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ABSTRACT 

This work, is concerned with two problems involving time delay 

systems. 

The first part of this thesis deals with the classical regulator 

problem of control theory. In particular, we investigate the necessary 

structural features of a controller which yields output regulation and 

internal stability despite uncertainty in some of the system's and con-

troller parameters. Our approach consists in transforming the original 

delay differential system into an evolution equation in an infinite 

dimensional Hilbert space. In this abstract setting, under the 

assumption of internal stability, a useful characterization of the 

regulation condition is obtained by means of a linear operator equation. 

Then, it is shown that stabilizability and detectability of both, the 

system and controller, are necessary conditions for internal stability 

to hold. The concepts of readability and internal model are extended 

for the class of evolution systems of our concern. Next, it is shown 

that a structurally stable controller incorporates feedback of the 

regulated variables, together with an internal model of the dynamic 

structure of the external signals which the controller is required to 

process. Necessity of these structural features constitutes the Internal 

Model Principle for delay systems. The sufficiency of the Internal 

Model Principle is investigated. Necessary and sufficient conditions 

are derived, in terms of the system's parameters, to assure the exist-

ence of a structurally stable controller. Also, a design procedure 

to construct such controller is obtained. We point out that these results 

are known for finite dimensional systems with no delays. However, the 

appropriate manner in which the Internal Model Principle should be for-

mulated for delay equations is by no means obvious, and the technical 
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problems in obtaining the main analogues of the known delay-free results 

are quite considerable» 

The second part of this thesis is concerned with the optimal filtering 

problem for linear systems involving time delays in the state, obser-

vations and noise process. To our knowledge, this is the first rigorous 

treatment of linear systems containing point delays in the noise process. 

Our approach is based on projection methods in the Hilbert space of 

square integrable random vectors. It is shown that the filtered es-

timate satisfies a stochastic functional differential equation which is 

coupled with the integral equation for the smoothed estimates. The 

optimal filter is characterized by two gains. One of the these gains 

is the usual error covariance matrix function. The second gain is 

expressed in terms of the error covariance and the fundamental matrix 

associated with the homogeneous part of the delay differential system. 

The error covariance function satisfies a set of three coupled Riccati-

type partial differential equations. Two of these equations involve 

the fundamental matrix previously mentioned. When no delays occur 

in the state and observations, the second gain may be expressed in terms 

of the fundamental matrix associated with the error functional differential 

equation. In this case, the gains involved in the optimal filter are 

shown to be unique solution of two coupled Riccati-type differential equations . 

Next, a dual optimal control problem is obtained. The dual system 

contains delays in the state, control and observations. The optimization 

problem consists in minimizing a quadratic functional of the observations 

and controls. In the case of no delays in the state and controls, a 

feedback realization for the optimal control is obtained by exploiting 

our results on the filtering problem. 
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PART I 

REGULATION AND AN INTERNAL MODEL PRINCIPLE FOR 

LINEAR TIME DELAY DYSTEMS 



CHAPTER, I 

INTRODUCTION 

A problem of major interest in control theory is that of synthes-

izing controllers which regulate a given linear system and provide 

internal stability. A more practical problem is the design of controllers 

which preserve regulation and internal stability despite uncertainty in 

some of the system's and controller parameters. Such class of controllers 

are referred to as being structurally stable. 

The above problems have been widely studied for linear systems modelled 

by ordinary differential equations [Wll, [W23, [Fl] - [F51, [Sll. The 

main result of these investigations may be summarized as the Internal 

Model Principle (IMP), that is the necessary structural features of a 

controller which is structurally stable. The sufficiency of the IMP 

has also been investigated [F2]. Necessary and sufficient conditions 

to assure the existence of a structurally stable controller and pro-

cedures to design such controllers have been established in [F4], [Sll. 

Recently, the regulation and internal stability problem has been 

investigated by Bhat tBll for a larger class of linear systems, namely those 

described by abstract evolution equations. In this setting an Internal 

Model Principle was derived and applications to time delay systems were 

investigated. However, Bhat's version of the IMP is incomplete as comp-

ared with available results for ordinary systems. More precisely, in 

[Bll it is assumed that the controller is 'driven' by the regulated vari-

ables while this feedback structure constitutes an essential part of 

the IMP for ordinary systems. Also, Bhat's treatment of time delays 

systems contains a significant mistake which restricts the validity of 

his results. To be precise, Bhat claims [Bl, Chapter 6, 6.5.11 that 



- 8 -

variations in the elements of the matrices in the delay equation corr-

espond to 'bounded' perturbations of the parameters in the associated 

evolution system. Contrary to this claim it will be shown later in 

Chapter 3, that some of such variations of matrix parameters yield 

'unbounded' perturbations of the parameters in the corresponding evol-

ution equation. Since Bhat's developments are confined to deal with 

bounded parameter perturbations, it turns out that his results are not 

completely satisfactory when applications to time delay systems are 

considered. 

In this thesis the problem of main concern is that of obtaining 

a full version of the IMP for time delay systems. From this point of 

view our work is a generalization of Bhat's results. Our approach 

consists in transforming the original delay system into an equivalent 

evolution equation. By introducing this abstract representation we 

are able to study a larger class of delay differential systems, e.g. 

systems with multiple and distributed delays. In constrast with 

Bhat's work, we will restrict our treatment to those evolution systems 

arising from delay equations, but certain class of unbounded parameter 

perturbations will be considered. It will turn out however, that our 

results will be valid for a larger class of evolution systems provided 

that the parameters of these systems satisfy certain conditions which 

will be determined by properties of the parameters of time delay systems. 

(We point out that at the present it is very difficult, if not impossible, 

to obtain significant results when we allow unbounded parameter per-

turbations without making strong assumptions on the evolution system) . 

In the following we briefly describe the development of this work. 

In Chapter 2 we formulate our problem in an abstract setting, that is 

we write our original delay system as an evolution on an infinite 

dimensional Hilbert space. We will then obtain a useful characterization 

I 



of the regulation condition. Finally, from the. requirement of internal 

stability we will derive some necessary features of our system and controller. 

Most of the results of this chapter are extensions of Bhat's work [Bl, 

Chapter 51 . 

In Chapter 3 we will obtain an IMP for time delay systems. Also, 

necessary conditions for the existence of a structurally stable controller 

will be derived and some concepts and results used in establishing the 

IMP for the delay-free case [Fll will be extended to the class of 

systems of our concern. Our developments will be based on the 

'decomposition of a linear operator equation' (as in the delay-free case 

CF13). We mention that an alternative approach is possible. In fact, 

we could analyze directly this 'linear operator equation', as in [Bl, 

Chapter 5,6] (also see [Wl, Chapter 8] for the delay-free situation). 

However, this approach would increase the technical difficulties con-

siderably and the understanding of our problem would be obscured. We 

finally point out that the special properties of time delay systems will 

play a fundamental role throughout this chapter. 

In Chapter 4 we will derive necessary and sufficient conditions to 

assure the existence of a structurally stable controller. These con-

ditions will be given in terms of the system parameters. The sufficiency 

of the IMP will also be investigated. A procedure for constructing a 

structurally stable synthesis will be obtained. The devlopment of this 

chapter will require some of the results obtained by Bhat, in particular, 

the observer theory for evolution systems in [Bl, Chapter 4]( see also 

[B9] where applications to delay systems are considered). 
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CHAPTER 2 

REGULATION AND INTERNAL STABILITY 

This chapter deals with the regulation and internal stability 

problem for linear delay systems. We shall first state our problem 

and then we will give an abstract formulation in an infinite dimensional 

vector space. Under the assumption of internal stability we will obtain 

necessary and sufficient conditions for regulation to hold. These 

conditions will constitute our point of departure for further developments 

in Chapters 3 and 4. We will then show that it is possible to obtain an 

equivalent 'reduced' problem in which part of our original system is 

modelled by an ordinary differential equation. Finally, the necessity 

of certain stabilizability and detectability conditions, for both the 

system and controller, will be established. 

2.1 Problem Formulation 

Consider the time delay differential system 

x
x
(t) = A ^ C t ) + A ^ C t - h ) + A

4
x

2
( t ) + A

5
x

2
(t-h) + B^u( t) (2.1) 

£2(t) = A ^ 2 ( t ) + A3£2(t-h) (2.2) 

y(t) = C ^ C t ) + C
2
x

2
( t ) (2.3) 

z(t) = D ^ C t ) + D
2
x

2
( t ) (2.4) 

n 

where h > 0, £ E , x
2
 £ S , u £ y £ 1

P

, z £ S the initial 

segments 0^(9), 0
2
(B), 0 £ C-h#0l are elements "of the function spaces 

n l n2 
L [ -h,01;S ) and L . ( I - h , 0 ] ) respectively. 
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(2..1)_ represents the system's dynamics 

(2.2) is a model for disturbance and/or reference signals 

(.2.3) corresponds to the observation process 

(2.4) are the variables to be regulated 

The regulation and internal stability problem consists in 

determining a controller for the system (2.1) - (2.4) such that 

i) z(.t) -+0 as t+-°° , i.e. z(t) is regulated 

ii) the plant (2.1) together with the controller are asymptotically 

stable, i.e. the closed system is internally stable 

In order to provide an adequate setting for our problem, we will 

write (2.1) - (2.4) as evolution equations in the infinite dimensional 

n n n 
Hilbert spaces X^. = M

 1

 = E x L
2
([-h,0]; M ) and 

n n n 
X

2
 = M

2 L ([-h#0]; M ), It can be shown [B2] - [B4], 

[DI]i [D2] that (2.1) - (2.4) can be equivalently represented by 

dx (t) 
= A

x
x

x
( t ) + A

3
x

2
( t ) + B

x
u(t) (2.5) 

dx (t) 

— = A x (t) (2.6) 
dt

 Z Z 

y(t) = C ^ c t ) + C
2
x

2
( t ) (2.7) 

z(t) = D ^ C t ) + D
2
x

2
( t ) (2.8) 

where ^ = , 9l\) £ ^ = M ^
1

, x
£
 = (£°, x

P

)
 e
 X

£
= M *

2

, u £ = U , 

y £ I
P

= D z £ l
q

= Z , x
x
(0) = ( 0 ^ 0 ) , 0

X
) , x

2
(0) = (0

2
(O), 0

£
) 

J. 

and all the operators are bounded', except A^, A a n d A^ which are un-

bounded. A^ and A
2
 are closed with dense domains D(A^) and D(A^) res-

pectively. 

t B^, C , C
2
, D^ and D

2
 are in fact compact since either their domain or 

range are finite dimensional. This will be of crucial importance in 
further developments. 
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\ 

B u = (B'^u,0) 

C x = 6 D x = D x ° 
L 1 X 1 L l * l ' V l V i 
C

0
x

0
 = C , D.x = 2 2 2 2 ' 2 2 2 2 

A1X1 = + A l 4 ( ~ h ) > d x l } ' X1 £ D ( V 
d0" 

A
2
x

2
 = (A

2
^

2
 + A

3
x

2
( - h ) , dx

1

 ) , x
2
 £ D(A

2
) 

w 

A
3
x

2
 = ( A ^ + A

5
a

2
( - h ) , 0 ) 

r nl i /si ^o 
D(A^) = x^ e M

2
 |x is absolutely continuous, x^(0) = x^ and 

n l 
(0) £ L

2
(.[-h,0l; E ) 

f n2 JL /vl /vO 
D(A ) = x

2
 £ M |x

2
 is absolutely continuous, ^ ( O ) = x

2
 and 

, /vl 
dx n 

(6) £ L ([-h,0]; E 
n i 

The inner product in X' = M is defined by 

. . , /vO /\0 /vl /vl . 
< x i , z i x = <x0 > Z1 n i V Z1 n i 1 1

 1 °
 1

 E
 1 1

 L (C-h
f
03;tf

 L

) 

and X is endowed with the norm induced by this inner product. 

(Similarly for X
2
> . 

Some features associated with the operators A^, A
2
 and A

3
 will 

be useful in later developments. We first consider the operator A^ 

PI) A^ is the infinitesimal generator of a strongly continuous 

semigroup of bounded operators S^(t), t _> 0. S^(t) is different-

iab.le and compact for t _> h. [S2]. 

P2) For X £ p(A^), i.e. X belongs to the resolvent set of A^
 } 

the resolvent operator (A^-X)
 1

 is compact [S21. 
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P3) The spectrum of A^ consists of eigenvalues (i,e. cr(A^)=point 

spectrum) with finite multiplicites, and the number of eigen-

values with real part greater than a given (arbitrary) constant is 

finite, that is, the set (X £ a/A^)|R e X > w) is finite for any 

number w , CS23CV1]. 

P4) The exponential growth (stability) of the semigroup S^(t) 

is determined by the spectrum of A^ [Tl] CS2], i.e. for each 

w > w
n
 there is a constant M <

 00

 such that II S, (t) II <M e
W t

 t>0 where"^* 
0 w " 1

 11

 — w — 

w cjeg. lim tn || S Ct) || /t = sup Re a (A ) 
t-X» 

Clearly the operator A_ also satisfies P, - P. above. We point out 
2 1 4 

that these properties are interconnected. Indeed, P4 follows from the 

compactness of S^(t) for t _> h (_P4 is also satisfied in a number of other 

situations, see [Tl, Section 23). The first assertion in P3 is a conse-

quence of the compactness of the resolvent operator (A^-X)
 k

 (see, 

e.g. [KI. p.187, th. 6.293). The second part in P3 can be deduced from 

the compactness of the semigroup S^(t), t > h as in [Vl3. 

Concerning the unbounded operator A
g
, we further note that it is 

not even closable, i.e. does not have a closed extension. However, 

A
g
 is an A^compact operator. Indeed, let x

2
 £ D(A

2
) then we may write 

a V h ) = x2 - /° 
-h 

also define 

II|x2I||2= II (.x2>a2x
2
) - II x

2
||

2

 • | |a 2x 2 | f 

'2* 2 2 2 

Since A i s closed, it follows that D(A
2
) becomes a Banach space with the 

norm ||| • ||| . We now show that A
g
 is bounded on D(A2) under this norm. 

f 
Triggiani [T13 refers to this identity as the 'spectrum determined 

growth assumption
1

. 
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I I V 2 . " x - II V M II II X, + II II A 11*2 II 
1 M '

1

 L
2
(.C-h,0];i?

 l

) 

1 n2 II o H2 , J t 
thus, defining M = (_|| A^+A^ || + || A^ || h.) we obtain 

M (-11 x°||2 • II ^ l l V 
i — i_i 

but 

'21? - U ^ V 1 " 2 

and since 

l 2 L 2 

* 2 \ t = H i ll2
n

 + M 1 ! ! 2 

2 M 2 2 L2 

V 2 » x = « ( V ^ ° H 2 n 7
+ I ICA^) 1 ! ! 2 

2 E 2 

we have 

"
 A

3
X

2 "X -
 M

 '"
x

2 . x ,
 e D

( A . ) 
1 

Hence A is A -bounded (see Appendix B), and since the range of A 

is finite dimensional we conclude that A ^ c o m p a c t . 

By considering the evolution system (2.5) - (2.8) it is now clear 

that we are able to study the regulation and internal stability problem 

for a larger class of system than those modelled by (2.1) - (2.4), 

e.g. systems with multiple and distributed delays, or even those 

evolution systems with parameters having the properties mentioned in the 

preceding paragraphs (in particular P1-P4). 

In this abstract setting, the controller equation may be written 

as follows 

^ in the sequel we will write L
2
 in place of L

2
([-h,0]j-ff

11

). 
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u('jt) = F x (t) + G yCt) (2.9) 
c c c 

dx (Jt) 
c 

= A x ct) + B y(t) (2.10) 
dt c c c 

n 
where x £ ^ = M_ , F , G and B are bounded operators. 

c c 2 c c c 

We assume that A is an unbounded closed operator with dense 
c 

domain D(A
c
) and it is convenient, but not unreasonable, to suppose that 

A^ satisfies PI) - P4), i.e. A^ shares the properties of A^ (and A^). 

As mentioned previosuly, the purpose of the controller is two-fold, 

that is, to regulate z(t) (given by (2.8)) and to yield internal 

stability, i.e. the closed loop operator (without the exosystem) must 

be asymptotically stable. We will show later that under our assumptions 

on A
c
» internal stability will be determined by the spectrum of the 

closed loop operator. 

Finally, it is important to note that the controller (2.9) - (2.10) 

has only access to the measured variables y(t) and we do not assume any 

a priori relation between y(t) and z(t). These conditions constitute 

the main difference between Bhat's formulation and ours. 

2.2 Characterizations of Internal Stability and Regulation 

In this section we will show that internal stability of the closed 

loop system is determined by the c^A^) where A^ denotes the closed loop 

operator (without the disturbance signals). Then we will obtain 

a useful characterization of regulation. 

Consider the loop operator 

[ W e i V c 1 : d ( V x x i x 

B C . 
c 1 
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Clearly A^ may be decomposed as A^ = A + B 

where 

B = B G C 
1 c 1 

B C. v

 c 1 

B. F 
1 c 

~ i s a hounded operator on X - X ,
 x

 X 

L i e 

and 

A = A i ° 
0 A 

D(A
l
) = D(A^) x DCA^) X ^ is an unbounded operator 

We can now study the properties of A^ via the 'simpler' operator 

A . 

Lemma 2.1: a) A^ is a closed unbounded operator with dense domain 

D

< V
 C

 *L * 

b) A^ is the infinitesimal generator of a strongly continuous 

semigroup S (t) , t > 0 . 
Li 

c) S (t) is compact for t > h. 
Li 

Proof: a) Since A is closed (A. and A are closed) and B is bounded 
1 c 

the result follows from the fact that closedness is a stable property under 

bounded perturbations [Kl, p.203, th.2.143. Clearly A is densely 

defined since both D(A^) and D(A ) are dense in X, and X respectively. 

1 c 1 c 

b) It is easy to see that A is the infinitesimal generator of 

the strongly continuous semigroup 

S~(t) = s1(.t) o 

s c ( t ) J 

t > 0 

where S (jt) and S (t) are the semigroups generated by A^ and A^ res-

pectively. The property of being a generator is stable under bounded 

perturbations [Kl, p . 497, th, 2.13. This proves b) 

c) S (t), t _> 0 satisfies the perturbation formula [Kl, p.4973 
ij 

S
L
(t) = S~(t) + /

t

S~(t-s)B S
L
(s)ds 
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Clearly
 s

A
( t ) is compact for t _> h , and since Im B is finite dimensional 

the second term in the expression above is compact (see the arguments 

in CT3, Lemma 2.13 or [S33). Thus, S (.t) is also compact for t > h . 
Li — 

Our next result is concerned with the stability of A^. We 

first need the following 

Definition. We say that the infinitesimal generator A : D(A) X 

of a strongly continuous semigroup S(t), t > 0 is (asymptotically) stable, 

if for all x £ X there are constants M <
 00

 and to < 0 such that 

|| S(.t)x|| < M e ^ H x|| , t > 0 all x £ X. 

A fundamental difficulty regarding the stability of an unbounded 

operator is that the inclusion of its spectrum in the open left half 

plane is not sufficient to guarantee its stability. However, in our 

case we have the following result 

Lemma 2.2: The semigroup S (t), t > 0 is asymptotically stable if 
1 Li 

and only if R e X < 0 for all X £ a C A ^ . 

Proof: We first note that the infinitesimal generator A^ is asymptoti-

cally stable if and only if there exist two constants M < °° and qj < 0 

such that 

|| S
L
(t) || < Mb

0

*, t > 0 

Now, from semigroup theory, it is known CD3, part I, Chapter VIII3, 

CHI, pp. 306 and 4573 that for any £ > 0 there is a constant M <
 00 

(to +£) t
 £ 

such that || S
L
Ct) || < M

£
e ,

 w h e r e 

to
Q
 def lim In || S

L
(t) || /1 _> sup Re crCA^ 

t"H» 

therefore if
 s

L
( t ) i

s

 asymptotically stable we must have sup Re cCA^) < 0. 

Now suppose that sup Re cKA^) < 0 then, since S
L
(t) is compact for t •> h, 

it follows CZ1, Lemma 13 (CTl, Section 23) that 

w = sup Re cTA^) 
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hence S Ct). is asymptotically stable. 

The following result is concerned with the resolvent operator 

and spectrum of A^. 

Lemma 2.3: a) The resolvent operator (A -A)
 F

 is compact for A 

belonging to the resolvent set pCA^). 

b) The spectrum of A^ consists of isolated eigenvalues 

of finite multiplicities, i.e. A^ has point spectrum only. 

Proof: a) clearly A has compact resolvent for some A, since 

A, and A „ have compact resolvents for some A_ and A . Since B is 
1
 c

 1 c 

bounded the result follows from [PI, Theorem 4.33 

b) is a consequence of a) [Kl, p.187, th. 6.293. 

In further developments we will need the following spectral 

decomposition results. 

As mentioned previously in Section 2.1, the spectrum of A
2 

consists of eigenvalues of finite multiplicities and the number of 

eigenvalues with real part greater than a given (arbitrary) constant 

is finite [VI3. It follows that A^ satisfies the spectrum decomposition 

in CK. 1, p.178, th. 6.173 , that is 

i) X̂  = X2 ® X* with X̂  and X* both invariant under A2 

+ . — 
X

2
 denotes the unstable subspace associated with A^, and X

2
 corresponds 

to the stable subspace, and 

X2 = P2X2' X2 = ( I " P 2 ) X 2 w h e r e P2 : X2 ^ X2 i s t h e P r ° j e c t i o n o n a l o n g 

X£, and P2D(A2) C D(A2) 

i i ) aCAp = a±(A2) where A* = A^X*, a+(A2) (resp. a(A£)) 

is the spectrum of Acontained in C+ (resp. C ). A^ is a bounded 

operator on X* . 
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iii) P^ commutes with k^, i,e. for each x^ e D(_A
2
) , 

x2 • P2X2 £ a n d P2A2X2 = A2P2X2 = A***. 

Similarly (I-P^) commutes with A^. 

iv) A* and A^ are closed operators. Furthermore, A* is 

bounded with D(A*) = X* and D(A~) = X~ nD(A ). 

In addition we have 

v) P
2
 and (J-P

2
)commute with S

2
(t), t ^ 0. This is a 

consequence of iii) (see Appendix 2 in [Til). Furthermore, S*(t) 

is a uniformly continuous and analytic group.
 d s c o r a

P
a c t 

for t _> h, and therefore its growth is determined by cKA^). 

vi) X
2
 is finite dimensional. In fact we have 

d i m C X p = I algebraic multiplicities of eigenvalues of A w i t h 

Re X 0. (This result follows from the compactness of ( A ^ X ) 

see [Kl, th.6.29, p.187 and p. 1811) 

A^ and A^ may be decomposed similarly. 

- 1 

According to the above decomposition we may write (2.6) in more 

detail 

d x 2 ( t ) 

dt 

dx
2
(t) 

dt 
0 x

2
(t) 

(2.11). 

Using this representation we have that the closed loop system, 

together with the exosystem is given by 

X~(t) = 0 

bL 
A2 

<1 
0 

i9Ct) 
2 J 

0 0 *» 

x
L
(t) 

x~(t) 

x
2
(t) 

t > 0 (2.12) 
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z(-t) = CDt D, 

x
2
Ct) 

x
2
(t) 

( 2 . 1 3 ) 

where 

A +B.G 
1 1 c 1 

R C, 
c 1 

B.F 
1 c 

Dl = CD 0], x ^ t ) = x ^ t ) ) 

X <t)J 
l n ' 

and 

B, A

3
+ B

1
G

c
C

2 

Bc°2 

= a 3 | x 2 , c ; = c , | x 
2 1 2 

B L = 

+ + n 
A

3
+ B

1
G

c
C

2 ' 

B C ! 
c 2 

D2 " fe 

We point out that B? is a bounded operator. Indeed, since 
LI 

A is bounded on D(A0 ) (with the norm III-III) and XI = P 0 D ( A j c D ( A j 

we have 

where 

but 

= II A3P2X2l!2 1 m 2 (" P2X2+I|2 + I' A2X2l!2) 

M2 = || A 4 + A 5 ||2 + || A5 ||
2H 

+ + 
P2X2 = X2 

+ _ + _ + + 

A 2 P 2 X 2 = P 2 A 2 X 2 " A 2 X 2 
+ . 

and since k^ is bounded we obtain 

A3
+X2

+||2 £ M2(.I + A ; I I 2 ) II x2+N2 + 
X2 e 2 

+ . + . 

So A is bounded and therefore B is also bounded. 

The next two lemmas provide a characterization of the regulation 

condition, they are minor extensions of Bhat's results [Bl, Chapter 53. 

i 
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Lemma 2^4: Suppose A^ is stable, then regulation is attained if 

and only if 

X (A I c Ker D 
s s s 

where 

A = 
s 

I 

0 A" 

0 0 

B„ B_ 

A, 

: DCAG) = D(AL ) X DCA2)
 X X

2 + X
S = X

L
 X X

2
 X X

2 

D = [D
t s L 

D. Dp : Xs - Z 

Proof: The closed-loop system is given by (2.12) - (2.13). Now 

since A ^ is stable then ^(A^) <= C (Lemma 2.2) and Cf(A
2
) c C , 

+ + — + 
a(A

2
) c C . Moreover, cr(A

g
) = ^(A^) ua^A^) u a(A

2
> therefore 

+ + + 
a (A ) = a(A_) and X (A ) is given by 

s 2 s s 

X (A ) = P X 
s s s s 

where 

/ (A - X )
_ 1

d A P = 
s

 2iri T S 

and T encloses a(A^). It is easily seen that A satisfies the de-

2 s 
composition described previously, therefore (2.12) is decomposed as 

R < t > ] 
s 

• + 

.«s ( t>J 

A * <t) 

x p t ) 

For an arbitrary initial condition x (.0) = (x (0),x (.0)), the solution of 
S S . s 

(2.12) decomposes as x (jt) = x
+

( t ) + x (t) where. 
s s s 

+ / ^ S + , V 
x (.t) = e x (0) s s 
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By stability of A , x (_t). + 0 as t and zCt) is given by 
s s 

A + t + 
z(t) = D x Ctl = D [e x (0) + x (t)] 

s s s s s 

regulation requires that 
A + t

 + 

D e
 S

 x (0) + 0 as t
 0 0 

s s 

+ + + + 
Since x (0) is arbitrary in X and X is invariant under A , then 

s s s s 

regulation holds if and only if 

X
+

( A ) c K e r D 
s s s 

Lemma 2.5: X (A ) = Im 
s s f - v 

where X^ : X^ ->• X^ is a bounded operator, which is the unique solution of 

V L " *LA2 = BL ( 2 - U ) 

and I is the identity operator on X* and 0 is the zero operator 

on X~. 

+ . 

Proof: Since the spectra of A^ and A^ m the extended complex plane 

do not intersect, then the operator equation(2.14) has a unique solution, 

see [K2, p. 316] or [Bl, Chapter 5, Lemma 5.1.2.]. 

Now 
X

+

( A ) = P X = Im P 
s s s s s 

where P is defined in the proof of Lemma 2,4. 
s 
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Thus, 

/ 
2.tti r 

—1 fw —I 4. 1 
ca^X) iBG(A2-x) x 

CA^-X)-1 

dX 

where 

0 

K- •n 

For x
g
 = (Xj^, x

2
) e X

g
, = (x

L
, x

2
) , we have 

P x = 
s s " -tt I [ ( V X ) - 1 \ + ( V « " l 5 L ( A 2 " W 

"I + 
X2 

(A^-X)""^ 

dX 

( 2 . 1 5 ) 

+ . + 
Since A

2
 is bounded and T encloses ^ (A

2
), 

" 2ii A ^ - W ' d X = I 

On the other hand, since ^(A^) = c C A ^ V
 a n d n C > t 

t 

intersect m the extended complex plane , then there is a unique 

solution X^ to the following operator equation, 

V^L " \ A 2 " \ ( 2 " 1 6 ) 

~ "I + " I 
that is, there are X s.t. (A^-X) and (k^-X) exists and are (both) 

bounded operators, therefore for these X (2.16) can be written as 

C V A ) - 1 ^ ^ ) " 1 = - ( - V X ) " 1 S L c V A r l ( 2 . 1 7 ) 

f 
Extended complex plane is the one-point compactification of the ordinary 
complex plane by adjunction of the point

 0 0

. 
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hence, (2.17) yields 

- / (Aĵ -A) 1B^(A2-A)"1x2dA 
2irr T 

— j ( ( V X ) "
1

 XL-XLCA
2
~A)"

1

)x
2
 dA 

2iri T 

and since ^CA^) lies extirely outside of T the integral of the terms 

- 1 . 
involving ( A ^ A ) is zero. Thus, (2.15) reduces to 

P x = 
s s 

r ~ + ^ 

\ X 2 

X , 

(2.18) 

However writing (2.16) in more detail we obtain 

Y 
b

L
 1 

f \ 
\ 

-

' F A
+

 = 
2 

r + ^ 
b

L
 1 

0 Y - •
X

2 -
0 

J 

and, again, since g(A
2
) and ^(A^) do not intersect, we conclude that 

X~ = 0, and (2.18) gives 

P x = 
s s " V : 

therefore 

X (A ) = Im P = Im 
s s s 

0 

I 

As a consequence of these two lemmas, we have the following 
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Proposition 2.6: If A^ is stable, then regulation is equivalent 

to the existence of a bounded operator X^:
 X

2
 "̂ L

 s u c b t k a t 

V l - V l = bL ( 2 - 1 9 ) 

W = D I ( 2 - 2 0 ) 

The expressions (2.19) - (2.20) will play an important role in 

determining an IMP since they contain 'information' about the structure 

of the controller. We further note that, while (2.19) always has a 

(unique) solution (2.20) might not he satisfied, i.e. internal stability 

and regulation are not compatible requirements necessarily. Also 

note that the above expressions do not involve the operators restricted 

to the stable subspace X^ and therefore all the terms involving such 

operators may be discarded. Finally, we mention that the results of 

this section hold in the case that X* is an infinite dimensional vector 
+ + + 

space, and A^ is an arbitrary bounded operator with a ( A
c

 C . 

2.3 An Equivalent Reduced Problem 

From the spectral decomposition results for time delay systems 

in Appendix A, it can be shown that the projection operator 
+ 

P^ : X
2
 X^ is characterized by 

x
2
(t) = P

2
x

2
( t ) = x

2
( t ) » 

+ + . 
where $

2
, and « • , • » are defined m Appendix A. 

Now, define 

w(.t) = « V
2
, x

2
(.t)» e , N = dim X

2 

then 

x*(t) = $
2
w(.t) 
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andw(jt). satisfies the ordinary differential equation 

w(t) = A w(t), t > 0 (2.21) 
w — 

where A is an N*N real matrix, w(0) = x ( 0 ) » 
w 2 2 

and a (A ) = a(A*), 
w 2 

and A satisfies 
w 

A2$2 " " £ ^ (2.22) 

Furthermore, • iF^ X* is an isomorphism, i.e. ^ is 

bijective and bounded with (.$*)
 1

 being bounded. 

Now consider the closed-loop system ( 2 . 1 2 ) - (2.13) with x^(t) 
+ 

replaced by
 w

C t ) and w(t) satisfying (2.21). Clearly we may use 

Lemmas 2.4 and 2.5 to conclude that when A^ is stable regulation is 

attained if and only if there is a bounded operator X^ : tiP X^ such 

that 

A

L
S

L -
S

L
A

w
= ( A

3
+ B

1
G

C ° 2
) $

2
 ( 2

"
2 3 ) 

V l " °2 $ 2 ( 2 ' 2 4 > 

The following result establishes the equivalence of the expressions 

(2.23) - (2.24) and proposition 2.6. 

Lemma 2.7: Suppose A^ is stable, then there exists a bounded operator 

\
 X

2
 X

L
 s a t i s f

y
i n

§ (
2

-
1 9

) ~ (2.20) if and only if there is a bounded 

operator X^ : X
L
 satisfying (2.23) - (2.24). 

Proof: From (.2.22) is easy to see that Im is an A^ invariant subspace 

Since is infective it follows that A.llm is isomorphic to A . 
2 2' 2 w 
+ + 

But Im = X
2
 , thus 

A* » A 2 w 

In fact the isomorphism is give by 

A = $ A ($ ) 
2 2 V s T 
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The remainder of the proof is easily obtained, 

The above, result means that our original problem is equivalent 

to a problem in which the disturbances and/or reference signals are 

modelled by an ordinary differential equation. 

2.4 Stabilizahility and Detectability of the System and Controller 

In this section we will show that stabilizability of the pairs 

(A, , B J and (A ,B ) and detectability of (C.,A.) and (F ,A ) are 
1 1 c c 1 1 c c 

necessary conditions for the solvability of the regulation and internal 

stability problem. In fact these conditions are a consequence of the 

requirement of internal stability. Before obtaining these results we 

need some preliminary definitions and technical lemmas. 

We say that pair (A^, B^) is stabtl-izable if there exists a 

bounded linear operator F^ : X^ U such that A^ + B^F^ is stable. 

Similarly, the pair is detectable if there is a bounded linear 

operator K^ : V X^ such that A^ + K-^C^ is stable. 

The following lemmas provide convenient characterizations of 

stabilizability and detectability. 

Lemma 2.8: The pair is stabilizable if and only if 

Im(A^-X) + ImB
1
 = X ^ X e C

+ 

Lemma 2.9: The pair (C A ) is detectable if and only if 
1 > 1 

Ker(A^-X) .0 Ker ^ = 0, X e C
+

. 

A proof of these lemmas is given in [Bl] (also see [B5]). We 

point out that these results are consequence of the properties of the 

operator A^, namely that the unstable subspace X* associated with A^ is 

finite dimensional and A. = A-|X
1
 is stable. Also, by our assumptions 
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on A
 9
 the above lemmas hold for (A

 5
B ) and (F ,A \, 

c c c c c 

Now we can prove the following 

Lemma 2.10: The stabilizability of the pairs (A.,B..) and (A ,B ) and 
1 1 c c 

detectability of (C ,A ) and (F ,A ) are necessary conditions for the 
i i c c

 J 

stability of the closed loop system. 

Proof: Stability of A^ implies that ^(A^) n C = <j> so that C c p(A^) 

and since A^ is closed we have (CS4, p, 1791), 

Im(A
L
-X) = X^ = X x X 

Ker(AL-X) = 0 

X e C 

X £ C 

that is 

Im A +B,G C -X B F 
1 1 c 1 1 c 

B C - A -X 
c 1 c 

= X X x , X e C" 
1 c 

and 

Ker A. +B G C -X 
1 1 c 1 

B C. 
c 1 

B F ^ = 0 
1 c 

A -X 
c 

X e C 

In particular we have, for X £ C 

Im(A.+B_ G C -X) + Im B. F = X, 
1 1 c 1 1 c ] 

Im B C + Im(A -X) = X 
c 1 c c 

Ker(A +B, G C -X)r>Ker B C = 0 
1 1 c 1 c 1 

Ker B. F. nKer(A -X) = 0 
1 c c 

hence, for X £ C
+ 

Im(A -A) + Im B
x
 = 

Im B + Im(A -X) « X 
c c c 

Ker(A^-X) nKer C = 0 

Ker (A -X) nKer F = 0 
c c 

(2.25a) 

(2.25b) 

(2.25c) 

(2.25d) 

(2.26a) 

(2.26b) 

(2.26c) 

(2.2 6d) 
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(2.26a) - C2.26d)_ together with lemmas 2..8 and 2.9 give the desired 

result. 

We note that if the closed-loop system is stable, i.e. A^ is 

stable, then the stronger conditions (2.25a) - (2.25d) must be satisfied. 

These expressions may be interpreted as providing us with a 'geometric 

picture' of how certain subspaces associated with the parameters of 

the controller have to be "placed" with respect to the subspaces associated 

with the system's parameters. This idea will be useful for the developments 

of Chapter 3. We finally point out that the expressions (2.26a) - (2.26d) 

may be reduced to controllability and observability conditions in the finite 

+ + 
dimensional subspaces X., and X , see [Bl] or CB53. 

1 c ' 

2.5 Conclusions and Remarks 

The development of this chapter follows closely Bhat's work 

[Bl, Chapter 53. Our results are modifications of those in [B13 to 

accomodate the fact that the regulated variables are not directly available 

to the controller. The assumptions on the operator A^ are motivated by 

the dynamic structure of time delay systems. The results of this chapter, 

in particular proposition 2.6 (and Lemma 2.7) provide the basis for 

obtaining an IMP for delay systems. 
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CHAPTER 3 

STRUCTURAL STABILITY OF A CONTROLLER : 

AN INTERNAL MODEL PRINCIPLE FOR TIME DELAY SYSTEMS 

This chapter deals with the problem of determining an Internal 

Model Principle for time delay systems, that is, determine the necessary 

structural features of a controller which yields output regulation and 

internal stability under small perturbations of certain parameters. 

Before solving our main problem we need some preliminary results. 

We shall first specify the class of perturbation operators. Also we 

will make precise the meaning of smallness of the perturbations. Then, 

as in delay-free case, we will introduce the concepts of readability and 

internal model (.the latter must not be confused with the IMP) . 

Convenient characterizations of these concepts will be obtained. As 

a general outline of the results that will be derived, we will briefly 

summarize the IMP for ordinary linear systems. 

The approach for solving our problem will consist of several steps. 

We shall first allow 'variations' in one parameter while the remaining 

parameters will be fixed. This will allow us to show the necessity of some 

feature, either of the controller, or the system. We will then assume 

that this particular feature holds and perturbations in another parameter 

will be introduced to establish the necessity of another feature. We 

will proceed in this manner until an IMP is obtained. 

Our first result will establish the necessity of readability, which 

is a condition on the system's parameters. Next, we will establish the 

necessity of the internal model, that is that .the controller dynamics must 

incorporate a 'suitable' reduplication of the dynamics of the disturbance 

and/or reference signals. Finally, the feedback structure will be justified 

that is that the internal model must be driven by the regulated variables. 
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In fact, as in the delay-Tree situation, we wilLshow that the internal 

model is controllable by the regulated variables, and observable by the 

control(controllability and observability will be defined on an 'adequate' 

finite dimensional subspace of X ) . 
c 

For reference we write the abstract equation associated with our 

delay system 

dx (t) 

— i = A x G O + A x (t) + B u(t) (3.1) 
dt

 1 1 J 

dx Ct) 
= V 2

( t ) ( 3 ' 2 ) 

y Ct) = c
l X l

( t ) + C
2
x

2
( t ) (3.3) 

z(t) = D
1
x

1
( t ) + D

2
x

2
( t ) (3.4) 

n l n2 _m 
where x_ e X = M , x . e X = ff , u e U = M 1 1 2 2 2 

y e / = f f
p

, z e Z = f f
q 

As discussed previously all the operators are bounded except A^. 

We assume that A^ is a bounded (linear) operator defined on the finite 
n2 + 

dimensional space X
2
 = ff and cr(A

2
)
 c

 C . There is no loss of generality 

in this assumption since, by the results of sections 2.2 and 2.3, we can 

always reduce our problem to this case. We mention that throughout this 

chapter we consider the operator A
2
 to be represented by an n

2
 x n

2
 matrix, 

where n
2
 = dim C X ^ . 

In addition we may assume that 

CG1 C 2 ] : X1 X X2 7 = £ s s u r j e c t i v e 

otherwise we may replace V by I m C ^ + Im C^. Also we assume that 

D : X Z = ff
q

 is surjective (3.6) 
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since a necessary condition for output regulation is Im D^ <= Im D^ 

(see (2. 20) and (2 ,.24)1, and hence we may set Z = Im D^ + Im D^ = Im D^. 

Also we suppose that is stabilizable and (C^,A^) is 

detectable, since by Lemma 2.10 both conditions are necessary for 

internal stability. 

Finally we mention that the finite dimensionality of the 

spaces X
2 >
 (J, V and Z will play an important role in our developments. 

3.1 Class of Admissible Perturbations 

In general, it is difficult to relate arbitrary perturbations of 

the infinitesimal generator A^ in (3.1) to the original delay system. 

Even for certain finite dimensional perturbations of A^, the corresponding 

t 

semigroup cannot be described by a delay differential equation alone 

CS53. Furthermore, some of the properties of the operator A^ may be 

destroyed by an arbitrary perturbation, e.g. closedness, the property of 

being an infinitesimal generator, etc. . 

On the other hand, it is of physical intrest to consider pertur-

bations of the operators associated with the abstract evolution equation 

(3.1) which correspond to variations in the elements of the matrices of 
the original delay system. It is readily verified that variations 

/N /\ 

6AQ in the elements of the matrix A^ in (2.1) correspond to certain 

bounded finite dimensional (compact) perturbations of the infinitesimal 

generator A^ in (3.1). Moreover, when the delay system contains terms 

of the type J° A(s) & (t+s)ds, i.e. distributed delays, we find that 
-h

 L 

t 

This is the case when state feedback is used for systems with delays 
in the controls and in the state. Also, this situation arises when 
output feedback is used, and the output mapping contains delays. 
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A A 

changes <$A(s)_ in the matrix function A(s) also correspond to certain 

compact perturbations of the associated infinitesimal generator. 

We mention that terms of this type also arise naturally from state 

feedback and in the theory of observers for delay systems. When 
A 

the elements of the matrix A^ in (2.1) are allowed to vary, the 

corresponding perturbations of A^ turn out to be unbounded operators 

which are not even closable. However, we will show below that such per-

f 
turbations correspond to certain class of A^- compact operators and 

their ranges are finite dimensional. Furthermore, since the adjoint 
* 

operator A^ is densely defined, it can be shown that the above per-

turbation operators have A^-bound-zero [Kl, p. 196]. 
A 

Let oA^ denote the variations m the elements of the matrix 
A 

A^ and let be the corresponding perturbation of A^, then for 

xx £ D(AX) 

(A1+5A1)x1 = (Aqx^ + (Ax + S A ^ V h ) , J ^ l ) 

so that 6A^ is given by 

6A]_x1 = (SA^C-h), 0) 

Now is unbounded, for |) x ^ - h ) |) can be arbitrarily large for 

E 1 

|| x || = 1. However, 6A is bounded on D(A
n
) with the graph norm, 

1 X 1 1 

i.e. IHx^H'
2

 = || x j
2

 + || A
l X l

||
2

 ,
 X]
_ £ D(A

1
). Indeed, for 

X 1 Xi 
x^ £ D(A^) we may write 

1 .o ° - l ^ ( - h ) = xx - J 2 ( Q ) d e 
-h -L 

t 
see Appendix B for the definition of relative compactness and 

relative boundedness. 
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i 

thus 

||6A^ || < I J ^ I J C||S°|| + S 0 II II d6) 
X -h 

0 i r2 . „ a1h2 , i ii ci+h)5cii ^ r + ii ) 
L 

2 

but 

and since 

^ i f = || (A x ) 7 |f 
l 2 L 2 

A ^ J I 2 = || ( A ^ / l f + || ( A ^ / U 2 

X1 L2 

* J 2 - II 2? If • IIS,1 If 
x i L: 

we obtain 

llfiA^H < || S^H (14b)1 Hl^ HI 
X1 

Hence, is A^-bounded and since Im 5A^ is a finite dimensional subspace 

of X^, we conclude that 6A^ is A^-compact. 

Thus, in general, variations in the elements of the matrices 

^ /s 

AQ and A^ in (2.1) correspond to certain perturbations 5A^ of A^ which 

are A^-bounded operators with finite dimensional ranges. For such per-
t 

turbations, we find that the operator has the following properties 
1) is closed with domain DCA^+SA^) = D(A^) 

2) is the infinitesimal generator of a strongly 

continuous semigroup S^ (t) , t 0. 

3) The semigroup S^ (t) is compact for t >_ h . 

4) The resolvent operator
 1

 is compact for all 

A £ pCA
1
+6A

1
). 

t 
/y /y /s /N /x 

Replace A^ and A^ in (2.1) by AQ-*<5A
q
 and SA^respectively. 
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We point out that for an arbitrary A b o u n d e d perturbation with 

finite dimensional range some properties of the operator ^ are 

stable, e.g. closedness, compactness of the resolvent (see Appendix B or 

[Kl, Chapter IV], CGI, Chapter V]). However, in general, it is not known 

whether the property of being an infinitesimal generator of a strongly 

continuous semigroup is stable under an arbitrary A b o u n d e d perturbation 

with finite dimensional range. 

We shall therefore limit the class of admissible perturbations 

SA
1
 of A

x
 to those satisfying conditions 1) - 4) and so in particular to 

those corresponding to variations in the elements of the 

matrices A
Q
, A

l
 in (2.1). Such class of perturbations will be denoted 

by F(A
x
). For all other operators which are not only bounded but compact 

(since either, they are defined on a finite dimensional space or their 

ranges are finite dimensional), the perturbation class consists of 

arbitrary bounded operators between the appropriate spaces. Finally, 

we mention that the restriction on the perturbation class for A^ will 

not affect our results on the Internal Model Principle, since the 

conditions will be principally determined by the perturbation class 

of A . 

Having specified the class of perturbation operators we now make 

precise what is meant by a small perturbation. For this, we need to 

introduce the concept of gap between two operators. The following 

definitions are given in [Kl, pp. 197-2051. 

Definition 3.1: Let X be a Banach space, and S be a closed subspace 

of X. Then for x £ X, the distance from x to the subspace S is 

given by 

dist(x,S) = inf || x-y || , (3.7) 

ye S 
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Definition 3.2: For a pair of closed subspaces R and S of a Banach 

space X , define 

6(R,S) = sup dist(x,S) (3.8) 
xeR 

11*11 =i 

and 
/s 
d(R,S) = max[<5(.R,S) , 6(S,R)1 (3.9) 

A 

6(R,S) is called the gap between R and S. We note that 

(.3.8) has no meaning if R = 0; in this case we define 6(0,S) = 0 

for any S. Also, for R ^ 0, 6(R,0) = 1. The following relations follow 

directly from the above definition 

6(R,S) = 0 if and only if R c S 

6(R,S) = 0 if and only if R = S 

0 £ 6(R,S) £ 1 , 0 £ 6(R,S) £ 1 

We now define the gap between two closed operators. Recall that 

an operator A : X V is closed if and only if its graph G(A) is 

a closed subspace of the product space X x V^. Thus, we have the 

following definition 

Definition 3.3: For A , B e C(X,V) the set of all closed (linear) operators 

from X tp y
t
 define 

6(A,B) = 6(G(A), G(B)) (3.10) 

and <S(A,B) = 6(G(A),G(B)) (3.11) 

/V 

6(A,B) is called the gap between A and B. 

This definition of gap leads to the following concept of convergence 

of closed operators 

Definition 3.4:
 £

 is said to converge in the generalized 

sense to A e C(X,V) if 6 (A ,A) 0. 
n 

t ; 
Throughout this work we consider that the norm for the space XxV 
is given by 

II <*,y> II X x y - ( I M S + l l y l l ^ 
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This notion of generalized convergence enables us to make precise 

the smallness of perturbation. Thus, we say that for a closed operator 

/s 

A : X V a perturbation dA is small if the gap 6(A+6A,A) is in a neigh-

bourhood of zero. In case &A belongs to the set B(X,V) of all bounded 

(linear) operators, this is equivalent to || 6A|| being small, [Kl, 

p.203, th. 2.143. Also we note that on the subset B(X,y) of C(X,y), the 

topology induced by <S(A,B) coincides with the topology induced by the 

metric || A-B || . 

Before concluding this section, we mention that the gap function is 

not, in general, a proper distance function since it does not satisfy 

the triangle inequality (unless the underlying space is Hilbert). It can 

be shown that the above definition of gap can be adequately modified to 

provide a distance function for the set of all closed subspaces. 

However, when we consider the topology of the set of closed subspaces the two 

functions give the same results and usually the gap function is more 

convenient to use for applications. For details see [Kl, pp.197-2053. 

3.2 Readability 

Recall from section 2.1 that the controller (2.9) - (2.10) is 

restricted to process the measurable output y. We will show later that 

a synthesis may be structrually stable only if the controller has access 

to the regulated variable z. This motivates the following definition, 

which is given in [F13. 

Definition 3.5: We say that z is readable from y if there is a 

bounded (linear) operator Q : V Z such that 

z = Qy (3.12) 
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KerCC
1
 C ^ c K e r l ^ D ] 

The following lemma gives a convenient characterization of read-

ability. 

Lemma 3.6: z is readable from y if and only if 

(3.13) 

Proof: The proof of this result is the same as in the finite dimensional 

case [Fl] , however we give it here for completeness. 

(Necessity). Suppose that z is readable from y. 

Then, by definition, there is a bounded operator Q : V Z such that 

z = CD D 2 3 x = Q[C C 2 3 x x e X = X
x
 x X

£ 

Thus 

Ker(QCC
1
 C

£
3) = KerCD D ^ 

and (3.13) follows from the above expression 

(Sufficiency). We first note that 

X 
ImCC

1
 C

2
] 

KerCC C
£
3 

ImCD D ] 
Ker[D

1
 D 3 

Now suppose that (3.13) holds, from (3.5) and (3.6), we have 

dimtyi = dimClmCC^ C ^ 3 > d i m C l m ^ D 33 = dim[Z3 

Thus we can define V according to 

V = W 9 1 

where W is a suitable complement of Z. Then 

CC1 C2 ] = E 1 E2 

° 1 °2 

(3.14) 

(3.15) 

for some bounded operators E. 

w =
 + E

2
X

2
 W e b a v e 

y = 
w 

z ; 

e W 9 Z 

X W , E
2
: X

2
 Defining 

Now consider the natural projection Q : W ® Z Z. Clearly this Q 

yields the desired result, i.e. that z is readable from y. 
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3.3 Internal Model 

The concept of internal model has been introduced in CF13* [F2] 

for linear operators acting on finite dimensional spaces. In this case 

the internal model is defined as follows 

Let A : X X and A^ : X
2
 X^ denote two linear operators 

and suppose that X and X^ are finite dimensional. 

Definition 3.7: We say that A : X X incorporates an internal model 

of A
2
 : X^ -»• X^ if the minimal polynomial of A^ divides at least 

f 

q = dim III invariant factors of A. 

The above definition of internal model is not adequate without the 

assumptions on the dimensions of X and K^- To see this, we first note 

that for arbitrary linear operators defined on infinite dimensional 

spaces the concepts of cyclic subspaces and minimal polynomial are rather 

'difficult' to define. In fact, the idea of minimal polynomial is restricted 

to very special operators, e.g. bounded operators with rational resolvent 

(see [T2 pp. 336-3373). However, if we only assume that K^ is finite 

dimensional, then definition 3.7 is still of some use. Indeed, definition 

3.7 may be paraphrased by saying that the internal model is at least a 

q-fold reduplication in A of the maximal cyclic component of A ^ This 

interpretation motivates an alternative definition of internal model, 

which of course is equivalent to definition 3.7 when X is finite dimensional. 

Before generalizing the concept of internal model we need the following 

preliminaries. 

f 
recall that the invariant factors of A:X X are the minimal polynomials of 
the cyclic components in a rational canonical decomposition of X relative 
to A. Of course X is a finite dimensional space CW1, pp.16-173 
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Rational Canonical Decomposition. (X^ is finite dimensional). 

Let 

k 
X_ = & X _ . 2 . - 2i i=l 

be a rational canonical decomposition of X^ relative to A
2
[W1, pp,16-17] 

Then the following holds 

i) X
2 d
 is A

2
~invariant for i = 1, 2,...,k 

ii) A ^ = A^ 1-^21
 c

y
c l i c x =

 2,...,k 

iii) the minimal polynomial (m.p) of A ^ divides the m.p. of 

A
2 i + 1

 for i = 1, 2,...,k-l 

iv) the m.p. of A
2 R
 is the same as that of k^ 

v) the integer k is called the cyclic index of A^ and 

k = max{dim[Ker(A
2
-A)]|A £ a (A

2
)} 

Now define 

x_ — X_„ 0 X-, 0 . . . 0 x_. 
2 2k 2k 2k 

/ 
= CX

2 k
]- (£-fold direct sum) 

(3.16) 

and 

X
2
: X

2
- > X

2
 , A

2
| X

2 k
 = A

2 k
 (3.17) 

that is, A
2
 is an £-fold direct sum of the largest cyclic component 

of A
2
. 

We now give the following definition . 

Let X 2 be finite dimensional and suppose that A : X X is a 

closed operator with dense domain D(A) in the Banach space X . 

Definition 3.8: We say that A : X X contains an internal model 

A
2
 : X 2 X 2 if there is a bounded injective operator R : X 2 X 

such that on the domain of A the following diagram commutes, i.e. for 
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all x
2
 £ X

2
, R x

2
 £ D(A) and 

AR x
2
 = RA

2
 X

2 
(3.18) 

D(A) 

R 

D(A) 

R (3.19) 

where X
2
 and A are given by (3.16) and (.3.17) and t >_ q with 

q = dimCZ]. 

The interpretation of definition 3.8 is that Im R is an A-invariant 

subspace of X and that A|lm R is isomorphic to k^. Thus, we have extended 

the concept of internal model for closed operators with dense domains. 

A different definition of internal model is given by BhatCBl, Chapter 51 

via the commutative diagram (3.19) with k^ and X
2
 replaced by A

2
 and X.^, 

In this case we have that A|lm R is isomorphic to k ^ Thus, Bhat's 

definition does not involve the idea of a q-fold reduplication in A of certain 

features of the dynamic structure of the exosystem. Since such reduplication 

plays an important role in establishing an IMP, we prefer to define the 

internal model in terms of this reduplication (as in the finite dimensional 

case). 

To conclude this section we give a useful characterization of the 

internal model. 

Lemma 3.9: A : X X incorporates an internal model of A
2
 if and only if 

for each X £ a(A~) 

k x _ 1 
dimCKer(A-X)n Im(A-X) ] > q (3.20) 
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where k. is the degree of the factor (s-A) in the minimal polynomial of A 
A 2 

Proof: (a simple proof of this result is given in [Fl, Lemma 3] 

for X finite dimensional). 

By definition 3.8 A contains an internal model of A i f there is 

a bounded injective operator R : X^ X such that 

AR = RA, (3.20a) 

where 

A2 " 2k 

L

2k 

2k 

is an £.-fold direct sum of the largest cyclic component of A^, for some 

I >_ q. Let R = [R
1
 R ... R^l where R^ : X

2 k
 + X for 1 < i < 

and since R is injective, it is easily verified that each R^ is 

injective and Im R. n Im L = 0 , i ^ j. Restricting (3.20a) to X
2 k 

we obtain 

Let 

A R. = R. A
0 1 l l 2k 

m 
X . = © x 9 V 
2k j

= 1
 2Aj 

i = l , 2, ... , £ > q (3.20b) 

where m is the number of distinct eigenvalues of A
?
, and since A 

Z ZK. 

is cyclic it follows that ^ 2 k ^ 2 A j
l s a l s o c

y
c

l i
c

« Select a basis for 

X
0 1
 such that each A„, X-.. is in Jordan canonical form, that is 

2k 2k
 1

 2 A j 

A
0
i X.. . = J(A.) is an k, .

 x

 k, . matrix where k, • is the degree of the 
2k

1

 2Aj j Aj Aj Aj 

factor (s-AJ) in the minimal polynomial of A^. Further, since R̂ . is injective, 
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it is easy to see that 

R . | x _ , . = i y x i r x l . . . r x l ] i
1

 2Aj ll i2 

is infective for i = 1, 2 , . . . £ , j = 1, 2,...m and that 

Im(R. |X ) n Im(R | X 0 , ) = 0 i j p , j j p_ 
L Z A J P ZAP 1 Z 

2 

for i, p^ = 1, 2, ..,t j , p
2
 = 1, 2,..m that is, the vectors 

AJ 

are linearly independent. Furthermore, restricting (3.20b) to X . . 
ZAJ 

we obtain, for each i and j 

( A - A j ) yXl = 0 

(A-Aj) y ^ = J
X

{ (3.20c) 

^ 4 - n L - i 
A J Aj 

which in turn imply that 

k, • -p 
Ai P X j 

Y £ N (Aj) = Ker(A-Aj) n Im(A-Aj) (3.20d) 
P 

ip 

for p = 1,2,...k^ , j = 1, 2,...m, i = 1,2... I 

Now, for Aj £ a(A
2
), it is easy to see from (3.20d), that 

A U A j ) c SI (Aj) c ... SI. (Aj) 
1 Z

 A j 

thus we may conclude that 

dimCN
i
(Aj)] > l > q 
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since y
A

| , y
A

| ... £ W^CAj) are linearly independent. This 

establishes the necessity of (3.20). 

To prove the sufficiency of (3.20) consider Aj fix. Clearly 

(3.20) implies that there are at least q linearly independent vectors 

Y

l i '
 Y

2 1
 T

q l
 £ N

l
( X j ) ( 3

'
2 0 e ) 

We will now show that there are at least q-linearly independent vectors 

k p ' H ••• P - 2 , 3 , . . . k x . ( 3 . 2 0 f ) 

such that the vectors 

S(Aj) = {y [I , y ^ ... y ̂ ; i = 1,2, ... q} (3.20g) 

Aj 

are linearly independent. 

It can be shown [T2, Theorem 6.3, p. 2911 that 
k, . 

Ker(A-Aj)
 A J 

W

l
( A j )

 * k T — 
1

 " Ker(A-Aj) 

k . -1 k, . 
In fact, (A-Aj)

 J

 maps Ker(A-Aj)
 J

 onto N (Aj). Hence, (3.20e) 

implies that there are q independent vectors such that 
1

 Aj 

(A-Aj)
 A j

 y ^ = y
A j

x
 , i = 1, 2... q (3.20h) 

Aj 

i.e. for 1 £ i £ q 

k k -1 
y

A

^ £ Ker(A-Aj)
 A j

, y
A

;j $ Ker(A-Aj)
 A

j (3.20i) 
• IK, • 

Aj Aj 

A' .
 k

A ' "
1 

and since y.£ £ Ker(A-Aj)c Ker(A-Aj)
 3

 it follows that the vectors 

» i - l , 2 . . . . q } 
Aj 

are linearly independent. 
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Now set 

k .-2 
(A-Aj)

 A j

 Y H = r H . i = 1,2 ... q (3.20 j) 

Aj 

k^. -2 k . 
and note that (A-Aj)

 J

 maps Ker(A-Aj) onto W^CAj). Clearly the 

vectors y^
3

 are independent. We next show that 

{ Y

U '
 Y

i 2 '
 Y

i k
 ;

 i = l , 2 . . . q ) (3.20k) 
Aj 

are linearly independent. It is easy to see that (Y/^j fejj. }
 a x e 

A' 2 k^.-l y k
A
- 1 

independent since y
 3

 £ Ker(A-Aj) c Ker(A-Aj)
 J

 and y.r, 4 Ker(A-Aj)
 3 

1 lkA 

(see (3.20i). Also, j
 y

1 2 ^
 a r e

 independent since 

(A-Xj)y^ -

otherwise 

1-AI)Y X A = 0 ( A -Aj ) Y £ 2 

which in turn implies 

k, .-1 , . 

(A-Aj) y
X

' = 0 

Aj 

k "I 

\ ' A ' 
i.e. y

 3

 £ Ker(A-Aj)
 3

 which is not possible (see (3.20i)) 

Aj 
thus, 

Y
£
j £ Ker(A-Aj)

2

, y ^ 4 Ker(A-Aj) (3.20T) 

Hence the vectors in (3.20k) are linearly independent. 

We now set 

( A - A j ) ^ y H = y
A j

3
 , i = 1, 2... q (3.20m) 

Aj 
kx."3 la 

and note that (A-Aj)
 3

 maps Ker(A-Aj)
 3

 onto N^CXj). It is readily 



- 46 -

verified that
 a r e

 independent. We next show that 

{ y

i l '
 y

i 2 '
 y

i 3 '
 Y

i k , . ; i = 1,2...q} (3.20n) 

are independent. First observe that (y^g
 9 y

i k ^
 a r e

 i
n

^
e

P
e n

^
e n t 

A' 3 ^A'""̂  
since e Ker(A-Aj) c Ker(A-Xj)

 J

 and y.:J 4 Ker(A-Xj)
 A j

 . 
1J IK.. 

X' A' 3 X' 
On the other hand we have the vectors (Y.q> Y ^ »

 y

i y
 a r e

 i
n d e

P
e n

^
e n t 

since 

otherwise 

(A-Xj) 2 ^; -

( A - X j )
2

Y
^ = 0 

which implies 

(A-Xj)
 X

J Yi
3

 - 0 
Xj 

X • k .,-1 

i.e. Y-i
 e

 Ker(A-Xj) which is not possible (see (3.20i)) 
Xj 

thus 

Y ^ e Ker(A-Aj)
3

 , y ^ i Ker(A-Aj)
2

 a Ker(A-Aj) 

hence the vectors in (3.20n) are linearly independent. 

Now consider any 3 < t < k.. -1. Let 

- - Xj 
(A-Xj)

 X j

 y ^ = Y^
J

t
 , i = 1,2...q (3.20p) 

Aj 
k -t k.. 

Observe that (A-Aj)
 J

 maps Ker(A-Xj) ^ onto M^(Xj). Clearly the 

vectors y
X

~j.
 a r e

 independent. We next show that 

r Xj Xj Xj Xj Xj
 } X Y

i l '
 Y

i 2 '
 y

i 3
 Y

i t '
 T

i k , . '
 1 

.. (3.20q) 

are also independent. It is easy to see that {yJ4 , Y ^ } are 

k • 1 Xj 
independent since y

X

j e KerCA-Aj)
1

* c Ker(A-Xj) and y ^ ^ Ker(A-
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On the other hand we have that ( y ^ J i
 =

 1> 2...q, p = 1,2...t} 

are independent since 

,. . .. t-1 Aj Aj 
(A-Xj)

 Y i

J

t
 = Y j 

otherwise 

(A-Xj)
t _

 J j = 0 

and this implies 

k,.-1 N. 
(A-Aj) yll = 0 

Aj 
A'

 k

A '
_ 1 

which is not possible, since y.r. 4 Ker(A-Aj) (see (3.20i)) thus, 
Aj 

y
A

j e Ker(A-Aj)
t

, y
A

j 4 K e r ( A - A j )
t _ 1

 ^ Ker(A-Aj)
t

"
2

 ... => Ker(A-Aj) 

Hence, the vectors in (3.20q) are independent. 

We may now conclude that the vectors S(Aj) in (3.20g) are linearly 

independent. Furthermore, the (y^i > y
A

« ••• } satisfy the expressions 
1 1 1 Z I K . . 

Aj 

(,3.20c) for each 1 < i < q, and for each Aj e a(A
2
) . Also it is easy 

to see that 

S(Ai) n S(Aj) = 0 , i ^ j i,j = 1,2...m 

therefore, there exist a bounded injective operator R : X
2
 X 

satisfying (3.20a), and by definition this implies that A contains 

an internal model of A
2 >
 This completes the proof of Lemma 3.9. 

3.4 The Internal Model Principle for Ordinary Linear Systems 

In this section we first state the IMP for finite dimensional 

linear systems. Then a brief description of the steps involved in 

establishing this result is given. For details see CF1] CF2] [Wl]. 

The Internal Model Principle: A regulator synthesis, that is a 

controller which yields output regulation and internal stability of the 
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closed loop system, is structurally stable only if it utilizes feedback 

of the regulated variables, and incorporates in the feedback path a 

suitably reduplicated model of the dynamic structure of the exogenous 

signals which the regulator is required to process. 

We now outline the steps required in proving the IMP. The main 

technical results are given by various lemmas. 

Step 1: This step consists in proving that readability of z from y 

is a necessary condition for structural stability. A preliminary result 

is given by the following 

Lemma 3.10: A synthesis is structurally stable at A^ only if 

Ker C^ c ker D^ 

From the above result we can write / = CC © Z, then 

c i • C2 E 1 B = [B B ] , F = CF F 3 
c cw cz w z 

.. (3.21) 

for some E, , E„ and DR, where B = B , B = B | Z , F = F|W 
1 2 2 cw c' cz c w

 1 

and F = F|W . 
z

 1 

Considering perturbations in some other parameter it can be 

shown that structural stability of the controller requires D
2

 =

 f^* 

This result may be expressed as follows 

Lemma 3.11: (Necessity of Readability) . A synthesis is structurally 

stable at (A~, B |Z = B ) only if 
3 c cz 

Ker[C^ C
2
3 C KerCD^ D ^ 

Step 2: Having proved the necessity of readability we now consider a 

synthesis in which this condition is satisfied. Also, we adopt the repres-

entation (3.21) with D
2
 = D

2
. 
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This step consists in establishing the existence of an 

A -invariant subspace R such that the operator A : X X induced 
c c c c c 

by A in X = X /R incorporates an internal model of A 

Define 

R = <A B E_ Ker D > 
c c

1

 cw 1 1 
(3.22) 

then X = R ® X
 0
 and 

c c c2 

A = 
c 

A A . 
cl c3 

0 A 
c2 

> B_ = 

B B 
cwl czl 

bcw2 ^cz2 
, F = CF F ] 

c cl c2 

(3.23) 

A „ must contain an internal model of A
n
. This result is expressed 

c2 2 

as follows 

Lemma 3.12: (Necessity of the internal model). A synthesis is structurally 

stable at A^ only if the controller incorporates an internal model of A^. 

Moreover, the internal model is observable by u, that is A^-modes of A^ 

are observable by F , i.e. Ker F n Ker(A -A) = 0 , A s a(A
0
) . 

c c c i 

Step 3: This step consists in proving the necessity of the feedback 

structure. This result will follow once we show that 

Im B c R 
cw c 

(3.24) 

or equivalently 

<A llm B > = R 
c cw c 

where R^ is given by (3.22). The necessity of ..this condition is 

expressed as follows 

Lemma 3.13: There is no synthesis in which (3.24) fails and is structurally 

t 
Let A : X X and consider a subspace R of X. Then 

<A|R> = R+AR +...+ A
n d

R is an A-invariant subspace of 

XCW13. (Of course we assume that X is finite dimensional). 
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X 
—• — Q 

stable at (A_, P B = B ), where P : X X = — is the 
3 c cw cw c c

 c

 ^ 
c 

canonical projection. 

The interpretation of (3.24) is that B = 0 in the represent-
cw2 

ation (3.23), i.e.
 P

C

B

C W
 ~ 0-

 I n

 this case we have the following 

Lemma 3.14: If (3.24) holds, then the internal model is controllable 

by z , that is A -modes of A are controllable by P B = B , i.e. 
2 c c cz cz 

X = Im(A + Im Im B , A e a ( A j . 
c c cz 2 

This establishes the necessity of the feedback structure. 

To close this section we give the following result concerning 

the sufficiency of the IMP [F21. 

Lemma 3.15: Suppose z is readable from y , the closed-loop system 

is internally stable and the controller incorporates an internal 

model of A
2
 which is controllable by z and observable by u. Then the 

synthesis is structurally stable with respect to the parameters 

(A , A_, B , F , F , F , I , A , A B , B , B ) . 
1 3 1 cl c2 w 2 cl c3 cwl czl cz2 

The only part of the controller which we do not allow to vary is A 
c2 

i.e. the part containing the internal model of Also we mention that 

while A^ is allowed to vary arbitrarily, the size of the perturbations of the 

remainding parameters is restricted to preserve internal stability, i.e. 

(A^ + must be stable. 

3.5 Structural Stability of Stabilizability and Detectability 

In this section we will establish that stabilizability of 

and detectability of are stable properties with respect to 
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certain small perturbations of A^, B^ and C^ (see Section 3.1). 

Proposition 3.16. Stabilizability of the pair (A^, B^) is a stable 

property with respect to small bounded perturbations of B^ and small 

perturbations of A^ of class F(A^). 

Proof: The proof of this result consists of several steps. 

1. We know that A^ satisfies the spectral decomposition 

described in Section 2.2. In particular, the finite dimensionality 
+ 

of X- and the compactness of the semigroup S (t), t _> h imply, i Ax 

by Lemma 2.8, that (A , B^) is stabilizable if and only if 

Im(A -A) + Im B
1
 = X

x
 , A e C

+

 (3.25) 

2. Now assume B^ is fixed and only A^ is allowed to perturb. 

Let { A j , i = 1, 2,...,k be the distinct eigenvalues of A^ in C
+

 , and 

let m. denote the algebraic multiplicity of A.. The total multiplicity 

+ k 

of the eigenvalues of A^ in C is N = £ • ^ow enclose each A. 
i=i -

by a closed curve T. so that T. contains A. only. Then, by Theorem J

 l I I 

B^III.2 in Appendix B and the fact that { A j is a finite system of 

eigenvalues, we may conclude that there is a 6 > 0 , depending on 

A^ and , such that for any of class F(A^) with 

t 
6(A^+6A^,A^) < 6 , the spectrum of (A^+6A^) is likewise seperated by 

I V s, and the total multiplicity of the eigenvalues of (A^+6A^) in 

r. is m. for each i = l,2...k. Furthermore, the change of each A. 1 1 I 
A 

is small if 6(A^+6A^,A^) is small. In addition, the upper semicontinuity 

of the spectrum of A^, assures that no eigenvalues of A^ in C move 

to C
+

. Therefore the total multiplicity of the eigenvalues of 

(A^+6A^) in C+ is equal to N. 

t . . . . . . 
a more explicit condition is given by Theorem B.III.4 m Appendix B • 
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3. Consider any perturbation oA
l 

as described in Step 2. 

It follows that (Al+OA
1

) is the infinitesimal generator of a 

strongly continuous semigroup S (A+OA
l

) Ct), t"':: O. Moreover, 

S (A +oA ) (t) is compact for t > h (see Section 3.1). Thus, by Lemma 
- 1 1 

2.8, we have that (Al+OA1,Bl ) is stabilizable if and only of 

Im(A +oA -A') + 1m B = X 
1 1 1 1 

, A' E: C+ (3.26) 

Thus the proposition will be proved if the above condition is verified 

+ 
at each A' E: a(Al+oA

l
) n C . 

4. It can be shown that Im(Al-A) and Im(Al+OA1-A) are closed sub-

t spaces for every A C C. Clearly 1m Bl is colsed since it is finite 

dimensional. Therefore we may use the results of Appendix B concerning 

pairs of closed subspaces. 

Xl' A E: C+, Theorem B.l.l implies that 

there lS an s > 0 such that 

Now, since Ker(Al-A) is finite dimensional and OAI lS Al - compact, 

Theorem B.IV.12 gives 

a 
O(Im(Al-A), Im(Al+OA1-A'» < 

Y(Al-A) 
tt 

+ b + IA-A'I 

where a, b are non-negative constants so that 

Xl C D(Al ) , and Y(Al-A) > 0 by Theoem B.IV.l. Thus, for a sufficiently 

small perturbation OAl (in the sense of 8(A
I

+OA
1

,Al ) being small) 

t 

tt 

this follows from the fact that (~-A) and 

from all A (see Lemma 3.21 in ,Section 3.7). 

(Al+ OA1-A) are Fredholm operators 

b may be chosen arbitrarily small, since since the range of OAlSF(A
l

) lS finitE 
dimensional and Al is densely defined (Section 3.1). 
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Theorem B.I.2 now gives 

def Clm(A
1
+6A -A

1

) ,Im B ) £ def (Im(A^-A) , Im B ) = 0 

hence 

I m C A ^ A -A
1

) + Im B = X A
1

 e C
+

. 

The case when B^ is perturbed can be proved in a similar way. 

Furthermore, if A^ and B^ are perturbed simultaneously Theorem B.I.8 may 

be used to obtain 

ImCA^+dA^-A') + Im(B
1
+6B

1
) = X , A

?

 £ C
+

 (3.27) 

We next prove the structural stability of detectability. 

Proposition 3.17. Detectability of the pair (C^, A^) is a stable property 

with respect to small bounded perturbations of C^, and small perturbations 

of A^ of class F(A
x
). 

Proof: The proof is similar to that of proposition 3.16. 

1. We have from Lemma 2.9 that (C^, A^) is detectable if and 

only if 

Ker(A -A) n Ker C = 0, A £ C
+

 (3.28) 
1 1 

2. The discussion in step 2 of the previous proof is valid in 

this case also. 

3. Again, from Lemma 2.9, we may conclude that (C^, A^+6A^) 

is detectable if and only if 

' + 

Ker(A
1
+6A

1
-A') n Ker C = 0, A £ C (3.29) 

4. Clearly Ker C^ is a closed subspace of X^, further since Im C^ 

is finite dimensional, it is easy to see that 

codimtKer C^3 <
 00 

thus [Ker (A -A) + Ker C 3•and [Ker (A -FdA^A
1

) + Ker C 3 are both closed 

subspaces [T2, p.733. 
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It follows, by Theorem B.I.1, that there is an £ > 0 such that 

1 _> yCKer C ^ KerCA^-A)) £ £ , A £ a(A ) n C
+ 

Now, since (A^-A) and (A^+dA^-A*) are Fredholm operators we have that 

y(A^~A) > 0, and Theorem B.IV.10 yields 

6(Ker(A
1
+6A

1
-A'), Ker(A^-A) ) £ [2 + y ' ^ - A ) ] ( A ^ d A ^ A ' ,A

][
-A) 

but, since dA^ is A^-bounded with A^-bound zero, Theorem B.II.5 gives 

6(A
1
+6A

1
-A

I

, A
x
-A) £ (l-b)

_ 1

[(a+A-A*)
2

 + b V 

thus for a sufficiently small perturbation dA^ we have 

6(Ker(A
1
+6A

1
-A'), Ker(A^-A)) < £ £ y(Ker C^, Ker(A^-A)) 

and Theorem B.I.2 implies 

nul(Ker(A
1
+6A

1
-A'), Ker C^) £ nul(Ker(A^-A), Ker C ) = 0 

hence 

Ker(A
1
+6A

1
-A') n Ker C^ = 0 , A

!

 £ C
+ 

The case when C^ is perturbed can be proved in a similar way. 

Furthermore, if A^ and C^ are perturbed simultaneously, Theorem B.I.7 

may be used to obtain 

Ker(A
1
+6A

1
-A') n K e r ^ + d C ^ ) = 0 , A £ C

+

 (3.30) 

We point out that (3.27) and (3.30) also hold for small per-

turbations dA^ of A^ which are A^-bounded, with A^-bounded less than 1. 

However, for such perturbations, (3.27) and (3.30) cannot be interpreted 

as conditions for stabilizability and detectability, simply because the 

perturbed operator A^+dA^ is not, in general, an infinitesimal 

generator of a strongly continuous semigroup. Even, for small bounded 

perturbations of A^, (3.27) and (3.30) may no longer be sufficient 

conditions to assure stabilizability and detectability-(although A^+dA^ does 

generate a strongly continuous semigroup when dA is bounded operator). 
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We show below how such situation may arise. 

Let 

A i • 

0 0 ' 

B 1 • 

with cr(A^) c C , a (A*) c C
+

(a(A^) consists of a finite number of 

eigenvalues). We further know that the semigroup S (t) is compact for t _> h . 
A1 

Therefore S ~(t) is also compact for t h and since o(A
1
) <= C we may 

A1 1 

conclude that there is an M = M ,
 x

 <
 00

 such that 
(a-e) 

II II 1
 M t

 , arbitrary £ > 0, t _> 0 
A1 

where 

-a = sup Re aCA^) 

Suppose that (A^, B^) is stabilizable, then by Lemma 2.8 this is equivalent 

to (3.25). Now consider the bounded perturbation 

6 A 1 " 6A 11 

such that a(A
1
 + 6 A ^ ) <= C 

Clearly (3.27) is satisfied with <5B^ = 0 , however the semigroup S (t) 
CA-1+6AU) 

is not necessarily compact for t _> h, and the inclusion of g(A^+<5A^) in the 

open left half plane is not sufficient to guarantee the stability of the 

semigroup. In this case (3.27) alone is not a sufficient condition to 

determine the stabilizability of the pair (A^+6A^,B^). 

On the other hand we have a rough estimate for the growth of 

S _ (t) [Kl, Theorem 2.1, p.4973 
(A1+dAu) 

CM I| 6A 11 - (a-£))t 
(t) < M e t > 0 

( A
1 +
6 A

U
) 
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So if 

M|| 6A 11 < Ca-e) 

and (3.27) holds then the pair (A^+6A^,B^) is stabilizable. 

3.6 Necessity of Readability 

In this section we will establish the counterpart of Lemmas 

3.10 and 3.11 of Section 3.4. As in the finite dimensional case, 

we assume that A^, C^, C^, D^ and D
2
 are fixed. We denote by 

S = (X , A , B , F , G ) any synthesis which yields regulation of z and 
c c c c c c 

internal stability of the closed loop system. For such S we have, 
n

2 

by proposition 2.6, that there is a bounded operator
 =

 ^ ^ L ^ l ^ c 

such that 

V L " \
 A

2
 = B

L
 ( 3

'
3 1 ) 

D X = D_ 
L L 2 

(3.32) 

where 

A +B
n
G (X B F 

1 1 c 1 1 c 

B C 
c 1 C J 

D ( A J x D(A ) X. x X 
1 c .1 c 

B. = 

A +B G C 
3 1 c 2 

bc c2 

: X„ X x X 
1 c 

D_ = [D. 03 : X
n
 x X Z 

L I 1 c 

We can now prove the following partial result 

Proposition 3.18. A synthesis S is structurally stable at A_ only if 
c 3 

Ker C
1
 c Ker D^ (3.33) 
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Proof: Let : X^ X^ be a bounded operator (clearly it is compact since 

X^ is finite dimensional) and suppose that S^ is a synthesis which 

is structurally stable. Then the perturbed versions of (3.31) -

(3.32) must have a solution X^ X, 

X 

, i.e. 

A + B . G C B F 
1 1 c 1 1 c 

B n 
c 1 

\ 
x

i 
- V A

2 " 

r

A _ + 6 A + B G C ] 
3 3 1 c c 

A A 

,X j 

^ c
 ; B C . k

 c 2 

CD 03 i'd ^ 

X 
CJ 

= D, 

Let 
*L " \ "

 6 x

L " 
6X_ 

6x 

, then from the above expressions 

and (3.31) - (3.32) we obtain 

A. +B
1
 G C. 

1 1 c 1 

B C 
c 1 

B F 
1 c 

\ 

' 6 V 
-

j 6X 
^ c 6X L

 c 

6A
3 

0 

(3.34) 

CD 03 

1 c 

= 0 

Now consider a decomposition of X
2
 into into prime subspaces 

[Wl] , that is 
t(A) . 

X2 = ® * X2A 
A 3=1 

where A e
 a

(
A

2
) and t(A) = dim [Ker(A

2
~A)] then, it can be shown that 

A
2
|X

2

a
 is cyclic with minimal polynomial , k(A,j) = dimCX^] 
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Let k.. denote the degree of the factor (s-A) in the minimal polynomial 
A 

of A , then k.. is given by 
2 A 

k
A
 = max[k(A,j); j = l,2,...t(A)3 

We now fix A £ and choose any prime subspace correspond-

ing to A. dimCX
2 A
3 = k(A,j). Select a basis for such that 

A
3

a
 =

 A

2 A ^
X

2 A
 r e

P
r e s e n t e d

 hy its Jordan form. In this basis we can 

write 

D, 

6X, 

6X 

6A, 

X

2 A
 = C d

2 1
 d

2 2 V 

X

2 A
 = C c

2 1
 C

22
 C

2 k
] 

X J = 

2A 

X
J 

2A 

X3 

2A 

CX11 X12 

C x

c l
 X

c2 

C a

3 1
 a

32 

'
 X

lk
3 

'
 X

ck
3 

'
 a

3 k
3 

where, for simplicity in notation we have written k in place of k(A,j) 

Now, from (3.34) we obtain (for each A £ feA^) and each prime 

subspace X^. associated with A) the following equations 
2A 

A +B G C 
1 1 c 1 

B C. 
c 1 

B F 
1 c 

c ; 

X

11
 X

12
 X

lk 

X

cl
 X

c2 * 
. x 

ck
 > 

X11 X12 
X 
lk 

X X ... x 
cl c2 ck 

r

A 1 0 

0 A 1 

D [ x x . . . x 3 = [0 1 11 12 lk 

.01 = 

1 

0 ... 03 

a a 
31 32 

0 0 

l*k 

. a 
3k 

0 
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or equivalently 

A +AG C -A R F 
1 1 c 1 1 c 

B C. 
c 1 

t r x \ f a ^ 
n 31 

^
 x

cl> 
0 

(3.35) 

1 1 c 1 

B C. 
c 1 

1 c 

A -A 
c 

Y r

 a .1 

r

x 3 
ll 3i li-1 

= + 
x . 0 

> 

C 1

J ( J 
x

ci-l
 i 

, i = 2, 3 . .. k 

D-X . = 0 , i = 1, 2, 3 ... k 1 l i 

(3.36) 

(3.37) 

An inspection of (3.35) - (3.37) reveals that these equations will have 

a solution only if there is a solution to (3.35) with 

x 11 
e Ker D = KerCD 0] 

Li 1 
X

cl > 

and since a ^ is arbitrary in X^, we obtain 

V 

o v. y 

(A
L
-A)[Ker D^ n D(A

L
)3 , A e a(A

£
) 

Now define 

(3.38) 

T = EA +B G C -A B F 3 : D(T) = D(A,) x X + X, (3.39) 
l l c l l c 1 c l 

V = [B C. A -A] : D (V) = X x D(A ) + X 
c 1 c 1 c c 

(3.40) 

T and V are closed densely defined operators and, since g C A ^ c C , we have 
tt 

moreover 

Ker(A -A) = Ker T n Ker V = 0, A £ a(A ) c C' 
LL ZM 

Im T = X. and Im V = X 
1 c 

for simplicity in notation we will sometimes write AM in place of A(MnD(A)3 

tt it can also be shown that Ker T + Ker V is closed and equals X , i.e. 

Ker T © Ker V = X 
LI 
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So from (3.38) 

(A
L
-A)CKer V n D C ^ ) ] c ( A ^ A H K e r D

l
 n 0 ( ^ ) 3 

and since (A^-A) has a bounded inverse for all A £
 C w e 

obtain (the bar denotes closure) 

Ker V nD(A^) c Ker D^nDCA^) 

Now, in a Hilbert space we can write (for any subspace L)L a L
1 1

 , 

where 1 denotes orthogonal complement, thus 

K e r V n D ( A
L
) = [Ker VnD(.A

L
)3 

and since 

l l 

CD(A
L
)3

J

" = CD(A
L
)3

1

 = X^ = {0} 

we obtain 

[KerV nD(A
L
)3

1

 = C K e r V 3
1

 + CD(A
l
)3

1 

= [ K e r V 3
1 

thus 

,11 
Ker V nD(A^) = [KerV 3 " = K e r V = KerV 

since the null space of a closed operator is closed. Similarly we obtain 

Ker D
L
nD(A

L
) = Ker D^ 

hence 

K e r V c Ker D
l ( 3 > 4 1 ) 

But 

and 

Ker B C x Ker (A -A) c K e r V 
c 1 c 

Ker D = Ker D x X 
L 1 c 

(3.41) now gives 

K e r B

c
C

l
 c

 (3.42) 
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which in turn gives 

Ker C, c Ker D. 1 1 

this completes the proof. 

Remarks: In the proof of Proposition 3.18 we have obtained the stronger 

conditions (3.41) and (3.42). These expressions will be useful in 

further developments. 

We now consider a synthesis S^ which is structurally stable at 

A^. Thus by proposition 3.18 Ker C^ c Ker D^ and from (3.5) - (3.6) we 

conclude that 

v = W e Z 

where W is a complement of Z in V. According to this decomposition we 

may write 

c i • 

D. 

C2 " 
D, 

B = [B B 3, G = EG G 3 
c cw cz c cw cz 

(3.43) 

where E^ and E
2
 are bounded (linear) operators from X^ and X

2
 respectively, 

into W, and B = B |W, B = B |Z, G = G |W, G = G |Z. 
cw c cz c

1

 cw c
1

 cz c 

The necessity of readability will be established once we show that 

S

2 " V 

Theorem 3.19: (Necessity of readability). A synthesis S i s structurally 

stable at (A_, B ) only if 
3 cz 

KerCC^ (^3 c Ker[D
1
 D

2
3 (3.44) 

Proof: Suppose that D
2
 f D . Substitution of (3.43) in (3.31) gives 

(A + B G C ) X + B F X - X A = A + B G C. 
l l c l l l c c 1 2 3 l c 2 

B E. X_ + B D.X + A X - X A = B E_ + B D_ 
cw 1 1 cz 1 1 c c c z cw 2 cz z 

D1X1 • °2 

(3.45a) 

(3.45b) 

(3.45c) 
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Now consider perturbations 6A
0
 and 6R of A . and B respectively. We men-
3 cz 3 cz 

tion that while the size of 6B is restricted to preserve internal stability, 
0 z 

the size of dA^ is arbitrary. Structural stability of S^ implies that 
A A 

there must exist X and X such that (3.45a) - (3.45c) are satisfied 
-L L-

A A 
when A„, B , X, and X are replaced by A_ + 6A_, B + 5B , X, and X . 

3 c z l c 3 3 c z c z l c 

A ~ 

Define <5X, = X - X and SX = X - X . Then 
1 1 1 c c c 

B C. 
c 1 

\ 6X
1
 ^ 

_ A
n
 = 

6X Sx 2 

1 . C J I C J 

6A, 

(SB (D -D_) 
cz 2 2 , 

[D 01 6x, 

6X 

= 0 

.. (3.46a) 

(3.46b) 

t(A) . 
As in the proof of proposition 3.18, let = ® ® X ^ , for 

A j=l 

A e a(A^). From our initial assumption there is some A £ ^(A^) and 

some prime subspace X ^ corresponding to A such that 

d2|Xj
2X * D 2 l 4 x 

that is 

( d
2 i
 - d

2 i
) $ 0, at least for one 1 <_ i <_ k 

writing (3.46a) - (3.46b) in more detail we obtain, for A £ o(A^) 

(A +B G C -A B F 
1 1 c 1 1 c 

B C, A -A 
c 1 c 

X . 
11 

X cl 

31 

6B ( d - d ) 
cz 21 21 ' 

A +B G C - A B F 
1 1 c 1 1 c 

B C. 
c 1 

A -A 
c 

rx A 
li 

ci 

D ^ x ^ = 0 , i = 1,2 ... k 

a

3 i 

6B (d .-d .) 
cz 2i 2i 

x 

li-1 

ci-1 

i = 2,3 . k 
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By inspection of the above expressions we find that for any r^ £ X. 

and r £ X , there must exist x, £ X, and x £ X such that, for 
c c 1 1 c c 

X £ a(A2) 

' x 1 X

1 
' = 

r i 
r

i » 
R X 1 X

1 
- £ Ker D 

LI 

, X 
N C .

r

c J 
X L

 c ' 

but this implies that 

(A
L
-A)"

1

CX
1
xX

c
] = D(A^7 C Ker D^ 

and since D(A^) is dense in X^= X^ = X^ this can only happen for 

D = 0 i.e. there are no variables to be regulated. Therefore D
0
 = D L> 2 2 

after all. 

Having proved the necessity of readability we need only 

consider synthesis in which z is readable from y. 

3.7 Necessity of Internal Model 

In this section we will establish that a structurally stable syn-

thesis S
c
 necessarily incorporates a reduplication, in the sense of 

Section 3.3, of the dynamic structure of the exogenous signals. 

First, we develope some preliminary results 

Definition 3.20 [Gl, p. 1033. A closed operator A from X to V, 

i.e. A £ C(X,V) is said to be a Fredholm operator if 

1) dimCKer A3 < °° 

2) codimClm A3 = IY/Im A3 < °° 

in this case the index of A is defined by 

ind[A3 = dimCKer A3 - codim [Im A3 <
 0 0 

if in addition, X and V are Banach spaces then (2) implies that 

Im A is closed in V. 
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t 

Lemma 3.21: [Gl. p.1193 . Let X be a Banach space and A a 

closed operator in X. Suppose that there exist a A^ such that 

(A-AQ I)
 1

 is compact. Then for all A e C , (A-AL) is a Fredholm 

operator with zero index, i.e. 

dimtKer(A-AI) 3 = codim[Im(A-AL) 3 < VA e C 

Lemma 3.22: [Gl, p.1033. Let M be a closed subspace of a Banach 

space X, with codim [M3 <
 0 0

 , then 

i) For any subspace L of X there is a finite dimensional 

subspace N c L such that 

I = (I n M) e N 

ii) If L is dense in X , then L n M is dense in M . 

Lemma 3.23-: Let A be a closed operator in the Banach space X . 

Suppose that A is a Fredholm operator and let S be a subspace of 

X with finite codimension. Then 

codim[AS3 + ind[A3 = codim[S3 + dim[SnKer A] (<°°) 

In particular if ind[A3 = 0 , then 

codim[AS3 £ codim[S3 

where the equality holds if S n Ker A = 0 

Proof: We give a proof of this result since it is apparently not available 

in the literature. We proceed by a number of steps 

1. Let s N Ker A = n^, then c d(A) and d i m ^ ] = n^ 

2. Let N^ be a subspace of Ker A such that Ker A = N^ & N^ 

then 

and 

dim[n23 = n 2 < °° , n 2 c d(A) , s n = 0 

dim 
Ker A 

Sn Ker A 
= dim[N

£
3 

t . - 1 
this result is valid for (A-A^I) being strictly singular, see [Gl, 
Chapters III-IV3 for details 
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3. From Lemma 3.22, there is a finite dimensional subspace 

N^ C D(A) with dim[N
3
3= n^ <

 0 0

 and such that 

X = s: 9 N
2
 9 N

3 

then 

dimt-j] = dimCN 3 + d i m C N ^ 

4. Since Ker A c S 9 N^ we have 

Im A = AX = AS e AN„ 

and since A is 1-1 on all N. 

dim 
[lmA\ 

I AS J " 
d i m C A N ^ = dim N

3 

5 . On the other hand 

dim i s ) = (imATIs) = d i m(fs) " d i m ( l r 

6. Combining 2 - 5 we obtain 

dim 
' X ^ 

1mA J 
= dim BT1 + d i m §1- dim 

Ker A 

^SnKer A 

hence 

r v\ 
dim 

AS 
+ ind[A3 = dim — | + dimCSnKer A3 

The last part of the lemma follows easily. 

We can now prove the following result concerning structural stability 

of the synthesis S^. 

Prosposition 3.24 . A synthesis S
c
 is structurally stable at A

3
 only if 

for every X £ O(A2), 

(A
1
-X)CKer D nD(A )3 + ImB = X_

L 

and this implies 

dimClm B^3 _> dimCZ3 = q. 
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Proof: From the proof of proposition 3.18 we have, for A £ 

T Ker D
T
 = [A,+B, G C -A B. F ]Ker D

T
 = X, 

L 1 1 c 1 l c L 1 

But 

Ker D = Ker D x X 
L 1 c 

thus 

(A
n
+B G C -A) Ker D + Im B, F = X, 
i p c l 1 l c 1 

(3.47) 

but 

hence 

Im B. F c Im B. 
1 c 1 

(A
1
~A)[Ker D

1
nD(A

1
)3 + Im B = X_

L 

for the last part of the proposition we have from (3.47) 

codimt(A
n
 +B G C -A)Ker D 3 
1 1 c 1 1 

= dim 
(A +B.G C -A) Ker D. + Im B.F 

1 1 c 1 1 1 c 

(A +B.G C -A) Ker D. 
1 1 c 1 1 

(3.48) 

but the left hand side of the above expression, by lemma 3.23, equals 

codim[(A +B G C -A)Ker D.3 = codimCKer D.3 + dim[Ker(A +B, G C -A)nKer D. 1 
l l c l 1 1 •* 1 1 c 1 1 

(3.49) 

and the right hand side equals 

dim 
(A. +B.G C -A)Ker D.+ImB.F ^ 

l l c l 1 1 c 

(A. +B.G C -A)Ker D_ l l c l 1 

= dim 
Im B_ F 

1 c 

Im B„ F n(A +B G C -A)ker D 
1 c 1 1 c 1 1 

(3.50) 

i 
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Combining (3.48) - (3.50), and noting that codimtKer D^3 = dimCZ] = q 

we obtain 

dimClm F ] = q + dimCKer (A, +B. G C ,-A)n Ker D,3 
1 c 1 1 c 1 1 

+ dimClm B. F n (A. +B G C -A)Ker D j 
1 c 1 1 c 1 1 

so dimClm B, F 3 > q (3.51) 
1 c — 

since Im B. F c Im B, the result follows. 
1 c 1 

The above result is well known for ordinary linear systems [Wl,Chapter 83. 

A similar result was obtained by Bhat, for evolution systems, under the 

assumption [C^ C^3 = [D^ D ^ [Bl, Chapter 63. However, the condition 

dimLlm B^3 > q is not derived in his work. We point out that proposition 

3.24 is a 'nice' result since it provides necessary conditions in terms 

of the systems paramters. The sufficiency of this result will be 

investigated in Chapter 4. 

Proposition 3.25. A synthesis S^ is structurally stable at A^ only if each 

A e a(A
0
) also belongs to a(A ). 
Z c 

Proof: Recall that A^ only has point spectrum (by assumption), therefore, 

for a proof by contradiction, suppose that such A ^ a(A ) exists. This 

implies that A £ p(A ) and (A -A)
 1

 exists and is a bounded operator (in 
c c 

fact, it is compact). Now, structural stability of S with respect to 
c 

A^ implies (see (3.41) - (3.42) in the proof of proposition 3.18) 

Ker V c Ker D
T
 and Ker B C c Ker D, 
L c 1 1 

by Lemma 3.22 we can write 

XT = Ker B C
n
 ® P , P c D(A_) and dim[P3 < °° 

1 c 1 1 

thus 

Ker D= = Ker B C @ Q , Q = P n Ker DT 
1 c 1 1 



- 68 -

Now Ker V may be expressed as 

Ker V = KertR C, A -A3 = (Ker B C x{o}) e
 p 

c 1 c c 1 

where 

1/ = {(.x.,x ) | x eQcD (A- ) , x = -(A -X)~
1

B C. x. } 
l c ' l 1 c c c 1 1 

and dimC (/] = dimCQ] , V c D(T) = D(AJ X X . Let 
1 c 

(0 = T Ker V = [A.+B. G C -A B. F 3Ker V 
1 1 c 1 1 c 

since Ker T n Ker V = 0 we obtain 

to = (A ,+B,G C -A)Ker B C, 9 T V (3.52) 
1 1 c 1 c 1 

For structural stability we must have W = X^. We will now show 

that this is not the case for A E p(A ). From the proof of Lemma 2.10 
c 

we have 

Ker(A- +B G C -A) n Ker B C = 0 
1 1 c 1 c 1 

and by Lemmas 3.21 and 3.23 we obtain 

codimt(A +B G C -A)Ker B C 3 = codim KertB C j (3.53) 
1 1 c 1 c l c l 

Also, since T is 1 -1 on all of 1/ , we have 

dimCT (/] = dimC'l/] = dimCQ] (3.54) 

On the other hand 

codimLW] = dim 
X./(A-+B G C -A)Ker B C_ 
1 1 1 c 1 c 1 

W/(A1+B1Gc CrA)Ker Bq c j 

= codimt(A +B,G C -A ) Ker B C J - dimCTl/3 
1 1 c 1 c 1 

hence, from (3.53) and (3.54) 

codimCW] + dimCQ] = codimCKer B
c
 C 3 (3.55) 

but 

q = codimCKer D,3 = codim KerCB 3 - dim[Q3 
1 c 1 
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thus (3.55) gives 

codimCW] - q 

this implies that W" is a proper subspace of X^ and therefore A £ 

must belong to c(A
c
) after all. 

As a consequence of proposition 3.25 we may write, for A £ ^(k^) 

Ker V = {Ker B C x Ker(A -A)}® S (3.56) 
c 1 c 

where 

S = {(x x ) I x c Q c d C A J , x £ X nD(A )', B C_ x
n
 + (A -A)x = 0 } 

i c l 1 c c u c e l l c c 

(3.57) 

and dimCSl <dim[Q3 , S c D(T), X . is a complement of Ker(A -A) in 
— cO c 

X , i.e. X = X 9 Ker(A -A). 
c c cO c 

The following proposition shows that we can always choose Ker(A
c
~A) 

of a suitable high dimension to assure X = T Ker V and Ker V c Ker D,, 
L LI 

for all A e CT(A
2
) . 

Proposition 3.26. A synthesis S^ is structurally stable at A^ only if for 

each A £ o(k^) 

q = dimCZl < dimCKer(A -A) 3 (<~) 
— c 

^ Proof: Let L = T Ker V, where Ker V is given by (3.56) - (3.57). 

Now, since Ker V n Ker T = 0 we have 

{Ker B C x Ker(A -A)} n Ker T = 0 
c 1 c 

thus 

(A +B.G C -A) Ker B C. n B, F Ker (A -A) = 0 
l l c l c l l c c 

hence 

L = (A +B.G C -A) Ker B C 9 B. F Ker (A -A) 9 T S 
l l c l c l l c c 

As in the proof of proposition 3.25 we obtain 

codimCLl = codimCKer B C,3 - dimCB, F Ker(A -A)3 - dim[S3 
c 1 1 c c 

» 



- 70 -

Structural stability at A^ now requires that L = X^ , thus 

dimCB, F Ker (A -A)] = codimCKer B C, ] - dimCS 3 
1 c c c 1 

= q + dimCQ] - dimCS] 

but from the proof of Lemma 2.10 we have 

Ker B. F n Ker (A -A) = 0 
1 c c 

and since dim[Q] £ dimtS] we conclude that 

dimCKer(A -A)] > dimCZ] = q , ¥ A £ o(A.) 
c — 2 

Remark: We point out that if B^ and A
c
 are 'adequately' chosen, 

equality may be achieved in proposition 3.26. For example if 

B C. Q c im(A -A) , ¥ A £ cr(Aj 
c 1 c 2 

then dimCS] = dimCQ] (see (3.57)), and in this case we obtain 

dimCKer (A -A)] = q , ¥ A e o(A ) 

The proofs of proposition 3.25 and 3.26 are based in a decomposition 

of the subspace Ker V. We next give an alternative proof of these results 

by exploiting the stability of A^. 

Proposition 3.26a: A Synthesis S is structurally stable at A only if each 
® 3 

A £ G(A
2
) belongs to and 

q = dimCZ] < dimCKer(A -A)] (<°°) 
— c 

Proof: Recall that for A £ a(A
2
) C C

+

, A £ P(A^) therefore from Lemmas 

3.21 and 3.23 we have 

codimC(A^-A)Ker D 3 = codimCKer = q (3.52a) 

and from (3.39) - (3.40) 

(A
l
-A) = [T 1 

V 

ft 
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with 

Im ( T ) = Ker T n Ker V = 0 (3.52b) 

We next show that Ker T + Ker V is closed and equals X^, i.e. 

Ker T © Ker V = X^ (3.52c) 

CLearly we may write 

(A^-A) = (A-A) + B 

where A and B are defined in Chapter 2, Section 2.2. It now follows 

from Theorem B.IV.9 in Appendix B 

k 
(A

l
~A) = (A-A)* + B* 

(A^A) 0 

0 (A c-Arj 

k k k k k 
C

n
 G B C, B 
1 c 1 1 c * * 

F B, 0 
c 1 

k k 
= [T V 3 

t 

(3.52d) 

(3.52e) 

(3.52f) 

and since A e P^^j^
 w e b a v e 

Im(A
L
-A)* = ImT* + Im V* = X ^ *

1 

Ker(A^-A)* = 0 

but, from Theorem B.IV.7, (3.52e) yields 

Im T* + Im V* = (Ker T )
1

 + (Ker V )
1

 = X 
1j 

hence, by Theorem B.I.4, Ker T + Ker V is closed. To obtain (3.52c) we note 

that (3.52f) implies 

k k 
Im T n Im V = 0 

Again, by Theorems B. IV.7 and B.I.4 we obtain 

codimCKer T + Ker V3 = dimC (Ker T )
1

 n (Ke-r V)
X

3 

* k 
= dimClm T n Im V 3 = 0 

+

 see [Gl, p.663 or [T2, pp. 237-2453 

1*1" * 
Since ^ is a Hilbert space we may write X^ = X^ see [T2, th. 5.1, p.1423 
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which in turn, together with (3.52b), give (3.52c). 

Now, for structural stability with respect to A^ we must have (see 

(3.38) and (.3.41) in the proof of proposition 3.18). 

f x / 
(A

L
~A)Ker D^ 

Ker V c Ker D. 

(3.52g) 

(3.52h) 

therefore 

and 

Ker D = Ker V 9 (Ker T n Ker D ) 
Li LI 

T Ker D = T Ker V = X 
Li 1 

V Ker D = V(Ker T n Ker D ) = W 
Li LI 

from (3.52a) we may now conclude that 

codimCCt/3 = q 

that is 

codimCB C, Ker D, + Im(A -A) 3 = q 
c 1 1 c 

here we have used the identity Ker D
T
 = Ker D, x X , 
L 1 c 

But 

(3.52i) 

r

 X /lm(A -A) 
c c 

codimCB C-KerD.+Im(A -A)] = dim 
c 1 1 c B n Ker D. + Im(A -A) 

c 1 1 c 

Im(A -A) 
c 

codimClm(A -A) 1 
c 

- dim 
B C, Ker D 
c 1 1 

B C, Ker D. n Im(A -A) 
c 1 1 c 

and since codim[Im(A -A)3 = dim[Ker(A -A)3 (see Lemma 3.21)we obtain 
c c 

dimCKer(A -A)3 + dimCB C- Ker D, n Im(A -A)3 
c c 1 1 c 

- dimCB C, Ker D. 3 = q 
c 1 1 

(3 .52 j ) 
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Now, suppose that A A a(A ), then A £ p(A ) i.e. 
c c 

Ker(A -A) = 0 , Im(A -A) = X 
c c c 

and the left hand side of (_3.52j) becomes zero, therefore A £ a(A
2
) 

must belong to a (A ) and since 
c 

dimCB C= Ker 3 > dimtB C, Ker D. n Im(A -A)3 
c l 1 — c l 1 c 

we conclude that 

dimCKer(A -A)3 > q , A e cr(Aj 
c — 2 

Remarks: The interpretation of Propositions 3.25 - 3.26a is that 

for each A e ct(A
2
) the subspace Ker V must be "large" enough to yield 

T Ker V = X and at the same time the condition Ker V c Ker D 
1 LI 

must be satisfied. Note that if A e p(A ) then V Ker D = X 
c L c 

and by structural stability with respect to A T Ker D = X , 
j Li 1 

i.e. (A^-A) Ker D^ = X ^ , and this can only happen if Ker D^ is the 

whole space X , i.e. D
T
 = 0 . 

L L 

As a result of Proposition 3.25 and 3.26, and since A^ has 

compact resolvent (by assumption) we my write 

X = X 9 X
 9 c cl c2 

where 

I
 P

i 
X = n Im(A -A.) 

c l

 i-l
 c 1 

I
 P

i 
X
 0
 = e Ker(A -A.) 

c2 . . c l 1=1 

{A ,A ...X
£
} are all distinct eigenvalues of A

2 

dimCX
c 2
3 = total algebraic multiplicity of { A j ' s 

as eigenvalues of A^ 

According to this decomposition A , B and F are represented 
c c c 

by 
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A = 
c cl 

c2 

B = B. cl 

c2 

F = CF . F J 
c cl c2 

(3 .58) 

where A _ is a bounded operator and a(A „) coincides with a(A_) 
cZ cZ 2 

except in multiplicities. Also a(A
0
) c p(A .). 
Z cl 

We can now write the operator equations (.3.31) - (3.32) in more 

detail 

A, +B. G C- B.F B F 
l l c l 1 cl 1 c2 

B

c l
C

l 

b c 2 c 1 

cl 
0 c2 

x. 

x 
cl 

x 
c2 

x. 

x 
cl 

x 
c2 

A2 = A.+B_G C_ 
3 1 c 2 

cl 2 

Bc2C2 

x. 

x 

x 
cl 

c2 

= D, 

.. (3.59) 

(3.60) 

and when the operator A^ is perturbed by SA^ we obtain, as in the proof 

of Proposition 3.18, the following set of equations, for X e ^'(A^) 

A-+B-.G C - X 
1 1 c 1 

B

l
F

c l 
B

1
F

 9 1 
1 c2 

= 
r i a

3i 
+ x . ) 

li-1 

b c 1 c 1 A -X 
cl 

0 X

cli 
0 X

cli-1 

.
 B

C 2
C

1 
0 A -X 

c2 J x . 
c2i^ 

0 x „. _ 
c2i-l j 

Di x u = 0 

where 1 < i < k and x 
10 

x 
clO 

X 

= 0 

c20 i 

.. (3.61) 

(3.62) 
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So far, we have obtained several results by analyzing some of the 

equations in (3.61) - (3.62), namely for i = 1. In general, it is 

difficult, even in the finite dimensional case, to extract the information 

contained in these expressions when considered simultaneously. 

However, for our next result on structural stability it is necessary to 

examine a few more of them. 

Writing out the last equation in (3.61) we obtain, for 

A e a(A2) 

b c2 c 1 x 1 1
 + ( A

c 2 "
A ) X

c 2 1 = 0 
(3.63) 

b c2 c 1
 X

L2 + ( a c2"
X ) X

c22 =
 X

C
2 1 

and 

b c2 c 1
 X

l k
 + ( A

c 2 "
X ) x

c 2 k
 = X

c 2 k - 1 

D-x, • = 0 , i = 1,2,.. ,k 1 l i (3.64) 

Then, since A
 n
 is bounded and X _ finite dimensional, is easy to see 

c2 c2 

that 

where 

*c21 £ R = <Ac2lBc2 C1 K e r ° 1 > + Im<Ac2-X) 
k-1 

c2
1

 c2 "1 
(3.65) 

<A B C Ker D > = B C. Ker D + A B C. Ker D- + 
c2

1

 c2 1 1 c2 1 1 c2 c2 1 1 

n -1 c

2 

. . + A
 0
 B C

n
 Ker D-

c2 c2 1 1 
(3.66) 

and n _ = dimCX'.3 
c2 c2 

now, we define the subspace M as follows 

M = { ( x u , x c l , x c 2 ) ; f B c l CL Acl-A 0 y ) 

B
 9
 C. 0 A -A 

c2 1 c2 

x.. £ Ker , x e R) 
11 1 c2 

1 1 

x 

cl 

c2 

= 0, 

(3.67) 

+

Note that <A
 0
-A|b

 0
 C- Ker D > = <A

 0
| B „ C Ker D > 

c2
 1

 c2 1 1 c2 c2 1 1 
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If we consider a ^ to be arbitrary in X^, then structural 

stability requires that 

[A.+B- G C -X B- F . B, F J M = X, (3.68) 
l l c l l c l l c 2 1 

The following result gives a necessary condition for (3.68) to 

hold. 

Theorem 3.27: (Necessity of the Internal Model). 

A Synthesis S^ is structurally stable with respect to A^ only if 

the controller incorporates an internal model 

Before proving this result we need a technical lemma. 

Lemma 3.28:^ Let U and X be finite dimensional spaces. Consider 

the linear bounded operators B : U X and A : X X and let 

H = {(u,x) ; Bu + Ax = 0, x £ <A|lm B> + Im A
k

 H 

then 

dimCW] < dimC(J] + dimCKer A n Im A
k l

l 

where A is the operator induced by A on the space 

<A|Im B> 

Proof of Theorem 3.27 

We first decompose M given by (3.67) according to 

Ker D, = Ker B C, 9 Q 
1 c 1 

where dimCQ] < Q c D(A ) (see proof of proposition 3.25) 

Define, for X £ cr(A
2
) 

M. = {(x . , 0, 0); x
 £

 Ker B C.} (3.69) 
i 11 11 c 1 

M

2
 = { ( X

1 1 '
 X

c l '
 X

c 2
) : X

11
 £ Q C D ( A )

'
 X

c2
 £ R

' 

x d = ( A c r X ) " l B c i C1 X l l ' 

b c2 c 1 + ( a c 2 " a ) xc2 = ° } 

(3.70) 

+ A proof of this result is given in [Fl] 

t 
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then M = M © M
2 

Let T = [A + B- G C -A B F B. F
 0
3 

1 1 c 1 1 cl 1 c2 

so, by structural stability and since Ker T n M = 0 we obtain 

X = T M
1
 9 T M

2 

or equivalently 

codimCT A^ 9 T M ^ = 0 

which implies 

codimCT M 3 = dimCT Ai 3 (3.71) 

thus, since Ker B C. n Ker (A. + B. G C -A)= 0 and T is 1 - 1 on all 
c 1 1 1 c 1 

of M , (3.69) and (3.71) give 

codimCKer B C.3 = dimCMJ (3.72) 
c 1 z 

Next, we show that Lemma 3.28 may be applied to M
2 

Define 

Q = { ( *
n
. ( A ^ - A ) "

1

 B
c l
 C

x
 * ) ; * e Q) (3.73) 

clearly dimCQ] = dimCQ] 

Observe that, (Since Ker B C_ c Ker B
 0
 C_) 

c 1 c2 1 

< a c 2 i b c 2 c 1 k " v = < a c 2 i b c 2 c 1 q > <3-™> 

and let 

b = c b c 2 c 1 0 ] : x = x 1 *
 X

c l
 X

c 2
 ( 3

'
7 5 ) 

then from (3.74) - (3.75) we have 

<A _|B . C
n
 Ker D > = <A _| B Q> (3.76) 

c2
1

 c2 1 1 c2
1 

therefore M
2
 may be written as follows 

M
2
 = {(x, x

c 2
) ; x e Q, B x + ( A ^ - A ) * ^ = 0 

x . £ < A J B Q> + Im(A - A ) k _ 1 } (3.77) 
c2 c2 ' c2 

hence, by Lemma 3.28 we obtain 
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- - k-1 
dimLM^] <_ dim[Q3 + dimCKer ( A ^ - A ) n I m C A ^ - A ) ] (3.78) 

X 
c2 

where A „ is the operator induced by A
 9
 on — 

C <Ac2IBC2 C1 K e r V 

combining (3.78) and (3.72), and since 

codimCKer B C, 3 = codimCKer D- 3 + dim[Q3 
c 1 1 

we obtain 

dim[Ker(A
c 2
-A) n I m C A ^ - A ) * "

1

] > q (3.79) 

and since (3.79) must hold for every prime subspace X ^ corresponding 

to A we conclude by Lemma 3.9 that A ^ contains an internal model of A ^ 

This completes the proof. 

Comments^: We will show in Chapter 4, by constructing a structurally 

stable synthesis, that equality may be achieved in (3.79), that is, 

if there exists a structurally stable synthesis it can be chosen 

such that the order of the internal model is minimal, i.e. A contains a 
c 

g-fold reduplication of the maximal cyclic component of A^. 

3.8 Necessity of Feedback 

To complete our work on the Internal Model Principle, we have to 

show that a structurally stable controller requires feedback of the 

regulated variables. First, we derive a preliminary result. 

. " It is easy to see that B
c
 may be written as follows (see (3.58) 

and (3.43)). 

' b c Y fB , 
cwl 

B
 1 czl 

B

C 2 , 
B „ 
cw2 ^cz2 

(3.80) 

then, from (3.80) and (3.43) 

<A
c 2
| B

c 2
 c

x
 Ker D ^ = ^ J b ^

 Ej
_ Ker

 D
 > 

(3.81) 
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Let P : X
c 2
 + X

c 2
 =

 X

c 2

/ < A

c 2
 l

B

c w
2
 E

1
 K e r D

l
> b e t h e 

canonical projection, and define 

B
 9

 = P
 0
 B (3.82) 

cwZ c2 cw Z 

B

cz2
 = P

c 2
 B

cz2 (3.83) 

The following proposition shows that for structural stability we 

must have B
 2

 = 0, this in turn is equivalent to 

* 
Im B

 0
 c <A J b

 0
 E, KerD > (3.84) 

cw2 c2' cw2 1 1 

Proposition 3.29: There is no synthesis in which (3.84) fails and which is 

structurally stable at (A_, B _). 
3 cw2 

We mention that the proof of proposition 3.29 is exactly the same 

as in the finite dimensional case. This fact is not unexpected, after all 

we have isolated the finite dimensional part of the controlller containing 

the internal model. 

Proof of Proposition 3.29. This proof can be found [Fll, however 

we give it here for completeness. 

Suppose, in contradiction, that there is such synthesis. 

From (3.59) - (3.60) there are : X_ X_ and X _ : X_ X _ 
1 Z 1 cZ Z cZ 

such that 

b c2 c 1 x 1
 + A

c 2
 X

c 2 "
 X

c 2
 A

2 =
 B

c 2
 C

2
 ( 3

'
8 5 ) 

D ^ = D
2
 (3.86) 

Now, let X ^ be an arbitrary completement of Ker D^ in X , and since 

v v 
D^ is surjective it has a right inverse D^ with Im D^ = .

 S o 

any X^ satisfying (3.86) may be written as 

v * 
X- = X. + D_ D~ with Im X c Ker DT (3.87) 1 1 1 Z 1 1 

4. 
(3.84) is also equivalent to < A

c 2
| l m B

c w 2

>

=
 < A

c
2 l

B

C
w 2

 E

1
 K e r D

l
> 
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Then, since 

c i • C2 " 

D. 

and B = CB
 0

 B J 
c2 cw2 czz 

(.3.85) becomes 

bc„2 e 1 x 1 + a c2 xc2 "
 X

c2
 A

2 =
 B

C W
2

( E

2 "
 E

A V 

Applying P^
2
 to both sides of the above expression, and since P ^

 B

c w 2 

E^ Ker D^ = 0 , we obtain 

A

c 2
 X

c
2 "

 X

c2
 A

2 *
 B

c w 2
( E

2 " e a
D

2 > 
(3.88) 

where X

c2 pc2 xc2 

Next we show that if (3.84) does not hold then 

(E2 - Ex \ D2) * 0 (3.89) 

Since CC^ C
2
1 is surjective, we have that for each w £ W there are 

x^ £ Ker D^ and ^
 £ x

2

 s u

c h thar 

thus 

hence 

W = E 1 % + ( E2 " E 1 U 1 D 2 ) x 2 

W = E Ker D
1
 + Im(E

2
 - E ^ D ^ 

i m bcw2 = bcw2 e 1 k e r d 1 + bcw2 i m ( e 2 " B l D l V 

and since (3.84) is assumed to fail we conclude that (3.89) must hold. 

Now consider an arbitrary (small) bounded perturbations 6B 
cw2 

of
 b

c w
2 * Then by structural stability, there' is dX„

0
 • X

0
 such 

c2 c2 

that 

ac2 ^"xc2 " 6 xc2 a2 " 6bcw2 (e2 " e 1 d 1 v (3.90) 

Choose X £ cj(A0) and a prime subspace X^, corresponding to A 
2 Z A 



- 81 -

v i i i 
such that (E

0
 - E. D. D_) X , ^ 0. Fix a basis for X^. such that 2 1 1 2 2a 2a 

A^ is represented by its Jordan form. 

Let 

KA- 1 • • • v 

£e2 - E 1 V l x k = C e r e2 • • • V 

where e. to. at least for one 1 < i < k = dimCX
2

x
3 < k

x 

Then, restricting (3.90) to X
3

^ and assuming that the first e. ^ 0 is the 

0 th 
I , we obtain 

(Ac2 - X)rx = 0 

(Ac2 - A)T2 = / (3.91) 

( a c 2 _ x ) r e - i = xt-2 

(Ac2 " X ) l = 1 - 1 + *®cw2 

but e^ is arbitrary in
 s o

 (3.91) implies that for any 

x. „ £ X „ there is an r„ e X „ such that 
c2 c2 I c2 

i- -
c2 _ x ) t l = ( a c 2 " x ) x c2 

hence 

Im(A -X)1 1

 c lm(A n~X)1 (3.92) 
c2 c2 

On the other hand 

X c 2 = Im(Ac2-X)° d Im(Ac2-X) => . . . => I m d ^ - A ) ^ 1 => ImCA^-A)* 

.. (3.93) 

So (3.92) and (3.93) give 

Im(A n~X)l~l = Im(A 
c2 c2 

that is the descent of (A -A) is less than or equal to l-l, and since 
cZ 

(A «-A) is bounded we may conclude that the ascent of (A -A) is also 
c2 c2 

less than or equal to l-l CT2, th. 6.2 p.290]. 
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Therefore 

K e r ( A
c 2

- A ) ^ "
1

 n I m d ^ - X ) ^
1

 = 0 ( 3 . 9 4 ) 

but 

Ker (A -A) c Ker (A fe)^
1 

c2 c2 

and, since k^ _> k _> Z 

Im(Ac2-A)kA 1 = I r / A ^ - A ) ^ 1 

hence (3.94) implies 

V 1 

Ker(A
 0
-A) n Im(A

 0
-A) = 0 

CZ cZ 

so A
 0
 does not contain an internal model of A_ which contradicts Theorem 

c2 2 

3.27. This completes the proof. 

We can now prove the following result 

Theorem 3.30: (Necessity of Feedback). Let S^ be a synthesis in which 

(3.84) holds. Then S^ is structurally stable with respect to A^ only 

if the controller incorporates an internal model of k^ which is con-

trollable by z and observable by u. 

Proof: from Theorem 3.27 we know that A „ contains an internal model of 
c2 

A
2 <
 We now show that the internal model is controllable by z and observable 

by u. Of course controllability and observability are defined as in the 

finite dimensional case. 

Since A^ is stable this implies that for A e o{k/)
 c

 C
+

, (A^-A) 

has a bounded inverse. Thus 

Ker(A -A) n Ker B, F = 0 (3.95) 
cZ 1 cZ 

Im B
 9
C. + Im(A -A) = X ' (3.96) 

c2 1 c2 c2 

From (.3.95) is easy to see that 

Ker(A
c 2
"A) n Ker F ^ = 0 , A e a(A ) 
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hence the internal model is observable by u. 

From (.3.96) we obtain 

Im B
c 2
 + imCA

 2
-X) = X

 2
 , X e a(Ji ) 

using (3.80), the above expression yields 

I m B
c w 2

 + i m B
c z 2 +

 I m ( A
c 2

- A ) - X
c 2
 ( 3 . 9 7 ) 

Applying P
c 2
 to both sides of (3.97) 

Im i
c z 2

 + Im(I
c 2
-X) = X

c 2
 , A

 e
 oikf 

since B
 2

 = Qby(3.84). Hence the internal model is controllable by z 

This completes the proof. 

3.9 Conclusions and Remarks 

The main result of this chapter may now be summarized as follows 

Theorem 3.31. The Internal Model Principle 

A synthesis S = ( X , A , B , F , G ) which is structurally stable 
c c c c c c 

with respect to the parameters (A„, B ). necessarily utilizes feedback of 
j CZ 

the regulated variables and contains, at least, a q- fold reduplication 

of the dynamic structure of the disturbance and reference signals which 

the controller is required to process. 

Thus, we have obtained a complete version of the Internal Model 

Principle for time delay systems. Also, necessary conditions for the 

existence of structurally stable controller have been derived. These 

conditions are given in terms of the system's parameters and are easy to 

verify. 

Finally we mention that in the special case y = z, it is easy 

to establish the equivalence between our results and those obtained in 

[Bl#Chapter 63. 
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CHAPTER 4 

ON THE SUFFICIENCY OF THE INTERNAL MODEL PRINCIPLE 

The major concern of this chapter is to establish the sufficiency 

of the Internal Model Principle, as well as obtain necessary and sufficient 

conditions to assure the existence of a structurally stable controller. 

Our developments will yield a procedure to construct such a controller. 

This procedure is based on the observer theory for evolution systems 

developed by Bhat [Bl»Chapter 4 ]. 

For reference we write the system's equations 

^ ( t ) = A
d
 x

x
(t) + A

3
 x

2
(t) + B

1
 u(t) (4.1a) 

i
2
(t) = A

2
 x

2
(t) (4.1b) 

y(t) = C
1
'x

1
(t) + C

2
 x

2
(t) (4.1c) 

z(t) = D
L X ; L

(t) + D
2
 x

2
(t) (4.Id) 

The controller to be synthesized is given by 

x (t) = A x (t) + B y(t) (4.2a) 
c c c c 

U(t) = F
c
 x

c
(t) + G

c
y(t) (4.2b) 

Throughout this chapter we make the following assumptions 

1) the pair (A^,B^) is stabilizable 

2) the pair (C^,A^) is detectable 

3) A
2
 is a bounded operator with p(A

2
)

 c

 C
+ 

4) the spaces X
2
, li, V and Z are finite dimensional 

5) V = Im C
1
 + Im C

2
 and Im D

2
 c Im D

1
 = Z 

6) z is readable from y, i.e. KertC^ C ^ <= KertD^ D
2
3 

7) dimClm B 3 > dim[Z3 = q 
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4.1 Preliminaries 

Before solving our main problem we need several preliminary 

results. 

The following propositions will be needed in the actual con-

struction of a synthesis. 

Proposition 4.1: Let X ^ be a finite dimensional space. Then, for any 

bounded operators M : X
3
 X

3
 and T : X

3
 + with a(M) c a(A ) , there exist 

bounded operators X
l
 : X

3
 X

l
 and U : X

3
 + U such that 

A
x
 X - X^M + B U « T (4.3a) 

D ^ = 0 (4.3b) 

if and only if 

(A -A) [Ker D n D(A )3 + Im B = X ^ ¥ A £ a(A
2
) 

(4.4) 

Furthermore (4.4) is a stable property under small bounded perturbations of 

B^ and small perturbations of A^ of class F(A^). 

Proof: We first prove the proposition when X
3
 = X^, M = A^ and 

T = X^ X^. As in the proof of proposition 3.18, consider a decomposition 

of X^ into prime subspaces. Then it is easy to see that (4.3a) - (4.3b) 

have a solution if and only if they have a solution when restricted to any 

prime subspace corresponding to each A £ o(k^). Now, fix A £ o(k^) and 

choose any prime subspace X ^ associated with A. Select a basis for 

X
J

2 X
 such that A

2
| X ^ is in Jordan form and let , 

XJXJ2A " C V V - - V 

UIX2A • C V V - - \ ] 

T i x k • C t r v - v 
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where k = k(X,j) = dimCX
3

^]. Then restricting (4.3a) - (.4.3b) to 

X
3

 we obtain 2A 

(At-A)x. + B u. a t. + x. . (4.5a) I l 1 l l l - l 
D x„ = 0 (4.5b) 1 l 

for i = 1, 2...k, where x^ A 0. 

Since t^ e X^ is arbitrary, we conclude that (.4,5a) - (4.5b) have a 

solution if and only if 

(A
1
-A) [Ker D

1
 n D ( A ^ 3 + Im B

1
 = X_

L 

When X^ y X^, M 4 A^, we consider a decomposition of X^ into prime sub-

spaces, and since o(M) c q(A
2
), (4.4) follows as above. 

We next show that (4.4) is a stable property when A^ and B^ 

are subjected to small perturbations. Consider a bounded perturbation 

dB^ of B^. Then Im B^ and Im(B^+dB^) are both finite dimensional and there-

fore closed subspaces of X^. Furthermore, we have that both the Ker B^. and 

Ker(B +6B=) are also finite dimensional. So B, and B +6B, are semi-1 1 1 1 1 
Fredholm operators, and Theorem B.IV.12 yields 

6 C l m B
1 >
 I m ( B

1
+ 6 B

1
) ) < H

 5 B

J
 ( 4 j 6 a ) 

Y(BX) 

where ytB^) > 0. 

Consider a perturbation dA^ of A^ of class f(A^) . It is readily 

verified that D(A
1
+6A

1
) = D(A

1
), since dA-^ is A-L-compact. Also, since (Aq-A) is 

a Fredholm operator, Theorem B.IV.5 implies that (A^+dA^-A) is also 

Fredholm. Therefore Im(A^-A) and I m ( A y A^-A) are closed subspaces of 

X . Moreover, by Theorem B.IV.2 we have that ( A ^ A ) Ker D^ and 

(A^+dA^-A) Ker D^ are closed subspaces. 
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It now follows that the subspaces 

(A +6A
X
-X) [Ker D n D(A )3 + Im B , (Aj-X) CKer D n D(A )3 + Im(B +6B

1
) 

(A
1
+6A

1
-X)[Ker ^ n D(A

1
)3 + Im(B +6B

1
> 

are closed. 

On the other hand we may decompose X^ as follows (see Lemma 3.22 

in Section 3.7, Chapter 3) 

X = Ker D 9 M 

/V 
where W <= D(A^) is finite-dimensional. Now. let A^ be the restriction of 

A 

A^ to Ker D^ n D(A^). It is readily verified that A^ is closed (since 

Ker D^ is a closed subspace and A^ is closed operator) with 

D(A^) = Ker D^ n D C A ^ and ImCA^-X) = (A^-XjKer D^. Also we have that 

D(A +6A ) = D(A
X
) and Im(A

1
+6A -X) = (A

1
+6A

1
-A)Ker D

; [
. Therefore, 

Theorem B.IV.12 gives 

6(.(A
1
-A)Ker D , ( A ^ d A . ^ K e r D ) = 6(Im(A -X), Im(A^+<5A^-X)) 

a 

a+b y(A^-X) 

1

 Y (A r A) 
/v A 

where y(A^-A) > 0 , since Im(A^-X) is closed, and a, b are non-negative 

A 
constants such that, for all xi 

e D(A
1
) 

II xjl 1 a H x J I + b || A
x
 ^ || 

Now, since (4.4) holds there is an £ > 0 such that 

y((A -X)Ker D
1
, Im B ^ > £ 

therefore for sufficiently small perturbations 6B^ and 6A^ we conclude, 

from Theorem B.I.8, that 

(A +6A -X)[Ker D n D(A
1
>] + ImC.Bj+dB^ = X^, X e a(A

2
) 

this completes the proof. 
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Proposition 4.2: Let : X ^ X ^ be a q-fold direct sum of the 

largest cyclic component of A_, i.e. X . = [X
0 1
 3^ , 

2 2e 2k 

A
2 e
 = diag[A

2 k
, k ^ — A

2
^3(see Section 3.3). Define 

x - x l 9 x 2 e 

A = A. A_ 
1 3e 

0 A . 
2e 

(4.7a) 

D = CD 03 (4.7b) 

If the pair (D^, A^) is detectable, then there is a bounded 
A A 

operator A_ : X„ X. such that (D,A) is detectable. 
3e 2e 1 

Proof: Since (D^, A^) is detectable, it is easy to see that detectability of 
/S A 

(D,A) is equivalent to the conditions 

a) Ker(A
0
 -A) n Ker A„ = 0 , A c cr(A

0
 ) 

2e 3e 2e 
b) (A -A)CKer D

1
 n D(A-)3 n A

n
 Ker(A

0
 -A) = 0 , A e a(A. ) 

1 1 1 Je 2e 2e 

We now will show that there is an satisfying a) and b) above. By 

Lemmas 3.21 and 3.22 we have 

codim[ (A^-A) [Ker D ^ 3 = codim[Ker D ^ = q (4.8) 

Thus, there are q-linearly independent vectors in X^/(A^-A)[Ker D^3 

with x. = x. + (A-A)Ker D., , i = l,2...q where x. £ X.. 
i l l 1 i l 

On the other hand, 

dim[Ker (A„ -A)3 = q (4.9) 
2e 

So, there are q independent elements {y-p
 l n 

Define A_ (A) by 
3e 

and let 

X

i
 = A

3 e ^
y

i ' i
 88

 1, 2,.. .q 

A = © A
b
 (A) (4.10) 

J E A£G(A 2 E ) 
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Then it is easy to verify that A given by (4.10) satisfies a) and b). 
3e 

The next result provides a necessary and sufficient condition 

to assure the existence of a synthesis in a very special case. 

Proposition 4.3: Suppose that [C^ C
2
3 = CD^ D ^ and that the pair (D,A) 

is detectable where 

D = [D
1
 D

2
] A = 

A

1
 A

3 

A2 7 

Then, there is a synthesis for the system (4.1a) - (4.Id) if and only 

if there are bounded operators X^ : X
2
 X^ and U : X^ + U such that 

A
x
 X

x
 - X

1
 A

2
 + B U = A

3
 (4.11a) 

D
x
 X

x
 = D

2
 (4.11b) 

T 

Proof: A Proof of this result is given in [Bl» Chapter 5,»pp.73-77 3. 

However we give it here since it will be useful in the construction of a 

synthesis. 

Necessity: This part follows from proposition 2.6 

Sufficiency : This part consists in obtaining a synthesis by means of 

an observer for the system (4.1a) - (4.Id). The detectability condition 

is required in this part of the proof. 

Since (A^,B^) is stabilizable, there is an F^ : X^ U such that 

(A^+B^ F^) is stable. Now, by (4.11a) - (4.11b), we may choose an 
A F

2 *
 X

2
 d s u c b

 that there is an X^ : X
2
 X^ satisfying 

/s 
( A

1
+ B

1
F

1
) X

1 "
 X

1
 A

2
 = A

3
 + B

1
 F

2 (4.12a) 

D
x
 X

x
 = D

2
 (4.12b) 

t 
also see [F53 for the finite dimensional case 
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this gives a feedback. 

u(t) = F
x
 x

1
(.t) + F

2
 x

2
(t) 

We now show that this feedback may he implemented via an observer 

which has z(t) as input. Since, by assumption, (D,A) is detectable, 

there is a bounded operator K : Z + ^ x such that (A+KD) is stable 

Define X
c
 = X ̂  x X

c 2
 = ^ x X ^ Then the equation 

x (t) = (A+KD)x (t) - K z(t) + B u(t) 
C C 1 

is an observer for the system (4.1a) - (4.1b). Now writing 

(4.13) 

K = K„ 

K 
V 

and 

u(t) = F x (t) + F2 x c 2(t) 

(4.5) may be written as 

x

c l
( t ) 

X = 2 ( t ) 

A.+ K. D. + B. F. A , + K, D„ + B. F„ ^ 1 1 1 1 1 

K2 D1 

1 2 1 2 

A2 • K2 D2 

X

c l
( t

> 

X

c 2
( t ) 

K, 
z(t) 

Our synthesis is now complete with G
c
 = 0, B

c
 = -K, F^ = F = [F^ 

and A = (A+KD + BF) where B = 
c 

To complete the proof we need to show that the closed-loop system is 

internally stable and that z(t) is regulated. To prove the Stability 

of the closed-loop system it is necessary and sufficient to show that 

a(A^)
 c

 CT The closed-loop system is given by 
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' i
x
C t ) ^ -

A

l
 B

i
F

i 
B

1
F

2 
A 1 
3 

/ ( t )
 1 

i - Ct) 
cl "

K

1
D

1 V W V i 
A

3
+ K

1
D

2
+ B

1
F

2 "
K

1
D

2 
x

c l
( t ) 

x
c 2
(.t) 

-
K

2
D

1
 K

2
D

1 
A

2
+ K

2
D

2 
- K

2
D

2 

X

c 2
( t

> 

i
2
U ) 0 0 0 A

2 „ 
x

2
(t) 

(4.14) 

define e ^ t ) = x ^ C t ) ~ a ^ U ) and e
2
(t) = x ^ U ) - x

2
(t), then it is 

easy to see that 

i / t Y A +B F 
1 1 1 

B

1
F

1 
B

1
F

2 V
B

l V 
X

x
(t) 1 

e / t ) 0 A

1
+ K

1
D

1 
A

3
+ K

1
D

2 
0 e

x
(t) 

4
2
(t) 0 K

2
D

1 
A

2
+ K

2°2 
0 e

2
(t) 

i
2
(t)

j 
0 

V 

0 0 A

2 
x

9
(t) 

I
 2

 i 

Clearly aCA^) = aCA^+B^F^) u a(A+KD) c C and we conclude that (4.14) is 

internally stable. 

To prove regulation define 

X = 
c - v 

where X satisfies (4.12a) - (4.12b) and I is the identity operator 

on X
2
. 

Let x - r \) 
- x 

t c i 

then , with F = F=[F, F_] , we have from (4.12a) 
c 1 2 

A

1
 X

1 "
 X

1
 A

2
 = A

3
 + B

1
 F

c
 X

c 
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and since 

D1 X1 " D2 

it is easy to see that 

A X - X A = KD_ - KD_ X 
c c c 2 2 1 1 

= 0 

then, for the closed-loop system we have 

A A 

^ X - XA
2
 = B

L 

D
L
 X - D

2 

where 

-KD. 

B,F 
1 c 

A 

>
 B

L
 = A ^ 

3 

-KD, 

, Dl = C D 0 3 

Now Proposition 2.6 establishes that z is regulated. 

The following proposition will be needed in further developments 

Proposition 4.4: Suppose that [C^ C^l = tD^ D ^ , i.e. y = z, and that 

S = ( X , A , B , F , G ) i s synthesis which provides internal stability 
c c c c c c 

and A contains an internal model of A„. Then, the internal model is 
c 2 

precisely a q-fold reduplication in k^ of the largest cyclic component 

of A,, and 
2 

Ker B = 0 
c 

Im B n Im(A -A) = 0 , A e a(A_) 
c c I 

Ker (A - A ) ^
1

 c i
m
( A -A), A e a(A

0
),l < -k < k . 

c C Z — — A 

(4.15) 

(4.16) 

(4.17) 

where k. is the degree of the factor (s-A) in the minimal polynomial 
A 

of A
2
. 
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Proof: The loop operator is given by 

A +B.G D. B P 
1 1 c 1 1 c 

B 
c 1 

1 

Now, stability of A^ implies that, for A £ a(A^) 

Im B D + Im(A -A) = X 
c 1 c c 

but Im B D„ = B Im D„ = Im B since D, is surjective, thus 
c 1 c 1 c 1 

Im B + Im(A -A) = X 
c c c 

(4.18) 

On the other hand, since A contains an internal model of A
o J c L 

there is an infective operator X : X_ X such that 
c 2e c 

A X = X A 
c c c 2e 

Z 
where X ^ = ^Zk.

1 a n d A

2e
 X S a n d

i -
r e c t s u m

 for some 

Z > q. From this it follows that Im X is an A -invariant subspace 
— c c 

of X^, therefore we may write 

X = Im X © X° 
c c c 

and accordingly 

A = 
c 2e 

0 

c2 

cl 

(4.19) 

Now, using the representation (4.19) , it is easy to see that 

Ker(A. -A) x {o} c Ker(A -A) 
2e c 

and since dimtKer (A^-A) 3 = £ > q we obtain 

dim[Ker(A -A)3 > Z > q (4.20) 

Also, since B : Z X 

dimClm B 3 < dim[Z3 = q 
c — 

(4.21) 
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Now, from our assumptions on A^, ImCA^-A) is a closed subspace of 

X and 
c 

X 
Im(A -A) s 

c

 Ker (A -A) 
, A c G(A

2
) 

thus 

X = Ker (A -A) 9 X
x 

c c c 
(4.22) 

where X1
 -
c 

Ker(A -A) 
c 

Im(A -A) 
c 

hence, from (.4.22), (4.18) and (4.21) 

dim[Ker(A -A) 3 = dimLlm B 3 - dimtlm B n Im(A -A) 3 
c c c c 

this, together with (4.20), give 

dimCKer(A -A)3 = q 
c 

(4.15) and (4.16) now follow 

Also, the above expression yields 

dim[Ker(A„ -A) 3 = q 
Ze 

which in turn implies that A^^ is a q-fold reduplication of i.e., L = q. 

To prove (4.17), first observe that, for A £ a(A ) 

2 V 1 
Ker(A- -A) c Ker(A„ -A) c...c Ker(A

0
 -A) = Im(A

0
_-A) 2e 2e 2e 2e 

(4.23) 

Now, since Ker(A
0
 -A) x {0} c Ker(A -A) with 
Ze c 

dimCKer(A„ -A) x (o}-3 = dimCKer (A -A) 3 = q we conclude 
Ze c 

Ker(A_ -A) x {o} = Ker(A -A) 
2e c 

, A £ a(A
2
) (4.24) 

and using the representation (4.19) we obtain 

Im(A -A) = Im 
c 

f A
0
 -A ) 
2e 

+ Im AC2 ^ 

0 A -A 
cl 

(4.25) 
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this together with (.4.23)., and (_4.24) yield 

Ker (A -X) c Im(A "X) , X £ a(.Aj . (4.26) 
c c z 

To complete the proof we use the fact [T2, p, 2913 that 

Ker(A - X )
L + J 

c c 
Ker(A -X)

1 

c 

for i, j = 0 , 1, 2 

Thus, for i = j = 1 , (A.27) and (4.26) give 

Im(A -X)
1 n

 Ker (A -X)
1

 (4.27) 

dim 
Ker (A -

c 
-XV 

Ker(A -
c 
-X) 

= dimCKer(A -\)3 = q 
c 

hence 

dimCKer(A -X)
2

3 = 2q 
c 

this, together with 

Ker(A_ -X)
2

 x {0} c Ker(A -X)
2 

Ze c 

implies that 

Ker(A -X)
2

 x {o} = Ker(A -X)
2 

2e c 

therefore, from (4.23) and (4.25) we conclude that 

Ker(A -X)
2

 c Im(A -X) , X e a ( A j (4.28) 
c c Z 

Similarly we obtain from (4.27), with i = 1, j = 2, and (4.28) 

dim 
Ker (A -X)

3

 ^ 
c 2 

= dimCKer (A -X) 3 = 2q 
c 

Ker(A -X) • n c
 J 

which in turn gives 

Ker (A -X) c Im(A -X) , X £ c(A_) 
c c Z 

Proceeding in this manner (4.17) is obtained. This completes the proof. 
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We point out that the assumption [C^ C
2
] = [D^ D

2
] in Proposition 4.4 

is merely a convenient one. Indeed, the proof of the proposition depends 

on the special structure of the loop operator A^, namely that the 

controller contains an internal model of A
2
 and utilizes feedback of the 

regulated variables z. Hence the proposition will remain valid if we 

assume, in place of y = z, that the controller is driven by the regulated 

variables. In particular, this feedback assumption is justified if 

KerCC^ C ^ c KerCD^ D ^ , i.e. z is readable from y , and the pair 

is detectable, the latter being a requirement for stability of A^. 

The readability condition constitutes a basic assumption throughout this 

chapter (see 1) - 7)). However, detectability of the pair is not 

guaranteed by our basic assumptions 1) - 7). Nevertheless, in case this 

condition is not satisfied, it is always possible to construct a dynamic 

controller to achieve detectability of a related pair (D^, A^), as we will 

show in Section 4.3. 

4.2 Sufficiency of the Internal Model Principle 

The sufficiency of the Internal Model Principle is essentially 

established by the following 

Theorem 4.5: Suppose that [C/ C
2
] = [D^ D ^ , i.e. y = z and that 

S^ = (X^, A^, B^, F^, G^) is a synthesis which provides internal stability 

and A^ contains an internal model of A
2
» Then S^ is a structurally 

stable synthesis with respect to the parameters 

P = (A., B., A , B F , G ) 
1 1 J c c c 

Proof: We first show that internal stability is preserved under small 

perturbations of the parameters A^, B^, B^, F
c >
 G . 

It is easy to see that for perturbations of A
1
 of class F(A ), 
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and bounded perturbations of the remaining operators, the perturbed 

operator (A^+dA^) generates a strongly continuous semigroup S Q ^ + d A ^ M t ) 

which is compact for t _> h. Therefore, the stability of (A^+dA^) will 

follow once we show that aCA^+dA^) <= C for a sufficiently small pertutbation, 

Clearly
 c

 C consists of eigenvalues of finite multiplicities, and for 

any real number a > 0, the set {A e aCA^); " ci < R^ A < 0} is finite. 

C C C + 
Let C = {A £ C; R A <-a} and C = { A £ C ; R A >-a}. Now enclose each 

e e — 
ot+ — 

A^ £ Q(A^) n C by a circle I\ of small radius so that I\ c C . It now 

follows from Theorem B.III.2 in Appendix B, that there is a d > 0 
/s 

(depending on y and I\'s) such that for any dA^ with d(A
k
+dA

k
,A

k
) < d, 

the spectrum of (A^+dA^) is likewise separated by the F Y s and the total 

multiplicity of the eigenvalues of (A^+dA^) in I\ equals the multiplicity 

of the eigenvalue of A^ in T\ . Further, the upper semicontinuity of 
ct

—

 ct+ 

a(A^) asures that no eigenvalues of A^ in C move to C . Hence, 

a(A
k
+dA^) <= C for a sufficiently small perturbation dA^. 

Next we show that regulation is preserved under small perturbations 

of A^ and arbitrary bounded perturbations of B^. 

Choose ^A^, such that (A^+dA^) is stable. Note that A^, D^ 

and are not allowed to vary. Let dB be a bounded perturbation 

i-i 
of B . Then, there is a unique bounded operator }L : X X such that 

i_i lj Z Li 
< V

6 A

L
) X

L - \
 A

2
 =

 W
 ( 4

-
2 9 ) 

Let 

X 

, writing (4.29) in detail we obtain 

[A +dA +CB G + d C B V )]D
1
]X

1
 - X- A

0 1 1 1 c 1 c 1 1 1 2 

+ CB ,F +d(B,F )3X = A +5A + [ B G +d (B G )]D. (4.30a) 
l c l c c 3 3 l c l c 2 
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[B +<$B ]D X + A X - X A = (B +dB )D„ (4.30b) 
c c l l c c c c c c c 
A, 

defining B = B + 6B , (4.30b) gives 
c c c 

B (D. X - D.) + A X - X A- = 0 (4.31) 
c l l 2 c c c 2 

thus output regulation will be guaranteed once we show that 

D
x
 X

x
 - D

2
 = 0 (4.32) 

Now, consider a decomposition of X^ into prime subspaces. Fix 

X £ and choose any prime subspace X
3

^ corresponding to A. Select 

a basis for X ^ such that A
2
| X ^ is in Jordan form, and let 

<D1 X1 " D2>l4x " C r l ' r 2 ' " r k ] 

where k = k(A;j) = dimCX^] . 

Restricting (4.31) to X
3

^ we obtain 

B r. + (A -A)p. = p. . , i = 1,2...k (4.33) c 1 C I l - l 

where p^ A 0 . 

Since (A^+dA^) is stable and A^ contains an internal model of A^y proposition 

4.4 yields 

Ker B = 0 (4.34) 
c 

Im B n Im(A -A) = 0 (4.35) 
c c 

V 1 
Ker(A -A) c Im(A -A) (4.36) 

c c 

Now, for i = 1, (4.33), (4.34) and (4.35) give ^ = 0. This implies that 

p. £ Ker(A -A) which in turn gives, by (4.36), p. £ Im(A -A). For i = 2, 
l c 1 c 

2 
(4.33), (4.34) and (4.35) yield, r

0
 = 0. Hence p„ £ Ker(A -A) which implies, 
2 - 2 c 

by (4.36), that p
2
 .£ ImCA^-A). Proceeding in this manner we obtain 

r. = 0, i = 1, 2...k. Therefore l 
(D1 X1 " V | X 2 A " 0 
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Since X £ gCA^) and X
3

^ were chosen arbitrarly we conclude that 

(4.32) holds. This completes the proof. 

We mention that the discussion following proposition 4.4 also 

applies to Theorem 4.5. That is, the crucial factor in the proof of the 

Theorem is not the assumption y = z, but the fact that the controller 

utilizes feedback of the regulated variables, and A^ contains an internal 

model of k^. 

Having established that the synthesis S^ in Theorem 4.5 is structurally 

stable at P = (A^, B^, A^, B^, F , G
c
), we now show that this property is 

maintained under certain small perturbations dA^ of the operator A^. 

In fact the class of perturbation operator dA^ of A^, consists of those 

operators for which (A +dA ) contains an internal model of A_ and the closed-
c c 2 

loop system is internally stable. 

Consider the decomposition 

where 

X = X
 n
 9 X . (4.37) 

c cl cz 

£ P 
X = n Im(A -X.) 
cl . , c 1 l=1 

I p. 
X _ = 9 Ker(A -A.)

 1 

c2 . , c l i=l 

(X
1
, A^.-.X^} are the distinct eigenvalues of A^ 

p^, p
2
 .. p^ are finite integers and is finite dimensional. 

According to (4.37) we may write 

F = CF
 1
 F 3 (4.38a) 

c cl c2 

B = 
c 

B , > (4.38b) 
cl 

l b
c 2 ; 
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A = 
c 

ACX ° (4.38c) 

c2 
where A

 n
 is a bounded operator and contains an internal model of A

0
, 

c2 2 

in. fact a(A
 0
) coincides with a(A

0
) except in multiplicities and 

c2 2 

O(A
C 2
) n a(A

c l
) - tf. 

Using the representation (4.38a) - (4.38c), A^ and B^ may be written as 

B1FC2 

BC2D1 AC2 BC2D2 

(4.39a) 

where 

A1 " A- +B G D 
1 1 c 1 

B D cl 1 

B,F , \ : X, 0 X + X, © X 
1 cl 

AC1 

cl cl 

A

3 -
A + B . G 
3 1 c 2 

B 1D9 
cl 2 

x2 xx X cl (4.39b) 

B1 = 

0 

: U X, © X 
cl 

D = [D 0] X, © X + Z 
1 cl 

It is now clear, from proposition 4.4 and Theorem 4.5 (with appro-

priate modifications), that S = ( X , A , B , F , G ) i s structurally 
c c c c c c 

stable with respect to the parameters P^ = (A^, B^, A^, B ^ j
 B

c
2 '

 F

c l ' 

F G , A ) . Hence, according to the representation (4.38c), the 
c2 c cl 

class of admissible perturbations dA^ of the operator A^, correspond 

to small perturbations d A ^ of A ^ , and since A
 2
 is fixed it is 

readily verified that 
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A +SA 
c c 

A .+6A . 
cl cl 

c2 

contains an internal model of A^. Thus, we may conclude that for any 

representation of A^, the admissible perturbations of A^, consist of 

those (small) operators dA , such that (A +<5A ) contains an internal 
c c c 

model of A^; however, we mention that in this case it may be difficult 

to determine explicitly which perturbations preserve the internal model. 

In the remaining part of this section we relax the assumption 

y = z, and we assume that z is, readable from y, i.e. 

KerCC^ C^l <= KerCD^ D ] . Also, it is assumed that 

S = (X ,A ,B ,F ,G ) is a synthesis for the system (4.1a) - (4.Id) such 
0 c c c c c 

that the closed-loop system is internally stable, A contains an internal 
c 

model of A^ and the internal model is controllable by the regulated 

variables z, that is, the controller incorporates a feedback structure. 

We will show below that S^ is structurally stable. First, a convenient 

representation for the loop operator A^, will be derived. 

From the readability assumption we may write 

V = W ® Z (4.40) 

where W is a complement of Z in V. According to this decomposition 

we have 

CC1 C23 " 

D 

(4.41) 

2 i 

Clearly, since A
(
contains an internal model of A^, we may adopt the 

representation (4.38a) - (4.38c), Further, according to (4.40), (4.38b) 

can be written in more detail as follows 

ft 
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B = 
c 

Also, we have 

cwl 

B 
cw2 

G = CG 
c cw 

B

czl 

cz2. 

G ] 
cz 

Now, since A^ is stable, it is easy to see that the pair 

(A CB - B „ ]) is controllable , i.e. 
c2 cw2 cz2

 7 

(4.42) 

(4.43) 

Im B + I m B . + Im(A -A) = X „ , A £ C 
cw2 cz 2 c2 c 2 

(4.44) 

But A ^ is the part of A^ containing the internal model, and since the 

internal model is controllable by z (by assumption) we conclude that 

either 

a) B _ = 0 and (A B „) is controllable 
cw2 c2 czz 

or 

b) X _ may be decomposed as follows 
cZ 

Xc2 " Xc2 9 Xc2 (4.45a) 

1 i 2 1 
where X _ = <A „ Im B > and X „ is a complement of X „ in X .. 

c2 c2
1

 cw2 cZ c2 c2 

According to (4.45a) we can write 

F 
c2 

[B 

- EF1. F 2 J 

c2 

c2 c2 

9 B 9] 
cw2 cz2 

c2 

B 
cw2 

0 

3 1 

c2 
2 
c2j 

cz2 

2 

cz2 > 

(4.45b) 

(4.45c) 

(4.45d) 

A
 0
 contains the internal model, and the pair (A B .) is controllable. 

c2 c2 cz 2 

t 
recall that A „ is a bounded operator and X _ is finite dimensional 

c2 c2 
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In fact a) is a special case of b), therefore we may assume that 

b) holds. So, combining (4.38a), (4..38c), (.4.41), (4.42), (4.43), (4.45b) -

(4.45d) we obtain 

B2 D 
cz2 1 

h 

c2 J 

BL = 

8

cz2 ^2 

(4.46) 

where 

A1 = A +B G E +B G D B F B F 
1 1 cw 1 1 cz 1 1 cl 1 c2 

B nE +B .D. A 1 0 
cwl 1 czl 1 cl 

8cw2^1+bcz21>l ^ Ac2 

X ^ X 9 X
1

. Xh®X
 1

0 X
1

o 

1 cl c2 1 cl c2 

B„ = B F2 ^ 
1 c2 

c2 

X

c 2 ^
 X

1
 9 X

c l
 9 X

c 2 

D, = CD1 0 0] X, e x . © x% z 
1 cl c2 

B_ = A +B..G E_+B G D„ ̂  
3 1 cw 2 1 cz 2 

B E +B .D 
cwl 2 czl 2 

8cw2^2 8CZ21>2 

X 2 ^ X 1 x d 9 x ; 2 

Now using the representation (4.46) it is easy to see, from the proof of 

proposition 4.4 and Theorem 4.5, that the synthesis S^ is structurally 

stable with respect to the parameters 

P„ = (A. ,A_ ,F 1 ,F 1
0 ,F 2 _,G ,G ,B _,B . ,B1 B1 _,B2

 0,A . j A ^ A 3 ) 
2 -ĵ j 3>

 c l
>

 c
2»

 c
2 '

 c w
'

 C
z cwl czl cw2

7

 cz2 cz2 cl c2 c2 
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The main result of this section can be summarized in the 

following 

Theorem 4.6: Suppose that S^ is a synthesis which provides internal 

stability, utilizes feedback of the regulated variables and incorporates, 

in the feedback, path, an internal model of the dynamic structure of the 

exogenous signals which the controller is required to process. Then 

output regulation is maintained when the system's and controller para-

meters undergo small perturbations which preserve internal stability 

and the internal model, 

4.3 Construction of a Structurally Stable Synthesis 

In this section we will establish a sufficient condition, in terms 

of the systems parameters, to guarantee the existence of a structurally 

stable controller. Furthermore, a procedure to construct such controller 

will be obtained. 

The main result of this section is given by the following 

Theorem 4.7: Suppose that 1) - 7) are satisfied. If in addition, the 

system (4.1a) -(4.Id) satisfies the condition 

(A
1
-A)[Ker D

x
 n D ^ ) ] + Im = X A e a(A

2
), (4.47) 

then, there is a synthesis S = (X ,A B ,F ,G ) which is structurally 
c c c c c c 

stable. 

Proof: The proof of Theorem 4.7 consists of a procedure for the construction 

of a structurally stable synthesis and will be given in several steps. 

Step 1: This step consists in augmenting our system by means of a dynamic 

controller, to achieve certain detectability condition. That is, if 

A^ represents the dynamics of the augmented system, then we require the pair 

(D ,A ) to be detectable, where D is of the form CD
1
 0]. If the pair 
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(D
1
,A

1
) is detectable then proceed to Step 2. 

Consider the system 

x
c l
( t ) = (A

1
+K

1
C

1
)x

c : L
Ct) - K ^ C t ) + BjuCt) (4.48a) 

t 
where x eX ,A C and B denote copies' of the operators defined before, but 

cl cl 1 1 -l-

now with X^ replaced by X ^ , and K^ : Y X ^ is chosen such that 

(A^+K^C^) is stable. Since (C A^) is detectable (by assumption) such 

K^ clearly exists. 

Now let 

u(t) = F
c l

x

c l
(

t

)
 +

 v(t) (4.48b) 

where v(t) is an external input and F . : X . Li is a bounded operator 
ci cl 

such that (A +B-F -) is stable. Clearly the existence of F , is 
1 1 cl cl 

guaranteed by the stabilizability of the pair (A^,B^). 

Combining (4.1a) - (4.Id) with (4.48a) - (4.48b) we obtain 

x (t) = A
x
 x (t) + X

3
 x

2
(t) + B

x
 v(t) 

x
2
(t) = A

2
 x

2
(t) 

y(t) = c
x
 x

x
(t) + c

2
 x

2
(t) 

z(t) = D
1
 X

x
(t ) + D

2
 x

2
(t) 

(4.49a) 

(4.49b) 

(4.49c) 

(4.49d) 

where • X1 9 Xcl 

B F 
1 cl 

"
K

1
C

1
 A

l
+ B

l
F

c l
+ K

l
C

l 

B1 " 

B1 J 

C1 = [C1 0 ] 

"K1C2 ^ 

Dx = [D 0] 

We now show that the pair (D^, A^) is detectable. First note that, 

Throughout this section we will always use the same symbols to denote 
the corresponding copies of the operators previously defined. 
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since K C and B F are compact, the semigroup S (t) is compact 

fot t £ h, therefore detectability of is equivalent to the 

condition 

Ker D
1
 n Ker (A^-A) = 0 , A e C (4.50) 

Next, define e(t) = x , (.t) - x. (t) , then it is easy to see that 
cl 1 

xx(.t)y 

eCt) 

A +B. F B F 
1 1 cl 1 cl 

V W e(t) J -(a 3 +K i C 2) 

\ B, } 
x

2
(t) + 

I 

0 
; ( ; 

v(t) 

thus 

a(A
x
) = a(A

1
+B

1
F

c l
)u a(A

1
+K

1
C

1
) c c 

hence (4.50) is satisfied for A e C and (D^, A^) is detectable. 

Before proceeding to the next step we prove the following result 

Proposition 4.8: Let X^, A^, B^ and D^ be as in Step 1. Then 

(A^-A) [Ker D
1
 n D(A

1
)] + Im ^ = A e a(A

£
) (4.51) 

if and only if 

(A
1
-A)CKer D n D(A

1
) ]+ I m B

1
 = X ^ A e a(A

£
) (4.52) 

Proof: We first note the following 

(A -A)Ker D
1
 + Im B = A -̂A 

" K i c i 

0 Y 
1 cl 

A i + K i c r A J 0 BiFci 

0 B.F Ker D^ + Im 

AJ 

A -X 

-K1C1 A l + K l C l " X 

Ker D^ + Im B 

T i 

(4.53) 

ft 
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Necessity: Suppose (.4.51) holds, then (4.53) gives 

V A 

"K1C1 

1 

A i + K i c r A 

Ker D. 

cl 

- + Im B
x
 ) =

 r

X
x
 ) , A e a(A

2
) 

X 
cl 

and (4.52) follows. 

Sufficiency: Suppose (.4.52) holds, then for any x^ £ X^, there are 

r^ £ Ker D^ n D(A^) and u^ £ U such that 

(A rA)rx + B ^ 3 xx A e a(A
2
) 

for (4.51) to hold we need to show that for any x . £ X . there is an 
cl cl 

r , £ D(A ) c X _ such that 
cl 1 cl 

- K i c i r i + B i u i + ( v K i c r X ) r d • * d ' x £ a ( V 
Since (A^+K^C^) is stable clearly such r ^ exists, thus 

A -̂A Ker + Im 

" K i c i A i + K i c r x J 

I _ = X,, A £ a(A_) 

i B i > 

and from (4.53) we obtain (4.51). This completes the proof. 

We now continue with the proof of Theorem 4.6. 

Step 2: Let - X X ^ be a q-fold direct sum of the largest cyclic 

component of A^. That is, A ^ = diag[A
2 R
 A ^ ... A

2 R
] , and 

X
n

 3

 CX
01
 ]

q

. Define 
2e 2k 

X = X 1 * * 2 ( 
and let 

x (t) = A x (t) + B v(t) 
e e e e 

z (t)
 3

 D x (t) 
e e e 

(4.54a) 

(4.54b) 



where 

A = 
e 

D 
e 

A )-3e 

A2e 

o ] 

- lOB -

x -+ X 
e e 

x -+ Z 
e 

B 
e 

U-+X 
e 

and the bounded operator A3e : X
2e 

-+ Xl is chosen such ·that the pair 

(D , A ) is detectable. 
e e 

The existence of such A."3e is guaranteed 

by detectability of the pair (D
l

, AI) and proposition 4.2 gives a way 

of obtaining A3e. 

We now show that there is a synthesis for the system (4.54a) -

(4.54b). This result will follow from proposition 4.3 once we show that 

there are bounded operators X
le 

and U 
e 

X
2e 

-+ U such that 

D X = 0 
1 Ie 

A 
3e 

By assumption, (4.47) holds, this proposition 4.B implies that 

(4.51) holds and by proposition 4.1 we conclude that there are 

(4.55a) 

(4.55b) 

X
le 

and U
e 

satisfying (4.55a) - (4.55b). 

for the system (4.54a) - (4.54b). 

Hence there is a synthesis 

When (Dl , AI) is detectable, replace AI' Bl A3e and Dl in 

(4,54a) - (4.54b) by AI' Bl , A3e and Dl , where A3e X2e -+ Xl ~s chosen 

such that (D ,A) is detectable. 
e e 

As before, it is easy to see that there is 

a solution of (4.55a) - (4.55b) with AI' Bl , A3~ and Dl replaced by Al ,Bl ,A3e and 

D
l

, therefore we conclude that there is a synthesis for the system 

C4.54a) - C4.54b) .. 
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Step 3: In this step we construct a synthesis for the system (4.54a) -

(4.54b), yia an observer, as in the proof of Proposition 4.3. 

Choose an F„ : X
n
 U such that there is an R. : X . X. 

2e 2e le 2e 1 

satisfying 

A. R, - R. A . = A , + B
1
 F

0
 (4.56a) 

1 le le 2e 3e 1 2e 

D. R. = 0 (4.56b) 
1 le 

Clearly such F ^ exists, since (4.55a) - (4.55b) have a solution 

as was shown in Step 2. Furthermore R. is unique since 
le 

a(A,) n a(A„ ) = 0. Choose Q such that (A + Q D ) is stable. The 
I

 v

 2e e e e e 

existence of Q is guaranteed by detectability of the pair (D , A ). 
e e e 

The observer for the system (4.54a) - (4.54b) is given by 

X

c 2
( t ) = ( A

e
+ Q

e
D

e
) X

c 2
( t )

 "
 Q

e
Z

e
( t

?
 +

 V
( t ) ( 4

'
5 7 a ) 

v(t) = F
e
 x

c 2
( t )

 ( 4 < 5 7 b ) 

where x _ e X . = X . 9 X
0
 and F = CO F

0
 3 

c2 c2 c2 2e e 2e 

The synthesis for the system (4.54a) - (4.54b) is now complete. As 

in the proof of Proposition 4.3 it is easy to see that the closed-

loop system (4.54a), (4.57a) and (4.57b) is internally stable and that 

is regulated. 

When (D , A^) is detectable, the expressions (4.56a) - (4.56b) 

are modified as follows. First, select an F. : X. U such that 
le 1 

(A,+B., F„ ) is stable. The existence of such F, is guaranteed by 
1 1 le le 

stabilizability of the pair (A^, B^). Also, note, that in the 

previous case we have set F^ = 0 since A^ is stable. Now choose 

F
n
 : X

n
 -*• U such that there is an R. : X

0
 X- , satisfying 

2e 2e le ze 1 
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(A +B F )R - R A = A0 + B F 
1 1 le le le 2e 3e 1 2e 

D R = 0 
1 le 

Clearly such F
2 £
 exists, since (4.55a) - (,4.55b) have a solution 

with A
x
, B

1
, A

3 e
 and D

1
 replaced by A ^ B ^ A and D . The 

remaining part of the construction follows as described above, 

but now F
g
 in (4.57b) is given by 

F = CF F_ 3 
e le 2e 

Step 4: Observe that (4.57a) has as input z^, and by assumption only y 

is directly accessible, hence (4.57a) cannot be implemented as it stands. 

However, since z is readable from y we may assume that (4.57a) is driven 

by z in place of z^. Indeed, readability implies that there is 

a bounded P : V Z such that 

z = Py 

Furthermore, using the representation (4.41) we obtain 

P = CO I
z
3 

thus 

Q z = Q P = [ 0 Q 3y 
e e y e 

hence (4.57a), together with (4.57b) gives 

i ,(t) = (A +Q D +B F )x C O - CO Q 3y(t) (4.58) 
c2 e e e e e c2 e 

Thn remaining part of the proof consists in showing that 

(4.48a), (4.48b), C4.57b) and (4.58) constitute a structurally 

stable synthesis for the system (4.1a) - (4.1b). This will follow from 

Theorem 4.6 once we show that synthesis utilizes feedback of the 

regulated variables, incorporates in the feedback path an internal 

model of A
2 >
 and provides internal stability. From (4.58) it is 

clear that our synthesis utilizes feedback of z, by virtue of the 
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decomposition / = (IT © Z , i .e. y 

( z / 

Also, from (4.56a) - (4.56b) 

it is easy to see that (A +Q D +B F } contains an internal model of A
0
. 

e e e e e z 
Indeed, let 

R = -R. le 

r2e 7 

(4.59) 

where R- satisfies C4.56a) - (4.56b) and is the identity operator 
le ze 

on Clearly R is injective. 

Let 

Q- Y : Z-+X 0 © X = X 
el 

lQe2 J 
c 2 2e c2 

then we may write (A +Q D + B F ) in detail 
c e e e e 

A + Q D + B F = 
e e e e e 

A

1
 + Q

e l °1 

Q

e 2 °1 

A„ + B- F. 
3e 1 2e 

2e 

(4.60) 

Now it is readily verified, using (4.56a), (4.56b), (4.59) and (4.60), that 

(A + Q D + B F )R = R A_ (4.61) 
e e e e e 2e 

therefore, definition 3.8 implies that (A + Q D + B F ) contains an 
e e e e e 

internal model of k^. (The case (D^, A^) detectable follows from the 

above discussion after appropriate modifications). 

Thus, the structural stability of our synthesis will be established 

if we show that the closed-loop system is internally stable. 

Step 5: In this step we will show that the loop operator A
L
 is stable. 

The closed loop system is given by 
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2 ; 
o 

f *LC t ) 

x„(t) 

z(t) = [D
l
 D ^ ^ C t f e 

. X2Ct)> 

(4.62a) 

(4.62b) 

where 4 = X

1
 9 X

c 2 
® X 

2e 

"
Q

e 2
D

l 
Q

e 2
D

l 

B F 
1 2e 

A

3 e
+ B

l
F

2 e 

2e 

(4.62c) 

"
Q

e l
D

2 

"Q 
2 

(4.62d) 

D
t
 = CD 0 03 
jL 1 

(4.62e) 

Now, since B F , Q D , Q D-, A_ are compact operators, it is easy 
1 ze el 1 eZ 1 3e 

to see that S. (t) is compact for t > h. Therefore internal stability will 

be established once we show that a ( V <= C . Define 

e(t) = e(t) 

*
2 e
( t ) 

Y _ xc 2(t) - xx(t) ^ 

X

2 e
( t ) 

then, it is readily verified that 

S(t) 

i 2 e ( t ) 

i 2 ( t ) 

J 

B F 
1 2e 

0 A i * V i 
A

3e 

0 
fel 

A

2e 

0 0 0 

A

3 

•(A3+qelD2) 

"
Q

e2
D

2 

1 • ^ ( t ) 1 

e(t) 

X

2 e
( t ) 

7 
x,(t) 
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but 

A +Q D = 
e e e 

A.+Q .5. A . > 
1 el 1 3e 

% 2
D

1
 A

2e 

thus 

a (At) = a (A,) u cr(A +Q D ) 
L I e e e 

Since A^ and C
A

e

+

Q
e

D

e
)

 a r e

 stable we obtain tf(A^)
 c

 C , i.e. A^ is stable. 

(When (D^, A^) is detectable, similar arguments are used to establish the 

stability of A^). 

It now follows from Theorem 4.5, that our synthesis is structurally 

stable with respect to P = (A^, A^, B^, Q ,
 F

2 e
) M o r e o v e r , from the 

discussion following Theorem 4.5 we conclude that we may allow small per-

turbations of (A +Q D +B F ) whenever the internal model and the stability 

e e e e e
 y 

of A^ are preserved. It is easy to see (from (4.59) - (4.61)) that small 

perturbations of (A +Q D +B F ) arising from small perturbations of Q 
c e e e e e 

preserve the internal model. Unfortunately, it is difficult to determine 

explicitly other perturbations of the operator (
A

e

+

Q
e

B

e

+

B
e

F

e
) which preserve 

the internal model. (The case when is detectable follows similarly 

with P replaced by P = (A ,A_,B Q ,F ,F )). This completes the proof 
•L j i. e Le ze 

of Theorem 4.7. 

The condition (4.47) in Theorem 4.7 is given in terms of the operators 

of the abstract evolution system (4.1a) - (4.Id). Our next result gives 

a necessary and sufficient condition for the existence of a structurally 
A A * /S 

stable synthesis in terms of the matrices A^, A^, B^ and D^ of the correspond-

ing delay system. 

t 
Here we do not consider perturbations of the corresponding "copies" 
of X ^ S ^ Q g and F

2 e
 in ( A g + Q ^ + B ^ ) . 
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Theorem 4.9: Suppose that 1) - 7) hold. Then, there exists a 

structurally stable controller for the delay system 

a^Ct) = agx^ (t) + a ^ C t - h ) + a 3 $ 2 (t) + ^uCt) 

^2Ct) = A2x2(t) 

yCt) = C 1x 1(t) + C^2Ct) 

zCt) = D 1x 1(t) + D2x2(.t) 

if and only if 

Rank AQ • AXE 

A 

D. 

-Ah B 1 

0 
) 

= nx+q ¥ A £ A(A 2 ) (4.63) 

Proof: The necessity of (4.47) was established in Chapter 3 (see 

Proposition 3.24). Therefore it is only required to show that (4.47) is 

equivalent to (4.63). 

a 0

 ni 
From (.4.47), for any x^ = (x^, x^) £ X^ = M

2
 , there exist 

0 = (0°, 0
1

) £ D(A ) and u £ U = E
m

 such that 

~ Asfl /N A."! ^ - ys f) 
A0 + A l ^ l ( " h ) - X 4>i+ B1U = X1 

d ^ ( e ) 1 — i - a<j>;(q) = x ^ o ) 
d0

 1 i 

Dx ^ - 0 

A0 
Now, since <f£ (0) = (j) , (4.64b) gives 

A0 (0 AC0-cr) . 
(p

1
(0) = e ^ - J e asI 

(4.64a) 

(4.64b) 

(4.64c) 

Co)do -h < 0 < 0 

thus, form C4.64a) - (4.64c) we obtain 
- -Ah A

 f0 -A(h+a) ^ 
(AQ+A e -A)(J)1 + B u = £ + J e A1x1(a)DA 

A A0 D, q = 0 
-h 
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and since x^ z X^ is arbitrary we obtain (4.63) 
n 

Now suppose that (4.63) holds, then for any f e E , there are 

0 n 
g z E and u z M such that 

(A
0 +
 A

x
 e~

A h

 -A)g°
 +
 B

x
 u = f° (4.65a) 

Bjg
0

 = 0 (4.65b) 

1
 n

l 1 
For any f (9) e L

2
(C-h,0]; E ) define g (6) as the solution of the 

differential equation 

= X g l(6)+ ^ ( Q ) - h < 9 < 0 (4.66) 

with g
1

(0)= g°. 

It follows that g = (g
1

(0),g
1

) £ D(A
1
) and (4.65a) gives 

A
q
 g W A ^ C - h ) - Xg

1

(0)+ S
L
u = £° - J

0

 e "
A ( h W )

S fkojdff 
-h 

(4.67) 

0 n l 1 n l 
Since f e E and f (0)e L

2
(C-h,03;l ) are arbitrary, (4.47) follows from 

(4.67), (4.66 ) and (4.65b). This completes the proof. 

We point out that the condition (4.63) is easy to verify. Also, the 

conditions 3) - 7) are easy to check in terms of the matrices of the delay 

system. Verification of the conditions 1) and 2), that is stabilizability 

and detectability of the pairs (A^B^) and (C^A^) respectively, is slightly more 

difficult since we need to compute the eigenvalues of A^ in C
+

. We conclude 

this section with the following lemmas. 

Lemma 4.10: The pair is stabilizable if and only if 

A A -yh ^ + t 
RankCA

1
+A

1
e
 A

 -A, B ^ = n , VA £ C . 

It is necessary and sufficient to verify this condition for all A £ C 

such that det(Ag+A^e
 A h

- A ) = 0, i.e. A £ G(A
1
) n C

+

. 
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Lemma 4.11; The pair is detectable if and only if 

Rank. [A +A, e
 X h

- A 1 0 1 
C. 

= n 1 ' ¥• A £ C 

the proof of these results follows easily from Lemmas 2.8 and 2.9 in 

Chapter 2. 

4.4 Conclusions and Remarks 

The sufficiency of the Internal Model Principle is a major result 

of this chapter. Precisely, we have shown that a controller which provides 

internal stability utilizes feedback of the regulated variables and incor-

porates, in the feedback path, an internal model of the dynamics of the 

exogenous signals, preserves output regulation when the parameters of the system 

and controller undergo small perturbations, provided that internal stability 

and the internal model are maintained. Thus we have attained a greater 

degree of structural stability than was initially required. 

We have also derived simple conditions, in terms of the matrices 

of the delay systems, to assure the existence of a structurally stable 

controller. A design procedure to construct such controller has been 

obtained. It is important to note, that the dynamics of such controller 

become unpleasantly "large". This is the price to be paid for insisting 

on regulation in the presence of arbitrary perturbations of the operator 

It is necessary and sufficient to verify this condition for all 

A £ C
+

 such that det(A
Q
+A

1
e ^

h

-A) = 0 , i.e. A £ a(A
1
> n C

+ 
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CHAPTER 5 

CONCLUSIONS 

The central subject of the preceding chapters has been the validation 

of the Internal Model Principle for linear systems involving time delays 

in the state. 

First, the regulation and internal stability problem for delay systems 

is formulated in an abstract setting. In this formulation the controller 

equations are written in concise manner and necessary features of both, the 

system and the controller are obtained. Under the additional requirement 

of structural stability, the necessity of the Internal Model Principle 

1

 is established. Next, the sufficiency of these features is investigated 

and conditions under which a structurally stable controller exists are 

derived. Such conditions are then expressed in terms of the matrices of 

the original delay system. A method to synthesize a structurally stable 

controller is also obtained. 

Thus, we have widen the class of linear systems for which the 

Internal Model Principle is valid. In fact, our results are derived in 

» an abstract framework and they are applicable to certain class of evolution 

systems, provided that the system's operators have similar properties to 

those of the operators arising from the class of delay systems considered 

in this thesis. Further research is needed in this area to determine 

specific classes of systems to which our results are applicable. 

Other directions in which this research may be pursued further involve 

systems with delays in the controls and observations. Also, perturbations 

of the delay interval must be studied and efficient methods for constructing 

structurally stable controllers need to be developed. 
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PART II 

FILTERING FOR LINEAR DELAY SYSTEMS 
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CHAPTER 6 

INTRODUCTION 

Recently, the study of linear delay differential systems has received 

considerable attention. Both filtering and optimal control problems 

have been investigated. In particular, the filtering theory of Kalman and 

Bucy has been extended to systems with delays in the state and observations 

CB7], [K43, CK61. Duality relations between estimation and control have 

also been obtained [Ll] and versions of the separation theorem have been 

proved for the linear quadratic gaussian problem [L2] , [K5]. However, 

it seems that none of the available literature has considered the case of 

delays in the noise process. The occurence of delays in the noise may arise 

in several ways. In general, taking into account that time delays are 

inherent in the transport of materials and information, in our actions and 

in the measurement of variables, we anticipate that the dynamic behaviour 

of a great number of physical systems may be modeled more adequately by 

functional differential equations in which the 'forcing terms' themselves 

are functionals. Such 'forcing terms' may consist of a 'control action' 

and/or a deterministic stochastic perturbation. For example the 'control 

action' maybe corrupted by an additive 'white' noise. Systems described 

by delay differential equations are found in several fields of applied 

science such as biology, economics, industrial processes, ect. . 

The main subject of this work is the optimal filtering problem for 

linear systems involving delays in the state, observations and in the noise 

process. We assume that the observations are contaminated by an additive 

'white' noise (measurement noise) which is independent of the noise process 

and without delays. The approach that will be used for solving this 
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problem is based on projection methods in a Hilbert space. We will first 

show- that the filtered estimate satisfies a stochastic functional 

differential equation which is coupled with the integral equation for 

the smoothed estimates. Then, a set of partial differential equations 

satisfied by the error covariance function, will be obtained. In the 

case of no delays in the state and observations we will derive a set 

of alternative differential equations satisfied by the gains involved 

in the optimal filter and the uniqueness of solutions to these equations 

will be established (this results are reported in [M63). To conclude this 

work it will be shown that our filtering problem is 'equivalent' to an optimal 

control problem. The 'dual' system will involve delays in the state and 

in the controls. The 'dual' problem will consist in minimizing a 

quadratic functional with delays. 



- 121 -

CHAPTER 7 

OPTIMAL FILTERING FOR LINEAR SYSTEMS WITH DELAYS IN THE NOISE 

This chapter deals with the optimal filtering problem for linear 

systems with delays in the states, observations and noise process. Our 

main interest is to obtain a characterization of the optimal filter 

and derive a set of partial differential equations satisfied by the 

'gains' involved in the filter. These questions will be solved in 

Section 7.3. Next, we consider the class of linear systems involving 

delays in the noise process only. For such systems we will obtain an 

alternative characterization of the optimal filter. This will enable 

us to establish uniqueness of solutions to the set of differential equ-

ations satisfied by the 'gains' in the optimal filter. Finally, a 

dual optimal control problem will be formulated. 

7.1 Problem Formulation 

Consider the system 

dx(t) = A
1
x(t)dt + A

2
x(t-h)dt + B ^ w C t ) + B

2
dw(.t-h) , t eC0,T3 

(7.1) 

dy(t) = C^x(t)dt + C
2
x(t-h)dt + D dv(.t) , t e C0»T3 (7.2) 

x(6) = x
o
(.0), 0 e[-h,Q3 

w(9) =
 w

0
(-®)» ® e[-h,03 , w(-h) = 0 

yCQ) = 0 

where the vector x(t) takes values in j?
n

, y(t) in E^. The noise 

processes (w(s) , -h <_ s <_ T} and (v(s), 0 <_ s <_ T> are independent 

standard vector Wiener processes in ^ and E
P

 respevtively. A^, A^, B^ 

B

2*
 C

2
 a n c

*
 D a r e

 constant matrices of appropriate dimensions. 
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D is assumed to he nonsingular so that D D
! 3

 R > 0, i.e. R
 1

 exists, 

h is a positive constant., is a gaussian vector process on 

[-h»0] completely independent of (w(s)} and (v(s)}, with zero mean 

and EC|x CO) |
 2

3 <
 00

 0 eC-h»0] C| * I denotes Euclidean norm). All 

stochastic processes are defined relative to a given probability space. 

We point out that (7.1) - (7.2) must be interpreted as integral equations, 

since w(t) and v(t) are not differentiable at any point (with probability 1). 

The integrals throughout this work are defined in the Lebesgue or 

quadratic mean (stochastic) sense. Moreover, to assure that the 

Lebesgue integrals of a given stochastic process are well defined, 

it will be considered in the sequel that a measurable version is used. 

This is justified as the processes involved are quadratic mean contin-

uous (which is a sufficient condition to assure the existence of a 

measurable version). 

It can be shown, following the arguments in[Ll]» that (7.1) -

(7.2) have a unique sample continuous solution almost surely. The 

filtering problem for the system (7.1) - (7.2) consists in determining 

the best estimate of x(t) in the least squares sense, i.e. determine 

x(t|t) = ECx(t) where 0 denotes the o-algebra generated by the 

observations (y(s) , 0 <_ s <_ t}. Since all the processes involved are 

gaussian x(t|t) must be a linear functional of past observations. Thus 

linear estimation methods may be used to obtain x(t|t). We mention that if 

w(t) and v(t), in (7.1) - (7.2), are replaced by any stationary orthogonal 

increments processes, then it is no longer necessarily true that 

E[x(t) I/
1

"] is a linear functional of {y(s), 0 _< s _< t}. However, the 

results presented in this work are still valid if we are only interested 

in determining the best linear least squares estimate of x(t). 
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7.2 Notations 

H will denote the HiJLbert space of square integrable random vectors 

x, i.e. EC|x|
2

] < , |*| denotes Euclidean norm. H
Z

 will denote the 

Hilbert space spanned by the process (z(s), -h <_ s _< t} for z(s) e H 

for each s. 

P is defined as a linear map which takes any element in H 

,,z 
into its projection onto H . 

L^Cajb] denotes the space of square integrable functions on 

Ca,b3. A vector function h(") is said to be an L - vector function on 

Ca,b] if r |h(t)|
2 

dt < |•| is Euclidean norm. Similarly a matrix 
a 

function K(',') is said to be an L^-kernel on the square Ca,b] x Ca#b] if 

/
b

/
b

|K(.t,s) 1
2

ds dt < where the norm of a matrix is defined by 

a a 2 

|K(t,s)|
2

 = £ k
v
.(t,s) = trace K(t,s)K'(t,s) (prime stands for trans-

position). 

7.3 The Optimal Filter 

As in the case of no time delays in the noise, the equation for 

the filtered estimate x(t|t) will involve some smoothed estimates x(t-0|t), 

0 > 0. It will become apparent in later developments that this is 

also true for systems without delays in the states and observations (section 

7.4). Therefore it is convenient to consider the general smoothing 

problem for the system (.7.1)
 -

 (.7.2). 

We define the innovations process corresponding to the observation 

equation (7.2) to he 

vCt) = y(t) - /
t

 C &(u|u)du - J^C x(.u-h|u)du (7.3) 

0 0 
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Now, i.t is readily shown CB73(£[531.that {v(.s), 0 £ s £ t} spans the 

same family of suhs.paces as the observations (yC.s) , 0 £ s £ t} for each 

t eC0»T3. Furthermore, 

ECv(t).v'(s)3 = R ECv(t) v
1

 (s) 3 = R min(t,s) (7.3a) 

thus we can write 

x(s|t) = NCs,u)R"
1

dv(u) (7.4) 
0 

3 i 
where N(s,u) = ECx(s)v'(u)3 a.e. is an L

2
~kernel measurable in (s,u) 

Thus, our problem is reduced to characterizing N(s,u) subject to 

the dynamics (7.1). Define 

x(s 11) = x(_s) - &(s|t) 

then since x(s) is orthogonal to it is easy to see from (7.3) that 

N(s,u) = ECx(s)x'Cu|i$!c{ + E [x(s)x'(u-h |u) 3C'
2
 a.e. (7.5) 

Now, let 

P(t,s,u) A E[x(t |u)x' (s |u)3 (7.6) 

By the projection theorem, which we recall states that x(s |u) is orthogonal 

to H
V

, we obtain from (7.4) - (7.6) 
u 

x(s jt) = f
1

 [P(s,u,u)C' + P(s,u-h,u)C'3R"
1

dv(u) (7.7) 
0 

which clearly may be written as 

x(s jt) = x(s |s) + /
t

CP(s,u,u)C^ + P(.s,u-h,u)C^3R~
1

dv(u; (7.8) 

s 

Note that (.7.7) - (7.8) are exactly the same equations that one obtains 

in the case of no delays in the noise. This fact will be of crucial 

importance in further developments. 

Next we derive a differential equation for the filtered estimate 

A 
x(.t t). Let s = t in (7.5). Integrating (7.1) on Cu,t3 it is easy to 

see, using the projection theorem and (7.6), that 

t 
u ECx(s)v'Cu)3 is absolutely continuous [D53, therefore differentiable a.e 
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NCt,u) = FCii,u,u)C!^ + PCu,u-h
?
u)C'

2
 + f

L

 A^P(r,u,u)drC'^ a.e. 
u 

.. (7.9) 

+ / ^ P C r , ^ ,
u
)drC'

z
 + /

t

A
2
PCr^h.,u,u)drC* 

u u 

+ /
C

A
2
 PCr-h

v
u-h,u) drC'

2
 + E C j

t _ h

 R^wCr)'x " (u |u) 30^ 
u u-h 

+ EtJ^"*1 R2dvCr)*x' Cu-h) |u) ]C2 
u-h 

here we have used Fubini's theorem to interchange the order of integration. Now 

consider the last two terms in the right hand side of (7.9). Since, 

by the projection theorem, x(.r|u) - P^ x(r|u) is orthogonal to H™, we 

may replace X(u|u) and x(u-h|u), in (7.9), by P^ x(u|u) and P™ x(u-h|u) 

respectively. It can be shown CD53 that 

P* x(rtu) = K(u,r,a)dw(a) (7.10) 
X

 -h 

3E ~ 
where K(u,r,a) = — C x ( r |u)w

 T

 (a) 3 a.e. is an L
9

_

kernel, measurable in 

w
 8 ( 7 

(r,u,G) (since P x(.r|u) is a second order quadratic mean continuous process 

and EC|x(r)|
2

3 is bounded). 

Hence, from (7.4) (with s = t) (7.9) - (7.10) and the properties of Wiener 

integrals we have 
I - I t , - ! 

x(t|t) = /
t

CP(.u,u,u)C ' + P(u,u-h,u)C']R~ dv(.u) 
0 1 

= f
t

 f
t

 A
1
[PCr,u,u)Cj

[
 + P(r,u-h,u)C

2
3R

- 1

dr dv(u) 
w

 " (7.11) 

+ f jt A
2
CP(r-h,u,u)C^ + P(r-h,u-h,u)C

2
3R"

1

dr dv(u) 

0 u 

+ J
t

 f
1

 B
2
CK'Cu,u,r-h)C| + K' (u,u-h,r-h) C ^ R ^ d r dv(u) 

0 u 

by a Fuhini type theorem CD6, p.. 4313, we may interchange Lebesgue and 

stochastic integration in (7.11) and from (7.7) (.with t = s = r and t = r , 

s = r = h), (7.11) yields 
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dxCt|tl - A ^ G j t l d t + A
2
$i(t-hLt)dt 

C7.12) 

+ CPCt,t,t)Cj + P(t,t-h,t)Cj]R~
1

dvCt) 

+ J
L

 B [K'"(u,u,t-h)C* + KL
!

 Gi,u-h,t-h)C
,

9
3R~

1

dv(u)dt 
t-h

 1 A 

xC0|9) = 0 , 9 e [ - h , 0 ] 

f 

in the last term of (7.12) we have used the fact 

K(u,r,a) = 0 r <_ u < a (or u £ r '< a) 

Thus the filtered estimate satisfies the stochastic differential 

equation (7.12). As previously stated the filter equation involves some 

smoothed estimates of x(t) (note that the innovations process (7.3) itself 

depends on smoothed estimates). 

It remains to characterize K(t,s,u) and P(t,s,u). For this pur-

pose, we shall first derive on alternative representation for x(s|t) based 

on the Projection theorem. 

It can be shown [B7], [D5], [D63 that 

x(s|t) = J
1

 Q(s,r,t)dy(r) (7.13) 
0 

for some I^-kernel Q(s,r,t). Now, by the projection theorem, x(s|t) is 

orthogonal to so that for any 0 < O < t 

E[x(s I t ) y ' (a) ] = 0 

which in turn gives, using (7.2) and Fubini's theorem 

/
a

{E[x(s|t)x' Cr)]C' + E[x(s|t)x' (r-h)]C' }dr + E[x(s|t)v' (a)]D
!

 = 0 
0 

(7.14) 

but, by the Projection theorem, ELx(s|t)x
T

 (a)] = P(s,a,t) 

t 
note that P^ xCr[u) = P

W

 x(r|u) , r < u < t 
u — — 

P^ x(r |u) , u £ r _< t 

since x(r|u) is independent of w ( . t ) - w ( u ) , r _< u < t 

w(t)-w(r) , u < r < t 
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Also, It is easy to see from ( 7 . 1 3 ) (note that x(s) is independent of 

v(G)) tha,t 

ECxCs [t)v
!

'Ca) ~ -E[£(s[t)v GfljD
 1 

= - / QCs,r,t)Rdr (7.15) 
0 

thus, C7.14) - (.7.15) yield 

- 1 
Q(s,r,t) « CPCs,r,t)c' + PCs,r-h, t)C

2
]R~ a.e. 

hence 

x(s 11) - /
t

[PCs,r,t)C
,

1
 + P(s,r-h f t)c ' 3R \ly(r) (7.16) 

Characterization of K(t,s,u) 

We shall first obtain a representation for the covariance 

ECx(s|t)w*(u)3 = ECx(s)w'(u)] - Etx(s|t)w
f

(u)3 (7.17) 

Let $(t,s) be the fundamental matrix solution associated with 

the homogeneous part of (7.1). It can be shown CH23 CL13 CD23 [D83# 

that $(t,s) is bounded on [0rT3 x [0#T3r t $(t,s) is absolutely con-

tinuous for t > s, s $(t,s) is absolutely continuous for s < t and 

$(t,s) satisfies 

= A

i
$

Ct,s) + A
2
$(t-h,s) a.e. t > s 

K s , s ) = I (7.18) 

$(t,s) = 0 , t < s 

Now, the solution of (7.1) may be written as (s > 0) 

x(s) = $(sJO)XQ(O) + /° $(s,u+h)A
2
x

Q
(u)du (7.19) 

—h 

s s-h 
+ J $(s,u)B dw(.u) + / <K.s,u+h)B dw(u) 

0 -h
 1 
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thus, defining R(s,u)l = ECxCsX^' (ii) 3 , ^e obtain (u >_ -h) 

R(s,u) —h -h * 

s < 0 

,G+h) B^dG , s_>0 

(7.20) 

where 

X(g) = 

1 , g > 0 

0 g < 0 

Combining (7.2), (7.16), (7.17), (7.20) and using the fact that (w(s)} 

and {v(s)} are independent we have 

Etx(s|t)w*(u)3 = R(s,u) - /
t

[P(s,G,t)C| + P(s,G-h,t)C
2
]R~

1

' 

(7.21) 

•[C
1
R(G,u) + C

2
R(G-h,u)3dG 

By the properties of $(s,o) the kernel R(s,u) is piecewise continuously 

differentiable with respect to its arguments, therefore for s £ [-h»T3 

3R(s,u) 

9u 
$(s,u)B^X(u) + $(s,u+h)B

2
 a.e. in u £[-h#T3 

... (7.22) 

here and in the sequel we define $(s,
#

) = 0, for s < 0. It now follows 

that ECx(.s|t)w
!

 (u) 3 is piecewise continuously differentiable with respect 

to u (in fact, it can be shown that u ECx(s|t)w' (u)3 is absolutely 

continuous see the arguments in [D53) 

Thus from (7*21) and (7.22) we obtain (jusing the fact that 

$(s,g) = o , s < g) 

I 
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K(t,s,u) = $(s,u)B X(u) + $(s,u+h)B
2 

- J ^ P C s . ^ f e c v +PC5,<j-h,t)c»]if1c1 $Ca,u)B
1
da XCu) 

u 

- f* CpCs,o% t)cj + PCs,a-h,t)c^]R*^1c1 $Ca,u+h)B
£
da

 a
.e. (7.23) 

u+h 

- / t CP(s, a, t)c| + P(s,a-h,t)c^]R~ 1c
2
$Ca-h,u)R

1
da X(u) 

u+h 

- j
1

 CP(s,a,t)C' + P(s,a-h,t)C']R~ CJ(a-h,u+h)B da 
u+2h

 1

 2 1 2 

We may now write the filter equation (7.12) in more detail. Using 

(7.23) and since $(s,t) = 0 s < t, (7.12) yields (note that P*(t,s,u) = P(s,t, 

dx( t|t) = A^x(t|t)dt + A
2
 x( t-h|t)dt 

+ CP(t,t,t)Cj + P(t,t-h,t)C^]R
_ 1

dv(t) 

,t -1
 ( 7 , 2 4 ) 

+ B B'X(t-h)/ $'(u,t-h)C'R dv(u)dt 
t-h

 L 

- B
2
R^X(t-h)/

t

 /
U

 (a,t-h)C^R~
1

C
1
CP(a,u,u)c| + 

t-h t-h 

+ P(G,u-h,u)C^]-R~
1

dadv(u)dt 

t u 

- B
2
B^X(t-h)/

t
_

h
 J

t
_

h
 $'(G,t-h)C; R

 1

C
2
CP(a-h,u,u)c; + 

+ P(a-h,u-h,u)C^]-R~
1

dadv(u)dt 

An inspection of (7.24) and (7.8) (with s = t-0 , 0 <_ 0) reveals 

that the optimal filter is completely characterized by x(t-0|t) 0 eC0»h3, 

the error covariance P(.t-0 , t -6 ,t) 0 , 0^ eCO,2h3 and the fundamental 

matrix $(t-0,t-h) 0 eC0,h]. Also observe that, on the interval t eC0#h], 

(7.24) suggests that the optimal filter behaves as if no delay was present 

in the noise process. However, we will show later that this is not the 

case, except in a very particular situation, i.e. w(s) E 0 s eC-h»0]^ . 

T ~ 
if w(.s) = 0 s eC-hfQ] the second term in (7.22) should be replaced by 
K s ,u+h)B

2
X(u). {J.23) is then modified in an obvious manner. The 

filter equation (7.24) remains unchanged however. 
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The last two terms in (7.24) may also be written in terms of 

smoothed estimates... Indeed, by a Fubini type theorem [D6, p.431], 

we may interchane Lehesgue and stochastic integration in (7.24). Then 

using C7.8). we find that 

x(a[t) - x('a|a) = J* CP(a,u,u)c^ + p(a,u-h,u)c^]R~ dv(u) 

a 
and 

t , 
x(o-h|t) -S(G-h|o) = / CP (o-h,u,u) C' + P(o-h,u-h,u)C']R dv(u) 

o 1 

inserting these expressions in (7.24) (after changing the order of integrat-

ion in the last two terms) and using (7.3) we finally obtain 

dx(t|t) = {A^-[P(t,t,t)C| + P(t,t-h,t)C^]R"
1

C
1
}x(t|t)dt (7.25) 

+ (A
2
-CP(t,t,t)C| + P(t,t-h,t)C^]R"

1

C
2
}x(t-h|t)dt 

- B B'X(t-h) $^(a, t-h) c'R
_ 1

 [c x(a 1.1) + c x(a-h|t)]dadt 
1 1

 t-h
 1 1 L 

+ [P(t,t,t)C| + P(t,t-h,t)C^]R
- 1

dy(t) 

+ B B'X(t-h) f t (o,t-h)C'R
 1

dy(a)dt 
1 1

 t-h
 1 

and from (7.16) 

x(.t+cr|t) = x(.t+a|t+a) + /
t

 CP(t-Hj,r ,t)C' + P(t-K},r-h, t)C']R~
1

dy(r) 

t+G 
(7.26) 

In contrast with equation (7.24), the above representation of the 

optimal filter requires the smoothed estimates x(t-0|t) 0 e[0#2h]. How-

ever, if no delays occur in the observations, i.e C
2
 E 0, then (in both 

representations) we need only to compute &(t-0|t), $(t-0,t-h) 0 e[0»h] 

and PCt-0
1
,t-0

2
,t) 0

X
, ©

2
 £[0#h]. In this case C7.25) and (7.24) 

may he written as delay differential equations. Furthermore, when no 

delays are present in the state, i.e. A
2
 E 0, then (7.25) shows that the 
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the optimal filter still involves some smoothed estimates of x(t). 

This special case will he treated in more detail in Section 7.4, 

Characterization of P(t,s,u) 

We will first derive three integral equations for P(.t,s,u). 

By definition 

P(.t,s,u) = EtxCtloOx'Cslu)] (7.27) 

by the projection theorem (7.27) gives 

P(.t,s,u) = ECx(t)x'(s)3 - E[x(t|u)x'(.s|u)3 (7.28) 

defining M(t,s) = ECx(t)x'(s)3 and using (7.3a), (7.7), we obtain from 

(7,28) (note that P'(t,s,u) = P(s,t,u)) 

P(t,s,u) = M(t,s) - f u [P(t,a,a)c| + P(t,a-h,a)C
2
3R~

1

. 
(7.29) 

•Cc
1
P(a,s,a) + C

2
P(.a-h,s,a) 3da 

To obtain the second equation for P(t,s,u) we now use the re-

presentation (_7.16)for x(t|u) in place of (7.7). First notice that, 

by the projection theorem, (7.27) may be written as 

P(t,s,u) = ECx(t)x'(s)3 - ECx(t|u)x'(s)3 (7.30) 

which in turn gives, since x(u) is independent of v(u) 

P(t,s,u) = M(t,s) - /
u

 CP(t,a,u)C| + P(t,a-h,u)C^3R
_ 1

 • 
0

 (7.31) 

•CC^tajS) + C
2
M(a-h,s) 3da 

The third integral equation is obtained in a similar manner (also 

note that M
?

(s,t) = M(t,s)). 

PCt,s,u) = M(t,s) - J
u

 CMCt,a)C' + MCt,a-h)C'3R
_ 1

' 
0 

(4.21) 
• [C^P(g,s ,u) + C

2
P(.a-h,s,u)3da 
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We point out that (7,31) - (7.32) have been previously derived 

by Rwong [K5] for linear system without delays in the noise. The fact 

that these equations are also valid in the case of delays in the noise 

process is a direct consequence of the smoothing equations (7.7) - (7.16) 

(which also hold in the case of no delays in the noise process). We 

also mention that (7.31) - (.7.32) may be written as Fredholm integral 

equations. Indeed, along the lines of [K5], (7.31) and (7.32) yield 

P(t,s,u) = M(t,s) - /
U

 P(t,a,u)W(a,s)da (7.31a) 
-h 

P(t,s,u) = M(t,s) - /
U

 W'(a,t)P(a,s,u)da (7.32a) 

-h 
where 

W ( A , s ) = [C7R 1 C I M(G,S ) + C'R 1 c 9 M ( a-h,s ) 3X (a) 
1 1 1 Z C0,u3 

+ [C'R*"1C-M(a+h,s) + C:R 1c
0
M(a,s)]X (a) 

z 1 z z

 [-h,u-h] 

X (a) = 
Cs # t] 

1 s 1 a 1 

0 otherwise 

Thus, for fixed s and u, (7.32a) is a Fredholm integral equation for 

P(t,s,u) in t. We may apply standard Fredholm theory to conclude that 

(7.32a) has a unique L^-solution P(t,s,u). Furthermore, it can be shown 

[K63 that P(t,s,u) is continuous in its arguments. 

Having established the integral equations (7.30) - (7.32) we now 

show that P(t,s,u) is piecewise continuously differentiable with res-

pect to its arguments. 

From (,7.29) it is easy to see that 

3 P (

-
t , S , u )

 = - C P(t,u,u)C^ + P(t,u-h,u)C^]R
a

-

a.e. (7.33) 
•EC PCu,s,u) + C

2
P(u-h,s,u)] 
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To calculate the partial derivates of P(.t,s,u) with respect 

to t and s we first summarize some properties of M(.t,s). It is 

readily verified, using the variation of constants formula that for 

t _> 0, s >_ 0 

M ( t , s) = $(t,0)E [Xq(0) XQCo) ] $'(s ,0) 

+ J ° ^(.t ,0)E[XQC0)XQ(.u) '(s ,u+h) du 
-h 

+ j° $(.t,u+h)A
2
ECx

0
(u)x

(
J(.0)]$

,

(s,0)du 
-h 

+ f° j° $(t,u+h)A E[x (u)x'(cr)]A'_ <£>'(s,a+h)dadu 
-h -h 

+ /
m i n ( t , s )

$(.t,u)[B B ' + B B']$ '(S ,U) du 
0 

+ f
1 0 1 1 1 C t

'
 S

"
h )

 $ (t, u) B B ' (s , u+h) X (u) du 
0 

+ /min(t"h,s)<l>(t,u+h)B B'^,(s,u)X(u)du 
0 

(7.34) 

and 

M(t,s) = E[x
0
(.t)x^(s)] t,s et-hrO] (7.34a) 

It now follows that M(t,s) is continuous in t and s. Moreover, 

M(.t,s) is piecewise continuously differentiable with respect to t and s 

(except at a finite number of lines). By the porperties of $(t,s) we 

obtain from (.7.34) 

3 M C t

'
s )

 = A^M(t, s) + A
2
M(t-h,s) + [ B ^ + B ^ l s ' ^ t ) 

8 t

 a.e. (7.35) 
+ B^'-Cs.t+hJXCt) + B

2
B ^ (s , t-h)X(t-h) 

3 M (

-
t , S )

- = M(i,s)A!
L
 + M(t,s-h)A'

2
 + $Ct,s)-[B B[ + B ^ p 

a.e (7.36) 
+ $ Ct, s-h) Bl̂ B̂ X (s-h) + $Ct,s+h)R2B'1XCs) 

i 
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A^MCt, t). + MCt,t)A| + A
2
 M(t-h,t) + M(t,t-h)A

2 

+ R ^ j + B ^ + $ Ct, t-h) S^B^X (t-h) + B^B | $' (t, t-h) X (t-h) 

a.e. (7.37) 

Now, from (7.32) - (7.35) we finally obtain 

= A-^P (t, s, u) + A
2
P(t-h,s,u) 

a.e. (7.38) 

+ [BjB
1

 + B
2
B

2
']S(t,s,u) 

+ B^B
2
 S(.t+h,s,u)X(.t) + B B

1

 S(t-h,s,u)X(t-h) 

where 

S(t,s,u) = (s,t) - J
u

 l<!>' (a,t)c' + (a-h,t)c']R
 1

 • 
0 

• C C ^ P ( G , S , U ) + C
2
P ( A - H , S , u ) ] D A 

(7.39) 

note that 

S(t,s,u) = f l , s = u = t (7.39a) 

0 , s < u £ t 

Similarly, from (7.31) and (7.36) we obtain 

3 ? ( t

'
S

'
U )

 = P(t,s,u)A'
 +
 P(t,s-h,u)a' 

3s
 1 z

 a.e. (7.40) 

+ S
,

(s,t,u)CB
1
B| + B

2
B

2
3 

+ S' (s-h,t,u)B
1
B'

2
X(s-h) + s' (s+h, t ^ B ^ X C s ) 

As previously discussed, we need to specify the error covariance 

function PLt-Q ,t-6
2
»t) 9 , 9

2
 eC0#2h] for each t £[h,T] and 9 ^ 0

2
 £[0,h] 

for t £[0»h3. Therefore it is convenient to characterize P(t-9^, t-9
2
, t) 

by its derivatives with respect to t, 0^, and 9
2
« 

From (7.29) we have 



- 135 -

p ( t - e , , t - e n , t ) = M C t - e ^ t - e j - / t c ? C t - e 1 ,cr,<7)c' + p ( t - e , a - h , a ) c ' 
1 2 0 

f

]R
 1

 • 

CO, (P(a,t-0
o
,a) + C PCa-h,t-e ,a)]da 

2. 

Now, it is easy to verify that 

9
 + at ae, ae, i 

a ^ 

M C t - e 1 - t - e 2 ) = o 

at a©. PCt-0
x
,u,v) = 0 

(7.41) 

(7.41a) 

(7.41b) 

at 30. 
\ 

2 J 

thus (.7.41) gives 

8
 + J L + 9 1 

p ( u , t - e
2
, v ) = o (7.41c) 

at 3 9 1 9 e 2 
P(.t-0

1
,t-0

2
,t) = -CP (t-0^, t, t) C^ + P(t-0

l S
t-h,t)C

2
]R

 1

< 

•CC
1
P(t,t-0

2
,t) + C

2
P(t-h,t-0

2
,t)] 

a.e. (7.42) 

We point out that (.7.42) is also valid in the case of no delays in the 

noise process. 

Now , set ©
2
 = 0 in (7.41), then it is easy to see that 

r3 
at +ae. MCt-e^t) = MCt-0

1
,t)A'

i
 + M(t-0

1
,t-h)A'

2 

+ K t - 0 , t-h) B B'X(.t-h) 
1 1 2 

Combining (7.40) , (7.41b) , (.7.43), (7.29) and (7,39a) we obtain 

a.e. (7.43) 

+ 

at a© 
PCt-9

1
,t,t) = PCt-9

1
,t,t).A^ + p(t-9

1
,t-h,t)A^ 

1 
- [P(t-0

1
,t,t)C^+P(t-0

1
,t-h,t)C

2
]R

 1

 • 

• CC^P(t, t, t) + C
2
P(t-h ,t,t)] + 
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+ fcCt-e, , t-h) B b' X(t-h) 
1

 1
 1

 a.e.(7.44) 

- LCt-£1,t-h7t)B1B.2X(t-h) 

where 

LCt-0^,t-h., t) = / tCPCt-01,cr,a)c{ + PCt-01,a-h,G)C2]R"1 • 

(7.45) 
• Cc^s' (.t-h,a,a) + c 2S' (t-h, a-h, a) ] da 

using C-7• 3SL) and the fact that $(t,s) = 0 s > t, this expression yields 

LCt-0
x
,t-h,t) = /

z

 [PCt-0
1
,a,a)c{ + P(t-0

1
,a-h,a)C2]R""

1

C
1
<l'(a,t-h)da 

t-h 

- f 1° Cp(t-0 , a , a ) c ' + P(t-0 ,a-h,a)c ']R 1 • 
t-h t-h 1 1 1 z 

• [c P(c,.£,a) + C2P(a-h,c,a)3c^R"1c l$(c,t-h)dcda 

- f J ° CP(t-0 , a , a ) c ' + P(t-0 ,a-h,a)c']R 
t-h t-h 1 1 i 

• [ 0 ^ ( 0 , ^ , 0 ) + C2P(a-h,^-h,a)3C2R t-h)dcda 

changing the order of integration in the second and third terms of this 

expression and using the identities (which easily obtained from (7.29)) 

P( t-0 1 , c , ^ ) - P ( t-0 1 , ^ , t ) = / tCP(t-0 1 , a ,a )c^ + P(t-01p-h,a)c^]R 1 • 

• Cc p(.a,£,a) + c2P(a-h,s,a)]da 

and 

t 

p(t-0 1 ,^-h,c) - P( t-0 1 , c-h ,O = / [PCt-01 ,a,a)c{ + P(t-01 ,a-h,a)c^]R' 

• [c^P(a,£-h,a) + c 2 P(a-h,c-b,a)Ida 
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we obtain 

LCt-a
i
,t-h,t> = /

1

 CPCt-e
i ?
a,a)c^ + PCt-a

i?
a-h,a)c^]R~

1

c
1
4»Ca,t-h)da 

t-h 

- / t^cp(t-e 1,c,c) - PCt-e^c, t)]cjLR"1c1$cc,t-h)dc 

t-h 
- CPCt-0

1
,C-h,O - P(t-Q

1
,C-h,t)]C^R"

1

C10(<;,t-h)dC 

which in turn gives 

L(t -e
1
,t-h,t) = j t c p ( t - e 1 , c , t + p(t - e l , c-h,t)c

2
]R"

1

c 1 f ( c,t-h ) d c 

hence 

t-h 

+ JL 
3t 39. 

h-1 P(t-0
1
,t,t)= P(t-e

i
,t,t) {A|- C^R ECjPCt.t.t) + C

2
P(t-h,t,t)]} 

- 1 
+ PCt -e

i
,t-h,t)(A^-C^R Cc

i
P(t,t,t)+C

2
P(t-h,t,)]} 

+ $(t-0
1
,t-h)B

1
B^X(t-h) a.e. (7.46) 

- J* CP(t-9
1
,a,t)c^ + p(t-0

1
,a-h,t)cpR" • 

t—h 

• t-h)da • B B^X(t-h) 

We mention that on the interval t eCO,h] , (7.46) is also satisfied if no 

delays occur in the noise. 

Finally we derive a differential equation for P(t,t,t). Setting 

8 = 0
2
 « 0 in (.7.41) and combining (7.29), (7.37) - (7.40) we find 

^ ^ ^ ^ ^
 A

i
P

Lt,t,t) + P(t,t,t)A
]
' + A

2
 P(t-h,t,t) + P(t,t-h,t)A

2 

- CP(t,t,t)C'^ + P(t,t-h,t)C']R"
1

CC
1
P(t,t,t) + C P(t-h,t,t)3 

+
 B

!
R

i
 + R

2
 B

2
 + V (

-
t

'
t - h ) R

i
 R

2
 +

 B
2
 Bj v'(t,t-h)X(t-h) 

a.e. (7.47) 
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where 

V
r

(t,t-hl = <^Ct,t-h). - J f c ^ ( f e t - f e C l R ^ C c P(cr,t,a) + c P(a-h,t,a) Ida 

t-h L 

+ J S ° ^'ce^-feciR^c-CPce^^)^ + 
t-h t-h

 1 1 

+ PC0,Q-h,a)cpR"
1

 * 

• [CjPCGjtja) + c2P(.a-h, t , a ) 3d0da 

a , 

+ J J (0 , t-h)c'R c CP(0-h,a,a)c' + 
t-h t-h L 

+ P(0-h ,a-h,a)C
2
3R

_ 1

 • 

• [C^P(G , t,G) + C
2
P(G-h,t ,G)3d0dG 

(7.48) 

changing the order of integration in the last two terms of (7.48) and using 

the identities (which are obtained form (7.29)) 

P(0,t,0) = P(0,t,t) = /
t

CP(0 ,G,G)C| + P(0 ,G-h ,G)C;3R
- 1

 • 

[ C P ( a , t , G ) + C
2
P(G-h,t,G)3 dG 

and 

P (0-h, t, 0) - P(.0-h,t,t) = [P(0-h,G,G)C^ + P(0-h ,G-h ,G)C
2
3R 

(.7.48) gives 

CC-P(a,t,a) + C P(a-h,t,a)3da 
1 2 

V'(t,t-h) =$'(t,t-h) - 'L>1CG,t-h)C
T

'R"
1

[C
1
 P(G,t,G) + C P(.G-h, t,G) 3dG 

t-h
 1 L 
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+ t-h 0 ' ®'t-h)C^RTNlC1 CP (_0, t , 0) - PCO , t , t )3d0 

+ f f ' Q ^ - h i C . ' R ^ C . [P(0-h,t,0) - P(5-h,t , t)3d0 
t-h. 1 Z 

this in turn yields-

V ' (T ,T-h) - $ ' (T,T-h) - ft ®FC0,T-H) C;R"1[C p(.e,T,T) + 

t-h
 1 

+ C2P(0-h,t,t)3d0 

there fore 

dP(.t,t,t)
 = A p ( t . > t > t ) + p ( t , t ) t ) A ' + A

?
P(t-h,t,t) + P(t,t-h,t)A

9 

dt 

- CP Ct, t , t)c + P( t , t-h , t)C ' 23R~
1

CC 1P( t , t , t ) + C 2 P( t-h , t , t ) 3 

+ B
x
 B^ + B

2
 B

2
 + $(.t, t-h)B

x
 B

2
X(t-h) + B

2
 B^ c{)' (t,t-h)X(t-h) 

- ft- CP(t,e,t)C'+P(.t,e-h,t)C']R-1C $(0,t-h)d9 • B B'X(t-h) 
t-h

 1 1 X 

- B B» 4>'(0,t-h)c' R" 1[C 1P(9, t , t ) + C P(0-h,t,t)]d6-X(t-h) 
1 t-h 1 1 Z 

a.e. (7.49) 

We point out that if w(s) = s eC-htOl, then the term B
2
 B

2
 in (7.49) should 

be replaced by R
2
 R

2
 X(t-h). This implies that on the interval t eCO.hl, 

(.7.49) coincides with the corresponding equation in the case of the no 

delays in the noise. 

We may now summarize the main result of this section 

Theorem 7.1: The filtered estimate x(t|t) for the system (7.1) - (7.2) sat-

isfies the following equations t eCO»T]: 
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dxCt[t), - A x C t l O d t + A
2
^Ct-h_LT)dt + [P(t,t,t)CJ + 

+ PCt,t-h,t)C
!

2
]R

 1

dv("t) 

+ K2 K^XCt-hl/11 (u,t-hlC^ RadvCu)dt 
t^h 

- K B ' X G - h ) J * J U $ , X © , t ' 4 i ) c ; R ^ { C 1 C P C © , u > u ) C f + 
Z 1

 t-h t-h
 1 i 

- 1 
+ PCa-,u-h,u)C

f

2
J + C

2
CP(a-h,u,u)C^+PCa-h,u-h,u)C '2J}R dadv(u) dt 

x(t-0|t) =x(t-e|t-6)+ J t CP(t-e,G,a)C'+P(t-e,a-h,a)C
,

9
]R~

1

dv(a) 

t-9
 L 

x(0|o) = 0 , 9 eC-hf03 

where X(o) 1, a > 0 

0 , a < 0 

W t , s )

 = A.. $(t,s) + A
9
$Ct-h,s) 

3t
 1 Z 

a.e. t > s 

<Kt,s) = I, 

0, 

t = s 

t < s 

and the error covariance matrix function P(t-0 ,t-0
2
 , t) satisfies 

equations (.7.42), (7.46) and (7.49) almost everywhere with 

P(.0
1
,0

2
,O) = E IXQ(9^)XQ(0

2
)] , 0

X
, 0

2
 eC-h/03. 

7.4 Systems with delays in the noise process only 

In this section we will specialize the results of Section 7.3 

to linear systems involving delays in the noise 'process only. In 

particular, we will establish the uniqueness of solutions to the 

differential equations satisfied by the 'gains' involved in the optimal 

filter. We first prove the following 
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Theorem 7.2: Let A
2
 = 0, 0 ^ = 0 , A^ = A and = C, Then the filtered 

estimate xCfc t) for the system (7.1) - (7.2) satisfies the stochastic fun-

ctional differential equation 

d&(_t 11)
 3

 Ax(t 11) dt + P(t)C'R"
1

dv(t) 

+ B B'XCt-h)/
11

 T ' C s ^ - h ) ^ R"
1

dV(.
s
)dt t eC0»T] 

1

 t-h 
(7.50) 

x(0 |0) 3 0 

where P(t) = P(.t,t,t) is the error covariance matrix, T(t,s) is the 

fundemental matrix solution associated with the homogeneous part of the 

error differential equation and X(s) is the step function previously defined, 

Furthermore P(t) and ¥(t,s) satisfy two coupled Riccati-type differential 

equations 

3

 A P(.t) + P (t)A' - P(t)C
,

'R"
1

CP(t) + B
1
B[ + B

2
B

2 

+ X(t-h)CT(t,t-h)B
1
 B^ + B

2
 B^'(t,t-h)] t > 0 a.e. 

.. (7.51) 

^ ^ s )
 3

 CA-P(.t)C
,

R"
1

C]T(t,s) 

- B B' X(t-h)/
t

 T'(u,t-h)C
,

R"
1

C T(u,s)du t > s _> 0 a.e 
t-h 

.. (7.52) 

P(.0) = ECx
0
(.0)xJ

)
(.0)] , T(t,s) = I, t

 3

 s 

0, t < s 

Proof: Setting A
2
 = 0 and C

2

 3

 0, C7.12) shows that we only need to 

characterize P(t) = P('t,t,t) and K(u,t-h) = K(u,u,t-h) u e[ t-h, ti-

lt now follows that 
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K.(ii, t-hl = $(ii,t-hlB^XCt-h) , t-h £ u < t 

$Gi,t-hXB XCt-h) + $(u,t>B.
2
 , t £ u 

a.e. C7.53 ) 

7
U

 P(u,a,u)C'R~ C $(a,t-h)K.da X(t-h) , t-h £ u < t 
t-h

 1 

u . 
f . P(u,a,u)C''R c $(a,t-h)B da X(t-h) 
J

 t—n 1 
t < u 

- 1 
+ / P(.u,a,u)c' R c $(a,t)B da 

t 

(note that $(t,s) 4 0, t < s; this fact cpmplicates some calculations 

compare (7.53) with (7.23) for t = s = u and u = t-h) . 

Now, from (7.53) (with u = t) (7.49) may be written as (A = 0, C
2
 = 0) 

^ Z b l = AP(t) + P(t)A' - P(t)c' R
_ 1

C P(t) + B^B
1 

dt 

+ K(t,t-h)Bj, + B
2
 K'(t,t-h) - B

2
 B^ 

a.e. (7.54) 

Thus the optimal filter is completely characterized by (7.12) and (7.54) 

in terms of P(t) and K(u,t-h) u e[t-h,t]. We next show that K(u,t-h) 

may be represented in terms of the fundamental solution associated with 

the homogeneous part of the error differential equation 

dx(111) = [A-P(t)C' R~
1

C]x(t |t)dt - B
9
/

t

 K' (s,t-h)C
f

R
- 1

Cx(s|s) ds dt 

t-h 

B^dwCt) + B dwCt-h) - P(t) C' R dv( t) 

- R
0
 f

Z

 K' (s,t-h)C'R"
1

dvCs)dt (7.55) 
t-h 

x(.0|0) = xQC0X x(sIs) = 0 s < 0 
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Let TCt,s) be the fundamental matrix associated with (7.55). 

It can he shown [LI], CH2] that T(t,s) is bounded on [0#T] * [0»T] , 

t T(t,s) is absolutely continuous, s T(t,s) is of bounded variation 

and ^Ctjs) satisfies 

= CA-P(t)C,R"1C3T(t,s) - B2 J* K'Cq^-feG'R^C T(a,s)dG 
s 

a.e. t > s > 0 (7.56) 

n t , s ) I, t = s 

Q , t < s 

the solution of (7.55) is now given by (for s >fe) 

s , 
x(s |s) = T(.s,0)x (0) + / T(s,a)B dw(.a) + f

s

~
n

 T(s,a+h)B dw(cr) 
U

 0
 1

 -h
 l 

- fs T(s,a)P(a)c'r"1dv(a) - jsf° V (s,a)B K ,(r,a-h)c ,R"1dv(r)da 
0 0 0 

(7.57) 

here we have used the fact that K(r,Q-h) = 0 r < a-h. It now follows, 

since w(u) = fU dw(r), T(t,s) = 0 t < s and by the properties of 
-h 

Wiener integrals, that 

u 
E[x(s|s)w '(u)3 = / [f(s,a)B X(ct) + T(s,a+h)B 3da 

-h
 1 z 

hence 

8 
K(s,u) = -^-Cx(s |s)w* (u)3 

= T(.s,u)B 1X(u) + T(s ,u+h)B
2
 a.e. (7.58) 

Combining (.7.12) and (.7.58) and noting that K(u,t-h) and ^(u,t-h)B X(t-h) 

are equivalent L^kernels on the region of integration, i.e. 

f T(.u,t)R B'T' (_u,t)du = 0 
t-h 
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we obtain (7.50), Similarly, (7,52) is obtained from (7.56) and 

(_7.58).. Finally, (.7.51) follows easily from (7,54) and (7,58) with s = t 

and u
 3

 t-h. This completes the proof. 

The existence and uniqueness of solutions to (7.50) can be estab-

lished using standard arguments (.see LL1]). In the remainder if this section 

we will establish the uniqueness of solutions to (7.51) - (7.52). 

Theorem 7.3: The system of equations (7.51) - (7.52) have a unique solution 

P(t), T(t,s) in the class of symmetric matrix functions P(-) which are absolutely 

continuous, and matrix functions T(t,s) which are locally absolutely 

continuous in t ets*
00

) for each s 0 and of bounded variation in 

s eCOttl for each t. 

» Proof: Clearly $(t,s) and V(t,s) are bounded on C0»Tl x [OrTl and 

P(t) is bounded, i.e. |P(t) | _< EC|x(t)|
2

3 < It then follows that 

P(t)
 3

 ECx(t)x'(t)] - ECx(t | t)x ' (t.| t) 1 

is Lipschitz continuous in t. Hence, P(t) is absolutely continuous and 

we may integrate (7.51) to calculate the error covariance function. 

Now, consider (7.51) - (7.52) on the interval t e[0#h]. Since 

these expressions are decoupled on this interval, we may conclude (using 

» standard arguments) that P(t) and ¥(t,s) are unique for t £[0,h] and 

s eCOttl. We only need to show that the solution 

of (.7.51) - (.7.52) is unique for t > h. 

Let {P(t), V(.t,s)} b.e a solution to (7.51) - (7.52) and 
* * 

suppose that {P ( t ) ( t , s ) } is another solution. Define 

Q(.t) = P(t) - P*(t) 

and 

&(t,s> = V(t,s) - A . t , s ) 

i 
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then Q(t) and A.(t,sl satisfy 

CA-PCtlC'R^ClQCtl + CA-P*Ct)C' R
_ 1

C ] ' 

dt 

+ XCt-h) [R^R^A
1

 (t,t-h) + A O ^ t - h i R ^ ) -a.e (7.59) 

D A

^
> S )

 = CA-P(t)C'R^ClACt ,s) - Q C O c V W c t . s ) 

- R-R'X(t-h) j 1 V (a,t-h)c
,

R~
1

CA(a,s)da 
Z L

 t-h 

- B B'X(t-h) A
T

( a , t - h ) C
,

R ~ V
C

( a , s ) d a a.e. (7.60) 
2 1

 t-h 

Q(0) « 0, A(.t,s) = 0 t < s 

from the above expressions we obtain Q(t) = 0, t eC0,h] and A(t,s) = 0 

on the square [0,h] x [0,h3. Now, for t £ h (7.59) and (7.60) are 

equivalent to 

Q(t) » /
t

 $
1
(t,a)LB

2
B

]
| A ( a , a - h ) B

1
B p ^ ( t , a ) d a (7.61) 

h 

A(t,s) = -/
t

T ( t,a)Q(a )c
 ,

R"
1

CT*(a,s)da 
s 

-/
t

/
t

T(t,u)B B
 ?

A '(a,u-h)c
f

 R"
1

c/(a,s)X(u-h)du da (7.62) 
s a

 1 

where $^(t,s) and $
2
(t,s) are the transition matrices associated with 

—1 a j _ i 
A-P(t)C' R C and A-P (t)C

1

 R C respectively. Now, consider h £ t £ t 

and 0 £ s £ t̂ , and let 

|| Q || - sup . |Q(a) | = .sup |QCa) | 
h£0£t

1
 0£a£t

x 

|| A || = sup sup |A(a,u) | = sup sup |A(a,u) | 
h<a<t. o<u<t, o<a<t, o<u<t 
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From C7..61) we obtain, for some K <
 00 

|Q(t) | £ K J* [A(u,u-h) |du £ K-| t-h [ |[ A 
h 

this yields 

Q | | < K |
t l
- h | || A|| (7.63) 

Similarly from (7.62) we have, for some K^<
 00

 and K
2
<

 00 

|ACt,s) | < K^ |Q(.a) |)a + k
2
 /

t

/
t

 |A(.a,u-h) |du da 
s s a 

<_ K / |Q(a) I da + K„ f
Z

 (t-a) sup |A(a,u)|da 
s h 0<_u<_t 

K2|t-h|2 

< ^ (t-h) || Q || || A|| 

thus 
K |t 

A|| < Kjt^-hl || Q || || A|| (7.64) 

substitute (7.63) in (.7.64) to obtain 

|| A|| < MCt-j^-h)
2

1| A|| , M < - (7.65) 

2 

Now choose t^ such that M(t
1
~h) < 1, this implies || A || = 0 and from 

(7.63) we obtain || Q || = 0. Therefore we may conclude that there is a 

unique solution to (7.51) - (7.52) on the intervals 0 _< t £ t^ and 

0 <_ s <_ t^. Clearly the same arguments hold for t^ _< t _< t
2
 and 

0 <_ s _< t
2
» Therefore P(t) and Y(t,s) are the unique solutions to 

(7.51) - (7.52). 

7.5 A Dual Optimal Control Problem 

In this section we will show that the filtering problem posed in 
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Section 7.1 is in certain sense equivalent to a problem of control. 

Theorem 7.4: Consider the optimal filtering problem over the interval 

[0,T] for the system (7.1) - (7.2) with x CQ) = 0, 6 eC-h,0). Define 

the dual control system by 

zCt) - A^zCt+h) - C*uCO - C^uCt+h) (7.66) 

qCt) = Bjz(_t) + B-
2
 z(t+h) (7.67) 

with z(.T) = b , z(s) = 0 s > T , u(s) = 0 s > T 

The dual control problem is defined as follows 

Determine an L^-vector function u:L0,T3 E
P

 to minimize the 

cost index 

J
T
(b,u) = Z,(0)ECXq(0)XJ)(0)3Z(0) + /

h

z '(s)B
2
B

2
z(s) ds 

+ /
T

[q'(s)q(s) + u
r

(s)Ru(s)3 ds
 ( 7 , 6 8 ) 

0 

Then the optimal solution u^, to this problem of control is 

related to X(T|T) by 

T 
b' S(T T) = -/ u» (s)dy(s) (7.69) 

0 

Proof: The proof of this result follows easily from the work of Lindquist 

CL13. We give it here for completeness. 

First we note that the following integration by parts formula 

is valid 

z» (T)x(T) - z» (0)x
n
(0) = / z'Cs)dx(s) + / x»(s)dz(s) (7.70) 

U 0 ' 0 
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where the first integral exists in the Riemann-Stieltjes sense since 

t 

z(t). is absolutely continuous on [0,T]. Now, using (7.1) and (7.66) 

and since XqO)- = 0 0 < 0, z(0) = 0 and u(0) = 0 0 > T, (7.70) gives 

z'CTixCTl -z'C0)jC (0) = /
T

z ' (s>B
1
 dwCs) + /

T

z'(s)B dw(s-h) 
U 0 1 .0 

- /
T

 u'(s)CC^x(s) + C
2
x(s-h)3ds 

0 
t t 

since z(T) = b, this expression gives, from (7.2) 

b'x(T) + J
T

 u • (s)dy(s) = z K 0 ) x + J
T

u'(s)Ddv(s) (7.71) 
0 U 0 

+ /
T

 z'(
s
)B dw(s) + /

T

z'(s)B dw(s-h) 
0 0 l 

Now, as x
Q
(0), (v(s) , 0 £ s £ l} and iw(s) , -h £ s £ 1} are independent, 

it is easy to see that 

T 2 
ECb'x(T) + / u' (s)dy(s)3 = z'' (0)E Cx

()
(0)xj

)
(0) ] z(0) 

0 
+ /

T

u' (s)Ru(s)ds (7.72) 
0 

+ /
T

z< (s)[B
1
B

1
' + B

2
B'

2
]z(s)ds 

It is sufficient that z(t) is of hounded variation on [0,T]. In this 
case the second integral in (7.70) is well defined in the Lebesgue-
Stieltjes sense 

Since u e L^ and y is of unbounded variation (almost surely) the 

integral in the left hand side of (7,71) should be understood as 
T 

/ u' Cs)dyCs) = /
T

u' (s)[C x(s) + C xCs-h)]ds + / V ( s ) D d v ( s ) 
0 0 0 

where the first integral in the right hand side is defined in the Lebesgue 
sense and the second in quadratic mean. 
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+ J
T

~
h

 z'(s)B BJzCs+h)ds 
0 

+ z'(s+h)R R'z(s)ds 
0 

and since z(s) = 0 s > T (7.72) yields 

ECh'xCT) + /
T

 u'(.s)dyCs)3
2

 = J (b,u) (7.73) 
0 T 

Thus minimizing (.7.43) is equivalent to minimizing J,
p
(b,u) . 

Hence the least squares estimate of b
f

x(T), which is b'x(T|T), is given 

(T 
-J u'(s)dy(s). This completes the proof. 

0 T 

Thus the dual control problem consists in minimizing a quadratic 

cost which contains delayed terms (note that(7.66) runs backwards in time)). 

We mention that certain problems of optimal control with delays in the 

cost functional have been studied in [D73CL33. However, the results for 

such systems are rather incomplete as compared with known results for the case of 

no delays in the cost. In particular, Lee [L3] considers a linear system with 

delays in the states and the controls and quadratic cost of the form 

T
 k k 

x
1

 (T)Qx(T) + / C I I x
!

 (s-h.)P
f

.P.x(s-h.)+u' (s)Ru(s)3ds 
0 i=l j=l

 1 1 J J 

.. (7.74) 

0 = h
x
 < h

2
 ... < t^ = h 

For this problem, Lee establishes the existence and uniqueness of the optimal 

control. Also, he obtains a representation for the optimal control in terms 

of the solution to an 'adjoint equation' (see [L3] for details). We point 

t 
out that the cost (7.68) is slightly different from Lee's cost . 

f 

to compare the cost (7.68) with (7.74) let z(t) = z(T-t) and 
u(.t) = u(.T-t) and write (7.68) in terms of z(t) and u(t) 



- 150 -

However, under the assumption w(s) = Q s e O h r Q ] , the cost given in 

Theorem 7..4 coincides with Lee^s cost (the second term in (7.68) dis-

appears, see also (7.71) — ( 7 . 7 2 ) ) ) . Thus, the results of the previous 

sections may he used in an attempt to complete Lee's work, e.g. obtain a 

feedback realization of the optimal control. Our final result shows how 

this can be done in the special case A^ = 0, C
2
 = 0, i.e. no delays in 

the state nor in the controls. 

Proposition 7.5: Let A
2
 = 0 , C

2
 = 0, A^ = A and 0 ^ = 0 . Then the 

optimal solution u^ to the control problem (7.66) - (7.68) is given 

by 

uTCt) =-R"
1

CCP(t)zTCt) + / t + h ^(t,s-h)B
1
K^2T(s)X(s-h)ds],t eCO.T] 

.. a.e. (7.75) 

where z^ is the solution to (7.66) with u = u
p 

Proof: from (7.50) it is easy to see 

xCT|T) = /
T

[y(T,s)P(s) + /
T

 ^(T,a)B B]^'(s,a-h)X(a-h)da3C'R"
1

dy(s) 
0 s

 1 1 

and from (7.69) we obtain 

u
T
(.s) = -R"

1

C[P(.s)
v

i" (T,s) + /
T

H?(s,a-h)B B^ V (T,a)X(a-h)dalb 
s 

.. a.e. (7.76) 

Next we show that z
T
(.t) = 1" (T,t)b, t et0»T3. Prom (7.66) 

we have, for t £C0»T] 

z(t) = b + /
T

A''zCs)ds + /
T

C*u(s)ds 
t t 

this expression, together with (7.76) give 
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z CtX - j V - z CsAds + (X - /TC'R ^ P C s ) ^ '(T , s ) d s 
t t 

(7.77) 

- /
T

 J^C' R ^ C ^ (s h) BqB^ ^
1

 CT,o) X (a-h) dads } b 
T S; 

Now, it can be shown CL13 CH23 , that ^Ctjs) satisfies 

K t , s ) = I - J* ¥( t ,a ) CA-P(a)clR~1c3da 
s 

- /
t

 J
0

 Hf(t,o)B
2
Bjr (e,.o-h)d0do , s < t (7.78) 

s s 

so (7,77) and (7.78) yield 

Cz
T
(t) - r ( T , t ) b 3 - /TA'[ZT(S) - 1" (T,s)b3ds 

which in turn gives 

z CO = V (T,t)b , t £C0rT3 (7.79) 

thus, from (7.76) and (7.79) we obtain 

u
T
(s) = -R"1CCP(S)ZT(S) + /

T

 ^(s ,a-h )B 1B^z T (a)X(a-h )da 
s 

using the fact that ¥(s,a-h) = 0 s < a-h and z T ( a ) = z(a) = 0 a > T 

(7.75) follows easily from the expression above. 



- 152 -

CHAPTER 8 

CONCLUSIONS-

In the preceding chapter we have extended known results for 

systems with delays in the state and observations, to systems containing 

delays in the noise process. In particular, it has been shown that 

the filtered estimate of a linear system with a delay in the state, 

observations and in the noise process satisfies a stochastic differential 

equation. This equation involves some smoothed estimates even when 

there is no delay in the state and observations. The 'gains' involved 

in the optimal filter are characterized in terms of the error covariance 

matrix function and the fundamental matrix associated with the homo-

geneous part of the system's dynamics. A set of partial differential 

equations for the error covariance have also been obtained. These 

equations resemble the corresponding expressions obtained for systems 

without a delay in the noise, plus a number of 'correction' terms due 

to the delay in the noise. Such 'correction' terms have no effect on 

the interval t £[0»h] and, under the assumption that the initial 

noise segment w(s) s £[-h»03 is zero, the optimal filter behaves as if 

no delay was present in the noise (of course on t e[0»h3). Unlike the 

case of no delays in the noise, we need to specify the error covariance 

function P C t - 0 ^ t-0
2 >
t) on the intervals 0 , ©

2
 eCOr2h3 for each 

t eth/T] and 0 , 0
2
 etOrhJ for t eCOrh] (also we need to determine 

the fundamental matrix $(t-0,t-h) on 0 £[0»h3 for t £[hrT3). If no 

delay occurs in the observations, then it is sufficient to compute the 

error covariance on the intervals 0 , 0 £[0»h3 .for each t eC0»T3. 
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This is also the case for systems with delays in the noise process 

only; however, for this class of systems we have obtained an alternative 

characterization of the optimal filter. This characterization is 

given in terms of the covariance P(.t,t,t) and the fundamental matrix 

associated with the homogeneous part of the corresponding error diff-

erential equation. We point out that this alternative representation 

allows us to reduce the number of differential equations satisfied by 

the 'gains' involved in the optimal filter, and to establish uniqueness 

of solutions to these equations. 

We have also shown that the filtering problem posed in Section 7.1 

is equivalent to a problem of optimal control. The dual system contains 

delays in the state, controls and observations. The dual optimization 

problem consists in minimizing a quadratic functional with delays. This 

problem has been previously studied by Lee CL33 , but his results are 

rather incomplete from the point of view that a feedback realization 

of the optimal control has not been obtained. In the special case of 

no delays in the state and controls we have obtained a feedback repres-

entation for the optimal control by exploiting our results on the filtering 

problem. 

Finally we mention that our results are easily extended to 

systems with muliple point delays. The case of distributed delays in the 

noise, state and observations needs further research. We mention that 

for this class of systems Briggs CB113 has obtained some results by 

considering the time delay differential system-as a stochastic evolution 

equation; however, the developments in [B113 are not applicable to 

systems containing point delays in the noise process. (The case of 

distributed delays in the state and observations has been studied in 

CK63). More work is also needed to establish uniqueness of solutions 
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to the set of partial differential equations satisfied by the error 

covariance function.. The existence and stability of the stationary 

filter remains an open question. We believe that the study of the 

dual optimal control problem might be useful in solving the infinite 

time filtering problem. Also, the filtering problem for nonlinear 

stochastic delay systems should be studied (some results have been 

obtained by Kwong and Willsky CK6] when no delays occur in the noise 

process). 
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APPENDIX A 

SPECTRAL DECOMPOSITION FOR TIME DELAY SYSTEMS 

In this appendix we briefly describe the state space decomposition 

for time delay systems. The proofs of the results presented here are 

to be found in CS2] or CH2]
T

 . 

Consider the time delay system given by 

x(t) = A xCt) + A
£
x (t-h) + Bu(t) t £ 0 (A.l) 

x(.9) = x (8) , 6 e C-hf03 

yCt) = Cx(t) (A. 2) 

where x £ u £ m
9
 y £ E and A^, A^ B, C are real constant matrices 

between the appropriate spaces. 

Transformed into an evolution equation in X = M
2
 , (A.l) - (A.2) 

become 

x(t) = Ax(t) + Bu(.t) , t £ 0 (A.3) 

x(0) = x
Q 

y(t) = Cx(t) (A.4) 

where x £ M
2 >
 B and C are bounded operators and A is a closed, 

unbounded operator with dense domian D(X) given by 

D(A) = {(x^jX
1

) £ M
2
|xl £ L^Ct-hjOl; E

n

) is absolutely continuous, 

x
X

(0) = x° and
 d x ( 9 )

 £ L
9
(C-h,0];^

n

)} 
d0

 Z 

T 
Hale's results are developed in the space of continuous functions 

however, they are essentially the same as those developed 

in the Hilbert space M
2
 = x L

2
([-h,Q]jF

1

). 
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Also, A is the infinitesimal generator of a strongly continuous semi-

group S (tl, t _> 0 and this semigroup is compact for t > h. Furthermore, 

A 

the spectrum of A consists of eigenvalues of finite multiplicities, 

and the number of eigenvalues with real part greater than or equal to 

a given arbitrary constant is finite. 

Now, ket A be a finite symmetric subset of cr(A) and define 

the subspaces 

N k. . N k. 
X

A
 = © Ker(A-A

i
)

 1

 , X
A

 = n Im(A-A.)
 1

 (A.5) 
i=l i=l

 1 

where A^ £ A and N is the number of distinct eigenvalues of A in 

A. Let m. denote the algebraic multiplicity of A. £ A. It then 
^ k.

 1 

follows, since dimCKer(A-A) 3 = im, that 

k. < m. , i = 1, 2...N l — i 

and 

N 
dimCX.3 = £ m. = M(total multiplicity of the eigenvalues of 

i=l
 1 

A in A) 

Furthermore, from the spectral theory of operators with compact resolvent, 

we have that 

x = x
A
 © X

A 

and that the projection P
A
 of X onto X

A
 along X

A

 is given by 

P
A
= - — /

r
(A-A)"

1

dA (A.6) 
2 T T . 

N 
where T = u T, is a circle around A.sA such that no other eigenvalue of . i A. 1 

1 = 1 1 
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A lies in the Interior of . 
i 

In the remainder of this appendix, we will obtain another re-

presentation of the projection operator P^. First, we summarize some 

preliminary results. 

. . f 

For ip ,<t>' £ M^ define the bilinear form 

T T 

«ip ,(p» = \p° (p° + f° ip1 (-e-h)A ^
1

(0)de (A.7) 

-h 
The operator A adjoint to A with respect to the bilinear 

/v/J] ~ 
form (A. 7) is defined to satisfy, for £ D(A ) , £ D(A) 

«AT\p , <f>» = «i|;,A<j)» 

Simple computations now give D(A ) = D(A ) and 

LATipJ° = A* ip° + A
T

2
 / ( - h ) 

r
rT,.l dip

1

 (9) , 0 £[-h,0] 

~T . 

A is then a closed operator with dense domain. We also have 

that A has point spectrum only, a(A ) = a(A) and for X e a(A ) the 

generalized eigenspaces are finite dimensional. We point out that 

A must not be confused with the topological adjoint A ; however, there is 

an interesting and useful relationship between them (see [D43 for details) 

The spectrum of the infinitesimal generator A is characterized 

by the nxn matrix function 

A(A) = A + A
2
 e "

A h

 - Al (A.8) 

t 
when multiple and distributed delays are present in (A.l) we define 
the bilinear form by 

T r 0 T T 
<<i|/,cf>>> = ip̂  (p° + I f ip1 (-0-h.)A.c})

1

(0)d0+/
0

 J6 / (s-0)A(s)c{)
1

(0)dse 
i=2 -h.

 1 1

 -h ~h 
i r r 

where 0 < h
0
 < h . ... < h 
2 3 r 
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in fact, we haye 

o(A) = {A e C|detA(A) = 0} (A.9) 

c 
Now, let M

2
 denote the complex extension of M

2 >
 i.e., 

c ri n ^ c 
MI = C x l

o
 CC-h,0]; C ). Similarly D(A) denotes the complex function 

CL
y
 : C-h.O] C for A e C and k = 0 , 1... by 

k
/ O N

 6
k

 A9 

space corresponding to D(A). Define the complex valued functions 

k 
A 

a^(0) = ~ r e
/ w

 , -h < 9 < 0 (A.10) 

and let * denote the convolution between two functions on C-h,0] 

a * S O ) = /°a(0-a)8(a)da , -h < 0 < o 
0 ~ 

We now give the following results 

Theorem A.l: Let A £ a(A), <J> ,ip e M
2
. Then, for k = 1,2... the 

~ k 
equation (A-AI) (j) = ip holds if and only of there exist vectors 

4)
Q
, <$>

l
... £ E

n

 such that 

k-1 

4>° = 4> ,4>
X

 = I 4>. a
J

 - c^"
1

 * (A. 11) 
0 j=0 A 

and for V = 0,... k-1 

J 0 j r ^ P W j - ^ . ^ 
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(A.12) in Theorem A,1 can be written in matrix notation as 

MX) 4MA) 
dA 

d^ACA) v 

Ck-1)1 dA 
k-1 

dA(A) 

dA 

M A ) 

k-2 

k-1 

k-1 , • 

« a 
A

 7 ip» 

(A.13) 

In the following the nk x nk matrix in this equation will be denoted by 

A
k
U ) . 

C ~ K 

Theorem A.2: Let k = 1,2 ... and (j) £ M ^ Then 0 £ Im(A-Al) 

if and only if 

«\p, <j»> = o 

for all ip £ Ker(A
T

-Al)
k

. 

As a consequence of Theorem A.l we have that the subspaces 
~ k ~T k c 

Ker(A-AI) and Ker(A -Al) of M^.are of the same dimension nk - rank A^(A) 

for every k = 1,2... . Moreover, these subspaces are spanned by functions 

of the form 

MO) = y £ eAQ 

j=0
 J J

* 
, -h < e < o (A.14) 

and 
k-1 0/ 

K9) = I ^ j , e 
j=0 

A0 
, -h < 0 < 0 (A.15) 
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respectively,where 

Y = <p
Q
 ^ satisfies A

k
CA)y = 0 

k-1 

and 

3 = 

k-2 

l 
satisfies 3

 = 0 

It now follows that the generalized eigenspaces 

Z = u Ker(A-AI)
k

 , Z
1

 = u Ker(A
T

-Al)
k 

A

 k
 A

 k 

have the same dimension which equals the algebraic multiplicity of 

A e a(A) = a(A ). Furthermore, since the resolvent operators of 

~ ~T . . . . 
A and A are compact, there is a minimal integer k^ such thay 

Z^ = Ker(A-Al) 
1 ~T A 

Z
A
 = Ker(A-Al)

 A 

Theorem A.2 now shows that, for the same k^, we have 

Z
A

 = n Im(A-Al)
k

 = ImCA-Al)^ 

and that § e Z
A

 if and only if <<ijj,({)» - O for all e Z
1 

Now define 
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zA = © z. , z.1 = © z 1 , zA = n zX 
A

 AeA •
 A A

 AeA
 A

 AeA 

c A 
then M

2
 = Z

A
 9' Z 

Let {(p., .... ,<!>„} and {ip_ ,..., ip..} be a real bases of Z. and 
1 M 1 M A 

Z
A
 respectively. Moreover define $ T £ E ^ ^ x L

2
(X~h,0]; by 

$ = S
1

) = [^...(^ ] (A. 16) 

T = T
1

) C ^ . . . ^ ] (A. 17) 

and let « ¥ , $ » denote the real M><M matrix with entries «tpj><p^», 

i,j = 1,2...M, i.e. 

-h 

c 

For (J) £ M
2
 let <<

V

F,<J>>> £ C be the vector with components 

«ipj,<f»>, j = 1,2...M. 

It can be shown that the matrix « ¥ , $ » is non-singular. Thus 

the bases {cp^,...,(p } and {ip^, . . . can be chosen (without loss of 

generality) such that 

«T,<P» = I (A.18) 

We now give the following result 

Theorem A. 3: If (A.18) holds, then P
A >
 defined by 

p
A
 (p = <J> £ M

2
 (A.19) 

c A 
projects M

2
 onto Z^ along Z . 

Now, define the real subspaces 

X
A
 = Z

A
 n M

2
 , X

A

 = Z
A

 n M
2 

then we obtain = {$x
A
|x

A
 £ 

and (p £ X if and only if (p £ M„ 

t 
such bases clearly exist since ^A is symmetric (with respect to the 
real axis). Note also that a(A) is symmetric, since the coefficients 
of detA(A) are real. 
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and «4
,

,<J>» = 0 . Hence P ^ also projects onto X along X
A

, and 

M 2 = X A 9 X A . 

Finally let us analyze the decomposition of the inhomogeneous 

system (A.l) with respect to the above decomposition of Since 

IV 

X^ is invariant under A, it can be shown that there is a (unique) 

real M*M matrix A^ satisfying. 

A $ = $ A
a
 (A. 20) 

Theorem A.4: Let (A.18) be satisfied and A
A
 defined by (A.20). Then 

(i) A
T

T = VA
1 

1 0
 A

A
9

 1 0
 A

A
9 

(ii) <T(9) = <r e
 11

 , H T O ) « e , -h < 9 < 0 

( i i i ) a ( A
A
) = A 

V T
 A

A
t 

(iv) S(t)$ =
 A

 , S (t)T = Ve , t £ 0 

T ~ 
where S(t) and S (t) are the semigroups generated by A and A respectively 

(v) P
A
S(t) = S(t)P

A 

The above theroem, in particular (v), shows that both X
A

 and 

X
A
 are invariant under S(t) for all t £ 0. Hence the operator family 

S
A

(t) A S(t)|X
A 

defines a strongly continuous semigroup of bounded linear operators on 

X
A

 with infinitesimal generator A
A

 defined by 

A
A

 (j) = A (J> , <J> £ D(A
A

 ) = D(A) n X
A 

Clearly S
A

(_t) is still compact for t > h and the resolvent operator 

(A
A

-AI)
- 1

 = (A-AI)~
1

|X
A

 of A
A

 is compact for'A £ p(A). In particular 

S
A

(t) is stable if and only if R
q
 A < to for all A £ o(A

A

) = a(A)|A, for 

some w < 0. 
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We close this appendix with the following result 

Theorem A.5: Let cf) £ M^ and suppose that u(*) is locally integrable. 

Let x(t) £ En t -h be the unique solution of (A.l). Then the 

projection of (x(t),x
t
) into X^ is given by 

P
A
(x(t),x

t
) = $ x

A
(t) (A.21) 

where
 x

A
( t )

 =

 (x(t) ,x
t
) >> £ E^

y
 t >_ 0 is the unique solution of the 

ordinary differential equation 
T 

x
A
(t) = A

A
x

A
(t) + Bu(t), t > 0 (A.22) 

with initial value 

x
A
(0) = « ^ , x

0
» . (A. 23) 
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APPENDIX B 

Most of the definition and results of this appendix are found 

in [Kl]. 

I. Some Results On Pairs Of Closed Subspaces 

Let M and N be two closed subspaces of a Banach space X. 

The nullity of the pair M,N is defined by 

nul(M,N) = dimCM n NJ 

The difficiency of the pair M, N is defined by 
f X \ 

def (M,N) = codimOM+N] = dim 
M+N 

We also define 

y(M,N) = inf dist(x,N) 
' ' dist (x,MnN) — ' 

x£M 
xefN 

when M c N we set y(M,N) = 1. 

Also we mention that y(M,N) is not in general equal to y(N,M)^ , but they 

satisfy 

Y(M,N) 
Y(N,M) > 

l+y(M,N) 

A 

y(M,N) = minty (M,N) ,y(N,M) ] is the minimum gap between M and N 

Theorem B.I.I: [Kl, Th. 4.2, p. 2193 

The subspace M+N is closed if and only if y(M,N) > 0 

f 
if X is a Hilbert space then y(M,N) = y(N,M) 
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Theorem B.I.2: [KI, Th, 4.18, p. 226, Th, 4.24, p. 227] 

Let M, N and M
!

 be closed subspaces of a Banach space X. 

Suppose that M+N and M'+N are closed in X. Then 

5(M
f

,M) < y(N,M) implies nul(M',N) £nul(M,N) 

and 

6(M,M') < y(M,N) implies def(M',N) £ def(M,N) 

Theorem B.I.3: [KI, p.2003 

If M and N are closed subspaces of a Banach space X. 

Then 

6(M,N) < 1 implies dim M <_ dim N 

A 

5(M,N) < 1 implies dim M = dim N 

For any subspace M of a Banach space X, the annihilator of 

* i f 
M in the adjoint space X is denoted by M"̂  and is a closed subspace 

Also, for any subspaces M, N of X we have 

(M+N)
1

 = M
1

 n N
1 

The dual relation M
1

 + N
1

 = (M n N )
1

 does not always hold becaus< 

(M n N )
1

 is closed but M
1

 + N
1

 need not be closed. 

Theorem B.I.4: [KI, Th. 4.8, p. 221] 

Let M and N be closed subspaces of a Banach space X. 

j. l * 
Then M+N is closed if and only if M + N is closed in X . In this 

case 

M
1

 + N
1

 = (M n N)
1 

and 

nulCM
1

,N
1

) = def CM,N). , def CM
1

,N
1

) = nul(M,N) 

t . 
if X is a Hilbert space, then denotes the orthogonal complement # 

of M in X = X . 
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Y O ^ N
1

) = yCN,M)
 +

 , Y C ^ N
1

) = YCM,N)
 + 

Theorem B.I.5: CK1, Th.8.9., p . 201] 

Let M and N be closed subspaces of a Banach space X. 

Then 

5(M,N) = 5"(N"
L

,M'
L

) , §(M,N) = S C ^ N
1

) 

Theorem B.I.6: [Kl, Lemma 2.2, p. 199] 

For any closed subspaces M,N of X and any u £ X, we have 

[1+6(M,N) ] dist(u,M) £ dist(u,N) - 6(M,N)||u|| 

We conclude this section with two results concerning simultan-

eous perturbations of two closed subspaces. 

Theorem B.I.7: 

Let M, M' , N and N' be closed subspaces of a Banach space X. 

Assume that M n N = 0 and M+N, M' +N, M+N', M'+N' are closed. If 

t t 

(b.I.l) max[8(M',M),6(N',N)] < mini Y ( N ' M ) , y(M»N) ^ 
2+y(N, M) 2+y(M,N) 

then M' n N = 0, M n N' = 0 and M' n N' = 0. 

Proof: Suppose that max[6(M',M),6(N',N)] = 6(M',M) then (b.I.l) implies 

6(M' ,M) < y(N,M) 

and theorem B.I.2 gives 

dim[M'nN] < dim[MnN] = 0 

t 
These expressions are valid even if M+N is not closed. 

tt If X is a Hilbert space then y(N,M) = y(M,N) and this condition becomes 
max[6(M',M) ,6(N',N)] < y(M,N)/2-Hy(M,N) 
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Hence M' n N = 0 . 

We next show that y W ,N) > 6 (M' ,M) £ 6(N' ,N) . Let u £ N, 

then since M n N = 0 

dist(u,M) £ y(N,M) dist(u,MnN) = y(N,M) || u || 

It follows, from the above inequality and Theorem B.I.6. (with the sub-

stitution M M
1

 , N M) that 

dist (u,M' ) £ C1+6(MT ,M)]~1CY(N,M) -6(M'.M)]|| u || 

Since this is true for any u £ N, we obtain 

Y ( N , M . ) > Y(N,M) - 6(M',M) 

1+6(M' ,M) 

which in turn implies 

Y(M« ,N) > Y(N,M')
 >

 Y(N,M) - 6(M',M) 

1+Y(N,M') 1+Y(N,M) (b.1.2) 

On the other hand we have 

5(M',M) < Y C N ' M ) 

2+y(N,M) 

thus 

W , M ) < Y(N,M) - 6(.M;M)
 ( b > 1 < 3 ) 

I+Y(N,M) 

Combining (b.1.3) and (b.1.2) we obtain 

Y(M;N) > 6(M',M) £ 6(N',N) 

It is now clear, from Theorem B.1.2 (with the substitution M' N
1 

M N, N •+ M') that 

dimCM'nN
1

] £ dimCM' nN] = 0 

therefore M'nN' = 0 . 

Now suppose that max[6 (M*,M),6(N*,N)] = 6 ( N \ N ) then, we obtain (as 

above) that y(M' ,N) > 6(M',M) but we cannot conclude that y(M' ,N) > 6(N',N). 
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However in this case 

6(N',N) < y(M,N) 

and therefore B.I. 2 gives (with the substitution M' •+ N' , M -+ N,N -+ M) 

dimCMnN'] = 0, hence MnN' = 0 , 

Next we show that y(N',M) > 6(N',N) _> 6(M',M). Let u £ M, 

then s ince M n N = 0 we obtain 

dist(u,N) _> y(M,N)dist(u,MnN) = y(M,N) || u|| 

It follows from the above inequality and theorem B.I.6 (with the 

substitution M N') that 

dist(u,N
f

) _> [1 + 6(N',N)]"
1

[y(M,N) - 6(N
f

,N)]|| u|| 

Since this is true for any u £ M we obtain 

y(M,N) - 6(N',N) 
y(M,N

f

) _> 
1+6(N',N) 

Y(M,N) 
thus, from the above inequality and since 6(N',N) < 

2+y(M,N) 

it is easy to see that 

y(M,N
T

) Y(M,N) - 6(N',N) 
y(N',M) _> > 6(N',N) 

1 +y(M,N') 1 + y(M,N) 

hence 

y(N
f

M) > 6(N' ,N) >_ 6(M' ,M) 

and theorem B.I.2 (with the substitution N N
1

) gives 

dimCM'nN'] £ dimtMnN'] = 0 

thus M' n N
1

 = 0 

This completes the proof. 

Theorem B.I.8: 

Let M, M', N and N' be closed subspaces of a Banach Space X. 
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Assume that M + N = X and that M' + N, M+N' and M'+N' are closed. If 

Y(M,N) Y(feM) 
max[6(M,M'), 6(N,N')] < min 

2+y(M,N) 2+Y (N, M) 

then 

M' + N = X , M + N' = X and M' + N' = X. 

Proof: If sufices to apply Theorem B.I.7 to M,M' ,N and N' replaced 

by their annihilators. (Note Theorems B.I.5 and B.I.4) 

II. Relative Boundedness and Relative Compactness 

Let T and A be two operators with domains in a Banach space 

X, but not necessarily with the same range space. Let D(T) and D(A) be 

the domains of T and A respectively. 

Definition B.II.l: A is said to be relatively bounded with respect 

to T, or simply T-bounded if D(T) c D(A) and there are non-negative 

constants a, b such that 

|| Ax|| < a|| x|| + b|| Tx|| , x e D(T) (b.l) 

The greatest lower bound b^ of all possible constants b in 

(b.l) will be called the relative bound of A with respect to T, or 

simply the T-bound of A. Clearly a bounded operator is T-bounded 

with T-bound zero. 

Definition B.II.2: A is said to be relatively compact with respect to 

T, or simply T-compact, if D(T) c D(A) and for any sequence {x^} £ D(T) 

with both (x } and {Tx } bounded, (Ax } contains a convergent subsequence 
n n n 

Clearly if A is T-compact it is also T-bounded. 
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When T Is closed, i.e, T £ C(X,V) we may introduce the 

graph norm on D(T), that is 

|||x|||
2

 = II x II
2

 + ||Tx||
2

 . x e D ( T ) 

Under the norm |||*|||, OCT) becomes a Banach space D^ (since T is closed 

and this implies that D^ is complete) . 

Let A^ be the restriction of A to D(T). Then it is easy to see that 

A is T-bounded if and only if A^ is bounded, i.e. 

|| Ax|| = ||
 A l

x | | < M(||x||
2

 + ||TX | |2)> = M| | | x | | | , x £ D(I) 

Similarly, it can be shown, that A is T-compact of and only if A^ 

is compact. 

We conclude this section with the following results 

> Theorem B.II.3: [ Kl, Th. 1.1, p. 190] 

Let T and A be operators from X to V, and let A be 

T-bounded with T-bound smaller than 1. Then S = T+A is closable if 

and only if T is closable and in this case the closures of T and 

S have the same domain. In particular S is closed if and only if 

T is closed. 

We further note that for b < 1 in (b.l) and S = T+A, the 

9
 operator A is S-bounded with S-bound <_ b(l-b) In fact for 

any operator that is T-bounded with T-bound b^ is also S-bounded with 

S-bound < b
1
( l - b ) "

1

. 

Theorem B.II.4: CK1, Th. 1.11, p. 194] 

Let T , A be operators from X to V and let A be T-compact. 

If T is closable, S = T + A is also closable and the closures of T 

and S have the same domain and A is S-compact. In particular S is 

closed if T is closed. (Note that no assumption is made on the 

"size" of A). 

i 
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Theorem B.II.5: [Kl, Th. 2.14, p. 2033 

Let T £ CtX,V) and let A be T-bounded with T-bound less 

than 1. Then S = T+A £ C(X,V) and 

d(S,T) £ C l - b ) "
1

^ ^
2

) ^ , 6(T,S) < ( A b V
2 

6(S,T) = max[d(S *T), S(T,S)3 < (l-b)^
1

(a
2

+b
2

)* 

In particular if A is bounded then 

6(S,T) < || A|| 

III. Perturbation Of The Spectrum Of Closed Operators 

Theorem B.III.l: [Kl, Th. 3.1, p . 2083 

Let T £ C(X) and let T be a compact subset of the resolvent 

f 
set p(T). Then there is a 6 > 0 such that T c p(S) for any 

S £ C(X) with 5(S,T) < 6. 

The above result may be interpreted to imply that G(T) is 

upper semi continuous. The following result establishes that each sep-

arated part of the (J(T) is upper semi continuous. 

Theorem B.III.2: [Kl, Theorem 3.16, 2123 

Let T £ C(X) and let a(T) be separated into two parts 

G^(T), G
2
(T) by a closed curve T containing Cf^(T) in its interior and 

G
2
(T) in its exterior. Let X = X

4
(T)®X

2
(T) be the associated decomposition 

Tj* 
of X . Then there is a 6 > 0 depending on T and T with the 

6 = min I d + lAl
2

)"*
1

 (1+|| CT-X)"
1 

XzT 

ft 6 may be chosen as in Theorem B.III.l 
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following properties. Any S £ C(X) with S(S,T) < 6 has spectrum a(S) 

likewise separated by T into two parts a^(S),a
2
(.S) (T itself running in 

p(S)) . In the associated decomposition X = X^CS) 9 X^CS), X^CS) and 

X
2
(S) are respectively isomorphic with X^(T) and X

2
(.T) . In parti-

cular dim X
1
(S) = dim X ^ T ) , and dim X

2
(S) = dim X

2
(T) and both G ^ S ) 

and C
2
(S) are nonempty if this is true for T. The decompsotion 

X = X^(S) 9 X
2
(S) is continuous in S in the sense that the projection 

P(S) of X onto X^(S) along X
2
(S) tends to P(T) in norm as 6(S,T) 0. 

When a
i
(T) in the theorem above is finite system of eigen-

values then dim X^(T) = m < where m is the total multiplicity 

of the eigenvalues under consideration. In this case we may choose 

» a closed curve T enclosing G^(T), in such a way that for any S £ C(X) 

A 
with <5(S,T) < 6, r also separates a(S) into two parts G-^S), O^iS) 

with G^(S) (contained in T) being a finite system of eigenvalues with 

total multiplicity m, i.e. dim X^(S) = m. The same result holds 

when G^(T) is replaced by anyone of the eigenvalues in G^(T). Thus 

we conclude that the change of a finite system of eigenvalues of a closed 

operator T is small, when T is subjected to a small perturbation 
A 

^ in the sense of 6(S,T) being small, where S £ C(X) denotes the perturbed 

operator . 

The above results are rather general but not very convenient for 

applications. Next we give two results which are more directly useful. 

Theorem B.III.3: [Kl. Th.3,17, p.214] 

Let T £ C(_X) and A an operator in X which is T-bounded. 

If there is a point A £ p(.T) such that 

a|| (T-A)"
1

!! + b|| T(T-A)
_ 1

1| < 1 

then S = T + A is closed and A £ p(S) with 
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II (S-X)"
1

!! < II CT-Ar
1

!! (l-a|| (T-A)""
1

1| -b II TCT-A)"
1

1| )'
1 

If in particular T has compact resolvent, S has compact resolvent. 

Theorem B . m . 4 : [Kl, Th.3.18, p. 214] 

Let T, A and S be as in the preceding theorem. Let cr(T) 

be separated into two parts by a closed curve T as in Theorem 

B.III.2. 

sup (a || (T-A)"*
1

1| + b|| TCT-A)"
1

!! ) * 1 

AeT 

thus cr(S) is likewise separated by T and the results of Theorem B.III.2 

hold. 

In Theorem B.III.4, || P(S) - P(T) || can be made arbitrarily 

small if || A(T-A)
 F

 || is sufficiently small for all A e F, which is 

the case if a, b are sufficiently small. (Actually a, b need not be 

too small but the condition in Theorem B.III.4 suffices). 

IV. Some Results On Closed Operators In Banach Space 

Let T be a closed operator from X to V. The reduced 

minimum modulus of T, denoted by y(T) is defined by 

II Tx 
y(T) = inf 

x£D(T)
 d i s t

( * '
K e r T) 

where -jj is defined to be
 0 0

. 

The reduced minimum modulus may also be defined as [Kl, p. 2313 

Y(T) = || T
_ 1

|| 

where T is the 1-1 operator induced by T on X/Ker T. If T
 1

 is 

unbounded y(T) = 0. 
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Theorem B.IV.l: [Kl, Th. 5.2, p.231] 

T £ C(X,V) has closed range if and only if y(T) > 0 . 

Theorem B.IV.2: [Gl, Lemma IV. 2.9, p . 104] 

Let T £ C(X,V) have closed range. If M is a subspace 

(not necessarily closed)of X, such that M + Ker T is closed then 

TM is closed. In particular, if M is closed and dimCKer T] <
 0 0

, 

then TM closed. 

We now give a general theorem on perturbation of Fredholm 

operators. 

Theorem B.IV.3: [Kl, Th. 517, p. 235] 

Let T , S £ C(X,y) and let T be Fredhom [semi-Fredholm] 

2 - 1 

If 6(S,T) < YCT)(1+Y (T)) , then S is Fredholm [semi-Fredholm] and 

dim[Ker S] < dimttCer T], codim[Im S] £ codim[Im T] 

"" a +++ 
„ ^ _tt such that <5(S,T) < <S implies' 
Furthermore there is a 6 > 0 

ind[S] = ind[T] 

An operator T £ C(X,Y) is said to be semi Fredholm if [Im T] is closed 
and at least one of dim[Ker T] or codim[Im T] is finite. When both 
are finite T is said to be Fredholm operator. Observe that if 
codim[Im T] <

 00

 then[Im T] is closed since X and V are Banach 
spaces. 

tt 

We may choose 6 = y(T) (1 + Y
2

(T))"' if X and V
 a r e H i I b e r t

 spaces. 

In general it is difficult to give a simple estimate of 6. 

ttt 
ind[T] = dim[Ker T] - codim[Im T]. 

\ 



- 175 -

The next two results are more directly applicable. 

Theorem B.IV.4:[KI, Th. 5.22, p. 2363 

Let T £ C(X,/) be semi-Fredholm (so that y(T) > 0). Let A 

be a T-bounded operator from X to V, so that (b.l) holds for some 

a > 0, b > 0. If 

a < (l-b)y(T) (this implies b < 1) 

then S = T + A £ C(X,V) , S is semi-Fredholm and 

dim[Ker S3 £ dim[Ker T3 , codim[Im S3 £ codim[Im T3 

ind[S3 = indCT] 

Theorem B.IV.5: [KI, Th. 5.26, p. 2383 

Let T £ C(X,V) be semi-Fredholm. If A is a T-compact 

operator from X to V, then S = T + A £ C(X,V) is also semi-Fredholm with 

ind[S3 = ind[T3 

Theorem B.IV.6: [KI, Th. 5.29, Th. 5.30, pp. 168-1693 

Let X and V be reflexive Banach spaces, and let T £ C(X,V) 

it • • 
be densely defined. Then the adjoint of T, denoted by T £ C(V ,X ) 

** - 1 
and is densely defined. Furthermore T = T. If in addition T 

ii —1 it it 
exists and belongs to B(V,X), then (T ) exists £ B(X , V ) and 

T V 1 - C T " V . 

Theorem B.IV.7: [KI, Th. 5.13, p. 2343 

it it 
Assume T exists. Then Im T is closed if and only if ImT 

is closed. In this case we have 

(Im T )
1

 = Ker T*, (Ker T )
1

 = Im T* 

dim[Ker T 3 = codim[Im T3, codim[Im T 3 = dim[Ker T3 

, * 
YCT ) = yCT) (this holds even if Im T is not closed) 

In adition T is a Fredhomn operator (semi Fredholm) if and only if 
* 

T is. In the case we have 
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indCT*3 = -indCT] 

Theorem B.IV.8: [Kl, Th. 2.18, p. 2043 

Let T, S £ C(X,V) be desnsely defined. Then 

6(T,S) = 6(S*,T*) and 6(T,S) = 6(T*,S*) 

Theorem B.IV.9: 

Let T £ C(X,V) be densely defined, B £ B(X,y) and 

C £ 8(y,Z). Then 

^ ^ ^ ^ ^ 

(T+B) = T + B and (CB) = B C 

Theorem B.IV.10: CC13 

Let T, S £ C(X) be semi Fredholm. Then 
- 2 1 

6 (Ker S, Ker T) £ [2 + y (T) 3
 2

 <5(S,T) 

Theorem B.IV 11: 

Let T, S be as in the previous theorem. If in addition 

T and S are densely defined, then 

6(Im T, Im S) £ [2 + y~
2

(T)3~
2

 5(T,S) 

Proof: from Theorems B.I.5 and B.IV.7 we obtain 

6 (Im T, Im S) = 6(Im S"
1

, Im T
1

) = 6 (Ker S*, Ker T*) 

and since S* and T* are £ C(X*) and semi Fredholm with y(T*) = y(T) 

Theorem B.IV.10 yields 

8(Im T, Im S) £ [2 + y~
2

(T)3* 6(S*,T*) 

the desired result follows from Theorem B.IV.8. 

Theorems B.IV. 10 and B.IV.11 are rather general and provide 

crude estimates of 5(Ker S, Ker T) and 6(Im Y , Im S). The following 

result gives a better estimate of 6(Im T, Im S) under certain assumptions. 

Theorem B.IV.12: 

Let T £ C(X) be semi-Fredholm with dimCKer 13 <
 00

 • 
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If A is a T-compact operator and S = T + A then 

6ClmT, ImS) 
YCT) 

where a, b are positive constants such that 

|| Au || < a || u|| + b || Tu|| , u £ D(T) 

Proof: Theorem B.IV.5 implies that S = T+A £ C(X) is semi Fredholm 

and therefore Im S a closed subspace of X. Now suppose that 

Ker T = 0, so that T
 1

 exists and is bounded. Let x £ Im T with || x|| 

and let y be such that x = T.y (note that y is unique) . Let 

z = (T+A)y, then 

II
 x

"
z

ll = II Ay || < a|| y|| +b|| Ty || 

but 

y = T
_ 1

x 

so that 

||x-zl|< (allT^II + ^ l l x l ^ - 2 -
 +
 b 

Y(T) 

Hence 

6(Im T, Im S) < || x-z || <
 a + b y ( T ) 

Y(T) 

Now let Ker T ^ 0, since it is finite dimensional we may write 

X = XQ ® Ker T 

Let T he the restriction of T to X
Q >
 then Ker T = 0 , Im T = Im T 

and Im(T+A) c Im(T+A). Thus 
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<S(lm T, Im S) £ <5(Im T, Im(T+A)) 

£ a|| T
l

\ \ + b = + b 
y(.T) 

This completes the proof. 

We mention that the above result holds if A is T-bounded with 

a +b y(T) < y(T) since in this case S = T+A £ C(X) is semi Fredholm (see 

Theorem B.IV.4). Furthermore, we obtain 

a+by(T) 
6(Im T, Im S) £ < 1 

Y(T) 

and since (Theorem B.I.5) 

6(Im T, Im S) = 6(Im S
1

, Im T
1

) 

we have (Theorem B.I.3), 

± 1 t 
codimtlm Si = dimClm S ] £ dim[Im T ] = codimtlm T] 

Also, it is now clear that the estimate given by Theorem B.IV.ll is unnecess-

arily large. Indedd, from Theorems B.IV.ll and B.II.5 we would have 

6(Im T, Im S) £ C2 + y"
2

(T)]*(a
2

+b
2

)* 

But 

— + b £ Ll+y~
2

(T) ]
2

 (a
2

+b
2

)
2

 < C2+ y"
2

(T)]
2

(a
2

+b
2

)^ 
Y(T) 

Thus, Theorem B.IV.12 provides a better estimate (from a quantitative 

of view) of 6(Im T, Im S). 

f 
for any closed subspace M of a Banach space X we have 
c o d i m M = dimCM

1

] 
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