Thermal Neutron Capture Studies of ${ }^{108} \mathrm{Ag}$ and ${ }^{110} \mathrm{Ag}$

A thesis submitted for the award of the degree of Doctor of Philosophy of the University of London

Tomotaka MITSUNARI

University of London Reactor Centre
Imperial College of Science and Technology

As a contribution to the systematic study of trends in the structure of odd-odd nuclei in the $Z=50$ region, thermal neutron capture reactions in ${ }^{107} \mathrm{Ag}$ and ${ }^{109} \mathrm{Ag}$ have been investigated using a variety of techniques.

The internal conversion electrons in the ${ }^{109} \mathrm{Ag}\left(\mathrm{n}, \gamma \mathrm{e}^{-}\right)^{110} \mathrm{Ag}$ reaction have been measured with the electron spectrometer 'BILL', installed at the HFR in Grenoble. A target of enriched ${ }^{109} \mathrm{Ag}\left(99.7 \%, 3 \mathrm{mg}, 100 \mu \mathrm{~g} / \mathrm{cm}^{2}\right.$) evaporated onto aluminium foil was irradiated with a thermal neutron flux of $3 \times 10^{14} \mathrm{ncm}^{-2} \mathrm{sec}^{-1}$. More than 500 electron lines were observed in the range of $17 \mathrm{keV}<\mathrm{E}_{\mathrm{e}}<650 \mathrm{keV}$ and 400 of them have been identified as the internal conversion electrons from more than 240 transitions in ${ }^{110} \mathrm{Ag}$.

The gamma-transitions in the same reaction have been measured by the curved-crystal spectrometers 'GAMS' and by the pair-spectrometer 'PN4' both installed also at the HFR in Grenoble. A target of enriched ${ }^{109} \mathrm{Ag}\left(99.7 \%, 50 \mathrm{mg}, 100 \mathrm{mg} / \mathrm{cm}^{2}\right.$) covered with aluminium foil was irradiated with a thermal neutron flux of $5 \times 10^{14} \mathrm{ncm}^{-2} \mathrm{sec}^{-1}$. 1100 gammatransitions were observed in the range $35 \mathrm{keV}<\mathrm{E}_{\gamma}<1500 \mathrm{keV}$ by GAMS and the data have been combined with earlier data obtained at Rish. Multipolarities of about 200 transitions were determined by comparing gamma-ray and electron intensities. 740 gamma-transitions were observed in the range $1300 \mathrm{keV}<\mathrm{E}_{\gamma}<6900 \mathrm{keV}$ by PN4.

These transition data of ${ }^{110} \mathrm{Ag}$ and similar existing data of ${ }^{108} \mathrm{Ag}$ were fed into a series of computer programmes, which were designed especially for neutron capture studies, and detailed level schemes have been constructed, taking into account other experimental data on
the nuclei, such as $\gamma-\gamma$ coincidence studies, $(d, p),(p, n \gamma)$ and resonance neutron capture. The present level schemes consist of 50 levels below 1000 keV containing some 300 transitions and 75 levels below 1200 keV containing some 500 transitions in ${ }^{108} \mathrm{Ag}$ and ${ }^{110} \mathrm{Ag}$, respectively.

Some proton-neutron multiplet configurations have been suggested and compared with the parabolic energy dependence on $I(I+1)$ suggested by Paar.

TABLE OF CONTENTS

Page
ABSTRACT 1
TABLE OF CONTENTS 3
LIST OF TABLES 6
LIST OF FIGURES 6
ACKNOWLEDGEMENTS 8
CHAPTER 1 INTRODUCTION 9
1.1 Neutron Capture Reaction 10
1.1.1 Compound Nucleus Formation 10
1.1.2 Direct and Semi-direct Capture Processes 12
1.2 Electromagnetic Transitions 13
1.2.1 Primary Transitions 14
1.2.2 Secondary Transitions 15
1.2.3 Gamma-ray Spectrum in Neutron Capture 16
1.3 Nuclei around $Z=50$ Region 17
CHAPTER 2 EXPERIMENTS 18
2.1 Measurement of Internal Conversion Electrons 18
2.1.1 Instrument 18
2.1.2 Target 20
2.1.3 Data Acquisition 20
2.1.4 Data Evaluation 22
2.2 Measurement of Low Energy Gamma-Transitions 27
2.2.1 Instrument 28
2.2.2 Target 29
2.2.3 Adjustment 31
2.2.4 Control Crystal 31
2.2.5 Data Acquisition 31
Page
2.2.6 Data Evaluation 32
2.2.7 Absolute Intensity Calibration 40
2.2.8 Combination of Grenoble Data and Risф Data 42
2.3 Measurement of High Energy Gamma-Transitions 42
2.3.1 Instrument 43
2.3.2 Data Acquisition 43
2.3.3 Data Evaluation 43
CHAPTER 3 LEVEL SCHEME CONSTRUCTION 49
3.1 Programme LEVELS 49
3.2 Programme LEVELS 3 53
3.3 Programme LEVELS4 54
3.4 Programme LEVELS5 55
3.5 Programmes LEVELS 7 and LEVELS9 57
3.6 Programme LEVEL8 58
3.7 Programmes TABLE and HAGER 59
3.8 Programme INFORM 60
CHAPTER 4 APPLICATION OF THE METHODS AND THE RESULTS 62
$4.1 \quad{ }^{108} \mathrm{Ag}$ 62
$4.2 \quad{ }^{110} \mathrm{Ag}$ 67
4.3 Levels in ${ }^{110} \mathrm{Ag}$ 70
CHAPTER 5 THEORY OF ODD-ODD NUCLEI 130
5.1 Residual Interaction 131
$5.2 \quad j-j$ Coupling 132
5.3 Parabolic Energy Dependence of Proton-Neutron Multiplets 133
CHAPTER 6 DISCUSSION 135
6.1 Experiments and Data Analyses 135
6.2 Comparison with Neighbouring Nuclei and Preliminary Interpretation 137
6.3 Comparison with Parabolic Rule 146
6.4 Gamma-ray Yield 148
6.4.1 Primary Ganma-rays 150
6.4.2 Gamma-ray Spectrum 152
6.5 Double Neutron Capture 154
CHAPTER 7 CONCLUSION 157
REFERENCES 159
APPENDIX 1 163
A. 1 Integrals in Level Energy Calculation 163
APPENDIX 2 166
A. 2 Two-Gaussian Fit 166
APPENDIX 3 169
A. 3 Coincidence Strength Calculation 169
A.3.1 Life-Time Contribution 169
A.3.2 Angular Correlation 170
A.3.3 Corrections 171
APPENDIX 4 172
A. $4 \quad x^{2}$-distribution Fit 172
A.4.1 Normalization 172
A.4.2 Low-Intensity Correction 173
Page

1. List of Experiments 19
2. Energy Calibration Lines for PN4 Pair Spectrometer 47
3. I/O Media of Computer Programmes 50
4. Levels in ${ }^{108} \mathrm{Ag}$ 68
5. Summary of the ${ }^{109} \mathrm{Ag}(\mathrm{n}, \gamma){ }^{110} \mathrm{Ag}$ Reaction 89
6. List of Internal Conversion Electrons 103
7. List of Unassigned Gamma-Transitions 113
8. List of Gamma-Rays (PN4) 121
9. Possible Combinations of Proton-Neutron Configurations with One Phonon Coupling 140
LIST OF FIGURES
Page
10. Target Arrangement for BILL Spectrometer 21
11. Data Evaluation Flow for BILL Spectrometer 23
12. Example of BILL Spectrum 24
13. Target Arrangement for GAMS Curved Crystal Spectrometer 30
14. Data Evaluation Flow for GAMS Spectrometer 33
15. Example of GAMS Spectrum 34
16. Example of FITPIC Graphic Output 36
17. Yield of 657.76 keV Decay Line in ${ }^{110} \mathrm{Cd}$ 41
18. Data Evaluation Flow for PN4 Pair Spectrometer 44
19. ADC Non-linearity of PN4 Spectrometer 46
20. Relative Efficiency of PN4 Spectrometer 46
21. Analysis Flow in Leve1 Scheme Construction 51
22. Example of TABLE Output ${ }^{108} \mathrm{Ag}$ 64
23. Example of INFORM Output for $10^{8} \mathrm{Ag}$ 65
24. Example of LEVELS5 Output for ${ }^{108} \mathrm{Ag}$ 66
25. Level Scheme of ${ }^{108} \mathrm{Ag}$ (LEVELS8 Output) 69
26. Level Scheme of ${ }^{110} \mathrm{Ag}$ (LEVELS8 Output) (in the back cover pocket)
27. Cascade Populating 6^{+}Isomeric State 72
28. Neighbouring Nuclei and Quasi-particle-Vibration Coupling 138
29. Proton-Neutron Multiplets and Intra- and Inter-band Transitions 145
30. Comparison with the Parabolic Energy Dependence of $\left(\left(g_{9 / 2}\right)_{7 / 2}^{-3}, d_{5 / 2}\right)_{1}{ }^{+}-6+$ Multiplets in ${ }^{108} \mathrm{Ag}$ and ${ }^{110} \mathrm{Ag}$ 149
31. Proposed 4^{+}and 5^{+}states of the Multiplet $\left(\left(g_{9 / 2}\right)_{7 / 2}^{-3}, \mathrm{~d}_{5 / 2}\right)$
in ${ }^{110 \mathrm{Ag}}$
32. Comparison with the Parabolic Energy Dependence 149
33. Reduced Intensity Distribution of Primary Gamma-Transitions 151
34. Reduced Intensity Distribution of High Energy Transitions $\mathrm{E}_{\gamma}>3500 \mathrm{keV}$ in ${ }^{109} \mathrm{Ag}(\mathrm{n}, \gamma)^{110} \mathrm{Ag}$ 153
.6. Gamma-ray Spectrum in Thermal Neutron Capture Reaction in ${ }^{110} \mathrm{Ag}$ 155
Ai. Number of Zero Points in the Second Derivative 166
A2. Characteristics of Two-Gaussian Function 168

ACKNOWLEDGEMENTS

The author would like to express his gratitude for the encouragement and invaluable advice given by his supervisor, Dr. T. D. MacMahon.

The author is grateful to Dr. H. Faust, Dr. Barreau, Dr. S. Kerr and other members at the Institut Laue-Langevin for their help during the experiments and also the authorities of the Science Research Council for their financial support.

The author also appreciated Mr. M. Kerridge, the Director of the University of London Reactor Centre, for his kindness and the financial support.

The author would like to thank Dr. L. E. Culver and other staff of the Mechanical Engineering Department, Imperial College, for their contribution to the tuition fees.

The author sincerely thanks the members of the University of London Reactor Centre for their kind cooperation. Many thanks are due to Mr. S. M. Jefferies for his reading the manuscript, and to Mr . D. G. Russell for his printing the microfilm.

The author wishes special thanks to his parents and family for their financial support and patience.

One of the principal slow neutron reactions is the radiative capture process in which the incident neutron is absorbed in the target nucleus followed by the emission of electromagnetic radiation. Since the slow neutron reactions were discovered in $1935^{1)}$, extensive studies have been carried out both experimentally and theoretically. The compound nucleus concept of Bohr led to the systematic understanding of features of the neutron resonance phenomenon by employing an optical potential and complex phase shift in the scattering theory. This is known as the Breit-Wigner one-1evel formula.

However, more complicated properties in the neutron capture mechanism became evident after examining the distribution of partial radiation widths compared with the Porter-Thomas distribution ${ }^{2)}$. These non-statistical effects are due to the direct and semi-direct capture processes as some correlations have been observed between the reduced widths and (d,p) spectroscopic factors. These processes have been formulated mathematically by Lane and Lynn ${ }^{3)}$

Thermal neutron capture can be regarded as a combination of compound nucleus formation and direct capture components. Since the compound state is not uniquely defined because of thermalized neutron energies, this method is used mainly for nuclear structure studies rather than reaction studies by examining the accompaning electromagnetic radiations.

The improvements of gamma-ray detection techniques have ${ }_{\wedge}{ }^{\text {enabled a precise }}$ determination of level energies with a few eV uncertainty up to 1 MeV excitation. However, the observable levels are rather limited depending
on the ground state spins of target nucleus and the next heavier isotope formed by neutron capture.

Thermal neutron capture gamma-ray spectroscopy is a powerful tool for investigating odd-odd nuclei, provided the target nucleus has a reasonable capture cross-section. Since a high level density is expected at low energy excitation due to the unpaired proton and neutron, gammaray measurements are favoured. In the present studies, 108 Ag and ${ }^{110} \mathrm{Ag}$ liā̃e been chosen to investigate recently reported interesting features of the nuclei around $Z=50$ region, such as particle-rotational and particle-vibrational bands ${ }^{4}$.

1.l. Neutron Capture Reaction

Basic understanding of the neutron capture mechanism is necessary to proceed with a physically consistent level scheme construction. Theoretical interpretation of the mechanism will be reviewed briefly both in compound nucleus formation and direct capture. Further formal theory of nuclear reactions has been developed by Feshbach 5) using channel projection operators.

1.1.1. Compound Nucleus Formation

A compound nucleus is formed by the absorption of a neutron in the field of interaction between the neutron and the target nucleus. Since the kinetic energy of the incident neutron in the potential is distributed to the other nucleons in the nucleus by some collisions, relatively a slifhely long-lived state will be achieved, in which particle emission channel widths are considerably suppressed for slow incident neutrons, and the decay mode of such a state does not depend on how it has been formed. Therefore, in this mode1, the neutron capture process is completely separated into the compound nucleus formation and its decay by the electromagnetic radiation emission, and the characteristics
of the compound nucleus will determine quantum mechanical probabilities of decay modes.

The process of compound nucleus formation can be described as a part of S-matrix formalism in the scattering theory 6). The importance of incident s-wave slow neutrons in the process can be understood geometrically from the fact that the unitarity of the S-matrix sets up maxima of the partial cross-sections. However, the expressions for the cross-sections include implicit forms using the phase shift convention. For explicit expressions, the internal states of the system Hamiltonian have to be considered and the boundary condition must be satisfied at the channel radius.

The resonance phenomenon is an energy dependent event and its crosssection is very sensitive to the small value of the logarithmic derivative of the radial wave function at the channel radius. The resonance energies which give local maxima of total cross-section can be obtained very near to the internal level energies. Such energy shifts appear in the R-matrix formalism explicitly but not in the simple form of the Breit-Wigner formula ${ }^{7)}$. In this well-known one-level formula, the radiation width appears as an imaginary energy term, from which the decay constant of the compound nucleus state can be deduced. This agrees with the uncertainty principle.

Since thermal neutrons have an approximatelyMaxwellian velocity distribution, the capture process has to be considered as a combination of several resonances including the negative levels which are lower than the neutron binding energy. However, the energy range covered by thermal neutrons is not wide enough to apply the statistical model of resonances to the thermal neutron capture process, because the level density and partial widths may not be correctly estimated around the
the neutron binding energy.
On the other hand, the selection rule of angular momentum plays an important role in the compound nucleus formation. Assuming a spin and parity $I_{t}{ }^{t}{ }^{t}$ of the target nucleus, the following compound nucleus states $J_{c}{ }^{\pi}{ }^{c}$ can be allowed in the angular momentum coupling scheme.

$$
\begin{aligned}
& J_{c}=I_{t} \pm \frac{1}{2}, \pi_{c}=\pi_{t} \\
& J_{c}=\min \left\{\left|I_{t}-\frac{1}{2}\right|,\left|I_{t}-\frac{3}{2}\right|\right\}, \cdots, I_{t}+\frac{3}{2} \\
& \pi_{c}=-\pi_{t}
\end{aligned}
$$

This selection rule is obtained by the coupling of the three angular momenta, neutron intrinsic spin \vec{i}, orbital angular momentum $\vec{\ell}$ and the target spin \vec{I}_{t}, resulting ${ }_{\lambda}^{\text {in }}$ the compound nucleus spin \vec{J}_{c}.

$$
\vec{J}_{c}=\vec{I}+\vec{I}_{t}+\vec{l}
$$

In the coupling of three angular momenta, the representation of simultaneous eigenstates $\left|J_{c} M_{c}\right\rangle$ of operators \vec{J}_{c}^{2} and $J_{c z}$ is not uniquely defined, but spans a definite subspace of $(2 i+1)\left(2 I_{t}+1\right)(2 \ell+1)$ manifold $\left.{ }^{8}\right)$

By taking the channel spin coupling first as

$$
\overrightarrow{\mathrm{I}}_{\mathrm{c}}=\overrightarrow{\mathrm{I}}^{2}+\overrightarrow{\mathrm{I}}_{\mathrm{t}}
$$

ihe dependence of the compound nucleus formation cross-section σ_{c} on angular momenta is expressed simply by the square of the Clebsch-Gordan coefficient ${ }^{6)}$,

$$
\begin{array}{rlrl}
\sigma_{c} \propto & \left|<I_{c} M_{c} \ell m_{\ell}\right| J_{c} M>\left.\right|^{2} & \text { or } \\
& \left|<I_{c} M_{c} \ell O\right| J_{c} M>\left.\right|^{2} & & \text { if narrow beam. }
\end{array}
$$

The above selection rule can be deduced by the triangular relationship of the coefficients.

1.1.2. Direct and Semi-direct Capture Processes

Non-statistical effects in thermal neutron capture and correlations of thermal (n, γ) intensities with $\ell=1(d, p)$ intensities were discovered in 1953^{9}), which stimulated the development of ${ }^{\text {a }}$ mathematical formulation
of neutron capture mechanisms. Various models for the neutron capture mechanism have been established by Lane and Lynn ${ }^{3)}$. The historical development of direct capture theories has been compiled by lane ${ }^{10}$. These models are classified into three categories, which are known
as

1) Direct Capture (Hard Sphere Capture)
2) Channel Capture (Valence Neutron Capture)
3) Semi-direct Capture (Doorway State Formation)

These processes can be considered as scattering of an incident neutron from the system potential and electromagnetic perturbation field to a low-lying state without forming a compound nucleus. The relationship of the hard sphere and valence neutron captures to the giant resonances in the gross-structure of total cross-section has been investigated 11) and these non-statistical effects seem to be present in mass regions where s-wave and p-wave neutron strength functions have peaks ${ }^{12 \text {) }}$ Since these single particle features exhibit much more complicated fine structures than the gross structure for heavier nuclei, the idea of the doorway state formation has been introduced to the 4 s giant resonance mass region.

1.2. Electromagnetic Transitions

Electromagnetic transitions associated with neutron capture reactions are of great importance in nuclear structure studies as well as capture mechanisms in accordance with the development of high resolution gamma-ray detectors. However, the dynamical theories are very difficult to formalize due to the inclusion of the massless photon field.

The neutron binding energy or the excitation energy of the compound
nucleus is released in the form of electromagnetic radiation in several steps from the capture state to the ground state. The first transition from the capture state to an intermediate state is known as the primary transition and provides evidence for the existence of the intermediate state and also determines its excitation energy directly. Most of the excitation energy is carried off by the El or M1 primary transition. The rest of the excitation energy is carried off by other successive transitions, which are known as secondary transitions. They reveal the low-lying level structure by precise measurements of these low energy transitions.
1.2.1. Primary Transitions

The strengths of primary transitions are strongly related to the capture processes, and their decay amplitudes are expressed as a linear combination of various contributions ${ }^{12)}$.
$r_{i f}^{\frac{1}{2}}=C_{1} \Gamma_{(\mathrm{CN}) \text { if }}^{\frac{1}{2}}+\mathrm{C}_{2} \Gamma(\mathrm{HS})$ if $+\mathrm{C}_{3} \Gamma_{(\mathrm{CV}) \text { if }}^{\frac{1}{2}}+\mathrm{C}_{4} \Gamma_{(\mathrm{DS})}^{\frac{1}{2}} \mathrm{if}^{\frac{1}{2}}$
where the terms on the right hand side correspond to compound nucleus formation, hard sphere capture, channel capture and doorway state formacion, respectively. The statistics of the reduced intensities of the primary transitions depend on which contribution dominates in the expression.

It has been empirically investigated that the correlation between (d, p) spectroscopic factors $(2 \mathrm{~J}+1) \mathrm{S}_{\mathrm{dp}}$ and the reduced primary gamma-ray intensities $I_{\gamma} / E_{\gamma}^{\mathrm{n}}$ shows different optimum values of the reduction factor n for various capture mechanisms, although the reduction factor $\mathrm{n}=2 \ell+1$ is recommended theoretically, where ℓ is the multipolarity of the transition. According to the summary of the experimental data in the mass region from ${ }^{27}$ Al to ${ }^{66} \mathrm{Zn}$ by Mughabghab ${ }^{12)}$, the region falls into three groups characterized by $\mathrm{n}=1.1,2.4$ and 4.8 , corresponding to
direct capture, valence capture and statistical regions, respectively.
The Porter-Thomas distribution ${ }^{2)}$ can be applicable to the primary transition reduced intensities if the compound nucleus formation dominates in the capture process. In the average resonance capture technique ${ }^{14)}$, it is a fundamental assumption that the dependence of the reduced intensities on the radial overlap integrals can be ignored due to the statistical distribution and the averaged contributions from many different resonances.

1.2.2. Secondary Transitions

Secondary transitions are not of interest in the neutron capture process, but supply very useful information in nuclear structure studies with the aid of the Ritz combination principle and the Kirchhoff's law. In thermal neutron capture, however, the excitation process is limited tor s-wave or p-wave neutron capture. Therefore, if the difference between the ground state spins of the target nucleus and the next heavier isotope is small, levels with very different spins cannot be populated in the decay of the compound nucleus.

Thermal neutron capture may not be a good method of nuclear excitation for the above reason to study complicated band structures, compared with other nuclear reactions. However, because of the fact that the energy precision of gamma-ray detectors is far superior to that of charged particle detectors, much more precise level energies can be deduced, provided correct assignments of the transitions in the level scheme are made.

Thousands of gamma-rays are emitted following neutron capture. A few hundreds of them can be detected using present experimental apparatus within a reasonable time. Since there are so many gamma-rays to be placed at an appropriate position in a level scheme, difficulty
arises in processing these data. Even with the high precision of curvedcrystal spectrometer measurements, the Ritz combination principle may allow many possible combinations and can place a gamma-transition at several places in a level scheme.

One of the purposes of the present work is to developt the procedure and will be described in Chapter 3.

1.2.3. Gamma-ray Spectrum in Neutron Capture

The overall neutron capture gamma-ray spectrum can be calculated theoretically assuming El character for the transitions ${ }^{3)}$. Since the iransition probability from an excited state is given by the radiation width multiplied by the level density of final states, both characteristics have to be estimated between the ground state and neutron binding energy. The El radiation width can be obtained in the form of the photon strength function. This function is theoretically known to be proportional to the cube of the transition energy and is experimentally determined by photo-excitation reactions assuming that the strength is a function only of the photon energy. Several level density formulae can be used to obtain the best fit to the experimental results. In addition to these, it is necessary to normalize the contribution from each initial state such that the depopulation is equal to the population to the state.

Good agreement has been obtained in the comparison with experimental data for the nuclei with neutron number away from the magic numbers, e.g. neutron capture in Gd, Ta and Ag . In order to $\operatorname{explain}$ the Cs and Au spectra, however, it is necessary to assume a second peak in the gamma-ray strength function at an energy of about 5.5 MeV , which may be the Ml giant resonance predicted by Mottelson ${ }^{15)}$.

1.3. Nuclei around $Z=50$ Region

It has been shown experimentally and theoretically that the nuclei the around ${ }_{\wedge} Z=50$ region show interesting characteristics of quasi-particlevibrational, quasi-particle-rotational and deformed states ${ }^{4)}$. These features can be seen mostly in even-even and odd-even nuclei, and may be understood as the coupling of a proton group, the number of which is very close to the magic number 50 , and a neutron group, the number of which is, on the contrary, just between two magic numbers 50 and 82 .

Experimental studies in odd-odd nuclei are being carried out extensively as well as theoretical studies of the splitting of protonneutron multiplets with some admixtures of collective motions ${ }^{16)}$. A theoretical review will be given in Chapter 5.

108 Ag and ${ }^{110} \mathrm{Ag}$ are odd-odd nuclei with 47 protons and 61 or 63 neutrons, respectively. These nuclei have been studied at the University of London Reactor Centre and at the Institut Laue-Langevin using thermal neutron capture reactions in stable 107 Ag and ${ }^{109} \mathrm{Ag}$ in collaboration with some other institutions ${ }^{17 \text {) . Since very high level density is }}$ expected at low excitation energy, very little was known about these nuclei. The present thermal neutron capture study has revealed the existence of some 50 to 60 low spin states up to 1 MeV in each nuc1eus. observed High spin states cannot be very easily in the thermal neutron capture reactions for the reasons described before.

It is the main purpose of the present work to construct the level schemes using the results of thermal neutron capture reactions and to investigate the characteristics of excited states including the spin and parity assignments, referring also to the results of other reactions.

CHAPTER 2.

EXPERIMENTS

Various types of experiments have been carried out in order to investigate the detailed level schemes of ${ }^{108} \mathrm{Ag}$ and ${ }^{110} \mathrm{Ag}$, including (d, p) and ($p, n \gamma$) experiments. Those experiments referred to in the present work are listed in Table 1 . Among these experiments, the with internal conversion electron measurement by 'BILL', the low energy with gamma-ray measurement by 'GAMS' and the high energy gamma-ray measurewent with 'PN4' in the reaction ${ }^{109} \mathrm{Ag}\left(\mathrm{n}, \mathrm{ye}^{-}\right){ }^{110} \mathrm{Ag}$ were carried out by the present author and will be explained thoroughly. The other experiments are described in detail in the relevant references.

2.1. Measurement of Internal Conversion Electrons

In order to determine some multipolarities of the transitions in the reaction ${ }^{109} \mathrm{Ag}\left(\mathrm{n}, \mathrm{e}^{-}\right)^{110} \mathrm{Ag}$ was studied in July 1979 using the high resolution iron-core electron spectrometer BILL installed at the High Flux Reactor in Grenoble ${ }^{30)}$.
2.1.1. Instrument

The instrument consists of two independent flat electromagnets at the end of the vertical beam tube, 14 m long and 10 cm in diameter, which defines the solid angle of 3.4×10^{-6} str. Both magnets act as double focusing spectrometers by the use of the combination of homogeneous and $1 / \mathrm{x}$ fields. Electrons are detected by a five-wire proportional counter of the Charpak chamber type with aluminised mylar window ($500 \mu \mathrm{~g} / \mathrm{cm}^{2}$), several changable detector slits and 0.5 mm thick aluminium walls between the tungsten wires to prevent cross talk. The resolution is defined mainly by the target width and thickness and by the detector slit, due to the high intrinsic resolution

Table 1. List of Experiments
${ }^{107} \mathrm{Ag}(\mathrm{n}, \gamma){ }^{108} \mathrm{Ag}$

E_{n}	Measurement	Method	Place Ex	Experimentalist	Year	Ref.
Thermal	$\gamma, 40 \sim 1200 \mathrm{keV}$	Crystal	Ris ϕ	Breitig	1969	18
Thermal	$\gamma, 20 \sim 80 \mathrm{keV}$	Si(Li)	Munich	Massoumi	1978	17
Thermal	$\gamma, p r i m a r y$	Pair	Julich	Thein	1976	17
Thermal	e,17~990keV	BILL	Grenoble	Massoumi	1978	17
Thermal	$\gamma, p r i m a r y$	Pair	Julich	Bogdanovic	1979	19
Thermal	$\gamma-\gamma$ coinc.	$\mathrm{Ge}(\mathrm{Li})$	Leningrad	Sushkov	1980	20
16 eV	γ,primary	$\mathrm{Ge}(\mathrm{Li})$	Brookhaven	Kane	1978	21
$2 \mathrm{keV}, 24 \mathrm{keV}$	$\gamma, p r i m a r y$	Ge(Li)	Brookhaven	Kane	1978	22
Thermal	$\gamma-\gamma$ coinc.	Na-Ge	Vinca	Bogdanovic	1977	23
Thermal	γ,primary	$\mathrm{Ge}(\mathrm{Li})$	Argonne	Bolotin	1967	24

| ${ }^{109} \mathrm{Ag}(\mathrm{n}, \gamma)$ | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| E_{n} | Measurement | Method | Place | Experimentalist | Year | Ref. |
| Thermal | $\gamma, 40 \sim 1200 \mathrm{keV}$ | Crystal | Ris申 | Breitig | 1969 | 18 |
| Thermal | $\gamma, 30 \sim 1500 \mathrm{keV}$ | GAMS | Grenoble | Mitsunari | 1980 | |
| Thermal | γ, primary | PN4 | Grenoble | Mitsunari | 1980 | |
| Thermal | $\mathrm{e}, 18 \sim 650 \mathrm{keV}$ | BILL | Grenoble | Mitsunari | 1979 | |
| Thermal | $\gamma-\gamma$ coinc. | Na-Ge | Vinca | Bogdanovic | 1978 | 25 |
| Thermal | $\mathrm{e}, 5 \sim 300 \mathrm{keV}$ | electron | Munich | Elze | 1967 | 26 |
| Thermal | γ, primary | Pair | Julich | Bogdanovic | 1979 | 19 |
| Thermal | $\gamma, 50 \sim 1200 \mathrm{keV}$ | A.Comp. | Ascot | Mitsunari | 1980 | |
| Thermal | $\gamma-\gamma$ coinc. | Ge(Li) | Rossendorf | Winkler | 1967 | 27 |
| Thermal | γ, primary | Ge(Li) | Argonne | Bolotin | 1967 | 24 |

OLher Reactions

Keaction	Measurement	Method	Place	Experimentalist Year	Ref.	
(d, p)	protons	Si(Li)	Texas	Brient	1972	28
$(\Omega, n \gamma)$	$\gamma, 50 \sim 680 \mathrm{keV}$	Ge(Li)	Tokyo	Hattori	1975	29

$\left(\Delta_{\mathrm{p}} / \mathrm{p} \simeq 1 \times 10^{-4}\right.$, for $\left.\mathrm{E}_{\mathrm{e}}>100 \mathrm{keV}\right)$. For example, a 3 cm wide target corresponds to $\Delta \mathrm{p} / \mathrm{p} \simeq 3 \times 10^{-4}$ and 2 mm slit gives the same resolution. 2.1.2. Target

A target of $100 \mu \mathrm{~g} / \mathrm{cm}^{2}$ (3.31mg total) was prepared by evaporation of enriched ${ }^{109} \mathrm{Ag}$ (99.7\%) onto an aluminium foil of $0.25 \mathrm{mg} / \mathrm{cm}^{2}$ thick. A very thin target is required in order to reduce the loss of electron energy in the target, especially at the low energy range below 150 keV . Good uniformity is also required to achieve a good resolution. The target is stretched within a graphite ring approximately 12.5 cm in diameter (shown in Fig. 1.) and is fixed by two clamps on the ring. The whole target arrangement is then inserted through the target changing tube into the irradiation position in the reactor, where a thermal neutron flux of $3 \times 10^{14} \mathrm{ncm}^{-2} \mathrm{sec}^{-1}$ is available. The measurement may be started after a good vacuum of order 2×10^{-4} Torr in the beam tube is obtained.

2.1.3. Data Acquisition

The control of the magnetic fields and the data acquisition are carried out by a PDP 11 computer. The strengths of the magnetic fields progressing in logarithmic steps ($\Delta \mathrm{B} \rho / \mathrm{Bp}=\Delta \mathrm{p} / \mathrm{p}=$ const.) are calculated such that an integer number of steps lies between two neighbouring wires of the detector, which are 4 mm apart. It has been found that 1 mm corresponds to the increment of $\Delta \mathrm{p} / \mathrm{p}=1.5 \times 10^{-4}$. The energy range of 17 keV to 640 keV was scanned over twice and electron counts and counting time were recorded on a computer disk at each step automatically. The counting is controlled by counts measured by a neutron monitor on the top of the electron beam tube, and the counting time is kept roughly constant for each step.

In addition, demagnetization of the magnets is an inevitable

Fig. 1. Target Arrangement for BILL Spectrometer
problem because uncontrolled remanences can deteriorate the resolution and change the energy calibration of the spectrometer. This demagnetization can be done by a number of hyster ${ }^{2}$ sis loops with decreasing amplitudes, and is also controlled by the PDP 11 computer.

2.1.4. Data Evaluation

Data evaluation has been done following the flow-chart shown in Fig. 2.

2.1.4.1. ADD

Original five-wire data $x_{i j}$ (i; wire number, j; step number) and counting time t_{j} are averaged at the points where they have the same energies. In the present experiment, the number of logarithmic steps which lies between two neighbouring wires was chosen to be four, therefore the data are added as follows:

$$
\begin{array}{ll}
x_{j}^{(n)}=\sum_{i=1}^{5} x_{i, j+4(i-1)} & \text { (neutron normalization) } \\
x_{j}^{(t)}=\sum_{i=1}^{5} \frac{t_{0}}{t_{j+4(i-1)}} x_{i, j+4(i-1)} \quad \text { (time normalization) }
\end{array}
$$

where t_{o} is a normalization constant.
In the present analysis of the data, the neutron normalized spectra were used, since the reactor condition was not very stable during the experiment.

2.1.4.2. PLOT

In order to determine the background level before the peak fitting as will be described later, the normalized data are plotted as shown in Fig. 3.
2.1.4.3. BIFTT, SPECT

The line shape is fitted by a Gaussian form with an exponential tail at the low energy side, which is due to the loss

Fig. 2. Data Evaluation Flow for BILL Spectrometer

electron energy in the target. This fitting function has been suggested by T. von Egidy and has the form

$$
\begin{aligned}
y= & H \exp \left\{-\left(x-x_{0}\right)^{2} 4 \ln 2 / G^{2}\right\}+B . G . \quad\left(x>x_{0}\right) \\
y= & H \exp \left\{-\left(x-x_{0}\right)^{2} 4 \ln 2 / G^{2}\right\} \\
& +H S \exp \left\{\left(x-x_{0}+G G\right) \ln 2 / A\right\}\left[1-\exp \left\{-\left(x-x_{0}\right)^{2} 4 \ln 2 / G^{2}\right\}\right] \\
& + \text { B.G. } \quad\left(x<x_{0}\right)
\end{aligned}
$$

where x ; step number
x_{o}; central position of the Gaussian
H; peak height
S, A, GG, G; shape parameters
B.G.; linear back ground

General trends of the four energy dependent shape parameters G, GG, S and A were obtained by the programme 'BIFIT' using some strong peaks in the spectrum. Then the automatic fitting routine 'SPECT' can be run by fixing the parameters in the fitting procedure.

2.1.4.4. MODIF

The automatic peak search routine in 'SPECT' may find some spurious peaks on the low energy tail of a strong peak. If these are found, this region has to be refitted without using the automatic peak search routine, or these spurious peaks may be excluded by this alternative programme 'MODIF'. Their intensities are distributed to the surrounding true peaks depending on the peak shapes. Since those intensities of the spurious peaks are small compared with the surrounding true peaks, it is expected that there is no influence on the peak positions. The identification of true peaks was done by inspection of plotted spectrum and the fitting result.

2.1.4.5. ENCALG

Observed Bp-values, which are calculated from ${ }^{\text {fitted }}$ result,
are calibrated by this programme using some strong lines, the energies of which are obtained from gamma-ray data by subtracting the electron binding energy of the corresponding electron shell. The position which gives half maximum at the high energy side was used as the peak position rather than the central position of the Gaussian function in order to compensate for the attenuation of electron energy in the target,through the long beam path and by the detector window. This method does not differ very much from the method using the peak centre, unless the parameter G varies very much over the calibration region.

In this programe, observed $B \rho$-values $x_{i} \pm \Delta x_{i}$ are linearly fitted to the calibration $B p$-values $y_{i} \pm \Delta y_{i}$ calculated from energy. A systematic error of 1×10^{-5} times $B \rho$ is quadratically added to the experimental error.

$$
\Delta x_{i}^{\prime}=\sqrt{\left(\Delta x_{i}\right)^{2}+\left(1 \times 10^{-5} \mathrm{Bp}\right)^{2}}
$$

The weighting factor W_{i} of each calibration line is calculated as follows:

$$
\begin{aligned}
& W=1 /(\Delta z)^{2} \\
& (\Delta z)^{2}=\left\{(\Delta x)^{2}+(\Delta y)^{2}\right\} \cos \left\{\frac{\pi}{4}-\operatorname{Arctan}\left(\frac{\Delta x}{\Delta y}\right)\right\}
\end{aligned}
$$

where indices and primes are omitted. Δz is a projection of the total error to the 45° line in the $x-y$ plane.

This method includes both x and y errors without losing the linearity of minimization function derivatives with respect to the fitting parameters. There may be a problem in the choice of the weighting factor from the statistical point of view, but this is not very serious, since the coefficient of the linearity is expected to be approximately unity.

2.1.4.6. MID

At the final stage of analysis, several results for a particular electron line are combined by taking averages of their energies and
intensities. Each correspondence is found line by line, by comparing energy and intensity, where the intensity comparison is not included in the computer programme.

Intensities have to be calibrated by the efficiency curve of the instrument, which has been given by the following equations.

$$
\begin{array}{ll}
\varepsilon=-0.00075 E_{e}^{2}+0.0675 E_{e}-0.848 & \left(17 \mathrm{keV}<E_{e}<40 \mathrm{keV}\right) \\
\varepsilon=\min \left\{1 ., 0.278\left(E_{e}-16.5\right)^{0.27}\right\} & \left(E_{e}<40 \mathrm{keV}\right)
\end{array}
$$

The usual correction of intensity by momentum width, which is defined by the detector slit, is not necessary because the logarithmic steps of $\mathrm{B} \rho-\mathrm{value}$ have been introduced.

2.1.4.7. TABLE

Finally, in order to determine the transition multipolarities, calculation of experimental and theoretical internal conversion coefficients is carried out using the gamma-ray data from the same reaction. described
This will be montioned in detail in Chapters 3 and 4.

2.2. Measurement of Low Energy Ganma-Transitions

This experiment is to revise the earlier experiment carried out by Koch et al at Ris ϕ, in which the gamma-ray energies have large associated errors of 0.1 keV or more above 500 keV making the Ritz combination principle difficult to apply. Since a much higher level density was expected at the low energy excitation region in ${ }^{110} \mathrm{Ag}$ than in ${ }^{108} \mathrm{Ag}$ due to two extra neutrons, hence a much higher transition density as well, a precise low energy gamma-ray measurement in the reaction ${ }^{109} \mathrm{Ag}(\mathrm{n}, \gamma)^{110} \mathrm{Ag}$ was carried out in May 1980 , using the curved crystal spectrometers 'GAMS 1 ' and 'GAMS $2 / 3^{\prime}$ installed at the High Flux Reactor in Grenoble ${ }^{31 \text {). }}$

Curved crystal spectrometers possess considerably better energy resolution and dynamic range for gamma-rays below 1 MeV than Ge (Li) semi-conductor detectors, despite the fact that a high activity source is necessary because of the usual long gamma-ray path, the $E_{\gamma}{ }^{-2}$ dependence of crystal reflectivity and gama-ray attenuation in the crystal ${ }^{32)}$. They are, therefore, very useful tools in the neutron capture gamma-ray spectroscopy where many gamma-rays are emitted in the reactions.

The instrument 'GAMS' consists of two separate spectrometer systems of DuMond type with three main curved quartz crystals, one of focal length 5.76m (110 plane, 4 mm thick, window 4 cm in diameter, formerly installed at the Ris申 spectrometer) is used in the 'GAMS 1' and the others of focal length 24 m (110 plane, 14 mm thick, $6 \mathrm{~cm} \times 6 \mathrm{~cm}$ window) in the 'GAMS 2/3'. Additional diffracting crystal (control crystal) of focal length 5.7 m (110 plane, 2 mm thick, window 4 cm in diameter) is used in the GAMS 1 in order to measure the movement of the source by detecting an intense gama-ray all the time. However, this assembly is not necessary in the GAMS $2 / 3$ system, since the two spectrometers on top of each other operate symmetrically with respect to the beam axis and measure the same region of spectrum simultaneously. If a gamma-ray is found at the angle θ_{2} on GAMS 2 and at θ_{3} on GAMS 3, the Bragg angle will be given by $\left(\theta_{2}+\theta_{3}\right) / 2$, and will be independent of the source movement.

In both system, the reflection angle is measured by means of a He-Ne laser interferometer, whose relationship to the Bragg angle has been well established. This is known as ${ }_{\Lambda}^{\text {an }}$ interferometric functions and has the following forms;

$$
\begin{aligned}
& \theta=-B B+\operatorname{Arcsin}\left\{\sin B B+K\left(F^{(1)}-F_{o}^{(1)}\right)\right\} \quad \text { (for GAMS 1) } \\
& \sin \theta=A_{1}\left(F^{(23)}-F_{o}^{(23)}\right)+A_{2}\left(F^{(23)}-F_{o}^{(23)}\right)+A_{3}\left(F^{(23)}-F_{o}^{(23)}\right) \\
& \quad(\text { for GAMS 2/3) }
\end{aligned}
$$

where θ is the Bragg angle, $F^{(1)}$ and $F^{(23)}=F^{(2)}+F^{(3)}$ are interference fringe numbers of GAMS 1 and GAMS 2/3, respectively, and $B B, K, F_{0}^{(1)}$, A_{1}, A_{2}, A_{3} and $F_{o}^{(23)}$ are parameters. One interference fringe corresponds to a rotation of approximately $0.45^{\prime \prime}$ of arc on GAMS 1 and $0.165^{\prime \prime}$ of arc on GAMS 2/3, which enables high precision measurement of gamma-ray energies.

The reflected gamma-rays are detected by ${ }_{\boldsymbol{A}} 2^{\prime \prime \prime} \times 2^{\prime \prime} \mathrm{NaI}(\mathrm{T} 1)$ scintillation detector (GAMS 1) and two $4^{\prime \prime} \times 4^{\prime \prime} \mathrm{NaI}(\mathrm{T1})$ detectors (GAMS 2/3). By the use of $\mathrm{NaI}(\mathrm{T} 1)$ detectors, all the orders of Bragg reflections, photo-peak energies of which are multiples of the first order energy, can be distinguished from each other by pulse height measurement. The counts of lower five orders and the integral counts are recorded by applying appropriate energy discriminations.

2.2.2. Target

A target of enriched $109 \mathrm{Ag}(99.7 \%, 50 \mathrm{mg} 5 \mathrm{~mm} \times 10 \mathrm{~mm} \times 0.1 \mathrm{~mm})$ covered with aluminium foil was sandwiched between two parts of graphite A source holder shown in Fig. 4. DuMond type spectrometer in order to achieve good focusing and hence good resolution. A 0.1 mm thickness corresponds to $1.2^{\prime \prime}$ to $2.5^{\prime \prime}$ of arc depending on the flatness of the source.

The whole source arrangement is suspended in the source holder tube and is inserted by the source changing assembly into the irradiation position in the reactor, where a thermal neutron flux of $5.5 \times 10^{14} \mathrm{ncm}^{-2} \mathrm{sec}^{-1}$ is available.

Fig. 4. Target Arrangement for GAMS Curved-Crystal Spectrometer (ref.31)

2.2.3. Adjustment

The target has to be arranged in the beam tube direction by rotating the source holder, which causes a local minimum of gamma-ray intensity profile due to the large self-absorption of gamma-rays in the target, but achieves the best resolution. Also the collimators have to be arranged in the beam direction. Further optimization of resolution can be done by tilting the crystal itself in the case that the source is not suspended perfectly vertically.

These adjustments have to be done after several hours of irradiation, since it takes 12 to 20 hours until the source reaches an equilibrium with its surroundings.

2.2.4. Control Crystal

An intense gamma-ray has to be selected to be observed by the control system of the GAMS 1. The control crystal is then set to follow the shift of the gamma-ray diffraction direction which is caused by the slight movement of the source with respect to the interferometer system. This angular shift of the control crystal is recorded so that the relevant correction of the reflection angle can be made after the data acquisition.

2.2.5. Data Acquisition

As in the case of

fimitarly the 'BILL' system, all the measurements are controlled by PDP-11 computers in both GAMS 1 and GAMS $2 / 3$ systems. Main items controlled by the computers are

1) Fringe number measurement and crystal and $\mathrm{NaI}(\mathrm{Tl})$ detector position control.
2) Control crystal position measurement and calculation of a statistical factor which controls the crystal movement. so that the Bragg condition can be sustained. (GAMS 1)
3) Ganma-ray counting and recording.
4) Automatic calibration including discriminator window control and amplifier gain control.

An integer number of interferometer fringes is chosen to be an increment of an angular step width. In the present experiment, two fringes were increased at each step from smaller reflection angle to larger i.e. from higher gamma-ray energy to lower. The counting time for each step was 70 sec and 80 sec , on GAMS 1 and GAMS $2 / 3$, respectively.

Consequently, during the 12-day irradiation, the energy range of $34 \sim 192 \mathrm{keV}$ (by the first order reflection) was scanned by the GAMS 1 and the range of $150 \sim 795 \mathrm{keV}$ (also by the first order) by the GAMS $2 / 3$. 2.2.6. Data Evaluation

Data evaluation has been done following the flow-chart shown in Fig. 5.

2.2.6.1. PLOT

The integral gamma-spectrum and the five orders of reflection are plotted on the same graph as function of interferometer fringe number. Fig. 6 shows a part of the spectrum. Simultaneously an automatic peak search is carried out based on the smoothed first derivative method ${ }^{33)}$. Approximate peak positions found are then fed into the automatic peak fit routine.
2.2.6.2. FITSP, FITPIC

All the peaks are fitted by a simple Gaussian form with linear back ground. Even though the line shape is not a real Gaussian form, the deviation seems to be very small except in the case of intense peaks.

Since the transition density in the reaction ${ }^{109} \mathrm{Ag}(\mathrm{n}, \gamma){ }^{110} \mathrm{Ag}$ is

Fig. 5. Data Evaluation Flow for GAMS Spectrometer

Fig. 6. Example of GAMS Spectrum (GAMS1)
in the
very high (roughly two or three peaks per lkev 400keV region), the automatic routine FITSP was not very useful. Therefore, for most regions of the spectra, the manual routine FITPIC was used. This programme was originally designed for the initial fitting in order to determine the value of peak width in the spectrum. Many amendments were made to facilitate the fitting work as follows:

1) Graphic output shown in Fig. 7.
2) Automatic peak search routine (same ${ }_{\wedge}$ in PLOT).
3) Simultaneous two-width fitting for pile-up peaks (as will be explained mentiened).
4) Peak addition and deletion.
5) Manual control of parameters.
6) 15-peak fitting (depending on dimension statements in the programme.

The fitted result contains peak position in fringe number and corrected fringe number (GAMS 1), error, peak intensity, its error and reflection order.

2.2.6.3. GAMOD

As can be seen in the spectrum, many peaks can be fitted in a In the case of certain region of spectrum. Antense peaks or for slightly assymmetric peaks, small peaks can be fitted at their tails because of the non-realistic peak shape function. Therefore, it is necessary to introduce a criteri\& which identifies a singlet, which has been fitted with two or more peaks.

In this programme, the criteri ${ }^{\circ}$ was set by visual means as will discussed be intioned in Appendix 2. Some weak lines which lie on the tails of intense peaks were rejected using this criterian, and the peak position and intensity of the singlet were corrected.

TPPE 1 TO SLEAF THE SCPEEN ? 0

2.2.6.4. COMPILE

It is easily understood that an intense peak of an order of reflection can interfere with the countings of the other orders, with the current GAMS system, by creating additional spurious peaks.

If an intense peak is scanned in the second order of reflection, the Compton'scattering of the gama-ray in the $\mathrm{NaI}(\mathrm{Tl})$ detector will create lower energy back-ground, which falls in the first order discriminator window. This gives a rise in the first order count at the same fringe number where the true intense peak is observed in the second order, and makes a false peak with almost the same peak shape. This is known as 'Compton peak'.

In addition to this, there is a finite probability of detecting accidental coincidence counts of pair of the gamma-rays or the gammaray and a Compton back-ground pulse. They fall in the fourth order and the third order discriminator windows, respectively, making spurious peaks with slightly narrower peak width. This is known as ${ }^{\mathbf{a}}{ }^{\mathbf{\prime}}$ Pile-up peak'.

These effects are caused when an intense gamma-ray is observed not only at the second order of reflection but also at any order. Therefore, if two or more peaks are found at the same fringe number ies within a reasonable width, their intensity must be compared each other and it has to be decided whether or not they are spurious.

$2 \cdot 2 \cdot 6.5$ GAMS 23

The fitted data of GAMS 2 and GAMS 3 are combined to make $\theta_{2}+\theta_{3}$, practically the corresponding sum of peak position fringe numbers, and peak intensities are summed. The peak to peak correspondence has to be found by comparing their intensities and peak positions.
10% systematic intensity error was added quadratically to each
intensity error before the summing.
2.2.6.6. INT1, INT23

In order to compare the exact values of the parameters of the interferometric functions which have been described above, a set of the strong gamma-lines which are found at several orders of reflection has to be chosen for each of INT1 and INT23.

For the GAMS 1, 22 transitions measured in a total of 76 reflections were used in the calculation INT1. The fringe number correction factor (of the control crystal position) was obtained so that the chisquares can be minimized. For the GAMS 2/3, 14 transitions measured in 51 reflections were used in the calculation INT23.

In both of the calculation INTl and INT23, a systematic fringe number error of 0.2 was quadratically added to each calibration line. 2.2.6.7. ENEFTS, FINAL

Finally, energies and intensities of all the peaks are calculated and averaged if a gamma-ray has been found in several orders of reflections. The most intense decay line of 657.7622 keV was used as a reference energy ${ }^{34)}$. Absolute energies can be calculated from the lattice constant of the crystal and the Miller indices. However, this may give some additional systematic errors due to the errors of the lattice constant, Plank's constant, speed of light etc., and absolute energies are not necessary to construct a level scheme according to the Ritz combination principle.

with

Using the interferometric functions obtained the programmes INT1 and INT23, peak energies were calculated and they were sorted out by the two-way balanced merge and sort method in descending order of the energy. Gamma-lines with approximately $\boldsymbol{y}_{\boldsymbol{\wedge}}$ same energies and intensities within ${ }^{a}{ }^{\text {certain error are considered as an identical transition. This }}$
grouping has to be examined very carefully line by line, and some peaks may be deleted if necessary. The final result is obtained by taking averages of energies and intensities after a systematic error addition and the self-absorption correction.

Since the errors of the interferometric function parameters were not included in the calculation input, the same systematic error of fringe number 0.2 as used in the INT calculation was again added quadratically to each peak position error.

The intensity efficiency curves for all orders of reflection have been well established semi-empirically using the energy dependence of the crystal reflectivity and the efficiency of the $\mathrm{NaI}(\mathrm{Tl})$ detector. However, the self-absorption correction gives a large uncertainty in gamma-ray intensities, because the average path length of gamma-rays in the target cannot be defined due to the imperfect flatness and the continuous movement of the target during the measurement. Therefore, a reduced target density of $9.0 \mathrm{~g} / \mathrm{cm}^{3}$ was used instead of the correct density $10.5 \mathrm{~g} / \mathrm{cm}^{3}$ to calculate attenuation coefficients with the narrow beam total photon cross sections given by Storm and Israel ${ }^{35)}$, since this value showed the best agreement above 200 keV with the intensities which were calculated by alternative efficiency curves based on a Ge(Li) detector anti-Compton measurement carried out at the University of London Reactor Centre. Since a thin target was used in this measurement, the self-absorption correction is included in the efficiency curves. However, the detection efficiency of the anti-Compton system below 100 keV was not well known, therefore, the self-absorption with the reduced target density was preferred.

Further, 15% systematic intensity error was quadratically added to GAMS 1 peaks and 10% to GAMS $2 / 3$ peaks.
2.2.6.8. LIST12, CAL, CAL1, GAMS123

Two sets of independent peak data have been obtained by GAMS 1 and GAMS 2/3. Since there is certain deviation in their energy calibrations and efficiency data, identical gamma-rays in the overlapping energy range are listed by LIST12, and using these corresponding gammarays the energies and intensities of GAMS 1 are normalized to those of GAMS $2 / 3$.

Finally, in GAMS123 these gamma-ray energies and intensities are averaged.

2.2.7. Absolute Intensity Calibration

In order to determine absolute gamma-ray intensities, the decay line 657.76 keV was used as a reference. The number of the decay gammaray emitted per 100 neutron captures in ${ }^{110} \mathrm{Ag}$ was calculated to be 4.27 ± 0.26, assuming that the neutron cross section leading to the ground state σ_{g} is 89 barns, cross section leading to the isomeric state $\sigma_{m} 4.5$ barns ${ }^{36)}$, ground state half-life $\tau_{\frac{1}{2} g} 24.6 \mathrm{sec}$, isomeric state half-life $\tau_{\frac{1}{2} m} 249.9$ days, emission probability of the decay line from the ground state $b_{g} 4.49 \%$, emission probability from the isomeric state $b_{m} 94.74 \% 3^{37)}$ and the thermal neutron $f 1 u x 5.5 \times 10^{14} \mathrm{ncm}^{-2} \mathrm{sec}^{-1}$. In fact, the decay from the isomeric state does not contribute very much to the intensity as shown in Fig. 8. The contribution is approximately 3% of the ground state contribution after $\boldsymbol{a}^{\boldsymbol{a}} 10$-day irradiation. Further, the increase of the isomeric state contribution with time compensates for the decrease of the ground state contribution after the saturation. Therefore, the total intensity of the decay gamma-ray can be considered as the saturation intensity of the ground state contribution and the decay from the isomeric state can be neglected.

Fig. 8. Yield of 657.76 keV Decay Line in ${ }^{110} \mathrm{Cd}$

2.2.8. Combination of Grenoble Data and Ris ϕ Data

Finally, the Ris ϕ data were normalized to the Grenoble data and both were combined in the low energy region up to 467 keV , above which energy both and GAMS 1
the Ris ϕ_{λ} data have been ignored. This averag\& ${ }^{\text {ing }}$ procedure was done using the same routines used in the average ing of GAMS 1 and GAMS 2/3 data. (LIST12, CAL, CAL1, GAMS123)

2.3. Measurement of High Energy Gamma-Transitions

High energy primary gamma-rays are of particular interest and importance in the neutron capture process. Level energies of lowlying excited states will be given by the differences between the primary gamma transition energies and the neutron binding energy plus neutron incident energy, which is negligible in the case of thermal neutron capture. This is the only direct information of level energies in neutron capture gamma-ray spectroscopy. In addition to this, the intensities of primary gamma-rays may identify the characteristics of low-lying states such as spins and parities, especially in the case f average resonance capture. Therefore, the earlier theoretical siudies were devoted to the primary gamma-ray emission process as mentioned before.

Since a common target is used in the pair spectrometer 'PN4' with the 'GAMS' system described before, at the High Flux Reactor in Grenoble, simultaneous measurement of the high energy gamma-rays in the reaction ${ }^{109} \mathrm{Ag}(\mathrm{n}, \gamma){ }^{110} \mathrm{Ag}$ has been carried out. An attempt was made to observe double neutron capture in ${ }^{109} \mathrm{Ag}$ via ${ }^{110 \mathrm{~m}_{\mathrm{Ag}}}$ leading to ${ }^{111} \mathrm{Ag}$ by examining the gamma-ray energy region between the neutron binding energies of ${ }^{110} \mathrm{Ag}$ and ${ }^{111} \mathrm{Ag}$.

2.3.1. Instrument

The detector system is situated at the back of the GAMSI spectrometer, and the gamma-rays penetrating the GAMS 1 crystals are observed. Therefore, the gamma-ray beam is not available while the GAMS 1 is scanning low Bragg angle reflections, in which the NaI(T1) detector lead shielding prevents the beam from going further.

The instrument consists of a planar $\mathrm{Ge}(\mathrm{Li})$ detector with its active volume of $7 \mathrm{~cm}^{3}$ placed between two $6^{\prime \prime} \phi \times 4^{\prime \prime} \mathrm{NaI}(\mathrm{Tl})$ scintillation detectors. The associated electronics are made of some NIM units in order to obtain good fast coincidences between double escape peaks and two annihilation gamma-rays emitted in oposite directions. Complete suppression of photo and single escape events can be achieved and . optimum energy resolution has been reported as 2.3 keV at $\mathrm{E}_{\gamma}=2.3 \mathrm{MeV}$ and 5.5 keV at $\mathrm{E}_{\mathrm{Y}}=7.6 \mathrm{MeV}{ }^{38)}$. 2.3.2. Data Acquisition

The amplifier gain was set to cover the energy range up to 9.5 MeV energy
on gamma-ray ${ }_{\text {a }}$ with an 8 K multi-channel analyser. The data were dumped to a magnetic tape every three houls in case there is any ADC channel shifts.

In order to reduce too strong activity a lead attenuator of 2.45 cm thick was placed at the back of the beam collimator behind the GAMS 1 spectrometer.

2.3.3. Data Evaluation

Data evaluation has been done following the flow-chart shown in Fig. 9.
2.3.3.1. FITPIC, LINTP

Since there was no significant channel shift, all the spectra measured for 130 hours at the end of $\boldsymbol{a}^{\mathbf{a}}$-day irradiation were summed.

Fig. 9. Data Evaluation Flow for PN4 pair spectrometer

The peak shape was fitted by a Gaussian form with linear back-ground using the computer programme FITPIC described earlier.

It is known that there is ${ }_{\wedge}^{\text {a }}$ certain non-linearity in the $A D C$ of the spectrometer. This has been investigated in routine measurements by Hofmyer and Tokunaga ${ }^{39 \text {) as shown in Fig. 10. This correction was made }}$ after the peak fitting.

2.3.3.2. CALIB

Energy calibration was done using some back-ground peaks originating from neutron capture in aluminium and chlorine, whose energies were inen from the measurements by Stelts and Chrien ${ }^{40 \text {). These calibration }}$ data used are listed in Table 2. Some strong peaks have not been used, because contaminations from other isotopes or ${ }^{110} \mathrm{Ag}$ were suspected. e.g. 61llkeV Cl peak, 4946 keV C peak etc.

Further linearity correction was made by dividing the calibration data into several regions resulting ${ }_{\wedge}^{\text {in }}{ }^{\text {a }}$ zig-zag calibration line.

This programme $C A L I B$ is a simple linear fitting routine including errors of two dimensions equally. The minimization function S is expressed by

$$
S=\sum_{i} \frac{\left\{y_{i}-\left(a x_{i}+b\right)\right\}^{2}}{\left(a \Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}}
$$

where $x_{i} \pm \Delta x_{i}, y_{i} \pm \Delta y_{i}$ are experimental data and calibration data, respectively, and a and b are parameters to be optimized.

2.3.3.3. EFPN

The intensity calibration has been done using the efficiency curveof the spectrometer which has been established as shown in Fig. 11 39). The efficiency fitting function has the form
$\ln \varepsilon=\sum_{i=0}^{2} C_{i}\left(\log _{10} E_{\gamma}(k e V)\right)^{i}$

Fig. 10. ADC Non-linearity of PN4 spectrometer

Fig. 11. Relative Efficiency of PN4 spectrometer

Table 2. Energy Calibration Lines for PN4 Pair Spectrometer

Comments (a) Peak positions (with ADC linearity correction)
(b) Energy calibration data (ref. 40)
(c) Linear energy calibration (CALIB)
where C_{i} are constants and E_{γ} is the ${ }^{f u l l}$ gamma-ray energy in keV. C_{i} have been obtained as $C_{o}=$ arbitrary constant, $C_{1}=66.050685$ and $C_{2}=-8.6853496$.
2.3.3.4. ABSCOR

Since a lead absorber was used in the measurement, taken into account.
must be The attenuation coefficients have been taken from ref. 41 , and values between the listed energies have been calculated by $\log -\log$ interpolation.

The intensity conversion factor to calculate absolute intensities has been obtained using some strong lines at the overlapping region with the GAMS measurement. Since the detection efficiencies of the GAMS and PN4 spectrometers are very low at this gamma-ray energy region l.3MeV ~ l. 8 MeV , this normalization may include a large systematic error.

In thermal neutron capture reactions, a considerable number of gamma-transitions and internal conversion electrons can be observed in the energy range up to the neutron binding energy. This shows that the capture state (if it exists) decays down to the ground state in several steps of electromagnetic transitions. This cascade of electromagnetic transitions enables us to construct low-lying nuclear excited levels according to the Ritz combination principle and the Kirchhoff law within a reasonable uncertainty as described earlier. Additional experimental the data are utilized in order to assign spin and parity of each level.

Since many data are handled in the procedure, the analysis may be carried out with the aid of computers. A §eries of computer programmes has has been created in order to facilitate systematic compilation of the neutron capture data into a detailed level scheme ${ }^{40 \text {). The Ritz combi- }}$ nation principle has been widely applied to the programmes for different purposes. The programmes and their I/O media are listed in Table 3. The actual analysis is carried out, following the flow chart shown in Fig. 12.

Some of the programmes will be discussed here, and the application of them will be shown in the next chapter.

3.1. Programme LEvELS

Each gamma-ray energy is compared with all the differences between two of the known level energies. Practically, the deviation $D=E_{\gamma}-\left(E_{i}-E_{f}\right)$ is compared with its quadratically summed error σ.
$\sigma=\sqrt{\left(\Delta E_{\gamma}\right)^{2}+\left(\Delta E_{i}\right)^{2}+\left(\Delta E_{f}\right)^{2}}$

PROGRAMME	InPut	OUTPUT
(Levels (LVLS)	Transition assignment Level energies	Gamma-ray energy fitting result printed
LEVELS \emptyset	Gamma-ray data Preliminary level energies	Preliminary transition assignment file created
LEVELSI LEVELS2 LEVELS3	Transition assignment	Level energy calculation
Levels 4	Transition assignment Level energies	Garma-ray energy fitting varing a new level energy
Levels 5	```Transition assignment Level energies Coincidence data Expected coinc. data```	Comparison between level scheme and experiment, Possible new levels printed
$\begin{aligned} & \text { LEVELS6 } \\ & \text { LEVELS } 7 \\ & \text { LEVELS9 } \end{aligned}$	Transition assignment Level energies	Gamma-ray energy fitting with new levels based on the Ritz combination
LEVELS8	Transition assignment Level energies Primary assignment	Level scheme drawn on KINGMATIC/MICROFILM
$\begin{aligned} & \text { TABLE } \\ & \text { HAGER } \end{aligned}$	Electron data Gamma-ray data Hager-Seltzer data	Preliminary electron assignment file created
MPFILE	Electron assignment Transition assignment Hager-Seltzer data	Multipolarity assignment file created
PRIM	Primary gamma-ray data	Calculation of final level energies
BINDING	Primary ganma-ray data Level energies	Binding energy calculation Primary assignment file created
INFORM	All assignment files Level energies	Calculation of branching ratios and expected coincidence strengths

Table 3. I/O Media of Computer Programmes

Fig. 12. Analysis Flow in Level Scheme Construction
where
Ey: gamma-ray energy
$\mathrm{E}_{\mathrm{i}}:$ initial level energy
Ef: final leve1 energy
$\Delta \mathrm{E}$: errors
Results will be listed if the fitting is accepted within a certain confidence limit, i.e. $|D|<\sigma \cdot S$, where the factor S is chosen appropriately.

All the possible fits are sorted out in different ways and the following lists are made with the result of fitting calculation.

1) for each gamma-ray
2) depopulating gamma-rays from each level
3) populating gamma-rays to each level

Since a particular gamma-ray energy can be fitted at more than one place occasionally, the output lists are designed so that this multiple assignment can be easily recognized. Obviously in most cases, the gamma-rays which have already been assigned are fitted at the corresponding positions. However, a few changes in a level scheme may cause some shifts of level energies, therefore, this programme is essential to be run whenever the level energies are modified or a new level is investigated.

Needless to say, the fitting result suggests only the possibility of gamma-ray assignment between the corresponding levels, but incorrect assignments may be excluded. A great care must be taken for a final decision, referring to other information such as gamna-ray intensities, gamma-gamma coincidence results, transition multipolarities, spins and parities of levels and so on.

This programme does not do any level energy corrections, which must be done by the programmes 'LEVELS 1 ', 'LEVELS2' or 'LEVELS3'. A shorter version of the programme 'LVLS', which has achieved shorter CPU time by the use of binary searching method, is available in a time-sharing mode.

3.2. Programme LEVELS 3

The method adopted in this programme to calculate level energies with assigned transitions and their energies is a simple average technique by introducing the following likelihood function F.

$$
\begin{aligned}
& F=\exp (-S) \\
& S\left(E_{1}, E_{2}, \ldots, E_{N}\right)=\sum_{\gamma} \frac{\left(E_{i}-E_{f}-E_{\gamma}\right)^{2}}{2\left(\Delta E_{\gamma}\right)^{2}}
\end{aligned}
$$

where $E_{1}, E_{2}, \ldots, E_{N}$ are level energies to be calculated. (E_{1} to be the ground state level)

$$
\begin{aligned}
\mathrm{E}_{\gamma}: & \text { gamma-transition energy } \\
\mathrm{E}_{\mathrm{i}}: & \text { initial level energy } \\
\mathrm{E}_{\mathrm{f}}: & \text { final level energy } \\
& \mathrm{E}_{\gamma}: \text { error of gamma-transition energy } \\
\mathrm{N}: & \text { number of levels }
\end{aligned}
$$

The summation is taken over all assigned transitions.
From the fact that the level energy of ground state E_{1} can be chosen to have any value, usually zero, the function F must have ($N-1$) independent variables to be optimized. Therefore, the problem can be considered as the maximization of the likelihood function F in (N - 1) degrees of freedom. Since an excitation energy of a particular level is the energy difference between the level and the ground state, a set of ($N-1$) variables X_{n} can be introduced as

$$
x_{n}=E_{n+1}-E_{1} \cdot \quad(n=1,2, \ldots, N-1)
$$

Then, F may be written as follows :

$$
\begin{aligned}
& F\left(E_{1}, E_{2}, \ldots, E_{N}\right)=F_{1}\left(X_{1} \ldots, X_{N-1}\right)=\exp \left(-\mathrm{S}_{1}\right) \\
& S\left(E_{1}, E_{2}, \ldots, E_{N}\right)=S_{1}\left(X_{1}, X_{2}, \ldots, X_{N-1}\right) \\
& =\sum_{\gamma}^{\text {ground state }} \begin{array}{l}
\text { transitions }
\end{array} \frac{\left(X_{i-1}-E_{\gamma}\right)^{2}}{2\left(\Delta E_{\gamma}\right)^{2}}+\sum_{\gamma \begin{array}{c}
\text { non-ground state } \\
\text { transitions }
\end{array}} \frac{\left(X_{i-1}-X_{f-1}-E_{\gamma}\right)^{2}}{2\left(\Delta E_{\gamma}\right)^{2}} \\
& (i, f \neq 1)
\end{aligned}
$$

For simplicity, the function S may be written by replacing $N-1$ by N, $i=1$, by $i, f-1$ by f, S_{1} by S and F_{1} by F without any confusions. Then,

$$
S\left(X_{1}, X_{2}, \ldots, X_{N}\right)=\sum_{\gamma} g s t \frac{\left(X_{i}-E_{\gamma}\right)^{2}}{2\left(\Delta E_{\gamma}\right)^{2}}+\sum_{\gamma} n g s t \frac{\left(X_{i}-X_{f}-E_{\gamma}\right)^{2}}{2\left(\Delta E_{\gamma}\right)^{2}}
$$

The expectation values \bar{X}_{n} are given by
and also their standard deviations G_{1} are given by

$$
\sigma_{n}=\sqrt{\bar{x}_{n}^{2}-\bar{x}_{n}^{2}}
$$

where

$$
\overline{x_{n}^{2}}=\frac{\int_{v} x_{n}^{2} F\left(x_{1}, x_{2}, \ldots, X_{N}\right) d x_{1} d x_{2} \ldots d X_{N}}{\int_{v} F\left(x_{1}, x_{2}, \ldots, x_{N}\right) d x_{1} d x_{2} \cdots d x_{N}}
$$

The integrations span over all the space V of the N variables $X_{1} \ldots \ldots X_{N}$. described The method to calculate these integrals will be in Appendix 1.

Level energies have to be calculated by this programme if some corrections are made in a level scheme. Since this programe is an optimization of all the transition assignments, any alteration in a level scheme may lead to certain shifts of level energies.

3.3. Programme LEVELS4.

When an unknown level is expected in a small range of excitation energy, this programme can be used. Having set up the range with lower and upper limits, a new level energy is varied step by step between the two limits. For each tentative level energy, gamma-ray energy fitting is made under the condition.

$$
E_{\gamma}-\left|E_{T L}-E_{\mathrm{N}}\right| \leq \sigma \cdot S
$$

where

S: confidence limit
E_{TL} : tentative level energy
$\sigma=\sqrt{\left(\Delta \mathrm{E}_{\gamma}\right)^{2}+\left(\Delta \mathrm{E}_{\mathrm{n}}\right)^{2}}$
$E_{\gamma}:$ gamma-ray energy
$E_{n}:$ known level energy
$\Delta E:$ errors
ΔE : errors

In addition to the fitting procedure at each step, two values, which should indicate gradual maximum at the most probable tentative level energy, are calculated for populating and depopulating groups of the fitted transitions. These values I are calculated by the following equation;

where N is the number of transitions fitted. The factor ($N-1$) is replaced by 1 if $\mathrm{N}=1$. An additional term 10^{-4} prevents accidental maxima. It is empirically known that the value I shows its maximum approximately 50 to 100 at actual levels.

Other indications can also be considered such as

1) $I=\sum_{\gamma} \frac{1}{\sigma_{\gamma}} \exp \left\{-\frac{\left(E_{\gamma}-\left|E_{T L}-E_{n}\right|\right)^{2}}{2 \sigma_{\gamma}{ }^{2}}\right\}$
2) $\quad I=1-\left\{\underset{\gamma}{\pi}\left\{\left(2 S \sigma_{\gamma} N_{i}\right)^{K_{i}}+W_{n}\left(1-\left(2 S \sigma_{\gamma} N_{i}\right)^{\left.\left.\left.K_{i}\right)\right\}\right\}^{N / \mu}=1-W_{T L}, ~}\right.\right.\right.$
$\mu:$ total number of levels in the level scheme less 1 ,
N_{i} : transition density at the gamma-ray energy,
K_{i} : inverse of the number of places where the i-th gamma-ray has been assigned,
W_{n} : probability of the n-th level to be accidental.
etc.
Tiicse alternatives have not been introduced to the programme yet.

3.4. Programme LEVELS5

This programme gives possible new level energies tentatively based on coincidence data using the Ritz combination principle. Sets of coincidence data are necessary to run the programme and their
strengths are compared with expected strengths which can be calculated by the programme INFORM as will be mentioned later.

The programme is made of the following procedures:

1) Find out possible gamma-rays in coincidence within the window widths given. Several gamma-ray combinations may be found in the same coincidence data.
2) Carry out the following examination for each combination.
1. If $\mathrm{E}_{\gamma 1}$ and $\mathrm{E}_{\gamma 2}$ are both assigned transitions,

the indications 'COINCIDENT', 'OVERLAP' and 'INDIRECT' will be given in the cases (a), (b) and (c), respectively. In the case (c), the intermediate energy difference is given with its error. In the case (b), obviously no coincidence can be expected. Care must be taken, and the other gamma-ray combinations of the same coincidence data should be examined carefully.
2. If one of the two gamma-rays is assigned, two tentative levels can be considered as shown in the figure provided that the lower one $E_{\text {TL2 }}$ is not less than zero. If the tentative levels fit one of the known levels, 'GAMMA-FIT' will be indicated.
 If not, 'TENTATIVE' and expected level energies and their errors will be given.
3. If $E_{\gamma 1}$ and $E_{\gamma 2}$ are both unassigned, the sum of $E_{\gamma 1}$ and $E_{\gamma 2}$ is compared with every level energy difference. If $E_{\gamma 1}+E_{\gamma 2}=E_{i}-E_{f}$
within a certain confidence limit, two tentative levels can be considered as shown in the figure. If the tentative level fits one of the known levels, 'SUCCESSIVE' will be indicated. If not, 'TENTATIVE' and the expected
 level energy and error will be given. The level energy is calculated by weighted average of $E_{i}-E_{\gamma 1}$ and $E_{f}+E_{\gamma 2}$ for $E_{T L 1}$, or $E_{i}-E_{\gamma 2}$ and $E_{f}+E_{\gamma 1}$ for $E_{T L 2}$.
3) Gamma-ray energy fitting will be carried out for each tentative level obtained in the former part of the programme. The procedure the is same as in the programme LEVELS. Since coincidence data are very important information for the construction of a level scheme, the output of this programme has more reliability than the others based purely on the Ritz combination principle. Therefore, this programe may not be used unless very precise $\gamma-\gamma$ coincidence .lata are available with clearly stated coincidence windows i.e. channel widths or detector resolutions.

3.5. Programmes LEVELS 7 and LEVELS 9

The programme LEVELS7 searches possible successive transitions between two levels given and calculates tentative level energies. Any number of successive transitions can be chosen, but CPU time increases astronomically as the number increases. Two or three are reasonable to be used with 1000 transition data.

The programme LEVELS9 searches for ${ }_{\boldsymbol{\wedge}}^{\text {pairs of gamma-rays such that the }}$ energy difference of them can be fitted to the difference of two given levels, and calculates tentative level energies.

These programes are useful to search for a missing level in a
band structure of nuclear excited states. However, many possibilities can usually be found, so the programmes should not be used until some reliable levels are confirmed.

3.6. Programme LEVELS8

This programme draws a level scheme on 35 mm microfilm or on the Kingmatic flat bed plotter at the Imperial College Computer Centre in London. A magnetic tape output is produced by the programme and then it will control the microfilm plotter or the Kingmatic drawing machine off-Iine. Since the subroutines included in the programme are CALCOMP compatible, it may not be difficult to make the programme available at any other computer centre.

Several remarks have to be mentioned.

1) Arrow widths

The maximum and minimum widths $W_{\max }$ and $W_{\min }$ are chosen appropriately for the strongest and weakest transitions in the data $I_{\text {max }}$ and $I_{\text {min }}$, respectively. For a given intensity I, the arrow width W is calculated logarithmically by the following equation.

$$
W=\frac{W_{\max }-W_{\min }}{\log \frac{I_{\max }}{I_{\min }}} \log \frac{I}{I_{\min }}+W_{\min }
$$

2) Level heights

If the level scheme has multiplets of levels in a small range of excitation energy, it is impossible to draw them at the positions whose heights from the ground state level should be proportional to their level energies. And there must be enough space to draw level energies and spin and parity assignments between underlines, which are connected to the corresponding levels. Therefore, minimum limit distances must be chosen for minimum gaps between the level energy lines and the level energy underlines according to the size of drawing.

The values y_{i} to which the level heights are proportional are determined in a subroutine by minimizing $S=\int_{i}\left(x_{i}-y_{i}\right)^{2}$ under the constraints $y_{1}=0$ and $y_{i+1}-y_{i} \geq a$, where x_{i} are level energies and a is one of the minimum lengths converted to energy scale.

Since level scheme diagrams give visual and direct compilation of the transition data, they can be very useful when interpreting characteristics of the nuclear structure, such as collective bands in heavier nuclei, $I(I+1)$ dependence etc.

3.7. Progranmes TABLE and HAGER

In order to determine multipolarities of transitions, the programme TABLE has been made by T. von Egidy to search for ${ }^{\text {electron }}$ lines corresponding to known gamma-transitions measured separately and to calculate experimental internal conversion coefficients as well as theoretical values of Hager and Seltzer ${ }^{43 \text {). Multipolarities can be }}$ determined by the comparison between the experimental and theoretical internal conversion coefficients or L-electron intensity ratios. Since these results are listed in order of transition energy, ; t is difficult to estimate the intensity ratio if an electron line is doubly assigned. In order to overcome this difficulty, an alternative programme HAGER was made to 1ist expected electron energies and intensities for some multipolarities calculated from experimental gamma-ray data in order of electron en ${ }^{\boldsymbol{e}} \mathrm{fg}$ g using the theoretical values of internal conversion coefficients, and experimental electron lines are placed beside corresponding energies.

Both programmes need some intensity calibration lines before their execution to combine electron and gamma-ray intensity data The
unless the data have been obtained absolutely. The ${ }_{m}^{\text {*ultipolarity of }}$ at least one transition has to be assumed to do the calibration.

Details of the intensity calibration of the present work will be shown in the next chapter.

3.8. Programme INFORM

Since many data are involved in the process of level scheme construction, this kind of programme is necessary to compile all the data and to give detailed information of the level scheme and the transitions. The calculation in this programme INFORM includes energy deviations from the Ritz combination principle for each transition assignment, populating and depopulating intensities of each level, gamma-ray branching ratios, neutron binding energy and expected $\gamma-\gamma$ coincidence strengths. These are examined very carefully to assign spins and parities of the levels, referring to the other experimental data, which are not included in the programme. A1so, wrong transition assignments can be easily identified based on the transition selection rule.

One of the remarkable features of this programme is the calculation of the expected $\gamma-\gamma$ coincidence strength S given by

$$
S=I_{\gamma 1} B_{\gamma 2} \sum B_{t 1} B_{t 2} \cdots B_{t N}
$$

where $I_{\gamma 1}$: intensity of the gate channel gamma-transition $\gamma 1$,
$\mathrm{B}_{\gamma 2}$: depopulating or populating branching ratio of the spectrum whether channel gamma-transition $\gamma 2$, according to that the gate channel gamma-transition $\gamma 1$ is assigned upper or lower than $\gamma 2$, respectively,
$B_{t i}$: depopulating or populating branching ratios of transitions between $\gamma 1$ and $\gamma 2$.

The summation is taken over every possible combination of the transitions between the two gamma-transitions. If the gate channe1 gamma-ray is the upper transition, the summation is calculated as follows;

Put the final level of upper transition to be the i-th level and the initial level of lower transition the $j-t h$ level. If $i=j$, it is convenient to assume that the summation $A=1$, and if $i<j$, this is not the case of coincidence, because the two gamma-rays are overlapping. Therefore, the case is limited to $i>j$. If the sumation from the k-th level to the j-th level is expressed by $A_{k j}$, then $A_{k+1, j}$ will be given by the following equation;

$$
\begin{aligned}
A_{k+1, j} & =B_{k+1, j}+\sum_{m=j+1}^{k} B_{k+1, m} A_{m j} \\
& =\sum_{m=j}^{k} B_{k+1, m} A_{m j}
\end{aligned}
$$

where $B_{i j}$ is the depopulating branching ratio of the transition which depopulates the i-th level and populates the j-th level. According to the given equation, $A_{i j}$ can be calculated step by step, using the fact that $A_{j+1, j}=B_{j+1, j}$. If the gate channel gamma-ray is the lower transition, the summation can be calculated in a similar manner, but using populating branching ratios.

In the current version of the programme, gamma-ray branching ratios $B_{\gamma i}$ are used instead of transition branching ratios $B_{t i}$ due to limited central memory space of computer. Therefore, in the case that an intense low energy transition is involved in the cascade between the two transitions of interest, the expected coincidence strength will be slightly underestimated because of the high internal conversion coefficient of the intense low energy transition.

A detailed discussion will be carried out in Appendix 3. including life-times of levels and angular correlations.

Application of the Methods and the Results

The computer programmes have been extensively used to process the many experimental data in the thermal neutron capture reactions in ${ }^{107} \mathrm{Ag}$ and ${ }^{109} \mathrm{Ag}$. Actual procedures, following the flow chart shown in Fig. 12, will be presented in this chapter together with examples of computer output and the results obtained. The sequence of the programmes in the flow chart is a guideline to the level scheme construction and can be modified if necessary.

It has to be emphasized that the programmes are mostly based on the Ritz combination principle due to the good energy resolution of the crystal spectrometer, even though the probability of random fitting increases as energy increases. Therefore, other essential physical principles such as Kirchhoff's law and selection rules of transitions have to be taken into account, referring to the results of other nuclear reactions. Gamma-gamma coincidence data play an especially vital role in the level scheme construction.
4.1. ${ }^{108} \mathrm{Ag}$

The level scheme construction starts with preliminary level energies suggested in earlier studies. The levels presented by Massoumi ${ }^{17 \text {) }}$ were adopted in the current study. The Ritz combination principle can then assign gamma-transitions at one, or occasionally more, appropriate places within a reasonable uncertainty, e.g. twice the standard deviation. All the assignments have to be checked very carefully and some of them may be ignored if the other physical laws are not satisfied.

The primary gamma-rays are also assigned to corresponding lowlying levels. The neutron binding energy can be calculated based on the
assignments. A final calculation has to be done after the low-lying levels are well-established, since some of the primary gamma-ray peaks may be spurious peaks. In the present work, the neutron binding energy of ${ }^{108} \mathrm{Ag}$ has been determined to be $7269.59 \pm .60 \mathrm{keV}$, the error arising mainly from the absolute energy calibration of the primary gama-ray detector.

The internal conversion electron lines have been assigned to corresponding gamma-transitions and a relevant electron shell has been determined by Massoumi using the programme TABLE. Fig. 13 shows a part of its output. Special attention has to be paid to possible electron multiplets in order not to overestimate internal conversion coefficients. Absolute electron intensities were determined assuming pure El multipolarity for the strong 79.1 keV transition normalized to the theoretical internal conversion coefficients of Hager and Seltzer ${ }^{44}$) Multipolarities for other lines can be determined to some extent by comparing the experimental internal conversion coefficients with the theoretical values.

Based on the gamma-ray transition assignments, level energies are recalculated using LEVELS3. This process has to be repeated whenever some transition assignments are altered or a new level is established. Outputs of INFORM and LEVELS5 give a useful compilation of all the experimental data and the assignments, and can be examined very easily. Parts of the outputs are shown in Figs. 14 and 15. Spins and parities can be determined according to the selection rule and the transition multipolarities obtained. Simultaneously, other experimental results are taken into account in order to establish a more reliable level scheme. The (d, p) reaction data ${ }^{28)}$ can confirm the existence of levels, and the information of angular momentum transfer is very useful to

\pm	1	$E=G \mathcal{G}, V_{V}$	DEG		$D_{\frac{9}{0}}$	$E=E \cdot E$	$\begin{aligned} & \text { DEE } \\ & \text { KEV } \end{aligned}$	$1100 \mathrm{~N}$	\％ 1	S	$\underset{\text { KEV }}{\text { E-TRANS }}$	A－¢ P	－	${ }_{\text {ET } 1}^{\text {HEOR. }}$	CONY.	$F_{\dot{N} 1}$	comments	
\oplus																		
	17	113.799	． 002	2.439	7	8 A .287	.002	6.1973										
ω						109．999	.1006 .004	.7584 .3828	6	${ }_{\text {L }} 1$	113.801 113.805 1	$254 E+0 ¢$ $-311 E-01$	7					
－	19	117.886	．003	7.650	7	8月．419 92.368	$.004$	$\begin{array}{r}6.3828 \\ \hline 9037\end{array}$	6 2	K	113.933 117.882		9	－960E－01	$.663 E-01$ $.715 t+01$ 665	$\begin{array}{r} 293 F-01 \\ -254 E+00 \\ -2715+00 \end{array}$		
						11.081	－002	1.8809	1		117.882 117.887	． 220 26＋00	7	$.871 E=01$ $.865 E-02$	$.636 E+00$ $.591 \mathrm{E}=01$	$\begin{aligned} 254 \mathrm{E}+0 \\ 231 \mathrm{~F}+00 \\ 2 \end{aligned}$		
m						114．348	.011	－1593	23	42	117.872	－207E－02	24	． $8650 \mathrm{~F}=02$		－ $266 E=01$ 161502		
$\stackrel{\times}{+}$						117．173	． 0011	．1068	14	W3	117.899	－1411E－02	15	－111ヒ－02	－444E－01	－ $459 \mathrm{E}=03$		
寝	20	121.449	． 004			117.312	．018	－0574	22	M2	117.915	－．75代－03	27	$161 E-02$ $.149 E-03$	$\begin{array}{r}\text {－109E－01 } \\ -747 \mathrm{E} \\ \hline 02\end{array}$	－ $500 \mathrm{E}-02$		
－	21	126.367	.005	.051	12	1010．804	． 0105	－ 2414	15	K	121.462	－ $206 E+00$	18	－ 801 ¢－01	－575E＋uO			
（1）						100.851	－010	－1214	26	k	126.378	－ 2388 2 2 ＋00	28	－715E－01	－502E＋00	－190F＋00	$+11(42)$	
	23 25	129.232 134.473	．06）3	－198	7	103.718	． 004	－3901	3	k	129.232	－ 1938 ¢ $19+00$	28	－715E－01	－502E＋90	－19UE＋00	＋11（42）	
－	26	130.243	－ 004	－195	7	108.953 110.710	－ 003	． 25747	10	K	134.457	－ $209 \mathrm{C}+00$	13	－5998－01	－406t＋00	－179E＋00		
	28	140.895	． 005	－0， 4 H	12	115.343	．025			K	136.224	－303E－01	23	－577E－01	－ $383 \mathrm{E}+00$	－155F＋00		
－1	30	147.349	． 003	． 822	7	121.834	－002	1.0088	3	K	149.897	$.987 \mathrm{E}-01$ $.123 \mathrm{t}+00$	34	－524E－01	$.345 \mathrm{E}+00$	－ $141 \mathrm{E}+00$		
＋	32	148.855	.003	． 924	7	1.13 .555 123 1	．011	－．1146	14	L1	147.360	－139t－01	15	－ 461 C－01	－ 2968 2 200	－ $125 \mathrm{~F}+00$		
T						1.15 .04 A	.003	1.3276 .1804	15	， 1	148.855	－ $144 \mathrm{E}+00$	7	－44RE－01	－ $286 \mathrm{E}+00$	－121E＋00		
						148.144	． 016	． 0426	17	N1	148.861	－195E＝01	17	－ $454 \mathrm{E}=0$	－ 2748001	．140E－01		
\bigcirc	34	155.450	.003		7	148.144	． 016	． 0426	17	M 1	148．861	－461E゙O2	18		－S07E－02	－202E－U2	＋ 46 （K）	
$\stackrel{\text { c }}{+}$		155.450	． 003	． 672	7	129.933	． 002	－ 7377	4	K	155.447	－ $110 \mathrm{O}+00$	8	$\because 396501$	－ 246 ¢ +00	－262E－02	$+46(x)$	
－	41	170.05 d	． 003	． 402	7	144.513	．003	－3899	8	${ }_{\mathrm{L}} 1$	155.449	－ 130 年－O1	11	－ $403 \mathrm{~F}-02$	－ $238 \mathrm{E}-01$	－124E－01		
$\stackrel{+}{+}$	42	170.615	． 006	． 021	15	166.247 166.808	． 015	－ 0578	27	L1	170.053	－1448－01	28	$-307 E=01$ $-314 \mathrm{~F}=02$	－181E＋00	－847E－01		
	43	170.615	． 006	.021			．013	－1631	13	L1	170.613	． $7775+00$	20	－ $311 \mathrm{E}-02$	－175E－01	－963E－02		
－	46	173.648	． 006	．021	15	149．144	－016	－18326	17	${ }_{K} 1$	173.613	－ $777 \mathrm{E}+00$	20	－ 311 － 02	． 175 E．01	－963E－02	$+42(61)$	
\bigcirc						148.144	． 016	． 0426	17	K	173.858	－203E＋00	23	－ $289 E=01$	．16日E＋00	． $800 \mathrm{E}-01$	＋ $32(41)$	
	48	178.425	.003	1.583	7	149.139	． 005	． 1254	8	K	174.653	－6ASE－Ot	11	－285E－01	－168E＋00	－ 00 OE－01	＋32（M1）	
\bigcirc						174．620	．007	1.0486	8	K	179．424	．67YE－01	7	－ 26 ¢E－01	－153E＋00	$\bigcirc .744 \mathrm{E}-01$		
∞						174．881	． 020	． 0495	20	L2	178．404	－ 3 ，	11	－ $175 \mathrm{E}=02$	． 1501501	－ A $^{\text {S }} 3 \mathrm{E}-02$		
－	50	179.010	． 009			174.8 \％ 1	． 020	． 0495	20	42	178．404	－320゙ー介2	21	－179E	－ $545 \mathrm{E}=02$	－ 45 RE－03	＋ 63 （ K	
	52	180.592	.012	－018	25	177：251	． 022	－ 0497	${ }_{2}^{1}$	L2	179.037	． $632 \mathrm{~F}+01$	25	－1775－03	－546E＝02	－458E－03	＋ $63(\mathrm{~K})$	
	56	140.854	－ 008	.013	15	1×7.057	．016	0.1750	15	113 1 1	140.602	－ 233 ¢ +00	33	． $245 \mathrm{E}-03$	． $547 \mathrm{E}=02$	－127E－03		
	58	192.073 1025	－1904	－09y	18	156.502	． 010	－ 1226	10	\times	192.016	－124E＋On	12	－ 228 ER－02	－120E－01	－711E－02	＋75（K ）	
	59	143.078	.004	14.970	5	167.559	． 0106	8． 0.10318	13	K	192.322	－109E＋01	22	－217¢－01	－118E＋00	－609E－01	＋42（L1）	43（t1）
						189.274	．008	1．1560	5	L1	193.080	－ 772 F－0）	7	－ $214 \mathrm{~F}-01$	－117F＋00	．603E－01		（1）
	03	201．356	． 0008	． 021	15	192.361	． 005	． 2019	7	${ }^{M 1}$	193．078	． $135 \mathrm{E}-02$	9	－ $413 \mathrm{E}-03$	－ $214 \mathrm{E}=01$	－689E－02		
	－	201．013				174.841	－020	． 0495	20	K	200.395		25	－193E－01	－10」ビ＋00	－ $516 \mathrm{~F}=01$	＋48（L2）	
	64	201.013	－ 004	1.752	7	175.513	． 005	．9487	1	K	201：027	－ 541 E－n	2	－193E	－103F＋00	－54ヶど－01	＋ $48(\mathrm{LL} 2)$	
	65	201.749	.004	1．月39	7	176．243	． 0.004	－1213	5	${ }_{k}^{1}$	201.034	．693E－02	8	－19At－02	－101E－01	－S42F－01	＋ $50(\mathrm{L2})$	
						197．341	－005	．1100	5	L 1	201.747	． $524 \mathrm{t}=01$	7	－189F\％－01	－ 101 Fto 0	$\because 536 \mathrm{~F}=01$		
	$6{ }^{6}$	293.291	$: 004$	－1131	6	201：785	－008	－ 0720	5	${ }^{\text {M }}$	202.503	－ $256 \mathrm{EF}+00$	12	－${ }_{4} 186 \mathrm{~F}$－03	－100E＝01	． $612 \mathrm{~L}-02$		
	70	204.428	－014	220n24	7	178.911	－ 000	$\because 29 \mathrm{H}$	15	K	203．286		8	－185E－01	－980E－01		＋88（k	
	71	206.003	． 003	22．330	7	181.095	－0001	.0311	1	K	206.610	． $494 \mathrm{E}-01$	17	－173E－01	－9b1E－01	－518F－01		
						202.806	－003	． 2476	$1{ }^{0}$	11	206.612	． $576 \mathrm{E}-02$	7	－184E．02	－925E02	－375E－02		
						205.900	－0\％3	． 2826	11	${ }_{\text {L }}{ }^{\text {2 }}$	206.637	－ $312 \mathrm{~L}=03$	13	． $108 \mathrm{E}-03$	． $280 \mathrm{JE-02}$	－294F－03		
	74	207．310	． 004	． 336	7	181.826	．004	－1648	3	K	207.340	． $126 \mathrm{CEO2}$	7	－ $375 \mathrm{E}-03$	－2月5ビo2	－116F．02		
		212.310	． 003	． 61	7	18ヶ．8．82	.004	． 2893	5	K	212.316	． 46 时－01	8	－176E＝01	－915E－01	． $499 \mathrm{~F}=01$		
	75	212.553	． 004	． 101	6	187.057	－015	－ 0750	15	${ }_{k}$	212.338	－ 863 E 02	21	－171E－02	－ 845 E－0 2	－ $534 \mathrm{Cl}=02$		
						211.353	.007	． 1446	5	MT	212.570	－ 142 t	8	－164E－01	－R41E－01	． 467 ¢－01	＋ 56	
	77	213.410	． 005	－117		147.541	． 0104	－1437	9	K	213.055	－437年－ก1	11	－ 164 HF－O3 $^{\text {a }}$	－2565－02	－ $107 \mathrm{E}-02$	＋79（L2）	
	79	215.383	． 005	8.1018	7	180.923	－015	6．6442	13	k	213.441	． 618 t－01	15	－162F－01	－ 829801	－464E＝01		
						211.57 h	－0n3	． 7165	1	1	215.377	－783と－01	7	－ 15 RF －01	－804E－01	． 451 F．01		
						211.853	． 0107	． 1945	5	L2	215：376	－ 22 名：－ 2	7	－1644：－02	－R0¢E－02	． $514 \mathrm{~F}-02$		
									5	H1			8	． $351 \mathrm{~F}=03$	， $243 \mathrm{r}=02$	－104F：02	do	

```
(B) 244.300B (.0010) AtY LLGB.L. 2*
```

[1FI'WみULATIHG THAHSITIURS

EG	E．${ }^{\text {c }}$	StIt	TYPE：	k： 1	UET
$87.4 \$ 70$	206.6	24	G	$\begin{array}{r} 47.9470 \\ \forall 7.9433 \end{array}$	$.0050$ $.0030$
101.4820244.9070	193.1		À	87.4443 101.4120	.0026 .0020 .0015
	0	14	¢	101.4120 101.4620	． 0020
			$\underline{1}$	101．4H49	． 0028
			1.3	101.7840	－1848
			Mi	161.4485	－0102
			H2	101．4662	.0162
			AV	101．4＊26	． 0011
		1＋	G	294．5670	－ 0040
244．3070		1	\hat{K}		
			1.1	244．5713	.0100
			HT	294．503日	．0180
			A V	294．5630	． 0025

1	DI	DEV
． 120	18.0	－． 00222
－105	13.8	－． 0059
.178	12.2	－． 0049
2.202	7.0	－．0040
.725	1.3	－． 0040
.084	6.2	－． 0011
.014	62.7	.2980
.022	12.1	． 0125
.012	26.0	－． 0198
3．053	5.1	－． 0034
10.230	7.0	． 0062
． 214	3.0	－． 0017
.025	1.7	． 0105
．005	11.2	． 0030
10.474	6.8	.0022

SIG	DEL	HR（ICC）	DBA（DICC）	HULT．
－1．59	1	． $486 \begin{gathered}\text { KR }\end{gathered}$	18.4	$\begin{array}{cl} \mathrm{HI} \\ \mathrm{Hi} \end{array}$
－1．36				
－1．26	1	16.07 $3295+00$	13.4	M $M 1$
1.38 -.29	1	－329E＊00	9.4	Mi
1.58	1	－630E－02	63.1	$\mathrm{Mi}+\mathrm{F}$
1.19	1	－9918－02	14.0	$\cdots \mathrm{M}+\mathrm{F}$
－1．21	2	－352E－02	26.9	$\mathrm{HI}+\mathrm{E}$
－1．41		74.64	6.58	M1
－．44	1	． 209 E－01	3.6	Ml
1.03	1	$\bigcirc 242 \mathrm{E}-02$	7.2	Mi
． 17	1	.491 E 03	13.2	H1

TUTAL DEPUPULATIAG INTEHSITY
13.705 （5．3）

PUPULAIIIG TRANSITIUNS													
H．G	EI	SPId	TYPE	ET	DET	1	DI	DEV	51 G	DBL	ICC	DICC	MULT
113.7990	＋08．4	J +	C	113.7990	． 0020	2.439	7.0	$=.0027$	－． 81	1			
			it	113.8010 113.8052	.0019 .0062	.670 .076	1． 6	－． 0007	.21 .52	1	$254 \mathrm{E}+00$ $.311 \mathrm{E}-01$		M1 HI
			${ }_{4} 1$	113.8052 113.8003	． 00612	3．135	5.4	－． .0014	－． 47				
$\begin{aligned} & 213.9110 \\ & 246.2010 \end{aligned}$	$\begin{aligned} & 508.3 \\ & 542.4 \end{aligned}$	2＊， $3=$	${ }_{6}$	213.4110	.0050	.060 .048	8.0	－． 0056	－． 97	1			
			G	248．2480	． 0050	.348	7.6	． 0015	． 25	2			$M 1+E 2$ $M 1+E 2$
			k	245.2916	－0072	． 012	6．3	． 0051	． 65	1	． $352 \mathrm{E}-01$	18.4	$\mathrm{M} 1+\mathrm{E} 2$
			L2	248．2898	.0423	－． 002	17．3	． 0033	－	1	．479E－02		
			AY	248．2H92	． 0041	－181	55.9	．0027	－ 22	1			
269.2530311.9620	563．8	$2+$	G	269.2530	． 0040	． 996	7.0	－．0012	－． 927	1	－259E－01	7.1	M1
			k L 1	269.2477 269.2431	． 00032	.026 .003	$1 \frac{1}{2.2} 9$	－． 00085	$\cdots \cdot 97$	1	－ $314 \mathrm{E}-02$	$14: 7$	Mi
			L2	269.2210	． 015	． 005	23.7	－．0309	－1．92	2	－4日3E－02	24.7	
			AV	269.2490	． 0024	1.027	6.8	－． 0029	－1．77				
	000.5	1－	C	311.9620	． 0050	． 231	21．0	－． 00415	－1．57	1	． $485 \mathrm{~F}=02$	23.0	E1
312.9620			${ }_{\text {A }}^{\text {¢ }}$	312.0126 311.9624	.0529 .0050	+001 -232	21．9	－．0087	－1．50	1	－485E－02	23.0	
	611.7	2＋，3＋	${ }_{\text {A }}$	317.9664	． 0050	.936 .9	7.0	.0064	1.06	1			M1．E2
317.1080			K	317.0970	． 0090	－016	$2 \cdot 1$	－． 0026	－． 27	1	－171E＝01	10：3	$\begin{gathered} 41 \\ F 2 \end{gathered}$
			11	317.0464	． 0199	． 002	8.2	－． 0027	－ 17	1	－2492－02		
			AV	317.1036	． 0043	． 954	18．9	－． 0042	－． 17				
322．37，0	616.9	2－	${ }_{G}$	322.3770	． 0250	－421	18.0	－． 0005	.06	1			
350.9410	645．5	3＋．（4＋）	G	＋350．9410	． 0060	－465	12.0	． 0257	1.27	1	－		
414.3070	708．8	2－	${ }_{6}$	414.3070	－0200	． 054	17.0	． 0045	． 11	1			
＋65．1700	779.7	2－13－	${ }_{6}$	485.1700	－0400	． 063	30.0	.0712	－89	1			
324．6i＂n	819.1	2－	G	503．9100	．0300	． 195	10.0	．0374	1.21	1			
603．9100	898．4	1＋，（2）	${ }_{\mathbf{C}}^{\text {G }}$	708.1300	． 1400	． 054	30.0	.0907	－ 50	1			
708.1380	1002.6	$1+,(2)(3-)$	${ }_{6}$	756.4800	． 2000	． 126	40.0	－．1141	．． 57	1			
750.9800	1051.7	1＋，20，（3－）	6	736．	＊ 200	． 26							

PNIMAKY TKAHSITION
ENEHGY $=6974.74 \quad$ 6474．98（．10）\quad 1NTENSITY $=$ ．7B7（2．7）

（9）324．4964（．0023）KEV LEVFL 3＋

UEPOPULATíiG TRAHSITIUNS

EG	－	E＇F	SPIN	TYPE：	E＇T	DET	I	DI	DEV	SIG	DBL	BR（ICC）	DBR（DICC）	MULT．
									． 0012	． 29				
117.8860		200．6	$2+$	C	117.6460 117.6823	． 00031	7.650 2.680	2.2	－．0025	.69 .69	1	－ $220 \mathrm{~F}+00$	7.3 7.2	Mi
				$\stackrel{1}{1}$	117.8867	． 0020	． 188	21.8		－1．54	1	－246E－01	24.8	
				1.2	117.9715	$.0105$	． 016	23.8	.0133 .0139	－1．22	1	－207E－02	24.8 15.8	$M I+E 2$
				43	117.4987	$.0114$.011 .036	14.2	.0139 .0062	1.18	1	． 475 F －${ }^{\text {U2 }}$	7 7.4	MI
				11	117.8910	$.0025$.036 .006	22.5	． 00698	1.68	1	－750E－03	23．6	$M_{1}^{2}+E 2$
				＋2	117.9147 117.8363	$.0170$	9.587	22.5 5.6	． 0015	． .46	1	－		
				${ }_{6}{ }^{2}$	117.8863 324.4930	． 0071	9.511	7．0	－． .0034	－． 46	1	$1 i^{14}$	$18^{10} 8$	M1． M_{2}
324.4930		0	$1+$	K	324.5028	.0395	．002	18.5	.0064 .0031	.16 .43	1	－151E－01	19.8	

TUTAL DEPDPULATING INTEHSITY

HU PRIMARY TRA：USITIUN TO THIS LEVEL
Fig．14．Example of INFORM Dutput for ${ }^{108} A g$
（t）If：DICATES AN UHASSICHAD THAR．SITICH．

（？）InvichT\＆E h THNTATIVt：LLVもL

STHENGTH KAT1O EXPER1METIT／EXPFCTEO ． $7700 \mathrm{E}+00$

$($	2）	COINCIDEHCL	（	46.43	ANO	113.70 ）	sTKENGTH	． 1	020E゙＋01				
		46.430		113.593		INDIKECT	$\begin{aligned} & 155.649 \\ & 598.668 \end{aligned}$		$\begin{array}{r} 46.430 \\ 113.593 \end{array}$	$\begin{aligned} & \left.\frac{1}{2} \cdot 200\right\}=-=0 \end{aligned}$	$\begin{array}{r} 109.469 \\ 485.075 \end{array}$	$\binom{.00}{-.02}$	
						$\begin{aligned} & \text { (STRFNGTH) } \\ & \text { (INTKBDT) } \end{aligned}$	$329: 1748$		． 0066				（！）
		40.430		113.799		INDIHECT	$\begin{array}{r} 155.899 \\ 408.362 \end{array}$		$\begin{array}{r} 46.430 \\ 113.799 \end{array}$	$\begin{aligned} & 1.2001= \\ & 2.439)=-= \end{aligned}$	$\begin{array}{r} 109.469 \\ 294.561 \end{array}$	$\left\{\begin{array}{c}.00 \\ -.81\end{array}\right\}$	
						$\begin{aligned} & \text { (STMENGTH) } \\ & (1 \text { THMDT } \end{aligned}$	138.6616		． 0061				（：）
		40.430		113.931		OVERLAP	155.899 193.075		46.430 113.931	1．200） 3 （18）	$\begin{array}{r} 109.469 \\ 79.140 \end{array}$	(-1.00)	

STKEHGT：KAT1U EXPER1MFNT／EXPECTEU ．5236E゙＋01

determine definite parities as well as the range of possible spins. The angular distribution of gamma-rays in the ($\mathrm{p}, \mathrm{n} \gamma$) reaction ${ }^{29}$) gives spin assignments of a few low-lying levels. Especially, the results of average resonance neutron capture ${ }^{22)}$ are very powerful to determine both spins and parities.

As spins and parities are determined level by level, some transitions may be found incorrectly assigned even though they satisfy energy combinations. These transitions have to be removed from the level scheme and new levels have to be searched for so that more transitions can be nssigned in the level scheme.

The levels proposed in the present work are listed in Table 4 and the level scheme drawn by LEVELS8 is shown in Fig. 16. The details can be found elsewhere 45)
4.2. ${ }^{110} \mathrm{Ag}$

Extensive studies of ${ }^{110} \mathrm{Ag}$ have been carried out during past years and have recently been summarized by Bertrand 37). However, the spins and parities of only the lowest three states, including the ground state, have been determined unambiguously. A few more states have been established since the summary of Bertrand by Bogdanovic et al ${ }^{25}$), which is based on the Risф curved-crystal spectrometer data and the time differential gamma-gamma coincidence measurement using $\mathrm{Ge}(\mathrm{Li})$ and NaI(TI) detectors.

In the present work, the level scheme construction was carried out in the same manner as for ${ }^{108} \mathrm{Ag}$, mainly based on the experimental results presented here. The neutron binding energy of 110 Ag has been determined to be $6806.62 \pm .20 \mathrm{keV}$. Absolute electron intensities have been calculated assuming that the 117.6 keV and 118.7 keV transitions are pure

79.140
（a）
a）
79.1402
109.4692
155.8992
193.0748 206.6110 215.3842
294.5608 244.4964
338 338.4198
364.2389 $364 \cdot 2389$ $408 \cdot 3423$ 408.3025 460.0830
465.6410 465.6410
485.0746 508.4774 516.8434 542.8473 563.8127 579．1108 587.3849 598．6677 606.5319 611.6601 616.9420 645.5613
656.3565 656.3565
656.6521 656.6521
679.0944 $679.094 y$
700.8712 703.5887 703.5887
705.6954 705.6954
708.8421 708.8421
715.8151 715.8151
718.7779
765.4676
765.4676
779.7263 779.7263 799.6890
803.7325

.0032	
	.0030

$.0015 \quad 2$
.0077
.0058
.0917
.0018
.0021
-0018
.0023
.0021
-0030
.0022
.0022
.0020
0020
.0050
-0050
－
.0031
02
0
.0031
－ 0022
.9026
.0026
.0023
.0048
.0030
-0020
－0029
.0023
.0029
.0026
.0045
.0045
.0093
.0043
.0043
.0051
.0051
.0065
.0054
.0054
.0033
.0023
－0042
.0142
.0030
.0042
.0030
.0043
$4=, 5-$
$4=$
$3=$
3-
$2=1$
$2+$
$0-1$
$2+$
$0=$
$3=$
$3=, 4=$
$3=1=$
1"
$2+, 3+$
$2+$
$2=$
$3+,(2+)$
$3-1$
$3+1$
$3+, 4+$
1-
$3=$
$2=1,4$,
$2=$
$2=$
$2=$
2-
$2=, ~$
$1=2$
$2=$
$2=, 3=$
$2=13=$

LF，VEL	ERRUR	SPIA \＆
（ktiV）	（KEV）	$G^{\prime} A P I T Y$

819.0890	.0036	2－
N勺7．5024	.0136	2 －
880．0479	． 0085	$2+$
896.4334	.0075	1－
899.9434	－0036	1 －
942．3389	.0071	$2-,(2+, 3-)$
959.8503	－0167	$2+,(2-13-)$
974.3462	． 0036	$1-12=$
994.5917	－0088	$(1,2,3)=$
1002.6001	－0158	$1+$（ 2 ）
1012.7351	．0049	$1-12$
1051.0549	－0146	$1+2-$（ $3-$ ）
1079.8253	－0122	＜＝3－${ }^{\text {a }}$－
1105.4241	－0191	＜＝3＋
1112.1380	． 0138	$1+$
1137.0763	.0087	
1143.9166	.0380	$<=3+$
1157.0781	－0069	く＝3＋
1200.3714	－0153	$<=3+$
1231.5541	． 0185	
1355.4800	－1447	
1462.0400	.1500	

Comments（a）Level energies calculated by LEVELS3
（b）Spin－parity assignments based on several experiments（cf．text）

Table 4．Levels in ${ }^{108} \mathrm{Ag}$

E1 and E2 transitions, respectively ${ }^{26)}$.
The final level scheme is shown in Fig. 17 , which is placed in the back cover pocket, and the details are described in the next section.

4.3. Levels in ${ }^{110} \mathrm{Ag}$

The details of the transitions in ${ }^{110} \mathrm{Ag}$ are listed in Tables 5, 6, 7 and 8 at the end of this chapter, including the assigned and unassigned gamma-transitions, the internal conversion electron assignments and the high energy gamma-transitions. Some assumptions have been put forward to assign spins and parities.
(1) Thermal neutron capture is restricted to s-wave neutrons and the capture state will be 0^{-}and/or 1^{-}.
(2) E1, M1, E2 and EO transitions can be observed in the present experiment.

The Ground State 1^{+}
The spin and parity of the ground state has been determined in the earlier studies as $1^{+37)}$. This assignment is based on an atomic beam experiment ${ }^{46}$) and the allowed β-decay to the ${ }^{110} \mathrm{Cd}$ ground state $0^{+47)}$. Other characteristics of the ground state have been investigated during past years, including the half-life 24.6 sec and magnetic moment $2.85 \pm$ $0.05^{48)}$.

1.1 keV Level 2^{-}

This state has been of interest to explain the M4 isomeric transition from the next 6^{+}state. It is necessary to postulate a low-lying 2^{-}state, since a transition from the 6^{+}state to the 1^{+}ground state cannot have an $M 4$ character. The earlier neutron capture investigations provided evidence of a low-lying state with $1.28 \pm 0.10 \mathrm{keV}$ excitation energy 49). A hypothesis has been put forward that these two states
are identical and tested by Clark et al ${ }^{50}$) using an inner-shell-vacancy detector, which can detect the time of decay although it cannot determine the transition energy. The half-life of the 2^{-}state was determined in the decay of $110^{\mathrm{m}} \mathrm{Ag}$ as $660 \pm 40 \mathrm{~ns}$, and the study of the ${ }^{109} \mathrm{Ag}(\mathrm{n}, \gamma)$ ${ }^{110} \mathrm{Ag}$ reaction gives a consistent result for the low-1ying state halflife.

In the present work, one 2^{-}level was assumed and its excitation energy was determined as $1.1143 \pm 0.0011 \mathrm{keV}$ from the gamma-transition energies in the current level scheme using the programme LEvELS3. The result shows that the excitation energy reported in the earlier study was an overestimation probably due to the doublet fitting procedure.

In the (d, p) reaction study ${ }^{28)}$, this state is populated by $\ell=2$ angular momentum transfer, which is consistent with the 2^{-}assignment. 117.5 keV Level 6^{+}

The 6^{+}assignment for this 249-day isomeric state has been determined in the earlier studies by an atomic beam experiment and the allowed β-decay character to an even-parity level in ${ }^{110} \mathrm{Cd}$ 51). The excitation energy has been reported as $117.76 \mathrm{keV}^{37)}$ as the combination of the $116.48 \pm 0.05 \mathrm{keV}$ M4 transition energy ${ }^{37)}$ and 1.28 ± 0.10 keV excitation energy of the 2^{-}level as previously determined ${ }^{49 \text {). }}$. This has now to be corrected to $117.59 \pm 0.05 \mathrm{keV}$.

Although the 5% partial capture cross-section to this isomeric state relative to the total capture cross-section has been reported ${ }^{36)}$, evidence of the populating transitions to this level is not very strong. In the present work, a cascade of strong transitions which have not been placed in the level scheme was tentatively placed above this level as shown in Fig. 18. This implies the existence of other six tentative levels at $174.5 \mathrm{keV}, 255.0 \mathrm{keV}, 446.5 \mathrm{keV}, 551.3 \mathrm{keV}, 557.0 \mathrm{keV}$ and
579.2 keV .

The excitation energy was determined by LEVELS3 calculation as $117.5359 \pm 0.0046 \mathrm{keV}$, mainly based on the transition energies in this cascade. The result does not agree very well with the value $117.59 \pm 0.05 \mathrm{keV}$ mentioned above. The isomeric transition has to be studied with better accuracy.

The expected gamma-gamma coincidences are consistent with the experimental data of Winkler ${ }^{27)}$ except that the experiment was not able to find the coincidence between 57.0 keV and 80.4 keV , which are expected to be in strong coincidence. 118.7 keV Level 3^{+}

The existence of this level is demonstrated by the existence of depopulating transitions 117.6 keV to the $1.1 \mathrm{keV}^{-}$state and 118.7 keV ground state transition, which are known to have E1 and E2 character, respectively. The character of these transitions require even parity and the spin has been assigned as 3 in the ($p, n \gamma$) experiment based on the 117.6 keV gamma-ray angular distribution ${ }^{29)}$. Other experimental data are consistent with the 3^{+}assignment.

The half-1ife has been measured as $36.7 \pm 0.7 \mathrm{~ns}{ }^{29)}$. Since the depopulating 117.6 keV transition is very intense, the time differential gamma-gamma coincidence measurement with this transition ${ }^{25)}$
has been used to confirm the existence of upper lying levels. 174.6 keV Level $5^{+}, 6^{+}$

This level is a thentative level based on the assumption that the 57.0 keV transition populates the 6^{+}isomeric state. If this state exists, the parity will be even because of the M1 character of the transition. The spin is restricted to 5,6 or 7 , but 7 can be excluded due to the rather strong population.

Apart from the 80.4 keV transition connecting this level with the next member of the cascade populating the 6^{+}level, this level can be connected to the other existing levels at 471.2 keV and 613.0 keV by the 296.6 keV and 438.3 keV transitions, respectively. However, these transitions may both be assigned to other places in the level scheme, and there is no strong evidence for this level. 191.6 keV Leve $12^{+}, 3^{+}, 4^{+}$

The gamma-gamma coincidence between the transitions in the 120 keV and 74 keV regions suggests the existence of this level. However, the existence is rather doubtful since the time differential coincidence measurement has not confirmed the coincidence between the 117.6 keV and 72.9 keV transitions. This level may be suspect also from the fact that the populating intensity is very weak compared with the depopulating intensity although some strong transitions may be assigned to populate this level from levels which have not yet been established.

If this level exists, the M1 character of the 72.9 keV transition will indicate even parity and spin possibilities 2,3 and 4. No primary transition was observed, but it could have been masked by the 6619 keV background line from chlorine.

The 191.5 keV E1 transition cannot be the ground state transition depopulating this level, because the energy combination and the selec-
tion rule are not satisfied. Therefore, the 191.5 keV gamma-ray angular distribution result in the ($\mathrm{p}, \mathrm{n} \gamma$) reaction cannot be used to assign the spin of this level. 198.7 keV Leve1 2^{+}

This level is well established by the two depopulating transitions 198.7 keV and 197.6 keV , which give the same energy difference as the 118.7 keV and 117.6 keV transitions. The M1 character of the 198.7 keV ground state transition determines even parity and spin 0,1 or 2 . Although the multipolarity of the 197.6 keV transition cannot be determined correctly due to the low energy tail of the 198.7 keV intense transition in the electron spectrum, the 0^{+}assignment can be ruled out by the existence of the 197.6 keV transition to the 2^{-}state. .

The ($\mathrm{p}, \mathrm{n} \gamma$) work suggests spin 2 from the angular distribution of the 198.7 keV transition. It is consistent with the fact that a primary transition populates this level. 236.8 keV Leve1 $1^{-}, 2^{-}, 3^{-}$and 237.0 keV Level $1^{-}, 2^{-}$

Population by a primary transition and in the (d, p) reaction with $\ell=0$ indicates a level at approximately 237 keV . The 237.0 keV level has been established with three depopulating transitions and thirteen populating transitions apart from the primary transition. The 237.0 keV EI transition to the ground state 1^{+}and the 235.9 keV M 1 transition to the 1.1 keV 2 state assign the spin and parity to be 1^{-}or 2^{-}for this level.

The additional 236.8 keV level was first introduced by Bogdanovic et al ${ }^{25}$) probably based on the coincidence between 236 keV and 195 keV transitions. It is based also on Breitig's precise energy measurement ${ }^{18)}$ in which the 235.8 keV gamma-ray was found to be a doublet. The Ritz combination principle has assigned twenty transitions populat-
ing this level. The M1 character of the 235.7 keV depopulating transition to the $1.1 \mathrm{keV}^{-}$state determines odd parity and spin possibilities 1,2 and 3.

It is difficult to determine whether the primary transition and the (d, p) reaction populate the 236.8 keV level or the 237.0 keV level. Probably a large fraction of the primary transition populates the 237.0 keV level, since the transition energy is fitted to this level better than to the 236.8 keV level. However, both levels are equally possible to be populated in the (d, p) reaction. Spin and parity can be 1 imited to i^{-}for both levels if the population with $\ell=0$ is confirmed.
$(248 \mathrm{keV}$ Level)
This level was introduced by the primary transition measurement of
by Bolotin and Namenson 24). In the present work, however, this line was not observed.
255.0 keV Level $4^{+}, 5^{+}$

This is one of the levels introduced as part of the cascade populating the 6^{+}isomeric state. The M1 character of the 80.4 keV transition determines even parity but the spin can be 4, 5 or 6. The 6^{+}assignment can be excluded by the E1 character of the 191.5 keV populating transition from the $446.5 \mathrm{keV} 3^{-}$or 4^{-}state as will be described when discussing that level.
267.2 keV Level $1^{+},\left(2^{+}\right)$

Tihis level is well establised by three depopulating transitions $267.2 \mathrm{keV} \mathrm{M} 1+\mathrm{E} 2$ to the ground state, $266.1 \mathrm{keV} \mathrm{E1} \mathrm{to} \mathrm{the} 1.1 \mathrm{keV} 2^{-}$ state and $68.5 \mathrm{keV} \mathrm{M1}$ to the $198.7 \mathrm{keV} 2^{+}$state. These define the spin and parity assignment 1^{+}or 2^{+}. The strong primary transition prefers the $1^{+’}$ assignment.

271.4 keV Level $2^{+}, 3^{+},\left(4^{+}\right)$

The existence of this level is suggested by the time differential coincidence between 117.6 keV and 152.7 keV transitions. The M1 character of the 152.7 keV transition to the $118.7 \mathrm{keV} 3^{+}$state assigns the spin and parity to be $2^{+}, 3^{+}$or 4^{+}. The 4^{+}assignment is not voured if the transitions 393.4 keV from the $664.9 \mathrm{keV} 1^{-}$or 2^{-}state and 454.3 keV from the $725.7 \mathrm{keV} 0^{-}, 1^{-}$or 2^{-}state exist. 304.5 keV Level $2^{+}, 3^{+}$

The coincidence between the 105 keV and 199 keV transitions establishes this level. The M1 character of the 105.8 keV transition to the $198.7 \mathrm{keV} 2^{+}$level suggests the spin and parity assignment 1^{+}, 2^{+}or 3^{+}. If this level is 1^{+}, the Levels at $380.1 \mathrm{keV}, 468.8 \mathrm{keV}$, $471.2 \mathrm{keV}, 536.1 \mathrm{keV}, 663.4 \mathrm{keV}$ and 683.1 keV will be assigned to be low spin even parity states without primary transition population, which is statistically very unlikely. Therefore, the 1^{+}assignment can be excluded.
338.9 keV Level $\mathrm{o}^{-},\left(1^{-}\right)$

The existence of this level is supported by the two depopulating transitions to the ground state and the $1.1 \mathrm{keV} 2^{-}$state and by the population in the (d, p) reaction with $\ell=0$. The El character of the 338.9 keV ground state transition assigns the spin and parity $0^{-}, 1^{-}$ or 2^{-}. The zero angular momentum transfer excludes 2^{-}. Since no primary transition was observed, the O^{-}assignment is preferred.

The 101.8 keV transition may depopulate this level to the 237.0 keV level. However, the energy combination is not satisfied, probably because the error of transition energy may have been underestimated. The coincidence data of Winkler cannot distinguish this coincidence from the indirect coincidence between the 237.2 keV and 105.8 keV
transitions.
360.6 keV Level $1^{+}, 2^{+}$

This level is depopulated by eight transitions. The E2 character of the ground state transition determines the spin and parity to be $1^{+}, 2^{+}$or 3^{+}. The 123.6 keV and 123.8 keV transitions to the 237.0 keV and 236.8 keV levels, respectively, can exclude the 3^{+}assignment, since at least one of these levels is a 1^{-}state. This is consistent with the existence of a primary transition. 380.1 keV Level $1^{+}, 2^{+}, 3^{+},\left(4^{+}\right)$

This level is based on the assumption that the 75.6 keV and 181.5 keV transitions depopulate this level and populate the $304.5 \mathrm{keV} 2^{+}$ or 3^{+}state and the $198.7 \mathrm{keV} 2^{+}$state, respectively. Transition. assignments are totally based on the energy combination principle. Even parity is expected for this level from the Ml character of the 75.6 keV transition, but the spin cannot be determined uniquely and 1^{+}to 4^{+}assignments are possible. If the 143.1 keV transition to the $237.0 \mathrm{keV} 1^{-}$or 2^{-}state exists, the 4^{+}assignment will be excluded. However, the existence is rather doubtful. 381.2 keV Level $1^{-}, 2^{-}$

This level is populated by a primary transition and in the (d, p) reaction with $\ell=2$, and is depopulated by five transitions including the transitions to the ground state and $1.1 \mathrm{keV} 2^{-}$state. These five transitions suggest the spin and parity $0^{-}, 1^{-}$or 2^{-}. The angular momentum transfer $\ell=2$ in the (d, p) reaction excludes the 0^{-}assignment.
424.7 keV Level $0^{-}, 1^{-},\left(2^{-}\right)$and 432.3 keV Level $2^{-}, 3^{-}$)

The (d, p) reaction results suggest a possible doublet at excitation energy 433 keV with $\ell=2$ and/or $\ell=0$ angular momentum transfer.

Two corresponding primary transitions have been observed at 6381.8 keV and 6374.1 keV , which require low spin states at 424.6 keV and 432.3 keV. The energy combination principle can establish these levels at 424.7 keV and 432.3 keV each with four depopulating and seven populating transitions.

Although the 423.6 keV transition from the 424.7 keV level to the $1.1 \mathrm{keV} 2^{-}$state has been doubly assigned in the present level scheme, if this transition depopulates this level, its M1 or E2 character will determine odd parity and spin possibilities 0 to 4 for this 424.7 keV level. This is consistent with the E2 character of the 187.6 keV transition to the $237.0 \mathrm{keV} 1^{-}$or 2^{-}state. The 3^{-}and 4^{-}assignments can be excluded by the existence of a primary transition and ground state transition.

The M1 character of the 195.5 keV transition from the 432.3 keV level to the 236.8 keV requires odd parity and spin possibilities 0 to 4 for this 432.3 keV level. The 0^{-}and 1^{-}assignments can be excluded by the existence of the 313.6 keV transition to the 118.7 keV 3^{+}state, and the 4^{-}assignment can be excluded by the primary transition population, ehich prefers the 2^{-}assignment.

Therefore, both levels are possibly populated in the (d,p) reaction. Probably the 424.7 keV level is populated with $\ell=0$ and
 for the 424.7 keV level.
446.5 keV Level $3^{-}, 4^{-}$

This is one of the levels in the cascade populating the 6^{+} isomeric state. The E2 character of the 209.7 keV transition to the $236.8 \mathrm{keV} 3^{-}$state and El character of the 191.5 keV transition to the 255.0 keV state define the possible spin and parity assignments
$3^{-}, 4^{-}$and 5^{-}. By the 445.4 keV transition to the $1.1 \mathrm{keV} 2^{-}$state, the 5^{-}assignment can be excluded, and also the 6^{+}assignment for the 255.0 keV level can be excluded as has been mentioned. This level may be populated by the (d, p) reaction. 468.8 keV Level $2^{+}, 3^{+}$

The time differential coincidence between 117.6 keV and 350.1 keV transitions confirms the existence of this level although the energy combination is not satisfied very well. The M1 + E2 character of the 350.1 keV transition to the $118.7 \mathrm{keV} 3^{+}$state and the M1 character of the 270.1 keV transition to the $198.7 \mathrm{keV} \mathrm{2}^{+}$state require the spin and parity assignment 2^{+}or 3^{+}.

It is interesting to note that the 350.1 keV transition can'be placed to populate this level from the 818.9 keV level with good energy fitting. This transition may be a doublet, and a large fraction of intensity may belong to the upper transition from the 818.9 keV level.
471.2 keV Level $3^{+}, 4^{+}$

The existence of this level is confirmed by the coincidence between the 105 keV and 166 keV transitions. Other transitions have been placed by the Ritz combination principle. The M1 character of the 166.7 keV transition to the $304.5 \mathrm{keV} 2^{+}, 3^{+}$state allows spin and parity $1^{+}, 2^{+}, 3^{+}$or 4^{+}.

If the 296.6 keV transition, which has been placed twice in the level scheme, depopulates this level to the $174.6 \mathrm{keV} 5^{+}$or 6^{+}state, the 1^{+}and 2^{+}assignments can be excluded. This is consistent with the fact that no primary transition was observed. 485.7 keV Level $1^{+}, 2^{+}, 3^{+}$

This level comes. from the time differential coincidence between
the 117.6 keV and 367.0 keV transitions. The M1 character of the 125.1 keV transition to the $360.6 \mathrm{keV} 1^{+}$or 2^{+}state requires even parity and possible spins $0,1,2$ and 3 . The 0^{+}assignment can be excluded by the 367.0 keV transition to the $118.7 \mathrm{keV} 3^{+}$state. 496.8 keV Leve1 $1^{-}, 2^{-}$

This level is populated by a primary transition, and is depopulated by seven transitions including the transitions to the ground state and the $1.1 \mathrm{keV} \cdot 2^{-}$state. The M1 character of the 115.7 keV transition to the $381.2 \mathrm{keV} 1^{-}$or 2^{-}state requires spin 0 to 3 and odd parity. The 3^{-}assignment can be excluded by the 496.8 keV ground atate transition. The population in the (d, p) reaction around this energy is not very clear, but the weak population is probably to. this level because there are no other odd parity states in the 484 $\pm 20 \mathrm{keV}$ excitation energy region. The O^{-}assignment can be excluded by the MI character of the 82.4 keV transition from the $579.2 \mathrm{keV} 2^{-}$ …: or 3^{-}state as will be mentioned when discussing that level. 525.6 keV Level $1^{-}, 2^{-}$

This level is populated by a primary transition and in the (d, p) reaction of Lopez ${ }^{52}$, and is depopulated by six transitions including the transitions to the ground state and the $1.1 \mathrm{keV}_{2}{ }^{-}$state. The M1 or E 2 character of the 524.5 keV transition to the $1.1 \mathrm{keV} 2^{-}$ state requires odd parity and spin 0 to 4. The 3^{-}and 4^{-}assignments are excluded by the existence of the 525.6 keV ground state transition. The 0^{-}assignment is also excluded by the $M 1+E 2$ character of the 101.0 keV and 186.7 keV transitions. The exsistence of the primary transition is consistent with this assignment.
527.5 keV Level $1^{+}, 2^{+}, 3^{+}$

This level is suggested by the time differential coincidence
the
 526.3 keV transition to the $1.1 \mathrm{keV} \mathrm{2}^{-}$state requires the spin and parity assignment to be $1^{+}, 2^{+}$or 3^{+}.
536.1 keV Leve $11^{+}, 2^{+}, 3^{+}$

This level was originally thought to be present according to the population in the (d, p) reaction. However, the characters of the depopulating transitions, which have been assigned by the energy combination principle, suggest even parity for this level and possible spins 1,2 and 3 . There may be a small contribution of primary transition on the high energy tail of the primary transition to the next level.

539.5 keV Leve1 $\mathrm{O}^{-}, \mathrm{I}^{-}$

This level is populated by a primary transition and in the (d,p) reaction with $\ell=0$. The spin and parity can be assigned to be $0^{-}, 1^{-}$ or 2^{-}by the characters of depopulating transitions. The zero angular momentum transfer in the (d, p) reaction can exclude the 2^{-}assignment. If the 338.9 keV level is a 0^{-}state, then the 0^{-}assignment for this level can be excluded by the 200.6 keV transition to the 338.9 keV level.
549.3 keV Level $1^{+}, 2^{+}$

A primary transition indicates the existence of a level at about 549.5 keV excitation energy. Sixteen populating and six depopulating transitions have been assigned by the energy combination principle. The characters of the depopulating transitions limit the spin and parity assignment to be $1^{+}, 2^{+}$or 3^{+}. The 3^{+}assignment can be excluded by the existence of the primary transition.
551.3 keV Leve1 $2^{-}, 3^{-}, 4^{-}$

This is one of the levels related to the cascade feeding the 6^{+}
isomeric state. The M1 character of the 104.8 keV transition to the $446.5 \mathrm{keV} 3^{-}$or 4^{-}state requires odd parity, but the spin cannot be defined uniquely. The assignments $2^{-}, 3^{-}$and 4^{-}are possible. 557.0 keV Leve1 2^{-}, (3-)

This is another level which is related to the 6^{+}isomeric level. The case is very similar to the 551.3 keV level, but eight depopulating transitions have been assigned by the energy combination principle. The M1 character of the 110.5 keV transition to the $446.5 \mathrm{keV} 3^{-}$or 4^{-} state and the $M 1+E 2$ character of the 175.8 keV transition to the $381.2 \mathrm{keV} 1^{-}$or 2^{-}state 1 imit the spin and parity assignment to 2^{-} or 3^{-}.

The existence of the ground state transition may exclude the 3^{-} assignment. However, this exclusion based on only one transition will result in definite spin assignments for all members of the cascade feeding the 6^{+}isomeric level and can be dangerous. The 438.3 keV transition has been placed to populate the $118.7 \mathrm{keV} 3^{+}$state, but no time differential coincidence was observed. This transition assignment is doubtful.
579.2 keV Level $2^{-}, 3^{-}$

As well as the last two levels, this level is related to the 6^{+} isomeric state. The M1 character of the 132.7 keV transition to the $446.5 \mathrm{keV} 3^{-}$or 4^{-}state determines odd parity and spin possibilities $\geq \pm 05$. This lower limit of spin 2 and the M1 character of the 82.4 keV transition to the 496.8 keV level can exclude the O^{-}assignment for the 496.8 keV level as has been mentioned. This transition can also exclude the 4^{-}and 5^{-}assignments for this level. 589.7 keV Level $\leq 3^{-}$

The existence of this level is suggested by the presence of a
primary transition. The M1 or E2 character of the 588.6 keV transition to the 1.1 keV level requires odd parity and spin possibilities 0 to 4. The 4^{-}assignment can be excluded by the existence of the primary transition. The population in the (d, p) reaction has been observed at 594 keV with $\ell=2$ angular momentum transfer. If this level is populated in the reaction, the 0^{-}assignment can be excluded. 595.0 keV Level $2^{-}, 3^{-}$

The time differential coincidence between the 117.6 keV and 476.3 keV transitions confirms the existence of this level. The Ritz combination principle can assign only two depopulating transitions, and their M1 or E2 characters are contradictory in the parity assignment for this level. Since the $K-e l c t r o n$ line of the 476.3 keV . transition cannot be resolved from the 476.1 keV K-electron line, the multipolarity assignment of the 476.3 keV transition is doubtful.

The M1 or E2 character of the 358.1 keV transition to the 236.8 $\mathrm{keV} 1^{-}, 2^{-}$or 3^{-}state requires odd parity and spin possibilities 0 io 5. The $0^{-}, 1^{-}$and 5^{-}assignments can be excluded by the existence of the 476.3 keV transition to the $118.7 \mathrm{keV} 3^{+}$state. The 4^{-}assignment can be excluded by the Ml character of the 38.4 keV transition frowi the 633.4 keV level, as will be explained. If this level is popilated in the (d, p) reaction, this exclusion is consistent with the $x=2$ angular momentum transfer. 6i3.3 keV Level 1, 2, 3, 4, 5^{+}

This level is also required by the time differential coincidence result between the 117.6 keV and 494.3 keV transitions. However, the existence of this level is very doubtful because of the very small depopulation. This level can be a high spin state. Possible spins 1 to 5 have been tentatively, assigned because of the 494.3 keV transi-
tion to the $118.7 \mathrm{keV} 3^{+}$state.
615.1 keV Level $1^{-}, 2^{-}, 3^{-}$

This level is populated by a primary transition. The M1 character of the 182.7 keV transition to the $432.3 \mathrm{keV} 2^{-}$or 3^{-}state determines odd parity and possible spins 1 to 4 . The 4^{-}assignment can be excluded by the existence of the primary transition. 633.4 keV Level $1^{-}, 2^{-}$

The existence of this level is confirmed by the presence of a primary transition and eight depopulating transitions. The M1 character of the 93.9 keV transition to the $539.5 \mathrm{keV} 0^{-}$or l^{-}state suggests odd parity and spin 0,1 or 2 . The 0^{-}assignment can be excluded by the $\mathrm{Ml}+\mathrm{E} 2$ character of the 136.5 keV transition to the $496.8 \mathrm{keV} \mathrm{l}^{-}$ or 2^{-}state and by the Ml character of the 38.4 keV transition to the $595.0 \mathrm{keV} 2^{-}$or 3^{-}state. The 38.4 keV MI transition can also exclude the 4^{-}assignment for the 595.0 keV level.
653.9 keV Leve1 $1^{-}, 2^{-}, 3^{-}$

This level is populated by a primary transition. The Ml character of the 96.8 keV transition to the $557.0 \mathrm{keV} 2^{-}$or 3^{-}state requires odd parity and spin possibilities 1 to 4 . The 4^{-}assignment can be excluded by the existence of the primary transition. 663.4 keV Level $\leq 3^{+}$

Evidence for the existence of this level is not very strong. However, the Ritz combination principle can assign nine depopulating transitions. The Ml character of the 114.1 keV transition to the $549.3 \mathrm{keV} 1^{+}$or 2^{+}state requires even parity and spins $0,1,2$ or 3. 664.9 keV Leve $11^{-}, 2^{-}$

This level is populated by a weak primary transition and is depopulated by eleven transitions including the transitions to the
ground state and the $1.1 \mathrm{keV} \mathrm{2}^{-}$state. The Ml character of the 125.3 keV transition to the $539.5 \mathrm{keV} \mathrm{O}^{-}$or 1^{-}state determines odd parity and spin 0,1 or 2 . Since the 107.8 keV transition to the 557.0 keV 2^{-}or $3^{-\infty}$ state has been doubly assigned in the level scheme, its M1 character cannot exclude the O^{-}assignment completely. However, from the fact that this level is populated in the (d, p) reaction with $\ell=2$, the O^{-}assignment can be excluded.

If the 393.4 keV transition to the 271.4 keV level exists, the 4^{+}assignment for the 271.4 keV level can be excluded. However, its existence cannot be confirmed.
683.1 keV Level $1^{+}, 2^{+}, 3^{+}, 4^{+}$

This level has been introduced by the energy combination principle with six depopulating and tran populating transitions. However, five of them are also assigned at other places in the level scheme, and no primary transition was observed. The existence of this level is very doubtful. The character of the depopulating transitions would require even parity and spin possibilities 1 to 4. 698.5 keV Level $1^{+}, 2^{+}$

This level is populated by a primary transition. The Ml character of the 149.2 keV transition to the $549.3 \mathrm{keV} 1^{+}$or 2^{+}state and the El character of the 461.5 keV transition to 237.0 keV require even parity and spin possibilities 0 to 3 . The 3^{+}assignment can be excluded by the existence of the primary transition and the O^{+}assignment can also be excluded by the 697.3 keV transition to the $1.1 \mathrm{keV} 2^{-}$state. 706.1 keV Level $1^{+}, 2^{+}$

This level is populated by a primary transition. The Ml characters of the 345.5 keV transition to the $360.6 \mathrm{keV} 1^{+}$or 2^{+}state and the 237.3 keV transition to the $468.8 \mathrm{keV} 2^{+}$or 3^{+}state require even
parity and spin 1, 2 or 3 . The existence of the primary transition excludes the 3^{+}assignment.
725.7 keV Level $0^{-}, 1^{-}, 2^{-}$

This level is also populated by a primary transition. The Ml character of the 186.2 keV transition to the $539.5 \mathrm{keV} \mathrm{O}^{-}$or I^{-}state suggests $0^{-}, 1^{-}$or 2^{-}assignment for this level. Population in the (d, p) reaction has been observed at 711 keV and 725 keV excitation energies. The angular momentum transfer has been obtained for the 711 keV to be $\ell=0$, but no level has been established at this energy in the present work. The angular momentum transfer for the 725 keV has not been reported. The 454.3 keV transition to the 271.4 keV level may exclude the 4^{+}assignment for the 271.4 keV level. This is the second transition excluding the 4^{+}assignment for that level. (746.8 keV Level), 748.5 keV Level $0^{+}, 1^{+}, 2^{+}$and 750.8 keV Level $0^{+}, 1^{+}, 2^{+}$

These levels are populated by two or three unresolved strong primary transitions, but the primary transition energies cannot be fitted to the level energies 748.5 keV and 750.8 keV , which have been determined by the secondary transition energies. The peak fitting result with two peaks indicates that level may be found at $746.75 \pm .24 \mathrm{keV}$ and at $750.23 \pm .21 \mathrm{keV}$.

The Ritz combination principle suggests a possible level at $746.807 \pm .003 \mathrm{keV}$ with the depopulating transitions 628.1 keV , $555.2 \mathrm{keV}, 548.1 \mathrm{keV}, 386.2 \mathrm{keV}, 322.2 \mathrm{keV}, 314.5 \mathrm{keV}$, 221.1 keV , 195.5 keV and 189.8 keV to the levels at $118.7 \mathrm{keV}, 191.6 \mathrm{keV}, 198.7$ $\mathrm{keV}, 360.6 \mathrm{keV}, 424.7 \mathrm{keV}, 432.3 \mathrm{keV}, 525.6 \mathrm{keV}, 551.3 \mathrm{keV}$ and 557.0 keV , respectively. However, the strong 195.5 keV transition has been placed at between the 432.3 keV and 236.8 keV leve1s in the
present level scheme to satisfy the coincidence result between the 236 keV and 195 keV transitions. The assignment of the 195.5 keV M1 transition from this tentative 746.8 keV level to the 551.3 keV $2^{-}, 3^{-}$or 4^{-}state would require odd parity and possible spins 1 to 5 for this 746.8 keV level. The $1^{-}, 2^{-}$and 3^{-}assignments are consistent with the population by the primary transition and in the (d,p) reaction with $\ell=2$ at 751 keV . However, this assignment of the 195.5 keV transition cannot explain the coincidence with the 236 keV transition, unless the 195.5 keV transition is a doublet. Therefore, without the 195.5 keV transition assignment, this tentative level may exist, and the primary transition may be a triplet.

The 748.5 keV level is depopulated by seven transitions. The M1 or E2 character of the 549.8 keV transition to the $198.7 \mathrm{keV} 2^{+}$ state and the Ml character of the 212.4 keV transition to the 536.1 $\mathrm{keV} 1^{+}, 2^{+}$or 3^{+}state require even parity and spin possibilities 0 to 4. The 3^{+}and 4^{+}assignments can be excluded by the exsistence of the primary transition.

The 750.8 keV level is depopulated by nine transitions. The M1 character of the 201.5 keV transition to the $549.3 \mathrm{keV} \mathrm{1}{ }^{+}$or 2^{+} state determines the spin and parity assignment as $0^{+}, 1^{+}, 2^{+}$or 3^{+}. The 3^{+}assignment can be excluded by the exsistence of the primary transition.
759.6 keV Leve1 $\quad 3$

This level is populated by a primary transition. However, the depopulating transitions cannot define the spin and parity very well. If the (d, p) reaction populates this level with $\ell=2$, odd parity is expected for this level.
767.0 keV Leve $10^{+}, 1,2,3^{+}$

This level has been introduced by the energy combination principle with ten depopulating transitions and eight populating transitions. The spin and parity have tentatively been assigned based on the spin and parity assignments of levels fed by depopulating transitions.

773.6 keV Level and above

These levels are based on the primary transition data and the time differential coincidence results. Since multipolarities of transitions above 500 keV cannot be determined, because internal conversion electron data are not available, spins and parities are tentatively assigned (≤ 3) for the levels populated by the primary transition and ($1,2,3,4$) for those based on the time differential coincidence data.

SUAMARY OF THE AG-109 (H, GAMMA)AG-110 REACTIUN
T5 - (1)

. 0	0	$1+$										
1.1143	.0011	2-						(d) 6805.45		. 20	. 0158	2
117.5359	. 0046	$0+$										
118.7106	.0010	$3+$	$\begin{aligned} & 118.7077 \\ & 117.5962 \end{aligned}$	$\begin{array}{r} .0018 \\ .0007 \end{array}$.0707 12.9432	16	E2	1.0				
174.5507	.0040	$5+, 6+$	57.0149	.0013	2.1340	14	11	117.5				
191.6086	. 0016	$2+, 3+, 4+$	72.8987	.0029	2.0506	14	M1	118.7				
198.6774	.0010	$2+$	$\begin{aligned} & 198.6756 \\ & 197.5641 \end{aligned}$.0029 .0025	$\begin{array}{r} 16.1424 \\ .1819 \end{array}$	9	M1 E1	$1 . \stackrel{0}{1}$	6607.87	. 20	. 0338	2
236.8335	.0012	1-, 2-, 3-	235.7211	. 0023	6.9096	9	M1	1.1				
237.0283	.0009	1-, 2-	$\begin{array}{r} 237.0309 \\ 235.9129 \\ 38.3519 \end{array}$	$\begin{aligned} & .0015 \\ & .0023 \\ & .0009 \end{aligned}$	$\begin{array}{r} 3.2224 \\ 2.4622 \\ .0980 \end{array}$	8 9 26	$\begin{aligned} & \mathrm{E} 1 \\ & \mathrm{M} 1+\mathrm{E} 2 \\ & \mathrm{ES} \end{aligned}$	$198 . \frac{1}{1}$	6569.57	. 20	. $\downarrow 473$	2
254.9951	. 0031	$4+, 5+$	$\begin{array}{r} 137.4578 \\ 80.4464 \end{array}$.0050 .0048	$\begin{array}{r} .0039 \\ 3.2821 \end{array}$	$\begin{aligned} & 31 \\ & 14 \end{aligned}$	M 1	$\begin{aligned} & 117.5 \\ & 174.5 \end{aligned}$				
267.1946	. 0011	$1+,(2+)$	$\begin{array}{r} 267.1973 \\ 206.0805 \\ 68.5195 \end{array}$	$\begin{array}{r} .0039 \\ .0045 \\ .0021 \end{array}$	$\begin{array}{r} 4.8354 \\ .8413 \\ 1.1967 \end{array}$	8 8 16	M1 E1 $M 1$	$\begin{array}{r} 0 \\ 19 \frac{1}{8} . \frac{1}{7} \end{array}$	6539.28	. 20	.3259	1
271.4492	. 0013	$2+, 3+, 4+$	$\begin{array}{r} 152.7406 \\ 79.8403 \end{array}$	$\begin{array}{r} .0013 \\ .0014 \end{array}$	$\begin{array}{r} .9753 \\ .1351 \end{array}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & M 1 \\ & M 1+E 2 \end{aligned}$	$\begin{aligned} & 118.7 \\ & 191.6 \end{aligned}$				
304.5041	. 0012	$2+, 3+$	$\begin{aligned} & 304.5092 \\ & 105.8272 \end{aligned}$.0042 .0031	3.1607	$\begin{array}{r} 9 \\ 15 \end{array}$	$\begin{aligned} & \mathrm{E} 2 \\ & \mathrm{H}: \end{aligned}$	$\begin{array}{r} 0 \\ 198.7 \end{array}$				
338.8701	. 0019	0-, (1-)	$\begin{aligned} & 338.8753 \\ & 337.7665 \end{aligned}$.0067 .0098	$\begin{array}{r} .9782 \\ .0175 \end{array}$	$\begin{array}{r} 8 \\ 10 \end{array}$	E1	1.9				
360.5869	. 0010	$1+, 2+$	$\begin{aligned} & 36,0.5856 \\ & 359.4709 \end{aligned}$.0050 $.0045$	$\begin{array}{r} 2.1495 \\ .2970 \end{array}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{F}: 2 \\ & \mathrm{E}: 1 \end{aligned}$	$\begin{array}{r} 0 \\ 1.1 \end{array}$	6445.88	. 20	-0829	1

BUAAAKY OF THE AG-109 (N,GAMMA)AG-110 KEAC'LIUN

HUCLEAR STATES			DEEXCITATTUN GAMMA- ${ }^{\text {a }}$ (RANSITIOAS						PRIMARY TRAMSITIONS		
thergy (KEV)	(KRYU)	SPIN\& PARITY	ENERGY (KEV)	ERRUR (KE'V)	$\begin{aligned} & \text { INTENSI } \\ & (1 / 100 N \end{aligned}$	$\begin{aligned} & Y \\ & \left.\frac{Y}{0}\right) \end{aligned}$	mULTIPOLARITY	FIliAL LEVEL	ENERGY (KEV)	ERROR (KEV)	$\begin{aligned} & I \text { TRFNSTTY } \\ & \left(I / 100 H, \frac{2}{O}\right) \end{aligned}$
			154.9711	. 0123	. 0027	34		381.2			
539.5216	.0013	0-1-	$\begin{aligned} & 538.3937 \\ & 302.5069 \\ & 200.6433 \\ & 178.9517 \\ & 158.3581 \\ & 114.8634 \end{aligned}$.0168 -0091 .0021 .0099 .0020	1.0009 .0236 .0797 .0028 .0026 .0135	$\begin{aligned} & 70 \\ & 13 \\ & 8 \\ & 39 \\ & 36 \\ & 22 \end{aligned}$	$\begin{aligned} & M 1, E 2 \\ & M 1 \\ & M 1 \end{aligned}$	$\begin{array}{r} 1.1 \\ 237.0 \\ 338.9 \\ 360.6 \\ 381.2 \\ 424.7 \end{array}$	6267.05	. 21	$.0887 \quad 1$
549.3296	. 0013	$1+, 2+$	$\begin{aligned} & 549.3251 \\ & 312.4929 \\ & 282.1278 \\ & 277.8491 \\ & 244.8277 \\ & 188.7487 \end{aligned}$.0166 .0041 .0036 .0176 .0015 .0035	.9542 .0130 .0785 .0060 .3676 .0556	$\begin{array}{r} 73 \\ 12 \\ 11 \\ 29 \\ 8 \\ 12 \end{array}$	$\begin{aligned} & M 1, E 2 \\ & M 1, E 2 \\ & M 1 \\ & M 1 \end{aligned}$	$\begin{aligned} & 236.8 \\ & 267.2 \\ & 271.4 \\ & 304.5 \\ & 360.6 \end{aligned}$	6257.14	. 21	.02701
551.3111	. 0013	2-, 3-, 4-	$\begin{array}{r} 314.4755 \\ 171.1760 \\ 170.1479 \\ 104.7824 \end{array}$.0023 .0099 .0012 .0018	.0206 .0074 .0253 .9592	$\begin{array}{r} 11 \\ 24 \\ 9 \\ 13 \end{array}$	111	$\begin{aligned} & 236.8 \\ & 380.1 \\ & 381.2 \\ & 446.5 \end{aligned}$			
537.0198	.0014	2-: (3-)	$\begin{array}{r} 557.0220 \\ 555.8830 \\ 438.3410 \\ 320.1805 \\ 196.4268 \\ 175.8567 \\ 124.6893 \\ 110.4909 \end{array}$		$\begin{array}{r} .0198 \\ .0303 \\ .0115 \\ .1171 \\ 0131 \\ .0232 \\ .0143 \\ .9842 \end{array}$	$\begin{aligned} & 18 \\ & 24 \\ & 45 \\ & 9 \\ & 18 \\ & 10 \\ & 30 \\ & 18 \end{aligned}$	$\begin{aligned} & M 1 \\ & M 1+E 2 \\ & \mathrm{M}_{1} \end{aligned}$	$\begin{array}{r} 0 \\ 118.1 \\ 236.8 \\ 360.6 \\ 381.2 \\ 432.3 \\ 446.5 \end{array}$			
579.2444	.0013	2-.3-	$\begin{array}{r} 578.1355 \\ 387.6109 \\ 342.1584 \\ 307.8008 \\ 218.0681 \\ 198.0730 \\ 146.9190 \\ 132.7103 \\ 82.4090 \end{array}$.0090 .0328 .0296 .0081 .0060 .0060 .0016 .0008	.0308 .0131 .0187 - 0115 .0105 .0573 .5829 .0708	$\begin{array}{r} 17 \\ 12 \\ 16 \\ 12 \\ 33 \\ -15 \\ 12 \\ 13 \\ 15 \end{array}$	$\begin{aligned} & M 1 \\ & M 1 \end{aligned}$	$\begin{aligned} & 19.1 \\ & 191.6 \\ & 237: 0 \\ & 2760.6 \\ & 381.2 \\ & 432.3 \\ & 446.5 \\ & 496.8 \end{aligned}$			

	S ST		DEEXCITATIUA GAMMA-TRANSITIUNS						PRIMARY TRANSITIONS			
EHERGY (KEV)	$\begin{aligned} & \text { ERROK } \\ & \text { (KEV) } \end{aligned}$	SPIN $\dot{8}$ PARITY	EINERGY (KEV)	FKRUK (KEV)	IITENSI (I/100N	JY	MULTIPOLARITY	FINAL LEVEL,	ENERGY (KE.V)	$\begin{aligned} & \text { ERROR } \\ & (K E V) \end{aligned}$	I ITFAS (I/100	
589.7432	. 0022	$(0,1,2,3)=$	$\begin{aligned} & 588.6239 \\ & 250.8791 \\ & 208.5808 \end{aligned}$. 0$) 62$.0120 .0049	$\begin{array}{r} 1.1515 \\ .0078 \\ .0045 \end{array}$	$\begin{aligned} & 19 \\ & 22 \\ & 26 \end{aligned}$	$\mathrm{H1}, \mathrm{E} 2$	$\begin{array}{r} 1 \\ 338.9 \\ 381.2 \end{array}$	6216.83	. 21	. 0177	2
594.9688	. 0022	2-.3-	$\begin{array}{r} 476.2581 \\ \times \quad 358.1371 \end{array}$.0047 .0048	$\begin{array}{r} .0648 \\ .4357 \end{array}$	$\begin{array}{r} 19 \\ 8 \end{array}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H}, \mathrm{E}, \mathrm{E}_{2} \end{aligned}$	$\begin{aligned} & 118.7 \\ & 236: 8 \end{aligned}$				
613.0284	.0029	$(1-5)+$	$\begin{array}{r} 494.3120 \\ +438.3410 \\ 341.5772 \\ 232.9063 \end{array}$			$\begin{aligned} & 31 \\ & 45 \\ & 14 \\ & 21 \end{aligned}$		$\begin{aligned} & 118.7 \\ & 174.5 \\ & 271.4 \\ & 380.1 \end{aligned}$				
015.0712	.0020	1-,2-,3-	$\begin{aligned} & 613.9538 \\ & 378.2434 \\ & 378.0486 \\ & 254.4773 \\ & 182.7415 \end{aligned}$.0027 .0056 .0056 .0029	$\begin{aligned} & .3370 \\ & .5043 \\ & .5126 \\ & 0075 \\ & .0638 \end{aligned}$	$\begin{array}{r} 17 \\ 9 \\ 10 \\ 16 \\ 9 \end{array}$	M1.E2 M1, F. 2 M1, E2 M1	$\begin{aligned} & 236: 8 \\ & 237: 0 \\ & 360.6 \\ & 432.3 \end{aligned}$	6191.50	- 20	. 0600	1
633.3810	.0012	1-.2-	$\begin{array}{r} 633.3887 \\ 390.3579 \\ 366.1795 \\ 272.7906 \\ 252.2176 \\ 136.5468 \\ 93.8615 \\ 38.4137 \end{array}$		$\begin{aligned} & .0786 \\ & .1143 \\ & .2449 \\ & .0638 \\ & .2377 \\ & .0508 \\ & .0405 \\ & .0338 \end{aligned}$	$\begin{aligned} & 16 \\ & 14 \\ & 8 \\ & 10 \\ & 9 \\ & 17 \\ & 17 \\ & 45 \end{aligned}$	$\begin{aligned} & M 1, E 2 \\ & E 11 \\ & M 1 \\ & M 1+E 2 \\ & M 1 \\ & M 1 \end{aligned}$	$\begin{aligned} & 237.0 \\ & 267.2 \\ & 360.6 \\ & 381: 2 \\ & 496.8 \\ & 539.5 \\ & 595.0 \end{aligned}$	6173.26	. 21	.0232	2
653.8573	. 0016	1-, 2-, 3-	$\begin{aligned} & 417.0230 \\ & 315.0523 \\ & 185.0495 \\ & 157.0252 \\ & 96.8369 \end{aligned}$.0065 .0385 .0001 .0058 .0010	.4054 .0092 . 0073 .0095 .0410	$\begin{aligned} & 20 \\ & 52 \\ & 13 \\ & 23 \\ & 24 \end{aligned}$	M1, E2 M1	$\begin{aligned} & 236.8 \\ & 336.9 \\ & 466.8 \\ & 496.8 \\ & 557.0 \end{aligned}$	6152.82	. 21	.0176	2
663.1029	. 01014	$<=3+$	$\begin{aligned} & 204.7332 \\ & 126.6163 \\ & 358.9012 \\ & 302.8150 \\ & 194.5946 \\ & 177.6724 \\ & 135.9483 \end{aligned}$	-0081 -0095 -0U2 4 .0087 -0) 049	.3935 .0079 .0611 .1728 .0000 .0080	$\begin{aligned} & 16 \\ & 16 \\ & 13 \\ & 12 \\ & 13 \\ & 18 \\ & 47 \end{aligned}$	$\begin{aligned} & \mathrm{N} 1, \mathrm{E} 2 \\ & \mathrm{~F} .2 \\ & (\mathrm{H} 1) \end{aligned}$	$\begin{aligned} & 198.7 \\ & 236.8 \\ & 304.5 \\ & 360.6 \\ & 468.8 \\ & 485.7 \\ & 527.5 \end{aligned}$				

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{HUCLEAR STATES} \& \multicolumn{6}{|c|}{} \& \multicolumn{4}{|l|}{PRIMARY TRANSITIONS} \\
\hline \begin{tabular}{l}
F:HERGY \\
(KEVV)
\end{tabular} \& \[
\begin{aligned}
\& \text { EREOR } \\
\& (K R V)
\end{aligned}
\] \& SPIN PAKITY \& \begin{tabular}{l}
EAFRGY \\
(KEV)
\end{tabular} \& \begin{tabular}{l}
FRR(IR \\
(KEV)
\end{tabular} \& \[
\begin{aligned}
\& \text { INTENS } \\
\& \text { (I/ } 100
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \because U L T I \\
\& \text { OHLARI }
\end{aligned}
\] \& FINAL LEVEL \& \begin{tabular}{l}
ENERGY \\
(KEV)
\end{tabular} \& \[
\begin{aligned}
\& \text { GRROK } \\
\& (K F: V)
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { INTEN } \\
\& (1 / 10
\end{aligned}
\] \& \\
\hline \& \& \& \[
\begin{aligned}
\& 127.2075 \\
\& 114.0744
\end{aligned}
\] \& \[
\begin{array}{r}
.0021 \\
.0018
\end{array}
\] \& \begin{tabular}{l}
\[
.0105
\] \\
.0704
\end{tabular} \& \[
\begin{aligned}
\& 26 \\
\& 14
\end{aligned}
\] \& 1.1 \& \[
\begin{aligned}
\& 536.1 \\
\& 549: 3
\end{aligned}
\] \& \& \& \& \\
\hline 664.8676 \& .0013 \& 1-,2- \& \[
\begin{array}{r}
664.8534 \\
663.7335 \\
428.0021 \\
\times 393.4496 \\
325.9763 \\
304.2755 \\
283.7069 \\
139.2528 \\
125.3423 \\
113.5575 \\
* 107.8492
\end{array}
\] \& \[
\begin{aligned}
\& .0131 \\
\& .0145 \\
\& .0383 \\
\& 00454 \\
\& 0101 \\
\& .01248 \\
\& 0083 \\
\& .0014 \\
\& .0023 \\
\& 00014 \\
\& .0016
\end{aligned}
\] \& \[
\begin{aligned}
\& .3989 \\
\& .0940 \\
\& .2977 \\
\& .0083 \\
\& 0199 \\
\& .0143 \\
\& .0305 \\
\& .0117 \\
\& .0206 \\
\& 02291 \\
\& .0301
\end{aligned}
\] \& \[
\begin{aligned}
\& 16 \\
\& 21 \\
\& 19 \\
\& 32 \\
\& 9 \\
\& 17 \\
\& 16 \\
\& 14 \\
\& 17 \\
\& 21 \\
\& 21
\end{aligned}
\] \& \[
\begin{aligned}
\& M 1, E 2 \\
\& (E 2) \\
\& M 1 \\
\& M 1, E: 2 \\
\& M 11
\end{aligned}
\] \& \[
\begin{array}{r}
\\
1.0 \\
236.8 \\
271.4 \\
338.9 \\
360.6 \\
381.2 \\
525.6 \\
539.5 \\
551.3 \\
557.0
\end{array}
\] \& 6141.80 \& . 26 \& . 0061 \& 6 \\
\hline 683.0860 \& . 0018 \& \[
(1,2,3,4)+
\] \& \[
\begin{array}{r}
484.3874 \\
378.5863 \\
\times 214.2814 \\
+19.8962 \\
197.3588 \\
\times 157.4688
\end{array}
\] \& \begin{tabular}{l}
.0148 \\
.0083 \\
.0022 \\
.0022 \\
.0050
\end{tabular} \& \[
\begin{aligned}
\& .2427 \\
\& .0599 \\
\& .0343 \\
\& .0024 \\
\& .0163 \\
\& .0179
\end{aligned}
\] \& \[
\begin{aligned}
\& 44 \\
\& 13 \\
\& 11 \\
\& 40 \\
\& 11 \\
\& 10
\end{aligned}
\] \& \[
\begin{aligned}
\& 111, E: 2 \\
\& \mathrm{r}: 7
\end{aligned}
\] \& \[
\begin{aligned}
\& 198.7 \\
\& 304.5 \\
\& 468: 8 \\
\& 471.2 \\
\& 485: 7 \\
\& 525.6
\end{aligned}
\] \& \& \& \& \\
\hline 698.4895 \& . 0012 \& \(1+, 2+\) \& \[
\begin{aligned}
\& 698.4845 \\
\& 697.3322 \\
\& 461.4594 \\
\& 337.9233 \\
\& 317.3171 \\
\& 273.8306 \\
\& 2011.6609 \\
\& 162.3559 \\
\& 149.1623
\end{aligned}
\] \& \begin{tabular}{l}
.0037 \\
.0474 \\
.0020 \\
.0790 \\
.0049 \\
.0059 \\
0064
-0010 \\
.0061
\end{tabular} \& \[
\begin{aligned}
\& .3471 \\
\& .0120 \\
\& .3224 \\
\& 0087 \\
\& .0073 \\
\& .0086 \\
\& .0191 \\
\& 1339 \\
\& .2609
\end{aligned}
\] \& \[
\begin{array}{r}
18 \\
36 \\
12 \\
58 \\
28 \\
18 \\
13 \\
8 \\
10
\end{array}
\] \& E1

M1

111 \& $$
\begin{array}{r}
0 \\
237.1 \\
360.6 \\
381.2 \\
424.7 \\
496.8 \\
536: 1 \\
549.3
\end{array}
$$ \& 6107.98 \& . 22 \& . 11653 \& 2

\hline 700.0015 \& .0014 \& $1+.2+$ \& \[
$$
\begin{aligned}
& 704 \cdot 96.11 \\
& 507.3586 \\
& 514.4584 \\
& 345.1734 \\
& 237.2567 \\
& 220.3361 \\
& 169.9261 \\
& 156.736 .7
\end{aligned}
$$

\] \& \& \& \[

$$
\begin{array}{r}
21 \\
27 \\
40 \\
8 \\
9 \\
9 \\
81 \\
19
\end{array}
$$

\] \& | M1 |
| :--- |
| H1 |
| (111) | \& \& 6100.65 \& . 20 \& . 1081 \& 1

\hline
\end{tabular}

SUNBAKY UF THE AG-109 (N, GAMAA)AG-110 REACTIUN

	AF STA		DEEXCITATION GAMMA-TKANSITIUNS						PRIMARY TRAISITIONS			
EMERGY (KE, V)	ERRUUR (KEV)	SPIN \& PARITY	ENERGY (KEV)	ERROR (KEV)	INTENS (I/100	$\begin{aligned} & T Y \\ & \left.\hline \frac{5}{5}\right) \end{aligned}$	MULTI POLARI	FINAL LE.VEL	ENERGY (KF.V)	$\begin{aligned} & \text { ERROR } \\ & \text { (KEV) } \end{aligned}$	InTEN ($\mathrm{I} / 10$	
766.9640	. 0018	$0+, 1,2,3+$	$\begin{array}{r} 760.9618 \\ 499.7869 \\ 462.4469 \\ 406.3843 \\ \times 298.1505 \\ 2812476 \\ 239.5198 \\ 227.4484 \\ 2177.6390 \\ 153.9352 \end{array}$.0036 .0179 . 0129 .0149 .0073 .0051 .0117 .0099 .0080 .0029	$\begin{array}{r} .3822 \\ .1330 \\ .1566 \\ .0201 \\ .0442 \\ .0218 \\ .0081 \\ .0103 \\ .0051 \\ .0220 \end{array}$	$\begin{aligned} & 21 \\ & 66 \\ & 13 \\ & 21 \\ & 15 \\ & 12 \\ & 15 \\ & 14 \\ & 22 \\ & 10 \end{aligned}$	N1	$\begin{aligned} & 0 \\ & 267.2 \\ & 304.5 \\ & 360.6 \\ & 468: 8 \\ & 485.7 \\ & 527.5 \\ & 539.5 \\ & 549.3 \\ & 613.0 \end{aligned}$			-	
773.5937	.0016	$<=3(+)$	$\begin{array}{r} 773.5832 \\ 772.4877 \\ 574.9165 \\ 506.3907 \\ 469.0692 \\ 413.0412 \\ * 393.4496 \\ * 348.9503 \\ 276.7656 \\ 237.4664 \\ 234.1061 \\ 224.2607 \end{array}$.0063 .0103 .0032 .0080 .0287 .0373 .0459 .0127 .0077 .0043 .0035	$\begin{aligned} & .3360 \\ & .1287 \\ & .4455 \\ & .0286 \\ & .0664 \\ & .0197 \\ & .0083 \\ & 0147 \\ & 010152 \\ & .0462 \\ & .0041 \\ & .0617 \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \\ & 21 \\ & 29 \\ & 29 \\ & 21 \\ & 32 \\ & 11 \\ & 16 \\ & 12 \\ & 45 \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{H} 1, \mathrm{~F} .2 \\ & \mathrm{M} 1, \mathrm{E} 2 \end{aligned}$ 14	$\begin{array}{r} 0 \\ 198: 1 \\ 267: 2 \\ 304.5 \\ 360.0 \\ 380.1 \\ 424.7 \\ 496.8 \\ 536.1 \\ 539.5 \\ 549.3 \end{array}$	6033.02	. 21	. 0406	2
785.5723	. 0018	$<=3$	$\begin{aligned} & 784.4520 \\ & 666.8502 \\ & 586.8945 \\ & 5149.1236 \\ & 249.4432 \\ & 236.2452 \end{aligned}$.0241 .0091 .0035 - 0134 .0035 .0036	.0955 .0521 -7730 .1460 .0941	$\begin{array}{r} 21 \\ 19 \\ 26 \\ 36 \\ 9 \\ 9 \end{array}$	$\begin{aligned} & \mathrm{M} 1, \mathrm{E} 2 \\ & \mathrm{M} 1 \\ & \mathrm{E} 2 \end{aligned}$	$\begin{aligned} & 118.1 \\ & 198.7 \\ & 271: 4 \\ & 536.1 \\ & 549.3 \end{aligned}$	6021.50	. 20	- 31169	1
811.3347	. 0028	$<=3(+)$	$\begin{array}{r} 012.6703 \\ \times 544.1371 \\ 5060.8238 \\ 450.7389 \\ 342.5874 \\ 325.6152 \\ 275.2008 \\ 261.9750 \end{array}$. 0057 . 0508 .0079 .0111 .0331 .0065 -0) 141 .0163		$\begin{array}{r} 20 \\ 45 \\ 29 \\ 20 \\ 36 \\ 4 \\ 12 \\ 14 \end{array}$	M1, E 2 $N 1, E 2$	$\begin{aligned} & 198.7 \\ & 267.2 \\ & 304.5 \\ & 360.6 \\ & 468: 8 \\ & 485.7 \\ & 536.1 \\ & 549.3 \end{aligned}$	5995.27	. 20	. 1625	1

NUCLEAR STATES			UEEXCITATION GAMMA-TRANSITIONS						PRIMARY TRANSITIUNS				
FilkRGY (KEV) \qquad	ERRUR (KEV)	SPI\\| \& PARITY	ENERGY (KEV)	ERROR (KEV)	INTENS (I/100)	$\begin{aligned} & Y \\ & \left(y_{0}\right) \end{aligned}$	同ULTIPULARIT	FINAL LEVEL	ENERGY (KEV)	ERROR (KE.V)	$\begin{aligned} & \text { TNTFMS } \\ & C T / 100 \end{aligned}$		
			$\begin{aligned} & * 259.9926 \\ & * \quad 157.4688 \end{aligned}$	$\begin{array}{r} .0238 \\ .0050 \\ .005 \end{array}$	$\begin{array}{r} .0051 \\ .0179 \end{array}$	$\begin{aligned} & 34 \\ & 10 \end{aligned}$		$\begin{aligned} & 551.3 \\ & 653.9 \end{aligned}$					
818.8976	.0024	$(1,2,3,4)$	$\begin{array}{r} 700.1490 \\ 627.2645 \\ 551.7082 \\ \times 458.2818 \\ * 333.1265 \\ 282.7662 \\ 269.5646 \\ 185.4943 \end{array}$.0269 .0325 .0125 .0613 - 1099 .0037 .0055 .0167		$\begin{aligned} & 20 \\ & 29 \\ & 16 \\ & 17 \\ & 17 \\ & 11 \\ & 12 \\ & 24 \end{aligned}$		$\begin{aligned} & 118.7 \\ & 191.6 \\ & 267.2 \\ & 360.6 \\ & 485.7 \\ & 536.1 \\ & 549.3 \\ & 633.4 \end{aligned}$					
820.6035	.0033	$<=3$	$\begin{aligned} & 820.6201 \\ & 819.4732 \\ & 553.4035 \\ & 439.4352 \\ & 284.4710 \end{aligned}$.0199 .0160 .0245 .0172 .0034	.0471 .1781 .0193 .0927	$\begin{aligned} & 18 \\ & 23 \\ & 25 \\ & 21 \\ & 10 \end{aligned}$	(E2)	$\begin{array}{r} 0 \\ 267.1 \\ 381.2 \\ 536.1 \end{array}$	5980.54	.20	.0983	1	
854.0261	. 0042	$(1,2,3,4)$	$\begin{array}{r} 735.2906 \\ \times \quad 421.6896 \\ 304.6982 \\ 259.0174 \end{array}$.0235 .0213 .0059 .0241		19 23 12 37	(E2)	$\begin{aligned} & 118.7 \\ & 432.3 \\ & 549: 3 \\ & 595.0 \end{aligned}$	5952.39	.21	.0390	1	
880.4397	.0030	$(1,2,3,4)$	$\begin{aligned} & 761.7231 \\ & 681.7501 \\ & 643.6032 \\ & 354.8332 \end{aligned}$.03 .42 .0280 .0050 .0043	.0276 .0098 .1884 .0107	$\begin{aligned} & 39 \\ & 47 \\ & 15 \\ & 16 \end{aligned}$		$\begin{aligned} & 118.7 \\ & 198.7 \\ & 236.8 \\ & 525.6 \end{aligned}$					
881.4431	. 0018	$<=3$	$\begin{array}{r} 881.3290 \\ 501.2943 \\ 449.1455 \\ 355.8300 \\ 341.9134 \\ 330.1327 \\ 302.1967 \\ 291.7042 \\ 182.9480 \\ \times \quad 107.8492 \end{array}$.0090 . 1085 .0790 .0445 .0269 .0069 .0039 . 0151 .0050 .0016	.1172 - 0152 .0227 .0157 .0308 .1823 .0156 - 0108 .0301	$\begin{aligned} & 21 \\ & 30 \\ & 21 \\ & 12 \\ & 18 \\ & 9 \\ & 11 \\ & 18 \\ & 15 \\ & 21 \end{aligned}$	$\mathrm{M1}, \mathrm{E} 2$ Mi	$\begin{aligned} & 381.1 \\ & 380.1 \\ & 432.3 \\ & 525.6 \\ & 539.5 \\ & 551.3 \\ & 579.7 \\ & 589: 7 \\ & 698.5 \\ & 773.6 \end{aligned}$	5925.10	.39	. 0080	b	
846.5671	. 0028	$<=3$	895.4620	. 0056	. 4744	18		1.1	5910.05	. 21	. 0545	1	

NUCLEAR STATES			DEEXCITATIUNGAMNA-TRANSITIUNS						PRIMARY TRANSITIONS			
$\begin{gathered} \text { EllFKGY } \\ (\text { KEV } \end{gathered}$	ERRUR (KEVV)	SPIN \& PARITY	ENERGY (KEV)	ERROR (KE:V)	INTFNS ($1 / 100 \mathrm{~N}$	$(\mathrm{TY},$	MULTIPOLARITY	FINAL LEVFIL	ENERGY (KEV)	ERROK (KEV)	INTENS (I/100	
			$\begin{array}{r} 704.9641 \\ 516.3147 \\ 515.4003 \\ \times 317.3171 \\ 301.6067 \\ * \quad 198.0730 \end{array}$.0116 - 0004 . 0064 .0049 .0165 .0060	.0353 .0115 .0126 .0073 .0110 .0105 .0105	$\begin{aligned} & 21 \\ & 27 \\ & 44 \\ & 28 \\ & 20 \\ & 15 \end{aligned}$		$\begin{aligned} & 191.6 \\ & 380.1 \\ & 381.2 \\ & 579.2 \\ & 595.0 \\ & 698.5 \end{aligned}$				
910.8141	. 0018	$<=3$	$\begin{array}{r} 910.7989 \\ 792.1030 \\ 478.4824 \\ 441.9973 \\ 425.0885 \\ 361.4601 \\ * 331.5687 \\ * 321.0706 \\ 315.8387 \\ 247.4130 \\ 204.7548 \\ 143.8452 \end{array}$.0268 .0036 .0127 .0098 .0028 .0161 .0050 .1045 .0364 - 0118 .0036 .0085	.0808 .5377 .0486 .1839 .0575 .0232 .0321 .0248 .0056 .0056 .0099 .0056	$\begin{aligned} & 20 \\ & 17 \\ & 45 \\ & 22 \\ & 19 \\ & 14 \\ & 9 \\ & 10 \\ & 27 \\ & 28 \\ & 11 \\ & 29 \end{aligned}$	M1, E2	$\begin{aligned} & 0 \\ & 118.7 \\ & 432.3 \\ & 468.8 \\ & 485.7 \\ & 549.3 \\ & 579.2 \\ & 589.7 \\ & 595.0 \\ & 663.4 \\ & 706.1 \\ & 767.0 \end{aligned}$	5895.85	. 20	.1672	1
913.3548	.0037	$(1,2,3,4)$	$\begin{aligned} & 794.6427 \\ & 532.1729 \\ & 364.0411 \\ & 298.2768 \end{aligned}$.0063 .0104 .0127 .0127		$\begin{aligned} & 14 \\ & 37 \\ & 18 \\ & 24 \end{aligned}$		$\begin{aligned} & 118.7 \\ & 381.2 \\ & 549.3 \\ & 615.1 \end{aligned}$				
923.0445	.0029	$(1,2,3,4)$	$\begin{aligned} & 806.3344 \\ & 733.4219 \\ & 564.4521 \\ & 310.0044 \\ & 158.0822 \end{aligned}$.0074 .0112 .0138 .0174 .0044	.0718 .0369 - 0228 .0036 .0175	$\begin{aligned} & 16 \\ & 30 \\ & 23 \\ & 29 \\ & 15 \end{aligned}$	$\mathrm{M} 1+\mathrm{F} 2$	$\begin{aligned} & 118.7 \\ & 191.6 \\ & 360.6 \\ & 615: 1 \\ & 767.0 \end{aligned}$				
954.3219	. 0021	$<=3$	$\begin{array}{r} 954.3121 \\ 687.0727 \\ 521.9918 \\ 485.5202 \\ 428.7747 \\ 404.9836 \\ 290.8970 \\ 248.2647 \\ 205.8 .111 \end{array}$.0176 .0346 .0065 .0111 .1098 .0384 .0205 .0071 .0132	.1002 .1323 - 0261 .0612 .0062 .0190 .0033 . U132 .0061	$\begin{array}{r} 24 \\ 118 \\ 43 \\ 42 \\ 1.53 \\ 21 \\ 35 \\ 11 \\ 15 \end{array}$		$\begin{aligned} & 267.2 \\ & 432.3 \\ & 468.8 \\ & 525.6 \\ & 549.3 \\ & 663.4 \\ & 706.1 \\ & 748.5 \end{aligned}$	5852.56	. 23	. 02228	3

NUC	AR STA		DEEXCITATION GAMMA-TVANSITIUNS						PRIMARY TKANSITIJNS			
BDERGY (KLV) -----	ERRUR (KEV)	SPIN PARITY	ENFRGY (KEV)	ERRUR (KF:V)	1NTENSI (I/10ON	$\begin{aligned} & \mathrm{T} Y \\ & \left.\hline \frac{3}{3}\right) \end{aligned}$	MU1」T POLARITY	FINAL LEVE.L	$\begin{aligned} & \text { FNERGY } \\ & \text { (KEV) } \end{aligned}$	ERROR (KEV)	ITTANS ($1 / 100$	
			$\begin{aligned} & 187.3519 \\ & 180.7251 \\ & 168.7486 \end{aligned}$.0049 .0093 .0042	.0079 .0048 .0095	$\begin{aligned} & 21 \\ & 20 \\ & 13 \end{aligned}$		$\begin{aligned} & 767.0 \\ & 773.6 \\ & 785.6 \end{aligned}$				
979.7109	.0029	$(1,2,3,4)$	$\begin{array}{r} 860.9774 \\ 781.0471 \\ 708.2675 \\ 443.5453 \\ 314.7801 \\ \times 296.6387 \\ 212.7509 \end{array}$.0150 .0107 .0270 .0192 .0402 .0208 .0038	.1458 .0778 .0217 .0107 .0048 .0053 .0106	$\begin{aligned} & 21 \\ & 22 \\ & 33 \\ & 22 \\ & 38 \\ & 31 \\ & 15 \end{aligned}$		$\begin{aligned} & 118.7 \\ & 198: 7 \\ & 271.4 \\ & 536: 1 \\ & 664.9 \\ & 683.1 \\ & 767.0 \end{aligned}$				
944.9763	. 0024	$<=3$	$\begin{array}{r} 796.2833 \\ 739.9730 \\ 727.7810 \\ 509.2575 \\ 458.8450 \\ 437.9426 \\ * 331.5087 \\ 288.9508 \\ 244.1307 \\ 221.3921 \\ 176.0784 \end{array}$.0112 .0055 .0058 .0151 .0416 .0050 .0253 .0095 .0059 .0032	.0956 .0188 .3188 .0773 .0816 .0211 .0321 .0065 .0061 .0032 .0244	$\begin{aligned} & 17 \\ & 20 \\ & 19 \\ & 36 \\ & 16 \\ & 21 \\ & 9 \\ & 35 \\ & 23 \\ & 37 \\ & 11 \end{aligned}$	M1	$\begin{aligned} & 198.7 \\ & 255.0 \\ & 267.2 \\ & 485: 7 \\ & 536.1 \\ & 557.0 \\ & 663.4 \\ & 706.1 \\ & 750.8 \\ & 773.6 \\ & 818.9 \end{aligned}$	5811.75	. 20	. 3276	1
1012.9672	. 0019	$<=3$	$\begin{array}{r} 1012.9526 \\ 814.2963 \\ \times 547.1371 \\ 516.1291 \\ * 485.5202 \\ 463.6212 \\ \times 314.4755 \\ 253.4073 \end{array}$.0163 .0050 -0508 . 0107 -0111 - 0283 .012 .019	1.0709 .3466 .4092 .0145 .0612 .0238 .0206 .0343	$\begin{aligned} & 23 \\ & 18 \\ & 45 \\ & 33 \\ & 42 \\ & 17 \\ & 11 \\ & 10 \end{aligned}$	$\mathrm{M} 1, \mathrm{E} 2$ (F:2)	$\begin{aligned} & 19 \\ & 198.7 \\ & 468.8 \\ & 496.8 \\ & 527.5 \\ & 549.3 \\ & 698.5 \\ & 759.6 \end{aligned}$	5793.56	. 20	-6194	1
1034.8108	. 0025	$<=3$	$\begin{array}{r} 1034.8382 \\ 767.6017 \\ 653.6636 \\ 563.6037 \\ 498.6698 \\ 371.4271 \\ 304.0783 \end{array}$.0194 .0196 .0093 .0116 .0107 .0124	.0824 .1410 .0634 .0108 .0409 .0304 .0057	$\begin{aligned} & 16 \\ & 15 \\ & 18 \\ & .34 \\ & 43 \\ & 11 \\ & 19 \end{aligned}$		$\begin{array}{r} \\ 267.2 \\ 381: 2 \\ 471.2 \\ 536.1 \\ 663.4 \\ 725.7 \end{array}$	5771.93	. 20	.2359	1

	AR ST		DEEXCITATIUN GAMMA-TKANSITIONS						PRIMARY TRANSITIOPS			
EHERGY (KEV)	ERKOR (KEV)	SPIN \& PARITY	$\begin{gathered} \text { EHERGY } \\ (K E V) \end{gathered}$	$\begin{aligned} & \text { ERROR } \\ & (K E V) \end{aligned}$	INTENS (I/100N	$9 \mathrm{Y}$	M1JLTI = PULAKIT	FINAL LEVEL	ENERGY (KF.V)	ERRUR (KF:V)	$\begin{aligned} & \text { INTHNS } \\ & (1 / 100 \end{aligned}$	
			$\begin{aligned} & 267.8466 \\ & 215.9088 \end{aligned}$.0141 .0073	.0191 .0056	$\begin{aligned} & 16 \\ & 27 \end{aligned}$		$\begin{aligned} & 767.0 \\ & 818.9 \end{aligned}$				
1036.7803	. 0039	$(1,2,3,4)$	$\begin{array}{r} 918.1347 \\ 656.6502 \\ 655.6249 \\ 551.0582 \\ +421.6896 \\ 277.2140 \\ \times 216.1850 \end{array}$	$\begin{array}{r} .0263 \\ .0353 \\ .0119 \\ .0085 \\ .0213 \\ 0049 \\ .0169 \end{array}$	$\begin{array}{r} .0507 \\ .0173 \\ .0887 \\ .0222 \\ .0216 \\ .0157 \\ .0023 \end{array}$	$\begin{aligned} & 18 \\ & 28 \\ & 27 \\ & 46 \\ & 23 \\ & 14 \\ & 43 \end{aligned}$		$\begin{aligned} & 118.7 \\ & 380.1 \\ & 381 \\ & 485: 7 \\ & 61551 \\ & 759.6 \\ & 820.6 \end{aligned}$				
1066.5093	. 0076	$<=3$	$\begin{array}{r} 1066.5272 \\ \times 476.7462 \\ \times 453.4649 \\ * 383.4595 \end{array}$			$\begin{aligned} & 19 \\ & 61 \\ & 26 \\ & 59 \end{aligned}$		$\begin{array}{r} 589.0 \\ 613.7 \\ 683.1 \end{array}$	5740.16	. 21	. 1265	1
1097.4306	. 0022	$<=3$	$\begin{array}{r} 1097.4214 \\ 898.7481 \\ 502.4561 \\ * 443.5453 \\ 432.5694 \\ * 348.3503 \\ * 346.6230 \\ * 337.9233 \\ * 330.4776 \\ * 323.8332 \\ 311.8589 \\ 278.5336 \end{array}$	$\begin{aligned} & .0193 \\ & .0066 \\ & .0643 \\ & .0192 \\ & .0130 \\ & .0127 \\ & .0254 \\ & 0790 \\ & .0115 \\ & .0045 \\ & .0021 \\ & .0105 \end{aligned}$	$\begin{aligned} & 1977 \\ & .3753 \\ & 06999 \\ & .0107 \\ & 0077 \\ & 0187 \\ & 00669 \\ & 00087 \\ & 0102 \\ & 00426 \\ & 00354 \\ & .0095 \end{aligned}$	$\begin{array}{r} 21 \\ 14 \\ 34 \\ 22 \\ 25 \\ 11 \\ 17 \\ 58 \\ 20 \\ 8 \\ 9 \\ 20 \end{array}$		$\begin{aligned} & 19 \\ & 198.7 \\ & 595.0 \\ & 653.9 \\ & 664.9 \\ & 748.5 \\ & 750.8 \\ & 759.0 \\ & 767.0 \\ & 773.6 \\ & 785.6 \\ & 818.9 \end{aligned}$	5709.09	. 21	. 2849	1
1100.6389	. 0021	<=3	$\begin{array}{r} 1106.6445 \\ 907.9644 \\ 869.6677 \\ 835.1133 \\ 746.0504 \\ * 423.5572 \\ * 358.1371 \\ * 333.1265 \\ * 321.0706 \\ * 295.2963 \\ 181.5950 \end{array}$	$\begin{aligned} & .0111 \\ & .0076 \\ & 00335 \\ & 00389 \\ & 00073 \\ & 00083 \\ & 00048 \\ & 01099 \\ & 00045 \\ & 00030 \\ & .0066 \end{aligned}$	$\begin{aligned} & .5111 \\ & .5447 \\ & .0291 \\ & .0538 \\ & .1692 \\ & .6821 \\ & .4357 \\ & .0061 \\ & .0248 \\ & 01771 \\ & .0048 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \\ & 20 \\ & 27 \\ & 17 \\ & 21 \\ & 18 \\ & 17 \\ & 10 \\ & 14 \\ & 20 \end{aligned}$	$\begin{aligned} & M 1, E 2 \\ & M 1, E 2 \end{aligned}$	$\begin{aligned} & 18 \\ & 198.7 \\ & 237.0 \\ & 271.4 \\ & 360.6 \\ & 683.1 \\ & 748.5 \\ & 773.6 \\ & 785.6 \\ & 811.3 \\ & 925.0 \end{aligned}$	5700.24	. 20	. 8328	1

WJC	AR STA		DEEXCITATION GAMMA-TRANSITIONS						PRIMARY TRANSITIONS			
ENERGY (KEV)	ERIROH (KEV)	SPlN $\&$ PARITY	EIIERGY (KEV)	ERROR (ke:V)	INTEISSI $(1 / 100 \mathrm{~N}$	$\left[\begin{array}{l} {[\mathrm{T}} \\ \left.y, \frac{4}{0}\right] \end{array}\right.$	$\begin{array}{r} \text { MUL } \\ \text { POLA } \end{array}$	F1NAL LEVEL	$\begin{gathered} \text { ENFRGY } \\ (K E V) \end{gathered}$	ERROR (KEV)	$\begin{aligned} & \text { INTEN } \\ & \text { CI/10 } \end{aligned}$	
			$\begin{array}{r} 152.3142 \\ 126.9334 \\ 09.8440 \end{array}$.0026 .0053 .0203	.0072 .0063 .0049	$\begin{array}{r} 21 \\ 28 \\ 124 \end{array}$	F. 2	$\begin{array}{r} 954.3 \\ 979.7 \\ 1036.8 \end{array}$				
1164.3234	.0037	$<=3$	$\begin{array}{r} 1164.3159 \\ 897.2051 \\ 458.2818 \\ 23972784 \\ 184.0128 \end{array}$.0356 .0692 .0613 .0040	$\begin{array}{r} 1287 \\ .0433 \\ .0352 \\ .0146 \\ .0103 \end{array}$	$\begin{aligned} & 17 \\ & 34 \\ & 17 \\ & 13 \\ & 10 \end{aligned}$		$\begin{array}{r} \\ 267.2 \\ 706: 1 \\ 925.0 \\ 979.7 \end{array}$	5641.82	. 21	.1493	2
1168.9967	. 0026	$<=3$	$\begin{array}{r} 1167.8685 \\ \times 700.1490 \\ 504.1336 \\ 402.0356 \\ \times 384.4595 \\ 314.9685 \\ 134.1856 \end{array}$	0231 -0269 .0092 .0376 .0086 .0014	$\begin{aligned} & .2291 \\ & .0379 \\ & .0095 \\ & .1241 \\ & .0161 \\ & .0058 \\ & .0207 \end{aligned}$	$\begin{aligned} & 29 \\ & 20 \\ & 52 \\ & 19 \\ & 59 \\ & 24 \\ & 16 \end{aligned}$	E2 M 1	$\begin{array}{r} 19.1 \\ 468: \% \\ 664: 9 \\ 767: 0 \\ 785: 6 \\ 854: 0 \\ 1034.8 \end{array}$	5637.69	. 28	. 1443	1
1175.7303	. 0036	$<=3$	$\begin{array}{r} 690.0070 \\ 650.1409 \\ 648.2789 \\ 477.2353 \\ * 295.2963 \\ * 264.9047 \\ 262.3711 \end{array}$	$\begin{aligned} & .0268 \\ & .0203 \\ & 0007 \\ & 00067 \\ & .0086 \\ & 0132 \\ & .0055 \end{aligned}$	$\begin{array}{r} .0335 \\ .0185 \\ .1008 \\ .0207 \\ .0171 \\ .0152 \\ .2993 \end{array}$	$\begin{aligned} & 30 \\ & 21 \\ & 21 \\ & 31 \\ & 14 \\ & 18 \\ & 13 \end{aligned}$	M 1	$\begin{aligned} & 485.7 \\ & 525.6 \\ & 527.5 \\ & 698.5 \\ & 880.7 \\ & 910.8 \\ & 913.4 \end{aligned}$	5630.81	. 21	. 1035	1
1178.2515	.0053	$(1,2,3,4)$	$\begin{array}{r} 1059.4948 \\ 317.6614 \\ 707.0547 \\ 583.2749 \\ 563.1592 \\ 404.6667 \\ \times 264.9047 \end{array}$.0678 .0440 .0152 $.019{ }^{\circ}$.0167 .0132	.0390 .0649 .0713 .0206 .0235 .0152	$\begin{aligned} & 29 \\ & 23 \\ & 23 \\ & 28 \\ & 28 \\ & 25 \\ & 18 \end{aligned}$		$\begin{aligned} & 118.7 \\ & 360.6 \\ & 471.2 \\ & 595: 0 \\ & 615: 1 \\ & 773.6 \\ & 913.4 \end{aligned}$				
1185.2142	. 0034	$<=3$	$\begin{array}{r} 1066.5272 \\ 824.6252 \\ 804.0070 \\ 716.3714 \\ 595.4602 \\ 496.7168 \end{array}$	- 0114 -0118 .0378 . © 126 .0088	$\begin{aligned} & 1514 \\ & .0831 \\ & .0193 \\ & .0221 \\ & .0273 \\ & .0272 \end{aligned}$	$\begin{aligned} & 19 \\ & 19 \\ & 18 \\ & 23 \\ & 29 \\ & 25 \end{aligned}$		$\begin{aligned} & 118.7 \\ & 360.6 \\ & 381.2 \\ & 468.8 \\ & 589.7 \\ & 698.5 \end{aligned}$	5621.37	. 2.1	. 05 か\%	2

$\begin{gathered} \text { E-GAMIAA } \\ (K E V) \end{gathered}$	HELL	$\begin{gathered} \text { E-ELECTRON } \\ (K E V) \end{gathered}$	ERROR (KEV)	INTENSITY ($1 / 100 \mathrm{~N}$)	RROR (\%)	I.C.C.	MULTI FINAL POLARITY ASSIGNMENT	
93.3941	L1							M 1
	K	78.6082 67.8968	. .0134	$\begin{array}{r} 0095 \\ : 7411 \end{array}$	13.8 3.0	. $384 \mathrm{E}+00$	$M 1+E 2$	
	L 1	+ 89.5917	. 0078	.0820	1.1	- $136 \mathrm{E}+00$		
	$L 2$	89.8604	.0097	. 0087	14.4	-146E+00	$\begin{aligned} & M 1 \\ & M 1+E 2 \end{aligned}$	
	L3	90.0597	.0113	. 0066	10.2	-110E-01	$\begin{aligned} & M 1+E 2 \\ & M 1+E 2 \end{aligned}$	
93.8615	${ }_{\mathrm{H}} \mathrm{L}$	92.6773	. 0072	. 0150	13.8	-247E-01	M1	
93.8615	L	68.3428 $+\quad 90.059$	-0068	. 0256	52.2	-182E+01	M1	M 1
$\begin{array}{r} 96.8369 \\ 100.95993 \\ 101.8546 \end{array}$	K	+ 71.3192	.0175	. 0.0136	10.2 32.8	-473E+00	M1	$\begin{aligned} & M 1 \\ & M 1+E 2 \\ & M 1 \end{aligned}$
	K	75.4506	.0186	. 0096	15.9 15	-153E+00	$M 1$ $M 1+E 2$	
	K	76.3391 +98.0377	. 0069	. 0424	15.8	. $879 \mathrm{E}+00$	M1 ${ }^{\text {M }}$	
102.5408	K	* 97.0371	-0147	-0061	15.4	-126E+00	M1	
103.9407	L1	98.7244	. 0255	- 0023	27.4	- $324 \mathrm{E}+00$	E 1	E1
	K	78.4413 +10036	. 0123	. 0143	7.9	$.132 E+01$	$\mathrm{M} 1+\mathrm{E} 2$	M1 1 E 2
	L2	*100.3866	. 0201	. 0033	21.3	$.306 \mathrm{E}+00$	E2	
104.2191	L2	$* 100.3866$ 78.7217	. 0221	. 0033	21.3	- $306 E+00$		
	L1	+100.3860	. 02181	-0088	21.7	- $154 \mathrm{~F}+{ }^{\text {c }}+01$		M 1
104.7824	K	79.2699	.0071	-.3202	21.3 2.0	. $.9615+01$	$M_{1}, E 3$	
	± 1	100.9748	.0119	-0319	2.3	-956E-01	$\begin{gathered} M 1 \\ M 1 \end{gathered}$	
	+ +12 $+\quad \mathrm{L} 2$	101.2173	. 0345	. 0038	28.1	. 113 t -01	$M 1+E 2$	
	* L2		. 0242	. 0039	21.4	.117E-01	$M 1+E 2$	
	M1	*104.0658	.0141	-0079	17.3	-116F-01	$\mathrm{M1}+\mathrm{E} 2$	
105.8272	K	80.3153	.0075	1.0793	10.1	- $226 \mathrm{E}-01$	M 1	M 1
	L 1	102.0178	.0119	1.1163	3.6	-954E+00	M1	
	L2	102.3049	.0125	. 0085	4.7	. $694 \mathrm{E}-02$	${ }_{M 1}$	
	M 1	105.1116	. 0123	. 0234	3.2	. $192 \mathrm{E}-01$	M1	
	M2	*105.2606	.0267	-0049	20.9	. $406 \mathrm{E}-02$	M1 +E2	
	M3	$\times 105.2606$.0267	.0049	20.9	-406E-02	$M 1+E 2$	
107.1307 107.7742	K	81.6267 82.2489	-0162	. 0050	18.6	-862E+00	M1	M1
107.8492	K	82.2489 82.3415	-0103	-0066	30.1	- $114 \mathrm{E}+01$	M1	M1
	L1	+104.0658	. 0141	. 0073	$1{ }^{6} 0$	- $886 \mathrm{E}+00$	M1	M 1
108.2220	K	82.7114	.0073	.0571				M 1
	L1	104.4227	-0132	-0071	11.4	$\begin{array}{r} 822 E+00 \\ -103 E+00 \end{array}$	$\begin{aligned} & M 1 \\ & M 1 \end{aligned}$	
	L2	104.6762	. 0190	. 0030	17.8	-432E-01	$\mathrm{M1}+\mathrm{E} 2$	
	${ }_{\mathrm{N}} 1$	107.5178	. 0281	. 0032	22.1	-459E-01	E2	
108.8643	L3	105.5721	-0230	-0040	24.7	-879E+00	M1	M 1
109.6954	K	84.1774	.0076					
	L1	105.8949	.0160	. 0042	20.2		$\begin{aligned} & M 1 \\ & M 1+E 2 \end{aligned}$	M1

$\begin{gathered} E=G A M+1 A \\ (K E V) \end{gathered}$		$\begin{gathered} \mathrm{E}-\mathrm{FLECTRON} \\ (K E V) \end{gathered}$	$\begin{aligned} & \text { ERROR } \\ & \text { (KEV) } \end{aligned}$	INTENSITY	$\begin{gathered} \text { ERROR } \\ \left(\frac{\circ}{5}\right) \end{gathered}$	I.C.C.	NULTI= FINAL POLARITY ASSIGNMENT	
126.9334	K	* 101.4061	. 0150	. 0039				
129.0332	K	103.5644	-0261	-0048	17.3 19.0	$177 \mathrm{E}+01$ $.104 \mathrm{E}+01$	$\begin{aligned} & E 2 \\ & M 1+E 2 \end{aligned}$	$\begin{aligned} & \mathrm{E} 2 \\ & M 1+\mathrm{E} 2 \end{aligned}$
132.7103	K L 1	$\begin{aligned} & 107.1971 \\ & 128.9089 \end{aligned}$.0123	-0967	19.0 1.2	$1104 E+01$ $-478 E+00$	M1 + E2 M1	$\begin{aligned} & M 1+E 2 \\ & M 1 \end{aligned}$
	L1	128.9089 +1319927	$.0142$	$.0110$	6.5	$.542 \mathrm{E}=01$	$M 1$	
	M1	* 131.9922	. 0165	. 0053	17.1	-264E-01	E2	
$134 \cdot 1856$	K	*108.6619	. 0211	-0032	23.4	-452EF+00	M1	
135.9048 135.9483	K	*110.4191	. 0290	.0032	23.9	-935E+00	E2	$\begin{aligned} & M 1 \\ & (M 1) \end{aligned}$
135.9483 136.5468	K	* 110.4191	-0290	. 0032	23.9	-115E+01	E2	
136.5468	K	111.0439	- 0130	- 0104	11.8	$.588 \mathrm{E}+00$	$\mathrm{Mi}+\mathrm{E} 2$	$\begin{aligned} & M 1) \\ & M 1+E 2 \end{aligned}$
137.0285	${ }_{K}^{L}$	132.7766	-0284	. 0028	15.8	- $160 E+00$		M1+E2
137.4578	K	111.5127 111.9320	- 0150	-0047	16.2	- $824 \mathrm{E}+00$	$\mathrm{M1}+\mathrm{E} 2$	$M 1+\varepsilon 2$
137.9512	K	112.4334	. 02142	.0051	$1 \frac{1}{17.8}$	$373 E+01$ $.443 E+00$	M2	
	L 1	134.1422	-0275	-0029	$28 . \frac{1}{2}$	- $2435+00$	M1	M1
142.6905	K	117.1781	.0189		15.3			
143.5209	K	+118.0391	.0251	-0030	27.3	$\begin{array}{r} 633 E+00 \\ -189 F+01 \end{array}$	$\mathrm{N} 1+\mathrm{E} 2$	$M 1+E 2$
144.1368	K	118.6236	.0131	-0538	1.1	$\begin{array}{r} 189 \mathrm{~B}+01 \\ -44 \mathrm{E}+00 \end{array}$		
	L1	140.3114	.0165	-0063	10.9	$\begin{array}{r} .441 E+00 \\ .520 \mathrm{E}-01 \end{array}$	$M 1+E 2$	M1
	L3	140.7825	.0178	-0043	12.4	. $356 \mathrm{E}-01$		
144.3314	K	118.8108	-0190	- 0040	14.4	-123E+01	M 2	
148.5258	K	122.9931	.0314	-0028	24.7	-118E+01		M1,E2
149.1623	K	123.6505	-0135	-0306	1.4	- $338 \mathrm{EE+0} 0$	$\begin{aligned} & E 2 \\ & M 1 \end{aligned}$	
	L1	$145 \cdot 3651$.0214	-0048	14.4	$\begin{array}{r} -538 \mathrm{E}=01 \\ .533 \end{array}$	$M 1+E 2$	M 1
	N1	148.4055	-0329	. 0036	23.2	- $395 \mathrm{E}=01$	M1+E2	
152.7406	K	127.2265	.0137	-1066	1.0	- $315 \mathrm{E}+00$		M1
	L1	148.9224	.0128	-0124	5.4	- $366 \mathrm{E}=01$	M1	M 1
	L2	149.2154	$.0331$	-0029	23.6	- $-867 \mathrm{E}=02$	$M_{1}^{1}+E 2$	
	L3	149.3956	-0317	- 0030	19.6	-879E=02	$\text { M1 + E } 2$	
	M1	152.0182	-0217	-0025	27.1	- $732 \mathrm{E}=02$	$\begin{array}{ll} M 1 \\ M 1 \end{array}$	
	K	128.4053	-0295	-0031	19.8	-408E+00	M1	
156.2459	K	130.7271	$.0142$	$\begin{array}{r} .0121 \\ .012 \end{array}$	19.8 3.7	- $288 \mathrm{C}+00$	M1	$\begin{array}{ll} M 1 \\ M 1 \end{array}$
	L 1	152.4523	-0360	-0034	12.6	$\bullet 282 \mathrm{E}+00$	M 2	MI
156.7364	K	131.1790	-0208	-0029	15.5	$.806 \mathrm{E}+00$	E2	
157.4688	K	$\text { * } 131.9922$. 0165	$.0053$	17.1	$\begin{array}{r} 806 \mathrm{E}+00 \\ .860 \mathrm{E}+00 \end{array}$	E 2.	(E2)
157.5424	K	$\text { * } 131.9922$	-0165	-0053	17.1	$\begin{array}{r} 860 E+00 \\ 113 \mathrm{E}+09 \end{array}$		
158.0822	K	132.5576	-0174	-0030	11.7			
159.2676	K	133.9087	-0314	. 0027	33.4	-928E+00	$M 1+E 2$ $E 2$	
161.9051	K	136.3884 158 1062	- 0144	-0419	3.4 1.4	-243E+00		$\begin{aligned} & (E 2) \\ & M 1 \end{aligned}$
	11	158.1062	.0139	. 0055	5.9	-318E=01	M 1	
	M1	* 161.2120	.0149	. 0036	6.7	- 207 E - 01	M 1	
162.3559	K	136.8416	$.0146$		8.2	$.262 \mathrm{~F}+00$		
164.3008	K	138.7803	-0160	$.0067$	7.5	$\begin{aligned} & -262 E+00 \\ & -262 E+00 \end{aligned}$	$\begin{aligned} & M 1 \\ & M 1 \end{aligned}$	M1
	L1	160.5430	.0318	.0026	16.2	- $101 \mathrm{E}+00$	M 1	M1

$\begin{gathered} E-G A M M A \\ (K E V) \end{gathered}$		$\begin{gathered} \text { E-EI IECTRON } \\ (K E V) \end{gathered}$	ERROR (KEV)	IMTENSITY	$\begin{aligned} & \text { ERROR } \\ & \left(\frac{z}{6}\right) \end{aligned}$	I.C.C.	NULTI- FINAL	
	MT		. 0312					
235.9129	K	230.3941 +232.1280	.0285	. 1075	8.0 2.7	$\begin{array}{r} 278 \mathrm{E}-02 \\ .126 \mathrm{E}+00 \end{array}$	$\begin{aligned} & M 1+E 2 \\ & M 1+E 2 \end{aligned}$	M1+E2
	L1	$\begin{aligned} & * 232.1280 \\ & * 232.3897 \end{aligned}$. 0308	. 0125	5.6	$\text { - } 146 E-01$	$\begin{aligned} & M 1+E 2 \\ & M 1+E 2 \end{aligned}$	M1+E2
	L2	$\begin{array}{r} 232.3897 \\ 232.5692 \end{array}$.0338 .0518	. 0026	17.3	- $300 \mathrm{E}-02$	$M 1+E 2$	
	MT	232.5692 235441	. .0446	. 0022	13 14.6	- $256 \mathrm{E}-02$	$M 1+E 2$ $M 1+E 2$	
236.2452	K	210.7143	. 0293	-. 0045	20.6	-138E+00	$\mathrm{M} 2+\mathrm{E} 2$	
237.0309	K	211.5113	. 0285	.0399	2.0	- $356 \mathrm{~F}-01$	E1	E1
	L1	233.2466	. 0326	. 0042	9.8	- 378 - 02	E. 1	
	M'	236.3941	. 0616	. 0025	39.0	. $219 \mathrm{E}-02$	M1	
237.2567	K1	211.7402	. 0286	-0209	2.3	-107E+00	M1	M 1
238.3200	K	212.8066	. 0362	-0026	13.7	-135E-01	M 1	
	L1	+ 234.4905	. 0656	. 0019	42.6	-986E=01	M ${ }^{1}$	M1
244.8277	K	219.3127	.0292	. 0125	2.5	-981E-01	M1	M1
	L1	241.0725	. 0367	-0041	12.5	- $325 \mathrm{E}-01$		M1
249.4432	K	223.9268	. 0317	. 0040	11.6	- $795 \mathrm{E}-01$	M1	M1
252.2176 253.4073	K	226.7016 +227.8521	. 0302	. 0068	6.7 9.7	-826E-01	M1	M1
259.7975	K	* 234.2328	.0612	. 0022	39.7	- $135 \mathrm{~F}+00$	E2	(E2)
259.9926	K	+ 234.4905	. 0656	. .0019	42.6	- $108 \mathrm{~F}+01$	E 2	
262.3711	K	236.8772	.0307	. 0086	12.2	- $824 \mathrm{E}-01$	M 1	
205.0598	K	239.5573	. 0451	- 0034	14.0	-183F+00	M1	(E2)
266.0805	K L 1		. 0314	. 0089	5.2	- $305 \mathrm{E}-01$		E. 1
267.1973	K	262.2972	+ 0568	- 0030	26.2	-103E-01	M1, E2	
	L1	263.4357	. 0329	. 0168	$\frac{1}{3} .0$	- $988 \mathrm{CE}-01$	M1+E2	M1
	L 2	* 263.7464	.0617	. 0020	34.4	-121E-02	$M 1+E 2$ $M 1+E 2$	
	L3	* 263.7464	.0617	. 0020	34.4	-121E-02	$M 1+\mathrm{E}^{2}$	
	it ${ }^{\text {T }}$	266.5627	. 0469	. 0039	10.7	-230E-02	M1 + E2	
268.2947 268.9341	K	242.8042	. 0332	. 0046	35.3	-860E=01	M1, E2	M1, E2
268.9341 269.3320	K	243.4387 243.8828	.0346 .0523	. 0032	20.1	-858E-01	M1	M1
270.1248	K	244.6360	. .0312	. 0023	22.7	-131E+00	E2	E2
	11	266.4114	. 06778	. 0035	35.8	-187E=01	$M 1+E 2$	M 1
282.1278	K	256.6307	.0386	.0022	28.2		M1, ${ }^{\text {ch }}$	
283.7069	K	* 258.1935	.0679	-0016	47.3	-150E+00	¢1, 2	M1 E2
283.8242	K	* 258.1935	. 0679	. 0016	42.3	- $226 \mathrm{E}+00$	M2	(E2)
284.4710	K	258.9876	.0532	. 0036	20.9	-112E+00	M2	(E2)
287.0459	K	261.5811	. 0326	. 0163	2.9	- $746 \mathrm{~F}-01$	$\mathrm{M} 1+\mathrm{E} 2$	$\mathrm{M} 1+\mathrm{E} 2$
292.7221	L1	283.3207 267.2373	. 0534	. 0023	14.8	- 106E-01	E2 2	
294.1131	K	268.0258	- 0534	. 0026	22.9	$-197 F+00$ $-1896+00$		(M2)

E-GAmd ${ }_{\text {(KEV) }}$		ELECTRON	ERROR	NSSIT	RROR		OLA	IG
574.1173	K							
574.9165	K	548.5716 549	.0663	. 0012	25.2 9.6	-766E-01	M1, E2	
583.8035	K	558.1911	-0627	. 0008	22.4	-130E-01	M1, E2	M1,
588.6239	K	563.1110	-0344	.0023	${ }_{9} 9$.853E-02	M1, E2	${ }^{M 1} 1$
	${ }_{\mathrm{L}} 1$	+584.7819	. 0588	. 0017	$17: 2$	-429E-02	M2, ${ }^{\text {M }}$	M1, E
593.8377 610.3374	K	568.3393 $\times 584.7819$. 0366	. 0030	17.9	- $106 \mathrm{E}=01$	M1, E2	M1, E2
610.9268	K	585.3437	. 0606	. 0014	18.5	. $678 \mathrm{E}=01$	M2,E3	
620.2095	K	588.3229 594.6888	.0642	. 0014	22.0	119E-01	M1, E2	M1, E2
628.5062	K	602.9163	-1173	.0008	50.3	-177E-01		M1, E2
632.1096 648.2789	K K	606.5275 622.8678	-0658	. 0012	21.5	-194E-01		
652.7190	K	622.8678 627.2192	-0740	.0008	$27: 6$ 16.2	-235E-01	M2, E3	M1.

Comments * Electron line assigned to two or more corresponding gamma-transitions
(m) Multipolarities assigned by MPFILE within intensity errors
(f) Final assignment of multipolarities taking doublet assignments, Ll:L2:L3 ratios and experimental conditions into account

Table 7.

LIST OF UVASSIGNED GAMMA-TRANSITIONS $\because: 1 j$
LIST OF HHASSIGNED GAMHA-TRANSITIUNS TZ(2)

$\begin{gathered} -G A M \mathrm{BA} \\ (K E V) \end{gathered}$	$\begin{aligned} & \text { FRROR } \\ & (\therefore F: V) \end{aligned}$	$\begin{gathered} \text { IH'HSSITY } \\ (1 / 10010) \end{gathered}$	$\begin{gathered} \text { ERROR } \\ (\%) \end{gathered}$	$\begin{aligned} & \text { MULTIETY } \\ & \text { POLARITY } \end{aligned}$
35.2281	.0016	0424	38.2	
50.7983	-0019	.0405	28.6	
50.8321	. 0045	.0167	47.5	
58.0571	.0012	.0917	21.1	F. 1
63.5551	-0086	- 0141	52.4	$E 1$
63.7629	.0013	.1207	13.7	E1
65.7813	-0052	-1)163	35.8	
66.0019	. 0060	. 0138	39.3	
66.0013	.0097	-0084	54.9	
101.8516	.0019	-1389	16.1	M1
102.5408	-0017	-0201	26.8	E1
103.9407	-0014	-0313	18.8	$\mathrm{M} 1+\mathrm{E} 2$
104.2191	. 0023	-0063	25.8	11+E2
107.1307	. 0022	. 0167	20.4	M1
107.7742	.0013	-0165	31.2	111
108.8643	-0015	- 0131	19.9	M1
109.6954	-0020	. 0783	24.0	H1
109.9225	-0033	- 0115	31.6	M1
110.1529	. 0032	-0153	22.6	M1
111.5740	. 0039	. 0052	30.2	
112.1323	-0033	.1493	18.4	11
112.7852	.0026	-0981	21.5	1.11
116.7533	. 0045	. 0150	30.0	
118.2789	.0085	- i) 052	31.9	
118.9903	-0024	. 0074	$22 \cdot 7$	
126.5428	. 0033	.0063	23.6	
129.0332	-0024	- 0133	16.1	$H 1+E 2$
131.4934	.0062	.0057	26.3	
132.1484	. 0012	. 0197	13.4	
135.9048	.0091	-0097	45.8	(M1)
137.0285	-0041	-0163	12.7	$H 1+E 2$
137.9512	.0019	- 0362	12.8	11
141.1598	.0052	-0048	29.4	
142.0353	.0025	. 1078	10.1	
142.0905	.0011	. 0193	12.0	$M 1+E 2$
143.5209	.0053	-0045	32.7	$M 1+L 2$
145.0300	.0096	-0033	29.4	
$145 \cdot+511$.0044	-0048	31.0	
146.0160	.0141	-0023	37.8	
118.5258	.0034	- D069	$21 . \mathrm{H}$	
154.1448	.0021	. 0106	12.9	
154.5307	.0049	-0107	14.9	
156.2459	.0030	.1247	9.6	111

E. - (RAMMA (KI:V)	$\begin{aligned} & \text { FIRROR } \\ & (K E V) \end{aligned}$	INTF:NSITY ($1 / 100 \mathrm{~N}$)	$\begin{gathered} \text { ERROR } \\ \binom{0}{)} \end{gathered}$	$\begin{aligned} & \text { MULJTIE } \\ & \text { POLARITY } \end{aligned}$
157.5424	.0024	. 0136	16.7	
158.6088	-0048	-0054	20.5	
159.2676	-0097	-0034	25.8	(E 2)
160.1954	-0042	.0076	29.4	(t)
160.3777	.0028	-0227	11.8	
163.3497	. 0114	-0031	26.6	
164.6804	-0031	-0121	12.7	(E2)
164.7764	-0050	-0057	20.8	(E2)
164.9471	-0071	-0098	13.9	
165.1215	-0027	-0479	15.4	M1
165.4410	-0028	. 0120	14.2	M1
167.0515	-0021	-1005	8.4	$\cdots 1$
167.5079	-0037	- 0104	11.6	N1
171.4419	. 0034	.0182	11.6	
172.8197	-0022	- U898	18.6	N1
173.2091	-0034	. 0108	12.0	$\cdots 1$
175.0495	-0072	-0064	51.4	
175.2403	.0025	-0881	9.7	M 1
178.7129	-0032	-0690	11.0	Mi
179.0562	.0064	-0061	21.9	
179.5380	-0035	-0073	16.5	
180.9651	.0025	.0213	9.3	
181.2500	-0031	-. 0276	9.2	$\begin{aligned} & M 1+E 2 \\ & N 1+E: 2 \end{aligned}$
162.3379	. 0060	.0073	15.4	
183.0736	-0054	-1) 044	23.0	
187.2625	.0034	.0080	14.0	
187.7665	-0031	-0196	19.7	(E2)
188.2347	. 0079	- 0055	15.8	(E2)
$188 \cdot 6343$.0059	.0113	17.4	
189.3794	-0044	.0038	22.4	
189.7968	-0165	-0020	37.1	
190.3362	-0016	-0162	13.3	(E2)
190.9150	-0034	-0059	65.6	(E2)
191.9022	.0036	-0081	17.4	
194.1778	-0016	-1) 170	19.5	(k 2)
194.7044	-0058	-1) 126	11.2	(E2)
196.3368	.0095	- 0066	22.6	
199.7848	. 0176	-0064	17.0	
199.8771	-0058	.0071	15.4	
$200: 5031$.0079	-0092	15.0	
201.0169	.0093	- 0083	18.2	
201.5799	.0064	.0205	18.0	
203.7252	.0029	.1218	18.3	$1.11+E .2$

LIST UF UNASSIGNED GAMMA-TRAHOITIGNS Tī 5j

L.SI UF UHASSIGNED GAMHA-TRANSITIONS T7(6)

$\begin{gathered} E-G \cap G M A \\ (K E V) \end{gathered}$	ERROR (KEV)	INTEISSITY $([/ 100 \mathrm{n})$	$\begin{gathered} \text { ERROR } \\ \left(\frac{1}{6}\right) \end{gathered}$	MULTI= POLAKITY
341.2049	. 0190	. 0103	20.3	
342.4226	.0051	.0576	8.6	
342.9108	- 0108	-0093	15.3	
346.2890	-0031	-0201	4.7	
347.4187	.0600	.0061	21.9	
347.9655	. 0028	. 0468	10.0	
350.7634	.0357	-0118	21.7	
351.1284	.0047	. 0266	13.7	
351.7399	-0052	.0248	12.0	
352.2341	.0139	-0067	21.8	
352.6171	.0060	.0107	17.7	
353.8594	- 0160	.0059	28.6	
354.3142	.0414	.0043	24.4	
355.1816	.0272	.0074	18.5	
356.5717	.0181	.0080	19.4	
357.5090	. 0043	. 4215	9.0	M1,E2
360.0752	-0134	.0277	14.6	11,
361.7416	.0209	.0078	15.7	
362.7892	- 0102	. 0106	26.9	
364.2357	.0273	.0153	24.8	
364.7779	. 0137	.0056	33.6	
365.1058	.0070	.0747	9.2	
365.5033	.0182	.0088	13.1	
366.4553	-0114	-0404	11.6	
366.7948	.0129	. 0106	24.2	
368.3206	-0072	. 0672	8.4	
368.7592	.0994	.0052	62.4	
369.4900	.0181	.0073	16.5	
374.9415	.0121	- 0229	10.9	
375.7853	-0060	- 0513	10.0	
376.7593	-0052	-4657	-8.1	$\mathrm{Mi} 1, \mathrm{E} 2$
377.3430	.0034	-0974	$8 \cdot \frac{1}{6}$	M1, 2
379.0599	. 0058	. 0416	12.1	
382.2368	-0420	.0046	37.4	
384.6277	. 0065	-10n2	8.9	
384.8060	.0125	.0198	19.1	
385.2921	.0226	. 0137	12.8	
385.5949	-0079	-0131	12.1	
386.2255	. 0109	.0407	8.9	
386.6123	. 0208	-0211	12.4	
387.9327	.0083	.0791	10.4	
388.3275	.0088	-0184	15.7	
$389.2 y 77$. 0102	.0053	19.4	

LIST UF UNASSIGINED GAMHA-TRANSITIONS T7(7)

L..ST UF UHASSZGNEO GAMMA-TRANSITIONS T7(8)

$\begin{gathered} E-G A M(H A \\ (K E V) \end{gathered}$	$\begin{aligned} & \text { ERROR } \\ & (\text { KEV } \end{aligned}$	INTF:NSITY (I/100in)	$\begin{gathered} \text { ERROUR } \\ \left(\frac{4}{5}\right) \end{gathered}$	MULTIPOLAKI'IY
452.1509	.0067	. 2743	13.6	N1, E2
455.2220	.0125	- 0654	11.6	N1.E2
456.1824	-0193	. 0646	12.2	
457.5859	- 0204	. 0236	13.6	
460.4844	.0072	-0144	27.1	
464.3174	. 0119	.1179	12.9	
465.7733	. 0132	.0186	29.2	
460.1012	-0105	.0700	12.1	
467.0330	-0053	-0251	32.5	
467.2882	. 0114	-0186	33.2	
468.2370	. 0069	-0410	21.6	
468.5735	-0048	-1099	26.8	$1.11, \mathrm{~F} 2$
469.4058	- 0080	- 0181	34.4	M1.F. 2
470.9186	. 0149	-0079	27.9	
472.4302	-0091	. 0082	21.3	
473.1816	.0035	-0386	27.1	
473.5419	.0051	-0141	32.4	
474.3723	.0057	- 0187	31.0	
474.0021	. 01.10	- 0109	23.6	
476.0894	. 0061	-0445	19.8	$111 . k .2$
479.0307	.0075	-0157	26.4	H1.k. 2
479.3960	.0043	-0556	35.8	
479.7150	.0081	. 0544	33.4	
480.0714	. 0058	.0376	32.2	
480.4792	.0100	-0219	26.5	
481.1407	. 0142	-0275	24.2	
482.2763	. 0109	- 0171	19.1	
483.0490	.0249	- ()149	32.2	
484.7254	-0302	- 0157	20.2	
485.1260	. 0163	-0239	17.3	
486.4357	. 0124	. 0303	36.0	
489.3240	-0308	-0068	68.9	
490.0266	. 0097	. 0392	34.5	
490.8190	.0077	-0149	37.0	
491.4529	. 0029	-0478	57.7	
492.1791	.0102	-0759	48.8	
493.3359	.0235	-0121	35.7	
494.9075	. 0138	-0058	46.8	
497.5657	.0241	-0218	29.6	
498.0782	.0196	-1486	32.1	
500.6018	. 0172	-0680	54.9	
502.1931	.0071	.0405	33.9	
502.9754	. 0058	-1382	55.4	$1 \mathrm{H} 2, \mathrm{E} 3$

LIST UF Uhassigned Ganha-thansitions T7(11)
LAST OF UNASEIGRE) GAMHA=TRAHSITIONS T7 (12)

$\begin{gathered} E-G \Lambda A N \Lambda \\ (K E V) \end{gathered}$	$\begin{aligned} & \text { ERROR } \\ & \text { (KEV) } \end{aligned}$	IWTENSITY (I/100H)	$\begin{gathered} \text { ERROR } \\ (\%) \end{gathered}$	MULT1POLARITY
867.7751	. 0114	- 3478	16.9	
871.0597	.0659	-0820	25.1	
873.9443	. 0512	-0217	22.6	
875.8303	. 0390	-0.361	20.0	
877.6965	.0859	- 0430	25.8	
881.1573	-0183	-1383	16.6	
882.1871	-0211	.0811	16.0	
883.2690	-0192	.0717	10.5	
884.0223	-0374	-0522	21.8	
884.6960	. 0339	.0527	21.7	
890.7929	. 0213	- 0484	28.8	
893.6378	-0181	.0610	26.8	
902.0757	.0609	. 0379	23.0	
904.6141	-0464	- 0295	21.4	
905.7751	.0199	- 0827	16.1	
912.8356	.0203	.0704	16.6	
916.0655	-0078	-1982	14.6	
923.3810	. 0272	- 0500	26.5	
930.7946	.0431	-1004	14.5	
932.3482	.0065	-3482	20.7	
934.9658	. 0205	-0736	17.0	
937.8332	. 0222	-1013	16.0	
938.8262	.0123	-1304	15.5	
942.0571	. 0205	.0639	17.0	
948.6767	. 0142	. 0883	18.9	
953.0637	.0213	-2491	20.4	
959.4028	.0159	-1050	17.4	
960.0684	-0095	- 2183	30.9	
963.1247	-0385	- 0609	16.3	
964.8122	-0325	-0426	18.0	
909.2856	-0468	.0854	19.3	
984.7230	-0273	-0976	35.2	
987.9928	-0270	-0937	25.5	
993.3543	-0339	-1043	19.7	
994.1302	-0178	-1511	$23: 6$	
995.1415	. 0448	. 0779	20.9	
995.8936	.0426	-0741	21.3	
997.8630	-0415	-0330	19.5	
999.9673	.0379	-0406	18.5	
1003.1024	-0918	-0823	21.3	
1009.9414	-0724	- 0665	28.6	
1023.2734	.0274	. 0690	21.5	
1025.0996	-0396	- 0331	18.4	

LIST OF UNASSIGNED GAMMA-TRANSITİHS TZ 15)

F: - GAMMA (KEV)	ERROR (KE:V)	InTEHSITY (I/100H)	$\begin{gathered} \text { F.RROR } \\ \left(\frac{5}{\circ}\right) \end{gathered}$	MULTIPOLARITX
1028.4537	. 0194	. 0707	15.3	
1031.8809	.0209	. 1257	15.1	
1039.0510	. 0296	.0593	16.0	
1040.6002	.0183	.0511	16.4	
1042.8679	.0394	. .0364	18.5	
1048.0327	. 0192	. 0845	15.6	
1050.6434	. 0120	- 1925	15.0	
1052.1065	.0317	.0614	20.6	
1055.0048	-1111	.0468	24.0	
1072.3644	. 0286	.0759	33.0	
1080.1408	.0257	. 1541	21.3	
1104.2308	. 0528	. 1466	25.4	
1110.1223	.0565	. 0665	25.1	
1113.6633	.0554	-0951	26.8	
1136.4970	. 0135	-1948	18.3	
1149.8529	. 0146	$\bullet 12644$	12.8	
1158.0073	.0269	. 0936	18.6	
1175.1115	.0133	-3451	22.0	
1182.5957	. 0371	-0819	18.0	
1185.4767	.0447	.0700	41.0	
1200.6807	.0251	. 1215	16.8	
1205.6314	. 0758	.0866	17.4	
1208.0213	. 0548	. 0825	31.3	
1213.2155	. 0838	. 0758	18.2	
1219.9276	.0273	-1924	17.7	
1229.2077	.0479	. 0936	17.5	
1233.7228	.0650	. 0630	21.5	
1257.2916	. 0636	. 0759	41.8	
1268.4780	. 0399	.1337	21.2	
1282.5198	.0779	. 0509	19.9	
1288.6885	. 0566	. 0933	20.5	
1290.6517	. 0568	-1328	22.1	
1297.1169	. 0051	- 1112	39.1	
1302.8089	. 0438	-1241	42.5	
13195.2239	.0602 .1004 .072	-1553	23.6	
1327.9070	. 0724	- 0931	$\frac{1}{31.7}$	
1339.9649	.0662	-1395	39.6	
1358.2076	. 0854	-0603	19.5	
1383.3922	. 0694	.1267	31.5	
1392.8673	. 0976	. 1019	17.4	
1397.1104	.0573	. 0998	17.5	

L!ST UF UNASSLGNED GAMMA-TRANSITIONS T7(16)

$\begin{gathered} E \sim\left(h_{1} M A A\right. \\ (K E V) \end{gathered}$	$\begin{aligned} & \text { ERRROR } \\ & (K E V) \end{aligned}$	IHJENSITY ($\mathrm{I} / 100 \mathrm{H}$)	ERROR (\%)
1414.6975	. 0920	. 0614	20.0
1495.7185	.0652	.0732	29.9
1520.1431	. 0841	.0876	18.9
1560.0316	. 0644	. 1447	17.7
1611.7239	.1161	-1574	23.0

$\begin{gathered} \text { E-GAMNI } \\ (K E V) \end{gathered}$	$\begin{aligned} & \text { ERRO: } \\ & \text { (KEV) } \end{aligned}$	$\begin{aligned} & \text { INTENSITY } \\ & (I / 100 N) \end{aligned}$	$\begin{aligned} & \text { ERROR } \\ & \left(\frac{\square}{6}\right) \end{aligned}$
1383.3984	.3102	. 0731	14.2
1387.8204	.6311	-0349	28.4
1437.7730	.9258	-0371	38.9
1442.0951	. 6850	- 0734	24.1
1445.7973	.4966	-1244	15.1
1449.3509	. 5362	-0824	23.0
1455.6106	.6603	. 0489	$28 \cdot 3$
1460.0593	-3307	-1015	13.9
1479.8419	-2123	-1588	9.4
1489.4243	- 5550	- 0556	25.3
1495.0393	. 3668	.0851	16.8
1526.6229	- 2705	- 0808	$12 \cdot 3$
1537.3634	- 5445	-0411	23.8
1542.0813	.4774	-0469	20.8
1550.2495	.6487	-0309	29.9
1565.5391	-1941	-1214	8.1
1570.7028	.5047	-0439	$21 \cdot 3$
1575.7567	-2813	-0773	12.2
1588.2910	-7009	-0265	$32 \cdot 6$
1600.6022	- 1715	-1277	7.3
1607.7220	- 3208	.0754	13.4
1611.6241	-1714	-1587	6.6
1627.6518	. 4536	-0404	21.1
1634.8295	- 3766	-0493	17.3
1645.6295	1.2938	-0122	67.4
1652.0849	-.5594	-0460	24.6
1655.3897	.5679	-0443	25.1
1666.3104	-3122	-0544	13.9
1671.9104	.4281	-0388	19.2
1678.4559	.6067	-0265	27.6
1684.1615	- 3103	. 0535	13.9
1690.8719	. 5290	-0608	30.2
1693.8552	. 8282	-0988	38.9
1695.9955	.9569	-0734	66.1
1706.8825	.4996	-0350	23.1
1713.9777	-1597	-1290	6.7
1720.9461	- 3213	-0558	14.6
1730.2750	- 3772	-0465	17.3
1738.0808	. 4675	-0369	21.6
1747.2831	. 5052	-0373	22.0
1752.0747	-1118	-2449	2.8
1759.0558	- 3081	$.0568$	
1789.5433	.5999	$.0340$	

LIST OF GAMMA-RAYS (PN4) T8-(4)

$\begin{gathered} E-G \Lambda M M \Lambda \\ (K E V) \end{gathered}$	ERROR (KEV)	$\begin{gathered} \text { INTENSITY } \\ (I / I O O N) \end{gathered}$	$\begin{gathered} \text { ERROR } \\ (\%) \end{gathered}$
2391.5750	. 2252	0508	9.1
2396.6953	-1991	. 0381	8.5
2402.4934	.2695	. 0257	12.1
2408.5164	-3614	-0186	16.5
2414.8393	.1390	-0608	5.0
2419.3604	. 4118	-0278	15.0
2422.8213	.4080	-0268	15.7
2427.6613	.4766	-0161	19.4
2432.6390	.1602	. 0462	6.8
2439.2939	-2157	.0436	8.9
2442.9276	- 2083	-0508	7.5
2447.5255	- 3107	-0249	12.6
2452.7623	. 9016	-0074	39.5
2458.2864	-7707	. 0082	35.1
2470.6404	. 3279	-0175	14.6
2475.8505	-2303	.0267	9.8
2481.4522	. 6286	$\bullet 0231$	36.0
2484.1504	-7489	-0289	21.7
2487.3778	. 5790	-0205	25.0
2492.5164	. 4562	. 0374	23.8
2495.8289	2.2051	-0152	48.7
2497.8905	.6573	.0200	54.5
2505.5110	. 2757	-0212	12.0
2510.5778	. 9984	.0076	38.9
2514.5082	. 5992	.0174	19.3
2517.9561	. 2376	- 0355	10.1
2525.2185	-1652	-0553	6.6
2529.1700	- 2882	-0323	11.0
2534.3553	- 3297	-0423	15.2
2537.1658	. 5213	.0247	26.6
2546.4530	. 4786	.0295	26.8
2549.0340	- 5461	-0259	30.3
2555.3346	- 2503	. 0266	11.4
2563.5396	. 4626	.0190	18.9
2567.2271	-4239	-0208	17.3
2579.3500	-1944	. 0482	7.1
2585.7346	-2020	.0532	6.9
2594.2429	.4450	. 0249	$15 \cdot 3$
$2598 \cdot 3511$. 2956	. 0329	11.2
2604.1578	.4111	.0263	16.5
2607.8498	- 3165	-0521	9.1
2611.2851	- 3484	.0379	12.8
2616.2747	.4867	. 0286	19.8

LIST OF GAMMA-RAYS (PN4) T8-(5)

LIST UF GAMMA-RAYS (PN4) T8-(0)

LIST OF GAMMA-RAYS (PN4) T8-(8 .

$\begin{gathered} E=\text { GAMMA } \\ (K E V) \end{gathered}$	ERROR (KEV)	INTENSITY (I/100N)	ERRO
3504.1467	. 3562	. 0465	11.9
3506.8857	-3212	. 0385	17.5
3512.1810	. 2235	. 0245	6.1
3516.2659	-3251	- 0128	12.0
3524.2290	. 1932	. 0309	8.6
3527.7006	.2847	. 0343	6.2
3531.3949	-1443	. 0426	$5 \cdot 4$
3537.8450	. 5076	. 0090	17.5
3542.0233	-1482	. 0545	3.4
3540.0138	.2493	. 0352	5.3
+3549.8237	1.0090	. 0059	33.6
3555.4716	. 0883	- 0960	2.5
3559.4737	-1912	- 0791	5.5
3562.6613	- 4033	. 0413	9.1
3565.9873	- 3786	-0183	20.0
3575.9857	. 3930	. 0124	14.1
3581.9978	-1880	. 0559	17.2
3585.4561	. 2240	. 0501	7.7
3594.8833	-1569	. 0747	5.1
3600.3292	- 2345	.0295	6.8
3605.6493	- 2328	. 0401	6.9
3609.6176	- 7953	. 0123	21.1
3614.4624	-1478	- 0563	3.9
3619.9566	- 3812	. 0335	15.1
3623.1516	. 2703	-0487	10.3
3628.6172	-6942	. 0132	20.2
3632.3909	. 2817	.0271	10.9
3641.9762	-2327	.0584	18.0
3644.0985	. 2941	. 0465	22.5
3651.5075	. 2155	-. 0186	7.0
3056.7282	. 2506	. 0286	8.0
3660.3645	-2331	. 0309	7.4
3665.6304	- 0891	- 0634	$2 \cdot 2$
3679.4550	. 5442	. 0067	18.5
3684.7354	-1135	-1057	3.8
3688.1413	. 4873	. 0312	9.4
3691.9500	. 2886	. 0409	6.5
3696.6552	-1870	. 0863	6.0
3099.6289	- 3439	- 0381	14.9
3704.4161	- 3534	. 0131	11.1
3710.9305	- 5113	-0127	21.7
3714.1897	-2173	- 0331	8.2
3720.2502	.1790	. 0335	5.4

$\begin{gathered} E-G A M M A \\ (K E V) \end{gathered}$	$\begin{aligned} & \text { ERROR } \\ & (K E V) \end{aligned}$	INTENSITY ($\mathrm{I} / 100 \mathrm{~N}$)	$\begin{gathered} \text { ERROR } \\ (\%) \end{gathered}$
3954.2537	.7670	0	17.8
3957.1173	.7447	-0407	$\frac{1}{31.8}$
3961.2657	. 4226	. 0217	14.5
3971.1544	.5004	.0075	14.8
3977.0388	.2890	.0232	5.0
3984.7943	. 2551	-0441	2.8
3991.1073	- 3255	. 0279	7.7
3995.0945	-2452	. 0955	2.3
4000.7062	. 2346	-0818	1.8
4009.9739	- 2769	- U291	5.8
4014.8641	.4670	. 0364	17.5
4018.1673	. 9055	- 0306	15.5
4021.0809	.6010	-0217	37.9
4032.3043	-2473	-0569	5.7
4036.2425	-2320	-1124	2.5
4040.8617	-2269	.0937	2.6
4046.3484	-2367	. 1179	4.6
4050.0601	- 3143	. 0899	4.9
4053.7229	. 2055	-1470	3.4
4062.1018	-3176	-0545	16.3
4064.6660	-3014	- 0589	14.6
4071.6930	. 2217	. 0323	- 5
4078.9867	-1825	-1238	2.7
4083.9179	. 3699	. 0169	19.1
4091.5105	- 2548	-0181	6.5
4097.9362	-1823	-0522	2.5
4106.1424	-1738	-0064	2.0
4117.0362	- 2211	-0327	4.9
4122.5862	-2364	. 0672	6.4
4125.8988	. 4772	-0219	20.6
4138.7094	-2030	-0910	4.3
4142.2520	-1884	.1016	4.2
4148.9133	- 2051	-0367	3.9
4155.2206	-1835	. 0861	3.0
4159.5117	-3078	. 0395	5.6
4164.4264	. 7723	- 0156	16.7
4168.5191	.3791	- 0373	16.9
4173.0925	.2579	-0497	4.4
4178.3240	-5721	-0197	10.1
4180.1674	. 2567	- 0266	5.5
4186.1624	-1813	- 0759	2.2
4191.8453	-1788	. 0852	2.0
4198.1392	. 2392	. 0274	5.2

$\begin{gathered} E-G A M M A \\ (K E V) \end{gathered}$	$\begin{aligned} & \text { FRROR } \\ & (K E V) \end{aligned}$	INTENSITY (I/100N)	$\begin{gathered} \text { ERROR } \\ \text { (} \frac{1}{5} \text {) } \end{gathered}$
4204.5008	.1846	0665	2
4212.0256	-7003	. 0247	44.2
4214.9124	1.4256	. 0225	30.2
4218.2861	.3472	. 0410	17.0
4228.2375	. 1862	. 1105	1.4
4239.3977	.2733	-0148	7.0
4249.3285	- 2409	-0467	5.6
4253.1953	. 2285	-0052	3.9
4265.6561	- 3459	. 0137	8.8
4273.2508	. 2794	. 0206	5.8
4279.3216	. 2268	. 0600	2.2
4287.2166	- 2490	. 0839	5.2
4290.6609	. 5095	. 0265	13.7
4296.4164	.6097	-0315	27.5
4299.0021	.4004	-0351	27.0
4309.0923	.1107	-1448	5.7
4311.9158	. 4931	. 0328	22.8
4317.4807	. 3680	. 0175	8.4
4322.6299	-2163	. 0212	6. 6
4331.7048	- 3271	-0305	16.3
4334.8809	. 2745	.0414	11.4
4342.2090	.3166	.0618	19.4
4345.0285	. 7959	. 0356	27.1
4349.2695	. 1432	.0731	5.3
4356.5536	.1625	. 0258	4.8
4364.6776	. 4678	-0336	29.7
4367.4672	-1234	-1871	4.9
4372.8515	.1189	.0640	3.1
4379.7336	. 0894	.0767	2.1
4385.2140	. 3281	.0162	8.5
4391.5353	-0723	. 1189	1.4
4397.7578	- 3895	-0313	16.0
4400.8920	-1765	. 0609	8.9
4409.8962	. 2188	. 0191	7.2
4417.4536	-1102	. 0442	3.4
4426.1986	- 3768	-0289	17.6
4429.6586	-2296	.0639	7.0
4434.9367	-1932	-0328	6.0
4444.1475	. 0800	. 0971	2.1
4449.2104	. 1135	. 0569	3.4
4459.4495	.0658	.0996	1.6
4470.9938	-4011	-0112	12.4
4476.5577	.1639	.0292	5.0

LIS'S OF GAMMA-RAYS (PN4)
T8-(14)

$\begin{gathered} E-G A M M A \\ (K E V) \end{gathered}$	ERROR (KEV)	INTENSITY (I/100N)	$\begin{gathered} \text { ERROR } \\ \left(\frac{8}{0}\right) \end{gathered}$
4489.4823	.1239	.0403	3.7
4494.3924	.2711	. 0185	7.5
4501.7779	-2691	-0373	12.4
4504.9735	.1792	-0566	8.3
4512.8504	. 1689	- 0390	5.3
4517.3176	.0671	-1533	1.5
4524.5000	-1957	.0710	9.1
4527.8473	-1504	-1275	4.3
4532.9734	-1430	- 0730	2.8
4537.8844	-4208	-0143	11.5
4542.2405	-1549	-0177	14.1
4549.4797	.0515	-1487	1.6
4555.3256	. 2396	-0173	1.1
4560.9944	. 1974	. 0298	6.9
4565.3305	.0714	-0895	2.4
4573.0875	-1149	-0495	4.1
4577.1335	.0824	- 0752	2.8
4584.3700	.0574	. 0860	1.5
4590.8739	-1547	-0266	4.3
4595.6908	. 1648	-0231	4.8
4602.3734	.0865	-0320	2.5
4613.8266	. 1438	. 0296	4.5
4622.2053	.0491	-2731	
4632.3147	. 1539	. 0324	4.6
4638.2409	-1178	-0447	3.5
4649.3845	.6288	-0163	37.7
4652.4759	. 2398	-0685	7.2
4657.6751	. 4780	-0226	8.2
4667.8374	. 4399	- 0182	$10 \cdot 3$
4672.3781	-1589	-0669	12.8
4677.9258	- 3762	. 0572	15.9
4680.9243	. 3070	. 0682	13.6
4686.3793	-1364	. 0555	2.9
4692.3420	.0641	-1282	1.1
4098.2460	.0691	-0762	1.6
4710.2322	.0951	-0939	2.5
4716.0009	-1037	. 0699	2.2
4720.8069	-0834	. 0928	1.8
4727.0256	. 0669	-0883	1.3
4741.3508	-2109	- 0404	10.7
4744.2123	. 8346	- 0103	49.2
4758.1917	.0572	. 1848	
4763.8935	.2458	-0160	6.9

LIST OF GAHMA-RAYS (PN4) T8-(15)

$\begin{gathered} E=G A N M A \\ (K E V) \end{gathered}$	$\begin{aligned} & \text { ERRUK } \\ & (K E V) \end{aligned}$	IHTENSITY (I/100N)	$\begin{gathered} \text { ERROR } \\ \text { (5) } 9 \text { 号) } \end{gathered}$
5082.0945	. 0735	1253	
5091.0048	-0591	.2734	1.6 1.0
5096.1980°	.1009	-0784	2.7
5104.5928	. 1255	-0360	3.3
5112.3544	. 0538	-3592	
5120.5755	.1721	-0214	4.9
5127.7583	. 2397	-0129	6.3
5135.0907	. 0799	-0585	1.8
5142.1379	-1122	-0337	2.8
5149.6707	. 0962	-0427	2.3
5156.9368	.0556	-1596	
5168.6849	.4095	-0057	12.7
5180.8222	.6837	-0034	20.8
5188.9682	. 2310	. 0112	6.9
5197.9016	. 0798	-0532	2.0
5205.8946	.0507	- 3701	-. 7
5214.4005	.2010	. 0258	5.3
5219.6933	- 2318	- 0350	4.7
5224.8883	. 0604	-1909	1.1
5232.4302	$\because 2326$.0146	6.0
5240.5962	. 0500	-3511	. 7
5249.4374	.0675	. 0650	1.6
5270.3525	-1620	-0444	8.9
5273.5785	.7036	. 0154	22.5
5279.0356	.0780	.0930	2.1
5284.8780	-1464	-0270	4.2
5290.7933	.0971	. 0366	2.8
5297.4379	. 2090	- 0216	5.0
5301.7153	1.1104	-0029	43.0
5316.8196	. 2164	-0342	18.5
5318.9741	.7207	. 0113	54.4
5326.0151	.0630	-0729	1.2
5330.8645	- 2538	. 0194	5.0
5334.6114	.4918	-0057	22.6
5346.6642	.0974	-0207	2.9
5357.9598	-0537	-1975	1.1
5362.4577	. 4099	.0266	7.2
5366.6252	.4746	. 0208	9.3
5370.9733	$\cdot 1947$. 0222	7.6
5379.2501	1.1190	. 0016	29.9
5386.5234	-0517	. 2086	1.0
5390.8505	.3776	-0228	6.1
5395.2282	. 3671	.0171	7.9

LIST OF GAMMA-RAYS (PH4) T8-(16)

LIST OF GMMHA-RAYS (PN4) T8-(17)

LӞT OF GAMMA-RAYS (PN4) T8-(18)

It has been known that an odd number of protons or neutrons has great importance at low excitation energy of nuclei due to the pairing interaction of nucleons. The pairing interaction between fermions by a short range force was understood in atomic physics many years ago, aủ the seniority coupling scheme was set up 53). In nuclear physics, this effect was seen as a correction term in the semi-empirical mass formula of Weizsäcker and Bethe. Since the great success of the shell structure of nuclei, the concept of a pairing interaction has also been exploited to explain many schematic features of nuclei. These include ground state spins of even-even or odd-mass nuclei, and lead to the seniority coupling scheme ${ }^{54)}$, the BCS theory 55) and the interacting boson model ${ }^{56)}$ into nuclear physics.

However, the interpretation of odd-odd nuclei is somewhat more complicated at low excitation energy than even-even or odd-mass nuclei, probably because its larger seniority extends the shell model configuration space. The characteristics of the ground state of odd-odd nuclei were investigated by Nordheim ${ }^{57)}$ using spherical potential as in the usual $j-j$ coupling model and by Gallagher and Moszkowsky ${ }^{58}$) using ${ }_{\boldsymbol{A}}^{\text {the }}$ spheroidal Nilsson potential ${ }^{59 \text {), in which } j \text { of each nucleon is }}$ no longer a good quantum number.

The isospin formalism has been considered to explain the characteristics of light nuclei including odd-odd nuclei. However, the symmetry between protons and neutrons is gradually destroyed as nuclei become heavier, and therefore an even-even nucleus core may be considered as an inert core and odd numbers of quasi-protons and quasi-neutrons
have to be coupled with each other to form an odd-odd nucleus. A typical example is the $\left(\mathrm{d}_{3 / 2}, \mathrm{f}_{7 / 2}\right)$ multiplet in ${ }^{38} \mathrm{C} 1{ }^{60}$).

In addition to the shell model configuration, the coupling between the core and proton-neutron multiplet becomes considerable in much heavier nuclei. In order to explain this, a neighbouring even-even nucleus is chosen as the core and its collective motion is coupled to the proton-neutron multiplet. The standard example of the collective states in an odd-odd nucleus is the rotational levels in ${ }^{166} \mathrm{Ho}{ }^{61}$).

Recently, as an analogy to the Alaga model ${ }^{62 \text {), the particle- }}$ quadrupole vibration interaction has been introduced into an odd-odd nucleus system by Paar ${ }^{63 \text {) }}$ with the result that the energy splitting of a proton-neutron multiplet can be expressed by a quadratic ${ }_{\mathrm{p}}^{\mathrm{l}} \mathrm{l}$ ynomial with respect to the square of angular momentum magnitude $I(I+1)$.

For the odd-odd nuclei around $Z=50$ region, theoretical studies have not been carried out very extensively compared with those of even$\therefore \quad$ even and odd-mass nuclei, simply because experimental results have not been available. However, calculations have been reported for Sb and In odd-odd nuclei by Gunsteren et al ${ }^{64)}$ using a particle (hole)- quasiparticle coupling model. Almost all states at low energy have been reproduced by the model. However, the deviations of the level energies the are still large as can be seen in most of theoretical calculations.

On the other hand, Paar's description and result are in very simple form in order to evaluate the splitting of a proton-neutron multiplet. This theory will be examined with the results obtained in the present work.

5.1. Residual Interaction

In the shell model approach to odd-odd nuclei, the most important assumption is a residual interaction between the unpaired proton and
neutron. This interaction possesses similar characteristics to the short range pairing interaction, but normally the unpaired proton and neutron occupy differnt major shells in heavier nuclei, and do not occupy time-reversal states with respect to each other, which is the case for the pairing interaction. Therefore, the residual interaction is expected to be weaker than the pairing interaction. In other words, the splitting of the proton-neutron multiplet may be smaller than the pairing interaction, i.e. the BCS energy gap.

In actual shell model calculations of the splitting of the level energies, a variety of functions is used to express the residual interaction, such as δ-potential ${ }^{60}$), Gaussian force ${ }^{64)}$ and Schiffer interaction ${ }^{64)}$. The shell model space is chosen appropriately assuming an inert core, e.g. doubly magic core.

5.2. $\mathbf{j}-\mathrm{j}$ Coupling

In the many particle shell model scheme, $j-j$ coupling is essential rather than LS-coupling to calculate the total spin of a nucleus by adding individual angular momenta of the nucleons, which occupy different single particle orbitals according to the Pauli principle. Generally, $j-j$ coupling is applied to n equivalent particles, which occupy the same shell. This is known as ($j)^{n}$-coupling. Possible total angular momenta in the configuration ($j)^{n}$ have been obtained for equivalent identical particles. This knowledge is necessary in order to interpret experimental results.

The angular momentum coupling scheme has its mathematical complication due to the quantum mechanics involved, but is able to reveal the symmetry of nuclear structure under various types of two-body interaction by means of the group theory. The level degeneracies and their splitting must be made clear in terms of energy matrix in the coupling
scheme.

5.3. Parabolic Energy Dependence of Proton-Neutron Multiplets

As an analogy to the Alaga model and the geometric model of Bohr and Mottelson ${ }^{65)}$, the interaction between the odd number proton cluster and the odd number neutron cluster outside a closed shell (or hole states inside a closed shell) is treated as the exchange of quadrupole 2^{+}phonon and spin-vibrational 1^{+}phonon between the clusters. Its concept is quite similar to that of the interacting boson model except for the additional spin-vibrational phonon and the mathematical description of the system Hamiltonian.

The perturbation terms in the Hamiltonian are expressed by $\mathrm{H}_{2}+\mathrm{H}_{1}$, where $H_{2}=a_{2}\left\{Y_{2}\left(b_{2}^{\dagger}+b_{2}\right)\right\}_{o}$

$$
H_{1}=a_{1}\left\{\sigma \times\left(b_{1}^{\dagger}+b_{1}\right)\right\}_{o}
$$

a_{i} are the strength factors, Y_{2} a spherical harmonic, σ spin operator and b_{i}^{\dagger} and b_{i} phonon creation and annihilation operators, respectively. According to Paar's calculation, the contribution to the energy splitting $\delta E(I)$ of the multiplet $\mid j_{p}, j_{n} ; I>$ is described by a quadratic polynomial of $I(I+1)$.

$$
\delta E(I)=A \cdot\{I(I+1)\}^{2}+B \cdot I(I+1)+C
$$

The second order term is due to the contribution from the quadrupole phonon exchange H_{2} and the first order is the spin-vibrational phonon exchange H_{1} and a part of H_{2}. The zeroth order constant term does not give any spin dependence of the enegy splitting, but overall shift of the multiplet.

These coefficients are configuration dependent, and the result shows that the parabola is concave down ($\mathrm{A}<0$) for particle-particle and hole-hole states and concave up ($\mathrm{A}>0$) for particle-hole states. The position of the vertex $I_{v}\left(I_{v}+1\right)$ is given by

$$
I_{v}\left(I_{v}+1\right)=j_{p}\left(j_{p}+1\right)+j_{n}\left(j_{n}+1\right)-\frac{1}{2}
$$

without the 1^{+}phonon contribution. I_{v} is shifted with the 1^{+}phonon exchange.

If j_{p} or j_{n} is equal to $\frac{1}{2}$, the energy splitting is due to the 1^{+} phonon exchange only (i.e. $A=0$). In this case, the sign of coefficient B depends on $N=j_{p}-\ell_{p}+j_{n}-\ell_{n}$, where ℓ_{p} and ℓ_{n} are corresponding orbital angular momenta. For $N=0$, the higher spin state has higher excitation energy ($B>0$) and for $N= \pm 1$, the lower spin state has higher excitation energy ($B<0$).

DISCUSSION

Having constructed the level schemes of ${ }^{108} \mathrm{Ag}$ and ${ }^{110} \mathrm{Ag}$, based on the recent experiments, several remarks have to be mentioned on the experiments, data analyses, the characteristics of the nuclear structure of these odd-odd silver isotopes and the neutron capture process.

6.1. Experiments and data analyses

During past years experimental methods have been improved considerably. Automated experimental procedures and data analyses with the aid of electronic computers have achieved quick data processing and precise calculations. However, there are still some important decisions to be made empirically, such as the choice of peak shape and peak identification in a spectrum. Also several energy and intensity calibration lines have to be very carefully selected. Especially in the absolute intensity calculation, usually only a few calibration data are available, which may include a large systematic error.

In the present work, two decay lines were used to determine the absolute intensities of gamma-transitions in ${ }^{108} \mathrm{Ag}$ and only one decay line for ${ }^{110} \mathrm{Ag}$. Also, multipolarities had to be assumed to obtain absoIute internal conversion electron intensities. As mentioned in Chapter 2, from the intensity data the pair spectrometer were calibrated absolutely using several gamma-transition intensities at the overlapping enegy region with the GAMS measurement, where very low detection efficiencies can be achieved by both spectrometers.

Alternatively, absolute intensities can be calibrated based on the Kirchhoff's law and the Ritz combination principle. If all the transi-
tions have been detected, the sum of energy weighted transition intensities per one neutron capture must be equal to the neutron binding energy.
$\alpha \sum_{i} E_{i} \cdot I_{i}=E_{b}$
where α; normalization constant to be obtained
E_{i}; transition energies
$I_{i} ;$ relative transition intensities
E_{b}; neutron binding energy
Therefore, the present calibration can be tested by this method. The normalization constant α must be determined as 1 , or slightly less than 1 , due to unobserved transitions and the existence of long lived isomeric state. However, the calculation shows that

$$
\begin{aligned}
\sum_{i} E_{i} \cdot I_{i} & =(\text { BILL })+(\text { GAMS })+(\text { PN4 }) \\
& =(19.8 \pm 0.1)+(596.4 \pm 10.6)+(1554.3 \pm 6.0) \\
& =2170.5 \pm 12.2(\mathrm{keV} / \mathrm{n} . \mathrm{c} .)
\end{aligned}
$$

and

$$
\alpha=3.14 \pm 0.02
$$

This large discrepancy can be explained by the following reasons.
(1) There are many unobserved transitions forming flat background in the spectrum around 1 MeV to 5 MeV , resulting in a 69% missing energy-intensity product.
(2) The self-absorption correction for GAMS measurement may have been overestimated, resulting in a relatively overestimated efficiency at the 1 MeV region and underestimated efficiency at low energies.
(3). GAMS efficiency may be overestimated at 1 MeV to 2 MeV region. The unobserved transitions must not be very strong. Thus, the contribution to the energy-intensity product may be very small, but cannot be estimated correctly. No improvement can be made with respect to
(1). While, (2) and (3) can be improved by another careful measurement
of gamma-ray intensities using a Ge(Li) detector. By comparison of these intensities with GAMS peak areas, new efficiency curves can be obtained including the self-absorption correction automatically. This correction has been attempted by the author at the University of London Reactor Centre, as described in Chapter 2. However, the large uncertainty in the detector efficiency around 100 keV and above 1.4 MeV made this method very difficult, because the 100 keV region is important for calibrating absolute electron intensities (117.6 keV transition is known to be an El) and the 1.3 MeV to 1.8 MeV region is also important for calibrating the pair spectrometer data. Very good statistics are necessary to establish the GAMS efficiency curves by this method.

If this procedure is carried out with good accuracy, then it will be possible to compare the energy-intensity products with the neutron binding energy and to deduce the missing transition intensities.

If a precise energy measurement is required, which is the case in neutron capture gamma-ray spectroscopy, the detection efficiency decreases ineviablly. There seems to be a kind of uncertainty principle in energy and intensity measurements.
6.2. Comparison with Neighbouring Nuc1ei and Preliminary Interpretation Characteristics of two proton-neutron multiplets in silver odd-odd nuclei have been compared as functions of neutron number by Massoumi ${ }^{17)}$. However, the systematics cannot be generalized with these limited interpretations. In order to interpret more levels in ${ }^{108} \mathrm{Ag}$ and in ${ }^{110} \mathrm{Ag}$, an attempt was made to compare them with the neighbouring even-even and odd mass nuclei, which are relatively well-known compared to odd-odd nuclei. The comparison was made as shown in Fig. 19, and excitation energies for various proton-neutron multiplets were roughly estimated

Fig. 19. Neighbouring Nuclei and Quasi-particle-Vibration Coupling
by coupling proton states in a neighbouring odd-even nucleus and neutron states in a neighbouring even-odd nucleus without the residual interaction which gives the multiplet splitting.

The sequence of the lowest five levels in odd silver isotopes ${ }^{107} \mathrm{Ag}$, ${ }^{109} \mathrm{Ag}$ and ${ }^{111^{A g}}$ is $(1 / 2)^{-},(7 / 2)^{+},(9 / 2)^{+},(3 / 2)^{-}$and (5/2) ${ }^{-}$at more or less the same excitation energies. They have been interpreted as $p_{1 / 2}$, $\left(g_{9 / 2}\right)_{7 / 2}^{-3},\left(g_{9 / 2}\right)_{9 / 2}^{-3},\left(p_{1 / 2}+2^{+} \text {-phonon }\right)_{3 / 2}$ and $\left(p_{1 / 2}+2^{+} \text {-phonon) }\right)_{5 / 2}$, respectively, in terms of particle-vibration coupling 4). The Bne phonon energy is expected to be about 500 keV compared with the neighbouring even-even nuclei. Two-phonon states can also be found around 800 keV to 1 MeV excitation energy region.

On the other hand, odd neutron nuclei ${ }^{107} \mathrm{Pd},{ }^{109} \mathrm{Pd},{ }^{109} \mathrm{Cd}$ and ${ }^{111} \mathrm{Cd}$ show more complicated structure at low excitation, as can be expected from the she11 model configurations. The lowest (5/2) ${ }^{+},(1 / 2){ }^{+}$and (11/2) ${ }^{-}$states can be interpreted as $d_{5 / 2}, s_{1 / 2}$ and $h_{11 / 2}$ neutron singleparticle orbitals, respectively. However, one-phonon states coupled to the $d_{5 / 2}$ and $s_{1 / 2}$ exhibit very complicated structure. In particular, the $(3 / 2)^{+}$and $(7 / 2)^{+}$levels are difficult to interpret as they can be members of the one-phonon states or the single-particle neutron configurations $d_{3 / 2}$ and $g_{7 / 2}$.

If the configurations $p_{1 / 2},\left(g_{9 / 2}\right)_{7 / 2}^{-3}$ and $\left(g_{9 / 2}\right)_{9 / 2}^{-3}$ for the unpaired proton, $g_{7 / 2}, d_{5 / 2}, d_{3 / 2}, s_{1 / 2}$ and $h_{11 / 2}$ for the unpaired neutron and ore yibrational phonon are considered when interpreting the odd-odd nuclei $108_{\text {Ag }}$ and ${ }^{110} \mathrm{Ag}$, possible combinations can be obtained by a simple coupling scheme. These combinations are shown in Table 9.

An attempt can be made to interpret the constructed level schemes in terms of proton-neutron multiplet coupled to core vibration. It is worthwhile to note that similar characteristics can be found in the present

	$\begin{gathered} \mathrm{P}_{1 / 2} \\ 0 \mathrm{keV} \end{gathered}$	$\begin{gathered} \left(\mathrm{g}_{9 / 2}\right)^{-3} 7 / 2 \\ 80 \mathrm{keV} \end{gathered}$	$\begin{gathered} \left(\mathrm{g}_{\mathrm{g} / 2}\right)_{\mathrm{g} / 2}^{-3} \\ 130 \mathrm{keV} \end{gathered}$
$d_{5 / 2}^{-1,3}$ 0 keV	$\begin{array}{ll} 2 & 0,1,2,3,4 \\ 3 & 1,2,3,4,5 \\ & \text { 1-phonon } \end{array}$	1 $1,2,3$ 2 $0,1,2,3,4$ 3 $1,2,3,4,5$ 4 $2,3,4,5,6$ 5 $3,4,5,6,7$ 6 $4,5,6,7,8$ 1 -phonon	$\begin{array}{ll} 2 & 0,1,2,3,4 \\ 3 & 1,2,3,4,5 \\ 4 & 2,3,4,5,6 \\ 5 & 3,4,5,6,7 \\ 6 & 4,5,6,7,8 \\ 7 & 5,6,7,8,9 \\ & 1 \text { 1-phonon } \end{array}$
$\begin{gathered} s_{1 / 2} \\ 100 \mathrm{keV} \end{gathered}$	$\begin{array}{ll} 0 & 2 \\ 1 & 1,2,3 \\ & 1 \text {-phonon } \end{array}$	$\begin{array}{ll} 3 & 1,2,3,4,5 \\ 4 & 2,3,4,5,6 \\ & 1 \text {-phonon } \end{array}$	$\begin{array}{ll} 4 & 2,3,4,5,6 \\ 5 & 3,4,5,6,7 \\ & \text { 1-phonon } \end{array}$
$\begin{gathered} d_{3 / 2} \\ 500 \mathrm{keV} \end{gathered}$	$\begin{array}{ll} 1 & 1,2,3 \\ 2 & 0,1,2,3,4 \\ & \text { 1-phonon } \end{array}$	2 $0,1,2,3,4$ 3 $1,2,3,4,5$ 4 $2,3,4,5,6$ 5 $3,4,5,6,7$ 1-phonon	3 $1,2,3,4,5$ 4 $2,3,4,5,6$ 5 $3,4,5,6,7$ 6 $4,5,6,7,8$ 1-phonon
$\begin{array}{r} \mathrm{g}_{7 / 2}^{-1} \\ 300 \mathrm{keV} \end{array}$	$\begin{aligned} & 3 \quad 1,2,3,4,5 \\ & 4 \quad 2,3,4,5,6 \\ & \text { 1-phonon } \end{aligned}$	0 2 1 $1,2,3$ 2 $0,1,2,3,4$ 3 $1,2,3,4,5$ 4 $2,3,4,5,6$ 5 $3,4,5,6,7$ 6 $4,5,6,7,8$ 7 $5,6,7,8,9$ 1 -phonon	1 $1,2,3$ 2 $0,1,2,3,4$ 3 $1,2,3,4,5$ 4 $2,3,4,5,6$ 5 $3,4,5,7,7$ 6 $4,5,6,7,8$ 7 $5,6,7,8,9$ 8 $6,7,8,9,10$ 1 -phonon
$\begin{aligned} & \mathrm{h}_{11 / 2} \\ & 300 \mathrm{keV} \end{aligned}$	$\begin{aligned} & 5 \quad 3,4,5,6,7 \\ & 6 \quad 4,5,6,7,8 \\ & \text { 1-phonon } \end{aligned}$	2 $0,1,2,3,4$ 3 $1,2,3,4,5$ 4 $2,3,4,5,6$ 5 $3,4,5,6,7$ 6 $4,5,6,7,8$ 7 $5,6,7,8,9$ 8 $6,7,8,9,10$ 9 $7,8,9,10,11$ 1-phonon	1 $1,2,3$ 2 $0,1,2,3,4$ 3 $1,2,3,4,5$ 4 $2,3,4,5,6$ 5 $3,4,5,6,7$ 6 $4,5,6,7,8$ 7 $5,6,7,8,9$ 8 $6,7,8,9,10$ 9 $7,8,9,10,11$ 10 $8,9,10,11,12$ 1-phonon

Table 9. Possible Combinations of Proton-Neutron Configurations with One Phonon Coupling
level schemes of ${ }^{108} \mathrm{Ag}$ and ${ }^{110} \mathrm{Ag}$. Although the spins and parities of low-lying levels in ${ }^{110} \mathrm{Ag}$ have not been determined uniquely, tentative assignments can be made by comparison with the spin and parity assignments in ${ }^{108} \mathrm{Ag}$.

The ground states 1^{+}
Since a phonon state cannot be a ground state, the candidates for the ground state are limited to the configurations $\left.\left(g_{9 / 2}\right)_{7 / 2}^{-3}, d_{5 / 2}\right)$, $\left(\left(g_{9 / 2}\right)_{7 / 2}^{-3}, g_{7 / 2}\right)$ and $\left(\left(g_{9 / 2}\right)_{9 / 2}^{-3}, g_{7 / 2}\right)$. Considering the excitation energy combination and the parabola-like multiplet structure, the 1^{+}of the $\left(\left(g_{9 / 2}\right)_{7 / 2}^{-3}, d_{5 / 2}\right)$ may be the ground state.
The 2^{-}states $79.1 \mathrm{keV}\left({ }^{108} \mathrm{Ag}\right) \quad 1.1 \mathrm{keV}\left({ }^{110} \mathrm{Ag}\right)$
The first 2^{-}state may be a member of the $\left(p_{1 / 2}, d_{5 / 2}\right)$ configuration, because the (d, p) reaction populates this level with $\ell=2$. The intense 79.1 keV El transition in ${ }^{108} \mathrm{Ag}$ can be explained by the proton single particle transition, while the corresponding 1.1 keV transition in ${ }^{110} \mathrm{Ag}$ cannot be observed with the current experimental apparatus. The isomeric 6^{+}states $\quad 109.5 \mathrm{keV}\left({ }^{108} \mathrm{Ag}\right) \quad 117.5 \mathrm{keV}\left({ }^{110} \mathrm{Ag}\right)$

The possible candidates are members of the $\left(\left(g_{9 / 2}\right)_{7 / 2}^{-3}, d_{5 / 2}\right)$ and the $\left(p_{1 / 2}, h_{11 / 2}\right)$, or possibly of the $\left(\left(g_{9 / 2}\right)_{9 / 2}^{-3}, d_{5 / 2}\right)$. It is difficult to interpret these isomeric states, since the population to these levels is still ambiguous. The $\left(p_{1 / 2}, h_{11 / 2}\right)$ configuration may be excluded by the fact that these states are not populated in the (d, p) reactions. Also, the $\left(\left(g_{9 / 2}\right)_{9 / 2}^{-3}, d_{5 / 2}\right)$ can be excluded by the parabolic structure. The $\left(\left(g_{9 / 2}\right)_{7 / 2}^{-3}, d_{5 / 2}\right)$ is preferred.
The 1^{+}states $193.1 \mathrm{keV}\left({ }^{108} \mathrm{Ag}\right) \quad 267.2 \mathrm{keV}\left({ }^{110} \mathrm{Ag}\right)$
These are the second 1^{+}states. The strong transition to the ground state and the transition to the 2^{-}state in each nucleus imply that the neutron configuration is $d_{5 / 2}$. Since the $\left(g_{9 / 2}\right)_{9 / 2}^{-3}$ proton configuration
cannot form a 1^{+}state with the $d_{5 / 2}$ neutron, the configuration of these 1^{+}levels must be the same as the ground state, but probably with one phonon $\left(\left(\left(g_{9 / 2}\right)_{7 / 2}^{-3}, d_{5 / 2}\right)_{1}, 2^{+}\right)_{1}$.
The 2^{+}states $206.6 \mathrm{keV}\left({ }^{108} \mathrm{Ag}\right) \quad 198.7 \mathrm{keV}\left({ }^{110} \mathrm{Ag}\right)$
Three configurations $\left(\left(g_{9 / 2}\right)_{7 / 2}^{-3}, d_{5 / 2}\right)_{2},\left(\left(\left(g_{9 / 2}\right)_{7 / 2}^{-3}, d_{5 / 2}\right)_{1}, 2^{+}\right)_{2}$ and $\left(\left(g_{9 / 2}\right)_{9 / 2}^{-3}, d_{5 / 2}\right)_{2}$ can be the candidates for these 2^{+}states. If the splitting of the $\left(\left(g_{9 / 2}\right)^{-3}, d_{5 / 2}\right)$ multiplet is assumed to be around 500 keV analogous to the same multiplet in ${ }^{106} \mathrm{Ag}{ }^{67 \text {) , these }} 2^{+}$states must be members of the $\left(\left(g_{9 / 2}\right)_{7 / 2}^{-3}, d_{5 / 2}\right)$ multiplet.
The 3^{+}states $215.4 \mathrm{keV}(108 \mathrm{Ag}) \quad 118.7 \mathrm{keV}\left({ }^{110} \mathrm{Ag}\right)$
This level correspondence has been deduced from the fact that their half-lives have been measured as 46 ns and 37 ns , and the g -factors as 1.301 ± 0.011 and 1.242 ± 0.012 for the 215.4 keV state of ${ }^{108} \mathrm{Ag}$ and the 118.7 keV state of ${ }^{11^{0} \mathrm{Ag}}$, respectively ${ }^{29 \text {). The values of } g \text {-factors }}$ suggest the configuration $\left.\left({\left(g_{9 / 2}\right)}_{7 / 2}\right)^{-3},{ }_{1 / 2}\right)$ by comparison with empirical calculations 68). However, the strong El transition in ${ }^{110} \mathrm{Ag}$ cannot be explained by a sighe-particle transition. The different behaviour of the depopulating transitions (i.e. strong E2 to the ground state in ${ }^{108} \mathrm{Ag}$ and strong El to the 2^{-}state in ${ }^{110} \mathrm{Ag}$) can partly be explained by the energy dependence of transition probabilities.
The 2^{+}states $294.6 \mathrm{keV}\left({ }^{108} \mathrm{Ag}\right) \quad 360.6 \mathrm{keV}\left({ }^{110} \mathrm{Ag}\right)$
The candidates for these states are $\left.\left(\left(g_{9 / 2}\right)_{7 / 2}^{-3}, d_{5 / 2}\right)_{1}, 2^{+}\right)_{2}$ and $\left(\left(g_{9 / 2}\right)_{9 / 2}^{-3}, d_{5 / 2}\right)_{2}$. Since the energy difference of the second 1^{+}states (193.1 keV in ${ }^{108} \mathrm{Ag}$ and 267.2 keV in ${ }^{110} \mathrm{Ag}$) is roughly the same as the difference of these 2^{+}states, it is reasonable to suggest that these states are the members of the one-phonon states coupled to the ground state. However, the configuration $\left(\left(g_{9 / 2}\right)_{9 / 2}^{-3}, d_{5 / 2}\right)$ cannot be excluded completely.

The 3^{+}states $324.5 \mathrm{keV}\left({ }^{108} \mathrm{Ag}\right) \quad 304.5 \mathrm{keV}\left({ }^{110} \mathrm{Ag}\right)$
The depopulating transitions feed only the 1^{+}and 2^{+}states of the $\left(\left(g_{9 / 2}\right)_{7 / 2}^{-3}, d_{5 / 2}\right)$ multiplet. These 3^{+}states are probably members of the same multiplet.

The 3^{-}states $338.4 \mathrm{keV}(108 \mathrm{Ag}) \quad 236.8 \mathrm{keV}\left({ }^{110} \mathrm{Ag}\right)$
The strong depopulation to the 2^{-}state suggests the possibility of the $\left(p_{1 / 2}, d_{5 / 2}\right)$ configuration. Since the population in the (d, p) reaction has been observed with $\ell=2$ in ${ }^{108} \mathrm{Ag}$, the $\left(p_{1 / 2}, g_{7 / 2}\right)$ configuration can be excluded.

The $4^{+},\left(3^{+}\right)$states $364.2 \mathrm{keV}(108 \mathrm{Ag}) \quad 191.6 \mathrm{keV}\left({ }^{110} \mathrm{Ag}\right)$
The intense transition to the 3^{+}short-lived isomeric state and no transition to the ground state nor to the first 2^{-}state, suggest that the possible candidate for these states is the $\left.\left(g_{9 / 2}\right)_{9 / 2}^{-3}, s_{1 / 2}\right)$ configuration, forming 4^{+}states. It seems inconsistent that no state of the $\left(\left(g_{9 / 2}\right)_{9 / 2}^{-3}, d_{5 / 2}\right)$ multiplet has not appered at lower excitation energy. This is probably due to the effect of a complicated proton-neutron residual interaction, or the second 2^{+}states may be members of the $\left(\left(g_{9 / 2}\right)_{9 / 2}^{-3}\right.$, $\mathrm{d}_{5 / 2}$) multiplet.
The 1^{-}states $379.2 \mathrm{keV}(108 \mathrm{Ag}) \quad 237.0 \mathrm{keV}\left({ }^{110} \mathrm{Ag}\right)$
The population in the (d, p) reaction with $\ell=0$ suggests the ($\mathrm{p}_{1 / 2}$, $s_{1 / 2}$) configuration. The depopulating transitions are consistent with Ehis assignment except for the enhanced E1 transition to the ground state in ${ }^{110} \mathrm{Ag}$.

The 3^{+}states $\quad 408.4 \mathrm{keV}\left({ }^{108} \mathrm{Ag}\right) \quad 468.8 \mathrm{keV}$ or $485.7 \mathrm{keV}\left({ }^{110} \mathrm{Ag}\right)$
These states may be members of the one-phonon states coupled to the ground state, according to the similar energy difference. The 0^{-}states $465.6 \mathrm{keV}\left({ }^{108} \mathrm{Ag}\right) \quad 338.9 \mathrm{keV}\left({ }^{110} \mathrm{Ag}\right)$

The population in the (d, p) reaction with $\ell=0$ suggests another
member of the $\left(p_{1 / 2}, s_{1 / 2}\right)$ doublet.
Odd parity states around 500 keV to 900 keV

Many low spin odd parity states can be found at this energy region, which is impossible to interpret in terms of proton-neutron multiplets with the present experimental data. These levels are probably the onephonon or two-phonon states coupled to the odd parity proton-neutron multiplets.

Based on the above configurations, the low-lying levels can be decomposed into the proton neutron multiplet groups as shown in Fig. 20. 4^{+}and 5^{+}states are missing or ambiguous in the $\left(\left(g_{9 / 2}\right)_{7 / 2}^{-3}, \mathrm{~d}_{5 / 2}\right)$ multiplet. Compared with the members of the same multiplet in ${ }^{106} \mathrm{Ag}$, the newly constructed leve1s, 155.9 keV in ${ }^{108} \mathrm{Ag}$ and 174.6 keV and 255.0 keV in ${ }^{110} \mathrm{Ag}$ are unlikely to be members of the multiplet. The two levels in ${ }^{110} \mathrm{Ag}$ may be interpreted as the members of $\left(\mathrm{p}_{1 / 2}, \mathrm{~h}_{11 / 2}\right)$ doublet, 6^{+} and 5^{+}states. If this is correct, the 57.0 keV transition will be a two-particle transition. A coincidence measurement has to be carried out very carefully between the 57.0 keV and 80.4 keV transitions.

The $1^{+}, 2^{+}$and 3^{+}states interpreted as the one-phonon states coupled to the ground state have some inconsistencies. The phonon energy seems to be much less than the 500 keV expected from the neighbouring eveneven nuclei. And the splitting of the levels shows rather strong spin dependence of the quasi-particle-core coupling.

Since high spin states are not populated very strongly in the neutron capture reactions in ${ }^{107} \mathrm{Ag}$ and ${ }^{109} \mathrm{Ag}$, it is difficult to obtain all the members of multiplets. In particular, the $\left(\left(g_{9 / 2}\right)_{9 / 2}^{-3}, d_{5 / 2}\right)$ multiplet shows no indication of its existence at low excitation energy in ${ }^{108} \mathrm{Ag}$ and ${ }^{110} \mathrm{Ag}$ except the second 2^{+}states, al tough all members can be found in ${ }^{106} \mathrm{Ag}$, i.e., $234.7 \mathrm{keV}, 389.2 \mathrm{keV}, 503.0 \mathrm{keV} .556 .8 \mathrm{keV}, 542.4 \mathrm{keV}$ and

Fig. 20. Proton-Neutron Multiplets and Intra- and Inter-band Transitions
332.6 keV to be 2^{+}to 7^{+}states, respectively.

Some discrepancies can also be pointed out between the present level schemes and the (d, p) reaction results, which presumably include most of the odd parity states at low excitation energies. In particular, the 269 keV level in ${ }^{110} \mathrm{Ag}$ observed in the (d, p) reaction with $\ell=2$ cannot correspond to any levels in the present level scheme.

6.3. Comparison with Parabolic Rule

As mentioned in the previous chapter, the parabolic energy dependence proposed by Paar is one of a few theories of odd-odd nuclei. Although it cannot predict correct energies, the systematics of proton-neutron multiplets can be explained. And experimental results are easily compared with the parabola of $I(I+1)$.

In the present work, however, few states have been interpreted in terms of proton-neutron configurations. And no multiplet has been found with all its members identified except for two doublet configurations. Since the four states $1^{+}, 2^{+}, 3^{+}$and 6^{+}have been tentatively interpreted as members of the $\left(\left(g_{9 / 2}\right)_{7 / 2}^{-3}, d_{5 / 2}\right)$ multiplet, the parabolic rule can be used to estimate the excitation energies of the missing 4^{+}and 5^{+}states. Although the parabolic rule does not include a particle configuration such as $\left(g_{9 / 2}\right)_{7 / 2}^{-3}$, the general trend of the multiplet must follow the ale. Therefore, a simple quadratic polynomial has been fitted to the 2vailable four points for ${ }^{108} \mathrm{Ag}$ and ${ }^{110} \mathrm{Ag}$ as shown in Fig. 21.

According to this fit, the 4^{+}and 5^{+}states have to be found at 340 keV to 540 keV region. Candidates among the present levels are the 364.2 keV level for ${ }^{108} \mathrm{Ag}$ and the 380.1 keV and 471.2 keV levels for ${ }^{110} \mathrm{Ag}$, but all are unlikely. For ${ }^{110} \mathrm{Ag}$, an additional parabola was fitted assuming that the levels at 255.0 keV and 174.6 keV are the 4^{+}and 5^{+}states of

Fig. 21. Comparison with the Parabolic Energy Dependence of $\left(\left(g_{9 / 2}\right)_{7 / 2}^{-3}, \mathrm{~d}_{5 / 2}\right)_{1}+-6+$ Multiplets in ${ }^{108} \mathrm{Ag}$ and ${ }^{110} \mathrm{Ag}$
the multiplet, respectively. But the fitting looks awkward. The positions of the vertex have been obtained at reasonable places assuming that $j_{p}=7 / 2$.

For ${ }^{110} \mathrm{Ag}$, efforts have been made to search for the missing 4^{+}and 5^{+}states of this configuration. A very preliminary result has been obtained as shown in Fig. 22. The result shows that the 4^{+}and 5^{+}states lie at $612.507 \pm 0.004 \mathrm{keV}$ and $386.469 \pm 0.006 \mathrm{keV}$, respectively. A parabola was fitted to the result as in Fig. 23. The $612.5 \mathrm{keV} 4^{+}$state lies at slightly higher excitation energy than expected. But this feature is very similar to that of the same multiplet in ${ }^{106} \mathrm{Ag}$.

The configurations $\left(p_{1 / 2}, d_{5 / 2}\right)$ and $\left(p_{1 / 2}, s_{1 / 2}\right)$ have been assigned to four levels each in ${ }^{108} \mathrm{Ag}$ and ${ }^{110} \mathrm{Ag}$. The sequence of levels has been compared with the special case of the parabolic rule (i.e., $A=0$). The configuration $\left(p_{1 / 2}, d_{5 / 2}\right)$ with $N=j_{p}-\ell_{p}+j_{n}-\ell_{n}=0$ must have the sequence $\left(2^{-}, 3^{-}\right)$, which agrees with the present interpretation. However, the configuration ($\mathrm{P}_{1 / 2}, \mathrm{~s}_{1 / 2}$) with $\mathrm{N}=0$ does not follow this rule.

The parabolic rule is in progress in the cases $\mid\left(j_{p}, \text { phonon }\right)_{J}, j_{n}>$ or $\|_{\mathrm{p}},\left(j_{\mathrm{n}}, \text { phonon }\right)_{J}{ }^{69}$). However, the second $\left(1^{+}, 2^{+}, 3^{+}\right)$sequence has been interpreted in the present work as one phonon coupling with the ground state, i.e., $\mid\left(j_{p}, j_{n}\right)_{J}$, phonon> type. It seems that the coupling with one-phonon follows a somewhat linear energy energy dependence on spin I. The differences between these configurations have to be made clear.

6.4. Gamma-ray Yield

It may be interesting to treat the experimental data statistically. The primary transitions can be compared with the Porter-Thomas distribution and the spectrum can be compared with the theoretical calculation

Fig. 22. Proposed 4^{+}and 5^{+}states of the multiplet $\left(\left(g_{9 / 2}\right)_{7 / 2}^{-3}, d_{5 / 2}\right)$ in ${ }^{110_{A g}}$

Fig. 23. Comparison with the Parabolic Energy Dependence
described in Chapter 1.

6.4.1. Primary Gamma-rays

The Porter-Thomas distribution can be applied to the fluctuation of primary ganma-transition partial widths of the thermal neutron capture compound state. Since the spin and parity of the compound state are not unique, all the primary transitions may be used for the statistics. The effectiveness of the Porter-Thomas distribution can then be examined in the case of thermal neutron capture. Assuming that the partial widths are proportional to the reduced intensities divided by the corresponding transition energies powered by a certain reduction factor n. For example, $n=3$ can be used, because the transition probability is proportional to E_{γ}^{3} in the case of El or Ml single particle transition.

In the present work, the reduced intensities of assigned transitions have been examined with the x^{2}-distributions with one and two degrees of freedom as shown in Fig. 24. The fitting method is described in Appendix 4. The characteristics of the distributions for ${ }^{108} \mathrm{Ag}$ and ${ }^{110} \mathrm{Ag}$ differ from each other for each value of reductionfactor $n=1,3$ or 5. This is probably because all the spins and parities of final states have been ignored, and of course, not many data are available, especially two unresolved doublets (i.e. transitions to the ground state - 1.1 keV and $748.5 \mathrm{keV}-750.8 \mathrm{keV}$) have not been taken into account in ${ }^{110} \mathrm{Ag}$. The differences between ${ }^{108} \mathrm{Ag}$ and ${ }^{110} \mathrm{Ag}$ may suggest that the thermal neutron capture compound states of ${ }^{108} \mathrm{Ag}$ and ${ }^{110} \mathrm{Ag}$ can be very different, which is also indicated from the fact that the intensities of the ground state primary transitions per neutron capture are very different in ${ }^{108} \mathrm{Ag}$ and ${ }^{110} \mathrm{Ag}$. These may be related to the difference of the neutron binding energies.

Since the gamma-ray measurement by PN4 includes the energy range

Fig. 24. Reduced Intensity Distribution of Primary Gamma-Transitions

- x^{2}-distribution with one degree of freedom
---- x^{2}-distribution with two degrees of freedom
from 1.4 MeV up to the neutron binding energy in ${ }^{110} \mathrm{Ag}$ and very little is known about the level scheme, the Porter-Thomas distribution can be examined using these data including unassigned transitions as shown in Fig. 25. All the 395 transitions above 3.5 MeV were assumed as primary transitions, where 3.5 MeV was chosen arbitrarily around the half of neutron binding energy.

The result shows that the χ^{2}-distribution with two degrees of freedom can fit the data better than that with one degree. However, it must not be forgotten that some very weak intensity transitions have not been detected and some multiplets have not been resolved due to the limited detection efficiency and energy resolution. As can be seen in Fig. 25, an attempt was made to correct the frequency of the lowest. intensity class-interval, assuming that the data follow the χ^{2}-distribution with one degree of freedom. This procedure is described also in Appendix 4. The correction estimates that approximately 170 transitions have not been detected with the total of 2.6% observed reduced intensities above 3.5 MeV in the present PN4 experiment.

This value disagrees with the 69% missing energy-intensity product. To explain this large discrepancy, it has to be assumed that many gammatransitions with medium reduced intensities have not been observed at the medium energy 2 MeV to 6 MeV region in the present experiment; or the absolute intensity calibration for high energy gamma-rays has been underestimated as mentioned earlier.

6.4.2. Gamma-ray spectrum

The complete gamma-ray spectrum in the reaction ${ }^{109} \mathrm{Ag}(\mathrm{n}, \gamma){ }^{110} \mathrm{Ag}$ has been produced with the experimental data in the present work. In order to make a smooth spectrum the following equation has been used to calculate the intensity $f\left(E_{\gamma}\right)$ in the energy interval between E_{γ} and $E_{\gamma}+d E_{\gamma}$.

$$
f\left(E_{\gamma}\right)=\sum_{i} \frac{I_{i}}{\sqrt{ }(2 \pi) \cdot \sigma} \exp \left\{-\frac{\left(E_{\gamma}-E_{i}\right)^{2}}{2 \sigma^{2}}\right\}
$$

where, E_{i} and I_{i} are experimental data and σ is a smoothing factor. The result is shown in Fig. 26 with different smoothing factors.

This result with a very significant second peak at 5 MeV to 6 MeV region is different from the spectrum obtained by Starfelt ${ }^{15 \text {) , and }}$ shows similar character to the $A u$ or $C s$ spectrum, which can be explained by the Ml giant resonance. It has been confirmed in the present work thet MI transitions are enhanced in 110 Ag for low transition energies. the enhanced M1 transitions may be present also at higher energies not due to the number of neutrons but to the characteristics of odd-odd nuclei.

6.5. Double Neutron Capture

An attempt has been made to observe double neutron capture via $110^{\mathrm{m}} \mathrm{Ag}$ in the high energy spectrum, since the neutron capture crosssection of $110^{\mathrm{m}} \mathrm{Ag}$ has been reported to be about 80 barns ${ }^{36}$) and the newiron binding energy of ${ }^{111} \mathrm{Ag}$ has been estimated to be higher than the ${ }^{110} \mathrm{Ag}$ binding energy. However, no significant peak has been found in the spectrum, from which one may deduce that the capture cross-section ci 80 barns may be an overestimation.

with

On the other hand, in the low energy experiment by GAMS 1, the 70.5 keV transition from the $(9 / 2)^{+}$state to the $(7 / 2)^{+}$state in $111^{1} \mathrm{Ag}$ can be seen at the first and second orders of reflection with increasing intensity with time, but the 59.9 keV transition from the $(7 / 2)^{+}$state to the $(1 / 2)^{-}$ground state has not been observed. This may be due to the 65 sec half-life of the $(7 / 2)^{+}$state and the high internal conversion coefficient of E3 multipolarity. The 34.4 keV electron line observed by BILL spectrometer may correspond to this 59.9 keV transition.

Fig. 26. Gamma-ray Spectrum in Thermal Neutron Capture Reaction in ${ }^{109} \mathrm{Ag}$

Since double neutron capture probability is very sensitive to the neutron flux and the details of transitions in ${ }^{111} \mathrm{Ag}$ are not available, any quantitative argument cannot be discussed with these low energy transition data. However, it is still suspected that the capture crosssection of 80 barns may be overestimated and the isomeric transition ratio of $99.7 \%{ }^{70)}$ from the $(7 / 2)^{+}$state to the ground state in ${ }^{111} \mathrm{Ag}$ may also be overestimated.

CHAPTER 7.

CONCLUSION

With the present level schemes of ${ }^{108} \mathrm{Ag}$ and ${ }^{110} \mathrm{Ag}$, it can be pointed out that there are some interesting features of proton-neutron multiplet coupled with a vibrational phonon as discussed in the previous chapter. But it is also pointed out that the complete multiplet of $\left(\left(g_{9 / 2}\right)_{9 / 2}^{-3}, d_{5 / 2}\right)$ configuration is missing. As mentioned before, thermal neutron capture is not a very good method to observe high spin states, therefore it is difficult to interpret each level as a member of certain nuclear configurations. It is definitely necessary to perform some heavy ion reactions or high energy reactions to obtain high spin states in odd-odd silver isotopes. And much more precise (d, p) reactions have to be carried out to investigate the systematics of odd parity states. Currently, the (p, d) reaction is in progress to investigate ${ }^{108} \mathrm{Ag}$. With these reactions, the existence of excited states must be confirmed, then the Ritz combination principle can be applied to the region of excitation energy with the precise gamma-ray energy data obtained in the present work to deduce very precise level energies. Those reactions and average resonance capture reactions are very useful to assign spins and parities.

Theoretical improvement will be expected in parallel with the progress of experiments, and the mechanism of odd-odd nuclei and the residual interaction between unpaired proton and neutron will be discussed much in detail. However, as long as the nuclear physics is based on quantum mechanics, some approximations are necessary because of the mathematical limitation in solving the Schrodinger's equation of many body system.

It is also expected that particle~hole states will be investigated in neighbouring even-even nuclei, which must show similar characteristics
to odd-odd nuclei. Then, the charge dependence of unpaired nucleon interaction can be justified.

REFERENCES

1) E. Amaldi et al; Proc. R. Soc. A149, 522 (1935) Proc. R. Soc. A146, 483 (1934)
2) C.E. Porter and R.G. Thomas; Phys. Rev. 104, 483 (1956)
3) A.M. Lane and J.E. Lynn; Nuc1. Phys. 17, 586 (1960)
J.E. Lynn; "The theory of neutron resonance reactions", Clarendon Press, (1968)
4) K. Hyde et al; Phys. Rev. C17, 1219 (1978)
R.E. Anderson et al; Phys. Rev. C15, 123 (1977)
R.M. De1 Vecchio et al; Phys. Rev. Cl2, 845 (1975)
V. Paar; Nuc1. Phys. A211, 29 (1973)
5) F.S. Levin and H. Feshbach; "Reaction dynamics", Gordon and Breach Science Publishers (1973)
\Leftrightarrow H. Feshbach, C.E. Porter and V.F. Weisskopf; Phys. Rev. 96, 448 (1954)
6) D.F. Jackson; "Nuclear reactions", Methuen and Co. Ltd. (1970)
7) D.M. Brink and G.R. Satchler; "Angular momentum", Oxford Univ. Press, 2nd ed. (1968)
8) B.B. Kinsey and G.A. Bartholomew; Phys. Rev. 93,1260 (1954)
9) A.M. Lane; in "Neutron capture gama-ray spectroscopy", 31 (1975) Proceeding of the second international symposium on neutron capture gamma-ray spectroscopy and related topics, Petten, 1974
10) S.F. Mughabghab; in "Nuclear structure study with neutrons", 167, ed. J. Erठ and J. Szücs, Plenum Press (1974)
11) S.F. Mughabghab; in the proceeding ref.9, 53
12) J.M. Blatt and V.F. Weisskopf; "Theoretical nuclear physics", John Wiley and Sons. NY, (1952)
13) L.M. Bollinger and G.E. Thomas; Phys.Rev. C2, 1951 (1970)
14) N. Starfelt; Nucl. Phys. 53, 397 (1964)
15) D. Rabenstein and D. Harrach; Nuc1. Phys. A242, 189 (1975)
V.L. Alexeev et al; Nucl. Phys. A297, 373 (1978)
16) M. Thein; Ph.D. Thesis, Univ. of London (1977)
G.R. Massoumi ; Ph.D. Thesis, Univ. of London (1979)
17) D. Breitig and H.R. Koch; Unpublished data, private communication
18) M. Bogdanovic; Unpublised data, private communication
19) P. Sushkov; Unpublished data, private communication
20) G.B. Orr, W.R. Kane and G.J. Smith; in "Neutron capture gama-ray spectroscopy", 707, P1enum Press; NY (1979)

Proceeding of the third international symposium on neutron capture gamma-ray spectroscopy and related topics, BNL, 1978
22) W.R. Kane; Unpublished data, private communication
23) M. Bogdanovic et al; Fizika 10, 133 (1978)
24) H.H. Bolotin and A.I. Namenson; Phys. Rev. 157, 1131 (1967)
25). M. Bogdanovic et al; Fizika 11, 157 (1979) and ref.21, 567
26) Th.W. Elze et al; Zeit. Phys. 209, 497 (1968)
27) P. Winkler; Forschungsbericht, ZfK Rossendorf bei Dresden 126 (1967)
28) C.E. Brient et al; Phys. Rev. C6, 1837 (1972)
29) H. Hattori, M. Adachi and T. Taketani; J. Phys. Soc. Japan 41, 1830 (1976)
30) W. Mampe et a1; Nuc1. Instr. Meth. 154, 127 (1978)
31) H.R. Koch et al; Nucl. Instr. Meth. 175, 401 (1980)
32) J.J. Reidy; in "The electromagnetic interaction in nuclear spectroscopy", 839, ed. W.D. Hamilton, North. Holl. Pub. Co: (1975)
J.W. Knowles; in " α, β and γ-spectroscopy", 203, ed. K. Siegbahn, North Holl. Pub. Co. (1966)
33) J.T. Routti and S.G. Prussin; Nuc1. Instr. Meth. 72, 125 (1969)
34) R.G. Helmer et al; Atom. Data and Nuc1. Data Tables 24,39 (1979)
35) E. Storm and H.I. Israel; Nucl. Data Tables A7, 565 (1970)
36) S.F. Mughabghab and D.I. Garber; "Neutron cross sections", BNL 325, vol. 1 (1973)
37) F.E. Bertrand; Nucl. Data Sheets 22: 135 (1977)
38) B. Maier; "Neutron beam facilities at the HFR available for users", I.L.L. (1977)
39) C. Hofmyer, Y. Tokunaga and S. Kerr; Private communication
40) M.L. Stelts and R.E. Chrien; Nucl. Instr. Meth. 155, 253 (1978)
41) K. Siegbahn; " α, β and γ-spectroscopy"
42) T. Mitsunari; Internal Report, ULRC/RES/29 (1980)
43) T.A.A. Tielen; Private communication
44) R.S. Hager and E.C. Seltzer; Nucl. Data A4, 1 (1968)
45) G.R. Massoumi et al; to be published
46) G.H. Fuller and V.W. Cohen; Nucl. Data Tables A5, 433 (1969)
47) Y. Kawase et al; Nucl. Phys. A193, 204 (1972)
48) S. Malmskog and J. Konijn; Nucl. Phys. 38, 196 (1962)
C.J. Cussens, G.K. Rochester and K.F. Smith; J. Phys. A2, 658 (1969)
49) W.R. Kane and G. Scharff-Goldhaber; Phys. Rev. C2, 314 (1970)

- O) D.D. Clark, V.O. Kostroun and N.E. Siems; Phys. Rev. C12, 595 (1975)

51) T. Katoh and Y. Yoshizawa; Nucl. Phys. 32, 5 (1962)
52) M.E. de Lopez; ref. 6 in ref. 28

5』) G. Racah; Phys. Rev. 62, 438 (1942)
54) R.H. Flowers; Proc. R. Soc. A212, 248 (1952)
55) J. Bardeen, L.N. Cooper and J.R. Schrieffer; Phys. Rev. 108, 1175 (1957)
A. Bohr, B.R. Mottelson and D. Pines; Phys. Rev. 110, 936 (1958)
56) F. Iachello; "Interacting bosons in nuclear physics", Plenum Press, NY (1979)
A. Arima and F. Iachello; Phys. Rev. Lett. 35, 1069 (1975)
57) L.W. Nordheim; Phys. Rev. 78, 294 (1950)
58) C.J. Gallagher Jr. and S.A. Moszkowski; Phys. Rev. 111, 282 (1958)
59) S.G. Nilsson; Kgl. Danske Vid. Sel., Mat. Fys. Medd. 29, No. 16 (1955)
60) P.J. Brussaard and P.W.M. Glaudemans; "Shel1-mode1 applications in nuclear spectroscopy", North Holl. Pub. Co. (1977)
A. de Shalit and H. Feshbach; "Theoretical nuclear physics", Vol. 1 Nuclear structure, John Wiley and sons Inc. (1974)
61) D.J. Rowe; "Nuclear collective motion, Models and theory", Methuen and Co. Ltd. (1970)
62) G. Alaga; Bull. Am. Phys. Soc. 4, 359 (1959)
V. Paar; Nucl. Phys. A211, 29 (1973)
63) V. Paar; Nucl. Phys. A331, 16 (1979)
64) W.F. van Gunsteren; Nuc1. Phys. A265, 263 (1976) W.F. van Gunsteren, K. Allaart and E. Boeker; Nucl. Phys. A266, 365 (1976) W.F. van Gunsteren; Zeit. Phys. 282, 55 (1977)
65) A. Bohr and B.R. Mottelson; Kgl. Danske Vid. Sel., Mat. Fys. Medd. 27, No. 16 (1953)
66) A. Bohr and B.R. Mottelson; "Nuclear structure", Vol. 2, Benjamin (1975)
67) B. Harmatz; Nuc1. Data Sheets 30, 305 (1980)
68) H. Bertschat et al; Nucl. Phys. A229, 72 (1974)
69) V. Paar et al; in the prceeding of the fourth international symposium on neutron capture gamma-ray spectroscopy and related topics, Grenoble, 1.981
70) C.M. Lederer and V.S. Shirley; "Table of isotopes", 7th ed. (1978)

APPENDIX 1.

A.1. Integrals in Level Energy Calculation

In order to calculate level energies, a method has been introduced to maximize the likelihood as described in Section 3.2. LEVELS3.

However, the expression of the results is rather implicit including some integral forms. To calculate these integrals, a linear transformation of the variables X_{n} is introduced. Since the function S can be expressed as

$$
\begin{aligned}
S & =\sum_{i j} A_{i j} X_{i} X_{j}+\sum B_{k} X_{k}+C \\
& =\langle X| A|X\rangle+\langle B \mid X\rangle+C,
\end{aligned}
$$

the linear transformation T from $\mid X>$ to $|Y\rangle$

$$
|\mathrm{Y}\rangle=\mathrm{T}|\mathrm{X}\rangle
$$

may be chosen so that S can be written in the following form.

$$
\begin{aligned}
S & =\sum_{k}\left(Y_{k}-D_{k}\right)^{2}+E \\
& =\langle X| T^{t r} T|X\rangle-2\langle D| T|X\rangle+\langle D \mid D\rangle+E
\end{aligned}
$$

where A and T are matrices and $|X>,|Y>| B>$, and $| D>$ are vectors of dimention N. Hence, the following constraints are obtained to equate the above two expressions.
$A=T^{t r} T$
$|B\rangle=-2 T^{t r} \mid D>$
$C=\langle D \mid D\rangle+E$
In order/ satisfy these constraints, A has to be a symmetric matrix. This implies, on the other hand, the number of the independent elements of T is $N(N+1) / 2$, and therefore all the off-diagonal elements of one side of T can be equated to zero.

$$
T_{i j}=0 \quad(i<j)
$$

Since all the diagonal elements of A are not zero, the determinant
of T has a finite non-zero value. So,
$\operatorname{Rank}(T)=N$

There is an inverse matrix of T, which is a necessary condition for the calculation to be feasible. Therefore,

$$
\begin{aligned}
& |\mathrm{D}\rangle=-\frac{1}{2} \mathrm{~T}^{\mathrm{tr}-1}|\mathrm{~B}\rangle=-\frac{1}{2} \mathrm{~T}^{-1 \mathrm{tr}}|\mathrm{~B}\rangle \\
& |\mathrm{X}\rangle=\mathrm{T}^{-1}|\mathrm{Y}\rangle
\end{aligned}
$$

Now, a complete preparation for the integral calculation has been obtained.

$$
\begin{aligned}
& \int F\left(X_{1}, \ldots, X_{N}\right) d X_{1} d X_{2} \ldots X_{N} \\
& =\int \exp \left\{-\left(\sum_{k}\left(Y_{k}-D_{k}\right)^{2}+E\right)\right\} \operatorname{det}\left|T^{-1}\right| d Y_{1} d Y_{2} \ldots d Y_{N} \\
& =\operatorname{det}\left|T^{-1}\right| \prod_{k} \int_{-\infty}^{+\infty} \exp \left\{-\left(Y_{k}-D_{k}\right)^{2}\right\} d Y_{k} \cdot \exp (-E) \\
& =\operatorname{det}\left|T^{-1}\right| \exp (-E) \pi^{N / 2} \\
& \int X_{n} F\left(X_{1}, \ldots, X_{N}\right) d X_{1} d x_{2} \ldots d X_{N} \\
& =\int\left(\sum_{i} T_{n i}^{-1} Y_{i}\right) \exp \left\{-\left(\sum_{k}\left(Y_{k}-D_{k}\right)^{2}+E\right)\right\} \operatorname{det}\left|T^{-1}\right| d Y_{1} d Y_{2} \ldots d Y_{N} \\
& =\operatorname{det}\left|T^{-1}\right| \exp (-E)\left\{\sum_{i} T_{n i}^{-1} \int Y_{i} \exp \left\{-\sum_{k}\left(Y_{k}-D_{k}\right)^{2}\right\} d Y_{1} d Y_{2} \ldots d Y_{N}\right\} \\
& =\operatorname{det}\left|T^{-1}\right| \exp (-E)\left\{\sum_{i} T_{n i}^{-1} \operatorname{iIf}_{k \neq i}^{+\infty} \int_{-\infty}^{+\infty} \exp \left\{-\left(Y_{k}-D_{k}\right)^{2}\right\} d Y_{k} .\right. \\
& \left.\int_{-\infty}^{+\infty} Y_{i} \exp \left\{-\left(Y_{i}-D_{i}\right)^{2}\right\} d y_{i}\right\} \\
& =\operatorname{det}\left|T^{-1}\right| \exp (-E) \pi^{N / 2} \sum_{i} T_{n i} \mathrm{D}_{i} \\
& \int X_{n}^{2} F\left(X_{1}, \ldots, X_{N}\right) d X_{1} d X_{2} \ldots d X_{N} \\
& =\int\left(\sum_{i} T_{n i}^{-1} Y_{i}\right)^{2} \exp \left\{-\left(\sum_{k}\left(Y_{k}-D_{k}\right)^{2}+E\right)\right\} \operatorname{det}\left|T^{-1}\right| d Y_{1} d Y_{2} \ldots d Y_{N} \\
& =\operatorname{det}\left|T^{-1}\right| \exp (-E) \int \sum_{i j} T_{n i}^{-1} T_{n j}^{-1} Y_{i} Y_{j} \exp \left\{-\sum_{k}\left(Y_{k}-D_{k}\right)^{2}\right\} d Y_{1} \ldots d Y_{N} \\
& =\operatorname{det}\left|T^{-1}\right| \exp (-E)\left\{\sum_{i \neq j} T_{n i}^{-1} T_{n j}^{-1} \int Y_{i} Y_{j} \exp \left\{-\sum_{k}\left(Y_{k}-D_{k}\right)^{2}\right\} d Y 1 \ldots d Y_{N}\right. \\
& +\sum_{i}\left(T_{n i}^{-1}\right)^{2} \int Y_{i}^{2} \exp \left\{-\sum_{k}\left(Y_{k}-D_{k}\right)^{2\}} d Y_{1} d Y_{2} \ldots d Y_{N}\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & \operatorname{det}\left|T^{-1}\right| \exp (-E)\left\{\underset { \substack { i , j \\
i \neq j } } { } \left\{T_{n i}^{-1} T_{n j}^{-1} \underset{\substack{k \neq i \\
\neq j}}{\Pi} \int_{-\infty}^{+\infty} \exp \left\{-\left(Y_{k}-D_{k}\right)^{2}\right\} d Y_{k} \cdot\right.\right. \\
& \left.\int_{-\infty}^{+\infty} Y_{i} \exp \left\{-\left(Y_{i}-D_{i}\right)^{2}\right\} d Y_{i} \cdot \int_{-\infty}^{+\infty} Y_{j} \exp \left\{-\left(Y_{j}-D_{j}\right)^{2}\right\} d Y_{j}\right\} \\
& \left.+\sum_{i}\left(T_{n i}^{-1}\right)^{2} \underset{k \neq i}{ } \int_{-\infty}^{+\infty} \exp \left\{-\left(Y_{k}-D_{k}\right)^{2}\right\} d Y_{k} \cdot \int_{-\infty}^{+\infty} Y_{i}^{2} \exp \left\{-\left(Y_{i}-D_{i}\right)^{2}\right\} d Y_{i}\right\} \\
= & \operatorname{det}\left|T^{-1}\right| \exp (-E) \pi^{N / 2}\left\{2 \sum_{i>j} T_{n i}^{-1} T_{n j}^{-1} D_{i} D_{j}+\sum_{i}\left(T_{n i}^{-1}\right)^{2}\left(D_{i}^{2}+\frac{1}{2}\right)\right\} \\
= & \operatorname{det}\left|T^{-1}\right| \exp (-E) \pi^{N / 2} \sum_{i, j} T_{n i}^{-1} T_{n j}^{-1}\left(D_{i} D_{j}+\delta_{i j} / 2\right)
\end{aligned}
$$

Therefore, the expectation values of level energies \bar{X}_{n} are given by

$$
\bar{X}_{n}=\sum_{i} T_{n i}^{-1} D_{i}
$$

and the square of standard deviations σ_{n}^{2} are given by

$$
\begin{aligned}
\sigma_{n}^{2} & ={\overline{X_{n}^{2}}}_{n}-\bar{X}_{n}^{2} \\
& =\sum_{i}\left(T_{n i}^{-1}\right)^{2} / 2
\end{aligned}
$$

A.2. Two-Gaussian Fit

If a peak cannot be fitted by a single Gaussian function in the cases where there is a significant high or low energy tail, or peak asymmetry, two Gaussians may be used to fit the peak. The peak shape is given by

Since the Gaussian fitting computer programmes are widely available, this two-Gaussian fit method can be used without changing the fitting function.

Obviously, there is a finite probability to observe a true doublet, which may be fitted also by two Gaussians. Therefore, it is necessary to set up a criterion which distinguishes a singlet from a doublet, using fitted results, the intensity ratio A, the peak separation X_{o}, their errors and the standard deviation $\sigma=$ FWHM $/ 2 \sqrt{ }(2 \ln 2)$.

In order to confirm a doublet visually, the following criterion san be considered.
(1) If there are four zero points in the second derivative $f^{\prime \prime}(x)$, $f(x)$ is regarded as a doublet.

The number of zero points in $f^{\prime \prime}(x)$ can be expressed schematically as in Fig. A1.

Fig. Al. Number of Zero Points in the Second Derivative

This criterion implies that the peak is a doublet if its curvature changes its sign four times. This criterion can be used if the intensity ratio is rather small (e.g. A < 0.3). However, if the intensity ratio is rather large, this is no more powerful, since the full width shows its increase very clearly.

Another criterion may be considered for higher intensity ratios.
(2) If there are five zero points in the third derivative $\mathrm{f}^{\prime \prime}(\mathrm{x})$, $f(x)$ can be regarded as a doublet.

This implies a smooth change of the curvature.
However, when considering higher derivatives, the criteria become meaningless, because they simply show how close the function is to a Gaussian function. Therefore, expected FWHM has to be calculated as a function of A and $a=x_{0} / \sigma$. The result is shown in Fig. A2. with the criteria (1) and (2) on the same a-A plane.

Consequently, it may be concluded that the peak shape is important for $a>2.0$ and FWHM for $a<2.0$. However, no additional criteria have been considered to connect the two criteria by a visual method. This kind of correction may have to be made during the peak fitting procedure, where the original spectrum is available.

Despite this fact, some efforts have been made to identify singlets for $a>1.6$ using the mixed criteria of (1) and (2). Those for $a<1.6$ are regarded as a singlet, which is not really correct, but the case occurs very rarely.

Practically, the peak identification is carried out with a set of fiiied peak data $\left(x_{i} \pm \Delta x_{i}, I_{i} \pm \Delta I_{i}\right)$ and neighbouring two peaks are teis led under the condition, which requires a certain confidence limit to identify a doublet. Peak positions and peak areas are corrected appropriately for singlets.

Fig. A2. Characteristics of Two-Gaussian Function

APPENDIX 3.

A.3. Coincidence Strength Calculation

A method has been presented in Section 3.8. INFORM to calculate coincidence strengths which can be expected from the level scheme and the experimental data of transitions. For simplicity, however, the method neglects two important factors. One is the life-time contributions of levels and the other is the angular correlation of coincident transitions.

A.3.1. Life-Time Contribution

Prior to the argument of the life-time contribution, the timing adjustment of coincidence system has to be considered. Assuming that the transmission time of gamma-ray pulsese (from the moment when the gamma-ray is emitted to the moment when the pulse enters the coincidence unit) follows a Gaussian-like distribution for both coincidence channels,

$$
\begin{array}{ll}
F_{g}\left(t_{g}\right) \simeq \exp \left(-\frac{\left(t_{g}-\bar{t}_{g}\right)^{2}}{2 \Delta t_{g}^{2}}\right) & \text { for gate channel } \\
F_{s}\left(t_{s}\right) \simeq \exp \left(-\frac{\left(t_{s}-\bar{t}_{s}\right)^{2}}{2 \Delta t_{s}^{2}}\right) & \text { for spectrum channel }
\end{array}
$$

where, $\overline{\mathrm{t}}_{\mathrm{g}}$ and $\overline{\mathrm{t}}_{\mathrm{s}}$ are average delays, then overall system delay $\mathrm{t}_{\mathrm{o}}=\mathrm{t}_{\mathrm{s}}-\mathrm{t}_{\mathrm{g}}$ follows the distribution $D_{o}\left(t_{o}\right)$ given by

$$
D_{0}\left(t_{0}\right)=\int_{-\infty}^{+\infty} F_{g}\left(t_{s}-t_{0}\right) F\left(t_{s}\right) d t_{s}
$$

Obviously, $\bar{t}_{o}=\bar{t}_{s}-\bar{t}_{g}$, which is normally chosen to be zero for prompt gamma-gamma coincidence measurements.

In the case of direct coincidence via the $i-t h$ level, the delay t_{i} due to the (mean) life-time r_{i} of the level will be expressed by

$$
D_{i}\left(t_{i}\right)=\begin{array}{ll}
\exp \left(-t_{i} / \tau_{i}\right) & \text { for } t_{i}>0 \\
0 & \text { for } t_{i}<0
\end{array}
$$

Therefore, the total delay time $t=t_{i}+t_{o}$ follows the distribution $F(t)$.

$$
F(t)=\int_{-\infty}^{+\infty} D_{i}\left(t-t_{o}\right) D_{0}\left(t_{0}\right) d t_{0}
$$

and the probability P to detect the corresponding two gamma-ray pulses within the coincidence resolving time Δt can be given by

$$
P=\int_{0}^{\Delta t} F(t) d t / \int_{-\infty}^{+\infty} F(t) d t
$$

This argument is easily extended to the indirect coincidence between the $i-t h$ and $j-t h$ levels, considering every level concerning the coincidence. An implicit form of the delay time distribution for a particular cascade is given by

$$
\begin{aligned}
F_{v}(t)= & \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} D_{i}\left(t-t_{k_{1}}\right) D_{k_{1}}\left(t_{k_{1}}-t_{k_{2}}\right) \cdots \\
& \cdots D_{k_{n}}\left(t_{k_{n}}-t_{j}\right) D_{j}\left(t_{j}-t_{o}\right) D_{o}\left(t_{o}\right) d t_{o} d t_{j} d t_{k_{n}} \ldots d t_{k_{1}}
\end{aligned}
$$

where, k_{ℓ} are the intermediate levels which the cascade transitions pass by and v is the combination of these levels ($\left.i, k_{1}, k_{2}, \ldots, k_{n}, j\right)$. The probability P_{v} can be given in the same form as

$$
P_{v}=\int_{0}^{\Delta t} F_{\nu}(t) d t / \int_{-\infty}^{+\infty} F_{\nu}(t) d t
$$

A.3.2. Angular Correlation

It is a well-known fact that successive transitions show angular correlation depending on the spins of the three levels. Since the detector sizes are limited, it is impossible to set up 4π-geometry. Therefore, for a fixed detector geometry, the contribution of angular eorrelations to the coincidence strength has to be taken into account.

For the gamma-ray cascade $\left(\gamma_{g}, \gamma_{I}, \gamma_{2}, \ldots, \gamma_{n}, \gamma_{n+1}, \gamma_{s}\right)$, which corresponds to the level combination $\nu=\left(i, k_{1}, k_{2}, \ldots, k_{n}, j\right)$ between the two gamma-rays γ_{g} and γ_{s} of interest, assuming that the angular
correlation between γ_{k} and γ_{k+1} is given by $W_{k, k+1}\left(\theta_{k, k+1}\right)$, the angular correlation $W(\theta)$ between γ_{g} and γ_{s} will be expressed as

$$
\begin{aligned}
& W(\theta)=\int_{4 \pi} \cdots \int_{4 \pi} W_{g 1}\left(\theta_{1}\right) W_{12}\left(\theta_{1} \phi_{1}{ }^{v} \theta_{2} \phi_{2}\right) \cdots \\
& \cdots W_{n+1, s}\left(\theta_{n+1} \phi_{n+1}{ }^{v} \theta \phi\right) d \Omega_{n+1} d \Omega_{n} \cdots d_{1}
\end{aligned}
$$

where, $\theta_{1} \phi_{1}{ }^{\vee} \theta_{2} \phi_{2}$ denotes the angle between $\theta_{1} \phi_{1}$ and $\theta_{2} \phi_{2}$ directions. Neglecting the detector size effect and assuming an ideal detector efficiency, the probability such that the γ_{S} is detected in the spectrum channel when the γ_{g} is detected in the gate channel can be expressed by

$$
C_{v}=\int_{\Delta \Omega \text { at } \theta} W(\theta) \mathrm{d} \Omega / \int_{4 \pi} W(\theta) \mathrm{d} \Omega
$$

The actual calculation may be carried out using an expansion in terms of Legendre polynomials and spherical harmonics.

A.3.3. Corrections

Taking the above contributions into account, corrections can be made by multiplying the probabilities P_{ν} and C_{V}. Then, the coincidence strength S can be given by
$S=I_{\gamma_{S}}{ }^{B} \gamma_{g} \sum_{\nu} B_{t}{ }_{1}{ }^{B} t_{2} \quad \cdots B_{t_{N}} \cdot P_{v} \cdot C_{\nu}$
However, since the programme INFORM is utilized to construct a level scheme, the necessary physical quantities (half-lives of levels and angular correlations) to make the corrections are hardly obtainable at this stage. Therefore, constant values for P_{v} and $C_{v}\left(e . g . P_{v}=C_{v}=1\right.$) have been exploited.

Special attention has to be paid to some isomeric states, the lifetime of which is much longer than the coincidence resolving time.

APPENDIX 4.

A.4. x^{2}-distribution Fit

A.4.1. Normalization

The frequency distribution of reduced intensities divided by their mean value $x_{\gamma}=I_{\gamma} / \bar{I}_{\gamma}$ can be fitted by x^{2}-distributions by normalizing the total integral to be equal to the number of gammatransitions N. The normalized χ^{2}-distribution functions $F_{1}(x)$ with one degree of freedom and $F_{2}(x)$ with two degrees of freedom can be given by

$$
\mathrm{F}_{1}(\mathrm{x})=\mathrm{N} \cdot \mathrm{f}_{1}(\mathrm{x}) \quad \text { and } \quad \mathrm{F}_{2}(\mathrm{x})=\mathrm{N} \cdot \mathrm{f}_{2}(\mathrm{x})
$$

where

$$
\begin{array}{ll}
f_{1}(x)=(2 \pi x)^{-\frac{1}{2}} \exp \left(-\frac{x}{2}\right) & (x>0) \\
f_{2}(x)=\exp (-x) & (x>0)
\end{array}
$$

Therefore, if each class-interval for the variates x_{γ} is chosen as $\dot{A} \boldsymbol{x}$, the expected frequency $G_{k i}$ in the $i-t h$ interval will be given by

$$
G_{k i}(\Delta x, N)=N \cdot \int_{x_{i}-\Delta x / 2}^{x_{i}+\Delta x / 2} f_{k}(x) d x \quad k=1,2
$$

mhere, x_{i} is the midpoint of the i-th interval and given by

$$
x_{i}=i \cdot \Delta x-\Delta x / 2
$$

Or explicitly,

$$
\begin{aligned}
& G_{1 i}(\Delta x, N)=2 N\left\{\Phi\left(\sqrt{ }\left(x_{i}+\Delta x / 2\right)\right)-\Phi\left(\sqrt{ }\left(x_{i}-\Delta x / 2\right)\right)\right\} \\
& G_{2 i}(\Delta x, N)=2 N \cdot \exp \left(-x_{i}\right) \cdot \sinh (\Delta x / 2)
\end{aligned}
$$

wher, $\Phi(x)$ is the cumulative normal distribution function defined as
$\Phi(x)=(2 \pi)^{-\frac{1}{2}} \int_{0}^{x} \exp \left(-t^{2} / 2\right) d t$
In order to indicate the goodness of the fit, the sum of squared deviations can be used as

$$
S=\sum_{i}\left(y_{i}-G_{i}\right)^{2} / N^{2}
$$

where, y_{i} are frequencies per class-interval. Of course, the lower S
is, the better is the fit.

A.4.2. Low Intensity Correction

Since very low intensity gamma-transitions cannot be detected, it is necessary to correct the frequency in the lowest intensity interval, assuming that reduced intensities follow the χ^{2}-distribution with one degree of freedom. This correction can be done by adding ΔN extra low intensity transitions with their total reduced intensity ΔI in the lowest class-interval to minimize the goodness of the fit S. These changes of total reduced intensity and the number of transitions alter the mean value of the reduced intensity as $\quad \overline{\mathrm{I}}_{\gamma} \cdot \mathrm{N}+\Delta \mathrm{I}=(\mathrm{N}+\Delta \mathrm{N}) \cdot \mathrm{I}_{\mathrm{o}}$ where, \bar{I}_{γ} is the old mean and I_{o} the new mean. These changes also cause alteration of the normalization as well as that of the variate scaling. To be explicit, the new distribution $F(x)$ will be

$$
F(x)=(N+\Delta N) \cdot f_{1}(x)
$$

and the width of class-interval will be converted to $\Delta x_{o}=\Delta x \bar{I}_{\gamma} / I_{0}$ without changing the original frequency distribution y_{i}, except that y_{1} is replaced by $y_{1}+\Delta N$.

Then, ΔI can be expressed by

$$
\Delta I=(N+\Delta N) \cdot I_{0} \cdot \int_{0}^{\Delta x_{o}}{ }_{x} \cdot f_{1}(x) d x-\sum_{y_{1}} I_{\gamma}
$$

where, the second term of the right hand side is the sum of reduced intensities in the lowest class interval. And the first term can be approximated as follows;

$$
\begin{aligned}
\text { (first term) } & =2(N+\Delta N) \cdot I_{0} \cdot\left\{\Phi\left(\Delta x_{o}^{\frac{1}{2}}\right)-\left(\Delta x_{0} / 2 \pi\right)^{\frac{1}{2}} \exp \left(-\Delta x_{0} / 2\right)\right\} \\
& \simeq 2(N+\Delta N) \cdot\left(\Delta x_{0} / 2 \pi\right)^{\frac{1}{2}}\left\{\Delta x_{0} / 3-\left(\Delta x_{0}\right)^{2 / 10}+\left(\Delta x_{0}\right)^{3 / 56}\right\}
\end{aligned}
$$

$\Delta \mathrm{N}$ and $\Delta \mathrm{x}_{\mathrm{o}}$ can be obtained to minimize S

$$
S=\frac{1}{(N+\Delta N)^{2}}\left\{\left\{G_{11}\left(\Delta x_{o}, N+\Delta N\right)-y_{1}-N\right\}^{2}+\sum_{i \neq 1}\left\{G_{1 i}\left(\Delta x_{0}, N+\Delta N\right)-y_{i}\right\}^{2}\right\}
$$

under the constraint

$$
\overline{\mathrm{I}}_{\gamma} \cdot \mathrm{N}+\Delta \mathrm{I}=(\mathrm{N}+\Delta \mathrm{N}) \cdot \mathrm{I}_{\mathrm{o}}
$$

which can be written explicitly using the above approximation

$$
N+2(N+\Delta N) \cdot \Delta x \cdot\left(\Delta x_{0} / 2 \pi\right)^{\frac{1}{2}}\left\{\frac{1}{3}-\frac{x_{0}}{10}+\frac{\left(\Delta x_{0}\right)^{2}}{56}\right\}-\sum_{y_{1}} I_{\gamma} / \bar{I}_{\gamma}-(N+\Delta N) \frac{\Delta x}{\Delta x_{0}}=0
$$

The missing intensity ΔI can then be expressed using the optimized ΔN and Δx_{o}
$\Delta \mathrm{I} / \overline{\mathrm{I}}_{\gamma}=(\mathrm{N}+\Delta \mathrm{N}) \frac{\Delta \mathrm{x}}{\Delta \mathrm{x}_{\mathrm{o}}}-\mathrm{N}$
Error estimations have not been done as yet because of the very complicated structure of function S.

Fig. 17 b

$$
\because 10 \mathrm{AG} \quad \text { LEVEL SCHEM= }
$$ Vin

1227.058 e:3

