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ABSTRACT

This work is concerned with two problems involving time delay
systems.

The first part of this thesis deals with the classical regulator
problem of control theory. In particular, we investigate the necessary
structural features of a controller which yields output regulation and
internal stability despite uncertainty in some of the system's and con-
troller parameters. Our appreoach consists in transforming the original
delay differential system into an evolution equation in an infinite
dimensional Hilbert space. In this abstract setting, under the
assumption of internal stability, a useful characterization of the
regulation condition is obtained by means of a linear operator equation.
Then, it is shown that stabilizability and detectability of both, the
system and controller, are necessary conditions for internal stability
to hold. The concepts of readability and intermal model are extended
for the class of evolution systems of our concern. Next, it is shown
that a structurally stable controller incorporates feedback of the
regulated variables, together with an internal model of the dynamic
structure of the external signals which the controller is required to
process. Necessity of these structural features constitutes the Internal
Model Principle for delay systems. The sufficiency of the Internal
Model Principle is investigated. Necessary and sufficient conditions
are derived, in terms of the system's parameters, to assure the exist-
ence of a structurally stable controller. Also, a design procedure
to construct such contreoller is obtained. We point out that these results
are known for finite dimensional systems with no delays. However, the
appropriate manner in which the Internal Model Principle should be for-

»mulated for delay equations is by no means obvious, and the technical



problems in obtaining the main analogues of the known delay-~free results
are quite considerable.

The second part of this thesis is concerned with the optimal filtering
problem for linear systems involving time delays in the state, obser-
vations and noise process. To our knowledge, this is the first rigorous
treatment of linear systems contalning point delays in the noise process.
Qur approach is based on projection methods in the Hilbert space of
square integrable random vectors. It is shown that the filtered es-
timate satisfies a stochastic functional differential equation which is
coupled with the integral equation for the smoothed estimates. The
optimal filter is characterized by two gains. One of the these gains
is the usual error covariance matrix functionm. The second gain is
expressed in terms of the error covariance and the fundamental matrix
associéted with the homogeneous part of the delay differential system.
The error covariance function satisfies a set of three coupled Riceati-
type partial differential equations. Two of these equations involve
the fundamental matrix previously mentioned. When no delays occur
in the state and observations, the second gain may be expressed in terms
of the fundamental matrix associated with the error functional differential
equation. In this case, the gains involved in the optimal filter are
shown to be unique solution of two coupled Riccati-type differential equations.
Next, a dual optimal control problem is obtained. The dual system
contains delays in the state, control and observatioms. The optimization
problem consists in minimizing a quadratic functional of the observations
and controls. In the case of no delays in the'state and controls, a
feedback realization for the optimal control is obtained by expleoiting

our results on the filtering problem.
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PART T

REGULATION AND AN INTERNAL MODEL PRINCIPLE FOR

LINEAR TIME DELAY DYSTEMS



CHAPTER I

INTRODUCTION

A problem of major interest in control theory is that of synthes-
izing controllers which regulate a given linear system and provide
internal stability. A more practical problem is the design of controllers
which preserve regulation and internal stability despite uncertainty in
some of the system's and controller parameters. Such class of contrellers
are referred to as being structurally stable.

The above problems have been widely studied for linear systems modelled
by ordinary differential equations [W1l, [W21, [F1] - [F51, [S11. The
main result of these investigations may be summarized as the Internal
Model Principle {(IMP), that is the necessary structural features of a
controller which is structurally stable. The sufficiency of the IMP
has also been investigated [F2]. Necessary and sufficient conditions
to assure the existence of a structurally stable comtroller and pro—
cedures to design such controllers have been established in [F41, [S1].

Recently, the regulation and internal stability problem has been
investigated by Bhat [B1] for a larger class of linear systems, namely those
described by abstract evolution equations. In this setting an Internal
Model Principle was derived and applications to time delay systems were
investigated. However, Bhat's version of the IMP is incomplete as comp-—
ared with available results for ordinary systems. More precisely, in
[B1] it is assumed that the controller is 'driven' by the regulated vari-
ables while this feedback structure constitutes an essential part of
the IMP for ordinary systems. Also, Bhat's treatment of time delays
systems contains a significant mistake which restricts the validity of

his results. To be precise, Bhat claims [Bl, Chapter 6, 6.5.1]1 that



variations in the elements of the matrices in the delay equation corr-
espond to 'bounded' perturbations of the parameters in the associated
evolution system. Contrary to this claim it will be shown later in
Chapter 3, that some of such variations of matrix parameters vyield
'unbounded' perturbations of the parameters in the corresponding evol-
ution equation. Since Bhat's developments are confined to deal with
bounded parameter perturbations, it turns out that his results are not
completely satisfactory when applications to time delay systems are
considered,

In this thesis the problem of main concern is that of obtaining
a full version of the IMP for time delay systems. From this point of
view our work is a generalization of Bhat's results. Our approach
consists in transforming the original delay system into an equivaleat
evolution equatiom. By introducing this abstract representation we
are able to study a larger class of delay differential systems, e.g.
systems with multiple and distributed delays. In constrast with
Bhat's work, we will restrict our treatment to those evolution systems
arising from delay equations, but certain class of unbounded parameter
perturbations will be considered. It will turn out however, that our
results will be valid for a larger class of evolution systems provided
that the parameters of these systems satisfy certain conditions which
will be determined by properties of the parameters of time delay systems.
(We point out that at the present it is very difficult, if not impossible,
to obtain significant results when we allow unbounded parameter per-—
turbations without making strong assumptions on the evolution system).

In the following we hriefly describe the development of this work.
In Chapter 2 we formulate our problem in an abstract setting, that is
we write our original delay system as an evolution on an infinite

dimensional Hilbert space. We will then obtain a useful characterization



of the regulation condition. Finally, from the requirement of internal
stability we will derive some necessary features of our system and controller.
Most of the results of this chapter are extensions of Bhat's work [Bl,

Chapter 5]

In Chapter ‘3 we will obtain an IMP for time delay systems. Also,
necessary conditions for the existence of a structurally stable controller
will be derived and some concepts and results used in establishing the
IMP for the delay-free case [Fl] will be extended to the class of
systems of our concern. Our developments will be based on the
'decomposition of a linear operator equation' (as in the delay-free case
[F1]). We mention that an alternative approach is possible. 1In fact,
we could analyze directly this 'linear operator equation', as in [Bl,
Chapter 5,61 (also see [Wl1, Chapter 8] for the delay-free situation).
However, this approach would increase the technical difficulties con-
siderably and the understanding of our problem would be obscured. We
finally point out that the special properties of time delay systems will
play a fundamental role throughout this chapter.

In Chapter 4 we will derive necessary and sufficient conditions to
assure the existence of a structirally stable controller. These con-~
ditions will be given in terms of the system parameters. The sufficiency
of the IMP will also be investigated. A procedure for constructing a
structurally stable synthesis will be obtained. The devlopment of this
chapter will require some of the results obtained by Bhat, in particular,
the observer theory for evolution systems in [Bl, Chapter 41( see also

[B9] where applications to delay systems are considered).
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CHAPTER 2

REGULATION AND INTERNAL STABILITY

This chapter deals with the regulation and internal stability
problem for linear delay systems. We shall first state our problem
and then we will give an abstract formulation in an infinite dimensional
vector space. Under the assumption of internal stability we will obtain
necessary and sufficient conditions for regulation to hold. These
conditions will constitute our point of departure for further developments
in Chapters 3 and 4. We will then show that it is possible to obtain an
equivalent 'reduced' problem in which part of our original system is
modelled by an ordinary differential equation. Finally, the necessity
of certain stabilizability and detectability conditions, for both the

system and controller, will be established.

2.1 Problem Formulation

Consider the time delay differential system

,\ _ A A S _ ~ ~ ~ ~ _ ~
x1(t) = Oxl(.t) + Alxl(t h) + Aaxz(t) + A5x2(t h) + Blu(t) (2.1)
xz(t) = AZXZ(t) + A3§22(t—h) (2.2)
y(£) = Clxl(t) + sz?_(t) (2.3)
z(t) = Dlﬁl(t) + D2X2(t) (2.4)
™ oy
where h > O, ﬁl e E 7, ﬁz e R ", ue Em, y € EP, 2 ¢ B the initial

segments @, (8), @#,(8), 6 ¢ [-h,0] are elements of the function spaces
1 2

"1 "2
Lz[ ~h,01;% ) and LZ(I-h,OJ;H ) respectively.
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(2.1) represents the system's dynamics
(2.2) is a model for disturbance and/or reference signals
(2.3) corresponds to the observation process
(2.4) are the variables to be regulated
The regulation and internal stability problem consists in
determining a controller for the system (2.1) = (2.4) such that
i) z(t) +0 as t »« , i.,e. z(t) is regulated
ii) the plant (2.1) together with the controller are asymptotically
stable, i.e. the closed system is internally stable

In order to provide an adequate setting for our problem, we will

write (2.1) - (2.4) as evolution equations in the infinite dimensional
"o ™
Hilbert spaces Xl =M, = EF - x Lz([-h,OJ; F °) and
n n n

X, = Mzz = F % x L, ([-h,01; E 2y, It can be shown (B2] - [B4I,

[D1l, [D2] that (2.1) - (2.4) can be equivalently represented by

dxl(t)
o = Alxl(t) + ASXZ(t) + Blu(t) (2.5)
dxz(t)
—_—= A2x2(t) (2.86)
dt
y{t) = Clxl(,t) + szz(t) (2.7)
z(t) = Dlxl(t) + szz(t) (2.8)
where x, = (ﬁo ﬁl) e X, = Mnl X, = (ﬁo ﬁl) e X.= Méz ue B°=U
1 171 1 27 72 2> 72 2 2 ?

ye B =V, 2e 8 =1, %0 = G0, 8), x© = 6,0, )

. S
and all the operators are bounded', except A , A, and A_ which are un-

1° 72 3
bounded. Al and A2 are closed with dense domains D(Al) and D(AZ) ras-
pectively.
+ Bl, Cl, Cz, D1 and D2 are in fact compact since either their domain or

range are finite dimensional. This will be of crucial importance in
further developments.
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Blu (ﬁ‘u 0)
_a a0 _n A0
¢,% = clﬁl . Dlﬁl
EARPNY _n L0
szz = Czﬁz R D2x2 = Dzﬁz
Ax = (A 29 + R & -ny, agh) x. € D(A.)
11 Q1 11" ? 1 i 1 1
de
~ O A
A2x2 = (Azﬁ2 3xz( -h), dx ) R %, £ D(AZ)
dB
ax. = A2 +astn, o)
372 472 572 ?
L Al A0
D(Al) = [xl £ M |x ig absolutely continuous, 1(O) =% and
agt

Tl
1 |
—5 (8 € L,([-h,0]; & ))

B2 1Al 1 0
D(AZ) = [xz e M ﬁz is absolutely continuous, ﬁz(O) = ﬁz and
at,
30 (8)€L([h0] F )J
™
The inner product in Xl = M2 is defined by
<xl,zl>_X = <ﬁg , $> ny + <x1, ﬁi> n;
1 B L,(E=h,01;% 7)

and Xl is endowed with the norm induced by this inner product.
(Similarly for Xz).

Some features associated with the operators Al, Az and A3 will

be useful in later developments. We first consider the operator Al

P1) A1 is the infinitesimal generator of a strongly continuous

semigroup of bounded operators Sl(t), t > 0. Sl(t) is different-
iable and compact for t > h. {521,

P2) TFor A e D(Al), i.e. X belongs to the resoclvent set of Al’

the resolvent operator (A —l)—l i1s compact [S2].

1
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P3) The spectrum of A consists of eigenvalues (i.e. U(Al)=point

1
spectrum) with finite multiplicites, and the number of eigen-
values with real part greater than a given (arbitrary) constant is
finite, that is, the set {X ¢ G(Al)]R e A > w} is finite for any
number w, [852][V1].

P4) The exponential growth (stability) of the semigroup Sl(t)

is determined by the spectrum of A_ [T1] [S2], i.e. for each

1

w > W, there is a constant Mw < = guch that H Sl(t)lljmweWt t>0 where'
5 def 1lim KnIISl(t)ll/t = sup Re O(Al)
=0
Clearly the operator A2 also satisfies Pl - P4 above. We point out
that these properties are intercomnected. Indeed, P4 follows from the
compactness of Sl(t) for t >h (P4 is also satisfied in a number of other
situations, see [Tl, Section 21). The first assertion in P3 is a conse-

quence of the compactness of the resolvent operator (A —k)—l (see,

1
e.g. [Kl. p.187, th. 6.291). The second part in P3 can be deduced from
the compactness of the semigroup Sl(t), t > h as in [V1].

Concerning the unbounded operator A3, ve further note that it is
not even closable, i.e. does not have a closed extension. However,

A is an Azﬂcompact operator. Indeed, let %, € D(Ap) then we may write

3 2
0
Al - - AO - f\]:,
8,(-h) = &, {h %,(8)d8
also define
2 2 2 2
gl = 1 gt = Iyl s g, |
27 2 2

Since A2 is closed, it follows that D(AZ) becomes a Banach space with the

norm | |. We now show that A, is bounded on D(A2) under this norm.

3

.f.
Triggiani [T1] refers to this identity as the ‘spectrum determined
growth assumption'.
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~ ~ 0 ~ =1
A T PN N
E LZ(I—h,O];E )

| A

Iy,
1

e A ~ i
thus, defining M (J[34+A5|F + ]]ASlF h)? we obtain’

. 1
| axll, < o (217 + &7 )2
372 X1 2 n2 2 Lz

K
but
*1,2 1,2
B = axpt
L L
2 2
and since
2 ~0 2 2
I=, 0 = N &I°  + | &
2 "y 2 L
2 R 2
2 02 1,2
L e A el
2 g 2
we have
||A3x2|& E.M ”|X2“| , xz £ D(Az)
1
Hence A3 is Az—bounded (see Appendix B), and since the range of A3
is finite dimensional we conclude that Az—compact.

By considering the evolution system (2.5) — (2.8) it is now clear
that we are able to study the regulation and intermnal stability problem
for a larger class of system than those modelled by (2.1) - (2.4),

e.g. systems with multiple and distributed delays, or even those
evolution systems with parameters having the properties mentioned in the
preceding paragraphs (in particular P1-P4).

In this abstract setting, the controller equation may be writtem

as follows

i in the sequel we will write L2 in place of Lz([-h,OJ;En).
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u(r) = chc(‘t) + ch(.t) (2.9}
dx (&)
c
It Acxc(t) + ch(;) (2.10)
n

where x € X =M c’ F , G and B are bounded operators.
c c 2 c c c

We assume that Ac is an unbounded closed operator with dense
domain D(Ac) and it is convenient, but not unreasomable, to suppose that
Ac satisfies Pl) - P4), i.e. Ac shares the properties of Al {and Az).

As mentioned previosuly, the purpose of the controller is two—-fold,
that is, to regulate z{t) (given by (2.8)) and to yield internal
stability, i.e. the closed loop operator (without the exosystem) must
be asymptotically stable. We will show later that under our assumptions
on Ac, internal stability will be determined by the spectrum of the
closed loop operator.

Finally, it is important to note that the controller (2.9) - (2.10)
has only access to the measured variables y(t) and we do not assume any
a priori relation between y{t) and z(t). These conditions constitute

the main difference between Bhat's formulation and ours.

2.2 Characterizations of Internal Stability and Regulation

In this section we will show that internal stability of the closed
loop system is determined by the O(AL) where AL denotes the closed loop
operator (without the disturbance signals). Then we will obtain
a useful characterization of regulation.

Consider the loop operator

Ap = [Ag*BG Cy BiF 12 DA X DA > Xy X K

Bccl A
c
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Clearly AL may be decomposed as AL =A+1

where
B=(BGC BF }i =x, %
Bl L1 1¥e is a bounded operator on XL ,Xl ,Xc
B_C, o
and
~= 0 H = X i .
A Al D(AL) D(Al) D(AC) +-XL is an unbounded operator
0 A
c
We can now study the properties of AL via the "simpler' operator
A.

Lemma 2.1: a) AL is a closed unbounded operator with dense domain
D(AL) < XL.
b) AL is the infinitesimal gemerator of a strongly continuous
semigroup SL(t), t > 0.

c) SL(L) is compact for t > h.

~

Proof: a) Since A is closed (A, and AC are closed) and B is bounded

1
the result follows from the fact that closedness is a stable property under

bounded perturbations [Kl, p.203, th.2.14]. Clearly A is densely
defined since both D(Al) and D(Ac) are dense in Xl and Xc respectively.
b) It is5 easy to see that A is the infinitesimal generator of
the strongly continuous Semigroup
~ = - >0
SA(t) Sl(t) 0 ,» ot

0 Sc(t)

where Sl(L) and Sc(t) are the semigroups generated by A, and AC res-—

1
pectively. The property of being a generator 1is stable under bounded
perturbations {K1, p. 497, th. 2.11. This proves b)

c) SL(t), t > O satisfies the perturbation formula [Kl, p.497]

t ~
SL(t) = Sz(t) + é Sz(t-s)B SL(s)ds
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Clearly Sz(ﬁ) is compact for t > h, and since Im B is finite dimensional
the second term in the expression above is compact (see the arguments
in [T3, Lemma 2.1] or [S31). Thus, SL(L) is also compact for t > h.
Our next result is concerned with the stability of AL. We
first need the follewing
Definition. We say that the infinitesimal genmerator A : D{A) - X
of a strongly continuous semigroup S(t), t > O is (asymptotically) stable,

if for all x € X there are constants M < = and ¥ < 0 such that

| seeyx| < we" || x|| , £>0 all x e X
A fundamental difficulty regarding the stability of an unbounded

operator is that the inclusion of its spectrum in the open left half
plane is not sufficient to guarantee its stability. However, in our
case we have the following result
Lemma 2.2: The semigroup SL(t), t > 0 is asymptotically stable if
and only if Re A < 0 for all A ¢ G(AL).
Proof: We first note that the infinitesimal generator AL is asymptoti-
cally stable if and only if there exist two constants M < ® and @ < O
such that

[ERONES S £>0
Now, from semigroup theory, it is known [D3, part I, Chapter VIIII,
[H1, pp. 306 and 457] that for any € > O there is a constant ME < w

(w0+€) t

such that llSL(t)“_i Mee * where

W,y def lim £n IISL(L)II/t > sup Re G(AL)

-0

therefore if SL(L) is asymptotically stable wé must have sup Re U(AL) < 0.
Now suppose that sup Re OCAL) < 0 then, since SL(t) is compact for t > h,
it follows [Z1, Lemma 11 ([Tl, Section 21) that

wy = sup Re U(AL)
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hence SL(L) is asymptotically stable.
The following result is concerned with the resolvent operator
and spectrum of AL.
Lemma 2.3; a) The resolvent operator (AL-A)"I is compact for A
belonging to the resolvent set p(AL).
b) The spectrum of AL consists of isolated eigenvalues
of finite multiplicities, i.e. AL has point spectrum only.

Proof: a) clearly A has compact resolvent for some A, since

~

A, and A . have compact resolvents for some A, and AC. Since B 1is

1 1
bounded the result follows from [Pl, Theorem 4.3]

b) is a consequence of a) [Kl, p.187, th. 6.29].
In further developments we will need the following spectral

decomposition results.

As mentioned previously in Section 2.1, the spectrum of A2

consists of eigenvalues of finite multiplicities and the number of
eigenvalues with real part greater than a given (arbitrary) constant

ig finite {V1]. It follows that AZ satisfies the spectrum decomposition

in (K. 1, p.178, th. 6.17] , that is

1) X, = X; o X with X; and X; both invariant under A

2 2 2

X; denotes the unstable subspace associated with AZ’ and X; corresponds

to the stable subspace, and

+ - + . . . +
X2 = P2X2, X2 = (I—PZ)X2 where P2 : X2 - X2 is the projection on X2 along

X

. and PZD(Az) c D(Az)

+

‘s x _ = + .+ -
i1) G(AZ) =g (AZ) where Az = AZlXZ’ o] (AZ) (resp. G(Az))

. .ot - + .
contained in C (resp. C ). A, is a bounded

is the spectrum of A 9

2

+
operator .on XZ .
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1ii) P, commutes with Az, i.e. far each x, € D(Az),

2 2

+
x, = P x

2 2%5 € D(AZ) and P_A.x. = A P_x

+ +
27272 2272 = Azxz.
Similarly (I—Pz) commutes with AZ'

. + -
iv) A2 and A2

. + + - -
bounded with D(Az) = X2 and D(Az) = X2 i\D(Az).

+ .
are closed operators. Furthermore,A2 1s

In addition we have

v) P_ and (I—Pz)commute with Sz(t), t > 0. This is a

2

consequence of 1ii) {(see Appendix 2 in [T11). Furthermore, S;(t)
igs a uniformly continuous and anmalytic group. S;(t) is compact
for t > h, and therefore its growth is determined by G(A;).

vi) X; is finite dimensional. In fact we have
5 with
(This result follows from the compactness of (AZ-K)al

dim[X;] = ) algebraic multiplicities of eigenvalues of A
Re A > 0.
see [Kl, th.6.29, p.187 and p. 1811])

Al and Ac may be decomposed similarly.

According to the above decomposition we may write (2.6) in more

detail
( dx;(t) ) _ _
—a— A, 0 %, (t)
+ = (2.11)
3{3—(—2 0 AT % (t)
L dt J 2 2

Using this representation we have that the closed loop system,

together with the exosystem is given by

he) o (g
x, () 0 A 0] x,(0) , £>0 (2.12)
}.{;(_t) \0 0 A; L xZ(t)
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- +_ .
z(t) = [DL D2' DZJ xL(t) {(2.13)
x;(_t)
+
L xz(t)
where
A = [a*B,GC B.F, , b, =D, 03, x(r) = xl(t))
B.% Ae X (t)J
L c
- ;- - + _ oo+ +
BL = A3+BchC2 , BL = A3+BchC
- +
BcCZ BCCZ
{
and o . oy
Ay = a0% €y =g, lX ; D, = D,1%
We point out that B; is a bounded operator. Indeed, since
A3 is bounded on D(AZ) (with the norm H[-l]) and XZ = PZD(AZ) c D(AZ)
we have
+ + +)12 2 +2 + 2
a1 = a2 P < wlclizpgif + fl oy IP
~ ~ 2 S 2
vhere T e v o
but
+* +
P2x2 = x2
+ + + +
A2P2x2 = P2A2x2 = A2x2
and since A; is bounded we obtain
+ + 2 2 +,2 +12 +
a5l <la s |aB IR, < e
So A; is bounded and therefore Bz is also bounded.

The next two lemmas provide a characterization of the regulation

condition, they are minor extensions of Bhat's results [Bl, Chapter 51].
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Lemma 2.4: Suppose AL is stable, then regulation is attained if
and only if

+
XS(ASl c Ker D

where
- + - + -
AS = AL BL BL : D(AS) = D(AL) x D(Az) X X2 - XS = XL x XZ
6 A, O
+
¢ 0 A2
—_ = + .
DS = [DL D2 D2] : XS - Z

Proof: The closed-loop system is given by (2.12) - (2.13). Now
since AL is stable then O(AL) cC (Lema 2.2 ) and O(A;) c C—,
+ + - +
= (
U(Az) c . Moreover, U(AS) U(AL)LJO AZ)LJU(AZ) therefore
+ + + ) ]
o} (AS) = o(Az) and XS(AS) is given by

=+
XS (AS) = PSXS

where
1 -1
P = - — [ (4 -\ "ax
s ami T 8
and T encloses G(Ag). It is easily seen that AS satisfies the de-

composition described previously, therefore (2.12) is decomposed as

x (£)) A (t
xs(t) o 0 xs( )
.+ + +
x (t) 0 Al Jxg ()
For an arbitrary initial conditiomn xs(O) = (x;(D),x:(O)), the solution of

(2.12) decomposes as xS(L) = x:(;) + x;(;) where

ATt
5

x:(_t) =e x;’(,O)_
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By stability of A;} X;Ct) + 0 as t + », and z(t) is given by

Ate

. S + -
z(t) = DSXSCtl DSEe XS(D) + Xs(ﬁ)]
regulation requires that

+
At +
Dse s xS(D) + 0 as t -+ ®

. + . . . + + . . . +
Since xS(O) is arbitrary in XS and Xs is invariant under AS, then

regulation holds if and only if

X+(A ) €« Ker D
s S S

. + = -
Lemma 2.5: XS(AS) Im XL

0

I

+ . . . . .
where XL : X2 > XL is a bounded operator, which is the unique solution of

AKX - XLA; = BE (2.14)

. . . + .
and I 1s the i1dentlity operator on X2 and 0 1s the zero operator

on XZ'

Proof: Since the spectra of AL and A; in the extended complex plane

do not intersect, then the operator equationt2.14) has a unique solution,
see [K2, p. 316] or [Bl, Chapter 5, Lemma 5.1.2.1.

Now

X"(AY=PX =InP
s S S 5 S

where PS is defined in the proof of Lemma 2.4.
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Thus,

+ ,.-1
0 (A2 A)

where

s
n
e
==]
ot
N
1}
j==]
[l

~ G ~ —
For X, = (xL, XZ) £ XS, X = (xL, xz), we have

P x = -t (KL—A)'l";i + (XL—}\)_IEE(A;—)\)-IXE da
T

s's 271
+ .. ~1 +
(A2 A) X,

+

Since Az is bounded and I encloses O(A;),

1

-1
- T =1
T

& -1 "IE; (-0t Jan

(2.15)

On the other hand, since O(,KL) = O(AL) U O(A;) and O(A;) do not

. , T . .
intersect in the extended complex plane , then there is a unique

solution XL to the following operator equation,

~ ~ o+ ~t
aX - XAy =B

(2.16)

that 1s, there are A s.t. (KL—A)-I and (A;-l)_l exists and are (both)

bounded operators, therefore for these )X (2.16) can be written as

It 4o -1
B, (A,~N)

G -0 K a0 = @ 0T

(2.17)

_i,_

Extended complex plane is the one—point compactification of the ordinary

complex plane by adjunction of the point .
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hence, (2.17) yields

1 — P~ —
- — [ E-» lBE(A;-)\) lx;d?\
2ri T

: ZL {‘ (E-07TE K a0 Thg a
L

and since G(EL) lies extirely outside of T the integral of the terms

involving (Ki-k)_l is zero. Thus, (2.15) reduces to

Px = —XLxZ ' (2.18)

— + R
and, again, since G(Az) and G(Az) do not intersect, we conclude that

X2 =0, and (2.18) gives

therefore

+
XS(AS) = Im PS = Im -XL

As a consequence of these two lemmas, we have the following



-25_

Proposition 2.6: If AL is stable, then regulation is equivalent

to the existence of a bounded operator XL: X; - XL such that
. + _ _+
AL T HA TR (2.19)
D.X =D, (2.20)
1%L 7 D2 2.

The expressions (2.19) - (2.20) will play an important role in
determining an IMP since they contain 'information' about the structure
of the controller. We further note that, while (2.19) always has a
(unique) solution (2.20) might not he satisfied, i.e. internal stability
and regulation are not compatible requirements necessarily. Also
note that the above expressions do not involve the operators restricted
to the stable subspace X; and therefore all the terms involving suchl
operators may be discarded. Finally, we mention that the results of
this section hold in the case that X; is an infinite dimensional vector

* o . . + +
space, and A2 is an arbitrary bounded operator with G(Az) cC .

2.3 An Equivalent Reduced Problem

From the spectral decomposition results for time delay systems
in Appendix A, it can be shown that the projection operator

+ . .
P2 : X2 - X2 is characterized by

+ + +
xz(t) = szz(t) = @2 <<W2, xz(t)>>

where ®+, W; and <<-,+*>> are defined in Appendix A.

Now, define

W(t) = <<V, %, (0)>> € 2, N =din XZ

then

+ +
xz(t) = @zw(t)
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and w(t) satisfies the ordinary differential equation
w(t) = A w(t), t>0 (2.21)
where Aw is an NXN real matrix, w(0) = <<W;, x2(0)>>
+
and o(A,) = o(4,),

and A,Wr satisfies

+ + N
Ay = D58, weR (2.22)

Furthermore, @; : EN - X; is an isomorphism, i.e. @; is
bijective and bounded with C@;)_l being bounded.

Now consider the closed=loop system (2.12) - (2.13) with x;(t)
replaced by @; w(t) and w(t) satisfying (2.21). Clearly we may use

Lemmas 2.4 and 2.5 to conclude that when AL is stable regulation is

attained if and only if there is a bounded operator XL : EN + XL such

that
~ A + F+
ALXL - XL AW'_ (AB * B1 GcC2)®2 (2.23)
~ +_+
DLXL = D2®2 (2.24)

The following result establishes the equivalence of the expressions
(2.23) - (2.24) and proposition 2.6.
Lemma 2.7: Suppose AL is stable, then there exists a bounded operator
XL : XZ - XL satisfying (2.19) - (2.20) if and only if there is a hounded

operator §L : EN -+ XL satisfying (2.23) - (2.24).

+

Proof: From (2.22) is easy to see that Im ®2 is an A2 invariant subspace.
Since @; is injective it follows that AZIIm @Z is isomorphic to Aw.
+ +
But Im @2 = Xz , thus
AL A
27 Tw

In fact the isomorphism is give by

+ + +, -1
A, =9, A (D)
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The remainder of the proof is easily ohtained.
The above result means that our original problem is equivalent
to a problem in which the disturbances and/er reference signals are

modelled by an ordinary differential equation.

2.4 Stahilizahility and Detectability of the System and Controller

In this section we will show that stabilizability of the pairs
(Al,Bl) and (AC,BC) and detectability of (Cl,Al) and (FC,AC) are
necessary conditions for the solvability of the regulation and internal
stability problem. In fact these conditions are a consequence of the
requirement of internal stability. Before obtaining these results we
need some preliminary definitions and technical lemmas.

We say that pair (Al, Bl) is stabilizable if there exists a

bounded linear operator F, : Xl + U such that A, + B_.F_ is stable.

1 1 11

Similarly, the pair (Cl,Al) is detectable if there i1s a bounded linear

operator K. : ¥V + X1 such that A. + K,C. is stable.

1 11

The following lemmas provide convenient characterizations of

1

stabilizability and detectability.
Lemma 2.8: The pair (Al,Bl) is stabilizable if and only if

+
Im(Al-A) + ImB1 = Xl’ Ael

Lemma 2.9: The pair (C1 Al) is detectable if and only if
]

Ker(a,=\) nKer C, = 0, A € ¢t

A proof of these lemmas is given in [Bl]l (alsoc see [B5]1). We
point out that these results are consequence of the properties of the

+ . - .
operator Al, namely that the unstable subspace X1 associated with Al 1s

finite dimensional and AI = A1|X1 is stable. Also, by our assumptions
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onn A , the above lermas hold for (A ,B ) and (F ,A }.
c ¢’e e

Now we can prove the following

Lemma 2.10: The stabilizability of the pairs (Al,Bl) and (A ,B ) and
—_—_— e’ e

detectability of (Cl,Al) and (FC,AC) are necessary conditions for the

stability of the closed loop system.

Proof: Stability of AL implies that G(AL) nel o= ¢ so that ¢t e p(AL),

and since Al is closed we have ([S4, p,
Im(AL-k) = XL = Xl xX, s heC
Ker(AL—k) = 0 AeC
that is
Im A1+B1GCC1-A Bch = Xl
Bccl' AC‘A
and
Ker{ A,+B,G C,-A B T_ =0
Bccl Ac—l

) +
In particular we have, for A € C

[]
P

Im(A1+B1GcC1—K) + Im Bl FC

ImB C, + Im(A =-}) = X
c c

1 C

Ker(Al+BchCl—X)nKer Bc C

it
o

1

Ker Bl Fc nKer(Ac-A) =0

+
hence, for A e C

Im(Al-A) + Im Bl = Xl
Im B + Im(A -2 = X
c c c

Ker(Al-A) nker Cl =
=0

Ker(A -)) nKer F
c C

1791),

Ael

(2

(2

(2.

(2.

(2

(2.
(2.

(2.

.25a)

.25b)

25¢)

25d)

.26a)

26b)
26¢)

26d)
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(2.26a) — (2.26d) together with lemmas 2.8 and 2.9 give the desired
result.

We note that if the closed-loop system is stable, i.e. AL is
stable, then the stronger conditions (2.25a) - (2.25d) must be satisfied.
These expressions may be interpreted as providing us with a 'geometric
picture' of how certain subspaces associated with the parameters of
the controller have to be "placed" with respect to the subspaces associated
with the system's parameters. This idea will be useful for the developments
of Chapter 3. We finally point out that the expressions (2.26a) - (2.26d)
may be reduced to controllability and observability conditions in the finite

dimensional subspaces X; and X:, see [B1] or [B5].

2.5 Conclusions and Remarks

The development of this chapter follows closely Bhat's work
[Bl, Chapter 51]. OQur results are modifications of those in [Bl] to
accomodate the fact that the regulated variables are not directly available
to the controller. The assumptions on the operator Ac are motivated by
the dynamic structure of time delay systems. The results of this chapter,
in particular proposition 2.6 (and Lemma 2.7) provide the basis for

obtaining an IMP for delay systems.



CHAPTER 3

STRUCTURAL STABILITY OF A CONTROLLER :
AN INTERNAL MODEL PRINCIFLE FOR TIME DELAY SYSTEMS

This chapter deals with the problem of determining an Internal
Model Principle for time delay systems, that is, determine the necessary
structural features of a controller which yields output regulation and
internal stability under small perturbations of certain parameters.

Before solving our main problem we need some preliminary results.
We shall first specify the class of perturbation operators. Also we
will make precise the meaning of smallness of the perturbatioms. Then,
as in delay-free case, we will introduce the concepts of readability and
internal model (the latter must not be confused with the IMP).

Convenient characterizations of these concepts will be obtained. As
a general outline of the results that will be derived, we will briefly
summarize the IMP for ordinary linear systems.

The approach for solving our problem will consist of several steps.
We shall first allow 'variations' in one parameter while the remaining
parameters will be fixed. This will allow us to show the necessity of some
feature, either of the controller, or the system. We will then assume
that this particular feature holds and perturbations in another parameter
will be introduced to establish the necessity of another feature. We
will proceed in this manner until an IMP is obtained.

Qur first result will establish the necessity of readability, which
is a condition on the system's parameters. Next, we will establish the
necessity of the internal model, that is that the controller dynamics must
incorporate a 'suitable' reduplication of the dynamics of the disturbance
and/or reference signals. Finally, the feedback structure will be justified

that is that the internal model must be driven by the regulated variables.
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In fact, as in the delay—-free situation, we will show that the internal
model is controllable by the regulated variables, and observable by the
control (controllability and observability will be defined on an ‘'adequate’
finite dimensional subspace of Xc).

For reference we write the abstract equation associated with our

delay systenm

dxl(t)

— = A1x1(t) + A3x2(‘t) + Blu(_t:) (3.1)
dt

dxz(L)
y(t) = Clxl(t) + CZXZ(t) (3.3)
z(t) = Dlxl(t) + szz(t) , (3.4)

n
where X € X1 = le > X, € Xz = EPZ, wuel =g

yeVY= E° , ze =gt

As discussed previously all the operators are bounded except Al'

We assume that A2 is a bounded (linear) operator defined on the finite

. . n + . .
dimensional space X2 =g 2 and U(Az) cC, There is no loss of generality
in this assumption since, by the results of sections 2.2 and 2.3, we can
always reduce our problem to this case. We mention that throughout this

chapter we consider the operator A_ to be represented by an n, X n, matrix,

2 2 2

where n, = dim [le.

In addition we may assume that

. o P C
[Cl C2]. Xl x X2 + Y =R 1is surjective (3.5)

otherwise we may replace Y by Im(H.+ Im CZ' Also we assume that

D2 X + 1= Bl is surjective (3.6)
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since a necessary condition for output regulation is Im D, c Im D,

(see (2.20) and (2.24)), and hence we may set Z = Im D2 + Im D1 = Im Dl.

Also we suppose that CAl,Bl) is stabilizable and (Cl,Al) is
detectable, since by Lemma 2.10 both conditions are necessary for
internal stability.

Finally we mention that the finite dimensionality of the

spaces Xz, U, ¥ and Z will play an important role in our developments.

3.1 Class of Admissible Perturbations

In general, it is difficult to relate arbitrary perturbations of

the infinitesimal generator A. in (3.1) to the original delay system.

1

Even for certain finite dimensional perturbations of A , the corresponding

13
semigroup cannot be described by a delay differential equation alone?

[s51]. Furthermore, some of the properties of the operator A, may be

1
destroyed by an arbitrary perturbation, e.g. closedness, the property of

being an infinitesimal generator, etec.

On the other hand, it is of physical intrest to consider pertur-—
bations of the operators associated with the abstract evolution equation
(3.1) which correspond to variations in the elements of the matrices of
the original delay system. It is readily verified that variationms
520 in the elements of the matrix A

0

bounded finite dimensional (compact) perturbations of the infinitesimal

in (2.1) correspond to certain

generator Al in (3.1). Moreover, when the delay system contains terms

of the type fo A(s) ﬁl(t+s)ds, i.e. distributed delays, we find that
-h

T

This is the case when state feedback is used for systems with delays
in the controls and 1in the state. Also, this situation arises when
output feedback is used, and the output mapping contains delays.
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changes GKCS) in the matrix function K(s) also correspond to certain
compact perturbations of the associated infinitesimal generator.
We mention that terms of this type also arise naturally from state
feedback and in the theory of observers for delay systems. When
the elements of the matrix gl in (2.1) are allowed to vary, the
corresponding perturbations of Al turn out to be unbounded operators
which are not even closable. However, we will show below that such per-
turbations correspond to certain class of Al— compact operators+ and
their ranges are finite dimensional. Furthermore, since the adjoint
operator A: is densely defined, it can be shown that the above per-
turbation operators have Al—bound-zero (K1, p. 1961.

Let 6@1 denote the variations in the elements of the matrix

Kl and let 6A1 be the corresponding perturbation of A,, then for

1

% £ D(Al)

- (& <°
(Al+6Al)xl = (onl

~ ~ Al
+ (Al + GAl)xl( h), 1 )
so that 6Al is given by
sA.x. = (5A.2Y¢h), o
1% T (08K BB, 0)

. ol . .
Now 6A1 is unbounded, for |] xl(—h)H L. can be arbitrarily large for
1
R

l[xllk = 1. However, GAI is bounded on D(Al) with the graph norm,

£ D(Al)' Indeed, for

.t 2o B+ lax P |«
S

1

X, € D(Al) we may write

0
1 _ .0 2
j B =5 _{ ﬁl(e)de

.l_

see Appendix B for the definition of relative compactness and
relative boundedness.



_3[4...

thus
loapx Il < ek Il I+ {2 EROYED)
1
< IsR Il amytcl 22 |F + &) 1F )
L
2
but
H&1F = ) gt
L L
2 2
and since
2 2 1,2
ERUE x| A ¢
1 2
2 ~02 A1
hx i = NROIF + 1) 2k
X L
1 2

we obtailn

loape < 1ok, I caom il

1
Hence, 6A1 is Al-bounded and since Im éAl is a finite dimensional subspace
of Xl, we conclude that GAl isg Al-compact.

Thus, in general, variations in the elements of the matrices
-~ ~

Ay and Al in (2.1) correspond to certain perturbations éAl of A, which

are Al-bounded operaters with finite dimensional ranges. For such per-

turbations, we find that the operator Al+6Al has the following properties

1) A1+6A1 is closed with domain D(_Al+6Al) = D(Al)

2) A1+6Al is the infinitesimal genmerator of a strongly

continuous semigroup S (¢ , ¢ > 0.

A1+6A1

3) The semigroup S (t) is compacé for ¢ > h.

+
A GAl

4) The resolvent operator (Al+6Al—R)ql is compact for all
A e p(A1+6A1).

-I. ~ FaY ~ ~ ~
Replace A, and A, in (2.1) by A0+5A0 and A + 6A respectively.
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We point out that for an arbitrary Al-hounded perturbation with
finite dimensional range some properties of the operator Al are

stable, e.g. closedness, compactness of the resolvent (see Appendix B or
(K1, Chapter IVl, [Gl, Chapter VI). However, in general, it is not known
whether the property of being an infinitesimal generator of a strongly
continuous semigroup is stable under an arbitrary Al—bounded perturbation

with finite dimensional range.

We shall therefore limit the class of admissible perturbations

SA. of A. to those satisfying conditions 1) - 4) and so in particular to
1 1

those corresponding to variations in the elements of the

matrices EO’ Kl in (2.1). Such class of perturbations will be denoted
by F(Al). For all other operators which are not only bounded but compact
(since either, they are defined on a finite dimensional space or their
ranges are finite dimensional), the perturbation class consists of
arbitrary bounded operators between the appropriate spaces. Finally,

we mention that the restriction on the perturbation class for Al will

not affect our results on the Internal Model Principle, since the

conditions will be principally determined by the perturbation class

of A3.

Having specified the class of perturbation operators we now make
precise what is meant by a small perturbation. For this, we need to
introduce the concept of gap between two operators. The following
definitions are given in [K1, pp. 197-205].

Definition 3.1: Let X be a Banach space, and S be a closed subspace

of X. Then for x £ X, the distance from x to the subspace S 1is
given by

dist(x,8) = inf | x-y|| . (3.7)

veS
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Definition 3.2: For a pair of closed subspaces R and S of a Banach

space X , define

6(R,8) = sup dist(x,$S) (3.8)
xeR
| =]l =1
and
g(R,S) = max[8(R,S), §(5,R)] (3.9

S(R,S) is called the gap between R and S. We note that

(3.8) has no meaning if R = 0; in this case we define 6(0,S) = 0

I

for any S. Also, for R # 0, &6{(R,0) 1. The following relations follow

directly from the above definition

n

)]

5(R,S) 0 if and only if R c §

§(R,S) = O if and only if R = §

0<8(R,S) <1l , 0<3&(R,S) <1

We now define the gap between two closed operators. Recall that
an operator A : X > Y 1is closed if and only if its graph G(A) is
a closed subspace of the product space X X V%. Thus, we have the
following definition

Definition 3.3: For A, B € C(X,Y) the set of all closed (linear) operators

from X te Y, define

6(A,B) = 3(G(A), G(B)) (3.10)

and 5(A,B) = 8(G(A),G(B)) (3.11)

g(A,B) is called the gap between A and B.
This definition of gap leads to the following concept of convergence

of closed operators

Definition 3.4: {An} € C(X,Y) 1is said to converge in the generalized

sense to A £ C(X,Y) if g(An,A) - 0,

1-Throughout this work we consider that the morm for the space XxV
is given by

2 2.4
I Gy || = U=l + Myl

XxY



- 37 -

This notion of generalized convergence enables us to make precise
the smallness of perturbation. Thus, we say that for a closed operator
A : X=Y aperturbation SA is small if the gap §(A+6A,A) is in a neigh-—
bourhood of zero. In case GA belongs to the set B(X,Y) of all bounded
(linear) operators, this is equivalent to I\SAIIbeing small, K1,
p.203, th. 2.14). Also we note that on the subset B(X,Y) of C(X,¥), the

topology induced by 6(A,B) coincides with the topology induced by the

metric || A-B|

Before concluding this section, we mention that the gap function is
not, in general, a proper distance function since it does not satisfy
the triangle inequality (unless the underlying space is Hilbert). It can
be shown-that the above definition of gap can be adequately modified to
provide a distance function for the set of all closed subspaces.
However, when we consider the topology of the set of closed subspaces the two
functions give the same results and usually the gap function is more

convenient to use for applications. For details see [K1, pp.l197-2051].

3.2 Readability

Recall from section 2.1 that the controller (2.9) - (2.10) is
restricted to process the measurable output y. We will show later that
a synthesis may be structrually stable only if the controller has access
to the regulated variable =z. This motivates the following definition,
which is given in [F1l.

Definition 3.5: We say that =z 1is readable from y 1f there is a

bounded (linear) operator Q : Y - Z such that

z = Qy (3.12)



The following lemma gives a convenient characterization of read-
ability.
Lemma 3.6: 2z is readable from y 1if and only if

Ker[C C2] c Ker[Dl D2] (3.13)

1

Proof: The proof of this result is the same as in the finite dimensional

case [Fl] , however we give it here for completeness.

(Necessity). Suppose that =z 1s readable from vy.

Then, by definition, there is a bounded operator Q : ¥ + Z such that

z = ED1 D2]x = Q[C1 C2]x L )

Thus
K.er(Q[C1 C2]) = Ker[Dl Dzl

and (3.13) follows from the above expression

(Sufficiency). We first note that
Im[Cl C2] ~ ______X— N Im[D1 D2] ~ —X—
Ker[C1 CZ] Ker[D1 D2]

Now suppose that (3.13) holds, from (3.5) and (3.6), we have
diml[Y] = dim[Im[Cl C2]] z_dim[Im[Dl Dz]] = diml[Z]

Thus we can define Y according to

V=WelZ (3.14)
where @ is a suitable complement of Z. Then
[C1 C2] = E1 E2 (3.15)
b B
for some bounded operators El : Xl + W, E2: X2 -+ W, Defining

w = Elxl + EZXZ we have

i
y = v e Wel

kz

Now consider the natural projection Q : W & Z »~ Z, Clearly this Q

yields the desired result, i.e. that =z is readable from v.
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3.3 Internal Model

The concept of internal model has been introduced in [F1l., [F2]
for linear operators acting on finite dimensional spaces. In this case
the internal model is defined as follows

Let A : X + X and Ayt Xz * X2 denote two linear operators
and suppose that X and X2 are finite dimensional.

Definition 3.7: We say that A : X - X incorporates an internal model

of Az : Xz - X2 if the minimal polynomial of A2 divides at least
g = dim [Z] invariant factors+ of A.

The above definition of internal model is not adequate without the
assumptions on the dimensions of X and Xz. To see this, we first note
that for arbitrary linear operators defined on infinite dimensional
spaces the concepts of cyclic subspaces and minimal polynomial are rather
'"difficult' to define. In fact, the idea of minimal polynomial is restricted
to very special operators, e.g. bounded operators with rational resolvent
(see [T2 pp. 336-337]). However, if we only assume that X2 is finite
dimensional, then definition 3.7 is still of some use. Indeed, definition
3.7 may be paraphrased by saying that the internal model is at least a

q-fold reduplication in A of the maximal cyclic component of A This

5"
interpretation motivates an alternative definition of internal model,
which of course is equivalent to definition 3.7 when X is finite dimensional.

Before generalizing the concept of internal model we need the following

preliminaries.

..I-.

recall that the invariant factors of A:X =+ X are the minimal polynomials of
the cyclic components in a rational canonical decomposition of X relative
to A, Of course X is a finite dimensional space [Wl, pp-16-17]
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Rational Canonical Decomposition. (X2 is finite dimensional).
Let
k
X2 ='9 X2i
i=1

be a rational canonical decomposition of X2 relative to Az[Wl, pp.l6-171.
Then the following holds

i) Xzi is Az-invariant for i =1, 2,...,k

ii) A, = A |X

24 5 is cyclic for i =1, 2,...,k

21

iii) the minimal polynomial (m.p) of A,. divides the m.p. of

21

A2i+1 for i =1, 2,...,k-1
iv) the m.p. of AZk is the same as that of Az
v) the integer k 1is called the cyclic index of AZ and
k = max{dim[Ker(Az-k)]IA £ g (Az)}
Now define
X2 = X2k 8 X2k & ... 0 X2k
(3.16)
= [)(2}(]'E {(£-fold direct sum)
and
K- Xy > Xy s A2|X2k = Ay (3.17)
that is, Kz is an {-fold direct sum of the largest cyclic component
of A

9
We now give the following definition .
Let X2 be finite dimensional and suppese that & : X > X is a

closed operator with dense domain D(A) in the Banach space X.

Definition 3.8: We say that A : X - X contains an Znternal model

A2 : X2 > X2 if there is a bounded injective operator R : %2 - X

such that on the domain of A the following diagram commutes, i.e. for
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all %, € Xz, R x, € D(A) and
AR X, = RA2 x, (3.18)
D(A) 4 D(A)
s L
R Tr (3.19)
A
~ 2 X ~
XZ XZ

where RZ and Kz are given by (3.16) and (3.17) and £ > q with
q = dimfZ1.
The interpretation of definition 3.8 is that Im R is an A-invariant

subspace of X and that AlIm R is isomorphic to A Thus, we have extended

9"
the concept of internal model for closed operators with dense domains.

A different definition of internal model is given by Bhat[BLl, Chapter 5]

via the commutative diagram (3.19) with A, and 22 replaced by A, and Xz.

2

In this case we have that AlIm R is isomorphic to A

2

9 Thus, Bhat's

definition does not involve the idea of a gq-fold reduplicatiom in A of certain
features of the dymamiec structure of the exosystem. Since such reduplication
plays an important role in establishing an IMP, we prefer to define the
internal model in terms of this reduplication (as in the finite dimensional
casel.

To conclude this section we give a useful characterization of the
internal model. -

Lemma 3.9: A : X -+ X incorporates an internal model of A, if and only if

2
for each A ¢ G(AZ)
k,-1

dimlKer (A-A)n Tm(A-A) * 1> q (3.20)



- 42 -

where k, is the degree of the factor (s—A) in the minimal polynomial of A

A

Proof: (a simple proof of this result is given in [Fl, Lemma 3]

9"

for X finite dimensional).

By definition 3.8 A contains an internal model of A2 if there 1is
a bounded injective gperator R : 12 + X such that

AR = RXZ (3.20a)

where

o
]
o

2k

2k

is an £-fold direct sum of the largest cyclic component of A,, for some

2’
£>q. LetR-= [Rl R2 . R£] where R, X2k +~ X for 1 <i<U{,

and since R 1s injective, it is easily verified that each Ri is

injective and Im R, N Im Rj =0, 1% j. Restricting (3.20a) to X2k

we obtain
AR, =R. A . i=1,2, ... ,£>¢q (3.20b)

Let

where m is the number of distinet eigenvalues of Az, and since AZk

is cyclic it follows that A is also cyclic.” Select a basis for

2k]X2Aj

X2k such that each A2k|X2hj i1s in Jordan canonical form, that is

= J(Aj) is an k X k,. matrix where kk' is the degree of the

Bor [ Xons A5 g j

factor (s-AJ) in the minimal polynomial of A2' Further, since Ri is injective,
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it is easy to see that

AU Ny

RiIXZAj =il Yiz o Vi,

is injective for 1 =1, 2,...4, J =1, 2,...m and that

Im(Ri|szj) n Im(RplIXZR ) =0 ifp, J#p,

%
2
for i, Py = 1, 2, ... 3, P, = l, 2,..m that is, the vectors
A A] S I : o
{Yil Yip eee Yikkj ; 1i=1,2...4, j =1,2...m}

are linearly independent. Furthermore, restricting (3.20b) to lej

we obtain, for each 1 and j

R Aj o
(A Aq) Yil 0
I S B
(A=A Yi5 = Vi3
NN Aj
(A-X3) . =" _
lkkj lklj 1

which in turn imply that

k, .-
p Al P

A e N (AD = Rer(aA-AD n Im(a-Ad)
i P
P
for p = 1’2""kkj » j =1, 2,...m, 1 =1,2... £
Now, for Aje U(Az), it is easy to see from (3.2dd), that

Nl(lj) < Nz(lj) < ... NkAjCAj)

thus we may conclude that

dimlN, (\)1 > £ > q

{(3.20c)

(3.204)
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. Al A Aj . . . .
since Yy3s Y,7 = Yp1 € N1£l3) are linearly independent. This
establishes the necessity of (3.20).
To prove the sufficiency of (3.20) consider Aj fix.  Clearly
(3.20) implies that there are at least ¢q linearly independent vectors.
Aj Aj

AJ ' 3.20
-Yll ) -Y21 e qu £ Nl(kJ) ( * e)

We will now show that there are at least q-linearly independent vectors

Aj Aj Aj .
, . e N (A, =2, 3, ... k.. 3.20f%
Ylp Y25 Yo p( s P Aj ( )
such that the vectors
N [ JAd Aj Al s
S(Aj) = {Yil > Yip e Yikxj’ i=1,2, ... q} (3.20g)

are linearly independent.

It can be shown [T2, Theorem 6.3, p. 291]lthat
k., .
Ker(A-1j)

No(AG) = =
1 Ker (A-2j)<A 7

kA.“l kl'
In fact, (A-Aj) J maps Ker(A-Aj) I onto Nl(kj). Hence, (3.20e)

implies that there are q independent wvectors Y?i ) such that

Aj
k..l \ .
iy A Aj LA . :
(A=A3) Yikk. Yil ’ 1 1, 2... ¢q (3.20h)
J
i.e. for 1 <i <gq
. k.. . k., —1
YN e keraman M, M ¢ ker(aap M (3.201)
1kkj lkkj

. k.. -1
and since Y?i € Ker(A~A1)c Ker(A-Aj) Aj it follows that the wvectors

AJ Ad
{Yil 3 Yi_k . 3
A

i=1, 2,...q}

are linearly independent.
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Now set

k,.—-2 Aj Aj

P )\J = i =
(A=A3) Yik)\j Yia 1 1,2 ...

k,.=2 k

and note that (A-)j) AY maps Ker{A-Aj) Al onto Nz(kj).

vectors Yg% are independent. We next show that

AjOAT UAS )
bri1s Yioo Yik)\j 3

i=1, 2... q}

(3.203)

Clearly the

(3.20k)

. . T A‘ .
are linearly independent. It is easy to see that {Yigs Yii } are
X

Aj 2 kgt Aj A
independent since Yi5 € Ker(A-1j)" < Rer(A~Aj) J and Yik i Ker(A-1j)
A

(see (3.20i). Also, {Yii , Yi%} are linearly independent since

iy M o N
(A=A)v55 = ¥4

otherwise

IOWIOW,S I
(A AJ)YiZ 0

which in turn implies

k. .-1 .
A MyMN -0
1k, .
AJ
. k,."L
Aj Aj . .
l1.e. Yik £ Ker(A-Aj) J which is not possible (see (3.201))
Aj
thus,

A 4y 2 A] s
Yi2 E Ker(A-Aj) ", Yo é Ker (A-X3)

Hence the vectors in (3.20k) are linearly independent.

We now set

k,."3 .
vy Ad Aj o LAS _
(A=A]) Yik L Yi3 ’ 1=1, 2
AJ
k, .3 k

and note that (A-Xj) A3 maps Ker(A-Aj) Aj onto NB(hj). It is readily

(3.208)

(3.20m)

k

=1
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verified that Yi% are independent. We next show that

A} A Aj Aj
bvj1s Y52 2 Y53 0 Yikkj . i=1,2...q} (3.20n)

are independent. First observe that {Y}J ’ Y%J } are independent
k. -1 i3 ik, . -1

. . LA G Ky
since Yi% e Ker(A—Aj)3 < Kex{(A-1Aj) Aj and Yii § Ker(A-Aj) Aj

. S A] .
On the other hand we have the vectors {Ygi, Yi% s Y?%} are independent
since
2 A A
(A-A3) "v;3 = vg3
otherwise
W 2OA)
(A-A3) Y53 0
which implies
klfl N
(a-x) 2oy =0
ik, .
Aj
A kkffl
i.e. Yii € Ker(A-1Aj) 1 Ghich is not possible {see (3.201))
Aj
thus
Yié € Ker(A.—?\j)3 . Yi% # Ker(A-J\j)2 2 Ker(A-Aj)

hence the vectors in (3.20n) are linearly independent.

Now consider any 3 < ¢t f-kkj -1. Let
k,.~t . .
. A A .
(A-A3) A vel o=y, i=1,2...q (3.20p)
lkA' it
]
k..-t k,.

Observe that {(A-A7J) Aj maps Ker(A-Xj) AJ onto Nt(lj). Clearly the

Aj .
vectors Yii are lndependent. We next show that

Aj Aj Aj Aj L
{Yil s Y5 s Y5y e s Vi o Yikkj ;- 1i=1, 2...q9}
(3.20q)

are also independent. It 1s easy to see that {Ygé , Yii } are

SV SN k. .-1

YikAj 4 Ker(a-1j)

independent since Yii £ Ker(ArAj)t < Ker(A-Aj) and
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On the other hand we have that {Yig 3 1=1, 2...q,p=1,2...t}

are independent since

CLaEl A A
(A )\J) Y - Yl]-

it
otherwise
RN PN
and this implies
k. .- .
@A MoyN o
ik, .
Aj
. . . Aj Kyt :
which is not possible, since Yik # Ker{A-Aj) (see (3.201i)) thus,
A3
Y?i e Rer(aA)", v} 4 Rer(a-AD " 5 ker(aA P L. > Rer(a-Ap)

Hence, the vectors in (3.20q) are independent.

We may now conclude that the vectors S(Aj) in (3.20g) are linearly
Aj i . .
1. Yii } satisfy the expressions

i2 Aj
(3.20c) for each 1 < i < q, and for each Aj € U(AZ). Also it is easy

independent. Furthermore, the {Yii, Y

to see that
S(Ai) n S(A3) =0, i4] i,j=1,2...m

therefore, there exist a bounded injective operator R : X2 + X

satisfying (3.20a), and by definition this implies that A contains

an internal model of AZ. This completes the proof of Lemma 3.9.

3.4 The Internal Model Principle for Ordinary Linear Systems

In this section we first state the IMP for finite dimensional
linear systems. Then a brief description of the steps involved in
establishing this result is given. For details see [F1] [F2] [Wll.

The Internal Model Principle: A regulator synthesis, that is a

controller which yields output regulation and internal stability of the
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closed loop system, is structurally stable only if it utilizes feedback
of the regulated variables, and incorporates in the feedback path a
suitably reduplicated model of the dynamic structure of the exogenous
signals which the regulator is required to process.

We now outline the steps required in proving the IMP. The main
technical results are given by various lemmas.
Step 1l: This step consists in proving that readability of =z from ¥y
is a necessary condition for structural stability. A preliminary result
is given by the following

Lemma 3.10: A synthesls is structurally stable at A, only if

3

Ker C1 c ker D1

From the above result we can write ¥ = W & Z, then

..o (3.2D)

for some El’ E2 and D2 where BCw =B ]W , B

=B |Z, F =F|W
c cz c W

and F_ = Flw.
z

Considering perturbations in some other parameter it can be
shown that structural stability of the controller requires D2 = DZ'
This result may be expressed as follows

Lemma 3.11: (Necessity of Readability) . A synthesis is structurally

stable at (A3, BCIZ = Bcz) only if

Ker[C1 02] c Ker[Dl D2]
Step 2: Having proved the necessity of readability we now consider a
synthesis in which this condition is satisfied. Also, we adopt the repres-

entation (3.21) with 52 = D2.
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This step consists in establishing the existence of an
Ac-invariant subspace Rc such that the operator Kc : Rc -+ XC induced

by Ac in Rc = Xc /RC incorporates an internal model of A

2
Define
R =<A |B__E_FKer D > (3.22)
c e Tew 1L 1 )
then X =R & X and
c c c2
Acl Ac3 Bcwl Bczl
- B - -
Ac o A > Te B B ? Fc [Fcl FcZ:|
c2 cw2 cz2

. (3.23)

A , must contain an internal model of A, . This result is expressed

c? 2

as follows

Lemma 3.12: (Necessity of the internal model). A synthesis is structurally
stable at A3 only if the controller incorporates an internal model of AZ'
Moreover, the intermal model is observable by u, that is Az—modes of AC
are observable by Fc’ i.e. Ker Fc n Ker(AC-K) =0, Xc¢ O(AZ)'

Step 3:  This step consists in proving the necessity of the feedback

structure. This result will follow once we show that

ImB < R (3.24)
oW c

or equivalently

<A |[ImB > =R
c cwW c

where Rc is given by (3.22). The necessity of this condition is
expressed as follows

Lemma 3.13: There is no synthesis in which (3.24) fails and is structurally

T Let A : X » X and consider a subspace R of X. Then

<A|R> = R+AR +...+ A" g is an A-invariant subspace of

Xwl. (Of course we assume that X is finite dimensional).
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[o

' =” :X"" 1 th
stable at (AB’ P.B . Bcw)’ where P, o e N 1s the

canonical preojection.

The interpretation of (3.24) is that BCW
2
ation (3.23), i.e. Pchw = 0. In this case we have the following

0 in the represent-

Lemma 3.14: If (3.24) holds, then the internal model is controllable

by =z , that is A, -modes of AC are controllable by Pchz =B , i.e.

2 cz

7 = -
Xc Im(_AC Y + Im Im Bcz’ Ae 0(_A2) .

This establishes the necessity of the feedback structure.

To close this section we give the following result concerning
the sufficiency of the IMP [F2].
Lemma 3.15: Suppose 2z is readable from vy, the closed-loop system
is internally stable and the controller incorporates an internal

model of A2 which is controllable by =z and observable by u. Then the

synthesis is structurally stable with respect to the parameters

(Al, A, B F F, F,, A A B B B ).

3 71t Fcl’ c2? "w' T2 Tel’ Te3’ Tewl? Tezl? ez2

The only part of the controller which we do not allow to vary is Ac2’

i.e. the part containing the internal model of A Also we mention that

X
while A3 is allowed to vary arbitrarily, the size of the perturbations of the

remainding parameters is restricted to preserve internal stability, i.e.

(AL + 5AL) must be stable.

3.5 Structural Stability of Stabilizability and Detectability

In this section we will establish that stabilizability of (Al,Bl)

and detectability of (Cl,Al) are stable properties with respect to
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certain small perturbations of A , B, and Cl (see Section 3.1).

17 1

Proposition 3.16. Stabilizability of the pair (Al, Bl) is a stable

property with respect to small bounded perturbations of B1 and small

perturbations of Al

Proof: The proof of this result consists of several steps.

of class F(Al).

1. We know that A1 satisfies the spectral decomposition
described in Sectiom 2.2. In particular, the finite dimensionality

+ . .
of Xl and the compactness of the semigroup SA (t), t > h imply,
1

by Lemma 2.8, that (A, Bl) is stabilizable if and only if

+
Im(Al‘A) + Im B1 = Xl , AeC (3.25)

2. Now assume B1 is fixed and only Al

Let {Ai}, i=1, 2,...,k be the distinct eigenvalues of A

is allowed to perturb.

) +
in C , and

1
let o denote the algebraic multiplicity of li. The total multiplicity
k
of the eigenvalues of Al in C+ is N = z w, . Now enclose each Ai
i=1
by a closed curve Fi so that Fi contains li only. Then, by Theorem

B.II1I,2 in Appendix B and the fact that {Ai} is a finite system of
eigenvalues, we may conclude that there is a § > 0, depending on

Al and Ti's , such that for any GAl of class F(Al) with

8(A1+5A1,A1) < 5+ , the spectrum of (Al+6Al) is likewise seperated by
Pi's, and the total multiplicity of the eigenvalues of (A1+6A1) in

Pi is m. for each i = 1,2...k. Furthermore, the change of each Ai

is small if S(A1+6A1,A1) is small. In addition, the upper semicontinuity
|» assures that no eigenvalues of Al in C move

+ e as e .
to C . Therefore the total multiplicity of the eigenvalues of

of the spectrum of A

. + .
(A1+6Al) in ¢ 1is equal to N.

a more explicit condition is given by Theorem B.III.4 in Appendix B
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3. Consider any perturbation 6A1 as described in Step 2.

It follows that (A +5A1) is the infinitesimal generator of a

1

strongly continuous semigroup S )(L), t > 0. Moreover,

(,A+6A1
. S .
S(Al+6Al)(t) is compact for t > h (see Section 3.1). Thus, by Lemma

2.8, we have that (A1+6Al,Bl) is stabilizable if and only of

Tm(A +8A,-A') + Im B =X, Ne ¢’ (3.26)

Thus the proposition will be proved if the above condition is verified
at each A' € o(a;+4) n C.

4. It can be shown that Im(Al—A) and Im(Al+6A1-A) are closed sub-

4

spaces' for every A € C. Clearly Im B1 is colsed since it is finite

dimensional. Therefore we may use the results of Appendix B concerning
pairs of closed subspaces.

=X, A e C", Theorem B.I.1 implies that

Since Im(Al—A) + Im B1 =X

there is an € > 0 such that
1> Y(Im(Al-A), Im Bl) >e , A€ c(Al) net

Now, since Ker(Al—A) is finite dimensional and 6Al is Al - compact,

Theorem B.IV.12 gives

a

§(Im(A, -A), Im(A +SA.-1")) <
1 1 771 - Y(Al_}\)

+b + |A-A"]

Tt
where a, b are non—negative constants so that “ 6Alxllyi aH xl“ + b” Alxl“ s

X € D(Al), and Y(Al—k) > 0 by Theoem B.IV.1. Thus, for a sufficiently

small perturbation SAl (in the sense of S(Al+GAl,Al) being small)

§(Im(a,~1), Im(a +6A,-1")) < & < y(Im(A =), Im B,)

this follows from the fact that (Al-A) and (Ai+6A1—A) are Fredholm operators

from all A (see Lemma 3.21 in Section 3.7).
. ‘
T b may be chosen arbltrarlly small, since since the range of §A

dimensional and A1 is densely defined (Section 3.1).

leF(A ) is finite
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Theorem B.I.2 now gives

def(Im(A;+6A,-A"),In B,) < def(Im(A -1}, Im B) =0

hence

Im(A +6A -A") + Im B, = X AMe ¢,

The case when Bl is perturbed can be proved in a similar way.

Furthermore, 1f Al and Bl are perturbed simultaneously Theorem B.I1.8 may

be used to obtain

+
- = 1
Im(Al+6Al AV o+ Im(Bl+6Bl) X At e C (3.27)

l ¥

We next prove the structural stability of detectability.

Proposition 3.17. Detectability of the pair (Cl, Al) is a stable property

with respect to small bounded perturbations of C,, and small perturbations

1

of Al of class F(Al)'

Proof: The proof is similar to that of proposition 3.16.

1. We have from Lemma 2.9 that (Cl’ Al) is detectable if and
only if
+

Ker(Al-A) n Ker Cl = 0, Ae C (3.28)

2. The discussion in step 2 of the previous proof is valid in

this case also.
3. Again, from Lemma 2.9, we may conclude that (Cl, A1+6Al)
is detectable if and only if
Ker(Al+5A1—A‘) A Ker C, = o, A oe C (3.29)

4, Clearly Ker C, is a closed subspace of Xl, further since Im C

1 1
is finite dimensional, it is easy to see that
codimlKer Cll <

thus [Ker(Al—R) + Ker Cll-and [Ker(Al+GAl—k') + Ker Cll are both closed

subspaces [T2, p.731.
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It follows, by Theorem B.I.1l, that there is an € > 0 such that

1 > Y(Rer C, Rex(A=M)) > ¢, Aco@a)n ¢

Now, since (Al—h) and (A1+6A1-A') are Fredholm operators we have that
Y(Al—l) > 0, and Theorem B.IV.10 yields
-2 1
+6A -A" - < -3)12 -1 LA -
G(Ker(A1 GAl ), Ker(A1 A 22 +y (A1 A)l 6(A1+6A1 A ,Al A)

but, since GAl is Al-bounded with Al-bound zero, Theorem B.IL.5 gives

' -1 1y2 2 -}_

6(_A1+6A1-A . Al—A) < (1-b) “I(a+A-A")}" + b7

thus for a sufficiently small perturbation 8A, we have

1

5(Ker(A1+5A1-l'), Ker(Al—A)) <€ <y(Ker C Ker(Al—A))

1’
and Theorem B.I.2 implies

nul(Ker(A1+6A1—R'), Ker Cl) f_nul(Ker(Al—k), Ker Cl) =0
hence

+
-1 = 1
Ker(A1+6A1 A') n Ker Cl o , At e C

The case when C1 is perturbed can be proved in a similar way.

Furthermore, if Al and Cl are perturbed simultaneously, Theorem B.I1.7

may be used to obtain
Rer(A +6A,-A') n Ker(C +6C) =0 , A ¢ ¢t (3.30)

We point out that (3.27) and (3.30) also hold for small per-

turbations GAl of A, which are Al—bounded, with Al—bounded less than 1.

1

However, for such perturbations, (3.27) and (3.30) cannot be interpreted
as conditions for stabilizability and detectability, simply because the

perturbed operator A +6Al is not, in general, an infinitesimal

1

generator of a strongly continuous semigroup. Even, for small bounded

perturbations of Al, (3.27) and (3.30) may no longer be sufficient

conditions to assure stabilizability and detectability  (although Al+5A1 does

generate a strongly continuous semigroup when SA, 1s bounded operator).

1
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We show below how such situation may arise.

Let
- {
Al 0 C
A= s B, = +
+
1 0 Al 1 Bl

. - - + + . ..
with O(Al) cC , G(Al) < C+(0(A1) consists of a finite number of

eigenvalues). We further know that the semigroup SA (t) is compact for t > h.

1
Therefore SA-(t) is also compact for t > h and since G(Al) = C we may
1
conclude that there is an M = M(a—e) < ©  guch that
-{o-e)t

il 5,~() l<Me , arbitrary € > 0, t > 0
1

where
-3 = sup Re O(A{)

Suppose that (Al, Bl) ig stabilizable, then by Lemma 2.8 this is equivalent

to (3.25). Now consider the bounded perturbation
5Al = GAll 0
0 0]

such that U(Al + 6A11) c C

Clearly (3.27) is satisfied with dBl 0 , however the semigroup § (t)

T+

(&) %04 )

is not necessarily compact for t > h, and the inclusion of G(AZ+6A11) in the
open left half plane is not sufficient to guarantee the stability of the
semigroup. In this case (3.27) alone is not a sufficient condition to

determine the stabilizability of the pair (A1+6A1,Bl).

On the other hand we have a rough estimate for the growth of

S _ (t) [Kl, Theorem 2.1, p.497]
(A1+8A11)
(m|| 5A11“ - (o=e))t
I's () <Me , £2>0

(_A1 +6A11)
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So if
M| 6A11|I < (a-g)

and (3.27) holds then the pair (A1+6A1,Bl) 1s stabilizable.

3.6 Necessity of Readability

In this section we will establish the counterpart of Lemmas
3.10 and 3.11 of Section 3.4. As in the finite dimensiomal case,

we assume that A , C D. and D, are fixed. We denote by

2* G170 G0 Dy 2
8. = (Xc, AC, B> Fc’ GC) any synthesis which yields regulation of z and

internal stability of the closed loop system. For such SC we have,

n
2
by proposition 2.6, that there is a bounded operator XL:X2 =R - XL=XlXXC

such that
AX - X A =B (3.31)
DLXL=D2 (3.32)
where
(A.+B.G C B, F
AL= 1.].C]. lC :D(A)XD(A)_)'X )(X
1 c 1 c
L Bccl Ac
. A3+B1Gcc2
BL = : X2 - Xl % Xc
B C
c 2

D, = [Dl 0l : Xl x XC »~ 1

We can now prove the following partial result

Proposition 3,18. A synthesis Sc is structurally stable at A, only if

3

Ker Cl < Ker Dl (3.33)
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Proof: Let GAB : XZ > Xl be a bounded operator (clearly it is compact since

Xz is finite dimensional) and suppose that Sc is a synthesis which

is structurally stable. Then the perturbed versions of (3.31) -
(3.32) must have a solutiom XL = Xl , 1.e.,
X
c
+B.G C ) - (x = (A _+8A_+B_G
A*B160 BiFe TR X |Ag = |Ag*0A4*B.C C
86 A X X B C
c c ¢ c 2
[Dl 0l Xl = D2
X
c

X - X = = :
Let XL XL GXL GXl , then from the above expressions

and (3.31) - (3.32) we obtain

Al+BchC1 Bch 6Xl - 6X1 A2 = 1843 (3.34)
B C A 6X 86X C
c'l c c (o] .
[D1 0l 6X1 =0
LGXC

Now consider a decomposition of XZ into into prime subspaces

W1l , that is

where A ¢ O(Az) and t(A) = dim [Ker(Az—A)] then, it can be shown that

k(X,3)

AZIX%A is cyclic with minimal polynomial (S-A) 1.

, k(ALD) = dim[X%A
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Let kk denote the degree of the factor (s—A) in the minimal polynomial

of A, then k

2 A is given by

ky = maxlk(A,3)5 § = 1,2,...t ()]

We now fix X ¢ O(AZ) and choose any prime subspace X%A correspond-
ing to A. dim[X%A] = k(X,j). Select a basis for X;A such that
i oz - . . .
AZA AZAIXZA is represented by its Jordan form. In this basis we can

write

i
DyiXgy = Ldyy dpy wee dy

S
CylXay = Tepy egp ov oy

J .
0%, [Xoy = Ixp %y we 1]

i oo

5Xch2A = [xcl Ky ve XER]
i -

6A3|X2k fay, a5, +». ag)

where, for simplicity in notation we have written k in place of k(A,j).
Now, from (3.34) we obtain (for each A g O(Az) and each prime

subspace X; associated with A) the following equations

A

A +B.G C B.F X X eve X
c

178168 BFe 11 %12 1k
BcCl Ac th c2 xEk
r Y =
- X1 *12 k| |21 0--ee0 331 239 a9k
oAl
xcl c2 ka 0 0 °
1
o ..... Mo
DIX. X _ ...%X 1=C00 0O...0]

1711 12 1k 1xk



or equivalently

_ . x ) 1
44607 BF 11 231
= (3.35)
BCCl A xcl 0
+ - < ) - fx i
A *BG.Cm A BFL 1i 845 1i-1
= + sy L = 2, 3 k
B C, A e o feio
(3.36)
Dx, =0 , i=1,2,3..k (3.37)

An ingpection of (3.35) - (3.37) reveals that these equations will have

a solution only if there is a seclution to (3.35) with

X
11 _

£ Ker DL = Ker[Dl 0]
XEl J

and since a3 is arbitrary in Xl, we obtain+

X
L. (A -MIKer D n D(A)] , A e o(a) (3.38)

0

Now define

T [A1+B1GCC1-A B.F1: D(T) = D(Al) X Xc - Xl (3.39)

1l ¢

v=I[BC AC—AJ : D(V) = X

G b D(Ac) - Xc (3.40)

1

. - ++
T and V are closed densely defined operators and, since O(AL)CC » we have

RKer(A -A) = Ker T nKer V=0, Xeo(a)c ¢t

moreover

Im T = X, and Im V = X
1 c

for simplicity in notation we will sometimes write AM in place of AIMND(A)]

11 it can also be shown that Ker T + Ker V is closed and equals XL, i.e.



...60_

So from (3.38)

(AL-A)[Ker v D(AL)] c (AL—A)[Ker DL n D(AL)]

and since (AL—A) has a bounded inverse for all X € U(AZ) < C+ we

obtain (the bar denotes closure)

Ker‘JnD(AL) c Ker DLnD(AL)

Now, in a Hilbert space we can write (for any subspace L)L = Lt ,

where L denotes orthogonal complement, thus

and since

we obtain

thus

Ker VrD(A ) = [Ker VnD(_AL)J“

[D(AL)]'L = '['n“(pi)ll - xt = {0}

n

(KerV nD(AL)]’L [Ker VI© + [D(AL)IIJ"

[Ker v ]J“

i

since the

hence

But

and

Rer V nD(A) = [Ker VI = KerV = KerV

null space of a closed operator is closed.

Ker DLnD(AL) = ¥er DL

KerV < Ker DL

Ker BcC x Ker(AcfA) < KerV

1

= XX
Ker DL Ker D1 o

(3.41) now gives

Ker BCC1 c Ker Dl

Similarly we obtain

(3.41)

(3.42)
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which in turn gives

Ker C1 < Ker D1

this completes the proof.
Remarks: In the proof of Proposition 3.18 we have obtained the stronger
conditions (3.41) and (3.42). These expressions will be useful in
further developments.

We now consider a synthesis Sc which is structurally stable at
A3. Thus by proposition 3.18 Ker C1 < Ker D1 and from (3.5) - (3.6) we
conclude that

Y= We!

where 0 1is a complement of Z in Y.  According to this decomposition we

may write
= == - — = ]
C1 E1 ) C2 E2 ’ Bc [Bcw Bcz]’ Gc [GCW Gcz
‘ D, Dy
(3.43)
where E1 and E2 are bounded (linear) operators from Xl and X2 respectively,
into W, and B_ =B |[W,B =B |Z, ¢ =6 |W, 6 =G _|Z.
cw C cZ C cw [ cz Cc

The necessity of readability will be established once we show that

D2 = D2.

Theorem 3.19: (NWecessity of readability). A synthesis Sc is structurally

stable at (A3, Bcz) only if

Ker[Cl c.lc Ker[Dl D.l] (3.44)

2
Substitution of (3.43) in (3.31) gives

2

Proof: Suppose that 52 # D2.

+ - = + .
(Al BIGccl)Xl + BchXc X1A2 AB BchC2 (3.45a)
Bcw E1X1 * Bclexl ¥ AcXc - XCAZ - BcwEZ * BczDZ (3.45b)
Dlxl = D2 (3.45c)
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Now consider perturbations GAB and GECZ of A3 and B . respectively. We men-
c

tion that while the size of GBCZ is restricted to preserve internal stability,

the size of 6A3 ig arbitrary. Structural stability of Sc implies that

~

~
there must exist Xl and X, such that (3.45a) - (3.45c) are satisfied

when A3, Bcz’ Xl and XC are replaced by AS + 6A3, Bcz + SBCZ, Xl and XC.
Define §X, = X - X and 6X =X - X . Then
1 1 1 c c c
X v (ev ) \
Al-i'BchCl Bch BXl (SXl GAB
a Az = -
BcCl GXC 6Xc 5BCZ(D2—D2)
(3.46a)
EDl 0l 5X1 =0 (3.46b)
6X
c
e(A) .
As in the proof of proposition 3.18, let X, = & @& X3 , for
2 A =1 2

AE G(Az). From our initial assumption there is some A € G(Az) and
some prime subspace X%A corresponding to A such that

Bélxgk 7 Dzlxgk
that is

(EZi - d2i) # 0, at least for one 1 <1i <k

writing (3.46a) - (3.46b) in more detail we obtain, for A € U(Az)

7 's

A1+B1GCC1—A B.F ] %1 = faq;
B C A =X X ~ _
c’1 c | el (8B (d, =d )
v -y '« Y = Y. f
A 7B 6.0 & B 1i 334 ¥
Bccl AC-A kxci kGBcz<32i_d2i) x

ci-1
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By inspection of the above expressions we find that for any ¥, € Xl
and ¥ € X , there must exist x. € X, and x € X such that, for
c c 1 1 c c
A€ O’(Az)
AWM x b= , ¥, | € Ker D
X T X
c c c

but this implies that

-1
(AL-K) [XIXXCJ = D(AL) c Ker DL

and since D(AL) is dense in XL= Xl = Xc this can only happen for
DL Z 0 i.e. there are no variables to be regulated. Therefore 52 = D2

after all.

Having proved the necessity of readability we need only

consider synthesis in which z 1is readable from vy.

3.7 Necessity of Internal Model

In this section we will establish that a structurally stable syn-—
thesis Sc necessarily incorporates a reduplication, in the sense of
Section 3.3, of the dynamic structure of the exogenous signals.
First, we develope some preliminary results

Definition 3.20 [Gl, p. 1031]. A closed operator A from X to VY,

i.e. A e C(X,Y) is said to be a Fredholm operator if
1) dim[Ker A] < =
2) codimlIm A] = [VY/Im Al < =
in this case the index of A 1is defined by
ind[A] = dimlKer Al - codim [Im Al < @
if in addition, X and Y are Banach spaces then (2) implies that

Im A is closed in VY.
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.1.
Lemma 3,21: [Gl. p.119] . TLet X be a Banach space and A a

closed operator in X. Suppose that there exist a AO such that
(A—AOI)_l is compact. Then for all A g C, (A-AI) is a Fredholm
operator with zero index, i.e.
dim{Ker(A=-A1)]1 = codim{Im(A=-}T)}] < o, ¥A e C
Lemma 3.22: [Gl, p.1031. ©Let M be a closed subspace of a Banach
space X, with codim [M] < ® , then
i) For any subspace L of X there is a finite dimensional
subspace N c© L such that
L=(CLnmen
ii) If L 4is demse in X, then L 0 M is dense in M.
Lemma 3.23: Let A be a closed operator in the Banach space X.
Suppose that A 1s a Fredholm operator and let § be a subspace of
X with finite codimension. Then
codimlAS] + indlA] = codimlS] + dim[5nKer Al (<o)
In particular if ind[Al = ¢, then
codim{AS] > codimlS]
where the equality holds if S n Ker A = O
Proof: We give a proof of this result since it is apparently not available
in the literature. We proceed by a number of steps

1. Let S n Ker A = Nl, then N, © D(A) and dim{Nl] = n_ <@

1 T
2. Let N2 be a subspace of Ker A such that Ker A = N1 &8 N2
then
dim[Nzl = n, < ow N2 c D(A) , Sn N2 =0
and

dim Rer A | . dim[N2]
SnKer A

this result is wvalid for (A-X I)—l being strictly singular, see [Gl,
Chapters III-IV] for details
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3. From lLemma 3.22, there is a finite dimensional subspace
N3 < D(A) with dim[N3]= n, < @ and such that
= S
X & N2 @ N3
then
di Eéﬂ = dim[N_.] + dim[N.]
imlzl = dimlN, imlN,
4. Since Ker A c S @& N2 we have

Im A = AX = AS @ AN3

and since A is 1-1 on all N3

. (Ima} _ .. o
dlm[—zg} = dlm[AN3] dim N3

S. On the other hand

XY 1 X/AS a1 XY s | ImA
dlm[ImA) = [ImA/AS) = dlm[zg) dlmLﬂ§" ]

6. Combining 2 - 5 we obtain

(XY L X . (X)_ .. [Ker A
dlm[ﬁJ = dim [E] + dlm[é—J dlm[——SnKer A}

hence

v
N

dimﬁ—- + indlAl = dim[éj + dimlSnKer Al
(A5 5

The last part of the lemma follows easily.

We can now prove the following result concerning structural stability

of the synthesis Sc'

Prosposition 3.24 . A synthesis SC is structurally stable at A3 only if

for every A € O(AZ),

(Al—l)[Ker DlnD(Al)] + ImB1 = xl

and this implies

dim{TIm Bll > dimlZ] = q.
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Proof: From the proof of proposition 3.18 we have, for A ¢ O(Az)

T = - =
Ker DL [A1+Bchcl A BlFC]Ker DL Xl
But
= X

Ker DL Ker D1 XC

thus
+ - =

(Al BchCl AKer D1 + Im B1 FC Xl (3.47)
but

Im B1 FC c Im B1
hence

(AI*X)[Ker DlnD(Al)] + Im B1 = Xl

for the last part of the proposition we have from (3.47)

3
(A1+Bl

(A1+B

GcCl—A)Ker D1 + Im Bch

G C.,~A)Ker D
c 1l

codim[(A1+B GCCI-A)Ker DI] = dim

1

1 1

(3.48)

but the left hand side of the above expression, by lemma 3,23, equals

. . _ ] = . v di . _
codlm[(Al Bchcl M EKer Dl codim{Ker Dl] dlm[Ker(Al Bchcl ) nKer Dll
(3.49)
and the right hand side equals
. _ \
] (Al BchCl AKer D1+ImBch . ) Im Bl Fc
dim = dim

+ - ’ ¥ -

(Al Bchcl A)Ker Dl Im B1 Fcﬂ(Al Bchcl Mker Dl

(3.50)
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Combining (3.48) - (3.50), and noting that codimlKer Dll = dim[Z] = g
we obtain

dimlIm B Fc] =q + dim[Ker(A1+B

L GCCl-l)n Ker Dll

1

+ dim[Im B, F n{A_+B
c 1

1 GcCl—A)Ker Dl]

1

s0 dim[Im B1 FC] >q (3.51)

since Im Bl Fc c Im Bl the result follows.
The above result is well known for ordinary linear systems [W1,Chapter 8].

A similar result was obtained by Bhat, for evolution systems, under the

assumption [C1 02] = [Dl D2] [Bl, Chapter 61. However, the condition

dimlIm Bl] > q is not derived in his work. We point out that proposition

3.24 is a "nice' result since it provides necessary conditionsg in terms

of the systems paramters. The sufficiency of this result will be

investigated in Chapter 4.

Proposition 3.25. A synthesis Sc is structurally stable at A, only if each

3
A€ G(AZ) alsoc belongs to O(Ac).

Proof: Recall that Ac only has point spectrum (by assumption), therefore,
for a proof by contradiction, suppose that such A ¢ O(Ac) exists. This
implies that A g p(AC) and (Ac—?\)_l exists and is a bounded operator (in
fact, it is compact). Now, structural stability of Sc with respect to

A3 implies (see (3.41) - (3.42) in the proof of proposition 3.18)

Ker V « Ker D. and Ker B C. ¢ Ker D
L c 1 1

by Lemma 3.22 we can write

X, = Ker B, cC, P, Pc D(Al) and dim[P] < e

1 1

thus

Ker D, = Ker Bc C, #8Q, Q=P nKerD

1 1 1
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Now Ker V may be expressed as
Ker V = Ker{B C A-\] = (RerB C x{0}) & V
c 1 c c 1

where
= = - -— -1
= {(x,%) lxlchncAl), x = =(A~NB_C =]

and diml ] = diml[Q] , V< D(T) = D(Al) X Xc' Let
W=TKer V = [A1+BIGCC1-A Bch]Ker v

since Ker T n Ker V = 0 we obtain

= + - .
(A1 Blcccl AMEKer BC Cl @ TV (3.52)
For structural stability we must have W = Xl. We will now show
that this is not the case for XA ¢ p(Ac). From the proof of Lemma 2.10

we have
+ =
Ker(A1 B1G C.-A) n Ker B C1 0

and by Lemmas 3.21 and 3.23 we obtain

codim[(A1+BlG C.-MKer B C ] = codim Ker[Bc C1] (3.53)

Also, since T 1s 1 -1 on gll of (, we have
dim[T{] = dim{V] = diml[Q] {3.54)

On the other hand

X /(A +B G c -\ Ker B, cl

W/(A1+B1GC Cl-A)Ker Bc C

codim{iW] dim

1

cod1m£(A1+B1G C,—A)Ker B C ] - dim[TV]
hence, from (3.53) and (3.54)

codimlW] + dim[Ql = codimlKer BC C1] (3.55)
but

q = codim[Ker Dl} = codim Ker[BC Cll - dimfQ]
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thus (3.53) gives
codimlWl = q
this implies that W 1is a proper subspace of Xl and therefore A ¢ O(Az)

must belong to G(Ac) after all.

As a consequence of proposition 3.25 we may write, for A ¢ G(Az)
Ker V = {Ker B, ¢, x Rer(a_ -A) 6 s (3.56)

where

5 = {(xl,xc)lxleQCD(Al), XCE XCOnD(AC), BCC % + (Ac-l)xc =0}

1

(3.57)

and dim{S] <dimiQl] , § « D(T), X | is a complement of Ker(Ac—X) in

cO

Xc , 1l.e. Xc = XcO 8 Ker(Ac—l).

The following proposition shows that we can always choose Ker(Ac—A)
of a suitable high dimension to assure Xl = T Ker V and Ker V < Ker DL’
for all X e G(Az).

only if for

Proposition 3.26. A synthesis Sc is styucturally stable at A3
each A ¢ O(AZ)

q = dimlZ] f_dim[Ker(Ac—k)l (<o)
Proof: Let L =T Ker V, where Ker V is given by (3.56) - (3.57).

Now, since Ker V n Ker T = 0 we have

{Ker B C, xKer{A-A)} nEKerT=20
c 1 c
thus
(A1+B1GC01—A) Ker Bc C1 n Bl Fc Ker(Ac—k) =0
hence
L = CA1+BIGCC1—X)Ker BC Cl & Bl Fc Ker(AC—X) TS

As in the proof of proposition 3.25 we obtain

codimll] = codim{Ker Bc C1] - dim[B Fc Ker(AC—R)] - dim[s]

1
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Structural stability at A_ now requires that L = X thus

l 2
codimlKer Bc Cll - dim[s]

3
diml[B, F Ker{(A -A)1]
l ¢ c

q + dimlQl - dim[S§]
but from the proof of Lemma 2.10 we have
Ker Bl Fc N Ker(Ac-k) =0
and since dim[Ql > dim[S] we conelude that
dim[Ker(A -A)1 > dim[Z]l =q, ¥ A e U(AZ)
c Z
Remark: We point out that if BC and Ac are 'adequately' chosen,
equality may be achieved in proposition 3.26. For example if
Bc cl Q c Im(Ac-l) y ¥ he G(Az)
then dim(S] = dim[Q] (see (3.57)), and in this case we obtain

dim[Rer (AC—A)] = q . ¥ie O(Az)

The proofs of proposition 3.25 and 3.26 are based in a decomposition
of the subspace Ker V. We next give an alternative proof of these results

by exploiting the stability of AL.

only if each

Proposition 3.26a: A Synthesis S, is structurally stable at A3
A e U(AZ) belongs to U(Ac) and

q = dimfZ1] f_dim(Ker(Ac-A)] (<)
Proof: Recall that for A € G(Az) < C+, AE p(AL) therefore from Lemmas

3.21 and 3.23 we have
codim[(AL—l)Ker DL] = codimlKer DL] =q F3.523)

and from (3.39) - (3.40)

(AL—A) = IT

v
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with

Im |T = XL , Ker TnKer V=020 {(3.52b)

We next show that Ker T + Ker V is closed and equals XL, i.e.

XL (3.52¢)

Kexr T & Ker V
Clearly we may write
(AN = -2 + B
where A and B are defined in Chapter 2, Section 2.2, It now follows

from Theorem B.IV.9 in Appendix B

% * *
(AL—l) = (A=) + B
* * k% * %
= (A=) 0 *[Cy G, By C, B,
0 A =X * F* * 0]
( c ) c B1
* *
= [T v 1] (3.524d)
and since A ¢ p(AL) we have%
* * * ++
Im(AL—A) =InT + ImV = XL {3.52e)
%
Ker(AL—A) =0 {3.52f)
but, from Theorem B.IV.7, (3.52e) yields
ES * 1 1
ImT +ImV = (Ker T) + (Ker V) = XL
hence, by Theorem B.I.4, Ker T + Ker V is closed. To obtain (3.52¢c) we note

that (3.52f) implies
* *
ImT NnImV =20

Again, by Theorems B. IV.7 and B.I.4 we obtain

codim[Ker T + Ker VI diml {(Ker T)'L n (Ker V)L]

. * *
dim[Im T nImV 1 =20

1l

see [Gl, p.661 or [T2, pp. 237-2451

. . . . %
i Since XL is a Hilbert space we may write XL = XL see [T2, th. 5.1, p.142]
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which in turn, together with (3.52b), give (3.52c¢).

Now, for structural stability with respect to A3

(3.38) and (3.41) in the proof of proposition 3.18).

X

Lo (A, -N)Ker D, (3.52g)
-0
Ker V < Ker DL (3.52h)
therefore
Ker DL = Ker V& (Ker T n Ker DL)
and

T Ker DL =T Ker V = Xl

V Ker DL = V(Ker T n Ker DL) =W

from (3.52a) we may now conclude that

codimllV]l = ¢q
that 1s
codlm[Bc Cl Ker D, *+ Im(AC—A)] =q (3.521)
here we have used the identity Ker DL = Ker D1 b Xc. But
[ X /Im(A -A) |
c c
codlm[BcclKerD1+Im(Ac-l)] = dim B C. Ker D, + Im(A -A)
c 1 1 c
Im(AC—A)
= codim[Im(AC—A)J
. B C1 Ker Dl
- dim
Bc Cl Ker Dl n Im(Ac—A)

and since codim[Im(Ac—l)] = dim[Ker(Ac-l)] (see Lemma 3.21)we obtain

diml[Ker{(A -A)] + dimlB C, Ker D, n Im{A -})]
c i c 1 1 c

- dlm[Bc C1 Ker Dl] =g (3.523)

we must have (see
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Now, suppose that A é G(Ac), then A € p(Ac) i.e.
Ker(A -A) =0 , Im(A-)) =X
[ c c
and the left hand side of (3.52j) becomes zero, therefore X € G(AZ)
must belong to U(Ac) and since
dim[B C
c

Ker D1] z_dim[BC C. Ker D, n Im(Ac-l)]

1 1 1

we conclude that
dim[Ker(Ac-K)].i q » AE O(AZ)
Remarks: The interpretation of Propositions 3.25 - 3.26a is that
for each X ¢ G(Az) the subspace Ker V must be "large" enough to yield

T Ker V = Xl and at the same time the condition Ker V © Ker D

L
must be satisfied. Note that if A ¢ p(AC) then V Ker DL = Xc
and by structural stability with respect to A3 7 Ker DL = Xl,
i.e. (AL-X) Ker DL = XIJ’ and this can only happen if Ker DL is the

0.

whole space le i.e. DL

As a result of Proposition 3.25 and 3.26, and since Ac has

compact resolvent (by assumption) we my write

xc = Xcl & ch
where
L Pi
Xcl = 0 Im(AC—A )
i=l
2 Pi
X, = @& Ker(A -X.)
c? . c 1
i=1
{AI’AZ"'Aﬁ} are all distinct elgenvalues of AZ

Lq = dim[XCZJ = total algebraic multiplicity of {Ai}'s

as eigenvalues of AC

According to this decomposition AC , Bc and FC are represented

by
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c cl c el | c cl “e2
o A
c2 BcZ
(3.58)
where Ac2 is a bounded operator and O(Acz) coincides with O(Az)

except in multiplicities. Also G(AZ) = p(Acl).

We can now write the operator equations (3.31) - (3.32) in more
detail
A*BiG Gy BiFr BFo 1 ® T B ] AT AtBEG
X
Bclcl Acl ' 0 %1 cl Bc1c2
B .C ] A X X
( c2’1 - c2 [ c2 c2 BQZCZ
(3.59)
DL X, = D2 (3.60)
cl
c2

and when the operator A, is perturbed by 6A3 we obtain, as in the proof

3
of Proposition 3.18, the following set of equations, for A ¢ O(Az)

A*BG Cm A By F o BTN i | T (%si | T Fui-a
Ba% A7 0 el 0 Xeli-1
B2t 0 A | *ead 0 X 2i-1
(3.61)
Dy %3 =0 . (3.62)
where 1 <1 f_k and ( XlO Y =o0
xc10

( ®e20
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So far, we have obtained several results by analyzing some of the
equations in (3.61) - (3.62), namely for i = 1. In general, it is
difficult, even in the finite dimensional case, to extract the information
contained in these expressions when considered simultaneously.

However, for our next result on structural stability it is necessary to
examine a few more of them.

Writing out the last equation in (3.61) we obtain, for

A€ o(Az)
B, Gy %y T ATX G J g
(3.63)
BcZ Cl 312 * (ACZ-k)KEZZ B x:ch
Bo O ¥ ¥ AR 5 = X
and Dlxli =0, 1i=1,2,...k (3.64)

Then, since Ac is bounded and Xc finite dimensional, 1s easy to see

2 2
that+
€ R=<A_|B . C Ker D> + Im(a_ ,-A) 7 (3.65)
Xe21 c2'7ec2 "1 1 c2 )
where
> =
<Ac2[Bc2 C, Ker D;> =8 , C Ker D +A_, B, C KerD +
n -1
€2
.ot Al:2 BC2 C1 Ker Dl (3.66)
and nc2 = dlm[Xczl

now, we define the subspace M as follows

- ) _ N -
M= {Gepys xgps x| By O A2 0 11 o,
- (3.67)
B2 G 0 A |y
Xe2

X1 £ Ker Dl’ X, € R}

+
- » = £ >
Note that <A 2 A]B 2 Cl Ker Dl A 2] B 2 Cl Ker Dl
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If we consider a4 to be arbitrary in Xl’ then structural

stability requires that

[A1+B

L Gc cl-x B, F B Fc 1 M=X (3.68)

1 "el 1 2 1
The following result gives a necessary condition for (3.68) to
hold.

Theorem 3.27: (Necessity of the Internal Model).

A Synthesis Sc is structurally stable with respect to A, only if

3

the controller incorporates an internal model AZ'

Before proving this result we need a technical lemma.

Lemma 3.28:7 Let U and X be finite dimensional spaces. Consider

the linear bounded operators B : U+ X and A : X + X and let

k-
N=1{(u,x); Bu+Ax =0, x € <AlIm B> + Im A 1}

then
dimlN] < dimfU] + dimlKer & n Im AF 1]

where A is the operator induced by A on the space
<A|Im B>

Proof of Theorem 3.27

We first decompose M given by (3.67) according to

Ker Dl = Ker BC Cl & Q

where dim{Ql] < =, Q< D(Al) (see proof of proposition 3.25)

Define, for A £ O(Az)

Ml = {(xll, 0, 0); X, € Ker Bc Cl} (3.69)
My = Llxs xgs X905 #p QD) %, e R,

X1 T (Acl—k)—lBél Cl 10

Boy G xp T (BN, =0}

(3.70)

+ A proof of this result is given in [F1]

4
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then M = Ml @ M2

Let T=1I[A +3B, G C,—-A B. F B.F .]
1 c 1

1 1 ¢l 1 "e2

50, by structural stability and since Ker T n M = 0 we obtain

X1=TM19TM2

or equivalently

codimlT Ml GTMZJ =0
which implies

codim[T Mll = dim[T le (3.71)
thus, since Ker Bc Cl n Ker (Al + B1 Gc Cl-l)= Oand T is 1 - 1 on all
of MZ’ (3.69) and (3.71) give

codim[Ker Bc Cll = dlmEMZJ (3.72)

Next, we show that Lemma 3.28 may be applied to M2

Define
0 = -yl X .
Q = {(Xll, CAcl M oT B, G 11) 5 %€ Q} (3.73)
clearly dim(Q]l = dim[Q]
Observe that, (Since Ker B C., « Ker B c.)
¢ 1 c2 1
= C >
<AC2|Bc2 C, Ker b,> <Ac2ch2 1@ (3.74)
and let
B = EBC2 <, 0]: X = Xl x Xy )(c2 (3.75)
then from (3.74) - (3.75) we have
<A ,l|B , C KerD>=<a |BQ (3.76)
therefore M2 may be written as follows
= ' '~ 0 B % -_ X = )
MZ {(x, th),x €Q, B x+ (Ac2 A) . 0
x, e<A . |B @ + mm@ -05h (3.77)
c2 c2 c?

hence, by Lemma 3.28 we obtain
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k-1

dimlM,) < dimlQ) + dim[Rer(a ,=A) n Im(A_,~1)" ] (3.78)
A, i i d by A , on xcz
where Ac2 is the operator induced by o2 <Ac2]BC2 Cl . Dl)
combining (3.78) and (3.72), and since
codim[Ker BC C1] = codimlKer Dl] + dim(Ql]
we obtain
dintRer(&_,~) n Im(E -0 > q (3.79)

and since (3.79) must hold for every prime subspace X%k corresponding

to A we conclude by Lemma 3.9 that Kc2 contains an internal model of A2.
This completes the proof.

Comments: We will show in Chapter 4, by comstructing a structurally
stable synthesis, that equality may be achieved in {3.79), that is,

if there exists a structurally stable synthesis it can be chosen

i i inimal, i.e. A contains a
such that the order of the internal model 1is min R .

g-fold reduplication of the maximal cyclic component of A2.

3.8 Necessity of Feedback

To complete our work on the Internal Model Principle, we have to

show that a structurally stable controller requires feedback of the

regulated variables. First, we derive a preliminary result.

It is easy to see that Bc may be written as follows (see (3.58)

and (3.43)).

B . 3
cl Bcwl Bczl

. (3.80)
c2 BCW2 Bcz2

then, from (3.80) and (3.43)

[B C, Ker D> = <

2 Y 1 AplB.,y Ey Ker Dy? (3.81)

<
Ac2
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. v = < >
Let B, : X, + X, =X /<A |B . E Ker D> be the

canonical projection, and define

Bcwz - Pc2 Bcwz

(3.82)

Boz2 = Pea Bezz (3.83)

The following proposition shows that for structural stability we
must have ﬁcwz = 0, this in turn is equivalent to

|B_, E, KerD S (3.84)

Im Bcw cw2 1 1

c <A
C

2 2

Proposition 3.29: There is no synthesis in which (3.84) fails and which is

).

structurally stabl t (A B

urally e at ( 30 B o
We mention that the proof of proposition 3.29 is exactly the same

as 1n the finite dimensional case. This fact is not unexpected, after all

we have isolated the finite dimensional part of the controlller containing

the internal model.

Proof of Proposition 3.29. This proof can be found [Fll, however

we give it here for completeness.

Suppose, in contradiction, that there is such synthesis.

From (3.59) - (3.60) there are X s X2 - Xl and Xc2 : XZ - Xc2
such that

Boz ©1 % YA Xop T X2 B = Bp G (3.85)

Dlxl = D2 (3.86)
Now, let Xll be an arbitrary completement of Ker Dl in Xl’ and since

. . . . . . v . ¥
Dl is surjective it has a right inverse D1 with Im D1 = Xll' So
any X satisfying (3.86) may be written as
~ v . :\
Xl = Xl + Dl D2 with Im Kl c Ker D1 (3.87)

B _E. Ker D_>

P .
.84 < =<
(3 8 ) is also equlvalent to <A 2 I Im BCW2 A 9 1 1

2
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Then, since

= ) = : =
C E s C E and Bc2 [Bcw2 Bc22]

{3.85) becomes

+ - e= -
Bch El Xl Ac2 Xc2 Xc2 AZ Bcw2(E2 ElﬁlDZ)

Applying Pc2 to both sides of the above expression, and since PC B

2 Tcw2

"

E., Ker D

1 1 0, we obtain

AcZ Xc2 - XCZ AZ = Bch(EZ - ElﬁlDZ) (3.88)

where XC2 = Pc2 Xc2

Next we show that if (3.84) does not hold then

(€, - E Bl D)) #0 (3.89)

Since [Cl Czl is surjective, we have that for each w € W there are

xl £ Ker D1 and X, £ XZ such thar

N _ L ¥
w=E X % (E2 ElDlDz)x2

1 71
thus
V

W = El Ker Dl + Im(E2 - E1D1D2)

hence
v
- + -_—
Im Bch Bsz E1 Ker D1 Bch Im(E2 ElDlDZ)

and since (3.84) 1s assumed tec fail we conclude that (3.89) must hold.
Now consider an arbitrary (small) bounded perturbations EBCWZ

of B_ . Then by structural stability, there is gi;

cw? : X2 - Xc2 such

2
that

— —— V
A, Txcz - chzAz = EECWZ(EZ - E, Dl D2) (3.90)

Choose A € O(Az) and a prime subspace X;l corresponding to A
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_ v i . . A
such that (E2 E1 D1 DZ)iXZA # 0. Fix a basis for X2 such that

A
Ay is represented by its Jordan form.

Let

T, ve. T, ]

— j B -
8%, 1X5y= Irs 7, k

v .
- J o =
(E, = E, D, Dz)lxzx [es ey --n e ]
where e; # 0, at least for one 1 < i <k = dimEX%l] f-kl
Then, restricting(3.90) to X%A and assuming that the first e, # 0 is the

th .
£, we obtain

a

]
Q

2 T VT

(A

|
=1

2" mEz =1, (3.91)
(A "MTp ) =T,

(Ac2 -P\)r£ =T, 4t 63cw2 e,
but GBCWZ e, 1s arbitrary in XcZ’ so (3.91) implies that for any

% i T h
X2 £ xc2 there is an T, £ XC2 such that

- 2= = A=
(ACZ =) Te T (Ac2 ) Xe2
hence
- £-1 - £
Im(Acz-k) c Im(Acz-l) (3.92)
On the other hand
z _ = 4,0 - T L1 = \L
Xc2 = Im(Ac2 A) o Im(Ac2 A o ... 2 Im(AC2 A) = Im(AC2 )
(3.93)
So (3.92) and (3.93) give
- £-1 - £
Im(Acz-A) = Im(Acz—A)

that is the descent of (KCZ—A) is less than or equal te £-1, and since
(KCZ-A) is bounded we may conclude that the ascent of (Kcz—k) is also

less than or equal to £~1 [T2, th. 6.2 p.2901.
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Therefore
K (K _Alf,— 1 - --A - _
er(a , n Im(Aczx,) = 0 (3.94)
but

Ker(Acz-l) < Ker(ACZ*A)

and, since kl-z k > £

k,.—1
= AN AT = _ &1
Im(Acz A) = Im(AC2 A)
hence (3.94) implies
_ o kel
Ker(ACZ-A) n Im(Acz—l) =0

50 KCZ does not contain an internal model of Az which contradicts Theorem
3.27. This completes the proof.

We can now prove the following result

Theorem 3.30: (Necessity of Feedback). Let Sc be a synthesis in which

(3.84) holds. Then Sc is structurally stable with respect to A, omly

3

if the controller incorporates an internal model of A2 which is con-

trollable by 2z and observable by u.

Proof: from Theorem 3.27 we know that Kc contains an internal meodel of

2
Az. We now show that the internal model is controllable by 2z and observable
by u. Of course controllability and observability are defined as in the
finite dimensional case.

Si i ble this implies that for A € a(A) < C*, (A -))
ince AL 1s stable this 1mplies tha or A £ 4 2 , AL

has a bounded inverse. Thus

i
o

Ker(Acz-l) n Ker B1 FCz (3.95)

Im B ,C, + Im(ACZ—k)

I
S

2 (3.96)

From (3.95) is easy to see that

I
o]

Ker(ACZ—K) n Ker Fc2 s Ac O(Az)
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hence the internal model is observable by u.
From (3.96) we obtain

Im Bc2 + Im(ACZ—A) = XC2 s AE O(Az)

using (3.80), the above expression yields

Im B + Im B
cZ

cw? + Im(Acz—k) = ch (3.97)

2

Applying Pc2 to both sides of (3.97)

Im B + Im(Kcz—A) = X

022 , A€ O(Az)

c2

1l

since ﬁcwz Oby(3.84). Hence the interral model is controllable by z.

This completes the proof.

3.9 Conclusions and Remarks

The main result of this chapter may now be summarized as follows

Theorem 3.31. The Internal Model Principle

A synthesis Sc = (XC, Ac, Bc’ Fc’ Gc) which is structurally stable
with respect to the parameters (AB’ Bcz). necessarily utilizes feedback of
the regulated variables and contains, at least, a q— fold reduplication

of the dynamic structure of the disturbance and reference signals which
the controller is required to process.

Thus, we have obtained a complete version of the Internal Model
Principle for time delay systems. Also, necessary conditions for the
existence of structurally stable controller have been derived. These
conditions are given in terms of the system's parameters and are easy to
verify.

Finally we mention that in the special case y = z, it is easy

to establish the equivalence between our results and those obtained in

[Bl/Chapter 61].
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CHAPTER 4

ON THE SUFFICIENCY OF THE INTERNAL MODEL PRINCIPLE

The major concern of this chapter is to establish the sufficiency
of the Internal Model Principle, as well as obtain necessary and sufficient
conditions to assure the existence of a structurally stable controller.

Qur developments will yield a procedure to construct such a controller.
This procedure is based on the observer theory for evolution systems
developed by Bhat [Bl.Chapter 4 1.

For reference we write the system’s equations

il(t) = Al xl(t) + AB xz(t) + B1 u(t) (4.1a)
:';2(1:) = 4, x,(t) (4.1b)
y(t) = Cl'xl(t) + C2 xz(t) (4.1c)
z(t) = Dl xl(t) + D2 xz(t) (4.1d)

The controller to be synthesized is given by

:’cc(t) A, E(t) + B, y(t) (4.2a)

u(t) F. Xc(t) + ch(t) (4.2b)

Throughout this chapter we make the following assumptions
1) the pair (Al,Bl) is stabilizable
2) the pair (Cl’Al) is detectable

3 A2 is a bounded cperator with O(Az) c C+

4) the spaces XZ’ U, ¥ and Z are finite dimensional
= =Z

5) Y = Im C1 + In C2 and Im D2 c Im Dl

6) z is readable from y, i.e.Ker[C1 C2] c Ker[Dl D2]

7)  dimlIm Bl} > dimlZ] = q
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4.1 Preliminaries

Before solving our main problem we need several preliminary
results.
The following propositions will be needed in the actual con-

gtruction of a synthesis.

Proposition 4.1: Let X3 be a finite dimensional space. Then, for any

bounded operators M : X3 -+ X3 and T : X3 - Xl with o(M) c G(Az)’ there exist

bounded operators X1 : X3 - Xl and U : X3 + U such that
Al Xl - XlM + BIU =T (4.3a)

if and only if

(Al-k)[Ker D, n D(Al)] + Im B, =X ¥ Aeg U(AZ)

1 1 1°?

(4.4)

Furthermore (4.4) 1s a stable property under small bounded perturbations of

B, and small perturbations of A

1 of class F(Al).

1
Proof: We first prove the proposition when X3 = XZ’ M= A2 and

T = X2 > Xl' As in the proof of proposition 3.18, consider a decomposition
of X, into prime subspaces. Then it is easy to see that (4.3a) - (4.3b)

2

have a solution if and only if they have a solution when restricted to any

prime subspace corresponding to each A € G(Az). Now, fix A € O(Az) and
choose any prime subspace X%A associated with A. Select a basis for
i io. .
sz such that A2IX2A is in Jordan form and let .
i
X1|X2A = [xl, xz...xk]
i .
U|X2A [ul, u2...uk]
i .
TIXZA (e, tyeeot,]
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where k = k{(},j) = dimEX%A]. Then restricting (4.3a) -~ (4.3b) to

X%A we obtain

(Al-K)xi + B u, = ti + x, (4.52a)

1
D1 x, = 0 (4.5b)

for i =1, 2...k, where x 4 O.

8]
Since ti £ Xl is arbitrary, we conclude that (4.5a) = (4.5b) have a
solution i1f and only if

(Al—l)[Ker D. n D(Al)] + Im B, = X

1 1 1
When X3 # Xz, M # A2’ we consider a decomposition of X3 into prime sub-
spaces, and since (M) < O(Az), (4.4) follows as above,

We next show that (4.4) is a stable property when Al and B1

are subjected to small perturbations. Consider a bounded perturbation

SBl of Bl' Then Im Bl and Im(Bl+6B1) are both finite dimensional and there-
fore closed subspaces of Xl. Furthermore, we have that both the Ker BI and
Ker(Bl+GBl) are also finite dimensional. So B1 and Bl+6B1 are semi-

Fredholm operators, and Theorem B.IV.l2 yields

S{Im B

I s, |l
[» Im(B 6B ) < 1

Y(8)

(4.6a)

where Y(Bl) > 0.

Consider a perturbation SA, of Al of elass F(Al). It is readily

1
verified that D(A1+6Al) = D(Al), since SAl is Aj-compact. Also, since (A{-A) is
a Fredholm operator, Theorem B.IV.5 implies thatl(Al+6Al—h) is also

Fredholm. Therefore Im(Al—A) and Im(Al+ Al—A) are closed subspaces of

Xl. Moreover, by Theorem B.IV.2 we have that (Al—k) Ker D1 and

(Al+6A1-A) Ker D, are closed subspaces.

1
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It now follows that the subspaces

(A1+6A1-?\) {Ker D. n D(_Al)] + Im Bl, (Al—?\) (Ker D, n D(Al)] + Im(Bl+6Bl)

1 1

(A1+6A1*A)[Ker D, n D(A1)3 + Im(B1+6B1)

1

are closed.

On the other hand we may decompose Xl as follows (see Lemma 3.22

in Section 3.7, Chapter 3)

X1=KerD19N

where N ¢ D(Al) is finite—-dimensional. Now. let Kl be the restriction of

A to Ker D, n D(Al)' It is readily verified that A

1 1 is closed (since

1

Ker D, is a closed subspace and A

1 1s closed operator) with

1

D(gl) = Ker D, n D(Al) and Im(ﬁl—l) = (Al—A)Ker D Also we have that

1 1°

D(A1+6A1) = D(Al) and Im(A1+6Al-l) = (A1+6Al—k)Ker D Therefore,

1
Theorem B.IV.12 gives

SC(Al-k)Ker D (A1+6A1—X)Ker Dl) S(Im(Al—k), Im(Al+6Al—k))

l’

a+b y(Kl-x)

| A

~ (4.6b)
Y(Al Y

where Y(Kl—k) >0 , since Im(gl—k) is closed, and a, b are non—negative

constants such that, for all X1 E.D(Kl)
loa, x, < allx Il = 5B, %,
Now, since {(4.4) holds there i1s an £ > 0 such that

Y((4,=MEKer D,, Im B,) > €

l’
therefore for sufficiently small perturbations GBl and 6A1 we conclude,
from Thecrem B.I.8, that

(Al+6A1—A)[Ker D, n D(Al)] + Im(Bl+5Bl) = X Ae G(Az)

1 1’

this completes the proof.
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Proposition 4.2: Let A_ : X_. > X, be a g-fold direct sum of the
2e 2e 2e
. . _ q

largest cyclic compoment of A2’ i.e, XZe [XZk] s
A2e = dlag[AZk’ A2k . AZk](see Section 3.3). Define

X = Xl @ x2e -

A = Al A3e (4.7a)

0 AZe
D= [Dl 0l (4.7b)
If the pair (Dl, Al) is detectable, then there is a bounded

operator A3e : xZe - Xl such that (D,A) is detectable.

Proof: Since (D

MAA

1’ Al) is detectable, it is easy te see that detectability of

(D,A) is equivalent to the conditions

a) Ker(AZe-A) n Ker A3e =0 , A g G(AZe)
b) (Al—k)[Ker D1 n D(Al)] n A3e Ker(Aze—A) =0, A& G(Aze)
We now will show that there is an A3e satisfying a) and b) above. By
Lemmas 3.21 and 3.22 we have
codimE(Al-k)[Ker D1]] = codimlKer DIJ =q (4.8)

Thus, there are g-linearly independent vectors in XI/(Al—A)[Ker D1]

with X, =X + (Al-l)Ker D i =1,2...q where x; £ Xl.

1?
On the other hand,

dim[Ker (Aze-l)] =q (4.9)
So, there are q independent elements {yl, yz,..yq} in Ker(Aze-K).
Define A3e(l) by .

X, = ABe(A)yi s i=1, 2,...q

and let

A, = o A, () (4.10)
3e KEU(AZE) 3e
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Then it is easy to verify that A given by (4.10) satisfies a) and b).
3e
The next result provides a necessary and sufficient condition

to assure the existence of a synthesis in a very special case.

Proposition 4.3: Suppose that [C

1 02] = [D1 D2] and that the pair (D,A)

is detectable where

D= [Dl D2] A=

Then, there is a synthesis for the system (4.la) - (4.1d) if and onmly

if there are bounded operators X X2 - X1 and U : X2 = U such that
A1 Xl - Xl A2 + Bl U = A3 (4.11a)
D1 Xl = D2 (4.11b)

Proof: A Proof of this result is given in [Bl, Chapter 5,.,pp.73-77 ]T
However we give it here since it will be useful in the construction of a
synthesis.

Necessity:  This part follows from propesition 2.6

Sufficiency : This part consists in obtaining a synthesis by means of

an observer for the system (4.1a) - (4.1d). The detectability condition
is required in this part of the proof.

Since (Al,Bl) is stabilizable, there is an Fi : Xl + U such that

(A1+B1 Fl) is stable. Now, by (4.1la} - (4.11lb), we may choose an

F2 : X2 -+ (I such that there is an Xl : X2 > Xl satisfying
(A1+B1F1)Xl - xl A2 = A3 + 13.l F2 (4.12a)
D1 Xl = D2 {4.12b)

also see [F5] for the finite dimensional case
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this gives a feedhack

u(t) = F xl(t) + Fz xz(t)

1
We now show that this feedback may be implemented via an observer
which has z(t) as input. Since, by assumption, (D,A) is detectable,

there is a bounded operator K :  + Xl x X2 such that (A+KD) is stable.

Define Xc = Xcl X xc2 = Xl X Xz. Then the equation
x,(6) = (&¥KD)x_(£) - K 2(t) + B u(t) (4.13)
is an observer for the system (4.1a) - (4.1b). Now writing
K = K1
%

and

u(t) = Fl xcl(t) + F2 xcz(t)

(4.5) may be written as

: f 3
xcl(t) A1+K1 D, *+ ]31 F, A +K D, + Bl F2 Xcl(t)
xcz(t) ! K2 D1 Az + K2 D2 Xc2(t)
K
- z ()

- Kz

Our synthesis is now complete with GC =z 0, Bc = =K, Fc =F = [Fl F2]
and Ac = (A+KD + BF) where B = B1 .
0

To complete the proof we need to show that the closed-loop system is
internally stable and that z(t) iIs regulated. To prove the Stability
of the closed-loop system it is necessary and sufficient to show that

oA < €7 The closed-loop system is given by
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r* . [ f

x, (£) 8 BF, B F, Ay ) (= () )
x . (£) KD, A KD +BF ASKDBF, KD | x, (6
X8 | 17KDy KDy 8,30, KDy | [Feaft)

% 0

xz(t) 0 0 Az J \xz(t) J
{ J

(4.14)

define el(t) = xcl(t) - xl(t) and ez(t) = Xc2(t) - xz(t), then it is

easy to see that

'il(t)) (A,*BF,  BF B,F, A3+B1F2W EXON
él(t) _ 0 AR D AHKD, 0 e, (1)
.éz(t) 0 K,D, A, +K,D, 0 e, (t)
\iz(t)J o 0 0 3 \xz(t) J

Clearly U(AL) = 0(A1+B1F1) u g(A+KD) < C  and we conclude that (4.14) is

internally stable.

To prove regulation define

Xc - -Xl
I

where §1 satisfies (4.12a) - (4.12b) and I 1is the identity operator
on Xz. A
Let X = Xl

then , with F_ = F=[F1 le , we have from (4.12a)

|y 0

- X, A=A +B F X

A Xy TR Ay = A B LA
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and since

D, ¥, =D,

it is easy to see that

A % -X A =KD -KD X
c ¢ c 2

2 171

then, for the closed-loop system we have

ALS\{-%AIZ:BL
DL}A(=D2
where
A = A BIF | » B, = A3‘ , D =D 01
-KD; ACJ ~KD,,

Now Proposition 2.6 establishes that =z 1is regulated.

The following proposition will be needed in further developments

Proposition 4.4: Suppose that [Cl 02] = [Dl D2] , 1L.e. y= 2z, and that

§ =(X,A,B,F, G) is syanthesis which provides internal stability
c ¢’ e’ Te’ e’ e

and Ac contains an intermal model of Az. Then, the internal model is

precisely a gq-fold reduplication in Ac of the largest cyclic component

of A2 and
Ker Bc = (4.15)
Im Bc n Im(AC-R) =0 ) Ae O(AZ) (4.16)
Rer(a -0 " < Im(A 2N, A 0(A),1 <k Sk (4.17)

where kk is the degree of the factor (s-A) in the minimal polynomial

of Az.
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Proof: The loop operator is given hy
AL = [ABED ByFL
D A
Bc 1 c

Now, stability of AL implies that, for A & O(Az)

ImB D, + Im(A -}A) = X
c c c

1

but Im BC D. =B ImD, = Im BC since D

1 c 1 1

ImB + Im(A -A) = X
c e c

On the other hand, since Ac contains an internal model of A

there is an injective operator X : X, ~ XC such that

C 2e

s, X, = Xc A2e

where XZe = [X 1 and A, 1is an £-fold direct sum of A

2k Ze

is surjective, thus

(4.18)

2,

£ > q. From this it follows that Im Xc is an Ac—invariant subspace

of Xc, therefore we may write
X =ImX @& XO
c c c
and accordingly

Ac B A2e Ac2

0 Acl

Now, using the representation (4.19), it is easy to see that

Ker(Aze—A) x {0} < Ker(Ac—A)

and since dim[Ker(Aze—A)] = L > q we obtain

dimlKer(a -2)1 > L>q

Also, since B : 71 - X
c c

dim[Im Bc] < dimlZ] = ¢

(4.19)

(4.20)

(4.21)
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Now, from our assumptions on Ac’ Im(Ac-k) is a closed subspace of

X and
c
X
Im(A -A) 8§ ————— » A a(A,)
¢ Ker(Ac-K)
thus
X = Ker(a -A) @ X' (4.22)
c c c
1 X
where X = ——S— = Im(a -})
¢ Ker(AC—A) ¢
hence, from (4.22), (4.18) and (4.21)
dim[Ker(AC-A)] = dimlIm Bc] - dimlIm Bc n Im(AC—A)]
<q
this, together with (4.20), give
dim[Ker(Ac—A)] =q
(4.15) and (4.16) mow follow
Also, the above expression yields
dlm[Ker(Aze—A)] = q
which in turn implies that A2e is a q-fold reduplication of AZk i.e., £ = q.
To prove (&.17), first observe that, for A € G(Az)
k,-1
2 A
Ker(AZe A) Ker(A2e AT el Ker(Aze—A) = Im(AZe ) (4.23)
Now, since Ker(Aze—A) x {0} ¢ Ker(AC—A) with
dim[Ker(Aze—K) x {0}1 = dim[Ker(Ac—l)] = q we conclude
Ker(A. =AY x {0} = Ker(a -2) , A e a(A,) (4.24)
2e c 2
and using the representation (4.1%) we obtain
- - _ { Y
Im(A A) = Im Ayl A +Im | A, (4.25)
0 Acl—k
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this together with (4.23}, and (4.24) yield

Ker{A —A) < Im(A —}A) , A e olAa,).
c c pA

To complete the proof we use the fact [T2, p. 2911 that

Ker(Ac—X)i+j

— % Im(a 2T 0 Ker(.AC—A)]‘
Ker(AC—h)l

for i, 3 =0,1, 2 ..
Thus, for i = j =1, (4.27) and (4.26) give
2
Ker(A —A)
dim |——E—— | = dimlKer(a =201 = ¢
Ker(a -A) ¢
c
hence
dimcxer(Ac—A)ZJ = 2q

this, together with

Ker(Aze—l)2 x {0} < Ker(Ac—k)2
implies that’
Ker(A -l)z x {0} = Ker(a —A)z
2e c

therefore, from (4.23) and (4.25) we conclude that
2
Ker(_Ac A) c:Im(AC A) s, AE G(Az)

Similarly we obtain from (4.27), with i = 1, j = 2, and (4.28)

Rer(A —)° )
dim| ——S = dimlRer(a -} 1 =29

Ker(Ac—k) J

which in turn gives

Ker(AC—k) c Im(Ac-k) s, AE G(Az)

(4.26)

(4.27)

(4.28)

Proceeding in this manmner (4.17) is obtained. This completes the proof.
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We point out that the assumption [Cl CZJ = [Dl D2] in Proposition 4.4
is merel? a convenient one. Indeed, the proof of the proposition depends
on the special structure of the loop operator AL, namely that the
controller contains an internal model of A2 and utilizes feedback of the
regulated variables z. Hence the proposition will remain valid if we
assume, in place of y = z, that the controller is driven by the regulated
variables. In particular, this feedback assumption is justified if
Ker[C1 C2] c Ker[D1 D2] y 1.e. 2z 1is readable from vy, and the pair
(Dl,Al) is detectable, the latter being a requirement for stability of AL.
The readability condition constitutes a basic assumption throughout this
chapter (see 1) - 7)). However, detectability of the pair (Dl’Al) is not
guaranteed by our basic assumptions 1) - 7). Nevertheless, in case this
condition is not satisfied, it is always possible to construct a dynamic
controller to achieve detectability of a related pair (Bl, A ), as we will

1

show in Section 4.3.

4.2 Sufficiency of the Internal Model Prinmciple

The sufficiency of the Internal Model Principle is essentially
established by the following
Theorem 4.5: Suppose that [C1 CZJ = [Dl D2], i.e. y = z and that

Sc = (Xc’ Ac’ Bc’ Fc, Gc) is a synthesis which provides internal stability

and Ac contains an internal model of AZ‘ Then Sc is a structurally

stable synthesis with respect to the parameters

P= (Al’ B1’ A3’ Bc’ Fc’ Gc)

Proof: We first show that internal stability is preserved under small

perturbations of the parameters Al’ Bl’ Bc’ Fc’ Gc'
It is easy to see that for perturbations of Al of class F(Al),
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and bounded perturbations of the remaining operators, the perturbed

operator (AL+6AL) generates a strongly continuous semigroup S

(A, +64,) ()

which is compact for t > h. Therefore, the stability of (AL+6AL) will
follow once we show that U(AL+6AL) « C for a sufficiently small pertutbation.
Clearly O(AL) ¢ C consists of eigenvalues of finite multiplicities, and for
any real number a > 0, the set {A ¢ G(AL); -a< Re A < 0} is finite.
Let ¢ = {} ¢ C; R, A <-a} and C*7 = {1 ¢ C; R, A >-a}.  Now enclose each
Ai € G(AL) n et by a eircle Fi of small radius so that Pi cC. It now
follows from Theorem B.IIT.2 in Appendix B, that there is a § > 0O
(depending on AL and Fi‘s) such that for any 6AL with S(AL+6AL,AL) < 8,
the spectrum of (AL+5AL) is likewise separated by the Fi's and the total
multiplicity of the eigenvalues of (AL+5AL) in Fi equals the multiplicity
of the eigenvalue of AL in Fi. Further, the upper semicontinuity of
O(AL) asures that no eigenvalues of AL in Ca—move to C**, Hence,
G(AL+6AL) e ¢ for a sufficiently small perturbation GAL.

Next we show that regulation is preserved under small perturbations
of AL and arbitrary bounded perturbations of BL.
Choose GAL, such that (AL+6AL) is stable. Note that Ac, D

1
and D2 are not allowed to  vary. Let éBL be a bounded perturbation
of BL. Then, there is a unique bounded operator X X2 -+ XL such that
(AL+6AL)XL - XL A, = (BL+6BL) (4.29)
Let XL = X1 ., writing (4.29) in detail we obtain
XCJ ;

‘ [Al+6Al+[Bl GC + S(BIGC)Jnllxl - X A,

+[B1FC+6(BIFC)3XC = A3+GA3+[B1GC+S(B1GC)]D2 (4.30a)
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+ + - =
[Bc GBC] Dle ACXC XCAC (BC'F(SBC) D‘2 (4.30b)
defining Bc = Bc + GBC, (4.30b) gives

- + -
BC(D X DZ) Ac Xc Xc A

15 9 = 0 (4.31)

thus output regulation will be guaranteed once we show that

- = 32
D, X, =D, =0 (4.32)
Now, consider a decomposition of X2 into prime subspaces. Fix

A€ U(AZ) and choose any prime subspace X%A corresponding to A. Select

a basis for X;A such that AZ]X;A is in Jordan form, and let

_ i
(D1 %1 Dz)‘a‘(z}L [rl,rz...rk]
J
X 1% = tppapyeeopy ]
e = aieryd
where k = k(A;3) dlm[sz]
Restricting (4.31) to X%h we obtain
Bc T+ (Ac-l)pi =Pi_q > i=1,2...k (4.33)

where Py AO.

Since (AL+6AL) is stable and Al contains an internal model of A2, pro@osition

4.4 yields
Ker Bc =0 (4.34)
ImB n Im(A -\) =0 (4.35)
c c
kl-l
Ker(AC-A) c Im(Ac—A) (4.36)

Now, for i = 1, (4.33), (4.34) and (4.35) give r, = 0. This implies that

P, € Ker(Ac-l) which in turn gives, by (4.36), P, € Im(AC—A). For i = 2,

(4.33), (4.34) and (4.35) yield, r, = 0. Hence P, £ Ker(Ac-)\)2 which implies,

by (4.36), that P, € Im(Ac—l). Proceeding in this manner we obtain
r. =0, 1 =1, 2...k. Therefore
- i .

D 1%y, =0

(&, X,
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Since A € U(Az) and ng were chosen arbitrarly we conclude that
(4.32) holds. This completes the proof.

We mention that the discussion following proposition 4.4 also
applies to Theorem 4.5. That is, the crucial factor in the proof of the
Theorem is not the assumption y = z, but the fact that the controller
utilizes feedback of the regulated variables, and Ac contains an internal
model of AZ'

Having established that the synthesis Sc in Theorem 4.5 is structurally

stable at P = (A Bl’ A3, Bc’ Fc’ Gc)’ we now show that this property is

1!
maintained under certain small perturbations SAC of the operator Ac.

In fact the class of perturbation operator dAc of Ac, consists of those
operators for which (AC+6AC) contains an internal model of A2 and the closed-

loop system is internally stable.

Consider the decomposition

Xc = Xcl & Xc2 (4.37)
where
£ p.
X .= n Ima-x)*
cl . c 1
i=1
£ P.
X .= 8 Ker(A -A)
c2 . c i
1=1

{Al, AZ"'Aﬁ} are the distinct eigenvalues of A

2
Py» Py v Py 2aTe finite integers and ch is finite dimensilonal,

According to (4.37) we may write

FC = [Fcl Fc2 ] , (4.38a)
B = (B - (4.38b)
c cl
B

c2
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A = |A o (4.38¢)

where Acz is a bounded operator and contains an internal model of AZ’

in fact G(Acz) coincides with O(Az) except in multiplicities and

c(Acz) n U(Acl) = {.

Using the representation (4.38a) - (4.38c), AL and BL may be written as

Ay = 5‘1 BiF 2 S Ay (4.39a)

BoDp A Beals
where
Kl = (A+BGD  BF 1 X X, 6 +X 80X,
Bchl Acl

33 = 'A3+BIGCD2 1 P X, X @ Xy (4‘.3%)
L BchZ

El = B)) £ U~ X @ X
(o

'nl =D 01 : X X ,>7Z

It is now clear, from proposition 4.4 and Theorem 4.5 (with appro-

priate modifications), that Sc = (XC, AC, Bc’ Fc’ Gc) is structurally

stable with respect to the parameters Pl = (Al’ Bl’ A3, Bcl’ BCZ’ Fcl’

Fc2’ Gc’ Acl)' Hence, according to the representation (4.38c), the

class of admissible perturbations SAC of the operator Ac’ correspond

to small perturbations 6Ac is fixed it is

1 of Acl’ and since Ac

2

readily verified that
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contains an internal model of AZ. Thus, we may conclude that for any
representation of AC’ the admissible perturbations of AC, consist of
those (small) operators GAC , such that (AC+GAC) contains an internal

model of A however, we mention that in this case it may be diffieult

2§
to determine explicitly which pexrturbations preserve the internal model.

In the remaining part of this section we relax the assumption
y = 2z, and we assume that 2z 1is, readable from vy, i.e.
Kerl'.C1 CZJ e KerED1 D2]. Also, it is assumed that
Sc = (Xc’Ac’Bc’Fc’Gc) is a synthesis for the system (4.1a) - (4.1d) such
that the closed-loop system is intermally stable, Ac contains an internal
model of A2 and the internal model is controllable by the regulated
variables z, that is, the controller incorporates a feedback structure.
We will show below that SC is structurally stable. First, a convenient
representation for the loop operator AL,will be derived.

From the readability assumption we may write

Y =We (4.40)

where (0 is a complement of Z in VY. According to this decomposition

we have

fc. ¢l = (& E_ ) (4.41)

Clearly, since Ac contains an internal model of A2, we may adopt the
representation (4.38a) - (4.38c). Further, according to (4.40), (4.38b)

can be written in more detail as follows
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Bc - _Bcwl Bczl (4.42)

cw2 czlf

Also, we have

G = [G G ] (4.43)

¢ cw cz
Now, since AL is stable, it Is easy to see that the pair

y: B ) is controllablef, i.e.

(ACZ’ cew2 cz2

Im B + Im B
c

w2 + Im(ACZ—A) = Xc2 » Ae C (4.44)

z2

But Ac is the part of Ac containing the internal model, and since the

2

internal model is controllable by z (by assumption) we conclude that

either
a) Bcwz = 0 and (AcZ’ BczZ) is controllable
or
b) ch may be decomposed as follows
1 2
ch = xc2 o Xc2 (4.453)
where Xl =<A . |ImB__> and X2 is a complement of Xl in X .
c2 c2 cwl c2 c2 c2
According to (4.45a) we can write
1 2
Fcz = [FC2 Fczl (4.45b)
! 1
[BCWZ BczZJ h BCWZ BczZ (4.45¢)
2
0 Bczz
= (Al 3
Ac2 ACZ AcZ (4.45d)
2
0 Acz

Az contains the internal model, and the pair (A2 , B2 ) is controllable.
c2 c2 cz2

i . . - . .
recall that Ac is a bounded operator and Xc is finite dimensional

2 2



In fact a) is a special

b) holds.
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case of b), therefore we may assume that

So, combining (4.38a), (4.38c), (4.41), (4.42), (4.43), (4.45b) -

(4.45Q) we obtain

where

AL

f

.

’

[D 0 o0l X

1 1

A +B.G E_+B
cw 2

371 1

Bcle2+Bcle2

Bl 1

{ cw2E2+Bc22D2

Al Bl
2 = 2
czZDl AcZ
¥ +
Al BchwEl BchzD
BewiB1™B1D1
1 1
Bcw2E1+Bc22Dl
. 2 2
BT, ) Xy
o}
3
ACZ

G D
cz

1

-+ Xl i xcl 8 X

& X

1

2

, B, = EL : (4.46)
BizZ DZ
BiFa BlFiz \ X10XC1@Xi2 - x1&Xclaxiz
A 0
.

cl

@ X

1
c2

1

c2 > 12

X2 > Xl & Xcl ¢ Xc2

Now using the representation (4.46) it is easy to see, from the proof of

proposition 4.4 and Theorem 4.5, that the synthesis Sc is structurally

stable with respect to the parameters

P, = (A.,B.,A,,F _,F

2

1 2
173 ¢el?

G
c2’ ¢2’ Tew’ ez’

Bcwl’Bczl’ ew2? cz2’cz2 el e2 e2

1 1 2 i 3
)
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The main result of this section can be summarized in the
following
Theorem 4.6: Suppose that SC is a synthesis which provides internal
stability, utilizes feedback of the regulated variables and incorporates,
in the feedback path, an internal model of the dynamic structure of the
exogenous signals which the controller is required to process. Then
output regulation is maintained when the system's and controller para-
meters undergo small perturbations which preserve internal stability

and the internal model.

4.3 Construction of a Structurally Stable Synthesis

In this section we will establish a sufficient condition, in terms
of the systems parameters, to guarantee the existence of a structurally
stable controller. Furthermore, a procedure to construct such controller
will be obtained.

The main result of this section is given by the following

Theorem 4.7: Suppose that 1) - 7) are satisfied. 1f in addition, the

system (4.1la) -(4.1d) satisfies the condition

(Al—l) [(Ker D, n D(Al)] + Im B, =X Ae c(AZ), (4.47)

1 1 R
then, there is a synthesis 8§ = (X ,A B ,F ,G ) which is structurally
c ¢c’¢c ¢ ce
stable.
Proof: The proof of Theorem 4.7 consists of a procedure for the comstruction
of a structurally stable synthesis and will be given in several steps.
Step 1: This step consists in augmenting our system by means of a dynamic
controller, to achieve certain detectability condition.  That is, if
A represents the dynamics. of the augmented system, then we require the pair

1

(Sl,Kl) to be detectable, where D,is of the form [Dl 0l. If the pair

1
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(Dl’Al) is detectable then proceed to Step 2.

Consider the system

xcl(t) = (A1+Kicl)xcl(t) —'Kly(;) + Blu(t) (4.48a)
where x 1€X l’Al Cl and Bl denote f:crpies-iL of the operators defined before, but
c c

now with Xl replaced by Xcl’ and LS y - Xcl is chosen such that

(A1+K1Cl) is stable. Since (Cl, Al) is detectable (by assumption) such

Kl clearly exists.

Now let
u(t) = Fclxcl(t) + v(t) (4.48Db)
where v(t) is an external input and Fqt Xcl + U is a bounded operator
such that (Al+BlFC1) 1s stable. Clearly the existence of Fcl is

guaranteed by the stabilizability of the pair (Al’Bl)'

Combining (4.la) - (4.1d) with (4.48a) - (4.48b) we obtain

;:l(t) = Kl () + Ky Fy(0) + B v() (4.49a)

Scz(t) = A, x,(€) (4.49b)

y(£) =€, % (6) + ¢, x,(t) (4.49¢)

2(t) =D, ?cl(t ) +D, x,(t) (4.49d)
where El = Xl & Xcl

a0 =4 By Fa By = (B

—K1Cl A1+Bch1+K1C1 Bl J
KB = Ay , El =, ol , Bl = I[p, o]
K, G,

We now show that the pair (Bl, Kl) is detectable. First note that,

Throughout this section we will always use the same symbols to denote
the corresponding copies of the operators previously defined.
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since K, C, and B, F . are compact, the semigroup S_(t) is compact
1 1 1 ¢l A

fot t > h, therefore detectability of (51,K1) is e%uivalent to the

condition

Rer B n Ker (Kl—x) =0, AecC’ (4.50)

Next, define e(t) = xcl(r) —-xl(t), then it is easy to see that

x. (t) A+B.F . B.F x, (t) A B
1 - I "1 ¢l 17 ¢l 1 + 3 Xz(t) + 1 v(t)

e(t) 0 A ¥K C e(t) —(A3+K102) 0

1

thus
o(Al) = 0(A1+Bchl)u 0(A1+chl) cC
hence (4.50) is satisfied for A € C+ and (Bl, Kl) is detectable.

Before proceeding to the next step we prove the following result

Proposition 4.8: Let Il’ Kl’ B

and 51 be as in Step 1. Then

1
(Al~l)[Ker Dl r D(Al)] + Im Bl = Xl, Ac O(Az) (4.51)
if and only if
(Al—l)[Ker D1 n D(Al) I+ Im B1 = Xl’ AE G(Az) (4.52)
Proof: We first note the following
—~ _ land ~ - ] _ '\ -~
(A1 A)Ker D1 + Im Bl Al A 0 + [ O BlFCl Ker Dl + Im B1
—chl A1+chl—k 0 Bchl Bl
= ( - D +
Al A 0] Ker D1 Tm Bl
L ‘chl A1+K1Cl—l Bl

(4.53)
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Necessity: Suppose (4.51) holds, then (4.53) gives

- 1 - = f
A A Kex D, 7 + Im Bl X sy AE G(Az)

-K.C A_+K C,-A
11 1171 .Xcl B1 Xcl

and(4,52) follows.

Sufficiency: Suppose (4.52) holds, then for any x

1 £ Xl, there are
rl £ Ker D1 n D(Al) and u, € U such that
(Al—l)r1 + Blu1 =x A€ O(AZ)
for (4.51) to hold we need to show that for any X £ Xcl there is an
o, £ D(Al) c Xcl such that
- + - =
chlrl + Blul + (Al KlCl ?\)rcl X, AE G(AZ)
Since (A1+K1Cl) is stable clearly such r exists, thus
Al-k 0 Ker D1 + Im B1 = Xl, A€ U(Az)
-chl A1+K101—K Bl

and from (4.53) we obtain (4.51). This completes the proof.
We row continue with the proof of Theorem 4.6.

Step 2: Let A, : X, - XZe be a q-fold direct sum of the largest cyclic

Ze 2e
component of AZ' That is, A2e = dlag[AZk A2k ce AZkJ’ and
= q 1
X2e [sz] . Define
Xe = Xl 8 XZe
and let
x () = Ax (t) +B v(r) ) (4.54a)
e e'e e
z (t) = D x (&) (4.54b)
e e'e
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where
Ae - K& Aée i Xe M Xe Be B ﬁi ¢ U- Xe
0 A2e 0
D - [51 01: X +1Z

and the bounded operator K3e : X2e - %l is chosen such -that the pair

(De, Ae) is detectable. The existence of such A

3e
by detectability of the pair (51, Kl) and proposition 4.2 gives a way

is guaranteed

taining A. .
of obtaining A3e

We now show that there is a synthesis for the system (4.54a) -

(4.54b). This result will follow from proposition 4.3 once we show that

there are bounded operators X, : X, -~ X. and U : X, - U such that
le 2e 1 e 2e
A1 Xle - Xle A2e + Bl Ue = A3e (4.55a)
D1 Xle =0 (4.55b)

By assumption, (4.47) holds, this proposition 4.8 implies that
(4.51) holds and by proposition 4.1 we conclude that there are

Xle and Ue satisfying (4.55a) - (4.55b). Hence there is a synthesis

for the system (4.54a) - (4.54b).

~ ~

When (Dl’ Al) is detectable, replace A B, A, amd D, in

17 71 T3e 1
- . s , , : i h
(4,54a) (4.54b) by Al B1 A3e and D1 where A3e XZe - X1 is chosen
such that (D ,Ae) is detectable. As before, it is easy to see that there is
e

2 solution of (4.55a) - (4.55b) with Kl’ gl’ K3é and 51 replaced by A;,B;,A3, and
Dl’ therefore we conclude that there is a synthesis for the system

- (4.54a) - (4.54b).
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Step 3: In this step we construct a synthesis for the system (4.54a) -

(4.54b), via an observer, as in the proof of Proposition 4.3.

Choose an er: X2e =+ I such that there is an Rle : X2e N Xl
satisfying
Al Rle - Rle A2e - A3e * Bl F2e (4.56a)
Dl Rle =0 (4.56Db)

Clearly such er exists, since (4.55a) - (4.55b) have a solution

as was shown in Step 2. Furthermore ile is unlque since

G(Al) n U(Aze) = @, Choose Qe such that (Ae + Qe De) is stable. The
existence of Qe is guaranteed by detectability of the pair (De, Ae)'

The observer for the system (4.54a) - (4.54b) is given by

xcz(t) = (Ae+QeDe)xc2(t) - Qeze(t? + Bev(t) (4.57a)
vit) = F, xcz(t) {4.57b)
where X.q £ Xc2 = XCZ & XZe and Fe = [0 erl

The synthesis for the system (4.54a) - (4.54b) is now complete. As
in the proof of Proposition 4.3 it is easy to see that the closed-
loop system (4.54a), (4.57a) and (4.57b) is internally stable and that

z, is regulated.

When (Dl, Al) is detectable, the expressions (4.56a) ~ (4.56b)

are modified as follows. First, select an F1e : X1 + U such that

(A1+BlFle) is stable. The existence of such Fle is guaranteed by

stabilizability of the pair (Al, Bl). Also, note, that in the

previous case we have set Fle = since Al is stable. Now choose

F, ¢ x2e + U such that there is an Rle : XZe -+ Xl , satisfying
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+B - ‘o
(A B F IR~ R Ay = A, + BT,

O =
lRle ©
Clearly such er exists, since (4.55a) - (4.55b) have a solution

~

with Al, Bl’ KBe and D replaced by A

1 B, A and D.. The

17 717 T3e 1
remaining part of the construction follows as described above,
but now Fe in (4.57b) is given by

Fe = [Fle F2e]

Step 4: Observe that (4.57a) has as input Z,> and by assumption only vy

is directly accessible, hence (4.57a) camnot be implemented as it stands.

However, since 2z 1s readable from y we may assume that (4.57a) is driven
by z in place of z - Indeed, readability implies that there is
a bounded P : ¥ » Z such that

z = Py
Furthermore, using the representation (4.41) we obtain

P =[0 I,]
thus

Q2 = QePy =to oy
hence (4.57a), together with (4.57b) gives

x_,(t) = (A +*Q_D +B F)x ,(t) - [0 QTy(t) (4.58)

The temaining part of the proof consists in showing that

{4.48a), (4.48b), (4.57b) and (4.58) constitute a structurally
stable synthesis for the system (4.1a) - (4.1b). This will follow from
Theorem 4.6 once we show that synthesis utili%es feedback of the
regulated variables, incorporates in the feedback path an internal
model of Az, and provides intermal stability. From (4.58) it is

clear that our synthesis utilizes feedback of 2z, by virtue of the
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decomposition ¥ = W@ Z , i.e. v = |w L . Also, from (4.56a) - (4.56b)
y

it is easy to see that (Aé+QeDe+BeFe) contains an internal model of A,-

Indeed, let

where Ele satisfies (4.56a) - (4.56b) and I

on X2e' Clearly R 1is injective.

90 is the identity operator

Let

Qe - Qel R T Xc2 & x2e - Xc2

QeZ
. . ) .
then we may write (_A.C+Qe De Be Fe) in detail

= N 3 by b
Ae * Qe De ¥ Be Fe A1 * Qel Dl ABe * B1 F2e (4.60)
Qe2 Dl AZe
Now it is readily verified, using (4.56a), (4.56b), (4.59) and (4.60), that

(Ae + Qe De + Be Fe)R =R A2e (4.61)

therefore, definition 3.8 implies that (Aé + Qe De + Be Fe) contains an
internal model of A2' (The case (Dl, Al) detectable follows from the
above discussion after appropriate modifications).

Thus, the structural stability of our synthesis will be established
if we show that the closed-loop system is internglly stable.
Step 5: Imn this step we will show that the loop operator AL is stable.

The closed loop system is given by
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x, (£) AL B Y (= ()

. = (4.62a)
xz(t) 0 Ay Xz(t)
- ¢
z(t) [nL D,] xLCt) (4.62b)
xz(,t)
where XL = Xl & Xc2 ] Xze
(% Y 3
Al 0 BlFZe
. TQuiDy AT Dy AR Ty (4.62¢)
Q0 Aol Ae J
AB
B, = |-Q_,D, (4.624)
__Qe2D2
DL = [D1 o 0] (4.62e)
Now, since BlF2e , QelDl’ Qe2Dl’ A3e are compact operators, it is easy
to see that SAL(t) is compact for t > h. Therefore internal stability will
be established once we show that O(AL) < C_. Define
e(t) = e(t) = xcz(t) - xl(t)
xZe(t) xZe(t)

then, it is readily wverified that

3 ) P ~ ~ 1 P
(xl(t)W Ay Q B.F,. A, x, (t) 3
&) o %7 = ~
-(A.+Q .D

i = [0 AP Ay (A3%Q, 1Dy e (t)

%, {(t) = -

.Ze 0 Qe2D1 A2e Qe2D2 xZe(t)
x, (£)

2 Q 0 Q A x.(t
¢ ) . 2 ]« 2(®)




- 113 -

but

=F

g

Ae+QeDe = _ A1+Qel 1 Je

Q.0 Are

thus

a(A) =o(A) v a(a +Q.D)
Since Al and (Ae+QeDe) are stable we obtain O(AL) cC, i.e. AL 15 stable.
{When (Dl’ Al) is detectable, similar arguments are used to establish the
stability of AL).

It now follows from Theorem 4.5, that our synthesis is structurally

i~

stable with respect to P = (Kl, KB’ El’ Qe’ F ).+ Moreover, from the

2e
discussion following Theorem 4.5 we conclude that we may allow small per-
turbations of (Ae+QeDe+BeFe) whenever the internal model and the stability
of AL are preserved. It is easy to see (from (4.59) - (4.61)) that small
perturbations of (Ac+QeDe+BeFe) arising from small perturbatioms of Qe
preserve the internal model. Unfortunately, it is difficult to determine
explicitly other perturbations of the operator (Ae+QeDe+BeFe) which preserve
the internal model. (The case when (Dl’Al) is detectable follows similarly
with P replaced by P = (Al’AB’Bl’Qe’Fle’FZe))' This completes the proof
of Theorem 4.7.

The condition (4.47) in Theorem 4.7 is given in terms of the operators
of the abstract ewolutionsystem (4.la) - (4.1d). Our next result gives
a necessary and sufficient condition for the existence of a structurally

stable synthesis in terms of the matrices AO, Al, Bl and Dl of the correspond-

ing delay system.

.1.
Here we do not consider perturbations of the corresponding "copies”
of Kl,ﬁl,qe and F,, in (Ae+QeDe+BeFe).
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Theorem 4.9: Suppose that 1) = 7) hold. Then, there exists a

structurally stable controller for the delay system

élct) = A NON A L(eh) + A &,(t) + Blu(t)
i2(t) = £%,(t)

y(£) = €2, (1) + C,2,(0)

z(£) = ﬁlﬁlct) + Bzﬁz(t)

if and only if
=Ah_

==

~ +t\
Rank AO Ale

~

D1 0

= ny¥g , ¥ Ae G(Az) (4.63)

Proof: The necessity of (4.47) was established in Chapter 3 (see
Proposition 3.24). Therefore it is only required to show that (4.47) is

equivalent to (4.63).
n

From (4.47), for any x = M2 , there exist

L=

0, = (82, ai) e D(A) and u e U =E" such that
A AT L 2R R BN
Ao ¢1 + AlQl( h) A ¢l + Blu X, (4.64a)
Al
9@ 1
- atm = &h (4.64b)
1 1
0
5, o9 =0 (4.64c)
1% '

Yow, since $i(0) = ¢$ , (4.64b) gives

~1 Ae AO 0 k(ﬁ g)
91(8) -J (0o , -h<8<0
- 0=

thus, form (4.64a) - (4.64c) we obtain

e_hh-x)$2 + ﬁlu s [OgA0) 7 Gs)do

=h
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and since x. € Xl is arbitrary we obtain (4.63)

1
n
Now suppose that (4.63) holds, then for any fo £ K 1, there are
n
go e 1 and u € F" such that
A A =)h o .~ .0
(AO + Al e Mg + Bl u=rf (4.65a)
~ 0
D,g =0 (4.65b)

n
For any fl(B) > LZ(I—h,OJ; R 1) define gl(e) as the solution of the

differential equation
1
g 0) - ) gley+ £l o) -h <8 <0 (4.66)
with gl (0)= g .
It follows that g = (gl(o),gl) € D(Al) and (4.65a) gives

u = fo _ J'O e-;\(hﬁj)ﬁl fl(U)dO'

RO gl (0)+ Klgl(—h) - agtoy+ B
“h

1

(4.67)
o ™M 1 "
Since £ ¢ E ~ and f (8)¢ Lz([-h,Ol;E ) are arbitrary, (4.47) follows from

(4.67), {(4.66 ) and (4.65b}. This completes the proof.

We point out that the condition (4.63) is easy to verify. Also, the

conditions 3) - 7) are easy to check in terms of the matrices of the delay
system. Verification of the conditions 1) and 2), that is stabilizability
and detectability of the pairs (Al,Bl) and (Cl,Al) respectively, is slightly more

. . . . . +
difficult since we need to compute the eigenvalues of Al in C . We conclude

this section with the following lemmas.

Lemma 4.10: The pair (Al’Bl) is stabilizable if and only if

~ ~ -Aih - _ +
Rank[A1+Ale -A, Bll =0, ¥ie C .

.i.

. . . . . +
It is necessary and sufficient to verify this condition for all X ¢ C

such that dec(ﬁo+ﬁle‘Ah-A) =0, ie. e o) nC”
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Lemma 4.11: The pair (Cl’Al) is detectable if and only 1if

.1.
. -Ah _ +
Rank.rAO+Ale =X =0, ¥Aiel

ol

the proof of these results follows easily from Lemmas 2.8 and 2.9 in

Chapter 2.

4.4 Conclusions and Remarks

The sufficiency of the Internal Model Principle is a major result
of this chapter. Precisely, we have shown that a controller which provides
internal stability utilizes feedback of the regulated variables and incor-
porates, in the feedback path, an internal model of the dynamics of the
exogenous signals, preserves output regulation when the parameters of the system
and controller undergo small perturbations, provided that internal stability
and the internal model are maintained. Thus we have attained a greater

degree of structural stability than was initially required.

We have also derived simple conditions, in terms of the matrices
of the delay systems, to assure the existence of a structurally stable
controller. A design procedure to construct sugh controller has been
obtained. It is important to note, that the dynamics of such controller
become unpleasantly "large". This is the price to be paid for insisting
on regulation in the presence of arbitrary perturbations of the operator

A3. )

It is necessary and sufficient to verify this condition for all

Ae C+ such that det(A0+Ale_Ah—A) =0, i.e. A € G(Al) nc’
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CHAPTER 5

CONCLUSIONS

The central suhject of the preceding chapters has heen the validation
of the Internal Model Principle for linear systems involving time delays
in the state.

First, the regulation and internmal stability problem for delay systems
is formulated in an abstract setting. In this formulation the controller
equations are writfen in concise manner and necessary features of both, the
system and the controller are obtained. Under the additional requirement
of structural stability, the necessity of the Internal Model Principle
is established. Next, the sufficiency of these features is investigated
and conditions under which a structurally stable controller exists are
derived, Such conditions are then expressed in terms of the matrices of
the original delay system. A method to synthesize a structurally stable
controller is also obtained.

Thus, we have widen the class of linear systems for which the
Internal Model Prineciple is wvalid. In fact, our results are derived in
an abstract framework and they are applicable to certain class of evolution
systems, provided that the system's operators have similar properties to
those of the operators arising from the class of delay systems considered
in this thesis. Further research is needed in this area to determine
specific classes of systems to which our results are applicable.

Other directions in which this research may be pursued further involve-
systems with delays in the controls and observations. Also, perturbatiouns
of the delay interval must be studied and efficient methods for constructing

structurally stable controllers need to be developed.
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PART 11

FILTERING FOR LINEAR DELAY SYSTEMS
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CHAPTER 6
INTRODUCTION

Recently, the study of linear delay differential systems has received
considerable attention. Both filtering and optimal control problems
have been investigated. In particular, the filtering theory of Kalman and
Bucy has been extended to systems with delays in the state and observations
{871, [K41, [K6]. Duality relations between estimation and control have
also been obtained [L1] and versions of the separation theorem have been
proved for the linear quadratic gaussian problem [L2] , [K5]. However,
it seems that none of the available literature has considered the case of
delays in the noise process. The occurence of delays in the noise may arise
in several ways. In genéral, taking into account that time delays are
inherent in the transport of materials and information, in our actions and
in the measurement of variables, we anticipate that the dynamic behaviour
of a great number of physical systems may be modeled more adequately by
functional differential equations in which the 'forcing terms' themselves
are functionals. Such "forcing terms' may consist of a 'control action'
and/or a deterministic stochastic perturbation. For example the 'control
action' maybe corrupted by an additive 'white' noise. Systems described
by delay differential equations are found in several fields of applied
science such as biology, economics, industrial processes, ect. .

The main subject of this work is the optimal filtering problem for
linear systems involving delays in the state, observations and in the noise
process. We assume that the observations are contaminated by an additive
'white' noise (measurement noise) which is independent of the noise process

and without delays. The appreoach that will be used for solving this
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problem is based on projection methods in a Hilbert space. We will first
show that the filtered estimate satisfies a stochastic functional
differential equation which is coupled with the integral equation for

the smoothed estimates. Then, a set of partial differential equations
satisfied by the error covariance function will be obtained. In the

case of no delays in the state and cobservations we will derive a set

of alternative differential equations satisfied by the gains involved

in the optimal filter and the uniqueness of solutions to these equations
will be established (this results are reported in [M61). To conclude this
work it will be shown that our filtering problem is 'equivalent' to an optimal
control problem. The 'dual' system will involve delays in the state and
in the controls. The 'dual' problem will consist in minimizing a

quadratic functional with delays.
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CHAPTER 7

OPTIMAL FILTERING FOR LINEAR SYSTEMS WITH DELAYS IN THE NOISE

This chapter deals with the optimal filtering problem for linear
systems with delays in the states, observations and noise process. Our
main interest is to obtain a characterization of the optimal filter
and derive a set of partial differential equations satisfied by the
'gains' involved in the filter. These questions will be solved in
Section 7.3. Next, we consider the class of linear systems involving
delays in the noise process only. For such systems we will obtain an
alternative characterization of the optimal filter. This will enable
us ts establish uniqueness of solutions to the set of differential equ-

ations satisfied by the 'gains' in the optimal filter., Finally, a

dual optimal control problem will be formulated.

7.1 Problem Formilation

Consider the system

dx(t) = Alx(t)dt + Azx(t-h)dt + Bldw(t) + Bzdw(t-h), t €L0.T]

(7.1)

dy(t) = Clx(t)dt * sz(t-h)dt + D dv(t), t £ [0.T] (7.2)

x(8) = x,(0), § el-h.0Q] h

w(8) = Wo(ﬁ), & €l-h,0]1 , w(-h) =0

y@ =0
where the vector x(t) takes values in En, y(t) in E®.  The noise
processes {w(s), ~h <s f_T} and {v(s), 0 < s < T} are independent
standard vector Wiener processes in Em and Ep respevtively. Al’ﬂAZ’ Bl,

32, Cl, 02 and D are constant matrices of appropriate dimensions.
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D is assumed to be nonsingular so that D D' =R > 0, i.e. R 1 exists.
h 1s a positive constant, xOCB) is a gaussian vector process on
[~h+0] completely independent of {w(s)} and {v(s)}, with zero mean
and E[lxo(ﬁ)lzl <= § egl-h.0] C[‘l denotes Fuclidean norm). All
stochastic processes are defined relative to a given probability space.

We point out that (7.1) - (7.2) must be interpreted as integral equations,
since w{t) and v(t) are not differentiable at any point (with probability 1).
The integrals throughout this work are defined in the Lebesgue or
quadratic mean (stochastic) sense. Moreover, to assure that the
Lebesgue integrals of a given stochastic process are well defined,
it will be considered in the sequel that a measurable version is used.
This is justified as the processes involved are quadratic mean contin-
uwous {which is a sufficient condition to assure the existence of a
measurable version).

It can be shown, following the arguments in[Lll]., that (7.1) =~
(7.2) have a unique sample continuous solution almost surely. The
filtering problem for the system (7.1} - (7.2) consists in determining
the best estimate of x(t) in the least squares sense, i.e. determine
ﬁ(t[t) = E[x(t)th] where Vt denotes the o—-algebra generated by the
observations {y(s), O <'s f_t}. Since all the processes involved are
gaussian ﬁ(t]t) must be a linear functional of past observations. Thus
linear estimation methods may be used to obtain ﬁ(tIt). We mention that if
w(t) and v(t), in (7.1) - (7.2), are replaced by any stationary orthogonal
increments processes, then it is no longer necessarily true that
E[x(t)|Vt] is a linear functional of {y(s), O < s f_t}. However, the
results presented in this work are still valid if we are only interested

iq determining the best linear least squares estimate of x(t).
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Notations

H will dencte the Hilbert space of square integrable random vectors

i.e. E[|x|?) <=, |+| denotes Euclidean norm. Hi will denote the

Hilbert space spanned hy the process {z(s), -h <s f.t} for z(s) ¢ H

for each s.

into

Pi is defined as a linear map which takes any element in H

. . . z
its projection onto Ht.

Lz[a,b] denotes the space of square integrable functions on

[a,bl.- A vector function h(-*) is said to he an L, - vector function on

[a,b]

2

if fh |n(t) |*dt < », |+| is Euclidean norm. Similarly a matrix

a

function K(*,*) is said to be an Lz-kernel on the square [a,bl x [a,b] if

fbfb]K(t,s)lzds dt < «, where the norm of a matrix is defined by

aa
. 2 .
|K(t,s)|2 = E kij(ﬁ,s) = trace K(t,s)K'(t,s) (prime stands for trans-
1,3

position).

7.3

The Optimal Filter

As in the case of no time delays in the noise, the equation for

the filtered estimate ﬁ(t[t) will involve some smoothed estimates %(t—elt),

B > 0.

It will become apparent in later developments that this is

also true for systems without delays in the states and observations (section

7.4).

Therefore it is convenient to consider the general smoothing

problem for the system (7.1) - (7.2).

We define the innovations process corresponding to the observation

equation {7.2) to he

wie) = y(e) - ft Cli(u[u)du - ftczﬁ(u*hlu)du {(7.3)
0 0
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Now, It is readily shown [B7]1(P[51) that {v(s), 0 < s < t} spans the
same family of subspaces as the oliservations {y(s), 0 < s f_t} for each
t €l0,T]l. Furthermore,

Elv(t)v'(s}] = R Elv(t)v'(s)] = R min(t,s) (7.3a)

thus we can write

2Cs)e) = [ NCs,wR “dvu) (7.4)
0

where ¥(s,u) = %E Elx(s)v' (u)] a.e.f is an Lz-kernel measurable in (s,u)

Thus, our problem is reduced to characterizing N(s,u) subject to

the dynamics (7.1). Define
%(s|t) = x(s) - &(s|t)
then since x(s) is orthogonal to H:, it is easy to see from (7.3) that

N(s,u) = EEx(s)E'(ul@ﬂCi + E[x(sf&'(u—h\u)lca a.e. {(7.5)

Now, let

P(t,s,u) 4 BI%(t|wF (s|u)] (7.6)

By the projection theorem, which we recall states that %(s |u) is orthogonal

to HE, we obtain from (7.4) - (7.6)

2(s|t) = f° [P(s,u,w)C} + P(s,u-h,w)CLIR "av(u) 7.7
0

which clearly may be written as

2(s|0) = &(s|s) + [OIP(s,u,w)C} + P(s,u-h,u)CYIR "av(w) (7.8)
s
Note that (7.7) - (7.8) are exactly the same equations that one obtains
in the case of no delays in the noise. This faect will be of crucial

importance in further developments.

Wext we derive a differential equation for the filtered estimzte

X(t{t). Let s =t in (7.5). Integrating (7.1) on [u,tl it is easy to

see, using the projection theorem and (7.6), that

.t.

u > E[x(s)v'(u)] is absolutely continuous [D5], therefore differentiable a.e.
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N{(t,u} PCu,u,u)Ci + P(y,u—h,u)CE + ft AlP(r,u,u)drca a.e.
u

(7.9

-+

t . t
i AP(r,u-h ,u)drC) + { A,P (r=h,u,u) drC)

+

{EA, PGe-h,u-h,wdrc’, + ELJ"® B dw(x) %" (u|wic!
) 2 TEN R 1

+

LSS B,dw() X' (u-h) |wIc)
u-h

here we have used Fubini's theorem to interchange the order of integration. Now
consider the last two terms in the right hand side of (7.9). Since,
by the projection theorem, X(x|u) - P: X(r|u) is orthogonal to HY, we

t
may replace ¥(ulu) and X(u-hiu), in (7.9), by P: X(ulu) and P: X(u-h|u)

respectively. It can be shown [D5] that
Py R(rlw) = [F R(u,r,0)dw(o) (7.10)
-h

E . .
where K(u,r,g) = E—{x(rlu)w'(o)] a.e. 15 an Lz-kernel, measurable in
(r,u,0) (since Pf %(r|u) is a second order quadratic mean continuous process

and EElx(r)Lzl is bounded)}.

Hence, from (7.4) (with s = t) (7.9) - (7.10) and the properties of Wiener

integrals we have

]

&(t|t) ft[P(u,u,u)Cf + P(u,u—h,u)Cé]R_ldv(u)

0

n

t -
© A (?(r,u,u)C' + P(r,u-h,u)ClIR 1dr dv(u)
4 1 1 2

t ot

!

(7.11)

+ AZEP(:—h,u,u)Ci + P(r-h,u—h,u)C&]R_ldr dv(u)

Oy O

+ jt ft Bsz'(u,u,r—h)Ci + Kf(p,u—h,r—h)CéJR-ldr dv{u)
O u

by a Fubini type theorem [D6, p. 431], we may interchange Lebesgue and

stochastic integration in (7.11) and from (7.7) (with t = s =r and t = ¢

L]

s =r ="h), (7.11) vields
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df(r[e) = A R(r|tdde + Azﬁct~h1t)dt
(7.12)

+

(2(t,t,0)C) + P(,t,t—h,t)C'le_ld\J(t)

+

ft 13,2IZK"(_1.1,u,t:-h)C‘1 + K"G,l,u-h,t-h)C?Z']R_ld\)(u)dt
t-=h

(86 0, 6 el-h.0]

in the last term of (7.12) we have used the faat+
K{u,r,g) =20 r<u<g (or u < r < 0)

Thus the filtered estimate satisfies the stochastic differential
equation (7.12). As previously stated the filter equation involves some
smoothed estimates of x(t} (note that the innovations process (7.3) itself
depends on smoothed estimates).

It remains to characterize K(t,s,u) and P(t,s,u). For this pur-
pose, we shall first derive on alternative representation for %(s|t) based
on the Projection theorem.

It can be shown [B71, [D5], [D6] that

A t
2(s|t) = [ Q(s,r,t)dy(r) (7.13)
0
for some Lz-kernel Q(s,xr,t). Now, by the projection theorem, %(s|t) is

orthogonal to Hz so that for any 0 < 0 < t
ELx(s]t)y (o)1 =0
which in turn gives, using (7.2) and Fubini's theorem
]O{E[;(slt)x"(,r)lc'l + El%(s|t)x' (x-h)1c,}dr + Elx(s{t)v' (0)1D' = O
° (7.14)

but, by the Projection theorem, E[z(s]t)x'(a)] = P(s,0,t)

note that P: ;(rlu) = Pt E(r[u) , r<ucx<t

P‘:;(xlu) , u<r<t

since x(rlu) is independent of |w(t)-w(u) , r<u<t

wt)-w(r) , u<

A
H
N
P
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Also, it is easy to see from (7.13) (note that x(s) is independent of
v(0)) that

E[%(s [)v (0) 10 = <E[R(s[t)v' (@)1ID "'

= - fGQ(s,r,t)Rdr (7.15)
c

thus, (7.14) - (7.15) yield

Q(s,x,t) = [B(s,7,6)C, + Pcs,r—h,t)c'zm"l a.e.
hence
R(s|t) = ftcpcs,r,t)01 + p(s,r-h,t)céjafldy(r) (7.16)
;

Characterization of K(t,s,u)

We shall first obtain a representation for the covariance
Elx(s]t)w™(uw}] = Elx(s)w' (w)] - E[ﬁ(s|t)w'(u)] (7.17)
Let $(t,s) be the fundamental matrix solution associated with
the homogeneous part of (7.1). It can be shown [H2]1 [L1] [D2] [D81,
that $(t,s) is bounded on [0.T] X L[O,T)s £t -+ &(t,s) 1s absolutely con-
tinuous for ¢t > s, s -+ ®(t,s) 1s absolutely continuous for s < t and
$(t,s) satisfies

ad{t,s)

AT = Alé(t,s) + A2®(t-h,s) a.e. t>s
¢(s,s) =T (7.18)
CD(]:,S) =0 s L < s

Now, the solution of (7.1) may be written as (s >0

x(s) = 8(s,0)x.(0) + [° &(s,uth)A x_(u)du (7.19)
0 ‘s 2%0

s s~h
+ [ 2(s,0Bdw@) + [ 0(s,urh)B, dw(u)
0 -h
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thus, defining R(s,u) = Elx(s)w' (W1, we ohtain (u > -h)

PR g5, 008 X()ag + PRSI
-h

‘h ¢(5,G+h)B2d0 , >0
RCS:U-) = 0
0 ., s<0 (7.20)
where
1 , 0 >0
X(g) =
o} g<0

Combining (7.2), (7.16), (7.17), (7.20) and using the fact that {w(s)}

and {v(s)} are independent we have

Elx(s|t)w' (W] = R(s,w) - [ [P(s,0,6)C] + P(s,0-h,)C)IR '+
0

(7.21)
-[CIR(O,u) + CZR(O-h,u)]dG

By the properties of ®(s,0) the kernel R(s,u) is piecewise continuously

differentiable with respect to its arguments, therefore for s € [-h,T]

BRE,0) < g(s,w)B X(w) * &(s,u)B,  a.e. in u el-h.1]
au
(7.22)
here and in the sequel we define ¢(s,*) = 0, for s < 0. It now follows

that E[X(s|t)w' (u)] is piecewise continuously differentiable with respect
to u {in fact, it can be shown that u - EE%(s\t)w'(u)] is absolutely
continuous see the arguments in [D51)

Thus from (7.21) and (7.22) we obtain (using the fact that

d(s,0) = Q, s < )
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K(t,s,u) = @(s,u)BIX(u) + @(s,u+h)B2

- thch.G,tlcE +P(§,q~h,t)cilaflcl @(Q,u)BIdQ X(u)

u

- ft [PCs,o‘,t)Ci‘ + P(s,o-h,t)Cé]R_lC @(o,u-t-h)Bzdc a.e. (7.23)

u+h 1

t -
- f 12Gs, 0 0¢] + B(s,0h,0)C)IR

C.®(a-h,u)B do X(u)
2 1
u+h

- F [2(s,0,6)¢] * P(s,0-h,0)CHIR "

C2¢(O'—h,u+h) Bzdo
u+2h
We may now write the filter equation (7.12) in more detail. Using
(7.23) and since ®(s,t) =0 s < t, (7.12) yields (note that P'(t,s,u) = P(s,t,u))
d&(t|t) = A R(c|e)de + A, R(e-h|t)de

+ [P(t,t,t)Ci + P(t,t-h,t)CZ']R_ld\)(t)

. 1 (7.24)
+ B, BIX(t-h) [~ &'(u,t-h)C/R ~dv(u)dt
2°1 - 1

_ 1 - t u [ _ 1-_]- 1
B,BX(t h){_h {_h ?'(g,t-h)CIR "C [P(o,u,u)C] +

+ P(c,u—h,u)Cé]-R-ldOdv(u)dt
t u
- BB X(e-=h) [ jt_h ¢'(o,t-h)c] R-ICZEP(O—h,u,u)Ci +
+ B(o-h,u=h,u) €31k “dodv(u)dt
An inspection of (7.24) and (7.8) (with s = t-6 , § < 0) reveals
that the optimal filter is completely characterized by %(t-8|t) 6 €l0.hl,

£[0,2h] and the fundamental

the error covariance P(t-8 t —ez,t) 81, 3]

1’ 2
matrix 9{t-0,t-h) 9 €[0,hl. Also observe that, on the interval t gl0rhl,
(7.24) suggests that the optimal filter behaves as if no delay was present

in the noise process. However, we will show later that this is not the

. . . . . _ +
case, except in a very particular situatiom, i.e. w(s) = 0 s €[-h,0]1 .

.f_
if w(s) = 0 s €l-h,Q] the second term in (7.22) should be replaced by
@(s,u+h)32X(u). (7.23) is then modified in an obvious manner. The

filter equation (7.24) remains unchanged however.
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The last two terms in (7.24) may also be written in terms of
smoothed estimates.. Indeed, by a Fubini type theorem [D6, p.431],
we may interchane Lebesgue and stochastic integration in (7.24). Then
using (7.8} we find that
%(o|t) - #(lo) = [° [R(@,u,w)C] + B(0,u-h,u)CHIR "av(u)
a

and

t -
g(o-h|t) - ﬁ(ohhlc)= f [P(c—h,u,u)Ci + P(U—h,u-h,u)Cé]R 1d\)(u)
(e}

inserting these expressions in (7.24) (after changing the order of integrat-

ion in the last two terms) and using (7.3) we finally obtain

ag(elt) {Al-[P(t,t,t)Ci + P(t,t—h,t)célRflcl}ﬁ(t|t)dt (7.25)

+

{a,-(p (e, e 0] + P(t,t—h,t)Cé]R_lcz}ﬁ(t—h\t)dt

B B!X(t-h) [© (o, t-h)CIR 11C.&(0|t)+ €. &(0-h|t)1dodt
2°1 e 1 1 2

+

[P(t,t,t)Ci + P(t,t-h,t)Cé]Rfldy(t)

+

B.B!X(t-h) /& @'(0,t-n)C!R Tdy(0)dt
21 - 1

and from (7.16)

z(t+olt) = x(c+o|t+a) + ft [P(t+0,r,t)Ci + P(t+G,r—h,t)C£]R_1dy(r)
t+o
(7.26)

In contrast with equation (7.24), the above representation of the
optimal filter requires the smoothed estimates ﬁ(t—elt) 8 ={o.2h]. How-

ever, if no delays occur in the ohservations, i.e C, = 0, then (in both

2
representations) we need only to compute ﬁ(t—eltj, $(t-0,c-h) 6 =00.h]
and P(t“@l.t-ez,t) 61, 82 closhl. In this case (7.25) and (7.24)

may bhe written as delay differential equations. Furthermore, when no

delays are present in the state, i.e. A, = 0, then (7.25) shows that the

2
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the optimal filter still involves some smoothed estimates of x(t).

This special case will he treated In more detail in Section 7.4.

Characterization of P(t,s,u)

We will first derive three integral equations for P{(t,s,u).
By definition
P(t,s,u) = E[R(t|wWE' (s|w] (7.27)
by the projection theorem (7.27) gives
P(t,s,u) = Elx(0)x'(s)] - E[&(t|w2'(s|u)] (7.28)
defining M(t,s) = Elx(t)x"(s)] and using (7.3a), (7.7), we obtain from

(7,28) (note that P'(t,s,u) = P(s,t,u))

P(t,s,0) = M(t,s) - [* [P(t,0,0)C] + P(t,0-h,0)CHIR .
0 {(7.29)

-[ClP(U,S,O) + CzP(o—h,s,o) ldo
To obtain the second equation for P(t,s,u) we now use the re-
presentation (7.16)for Q(t\u) in place of (7.7). First notice that,
by the projection theorem, (7.27) may be written as
P(t,s,u) = E[x(t)x'(s)] - ELR(t|u)x'(s)] (7.30)
which in turn gives, since x(u} is independent of v(u)

P(t,s,u) = M(t,s) - [" [P(t,0,u)C] + P(t,o-h,u)c?:']R_1 .
0

(7.301)
°[ClM(U,s) + CZM(G-h,s)]dU
The third integral equation is obtained in a similar manner (also

note that M'(s,t) = M(t,s)).

P(t,5,0) = M(t,8) - [% (M(e,00C) + M(t,0-h)CJIR
Q

.32
*[CP(0,5,u) + CP(0~h,s,u)1do (7.32)
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We point out that (7.31) - (7.32) have heen previously derived
by Kwong [K5] for linear system without delays in the noise. The fact
that these equations are also valid in the case of delays in the noise
process is a direct consequence of the smoothing equations (7.7) - (7.16)
(which also hold in the case of no delays in the noise process). We
also mention that (7.31) - (7.32) may be written as Fredholm integral

equations. Indeed, along the lines of [K5], (7.31) and (7.32) yield

P(t,s,u) = M(c,s) - [ P(t,0,u)W(0,s)do (7.31a)
~h
P(t,s,u) = M(t,s) - J* W'(o,t)P(g,s,u)do (7.32a)
“h
where
W(o,s) = [C'R Yc.M(0,s) + C/R c.M(o—h,s)1X (o)
PR | 1 2
[O,ul
=1 -1
+ [C!R "c.M(o+h,s) + C!'R "C.M(g,s)1X (0)
2t M v V2
[—h-u-h]
X (o) = 1 s <0<
[s,t]
0 otherwise

Thus, for fixed s and u, (7.32a) is a Fredholm integral equation for
P(t,s,u) in t. We may apply standard Fredholm theory to conclude that
(7.32a) has a unique Lz—solution P(t,s,u). Furthermore, it can be shown
(K61 that P(t,s,u) is continuous in its arguments.

Having established the integral equations (7.30) - (7.32) we now
show that P(t,s,u) is piecewise continuously differentiable with res-
pect to its arguments.

From (7.29) it is easy to see that

JP(L,s,u) _
Ju

- [ B(t,u,u)c] + P(t,u“h,u)céla“l-

a,e, {7.33)
'[ClP(u,s,u) + C2P(u—h,s,u)]
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To calculate the partial derivates of P(t,s,u) with respect
to t and s we first summarize some properties of M(t,s). it is
readily verified, using the variation of constants formula that for
t>0,s>0

M(t,s) = @(t,O)E[xOCD)xé(D)]Q'(5,0)

+ [0 ®(t,0)Elx, (0)x! (w1478 (s, u+h) du

~h (7.34)

+ {2 3(t,uh) A ELx, ()3} (0)12"(s,0) du

+ [0 9 o(t,um)a Elx_(u)x: (0) 1AL 8" (s,0+h) dodu
Tn 20" %o 2

e ] 2

0
+ Imin(ﬁss'h)Q(t,u)BlBié'(s,u+h)x(u)du
0

N Imin(t_h’s)Q(t,u+h)BzBi¢'(S,U)X(u)du
0
and

M(t,s) = E[xo(t)xé(s)] t,s el-h.0] {(7.34a)
It now follows that M(t,s) is continuous in t and s. Moreover,
M(t,s) is piecewise continuously differentiable with respect to t and s

(except at a finite number of lines). By the porperties of &(t,s) we

obtain from (7.34)

SMLE8) o g we,s) + AM(t-h,s) + [B/BI+B,BIID" (s, L)
se 1 2 1
a.e. (7.35)
+ B B!d"(s,t+h)X(t) + B B' ¥ (s,t-h)X(t-h)
1°2 2°1
OMCE,8) | M(r.s)A' + M(t,s-h)A. + ®(t,s)[B.B' + B B!]
' »8) &) s 2 £,s)1B,B) + 8,55
a.e (7.36)
+

?(t,s-h) B BYX(s-h) + @(;,s+h)3231XCs)
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dM(t, £)

L] _ _ 1
5t AIM(;,tl + MCt,t)Al + A2 M(t-h,t) + M(t,t h)A2

' ' - = g tet _ o
+ Blﬁl + }321?..2 + d(t,t h)EIEéX(t h} + 3231¢ (t,t-h) X{(t=h)

a.e. (7.37)
Now, from (7.32) - (7.35) we finally obtain
3k (t,s,
~§%;—§—El-= AP(t,s,u) + A,P(t-h,s,u)
a.e. (7.38)

] 1
+ [BlB1 + BZBZJS(t’S’u)

+ B,B! S(t+h,s,u)X(t) + B Bl S(t-h,s,u)X(t-h)

172 2
where
S(t,5,0) = ¢ (s,0) - [ 19" (g,00C] « @'(g—h,t)c;JRfl .
4]
(7.39)
-[ClP(c,s,u) + CZP(O—h,s,u)]dG
note that
S{t,s,u) = [ L . s = u=+¢t {7.39a)

0 ’ s <u<t

Similarly, from (7.31) and (7.36) we obtain

8P (€,5,u) P(t,s,u)h) + P(t,S‘h,u)Aé

as a.e. (7.40)

] 1 ]
5'(s,t,u)(B B/ + B,B,]

+

+

' 1 ; v '
5 (s—h,t,u)BlBZX(s—h) + 5 (s+h,t,u)BzBlX(s)

As previously discussed, we need to specify the error covariance

function P(;—Bl,t—Bz,t) Gl, 5 £l0,h]

for t €[0.h]l. Therefore it is convenient to characterize P(t-@l,t—e

8, €l0r2h] for each t elh,T] and 81, 82

28

by its derivatives with respect to t, 61’ and 82.

From (7.29) we have
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t r =1 .
P(t'_el,t.—ez,t) = M('t-el’t-ez) “g [PCt—-el,G,CF)C}_ + P(,t_el:o._l.ﬁc)Cz]R

'[CI(P(G,t-BZ}U) + CZP(G—h,t—BZ,G)]dG

(7.41)
Now, it 1s easy to verify that
3,23 .23 Yy(e-p -t-0.) = 7.41
{ 1 2
0,23 lpqe- = 7.41b
EE-+ 881 }P(L Bl,u,v) 0 ( )
3 3 _ - 7.41
FE + ﬁ } P(_U.,t eZ,V) 0 { c)
{ 2
thus (7.41) gives
N h P(t-6.,t~8.,t) = —[P(t-0,,t,t)C! + P(t-B. ,t-h,t)C IR e
3 a8 a8 J ) 1’ 2’ - 17 1 1’ ? 2
t 1 2
'[ClP(t,t—ez,t) + CZP(t—h,t—ez,t)]
a.e. (7.42)

We point out that (7.42) is also valid in the case of no delays in the
noise process.

Now, set 6, = 0 in (7.41), then it is easy to see that

2
{5 ) . '
[55 +§§IJ M(t—el,t) = M(t—el,t)Ai + M(t-el,t-h)A2

a.e, (7.43)
+ #(t-6 ,t-h)B,B' X(t-h)
1 172

Combining (7.40),(7.41h), (7.43), (7.29) and (7,39a) we obtain

N
_a_ +E_ P(_t“al,t?t)_
ot 891

- 1 T - 1
P(t el,t,t1A1 + Pk Gl,t h,t)A2

) _ ' - _ t "'l.
[P({t el,t,t)cl+P(t el,t h,t)Cz]R

. [ClP(t,t,t) + CzP(t-h NS SFE:
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+ (-9 ,t-h)B B! X(t-h)
1 12 a.e.(7.44)

- L{t~6,,t-h,t)B B! X(t-h)
1 172
where

_ rt _ St _ _ ' —1.
L(-§,,t-h,t) = é te(t-6,,0,0)¢; + P(t-8 ,0-h,0)C,IR

(7.45)
. [ClS'(;—h,o3c) + CZS'Ct—h,O-h,U)]dG

using (7.39) and the fact that ®(t,s) = 0 s > t, this expression yields

L(t-0,,t-h,t) = [© [P(t-6.,0,00C] + P(t-9 ,0=h,0)C 1R ¢, 8(a, t-h) do
1 - 1 1 1 2R G

- ft (P(t-8.,0,0)C.' + P(t-9 ,c-h,c)C']Rfl .
" 1 1 1 2

JG
-h t-h
. [CIP(o,c,o) + CZP(O-h,Q,U)]CiR_1C1®(Q,t—h)dCd0
- [5 % tr(e-8 0,00 + P(t—el,c—h,o)cglR_l-
t-h t-h

1

. [ClP(c,c—h,o) + CZP(o—h,c—h,o)]céRf c, (g, t-h)drdo

changing the order of integration in the second and third terms of this
expression and using the identities (which easily obtained from (7.29))

P(t=6,,%,C) - P(t=0.,C,t) = JCIP(t-0,,0,0)0C) + P(t~8 o-h,0)ClIR © -
1 1 4 1 1 I 2

. [clP(o,g,o) + CZP(c~h,§,0)]do

and

t
P(t-0,,%-h,) - P(t-0.,%-h,g) = [ [P(t-6 ,0,0)C' + P(t-€. ,0-h,0)C!IR L.
1 1 r 1 1 1 2

. [ClP(g,c-h,o) + C2 P(c-h,z-h,0)1do
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we ohtain

LCt*@l,t*h,t) jt tP(;—el,c,U)Ci + PC;—el,c—h,c)calRﬁlclé(b,t—h)dc

t-h

t _ - - (—1 -
{_h[PCt 8.52,0) = P(t-6,,5, BICIR ¢ &(g,t-h)dg

1

J© [P(e-8,,5h,0) ~ B(t-0,,C-h, ) ICJR MG, 8(C, t-h) dg
t-h

which in turn gives

L(t—el,t—h,t)

t [] _ 1 ‘_l _
{_h[P(t 8.,8,t ) C) + P(e-8,,2-h,t)C IR "¢, 8(5,t-h)dg

hence

a _?___ - = - .'-._1_'1 _
[EE + aeJP(_t Gl,t,t) P(t el,t,t){Ai C/R [ClP(t?t,t) + C2P(t h,t,t)1}

-1
+ P(t-@l,t—h,t){Aé-CéR [ClP(t,t,t)+C2P(t-h,t,)]}

<+

¢(t—81,t—h)BlBéX(t-h) a.e. (7.46)

Jt [P(t-el,o,t)cf + P(t-Sl,c-h,t)Cé]R-l-
t=h

Clé(c,t-h)dc . Blex(t_h)

We mention that on the interval t €[0,h] , (7.46) is also satisfied if mno
delays occur in the noise.
Finally we derive a differential equation for P(t,t,t). Setting

81 = 82 = 0 in (7.41) and combining (7.29), (7.37) - (7.40) we find

dP(t,t,t)_
dt

AP(E,E,L) + P(;,t,t)A{ + A, P(t-h,t,t) + P(L,t—h,t)AE
- [P(ﬁ,t,t)C& + P(;,;—h,t)Cé]RfltclP(;,t,t) + CZP(t—h,t,t)]

+ B.B' + B BE + V(;,t—h)Bl Bé X(t-h) + B

t 1
131 5 B1 V (t,t-h)X(t-h)

2

a.e. (7.47
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wherxe

v'(t,t-h) = &M (¢,t-h) - ft @“(g,t-h)ciR“l

[c.P(c,t,0) + C.P{(og-h,t,o)]do
t-h t 2

+ 5 7 9, eniCiR e IR (B,0,00C) +
t=h t-h

+ P(E,G—h,d)CE]R—I .
. [ClP(o,t,c) + CZP(g—h,t,c)]dBdo

(o)
+ Y [ o' (8,t-n)C'R L, [P(6-h,0,0)C! +
1 2 1
t=h t-h

+ P(€-h ,o-h,c)CE]Rfl .

. [clP(c,t,o) + CZP(c—h,t,o)ldeG

(7.48)
changing the order of integration in the last two terms of (7.48) and using

the identities (which are obtained form (7.29))

P(8,t,8) = B(8,t,t) = [“[P(6,0,00C + P(8,0-h,0)C)IR © -
5

. [ClP(U,t ,0) + CZP(U—h,t,U)] do

and

P(8-h,t,8) - P(6-h,t,t) = jt [P(,e—h,o,o)ci + P(s—h,o—h,a)cém_l .
0

. [ClP(G,t,U) + CZP(g—h,t;c)]do

(7.48) gives

v'(t,t-h) = &' (t,t-h) - ft ®](g,t-h)C{R“1[ClP(a,t,o) + czP(g—h,t,o)]do
t-h
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t
+f 1 - [ : -
t—h¢ ®,t hlclR CltP(ﬁ,t,e) P(H ,t,t)ldd

[t @*(B,t—h)c£3”1c2 [P (6-h,t,8) - P(B-h,t,t)]1do
t-h

this in turn yields

[

ViCe,eh) = (e, teh) - [5 @8, tmh) CIRIC,P(8,E,0) +

t~h

+ CZP(B—h,t,t)]dG

there fore

dp(t,t,t)

= 4,P(t,t,t) + P(t,t,t)A) + AP(t-h,t,t) + P(t,t-h,t)A,
dt 1 2 2

[P(t,t,t)cy + P(t,t—h,t)CEIR_I[CIP(t,t,t) + C,P(t-h,t,t)]

1 1 _ 1 _ 1 t _ -
+ Bl B, *+ B2 B2 + &(¢t,t h)B1 BZX(t h) + B, B, ¢ (t,t-h) X(t=h)

1

jt [P(t,B,t)Ci+P(t,6—h,t)CblRf

Cl¢(9,t—h)d8 - B
t-h

1 B2X(t~h)

B, B [© & (6,t-h)C' R MLC.P(8,t,t) + C.P(8-h,t,t)1d8X(c-h)
2 1) 1 1 2

a.e. (7.49)

We point out that if w(s) = s £[-h,0], then the term B2 Bé in (7.49) should

be replaced by BZ Bé X(t=h). This implies that on the interval t [0.hl,
(7.49) coincides with the corresponding equation in the case of the no

delays in the noise.

We may now summarize the main result of this section

Theorem 7.1: The filtered estimate ﬁ(tlt) for the system (7.1) - (7.2) sat-

isfies the following equations t €[0,TI:
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i}

ag(t|c) A R(rltyae + Azﬁ(;«h,l_t)dt + [P t,0)C) +

+ P(_t,tvh,t)c‘z]Rnld\)(:t)

+

B, BIX(c-h)[® @' (u,t-nlc] R dvGu)dt
t-h

1

B, BjX(t-h) [© % 9" (o,t-n)C)R™H{c, (R (o u,w)C] +
t-h t-h

+

R(t-6|t) = R(t-0t-9) + jt fP(t—G,G,U)C'l+P(t-8,U—h,d)C'Z']R_ld\)(G)

t-6

2(8|0) =0 , 8 £l-hs01
where X(a) =4l, o>0
0, ©<0

30(Es8) o 4 p(e,s) + A,B(t-h,s) a.e. t>s
1 2
ot

o(t,s) =\I, t ==
0, t<gs

and the error covariance matrix function P(t—el,t—e2 ,t) satisfies
equations (7.42), (7.46) and (7.49) almost everywhere with

= ' .
P(BI,BZ,O) Elko(el)xo(ez)] s 61, 82 gl-h.01].

7.4 Systems with delays in the noise process only

In this section we will specialize the results of Section 7.3
to linear systems involving delays in the noise “process only. In
particular, we will estabhlish the uniqueness of solutions to the
differential equations satisfied by the 'gains' involved in the optimal

filter. We first prove the following

P(o,u-h,u)C}] + CZEP(O—h,u,u)Ci+P(O*h,u-h,u)C&J}R_ldadv(u)dt
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2 =0, Al = A and Cl = C, Then the filtered

estimate x{(t t} for the system (7.1) = (7.2) satisfies the stochastic fun-

Theerem 7.2: Let AZ =0, C

ctional differential equation

d2(t|t) = AR(t|e)de + P(t)C'R TdW(E)
¢ By BX(e-0) [© ¥'(s, - C R Tav(syae b el0.T)
t~h
(7.50)
&lo)y =0
where P(t) = P(t,t,t) is the error covariance matrix, ¥(t,s) is the
fundemental matrix solution associated with the homogeneous part of the

error differential equation and X(s) is the step function previously defined.

Furthermore P(t) and ¥(t,s) satisfy two coupled Riccati~type differential

equations
dP(t) _ - 1ol ' .
Tt A P(t) + P(t)Aa P(t)C'R "CP(t) + Blsl + BZBZ
+ X(e-h) [¥(t,t-h)B, B} + B, By¥'(t,e-h)] t >0 a.e.
(7.51)
@Eé%;il = [A-P(t)C'R TCI¥(t,s)
- B.B! X(t-h)ft T'(u,t—h)C'R_lC Y(u,s)du t >s >0 a.e
a1 t=h -
(7.52)
P(0) = EExO(D)xé(O)] ¢ ¥(t,s) = (I, t =35

0, t<«<s

Proof: Setting A, = Q and C, = Q, (7.12) shows that we only need to
characterize P(t) = P(t,t,t) and K(u,t-h) = K(u,u,t-h} u elt-h,t].

It now follows that
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K(u,t-h) = @(u,t-hlBIX(;—h) , t=h < u <t

®(u,t-h)B X(t-h) + ¢(u,t}B, , t L u

. a.e. (7.53 )

Ik P(u,0,u)C' R °C 9(g,t-h)E o X(t-h) , t-h <u <t
t-h
u -1
jt_h P(u,0,u)C"R C 3(0,t-h)B,do X(t-h)
’ t f_u

u —
\ + f P(u,0,u)C' R lC @(o,t)Bzdo
t

(note that ®(t,s) # 0, t < s; this fact cpmplicates some calculations
compare (7.53) with (7.23) for t = 8 =u and u = t-h)

Now, from (7.53) (with u = t) (7.49) may be written as (A2 = 0, C2 = @)

= AP(t) + P(t)aA" - P(t)C"R_lc P(t) + BlBi

dP (£)

dt
a.e. (7.54)

- 1 1 — - 1
+ K(t,t h)B2 + B2 K'(t,t-h) BZ 32

Thus the optimal filter is completely characterized by (7.12) and (7.54)
in terms of P(t) and K{u,t-h) u elt-h,t]l. We next show that K(u,t-h)
may be represented in terms of the fundamental solution associated with

the homogeneous part of the error differential equation

dx(t|t) = [A-P(£)C'R "CIR(t|tyde - B?_jt K' (s,t-h)C'R -C¥(s|s)ds dt
t-h
+ B dy(t) + Bydu(t-h) - P(D)C'R "dv(t)
-8, [* K (s,t-W)C'R dv(s)dt - (7.55)
t-h
x(loy = x 0 X(s|s)y =0 s <0
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Let ¥{r,s) be the fundamental matrix assaciated with (7.53).
Tt can bhe shown [L11, [H2] that ¥(t,s) is hounded on [0.T] % [0.,T] ,
t > ¥(t,s) is absolutely continuous, s > ¥(t,s) is of bounded variation

and ¥(t,s) satisfies

BE'(—-‘t—gTi—)— = [A-P(t)C'R Tcl¥(r,s) - B, fY K (o,t-h)c'RIC ¥(o,s)do

a.e. t>s >0 (7.56)
Y{t,s) = Ir, t =38
a, t < s
the solution of (7.55) is now given by (for s > 0)

jS“h

¥(s,0+h) B, dw(a)
_h 2

s
X(s|s) = ¥(s,0)%,(0) + f ¥(s,0)B dw(0) +
0

- [ ¥(s,0)P(0)C "R tavioy - (3 ¥ (s,o)BzK"(r,c—h)c"R'ldv(r)do

0 o0
(7.57)
here we have used the fact that K(rx,o-h) = 0 r < ¢-h. It now follows,
since w(u) = fu dw(r), ¥(t,s) =0 t < s and by the properties of
Wiener integrazz, that
u
E[X(s|s)w'(wl = [ [¥(s,00B,X(0) + ¥(s,0+h)B,)do
hence i
K(s,u) = —[%(s|8)w" ()]
gu
= W(s,u)BIX(u) + W(s,u+h)32 . a.e. (7.58)

Combining (7.12) and (7.58) and noting that K(u,t-h) and W(u,t—h)BIX(t—h)

are equivalent L,-kernels on the region of integration, i.e.

2

€ ¥(u, 0B, BI¥ (u,t)du = 0
~h
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we ohtain (7.5Q0). Similarly, (7.52) is obtained from (7.56) and
(7.58). Finally, (7.51) follows easily from (7.54) and (7.58) with s = t
and u = t-h. This completes the proof.
The existence and uniqueness of solutions to (7.50) can be estab-
lished using standard arguments (see [L1]1). In the remainder if this section

we will establish the uniqueness of seclutions to (7.51) - (7.52).

Theorem 7.3: The system of equatioms (7.51) - (7.52) have a unique solution

P(t), ¥(t,s) in the class of symmetric matrix functions P(+) which are absolutely

continuous, and matrix functions ¥(t,s) which are locally absolutely
continuous in t €(s.®) for each s > 0 and of bounded variation in

s £{0:t] for each t.

Proof: Clearly &(t,s) and ¥(t,s) are bounded on [0,T] % [0,T] and

P(t) is bounded, i.e. IP(t)I E_E[Ix(t)|2] < w, It then follows that

P(t) = Elx()x' ()] - ELR(t|0)R’ (c|e)]
is Lipschitz continucus in t. Hence, P(t) is absolutely continuocus and
we may integrate (7.51) to calculate the error covariance function.

Now, consider (7.51) = (7.52) on the interval t £l0.h]. Since
these expressions are decoupled on this interval, we may conclude (using
standard arguments) that P(t) and ¥(t,s) are unique for t £[0,h] and
s £l0,t]. We only need to show that the solution
of (7.51) - (7.52) is unique for t > h.

Let {P(t), ¥(t,s)} be a solution to (7.51) - (7.52) and
suppose that {P*(ﬁ),T*(ﬁ,s)} is another solution. Define

Q(t) = () - P (&)

and
Alt,s) = ¥(t,s) - ‘P*(,t,S)
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then Q(t) and A(t,s) satisfy

1

UL _ ppepenerr™ielaG) + tame (e)er R e

dt

+ X(t-h)[BZBiﬁ'(t,t—h) + ﬁ(t,t—h)BIBE] La.e (7.59)

éé%%iil = EA—P(;)C‘Rch]ﬂ(t,s) - Q(t)CtRflCW*(t,s)

BZBiX(t—h)jth ¥' (0, t-h)C'R “CA(g,8)do
t_-

BBiX (e f* A'(o,t-h)C'R TC¥"(0,s)d0  a.e.  (7.60)
t-h

Q0) =0, A(t,s) =0 t <s
from the above expressions we obtain Q(t) = 0, t £[0,h] and A(t,s) = O
on the square [0Q,h] x {0,hl]. Now, for t > h {(7.59) and (7.60) are

equivalent to

. (E ' _ 141
QL) = { ¢, (t,0) BB A(0,0-h)B, 8,18,(t,0)do (7.61)

At,s) = —fT¥(e,0)Q(e)C 'R Ty (o, s)do
5

—thtw(t,u)szsfa'(o,u—h)c’R"lcw*(o,s)X(u—h)du do  (7.62)
8§ g

where @l(t,s) and Qz(t,s) are the transition matrices associated with
- * -
A-P(t)C'R lC and A-P (t)C‘R lC respectively. Now, consider h < t f_tl

and 0 < s f_tl and let

| Qlf = sup. |a(@]| = .sup |Q(a)]

h<o<t, 0<ost,
il 2] = sup sup  |6(o,u)| = sup  sup |A(G,uw)|
hﬁqul Ofpﬁ;l Qfgﬁpl 0595;1
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From (7.61) we ohtain, for some K < =

1) | < & f° |ACu,u-h) |du < K|e-h| || A
h

this yields
lall 2 x[e,-n] || 4] (7.63)

Similarly from (7.62) we have, for some K1< = and K2< o

ace,9) < & 5 la@ o+ &, [ |ato,u-h) du do
s 2 s O

t
K J laco) |do + K, ft (t-0) sup |A(o,u)|do
s h

O<u<t
K, |t- |2
<xemlall + 2o |4
thus
K,|t,~h|
[ &l <x fe-n] [[Qll +—=F— |4l (7.64)
substitute (7.63) in (7.64) to obtain
fall <we,-wiaf , w<e (7.65)

Now choose t; such that M(tl—h)2 < 1, this implies i| A|| = 0 and from

(7.63) we obtain || Q|| = 0. Therefore we may conclude that there is a

111

unique solution to (7.51) - (7.52) on the intervals 0 < t < tl and

Clearly the same arguments hold for t1 <t f_tz and

Therefore P(t) and ¥(t,s) are the unique solutions to

< < .
0 s __t1
< < .
4] <s < t2
(7.51) - (7.52).

7.5 A Dual Optimal Control Problem

In this section we will show that the filtering problem posed in
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Section 7.1 is in certain sense equivalent to a problem of control.

Theorem 7.4: Consider the optimal filtering problem over the interwval

[0,T] for the system (7.1) - (7.2) with xo(ﬂ) =0, 0 €[-h,0). Define

the dual control
dz(e) _
dt
q(t) =

with z(T) =

The dual coutrol

system by
-Ai z(t) - Agz(t+h) - C;u(t) - CEuC£+h) (7.66)
Biz(_t) + 3'2 z(t+h) (7.67)

b , z(s) =0 s >T, u(s) =0 s > T

problem is defined as follows

Determine an L_-vector function u:l0,T] -  to minimize the

cost index

2

3p(byw) = 2 (O)ELx(0)x)(0)12(0) + [z "()B,B)z(s) ds

Then the

telated to ﬁ(T]T)

b X(T

Proof: The proof

fL1l. We give it

First we

is wvalid

0
+ ITEQ'(S)q(S) + u'(s)Ru(s)lds (7.68)
0
optimal solution u, to this problem of control is
by
T
T) = —f u%(s)dy(s) (7.69)
0

of this result follows easily from the work of Lindquist

here for completeness.

note that the following integration by parts formula

2 (Mx() - 2 O, 0) = [ z1(s)dn(s) + [Tx1(s)dals) (7.70)

0 0
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where the first integral exists in the Riemann-Stieltjes sense since
z(ti is absolutely continuous t on [0,T]. Now, using (7.1) and (7.66)

and since xOCB) =00 <0, z(8) =0 and u(®) =09 > T, (7.70) gives

2'(x(T) -2 "%, 0) = [Tu'(s)B dw(s) + [T2"(s)B,dw(s~h)
0 9

- [T w(s)te r(s) + Cyx(s=h) Tds

0
. _ R . . it
since z(T) = b, this expression gives, from (7.2)
k(D + [T u'(s)dy(s) = 28(0)x, *+ [ u’(s)Ddv(s) (7.71)
0] Q

+ fT z'(s)Bldw(s) + szf(s)Bzdw(s-h)
0] 0]

Now, as xD(O), {v(s), O <s 5_T} and {w(s), -h < s < T} are independent,

it is easy to see that

T

B x(T) + [ u' ()ay(s)1? = 2" (0)ELx,(0)x,(0)12(0)
0
+ [Tu! (s)Ru(s) ds (7.72)
0

+

T L] f [ ]
é z (s)[BlBl + Bzﬂzlz(s)ds

It is sufficient that z{(t} is of hounded variation on [0,T]. In this
case the second integral in (7.70) is well defined in the Lebesgue-
Stieltjes sense

T Since u £ L2 and y 1is of unbounded variation (almost surely) the
integral in the left hand side of (7,71) should be understood as
T T T
f u' (s)dy(s) = f u‘(s)[Clx(s) + 62 x(s-h)1ds + f u'(s)Ddv({s)
0 @) 0
where the first integral In the right hand side is defined in the Lebesgue
sense and the second in quadratic mean.
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+ jT"‘h

z'(s)B,Bfz(s+h)ds
172
0
+

T-h z'(s+h)B,B!z(s)ds
o 271

and since z(s) =0 s > T (7.72) yields

ElL'x(T) + fT u’(s)dy(s)]2 = JT(b,u) (7.73)
o

Thus minimizing (7.43) i1s equivalent to minimizing JT(b,u).
Hence the least squares estimate of b'=x(T), which is b'%(TlT), is given

—fTu%(s)dy(s). This completes the proof.
o

Thus the dual control problem consists in minimizing a quadratic
cost which contains delayed terms (note that(7.66) runs backwards in time)).
We mention that certain problems of optimal control with delays in the
cost functional have been studied in [D71[L3]. However, the results for
such systems are rather incomplete as compared with known results for the case of
no delays in the cost. In particular, Lee [L3] considers a linear system with

delays in the states and the controls and quadratic cost of the form

k k
x' (T)Qx(T) + fT[ z z %" (s=h.)P'P.x(s-h.)+u' (s)Ru(s)Ids
0 i=l j=1 o 1

oo (7.748)
0 = h1 < h2 cee < hk =h

For this problem, Lee establishes the existence and uniqueness of the optimal
control. Also, he obtains a representation for the optimal control in terms

of the solution to an ‘adjoint equation' (see [L3] for details). We point

out that the cost (7.68) is slightly different from Lee's cost+.

t
to compare the cost (7.68) with (7.74) let z(t) = z(T-t) and
G(t) = u(T-t) and write (7.68) in terms of Z(t) and TG(t)
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However, under the assumption w(s) = Q¢ s €(~h,0], the cost given in
Theorem 7.4 coincides with Lee's cost (the second term in (7.68) dis-
appears, see also (7.71) =(7.72))). Thus, the results of the previous
sections may be used in én attempt to complete Lee's work, e.g. obtain a
feedback realization of the optimal control. Our final result shows how
this can be done in the special case A

= 0, C2 = 0, i.e. no delays in

2

the state nor in the controls.

Proposition 7.5: Let A2 =0, 02 =0, A1 = A and Cl = C. Then the

optimal solution Uy, to the control problem (7.66) - (7.68) is given

by

t+h

-1
up (£) =-R "CIR(t)z (t) + { ¥(t,s=h)B, B}z (s)X(s-h)ds]1,t €[0.T]

. a.e. (7.75)

where zT is the solution to (7.66) with u = U

Proof: from (7.50) it is easy to see
A - T T s Y -1
R(T{T) = [*1¥(T,s)P(s) + | ¥(T,0)B,B1¥" (s,0-h)X(0-h)doIC'R "dy(s)
0 s

and from (7.69) we obtain

up(s) = ~RLCIR(s)¥' (T,s) + fTW(s,c—h)BlBé ¥' (T,0) X(o-h) dalb
S

. a.e. (7.76)

Next we show that zT(t) = ¥Y'(T,t)b, t €l0.,T]. TFrom (7.66)

we have, for t c[0,T]

z{(t) = b + fTA‘z(s)ds + chbqu)ds
t t

this expression, together with (7.76) give
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ZTCII = JTA‘ZTtSldS + {1 “\fTC‘R-ICPCs)W'(T,s)ds
t t
(7.77)

~ /¥ fferr ™ ov(s,0-h)B,BY ¥ (T,0) X(0-h)dods]} b
t s

Now, it can he shown [L1] [H2], that ¥{t,s) satisfies

¥(t,s) =T - [° ¥(t,0)[A-P(0)C'R ‘Cldo
S

- [° 17 ¥(c,0)B,BI¥" (8,0-h)dbdg , s <t (7.78)
s s

so (7,77) and (7.78) yield

[2,(t) = ¥'(T,0)b] = jTA'[zT(s) - ¥'(T,s)blds
t

which in turn gives
zt(t) = Y'(T,t)b , t €l0.T] (7.79)
thus, from (7.76) and (7.79) we obtain
o1 T _ ' _
up(s) = -RClP(s)z (s) + £ ¥(s,0-h)B, Bz (0) X(0-h)do
using the fact that ¥(s,o-h) =0 s < g-h and ZT(O) =z(g) =00 >T

(7.75) follows easily from the expression above.
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CHAPTER, 8

CONCLUSIONS

In the preceding chapter we have extended known results for
systems with delays in the state and observations, to systems containing
delays in the noise process. In particular, it has been shown that
the filtered estimate of a linear system with a delay in the state,
observations and in the noise process satisfies a stochastic differential
equation. This equation involves some smoothed estimates even when
there is no delay in the state and ohservations. The 'gains' involved
in the optimal filter are characterized in terms of the error covariance
matrix function and the fundamental matrix associated with the homo-
geneous part of the system's dynamics. A set of partial differential
equations for the error covariance have also been obtained. These
equations resemble the corresponding expressions obtained for systems
without a delay in the noise, plus a number of 'correction' terms due
to the delay in the noise. Such 'correction' terms have no effect on
the interval t £[0sh] and, under the assumption that the initial
noise segment w(s) s £l-h,0] is zero, the optimal filter behaves as if
no delay was present in the noise (of course on t £[0,hl). Unlike the
case of no delays in the noise, we need to specify the error covariance

function P(t—el, t—Bz,t) on the intervals ©§ 82 c[0:/2h) for each

1,
t €lhsT] and 61, 82 el0,h] for t el0rh]l (alsc we need to determine
the fundamental matrix ®(t-¢,t-h) on 9 £[0.h] for t elh.T]). If no

delay occurs in the observations, then it is sufficient to compute the

error covariance on the intervals 61, 92 £{0+h] .for each t €[0,T].
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This is also the case for systems with delays in the noise process

only; however, for this class of systems we have obtained an alternative
characterization of the optimal filter. This characterization is

given in terms of the covariance P(t,t,t) and the fundamental matrix
agssociated with the homogeneous part of the corresponding error diff-
erential equation. We point out that this alternative representation
allows us to reduce the number of differential equations satisfied by

the 'gains' involved in the optimal filter, and to establish uniqueness
of solutions to these equations.

We have also shown that the filtering problem posed in Section 7.1

is equivalent to a problem of optimal control. The dual system contains
delays in the state, controls and observations. The dual optimization
problem consists in minimizing a quadratic functionmal with delays. This

problem has been previously studied by Lee [L3] , but his results are
rather incomplete from the point of view that a feedback realization
of the optimal control has not been obtained. In the special case of
no delays in the state and controls we have obtained a feedback repres-

entation for the optimal control by exploiting our results on the filtering

problem.

Finally we mention that our results are easily extended to

systems with muliple point delays. The case of distributed delays in the

noise, state and observations needs further research. We mention that
for this class of systems Briggs [Bll] has obtained some results by
considering the time delay differential system-as a stochastic evolution
equation; however, the developments in [Bll] are not applicable to
systems containing point delays in the noise process. (The case of
distributed delays in the state.and observations has been studied in

[kKel). More work is also needed to establish uniqueness of solutions



- 154 -

to the set of partial differential equations satisfied by the error
covariance function. The existence and stability of the stationary
filter remains an open question. We believe that the study of the
dual optimal control problem might be useful in solving the infinite
time filtering problem. Also, the filtering problem for nonlinear
stochastic delay systems should be studied (some results have been
obtained by Kwong and Willsky [K6] when no delays occur in the noise

process) .
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APPENDIX A

SPECTRAL DECOMPOSITION FOR TIME DELAY SYSTEMS

In this appendix we briefly describe the state space decomposition
for time delay systems. The proofs of the results presented here are
to be found in [§2] or [H21T .

Consider the time delay system given by

x(t) = A x(t) + Ax (c-h) +Bu(t) , t2>0 (a.1)
x(8) = xo(e) , 8¢ [-h.0]
y(t) = Cx(t) (A.2)

where x € En, uEe Em, vy E FP and A A2 B, C are real constant matrices

1’

between the appropriate spaces.

Transformed into an evolution equation in X = M, , (A.1l) - (A.2)

2
become
F(t) = AX(t) +Bu(t) , t>0 (A.3)
%(0) = X
y(e) = CE(t) (A.4)
where X ¢ Mz, E and E are bounded operators and A is a closed,

unbounded operator with dense domian D(A) given by

D(A) = {(xo,xl) £ lexl £ Lz([*h,ol; F") is absolutely continuous,

1
xl(o) = XO and dx (8)

£ Lz([—h,O];En)}
do

T . . .
Hale's results are developed in the space of continuous functions

C(E-h,O]:Hn); however, they are essentially the same as those developed
in the Hilbert space Mz = F0 x Lz([—h,OJ;Eﬂ).
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Also, A is the infinitesimal generator of a strongly continuous semi-
group S _(t), t > O and this semigroup is compact for t > h. Furthermore,
the speitrum of A consists of eigenvalues of finite multiplicities,
and the number of eigenvalues with real part greater thanm or equal to
a given arbitrary constant is finite.
Now, ket A be a finite symmetric subset of G(K) and define
the subspaces
k

Ker(A-A.) + , X
1 .
1=1 1

k.
mK—xi) . (4.5)

N
X, = @
i 1

A

=S
n>s=

where Ai € A and N is the number of distinct eigenvalues of A in
Al Let m, denote the algebraic multiplicity of Ai £ A. It then

k.
follows, since diml[Ker{a-A) 1 = ;5 that

and

N
dimlX,] = )} m

A = M(total multiplicity of the eigenvalues of

A in M)
Furthermore, from the spectral theory of operators with compact resolvent,

we have that

FA is a circle around liEA such that nc other eigenvalue of
1 i '

_ A
X = XA 8 X
and that the projection PA of X onto XA along XA is given by
P, S fr(K-A)_ldA _ (A.6)
ZTTi
N
where T = u

i
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A 1lies in the interior of FA .

In the remainder of this appendix, we will obtain another re-~
presentation of the projection operator PA' First, we summarize some
preliminary results.

For ¢ ,¢ € M, define the bilinear form T

2
T T

<<y, 42> =90 ¢+ [0 b (-e-mya, o' (e)do (4.7)
~h

The operator K? adjoint to A with respect to the bilinear
form (A.7) is defined to satisfy, for ¥ € D(KT), ¢ e D(K)
~T
WATY , $>> = <YL ADS>

Simple computations now give D(KT) = D(A ) and

E1° = a7 40 + 47 9 b
1
~T 1 d =0
[Alylt = P (8) s 8 el~h.0]
dd
KT is then a closed operator with dense domain. We also have

that KT has point spectrum only, U(ET) = O(K) and for A ¢ O(ET) the
generalized eigenspaces are finite dimensional. We point out that
A" must not be confused with the topological adjoint K*; however, there is
an interesting and useful relationship between them (see [D4] for details).

The spectrum of the infinitesimal gemerator A 1s characterized

by the n¥n matrix function

A = A, + A, L (A.8)

..[-.

when multiple and distributed delays are present in (A.l) we defime
the bilinear form by

o' o [ 1! 1 o 8 17 1
<<, ¢>> =y ¢ o+ ) W (-8-h)A. 0T (8)a8+[" [T ¢ (s-8)A(s)¢” (8)dst
i=2 ~h, ot “h_-h
i r r
where 0 < h2 < h3 cee < h
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in fact, we have

o) = {he Cldeta(r) = o} {A.9)

Now, let M; denote the complex extension of MZ’ i.e.,

M; =" x L2 (L~h,01; Cn). Similarly D(K)c denotes the complex function
space corresponding to D(K). Define the complex valued functions
ai : [0l ~C for Ag¢ Cand k =0, 1... by
k
e
o) =g ¥, n<eco (a.10)

and let * denote the convolution between two functions on [-h,0]
a* 88 = [Ca(e-0)R(a)ds , -h<8<o0
5 vz

We now give the following results
Theorem A.l: Let A € U(X), d LY e M;. Then, for k = 1,2... the
equation (K~Al)k¢ = P holds if and only of there exist vectors

95 ¢1+-+ ¢, € & such that

k-1 .
0 1 k-1 1
S Y e (A.11)
0 . b i A A
1=0
and for v = 0,... k-1
v ]
1 dYA(A) v
iy = L. = <<ay LU (4.12)
= it ad k=~1=-v+j A
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(A.12) in Thecorem A.l can be written in matrix notation as

k-1
A sy .. 1 S B ) e )
S G-yt an! :
. Co = (4.13)
—-—dA(A) ¢k_—'2 <<0,',;-t s Y>>
d
LAy b, <, >
. i\ J L J

In the following the nk X nk matrix in this equation will be denoted by

Ak(k).

Theorem A.2: Let Kk = 1,2 ... and ¢ € Mo Then ¢ € Im(K—AI)k

e
if and only if

<<y, ¢>> = 0
for all Y ¢ Ker(KT-kI)k.

As a consequence of Theorem A.l we have that the subspaces

;,are of the same dimension nk - rank Ak(k)

~ ~ k
Ker(A-?\I)k and Ker(AT-RI) of M
for every k = 1,2... . Moreover, these subspaces are spanned by functions

of the form

k-1 h
_ 81 a8
48 = J.ZO by 3T e , -h<8<0 (A.16)
and
kel B g
vy = 1 v T , “h<B8<0 (4.15)
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respectively ,where

Yy = F¢0 } satisfies Bk(A)Y =0

P2

¢
, k-1

and

B = [y_;) satisfies 8 A () =0

It now follows that the generalized eigenspaces

s Zl =u Ker(KT-kI)k

Z, = U Ker(EFKI)k 3
k k

A

have the same dimension which equals the algebraic multiplicity of

~ ~T .
A e o(A) =ag(AT). Furthermore, since the resolvent operators of

~

A and ET are compact, there is a minimal integer kl such thay

k k

Zk = Ker(K-AI) A , Z1 = Ker(KT—AI) A

A

Theorem A.2 now shows that, for the same kl’ we have

kl

2% = 0 Tw@GE-ADF = Im(A-A1)

k

n

and that ¢ € ZA if and only if <<y,¢>> =0 for all ¢ ¢ Zi.

Now define
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then M. =2

Let {¢1,...,¢M} and {wl,..., wM} be a real bases of Z, and

Zh respectively. Moreover define § V¥ € EBXM X LZ(E—h,OJ; Enxrs by
= a0 by -
¢ = (2, 97) = [¢1...¢M ] (A.16)
_ 0 Wl
Y= (¥, ¥ [wl...ﬂﬂ.] (A.17)

and let <<¥,®>> denote the real MXM matrix with entries <<wj,¢i>>,

i,j =1,2...M, i.e.
of o . (0 1T(-0-n)a, 0 (c)do
<Y, P> =¥ @+ [Ty 2
-h
For ¢ € M; let <<¥,¢>> € CM be the vector with components
<<¢j,¢>>, j=1,2...M.

It can be shown that the matrix <<¥,$>> is non-singular. Thus

the bases {¢1,...,¢M} and {wl,...,wM} can be chosen (without loss of

generality) such that

<Y, 0>> = I (A.18)

We now give the following result

Theorem A.3: If (A.18) holds, then P,, defined by

A,
By ¢ = @<<¥,0>>  d€ M; (A.19)

projects M; onto ZA along ZA.

Now, define the real subspaces

A A
X Aan s X" =12 nM2

then we obtain XA = {®XA|XA £ BM} and 9 € XA if and only if ¢ & M2

such bases clearly exist since _A 1is symmetric (with respect to the

real axis). Note also that ¢(A) is symmetric, since the coefficients
of detA(}) are real.
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and <<¥,¢>> = 0. Hence PA also projects M2 onto XA along XA, and

_ A
M.2 = XA g X,

Finally let us analyze the decomposition of the inhomogeneous

system (A.1) with respect to the above decomposition of M Since

2"
XA is invariant under A, it can be shown that there is a {(unique)

real MXM matrix A, satisfying.

A
A0 =20 Ay (A.20)
Theorem A.4: Let (A.18) be satisfied and AA defined by (A.20). Then
(1) Ay = Ay
T
A,D A8
Gy ot =, vl -wet , m<o<o
(iii) o(ap =4
AAt T Ait
(iv) S(t)d = ¢de s ST(E)Y = Ve , £t >0

T . ~ o~ .
where S(t) and S (t) are the semigroups generated by A and AT respectively .
(v) PAS(t) = S(t)PA

The above theroem, in particular (v), shows that both XA and

XA are invariant under S(t) for all t > O. Hence the operator family
shcey & sqey jxb
defines a strongly continuous semigroup of bounded linear operators on

XA with infinitesimal generator KA defined by

M -ie, 0en@ ) =@ axb

Clearly SA(I) is still compaet for t > h and the resolvent operator

~H\ -1 ~ -1,,A ~A ) R .

(A7=A1) = (A-)1) |X of A" is compact for-A g p(a). In particular
. A ~

SA(t) is stable if and only if Ré A < w for all A e g(A) = O(A)IA, for

some w < 0.
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We close this appendix with the following result
Theorem A.5: Let ¢ € M2 and suppose that u(*) is locally integrable.
Let x(t) ¢ Bt > ~-h Dbe the unique solution of (A.1). Then the
projection of (x(t),xt) into XA is given by
PA(x(t),xt) = @ xA(t) (A.21)
where xA(t) = <<¢,(x(t),xt)>> £ EM, t > 0 1is the unique solution of the

ordinary differential equation
T
. 0

xA(t) = AAXA(t) +¥" Bu(t), t >0 (A.22)

with initial value

xA(O) = <<W,x0>> a {A.23)
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APPENDIX B

Most of the definition and results of this appendix are found

in [K11].

I. Some Results On Pairs Of Closed Subspaces

Let M and N be two closed subspaces of a Banach space X.
The nullity of the pair M,N is defined by
aul (M,N) = dimiM n NI

The difficiency of the pair M, N is defined by

def (M,N) = codim[M+¥] = dim X
M+N
We also define
_ : dist(x,N)
Y(M)N) inf diSt(X,MnN) \_<_1)
XEM
x4 N

when M ¢ N we set Yy(M,N) = 1.
Also we mention that Y(M,N) is not in general equal to 'Y(N,M)+ s but-they
satisfy

vy > YOuW

L+y (M,N)

YOMLN) = minly(M,N),y(N,M1 is the minimum gap between M and N

Theorem B.I.1: ({Kl1, Th. 4.2, p. 2191

The subspace M+N is closed if and only 1f y(M,N) > 0

.f-
if X 1is a Hilbert space then Y(M,N) = vy(¥,M)
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Theorem B.I1.2: [K1, Th, 4.18, p. 226, Th, 4.24, p. 2271

Let M, N and M' be closed subspaces of a Banach space X.

Suppose that M+N and M'+N are closed in X. Then

S(M',M) < y(N,M) implies nul(M',N) < nul(M,N)
and
S(M,M') < Y(M,N) implies def(M',N) < def(¥,N)

Theorem B.I1.3: [Kl, p.2001

If M and N are closed subspaces of a Banach space X.
Then

§(M,N} < 1 implies dim M < dim N

S(M,N) <1 implies dim M = dim N

For any subspace M of a Banach space X, the annihilator of
M in the adjoint space X* is denoted by e Tand is a closed subspace
Also, for any subspaces M, N of X we have

)t = M o W

The dual relation ML + Nl = (M n N)L does mnot always hold because

(M n N)"L 1s closed but Mi + Nl need not be closed.

Theorem B.I.4: [Kl, Th. 4.8, p. 2211

Let M and N be closed subspaces of a Banach space X.
*

Then M+N is closed if and only if Mt + N is closed in X . In this
case
M+ N = Ma W
and
qul N5 = def(M,N) , def(M",N) = nul(M,N)
+

if X 1is a Hilbert space, then ML denotes the orthogonal complement
*
of M in X =X,
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vowy = yaum' L Foth = Joum T

Theorem B.I.5: (K1, Th.8.9, p. 2011

Let M and N be closed subspaces of a Banach space X.

Then

s(M,N) = s(voMn),  faLm = Sort,nh

Theorem B.I.6: (K1, Lemma 2.2, p. 199]

For any closed subspaces M,N of X and any u £ X, we have

[1+8(M,N) 1 dist(u,M) > dist(u,N) - §(M,N) | ul|
We conclude this section with two results concerning simultan-
eous perturbations of two closed subspaces.

Theorem B.I.7:

Let M, M', N and N' be closed subspaces of a Banach space X.
Assume that M n N = 0 and M#N, M'+N, M+N', M'+N' are closed. If
T

1
max[S(M' ,M) ,§(N',N}] < min Y (N, M) , ¥ (M,N)
2+y (N, M) 24y (M, N) J

(b.I.1)

then M NN =0, Mn N =0and ¥ n N' =0.

Proof: Suppose that wmax[é(M',M),6(N',N})] = 6(M',M) then (b.I.1) implies
S(M',M) < y(N,M)

and theorem B.I1.2 gives

dimlM' aN] < dim[MoN] = O

These expressions are valid even if M+N is not closed.

++ If X is a Hilbert space then v(N,M) = y(M,N) and this condition becomes
max[6(M',M),S(N" ,N)] < y(M,N)/2+y(M,N)
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Hence ' n N =0 .

We next show that y(M',N) > é(M',M) > 6(N',N). Let ueN,
then since M n N = 0

dist(u,M) > v(¥,Mdist(u,MN) = yQLM || ul
It follows, from the above inequality and Theorem B.I.6. (with the sub-
stitution M + M', N + M) that

dist(u,M') > [1+6(M, M1 Ly (M -8t 91| ul)
Since this is true for any u € N, we obtain

YN, - S(M',M)
1+5(M' ,M)

y{y,M') >
which in turn implies

QLMY L YL - S0, M)
-Y(Mt ,N) > Y > 1 3
1y, T 1+ (N, ) (b.1.2)

On the other hand we have

G(M' ,M) < M_
2+y (N, M)

thus

st ) < LN - S(MLM)
1+y (N,M)

(b.I.3)

Combining (b.I.3) and (b.I.2) we obtain
YOUN) > SO ,M) > S(N',N)
It is now clear, from Theorem B.I.2 (with the substitution M' - N'
M > N, N+ M') that
dim[M'nN"] < dim[M'nN] = 0O
therefore M'nN' = 0.
Now suppose that max[§(M',M),8(N',N)] = §(N',N) then, we obtain (as

above) that y(M',N) > §(M',M) but we cannot conclude that y(M',N) > S§(N',N).
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However in this case
S(N',N) < v(M,N)

and therefore B.I.2 gives (with the substitution M' - N', M+ N,N + M)
dim[MnN'] = 0, hence MnN' =0 .

Next we show that y(N',M) > §(N',N) > §(M',M). Let u e M,
then since M n N = 0 we obtain

dist(u,N) > y(M,N)dist(u,MN) = yQLN) || ul|

It follows from the above inequality and theorem B.I.6 (with the
substitution M + N') that

dist(u,N') > [1 + 8N, 01 Py Qe,N) - Q' ,M 1] ol

Since this is true for any u € M we obtain

Y(M,N) - S(N',N)

Y(M,N') >
1+§ (W', )
Y (M,N)
thus, from the above inequality and since S§(N',N) <
2+y(M,N)
it is easy to see that
Y(M,N') Y(M:N) - S(NT 9N)
Y(N', M) > > > §(N',N)
1 +y(M,N") 1 + y(M,N)

hence
y(N'M) > S(NT,N) > S(M,M)
and theorem B.I.2 (with the substitution N + N') gives
dim[M'nN'] < dim[MAN'] = O
thus M nN' =0
This completes the proof.

Theorem B.1.8:

Let M, M', N and N' be closed subspaces of a Banach Space X.
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Assume that M + N = X and that M' + N, M+N' and M'+N' are closed. If

{Y(M,N) YN, M)
maxES(M,M'), S(N,NN)] <-minl

24y (M,N) 24 (N, M)

then
M'+N=X , M+N =Xand M +N' =X,
Proof: If sufices to apply Theorem B.I.7 to M,M',N and N' replaced

by their annihilators. (Note Theorems B.I.5 and B.I1.4)

II. Relative Boundedness and Relative Compactness

Let T and A be two operators with domains in a Banach space
X, but not necessarily with the same range space. Let D{T) and D{A) be
the domains of T and A respectively.

Definition B.II.l: A 1is said to be relatively bounded with respect

to T, or simply T-bounded if D(T) < D{(A) and there are non-negative

constants a, b such that

| axll < ali [} + bt T=l] x € D(T) (b.1)

The greatest lower bound bO of all possible constants b in
(b.1) will be called the relative bound of A with respect to T, or
simply the T-bound of A. Clearly a bounded operator is T-bounded
with T-bound zero.

Definition B.I1.2: A 1is said to be relatively compact with respect to

T, or simply T-compact, if D(T) = D(A) and for ény sequence {xn} £ D(T)
with both {xn} and {Txn} bounded, {Axn} contains a convergent subsequence.

© Clearly if A 1is T-compact it is also T-bounded.
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When T 1is closed, i.e. T g C(X,Y) we may introduce the

graph norm on D(T), that is

il = 1 2+ | 7= ,  xe D)

Under the norm | |, D(T) becomes a Banach space D, (since T is closed

1
and this implies that Dl is complete).

Let Al be the restriction of A to D(T). Then it is easy to see that

A 1is T-bounded if and only if A, is bounded, i.e.

1

laxi = flaxil<ucl =P« [ m=l»? = wmll=l] , =ze0@
Similarly, it can be shown, that A 1is T-compact of and only if Al

is compact.

We conclude this section with the following results

Theorem B.II.3: [ K1, Th. 1.1, p. 190]

Let T and A Dbe operators from X to ¥, and let A be
T-bounded with T-bound smaller than 1. Then § = T+A is closable if
and only if T 1is closable and in this case the closures of T and
8 have the same domain. In particular § 1is closed if and only if
T is closed.

We further note that for b < 1 in (b.l) and § = T+A, the
operator A 1is S-bounded with S-bound f_b(l—b)_l. In fact for
any operator that is T-bounded with T-bound bl is also S-bounded with

S~bound < bl(l-b)“l.

Theorem B.I1I.4: [K1, Th. 1.11, p. 1941

Let T, A be operators from X to VY and let A be T-compact.
If T 1is closable, S =T + A is also closable and the closures of T
and S have the same domain and A is S-compact. In particular § is

closed if T 1is closed. {(Note that no assumption is made on the

"size" of A).
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Theorem B.IT.5: [K1, Th. 2.14, p. 203]

Let T ¢ C(X,Y) and let A be T-bounded with T-bound less

than 1. Then § = T+A ¢ C(X,Y) and

- 1 1
§6,m < - taihHE 8@, < (@)’
A -1 2 2%
6(s,T) = max[&(5,T), 8(T,8)] < (1-b) "(a™+b")
In particular if A 1is bounded then
8(s,m < || all
III. Perturbation Of The Spectrum Of Closed Operators

Theorem B.III.1: iK1, Th. 3.1, p. 208l

Let T € {(X) and let T be a compact subset of the resolvent
set p(T). Then there is a § » 0+ such that I <« p(S) for any
S € C(X) with 8(8,T) < 4.

The above result may be interpreted to imply that o(I) is
upper semicontinuous. The following result establishes that each sep-
arated part of the ¢(T) is upper semicontinuous.

Theorem B.III.2: [K1, Theorem 3.16, 2121

Let T € C(X) and let o(T) be separated into two parts
Ol(T)’ 02(T) by a closed curve [ containing dl(T) in 1ts interior and

OZ(T) in its exterior. Let X = Xl(T)exz(T) be the associated decomposition

. T
of X. Then there is a § > O depending on T and T with the

1

T § = min -%<1+|A|2)‘ (1+]] (T—A)'IMF>"%

Ael

7T & may be chosen as in Theorem B,III.1.
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following properties. Any S e C(X) with g(S,T) < § has spectrum ¢(S)
likewise separated by T into two parts 01(5),62(5) (I' itself rumming in
p(8)). In the associated decomposition X = Xl(S) & Xz(S), Xl(S) and
XZ(S) are respectively isomorphic with XI(T) and XZ(I). In parti-
cular dim Xl(S) = dim Xl(T), and dim XZ(S) = dim X2(T) and both ol(s)
and 02(8) are nonempty if this is true for T. The decompsotion
X = Xl(S) @ XZ(S) is continuous in S 1in the sense that the projection
P(S) of X onto Xl(S) along XZ(S) tends to P(T) in norm as S(S,T) -+ 0.

When Gl(T) in the theorem above is finite system of eigen-
values then dim,Xl(T) =m< ©, where m 1is the total multiplicity
of the eigenvalues under consideratiomn. In this case we may choose
a closed curve T enclosing ol(T), in such a way that for any S € C(X)
with g(S,T) < 8, T also separates oJ(S) into two parts Gl(S), 02(8)
with Ul(S) {contained in T) being a finite system of eigenvalues with
total multiplicity m, i.e. dim Xl(S) = m. The same result holds
when GI(T) is replaced by anyone of the eigenvalues in Gl(T). Thus
we conclude that the change of a finite system of eigenvalues of a closed
operator T 1is small, when T 1is subjected to a small perturbation
in the sense of S(S,T) being small, where S € C(X) denotes the perturbed
operator .

The above results are rather general but not very comvenient for
applications. Next we give two results which are more directly useful.

Theorem B.III.3: [Kl. Th.3.17, p.214)

Let Te €(X) and A an operator in X which is T-bounded.
If there is a point A £ p(T) such that
-1 -1
all (T-2) "+ pfj T(T-2 Tl < 1

then $ = T + A is closed and A & p(s) with
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b -7 < |l @0 Geall a7 s | Ta-n T

If in particular T has compact resolvent, S has compact resolvent.

Theorem B.IIT.4: [Kl, Th.3.18, p. 214]

Let T, A and S be as in the preceding theorem. Let 0(T)

be separated into two parts by a closed curve I' as in Theorem

B.ILI.Z2.

1
|

|+ b T(z-2)7H

sup(a|l (T-1)" 1) <1
AeT

thus 0(S) is likewise separated by [ and the results of Theorem B.III.2
hold.

In Theorem B.II1.4, ||P(S) - P(T)llcan be made arbitrarily
small if ||A(T-A)_1|| is sufficiently small for all X ¢ [, which is
the case if a, b are sufficiently small. (Actually a, b need not be

too small but the condition in Theorem B.III.4 suffices).

Iv. Some Results On Closed Operators In Banmach Space

Let T be a closed operator from X to VY. The reduced

minimum modulus of T, denoted by ¥(T) is defined by

Il x|
Y(T) = 1inf
x€D(T) dist(%x,Ker T)
where %- is defined to be <,
The reduced minimum modulus may also bé defined as [Kl, p. 231]
=1 -1
v(m = || T

where T is the 1-1 operator induced by T on X/Ker T. If ¥_l is

unbounded Y(T) = 0.
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Theorem B.IV.1: (K1, Th. 5.2, p.231]

T ¢ C(X,Y) has closed range if and only if y(T) > O.

Theorem B.IV.2: [Gl, Lemma IV. 2.9, p. 104l

Let T € C(X,Y) have closed range. If M is a subspace
(not necessarily closed)of X, such that M + Ker T is closed then
TM 1is closed. In particular, if M is closed and dim{Ker T] < =,
then TM closed.

We now give a general theorem on perturbation of Fredholm
operators.

Theorem B.IV.3: [Kl, Th. 517, p. 2351

. t
Let T, 5 € C(X,Y) and let T be Fredhom Esemi-Fredholmi.
~ -l .
If &(5,T) < Y(T)(1+Y2(T)) * then § is Fredholm [semi-Fredholml and

dimlKer 8] < dim{Ker T]1, codimlIm S] < codimlIm TI]
- ke

- T h that 3 S.T) < & implies '
Furthermore there is a 6 > 0 T sue (8,T) mp

ind{81 = indIT]

-
An operator T € C(X,VY) is said to be semi Fredholm if (Im T] is closed
and at least one of dimlKer T) or codimf{Im T] is finite. When both
are finite T 1is said to be Fredholm operator. Observe that if
codimlIm T] < = then({Im T] is closed since X and Y are Banach
spaces.

1

i _ l . 4

We may choose & = y(T) (1 + YZ(T» Toif X and Y 2are Hilbert spaces.
In general it is difficult to give a simple estimate of &.

Tt

ind[T}] = dim[Ker T] - codim{Im T1].
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The next two results are more directly applicable.

Theorem B.IV.4:[Kl, Th. 5.22, p. 236]

Let T € C(X,Y) be semi-Fredholm (so that v(T) > 0). Let A
be a T-bounded operator from X to V¥, so that (b.l1) holds for some
a>0,b>0. If
a < (1-b)y(T) (this implies b < 1)

then S=T+4aecCXY) , S 1is semi-Fredholm and
dim[Ker 81 < dim[Ker Tl, codimlIm S]1 < codim[Im TI]
ind[8]1 = indlT]

Theorem B.IV.5: (K1, Th. 5.26, p. 238l

Let T £ C(X,Y) be semi-Fredholm. If A is a T-compact
operator from X to ¥, then § =T + A € C(X,Y) 1is also semi~Fredholm with
ind[S] = ind[T]

Theorem B.IV.6: (K1, Th. 5.29, Th. 5.30, pp. 168-1691]

Let X and Y be reflexive Banach spaces, and let T ¢ C(X,Y)

* * %

be densely defined. Then the adjoint of T, denoted by T & C(Y ,X)
and is densely defined. Furthermore T = T. If in addition T !

* = ® %
exists and belongs to B(Y,X), then (T ) L exists € B(X , Y ) and

Theorem B.IV.7: [Kl, Th. 5.13, p. 234]

Assume T* exists. Then ImT is closed if and only if ImT*
is closed. In this case we have

(In T)* = Rer T", (Ker DY = Im T

dim[Ker T*] = codiml(Im T], codiml[Im T*] = dim{Ker TI

Y(T*) = v{(T) (this holds even if Im ’T is not closed)
In adition T 1is a Fredhomm operator (semi Fredholm) if and only if

*
T is. In the case we have
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ind{T 1 = -ind[T]

Theorem B.IV.8: [K1, Th. 2.18, p. 204l

Let T, § € C(X,Y) be desnsely defined. Then
*x ok ~ A kR
§(1,8) = 6(s ,T ) and &(T,8) = &(T ,S5 )

Theorem B.IV.9:

Let T € C(X,Y) be densely defined, B ¢ B(X,Y) and

c e B(Y,Z). Then

* * * % * %
(T+B) =T + B and (CB) =3B ¢

Theorem B.IV.10: [Cl]

Let T, S € C(X) be semi Fredholm. Then
_ 1
§(Ker S, Ker T) < [2 + ¥y 2(T)]2 §(5,T)

Theorem B.IV 11:

Let T, S be as in the previous theorem. If in addition
T and § are densely defined, then
- 1
§(Im T, Im 5) < [2 + ¥ 2(T)1? §(T,5)
Proof: from Theorems B.I1.5 and B.IV.7 we obtain
L L #* *
S(ImT, ImS) =6(Im S, ImT™) = §(Ker § , Ker T )
. * * * . . %
and since S and T are & C(X ) and semi Fredholm with ¥{T ) = v{(T)
Theorem B.IV.10 yields
_ * %
§(Im T, In 8) < 2 +y 21! 8™ 1%
the desired result follows from Theorem B.IV.8.
Theorems B.IV. 10 and B.IV.1ll are rather general and provide
crude estimates of 6(Ker S, Ker T) and 8(Im Y, Im S). The following

result gives a better estimate of 6(Im T, ImS) under certain assumptions.

Theorem B.IV.12:

Let T £ C(X) be semi-Fredholm with dim[Ker T] < <«
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If A is a T-compact operator and § = T + A then

a+b v(T)
Y{(T)

§(Im T, Im S)

where a, b are positive constants such that

| aull < afl uwll + b [ Tu]] , u € D(T)
Proof: Theorem B.IV.5 implies that § = T+A £ C(X) is semi Fredholm
and therefore Im S a closed subspace of X, Now suppose that
Ker T = 0, so that Tt exists and is bounded. TLet x ¢ Im T with | x| =1
and let y be such that x = Ty (note that vy is unique). Let

z = (T+A)y, then

| %=z} = |l ayil < all yll +b]| Ty ]|
but
y = T_lx
so that
hxzll< @ T+ 2 =)= 2—+5
y(T)
Hence
S(ImT, Ims) < || x-zf| < **° Y(D
v(T)

Now let Ker T # O, since it is finite dimensional we may write
X = XO & Ker T
let T be the restriction of T to XO, then Ker T = 0, Im T=ImnT

and Im(T+A) < Im(T+A). Thus
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S(Im T, Im §) < §(Im T, Im(T+4))

aY
o
H
]
+
(=2
I

This completes the proof.
We mention that the above result holds if A is T-bounded with
a +b Y(T) < y¥(T) since in this case § = T+A £ C(X) is semi Fredholm (see

Theorem B.IV.4). Furthermore, we obtain

a+by (T)
(Im T, Im §) < ——— <1
v(T)

and since (Theorem B.I.5)

§(Im T, ImS) = 6(Im S*, Im T

we have (Theorem B.I.3),

codim{Im S]] = dim[Im SL] < dim[Im ™1 = codimlIm T]T

Also, it is now clear that the estimate given by Theorem B.IV.1l is unnecess-

arily large. Indedd, from Theorems B.IV.1ll and B.II.5 we would have

' -2, 4.2 2.4
S(Im T, Im 8) < [2 +y "(T)1*(a"+b")
But

a 2

- 1
2 4 < Iy (M (a
¥(T)

1 - 1 13
b2 < 24y 2(T)1%(a’4p%)?

Thus, Theorem B.IV.12 provides a better estimate (from a quantitative

of view) of S(Im T, Im S).

..I.

for any closed subspace M of a Banach space X we have
codim{M] = dim[Mt]
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