN 
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442 same := true; 
443 UNTIL NOT same; 
444 anode[i] : = k; 
445 END; 
446 FOR i := 2 TO 4 DO 
447 FOR j := 4 DOWNTO i DO 
448 IF anode[j] < anode[j - 1] THEN 
449 BEGIN 
450 k := anode[j - 1]; 
451 anode[j - 1] := anode[j]; 
452 anode[j] := k; 
453 END; 
454 nl := anode[1]; 
455 n2 := anode[2]; 
456 n3 anode[3]; 
457 n4 := anode[4]; 
458 END frandom4nodesJ ; 
459 
460 
461 PROCEDURE longtable(i: noderange; val: integer); 
462 
463 VAR 
464 j, k: integer; 
465 
466 BEGIN 
467 j i - 1; 
468 WHILE sumw[j ] . g < val DO 
469 BEGIN 
470 sumw[j + 1 ] :* sumw[j]; 
471 j :« 3 - l: 
472 END; 
473 WITH sumw[j + 1] DO 
474 BEGIN 
475 v :» i; 
476 g := val 
477 END; 
478 IF i = n 
479 THEN 
480 FOR j := 4 DOWNTO 2 DO 
481 FOR k := j - 1 DOWNTO 1 DO 
482 IF sumw[j].v < sumw[k].v THEN 
483 BEGIN 
484 sumw[0] sumw[j]; 
485 sumw[j] := sumw[k]; 
486 sumw[k] := sumw[0]; 
487 END; 
488 END Clongtablel ; 
489 
490 
491 PROCEDURE select4nodes(VAR vl, v2, v3, v4: noderange); 
492 
493 VAR 
494 a: ARRAY 
495 [0..4] OF RECORD 
496 v: 0..maxn; 
497 g: integer 
498 END; 
499 attractive, i, j: integer; 
500 
501 
502 PROCEDURE sorttable; 
503 
504 VAR 
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505 i, j: integer; 
506 
507 BEGIN 
508 FOR i := 4 DOWNTO 2 DO 
509 FOR j := i - 1 DOWNTO 1 DO 
510 IF a[i].v < a[j].v THEN 
511 BEGIN 
512 a[0] := a[i]; 
513 a[i] := a[j]; 
514 a[j] := a[0]; 
515 END; 
516 END fsorttablej ; 
517 
518 
519 PROCEDURE upthetable(i: noderange; val: integer); 
520 
521 VAR 
522 j: 0..4; 
523 
524 BEGIN 
525 j 4; 
526 WHILE a[j).g < val DO 
527 BEGIN 
528 a[j] := a[j - 1]; 
529 j := j • 1; 
530 END; 
531 IF j <> 4 THEN 
532 WITH a[j + 1] DO 
533 BEGIN 
534 v := i; 
535 g := val; 
536 END; 
537 IF i s n THEN 
538 sorttable; 
539 END {[upthetable* ; 
540 
541 
542 BEGIN £select4nodesJ 
543 IF starting = maxweight 
544 THEN 
545 BEGIN 
546 FOR i := 0 TO 4 DO 
547 WITH a[i] DO 
548 BEGIN 
549 v := 0; 
550 g 0; 
551 END; 
552 a[0].g := big; 
553 FOR i 1 TO n DO 
554 BEGIN 
555 attractive := 0; 
556 FOR j 1 TO n DO 
557 IF i <> j THEN 
558 attractive := attractive + c(i, j); 
559 IF enter = ordered 
560 THEN 
561 longtable(i, attractive) 
562 ELSE 
563 upthetable(i, attractive) 
564 END; 
565 IF enter = ordered 
566 THEN 
567 BEGIN 
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568 vl := sumw[l].v; 
569 v2 := sumw[2].v; 
570 v3 := sumw[3].v; 
571 v4 := sumw[4].v 
572 END 
573 ELSE 
574 BEGIN 
575 vl := a[1].v; 
576 v2 := a[2].v; 
577 v3 a[3].v; 
578 v4 := a[4].v; 
579 END; 
580 END 
581 ELSE 
582 IF starting = maxtetra 
583 THEN 
584 bigtetra(vl, v2, v3, v4) 
585 ELSE 
586 random4nodes(vl, v2, v3, v4); 
587 END £select4nodes> ; 
588 
589 
590 PROCEDURE tetrahedron; 
591 
592 VAR 
593 v: ARRAY 
594 [1..4] OF noderange; 
595 i: 1..4; 
596 j: integer; 
597 
598 
599 PROCEDURE maketetrahedron; 
600 
601 VAR 
602 i , j , k: 0..maxn; 
603 1, p: integer; 
604 newnode, nptr: nodeptr; 
605 e: ARRAY 
606 [1..6] OF arcptr; 
607 s: ARRAY 
608 [1..4] OF faceptr; 
609 
610 BEGIN 
611 p := 0; 
612 FOR 1 := 1 TO 6 DO 
613 new(e[1]); 
614 FOR 1 := 1 TO 4 DO 
615 new(s[l]); 
616 f construct the node list! 
617 FOR i 1 TO 4 DO 
618 BEGIN 
619 nptr := NIL; 
620 deactivate(v[i]); 
621 FOR j := 3 DOWNTO 1 DO 
622 BEGIN 
623 new(newnode); 
624 newnode A.nextnode := nptr; 
625 newnode A.arcloc := e[shape[p + j]]; 
626 nptr := newnode; 
627 END; 
628 nodetable[v[i]].valence := 3; 
629 nodetable[v[i]].nextvertex nptr; 
630 p := p + 3 
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631 END; 
632 Cconstruct nodetablej 
633 1 :» 1; 
634 FOR i := 1 TO 3 DO 
635 FOR j :• i + 1 TO 4 DO 
636 BEGIN 
637 WITH e[ 1 ] A DO 
638 BEGIN 
639 nl := v[i]; 
640 n2 v[j]; 
641 fl s[shape[p + 1]]; 
642 f2 := s[shape[p + 2]]; 
643 END; 
644 1 1 + 1; 
645 p p + 2; 
646 END; 
647 firstarc := e[l]; 
648 e[6] A.arcadj := NIL; 
649 lastarc := e[6]; 
650 FOR i 1 TO 5 DO 
651 e[i] A.arcadj := e[i + 1]; 
652 Cconstruct facej 
653 1 := 1; 
654 FOR i 1 TO 2 DO 
655 FOR j :« i + 1 TO 3 DO 
656 FOR k := j + 1 TO 4 DO 
657 BEGIN 
658 WITH s[l] A DO 
659 BEGIN 
660 vl := v[i] ; 
661 v2 v[j); 
662 v3 v[k]; 
663 END; 
664 1 :- 1 + 1; 
665 END; 
666 firstface := s[l]; 
667 lastface s[4]; 
668 FOR i 1 TO 3 DO 
669 s[i] A.faceadj s[i + 1]; 
670 s[4] A.faceadj := NIL; 
671 nv := 4; 
672 na := 6; 
673 nf := 4; 
674 END fmaketetrahedron} ; 
675 
676 
677 BEGIN ftetrahedronj 
678 select4nodes(v[1 ] , v[2], v[3], v[4]); 
679 writelnC INITIAL TETRAHEDRON v[l]: 4, v[2]: 4, v[3]: 4, v[4]: 
680 4); 
681 maketetrahedron; 
682 END ftetrahedronj ; 
683 
684 
685 FUNCTION facevalue(v: noderange; f: faces): integer; 
686 
687 BEGIN 
688 WITH f DO 
689 facevalue := c(v, vl) + c(v, v2) + c(v, v3); 
690 END ffacevaluej ; 
691 
692 
693 PROCEDURE savebig2(i: noderange; f: faceptr; valueO: integer); 
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694 
695 
696 
697 
698 
699 
700 
701 
702 
703 
704 
705 
706 
707 
708 
709 
710 
711 
712 
713 
714 
715 PROCEDURE nodegain(v: noderange); 
716 
717 VAR 
718 ptr: faceptr; 
719 i: facerange; 
720 
721 BEGIN 
722 IF nodetable[v].active 
723 THEN 
724 WITH nodetable[v].vactive A DO 
725 BEGIN 
726 ptr := firstface; 
727 FOR i 1 TO nf DO 
728 BEGIN 
729 savebig2(v, ptr, facevalue(v, ptr A)); 
730 ptr := ptr A.faceadj 
731 END; 
732 END 
733 END fnodegainj ; 
734 
735 
736 PROCEDURE gainupdate(v: noderange); 
737 
738 VAR 
739 ptr: faceptr; 
740 i: facerange; 
741 
742 BEGIN 
743 IF nodetable[v].active 
744 THEN 
745 WITH nodetable[v].vactive A DO 
746 BEGIN 
747 IF ((facel = fremoved) OR (face2 = fremoved)) 
748 THEN 
749 BEGIN 
750 valuel := 0; 
751 value2 := 0; 
752 nodegain(v) 
753 END 
754 ELSE 
755 BEGIN 
756 savebig2(v, fremoved, facevalue(v, freraoved A)); 

BEGIN 
WITH nodetable[i].vactive A DO 

IF value2 < valueO 
THEN 

IF valuel < valueO 
THEN 

BEGIN 
value2 := valuel; 
face2 := facel; 
valuel := valueO; 
facel := f; 

END 
ELSE 

BEGIN 
value2 := valueO; 
face2 := f; 

END; 
END fsavebig2J ; 
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757 savebig2(v, fnxtolast, facevalue(v, fnxtolast A)); 
758 savebig2(v, lastface, facevalue(v, lastface A)); 
759 END; 
760 END; 
761 END CgainupdateJ ; 
762 
763 
764 FUNCTION pickl: noderange; 
765 
766 VAR 
767 a, i: noderange; 
768 base: integer; 
769 
770 BEGIN 
771 base 0; 
772 FOR i := 1 TO n DO 
773 WITH nodetable[i] DO 
774 IF active THEN 
775 IF vactive A.valuel >= base THEN 
776 BEGIN 
777 base := vactive A.valuel; 
778 a i; 
779 END; 
780 pickl := a 
781 END CpicklJ ; 
782 
783 
784 FUNCTION pick2: noderange; 
785 
786 VAR 
787 a, i: noderange; 
788 base: integer; 
789 
790 BEGIN 
791 base :«= 0; 
792 FOR i := 1 TO n DO 
793 WITH nodetable[i] DO 
794 IF active THEN 
795 WITH vactive A DO 
796 IF valuel - value2 >= base THEN 
797 BEGIN 
798 base := valuel - value2; 
799 a := i ; 
800 END; 
801 pick2 := a 
802 END £pick2J ; 
803 
804 
805 PROCEDURE addaface(ndl, nd2, nd3: noderange; location; faceptr); 
806 
807 VAR 
808 nl, n2, n3: noderange; 
809 
810 BEGIN 
811 nl := ndl; 
812 n2 := nd2; 
813 n3 ;= nd3; 
814 order3(nl, n2, n3); 
815 WITH location A DO 
816 BEGIN 
817 vl := nl; 
818 v2 := n2; 
819 v3 := n3; 
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820 END; 
821 END faddafacej ; 
822 
823 
824 PROCEDURE addanarc(ndl, nd2: noderange; a: arcptr; 11, 12: faceptr); 
825 
826 VAR 
827 vl, v2: noderange; 
828 
829 BEGIN 
830 vl := ndl; 
831 v2 := nd2; 
832 order2(vl, v2); 
833 WITH a A DO 
834 BEGIN 

• 835 nl := vl; 
836 n2 := v2; 
837 fl := 11; 
838 f2 := 12; 
839 END; 
840 END Caddanarc} ; 
841 
842 
843 PROCEDURE addavertex(ndl, nd2: noderange; al: arcptr); 
844 
845 VAR 
846 this, next, ptr: nodeptr; 
847 a2: arcptr; 
848 nd: noderange; 
849 found: boolean; 
850 
851 BEGIN 
852 new(ptr); 
853 WITH nodetable[ndl] DO 
854 BEGIN 
855 IF active 
856 THEN 
857 BEGIN 
858 deactivate(ndl); 
859 valence := 1; 
860 nextvertex := ptr; 
861 ptr A.arcloc := al; 
862 ptr A.nextnode := NIL; 
863 END 
864 ELSE 
865 BEGIN 
866 this := NIL; 
867 next := nextvertex; 
868 found := false; 
869 WHILE ((NOT found) AND (next <> NIL)) DO 
870 BEGIN 
871 a2 :•= next A.arcloc; 
872 IF ndl - a2 A.nl 
873 THEN 
874 nd := a2 A.n2 
875 ELSE 
876 nd := a2 A.nl; 
877 IF nd > nd2 
878 THEN 
879 BEGIN 
880 found := true; 
881 IF this = NIL 
882 THEN 
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883 BEGIN 
884 Ptr A.nextnode := nextvertex; 
885 nextvertex := ptr; 
886 END 
887 ELSE 
888 this A.nextnode : = ptr 
889 END 
890 ELSE 
891 BEGIN 
892 this : = next; 
893 next := next A.nextnode; 
894 END; 
895 END; 
896 IF next = NIL 
897 THEN 
898 BEGIN 
899 IF this = NIL 
900 THEN 
901 nextvertex : = ptr 
902 ELSE 
903 this A.nextnode : = ptr; 
904 ptr A.nextnode := NIL 
905 END 
906 ELSE 
907 ptr A.nextnode := next; 
908 ptr A.arcloc : = al; 
909 valence : m valence + 1; 
910 END 
911 END 
912 END CaddavertexJ ; 
913 
914 
915 PROCEDURE changefaces(ndl, nd2, nd3: noderange; nfl, nf2: faceptr); 
916 
917 
918 PROCEDURE findarc(ndl, nd2: noderange; fl: faceptr); 
919 
920 VAR 
921 vl, v2: noderange; 
922 1*. arcptr; 
923 
924 BEGIN 
925 vl := ndl; 
926 v2 := nd2; 
927 order2(vl, v2); 
928 1 := firstarc; 
929 WHILE ((1 A.nl <> vl) OR (1 A.n2 <> v2)) DO 
930 1 := 1 A.arcadj; 
931 IF 1 A.fl = f removed 
932 THEN 
933 1 A.fl fl 
934 ELSE 
935 1 A.f2 fl 
936 END ffindarcj ; 
937 
938 
939 BEGIN fchangefaces> 
940 findarc(ndl, nd3, nfl); 
941 findarc(nd2, nd3, nf2) 
942 END fchangefacesj ; 
943 
944 
945 PROCEDURE adjface(vl, v2: noderange; fptr: faceptr); 
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946 
947 
948 
949 
950 
951 
952 
953 
954 
955 
956 
957 
958 
959 
960 
961 
962 
963 
964 
965 
966 
967 
968 
969 
970 
971 
972 
973 
974 
975 
976 
977 
978 
979 
980 
981 
982 
983 
984 
985 
986 
987 
988 
989 
990 
991 
992 
993 
994 
995 
996 
997 
998 
999 

1000 
1001 
1002 
1003 
1004 
1005 
1006 
1007 
1008 

VAR 

anode: nodeptr; 

BEGIN 

anode := nodetable[v2].nextvertext; 
WHILE ((anode A.arcloc A.nl <> vl) OR (anode A.arcloc A.n2 <> v2)) 

DO 
anode := anode A.nextnode; 

WITH anode A.arcloc A DO 
IF fl = fremoved 
THEN 

fl := fptr 
ELSE 

f2 := fptr 
END fadjfacej ; 

PROCEDURE addanode(stick: noderange; reject: faceptr) 

VAR 

i: integer; 
newnode, ptr: nodeptr; 
nfl, nf2: faceptr; 
nO, nl, n2, n3: noderange; ' 
al, a2, a3: arcptr; 

BEGIN 
fremoved := reject; 
nO := stick; 
WITH fremoved A DO 

BEGIN 
nl := vl 
n2 := v2 
n3 := v3 

END; 
f enter new faces J 
addaface(nO, nl, n2, fremoved); 
new(nf1); 
addaface(nO, nl, n3, nfl); 
new(nf2); 
addaface(nO, n2, n3, nf2); 
adjface(nl, n3, nfl); 
adjface(n2, n3, nf2); 
lastface A.faceadj := nfl; 
nf2 A.faceadj := NIL; 
nfl A.faceadj := nf2; 
fnxtolast := nfl; 
lastface := nf2; 
f enter new arcs > 
new(al); 
new(a2); 
new(a3); 
addanarc(nO, nl, al, 
addanarc(nO, n2, a2, 
addanarc(nO, n3, a3 
lastarc A.arcadj := 
al A.arcadj := a2; 
a2 A.arcadj := a3; 
a3 A.arcadj :« NIL; 
lastarc := a3; 
f enter new vertex J 
addavertex(nl, nO, al); 

fremoved, nfl); 
fremoved, nf2); 
nfl, nf2); 

al; 
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1009 addavertex(n2, nO, a2) 
1010 addavertex(n3, nO, a3) 
1011 addavertex(nO, nl, al) 
1012 addavertex(nO, n2, a2) 
1013 addavertex(nO, n3, a3) 
1014 f update indicies J 
1015 nf := nf + 2; 
1016 na na + 3; 
1017 nv : = nv + 1; 
1018 END faddanodej ; 
1019 
1020 
1021 FUNCTION switchable(anarc: arcptr): boolean; 
1022 
1023 BEGIN 
1024 WITH anarc A DO 
1025 IF ((nodetable[nl].valence « 3) OR (nodetable[n2].valence = 3)) 
1026 THEN 
1027 switchable := false 
1028 ELSE 
1029 switchable := true 
1030 END fswitchablej ; 
1031 
1032 
1033 FUNCTION thirdnode(anarc: arcptr; aface: faceptr): noderange; 
1034 
1035 BEGIN 
1036 WITH anarc A, aface A DO 
1037 IF ((vl <> nl) AND (vl <> n2)) 
1038 THEN 
1039 thirdnode := vl 
1040 ELSE 
1041 IF ((v2 <> nl) AND (v2 <> n2)) 
1042 THEN 
1043 thirdnode v2 
1044 ELSE 
1045 thirdnode := v3 
1046 END fthirdnodel ; 
1047 
1048 
1049 FUNCTION connected(al, a2: noderange): arcptr; 
1050 
1051 VAR 
1052 vl, v2: noderange; 
1053 vptr: nodeptr; 
1054 found: boolean; 
1055 
1056 BEGIN 
1057 vl := al; 
1058 v2 := a2; 
1059 order2(vl, v2); 
1060 found := false; 
1061 vptr := nodetable[v2].nextvertex; 
1062 WHILE ((NOT found) AND (vptr <> NIL)) DO 
1063 WITH vptr A.arcloc A DO 
1064 IF vl <> nl 
1065 THEN 
1066 vptr := vptr A.nextnode 
1067 ELSE 
1068 found := true; 
1069 IF found 
1070 THEN 
1071 connected := vptr A.arcloc 
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1072 ELSE 
1073 connected := NIL; 
1074 c IF found THEN writeln( vl, v2, * connected') 
1075 ELSE writeln( vl, v2, ' not connected'); J 
1076 END {[connected! ; 
1077 
1078 
1079 PROCEDURE removearc(p, q: noderange; anarc: arcptr); 
1080 
1081 
1082 PROCEDURE removenode(nl: noderange; anarc: arcptr); 
1083 
1084 VAR 
1085 last, this: nodeptr; 
1086 
1087 BEGIN 
1088 this :- nodetable[nl].nextvertex; 
1089 last := NIL; 
1090 WHILE this A.arcloc <> anarc DO 
1091 BEGIN 
1092 last := this; 
1093 this this A.nextnode; 
1094 END; 
1095 IF last = NIL 
1096 THEN 
1097 nodetable[nl].nextvertex := this A.nextnode 
1098 ELSE 
1099 last A.nextnode :« this A.nextnode; 
1100 dispose(this); 
1101 nodetable[nl].valence := nodetable[nl].valence - 1; 
1102 END fremovenodej ; 
1103 
1104 
1105 BEGIN fremovearcj 
1106 removenode(p, anarc); 
1107 removenode(q, anarc); 
1108 END fremovearcj ; 
1109 
1110 
1111 PROCEDURE diagonalswitch(al, a2, p, q: noderange; anarc: arcptr; fptrl, 
1112 fptr2: faceptr); 
1113 
1114 VAR 
1115 dumarcl, dumarc2: arcptr; 
1 1 1 6 
1117 BEGIN 
1118 dumarcl := connected(al, q); 
1119 dumarc2 := connected(a2, p); 
1120 addaface(al, a2, p, fptrl); 
1121 addaface(al, a2, q, fptr2); 
1122 addanarc(al, a2, anarc, fptrl, fptr2); 
1123 addavertex(al, a2, anarc); 
1124 addavertex(a2, al, anarc); 
1125 WITH dumarcl A DO 
1126 IF fl = fptrl 
1127 THEN 
1128 fl fptr2 
1129 ELSE 
1130 f2 := fptr2; 
1131 WITH dumarc2 A DO 
1132 IF fl = fptr2 
1133 THEN 
1134 fl := fptrl 
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1135 ELSE 
1136 f2 := fptrl; 
1137 removearc(p, q, anarc); 
1138 END fdiagonalswitch! ; 
1139 
1140 
1141 PROCEDURE redirectface(dl, d2: noderange; oldface, newface: faceptr); 
1142 
1143 VAR 
1144 dumarc: arcptr; 
1145 
1146 BEGIN 
1147 dumarc := connected(dl, d2); 
1148 WITH dumarc A DO 
1149 IF fl « oldface 
1150 THEN 
1151 fl := newface 
1152 ELSE 
1153 f2 := newface 
1154 END fredirectface! ; 
1155 
1156 
1157 FUNCTION locatearc(dl, d2: noderange): arcptr; 
1158 
1159 
1160 
1161 
1162 
1163 
1164 
1165 
1166 
1167 
1168 
1169 
1170 
1171 
1172 
1173 
1174 FUNCTION locateface(dl, d2, d3: noderange): faceptr; 
1175 
1176 VAR 
1177 anarc: arcptr; 
1178 ndl, nd2, nd3: noderange; 
1179 
1180 BEGIN 
1181 ndl :« dl; 
1182 nd2 := d2; 
1183 nd3 := d3; 
1184 order3(ndl» nd2, nd3); 
1185 anarc : «= locatearc(ndl, nd3); 
1186 WITH anarc A DO 
1187 IF fl A.v2 - nd2 
1188 THEN 
1189 locateface := fl 
1190 ELSE 
1191 locateface := f2; 
1192 END flocateface! ; 
1193 
1194 
1195 FUNCTION nonchangeablepair(nc, nd, nb, nal, na2: noderange): noderange; 
1196 
1197 VAR 

VAR 
anode: nodeptr; 
ndl, nd2: noderange; 

BEGIN 
ndl := dl; 
nd2 := d2; 
order2(ndl, nd2); 
anode nodetable[nd2].nextvertex; 
WHILE NOT (anode A.arcloc A.nl = ndl) DO 

anode := anode A.nextnode; 
locatearc := anode A.arcloc; 

END flocatearc! ; 
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1198 aface: faceptr; 
1199 anarc: arcptr; 
1200 anode: noderange; 
1201 
1202 BEGIN 
1203 aface := locateface(nc, nd, nb); 
1204 anarc := locatearc(nc, nb); 
1205 REPEAT 
1206 WITH anarc A DO 
1207 IF fl <> aface 
1208 THEN 
1209 aface :« fl 
1210 ELSE 
1211 aface := f2; 
1212 anode :« thirdnode(anarc, aface); 
1213 anarc := locatearc(nc, anode); 
1214 UNTIL (anode = nal) OR (anode = na2); 
1215 IF anode = nal 
1216 THEN 
1217 nonchangeablepair := nal 
1218 ELSE 
1219 nonchangeablepair := na2; 
1220 END fnonchangeablepairj ; 
1221 
1222 
1223 PROCEDURE mediumswitch(na2, nbl, nal, nb2, nc, nd: noderange); 
1224 C replace nal-na2 by na2-nbl 
1225 nc-nd are the other pair of vertices in the 
1226 switching quadrilateral nal-nc-na2-nd 
1227 nc is used as the anchor for searching J 
1228 
1229 VAR 
1230 rl, r2, r3: faceptr; 
1231 anarc: arcptr; 
1232 
1233 BEGIN 
1234 rl := locateface(nal, na2, nc); 
1235 r2 := locateface(nal, na2, nd); 
1236 r3 := locateface(nbl, nc, nd); 
1237 addaface(na2, nbl, nc, rl); 
1238 addaface(na2, nbl, nd, r2); 
1239 addaface(nal, nc, nd, r3); 
1240 redirectface(nal, nc, rl, r3); 
1241 redirectface(nal, nd, r2, r3); 
1242 redirectface(nbl, nc, r3, rl); 
1243 redirectface(nbl, nd, r3, r2); 
1244 anarc := locatearc(nal, na2); 
1245 removearc(nal, na2, anarc); 
1246 addanarc(na2, nbl, anarc, rl, r2); 
1247 addavertex(nbl, na2, anarc); 
1248 addavertex(na2, nbl, anarc); 
1249 writelnC MEDIUM SWITCH :', nal: 3, na2: 3, ' TO ', na2: 3, nbl: 3 
1250 ); 
1251 END tfmediumswitchj ; 
1252 
1253 
1254 PROCEDURE switch(anarc: arcptr; VAR arcswap: boolean); 
1255 
1256 TYPE 
1257 replacetype = 
1258 (noswitch, switcha2bl, switchalb2, longleg); 
1259 
1260 VAR 
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1261 al, a2, bl, b2, cl, c2, anode: noderange; 
1262 fptrl, f ptr2 , f ptr3 , fp'tr4: faceptr; 
1263 joinedbase: arcptr; 
1264 bestmove: replacetype; 
1265 
1266 
1267 FUNCTION findswitch(wl, w2, w3, w4: integer): replacetype; 
1268 
1269 VAR 
1270 a: ARRAY 
1271 [replacetype] OF integer; 
1272 max: integer; 
1273 i, kind: replacetype; 
1274 
1275 BEGIN 
1276 a[noswitch] :- wl; 
1277 a[switcha2bl] := w2; 
1278 a[switchalb2] := w3; 
1279 a[longleg] : = w4; 
1280 max : = wl; 
1281 kind := noswitch; 
1282 FOR i := switcha2bl TO longleg DO 
1283 IF a[i] > max THEN 
1284 BEGIN 
1285 max := a[i]; 
1286 kind i; 
1287 END; 
1288 findswitch := kind; 
1289 END CfindswitchJ ; 
1290 
1291 
1292 BEGIN fswitchj 
1293 IF switchable(anarc) 
1294 THEN 
1295 BEGIN 
1296 WITH anarc A DO 
1297 BEGIN 
1298 fptrl := fl; 
1299 fptr2 := f2; 
1300 al := nl; 
1301 a2 := n2; 
1302 cl := thirdnode(anarc, fptrl); 
1303 c2 :« thirdnode(anarc, fptr2); 
1304 END; 
1305 joinedbase := connected(cl, c2); 
1306 IF joinedbase = NIL 
1307 THEN 
1308 BEGIN 
1309 IF c(c1, c2) > c(al, a2) 
1310 THEN 
1311 BEGIN 
1312 writelnC SWITCH al: 3, a2: 3, ' TO cl: 3, 
1313 c2: 3); 
1314 diagonalswitch(cl, c2, al, a2, anarc, fptrl, 
1315 fptr2); 
1316 arcswap := true; 
1317 END 
1318 END 
1319 ELSE 
1320 BEGIN 
1321 fptr3 := joinedbase A.fl; 
1322 fptr4 := joinedbase A.f2; 
1323 bl := thirdnode(joinedbased, fptr3); 
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1324 b2 := thirdnode(joinedbase, fptr4); 
1325 anode := nonchangeablepair(cl, c2, bl, al, a2); 
1326 IF anode <> al THEN 
1327 BEGIN 
1328 a2 := al; 
1329 al := anode; 
1330 END; 
1331 bestmove := findswitch(c(al, a2), c(a2, bl), c(al , b2) 
1332 , c(bl, b2)); 
1333 CASE bestmove OF 
1334 noswitch: 
1335 BEGIN 
1336 END; 
1337 switcha2bl: 
1338 mediumswitch(a2, bl, al, b2, cl, c2); 
1339 switchalb2: 
1340 mediumswitch(al, b2, a2, bl, cl, c2); 
1341 longleg: 
1342 BEGIN 
1343 writeln(' LONGSWITCH \ al: 3, a2: 3, ' TO 
1344 bl: 3, b2: 3); 
1345 diagonalswitch(bl, b2, cl, c2, joinedbase, 
1346 fptr3, fptr4); 
1347 diagonalswitch(cl, c2, al, a2, anarc, fptrl, 
1348 fptr2); 
1349 END 
1350 END; 
1351 IF bestmove <> noswitch THEN 
1352 arcswap :• true; 
1353 END; 
1354 END; 
1355 END fswitch! ; 
1356 
1357 
1358 PROCEDURE get3faces(anode: noderange; VAR facel, face2, face3: faceptr); 
1359 
1360 VAR 
1361 nptr: nodeptr; 
1362 
1363 BEGIN 
1364 nptr :» nodetable[anode].nextvertex; 
1365 WITH nptr A.arcloc A DO 
1366 BEGIN 
1367 facel := fl; 
1368 face2 :« f2; 
1369 END; 
1370 nptr := nptr A.nextnode; 
1371 WITH nptr A.arcloc A DO 
1372 IF ((fl « facel) OR (fl - face2)) 
1373 THEN 
1374 face3 f2 
1375 ELSE 
1376 face3 ;= fl; 
1377 END fget3faces! ; 
1378 
1379 
1380 FUNCTION otherend(k: noderange; anarc: arcptr): noderange; 
1381 
1382 BEGIN 
1383 WITH anarc A DO 
1384 IF (k - nl) 
1385 THEN 
1386 otherend := n2 
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1387 ELSE 
1388 otherend := nl 
1389 END CotherendJ ; 
1390 
1391 
1392 PROCEDURE ychange(anode: noderange; rl, r2, r3, inface: faceptr); 
1393 
1394 VAR 
1395 bl, b2, b3, dl, d2, d3: noderange; 
1396 al, a2, a3: arcptr; 
1397 nptr: nodeptr; 
1398 
1399 BEGIN 
1400 WITH inface A DO 
1401 BEGIN 
1402 dl vl; 
1403 d2 v2; 
1404 d3 := v3; 
1405 END; 
1406 nptr := nodetable[anode].nextvertex; 
1407 al nptr A.arcloc; 
1408 nptr := nptr A.nextnode; 
1409 a2 := nptr A.arcloc; 
1410 nptr := nptr A.nextnode; 
1411 a3 := nptr A.arcloc; 
1412 bl := otherend(anode, al); 
1413 b2 otherend(anode, a2); 
1414 b3 := otherend(anode, a3); 
1415 WITH al A DO 
1416 IF b2 - thirdnode(al, fl) 
1417 THEN 
1418 BEGIN 
1419 rl := f1; 
1420 r2 f2; 
1421 END 
1422 ELSE 
1423 BEGIN 
1424 rl := f2; 
1425 r2 := fl; 
1426 END; 
1427 WITH a2 A DO 
1428 IF b3 = thirdnode(a2, fl) 
1429 THEN 
1430 r3 := fl 
1431 ELSE 
1432 r3 := f2; 
1433 redirectface(bl, b2, rl, inface); 
1434 redirectface(bl, b3, r2, inface); 
1435 redirectface(b2, b3, r3, inface); 
1436 redirectface(dl, d2, inface, rl); 
1437 redirectface(dl, d3, inface, r2); 
1438 redirectface(d2, d3, inface, r3); 
1439 removearc(anode, bl, al); 
1440 removearc(anode, b2, a2); 
1441 removearc(anode, b3, a3); 
1442 addaface(bl, b2, b3, inface); 
1443 addaface(anode, dl, d2, rl); 
1444 addaface(anode, dl, d3, r2); 
1445 addaface(anode, d2, d3, r3); 
1446 addanarc(anode, dl, al, rl, r2); 
1447 addanarc(anode, d2, a2, rl, r3); 
1448 addanarc(anode, d3, a3, r2, r3); 
1449 addavertex(anode, dl, al); 
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1450 addavertex(anode, d2, a2) 
1451 addavertex(anode, d3, a3) 
1452 addavertex(dl, anode, al) 
1453 addavertex(d2, anode, a2) 
1454 addavertex(d3, anode, a3) 
1455 END £ychange> ; 

1456 
1457 
1458 PROCEDURE yswitch(anode: noderange; VAR yswap: boolean); 
1459 
1460 VAR 
1461 nl, n2, n3: noderange; 
1462 rl, r2, r3, this: faceptr; 
1463 highface: RECORD 
1464 f: faceptr; 
1465 v: integer; 
1466 END; 
1467 vptr: nodeptr; 
1468 benefit: integer; 
1469 
1470 BEGIN 
1471 IF nodetable[anode] .valence *= 3 
1472 THEN 
1473 BEGIN 
1474 get3faces(anode, rl, r2, r3); 
1475 highface.f := NIL; 
1476 highface.v := 0; 
1477 this := firstface; 
1478 WHILE this <> NIL DO 
1479 BEGIN 
1480 IF ((this <> rl) AND ((this <> r2) AND (this <> r3))) 
1481 THEN 
1482 BEGIN 
1483 WITH this A DO 
1484 BEGIN 
1485 nl := vl; 
1486 n2 := v2; 
1487 n3 := v3; 
1488 END; 
1489 benefit := yweight(anode, nl, n2, n3); 
1490 IF benefit > highface.v THEN 
1491 WITH highface DO 
1492 BEGIN 
1493 f := this; 
1494 v := benefit; 
1495 END; 
1496 END; 
1497 this := this A.faceadj; 
1498 END; 
1499 vptr := nodetable[anode].nextvertex; 
1500 nl := otherend(anode, vptr A.arcloc); 
1501 vptr := vptr A.nextnode; 
1502 n2 := otherend(anode, vptr A.arcloc); 
1503 vptr := vptr A.nextnode; 
1504 n3 := otherend(anode, vptr A.arcloc); 
1505 IF highface.v > yweight(anode, nl, n2, n3) 
1506 THEN 
1507 BEGIN 
1508 writelnC CHANGE ', anode: 3, ' IN FACE nl: 3, n2: 
1509 3, n3: 3); 
1510 WITH highface.f A DO 
1511 BEGIN 
1512 nl := vl; 
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1513 n2 := v2; 
1514 n3 := v3 
1515 END; 
1516 writeln(' INTO anode: 3, ' IN FACE nl: 3, n2: 
1517 3, n3: 3); 
1518 ychange(anode, rl, r2, r3, highface.f); 
1519 yswap := true 
1520 END; 
1521 END; 
1522 END fyswitchj ; 
1523 
1524 
1525 BEGIN fmaxplanarj 
1526 initrandom; 
1527 FOR starting := maxweight TO randomized DO 
1528 FOR enter := ordered TO delta DO 
1529 IF NOT ((starting * maxtetra) OR ((starting = randomized) AND ( 
1530 enter = ordered))) 
1531 THEN 
1532 BEGIN 
1533 reset(tetra); 
1534 readinput; 
1535 statusreport; 
1536 timec := clock; 
1537 initialization; 
1538 tetrahedron; 
1539 FOR i 1 TO n DO 
1540 nodegain(i); 
1541 REPEAT 
1542 CASE enter OF 
1543 ordered: 
1544 anode := pickorder; 
1545 largest: 
1546 anode := pickl; 
1547 delta: 
1548 anode := pick2 
1549 END; 
1550 finsertinformation(anode);J 
1551 addanode(anode, nodetable[anode].vactive A.facel); 
1552 FOR i :« 1 TO n DO 
1553 gainupdate(i); 
1554 UNTIL nv = n; 
1555 timec := clock - timec; 
1556 writelnC RUNTIME FOR CONSTRUCTION \ timec: 6, 
1557 ' MIL-SEC'); 
1558 writelnC TOTAL ASSIGNMENT COST », assigncost: 6); 
1559 timei := clock; 
1560 firstround := true; 
1561 yswap := false; 
1562 REPEAT 
1563 newarc := firstarc; 
1564 arcswap := false; 
1565 WHILE newarc <> NIL DO 
1566 BEGIN 
1567 switch(newarc, arcswap); 
1568 newarc := newarc A.arcadj; 
1569 END; 
1570 IF firstround OR ((arcswap = true) OR (yswap = true)) 
1571 THEN 
1572 BEGIN 
1573 yswap := false; 
1574 FOR i 1 TO n DO 
1575 yswitch(i, yswap); 
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1576 END; 
1577 firstround := false; 
1578 UNTIL ((arcswap = false) AND (yswap = false)); 
1579 timei : = clock - timei; 
1580 timet : = timec + timei; 
1581 writelnC ITERATION TIME timei: 6, ' MIL-SEC'); 
1582 writelnC FINAL ASSIGNMENT COST assigncost: 6, ' IN ', 
1583 timet: 6, ' MIL-SEC'); 
1584 writeln('l'); 
1585 garbagecollection; 
1586 END; 
1587 replaceseeds; 
1588 END fmaxplanarj . 
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PROGRAM ROC15 (INPUT,OUTPUT,ROCD,ROCDC,TAPE5=INPUT, 

1 TAPE6'OUTPUT,TAPE4=ROCD,TAPE3=ROCDC) 

IMPLICIT INTEGER (A-Z) 

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97), 

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313), 

2 DUM(9 7),ORGROW,ORGCOL,NROW,NCOL,NOP 

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97), 

1 BOTMAC(97) 

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD,NHEAD, 

1 DUK1(177),DUK2(177),DUP1(177),DUP2(177), 

2 DUP3(177) 

DIMENSION NOWR(97),NOWC(97) 

C 

C THIS PROGRAM IS SET UP TO REARRANGE ROWS AND COLUMN 

C OF A MATRIX ACCORDING TO RANKED ORDER CLUSTER ALGORITHM 

C ROC13 USE RADIX SORT (SHIFF SUBROUTINE) AS MAIN SORTING 

C ALGORITHM 

C INSERTING SORT IS USED AS SECONDARY SORTING PROCEDURE 

C DATA TO BE GENERATED BY PROGRAM....ROCDAT...... 

C ROC1 FIRST PROGRAMMED IN DECEMBER 1979 

C THIS IS AN INTERACTIVE VERSION OF ROC1 

C ROC15 FIRST PROGRAMMED IN JANUARY 1980 

C THIS VERSION UPDATED JULY 1981 

C WRITTEN BY V. NAKORNCHAI 

C COPYRIGHTED BY V. NAKORNCHAI JULY 1981 

C MAINS VARIABLES 

THE DATA ARE IN THE FORM OF 5 COLUMN REPRESENTATION 

OROW 

OCOL 

NEXSR 

NEXSC 

CAP 

ORIGINAL ROW LOCATION 

ORIGINAL COLUMN LOCATION 

ADDRESS TO THE NEXT DATA OF THE SAME ORIGINAL ROW 

ADDRESS TO THE NEXT DATA OF THE SAME ORIGIAL COL 

DATA VALUE 

C INROW ACCESS TO THE ORIGINAL ROW 

C INCOL ACCESS TO THE ORIGINAL COL 

C ROWE NUMBER OF NON ZERO ELEMENTS IN A ROW 

C COLE NUMBER OF NON ZERO ELEMENTS IN A COL 

C ORGROW ORIGINAL NUMBER OF ROW IN THE MATRIX 

C ORGCOL ORIGINAL NUMBER OF COL IN THE MATRIX 

C NROW CURRENT NUMBER OF ROW IN THE MATRIX 

C NCOL CURRENT NUMBER OF COL IN THE MATRIX 

C DUM DUMMY MATRIX 

C LOCC(I) CURRENT COLUMN OF COMPONENT I 

C LOCM(I) CURRENT ROW OF MACHINE I 

C CCONT(I) CURRENT COMPONENT IN COLUMN I 

C RCONT(I) CURRENT MACHINE IN ROW I 

C NOP TOTAL NUMBER OF NON ZERO ELEMENTS IN THE MATRIX 

WRITE(6,9530) 

9530 FORMAT(' TO READ DATA FROM THE ORIGINAL FILE ENTER ANY NO.',/, 

1 ' TO CONTINUE FROM PREVIOULY STORED STATE (CR)') 

READ(5,*,END=130) ID 

C 

C READ DATA FROM FILE ROCD 

C 

MANAGEMENT SCIENCE IMPERIAL COLLEGE 



APPENEIX E 157 

9000 FORMAT(2015) 

50 READ(4,9000) 

READ(4,9000) 

READ(4,9000) 

READ(4,9000) 

READ(4,9000) 

READ(4,9000) 

READ(4,9000) 

READ(4,9000) 

READ(4,9000) 

READ(4,9000) 

NCOL, NROW, NOP 

(INCOL(I),1=1 , 

(COLE(I), 1=1, 

(INROW(I),1=1, 

(ROWE(I), 1=1, 

(OROW(I), 1=1, 

(OCOL(I), 1=1, 

(NEXSR(I),1=1, 

(NEXSC(I),1=1, 

(CAP(I), 1=1, 

NCOL) 

NCOL) 

NROW) 

NROW) 

NOP ) 

NOP ) 

NOP ) 

NOP ) 

NOP ) 

C INITIALIZATION 

C 

ITERA=0 

IDEL=1 

DO 100 1=1,NROW 

LOCM(I)=1 

NOWR(I)=1 

RCONT(I)=1 

BOTMAC(I)=0 

100 CONTINUE 

DO 120 1=1,NCOL 

LOCC(I)=1 

NOWC(I)=I 

CCONT(I)=I 

120 CONTINUE 

ORGROW=NROW 

ORGCOL=NCOL 

WRITE(6,9620) 

9620 FORMAT(' IN REPEATING THE SAME OPERATION CONSECUTIVELY ONLY', 

1 ' ONE INSTRUCTION GIVEN',/,' TO LIST INSTRUCTION (CR)') 

CALL INIDUM 

GO TO 145 

READ DATA FROM FILE ROCDC 

I.E. CONTINUE FROM PREVIOUS STORED STATE 

130 READ 

READ 

READ 

READ 

READ 

READ 

READ 

READ 

READ 

READ 

READ 

READ 

READ 

READ 

READ 

READ 

READ 

READ 

READ 

READ 

READ 

READ 

READ 

3,9000,END=140) ORGCOL,ORGROW,NCOL,NROW,NOP 

3,9000 

3,9000 

3,9000 

3,9000 

3,9000 

3,9000 

3,9000 

3,9000 

3,9000 

3,9000 

3,9000 

9000 

9000 

9000 

9000 

9000 

9000 

9000 

9000 

9000 

3,9000 

3,9000 

ITERA,IDEL,NMOD,NHEAD,DUMP 

INCOL(I) 

COLE(I), 

INROW(I) 

ROWE(I), 

OROW(I), 

OCOL(I), 

NEXSR(I) 

NEXSC(I) 

CAP(I), 

NOWR(I), 

NOWC(I), 

LOCM(I), 

LOCC(I), 

RCONT(I) 

CCONT(I) 

1=1,NCOL 

1=1,NCOL 

1=1,NROW 

1=1,NROW 

1=1,NOP 

1=1,NOP 

1=1,NOP 

1=1,NOP 

1=1,NOP 

1=1,NROW 

1=1,NCOL 

1=1,NROW 

1=1,NCOL 

1=1,NROW 

1=1,NCOL 

BOTMAC(I),1=1,NROW 

DUK1(I) 

DUK2(I) 

DUP1(1) 

DUP2(I) 

DUP3(I) 

1 = 1 
1 = 1 
1 = 1 
1 = 1 
1 = 1 

177 

177 

177 

177 

177 
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READ(3 
READ(3 
READ(3 

,9000) 
,9000) 
,9000) 

(DUM1(I 
(DUM2(I 
(DUM3(I 

). 1=1 

), 1=1 

), 1=1 

,313 ) 

,313 ) 

,313 ) 

GO TO 145 
140 WRITE(6,9540) 

9540 FORMAT(' NO PREVIOUS STATE DATA... READ FROM ORIGINAL SET') 
GO TO 50 

C REQUEST FOR INTERACTION IF REQUIRED 
145 WRITE(6,9630) 

9630 FORMAT ( ' IF INTERACTION IS REQUIRED ENTER 1 ELSE (CR)') 
READ(5,*,END=150) ID 
IF(ID.EQ.l) CALL SETIN(ITERA) 

C 
C SORT THE MACHINE ORDER 
C 

150 DO 200 11=1,NCOL 
I=CCONT(NCOL-II+l) 

C IF NO OPERATION EXISTS SKIP 
IF(COLE(I).EQ.0) GO TO 200 

CALL CONSORT(I,-1) 
CALL SHIFF(COLE(I), - 1) 

200 CONTINUE 
C 
C CHECK FOR ANY REALLOCATION 
C 

INERT=0 
DO 210 1=1,NROW 
IF(NOWR(I).NE.RCONT(I))THEN 

NOWR(I)=RCONT(I) 
INERT®1 

ENDIF 
210 CONTINUE 

IF(INERT.EQ.O) 
1 THEN 

C NO CHANGE SORTING MAY BE COMPLETED 
IF(IDEL.EQ.l) 

1 THEN 
IDEL=0 
GO TO 205 

ELSE 
GO TO 2000 

ENDIF 
ELSE 

C SORTING NOT COMPLETED 
ITERA=ITERA+1 

C REQUEST FOR MATRIX IF REQUIRED 
WRITE(6,9610) ITERA 
READ(5,*,END=205) ID 
IF(ID.EQ.l) CALL MATRIX (ITERA,1,0,0,0,0) 

ENDIF 
C 
C SORT COMPONENT ORDER 
C 

205 DO 220 11=1,NROW 
I=RCONT(NROW-11 +1) 

C IF NO OPERATION EXISTS SKIP 
IF(ROWE(I).EQ.O) GO TO 220 
IF(BOTMAC(I).EQ.O) 

1 THEN 
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CALL CONSORT(1,1) 

CALL SHIFF(ROWE(I),1) 

ENDIF 

C WRITE(6,9520) ITERA.II 

220 CONTINUE 

C CHECK FOR CHANGE IN REALLOCATION 

INERT'O 

DO 240 1=1,NCOL 

IF(NOWC(I).NE.CCONT(I)) THEN 

NOWC(I)=CCONT(I) 

INERT'1 

ENDIF 

240 CONTINUE 

IF(INERT.EQ.O) 

1 THEN 

C NO CHANGE SORTING MAY BE COMPLETED 

IF(IDEL.EQ.1) 

1 THEN 

IDEL'O 

GO TO 150 

ELSE 

GO TO 2000 

ENDIF 

ELSE 

C SORTING NOT COMPLETED 

ITERA'ITERA+1 

CALL MATRIX (ITERA,1,0,0,0,0) 

WRITE(6,9590) 

READ(5,*,END'150)IDEL 

IF(IDEL.EQ.-1) 

1 THEN 

GO TO 2100 

ELSEIF(IDEL.EQ.1) 

1 THEN 

CALL SETIN(ITERA) 

ENDIF 

GO TO 150 

ENDIF 

2000 CONTINUE 

WRITE(6,9600) 

9600 FORMAT(/,' STABLE ARRANGEMENT........',/, 

1 ' FURTHER INTERVENTION MAY BE REQUIRED») 

9590 FORMAT(' IF INTERVENTIONS ARE REQUIRED ENTER 1 ' , / , 

1 ' TO TERMINATE THE PROBLEM ENTER - 1 ' , / , 

2 ' TO CONTINUE WITHOUT INTERVETION (CR)') 

9610 FORMAT(' IF MATRIX OUTPUT AT ITERATION NO ',13,2XREQUIRED', 

1 ' ENTER 1 ELSE (CR)') 

WRITE(6,9590) 

READ(5,*,END»2100)IDEL 

IF(IDEL.EQ.l) 

1 THEN 

CALL SETIN(ITERA) 

GO TO 150 

ENDIF 

C OUTPUT THE RESULTS 

2100 CALL MATRIX(ITERA,0,0,0,0,0) 
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WRITE(6 

9500 FORMAT( 

WRITE(6 

WRITE(6 

9510 FORMAT( 

WRITE(6 

REWIND i 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

• WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

WRITE(3 

IX 

9500) 

ORDER OF THE MACHINES',//) 

9000 

9510 

,// 

9000 

(DUP2(RCONT(I)),1=1,NROW) 

' ORDER OF COMPONENTS',//) 

(CCONT(I),I=1,NCOL) 

9000) ORGCOL,ORGROW,NCOL, 1 

9000) ITERA,IDEL NMOD, NHE> 

9000) (INCOL(I), 1= 1,NCOL 

9000) (COLE(I), 1= 1,NCOL 

9000) (INROW(I), 1 = 1,NROW 

9000) (ROWE(I), 1= 1,NROW 

9000) (OROW(I), 1= 1 , NOP 

9000) (OCOL(I), 1= 1 , NOP 

9000) (NEXSR(I), 1= 1 , NOP 

9000) (NEXSC(I), 1= 1 ,NOP 

9000) (CAP(I), 1 = 1 ,NOP 

9000) (NOWR(I), 1 = 1,NROW 

9000) (NOWC(I), 1 = 1,NCOL 

9000) (LOCM(I), 1= 1,NROW 

9000) (LOCC(I), 1= 1,NCOL 

9000) (RCONT(I), 1 = 1,NROW 

9000) (CCONT(I), 1 = 1,NCOL 

9000) (BOTMAC(I) 1= 1,NROW 

9000) (DUKl(I), 1 = 1,177 

9000) (DUK2(I), 1 = 1,177 

9000) (DUPl(I), 1= 1 , 177 

9000) (DUP2(I), 1= 1,177 

9000) (DUP3(I), 1 = 1 , 177 

9000) (DUMl(I), 1 = 1 ,313 

9000) (DUM2(I), 1 = 1,313 

9000) (DUM3(I), 1 = 1,313 

END 

SUBROUTINE CONSORT (M.IDD) 

IMPLICIT INTEGER (A-Z) 

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97), 

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313) 

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP 

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97), 

1 B0TMAC(97) 

DIMENSION NOWR(97),NOWC(97) 

DATA IR(1,1)/- 999999/,IR(1,2)/- 999999/ 

C 

C THE SUBROUTINE WILL CONSTRUCT A MATRIX TO BE CONTINUALLY 

C RADIX SORTED 

C 

C MAIN VARIABLES 

C M DIGIT TO BE RADIX SORTED 

C IDD =-1 SORTED ALONG THE COLUMN I.E. REGROUP MACHINES 

C = 1 SORTED ALONG THE ROW I.E. REGROUP COMPONENTS 

C IR( ,1) VALUE TO BE SORTED 

C IR( ,2) M/C OR COMPONENT NUMBER 

KK=0 
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IF(IDD.EQ.-1) 

1 THEN 

IN=INCOL(M) 

REGROUPING MACHINE 

DO 10 1=2,COLE(M)+1 

I2=OROW(IN) 

IF(BOTMAC(I2).EQ.1) 

1 THEN 

K=LOCM(12) 

KK=1 

ELSE 

K=LOCM(12) 

ENDIF 

CALL INSERT(I-1,K,12) 

IN=NEXSC(IN) 

10 CONTINUE 

IF(KK.EQ.l) 

1 THEN 

DO 15 1=2,COLE(M)+l 

IR(I,1)=LOCM(IR(I,2)) 

15 CONTINUE 

ENDIF 

ELSE 

IN=INROW(M) 

REGROUPING COMPONENTS 

DO 20 1=2,ROWE(M)+1 

I2=OCOL(IN) 

CALL INSERT(I-1,LOCC(12),12) 

IN=NEXSR(IN) 

20 CONTINUE 

ENDIF 

RETURN 

END 

SUBROUTINE SHIFF(M.IDD) 

IMPLICIT INTEGER (A-Z) 

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97), 

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313), 

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP 

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97), 

1 B0TMAC(97) 

C THE SUBROUTINE IS RADIX SORTING IN ESSENCE 

C IN PRACTICE THE ALGORITHM IS PURELY SHIFTING 

C DIGITS AROUND 

C M NUMBER OF ITEMS TO BE SHIFTED 

MM=M 

I=IR(M+1,1) 

J = I-1 

IF(IDD.EQ.-1) 

1 THEN 

C SORTING M/C ORDER 

WHILE(J.GE.1) DO 

IF(J.EQ.IR(MM,1)) 

1 THEN 

MM=MM-1 

J = J-1 
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ELSE 

RCONT(I)=RCONT(J) 

1 = 1-1 
J-J-l 

ENDIF 

ENDWHILE 

DO 10 JJ=1,M 

RCONT(JJ)=IR(JJ+1,2) 

10 CONTINUE 

DO 20 J J = 1,NROW 

LOCM(RCONT(JJ))=JJ 

20 CONTINUE 

ELSE 

C SORTING COMPONENT ORDER 

WHILE(J.GE.1) DO 

IF(J.EQ.IR(MM,1)) 

1 THEN 

MM'MM -1 

J=J- 1 

ELSE 

CCONT(I)=CCONT(J) 

1 = 1 - 1 
J=J-1 

ENDIF 

ENDWHILE 

DO 30 JJ=1,M 

CCONT(JJ)=IR(JJ+1,2) 

30 CONTINUE 

DO 40 J J = 1 ? NCOL 

LOCC(CCONT(JJ))=JJ 

40 CONTINUE 

ENDIF 

RETURN 

END 

SUBROUTINE INSERT (M,J1,J2) 

IMPLICIT INTEGER (A-Z) 

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97) 

1 BOTMAC(97) 

C THE SUBROUTINE IS CALLED BY CONSORT 

C FOR REFERNCE SEE HOROWITZ AND SAHNI(1976) 

C 'FUNDAMENTALS OF DATA STRUCTURES' 

C SORTED IN »«*•»•»•*•*NON-DECREASING ORDER*••*•*«*»••* 

C 

C MAIN VARIABLES 

C 

C . IR RECORD TO BE INSERTED (SORTED) 

C M SIZE OF THE ORIGINAL MATRIX NOT INCLUDING IR(1,1) 

C Jl INDEX TO BE SORTED 

C J2 THE DATA TO BE INSERTED ACCORDING TO Jl 

C 

C NOTE IR(l.l) ASSUME TO BE VERY LARGE NEGATIVE. 

K=J1 

KK=J2 

N=M 

WHILE(K.LT.IR(N,1)) DO 
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IR(N+1,1)=IR(N,1) 

IR(N+1,2)=IR(N,2) 

N-N-1 

ENDWHILE 

IR(N+1,1 )=K 

IR(N+1,2)=KK 

RETURN 

END 

SUBROUTINE SETIN(ITERA) 

IMPLICIT INTEGER (A-Z) 

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97), 

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313), 

2 DUM(9 7),ORGROW,ORGCOL,NROW,NCOL,NOP 

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97), 

1 BOTMAC(97) 

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233).DUMP,NMOD,NHEAD, 

1 DUK1(177),DUK2(177),DUP1(177),DUP2(177), 

2 DUP3(177) 

DIMENSION NOWR ( 9 7 ) ,NOWC(97) 
C 

C THE ROUTINE VARIOUS DATA THAT MIGHT BE REQUIRED 

C DURING INTERACTIVE INTERVENTION 

C 

9000 FORMAT(2015) 

9530 FORMAT(' IF MATRIX PRINT OUT IS REQUIRED ENTER 1 ELSE (CR)*) 

9540 FORMAT(' IF THE PRESENT STATUS OF MACHINES REQUIRED', 

1 ' ENTER 1 ELSE (CR) ') 

9550 FORMAT(IX,///,' LIST OF THE BOTTLE-NECK MACHINE(S)') 

9560 FORMAT(IX,///,' LIST OF DUPLICATED MACHINE(S)') 

9570 FORMAT(' EMPTY') 

9580 FORMAT(' MACHINE ',I5,2X,'IS A DUPLICATION OF',15) 

IP=0 

100 WRITE(6,9530) 

READ(5,*,END=110)ID 

IF(ID.EQ.l) CALL MATRIX(ITERA,0,0,0,0,0) 

110 WRITE(6,9540) 

READ(5,*,END®140) ID 

IF(ID.EQ.1) 

1 THEN 

WRITE(6,9550) 

IDD=0 

DO 120 1=1,NROW 

IF(BOTMAC(I).EQ.1) 

1 THEN 

WRITE(6,9000) I 

IDD= 1 

ENDIF 

120 CONTINUE 
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IF(IDD.EQ.O) WRITE(6,9570) 

WRITE(6,9560) 

IF(NROW.GT.ORGROW) 

1 THEN 

DO 125 I=ORGROW+1,NROW 

WRITE(6,9580) I,DUP2(I) 

125 CONTINUE 

ELSE 

WRITE(6,9570) 

ENDIF 

ENDIF 

140 IF(IP.EQ.l) GO TO 200 

CALL EXCEPT(ITERA) 

IP=1 

GO TO 100 

200 CONTINUE 

END 

SUBROUTINE EXCEPT(ITERA) 

IMPLICIT INTEGER (A-Z) 

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),C0LE(97), 

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313), 

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP 

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97), 

1 BOTMAC(97) 

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD,NHEAD, 

1 DUK1(177),DUK2(177),DUP1(177),DUP2(177), 

2 DUP3(177) 

C 

C THE SUBROUTINE WILL ALLOW INTERACTION WITH 

C THE MACHINE-COMPONENT MATRIX 

C 

9500 FORMAT(* INPUT ERROR PLEASE'RE-ENTER ') 

9510 FORMAT(' ENTER 0 TO 

1 1 TO 

2 2 TO 

3 3 TO 

4 4 TO 

5 5 TO 

6 6 TO 

7 7 TO 

TERMINATE THE EXCEPTION ROUTINES' , / , 

INSPECT LOCAL GROUPING OF OPERATIONS 

DELETE AN OPERATION ' , / , 

RE-ENTER AN OPERATION',/, 

DEFINE OR RELAX BOTTLE-NECK MACHINES 

INCREASE NUMBER OF A TYPE OF M/C',/, 

MERGE TWO M/CS OF A CERTAIN TYPE',/, 

REORDER ROWS OR COLUMNS') 

9520 FORMAT (' 0-TERMINATE 1-ZOOM 2-DELETE 3-ENTER 4-BOTTLENECK',/ 

1 ' 5-DUPLICATE 6-MERGE 7-REORDER FOR DETAILS (CR) ') 

IF (ITERA.GT.1) GO TO 110 

100 WRITE(6,9510) 

GO TO 120 
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110 WRITE(6,9520) 

120 READ( 5 , * ,END=100) ID 

IF (ID.EQ.0) THEN 

ELSEIF(ID.EQ.1) THEN 

ELSEIF(ID.EQ.2) THEN 

ELSEIF(ID.EQ.3) THEN 

ELSEIF(ID.EQ.4) THEN 

ELSEIF(ID.EQ.5) THEN 

ELSEIF(ID.EQ.6) THEN 

ELSEIF(ID.EQ.7) THEN 

ELSE 

ENDIF 

GO TO 110 

END 

RETURN 

CALL ZOOM(ITERA) 

CALL DELETE 

CALL PUTBAK 

CALL BOTNECK 

CALL ENLARGE 

CALL MERGE 

CALL PATCH 

WRITE(6,9500) 

SUBROUTINE DELETE 

IMPLICIT INTEGER (A-Z) 

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97), 

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313) 

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP 

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97), 

1 B0TMAC(97) 

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD.NHEAD, 

1 DUK1(177),DUK2(177),DUP1(177),DUP2(177), 

2 DUP3(177) 

THE SUBROUTINE WILL ALLOW INTERACTIVELY THE 

REMOVAL OF AN OPERATION IN THE MACHINE-COMPONENT MATRIX 

9500 FORMAT(' INPUT ERROR PLEASE RE-ENTER ') 

9510 FORMAT(' TO TERMINATE DELETE ROUTINE ENTER 0 0 ELSE',/, 

1 ' INPUT THE REQUIRED MACHINE AND COMPONENT *) 

9520 FORMAT(' NO OPERATION LEFT ON M/C OR COMPONENT',//) 

100 WRITE(6,9510) 

110 READ(5,*,END=100) IM,IC 

BOUND=TESTB(IM,IC,NROW,NCOL) 

IF (BOUND.EQ.O) THEN 

ELSEIF(BOUND.LE.1) 

ENDIF 

THEN 

GO TO 1000 

WRITE(6,9500) 

GO TO 110 
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IF(COLE(IC).EQ.0.OR.ROWE(IM).EQ.0) 

1 THEN 

C NO OPERATION LEFT 

WRITE(6,9520) 

GO TO 110 

ENDIF 

CALL TESTC (IM,IC,BOUND,LOCO,LOCI) 

IF (BOUND.EQ.3) 

1 THEN 

CALL REMOVE(IM,IC,LOCO,LOC1,0) 

ELSEIF(BOUND.EQ.4) 

1 THEN 

WRITE(6,9530) 

9530 FORMAT(' ALREADY REMOVED OR NONEXISTANT') 

ELSE 

WRITE(6,9500) 

ENDIF 

GO TO 110 

1000 CONTINUE 

RETURN 

END 

INTEGER FUNCTION TESTB(IMM, ICC,NROW,NCOL) 

C TO TEST THE BOUNDS OF THE INPUT 

C 

IF(IMM.EQ.0.OR.ICC.EQ.0) 

1 THEN 

TERMINATE THE PROCEDURE 

TESTB=0 

ELSEIF(IMM.EQ.-1.OR.ICC.EQ.-1) 

1 THEN 

TESTB=-1 

ELSEIF(IMM.EQ.- 99.OR.ICC.EQ.-99) 

1 THEN 

TESTB=- 99 

ELSEIF(IMM.LT.1.OR.IMM.GT.NROW.OR. 

1 ICC.LT.1.OR.ICC.GT.NCOL) 

2 THEN 

OUT OF BOUND 

TESTB=1 

ELSE 

WITHIN BOUNDS 

TESTB=2 

ENDIF 

RETURN 

END 

SUBROUTINE TESTC(IMM,ICC,BOUND,LOCO,LOCI) 

IMPLICIT INTEGER (A-Z) 

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97), 

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313), 

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP 
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C TO TEST WHETHER THE OPRATION CAN BE 'COVERED UP' 

ROWEI=ROWE(IMM) 

INR=INROW(IMM) 

L000=0 

WHILE(ROWEI.GT.O) DO 

IF(OCOL(INR).EQ. ICC) 

1 THEN 

C CAN BE REMOVED 

BOUND=3 

LOCl=INR 

RETURN 

ENDIF 

ROWEI=ROWEI-1 

LOCO=INR 

INR=NEXSR(INR) 

ENDWHILE 

C EITHER COVERED OR NONEXISTANT 

B0UND=4 

RETURN 

END 

SUBROUTINE TESTD (Bl,B2,B3,BO) 

IMPLICIT INTEGER(A-Z) 

C TEST OF BOUNDS FOR MATRIX PRINTING 

IF(Bl.EQ.O) 

1 THEN 

Bl = 1 

B2=B0 

B3 = l 

RETURN 

ENDIF 

IF(B1.LT.0.OR.Bl.GT.BO.OR. 

1 B2.LE.O.OR.B2.GT.BO) 

2 THEN 

B3=0 

ELSEIF(B1.GT.B2) 

1 THEN 

B3-B2 
B2=B1 

B1=B3 

B3=l 

ENDIF 

RETURN 

END 

SUBROUTINE REMOVE (MAC,COM,LOCO,LOC1,ENG) 

IMPLICIT INTEGER (A-Z) 

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97), 

1 OROW (313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313), 
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2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP 

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD,NHEAD, 
1 DUK1(177),DUK2(177),DUP1(177),DUP2(177), 
2 DUP3(177) 

C TO REMOVE THE OPERATIONS FROM THE PRESENT CONSIDERATION 
C DUMP THE INFORMATION INTO MATRICES IN DUMSET 
C SUBROUTINE INIDUM MUST BE CALLED FIRST 
C ENG=0 NORMAL REMOVAL OF AN OPERATION 
C ENG=1 CREATING AN EXTRA MACHINE 

C IF CREATING A NEW MACHINE SKIP 
IF(ENG.EQ.l) GO TO 10 

C COPY PART OF THE CONTENTS IN TO DUM MATRICES 
C 

IC=DUK1(MAC) 
IF(IC.EQ.O) 

1 THEN 
C FIRST ENTRY 

DUK2(MAC)=DUMP 
ELSE 

ICC=DUK2(MAC) 
WHILE(IC.GT.1) DO 
ICC=DUM3(ICC) 
IC=IC-1 
ENDWHILE 
DUM3(ICC)=DUMP 

ENDIF 
DUM1(DUMP)=COM 
DUM2(DUMP)=LOC1 
DD=DUM3(DUMP) 
DUM3(DUMP)=0 
DUMP=DD 
DUK1(MAC)=DUK1(MAC)+1 

C REARRANGE INDICES TO BYPASS THE ELEMENT 
C 
C ALONG THE ROW 

C CHECK FOR ONE OPERATION ONLY 

10 IF(ROWE(MAC).EQ.1) GO TO" 50 

C RESET ROW ENTRY INDEX IF NECCESSARY 
IF(LOCO.EQ.0) 

1 THEN 
INROW(MAC)=NEXSR(LOC1) 
IE=ROWE(MAC) 
ID=INROW(MAC) 

WHILE (IE.GT.2) DO 
ID=NEXSR(ID) 
IE=IE-1 

ENDWHILE 

NEXSR(ID)=INROW(MAC) 
ELSE 

NEXSR(LOCO)=NEXSR(LOC1) 
ENDIF 
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50 ROWE(MAC)=ROWE(MAC)-1 

C ALONG THE COLUMN 

C IF CREATING A NEW MACHINE SKIP 
IF(ENG.EQ.l) GO TO 150 

C CHECK FOR ONE OPERATION ONLY IF FOUND SKIP 

IF(COLE(COM).EQ.1) GO TO 100 

C RESET COLUMN ENTRY INDEX IF NECESSARY 
IF(INCOL(COM).EQ.LOC1) INCOL(COM)=NEXSC(LOC1) 

C BY PASS 
IE=COLE(COM) 
IDD=INCOL(COM) 
IF(IE.EQ.2) 

1 THEN 
NEXSC(INCOL(COM))=INCOL(COM) 
GO TO 100 

ENDIF 

WHILE(IE.GT.2) DO 
ID=IDD 
IDN=NEXSC(ID) 
IE=IE-1 
IF(OROW(IDN).EQ.MAC) 

1 THEN 
C JUMP OUT OF LOOP 

NEXSC(ID)=NEXSC(NEXSC(ID)) 
GO TO 100 

ELSE 
IDD=IDN 

ENDIF 
ENDWHILE 
NEXSC(IDN)=NEXSC(NEXSC(IDN)) 

100 COLE(COM)=COLE(COM)-1 

150 CONTINUE 
RETURN 
END 

SUBROUTINE PUTBAK 

IMPLICIT INTEGER (A-Z) 
COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97), 
1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313), 
2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP 
COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97), 
1 B0TMAC(97) 
COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD,NHEAD, 
1 DUK1(177),DUK2(177),DUP1(177),DUP2(177), 
2 DUP3(177) 

C THE ROUTINE WILL ENABLE A PARTICULAR OPERATION TO BE RETURNED 
C INTO THE ORIGINAL MACHINE-COMPONENT MATRIX 
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9500 FORMAT(' INPUT ERROR PLEASE RE-ENTRY') 

9510 FORMAT(' TO TERMINATE PUTBAK ROUTINE ENTER 0 0',/, 

1 ' ELSE ENTER THE MACHINE AND COMPONENT NUMBERS') 

9520 FORMAT(' THE OPERATION WAS NOT REMOVED ') 

9530 FORMAT( ' IF THE OPERATION IS TO BE PUT BACK IN THE SAME M / C , 

1 ' (CR)',/,' ELSE ENTER ALTENATIVE OF THE SAME TYPE') 

9540 FORMAT(' THE TWO M/CS IS NOT OF THE SAME TYPE') 

100 WRITE(6,9510) 

110 READ(5,*,END=100) IM,IC 

BOUND=TESTB(IM,IC,NROW,NCOL) 

IF (BOUND.EQ.O) THEN 

ELSEIF(BOUND.LE.1) 

ENDIF 

THEN 

RETURN 

WRITE(6,9500) 

GO TO 110 

IF(DUK1(IM).EQ.O) 

1 THEN 

WRITE(6,9520) 

GO TO 110 

ENDIF 

PK=0 

K =DUK2(IM) 

WHILE(K.GT.0) DO 

IF(DUM1(K).EQ.IC) 

1 THEN 

IF(PK.EQ.O) 

1 THEN 

DUK2(IM)=DUM3(K) 

ELSE 

DUM3(PK)=DUM3(K) 

ENDIF 

KK=DUM2(K) 

DUK1(IM)=DUK1(IM) -1 

DUM3(K)=DUMP 

DUMP=K 

GO TO 200 

ELSE 

PK=K 

K =DUM3(K) 

ENDIF 

ENDWHILE 

C OPERATION NOT FOUND 

WRITE(6,9520) 

GO TO 100 

C OPERATION FOUND 

200 WRITE(6,9530) 

READ(5,*,END=300) IM1 
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BOUND=TESTB(IM1,1,NROW,1) 

IF (BOUND.LE.1) THEN 

WRITE(6,9500) 

GO TO 200 

ELSEIF(DUP2(IM1).NE.DUP2(IM)) THEN 

WRITE(6,9540) 

GO TO 200 

ELSE 

IM=IM1 

ENDIF 

C INSERT THE OPERATION INTO THE ORIGINAL DATA STRUCTURE 

C ALONG THE COLUMN 

300 IF(COLE(IC).EQ.0) 

1 THEN 

INCOL(IC)=KK 

NEXSC(KK)=KK 

ELSE 

I=NEXSC(INCOL(IC)) 

NEXSC(INCOL(IC))=KK 

NEXSC(KK)=I 

ENDIF 

COLE(IC)=COLE(IC)+1 

C ALONG THE ROW 

IF(ROWE(IM).EQ.0) 

1 THEN 

ELSE 

I=NEXSR(INROW(IM)) 

NEXSR(INROW(IM))=KK 

NEXSR(KK)=I 

ENDIF 

OROW(KK)=IM 

ROWE(IM)=ROWE(IM)+1 

GO TO 100 

END 

SUBROUTINE BOTNECK 

IMPLICIT INTEGER (A-Z) 

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97) , 

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313), 

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP 

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97), 

1 B0TMAC(97) 

9500 FORMAT(' TO TERMINATE BOTTLE-NECK ROUTINE ENTER 0 0',/, 

1 ' TO SPECIFY A BOTTLE-NECK MACHINE ENTER 1 & M/C NUMBER',/, 

2 ' TO RELEASE A BOTTLE-NECK MACHINE ENTER 0 & M/C NUMBER') 

9510 FORMAT(' INPUT ERROR PLEASE RE-ENTER') 

50 WRITE(6,9500) 

INROW(IM)=KK 

NEXSR(KK)=KK 
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100 READ(5,*,END=50) IDUM,IMAC 

IF((IDUM.NE.0.OR.IDUM.NE.1).AND.(IMAC.LT.0.OR.IMAC.GT.NROW)) 

1 THEN 

WRITE(6,9510) 

GO TO 100 

ENDIF 

IF(IMAC.EQ.0) RETURN 

IF(IDUM.EQ.1) 

1 THEN 

BOTMAC(IMAC)=1 

ELSE 

BOTMAC(IMAC)=0 

ENDIF 

GO TO 100 

END 

SUBROUTINE PATCH 

IMPLICIT INTEGER (A-Z) 

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97), 

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313), 

2 DUM(9 7),ORGROW,ORGCOL,NROW,NCOL,NOP 

COMMON /SORTl/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97), 

1 BOTMAC(97) 

9500 FORMAT (' ENTER 0 TO RETURN',/, 

1 ' 1 TO REORDER ROWS',/, 

2 ' 2 TO REORDER COLUMNS') 

9510 FORMAT (' REORDERING THE ROW ') 

9520 FORMAT (' REORDERING THE COLUMN *) 

100 WRITE(6,9500) 

READ (5,*,END=100)I 

IF(I.EQ.l) 

1 THEN 

WRITE(6,9510) 

CALL JUGGLE (LOCM,RCONT,NROW) 

ELSEIF(I.EQ.2) 

1 THEN 

WRITE(6,9520) 

CALL JUGGLE (LOCC,CCONT,NCOL) 

ENDIF 

RETURN 

END 

SUBROUTINE JUGGLE (LOC, CONT, N) 

IMPLICIT INTEGER (A-Z) 

DIMENSION LOC(N), CONT(N), DUMMY(97) 

LOGICAL REPEAT 

C THIS ROUTINE IS CALLED BY PATCH WHICH INTURN 

C CALLED BY EXCEPT 

9000 FORMAT (1015) 
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9010 

9020 

9500 

FORMAT 

FORMAT 

FORMAT 

9510 

9520 

FORMAT 

FORMAT 

9530 FORMAT ( 

9540 

9550 

FORMAT 

FORMAT 

(15, ' IS OUT OF BOUND') 

(15, ' IS ENTERED PREVIOUSLY') 

ENTER 0 TO EXIT' , / , 

1 MOVE ELEMENTS TO THE FRONT' 

2 REENTRY THE WHOLE LIST',/, 

3 SWAP ANY TWO ELEMENTS') 

(' TO LIST THE PRESENT ORDER ENTER 1 ELSE 

(' ENTER THE ELEMENTS ONE BY ONE',/, 

0 TO TERMINATE THE ENTRY') 

REENTRY THE WHOLE LIST?',/, 

YES ENTER 1 ELSE ANY NO.') 

(' ENTER THE NEW ORDER ONE BY ONE') 

(' ENTER THE PAIR REQUIRED TO BE SWAPPED',/ 

TO TERMINATE ENTER 0 0') 

(CR)') 

10 WRITE (6,9500) 

READ (5,*, END =10) I 

IF( I.EQ.O) 

1 THEN 

RETURN 

C MOVE ELEMENTS TO THE HEAD OF THE LIST 

ELSEIF(I.EQ.1) 

1 THEN 

ENTRY = 0 

WRITE (6, 9510) 

READ (5,*,END=20)D 

IF(D.EQ.1.) WRITE (6,9000) (CONT(J),J=1,N) 

20 WRITE (6,9520) 

30 READ(5,*) ELEMENT 

IF(ELEMENT.EQ.O.AND.ENTRY.EQ.O) GO TO 10 

IF(ELEMENT.EQ.O) GO TO 100 

IF(ELEMENT.LE.0.OR.ELEMENT.GT.N) 

1 THEN 

WRITE(6,9010)ELEMENT 

GO TO 30 

ELSEIF(ENTRY.EQ.O) 

1 THEN 

ENTRY=1 

DUMMY(I)=ELEMENT 

GO TO 30 

ELSE 

REPEAT = .FALSE. 

E = ENTRY 

40 IF (.NOT.REPEAT ) 

1 THEN 

IF (DUMMY(E).EQ.ELEMENT) REPEAT-.TRUE. 

E = E-l 

IF(E.LE.O) GO TO 50 

GO TO 40 

ENDIF 

50 IF (REPEAT) 

1 THEN 

WRITE (6,9020) ELEMENT 

ELSE 

ENTRY = ENTRY +1 

DUMMY(ENTRY)= ELEMENT 

ENDIF 

GO TO 30 

ENDIF 
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C ENTRY SUCCESFUL 

C REMOVE THE PREVIOUS ENTRY 

100 DO 110 J-l, ENTRY 

CONT(LOC(DUMMY(J))) = 0 

110 CONTINUE 

E1=ENTRY + 1 

DO 120 J=1, N 

IF (CONT(J).NE.0) 

1 THEN 

DUMMY(El)= CONT(J) 

E1=E1+ 1 

ENDIF 

120 CONTINUE 

DO 130 J=1,N 

CONT(J) = DUMMY (J) 

130 CONTINUE 

DO 140 J=1,N 

LOC(CONT(J))=J 

140 CONTINUE 

ENTER THE WHOLE LIST 

ELSEIF(I.EQ.2) 

1 THEN 

WRITE(6,9530) 

READ (5,*) J 

IF NOT PROCESS GO BACK TO BEGINNING 

IF (J.NE.l) GO TO 10 

TO GO AHEAD 

WRITE(6,9540) 

DO 300 J-l.N 

200 READ(5,*) ELEMENT 

IF (ELEMENT.LE.O .OR. ELEMENT.GT. N) 

1 THEN 

WRITE(5,9010) ELEMENT 

GO TO 200 

ENDIF 

REPEAT = .FALSE. 

J1 =J -1 

IF (J1.EQ.0) 

1 THEN 

DUMMY(J)"ELEMENT 

GO TO 300 

ENDIF 

210 IF (.NOT.REPEAT ) 

1 THEN 

IF (DUMMY(J1).EQ.ELEMENT) REPEAT".TRUE. 

J1=J1-1 

IF (J1.EQ.0) GO TO 220 

GO TO 210 

ENDIF 

220 IF (REPEAT) 

1 THEN 

WRITE (6,9020) ELEMENT 

GO TO 200 

ELSE 

DUMMY(J) - ELEMENT 

ENDIF 

300 CONTINUE 
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C ENTRY SUCCESSFUL 

DO 310 J =1,N 

CONT (J) =DUMMY (J) 

310 CONTINUE 

DO 320 J=1,N 

LOC(CONT(J))= J 

320 CONTINUE 

C SWAPPING ARRANGEMENT 

ELSEIF (I.EQ. 3) 

1 THEN 

400 WRITE (6,9550) 

410 READ (5,*) E1,E2 

IF (El.EQ.O .OR. E2.EQ. 0) RETURN 

IF (El.LT.0 .OR. El.GT. N) 

1 THEN 

WRITE(5,9010) El 

GO TO 400 

ENDIF 

IF (E2.LT.0 .OR. E2. GT. N) 

1 THEN 

WRITE(5,9010)E2 

GO TO 400 

ENDIF 

IF (E1.EQ.E2) GO TO 400 

C SWAPPING 

ROW1 - LOC(El) 

ROW2 = LOC(E2) 

LOC(El) - LOC (E2) 

LOC(E2) = ROW1 

DUMP - CONT ( ROW 1 ) 

CONT(ROW1) = CONT(ROW2) 

CONT(ROW2) « DUMP 

GO TO 410 

ENDIF 

RETURN 

END 

SUBROUTINE INIDUM 

IMPLICIT INTEGER (A-Z) 

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97), 

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313), 

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP 

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD,NHEAD, 

1 DUK1(177),DUK2(177),DUP1(177),DUP2(177), 

2 DUP3(177) 

C 

C VARIABLES IN DUMSET 

C 
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C DUK1 NO OF ELEMENTS REMOVED FROM THE M/C 

c DUK2 POINTER TO CELLS WHERE THE REMOVED SET IS STORED 

c DUP1 NO OF DUPLICATED M/CS OF THIS TYPE 

c DUP2 TYPE OF M/C 

c DUP3 POINTER TO CELLS WHERE DUPLICATED SET IS STORED 

c DUM1 COLUMN NO. OR DUPLICATED M/C NO. 

c DUM2 POINTER IN SET1 OR M/C TYPE 

c DUM 3 POINTER TO CELLS OF THE SAME SET 

C TO INITIALIZE DUMSET MATRICES 

DO 10 1=1,177 

DUK1(I)=0 

DUK2(I)=0 

DUP1(I)=0 

DUP2(I)=1 

DUP3(I)=0 

10 CONTINUE 

DO 20 1=1,233 

DUM1(I)=0 

DUM2(I)=0 

DUM3(I)=I+1 

20 CONTINUE 

DUM3(233)=1 

DUMP=1 

C 

C CALCULATE VARIABLE FOR MATRIX HEADING 

C 

IF(NROW.GE.10000) 

1 THEN 

NMOD=10000 

NHEAD=5 

ELSEIF(NROW.GE.1000) 

1 THEN 

NMOD=1000 

NHEAD=4 

ELSEIF(NROW.GE.100) 

1 THEN 

NMOD=100 

NHEAD=3 

ELSEIF(NROW.GE.10) 

1 THEN 

NMOD=10 

NHEAD=2 

ELSE 

NMOD=l 

NHEAD=1 

ENDIF 

RETURN 

END 

SUBROUTINE ZOOM(ITERA) 

IMPLICIT INTEGER(A-Z) 

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),C0LE(97), 

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313), 

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP 
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C TO ALLOW INSPECTION OF LOCAL GROUPING 

9510 FORMAT(' DATA INPUT ERROR PLEASE RE-ENTER') 

100 WRITE(6,9500) 

9500 FORMAT(' ENTER THE RANGE OF LOCATIONS OF COMPONENTS') 

READ(5,*) IA,IB 

CALL TESTD (IA,IB,IC.NCOL) 

IF(IC.EQ.O) 

1 THEN 

WRITE(6,9510) 

GO TO 100 

ENDIF 

200 WRITE(6,9520) 

9520 FORMAT(' ENTER THE RANGE OF LOCATIONS OF MACHINES') 

READ(5,*) JA,JB 

CALL TESTD (JA,JB,JC,NROW) 

IF(JC.EQ.O) 

1 THEN 

WRITE(6,9510) 

GO TO 200 

ENDIF 

CALL MATRIX (ITERA,1,JA,JB,IA,IB) 

RETURN 

END 

SUBROUTINE ENLARGE 

IMPLICIT INTEGER (A-Z) 

COMMON / SET1 / INROW(97), INCOL (97) ,ROWE(97) , COLE (97) , 

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313), 

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP 

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97), 

1 BOTMAC(97) 

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD,NHEAD, 

1 DUK1(177),DUK2(177),DUP1(177),DUP2(177), 

2 DUP3(177) 

9500 FORMAT(' INPUT ERROR PLEASE RE-ENTRY') 

9510 FORMAT(' ENTER 0 TO TERMINATE ENLARGE M/CS PROCEDURE',/, 

1 ' ELSE ENTER THE MACHINE TO BE INCREASED') 

9520 FORMAT(' NO OPERATION LEFT NO NEED TO DUPLICATE') 

9530 FORMAT(' ENTER 0 TO INDICATE THAT NO MORE COMPONENT', 

1 ' TO BE ENTERED FOR THIS DUPLICATION',/, 

2 ' ELSE ENTER THE COMPONENT NUMBER') 

9540 FORMAT(' THE OPERATION IS ALREADY COVERED OR NONEXISTANT') 

100 WRITE(6,9510) 

110 READ(5,*,END=100) OMAC 

BOUND=TE S TB(OMAC,1,NROW,1) 

IF (BOUND.EQ.O) THEN 

RETURN 
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ELSEIF(BOUND.NE.2) THEN 

WRITE(6,9500) 

GO TO 110 

ENDIF 

C CHECK FOR NO OPERATION 

IF(ROWE(OMAC).EQ.0) 

1 THEN 

WRITE(6,9520) 

GO TO 110 

ENDIF 

LOCATE AND INSERT THE NEW M/C INTO DUP LISTS 

IF(DUP1(OMAC).EQ.0) 

L THEN 

NO PREVIOUS DUPLICATION 

DUP3(OMAC)=DUMP 

DUM1(DUMP)=NROW+l 

ELSE 

PREVIOUSLY DUPLICATED 

J =DUP3(OMAC) 

WHILE(DUM3(J).NE.0) DO 

J=DUM3(J) 

ENDWHILE 

DUM3(J)=DUMP 

DUM1(DUMP)=NROW+1 

ENDIF 

C RESET THE INDICIES 

II=DUM3(DUMP) 

DUM2(DUMP)=DUP2(OMAC) 

DUM3(DUMP)=0 

DUMP=II 

NROW=NROW+l 

ROWE(NROW)=0 

LOCM(NROW)=NROW 

RCONT(NROW)=NROW 

DUP2(NROW)=DUP2(OMAC) 

BOTMAC(NROW)=0 

ENTER THE LIST OF COMPONENTS 

JJ=0 

200 WRITE(6,9530) 

210 READ(5,*,END=200) IC 

BOUND=TESTB(1,IC,1,NCOL) 

IF (BOUND.EQ.O) 

ELSEIF(BOUND.NE.2) 

THEN 

THEN 

IF(JJ.EQ.O) 

THEN 

NO ENTRY RESET INDICIES 

DUM3(DUP3(OMAC))=DUMP 

DUMP=DUP3(OMAC) 

NROW=NROW-1 

ENDIF 

GO TO 100 

WRITE(6,9500) 

GO TO 210 

ENDIF 

C LOCATE THE OPERATION REQUIRED 

CALL TESTC(OMAC,IC,BOUND,LOCO,LOCI) 

IF(BOUND.EQ.4) 

1 THEN 
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C NON-EXISTANCE 

WRITE(6,9540) 

GO TO 210 

ELSE 

C FOUND RESET INDICIES 

JJ = 1 

CALL REMOVE(OMAC,IC,LOCO,LOC1,1) 

ROWE(NROW)=ROWE(NROW)+1 

OROW(LOC1)=NROW 

IF(ROWE(NROW).EQ.1) 

1 THEN 

INROW(NROW)=LOC1 

NEXSR(LOC1)=L0G1 

ELSE 

NEXSR(LOC1)=NEXSR(INROW(NROW)) 

NEXSR(INROW(NROW))=LOC1 

INROW(NROW)=L0C1 

ENDIF 

GO TO 210 

ENDIF 

END 

SUBROUTINE MERGE 
I 

IMPLICIT INTEGER (A-Z) 

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97), 

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313) 

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP 

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97), 

1 BOTMAC(97) 

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD,NHEAD, 

1 DUK1(177),DUK2(177),DUP1(177),DUP2(177) , 

2 DUP3(177) 

9500 FORMAT(' INPUT ERROR PLEASE RE-ENTRY") 

9510 FORMAT(' ONLY MACHINES OF THE SAME TYPE CAN BE MERGED") 

9520 FORMAT(' TO TERMINATE THE MERGE PROCEDURE ENTER 0 0',/ 

1 ' ELSE ENTER THE TWO MACHINES TO BE MERGED',/, 

2 ' ENTER THE REMANING MACHINE FIRST") 

9530 FORMAT(' THE TWO MACHINES ARE NOT OF THE SAME TYPE") 

9540 FORMAT(" NO ELEMENT LEFT IN THE SECOND MACHINE") 

TEST THE COMPATIBILITY OF DATA 

WRITE(6,9510) 

100 WRITE(6,9520) 

110 READ(5,*,END=100) IM1,IM2 

BOUND=TESTB(IM1,IM2,NROW,NROW) 

IF (BOUND.EQ.O) 

ELSEIF(BOUND.NE.2.OR. 

1 IM1.EQ.IM2 ) 

THEN 

RETURN 

THEN 

NONCOMPATIBLE DATA 

WRITE(6,9500) 

GO TO 110 

ELSEIF(DUP2(IM1).NE.DUP2(IM2)) THEN 
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ELSEIF(ROWE(IM2).LE.O) 

ENDIF 

C MERGE THE MACHINES 

C CHANGE ROW NUMBER 

J=INROW(IM2) 

K=ROWE(IM2)-1 

WHILE(K.GT.0) DO 

OROW(J)=IM1 

J =NEXSR(J) 

K=K-1 

ENDWHILE 

OROW(J)=IM1 

C JOIN THE LISTS 

L=INROW(IM2) 

K=ROWE(IM2) 

NEXSR(J)=NEXSR(INROW(IM1)) 

NEXSR(INROW(IM1))=L 

INROW(IM1)=L 

ROWE(IM1)=ROWE(IM1)+ROWE(IM2 

ROWE(IM2)=0 

GO TO 110 

END 

NOT THE SAME TYPE 

WRITE(6,9530) 

GO TO 110 

THEN 

NO ELEMENT LEFTIN 2ND M/C 

WRITE(6,9540) 

GO TO 110 

SUBROUTINE MATRIX (ITERA,SUP,BBR,EER,BBC,EEC) 

IMPLICIT INTEGER (A-Z) 

COMMON /SET1/ INROW(97),INCOL(97),ROWE(97),COLE(97), 

1 OROW(313),OCOL(313),NEXSR(313),NEXSC(313),CAP(313), 

2 DUM(97),ORGROW,ORGCOL,NROW,NCOL,NOP 

COMMON /SORT1/ IR(97,2),LOCC(97),LOCM(97),CCONT(97),RCONT(97), 

1 B0TMAC(97) 

COMMON /DUMSET/ DUM1(233),DUM2(233),DUM3(233),DUMP,NMOD,NHEAD, 

1 DUK1(177),DUK2(177),DUP1(177),DUP2(177), 

2 DUP3(177) 

DIMENSION ISPOT(130),ISIGN(4),IHEAD(130),NUM(9) 

C TO GENERATE GRAPHICALLY THE MACHINE-COMPONENT MATRIX 

C 

DATA ISIGN(1)/1H1/,ISIGN(2)/1H /,ISIGN(3)/1H*/,ISIGN(4)/1H0/ 

DATA ISPOT/130*(1H )/ 

DATA NUM(1)/1H1/,NUM(2)/1H2/,NUM(3)/1H3/,NUM(4)/1H4/,NUM(5)/1H5/, 

1 NUM(6)/1H6/,NUM(7)/1H7/,NUM(8)/1H8/,NUM(9)/1H9/ 

9500 FORMAT(X,///,7X,' MATRIX AFTER ',15,' ITERATION(S)',/) 

9510 FORMAT(1OX,' COMPONENTS') 

9550 FORMAT(1OX,' LOCATIONS') 

9010 FORMAT(IX,'(',13,')', 13,40(2X,Al)) 

9020 FORMAT(9X,40(2X,Al)) 

9030 FORMAT(IX,'(',13,')',13,IX,61(IX,Al)) 

9040 FORMAT(10X,61(IX,Al)) 

9050 FORMAT(IX, '( ' ,13, ')' ,13,2X,120A1) 
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9060 FORMAT(1IX,120A1) 

9070 F0RMAT(1X,'(',13,')',13) 

BR=BBR 

ER=EER 

BC=BBC 

EC=EEC 

MHEAD=NHEAD 

ILOC=0 

IF(BR.EQ.0) 

1 THEN 

BR=1 

ER=NROW 

BC=1 

EC=NCOL 

ENDIF 

WIDTH=EC-BC 

C HEADING 

WRITE(6,9500) ITERA 

1000 MMOD=NMOD 

IF(ILOC.EQ.O) 

1 THEN 

ILOC=l 

DO 140 K=BC,EC 

140 DUM(K)=K 

WRITE(6,9550) 

ELSE 

ILOC=2 

DO 150 K=BC,EC 

150 DUM(K)=CCONT(K) 

WRITE(6,9510) 

ENDIF 

DO 210 K=1,MHEAD 

DO 200 KK=BC,EC 

FIG=DUM(KK)/MMOD 

IF(FIG.LE.0) 

1 THEN 

IHEAD(KK)=ISIGN(4) 

ELSE 

IHEAD(KK)=NUM(FIG) 

ENDIF 

DUM(KK)=MOD(DUM(KK),MMOD) 

200 CONTINUE 

IF(WIDTH.LE.40) 

1 THEN 

WRITE(6,9020) (IHEAD(I),I=BC,EC) 

ELSEIF(WIDTH.LE.61) 

1 THEN 

WRITE(6,9040) (IHEAD(I),I=BC,EC) 

ELSE 

WRITE(6,9060) (IHEAD(I),I=BC,EC) 

ENDIF 

MMOD=MMOD/10 

210 CONTINUE 

C PRINT LOCATION IF NOT DONE SO 

IF(ILOC.EQ.1) GO TO 1000 

DO 130 II=BR,ER 
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MAORCONT(II) 

I=ROWE(MAC) 

KK=INROW(MAC) 

IF(KK.EQ.O) 

1 THEN 

C NO OPERATIONS TO BE PRINTED SKIP 

WRITE(6,9070) II,MAC 

GO TO 130 

ENDIF 

DD=DUK1(MAC) 

IF(I,GT.0) 

1 THEN 

DO 10 J=1,I 

K=LOCC(OCOL(KK)) 

ISPOT(K)=ISIGN(1) 

KK=NEXSR(KK) 

10 CONTINUE 

ENDIF 

IF(SUP.EQ.O) 

1 THEN 

KK=DUK2(MAC) 

MAK=DUP2(MAC) 

IF(DD.GT.O) 

1 THEN 

DO 15 J = 1 , DD 

K=L0CC(DUM1(KK)) 

ISPOT(K)=ISIGN(3) 

KK=DUM3(KK) 

15 CONTINUE 

ENDIF 

ELSE 

MAK=MAC 

ENDIF 

IF(WIDTH.LE.40) 

1 THEN 

WRITE(6,9010) II.MAK, (ISPOT(L),L=BC,EC) 

ELSEIF(WIDTH.LE.61) 

1 THEN 

WRITE(6,9030) II.MAK, (ISPOT(L),L=BC,EC) 

ELSE 

WRITE(6,9050) II.MAK, (ISPOT(L),L=BC,EC) 

ENDIF 

C CLEAR THE MATRIX READY TO BE USED AGAIN 

KK=INROW(MAC) 

DO 20 J=1,1 

K=LOCC(OCOL(KK)) 

ISPOT(K)=ISIGN(2) 

KK=NEXSR(KK) 

20 CONTINUE 

DD=DUK1(MAC) 

IF(SUP.EQ.O.AND.DD.GT.O) 

1 THEN 

KK=DUK2(MAC) 

DO 25 J=1,DD 

K=L0CC(DUM1(KK)) 

ISPOT(K)=ISIGN(2) 
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KK=DUM3(KK) 

25 CONTINUE 

ENDIF 

130 CONTINUE 

WRITE(6,9530) 

9530 FORMAT(IX, I I I ) 

RETURN 

END 
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1 PROGRAM salesv02(tourdata, output, maketm, totltm, makecs, totlcs, input 

2 / ) ; 

3 
4 CONST 
5 maxcity = 60; 
6 infinity = 9999; 
7 
8 TYPE 
9 city = 0 .. maxcity; 

10 distance = 0 .. infinity; 
11 nodeptr = A anode; 
12 anode = PACKED RECORD 
13 town: city; 
14 nextnode: nodeptr; 
15 linkfixed: boolean; 
16 END; 
17 opmode = 
18 (alongrow, alongcol); 
19 printmode = 
20 (partial, infull); 
21 improvement = 
22 (threearc, fourarc); 
23 construction = 
24 (dolittle, shortlink, shadowlink, acircuit); 
25 xchangemode = 
26 (caseO, easel, case2, case3, case4, case5); 
27 headptr = A headofchain; 
28 headofchain - PACKED RECORD 
29 firstlink, sentinel: nodeptr; 
30 nexthead: headptr; 
31 END; 
32 
33 VAR 
34 tourdata, maketm, totltm, makecs, totlcs: text; 
35 n, ntownchange: city; 
36 tourlength, reducedfactor, problemno, starttime, timeelapsed, 
37 iteration, areduction, breduction: integer; 
38 c: ARRAY 
39 [1..maxcity, 1..maxcity] OF distance; 
40 rowgain: ARRAY 
41 [1..maxcity] OF PACKED RECORD 
42 rowreduced: distance; 
43 mincol, nextsmcol: city; 
44 getoutok: boolean; 
45 END; 
46 colgain: ARRAY 
47 [1..maxcity] OF PACKED RECORD 
48 colreduced: distance; 
49 minrow, nextsmrow: city; 
50 getinok: boolean; 
51 END; 
52 finaltime, finalcost: ARRAY 
53 [construction, improvement] OF integer; 
54 contime, concost: ARRAY 
55 [construction] OF integer; 
56 firsthead, sparehead: headptr; 
57 atownl, atown2, atown3, btownl, btown2, btown3, btown4, townchfirst, 
58 townchlast: nodeptr; 
59 change: boolean; 
60 optimising: improvement; 
61 starting: construction; 
62 
63 

MANAGEMENT SCIENCE IMPERIAL COLLEGE 



APPENDIX F 1 8 5 

64 PROCEDURE readinput; 
65 
66 VAR 
67 i, j: city; 
68 
69 BEGIN 
70 reset(tourdata); 
71 read(tourdata, n, problemno); 
72 FOR i :« 1 TO n DO 
73 FOR j := 1 TO n DO 
74 read(tourdata, c[i, j]); 
75 FOR i := 1 TO n DO 
76 c[i, i] := infinity; 
7 7 E N D tfreadinputj ; 

78 
7 9 

80 PROCEDURE initialisation; 
81 

82 VAR 
83 i : city; 
84 
85 BEGIN 
86 FOR i 1 TO n DO 
87 BEGIN 
88 rowgain[i].getoutok := true; 
89 colgain[i].getinok := true; 
90 END; 
91 firsthead : = NIL; 
92 sparehead := NIL; 
93 townchfirst :« NIL; 
94 townchlast := NIL; 
95 ntownchange := 0; 
96 END finitialisation! ; 
97 
98 
99 PROCEDURE garbagecollection(VAR tourhead: headptr); 

1 0 0 

101 VAR 
102 headnode: nodeptr; 
103 
104 
105 PROCEDURE collectgarbage(headnode: nodeptr); 
106 
107 VAR 
108 thisone, nextone: nodeptr; 
109 
110 BEGIN 
111 thisone : = headnode; 
112 WHILE thisone <> NIL DO 
113 BEGIN 
114 nextone : = thisone A.nextnode; 
115 dispose(thisone); 
116 thisone := nextone; 
117 END; 
118 END fcollectgarbage! ; 
119 
120 
121 BEGIN Cgarbagecollection! 
122 IF tourhead <> NIL THEN 
123 BEGIN 
124 headnode := tourhead A.firstlink; 
125 collectgarbage(headnode); 
126 dispose(tourhead); 
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127 tourhead := NIL; 
128 END; 
129 IF townchfirst <> NIL THEN 
130 BEGIN 
131 headnode :- townchfirst; 
132 collectgarbage(headnode); 
133 townchfirst := NIL; 
134 townchlast := NIL; 
135 ntownchange := 0; 
136 END; 
137 END tgarbagecollectionj ; 
138 
139 
140 PROCEDURE tourlists(printing: printmode); 
141 
142 VAR 
143 thischain: headptr; 
144 thisnode: nodeptr; 
145 acity: city; 
146 i: integer; 
147 
148 BEGIN 
149 thischain := firsthead; 
150 IF thischain = NIL 
151 THEN 
152 w r i t e l n C NO TOUR ') 
153 ELSE 
154 w r i t e l n C THE TOUR '); 
155 WHILE thischain <> NIL DO 
156 BEGIN 
157 i := 0; 
158 thisnode := thischain A.firstlink; 
159 WHILE thisnode <> NIL DO 
160 BEGIN 
161 acity := thisnode A.town; 
162 write(acity: 4); 
163 thisnode : = thisnode A.nextnode; 
164 i := i + 1; 
165 IF i = 15 THEN 
166 BEGIN 
167 writeln; 
168 i := 0; 
169 END; 
170 END; 
171 IF (printing = infull) OR (starting = acircuit) THEN 
172 BEGIN 
173 acity := thischain A.firstlink A.town; 
174 write(acity: 4); 
175 END; 
176 writeln; 
177 thischain := thischain A.nexthead; 
178 END; 
179 END ftourlists} ; 
180 
181 
182 PROCEDURE writematrix; 
183 
184 VAR 
185 i, j, k: city; 
186 cost: distance; 
187 
188 BEGIN 
189 write(' ': 4); 
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190 FOR i := 1 TO n DO 
191 IF colgain[i].getinok THEN 
192 write(i: 4); 
193 writeln; 
194 writeln; 
195 FOR i := 1 TO n DO 
196 IF rowgain[i].getoutok 
197 THEN 
198 BEGIN 
199 write(i: 4); 
200 FOR j 1 TO n DO 
201 IF co!gain[j].getinok THEN 
202 write(c[i, j]: 4); 
203 WITH rowgain[i] DO 
204 BEGIN 
205 k := mincol; 
206 cost := rowreduced 
207 END; 
208 writeln(cost: 4, k: 3); 
209 END; 
210 writeln; 
211 IF (starting = dolittle) OR (starting = shadowlink) 
212 THEN 
213 BEGIN 
214 write(' ': 4); 
215 FOR i :« 1 TO n DO 
216 WITH colgain[i] DO 
217 IF getinok THEN 
218 BEGIN 
219 cost := colreduced; 
220 write(cost: 4); 
221 END; 
222 writeln; 
223 write(* 4); 
224 FOR i := 1 TO n DO 
225 WITH colgain[i] DO 
226 IF getinok THEN 
227 BEGIN 
228 k := minrow; 
229 write(k: 4); 
230 END; 
231 writeln; 
232 END; 
233 END fwritematrixj ; 
234 
235 
236 PROCEDURE findsmallest(fromcity: city); 
237 
238 VAR 
239 tiny: integer; 
240 smallcity, tocity: integer; 
241 
242 BEGIN 
243 tiny := infinity + 1; 
244 smallcity := 0; 
245 FOR tocity := 1 TO n DO 
246 IF colgain[tocity].getinok THEN 
247 IF c[fromcity, tocity] < tiny THEN 
248 BEGIN 
249 tiny := c[fromcity, tocity]; 
250 smallcity := tocity; 
251 END; 
252 WITH rowgain[fromcity] DO 
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253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 

BEGIN 
mincol := smallcity; 
rowreduced := c[fromcity, mincol]; 

END; 
END ffindsmallestj ; 

PROCEDURE findtwosmallest(acity: city; roworcol: opmode); 

VAR 
tinyl, tiny2: integer; 
cityl, city2, fromcity, tocity: integer; 

BEGIN 
tinyl 
tiny2 
cityl 
city2 

= infinity + 1; 
= infinity + 2; 
= 0 ; 

= 0 ; 

IF roworcol = alongrow 
THEN 

BEGIN 
fromcity := acity; 
FOR tocity 1 TO n DO 

IF colgain[tocity].getinok 
THEN 

IF c[fromcity, tocity] < tiny2 
THEN 

IF c[fromcity, tocity] < tinyl 
THEN 

BEGIN 
tiny 2 
city2 
tinyl 
cityl 

END 
ELSE 

BEGIN 
tiny2 
city2 

END; 
WITH rowgain[fromcity] DO 

BEGIN 
mincol := cityl; 
nextsmcol := city2; 
rowreduced := c[fromcity, city2] 

END; 
END 

ELSE 
BEGIN 

tocity := acity; 
FOR fromcity := 1 TO n DO 

IF rowgainffromcity].getoutok 
THEN 

IF cffromcity, tocity] < tiny2 
THEN 

IF c [ f r o m c i t y t o c i t y ] < tinyl 
THEN 

BEGIN 
tiny2 
city2 
tinyl 
cityl 

END 

tinyl; 
cityl; 
cffromcity, tocity]; 
tocity; 

c[fromcity, tocity]; 
tocity; 

c[fromcity, cityl] 

tinyl; 
cityl; 
c[fromcity, tocity]; 
fromcity; 
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316 ELSE 
317 BEGIN 
318 tiny2 := c[fromcity, tocity]; 
319 city2 : = fromcity; 
320 END; 
321 WITH colgain[tocity] DO 
322 BEGIN 
323 minrow := cityl; 
324 nextsmrow city2; 
325 colreduced := c[city2, tocity] - c[cityl, tocity]; 
326 END; 
327 END; 
328 END £findtwosmallestj ; 
329 
330 
331 PROCEDURE updatematrix(addfrom, addto: city); 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 PROCEDURE updatecolumn(totown: city); 
353 
354 VAR 
355 thisrow: nodeptr; 
356 i, chrow, aminrow, anextsmrow, cityl, city2: city; 
357 tinyl, tiny2: integer; 
358 
359 
360 PROCEDURE twoup(chrow: city); 
361 
362 BEGIN 
363 IF c[chrow, totown] < tiny2 
364 THEN 
365 IF c[chrow, totown] < tinyl 
366 THEN 
367 BEGIN 
368 tiny2 := tinyl; 
369 city2 := cityl; 
370 tinyl := c[chrow, totown]; 
371 cityl := chrow; 
372 END 
373 ELSE 
374 BEGIN 
375 tiny2 := c[chrow, totown]; 
376 city2 := chrow; 
377 END; 
378 END ftwoup> ; 

BEGIN 
IF (starting = dolittle) OR (starting = shadowlink) 
THEN 

BEGIN 
WITH rowgain[addfrom] DO 

IF (mincol « addto) OR (nextsmcol = addto) THEN 
f indtwosmallest(addfrom, along;row); 

WITH colgainfaddto] DO 
IF (minrow = addfrom) OR (nextsmrow = addfrom) THEN 

findtwosmallest(addto, alongcol); 
END 

ELSE 
IF starting = shortlink THEN 

WITH rowgain[addfrom] DO 
IF mincol = addto THEN 

findsmall€St(addfrom); 
END fupdatematrixj ; 
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379 
380 
381 BEGIN {[update column! 
382 WITH colgainftotown] DO 
383 BEGIN 
384 thisrow := townchfirst; 
385 cityl := minrow; 
386 city2 := nextsmrow; 
387 tinyl := infinity; 
388 tiny2 :- infinity; 
389 aminrow := minrow; 
390 anextsmrow := nextsmrow; 
391 twoup(aminrow); 
392 twoup(anextsmrow); 
393 FOR i := 1 TO ntownchange DO 
394 BEGIN 
395 chrow := thisrow A.town; 
396 twoup(chrow); 
397 thisrow := thisrow A.nextnode; 
398 END; 
399 minrow := cityl; 
400 nextsmrow city2; 
401 colreduced := c[city2, totown] - c[cityl, totown]; 
402 END; 
403 END {[update column! ; 
404 
405 
406 PROCEDURE updaterows; 
407 
408 VAR 
409 thiscol: nodeptr; 
410 fromtown, i, chcol, amincol, anextsmcol, cityl, city2: city; 
411 tinyl, tiny2: integer; 
412 
413 
414 PROCEDURE twouprow(chcol: city); 
415 
416 BEGIN 
417 IF c[fromtown, chcol] < tiny2 
418 THEN 
419 IF c[fromtown, chcol] < tinyl 
420 THEN 
421 BEGIN 
422 tiny2 :• tinyl; 
423 city2 cityl; 
424 tinyl :» c[fromtown, chcol]; 
425 cityl := chcol; 
426 END 
427 ELSE 
428 BEGIN 
429 tiny2 := c[fromtown, chcol]; 
430 city2 := chcol; 
431 END; 
432 END ftwouprowj ; 
433 
434 
435 BEGIN fupdaterowsj 
436 FOR fromtown := 1 TO n DO 
437 WITH rowgain[fromtown] DO 
438 IF getoutok 
439 THEN 
440 BEGIN 
441 thiscol := townchfirst; 
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442 cityl := mincol; 
443 city2 := nextsmcol; 
444 tinyl := infinity; 
445 tiny2 := infinity; 
446 amincol mincol; 
447 anextsmcol := nextsmcol; 
448 twouprow(amincol); 
449 twouprow(anextsmcol); 
450 FOR i 1 TO ntownchange DO 
451 BEGIN 
452 chcol := thiscol A.town; 
453 twouprow(chcol); 
454 thiscol := thiscol A.nextnode; 
455 END; 
456 mincol := cityl; 
457 nextsmcol := city2; 
458 rowreduced := c[fromtown, city2] - c[fromtown, cityl]; 
459 END; 
460 END fupdaterowsj ; 
461 
462 
463 PROCEDURE addtotownlist(atown: city); 
464 
465 VAR 
466 anewnode: nodeptr; 
467 
468 BEGIN 
469 IF townchfirst = NIL 
470 THEN 
471 BEGIN 
472 new(anewnode); 
473 townchfirst := anewnode; 
474 townchlast := townchfirst; 
475 WITH anewnode A DO 
476 BEGIN 
477 nextnode := NIL; 
478 town := atown; 
479 END; 
480 END 
481 ELSE 
482 IF townchlast A.nextnode = NIL 
483 THEN 
484 BEGIN 
485 new(anewnode); 
486 townchlast A.nextnode := anewnode; 
487 townchlast := anewnode; 
488 WITH anewnode A DO 
489 BEGIN 
490 nextnode := NIL; 
491 town := atown; 
492 END; 
493 END 
494 ELSE 
495 BEGIN 
496 townchlast :« townchlast A.nextnode; 
497 townchlast A.town := atown; 
498 END; 
499 ntownchange := ntownchange + 1 ; 
500 END faddtotownlistj ; 
501 
502 
503 PROCEDURE reduceable(1inksassigned: integer; VAR fromcity, tocity: city; 
504 roworcol: opmode); 
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505 
506 VAR 
507 i: city; 
508 
509 BEGIN 
510 IF linksassigned = 0 
511 THEN 
512 FOR i := 1 TO n DO 
513 BEGIN 
514 findtwosmallest(i, roworcol); 
515 END 
516 ELSE 
517 IF roworcol = alongrow 
518 THEN 
519 BEGIN 
520 FOR i := 1 TO n DO 
521 WITH rowgain[i] DO 
522 IF getoutok AND ((mincol = tocity) OR (nextsmcol = 
523 tocity)) 
524 THEN 
525 findtwosmallest(i, alongrow); 
526 END 
527 ELSE 
528 FOR i 1 TO n DO 
529 WITH colgainfi] DO 
530 IF getinok THEN 
531 IF (minrow = fromcity) OR (nextsmrow = fromcity) 
532 THEN 
533 findtwosmallest(i, alongcol) 
534 ELSE 
535 updatecolumn(i); 
536 END freduceablej ; 
537 
538 
539 FUNCTION sumoffactors: integer; 
540 
541 VAR 
542 i: city; 
543 sum: integer; 
544 
545 BEGIN 
546 sum := 0; 
547 FOR i := 1 TO n DO 
548 WITH rowgain[i] DO 
549 IF getoutok THEN 
550 sum : = sum + c[i, mincol]; 
551 FOR i := 1 TO n DO 
552 WITH colgain[i] DO 
553 IF getinok THEN 
554 sum := sum + c[minrow, i]; 
555 sumoffactors := sum; 
556 END fsumoffactors! ; 
557 
558 
559 PROCEDURE reducecost(VAR row, col: city; along: opmode); 
560 
561 VAR 
562 reduce: distance; 
563 i: city; 
564 
565 BEGIN 
566 reduce := c[row, col]; 
567 IF reduce <> 0 
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568 THEN 
569 BEGIN 
570 IF along = alongrow 
571 THEN 
572 BEGIN 
573 FOR i :« 1 TO n DO 
574 IF colgain[i].getinok THEN 
575 c[row, i] : = c[row, i] - reduce; 
576 addtotownlist(row); 
577 END 
578 ELSE 
579 BEGIN 
580 FOR i := 1 TO n DO 
581 IF rowgain[i].getoutok THEN 
582 c[i, col] c[i, col] - reduce; 
583 addtotownlist(col); 
584 END; 
585 END; 
586 END freducecostj ; 
587 
588 
589 PROCEDURE reducematrix(along: opmode); 
590 
591 VAR 
592 i, j: city; 
593 
594 BEGIN 
595 IF along = alongrow 
596 THEN 
597 BEGIN 
598 FOR i 1 TO n DO 
599 WITH rowgainf i] DO 
600 IF getoutok THEN 
601 BEGIN 
602 j := mincol; 
603 reducecost(i, j, alongrow); 
604 reducedfactor := reducedfactor + c[i, j]; 
605 END; 
606 END 
607 ELSE 
608 BEGIN 
609 FOR i := 1 TO n DO 
610 WITH colgain[i] DO 
611 IF getinok THEN 
612 BEGIN 
613 j := minrow; 
614 reducecost(j, i, alongcol); 
615 reducedfactor := reducedfactor + c[j, i]; 
616 END; 
617 END; 
618 END freducematrixj ; 
619 
620 
621 PROCEDURE nextlittlelink(VAR fromcity, tocity: city); 
622 
623 VAR 
624 i, j: city; 
625 shadowcost, smallofrow: integer; 
626 
627 BEGIN 
628 shadowcost : = - 1; 
629 FOR i := 1 TO n DO 
630 WITH rowgain[i] DO 
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631 IF getoutok 
632 THEN 
633 IF rowreduced <> 0 
634 THEN 
635 BEGIN 
636 IF (rowreduced + colgain[mincol].colreduced) > 
637 shadowcost 
638 THEN 
639 BEGIN 
640 fromcity := i; 
641 tocity := mincol; 
642 shadowcost := rowreduced + colgain[mincol]. 
643 colreduced; 
644 END; 
645 END 
646 ELSE 
647 BEGIN 
648 smallofrow : = c[i, mincol]; 
649 FOR j := 1 TO n DO 
650 WITH colgainf j] DO 
651 IF getinok 
652 THEN 
653 IF c[i, j] » smallofrow THEN 
654 IF (rowreduced + colreduced) > 
655 shadowcost 
656 THEN 
657 BEGIN 
658 fromcity i; 
659 tocity : = j; 
660 shadowcost : = rowreduced + 
661 colreduced; 
662 END; 
663 END; 
664 END fnextlittlelinkj ; 
665 
666 
667 FUNCTION lastinalink(fromcity: city; VAR thechain: headptr): boolean; 
668 
669 
670 
671 
672 
673 
674 
675 
676 
677 
678 
679 
680 
681 
682 
683 
684 
685 
6 8 6 
687 FUNCTION firstinalink(tocity: city; VAR lasthead: headptr): boolean; 
688 
689 VAR 
690 found: boolean; 
691 thishead, afterthis: headptr; 
692 link: nodeptr; 
693 

VAR 
thischain: headptr; 
found: boolean; 

BEGIN 
found := false; 
thischain := f-irsthead; 
WHILE ((thischain <> NIL) AND (NOT found)) DO 

IF thischain A.sentinel A.town = fromcity 
THEN 

found := true 
ELSE 

thischain := thischain A.nexthead; 
thechain := thischain; 
lastinalink := found; 

END flastinalinkj ; 
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694 
695 
696 
697 
698 
699 
700 
701 
702 
703 
704 
705 
706 
707 
708 
709 
710 
711 
712 PROCEDURE joinhead(fromcity: city; lasthead: headptr); 
713 
714 VAR 
715 thishead: headptr; 
716 newnode: nodeptr; 
717 
718 BEGIN 
719 IF lasthead « NIL 
720 THEN 
721 thishead :* firsthead 
722 ELSE 
723 thishead := lasthead A.nexthead; 
724 new(newnode); 
725 WITH thishead A, newnode A DO 
726 BEGIN 
727 nextnode : = firstlink; 
728 linkfixed : = false; 
729 town := fromcity; 
730 firstlink := newnode; 
731 END; 
732 END CjoinheadJ ; 
733 
734 
735 PROCEDURE jointai1(tocity: city; thischain: headptr); 
736 
737 VAR 
738 newnode: nodeptr; 
739 
740 BEGIN 
741 new(newnode); 
742 thischain A.sentinel A.nextnode := newnode; 
743 thischain A.sentinel := newnode; 
744 WITH newnode A DO 
745 BEGIN 
746 town := tocity; 
747 nextnode := NIL; 
748 linkfixed := false; 
749 END; 
750 END CjointailJ ; 
751 
752 
753 PROCEDURE makenewchain(fromcity, tocity: city; lasthead: headptr); 
754 
755 VAR 
756 newhead: headptr; 

BEGIN 
found := false; 
thishead := NIL; 
afterthis := firsthead; 
WHILE ((afterthis <> NIL) AND (NOT found)) DO 

IF afterthis A.firstlink A.town = tocity 
THEN 

found := true 
ELSE 

BEGIN 
thishead := afterthis; 
afterthis := afterthis A.nexthead; 

END; 
lasthead := thishead; 
firstinalink := found; 

END ffirstinalinkj ; 
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757 nodefrom, nodeto: nodeptr; 
758 
759 BEGIN 
760 new(newhead); 
761 new(nodefrom); 
762 new(nodeto); 
763 IF lasthead = NIL 
764 THEN 
765 firsthead := newhead 
766 ELSE 
767 lasthead A.nexthead := newhead; 
768 WITH newhead A DO 
769 BEGIN 
770 firstlink := nodefrom; 
771 sentinel := nodeto; 
772 nexthead NIL; 
773 END; 
774 WITH nodefrom A DO 
775 BEGIN 
776 town fromcity; 
777 nextnode : = nodeto; 
778 linkfixed : = false; 
779 END; 
780 WITH nodeto A DO 
781 BEGIN 
782 town := tocity; 
783 nextnode : = NIL; 
784 linkfixed := false; 
785 END; 
786 END fmakenewchainj ; 
787 
788 
789 PROCEDURE jointwochains(lasthead, secondchain: headptr); 
790 
791 VAR 
792 thishead: headptr; 
793 lastnode: nodeptr; 
794 
795 BEGIN 
796 lastnode := secondchain A.sentinel; 
797 IF lasthead = NIL 
798 THEN 
799 thishead := firsthead 
800 ELSE 
801 thishead := lasthead A.nexthead; 
802 lastnode A.nextnode := thishead A.firstlink; 
803 IF lasthead = NIL 
804 THEN 
805 firsthead : = thishead A.nexthead 
806 ELSE 
807 lasthead A.nexthead :• thishead A.nexthead; 
808 secondchain A.sentinel := thishead A.sentinel; 
809 dispose(thishead); 
810 END fjointwochains} ; 
8 1 1 
812 
813 PROCEDURE addanother1 ink(1 inks: integer; fromcity, tocity: city); 
814 
815 VAR 
816 first, last: boolean; 
817 headbeforefirst, secondchain: headptr; 
818 firstcity, lastcity: city; 
819 
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820 BEGIN 
821 first := firstinalink(tocity, headbeforefirst); 
822 last := lastinalink(fromcity, secondchain); 
823 IF first THEN 
824 IF headbeforefirst « NIL 
825 THEN 
826 lastcity := firsthead A.sentinel A.town 
827 ELSE 
828 lastcity : = headbeforefirst A.nexthead A.sentinel A.town; 
829 IF last THEN 
830 firstcity := secondchain A.firstlink A.town; 
831 IF first 
832 THEN 
833 IF last 
834 THEN 
835 BEGIN 
836 jointwochains(headbeforefirst, secondchain); 
837 c[lastcity, firstcity] : = infinity; 
838 IF links <> (n - 1) THEN 
839 updatematrix(lastcity, firstcity); 
840 END 
841 ELSE 
842 BEGIN 
843 joinhead(fromcity, headbeforefirst); 
844 c[lastcity, fromcity] := infinity; 
845 IF links <> (n - 1) THEN 
846 updatematrix(lastcity, fromcity); 
847 END 
848 ELSE 
849 IF last 
850 THEN 
851 BEGIN 
852 jointail(tocity, secondchain); 
853 c[tocity, firstcity] := infinity; 
854 IF links <> (n - 1) THEN 
855 updatematrix(tocity, firstcity); 
856 END 
857 ELSE 
858 BEGIN 
859 makenewchain(fromcity, tocity, headbeforefirst); 
860 c[tocity, fromcity] : = infinity; 
861 updatematrix(tocity, fromcity); 
862 END; 
863 END faddanotherlinkj ; 
864 
865 
866 PROCEDURE contractmatrix(fromcity, tocity: city); 
867 
868 VAR 
869 i: city; 
870 
871 BEGIN 
872 rowgain[froracity].getoutok := false; 
873 colgainftocity].getinok := false; 
874 END CcontractmatrixJ ; 
875 
876 
877 PROCEDURE littletsp; 
878 
879 VAR 
880 1inksassigned: integer; 
881 fromcity, tocity: city; 
882 
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883 BEGIN 
1inksassigned := 0; 
REPEAT 

ntownchange 0; 
reduceable(1inksassigned, fromcity, tocity, alongrow); 
reducematrix(alongrow); 
reduceable(linksassigned, fromcity, tocity, alongcol); 
ntownchange := 0; 
townchlast := townchfirst; 
reducematrix(alongcol); 
updaterows; 
nextlittlelink(fromcity, tocity); 
IF problemno > 400 THEN 

BEGIN 
writelnC EXIT NEXTLITTLELINK fromcity: 4, tocity: 4); 
writeln; 
writematrix; 

END; 
contractmatrix(fromcity, tocity); 
linksassigned linksassigned + 1; 
addanotherlink(linksassigned, fromcity, tocity); 
IF problemno > 300 THEN 

tourlists(partial); 
UNTIL linksassigned = (n - 1); 

907 END flitfletspj ; 
908 
909 
910 PROCEDURE neighbourmatrix(1inksassigned: integer; VAR tocity: city); 
911 
912 VAR 
913 i: city; 
914 
915 BEGIN 
916 IF linksassigned = 0 
917 THEN 
918 FOR i := 1 TO n DO 
919 findsmallest(i) 
920 ELSE 
921 BEGIN 
922 FOR i := 1 TO n DO 
923 WITH rowgain[i] DO 
924 IF getoutok AND (mincol = tocity) THEN 
925 findsmallest(i); 
926 END; 
927 END CneighbourmatrixJ ; 
928 
929 
930 PROCEDURE nextneighbour(VAR fromcity, tocity: city); 
931 
932 VAR 
933 i: city; 
934 tiny: integer; 
935 
936 BEGIN 
937 tiny : = infinity + 1; 
938 FOR i := 1 TO n DO 
939 WITH rowgain[i] DO 
940 IF getoutok THEN 
941 IF rowreduced < tiny THEN 
942 BEGIN 
943 tiny := rowreduced; 
944 fromcity := i; 
945 tocity := mincol; 

884 
885 
886 
887 
888 
889 
890 
891 
892 
893 
894 
895 
896 
897 
898 
899 
900 
901 
902 
903 
904 
905 
906 
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946 END; 
947 END fnextneighbourj ; 
948 
949 
950 PROCEDURE nearestneighbour; 
951 
952 VAR 
953 linksassigned: integer; 
954 fromcity, tocity: city; 
955 
956 BEGIN 
957 linksassigned := 0; 
958 REPEAT 
959 neighbourmatrix(linksassigned, tocity); 
960 IF problemno > 400 THEN 
961 writematrix; 
962 nextneighbour(fromcity, tocity); 
963 contractmatrix(fromcity, tocity); 
964 linksassigned := linksassigned + 1; 
965 addanotherlink(linksassigned, fromcity, tocity); 
966 IF problemno > 400 THEN 
967 BEGIN 
968 writelnC EXIT NEXTNEIGHBOUR fromcity: 4, tocity: 4); 
969 tourlists(partial); 
970 END; 
971 UNTIL linksassigned = (n - 1); 
972 END fnearestneighbourJ ; 
973 
974 
975 PROCEDURE shadowmatrix(linksassigned: integer; VAR fromcity, tocity: 
976 city); 
977 
978 VAR 
979 i; city; 
980 
981 BEGIN 
982 IF linksassigned = 0 
983 THEN 
984 FOR i :« 1 TO n DO 
985 BEGIN 
986 findtwosmallest(i, alongrow); 
987 findtwosmallest(i, alongcol); 
988 END 
989 ELSE 
990 BEGIN 
991 FOR i 1 TO n DO 
992 WITH rowgain[i] DO 
993 IF getoutok AND ((mincol = tocity) OR (nextsmcol = 
994 tocity)) 
995 THEN 
996 findtwosmallest(i, alongrow); 
997 FOR i := 1 TO n DO 
998 WITH colgainf i] DO 
999 IF getinok AND ((minrow = fromcity) OR (nextsmrow = 

1000 fromcity)) 
1001 THEN 
1002 findtwosmallest(i, alongcol); 
1003 END; 
1004 END fshadowmatrixj ; 
1005 
1006 
1007 PROCEDURE nextshadow(VAR fromcity, tocity: city); 
1008 
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1009 VAR 
1010 i, afromcity, atocity: city; 
1011 large: integer; 
1012 
1013 BEGIN 
1014 large := - infinity; 
1015 FOR i := 1 TO n DO 
1016 WITH rowgain[i] DO 
1017 IF getoutok THEN 
1018 IF rowreduced > large THEN 
1019 BEGIN 
1020 large := rowreduced; 
1021 afromcity := i; 
1022 atocity := mincol; 
1023 END; 
1024 FOR i := 1 TO n DO 
1025 WITH colgain[i] DO 
1026 IF getinok THEN 
1027 IF colreduced > large THEN 
1028 BEGIN 
1029 large :« colreduced; 
1030 afromcity := minrow; 
1031 atocity := i; 
1032 END; 
1033 fromcity := afromcity; 
1034 tocity := atocity; 
1035 END fnextshadowj ; 
1036 
1037 
1038 PROCEDURE shadowneighbour; 
1039 
1040 VAR 
1041 linksassigned: integer; 
1042 fromcity, tocity: city; 
1043 roworcol: opmode; 
1044 
1045 BEGIN 
1046 linksassigned := 0; 
1047 REPEAT 
1048 shadowmatrix(linksassigned, fromcity, tocity); 
1049 IF problemno > 300 THEN 
1050 writematrix; 
1051 nextshadow(fromcity, tocity); 
1052 IF problemno > 300 THEN 
1053 BEGIN 
1054 writelnC EXIT NEXTSHADOW *, fromcity: 4, tocity: 4); 
1055 tourlists(partial); 
1056 END; 
1057 contractmatrix(fromcity, tocity); 
1058 linksassigned := linksassigned + 1; 
1059 addanotherlink(linksassigned, fromcity, tocity); 
1060 IF problemno > 400 THEN 
1061 tour lists(partial); 
1062 UNTIL linksassigned = (n - 1); 
1063 END fshadowneighbour> ; 
1064 
1065 
1066 PROCEDURE tourstarter(VAR fromcity, tocity: city); 
1067 
1068 VAR 
1069 i, j: city; 
1070 fromtown, totown, small: integer; 
1071 ahead: headptr; 
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1072 townptrl, townptr2: nodeptr; 
1073 
1074 BEGIN 
1075 small := infinity; 
1076 fromtown := 0; 
1077 totown := 0; 
1078 FOR i 1 TO n - 1 DO 
1079 FOR j := i TO n DO 
1080 IF (c[i, j] + c[j, i]) < small THEN 
1081 BEGIN 
1082 fromtown := i; 
1083 totown := j; 
1084 small := c[i, j] + c[j, i]; 
1085 END; 
1086 new(ahead); 
1087 new(townptrl); 
1088 new(townptr2); 
1089 firsthead := ahead; 
1090 WITH firsthead A DO 
1091 BEGIN 
1092 firstlink := townptrl; 
1093 sentinel := townptr2; 
1094 nexthead := NIL; 
1095 END; 
1096 WITH townptrl A DO 
1097 BEGIN 
1098 town fromtown; 
1099 nextnode := townptr2; 
1100 END; 
1101 WITH townptr2 A DO 
1102 BEGIN 
1103 town := totown; 
1104 nextnode := NIL; 
1105 END; 
1106 fromcity := fromtown; 
1107 tocity := totown; 
1108 END ftourstarterj ; 
1109 
1110 

1111 PROCEDURE inserttown(fromtown, newtown, totown: city); 
1112 
1113 VAR 
1114 townptr, newcity: nodeptr; 
1115 
1116 BEGIN 
1117 new(newcity); 
1118 townptr := firsthead A.firstlink; 
1119 WHILE fromtown <> townptr A.town DO 
1120 townptr := townptr A.nextnode; 
1121 WITH newcity A DO 
1122 BEGIN 
1123 nextnode := townptr A.nextnode; 
1124 town : «= newtown; 
1125 END; 
1126 townptr A.nextnode := newcity; 
1127 IF fromtown = firsthead A.sentinel A.town THEN 
1128 firsthead A.sentinel := newcity; 
1129 END finserttownj ; 
1130 
1131 
1132 PROCEDURE tourinsertion(VAR tourlength: integer); 
1133 
1134 VAR 
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1135 assigned: PACKED ARRAY 
1136 [1..maxcity] OF boolean; 
1137 i, fromcity, tocity, newcity: city; 
1138 currentcost, citiesassigned: integer; 
1139 
1140 
1141 PROCEDURE towntoinsert(VAR fromtown, newtown, totown: city); 
1142 
1143 VAR 
1144 i, lasttown, nexttown, before, this, after: city; 
1145 townptr: nodeptr; 
1146 small: integer; 
1147 
1148 BEGIN 
1149 small := infinity; 
1150 FOR i 1 TO n DO 
1151 IF NOT assigned[i] 
1152 THEN 
1153 BEGIN 
1154 townptr := firsthead A.firstlink; 
1155 WHILE townptr <> NIL DO 
1156 BEGIN 
1157 lasttown := townptr A.town; 
1158 IF townptr = firsthead A.sentinel 
1159 THEN 
1160 nexttown := firsthead A.firstlink A.town 
1161 ELSE 
1162 nexttown := townptr A.nextnode A.town; 
1163 IF (c[lasttown, i] + c[i, nexttown] - c[lasttown 
1164 , nexttown]) < small 
1165 THEN 
1166 BEGIN 
1167 small := c[lasttown, i] + c[i, nexttown] -
1168 c[lasttown, nexttown]; 
1169 before := lasttown; 
1170 this :» i; 
1171 after := nexttown; 
1172 END; 
1173 townptr := townptr A.nextnode; 
1174 END; 
1175 END; 
1176 fromtown := before; 
1177 newtown := this; 
1178 totown := after; 
1179 END ftowntoinsertj ; 
1180 
1181 
1182 BEGIN ftourinsertionj 
1183 FOR i := 1 TO n DO 
1184 assigned[i] := false; 
1185 tourstarter(fromcity, tocity); 
1186 IF problemno > 400 THEN 
1187 tourlists(infull); 
1188 assignedffromcity] := true; 
1189 assigned[tocity] := true; 
1190 currentcost := c[fromcity, tocity] + c[tocity, fromcity]; 
1191 citiesassigned := 2; 
1192 REPEAT 
1193 towntoinsert(fromcity, newcity, tocity); 
1194 inserttown(fromcity, newcity, tocity); 
1195 assignedfnewcity] := true; 
1196 IF problemno > 400 THEN 
1197 BEGIN 
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1198 
1199 
1200 
1201 
1202 
1203 
1204 
1205 
1206 
1207 
1208 
1209 
1210 
1211 
1212 
1213 
1214 
1215 
1216 
1217 
1218 
1219 
1220 
1221 
1222 
1223 
1224 
1225 
1226 
1227 
1228 
1229 
1230 
1231 
1232 
1233 
1234 
1235 
1236 
1237 
1238 
1239 
1240 
1241 
1242 
1243 
1244 
1245 
1246 
1247 
1248 
1249 
1250 
1251 
1252 
1253 
1254 
1255 
1256 
1257 
1258 
1259 
1260 

tourlists(infull); 
writelnC EXIT TOWNTOINSERT: INSERT newcity: 4, 

' BETWEEN fronicity: 4, tocity: 4); 
END; 

citiesassigned := citiesassigned + 1; 
currentcost := currentcost + c[from.city, newcity] + c[newcity, 

tocity] - c[fromcity, tocity]; 
UNTIL citiesassigned = n; 
tourlength := currentcost; 

END £tourinsertionj ; 

PROCEDURE copytour; 

VAR 

anewhead: headptr; 
lastnode, thisnode, oldone: nodeptr; 
firstround: boolean; 

BEGIN 
firstround := true; 
IF sparehead <> NIL THEN 

garbagecollection(sparehead); 
IF firsthead <> NIL 
THEN r 

BEGIN 
new(anewhead); 
sparehead anewhead; 
oldone := firsthead A.firstlink; 
WHILE oldone <> NIL DO 

WITH oldone A DO 
BEGIN 

new(thisnode); 
IF firstround 
THEN 

BEGIN 
sparehead A.firstlink := thisnode; 
firstround := false; 

END 
ELSE 

lastnode A.nextnode := thisnode; 
thisnode A.town := town; 
thisnode A.linkfixed := linkfixed; 
lastnode := thisnode; 
oldone := nextnode; 

END; 
sparehead A.sentinel := lastnode; 
sparehead A.nexthead := NIL; 

END; 
lastnode A.nextnode := NIL; 

END fcopytourj ; 

PROCEDURE tourcost(VAR finalcost: integer); 

VAR 

cost: integer; 
this, last: nodeptr; 

BEGIN 
cost := 0; 
IF firsthead <> NIL 
THEN 
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1261 BEGIN 
1262 last := firsthead A.sentinel; 
1263 this : = firsthead A.firstlink; 
1264 WHILE this <> NIL DO 
1265 BEGIN 
1266 cost := cost + c[last A.town, this A.town]; 
1267 last := this; 
1268 this : = this A.nextnode; 
1269 END; 
1270 END; 
1271 finalcost : = cost; 
1272 END ftourcostj ; 
1273 
1274 
1275 PROCEDURE last2but1(VAR lastbut2, lastbutl: nodeptr); 
1276 
1277 VAR 
1278 k: city; 
1279 townptr: nodeptr; 
1280 
1281 BEGIN 
1282 townptr := firsthead A.firstlink; 
1283 FOR k := 1 TO n - 3 DO 
1284 townptr := townptr A.nextnode; 
1285 lastbut2 := townptr; 
1286 lastbutl := lastbut2 A.nextnode; 
1287 IF lastbutl A.nextnode <> firsthead A.sentinel THEN 
1288 w r i t e l n C TOUR ERROR FOUND BY LAST2BUT1'); 
1289 END flast2butlJ ; 
1290 
1291 
1292 FUNCTION good3opt(townptr1, townptr2, townptr3: nodeptr; VAR benefit: 
1293 integer): boolean; 
1294 
1295 VAR 
1296 fl, f2, f3, f4, tl, t2, t3: city; 
1297 
1298 BEGIN 
1299 fl := townptrl A.town; 
1300 tl := townptrl A.nextnode A.town; 
1301 f2 := townptr2 A.town; 
1302 t2 := townptr2 A.nextnode A.town; 
1303 f3 := townptr3 A.town; 
1304 IF townptr3 * firsthead A.sentinel 
1305 THEN 
1306 t3 := firsthead A.firstlink A.town 
1307 ELSE 
1308 t3 := townptr3 A.nextnode A.town; 
1309 benefit := c[fl, tl] + c[f2, t2] + c[f3, t3] - (c[fl, t2] + c[f3, 
1310 tl] + c[f2, t3]); 
1311 IF benefit > 0 
1312 THEN 
1313 good3opt := true 
1314 ELSE 
1315 good3opt := false; 
1316 END £good3optJ ; 
1317 
1318 
1319 PROCEDURE change3opt(townptr1, townptr2, townptr3: nodeptr); 
1320 
1321 VAR 
1322 nexttol, nextto2, nextto3: nodeptr; 
1323 
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1324 BEGIN 
1325 nexttol := townptr1 A.nextnode; 
1326 nextto2 := townptr2 A.nextnode; 
1327 nextto3 := townptr3 A.nextnode; 
1328 townptrl A.nextnode := nextto2; 
1329 townptr2 A\ nextnode := nextto3; 
1330 townptr3 A.nextnode := nexttol; 
1331 IF nextto3 = NIL THEN 
1332 firsthead A.sentinel := townptr2; 
1333 END £change3optJ ; 
1334 
1335 
1336 PROCEDURE threeopta(VAR townl, town2, town3: nodeptr; VAR reduce: 
1337 integer); 
1338 
1339 VAR 
1340 lastbut2, lastbutl, lastone, bestptrl, bestptr2, bestptr3, 
1341 townptrl, townptr2, townptr3: nodeptr; 
1342 reduction, bestreduction; integer; 
1343 beneficial: boolean; 
1344 
1345 BEGIN 
1346 bestreduction := - infinity; 
1347 WITH firsthead A DO 
1348 BEGIN 
1349 lastone := sentinel; 
1350 townptrl := firstlink; 
1351 END; 
1352 last2butl(lastbut2, lastbutl); 
1353 WHILE townptrl <> lastbutl DO 
1354 BEGIN 
1355 townptr2 := townptrl A.nextnode; 
1356 WHILE townptr2 <> lastone DO 
1357 BEGIN 
1358 townptr3 := townptr2 A.nextnode; 
1359 WHILE townptr3 <> NIL DO 
1360 BEGIN 
1361 beneficial := good3opt(townptrl, townptr2, 
1362 townptr3, reduction); 
1363 IF beneficial AND (reduction > bestreduction) 
1364 THEN 
1365 BEGIN 
1366 bestptrl := townptrl; 
1367 bestptr2 := townptr2; 
1368 bestptr3 := townptr3; 
1369 bestreduction := reduction; 
1370 END; 
1371 townptr3 := townptr3 A.nextnode; 
1372 END; 
1373 townptr2 townptr2 A.nextnode; 
1374 END; 
1375 townptrl := townptrl A.nextnode; 
1376 END; 
1377 townl := bestptrl; 
1378 town2 := bestptr2; 
1379 town3 := bestptr3; 
1380 reduce := bestreduction; 
1381 END fthreeoptaj ; 
1382 
1383 
1384 FUNCTION paralbefore2(ptrone, ptrtwo: nodeptr): boolean; 
1385 
1386 VAR 
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1387 
1388 
1389 
1390 
1391 
1392 
1393 
1394 
1395 
1396 
1397 
1398 
1399 
1400 
1401 
1402 
1403 
1404 

1405 
1406 
1407 
1408 
1409 
1410 
1411 
1412 
1413 
1414 
1415 
1416 
1417 
1418 
1419 
1420 
1421 
1422 
1423 
1424 
1425 
1426 
1427 
1428 
1429 
1430 
1431 
1432 
1433 
1434 

1435 
1436 
1437 
1438 
1439 
1440 
1441 
1442 
1443 
1444 
1445 
1446 
1447 
1448 
1449 

this: nodeptr; 

BEGIN 
this := ptrone; 
WHILE (this <> ptrtwo) AND (this <> NIL) DO 

this := this A.nextnode; 
IF this = ptrtwo 
THEN 

paralbefore2 := true 
ELSE 

paralbefore2 := false; 
END fparalbefore2> ; 

FUNCTION nextinthetour(i: nodeptr): nodeptr; 

VAR 
j: nodeptr; 

BEGIN 
j := i A.nextnode; 
IF j = NIL THEN 

j firsthead A.firstlink; 
nextinthetour j; 

END fnextinthetourj ; 

FUNCTION partial4opt(townptr1, townptr2: nodeptr): integer; 

VAR 

afterl, after2: nodeptr; 
fl, tl, f2, t2: city; 

BEGIN 
fl := townptr1 A.town; 
afterl := nextinthetour(townptrl); 

tl := afterl A.town; 
f2 := townptr2 A.town; 
after2 := nextinthetour(townptr2); 
t2 := after2 A.town; 
partial4opt := c[fl, tl] + c[f2, t2] - c[f1, t2] - c[f2, tl]; 

END £partial4opt> ; 

PROCEDURE best4opta(townptrl, townptr2: nodeptr; VAR townptr3, townptr4: 

nodeptr; VAR gain2: integer); 

VAR 
bestptr3, bestptr4, i, j, k: nodeptr; 
bestgain, again, costf3t3: integer; 
f3, f4, t3, t4: city; 

BEGIN 
bestgain := - infinity; 
i := townptr1 A.nextnode; 
WHILE i <> townptr2 DO 

BEGIN 
WITH i A DO 

BEGIN 
f3 := town; 
t3 := nextnode A.town; 

END; 
costf3t3 c[f3, t3]; 
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1450 j : = nextinthetour(townptr2); 
1451 WHILE j <> townptrl DO 
1452 BEGIN 
1453 f 4 : = j A.town; 
1454 k := nextinthetour(j); 
1455 t4 := k A.town; 
1456 again := costf3t3 + c[f4, t4] - c[f3, t4] - c[f4, t3]; 
1457 IF again > bestgain THEN 
1458 BEGIN 
1459 bestgain : = again; 
1460 bestptr3 := i; 
1461 bestptr4 := j; 
1462 END; 
1463 j :« k; 
1464 END; 
1465 i := i A.nextnode; 
1466 END; 
1467 townptr3 : = bestptrS; 
1468 townptr4 := bestptr4; 
1469 gain2 := bestgain; 
1470 END £best4opta! ; 
1471 
1472 . 
1473 PROCEDURE change4a(townptr1, townptr2, townptr3, townptr4: nodeptr); 
1474 f 

1475 VAR 
1476 nexttol, nextto2, nextto3, nextto4: nodeptr; 
1477 
1478 BEGIN 
1479 nexttol : = townptrl A.nextnode; 
1480 nextto2 := townptr2 A.nextnode; 
1481 nextto3 := townptr3 A.nextnode; 
1482 nextto4 := townptr4 A.nextnode; 
1483 townptrl A.nextnode : = nextto2; 
1484 townptr2 A.nextnode := nexttol; 
1485 townptr3 A.nextnode := nextto4; 
1486 townptr4 A.nextnode := nextto3; 
1487 IF nextto2 - NIL THEN 
1488 BEGIN 
1489 firsthead A.sentinel : = townptrl; 
1490 townptrl A.nextnode := NIL; 
1491 END; 
1492 IF nextto4 - NIL THEN 
1493 BEGIN 
1494 firsthead A.sentinel := townptrS; 
1495 townptr3 A.nextnode := NIL; 
1496 END; 
1497 END fchange4aj ; 

1498 
1499 
1500 PROCEDURE fouroptb(VAR townl, town2, town3, town4: nodeptr; VAR reduce: 
1501 integer); 
1502 

1503 VAR 
1504 lastbut2, lastbutl, lastone, lastptrl, limitptrl, lastlmtptr1, 
1505 bestptrl, bestptr2, bestptr3, bestptr4, townptrl, townptr2, 
1506 townptr3, townptr4: nodeptr; 
1507 partgain, gain2, bestgain: integer; 
1508 beneficial: boolean; 
1509 
1510 BEGIN 
1511 bestgain := - infinity; 
1512 last2but1(lastbut2, lastbutl); 
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1514 
1515 
1516 
1517 
1518 
1519 
1520 
1521 
1522 
1523 
1524 
1525 
1526 
1527 
1528 
1529 
1530 
1531 
1532 
1533 
1534 
1535 
1536 
1537 
1538 
1539 
1540 
1541 
1542 
1543 
1544 
1545 
1546 
1547 
1548 
1549 
1550 
1551 
1552 
1553 
1554 

townptrl := firsthead A.firstlink; 
limitptrl := lastbutl; 
WHILE townptrl <> limitptrl DO 

BEGIN 
townptr2 := townptrl A.nextnode A.nextnode; 
WHILE townptr2 <> NIL DO 

BEGIN 
partgain := partial4opt(townptrl, townptr2); 
IF partgain > 0 
THEN 

BEGIN 
best4opta(townptr1, townptr2, townptr3, townptr4 

, gain2); 
partgain := partgain + gain2; 
IF partgain > bestgain THEN 

BEGIN 
bestptrl : = townptrl; 
bestptr2 :• townptr2; 
bestptr3 := townptrS; 
bestptr4 := townptr4; 
bestgain := partgain; 

END; 

END; 
townptr2 townptr2 A.nextnode; 

END; 
townptrl := townptrl A.nextnode; 

END; 
bestptrl; 
bestptr2; 
bestptr3; 
bestptr4; 
bestgain; 

townl 
town2 
town3 
town4 
reduce 

END ffouroptbj 

PROCEDURE writetofiles; 

VAR 
i : 
j : 

BEGIN 

construction; 
improvement; 

1555 write(maketm, problemno: 4, ' 
1556 write(makecs, problemno: 4, ' 
1557 write(totltm, problemno: 4, ' ' ) 

1558 write(totlcs, problemno: 4, ' 
1559 
1560 
1561 
1562 
1563 
1564 
1565 
1566 
1567 
1568 
1569 
1570 
1571 
1572 
1573 
1574 
1575 

FOR i dolittle TO acircuit DO 
BEGIN 

write(maketm, contime[i]: 7, ' '); 
write(makecs, concost[i]: 7, ' '); 
FOR j := threearc TO fourarc DO 

BEGIN 
write(totltm, finaltime[i, j] 
write(totlcs, finalcost[i, j] 

END; 
END; 

writeln(maketm); 
writeln(makecs); 
wr iteln(totltm); 
writeln(totlcs); 

END fwritetofilesj ; 
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1576 BEGIN £salesv02J 
1577 readinput; 
1578 FOR starting := dolittle TO acircuit DO 
1579 BEGIN 
1580 initialisation; 
1581 starttime := clock; 
1582 CASE starting OF 
1583 dolittle: 
1584 littletsp; 
1585 shortlink: 
1586 nearestneighbour; 
1587 shadowlink: 
1588 shadowneighbour; 
1589 acircuit: 
1590 tourinsertion(tourlength); 
1591 END; 
1592 timeelapsed := clock - starttime; 
1593 readinput; 
1594 IF starting <> acircuit THEN 
1595 tourcost(tourlength); 
1596 copytour; 
1597 contime[starting] := timeelapsed; 
1598 concost[starting] :« tourlength; 
1599 writeln(' PROBLEM NO problemno: 6, ' ': 2, starting: 2 oct, 
1600 ' CONSTRUCTION LENGTH tourlength: 7, 
1601 ' CONSTRUCTION TIME timeelapsed: 7); 
1602 tourlists(infull); 
1603 writeln; 
1604 FOR optimising := threearc TO fourarc DO 
1605 BEGIN 
1606 IF optimising = threearc 
1607 THEN 
1608 BEGIN 
1609 iteration := 0; 
1610 change := false; 
1611 starttime := clock; 
1612 REPEAT 
1613 threeopta(atownl, atown2, atown3, areduction); 
1614 IF areduction > 0 
1615 THEN 
1616 BEGIN 
1617 change3opt(atownl, atown2, atown3); 
1618 tourlength := tourlength - areduction; 
1619 iteration := iteration + 1; 
1620 change := true;. 
1621 END 
1622 ELSE 
1623 change := false; 
1624 UNTIL NOT change; 
1625 timeelapsed := clock - starttime; 
1626 finaltime[starting, optimising] :* contimefstarting 
1627 ] + timeelapsed; 
1628 END 
1629 ELSE 
1630 BEGIN 
1631 iteration := 0; 
1632 change := false; 
1633 garbagecollection(firsthead); 
1634 firsthead := sparehead; 
1635 sparehead := NIL; 
1636 tourcost(tourlength); 
1637 starttime := clock; 
1638 REPEAT 
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1639 threeopta(atownl, atown2, atown3, areduction); 
1640 fouroptb(btownl, btown2, btown3, btown4, 
1641 breduction); 
1642 IF (areduction > 0) OR (breduction > 0) 
1643 THEN 
1644 BEGIN 
1645 IF areduction > breduction 
1646 THEN 
1647 BEGIN 
1648 change3opt(atownl, atown2, atown3); 
1649 tour length := tourlength -
1650 areduction; 
1651 END 
1652 ELSE 
1653 BEGIN 
1654 change4a(btownl, btown2, btown3, 
1655 btown4); 
1656 tourlength := tourlength -
1657 breduction; 
1658 END; 
1659 iteration := iteration + 1; 
1660 change := true; 
1661 END 
1662 ELSE 
1663 change := false; 
1664 UNTIL NOT change; 
1665 timeelapsed : = clock - starttime; 
1666 finaltime[starting, optimising] := finaltime[ 
1667 starting, threearc] + timeelapsed; 
1668 END; 
1669 f inalcost[starting, optimising] :== tourlength; 
1670 writeln(' PROBLEM NUMBER problemno: 4, ' ', starting: 
1671 2 oct, ' optimising: 2 oct, ' NO OF ITERATION(S) ' 
1672 , iteration: 3, ' FINAL TOURLENGTH ', tourlength: 7, 
1673 ' FINAL TIME finaltime[starting, optimising]: 7); 
1674 tour1ists(inful1); 
1675 writeln; 
1676 END; 
1677 garbagecollection(firsthead); 
1678 writeln; 
1679 writeln; 
1680 END; 
1681 writetofiles; 
1682 END £salesv02J . 
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